Citation
Biogeoeconomics of phosphorus in a Florida watershed

Material Information

Title:
Biogeoeconomics of phosphorus in a Florida watershed
Creator:
Boggess, Carolyn Fonyo, 1956-
Publication Date:
Language:
English
Physical Description:
xiii, 234 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Agriculture ( jstor )
Cost efficiency ( jstor )
Cost estimates ( jstor )
Lakes ( jstor )
Land use ( jstor )
Pastures ( jstor )
Phosphorus ( jstor )
Polygons ( jstor )
Sugar cane ( jstor )
Wetlands ( jstor )
Lake Okeechobee ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 225-233).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
Carolyn Fonyo Boggess.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
021855276 ( ALEPH )
AKN2830 ( NOTIS )
33379732 ( OCLC )

Downloads

This item has the following downloads:


Full Text








BIOGEOECONOMICS OF PHOSPHORUS IN A FLORIDA WATERSHED














By

CAROLYN FONYO BOGGESS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY













ACKNOWLEDGEMENTS

am grateful to have had the opportunity to work with my committee chair, Dr.


Odum.


Through his brilliance and creativity, he has inspired me to view the


world from a systems perspective.


Many thanks go to other members of my committee


for their contributions: Dr. Mark Brown, Dr. Richard Fluck, Dr. Clyde Kiker, and Dr.

Clay Montague.

This work was an outcome of research supported by the South Florida Water


Management District.


I am indebted to all of the team players whom I have worked


with over the years including project leaders Dr. Bill Boggess, Dr. Ken Campbell, Dr.

Richard Fluck, and Dr. Jim Jones; coworkers Hugh Dinkier, Greg Kiker, Dr. Harbans

Lal, and Babak Negahban; and District contract manager Dr. Eric Flaig.

I would like to acknowledge my parents, who lovingly cared for their grandson,


Matthew, in order to provide time for me to complete the dissertation.


Finally, this


research could not have been accomplished without the love and support of my

husband, Bill.














TABLE OF CONTENTS


page


ACKNOWLEDGEMENTS

LIST OF TABLES .


*I a a a


a a S SS a


LIST OF FIGURES


S S S S a a S S a a a a a a S S S S X1 j


EMERGY SYMBOLS AND DEFINITIONS


ABSTRACT


S S S S S Sa a X l


S S S a a a S S S C 5 5 a aa a a S


CHAPTERS


INTRODUCTION


General Concepts


a a S S S 5 4 4 51


a a a a a a a a a 2


Concepts Relating Phosphorus, Emergy, and Economics


Phosphorus as a Resource


* S 5 5


a a p 5 S S S SS 48


Previous Studies of Ecological Economics of Chemical Cycles


Characteristics of the North Okeechobee Basin


History of Basin Development
Related Studies of North Okeechobee Basin
Phosphorus Management Alternatives
Description of Scenarios .


Dissertation Plan


. 1


. C 14


S21
S23
* S a S S S 5 25
S29
S.35


METHODS


PROCEDURES


AND SOURCES OF DATA.


S37


Organization of Data with the ARC/Info Geographic Information


System. .
Phosphorus Budgetin
Emergy Evaluation
Economic Analysis
Scenario Comparisor


. p a. 37


a a 44


* S S S


- 54


* a a a a S a 57
* a a a S 5 S 59







RESULTS


ft t t t t t f 9 ft ft ft ft ft ft ft 4 t t t t f 6 2


Phosphorus Budgeting
Emergy Evaluation
Economic Analysis


*I ft ft 9 ft


* f ft t t t f f 99 4 6


DISCUSSION


Relating the Phosphorus Cycle to Emergy and Economics
Effects of Management on Regional Spatial Characteristics
Comparing Measures of Success for Phosphorus Management .


General Principles of Biogeoeconomics
Suggestions for Future Research


158


APPENDICES


ASSUMPTIONS AND DATA SOURCES FOR PHOSPHORUS


BUDGETING AND ECONOMIC ANALYSIS


PHOSPHORUS MANAGEMENT EMERGY EVALUATION


TABLES.


REFERENCES


BIOGRAPHICAL SK


ft t S9 t ft S t t t t f f f f f ft ft ft ft ft ft2 2 5

:ETI'1-. t S ft... 234.













LIST OF TABLES


Table


page


Drainage Subbasins of the North Okeechobee Basin


S S S S S S 5 1


Land Use


Characteristics of the North Okeechobee Basin


S S S S S S S 5 20


Management Practices for the Base Case Scenario (1993 Conditions)


Dairy Land Uses and Land Use


Tags Assigned to Dairy Polygons


S S S S


Hydrography Attribute Codes and Arc Length Classifications


S S S S 4.5


Phosphorus Assimilation Coefficients and Average Flow Path Lengths


Drainage Subbasin in the North Okeechobee Basin


S S S S S S S S S 5 55


Phosphorus Budget Results by Land Use for the Base Case Scenario


Phosphorus Budget Results by Land Use


. 63


for the Maximum Phosphorus Use


. 64


Scenario


Phosphorus Budget Results by Land Use for the Dispersed Phosphorus


Management Scenario,


Design 1.


Phosphorus Budget Results by Land Use for the Dispersed Phosphorus


Management Scenario,


Design


S 66


Phosphorus Imports to and Exports from the North Okeechobee Basin under the


Base Case Scenario


S~~~~ ~ ~ ~ S S S S S S


Phosphorus Budget Results for the Concentrated Phosphorus Management


Scenario


S S S S S S 91


Emergy Evaluation of the Base Case Scenario.


Emergy Evaluation of the Maximum Phosphorus Use Scenario


3(1






Emergy Evaluation of the Predevelopment Scenario


3-10.


Emergy Evaluation of the Dispersed Phosphorus Management Scenario,


Design 1


3-11.


Emergy Evaluation of the Dispersed Phosphorus Management Scenario,


Design


3-12.

3-13.


Emergy Evaluation of the Concentrated Phosphorus Management Scenario

Emergy Evaluation Summary for Phosphorus-Containing Sources and


Products


3-14.


Phosphorus Management Costs and Basin Phosphorus Outflow for Alternative


Scenarios.


3-15

3-16

3-17


Cost Effectiveness Comparison of Phosphorus Management Scenarios


Service Dollars and Emdollars by Land Use for the Base Case Scenario.


. Comparison of Total Service Dollars and Total Emdollars by Scenario for
Approximately 1.2 Million Acres in the North Okeechobee Basin .


Comparison of Annual Emergy, Service Dollars, and Emdollars per Gram of
Phosphorus by Scenario for the Study Region .


Comparison of Total Annual Phosphorus, Emergy, and Emdollars Lost as
Runoff from the Study Region. . .


Summary of Annual Dollar Flows and Emdollar Flows of the Regional


Phosphorus Cycle by Scenario.













LIST OF FIGURES


Figure


page


Energy Systems Diagram of the North Okeechobee Basin with Overlay of Major
Phosphorus Flow Pathways. 4

Generic Unit Model of a Land Use Polygon.. 6


Hypothetical Distributions of Phosphorus and Paid Services ($) as a Function of
Solar Transformity 7


Systems Diagram of the Biogeochemical Cycle of Phosphorus
(Odum, 1983). . .


S S S S S S9


Location Map of Lake Okeechobee and Its Drainage Subbasins


* S f 5 15


Pathways Amenable to Phosphorus Management. 26

Schematic Diagram of a Dairy Waste Management System 32


Land Use and Soil Associations in the North Okeechobee Basin

The Hydrographic Network of Streams (in Blue) and Canals (in Red)


S~ S z1


n the


North Okeechobee Basin


S. 46


Unit Model for Spatial Simulation of the Phosphorus Budget


Unit Model for Key Processes of the CREAMS-WT Program.


= Evapotranspiration; LAI


= Leaf Area Index;


= Rainfal


Phosphorus


S S S S S S S S S S S S S S S S S S S S S S S S 5 51


Model of Phosphorus Assimilation as a Function of Flow Path


Distance


S S S S S S S S S S S 5 S S S S S S S S S S S S S S 5 5 2


Diagram Explaining Emergy Indices (Odum and Odum, 1983).


S 5 S S 61


S~~ ~ S S S







Diagram of Phosphorus Budgets and Their Interactions for the Base Case
Scenario. (a) Energy Systems Diagram; (b) Basin Phosphorus Budget; (c) Beef
Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget. Units are tons


P/yr (0.9E6 grams P/yr)


Diagram of Phosphorus Budgets and Their Interactions for the Maximum


S 67


Phosphorus Use Scenario.


(a) Energy Systems Diagram; (b) Basin Phosphorus


Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget.


Units are tons P/yr (0.9E6 grams P/yr).


Diagram of Phosphorus Budgets and Their Interactions for the Predevelopment
Scenario. (a) Energy Systems Diagram: and (b) Basin Phosphorus Budget.
Units are tons P/yr (0.9E6 grams P/yr). . 6


Diagram of Phosphorus Budgets and Their Interactions for the Dispersed
Phosphorus Management Scenario, Design 1. (a) Energy Systems Diagram; (
Basin Phosphorus Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy


S. 68


Phosphorus Budget.


Units are tons P/yr (0.9E6 grams P/yr)


Diagram of Phosphorus Budgets and Their Interactions for the Dispersed
Phosphorus Management Scenario, Design 2. (a) Energy Systems Diagram; (
Basin Phosphorus Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy
Phosphorus Budget. Units are tons P/yr (0.9E6 grams P/yr) .


Distribution of Imports and Exports of Phosphorus-Containing Materials under


the Base Case Scenario


SLand Use Polygons and Average Annual Phosphorus Runoff Concentrations


under the Base Case Scenario


S S S S S S S S S S S S 77


Land Use Polygons and Average Annual Phosphorus Runoff Concentrations


under the Maximum Phosphorus Use Scenario.


a S 5 5 5 S S 79


Land Cover Polygons and Average Annual Phosphorus Runoff Concentrations


under the Predevelopment Scenario


3-10.


S S S S S SS S S S S 5 81


Land Use Polygons and Average Annual Phosphorus Runoff Concentrations
under the Dispersed Phosphorus Management Scenario 83


3-11.


Spatial Hierarchy of Runoff Concentration among Land Use Polygons


. 85


3-12.


Land Use Polygons and Average Annual Basin Phosphorus Outflow under the


*0








3-13.


Unit Diagram for Emergy Evaluation of Citrus Land Use under the Base Case


Scenario (E13 sej/ac-yr)


3-14.


S92


Unit Diagram for Emergy Evaluation of Beef Pasture Land Use under the Base


Case Scenario (El 3 sej/ac-yr)


3-15.


93


Unit Diagram for Emergy Evaluation of Dairy Land Use under the Base Case


Scenario (El 3 sej/cow-yr)


3-16.


a a S S S S S S 5 4 5 a S S 9'1


Unit Diagram for Emergy Evaluation of Sugarcane Land Use under the Base


Case Scenario (E13 sej/ac-yr)


3-17


C S S S t S S S S S S S 5 95


. Unit Diagram for Emergy Evaluation of Other Agriculture Land Use (E13


sej/ac-yr).


3-18.


a a a a a a a a a aa a S S a a a S S S 96


Unit Diagram for Emergy Evaluation of Commercial Forestry


(E13 sej/ac-yr)


3-19.


S S 5 S S 6 C S S S S S C a a a a C S 9~7


Unit Diagram for Emergy Evaluation of Urban Land Use


(E13 sej/ac-yr)


3-20.


S S S S S S S S S S S SS S S S S S 98


Unit Diagram for Emergy Evaluation of Basin Scale Treatment for the S-191


Subbasin (E13 sej/yr)


3-21.


3-22.


3-23.


3-24.


3-25.


S S S S S 5 5 a a a a C S S S 5 99


Emergy Summary Diagram and Calculation of Net Emergy Yield and Emergy
Investment Ratios for Major Systems under Each
Scenario .


Average Annual Phosphorus Runoff Concentrations and Empower Density
under the Base Case Scenario. .


Relationship between Phosphorus Runoff and Empower Density per Production
Unit 11 .


Number of Phosphorus-Containing Materials as a Function of their
Transformities .


Average Phosphorus Content of Materials as a Function of their


Transformities


3-26.


Relationship between the Emerev per Mass of Phosphorus-Containin2 Materials







3-27


3-28.


. Relationship between the Emergy per Gram of Phosphorus in Materials and
their Spatial Distribution . .


Relationship between Emdollars and Service Dollars for Land Uses under the
Base Case Scenario. *


Diagram Showing the Full Phosphorus Cycle of the Region (Heavy Black
Lines) with Inputs and Outputs and Internal Cycling under the Base Case
Phosphorus Management Scenario. Dashed Line Represents Flow of Money
Associated with Phosphorus. .


Distribution of Phosphorus-Containing Material Inputs and Outputs Based on
the Emergy/Mass Ratios and Spatial Intensity of Phosphorus in the


Materials


Emdollar Flow per Acre Associated with the Annual Change in Onsite
Phosphorus Storage and Annual Runoff Phosphorus under the Base Case


Scenario








EMERGY SYMBOLS AND DEFINITIONS


ENERGY CIRCUIT:


a pathway whose flow is proportional


to the quantity in the storage or source upstream.


SOURCE:


outside source of energy; a forcing function.


STORAGE TANK:


a compartment of energy storage within


the system storing a quantity as the balance of inflows and
outflows; a state variable.


HEAT SINK:


dispersion of potential energy into heat that


accompanies all real transformation processes and storage;
loss of potential energy from further use by the system.


INTERACTION;


interactive intersection of two pathways


coupled to produce an outflow in proportion to a function
of both; control action of one flow on another; limiting
factor action; work gate.


PRODUCER:


unit that collects and transforms low quality


energy under control interactions of high quality flows.



CONSUMER: unit that transforms energy quality, stores
it, and feeds it back autocatalytically to improve inflow.


TRANSACTION:


a unit that indicates a sale of goods or


services (solid line) in exchange for payment of money
(dashed line).


BOX:


miscellaneous symbol to use for whatever unit or


process is labeled.












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


BIOGEOECONOMICS OF PHOSPHORUS IN A FLORIDA

By

Carolyn Fonyo Boggess


WATERSHED


December 1994


Chairman:


Major Department:


Odum


Environmental Engineering Sciences


The human economy influences and is influenced by the biogeochemical cycles

of elements, but means for relating chemical cycles to economic systems have been


studied only incidentally.


This study tested ways of relating a chemical cycle to a


regional economy, using phosphorus in the northern drainage basin of Lake

Okeechobee, Florida as an example.

Among the methods used were a mass balance approach to phosphorus

budgeting, dynamic modeling for runoff simulation, cost effectiveness for economic


analysis, and emergy evaluation techniques.


Spatial data on land use and management


practices were organized using a geographic information system.

Phosphorus management scenarios were evaluated and compared in terms of







load reduction to Lake Okeechobee);


economic (i.e., minimize cost of phosphorus


reduction);


and energetic (i.e., maximize regional empower).


Results indicated that


chemical treatment of phosphorus runoff as a point source at subbasin outlets was the


method by which the target load reduction goal could be achieved.


This method of


concentrated phosphorus management was least cost effective at an estimated $190 per


pound of phosphorus removed.


Dispersed treatment of phosphorus through changes in


technology and management onsite at each major source was more cost effective ($11


to $50/lb P removal), though short of achieving the physical goal.


A tradeoff


between


cost and phosphorus treatment efficiency was evident, particularly as the target goal

was approached.

Results of emergy evaluation supported the hypothesis that management

reorganizes the landscape by changing its diversity, and altering the cycling of chemical


elements.


Emergy evaluation showed that the total emdollar loss from the region as


phosphorus runoff was 20 million EM$/yr under the base case scenario, or 1.5 times


the cost of phosphorus control.


The emdollar value of phosphorus outflow from the


region to Lake Okeechobee after assimilation was estimated as 6.4 million EM$/yr, a

measure of its potential use.

Five principles for the new field of biogeoeconomics were proposed for

managing at the interface between an elemental cycle, its role in the environment, and

its economic use to enhance the self-organizing properties of the landscape.












CHAPTER


INTRODUCTION


The economic vitality of landscape systems depends on the biogeochemical


cycling of critical chemical elements.


environmental processes,


Part of each cycle is regulated by natural


while other parts of the cycle circulate through agriculture


and settlements of the human economy generally under development and change.


order to manage important chemical cycles, alternative choices need to be evaluated for


the benefit of the whole landscape, a general problem in ecological economics.


do chemical cycles affect the economy of humanity and nature?


How


This is a study of the


role of phosphorus in an agricultural watershed in Florida, evaluating alternatives for

management.

In the north Okeechobee, Florida, basin, fertilizer and feed inputs that were part

of intensive agricultural developments added phosphorus to a landscape whose runoff


contributed to eutrophication of Lake Okeechobee to its south.


Following public


controversy, many studies were conducted of phosphorus processes in the area.

Drawing on these data and using spatial models, this study first considers the

phosphorus budget of the landscape, its effect on the economy, and the way it changes


with alternative management. Scenarios include those that conserve phosphorus and

reduce flows of phosphorus to the lake. The works of the environment and of the









economy for the various alternatives were assessed on a common basis using energy

(spelled with an "m") evaluation --a method used to determine the aggregate net


productivity of a system.


An economic analysis in dollars was made of the costs of


phosphorus management alternatives.

The overall objective of this research is to analyze the role of phosphorus as an

element in the regional economy of the north Okeechobee basin and to develop a

comprehensive resource management framework for evaluating alternative methods to


reallocate phosphorus in this rural agricultural watershed.


Specific objectives include


(1) Examining the use and spatial distribution of phosphorus in a rural regional

landscape;

(2) Determining the emergy value and economic costs of alternative systems of

phosphorus use; and

(3) Evaluating phosphorus management alternatives based on physical criteria

(i.e., meet target phosphorus goals); economic criteria (i.e., cost effectiveness); and

biogeoeconomic principles (i.e., maximum regional emergy production and use).

General ConceDts


Phosphorus cycling in the environment is a function of both natural processes


(e.g.,


weathering of geologic formations, biological cycling through plant uptake and


senescence, and mineralization of organic matter) and anthropogenic factors (e.g.,


mining, agriculture, and human consumption).


The effect of these processes on the









phosphorus associations with each land use.


The sequence of phosphorus transport


through the basin may be conceptualized as a network of points of concentration and


dispersion.


Phosphorus-containing materials entering the north Okeechobee basin are


concentrated at major processing and distribution points such as chemical plants, feed


suppliers, and supermarkets.


Goods are dispersed spatially throughout the landscape as


inputs to production and consumption processes as determined by land use patterns.

Some phosphorus-containing products resulting from land use activities are again

concentrated at processing centers such as packing plants, livestock markets, and


sewage treatment plants.


Other products may be exported directly from the basin


without further processing (e.g. milk from a dairy operation).

Figure 1-1 is an energy systems overview of the landscape system of the north


Okeechobee watershed.


The components and exchanges are aggregated to include the


phosphorus inflows, phosphorus storing compartments, and the main energy and


economic influences and mechanisms.


The overlay diagram shows just the phosphorus-


containing components and pathways congruent with the whole systems diagram.


emergy and economic evaluations of the whole landscape were made by computing the

main pathways contributing to the system and to the larger outside economy of which

this landscape is a part.

Spatially the landscape consists of several main subsystems, shown as single


units in the overview diagram (Figure 1-1).


In the spatial analyses of phosphorus,





















.0

Sode


Ir I


ac


-4)
3 e
.an"


won,
-v








Figure 1-2 is a unit model of any system defined by polygon boundaries.


Depending


upon the type of land use, some pathways contained zero flows.

Various combinations of alternatives, or scenarios, for management of the

system affecting phosphorus were evaluated either in the aggregate using Figure 1-1 or

spatially for each polygon (Figure 1-2).

Concepts Relating Phosphorus, Emergy, and Economics

The distribution of chemical elements in the universe and in the crust of the

earth is skewed, reflecting the energy hierarchy of the universe's nuclear and other


processes of element formation and distribution.


Thus, there are large quantities of


elements of small atomic weight and fewer of the large atom elements (Schlesinger,


1991).


The distribution of an individual element may be skewed as well.


Much of the


mass is distributed among average concentrations,


whereas small amounts are more


highly concentrated, reflecting the fewer processes in the geobiosphere that maintain

areas of higher concentration.


The theory of self-organization


(Odum, 1992) suggests that processes are


sustained that have useful effects commensurate with their emergy requirement.


theory further suggests that a material that is concentrated will be in a transformity


range where it has a useful effect.


Transformity is a measure of the emergy per unit


energy of a substance, and higher transformity processes may be required where


phosphorus concentrations are higher.


Figure 1-3 suggests a distribution of phosphorus


rnnrnantratmnnc in nrnrsacoc rixeth a mndsrtrat lu hbirh rincp nf trannfnrmi tie













86











II



\I /


-4`


60

~~b J

0- 0
.Y0-
'.4 4. )
L, o U,
p> 0
a C






I'I-


La
U
C
4.)
0
S

I
~lf U
.5? -







5- z

0->










































1 100 1E4 1E6 1E8 IE10 1E12 1E14


Solar transformity (sej/J)


Figure 1-3.


Hypothetical Distributions of Phosphorus and Paid Services ($)


as a Function of Solar Transformity.







8

One may surmise that phosphorus at lower or higher concentrations is outside the range

where its utility is commensurate with its emergy requirement.

Transformities are usually higher for processes within the economic systems of


human society than those for processing environmental raw materials.


In other words,


in Figure 1-3, the zone where paid human services operate is in the range of higher


transformities to the right (refer to the hypothetical line for paid services).


At an


intermediate range of transformities where phosphorus is important in economic

processes (e.g., fertilization for agricultural production), it is economically and

energetically effective for moderate levels of paid human services to interact with

phosphorus.


Phosphorus as a Resource


Phosphorus composes about 0.12 percent of the earth's crust (Gilliland,


1973).


It is present in all soils and rocks, in water, and in plant and animal remains (Cathcart,


1980).


The global biogeochemical cycle of phosphorus is illustrated in Figure 1-4.


Phosphorus storage in marine sediments is four orders of magnitude greater than


storage on land.


The phosphorus cycle differs from those of other major elements in


that the atmospheric component is negligible (Schlesinger, 1991).


A major flux of


phosphorus occurs as river transport to the sea (Meybeck,


1982),


which is balanced by


the uplift of sediments.


Humans have linked the economic system to the


biogeochemical cycle of phosphorus mainly through mining phosphate rock for


"'

















































10E12 g/yr


10E12 g


Figure 1-4.


Systems Diagram of the Biogeochemical Cycle of Phosphorus (Odum,1983).









negligible by comparison, localized effects on the primary productivity of nearshore


habitats may be significant (Sandstrom,


1982).


Phosphorus is a vital element in the production processes of natural and human


systems.


It is necessary for photosynthesis, the synthesis and breakdown of


carbohydrates, and the transfer of energy within the plant (Khasawneh et al.,


At background concentrations, it is a valuable, and often limiting


1980).


resource.


concentrations exceeding those required for production, it is sometimes considered a


pollutant.


A pollutant


is, however, merely a resource out of place.


One goal of


ecological engineering at the interface of human and natural systems is to transform

waste products into useful inputs to production, taking advantage of the self-organizing


nature of systems.


Of particular importance in this study is the spatial reallocation of


nutrients from areas of


overabundance to areas of


limitation.


A general overview of


the role of phosphorus in natural and agricultural systems is presented to set the stage

for analysis of phosphorus management alternatives.

Role in Natural Systems


In nature, phosphorus is primarily observed as phosphate mineral, but is chiefly


available to natural plant and animal communities as orthophosphate.


Because of


limited availability and of solubility in aqueous solutions of the geological matrix,

phosphates are quite often a limiting factor for both aquatic and terrestrial natural


ecosystems


(Porcella et al., 1974).


However, Florida lands and waters have a much












Much of the vegetative cover in the north Okeechobee basin is either pineland,


prairie grassland, or wetland.


The flow of phosphorus laden runoff through the


watershed is affected by the occurrence of vegetated wetlands and waterways.

Phosphorus uptake by aquatic and wetland plants transforms bioavailable phosphorus


into storage as plant biomass.


Nutrient release due to senescence of plant matter or


saturation of uptake capacity may pulse the hydrologic system with phosphorus,


particularly at the end of the growing season.


The ability of released nutrients to


stimulate algal production in Lake Okeechobee depends on, among other factors, the


rate of mineralization of organic matter to bioavailable phosphorus.


Management


techniques such as chemical application or harvesting to control aquatic vegetation in

waterways and the use of wetlands for treatment of runoff from agricultural lands

influence the degree and timing of phosphorus outflow to the lake.

Uses in Agriculture

In Florida, agricultural runoff from fertilized cropland accounts for the highest


anthropogenic flow of phosphorus to inland waters (Gilliland,


1973).


Major inputs of


phosphorus to the north Okeechobee basin are accounted for as raw materials used for


fertilizer and animal feed production for agricultural activities in the basin.


majority of the fertilizer produced in the basin is bulk blended; dry granular fertilizer


materials are physically mixed to given N-P-K formulations.

in the basin primarily to improved pasture and citrus acreage.


These mixes are applied

Phosphorus is added to


.~~~~~~ -C.-









The purpose of fertilizer application is to increase the amount of bioavailable


phosphorus in soil for plant uptake.


The amount of phosphorus that can be lost in


sediment or dissolved in runoff water also increases proportionally (Taylor and Kilmer,


1980).


Phosphorus in animal wastes often represents a significant fraction of the total


circulating in agricultural systems.


Thus, a major goal of agriculture in the 1990s has


been to reduce its role in environmental degradation by employing nutrient management

and waste control practices.

Previous Studies of Ecological Economics of Chemical Cycles

Ecological economics studies linking the biogeochemistry of a chemical element


to its role in the human economy are limited.


Odum (1990) indicated that a material


cycle converges as it is incorporated into products, moves to hierarchical centers,

diverges as it is released by consumption, and disperses into less concentrated open


space.


This is certainly the case of phosphorus at the interface with the human


economy in the north Okeechobee basin,


where phosphorus-containing inputs are


concentrated into agricultural products that are transported to processing facilities and


then redispersed for sale as processed goods.


Odum, in the same article,


further


remarked that a systems view is necessary to see the material cycles of the biosphere

and the coupling of all the important processes and energy sources driving the chemical

cycles.


Recently, Pritchard (1992) evaluated the use of a wetland system for treating








using the wetland for treatment versus a more conventional chemical precipitation

method.

Several articles have recently appeared in the ecological economics literature


concerning nitrogen management (Andreasson,


1990; Huang and Uri,


1992; and Gren,


1993).


For the most part, the authors examined alternative policy mechanisms to


reduce the use of nitrogen fertilizer.


Favorable alternatives included crop rotation,


wetland restoration, and marketable nitrogen use permits.


In the same literature,


Erickson (1993) examined the relationship between carbon dioxide emissions and


agricultural yields from a global chemical cycling perspective.


He argued that any


benefits of increased CO, would be more than offset by predicted consequences of

climate change and ozone depletion.

Hutchinson (1952) provided an early quantitative assessment of the phosphorus


cycle in his monograph on the "Biogeochemistry of Phosphorus.


" He examined


phosphorus cycling through the biosphere: in primary rocks, soils, the atmosphere, and


the hydrosphere.


He attributed the return of phosphorus from the ocean to the


activities of birds and humans who retrieve phosphorus by harvesting fish from the sea.

Upwelling of nutrients off the coast of Peru stimulates productivity through the food

chain, ending with birds redepositing phosphorus on land in the form of guano.

Odum (1953) investigated the biogeochemistry of dissolved phosphorus in


Florida waters.


He outlined methods to decrease the potential fertility of waters by


,,,,..:,, ,I,,, 1,,,,., ~:nlnr*:nnl C;lm);nn nrrrl nr\nm; nnln*nn; n;,n,; nn









Gilliland (1973) examined the effects of man's development on Florida's


primitive phosphorus cycle.


She reported that Florida is draining its phosphorus supply


through mining 125 times faster than it is being replaced by dissolution of rock and


reprecipitation.


She concluded that water quality control programs should be based on


the percent effect of a given flow on the overall chemical cycle, rather than setting

effluent standards based on concentrations.

Kangas (1983) studied the interactions of humanity and nature in landforms


affected by phosphate strip mining. He estimated the embodied energy in a spoil

mound and modeled their succession. He recommended managed succession as a more

economical alternative to conventional reclamation. Kangas also modeled the


phosphate fertilizer industry in Florida and calculated a high net energy yield ratio of

12:1 for phosphate fertilizer.

Characteristics of the North Okeechobee Basin


The north Okeechobee basin comprises roughly 1.2 million acres of land in


various uses in south central Florida. This area incorporates 25 drainage subbasins

(Figure 1-5) within four larger drainage regions: Taylor Creek/Nubbin Slough, Lower


Kissimmee River, Indian Prairie/Harney Pond, and Fisheating Creek.

the size of each basin and the drainage region in which each is located.


Table 1-1 lists

For the


purposes of this study, physical characteristics of the area are important in terms of

how they affect land use and the flow of phosphorus through the north Okeechobee














Table 1-1.


Drainage Subbasins of the North Okeechobee Basin.


BASIN NAME AREA, acres REGION


S-65A
S-65B
S-65C
S-65D
S-65E
S-154
S-154C
S-191
L-59E
L-59W
L-60E
L-60W
L-61E
L-61W
LAKE ISTOKPOGA
C-40
C-41
C-41A


FISHEATING
NICODEMUS
L-48
L-49
S-131
S-133
S-135


CREEK
SLOUGH


103350
128310
50450
116590
29160
31620
2180
121820
14410
6440
5040
3270
14290
13570
48350
43960
94930
58500
282300
25080
20770
12100
7160
25660
18090


Lower
Lower
Lower
Lower
Lower
Lower
Lower
Taylor
Indian
Indian
Indian


Indian
Indian
Fishea
Indian
Indian
Indian
Indian


I


immee
immee
immee
immee


issimmee
issimmee
issimmee


River
River
River
River
River
River
River


Creek/Nubbin
Prairie/Harney
Prairie/Harney
Prairie/Harney
Prairie/Harney
Prairie/Harney
ring Creek
Prairie/Harney
Prairie/Harney
Prairie/Harney


Slough
Pond
Pond
Pond
Pond
Pond

Pond
Pond
Pond


Prairie/Harney Pond


Fisheating Creek
Fisheating Creek
Indian Prairie/Harney
Indian Prairie/Harney
Fisheating Creek
Taylor Creek/Nubbin
Taylor Creek/Nubbin


Pond
Pond

Slough
Slough


1 acre =


.4 hectares








Soils and Hydrology

More than 75 percent of the north Okeechobee basin is covered by sandy soils


of varying thickness.

drained organic soils.


The remainder of the area is composed of nearly level, poorly

Urban and residential areas in the basin are underlain by soils


classified as having severe to very severe restrictions for community development and


for operation of septic tanks and landfills.


Furthermore, extensive drainage and


hydrologic control mechanisms are necessary in order to use organic mucklands in the


basin for intensive agricultural production.


Such incompatibilities between soil and


hydrologic characteristics and land use may have contributed to water quality

degradation in the basin.


The dynamics of phosphorus transport through soils,


wetlands, and waterways


in the basin are crucial factors in predicting the effects of phosphorus imports to the


north Okeechobee basin on lake water quality.


Effects of changes in economic uses of


phosphorus on nutrient outflows to the lake depend upon present storage of

phosphorus in soils and wetlands and on the chemistry and timing of release

mechanisms.

Climate and Rainfall


With an average annual temperature of 74 degrees F, the subtropical climate in

the north Okeechobee basin has a major influence on the seasonality of phosphorus use.


Crop selection and cultivation practices,


which are based on climate as well as soil


A nntthr


L,,,, I,,,, :~n~nnc~ nn rrlrnnrr~nrrln nnllrF ;n ,t\;re nnr;rllltllrrll rpn;nn









seasonal impact on phosphorus of the region comes from tourists who increase

phosphorus flow in the form of sewage.

Rainfall serves as a direct input of phosphorus to the lake (16 percent of the


total phosphorus input (South Florida Water Management District [SFWMD],

but it also has indirect effects as an agent of erosion and phosphorus transport.


1989),

The


distribution of rainfall in the north Okeechobee basin varies temporally and spatially.

Average annual rainfall in the basin is about 50 inches, but monthly rainfall ranges

from 6 to 8 inches during the rainy season, June through September, and 1 to 2 inches


during the dry winter months.


Summer rainfall and storm patterns,


which account for


about half of the total annual rainfall, may result in nutrients being flushed into

waterways by dryland flooding.

Physiography

Basin physiography consists mainly of two gently sloping plains, the Osceola


and the Okeechobee.


About two-thirds of the study area has an elevation of 50 feet or


The Bombing Range Ridge located in the northwest corner of the Lower


Kissimmee Basin is the highest point in the study area at an elevation of about 100 feet.


Physiographic features and soils of the basin,


which have been strongly influenced by


its geology, in turn determine the suitability of the area for different types of land use.

Limestone formations, primarily of marine origin, are responsible for the


development of an extensive groundwater system in the region.


The groundwater






19

clays could potentially dissolve and transport phosphorus and eventually become part of


the surface water system.


Phosphorus may also be leached through sandy soils to


become part of the surficial aquifer which is often indistinguishable from surface flow

in the region.

Land Use


Agriculture north of Lake Okeechobee consists primarily of dairy and beef cow-


calf operations,


with limited acreage of citrus and vegetable production (Table 1-2).


Twenty-five dairies with a combined herd of about 26,000 milking cows provide fresh


milk for urban south Florida.


Roughly half of the 1.2 million basin acres is cow


pasture with varying degrees of improvement.


undeveloped upland,


About 40 percent of the basin is


wetland, and native range (see Fonyo et al., 1991 for more detail


on land use in the basin).

Urban land use in the north Okeechobee basin is limited to an estimated 40,000

inhabitants in the City of Okeechobee and surrounding towns, including seasonal


population increases due to tourism.


Most of the transient population is distributed


around the perimeter of Lake Okeechobee in seasonally occupied camps and parks.

Historical trends in land use are important since they may indicate locations


where phosphorus has been stored or built up in soils.


Future changes in phosphorus


usage in the Okeechobee basin depend primarily upon changes in population, land use,

and production practices; on the promulgation of laws governing the use of









Table 1-2.


Land Use Characteristics of the North Okeechobee Basin.


LAND USE AREA (acres)'


Agricultural


Citrus


32000
24000


Commercial Forestry


Dairy (


- 26400 cow


milked)


Barn


Hayfield


5075


High Intensity Area
Milk Herd Pasture
Other Pasture
Solids Spreading Area
Sprayfield
Waste Storage Pond
Improved Pasture


750
3780
11900
4000
4500
1370
480000


Ornamentals


1800
4000
9500
1400


Sugarcane
Truck Crops


Unimproved Pasture
Other Agriculture


160000
150


Urban


Golf Course


Residential (population 40000)
Waste Treatment (1 MGD)
Other Urban


22000
340
8400


Undeveloped
Barren Land


Forested Upland


Rangeland
Wetlands


6200
98000
180000
190000


TOTAL


1.2 million









History of Basin Development

One hundred years ago, south Florida fresh water circulated in a slow, rain


driven cycle of meandering rivers and streams, shallow lakes, and wetlands.


Starting


at a chain of lakes south of Orlando,


water flowed into the Kissimmee River,


meandered 100 miles south into Lake Okeechobee.


During wet seasons,


which


water spilled


over the lake's low southern rim and flowed south across the Everglades saw grass in a

50-mile wide sheet moving at a rate of about 100 feet per day toward Florida Bay


(Boggess et al.,


1993).


Along the Lake's northern shoreline appeared dense stands of water oak,

cypress, popash, and rubber trees. For some 30 miles north of the lake, the landscape


was textured by prairie lands and pine forests. Numerous small pools filled with saw


grass and maiden cane dotted the prairies (Mitchum,


1987).


Modification of the natural freshwater system in south Florida began in the late


1800s as investors began developing the area.


Over the next century, a series of


development, drainage, flood protection, and water supply programs resulted in the


construction of 1400 miles of canals and levees.


The ditching caused oxidation of


organic matter and release of phosphorus from peaty material and from acidic solution

of limestone fragments.

The most important project was the massive, federally funded flood control and

water supply project known as the Central and Southern Florida Flood Control Project


-~~~~r .l ., 4_. n .1 4nLn a *i, -a!n 1 *Lnnnnltnn


nin







22

as C-38; (2) construction of the 25-foot high Herbert Hoover Dike encircling Lake

Okeechobee and providing control over all inflows to and outflows from the lake; and


(3) creation of three water conservation areas south of Lake Okeechobee to store


excess


flood waters and to provide supplemental water supply.

Agriculture first began to develop around Lake Okeechobee in the 1920s.


Originally agriculture was limited by poor drainage and poor soils.


Establishment of


the federal sugar program in the 1960s led to a dramatic increase in sugarcane and


winter vegetable acreage, particularly to the south of Lake Okeechobee.


Dairying,


currently the most important agricultural industry in the north Okeechobee basin, first


began to develop in Okeechobee County in the early 1950s.


Originally, the south


Florida dairy industry had been concentrated around Miami, but urban development

after World War II forced dairymen to move north.

Concerns over water quality in the north Okeechobee basin have spawned three

separate ongoing management efforts: (1) the Kissimmee River Restoration Project,


headed by the U.S. Army Corps of Engineers,


which aims to "restore"


the natural


meandering flow of the River through oxbows and wetlands (Loftin et al.,


1990); (2)


the Lake Okeechobee Surface Water Improvement and Management (SWIM) Plan, a

joint effort of the Florida Department of Environmental Protection (formerly the

Department of Environmental Regulation) and the South Florida Water Management


District,


which was designed to control basin nutrient outflows to the lake in order to






23

Environmental Protection in 1987, requiring dairies to implement specific technologies


to control their discharge of nutrient rich drainage waters.


All other agricultural land


uses are currently subject to permitting and enforcement under the SWIM Plan to meet

target phosphorus discharge standards.

Related Studies of the North Okeechobee Basin


There is a vast knowledge of the Lake Okeechobee ecosystem as a result of


more than two decades of research.


Of particular relevance to this dissertation are


those studies addressing the lake's northern watershed and its impact on water quality.

In the 1970s, the Florida Department of Natural Resources, in conjunction with


the U


Department of Agriculture, conducted a survey of the land and water


resources of the Kissimmee-Okeechobee-Everglades system (USDA,


1973).


information served as a basis for resource management planning for watershed


protection, flood control and protection, and water quality control.


period,


Around the same


Tuan (1973) studied the hydrologic-economic linkages in the same region,


while Baldwin (1975) was surveying practices to reduce nonpoint pollution from

agricultural lands for the Florida Department of Pollution Control.

In 1973, the Florida legislature funded the Special Project to Prevent


Eutrophication of Lake Okeechobee.


The three main objectives of this project were: to


understand and quantify the process of eutrophication in Lake Okeechobee; to

understand quantitatively the inputs to Lake Okeechobee from drainage basins that are

2x A .n..nL.. nnn nn^l .t^ntn rnnnl t m amnl ti n onAI 1-n ,indsrmannt









downstream ecosystem components (Florida Department of Administration,


1976).


Major recommendations of the project were to retain rain water upstream through

storage in wetlands; to reflood publicly owned wetlands; and to improve farming and

ranching techniques.

As part of the Special Project, systems models were developed to shed light on


factors affecting Lake Okeechobee's water quality (Odum and Nordlie,


1975).


regional model was developed and management alternatives were proposed by Fontaine

and Brown, including reestablishment of the Kissimmee River floodplain, onsite

storage and recycle of excess agricultural water, and elevation of stage level in Lake


Okeechobee.


Gutierrez (1977) conducted energy analyses of pasture systems in the


Lake Okeechobee watershed.


Simulation results indicated that improved pasture


operations contributed heavy loads of nutrients to adjacent waterways and are

vulnerable to conditions of fertilizer shortage.

In the 1980s, Bottcher et al. (1986) developed a model to assess the impact of


agricultural practices on water quality and quantity in the


Taylor Creek/Nubbin Slough


(S-191) subbasin.


They used the CREAMS-WT


model to predict nutrient runoff and


developed a basin delivery model to predict nutrient outflow with alternative

management practices.

Following this effort, the South Florida Water Management District funded

research on the Biogeochemical Behavior and Transport of Phosphorus in the Lake









the soil to retain phosphorus; to determine how phosphorus moves through the soil

from the site of deposit; and to develop an inventory of all phosphorus sources to the


lake basin.


This contract was amended to determine the availability and cost


effectiveness of management options to reduce phosphorus loads to Lake Okeechobee

and to develop an integrated decision support system for evaluating alternative

combinations of phosphorus control practices to achieve phosphorus reduction goals


(Fonyo et al.,


1993a).


This dissertation research is a byproduct of the contract


amendment.


Phosphorus Management Alternatives


Alternative ways to manage phosphorus include an array of onsite, physical

changes in production practices, onsite treatment alternatives, and regional treatment


options.


Combinations of alternatives, or scenarios, may be used in a coordinated


manner for basin-wide management (Porcella and Bishop,


1974).


To be technically effective, phosphorus management alternatives must

physically change phosphorus flows through agricultural and other systems by either

(1) reducing phosphorus material imports/sources, (2) increasing onsite

storage/treatment, (3) enhancing phosphorus product exports, or (4) increasing offsite


storage/treatment.


Figure 1-6 illustrates these options.












Source Reduction


Phosphorus flows through a production system may be altered by adjusting the

amount of phosphorus-containing materials that are imported to the system from outside


the system boundaries.


Source reduction can be achieved via several mechanisms


including (1) input substitution, (2) increased technical efficiency, (3) technological


change, (4) output substitution, (5) reduced production levels, and (6) recycling.


Input


substitution entails substituting low concentration inputs for higher concentration


inputs.


Examples of input substitution include substituting feed ration ingredients with


high phosphorus concentrations with lower phosphorus concentration ingredients while

maintaining the same nutritive value and substituting detergents without phosphorus for

phosphorus-containing detergents.


Increased technical efficiency,


via better management of existing technology,


may increase agricultural output per unit of phosphorus input.

testing may reduce fertilizer required to produce a target yield.


For example, soil

Reduction in the


phosphorus concentration of dairy feed rations as an outcome of research is another


example.


Under technological change, on the other hand, a more efficient production


technology is adopted.


For example, alternative fertilizer application methods (e.g.,


banding instead of broadcasting) may be adopted.

Sources can be reduced by changing to processes that require less phosphorus.

For example, production of certain goods may be discontinued (e.g., dairy easement).
t U f^m pfl." \









However, potential tradeoffs exist.


Phosphorus may be reduced at the expense of


increasing the use of other agricultural chemicals.


Additionally, an increased supply of


substitute goods may not be economic.


Recycling is another form of source reduction,


where phosphorus-containing


materials originating within a production system are substituted for phosphorus-

containing imports (e.g., nutrients in livestock manure substituted for commercial

fertilizer imports or purchased feed rations).

Onsite Treatment/Storage


Another way to reduce the outflow of phosphorus is to increase onsite storage of


phosphorus.


Onsite storage can be increased by (1) facilitating natural chemical


bonding of phosphorus to soil particles (e.g., use of lime), (2) increasing the spatial

distribution of phosphorus (e.g., grazing herd management), (3) increasing the

temporal distribution of phosphorus applications (e.g., split fertilizer applications), (4)

reducing water flows and thus phosphorus mobility (e.g., irrigation management), (5)

detention/retention of runoff with associated assimilation, recycle, or treatment (e.g.,

impoundments or wetland filters), or (6) constructing a chemical or biological treatment

plant.

Exoort Enhancement


A third, though less important, method to impact the flow of phosphorus is to


enhance the export of phosphorus-containing products.


To be effective, the increased






29

exporting crops (e.g., sod), (2) transformation of byproducts into saleable phosphorus-

containing goods for export from the watershed (e.g., composted dairy manure), and

(3) dispersal of phosphorus-containing byproducts outside the watershed (e.g., sludge

hauling).


Offsite


Treatment/Storage


Finally, phosphorus outflow can be reduced by increasing offsite storage,


intercepting runoff before it reaches Lake Okeechobee.


Offsite storage can be achieved


by (1) detention/retention of runoff with associated assimilation, recycle, or treatment


(e.g.,


wetland filters) and (2) aquifer storage and recovery.


Other options include


chemical or biological treatment at central collection points and diversion of runoff out


of the watershed.


Offsite treatment and storage options are referred to in this study as


basin scale alternatives.


Description of Scenarios


Scenario evaluations are like controlled experiments, showing the consequences


of specific changes,


while keeping other conditions constant.


Five phosphorus


management scenarios were examined in this study: base case phosphorus management,

maximum phosphorus use, redevelopment, dispersed phosphorus management, and

concentrated phosphorus management.

Base Case Phosohorus Management Scenario


The base case scenario represents land use and management practices in the


.1~m tS; I. I I- .~r Inn-i Inn


.1 r\i 1 I ~. 1.. 1 nn~









Table 1-3.


Management Practices for the Base Case Scenario (1993 Conditions).


LAND USE


MANAGEMENT PRACTICE


Improved pasture


11 lbs P/ac-yr fertilizer; dry season application;


no fencing; 2.5 acres/cow


Unimproved pasture/rangeland


no fertilizer; no fencing;


16 acres/cow


Citrus


9 lbs P/ac-yr fertilizer; mature groves; drip
irrigation; no impoundment


Sugarcane


17 lbs P/ac-yr fertilizer for plant cane, first and
second ratoon crops; 61 lbs P/ac-yr applied
to sweet corn in rotation


Ornamentals


42 lbs P/ac-yr fertilizer


87 lbs P/ac-yr fertilizer


Commercial forestry

Sod


Dairy


no fertilizer

44 lbs P/ac-yr fertilizer


8 dairies low technology; effluent to sprayfield;
solids landspread
1 dairy low technology plus ecoreactor
11 dairies semiconfinement; effluent to sprayfield;
solids landspread
4 dairies semiconfinement; effluent to sprayfield;
solids composted and sold
1 dairy confinement; effluent to sprayfield; solids
composted and sold


lb/ac =


1.1 ke/ha


Truck crops


~____






31

citrus, and ornamental plants employed normal or "typical" management practices

basinwide as determined from interviews with land owners and county extension agents

in the area (refer to Fonyo et al., 1991, for discussion).


Of the


dairies still operating in the basin, nine were classified as low


technology, or the minimum requirement to meet Dairy Rule regulations.


These


designs consist of an effluent collection system with a lagoon for storage and a


sprayfield for dispersion of nutrients onto cropland.


waste management system is given in Figure 1-


A schematic diagram of a dairy


Solids are landspread on designated


pasture areas.


One of these low tech systems also has an "ecoreactor"


which is a


biochemical treatment system consisting of an integrated three step phosphorus removal

process: chemical precipitation, microbial cell uptake, and aquatic plant uptake in a

constructed wetland.


Fifteen dairies were classified as semiconfinement systems.


low technology


They differ from


in that the milking herd spends less time in the designated pasture and


a greater proportion in the high intensity area or feed barn.

greater waste control and phosphorus recapture. One dair)


This design allows for


t in the basin constructed a


total confinement system in which the milking herd is restricted to the feed barn or


milking parlor.


Five dairies sold their solids as compost, rather than reapplying to


pasture.

Maximum Phosphorus Use Scenario


-~~~nr i*












were applied to each acre of improved beef pasture annually, as compared to 11 lbs


P/ac-yr in 1993.


More recent information has suggested that not all improved acreage


is fertilized each year, and the actual percentage of the total acreage may vary as a


function of beef prices.


For the purposes and the modeling efforts of this study,


however, the above assumptions were maintained.


Forty-one dairies,


with a combined milking herd of 33,400 cows,


were


operating before the Dairy Rule legislation went into effect.

dairies in 1987, the average milk herd size was 815 cows, v


to 1040 cows per dairy in 1993.


Though there were more


vhich increased 28 percent


The average phosphorus content of dairy feeds was


0.5 percent, compared to 0.45 percent in 1993.

Prior to the Dairy Rule, milk cows roamed freely in pastures and waterways


when they were not in the barn or high intensity area.


Milk herd pastures comprised


45 percent of the dairy land area in 1987, compared to 12 percent in 1993.


No formal


phosphorus control methods were used other than lagoon storage of barn wash water.

Predevelooment Scenario


At the turn of the century, the north Okeechobee landscape was a mosaic of


upland and wetland habitats with natural drainage along marshy sloughs.


Human


settlements in the region were probably limited to scattered indian tribal populations

with minor phosphorus-related activity.

A map produced for an environmental study of southern Florida (Odum and









As a rough estimate, the region comprised 700,000 acres of forested and nonforested


wetlands


, 350,000 acres of grassy scrubland, and 190,000 acres of forested uplands.


Steady state conditions were assumed in upland systems so that the


concentration of phosphorus released in organic matter was equal to the rainfall


phosphorus concentration taken up by upland vegetation.


phosphorus concentration of 0.04


An average rainfall


mg P/1 from Sculley (1986) was assumed.


redevelopment concentration may actually have been even lower since atmospheric

deposition by sugar mills and phosphate mining operations in central Florida may be


contributing to current levels.


Wetlands were assumed to be phosphorus sinks by


accumulating organic matter and building peat.


Thus


, the runoff phosphorus


concentration from wetlands was set equal to zero.

Dispersed Phosphorus Management Scenarios

The dispersed phosphorus management scenario refers to maximum phosphorus


control spatially at each source.


Two variations of this scenario were tested by


changing the type of control on dairies.


In both cases


improved beef pasture was


fenced to keep cows out of waterways; impoundments to capture runoff were added to


all citrus acreage; and rice was grown


in rotation with sugarcane.


Base case conditions


were assumed otherwise.


Under the first maximum control design (design 1),


to confinement systems,


dairies were converted


with sprayfields for effluent treatment and solids applied to







35

biochemical treatment system (ecoreactor) for effluent treatment and solids composting

for sale and export out of the basin.

Concentrated Phosphorus Management Scenario

As an alternative to managing phosphorus onsite, phosphorus leaving a drainage


basin as outflow may be treated as a point source.


Chemical treatment was applied at


basin outlets for each of six drainage subbasin whose average annual phosphorus levels

exceeded 10 tons/yr, based on Lake Okeechobee Surface Water Improvement and


Management data (SFWMD,


1989).


All of the remaining dairies are located in three


of these subbasins: S-191, S-154, and S-65D;


two subbasins are highly channelized,


C-40 and C-41; and Fisheating Creek covers a large geographical area.

Each 200 million gallons per day (MGD) chemical treatment plant uses alum to


precipitate phosphorus at 89 percent removal efficiency.


An 8800 acre in-lake flow


equalization basin is required for each system to provide a steady flow rate for


treatment (DER,


1986).


Though originally designed for the S-191 basin outlet, the


same operating costs and parameters were applied to all basins as a ballpark estimate.

Dissertation Plan


In this study, data on the regional agricultural system of the north Okeechobee


basin were assembled and entered into a geographic information system.


Then


biogeochemical budgets for inputs and outputs of phosphorus were prepared under

different management scenarios and the role of phosphorus in the biogeoeconomic









example, principles were tested regarding the role of critical limiting materials in the

self-organization of biogeoeconomic systems.

In the next chapter, methods are presented for performing phosphorus

budgeting, emergy analysis, economic evaluation, and scenario comparisons of


phosphorus management alternatives. Phosphorus budgeting, energy evaluation, and

economic analysis results are given in Chapter 3. In Chapter 4, the relationship


between the phosphorus cycle, energy, and economics is examined, including


implications for phosphorus management.


General principles of biogeoeconomics are


proposed and suggestions are offered for future related research.












CHAPTER


METHODS, PROCEDURES, AND
SOURCES OF DATA

Five sets of procedures were used in this regional study of phosphorus: (1)

organization of data with the ARC/Info geographic information system; (2) phosphorus

budgeting; (3) emergy evaluation; (4) economic analysis; and (5) scenario comparisons.

Organization of Data with the ARC/Info Geographic Information System

Data for the north Okeechobee basin were entered into the ARC/Info


geographic information system for computer processing.


Because aggregation is


required, the process of categorizing data spatially is a form of modeling.


ARC/Info


was used to automate, manipulate, analyze, and display geographic and other data on


the regional system.


The data used in this work were entered in files that were part of


LOADSS (Lake Okeechobee Agricultural Decision Support System), a decision support

system in ARC/Info designed to assist water managers concerned with eutrophication of


Lake Okeechobee (Fonyo et al.,


1993a).


Spatial data have physical dimensions and geographic location, and are


composed of landscape features which may be represented on a map.


Spatial data were


entered in three forms: points (e.g., cities), lines (e.g., roads), and polygons (e.g.,


land area).


A coverage is a digital version of a map, or a homogeneous class of data









within a map,


which contains locational data (i.e., defines points, lines, or polygons)


and attribute data (i.e., describes points,


lines


, or polygons) about each map feature.


LOADSS utilizes a number of coverages during its operation.


The main


coverage,


referred to as LO COMP


, contains more than 7000 polygons.


It was created


by combining an edited version of the District'


coverage, STATSGO (State Soi


1987 land use coverage,


Geographic Data Base) soil associations,


dairy

weather


regions,


and political boundaries.


Hydrography data indicate drainage pathways from


each individual basin to Lake Okeechobee.


Land Use


Coverage Description


As part of the District contract "Biogeochemical Behavior and Transport of


Phosphorus in the Lake Okeechobee Watershed"


, a digitized


987 land use data base


was provided by the District in Autocad format for each USGS quadrangle in the study


area on a scale of 1:24,000.


The quads were converted to ARC/Info format, then


edgematched,


mapjoined,


and clipped to form one continuous data base for the


watershed.


These data were verified as part of Area 3 of that


contract.


Some changes


were made to the land use tags to accommodate the phosphorus budget analysis.


Certain Level


land use codes were changed to Level 3.


For example AP (agricultural


pasture) was changed to either APIM (improved pasture) or APUN (unimproved


pasture).


New land use tags were created to differentiate phosphorus related activities.


Details of the procedures and information sources used to verify the land use data are









For this study, land use tags were grouped into the following land use

categories: barren land, citrus, dairy, commercial forestry, forested uplands, golf

course, improved pasture, ornamentals, other agriculture, other urban, rangeland,


residential, sod farm, sugarcane, truck crops, unimproved pasture,


waste treatment


plant,


water bodies, and wetlands.


A land use map for the study area is given in


Figure


The redevelopment land cover map for the low energy scenario evaluation was

generated in ARC/Info by interactively changing polygon types using the LOADSS

model.

Soils Coverage Description

The STATSGO soil association coverage was produced by the Soil Conservation


Service in 1991.


The data are 1:250,000 scale quadrangles of major soil associations,


or groupings of soil types.


The data were converted from Lambert to State-Plane


coordinates for use in the study area.

STATSGO is used mainly for large scale resource planning, management, and

monitoring since the data were created by generalizing more detailed soil survey maps.

Map unit composition for STATSGO was determined by sampling areas on more

detailed maps and expanding the data statistically to characterize the whole map unit.

The fundamental identifier for a map unit or soil association is referred to as its MUID


(Map Unit ID).


Soils attribute data were used for CREAMS-WT runoff simulations.




























* -








C.)
-c
0


C.)

C





-c


.9r
*
U


0
tn


Ct2
C:
4)








~I

sr

C.)





I !
m

l 0
&o 0

a
I I .

2a m


I
iii
~4JB
oC1 2
g ~ag


a'-


I U
NtmmI
0044a
Zn,


t
I I






WI
U 00
2 SOO
9 5 aS
I^^^^^f a m^^B ^^^^1 ^H^B
E^ ^I^I fl
mpan^ ^^^^^ ^^^^^ ^IB^-


ILI
WW
YI
2



-.1!









Weather Coverage Description

Four weather regions were differentiated based on rainfall patterns in the


watershed: North


South


and West.


Weather regions were specified for runoff


simulation modeling using the CREAMS-WT


model.


Boundary Coverages Description


Maps of spatial boundaries,


such as drainage basins,


regions,


and counties


were


used for spatial scale delineation.


All of the boundary coverages were provided by the


South Florida Water Management District (SFWMD) in either Autocad or ARC/Info


format.


These boundaries are consistent with those used in the 1989 Interim Lake


Okeechobee Surface Water Improvement and Management (SWIM) Plan Technical


Document (SFWMD,

Dairy Land Use Cove


1989).


rage Description


The original land use data base only provided information about the location of


the dairy barn and not the other land uses within a dairy boundary.


Dairy land uses


were digitized by the South Florida Water Management District for 43 preDairy Rule


(1987) and


current (1993) dairies in the watershed.


Land use tags were created for


each land use type on the dairies that have installed waste treatment systems and remain


in operation.


Table


1 gives


ist of dairy land uses and tags assigned to dairy


coverage polygons.

Hydrography Coverage Description


rW~~~~~t~ AS. l I. *' I U *, I. *


nn rnnnl










Table 2-1.


Dairy Land Uses


and Land Use


Tags Assigned to Dairy Polygons.


DAIRY


TAG


DAIRY LAND USE


BARN


Milking barn or parlor


all imports and exports of materials are


attached to this


and use:


High intensity area; area surrounding barn used as a holding area


and sometimes feeding area


MHP


Milking herd pasture; the milking herd is restricted to this pasture
area when not in the HIA or barn; the typical maximum animal
density of the MHP is 4 to 6 cows per acre


SPFL


Sprayfield


part of the waste management system


effluent from


the waste storage pond is applied usually through a center pivot
irrigation system to this forage production area at a rate not to


exceed plant uptake (60


bs P/ac/yr)


Solids spreading area; solids that are scraped from the barn area,


or occasionally dredged from the waste storage pond,
by spreader to this designated field area


are applied


OTP


Other pasture; includes pastures for pot (sick) herd,


springers,


and heifers and calves, if they are raised onsite; the typical


maximum animal density in these pasture areas is about


cows


per acre


OTFL


Other field


hay field or other forage production area with no


animals


OTL


Other land


includes roadways and structures


WET


Wetlands within dairy boundaries


WSP


Waste storage pond; area where wastes from the barn and high


1 r .









and related hydrographic features


" (USGS, 1985).


The digital line graphs (DLGs)


produced by USGS contain hydrographic features with the following attributes: length

in feet; major code, indicating the type of DLG (050 for hydrography); and minor


code, used to describe the hydrographic features including nodes,


areas, lines, sing


points,


general purpose and description codes.


Minor codes that appear in the


hydrography data base within the study area boundaries are given in Table


purposes of phosphorus budgeting in this study


For the


minor codes were reclassified into two


groups: wetlands and canals (see Figure 2-2).

The original hydrography data base for the study area was digitized from 1972


USGS quadrangles.


Regional drainage patterns have


changed significantly over the last


twenty years.


Hydrography data were updated with the help of South Florida Water


Management District field personnel familiar with drainage patterns in the study area


and 1984 Mark Hurd aerial photos.


"canal


Arcs were classified as either "wetlands


using the National Wetlands Inventory (NWI) as a background coverage for


verification.

Phosphorus Budgeting

The flows and storage of phosphorus in the drainage basin were studied by


imulating a spatial model using a


implified unit model.


The unit model for


phosphorus in the agricultural landscape (Figure


-3) was evaluated for each polygon,


including the flows between polygons and exchanges across watershed boundaries.









Table


Hydrography Attribute Codes and Arc Length Classifications.


MINOR CODE DEFINITION CLASSIFICATION


200 Shoreline Wetland
202 Closure line Wetland
204 Apparent limit Wetland
407 Canal lock or sluice gate Canal
412 Stream Wetland
414 Ditch or canal Canal
605 Right bank Canal
606 Left bank Canal
610 Intermittent Wetland




















































































~t4


Crr --- as, a -r I *. I'T'L. -- r /. I! t I fl n


Lircur


IT-I






















Rain


Stored in


Polygon Area


Phosphorus
Export


Offsite flow


ASp=


- SEp


-Op


Figure


Unit Model for Spatial Simulation of the Phosphorus Budget.


Assimilated
from Other


Sector Outflows









phosphorus uptake and storage (assimilation) in wetlands and canals


from each polygon


to Lake Okeechobee.

A simple annual mass balance approach was employed to examine the use and

fate of phosphorus in the north Okeechobee basin under alternative phosphorus


management strategies.


A similar approach was adopted by Porcella and Bishop (1974)


in their analysis of phosphorus management in the Great Lakes basin.


balance equations,


The basic mass


which assume a one year time step is adequate, are applied at the


polygon level and may be expressed as


AIS,


-CEE,


= Op


where:


= average annual polygon phosphorus retention or storage, tons/yr
= average annual phosphorus imports to polygon p, tons/yr
= average annual rainfall phosphorus for polygon p, tons/yr


EE,


= average annual phosphorus exports from polygon p,


tons/yr


Op = average annual runoff phosphorus from polygon p, tons/yr
Ap = average annual phosphorus assimilated offsite from polygon p,
tons/yr
L, = average annual basin phosphorus outflow attributed to polygon
p, tons/yr

Phosphorus enters each polygon of the basin in goods used for production or for


local consumption, and in rainfall.


It leaves an individual polygon as either an


exported product or in runoff water.


Simply stated,


the change in phosphorus storage


onsite is the difference between the net import of phosphorus-containing materials plus


+ R,


A,









assimilated along the flow path through plant uptake and soil adsorption,


remainder discharged to Lake Okeechobee.


with the


Thus, there are basically two components


to phosphorus retention within the basin: onsite storage and assimilation along the flow


path to the lake.


Basin phosphorus retention is a function of rainfall, soil type,


standing biomass, drainage density, distance upstream, and management practices.

Such factors introduce elements of spatial variability in the data that are not captured by


aggregate analysis based on general land use categories.


Analysis using spatial


modeling techniques accounts for such variability.

Phosphorus Imports and Exports

Imports and exports of phosphorus-containing materials by land use type are

based on "typical" practices as gleaned from interviews with farmers, feed and


fertilizer suppliers, county extension agents, and state and federal agencies.


Published


documents, such as agricultural censuses, extension recommendations, fertilizer

consumption reports, and state production statistics were used to verify interview data


results.


Details of the data collection procedures and phosphorus import and export


data are given in Fonyo et al. (1991).

Phosphorus in rainfall was estimated as 1.13 lbs P/ac-yr basinwide on an


average annual basis.


(Heatwole,


This figure was based on a rainfall concentration of 0.1 mg P/I


1986) and an average annual rainfall of 50 inches (Sculley, 1986).


Phosphorus Runoff from Agricultural Sectors









results represent the


"edge-of-field" runoff for each agricultural polygon.


The unit


model is represented in Figure 2-4.

Agricultural runoff simulation generates phosphorus loading for varied weather,


soil, and phosphorus management combinations.


CREAMS-WT


was chosen to model


phosphorus movement on a field scale because of its ability to successfully simulate


nutrient transport through South Florida's spodosols (Heatwole et al.,


1988).


Further


detail on CREAMS-WT and modeling procedures are given in Kiker et al. (1992).

The purpose of the simulations performed with CREAMS-WT was to evaluate

the expected impact of alternative management practices on phosphorus runoff from


individual fields (polygons) with a specific land use.


All possible combinations of


management practices with land use, soil association, and weather region could not be


evaluated.


A subset of the most typical, or commonly used, management practices was


selected and simulated over twenty years of stochastic weather data for each appropriate

land use, soil, and weather combination within the north Okeechobee basin (refer to


Fonyo et al.,


1993a).


Average annual runoff volumes and phosphorus loads were


generated by CREAMS-WT for each unique combination; from these, average runoff

concentrations were calculated.

Phosohorus Assimilation by Wetlands and Canals


Another submodel was used to estimate phosphorus assimilation in canals and


wetlands from each polygon to Lake Okeechobee.


Diagrams and equations are given in







































O cU
'fl
U'-



a. -


ot+


cnQU
i ci


I-I
L4I



























































-ml
*


*

i 4)


* a

2


4 I,


.II 1s!


cCu
ii3
>0LL









pathway distance, each type of pathway having a different linear coefficient.


The final


equation is appropriate where the flows through several types of surfaces are in series.


Assimilation follows


the equation which is consistent with the Lake Okeechobee


SWIM Plan:


-0 ,


* e-(OVR


+ WET + (TAN))


= Op


where:


Lp = average annual basin phosphorus outflow attributed to polygon
p, tons/yr
Op = average annual runoff phosphorus from polygon p, tons/yr
Ap = average annual phosphorus assimilated offsite from polygon p,
tons/yr


OVR
WET
CAN


= overland P assimilation
= wetland P assimilation
= canal P assimilation =


= ao OLL
= aw WLL


ac CL


= overland flow assimilation coefficient, mi-1


OLL


default


= overland flow distance, or the distance from each polygon


centroid to the nearest wetland or canal, mi
aw = wetland flow assimilation coefficient, mi1


WLL


= wetland flow distance, or the cumulative length of al


wetland


segments from each polygon to basin outlet, miles
ac = canal flow assimilation coefficient, mi'
CL = canal flow distance, or the cumulative length of all canal segments


from each polygon to basin outlet,


miles


Calculation of flow oath distance


The algorithm developed to calculate flow path distances from each polygon to


its subbasin outlet was performed externally from LOADSS.


The ARC/Info 6.0


procedure which was used to calculate canal (CL) and wetland (WLL) drainage

distances is as follows:










3. Run the NEAR command and store distances from polygon centroids to
nearest stream nodes in the hydrography data base;
4. Store stream inlet node numbers for each centroid; and
5. Use the PATH command in the ROUTE algorithm to calculate wetland and
canal lengths from the inlet node for each polygon centroid to the appropriate
basin outlet node.

Calibration of phosphorus assimilation coefficients

A series of steps were taken to calibrate phosphorus assimilation coefficients

based on historical basin phosphorus outflow data as reported in the Lake Okeechobee


SWIM Pla

(1993b).


in.


Calibration procedures and results are documented in Fonyo et al.


Rather than assigning one assimilation coefficient each for wetlands


(0.64/mile) and canals (0.04/mile) basinwide as in the SWIM Plan, individual


coefficients were estimated for each drainage subbasin.


information on in-stream processes,


Because of a lack of


wetlands and canals were assigned the same


coefficient by subbasin, and overland flow assimilation was forced to zero.

Coefficients are listed by subbasin in Table 2-3.

Basin Phosphorus Outflow


Basin phosphorus outflows attributed to individual polygons were calculated as


the difference between runoff and assimilation.


Basin outflow from individual


polygons were summed by subbasin for comparison with SWIM Plan data.

Emergy Evaluation

The contributions of environmental and economic (purchased) resources to the

nm A u nnnlrnr, an n *ka .. rn^n..nt an Dana a. ra 1 I. A nl n n m L W k f f-









Table 2-3. Phosphorus Assimilation Coefficients and Average Flow Path Lengths by
Drainage Subbasin in the North Okeechobee Basin.


BASIN
NAME


ASSIMILATION
COEFFICIENT
(mile-')


AVERAGE
CANAL
FLOW PATH
LENGTH (mi)


AVERAGE
WETLAND
FLOW PATH
LENGTH (mi)


C-40
C-41
C-41A
Fisheating Creek
L-48
L-49
L-59E&W
L-60E&W
L-61 E&W
Lake Istokpoga
Nicodemus Slough
S-131
S-133
S-135
S-154
S-154C
S-191
S-65A
S-65B
S-65C
S-65D
S-65E


10.3
2.2
1.5
1.2
3.7
6.6
0.2
7.0
3.4
11.0
3.5
9.8
4.0









stepward transformation in a production process.


The more steps, the more energy it


takes to make a product.


However


, energies of different type have differing abilities


to contribute to production.


step,


By keeping track of the energy inputs required along each


expressing them in units of one kind of energy, one has a measure of the total


resource used for a product or service.


This method measures energy "embodied" in


work previously completed to make a product.


Emergy, spelled with an "m"


with the unit emjoule,


is defined as the available


energy of one kind previously used directly and indirectly to make a product.


When


expressed as solar energy, the measure is solar emergy in solar emjoules (Odum,


1986;


Scienceman


,1987).


Solar emergy can be used as an aggregate measure of the net


productivity and resource uses of a system.


The emergy per unit energy is called the


transformity and is a measure of energy quality and position in the energy hierarchy.

Emergy flow per unit time is defined as empower.


Emergy contributions are determined for nature'


work


, for purchased


resources


, and for human services (Odum and Arding,


1991).


The work of the natural


system is integrated into the analysis of phosphorus management alternatives in two


ways:


(1) as inputs to the agricultural production process,


and (2) as estimated by the


amount of residuals assimilated by wetland and aquatic ecosystems


in the watershed.


The first step in emergy analysis of phosphorus management alternatives was to

construct an overview diagram of the entire north Okeechobee basin and then of each









and emergy units and in emdollars.


Emergy evaluation tables were constructed with


the following columns


Column 1:


Column


Column 3:

Column 4:


Line item number to signify the footnote for calculations.

Item name as indicated in the diagram.

Raw data in joules, grams, or dollars.

Transformity, or the emergy required to generate a unit of product,


in solar emjoules (sej) per unit.


Column


Column 6:


Solar emergy; the product of columns 3 and 4, in solar emjoules.

Emdollar (formerly macroeconomic dollar equivalent); calculated


by dividing emergy in column 5 by the emergy/currency (emjoules/dollar) ratio.
The emergy/currency ratio is obtained by dividing the gross national product in
given year by the total emergy used by the country that year (Odum and


Arding,

Column


1991).


Phosphorus content of item, in grams


Column 8: Emergy/mass ratio of phosphorus, or the emergy required to
generate a gram of phosphorus in the product, in solar emjoules per gram.


Economic Analysis


Economic analysis in this study was limited to determining the cost effectiveness

of phosphorus management alternatives as measured by the dollars spent per unit of


phosphorus reduction in basin drainage waters.


employed.


A partial budgeting approach was


Only direct investment, operation and maintenance, and secondary costs1


incurred by the producer due to changes in management were estimated.


Investment


costs were estimated as the total one-time costs (materials and labor) to install a new










phosphorus management technology.


Investment costs were annualized over the life of


the technology assuming an interest rate of 10 percent (the prevailing rate at the time of

the study) using the following equation:


+0i"


where:


= annualized investment, $/yr
= present value of total investment, $
= prevailing interest rate
= life of investment, years


Operation and maintenance costs were calculated as the annual costs to keep the


phosphorus management technology functional.


In most cases, these cost components


were taken from engineering design reports (refer to Appendix A).

Two types of secondary costs were estimated: production costs and output


effects.


Production costs reflect changes in existing annual cost components incurred


as a result of adopting a phosphorus management alternative.


For example, changing


the rate of fertilizer application results in either an increase or decrease in annual


operating costs.


The output effect reflects changes in output of a product as a result of


adopting a phosphorus management alternative.


An example is a change in milk


production due to structural change (e.g., confinement) on a dairy.


Secondary costs


may be positive or negative. Relationships between changes in management and costs

and returns are given in Appendix A. The basic costs of operation without phosphorus


management, which were needed for emergy evaluations,


were obtained from various


P "


+ i)"







59

In order to facilitate aggregate cost effectiveness analysis at the watershed scale,

certain homogenizing assumptions were made about the characteristics of specific basin


activities and management practices. Appendix A outlines these assumptions, the

methods for calculating direct costs (investment, operation and maintenance, and


secondary) in 1990-91 dollars, and data sources for pertinent nonpoint land uses (beef


pasture, dairy, citrus, sugarcane)


point sources (sewage treatment plants), and basin


scale treatments (aquifer storage and recovery, biological treatment, chemical

treatment, diversion).


Scenario Comparisons


One of the purposes of this study was to consider management alternatives that

would reduce phosphorus outflows from drainage subbasins to predetermined average


annual values.


Five phosphorus management scenarios (combinations of alternatives)


were compared to determine which minimized basin phosphorus outflow, minimized

the cost of phosphorus reduction, and maximized empower (emergy per year) on a


regional scale.


Scenarios were chosen to represent a range of intensity of phosphorus


use and management.

Cost effectiveness analysis is a useful way to perform an economic evaluation of


two scenarios.


Cost effectiveness was defined as the dollars spent per unit reduction of


phosphorus in basin outflow.


Cost effectiveness was calculated for a two scenario


comparison as the change in total direct costs divided by the change in basin









changes in factors of production or output were included in the cost effectiveness


estimation.


A negative sign in the denominator indicates that basin phosphorus outflow


was reduced under the current scenario.

Phosphorus runoff concentrations (mg/l) from land areas and phosphorus

outflows (tons/yr) from drainage subbasins were compared to target goals that were


specified


in the Lake Okeechobee SWIM Plan (SFWMD, 1989).


These physical


criteria gave another measure of the success of a management scenario.

Scenarios were also compared to determine which design maximized the use and

feedback of phosphorus throughout the regional landscape. Emergy indices provided


such means for comparison.


Several indices were proposed by Odum and Arding


(1991) to analyze shrimp mariculture in Ecuador.


These indices are also useful for


comparing phosphorus management scenarios for the north Okeechobee basin.


Each


index is defined briefly (refer to Figure 2-6 for illustration):

Solar transformity the equivalent solar energy that would be necessary to
generate a unit of resource efficiently and rapidly; sej/j.


Emergy per unit mass


material


- energy of one type required to generate a unit mass of


sej/g.


Emergy investment ratio the ratio of emergy fed back from the economy to the
free emergy inputs from the environment; F/I.

Net energy yield ratio emergy of an output divided by the emergy of the


inputs that are from the main economy (i.e., purchased);


Y/F.












~lf~r


61
















00


E
z

CO




U~C)



rrt O



O CO
cbO
C
111 ) P ~ -




C CO

LW* -


h) )

E U-












CHAPTER 3
RESULTS


Results of the evaluation of phosphorus budgets, dollar costs, and emergy are

given for each of five phosphorus scenarios: base case phosphorus management,


maximum phosphorus use, redevelopment,


dispersed phosphorus management,


concentrated phosphorus management.

Phosphorus Budgeting

Phosphorus budget results are summarized by land use in Tables 3-1 through 3-4 for


each relevant scenario.


Budget components are also summarized diagrammatically in


Figures 3-1 through 3


by scenario.


The energy systems diagram illustrates the


coupling of the hydrology of the region to the flow of phosphorus through it.

Phosphorus sources are indicated as environmental inputs to the left of the diagram and


purchased


imports from the top.


Tanks indicate storage of phosphorus, both onsite in


soils and biomass, and offsite through assimilation in canals and wetlands.

Phosphorus Imports and Exports

Figure 3-6 summarizes annual imports and exports of phosphorus containing

materials across north Okeechobee basin boundaries under the base case scenario.


Imports are primarily fertilizer and dairy feed,


raw milk. and livestock.


and major exports are various crops,


Imports and exports were also summarized by land use (Table















0-









aO -




w
F-
- -
wc~~0l




.o- --

w
0








d PI.

o





z E



0~
~0.. -

Cd


ttc~\
~~Ie '. Ni Ndt











.0 r



00o
en~ t o


vi



9 *
vi
Irl~I -- -X






0hc~\O:v
N


eNn
rrN0


00


p9


U k
6 U,
C- 0..
be 4V


U


Cu -
U csn

cnU> Lu


o-


joG







~~~Sfl 44 cr j Z~426Sjoi








ooc ma *.No mr t B,







-~~~C *.#tI9er




oO ~ ~e eN cc: vii -r x



en y *I 00









00 0N odt ON tr-o N Xri

9 9 9 `Q\I
v; moX vC


9 -
o a
a
tS U
s5 m
w
f c%
Q@

ade
F 3 fl'")


BE a


U
a
i3


goS

C D ^3 O


















rO --






<0


w


-a


Oo



tox

~Z-v














o C,x


00 d






0\
NY I


enMXZZXZX



a~ rj X















- e
FS -OOCOO0


93 4
4),


Cu 1


N'~e e4Ntnr d 8,
c4 Ntm..CncItflOdddji










\.OI\O






0 0 S










en 0N ON *NO%
'n no Cr'


s U
E9S Ca
P 3

rACua


*U
CuY


Ue


M


311
a0


















CZ--

m C






Cu

F~t
(nC:









zcno


4cC








zE-









LL
cn


NO\ l\ ilQ t C OTl -n r ,I













r-4 cnr4; N-CO itd
*o -j -; 9 9





9-J
*o ct tci Novrr o t








Cf\OtoO 0\00a c




~~,..C ri v;o c iP 0rIOV






Ni tcl .fl Cl en~




~~0O N
v; vI


aa
Cse
o o0
a~4 I- u
a~ B B P4)
Cfl C.1 CP Y


4)


a,
II

Co
a ce

u PS
*g a sp


*II


gO
4-o



















EO









cno




LU
Qdr

Co..


SE--




LU



U,


9 t-` ~ O mQ\oc rM\OrnOOV
O~1t -or~6ri'aral---odo

















cc, N~ -



en doc Ncjo o~








-~ -NI 'noo QO o


00NN mo 0; -d IceC \:\dO



tnrnmooooocn rt


- I-rr
~ ~ne4)


I-


6.


4.Z
oy
I-,


P 3BU


S1~










































k 1r
4.)M
4- S
-i~`
.L za'
,, 1 S.


C" C
1-
o ~
0 f


C:O


cn~

Ull
"'cu


0 4-
Cuco





a
~4.)-


e O
61










4- 4 68
oo 0



O C-,

I-



oC



-a t
E oO-







o -o


oM 0
0.r I0 xe
Xm
~ s .so
I-->

0>'
0.. -C


I, :


*Z C s-
'E: a
Cu .0























































WA *

so


C.0


I 00


C V
=r
c4o









4- 4- 70
o 0

o3 0

o o






4Cao

1* -
C~O )
-c



'a. L cao
s; df
~ u-



C)



4- 4-
I-o C
0 ~ ~ ~ -act--
I-se'



~~LC A-' a .. O


Os

ca
t4.sO
;s: "o
Cucuc
I -. Li
.E!~ bOCO >
VI O is
& a ~0E
E e~e ,



a9) )


CU O












"' -


Y~ -'

0 Cu


I.
0 co

0 ~ Cfl4s


-.t a'

b)I-






a'
.e4 )
L.






o -w



C cJ U


LC
OI cU


c`o
4)w
v Zv


o
G=







































S ri
0
Q


04.)


cU
-U


E U!


~I
Cr) -


CL
a cn
oZ
-o









3-5).


Based on data for average production practices, the largest use of phosphorus


was as fertilizer for improved pasture (68


) due to its large geographical extent.


Dairies with 19 percent of the imports accounted for the largest export of phosphorus

(36 %).

Net phosphorus imports were calculated for each land use for comparison on a


unit basis.


These coefficients give a relative assessment of the intensity of phosphorus


use across land use types.


basis.


Truck crops utilized the most phosphorus per acre on a net


Dairies are three times more intensive in the use of phosphorus than improved


beef pasture.


Sod production results in a net export of phosphorus per acre since soil


as well as plant biomass is harvested.


Under the base case scenario, more than 3400


net tons of phosphorus were imported to the north Okeechobee basin annually,


compared to the high phosphorus scenario,


which


resulted in more than 5000 net tons


of phosphorus being imported annually (Table 3-2).

Under the dispersed phosphorus management scenario, changes in sugarcane

and dairy practices had an impact on imports and exports of phosphorus-containing


materials.


Fertilizer was reduced by 71 tons annually from the base case as a result of


substituting rice for corn in rotation with sugarcane.


any phosphorus fertilizer.


Rice production does not require


Changes in annual exports associated with this practice were


also observed: a 51,500 ton increase in rice exports, a 20,000 ton increase in sugarcane

exports due to the rice effect on yield, and a 12,430 ton decrease in sweet corn exports.









Table


. Phosphorus Imports to and Exports from the North Okeechobee Basin


under the Base Case Scenario.


PHOSPHORUS


IMPORT
(tons/yr)


LAND USE


PHOSPHORUS


EXPORT
(tons/yr)


NETP


IMPORTS
(Ibs/unit-yr)


Improved Pasture


2938


Dairy


11 lbs/ac-yr
39 lbs/cow-yr
(33 lbs/ac-yr)
1.9 lbs/ac-yr
16 lbs/ac-yr
-10 lbs/ac-yr


Citrus


Sugarcane
Sod


Truck Crops
Urban Residential
Ornamental
Unimproved Pasture/


lbs/ac-yr


3 lbs/cap-yr
21 lbs/ac-yr


0.03


Waste treatment


Golf Course


Commercial Forest


bs/ac-yr


bs/MGY


24 lbs/ac-yr
-.14 lbs/ac-yr


0
4329


1 ton
1 lb


= 907 kg
= 453.6 2


Rangeland


I









compost exports decreased by 36,000 tons annually.


When all solids were composted


as in design 2, annual exports increased by 230,800 tons over the base case.


effects of these changes on the annual net import of phosphorus to the basin are


summarized in


Tables 3-3 and 3-4


for designs 1 and


respectively.


Reduction in net


imports was achieved by source reduction and export enhancement.

The ratio of the tons of purchased phosphorus imports to phosphorus inputs


from the environment may be referred to as the phosphorus investment ratio.


Using


data from Figures 3-1 through 3-5, this ratio was at its maximum of 8.6 under the


maximum phosphorus use scenario (6050/700).


ratio by 28 percent.


1987


Phosphorus management decreased the


The phosphorus investment ratio was greatest for dairies prior to


. Improved beef pasture, other agriculture, and sugarcane are other land use types


with ratios significantly greater than the basinwide average.

Another ratio useful for comparing scenarios is the net phosphorus ratio, or the


ratio of the tons of phosphorus in products to purchased phosphorus imports.


The net


phosphorus ratio was greatest under the dispersed phosphorus management, design


scenario.


The export of composted dairy manure and rice from sugarcane fields


contributed to the 80 percent increase from 0.15 (935/6050) under the maximum

phosphorus use scenario to 0.27 (1141/4258).

Phosphorus Runoff

Phosphorus concentrations in drainage waters from all land uses were estimated




















C-,

Cs




-o




Cu



ck)
Ck
0




I-:




Ca

0
-C




bO
'U

I.
U

*0

C
CU
U,
C

0





0
0-
L4 .
























A I;,i,,

'>. ,
" X X~1(A

IAX


'C.xx


89~8~-~
LX1IX5'.,


A XS
:IXIT'
'<.2:V~X ":X
-r .a~t- t


'4~


S a a


S .AA AA A






l od ddd

4 AAAAA
EbL < O EJIEE


E3


i,-





maw







0 K 1 -l
P S 0au







gw sa e. s


_ i


'"


-










Ul

1O
0





S:
*


C)

C.
-o

C
U,






Cu
C
c)
U
C

0

U


C




I-
0
En
0

-c



C
C)








"C



En
C
0n
bOn


















I1-


O
AAAAA
a u 000 0


AAAAA
D 0IEE


Nfl!
rs -u
i9ll


(0- i-

m g~
0
S. l!

So H W
^flfl~ 5 If

ZIU B < I
I-'
a'" 1Ii5


a a 11U
WM z f


- .;a


";l"iYilY*Xjl;f
PXelixri*X"'
rt~XX"Y










































































4)0.


1 P
















S SP S
6666


o 0 0

dEEMEE
t8

c4 0

- ooooo

&4DE EUM


1 a

2 I
Ig ^
i Sit S
M MO


U


00 g
oo 8 = I



i a a
Os mC















































































L4)

4

I 0T


ba)


















dd 66


aF a S
.me PiW
S
~hAAAAA
ci..,..1
2


II d t
F ~ oddd
4 3~~~BI


U~


B


:I



I; S


It a m




ItY


Z
^^_mBu









dispersed phosphorus management scenarios, respectively.


with increasing phosphorus concentration.

dairies with concentrations exceeding 0.9 m


The map color intensifies


Comparison with the land use map shows

ig P/I. High concentrations are also


indicative of muck soils south of Lake Istokpoga and in the southern portion of the


135 subbasin.


Lower concentrations in the range of 0.2


- 0.3 mg P/I


are associated


with forested uplands, unimproved pasture, and rangeland.

Figure 3-11 illustrates the spatial heterogeneity of phosphorus runoff


concentration among land use polygons under the base case scenario. More than 6000

polygons had average runoff concentrations averaging less than 2 mg P/I, whereas


only 4 polygons had concentrations exceeding 10 mg P/1.


The hierarchical nature of


this relationship is common to the distribution of chemical elements.

Under the maximum phosphorus use scenario, 20 percent of the annual net

phosphorus inputs entered basin drainage waters as runoff, compared to 17 percent with


base case phosphorus management.


Dairies and beef pasture contributed more than 90


percent of the phosphorus in runoff and at the basin outlet.


Eighty-five percent of the


307 tons of annual dairy runoff phosphorus was attributed to the barn and high intensity

areas under maximum phosphorus use.

Forested uplands and grassy scrubland were estimated to contribute 33 tons of


runoff


phosphorus annually under the redevelopment scenario.


Dairy runoff under the dispersed phosphorus management scenario, design 1




































10,000


~~s~4S
7/ /
+x 4
n/

/
"'R~I'A
~:7/


/ /, <
I; t~jj<;




k/
i*

K>

vi ii'


7/ >7
>0>'7/





~ 7/
>7,

7//'

<>2

>7JJ//~


it


AJ



~s<*~?/'
>r


~-

~tAj


<" < VAV'~'9
#0 ~
7/

'A
>7/i
6>
<~
* >
*




7/
7/


>0-2


> 2-4


>4-6


>6-8


>8-10


> 10


Phosphorus Runoff Concentration (mg/1)


Figure 3-11


Spatial Hierarchy of Runoff Concentration among Land Use Polygons.


3.000


/5^y^









resulted in a 46 percent reduction in dairy runoff (31.9 tons) when compared to the


base case scenario. Runoff concentrations from dairy land uses still exceeded 0.9 mg

P/1 under both designs. Since the milk herd is restricted from pasture when housed in


confinement systems, runoff from these fields returned to background levels.

The difference between phosphorus inputs and phosphorus runoff represents


onsite phosphorus storage.


Under redevelopment conditions, an estimated 297 tons of


phosphorus were stored onsite in the watershed annually.


More than an order of


magnitude increase in annual onsite storage (4634 tons P) was observed by 1987


most


of which was associated with improved beef pasture.

Phosphorus Outflow

Basin phosphorus outflow from each polygon was calculated as the difference


between runoff phosphorus and assimilated phosphorus.


Figure 3-12 is a map showing


per unit basin outflow from each polygon under the base case scenario.


sources, the units are acres.


For nonpoint


Units are cows for dairies which have both point and


nonpoint source characteristics, and million gallons for the point source sewage


treatment plant.


Basins with the smallest assimilation coefficients, such as S-191,


154, and C-41, show the greatest per unit outflow from the basin as represented by the

darker coloration.

Under the base case, more than half of the estimated 228 tons of basin


phosphorus outflow annually was attributed to improved beef pasture.


Dairies


















.9
1k

C
0j
0




C,,




cn






-o





C
U,
I-
0







U,









C

ba.









cU


U)
CO




Full Text

PAGE 1

IW f $n r IW UO 9

PAGE 2

%,2*(2(&2120,&6 2) 3+263+2586 ,1 $ )/25,'$ :$7(56+(' %\ &$52/<1 )21<2 %2**(66 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

$&.12:/('*(0(176 DP JUDWHIXO WR KDYH KDG WKH RSSRUWXQLW\ WR ZRUN ZLWK P\ FRPPLWWHH FKDLU 'U +7 2GXP 7KURXJK KLV EULOOLDQFH DQG FUHDWLYLW\ KH KDV LQVSLUHG PH WR YLHZ WKH ZRUOG IURP D V\VWHPV SHUVSHFWLYH 0DQ\ WKDQNV JR WR RWKHU PHPEHUV RI P\ FRPPLWWHH IRU WKHLU FRQWULEXWLRQV 'U 0DUN %URZQ 'U 5LFKDUG )OXFN 'U &O\GH .LNHU DQG 'U &OD\ 0RQWDJXH 7KLV ZRUN ZDV DQ RXWFRPH RI UHVHDUFK VXSSRUWHG E\ WKH 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW DP LQGHEWHG WR DOO RI WKH WHDP SOD\HUV ZKRP KDYH ZRUNHG ZLWK RYHU WKH \HDUV LQFOXGLQJ SURMHFW OHDGHUV 'U %LOO %RJJHVV 'U .HQ &DPSEHOO 'U 5LFKDUG )OXFN DQG 'U -LP -RQHV FRZRUNHUV +XJK 'LQNLHU *UHJ .LNHU 'U +DUEDQV /DL DQG %DEDN 1HJDKEDQ DQG 'LVWULFW FRQWUDFW PDQDJHU 'U (ULF )ODLJ ZRXOG OLNH WR DFNQRZOHGJH P\ SDUHQWV ZKR ORYLQJO\ FDUHG IRU WKHLU JUDQGVRQ 0DWWKHZ LQ RUGHU WR SURYLGH WLPH IRU PH WR FRPSOHWH WKH GLVVHUWDWLRQ )LQDOO\ WKLV UHVHDUFK FRXOG QRW KDYH EHHQ DFFRPSOLVKHG ZLWKRXW WKH ORYH DQG VXSSRUW RI P\ KXVEDQG %LOO Q

PAGE 4

7$%/( 2) &217(176 $&.12:/('*(0(176 /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YLL (0(5*< 6<0%2/6 $1' '(),1,7,216 [L $%675$&7 [LL &+$37(56 ,1752'8&7,21 *HQHUDO &RQFHSWV &RQFHSWV 5HODWLQJ 3KRVSKRUXV (QWHUJ\ DQG (FRQRPLFV 3KRVSKRUXV DV D 5HVRXUFH 3UHYLRXV 6WXGLHV RI (FRORJLFDO (FRQRPLFV RI &KHPLFDO &\FOHV &KDUDFWHULVWLFV RI WKH 1RUWK 2NHHFKREHH %DVLQ +LVWRU\ RI %DVLQ 'HYHORSPHQW 5HODWHG 6WXGLHV RI 1RUWK 2NHHFKREHH %DVLQ 3KRVSKRUXV 0DQDJHPHQW $OWHUQDWLYHV 'HVFULSWLRQ RI 6FHQDULRV 'LVVHUWDWLRQ 3ODQ 0(7+2'6 352&('85(6 $1' 6285&(6 2) '$7$ 2UJDQL]DWLRQ RI 'DWD ZLWK WKH $5&,QIR *HRJUDSKLF ,QIRUPDWLRQ 6\VWHP 3KRVSKRUXV %XGJHWLQJ (PHUJ\ (YDOXDWLRQ (FRQRPLF $QDO\VLV 6FHQDULR &RPSDULVRQV LQ

PAGE 5

5(68/76 3KRVSKRUXV %XGJHWLQJ (QWHUJ\ (YDOXDWLRQ (FRQRPLF $QDO\VLV ',6&866,21 5HODWLQJ WKH 3KRVSKRUXV &\FOH WR (QWHUJ\ DQG (FRQRPLFV (IIHFWV RI 0DQDJHPHQW RQ 5HJLRQDO 6SDWLDO &KDUDFWHULVWLFV &RPSDULQJ 0HDVXUHV RI 6XFFHVV IRU 3KRVSKRUXV 0DQDJHPHQW *HQHUDO 3ULQFLSOHV RI %LRJHRHFRQRPLFV 6XJJHVWLRQV IRU )XWXUH 5HVHDUFK $33(1',&(6 $ $668037,216 $1' '$7$ 6285&(6 )25 3+263+2586 %8'*(7,1* $1' (&2120,& $1$/<6,6 % 3+263+2586 0$1$*(0(17 (0(5*< (9$/8$7,21 7$%/(6 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 6

/,67 2) 7$%/(6 7DEOH SDJH 'UDLQDJH 6XEEDVLQV RI WKH 1RUWK 2NHHFKREHH %DVLQ /DQG 8VH &KDUDFWHULVWLFV RI WKH 1RUWK 2NHHFKREHH %DVLQ 0DQDJHPHQW 3UDFWLFHV IRU WKH %DVH &DVH 6FHQDULR &RQGLWLRQVf 'DLU\ /DQG 8VHV DQG /DQG 8VH 7DJV $VVLJQHG WR 'DLU\ 3RO\JRQV +\GURJUDSK\ $WWULEXWH &RGHV DQG $UF /HQJWK &ODVVLILFDWLRQV 3KRVSKRUXV $VVLPLODWLRQ &RHIILFLHQWV DQG $YHUDJH )ORZ 3DWK /HQJWKV E\ 'UDLQDJH 6XEEDVLQ LQ WKH 1RUWK 2NHHFKREHH %DVLQ 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH %DVH &DVH 6FHQDULR 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ 3KRVSKRUXV ,PSRUWV WR DQG ([SRUWV IURP WKH 1RUWK 2NHHFKREHH %DVLQ XQGHU WKH %DVH &DVH 6FHQDULR 3KRVSKRUXV %XGJHW 5HVXOWV IRU WKH &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR (PHUJ\ (YDOXDWLRQ RI WKH %DVH &DVH 6FHQDULR (PHUJ\ (YDOXDWLRQ RI WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR Y

PAGE 7

(PHUJ\ (YDOXDWLRQ RI WKH 3UHGHYHORSPHQW 6FHQDULR (PHUJ\ (YDOXDWLRQ RI WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ (PHUJ\ (YDOXDWLRQ RI WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ (PHUJ\ (YDOXDWLRQ RI WKH &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR (PHUJ\ (YDOXDWLRQ 6XPPDU\ IRU 3KRVSKRUXV&RQWDLQLQJ 6RXUFHV DQG 3URGXFWV 3KRVSKRUXV 0DQDJHPHQW &RVWV DQG %DVLQ 3KRVSKRUXV 2XWIORZ IRU $OWHUQDWLYH 6FHQDULRV &RVW (IIHFWLYHQHVV &RPSDULVRQ RI 3KRVSKRUXV 0DQDJHPHQW 6FHQDULRV 6HUYLFH 'ROODUV DQG (PGROODUV E\ /DQG 8VH IRU WKH %DVH &DVH 6FHQDULR &RPSDULVRQ RI 7RWDO 6HUYLFH 'ROODUV DQG 7RWDO (PGROODUV E\ 6FHQDULR IRU $SSUR[LPDWHO\ 0LOOLRQ $FUHV LQ WKH 1RUWK 2NHHFKREHH %DVLQ &RPSDULVRQ RI $QQXDO (PHUJ\ 6HUYLFH 'ROODUV DQG (PGROODUV SHU *UDP RI 3KRVSKRUXV E\ 6FHQDULR IRU WKH 6WXG\ 5HJLRQ &RPSDULVRQ RI 7RWDO $QQXDO 3KRVSKRUXV (PHUJ\ DQG (PGROODUV /RVW DV 5XQRII IURP WKH 6WXG\ 5HJLRQ 6XPPDU\ RI $QQXDO 'ROODU )ORZV DQG (PGROODU )ORZV RI WKH 5HJLRQDO 3KRVSKRUXV &\FOH E\ 6FHQDULR YL

PAGE 8

/,67 2) ),*85(6 (QHUJ\ 6\VWHPV 'LDJUDP RI WKH 1RUWK 2NHHFKREHH %DVLQ ZLWK 2YHUOD\ RI 0DMRU 3KRVSKRUXV )ORZ 3DWKZD\V *HQHULF 8QLW 0RGHO RI D /DQG 8VH 3RO\JRQ +\SRWKHWLFDO 'LVWULEXWLRQV RI 3KRVSKRUXV DQG 3DLG 6HUYLFHV f DV D )XQFWLRQ RI 6RODU 7UDQVIRUPLW\ 6\VWHPV 'LDJUDP RI WKH %LRJHRFKHPLFDO &\FOH RI 3KRVSKRUXV 2GXP f /RFDWLRQ 0DS RI /DNH 2NHHFKREHH DQG ,WV 'UDLQDJH 6XEEDVLQV 3DWKZD\V $PHQDEOH WR 3KRVSKRUXV 0DQDJHPHQW 6FKHPDWLF 'LDJUDP RI D 'DLU\ :DVWH 0DQDJHPHQW 6\VWHP /DQG 8VH DQG 6RLO $VVRFLDWLRQV LQ WKH 1RUWK 2NHHFKREHH %DVLQ 7KH +\GURJUDSKLF 1HWZRUN RI 6WUHDPV LQ %OXHf DQG &DQDOV LQ 5HGf LQ WKH 1RUWK 2NHHFKREHH %DVLQ 8QLW 0RGHO IRU 6SDWLDO 6LPXODWLRQ RI WKH 3KRVSKRUXV %XGJHW 8QLW 0RGHO IRU .H\ 3URFHVVHV RI WKH &5($06:7 3URJUDP (7 (YDSRWUDQVSLUDWLRQ /$, /HDI $UHD ,QGH[ &U 5DLQIDOO 3KRVSKRUXV 0RGHO RI 3KRVSKRUXV $VVLPLODWLRQ DV D )XQFWLRQ RI )ORZ 3DWK 'LVWDQFH 'LDJUDP ([SODLQLQJ (PHUJ\ ,QGLFHV 2GXP DQG 2GXP f 9OO

PAGE 9

'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH %DVH &DVH 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 3UHGHYHORSPHQW 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP DQG Ef %DVLQ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 'LVWULEXWLRQ RI ,PSRUWV DQG ([SRUWV RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV XQGHU WKH %DVH &DVH 6FHQDULR /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH %DVH &DVH 6FHQDULR /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR /DQG &RYHU 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH 3UHGHYHORSPHQW 6FHQDULR /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 6SDWLDO +LHUDUFK\ RI 5XQRII &RQFHQWUDWLRQ DPRQJ /DQG 8VH 3RO\JRQV /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO %DVLQ 3KRVSKRUXV 2XWIORZ XQGHU WKH %DVH &DVH 6FHQDULR f f f 9,,,

PAGE 10

8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI &LWUXV /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI %HHI 3DVWXUH /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 'DLU\ /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMFRZ\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 6XJDUFDQH /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 2WKHU $JULFXOWXUH /DQG 8VH (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI &RPPHUFLDO )RUHVWU\ (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 8UEDQ /DQG 8VH (O VHMDF\Uf 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI %DVLQ 6FDOH 7UHDWPHQW IRU WKH 6 6XEEDVLQ ( VHM\Uf (PHUJ\ 6XPPDU\ 'LDJUDP DQG &DOFXODWLRQ RI 1HW (PHUJ\
PAGE 11

5HODWLRQVKLS EHWZHHQ WKH (PHUJ\ SHU *UDP RI 3KRVSKRUXV LQ 0DWHULDOV DQG WKHLU 6SDWLDO 'LVWULEXWLRQ 5HODWLRQVKLS EHWZHHQ (PGROODUV DQG 6HUYLFH 'ROODUV IRU /DQG 8VHV XQGHU WKH %DVH &DVH 6FHQDULR 'LDJUDP 6KRZLQJ WKH )XOO 3KRVSKRUXV &\FOH RI WKH 5HJLRQ (OHDY\ %ODFN /LQHVf ZLWK ,QSXWV DQG 2XWSXWV DQG ,QWHUQDO &\FOLQJ XQGHU WKH %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'DVKHG /LQH 5HSUHVHQWV )ORZ RI 0RQH\ $VVRFLDWHG ZLWK 3KRVSKRUXV 'LVWULEXWLRQ RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDO ,QSXWV DQG 2XWSXWV %DVHG RQ WKH (PHUJ\0DVV 5DWLRV DQG 6SDWLDO ,QWHQVLW\ RI 3KRVSKRUXV LQ WKH 0DWHULDOV (PGROODU )ORZ SHU $FUH $VVRFLDWHG ZLWK WKH $QQXDO &KDQJH LQ 2QVLWH 3KRVSKRUXV 6WRUDJH DQG $QQXDO 5XQRII 3KRVSKRUXV XQGHU WKH %DVH &DVH 6FHQDULR [

PAGE 12

(0(5*< 6<0%2/6 $1' '(),1,7,216 (1(5*< &,5&8,7 D SDWKZD\ ZKRVH IORZ LV SURSRUWLRQDO WR WKH TXDQWLW\ LQ WKH VWRUDJH RU VRXUFH XSVWUHDP 6285&( RXWVLGH VRXUFH RI HQHUJ\ D IRUFLQJ IXQFWLRQ 6725$*( 7$1. D FRPSDUWPHQW RI HQHUJ\ VWRUDJH ZLWKLQ WKH V\VWHP VWRULQJ D TXDQWLW\ DV WKH EDODQFH RI LQIORZV DQG RXWIORZV D VWDWH YDULDEOH +($7 6,1. GLVSHUVLRQ RI SRWHQWLDO HQHUJ\ LQWR KHDW WKDW DFFRPSDQLHV DOO UHDO WUDQVIRUPDWLRQ SURFHVVHV DQG VWRUDJHV ORVV RI SRWHQHWLDO HQHUJ\ IURP IXUWKHU XVH E\ WKH V\VWHP ,17(5$&7,21 LQWHUDFWLYH LQWHUVHFWLRQ RI WZR SDWKZD\V FRXSOHG WR SURGXFH DQ RXWIORZ LQ SURSRUWLRQ WR D IWPFWLRQ RI ERWK FRQWURO DFWLRQ RI RQH IORZ RQ DQRWKHU OLPLWLQJ IDFWRU DFWLRQ ZRUN JDWH 352'8&(5 XQLW WKDW FROOHFWV DQG WUDQVIRUPV ORZ TXDOLW\ HQHUJ\ XQGHU FRQWURO LQWHUDFWLRQV RI KLJK TXDOLW\ IORZV &21680(5 XQLW WKDW WUDQVIRUPV HQHUJ\ TXDOLW\ VWRUHV LW DQG IHHGV LW EDFN DXWRFDWDO\WLFDOO\ WR LPSURYH LQIORZ 75$16$&7,21 D XQLW WKDW LQGLFDWHV D VDOH RI JRRGV RU VHUYLFHV VROLG OLQHf LQ H[FKDQJH IRU SD\PHQW RI PRQH\ GDVKHG OLQHf %2; PLVFHOODQHRXV V\PERO WR XVH IRU ZKDWHYHU XQLW RU SURFHVV LV ODEHOHG 5HSULQWHG IURP 2GXP ZLWK SHUPLVVLRQ [L

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ %,2*(2(&2120,&6 2) 3+263+2586 ,1 $ )/25,'$ :$7(56+(' %\ &DURO\Q )RQ\R %RJJHVV 'HFHPEHU &KDLUPDQ +7 2GXP 0DMRU 'HSDUWPHQW (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV 7KH KXPDQ HFRQRP\ LQIOXHQFHV DQG LV LQIOXHQFHG E\ WKH ELRJHRFKHPLFDO F\FOHV RI HOHPHQWV EXW PHDQV IRU UHODWLQJ FKHPLFDO F\FOHV WR HFRQRPLF V\VWHPV KDYH EHHQ VWXGLHG RQO\ LQFLGHQWDOO\ 7KLV VWXG\ WHVWHG ZD\V RI UHODWLQJ D FKHPLFDO F\FOH WR D UHJLRQDO HFRQRP\ XVLQJ SKRVSKRUXV LQ WKH QRUWKHUQ GUDLQDJH EDVLQ RI /DNH 2NHHFKREHH )ORULGD DV DQ H[DPSOH $PRQJ WKH PHWKRGV XVHG ZHUH D PDVV EDODQFH DSSURDFK WR SKRVSKRUXV EXGJHWLQJ G\QDPLF PRGHOLQJ IRU UXQRII VLPXODWLRQ FRVW HIIHFWLYHQHVV IRU HFRQRPLF DQDO\VLV DQG HPHUJ\ HYDOXDWLRQ WHFKQLTXHV 6SDWLDO GDWD RQ ODQG XVH DQG PDQDJHPHQW SUDFWLFHV ZHUH RUJDQL]HG XVLQJ D JHRJUDSKLF LQIRUPDWLRQ V\VWHP 3KRVSKRUXV PDQDJHPHQW VFHQDULRV ZHUH HYDOXDWHG DQG FRPSDUHG LQ WHUPV RI WKHLU DELOLW\ WR PHHW DOWHUQDWLYH JRDOV IRU WKH UHJLRQ SK\VLFDO LH WDUJHW SKRVSKRUXV ;OO

PAGE 14

ORDG UHGXFWLRQ WR /DNH 2NHHFKREHHf HFRQRPLF LH PLQLPL]H FRVW RI SKRVSKRUXV UHGXFWLRQf DQG HQHUJHWLF LH PD[LPL]H UHJLRQDO HPSRZHUf 5HVXOWV LQGLFDWHG WKDW FKHPLFDO WUHDWPHQW RI SKRVSKRUXV UXQRII DV D SRLQW VRXUFH DW VXEEDVLQ RXWOHWV ZDV WKH PHWKRG E\ ZKLFK WKH WDUJHW ORDG UHGXFWLRQ JRDO FRXOG EH DFKLHYHG 7KLV PHWKRG RI FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW ZDV OHDVW FRVW HIIHFWLYH DW DQ HVWLPDWHG SHU SRXQG RI SKRVSKRUXV UHPRYHG 'LVSHUVHG WUHDWPHQW RI SKRVSKRUXV WKURXJK FKDQJHV LQ WHFKQRORJ\ DQG PDQDJHPHQW RQVLWH DW HDFK PDMRU VRXUFH ZDV PRUH FRVW HIIHFWLYH WR OE 3 UHPRYDOf WKRXJK VKRUW RI DFKLHYLQJ WKH SK\VLFDO JRDO $ WUDGHRII EHWZHHQ FRVW DQG SKRVSKRUXV WUHDWPHQW HIILFLHQF\ ZDV HYLGHQW SDUWLFXODUO\ DV WKH WDUJHW JRDO ZDV DSSURDFKHG 5HVXOWV RI HPHUJ\ HYDOXDWLRQ VXSSRUWHG WKH K\SRWKHVLV WKDW PDQDJHPHQW UHRUJDQL]HV WKH ODQGVFDSH E\ FKDQJLQJ LWV GLYHUVLW\ DQG DOWHULQJ WKH F\FOLQJ RI FKHPLFDO HOHPHQWV (PHUJ\ HYDOXDWLRQ VKRZHG WKDW WKH WRWDO HPGROODU ORVV IURP WKH UHJLRQ DV SKRVSKRUXV UXQRII ZDV PLOOLRQ (0\U XQGHU WKH EDVH FDVH VFHQDULR RU WLPHV WKH FRVW RI SKRVSKRUXV FRQWURO 7KH HPGROODU YDOXH RI SKRVSKRUXV RXWIORZ IURP WKH UHJLRQ WR /DNH 2NHHFKREHH DIWHU DVVLPLODWLRQ ZDV HVWLPDWHG DV PLOOLRQ (0\U D PHDVXUH RI LWV SRWHQWLDO XVH )LYH SULQFLSOHV IRU WKH QHZ ILHOG RI ELRJHRHFRQRPLFV ZHUH SURSRVHG IRU PDQDJLQJ DW WKH LQWHUIDFH EHWZHHQ DQ HOHPHQWDO F\FOH LWV UROH LQ WKH HQYLURQPHQW DQG LWV HFRQRPLF XVH WR HQKDQFH WKH VHOIRUJDQL]LQJ SURSHUWLHV RI WKH ODQGVFDSH ;OOO

PAGE 15

&+$37(5 ,1752'8&7,21 7KH HFRQRPLF YLWDOLW\ RI ODQGVFDSH V\VWHPV GHSHQGV RQ WKH ELRJHRFKHPLFDO F\FOLQJ RI FULWLFDO FKHPLFDO HOHPHQWV 3DUW RI HDFK F\FOH LV UHJXODWHG E\ QDWXUDO HQYLURQPHQWDO SURFHVVHV ZKLOH RWKHU SDUWV RI WKH F\FOH FLUFXODWH WKURXJK DJULFXOWXUH DQG VHWWOHPHQWV RI WKH KXPDQ HFRQRP\ JHQHUDOO\ XQGHU GHYHORSPHQW DQG FKDQJH ,Q RUGHU WR PDQDJH LPSRUWDQW FKHPLFDO F\FOHV DOWHUQDWLYH FKRLFHV QHHG WR EH HYDOXDWHG IRU WKH EHQHILW RI WKH ZKROH ODQGVFDSH D JHQHUDO SUREOHP LQ HFRORJLFDO HFRQRPLFV +RZ GR FKHPLFDO F\FOHV DIIHFW WKH HFRQRP\ RI KXPDQLW\ DQG QDWXUH" 7KLV LV D VWXG\ RI WKH UROH RI SKRVSKRUXV LQ DQ DJULFXOWXUDO ZDWHUVKHG LQ )ORULGD HYDOXDWLQJ DOWHUQDWLYHV IRU PDQDJHPHQW ,Q WKH QRUWK 2NHHFKREHH )ORULGD EDVLQ IHUWLOL]HU DQG IHHG LQSXWV WKDW ZHUH SDUW RI LQWHQVLYH DJULFXOWXUDO GHYHORSPHQWV DGGHG SKRVSKRUXV WR D ODQGVFDSH ZKRVH UXQRII FRQWULEXWHG WR HXWURSKLFDWLRQ RI )DNH 2NHHFKREHH WR LWV VRXWK )ROORZLQJ SXEOLF FRQWURYHUV\ PDQ\ VWXGLHV ZHUH FRQGXFWHG RI SKRVSKRUXV SURFHVVHV LQ WKH DUHD 'UDZLQJ RQ WKHVH GDWD DQG XVLQJ VSDWLDO PRGHOV WKLV VWXG\ ILUVW FRQVLGHUV WKH SKRVSKRUXV EXGJHW RI WKH ODQGVFDSH LWV HIIHFW RQ WKH HFRQRP\ DQG WKH ZD\ LW FKDQJHV ZLWK DOWHUQDWLYH PDQDJHPHQW 6FHQDULRV LQFOXGH WKRVH WKDW FRQVHUYH SKRVSKRUXV DQG UHGXFH IORZV RI SKRVSKRUXV WR WKH ODNH 7KH ZRUNV RI WKH HQYLURQPHQW DQG RI WKH

PAGE 16

HFRQRP\ IRU WKH YDULRXV DOWHUQDWLYHV ZHUH DVVHVVHG RQ D FRPPRQ EDVLV XVLQJ HPHUJ\ VSHOOHG ZLWK DQ Pf HYDOXDWLRQ D PHWKRG XVHG WR GHWHUPLQH WKH DJJUHJDWH QHW SURGXFWLYLW\ RI D V\VWHP $Q HFRQRPLF DQDO\VLV LQ GROODUV ZDV PDGH RI WKH FRVWV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV 7KH RYHUDOO REMHFWLYH RI WKLV UHVHDUFK LV WR DQDO\]H WKH UROH RI SKRVSKRUXV DV DQ HOHPHQW LQ WKH UHJLRQDO HFRQRP\ RI WKH QRUWK 2NHHFKREHH EDVLQ DQG WR GHYHORS D FRPSUHKHQVLYH UHVRXUFH PDQDJHPHQW IUDPHZRUN IRU HYDOXDWLQJ DOWHUQDWLYH PHWKRGV WR UHDOORFDWH SKRVSKRUXV LQ WKLV UXUDO DJULFXOWXUDO ZDWHUVKHG 6SHFLILF REMHFWLYHV LQFOXGH f ([DPLQLQJ WKH XVH DQG VSDWLDO GLVWULEXWLRQ RI SKRVSKRUXV LQ D UXUDO UHJLRQDO ODQGVFDSH f 'HWHUPLQLQJ WKH HPHUJ\ YDOXH DQG HFRQRPLF FRVWV RI DOWHUQDWLYH V\VWHPV RI SKRVSKRUXV XVH DQG f (YDOXDWLQJ SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV EDVHG RQ SK\VLFDO FULWHULD LH PHHW WDUJHW SKRVSKRUXV JRDOVf HFRQRPLF FULWHULD LH FRVW HIIHFWLYHQHVVf DQG ELRJHRHFRQRPLF SULQFLSOHV LH PD[LPXP UHJLRQDO HPHUJ\ SURGXFWLRQ DQG XVHf *HQHUDO &RQFHSWV 3KRVSKRUXV F\FOLQJ LQ WKH HQYLURQPHQW LV D IXQFWLRQ RI ERWK QDWXUDO SURFHVVHV HJ ZHDWKHULQJ RI JHRORJLF IRUPDWLRQV ELRORJLFDO F\FOLQJ WKURXJK SODQW XSWDNH DQG VHQHVFHQFH DQG PLQHUDOL]DWLRQ RI RUJDQLF PDWWHUf DQG DQWKURSRJHQLF IDFWRUV HJ PLQLQJ DJULFXOWXUH DQG KXPDQ FRQVXPSWLRQf 7KH HIIHFW RI WKHVH SURFHVVHV RQ WKH TXDOLW\ RI GUDLQDJH ZDWHU LQ WKH QRUWK 2NHHFKREHH EDVLQ LV UHODWHG WR WKH GLVWULEXWLRQ RI SKRVSKRUXV WKURXJKRXW WKH ODQGVFDSH DV GHWHUPLQHG E\ ODQG XVH SDWWHUQV DQG

PAGE 17

SKRVSKRUXV DVVRFLDWLRQV ZLWK HDFK ODQG XVH 7KH VHTXHQFH RI SKRVSKRUXV WUDQVSRUW WKURXJK WKH EDVLQ PD\ EH FRQFHSWXDOL]HG DV D QHWZRUN RI SRLQWV RI FRQFHQWUDWLRQ DQG GLVSHUVLRQ 3KRVSKRUXVFRQWDLQLQJ PDWHULDOV HQWHULQJ WKH QRUWK 2NHHFKREHH EDVLQ DUH FRQFHQWUDWHG DW PDMRU SURFHVVLQJ DQG GLVWULEXWLRQ SRLQWV VXFK DV FKHPLFDO SODQWV IHHG VXSSOLHUV DQG VXSHUPDUNHWV *RRGV DUH GLVSHUVHG VSDWLDOO\ WKURXJKRXW WKH ODQGVFDSH DV LQSXWV WR SURGXFWLRQ DQG FRQVXPSWLRQ SURFHVVHV DV GHWHUPLQHG E\ ODQG XVH SDWWHUQV 6RPH SKRVSKRUXVFRQWDLQLQJ SURGXFWV UHVXOWLQJ IURP ODQG XVH DFWLYLWLHV DUH DJDLQ FRQFHQWUDWHG DW SURFHVVLQJ FHQWHUV VXFK DV SDFNLQJ SODQWV OLYHVWRFN PDUNHWV DQG VHZDJH WUHDWPHQW SODQWV 2WKHU SURGXFWV PD\ EH H[SRUWHG GLUHFWO\ IURP WKH EDVLQ ZLWKRXW IXUWKHU SURFHVVLQJ HJ PLON IURP D GDLU\ RSHUDWLRQf )LJXUH LV DQ HQHUJ\ V\VWHPV RYHUYLHZ RI WKH ODQGVFDSH V\VWHP RI WKH QRUWK 2NHHFKREHH ZDWHUVKHG 7KH FRPSRQHQWV DQG H[FKDQJHV DUH DJJUHJDWHG WR LQFOXGH WKH SKRVSKRUXV LQIORZV SKRVSKRUXV VWRULQJ FRPSDUWPHQWV DQG WKH PDLQ HQHUJ\ DQG HFRQRPLF LQIOXHQFHV DQG PHFKDQLVPV 7KH RYHUOD\ GLDJUDP VKRZV MXVW WKH SKRVSKRUXV FRQWDLQLQJ FRPSRQHQWV DQG SDWKZD\V FRQJUXHQW ZLWK WKH ZKROH V\VWHPV GLDJUDP 7KH HPHUJ\ DQG HFRQRPLF HYDOXDWLRQV RI WKH ZKROH ODQGVFDSH ZHUH PDGH E\ FRPSXWLQJ WKH PDLQ SDWKZD\V FRQWULEXWLQJ WR WKH V\VWHP DQG WR WKH ODUJHU RXWVLGH HFRQRP\ RI ZKLFK WKLV ODQGVFDSH LV D SDUW 6SDWLDOO\ WKH ODQGVFDSH FRQVLVWV RI VHYHUDO PDLQ VXEV\VWHPV VKRZQ DV VLQJOH XQLWV LQ WKH RYHUYLHZ GLDJUDP )LJXUH f ,Q WKH VSDWLDO DQDO\VHV RI SKRVSKRUXV HPHUJ\ DQG HFRQRPLFV IORZV DQG H[FKDQJHV DUH RIWHQ SRO\JRQ GHSHQGHQW ZKHUH D SRO\JRQ LV DQ DUHD ZLWK D FKDUDFWHULVWLF ODQG XVH VRLO W\SH DQG JHRJUDSKLF ORFDWLRQ

PAGE 18

5XQRII WR /DNH 2NHHFKREHH )LJXUH (QHUJ\ 6\VWHPV 'LDJUDP RI WKH 1RUWK 2NHHFKREHH %DVLQ ZLWK 2YHUOD\ RI 0DMRU 3KRVSKRUXV )ORZ 3DWKZD\V

PAGE 19

)LJXUH LV D XQLW PRGHO RI DQ\ V\VWHP GHILQHG E\ SRO\JRQ ERXQGDULHV 'HSHQGLQJ XSRQ WKH W\SH RI ODQG XVH VRPH SDWKZD\V FRQWDLQHG ]HUR IORZV 9DULRXV FRPELQDWLRQV RI DOWHUQDWLYHV RU VFHQDULRV IRU PDQDJHPHQW RI WKH V\VWHP DIIHFWLQJ SKRVSKRUXV ZHUH HYDOXDWHG HLWKHU LQ WKH DJJUHJDWH XVLQJ )LJXUH RU VSDWLDOO\ IRU HDFK SRO\JRQ )LJXUH f &RQFHSWV 5HODWLQJ 3KRVSKRUXV (PHUJY DQG (FRQRPLFV 7KH GLVWULEXWLRQ RI FKHPLFDO HOHPHQWV LQ WKH XQLYHUVH DQG LQ WKH FUXVW RI WKH HDUWK LV VNHZHG UHIOHFWLQJ WKH HQHUJ\ KLHUDUFK\ RI WKH XQLYHUVHnV QXFOHDU DQG RWKHU SURFHVVHV RI HOHPHQW IRUPDWLRQ DQG GLVWULEXWLRQ 7KXV WKHUH DUH ODUJH TXDQWLWLHV RI HOHPHQWV RI VPDOO DWRPLF ZHLJKW DQG IHZHU RI WKH ODUJH DWRP HOHPHQWV 6FKOHVLQJHU f 7KH GLVWULEXWLRQ RI DQ LQGLYLGXDO HOHPHQW PD\ EH VNHZHG DV ZHOO 0XFK RI WKH PDVV LV GLVWULEXWHG DPRQJ DYHUDJH FRQFHQWUDWLRQV ZKHUHDV VPDOO DPRXQWV DUH PRUH KLJKO\ FRQFHQWUDWHG UHIOHFWLQJ WKH IHZHU SURFHVVHV LQ WKH JHRELRVSKHUH WKDW PDLQWDLQ DUHDV RI KLJKHU FRQFHQWUDWLRQ 7KH WKHRU\ RI VHOIRUJDQL]DWLRQ 2GXP f VXJJHVWV WKDW SURFHVVHV DUH VXVWDLQHG WKDW KDYH XVHIXO HIIHFWV FRPPHQVXUDWH ZLWK WKHLU HPHUJ\ UHTXLUHPHQW 7KH WKHRU\ IXUWKHU VXJJHVWV WKDW D PDWHULDO WKDW LV FRQFHQWUDWHG ZLOO EH LQ D WUDQVIRUPLW\ UDQJH ZKHUH LW KDV D XVHIXO HIIHFW 7UDQVIRUPLW\ LV D PHDVXUH RI WKH HPHUJ\ SHU XQLW HQHUJ\ RI D VXEVWDQFH DQG KLJKHU WUDQVIRUPLW\ SURFHVVHV PD\ EH UHTXLUHG ZKHUH SKRVSKRUXV FRQFHQWUDWLRQV DUH KLJKHU )LJXUH VXJJHVWV D GLVWULEXWLRQ RI SKRVSKRUXV FRQFHQWUDWLRQV LQ SURFHVVHV ZLWK D PRGHUDWHO\ KLJK UDQJH RI WUDQVIRUPLWLHV

PAGE 20

6DOHV )LJXUH *HQHULF 8QLW 0RGHO RI D /DQG 8VH 3RO\JRQ

PAGE 21

1XPEHU RI LWHPV RU TXDQWLW\ RI SKRVSKRUXV ( ( ( ( ( ( 6RODU WUDQVIRUPLW\ VHM-f )LJXUH +\SRWKHWLFDO 'LVWULEXWLRQV RI 3KRVSKRUXV DQG 3DLG 6HUYLFHV f DV D )XQFWLRQ RI 6RODU 7UDQVIRUPLW\

PAGE 22

2QH PD\ VXUPLVH WKDW SKRVSKRUXV DW ORZHU RU KLJKHU FRQFHQWUDWLRQV LV RXWVLGH WKH UDQJH ZKHUH LWV XWLOLW\ LV FRPPHQVXUDWH ZLWK LWV HPHUJ\ UHTXLUHPHQW 7UDQVIRUPLWLHV DUH XVXDOO\ KLJKHU IRU SURFHVVHV ZLWKLQ WKH HFRQRPLF V\VWHPV RI KXPDQ VRFLHW\ WKDQ WKRVH IRU SURFHVVLQJ HQYLURQPHQWDO UDZ PDWHULDOV ,Q RWKHU ZRUGV LQ )LJXUH WKH ]RQH ZKHUH SDLG KXPDQ VHUYLFHV RSHUDWH LV LQ WKH UDQJH RI KLJKHU WUDQVIRUPLWLHV WR WKH ULJKW UHIHU WR WKH K\SRWKHWLFDO OLQH IRU SDLG VHUYLFHVf $W DQ LQWHUPHGLDWH UDQJH RI WUDQVIRUPLWLHV ZKHUH SKRVSKRUXV LV LPSRUWDQW LQ HFRQRPLF SURFHVVHV HJ IHUWLOL]DWLRQ IRU DJULFXOWXUDO SURGXFWLRQf LW LV HFRQRPLFDOO\ DQG HQHUJHWLFDOO\ HIIHFWLYH IRU PRGHUDWH OHYHOV RI SDLG KXPDQ VHUYLFHV WR LQWHUDFW ZLWK SKRVSKRUXV 3KRVSKRUXV DV D 5HVRXUFH 3KRVSKRUXV FRPSRVHV DERXW SHUFHQW RI WKH HDUWKnV FUXVW *LOOLODQG f ,W LV SUHVHQW LQ DOO VRLOV DQG URFNV LQ ZDWHU DQG LQ SODQW DQG DQLPDO UHPDLQV &DWKFDUW f 7KH JOREDO ELRJHRFKHPLFDO F\FOH RI SKRVSKRUXV LV LOOXVWUDWHG LQ )LJXUH 3KRVSKRUXV VWRUDJH LQ PDULQH VHGLPHQWV LV IRXU RUGHUV RI PDJQLWXGH JUHDWHU WKDQ VWRUDJH RQ ODQG 7KH SKRVSKRUXV F\FOH GLIIHUV IURP WKRVH RI RWKHU PDMRU HOHPHQWV LQ WKDW WKH DWPRVSKHULF FRPSRQHQW LV QHJOLJLEOH 6FKOHVLQJHU f $ PDMRU IOX[ RI SKRVSKRUXV RFFXUV DV ULYHU WUDQVSRUW WR WKH VHD 0H\EHFN f ZKLFK LV EDODQFHG E\ WKH XSOLIW RI VHGLPHQWV +XPDQV KDYH OLQNHG WKH HFRQRPLF V\VWHP WR WKH ELRJHRFKHPLFDO F\FOH RI SKRVSKRUXV PDLQO\ WKURXJK PLQLQJ SKRVSKDWH URFN IRU IHUWLOL]HU SURGXFWLRQ WKXV DFFHOHUDWLQJ WKH UHWXUQ RI SKRVSKRUXV WR WKH RFHDQ 7KRXJK WKH HIIHFW RQ WKH RYHUDOO PDULQH FRPSRQHQW RI WKH SKRVSKRUXV F\FOH LV

PAGE 23

2 ( J )LJXUH 6\VWHPV 'LDJUDP RI WKH %LRJHRFKHPLFDO &\FOH RI 3KRVSKRUXV 2GXP f

PAGE 24

QHJOLJLEOH E\ FRPSDULVRQ ORFDOL]HG HIIHFWV RQ WKH SULPDU\ SURGXFWLYLW\ RI QHDUVKRUH KDELWDWV PD\ EH VLJQLILFDQW 6DQGVWURP f 3KRVSKRUXV LV D YLWDO HOHPHQW LQ WKH SURGXFWLRQ SURFHVVHV RI QDWXUDO DQG KXPDQ V\VWHPV ,W LV QHFHVVDU\ IRU SKRWRV\QWKHVLV WKH V\QWKHVLV DQG EUHDNGRZQ RI FDUERK\GUDWHV DQG WKH WUDQVIHU RI HQHUJ\ ZLWKLQ WKH SODQW .KDVDZQHK HW DO f $W EDFNJURXQG FRQFHQWUDWLRQV LW LV D YDOXDEOH DQG RIWHQ OLPLWLQJ UHVRXUFH $W FRQFHQWUDWLRQV H[FHHGLQJ WKRVH UHTXLUHG IRU SURGXFWLRQ LW LV VRPHWLPHV FRQVLGHUHG D SROOXWDQW $ SROOXWDQW LV KRZHYHU PHUHO\ D UHVRXUFH RXW RI SODFH 2QH JRDO RI HFRORJLFDO HQJLQHHULQJ DW WKH LQWHUIDFH RI KXPDQ DQG QDWXUDO V\VWHPV LV WR WUDQVIRUP ZDVWH SURGXFWV LQWR XVHIXO LQSXWV WR SURGXFWLRQ WDNLQJ DGYDQWDJH RI WKH VHOIRUJDQL]LQJ QDWXUH RI V\VWHPV 2I SDUWLFXODU LPSRUWDQFH LQ WKLV VWXG\ LV WKH VSDWLDO UHDOORFDWLRQ RI QXWULHQWV IURP DUHDV RI RYHUDEXQGDQFH WR DUHDV RI OLPLWDWLRQ $ JHQHUDO RYHUYLHZ RI WKH UROH RI SKRVSKRUXV LQ QDWXUDO DQG DJULFXOWXUDO V\VWHPV LV SUHVHQWHG WR VHW WKH VWDJH IRU DQDO\VLV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV 5ROH LQ 1DWXUDO 6\VWHPV ,Q QDWXUH SKRVSKRUXV LV SULPDULO\ REVHUYHG DV SKRVSKDWH PLQHUDO EXW LV FKLHIO\ DYDLODEOH WR QDWXUDO SODQW DQG DQLPDO FRPPXQLWLHV DV RUWKRSKRVSKDWH %HFDXVH RI OLPLWHG DYDLODELOLW\ DQG RI VROXELOLW\ LQ DTXHRXV VROXWLRQV RI WKH JHRORJLFDO PDWUL[ SKRVSKDWHV DUH TXLWH RIWHQ D OLPLWLQJ IDFWRU IRU ERWK DTXDWLF DQG WHUUHVWULDO QDWXUDO HFRV\VWHPV 3RUFHOOD HW DO f +RZHYHU )ORULGD ODQGV DQG ZDWHUV KDYH D PXFK KLJKHU OHYHO RI SKRVSKRUXV WKDQ PRVW RI WKH ZRUOG 2GXP f

PAGE 25

0XFK RI WKH YHJHWDWLYH FRYHU LQ WKH QRUWK 2NHHFKREHH EDVLQ LV HLWKHU SLQHODQG SUDLULH JUDVVODQG RU ZHWODQG 7KH IORZ RI SKRVSKRUXV ODGHQ UXQRII WKURXJK WKH ZDWHUVKHG LV DIIHFWHG E\ WKH RFFXUUHQFH RI YHJHWDWHG ZHWODQGV DQG ZDWHUZD\V 3KRVSKRUXV XSWDNH E\ DTXDWLF DQG ZHWODQG SODQWV WUDQVIRUPV ELRDYDLODEOH SKRVSKRUXV LQWR VWRUDJH DV SODQW ELRPDVV 1XWULHQW UHOHDVH GXH WR VHQHVFHQFH RI SODQW PDWWHU RU VDWXUDWLRQ RI XSWDNH FDSDFLW\ PD\ SXOVH WKH K\GURORJLF V\VWHP ZLWK SKRVSKRUXV SDUWLFXODUO\ DW WKH HQG RI WKH JURZLQJ VHDVRQ 7KH DELOLW\ RI UHOHDVHG QXWULHQWV WR VWLPXODWH DOJDO SURGXFWLRQ LQ /DNH 2NHHFKREHH GHSHQGV RQ DPRQJ RWKHU IDFWRUV WKH UDWH RI PLQHUDOL]DWLRQ RI RUJDQLF PDWWHU WR ELRDYDLODEOH SKRVSKRUXV 0DQDJHPHQW WHFKQLTXHV VXFK DV FKHPLFDO DSSOLFDWLRQ RU KDUYHVWLQJ WR FRQWURO DTXDWLF YHJHWDWLRQ LQ ZDWHUZD\V DQG WKH XVH RI ZHWODQGV IRU WUHDWPHQW RI UXQRII IURP DJULFXOWXUDO ODQGV LQIOXHQFH WKH GHJUHH DQG WLPLQJ RI SKRVSKRUXV RXWIORZ WR WKH ODNH 8VHV LQ $JULFXOWXUH ,Q )ORULGD DJULFXOWXUDO UXQRII IURP IHUWLOL]HG FURSODQG DFFRXQWV IRU WKH KLJKHVW DQWKURSRJHQLF IORZ RI SKRVSKRUXV WR LQODQG ZDWHUV *LOOLODQG f 0DMRU LQSXWV RI SKRVSKRUXV WR WKH QRUWK 2NHHFKREHH EDVLQ DUH DFFRXQWHG IRU DV UDZ PDWHULDOV XVHG IRU IHUWLOL]HU DQG DQLPDO IHHG SURGXFWLRQ IRU DJULFXOWXUDO DFWLYLWLHV LQ WKH EDVLQ 7KH PDMRULW\ RI WKH IHUWLOL]HU SURGXFHG LQ WKH EDVLQ LV EXON EOHQGHG GU\ JUDQXODU IHUWLOL]HU PDWHULDOV DUH SK\VLFDOO\ PL[HG WR JLYHQ 13. IRUPXODWLRQV 7KHVH PL[HV DUH DSSOLHG LQ WKH EDVLQ SULPDULO\ WR LPSURYHG SDVWXUH DQG FLWUXV DFUHDJH 3KRVSKRUXV LV DGGHG WR UDZ PDWHULDOV VXFK DV FRUQ KRPLQ\ DQG FRWWRQVHHG GXULQJ WKH PDQXIDFWXULQJ RI DQLPDO IHHG UDWLRQV IRU GDLULHV DQG EHHI FRZFDOI RSHUDWLRQV LQ WKH EDVLQ

PAGE 26

7KH SXUSRVH RI IHUWLOL]HU DSSOLFDWLRQ LV WR LQFUHDVH WKH DPRXQW RI ELRDYDLODEOH SKRVSKRUXV LQ VRLO IRU SODQW XSWDNH 7KH DPRXQW RI SKRVSKRUXV WKDW FDQ EH ORVW LQ VHGLPHQW RU GLVVROYHG LQ UXQRII ZDWHU DOVR LQFUHDVHV SURSRUWLRQDOO\ 7D\ORU DQG .LOPHU f 3KRVSKRUXV LQ DQLPDO ZDVWHV RIWHQ UHSUHVHQWV D VLJQLILFDQW IUDFWLRQ RI WKH WRWDO FLUFXODWLQJ LQ DJULFXOWXUDO V\VWHPV 7KXV D PDMRU JRDO RI DJULFXOWXUH LQ WKH V KDV EHHQ WR UHGXFH LWV UROH LQ HQYLURQPHQWDO GHJUDGDWLRQ E\ HPSOR\LQJ QXWULHQW PDQDJHPHQW DQG ZDVWH FRQWURO SUDFWLFHV 3UHYLRXV 6WXGLHV RI (FRORJLFDO (FRQRPLFV RI &KHPLFDO &\FOHV (FRORJLFDO HFRQRPLFV VWXGLHV OLQNLQJ WKH ELRJHRFKHPLVWU\ RI D FKHPLFDO HOHPHQW WR LWV UROH LQ WKH KXPDQ HFRQRP\ DUH OLPLWHG 2GXP f LQGLFDWHG WKDW D PDWHULDO F\FOH FRQYHUJHV DV LW LV LQFRUSRUDWHG LQWR SURGXFWV PRYHV WR KLHUDUFKLFDO FHQWHUV GLYHUJHV DV LW LV UHOHDVHG E\ FRQVXPSWLRQ DQG GLVSHUVHV LQWR OHVV FRQFHQWUDWHG RSHQ VSDFH 7KLV LV FHUWDLQO\ WKH FDVH RI SKRVSKRUXV DW WKH LQWHUIDFH ZLWK WKH KXPDQ HFRQRP\ LQ WKH QRUWK 2NHHFKREHH EDVLQ ZKHUH SKRVSKRUXVFRQWDLQLQJ LQSXWV DUH FRQFHQWUDWHG LQWR DJULFXOWXUDO SURGXFWV WKDW DUH WUDQVSRUWHG WR SURFHVVLQJ IDFLOLWLHV DQG WKHQ UHGLVSHUVHG IRU VDOH DV SURFHVVHG JRRGV 2GXP LQ WKH VDPH DUWLFOH IXUWKHU UHPDUNHG WKDW D V\VWHPV YLHZ LV QHFHVVDU\ WR VHH WKH PDWHULDO F\FOHV RI WKH ELRVSKHUH DQG WKH FRXSOLQJ RI DOO WKH LPSRUWDQW SURFHVVHV DQG HQHUJ\ VRXUFHV GULYLQJ WKH FKHPLFDO F\FOHV 5HFHQWO\ 3ULWFKDUG f HYDOXDWHG WKH XVH RI D ZHWODQG V\VWHP IRU WUHDWLQJ OHDG SROOXWLRQ HPSOR\LQJ ERWK PDLQVWUHDP DQG HFRORJLFDO HFRQRPLF PHWKRGV +H IRXQG WKDW WKHUH ZDV D QHW EHQHILW LQ HPHUJ\ WHUPV YDOXHG DV UHVRXUFHV VDYHG DVVRFLDWHG ZLWK

PAGE 27

XVLQJ WKH ZHWODQG IRU WUHDWPHQW YHUVXV D PRUH FRQYHQWLRQDO FKHPLFDO SUHFLSLWDWLRQ PHWKRG 6HYHUDO DUWLFOHV KDYH UHFHQWO\ DSSHDUHG LQ WKH HFRORJLFDO HFRQRPLFV OLWHUDWXUH FRQFHUQLQJ QLWURJHQ PDQDJHPHQW $QGUHDVVRQ +XDQJ DQG 8UL DQG *UHQ f )RU WKH PRVW SDUW WKH DXWKRUV H[DPLQHG DOWHUQDWLYH SROLF\ PHFKDQLVPV WR UHGXFH WKH XVH RI QLWURJHQ IHUWLOL]HU )DYRUDEOH DOWHUQDWLYHV LQFOXGHG FURS URWDWLRQ ZHWODQG UHVWRUDWLRQ DQG PDUNHWDEOH QLWURJHQ XVH SHUPLWV ,Q WKH VDPH OLWHUDWXUH (ULFNVRQ f H[DPLQHG WKH UHODWLRQVKLS EHWZHHQ FDUERQ GLR[LGH HPLVVLRQV DQG DJULFXOWXUDO \LHOGV IURP D JOREDO FKHPLFDO F\FOLQJ SHUVSHFWLYH +H DUJXHG WKDW DQ\ EHQHILWV RI LQFUHDVHG &2 ZRXOG EH PRUH WKDQ RIIVHW E\ SUHGLFWHG FRQVHTXHQFHV RI FOLPDWH FKDQJH DQG R]RQH GHSOHWLRQ +XWFKLQVRQ f SURYLGHG DQ HDUO\ TXDQWLWDWLYH DVVHVVPHQW RI WKH SKRVSKRUXV F\FOH LQ KLV PRQRJUDSK RQ WKH %LRJHRFKHPLVWU\ RI 3KRVSKRUXV +H H[DPLQHG SKRVSKRUXV F\FOLQJ WKURXJK WKH ELRVSKHUH LQ SULPDU\ URFNV VRLOV WKH DWPRVSKHUH DQG WKH K\GURVSKHUH +H DWWULEXWHG WKH UHWXUQ RI SKRVSKRUXV IURP WKH RFHDQ WR WKH DFWLYLWLHV RI ELUGV DQG KXPDQV ZKR UHWULHYH SKRVSKRUXV E\ KDUYHVWLQJ ILVK IURP WKH VHD 8SZHOOLQJ RI QXWULHQWV RII WKH FRDVW RI 3HUX VWLPXODWHV SURGXFWLYLW\ WKURXJK WKH IRRG FKDLQ HQGLQJ ZLWK ELUGV UHGHSRVLWLQJ SKRVSKRUXV RQ ODQG LQ WKH IRUP RI JXDQR 2GXP f LQYHVWLJDWHG WKH ELRJHRFKHPLVWU\ RI GLVVROYHG SKRVSKRUXV LQ )ORULGD ZDWHUV +H RXWOLQHG PHWKRGV WR GHFUHDVH WKH SRWHQWLDO IHUWLOLW\ RI ZDWHUV E\ UHPRYLQJ SKRVSKRUXV LQFOXGLQJ ELRORJLFDO ILOWUDWLRQ DQG FKHPLFDO SUHFLSLWDWLRQ

PAGE 28

*LOOLODQG f H[DPLQHG WKH HIIHFWV RI PDQnV GHYHORSPHQW RQ )ORULGDfV SULPLWLYH SKRVSKRUXV F\FOH 6KH UHSRUWHG WKDW )ORULGD LV GUDLQLQJ LWV SKRVSKRUXV VXSSO\ WKURXJK PLQLQJ WLPHV IDVWHU WKDQ LW LV EHLQJ UHSODFHG E\ GLVVROXWLRQ RI URFN DQG UHSUHFLSLWDWLRQ 6KH FRQFOXGHG WKDW ZDWHU TXDOLW\ FRQWURO SURJUDPV VKRXOG EH EDVHG RQ WKH SHUFHQW HIIHFW RI D JLYHQ IORZ RQ WKH RYHUDOO FKHPLFDO F\FOH UDWKHU WKDQ VHWWLQJ HIIOXHQW VWDQGDUGV EDVHG RQ FRQFHQWUDWLRQV .DQJDV f VWXGLHG WKH LQWHUDFWLRQV RI KXPDQLW\ DQG QDWXUH LQ ODQGIRUPV DIIHFWHG E\ SKRVSKDWH VWULS PLQLQJ +H HVWLPDWHG WKH HPERGLHG HQHUJ\ LQ D VSRLO PRXQG DQG PRGHOHG WKHLU VXFFHVVLRQ +H UHFRPPHQGHG PDQDJHG VXFFHVVLRQ DV D PRUH HFRQRPLFDO DOWHUQDWLYH WR FRQYHQWLRQDO UHFODPDWLRQ .DQJDV DOVR PRGHOHG WKH SKRVSKDWH IHUWLOL]HU LQGXVWU\ LQ )ORULGD DQG FDOFXODWHG D KLJK QHW HQHUJ\ \LHOG UDWLR RI IRU SKRVSKDWH IHUWLOL]HU &KDUDFWHULVWLFV RI WKH 1RUWK 2NHHFKREHH %DVLQ 7KH QRUWK 2NHHFKREHH EDVLQ FRPSULVHV URXJKO\ PLOOLRQ DFUHV RI ODQG LQ YDULRXV XVHV LQ VRXWK FHQWUDO )ORULGD 7KLV DUHD LQFRUSRUDWHV GUDLQDJH VXEEDVLQV )LJXUH f ZLWKLQ IRXU ODUJHU GUDLQDJH UHJLRQV 7D\ORU &UHHN1XEELQ 6ORXJK /RZHU .LVVLPPHH 5LYHU ,QGLDQ 3UDLULH+DUQH\ 3RQG DQG )LVKHDWLQJ &UHHN 7DEOH OLVWV WKH VL]H RI HDFK EDVLQ DQG WKH GUDLQDJH UHJLRQ LQ ZKLFK HDFK LV ORFDWHG )RU WKH SXUSRVHV RI WKLV VWXG\ SK\VLFDO FKDUDFWHULVWLFV RI WKH DUHD DUH LPSRUWDQW LQ WHUPV RI KRZ WKH\ DIIHFW ODQG XVH DQG WKH IORZ RI SKRVSKRUXV WKURXJK WKH QRUWK 2NHHFKREHH EDVLQ 3K\VLFDO IHDWXUHV RI SDUWLFXODU LPSRUWDQFH DUH VRLOV K\GURORJ\ FOLPDWH SK\VLRJUDSK\ YHJHWDWLRQ DQG ODQG XVH

PAGE 29

)LJXUH /RFDWLRQ 0DS RI /DNH 2NHHFKREHH DQG ,WV 'UDLQDJH 6XEEDVLQV

PAGE 30

7DEOH 'UDLQDJH 6XEEDVLQV RI WKH 1RUWK 2NHHFKREHH %DVLQ %$6,1 1$0( $5($ DFUHV 5(*,21 6$ /RZHU .LVVLPPHH 5LYHU 6% /RZHU .LVVLPPHH 5LYHU 6& /RZHU .LVVLPPHH 5LYHU 6' /RZHU .LVVLPPHH 5LYHU 6( /RZHU .LVVLPPHH 5LYHU 6 /RZHU .LVVLPPHH 5LYHU 6& /RZHU .LVVLPPHH 5LYHU 6 7D\ORU &UHHN1XEELQ 6ORXJK /( ,QGLDQ 3UDLULH+DUQH\ 3RQG /: ,QGLDQ 3UDLULH+DUQH\ 3RQG /( ,QGLDQ 3UDLULH+DUQH\ 3RQG /: ,QGLDQ 3UDLULH+DUQH\ 3RQG /( ,QGLDQ 3UDLULH+DUQH\ 3RQG /: )LVKHDWLQJ &UHHN /$.( ,672.32*$ ,QGLDQ 3UDLULH+DUQH\ 3RQG & ,QGLDQ 3UDLULH+DUQH\ 3RQG & ,QGLDQ 3UDLULH+DUQH\ 3RQG &$ ,QGLDQ 3UDLULH+DUQH\ 3RQG ),6+($7,1* &5((. )LVKHDWLQJ &UHHN 1,&2'(086 6/28*+ )LVKHDWLQJ &UHHN / ,QGLDQ 3UDLULH+DUQH\ 3RQG / ,QGLDQ 3UDLULH+DUQH\ 3RQG 6 )LVKHDWLQJ &UHHN 6 7D\ORU &UHHN1XEELQ 6ORXJK 6 7D\ORU &UHHN1XEELQ 6ORXJK DFUH KHFWDUHV

PAGE 31

6RLOV DQG +\GURORJ\ 0RUH WKDQ SHUFHQW RI WKH QRUWK 2NHHFKREHH EDVLQ LV FRYHUHG E\ VDQG\ VRLOV RI YDU\LQJ WKLFNQHVV 7KH UHPDLQGHU RI WKH DUHD LV FRPSRVHG RI QHDUO\ OHYHO SRRUO\ GUDLQHG RUJDQLF VRLOV 8UEDQ DQG UHVLGHQWLDO DUHDV LQ WKH EDVLQ DUH XQGHUODLQ E\ VRLOV FODVVLILHG DV KDYLQJ VHYHUH WR YHU\ VHYHUH UHVWULFWLRQV IRU FRPPXQLW\ GHYHORSPHQW DQG IRU RSHUDWLRQ RI VHSWLF WDQNV DQG ODQGILOOV )XUWKHUPRUH H[WHQVLYH GUDLQDJH DQG K\GURORJLF FRQWURO PHFKDQLVPV DUH QHFHVVDU\ LQ RUGHU WR XVH RUJDQLF PXFNODQGV LQ WKH EDVLQ IRU LQWHQVLYH DJULFXOWXUDO SURGXFWLRQ 6XFK LQFRPSDWLELOLWLHV EHWZHHQ VRLO DQG K\GURORJLF FKDUDFWHULVWLFV DQG ODQG XVH PD\ KDYH FRQWULEXWHG WR ZDWHU TXDOLW\ GHJUDGDWLRQ LQ WKH EDVLQ 7KH G\QDPLFV RI SKRVSKRUXV WUDQVSRUW WKURXJK VRLOV ZHWODQGV DQG ZDWHUZD\V LQ WKH EDVLQ DUH FUXFLDO IDFWRUV LQ SUHGLFWLQJ WKH HIIHFWV RI SKRVSKRUXV LPSRUWV WR WKH QRUWK 2NHHFKREHH EDVLQ RQ ODNH ZDWHU TXDOLW\ (IIHFWV RI FKDQJHV LQ HFRQRPLF XVHV RI SKRVSKRUXV RQ QXWULHQW RXWIORZV WR WKH ODNH GHSHQG XSRQ SUHVHQW VWRUDJHV RI SKRVSKRUXV LQ VRLOV DQG ZHWODQGV DQG RQ WKH FKHPLVWU\ DQG WLPLQJ RI UHOHDVH PHFKDQLVPV &OLPDWH DQG 5DLQIDOO :LWK DQ DYHUDJH DQQXDO WHPSHUDWXUH RI GHJUHHV ) WKH VXEWURSLFDO FOLPDWH LQ WKH QRUWK 2NHHFKREHH EDVLQ KDV D PDMRU LQIOXHQFH RQ WKH VHDVRQDOLW\ RI SKRVSKRUXV XVH &URS VHOHFWLRQ DQG FXOWLYDWLRQ SUDFWLFHV ZKLFK DUH EDVHG RQ FOLPDWH DV ZHOO DV VRLO W\SH KDYH ODUJH LPSDFWV RQ SKRVSKRUXV IORZV LQ WKLV DJULFXOWXUDO UHJLRQ $QRWKHU

PAGE 32

VHDVRQDO LPSDFW RQ SKRVSKRUXV RI WKH UHJLRQ FRPHV IURP WRXULVWV ZKR LQFUHDVH SKRVSKRUXV IORZ LQ WKH IRUP RI VHZDJH 5DLQIDOO VHUYHV DV D GLUHFW LQSXW RI SKRVSKRUXV WR WKH ODNH SHUFHQW RI WKH WRWDO SKRVSKRUXV LQSXW 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW >6):0'@ f EXW LW DOVR KDV LQGLUHFW HIIHFWV DV DQ DJHQW RI HURVLRQ DQG SKRVSKRUXV WUDQVSRUW 7KH GLVWULEXWLRQ RI UDLQIDOO LQ WKH QRUWK 2NHHFKREHH EDVLQ YDULHV WHPSRUDOO\ DQG VSDWLDOO\ $YHUDJH DQQXDO UDLQIDOO LQ WKH EDVLQ LV DERXW LQFKHV EXW PRQWKO\ UDLQIDOO UDQJHV IURP WR LQFKHV GXULQJ WKH UDLQ\ VHDVRQ -XQH WKURXJK 6HSWHPEHU DQG WR LQFKHV GXULQJ WKH GU\ ZLQWHU PRQWKV 6XPPHU UDLQIDOO DQG VWRUP SDWWHUQV ZKLFK DFFRXQW IRU DERXW KDOI RI WKH WRWDO DQQXDO UDLQIDOO PD\ UHVXOW LQ QXWULHQWV EHLQJ IOXVKHG LQWR ZDWHUZD\V E\ GU\ODQG IORRGLQJ %DVLQ SK\VLRJUDSK\ FRQVLVWV PDLQO\ RI WZR JHQWO\ VORSLQJ SODLQV WKH 2VFHROD DQG WKH 2NHHFKREHH $ERXW WZRWKLUGV RI WKH VWXG\ DUHD KDV DQ HOHYDWLRQ RI IHHW RU OHVV 7KH %RPELQJ 5DQJH 5LGJH ORFDWHG LQ WKH QRUWKZHVW FRUQHU RI WKH /RZHU .LVVLPPHH %DVLQ LV WKH KLJKHVW SRLQW LQ WKH VWXG\ DUHD DW DQ HOHYDWLRQ RI DERXW IHHW 3K\VLRJUDSKLF IHDWXUHV DQG VRLOV RI WKH EDVLQ ZKLFK KDYH EHHQ VWURQJO\ LQIOXHQFHG E\ LWV JHRORJ\ LQ WXUQ GHWHUPLQH WKH VXLWDELOLW\ RI WKH DUHD IRU GLIIHUHQW W\SHV RI ODQG XVH /LPHVWRQH IRUPDWLRQV SULPDULO\ RI PDULQH RULJLQ DUH UHVSRQVLEOH IRU WKH GHYHORSPHQW RI DQ H[WHQVLYH JURXQGZDWHU V\VWHP LQ WKH UHJLRQ 7KH JURXQGZDWHU V\VWHP LV QRW SDUW RI WKH SUHVHQW VWXG\ DQG WKH LQIOXHQFH RI JURXQGZDWHU RQ SKRVSKRUXV IORZV LQ WKH EDVLQ LV XQFHUWDLQ +RZHYHU VXEVXUIDFH IORZ WKDW FXWV WKURXJK SKRVSKDWLF

PAGE 33

FOD\V FRXOG SRWHQWLDOO\ GLVVROYH DQG WUDQVSRUW SKRVSKRUXV DQG HYHQWXDOO\ EHFRPH SDUW RI WKH VXUIDFH ZDWHU V\VWHP 3KRVSKRUXV PD\ DOVR EH OHDFKHG WKURXJK VDQG\ VRLOV WR EHFRPH SDUW RI WKH VXUILFLDO DTXLIHU ZKLFK LV RIWHQ LQGLVWLQJXLVKDEOH IURP VXUIDFH IORZ LQ WKH UHJLRQ /DQG 8VH $JULFXOWXUH QRUWK RI /DNH 2NHHFKREHH FRQVLVWV SULPDULO\ RI GDLU\ DQG EHHI FRZ FDOI RSHUDWLRQV ZLWK OLPLWHG DFUHDJH RI FLWUXV DQG YHJHWDEOH SURGXFWLRQ 7DEOH f 7ZHQW\ILYH GDLULHV ZLWK D FRPELQHG KHUG RI DERXW PLONLQJ FRZV SURYLGH IUHVK PLON IRU XUEDQ VRXWK )ORULGD 5RXJKO\ KDOI RI WKH PLOOLRQ EDVLQ DFUHV LV FRZ SDVWXUH ZLWK YDU\LQJ GHJUHHV RI LPSURYHPHQW $ERXW SHUFHQW RI WKH EDVLQ LV XQGHYHORSHG XSODQG ZHWODQG DQG QDWLYH UDQJH VHH )RQ\R HW DO IRU PRUH GHWDLO RQ ODQG XVH LQ WKH EDVLQf 8UEDQ ODQG XVH LQ WKH QRUWK 2NHHFKREHH EDVLQ LV OLPLWHG WR DQ HVWLPDWHG LQKDELWDQWV LQ WKH &LW\ RI 2NHHFKREHH DQG VXUURXQGLQJ WRZQV LQFOXGLQJ VHDVRQDO SRSXODWLRQ LQFUHDVHV GXH WR WRXULVP 0RVW RI WKH WUDQVLHQW SRSXODWLRQ LV GLVWULEXWHG DURXQG WKH SHULPHWHU RI /DNH 2NHHFKREHH LQ VHDVRQDOO\ RFFXSLHG FDPSV DQG SDUNV +LVWRULFDO WUHQGV LQ ODQG XVH DUH LPSRUWDQW VLQFH WKH\ PD\ LQGLFDWH ORFDWLRQV ZKHUH SKRVSKRUXV KDV EHHQ VWRUHG RU EXLOW XS LQ VRLOV )XWXUH FKDQJHV LQ SKRVSKRUXV XVDJH LQ WKH 2NHHFKREHH EDVLQ GHSHQG SULPDULO\ XSRQ FKDQJHV LQ SRSXODWLRQ ODQG XVH DQG SURGXFWLRQ SUDFWLFHV RQ WKH SURPXOJDWLRQ RI ODZV JRYHUQLQJ WKH XVH RI SKRVSKRUXV DQG RQ WKH UHJXODWRU\ HQYLURQPHQW

PAGE 34

7DEOH /DQG 8VH &KDUDFWHULVWLFV RI WKH 1RUWK 2NHHFKREHH %DVLQ /$1' 86( $5($ DFUHVf $JULFXOWXUDO &LWUXV &RPPHUFLDO )RUHVWU\ 'DLUY f§ FRZV PLONHGf %DUQ +D\ILHOG +LJK ,QWHQVLW\ $UHD 0LON +HUG 3DVWXUH 2WKHU 3DVWXUH 6ROLGV 6SUHDGLQJ $UHD 6SUD\ILHOG :DVWH 6WRUDJH 3RQG ,PSURYHG 3DVWXUH 2UQDPHQWDOV 6RG 6XJDUFDQH 7UXFN &URSV 8QLPSURYHG 3DVWXUH 2WKHU $JULFXOWXUH 8UEDQ *ROI &RXUVH 5HVLGHQWLDO SRSXODWLRQ f :DVWH 7UHDWPHQW 0*'f 2WKHU 8UEDQ 8QGHYHORSHG %DUUHQ /DQG )RUHVWHG 8SODQG 5DQJHODQG :HWODQGV 727$/ PLOOLRQ $FUHDJH URXQGHG RII WR WZR VLJQLILFDQW ILJXUHV DFUH KHFWDUHV

PAGE 35

+LVWRU\ RI %DVLQ 'HYHORSPHQW 2QH KXQGUHG \HDUV DJR VRXWK )ORULGD IUHVK ZDWHU FLUFXODWHG LQ D VORZ UDLQ GULYHQ F\FOH RI PHDQGHULQJ ULYHUV DQG VWUHDPV VKDOORZ ODNHV DQG ZHWODQGV 6WDUWLQJ DW D FKDLQ RI ODNHV VRXWK RI 2UODQGR ZDWHU IORZHG LQWR WKH .LVVLPPHH 5LYHU ZKLFK PHDQGHUHG PLOHV VRXWK LQWR /DNH 2NHHFKREHH 'XULQJ ZHW VHDVRQV ZDWHU VSLOOHG RYHU WKH ODNHnV ORZ VRXWKHUQ ULP DQG IORZHG VRXWK DFURVV WKH (YHUJODGHV VDZ JUDVV LQ D PLOH ZLGH VKHHW PRYLQJ DW D UDWH RI DERXW IHHW SHU GD\ WRZDUG )ORULGD %D\ %RJJHVV HW DO f $ORQJ WKH /DNHnV QRUWKHUQ VKRUHOLQH DSSHDUHG GHQVH VWDQGV RI ZDWHU RDN F\SUHVV SRSDVK DQG UXEEHU WUHHV )RU VRPH PLOHV QRUWK RI WKH ODNH WKH ODQGVFDSH ZDV WH[WXUHG E\ SUDLULH ODQGV DQG SLQH IRUHVWV 1XPHURXV VPDOO SRROV ILOOHG ZLWK VDZ JUDVV DQG PDLGHQ FDQH GRWWHG WKH SUDLULHV 0LWFKXP f 0RGLILFDWLRQ RI WKH QDWXUDO IUHVKZDWHU V\VWHP LQ VRXWK )ORULGD EHJDQ LQ WKH ODWH V DV LQYHVWRUV EHJDQ GHYHORSLQJ WKH DUHD 2YHU WKH QH[W FHQWXU\ D VHULHV RI GHYHORSPHQW GUDLQDJH IORRG SURWHFWLRQ DQG ZDWHU VXSSO\ SURJUDPV UHVXOWHG LQ WKH FRQVWUXFWLRQ RI PLOHV RI FDQDOV DQG OHYHHV 7KH GLWFKLQJ FDXVHG R[LGDWLRQ RI RUJDQLF PDWWHU DQG UHOHDVH RI SKRVSKRUXV IURP SHDW\ PDWHULDO DQG IURP DFLGLF VROXWLRQ RI OLPHVWRQH IUDJPHQWV 7KH PRVW LPSRUWDQW SURMHFW ZDV WKH PDVVLYH IHGHUDOO\ IXQGHG IORRG FRQWURO DQG ZDWHU VXSSO\ SURMHFW NQRZQ DV WKH &HQWUDO DQG 6RXWKHUQ )ORULGD )ORRG &RQWURO 3URMHFW DXWKRUL]HG E\ &RQJUHVV LQ 0DMRU PRGLILFDWLRQV LQFOXGHG f WKH FKDQQHOL]DWLRQ RI WKH .LVVLPPHH 5LYHU LQWR D PLOH ORQJ IRRW ZLGH IRRW GHHS FDQDO NQRZQ

PAGE 36

DV & f FRQVWUXFWLRQ RI WKH IRRW KLJK +HUEHUW +RRYHU 'LNH HQFLUFOLQJ /DNH 2NHHFKREHH DQG SURYLGLQJ FRQWURO RYHU DOO LQIORZV WR DQG RXWIORZV IURP WKH ODNH DQG f FUHDWLRQ RI WKUHH ZDWHU FRQVHUYDWLRQ DUHDV VRXWK RI /DNH 2NHHFKREHH WR VWRUH H[FHVV IORRG ZDWHUV DQG WR SURYLGH VXSSOHPHQWDO ZDWHU VXSSO\ $JULFXOWXUH ILUVW EHJDQ WR GHYHORS DURXQG /DNH 2NHHFKREHH LQ WKH V 2ULJLQDOO\ DJULFXOWXUH ZDV OLPLWHG E\ SRRU GUDLQDJH DQG SRRU VRLOV (VWDEOLVKPHQW RI WKH IHGHUDO VXJDU SURJUDP LQ WKH V OHG WR D GUDPDWLF LQFUHDVH LQ VXJDUFDQH DQG ZLQWHU YHJHWDEOH DFUHDJH SDUWLFXODUO\ WR WKH VRXWK RI /DNH 2NHHFKREHH 'DLU\LQJ FXUUHQWO\ WKH PRVW LPSRUWDQW DJULFXOWXUDO LQGXVWU\ LQ WKH QRUWK 2NHHFKREHH EDVLQ ILUVW EHJDQ WR GHYHORS LQ 2NHHFKREHH &RXQW\ LQ WKH HDUO\ V 2ULJLQDOO\ WKH VRXWK )ORULGD GDLU\ LQGXVWU\ KDG EHHQ FRQFHQWUDWHG DURXQG 0LDPL EXW XUEDQ GHYHORSPHQW DIWHU :RUOG :DU ,, IRUFHG GDLU\PHQ WR PRYH QRUWK &RQFHUQV RYHU ZDWHU TXDOLW\ LQ WKH QRUWK 2NHHFKREHH EDVLQ KDYH VSDZQHG WKUHH VHSDUDWH RQJRLQJ PDQDJHPHQW HIIRUWV f WKH .LVVLPPHH 5LYHU 5HVWRUDWLRQ 3URMHFW KHDGHG E\ WKH 86 $UP\ &RUSV RI (QJLQHHUV ZKLFK DLPV WR UHVWRUH WKH QDWXUDO PHDQGHULQJ IORZ RI WKH 5LYHU WKURXJK R[ERZV DQG ZHWODQGV /RIWLQ HW DO f f WKH /DNH 2NHHFKREHH 6XUIDFH :DWHU ,PSURYHPHQW DQG 0DQDJHPHQW 6:,0f 3ODQ D MRLQW HIIRUW RI WKH )ORULGD 'HSDUWPHQW RI (QYLURQPHQWDO 3URWHFWLRQ IRUPHUO\ WKH 'HSDUWPHQW RI (QYLURQPHQWDO 5HJXODWLRQf DQG WKH 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW ZKLFK ZDV GHVLJQHG WR FRQWURO EDVLQ QXWULHQW RXWIORZV WR WKH ODNH LQ RUGHU WR SURWHFW LWV YLWDO ZDWHU VXSSO\ UHFUHDWLRQDO DQG HFRORJLFDO EHQHILWV 6):0' f DQG f WKH 'DLU\ 5XOH ZKLFK ZDV SURPXOJDWHG E\ WKH )ORULGD 'HSDUWPHQW RI

PAGE 37

(QYLURQPHQWDO 3URWHFWLRQ LQ UHTXLULQJ GDLULHV WR LPSOHPHQW VSHFLILF WHFKQRORJLHV WR FRQWURO WKHLU GLVFKDUJH RI QXWULHQW ULFK GUDLQDJH ZDWHUV $OO RWKHU DJULFXOWXUDO ODQG XVHV DUH FXUUHQWO\ VXEMHFW WR SHUPLWWLQJ DQG HQIRUFHPHQW XQGHU WKH 6:,0 3ODQ WR PHHW WDUJHW SKRVSKRUXV GLVFKDUJH VWDQGDUGV 5HODWHG 6WXGLHV RI WKH 1RUWK 2NHHFKREHH %DVLQ 7KHUH LV D YDVW NQRZOHGJH RI WKH /DNH 2NHHFKREHH HFRV\VWHP DV D UHVXOW RI PRUH WKDQ WZR GHFDGHV RI UHVHDUFK 2I SDUWLFXODU UHOHYDQFH WR WKLV GLVVHUWDWLRQ DUH WKRVH VWXGLHV DGGUHVVLQJ WKH ODNHnV QRUWKHUQ ZDWHUVKHG DQG LWV LPSDFW RQ ZDWHU TXDOLW\ ,Q WKH V WKH )ORULGD 'HSDUWPHQW RI 1DWXUDO 5HVRXUFHV LQ FRQMXQFWLRQ ZLWK WKH 86 'HSDUWPHQW RI $JULFXOWXUH FRQGXFWHG D VXUYH\ RI WKH ODQG DQG ZDWHU UHVRXUFHV RI WKH .LVVLPPHH2NHHFKREHH(YHUJODGHV V\VWHP 86'$ f 7KH LQIRUPDWLRQ VHUYHG DV D EDVLV IRU UHVRXUFH PDQDJHPHQW SODQQLQJ IRU ZDWHUVKHG SURWHFWLRQ IORRG FRQWURO DQG SURWHFWLRQ DQG ZDWHU TXDOLW\ FRQWURO $URXQG WKH VDPH SHULRG 7XDQ f VWXGLHG WKH K\GURORJLFHFRQRPLF OLQNDJHV LQ WKH VDPH UHJLRQ ZKLOH %DOGZLQ f ZDV VXUYH\LQJ SUDFWLFHV WR UHGXFH QRQSRLQW SROOXWLRQ IURP DJULFXOWXUDO ODQGV IRU WKH )ORULGD 'HSDUWPHQW RI 3ROOXWLRQ &RQWURO ,Q WKH )ORULGD OHJLVODWXUH IXQGHG WKH 6SHFLDO 3URMHFW WR 3UHYHQW (XWURSKLFDWLRQ RI /DNH 2NHHFKREHH 7KH WKUHH PDLQ REMHFWLYHV RI WKLV SURMHFW ZHUH WR XQGHUVWDQG DQG TXDQWLI\ WKH SURFHVV RI HXWURSKLFDWLRQ LQ /DNH 2NHHFKREHH WR XQGHUVWDQG TXDQWLWDWLYHO\ WKH LQSXWV WR /DNH 2NHHFKREHH IURP GUDLQDJH EDVLQV WKDW DUH UHODWHG WR HXWURSKLFDWLRQ DQG ZDWHU TXDOLW\ PDQDJHPHQW DQG WR XQGHUVWDQG TXDQWLWDWLYHO\ KRZ DOWHUQDWLYH PDQDJHPHQW VWUDWHJLHV IRU ZDWHU TXDOLW\ ZRXOG DIIHFW

PAGE 38

GRZQVWUHDP HFRV\VWHP FRPSRQHQWV )ORULGD 'HSDUWPHQW RI $GPLQLVWUDWLRQ f 0DMRU UHFRPPHQGDWLRQV RI WKH SURMHFW ZHUH WR UHWDLQ UDLQ ZDWHU XSVWUHDP WKURXJK VWRUDJH LQ ZHWODQGV WR UHIORRG SXEOLFO\ RZQHG ZHWODQGV DQG WR LPSURYH IDUPLQJ DQG UDQFKLQJ WHFKQLTXHV $V SDUW RI WKH 6SHFLDO 3URMHFW V\VWHPV PRGHOV ZHUH GHYHORSHG WR VKHG OLJKW RQ IDFWRUV DIIHFWLQJ /DNH 2NHHFKREHHnV ZDWHU TXDOLW\ 2GXP DQG 1RUGOLH f $ UHJLRQDO PRGHO ZDV GHYHORSHG DQG PDQDJHPHQW DOWHUQDWLYHV ZHUH SURSRVHG E\ )RQWDLQH DQG %URZQ LQFOXGLQJ UHHVWDEOLVKPHQW RI WKH .LVVLPPHH 5LYHU IORRGSODLQ RQVLWH VWRUDJH DQG UHF\FOH RI H[FHVV DJULFXOWXUDO ZDWHU DQG HOHYDWLRQ RI VWDJH OHYHO LQ /DNH 2NHHFKREHH *XWLHUUH] f FRQGXFWHG HQHUJ\ DQDO\VHV RI SDVWXUH V\VWHPV LQ WKH /DNH 2NHHFKREHH ZDWHUVKHG 6LPXODWLRQ UHVXOWV LQGLFDWHG WKDW LPSURYHG SDVWXUH RSHUDWLRQV FRQWULEXWHG KHDY\ ORDGV RI QXWULHQWV WR DGMDFHQW ZDWHUZD\V DQG DUH YXOQHUDEOH WR FRQGLWLRQV RI IHUWLOL]HU VKRUWDJH ,Q WKH V %RWWFKHU HW DO f GHYHORSHG D PRGHO WR DVVHVV WKH LPSDFW RI DJULFXOWXUDO SUDFWLFHV RQ ZDWHU TXDOLW\ DQG TXDQWLW\ LQ WKH 7D\ORU &UHHN1XEELQ 6ORXJK 6f VXEEDVLQ 7KH\ XVHG WKH &5($06:7 PRGHO WR SUHGLFW QXWULHQW UXQRII DQG GHYHORSHG D EDVLQ GHOLYHU\ PRGHO WR SUHGLFW QXWULHQW RXWIORZ ZLWK DOWHUQDWLYH PDQDJHPHQW SUDFWLFHV )ROORZLQJ WKLV HIIRUW WKH 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW IXQGHG UHVHDUFK RQ WKH %LRJHRFKHPLFDO %HKDYLRU DQG 7UDQVSRUW RI 3KRVSKRUXV LQ WKH /DNH 2NHHFKREHH %DVLQ &DPSEHOO HW DO )RQ\R HW DO 5HGG\ HW DO f 7KH PDLQ JRDOV RI WKLV UHVHDUFK ZHUH WR GHWHUPLQH ORQJ DQG VKRUWWHUP FDSDFLWLHV RI

PAGE 39

WKH VRLO WR UHWDLQ SKRVSKRUXV WR GHWHUPLQH KRZ SKRVSKRUXV PRYHV WKURXJK WKH VRLO IURP WKH VLWH RI GHSRVLW DQG WR GHYHORS DQ LQYHQWRU\ RI DOO SKRVSKRUXV VRXUFHV WR WKH ODNH EDVLQ 7KLV FRQWUDFW ZDV DPHQGHG WR GHWHUPLQH WKH DYDLODELOLW\ DQG FRVW HIIHFWLYHQHVV RI PDQDJHPHQW RSWLRQV WR UHGXFH SKRVSKRUXV ORDGV WR /DNH 2NHHFKREHH DQG WR GHYHORS DQ LQWHJUDWHG GHFLVLRQ VXSSRUW V\VWHP IRU HYDOXDWLQJ DOWHUQDWLYH FRPELQDWLRQV RI SKRVSKRUXV FRQWURO SUDFWLFHV WR DFKLHYH SKRVSKRUXV UHGXFWLRQ JRDOV )RQ\R HW DO Df 7KLV GLVVHUWDWLRQ UHVHDUFK LV D E\SURGXFW RI WKH FRQWUDFW DPHQGPHQW 3KRVSKRUXV 0DQDJHPHQW $OWHUQDWLYHV $OWHUQDWLYH ZD\V WR PDQDJH SKRVSKRUXV LQFOXGH DQ DUUD\ RI RQVLWH SK\VLFDO FKDQJHV LQ SURGXFWLRQ SUDFWLFHV RQVLWH WUHDWPHQW DOWHUQDWLYHV DQG UHJLRQDO WUHDWPHQW RSWLRQV &RPELQDWLRQV RI DOWHUQDWLYHV RU VFHQDULRV PD\ EH XVHG LQ D FRRUGLQDWHG PDQQHU IRU EDVLQZLGH PDQDJHPHQW 3RUFHOOD DQG %LVKRS f 7R EH WHFKQLFDOO\ HIIHFWLYH SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV PXVW SK\VLFDOO\ FKDQJH SKRVSKRUXV IORZV WKURXJK DJULFXOWXUDO DQG RWKHU V\VWHPV E\ HLWKHU f UHGXFLQJ SKRVSKRUXV PDWHULDO LPSRUWVVRXUFHV f LQFUHDVLQJ RQVLWH VWRUDJHWUHDWPHQW f HQKDQFLQJ SKRVSKRUXV SURGXFW H[SRUWV RU f LQFUHDVLQJ RIIVLWH VWRUDJHWUHDWPHQW )LJXUH LOOXVWUDWHV WKHVH RSWLRQV

PAGE 40

)LJXUH 3DWKZD\V $PHQDEOH WR 3KRVSKRUXV 0DQDJHPHQW WR FU

PAGE 41

6RXUFH 5HGXFWLRQ 3KRVSKRUXV IORZV WKURXJK D SURGXFWLRQ V\VWHP PD\ EH DOWHUHG E\ DGMXVWLQJ WKH DPRXQW RI SKRVSKRUXVFRQWDLQLQJ PDWHULDOV WKDW DUH LPSRUWHG WR WKH V\VWHP IURP RXWVLGH WKH V\VWHP ERXQGDULHV 6RXUFH UHGXFWLRQ FDQ EH DFKLHYHG YLD VHYHUDO PHFKDQLVPV LQFOXGLQJ f LQSXW VXEVWLWXWLRQ f LQFUHDVHG WHFKQLFDO HIILFLHQF\ f WHFKQRORJLFDO FKDQJH f RXWSXW VXEVWLWXWLRQ f UHGXFHG SURGXFWLRQ OHYHOV DQG f UHF\FOLQJ ,QSXW VXEVWLWXWLRQ HQWDLOV VXEVWLWXWLQJ ORZ FRQFHQWUDWLRQ LQSXWV IRU KLJKHU FRQFHQWUDWLRQ LQSXWV ([DPSOHV RI LQSXW VXEVWLWXWLRQ LQFOXGH VXEVWLWXWLQJ IHHG UDWLRQ LQJUHGLHQWV ZLWK KLJK SKRVSKRUXV FRQFHQWUDWLRQV ZLWK ORZHU SKRVSKRUXV FRQFHQWUDWLRQ LQJUHGLHQWV ZKLOH PDLQWDLQLQJ WKH VDPH QXWULWLYH YDOXH DQG VXEVWLWXWLQJ GHWHUJHQWV ZLWKRXW SKRVSKRUXV IRU SKRVSKRUXVFRQWDLQLQJ GHWHUJHQWV ,QFUHDVHG WHFKQLFDO HIILFLHQF\ YLD EHWWHU PDQDJHPHQW RI H[LVWLQJ WHFKQRORJ\ PD\ LQFUHDVH DJULFXOWXUDO RXWSXW SHU XQLW RI SKRVSKRUXV LQSXW )RU H[DPSOH VRLO WHVWLQJ PD\ UHGXFH IHUWLOL]HU UHTXLUHG WR SURGXFH D WDUJHW \LHOG 5HGXFWLRQ LQ WKH SKRVSKRUXV FRQFHQWUDWLRQ RI GDLU\ IHHG UDWLRQV DV DQ RXWFRPH RI UHVHDUFK LV DQRWKHU H[DPSOH 8QGHU WHFKQRORJLFDO FKDQJH RQ WKH RWKHU KDQG D PRUH HIILFLHQW SURGXFWLRQ WHFKQRORJ\ LV DGRSWHG )RU H[DPSOH DOWHUQDWLYH IHUWLOL]HU DSSOLFDWLRQ PHWKRGV HJ EDQGLQJ LQVWHDG RI EURDGFDVWLQJf PD\ EH DGRSWHG 6RXUFHV FDQ EH UHGXFHG E\ FKDQJLQJ WR SURFHVVHV WKDW UHTXLUH OHVV SKRVSKRUXV )RU H[DPSOH SURGXFWLRQ RI FHUWDLQ JRRGV PD\ EH GLVFRQWLQXHG HJ GDLU\ HDVHPHQWf $OWHUQDWLYHO\ PRUH EHQLJQ FURSV LH FURSV ZLWK ORZHU SKRVSKRUXV IORZ FRHIILFLHQWVf PD\ EH VXEVWLWXWHG IRU SKRVSKRUXV LQWHQVLYH FURSV HJ VRG LQVWHDG RI YHJHWDEOHVf

PAGE 42

+RZHYHU SRWHQWLDO WUDGHRIIV H[LVW 3KRVSKRUXV PD\ EH UHGXFHG DW WKH H[SHQVH RI LQFUHDVLQJ WKH XVH RI RWKHU DJULFXOWXUDO FKHPLFDOV $GGLWLRQDOO\ DQ LQFUHDVHG VXSSO\ RI VXEVWLWXWH JRRGV PD\ QRW EH HFRQRPLF 5HF\FOLQJ LV DQRWKHU IRUP RI VRXUFH UHGXFWLRQ ZKHUH SKRVSKRUXVFRQWDLQLQJ PDWHULDOV RULJLQDWLQJ ZLWKLQ D SURGXFWLRQ V\VWHP DUH VXEVWLWXWHG IRU SKRVSKRUXV FRQWDLQLQJ LPSRUWV HJ QXWULHQWV LQ OLYHVWRFN PDQXUH VXEVWLWXWHG IRU FRPPHUFLDO IHUWLOL]HU LPSRUWV RU SXUFKDVHG IHHG UDWLRQVf 2QVLWH 7UHDWPHQW6WRUDJH $QRWKHU ZD\ WR UHGXFH WKH RXWIORZ RI SKRVSKRUXV LV WR LQFUHDVH RQVLWH VWRUDJH RI SKRVSKRUXV 2QVLWH VWRUDJH FDQ EH LQFUHDVHG E\ f IDFLOLWDWLQJ QDWXUDO FKHPLFDO ERQGLQJ RI SKRVSKRUXV WR VRLO SDUWLFOHV HJ XVH RI OLPHf f LQFUHDVLQJ WKH VSDWLDO GLVWULEXWLRQ RI SKRVSKRUXV HJ JUD]LQJ KHUG PDQDJHPHQWf f LQFUHDVLQJ WKH WHPSRUDO GLVWULEXWLRQ RI SKRVSKRUXV DSSOLFDWLRQV HJ VSOLW IHUWLOL]HU DSSOLFDWLRQVf f UHGXFLQJ ZDWHU IORZV DQG WKXV SKRVSKRUXV PRELOLW\ HJ LUULJDWLRQ PDQDJHPHQWf f GHWHQWLRQUHWHQWLRQ RI UXQRII ZLWK DVVRFLDWHG DVVLPLODWLRQ UHF\FOH RU WUHDWPHQW HJ LPSRXQGPHQWV RU ZHWODQG ILOWHUVf RU f FRQVWUXFWLQJ D FKHPLFDO RU ELRORJLFDO WUHDWPHQW SODQW ([SRUW (QKDQFHPHQW $ WKLUG WKRXJK OHVV LPSRUWDQW PHWKRG WR LPSDFW WKH IORZ RI SKRVSKRUXV LV WR HQKDQFH WKH H[SRUW RI SKRVSKRUXVFRQWDLQLQJ SURGXFWV 7R EH HIIHFWLYH WKH LQFUHDVHG H[SRUW KDV WR H[FHHG DQ\ DVVRFLDWHG LQFUHDVH LQ LPSRUWV RI SKRVSKRUXV ,QFUHDVHV LQ QHW H[SRUWV FDQ EH DFKLHYHG LQ VHYHUDO ZD\V f LQFUHDVHG SURGXFWLRQ RI QHW SKRVSKRUXV

PAGE 43

H[SRUWLQJ FURSV HJ VRGf f WUDQVIRUPDWLRQ RI E\SURGXFWV LQWR VDOHDEOH SKRVSKRUXV FRQWDLQLQJ JRRGV IRU H[SRUW IURP WKH ZDWHUVKHG HJ FRPSRVWHG GDLU\ PDQXUHf DQG f GLVSHUVDO RI SKRVSKRUXVFRQWDLQLQJ E\SURGXFWV RXWVLGH WKH ZDWHUVKHG HJ VOXGJH KDXOLQJf 2IIVLWH 7UHDWPHQW6WRUDJH )LQDOO\ SKRVSKRUXV RXWIORZ FDQ EH UHGXFHG E\ LQFUHDVLQJ RIIVLWH VWRUDJH LQWHUFHSWLQJ UXQRII EHIRUH LW UHDFKHV /DNH 2NHHFKREHH 2IIVLWH VWRUDJH FDQ EH DFKLHYHG E\ f GHWHQWLRQUHWHQWLRQ RI UXQRII ZLWK DVVRFLDWHG DVVLPLODWLRQ UHF\FOH RU WUHDWPHQW HJ ZHWODQG ILOWHUVf DQG f DTXLIHU VWRUDJH DQG UHFRYHU\ 2WKHU RSWLRQV LQFOXGH FKHPLFDO RU ELRORJLFDO WUHDWPHQW DW FHQWUDO FROOHFWLRQ SRLQWV DQG GLYHUVLRQ RI UXQRII RXW RI WKH ZDWHUVKHG 2IIVLWH WUHDWPHQW DQG VWRUDJH RSWLRQV DUH UHIHUUHG WR LQ WKLV VWXG\ DV EDVLQ VFDOH DOWHUQDWLYHV 'HVFULSWLRQ RI 6FHQDULRV 6FHQDULR HYDOXDWLRQV DUH OLNH FRQWUROOHG H[SHULPHQWV VKRZLQJ WKH FRQVHTXHQFHV RI VSHFLILF FKDQJHV ZKLOH NHHSLQJ RWKHU FRQGLWLRQV FRQVWDQW )LYH SKRVSKRUXV PDQDJHPHQW VFHQDULRV ZHUH H[DPLQHG LQ WKLV VWXG\ EDVH FDVH SKRVSKRUXV PDQDJHPHQW PD[LPXP SKRVSKRUXV XVH SUHGHYHORSPHQW GLVSHUVHG SKRVSKRUXV PDQDJHPHQW DQG FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 7KH EDVH FDVH VFHQDULR UHSUHVHQWV ODQG XVH DQG PDQDJHPHQW SUDFWLFHV LQ WKH QRUWK 2NHHFKREHH EDVLQ LQ (DFK XQLTXH SUDFWLFH LV VXPPDUL]HG E\ ODQG XVH LQ 7DEOH ,W ZDV DVVXPHG WKDW QRQSRLQW VRXUFH ODQG XVHV VXFK DV EHHI FDWWOH SDVWXUH

PAGE 44

7DEOH 0DQDJHPHQW 3UDFWLFHV IRU WKH %DVH &DVH 6FHQDULR &RQGLWLRQVf /$1' 86( 0$1$*(0(17 35$&7,&( ,PSURYHG SDVWXUH OEV 3DF\U IHUWLOL]HU GU\ VHDVRQ DSSOLFDWLRQ QR IHQFLQJ DFUHVFRZ 8QLPSURYHG SDVWXUHUDQJHODQG QR IHUWLOL]HU QR IHQFLQJ DFUHVFRZ &LWUXV OEV 3DF\U IHUWLOL]HU PDWXUH JURYHV GULS LUULJDWLRQ QR LPSRXQGPHQW 6XJDUFDQH OEV 3DF\U IHUWLOL]HU IRU SODQW FDQH ILUVW DQG VHFRQG UDWRRQ FURSV OEV 3DF\U DSSOLHG WR VZHHW FRUQ LQ URWDWLRQ 2UQDPHQWDOV OEV 3DF\U IHUWLOL]HU 7UXFN FURSV OEV 3DF\U IHUWLOL]HU &RPPHUFLDO IRUHVWU\ QR IHUWLOL]HU 6RG OEV 3DF\U IHUWLOL]HU 'DLU\ GDLULHV ORZ WHFKQRORJ\ HIIOXHQW WR VSUD\ILHOG VROLGV ODQGVSUHDG GDLU\ ORZ WHFKQRORJ\ SOXV HFRUHDFWRU ,, GDLULHV VHPLFRQILQHPHQW HIIOXHQW WR VSUD\ILHOG VROLGV ODQGVSUHDG GDLULHV VHPLFRQILQHPHQW HIIOXHQW WR VSUD\ILHOG VROLGV FRPSRVWHG DQG VROG GDLU\ FRQILQHPHQW HIIOXHQW WR VSUD\ILHOG VROLGV FRPSRVWHG DQG VROG ,EDF NJKD

PAGE 45

FLWUXV DQG RUQDPHQWDO SODQWV HPSOR\HG QRUPDO RU W\SLFDO PDQDJHPHQW SUDFWLFHV EDVLQZLGH DV GHWHUPLQHG IURP LQWHUYLHZV ZLWK ODQG RZQHUV DQG FRXQW\ H[WHQVLRQ DJHQWV LQ WKH DUHD UHIHU WR )RQ\R HW DO IRU GLVFXVVLRQf 2I WKH GDLULHV VWLOO RSHUDWLQJ LQ WKH EDVLQ QLQH ZHUH FODVVLILHG DV ORZ WHFKQRORJ\ RU WKH PLQLPXP UHTXLUHPHQW WR PHHW 'DLU\ 5XOH UHJXODWLRQV 7KHVH GHVLJQV FRQVLVW RI DQ HIIOXHQW FROOHFWLRQ V\VWHP ZLWK D ODJRRQ IRU VWRUDJH DQG D VSUD\ILHOG IRU GLVSHUVLRQ RI QXWULHQWV RQWR FURSODQG $ VFKHPDWLF GLDJUDP RI D GDLU\ ZDVWH PDQDJHPHQW V\VWHP LV JLYHQ LQ )LJXUH 6ROLGV DUH ODQGVSUHDG RQ GHVLJQDWHG SDVWXUH DUHDV 2QH RI WKHVH ORZ WHFK V\VWHPV DOVR KDV DQ HFRUHDFWRU ZKLFK LV D ELRFKHPLFDO WUHDWPHQW V\VWHP FRQVLVWLQJ RI DQ LQWHJUDWHG WKUHH VWHS SKRVSKRUXV UHPRYDO SURFHVV FKHPLFDO SUHFLSLWDWLRQ PLFURELDO FHOO XSWDNH DQG DTXDWLF SODQW XSWDNH LQ D FRQVWUXFWHG ZHWODQG )LIWHHQ GDLULHV ZHUH FODVVLILHG DV VHPLFRQILQHPHQW V\VWHPV 7KH\ GLIIHU IURP ORZ WHFKQRORJ\ LQ WKDW WKH PLONLQJ KHUG VSHQGV OHVV WLPH LQ WKH GHVLJQDWHG SDVWXUH DQG D JUHDWHU SURSRUWLRQ LQ WKH KLJK LQWHQVLW\ DUHD RU IHHG EDUQ 7KLV GHVLJQ DOORZV IRU JUHDWHU ZDVWH FRQWURO DQG SKRVSKRUXV UHFDSWXUH 2QH GDLU\ LQ WKH EDVLQ FRQVWUXFWHG D WRWDO FRQILQHPHQW V\VWHP LQ ZKLFK WKH PLONLQJ KHUG LV UHVWULFWHG WR WKH IHHG EDUQ RU PLONLQJ SDUORU )LYH GDLULHV VROG WKHLU VROLGV DV FRPSRVW UDWKHU WKDQ UHDSSO\LQJ WR SDVWXUH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR /DQG XVH DQG PDQDJHPHQW SUDFWLFHV LQ UHSUHVHQWHG FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH LQ WKH EDVLQ ,W ZDV DVVXPHG WKDW RQ DYHUDJH OEV RI SKRVSKRUXV

PAGE 46

0LONLQJ %DP +LJK ,QWHQVLW\ $UHD 6RXWK 3HULPHWHU 'LWFK :DVWHZDWHU 6WRUDJH ,PSRXQGPHQW 6HFRQG (IIOXHQW 6WRUDJH 3RQG +LJK ,QWHQVLW\ $UHD 1RUWK 3HULPHWHU 'LWFK )LJXUH 6FKHPDWLF 'LDJUDP RI D 'DLU\ :DVWH 0DQDJHPHQW 6\VWHP

PAGE 47

ZHUH DSSOLHG WR HDFK DFUH RI LPSURYHG EHHI SDVWXUH DQQXDOO\ DV FRPSDUHG WR OEV 3DF\U LQ 0RUH UHFHQW LQIRUPDWLRQ KDV VXJJHVWHG WKDW QRW DOO LPSURYHG DFUHDJH LV IHUWLOL]HG HDFK \HDU DQG WKH DFWXDO SHUFHQWDJH RI WKH WRWDO DFUHDJH PD\ YDU\ DV D IXQFWLRQ RI EHHI SULFHV )RU WKH SXUSRVHV DQG WKH PRGHOLQJ HIIRUWV RI WKLV VWXG\ KRZHYHU WKH DERYH DVVXPSWLRQV ZHUH PDLQWDLQHG )RUW\RQH GDLULHV ZLWK D FRPELQHG PLONLQJ KHUG RI FRZV ZHUH RSHUDWLQJ EHIRUH WKH 'DLU\ 5XOH OHJLVODWLRQ ZHQW LQWR HIIHFW 7KRXJK WKHUH ZHUH PRUH GDLULHV LQ WKH DYHUDJH PLON KHUG VL]H ZDV FRZV ZKLFK LQFUHDVHG SHUFHQW WR FRZV SHU GDLU\ LQ 7KH DYHUDJH SKRVSKRUXV FRQWHQW RI GDLU\ IHHGV ZDV SHUFHQW FRPSDUHG WR SHUFHQW LQ 3ULRU WR WKH 'DLU\ 5XOH PLON FRZV URDPHG IUHHO\ LQ SDVWXUHV DQG ZDWHUZD\V ZKHQ WKH\ ZHUH QRW LQ WKH EDUQ RU KLJK LQWHQVLW\ DUHD 0LON KHUG SDVWXUHV FRPSULVHG SHUFHQW RI WKH GDLU\ ODQG DUHD LQ FRPSDUHG WR SHUFHQW LQ 1R IRUPDO SKRVSKRUXV FRQWURO PHWKRGV ZHUH XVHG RWKHU WKDQ ODJRRQ VWRUDJH RI EDUQ ZDVK ZDWHU 3UHGHYHORSPHQW 6FHQDULR $W WKH WXUQ RI WKH FHQWXU\ WKH QRUWK 2NHHFKREHH ODQGVFDSH ZDV D PRVDLF RI XSODQG DQG ZHWODQG KDELWDWV ZLWK QDWXUDO GUDLQDJH DORQJ PDUVK\ VORXJKV +XPDQ VHWWOHPHQWV LQ WKH UHJLRQ ZHUH SUREDEO\ OLPLWHG WR VFDWWHUHG LQGLDQ WULEDO SRSXODWLRQV ZLWK PLQRU SKRVSKRUXVUHODWHG DFWLYLW\ $ PDS SURGXFHG IRU DQ HQYLURQPHQWDO VWXG\ RI VRXWKHUQ )ORULGD 2GXP DQG %URZQ f ZDV XVHG DV D WHPSODWH WR JHQHUDWH D SUHGHYHORSPHQW ODQG FRYHU PDS

PAGE 48

$V D URXJK HVWLPDWH WKH UHJLRQ FRPSULVHG DFUHV RI IRUHVWHG DQG QRQIRUHVWHG ZHWODQGV DFUHV RI JUDVV\ VFUXEODQG DQG DFUHV RI IRUHVWHG XSODQGV 6WHDG\ VWDWH FRQGLWLRQV ZHUH DVVXPHG LQ XSODQG V\VWHPV VR WKDW WKH FRQFHQWUDWLRQ RI SKRVSKRUXV UHOHDVHG LQ RUJDQLF PDWWHU ZDV HTXDO WR WKH UDLQIDOO SKRVSKRUXV FRQFHQWUDWLRQ WDNHQ XS E\ XSODQG YHJHWDWLRQ $Q DYHUDJH UDLQIDOO SKRVSKRUXV FRQFHQWUDWLRQ RI PJ 3 IURP 6FXOOH\ f ZDV DVVXPHG 7KH SUHGHYHORSPHQW FRQFHQWUDWLRQ PD\ DFWXDOO\ KDYH EHHQ HYHQ ORZHU VLQFH DWPRVSKHULF GHSRVLWLRQ E\ VXJDU PLOOV DQG SKRVSKDWH PLQLQJ RSHUDWLRQV LQ FHQWUDO )ORULGD PD\ EH FRQWULEXWLQJ WR FXUUHQW OHYHOV :HWODQGV ZHUH DVVXPHG WR EH SKRVSKRUXV VLQNV E\ DFFXPXODWLQJ RUJDQLF PDWWHU DQG EXLOGLQJ SHDW 7KXV WKH UXQRII SKRVSKRUXV FRQFHQWUDWLRQ IURP ZHWODQGV ZDV VHW HTXDO WR ]HUR 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULRV 7KH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR UHIHUV WR PD[LPXP SKRVSKRUXV FRQWURO VSDWLDOO\ DW HDFK VRXUFH 7ZR YDULDWLRQV RI WKLV VFHQDULR ZHUH WHVWHG E\ FKDQJLQJ WKH W\SH RI FRQWURO RQ GDLULHV ,Q ERWK FDVHV DOO LPSURYHG EHHI SDVWXUH ZDV IHQFHG WR NHHS FRZV RXW RI ZDWHUZD\V LPSRXQGPHQWV WR FDSWXUH UXQRII ZHUH DGGHG WR DOO FLWUXV DFUHDJH DQG ULFH ZDV JURZQ LQ URWDWLRQ ZLWK VXJDUFDQH %DVH FDVH FRQGLWLRQV ZHUH DVVXPHG RWKHUZLVH 8QGHU WKH ILUVW PD[LPXP FRQWURO GHVLJQ GHVLJQ f DOO GDLULHV ZHUH FRQYHUWHG WR FRQILQHPHQW V\VWHPV ZLWK VSUD\ILHOGV IRU HIIOXHQW WUHDWPHQW DQG VROLGV DSSOLHG WR SDVWXUH 7KLV DOWHUQDWLYH SURYLGHV WKH JUHDWHVW UHF\FOH RI SKRVSKRUXV RQVLWH IRU FURS SURGXFWLRQ 'HVLJQ DOVR LQFRUSRUDWHV FRQILQHPHQW RI WKH PLON KHUG EXW DGGV D

PAGE 49

ELRFKHPLFDO WUHDWPHQW V\VWHP HFRUHDFWRUf IRU HIIOXHQW WUHDWPHQW DQG VROLGV FRPSRVWLQJ IRU VDOH DQG H[SRUW RXW RI WKH EDVLQ &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR $V DQ DOWHUQDWLYH WR PDQDJLQJ SKRVSKRUXV RQVLWH SKRVSKRUXV OHDYLQJ D GUDLQDJH EDVLQ DV RXWIORZ PD\ EH WUHDWHG DV D SRLQW VRXUFH &KHPLFDO WUHDWPHQW ZDV DSSOLHG DW EDVLQ RXWOHWV IRU HDFK RI VL[ GUDLQDJH VXEEDVLQ ZKRVH DYHUDJH DQQXDO SKRVSKRUXV OHYHOV H[FHHGHG WRQV\U EDVHG RQ /DNH 2NHHFKREHH 6XUIDFH :DWHU ,PSURYHPHQW DQG 0DQDJHPHQW GDWD 6):0' f $OO RI WKH UHPDLQLQJ GDLULHV DUH ORFDWHG LQ WKUHH RI WKHVH VXEEDVLQV 6 6 DQG 6' WZR VXEEDVLQV DUH KLJKO\ FKDQQHOL]HG & DQG & DQG )LVKHDWLQJ &UHHN FRYHUV D ODUJH JHRJUDSKLFDO DUHD (DFK PLOOLRQ JDOORQV SHU GD\ 0*'f FKHPLFDO WUHDWPHQW SODQW XVHV DOXP WR SUHFLSLWDWH SKRVSKRUXV DW SHUFHQW UHPRYDO HIILFLHQF\ $Q DFUH LQODNH IORZ HTXDOL]DWLRQ EDVLQ LV UHTXLUHG IRU HDFK V\VWHP WR SURYLGH D VWHDG\ IORZ UDWH IRU WUHDWPHQW '(5 f 7KRXJK RULJLQDOO\ GHVLJQHG IRU WKH 6 EDVLQ RXWOHW WKH VDPH RSHUDWLQJ FRVWV DQG SDUDPHWHUV ZHUH DSSOLHG WR DOO EDVLQV DV D EDOOSDUN HVWLPDWH 'LVVHUWDWLRQ 3ODQ ,Q WKLV VWXG\ GDWD RQ WKH UHJLRQDO DJULFXOWXUDO V\VWHP RI WKH QRUWK 2NHHFKREHH EDVLQ ZHUH DVVHPEOHG DQG HQWHUHG LQWR D JHRJUDSKLF LQIRUPDWLRQ V\VWHP 7KHQ ELRJHRFKHPLFDO EXGJHWV IRU LQSXWV DQG RXWSXWV RI SKRVSKRUXV ZHUH SUHSDUHG XQGHU GLIIHUHQW PDQDJHPHQW VFHQDULRV DQG WKH UROH RI SKRVSKRUXV LQ WKH ELRJHRHFRQRPLF V\VWHP ZDV HYDOXDWHG ZLWK HPHUJ\ DQG HFRQRPLF DQDO\VHV 8VLQJ SKRVSKRUXV DV DQ

PAGE 50

H[DPSOH SULQFLSOHV ZHUH WHVWHG UHJDUGLQJ WKH UROH RI FULWLFDO OLPLWLQJ PDWHULDOV LQ WKH VHOIRUJDQL]DWLRQ RI ELRJHRHFRQRPLF V\VWHPV ,Q WKH QH[W FKDSWHU PHWKRGV DUH SUHVHQWHG IRU SHUIRUPLQJ SKRVSKRUXV EXGJHWLQJ HPHUJ\ DQDO\VLV HFRQRPLF HYDOXDWLRQ DQG VFHQDULR FRPSDULVRQV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV 3KRVSKRUXV EXGJHWLQJ HPHUJ\ HYDOXDWLRQ DQG HFRQRPLF DQDO\VLV UHVXOWV DUH JLYHQ LQ &KDSWHU ,Q &KDSWHU WKH UHODWLRQVKLS EHWZHHQ WKH SKRVSKRUXV F\FOH HPHUJ\ DQG HFRQRPLFV LV H[DPLQHG LQFOXGLQJ LPSOLFDWLRQV IRU SKRVSKRUXV PDQDJHPHQW *HQHUDO SULQFLSOHV RI ELRJHRHFRQRPLFV DUH SURSRVHG DQG VXJJHVWLRQV DUH RIIHUHG IRU IXWXUH UHODWHG UHVHDUFK

PAGE 51

&+$37(5 0(7+2'6 352&('85(6 $1' 6285&(6 2) '$7$ )LYH VHWV RI SURFHGXUHV ZHUH XVHG LQ WKLV UHJLRQDO VWXG\ RI SKRVSKRUXV f RUJDQL]DWLRQ RI GDWD ZLWK WKH $5&OQIR JHRJUDSKLF LQIRUPDWLRQ V\VWHP f SKRVSKRUXV EXGJHWLQJ f HPHUJ\ HYDOXDWLRQ f HFRQRPLF DQDO\VLV DQG f VFHQDULR FRPSDULVRQV 2UJDQL]DWLRQ RI 'DWD ZLWK WKH $5&OQIR *HRJUDSKLF ,QIRUPDWLRQ 6\VWHP 'DWD IRU WKH QRUWK 2NHHFKREHH EDVLQ ZHUH HQWHUHG LQWR WKH $5&OQIR JHRJUDSKLF LQIRUPDWLRQ V\VWHP IRU FRPSXWHU SURFHVVLQJ %HFDXVH DJJUHJDWLRQ LV UHTXLUHG WKH SURFHVV RI FDWHJRUL]LQJ GDWD VSDWLDOO\ LV D IRUP RI PRGHOLQJ $5&OQIR ZDV XVHG WR DXWRPDWH PDQLSXODWH DQDO\]H DQG GLVSOD\ JHRJUDSKLF DQG RWKHU GDWD RQ WKH UHJLRQDO V\VWHP 7KH GDWD XVHG LQ WKLV ZRUN ZHUH HQWHUHG LQ ILOHV WKDW ZHUH SDUW RI /2$'66 /DNH 2NHHFKREHH $JULFXOWXUDO 'HFLVLRQ 6XSSRUW 6\VWHPf D GHFLVLRQ VXSSRUW V\VWHP LQ $5&OQIR GHVLJQHG WR DVVLVW ZDWHU PDQDJHUV FRQFHUQHG ZLWK HXWURSKLFDWLRQ RI /DNH 2NHHFKREHH )RQ\R HW DO Df 6SDWLDO GDWD KDYH SK\VLFDO GLPHQVLRQV DQG JHRJUDSKLF ORFDWLRQ DQG DUH FRPSRVHG RI ODQGVFDSH IHDWXUHV ZKLFK PD\ EH UHSUHVHQWHG RQ D PDS 6SDWLDO GDWD ZHUH HQWHUHG LQ WKUHH IRUPV SRLQWV HJ FLWLHVf OLQHV HJ URDGVf DQG SRO\JRQV HJ ODQG DUHDf $ FRYHUDJH LV D GLJLWDO YHUVLRQ RI D PDS RU D KRPRJHQHRXV FODVV RI GDWD

PAGE 52

ZLWKLQ D PDS ZKLFK FRQWDLQV ORFDWLRQDO GDWD LH GHILQHV SRLQWV OLQHV RU SRO\JRQVf DQG DWWULEXWH GDWD LH GHVFULEHV SRLQWV OLQHV RU SRO\JRQVf DERXW HDFK PDS IHDWXUH /2$'66 XWLOL]HV D QXPEHU RI FRYHUDJHV GXULQJ LWV RSHUDWLRQ 7KH PDLQ FRYHUDJH UHIHUUHG WR DV /2B&203 FRQWDLQV PRUH WKDQ SRO\JRQV ,W ZDV FUHDWHG E\ FRPELQLQJ DQ HGLWHG YHUVLRQ RI WKH 'LVWULFWnV ODQG XVH FRYHUDJH GDLU\ FRYHUDJH 67$76*2 6WDWH 6RLO *HRJUDSKLF 'DWD %DVHf VRLO DVVRFLDWLRQV ZHDWKHU UHJLRQV DQG SROLWLFDO ERXQGDULHV +\GURJUDSK\ GDWD LQGLFDWH GUDLQDJH SDWKZD\V IURP HDFK LQGLYLGXDO EDVLQ WR /DNH 2NHHFKREHH /DQG 8VH &RYHUDJH 'HVFULSWLRQ $V SDUW RI WKH 'LVWULFW FRQWUDFW %LRJHRFKHPLFDO %HKDYLRU DQG 7UDQVSRUW RI 3KRVSKRUXV LQ WKH /DNH 2NHHFKREHH :DWHUVKHG D GLJLWL]HG ODQG XVH GDWD EDVH ZDV SURYLGHG E\ WKH 'LVWULFW LQ $XWRFDG IRUPDW IRU HDFK 86*6 TXDGUDQJOH LQ WKH VWXG\ DUHD RQ D VFDOH RI 7KH TXDGV ZHUH FRQYHUWHG WR $5&,QIR IRUPDW WKHQ HGJHPDWFKHG PDSMRLQHG DQG FOLSSHG WR IRUP RQH FRQWLQXRXV GDWD EDVH IRU WKH ZDWHUVKHG 7KHVH GDWD ZHUH YHULILHG DV SDUW RI $UHD RI WKDW FRQWUDFW 6RPH FKDQJHV ZHUH PDGH WR WKH ODQG XVH WDJV WR DFFRPPRGDWH WKH SKRVSKRUXV EXGJHW DQDO\VLV &HUWDLQ /HYHO ODQG XVH FRGHV ZHUH FKDQJHG WR /HYHO )RU H[DPSOH $3 DJULFXOWXUDO SDVWXUHf ZDV FKDQJHG WR HLWKHU $3,0 LPSURYHG SDVWXUHf RU $381 XQLPSURYHG SDVWXUHf 1HZ ODQG XVH WDJV ZHUH FUHDWHG WR GLIIHUHQWLDWH SKRVSKRUXV UHODWHG DFWLYLWLHV 'HWDLOV RI WKH SURFHGXUHV DQG LQIRUPDWLRQ VRXUFHV XVHG WR YHULI\ WKH ODQG XVH GDWD DUH JLYHQ LQ WKH $UHD ILQDO UHSRUW )RQ\R HW DO f

PAGE 53

)RU WKLV VWXG\ ODQG XVH WDJV ZHUH JURXSHG LQWR WKH IROORZLQJ ODQG XVH FDWHJRULHV EDUUHQ ODQG FLWUXV GDLU\ FRPPHUFLDO IRUHVWU\ IRUHVWHG XSODQGV JROI FRXUVH LPSURYHG SDVWXUH RUQDPHQWDOV RWKHU DJULFXOWXUH RWKHU XUEDQ UDQJHODQG UHVLGHQWLDO VRG IDUP VXJDUFDQH WUXFN FURSV XQLPSURYHG SDVWXUH ZDVWH WUHDWPHQW SODQW ZDWHU ERGLHV DQG ZHWODQGV $ ODQG XVH PDS IRU WKH VWXG\ DUHD LV JLYHQ LQ )LJXUH 7KH SUHGHYHORSPHQW ODQG FRYHU PDS IRU WKH ORZ HQHUJ\ VFHQDULR HYDOXDWLRQ ZDV JHQHUDWHG LQ $5&,QIR E\ LQWHUDFWLYHO\ FKDQJLQJ SRO\JRQ W\SHV XVLQJ WKH /2$'66 PRGHO 6RLOV &RYHUDJH 'HVFULSWLRQ 7KH 67$76*2 VRLO DVVRFLDWLRQ FRYHUDJH ZDV SURGXFHG E\ WKH 6RLO &RQVHUYDWLRQ 6HUYLFH LQ 7KH GDWD DUH VFDOH TXDGUDQJOHV RI PDMRU VRLO DVVRFLDWLRQV RU JURXSLQJV RI VRLO W\SHV 7KH GDWD ZHUH FRQYHUWHG IURP /DPEHUW WR 6WDWH3ODQH FRRUGLQDWHV IRU XVH LQ WKH VWXG\ DUHD 67$76*2 LV XVHG PDLQO\ IRU ODUJH VFDOH UHVRXUFH SODQQLQJ PDQDJHPHQW DQG PRQLWRULQJ VLQFH WKH GDWD ZHUH FUHDWHG E\ JHQHUDOL]LQJ PRUH GHWDLOHG VRLO VXUYH\ PDSV 0DS XQLW FRPSRVLWLRQ IRU 67$76*2 ZDV GHWHUPLQHG E\ VDPSOLQJ DUHDV RQ PRUH GHWDLOHG PDSV DQG H[SDQGLQJ WKH GDWD VWDWLVWLFDOO\ WR FKDUDFWHUL]H WKH ZKROH PDS XQLW 7KH IXQGDPHQWDO LGHQWLILHU IRU D PDS XQLW RU VRLO DVVRFLDWLRQ LV UHIHUUHG WR DV LWV 08,' 0DS 8QLW ,'f 6RLOV DWWULEXWH GDWD ZHUH XVHG IRU &5($06:7 UXQRII VLPXODWLRQV )LJXUH FRQWDLQV D PDS RI VRLO DVVRFLDWLRQV LQ WKH VWXG\ DUHD

PAGE 54

)LJXUH /DQG 8VH DQG 6RLO $VVRFLDWLRQV LQ WKH 1RUWK 2NHHFKREHH %DVLQ

PAGE 56

:HDWKHU &RYHUDJH 'HVFULSWLRQ )RXU ZHDWKHU UHJLRQV ZHUH GLIIHUHQWLDWHG EDVHG RQ UDLQIDOO SDWWHUQV LQ WKH ZDWHUVKHG 1RUWK 6RXWK (DVW DQG :HVW :HDWKHU UHJLRQV ZHUH VSHFLILHG IRU UXQRII VLPXODWLRQ PRGHOLQJ XVLQJ WKH &5($06:7 PRGHO %RXQGDU\ &RYHUDJHV 'HVFULSWLRQ 0DSV RI VSDWLDO ERXQGDULHV VXFK DV GUDLQDJH EDVLQV UHJLRQV DQG FRXQWLHV ZHUH XVHG IRU VSDWLDO VFDOH GHOLQHDWLRQ $OO RI WKH ERXQGDU\ FRYHUDJHV ZHUH SURYLGHG E\ WKH 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW 6):0'f LQ HLWKHU $XWRFDG RU $5&,QIR IRUPDW 7KHVH ERXQGDULHV DUH FRQVLVWHQW ZLWK WKRVH XVHG LQ WKH ,QWHULP /DNH 2NHHFKREHH 6XUIDFH :DWHU ,PSURYHPHQW DQG 0DQDJHPHQW 6:,0f 3ODQ 7HFKQLFDO 'RFXPHQW 6):0' f 'DLU\ /DQG 8VH &RYHUDJH 'HVFULSWLRQ 7KH RULJLQDO ODQG XVH GDWD EDVH RQO\ SURYLGHG LQIRUPDWLRQ DERXW WKH ORFDWLRQ RI WKH GDLU\ EDUQ DQG QRW WKH RWKHU ODQG XVHV ZLWKLQ D GDLU\ ERXQGDU\ 'DLU\ ODQG XVHV ZHUH GLJLWL]HG E\ WKH 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW IRU SUH'DLU\ 5XOH f DQG FXUUHQW f GDLULHV LQ WKH ZDWHUVKHG /DQG XVH WDJV ZHUH FUHDWHG IRU HDFK ODQG XVH W\SH RQ WKH GDLULHV WKDW KDYH LQVWDOOHG ZDVWH WUHDWPHQW V\VWHPV DQG UHPDLQ LQ RSHUDWLRQ 7DEOH JLYHV D OLVW RI GDLU\ ODQG XVHV DQG WDJV DVVLJQHG WR GDLU\ FRYHUDJH SRO\JRQV +\GURJUDSK\ &RYHUDJH 'HVFULSWLRQ 7KH 86*6n VWDWHG SXUSRVH IRU GLJLWL]LQJ K\GURJUDSK\ LV WR FROOHFW LQIRUPDWLRQ DERXW VWUHDPV ERGLHV RI ZDWHU ZHWODQGV FRDVWDO ZDWHU ZDWHU XVHG IRU WUDQVSRUWDWLRQ

PAGE 57

7DEOH 'DLU\ /DQG 8VHV DQG /DQG 8VH 7DJV $VVLJQHG WR 'DLU\ 3RO\JRQV '$,5< 7$* '$,5< /$1' 86( %$51 0LONLQJ EDUQ RU SDUORU DOO LPSRUWV DQG H[SRUWV RI PDWHULDOV DUH DWWDFKHG WR WKLV ODQG XVH +,$ +LJK LQWHQVLW\ DUHD DUHD VXUURXQGLQJ EDUQ XVHG DV D KROGLQJ DUHD DQG VRPHWLPHV IHHGLQJ DUHD 0+3 0LONLQJ KHUG SDVWXUH WKH PLONLQJ KHUG LV UHVWULFWHG WR WKLV SDVWXUH DUHD ZKHQ QRW LQ WKH +,$ RU EDUQ WKH W\SLFDO PD[LPXP DQLPDO GHQVLW\ RI WKH 0+3 LV WR FRZV SHU DFUH 63)/ 6SUD\ILHOG SDUW RI WKH ZDVWH PDQDJHPHQW V\VWHP HIIOXHQW IURP WKH ZDVWH VWRUDJH SRQG LV DSSOLHG XVXDOO\ WKURXJK D FHQWHU SLYRW LUULJDWLRQ V\VWHP WR WKLV IRUDJH SURGXFWLRQ DUHD DW D UDWH QRW WR H[FHHG SODQW XSWDNH OEV 3DF\Uf 66$ 6ROLGV VSUHDGLQJ DUHD VROLGV WKDW DUH VFUDSHG IURP WKH EDUQ DUHD RU RFFDVLRQDOO\ GUHGJHG IURP WKH ZDVWH VWRUDJH SRQG DUH DSSOLHG E\ VSUHDGHU WR WKLV GHVLJQDWHG ILHOG DUHD 273 2WKHU SDVWXUH LQFOXGHV SDVWXUHV IRU SRW VLFNf KHUG VSULQJHUV DQG KHLIHUV DQG FDOYHV LI WKH\ DUH UDLVHG RQVLWH WKH W\SLFDO PD[LPXP DQLPDO GHQVLW\ LQ WKHVH SDVWXUH DUHDV LV DERXW FRZV SHU DFUH 27)/ 2WKHU ILHOG KD\ ILHOG RU RWKHU IRUDJH SURGXFWLRQ DUHD ZLWK QR DQLPDOV 27/ 2WKHU ODQG LQFOXGHV URDGZD\V DQG VWUXFWXUHV :(7 :HWODQGV ZLWKLQ GDLU\ ERXQGDULHV :63 :DVWH VWRUDJH SRQG DUHD ZKHUH ZDVWHV IURP WKH EDUQ DQG KLJK LQWHQVLW\ DUHD DUH VWRUHG

PAGE 58

DQG UHODWHG K\GURJUDSKLF IHDWXUHV 86*6 f 7KH GLJLWDO OLQH JUDSKV '/*Vf SURGXFHG E\ 86*6 FRQWDLQ K\GURJUDSKLF IHDWXUHV ZLWK WKH IROORZLQJ DWWULEXWHV OHQJWK LQ IHHW PDMRU FRGH LQGLFDWLQJ WKH W\SH RI '/* IRU K\GURJUDSK\f DQG PLQRU FRGH XVHG WR GHVFULEH WKH K\GURJUDSKLF IHDWXUHV LQFOXGLQJ QRGHV DUHDV OLQHV VLQJOH SRLQWV JHQHUDO SXUSRVH DQG GHVFULSWLRQ FRGHV 0LQRU FRGHV WKDW DSSHDU LQ WKH K\GURJUDSK\ GDWD EDVH ZLWKLQ WKH VWXG\ DUHD ERXQGDULHV DUH JLYHQ LQ 7DEOH )RU WKH SXUSRVHV RI SKRVSKRUXV EXGJHWLQJ LQ WKLV VWXG\ PLQRU FRGHV ZHUH UHFODVVLILHG LQWR WZR JURXSV ZHWODQGV DQG FDQDOV VHH )LJXUH f 7KH RULJLQDO K\GURJUDSK\ GDWD EDVH IRU WKH VWXG\ DUHD ZDV GLJLWL]HG IURP 86*6 TXDGUDQJOHV 5HJLRQDO GUDLQDJH SDWWHUQV KDYH FKDQJHG VLJQLILFDQWO\ RYHU WKH ODVW WZHQW\ \HDUV +\GURJUDSK\ GDWD ZHUH XSGDWHG ZLWK WKH KHOS RI 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW ILHOG SHUVRQQHO IDPLOLDU ZLWK GUDLQDJH SDWWHUQV LQ WKH VWXG\ DUHD DQG 0DUN +XUG DHULDO SKRWRV $UFV ZHUH FODVVLILHG DV HLWKHU ZHWODQGV RU FDQDOV XVLQJ WKH 1DWLRQDO :HWODQGV ,QYHQWRU\ 1:f DV D EDFNJURXQG FRYHUDJH IRU YHULILFDWLRQ 3KRVSKRUXV %XGJHWLQJ 7KH IORZV DQG VWRUDJHV RI SKRVSKRUXV LQ WKH GUDLQDJH EDVLQ ZHUH VWXGLHG E\ VLPXODWLQJ D VSDWLDO PRGHO XVLQJ D VLPSOLILHG XQLW PRGHO 7KH XQLW PRGHO IRU SKRVSKRUXV LQ WKH DJULFXOWXUDO ODQGVFDSH )LJXUH f ZDV HYDOXDWHG IRU HDFK SRO\JRQ LQFOXGLQJ WKH IORZV EHWZHHQ SRO\JRQV DQG H[FKDQJHV DFURVV ZDWHUVKHG ERXQGDULHV 3KRVSKRUXV UXQRII IURP DJULFXOWXUDO SRO\JRQV 2S ZDV HVWLPDWHG XVLQJ WKH &5($06 :7 UXQRII PRGHO RXWVLGH RI WKH /2$'66 PRGHO 7KH /2$'66 SURJUDP HVWLPDWHG

PAGE 59

7DEOH +\GURJUDSK\ $WWULEXWH &RGHV DQG $UF /HQJWK &ODVVLILFDWLRQV 0,125 &2'( '(),1,7,21 &/$66,),&$7,21 6KRUHOLQH :HWODQG &ORVXUH OLQH :HWODQG $SSDUHQW OLPLW :HWODQG &DQDO ORFN RU VOXLFH JDWH &DQDO 6WUHDP :HWODQG 'LWFK RU FDQDO &DQDO 5LJKW EDQN &DQDO /HIW EDQN &DQDO ,QWHUPLWWHQW :HWODQG

PAGE 60

)LJXUH 7KH +\GURJUDSKLF 1HWZRUN RI 6WUHDPV LQ %OXHf DQG &DQDOV LQ 5HGf LQ WKH 1RUWK 2NHHFKREHH %DVLQ

PAGE 61

)LJXUH 8QLW 0RGHO IRU 6SDWLDO 6LPXODWLRQ RI WKH 3KRVSKRUXV %XGJHW

PAGE 62

SKRVSKRUXV XSWDNH DQG VWRUDJH DVVLPLODWLRQf LQ ZHWODQGV DQG FDQDOV IURP HDFK SRO\JRQ WR /DNH 2NHHFKREHH $ VLPSOH DQQXDO PDVV EDODQFH DSSURDFK ZDV HPSOR\HG WR H[DPLQH WKH XVH DQG IDWH RI SKRVSKRUXV LQ WKH QRUWK 2NHHFKREHH EDVLQ XQGHU DOWHUQDWLYH SKRVSKRUXV PDQDJHPHQW VWUDWHJLHV $ VLPLODU DSSURDFK ZDV DGRSWHG E\ 3RUFHOOD DQG %LVKRS f LQ WKHLU DQDO\VLV RI SKRVSKRUXV PDQDJHPHQW LQ WKH *UHDW /DNHV EDVLQ 7KH EDVLF PDVV EDODQFH HTXDWLRQV ZKLFK DVVXPH D RQH \HDU WLPH VWHS LV DGHTXDWH DUH DSSOLHG DW WKH SRO\JRQ OHYHO DQG PD\ EH H[SUHVVHG DV ZKHUH $ 6S DYHUDJH DQQXDO SRO\JRQ SKRVSKRUXV UHWHQWLRQ RU VWRUDJH WRQV\U ,S DYHUDJH DQQXDO SKRVSKRUXV LPSRUWV WR SRO\JRQ S WRQV\U 5S DYHUDJH DQQXDO UDLQIDOO SKRVSKRUXV IRU SRO\JRQ S WRQV\U (S DYHUDJH DQQXDO SKRVSKRUXV H[SRUWV IURP SRO\JRQ S WRQV\U 2S DYHUDJH DQQXDO UXQRII SKRVSKRUXV IURP SRO\JRQ S WRQV\U $S DYHUDJH DQQXDO SKRVSKRUXV DVVLPLODWHG RIIVLWH IURP SRO\JRQ S WRQV\U /S DYHUDJH DQQXDO EDVLQ SKRVSKRUXV RXWIORZ DWWULEXWHG WR SRO\JRQ S WRQV\U 3KRVSKRUXV HQWHUV HDFK SRO\JRQ RI WKH EDVLQ LQ JRRGV XVHG IRU SURGXFWLRQ RU IRU ORFDO FRQVXPSWLRQ DQG LQ UDLQIDOO ,W OHDYHV DQ LQGLYLGXDO SRO\JRQ DV HLWKHU DQ H[SRUWHG SURGXFW RU LQ UXQRII ZDWHU 6LPSO\ VWDWHG WKH FKDQJH LQ SKRVSKRUXV VWRUDJH RQVLWH LV WKH GLIIHUHQFH EHWZHHQ WKH QHW LPSRUW RI SKRVSKRUXVFRQWDLQLQJ PDWHULDOV SOXV UDLQIDOO DQG WKH ORVVHV GXH WR UXQRII 3KRVSKRUXV HQWHULQJ GUDLQDJH ZDWHUV LV WUDQVSRUWHG WR /DNH 2NHHFKREHH DORQJ D QHWZRUN RI FDQDOV DQG VWUHDPV 3KRVSKRUXV LV

PAGE 63

DVVLPLODWHG DORQJ WKH IORZ SDWK WKURXJK SODQW XSWDNH DQG VRLO DGVRUSWLRQ ZLWK WKH UHPDLQGHU GLVFKDUJHG WR /DNH 2NHHFKREHH 7KXV WKHUH DUH EDVLFDOO\ WZR FRPSRQHQWV WR SKRVSKRUXV UHWHQWLRQ ZLWKLQ WKH EDVLQ RQVLWH VWRUDJH DQG DVVLPLODWLRQ DORQJ WKH IORZ SDWK WR WKH ODNH %DVLQ SKRVSKRUXV UHWHQWLRQ LV D IXQFWLRQ RI UDLQIDOO VRLO W\SH VWDQGLQJ ELRPDVV GUDLQDJH GHQVLW\ GLVWDQFH XSVWUHDP DQG PDQDJHPHQW SUDFWLFHV 6XFK IDFWRUV LQWURGXFH HOHPHQWV RI VSDWLDO YDULDELOLW\ LQ WKH GDWD WKDW DUH QRW FDSWXUHG E\ DJJUHJDWH DQDO\VLV EDVHG RQ JHQHUDO ODQG XVH FDWHJRULHV $QDO\VLV XVLQJ VSDWLDO PRGHOLQJ WHFKQLTXHV DFFRXQWV IRU VXFK YDULDELOLW\ 3KRVSKRUXV ,PSRUWV DQG ([SRUWV ,PSRUWV DQG H[SRUWV RI SKRVSKRUXVFRQWDLQLQJ PDWHULDOV E\ ODQG XVH W\SH DUH EDVHG RQ W\SLFDO SUDFWLFHV DV JOHDQHG IURP LQWHUYLHZV ZLWK IDUPHUV IHHG DQG IHUWLOL]HU VXSSOLHUV FRXQW\ H[WHQVLRQ DJHQWV DQG VWDWH DQG IHGHUDO DJHQFLHV 3XEOLVKHG GRFXPHQWV VXFK DV DJULFXOWXUDO FHQVXVHV H[WHQVLRQ UHFRPPHQGDWLRQV IHUWLOL]HU FRQVXPSWLRQ UHSRUWV DQG VWDWH SURGXFWLRQ VWDWLVWLFV ZHUH XVHG WR YHULI\ LQWHUYLHZ GDWD UHVXOWV 'HWDLOV RI WKH GDWD FROOHFWLRQ SURFHGXUHV DQG SKRVSKRUXV LPSRUW DQG H[SRUW GDWD DUH JLYHQ LQ )RQ\R HW DO f 3KRVSKRUXV LQ UDLQIDOO ZDV HVWLPDWHG DV OEV 3DF\U EDVLQZLGH RQ DQ DYHUDJH DQQXDO EDVLV 7KLV ILJXUH ZDV EDVHG RQ D UDLQIDOO FRQFHQWUDWLRQ RI PJ 3 +HDWZROH f DQG DQ DYHUDJH DQQXDO UDLQIDOO RI LQFKHV 6FXOOH\ f 3KRVSKRUXV 5XQRII IURP $JULFXOWXUDO 6HFWRUV $ VXEPRGHO IRU UXQRII RI SKRVSKRUXV IURP DJULFXOWXUDO ODQGV ZDV VLPXODWHG LQGHSHQGHQWO\ XVLQJ WKH &5($06:7 SURJUDP IRU 3& 'RV YHUVLRQ 0RGHO

PAGE 64

UHVXOWV UHSUHVHQW WKH HGJHRIILHOG UXQRII IRU HDFK DJULFXOWXUDO SRO\JRQ 7KH XQLW PRGHO LV UHSUHVHQWHG LQ )LJXUH $JULFXOWXUDO UXQRII VLPXODWLRQ JHQHUDWHV SKRVSKRUXV ORDGLQJ IRU YDULHG ZHDWKHU VRLO DQG SKRVSKRUXV PDQDJHPHQW FRPELQDWLRQV &5($06:7 ZDV FKRVHQ WR PRGHO SKRVSKRUXV PRYHPHQW RQ D ILHOG VFDOH EHFDXVH RI LWV DELOLW\ WR VXFFHVVIXOO\ VLPXODWH QXWULHQW WUDQVSRUW WKURXJK 6RXWK )ORULGDnV VSRGRVROV +HDWZROH HW DO f )XUWKHU GHWDLO RQ &5($06:7 DQG PRGHOLQJ SURFHGXUHV DUH JLYHQ LQ .LNHU HW DO f 7KH SXUSRVH RI WKH VLPXODWLRQV SHUIRUPHG ZLWK &5($06:7 ZDV WR HYDOXDWH WKH H[SHFWHG LPSDFW RI DOWHUQDWLYH PDQDJHPHQW SUDFWLFHV RQ SKRVSKRUXV UXQRII IURP LQGLYLGXDO ILHOGV SRO\JRQVf ZLWK D VSHFLILF ODQG XVH $OO SRVVLEOH FRPELQDWLRQV RI PDQDJHPHQW SUDFWLFHV ZLWK ODQG XVH VRLO DVVRFLDWLRQ DQG ZHDWKHU UHJLRQ FRXOG QRW EH HYDOXDWHG $ VXEVHW RI WKH PRVW W\SLFDO RU FRPPRQO\ XVHG PDQDJHPHQW SUDFWLFHV ZDV VHOHFWHG DQG VLPXODWHG RYHU WZHQW\ \HDUV RI VWRFKDVWLF ZHDWKHU GDWD IRU HDFK DSSURSULDWH ODQG XVH VRLO DQG ZHDWKHU FRPELQDWLRQ ZLWKLQ WKH QRUWK 2NHHFKREHH EDVLQ UHIHU WR )RQ\R HW DO Df $YHUDJH DQQXDO UXQRII YROXPHV DQG SKRVSKRUXV ORDGV ZHUH JHQHUDWHG E\ &5($06:7 IRU HDFK XQLTXH FRPELQDWLRQ IURP WKHVH DYHUDJH UXQRII FRQFHQWUDWLRQV ZHUH FDOFXODWHG 3KRVSKRUXV $VVLPLODWLRQ EY :HWODQGV DQG &DQDOV $QRWKHU VXEPRGHO ZDV XVHG WR HVWLPDWH SKRVSKRUXV DVVLPLODWLRQ LQ FDQDOV DQG ZHWODQGV IURP HDFK SRO\JRQ WR /DNH 2NHHFKREHH 'LDJUDPV DQG HTXDWLRQV DUH JLYHQ LQ )LJXUH ,Q WKLV PRGHO SKRVSKRUXV IURP WKH IORZ RI ZDWHU LV SURSRUWLRQDO WR WKH

PAGE 65

$6 3 4 (7 SHUFRODWLRQ $& &U PDQDJHPHQW LQSXWV 523 )LJXUH 8QLW 0RGHO IRU .H\ 3URFHVVHV RI WKH &5($06:7 3URJUDP (7 (YDSRWUDQVSLUDWLRQ /$, /HDI $UHD ,QGH[ &U 5DLQIDOO 3KRVSKRUXV

PAGE 66

2S /R 2// 2IIVLWH /RDG 2YHUODQG $R :HWODQG $Z &DQDO )ORZ DQG $VVLPLODWLRQ /Z :// )ORZ DQG $VVLPLODWLRQ /F &/ A )ORZ DQG f $VVLPLODWLRQ L G/G[ D[ r / / /R r HD[rG[f /Z 2S r HDRr2//f /F /Z r HDZr://f /S 2S r HDRr2// DZr:// DFr&/f /S /F r HDFr&/f /S /RDG WR /DNH )LJXUH 0RGHO RI 3KRVSKRUXV $VVLPLODWLRQ DV D )XQFWLRQ RI )ORZ 3DWK 'LVWDQFH

PAGE 67

SDWKZD\ GLVWDQFH HDFK W\SH RI SDWKZD\ KDYLQJ D GLIIHUHQW OLQHDU FRHIILFLHQW 7KH ILQDO HTXDWLRQ LV DSSURSULDWH ZKHUH WKH IORZV WKURXJK VHYHUDO W\SHV RI VXUIDFHV DUH LQ VHULHV $VVLPLODWLRQ IROORZV WKH HTXDWLRQ ZKLFK LV FRQVLVWHQW ZLWK WKH /DNH 2NHHFKREHH 6:,0 3ODQ DQG ZKHUH /S DYHUDJH DQQXDO EDVLQ SKRVSKRUXV RXWIORZ DWWULEXWHG WR SRO\JRQ S WRQV\U 2S DYHUDJH DQQXDO UXQRII SKRVSKRUXV IURP SRO\JRQ S WRQV\U $S DYHUDJH DQQXDO SKRVSKRUXV DVVLPLODWHG RIIVLWH IURP SRO\JRQ S WRQV\U 295 RYHUODQG 3 DVVLPLODWLRQ DR r 2// :(7 ZHWODQG 3 DVVLPLODWLRQ DZ r :// &$1 FDQDO 3 DVVLPLODWLRQ DF r &/ DR RYHUODQG IORZ DVVLPLODWLRQ FRHIILFLHQW PLn GHIDXOW 2// RYHUODQG IORZ GLVWDQFH RU WKH GLVWDQFH IURP HDFK SRO\JRQ FHQWURLG WR WKH QHDUHVW ZHWODQG RU FDQDO PL DZ ZHWODQG IORZ DVVLPLODWLRQ FRHIILFLHQW PL :// ZHWODQG IORZ GLVWDQFH RU WKH FXPXODWLYH OHQJWK RI DOO ZHWODQG VHJPHQWV IURP HDFK SRO\JRQ WR EDVLQ RXWOHW PLOHV DF FDQDO IORZ DVVLPLODWLRQ FRHIILFLHQW PL &/ FDQDO IORZ GLVWDQFH RU WKH FXPXODWLYH OHQJWK RI DOO FDQDO VHJPHQWV IURP HDFK SRO\JRQ WR EDVLQ RXWOHW PLOHV r H295 :(7 &$1f &DOFXODWLRQ RI IORZ SDWK GLVWDQFH 7KH DOJRULWKP GHYHORSHG WR FDOFXODWH IORZ SDWK GLVWDQFHV IURP HDFK SRO\JRQ WR LWV VXEEDVLQ RXWOHW ZDV SHUIRUPHG H[WHUQDOO\ IURP /2$'66 7KH $5&,QIR SURFHGXUH ZKLFK ZDV XVHG WR FDOFXODWH FDQDO &/f DQG ZHWODQG ://f GUDLQDJH GLVWDQFHV LV DV IROORZV &UHDWH D SRLQW FRYHUDJH IRU DOO SRO\JRQV &UHDWH D ORRNXS WDEOH ZLWK EDVLQ QDPHV DQG RXWOHW QRGH QXPEHUV

PAGE 68

5XQ WKH 1($5 FRPPDQG DQG VWRUH GLVWDQFHV IURP SRO\JRQ FHQWURLGV WR QHDUHVW VWUHDP QRGHV LQ WKH K\GURJUDSK\ GDWD EDVH 6WRUH VWUHDP LQOHW QRGH QXPEHUV IRU HDFK FHQWURLG DQG 8VH WKH 3$7+ FRPPDQG LQ WKH 5287( DOJRULWKP WR FDOFXODWH ZHWODQG DQG FDQDO OHQJWKV IURP WKH LQOHW QRGH IRU HDFK SRO\JRQ FHQWURLG WR WKH DSSURSULDWH EDVLQ RXWOHW QRGH &DOLEUDWLRQ RI SKRVSKRUXV DVVLPLODWLRQ FRHIILFLHQWV $ VHULHV RI VWHSV ZHUH WDNHQ WR FDOLEUDWH SKRVSKRUXV DVVLPLODWLRQ FRHIILFLHQWV EDVHG RQ KLVWRULFDO EDVLQ SKRVSKRUXV RXWIORZ GDWD DV UHSRUWHG LQ WKH /DNH 2NHHFKREHH 6:,0 3ODQ &DOLEUDWLRQ SURFHGXUHV DQG UHVXOWV DUH GRFXPHQWHG LQ )RQ\R HW DO Ef 5DWKHU WKDQ DVVLJQLQJ RQH DVVLPLODWLRQ FRHIILFLHQW HDFK IRU ZHWODQGV PLOHf DQG FDQDOV PLOHf EDVLQZLGH DV LQ WKH 6:,0 3ODQ LQGLYLGXDO FRHIILFLHQWV ZHUH HVWLPDWHG IRU HDFK GUDLQDJH VXEEDVLQ %HFDXVH RI D ODFN RI LQIRUPDWLRQ RQ LQVWUHDP SURFHVVHV ZHWODQGV DQG FDQDOV ZHUH DVVLJQHG WKH VDPH FRHIILFLHQW E\ VXEEDVLQ DQG RYHUODQG IORZ DVVLPLODWLRQ ZDV IRUFHG WR ]HUR &RHIILFLHQWV DUH OLVWHG E\ VXEEDVLQ LQ 7DEOH %DVLQ 3KRVSKRUXV 2XWIORZ %DVLQ SKRVSKRUXV RXWIORZV DWWULEXWHG WR LQGLYLGXDO SRO\JRQV ZHUH FDOFXODWHG DV WKH GLIIHUHQFH EHWZHHQ UXQRII DQG DVVLPLODWLRQ %DVLQ RXWIORZ IURP LQGLYLGXDO SRO\JRQV ZHUH VXPPHG E\ VXEEDVLQ IRU FRPSDULVRQ ZLWK 6:,0 3ODQ GDWD (PHUJY (YDOXDWLRQ 7KH FRQWULEXWLRQV RI HQYLURQPHQWDO DQG HFRQRPLF SXUFKDVHGf UHVRXUFHV WR WKH SURGXFWLRQ SURFHVVHV LQ WKH ZDWHUVKHG ZHUH HYDOXDWHG RQ D FRPPRQ EDVLV XVLQJ HPHUJ\ (QHUJ\ ZLWK SRWHQWLDO WR GR ZRUN DYDLODEOH HQHUJ\f LV UHTXLUHG IRU HDFK

PAGE 69

7DEOH 3KRVSKRUXV $VVLPLODWLRQ &RHIILFLHQWV DQG $YHUDJH )ORZ 3DWK /HQJWKV E\ 'UDLQDJH 6XEEDVLQ LQ WKH 1RUWK 2NHHFKREHH %DVLQ %$6,1 1$0( $66,0,/$7,21 &2()),&,(17 PLOHf $9(5$*( &$1$/ )/2: 3$7+ /(1*7+ PLf $9(5$*( :(7/$1' )/2: 3$7+ /(1*7+ PLf & & &$ )LVKHDWLQJ &UHHN / / /(t: /(t: /(t: /DNH ,VWRNSRJD 1LFRGHPXV 6ORXJK 6 6 6 6 6& 6 6$ 6% 6& 6' 6(

PAGE 70

VWHSZDUG WUDQVIRUPDWLRQ LQ D SURGXFWLRQ SURFHVV 7KH PRUH VWHSV WKH PRUH HQHUJ\ LW WDNHV WR PDNH D SURGXFW +RZHYHU HQHUJLHV RI GLIIHUHQW W\SH KDYH GLIIHULQJ DELOLWLHV WR FRQWULEXWH WR SURGXFWLRQ %\ NHHSLQJ WUDFN RI WKH HQHUJ\ LQSXWV UHTXLUHG DORQJ HDFK VWHS H[SUHVVLQJ WKHP LQ XQLWV RI RQH NLQG RI HQHUJ\ RQH KDV D PHDVXUH RI WKH WRWDO UHVRXUFH XVHG IRU D SURGXFW RU VHUYLFH 7KLV PHWKRG PHDVXUHV HQHUJ\ HPERGLHG LQ ZRUN SUHYLRXVO\ FRPSOHWHG WR PDNH D SURGXFW (PHUJ\ VSHOOHG ZLWK DQ P ZLWK WKH XQLW HPMRXOH LV GHILQHG DV WKH DYDLODEOH HQHUJ\ RI RQH NLQG SUHYLRXVO\ XVHG GLUHFWO\ DQG LQGLUHFWO\ WR PDNH D SURGXFW :KHQ H[SUHVVHG DV VRODU HQHUJ\ WKH PHDVXUH LV VRODU HPHUJ\ LQ VRODU HPMRXOHV 2GXP 6FLHQFHPDQ f 6RODU HPHUJ\ FDQ EH XVHG DV DQ DJJUHJDWH PHDVXUH RI WKH QHW SURGXFWLYLW\ DQG UHVRXUFH XVHV RI D V\VWHP 7KH HPHUJ\ SHU XQLW HQHUJ\ LV FDOOHG WKH WUDQVIRUPLW\ DQG LV D PHDVXUH RI HQHUJ\ TXDOLW\ DQG SRVLWLRQ LQ WKH HQHUJ\ KLHUDUFK\ (PHUJ\ IORZ SHU XQLW WLPH LV GHILQHG DV HPSRZHU (PHUJ\ FRQWULEXWLRQV DUH GHWHUPLQHG IRU QDWXUHnV ZRUN IRU SXUFKDVHG UHVRXUFHV DQG IRU KXPDQ VHUYLFHV 2GXP DQG $UGLQJ f 7KH ZRUN RI WKH QDWXUDO V\VWHP LV LQWHJUDWHG LQWR WKH DQDO\VLV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV LQ WZR ZD\V f DV LQSXWV WR WKH DJULFXOWXUDO SURGXFWLRQ SURFHVV DQG f DV HVWLPDWHG E\ WKH DPRXQW RI UHVLGXDOV DVVLPLODWHG E\ ZHWODQG DQG DTXDWLF HFRV\VWHPV LQ WKH ZDWHUVKHG 7KH ILUVW VWHS LQ HPHUJ\ DQDO\VLV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV ZDV WR FRQVWUXFW DQ RYHUYLHZ GLDJUDP RI WKH HQWLUH QRUWK 2NHHFKREHH EDVLQ DQG WKHQ RI HDFK V\VWHP EHLQJ HYDOXDWHG 7KH QH[W VWHS ZDV WR FRQVWUXFW HPHUJ\ HYDOXDWLRQ WDEOHV WR IDFLOLWDWH FDOFXODWLRQ RI DQQXDO V\VWHPV IORZV DQG ORQJHU WHUP VWRUDJHV LQ ERWK HQHUJ\

PAGE 71

DQG HPHUJ\ XQLWV DQG LQ HPGROODUV (QWHUJ\ HYDOXDWLRQ WDEOHV ZHUH FRQVWUXFWHG ZLWK WKH IROORZLQJ FROXPQV &ROXPQ /LQH LWHP QXPEHU WR VLJQLI\ WKH IRRWQRWH IRU FDOFXODWLRQV &ROXPQ ,WHP QDPH DV LQGLFDWHG LQ WKH GLDJUDP &ROXPQ 5DZ GDWD LQ MRXOHV JUDPV RU GROODUV &ROXPQ 7UDQVIRUPLW\ RU WKH HPHUJ\ UHTXLUHG WR JHQHUDWH D XQLW RI SURGXFW LQ VRODU HPMRXOHV VHMf SHU XQLW &ROXPQ 6RODU HPHUJ\ WKH SURGXFW RI FROXPQV DQG LQ VRODU HPMRXOHV &ROXPQ (PGROODU IRUPHUO\ PDFURHFRQRPLF GROODU HTXLYDOHQWf FDOFXODWHG E\ GLYLGLQJ HPHUJ\ LQ FROXPQ E\ WKH HPHUJ\FXUUHQF\ HPMRXOHVGROODUf UDWLR 7KH HPHUJ\FXUUHQF\ UDWLR LV REWDLQHG E\ GLYLGLQJ WKH JURVV QDWLRQDO SURGXFW LQ JLYHQ \HDU E\ WKH WRWDO HPHUJ\ XVHG E\ WKH FRXQWU\ WKDW \HDU 2GXP DQG $UGLQJ f &ROXPQ 3KRVSKRUXV FRQWHQW RI LWHP LQ JUDPV &ROXPQ (PHUJ\PDVV UDWLR RI SKRVSKRUXV RU WKH HPHUJ\ UHTXLUHG WR JHQHUDWH D JUDP RI SKRVSKRUXV LQ WKH SURGXFW LQ VRODU HPMRXOHV SHU JUDP (FRQRPLF $QDO\VLV (FRQRPLF DQDO\VLV LQ WKLV VWXG\ ZDV OLPLWHG WR GHWHUPLQLQJ WKH FRVW HIIHFWLYHQHVV RI SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYHV DV PHDVXUHG E\ WKH GROODUV VSHQW SHU XQLW RI SKRVSKRUXV UHGXFWLRQ LQ EDVLQ GUDLQDJH ZDWHUV $ SDUWLDO EXGJHWLQJ DSSURDFK ZDV HPSOR\HG 2QO\ GLUHFW LQYHVWPHQW RSHUDWLRQ DQG PDLQWHQDQFH DQG VHFRQGDU\ FRVWV LQFXUUHG E\ WKH SURGXFHU GXH WR FKDQJHV LQ PDQDJHPHQW ZHUH HVWLPDWHG ,QYHVWPHQW FRVWV ZHUH HVWLPDWHG DV WKH WRWDO RQHWLPH FRVWV PDWHULDOV DQG ODERUf WR LQVWDOO D QHZ 0Q WKLV VWXG\ FRVWV UHIHU WR PRQH\ SDLG IRU JRRGV DQG VHUYLFHV

PAGE 72

SKRVSKRUXV PDQDJHPHQW WHFKQRORJ\ ,QYHVWPHQW FRVWV ZHUH DQQXDOL]HG RYHU WKH OLIH RI WKH WHFKQRORJ\ DVVXPLQJ DQ LQWHUHVW UDWH RI SHUFHQW WKH SUHYDLOLQJ UDWH DW WKH WLPH RI WKH VWXG\f XVLQJ WKH IROORZLQJ HTXDWLRQ ZKHUH $ 3 r + ff LnfQ $ DQQXDOL]HG LQYHVWPHQW \U 3 SUHVHQW YDOXH RI WRWDO LQYHVWPHQW L SUHYDLOLQJ LQWHUHVW UDWH Q OLIH RI LQYHVWPHQW \HDUV 2SHUDWLRQ DQG PDLQWHQDQFH FRVWV ZHUH FDOFXODWHG DV WKH DQQXDO FRVWV WR NHHS WKH SKRVSKRUXV PDQDJHPHQW WHFKQRORJ\ IXQFWLRQDO ,Q PRVW FDVHV WKHVH FRVW FRPSRQHQWV ZHUH WDNHQ IURP HQJLQHHULQJ GHVLJQ UHSRUWV UHIHU WR $SSHQGL[ $f 7ZR W\SHV RI VHFRQGDU\ FRVWV ZHUH HVWLPDWHG SURGXFWLRQ FRVWV DQG RXWSXW HIIHFWV 3URGXFWLRQ FRVWV UHIOHFW FKDQJHV LQ H[LVWLQJ DQQXDO FRVW FRPSRQHQWV LQFXUUHG DV D UHVXOW RI DGRSWLQJ D SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYH )RU H[DPSOH FKDQJLQJ WKH UDWH RI IHUWLOL]HU DSSOLFDWLRQ UHVXOWV LQ HLWKHU DQ LQFUHDVH RU GHFUHDVH LQ DQQXDO RSHUDWLQJ FRVWV 7KH RXWSXW HIIHFW UHIOHFWV FKDQJHV LQ RXWSXW RI D SURGXFW DV D UHVXOW RI DGRSWLQJ D SKRVSKRUXV PDQDJHPHQW DOWHUQDWLYH $Q H[DPSOH LV D FKDQJH LQ PLON b SURGXFWLRQ GXH WR VWUXFWXUDO FKDQJH HJ FRQILQHPHQWf RQ D GDLU\ 6HFRQGDU\ FRVWV PD\ EH SRVLWLYH RU QHJDWLYH 5HODWLRQVKLSV EHWZHHQ FKDQJHV LQ PDQDJHPHQW DQG FRVWV DQG UHWXUQV DUH JLYHQ LQ $SSHQGL[ $ 7KH EDVLF FRVWV RI RSHUDWLRQ ZLWKRXW SKRVSKRUXV PDQDJHPHQW ZKLFK ZHUH QHHGHG IRU HPHUJ\ HYDOXDWLRQV ZHUH REWDLQHG IURP YDULRXV ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6HUYLFHV ,)$6f SURGXFWLRQ EXGJHWV

PAGE 73

,Q RUGHU WR IDFLOLWDWH DJJUHJDWH FRVW HIIHFWLYHQHVV DQDO\VLV DW WKH ZDWHUVKHG VFDOH FHUWDLQ KRPRJHQL]LQJ DVVXPSWLRQV ZHUH PDGH DERXW WKH FKDUDFWHULVWLFV RI VSHFLILF EDVLQ DFWLYLWLHV DQG PDQDJHPHQW SUDFWLFHV $SSHQGL[ $ RXWOLQHV WKHVH DVVXPSWLRQV WKH PHWKRGV IRU FDOFXODWLQJ GLUHFW FRVWV LQYHVWPHQW RSHUDWLRQ DQG PDLQWHQDQFH DQG VHFRQGDU\f LQ GROODUV DQG GDWD VRXUFHV IRU SHUWLQHQW QRQSRLQW ODQG XVHV EHHI SDVWXUH GDLU\ FLWUXV VXJDUFDQHf SRLQW VRXUFHV VHZDJH WUHDWPHQW SODQWVf DQG EDVLQ VFDOH WUHDWPHQWV DTXLIHU VWRUDJH DQG UHFRYHU\ ELRORJLFDO WUHDWPHQW FKHPLFDO WUHDWPHQW GLYHUVLRQf 6FHQDULR &RPSDULVRQV 2QH RI WKH SXUSRVHV RI WKLV VWXG\ ZDV WR FRQVLGHU PDQDJHPHQW DOWHUQDWLYHV WKDW ZRXOG UHGXFH SKRVSKRUXV RXWIORZV IURP GUDLQDJH VXEEDVLQV WR SUHGHWHUPLQHG DYHUDJH DQQXDO YDOXHV )LYH SKRVSKRUXV PDQDJHPHQW VFHQDULRV FRPELQDWLRQV RI DOWHUQDWLYHVf ZHUH FRPSDUHG WR GHWHUPLQH ZKLFK PLQLPL]HG EDVLQ SKRVSKRUXV RXWIORZ PLQLPL]HG WKH FRVW RI SKRVSKRUXV UHGXFWLRQ DQG PD[LPL]HG HPSRZHU HPHUJ\ SHU \HDUf RQ D UHJLRQDO VFDOH 6FHQDULRV ZHUH FKRVHQ WR UHSUHVHQW D UDQJH RI LQWHQVLW\ RI SKRVSKRUXV XVH DQG PDQDJHPHQW &RVW HIIHFWLYHQHVV DQDO\VLV LV D XVHIXO ZD\ WR SHUIRUP DQ HFRQRPLF HYDOXDWLRQ RI WZR VFHQDULRV &RVW HIIHFWLYHQHVV ZDV GHILQHG DV WKH GROODUV VSHQW SHU XQLW UHGXFWLRQ RI SKRVSKRUXV LQ EDVLQ RXWIORZ &RVW HIIHFWLYHQHVV ZDV FDOFXODWHG IRU D WZR VFHQDULR FRPSDULVRQ DV WKH FKDQJH LQ WRWDO GLUHFW FRVWV GLYLGHG E\ WKH FKDQJH LQ EDVLQ SKRVSKRUXV RXWIORZ &F &Uf3F 3Uf ZKHUH & WRWDO GLUHFW FRVWV SUHIHUHQFH VFHQDULR F FXUUHQW VFHQDULR 3 EDVLQ SKRVSKRUXV RXWIORZ 6HFRQGDU\ FRVWV GXH WR

PAGE 74

FKDQJHV LQ IDFWRUV RI SURGXFWLRQ RU RXWSXW ZHUH LQFOXGHG LQ WKH FRVW HIIHFWLYHQHVV HVWLPDWLRQ $ QHJDWLYH VLJQ LQ WKH GHQRPLQDWRU LQGLFDWHV WKDW EDVLQ SKRVSKRUXV RXWIORZ ZDV UHGXFHG XQGHU WKH FXUUHQW VFHQDULR 3KRVSKRUXV UXQRII FRQFHQWUDWLRQV PJf IURP ODQG DUHDV DQG SKRVSKRUXV RXWIORZV WRQV\Uf IURP GUDLQDJH VXEEDVLQV ZHUH FRPSDUHG WR WDUJHW JRDOV WKDW ZHUH VSHFLILHG LQ WKH /DNH 2NHHFKREHH 6:,0 3ODQ 6):0' f 7KHVH SK\VLFDO FULWHULD JDYH DQRWKHU PHDVXUH RI WKH VXFFHVV RI D PDQDJHPHQW VFHQDULR 6FHQDULRV ZHUH DOVR FRPSDUHG WR GHWHUPLQH ZKLFK GHVLJQ PD[LPL]HG WKH XVH DQG IHHGEDFN RI SKRVSKRUXV WKURXJKRXW WKH UHJLRQDO ODQGVFDSH (PHUJ\ LQGLFHV SURYLGHG VXFK PHDQV IRU FRPSDULVRQ 6HYHUDO LQGLFHV ZHUH SURSRVHG E\ 2GXP DQG $UGLQJ f WR DQDO\]H VKULPS PDULFXOWXUH LQ (FXDGRU 7KHVH LQGLFHV DUH DOVR XVHIXO IRU FRPSDULQJ SKRVSKRUXV PDQDJHPHQW VFHQDULRV IRU WKH QRUWK 2NHHFKREHH EDVLQ (DFK LQGH[ LV GHILQHG EULHIO\ UHIHU WR )LJXUH IRU LOOXVWUDWLRQf 6RODU WUDQVIRUPLW\ WKH HTXLYDOHQW VRODU HQHUJ\ WKDW ZRXOG EH QHFHVVDU\ WR JHQHUDWH D XQLW RI UHVRXUFH HIILFLHQWO\ DQG UDSLGO\ VHMM (PHUJ\ SHU XQLW PDVV HQHUJ\ RI RQH W\SH UHTXLUHG WR JHQHUDWH D XQLW PDVV RI PDWHULDO VHMJ (PHUJ\ LQYHVWPHQW UDWLR WKH UDWLR RI HPHUJ\ IHG EDFN IURP WKH HFRQRP\ WR WKH IUHH HPHUJ\ LQSXWV IURP WKH HQYLURQPHQW ), 1HW HPHUJ\ \LHOG UDWLR HPHUJ\ RI DQ RXWSXW GLYLGHG E\ WKH HPHUJ\ RI WKH LQSXWV WKDW DUH IURP WKH PDLQ HFRQRP\ LH SXUFKDVHGf <)

PAGE 75

(PHUJ\ ,QYHVWPHQW 5DWLR ), 1HW (PHUJ\
PAGE 76

&+$37(5 5(68/76 5HVXOWV RI WKH HYDOXDWLRQ RI SKRVSKRUXV EXGJHWV GROODU FRVWV DQG HPHUJ\ DUH JLYHQ IRU HDFK RI ILYH SKRVSKRUXV VFHQDULRV EDVH FDVH SKRVSKRUXV PDQDJHPHQW PD[LPXP SKRVSKRUXV XVH SUHGHYHORSPHQW GLVSHUVHG SKRVSKRUXV PDQDJHPHQW DQG FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW 3KRVSKRUXV %XGJHWLQJ 3KRVSKRUXV EXGJHW UHVXOWV DUH VXPPDUL]HG E\ ODQG XVH LQ 7DEOHV WKURXJK IRU HDFK UHOHYDQW VFHQDULR %XGJHW FRPSRQHQWV DUH DOVR VXPPDUL]HG GLDJUDPPDWLFDOO\ LQ )LJXUHV WKURXJK E\ VFHQDULR 7KH HQHUJ\ V\VWHPV GLDJUDP LOOXVWUDWHV WKH FRXSOLQJ RI WKH K\GURORJ\ RI WKH UHJLRQ WR WKH IORZ RI SKRVSKRUXV WKURXJK LW 3KRVSKRUXV VRXUFHV DUH LQGLFDWHG DV HQYLURQPHQWDO LQSXWV WR WKH OHIW RI WKH GLDJUDP DQG SXUFKDVHG LPSRUWV IURP WKH WRS 7DQNV LQGLFDWH VWRUDJHV RI SKRVSKRUXV ERWK RQVLWH LQ VRLOV DQG ELRPDVV DQG RIIVLWH WKURXJK DVVLPLODWLRQ LQ FDQDOV DQG ZHWODQGV 3KRVSKRUXV ,PSRUWV DQG ([SRUWV )LJXUH VXPPDUL]HV DQQXDO LPSRUWV DQG H[SRUWV RI SKRVSKRUXV FRQWDLQLQJ PDWHULDOV DFURVV QRUWK 2NHHFKREHH EDVLQ ERXQGDULHV XQGHU WKH EDVH FDVH VFHQDULR ,PSRUWV DUH SULPDULO\ IHUWLOL]HU DQG GDLU\ IHHG DQG PDMRU H[SRUWV DUH YDULRXV FURSV UDZ PLON DQG OLYHVWRFN ,PSRUWV DQG H[SRUWV ZHUH DOVR VXPPDUL]HG E\ ODQG XVH 7DEOH

PAGE 77

7DEOH 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH %DVH &DVH 6FHQDULR /$1' 86( 1(7 3 5$,1)$// 5812)) ,032576 3 3 WRQV\Uf WRQV\Uf WRQV\Uf 216,7( $66,0,/$7(' 3 6725$*( 3 WRQV\Uf WRQV\Uf %$6,1 287)/2: 3 WRQV\Uf ,PSURYHG 3DVWXUH 'DLU\ %DP +D\ILHOG 0LON +HUG 3DVWXUH 2WKHU 3DVWXUH 6ROLGV 6SUHDGLQJ $UHD 6SUD\ ILH ,G ; ; ; ; ; ; 8PPSURYHG 3DVWXUH 5DQJHODQG &LWUXV )RUHVWHG 8SODQG :DVWH 7UHDWPHQW ; &RPPHUFLDO )RUHVW 2WKHU 8UEDQ ; ; 8UEDQ 5HVLGHQWLDO 6XJDUFDQH 6RG 7UXFN &URSV 2UQDPHQWDO %DUUHQ /DQG 2WKHU $JULFXOWXUH ; ; *ROI &RXUVH :HWODQGV ; QRW TXDQWLILHG WRQ NJ

PAGE 78

7DEOH 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR /$1' 86( 1(7 ) ,032576 WRQV\Uf 5$,1)$// 3 WRQV\Uf 5812)) 3 WRQV\Uf 216,7( $66,0,/$7(' 3 6725$*( 3+263+2586 WRQV\Uf WRQV\Uf %$6,1 287)/2: WRQV\Uf ,PSURYHG 3DVWXUH 'DLU\ %DP ; ; +D\ILHOG ; ; +LJK ,QWHQVLW\ $UHD ; ; 0LON +HUG 3DVWXUH ; ; 2WKHU 3DVWXUH ; ; 6SUD\ILHOG 8QLPS URYHG 3DVWXUH ; ; 5DQJHODQG &LWUXV )RUHVWHG 8SODQG :DVWH 7UHDWPHQW ; &RPPHUFLDO )RUHVW 2WKHU 8UEDQ ; ; 8UEDQ 5HVLGHQWLDO 6XJDUFDQH 6RG 7UXFN &URSV 2UQDPHQWDO %DUUHQ /DQG 2WKHU $JULFXOWXUH ; ; *ROI &RXUVH :HWODQGV ; QRW TXDQWLILHG WRQ NJ

PAGE 79

7DEOH 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ /$1' 86( 1(7 3 ,032576 WRQV\Uf 5$,1)$// 3 WRDV\Uf 5812)) 3 WRDV\Uf 216,7( 3 6725$*( WRQV\Uf $66,0,/$7(' 3+263+2586 WRDV\Uf %$6,1 287)/2: WRDV\Uf ,PSURYHG 3DVWXUH 8QLPSURYHG 3DVWXUH 5DQJHODQG 'DLU\ %DP ; ; +D\ILHOG ; ; 2WKHU 3DVWXUH ; ; 6ROLGV 6SUHDGPJ $UHD ; ; 6SUD\ILHOG ; ; )RUHVWHG 8SODQG &LWUXV :DVWH 7UHDWPHQW ; &RPPHUFLDO )RUHVW 2GLHU 8UEDQ ; ; 8UEDQ 5HVLGHQWLDO 6RG 7UXFN &URSV 6XJDUFDQH 2UQDPHQWDO %DUUHQ /DQG 2WKHU $JULFXOWXUH ; ; *ROI &RXUVH :HWODQGV ; QRW TXDQWLILHG WRQ NJ

PAGE 80

7DEOH 3KRVSKRUXV %XGJHW 5HVXOWV E\ /DQG 8VH IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ /$1' 86( 1(7 3 ,032576 WRQV\Uf 5$,1)$// 3 WRQV\Uf 5812)) 3 WRQV\Uf 216,7( 3 6725$*( WRQV\Uf $66,0,/$7(' 3+263+2586 WRQV\Uf %$6,1 287)/2: WRQV\Uf ,PSURYHG 3DVWXUH 8QLPSURYHG 3DVWXUH 5DQJHODQG 'DLUY %DP ; ; +D\ILHOG ; ; 0LON +HUG 3DVWXUH ; ; 2WKHU 3DVWXUH ; ; 6ROLGV 6SUHDG $UHD ; ; 6SUD\ILHOG ; ; )RUHVWHG 8SODQG &LWUXV :DVWH 7UHDWPHQW ; &RPPHUFLDO )RUHVW 2WKHU 8UEDQ ; ; 8UEDQ 5HVLGHQWLDO 6RG 7UXFN &URSV 6XJDUFDQH 2UQDPHQWDO %DUUHQ /DQG 2WKHU $JULFXOWXUH ; ; *ROI &RXUVH :HWODQGV ; QRW TXDQWLILHG WRQ NJ 21 21

PAGE 81

[SRUWV %DV L Q RXWIORZ Ff [SRUWV DVP RXWIORZ Ef Gf )LJXUH 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH %DVH &DVH 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf V

PAGE 82

[SRUWV %DVLQ RXWIORZ [SRUWV DVP RXWIORZ Ef Ff Gf )LJXUH 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf DV RR

PAGE 83

%DVLQ RXWIORZ Ef I LJXUH 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 3UHGHYHORSPHQW 6FHQDULR Df (QHUJ\ 6\VWHPV 'LDJUDP DQG Ef %DVLQ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf 21 12

PAGE 84

[SRUWV %DVLQ RXWIORZ [SRUWV DVP RXWIORZ Ff [SRUWV DVP RXWIORZ [SRUWV DVP RXWIORZ Ef Gf )LJXUH 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf

PAGE 85

5DLQ LQ 5DLQ PSRUWV ZDWHU IORZ f LI RQVLWH U 63Lc1, M L7 AAORUDJHAeB M/ ,I RIIVLWH -_ M/ 7AWRUDJHW7\ XHOV *RRGV t LHUYLFHV [SRUWV %DVLQ RXWIORZ [SRUWV DVP RXWIORZ Ef Ff Gf )LJXUH 'LDJUDP RI 3KRVSKRUXV %XGJHWV DQG 7KHLU ,QWHUDFWLRQV IRU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ Df (QHUJ\ 6\VWHPV 'LDJUDP Ef %DVLQ 3KRVSKRUXV %XGJHW Ff %HHI 3DVWXUH 3KRVSKRUXV %XGJHW DQG Gf 'DLU\ 3KRVSKRUXV %XGJHW 8QLWV DUH WRQV 3\U ( JUDPV 3\Uf

PAGE 86

)HUWLOL]HU b +XPDQ IRRG b GHWHUJHQW 'DLU\ IHHG b 0LQHUDOV b 0RODVVHV b /LYHZHLJKW b 0LON b 7UXFN FURSV 6XJDUFDQH b 6ZHHW &RP b &RPSRVW b &LWUXV b 6RG b 2UQDPHQWDOV 7LPEHU b b 3KRVSKRUXV ,PSRUWV WRWDO WRQV\Uf 3KRVSKRUXV ([SRUWV WRWDO WRQV\Uf )LJXUH 'LVWULEXWLRQV RI ,PSRUWV DQG ([SRUWV RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 87

f %DVHG RQ GDWD IRU DYHUDJH SURGXFWLRQ SUDFWLFHV WKH ODUJHVW XVH RI SKRVSKRUXV ZDV DV IHUWLOL]HU IRU LPSURYHG SDVWXUH bf GXH WR LWV ODUJH JHRJUDSKLFDO H[WHQW 'DLULHV ZLWK SHUFHQW RI WKH LPSRUWV DFFRXQWHG IRU WKH ODUJHVW H[SRUW RI SKRVSKRUXV bf 1HW SKRVSKRUXV LPSRUWV ZHUH FDOFXODWHG IRU HDFK ODQG XVH IRU FRPSDULVRQ RQ D XQLW EDVLV 7KHVH FRHIILFLHQWV JLYH D UHODWLYH DVVHVVPHQW RI WKH LQWHQVLW\ RI SKRVSKRUXV XVH DFURVV ODQG XVH W\SHV 7UXFN FURSV XWLOL]HG WKH PRVW SKRVSKRUXV SHU DFUH RQ D QHW EDVLV 'DLULHV DUH WKUHH WLPHV PRUH LQWHQVLYH LQ WKH XVH RI SKRVSKRUXV WKDQ LPSURYHG EHHI SDVWXUH 6RG SURGXFWLRQ UHVXOWV LQ D QHW H[SRUW RI SKRVSKRUXV SHU DFUH VLQFH VRLO DV ZHOO DV SODQW ELRPDVV LV KDUYHVWHG 8QGHU WKH EDVH FDVH VFHQDULR PRUH WKDQ QHW WRQV RI SKRVSKRUXV ZHUH LPSRUWHG WR WKH QRUWK 2NHHFKREHH EDVLQ DQQXDOO\ FRPSDUHG WR WKH KLJK SKRVSKRUXV VFHQDULR ZKLFK UHVXOWHG LQ PRUH WKDQ QHW WRQV RI SKRVSKRUXV EHLQJ LPSRUWHG DQQXDOO\ 7DEOH f 8QGHU WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR FKDQJHV LQ VXJDUFDQH DQG GDLU\ SUDFWLFHV KDG DQ LPSDFW RQ LPSRUWV DQG H[SRUWV RI SKRVSKRUXVFRQWDLQLQJ PDWHULDOV )HUWLOL]HU ZDV UHGXFHG E\ WRQV DQQXDOO\ IURP WKH EDVH FDVH DV D UHVXOW RI VXEVWLWXWLQJ ULFH IRU FRUQ LQ URWDWLRQ ZLWK VXJDUFDQH 5LFH SURGXFWLRQ GRHV QRW UHTXLUH DQ\ SKRVSKRUXV IHUWLOL]HU &KDQJHV LQ DQQXDO H[SRUWV DVVRFLDWHG ZLWK WKLV SUDFWLFH ZHUH DOVR REVHUYHG D WRQ LQFUHDVH LQ ULFH H[SRUWV D WRQ LQFUHDVH LQ VXJDUFDQH H[SRUWV GXH WR WKH ULFH HIIHFW RQ \LHOG DQG D WRQ GHFUHDVH LQ VZHHW FRUQ H[SRUWV &RQILQHPHQW RI DOO GDLULHV UHVXOWHG LQ D WRQ LQFUHDVH LQ PLON SURGXFWLRQ DQQXDOO\ RYHU WKH EDVH FDVH 8QGHU WKH ILUVW GHVLJQ ZLWK ODQGVSUHDGLQJ RI VROLGV

PAGE 88

7DEOH 3KRVSKRUXV ,PSRUWV WR DQG ([SRUWV IURP WKH 1RUWK 2NHHFKREHH %DVLQ XQGHU WKH %DVH &DVH 6FHQDULR /$1' 86( 3+263+2586 ,032576 WRQV\Uf 3+263+2586 (;32576 WRQV\Uf 1(7 3 ,032576 OEVXQLW\Uf f ,PSURYHG 3DVWXUH OEVDF\U 'DLU\ OEVFRZ\U OEVDF\Uf &LWUXV OEVDF\U 6XJDUFDQH OEVDFYU 6RG OEVDF\U 7UXFN &URSV OEVDF\U 8UEDQ 5HVLGHQWLDO OEVFDS\U 2UQDPHQWDO OEVDF\U 8QLPSURYHG 3DVWXUH 5DQJHODQG OEVDF\U :DVWH WUHDWPHQW OEV0*< *ROI &RXUVH OEVDF\U &RPPHUFLDO )RUHVW OEVDF\U WRQ NJ OE J

PAGE 89

FRPSRVW H[SRUWV GHFUHDVHG E\ WRQV DQQXDOO\ :KHQ DOO VROLGV ZHUH FRPSRVWHG DV LQ GHVLJQ DQQXDO H[SRUWV LQFUHDVHG E\ WRQV RYHU WKH EDVH FDVH 7KH HIIHFWV RI WKHVH FKDQJHV RQ WKH DQQXDO QHW LPSRUW RI SKRVSKRUXV WR WKH EDVLQ DUH VXPPDUL]HG LQ 7DEOHV DQG IRU GHVLJQV DQG UHVSHFWLYHO\ 5HGXFWLRQ LQ QHW LPSRUWV ZDV DFKLHYHG E\ VRXUFH UHGXFWLRQ DQG H[SRUW HQKDQFHPHQW 7KH UDWLR RI WKH WRQV RI SXUFKDVHG SKRVSKRUXV LPSRUWV WR SKRVSKRUXV LQSXWV b IURP WKH HQYLURQPHQW PD\ EH UHIHUUHG WR DV WKH SKRVSKRUXV LQYHVWPHQW UDWLR 8VLQJ GDWD IURP )LJXUHV WKURXJK WKLV UDWLR ZDV DW LWV PD[LPXP RI XQGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR f 3KRVSKRUXV PDQDJHPHQW GHFUHDVHG WKH UDWLR E\ SHUFHQW 7KH SKRVSKRUXV LQYHVWPHQW UDWLR ZDV JUHDWHVW IRU GDLULHV SULRU WR ,PSURYHG EHHI SDVWXUH RWKHU DJULFXOWXUH DQG VXJDUFDQH DUH RWKHU ODQG XVH W\SHV ZLWK UDWLRV VLJQLILFDQWO\ JUHDWHU WKDQ WKH EDVLQZLGH DYHUDJH $QRWKHU UDWLR XVHIXO IRU FRPSDULQJ VFHQDULRV LV WKH QHW SKRVSKRUXV UDWLR RU WKH UDWLR RI WKH WRQV RI SKRVSKRUXV LQ SURGXFWV WR SXUFKDVHG SKRVSKRUXV LPSRUWV 7KH QHW SKRVSKRUXV UDWLR ZDV JUHDWHVW XQGHU WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW GHVLJQ VFHQDULR 7KH H[SRUW RI FRPSRVWHG GDLU\ PDQXUH DQG ULFH IURP VXJDUFDQH ILHOGV FRQWULEXWHG WR WKH SHUFHQW LQFUHDVH IURP f XQGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR WR f 3KRVSKRUXV 5XQRII 3KRVSKRUXV FRQFHQWUDWLRQV LQ GUDLQDJH ZDWHUV IURP DOO ODQG XVHV ZHUH HVWLPDWHG XVLQJ WKH &5($06:7 UXQRII PRGHO 5HVXOWV DUH GLVSOD\HG VSDWLDOO\ LQ )LJXUH WKURXJK IRU WKH EDVH FDVH PD[LPXP SKRVSKRUXV XVH SUHGHYHORSPHQW DQG

PAGE 90

)LJXUH /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 91

[F fV;;DD;; fU[[[[[[\ f [ f m [[[[[[ f f ![ [! f f !nD![[?!r[Y! f [[[ U[[[[[[ [[r [[[[[ a7!r r \![[!nr [[ n$ n fr 9 I U b [[![Y[MF[[!r [[[[[[[!A[![ ![[Y fr ?[[ [[[[[[[![[[!R[[P rWI[[\![[[!r[!! Mr Yr \ f [ [ [ [ [ [ [ [ [[ [ [ f A frr } fr fr f !f frf‘f ; $ f f r D $ $ &' LV m r R R R R , R $ m r LQ r f 2 G R L f L P &0 Q r R 2 G Z R G $ $ $ $ $ ’ f f IO W 3 nr 0 ,I m I W 9 IIO ,r (66RL

PAGE 92

)LJXUH /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV XQGHU WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR

PAGE 93

3/$1 3'53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 /$1' 86( %$55(1 /$1' &,7586 *2/) &2856( ,03529(' 3$6 5$1*(/$1' + 758&. &5236 5(6,'(17,$/ 815,3 3$6785( &200 )25(675< 251$0(17$/6 27+(5 $* )$50 )25(67(' 83/$1'6 27+(5 85%$1 :$67( 757 Â’ 68*$5 0,// M :$7(5 %2',(6 68*$5&$1( P :(7/$1'6 N [ [![ ;..; 0.;; +.;;;;;}f \..;![YVfYVY\[Y\ .... 3/$1 3'53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 $9(5$*( 3 &21& PJ,f 2% fA 92

PAGE 94

)LJXUH /DQG &RYHU 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV IURP /DQG 8VH 3RO\JRQV XQGHU WKH 3UHGHYHORSPHQW 6FHQDULR

PAGE 95

3/$1 6&(1$3/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 /$1' 86( %$55(1 /$1' &,7586 *28) &2856( ,03529(' 3$6 5$1*(/$1' 758&. &5236 5(6,'(17,$/ 0 81,03 3$6785( &200 )25(675< ’ 251$0(17$/6 ’ 62' )$50 ‘ :$67( 757 ’ GDLU\ )25(67(' 83/$1'6 27+(5 $* ’ 68*$5 0,// c_ :$7(5 %2',(6 27+(5 85%$1 ’ 68*$5&$1( :(7/$1'6 3/$1 6&(1$3/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 $9(5$*( 3 &21& PJ,f R RL $ ! !

PAGE 96

)LJXUH /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV IURP /DQG 8VH 3RO\JRQV XQGHU WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR

PAGE 97

3/$1 6&(1%3/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 /$1' 86( /$1' &,7586 &200 )25(675< '$,5< )25(67(' 83/$1'6 *2/) &2856( ,03529(' 3$6 251$0(17$/6 27+(5 $* 27+(5 85%$1 5$1*(/$1' 758&. &5236 5(6,'(17,$/ ( O 8183 3$6785( 62' )$50 :$67( 757 ’ 68*$5 0,// :$7(5 %2',(6 ’ 68*$5&$1( :(7/$1'6 $.;; 6[[[ [[[[ ;..; [[[ [[[ ;;; !r IF[[[[ [[ 4+;[;U ![ [[[[[[ [[ [[[[[[ [ ‘ t L r W£ f L b [[[[[ Q [[[[[[N [N[NN[N M [[[[[[Y[ ;;;;;11 LN0;; f?[![[! [[[V? [[[[[[[ [[[[[ [[[[[[[[[ [[[! 1 [[[ [! [[[[ [ ![! [ [ [ [ [ [ !L [ [ [[[;[Q![[[[?[! ZF[[[[[[[[ [[! [ [[[[! R[[ [[ [[ [[! [[[[ ![[!!! [[[[[ ;;;;; [[!! ;[[[[[[[ [[[[ ;;;;;;;;; [[[ W[[[[[ 0.;; [[[[[ IF[[[[ [[[[[[[ ;;.;;;;;UI !rY[[!-[[! [[[ ;;;;;; [[[[!? ;;;;;[ 3/$1 6&(1%3/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 $9(5$*( 3 &21& PJ,f 2% RR

PAGE 98

GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV UHVSHFWLYHO\ 7KH PDS FRORU LQWHQVLILHV ZLWK LQFUHDVLQJ SKRVSKRUXV FRQFHQWUDWLRQ &RPSDULVRQ ZLWK WKH ODQG XVH PDS VKRZV GDLULHV ZLWK FRQFHQWUDWLRQV H[FHHGLQJ PJ 3 +LJK FRQFHQWUDWLRQV DUH DOVR LQGLFDWLYH RI PXFN VRLOV VRXWK RI /DNH ,VWRNSRJD DQG LQ WKH VRXWKHUQ SRUWLRQ RI WKH 6 VXEEDVLQ /RZHU FRQFHQWUDWLRQV LQ WKH UDQJH RI PJ 3 DUH DVVRFLDWHG ZLWK IRUHVWHG XSODQGV XQLPSURYHG SDVWXUH DQG UDQJHODQG )LJXUH LOOXVWUDWHV WKH VSDWLDO KHWHURJHQHLW\ RI SKRVSKRUXV UXQRII FRQFHQWUDWLRQ DPRQJ ODQG XVH SRO\JRQV XQGHU WKH EDVH FDVH VFHQDULR 0RUH WKDQ SRO\JRQV KDG DYHUDJH UXQRII FRQFHQWUDWLRQV DYHUDJLQJ OHVV WKDQ PJ 3 ZKHUHDV RQO\ SRO\JRQV KDG FRQFHQWUDWLRQV H[FHHGLQJ PJ 3 7KH KLHUDUFKLFDO QDWXUH RI WKLV UHODWLRQVKLS LV FRPPRQ WR WKH GLVWULEXWLRQ RI FKHPLFDO HOHPHQWV 8QGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR SHUFHQW RI WKH DQQXDO QHW SKRVSKRUXV LQSXWV HQWHUHG EDVLQ GUDLQDJH ZDWHUV DV UXQRII FRPSDUHG WR SHUFHQW ZLWK EDVH FDVH SKRVSKRUXV PDQDJHPHQW 'DLULHV DQG EHHI SDVWXUH FRQWULEXWHG PRUH WKDQ SHUFHQW RI WKH SKRVSKRUXV LQ UXQRII DQG DW WKH EDVLQ RXWOHW (LJKW\ILYH SHUFHQW RI WKH WRQV RI DQQXDO GDLU\ UXQRII SKRVSKRUXV ZDV DWWULEXWHG WR WKH EDUQ DQG KLJK LQWHQVLW\ DUHDV XQGHU PD[LPXP SKRVSKRUXV XVH )RUHVWHG XSODQGV DQG JUDVV\ VFUXEODQG ZHUH HVWLPDWHG WR FRQWULEXWH WRQV RI UXQRII SKRVSKRUXV DQQXDOO\ XQGHU WKH SUHGHYHORSPHQW VFHQDULR 'DLU\ UXQRII XQGHU WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR GHVLJQ O ZDV HVWLPDWHG DW WRQV 3\U (FRUHDFWRUV DQG VROLGV FRPSRVWLQJ XQGHU GHVLJQ

PAGE 99

1XPEHU RI 3RO\JRQV ! ! ! 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQ PJf )LJXUH 6SDWLDO +LHUDUFK\ RI 5XQRII &RQFHQWUDWLRQ DPRQJ /DQG 8VH 3RO\JRQV

PAGE 100

UHVXOWHG LQ D SHUFHQW UHGXFWLRQ LQ GDLU\ UXQRII WRQVf ZKHQ FRPSDUHG WR WKH EDVH FDVH VFHQDULR 5XQRII FRQFHQWUDWLRQV IURP GDLU\ ODQG XVHV VWLOO H[FHHGHG PJ 3 XQGHU ERWK GHVLJQV 6LQFH WKH PLON KHUG LV UHVWULFWHG IURP SDVWXUH ZKHQ KRXVHG LQ FRQILQHPHQW V\VWHPV UXQRII IURP WKHVH ILHOGV UHWXUQHG WR EDFNJURXQG OHYHOV 7KH GLIIHUHQFH EHWZHHQ SKRVSKRUXV LQSXWV DQG SKRVSKRUXV UXQRII UHSUHVHQWV RQVLWH SKRVSKRUXV VWRUDJH 8QGHU SUHGHYHORSPHQW FRQGLWLRQV DQ HVWLPDWHG WRQV RI SKRVSKRUXV ZHUH VWRUHG RQVLWH LQ WKH ZDWHUVKHG DQQXDOO\ 0RUH WKDQ DQ RUGHU RI PDJQLWXGH LQFUHDVH LQ DQQXDO RQVLWH VWRUDJH WRQV 3f ZDV REVHUYHG E\ PRVW RI ZKLFK ZDV DVVRFLDWHG ZLWK LPSURYHG EHHI SDVWXUH 3KRVSKRUXV 2XWIORZ %DVLQ SKRVSKRUXV RXWIORZ IURP HDFK SRO\JRQ ZDV FDOFXODWHG DV WKH GLIIHUHQFH EHWZHHQ UXQRII SKRVSKRUXV DQG DVVLPLODWHG SKRVSKRUXV )LJXUH LV D PDS VKRZLQJ SHU XQLW EDVLQ RXWIORZ IURP HDFK SRO\JRQ XQGHU WKH EDVH FDVH VFHQDULR )RU QRQSRLQW VRXUFHV WKH XQLWV DUH DFUHV 8QLWV DUH FRZV IRU GDLULHV ZKLFK KDYH ERWK SRLQW DQG QRQSRLQW VRXUFH FKDUDFWHULVWLFV DQG PLOOLRQ JDOORQV IRU WKH SRLQW VRXUFH VHZDJH WUHDWPHQW SODQW %DVLQV ZLWK WKH VPDOOHVW DVVLPLODWLRQ FRHIILFLHQWV VXFK DV 6 6 DQG & VKRZ WKH JUHDWHVW SHU XQLW RXWIORZ IURP WKH EDVLQ DV UHSUHVHQWHG E\ WKH GDUNHU FRORUDWLRQ 8QGHU WKH EDVH FDVH PRUH WKDQ KDOI RI WKH HVWLPDWHG WRQV RI EDVLQ SKRVSKRUXV RXWIORZ DQQXDOO\ ZDV DWWULEXWHG WR LPSURYHG EHHI SDVWXUH 'DLULHV DFFRXQWHG IRU RQO\ SHUFHQW RI WKH DQQXDO RXWIORZ ZLWK QHDUO\ WKH VDPH FRQWULEXWLRQ DV XQLPSURYHG SDVWXUH DQG UDQJHODQG

PAGE 101

)LJXUH /DQG 8VH 3RO\JRQV DQG $YHUDJH $QQXDO %DVLQ 3KRVSKRUXV 2XWIORZ XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 102

3/$1 '53/$1 5()(5(1&( 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 /$1' 86( %$55(1 /$1' &67586 &200 )25(675< '$,5< )25(67(' 83/$1'6 *2/) &2856( ,03529+f 3$6 251$0(17$/6 27+(5 $* 27+(5 85%$1 5$1*(/$1' 758&. &5236 5(6,'(17,$/ + 81,03 3$6785( 62' )$50 :$67( 79W7 Â’ 68*$5 0,// :$7(5 %2',(6 Â’ 68*$5&$1( e :(7/$1'6 3/$1 '53/$1 5()(5(1&( 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 3 /2$' 72 /$.( OEVSURG XQLW\HDUf 26 RV RH Â’ ! ! b RF RR

PAGE 103

2QO\ SHUFHQW RI QHW SKRVSKRUXV LPSRUWV UHDFKHG /DNH 2NHHFKREHH 5DLQIDOO FRQWULEXWHG DQ DGGLWLRQDO WRQV RI SKRVSKRUXV WR WKH EDVLQ H[FOXGLQJ ZHWODQGV DQG ZDWHU ERGLHVf HDFK \HDU 7KH PDMRULW\ RI SKRVSKRUXV LQSXWV ZDV VWRUHG RQVLWH LQ VRLOV RU ELRPDVV DQG SHUFHQW ZDV VWRUHG LQ ZHWODQGV DQG FDQDOV DORQJ IORZ SDWKV WR WKH ODNH 3KRVSKRUXV DVVLPLODWLRQ LV D IUHH VHUYLFH SURYLGHG E\ WKH HQYLURQPHQW 8QGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR DERXW RQHWKLUG RI WKH UXQRII SKRVSKRUXV QHDUO\ WRQV OHIW WKH EDVLQ DQQXDOO\ FRPSDUHG WR DQ HVWLPDWHG WRQV XQGHU EDVH FDVH FRQGLWLRQV (LJKW\ SHUFHQW RI WKH DQQXDO SKRVSKRUXV LQSXWV ZHUH VWRUHG LQ WKH EDVLQ HLWKHU RQVLWH RU LQ VWUHDPV DQG FDQDOV (OHYHQ WRQV RI SKRVSKRUXV ZHUH FRQWULEXWHG WR /DNH 2NHHFKREHH IURP WKH ZDWHUVKHG DQQXDOO\ XQGHU WKH SUHGHYHORSPHQW VFHQDULR OHVV WKDQ SHUFHQW RI WKH WRQV RI GLUHFW SKRVSKRUXV LQSXW WR WKH ODNH IURP UDLQIDOOf 6LQFH WKH VFHQDULR UHIOHFWV SUHFKDQQHOL]DWLRQ WKH RQO\ VXUIDFH LQSXWV WR WKH ODNH ZHUH IURP QDWXUDO PDUVKHV DQG VORXJKV VXFK DV )LVKHDWLQJ &UHHN DQG WKH .LVVLPPHH 5LYHU 7KH QHW HIIHFWV RI WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV RQ WKH EDVH FDVH EDVLQ SKRVSKRUXV EXGJHW ZHUH D WRQ DQQXDO UHGXFWLRQ LQ EDVLQ SKRVSKRUXV RXWIORZ XQGHU GHVLJQ DQG DQ DGGLWLRQDO WRQ\U UHGXFWLRQ XVLQJ GHVLJQ 'DLULHV FRQWULEXWHG WRQV XQGHU GHVLJQ (FRUHDFWRUV DQG VROLGV FRPSRVWLQJ XQGHU GHVLJQ UHVXOWHG LQ D SHUFHQW UHGXFWLRQ LQ EDVLQ SKRVSKRUXV RXWIORZ WRQVf IURP GDLULHV ZKHQ FRPSDUHG WR WKH EDVH FDVH 8QGHU WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR HDFK EDVLQ VFDOH FKHPLFDO WUHDWPHQW SODQW DSSOLHG DW VL[ VXEEDVLQ RXWOHWV KDG DQ SHUFHQW SKRVSKRUXV

PAGE 104

UHPRYDO HIILFLHQF\ 5HVXOWV IRU HDFK VXEEDVLQ DUH VXPPDUL]HG LQ 7DEOH $ WRWDO RI WRQV RI SKRVSKRUXV ZHUH UHPRYHG DQQXDOO\ DV SUHFLSLWDWH RU VOXGJH UHVXOWLQJ LQ D WRWDO DQQXDO DYHUDJH SKRVSKRUXV RXWIORZ RI WRQV IURP DOO VXEEDVLQV XQGHU WKLV VFHQDULR WRQV 3\U IURP WUHDWPHQW VXEEDVLQV SOXV WRQV 3\U IURP UHPDLQLQJ VXEEDVLQVf %DVHG RQ SKRVSKRUXV RXWIORZ GDWD DGMXVWHG IRU UXQRII YROXPH DQ RYHUDOO UHGXFWLRQ RI WRQV RU SHUFHQW RI WKH KLVWRULFDO DYHUDJH DQQXDO RXWIORZ IRU WKH SHULRG ZDV PDQGDWHG LQ WKH /DNH 2NHHFKREHH 6XUIDFH :DWHU ,PSURYHPHQW DQG 0DQDJHPHQW 6:,0f 3ODQ 6):0' f IRU DOO VXEEDVLQV LQ WKH VWXG\ DUHD 7KH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR ZDV WKH RQO\ VFHQDULR LQ ZKLFK WKH 6:,0 3ODQ JRDO IRU WKH QRUWK 2NHHFKREHH EDVLQ RI WRQV RI SKRVSKRUXV RXWIORZ DQQXDOO\ DGMXVWHG IRU UXQRII YROXPHf ZDV UHDOL]HG 7KH GLVSHUVHG PDQDJHPHQW VFHQDULR H[FHHGHG WKH JRDO E\ DQG SHUFHQW IRU GHVLJQV DQG UHVSHFWLYHO\ DQG EDVH FDVH PDQDJHPHQW ZDV SHUFHQW DERYH WKH WDUJHW 7KH GLVSHUVHG PDQDJHPHQW VFHQDULRV FRXOG SRVVLEO\ H[FHHG WKH WDUJHW JRDO ZLWK DGMXVWPHQWV LQ LQSXW IORZV PDQDJHPHQW SDUDPHWHUV RU SKRVSKRUXV DVVLPLODWLRQ FRHIILFLHQWV 7KH SKRVSKRUXV DVVLPLODWLRQ DOJRULWKP DQG FDOLEUDWHG FRHIILFLHQWV SURYLGH WKH JUHDWHVW HOHPHQW RI XQFHUWDLQW\ (PHUJY (YDOXDWLRQ 5HVXOWV RI HPHUJ\ HYDOXDWLRQV RI LQGLYLGXDO ODQG XVHPDQDJHPHQW SUDFWLFHV DUH JLYHQ RQ D SHU DFUH EDVLV LQ $SSHQGL[ % $Q H[DPSOH RI HDFK XQLW DQDO\VLV LV JLYHQ LQ )LJXUHV WKURXJK IRU FLWUXV EHHI SDVWXUH GDLU\ VXJDUFDQH RWKHU DJULFXOWXUH

PAGE 105

7DEOH 3KRVSKRUXV %XGJHW 5HVXOWV IRU WKH &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'UDLQDJH 6XEEDVLQ 3KRVSKRUXV 2XWIORZ 3KRVSKRUXV 5HPRYHG WRQV\U f§ $GMXVWHG 3KRVSKRUXV 2XWIORZ & & )LVKHDWLQJ &UHHN 6 6 6' 7RWDO WRQ NJ n$GMXVWHG 3KRVSKRUXV 2XWIORZ 3KRVSKRUXV 2XWIORZ 3KRVSKRUXV 5HPRYHG

PAGE 106

&URS 6DOHV %DVLQ 2XWIORZ )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI &LWUXV /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf VR .!

PAGE 107

/LYHZHLJKW %DVLQ 2XWIORZ )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI %HHI 3DVWXUH /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf 9R

PAGE 108

2XWIORZ )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 'DLU\ /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMFRZ\Uf ‘3r

PAGE 109

? 5RWDWLRQ &URS %DVLQ 2XWIORZ )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 6XJDUFDQH /DQG 8VH XQGHU WKH %DVH &DVH 6FHQDULR (O VHMDF\Uf

PAGE 110

)LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 2WKHU $JULFXOWXUH /DQG 8VH (O VHMDF\Uf 62 21

PAGE 111

? ff7LPEHU %DVLQ 2XWIORZ )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI &RPPHUFLDO )RUHVWU\ (O VHMDF\Uf

PAGE 112

)LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI 8UEDQ /DQG 8VH (O VHMDF\Uf RR

PAGE 113

'LVFKDUJH 3UHFLSLWDWH )LJXUH 8QLW 'LDJUDP IRU (PHUJ\ (YDOXDWLRQ RI %DVLQ 6FDOH 7UHDWPHQW IRU WKH 6 6XEEDVLQ ( VHM\Uf V2

PAGE 114

FRPPHUFLDO IRUHVWU\ DQG XUEDQ ODQG XVHV SOXV WKH EDVLQ VFDOH FKHPLFDO WUHDWPHQW SURFHVV 6RODU WUDQVIRUPLWLHV HPHUJ\XQLW HQHUJ\f DQG SKRVSKRUXV HPHUJ\XQLW PDVV RI SURGXFWV ZHUH FDOFXODWHG EDVHG RQ LQSXWV WR LQGLYLGXDO XQLW SURFHVVHV HVWLPDWHG LQ WKH DSSHQGL[ 7DEOHV WKURXJK DUH VXPPDU\ WDEOHV RI HPHUJ\ HYDOXDWLRQV RI HDFK DOWHUQDWLYH SKRVSKRUXV PDQDJHPHQW VFHQDULR IRU DOO ODQG XVHV LQ WKH QRUWK 2NHHFKREHH EDVLQ 7KH ODUJHVW LQSXW RI VRODU HPHUJ\ XQGHU GHYHORSHG FRQGLWLRQV ZDV DVVRFLDWHG ZLWK XUEDQ ODQG XVHV 5DLQIDOO KXPDQ VHUYLFHV DQG GDLU\ IHHG ZHUH WKH QH[W ODUJHVW VRXUFHV 3ULRU WR GHYHORSPHQW ORZ HQHUJ\ VFHQDULRf UDLQIDOO ZDV WKH PDMRU HPHUJ\ FRQWULEXWLRQ WR WKH ZDWHUVKHG a ( VHM\Uf :KHQ SKRVSKRUXV ZDV LQ PD[LPXP XVH SULRU WR VR ZDV WKH HPHUJ\ IOX[ a ( VHM\Uf ZKLFK ZDV PRUH WKDQ WZHQW\ WLPHV WKH SUHGHYHORSPHQW FRQGLWLRQV 8QGHU DOWHUQDWLYH PDQDJHPHQW FRQGLWLRQV WKH VRODU HPHUJ\ IOX[ WR WKH EDVLQ UDQJHG IURP WR ( VHM\U )LJXUH VXPPDUL]HV IRU HDFK VFHQDULR DQQXDO HPHUJ\ EXGJHWV IRU WKH ZKROH EDVLQ DQG IRU PDMRU ODQG XVH JURXSV ,QSXWV IURP WKH OHIW RI WKH GLDJUDP UHSUHVHQW HQYLURQPHQWDO FRQWULEXWLRQV ,f DQG LQSXWV IURP WKH WRS DUH SXUFKDVHG IURP WKH HFRQRP\ )f (PHUJ\ LQ SURGXFWV LV VKRZQ OHDYLQJ HDFK ER[ WR WKH ULJKW
PAGE 115

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH %DVH &DVH 6FHQDULR 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV ,WHP 9DOXH 8QLWV \UfO 7UDQVIRUPLW\ VHMXQLWf (PHUJ\ ( VHM\Uf &RQWHQW (PHUJ\f0DVV JUDPV 3f ( VHMJ 3! ( (06\U (19 ,521 0(17$/ ,13876 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ( ,UULJDWLRQ ZDWHU ( ( ; ; 3HDW XVH ( ( ( 1215(1(:$%/( ,13876 )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( (r ; 3 )HUWLOL]HU ( ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 0LQHUDOV ( ( ( 0RODVVHV ( ( ( 'DLU\ IHHG ( ( ( r 8UEDQ LQSXWV ( &(( (r 6HUYLFHV ( ( 4 4 ; ( 352'8&76 &LWUXV ( ( ( f /LYHVWRFNLPS URYHG EHHI SDVWXUH ( ( ( /LYHVWRFNXQLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNORZ WHFK GDLU\ ( ( ( /LYHVWRFNORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( /LYHVWRFNVHPLFRQILQHPHQW GDLU\ ( ( ( /LYHVWRFNVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( /LYHVWRFNFRQILQHPHQW GDLU\ ( ( ( 0LONORZ WHFK GDLU\ ( ( ( 0LOOFORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( 0 LONVHPLFRQILQHPHQW GDLU\ ( ( ( 0LONVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( 0LONFRQILQHPHQW GDLU\ ( ( ( &RPSRVWVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( )RUDJHORZ WHFK GDLU\ ( ( ( )RUDJHORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( )RUDJHVHPLFRQILQHPHQW GDLU\ ( ( ( )RUDJHVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( )RUDJHFRQILQHPHQW GDLU\ ( ,( (r :HWODQG SURGXFWLRQORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( 6XJDUFDQH ( ( ( 6ZHHW &RUQ ( ( ( 2WKHU DJ SURGXFWV ( ( ( 7LPEHU ( (r 8(W4 (

PAGE 116

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH 0D[LPXP 3KRVSKRUXV 8VH 6FHQDULR ,WHP 9DOXH 8QLWV \UfO 6RODU 7UDQVIRUPLW\ VHMXQLWf 6RODU (PHUJ\ (O VHM\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\ 0DVV JUDPV 3f (O VHMJ 3f ( (0\U (19,5210(17$/ ,13876 6XQOLJKW ( ; 5DP FKHPLFDO ( ( ( ,UULJDXRQ ZDWHU ( ( ; ; 3HDW XVH ( ( ( 1215(1(:$%/( ,1 3,76 )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 0LQHUDOV ( ( ( 0RODVVHV ( ( ( 'DLU\ IHHG ( ( ( 8UEDQ LQSXWV ( &(( ( 6HUYLFHV ( ( 4 ; ( 352'8&76 &LWUXV ( ( /( /LYHVWRFNLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNXQLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNSUH'DLU\ 5XOH GDLU\ ( ( ( 0LONSUH'DLU\ 5XOH GDLU\ ( ( ( 6XJDUFDQH ( ( ( 6ZHHW &RP ( ( ( 2WKHU DJ SURGXFWV ( ( ( 7LPEHU ( ( (W (

PAGE 117

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH 3UHGHYHORSPHQW 6FHQDULR ,WHP 9DOXH 8QLWV &\Uf 6RODU 7 UDQVIRUPLW\ VHMXPWf 6RODU (PHUJ\ (O VHM\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV3f (O VHMJ 3f ( (0\U (19,5210(17$/ ,13876 6XQOLJKW ( ; 5DP FKHPLFDO ( ( (

PAGE 118

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ ,WHP 9DOXH 8QLWV \UfO 6RODU 7UDQV IRUPLW\ VHMXQLWf 6RODU (PHUJ\ (O VHM\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\ 0DVV JUDPV 3f (O VHMJ 3f ( (06\U (19,5210(17$/ ,13876 6XQOLJKW (( ; 5DLQ FKHPLFDO ( ( ( ,UULJDWLRQ ZDWHU ( ( ; ; 3HDW XVH ( ( ( 1215(1(:$%/( ,13876 )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( ( )HUWLOL]HU (( ( ; &DOFLXP VLOLFDWH ( ( ; /LPH ( J ( ; 0LQHUDOV ( ( ( 0RODVVHV ( ( ( 'DLU\ IHHG ( ( ( )HQFLQJ ( ( ; 8UEDQ LQSXWV ( &(( ( 6HUYLFHV ( 6 ( 4 ; P ( 352'8&76 &LWUXV ( ( ( /LYHVWRFNLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNXQLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNFRQILQHPHQW GDLU\ ( ( ( 0LONFRQILQHPHQW GDLU\ ( ( ( )RUDJHFRQILQHPHQW GDLU\ ( ( ( 6XJDUFDQH ( ( ( 5LFH ( ( ( 2WKHU DJ SURGXFWV ( ( ( 7LPEHU ( ( ) (

PAGE 119

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'HVLJQ ,WHP 9DOXH 8QLWV W\UfO 6RODU 7UDQV IRUPLW\ VHMXQLWf 6RODU (PHUJ\ (O VHM\Uf 3KRVSKRUXV &RQWHQW JUDPV 3f 3KRVSKRUXV (PHUJ\0DVV ( VHM J 3f ( (06 \U (19,5210(17$/ ,13876 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ( ,UULJDWLRQ ZDWHU ( ( ; ; 3HDO XVH 1215(1(:$%/( ,13876 ( ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ,( ( ; 1 )HUWLOL]HU (+ ( ; 3 )HUWLOL]HU ( ( ( r )HUWLOL]HU ( ( ; ,, &DOFLXP VLOLFDWH ( ( ; /LPH ( J ( ; 0 LQHUDOV ( ( ( 0RODVVHV (, ( ( 'DLU\ IHHG (, ( ( r )HQFLQJ ( ( ; 8UEDQ LQSXWV ( &(( (r 6HUYLFHV 352'8&76 ( ( 4 ( ; &LWUXV ( ( (A /LYHVWRFNLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNXQLPSURYHG EHHI SDVWXUH ( ( ( /LYHVWRFNFRQILQHPHQW GDLU\ ZHFRUHDFWRUFRPSRVWLQJ ( ( ( 0LONFRQILQHPHQW GDLU\ ZHFRUHDFWRU FRPSRV WLQJ ( ( ( &RPSRVWFRQILQHPHQW GDLU\ Z HFRUHDFWRUFRPSRVWLQJ ( ,( ( )RUDJHFRQILQHPHQW GDLU\ ZHFRUHDFWRU FRPSRV OLQJ ( ( ( :HOODQG SURG FRQILQHPHQW GDLU\ ZHFRUHDFWRU FRPSRVWLQJ ( ( ( 6XJDUFDQH ( ( ( 5LFH ( (W ( 2WKHU DJ SURGXFWV ( ,( ( 7LPEHU ( ( (U4 (

PAGE 120

7DEOH (PHUJ\ (YDOXDWLRQ RI WKH &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV ,WHP 9DOXH 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV ( (06\U \UfO VHMXQLWf (O VHM\Uf JUDPV 3f (O VHMJ 3f (19,5210(17$/ ,13876 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ( ,UULJDWLRQ ZDWHU ( ( ; ; 3HDW XVH ( ( ( 1215(1(:$%/( ,13876 )XHO ( (r ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; $OXP ( ( ; 0LQHUDOV ( ( ( 0RODVVHV ( ( ( 'DLU\ IHHG ( ( ( 8UEDQ LQSXWV ( &(( ( 6HUYLFHV ( ( P 4 ; P ( 352'8&76 &LWUXV ( ( ( /LYHVWRFNLPSURYHG EHHI SDVWXUH ( ( ( > LYSAUQUWXQLPQPYSUL KSSI QMLLQLUS ) \W)I 6) ‘r IO4 2I 8O9:-O8YO 8L OLLOLX 99 89:O /fDRLXL W /LYHVWRFNORZ WHFK GDLU\ -r n I /7 ( ( fA2 L / A 9 ( 8 92 Z /LYHVWRFNORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( /LYHVWRFNVHPLFRQILQHPHQW GDLU\ ( ( ( /LYHVWRFNVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( /LYHVWRFNFRQILQHPHQW GDLU\ ( ( ( 0LONORZ WHFK GDLU\ ( ( ( 0LONORZ WHFK GDLU\ ZHFRUHDFWRU ( ( (r 0LONVHPLFRQILQHPHQW GDLU\ ( ( ( 0LONVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( 0LONFRQILQHPHQW GDLU\ ( ( ( &RPSRVWVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( )RUDJHORZ WHFK GDLU\ ( ( ( )RUDJHORZ WHFK GDLU\ ZHFRUHDFWRU ( ( WR ( )RUDJHVHPLFRQILQHPHQW GDLU\ ( ( ( )RUDJHVHPLFRQILQHPHQW GDLU\ ZFRPSRVWLQJ ( ( ( )RUDJHFRQILQHPHQW GDLU\ ( ( ( :HWODQG SURGXFWLRQORZ WHFK GDLU\ ZHFRUHDFWRU ( ( ( 6XJDUFDQH ( ( ( 6ZHHW &RP ( ( ( 2WKHU DJ SURGXFWV ( ( ( r 7LPEHU ( ( ) ( 6OXGJH ; ; ; ( ; ;

PAGE 121

6FHQDULR 6\VWHP (QYLURQPHQWDO ,QSXW VHM\Uf 3XUFKDVHG ,QSXW VHM\Uf 3URGXFW 2XWSXW VHM\Uf 1HW (PHUJ\
PAGE 122

%HHI SDVWXUH RSHUDWLRQV DQQXDOO\ UHFHLYHG DERXW SHUFHQW PRUH SXUFKDVHG LQSXWV WKDQ GDLULHV DQG GXH WR WKH YDVW DUHDO H[WHQW RI SDVWXUH HQYLURQPHQWDO LQSXWV DUH WLPHV JUHDWHU &RPSDULVRQ RI HPHUJ\ LQYHVWPHQW UDWLRV (,5f DPRQJ VFHQDULRV LQGLFDWHV WKDW WKH PD[LPXP SKRVSKRUXV XVH DQG GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV ZHUH WKH PRVW HFRQRPLFDOO\ GHYHORSHG EDVLQZLGH (,5 f 7KLV UDWLR LV WLPHV JUHDWHU WKDQ WKH 86 DV D ZKROH (,5 f LQGLFDWLQJ WKDW UHJLRQDO DFWLYLW\ LV PRUH LQWHQVLYH LQ LWV XVH RI SXUFKDVHG UHVRXUFHV 7KH HPHUJ\ LQYHVWPHQW UDWLR RI GDLULHV H[FHHGHG WKH UHJLRQDO LQYHVWPHQW UDWLR DQG LQFUHDVHG ZLWK PDQDJHPHQW LQGLFDWLQJ WKDW SHUKDSV GDLULHV PD\ EH WRR HPHUJ\ LQWHQVLYH WR FRPSHWH LQ WKH UHJLRQ ZKLFK PD\ EH FRQWULEXWLQJ WR WKHLU GHPLVH WKURXJK UHJXODWLRQ $OWHUQDWLYHO\ WKH HPHUJ\ LQYHVWPHQW UDWLR RI EHHI SDVWXUH LQFOXGLQJ LPSURYHG DQG XQLPSURYHGf ZDV DQ RUGHU RI PDJQLWXGH ORZHU WKDQ WKDW RI WKH UHJLRQ LQGLFDWLQJ URRP IRU LQWHQVLILFDWLRQ ZLWK WKH DGGLWLRQDO SXUFKDVH RI UHVRXUFHV 8QGHU WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR WKH EDVLQZLGH LQYHVWPHQW UDWLR ZKLFK LQFOXGHG EDVLQ VFDOH WUHDWPHQW ZDV MXVW VOLJKWO\ JUHDWHU WKDQ WKH EDVH FDVH SKRVSKRUXV PDQDJHPHQW VFHQDULR 7KH HPHUJ\ LQYHVWPHQW UDWLR RI WKH SUHGHYHORSPHQW VFHQDULR ZDV VPDOO VLQFH WKHUH ZHUH QR LQSXWV IURP WKH HFRQRP\ SULRU WR GHYHORSPHQW DVVRFLDWHG ZLWK LQGLDQ WUDGH 1HW HPHUJ\ \LHOG UDWLRV <)f ZHUH HVWLPDWHG EHWZHHQ RQH DQG WZR XQGHU HDFK VFHQDULR H[FHSW ORZ HQHUJ\f $ UDWLR JUHDWHU WKDQ RQH PHDQV WKH SURGXFWV DUH FRQWULEXWLQJ PRUH WR WKH HFRQRP\ WKDQ WKH\ DUH UHTXLULQJ IURP LW 7KHVH UDWLRV DUH

PAGE 123

VLPLODU WR WKRVH UHSRUWHG IRU RWKHU DJULFXOWXUDO SURGXFWV 2GXP f $ \LHOG UDWLR RI VL[ RU JUHDWHU LQGLFDWHV WKH SURGXFW ZRXOG SUHVHQWO\ EH FRPSHWLWLYH DV D SULPDU\ HQHUJ\ VRXUFH (PSRZHU 'HQVLW\ )LJXUH LV D PDS RI WKH HPSRZHU GHQVLW\ VRODU HPHUJ\ SHU XQLW DUHDf RI WKH UHJLRQ XQGHU EDVH FDVH FRQGLWLRQV ,W LV D XVHIXO ZD\ WR LOOXVWUDWH WKH VSDWLDO GHYHORSPHQW LQWHQVLW\ RI WKH UHJLRQ $ PDS RI SKRVSKRUXV FRQFHQWUDWLRQ LV JLYHQ WR FRPSDUH WKH UHJLRQDO LQWHQVLW\ RI SKRVSKRUXV %RWK PDSV LQGLFDWH VSDWLDOO\ KHWHURJHQHRXV GHYHORSPHQW ZLWKLQ WKH EDVLQ (PSRZHU GHQVLW\ LV H[SUHVVHG LQ XQLWV RI ( VRODU HTXLYDOHQW MRXOHV SHU SURGXFWLRQ XQLW SHU \HDU ,Q PRVW FDVHV WKH SURGXFWLRQ XQLW LV DQ DFUH 'DLULHV DUH WKH H[FHSWLRQ ZLWK WKH FRZ DV WKH EDVLV IRU SURGXFWLRQ VLQFH WKH\ DUH D FRPELQDWLRQ RI SRLQW DQG QRQSRLQW VRXUFH DFWLYLWLHV DQG DOO HFRQRPLF DQG SURGXFWLRQ GDWD DUH UHSRUWHG RQ D SHU FRZ EDVLV DV WKH XQLW RI SURGXFWLRQ 8QGHU EDVH FDVH FRQGLWLRQV WKHUH ZHUH DFUHV SHU FRZ RQ DYHUDJH DQG WKH SHU DFUH HPSRZHU GHQVLW\ VWLOO H[FHHGHG ( VHM UHSUHVHQWHG E\ WKH GDUNHVW FRORU RQ WKH PDS 7KH HPSRZHU GHQVLW\ RI YDULRXV ODQG XVH W\SHV FUHDWHV D VSDWLDO KLHUDUFK\ 8QGHYHORSHG DUHDV DQG UDQJHODQG ZHUH LQ WKH UDQJH RI WR ( VHMDF\U FRPSDUHG WR WR ( VHMDF\U IRU DJULFXOWXUH DQG WR ( VHMDF\U IRU XUEDQ DUHDV +LJK HPSRZHU GHQVLW\ DUHDV PD\ EH IRXQG DURXQG /DNH 2NHHFKREHH DQG /DNH ,VWRNSRJD DQG LQ WKH 7D\ORU &UHHN1XEELQ 6ORXJK UHJLRQ

PAGE 124

)LJXUH $YHUDJH $QQXDO 3KRVSKRUXV 5XQRII &RQFHQWUDWLRQV DQG (PSRZHU 'HQVLW\ XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 125

3/$1 '53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 $9(5$*( 3 &21& PJ,f Â’ ! ! ! ! ! 3/$1 '53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 (032:(5 '(16,7< R f (VH-SURG ! ! XQLW\HDUf

PAGE 126

7KH UHODWLRQVKLS EHWZHHQ SKRVSKRUXV UXQRII SHU SURGXFWLRQ XQLW DQG HPSRZHU GHQVLW\ LV LOOXVWUDWHG IRU YDULRXV ODQG XVHPDQDJHPHQW DOWHUQDWLYHV LQ )LJXUH 7RZDUG WKH OHIW RI WKH JUDSK DUH XQGHYHORSHG ODQGV DQG WKH SRLQWV RI KLJK HPSRZHU GHQVLW\ DUH XUEDQ DFWLYLWLHV $JULFXOWXUDO DFWLYLWLHV UDQJLQJ LQ LQWHQVLW\ IURP XQLPSURYHG SDVWXUH WR GDLULHV IDOO LQ WKH FHQWUDO SRUWLRQ RI WKH JUDSK 7KLV UHODWLRQVKLS VXJJHVWV WKDW PD[LPXP SKRVSKRUXV RFFXUV PLGUDQJH LQ WKH VSDWLDO GLVWULEXWLRQ RI HPHUJ\ ZLWK WKH ODUJHVW UXQRII FRQWULEXWLRQ DWWULEXWHG WR SUH'DLU\ 5XOH GDLULHV (PHUJ\ RI 3KRVSKRUXV &RQWULEXWLRQV DQG 3URGXFWV (DFK RI WKH LQGLYLGXDO ODQG XVHPDQDJHPHQW SURGXFWLRQ V\VWHPV WKDW ZDV TXDQWLILHG LQ $SSHQGL[ % JHQHUDWHG D VHW RI SKRVSKRUXVFRQWDLQLQJ LQSXWV DQG SURGXFWV ZLWK WUDQVIRUPLWLHV DQG SKRVSKRUXV HPHUJ\PDVV UDWLRV ,Q FDVHV ZKHUH PDQDJHPHQW FKDQJHV ZHUH DQDO\]HG IRU WKH VDPH ODQG XVH PXOWLSOH YDOXHV IRU WUDQVIRUPLWLHV DQG HPHUJ\J 3 PD\ KDYH UHVXOWHG IRU WKH VDPH SURGXFW )RU H[DPSOH WKH FDUU\LQJ FDSDFLW\ RI EHHI SDVWXUH FKDQJHG ZLWK PDQDJHPHQW UHVXOWLQJ LQ D UDQJH RI WUDQVIRUPLWLHV WR ( VHM-f DQG HPHUJ\PDVV UDWLRV WR ( VHMJ 3f IRU EHHI OLYHVWRFN VROG 5DQJHV DQG DYHUDJH YDOXHV IRU DOO SURGXFWV DUH UHSRUWHG LQ 7DEOH 7KH HPHUJ\ RI WKH SKRVSKRUXV ZLWKLQ HDFK RI WKHVH SURGXFWV LV WKH VDPH DV WKH HPHUJ\ RI WKH ZKROH SURGXFW LQ ZKLFK WKH SKRVSKRUXV LV ERXQG LQ LWV VWUXFWXUH 7KH DYHUDJH WUDQVIRUPLW\ RI SURGXFWV UDQJHG IURP ( VHMIRU VRG SURGXFWLRQ WR ( VHMIRU GDLU\ ZHWODQG SURGXFWLRQ 7KH ODWWHU UHSUHVHQWV WKH SURGXFW RI DQ LQWHQVLYH V\VWHP ZLWK OLWWOH RXWSXW RI D E\SURGXFW :HWODQG SURGXFWLRQ RQ D GDLU\ XVLQJ DQ HFRUHDFWRUf UHSUHVHQWV DQ DOWHUQDWLYH VRXUFH RI IRUDJH IRU GDLU\

PAGE 127

3KRVSKRUXV 5XQRII JXQLWf (PSRZHU 'HQVLW\ (O VHMXQLWf )LJXUH 5HODWLRQVKLS EHWZHHQ 3KRVSKRUXV 5XQRII DQG (PSRZHU 'HQVLW\ SHU 3URGXFWLRQ 8QLW

PAGE 128

7DEOH (PHUJ\ (YDOXDWLRQ 6XPPDU\ IRU 3KRVSKRUXV&RQWDLQLQJ 6RXUFHV DQG 3URGXFWV 1RWH ,WHP QDPH 7UDQVIRUPLW\ ( VHM-f $YJ 7UDQVIRUPLW\ ( VHM-f 3KRVSKRUXV (PHUJ\0DVV (O VHMJ 3f $YJ 3KRVSKRUXV (PHUJ\0DVV (O VHMJ 3f $YJ 3KRVSKRUXV FRQWHQW J3Jf $YJ VJ 6285&(6 5DLQIDOO ; &LWUXV LUULJDWLRQ ; 6XJDUFDQH LUULJDWLRQ ; 2WKHU DJULFXOWXUH VRGf LUULJDWLRQ ; 3HDW XVH ; 3 IHUWLOL]HU %HHI PLQHUDOV %HHI PRODVVHV 'DLU\ IHHG 352'8&76 &LWUXV \LHOG %HHI OLYHVWRFN VROG 'DLU\ PLON \LHOG 'DLU\ OLYHZHLJKW VROG 'DLU\ IRUDJH SURGXFWLRQ 'DLU\ FRPSRVW 'DLU\ ZHWODQG SURGXFWLRQ 6XJDUFDQH \LHOG 6ZHHW FRQL \LHOG 5LFH \LHOG 2WKHU DJULFXOWXUH VRGf \LHOG 7LPEHU

PAGE 129

)RRWQRWHV WR 7DEOH (PHUJ\ (YDOXDWLRQ 6X +LOO DU\ IRU 3KRVSKRUXV&RQWDLQLQJ 6RXUFHV DQG 3URGXFWV 5DLQIDOO 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG % &LWUXV LUULJDWLRQ 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG % 6XJDUFDQH LUULJDWLRQ 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG %O 2WKHU DJULFXOWXUH VRGf LUULJDWLRQ 5HIHU WR $SSHQGL[ % 7DEOH % 3HDW XVH 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG %O 3 IHUWLOL]HU 5HIHU WR $SSHQGL[ % 7DEOHV %O WKURXJK % DQG % WKURXJK % %HHI PLQHUDOV 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % %HHI PRODVVHV 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % 'DLU\ IHHG 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % &LWUXV \LHOG 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG % %HHI OLYHVWRFN VROG 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % 'DLU\ PLON \LHOG 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % 'DQ\U KYHZHLJKW VROG 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % 'DLU\ IRUDJH SURGXFWLRQ 5HIHU WR $SSHQGL[ % 7DEOHV % WKURXJK % 'DLU\ FRPSRVW 5HIHU WR $SSHQGL[ % 7DEOHV %O DQG % 'DLU\ ZHWODQG SURGXFWLRQ 5HIHU WR $SSHQGL[ % 7DEOHV % DQG % 6XJDUFDQH \LHOG 5HIHU WR $SSHQGL[ % 7DEOHV % DQG %O 6ZHHW FRP \LHOG 5HIHU WR $SSHQGL[ % 7DEOH % 5LFH \LHOG 5HIHU WR $SSHQGL[ % 7DEOH % 2WKHU DJULFXOWXUH VRGf \LHOG 5HIHU WR $SSHQGL[ % 7DEOH % 7LPEHU 5HIHU WR $SSHQGL[ % 7DEOH %

PAGE 130

FRZV XVLQJ UHF\FOHG SKRVSKRUXV DV ZHOO DV D SKRVSKRUXV PDQDJHPHQW V\VWHP &RPSDULVRQ ZLWK WKH WUDQVIRUPLW\ RI SXUFKDVHG GDLU\ IHHG HVWLPDWHG DV WKH WUDQVIRUPLW\ RI LQGXVWULDO FRUQ SURGXFWLRQf LQGLFDWHV DQ RUGHU RI PDJQLWXGH LQFUHDVH LQ HQHUJ\ LQWHQVLW\ IRU SURGXFWLRQ RI WKH RQVLWH IHHG VRXUFH ,Q RUGHU WR HYDOXDWH WKH SRWHQWLDO VXEVWLWXWDELOLW\ RI IHHGVWXIInV WKH QXWULWLYH YDOXHV ZRXOG DOVR QHHG WR EH FRPSDUHG 3KRVSKRUXV HPHUJ\PDVV UDWLRV ZHUH JUHDWHVW IRU GDLU\ IRUDJH DQG ZHWODQG SURGXFWLRQ $FFRUGLQJ WR 2GXP f WKH PDWHULDOV ZLWK KLJKHU UDWLRV FDQ DQG VKRXOG EH XVHG IRU JUHDWHU HIIHFW 3HUKDSV WKLV UHIOHFWV WKH SRWHQWLDO IRU XVH DV IHHGVWXIIV 7ZR RWKHU REVHUYDWLRQV PD\ EH PDGH FRQFHUQLQJ WKH GDWD )LUVW LW LV LQWHUHVWLQJ WR QRWLFH WKDW WUDQVIRUPLW\ RI DQ LQSXW SKRVSKRUXV IHUWLOL]HU LV PXFK JUHDWHU WKDQ DQ\ RI WKH SURGXFW WUDQVIRUPLWLHV 7KH LQGXVWULDO SURFHVV RI IHUWLOL]HU PDQXIDFWXULQJ LV PRUH LQWHQVLYH WKDQ HYHQ WKH PRVW HPHUJ\ FRQVXPSWLYH DJULFXOWXUDO SURGXFWLRQ SUDFWLFHV LQ WKH UHJLRQ 6HFRQGO\ VLQFH VZHHW FRUQ RU ULFH DUH VHFRQGDU\ SURGXFWV LQ WKH SURGXFWLRQ RI VXJDUFDQH ELRPDVV WKHLU WUDQVIRUP LWLHV DUH WR WLPHV JUHDWHU HYHQ WKRXJK WKH HPHUJ\ RI DOO SURGXFWV LV WKH VDPH 7KH SKRVSKRUXV HPHUJ\PDVV RI VXJDUFDQH LV LQWHUPHGLDWH EHWZHHQ VZHHW FRUQ DQG ULFH 6HYHUDO UHODWLRQVKLSV ZHUH VXJJHVWHG E\ WKH GDWD SUHVHQWHG LQ 7DEOH $ JUDSK RI WKH GLVWULEXWLRQ RI SKRVSKRUXVFRQWDLQLQJ VXEVWDQFHV E\ WUDQVIRUPLW\ )LJXUH f VXSSRUWV WKH WKHRU\ WKDW VHOIRUJDQL]LQJ V\VWHPV XWLOL]H WUDQVIRUPLWLHV DW D KLHUDUFKLFDO SRVLWLRQ FRPPHQVXUDWH ZLWK WKHLU YDOXH 2GXP f 0RVW DFWLYLWLHV LQ WKLV UXUDO DJULFXOWXUDO ZDWHUVKHG JHQHUDWH WUDQVIRUPLWLHV LQ WKH RUGHU RI WR ( VHM-

PAGE 131

1XPEHU RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV 7UDQVIRUPLWLHV RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV ( VHM-f )LJXUH 1XPEHU RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV DV D )XQFWLRQ RI 7KHLU 7UDQVIRUPLWLHV

PAGE 132

7KH GLVWULEXWLRQ LV VNHZHG WRZDUG WKH ORZHU UDQJH ZLWK D IHZ VXEVWDQFHV DW WKH KLJKHU HQG ,Q FRPSDULVRQ XUEDQ DFWLYLWLHV LQ ZKLFK SKRVSKRUXV XVH LV OHVV LPSRUWDQW RSHUDWH LQ WKH UDQJH RI ( VHMDQG JUHDWHU WUDQVIRUPLWLHV $FWLYLWLHV WKDW SURFHVV RU WUDQVIRUP SKRVSKRUXVFRQWDLQLQJ VXEVWDQFHV ZLWKRXW FRQVXPLQJ SKRVSKRUXV VXFK DV IHUWLOL]HU SODQWV VXJDU PLOOV DQG PLON UHILQHULHV DUH XVXDOO\ ORFDWHG LQ XUEDQ FHQWHUV 7KHVH DFWLYLWLHV ZRXOG PRVW OLNHO\ DGG D IHZ GDWD SRLQWV LI DYDLODEOH WR WKH KLJKHU HQG RI WKH UDQJH RI WUDQVIRUPLWLHV )LJXUH LQGLFDWHV WKDW WKHUH LV D SRVLWLYH WUHQG LQ WKH DYHUDJH SKRVSKRUXV FRQWHQW RI VXEVWDQFHV ZLWK LQFUHDVLQJ WUDQVIRUPLW\ ,W WDNHV PRUH HPHUJ\ SHU MRXOH RI SURGXFW WR FRQFHQWUDWH SKRVSKRUXV RU FRQYHUVHO\ SURGXFWV WKDW FRQFHQWUDWH HQHUJ\ DOVR FRQFHQWUDWH SKRVSKRUXV 7KH HPHUJ\ SHU PDVV RI SKRVSKRUXV VKRZV D GHFOLQLQJ WUHQG ZKHQ SORWWHG DJDLQVW SKRVSKRUXV FRQWHQW )LJXUH f 7KLV ZRXOG EH H[SHFWHG VLQFH SKRVSKRUXV PDVV LV LQ WKH GHQRPLQDWRU RI WKH HPHUJ\PDVV UDWLR $ VLPLODU UHODWLRQVKLS LV REVHUYHG IURP D VSDWLDO SHUVSHFWLYH DV LQGLFDWHG LQ )LJXUH 7KH HPHUJ\ SHU JUDP RI SKRVSKRUXV GHFUHDVHV DV WKH LQWHQVLW\ RU FRQFHQWUDWLRQ RI SKRVSKRUXV XVH LQ WKH ZDWHUVKHG LQFUHDVHV 7KLV PD\ JLYH VRPH LQGLFDWLRQ RI WKH HIILFLHQF\ RI SKRVSKRUXV XVH DFURVV WKH ODQGVFDSH (FRQRPLF $QDO\VLV (FRQRPLF DQDO\VLV RI SKRVSKRUXV PDQDJHPHQW LQLWLDOO\ LQFOXGHG RQO\ WKH GROODU FRVWV RI LPSOHPHQWLQJ D PDQDJHPHQW DOWHUQDWLYH IRU FRVW HIIHFWLYHQHVV FRPSDULVRQV

PAGE 133

$YJ 3KRVSKRUXV &RQWHQW RI 0DWHULDOV J3Jf L 7UDQVIRUPLWLHV RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV ( VHM-f )LJXUH $YHUDJH 3KRVSKRUXV &RQWHQW RI 0DWHULDOV DV D )XQFWLRQ RI 7KHLU 7UDQVIRUPLWLHV

PAGE 134

)LJXUH 5HODWLRQVKLS EHWZHHQ WKH (QWHUJ\ SHU 0DVV RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDOV DQG WKHLU 3KRVSKRUXV &RQWHQW

PAGE 135

W r W $YJ *UDPV RI 3KRVSKRUXV SHU 3URGXFWLRQ 8QLW )LJXUH 5HODWLRQVKLS EHWZHHQ WKH (PHUJ\ SHU *UDP RI 3KRVSKRUXV LQ 0DWHULDOV DQG WKHLU 6SDWLDO 'LVWULEXWLRQ

PAGE 136

)XUWKHU DQDO\VLV WR LQFOXGH WKH FRPSDULVRQ RI VHUYLFH GROODUV DQG HPGROLDUV UHTXLUHG WKH FROOHFWLRQ RI EDVHOLQH HFRQRPLF GDWD RQ WKH FRVWV RI SURGXFWLRQ RI DOWHUQDWLYH DJULFXOWXUDO V\VWHPV 7KH FRVWV RI SKRVSKRUXV FRQWURO DUH ILUVW DGGUHVVHG IROORZHG E\ DQ DQDO\VLV RI WKH FRVW HIIHFWLYHQHVV RI DOWHUQDWLYH SKRVSKRUXV PDQDJHPHQW VFHQDULRV )LQDOO\ D FRPSDULVRQ RI VHUYLFH GROODUV DQG HPGROLDUV LV SUHVHQWHG (FRQRPLFV RI 3KRVSKRUXV &RQWURO 8QGHU WKH EDVH FDVH VFHQDULR FKDQJHV LQ GDLU\LQJ DV D UHVXOW RI WKH 'DLU\ 5XOH UHJXODWLRQV FRVW WKH GDLU\ IDUPHUV UHPDLQLQJ LQ WKH EDVLQ DQ HVWLPDWHG PLOOLRQ DQQXDOO\ $Q DGGLWLRQDO RQHWLPH FRVW RI PLOOLRQ ZDV VSHQW E\ WKH SXEOLF WR SXUFKDVH GDLU\ HDVHPHQWV WR UHPRYH URXJKO\ PLON FRZV FRZf 7KH EDVHOLQH FRVW IRU GULS LUULJDWLRQ RI FLWUXV ZDV HVWLPDWHG DW PLOOLRQ\U 6ZHHW FRUQ SURGXFHG LQ URWDWLRQ ZLWK VXJDUFDQH FRVW PLOOLRQ\U 7KH WRWDO DQQXDOL]HG LQYHVWPHQW DQG RSHUDWLQJ FRVWV RI WKH EDVH FDVH VFHQDULR ZDV HVWLPDWHG WR EH PLOOLRQ\U QRW LQFOXGLQJ WKH SXEOLF FRVW RI GDLU\ HDVHPHQWVf $OWKRXJK IDUPHUV GLG QRW PDQDJH SKRVSKRUXV XQWLO DIWHU WKH GROODU FRVWV DVVRFLDWHG ZLWK FLWUXV LUULJDWLRQ DQG VXJDUFDQH URWDWLRQ SUDFWLFHV XQGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR DUH UHSRUWHG IRU FRPSDUDWLYH SXUSRVHV &LWUXV IORRG LUULJDWLRQ ZDV HVWLPDWHG WR FRVW PLOOLRQ DQQXDOO\ DFURVV DOO FLWUXV SRO\JRQV DQG WKH FRVW RI SURGXFLQJ VZHHW FRUQ LQ URWDWLRQ ZLWK FDQH ZDV PLOOLRQ 1R GROODU FRVWV ZHUH DVVRFLDWHG ZLWK WKH SUHGHYHORSPHQW VFHQDULR VLQFH KXPDQ DFWLYLW\ ZDV SUREDEO\ OLPLWHG WR LQGLDQ WUDGH

PAGE 137

8QGHU WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR FKDQJHV LQ WKH LQYHVWPHQW DQG RSHUDWLQJ FRVWV RI FLWUXV LPSURYHG EHHI SDVWXUH VXJDUFDQH DQG GDLULHV ZHUH REVHUYHG DV D UHVXOW RI FKDQJHV LQ PDQDJHPHQW RQ WKHVH ODQG XVHV &LWUXV FRVWV ZHUH IRU GULS LUULJDWLRQ DQG LPSRXQGPHQWV SDVWXUH FRVWV ZHUH IRU IHQFLQJ DQG VXJDUFDQH FRVWV ZHUH DVVRFLDWHG ZLWK ULFH SURGXFWLRQ ,QYHVWPHQW DQG RSHUDWLQJ FRVWV DVVRFLDWHG ZLWK GDLU\ GHVLJQ ZHUH IRU WKH FRQILQHPHQW V\VWHP DQG VSUD\ILHOG &RVWV RI WKH HFRUHDFWRU ZHUH DGGHG IRU GHVLJQ 7KH WRWDO DQQXDO LQYHVWPHQW DQG RSHUDWLQJ FRVWV RI WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR ZHUH HVWLPDWHG WR EH PLOOLRQ\U DQG PLOOLRQ\U IRU GHVLJQV DQG UHVSHFWLYHO\ 6HFRQGDU\ FRVWV DVVRFLDWHG ZLWK PDQDJHPHQW FKDQJHV RQ VXJDUFDQH DFUHDJH ZHUH LQGLFDWHG E\ FKDQJHV LQ \LHOG LQFUHDVHG UHYHQXHV IRU ULFH SURGXFWLRQ LQFUHDVHG UHYHQXHV IRU HQKDQFHG VXJDUFDQH \LHOG DQG D ORVV RI FRUQ UHYHQXHV $ JDLQ QHJDWLYH FRVWf RI PLOOLRQ\U UHDOL]HG DV D UHVXOW RI FXOWLYDWLQJ ULFH LQ URWDWLRQ ZLWK VXJDUFDQH ZDV PRUH WKDQ RIIVHW E\ D ORVV RI QHDUO\ PLOOLRQ\U LQ FRUQ UHYHQXHV $GRSWLRQ RI GDLU\ GHVLJQ DFURVV DOO GDLULHV UHVXOWHG LQ JURVV UHYHQXHV RI PLOOLRQ\U IURP D PLON \LHOG RI OEVFRZGD\ IRU FRQILQHG GDLU\ FRZV $Q DGGLWLRQDO QHJDWLYH FRVW RI ZDV UHDOL]HG IURP WKH VDOH RI FRPSRVWHG GDLU\ PDQXUH XQGHU GDLU\ GHVLJQ 6HFRQGDU\ FRVWV DUH PRVW UHOHYDQW ZKHQ FRPSDULQJ VFHQDULRV IRU FRVWHIIHFWLYHQHVV DQDO\VLV 7KH LQYHVWPHQW FRVW RI HDFK FKHPLFDO WUHDWPHQW SODQW SOXV UHWHQWLRQ EDVLQ XQGHU WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR ZDV HVWLPDWHG WR EH PLOOLRQ '(5 f 7KLV YDOXH ZDV DQQXDOL]HG RYHU \HDUV DW D UDWH RI SHUFHQW 7KH

PAGE 138

WRWDO DQQXDO LQYHVWPHQW DQG RSHUDWLQJ FRVWV RI VL[ FKHPLFDO WUHDWPHQW SODQWV ZDV DQ HVWLPDWHG PLOOLRQ &RVWV RI WUHDWPHQW DW WKH EDVLQ OHYHO ZRXOG PRUH OLNHO\ EH LQFXUUHG E\ WKH SXEOLF UDWKHU WKDQ GLVWULEXWHG VSDWLDOO\ DFURVV SULYDWH ODQGRZQHUV &RVW (IIHFWLYHQHVV &RPSDULVRQV 3KRVSKRUXV PDQDJHPHQW FRVWV DQG EDVLQ SKRVSKRUXV RXWIORZV DUH VXPPDUL]HG IRU HDFK RI ILYH VFHQDULRV LQ 7DEOH 7KHVH GDWD ZHUH XVHG WR FDOFXODWH WKH FRVW HIIHFWLYHQHVV RU GROODUV VSHQW SHU SRXQG RI SKRVSKRUXV UHPRYHG IURP EDVLQ RXWIORZ ZKHQ FRPSDULQJ WZR VFHQDULRV &RPSDULVRQV ZHUH PDGH EHWZHHQ WKH PD[LPXP SKRVSKRUXV XVH DQG WKH EDVH FDVH VFHQDULRV WKH EDVH FDVH DQG WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV DQG WKH EDVH FDVH DQG WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV 5HVXOWV DUH SUHVHQWHG LQ 7DEOH &KDQJHV LQ PDQDJHPHQW IURP WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR WR WKH EDVH FDVH KDG WKH ORZHVW FRVW SHU SRXQG SKRVSKRUXV UHPRYDO 7KH FRVW RI SKRVSKRUXV UHPRYDO ZDV WLPHV JUHDWHU ZKHQ FRPSDULQJ WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR WR WKH EDVH FDVH 7KH ZDWHU TXDOLW\ VWDQGDUGV FRXOG EH PHW ZLWK WKLV ODUJH DGGLWLRQDO GROODU LQSXW $SSOLFDWLRQ RI EDVLQ VFDOH FKHPLFDO WUHDWPHQW DW IHZHU VXEEDVLQ RXWOHWV ZRXOG LPSURYH WKH FRVW HIIHFWLYHQHVV RI WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR $ UHGXFWLRQ RI WRQV LQ EDVLQ SKRVSKRUXV RXWIORZ FRXOG EH DFKLHYHG E\ DSSO\LQJ WUHDWPHQW DW WZR VXEEDVLQ RXWOHWV 6 DQG 6 7RWDO DQQXDOL]HG FRVWV ZRXOG EH HVWLPDWHG DW PLOOLRQ RU D FRVW SHU SRXQG RI SKRVSKRUXV UHPRYDO RI

PAGE 139

7DEOH 3KRVSKRUXV 0DQDJHPHQW &RVWV DQG %DVLQ 3KRVSKRUXV 2XWIORZ IRU $OWHUQDWLYH 6FHQDULRV 3KRVSKRUXV 0DQDJHPHQW &RVWV $QQXDOL]HG $QQXDO 7RWDO %DVLQ ,QYHVWPHQW ,QYHVWPHQW 2t0 $QQXDO 2XWIORZ 6FHQDULR (f %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 0D[LPXP 3KRVSKRUXV 8VH 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW (\Uf (\Uf (\Uf WRQV 3\Uf

PAGE 140

7DEOH &RVW (IIHFWLYHQHVV &RPSDULVRQ RI 3KRVSKRUXV 0DQDJHPHQW 6FHQDULRV 6FHQDULR &KDQJH &KDQJH LQ &RVWV (\Uf &KDQJH LQ %DVLQ 2XWIORZ WRQV 3\Uf &RVW (IIHFWLYHQHVV OE 3 UHGXFWLRQf :LWKRXW 6HFRQGDU\ &RVWV 0D[LPXP 3KRVSKRUXV 8VH f§ %DVH &DVH %DVH &DVH f§ 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ %DVH &DVH f§ 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ %DVH &DVH f§ &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW :LWK 6HFRQGDU\ &RVWV 0D[LPXP 3KRVSKRUXV 8VH f§ %DVH &DVH %DVH &DVH f§ 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ %DVH &DVH f§ 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'HVLJQ WR 21

PAGE 141

7KH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR GHVLJQV DQG ZHUH PRUH FRVW HIIHFWLYH WKDQ WKH FRQFHQWUDWHG EXW IHOO VKRUW RI PHHWLQJ WKH WRQ 3\U DYHUDJH EDVLQ RXWIORZ VWDQGDUG /LNH PRVW WUHDWPHQW SURFHVVHV LW EHFRPHV PRUH FRVWO\ WR UHPRYH QXWULHQWV DV WKH TXDQWLW\ UHPDLQLQJ GLPLQLVKHV 6FHQDULR FRPSDULVRQV ZHUH PDGH ZLWK DQG ZLWKRXW HVWLPDWHG VHFRQGDU\ FRVWV RU FRVWV DVVRFLDWHG ZLWK FKDQJHV LQ SURGXFWLRQ 6HFRQGDU\ FRVWV KDG WKH JUHDWHVW LPSDFW RQ WKH FRVW RI SKRVSKRUXV UHPRYDO DVVRFLDWHG ZLWK WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR *DLQV LQ SURGXFWLRQ GXH WR FKDQJHV LQ GDLU\LQJ ZHUH PRUH WKDQ RIIVHW E\ ORVVHV GXH WR FKDQJLQJ WKH VXJDUFDQH URWDWLRQ FURS IURP VZHHW FRUQ WR ULFH &KDQJHV LQ FRVWV RI SURGXFWLRQ RYHUVKDGRZHG LQFUHDVHG UHYHQXHV IURP SURGXFW VDOHV FKDQJHV 7KH FRVW SHU SRXQG RI SKRVSKRUXV UHGXFWLRQ LQFUHDVHG E\ IRU GHVLJQ DQG IRU GHVLJQ 6DOH RI FRPSRVW LPSURYHG WKH FRVW HIIHFWLYHQHVV RI GHVLJQ RYHU GHVLJQ 3RWHQWLDO VHFRQGDU\ FRVWV DVVRFLDWHG ZLWK WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR VXFK DV XVH RU GLVSRVDO RI WKH SUHFLSLWDWH ZHUH QRW HVWLPDWHG 5HODWLQJ 6HUYLFH 'ROODUV DQG (PGROODUV 7KH EDVLF FRVWV RI RSHUDWLQJ DQG PDLQWDLQLQJ DOWHUQDWLYH SURGXFWLRQ V\VWHPV ZHUH TXDQWLILHG LQ DGGLWLRQ WR WKH FRVWV DVVRFLDWHG ZLWK SKRVSKRUXV PDQDJHPHQW 7KH WRWDO FRVWV RI SURGXFWLRQ SOXV SKRVSKRUXV PDQDJHPHQW ZKLFK DUH UHIHUUHG WR KHUH DV VHUYLFH GROODUV DUH PRQLHV SDLG WR SHRSOH IRU WKHLU VHUYLFHV DVVRFLDWHG ZLWK WKH SURGXFWLRQ V\VWHPVQR PRQH\ LV SDLG GLUHFWO\ WR WKH ODQG (PGROODUV RQ WKH RWKHU KDQG DUH D PHDVXUH WKDW UHIOHFW WKH WRWDO VHUYLFHV SURYLGHG E\ WKH V\VWHP QRW MXVW WKH KXPDQ VHUYLFHV DV D SHUFHQWDJH RI WKH *URVV 1DWLRQDO 3URGXFW *13f RI WKH 86

PAGE 142

$QQXDO HPGROODUV ZHUH HVWLPDWHG E\ PXOWLSO\LQJ WKH HPHUJ\FXUUHQF\ UDWLR IRU WKH 86 ( VHM6 LQ f WLPHV WKH WRWDO HPHUJ\ IOX[ RI WKH V\VWHP VHM\Uf 6HUYLFH GROODUV DQG HPGROODUV DUH UHSRUWHG IRU HDFK ODQG XVHPDQDJHPHQW SUDFWLFH XQGHU WKH EDVH FDVH VFHQDULR 7DEOH f 7KH JUHDWHVW GLIIHUHQFH EHWZHHQ WKH WZR PHDVXUHV LV REVHUYHG IRU XQLPSURYHG DQG XQGHYHORSHG ODQG XVHV 7KH HQYLURQPHQW LV SURYLGLQJ VHUYLFHV HYHQ WKRXJK SHRSOH PD\ QRW EH $ JUDSK RI WKH UHODWLRQVKLS EHWZHHQ VHUYLFH GROODUV DQG HPGROODUV LV SUHVHQWHG LQ )LJXUH $ SRVLWLYH UHODWLRQVKLS PD\ EH H[SODLQHG E\ WKH IDFW WKDW KXPDQ VHUYLFHV DUH DOVR FRQWULEXWLQJ HPHUJ\ 'HYHORSHG V\VWHPV DUH OLNHO\ WR KDYH ODUJH FRQWULEXWLRQV RI SXUFKDVHG HQHUJ\ ZLWK UHODWHG KXPDQ VHUYLFH LQSXWV 7KH UDWLR RI HPGROODUV WR VHUYLFH GROODUV PD\ EH FRPSDUHG IRU HDFK SKRVSKRUXV PDQDJHPHQW VFHQDULR 7DEOH f 7KH EDVH FDVH DQG GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV DOO KDYH UDWLRV RI DERXW 7KH YDOXH RI HQYLURQPHQWDO VHUYLFHV LV WLPHV JUHDWHU WKDQ VHUYLFHV SURYLGHG E\ SHRSOH 7KH UDWLR LV ORZHVW IRU WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR LQGLFDWLQJ WKDW PRUH KXPDQ VHUYLFHV ZHUH SURYLGHG UHODWLYH WR WKH VDPH DPRXQW RI HQYLURQPHQWDO VHUYLFHV 6LQFH KXPDQ VHUYLFH LQSXWV ZHUH PLQRU XQGHU WKH SUHGHYHORSPHQW VFHQDULR WKH UDWLR LV QRW UHOHYDQW 7KH HPGROODU FRQWULEXWLRQ RI WKH HQYLURQPHQW DORQH ZDV ( (0\U 3XUFKDVHG JRRGV DQG VHUYLFHV IRU FXUUHQW DFWLYLWLHV KDYH LQFUHDVHG WKH HPGROODU FRQWULEXWLRQ WR WKH ZDWHUVKHG QHDUO\ WLPHV

PAGE 143

7DEOH 6HUYLFH 'ROODUV DQG (PGROODUV E\ /DQG 8VH IRU WKH %DVH &DVH 6FHQDULR $SSUR[LPDWH $UHD 6HUYLFH 'ROODUV (PGROODUV /DQG 8VH0DQDJHPHQW DFUHVf ( \Uf ( (0\Uf %HHI SDVWXUHLPSURYHG %HHI SDVWXUHXQLPSURYHG &LWUXV &RPPHUFLDO IRUHVW 'DLU\FRQILQHPHQW 'DLU\ORZ WHFK 'DLU\ORZ WHFK ZHFRUHDFWRU 'DLU\VHPLFRQILQHPHQW 'DLU\VHPLFRQILQHPHQW ZFRPSRVWLQJ )RUHVWHG XSODQGV 2WKHU DJULFXOWXUH 6XJDUFDQH 8UEDQ :HWODQGV ;

PAGE 144

)LJXUH 5HODWLRQVKLS EHWZHHQ (PGROODUV DQG 6HUYLFH 'ROODUV IRU /DQG 8VHV XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 145

7DEOH &RPSDULVRQ RI 7RWDO 6HUYLFH 'ROODUV DQG 7RWDO (PGROODUV E\ 6FHQDULR IRU $SSUR[LPDWHO\ 0LOOLRQ $FUHV LQ WKH 1RUWK 2NHHFKREHH %DVLQ 6HUYLFH 'ROODUV (PGROODUV (PGROODUV 6FHQDULR ( \Uf ( (06\Uf 6HUYLFH 'ROODUV %DVH &DVH 0D[LPXP 3KRVSKRUXV 8VH 3UHGHYHORSPHQW 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW ; ;

PAGE 146

&+$37(5 ',6&866,21 ,Q WKLV ILQDO FKDSWHU DQ DJJUHJDWH RYHUYLHZ RI WKH UHJLRQDO V\VWHP DQG LWV SKRVSKRUXV F\FOH LV JLYHQ LQ RUGHU WR V\QWKHVL]H WKH UHODWLRQVKLS EHWZHHQ WKH ELRJHRFKHPLVWU\ RI DQ HOHPHQW LWV FRQWULEXWLRQ WR UHJLRQDO HPHUJ\ DQG LWV HFRQRPLF XVH )LJXUH VKRZV WKH HVVHQFH RI WKH SKRVSKRUXV F\FOH ZLWK LQSXWV RXWSXWV DQG LQWHUQDO F\FOLQJ ZKLFK LV FRPSDUHG IRU GLIIHUHQW VFHQDULRV %\ UHODWLQJ DQ HOHPHQWDO F\FOH WR HQYLURQPHQWDO DQG HFRQRPLF PHDVXUHV WKH RULJLQ RI D QHZ ILHOG RI VWXG\ LV VXJJHVWHG UHIHUUHG WR KHUH DV ELRJHRHFRQRPLFV 5HODWLQJ WKH 3KRVSKRUXV &\FOH WR (PHUJ\ DQG (FRQRPLFV .HHSLQJ LQ PLQG WKH RYHUYLHZ PRGHO RI WKH UHJLRQDO V\VWHP FRQWDLQLQJ WKH SKRVSKRUXV F\FOH LQ )LJXUH DQG VLPSOLILHG LQ )LJXUH PDVV IORZV RI SKRVSKRUXV DQG DVVRFLDWHG IORZV RI HPHUJ\ DQG PRQH\ DUH UHODWHG IRU GLIIHUHQW VFHQDULRV RI SKRVSKRUXV XVH DQG PDQDJHPHQW 7DEOH VXPPDUL]HV WRWDOV IRU WKH ZKROH F\FOH DQG IRU WKH SURGXFW IORZV DQG 7DEOH VXPPDUL]HV WKH WRWDOV RI HDFK DVVRFLDWHG ZLWK WKH UHVLGXDO RU UXQRII FRPSRQHQW RI WKH F\FOH )LJXUH LQGLFDWHV WKDW PRUH HPGROODUV DUH FRQWULEXWHG WR WKH HFRQRP\ IURP WKH RXWSXW RI SURGXFWV WKDW FRQWDLQ SKRVSKRUXV WKDQ GROODUV DUH SDLG IRU WKRVH SURGXFWV $OVR WKH HQYLURQPHQW FRQWULEXWHV PRUH HPGROODUV WR SURGXFWLRQ LQ SKRVSKRUXV

PAGE 147

3XUFKDVHG )LJXUH 'LDJUDP 6KRZLQJ WKH )XOO 3KRVSKRUXV &\FOH RI WKH 5HJLRQ +HDY\ %ODFN /LQHVf ZLWK ,QSXWV DQG 2XWSXWV DQG ,QWHUQDO &\FOLQJ XQGHU WKH %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 6FHQDULR 'DVKHG /LQH 5HSUHVHQWV )ORZ RI 0RQH\ $VVRFLDWHG ZLWK 3KRVSKRUXV

PAGE 148

7DEOH &RPSDULVRQ RI $QQXDO (PHUJ\ 6HUYLFH 'ROODUV DQG (PGROODUV SHU *UDP RI 3KRVSKRUXV E\ 6FHQDULR IRU WKH 6WXG\ 5HJLRQ :KROH 3KRVSKRUXV &\FOH 6FHQDULR (PHUJ\0DVV 0DVV ( VHMJ 3f J 3f (00DVV (0J 3f %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 0D[LPXP 3KRVSKRUXV 8VH 3UHGHYHORSPHQW 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW 3KRVSKRUXV LQ 3URGXFWV 3URGXFW (0 3KRVSKRUXV 6FHQDULR 0DVV )ORZ ( J 3\U (PHUJ\0DVV 0DVV ( VHMJ 3f J 3f 0DVV (0J 3f %DVH &DVH 0DQDJHPHQW 0D[LPXP 3KRVSKRUXV 8VH 'LVSHUVHG 0DQDJHPHQW 'LVSHUVHG 0DQDJHPHQW &RQFHQWUDWHG 0DQDJHPHQW (0 EDVHG RQ HPHUJ\FXUUHQF\ UDWLR RI ( VHM

PAGE 149

7DEOH &RPSDULVRQ RI 7RWDO $QQXDO 3KRVSKRUXV (PHUJ\ DQG (PGROODUV /RVW DV 5XQRII IURP WKH 6WXG\ 5HJLRQ &RPSDULVRQ E\ /DQG 8VH /DQG 8VH (PGROODU 0DVV )ORZ (PHUJ\ )ORZ )ORZ (0 ( J 3\U (O VHM\Uf ( (06\Uf DFUH 2WKHU $JULFXOWXUH 'DLU\ 6XJDUFDQH ,PSURYHG %HHI 3DVWXUH &LWUXV 8UEDQ 8QLPSURYHG %HHI 3DVWXUH &RPPHUFLDO )RUHVW 8SODQG )RUHVW &RPSDULVRQ E\ 6FHQDULR 6FHQDULR (PGROODU 0DVV )ORZ (PHUJ\ )ORZ )ORZ ( J 3\U ( VHM\Uf ( (0\Uf %DVH &DVH 3KRVSKRUXV 0DQDJHPHQW 0D[LPXP 3KRVSKRUXV 8VH 3UHGHYHORSPHQW 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW 'LVSHUVHG 3KRVSKRUXV 0DQDJHPHQW &RQFHQWUDWHG 3KRVSKRUXV 0DQDJHPHQW

PAGE 150

FRQWDLQLQJ LQSXWV ( (0\Uf WKDQ DUH SXUFKDVHG IURP WKH HFRQRP\ ( (0\Uf LQGLFDWLQJ D ODUJH UHQHZDEOH HQYLURQPHQWDO VXEVLG\ RI SKRVSKRUXV +RZHYHU WRWDO LQSXWV SXUFKDVHG IRU WKH SURGXFWLRQ RI JRRGV ( (0f H[FHHGHG HQYLURQPHQWDO LQSXWV ( (0f 5XQRII RI SKRVSKRUXV WR WKH HQYLURQPHQW UHSUHVHQWV RQO\ SHUFHQW RI WKH HPGROODU YDOXH RI SKRVSKRUXV OHDYLQJ WKH UHJLRQ 7DEOH LQGLFDWHV WKDW WKH HPHUJ\PDVV UDWLR LQFUHDVHV ZLWK PDQDJHPHQW HIIRUWf§LW WDNHV PRUH HPHUJ\ SHU JUDP WR FRQWURO D PDWHULDO IRU HFRQRPLF XVH WKDQ WKH QDWXUDO V\VWHP UHTXLUHV WR UHJXODWH LW ZKHQ QRW FRXSOHG WR WKH HFRQRPLF V\VWHP 6HUYLFH GROODUV DQG HPGROODUV SHU JUDP RI SKRVSKRUXV LQGLFDWH WKH VDPH WUHQG 7KH SUHGHYHORSPHQW YDOXH RI SKRVSKRUXV LQ WHUPV RI LWV FRQWULEXWLRQ WR FXUUHQW *13 ZDV (0 SHU JUDP 8QGHU PDQDJHG FRQGLWLRQV WKLV LQFUHDVHG WR (0J 3 LQGLFDWLQJ WKH SKRVSKRUXV F\FOH LV FRQWULEXWLQJ PRUH WR WKH UHJLRQDO HFRQRP\ SHU XQLW WKDQ LW GLG SULRU WR GHYHORSPHQW RU XQGHU FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH 7KXV PDQDJHG VHOIRUJDQL]DWLRQ LQFUHDVHG WKH HPGROODU FRQWULEXWLRQ RI SKRVSKRUXV WR WKH UHJLRQ 3KRVSKRUXV 8VHV )HHGEDFNV DQG 3URGXFWV 7KH PDMRU FRPSRQHQWV RI WKH SKRVSKRUXV F\FOH DUH XVHV RU LQSXWV IHHGEDFNV DQG RXWSXWV LQFOXGLQJ SURGXFWV SOXV OHDNDJH DV UXQRII )LJXUH f 3KRVSKRUXV XVH LQ WKH UHJLRQ LV SULPDULO\ DV IHHG DQG IHUWLOL]HU IHHGEDFNV LQFOXGH IRUDJH SURGXFWLRQ RQ GDLULHV DQG QXWULHQW UHF\FOLQJ LQ VRLO DQG ELRPDVV PDMRU SURGXFWV LQFOXGH FURSV OLYHVWRFN PLON DQG WLPEHU SOXV FRPSRVW SURGXFWLRQ DV D VHFRQGDU\ SURGXFW &KDQJHV

PAGE 151

LQ PDQDJHPHQW DOWHU DOO WKUHH FRPSRQHQWV WKURXJK VXFK PHFKDQLVPV DV LQSXW VXEVWLWXWLRQ HQKDQFHPHQW RI IHHGEDFNV DQG FKDQJHV LQ SURGXFWLRQ 7KH EDU JUDSK LQ )LJXUH VKRZV KRZ SKRVSKRUXV LV GLVWULEXWHG LQ YDULRXV PDWHULDO LPSRUWV DQG RXWSXWV RI WKH UHJLRQ 7KH LQWHQVLW\ RI SKRVSKRUXV XVH DQG SURGXFWLRQ LV UHSUHVHQWHG DV WKH JUDPV RI SKRVSKRUXV SHU DFUH 3KRVSKRUXV LQ IHUWLOL]HU KDG WKH ORZHVW HVWLPDWHG HPHUJ\PDVV UDWLR PRVW OLNHO\ EHFDXVH LW KDG WKH KLJKHVW FRQFHQWUDWLRQ RI SKRVSKRUXV SHUFHQWf 7KH HPHUJ\PDVV UDWLR RI SKRVSKRUXV LQ UHVLGXDOV VXFK DV UXQRII DQG FRPSRVW ZHUH DOVR DW WKH ORZHU HQG RI WKH UDQJH 7KH UDWLR ZDV JUHDWHVW IRU DJULFXOWXUDO FRPPRGLWLHV SURGXFHG LQ WKH UHJLRQ ZLWK SKRVSKRUXV LQ OLYHZHLJKW KDYLQJ WKH KLJKHVW HPHUJ\PDVV UDWLR 3KRVSKRUXV IHHGEDFNV 5HVLGXDO SKRVSKRUXV IURP WKH GDLU\ SURGXFWLRQ SURFHVV PD\ EH UHF\FOHG WKURXJK ZDVWHZDWHU LUULJDWLRQ DQG PDQXUH VSUHDGLQJ WR SURGXFH IRUDJH FURSV )RUDJH JURZQ RQVLWH DV UHSODFHPHQW IRU SXUFKDVHG GDLU\ IHHG PD\ EH HYDOXDWHG LQ WHUPV RI LWV WUDQVIRUPLW\ DQG HPHUJ\PDVV UDWLR 'DLU\ IHHG ZLWK D WUDQVIRUPLW\ RI ( VHMWRRN ( VHMJ 3 7KH WUDQVIRUPLW\ DQG HPHUJ\PDVV UDWLR RI WKH IRUDJH FURS JURZQ XVLQJ UHF\FOHG SKRVSKRUXV UDQJHG IURP WR ( VHMDQG WR ( VHMJ 3 UHVSHFWLYHO\ UHIHU WR 7DEOH f 9DULDWLRQV DUH GXH WR GLIIHUHQFHV LQ PDQDJHPHQW SUDFWLFHV 7DNHQ LQ FRQWH[W DW WKLV VFDOH DORQH LW ZRXOG QRW VHHP HPHUJ\ HIILFLHQW WR SURGXFH UHF\FOHG IHHGVWXIIV DW QHDUO\ WZR RUGHUV RI PDJQLWXGH JUHDWHU WUDQVIRUPLW\ DQG HPHUJ\PDVV UDWLR VR ORQJ DV SXUFKDVHG IHHGVWXIIV ZHUH DYDLODEOH :KHQ FRQVLGHULQJ

PAGE 152

3KRVSKRUXV ,QWHQVLW\ J 3DFUHf 3KRVSKRUXV (PHUJ\0DVV 5DWLR RI 0DWHULDOV ( VHMJ 3f )LJXUH 'LVWULEXWLRQ RI 3KRVSKRUXV&RQWDLQLQJ 0DWHULDO ,QSXWV DQG 2XWSXWV %DVHG RQ WKH (PHUJ\0DVV 5DWLRV DQG 6SDWLDO ,QWHQVLW\ RI 3KRVSKRUXV LQ WKH 0DWHULDOV /LYHZHLJKW

PAGE 153

WKH HPHUJ\ FRVWV RI DOWHUQDWLYH SKRVSKRUXV FRQWURO LQ DGGLWLRQ WR WKH YDOXH RI IRUDJH DV VXEVWLWXWH IHHG WKH UHF\FOH DOWHUQDWLYH EHFRPHV PRUH DWWUDFWLYH 7KH HPHUJ\ YDOXH RI FRPSRVW DOVR SURGXFHG IURP UHVLGXDOV RI WKH GDLU\ RSHUDWLRQ PD\ EH FRPSDUHG WR WKDW RI SKRVSKRUXV IHUWLOL]HU 7KH WUDQVIRUPLW\ RI SKRVSKRUXV IHUWLOL]HU LV WZR RUGHUV RI PDJQLWXGH ODUJHU WKDQ WKDW RI FRPSRVW VLQFH SKRVSKRUXV LV FRQFHQWUDWHG LQWR D PRUH SXULILHG PDWHULDO GXULQJ WKH IHUWLOL]HU SURGXFWLRQ SURFHVV (PHUJ\ LV GLUHFWHG LQWR SURFHVVLQJ WKH SKRVSKRUXV IRU XVH DV IHUWLOL]HU ZKHUHDV FRPSRVW LV PRUH RI D VRLO FRQGLWLRQHU ZLWK RQO\ VHFRQGDU\ YDOXH DV D SKRVSKRUXV IHUWLOL]HU $JDLQ WKH UHGXFWLRQ LQ SKRVSKRUXV SROOXWLRQ DFKLHYHG E\ PDQXUH PDQDJHPHQW DQG FRPSRVW SURGXFWLRQ LPSURYHV LWV V\VWHPV YDOXH DV D IHUWLOL]HU VXEVWLWXWH 7KXV SURGXFWV JHQHUDWHG IURP UHVLGXDO SKRVSKRUXV KDYH YDOXH DV VXEVWLWXWHV IRU SXUFKDVHG SKRVSKRUXV LPSRUWV ZKLOH FRQWULEXWLQJ WR WKH LQFUHDVHG HIILFLHQF\ RI SKRVSKRUXV XVH DQG LWV VSDWLDO GLVWULEXWLRQ 3KRVSKRUXV SURGXFWV $ PDWHULDO F\FOH FRQYHUJHV DV LW LV LQFRUSRUDWHG LQWR SURGXFWV 7KH HPHUJ\ UHTXLUHG SHU JUDP RI SURGXFW LV WKDW UHTXLUHG WR FRQFHQWUDWH LW RU ELQG LW LQWR D VWUXFWXUH DW D FRQFHQWUDWLRQ KLJKHU WKDQ LWV EDFNJURXQG OHYHO DW EDFNJURXQG OHYHO WKHUH LV QR DYDLODEOH HQHUJ\ LQ SKRVSKRUXV DQG WKXV QR HPHUJ\ SUHYLRXVO\ XVHG WR FRQFHQWUDWH LWf 7RWDO JUDPV RI SKRVSKRUXV JHQHUDWHG DV VDOHDEOH SURGXFWV YDULHG DPRQJ VFHQDULRV IURP OHDVW XQGHU EDVH FDVH SKRVSKRUXV PDQDJHPHQW WR JUHDWHVW XQGHU GLVSHUVHG SKRVSKRUXV PDQDJHPHQW GHVLJQ ZLWK DOO GDLULHV VHOOLQJ FRPSRVW DQG JURZLQJ IRUDJH 7DEOH f (PHUJ\ SHU JUDP VHUYLFH GROODUV SHU JUDP DQG

PAGE 154

HPGROODUV SHU JUDP RI SKRVSKRUXV VKRZHG WKH RSSRVLWH WUHQG ZLWK HPHUJ\ DQG GROODUV EHLQJ GLUHFWHG PRUH LQWR SKRVSKRUXV SURFHVVLQJ ZLWK LQFUHDVLQJ PDQDJHPHQW HIIRUW 7KH HPHUJ\ RI WKH ZKROH SKRVSKRUXV F\FOH ZDV XVHG WR FDOFXODWH HPHUJ\PDVV UDWLRV RI SURGXFWV VLQFH WKH V\VWHPV ZHUH GHVLJQHG WR JHQHUDWH SURGXFWV 7KH ORZHU WKH HPHUJ\PDVV UDWLR WKH PRUH HIILFLHQW WKH V\VWHP RI SURGXFWLRQ ,Q WKH VFHQDULRV XQGHU VWXG\ PDQDJHPHQW LPSURYHG WKH FRXSOLQJ RI HPHUJ\ WR SKRVSKRUXV 3KRVSKRUXV LQ 5XQRII 5XQRII LV ILUVW ZDWHU DQG KDV LWV HPHUJ\ FRQWULEXWLRQ VWUHDP ZDWHU WUDQVIRUPLW\ PXOWLSOLHG E\ JUDPV RI ZDWHU DQG *LEEV IUHH HQHUJ\f 7KH UXQRII HPHUJ\ LV WKDW RI ZDWHU QRW XVHG E\ WKH ODQGVFDSH V\VWHP 7KH UXQRII DOVR FDUULHV SKRVSKRUXV ZKLFK KDV DYDLODEOH HQHUJ\ DQG HPHUJ\ UHODWLYH WR WKH EDFNJURXQG 7KH UXQRII SKRVSKRUXV LQFOXGHV VRPH IURP UDLQZDWHU DQG VRPH OHDNDJH IURP WKH ODQGVFDSHnV LQWHUQDO SKRVSKRUXV F\FOH :KHQ SKRVSKRUXV OHDNV RXW RI D SURGXFWLYH F\FOH ZKHWKHU QDWXUDO DJULFXOWXUDO RU KXPDQ VHWWOHPHQW LW KDV HPHUJ\ DV ZHOO DV DQ HPGROODU YDOXH RI SKRVSKRUXV LQ WKH UXQRII 3KRVSKRUXV LQ UXQRII LV D UHVLGXDO RI WKH SURGXFWLRQ SURFHVVHV RI WKH UHJLRQ UDWKHU WKDQ D SULPDU\ SURGXFW 7KH HPHUJ\ LQ UXQRII LV WKDW UHTXLUHG WR EULQJ SKRVSKRUXV IURP EDFNJURXQG WR UXQRII FRQFHQWUDWLRQ RU FRQYHUVHO\ WKH HQHUJ\ ORVW ZKHQ WKH UXQRII LV PL[HG ZLWK EDFNJURXQG ZDWHU (PHUJ\ SHU XQLW SKRVSKRUXV LQ GLOXWH UXQRII (PHUJ\ PD\ EH UHODWHG WR DQ HIILFLHQW SKRVSKRUXV F\FOH XVLQJ WKH VLPSOLILHG UHJLRQDO RYHUYLHZ JLYHQ LQ )LJXUH 8QGHU SUHGHYHORSPHQW FRQGLWLRQV ZKHQ WKH ODQGVFDSH ZDV FRYHUHG ZLWK SKRWRV\QWKHWLFDOO\EDVHG HFRV\VWHPV WKH SKRVSKRUXV F\FOH

PAGE 155

ZDV D QHFHVVDU\ PDLQ FRPSRQHQW RI WKH HQHUJ\ V\VWHP 8QGHU WKHVH FRQGLWLRQV WKH ZKROH HPHUJ\ PD\ EH DVVLJQHG WR WKH PDVV F\FOH RI SKRVSKRUXV WR REWDLQ DQ HPHUJ\PDVV YDOXH IRU WKH IDLUO\ GLOXWH FRQFHQWUDWLRQV RI SKRVSKRUXV LQ LWV UHF\FOH DQG UXQRII 7KH UDWLR RI DQQXDO UHJLRQDO HPHUJ\ IORZ SHU JUDP RI GLOXWH SKRVSKRUXV F\FOLQJ ZDV HVWLPDWHG WR EH ( VHMJ 3 $OWHUQDWLYHO\ WKH HPHUJ\PDVV UDWLR RI SKRVSKRUXV LQ UXQRII FRXOG KDYH EHHQ LQWHUSRODWHG DV D YDOXH EHWZHHQ WKH UDWLR IRU RUJDQLF VRLO DQG WKH EDFNJURXQG RI WKH PLQHUDO HJ VDQG PDUOf LQSXW WR WKH VRLO %HFDXVH UHJLRQDO HFRV\VWHPV ZHUH VHOIRUJDQL]HG XQGHU SUHGHYHORSPHQW FRQGLWLRQV WKLV UHODWLRQVKLS RI HPHUJ\ DQG SKRVSKRUXV PDVV PD\ EH FRQVLGHUHG DQ HIILFLHQW EDVHOLQH IRU FRPSDULVRQ ZLWK ODWHU GHYHORSPHQWV DQG DOWHUQDWLYH VFHQDULRV IRU PDQDJHPHQW ,I RQH DVVXPHV WKDW V\VWHPV UHVXOWLQJ IURP VHOIRUJDQL]DWLRQ KDYH XWLOL]HG ORQJWHUP FRPSHWLWLRQ DPRQJ DOWHUQDWLYH GHVLJQV WR SURFHVV DQG VWRUH QXWULHQWV VR WKDW WKH\ FRQWULEXWH WR PD[LPXP SURGXFWLYLW\ 2GXP f WKHQ WKH GRZQVWUHDP HPHUJ\ FRQWULEXWLRQ LQ UXQRII LV DW OHDVW ( VHMJ 3 6FHQDULR FRPSDULVRQV 7KH HPHUJ\PDVV UDWLR RI GLOXWH UXQRII HVWLPDWHG DERYH ZDV XVHG IRU DOO UXQRII FDOFXODWLRQV ,W VHUYHG DV WKH EDVLV IRU HVWLPDWLQJ WKH WRWDO HPHUJ\ ORVW LQ UXQRII XQGHU HDFK VFHQDULR ZKLFK ZHUH WKHQ FRQYHUWHG WR HPGROODU YDOXHV RI UXQRII &RPSDULVRQ DFURVV ODQG XVHV XQGHU WKH EDVH FDVH VFHQDULR LQGLFDWHG WKDW WKH WRWDO HPGROODU YDOXH RI SKRVSKRUXV ORVW DV UXQRII ZDV JUHDWHVW IRU LPSURYHG EHHI SDVWXUH DQG OHDVW IRU FRPPHUFLDO IRUHVWU\ 7DEOH f :KHQ QRUPDOL]HG VSDWLDOO\ DFURVV WKH ODQGVFDSH WKH HPGROODU SHU DFUH YDOXH RI UXQRII SKRVSKRUXV UDQJHG IURP (0DF

PAGE 156

IRU LQWHQVLYH DJULFXOWXUH WR DERXW (0DF IRU QDWXUDO DUHDV 0LGUDQJH YDOXHV RI SKRVSKRUXV UXQRII ZHUH HVWLPDWHG IRU LPSURYHG EHHI SDVWXUH FLWUXV DQG XUEDQ ODQG XVHV 6FHQDULRV ZHUH DOVR FRPSDUHG LQ WHUPV RI WKH WRWDO HPGROODUV ORVW IURP WKH V\VWHP DV SKRVSKRUXV OHDNV RXW LQ UXQRII 7DEOH f 7KH HPHUJ\ FRQWULEXWLRQ ORVW DV D IUDFWLRQ RI *13 ZDV WZLFH DV JUHDW XQGHU WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR WKDQ XQGHU GLVSHUVHG SKRVSKRUXV PDQDJHPHQW 7KH UHIHUHQFH YDOXH RI UXQRII SKRVSKRUXV SULRU WR GHYHORSPHQW ZDV ( (0\U 3KRVSKRUXV $VVLPLODWLRQ LQ :HWODQGV :KHQ SKRVSKRUXV OHDYHV D ODQG DUHD DV UXQRII LW LV WUDQVSRUWHG WKURXJK D V\VWHP RI ZHWODQG VWUHDPV DQG FDQDOV WRZDUG /DNH 2NHHFKREHH 7KH K\GURJUDSKLF QHWZRUN LV DGDSWHG WR DVVLPLODWH SKRVSKRUXV DQG UHF\FOH LW DV ELRPDVV RU VHGLPHQW VWRUDJH :HWODQGV XVH WKH SKRVSKRUXV WR EXLOG SHDW ZKLFK KDV VRPH IXWXUH YDOXH LQ LWV VWRUDJH SRWHQWLDO 7KH QDWXUDO V\VWHP ZKLFK KDV EHHQ VRPHZKDW DOWHUHG WKURXJK FKDQQHOL]DWLRQ LV SHUIRUPLQJ WKH ZRUN RI SKRVSKRUXV UHPRYDO ZLWKRXW UHFHLYLQJ DQ\ VHUYLFH GROODUV SDLG E\ KXPDQV 7KH FRVW RI DQ DOWHUQDWLYH V\VWHP WR UHPRYH DQ HTXLYDOHQW DPRXQW RI SKRVSKRUXV IURP EDVLQ UXQRII ZDV FDOFXODWHG DV DQ HVWLPDWH RI WKH RSSRUWXQLW\ FRVW RI EDVLQ SKRVSKRUXV DVVLPLODWLRQ 8QGHU WKH EDVH FDVH VFHQDULR WRQV RI SKRVSKRUXV ( J 3f RU SHUFHQW RI WKH UXQRII SKRVSKRUXV ZDV DVVLPLODWHG DORQJ WKH QHWZRUN RI VWUHDPV DQG FDQDOV DQQXDOO\ $VVXPLQJ WKDW EDVLQ VFDOH WUHDWPHQW ZRXOG EH QHFHVVDU\ DW ILYH PDMRU RXWOHWV WR /DNH 2NHHFKREHH )LVKHDWLQJ &UHHN ,QGLDQ 3UDLULH +DUQH\ 3RQG /RZHU

PAGE 157

& .LVVLPPHH DQG 7D\ORU &UHHN1XEELQ 6ORXJKf WKH RSSRUWXQLW\ FRVW RI DVVLPLODWLRQ ZRXOG EH PLOOLRQ\U 7UHDWPHQW DW WKH RXWOHWV RI RWKHU VPDOOHU FRQWULEXWLQJ EDVLQV VXFK DV 6 DQG 6 ZRXOG LQFUHDVH WKH FRVW E\ DERXW PLOOLRQ SHU EDVLQ SHU \HDU 7KLV HVWLPDWH JLYHV D URXJK YDOXH LQ VHUYLFH GROODUV RI WKH FRPSOH[LW\ RI WKH EDVLQnV K\GURORJLF QHWZRUN 2QH FRXOG DOVR FDOFXODWH WKH HPGROODU FRQWULEXWLRQ RI WKH QDWXUDO V\VWHP IRU SKRVSKRUXV XSWDNH XQGHU HDFK PDQDJHPHQW VFHQDULR 8VLQJ WKH HPHUJ\PDVV UDWLR RI SKRVSKRUXV LQ SHDW DQG PXOWLSO\LQJ E\ WKH WRWDO JUDPV RI SKRVSKRUXV DVVLPLODWHG JLYHV WKH WRWDO HPHUJ\ RI DVVLPLODWHG SKRVSKRUXV :KHQ FRQYHUWHG WR HPGROODUV XVLQJ WKH HPHUJ\FXUUHQF\ UDWLR RI ( VHM 3ULWFKDUG f WKH HPGROODU YDOXH RI SKRVSKRUXV DVVLPLODWLRQ UDQJHG IURP ( (0\U IRU SUHGHYHORSPHQW WR QHDUO\ ( (0\U IRU PD[LPXP SKRVSKRUXV XVH ZLWK SKRVSKRUXV PDQDJHPHQW VFHQDULRV LQ WKH QHLJKERUKRRG RI ( (0\U 7KHVH HPGROODU YDOXHV PD\ EH LQWHUSUHWHG DV WKH ORQJWHUP YDOXH RI SHDW DFFXPXODWLRQ 8QGHU PDQDJHG FRQGLWLRQV WKH HQYLURQPHQW LV FRQWULEXWLQJ OHVV WR SKRVSKRUXV SURFHVVLQJ DQG PD\ WKHUHIRUH H[SHQG PRUH HPHUJ\ RQ RWKHU DFWLYLWLHV VXFK DV EXLOGLQJ VWUXFWXUH 7KH HPGROODU FRQWULEXWLRQ WR /DNH 2NHHFKREHH DV SKRVSKRUXV LQ EDVLQ RXWIORZ ZDV HVWLPDWHG DW PLOOLRQ (0\U XQGHU WKH EDVH FDVH VFHQDULR WLPHV JUHDWHU WKDQ SUHGHYHORSPHQW RXWIORZ IURP WKH ZDWHUVKHG ,Q RUGHU WR GHWHUPLQH LI WKLV LQFUHDVHG SRWHQWLDO XVH KDV D SRVLWLYH RU QHJDWLYH HIIHFW RQ GRZQVWUHDP V\VWHP SURGXFWLYLW\ RQH VKRXOG H[DPLQH WKH QH[W ODUJHU V\VWHP ZKLFK LQFOXGHV WKH /DNH 2NHHFKREHH HFRV\VWHP f§ EH\RQG WKH VFRSH RI WKH FXUUHQW UHVHDUFK 5HIHU WR *D\OH

PAGE 158

f ZKR DGRSWHG D V\VWHPV DSSURDFK LQ KLV VWXG\ RI HXWURSKLFDWLRQ LQ /DNH 2NHHFKREHH (IIHFWV RI 0DQDJHPHQW RQ 5HJLRQDO 6SDWLDO &KDUDFWHULVWLFV 0DQDJHPHQW RI D FKHPLFDO F\FOH DFURVV WKH ODQGVFDSH FDQ DOWHU WKH VSDWLDO FKDUDFWHULVWLFV RI D UHJLRQ (VWLPDWLRQ RI WKH 6KDQQRQ:LHQHU GLYHUVLW\ LQGH[ (Of DFURVV PRUH WKDQ ODQG XVH SRO\JRQV LQGLFDWHG VHYHUDO ILQGLQJV )LUVW WKH ODQGVFDSH ZDV PRVW KRPRJHQHRXV SULRU WR GHYHORSPHQW + f 1RWH WKDW WKH YHU\ ORZ GLYHUVLW\ RI SRO\JRQV LQ FRPSDULVRQ WR VSHFLHV GLYHUVLW\ PHDVXUHVf XQGHU SUHGHYHORSPHQW FRQGLWLRQV LV LQ SDUW GXH WR WKH ZD\ WKH\ ZHUH FODVVLILHG )RU H[DPSOH PDQ\ FDWHJRULHV RI ZHWODQG W\SHV ZHUH OXPSHG LQWR RQH JHQHUDO ZHWODQGV FODVVLILFDWLRQ 7KRXJK WKLV PHDVXUH PD\ EH DSSURSULDWH IRU D UHODWLYH FRPSDULVRQ RI FKDQJHV ZLWK PDQDJHPHQW WKH QDWXUDO VSHFLHV GLYHUVLW\ RI WKH ODQGVFDSH LV QRW FDSWXUHG 5HVXOWV DOVR LQGLFDWHG WKDW DGGLWLRQ RI UHVRXUFHV WR WKH UHJLRQ IURP WKH HFRQRP\ LQFUHDVHG SRO\JRQ GLYHUVLW\ WR D PD[LPXP XQGHU FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH + f SRO\JRQ GLYHUVLW\ GHFUHDVHG IURP WKH PD[LPXP ZLWK LQFUHDVLQJ PDQDJHPHQW HIIRUW + XQGHU EDVH FDVHf WKXV IROORZLQJ WKH WUHQG LQ SKRVSKRUXV XVH 0DQDJHPHQW PD\ WKHUHIRUH EH FRQVLGHUHG DV D ZD\ WR UHRUJDQL]H WKH ODQGVFDSH WLJKWHQLQJ WKH LQWHUIDFH EHWZHHQ DQ HOHPHQWDO F\FOH DQG LWV HFRQRPLF UROH $QRWKHU ZD\ WR H[SUHVV WKLV UHODWLRQVKLS LV WR H[DPLQH WKH WUHQG LQ WKH YDULDQFH RI SKRVSKRUXV UXQRII FRQFHQWUDWLRQ ZLWK FKDQJHV LQ PDQDJHPHQW 3KRVSKRUXV PDQDJHPHQW GHFUHDVHG WKH YDULDQFH LQ UXQRII FRQFHQWUDWLRQ IURP D PD[LPXP RI XQGHU FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH WR D UDQJH IURP WR 7KH YDULDQFH

PAGE 159

LQ UXQRII FRQFHQWUDWLRQ ZDV RQO\ SULRU WR GHYHORSPHQW 7KH YDULDQFH LQ EDVLQ SKRVSKRUXV RXWIORZ ZDV QRW DSSUHFLDEO\ GLIIHUHQW XQGHU PDQDJHG FRQGLWLRQV 6LQFH EDVLQ RXWIORZ WDNHV LQWR DFFRXQW WKH ORFDWLRQDO SRVLWLRQ RI D SRO\JRQ DQG LWV GLVWDQFH XSVWUHDP WKLV PD\ KDYH KDG D QHXWUDOL]LQJ HIIHFW RQ WKH YDULDQFH LQ RXWIORZ IURP WKH EDVLQ (PSRZHU GHQVLW\ ZKLFK LV D VSDWLDO PHDVXUH RI WKH HPHUJ\ IOX[ RI D UHJLRQ LQFUHDVHG PRUH WKDQ WLPHV VLQFH SUHGHYHORSPHQW FRQGLWLRQV (PSRZHU GHQVLW\ GLG QRW FKDQJH DSSUHFLDEO\ ZLWK PDQDJHPHQW ZKHQ YLHZHG DV D EDVLQZLGH DYHUDJH 2Q DQ DUHDO EDVLV WKHUH ZDV OLWWOH FKDQJH LQ WKH DYHUDJH GLVWULEXWLRQ RI HPHUJ\ IURP WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR ( VHMDF\Uf WR WKH EDVH FDVH SKRVSKRUXV PDQDJHPHQW VFHQDULR ( VHMDF\Uf *LYHQ WKH YDVWQHVV RI ZHWODQG DQG UDQJHODQG DUHDV LQ WKH EDVLQ WKH\ RYHUVKDGRZHG DQ\ VLJQLILFDQW ORFDOL]HG VKLIWV LQ WKH VSDWLDO GLVWULEXWLRQ RI HPHUJ\ /RFDO VKLIWV LQ HPHUJ\ XVH GLG KRZHYHU RFFXU VSDWLDOO\ DV D UHVXOW RI PDQDJHPHQW 7KH ODUJHVW ORFDOL]HG FKDQJH ZDV GXH WR FORVXUH RI GDLULHV DQG VXEVHTXHQW ODQG XVH FRQYHUVLRQ WR PDLQO\ LPSURYHG RU XQLPSURYHG EHHI SDVWXUH (PSRZHU GHQVLW\ RQ WKHVH VLWHV IHOO IURP ( VHMDF\U WR EHWZHHQ DQG ( VHMDF\U &KDQJHV LQ PDQDJHPHQW RQ GDLULHV IURP SUH'DLU\ 5XOH WR GLVSHUVHG PDQDJHPHQW LQFUHDVHG HPSRZHU GHQVLW\ SHU FRZ E\ SHUFHQW RQO\ E\ SHUFHQW RQ D SHU DFUH EDVLVf DQG FKDQJHV LQ VXJDUFDQH PDQDJHPHQW UHVXOWHG LQ DQ SHUFHQW LQFUHDVH LQ DUHDO HPSRZHU GHQVLW\ 7KH JUHDWHVW HIIHFW RQ WKH HPHUJ\ IOX[ RI WKH UHJLRQ ZDV WKXV DWWULEXWHG WR ODQG XVH FKDQJH DQG QRW PDQDJHPHQW

PAGE 160

&RPSDULQJ 0HDVXUHV RI 6XFFHVV IRU 3KRVSKRUXV 0DQDJHPHQW ,Q RUGHU IRU WKH PDQDJHPHQW RI D FKHPLFDO HOHPHQW WR EH VXFFHVVIXO DW WKH EDVLQ VFDOH VSHFLILF JRDOV PXVW EH VHW ZKLFK DUH IOH[LEOH HQRXJK WR EH UHVSRQVLYH WR QHZ LQIRUPDWLRQ DERXW WKH ZDWHUVKHG V\VWHP DV LW EHFRPHV DYDLODEOH 3K\VLFDO *RDOV 7UDGLWLRQDOO\ SK\VLFDO JRDOV KDYH EHHQ SRSXODU LQFOXGLQJ WDUJHW ORDG UHGXFWLRQV WR D UHFHLYLQJ ZDWHU ERG\ RU WDUJHW UXQRII FRQFHQWUDWLRQ VWDQGDUGV IURP VSHFLILF ODQG XVHV 7KH ODWWHU PHDVXUHV DUH GLIILFXOW WR HQIRUFH GXH WR UHVWULFWLYH PRQLWRULQJ FRVWV DQG UHTXLUHPHQWV 7KHVH SK\VLFDO JRDOV DVVXPH WKDW WKH GRZQVWUHDP LPSDFW RI D FKHPLFDO HOHPHQW LV ZHOO XQGHUVWRRG ZKLFK LV QRW DOZD\V WKH FDVH &RQWURYHUV\ VWLOO DERXQGV FRQFHUQLQJ WKH UROH WKDW SKRVSKRUXV IURP WKH ZDWHUVKHG LV SOD\LQJ WRZDUG /DNH 2NHHFKREHHnV GHJUDGDWLRQ DIIHFWLQJ LWV SURYLVLRQV RI SRWDEOH ZDWHU DQG UHFUHDWLRQDO RSSRUWXQLWLHV &DQILHOG DQG +R\HU f 7KH GHEDWH EHWZHHQ WKH VLJQLILFDQFH RI SKRVSKRUXV FRQWULEXWLRQV IURP LQWHUQDO F\FOLQJ YHUVXV H[WHUQDO ORDGLQJ DQG WKH UROH RI ZDWHU OHYHO IOXFWXDWLRQV KDYH VWLOO QRW EHHQ UHVROYHG FRPSOHWHO\ $VVXPLQJ WKDW SKRVSKRUXV GRHV SOD\ D UROH LQ HXWURSKLFDWLRQ UHJDUGOHVV RI WKH VRXUFH WKH TXHVWLRQ RI VHWWLQJ D VSHFLILF DYHUDJH DQQXDO WDUJHW ORDG IRU WKH ODNH DULVHV 7KH PHWKRG DSSOLHG IRU /DNH 2NHHFKREHH DV VSHFLILHG LQ LWV 6:,0 3ODQ ZDV WKH PRGLILHG 9ROOHQZHLGHU QXWULHQW ORDGLQJ PRGHO 9ROOHQZHLGHU f ZKLFK HVWLPDWHV D FULWLFDO QXWULHQW ORDGLQJ DV D IXQFWLRQ RI WKH K\GUDXOLF ORDGLQJ UDWH DQG ZDWHU UHVLGHQFH WLPH $SSO\LQJ WKLV PRGHO )HGHULFR HW DO f HVWLPDWHG WKDW SKRVSKRUXV LQSXWV WR /DNH 2NHHFKREHH VKRXOG EH UHGXFHG WR WRQV\U EDVLQZLGH QRUWK DQG VRXWK RI WKH

PAGE 161

ODNHf 7KLV ORDGLQJ UDWH SURYLGHG WKH EDVLV IRU VHWWLQJ DQ DYHUDJH DQQXDO WRWDO SKRVSKRUXV FRQFHQWUDWLRQ SHUIRUPDQFH VWDQGDUG RI PJ 3 IRU DOO LQIORZV WR WKH ODNH %\ DSSO\LQJ WKH SKRVSKRUXV DVVLPLODWLRQ DOJRULWKP VSHFLILHG LQ WKH 6:,0 3ODQ D PD[LPXP DOORZDEOH SKRVSKRUXV UXQRII FRQFHQWUDWLRQ SHUIRUPDQFH VWDQGDUG RI PJ ZDV EDFNFDOFXODWHG IRU H[LVWLQJ ODQG XVHV 5HFDOOLQJ IURP WKH UHVXOWV RI WKLV VWXG\ 7DEOH f RQO\ WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR ZDV FDSDEOH RI PHHWLQJ RU H[FHHGLQJ WKH SKRVSKRUXV ORDGLQJ VWDQGDUG DGMXVWHG IRU WKH QRUWK 2NHHFKREHH EDVLQ RQO\f
PAGE 162

FRVW HIIHFWLYHQHVV 7KLV DSSURDFK KDV LQ HVVHQFH EHHQ DGRSWHG IRU WKH /DNH 2NHHFKREHH 6:,0 SODQQLQJ SURFHVV ,Q PRVW FRVW HIIHFWLYHQHVV DQDO\VHV ODFN RI LQIRUPDWLRQ DERXW NH\ SURFHVVHV HJ SK\VLFDO ELRORJLFDO EHKDYLRUDOf DQG WKHLU LQWHUDFWLRQV DQG ODFN RI FRQWURO RYHU VWRFKDVWLF LQSXWV UHVXOWV LQ VLJQLILFDQW OHYHOV RI ULVN DQG XQFHUWDLQW\ ZKLFK JHQHUDWH LPSRUWDQW FRVW FRQFHUQV 2QH LV WKH FRVW RI EHLQJ ZURQJ ZKHQ HVWDEOLVKLQJ WKH WDUJHW OHYHO 5HODWHG LV WKH UHOLDELOLW\ ZLWK ZKLFK WKH WDUJHW OHYHO LV DFKLHYHG FRVWV LQFUHDVH LQ UHODWLRQ WR WKH UHOLDELOLW\ RI DFKLHYLQJ D JLYHQ ZDWHU TXDOLW\ WDUJHW 0F6ZHHQH\ DQG 6KRUWOH f $ SROLWLFDO FRQFHUQ LV DVVRFLDWHG ZLWK WKH HIIHFWV RI FKDQJHV LQ SURGXFWLRQ SUDFWLFHV RQ WKH YDULDELOLW\ RI SURGXFHUnV SURILWV LH VHFRQGDU\ FRVWVf 5HFDSSLQJ UHVXOWV IURP WKLV VWXG\ FKDQJHV LQ LQYHVWPHQW DQG RSHUDWLRQ DQG PDLQWHQDQFH FRVWV DVVRFLDWHG ZLWK SKRVSKRUXV PDQDJHPHQW UDQJHG IURP WR PLOOLRQ DQQXDOO\ 7DEOH f 6HFRQGDU\ FRVWV DVVRFLDWHG ZLWK FKDQJHV LQ LQSXWV DQG \LHOGV DFFRXQWHG IRU DQ DGGLWLRQDO PLOOLRQ\U IURP EDVH FDVH WR GLVSHUVHG SKRVSKRUXV PDQDJHPHQW 6HFRQGDU\ FRVWV ZHUH DFWXDOO\ QHJDWLYH GXH WR DQ LQFUHDVH LQ UHWXUQV IURP FRPSRVW VDOH ZKHQ VZLWFKLQJ IURP WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR WR WKH EDVH FDVH 7KH QHW HIIHFW ZDV D FRVW RI SHU OE RI SKRVSKRUXV UHPRYHG IURP EDVLQ RXWIORZ 7DEOH f $Q DGGLWLRQDO WR SHU OE ZDV UHTXLUHG IRU GLVSHUVHG SKRVSKRUXV PDQDJHPHQW DQG OE IRU FRQFHQWUDWHG PDQDJHPHQW 7KH EDVH FDVH VFHQDULR KDG WKH ORZHVW FRVW SHU OE SKRVSKRUXV UHPRYDO EXW GLG QRW PHHW WKH WDUJHW 7KHVH ILQGLQJV DOVR LQGLFDWH D SRVLWLYH UHODWLRQVKLS EHWZHHQ WKH ZDWHU TXDOLW\ JRDO DQG WKH FRVW RI DWWDLQPHQW

PAGE 163

7KRXJK LQGLUHFW FRVWV DVVRFLDWHG ZLWK FKDQJHV LQ PDQDJHPHQW HJ UHJLRQDO LPSDFWV DQG DGPLQLVWUDWLYH FRVWVf ZHUH QRW HYDOXDWHG LQ WKLV VWXG\ WKH\ PD\ EH YHU\ VLJQLILFDQW $Q H[DPSOH LV WKH UHJLRQDO PXOWLSOLHU HIIHFW DVVRFLDWHG ZLWK FORVXUH RI GDLULHV LQ WKH EDVLQ 0XONH\ DQG &ORXVHU f HVWLPDWHG WKDW URXJKO\ PLOOLRQ ZHUH ORVW DQQXDOO\ LQ 2NHHFKREHH FRXQW\ VDOHV DV D UHVXOW RI GDLULHV FHDVLQJ RSHUDWLRQ 7KLV YDOXH GLG QRW DFFRXQW IRU JDLQV DVVRFLDWHG ZLWK WKH DFWLYLWLHV UHSODFLQJ WKH GDLULHV QRU WKH LQFUHDVH LQ RXWSXW RI WKH UHPDLQLQJ GDLULHV ([SDQGLQJ WKH ERXQGDULHV RI DQDO\VLV WR LQFOXGH WKH ODNH HFRV\VWHP QRQPDUNHW YDOXDWLRQ WHFKQLTXHV FRXOG EH DSSOLHG WR HVWLPDWH WKH HFRQRPLF EHQHILWV RI ZDWHU TXDOLW\ LPSURYHPHQW $V DQ DOWHUQDWLYH HFRQRPLF JRDO WKH FRVWV RI DFKLHYLQJ D GHVLUHG OHYHO RI ZDWHU TXDOLW\ FRXOG WKHQ EH HTXDWHG ZLWK H[SHFWHG EHQHILWV DVVXPLQJ WKH SK\VLFDO OLQNDJHV DUH DFFXUDWH (QHUJHWLF *RDOV 7KH DERYH PHDVXUHV RI WKH VXFFHVV RI SKRVSKRUXV PDQDJHPHQW ZHUH EDVHG RQ YHU\ VSHFLILF JRDOV UHODWHG WR WKH DVVXPSWLRQ WKDW FRQWURO RI WKH RXWIORZ RI D VLQJOH FKHPLFDO HOHPHQW LV VXIILFLHQW WR PHHW WKH PXOWLSOH REMHFWLYHV RI ZDWHUVKHG UHVRXUFH PDQDJHPHQW $ PRUH KROLVWLF DSSURDFK WR PDQDJLQJ D QXWULHQW FRXOG EH WDNHQ ZKLFK DFFRXQWV IRU LWV F\FOLQJ LQFOXGLQJ XVHV IHHGEDFNV SURGXFWV DV ZHOO DV UHVLGXDOV LWV UROH LQ WKH HQYLURQPHQW DQG DV D SURGXFWLYH SDUW RI WKH HFRQRP\ 7KH NH\ WR WKLV DSSURDFK LV WR DSSO\ WKH DSSURSULDWH WHFKQRORJ\ ZKLFK FRXSOHV WKH HFRQRPLF HQHUJHWLF DQG PDWHULDO XVH RI WKH HOHPHQW 7KRXJK LQGLFHV DUH XVHIXO IRU FRPSDULVRQ LW LV

PAGE 164

LPSRUWDQW WR UHWDLQ D V\VWHPnV YLHZ WR XQGHUVWDQG HIIHFWV RQ IORZV VWRUDJHV DQG LQWHUDFWLRQV 7DEOH VXPPDUL]HV DQG DOORZV FRPSDULVRQ RI WKH DQQXDO HPGROODU IORZV RI WKH UHJLRQDO SKRVSKRUXV F\FOH XQGHU GLIIHUHQW VFHQDULRV 7KH ZKROH F\FOH VWRUDJHV DQG IORZV DUH HYDOXDWHG LQ HPGROODUV ZKLFK PD\ WKHQ EH FRPSDUHG WR WKH WRWDO VHUYLFH GROODUV FLUFXODWLQJ WKURXJK WKH UHJLRQ RU WR WKH VHUYLFH GROODUV VSHQW DQQXDOO\ WR FRQWURO SKRVSKRUXV (PGROODUV RI WKH ZKROH SKRVSKRUXV F\FOH LQFUHDVHG ZLWK PDQDJHPHQW +RZHYHU WKH DQQXDO IORZ RI HPGROODUV DVVRFLDWHG ZLWK SKRVSKRUXV LPSRUWV H[SRUWV DQG FKDQJHV LQ VWRUDJH GHFOLQHG ZLWK PDQDJHPHQW 6DYLQJV LQ LPSRUWHG HPGROODUV FRXOG SHUKDSV EH XVHG HOVHZKHUH PRUH SURGXFWLYHO\ 7KH GHFOLQH LQ HPGROODUV RI SKRVSKRUXV VWRUDJH PD\ EH YLHZHG DV D ORVV LQ WKH ORQJUXQ LI WKHUH LV VRPH IXWXUH SRWHQWLDO YDOXH DVVRFLDWHG ZLWK WKLV EXLOGXS RI SKRVSKRUXV 7KLV HPGROODUV VDYLQJV PD\ DOVR KDYH JUHDWHU HIIHFW XVHG HOVHZKHUH 7KH HPGROODU YDOXH RI SKRVSKRUXV LQ H[SRUWHG SURGXFWV ZDV JUHDWHVW SULRU WR PDQDJHPHQW HYHQ WKRXJK WKH SURGXFW PDVV IORZ ZDV ORZHU 7DEOH f 1HZ SKRVSKRUXVFRQWDLQLQJ SURGXFWV JHQHUDWHG XQGHU PDQDJHG FRQGLWLRQV ZHUH UHF\FOHG DQG XVHG ZLWKLQ WKH UHJLRQ UDWKHU WKDQ H[SRUWHG (PGROODUV RI SKRVSKRUXV LQ VWRUDJH DQG UXQRII DUH GHSLFWHG VSDWLDOO\ LQ )LJXUH 7KH DUHDO GLVWULEXWLRQV LQGLFDWH WKH LQWHQVLW\ RI SKRVSKRUXV XVH WKURXJKRXW WKH ODQGVFDSH (PGROODUV VWRUHG DQG LQ UXQRII UHSUHVHQW SRWHQWLDO YDOXH LI FRQWULEXWHG

PAGE 165

7DEOH 6XPPDU\ RI $QQXDO 'ROODU )ORZV DQG (PGROODU )ORZV RI WKH 5HJLRQDO 3KRVSKRUXV &\FOH E\ 6FHQDULR 6FHQDULR :KROH 3KRVSKRUXV &\FOH (f ,PSRUWHG 3KRVSKRUXV (f (0\Uf§ 2QVLWH 3KRVSKRUXV 6WRUDJH (OOf 3KRVSKRUXV LQ 3URGXFWV (f 3KRVSKRUXV LQ 5XQRII (f $VVLPLODWHG 3KRVSKRUXV (OOf %DVLQ 2XWIORZ 3KRVSKRUXV (f 7RWDO 6HUYLFH 'ROODUV (f \U &RVW RI 3KRV &RQWURO (f %DVH &DVH 3 0DQDJHPHQW 0D[LPXP 3 8VH 3UHGHYHORSPHQW f§ 'LVSHUVHG 3 0DQDJHPHQW 'LVSHUVHG 3 0DQDJHPHQW &RQFHQWUDWHG 3 0DQDJHPHQW

PAGE 166

)LJXUH (PGROODU )ORZ SHU $FUH $VVRFLDWHG ZLWK WKH $QQXDO &KDQJH LQ 2QVLWH 3KRVSKRUXV 6WRUDJH DQG $QQXDO 5XQRII 3KRVSKRUXV XQGHU WKH %DVH &DVH 6FHQDULR

PAGE 167

3/$1 '53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 6725$*( (0'2//$56 (0rSURG XQLW\HDUf ’ R ! ! ! P ! 3/$1 '53/$1 &855(17 3/$1f 63$7,$/ 6&$/( /$.( 2.((&+2%(( %$6,1 5812)) (0'2//$56 (0LSURG XQLW\HDUf ’ ‘

PAGE 168

WRZDUG SURGXFWLYH XVH +RZHYHU LW LV YDOXH ORVW LI H[SRUWHG IURP WKH V\VWHP ZLWKRXW HTXLWDEOH UHWXUQ 2QH ZD\ WR GHWHUPLQH ZKHWKHU D SKRVSKRUXV PDQDJHPHQW WHFKQRORJ\ LV DSSURSULDWH LV WR FRPSDUH WKH VHUYLFH GROODU FRVW RI PDQDJHPHQW WR WKH HPGROODUV VDYHG DV UXQRII GLYHUWHG WR SRWHQWLDOO\ PRUH SURGXFWLYH XVHV HOVHZKHUH LQ WKH V\VWHP 7KLV LV DQRWKHU NLQG RI PHDVXUH RI FRVW HIIHFWLYHQHVV LQFRUSRUDWLQJ WKH HQHUJ\ HPERGLHG LQ UXQRII &RPSDULVRQ RI VFHQDULRV EDVHG RQ WKLV PHDVXUH LQGLFDWHG WKDW URXJKO\ (0 ZHUH VDYHG DV UXQRII SHU VHUYLFH GROODU VSHQW RQ FRQWURO ZKHQ VZLWFKLQJ IURP FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH WR EDVH FDVH SKRVSKRUXV PDQDJHPHQW $Q DGGLWLRQDO VDYLQJV RI DQG (06VHUYLFH FRXOG EH DFKLHYHG XQGHU GLVSHUVHG SKRVSKRUXV PDQDJHPHQW GHVLJQV $JDLQ WKH JUHDWHVW VDYLQJV SHU GROODU ZDV UHDOL]HG ZLWK EDVH FDVH SKRVSKRUXV PDQDJHPHQW 7KH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR PDQDJHV IRU EDVLQ RXWIORZ UDWKHU WKDQ UXQRII DQG LV QRW FRPSDUDEOH LQ WKLV FRQWH[W &RPSDULVRQ DW WKH GDLU\ ODQG XVH OHYHO LQGLFDWHG WKDW WR (0 ZHUH LQYHVWHG IRU HDFK HPGROODU VDYHG DV UXQRII ZLWK ELRUHDFWRUV DW WKH ORZHU HQG RI WKH UDQJH DQG FRQILQHPHQW V\VWHPV DW WKH KLJK HQG $W WKLV VFDOH SKRVSKRUXV PDQDJHPHQW GRHV QRW DSSHDU WR EH HQHUJHWLFDOO\ FRVW HIIHFWLYH ,I DQ DFWXDO VDYLQJV LQ HPGROODUV RI SXUFKDVHG LPSRUWV FRXOG EH DFKLHYHG E\ VXEVWLWXWLQJ UHF\FOHG SURGXFWV WKHVH VDYLQJV FRXOG EH FRXQWHG DV D FUHGLW ZKLFK ZRXOG LPSURYHG WKH YLDELOLW\ RI WKH GDLU\ PDQDJHPHQW RSWLRQV

PAGE 169

7KH HPGROODU YDOXH RI SKRVSKRUXV DVVLPLODWHG DORQJ WKH IORZ SDWK WR /DNH 2NHHFKREHH DQG FRQWULEXWHG GLUHFWO\ WR WKH ODNH GHFOLQHG E\ SHUFHQW ZLWK PDQDJHPHQW $JDLQ WKH QH[W ODUJHU V\VWHP ZKLFK LQFOXGHV WKH ODNH PXVW EH DQDO\]HG WR GHWHUPLQH ZKHWKHU WKLV GHFOLQH LV EHQHILFLDO LQ WHUPV ELRJHRHFRQRPLF LH SK\VLFDO ELRORJLFDO DQG VRFLDOf LPSDFWV RQ WKH GRZQVWUHDP V\VWHP 1HW HPHUJ\ \LHOG UDWLRV DQG HPHUJ\ LQYHVWPHQW UDWLRV DUH DOVR XVHIXO FRPSDUDWLYH PHDVXUHV RI WKH HIIHFWV RI SKRVSKRUXV PDQDJHPHQW 0DQDJHPHQW LQFUHDVHG WKH HPHUJ\ LQYHVWPHQW UDWLR EDVLQZLGH LQGLFDWLQJ PRUH SXUFKDVHG LQSXWV ZHUH UHTXLUHG IRU SURGXFWLRQ SHU XQLW HQYLURQPHQWDO LQSXW UHIHU WR )LJXUH f 0DQDJHPHQW KDG WKH JUHDWHVW HIIHFW RQ GDLULHV LQFUHDVLQJ WKH UDWLR E\ DV PXFK DV SHUFHQW 7KHUH ZDV QR DSSUHFLDEOH LPSDFW RQ WKH QHW HPHUJ\ \LHOG UDWLR RI WKH UHJLRQ GXH WR SKRVSKRUXV PDQDJHPHQW 6LQFH WKHUH ZHUH QR PDMRU VKLIWV DZD\ IURP DJULFXOWXUH WKH \LHOG UDWLRV UHPDLQHG LQ WKH W\SLFDO UDQJH RI WR DV REVHUYHG IRU DJULFXOWXUDO SURGXFWV &RPSDULVRQ RI WKH WUDQVIRUPLWLHV RI SURGXFWV JHQHUDWHG XQGHU DOWHUQDWLYH PDQDJHPHQW VFHQDULRV PD\ JLYH D PHDVXUH RI WKH HIIHFW RI PDQDJHPHQW RQ WKH HIILFLHQF\ RI V\VWHP SURGXFWLYLW\ 7KH KLJKHU WKH WUDQVIRUPLW\ WR SURGXFH WKH VDPH SURGXFW WKH OHVV HIIHFWLYH WKH V\VWHP LV DW SURGXFWLRQ ,I KRZHYHU DOWHUQDWLYH VHUYLFHV DUH SURYLGHG E\ WKH V\VWHP HJ UHGXFLQJ SKRVSKRUXV UXQRII JHQHUDWLQJ QHZ SURGXFWV IURP UHVLGXDOVf WKH\ VKRXOG EH FRXQWHG WR PHDVXUH WKH ZKROH V\VWHPnV HIIHFWLYHQHVV 6\VWHPV KDYH EHHQ VKRZQ E\ 2GXP DQG 3LQNHUWRQ f WR PD[LPL]H SRZHU DW SHUFHQW HIILFLHQF\ $V DQ H[DPSOH VXJDUFDQH ZDV SURGXFHG XQGHU WKH EDVH FDVH

PAGE 170

VFHQDULR ZLWK D WUDQVIRUPLW\ RI ( VHM$SSHQGL[ % 7DEOH %f &KDQJLQJ PDQDJHPHQW WR WKH GLVSHUVHG VFHQDULR LQFUHDVHG WKH WUDQVIRUPLW\ E\ SHUFHQW $SSHQGL[ % 7DEOH %f +RZHYHU DQQXDO \LHOG DOVR LQFUHDVHG E\ SHUFHQW DQG UXQRII SKRVSKRUXV ZDV UHGXFHG E\ PRUH WKDQ RQHWKLUG $QRWKHU H[DPSOH ZDV REVHUYHG IRU GDLU\ PLON SURGXFWLRQ $ SHUFHQW LQFUHDVH LQ WUDQVIRUPLW\ ZDV DFFRPSDQLHG E\ D SHUFHQW GHFUHDVH LQ SKRVSKRUXV UXQRII SOXV SURGXFWLRQ RI DQ DOWHUQDWLYH IRUDJH FURS $ GHFOLQH LQ PLON SURGXFWLRQ HIILFLHQF\ ZDV SHUKDSV RIIVHW E\ JDLQV LQ SKRVSKRUXV UXQRII FRQWURO UHVXOWLQJ LQ D QHW LQFUHDVH LQ V\VWHP HIIHFWLYHQHVV WRZDUG SRZHU PD[LPL]DWLRQ 8QQHFHVVDU\ XVH RI UHVRXUFHV PD\ EH SUHYHQWHG E\ SURFHVVLQJ DQG XVLQJ WKH YDOXH RI UHVLGXDOV RQVLWH OHDYLQJ HPHUJ\ SUHYLRXVO\ LPSRUWHG IRU EHWWHU XVH HOVHZKHUH $ V\VWHP PD\ WKHUHIRUH EH UHRUJDQL]HG WKURXJK PDQDJHPHQW WR DFKLHYH PXOWLSOH REMHFWLYHV IURP WKH QH[W ODUJHU V\VWHPV YLHZ 6XPPDU\ &RPSDULVRQ RI *RDOV ,Q VXPPDU\ IURP D SXUHO\ SK\VLFDO VWDQGSRLQW WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR ZDV E\ IDU WKH PRVW VXFFHVVIXO H[FHHGLQJ WKH WDUJHW SK\VLFDO JRDO IRU DQQXDO ODNH SKRVSKRUXV ORDGLQJ E\ SHUFHQW 6LQFH ERWK GLVSHUVHG PDQDJHPHQW VFHQDULRV GHVLJQV DQG f UHDFKHG ZLWKLQ SHUFHQW RI WKH WDUJHW WKH\ PD\ DOVR EH FRQVLGHUHG VXFFHVVIXO ZLWK UHVSHFW WR WKH SK\VLFDO FULWHULRQ 7KLV GHYLDWLRQ IURP WKH DYHUDJH DQQXDO WDUJHW PD\ EH DVVXPHG WR OLH ZLWKLQ WKH UDQJH RI XQFHUWDLQW\ DVVRFLDWHG ZLWK WKH PRGHOLQJ SURFHVV $W SHUFHQW DERYH WKH WDUJHW WKH EDVH FDVH VFHQDULR ZDV XQVXFFHVVIXO DW UHDFKLQJ WKH SK\VLFDO JRDO

PAGE 171

7KH HFRQRPLF FULWHULRQ RI PLQLPL]LQJ WKH FRVW RI DFKLHYLQJ WKH SK\VLFDO WDUJHW JRDO ZRXOG UDQN WKH GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULR GHVLJQ DV WKH PRVW VXFFHVVIXO LH WKH PRVW FRVW HIIHFWLYH ZLWK RU ZLWKRXW VHFRQGDU\ FRVWVf IROORZHG E\ GLVSHUVHG PDQDJHPHQW GHVLJQ DQG WKHQ WKH FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW VFHQDULR 8QGHU GLVSHUVHG PDQDJHPHQW PRVW FRVWV RI FRQWURO ZRXOG EH LQFXUUHG E\ WKH SULYDWH ODQGRZQHUV ZKR ZHUH UHVSRQVLEOH IRU WKH LQFUHDVHG ORDGLQJ ,W LV SRVVLEOH WKDW WKH FRVW RI FRQFHQWUDWHG SKRVSKRUXV PDQDJHPHQW FRXOG EH SDVVHG RQ WR WKH SXEOLF VLQFH FRQWURO RFFXUV DW EDVLQ RXWOHWV DQG QRW RQ SULYDWH ODQGV 6LQFH WKH EDVH FDVH VFHQDULR GLG QRW PHHW WKH WDUJHW SK\VLFDO JRDO LW FDQQRW EH FRQVLGHUHG FRVW HIIHFWLYH HYHQ WKRXJK WKH FRVW SHU SRXQG RI SKRVSKRUXV UHGXFWLRQ ZDV OHDVW XQGHU WKLV VFHQDULR %DVHG RQ WKH HQHUJHWLF FULWHULRQ RI PD[LPL]LQJ UHJLRQDO HPHUJ\ ZLWKRXW UHJDUG WR SKRVSKRUXV OLPLWDWLRQV WKH PD[LPXP SKRVSKRUXV XVH VFHQDULR UHVXOWHG LQ WKH JUHDWHVW HPHUJ\ IOX[ WR WKH EDVLQ DQQXDOO\ ( VHM\Uf 7KH HPGROODU YDOXH RI VDOHDEOH SKRVSKRUXVFRQWDLQLQJ SURGXFWV JHQHUDWHG XQGHU FRQGLWLRQV RI PD[LPXP SKRVSKRUXV XVH ZDV DOVR DW D PD[LPXP *LYHQ WKH LPSRVLWLRQ RI WKH SK\VLFDO JRDO IRU SKRVSKRUXV PDQDJHPHQW WKH PRVW HQHUJHWLFDOO\ VXFFHVVIXO VFHQDULR LV WKDW ZKLFK ZDVWHV WKH OHDVW HPHUJ\ RU HPGROODUV LQ UXQRII %RWK GLVSHUVHG SKRVSKRUXV PDQDJHPHQW VFHQDULRV UHVXOWHG LQ WKH ORZHVW DQQXDO HPGROODUV RI SKRVSKRUXV UXQRII EDVLQZLGH ( (0\Uf ,Q RUGHU WR DVVHVV ZKHWKHU WKH HPHUJ\ GHYRWHG WR SKRVSKRUXV PDQDJHPHQW LV EHQHILFLDO WR WKH UHJLRQ RQH VKRXOG H[DPLQH WKH WUDGHRII EHWZHHQ HPHUJ\ ORVW IURP WKH UHJLRQ LQ RUGHU WR VDYH SKRVSKRUXV LQ UXQRII 8QGHU GLVSHUVHG SKRVSKRUXV PDQDJHPHQW PLOOLRQ (0\U ZHUH

PAGE 172

IRUHJRQH LQ RUGHU WR VDYH PLOOLRQ (0\U RI UXQRII SKRVSKRUXV DQG PLOOLRQ (06\U RI EDVLQ RXWIORZ SKRVSKRUXV 8QGHU FRQFHQWUDWHG PDQDJHPHQW PLOOLRQ (0 ZHUH ORVW IURP WKH EDVLQ DQQXDOO\ WR VDYH PLOOLRQ (0 RI EDVLQ RXWIORZ SKRVSKRUXV $W WKH EDVLQ VFDOH WKH WUDGHRIIV GR QRW DSSHDU WR EH HQHUJHWLF WKRXJK FRQFHQWUDWHG PDQDJHPHQW DSSHDUV WR EH PRUH EHQHILFLDO $JDLQ WKH SKRVSKRUXV PDQDJHPHQW JRDO ZDV VHW ZLWK FRQVLGHUDWLRQ RI WKH QH[W ODUJHU V\VWHP DQG PXVW EH HYDOXDWHG LQ WKLV FRQWH[W *HQHUDO 3ULQFLSOHV RI %LRJHRHFRQRPLFV 7KH VFLHQFH RI HFRORJLFDO HFRQRPLFV KDV KDG D ORQJ KLVWRU\ RI GHYHORSPHQW EHJLQQLQJ ZLWK SK\VLFLVWV DQG FKHPLVWV LQ WKH WK FHQWXU\ 0DUWLQH]$OOLHU f 7KH GLVFLSOLQH IRFXVHV RQ WKH UROH SOD\HG E\ WKH IORZ RI PDWHULDOV DQG HQHUJ\ WKURXJK WKH HFRQRP\ *HQHUDO LVVXHV UHODWHG WR WKH LQWHUIDFH EHWZHHQ PDWHULDO DQG HFRQRPLF V\VWHPV DUH RIWHQ DGGUHVVHG 0RUH VSHFLILFDOO\ WKH ILHOG RI ELRJHRHFRQRPLFV SURSRVHG LQ WKLV VWXG\ H[DPLQHV WKH LQWHUDFWLRQV RI RQH RU PRUH FKHPLFDO HOHPHQWV ZLWK WKH HQYLURQPHQW DQG HFRQRP\ %LRJHRHFRQRPLFV PD\ EH WKRXJKW RI DV D EUDQFK RI HFRORJLFDO HFRQRPLFV GHYHORSHG IRU WKH VSHFLILF SXUSRVH RI PDQDJLQJ DW WKLV LQWHUIDFH WR PD[LPL]H UHJLRQDO HPSRZHU 7KHUH DUH DOVR VWURQJ OLQNDJHV WR WKH ILHOG RI HFRORJLFDO HQJLQHHULQJ )LYH NH\ SULQFLSOHV DUH SURSRVHG WR JXLGH WKH VWXG\ RI ELRJHRHFRQRPLFV DV DQ RXWFRPH RI LQVLJKWV JDLQHG IURP WKH FXUUHQW UHVHDUFK f :KHUH DSSURSULDWH FRXSOH WKH ELRJHRFKHPLFDO F\FOH RI D FKHPLFDO HOHPHQW WR LWV HFRQRPLF XVH DFURVV WKH ODQGVFDSH ,W LV RIWHQ QHFHVVDU\ WR REVHUYH WKH QH[W ODUJHU

PAGE 173

VFDOH WR GHWHUPLQH ZKHWKHU WKH F\FOHV DUH ZHOO FRXSOHG 3DUW RI D F\FOH LV HFRQRPLF DQG SDUW HQYLURQPHQWDO DQG WKH KHDOWK RI ERWK V\VWHPV LV IDFLOLWDWHG E\ JRRG FLUFXODWLRQ EHWZHHQ WKHP *RRG FLUFXODWLRQ LPSOLHV WKDW WKH HFRQRP\ LV SURYLGLQJ IHHGEDFNV WR HQKDQFH WKH XVH DQG UHF\FOH RI WKH HOHPHQW $Q H[DPSOH RI WKLV FRXSOLQJ RI HFRQRPLF DQG PDWHULDO F\FOHV LV WKURXJK WKH DSSOLFDWLRQ RI PDQXUH PDQDJHPHQW WHFKQLTXHV RQ GDLULHV 'HVLJQV WR HQKDQFH WKH UHXVH RI SKRVSKRUXV WKURXJK FROOHFWLRQ DQG UHGLVWULEXWLRQ SURYLGHG RSSRUWXQLWLHV IRU WKH SURGXFWLRQ RI VXEVWLWXWHV IRU SKRVSKRUXV LQWHQVLYH LQSXWV f $SSO\ PDQDJHPHQW WR UHGLVWULEXWH DQ HOHPHQW WKURXJKRXW WKH VHOIRUJDQL]LQJ ODQGVFDSH LQ RUGHU WR PD[LPL]H LWV ELRJHRHFRQRPLF SURGXFWLYLW\ /HW WKH ORZHU WUDQVIRUPLW\ HQYLURQPHQW ZRUN E\ GRLQJ WKH ORZ WUDQVIRUPLW\ SDUW RI WKH F\FOH ZLWK IUHH UHVRXUFHV VXFK DV VXQ ZLQG DQG UDLQ 3KRVSKRUXV PDQDJHPHQW WKURXJK WKH XVH RI HFRUHDFWRUV LH ZHWODQGVf RQ GDLULHV SURYLGHG PHDQV WR FDSLWDOL]H RQ WKH HQYLURQPHQWnV DELOLW\ WR SHUIRUP WKH VHUYLFH RI QXWULHQW ILOWUDWLRQ RQVLWH DOVR ZLWK SRWHQWLDO IRU SURGXFLQJ DQ LQSXW VXEVWLWXWH 6XFK PHWKRGV VWLPXODWH WKH XVH RI ORFDOL]HG UHVRXUFHV ZKLFK FRQWULEXWH WR WKH RYHUDOO ELRJHRHFRQRPLF SURGXFWLYLW\ RI WKH ODQGVFDSH f 'HVLJQ PDQDJHPHQW V\VWHPV WR HQKDQFH WKH VSDWLDO KHWHURJHQHLW\ RI WKH ODQGVFDSH &\FOHV XS DQG GRZQ WKH HQHUJ\ WUDQVIRUPDWLRQ KLHUDUFK\ KDYH D VSDWLDO SDWWHUQ FRQYHUJLQJ LQWR KLHUDUFKLFDO FHQWHUV GHILQHG E\ KLJK HPSRZHU GHQVLW\ DQG WKHQ GLYHUJLQJ RXW WR WKH ORZHU HPSRZHU GHQVLW\ HQYLURQPHQWV

PAGE 174

$V DQ DOWHUQDWLYH WR SKRVSKRUXV PDQDJHPHQW DSSOLHG RQVLWH RU DW WKH EDVLQ RXWOHW WKH QDWXUDO DELOLW\ RI WKH V\VWHP RI ZHWODQGV VWUHDPV DQG PDQPDGH FDQDOV WR DEVRUE SKRVSKRUXV FRXOG EH HQKDQFHG WKURXJK WKH GHVLJQ RI PHVRVFDOH ZHWODQG ILOWUDWLRQ V\VWHPV 7KH WKHRU\ RI DUUHVWHG VXFFHVVLRQ VXJJHVWV WKDW VHOIRUJDQL]DWLRQ RI WKH ODQGVFDSH ZLOO IRUFH HXWURSKLF ]RQHV RI QHW SURGXFWLRQ WR GHYHORS GRZQVWUHDP IURP QXWULHQWULFK IORZV 2GXP f 7KHVH ]RQHV FRXOG EH LGHQWLILHG VSDWLDOO\ RQ D PDS DV MXQFWXUHV RI KLJK SKRVSKRUXV FRQFHQWUDWLRQ DQG ZHWODQG KDELWDW 5HURXWLQJ SKRVSKRUXV WR WKHVH ZHWODQG ILOWUDWLRQ DUHDV LQFUHDVLQJ WKH UHWHQWLRQ WLPH SHUKDSV LQWURGXFLQJ VXLWDEOH YHJHWDWLRQ DQG PDQDJLQJ IRU DUUHVWHG VXFFHVVLRQ DUH SRWHQWLDO PHWKRGV WR PD[LPL]H SKRVSKRUXV XSWDNH DW WKH PHVRVFDOH f 8VH WKH DSSURSULDWH WHFKQRORJ\ WR PDWFK WKH KLHUDUFKLFDO SRVLWLRQ RI WKH HOHPHQW EHLQJ PDQDJHG 'HILQH HDFK WHFKQRORJ\ E\ WKH DSSURSULDWH WUDQVIRUPLW\ UDQJHV DQG GHILQH WKH VSDWLDO ORFDWLRQ E\ WKH DSSURSULDWH HPSRZHU GHQVLW\ 5HIHUULQJ EDFN WR )LJXUH SKRVSKRUXV DQG VHUYLFHV LQWHUDFW VXLWDEO\ ZLWKLQ D JLYHQ UDQJH RI WUDQVIRUPLW\ 7KH DSSURSULDWH OHYHO RI VHUYLFHV GHYRWHG WR SKRVSKRUXV PDQDJHPHQW VKRXOG RYHUODS WKH UDQJH ZKHUH SKRVSKRUXV RSHUDWHV LQ WKH EDVLQ ,Q RWKHU ZRUGV LW ZRXOG QRW EH HQHUJHWLFDOO\ IHDVLEOH WR LQYHVW LQ D KXPDQ VHUYLFH LQWHQVLYH WHFKQRORJ\ RI KLJK WUDQVIRUPLW\ LH ( VHM-f WR FRQWURO SKRVSKRUXV UXQRII ZLWK D WUDQVIRUPLW\ RI ( VHM%H\HUV DQG 2GXP f 0RUH ZRUN VKRXOG EH FRQWULEXWHG IURP WKH QDWXUDO V\VWHP WR PDQDJH WKLV HOHPHQW f 'HVLJQ LQFHQWLYHGLVLQFHQWLYH V\VWHPV WKDW DSSO\ WR WKH ZKROH HOHPHQWDO F\FOH LQ WKH ODQGVFDSH DQG QRW MXVW LWV SDUWV 0RQHWDU\ DQG UHJXODWRU\ LQFHQWLYHV DQG

PAGE 175

GLVLQFHQWLYHV FDQ EH XVHG WR DGMXVW WKH KLJK WUDQVIRUPLW\ HQG RI WKH F\FOH EXW LQFHQWLYHV EDVHG RQ HPGROODU HYDOXDWLRQ RI D ODUJHU PDWFKLQJ DUHD DUH QHHGHG WR PDLQWDLQ WKH ORZHU HQG RI WKH F\FOH (FRQRPLF LQFHQWLYHGLVLQFHQWLYH DSSURDFKHV LQFOXGH SURSHUW\ HQWLWOHPHQWV WD[HV DQG VXEVLGLHV 3URSHUW\ HQWLWOHPHQW LQFHQWLYHV LQ WKH IRUP RI GDLU\ HDVHPHQWV DQG IORRGSODLQ EX\RXWV KDYH EHHQ XVHG LQ WKH EDVLQ E\ 'LVWULFW PDQDJHUV 7D[HV RQ HPLVVLRQV DUH XVXDOO\ GLIILFXOW WR HQIRUFH IRU QRQSRLQW SROOXWLRQ EXW PD\ EH SRVVLEOH IRU WKH QRUWK 2NHHFKREHH EDVLQ VLQFH WKH LQIUDVWUXFWXUH IRU PRQLWRULQJ LV DOUHDG\ DYDLODEOH DW WKH 'LVWULFW ,QSXW WD[DWLRQ HJ IHUWLOL]HU WD[f LV D YLDEOH SROLF\ RSWLRQ VLQFH IHUWLOL]HU DQG IHHG DFFRXQW IRU RYHU SHUFHQW RI WKH SXUFKDVHG LQSXWV RI SKRVSKRUXV WR WKH EDVLQ &RVW VKDULQJ WRZDUG WKH LPSOHPHQWDWLRQ RI D QHZ WHFKQRORJ\ LV DQ H[DPSOH RI D VXEVLG\ EDVHG DSSURDFK UHTXLULQJ SXEOLF IXQGV WKDW KDV DOUHDG\ EHHQ LPSOHPHQWHG LQ WKH EDVLQ 5HJXODWRU\ LQFHQWLYHV DSSOLHG LQ WKH EDVLQ LQFOXGH WHFKQRORJ\ EDVHG VWDQGDUGV GHILQHG LQ WKH 'DLU\ 5XOH OHJLVODWLRQ DQG SHUIRUPDQFH VWDQGDUGV DV GLVFXVVHG SUHYLRXVO\ ,QSXW UHVWULFWLRQ WKURXJK EDQV HJ GHWHUJHQW OHJLVODWLRQf RU TXRWDV HJ FHLOLQJ RQ UDWLRQ SKRVSKRUXV FRQWHQWf LV DQ H[DPSOH RI D UHJXODWRU\ LQFHQWLYH WKDW FDQ LPSDFW WKH XVH DQG GLVWULEXWLRQ RI SKRVSKRUXV EDVLQZLGH 0RUH UHFHQW SROLF\ HIIRUWV KDYH LQWURGXFHG WKH FRQFHSW RI WKH H[FKDQJH RI SROOXWLRQ HQWLWOHPHQWV LQ ZKLFK SDUWLFLSDQWV PD\ WUDGH WKHLU SROOXWLRQ SHUPLWV RU ULJKWV EDVHG XSRQ WKHLU RZQ SURGXFWLYLW\ LH KLJK YDOXH SURGXFHUV KDYH PRUH LQFHQWLYH WR

PAGE 176

SROOXWHf ,QLWLDO HQGRZPHQWV DUH FRPPRQO\ VHW EDVHG XSRQ KLVWRULFDO SROOXWLRQ OHYHOV WKRXJK WKLV DSSURDFK DVVXPHV WKDW SURGXFHUV KDYH WKH ULJKW WR SROOXWH 3KRVSKRUXV SROOXWLRQ DOORZDQFHV FRXOG SHUKDSV EH DGMXVWHG EDVHG RQ WKH HPHUJ\ YDOXH RI SKRVSKRUXV XVH ZKLFK YDULHV VSDWLDOO\ DFURVV WKH ODQGVFDSH EDVHG RQ WKH RYHUDOO REMHFWLYH RI PD[LPL]LQJ UHJLRQDO HPSRZHU ZLWK UHVSHFW WR SKRVSKRUXV XVH 0DUNHWDEOH SROOXWLRQ ULJKWV PLJKW EH WUDQVIHUUHG WR ODQG DUHDV ZLWK ORZHU HPHUJ\ LQYHVWPHQW UDWLRV WKXV SURYLGLQJ LQFHQWLYHV IRU SURGXFHUV WR HQKDQFH WKHLU XVH RI HQYLURQPHQWDO LQSXWV ,QFHQWLYHV SDUWLFXODUO\ VXEVLGLHV EDVHG RQ VSDWLDO RU ORFDWLRQDO HIIHFW FRXOG EH GHVLJQHG WR HQFRXUDJH DFWLYLWLHV V\VWHPV GHVLJQV DQG SURGXFWLRQ ZKHUH SKRVSKRUXV KDV WKH JUHDWHVW SRVLWLYH HIIHFW LQ WKH ODQGVFDSH 3ROLF\ LQFHQWLYHV FRXOG WKHUHIRUH FRQVLGHU WKH ZKROH SKRVSKRUXV F\FOH DQG LWV LQWHUDFWLRQV ZLWK WKH HQYLURQPHQW DQG WKH HFRQRP\ 6XJJHVWLRQV IRU )XWXUH 5HVHDUFK 7KH RXWFRPH RI WKLV VWXG\ VXJJHVW VHYHUDO DYHQXHV IRU DGGLWLRQDO UHVHDUFK 7KH FXUUHQW DQDO\VLV LV RYHU D WZHQW\ \HDU WLPH KRUL]RQ LQ ZKLFK SKRVSKRUXV DYDLODELOLW\ LV DVVXPHG WR EH VWDEOH 6LPXODWLRQ PRGHOLQJ RI WKH LQWHUDFWLRQV EHWZHHQ SKRVSKRUXV DQG WKH HFRQRP\ FRXOG SURYLGH LQVLJKW LQWR WKH FDXVDOLW\ RI ERWK ORQJUXQ DQG VKRUWUXQ VKLIWV LQ WKH UHJLRQDO SKRVSKRUXV F\FOH )RU H[DPSOH WKH LPSDFW RI SKRVSKRUXV VFDUFLW\ DV LQGLFDWHG E\ D PRGHO RI WKH JOREDO SKRVSKRUXV F\FOH DQG UHIOHFWHG DV DQ LQFUHDVH LQ WKH SULFH RI SKRVSKRUXVFRQWDLQLQJ LQSXWV FRXOG WLJKWHQ WKH ORFDO F\FOH DQG IRUFH VRPH UHGLVWULEXWLRQ &KDQJHV LQ GHPDQG IRU SURGXFWV DV H[KLELWHG E\ SULFH IOXFWXDWLRQV FRXOG DIIHFW SURGXFWLRQ V\VWHPV DQG WKXV SKRVSKRUXV XVH 2QH FRXOG DOVR

PAGE 177

H[DPLQH WKH HIIHFWV RI D FKDQJH LQ WKH GLVWULEXWLRQ RI ODQG XVH SHUKDSV JUHDWHU XUEDQL]DWLRQ RU D EURDGHU VSHFWUXP RI DJULFXOWXUDO SURGXFWLRQ V\VWHPV )LQDOO\ VLPXODWLRQ ZRXOG EH XVHIXO WR H[DPLQH WKH ORQJWHUP SK\VLFDO HQYLURQPHQWDO DQG HFRQRPLF LPSDFWV RI UHJXODWRU\ DQG RWKHU LQFHQWLYH SURJUDPV GHVLJQHG WR FRQWURO SKRVSKRUXV 7KH VFHQDULRV DQDO\]HG LQ WKLV VWXG\ VHUYHG DV D OLPLWHG H[DPSOH RI SRVVLEOH DOWHUQDWLYHV IRU SKRVSKRUXV PDQDJHPHQW 6SDWLDO RSWLPL]DWLRQ DFURVV DOO ODQG XVH DUHDV LQ WKH QRUWK 2NHHFKREHH EDVLQ ZRXOG DOORZ IRU PRUH FKRLFHV DQG PRUH VSHFLILF REMHFWLYHV WR EH WHVWHG 0D[LPL]LQJ SKRVSKRUXV UHGXFWLRQ LQ EDVLQ RXWIORZ PLQLPL]LQJ WKH FRVW RI DFKLHYLQJ WDUJHW SKRVSKRUXV UHGXFWLRQ JRDOV DQG PD[LPL]LQJ UHJLRQDO HPSRZHU DUH H[DPSOHV RI VXFK REMHFWLYH IXQFWLRQV 7KLV DSSURDFK ZRXOG DFFRXQW QRW RQO\ IRU GLIIHUHQFHV LQ ODQG XVH W\SHV EXW DOVR IRU VSDWLDO ORFDWLRQ LQ WKH ZDWHUVKHG 7KHUH DUH VHYHUDO RWKHU ZD\V WR H[SDQG WKH FXUUHQW DQDO\VLV 2QH LV WR EURDGHQ WKH ERXQGDULHV WR LQFOXGH ZHWODQGV DQG /DNH 2NHHFKREHH RU HYHQ EH\RQG WR IROORZ SKRVSKRUXV WR WLGH ZKHUH ODUJH TXDQWLWLHV RI SKRVSKRUXV FDQ EH DEVRUEHG (PHUJ\ HYDOXDWLRQ DW WKLV VFDOH ZRXOG DOORZ IRU QHZ PDQDJHPHQW JRDOV WR EH VHW VR WKDW UHJLRQDO HPHUJ\ PD[LPL]DWLRQ ZRXOG LQFOXGH WKH HQYLURQPHQWDO VHUYLFHV DQG SURGXFWLYLW\ RI WKHVH V\VWHPV DQG JUHDWHU FRQVLGHUDWLRQ RI WKHLU RSSRUWXQLW\ FRVWV %HKDYLRUDO HFRQRPLF DQG UHJXODWRU\ LQFHQWLYHV FRXOG LQFRUSRUDWH WKHVH QHZ JRDOV IRU UHJLRQDO PDQDJHPHQW )LQDOO\ PXOWLSOH HOHPHQWV DQG WKHLU LQWHUDFWLRQV FRXOG EH H[DPLQHG IURP D ELRJHRHFRQRPLF SHUVSHFWLYH 7KRXJK SKRVSKRUXV PD\ FXUUHQWO\ EH

PAGE 178

OLPLWLQJ WKH UDWLR RI HVVHQWLDO HOHPHQWV HJ FDUERQQLWURJHPSKRVSKRUXVf PD\ EH PRUH FULWLFDO IURP D PDQDJHPHQW SHUVSHFWLYH LQ WKH ORQJ UXQ

PAGE 179

$33(1',; $ $668037,216 $1' '$7$ 6285&(6 )25 3+263+2586 %8'*(7,1* $1' (&2120,& $1$/<6,6 %HHI 3DVWXUH $VVXPSWLRQV f,PSURYHG SDVWXUH FRZ GHQVLW\ I IHUWLOL]DWLRQ UDWHf )HUWLOL]HU UDWH &RZ GHQVLW\ OEV 3DF\Uf FRZVDFUHf 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ +HQGU\ 2NHHFKREHH DQG 2VFHROD &RXQW\ H[WHQVLRQ DJHQWV f 8QLPSURYHG SDVWXUH FRZ GHQVLW\ FRZ DFUHV 6RXUFH )RQ\RHWDO f &DOYLQJ UDWH b ? b VROG # OEVFDOI 6RXUFH )RQ\R HW DO f &XOOLQJ UDWH b # OEVFRZ 6RXUFH )RQ\RHWDO f $YHUDJH VWUHDP GHQVLW\ RI SDVWXUHODQG IWDFUH 6RXUFH 86 $UP\ &RUS RI (QJLQHHUV

PAGE 180

f $YHUDJH IHHG VXSSOHPHQWV 0LQHUDOV OEVFRZ\U 0RODVVHV OEVFRZ\U 6RXUFH )RQ\RHWDO f )HQFLQJ (IIHFWLYHQHVV SHUFHQW UHGXFWLRQ LQ 3 ORDG SHU DFUH 6RXUFH )/ 'HSW RI (QYLURQPHQWDO 5HJXODWLRQ ,QYHVWPHQW &RVWV 727$/ ,19(670(17 &2676 DFf )0 )/f r 6' r ZKHUH )0 IHQFLQJ PDWHULDOV IW )/ IHQFLQJ ODERU IW 6' VWUHDP GHQVLW\ IWDF f )HQFLQJ 0DWHULDOV VWUDQG EDUE ZLUHf IW /DERU LQVWDOODWLRQf IW 6RXUFH 'RDQHnV $JULFXOWXUDO 5HSRUW 9RO 1R $VVXPH IHQFH OLIH \HDUV 2SHUDWLRQV DQG 0DLQWHQDQFH &RVWV $118$/ 2t0 &2676 DFf )01 r 6' r ZKHUH )01 IHQFH PDLQWHQDQFH IW\U 6' VWUHDP GHQVLW\ IWDF f )HQFLQJ 0DLQWHQDQFH DVVXPH b RI FDSLWDOf IW\U

PAGE 181

6HFRQGDU\ &RVWV $118$/ 6(&21'$5< &2676 DF\Uf &' r 0,6 r 0,3f &' r 026 r 023f )$ )0 r )3f &' r &85 r &8: r &83f &' r &$5 r &$: r&$3f ZKHUH &' FRZ GHQVLW\ FRZVDF 0,6 PLQHUDOV OEVFRZ\U 0,3 PLQHUDO SULFH OE 026 PRODVVHV OEVFRZ\U 023 PRODVVHV SULFH OE )$ IHUWLOL]HU DSSOLFDWLRQ FRVW DF )0 IHUWLOL]HU UDWH OEV 3DF\U )3 IHUWLOL]HU SULFH OE 3 &85 FXOO UDWH b &8: FXOO FRZ ZHLJKW ,EVFRZ &83 FXOO FRZ SULFH OE &$5 FDOI UDWH b &$: FDOI ZHLJKW OEVFDOI &$3 FDOI SULFH OE f )HHG VXSSOHPHQWV 0LQHUDOV OE 0RODVVHV OE 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ 2NHHFKREHH IHHG VXSSOLHU f )HUWLOL]HU $SSOLFDWLRQ DF 0DWHULDO f WRQ RU OE 3 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ 2NHHFKREHH IHUWLOL]HU VXSSOLHU f &XOO FRZV /LYHZHLJKW OE 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ 2NHHFKREHH OLYHVWRFN PDUNHW f &DOYHV /LYHZHLJKW OE 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ 2NHHFKREHH OLYHVWRFN PDUNHW

PAGE 182

'DLU\ $VVXPSWLRQV f3KRVSKRUXV SDUWLWLRQLQJ %$51 0+3 +,$ 3UH 'DLU\ UXOH b b b /RZ WHFK b b b 6HPLFRQILQHPHQW b b b &RQILQHPHQW b b b ZKHUH 0+3 PLONLQJ KHUG SDVWXUH +, $ KLJK LQWHQVLW\ DUHD 6RXUFH 6RLO &RQVHUYDWLRQ 6HUYLFH GDLU\ GHVLJQ SODQV f 7UHDWPHQW HIILFLHQFLHV %LRFKHPLFDO WUHDWPHQW HFRUHDFWRUf b 6RXUFH %LRQ 7HFKQRORJLHV f &KDQJH LQ SXUFKDVHG GDLU\ UDWLRQV 3UH 'DLU\ 5XOH $YHUDJH OEVFRZGD\ #b 3 6RXUFH )RQ\RHWDO 3RVW 'DLU\ 5XOH $YHUDJH OEVFRZGD\ # b 3 6RXUFH %RJJHVV +ROW DQG 6PLWKZLFN f 0LON \LHOG HIIHFW /RZ WHFK OEVFRZGD\ LQFUHDVH 6HPLFRQILQHPHQW DQG FRQILQHPHQW OEVFRZGD\ LQFUHDVH 6RXUFH %RJJHVV +ROW DQG 6PLWKZLFN f 6ROLGV SURGXFWLRQ IRU VDOH 6HPLFRQILQHPHQW b WUXFNORDGFRZ\U &RQILQHPHQW b WUXFNORDGFRZ\U 6RXUFH (VWLPDWHV EDVHG RQ SDUWLWLRQLQJ DVVXPSWLRQV

PAGE 183

,QYHVWPHQW &RVWV 727$/ ,19(670(17 &2676 FRZf 6& (7& ZKHUH 6& VWUXFWXUDO FRVW FRZ (7& HIIOXHQW WUHDWPHQW FRVW FRZ f 6WUXFWXUDO LQFOXGLQJ VSUD\ILHOGf /RZ WHFK FRZ 6HPLFRQILQHPHQW FRZ &RQILQHPHQW 6 FRZ 6RXUFH 6PLWKZLFN $VVXPH OLIH \HDUV f (IIOXHQW WUHDWPHQW (FRUHDFWRU FRZ 6RXUFH %LRQ 7HFKQRORJLHV $VVXPH OLIH \HDUV 2SHUDWLRQV DQG 0DLQWHQDQFH &RVWV $118$/ 2t0 &2676 FRZ\Uf 60 (70 ZKHUH 60 VWUXFWXUDO PDLQWHQDQFH FRVW FRZ\U (70 HIIOXHQW WUHDWPHQW V\VWHP PDLQWHQDQFH FRZ\U f 6WUXFWXUDO LQFOXGLQJ VSUD\ILHOGf /RZ WHFK FRZ\U 6HPLFRQILQHPHQW FRZ\U &RQILQHPHQW FRZ\U 6RXUFH $VVXPH b RI DQQXDOL]HG FDSLWDO SOXV ODERU # r f IRU ORZ WHFK DQG r f IRU VHPLFRQILQHPHQW DQG FRQILQHPHQW 6PLWKZLFN f (IIOXHQW WUHDWPHQW (FRUHDFWRU FRZ\U 6RXUFH %LRQ 7HFKQRORJLHV

PAGE 184

6HFRQGDU\ &RVWV $118$/ 6(&21'$5< &2676 FRZ\Uf 0< r 03f 66 r 63f ZKHUH 0< PLON \LHOG OEVFRZ\U 03 PLON SULFH OE 66 VROLGV VDOH WUXFNORDGFRZ\U 63 VROLGV SULFH WUXFNORDG f 0LON VDOHV 5DZ PLON FZW 6RXUFH 6PLWKZLFN f 6ROLGV VDOH $YHUDJH WUXFNORDG WRQVWUXFNORDG 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ %ODFN .RZ ,QF &LWUXV $VVXPSWLRQV f 7UHH GHQVLW\ 0DWXUH FLWUXV WUHHVDF
PAGE 185

f 6WRUPZDWHU LPSRXQGPHQW 9ROXPH DFLQDFUH (IIHFWLYHQHVV SHUFHQW UHGXFWLRQ LQ 3 ORDG 6RXUFH )/ 'HSW RI (QYLURQPHQWDO 5HJXODWLRQ ,QYHVWPHQW &RVWV 727$/ ,19(670(17 &2676 DFf ,& 6:& ZKHUH ,& LUULJDWLRQ V\VWHP FRVW DF 6:& VWRUPZDWHU LPSRXQGPHQW FRVW DF f ,UULJDWLRQ V\VWHP )ORRG DF 'ULS DF 0LFURMHW DF $VVXPH OLIH \HDUV 6RXUFH 0XUDUR DQG +ROFRPE f 6WRUPZDWHU LPSRXQGPHQW ,QYHVWPHQW DF $VVXPH OLIH \HDUV 6RXUFH %RWWFKHU HW DO DGMXVWHG WR GROODUVf 2SHUDWLRQV DQG 0DLQWHQDQFH &RVWV $118$/ 2t0 &2676 DF\Uf ,0 6:0 ZKHUH ,0 LUULJDWLRQ PDLQWHQDQFH DF\U 6:0 VWRUPZDWHU LPSRXQGPHQW PDLQWHQDQFH DF\U f ,UULJDWLRQ V\VWHP )ORRG DF\U 'ULS DF\U 0LFURMHW 6 DF\U 6RXUFH 0XUDUR DQG +ROFRPE f 6WRUPZDWHU LPSRXQGPHQW 0DLQWHQDQFH DF\U 6RXUFH %RWWFKHU HW DO DGMXVWHG WR GROODUVf

PAGE 186

6HFRQGDU\ &RVWV $118$/ 6(&21'$5< &2676 DF\Uf )$ )0 r )3f 7' r &< r &3f ZKHUH )$ IHUWLOL]HU DSSOLFDWLRQ FRVW DF )0 IHUWLOL]HU UDWH OEV 3DF\U )3 IHUWLOL]HU SULFH OE 3 7' WUHH GHQVLW\ WUHHVDF &< FLWUXV \LHOG ER[HVWUHH\U &3 FLWUXV SULFH ER[ f )HUWLOL]HU $SSOLFDWLRQ DF 0DWHULDO 0DWXUH FLWUXV f OE RU OE 3
PAGE 187

f 5LFH HIIHFW SHUFHQW LQFUHDVH LQ UDWRRQ FDQH \LHOG IROORZLQJ ULFH 6RXUFH $OYDUH] DQG 6Q\GHU ,QYHVWPHQW &RVWV 727$/ ,19(670(17 &2676 DFf r 53& ZKHUH 53& URWDWLRQ SUDFWLFH LQYHVWPHQW FRVWV ULFH RU VZHHW FRUQ LI DSSOLFDEOH DF f 5RWDWLRQ SUDFWLFH 5LFH 0DFKLQHU\ *UDLQ GULOO +RSSHU WUDLOHU &RPELQH 6 DFUHV DF /LIH \HDUV 6RXUFH $OYDUH] f 5RWDWLRQ SUDFWLFH 6ZHHW FRUQ 0DFKLQHU\ &RUQ SODQWHU DF /LIH \HDUV 6RXUFH 6PLWK DQG 7D\ORU 2SHUDWLRQV DQG 0DLQWHQDQFH &RVWV $118$/ 2t0 &2676 DF\Uf r 530 ZKHUH 530 URWDWLRQ SUDFWLFH PDLQWHQDQFH FRVWV ULFH VZHHW FRUQ RU IORRGHG IDOORZ DF\U f 5RWDWLRQ SUDFWLFH 5LFH 0DFKLQH 2t0 3UHKDUYHVWLQJ FRVWV +DUYHVWLQJ FRVWV +DXOLQJ DQG GU\LQJ DF\U DF\U DF\U 6 DFYU 6 DF\U 6RXUFH $OYDUH]

PAGE 188

f 5RWDWLRQ SUDFWLFH 6ZHHW FRUQ 0DFKLQH 2t0 DF\U 3UHKDUYHVW DF\U +DUYHVW DFYU DF\U 6RXUFH 6PLWK DQG 7D\ORU f 5RWDWLRQ SUDFWLFH )ORRGHG IDOORZ )ORRGLQJ DF\U 6RXUFH $OYDUH] 6HFRQGDU\ &RVWV $118$/ 6(&21'$5< &2676 DF\Uf r )0 r )0 r )0f r )3 r &< r &+3f r &< r &3f r 5&< r 5&3f ZKHUH )0 SODQW FDQH IHUWLOL]HU UDWH OEV 3DF\U )0 ILUVW UDWRRQ FDQH IHUWLOL]HU UDWH OEV 3DF\U )0 VHFRQG UDWRRQ FDQH IHUWLOL]HU UDWH OEV 3DF\U )3 FDQH IHUWLOL]HU SULFH 6OE 3 &< DYHUDJH FDQH \LHOG WRQVDF\U LQFOXGHV ULFH HIIHFW LI DSSOLFDEOHf &+3 FDQH KDUYHVWLQJ FRVW WRQ FDQH &3 FDQH SULFH 6WRQ 5&< URWDWLRQ FURS \LHOG OEVDF\U 5&3 URWDWLRQ FURS SULFH OE f )HUWLOL]HU 0DWHULDO &DQH f OE RU OE 3 6RXUFH $OYDUH] DQG 6FKXHQHPDQ f &DQH KDUYHVWLQJ WRQ 6RXUFH $OYDUH] DQG 6FKXHQHPDQ f &DQH VDOHV WRQ 6RXUFH )ORULGD $JULFXOWXUDO 6WDWLVWLFV 6HUYLFH D

PAGE 189

f 5RWDWLRQ FURS VDOHV 8QSURFHVVHG URXJK ULFH FZW 6RXUFH 3HUVRQDO FRPPXQLFDWLRQ 6HPFKL 5LFH &RPSDQ\ 6ZHHW FRUQ FUDWH \HDU DYHUDJHf 6RXUFH )ORULGD $JULFXOWXUDO 6WDWLVWLFV 6HUYLFH E 3RLQW 6RXUFH 6HZDJH 7UHDWPHQW 3ODQW 673f $VVXPSWLRQV f$YHUDJH RSHUDWLQJ SDUDPHWHUV IRU 2NHHFKREHH 673 $YJ IORZ UDWH 0*' 0*
PAGE 190

f ,QODNH UHWHQWLRQ EDVLQ DFUHV ,QYHVWPHQW DGMXVWHG WR GROODUVf PLOOLRQ /LIH \HDUV 6RXUFH )/ 'HSW RI (QYLURQPHQWDO 5HJXODWLRQ 2SHUDWLRQV DQG 0DLQWHQDQFH &RVWV $118$/ 2t0 &2676 \Uf 730 ZKHUH 730 WUHDWPHQW SODQW 2t0 FRVWV \U f $OXP SUHFLSLWDWLRQ SODQW 2t0 DGMXVWHG WR GROODUVf PLOOLRQ\U 6RXUFH )/ 'HSW RI (QYLURQPHQWDO 5HJXODWLRQ

PAGE 191

$33(1',; % 3+263+2586 0$1$*(0(17 (0(5*< (9$/8$7,21 7$%/(6

PAGE 192

7DEOH %O (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI &DPV 0DWXUH 7UHHV OEV 3DF\U 'QS ,UULJDWLRQ ZLWKRXW ,PSRXQGPHQW 1RWH ,WHP 9DOXH 5DZ 8QLW DF\UfO 6RODU 7UDQVIRUPLW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV &RQWHQW JUDPV 3DFf 3KRVSKRUXV (PHUJ\0DVV ( VHMJ 3f 6XQOLJKW ( ; 5DP FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ,( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 6HUYLFHV ( ; &LWUXV VROG (7 ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 193

)RRWQRWHV WR 7DEOH %O &LWUXV ZLWKRXW ,PSRXQGPHQW 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPPf QUDFf -NFDOf ( -DF\U 7UDQVIRUPLW\ r 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f ,UULJDWLRQ ZDWHU \U +D]HQ DQG 6DZ\HU f \Uf FPPf PFPf PDFfO( JPnf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ DVVXPHG HTXDO WR UDLQ ZDWHUf )XHO JDODF\U )OXFN HW DO f ( -JDO 2GXP DQG $UGPJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U )OXFN HW DO f NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLQnf ( VHM2GXP HW DO f ,QVHFWLFLGH DQG RWKHU FKHPLFDOV OEVDF\U )OXFN HW DO f NFDOJ 3LPHQWHO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U .RRf ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U .RR f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U .RR f -J 2GXP HW DO f OEVDF\Uf JOEf-Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f /LPH OEVDF\U )OXFN HW DO f OEVDF\Uf JOEf ( JDF\U 7UDQVIRPXW\ ( VHMJ 2GXP f $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U 0XUDUR DQG +ROFRPE f HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH &LWUXV VROG ER[HVDF\U # OEVER[ 0XUDUR DQG +ROFRPE f NFDOJ 3LPHQWHO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b :DWW DQG 0HUULOO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPnf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 194

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI &LWUXV 0DWXUH 7UHHV OEV 3DF\U 'ULS ,UULJDWLRQ ZLWK ,PSRXQGPHQW 1RWH ,WHP 9DOXH 5DZ 8QLW DF\UfO 6RODU 7UDQVIRUP LW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV 3DFf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 6HUYLFHV 6 ( ; &LWUXV VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 195

)RRWQRWHV WR 7DEOH % &LWUXV ZLWK ,PSRXQGPHQW 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFQU\UfO( FQUPf PDFf -NFDOf ( -DF\U 7UDQVIRPXW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f ,UULJDWLRQ ZDWHU \U +D]HQ DQG 6DZ\HU f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ DVVXPHG HTXDO WR UDP ZDWHUf )XHO JDODF\U )OXFN HW DO f ( -JDO 2GXP DQG $UGLQJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U )OXFN HW DO f NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f ,QVHFWLFLGH DQG RWKHU FKHPLFDOV OEVDF\U )OXFN HW DO f NFDOJ 3LPHQWHO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U .RRf ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U .RR f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U .RR f -J 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f /LPH OEVDF\U )OXFN HW DO f OEVDF\Uf JOEf ( JDF\U 7UDQVIRPXW\ ( VHMJ 2GXP f $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U 0XUDUR DQG +ROFRPE f SOXV DQQXDOL]HG LQYHVWPHQW DQG 2t0 FRVWV RI LPSRXQGPHQW DF\U WKLV VWXG\f DF\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH &LWUXV VROG ER[HVDF\U # ,EVER[ 0XUDUR DQG +ROFRPE f NFDOJ 3LPHQWHO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b :DWW DQG 0HUULOO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 196

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI ,PSURYHG %HHI 3DVWXUH OEV 3DF\U DFFRZ 1R )HQFH 1RWH ,WHP 9DOXH 5DZ 8QLW DF\UfO 6RODU 7UDQVIRUP LW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV 3DFf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 0LQHUDOV ( ( 0RODVVHV ( ( 6HUYLFHV ( ; /LYHVWRFN VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 197

)RRWQRWHV WR 7DEOH % ,PSURYHG %HHI 3DVWXUH OEV 3DF DFFRZ 1R )HQFH 6XQOLJKW NFDOFQU\U 2GXP HW DO f NFDOFP\UfO( FPQUf PDFf -NFDOf ( -DF\U 7UDQVIRUPLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf QUDFfO( JPnf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO JDODF\U *LHV\ DQG +ROW f ( -JDO 2GXP DQG $UGPJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U *LHV\ DQG +ROW f NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U *XWLHUUH] f ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U WKLV VWXG\f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U *XWLHUUH] f -J 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f /LPH OEVDF\U 3UHYDWW f OEVDF\Uf JOEf ( JDF\U 7UDQVIRUPLW\ ( VHMJ 2GXP f 0LQHUDOV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf 0RODVVHV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\Uf FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U *LHV\ DQG +ROW DGMXVWHG IRU FRZ GHQVLW\f HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH /LYHVWRFN VROG OEVDF WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \U. FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 198

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI ,PSURYHG %HHI 3DVWXUH OEV 3DF\U DFFRZ )HQFHG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV DF\UfO VHMXQLWf (O VHMDF\Uf JUDPV 3DFf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( 0LQHUDOV ( ( 0RODVVHV ( ( )HQFLQJ ( ( ; 6HUYLFHV ( ; /LYHVWRFN VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 199

)RRWQRWHV WR 7DEOH % ,PSURYHG %HHI 3DVWXUH OEV 3DF DFFRZ )HQFHG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPQUf PDFf -NFDOf ( -DF\U 7UDQVIRUPLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO JDODF\U *LHV\ DQG +ROW f ( -JDO 2GXP DQG $UGLQJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U *LHV\ DQG +ROW f NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U *XWLHUUH] f ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U WKLV VWXG\f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U *XWLHUUH] f -J 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f /LPH OEVDF\U 3UHYDWW f OEVDF\Uf JOEf ( JDF\U 7UDQVIRUPLW\ ( VHMJ 2GXP f 0LQHUDOV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf 0RODVVHV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf )HQFLQJ IWDF WKLV VWXG\f EVIW HVWLPDWHf ( -WRLYH 2GXP HW DO f IWDFf OEIWfWRQ OEVf( -WRQf ( -DF\U 7UDQVIRUPLW\ RI LURQ DQG VWHHO ( VHM2GXP HW DO f $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U *LHV\ DQG +ROW DGMXVWHG IRU FRZ GHQVLW\f SOXV DF\U IHQFLQJ FRVWV 'RDQHfV $JULFXOWXUDO 5HSRUW f DF\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH /LYHVWRFN VROG OEVDF WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 200

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI ,PSURYHG %HHI 3DVWXUH OEV 3DF\U DFFRZ 1R )HQFH 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV DF\UfO VHMXQLWf ( VHMDF\UfJUDPV 3DFf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( 0LQHUDOV ( ( 0RODVVHV ( ( 6HUYLFHV /( ; /LYHVWRFN VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 201

)RRWQRWHV WR 7DEOH % ,PSURYHG %HHI 3DVWXUH OEV 3DF DFFRZ 1R )HQFH 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPPf QUDFf -NFDOf ( -DF\U 7UDQVIRUPLWY r 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO JDODF\U *LHV\ DQG +ROW f ( -JDO 2GXP DQG $UGPJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U *LHV\ DQG +ROW f NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U *XWLHUUH] f ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U WKLV VWXG\f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U *XWLHUUH] f -J 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f /LPH OEVDF\U 3UHYDWW f OEVDF\Uf JOEf ( JDF\U 7UDQVIRUPLW\ ( VHMJ 2GXP f 0LQHUDOV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf 0RODVVHV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U *LHV\ DQG +ROW f HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH /LYHVWRFN VROG OEVDF WKLV VWXG\f NFDOJ 2GXP DQG 2GXL f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JP"f -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 202

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI 8QLPSURYHG %HHI 3DVWXUH 1R )HUWLOL]HU DFFRZ 1R )HQFH 1RWH ,WHP 9DOXH 5DZ 8QLWV DF\UfO 6RODU 7UDQVIRUPLW\ VHMXQLWf 6RODU 3KRVSKRUXV 3KRVSKRUXV (PHUJ\ &RQWHQW (PHUJ\0DVV ( VHMDF\Uf JUDPV 3DFf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 0LQHUDOV ( ( 0RODVVHV ( ( 6HUYLFHV ( ; /LYHVWRFN VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 203

)RRWQRWHV WR 7DEOH % 8QLPSURYHG %HHI 3DVWXUH 1R )HUWLOL]HU DFFRZ 1R )HQFH 6XQOLJKW NFDOFQI\U 2GXP HW DO f NFDOFQU\UfO( FPQUf PDFf -NFDOf ( -DF\U 7UDQVIRQQLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf XUDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO JDODF\U *LHV\ DQG +ROW DGMXVWHG IRU FRZ GHQVLW\f ( -JDO 2GXP DQG $UGPJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U *LHV\ DQG +ROW DGMXVWHG IRU FRZ GHQVLW\f NZKDF\Uf( -NZKff ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 0LQHUDOV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\UfO FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf 0RODVVHV OEVFRZ\U WKLV VWXG\f NFDOJ DVVXPHG HTXDO WR VXJDUf OEVFRZ\Uf FRZ DFf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR VXJDUf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b SURGXFW ODEHOf $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U *LHV\ DQG +ROW DGMXVWHG IRU FRZ GHQVLW\f HUQHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH /LYHVWRFN VROG OEVDF WLQV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVDF\Uf JnOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPPf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV P UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 204

7DEOH % (PHUJ\ (YDOXDWLRQ RI D 3UH'DLU\ 5XOH 'DLU\ 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 1RWH ,WHP 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf (O VHMFRZ\UfJUDPV 3FRZf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 3 )HUWLOL]HU ( ( )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 205

)RRWQRWHV WR 7DEOH % 3UH'DLU\ 5XOH 'DLU\ 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOHP\UfO( FPQUf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQV IRUPLW\ 5DLQ FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf P\FPf PDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO JDOFRZ\U )OXFN HW DO XQSXEKVKHGf ( -J DO 2GXP DQG $UGLQJ f JDOFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U )OXFN HW DO XQSXEOLVKHGf NZKFRZ\Uf( -NZKf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVFRZ\U WKLV VWXG\f -J3 2GXP HW DO f OEVFRZ\Uf JOEf -Jf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRPQW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WLQV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U )OXFN HW DO XQSXEOLVKHGf HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXL OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U f

PAGE 206

7DEOH % (PHUJ\ (YDOXDWLRQ RI D /RZ 7HFK 'DLU\ ZLWK 6SUD\ILHOG 6ROLGV 6SUHDG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf ( VHMFRZ\UfJUDPV 3FRZf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( )RUDJH SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 207

)RRWQRWHV WR 7DEOH % /RZ 7HFK 'DLU\ 6SUD\ILHOG 6ROLGV 6SUHDG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FQUQUf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG LUULJDWLRQ ZDWHU DFLQDF HVWLPDWHG IURP /DUVRQ 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r SURSRUWLRQ WR WKH VSUD\ ILH ,G f OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFLQDF\Uf DFFRZf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOPH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOLQH WXHO XVHQRQIHHG VHUYLFHV WLPHV DGGLWLRQDO VHUYLFHV IRU WKH SUDFWLFH ( -JDO 2GXP DQG $UGLQJ f JDOFRZ\UfFRZ\UfFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOPH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV LUULJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFfO DFFRZf( -NZKf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOPH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WLPHV DFUHDJH VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ FRZ\Uf FRZ\Uf DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b 'LQNLHU f 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 3KRVSKRUXV P UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f

PAGE 208

)RRWQRWHV WR 7DEOH % /RZ 7HFK 'DLU\ 6SUD\ILHOG 6ROLGV 6SUHDG FRQWLQXHGf %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 209

7DEOH % (PHUJ\ (YDOXDWLRQ RI D /RZ 7HFK 'DLU\ ZLWK 6SUD\ILHOG DQG (FRUHDFWRU 6ROLGV 6SUHDG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf ( VHMFRZ\UfJUDPV 3FRZf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( (, /LYHZHLJKW VROG ( L ( )RUDJH SURGXFWLRQ ( ( :HWODQG SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 210

)RRWQRWHV WR 7DEOH % /RZ 7HFK 'DLU\ 6SUD\ILHOG SOXV (FRUHDFWRU 6ROLGV 6SUHDG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFQU\Uf ( FQUPf QUDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7 UDLOV IRPXW\ 5DLQ FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG LUULJDWLRQ ZDWHU DFLQDF HVWLPDWHG IURP /DUVRQ 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r r SURSRUWLRQ WR WKH VSUD\ ILH ,G f OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFLQDF\Uf DFFRZf FPPf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOLQH IXHO XVHQRQIHHG VHUYLFHV WLPHV DGGLWLRQDO VHUYLFHV IRU WKH SUDFWLFH ( -J DO 2GXP DQG $UGPJ f JDOFRZ\UfFRZ\UffFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOPH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV LUULJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFfO DFFRZf( -NZKf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOLQH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WLPHV DFUHDJH VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ FRZ\Uf FRZ\Uf 7 DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U :HWODQG SURGXFWLRQ $SSUR[LPDWHO\ DFUH HFRUHDFWRUFRZ %LRQ f 7\SKD QHW SULPDU\ SURGXFWLRQ 0JKD /DNVKPDQ f OEVDF r DFFRZ ,EVFRZ OEVFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b DVVXPH HTXDO WR IRUDJH VRUJKXP 3 FRQWHQWf

PAGE 211

)RRWQRWHV WR 7DEOH % /RZ 7HFK 'DLU\ 6SUD\ILHOG SOXV (FRUHDFWRU 6ROLGV 6SUHDG FRQWLQXHGf 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQ\FRZ\Uf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 212

7DEOH % (PHUJ\ (YDOXDWLRQ RI D 6HPLFRQILQHPHQW 'DLU\ ZLWK 6SUD\ILHOG 6ROLGV 6SUHDG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf (O VHMFRZ\UfJUDPV 3FRZf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( )RUDJH SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 213

)RRWQRWHV WR 7DEOH % 6 H QXF RQOLQH PH QW 'DLU\ 6SUD\WLHOG 6ROLGV 6SUHDG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPPf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRPQW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG OPJDWLRQ ZDWHU DFLQDF HVWLPDWHG IURP /DUVRQ 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r SURSRUWLRQ WR WKH VSUD\ILHOGf OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFLQDF\Uf DFFRZf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOLQH FRDVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOLQH IXHO XVHQRQIHHG VHUYLFHV WXQHV DGGLWLRQDO VHUYLFHV IRU WKH SUDFWLFH ( -JDO 2GXP DQG $UGLQJ f JDOFRZ\UfFRZ\UfFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV LUULJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFfO DFFRZf( -NZKf ( -FRZ\U 7UDQVIRPQW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRPQW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOPH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WXQHV DFUHDJH VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ FRZ\Uf FRZ\Uf DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b 'LQNLHU f 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf PDFfO( JP"f -Jf ( -FRZ\U 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f

PAGE 214

)RRWQRWHV WR 7DEOH % 6HPLFRQILQHPHQW 'DLU\ 6SUD\ILHOG 6ROLGV 6SUHDG FRQWLQXHGf %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 215

7DEOH %O (PHUJ\ (YDOXDWLRQ RI D 6HPcFRQILQHPHQW 'DLU\ ZLWK 6SUD\ILHOG 6ROLGV &RPSRVWHG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf ( VHMFRZ\UfJUDPV 3FRZf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( &RPSRVW ( ( )RUDJH SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 216

)RRWQRWHV WR 7DEOH %O 6HPL FRQILQHPHQW 'DLU\ 6SUD\ILHOG 6ROLGV &RPSRVWHG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPQUf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQV IRUPLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUQXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG LUULJDWLRQ ZDWHU DFLQDF HVWLPDWHG IURP /DUVRQO 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r SURSRUWLRQ WR WKH VSUD\ ILH ,G f OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFPDF\Uf DFFRZf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRUQXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOPH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOPH IXHO XVHQRQIHHG VHUYLFHV WXQHV DGGLWLRQDO VHUYLFHV IRU WKH SUDFWLFH ( -JDO 2GXP DQG $UGUQJ f JDOFRZ\UfFRZ\UfFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRUQXW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOPH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV LUULJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFf DFFRZf( -NZKf ( -FRZ\U 7UDQVIRUQXW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRUQXW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOPH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WXQHV DFUHDJH VSUD\ILHOG SOXV VSUHDGPJ DUHD SHU FRZ FRZ\Uf FRZ\Uf DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f &RPSRVW OEVFRZ WKLV VWXG\f DVVXPH VDPH FKDUDFWHULVWLFV DV SHDW NFDOJ GU\ 2GXP f OEVFRZf JOEff NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f P GU\

PAGE 217

)RRWQRWHV WR 7DEOH %OO 6HPLFRQILQHPHQW 'DLU\ 6SUD\ILHOG 6ROLGV &RPSRVWHG FRQWPXHGf )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b 'LQNLHU f 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WLQV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 218

7DEOH % (PHUJ\ (YDOXDWLRQ RI D &RQILQHPHQW 'DLU\ ZLWK 6SUD\ILHOG 6ROLGV 6SUHDG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf (O VHMFRZ\UfJUDPV 3FRZf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( )RUDJH SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 219

)RRWQRWHV WR 7DEOH % &RQILQHPHQW 'DLU\ 6SUD\ILHOG 6ROLGV 6SUHDG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFQU\UfO( FQUQUf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7 UDLOV WR PX W\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG LUULJDWLRQ ZDWHU DFLQDF HVWPLDWHG IURP /DUVRQ 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r SURSRUWLRQ WR WKH VSUD\ILHOGf OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFLQDF\Uf DFFRZf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOLQH IXHO XVHQRQIHHG VHUYLFHV WLPHV DGGLWLRQDO VHUYLFHV IRU GLH SUDFWLFH ( -JDO 2GXP DQG $UGLQJ f JDOFRZ\UfFRZ\UfFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV LUULJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFf DFFRZf( -NZKf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR FRPf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOLQH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WLPHV DFUHDJH VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ FRZ\Uf FRZ\Uf DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b 'LQNLHU f 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f

PAGE 220

,, RWHV WR 7DEOH % &RQILQHPHQW 'DLU\ 6SUD\ILHNO 6ROLGV 6SUHDG FRQWLQXHGf %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 221

7DEOH % (PHUJ\ (YDOXDWLRQ RI D &RQILQHPHQW 'DLU\ ZLWK 6SUD\ILHOG DQG (FRUHDFWRU 6ROLGV &RPSRVWHG 1RWH ,WHP 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV FRZ\UfO VHMXQLWf ( VHMFRZ\UfJUDPV 3FRZf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; )HHG ( ( 6HUYLFHV ( ; 0LON \LHOG ( ( /LYHZHLJKW VROG ( ( &RPSRVW ( ( )RUDJH SURGXFWLRQ ( ( :HWODQG SURGXFWLRQ ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 222

)RRWQRWHV WR 7DEOH % &RQILQHPHQW 'DLU\ 6SUD\ILHOG SOXV (FRUHDFWRU 6ROLGV &RPSRVWHG 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FQUQUf PDFf -NFDOf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ 5DLQ FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JP"f -Jf ( -DF\U ( -DF\Uf DF FRZVf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f 6SUD\ILHOG LUULJDWLRQ ZDWHU DFLQDF HVWLPDWHG IURP /DUVRQ 'DLU\ 2t0 SODQ DV WKH UDWLR RI WKH \HDU DYHUDJH RXWIORZ YRXOPH IURP WKH ODJRRQ GLYLGHG E\ WKH VSUD\ILHOG DUHD 6SUD\ILHOG DUHD SHU FRZ OEV 3FRZ\U r r SURSRUWLRQ WR GLH VSUD\ILHOGf OE 3DF\U VSUD\ILHOG DSSOLFDWLRQ UDWH DFFRZ *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J DFLQDF\Uf DFFRZf FPLQf PFPf PDFfO( JPf -Jf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEVFRZ\U )XHO JDOFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV DGGLWRQDO IXHO HVWLPDWHG DV WKH UDWLR RI EDVHOLQH IXHO XVHQRQIHHG VHUYLFHV WLPHV DGGLWLRQDO VHUYLFHV IRU WKH SUDFWLFH ( -J DO 2GXP DQG $UGPJ f JDOFRZ\UfFRZ\UfFRZ\Uf( -JDOf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKFRZ\U EDVHOLQH FRQVXPSWLRQ )OXFN HW DO XQSXEOLVKHGf SOXV FLWUXV PJDWLRQ HOHFWULFLW\ FRQVXPSWLRQ HVWLPDWH NZKFRZ\Uf( -NZKf NZKDFf DFFRZf( -NZKf ( -FRZ\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f )HHG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 7UDQVIRUPLW\ DVVXPHG HTXDO WR FRQLf ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW b WKLV VWXG\f $QQXDO FRVWV IRU KXPDQ VHUYLFHV FRZ\U EDVHOLQH FRVW )OXFN HW DO XQSXEOLVKHGf SOXV FRZ\U IRU PDQDJHPHQW SUDFWLFH LQYHVWPHQW DQG RSHUDWLRQV WKLV VWXG\f SOXV DF\U SDUWLDO IRUDJH SURGXFWLRQ FRVWV HVWLPDWHG IURP 3UHYDWW DQG 0LVOHY\ f WXQHV DFUHDJH VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ FRZ\Uf FRZ\Uf DF\Uf DFFRZf FRZ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 0LON \LHOG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f /LYHZHLJKW VROG OEVFRZ\U WKLV VWXG\f NFDOJ 2GXP DQG 2GXP f OEVFRZ\Uf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b .KDVDZQHK HW DO f &RPSRVW OEVFRZ WKLV VWXG\f DVVXPH VDPH FKDUDFWHQVWLFV DV SHDW NFDOJ GU\ 2GXP f P GU\ OEVFRZf JOEff NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f

PAGE 223

)RRWQRWHV WR 7DEOH % &RQILQHPHQW 'DLU\ 6SUD\ILHOG SOXV (FRUHDFWRU 6ROLGV &RPSRVWHG FRQWLQXHGf )RUDJH SURGXFWLRQ OEVDF\U IRUDJH VRUJKXP ORZ HQG DQQXDO SURGXFWLRQ IURP 'LQNLHU f DFUHV VSUD\ILHOG SOXV VSUHDGLQJ DUHD SHU FRZ WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\UfDFFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b 'LQNLHU f :HWODQG SURGXFWLRQ $SSUR[LPDWHO\ DFUH HFRUHDFWRUFRZ %LRQ f 7\SKD QHW SULPDU\ SURGXFWLRQ 0JKD /DNVKPDQ f DGGLWLRQDO SURGXFWLRQ DVVRFLDWHG ZLWK SKRVSKRUXV ORDG OEVDF r DFFRZ OEVFRZ OEVFRZf JOEf NFDOJf -NFDOf ( -FRZ\U 3KRVSKRUXV FRQWHQW b DVVXPH HTXDO WR IRUDJH VRUJKXP 3 FRQWHQWf 5XQRII $YHUDJH UXQRII YROXPH DFLQFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f DFLQFRZ\Uf FPLQf PFPf QUDFfO( JPf -Jf ( -FRZ\U 3KRVSKRUXV LQ UXQRII OEVFRZ\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVFRZ\U

PAGE 224

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI 6XJDUFDQH OEV 3DF\U 6ZHHW &RUQ LQ 5RWDWLRQ OEV 3DF\U 1RWH ,WHP 9DOXH 5DZ 8QLW DF\UfO 6RODU 7UDQVIRUPLW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV 3DFf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( 3HDW XVH ( ( )XHO ( ( ; 3HVWLFLGH ( ( ; 3 )HUWLOL]HU ( ( 6 )HUWLOL]HU ( ( ; 6HUYLFHV ( ; 6XJDUFDQH \LHOG ( ( 6ZHHW FRUQ \LHOG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 225

)RRWQRWHV WR 7DEOH % 6XJDUFDQH ZLWK 6ZHHW &RP LQ 5RWDWLRQ 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPPf PDFf -NFDOf ( -DF\U 7UDQV IRUPLWY 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f ,UULJDWLRQ ZDWHU n9\U IRU VXJDUFDQH DQG \U IRU VZHHW FRP &+0+LOO f r\U r\Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ &+0+ f 3HDW XVH \U NFDOJ GU\ # GU\ 2GXP f DFLQDF\UfOIW LQf IWDFIWf PIWfO( JPfGU\f NFDOJ GU\f -NFDOf ( -DF\U 7UDQVIRUPLW\ RI XQKDUYHVWHG SHDW ( VHM2GXP f 6RLO VROXWLRQ SKRVSKRUXV FRQWHQW PJ &+0+ f )XHO JDODF\U IRU VXJDUFDQH 3LPHQWHO f ( NFDODF\U IRU VZHHW FRP 2GXP HW DO f ( -JDO 2GXP DQG $UGPJ f r JDODF\Uf( -JDOf r( NFDODF\Uf -NFDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3HVWLFLGH OEVDF\U IRU VXJDUFDQH &+0+ f OEVDF\U IRU VZHHW FRP ,)$6 XQSXEOLVKHG GDWDf NFDOJ 3LPHQWHO f r L r OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U IRU VXJDUFDQH DQG OEVDF\U IRU VZHHW FRP WKLV VWXG\f -J3 2GXP HW DO f r r OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U IRU VXJDUFDQH &+0+ f OEVDF\U IRU VZHHW FRP 6KRZDOWHU f -J 2GXP HW DO f r r OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U IRU VXJDUFDQH $OYDUH] DQG 6FKXHQHPDQ f ODF\U IRU VZHHW FRP 6PLWK DQG 7D\ORU f r rf DF\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 6XJDUFDQH \LHOG WRQVDF\U WKLV VWXG\f NFDOJ 2GXP f r OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b ,]XQR DQG %RWWFKHU f 6ZHHW FRP \LHOG OEVDF\U WKLV VWXG\f NFDOJ 2GXP f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b ,)$6 XQSXEOLVKHG GDWDf 5XQRII $YHUDJH UXQRII YROXPH 9\U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 226

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI 6XJDUFDQH OEV 3DF\U ZLWK 5LFH LQ 5RWDWLRQ 1R 3 )HUWLOL]HU 1RWH ,WHP 9DOXH 5DZ 8QLWV DF\UfO 6RODU 7UDQVIRUPLW\ VHMXQLWf 6RODU 3KRVSKRUXV 3KRVSKRUXV (PHUJ\ &RQWHQW (PHUJ\0DVV (O VHMDF\UfJUDPV 3DFf (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( 3HDW XVH ( ( )XHO ( ( ; 'U\LQJ ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; &DOFLXP 6LOLFDWH ( ( ; 6HUYLFHV ( ; 6XJDUFDQH \LHOG ( ( 5LFH \LHOG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 227

)RRWQRWHV WR 7DEOH % 6XJDUFDQH ZLWK 5LFH LQ 5RWDWLRQ 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPQUf QUDFf -NFDOf ( -DF\U 7UDQVIRUPLW\ 5DLQ FKHQXFDO +\U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f ,UULJDWLRQ ZDWHU n9\U IRU VXJDUFDQH &+0+ f \U IRU QHH 3LPHQWHO f r\U r \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ &+0+8 f 3HDW XVH \U NHDOJ GU\ # GU\ 2GXP f DFLQDF\UfOIW Pf IWDFIWf PIWfO( JPfGU\f NHDOJ GU\f -NFDOf ( -DF\U 7UDQVIRUPLW\ RI XQKDUYHVWHG SHDW ( VHM2GXP f 6RLO VROXWLRQ SKRVSKRUXV FRQWHQW PJ &+0+ f )XHO JDODF\U IRU VXJDUFDQH DQG JDODF\U IRU QHH 3LPHQWHO f ( -JDO 2GXP DQG $UGPJ f r r JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 'U\LQJ NFDODF\U 3LPHQWHO f r NFDODF\Uf -NFDOf ( -NFDO $VVXPH WUDQVIRUPLW\ RI IXHO ( VHM(OHFWQFLW\ NZKDF\U IRU QHH 3LPHQWHO f r NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3HVWLFLGH OEVDF\U IRU VXJDUFDQH &+0+ f NHDOJ 3LPHQWHO f r OEVDF\Uf JOEf NHDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U IRU VXJDUFDQH WKLV VWXG\f -J3 2GXP HW DO f r OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U IRU VXJDUFDQH &+0+LOO f -J 2GXP HW DO f r OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f &DOFLXP VLOLFDWH WRQVDF\U IRU ULFH $OYDUH] f -J DVVXPH HTXDO WR 3 IHUWLOL]HU VPHH LWV D E\SURGXFWf r OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHMDVVXPH HTXDO WR 3 IHUWLOL]HUf $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U IRU VXJDUFDQH $OYDUH] DQG 6FKXHQHPDQ f DF\U IRU QHH $OYDUH] f (PHUJ\ WRWDO VXP RI WKURXJK DERYH r rf DF\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f 6XJDUFDQH \LHOG WRQVDF\U SOXV QHH HIIHFW WKLV VWXG\f NHDOJ 2GXP f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b ,]XQR DQG %RWWFKHU f

PAGE 228

)RRWQRWHV WR 7DEOH % 6XJDUFDQH ZLWK 5LFH LQ 5RWDWLRQ FRQWLQXHGf 5LFH \LHOG FZWDF\U WKLV VWXG\f NFDOJ 2GXP f r OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b 'H'DWWD f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 229

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI 2WKHU $JULFXOWXUH (VWLPDWHG DV 6RG 3URGXFWLRQf 1RWH ,WHP 9DOXH 5DZ 8QLW DF\UfO 6RODU 7UDQVIRUP LW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV 3DFf ( VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( ,UULJDWLRQ ZDWHU ( ( 6RLO XVHG XS ( ( )XHO ( ( ; (OHFWULFLW\ ( ( ; 3HVWLFLGH ( ( ; 1 )HUWLOL]HU ( ( ; 3 )HUWLOL]HU ( ( )HUWLOL]HU ( ( ; /LPH ( J ( ; 6HUYLFHV ( ; 6RG \LHOG ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 230

)RRWQRWHV WR 7DEOH % 2WKHU $JULFXOWXUH (VWLPDWHG DV 6RG 3URGXFWLRQf 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO( FPQUf QUDFf -NFDOf ( -DF\U 7UDQV IRUPLW\ 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPPf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f ,UULJDWLRQ ZDWHU \U +D]HQ DQG 6DZ\HU f \Uf FPPf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRPQW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ DVVXPHG HTXDO WR UDP ZDWHUf 6RLO XVH OEVDF\U RU b RI WRWDO GU\ ZHLJKW KDUYHVWHG WKLV VWXG\f NFDOJ GU\ 2GXP f OEVDF\Uf JOEf NFDOJ GU\f -NFDOf ( -DF\U 7UDQVIRUPLW\ RI XQKDUYHVWHG SHDW ( VHM2GXP f 3KRVSKRUXV FRQWHQW JDF WKLV VWXG\f )XHO JDODF\U )OXFN HW DO XQSXEOLVKHGf ( -JDO 2GXP DQG $UGLQJ f JDODF\Uf( -JDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f (OHFWULFLW\ NZKDF\U )OXFN HW DO XQSXEOLVKHGf NZKDF\Uf( -NZKf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3HVWLFLGH OEVDF\U )OXFN HW DO XQSXEOLVKHGf NFDOJ 3XQHQWHO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 1LWURJHQ IHUWLOL]HU OEVDF\U 6DUWDPf ( -J1 2GXP HW DO f OEVDF\Uf JOEf( -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV IHUWLOL]HU OEVDF\U WKLV VWXG\f -J3 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3RWDVK IHUWLOL]HU OEVDF\U 6DUWDLQ f -J 2GXP HW DO f OEVDF\Uf JOEf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f /LPH OEVDF\U )OXFN HW DO XQSXEOLVKHGf OEVDF\Uf JOEf ( JDF\U 7UDQVIRUPLW\ ( VHMJ 2GXP f $QQXDO FRVWV IRU KXPDQ VHUYLFHV DF\U )OXFN HW DO XQSXEOLVKHGf HPHUJ\FXUUHQF\ UDWLR ( VHM 3ULWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 6RG \LHOG LQFO VRLOf GU\ OEVDF\U WKLV VWXG\f NFDOJ 2GXP f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JP"f -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 231

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI &RPPHUFLDO )RUHVW 3ODQWDWLRQ 3LQHf 1RWH ,WHP 9DOXH 5DZ 8QLWV DF\UfO 6RODU 7UDQVIRUP LW\ VHMXQLWf 6RODU (PHUJ\ (O VHMDF\Uf 3KRVSKRUXV &RQWHQW JUDPV 3DFf 3KRVSKRUXV (PHUJ\0DVV (O VHMJ 3f 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( )XHO ( ( ; 6HUYLFHV ( ; 7LPEHU ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 232

)RRWQRWHV WR 7DEOH % &RPPHUFLDO )RUHVWU\ 3LQH 3ODQWDWLRQf 6XQOLJKW NFDOFP\U 2GXP HW DO f NFDOFP\UfO+ FQUPf PDFf -NFDOf ( -DF\U 7UDQVIRUPLW\ 5DLQ FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPPf PFPf PDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f )XHO IRU VLWH SUHSDUDWLRQ KDUYHVWLQJ DQG WUDQVSRQ ( -P 1HZ =HDODQG SLQH 2GXP HW DO f ( -J DO 2GXP DQG $UGLQJ f ( -Pf WWDF\Uf PIWf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f $QQXDOL]HG FRVWV IRU KXPDQ VHUYLFHV DF\U 2GXP DQG %URZQ f HPHUJ\FXUUHQF\ UDWLR ( VHM 2GXP f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 7LPEHU KDUYHVW GU\ OEVDF\U WKLV VWXG\f NFDOJ 2GXP HW DO f OEVDF\Uf JOEf NFDOJf -NFDOf ( -DF\U 3KRVSKRUXV FRQWHQW b WKLV VWXG\f 5XQRII $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPPf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 233

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI 8UEDQ /DQG 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 1RWH ,WHP 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV DF\UfO VHMXQLWf ( VHMDF\UfJUDPV 3DFf ( VHMJ 3f 8UEDQ UHVLGHQWLDO $OO LQSXWV ( &(( ; ; 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ; 2WKHU XUEDQ $OO LQSXWV ( &(( ; ; 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 234

)RRWQRWHV WR 7DEOH % 8UEDQ /DQG $OO LQSXWV $YHUDJH ( NFDO &(DF\U WR VLQJOH IDPLO\ DQG PRELOH KRPH ODQG XVHV %URZQ f ( NFDO&(DF\Uf -NFDOf ( &(-DF\U 7UDQVIRUPLW\ ( VHM&(2GXP f 5XQRII $YHUDJH UXQRII YROXPH \U WKLV VWXG\f \Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U $OO LQSXWV $YHUDJH ( NFDO &(DF\U WR FRPPHUFLDO LQGXVWULDO DQG VWRU\ EXVLQHVV ODQG XVHV %URZQ f ( NFDO&(DF\Uf -NFDOf ( &(-DF\U 7UDQVIRUPLW\ ( VHM&(2GXP f 5XQRII $YHUDJH UXQRII YROXPH \U WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JP f -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVLQ RXWIORZ 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U

PAGE 235

7DEOH % (PHUJ\ (YDOXDWLRQ RI DQ $FUH RI )RUHVWHG 8SODQGV *UDVV\ 6FUXEODQG RU 0L[HG :HWODQG $UHDV 6RODU 6RODU 3KRVSKRUXV 3KRVSKRUXV 1RWH ,WHP 9DOXH 5DZ 8QLWV 7UDQVIRUPLW\ (PHUJ\ &RQWHQW (PHUJ\0DVV DF\UfO VHMXQLWf (O VHMDF\Uf JUDPV 3DFf (O VHMJ 3f )RUHVWHG XSODQGV 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ; )RUHVWHG XSODQGV SUHGHYHORSPHQWf 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ; *UDVV\ VFUXEODQG SUHGHYHORSPHQWf 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( 5XQRII ; ; ; ; %DVLQ RXWIORZ ; ; ; ; 0L[HG ZHWODQG DUHDV 6XQOLJKW ( ; 5DLQ FKHPLFDO ( ( 0L[HG ZHWODQG DUHDV SUHGHYHORSPHQWf 6XQOLJKW ( ; 5DLQ FKHPLFDO ( (

PAGE 236

)RRWQRWHV WR 7DEOH % )RUHVWHG 8SODQGV *UDVV\ 6FUXEODQGV 0L[HG :HWODQG $UHDV 6XQOLJKW NFDOFP\U 2GXP HW DO f L NFDOFP\Uf ( FQUQUf PDFf -NFDOf ( -DF\U 7UDQV IRUPLW\ r 5DP FKHPLFDO \U 6):0' f *LEEV IUHH HQHUJ\ RI IUHVK ZDWHU -J \Uf FPLQf PFPf QUDFfO( JPf -Jf ( -DF\U 7UDQVIRUPLW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW PJ 6FXOOH\ f (PHUJ\ WRWDO DERYH 5XQRII IURP IRUHVWHG XSODQGV $YHUDJH UXQRII YROXPH \U &5($06:7 UHVXOWV WKLV VWXG\f \Uf FPLQffO PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ IURP IRUHVWHG XSODQGV 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U 5XQRII IURP SUHGHYHORSPHQW IRUHVWHG XSODQGV $YHUDJH UXQRII YROXPH \U &5($06 :7 UHVXOWV WLQV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV LQ UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ IURP SUHGHYHORSPHQW IRUHVWHG XSODQGV 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U 5XQRII IURP SUHGHYHORSPHQW JUDVV\ VFUXEODQGV $YHUDJH UXQRII YROXPH \U &5($06 :7 UHVXOWV WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\U 3KRVSKRUXV P UXQRII OEVDF\U &5($06:7 UHVXOWV WKLV VWXG\f %DVP RXWIORZ IURP SUHGHYHORSPHQW JUDVV\ VFUXEODQGV 6DPH YROXPH DV UXQRII 3KRVSKRUXV RXWIORZ OEVDF\U L

PAGE 237

7DEOH % (PHUJ\ (YDOXDWLRQ RI %DVLQ 6FDOH &KHPLFDO 7UHDWPHQW DW WKH 6 %DVLQ 2XWOHW 1RWH ,WHP 9DOXH 5DZ 8QLWV \UL 6RODU 7UDQVIRUP LW\ VHMXQLWf 6RODU (PHUJ\ (O VHM\Uf 3KRVSKRUXV 3KRVSKRUXV &RQWHQW (PHUJ\0DVV JUDPV 3f (O VHMJ 3f 'LVFKDUJH IURP EDVLQ ( ( ; (OHFWULFLW\ ( ( ; $OXP ( ( ; 6HUYLFHV ( ( ; 6OXGJH ; ; ; ; %DVLQ RXWIORZ ; ; ; ;

PAGE 238

)RRWQRWHV WR 7DEOH % %DVLQ 6FDOH &KHPLFDO 7UHDWPHQW DW 6 %DVLQ 2XWOHW 'LVFKDUJH IURP EDVLQ n9\U &5($06:7 UHVXOWV WKLV VWXG\f n\Uf FPLQffO PFPf QUDFf ( JPf -Jf ( -DF\Ur DF ( -\U 7UDQVIRPXW\ ( VHM2GXP HW DO f 3KRVSKRUXV FRQWHQW OEV\U &5($06:7 UHVXOWV WKLV VWXG\f (OHFWULFLW\ NZK\U '(5 f NZKYUf( -NZKf ( -DF\U 7UDQVIRPXW\ ( VHM2GXP HW DO f $OXP ( OEV\U '(5 f -J DVVXPH HTXDO WR EDX[LWH 2GXP HW DO f ( OEV\Uf JOEf -Jf ( -DF\U 7UDQVIRPXW\ ( VHMDVVXPH HTXDO WR EDX[LWH 2GXP HWDO f $QQXDO FRVWV IRU KXPDQ VHUYLFHV PLOKRQ\U DQQXDOL]HG FDSLWDO SOXV PLOOLRQ\U RSHUDWLQJ FRVWV '(5 DGMXVWHG WR GROODUVf PLOOLRQ\U HPHUJ\FXUUHQF\ UDWLR ( VHM 3QWFKDUG f (PHUJ\ WRWDO VXP RI WKURXJK DERYH 6OXGJH WRQV\U '(5 f WRQV\Uf OEVWRQf JOEf ( J\U 3KRVSKRUXV FRQWHQW OEV\U WLQV VWXG\f %DVLQ RXWIORZ \U WKLV VWXG\f \Uf FPLQf PFPf PDFfO( JPf -Jf ( -DF\Ur DF ( -\U 3KRVSKRUXV LQ RXWIORZ OEV\U WKLV VWXG\f

PAGE 239

5()(5(1&(6 $OYDUH] &RVWV DQG 5HWXUQV IRU 5LFH 3URGXFWLRQ RQ 0XFN 6RLOV LQ )ORULGD (FRQRPLF ,QIRUPDWLRQ 5HSRUW (O )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ $OYDUH] DQG 7 6FKXHQHPDQ &RVWV DQG 5HWXUQV IRU 6XJDUFDQH 3URGXFWLRQ RQ 0XFN 6RLOV LQ )ORULGD (FRQRPLF ,QIRUPDWLRQ 5HSRUW (O )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ $OYDUH] DQG 6Q\GHU (IIHFW RI 3ULRU 5LFH &XOWXUH RQ 6XJDUFDQH
PAGE 240

%RJJHVV : +ROW DQG 5 6PLWKZLFN 7KH (FRQRPLF ,PSDFW RI WKH 'DLU\ 5XOH RQ 'DLULHV LQ WKH /DNH 2NHHFKREHH 'UDLQDJH %DVLQ 63 )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ %RWWFKHU $ / %DOGZLQ &DPSEHOO & +HDWZROH 5 0DQVHOO DQG % %XUJRD )LQDO 5HSRUW 'HYHORSPHQW DQG 9HULILFDWLRQ RI DQ $QDO\WLFDO 0RGHO IRU $VVHVVLQJ WKH ,PSDFW RI $JULFXOWXUDO 3UDFWLFHV RQ :DWHU 4XDOLW\ DQG 4XDQWLW\ ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ %RWWFKHU $ / %DOGZLQ & +HDWZROH DQG / 0LOOHU )LQDO 5HSRUW &RVW (IIHFWLYHQHVV $QDO\VLV RI %03 $OWHUQDWLYHV IRU WKH 7D\ORU &UHHN1XEELQ 6ORXJK DQG /RZHU .LVVLPPHH 5LYHU %DVLQV 5HSRUW WR $UP\ &RUSV RI (QJLQHHUV XQGHU &RQWUDFW '$&: & $JULFXOWXUDO (QJLQHHULQJ 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ %URZQ 0 (QHUJ\ %DVLV IRU +LHUDUFKLHV LQ 8UEDQ DQG 5HJLRQDO /DQGVFDSHV 3K' GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ &DPSEHOO 7 7UHPZHOO &DSHFH DQG 7 &HUD %LRJHRFKHPLFDO %HKDYLRU DQG 7UDQVSRUW RI 3KRVSKRUXV LQ WKH /DNH 2NHHFKREHH %DVLQ $UHD )LQDO 6XPPDU\ 5HSRUW 'HSW RI $JULFXOWXUDO (QJLQHHULQJ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ &DQILHOG DQG 0 +R\HU 7KH (XWURSKLFDWLRQ RI /DNH 2NHHFKREHH /DNH DQG 5HVHUYRLU 0DQDJHPHQW f &DWKFDUW -DPHV % :RUOG 3KRVSKDWH 5HVHUYHV DQG 5HVRXUFHV ,Q ) .KDVDZQHK ( 6DPSOH DQG ( .DPSUDWK HGVf 7KH 5ROH RI 3KRVSKRUXV LQ $JULFXOWXUH $PHULFDQ 6RFLHW\ RI $JURQRP\ 0DGLVRQ :O &+0+ ,QF :DWHU 4XDOLW\ 6WXGLHV LQ WKH (YHUJODGHV $JULFXOWXUDO $UHD RI )ORULGD 6XEPLWWHG WR WKH )ORULGD 6XJDUFDQH /HDJXH &+0+8 *DLQHVYLOOH )/ 'H'DWWD 6. 3ULQFLSOHV DQG 3UDFWLFHV RI 5LFH 3URGXFWLRQ -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 241

(ULFNVRQ -' )URP (FRORJ\ WR (FRQRPLFV 7KH &DVH $JDLQVW & )HUWLOL]DWLRQ (FRORJLFDO (FRQRPLFV f )HGHULFR $ 'LFNVRQ & .UDW]HU DQG ) 'DYLV /DNH 2NHHFKREHH :DWHU 4XDOLW\ 6WXGLHV DQG (XWURSKLFDWLRQ $VVHVVPHQW 7HFK 3XEO 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW :HVW 3DOP %HDFK )/ )ORULGD $JULFXOWXUDO 6WDWLVWLFV 6HUYLFH D )LHOG &URSV 6XPPDU\ 2UODQGR )/ )ORULGD $JULFXOWXUDO 6WDWLVWLFV 6HUYLFH E 9HJHWDEOH 6XPPDU\ 2UODQGR )/ )ORULGD 'HSW RI $GPLQLVWUDWLRQ )LQDO 5HSRUW 6SHFLDO 3URMHFW WR 3UHYHQW (XWURSKLFDWLRQ RI /DNH 2NHHFKREHH 'LYLVLRQ RI 6WDWH 3ODQQLQJ 7DOODKDVVHH )/ )ORULGD 'HSW RI (QYLURQPHQWDO 5HJXODWLRQ '(5f )LQDO 5HSRUW /DNH 2NHHFKREHH 7HFKQLFDO &RPPLWWHH 9ROXPH ,, 7HFKQLFDO $SSHQGLFHV 7DOODKDVVHH )/ )OXFN 5 & %DLUG DQG % 3DQHVDU (QHUJ\ 5HTXLUHPHQWV IRU )ORULGD &LWUXV 3URGXFWLRQ 3URFHHGLQJV )ORULG 6WDWH +RUWLFXOWXUDO 6RFLHW\ )RQ\R & 5 )OXFN : %RJJHVV & .LNHU + 'LQNLHU DQG / 6WDQLVODZVNL %LRJHRFKHPLFDO %HKDYLRU DQG 7UDQVSRUW RI 3KRVSKRUXV LQ WKH /DNH 2NHHFKREHH %DVLQ $UHD )LQDO 5HSRUW 'HSWV RI $JULFXOWXUDO (QJLQHHULQJ DQG )RRG DQG 5HVRXUFH (FRQRPLFV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ )RQ\R & % 1HJDKEDQ : %RJJHVV &DPSEHOO DQG -RQHV D /2$'66 /DNH 2NHHFKREHH $JULFXOWXUDO 'HFLVLRQ 6XSSRUW 6\VWHPf YHUVLRQ 'HVLJQ 'RFXPHQW $JULFXOWXUDO (QJLQHHULQJ 5HVHDUFK 5HSRUW 1R / 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ )RQ\R & % 1HJDKEDQ : %RJJHVV -RQHV DQG &DPSEHOO E /2$'66 /DNH 2NHHFKREHH $JULFXOWXUDO 'HFLVLRQ 6XSSRUW 6\VWHPf YHUVLRQ 0RGHO 9HULILFDWLRQ&DOLEUDWLRQ6HQVLWLYLW\ $QDO\VLV $JULFXOWXUDO (QJLQHHULQJ 5HVHDUFK 5HSRUW 1R / 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ *D\OH 7 6\VWHPV 0RGHOV IRU 8QGHUVWDQGLQJ (XWURSKLFDWLRQ LQ /DNH 2NHHFKREHH 06 WKHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/

PAGE 242

*LHV\ 5 DQG +ROW )LQDQFLDO $QDO\VLV RI WKH 8VH RI /HDVLQJ 3DVWXUH WR ,QFUHDVH %HHI 3URGXFWLRQ 3URILWDELOLW\ 3UHVHQWHG DW 'DLU\ )RUDJH DQG %HHI 3URGXFWLRQ &RQIHUHQFH 7DYDUHV )/ *LOOLODQG 0DUWKD : 0DQnV ,PSDFW RQ WKH 3KRVSKRUXV &\FOH LQ )ORULGD 3K' GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ *UHQ $OWHUQDWLYH 1LWURJHQ 5HGXFWLRQ 3ROLFLHV LQ WKH 0DODU 5HJLRQ 6ZHGHQ (FRORJLFDO (FRQRPLFV f *XWLHUUH] 5 (QHUJ\ $QDO\VLV DQG &RPSXWHU 6LPXODWLRQV RI 3DVWXUHV LQ )ORULGD 06 WKHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ +DUWLJ & 7UDXWULP 'RODQ DQG 5DWKNH 7KH 5DWLRQDOH IRU 2KLRnV 'HWHUJHQW 3KRVSKRUXV %DQ :DWHU 5HVRXUFHV %XOOHWLQ f +D]HQ DQG 6DZ\HU 3UHOLPLQDU\ (FRQRPLF $QDO\VLV RI 3URSRVHG 6RXWKHUQ :DWHU 8VH &DXWLRQ $UHD 0DQDJHPHQW 3ODQ 5HSRUW WR 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW +D]HQ DQG 6DZ\HU +ROO\ZRRG )/ +HDWZROH & )LHOG DQG %DVLQ 6FDOH :DWHU 4XDOLW\ 0RGHOV IRU (YDOXDWLQJ $JULFXOWXUDO 1RQSRLQW 3ROOXWLRQ $EDWHPHQW 3URJUDPV LQ D 6RXWK )ORULGD :DWHUVKHG 3K' GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ +HDWZROH & &DPSEHOO DQG $ %RWWFKHU 0RGLILHG &5($06 1XWULHQW 0RGHO IRU &RDVWDO 3ODLQ )ODWZRRGV 7UDQVDFWLRQV $6$( f +XDQJ : DQG 1 8UL $Q $VVHVVPHQW RI $OWHUQDWLYH $JULFXOWXUDO 3ROLFLHV WR 5HGXFH 1LWURJHQ )HUWLOL]HU 8VH (FRORJLFDO (FRQRPLFV f +XWFKLQVRQ 7KH %LRJHRFKHPLVWU\ RI 3KRVSKRUXV ,Q / :ROWHULQN HGf 7KH %LRORJ\ RI 3KRVSKRUXV 0LFKLJDQ 6WDWH &ROOHJH 3UHVV *UDQG 5DSLGV 0/ ,]XQR ) DQG $ %RWWFKHU HGVf &RPSRQHQWV RI WKH ($$ $JULFXOWXUDO 6\VWHP WKDW 5HODWH WR :DWHU 4XDOLW\ LQ 6RXWK )ORULGD ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV *DLQHVYLOOH )/ 5DQJDV 3 (QHUJ\ $QDO\VLV RI /DQGIRUPV 6XFFHVVLRQ DQG 5HFODPDWLRQ 3K' GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ .KDVDZQHK ) ( 6DPSOH DQG ( .DPSUDWK HGVf 7KH 5ROH RI 3KRVSKRUXV LQ $JULFXOWXUH $PHULFDQ 6RFLHW\ RI $JURQRP\ 0DGLVRQ :,

PAGE 243

.LNHU &DPSEHOO DQG =KDQJ &5($06:7/LQNHG ZLWK *,6 WR 6LPXODWH 3KRVSKRUXV /RDGLQJ 3UHVHQWHG DW WKH VXPPHU PHHWLQJ RI WKH $PHULFDQ 6RFLHW\ RI $JULFXOWXUDO (QJLQHHUV &KDUORWWH 1& .RR 5 5HFRPPHQGHG )HUWLOL]HUV DQG 1XWULWLRQDO 6SUD\V IRU &LWUXV %XOOHWLQ ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV *DLQHVYLOOH )/ /DNVKPDQ (FRWHFKQRORJLFDO 2SSRUWXQLWLHV IRU $TXDWLF 3ODQWV$ 6XUYH\ RI 8WLOL]DWLRQ 2SWLRQV ,Q 5HGG\ DQG : 6PLWK HGVf $TXDWLF 3ODQWV IRU :DWHU 7UHDWPHQW DQG 5HVRXUFH 5HFRYHU\ 0DJQROLD 3XEOLVKLQJ 2UODQGR )/ /RIWLQ 0 / 7RWK DQG 2EH\VHNHUD .LVVLPPHH 5LYHU 5HVWRUDWLRQ $OWHUQDWLYH 3ODQ (YDOXDWLRQ DQG 3UHOLPLQDU\ 'HVLJQ 5HSRUW 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW :HVW 3DOP %HDFK )/ /27 $& /DNH 2NHHFKREHH 7HFKQLFDO $GYLVRU\ &RPPLWWHH )LQDO 5HSRUW )ORULGD 'HSDUWPHQW RI (QYLURQPHQWDO 5HJXODWLRQ 7DOODKDVVHH )/ 0DUWLQH]$OOLHU (FRORJLFDO (FRQRPLFV %DVLO %ODFNZHOO 2[IRUG (QJODQG 0F6ZHHQH\ : DQG 6KRUWOH 3UREDELOLVWLF &RVW(IIHFWLYHQHVV LQ $JULFXOWXUDO 1RQSRLQW 3ROOXWLRQ &RQWURO 6RXWKHUQ -RXUQDO RI $JULFXOWXUDO (FRQRPLFV 0H\EHFN 0 &DUERQ 1LWURJHQ DQG 3KRVSKRUXV E\ :RUOG 5LYHUV $PHULFDQ -RXUQDO RI 6FLHQFH 0LWFKXP / /DNH 2NHHFKREHHnV +LVWRU\ $TXDWLFV f 0XONH\ DQG 5 &ORXVHU 7KH (FRQRPLF ,PSDFW RI WKH 'DLU\ ,QGXVWU\ LQ 2NHHFKREHH &RXQW\ )/ 6WDII 3DSHU )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 0XUDUR 5 DQG ( +ROFRPE -U %XGJHWLQJ &RVWV DQG 5HWXUQV IRU 6RXWKZHVW )ORULGD &LWUXV (FRQRPLF ,QIRUPDWLRQ 5HSRUW )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 0XUDUR 5 DQG ( +ROFRPE -U %XGJHWLQJ &RVWV DQG 5HWXUQV IRU 6RXWKZHVW )ORULGD &LWUXV (FRQRPLF ,QIRUPDWLRQ 5HSRUW (O )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/

PAGE 244

0XUDUR 5 +XUQHU -U DQG 7 2VZDOW %XGJHWLQJ &RVWV DQG 5HWXUQV IRU &HQWUDO )ORULGD &LWUXV 3URGXFWLRQ (FRQRPLF ,QIRUPDWLRQ 5HSRUW (O )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 2GXP +7 'LVVROYHG 3KRVSKRUXV LQ )ORULGD :DWHUV 5HSRUW WR )ORULGD *HRORJLFDO 6XUYH\ 'HSW RI %LRORJ\ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 2GXP +7 6\VWHPV (FRORJ\ -RKQ :LOH\ t 6RQV 1HZ
PAGE 245

2GXP +7 ) :DQJ 0 0LOOHU $OH[DQGHU DQG 7 %XWOHU $ 0DQXDO IRU 8VLQJ (QHUJ\ $QDO\VLV IRU 3ODQW 6LWLQJ 5HSRUW WR WKH 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ &HQWHU IRU :HWODQGV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 3LPHQWHO +DQGERRN RI (QHUJ\ 8WLOL]DWLRQ LQ $JULFXOWXUH &5& 3UHVV %RFD 5DWRQ )/ 3RUFHOOD DQG $ %LVKRS &RPSUHKHQVLYH 0DQDJHPHQW RI 3KRVSKRUXV :DWHU 3ROOXWLRQ $QQ $UERU 6FLHQFH 3XEO $QQ $UERU 0, 3RUFHOOD $ %LVKRS $QGHUVHQ 2 $VSOXQG $ &UDZIRUG : *UHQQH\ -HQNLQV -XULQDN : /HZLV ( 0LGGOHEURRNV DQG 5 :DONLQJVKDZ &RPSUHKHQVLYH 0DQDJHPHQW RI 3KRVSKRUXV :DWHU 3ROOXWLRQ (3$ 86(3$ 2IILFH RI 5HVHDUFK DQG 'HYHORSPHQW :DVKLQJWRQ '& 3UHYDWW -: %HHI 3URGXFWLRQ &RVWV 3UHVHQWHG DW WKH $QLPDO 6FLHQFH ,Q 6HUYLFH 7UDLQLQJ 3URJUDP *DLQHVYLOOH )/ 3UHYDWW -: DQG 3 0LVOHY\ )RUDJH 3URGXFWLRQ &RVWV IRU 6RXWK )ORULGD (FRQRPLF ,QIRUPDWLRQ 5HSRUW )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 3ULWFKDUG / 7KH (FRORJLFDO (FRQRPLFV RI 1DWXUDO :HWODQG 5HWHQWLRQ RI /HDG 06 WKHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 5HGG\ .5 2$ 'LD] 0 $JDPL /6FLQWR DQG / /D&ODLUH 3KRVSKRUXV '\QDPLFV LQ 6HOHFWHG :HWODQG6WUHDP 6\VWHPV RI 6RXWK )ORULGD )LQDO UHSRUW VXEPLWWHG WR 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW 'HSW RI 6RLO 6FLHQFH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 6DQGVWURP 0 'LDJHQHVLV RI 2UJDQLF 3KRVSKRUXV LQ 0DULQH 6HGLPHQWV ,PSOLFDWLRQV IRU WKH *OREDO &DUERQ DQG 3KRVSKRUXV &\FOHV ,Q )UHQH\ DQG *DOEDOO\ HGVf &\FOLQJ RI &DUERQ 1LWURJHQ 6XOIXU DQG 3KRVSKRUXV LQ 7HUUHVWULDO DQG $TXDWLF (FRV\VWHPV 6SULQJHU9HUODJ 1HZ
PAGE 246

6FLHQFHPDQ (QHUJ\ DQG (PHUJ\ ,Q 3LOOHW DQG 7 0XURWD HGVf (QYLURQPHQWDO (FRQRPLFV 7KH $QDO\VLV RI D 0DMRU ,QWHUIDFH 5RODQG /HLPJUXEHUV *HQHYD 6ZLW]HUODQG 6FXOOH\ 6 )UHTXHQF\ $QDO\VLV RI 6):0' 5DLQIDOO 7HFK 3XEO 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW :HVW 3DOP %HDFK )/ 6KRZDOWHU 5. 6ZHHW &RUQ 3URGXFWLRQ LQ )ORULGD &LUFXODU )ORULGD &RRSHUDWLYH ([WHQVLRQ 6HUYLFH ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 6PLWK 6 DQG 7 7D\ORU 3URGXFWLRQ &RVWV IRU 6HOHFWHG 9HJHWDEOHV LQ )ORULGD (FRQRPLF ,QIRUPDWLRQ 5HSRUW (O )RRG DQG 5HVRXUFH (FRQRPLFV 'HSW ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 6PLWK 6 DQG 7 7D\ORU 3URGXFWLRQ &RVWV IRU 6HOHFWHG 9HJHWDEOHV LQ )ORULGD &LUFXODU )ORULGD &RRSHUDWLYH ([WHQVLRQ 6HUYLFH ,)$6 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 6PLWKZLFN 5 $QDO\VLV RI WKH /RQJ5XQ )LQDQFLDO ,PSDFW RI WKH 'DLU\ 5XOH RQ 'DLULHV LQ WKH /DNH 2NHHFKREHH 'UDLQDJH %DVLQ 06 7KHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 6RXWK )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW 6):0'f ,QWHULP 6XUIDFH :DWHU ,PSURYHPHQW DQG 0DQDJHPHQW 6:,0f 3ODQ IRU /DNH 2NHHFKREHH :HVW 3DOP %HDFK )/ 7D\ORU $ : DQG 9 .LOPHU $JULFXOWXUDO 3KRVSKRUXV LQ WKH (QYLURQPHQW ,Q ) .KDVDZQHK ( 6DPSOH DQG ( .DPSUDWK HGVf 7KH 5ROH RI 3KRVSKRUXV LQ $JULFXOWXUH $PHULFDQ 6RFLHW\ RI $JURQRP\ 0DGLVRQ :, 7XDQ &+ $ 'HVFULSWLRQ RI WKH 6RXWKHDVWHUQ .LVVLPPHH(YHUJODGHV 'UDLQDJH %DVLQ ZLWK (PSKDVLV RQ +\GURORJLF(FRQRPLF /LQNDJHV 06 WKHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ 86 $UP\ &RUSV RI (QJLQHHUV (QYLURQPHQWDO 5HVWRUDWLRQ RI WKH .LVVLPPHH 5LYHU )ORULGD )LQDO ,QWHJUDWHG )HDVLELOLW\ 5HSRUW DQG (QYLURQPHQWDO ,PSDFW 6WDWHPHQW $QQH[ 86 $UP\ &RUSV RI (QJLQHHUV -DFNVRQYLOOH 'LVWULFW 6RXWK $WODQWLF 'LYLVLRQ -DFNVRQYLOOH )/ 86 'HSW RI $JULFXOWXUH 86'$f 5HSRUW IRU .LVVLPPHH(YHUJODGHV $UHD )ORULGD 86'$ 5LYHU %DVLQ ,QYHVWLJDWLRQ 86'$ 6RLO &RQVHUYDWLRQ 6HUYLFH )RUW :RUWK 7;

PAGE 247

86 *HRORJLFDO 6XUYH\ 86*6f 6WDQGDUGV IRU 'LJLWDO /LQH *UDSKV 86*6 1DWLRQDO 0DSSLQJ 'LYLVLRQ 5HVWRQ 9$ 9ROOHQZHLGHU 5 $GYDQFHV LQ 'HILQLQJ &ULWLFDO /RDGLQJ /HYHOV IRU 3KRVSKRUXV LQ /DNH (XWURSKLFDWLRQ 0HP VW ,WDO ,GURELRO :DWW %. DQG $/ 0HUULOO &RPSRVLWLRQ RI )RRGV $JULFXOWXUDO +DQGERRN 1R 86 'HSW RI $JULFXOWXUH $JULFXOWXUDO 5HVHDUFK 6HUYLFH :DVKLQJWRQ '&

PAGE 248

%,2*5$3+,&$/ 6.(7&+ &DURO\Q )RQ\R %RJJHVV ZDV ERUQ 6HSWHPEHU LQ -DPDLFD 1HZ
PAGE 249

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ +RZDUG 7 2GXP &KDLUPDQ *UDGXDWH 5HVHDUFK 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 0DUN 7 %URZQ $VVRFLDWH 5HVHDUFK 6FLHQWLVW RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &L n&L&X-F 5LFKDUG & )OXFN 3URIHVVRU RI $JULFXOWXUDO (QJLQHHULQJ

PAGE 250

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ f I &O\GH ) .LNHU 3URIHVVRU RI )RRG DQG 5HVRXUFH (FRQRPLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 251

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EGKMV1JNZ_XT9NRC INGEST_TIME 2012-01-27T18:56:06Z PACKAGE AA00003208_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



BIOGEOECONOMICS OF PHOSPHORUS IN A FLORIDA WATERSHED
By
CAROLYN FONYO BOGGESS
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1994

ACKNOWLEDGEMENTS
[ am grateful to have had the opportunity to work with my committee chair. Dr.
H.T. Odum. Through his brilliance and creativity, he has inspired me to view the
world from a systems perspective. Many thanks go to other members of my committee
for their contributions: Dr. Mark Brown, Dr. Richard Fluck, Dr. Clyde Kiker, and Dr.
Clay Montague.
This work was an outcome of research supported by the South Florida Water
Management District. I am indebted to all of the team players whom I have worked
with over the years including project leaders Dr. Bill Boggess, Dr. Ken Campbell, Dr.
Richard Fluck, and Dr. Jim Jones; coworkers Hugh Dinkier, Greg Kiker, Dr. Harbans
Lai, and Babak Negahban; and District contract manager Dr. Eric Flaig.
I would like to acknowledge my parents, who lovingly cared for their grandson,
Matthew, in order to provide time for me to complete the dissertation. Finally, this
research could not have been accomplished without the love and support of my
husband. Bill.

TABLE OF CONTENTS
page
ACKNOWLEDGEMENTS ii
LIST OF TABLES v
LIST OF FIGURES vii
EMERGY SYMBOLS AND DEFINITIONS xi
ABSTRACT xii
CHAPTERS
1 INTRODUCTION 1
General Concepts 2
Concepts Relating Phosphorus, Entergy, and Economics 5
Phosphorus as a Resource 8
Previous Studies of Ecological Economics of Chemical Cycles ... 12
Characteristics of the North Okeechobee Basin 14
History of Basin Development 21
Related Studies of North Okeechobee Basin 23
Phosphorus Management Alternatives 25
Description of Scenarios 29
Dissertation Plan 35
2 METHODS, PROCEDURES, AND SOURCES OF DATA 37
Organization of Data with the ARC/Info Geographic Information
System 37
Phosphorus Budgeting 44
Emergy Evaluation 54
Economic Analysis 57
Scenario Comparisons 59
iii

3 RESULTS 62
Phosphorus Budgeting 62
Entergy Evaluation 90
Economic Analysis 118
4 DISCUSSION 132
Relating the Phosphorus Cycle to Entergy and Economics .... 132
Effects of Management on Regional Spatial Characteristics .... 144
Comparing Measures of Success for Phosphorus Management. . . 146
General Principles of Biogeoeconomics 158
Suggestions for Future Research 162
APPENDICES
A ASSUMPTIONS AND DATA SOURCES FOR PHOSPHORUS
BUDGETING AND ECONOMIC ANALYSIS 165
B PHOSPHORUS MANAGEMENT EMERGY EVALUATION
TABLES 177
REFERENCES 225
BIOGRAPHICAL SKETCH 234
IV

LIST OF TABLES
Table page
1-1. Drainage Subbasins of the North Okeechobee Basin 16
1-2. Land Use Characteristics of the North Okeechobee Basin 20
1-3. Management Practices for the Base Case Scenario (1993 Conditions) . . . . 30
2-1. Dairy Land Uses and Land Use Tags Assigned to Dairy Polygons 43
2-2. Hydrography Attribute Codes and Arc Length Classifications 45
2-3. Phosphorus Assimilation Coefficients and Average Flow Path Lengths by
Drainage Subbasin in the North Okeechobee Basin 55
3-1. Phosphorus Budget Results by Land Use for the Base Case Scenario . . . . 63
3-2. Phosphorus Budget Results by Land Use for the Maximum Phosphorus Use
Scenario 64
3-3 . Phosphorus Budget Results by Land Use for the Dispersed Phosphorus
Management Scenario, Design 1 65
3-4. Phosphorus Budget Results by Land Use for the Dispersed Phosphorus
Management Scenario, Design 2 66
3-5. Phosphorus Imports to and Exports from the North Okeechobee Basin under the
Base Case Scenario 74
3-6. Phosphorus Budget Results for the Concentrated Phosphorus Management
Scenario 91
3-7. Emergy Evaluation of the Base Case Scenario 101
3-8. Emergy Evaluation of the Maximum Phosphorus Use Scenario 102
v

3-9. Emergy Evaluation of the Predevelopment Scenario 103
3-10. Emergy Evaluation of the Dispersed Phosphorus Management Scenario,
Design 1 104
3-11. Emergy Evaluation of the Dispersed Phosphorus Management Scenario,
Design 2 105
3-12. Emergy Evaluation of the Concentrated Phosphorus Management Scenario 106
3-13. Emergy Evaluation Summary for Phosphorus-Containing Sources and
Products 114
3-14. Phosphorus Management Costs and Basin Phosphorus Outflow for Alternative
Scenarios 125
3-15. Cost Effectiveness Comparison of Phosphorus Management Scenarios . . 126
3-16. Service Dollars and Emdollars by Land Use for the Base Case Scenario. . 129
3-17. Comparison of Total Service Dollars and Total Emdollars by Scenario for
Approximately 1.2 Million Acres in the North Okeechobee Basin .... 131
4-1. Comparison of Annual Emergy, Service Dollars, and Emdollars per Gram of
Phosphorus by Scenario for the Study Region 134
4-2. Comparison of Total Annual Phosphorus, Emergy, and Emdollars Lost as
Runoff from the Study Region 135
4-3. Summary of Annual Dollar Flows and Emdollar Flows of the Regional
Phosphorus Cycle by Scenario 151
vi

LIST OF FIGURES
Figure page
1-1. Energy Systems Diagram of the North Okeechobee Basin with Overlay of Major
Phosphorus Flow Pathways 4
1-2. Generic Unit Model of a Land Use Polygon 6
1-3. Hypothetical Distributions of Phosphorus and Paid Services ($) as a Function of
Solar Transformity 7
1-4. Systems Diagram of the Biogeochemical Cycle of Phosphorus
(Odum, 1983) 9
1-5. Location Map of Lake Okeechobee and Its Drainage Subbasins 15
1-6. Pathways Amenable to Phosphorus Management 26
1-7. Schematic Diagram of a Dairy Waste Management System 32
2-1. Land Use and Soil Associations in the North Okeechobee Basin 41
2-2. The Hydrographic Network of Streams (in Blue) and Canals (in Red) in the
North Okeechobee Basin 46
2-3. Unit Model for Spatial Simulation of the Phosphorus Budget 47
2-4. Unit Model for Key Processes of the CREAMS-WT Program.
ET = Evapotranspiration; LAI = Leaf Area Index; Cr = Rainfall
Phosphorus 51
2-5. Model of Phosphorus Assimilation as a Function of Flow Path
Distance 52
2-6. Diagram Explaining Emergy Indices (Odum and Odum, 1983) 61
vii

3-1. Diagram of Phosphorus Budgets and Their Interactions for the Base Case
Scenario, (a) Energy Systems Diagram; (b) Basin Phosphorus Budget; (c) Beef
Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget. Units are tons
P/yr (0.9E6 grams P/yr) 67
3-2. Diagram of Phosphorus Budgets and Their Interactions for the Maximum
Phosphorus Use Scenario, (a) Energy Systems Diagram; (b) Basin Phosphorus
Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget.
Units are tons P/yr (0.9E6 grams P/yr) 68
3-3. Diagram of Phosphorus Budgets and Their Interactions for the Predevelopment
Scenario, (a) Energy Systems Diagram; and (b) Basin Phosphorus Budget.
Units are tons P/yr (0.9E6 grams P/yr) 69
3-4. Diagram of Phosphorus Budgets and Their Interactions for the Dispersed
Phosphorus Management Scenario, Design 1. (a) Energy Systems Diagram; (b)
Basin Phosphorus Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy
Phosphorus Budget. Units are tons P/yr (0.9E6 grams P/yr) 70
3-5. Diagram of Phosphorus Budgets and Their Interactions for the Dispersed
Phosphorus Management Scenario, Design 2. (a) Energy Systems Diagram; (b)
Basin Phosphorus Budget; (c) Beef Pasture Phosphorus Budget; and (d) Dairy
Phosphorus Budget. Units are tons P/yr (0.9E6 grams P/yr) 71
3-6. Distribution of Imports and Exports of Phosphorus-Containing Materials under
the Base Case Scenario 72
3-7. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations
under the Base Case Scenario 77
3-8. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations
under the Maximum Phosphorus Use Scenario 79
3-9. Land Cover Polygons and Average Annual Phosphorus Runoff Concentrations
under the Predevelopment Scenario 81
3-10. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations
under the Dispersed Phosphorus Management Scenario 83
3-11. Spatial Hierarchy of Runoff Concentration among Land Use Polygons ... 85
3-12. Land Use Polygons and Average Annual Basin Phosphorus Outflow under the
Base Case Scenario 88
viii

3-13. Unit Diagram for Emergy Evaluation of Citrus Land Use under the Base Case
Scenario (El3 sej/ac-yr) 92
3-14. Unit Diagram for Emergy Evaluation of Beef Pasture Land Use under the Base
Case Scenario (El3 sej/ac-yr) 93
3-15. Unit Diagram for Emergy Evaluation of Dairy Land Use under the Base Case
Scenario (El3 sej/cow-yr) 94
3-16. Unit Diagram for Emergy Evaluation of Sugarcane Land Use under the Base
Case Scenario (El3 sej/ac-yr) 95
3-17. Unit Diagram for Emergy Evaluation of Other Agriculture Land Use (El3
sej/ac-yr) 96
3-18. Unit Diagram for Emergy Evaluation of Commercial Forestry
(E13 sej/ac-yr) 97
3-19. Unit Diagram for Emergy Evaluation of Urban Land Use
(El3 sej/ac-yr) 98
3-20. Unit Diagram for Emergy Evaluation of Basin Scale Treatment for the S-191
Subbasin (E13 sej/yr) 99
3-21. Emergy Summary Diagram and Calculation of Net Emergy Yield and Emergy
Investment Ratios for Major Systems under Each
Scenario 107
3-22. Average Annual Phosphorus Runoff Concentrations and Empower Density
under the Base Case Scenario Ill
3-23. Relationship between Phosphorus Runoff and Empower Density per Production
Unit 113
3-24. Number of Phosphorus-Containing Materials as a Function of their
Transformities 117
3-25. Average Phosphorus Content of Materials as a Function of their
Transformities 119
3-26. Relationship between the Emergy per Mass of Phosphorus-Containing Materials
and their Phosphorus Content 120
IX

3-27. Relationship between the Emergy per Gram of Phosphorus in Materials and
their Spatial Distribution 121
3-28. Relationship between Emdollars and Service Dollars for Land Uses under the
Base Case Scenario 130
4-1. Diagram Showing the Full Phosphorus Cycle of the Region (Heavy Black
Lines) with Inputs and Outputs and Internal Cycling under the Base Case
Phosphorus Management Scenario. Dashed Line Represents Flow of Money
Associated with Phosphorus 133
4-2. Distribution of Phosphorus-Containing Material Inputs and Outputs Based on
the Emergy/Mass Ratios and Spatial Intensity of Phosphorus in the
Materials 138
4-3. Emdollar Flow per Acre Associated with the Annual Change in Onsite
Phosphorus Storage and Annual Runoff Phosphorus under the Base Case
Scenario 153
x

EMERGY SYMBOLS AND DEFINITIONS
>
I
ENERGY CIRCUIT: a pathway whose flow is proportional
to the quantity in the storage or source upstream.
SOURCE: outside source of energy; a forcing function.
STORAGE TANK: a compartment of energy storage within
the system storing a quantity as the balance of inflows and
outflows; a state variable.
HEAT SINK: dispersion of potential energy into heat that
accompanies all real transformation processes and storages;
loss of potenetial energy from further use by the system.
INTERACTION; interactive intersection of two pathways
coupled to produce an outflow in proportion to a function
of both; control action of one flow on another; limiting
factor action; work gate.
PRODUCER: unit that collects and transforms low quality
energy under control interactions of high quality flows.
CONSUMER: unit that transforms energy quality, stores
it, and feeds it back autocatalytically to improve inflow.
TRANSACTION: a unit that indicates a sale of goods or
services (solid line) in exchange for payment of money
(dashed line).
BOX: miscellaneous symbol to use for whatever unit or
process is labeled.
Reprinted from Odum, 1983, with permission.
xi

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
BIOGEOECONOMICS OF PHOSPHORUS IN A FLORIDA WATERSHED
By
Carolyn Fonyo Boggess
December 1994
Chairman: H.T. Odum
Major Department: Environmental Engineering Sciences
The human economy influences and is influenced by the biogeochemical cycles
of elements, but means for relating chemical cycles to economic systems have been
studied only incidentally. This study tested ways of relating a chemical cycle to a
regional economy, using phosphorus in the northern drainage basin of Lake
Okeechobee, Florida as an example.
Among the methods used were a mass balance approach to phosphorus
budgeting, dynamic modeling for runoff simulation, cost effectiveness for economic
analysis, and emergy evaluation techniques. Spatial data on land use and management
practices were organized using a geographic information system.
Phosphorus management scenarios were evaluated and compared in terms of
their ability to meet alternative goals for the region: physical (i.e., target phosphorus
xii

load reduction to Lake Okeechobee); economic (i.e., minimize cost of phosphorus
reduction); and energetic (i.e., maximize regional empower). Results indicated that
chemical treatment of phosphorus runoff as a point source at subbasin outlets was the
method by which the target load reduction goal could be achieved. This method of
concentrated phosphorus management was least cost effective at an estimated $190 per
pound of phosphorus removed. Dispersed treatment of phosphorus through changes in
technology and management onsite at each major source was more cost effective ($11
to $50/lb P removal), though short of achieving the physical goal. A tradeoff between
cost and phosphorus treatment efficiency was evident, particularly as the target goal
was approached.
Results of emergy evaluation supported the hypothesis that management
reorganizes the landscape by changing its diversity, and altering the cycling of chemical
elements. Emergy evaluation showed that the total emdollar loss from the region as
phosphorus runoff was 20 million EM$/yr under the base case scenario, or 1.5 times
the cost of phosphorus control. The emdollar value of phosphorus outflow from the
region to Lake Okeechobee after assimilation was estimated as 6.4 million EM$/yr, a
measure of its potential use.
Five principles for the new field of biogeoeconomics were proposed for
managing at the interface between an elemental cycle, its role in the environment, and
its economic use to enhance the self-organizing properties of the landscape.
xiii

CHAPTER I
INTRODUCTION
The economic vitality of landscape systems depends on the biogeochemical
cycling of critical chemical elements. Part of each cycle is regulated by natural
environmental processes, while other parts of the cycle circulate through agriculture
and settlements of the human economy generally under development and change. In
order to manage important chemical cycles, alternative choices need to be evaluated for
the benefit of the whole landscape, a general problem in ecological economics. How
do chemical cycles affect the economy of humanity and nature? This is a study of the
role of phosphorus in an agricultural watershed in Florida, evaluating alternatives for
management.
In the north Okeechobee, Florida, basin, fertilizer and feed inputs that were part
of intensive agricultural developments added phosphorus to a landscape whose runoff
contributed to eutrophication of Lake Okeechobee to its south. Following public
controversy, many studies were conducted of phosphorus processes in the area.
Drawing on these data and using spatial models, this study first considers the
phosphorus budget of the landscape, its effect on the economy, and the way it changes
with alternative management. Scenarios include those that conserve phosphorus and
reduce flows of phosphorus to the lake. The works of the environment and of the
1

2
economy for the various alternatives were assessed on a common basis using emergy
(spelled with an "m") evaluation -a method used to determine the aggregate net
productivity of a system. An economic analysis in dollars was made of the costs of
phosphorus management alternatives.
The overall objective of this research is to analyze the role of phosphorus as an
element in the regional economy of the north Okeechobee basin and to develop a
comprehensive resource management framework for evaluating alternative methods to
reallocate phosphorus in this rural agricultural watershed. Specific objectives include
(1) Examining the use and spatial distribution of phosphorus in a rural regional
landscape;
(2) Determining the emergy value and economic costs of alternative systems of
phosphorus use; and
(3) Evaluating phosphorus management alternatives based on physical criteria
(i.e., meet target phosphorus goals); economic criteria (i.e., cost effectiveness); and
biogeoeconomic principles (i.e., maximum regional emergy production and use).
General Concepts
Phosphorus cycling in the environment is a function of both natural processes
(e.g., weathering of geologic formations, biological cycling through plant uptake and
senescence, and mineralization of organic matter) and anthropogenic factors (e.g.,
mining, agriculture, and human consumption). The effect of these processes on the
quality of drainage water in the north Okeechobee basin is related to the distribution of
phosphorus throughout the landscape as determined by land use patterns and

3
phosphorus associations with each land use. The sequence of phosphorus transport
through the basin may be conceptualized as a network of points of concentration and
dispersion. Phosphorus-containing materials entering the north Okeechobee basin are
concentrated at major processing and distribution points such as chemical plants, feed
suppliers, and supermarkets. Goods are dispersed spatially throughout the landscape as
inputs to production and consumption processes as determined by land use patterns.
Some phosphorus-containing products resulting from land use activities are again
concentrated at processing centers such as packing plants, livestock markets, and
sewage treatment plants. Other products may be exported directly from the basin
without further processing (e.g. milk from a dairy operation).
Figure l-l is an energy systems overview of the landscape system of the north
Okeechobee watershed. The components and exchanges are aggregated to include the
phosphorus inflows, phosphorus storing compartments, and the main energy and
economic influences and mechanisms. The overlay diagram shows just the phosphorus-
containing components and pathways congruent with the whole systems diagram. The
emergy and economic evaluations of the whole landscape were made by computing the
main pathways contributing to the system and to the larger outside economy of which
this landscape is a part.
Spatially the landscape consists of several main subsystems, shown as single
units in the overview diagram (Figure 1-1). In the spatial analyses of phosphorus,
emergy, and economics, flows and exchanges are often polygon dependent, where a
polygon is an area with a characteristic land use, soil type, and geographic location.

Figure 1-1. Energy Systems Diagram of the North Okeechobee Basin
with Overlay of Major Phosphorus Flow Pathways.

5
Figure 1-2 is a unit model of any system defined by polygon boundaries. Depending
upon the type of land use, some pathways contained zero flows.
Various combinations of alternatives, or scenarios, for management of the
system affecting phosphorus were evaluated either in the aggregate using Figure 1-1 or
spatially for each polygon (Figure 1-2).
Concepts Relating Phosphorus. Emergv. and Economics
The distribution of chemical elements in the universe and in the crust of the
earth is skewed, reflecting the energy hierarchy of the universe's nuclear and other
processes of element formation and distribution. Thus, there are large quantities of
elements of small atomic weight and fewer of the large atom elements (Schlesinger,
1991). The distribution of an individual element may be skewed as well. Much of the
mass is distributed among average concentrations, whereas small amounts are more
highly concentrated, reflecting the fewer processes in the geobiosphere that maintain
areas of higher concentration.
The theory of self-organization (Odum, 1992) suggests that processes are
sustained that have useful effects commensurate with their emergy requirement. The
theory further suggests that a material that is concentrated will be in a transformity
range where it has a useful effect. Transformity is a measure of the emergy per unit
energy of a substance, and higher transformity processes may be required where
phosphorus concentrations are higher. Figure 1-3 suggests a distribution of phosphorus
concentrations in processes with a moderately high range of transformities.

ON
Figure 1-2. Generic Unit Model of a Land Use Polygon.

Number of items, or quantity of phosphorus
7
Figure 1-3. Hypothetical Distributions of Phosphorus and Paid Services ($)
as a Function of Solar Transformity.

8
One may surmise that phosphorus at lower or higher concentrations is outside the range
where its utility is commensurate with its emergy requirement.
Transformities are usually higher for processes within the economic systems of
human society than those for processing environmental raw materials. In other words,
in Figure 1-3, the zone where paid human services operate is in the range of higher
transformities to the right (refer to the hypothetical line for paid services). At an
intermediate range of transformities where phosphorus is important in economic
processes (e.g., fertilization for agricultural production), it is economically and
energetically effective for moderate levels of paid human services to interact with
phosphorus.
Phosphorus as a Resource
Phosphorus composes about 0.12 percent of the earth's crust (Gilliland, 1973).
It is present in all soils and rocks, in water, and in plant and animal remains (Cathcart,
1980). The global biogeochemical cycle of phosphorus is illustrated in Figure 1-4.
Phosphorus storage in marine sediments is four orders of magnitude greater than
storage on land. The phosphorus cycle differs from those of other major elements in
that the atmospheric component is negligible (Schlesinger, 1991). A major flux of
phosphorus occurs as river transport to the sea (Meybeck, 1982), which is balanced by
the uplift of sediments. Humans have linked the economic system to the
biogeochemical cycle of phosphorus mainly through mining phosphate rock for
fertilizer production, thus accelerating the return of phosphorus to the ocean. Though
the effect on the overall marine component of the phosphorus cycle is

9
Q 10E12 g
Figure 1-4. Systems Diagram of the Biogeochemical Cycle of Phosphorus (Odum, 1983).

10
negligible by comparison, localized effects on the primary productivity of nearshore
habitats may be significant (Sandstrom, 1982).
Phosphorus is a vital element in the production processes of natural and human
systems. It is necessary for photosynthesis, the synthesis and breakdown of
carbohydrates, and the transfer of energy within the plant (Khasawneh et al., 1980).
At background concentrations, it is a valuable, and often limiting resource. At
concentrations exceeding those required for production, it is sometimes considered a
pollutant. A pollutant is, however, merely a resource out of place. One goal of
ecological engineering at the interface of human and natural systems is to transform
waste products into useful inputs to production, taking advantage of the self-organizing
nature of systems. Of particular importance in this study is the spatial reallocation of
nutrients from areas of overabundance to areas of limitation. A general overview of
the role of phosphorus in natural and agricultural systems is presented to set the stage
for analysis of phosphorus management alternatives.
Role in Natural Systems
In nature, phosphorus is primarily observed as phosphate mineral, but is chiefly
available to natural plant and animal communities as orthophosphate. Because of
limited availability and of solubility in aqueous solutions of the geological matrix,
phosphates are quite often a limiting factor for both aquatic and terrestrial natural
ecosystems (Porcella et al., 1974). However, Florida lands and waters have a much
higher level of phosphorus than most of the world (Odum, 1953).

Much of the vegetative cover in the north Okeechobee basin is either pineland,
prairie grassland, or wetland. The flow of phosphorus laden runoff through the
watershed is affected by the occurrence of vegetated wetlands and waterways.
Phosphorus uptake by aquatic and wetland plants transforms bioavailable phosphorus
into storage as plant biomass. Nutrient release due to senescence of plant matter or
saturation of uptake capacity may pulse the hydrologic system with phosphorus,
particularly at the end of the growing season. The ability of released nutrients to
stimulate algal production in Lake Okeechobee depends on, among other factors, the
rate of mineralization of organic matter to bioavailable phosphorus. Management
techniques such as chemical application or harvesting to control aquatic vegetation in
waterways and the use of wetlands for treatment of runoff from agricultural lands
influence the degree and timing of phosphorus outflow to the lake.
Uses in Agriculture
In Florida, agricultural runoff from fertilized cropland accounts for the highest
anthropogenic flow of phosphorus to inland waters (Gilliland, 1973). Major inputs of
phosphorus to the north Okeechobee basin are accounted for as raw materials used for
fertilizer and animal feed production for agricultural activities in the basin. The
majority of the fertilizer produced in the basin is bulk blended; dry granular fertilizer
materials are physically mixed to given N-P-K formulations. These mixes are applied
in the basin primarily to improved pasture and citrus acreage. Phosphorus is added to
raw materials such as corn, hominy, and cottonseed during the manufacturing of animal
feed rations for dairies and beef cow-calf operations in the basin.

The purpose of fertilizer application is to increase the amount of bioavailable
phosphorus in soil for plant uptake. The amount of phosphorus that can be lost in
sediment or dissolved in runoff water also increases proportionally (Taylor and Kilmer,
1980). Phosphorus in animal wastes often represents a significant fraction of the total
circulating in agricultural systems. Thus, a major goal of agriculture in the 1990s has
been to reduce its role in environmental degradation by employing nutrient management
and waste control practices.
Previous Studies of Ecological Economics of Chemical Cycles
Ecological economics studies linking the biogeochemistry of a chemical element
to its role in the human economy are limited. Odum (1990) indicated that a material
cycle converges as it is incorporated into products, moves to hierarchical centers,
diverges as it is released by consumption, and disperses into less concentrated open
space. This is certainly the case of phosphorus at the interface with the human
economy in the north Okeechobee basin, where phosphorus-containing inputs are
concentrated into agricultural products that are transported to processing facilities and
then redispersed for sale as processed goods. Odum, in the same article, further
remarked that a systems view is necessary to see the material cycles of the biosphere
and the coupling of all the important processes and energy sources driving the chemical
cycles.
Recently, Pritchard (1992) evaluated the use of a wetland system for treating
lead pollution employing both mainstream and ecological economic methods. He found
that there was a net benefit in emergy terms, valued as resources saved, associated with

13
using the wetland for treatment versus a more conventional chemical precipitation
method.
Several articles have recently appeared in the ecological economics literature
concerning nitrogen management (Andreasson, 1990; Huang and Uri, 1992; and Gren,
1993). For the most part, the authors examined alternative policy mechanisms to
reduce the use of nitrogen fertilizer. Favorable alternatives included crop rotation,
wetland restoration, and marketable nitrogen use permits. In the same literature,
Erickson (1993) examined the relationship between carbon dioxide emissions and
agricultural yields from a global chemical cycling perspective. He argued that any
benefits of increased C02 would be more than offset by predicted consequences of
climate change and ozone depletion.
Hutchinson (1952) provided an early quantitative assessment of the phosphorus
cycle in his monograph on the "Biogeochemistry of Phosphorus." He examined
phosphorus cycling through the biosphere: in primary rocks, soils, the atmosphere, and
the hydrosphere. He attributed the return of phosphorus from the ocean to the
activities of birds and humans who retrieve phosphorus by harvesting fish from the sea.
Upwelling of nutrients off the coast of Peru stimulates productivity through the food
chain, ending with birds redepositing phosphorus on land in the form of guano.
Odum (1953) investigated the biogeochemistry of dissolved phosphorus in
Florida waters. He outlined methods to decrease the potential fertility of waters by
removing phosphorus, including biological filtration and chemical precipitation.

14
Gilliland (1973) examined the effects of man's development on Florida’s
primitive phosphorus cycle. She reported that Florida is draining its phosphorus supply
through mining 125 times faster than it is being replaced by dissolution of rock and
reprecipitation. She concluded that water quality control programs should be based on
the percent effect of a given flow on the overall chemical cycle, rather than setting
effluent standards based on concentrations.
Kangas (1983) studied the interactions of humanity and nature in landforms
affected by phosphate strip mining. He estimated the embodied energy in a spoil
mound and modeled their succession. He recommended managed succession as a more
economical alternative to conventional reclamation. Kangas also modeled the
phosphate fertilizer industry in Florida and calculated a high net energy yield ratio of
12:1 for phosphate fertilizer.
Characteristics of the North Okeechobee Basin
The north Okeechobee basin comprises roughly 1.2 million acres of land in
various uses in south central Florida. This area incorporates 25 drainage subbasins
(Figure 1-5) within four larger drainage regions: Taylor Creek/Nubbin Slough, Lower
Kissimmee River, Indian Prairie/Harney Pond, and Fisheating Creek. Table 1-1 lists
the size of each basin and the drainage region in which each is located. For the
purposes of this study, physical characteristics of the area are important in terms of
how they affect land use and the flow of phosphorus through the north Okeechobee
basin. Physical features of particular importance are soils, hydrology, climate,
physiography, vegetation, and land use.

15
Figure 1-5. Location Map of Lake Okeechobee and Its Drainage Subbasins.

16
Table 1-1. Drainage Subbasins of the North Okeechobee Basin.
BASIN NAME
AREA, acres
REGION
S-65A
103350
Lower Kissimmee River
S-65B
128310
Lower Kissimmee River
S-65C
50450
Lower Kissimmee River
S-65D
116590
Lower Kissimmee River
S-65E
29160
Lower Kissimmee River
S-154
31620
Lower Kissimmee River
S-154C
2180
Lower Kissimmee River
S-191
121820
Taylor Creek/Nubbin Slough
L-59E
14410
Indian Prairie/Harney Pond
L-59W
6440
Indian Prairie/Harney Pond
L-60E
5040
Indian Prairie/Harney Pond
L-60W
3270
Indian Prairie/Harney Pond
L-61E
14290
Indian Prairie/Harney Pond
L-61W
13570
Fisheating Creek
LAKE ISTOKPOGA
48350
Indian Prairie/Harney Pond
C-40
43960
Indian Prairie/Harney Pond
C-41
94930
Indian Prairie/Harney Pond
C-41A
58500
Indian Prairie/Harney Pond
FISHEATING CREEK
282300
Fisheating Creek
NICODEMUS SLOUGH
25080
Fisheating Creek
L-48
20770
Indian Prairie/Harney Pond
L-49
12100
Indian Prairie/Harney Pond
S-131
7160
Fisheating Creek
S-133
25660
Taylor Creek/Nubbin Slough
S-135
18090
Taylor Creek/Nubbin Slough
1 acre = .4 hectares

17
Soils and Hydrology
More than 75 percent of the north Okeechobee basin is covered by sandy soils
of varying thickness. The remainder of the area is composed of nearly level, poorly
drained organic soils. Urban and residential areas in the basin are underlain by soils
classified as having severe to very severe restrictions for community development and
for operation of septic tanks and landfills. Furthermore, extensive drainage and
hydrologic control mechanisms are necessary in order to use organic mucklands in the
basin for intensive agricultural production. Such incompatibilities between soil and
hydrologic characteristics and land use may have contributed to water quality
degradation in the basin.
The dynamics of phosphorus transport through soils, wetlands, and waterways
in the basin are crucial factors in predicting the effects of phosphorus imports to the
north Okeechobee basin on lake water quality. Effects of changes in economic uses of
phosphorus on nutrient outflows to the lake depend upon present storages of
phosphorus in soils and wetlands and on the chemistry and timing of release
mechanisms.
Climate and Rainfall
With an average annual temperature of 74 degrees F, the subtropical climate in
the north Okeechobee basin has a major influence on the seasonality of phosphorus use.
Crop selection and cultivation practices, which are based on climate as well as soil
type, have large impacts on phosphorus flows in this agricultural region. Another

18
seasonal impact on phosphorus of the region comes from tourists who increase
phosphorus flow in the form of sewage.
Rainfall serves as a direct input of phosphorus to the lake (16 percent of the
total phosphorus input (South Florida Water Management District [SFWMD], 1989),
but it also has indirect effects as an agent of erosion and phosphorus transport. The
distribution of rainfall in the north Okeechobee basin varies temporally and spatially.
Average annual rainfall in the basin is about 50 inches, but monthly rainfall ranges
from 6 to 8 inches during the rainy season, June through September, and 1 to 2 inches
during the dry winter months. Summer rainfall and storm patterns, which account for
about half of the total annual rainfall, may result in nutrients being flushed into
waterways by dryland flooding.
Physiography
Basin physiography consists mainly of two gently sloping plains, the Osceola
and the Okeechobee. About two-thirds of the study area has an elevation of 50 feet or
less. The Bombing Range Ridge located in the northwest corner of the Lower
Kissimmee Basin is the highest point in the study area at an elevation of about 100 feet.
Physiographic features and soils of the basin, which have been strongly influenced by
its geology, in turn determine the suitability of the area for different types of land use.
Limestone formations, primarily of marine origin, are responsible for the
development of an extensive groundwater system in the region. The groundwater
system is not part of the present study, and the influence of groundwater on phosphorus
flows in the basin is uncertain. However, subsurface flow that cuts through phosphatic

19
clays could potentially dissolve and transport phosphorus and eventually become part of
the surface water system. Phosphorus may also be leached through sandy soils to
become part of the surficial aquifer which is often indistinguishable from surface flow
in the region.
Land Use
Agriculture north of Lake Okeechobee consists primarily of dairy and beef cow-
calf operations, with limited acreage of citrus and vegetable production (Table 1-2).
Twenty-five dairies with a combined herd of about 26,000 milking cows provide fresh
milk for urban south Florida. Roughly half of the 1.2 million basin acres is cow
pasture with varying degrees of improvement. About 40 percent of the basin is
undeveloped upland, wetland, and native range (see Fonyo et al., 1991 for more detail
on land use in the basin).
Urban land use in the north Okeechobee basin is limited to an estimated 40,000
inhabitants in the City of Okeechobee and surrounding towns, including seasonal
population increases due to tourism. Most of the transient population is distributed
around the perimeter of Lake Okeechobee in seasonally occupied camps and parks.
Historical trends in land use are important since they may indicate locations
where phosphorus has been stored or built up in soils. Future changes in phosphorus
usage in the Okeechobee basin depend primarily upon changes in population, land use,
and production practices; on the promulgation of laws governing the use of
phosphorus; and on the regulatory environment.

20
Table 1-2. Land Use Characteristics of the North Okeechobee Basin.
LAND USE
AREA (acres)1
Agricultural
Citrus
32000
Commercial Forestry
24000
Dairv ( —26400 cows milked)
31500
Barn
125
Hayfield
5075
High Intensity Area
750
Milk Herd Pasture
3780
Other Pasture
11900
Solids Spreading Area
4000
Sprayfield
4500
Waste Storage Pond
1370
Improved Pasture
480000
Ornamentals
1800
Sod
4000
Sugarcane
9500
Truck Crops
1400
Unimproved Pasture
160000
Other Agriculture
150
Urban
Golf Course
220
Residential (population -40000)
22000
Waste Treatment (1 MGD)
340
Other Urban
8400
Undeveloped
Barren Land
6200
Forested Upland
98000
Rangeland
180000
Wetlands
190000
TOTAL
1.2 million
Acreage rounded off to two significant figures.
1 acre = .4 hectares

21
History of Basin Development
One hundred years ago. south Florida fresh water circulated in a slow, rain
driven cycle of meandering rivers and streams, shallow lakes, and wetlands. Starting
at a chain of lakes south of Orlando, water flowed into the Kissimmee River, which
meandered 100 miles south into Lake Okeechobee. During wet seasons, water spilled
over the lake's low southern rim and flowed south across the Everglades saw grass in a
50-mile wide sheet moving at a rate of about 100 feet per day toward Florida Bay
(Boggess et al., 1993).
Along the Lake's northern shoreline appeared dense stands of water oak,
cypress, popash, and rubber trees. For some 30 miles north of the lake, the landscape
was textured by prairie lands and pine forests. Numerous small pools filled with saw
grass and maiden cane dotted the prairies (Mitchum, 1987).
Modification of the natural freshwater system in south Florida began in the late
1800s as investors began developing the area. Over the next century, a series of
development, drainage, flood protection, and water supply programs resulted in the
construction of 1400 miles of canals and levees. The ditching caused oxidation of
organic matter and release of phosphorus from peaty material and from acidic solution
of limestone fragments.
The most important project was the massive, federally funded flood control and
water supply project known as the Central and Southern Florida Flood Control Project
authorized by Congress in 1948. Major modifications included (1) the channelization
of the Kissimmee River into a 56-mile long, 300-foot wide, 60-foot deep canal known

as C-38; (2) construction of the 25-foot high Herbert Hoover Dike encircling Lake
Okeechobee and providing control over all inflows to and outflows from the lake; and
(3) creation of three water conservation areas south of Lake Okeechobee to store excess
flood waters and to provide supplemental water supply.
Agriculture first began to develop around Lake Okeechobee in the 1920s.
Originally agriculture was limited by poor drainage and poor soils. Establishment of
the federal sugar program in the 1960s led to a dramatic increase in sugarcane and
winter vegetable acreage, particularly to the south of Lake Okeechobee. Dairying,
currently the most important agricultural industry in the north Okeechobee basin, first
began to develop in Okeechobee County in the early 1950s. Originally, the south
Florida dairy industry had been concentrated around Miami, but urban development
after World War II forced dairymen to move north.
Concerns over water quality in the north Okeechobee basin have spawned three
separate ongoing management efforts: (1) the Kissimmee River Restoration Project,
headed by the U.S. Army Corps of Engineers, which aims to "restore" the natural
meandering flow of the River through oxbows and wetlands (Loftin et al., 1990); (2)
the Lake Okeechobee Surface Water Improvement and Management (SWIM) Plan, a
joint effort of the Florida Department of Environmental Protection (formerly the
Department of Environmental Regulation) and the South Florida Water Management
District, which was designed to control basin nutrient outflows to the lake in order to
protect its vital water supply, recreational, and ecological benefits (SFWMD, 1989);
and (3) the Dairy Rule, which was promulgated by the Florida Department of

23
Environmental Protection in 1987, requiring dairies to implement specific technologies
to control their discharge of nutrient rich drainage waters. All other agricultural land
uses are currently subject to permitting and enforcement under the SWIM Plan to meet
target phosphorus discharge standards.
Related Studies of the North Okeechobee Basin
There is a vast knowledge of the Lake Okeechobee ecosystem as a result of
more than two decades of research. Of particular relevance to this dissertation are
those studies addressing the lake's northern watershed and its impact on water quality.
In the 1970s, the Florida Department of Natural Resources, in conjunction with
the U.S. Department of Agriculture, conducted a survey of the land and water
resources of the Kissimmee-Okeechobee-Everglades system (USDA, 1973). The
information served as a basis for resource management planning for watershed
protection, flood control and protection, and water quality control. Around the same
period. Tuan (1973) studied the hydrologic-economic linkages in the same region,
while Baldwin (1975) was surveying practices to reduce nonpoint pollution from
agricultural lands for the Florida Department of Pollution Control.
In 1973, the Florida legislature funded the Special Project to Prevent
Eutrophication of Lake Okeechobee. The three main objectives of this project were: to
understand and quantify the process of eutrophication in Lake Okeechobee; to
understand quantitatively the inputs to Lake Okeechobee from drainage basins that are
related to eutrophication and water quality management; and to understand
quantitatively how alternative management strategies for water quality would affect

24
downstream ecosystem components (Florida Department of Administration, 1976).
Major recommendations of the project were to retain rain water upstream through
storage in wetlands; to reflood publicly owned wetlands; and to improve farming and
ranching techniques.
As part of the Special Project, systems models were developed to shed light on
factors affecting Lake Okeechobee's water quality (Odum and Nordlie, 1975). A
regional model was developed and management alternatives were proposed by Fontaine
and Brown, including reestablishment of the Kissimmee River floodplain, onsite
storage and recycle of excess agricultural water, and elevation of stage level in Lake
Okeechobee. Gutierrez (1977) conducted energy analyses of pasture systems in the
Lake Okeechobee watershed. Simulation results indicated that improved pasture
operations contributed heavy loads of nutrients to adjacent waterways and are
vulnerable to conditions of fertilizer shortage.
In the 1980s, Bottcher et al. (1986) developed a model to assess the impact of
agricultural practices on water quality and quantity in the Taylor Creek/Nubbin Slough
(S-191) subbasin. They used the CREAMS-WT model to predict nutrient runoff and
developed a basin delivery model to predict nutrient outflow with alternative
management practices.
Following this effort, the South Florida Water Management District funded
research on the Biogeochemical Behavior and Transport of Phosphorus in the Lake
Okeechobee Basin (Campbell et al., 1992; Fonyo et al., 1991; Reddy et al., 1992).
The main goals of this research were to determine long- and short-term capacities of

25
the soil to retain phosphorus; to determine how phosphorus moves through the soil
from the site of deposit; and to develop an inventory of all phosphorus sources to the
lake basin. This contract was amended to determine the availability and cost
effectiveness of management options to reduce phosphorus loads to Lake Okeechobee
and to develop an integrated decision support system for evaluating alternative
combinations of phosphorus control practices to achieve phosphorus reduction goals
(Fonyo et al., 1993a). This dissertation research is a byproduct of the contract
amendment.
Phosphorus Management Alternatives
Alternative ways to manage phosphorus include an array of onsite, physical
changes in production practices, onsite treatment alternatives, and regional treatment
options. Combinations of alternatives, or scenarios, may be used in a coordinated
manner for basin-wide management (Porcella and Bishop, 1974).
To be technically effective, phosphorus management alternatives must
physically change phosphorus flows through agricultural and other systems by either
(1) reducing phosphorus material imports/sources, (2) increasing onsite
storage/treatment, (3) enhancing phosphorus product exports, or (4) increasing offsite
storage/treatment. Figure 1-6 illustrates these options.

To
Lake
Okeechobee
Export
Enhancement
Figure 1-6. Pathways Amenable to Phosphorus Management.
to
ON

27
Source Reduction
Phosphorus flows through a production system may be altered by adjusting the
amount of phosphorus-containing materials that are imported to the system from outside
the system boundaries. Source reduction can be achieved via several mechanisms
including (1) input substitution, (2) increased technical efficiency, (3) technological
change, (4) output substitution, (5) reduced production levels, and (6) recycling. Input
substitution entails substituting low concentration inputs for higher concentration
inputs. Examples of input substitution include substituting feed ration ingredients with
high phosphorus concentrations with lower phosphorus concentration ingredients while
maintaining the same nutritive value and substituting detergents without phosphorus for
phosphorus-containing detergents.
Increased technical efficiency, via better management of existing technology,
may increase agricultural output per unit of phosphorus input. For example, soil
testing may reduce fertilizer required to produce a target yield. Reduction in the
phosphorus concentration of dairy feed rations as an outcome of research is another
example. Under technological change, on the other hand, a more efficient production
technology is adopted. For example, alternative fertilizer application methods (e.g.,
banding instead of broadcasting) may be adopted.
Sources can be reduced by changing to processes that require less phosphorus.
For example, production of certain goods may be discontinued (e.g., dairy easement).
Alternatively, more benign crops (i.e., crops with lower phosphorus flow coefficients)
may be substituted for phosphorus intensive crops (e.g., sod instead of vegetables).

28
However, potential tradeoffs exist. Phosphorus may be reduced at the expense of
increasing the use of other agricultural chemicals. Additionally, an increased supply of
substitute goods may not be economic.
Recycling is another form of source reduction, where phosphorus-containing
materials originating within a production system are substituted for phosphorus-
containing imports (e.g., nutrients in livestock manure substituted for commercial
fertilizer imports or purchased feed rations).
Onsite Treatment/Storage
Another way to reduce the outflow of phosphorus is to increase onsite storage of
phosphorus. Onsite storage can be increased by (1) facilitating natural chemical
bonding of phosphorus to soil particles (e.g., use of lime), (2) increasing the spatial
distribution of phosphorus (e.g., grazing herd management), (3) increasing the
temporal distribution of phosphorus applications (e.g., split fertilizer applications), (4)
reducing water flows and thus phosphorus mobility (e.g., irrigation management), (5)
detention/retention of runoff with associated assimilation, recycle, or treatment (e.g.,
impoundments or wetland filters), or (6) constructing a chemical or biological treatment
plant.
Export Enhancement
A third, though less important, method to impact the flow of phosphorus is to
enhance the export of phosphorus-containing products. To be effective, the increased
export has to exceed any associated increase in imports of phosphorus. Increases in net
exports can be achieved in several ways: (1) increased production of net phosphorus

29
exporting crops (e.g., sod), (2) transformation of byproducts into saleable phosphorus-
containing goods for export from the watershed (e.g., composted dairy manure), and
(3) dispersal of phosphorus-containing byproducts outside the watershed (e.g., sludge
hauling).
Offsite Treatment/Storage
Finally, phosphorus outflow can be reduced by increasing offsite storage,
intercepting runoff before it reaches Lake Okeechobee. Offsite storage can be achieved
by (1) detention/retention of runoff with associated assimilation, recycle, or treatment
(e.g., wetland filters) and (2) aquifer storage and recovery. Other options include
chemical or biological treatment at central collection points and diversion of runoff out
of the watershed. Offsite treatment and storage options are referred to in this study as
basin scale alternatives.
Description of Scenarios
Scenario evaluations are like controlled experiments, showing the consequences
of specific changes, while keeping other conditions constant. Five phosphorus
management scenarios were examined in this study: base case phosphorus management,
maximum phosphorus use, predevelopment, dispersed phosphorus management, and
concentrated phosphorus management.
Base Case Phosphorus Management Scenario
The base case scenario represents land use and management practices in the
north Okeechobee basin in 1993. Each unique practice is summarized by land use in
Table 1-3. It was assumed that nonpoint source land uses such as beef cattle pasture,

30
Table 1-3. Management Practices for the Base Case Scenario (1993 Conditions)
LAND USE
MANAGEMENT PRACTICE
Improved pasture
11 lbs P/ac-yr fertilizer; dry season application;
no fencing; 2.5 acres/cow
Unimproved pasture/rangeland
no fertilizer; no fencing; 16 acres/cow
Citrus
9 lbs P/ac-yr fertilizer; mature groves; drip
irrigation; no impoundment
Sugarcane
17 lbs P/ac-yr fertilizer for plant cane, first and
second ratoon crops; 61 lbs P/ac-yr applied
to sweet corn in rotation
Ornamentals
42 lbs P/ac-yr fertilizer
Truck crops
87 lbs P/ac-yr fertilizer
Commercial forestry
no fertilizer
Sod
44 lbs P/ac-yr fertilizer
Dairy
8 dairies low technology; effluent to sprayfield;
solids landspread
I dairy low technology plus ecoreactor
II dairies semiconfinement; effluent to sprayfield;
solids landspread
4 dairies semiconfinement; effluent to sprayfield;
solids composted and sold
1 dairy confinement; effluent to sprayfield; solids
composted and sold
lb/ac = 1.1 kg/ha

31
citrus, and ornamental plants employed normal or "typical" management practices
basinwide as determined from interviews with land owners and county extension agents
in the area (refer to Fonyo et al., 1991, for discussion).
Of the 25 dairies still operating in the basin, nine were classified as low
technology, or the minimum requirement to meet Dairy Rule regulations. These
designs consist of an effluent collection system with a lagoon for storage and a
sprayfield for dispersion of nutrients onto cropland. A schematic diagram of a dairy
waste management system is given in Figure 1-7. Solids are landspread on designated
pasture areas. One of these low tech systems also has an "ecoreactor", which is a
biochemical treatment system consisting of an integrated three step phosphorus removal
process: chemical precipitation, microbial cell uptake, and aquatic plant uptake in a
constructed wetland.
Fifteen dairies were classified as semiconfinement systems. They differ from
low technology in that the milking herd spends less time in the designated pasture and
a greater proportion in the high intensity area or feed barn. This design allows for
greater waste control and phosphorus recapture. One dairy in the basin constructed a
total confinement system in which the milking herd is restricted to the feed barn or
milking parlor. Five dairies sold their solids as compost, rather than reapplying to
pasture.
Maximum Phosphorus Use Scenario
Land use and management practices in 1987 represented conditions of maximum
phosphorus use in the basin. It was assumed that, on average, 17 lbs of phosphorus

Figure 1-7. Schematic Diagram of a Dairy Waste Management System.

33
were applied to each acre of improved beef pasture annually, as compared to 11 lbs
P/ac-yr in 1993. More recent information has suggested that not all improved acreage
is fertilized each year, and the actual percentage of the total acreage may vary as a
function of beef prices. For the purposes and the modeling efforts of this study,
however, the above assumptions were maintained.
Forty-one dairies, with a combined milking herd of 33,400 cows, were
operating before the Dairy Rule legislation went into effect. Though there were more
dairies in 1987, the average milk herd size was 815 cows, which increased 28 percent
to 1040 cows per dairy in 1993. The average phosphorus content of dairy feeds was
0.5 percent, compared to 0.45 percent in 1993.
Prior to the Dairy Rule, milk cows roamed freely in pastures and waterways
when they were not in the barn or high intensity area. Milk herd pastures comprised
45 percent of the dairy land area in 1987, compared to 12 percent in 1993. No formal
phosphorus control methods were used other than lagoon storage of barn wash water.
Predevelopment Scenario
At the turn of the century, the north Okeechobee landscape was a mosaic of
upland and wetland habitats with natural drainage along marshy sloughs. Human
settlements in the region were probably limited to scattered indian tribal populations
with minor phosphorus-related activity.
A map produced for an environmental study of southern Florida (Odum and
Brown, 1974) was used as a template to generate a predevelopment land cover map.

34
As a rough estimate, the region comprised 700,000 acres of forested and nonforested
wetlands, 350,000 acres of grassy scrubland, and 190,000 acres of forested uplands.
Steady state conditions were assumed in upland systems so that the
concentration of phosphorus released in organic matter was equal to the rainfall
phosphorus concentration taken up by upland vegetation. An average rainfall
phosphorus concentration of 0.047 mg P/1 from Sculley (1986) was assumed. The
predevelopment concentration may actually have been even lower since atmospheric
deposition by sugar mills and phosphate mining operations in central Florida may be
contributing to current levels. Wetlands were assumed to be phosphorus sinks by
accumulating organic matter and building peat. Thus, the runoff phosphorus
concentration from wetlands was set equal to zero.
Dispersed Phosphorus Management Scenarios
The dispersed phosphorus management scenario refers to maximum phosphorus
control spatially at each source. Two variations of this scenario were tested by
changing the type of control on dairies. In both cases, all improved beef pasture was
fenced to keep cows out of waterways; impoundments to capture runoff were added to
all citrus acreage; and rice was grown in rotation with sugarcane. Base case conditions
were assumed otherwise.
Under the first maximum control design (design 1), all dairies were converted
to confinement systems, with sprayfields for effluent treatment and solids applied to
pasture. This alternative provides the greatest recycle of phosphorus onsite for crop
production. Design 2 also incorporates confinement of the milk herd, but adds a

35
biochemical treatment system (ecoreactor) for effluent treatment and solids composting
for sale and export out of the basin.
Concentrated Phosphorus Management Scenario
As an alternative to managing phosphorus onsite, phosphorus leaving a drainage
basin as outflow may be treated as a point source. Chemical treatment was applied at
basin outlets for each of six drainage subbasin whose average annual phosphorus levels
exceeded 10 tons/yr, based on Lake Okeechobee Surface Water Improvement and
Management data (SFWMD, 1989). All of the remaining dairies are located in three
of these subbasins: S-191, S-154, and S-65D; two subbasins are highly channelized,
C-40 and C-41; and Fisheating Creek covers a large geographical area.
Each 200 million gallons per day (MGD) chemical treatment plant uses alum to
precipitate phosphorus at 89 percent removal efficiency. An 8800 acre in-lake flow
equalization basin is required for each system to provide a steady flow rate for
treatment (DER, 1986). Though originally designed for the S-191 basin outlet, the
same operating costs and parameters were applied to all basins as a ballpark estimate.
Dissertation Plan
In this study, data on the regional agricultural system of the north Okeechobee
basin were assembled and entered into a geographic information system. Then
biogeochemical budgets for inputs and outputs of phosphorus were prepared under
different management scenarios and the role of phosphorus in the biogeoeconomic
system was evaluated with emergy and economic analyses. Using phosphorus as an

36
example, principles were tested regarding the role of critical limiting materials in the
self-organization of biogeoeconomic systems.
In the next chapter, methods are presented for performing phosphorus
budgeting, emergy analysis, economic evaluation, and scenario comparisons of
phosphorus management alternatives. Phosphorus budgeting, emergy evaluation, and
economic analysis results are given in Chapter 3. In Chapter 4, the relationship
between the phosphorus cycle, emergy, and economics is examined, including
implications for phosphorus management. General principles of biogeoeconomics are
proposed and suggestions are offered for future related research.

CHAPTER 2
METHODS, PROCEDURES, AND
SOURCES OF DATA
Five sets of procedures were used in this regional study of phosphorus: (1)
organization of data with the ARC/Info geographic information system; (2) phosphorus
budgeting; (3) emergy evaluation; (4) economic analysis; and (5) scenario comparisons.
Organization of Data with the ARC/Info Geographic Information System
Data for the north Okeechobee basin were entered into the ARC/Info
geographic information system for computer processing. Because aggregation is
required, the process of categorizing data spatially is a form of modeling. ARC/Info
was used to automate, manipulate, analyze, and display geographic and other data on
the regional system. The data used in this work were entered in files that were part of
LOADSS (Lake Okeechobee Agricultural Decision Support System), a decision support
system in ARC/Info designed to assist water managers concerned with eutrophication of
Lake Okeechobee (Fonyo et al., 1993a).
Spatial data have physical dimensions and geographic location, and are
composed of landscape features which may be represented on a map. Spatial data were
entered in three forms: points (e.g., cities), lines (e.g., roads), and polygons (e.g.,
land area). A coverage is a digital version of a map, or a homogeneous class of data
37

38
within a map, which contains locational data (i.e., defines points, lines, or polygons)
and attribute data (i.e., describes points, lines, or polygons) about each map feature.
LOADSS utilizes a number of coverages during its operation. The main
coverage, referred to as LO_COMP, contains more than 7000 polygons. It was created
by combining an edited version of the District's 1987 land use coverage, dairy
coverage, STATSGO (State Soil Geographic Data Base) soil associations, weather
regions, and political boundaries. Hydrography data indicate drainage pathways from
each individual basin to Lake Okeechobee.
Land Use Coverage Description
As part of the District contract "Biogeochemical Behavior and Transport of
Phosphorus in the Lake Okeechobee Watershed", a digitized 1987 land use data base
was provided by the District in Autocad format for each USGS quadrangle in the study
area on a scale of 1:24,000. The quads were converted to ARC/Info format, then
edgematched, mapjoined, and clipped to form one continuous data base for the
watershed. These data were verified as part of Area 3 of that contract. Some changes
were made to the land use tags to accommodate the phosphorus budget analysis.
Certain Level 2 land use codes were changed to Level 3. For example AP (agricultural
pasture) was changed to either APIM (improved pasture) or APUN (unimproved
pasture). New land use tags were created to differentiate phosphorus related activities.
Details of the procedures and information sources used to verify the land use data are
given in the Area 3 final report (Fonyo et al., 1991).

39
For this study, land use tags were grouped into the following land use
categories: barren land, citrus, dairy, commercial forestry, forested uplands, golf
course, improved pasture, ornamentals, other agriculture, other urban, rangeland,
residential, sod farm, sugarcane, truck crops, unimproved pasture, waste treatment
plant, water bodies, and wetlands. A land use map for the study area is given in
Figure 2-1.
The predevelopment land cover map for the low energy scenario evaluation was
generated in ARC/Info by interactively changing polygon types using the LOADSS
model.
Soils Coverage Description
The STATSGO soil association coverage was produced by the Soil Conservation
Service in 1991. The data are 1:250,000 scale quadrangles of major soil associations,
or groupings of soil types. The data were converted from Lambert to State-Plane
coordinates for use in the study area.
STATSGO is used mainly for large scale resource planning, management, and
monitoring since the data were created by generalizing more detailed soil survey maps.
Map unit composition for STATSGO was determined by sampling areas on more
detailed maps and expanding the data statistically to characterize the whole map unit.
The fundamental identifier for a map unit or soil association is referred to as its MUID
(Map Unit ID). Soils attribute data were used for CREAMS-WT runoff simulations.
Figure 2-1 contains a map of soil associations in the study area.

Figure 2-1. Land Use and Soil Associations in the North Okeechobee Basin.

LAND USE
ÃœBARKN UNO â–¡OOU' COURSE H rangeland 0 truck crops
â–¡ crmus g improved pasH residential^ unimp. pasture
HjCOMM. FORESTRlO ORNAM0ITALS â–¡ SOD FARM H WASTE TRT.
â–¡ DAIRY Q OTHER AO. â–¡ SUGAR S#uQ WATER BODIES
Ü FORESTED □ OTHER URBAN □ SUOARCANE0 WETLANDS
UPLANDS
PLAN: DR2.PLAN {REFERENCE PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
SOIL TYPE
□ ZOLFO-TAVERES ü BASMGER-URBANUÜ1 HALUNDALE-MAROA.
â–¡ FLOMDANA-RMERA g SMYRNA-1 MMOKA â–¡ PAHOKEE-TERRA CHA
ElWABASSO-FELDA cl FELDA-CHOBEE Ü TERRA CEIA-PAHOK.
Ü WABASSO-EAUGALLlfj TERRA CIIA-SAMSI® WATER BODIES
@1 POMONA-EAUGALUE â–¡ TORRY-TERRA CEIA

42
Weather Coverage Description
Four weather regions were differentiated based on rainfall patterns in the
watershed: North, South, East, and West. Weather regions were specified for runoff
simulation modeling using the CREAMS-WT model.
Boundary Coverages Description
Maps of spatial boundaries, such as drainage basins, regions, and counties, were
used for spatial scale delineation. All of the boundary coverages were provided by the
South Florida Water Management District (SFWMD) in either Autocad or ARC/lnfo
format. These boundaries are consistent with those used in the 1989 Interim Lake
Okeechobee Surface Water Improvement and Management (SWIM) Plan Technical
Document (SFWMD, 1989).
Dairy Land Use Coverage Description
The original land use data base only provided information about the location of
the dairy barn and not the other land uses within a dairy boundary. Dairy land uses
were digitized by the South Florida Water Management District for 43 preDairy Rule
(1987) and 25 current (1993) dairies in the watershed. Land use tags were created for
each land use type on the dairies that have installed waste treatment systems and remain
in operation. Table 2-1 gives a list of dairy land uses and tags assigned to dairy
coverage polygons.
Hydrography Coverage Description
The USGS' stated purpose for digitizing hydrography is "to collect information
about streams, bodies of water, wetlands, coastal water, water used for transportation

43
Table 2-1.
Dairy Land Uses and Land Use Tags Assigned to Dairy Polygons.
DAIRY
TAG
DAIRY LAND USE
BARN
Milking barn or parlor; all imports and exports of materials are
attached to this land use;
HIA
High intensity area; area surrounding barn used as a holding area
and sometimes feeding area
MHP
Milking herd pasture; the milking herd is restricted to this pasture
area when not in the HIA or barn; the typical maximum animal
density of the MHP is 4 to 6 cows per acre
SPFL
Sprayfield; part of the waste management system; effluent from
the waste storage pond is applied usually through a center pivot
irrigation system to this forage production area at a rate not to
exceed plant uptake (60 lbs P/ac/yr)
SSA
Solids spreading area; solids that are scraped from the barn area,
or occasionally dredged from the waste storage pond, are applied
by spreader to this designated field area
OTP
Other pasture; includes pastures for pot (sick) herd, springers,
and heifers and calves, if they are raised onsite; the typical
maximum animal density in these pasture areas is about 2 cows
per acre
OTFL
Other field; hay field or other forage production area with no
animals
OTL
Other land; includes roadways and structures
WET
Wetlands within dairy boundaries
WSP
Waste storage pond; area where wastes from the barn and high
intensity area are stored

44
and related hydrographic features ..." (USGS, 1985). The digital line graphs (DLGs)
produced by USGS contain hydrographic features with the following attributes: length
in feet: major code, indicating the type of DLG (050 for hydrography); and minor
code, used to describe the hydrographic features including nodes, areas, lines, single
points, general purpose and description codes. Minor codes that appear in the
hydrography data base within the study area boundaries are given in Table 2-2. For the
purposes of phosphorus budgeting in this study, minor codes were reclassified into two
groups: wetlands and canals (see Figure 2-2).
The original hydrography data base for the study area was digitized from 1972
USGS quadrangles. Regional drainage patterns have changed significantly over the last
twenty years. Hydrography data were updated with the help of South Florida Water
Management District field personnel familiar with drainage patterns in the study area
and 1984 Mark Hurd aerial photos. Arcs were classified as either "wetlands” or
"canals" using the National Wetlands Inventory (NWI) as a background coverage for
verification.
Phosphorus Budgeting
The flows and storages of phosphorus in the drainage basin were studied by
simulating a spatial model using a simplified unit model. The unit model for
phosphorus in the agricultural landscape (Figure 2-3) was evaluated for each polygon,
including the flows between polygons and exchanges across watershed boundaries.
Phosphorus runoff from agricultural polygons, Op, was estimated using the CREAMS-
WT runoff model outside of the LOADSS model. The LOADSS program estimated

45
Table 2-2. Hydrography Attribute Codes and Arc Length Classifications.
MINOR1 CODE
DEFINITION
CLASSIFICATION
200
Shoreline
Wetland
202
Closure line
Wetland
204
Apparent limit
Wetland
407
Canal lock or sluice gate
Canal
412
Stream
Wetland
414
Ditch or canal
Canal
605
Right bank
Canal
606
Left bank
Canal
610
Intermittent
Wetland

46
Figure 2-2. The Hydrographic Network of Streams (in Blue) and Canals (in Red) in
the North Okeechobee Basin.

47
ASp = Sip + Rp - EEp - Op
Figure 2-3. Unit Model for Spatial Simulation of the Phosphorus Budget.

48
phosphorus uptake and storage (assimilation) in wetlands and canals from each polygon
to Lake Okeechobee.
A simple annual mass balance approach was employed to examine the use and
fate of phosphorus in the north Okeechobee basin under alternative phosphorus
management strategies. A similar approach was adopted by Porcella and Bishop (1974)
in their analysis of phosphorus management in the Great Lakes basin. The basic mass
balance equations, which assume a one year time step is adequate, are applied at the
polygon level and may be expressed as
A Sp = 2 Ip + Rp - 2 Ep - Op
and
Lp = Op - Ap
where:
A Sp = average annual polygon phosphorus retention or storage, tons/yr
2 Ip = average annual phosphorus imports to polygon p, tons/yr
Rp = average annual rainfall phosphorus for polygon p, tons/yr
2 Ep = average annual phosphorus exports from polygon p, tons/yr
Op = average annual runoff phosphorus from polygon p, tons/yr
Ap = average annual phosphorus assimilated offsite from polygon p,
tons/yr
Lp = average annual basin phosphorus outflow attributed to polygon
p, tons/yr
Phosphorus enters each polygon of the basin in goods used for production or for
local consumption, and in rainfall. It leaves an individual polygon as either an
exported product or in runoff water. Simply stated, the change in phosphorus storage
onsite is the difference between the net import of phosphorus-containing materials plus
rainfall, and the losses due to runoff. Phosphorus entering drainage waters is
transported to Lake Okeechobee along a network of canals and streams. Phosphorus is

49
assimilated along the flow path through plant uptake and soil adsorption, with the
remainder discharged to Lake Okeechobee. Thus, there are basically two components
to phosphorus retention within the basin: onsite storage and assimilation along the flow
path to the lake. Basin phosphorus retention is a function of rainfall, soil type,
standing biomass, drainage density, distance upstream, and management practices.
Such factors introduce elements of spatial variability in the data that are not captured by
aggregate analysis based on general land use categories. Analysis using spatial
modeling techniques accounts for such variability.
Phosphorus Imports and Exports
Imports and exports of phosphorus-containing materials by land use type are
based on "typical" practices as gleaned from interviews with farmers, feed and
fertilizer suppliers, county extension agents, and state and federal agencies. Published
documents, such as agricultural censuses, extension recommendations, fertilizer
consumption reports, and state production statistics were used to verify interview data
results. Details of the data collection procedures and phosphorus import and export
data are given in Fonyo et al. (1991).
Phosphorus in rainfall was estimated as 1.13 lbs P/ac-yr basinwide on an
average annual basis. This figure was based on a rainfall concentration of 0.1 mg P/1
(Heatwole, 1986) and an average annual rainfall of 50 inches (Sculley, 1986).
Phosphorus Runoff from Agricultural Sectors
A submodel for runoff of phosphorus from agricultural lands was simulated
independently using the CREAMS-WT program for PC Dos version 3.3. Model

50
results represent the "edge-of-field" runoff for each agricultural polygon. The unit
model is represented in Figure 2-4.
Agricultural runoff simulation generates phosphorus loading for varied weather,
soil, and phosphorus management combinations. CREAMS-WT was chosen to model
phosphorus movement on a field scale because of its ability to successfully simulate
nutrient transport through South Florida's spodosols (Heatwole et al., 1988). Further
detail on CREAMS-WT and modeling procedures are given in Kiker et al. (1992).
The purpose of the simulations performed with CREAMS-WT was to evaluate
the expected impact of alternative management practices on phosphorus runoff from
individual fields (polygons) with a specific land use. All possible combinations of
management practices with land use, soil association, and weather region could not be
evaluated. A subset of the most typical, or commonly used, management practices was
selected and simulated over twenty years of stochastic weather data for each appropriate
land use, soil, and weather combination within the north Okeechobee basin (refer to
Fonyo et al., 1993a). Average annual runoff volumes and phosphorus loads were
generated by CREAMS-WT for each unique combination; from these, average runoff
concentrations were calculated.
Phosphorus Assimilation by Wetlands and Canals
Another submodel was used to estimate phosphorus assimilation in canals and
wetlands from each polygon to Lake Okeechobee. Diagrams and equations are given in
Figure 2-5. In this model, phosphorus from the flow of water is proportional to the

Figure 2-4. Unit Model for Key Processes of the CREAMS-WT Program.
ET = Evapotranspiration; LAI = Leaf Area Index; Cr = Rainfall Phosphorus.

Op
Lo OLL
Offsite
Load
Overland
1 Ao
Wetland
I Aw
Canal
Flow and
Assimilation
Lw WLLp
Flow and
Assimilation
Lc CL (
Flow and
â–  Assimilation
dL/dx = -ax * L
L = Lo * e(-ax*dx)
Lw = Op * e(-ao*OLL) 1
Lc = Lw * e(-aw*WLL) > Lp = Op * e-(ao*OLL + aw*WLL + ac*CL)
Lp = Lc * e(-ac*CL) J
Figure 2-5. Model of Phosphorus Assimilation as a Function of Flow Path Distance.
Lp
Load to
Lake
Lyi
to

53
pathway distance, each type of pathway having a different linear coefficient. The final
equation is appropriate where the flows through several types of surfaces are in series.
Assimilation follows the equation which is consistent with the Lake Okeechobee
SWIM Plan:
I — * p-(OVR + WET + CAN)
and
Ap = Op - Lp
where:
Lp = average annual basin phosphorus outflow attributed to polygon
p, tons/yr
Op = average annual runoff phosphorus from polygon p, tons/yr
Ap = average annual phosphorus assimilated offsite from polygon p,
tons/yr
OVR = overland P assimilation = ao * OLL
WET = wetland P assimilation = aw * WLL
CAN = canal P assimilation = ac * CL
and
ao = overland flow assimilation coefficient, mi1, default = 0
OLL = overland flow distance, or the distance from each polygon
centroid to the nearest wetland or canal, mi
aw = wetland flow assimilation coefficient, mi1
WLL = wetland flow distance, or the cumulative length of all wetland
segments from each polygon to basin outlet, miles
ac = canal flow assimilation coefficient, mi1
CL = canal flow distance, or the cumulative length of all canal segments
from each polygon to basin outlet, miles
Calculation of flow path distance
The algorithm developed to calculate flow path distances from each polygon to
its subbasin outlet was performed externally from LOADSS. The ARC/lnfo 6.0
procedure which was used to calculate canal (CL) and wetland (WLL) drainage
distances is as follows:
1. Create a point coverage for all polygons;
2. Create a lookup table with basin names and outlet node numbers;

54
3. Run the NEAR command and store distances from polygon centroids to
nearest stream nodes in the hydrography data base;
4. Store stream inlet node numbers for each centroid; and
5. Use the PATH command in the ROUTE algorithm to calculate wetland and
canal lengths from the inlet node for each polygon centroid to the appropriate
basin outlet node.
Calibration of phosphorus assimilation coefficients
A series of steps were taken to calibrate phosphorus assimilation coefficients
based on historical basin phosphorus outflow data as reported in the Lake Okeechobee
SWIM Plan. Calibration procedures and results are documented in Fonyo et al.
(1993b). Rather than assigning one assimilation coefficient each for wetlands
(0.64/mile) and canals (0.04/mile) basinwide as in the SWIM Plan, individual
coefficients were estimated for each drainage subbasin. Because of a lack of
information on in-stream processes, wetlands and canals were assigned the same
coefficient by subbasin, and overland flow assimilation was forced to zero.
Coefficients are listed by subbasin in Table 2-3.
Basin Phosphorus Outflow
Basin phosphorus outflows attributed to individual polygons were calculated as
the difference between runoff and assimilation. Basin outflow from individual
polygons were summed by subbasin for comparison with SWIM Plan data.
Emergv Evaluation
The contributions of environmental and economic (purchased) resources to the
production processes in the watershed were evaluated on a common basis using
emergy. Energy with potential to do work (available energy) is required for each

55
Table 2-3. Phosphorus Assimilation Coefficients and Average Flow Path Lengths by
Drainage Subbasin in the North Okeechobee Basin.
BASIN
NAME
ASSIMILATION
COEFFICIENT
(mile1)
AVERAGE
CANAL
FLOW PATH
LENGTH (mi)
AVERAGE
WETLAND
FLOW PATH
LENGTH (mi)
C-40
0.11
10.0
0.2
C-41
0.04
15.6
0.3
C-41A
0.16
11.2
2.9
Fisheating Creek
0.027
3.8
32.8
L-48
0.13
2.6
1.1
L-49
0.39
1.3
1.5
L-59E&W
0.29
5.4
1.2
L-60E&W
0.76
3.9
0.1
L-61E&W
0.51
3.9
0.4
Lake Istokpoga
0.31
0.5
10.3
Nicodemus Slough
0.52
6.0
2.2
S-131
0.45
1.0
1.5
S-133
0.17
3.3
1.2
S-135
0.59
1.3
3.7
S-154
0.04
3.8
6.6
S-154C
0.76
1.5
0.2
S-191
0.09
3.2
7.0
S-65A
0.16
8.7
3.4
S-65B
0.12
7.3
11.0
S-65C
0.25
3.5
3.5
S-65D
0.11
5.0
9.8
S-65E
0.16
4.3
4.0

56
stepward transformation in a production process. The more steps, the more energy it
takes to make a product. However, energies of different type have differing abilities
to contribute to production. By keeping track of the energy inputs required along each
step, expressing them in units of one kind of energy, one has a measure of the total
resource used for a product or service. This method measures energy "embodied" in
work previously completed to make a product.
Emergy, spelled with an "m" with the unit emjoule, is defined as the available
energy of one kind previously used directly and indirectly to make a product. When
expressed as solar energy, the measure is solar emergy in solar emjoules (Odum, 1986;
Scienceman, 1987). Solar emergy can be used as an aggregate measure of the net
productivity and resource uses of a system. The emergy per unit energy is called the
transformity and is a measure of energy quality and position in the energy hierarchy.
Emergy flow per unit time is defined as empower.
Emergy contributions are determined for nature's work, for purchased
resources, and for human services (Odum and Arding, 1991). The work of the natural
system is integrated into the analysis of phosphorus management alternatives in two
ways: (1) as inputs to the agricultural production process, and (2) as estimated by the
amount of residuals assimilated by wetland and aquatic ecosystems in the watershed.
The first step in emergy analysis of phosphorus management alternatives was to
construct an overview diagram of the entire north Okeechobee basin and then of each
system being evaluated. The next step was to construct emergy evaluation tables to
facilitate calculation of annual systems flows and longer term storages in both energy

57
and emergy units and in emdollars. Entergy evaluation tables were constructed with
the following columns
Column 1: Line item number to signify the footnote for calculations.
Column 2: Item name as indicated in the diagram.
Column 3: Raw data in joules, grams, or dollars.
Column 4: Transformity, or the emergy required to generate a unit of product,
in solar emjoules (sej) per unit.
Column 5: Solar emergy; the product of columns 3 and 4, in solar emjoules.
Column 6: Emdollar (formerly macroeconomic dollar equivalent); calculated
by dividing emergy in column 5 by the emergy/currency (emjoules/dollar) ratio.
The emergy/currency ratio is obtained by dividing the gross national product in
given year by the total emergy used by the country that year (Odum and
Arding, 1991).
Column 7: Phosphorus content of item, in grams
Column 8: Emergy/mass ratio of phosphorus, or the emergy required to
generate a gram of phosphorus in the product, in solar emjoules per gram.
Economic Analysis
Economic analysis in this study was limited to determining the cost effectiveness
of phosphorus management alternatives as measured by the dollars spent per unit of
phosphorus reduction in basin drainage waters. A partial budgeting approach was
employed. Only direct investment, operation and maintenance, and secondary costs'
incurred by the producer due to changes in management were estimated. Investment
costs were estimated as the total one-time costs (materials and labor) to install a new
Mn this study, costs refer to money paid for goods and services.

58
phosphorus management technology. Investment costs were annualized over the life of
the technology assuming an interest rate of 10 percent (the prevailing rate at the time of
the study) using the following equation:
where:
A = P * H1 + i)°
(1 + 0“ - 1
A = annualized investment, $/yr
P = present value of total investment, $
i = prevailing interest rate
n = life of investment, years
Operation and maintenance costs were calculated as the annual costs to keep the
phosphorus management technology functional. In most cases, these cost components
were taken from engineering design reports (refer to Appendix A).
Two types of secondary costs were estimated: production costs and output
effects. Production costs reflect changes in existing annual cost components incurred
as a result of adopting a phosphorus management alternative. For example, changing
the rate of fertilizer application results in either an increase or decrease in annual
operating costs. The output effect reflects changes in output of a product as a result of
adopting a phosphorus management alternative. An example is a change in milk
production due to structural change (e.g., confinement) on a dairy. Secondary costs
may be positive or negative. Relationships between changes in management and costs
and returns are given in Appendix A. The basic costs of operation without phosphorus
management, which were needed for emergy evaluations, were obtained from various
Institute of Food and Agricultural Services (IFAS) production budgets.

59
In order to facilitate aggregate cost effectiveness analysis at the watershed scale,
certain homogenizing assumptions were made about the characteristics of specific basin
activities and management practices. Appendix A outlines these assumptions, the
methods for calculating direct costs (investment, operation and maintenance, and
secondary) in 1990-91 dollars, and data sources for pertinent nonpoint land uses (beef
pasture, dairy, citrus, sugarcane), point sources (sewage treatment plants), and basin
scale treatments (aquifer storage and recovery, biological treatment, chemical
treatment, diversion).
Scenario Comparisons
One of the purposes of this study was to consider management alternatives that
would reduce phosphorus outflows from drainage subbasins to predetermined average
annual values. Five phosphorus management scenarios (combinations of alternatives)
were compared to determine which minimized basin phosphorus outflow, minimized
the cost of phosphorus reduction, and maximized empower (emergy per year) on a
regional scale. Scenarios were chosen to represent a range of intensity of phosphorus
use and management.
Cost effectiveness analysis is a useful way to perform an economic evaluation of
two scenarios. Cost effectiveness was defined as the dollars spent per unit reduction of
phosphorus in basin outflow. Cost effectiveness was calculated for a two scenario
comparison as the change in total direct costs divided by the change in basin
phosphorus outflow: (Cc - Cr)/(Pc - Pr); where C=total direct costs, preference
scenario, c=current scenario, P=basin phosphorus outflow. Secondary costs due to

60
changes in factors of production or output were included in the cost effectiveness
estimation. A negative sign in the denominator indicates that basin phosphorus outflow
was reduced under the current scenario.
Phosphorus runoff concentrations (mg/1) from land areas and phosphorus
outflows (tons/yr) from drainage subbasins were compared to target goals that were
specified in the Lake Okeechobee SWIM Plan (SFWMD, 1989). These physical
criteria gave another measure of the success of a management scenario.
Scenarios were also compared to determine which design maximized the use and
feedback of phosphorus throughout the regional landscape. Emergy indices provided
such means for comparison. Several indices were proposed by Odum and Arding
(1991) to analyze shrimp mariculture in Ecuador. These indices are also useful for
comparing phosphorus management scenarios for the north Okeechobee basin. Each
index is defined briefly (refer to Figure 2-6 for illustration):
Solar transformity - the equivalent solar energy that would be necessary to
generate a unit of resource efficiently and rapidly; sej/j.
Emergy per unit mass - energy of one type required to generate a unit mass of
material; sej/g.
Emergy investment ratio - the ratio of emergy fed back from the economy to the
free emergy inputs from the environment; F/I.
Net emergy yield ratio - emergy of an output divided by the emergy of the
inputs that are from the main economy (i.e., purchased); Y/F.

Figue 2-6. Diagram Explaining Emergy Indices (Odum and Odum, 1983).
O'

CHAPTER 3
RESULTS
Results of the evaluation of phosphorus budgets, dollar costs, and emergy are
given for each of five phosphorus scenarios: base case phosphorus management,
maximum phosphorus use, predevelopment, dispersed phosphorus management, and
concentrated phosphorus management.
Phosphorus Budgeting
Phosphorus budget results are summarized by land use in Tables 3-1 through 3-4 for
each relevant scenario. Budget components are also summarized diagrammatically in
Figures 3-1 through 3-5 by scenario. The energy systems diagram illustrates the
coupling of the hydrology of the region to the flow of phosphorus through it.
Phosphorus sources are indicated as environmental inputs to the left of the diagram and
purchased imports from the top. Tanks indicate storages of phosphorus, both onsite in
soils and biomass, and offsite through assimilation in canals and wetlands.
Phosphorus Imports and Exports
Figure 3-6 summarizes annual imports and exports of phosphorus containing
materials across north Okeechobee basin boundaries under the base case scenario.
Imports are primarily fertilizer and dairy feed, and major exports are various crops,
raw milk, and livestock. Imports and exports were also summarized by land use (Table
62

Table 3-1. Phosphorus Budget Results by Land Use for the Base Case Scenario.
LAND USE
NET P
IMPORTS
(tons/yr)
RAINFALL
P
(tons/yr)
RUNOFF
P
(tons/yr)
ONSITE
P STORAGE
(tons/yr)
ASSIMILATED
P
(tons/yr)
BASIN
OUTFLOW P
(tons/yr)
Improved Pasture
2723
270
455
2538
314
141
Dairy
515
17.7
58.6
474
32.8
25.8
Bam
515
X
0
X
0
0
Hayfield
0
X
3.4
X
2.0
1.4
Milk Herd Pasture
0
X
7.9
X
4.6
3.3
Other Pasture
0
X
14.3
X
7.7
6.6
Solids Spreading Area
0
X
15.6
X
8.2
7.4
Sprayfield
Unimproved Pasture/
0
X
17.4
X
10.3
7.1
Rangeland
5.8
189
112
82.8
82.4
29.6
Citrus
31.3
18.0
25.5
23.8
16.1
9.4
Forested Upland
0
55.2
22.8
32.4
15.7
7.1
Waste Treatment
12.0
X
7.4
4.6
4.1
3.3
Commercial Forest
-1.7
13.5
7.4
4.4
4.5
2.9
Other Urban
X
4.7
5.4
X
3.2
2.2
Urban Residential
48.0
12.2
4.9
55.3
2.9
2.0
Sugarcane
77.7
5.3
13.1
69.9
11.3
1.8
Sod
-20.1
2.2
6.9
-24.8
5.1
1.8
Truck Crops
52.7
0.8
6.0
47.5
4.3
1.7
Ornamental
18.9
1.0
1.8
18.1
1.2
0.6
Barren Land
0
3.5
0.8
2.7
0.52
0.31
Other Agriculture
X
0.1
0.1
X
0.07
0.03
Golf Course
2.7
0.13
0.06
2.8
0.04
0.02
Wetlands
0
107
0
107
0
0
3465
700
727
3438
499
228
X - not quantified
1 ton = 907 kg

Table 3-2. Phosphorus Budget Results by Land Use for the Maximum Phosphorus Use Scenario.
NET P
RAINFALL
RUNOFF
ONSITE
ASSIMILATED
BASIN
IMPORTS
P
P
P STORAGE
PHOSPHORUS
OUTFLOW
LAND USE
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
Improved Pasture
4114
266
661
3719
458
203
Dairv
773
20.5
307
487
185
122
Bam
773
X
150
X
91.7
58.3
Hayfield
0
X
6.2
X
3.5
2.7
High Intensity Area
0
X
110
X
66.2
43.8
Milk Herd Pasture
0
X
20.6
X
12.5
8.1
Other Pasture
0
X
19.9
X
10.9
9.0
Sprayfield
Unimproved Pasture/
0
X
0.4
X
0.3
0.1
Rangeland
5.8
190
112
83.8
82.4
29.6
Citrus
31.3
17.9
25.6
22.7
16.1
9.5
Forested Upland
0
54.6
22.6
32.0
15.6
7.0
Waste Treatment
12.0
X
7.4
4.6
4.1
3.3
Commercial Forest
-1.7
13.5
7.4
4.4
4.5
2.9
Other Urban
X
5.4
6.2
X
3.7
2.5
Urban Residential
48.0
12.1
4.6
55.5
2.4
2.2
Sugarcane
77.7
5.3
13.1
69.9
11.3
1.8
Sod
-20.1
2.2
6.9
-24.8
5.1
1.8
Truck Crops
52.7
0.8
6.0
47.5
4.3
1.7
Ornamental
18.9
1.0
1.8
18.1
1.2
0.6
Barren Land
0
3.5
0.8
2.7
0.52
0.31
Other Agriculture
X
0.1
0.1
X
0.07
0.03
Golf Course
2.7
0.13
0.06
2.8
0.04
0.02
Wetlands
0
109
0
109
0
0
5114
700
1182
4634
794
388
X — not quantified
1 ton = 907 kg
ON
-C-

Table 3-3. Phosphorus Budget Results by Land Use for the Dispersed Phosphorus Management Scenario, Design 1.
LAND USE
NET P
IMPORTS
(tons/yr)
RAINFALL
P
(tons/yr)
RUNOFF
P
(tons/yr)
ONSITE
P STORAGE
(tons/yr)
ASSIMILATED
PHOSPHORUS
(tons/yr)
BASIN
OUTFLOW
(tons/yr)
Improved Pasture
2723
270
364
2629
252
112
Unimproved Pasture/
Rangeland
5.8
189
112
82.8
82.4
29.6
Dairy
540
17.7
53.7
504
30.2
23.5
Bam
540
X
0
X
0
0
Hayfield
0
X
3.4
X
2.0
1.4
Other Pasture
0
X
14.3
X
7.7
6.6
Solids Spreading Area
0
X
16.6
X
8.7
7.9
Sprayfield
0
X
19.4
X
11.8
7.6
Forested Upland
0
55.2
22.8
32.4
15.7
7.1
Citrus
31.3
18.0
17.8
31.5
11.2
6.6
Waste Treatment
12.0
X
7.4
4.6
4.1
3.3
Commercial Forest
-1.7
13.5
7.4
4.4
4.5
2.9
Otlier Urban
X
4.7
5.4
X
3.2
2.2
Urban Residential
48.0
12.2
4.9
55.3
2.9
2.0
Sod
-20.1
2.2
6.9
-24.8
5.1
1.8
Truck Crops
52.7
0.8
6.0
47.5
4.3
1.7
Sugarcane
-82.1
5.3
8.4
-85.2
7.2
1.2
Ornamental
18.9
1.0
1.8
18.1
1.2
0.6
Barren Land
0
3.5
0.8
2.7
0.52
0.31
Other Agriculture
X
0.1
0.10
X
0.07
0.03
Golf Course
2.7
0.13
0.06
2.8
0.04
0.02
Wetlands
0
107
0
107
0
0
3331
700
619
3412
424
195
X - nol quantified
1 ton = 907 kg
Os
L/1

Table 3-4. Phosphorus Budget Results by Land Use for the Dispersed Phosphorus Management Scenario, Design 2.
NET P
RAINFALL
RUNOFF
ONSITE
ASSIMILATED
BASIN
IMPORTS
P
P
P STORAGE
PHOSPHORUS
OUTFLOW
LAND USE
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
(tons/yr)
Improved Pasture
Unimproved Pasture/
2723
270
364
2629
252
112
Rangeland
5.8
189
112
82.8
82.4
29.6
Dairy
327
17,7
31.9
313
17.7
14,2
Bam
327
X
0
X
0
0
Hayfield
0
X
3.4
X
2.0
1.4
Milk Herd Pasture
0
X
0
X
0
0
Other Pasture
0
X
14.3
X
7.7
6.6
Solids Spread Area
0
X
7.9
X
4.1
3.8
Sprayfield
0
X
6.3
X
3.9
2.4
Forested Upland
0
55.2
22.8
32.4
15.7
7.1
Citrus
31.3
18.0
17.8
31.5
11.2
6.6
Waste Treatment
12.0
X
7.4
4.6
4.1
3.3
Commercial Forest
-1.7
13.5
7.4
4.4
4.5
2.9
Other Urban
X
4.7
5.4
X
3.2
2.2
Urban Residential
48.0
12.2
4.9
55.3
2.9
2.0
Sod
-20.1
2.2
6.9
-24.8
5.1
1.8
Truck Crops
52.7
0.8
6.0
47.5
4.3
1.7
Sugarcane
-82.1
5.3
8.4
-85.2
7.2
1.2
Ornamental
18.9
1.0
1.8
18.1
1.2
0.6
Barren Land
0
3.5
0.8
2.7
0.52
0.31
Other Agriculture
X
0.1
0.10
X
0.07
0.03
Golf Course
2.7
0.13
0.06
2.8
0.04
0.02
Wetlands
0
107
0
107
0
0
3118
700
597
3221
412
185
X - not quantified
1 ton = 907 kg
ON
ON

(b) (d)
Figure 3-1. Diagram of Phosphorus Budgets and Their Interactions for the Base Case Scenario.
(a) Energy Systems Diagram; (b) Basin Phosphorus Budget; (c) Beef Pasture Phosphorus Budget; and
(d) Dairy Phosphorus Budget. Units are tons P/yr (0.9E6 grams P/yr).
ON

(b) (d)
Figure 3-2. Diagram of Phosphorus Budgets and Their Interactions for the Maximum Phosphorus
Use Scenario, (a) Energy Systems Diagram; (b) Basin Phosphorus Budget; (c) Beef Pasture
Phosphorus Budget; and (d) Dairy Phosphorus Budget. Units are tons P/yr (Ü.9E6 grams P/yr).
On
oo

Basin
outflow
(b)
Figure 3-3. Diagram of Phosphorus Budgets and Their Interactions for the Predevelopment Scenario.
(a) Energy Systems Diagram; and (b) Basin Phosphorus Budget . Units are tons P/yr (0.9E6 grams P/yr).
ON
NO

Figure 3-4. Diagram of Phosphorus Budgets and Their Interactions for the Dispersed Phosphorus
Management Scenario, Design 1. (a) Energy Systems Diagram; (b) Basin Phosphorus Budget;
(c) Beef Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget. Units are tons P/yr
(0.9E6 grams P/yr).
o

Figure 3-5. Diagram of Phosphorus Budgets and Their Interactions for the Dispersed Phosphorus
Management Scenario, Design 2. (a) Energy Systems Diagram; (b) Basin Phosphorus Budget;
(c) Beef Pasture Phosphorus Budget; and (d) Dairy Phosphorus Budget. Units are tons P/yr
(0.9E6 grams P/yr).

Minerals 3.9% Molasses 3.7%
Liveweight 33.6%
Milk 27.2%
Truck
crops
Sugarcane 4.4%
Sweet
Corn 2.0%
12.7%
3A% Citrus
13.2%
Ornamentals
Timber 2 2%
0.2%
Phosphorus Imports
(4329 total tons/yr)
Phosphorus Exports
(864 total tons/yr)
Figure 3-6. Distributions of Imports and Exports of Phosphorus-Containing
Materials under the Base Case Scenario.
K)

73
3-5). Based on data for average production practices, the largest use of phosphorus
was as fertilizer for improved pasture (68 %) due to its large geographical extent.
Dairies with 19 percent of the imports accounted for the largest export of phosphorus
(36 %).
Net phosphorus imports were calculated for each land use for comparison on a
unit basis. These coefficients give a relative assessment of the intensity of phosphorus
use across land use types. Truck crops utilized the most phosphorus per acre on a net
basis. Dairies are three times more intensive in the use of phosphorus than improved
beef pasture. Sod production results in a net export of phosphorus per acre since soil
as well as plant biomass is harvested. Under the base case scenario, more than 3400
net tons of phosphorus were imported to the north Okeechobee basin annually,
compared to the high phosphorus scenario, which resulted in more than 5000 net tons
of phosphorus being imported annually (Table 3-2).
Under the dispersed phosphorus management scenario, changes in sugarcane
and dairy practices had an impact on imports and exports of phosphorus-containing
materials. Fertilizer was reduced by 71 tons annually from the base case as a result of
substituting rice for corn in rotation with sugarcane. Rice production does not require
any phosphorus fertilizer. Changes in annual exports associated with this practice were
also observed: a 51,500 ton increase in rice exports, a 20,000 ton increase in sugarcane
exports due to the rice effect on yield, and a 12,430 ton decrease in sweet corn exports.
Confinement of all dairies resulted in a 40,250 ton increase in milk production annually
over the base case. Under the first design, with landspreading of solids,

Table 3-5. Phosphorus Imports to and Exports from the North Okeechobee Basin
under the Base Case Scenario.
74
LAND USE
PHOSPHORUS
IMPORTS
(tons/yr)
PHOSPHORUS
EXPORTS
(tons/yr)
NET P
IMPORTS
(lbs/unit-yr)
Improved Pasture
2938
215
11 lbs/ac-yr
Dairy
822
307
39 lbs/cow-yr
(33 lbs/ac-yr)
Citrus
144
113
1.9 lbs/ac-yr
Sugarcane
133
55
16 lbs/ac-yr
Sod
88
108
-10 lbs/ac-yr
Truck Crops
62
9.3
75 lbs/ac-yr
Urban Residential
60
12
3 lbs/cap-yr
Ornamental
38
19
21 lbs/ac-yr
Unimproved Pasture/
Rangeland
29
24
0.03 lbs/ac-yr
Waste treatment
12
0
66 lbs/MGY
Golf Course
2.7
0
24 lbs/ac-yr
Commercial Forest
0
1.7
-.14 lbs/ac-yr
4329
864
1 ton = 907 kg
1 lb = 453.6 g

75
compost exports decreased by 36,000 tons annually. When all solids were composted
as in design 2, annual exports increased by 230,800 tons over the base case. The
effects of these changes on the annual net import of phosphorus to the basin are
summarized in Tables 3-3 and 3-4 for designs 1 and 2, respectively. Reduction in net
imports was achieved by source reduction and export enhancement.
The ratio of the tons of purchased phosphorus imports to phosphorus inputs
from the environment may be referred to as the phosphorus investment ratio. Using
data from Figures 3-1 through 3-5, this ratio was at its maximum of 8.6 under the
maximum phosphorus use scenario (6050/700). Phosphorus management decreased the
ratio by 28 percent. The phosphorus investment ratio was greatest for dairies prior to
1987. Improved beef pasture, other agriculture, and sugarcane are other land use types
with ratios significantly greater than the basinwide average.
Another ratio useful for comparing scenarios is the net phosphorus ratio, or the
ratio of the tons of phosphorus in products to purchased phosphorus imports. The net
phosphorus ratio was greatest under the dispersed phosphorus management, design 2
scenario. The export of composted dairy manure and rice from sugarcane fields
contributed to the 80 percent increase from 0.15 (935/6050) under the maximum
phosphorus use scenario to 0.27 (1141/4258).
Phosphorus Runoff
Phosphorus concentrations in drainage waters from all land uses were estimated
using the CREAMS-WT runoff model. Results are displayed spatially in Figure 3-7
through 3-10 for the base case, maximum phosphorus use, predevelopment, and

Figure 3-7. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations under the Base Case
Scenario.

PLAN: DR2.PLAN (REFERENCE PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
LAND USE
11 BARREN LAND O GOLF COURSE â–¡ RANGELAND â–  TRUCK CROPS
□ CITRUS Ü IMPROVED PASÜ RESIDENTIAlO UNMP. PASTURE
â–  COMM. FORESTRY^] ORNAMENTALS â–¡ SOD FARM â–  WASTE TRT.
â–¡ DAIRY â–¡OTHER AG. â–¡ SUGAR MUifgWATER BODIES
11 FORESTED â–¡ OTHER URBAN â–¡ SUGARCANE]]] WETLANDS
PLAN: DR2.PLAN (REFERENCE PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
AVERAGE P CONC. (mg/1)
â–¡ > o-o.i
H > 0.1 - 0.2
â–¡ > 0.2 - 0.3
â–¡ > 0.3 - 0.4
â–¡ > 0.4 - 0.5
0.6 - o.e
o.e • o.7
0.7 - 0.8
0.8 - 0.8
0.9
-J

Figure 3-8. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations under the Maximum Phosphorus
Use Scenario.

PLAN: PDR4.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
LAND USE
11 BARREN LAND O GOLF COURSE H RANGELAND || TRUCK CROPS
CciTRUS H IMPROVED PAS. â–¡ RESIDENTIAL â–¡ UNMP. PASTURE
BcOMM. FORESTRY â–¡ ORNAMENTALS â–¡ SOD FARM â–  WASTE TRT.
□ DAIRY □ OTHER AG. □ SUGAR MILL Ü WATER BODIES
â–  FORESTED â–¡ OTHER URBAN â–¡ SUGARCANE || WETLANDS
UPLANDS
PLAN: PDR4.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
AVERAGE P CONC. (mg/I)
>
>
>
>
>
o - 0.1
0.1 - 0.2
0.2 - 0.3
0.3 - 0.4
0.4 - 0.6
. ü > O.B - 0.6
0.6 - 0.7
0.7 - 0.8
0.8 - 0.9
. â–  > 0.9
VO

Figure 3-9. Land Cover Polygons and Average Annual Phosphorus Runoff Concentrations from Land Use Polygons under
the Predevelopment Scenario.

PLAN: SCEN3A.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
LAND USE
H BARREN LAND □ GOLF COURSE H RANGELAND Ü TRUCK CROPS
03 CITRUS 03 IMPROVED PAS. Ü RESIDENTIAL □ UNMP. PASTURE
HcOMM. FORESTRY â–¡ ORNAMENTALS â–¡ SOD FARM â–  WASTE TRT.
□ dairy Goth» ag. □ sugar MiaHwater bodies
HFORESTED â–¡ OTHHI URBAN [ SUGARCANE H WETLANDS
UPLANDS
PLAN: SCEN3A.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
AVERAGE P
â–¡ > 0-0.1
H > 0.1 - 0.2
â–¡ > 0.2 - 0.3
â–¡ > 0.3 - 0.4
Eü > OA - 0.6
CONC. (mg/I)
. H > 0.5 - 0.6
• H > 0.6 - 0.7
. ¡H > 0.7 - 0.8
. H > 0.8 - 0.9
. â–  > 0.9
oo

Figure 3-10. Land Use Polygons and Average Annual Phosphorus Runoff Concentrations from Land Use Polygons under
the Dispersed Phosphorus Management Scenario.

PLAN: SCEN4B.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
LAND USE
Hi BARREN LAND □ GOLF COURSE □ RANGELAND Ü TRUCK CROPS
□ CITRUS ■ IMPROVED PAS. fü RESIDHiTIAL 0 UNMP. PASTURE
â–  COMM. FORESTRY â–¡ ORNAMENTALS â–¡ SOD FARM â–  WASTE TRT.
□ DAIRY □ OTHER AG. □ SUGAR MILL Ü WATER BODIES
^ FORESTED â–¡ OTHW URBAN â–¡ SUGARCANE â–¡ WETLANDS
UPLANDS
PLAN: SCEN4B.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
AVERAGE P
CONC. (mg/I)
â–¡ > 0 - 0.1
. Ü > 0.6 - 0.6
B > 0.1 - 0.2
. H > 0.0 - 0.7
â–¡ > 0.2 - 0.3
. Ü > 0.7 - 0.8
â–¡ > 0.3 - 0.4
. â–  > 0.8 - 0.8
Ü > 0.4 - 0.6
. â–  > 0.9

84
dispersed phosphorus management scenarios, respectively. The map color intensifies
with increasing phosphorus concentration. Comparison with the land use map shows
dairies with concentrations exceeding 0.9 mg P/1. High concentrations are also
indicative of muck soils south of Lake Istokpoga and in the southern portion of the S-
135 subbasin. Lower concentrations in the range of 0.2 - 0.3 mg P/1 are associated
with forested uplands, unimproved pasture, and rangeland.
Figure 3-11 illustrates the spatial heterogeneity of phosphorus runoff
concentration among land use polygons under the base case scenario. More than 6000
polygons had average runoff concentrations averaging less than 2 mg P/1 , whereas
only 4 polygons had concentrations exceeding 10 mg P/1. The hierarchical nature of
this relationship is common to the distribution of chemical elements.
Under the maximum phosphorus use scenario, 20 percent of the annual net
phosphorus inputs entered basin drainage waters as runoff, compared to 17 percent with
base case phosphorus management. Dairies and beef pasture contributed more than 90
percent of the phosphorus in runoff and at the basin outlet. Eighty-five percent of the
307 tons of annual dairy runoff phosphorus was attributed to the barn and high intensity
areas under maximum phosphorus use.
Forested uplands and grassy scrubland were estimated to contribute 33 tons of
runoff phosphorus annually under the predevelopment scenario.
Dairy runoff under the dispersed phosphorus management scenario, design 1
was estimated at 53.7 tons P/yr. Ecoreactors and solids composting under design 2

Number of Polygons
85
Phosphorus Runoff Concentration (mg/1)
Figure 3-11. Spatial Hierarchy of Runoff Concentration among Land Use Polygons.

86
resulted in a 46 percent reduction in dairy runoff (31.9 tons) when compared to the
base case scenario. Runoff concentrations from dairy land uses still exceeded 0.9 mg
P/1 under both designs. Since the milk herd is restricted from pasture when housed in
confinement systems, runoff from these fields returned to background levels.
The difference between phosphorus inputs and phosphorus runoff represents
onsite phosphorus storage. Under predevelopment conditions, an estimated 297 tons of
phosphorus were stored onsite in the watershed annually. More than an order of
magnitude increase in annual onsite storage (4634 tons P) was observed by 1987, most
of which was associated with improved beef pasture.
Phosphorus Quttlow
Basin phosphorus outflow from each polygon was calculated as the difference
between runoff phosphorus and assimilated phosphorus. Figure 3-12 is a map showing
per unit basin outflow from each polygon under the base case scenario. For nonpoint
sources, the units are acres. Units are cows for dairies which have both point and
nonpoint source characteristics, and million gallons for the point source sewage
treatment plant. Basins with the smallest assimilation coefficients, such as S-191, S-
154, and C-41, show the greatest per unit outflow from the basin as represented by the
darker coloration.
Under the base case, more than half of the estimated 228 tons of basin
phosphorus outflow annually was attributed to improved beef pasture. Dairies
accounted for only 11 percent of the annual outflow with nearly the same contribution
as unimproved pasture and rangeland.

Figure 3-12. Land Use Polygons and Average Annual Basin Phosphorus Outflow under the Base Case Scenario.

PLAN: DR2.PLAN (REFERENCE PIAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
LAND USE
H BARREN LAND □ GOLF COURSE Ü RANGELAND Ü TRUCK CROPS
□ CITRUS Ü IMPROVED PAS. Ü RESIDENTIAL H UNiMR. PASTURE
^ COMM. FORESTRY â–¡ ORNAMENTALS â–¡ SOD FARM â–  WASTE TRT.
â–¡ dairy II OTHER AG. â–¡ SUGAR MILL H WATER BODIES
ifi FORESTED □ OTHB» URBAN □ SUGARCANE □ WETLANDS
UPLANDS
PLAN: DR2.PLAN (REFERENCE PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
P LOAD TO LAKE (lbs/prod, unit-year)
â–¡ >0-0.1 M> 0.8 - O.S
E > 0.1 - o.2 . H > o.e - o.7
H > 0.2 - 0.3 . É > 0.7 - 0.8
H > 0.3 - 0.4 . M> 0-8 - 0.8
11 > 0.4 - 0.5 . â–  > 0.9
oo
oo

89
Only 7 percent of net phosphorus imports reached Lake Okeechobee. Rainfall
contributed an additional 700 tons of phosphorus to the basin (excluding wetlands and
water bodies) each year. The majority of phosphorus inputs was stored onsite in soils
or biomass, and 10 percent was stored in wetlands and canals along flow paths to the
lake. Phosphorus assimilation is a "free" service provided by the environment.
Under the maximum phosphorus use scenario, about one-third of the runoff
phosphorus, nearly 400 tons, left the basin annually, compared to an estimated 228
tons under base case conditions. Eighty percent of the annual phosphorus inputs were
stored in the basin either onsite or in streams and canals.
Eleven tons of phosphorus were contributed to Lake Okeechobee from the
watershed annually under the predevelopment scenario (less than 10 percent of the 120
tons of direct phosphorus input to the lake from rainfall). Since the scenario reflects
prechannelization, the only surface inputs to the lake were from natural marshes and
sloughs such as Fisheating Creek and the Kissimmee River.
The net effects of the dispersed phosphorus management scenarios on the base
case basin phosphorus budget were a 33 ton annual reduction in basin phosphorus
outflow under design 1 and an additional 10 ton/yr reduction using design 2. Dairies
contributed 23.5 tons under design 1. Ecoreactors and solids composting under design
2 resulted in a 45 percent reduction in basin phosphorus outflow (14.2 tons) from
dairies when compared to the base case.
Under the concentrated phosphorus management scenario, each basin scale
chemical treatment plant applied at six subbasin outlets had an 89 percent phosphorus

90
removal efficiency. Results for each subbasin are summarized in Table 3-6. A total of
157 tons of phosphorus were removed annually as precipitate or sludge, resulting in a
total annual average phosphorus outflow of 71 tons from all subbasins under this
scenario (19.5 tons P/yr from treatment subbasins plus 50.5 tons P/yr from remaining
subbasins).
Based on phosphorus outflow data adjusted for runoff volume, an overall
reduction of 218 tons, or 56 percent of the historical average annual outflow for the
period 1973-1989 was mandated in the Lake Okeechobee Surface Water Improvement
and Management (SWIM) Plan (SFWMD, 1989) for all subbasins in the study area.
The concentrated phosphorus management scenario was the only scenario in which the
SWIM Plan goal for the north Okeechobee basin of 170 tons of phosphorus outflow
annually (adjusted for runoff volume) was realized. The dispersed management
scenario exceeded the goal by 15 and 9 percent for designs 1 and 2, respectively, and
base case management was 34 percent above the target. The dispersed management
scenarios could possibly exceed the target goal with adjustments in input flows,
management parameters, or phosphorus assimilation coefficients. The phosphorus
assimilation algorithm and calibrated coefficients provide the greatest element of
uncertainty.
Emergv Evaluation
Results of emergy evaluations of individual land use/management practices are
given on a per acre basis in Appendix B. An example of each unit analysis is given in
Figures 3-13 through 3-20 for citrus, beef pasture, dairy, sugarcane, other agriculture.

91
Table 3-6. Phosphorus Budget Results for the Concentrated Phosphorus Management
Scenario.
Drainage
Subbasin
Phosphorus
Outflow
Phosphorus
Removed
tons/yr —
Adjusted
Phosphorus
Outflow1
C-40
12.4
11.0
1.4
C-41
34.6
30.8
3.8
Fisheating Creek
49.9
44.4
5.5
S-154
16.8
14.9
1.9
S-191
46.5
41.4
5.1
S-65D
16.3
14.5
1.8
Total
176.5
157
19.5
1 ton = 907 kg
'Adjusted Phosphorus Outflow = Phosphorus Outflow - Phosphorus Removed

Figure 3-13. Unit Diagram for Emergy Evaluation of Citrus Land Use
under the Base Case Scenario (El3 sej/ac-yr).
so
to

Figure 3-14. Unit Diagram for Emergy Evaluation of Beef Pasture Land Use
under the Base Case Scenario (El3 sej/ac-yr).
V©

Figure 3-15. Unit Diagram for Emergy Evaluation of Dairy Land Use under
the Base Case Scenario (El3 sej/cow-yr).
vD
4^

Figure 3-16. Unit Diagram for Emergy Evaluation of Sugarcane Land Use under
the Base Case Scenario (El3 sej/ac-yr).
<5?

Figure 3-17. Unit Diagram for Emergy Evaluation of Other Agriculture Land Use
(El3 sej/ac-yr).
no
ON

Figure 3-18. Unit Diagram for Emergy Evaluation of Commercial Forestry
(E13 sej/ac-yr).
-J

Figure 3-19. Unit Diagram for Emergy Evaluation of Urban Land Use (E13 sej/ac-yr).
sO
oo

Figure 3-20. Unit Diagram for Emergy Evaluation of Basin Scale Treatment
for the S-191 Subbasin (El3 sej/yr).
vO
'O

100
commercial forestry, and urban land uses, plus the basin scale chemical treatment
process. Solar transformities (emergy/unit energy) and phosphorus emergy/unit mass
of products were calculated based on inputs to individual unit processes estimated in the
appendix. Tables 3-7 through 3-12 are summary tables of emergy evaluations of each
alternative phosphorus management scenario for all land uses in the north Okeechobee
basin.
The largest input of solar emergy under developed conditions was associated
with urban land uses. Rainfall, human services, and dairy feed were the next largest
sources. Prior to development (low energy scenario), rainfall was the major emergy
contribution to the watershed (~ 5E20 sej/yr). When phosphorus was in maximum
use prior to 1987 so was the emergy flux ( ~ 119E20 sej/yr), which was more than
twenty times the predevelopment conditions. Under alternative management
conditions, the solar emergy flux to the basin ranged from 113 to 115E20 sej/yr.
Figure 3-21 summarizes, for each scenario, annual emergy budgets for the
whole basin and for major land use groups. Inputs from the left of the diagram
represent environmental contributions (I), and inputs from the top are purchased from
the economy (F). Emergy in products is shown leaving each box to the right (Y). The
general pattern in three arm diagrams for energy transformation is for the highest
transformity to be the feedback, the output from the right to be next, and the input
from the left the least.

101
Table 3-7. Emergy Evaluation of the Base Case Scenario.
Item
Value Units
(yr)-i
Solar
Transform! ty
(sej/unit)
Solar
Emergy
(E18 sej/yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P) (El2 sej/g P)
E6 EMS/yr
ENVIRONMENTAL INPUTS
1
Sunlight
2.73E+19 J
1
27
0
X
18
2
Rain, chemical
3.16E+16 J
1.54E + 04
487
6.35E + 08
0.77
314
3
Irrigation water
3.48E-*-14 J
1.54E+04
5
X
X
3
4
Peat use
1.50E + 16 J
1.07E + 04
161
1.11E + 08
1.44
104
NONRENEWABLE INPUTS:
5
Fuel
1.26E +15 J
6.6E + 04
83
0
X
54
6
Electricity
2.6E + 14 J
1.6E+05
42
0
X
27
7
Pesticide
1.57E+ 14 J
6.6E + 04
10
0
X
7
8
N Fertilizer
2.28E+13 J
1 69E*06
39
0
X
25
9
P Fertilizer
9.73E +11 J
4.14E+07
40
2.80E + 09
0.014
26
10
K Fertilizer
7.1E+ 12 J
2.62E + 06
18
0
X
12
11
Lime
1.2E+11 g
1.00E-09
116
0
X
75
12
Minerals
3.3E+ 13 J
8.1E + 04
3
1.54E + 08
0.017
2
13
Molasses
4.8E+ 14 J
8.1E + 04
39
1.45E + 08
0.27
25
14
Dairy feed
2.9E+15 J
6.8E + 04
197
7.46E + 08
0.26
127
15
Urban inputs
2.4E + 17 CEJ
4.0E + 04
9760
5.44E + 07
179.41
6297
16
Services
1.74E + 08 $
1.55E+12
22!
Q
X
m
17
11270
4.65E + 09
7271
PRODUCTS:
18
Citrus
1.23E-*-15 J
1.04E+05
128
1.02E + 08
1.25
83
19
Livestock-improved beef pasture
3.44E +14 J
1.65E+06
568
1 96E + 08
2.90
366
20
Livestock-unimproved beef pasture
3.77E-»-13 J
3.93E + 06
148
2.15E + 07
6.89
96
21
Livestock-low tech dairy
2.49E + 13 J
3 99E + 06
99
1.42E + 07
7.00
64
22
Livestock-low tech dairy w/ecoreactor
2.40E + 12 J
3.99E + 06
10
1.36E + 06
7 04
6
23
Livestock-setniconfinement dairy
3.31E+13 J
4.02E + 06
133
1.88E-07
7.08
86
24
Livestock-semiconfinement dairy w/composting
1.28E+13 i
4.02E + 06
51
7.25E + 06
7.10
33
25
Livestock-confinement dairy
2.59E+12 J
4.09E+06
11
1.47E + 06
7.21
7
26
Milk-low tech dairy
1.51E+15 J
6.61E + 04
100
6.69E+07
1.49
64
27
Milk-low tech dairy w/ecoreactor
1.45E+14 J
6.60E + 04
10
6.45E+06
1.48
6
28
Milk-semiconfinement dairy
2.09E +15 J
6.37E + 04
133
9.29E+07
1.43
86
29
Milk-semiconfinement dairy w/composting
8.08E + 14 J
6.36E + 04
51
3.58E+07
1.44
33
30
Milk-confinement dairy
1.64E+ 14 J
6.47E + 04
11
7.26E + 06
1.46
7
31
Compost-semiconfinement dairy w/composting
3.55E+ 14 J
1.45E+05
51
2.61E+07
1.97
33
32
Forage-low tech dairy
1.34E+14 J
7.42E+05
99
2.20E+07
4.52
64
33
Forage-low tech dairy w/ecoreactor
7.47E + 12 J
1.28E-r06
10
1.25E + 06
7.65
6
34
Forage-semiconfinement dairy
2.33E + 14 J
5.74E + 05
134
3.90E + 07
3.43
86
35
Forage-semiconfinement dairy w/composting
5.24E +13 J
9.81E + 05
51
8.74E + 06
5.88
33
36
Forage-confinement dairy
2.12E+13 J
5.01E+05
11
3.54E+06
3.00
7
37
Wetland production-low tech dairy w/ecoreactor
1.67E+ 12 J
5.74E + 06
10
2.80E-05
34.24
6
38
Sugarcane
3.56E+15 J
4.04E + 04
144
3.40E + 07
4.23
93
39
Sweet Corn
1 89E + 14 J
7.60E+05
144
1.58E+07
9.09
93
40
Other ag. products
4.09E+ 15 J
1.70E+04
70
1.81E + 08
0.38
45
41
Timber
1.17E+14 J
9.24E+04
11
6.97
7
42
9 05E+08

Table 3-8. Emergy Evaluation of the Maximum Phosphorus Use Scenario.
102
Item
Value Units
(yr)-l
Solar
Transformity
(sej/unit)
Solar
Emergy
(El8 sej/yr)
Phosphorus Phosphorus
Content Emergy /Mass
(grams P) (El2 sej/g P)
E6 EM$/yr
ENVIRONMENTAL INPUTS:
1
Sunlight
2.73E+19 J
1
27
0
X
18
?
Rain, chemical
3.I6E+16 J
1.54E+04
487
6.35E + 08
0.77
314
3
Irrigation water
3.22E+14 J
1.54E+04
5
X
X
3
4
Peat use
1.50E+16 J
1.07E+04
161
1 11E+08
1.45
104
NONRENEWABLE INPUTS:
5
Fuel
1.25E+15 J
6.6E+04
83
0
X
53
6
Electricity
2.71E+I4 J
I.5E + 05
43
0
X
28
7
Pesticide
1.57E+14 J
6.6E+04
10
0
X
7
8
N Fertilizer
2.25E+13 J
1 69E+06
38
0
X
25
9
P Fertilizer
1.42E+12 J
4.14E+07
59
4.08E+09
0.014
38
10
K Fertilizer
7.0E+12 J
2.62E+06
18
0
X
12
11
Lime
LI5E+11 g
1.00E+09
115
0
X
74
12
Minerals
3.91E+13 J
8.1E+04
3
L86E + 08
0.017
2
13
Molasses
5.7E+14 J
8.1E+04
46
1.75E+08
0.26
30
14
Dairy feed
3.2E+15 J
6.8E+04
220
9.68E+08
0.23
142
15
Urban inputs
2.58E+I7 CEJ
4.0E+04
10320
5.44E+07
189 71
6658
16
Services
L92E + 08 $
1.55E+12
298
Q
X
122
17
11905
6.21E+09
7681
PRODUCTS
IS
Citrus
1.23E+I5 J
1.04E+05
128
1.02E+08
1.25
83
19
Livestock-improved beef pasture
4.22E+14 J
1.42E+06
599
2.40E4-08
2.50
387
20
Livestock-unimproved beef pasture
3.77E+13 J
3.93E+06
148
2.15E+07
6.89
96
21
Livestock-preDairy Rule dairy
9.62E+13 J
3 71E+06
357
5.46E+07
6.54
230
22
M ilk-p re Dairy Rule dairy
5.78E+ 15 J
5 17E+04
357
2.57E+08
1.39
230
23
Sugarcane
3.56E+15 J
4.04E+04
144
3.40E+07
4.23
93
24
Sweet Com
1.89E+14 J
7.60E + 05
144
1.58E+07
9.09
93
25
Other ag products
4.07E+15 J
1.70E+04
69
L80E+08
0.38
45
26
Timber
1.17E+14 J
9.24E+04
11
lJ5E-rQ0
6.97
7
27
9.06E+08

103
Table 3-9. Emergy Evaluation of the Predevelopment Scenario.
Item
Value Units
(yr)-l
Solar
T ransformity
(sej/umt)
Solar
Emergy
(El8 sej/yr)
Phosphorus Phosphorus
Content Emergy/Mass
(gramsP) (El2 sej/g P)
E6 EM$/yr
ENVIRONMENTAL INPUTS
1 Sunlight
2.73E + 19 J
1
27
0
X
18
2 Ram, chemical
3.16E + 16 I
1.54E+04
487
3.00E+08
1.62
314

Table 3-10. Emergy Evaluation of the Dispersed Phosphorus Management Scenario
Design 1.
104
Item
Value Units
(yr)-l
Solar
Trans fornuty
(sej/unit)
Solar
Emergy
(El 8 sej/yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P) (El2 sej/g P)
E6 EMS/yr
ENVIRONMENTAL INPUTS:
1
Sunlight
2.73E+19 J
1
27
0
X
18
2
Rain, chemical
3.16E + 16 J
1 54E+04
487
6.35E+08
0.77
314
3
Irrigation water
3.59E+14 J
1.54E+04
6
X
X
4
4
Peat use
1 24E+16 J
1.07E+04
133
1 11E + 08
1.20
86
NONRENEWABLE IN PITS
5
Fuel
1.28E+15 J
6.6E+04
84
0
X
55
6
Electricity
2.63E+14 J
1.6E+05
42
0
X
27
7
Pesticide
1.31E+14 J
6.6E+04
9
0
X
6
8
N Fertilizer
2.28E+13 J
1.69E+06
39
0
X
25
9
P Fertilizer
9 50E+11 J
4 14E+07
39
2.73E+09
0.014
25
10
K Fertilizer
6.92E+12 J
2.62E+06
18
0
X
12
11
Calcium silicate
1 52E+12 J
4 14E+07
63
0
X
41
12
Lime
L16E+11 g
1.00E + 09
116
0
X
75
13
Minerals
3.25E+13 J
8 1E + 04
3
1.54E+08
0.017
2
14
Molasses
4 84E+14 J
8.1E-E04
39
1 45E+08
0.27
25
15
Dairy feed
2.90E+15 J
6.8E+04
197
7.46E+08
0.26
127
16
Fencing
6.72E+10 J
1.8E+07
1
0
X
1
17
Urban inputs
2.44E+17 CEJ
4.0E+04
9760
5 44E + 07
179.41
6297
18
Services
1.75E + 08 $
1.55E+12
221
Q
X
125
19
11306
4.58E+09
7294
PRODUCTS
20
Citrus
1 23E+15 J
1.05E+05
129
1.02E+08
1.27
83
21
Livestock-improved beef pasture
3.44E+14 J
2.23E+05
77
1.96E+08
0.39
49
22
Livestock-unimproved beef pasture
3.77E+13 J
3.93E + 06
148
2.15E+07
6.89
96
23
Livestock-confinement dairy
7.59E+13 J
4.09E + 06
310
4.30E + 07
7.22
200
24
Milk-confinement dairy
4.79E+15 J
6.47E+04
310
2.13E+08
1.45
200
25
Forage-confinement dairy
6.19E+14 J
5.01 E+05
310
1 04E + 08
2.98
200
26
Sugarcane
3.86E+15 J
4.40E+04
170
3.69E+07
4.60
no
27
Rice
8 85E+11 J
2.17E + 05
0.19
9.35E+07
0.002
0.12
28
Other ag products
4 09E+15 J
1.70E+04
70
1.S1E+08
0,38
45
29
Timber
1 17E+14 J
9.24E+04
11
1.55E+06
6.97
7
30
9.92E+08

105
Table 3-11. Emergy Evaluation of the Dispersed Phosphorus Management Scenario,
Design 2.
Item
Value Units
(yr)-l
Solar
Transformity
(sej/unit)
Solar
Emergy
(El8 sej/yr)
Phosphorus
Content
grams P)
Phosphorus
Emergy/Mass
(E12 sej g P)
E6 EM$/yr
ENVIRONMENTAL INPUTS:
1
Sunlight
2.73E +19 J
1
27
0
X
18
2
Rain, chemical
3.16E+16 J
1.54E+04
487
6.35E+08
0.77
314
3
Irrigation water
3.28E + 14 J
1.54E+04
5
X
X
3
4
Peat use
I.24E+16 J
1.07E+04
133
1.11E -t- 08
1.20
86
NONRENEWABLE INPUTS
5
Fuel
I.28E+15 J
6.6E+04
84
0
X
55
6
Electricity
2.63E +14 J
1.6E+05
42
0
X
27
7
Pesticide
1.31E + 14 J
6.6E+04
9
0
X
6
8
N Fertilizer
2.28E+13 J
1.69E+06
39
0
X
25
9
P Fertilizer
9.50E+11 J
4.14E+07
39
2.73E+-09
0.014
25
10
K Fertilizer
6.92E+ 12 J
2.62E-t-06
18
0
X
12
11
Calcium silicate
1.52E+12 J
4.14E+07
63
0
X
41
12
Lime
1.16E+11 g
1.00E+09
116
0
X
75
13
Minerals
3.25E +13 J
8.1E+04
3
1.54E+08
0.017
2
14
Molasses
4.84E -f 14 J
8.1E+04
39
1.45E+08
0.27
25
15
Dairy feed
2.90E +15 J
6.8E+04
197
7 46E+08
0.26
127
16
Fencing
6.72E + I0 J
1.8E+07
1
0
X
1
17
Urban inputs
2 44E-17 CEI
4.0E+04
9760
5.44 E *07
179.41
6297
18
Services
1.75E+08 S
1.55E +12
221
Q
X
115
19
11306
4.58E+09
7294
PRODUCTS:
20
Citrus
1.23E + I5 J
1.05E+05
129
1.02E+08
1.27
83
21
Lives lock-improved beef pasture
3.44E + 14 i
2.23E+05
77
1.96E+08
0.39
49
22
Livestock-unimproved beef pasture
3.77E-1- 13 J
3.93E+06
148
2.15E+07
6.89
96
23
Livestock-confinement dairy w/ecoreactor.composting
7.59E-M3 J
4.09E+06
310
4.30E+07
7.22
200
24
Milk-confinement dairy w/ecoreactor. compos ting
4.79E + 15 J
6.47E+04
310
2.I3E+08
1.45
200
25
Compost-confinement dairy w/ecoreactor.composting
2.63E+15 J
1.17E+05
308
1.94E+08
1.59
199
26
Forage-confinement dairy w/ecoreactor.composting
8.69E +13 J
3.56E+06
309
1.45E+07
21.34
200
27
Welland prod.-confinement dairy w/ecoreactor. composting
7.00E-M3 J
4.40E+06
308
1.18E+07
26.10
199
28
Sugarcane
3.86E + 15 J
4.40E + 04
170
3.69 E+07
4.60
110
29
Rice
8.85E +11 J
2.17E+05
0.19
9.35E+07
0.002
0.12
30
Other ag. products
4.09E + 15 J
I.70E+04
70
1.81E+08
0.38
45
31
Timber
1.17E + 14 J
9.24E+04
11
1.55E+06
6.97
7
32
1.11E+09

106
Table 3-12. Emergy Evaluation of the Concentrated Phosphorus Management
Scenario.
Item
Value Units
(yr)-i
Solar
Transform! ty
(sej/unit)
Solar
Emergy
(El8 sej/yr)
Phosphorus
Content
(grams P)
Phosphorus
Emergy/Mass
(E12 sej/g P)
E6 EM$/yr
ENVIRONMENTAL INPUTS:
1
Sunlight
2.73E + 19 J
1
27
0
X
18
2
Rain, chemical
3.16E+ 16 J
1.54E+04
487
6.35E + 08
0.77
314
3
Irrigation water
3.48E+14 J
1.54E + 04
5
X
X
3
4
Peat use
1.50E+ 16 J
1.07E + 04
161
1.11E+08
1.45
104
NONRENEWABLE INPUTS:
5
Fuel
1.26E + 15 J
6.6E + 04
83
0
X
54
6
Electricity
8.7E+14 J
1.6E+05
139
0
X
89
7
Pesticide
1.57E+ 14 J
6.6E + 04
10
0
X
7
8
N Fertilizer
2.28E+ 13 J
1.69E + 06
39
0
X
25
9
P Fertilizer
9.73E+ 11 J
4.14E+07
40
2 80E + 09
0.014
26
10
K Fertilizer
7.1E+ 12 J
2.62E+06
18
0
X
12
11
Lime
1.2E+11 g
1.00E + 09
116
0
X
75
12
Alum
3.5E+11 J
1.32E+07
5
0
X
3
13
Minerals
3.3E+13 J
8.1E+04
3
1.54E+08
0.017
2
14
Molasses
4.8E+ 14 J
8.1E+04
39
1.45E + 08
0.27
25
15
Dairy feed
2.9E+15 J
6.8E+04
197
7.46E-‘-08
0 26
127
16
Urban inputs
2.4E+17 CEJ
4.0E+04
9760
5.44 E-07
179.41
6297
17
Services
2.34E+08 $
1.55E+12
m
Q
X
IM
18
11464
4.65E-09
7396
PRODUCTS:
19
Citrus
1.23E+15 J
1.04E+05
128
1.02E-08
1.25
83
20
Livestock-improved beef pasture
3.44E+ 14 J
1.65E + 06
568
1.96E+08
2.90
366
21
Livestock-unimproved beef pasture
3.77E+13 J
3.93E-t-06
148
2.15E-«-07
6.89
96
22
Livestock-low tech dairy
2.49E + 13 J
3.99E + 06
99
1.42E+07
7.00
23
Livestock-low tech dairy w/ecoreactor
2.40E+12 J
3.99E + 06
10
1.36E + 06
7.04
6
24
Livestock-semiconfinement dairy
3.31E+13 J
4.02E + 06
133
1.88E+07
7.08
86
25
Livestock-semiconfmement dairy w/composting
1.28E+ 13 J
4.02E + 06
51
7.25E+06
7.10
33
26
Livestock-confinement dairy
2.59E+12 J
4 09E + 06
11
1.47E + 06
7.21
7
27
Milk-low tech dairy
1.51E+15 J
6.61E + 04
100
6.69E + 07
1.49
64
28
Milk-low tech dairy w/ecoreactor
1.45E+ 14 J
6 60E-04
10
6.45E^06
1.48
6
29
Milk-semiconfinement dairy
2.09E+ 15 J
6.37E + 04
133
9.29E+07
1.43
86
30
Milk-semiconfinement dairy w/composting
8.08E+14 J
6.36E + 04
51
3.58E+07
1.44
33
31
Milk-confinement dairy
1.64E+14 J
6.47E + 04
11
7.26E + 06
1.46
7
32
Compost-semiconfinement dairy w/composting
3.55E + 14 J
1.45E+05
51
2.61E + 07
1.97
33
33
Forage-low tech dairy
1 34E +â–  14 J
7.42E-*-05
99
2.20E+07
4.52
64
34
Forage-low tech dairy w/ecoreactor
7.47E+12 J
1.28E + 06
10
1.25E + 06
7.65
6
35
Forage-semiconfinement dairy
2.33E-14 J
5.74E+05
134
3.90E + 07
3.43
86
36
Forage-semiconfinement dairy w/composting
5.24E+ 13 J
9.81E+05
51
8.74E + 06
5.88
33
37
Forage-confinement dairy
2.12E13 J
5.01E+05
11
3.54E+06
3.00
7
38
Wetland production-low tech dairy w/ecoreactor
1.67E + 12 J
5.74E-*-06
10
2.80E+05
34.24
6
39
Sugarcane
3.56E+15 J
4.04E + 04
144
3.40E + 07
4.23
93
40
Sweet Com
1.89E +14 J
7.60E-t-05
144
1.58E + 07
9.09
93
41
Other ag products
4.09E + 15 J
1.70Ef04
70
1.81E + 08
0.38
45
42
Timber
1.17E+14 J
9.24E + 04
11
1.55E + 06
6.97
7
43
9.05E + 08
44
Sludge
X
X
X
1.47E-*-08
X
X

Scenario
System
Environmental
Input
(sej/yr)
Purchased
Input
(sej/yr)
Product
Output
(sej/yr)
Net Emergy
Yield Ratio
(NEYR)
Emergy
Investment
Ratio (EIR)
Base Case
Basinwide
6.48E20
1.06E22
1.13E22
1.07
16.4
Beef Pasture
3.18E20
3.96E20
7.14E20
1.80
1.25
Dairy
1.28E19
2.92E20
3.05E20
1.04
22.8
Maximum
Basinwide
6.48E20
1.12E22
1.19E22
1.06
17.3
Phosphorus
Beef Pasture
3.15E20
4.32E20
7.47E20
1.73
1.37
Use
Dairy
1.44E19
3.42E20
3.56E20
1.04
20.3
Low Energy
Basinwide
4.86E20
0
4.86E20
X
X
Dispersed
Basinwide
6.20E20
1.07E22
1.13E22
1.06
17.3
Phosphorus
Beef Pasture
3.18E20
4.01 E20
7.19E20
1.79
1.26
Management 1
Dairy
1.29E19
2.97E20
3.1E20
1.04
23
Dispersed
Basinwide
6.20E20
1.07E22
1.13E22
1.06
17.3
Phosphorus
Beef Pasture
3.18E20
4.01E20
7.19E20
1.79
1.26
Management 2
Dairy
1.24E19
2.97E20
3.09E20
1.04
24
Concentrated
Basinwide
6.48E20
1.08E22
1.15E22
1.06
16.7
Phosphorus
Management
Chem. Treatment
Plant
1.34E20
1.95E20
3.29E20
1.69
1.45
Figure 3-21. Emergy Summary Diagram and Calculation of Net Emergy Yield and Emergy Investment Ratios
for Major Systems under Each Scenario. 5
"j

108
Beef pasture operations annually received about 25 percent more purchased
inputs than dairies and due to the vast areal extent of pasture, environmental inputs are
25 times greater.
Comparison of emergy investment ratios (EIR) among scenarios indicates that
the maximum phosphorus use and dispersed phosphorus management scenarios were
the most economically developed basinwide (EIR = 17.3). This ratio is 2.5 times
greater than the U.S. as a whole (EIR = 7.1), indicating that regional activity is more
intensive in its use of purchased resources. The emergy investment ratio of dairies
exceeded the regional investment ratio and increased with management, indicating that
perhaps dairies may be too emergy intensive to compete in the region, which may be
contributing to their demise through regulation. Alternatively, the emergy investment
ratio of beef pasture (including improved and unimproved) was an order of magnitude
lower than that of the region, indicating room for intensification with the additional
purchase of resources.
Under the concentrated phosphorus management scenario, the basinwide
investment ratio which included basin scale treatment was 16.7, just slightly greater
than the base case phosphorus management scenario. The emergy investment ratio of
the predevelopment scenario was small, since there were no inputs from the economy
prior to development associated with indian trade.
Net emergy yield ratios (Y/F) were estimated between one and two under each
scenario (except low energy). A ratio greater than one means the products are
contributing more to the economy than they are requiring from it. These ratios are

109
similar to those reported for other agricultural products (Odum, 1992). A yield ratio of
six or greater indicates the product would presently be competitive as a primary energy
source.
Empower Density
Figure 3-22 is a map of the empower density (solar emergy per unit area) of the
region under base case conditions. It is a useful way to illustrate the spatial
development intensity of the region. A map of phosphorus concentration is given to
compare the regional intensity of phosphorus. Both maps indicate spatially
heterogeneous development within the basin.
Empower density is expressed in units of E13 solar equivalent joules per
production unit per year. In most cases, the production unit is an acre. Dairies are the
exception with the cow as the basis for production, since they are a combination of
point and nonpoint source activities, and all economic and production data are reported
on a per cow basis as the unit of production. Under base case conditions, there were
1.2 acres per cow on average, and the per acre empower density still exceeded 900 E13
sej, represented by the darkest color on the map.
The empower density of various land use types creates a spatial hierarchy.
Undeveloped areas and rangeland were in the range of 39 to 45E13 sej/ac-yr, compared
to 120 to 1500E13 sej/ac-yr for agriculture, and 12000 to 50000E13 sej/ac-yr for urban
areas. High empower density areas may be found around Lake Okeechobee and Lake
Istokpoga, and in the Taylor Creek/Nubbin Slough region.

Figure 3-22. Average Annual Phosphorus Runoff Concentrations and Empower Density under the Base Case
Scenario.

PLAN: DR2.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
AVERAGE P CONC. (mg/1)
â–¡
>
o -
0.1
m
>
0.6
- 0.6
H
>
0.1
- 0.2
9
>
0.6
- 0.7
n
>
0.2
- 0.3
jgj
>
0.7
- 0.8
â–¡
>
0.3
- 0.4
•jjjjjj
>
0.8
- 0.9
Ü
>
0.4
- 0.5
m
>
0.9
PLAN: DR2.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
EMPOWER DENSITY (E13s«J/prod. unit-yaar)
â–¡ > 0-100
H > 100 - 200
â–¡ > 200 - 300
â–¡ > 300 - 400
400 - 500
â–¡ >
500 - 600
600 - 700
700 - 800
800 - 900
900

The relationship between phosphorus runoff per production unit and empower
density is illustrated for various land use/management alternatives in Figure 3-23.
Toward the left of the graph are undeveloped lands and the points of high empower
density are urban activities. Agricultural activities ranging in intensity from
unimproved pasture to dairies fall in the central portion of the graph. This relationship
suggests that maximum phosphorus occurs mid-range in the spatial distribution of
emergy, with the largest runoff contribution attributed to preDairy Rule dairies.
Emergv of Phosphorus Contributions and Products
Each of the individual land use/management production systems that was
quantified in Appendix B generated a set of phosphorus-containing inputs and products
with transformities and phosphorus emergy/mass ratios. In cases where management
changes were analyzed for the same land use, multiple values for transformities and
emergy/g P may have resulted for the same product. For example, the carrying
capacity of beef pasture changed with management, resulting in a range of
transformities (142 to 393E4 sej/J) and emergy/mass ratios (2.5 to 6.9E12 sej/g P) for
beef livestock sold. Ranges and average values for all products are reported in Table
3-13. The emergy of the phosphorus within each of these products is the same as the
emergy of the whole product in which the phosphorus is bound in its structure.
The average transformity of products ranged from 1.7E4 sej/J for sod
production to 507E4 sej/J for dairy wetland production. The latter represents the
product of an intensive system with little output of a by-product. Wetland production
on a dairy using an "ecoreactor” represents an alternative source of forage for dairy

113
10000
CL
10 1 1 1 1—
1 10 100 1000 10000 100000
Empower Density (El3 sej/unit)
Figure 3-23. Relationship between Phosphorus Runoff and Empower Density per
Production Unit.

Table 3-13. Emergy Evaluation Summary for Phosphorus-Containing Sources and Products.
Note
Item name
Transformity
(E4 sej/J)
Avg.
Transformity
(E4 sej/J)
Phosphorus
Emergy/Mass
(El2 sej/g P)
Avg.
Phosphorus
Emergy/Mass
(E12 sej/g P)
Avg.
Phosphorus
content
(gP/g)
Avg.
$/g
SOURCES:
1
Rainfall
1.54
1.54
0.77
0.77
0.000000010
X
2
Citrus irrigation
1.54
1.54
0.77
0.77
0.000000010
X
3
Sugarcane irrigation
1.54
1.54
0.95
0.95
0.00000008
X
4
Other agriculture (sod) irrigation
1.54
1.54
0.77
0.77
0.000000010
X
5
Peat use
1.07
1.07
420
420
0.00000029
X
6
P fertilizer
4140
4140
0.014
0.014
1
0.0048
7
Beef minerals
8.1
8.1
0.017
0.017
0.08
0.00035
8
Beef molasses
8.1
8.1
0.27
0.27
0.005
0.00013
9
Dairy feed
6.8
6.8
0.23-0.25
0.24
0.0047
0.00027
PRODUCTS:
10
Citrus yield
10.4
10.4
1.26
1.26
0.00017
0.000047
11
Beef livestock sold
142 - 393
267.5
2.5-6.89
4.7
0.0067
0.0021
12
Dairy milk yield
61.7 - 66.1
63.9
1.39 - 1.49
1.44
0.00093
0.00028
13
Dairy liveweight sold
371 -409
390
6.54 -7.21
6.87
0.0067
0.0096
14
Dairy forage production
57.4 - 356
206.7
2.99 - 21.31
12.15
0.0028
0.0028
15
Dairy compost
11.7 - 14.5
13.1
1.59 - 1.97
1.78
0.0008
0.00028
16
Dairy wetland production
440 - 574
507
26.26 - 34.24
30.25
0.0028
0.017
17
Sugarcane yield
4.04 - 4.40
4.22
4.23-4.60
4.42
0.00016
0.00004
18
Sweet coni yield
76
76
9.12
9.12
0.0014
0.00095
19
Rice yield
21.7
21.7
1.82
1.82
0.002
0.00015
20
Other agriculture (sod) yield
1.7
1.7
0.38
0.38
0.00074
0.000012
21
Timber
9.24
9.24
6.97
6.97
0.0002
0.000029

115
Footnotes to Table 3-13. Emergy Evaluation Summary for Phosphorus-Containing Sources and Products.
1. Rainfall. Refer to Appendix B, Tables B-l and B-2.
2. Citrus irrigation. Refer to Appendix B, Tables B-l and B-2.
3. Sugarcane irrigation. Refer to Appendix B, Tables B-14 and B-15.
4. Other agriculture (sod) irrigation. Refer to Appendix B, Table B-16.
5. Peat use. Refer to Appendix B, Tables B-14 and B-15.
6. P fertilizer. Refer to Appendix B, Tables B-l through B-7, and B-14 through B-16.
7. Beef minerals. Refer to Appendix B, Tables B-3 through B-6.
8. Beef molasses. Refer to Appendix B, Tables B-3 through B-6.
9. Dairy feed. Refer to Appendix B, Tables B-7 through B-13.
10. Citrus yield. Refer to Appendix B, Tables B-l and B-2.
11. Beef livestock sold. Refer to Appendix B, Tables B-3 through B-6.
12. Dairy milk yield. Refer to Appendix B, Tables B-7 through B-13.
13. Dairy liveweight sold. Refer to Appendix B, Tables B-7 through B-13.
14. Dairy forage production. Refer to Appendix B, Tables B-8 through B-13.
15. Dairy compost. Refer to Appendix B, Tables B-ll and B-13. é
16. Dairy wetland production. Refer to Appendix B, Tables B-9 and B-13.
17. Sugarcane yield. Refer to Appendix B, Tables B-14 and B-15.
18. Sweet com yield. Refer to Appendix B, Table B-14.
19. Rice yield. Refer to Appendix B, Table B-15.
20. Other agriculture (sod) yield. Refer to Appendix B, Table B-16.
21. Timber. Refer to Appendix B, Table B-17.

116
cows using recycled phosphorus as well as a phosphorus management system.
Comparison with the transformity of purchased dairy feed (estimated as the
transformity of industrial corn production) indicates an order of magnitude increase in
energy intensity for production of the onsite feed source. In order to evaluate the
potential substitutability of feedstuffs, the nutritive values would also need to be
compared. Phosphorus emergy/mass ratios were greatest for dairy forage and wetland
production. According to Odum (1992), the materials with higher ratios can and
should be used for greater effect. Perhaps this reflects the potential for use as
feedstuffs.
Two other observations may be made concerning the data. First, it is
interesting to notice that transformity of an input, phosphorus fertilizer, is much greater
than any of the product transformities. The industrial process of fertilizer
manufacturing is more intensive than even the most emergy consumptive agricultural
production practices in the region. Secondly, since sweet com or rice are secondary
products in the production of sugarcane biomass, their transformities are 5 to 20 times
greater even though the emergy of all products is the same. The phosphorus
emergy/mass of sugarcane is intermediate between sweet corn and rice.
Several relationships were suggested by the data presented in Table 3-13. A
graph of the distribution of phosphorus-containing substances by transformity (Figure
3-24) supports the theory that self-organizing systems utilize transformities at a
hierarchical position commensurate with their value (Odum, 1992). Most activities in
this rural agricultural watershed generate transformities in the order of 1 to 10E4 sej/J.

Number of Phosphorus-Containing Materials
117
Transformities of Phosphorus-Containing Materials (E4 sej/J)
Figure 3-24. Number of Phosphorus-Containing Materials as a Function
of Their Transformities.

118
The distribution is skewed toward the lower range with a few substances at the higher
end.
In comparison, urban activities, in which phosphorus use is less important,
operate in the range of 1E7 sej/J and greater transformities. Activities that process or
transform phosphorus-containing substances without consuming phosphorus, such as
fertilizer plants, sugar mills, and milk refineries, are usually located in urban centers.
These activities would most likely add a few data points, if available, to the higher end
of the range of transformities.
Figure 3-25 indicates that there is a positive trend in the average phosphorus
content of substances with increasing transformity. It takes more emergy per joule of
product to concentrate phosphorus, or conversely, products that concentrate energy also
concentrate phosphorus.
The emergy per mass of phosphorus shows a declining trend when plotted
against phosphorus content (Figure 3-26). This would be expected, since phosphorus
mass is in the denominator of the emergy/mass ratio. A similar relationship is
observed from a spatial perspective as indicated in Figure 3-27. The emergy per gram
of phosphorus decreases as the intensity or concentration of phosphorus use in the
watershed increases. This may give some indication of the efficiency of phosphorus
use across the landscape.
Economic Analysis
Economic analysis of phosphorus management initially included only the dollar
costs of implementing a management alternative for cost effectiveness comparisons.

Avg. Phosphorus Content of Materials (gP/g)
119
1
0.3
0.1
0.03
0.01
0.003
0.001
0 0003
1-10 10-100 100-1000 1000-10,000
Transformities of Phosphorus-Containing Materials (E4 sej/J)
Figure 3-25. Average Phosphorus Content of Materials as a Function
of Their Transformities.

120
Figure 3-26. Relationship between the Emergy per Mass of Phosphorus-Containing
Materials and their Phosphorus Content.

121
Figure 3-27. Relationship between the Entergy per Gram of Phosphorus in Materials
and their Spatial Distribution.

Further analysis to include the comparison of service dollars and emdollars required the
collection of baseline economic data on the costs of production of alternative
agricultural systems. The costs of phosphorus control are first addressed, followed by
an analysis of the cost effectiveness of alternative phosphorus management scenarios.
Finally, a comparison of service dollars and emdollars is presented.
Economics of Phosphorus Control
Under the base case scenario, changes in dairying as a result of the Dairy Rule
regulations cost the dairy farmers remaining in the basin an estimated $3.8 million
annually. An additional one-time cost of $4.2 million was spent by the public to
purchase dairy easements to remove roughly 7000 milk cows ($600/cow). The baseline
cost for drip irrigation of citrus was estimated at $6.1 million/yr. Sweet corn produced
in rotation with sugarcane cost $3.7 million/yr. The total annualized investment and
operating costs of the base case scenario was estimated to be $13.6 million/yr (not
including the public cost of dairy easements).
Although farmers did not manage phosphorus until after 1987, the dollar costs
associated with citrus irrigation and sugarcane rotation practices under the maximum
phosphorus use scenario are reported for comparative purposes. Citrus flood irrigation
was estimated to cost $6 million annually across all citrus polygons, and the cost of
producing sweet corn in rotation with cane was $3.7 million.
No dollar costs were associated with the predevelopment scenario, since human
activity was probably limited to indian trade.

123
Under the dispersed phosphorus management scenario, changes in the
investment and operating costs of citrus, improved beef pasture, sugarcane, and dairies
were observed as a result of changes in management on these land uses. Citrus costs
were for drip irrigation and impoundments; pasture costs were for fencing; and
sugarcane costs were associated with rice production. Investment and operating costs
associated with dairy design 1 were for the confinement system and sprayfield. Costs
of the ecoreactor were added for design 2. The total annual investment and operating
costs of the dispersed phosphorus management scenario were estimated to be $15.5
million/yr and $15.8 million/yr for designs 1 and 2, respectively.
Secondary costs associated with management changes on sugarcane acreage
were indicated by changes in yield: increased revenues for rice production, increased
revenues for enhanced sugarcane yield, and a loss of corn revenues. A gain (negative
cost) of $1.65 million/yr realized as a result of cultivating rice in rotation with
sugarcane was more than offset by a loss of nearly $4 million/yr in corn revenues.
Adoption of dairy design 1 across all dairies resulted in gross revenues of $78
million/yr from a milk yield of 52.4 lbs/cow-day for confined dairy cows. An
additional negative cost of $555,700 was realized from the sale of composted dairy
manure under dairy design 2. Secondary costs are most relevant when comparing
scenarios for cost-effectiveness analysis.
The investment cost of each chemical treatment plant plus retention basin under
the concentrated phosphorus management scenario was estimated to be $52.1 million
(DER, 1986). This value was annualized over 20 years at a rate of 10 percent. The

124
total annual investment and operating costs of six chemical treatment plants was an
estimated $59.5 million. Costs of treatment at the basin level would more likely be
incurred by the public, rather than distributed spatially across private landowners.
Cost Effectiveness Comparisons
Phosphorus management costs and basin phosphorus outflows are summarized
for each of five scenarios in Table 3-14. These data were used to calculate the cost
effectiveness, or dollars spent per pound of phosphorus removed from basin outflow,
when comparing two scenarios. Comparisons were made between the maximum
phosphorus use and the base case scenarios, the base case and the dispersed phosphorus
management scenarios, and the base case and the concentrated phosphorus management
scenarios. Results are presented in Table 3-15.
Changes in management from the maximum phosphorus use scenario to the base
case had the lowest cost per pound phosphorus removal. The cost of phosphorus
removal was 15 times greater when comparing the concentrated phosphorus
management scenario to the base case. The water quality standards could be met with
this large additional dollar input. Application of basin scale chemical treatment at
fewer subbasin outlets would improve the cost effectiveness of the concentrated
phosphorus management scenario. A reduction of 60 tons in basin phosphorus outflow
could be achieved by applying treatment at two subbasin outlets: S-191 and S-154.
Total annualized costs would be estimated at $19.8 million, or a cost per pound of
phosphorus removal of $165.

Table 3-14. Phosphorus Management Costs and Basin Phosphorus Outflow for Alternative Scenarios.
Phosphorus Management Costs
Scenario
Investment
(E6$)
Annualized
Investment
(E6$/yr)
Annual
O&M
(E6$/yr)
Total
Annual
(E6$/yr)
Basin
Outflow
(tons P/yr)
Base Case Phosphorus Management
52
6.83
6.85
13.68
228
Maximum Phosphorus Use
22.4
2.94
6.75
9.69
388
Dispersed Phosphorus Management, Design 1
83.1
10.93
4.57
15.5
195
Dispersed Phosphorus Management, Design 2
83.8
11.03
4.8
15.83
185
Concentrated Phosphorus Management
364.6
43.55
29.63
73.18
71

Table 3-15. Cost Effectiveness Comparison of Phosphorus Management Scenarios.
Scenario Change
Without Secondary Costs:
Maximum Phosphorus Use — Base Case
Base Case — Dispersed Phosphorus Management, Design 1
Base Case — Dispersed Phosphorus Management, Design 2
Base Case — Concentrated Phosphorus Management
With Secondary Costs:
Maximum Phosphorus Use — Base Case
Base Case — Dispersed Phosphorus Management, Design 1
Base Case — Dispersed Phosphorus Management, Design 2
Change in
Costs
(E6$/yr)
Change in
Basin Outflow
(tons P/yr)
Cost
Effectiveness
($/lb P reduction)
3.99
160
12.48
1.82
33
27.55
2.15
43
24.97
59.52
157
189.55
3.63
160
11.36
3.25
33
49.29
3.03
43
35.19

127
The dispersed phosphorus management scenario, designs 1 and 2 were more
cost effective than the concentrated, but fell short of meeting the 170 ton P/yr average
basin outflow standard. Like most treatment processes, it becomes more costly to
remove nutrients as the quantity remaining diminishes.
Scenario comparisons were made with and without estimated secondary costs,
or costs associated with changes in production. Secondary costs had the greatest impact
on the cost of phosphorus removal associated with the dispersed phosphorus
management scenario. Gains in production due to changes in dairying were more than
offset by losses due to changing the sugarcane rotation crop from sweet corn to rice.
Changes in costs of production overshadowed increased revenues from product sales
changes. The cost per pound of phosphorus reduction increased by $21 for design 1
and $10 for design 2. Sale of compost improved the cost effectiveness of design 2 over
design 1. Potential secondary costs associated with the concentrated phosphorus
management scenario, such as use or disposal of the precipitate, were not estimated.
Relating Service Dollars and Emdollars
The basic costs of operating and maintaining alternative production systems
were quantified in addition to the costs associated with phosphorus management. The
total costs of production plus phosphorus management, which are referred to here as
service dollars, are monies paid to people for their services associated with the
production systems-no money is paid directly to the land. Emdollars, on the other
hand, are a measure that reflect the total services provided by the system, not just the
human services, as a percentage of the Gross National Product (GNP) of the U.S.

128
Annual emdollars were estimated by multiplying the emergy/currency ratio for the
U.S. (1.55E12 sej/S in 1990) times the total emergy flux of the system (sej/yr).
Service dollars and emdollars are reported for each land use/management
practice under the base case scenario (Table 3-16). The greatest difference between the
two measures is observed for unimproved and undeveloped land uses. The
environment is providing services even though people may not be. A graph of the
relationship between service dollars and emdollars is presented in Figure 3-28. A
positive relationship may be explained by the fact that human services are also
contributing emergy. Developed systems are likely to have large contributions of
purchased energy with related human service inputs.
The ratio of emdollars to service dollars may be compared for each phosphorus
management scenario (Table 3-17). The base case and dispersed phosphorus
management scenarios all have ratios of about 42. The value of environmental services
is 42 times greater than services provided by people. The ratio is lowest for the
concentrated phosphorus management scenario, indicating that more human services
were provided relative to the same amount of environmental services. Since human
service inputs were minor under the predevelopment scenario, the ratio is not relevant.
The emdollar contribution of the environment alone was 314E6 EM$/yr. Purchased
goods and services for current activities have increased the emdollar contribution to the
watershed nearly 25 times.

129
Table 3-16. Service Dollars and Emdollars by Land Use for the Base Case Scenario.
Approximate
Area Service Dollars Emdollars
Land Use/Management (acres) (E6 $/yr) (E6 EM$/yr)
Beef pasture-improved
Beef pasture-unimproved
Citrus
Commercial forest
Dairy-confinement
Dairy-low tech
Dairy-low tech w/ecoreactor
Dairy-semiconfinement
Dairy-semiconfinement w/composting
Forested uplands
Other agriculture
Sugarcane
Urban
Wetlands
480000
64.70
366
350000
5.66
96
32000
27.90
83
24000
0.23
7
1500
2.23
7
9500
19.90
64
500
1.92
6
16000
27.10
86
4200
10.50
33
98000
0
25
7300
3.02
45
9500
10.80
93
37000
X
6294
190000
0
47

130
Figure 3-28. Relationship between Emdollars and Service Dollars for Land
the Base Case Scenario.
Uses under

131
Table 3-17. Comparison of Total Service Dollars and Total Emdollars by Scenario
for Approximately 1.2 Million Acres in the North Okeechobee Basin.
Scenario
Service
Dollars
(E6 $/yr)
Emdollars
(E6 EM$/yr)
Service Dollars
Base Case
174
7271
41.8
Maximum Phosphorus Use
192
7681
40.0
Predevelopment
X
314
X
Dispersed Phosphorus Management, 1
175
7294
41.7
Dispersed Phosphorus Management, 2
175
7294
41.7
Concentrated Phosphorus Management
234
7396
31.6

CHAPTER 4
DISCUSSION
In this final chapter, an aggregate overview of the regional system and its
phosphorus cycle is given in order to synthesize the relationship between the
biogeochemistry of an element, its contribution to regional emergy, and its economic
use. Figure 4-1 shows the essence of the phosphorus cycle, with inputs, outputs and
internal cycling, which is compared for different scenarios. By relating an elemental
cycle to environmental and economic measures, the origin of a new field of study is
suggested, referred to here as biogeoeconomics.
Relating the Phosphorus Cycle to Emergy and Economics
Keeping in mind the overview model of the regional system containing the
phosphorus cycle in Figure 1-1, and simplified in Figure 4-1, mass flows of
phosphorus and associated flows of emergy and money, are related for different
scenarios of phosphorus use and management. Table 4-1 summarizes totals for the
whole cycle and for the product flows, and Table 4-2 summarizes the totals of each
associated with the residual, or runoff, component of the cycle.
Figure 4-1 indicates that more emdollars are contributed to the economy from
the output of products that contain phosphorus than dollars are paid for those products.
Also, the environment contributes more emdollars to production in phosphorus-
132

170E6 EM$
Purchased
Inputs (fertilizer, feed)
Environmental
Inputs
(rain, peat)
418E6 EM$
Goods to
the Economy
(crops, beef,
milk, timber)
Runoff to the
Environment
Figure 4-1. Diagram Showing the Full Phosphorus Cycle of the Region
(Heavy Black Lines) with Inputs and Outputs and Internal Cycling
under the Base Case Phosphorus Management Scenario. Dashed Line
Represents Flow of Money Associated with Phosphorus.

134
Table 4-1. Comparison of Annual Emergy, Service Dollars, and Emdollars per Gram
of Phosphorus by Scenario for the Study Region.
Whole Phosphorus Cycle
Scenario
Emergy/Mass $/Mass
(E12 sej/g P) ($/g P)
EM$/Mass
(EM$/g P)
Base Case Phosphorus Management
2.48
0.038
1.60
Maximum Phosphorus Use
1.94
0.03
1.25
Predevelopment
1.62
0
1.05
Dispersed Phosphorus Management
2.52
0.039
1.63
Concentrated Phosphorus Management
2.52
0.05
1.63
Phosphorus in Products
Product EM$/
Phosphorus
Scenario
Mass Flow
E8 g P/yr
Emergy/Mass $/Mass
(E12 sej/g P) ($/g P)
Mass
(EM$/g P)
Base Case Management
9.05
12.5
.19
8.06
Maximum Phosphorus Use
9.06
13.1
.21
8.47
Dispersed Management 1
9.92
11.3
.18
7.32
Dispersed Management 2
11.1
10.2
.16
6.58
Concentrated Management
9.05
12.7
.26
8.19
EM$ based on 1990 emergy/currency ratio of 1.55E12 sej/$.

135
Table 4-2. Comparison of Total Annual Phosphorus, Emergy, and Emdollars Lost as
Runoff from the Study Region.
Comparison by Land Use
Land Use
Mass Flow
E7 g P/yr
Emdollar
Emergy Flow Flow
(E17 sej/yr) (E6 EM$/yr)
EM$/
acre
Other Agriculture
1.34
6.43
0.41
56
Dairy
5.32
25.5
1.6
51
Sugarcane
1.19
5.71
0.37
39
Improved Beef Pasture
41.3
198
12.8
27
Citrus
2.31
11.1
0.72
23
Urban
1.68
8.06
0.52
17
Unimproved Beef Pasture
10.2
49
3.2
9.50
Commercial Forest
0.67
3.22
0.21
8.74
Upland Forest
2.07
9.94
0.64
6.53
Comparison by Scenario
Emdollar
Mass Flow
Emergy Flow Flow
Scenario
E8 g P/yr
(E19 sej/yr) (E6 EM$/yr)
Base Case Phosphorus Management
6.6
3.17
20
Maximum Phosphorus Use
11
5.28
34
Predevelopment
.3
0.14
0.9
Dispersed Phosphorus Management 1
5.6
2.69
17
Dispersed Phosphorus Management 2
5.4
2.59
17
Concentrated Phosphorus Management
6.6
3.17
20

136
containing inputs (418E6 EM$/yr) than are purchased from the economy (170E6
EMS/yr), indicating a large renewable environmental subsidy of phosphorus.
However, total inputs purchased for the production of goods (554E6 EM$) exceeded
environmental inputs (418E6 EM$). Runoff of phosphorus to the environment
represents only 2 percent of the emdollar value of phosphorus leaving the region.
Table 4-1 indicates that the emergy/mass ratio increases with management
effort—it takes more emergy per gram to control a material for economic use than the
natural system requires to regulate it when not coupled to the economic system.
Service dollars and emdollars per gram of phosphorus indicate the same trend. The
predevelopment "value" of phosphorus in terms of its contribution to current GNP was
1.05 EM$ per gram. Under managed conditions, this increased to 1.60 EM$/g P.
indicating the phosphorus cycle is contributing more to the regional economy per unit
than it did prior to development, or under conditions of maximum phosphorus use.
Thus, managed self-organization increased the emdollar contribution of phosphorus to
the region.
Phosphorus Uses, Feedbacks, and Products
The major components of the phosphorus cycle are uses or inputs, feedbacks,
and outputs including products plus leakage as runoff (Figure 4-1). Phosphorus use in
the region is primarily as feed and fertilizer; feedbacks include forage production on
dairies and nutrient recycling in soil and biomass; major products include crops,
livestock, milk, and timber, plus compost production as a secondary product. Changes

137
in management alter all three components through such mechanisms as input
substitution, enhancement of feedbacks, and changes in production.
The bar graph in Figure 4-2 shows how phosphorus is distributed in various
material imports and outputs of the region. The intensity of phosphorus use and
production is represented as the grams of phosphorus per acre. Phosphorus in fertilizer
had the lowest estimated emergy/mass ratio, most likely because it had the highest
concentration of phosphorus (100 percent). The emergy/mass ratio of phosphorus in
residuals such as runoff and compost were also at the lower end of the range. The ratio
was greatest for agricultural commodities produced in the region, with phosphorus in
liveweight having the highest emergy/mass ratio.
Phosphorus feedbacks
Residual phosphorus from the dairy production process may be recycled through
wastewater irrigation and manure spreading to produce forage crops. Forage grown
onsite as replacement for purchased dairy feed may be evaluated in terms of its
transformity and emergy/mass ratio. Dairy feed, with a transformity of 6.8E4 sej/J,
took 0.24E12 sej/g P. The transformity and emergy/mass ratio of the forage crop
grown using recycled phosphorus ranged from 2.1 to 5.1E6 sej/J and 12 to 30E12 sej/g
P, respectively (refer to Table 3-13). Variations are due to differences in management
practices. Taken in context at this scale alone, it would not seem emergy efficient to
produce recycled feedstuffs at nearly two orders of magnitude greater transformity and
emergy/mass ratio so long as purchased feedstuffs were available. When considering

Phosphorus Intensity (g P/acre)
138
Phosphorus Emergy/Mass Ratio of Materials (E12 sej/g P)
Figure 4-2. Distribution of Phosphorus-Containing Materia! Inputs and Outputs
Based on the Emergy/Mass Ratios and Spatial Intensity of Phosphorus in the
Materials.

139
the emergy costs of alternative phosphorus control in addition to the value of forage as
substitute feed, the recycle alternative becomes more attractive.
The emergy value of compost also produced from residuals of the dairy
operation may be compared to that of phosphorus fertilizer. The transformity of
phosphorus fertilizer is two orders of magnitude larger than that of compost since
phosphorus is concentrated into a more purified material during the fertilizer production
process. Emergy is directed into processing the phosphorus for use as fertilizer,
whereas compost is more of a soil conditioner with only secondary value as a
phosphorus fertilizer. Again, the reduction in phosphorus pollution achieved by
manure management and compost production improves its systems value as a fertilizer
substitute. Thus, products generated from residual phosphorus have value as substitutes
for purchased phosphorus imports while contributing to the increased efficiency of
phosphorus use and its spatial distribution.
Phosphorus products
A material cycle converges as it is incorporated into products. The emergy
required per gram of product is that required to concentrate it or bind it into a structure
at a concentration higher than its background level (at background level there is no
available energy in phosphorus and thus no emergy previously used to concentrate it).
Total grams of phosphorus generated as saleable products varied among
scenarios from least under base case phosphorus management to greatest under
dispersed phosphorus management, design 2 with all dairies selling compost and
growing forage (Table 4-1). Emergy per gram, service dollars per gram, and

140
emdollars per gram of phosphorus showed the opposite trend with emergy and dollars
being directed more into phosphorus processing with increasing management effort.
The emergy of the whole phosphorus cycle was used to calculate emergy/mass ratios of
products since the systems were designed to generate products. The lower the
emergy/mass ratio, the more efficient the system of production. In the scenarios under
study, management improved the coupling of emergy to phosphorus.
Phosphorus in Runoff
Runoff is first water and has its emergy contribution (stream water transformity
multiplied by grams of water and Gibbs free energy). The runoff emergy is that of
water not used by the landscape system. The runoff also carries phosphorus which has
available energy and emergy relative to the background. The runoff phosphorus
includes some from rainwater and some leakage from the landscape's internal
phosphorus cycle. When phosphorus leaks out of a productive cycle, whether natural,
agricultural, or human settlement, it has emergy as well as an emdollar value of
phosphorus in the runoff. Phosphorus in runoff is a residual of the production
processes of the region rather than a primary product. The emergy in runoff is that
required to bring phosphorus from background to runoff concentration, or conversely
the energy lost when the runoff is mixed with background water.
Emergy per unit phosphorus in dilute runoff
Emergy may be related to an efficient phosphorus cycle using the simplified
regional overview given in Figure 4-1. Under predevelopment conditions when the
landscape was covered with photosynthetically-based ecosystems, the phosphorus cycle

141
was a necessary main component of the energy system. Under these conditions, the
whole emergy may be assigned to the mass cycle of phosphorus to obtain an
emergy/mass value for the fairly dilute concentrations of phosphorus in its recycle and
runoff. The ratio of annual regional emergy flow per gram of dilute phosphorus
cycling was estimated to be 4.8E10 sej/g P. Alternatively, the emergy/mass ratio of
phosphorus in runoff could have been interpolated as a value between the ratio for
organic soil and the background of the mineral (e.g., sand, marl) input to the soil.
Because regional ecosystems were self-organized under predevelopment
conditions, this relationship of emergy and phosphorus mass may be considered an
"efficient" baseline for comparison with later developments and alternative scenarios
for management. If one assumes that systems resulting from self-organization have
utilized long-term competition among alternative designs to process and store nutrients
so that they contribute to maximum productivity (Odum, 1990), then the downstream
emergy contribution in runoff is at least 4.8E10 sej/g P.
Scenario comparisons
The emergy/mass ratio of dilute runoff estimated above was used for all runoff
calculations. It served as the basis for estimating the total emergy lost in runoff under
each scenario, which were then converted to emdollar values of runoff.
Comparison across land uses under the base case scenario indicated that the total
emdollar value of phosphorus lost as runoff was greatest for improved beef pasture and
least for commercial forestry (Table 4-2). When normalized spatially across the
landscape, the emdollar per acre value of runoff phosphorus ranged from 56 EM$/ac

142
for intensive agriculture to about 6.50 EM$/ac for natural areas. Midrange values of
phosphorus runoff were estimated for improved beef pasture, citrus, and urban land
uses.
Scenarios were also compared in terms of the total emdollars lost from the
system as phosphorus leaks out in runoff (Table 4-2). The emergy contribution lost as
a fraction of GNP was twice as great under the maximum phosphorus use scenario than
under dispersed phosphorus management. The reference value of runoff phosphorus
prior to development was 0.9E6 EM$/yr.
Phosphorus Assimilation in Wetlands
When phosphorus leaves a land area as runoff, it is transported through a
system of wetland streams and canals toward Lake Okeechobee. The hydrographic
network is adapted to assimilate phosphorus and recycle it as biomass or sediment
storage. Wetlands use the phosphorus to build peat which has some future value in its
storage potential. The natural system, which has been somewhat altered through
channelization, is performing the work of phosphorus removal without receiving any
service dollars paid by humans. The cost of an alternative system to remove an
equivalent amount of phosphorus from basin runoff was calculated as an estimate of the
opportunity cost of basin phosphorus assimilation.
Under the base case scenario, 499 tons of phosphorus (4.5E8 g P), or 68
percent of the runoff phosphorus was assimilated along the network of streams and
canals annually. Assuming that basin scale treatment would be necessary at five major
outlets to Lake Okeechobee (Fisheating Creek, Indian Prairie, Harney Pond, Lower

143
Kissimmee, and Taylor Creek/Nubbin Slough), the opportunity cost of assimilation
would be $50 million/yr. Treatment at the outlets of other smaller contributing basins
such as S-133 and S-135 would increase the cost by about $10 million per basin per
year.
This estimate gives a rough value in service dollars of the complexity of the
basin's hydrologic network. One could also calculate the emdollar contribution of the
natural system for phosphorus uptake under each management scenario. Using the
emergy/mass ratio of phosphorus in peat and multiplying by the total grams of
phosphorus assimilated, gives the total emergy of assimilated phosphorus. When
converted to emdollars using the 1990 emergy/currency ratio of 1.55E12 sej/$
(Pritchard, 1992), the emdollar value of phosphorus assimilation ranged from 5E9
EM$/yr for predevelopment to nearly 200E9 EM$/yr for maximum phosphorus use,
with phosphorus management scenarios in the neighborhood of 100E9 EM$/yr. These
emdollar values may be interpreted as the long-term value of peat accumulation. Under
managed conditions, the environment is contributing less to phosphorus processing and
may therefore expend more emergy on other activities such as building structure.
The emdollar contribution to Lake Okeechobee as phosphorus in basin outflow
was estimated at 6.4 million EM$/yr under the base case scenario, 20 times greater
than predevelopment outflow from the watershed. In order to determine if this
increased potential use has a positive or negative effect on downstream system
productivity, one should examine the next larger system which includes the Lake
Okeechobee ecosystem — beyond the scope of the current research. Refer to Gayle

144
(1975) who adopted a systems approach in his study of eutrophication in Lake
Okeechobee.
Effects of Management on Regional Spatial Characteristics
Management of a chemical cycle across the landscape can alter the spatial
characteristics of a region. Estimation of the Shannon-Wiener diversity index (H)
across more than 7000 land use polygons indicated several findings. First, the
landscape was most homogeneous prior to development (H = .48). Note that the very
low diversity of polygons (in comparison to species diversity measures) under
predevelopment conditions is in part due to the way they were classified. For example,
many categories of wetland types were lumped into one general wetlands classification.
Though this measure may be appropriate for a relative comparison of changes with
management, the natural species diversity of the landscape is not captured.
Results also indicated that addition of resources to the region from the economy
increased polygon diversity to a maximum under conditions of maximum phosphorus
use (H = 1.13); polygon diversity decreased from the maximum with increasing
management effort (H = .98 under base case), thus following the trend in phosphorus
use. Management may therefore be considered as a way to reorganize the landscape,
tightening the interface between an elemental cycle and its economic role.
Another way to express this relationship is to examine the trend in the variance
of phosphorus runoff concentration with changes in management. Phosphorus
management decreased the variance in runoff concentration from a maximum of 131
under conditions of maximum phosphorus use to a range from 0.8 to 1.2. The variance

145
in runoff concentration was only 0.0005 prior to development. The variance in basin
phosphorus outflow was not appreciably different under managed conditions. Since
basin outflow takes into account the locational position of a polygon and its distance
upstream, this may have had a neutralizing effect on the variance in outflow from the
basin.
Empower density, which is a spatial measure of the emergy flux of a region,
increased more than 20 times since predevelopment conditions. Empower density did
not change appreciably with management when viewed as a basinwide average. On an
areal basis, there was little change in the average distribution of emergy from the
maximum phosphorus use scenario (9.6E15 sej/ac-yr) to the base case phosphorus
management scenario (9.0E15 sej/ac-yr). Given the vastness of wetland and rangeland
areas in the basin, they overshadowed any significant localized shifts in the spatial
distribution of emergy.
Local shifts in emergy use did, however, occur spatially as a result of
management. The largest localized change was due to closure of dairies and
subsequent land use conversion to mainly improved or unimproved beef pasture.
Empower density on these sites fell from 990E13 sej/ac-yr to between 44 and 118E13
sej/ac-yr. Changes in management on dairies from preDairy Rule to dispersed
management increased empower density per cow by 10 percent (only by 1 percent on a
per acre basis), and changes in sugarcane management resulted in an 18 percent
increase in areal empower density. The greatest effect on the emergy flux of the region
was thus attributed to land use change and not management.

146
Comparing Measures of Success for Phosphorus Management
In order for the management of a chemical element to be successful at the basin
scale, specific goals must be set which are flexible enough to be responsive to new
information about the watershed system as it becomes available.
Physical Goals
Traditionally, physical goals have been popular, including target load reductions
to a receiving water body or target runoff concentration standards from specific land
uses. The latter measures are difficult to enforce due to restrictive monitoring costs
and requirements. These physical goals assume that the downstream impact of a
chemical element is well understood which is not always the case. Controversy still
abounds concerning the role that phosphorus from the watershed is playing toward
Lake Okeechobee's degradation, affecting its provisions of potable water and
recreational opportunities (Canfield and Hoyer, 1988). The debate between the
significance of phosphorus contributions from internal cycling versus external loading,
and the role of water level fluctuations have still not been resolved completely.
Assuming that phosphorus does play a role in eutrophication, regardless of the
source, the question of setting a specific average annual target load for the lake arises.
The method applied for Lake Okeechobee as specified in its SWIM Plan was the
modified Vollenweider nutrient loading model (Vollenweider, 1976), which estimates a
critical nutrient loading as a function of the hydraulic loading rate and water residence
time. Applying this model, Federico et al. (1981) estimated that phosphorus inputs to
Lake Okeechobee should be reduced to 397 tons/yr basinwide (north and south of the

147
lake). This loading rate provided the basis for setting an average annual total
phosphorus concentration performance standard of .18 mg P/1 for all inflows to the
lake. By applying the phosphorus assimilation algorithm specified in the SWIM Plan, a
maximum allowable phosphorus runoff concentration performance standard of 1.2 mg/1
was backcalculated for existing land uses.
Recalling from the results of this study (Table 3-14), only the concentrated
phosphorus management scenario was capable of meeting or exceeding the phosphorus
loading standard (adjusted for the north Okeechobee basin only). Yet, the dispersed
phosphorus management scenarios were within 15 percent of the goal. Additional
modification such as changing pasture management (e.g., fertilizing every other year)
might improve the success of these options.
Economic Goals
The economic values of water quality and other services provided by Lake
Okeechobee are not reflected in a market demand function. As a result, there is no
market determination of an "optimal" level of water quality based on equating the
marginal cost of providing lake services with the marginal willingness to pay for lake
services. In such cases, Baumol and Oates' (1975) concept of a second best solution is
relevant, and recognizes the fact that, in the absence of a market based determination
of social economic efficiency (i.e., the first best solution), the government acting as
society's agent must determine the "desired" level of water quality. The second best
solution then entails the economic goal of achieving this level at minimum cost. The
idea of minimizing the cost of achieving a specific level of water quality is known as

148
cost effectiveness. This approach has in essence been adopted for the Lake Okeechobee
SWIM planning process.
In most cost effectiveness analyses, lack of information about key processes
(e.g., physical, biological, behavioral) and their interactions, and lack of control over
stochastic inputs results in significant levels of risk and uncertainty which generate
important cost concerns. One is the cost of being wrong when establishing the target
level. Related is the reliability with which the target level is achieved; costs increase
in relation to the reliability of achieving a given water quality target (McSweeney and
Shortle, 1990). A political concern is associated with the effects of changes in
production practices on the variability of producer's profits (i.e., secondary costs).
Recapping results from this study, changes in investment and operation and
maintenance costs associated with phosphorus management ranged from $4 to 60
million annually (Table 3-14). Secondary costs associated with changes in inputs and
yields accounted for an additional $1 million/yr from base case to dispersed phosphorus
management. Secondary costs were actually negative due to an increase in returns
from compost sale when switching from the maximum phosphorus use scenario to the
base case. The net effect was a cost of $11.36 per lb of phosphorus removed from
basin outflow (Table 3-15). An additional $35 to 49 per lb was required for dispersed
phosphorus management, and $ 190/lb for concentrated management. The base case
scenario had the lowest cost per lb phosphorus removal, but did not meet the target.
These findings also indicate a positive relationship between the water quality goal and
the cost of attainment.

149
Though indirect costs associated with changes in management (e.g., regional
impacts and administrative costs) were not evaluated in this study, they may be very
significant. An example is the regional multiplier effect associated with closure of
dairies in the basin. Mulkey and Clouser (1991) estimated that roughly $50 million
were lost annually in Okeechobee county sales as a result of 19 dairies ceasing
operation. This value did not account for gains associated with the activities replacing
the dairies nor the increase in output of the remaining dairies.
Expanding the boundaries of analysis to include the lake ecosystem, nonmarket
valuation techniques could be applied to estimate the economic benefits of water quality
improvement. As an alternative economic goal, the costs of achieving a desired level
of water quality could then be equated with expected benefits, assuming the physical
linkages are accurate.
Energetic Goals
The above measures of the success of phosphorus management were based on
very specific goals related to the assumption that control of the outflow of a single
chemical element is sufficient to meet the multiple objectives of watershed resource
management. A more holistic approach to managing a nutrient could be taken which
accounts for its cycling, including uses, feedbacks, products, as well as residuals; its
role in the environment; and as a productive part of the economy. The key to this
approach is to apply the appropriate technology which couples the economic, energetic,
and material use of the element. Though indices are useful for comparison, it is

150
important to retain a system's view to understand effects on flows, storages, and
interactions.
Table 4-3 summarizes and allows comparison of the annual emdollar flows of
the regional phosphorus cycle under different scenarios. The whole cycle, storages,
and flows are evaluated in emdollars which may then be compared to the total service
dollars circulating through the region, or to the service dollars spent annually to control
phosphorus.
Emdollars of the whole phosphorus cycle increased with management.
However, the annual flow of emdollars associated with phosphorus imports, exports,
and changes in storage declined with management. Savings in imported emdollars
could perhaps be used elsewhere more productively. The decline in emdollars of
phosphorus storage may be viewed as a loss in the long-run if there is some future
potential value associated with this build-up of phosphorus. This emdollars savings
may also have greater effect used elsewhere. The emdollar value of phosphorus in
exported products was greatest prior to management even though the product mass flow
was lower (Table 4-1). New phosphorus-containing products generated under managed
conditions were recycled and used within the region rather than exported.
Emdollars of phosphorus in storage and runoff are depicted spatially in Figure
4-3. The areal distributions indicate the intensity of phosphorus use throughout the
landscape. Emdollars stored and in runoff represent potential value if contributed

Table 4-3. Summary of Annual Dollar Flows and Emdollar Flows of the Regional Phosphorus Cycle by Scenario.
Scenario
Whole
Phosphorus
Cycle
(E12)
Imported
Phosphorus
(E8)
Onsite
Phosphorus
Storage
(Ell)
Phosphorus
in Products
(E8)
Phosphorus
in Runoff
(E6)
Assimilated
Phosphorus
(Ell)
Basin
Outflow
Phosphorus
(E6)
Total
Service
Dollars
(E10)
-$/yr
Cost of
Phos.
Control
(E6)
Base Case P
Management
3.97
1 80
8.45
8.86
20
1,23
6.4
9.42
13.68
Maximum P Use
2.43
2.12
11.4
9.41
34
1 95
10.8
5.82
9.69
Predevelopment
1.70
—
0.66
—
0.9
0.05
0.3
—
—
Dispersed P
Management 1
4.11
1.79
8 39
5.90
17
1.04
5.4
9.83
15.50
Dispersed P
Management 2
4 11
1.79
7.92
5.90
17
1.01
5.2
9.83
15.83
Concentrated P
Management
4.11
1.80
8.45
8 86
20
1.23
2.0
12.6
73.18

Figure 4-3. Emdollar Flow per Acre Associated with the Annual Change in Onsite Phosphorus Storage and Annual Runoff
Phosphorus under the Base Case Scenario.

PLAN: DR2.PLAN (CURRENT PLAN)
SPATIAL SCALE: LAKE OKEECHOBEE BASIN
STORAGE EMDOLLARS â–¡ > 0 - 25 H > 125 - 160 .
H > 26 - BO m > 180 - 175
11 > 50 - 75 ® > 175 - 200 .
> 76 - 100 Ü > 200 - 226 .
> 100 - 125 â–  > 225
RUNOFF EMDOLLARS (EM$/prod. unit-year)
â–¡ > o - ~~
H> 25
â–¡ > 50
â–¡ >75
ü> loo
25
tH >
125 - 150
50
o>
150 - 176
75
H >
175 - 200
100
B>
200 - 225
- 125
â–  >
225
U>

154
toward productive use. However, it is value lost if exported from the system without
equitable return.
One way to determine whether a phosphorus management technology is
appropriate is to compare the service dollar cost of management to the emdollars saved
as runoff diverted to potentially more productive uses elsewhere in the system. This is
another kind of measure of "cost effectiveness" incorporating the energy embodied in
runoff. Comparison of scenarios based on this measure indicated that roughly 4 EM$
were saved as runoff per service dollar spent on control when switching from
conditions of maximum phosphorus use to base case phosphorus management. An
additional savings of 0.9 and 1.0 EM$/service $ could be achieved under dispersed
phosphorus management designs. Again, the greatest savings per dollar was realized
with base case phosphorus management. The concentrated phosphorus management
scenario manages for basin outflow rather than runoff, and is not comparable in this
context.
Comparison at the dairy land use level indicated that 2.33 to 3.67 EM$ were
invested for each emdollar saved as runoff, with bioreactors at the lower end of the
range and confinement systems at the high end. At this scale, phosphorus management
does not appear to be energetically cost effective. If an actual savings in emdollars of
purchased imports could be achieved by substituting recycled products, these savings
could be counted as a credit which would improved the viability of the dairy
management options.

155
The emdollar value of phosphorus assimilated along the flow path to Lake
Okeechobee and contributed directly to the lake declined by 50 percent with
management. Again, the next larger system which includes the lake must be analyzed
to determine whether this decline is beneficial in terms biogeoeconomic (i.e., physical,
biological, and social) impacts on the downstream system..
Net emergy yield ratios and emergy investment ratios are also useful
comparative measures of the effects of phosphorus management. Management
increased the emergy investment ratio basinwide, indicating more purchased inputs
were required for production per unit environmental input (refer to Figure 3-22).
Management had the greatest effect on dairies, increasing the ratio by as much as 20
percent. There was no appreciable impact on the net emergy yield ratio of the region
due to phosphorus management. Since there were no major shifts away from
agriculture, the yield ratios remained in the typical range of 1 to 2 as observed for
agricultural products.
Comparison of the transformities of products generated under alternative
management scenarios may give a measure of the effect of management on the
efficiency of system productivity. The higher the transformity to produce the same
product the less effective the system is at production. If, however, alternative services
are provided by the system (e.g., reducing phosphorus runoff, generating new products
from residuals), they should be counted to measure the whole system's effectiveness.
Systems have been shown by Odum and Pinkerton (1955) to maximize power at 50
percent efficiency. As an example, sugarcane was produced under the base case

156
scenario with a transformity of 4E4 sej/J (Appendix B, Table B-14). Changing
management to the dispersed scenario increased the transformity by 10 percent
(Appendix B, Table B-15). However, annual yield also increased by 23 percent, and
runoff phosphorus was reduced by more than one-third. Another example was
observed for dairy milk production. A 10 percent increase in transformity was
accompanied by a 75 percent decrease in phosphorus runoff, plus production of an
alternative forage crop. A decline in milk production efficiency was perhaps offset by
gains in phosphorus runoff control, resulting in a net increase in system effectiveness
toward power maximization.
Unnecessary use of resources may be prevented by processing and using the
value of residuals onsite, leaving emergy previously imported for better use elsewhere.
A system may therefore be reorganized through management to achieve multiple
objectives from the next larger systems view.
Summary Comparison of Goals
In summary, from a purely physical standpoint, the concentrated phosphorus
management scenario was by far the most successful, exceeding the target physical goal
for annual lake phosphorus loading by 58 percent. Since both dispersed management
scenarios (designs 1 and 2) reached within 15 percent of the target, they may also be
considered successful with respect to the physical criterion. This deviation from the
average annual target may be assumed to lie within the range of uncertainty associated
with the modeling process. At 34 percent above the target, the base case scenario was
unsuccessful at reaching the physical goal.

157
The economic criterion of minimizing the cost of achieving the physical target
goal would rank the dispersed phosphorus management scenario, design 2 as the most
successful (i.e., the most cost effective with or without secondary costs), followed by
dispersed management design 1, and then the concentrated phosphorus management
scenario. Under dispersed management, most costs of control would be incurred by the
private landowners who were responsible for the increased loading. It is possible that
the cost of concentrated phosphorus management could be passed on to the public since
control occurs at basin outlets and not on private lands. Since the base case scenario
did not meet the target physical goal, it cannot be considered cost effective even though
the cost per pound of phosphorus reduction was least under this scenario.
Based on the energetic criterion of maximizing regional emergy without regard
to phosphorus limitations, the maximum phosphorus use scenario resulted in the
greatest emergy flux to the basin annually (119E20 sej/yr). The emdollar value of
saleable phosphorus-containing products generated under conditions of maximum
phosphorus use was also at a maximum.
Given the imposition of the physical goal for phosphorus management, the most
energetically successful scenario is that which wastes the least emergy or emdollars in
runoff. Both dispersed phosphorus management scenarios resulted in the lowest annual
emdollars of phosphorus runoff basinwide (17E6 EM$/yr). In order to assess whether
the emergy devoted to phosphorus management is beneficial to the region, one should
examine the tradeoff between emergy lost from the region in order to save phosphorus
in runoff. Under dispersed phosphorus management, 387 million EM$/yr were

158
foregone in order to save 17 million EM$/yr of runoff phosphorus and 5.5 million
EM$/yr of basin outflow phosphorus. Under concentrated management, 285 million
EM$ were lost from the basin annually to save 8.8 million EM$ of basin outflow
phosphorus. At the basin scale, the tradeoffs do not appear to be energetic, though
concentrated management appears to be more beneficial. Again, the phosphorus
management goal was set with consideration of the next larger system and must be
evaluated in this context.
General Principles of Biogeoeconomics
The science of ecological economics has had a long history of development
beginning with physicists and chemists in the 19th century (Martinez-Allier, 1990).
The discipline focuses on the role played by the flow of materials and energy through
the economy. General issues related to the interface between material and economic
systems are often addressed. More specifically, the field of biogeoeconomics,
proposed in this study, examines the interactions of one or more chemical elements
with the environment and economy. Biogeoeconomics may be thought of as a "branch"
of ecological economics developed for the specific purpose of managing at this
interface to maximize regional empower. There are also strong linkages to the field of
ecological engineering.
Five key principles are proposed to guide the study of biogeoeconomics as an
outcome of insights gained from the current research.
(1) Where appropriate, couple the biogeochemical cycle of a chemical element to its
economic use across the landscape. It is often necessary to observe the next larger

159
scale to determine whether the cycles are well coupled. Part of a cycle is economic and
part environmental, and the health of both systems is facilitated by good circulation
between them. Good circulation implies that the economy is providing feedbacks to
enhance the use and recycle of the element.
An example of this coupling of economic and material cycles is through the
application of manure management techniques on dairies. Designs to enhance the reuse
of phosphorus through collection and redistribution provided opportunities for the
production of substitutes for phosphorus intensive inputs.
(2) Apply management to redistribute an element throughout the self-organizing
landscape in order to maximize its biogeoeconomic productivity. Let the lower
transformity environment work by doing the low transformity part of the cycle with
free resources such as sun, wind, and rain.
Phosphorus management through the use of ecoreactors (i.e., wetlands) on
dairies provided means to capitalize on the environment's ability to perform the service
of nutrient filtration onsite, also with potential for producing an input substitute. Such
methods stimulate the use of localized resources which contribute to the overall
biogeoeconomic productivity of the landscape.
(3) Design management systems to enhance the spatial heterogeneity of the landscape.
Cycles up and down the energy transformation hierarchy have a spatial pattern
converging into hierarchical centers defined by high empower density and then
diverging out to the lower empower density environments.

160
As an alternative to phosphorus management applied onsite or at the basin
outlet, the natural ability of the system of wetlands, streams, and man-made canals to
absorb phosphorus could be enhanced through the design of "mesoscale" wetland
filtration systems. The theory of arrested succession suggests that self-organization of
the landscape will force eutrophic zones of net production to develop downstream from
nutrient-rich flows (Odum, 1989). These zones could be identified spatially on a map
as junctures of high phosphorus concentration and wetland habitat. Rerouting
phosphorus to these wetland filtration areas, increasing the retention time, perhaps
introducing suitable vegetation, and managing for arrested succession are potential
methods to maximize phosphorus uptake at the mesoscale.
(4) Use the appropriate technology to match the hierarchical position of the element
being managed. Define each technology by the appropriate transformity ranges, and
define the spatial location by the appropriate empower density.
Referring back to Figure 1-3, phosphorus and services interact suitably within a
given range of transformity. The appropriate level of services devoted to phosphorus
management should overlap the range where phosphorus operates in the basin. In other
words, it would not be energetically feasible to invest in a human service intensive
technology of high transformity (i.e., > 1E8 sej/J) to control phosphorus runoff with a
transformity of 8E6 sej/J (Beyers and Odum, 1993). More work should be contributed
from the natural system to manage this element.
(5) Design incentive/disincentive systems that apply to the whole elemental cycle in
the landscape and not just its parts. Monetary and regulatory incentives and

161
disincentives can be used to adjust the high transformity end of the cycle, but incentives
based on emdollar evaluation of a larger matching area are needed to maintain the
lower end of the cycle.
Economic incentive/disincentive approaches include property entitlements,
taxes, and subsidies. Property entitlement incentives in the form of dairy easements
and floodplain buyouts have been used in the basin by District managers. Taxes on
emissions are usually difficult to enforce for nonpoint pollution, but may be possible
for the north Okeechobee basin since the infrastructure for monitoring is already
available at the District. Input taxation (e.g., fertilizer tax) is a viable policy option
since fertilizer and feed account for over 90 percent of the purchased inputs of
phosphorus to the basin. Cost sharing toward the implementation of a new technology
is an example of a subsidy based approach requiring public funds that has already been
implemented in the basin.
Regulatory incentives applied in the basin include technology based standards
defined in the Dairy Rule legislation, and performance standards as discussed
previously. Input restriction through bans (e.g., detergent legislation) or quotas (e.g.,
ceiling on ration phosphorus content) is an example of a regulatory incentive that can
impact the use and distribution of phosphorus basinwide.
More recent policy efforts have introduced the concept of the exchange of
pollution entitlements in which participants may trade their pollution permits or rights
based upon their own productivity (i.e., high value producers have more incentive to

162
pollute). Initial endowments are commonly set based upon historical pollution levels,
though this approach assumes that producers have the "right to pollute".
Phosphorus pollution allowances could perhaps be adjusted based on the emergy
value of phosphorus use which varies spatially across the landscape, based on the
overall objective of maximizing regional empower with respect to phosphorus use.
Marketable pollution rights might be transferred to land areas with lower emergy
investment ratios, thus providing incentives for producers to enhance their use of
environmental inputs. Incentives, particularly subsidies, based on spatial or locational
effect could be designed to encourage activities, systems designs and production where
phosphorus has the greatest positive effect in the landscape. Policy incentives could
therefore consider the whole phosphorus cycle and its interactions with the environment
and the economy.
Suggestions for Future Research
The outcome of this study suggest several avenues for additional research. The
current analysis is over a twenty year time horizon in which phosphorus availability is
assumed to be stable. Simulation modeling of the interactions between phosphorus and
the economy could provide insight into the causality of both long-run and short-run
shifts in the regional phosphorus cycle. For example, the impact of phosphorus
scarcity, as indicated by a model of the global phosphorus cycle and reflected as an
increase in the price of phosphorus-containing inputs, could tighten the local cycle and
force some redistribution. Changes in demand for products as exhibited by price
fluctuations could affect production systems and thus phosphorus use. One could also

163
examine the effects of a change in the distribution of land use, perhaps greater
urbanization or a broader spectrum of agricultural production systems. Finally,
simulation would be useful to examine the long-term physical, environmental, and
economic impacts of regulatory and other incentive programs designed to control
phosphorus.
The scenarios analyzed in this study served as a limited example of possible
alternatives for phosphorus management. Spatial optimization across all land use areas
in the north Okeechobee basin would allow for more choices and more specific
objectives to be tested. Maximizing phosphorus reduction in basin outflow, minimizing
the cost of achieving target phosphorus reduction goals, and maximizing regional
empower are examples of such objective functions. This approach would account not
only for differences in land use types but also for spatial location in the watershed.
There are several other ways to expand the current analysis. One is to broaden
the boundaries to include wetlands and Lake Okeechobee, or even beyond to follow
phosphorus to tide where large quantities of phosphorus can be absorbed. Emergy
evaluation at this scale would allow for new management goals to be set so that
regional emergy maximization would include the environmental services and
productivity of these systems and greater consideration of their opportunity costs.
Behavioral, economic, and regulatory incentives could incorporate these new goals for
regional management. Finally, multiple elements and their interactions could be
examined from a biogeoeconomic perspective. Though phosphorus may currently be

164
limiting, the ratio of essential elements (e.g., carbon:nitrogemphosphorus) may be
more critical from a management perspective in the long run.

APPENDIX A
ASSUMPTIONS AND DATA SOURCES FOR
PHOSPHORUS BUDGETING AND
ECONOMIC ANALYSIS
Beef Pasture
Assumptions
(1)Improved pasture cow density = f (fertilization rate)
Fertilizer rate
Cow density
(lbs P/ac/yr)
(cows/acre)
0
1/7.0
11
1/2.5
17
1/2.0
22
1/1.0
Source: Personal communication: Hendry, Okeechobee, and Osceola County extension
agents.
(2) Unimproved pasture cow density = 1 cow/16 acres
Source: Fonyoetal., 1991
(3) Calving rate = 69 %; 47.6 % sold @ 470 lbs/calf
Source: Fonyoetal., 1991
(4) Culling rate = 10 % @ 1100 lbs/cow
Source: Fonyoetal., 1991
(5) Average stream density of pastureland = 10 ft/acre
Source: U.S. Army Corp of Engineers, 1991
165

166
(6) Average feed supplements
Minerals - 20 lbs/cow/yr
Molasses - 300 lbs/cow/yr
Source: Fonyoetal., 1991
(7) Fencing
Effectiveness - 20 percent reduction in P load per acre
Source: FL. Dept, of Environmental Regulation, 1986
Investment Costs
TOTAL INVESTMENT COSTS ($/ac) = (FM + FL) * SD * 2
where:
FM = fencing materials, S/ft
FL = fencing labor, S/ft
SD = stream density, ft/ac
(1) Fencing
Materials (5-strand barb wire) - $ 0.44/ft
Labor (installation) - $ 0.27/ft
Source: Doane's Agricultural Report, Vol. 54, No. 39-6, 1991
Assume fence life = 15 years
Operations and Maintenance Costs
ANNUAL O&M COSTS ($/ac) = FMN * SD * 2
where:
FMN = fence maintenance, $/ft/yr
SD = stream density, ft/ac
(1) Fencing
Maintenance (assume 10 % of capital) = $ 0.07/ft/yr

167
Secondary Costs
ANNUAL SECONDARY COSTS ($/ac/yr) = (CD * MIS * MIP) + (CD * MOS
* MOP) + (FA + FM * FP) - (CD * CUR * CUW * CUP) - (CD * CAR * CAW
*CAP)
where:
CD = cow density, cows/ac
MIS = minerals, lbs/cow/yr
MIP = mineral price, $/lb
MOS = molasses, lbs/cow/yr
MOP = molasses price, $/lb
FA = fertilizer application cost, $/ac
FM = fertilizer rate, lbs P/ac/yr
FP = fertilizer price, $/lb P
CUR = cull rate, %
CUW = cull cow weight, lbs/cow
CUP = cull cow price, $/lb
CAR = calf rate, %
CAW = calf weight, Ibs/calf
CAP = calf price, $/lb
(1) Feed supplements
Minerals - $ 0.16/lb
Molasses - $ 0.06/lb
Source: Personal communication: Okeechobee feed supplier
(2) Fertilizer
Application - $ 3.25/ac
Material (20-5-10) - $ 127/ton, or $ 2.73/lb P
Source: Personal communication: Okeechobee fertilizer supplier
(3) Cull cows
Liveweight - $ 0.45/lb
Source: Personal communication: Okeechobee livestock market
(4) Calves
Liveweight - $ 0.90/lb
Source: Personal communication: Okeechobee livestock market

168
Dairy
Assumptions
(1)Phosphorus partitioning
BARN
MHP
HIA
Pre Dairy rule
25%
35%
40%
Low tech
25%
35%
40%
Semiconfinement
25%
15%
60%
Confinement
25%
0%
75%
where:
MHP = milking herd pasture
HI A = high intensity area
Source: Soil Conservation Service dairy design plans
(2) Treatment efficiencies
Biochemical treatment (ecoreactor) - 97.6 %
Source: Bion Technologies, 1991
(3) Change in purchased dairy rations
Pre Dairy Rule Average 33 lbs/cow/day @0.5% P
Source: Fonyoetal., 1991
Post Dairy Rule Average 36 lbs/cow/day @ 0.45% P
Source: Boggess, Holt, and Smithwick, 1991
(4) Milk yield effect
Low tech - 0.22 lbs/cow/day increase
Semiconfinement and confinement - 2.4 lbs/cow/day increase
Source: Boggess, Holt, and Smithwick, 1991
(5) Solids production for sale
Semiconfinement - 45 % truckload/cow/yr
Confinement - 56 % truckload/cow/yr
Source: Estimates based on partitioning assumptions

169
Investment Costs
TOTAL INVESTMENT COSTS ($/cow) = SC + ETC
where:
SC = structural cost, $/cow
ETC = effluent treatment cost, $/cow
(1) Structural (including sprayfield)
Low tech $ 712/cow
Semiconfinement $ 977/cow
Confinement $ 1773/cow
Source: Smithwick, 1992
Assume life = 20 years
(2) Effluent treatment
Ecoreactor
Source: Bion Technologies,
Assume life = 10 years
Operations and Maintenance Costs
ANNUAL O&M COSTS ($/cow/yr) = SM + ETM
where:
SM = structural maintenance cost, $/cow/yr
ETM = effluent treatment system maintenance, $/cow/yr
(1) Structural (including sprayfield)
Low tech $ 19/cow/yr
Semiconfinement $ 29/cow/yr
Confinement $ 34/cow/yr
Source: Assume 10 % of annualized capital, plus labor @ (.6 * $ 20,000) for low tech,
and (.75 * $ 20,000) for semiconfinement and confinement; Smithwick, 1992
(2) Effluent treatment
Ecoreactor $ 8.50/cow/yr
Source: Bion Technologies, 1990
$ 30/cow
1990

170
Secondary Costs
ANNUAL SECONDARY COSTS ($/cow/yr) = - (MY * MP) - (SS * SP)
where:
MY = milk yield, lbs/cow/yr
MP = milk price, $/lb
SS = solids sale, truckload/cow/yr
SP = solids price, $/truckload
(1) Milk sales
Raw milk - $ 15.50/cwt
Source: Smithwick, 1992
(2) Solids sale
Average $ 37.50/truckload; 18 tons/truckload
Source: Personal communication: Black Kow, Inc.
Citrus
Assumptions
(1) Tree density
Mature citrus - 120 trees/ac
Young citrus - 140 trees/ac
Source: Fonyoetal., 1991
(2) Yield
Mature citrus (Hamlin oranges) - 460 boxes/ac/yr
Source: Muraro and Holcomb, 1990
Young citrus (Hamlin oranges) - average for first 4 years
Fertilizer application rate
(lbs P/ac/yr)
Yield
(boxes/ac/yr)
22 56
44 67
Source: Muraro and Holcomb, 1990; assume 20 percent inrcease in yield when fertilizer
is doubled

171
(3) Stormwater impoundment
Volume - 2 ac-in/acre
Effectiveness - 30 percent reduction in P load
Source: FL. Dept, of Environmental Regulation, 1986
Investment Costs
TOTAL INVESTMENT COSTS ($/ac) = IC + SWC
where:
IC = irrigation system cost, $/ac
SWC = stormwater impoundment cost, $/ac
(1) Irrigation system
Flood $ 700/ac
Drip $ 875/ac
Microjet $ 1000/ac
Assume life = 15 years
Source: Muraro and Holcomb, 1990
(2) Stormwater impoundment
Investment $ 26/ac
Assume life = 15 years
Source: Bottcher et al., 1983 (adjusted to 1990-91 dollars)
Operations and Maintenance Costs
ANNUAL O&M COSTS ($/ac/yr) - IM + SWM
where:
IM = irrigation maintenance, $/ac/yr
SWM = stormwater impoundment maintenance, $/ac/yr
(1) Irrigation system
Flood $ 95/ac/yr
Drip $ 77/ac/yr
Microjet S 94/ac/yr
Source: Muraro and Holcomb, 1990
(2) Stormwater impoundment
Maintenance $ 6.09/ac/yr
Source: Bottcher et al., 1983 (adjusted to 1990-91 dollars)

172
Secondary Costs
ANNUAL SECONDARY COSTS ($/ac/yr) = (FA + FM * FP) - (TD * CY * CP)
where:
FA = fertilizer application cost, $/ac
FM = fertilizer rate, lbs P/ac/yr
FP = fertilizer price, $/lb P
TD = tree density, trees/ac
CY = citrus yield, boxes/tree/yr
CP = citrus price, $/box
(1) Fertilizer
Application - $ 6.84/ac
Material
Mature citrus (12-2-15) - $ 0.07/lb, or $ 7.95/lb P
Young citrus (8-4-8) - $ 0.08/lb, or $ 4.55/lb P
Source: Muraroetal., 1991
(2) Citrus Sales
On-tree price (4-yr average adjusted to 1990 dollars),
Hamlin oranges - $ 6.57/box
Source: Muraro and Holcomb, 1990
Sugarcane
Assumptions
(1) Rotation practice
Sugarcane is grown in sequence for three years: plant cane, 1st ratoon, and 2nd ratoon,
followed by one year out of rotation. Thus, for a given acre of land classified as
sugarcane production, 75 percent is in cane (25 percent for each ratoon), and 25 percent
is either in rice or sweet corn production, or flooded fallow.
Source: Fonyoetal., 1991
(2) Crop yield
Sugarcane (avg. for 3 years) - 33 tons/ac/yr
Rice - 43.5 cwt/ac/yr
Sweet corn - 250 crates/ac
Source: Fonyoetal., 1991

173
(3) Rice effect
23 percent increase in ratoon cane yield following rice.
Source: Alvarez and Snyder, 1984
Investment Costs
TOTAL INVESTMENT COSTS ($/ac) = 0.25 * RPC
where:
RPC = rotation practice investment costs: rice or sweet corn, if applicable,
$/ac
(1) Rotation practice: Rice
Machinery
Grain drill
Hopper trailer
Combine
$ 2880
$ 7200
S 73500
$ 83580/560 acres = $ 149.25/ac
Life = 10 years
Source: Alvarez, 1992
(2) Rotation practice: Sweet corn
Machinery
Corn planter $ 27.90/ac
Life = 10 years
Source: Smith and Taylor, 1991
Operations and Maintenance Costs
ANNUAL O&M COSTS ($/ac/yr) = 0.25 * RPM
where:
RPM = rotation practice maintenance costs: rice, sweet corn or
flooded fallow, $/ac/yr
(1) Rotation practice: Rice
Machine O&M
Preharvesting costs
Harvesting costs
Hauling and drying
$ 5.97/ac/yr
$ 199.15/ac/yr
$ 4.73/ac/yr
$ 69.44/ac/vr
$ 284.43/ac/yr
Source: Alvarez, 1992

174
(2) Rotation practice: Sweet corn
Machine O&M $ 8.62/ac/yr
Preharvest $ 982.30/ac/yr
Harvest $ 587.50/ac/vr
$ 1569.80/ac/yr
Source: Smith and Taylor, 1991
(3) Rotation practice: Flooded fallow
Flooding $ 16/ac/yr
Source: Alvarez, 1992
Secondary Costs
ANNUAL SECONDARY COSTS ($/ac/yr) = (0.25 * FM1 + 0.25 * FM2 + 0.25 *
FM3) * FP + (0.75 * CY * CHP) - (0.75 * CY * CP) -(0.25 * RCY * RCP)
where:
FM1 = plant cane fertilizer rate, lbs P/ac/yr
FM2 = first ratoon cane fertilizer rate, lbs P/ac/yr
FM3 = second ratoon cane fertilizer rate, lbs P/ac/yr
FP = cane fertilizer price. S/lb P
CY = average cane yield, tons/ac/yr (includes rice effect, if
applicable)
CHP = cane harvesting cost, $/ton cane
CP = cane price, S/ton
RCY = rotation crop yield, lbs/ac/yr
RCP = rotation crop price, $/lb
(1) Fertilizer
Material
Cane (0-10-40) - $ 0.07/lb, or $ 1.60/lb P
Source: Alvarez and Schueneman, 1991
(2) Cane harvesting
$ 12.63/ton
Source: Alvarez and Schueneman, 1991
(3) Cane sales
$ 31.50/ton
Source: Florida Agricultural Statistics Service, 1992a

175
(4) Rotation crop sales
Unprocessed rough rice - $ 10.30/cwt
Source: Personal communication: Semchi Rice Company
Sweet corn - $ 6.64/crate (5-year average)
Source: Florida Agricultural Statistics Service, 1992b
Point Source - Sewage Treatment Plant (STP)
Assumptions
(1)Average operating parameters for Okeechobee STP
Avg. flow rate - 1 MGD (365 MGY)
Avg. influent TP concentration - 8 mg/1 (66 lbs/MG)
Avg. effluent TP concentration (surface discharge) - 4.9 mg/1 (40.4 lbs/MG)
Source: Personal communication: Okeechobee sewage treatment plant operator
Basin Scale - Chemical Treatment
Assumptions
(1) Apply at S-191 basin outlet
(2) Operating parameters
200 MGD alum precipitation plant
8800 acre in-lake retention basin
Source: FL. Dept, of Environmental Regulation, 1986
(3) Treatment efficiency
89 % TP removal
Source: FL. Dept, of Environmental Regulation, 1986
Investment Costs
TOTAL INVESTMENT COSTS ($) = TPC + RBC
where:
TPC = treatment plant investment cost, $
RBC = retention basin investment cost, $
(l) Alum precipitation plant
Investment (adjusted to 1990 dollars) - $ 34.9 million
Life = 20 years
Source: FL. Dept, of Environmental Regulation, 1986

176
(2) In-lake retention basin, 8800 acres
Investment (adjusted to 1990 dollars) - $ 17.2 million
Life = 30 years
Source: FL. Dept, of Environmental Regulation, 1986
Operations and Maintenance Costs
ANNUAL O&M COSTS ($/yr) = TPM
where:
TPM = treatment plant O&M costs, S/yr
(1) Alum precipitation plant
O&M (adjusted to 1990 dollars) - $ 3.8 million/yr
Source: FL. Dept, of Environmental Regulation, 1986

APPENDIX B
PHOSPHORUS MANAGEMENT
EMERGY EVALUATION TABLES

Table B-l. Emergy Evaluation of an Acre of Citrus: Mature Trees; 9 lbs P/ac-yr; Drip Irrigation; without Impoundment.
Note
Item
Value Raw Unit
(ac-yr)-l
Solar
Transformity
(sej/uiiit)
Solar
Emergy
(E13 sej/ac-yr)
Phosphorus
Content
(grams P/ac)
Phosphorus
Emergy/Mass
(E12 sej/g P)
1
Sunlight
2.19E + 13 J
1
2
0
X
2
Ram, chemical
2.54E +10 J
1.54E+04
39
514.0
0.76
3
Irrigation water
4.32E + 09 J
1.54E+04
7
87.4
0.76
4
Fuel
2.07E +10 J
6.6E+04
137
0
X
5
Electricity
1.9E+08 J
1.6E+05
3
0
X
6
Pesticide
3.11E+09 J
6.6E+04
21
0
X
7
N Fertilizer
1.82E + 08 J
1.69E+06
31
0
X
8
P Fertilizer
1.42E+06 J
4.14E+07
6
4080.0
0.014
9
K Fertilizer
5.2E+07 J
2.62E+06
14
0
X
10
Lime
9.7E+04 g
1.00E+09
10
0
X
11
Services
874 $
1.55E + 12
135
0
X
12
401
13
Citrus sold
3.85E+10 J
1.04E+05
401
3190.0
1.26
14
Runoff
X
X
X
725.8
X
15
Basin outflow
X
X
X
267.5
X

179
Footnotes to Table B-l. Citrus without Impoundment.
1. Sunlight. 129 kcal/cnf-yr (Odum et al., 1981)
(129 kcal/cm:-yr)(lE4 cnr/m;)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Ram, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(507yr)(2.54 cm/m)(.01 m/cm)(4047 m:/ac)(lE6 g/m')(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Irrigation water. 8.5 ”/yr (Hazen and Sawyer, 1994)
(8.5’7yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m’)(4.94 J/g) = 4.32E9 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (assumed equal to ram water)
4. Fuel. 151.1 gal/ac-yr (Fluck et al., 1992); 137E6 J/gal (Odum and Ardmg, 1991)
(151.1 gal/ac-yr)(137E6 J/gal) = 2.07E 10 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 52.7 kwh/ac-yr (Fluck et al., 1992)
(52.7 kwh/ac-yr)(3.6E6 J/kwh) = 1.9E8 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al.. 1987)
6. Insecticide and other chemicals. 20 lbs/ac-yr (Fluck et al. 1992); 87 kcal/g (Pimentel, 1980)
(20 lbs/ac-yr)(453.6 g/lb)(87 kcal/g)(4186 J/kcal) = 3.11E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1983)
7. Nitrogen fertilizer. 162 lbs/ac-yr (Koo,1984); 2.48E3 J/gN (Odum et al., 1983)
(162 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 1.82E8 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al., 1983)
8. Phosphorus fertilizer. 9 lbs/ac-yr (Koo, 1984); 348 J/gP (Odum et al., 1983)
(9 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 1.42E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
9. Potash fertilizer. 162 lbs/ac-yr (Koo, 1984); 702 J/g (Odum et al., 1983)
(162 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 5.16E7 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
10. Lime. 214 lbs/ac-yr (Fluck et al., 1992)
(214 lbs/ac-yr)(453.6 g/lb) = 9.7E4 g/ac-yr
Transformity = 1E9 sej/g (Odum, 1992)
11. Annual costs for human services. $874/ac-yr (Muraro and Holcomb, 1993)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
12. Emergy total = sum of 2 through 11 above
13. Citrus sold. 460 boxes/ac-yr @ 90 lbs/box (Muraro and Holcomb, 1993); .49 kcal/g (Pimentel,
1980)
(41400 lbs/ac-yr)(453.6 g/lb)(.49 kcal/g)(4186 J/kcal) = 3.85E10 J/ac-yr
Phosphorus content = .017 % (Watt and Merrill, 1985)
14. Runoff. Average runoff volume = 9.34 7yr (CREAMS-WT results, this study)
(9.347yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/nv’)(4.94 J/g) = 4.74E9 J/ac-yr
Phosphorus in runoff = 1.6 lbs/ac-yr (CREAMS-WT results, this study)
15. Basm outflow. Same volume as runoff
Phosphorus outflow = .59 lbs/ac-yr

Table B-2. Emergy Evaluation of an Acre of Citrus: Mature Trees; 9 lbs P/ac-yr; Drip Irrigation; with Impoundment.
Note
Item
Value Raw Unit
(ac-yr)-l
Solar
Transform ity
(sej/unit)
Solar
Emergy
(El3 sej/ac-yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P/ac) (El2 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Irrigation water
4.32E+09 J
1.54E+04
7
87.4
0.76
4
Fuel
2.07E+10 J
6.6E + 04
137
0
X
5
Electricity
1.9E+08 J
1.6E+05
3
0
X
6
Pesticide
3.11E+09 J
6.6E+04
21
0
X
7
N Fertilizer
1.82E+08 J
1.69E+06
31
0
X
8
P Fertilizer
1.42E+06 J
4.14E+07
6
4080.0
0.014
9
K Fertilizer
5.2E+07 J
2.62E + 06
14
0
X
10
Lime
9.7E + 04 g
1.00E+09
10
0
X
11
Services
883 S
1.55E + 12
137
0
X
12
403
13
Citrus sold
3.85E+10 J
1.05E+05
403
3190.0
1.26
14
Runoff
X
X
X
508.0
X
15
Basin outflow
X
X
X
187.2
X

181
Footnotes to Table B-2. Citrus with Impoundment.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cm:-yr)(lE4 cnv7m;)(4047 m;/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Rain, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(50"/yr)(2.54 cm/m)(,01 m/cm)(4047 m;/ac)(lE6 g/m5)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Irrigation water. 8.5 7yr (Hazen and Sawyer, 1994)
(8.5"/yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m')(4.94 J/g) = 4.32E9 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (assumed equal to rain water)
4. Fuel. 151.1 gal/ac-yr (Fluck et al., 1992); 137E6 J/gal (Odum and Arding, 1991)
(151.1 gal/ac-yr)(137E6 J/gal) = 2.07E10 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 52.7 kwh/ac-yr (Fluck et al., 1992)
(52.7 kwh/ac-yr)(3.6E6 J/kwh) = 1.9E8 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Insecticide and other chemicals. 20 lbs/ac-yr (Fluck et al. 1992); 87 kcal/g (Pimentel, 1980)
(20 lbs/ac-yr)(453.6 g/lb)(87 kcal/g)(4186 J/kcal) = 3.11E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1983)
7. Nitrogen fertilizer. 162 lbs/ac-yr (Koo,1984); 2.48E3 J/gN (Odum et al.. 1983)
(162 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 1.82E8 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al., 1983)
8. Phosphorus fertilizer. 9 lbs/ac-yr (Koo, 1984); 348 J/gP (Odum et al., 1983)
(9 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 1.42E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
9. Potash fertilizer. 162 lbs/ac-yr (Koo, 1984); 702 J/g (Odum et al., 1983)
(162 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 5.16E7 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
10. Lime. 214 lbs/ac-yr (Fluck et al., 1992)
(214 lbs/ac-yr)(453.6 g/lb) = 9.7E4 g/ac-yr
Transformity = 1E9 sej/g (Odum, 1992)
11. Annual costs for human services. $874/ac-yr (Muraro and Holcomb, 1993) plus annualized
investment and O&M costs of impoundment $9/ac-yr (this study) = $883/ac-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
12. Emergy total = sum of 2 through 11 above
13. Citrus sold. 460 boxes/ac-yr @ 90 lbs/box (Muraro and Holcomb, 1993); .49 kcal/g (Pimentel,
1980)
(41400 lbs/ac-yr)(453.6 g/lb)(.49 kcal/g)(4186 J/kcal) = 3.85E10 J/ac-yr
Phosphorus content = .017 % (Watt and Merrill, 1985)
14. Runoff. Average runoff volume = 9.34 7yr (CREAMS-WT results, this study)
(9.347yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 4.74E9 J/ac-yr
Phosphorus m runoff =1.12 lbs/ac-yr (CREAMS-WT results, this study)
15. Basm outflow. Same volume as runoff
Phosphorus outflow = .41 lbs/ac-yr

Table B-3. Emergy Evaluation of an Acre of Improved Beef Pasture: 11 lbs P/ac-yr; 2.5 ac/cow; No Fence.
Note
Item
Value Raw Unit
(ac-yr)-l
Solar
Transform ity
(sej/unit)
Solar
Emergy
(El3 sej/ac-yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P/ac) (E12 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Fuel
8.90E+08 J
6.6E+04
6
0
X
4
Electricity
4.1E+08 J
1.6E+05
6
0
X
5
N Fertilizer
3.37E+07 J
1.69E+06
6
0
X
6
P Fertilizer
1.74E+06 J
4.14E+07
7
5000.0
0.014
7
K Fertilizer
9.6E+06 J
2.62E+06
3
0
X
8
Lime
2.3E+05 g
1.00E+09
23
0
X
9
Minerals
6.1E+07 J
8.10E+04
0
290.3
0.017
10
Molasses
9.1E+08 J
8.1E+04
7
272.2
0.27
11
Services
134.67 $
1.55E+12
21
0
X
12
118
13
Livestock sold
7.17E+08 J
1.65E+06
118
407.2
2.90
14
Runoff
X
X
X
861.8
X
15
Basin outflow
X
X
X
265.7
X

183
Footnotes to Table B-3. Improved Beef Pasture: 11 lbs P/ac; 2.5 ac/cow; No Fence.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cm2-yr)( 1E4 cnr/m2)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Rain, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water. 4.94 J/g.
(50’7yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel. 6.5 gal/ac-yr (Giesy and Holt, 1993); 137E6 J/gal (Odum and Ardmg, 1991)
(6.5 gal/ac-yr)(137E6 J/gal) = 8.9E8 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
4. Electricity. 113 kwh/ac-yr (Giesy and Holt, 1993)
(113 kwh/ac-yr)(3.6E6 J/kwh) = 4.07E8 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
5. Nitrogen fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 2.48E3 J/gN (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 3.37E7 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al., 1983)
6. Phosphorus fertilizer. 11 lbs/ac-yr (this study); 348 J/gP (Odum et al., 1983)
(11 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 1.74E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
7. Potash fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 702 J/g (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 9.55E6 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
8. Lime. 500 lbs/ac-yr (Prevan, 1981)
(500 lbs/ac-yr)(453.6 g/lb) = 2.27E5 g/ac-yr
Transformity = 1E9 sej/g (Odum. 1992)
9. Minerals. 20 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(20 lbs/cow-yr)( 1 cow/2.5 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 6.08E7 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = 8 % (product label)
10. Molasses. 300 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(300 lbs/cow-yr)( 1 cow/2.5 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 9.11E8 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = .5 % (product label)
11. Annual costs for human services. $134.67/ac-yr (Giesy and Holt, 1993; adjusted for cow density)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
12. Emergy total = sum of 2 through 11 above
13. Livestock sold. 134 lbs/ac (this study); 2.82 kcal/g (Odum and Odum, 1987)
(134 lbs/ac-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 7.17E8 J/ac-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
14. Runoff. Average runoff volume = 10.5 "/yr (CREAMS-WT results, this study)
(10.57yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 5.33E9 J/ac-yr
Phosphorus in runoff = 1.9 lbs/ac-yr (CREAMS-WT results, this study)
15. Basin outflow. Same volume as runoff
Phosphorus outflow = .59 lbs/ac-yr

Table B-4 . Emergy Evaluation of an Acre of Improved Beef Pasture: 11 lbs P/ac-yr; 2.5 ac/cow; Fenced.
Note
Item
Value Raw Units
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar Phosphorus Phosphorus
Emergy Content Emergy/Mass
(E13 sej/ac-yr) (grams P/ac) (E12 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Fuel
8.90E+08 J
6.6E+04
6
0
X
4
Electricity
4.1E+08 J
1.6E+05
6
0
X
5
N Fertilizer
3.37E+07 J
1.69E+06
6
0
X
6
P Fertilizer
1.74E+06 J
4.14E+07
7
5000.0
0.014
7
K Fertilizer
9.6E+06 J
2.62E+06
3
0
X
8
Lime
2.3E+05 g
1.00E+09
23
9
Minerals
6.1E+07 J
8.10E+04
0
290.3
0.017
10
Molasses
9.1E+08 J
8.1E+04
7
272.2
0.27
11
Fencing
1.4E+05 J
1.8E+07
0
0
X
12
Services
137.4 $
1.55E+12
21
0
X
13
119
14
Livestock sold
7.17E+08 J
1.66E+06
119
407.2
2.92
15
Runoff
X
X
X
689.5
X
16
Basin outflow
X
X
X
212.6
X

185
Footnotes to Table B-4. Improved Beef Pasture: 11 lbs P/ac; 2.5 ac/cow; Fenced.
1. Sunlight. 129 kcal/cm;-yr (Odum et al., 1981)
(129 kcal/cm;-yr)(lE4 cm7m:)(4047 nf/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transfomuty = 1
2. Rain, chemical. 50 7yr (SFWMD. 1989); Gibbs free energy of fresh water. 4.94 J/g.
(50"/yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m’)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel. 6.5 gal/ac-yr (Giesy and Holt, 1993); 137E6 J/gal (Odum and Ardmg, 1991)
(6.5 gal/ac-yr)(137E6 J/gal) = 8.9E8 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
4. Electricity. 113 kwh/ac-yr (Giesy and Holt, 1993)
(113 kwh/ac-yr)(3.6E6 J/kwh) = 4.07E8 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
5. Nitrogen fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 2.48E3 J/gN (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 3.37E7 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al., 1983)
6. Phosphorus fertilizer. 11 lbs/ac-yr (this study); 348 J/gP (Odum et al., 1983)
(11 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 1.74E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
7. Potash fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 702 J/g (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 9.55E6 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
8. Lime. 500 lbs/ac-yr (Prevan, 1981)
(500 lbs/ac-yr)(453.6 g/lb) = 2.27E5 g/ac-yr
Transformity = 1E9 sej/g (Odum, 1992)
9. Minerals. 20 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(20 lbs/cow-yr)(l cow/2.5 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 6.08E7 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = 8 % (product label)
10. Molasses. 300 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(300 lbs/cow-yr)(l cow/2.5 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 9.11E8 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = .5 % (product label)
11. Fencing. 10 ft/ac (this study); .31bs/ft (estimate); 90.4E6 J/to^ (Odum et al., 1983)
(10 ft/ac)(.3 lb/ft)(ton/2000 lbs)(90.4E6 J/ton) = 1.36E5 J/ac-yr
Transformity of iron and steel = 1.84E7 sej/J (Odum et al., 1983)
12. Annual costs for human services. $134.67/ac-yr (Giesy and Holt, 1993; adjusted for cow density)
plus $2.73/ac-yr fencing costs (Doane's Agricultural Report, 1991) = $137.40/ac-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
13. Emergy total = sum of 2 through 12 above
14. Livestock sold. 134 lbs/ac (this study); 2.82 kcal/g (Odum and Odum, 1987)
(134 lbs/ac-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 7.17E8 J/ac-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
15. Runoff. Average runoff volume = 10.5 7yr (CREAMS-WT results, this study)
(10.57yr)(2.54 cm/m)(.01 m/cm)(4047 m;/ac)(lE6 g/m3)(4.94 J/g) = 5.33E9 J/ac-yr
Phosphorus in runoff = 1.52 lbs/ac-yr (CREAMS-WT results, this study)
16. Basin outflow. Same volume as runoff
Phosphorus outflow = .47 lbs/ac-yr

Table B-5. Emergy Evaluation of an Acre of Improved Beef Pasture: 17 lbs P/ac-yr; 2 ac/cow; No Fence.
Note
Item
Value Raw Units
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar Phosphorus Phosphorus
Emergy Content Emergy/Mass
(El3 sej/ac-yr)(grams P/ac) (El2 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E + 04
39
514
0.76
3
Fuel
8.90E+08 J
6.6E+04
6
0
X
4
Electricity
4.1E+08 J
1.6E+05
6
0
X
5
N Fertilizer
3.37E+07 J
1.69E+06
6
0
X
6
P Fertilizer
2.68E+06 J
4.14E+07
11
7710.0
0.014
7
K Fertilizer
9.6E+06 J
2.62E+06
3
0
X
8
Lime
2.3E+05 g
1.00E+09
23
9
Minerals
7.6E+07 J
8.10E+04
1
362.8
0.017
10
Molasses
1.1E+09 J
8.1E+04
9
340.2
0.27
11
Services
153.17 $
1.55E+12
24
0
X
12
127
13
Livestock sold
8.94E+08 J
1.42E+06
127
507.5
2.50
14
Runoff
X
X
X
1271.0
X
15
Basin outflow
X
X
X
390.3
X

187
Footnotes to Table B-5. Improved Beef Pasture: 17 lbs P/ac; 2 ac/cow; No Fence.
1. Sunlight. 129 kcal/cm;-yr (Odum et al., 1981)
(129 kcal/cm:-yr)(lE4 cm2/m2)(4047 m2/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Ram, chemical. 50'7yr (SFWMD, 1989); Gibbs free energy of firesh water, 4.94 J/g.
(50 7yr)(2.54 cm/in)(.01 m/cm)(4047 m2/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel. 6.5 gaFac-yr (Giesy and Holt, 1993); 137E6 J/gal (Odum and Ardrng, 1991)
(6.5 gal/ac-yr)(137E6 J/gal) = 8.9E8 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
4. Electricity. 113 kwh/ac-yr (Giesy and Holt, 1993)
(113 kwh/ac-yr)(3.6E6 J/kwh) = 4.07E8 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
5. Nitrogen fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 2.48E3 J/gN (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 3.37E7 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al., 1983)
6. Phosphorus fertilizer. 17 lbs/ac-yr (this study); 348 J/gP (Odum et al., 1983)
(17 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 2.68E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
7. Potash fertilizer. 30 lbs/ac-yr (Gutierrez, 1978); 702 J/g (Odum et al., 1983)
(30 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 9.55E6 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
8. Lime. 500 lbs/ac-yr (Prevatt, 1981)
(500 lbs/ac-yr)(453.6 g/lb) = 2.27E5 g/ac-yr
Transformity = 1E9 sej/g (Odum. 1992)
9. Minerals. 20 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(20 lbs/cow-yr)(l cow/2 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 7.6E7 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = 8 % (product label)
10. Molasses. 300 lbs/cow-yr (tins study); 4 kcal/g (assumed equal to sugar)
(300 lbs/cow-yr)( 1 cow/2 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.14E9 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = .5 % (product label)
11. Annual costs for human services. $153.17/ac-yr (Giesy and Holt, 1993)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard. 1992)
12. Emergy total = sum of 2 through 11 above
13. Livestock sold. 167 lbs/ac (this study); 2.82 kcal/g (Odum and Odum, 1987)
(167 lbs/ac-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 8.94E8 J/ac-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
14. Runoff. Average runoff volume = 10.4 7yr (CREAMS-WT results, this study)
(10.47yr)(2.54 cm/in)(.()l m/cm)(4047 m2/ac)(lE6 g/m3)(4.94 J/g) = 5.28E9 J/ac-yr
Phosphorus in runoff = 2.8 lbs/ac-yr (CREAMS-WT results, this study)
15. Basin outflow. Same volume as runoff
Phosphorus outflow = .86 lbs/ac-yr

Table B-6. Emergy Evaluation of an Acre of Unimproved Beef Pasture: No Fertilizer; 16 ac/cow; No Fence.
Note
Item
Value Raw Units
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar Phosphorus Phosphorus
Emergy Content Emergy/Mass
(E13 sej/ac-yr) (grams P/ac) (E12 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Fuel
1.11E+08 J
6.6E + 04
1
0
X
4
Electricity
5.1E+07 J
1.6E+05
1
0
X
5
Minerals
9.5E+06 J
8.10E+04
0
45.4
0.017
6
Molasses
1.4E+08 J
8.1E+04
1
42.5
0.27
7
Services
16.83 $
1.55E+12
3
0
X
8
44
9
Livestock sold
1.12E+08 J
3.93E+06
44
63.8
6.89
10
Runoff
X
X
X
303.9
X
11
Basin outflow
X
X
X
81.6
X

189
Footnotes to Table B-6. Unimproved Beef Pasture: No Fertilizer; 16 ac/cow; No Fence.
1. Sunlight. 129 kcal/cnr-yr (Odum et al., 1981)
(129 kcal/cnr-yr)(lE4 cm:/m:)(4047 m;/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity - 1
2. Ram, chemical. 50 "/yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(50'7yr)(2.54 cm/in)(.()l m/cm)(4047 nr/ac)(lE6 g/m')(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odumetal., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel. .63 gal/ac-yr (Giesy and Holt, 1993; adjusted for cow density); 137E6 J/gal (Odum and
Arding, 1991)
(.63 gal/ac-yr)(137E6 J/gal) = 1.11E8 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
4. Electricity. 14.13 kwh/ac-yr (Giesy and Holt, 1993; adjusted for cow density)
(14.13 kwh/ac-yr)(3.6E6 J/kwh)(2/16) = 5.1E7 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
5. Minerals. 20 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(20 lbs/cow-yr)(l cow/16 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 9.49E6 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphorus content = 8 % (product label)
6. Molasses. 300 lbs/cow-yr (this study); 4 kcal/g (assumed equal to sugar)
(300 lbs/cow-yr)( 1 cow/16 ac)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.42E8 J/ac-yr
Transformity (assumed equal to sugar) = 8.1E4 sej/J (Odum et al., 1983)
Phosphoms content = .5 % (product label)
7. Annual costs for human services. $16.83/ac-yr (Giesy and Holt, 1993; adjusted for cow density)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Livestock sold. 21 lbs/ac (tins study); 2.82 kcal/g (Odum and Odum, 1987)
(21 Ibs/ac-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 1.12E8 J/ac-yr
Phosphoms content = .67 % (Khasawneh et al., 1986)
10. Runoff. Average runoff volume = 12 "/yr (CREAMS-WT results, this study)
(127yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 6.09E9 J/ac-yr
Phosphoms m runoff = .67 lbs/ac-yr (CREAMS-WT results, this study)
11. Basm outflow. Same volume as runoff
Phosphoms outflow = .18 lbs/ac-yr

Table B-7. Emergy Evaluation of a PreDairy Rule Dairy.
Solar Solar Phosphorus Phosphorus
Note Item Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (E13 sej/cow-yr)(grams P/cow) (E12 sej/g P)
1
Sunlight
2.39E+13 J
1
2
0
X
2
Rain, chemical
2.77E+10 J
1.54E+04
43
561
0.76
3
Fuel
6.90E+08 J
6.6E + 04
5
0
X
4
Electricity
1.6E+09 J
1.6E+05
25
0
X
5
P Fertilizer
4.74E+05 J
4.14E+07
2
1361.0
0.014
6
Feed
9.7E+10 J
6.8E+04
660
28974.0
0.23
7
Services
2152.94 $
1.55E+12
334
0
X
8
1068
9
Milk yield
1.73E+11 J
6.17E+04
1068
7699.0
1.39
10
Liveweight sold
2.88E+09 J
3.71E+06
1068
1634.0
6.54
11
Runoff
X
X
X
8333.0
X
12
Basin outflow
X
X
X
3302.0
X

Footnotes to Table B-7. PreDatry Rule Dairy.
1. Sunlight. 129 kcal/cm;-yr (Oduni et al., 1981)
(129 kcal/cnr-yr)( 1E4 cm2/nr)(4047 m2/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(36431 ac/33400 cows) = 2.39E13 J/cow-yr
Transfornuty = 1
2. Ram, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(507yr)(2.54 cm/tn)(.()l m/cm)(4047 m2/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(36431 ac/33400 cows) = 2.77E10 J/cow-yr
Transfornuty = 1.54E4sej/J (Odumetal., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel. 5.04 gal/cow-yr (Fluck et al., unpublished); 137E6 J/gal (Odum and Ardmg, 1991)
(5.04 gal/cow-yr)(137E6 J/gal) = 6.9E8 J/cow-yr
Transfornuty = 6.6E4 sej/J (Odum et al., 1987)
4. Electricity. 440 kwh/cow-yr (Fluck et al., unpublished)
(440 kwh/cow-yr)(3.6E6 J/kwh) = 1.58E9 J/cow-yr
Transfornuty = 1.59E5 sej/J (Odum et al., 1987)
5. Phosphorus fertilizer. 3 lbs/cow-yr (this study); 348 J/gP (Odum et al., 1983)
(3 lbs/cow-yr)(453.6 g/lb)(348 J/g) = 4.74E5 J/cow-yr
Transfornuty = 4.14E7 sej/J (Odum et al., 1983)
6. Feed. 12775 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(12775 lbs/cow-yr)(453.6 g/Ib)(4 kcal/g)(4186 J/kcal) = 9.7E10 J/cow-yr
Transfornuty (assumed equal to coni) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .5 % (this study)
7. Annual costs for human services. $2152.94/cow-yr (Fluck et al., unpublished)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pntchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 18250 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(18250 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.73E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
11. Runoff. Average runoff volume = 10.77 ac-in/cow-yr (CREAMS-WT results, this study)
(10.77 ac-m/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 m2/ac)(lE6 g/m’)(4.94 J/g) = 5.47E9 J/cow
Phosphorus m runoff = 18.37 lbs/cow-yr (CREAMS-WT results, this study)
12. Basin outflow. Same volume as runoff
Phosphorus outflow = 7.28 lbs/cow-yr

Table B-8. Emergy Evaluation of a Low Tech Dairy; with Sprayfield; Solids Spread.
Note
Item
Solar Solar Phosphorus Phosphorus
Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (E13 sej/cow-yr)(grams P/cow) (E12 sej/g P)
1
Sunlight
2.62E+13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
8.23E+08 J
1.54E + 04
1
3878.0
0.003
4
Fuel
8.60E+08 J
6.6E+04
6
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2301.16 $
1.55E+12
357
0
X
8
1150
9
Milk yield
1.74E+11 J
6.61E+04
1150
7730.0
1.49
10
Liveweight sold
2.88E+09 J
3.99E+06
1150
1634.0
7.04
11
Forage production
1.55E+10 J
7.42E+05
1150
2540.0
4.53
12
Runoff
X
X
X
2077.0
X
13
Basin outflow
X
X
X
653.2
X

193
Footnotes to Table B-8. Low Tech Dairy; Sprayfield; Solids Spread.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cnr-yr)(lE4 cnr/m;)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transfomuty = 1
2. Ram, chemical. 50 "/yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(50"/yr)(2.54 cm/in)(.01 m/cm)(4047 m;/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transfomuty = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-m/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.285 (proportion to the sprayfield)/60 lb P/ac-yr sprayfield application
rate = . 14 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-in/ac-yr)(.14 ac/cow)(2.54 cm/in)(.01 m/cm)(4047 nf/ac)(lE6 g/m3)(4.94 J/g) = 8.23E8
J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphoms content = 8.55 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baseline consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baseline fuel use/non-feed services tunes additional services for the
practice; 137E6 J/gal (Odum and Arding, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($l48.22/cow-yr)(137E6 J/gal) = 8.6E8 J/cow-yr
Transfomuty = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baseline consumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(.l ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to cora) = 6.8E4 sej/J (Odum et al., 1983)
Phosphoms content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Fluck et al., unpublished), plus
$112.67/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevart and Mislevy, 1990) tunes acreage sprayfield
plus spreading area per cow
($2152.94/cow-yr) + ($112.67/cow-yr) + ($107.74/ac-yr)(.33 ac/cow) = $2301.16/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 18323 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(18323 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.74E11 J/cow-yr
Phosphoms content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphoms content = .67 % (Khasawneh et al.. 1986)
11. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .33 acres sprayfield plus spreading area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.33ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.55E10 J/cow-yr
Phosphoms content = .28% (Dinkier, 1990)
12. Runoff. Average runoff volume = 12.34 ac-in/cow-yr (CREAMS-WT results, this study)
(12.34 ac-in/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 m;/ac)(lE6 g/m3)(4.94 J/g) = 6.27E9 J/cow-yr
Phosphoms in runoff = 4.58 lbs/cow-yr (CREAMS-WT results, this study)

194
Footnotes to Table B-8. Low Tech Dairy; Sprayfield; Solids Spread (continued).
13. Basin outflow. Same volume as runoff
Phosphorus outflow = 1.44 lbs/cow-yr

Table B-9. Emergy Evaluation of a Low Tech Dairy; with Sprayfield and Ecoreactor; Solids Spread.
Note
Item
Solar Solar Phosphorus Phosphorus
Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (E13 sej/cow-yr)(grams P/cow) (E12 sej/g P)
1
Sunlight
2.62E + 13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
3.55E+07 J
1.54E+04
0.05
154.2
0.004
4
Fuel
8.56E+08 J
6.6E+04
6
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2297.58 $
1.55E+12
356
0
X
8
1148
9
Milk yield
1.74E+11
6.60E-I-04
1148
7730.0
1.49
10
Liveweight sold
2.88E+09 i
3.99E+06
1148
1634.0
7.03
11
Forage production
8.95E+09 J
1.28E+06
1148
1496.0
7.67
12
Wetland production
2.00E+09 J
5.74E+06
1148
335.3
34.24
13
Runoff
X
X
X
1397.0
X
14
Basin outflow
X
X
X
417.3
X

196
Footnotes to Table B-9. Low Tech Dairy; Sprayfteltl plus Ecoreactor; Solids Spread.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cm;-yr)(lE4 cnr/m:)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transformity = 1
2. Ram, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(507yr)(2.54 cm/in)(.01 m/cm)(4047 m;/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-m/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.285 *.04 (proportion to the sprayfield)/60 lb P/ac-yr sprayfield
application rate = .006 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-m/ac-yr)(.006 ac/cow)(2.54 cm/m)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 3.55E7
J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .34 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baselme consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baseline fuel use/non-feed services tunes additional services for the
practice; 137E6 J/gal (Odum and Arding, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($144.64)/cow-yr)(137E6 J/gal) = 8.56E8 J/cow-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baselme consumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(. 1 ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (tins study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to com) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Fluck et al., unpublished), plus
$124.17/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevatt and Mislevy, 1990) times acreage sprayfield
plus spreading area per cow
($2152.94/cow-yr) + ($124.17/cow-yr) + ($ 107.74/ac-yr)(. 19 ac/cow) = $2297.58/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 18323 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(18323 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.74E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (tliis study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Kliasawneh et al., 1986)
11. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .19 acres sprayfield plus spreading area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.19ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 8.95E9 J/cow-yr
12. Wetland production. Approximately .01 acre ecoreactor/cow (Bion, 1991); Typha net primary
production 30 Mg/ha (Lakshman, 1987) = 26400 lbs/ac * .01 ac/cow = 264 lbs/cow
(264 lbs/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 2E9 J/cow-yr
Phosphorus content = .28% (assume equal to forage sorghum P content)

Footnotes to Table B-9. Low Tech Dairy; Sprayfield plus Ecoreactor; Solids Spread (continued).
13. Runoff. Average runoff volume = 9.33 ac-in/cow-yr (CREAMS-WT results, this study)
(9.33 ac-in/cow-yr)(2.54 cm/in)(.()l m/cm)(4047 m;/ac)(lE6 g/m3)(4.94 J/g) = 4.74E9 J/cow
Phosphorus in runoff = 3.08 lbs/cow-yr (CREAMS-WT results, this study)
Basm outflow. Same volume as runoff
Phosphorus outflow = .92 lbs/cow-yr
14.

Table B-10. Emergy Evaluation of a Semiconfinement Dairy; with Sprayfield; Solids Spread.
Note
Item
Value Raw Units
(cow-yr)-l
Solar Solar Phosphorus Phosphorus
Transformity Emergy Content Emergy/Mass
(sej/unit) (El3 sej/cow-yr)(grams P/cow) (El2 sej/g P)
1
Sunlight
2.62E+13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
1.06E+09 J
1.54E + 04
2
4967.0
0.003
4
Fuel
9.23E+08 J
6.6E+04
6
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2356.19 $
1.55E+12
365
0
X
8
1159
9
Milk yield
1.82E+11 J
6.37E+04
1159
8068.0
1.44
10
Liveweight sold
2.88E+09 J
4.02E+06
1159
1634.0
7.09
11
Forage production
2.02E+10 J
5.74E+05
1159
3386.0
3.42
12
Runoff
X
X
X
1996.0
X
13
Basin outflow
X
X
X
979.8
X

199
Footnotes to Table B-10. Semkonfinement Dairy; Sprayfield; Solids Spread.
1. Sunlight. 129 kcal/cnr-yr (Oduni et al., 1981)
(129 kcal/cm;-yr)( 1E4 cnf/nf)(4047 nf/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transformity = 1
2. Rain, chemical. 50 "/yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(50"/yr)(2.54 cm/in)(.01 m/cm)(4047 nf/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-in/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.365 (proportion to die sprayfield)/60 lb P/ac-yr sprayfield apphcation
rate = .18 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-in/ac-yr)(. 18 ac/cow)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 1.06E9
J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = 10.95 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baseline consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baselme fuel use/non-feed services tunes additional services for the
practice; 137E6 J/gal (Odum and Arding, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($203.25/cow-yr)( 137E6 J/gal) = 9.23E8 J/cow-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baseline consumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(.l ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to com) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Fluck et al., unpublished), plus
$ 156.92/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevatt and Mislevy, 1990) tunes acreage sprayfield
plus spreading area per cow
($2152.94/cow-yr) + ($156.92/cow-yr) + ($107.74/ac-yr)(.43 ac/cow) = $2356.19/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 19126 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(19126 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.82E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
11. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .43 acres sprayfield plus spreading area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.43ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 2.02E10 J/cow-yr
Phosphorus content = .28% (Dinkier, 1990)
12. Runoff. Average runoff volume = 10.83 ac-in/cow-yr (CREAMS-WT results, this study)
(10.83 ac-in/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 nf/ac)(lE6 g/m3)(4.94 J/g) = 5.5E9 J/cow-yr
Phosphorus in runoff = 4.4 lbs/cow-yr (CREAMS-WT results, this study)

200
Footnotes to Table B-10. Semiconfinement Dairy; Sprayfield; Solids Spread (continued).
13. Basm outflow. Same volume as runoff
Phosphorus outflow = 2.16 lbs/cow-yr

Table B-l 1. Emergy Evaluation of a Sem¡confinement Dairy; with Sprayfield; Solids Composted.
Note
Item
Solar Solar Phosphorus Phosphorus
Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (E13 sej/cow-yr)(grams P/cow) (E12 sej/g P)
1
Sunlight
2.62E+ 13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
1.06E+09 J
1.54E+04
2
4967.0
0.003
4
Fuel
9.21E+08 J
6.6E+04
6
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2353.67 $
1.55E+12
365
0
X
8
1158
9
Milk yield
1.82E+11 J
6.36E+04
1158
8068.0
1.44
10
Liveweight sold
2.88E+09 J
4.02E+06
1158
1634.0
7.09
11
Compost
8.00E+ 10 J
1.45E+05
1158
5879.0
1.97
12
Forage production
1.18E+10 J
9.81E+05
1158
1969.0
5.88
13
Runoff
X
X
X
2127.0
X
14
Basin outflow
X
X
X
1084.1
X

202
Footnotes to Table B-ll. Semiconfinement Dairy; Sprayfield; Solids Composted.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cm:-yr)( 1E4 cm2/m2)(4047 m;/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transformity = 1
2. Ram, chemical. 50 "/yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(50"/yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-in/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.365 (proportion to the sprayfield)/60 lb P/ac-yr sprayfield application
rate = . 18 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-in/ac-yr)(. 18 ac/cow)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m’)(4.94 J/g) = 1.06E9
J/cow-yr
Transformity = 1.54E4 sej/J (Odumetal., 1987)
Phosphorus content = 10.95 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baseline consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baseline fuel use/non-feed services tunes additional services for the
practice; 137E6 J/gal (Odum and Ardrng, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($200.73/cow-yr)(137E6 J/gal) = 9.21E8 J/cow-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baseline coasumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(.l ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to com) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Fluck et al., unpublished), plus
$173.79/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevatt and Mislevy, 1990) times acreage sprayfield
plus spreading area per cow
($2152.94/cow-yr) 4- ($ 173.79/cow-yr) + ($ 107.74/ac-yr)(.25 ac/cow) = $2353.67/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 19126 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(19126 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.82E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
11. Compost. 16200 Ibs/cow (this study); assume same characteristics as peat 5.2 kcal/g dry @ .5 dry
(Odum, 1992)
(16200 lbs/cow)((453.6 g/lb)((.5)(5.2 kcal/g)(4186 J/kcal) = 8E10 J/cow-yr
Phosphorus content = .08% (this study)

203
Footnotes to Table B-ll. Semiconfinement Dairy; Sprayfield; Solids Composted (contmued).
12. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .25 acres sprayfield plus spreadmg area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.25ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.18E10 J/cow-yr
Phosphorus content = .28% (Dinkier, 1990)
13. Runoff. Average runoff volume = 12.22 ac-in/cow-yr (CREAMS-WT results, this study)
(12.22 ac-in/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m’)(4.94 J/g) =6.21E9 J/cow-yr
Phosphorus in runoff = 4.69 lbs/cow-yr (CREAMS-WT results, this study)
14. Basm outflow. Same volume as runoff
Phosphorus outflow = 2.39 lbs/cow-yr

Table B-12. Emergy Evaluation of a Confinement Dairy; with Sprayfield; Solids Spread.
Solar Solar Phosphorus Phosphorus
Note Item Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (El3 sej/cow-yr)(grams P/cow) (El2 sej/g P)
1
Sunlight
2.62E+13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
1.24E+09 J
1.54E + 04
2
5783.0
0.003
4
Fuel
1.06E+09 J
6.6E+04
7
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2473.87 $
1.55E+12
383
0
X
8
1178
Milk yield
1.82E+11 J
6.47E+04
1178
8068.0
1.46
Liveweight sold
2.88E+09 J
4.09E+06
1178
1634.0
7.21
Forage production
2.35E+10 J
5.01E+05
1178
3937.0
2.99
12 Runoff X
13 Basin outflow X
X X 1851.0
X X 811.9
X X

205
Footnotes to Table B-12. Confinement Dairy; Sprayfield; Solids Spread.
1. Sunlight. 129 kcal/cnf-yr (Odum et al., 1981)
(129 kcal/cm:-yr)(lE4 cm2/m:)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transformity = 1
2. Ram. chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(507yr)(2.54 cm/m)(.01 m/cm)(4047 m2/ac)(lE6 g/m')(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-in/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.425 (proportion to the sprayfield)/60 lb P/ac-yr sprayfield application
rate = .21 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-in/ac-yr)(.21 ac/cow)(2.54 cm/in)(.01 m/cm)(4047 m2/ac)(lE6 g/m’)(4.94 J/g) = 1.24E9
J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = 12.75 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baseline consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baseline fuel use/non-feed services times additional services for the
practice; 137E6 J/gal (Odum and Ardmg, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($320.94/cow-yr)( 137E6 J/gal) = 1.06 E9 J/cow-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baseline consumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(.l ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to com) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Pluck et al., unpublished), plus
$267.07/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevatt and Mislevy, 1990) times acreage sprayfield
plus spreadmg area per cow
($2152.94/cow-yr) + ($267.07/cow-yr) + ($107.74/ac-yr)(.5 ac/cow) = $2473.87/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 19126 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(19126 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.82E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 Ibs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
11. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .5 acres sprayfield plus spreading area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.5ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 2.35E10 J/cow-yr
Phosphorus content = .28% (Dinkier, 1990)
12. Runoff. Average runoff volume = 9.69 ac-in/cow-yr (CREAMS-WT results, this study)
(9.69 ac-in/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 4.92E9 J/cow-yr
Phosphorus in runoff = 4.08 lbs/cow-yr (CREAMS-WT results, this study)

206
Footnotes to Table B-12. Confinement Dairy; Sprayfield; Solids Spread (continued).
13. Basin outflow. Same volume as runoff
Phosphorus outflow = 1.79 lbs/cow-yr

Table B-13. Emergy Evaluation of a Confinement Dairy; with Sprayfield and Ecoreactor; Solids Composted.
Note
Item
Solar Solar Phosphorus Phosphorus
Value Raw Units Transformity Emergy Content Emergy/Mass
(cow-yr)-l (sej/unit) (E13 sej/cow-yr)(grams P/cow) (E12 sej/g P)
1
Sunlight
2.62E+13 J
1
3
0
X
2
Rain, chemical
3.04E+10 J
1.54E+04
47
615
0.76
3
Irrigation water
4.57E+07 J
1.54E+04
0.07
231.3
0.003
4
Fuel
1.04E+09 J
6.6E+04
7
0
X
5
Electricity
1.6E+09 J
1.6E+05
25
0
X
6
Feed
1.1E+11 J
6.8E+04
714
28311.0
0.25
7
Services
2461.14 $
1.55E+12
381
0
X
8
1174
9
Milk yield
1.82E+11 J
6.45E+04
1174
8068.0
1.46
10
Liveweight sold
2.88E+09 J
4.08E+06
1174
1634.0
7.18
11
Compost
1.00E+11 J
1.17E+05
1174
7348.0
1.60
12
Forage production
3.30E+09 J
3.56E + 06
1174
551.0
21.31
13
Wetland production
2.67E+09 J
4.40E+06
1174
447.1
26.26
14
Runoff
X
X
X
1102.0
X
15
Basin outflow
X
X
X
494.4
X

208
Footnotes to Table B-13. Confinement Dairy; Sprayfield plus Ecoreactor; Solids Composted.
1. Sunlight. 129 kcal/cnr-yr (Odum et al., 1981)
(129 kcal/cm:-yr)(lE4 cm:/nr)(4047 nr/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
(2.19E13 J/ac-yr)(31528 ac/26345 cows) = 2.62E13 J/cow-yr
Transformity = 1
2. Rain, chemical. 50 "/yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g
(507yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m')(4.94 J/g) = 2.54E10 J/ac-yr
( 2.54E10 J/ac-yr)(31528 ac/26345 cows) = 3.04E10 J/cow-yr
Transformity = 1.54E4 sej/J (Odumetal., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Sprayfield irrigation water. 11.6 ac-m/ac estimated from Larsonl Dairy O&M plan as the ratio of
the 20 year average outflow voulme from the lagoon divided by the sprayfield area. Sprayfield area
per cow = 30 lbs P/cow-yr *.425 *.004 (proportion to the sprayfield)/60 lb P/ac-yr sprayfield
application rate = .008 ac/cow; Gibbs free energy of fresh water, 4.94 J/g
(11.6 ac-m/ac-yr)(.008 ac/cow)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 4.57E7
J/cow-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .51 lbs/cow-yr
4. Fuel. 5.04 gal/cow-yr baseline consumption (Fluck et al., unpublished) plus additonal fuel
estimated as the ratio of baselme fuel use/non-feed services times additional services for the
practice; 137E6 J/gal (Odum and Ardmg, 1991)
(5.04 gal/cow-yr)/($603/cow-yr)($308.20/cow-yr)(137E6 J/gal) = 1.04 E9 J/cow-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
5. Electricity. 440 kwh/cow-yr baselme consumption (Fluck et al., unpublished) plus citrus irrigation
electricity consumption estimate
(440 kwh/cow-yr)(3.6E6 J/kwh) + (52.7 kwh/ac)(.l ac/cow)(3.6E6 J/kwh) = 1.6E9 J/cow-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
6. Feed. 13870 lbs/cow-yr (this study); 4 kcal/g (Odum et al., 1983)
(13870 lbs/cow-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 1.05E11 J/cow-yr
Transformity (assumed equal to com) = 6.8E4 sej/J (Odum et al., 1983)
Phosphorus content = .45 % (this study)
7. Annual costs for human services. $2152.94/cow-yr baseline cost (Fluck et al.. unpublished), plus
$300.66/cow-yr for management practice investment and operations (this study), plus $107.74/ac-yr
partial forage production costs (estimated from Prevatt and Mislevy, 1990) tunes acreage sprayfield
plus spreading area per cow
($2152.94/cow-yr) + ($300.66/cow-yr) + ($107.74/ac-yr)(.07 ac/cow) = $2461.14/cow-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
8. Emergy total = sum of 2 through 7 above
9. Milk yield. 19126 lbs/cow-yr (this study); 5 kcal/g (Odum et al., 1983)
(19126 lbs/cow-yr)(453.6 g/lb)(5 kcal/g)(4186 J/kcal) = 1.82E11 J/cow-yr
Phosphorus content = .093 % (this study)
10. Liveweight sold. 537.5 lbs/cow-yr (this study); 2.82 kcal/g (Odum and Odum, 1987)
(537.5 lbs/cow-yr)(453.6 g/lb)(2.82 kcal/g)(4186 J/kcal) = 2.88E9 J/cow-yr
Phosphorus content = .67 % (Khasawneh et al., 1986)
11. Compost. 20250 lbs/cow (this study); assume same characteristics as peat 5.2 kcal/g dry @ .5 dry
(Odum, 1992)
(20250 lbs/cow)((453.6 g/lb)((.5)(5.2 kcal/g)(4186 J/kcal) = 1E11 J/cow-yr
Phosphorus content = .08% (this study)

209
Footnotes to Table B-13. Confinement Dairy; Sprayfield plus Ecoreactor; Solids Composted (continued).
12. Forage production. 6200 lbs/ac-yr forage sorghum (low end annual production from Dinkier,
1990); .07 acres sprayfield plus spreadmg area per cow (this study); 4 kcal/g (Odum et al., 1983)
(6200 lbs/ac-yr)(.07ac/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 3.3E9 J/cow-yr
Phosphorus content = .28% (Dmkler, 1990)
13. Wetland production. Approximately .01 acre ecoreactor/cow (Bion, 1991); Typha net primary
production 30 Mg/ha (Lakshman, 1987) + 1/3 additional production associated with phosphorus
load = 35200 lbs/ac * .01 ac/cow = 352 lbs/cow
(352 lbs/cow)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 2.67E9 J/cow-yr
Phosphorus content = .28% (assume equal to forage sorghum P content)
14. Runoff. Average runoff volume = 9.69 ac-in/cow-yr (CREAMS-WT results, this study)
(9.69 ac-in/cow-yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m5)(4.94 J/g) = 4.92E9 J/cow-yr
Phosphorus m runoff = 2.43 lbs/cow-yr (CREAMS-WT results, this study)
15. Basm outflow. Same volume as runoff
Phosphorus outflow = 1.09 lbs/cow-yr

Table B-14. Emergy Evaluation of an Acre of Sugarcane: 17 lbs P/ac-yr; Sweet Corn in Rotation; 61 lbs P/ac-yr.
Note
Item
Value Raw Unit
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar
Emergy
(El3 sej/ac-yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P/ac) (El2 sej/g P)
1
Sunlight
2.19E+ 13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Irrigation water
6.94E+09 J
1.54E + 04
11
112.5
0.95
4
Peat use
1.12E+12 J
1.07E+04
1198
28.5
420.49
5
Fuel
4.20E+09 J
6.6E+04
28
0
X
6
Pesticide
5.86E+09 J
6.6E+04
39
0
X
7
P Fertilizer
4.42E+06 J
4.14E+07
18
12700.0
0.014
8
K Fertilizer
4.3E+07 J
2.62E+06
11
0
X
9
Services
1136.61 $
1.55E+12
176
0
X
10
1520
11
Sugarcane yield
3.76E+11 J
4.04E+04
1520
3593.0
4.23
12
Sweet corn yield
2.00E+10 J
7.60E+05
1520
1667.0
9.12
13
Runoff
X
X
X
1256.0
X
14
Basin outflow
X
X
X
172.4
X

211
Footnotes to Table B-14. Sugarcane with Sweet Corn in Rotation.
1. Sunlight. 129 kcal/cm:-yr (Odum et al., 1981)
(129 kcal/cm:-yr)( 1E4 cnr/nr)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Rain, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(50"/yr)(2.54 cm/m)(.01 m/cm)(4047 nr/ac)(lE6 g/m5)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Irrigation water. 14.5"/yr for sugarcane and 11.27yr for sweet corn (CH2MHÜ1, 1978)
(.75*14.5'7yr + .25*11.2"/yr)(2.54 cm/in)(.01 m/cm)(4047 m2/ac)(lE6 g/nv')(4.94 J/g) = 6.94E9
J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .08 mg/1 (CH2MHÜ1, 1978)
4. Peat use. 1 "/yr; 5.2 kcal/g dry @ .5 dry (Odum. 1992)
(l ac-in/ac-yr)(lft/12 tn)(43560 tt7ac-ft)(.02832 m7ft3)(lE6 g/mJ)(.5dry)(5.2 kcal/g dry)(4186
J/kcal) = 1.12E12 J/ac-yr
Transformity of unharvested peat = 1.07E4 sej/J (Odum, 1992)
Soil solution phosphorus content = .29 mg/1 (CH2MHÍ11, 1978)
5. Fuel. 35.72 gal/ac-yr for sugarcane (Pimentel, 1980); 5.04E5 kcal/ac-yr for sweet com (Odum et
al., 1983); 137E6 J/gal (Odum and Arding, 1991)
(.75*35.72 gal/ac-yr)(137E6 J/gal) + (.25*5.04E5 kcal/ac-yr)(4186 J/kcal) = 4.2E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
6. Pesticide. 25.6 lbs/ac-yr for sugarcane (CH2MHÜ1, 1978); 65 lbs/ac-yr for sweet com (IFAS,
unpublished data); 87 kcal/g (Pimentel, 1980)
(.75*25.6 + .25*65 lbs/ac-yr)(453.6 g/lb)(87 kcal/g)(4186 J/kcal) = 5.86E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1983)
7. Phosphorus fertilizer. 17 lbs/ac-yr for sugarcane and 61 lbs/ac-yr for sweet com (this study); 348
J/gP (Odum et al., 1983)
(.75*17 + .25*61 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 4.42E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
8. Potash fertilizer. 120 lbs/ac-yr for sugarcane (CH2MHÍ11, 1978); 180 lbs/ac-yr for sweet com
(Showalter. 1988); 702 J/g (Odum et al., 1983)
(.75*120 + .25*180 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 4.3E7 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
9. Annual costs for human services. $882.70/ac-yr for sugarcane (Alvarez and Schueneman, 1991);
$1898.35/ac-yr for sweet com (Smith and Taylor, 1993)
(.75*882.70 + .25*1898.35) = $1136.61/ac-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
10. Emergy total = sum of 2 through 9 above
11. Sugarcane yield. 33 tons/ac-yr (this study); 4 kcal/g (Odum, 1992)
(.75*66000 lbs/ac-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 3.76E11 J/ac-yr
Phosphoms content = .016 % (Izuno and Bottcher, 1987)
12. Sweet com yield. 2625 lbs/ac-yr (this study); 4 kcal/g (Odum, 1992)
(2625 lbs/ac-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 2E10 J/ac-yr
Phosphoms content = .14 % (IFAS, unpublished data)
13. Runoff. Average runoff volume = 6.4 7yr (CREAMS-WT results, this study)
(6.47yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 3.25E9 J/ac-yr
Phosphoms in runoff = 2.77 lbs/ac-yr (CREAMS-WT results, this study)
14. Basin outflow. Same volume as runoff
Phosphoms outflow = .38 lbs/ac-yr

Table B-15. Emergy Evaluation of an Acre of Sugarcane: 17 lbs P/ac-yr; with Rice in Rotation; No P Fertilizer.
Note
Item
Value Raw Units
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar Phosphorus Phosphorus
Emergy Content Emergy/Mass
(El3 sej/ac-yr)(grams P/ac) (El2 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+ 10 J
1.54E+04
39
514
0.76
3
Irrigation water
7.34E+09 J
1.54E+04
11
118.8
0.95
4
Peat use
8.39E+11 J
1.07E+04
898
21.38
419.89
5
Fuel
5.65E+09 J
6.6E+04
37
0
X
6
Drying
3.69E+08 J
6.6E+04
2
0
X
7
Electricity
1.07E+07 J
1.6E+05
0
0
X
8
Pesticide
3.17E+09 J
6.6E+04
21
0
X
9
P Fertilizer
2.00E+06 J
4.14E+07
8
5783.0
0.014
10
K Fertilizer
2.9E+07 J
2.62E+06
8
0
X
11
Calcium Silicate
1.6E+08 J
4.14E+07
654
0
X
12
Services
748.07 $
1.55E+12
116
0
X
13
1795
14
Sugarcane yield
4.08E+11 J
4.40E4-04
1795
3898.0
4.60
15
Rice yield
8.26E+10 J
2.17E+05
1795
9867.0
1.82
16 Runoff X
17 Basin outflow X
X X 802.9
X X 113.4
X X

213
Footnotes to Table B-15. Sugarcane with Rice in Rotation.
1. Sunlight. 129 kcal/cnr-yr (Odum et al., 1981)
(129 kcal/cm;-yr)(lE4 cnr/m2)(4047 nr/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Ram. chenucal. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(50"/yr)(2.54 cm/in)(.01 mycm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Irrigation water. 14.57yr for sugarcane (CH2MHU1, 1978); 14.37yr for nee (Pimentel, 1980)
(.75*14.57yr + ,25*14.37yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 7.34E9
J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .08 mg/1 (CH2MHÜ1, 1978)
4. Peat use. ,757yr; 5.2 keal/g dry @ .5 dry (Odum, 1992)
(.75 ac-in/ac-yr)(lft/12 in)(43560 ft3/ac-ft)(.02832 m7ft3)(lE6 g/m3)(.5dry)(5.2 keal/g dry)(4186
J/kcal) = 8.39E11 J/ac-yr
Transformity of unharvested peat = 1.07E4 sej/J (Odum, 1992)
Soil solution phosphorus content = .29 mg/1 (CH2MHÍ11, 1978)
5. Fuel. 35.72 gal/ac-yr for sugarcane and 57.9 gal/ac-yr for nee (Pimentel, 1980); 137E6 J/gal
(Odum and Arding, 1991)
(.75*35.72 + .25*57.9 gal/ac-yr)(137E6 J/gal) = 5.65E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
6. Drying. 352,160 kcal/ac-yr (Pimentel, 1980)
(.25*352160 kcal/ac-yr)(4’l86 J/kcal) = 3.69E8 J/kcal
Assume transformity of fuel = 6.6E4 sej/J
7. Electricity. 11.88 kwh/ac-yr for rice (Pimentel, 1980)
(.25*11.88 kwh/ac-yr)(3.6E6 J/kwh) = 1.07E7 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
8. Pesticide. 25.6 lbs/ac-yr for sugarcane (CH2MHÜ1, 1978); 87 keal/g (Pimentel, 1980)
(.75*25.6 lbs/ac-yr)(453.6 g/lb)(87 kcal/g)(4186 J/kcal) = 3.17E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1983)
9. Phosphorus fertilizer. 17 lbs/ac-yr for sugarcane (this study); 348 J/gP (Odum et al., 1983)
(.75*17 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 2E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
10. Potash fertilizer. 120 lbs/ac-yr for sugarcane (CH2MHÍ11. 1978); 702 J/g (Odum et al.. 1983)
(.75*120 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 2.87E7 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
11. Calcium silicate. 2 tons/ac-yr for rice (Alvarez, 1992); 348 J/g (assume equal to P fertilizer smee
its a by-product)
(.25*4000 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 1.58E8 J/ac-yr
Transformity = 4.14E7 sej/J (assume equal to P fertilizer)
12. Annual costs for human services. $882.70/ac-yr for sugarcane (Alvarez and Schueneman, 1991);
$344.18/ac-yr for nee (Alvarez, 1992)
13. Emergy total = sum of 2 through 12 above
(.75*882.70 + .25*344.18) = $748.07/ac-yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
14. Sugarcane yield. 33 tons/ac-yr plus rice effect (this study); 4 keal/g (Odum, 1992)
(53715 lbs/ac-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 4.08E11 J/ac-yr
Phosphorus content = .016 % (Izuno and Bottcher, 1987)

Footnotes to Table B-15. Sugarcane with Rice in Rotation (continued).
15. Rice yield. 43.5 cwt/ac-yr (this study): 4 kcal/g (Odum, 1992)
(.25*43500 lbs/ac-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 8.26E10 J/ac-yr
Phosphorus content = .2 % (DeDatta, 1981)
16. Runoff. Average runoff volume = 6.4 7yr (CREAMS-WT results, this study)
(6.47yr)(2.54 ctn/m)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 3.25E9 J/ac
Phosphorus in runoff = 1.77 lbs/ac-yr (CREAMS-WT results, this study)
17. Basin outflow. Same volume as runoff'
Phosphorus outflow = .25 lbs/ac-yr

Table B-16. Emergy Evaluation of an Acre of Other Agriculture (Estimated as Sod Production).
Note
Item
Value Raw Unit
(ac-yr)-l
Solar
Transformity
(sej/unit)
Solar
Emergy
(El3 sej/ac-yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P/ac) (E12 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Irrigation water
1.62E+10 J
1.54E+04
25
329
0.76
4
Soil used up
6.00E+11 J
1.07E+04
642
15160
0.42
5
Fuel
9.66E+09 J
6.6E+04
64
0
X
6
Electricity
6.0E+07 J
1.6E+05
1
0
X
7
Pesticide
2.68E+08 J
6.6E+04
2
0
X
8
N Fertilizer
1.12E+08 J
1.69E+06
19
0
X
9
P Fertilizer
6.95E+06 J
4.14E+07
29
20000.0
0.014
10
K Fertilizer
5.09E+07 J
2.62E+06
13
0
X
11
Lime
4.57E+05 g
1.00E+09
46
0
X
12
Services
410.5 $
1.55E+12
64
0
X
13
943
14
Sod yield
5.56E+11 J
1.70E+04
943
24566.0
0.38
15
Runoff
X
X
X
1578.0
X
16
Basin outflow
X
X
X
422.2
X

216
Footnotes to Table B-16. Other Agriculture (Estimated as Sod Production).
1. Sunlight. 129 kcal/cnr-yr (Odum et al., 1981)
(129 kcal/cnr-yr)(lE4 cm2/nr)(4047 m2/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transformity = 1
2. Ram, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(507yr)(2.54 cm/m)(.01 m/cm)(4047 nr/ac)(lE6 g/m')(4.94 J/g) = 2.54E10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Irrigation water. 32 7yr (Hazen and Sawyer, 1994)
(32"/yr)(2.54 cm/in)(.01 m/cm)(4047 nr/ac)(lE6 g/m3)(4.94 J/g) = 1.62E 10 J/ac-yr
Transformity = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (assumed equal to ram water)
4. Soil use. 60746 lbs/ac-yr, or 83 % of total dry weight harvested (this study); 5.2 kcal/g dry
(Odum, 1992)
(60746 lbs/ac-yr)(453.6 g/lb)(5.2 kcal/g dry)(4186 J/kcal) = 6E11 J/ac-yr
Transformity of unharvested peat = 1.07E4 sej/J (Odum, 1992)
Phosphorus content = 15160 g/ac (this study)
5. Fuel. 70.48 gal/ac-yr (Fluck et al., unpublished); 137E6 J/gal (Odum and Arding, 1991)
(70.48 gal/ac-yr)(137E6 J/gal) = 9.66E9 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1987)
6. Electricity. 16.76 kwh/ac-yr (Fluck et al., unpublished)
(16.76 kwh/ac-yr)(3.6E6 J/kwh) = 6.03E7 J/ac-yr
Transformity = 1.59E5 sej/J (Odum et al., 1987)
7. Pesticide. 1.62 lbs/ac-yr (Fluck et al., unpublished); 87 kcal/g (Punentel, 1980)
(1.62 lbs/ac-yr)(453.6 g/lb)(87 kcal/g)(4186 J/kcal) = 2.68E8 J/ac-yr
Transformity = 6.6E4 sej/J (Odum et al., 1983)
8. Nitrogen fertilizer. 100 lbs/ac-yr (Sartam,1988); 2.48E3 J/gN (Odum et al., 1983)
(10 lbs/ac-yr)(453.6 g/lb)(2.48E3 J/g) = 1.12E8 J/ac-yr
Transformity = 1.69E6 sej/J (Odum et al.. 1983)
9. Phosphorus fertilizer. 44 lbs/ac-yr (this study); 348 J/gP (Odum et al., 1983)
(44 lbs/ac-yr)(453.6 g/lb)(348 J/g) = 6.95E6 J/ac-yr
Transformity = 4.14E7 sej/J (Odum et al., 1983)
10. Potash fertilizer. 160 lbs/ac-yr (Sartain, 1988); 702 J/g (Odum et al., 1983)
(160 lbs/ac-yr)(453.6 g/lb)(702 J/g) = 5.09E7 J/ac-yr
Transformity = 2.62E6 sej/J (Odum et al., 1983)
11. Lime. 1008 lbs/ac-yr (Fluck et al., unpublished)
(1008 lbs/ac-yr)(453.6 g/lb) = 4.57E5 g/ac-yr
Transformity - 1E9 sej/g (Odum, 1992)
12. Annual costs for human services. $410.50/ac-yr (Fluck et al., unpublished)
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
13. Emergy total = sum of 2 through 12 above
14. Sod yield (inch soil). 73188 dry lbs/ac-yr (this study); 4 kcal/g (Odum, 1992)
(73188 lbs/ac-yr)(453.6 g/lb)(4 kcal/g)(4186 J/kcal) = 5.56E11 J/ac-yr
Phosphorus content = .074 % (this study)
15. Runoff. Average runoff volume = 7.44 7yr (CREAMS-WT results, this study)
(7.44"/yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 3.78E9 J/ac-yr
Phosphorus m runoff = 3.48 lbs/ac-yr (CREAMS-WT results, this study)
16. Basin outflow. Same volume as runoff
Phosphorus outflow = .93 lbs/ac-yr

Table B-17. Emergy Evaluation of an Acre of Commercial Forest (Plantation Pine).
Note
Item
Value Raw Units
(ac-yr)-l
Solar
Transform ity
(sej/unit)
Solar
Emergy
(El3 sej/ac-yr)
Phosphorus
Content
(grams P/ac)
Phosphorus
Emergy/Mass
(El2 sej/g P)
1
Sunlight
2.19E+13 J
1
2
0
X
2
Rain, chemical
2.54E+10 J
1.54E+04
39
514
0.76
3
Fuel
1.13E+08 J
6.6E+04
1
0
X
4
Services
9.37 $
6.00E+12
6
0
X
5
45
6
Timber
4.87E+09 J
9.24E+04
45
64.6
6.97
7
Runoff
X
X
X
281.2
X
8
Basin outflow
X
X
X
109.4
X

218
Footnotes to Table B-17. Commercial Forestry (Pme Plantation).
1. Sunlight. 129 kcal/cnr-yr (Odum et al., 1981)
(129 kcal/cm;-yr)(lE4 cm;/m:)(4047 nr/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Transfomuty = 1
2. Ram, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(50"/yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
Transfomuty = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Fuel for site preparation, harvesting, and transpon. 215E6 J/m3 (New Zealand pme, Odum et al.,
1983); 137E6 J/gal (Odum and Arding, 1991)
(215E6 J/m3)(18.5 tt7ac-yr)(.02832 m'/ft3) = 1.13E8 J/ac-yr
Transfomuty = 6.6E4 sej/J (Odum et al., 1987)
4. Annualized costs for human services. $9.37/ac-yr (1975S, Odum and Brown, 1975)
1975 emergy/currency ratio = 6E12 sej/$ (Odum, 1992)
5. Emergy total = sum of 2 through 4 above
6. Timber harvest. 712 dry lbs/ac-yr (this study); 3.6 kcal/g (Odum et al., 1983)
(712 lbs/ac-yr)(453.6 g/lb)(3.6 kcal/g)(4186 J/kcal) = 4.87E9 J/ac-yr
Phosphorus content = .02 % (this study)
7. Runoff. Average runoff volume = 9.36 7yr (CREAMS-WT results, this study)
(9.36”/yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 4.75E9 J/ac-yr
Phosphorus in runoff = .62 lbs/ac-yr (CREAMS-WT results, this study)
8. Basin outflow. Same volume as runoff
Phosphorus outflow = .24 lbs/ac-yr

Table B-18. Emergy Evaluation of an Acre of Urban Land.
Solar Solar Phosphorus Phosphorus
Note Item Value Raw Units Transformity Emergy Content Emergy/Mass
(ac-yr)-l (sej/unit) (E13 sej/ac-yr) (grams P/ac) (E12 sej/g P)
Urban residential:
1
All inputs
2.93E+12 CEJ
4E + 04
11720
X
X
2
Runoff
X
X
X
195.0
X
3
Basin outflow
X
X
X
73.5
X
Other urban:
4
All inputs
1.22E+13 CEJ
4E+04
48800
X
X
5
Runoff
X
X
X
585.0
X
6
Basin outflow
X
X
X
239.7
X

220
Footnotes to Table B-18. Urban Land.
1. All inputs. Average 700E6 kcal CE/ac-yr to single family and mobile home land uses (Brown,
1980)
(700E6 kcalCE/ac-yr)(4186 J/kcal) = 2.93E12 CEJ/ac-yr
Transformity = 4E4 sej/CEJ (Odum, 1992)
2. Runoff. Average runoff volume = 12 7yr (this study)
(12"/yr)(2.54 cm/m)(.01 m/cm)(4047 m:/ac)(lE6 g/m’)(4.94 J/g) = 6.09E9 J/ac-yr
Phosphorus in runoff = .43 lbs/ac-yr (CREAMS-WT results, this study)
3. Basin outflow. Same volume as runoff
Phosphorus outflow = .16 lbs/ac-yr
4. All mputs. Average 2916E6 kcal CE/ac-yr to commercial, industrial, and 2-story business land
uses (Brown, 1980)
(2916E6 kcalCE/ac-yr)(4186 J/kcal) = 1.22E13 CEJ/ac-yr
Transformity = 4E4 sej/CEJ (Odum, 1992)
5. Runoff. Average runoff volume = 38 7yr (this study)
(38"/yr)(2.54 cm/m)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 1.93E10 J/ac-yr
Phosphorus ui runoff = 1.29 lbs/ac-yr (CREAMS-WT results, this study)
6. Basin outflow. Same volume as runoff
Phosphorus outflow = .53 lbs/ac-yr

Table B-19. Einergy Evaluation of an Acre of Forested Uplands, Grassy Scrubland, or Mixed Wetland Areas.
Solar Solar Phosphorus Phosphorus
Note Item Value Raw Units Transformity Entergy Content Emergy/Mass
(ac-yr)-l (sej/unit) (E13 sej/ac-yr) (grams P/ac) (E12 sej/g P)
Forested uplands:
1 Sunlight
2.19E+13 J
1
2
0
X
2 Rain, chemical
2.54E + 10 J
1.54E + 04
3a
514
0.76
3
39
4 Runoff
X
X
X
208.7
X
5 Basin outflow
X
X
X
63.5
X
Forested uplands (predevelopment):
1 Sunlight
2.19E+13 J
1
2
0
X
6 Rain, chemical
2.54E+10 J
1.54E + 04
39
241.6
1.62
7
39
8 Runoff
X
X
X
45.4
X
9 Basin outflow
X
X
X
9.1
X
Grassy scrubland (predevelopment):
1 Sunlight
2.19E+13 J
1
2
0
X
6 Rain, chemical
2.54E+10 J
1.54E+04
39
241.6
1.62
7
39
10 Runoff
X
X
X
59
X
11 Basin outflow
X
X
X
18.1
X
Mixed wetland areas:
1 Sunlight
2.19E+13 J
1
2
0
X
2 Rain, chemical
2.54E+I0 J
1.54E+04
39
514
0.08
3
39
Mixed wetland areas (predevelopment):
1 Sunlight
2.19E+ 13 J
1
2
0
X
6 Rain, chemical
2.54E+10 J
1.54E + 04
39
241.6
0.16
7
39

222
Footnotes to Table B-19. Forested Uplands, Grassy Scrublands. Mixed Wetland Areas.
1. Sunlight. 129 kcal/cnr-yr (Oduin et al., 1981)
(129 kcal/cm;-yr)( 1E4 cm:/nr)(4047 m:/ac)(4186 J/kcal) = 2.19E13 J/ac-yr
Trans formity = 1
2. Rain, chemical. 50 7yr (SFWMD, 1989); Gibbs free energy of fresh water, 4.94 J/g.
(507yr)(2.54 cm/in)(,01 m/cm)(4047 m2/ac)(lE6 g/m3)(4.94 J/g) = 2.54E10 J/ac-yr
Transformitv = 1.54E4 sej/J (Odum et al., 1987)
Phosphorus content = .047 mg/1 (Sculley, 1986)
3. Emergy total = 2 above
4. Runoff from forested uplands. Average runoff volume = 7.12 7yr (CREAMS-WT results, tlus
study)
(7.12'7yr)(2.54 cm/in)(.01 m/cm)(4047 m2/ac)(lE6 g/m’)(4.94 J/g) = 3.62E9 J/ac-yr
Phosphorus in runoff = .46 lbs/ac-yr (CREAMS-WT results, this study)
5. Basm outflow from forested uplands. Same volume as runoff
Phosphorus outflow = .14 lbs/ac-yr
6. Runoff from predevelopment forested uplands. Average runoff volume = 9.29 7yr (CREAMS-
WT results, this study)
(9.29"/yr)(2.54 cm/in)(.01 m/cm)(4047 m7ac)(lE6 g/m3)(4.94 J/g) = 4.72E9 J/ac-yr
Phosphorus in runoff = .10 lbs/ac-yr (CREAMS-WT results, this study)
7. Basm outflow from predevelopment forested uplands. Same volume as runoff
Phosphorus outflow = .02 lbs/ac-yr
8. Runoff from predevelopment grassy scrublands. Average runoff volume = 12.42 7yr (CREAMS-
WT results, this study)
(12.427yr)(2.54 cm/m)(.01 m/cm)(4047 m2/ac)(lE6 g/m3)(4.94 J/g) = 6.31E9 J/ac-yr
Phosphorus in runoff = .13 lbs/ac-yr (CREAMS-WT results, this study)
9. Basm outflow from predevelopment grassy scrublands. Same volume as runoff
Phosphorus outflow = .04 lbs/ac-yr

Table B-20. Emergy Evaluation of Basin Scale Chemical Treatment at the S-191 Basin Outlet.
Note
Item
Value Raw Units
yr-i
Solar
Transformity
(sej/unit)
Solar
Emergy
(El3 sej/yr)
Phosphorus Phosphorus
Content Emergy/Mass
(grams P) (El2 sej/g P)
1
Discharge from basin
5.77E+14 J
4.10E+04
2367450
45800000
X
2
Electricity
1.02E+14 J
1.6E+05
1632000
0
X
3
Alum
5.8E+10 J
1.32E+07
75900
0
X
4
Services
9.92E+06 $
1.55E+12
1537600
0
X
5
5612950
6
Sludge
X
X
X
40800000
X
7
Basin outflow
X
X
X
5040000
X

224
Footnotes to Table B-20. Basin Scale Chemical Treatment at S-191 Basin Outlet.
1. Discharge from basin. 9.347yr (CREAMS-WT results, this study)
(9.34'7yr)(2.54 cm/in)(,01 mycm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 4.74E9 J/ac-yr* 121820 ac =
5.77E14 J/yr
Transfomuty = 4.1E4 sej/J (Odum et al., 1987)
Phosphorus content = 101,051 lbs/yr (CREAMS-WT results, this study)
2. Electricity. 28,351,913 kwh/yr (DER, 1986)
(28351913 kwh/yr)(3.6E6 J/kwh) = 1.02E14 J/ac-yr
Transfomuty = 1.59E5 sej/J (Odum et al., 1987)
3. Alum. 1.94E6 lbs/yr (DER, 1986); 65.3 J/g (assume equal to bauxite; Odum et al., 1983)
(1.94E6 Ibs/yr)(453.6 g/lb)(65.3 J/g) = 5.7E10 J/ac-yr
Transfomuty = 1.32E7 sej/J (assume equal to bauxite; Odum etal., 1983)
4. Annual costs for human services. $6.12 million/yr annualized capital plus $3.8 tmllion/yr operating
costs (DER. 1986 adjusted to 1990 dollars) = $9.92 million/yr
1990 emergy/currency ratio = 1.55E12 sej/$ (Pritchard, 1992)
5. Emergy total = sum of 1 through 4 above
6. Sludge. 1795 tons/yr (DER, 1986)
(1795 tons/yr)(2000 Ibs/ton)(453.6 g/lb) = 1.63E9 g/yr
Phosphorus content = 89,935 lbs/yr (this study)
7. Basin outflow. 9.34 "/yr (this study)
(9.34"/yr)(2.54 cm/in)(.01 m/cm)(4047 m:/ac)(lE6 g/m3)(4.94 J/g) = 4.74E9 J/ac-yr* 121820 ac =
5.77E14 J/yr
Phosphorus m outflow = 11,116 lbs/yr (this study)

REFERENCES
Alvarez, J. 1992. Costs and Returns for Rice Production on Muck Soils in Florida.
Economic Information Report El 92-2. Food and Resource Economics Dept.,
IFAS, University of Florida, Gainesville, FL.
Alvarez, J. and T. Schueneman. 1991. Costs and Returns for Sugarcane Production
on Muck Soils in Florida. Economic Information Report El 91-3. Food and
Resource Economics Dept., IFAS, University of Florida, Gainesville, FL.
Alvarez, J. and G. Snyder. 1984. Effect of Prior Rice Culture on Sugarcane Yields in
Florida. Field Crops Research 9:315-321.
Andreasson, I.M. 1990. Costs for Reducing Farmers' Use of Nitrogen in Gotland,
Sweden. Ecological Economics 2: 287-299.
Baldwin, L.B. 1975. Agricultural Practices to Reduce Nonpoint Pollution in the
Okeechobee-Kissimmee Basin. Dept, of Agricultural Engineering, University of
Florida, Gainesville, FL.
Baumol, W. and W. Oates. 1975. The Theory of Environmental Policy. Prentice-
Hall, Englewood Cliffs, New Jersey.
Beyers, R. and H.T. Odum. 1993. Ecological Microcosms. Springer-Verlag, New
York.
Bion Technologies. 1990. Preliminary Draft Proposal: Dairy Farm Project.
Amherst, NY.
Bion Technologies. 1991. Progress Report on the Ferrell Dairy Project. Amherst,
NY.
Boggess, W., E. Flaig, and C. Fonyo. 1993. Florida's Experience with Managing
Nonpoint Source Phosphorus Runoff into Lake Okeechobee. In C. Russell and
J. Shogren (eds.) The Management of Nonpoint Source Pollution. Kluwer
Press, Norwell, MA.
225

226
Boggess, W., J. Holt, and R. Smithwick. 1991. The Economic Impact of the Dairy
Rule on Dairies in the Lake Okeechobee Drainage Basin. SP# 91-39. Food and
Resource Economics Dept., IFAS, University of Florida, Gainesville, FL.
Bottcher, A., L. Baldwin, K. Campbell, C. Heatwole, R. Mansell, and B. Burgoa.
1986. Final Report: Development and Verification of an Analytical Model for
Assessing the Impact of Agricultural Practices on Water Quality and Quantity.
Institute of Food and Agricultural Sciences, University of Florida, Gainesville,
FL.
Bottcher, A., L. Baldwin, C. Heatwole, and L. Miller. 1983. Final Report: Cost-
Effectiveness Analysis of BMP Alternatives for the Taylor Creek-Nubbin Slough
and Lower Kissimmee River Basins. Report to Army Corps of Engineers under
Contract #DACW 17-83-C-0023. Agricultural Engineering Dept., IFAS,
University of Florida, Gainesville, FL.
Brown, M. 1980. Energy Basis for Hierarchies in Urban and Regional Landscapes.
Ph.D. dissertation. University of Florida, Gainesville, FL.
Campbell, K., T. Tremwell, J. Capece, and T. Cera. 1992. Biogeochemical Behavior
and Transport of Phosphorus in the Lake Okeechobee Basin, Area 2: Final
Summary Report. Dept, of Agricultural Engineering, University of Florida,
Gainesville, FL.
Canfield, D. and M. Hoyer. 1988. The Eutrophication of Lake Okeechobee. Lake
and Reservoir Management 4(2): 91-99.
Cathcart, James B. 1980. World Phosphate Reserves and Resources. In F.
Khasawneh, E. Sample, and E. Kamprath (eds.) The Role of Phosphorus in
Agriculture. American Society of Agronomy, Madison, WI.
CH2MHÍ11, Inc. 1978. Water Quality Studies in the Everglades Agricultural Area of
Florida. Submitted to the Florida Sugarcane League. CH2MHÍ11, Gainesville,
FL.
DeDatta, S.K. 1981. Principles and Practices of Rice Production. John Wiley and
Sons, New York, NY.
Dinkier, H. 1990. Forage Crop Ranking for Phosphorus Recycling on Lake
Okeechobee Dairies. M.S. thesis. University of Florida, Gainesville, FL.

227
Erickson, J.D. 1993. From Ecology to Economics: The Case Against CO,
Fertilization. Ecological Economics 8(2): 157 - 175.
Federico. A., K. Dickson, C. Kratzer, and F. Davis. 1981. Lake Okeechobee Water
Quality Studies and Eutrophication Assessment. Tech. Publ. 81-2. South
Florida Water Management District, West Palm Beach, FL.
Florida Agricultural Statistics Service. 1992a. Field Crops Summary 1991. Orlando,
FL.
Florida Agricultural Statistics Service. 1992b. Vegetable Summary 1990-1991.
Orlando, FL.
Florida Dept, of Administration. 1976. Final Report: Special Project to Prevent
Eutrophication of Lake Okeechobee. Division of State Planning, Tallahassee,
FL.
Florida Dept, of Environmental Regulation (DER). 1986. Final Report: Lake
Okeechobee Technical Committee. Volume II: Technical Appendices.
Tallahassee, FL.
Fluck, R., C. Baird, and B. Panesar. 1992. Energy Requirements for Florida Citrus
Production. Proceedings. Florid State Horticultural Society 105: 84 - 87.
Fonyo, C., R. Fluck, W. Boggess, C. Kiker, H. Dinkier, and L. Stanislawski. 1991.
Biogeochemical Behavior and Transport of Phosphorus in the Lake Okeechobee
Basin, Area 3: Final Report. Depts. of Agricultural Engineering and Food and
Resource Economics, University of Florida, Gainesville, FL.
Fonyo, C., B. Negahban, W. Boggess, K. Campbell, and J. Jones. 1993a. LOADSS
(Lake Okeechobee Agricultural Decision Support System) version 2.2 Design
Document. Agricultural Engineering Research Report No. 93-L3, University of
Florida, Gainesville, FL.
Fonyo, C., B. Negahban, W. Boggess, J. Jones, and K. Campbell. 1993b. LOADSS
(Lake Okeechobee Agricultural Decision Support System) version 2.2 Model
Verification/Calibration/Sensitivity Analysis. Agricultural Engineering Research
Report No. 93-L4, University of Florida, Gainesville, FL.
Gayle, T. 1975. Systems Models for Understanding Eutrophication in Lake
Okeechobee. M.S. thesis. University of Florida, Gainesville, FL.

228
Giesy, R. and J. Holt. 1993. Financial Analysis of the Use of Leasing Pasture to
Increase Beef Production Profitability. Presented at Dairy, Forage, and Beef
Production Conference, Tavares, FL.
Gilliland. Martha W. 1973. Man's Impact on the Phosphorus Cycle in Florida.
Ph.D. dissertation. University of Florida, Gainesville, FL.
Gren, I. 1993. Alternative Nitrogen Reduction Policies in the Malar Region, Sweden.
Ecological Economics 7(2): 159 - 172.
Gutierrez, R. 1977. Energy Analysis and Computer Simulations of Pastures in
Florida. M.S. thesis. University of Florida, Gainesville, FL.
Hartig, J., C. Trautrim, D. Dolan, and D. Rathke. 1990. The Rationale for Ohio's
Detergent Phosphorus Ban. Water Resources Bulletin 26(2): 201-207.
Hazen and Sawyer. 1994. Preliminary Economic Analysis of Proposed Southern Water
Use Caution Area Management Plan. Report to Southwest Florida Water
Management District. Hazen and Sawyer, Hollywood, FL.
Heatwole, C. 1986. Field and Basin Scale Water Quality Models for Evaluating
Agricultural Nonpoint Pollution Abatement Programs in a South Florida
Watershed. Ph.D. dissertation. University of Florida, Gainesville, FL.
Heatwole, C., K. Campbell, and A. Bottcher. 1988. Modified CREAMS Nutrient
Model for Coastal Plain Flatwoods. Transactions ASAE 31(1): 154-160.
Huang, W. and N. Uri. 1992. An Assessment of Alternative Agricultural Policies to
Reduce Nitrogen Fertilizer Use. Ecological Economics 5(3): 213 - 234.
Hutchinson, G. 1952. The Biogeochemistry of Phosphorus. In L. Wolterink (ed.)
The Biology of Phosphorus. Michigan State College Press, Grand Rapids, ML
Izuno, F. and A. Bottcher (eds.). 1987. Components of the EAA Agricultural System
that Relate to Water Quality in South Florida. Institute of Food and
Agricultural Sciences, Gainesville, FL.
Rangas, P. 1983. Energy Analysis of Landforms, Succession, and Reclamation.
Ph.D. dissertation. University of Florida, Gainesville, FL.
Khasawneh, F., E. Sample, and E. Kamprath (eds.). 1980. The Role of Phosphorus
in Agriculture. American Society of Agronomy, Madison, WI.

229
Kiker, G., K. Campbell, and J. Zhang. 1992. CREAAÍS-WTLinked with GIS to
Simulate Phosphorus Loading. Presented at the 1992 summer meeting of the
American Society of Agricultural Engineers, Charlotte, NC.
Koo, R. 1984. Recommended Fertilizers and Nutritional Sprays for Citrus. Bulletin
536D. Institute of Food and Agricultural Sciences, Gainesville, FL.
Lakshman, G. 1987. Ecotechnological Opportunities for Aquatic Plants-A Survey of
Utilization Options. In K. Reddy and W. Smith (eds.) Aquatic Plants for Water
Treatment and Resource Recovery. Magnolia Publishing, Orlando, FL.
Loftin, M., L. Toth, and J. Obeysekera. 1990. Kissimmee River Restoration
Alternative Plan Evaluation and Preliminary Design Report. South Florida
Water Management District, West Palm Beach, FL.
LOT AC. 1986. Lake Okeechobee Technical Advisory Committee Final Report.
Florida Department of Environmental Regulation, Tallahassee, FL.
Martinez-Allier, J. 1990. Ecological Economics. Basil Blackwell, Oxford, England.
McSweeney, W. and J. Shortle. 1990. Probabilistic Cost-Effectiveness in Agricultural
Nonpoint Pollution Control. Southern Journal of Agricultural Economics 21:
95 - 104.
Meybeck, M. 1982. Carbon, Nitrogen, and Phosphorus by World Rivers. American
Journal of Science 282: 401 - 450.
Mitchum, L. 1987. Lake Okeechobee's History. Aquatics 9(2): 4 - 9.
Mulkey, D. and R. Clouser. 1991. The Economic Impact of the Dairy Industry in
Okeechobee County, FL. Staff Paper 91-40. Food and Resource Economics
Dept., 1FAS, University of Florida, Gainesville, FL.
Muraro, R. and E. Holcomb, Jr. 1990. Budgeting Costs and Returns for Southwest
Florida Citrus, 1989-1990. Economic Information Report 277. Food and
Resource Economics Dept., IFAS, University of Florida, Gainesville, FL.
Muraro, R. and E. Holcomb, Jr. 1993. Budgeting Costs and Returns for Southwest
Florida Citrus, 1992-1993. Economic Information Report El 93-2. Food and
Resource Economics Dept., IFAS, University of Florida, Gainesville, FL.

230
Muraro, R., G. Hurner. Jr., and T. Oswalt. 1991. Budgeting Costs and Returns for
Central Florida Citrus Production, 1990-91. Economic Information Report El
91-5. Food and Resource Economics Dept., IFAS, University of Florida,
Gainesville, FL.
Odum, H.T. 1953. Dissolved Phosphorus in Florida Waters. Report to Florida
Geological Survey. Dept, of Biology, University of Florida, Gainesville, FL.
Odum, H.T. 1983. Systems Ecology. John Wiley & Sons, New York, NY.
Odum, H.T. 1986. Enmergy in Ecosystems. In N. Polunin (ed.) Ecosystem Theory
and Application. John Wiley & Sons, New York, NY.
Odum, H.T. 1990. Emergy and Biogeochemical Cycles. In C. Rossi and E. Tiezzi
(eds.) Ecological Physical Chemistry. Proceedings of an International
Workshop. Siena, Italy. Elsevier Science Publ., Amsterdam, Netherlands.
Odum, H.T. 1992. Emergy and Public Policy. Environmental Engineering Sciences
Dept., University of Florida, Gainesville, FL.
Odum, H.T. and J.E. Arding. 1991. Emergy Analysis of Shrimp Mariculture in
Ecuador. Center for Wetlands, University of Florida, Gainesville, FL.
Odum, H.T. and F.G. Nordlie. 1975. Water Quality Models for Understanding
Potential Eutrophication in Lake Okeechobee, Florida. Center for Wetlands,
University of Florida, Gainesville, FL.
Odum, H.T. and E.C. Odum (eds.). 1983. Energy Analysis Overview of Nations.
Working Paper WP-83-82. International Institute for Applied Systems
Analysis, Laxenburg, Austria.
Odum, H.T. and E.C. Odum (eds.). 1987. Ecology and Economy: Emergy Analysis
and Public Policy in Texas. Lyndon B. Johnson School of Public Affairs Policy
Research Project Report Number 78. University of Texas, Austin ,TX.
Odum, H.T. and R.C. Pinkerton. 1955. Time's Speed Regulator: The Optimum
Efficiency for Maximum Power Output in Physical and Biological Systems.
American Scientist 43: 321 - 343.
Odum, H.T., F. Wang, J. Alexander, M. Gilliland, M. Miller, and J. Sendzimir.
1987. Energy Analysis of Environmental Value, a Manual for Estimating
Emergy. Center for Wetlands, University of Florida, Gainesville, FL.

231
Odum, H.T., F. Wang, M. Miller, J. Alexander, and T. Butler. 1981. A Manual for
Using Energy Analysis for Plant Siting. Report to the Nuclear Regulatory
Commission. Center for Wetlands. University of Florida, Gainesville, FL.
Pimentel. D. 1980. Handbook of Energy Utilization in Agriculture. CRC Press, Boca
Raton, FL.
Porcella, D. and A.. Bishop. 1974. Comprehensive Management of Phosphorus Water
Pollution. Ann Arbor Science Publ., Ann Arbor, MI.
Porcella, D., A. Bishop, J. Andersen, O. Asplund, A. Crawford, W. Grenney, D.
Jenkins, J. Jurinak, W. Lewis, E. Middlebrooks, and R. Walkingshaw. 1974.
Comprehensive Management of Phosphorus Water Pollution. EPA-600/5-74-
010. USEPA Office of Research and Development, Washington, DC.
Prevatt, J.W. 1981. Beef Production Costs. Presented at the Animal Science In-
Service Training Program, Gainesville, FL.
Prevatt, J.W. and P. Mislevy. 1990. Forage Production Costs for South Florida,
1990. Economic Information Report 271. Food and Resource Economics
Dept., IFAS, University of Florida, Gainesville, FL.
Pritchard, L. 1992. The Ecological Economics of Natural Wetland Retention of Lead.
M.S. thesis. University of Florida, Gainesville, FL.
Reddy, K.R., O.A. Diaz, M. Agami, L.J. Scinto, and L. LaClaire. 1992.
Phosphorus Dynamics in Selected Wetland/Stream Systems of South Florida.
Final report submitted to South Florida Water Management District. Dept, of
Soil Science, University of Florida, Gainesville, FL.
Sandstrom, M. 1982. Diagenesis of Organic Phosphorus in Marine Sediments:
Implications for the Global Carbon and Phosphorus Cycles. In J. Freney and I.
Galbally (eds.) Cycling of Carbon, Nitrogen, Sulfur, and Phosphorus in
Terrestrial and Aquatic Ecosystems. Springer-Verlag, New York, NY.
Sartain, J.B. 1988. Fertility Considerations for Sod Production. Soil Science Fact
Sheet SL 52. Florida Cooperative Extension Service, IFAS, University of
Florida, Gainesville, FL.
Schlesinger, W. 1991. Biogeochemistry: An Analysis of Global Change. Academic
Press, San Diego, CA.

232
Scienceman, D. 1987. Energy and Emergy. In G. Pillet and T. Murota (eds.)
Environmental Economics - The Analysis of a Major Interface. Roland
Leimgrubers, Geneva, Switzerland.
Sculley, S. 1986. Frequency Analysis of SFWMD Rainfall. Tech. Publ. 86-6. South
Florida Water Management District, West Palm Beach, FL.
Showalter, R.K. 1988. Sweet Corn Production in Florida. Circular 99. Florida
Cooperative Extension Service, IFAS, University of Florida, Gainesville, FL.
Smith, S. and T. Taylor. 1991. Production Costs for Selected Vegetables in Florida,
1991. Economic Information Report El 91-2. Food and Resource Economics
Dept., IFAS, University of Florida, Gainesville, FL.
Smith, S. and T. Taylor. 1993. Production Costs for Selected Vegetables in Florida,
1992-1993. Circular 1121. Florida Cooperative Extension Service, IFAS,
University of Florida, Gainesville, FL.
Smithwick, R. 1992. Analysis of the Long-Run Financial Impact of the Dairy Rule on
Dairies in the Lake Okeechobee Drainage Basin. M.S. Thesis, University of
Florida, Gainesville, FL.
South Florida Water Management District (SFWMD). 1989. Interim Surface Water
Improvement and Management (SWIM) Plan for Lake Okeechobee. West Palm
Beach, FL.
Taylor, A. W. and V. J. Kilmer. 1980. Agricultural Phosphorus in the Environment.
In F. Khasawneh, E. Sample, and E. Kamprath (eds.) The Role of Phosphorus
in Agriculture. American Society of Agronomy, Madison, WI.
Tuan, C.H. 1973. A Description of the Southeastern Kissimmee-Everglades Drainage
Basin with Emphasis on Hydrologic-Economic Linkages. M.S. thesis.
University of Florida, Gainesville, FL.
U.S. Army Corps of Engineers. 1991. Environmental Restoration of the Kissimmee
River, Florida: Final Integrated Feasibility Report and Environmental Impact
Statement; Annex 1. U.S. Army Corps of Engineers, Jacksonville District,
South Atlantic Division, Jacksonville, FL.
U.S. Dept, of Agriculture (USDA). 1973. Report for Kissimmee-Everglades Area,
Florida. USDA River Basin Investigation. USDA, Soil Conservation Service,
Fort Worth, TX.

233
U.S. Geological Survey (USGS). 1985. Standards for Digital Line Graphs. USGS,
National Mapping Division, Reston, VA.
Vollenweider, R. 1976. Advances in Defining Critical Loading Levels for Phosphorus
in Lake Eutrophication. Mem. 1st. Ital. Idrobiol. 33: 53 - 83.
Watt, B.K. and A.L. Merrill. 1985. Composition of Foods. Agricultural Handbook
No. 8. U.S. Dept, of Agriculture, Agricultural Research Service, Washington,
DC.

BIOGRAPHICAL SKETCH
Carolyn Fonyo Boggess was born September 24, 1956, in Jamaica, New York.
She attended parochial schools until graduation from the Mary Louis Academy in 1974.
She received her Bachelor of Science degree in environmental engineering from the
University of Florida in 1980. She worked for Camp Dresser and McKee, Inc. in New
York City and then moved to Miami, Florida, to work for the National Marine
Fisheries Service. She returned to the University of Florida, received her Master of
Science degree in resource economics in 1987, and enrolled in the Ph.D. program in
1988. While working full time at the University of Florida on contract with the South
Florida Water Management District, she completed her Doctor of Philosophy degree in
the systems ecology program. Environmental Engineering Sciences Department. She is
currently vice-president of Resource Economics Consultants, Inc., in Gainesville,
Florida.
Carolyn Fonyo married William Glenn Boggess in 1989. Their son, Matthew
Jozsef, was born in June, 1993 and their second son is due in December, 1994.
234

I certify that I have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.
T7
Howard T. Odum, Chairman
Graduate Research Professor of
Environmental Engineering
Sciences
1 certify that I have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosopj;
Mark T. Brown
Associate Research Scientist of
Environmental Engineering Sciences
I certify that 1 have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.
Clay b/Montague
Associate Professor of Environmental
Engineering Sciences
1 certify that I have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosophy.
Richard C. Fluck
Professor of Agricultural Engineering

I certify that I have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and
quality, as a dissertation for the degree of Doctor of Philosof
Clyde F. Kiker
Professor of Food and Resource Economics
This dissertation was submitted to the Graduate Faculty of the College of
Engineering and to the Graduate School and was accepted as partial fulfillment of the
requirements for the degree of Doctor of Philosophy.
December 1994
Winfred M. Phillips
Dean, College of Engineering
Karen A. Holbrook
Dean, Graduate School

LD
1780
1991
8^1
UNIVERSITY OF FLORIDA
3 1262 08557 0728