Citation
A theory of the earth's precession relative to the invariable plane of the solar system

Material Information

Title:
A theory of the earth's precession relative to the invariable plane of the solar system
Creator:
Owen, William Mann
Publication Date:
Language:
English
Physical Description:
xi, 263 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Angular momentum ( jstor )
Coordinate systems ( jstor )
Cots ( jstor )
Ecliptic coordinate system ( jstor )
Ephemerides ( jstor )
Mass ( jstor )
Planets ( jstor )
Polynomials ( jstor )
Precession ( jstor )
Sine function ( jstor )
Astronomy thesis Ph. D
Dissertations, Academic -- Astronomy -- UF
Precession ( lcsh )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 259-262).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by William Mann Owen.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001659172 ( ALEPH )
24529617 ( OCLC )
AHX0899 ( NOTIS )

Downloads

This item has the following downloads:


Full Text











A THEORY OF THE EARTH'S PRECESSION RELATIVE TO THE
INVARIABLE PLANE OF THE SOLAR SYSTEM
















By

WILLIAM MANN OWEN, JR.


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FTLORTDA IN PARTIAL FTTIFTT.T.MFNT






























Copyright () 1990

by

William Mann Owen, Jr.
















DEDICATION


In the wee hours of March 13, 1960, a five-year-old boy was awakened by his grand-


father in


order to see a total eclipse of the moon.


Thirty years have passed;


has become a man, and his interest in astronomy, planted that night, has taken root and

blossomed. It is therefore to the memory of


R. Waldo Hambleton (1901-1981)


that this dissertation is lovingly dedicated.
















ACKNOWLEDGMENTS


No enterprise of this nature can be accomplished without the support of many others.

My chairman, Dr. Heinrich K. Eichhorn, and my colleague at the Jet Propulsion Labo-


ratory, Dr. Jay


H. Lieske, reviewed early versions of the manuscript;


the quality of this


dissertation has been helped immeasurably by their critiques. The author benefited from

many conversations with them and with Drs. E. Myles Standish and X X Newhall of JPL

and with Dr. Jacques Laskar of the Bureau des Longitudes. Laskar's cooperation in pro-


viding his tabulation of the Earth's orbital parameters in advance of publication is greatly


appreciated.


The unwavering encouragement of my supervisors at JPL, Drs. Stephen P.


Synnott and James P. McDanell, was most helpful as well. Finally, the author is indebted

to Eva Eichhorn for translating the 1967 paper by Sharaf and Budnikova.

Financial support was provided at various times by the tuition assistance program of

the Jet Propulsion Laboratory, by a Graduate Council Fellowship from the University of


Florida, and by a Graduate Fellowship from the National Science Foundation.


Computer


support was provided by


s Navigation Section.


The author is grateful to all these


institutions.


The NSF


requires in addition the following acknowledgment and disclaimer:


"This material is based on work supported under a National Science Foundation Gradu-


ate Fellowship.


Any opinions, findings, conclusions or recommendations expressed in this


nlhl'ir tinn taro thi~h ', n,-f th0 miih-,,hr c+n,1 Ar ncvf rnnr'ne..-n-.;l, .rfl,.-+ +. .;...,r "--.f +tr" MT"+n'n1' "








The TEX program (Knuth 1984) typeset the dissertation.

library (Pearson 1989) was used to create the figures. The hig


of this dissertation is due to these two programs; nevertheless,


The PGPLOT subroutine


h quality of the appearance


any defects in layout or


errors in substance are solely the responsibility of the author.


















TABLE OF CONTENTS


page


ACKNOWLEDGMENTS


LIST OF TABLES


S 5 0 5 5 5 5 0 5 5 5 5 S S S S S S S S S S S S v iii


LIST OF FIGURES


ABSTRACT


CHAPTERS


INTRODUCTION


S S S S S S S S *1


Background
Notation
Definitions


THE DETERMINATION OF THE INVARIABLE PLANE


Introduction


JPL Planetary Ephemerides .
The M04786 Planetary Ephemeris


. S S
S S S S f


The Total Orbital Angular Momentum of the


olar System


The Uncertainty in the Total Orbital Angular Momentum
The Rotational Angular Momentum of the Solar System
The Adopted Orientation of the Invariable Plane .


THE SHORT-TERM THEORY


Introduction


Analytic Formulas for I, L,


and A


3.3.1
3.3.2
000\<-


Series Expansions for I, L, and A
The Expansion for I .
The Expansion for L ..
mi T ~l I' A


SS S S S. V
n- flV









THE LONG-TERM THEORY


. S. 84


Overview


The Motion of the Ecliptic


4.3.1
4.3.2
4.3.3


The Equations of Motion for the Celestial Pole
The Vector Equation of Motion .
The Equation of Motion in Component Form
Kinoshita's Expression for Luni-solar Precession


. .
.


The Numerical Integration of the Motion of the Celestial Pole
The Determination of the Precession Angles .
The Chebyshev Representation of the Precession Angles
Sources of Error in the Long-Term Theory .


CONCLUSIONS


The Short-Term and Long-Term Theories Compared .
Comparing the Classical and Invariable Plane Precession Formulations
Summer .


REFERENCES


BIOGRAPHICAL SKETCH

















LIST OF TABLES


page


Definitions of Symbols


. 5 9


Physical Constants from the M04786 Ephemeris


Vectors from the M04786 Ephemeris at 1989 August 25 04:00 ET


Asteroid Vectors at 1989 August 2

Relativistic Masses from the M047


5 04:00 ET


6 Ephemeris at 1989 August


25 04:00


Planetary Masses and Uncertainties


Covariances of the Planets'


Full-Precision


Orbital Angular Momenta


Values of Current Precessional Constants


* S S 5 0 5

* S S S S S S


Constants in the Short-Term Theory


Comparison of Rigorous Angles and Polynomial Approximations


Astronomical Constants for Kinoshita's Luni-solar Precession Model

Chebyshev Polynomial Coefficients for the Long-Term Theory .


Polynomial Coefficients from the Long-Term


Theory Near T


Chebyshev Coefficients for (A


9A, and


ZA from the Long-Term


Theory


NearT


S S S S S S S S S S S S S S S S S S S S S S S S


Polynomial Coefficients for CA


NearT


8A, and zA from the Long-Term Theory


* S S S S S S S S S S S S S S S 0 4 9 4 2 4 8


Polynomial Coefficients from the Long-Term and Short-Term Theories


. 245


















LIST OF FIGURES


page


The Equatorial Coordinate System


. 4 7


The Ecliptic Coordinate System


The Effect of the Geocentric Lunar Orbit on the Invariable Plane

The Direction of the Total Angular Momentum (M04786 Ephemeris)

The Direction of the Total Angular Momentum (DE130 Ephemeris)

The Orientation of the Invariable Plane .


The Classical Precession Angles (, 0, and z

Precession Angles Using the Invariable Plane

The Equators and the Invariable Plane


. 6 6 6 S .

B S 6 0 .


Precession Between Two Arbitrary


Times


S S S 0 B J78


Spherical Coordinates for Q in the Eo System


S. S B 92


The Precession Angles for One Million


Years


S B 5 5 4 5 5 105


The Precession Angles CA, 0A, and ZA Near T


= +250


. S S 5 113


J2000 Equatorial Coordinates of the Ecliptic Pole and of the Pole of the
Invariable Plane .









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
A THEORY OF THE EARTH'S PRECESSION RELATIVE TO THE
INVARIABLE PLANE OF THE SOLAR SYSTEM

By

William Mann Owen, Jr.


December 1990


Chairman: Heinrich K


Eichhorn


Major Department: Astronomy


The most commonly used formulas for the rigorous application of general precession

employ three successive small rotations by which the equatorial coordinate system at epoch


is aligned with the equatorial system of date.


This dissertation presents an alternate method


for applying precession in which the rotation angles are intimately tied to the invariable

plane of the Solar System.


The work involved in constructing this theory divides neatly into three parts.


First,


the newest planetary ephemeris from the Jet Propulsion Laboratory, produced after the


Voyager


encounter with Neptune, allows one to infer the orientation of the invariable plane


with a standard error on the order of 0O'!04.


Second, the coefficients in the approximation


polynomials for the new angles are found in terms of their counterparts in the currently-

accepted IAU theory; this "short-term theory," like the IAU one, is valid for a few centuries


near the present time.


Third, the motion of the Earth's north pole is integrated numerically


over a million-year time span; values for both the standard precession angles and the new

ones are inferred at discrete times from the integration, and Chebyshev polynomials are fit








A comparison of the long-term and short-term theories reveals two possible improve-


ments to the IAU system of constants.


the rigid Earth, used in


The higher-order terms in Kinoshita's model for


the long-term theory, change the time derivative of Newcomb's


Precessional Constant from -0'00369 per Julian century to -0'00393/century at the stan-

dard epoch J2000.0. Laskar's investigation into the motion of the ecliptic, also used in the

long-term theory, yields -46'!8065/century for the rate of change of the obliquity versus

the currently-adopted -46'.8150/century.
















CHAPTER
INTRODUCTION


Background


The slow motion of the celestial pole (however one defines it) among the stars and

the concomitant slow westward drift of the location of the vernal equinox are the result of


the physical process known as astronomical precession.


The former effect results from the


gravitational interaction of the Sun and Moon with the oblate Earth; this produces a torque

which changes the direction of the Earth's rotational angular momentum vector. The short-

period portion of this phenomenon is known as "nutation" and will not be treated in depth


here;


the long-period


part is "luni-solar precession."


(As the longest nutation period is


about


18.6 years while the shortest period of luni-solar precession is about 25,000 years,


there is a clean division


between


the two manifestations of the same physical process.)


In addition,


the gravity of the other planets in


the Solar System


perturbs the


Earth's


orbit, changing the orientation of its mean orbital plane (the ecliptic).


The influence of


this orientation change on the direction of the mean


vernal equinox is called


"planetary


precession."


Since the vernal equinox lies at the intersection of the Earth's mean equator


and the ecliptic, its location is affected by both motions.


The resultant of luni-solar and


planetary precession is accordingly called "general precession.


Luni-solar precession was discovered in the second century


B.C. by Hipparchus, who







2

motion of the ecliptic was not suspected until Newton applied his theory of gravitation to

the motions of the planets.


The theory of general precession is both dynamic and kinematic in nature.


The dy-


namics enters into the differential equations of motion for the ecliptic (or equivalently for


the pole of the ecliptic) and for the equator (or the celestial pole).


Once these equations are


integrated, the motion of the vernal equinox and of the equatorial and ecliptic coordinate


axes


becomes a problem in rotational kinematics.


Precession theory accordingly is devel-


oped in terms of angles by which one can rotate coordinate frames from their orientation

at one epoch to that at another.

The current theory of precession was developed by Lieske et al. (1977). Its time origin


is the beginning of the astronomical Julian


January 1 (Julian Ephemeris Date 2451545.0).


year 2000, or noon dynamical time on 2000


This zero epoch is denoted "J2000.0,


" and


time T in this theory is measured in units of Julian centuries of 36525 days of dynamical


time.


(The current distinction between


"terrestrial dynamical time"


and "barycentric dy-


namical time," a periodic difference of no more than two milliseconds, is of no consequence

in a theory whose rates do not exceed two degrees per century.) The paper of Lieske et al.


is based on Fricke's


comb's


(1971) determination of the speed of luni-solar precession and on New-


(1894) work on the motion of the ecliptic, the latter updated with modern values


of the masses of the planets.

While the rotation matrix approach to precession is fully rigorous, giving exact re-


sults for the effects of precession on equatorial coordinates,

the precession angles themselves are only approximate: Lies]


the formulas for evaluating


ke et at provide third-degree






3

reduction of modern precise astrometric observations. However, a blind application of the

polynomials over millenia will produce grotesquely wrong results.


Several authors have examined


precession


theory over much longer time intervals.


Here one generally expresses the orientation of the ecliptic as a sum of trigonometric terms

derived from long-period planetary perturbations; expressions for the accumulated general


precession in longitude follow.


This method was developed by Brouwer and van


Woerkom


(1950), corrected by Sharaf and Budnikova (1967), and extended to five million years by


Berger (1976). Berger's work was based on Bretagnon's


(1974) theory, which was complete


to second order in the planetary masses and to third degree in eccentricity and inclination.

The goal of this dissertation is to develop a theory of precession in which the invariable


plane of the Solar System is used as a fundamental reference plane.


Precession


angles


referred to the invariable plane can be used in both short-term and long-term applications.

With a suitable change in the origin of right ascensions, the new precession theory becomes

simpler computationally than the current theory.


The work described here divides neatly into three parts. In Chapter


of the invariable plane is found from


the orientation


the most recent planetary ephemeris produced


the Jet


Propulsion


Laboratory.


Chapter 3 presents formulas by which


the polynomial


coefficients of the new precession angles may be calculated from those of the current theory;


the results when the values in


the Lieske et al. (1977) paper are adopted may be called


"short-term theory."


Chapter 4 is devoted to the "long-term theory,"


developed by


numerical integration of the position of the celestial pole; the equations of motion are those


of Kinoshita (1977), while the "Numerical General Theory"


of Laskar (1985) provided the









Notation


Table 1-1, found at the end of this chapter, presents a list of all the symbols used

throughout this dissertation with their definitions and the number of the section in which


the symbol first appears.


The table contains Latin symbols first, then Greek, then special


astronomical symbols, with the first two parts in alphabetical order.

Scalar quantities (including components of vectors and elements of matrices) are set in


italic type throughout this work.


Vectors are given in boldface roman type; individual rows


or columns of matrices are considered to be vectors for this purpose.


Matrices appear in


a boldface sans-serif font; the same font is used for both rotation matrices and covariance


matrices.


This scheme follows standard typographical practice for scalars and vectors; the


typography for matrices is that used by Goldstein (1980).


This paper follows commonly accepted notation for the precession angles.


The system


of notation for the coefficients of these angles pioneered by Lieske et al. (1977) is complete


and unambiguous;


at the same time the diacritical marks can be awkward.


Deviations


from their system are carefully noted both in Table 1-1 and at their first use in the text.


Equations are numbered by chapter in order of their first appearance.


When an equa-


tion appears more than once, all occurrences are labeled with the original equation number.


Definitions


Insofar


as possible, all the terminology used in this dissertation is currently in use by


the astronomical community.


An excellent glossary appears in section M of the annual


volumes of The Astronomical Almanac, published jointly by the United States Naval Ob-


servatory and the Royal Greenwich Observatory.


The reader is referred there for terms not






5

dissertation are right-handed: if the three axes be denoted (in order) by x, y, and z, and

if the x- and y-axes are placed on a piece of paper such that x increases to the right and y

increases upward, then the z-axis points out of the paper toward the observer.

The rectangular components of a vector are taken to form a column vector (a matrix


with only one column).


Vectors are also specified in terms of their spherical coordinates:


length (or magnitude) r, longitude angle A, and latitude angle ,3.


The transformation from


,A,/ } into rectangular components (x, y, z)T is


r cos A cos #
= rsinAcos fl
rsinf /


(1-1)


this is a vector equation.


The inverse transformation consists of the three scalar equations


r=V/


+y2+


(1-2)


A = plg(y,


(1-3)


f = tan


(1-4)


The notation "plg(y, xa)" in equation (1-3) was introduced by Eichhorn (1987/88)


as an al-


ternate to the more usual tan


-1(y/x).


The range of the plg function is 0


< plg(y, x)


< 360;


the quadrant depends on the signs of x and y individually.

language, A would be evaluated as ATAN2 (y, x). No such


In the Fortran programming


confusion exists for equations


(1-2) and (1-4); r is nonnegative, and /3 has the same range as the principal value of the

arctangent. Equation (1-4) is given in terms of the arctangent rather than the more usual


3 = sin


-(z/r) for numerical reasons:


the arcsine loses its precision


when its argument


approaches +1.


Finally, if r = 0, the equations for A and 0 are technically indeterminate:


a:
y
z


+y2).








the matrix is applied.


There are three elementary rotation matrices, denoted Ri(9),


producing a rotation by some angle 0 about one of the three coordinate

sign convention applies to the angles; for instance, a rotation about the


angle carries the x-axis toward the old y-axis.


axes. The standard

z-axis by a positive


Written out, the three elementary rotation


matrices are


0
COS0


Ri(9)


- sin 0


0
sin 0
cos 0


R2(0)


Ra(0)


cos9
0
sinG0


cos 0
-sin 9
0


- sin 0
0
cos 0


sin 0
cosO
COS0
0


Precession theory is intimately concerned with the orientation of the "mean equatorial


coordinate system.


" The


z-axis (denoted Q) of this system is directed to the mean Celestial


Ephemeris


Pole; the x-axis is directed toward the mean vernal equinox and is symbolized


by the


"ram's horns"


of Aries (T); the y-axis (yq


), directed toward right ascension 6h


and declination 0


, completes the right-handed triad.


(The word "mean" in this context


indicates that the effects of nutation are disregarded.) This system is also called the "mean


equator and equinox,


either "of epoch"


or "of date.


The "epoch" is the initial time for


precession, usually J2000.0, and the


"date"


refers to an arbitrary final time for precession.


Figure 1-1 shows the coordinate


axes


of this system,


with circles marking the planes of the


equator and the ecliptic.




























Ecliptic


Equator


Figure 1-1.


Equator
-


The Equatorial Coordinate System


- -


E


I









system; and again the y-axis completes the right-handed triad.


The basis unit vectors are


denoted T for the


x-axis


, YE for y, and E for


Figure 1-2 depicts the ecliptic coordinate


system.


The vectors E and Q appear in


both figures; the angle between them is


obliquity of the ecliptic.


For the sake of brevity, Eichhorn


's (1987


) single-letter notation for coordinate


teams will often be used.


The mean equatorial system of date is called the "Q system," and


the ecliptic coordinate system of date is likewise called the


"E system.


" Their counter-


parts at epoch carry a subscript zero: Qo and E0,


respectively.


The orientation of the Qo


system is defined implicitly by the right ascensions and declinations at J2000.0 of the 1535

fundamental stars in the FK5 star catalog (Fricke et al. 1988).


Two other equatorial systems are still in frequent use.


The "B1950 (FK4) system


is defined by the positions and proper motions of the FK4 star catalog (Fricke and Kopff

1963) at epoch B1950.0 (the beginning of Besselian year 1950, or Julian Ephemeris Date


2433282


.42345905).


Observations subsequent to those used in the FK4 have revealed a small


but significant systematic error in the FK4 proper motions in right ascension.


Consequently


this system, although intended to be inertial, is in slow rotation about its


z-axis.


(No doubt


future observations will reveal a similar flaw


, albeit of smaller magnitude,


in the FK5.)


By contrast


the planetary ephemerides developed at the Jet Propulsion Laboratory


(JPL) are integrated numerically in a coordinate system that is inertial by construction.


The latest available ephemeris, produced for the


Voyager project after the Neptune en-


counter, has its coordinate


B1950.0.


axes


aligned


This non-rotating system


the B1950 (FK4) system above at epoch


will be denoted


"EME50" in accordance with JPL








Table 1-1.


Definitions of Symbols


Symbol


Section


Definition


The rotation matrix which transforms from the mean ecliptic and
equinox of J2000.0 into the mean equator and equinox of date.


4.2.3


1) The smallest principal moment of inertia of the Earth.
2) Subscript denoting the accumulated precession angle rather than
its rate.

The semimajor axis of an orbit, usually with a subscript to indicate
the orbiting body.

Coefficients of Chebyshev polynomials obtained from JPL planetary
ephemerides.

Prefix denoting a Besselian year.


B1950


B1950.0


C


4.2.3
2.4

1.3


1.3


4.2.3


1) The intermediate principal moment of inertia of the Earth.
2) Subscript denoting the Earth-Moon barycenter.

The mean equatorial coordinate system at epoch B1950.0; used with
a following (FK4) to denote the rotating system of the FK4
star catalog.


The instant of time corresponding to the start of the Besselian year
1950; Julian Ephemeris Date 2433282.42345905.

The largest (polar) principal moment of inertia of the Earth.


1) The speed of light in vacuo.
2) The product sin irA cos 11A


3.3.1


The coefficient of Tk in the expression for the cosine of the angle I.


The Jacobian


of the transformation from rectangular coordinates


into right ascension and declination.

The polynomial forming the denominator in the quotient n/d.

The coefficient of Tk in the denominator polynomial d.









Table 1-1, continued.


Symbol


Section


Definition


The coordinate system defined by the ecliptic and mean equinox of
date.

The coordinate system defined by the ecliptic and mean equinox of
epoch.

The orbital eccentricity, often used with a subscript to denote the
orbiting body.


EME50


G


The nonrotating coordinate system aligned with the B1950 (FK4)
system at epoch B1950.0.


The universal constant of gravitation.


The Jacobian of the transformation from Set III


coordinates into


rectangular coordinates in the orbital system.


4.3.3

2.4

2.5


2.6
4.2


3.3.1

2.4
9 _;


The ratio of the moments of inertia of the Earth.

An angular momentum vector.

The unit vector in the direction of the orbital angular momentum
of a planet.

1) The magnitude of angular momentum.
2) One of the two rectangular components giving the eccentricity
and longitude of perihelion of the Earth's orbit.
3) The stepsize in a numerical integration.

1) The rotational moment of inertia of a body.
2) The inclination of the invariable plane to the mean equator of
date.

The inclination of the invariable plane to the mean equator of epoch.


The coefficients of Tk in the polynomial expansion of I.

1) Running index over all bodies on a JPL planetary ephemeris file.
9'\ Tb0i ;nn-n +r 1 4, .- 1 ..... k:s- 1... L ri. T rTr n --- -1.









Table 1-1, continued.


Symbol


Section


Definition


Prefix denoting a Julian year.


J2000


The mean equatorial coordinate system at epoch J2000.0, as realized
by the FK5 star catalog.


J2000.0


The standard epoch for precession theory:


Julian Ephemeris Date


2451545.0, or 2000 January


1 12:00 dynamical time.


1) The Gaussian gravitational constant.
2) A running index, or the power of time T.
3) One of the two rectangular components giving the eccentricity
and longitude of perihelion of the Earth's orbit.


4.3.3

4.3.3


Fundamental rate of luni-solar precession attributable to the Sun.

Fundamental rate of luni-solar precession attributable to the Moon.


The angle, measured along the equator of date, from the mean vernal
equinox of date to the intersection of the invariable plane and
the equator of date; the right ascension of this point.

Same as above, but using the equator and mean vernal equinox of
epoch.


3.3.2

2.5


2.5

4.3.3


The coefficients of T in the polynomial expansion of L.

The rotation matrix which transforms from the EME50 system into
the orbital system (p, q, h) of a planet.

The mean anomaly of a planet.

The lunar coefficients in Kinoshita's expression for luni-solar preces-
sion.

Mass.

The reciprocal mass of a planet (mo/m).

The rotation matrix which transforms from mean pnnatnrial rnvr-









Table 1-1, continued.


Symbol


Section


Definition


The vector directed


toward the


ascending node of the ecliptic of


J2000 on the ecliptic of date (for T
scending node if T < 0.


> 0) or toward the de-


vector directed


toward the


ascending node of the invariable


4.3.3

3.3


plane on the mean equator of J2000.

1) The degree of the highest Chebyshev polynomial whose coefficient
is included in the data records of a JPL planetary ephemeris
file.
2) The polynomial forming the numerator in the quotient n/d.
3) The mean motion of a planet.

The coefficient of Tk in the numerator polynomial n.


4.3.3


The rate of regression of the nodes of the Moon
(a negative quantity).


Order of terms which are omitted from an equ


s orbit on the ecliptic


ation, as in O(T5).


The rotation matrix which transforms from the mean equator and
equinox of epoch to the mean equator and equinox of date; the
precessionn matrix."

The analog to P above with the intersection of the invariable plane
and equator replacing the vernal equinox.


4.3.1


Newcomb's


"Precessional


Constant."


This is not the same


as the


so-called


4.3.1


"constant of precession


p below.


The coefficient of Tk in the polynomial for Newcomb's


"Precessional


4.3.1


Constant."

The unit vector directed toward perihelion of a planet.

1) One of the two rectangular components giving the inclination and
node of the ecliptic of date on the ecliptic of J2000.
2) The speed of general precession in longitude, also known as the
"constant of precession."









Table 1-1, continued.


Symbol


Section


Definition


The speed of general precession in longitude at J2000.


The rotation matrix which


transforms from the mean equator and


invariable plane of J2000 to the mean equator and vernal equi-
nox of date.

The vector directed toward the Celestial Ephemeris Pole.

The coordinate system defined by the mean equator and vernal equi-
nox of date.

The coordinate system defined by the mean equator and vernal equi-
nox of epoch.


The unit vector directed


toward 90


true anomaly in


the orbital


plane of a planet.


1) The quotient of two polynomials, q


= n/d.


2) One of the two rectangular components giving the inclination and
node of the ecliptic of date on the ecliptic of J2000.

The coefficient of Tk in the quotient of two polynomials.


Ri(9)


The elementary rotation matrix which rotates the coordinate system


by angle 0 about axis i, where i
z-axis.

1) The radius of a rotating body.


= 1,2,


or 3 for the


, y-, or


4.3.3


2) Kinoshita's


rate of luni-solar precession.


The position of a body relative to the barycenter of the Solar System.


1) The magnitude of an arbitrary vector.
2) The magnitude of the difference of the barycentric position vectors
of two bodies.


The covariance matrix of the Set III elements and mass of a planet.









Table 1-1, continued.


Symbol


Section


Definition


The covariance matrix of the angular momentum of a planet referred
to B1950.0 equatorial coordinates.


The covariance matrix of the orbital angular momentum of the Solar
System in terms of the right ascension and declination of the
angular momentum vector.


4.3.3


The solar coefficients in Kinoshita's expression for luni-solar preces-


sion.


1) In cylindrical coordinates, the distance from a point to the


z-axis.


) The quantity sin 7rA sin HA*


The rotation matrix which transforms from the EME50 system (as
realized by the DE130 planetary ephemeris) into the J2000
system (as realized by the DE202 planetary ephemeris).

The transpose of a matrix or column vector.

Time, measured in Julian centuries past J2000.


The central time in a time interval of the table of long-term Cheby-
shev coefficients.

1) The earliest time covered by one record of a JPL planetary ephem-
eris file.


) The initial


time when one desires to apply precession


between


two arbitrary times.

1) The latest time covered by one record of a JPL planetary ephem-
eris file.
2) The final time when one desires to apply precession between two
arbitrary times.


Tk(x)


The Chebyshev polynomial of the first kind of degree k.


The time interval T2 T1


when one desires to apply precession be-


tween two arbitrary times.

The velocity of a body relative to the barvcenter of the Solar Svstem.









Table 1


-1, continued.


Symbol


Section


Definition


The first Cartesian coordinate axis, or the projection of a vector in
that direction.

The unit vector in the y direction of the E system.

The unit vector in the y direction of the Q system.

The second Cartesian coordinate axis, or the projection of a vector
in that direction.

1) The third Cartesian coordinate axis, or the projection of a vector
in that direction.
2) The accumulated angle, measured along the equator of date, from
the intersection of the equator of date and equator of epoch


to the y-axis of the mean equatorial system of date


denoted


this is


as ZA by Lieske et al. (1977)


Another notation for ZA


above.


The coefficients of Tk in the polynomial expansion for


ficients


the coef-


z3 are denoted z4 and z' respectively by Lieske


et al. (1977).

1) Right ascension, in particular of the angular momentum vector
of the Solar System.
2) Any one of the precession angles.

The right ascension of the angular momentum vector of the Solar


System in the Qo


system.


The coefficient of Tk (a polynomial coefficient) for any one of the
precession angles.


The coefficient of Tk(


/3 1.3

7 2.6


r) (a Chebyshev coefficient) for any one of the


precession angles.

The generalized latitude angle of a vector.

The coefficient of moment of inertia of a body.









Table 1-1


continued.


Symbol


Section


Definition


3.3.3


The coefficient of Tk in the polynomial expansion for A.

The difference between the inclination of the invariable plane to the
true equator of date and the inclination of the invariable plane
to the mean equator of date.


The Set III parameter specifying a rotation of an orbital plane about
its line of apsides.


The Set III parameter


specifying a rotation of an orbital plane about


the latus rectum.

Nutation in obliquity.

Nutation in longitude.


Declination


, in particular of the angular momentum vector of the


Solar System.


The declination of the angular momentum vector of the Solar
in the Qo system.


1) The difference between the angle A (q.v.)


System


as computed from the


rigorous equation and from the polynomial approximation.
) The difference between the angle A measured to the true equator
of date and the analogous angle measured to the mean equator
of date.


The difference


between


the angle


(q.v.) as computed


from


rigorous equation and from the polynomial approximation.


The difference


between


the angle


L (q.v.) as computed from


rigorous equation and from the polynomial approximation.

The obliquity of the ecliptic; the inclination of the ecliptic of date
to the equator of date.


4.3.1


The obliquity of the ecliptic at J2000.


The accumulated angle, measured along the equator of J


2000,.


from


/








Table 1-1, continued.


Symbol


Section


Definition


Another notation for (A above.

The coefficients of Tk in the polynomial expansion for (A; the coef-
ficients (2 and (3 are denoted ({ and (' respectively by Lieske
et al. (1977).

1) The longitude angle in cylindrical coordinates.
2) The dihedral angle between the equator of J2000 and the equator
of date; the angle between the Celestial Ephemeris Poles of
J2000 and of date; denoted OA by Lieske et al. (1977).


Another notation for OA above.


The coefficients of Tk in the polynomial expansion for 6A


the coef-


ficients 02 and 03 are denoted 09 and 0(' respectively by Lieske
et al. (1977).

The angle, measured in the ecliptic of date, from the mean vernal
equinox of date to the intersection of the ecliptic of date and
the ecliptic of J2000; denoted AA by Lieske et al. (1977).

The generalized longitude angle of a vector.

The rest mass of a body multiplied by G.

The relativistic mass of a body multiplied by G.

The angle, measured in the ecliptic of J2000, from the mean vernal
equinox of J2000.0 to the intersection of the ecliptic of date
and the ecliptic of J2000.0; the J2000 ecliptic longitude of the
ascending node of the ecliptic of date; denoted HA by Lieske
et al. (1977).


The angle between


the ecliptic of date and the ecliptic of J2000,


taken to be negative for T


< 0; denoted


A by


Lieske et al.


(1977).

The longitude of the Earth's perihelion in the E0 system.
mil 1 P r i l j









Table 1-1, continued.


Symbol


Section


Definition


4.3.2


4.3.1


4.3.1


The colatitude angle of the Celestial Ephemeris Pole referred to the
ecliptic and mean equinox of J2000.0.


The instantaneous speed of luni-solar precession; the rate at which
the mean vernal equinox of date moves along the moving eclip-
tic of date.


The speed of luni-solar precession at J2000.


The angle, measured along the ecliptic of J2000, from the mean ver-
nal equinox of J2000 to the intersection of the ecliptic of J2000
and the equator of date; the accumulated luni-solar precession;
denoted 'A by Lieske et al. (1977).


4.3.1


4.3.1

4.6


The instantaneous speed of planetary precession; the rate at which
the mean vernal equinox of date moves along the moving mean
equator of date.


The speed of planetary precession at J2000.

The angle, measured along the equator of date, from the vernal equi-
nox of date to the intersection of the mean equator of date and
the ecliptic of J2000; the accumulated planetary precession;


denoted XA


4.3.1


by Lieske et al. (1977).


1) The rotation rate of a body.
2) The rotation rate of the Earth.


The argument of perihelion


of a planetary orbit,


referred


to the


EME50 coordinate system.

The inclination of the ecliptic of J2000 to the mean equator of date;
denoted WA by Lieske et al. (1977).

The Sun.

The planet Mercury.

The planet Venus.








Table 1-1, continued.


Symbol


Section


Definition


The planet Jupiter.

The planet Saturn.

The planet Uranus.

The planet Neptune.

The planet Pluto.

The Earth's Moon.

The unit vector directed toward the mean vernal equinox of date.

The longitude of the ascending node.
















CHAPTER


THE DETERMINATION OF THE INVARIABLE PLANE


2.1. Introduction


The invariable


plane of the Solar System is rigorously defined


as that plane which


contains the center of mass of the Solar System and is perpendicular to the total angular


momentum of the Solar System.


This definition holds for both classical and relativistic


physics.

The "total angular momentum" must rigorously include rotational angular momentum

as well as orbital angular momentum, and it must account for all the mass in the Solar

System: satellites, asteroids, and comets in addition to the Sun and planets. Nevertheless,

the major contributor to the total angular momentum of the Solar System is the orbital

angular momentum of the planets, in particular of Jupiter.


The goal of this chapter is to determine the orientation of the invariable


equivalently to estimate the direction of the total angular momentum.


plane, or


This task is made


much easier thanks to the availability of computer-readable planetary ephemeris files, and it

can provide reliable results now that the masses of the outer planets have been determined

from spacecraft encounters.


The angular moment of the largest asteroids must be included.


The largest asteroid


(1 Ceres) has about 6


x 10-10 solar mass (Schubart 1974; Newhall et al. 1983) or 6


x 10-7









of about five less than this:


about 6 x 10-8 radian, or 0'!01.


This is comparable to the


uncertainty found in Section 2.5 and therefore must be included.


Smaller asteroids individually will have an effect correspondingly less.


Taken as an


ensemble, their angular momentum should lie very close to the normal to the invariable

plane; thus while the magnitude of the total angular momentum of the Solar System would

be increased, the direction of the total angular momentum would be virtually unchanged.

So small asteroids, and by implication comets and smaller bodies, can be safely ignored at

this time.

Rotational angular momentum will also be ignored, but for an entirely different reason:


the large uncertainty in the Sun's


rotational angular momentum.


This topic is explored in


more depth in Section 2.6.

The approach adopted here will be to compute the orbital angular momentum of each

planetary system (comprised of the planet and its satellites) under the assumption that

each planetary system is a point mass. Accordingly, this chapter will first describe the most


recent planetary ephemeris file produced at the Jet Propulsion Laboratory.


The relativistic


equations giving the orbital angular momentum of the Sun and planets are presented next.

Then the total angular momentum will be found and its uncertainty estimated.

For most planets, the product of the universal gravitational constant G and the body's


mass is known much more precisely than the mass itself.


This arises because only their


product (typically denoted by t) enters into the equations of motion.


The value of G must


be determined in the laboratory by measuring the gravitational force between two bodies

of known mass; modern measurements (e.g., Luther and Towler 1982) give its value to only






22

Throughout this remainder of this chapter, the word "mass" will therefore be taken


to mean


- Gmi rather than m, itself.


"Mass"


accordingly is measured in


units of


length3 timee.


passing,


the square of the Gaussian constant of gravitation k gives


the solar mass, exactly


1 AU3/day2


if p is specified in km3/sec2


, the length of the AU


follows.)


JPL Planetary Ephemerides


The planetary ephemeris files produced by the Jet Propulsion Laboratory provide the


foundation for all NASA's deep-space missions.


In addition to providing the position and


velocity


of the Sun,


Moon, and nine


planets,


these files also include


the values of the


physical constants that were used in their generation.


These constants include the speed of


light, the length of the astronomical unit (expressed in kilometers), and the masses of the


planets.


The constants are read by the programs that integrate the equations of motion of


natural satellites or of a spacecraft; this insures compatibility between files.

Planetary ephemeris files are produced by the "Solar System Data Processing System"

(SSDPS), which was originally designed by Charles L. Lawson (1981) and is now maintained


E. Myles Standish, Jr., and X


X Newhall.


The SSDPS has three main functions:


reduces astrometric observations (both ground-based and from spacecraft) to determine a

set of initial conditions for the Solar System bodies; it integrates the equations of motion;


and it transforms the integrator output into an easily interpolated ephemeris file.


reader is referred to Newhall et al. (1983), Standish (1990a), or Newhall (1989) for a more

complete description of the SSDPS; an overview of the system for our purposes here is

presented below.








pole at a standard


epoch,


either


B1950.0 (as realized


by the


FK4 catalog) or


J2000.0


(FK5).


The x-axis


is directed to the corresponding (FK4 or FK5) "catalog equinox"


zero point for measuring right ascensions) at that epoch.


Since the equations of motion


integrated by the SSDPS are expressed in an inertial


coordinate system (i.e.,


there are


no Coriolis accelerations in the differential equations),

construction, an inertial coordinate system. When the


the resulting ephemeris realizes,


B 1950.0 epoch is used, the resulting


inertial coordinate system is termed EME50 (an abbreviation for "Earth mean equator of


1950"


) in order to distinguish it from the slowly rotating coordinate system of the FK4


catalog


The first


step in


the production of a new planetary


ephemeris


is the estimation of


the masses and initial positions and velocities of the principal bodies in the Solar System.


The a priori model is an earlier ephemeris.


The data (Standish 1990a) include ground-


based optical observations,


radar ranging data, and spacecraft ranging data.


The latter two


classes provide accurate synodic periods independent of transit circle observations; this in


turn gives the planets' inertial mean motions. Since transit observations are made relative

to fundamental stars, the offset and drift of the fundamental catalog (FK4 or FK5) vernal


equinox are therefore visible in the residuals


, and these quantities can be estimated.


The second step in the preparation of an ephemeris is the numerical integration.


equations of motion (Newhall et al. 1983) are fully relativistic in


their treatment of the


gravitational forces. Each planet other than the Earth is taken to be a point whose mass


the sum of the masses that comprise that planetary system. Each point mass therefore de-


fines the barycenter of its planetary system.


(This


scheme is consistent with the other JPL







24
Several asteroids are included as perturbing bodies; their orbits are given analytically, but

they themselves are not integrated.


The Earth and Moon, however, are included as separate bodies.


Here the low-order


gravity harmonics of both Earth and Moon are modeled, as are the Earth tides and lu-


nar librations.


These accelerations are vital for the production of an accurate geocentric


ephemeris for the Moon.


Therefore the SSDPS integration is effectively of an eleven-body


system: the nine planets, the Sun, and the Moon.


The integrated positions and velocities


are written to a file for further processing.


The third step produces the planetary ephemeris file itself.


To save storage space, and


to make interpolating easier, a planetary ephemeris file contains a Chebyshev representation


of the motions of the planets (Newhall


1989).


The final ephemeris file contains many


records,


with each record covering a fixed


time interval.


Each record in


turn contains


coefficients of Chebyshev polynomials used in the interpolation of position and velocity. If

T1 < T < T2, where T is the desired interpolation time and T1 and T2 are the start and


end times of the record bracketing T


, then the x component of position is found by


x=Z


akTk(T),


(2-1)


where the Tk are the Chebyshev polynomials of the first kind (see, for instance, Rivlin


1974); r


, in the range |r|


< 1, is a dimensionless measure for time defined by


- (Ti + T2)


(2-2)


-Ti)


the ak are the coefficients read from the file: and n is the decree of the highest nnlvnnminal








dx
dT


dr
akTkMr dT


(2-3)


The y and z components are found in the same manner. In practice, the values of Tk(r) and


Tk(r) are found recursively in a low-level subroutine.


Users need only call a higher-level


subroutine, passing the time and desired planets, and retrieving the position and velocity

vectors.

The Chebyshev coefficients are fit to positions and velocities output from the numeri-

cal integrator; the fitting process, which is constrained to match both position and velocity


across a record boundary, is described by Newhall (1989).


The Chebyshev representation


has been found to match the integrated trajectory to within a tolerance of 0.5 mm in posi-


tion; this is many orders of magnitude below the accuracy to which the planets'


positions


are currently known.


The M04786 Planetary Ephemeris


The particular ephemeris file used in


this work, known internally


as M04786 after


the identification number of the run which created it, has a slightly different history from


the scheme outlined above. It was prow

Determination Program (ODP; Moyer


duced by Jacobson et al. (1990) using JPL


1971) in


's Orbit


the final steps of postflight analysis of


the 1989 Voyager encounter with Neptune (Stone and Miner 1989).


Its precursor, known


within JPL as DE130, was created by Standish (1987) to serve as an a priori ephemeris

for the Neptune encounter. In accordance with Voyager project requirements, DE130 (and


therefore M04786) is on the EME50 system; a J2000 equivalent is known as DE202.


These


ephemerides supersede DE200, which is still used in the production of the annual volumes








These five asteroids were found


to have the largest effect on


Viking lander ranging


observations.

As Voyager encountered Neptune, the data it collected (both radiometric and optical)


helped


to render Neptune's ephemeris more accurate.


The planetary ephemeris file used


during encounter operations was accordingly updated from


time to time.


Due to time


constraints,


the full SSDPS was not executed.


Rather, Neptune's orbit and mass were


merely linearly corrected based on parameters estimated by the ODP.

The masses and other physical constants used by the M04786 ephemeris are presented

in Table 2-1. As mentioned above, the "masses" all include a factor of G, and the satellites

of the superior planets are included with their primaries.


Physical Constants from the M04786 Ephemeris


Mass of Mercury, p/
Mass of Venus, p#
Mass of Earth, Fe
Mass of Mars system, Pc
Mass of Jupiter system, #p


Mass
Mass


of Saturn system, ph
of Uranus system, Pi6


Mass of Neptune system, p,
Mass of Pluto plus Charon, PB


Mass
Mass


of the Sun, pe
of the Moon, p(


22032.08045038011 km3/


324857.4782


760278 km3/


398600.4420277941 km3/


4282


8.28654533971 km3/sec2


126712700.9827376 km3/sec2
37940448.53389772 km3/sec2
5794559.117031542 km3 /sec2
6836534.716231512 km3/sec2
1020.864919671097 km3/sec2
132712439800.9096 km3/sec2
4902.799066232991 km3/sec2


Mass of Earth plus Moon, pB
Mass of 1 Ceres


Mass of


Pallas


Mass of 4 Vesta


Mass of 7 Iris
Mass of 324 Bamberga
Length of astronomical unit
Speed of light in vacuo, c
Earth/Moon mass ratio, Pe/Ht


403503.241094027


1.54674588
3.8448884762


7.2858525


10-13
10-"14
10-14


1.6 x 10-15
2.6 x 10-15


0 km3/


AU3/day2
AU3/day2
AU3/day2
AU3/day2
AU3/day2


149597870.6094344 km


299792.458
81.300587


km/sec


Table 2-1.









task.


The location of the Solar System barycenter is defined implicitly by equation (2) of


Standish et al. (1976):


(2-4)


where r2 is the position of body i relative to the Solar System barycenter and p


relativistic mass (corrected for both special and general relativity effects).


is its


One calculates


p* using equation (3) of the same report:


2_ 1
- -
2c2 2c2


rir


(2-5)


In this equation, pi is the rest mass of body


Vi =


vii = i'rJ is the speed of body i relative


to the Solar System barycenter; c is the speed of light; and ri = |r,-rj[ is strictly speaking

the magnitude of the difference of the barycentric position vectors of body i and another

body j. Newhall et al. (1983) point out that equations (2-4) and (2-5) are interdependent;


in practice, the Sun


s position is not integrated at all but is inferred from equation (2-4).


The orbital angular momentum of body i is then found by (Burkhardt 1982):


(2-6)


hi= *ri


and the total orbital angular momentum is


X Vi.


(2-7)


The sixteen bodies are the nine planets, the Sun, and the Moon, all interpolated from the


planetary ephemeris file; and the five asteroids,


whose positions and velocities are found


16
,ir.1
i=1


pzri = 0








this will presumably give the most accurate position and velocity for Neptune.


ing positions,


The result-


velocities, and angular moment from equation (2-6) of the eleven bodies on


the file are presented in Table


relativistic masses, from equation (


those of the five


asteroids appear in Table


2-5), are presented in Table 2-4.


In Table


-3; and the


the solar


position and velocity are found from equation (


The total of these angular moment


5.5138791989915901
-8.1599811430560712
1.9241747810631041


x 1016
x 1017
x 1018


km5/


The spherical coordinates of h are


.0907754056836565


x 1018


km5/sec3


(2-9)


= 2732865725677


660972373413


= 6658'20'54429.


The right ascension and declination here are still expressed in the EME50 coordinate system

of the ephemeris; the uncertainty in these numbers is discussed in the next section.


A straightforward application of equation (


7) will not yield an unvarying result.


nodes on the ecliptic of the Moon's geocentric orbit regress with a well-known period of

18.6 years; this regression is the result of the gravitational influence of both the Earth's


oblateness and the Sun.


Since the Moon


s geocentric orbital plane thus changes,


the con-


tribution of the Moon to h also varies.


(The direction of the Earth's


rotational angular


momentum varies due to nutation with the same period-an equal and opposite effect-

thus ensuring that the total angular momentum is conserved.) Therefore it is preferable to


= 18h15m27.774162:








Table


Vectors from the M04786 Ephemeris at 1989 August 25 04:00 ET


Body


Mercury


Venus


-16158199.07503421
-60540281.38189575
-30792661.60242493


x -48044757.13184071
y -89820030.22659636
z -37464034.81962667


37.68574922489486
-6.219471575576255
-7.199241280123081


31.19917668472052
-13.50936340740929
-8.058115422625290


5.383098408817692
-2.812992786916346
5.248044464575123


7.071007368738365
-5.054773396094979
1.121201755436503


x 1012


x 1013


x 1013


Earth


132534047.2682675
-66391831.78962909
-28790114.33862247


13.80094834015177
23.89128363392751
10.35901588646045


3.138869950535301
-7.056237004025107
1.627357555590895


x 1010
x 1014


Mars


Jupiter


Saturn


-244898357.5855488
35884297.47698200
23023213.81212496

71436178.22611272
699498249.8393588
298310659.1621094


303660932.6890458
-1353840709.129601
-573039586.0391354


-3.157305918724009
-19.87024113963734
-9.036182675380297

-13.17134485303879
1.568629228634501
0.994759615211981


8.938087519218495
1.928822496211554
0.411069166116023


5.705573328457442
-9.788994312814919
2.132629013701246

2.887703775435171
-5.068779699170997
1.181645297602056


2.082055996257906
-1.990622886004587
4.813297847774068


x 1013
x 1014

x 1016
x 1017


X 1016
x 017
x 1017


Uranus


176076406.2304637
-2646457517.863089
-1162055888.894550


6.742392857724443
0.124628946369494
-0.040540240190316


1.460888460184428
-4.535922436215454
1.035221192520042


Neptune


Pluto


x 843360977.1913863
y -4101540837.662588
z -1701376011.969666

x -3070732451.816337
y -3201106574.346603
z -80576284.87092758


5.305123897076706
1.016154761387040
0.282701827614558

4.079629959404747
-3.842341036034878
-2.450284528360149


3.892369040033341
-6.333659888390561
1.546162148446206

7.691217076519461
-8.016739555119871
2.537679451419032


x 1015
x 1016
x 017

x 1012
x 1012


x -206331.5970958987


46449.36015359861
17559.05332732530


0.009329389609560
-0.002139033914718
-0.001087745178433


-1.720703970228159
-8.045154208580101
1.062509844429565


Moon


132604706.2412162


12.79303203667523


8.598343384697650


x 1015


x 1012
x 1012








Table 2-3.


Asteroid Vectors at 1989 August 25 04:00 ET


Body


Ceres


186281992.1788968
343470578.6841611
123850658.9230570

436755840.8648572
38833040.99610688
-39639922.64470550


Pallas


-16.35952815373246
5.116105802899675
5.747722186944968

-5.507766068499227
15.64886644512920
-2.692689866417276


92992435509.65316
-214825510453.6537
455899280135.5158

8893557968.250119
24044304801.65627
121544809850.9764


Vesta


125506706.2166484
-275465663.8456852
-126367091.5783639


19.46247210077522
7.392776730344995
0.401434801390846


26912693424.32996
-82010229009.18285
205502281954.1065


x -409332580.4006283
y -24051697.50313012
z -51893151.65421642


-1.124700364629995
-15.12047499555895
-6.362926495829524


-453228983.1614052
-1827087511.594522
4421892639.311001


Bamberga


x -524855815.2412224
y -53995531.06175173
z -99176075.74679006


2.253161649691973
-10.70612252024783
-6.668306875225594


-818264398.8558691
-4341672429.418912
6694172275.600386


Table 2-4.


Relativistic Masses from the M04786 Ephemeris at 1989 August 25 04:00 ET


Body

Mercury
Venus


(km3/sec2)

22032.08040253906
324857.4782712153


Earth
Mars system
Jupiter system
Saturn system
Uranus system
Neptune system
Pluto plus Charon
Sun
Moon
Earth plus Moon

Ceres
Pallas
1 7n/, 4-.-


39860
42828
12671
37940
57945
68365


0.4418123855
.28653388460
2700.9849606
448.53290854
59.117018051
34.716225980


1020.864919713455
132712439800.7594
4902.799065514813
403503.2408779003

69.36936487995916
17.24378096264524
00 C/?fl'7/? oflflA cn7








Pere + P(r(


2-12)


and is assigned a mass


PB = Pe +[k.


When the Earth-Moon barycenter is treated


as a single fictitious


body,


the total orbital


angular momentum is instead


5.513


8792089473392


-8.1599811342261851


1.924174


7793873432


x 1016
x 1017
x 1018


km5/


with corresponding spherical coordinates


= 2.0907754037994348


= 273?865725688

= 66?972373417


X 1018 km


= 18hl5m27.774165;

= 6658'20'.'54430.


Figure 2-1 shows the difference between the vector h computed by equation (2-


7) and


that computed using the Earth-Moon barycenter instead of the Earth and Moon individu-


This plot was actually generated from the longer DE130 ephemeris in order to show


the effect more clearly; the results from the M04786 ephemeris are nearly identical.


18.6-year oscillation, with an amplitude of 17 parcsec,


dominates. An annual perturbation


in the lunar orbit is also apparent.


Neither equation (


) nor equation (


-14) gives the desired result


. If the M04786


ephemeris is interpolated at various other times, h is seen to be a function of time, with


^ +#















































































-?2 WLW.








were integrated using the DE130 value of Neptune's


mass, 6828879.09654 km3/


(Stan-


dish 1987).


The Voyager data cause the estimate of Neptune's mass to increase by 0.112%,


to the value shown in


Table 2-1.


When


the estimate of Neptune's


mass increased


gravitational attraction by


Neptune on Jupiter ought also to have increased.


However,


the ODP corrected only Neptune's


ephemeris; the operational software cannot change the


orbits of the other planets when the mass of one planet changes.


Therefore the M04786


ephemeris contains, in effect, a pair of forces (Jupiter on Neptune and vice versa) that are

not equal and opposite. The total angular momentum of the system is therefore not strictly


conserved


The magnitude of the imbalance varies with the twelve-year synodic period of


Jupiter and Neptune.


Figure


2-2 displays the right


ascension and declination of h


as a function of time


the entire sixteen-year span of the M04786 ephemeris.


The twelve-year periodicity is quite


obvious in the figure. (Corresponding plots using the DE130 ephemeris, shown to the same

scale in Figure 2-3, are quite stable by contrast.) The average value of these coordinates

will be taken as the direction of the total orbital angular momentum of the Solar System;


the magnitude is given by equation (2-


Consequently we have


5.5138790907107613
8.1599810902131458
1.9241747812877163


1016
1017
o107
io'8/


km5/sec


.0907754037994348


= 2732865725626

= 662972373550


x 1018 km5


= 18h15m277774150;

= 6658'20'.54478.








18hl5m27 743


27?742






277741


18h 15m27.7740


6658'20':.'5455





0

O
20t'5450



0
*j

o 20"5445
")





AA0S>R'20"SzthO4.









18hl5m27.7816


27.7815







27.7814


18h15m27.7813



6658'20'3115






o
o 20'3 110




0
4.*)


o 2023105
U)






R0FtR'9fl"R i f


-- -. ..T- I | -I J I I I I I I I I


I








The Uncertainty in the Total Orbital Angular Momentum


The uncertainty in


the total orbital angular momentum h of the Solar System, as


found in the previous section, may be estimated through applying the standard formulas


of error propagation (Bevington 1969) to equation (2-7).


The SSDPS solves not for initial


position and velocity, but rather for changes to the "Set III" orbital elements of Brouwer and


Clemence (1961): Aa/a, Ae, Ap, Aq, eAw, and


Aw + AM.


These parameters represent


the fractional change in semimajor axis; change in eccentricity;


rotations of the orbital


plane about the apsis, about the latus rectum, and about about the orbit normal; and the


change in the mean argument of latitude.


These are referred to each planet's osculating


orbit at a standard epoch; the transformation from Set III elements into changes in the

position and velocity vectors is well defined.

The orbital angular momentum for a planet is given by


h = /ji/(/p +u)a(1 -e2)h,


(2-21)


Where h, the unit vector in the direction of the positive orbit normal, defines the third as
where h, the unit vector in the direction of the positive orbit normal, defines the third axis


of the orbital coordinate system.


The first and second unit vectors that define the orbital


coordinate system are respectively the normalized "Laplace vector" p, directed toward the


perihelion, and 4 h x p.


The rotation matrix from EME50 equatorial coordinates into


the orbital system (p, q, h) is


M = R3(w) RI(i


(2-22)


Let the


covariance matrix from


the SSDPS for a planet


be denoted by SIm;







37
where the matrix H consists of partial derivatives of h with respect to the seven parameters:


9{hp, hq, hh}


O{p,Aa/a,Ae,


Ap,Aq


,Aw+AM}


0
= 0
h/p+ h/2(g


(2-24)


- e2)


Finally,


the uncertainty in h must be rotated into EME50 equatorial coordinates,


STyz


MT SpqhM.


giving


(2-25)


The orbital elements here can


be taken to be the osculating elements at any epoch


(which are easily accessible from converting position and velocity vectors) without introduc-

ing undue error in the calculation; after all, the goal is merely to determine the uncertainty

in h.

The major contribution to Suz will be from the uncertainties in the planetary masses.


These uncertainties are usually expressed in units of inverse solar masses, so that a planet


inverse mass


_= P/pi.


Accordingly


- aim


Values for


omj, from Standish (1990b),


are presented in Table


along with the


resulting a,1 from equation (


Except for Pluto, the mass uncertainties are typically


five or


six orders of magnitude less than the masses themselves. By contrast


the uncertainty


is Ap or


Aq is typically O'.'01, at most 0"'05 for


Pluto, or O(10-


rad).


Although








Table


Planetary Masses and Uncertainties


Body


Mercury
Venus
Earth plus


Moon


6023600
408 523.7
328 900.55


0.025


Mars system
Jupiter system
Saturn system
Uranus system
Neptune system
Pluto plus Charon


The covariance matrix Sxyz


3098 708


1 047.349
3497.09
22902.94
19412.24


135000000


0.001


7000000


for each planet is given in


Table 2-6; as expected,


major contributor is the uncertainty in the masses.


The uncertainty in the total angular


momentum of the Solar System is simply the sum of these matrices, given at the end of

the table, as one can ignore correlations between parameters for one planet and those of


the others.


The inter-planet correlation coefficients for the outer planets (which carry the


bulk of the angular momentum) are rarely above one percent. By contrast, the parameters

for the inner planets are very highly correlated, but the inner planets' masses are so low

and their contribution to h so small that these correlations can safely be ignored.

The final step is to transform the uncertainty in h into uncertainties in the adopted


right ascension a and declination 6 of the normal to the invariable plane.


Since tana =


hy/hx and sin 6 = hz/h, the Jacobian of the transformation is


9{a,6}


-h,/(h,+hh,)


'Vh+ h2


h+/(h + h)
_ z 2 1h242


(2-27)


h +h/h2 2


9{hs,hyhz


-hxhz/h








Table 2-6.


Covariances of the Planets' Orbital Angular Momenta


Body


x (km10/s6)


y (kml/s6)


z (kml/s6)


Mercury


Venus


5.0008
-2.6084
4.8705

1.2601
-8.5806
1.8988


x 1016
x 1017
x 1017

x 1015
x 10is
x 1016


-2.6084
1.3606
-2.5405

-8.5806
6.1258
-1.3555


X 1017
x 1018
x 1018

x 1015
x 1016
x 1017


4.8705
-2.5405
4.7436

1.8988
-1.3555
3.0092


x 1017
x 1018
X 10ls

x 1016
x 017
x 1017


Earth


1.6179
2.8183
1.2981

3.3970
-5.8144
1.2667


Mars


x 1013
x 1012
x 1012

x 1014

x 1016


2.8183
2.0857
-4.1848

-5.8144
9.9629
-2.1703


x 1012
x 1015
x 1015

x 1015
x 1016
x 1017


1.2981
-4.1848
9.9230

1.2667
-2.1703
4.7282


x 1012
x 1015
x 1015

x 1016
x 1017
x 1017


Jupiter


Saturn


Uranus


Neptune


Pluto


Total-


3.4311
-1.4203
3.0757

1.5633
-1.3513
3.2732


6.2578
-1.8624
4.6589

2.5811
-2.3328
5.7654


1.7137
-1.7859
5.6481

1.9075
-3.3045
9.2912


x 1021
x 1022
x 1022

x 1022
x 1023
x 1023


x 1019
x 1020
x 1020

x 1020
x 1021
x 1021


x 1023
x 1023
xl1023

x 1023
x 1023
x 1023


-1.4203
2.3870
-5.4560

-1.3513
1.2945
-3.1272


-1.8624
6.3122
-1.4266

-2.3328
3.8529
-9.3596


-1.7859
1.8612
-5.8863

-3.3045
1.7642
-4.3693


x 1022
x 1023
x 1023

x 1023
x 1024
x 1024


x 1020
x 1021
x 1022

x 1021
x 1022
x 1022


x 1023
x 1023
x 1023"

x 1023
x 1024
x 1024


3.0757
-5.4560
1.2766

3.2732
-3.1272
7.5630


4.6589
-1.4266
3.2619

5.7654
-9.3596
2.2868


5.6481
-5.8863
1.8616

9.2912
-4.3693
1.0963


x 1022
x 1023
x 1024

x 1023
x 1024
x 1024


x 1020
x 1022
x 1022

x 1021
x 1022
x 1023


x 1023
x 1023
x 1024

x 1023
x 1024
x 1025








2.2940 x 10-13
= 2.5407 x 10-14


2.5407 x 10-14
4.4279 x 10-15


radians2


(2-29)


The resulting standard errors in the orientation of the total orbital angular momentum of

the Solar System are


oa cos 6S


= 0'103865,


(2-30)


= '0t01373.


The correlation


between a and 6 is +0.7972,


indicating that the


"error ellipse"


is quite


elongated; the semimajor and semiminor


axes


of the error ellipse are 0 .04166 and 0"!01343,


and the major axis has a position angle of 73?53. It is apparent that the effects of the Moon


nodal regression (Figure


-1) and of the unbalanced Jupiter-Neptune couple (Figure 2-2)


are both quite small in comparison to these errors.

The major obstacle to shrinking the error even further is the remaining uncertainty


in Pluto's mass and to a lesser extent in its orbit.


Hubble Space Telescope observations


should resolve Pluto and Charon, thereby giving a reliable semimajor axis of their relative

orbit and improving the estimate of the sum of their masses. Increases in the precision of


Pluto


s orbit estimate can come only after decades of additional observation. Nevertheless,


before the


Voyager


encounter with Neptune, the mass of Neptune was believed known


percent; this alone would have produced an uncertainty of about


25" in the results.


The improvement in the knowledge of the orientation of the invariable plane realized by

the Voyager mission is evident.


The Rotational Angular Momentum of the Solar System









)dm.


(2-32)


In the typical case of solid-body rotation about the


z-axis,


transformation into cylindrical


coordinates (s,


, z) yields


s2Q dm,


(2-33)


where


- 0 is the rotation rate.


For spherically symmetric bodies of radius R,


whose


density p is a function only of the internal radius r


the integral takes the form


7rpr Sdr


(2-34)


for constant p,


= -TrpRi5


MR2Q


- IT.


(2-35)


An evaluation of equation (


-32),


the general


case


will have the same functional form


equation (


2-35),


except that the constant


will be replaced by a coefficient 7 whose value


depends on the body's density and angular speed as a function of position; R and 0 can

be taken to be a reference radius and rotation rate, respectively.

Within the Solar System, the Sun has the largest rotational angular momentum; its


enormous mass (over a thousand times Jupiter's) and radius (nearly ten times Jupiter'


more than compensate for its slow rotation rate.


An approximate evaluation of equation


2-35),


using the polar rotation rate and setting 7


= 0.2 to account in part for central con-


densation, gives h


= 3.5 X 1016 km5/sec3 for the solar rotational angular momentum.


is about one percent of the total orbital angular momentum of the planets and obviously

chn,-,1 B,0 ;nrllsiio in tho r-=lriiltitnn nC +tb0 n rnnl- tfvflnn rn+ Cha foa1 rnxr-1 fl;l Kxi]-n rnl


(xy









model


(cf. Iben


1967),


but due


to uncertainties in


the opacity,


energy generation, and


convection models the results are probably good to not much more than


three or four


digits.

Furthermore, the photosphere of the Sun does not rotate uniformly; the sidereal rota-

tion period varies from 26.2 days at the solar equator to 36.6 days at the poles (Howard and


Harvey


1970).


These rates can only be obtained through measurements of Doppler shifts


at the solar limb; the more precise techniques applied to the planets (analysis of periodic


radio emissions or landmark tracking) cannot be used.


Although recent developments in


helioseismology can in principle determine the rotation characteristics of the solar interior,

results to date are in at best qualitative agreement (for example, Duvall et al. 1984, Brown

1985, and Duvall et al. 1986).


For both


these reasons, the rotational angular momentum of the Sun is not known


to the precision necessary to include it in a precise determination of the invariable plane.

The prudent course of action is therefore to ignore all rotation and to define the "working


model"

which


of the invariable plane (as opposed to the "conceptual"


definition) as that plane


contains the Solar System barycenter and is normal to the total orbital


angular


momentum of the Sun, planets, and largest asteroids.


This decision is also justified on the grounds that rotation (of the planets


as well


of the Sun) does not enter into the equations of motion of the planetary barycenters as


currently formulated in the SSDPS (Newhall et al. 1983).


The Sun is assumed spherically


symmetric; there is no detectable perturbation, even on Mercury's perihelion, due to solar


oblateness.


(Consequently there is also no mechanism


whereby the Sun's spin axis can


>








model"


for h is expected to remain constant; and indeed, as seen in Section 2.4, this is


reasonably true of a planetary ephemeris file.

The two theories (short-term and long-term) that are developed in the next two chap-

ters of this work do not depend on the special physical nature of the invariable plane. Any

plane that does not change its orientation relative to an inertial coordinate system will

suffice. So there is no reason to insist on the inclusion of rotational angular momentum.


The Adopted Orientation of the Invariable Plane


Since rotational angular momentum is not included in the working definition of the


invariable plane,


the total orbital angular momentum found above becomes the normal


vector to the invariable plane.


However,


the vector


h found above was specified in EME50 coordinates.


In order


to transform to J2000, one must not use the standard procedure (Aoki


et al.


1983) for


transforming star coordinates from the B1950 (FK4) system to the J2000 (FK5) system:

because the M04786 ephemeris is already inertial, there is no need for the equinox drift


term. Rather


, Standish (1987) published a 3 x 3 rotation matrix T that transforms positions


and velocities from the DE130 ephemeris (the predecessor of M04786) to the corresponding

positions and velocities in DE202:


+0.9999
= +0.0111
+0.0048


256795509812
814782944231
590037723526


-0.0111814782756923


+0.99993748494


86071


-0.0000271702869124


-0.004859


-0.000027
+0.999988


0038154553
1625775175 .
1946023742


(2-36)


When the vector h from equation (2-18) is multiplied on the left by


vector will be expressed in J2000 coordinates.


T above, the resulting


This is the result we seek:




















* '0


Invar.
Plane


atOt


I


Figure 2-4.


The Orientation of the Invariable Plane


The invariable


plane can also be described


by giving the right ascension


L0 of its


ascending node on the Earth's mean equator of J2000 (which direction is defined by n =


where Qo = (0,0,1)T in J2000 equatorial coordinates), and the inclination Io of


the invariable plane to the Earth's mean equator of J2000. Figure 2-4 shows the angles Io


and L0 as well as the spherical coordinates of h.


These quantities are related by


Lo = ao + 6h


(2-39)


3t852572907


(2-40)


lo = 90


(2-41)


= 232008888075 = 2300'31'.99707. (2-42)


= Ohl5m24 .617498;






45
uncertainties permit; accordingly the above results for these angles will be rounded to the

nearest 0'!001, and the rounded values will be adopted for the orientation of the invariable

plane:


= 27351'09t!262 0'!038;


(2-43)


66059'28'.003 0013;


(2-44)


3051'09'.262 0"038;


Lo =
lo =


(2-45)


(2-46)


2300'31.997 + 0!013.


These values will be used throughout Chapters 3-5.
















CHAPTER 3
THE SHORT-TERM THEORY


Introduction


The precession matrix P, which transforms from the Qo system of epoch into the Q

system of date, can be built up from elementary rotation matrices in several ways. Lieske

et al. (1977), who present the currently-accepted short-term theory, construct P most easily


in terms of the three angles


and z (Newcomb 1906; Andoyer 1911) by


P = R3(-z) R2(0) R3(-).


These three angles are approximated in that paper by cubic polynomials,


and final times, but in the initial time T


(3-1)


not in the initial


and the difference t between the initial and final


times.


When


the initial time is the standard epoch J2000.0, Lieske et al. (1977) denote


these angles by (A


OA, and


respectively.


The coefficients of the various powers of time


are denoted there as


CA-


CT3


(3-2)


and similarly for the other two angles.


In this chapter,

intermediate epoch


the tilde and subscript


does not enter until


A will


the end


be suppressed for clarity:


of the chapter,


since an


there is no ambiguity


. 1 1 1 1 P /** I


C1T -cl2







47

measured in Julian centuries past J2000. Furthermore, the system of primes and subscripts


used in the paper by Lieske et al. is replaced by a


power of T


system of subscripts only indicating the


Thus within this chapter we will use the notation


+ (4T4


+ O(T5)


(3-3)


and analogously for the other angles.


Figure 3-1 shows the coordinate


axes


of both


teams and the three


"classical"


angles.


Reading the right-hand side of equation (3-1) from right to left,


the rotation Ra(


) places


the initial y-axis, marked yoq0 in the figure, at the intersection of the two equators.


second rotation moves the pole from Qo to Q, and the third rotation puts the y-axis at its


final location, along yq


The ecliptics of epoch and of date are suppressed in the figure for


clarity.

The precession matrix P can also be expressed by the following sequence of rotations:


L) RI(-


A) Ri(Io) R3(Lo).


(3-4)


Figure


3-2 shows the coordinate


axes


of epoch and of date from the same perspective


as Figure 3-1; now the invariable plane and the five angles of equation (3-4) appear.

magnified drawing of the region near the vernal equinoxes also appears as Figure 3-3.


equation (3-4),


the first (rightmost) rotation moves the x-axis to the intersection of the


equator of J2000.0 and


the invariable


plane.


The second rotation puts the y-axis (and


consequently the entire


x-y plane) into the invariable plane.


These two rotations depend


on the orientation of the invariable


plane at the standard


epoch.


The last three


=-(T IT+


= R3(-


I) Ra(-




























Eq. of


epoch


T T0 Eq. of date


Figure 3-1.


The Classical Precession Angles


places the y-axis on the equator of date,


and last a rotation about the vector Q (the final


z-axis) positions the x-axis at the vernal equinox of date.

The purpose of the short-term theory is to provide analytical and numerical expressions


for the coefficients of the angles I


, L, and A.


These are obtained by equating the expressions


for P in equations (3


-1) and (3-4) above; solving for I, L, and A in terms of 0o, L0,


and z; and expanding the solutions in powers of time.


The theory is developed to T4 even


though Lieske et al. (1977) go only


as far


asT3


The extra term will give an indication of


the sufficiency of the new theory to model precession with only cubic polynomials:

coefficients of T4 were large even in the absence of fourth-degree coefficients for (,


if the

0, and


z, then the theory would be inadequate.



















-


Invar.
Plane


of epoch


0 Eq. of date


Figure 3-


Precession Angles Using the Invariable Plane


Equator of epoch


Equator of date








Analytic Formulas for I


L, and A


Equating the two expressions for the precession matrix above gives


R2(9) R3(


-A) Ri(Io) R3(Lo).


(3-5)


The desired angles may be isolated on the right-hand side of equation (3-


5) by multiplying


both sides on the right by R3(


Lo) Ri(-


lo), producing


-z) R2(0) Ra(


- Lo) RI(


-I) Ra(


-A).


(3-6)


One can expand both sides of equation (3-6), obtaining the matrix elements sin A sin I


cos A sin I, sin L sin I


, and cos L sin I in terms of (, 0,


and Lo.


The angles themselves


follow easily.


The algebra is simplified considerably, however, if one first multiplies both


sides of equation (3-6) on the left by Ra(


This rotation combines with R3(-


L) on the


right-hand side to yield


R2(9) Ra3


(Lo + ()


-I) Ra(


-A).


(3-7)


Next the two sides are expanded.


The left-hand side of equation (3-


7) becomes


R2(9) R3


(Lo + )


K cos 0 cos(Lo + ()


- cos


0 sin(Lo +


() cos o


- sin 0 sin lo0


cos 0 sin(Lo +


) sin Io


sin(Lo + C)


cos(Lo +


cos Io


- cos(Lo +


) sin Io


(3-8)


sin 0 cos(Lo + C)


- sin 0 sin(Lo + ()
+ cos 0 sin Io


cos lo


sin 0 sin(Lo + ) sin Io
+ cos 0 cos Io


the right-hand side is


- sin 0 cos lo


= R3[


= R3(


L) RI(


-I) Ra(


= R3(


L) RI(












I)Ra(-A)


cos(L z) cos A
- sin(L z) cos I sin A


cos(L
- sin(L -


- z) sin A
z) cos I cos A


sin(L


- z)sinm


si
+ cos


S- z)cos A
- z) cos sin A


sin(L
+ cos(L -


- z)sin A


z) cos I


cos A


- cos(L


- z) sin


S(3-9)


sin I sin A


sin I cos A


cos I


The angle I is then found from equating the (3,3) components:


= cos-' [cos 0 cos Io + sin 0 sin(Lo + () sin lo].


(3-10)


Then


, assuming that I


0 so that the factors sin I can be cancelled


, the (1,3) and (


components yield L by


= pig [cos 0 sin(Lo + () sin Io


- sin 0 cos I0o


cos(Lo + () sin I1


and the (3,1) and (3,


) components give A by


= plg [sin 0 cos(Lo + (),


cos 0 sin Io


- sin 0 sin(Lo + () cos Io


(3-12)


where plg(y,


x) is defined


in Section


1-3 to be


the four-quadrant arctangent.


There is


no sign ambiguity in either case because I


is restricted to the first or second quadrants;


therefore sin I


> 0 always.


(The extreme case of I


= 0 never occurs in practice, as the


Earth's

through


equator is always inclined at least 19 to the invariable plane.) Equ

(3-12) are therefore rigorously correct for all possible values of (,


nations (3-10)


and all


physically reasonable values for To and Lo.


-z)]Ri(








(, 0, and z, guaranteeing that A < 0. Similarly, for small posil

(corresponding to T > 0), both arguments are positive, and A


Equation (3-11) for L reduces to first order to L0 + C


the time origin. Finally, if T


tive values of (, 0, and z


will be positive as well.


therefore L is continuous near


= 0, one recovers I = Io, L = L0, and A = 0.


Series Expansions for I


L, and A


Given that the angles I, L, and A are found by equations (3-10) through (3-12) above,


their behavior with time depends on the behavior of the "classical" angles (, 0, and


z that


appear on the right-hand sides. (The angles Io and L0 are constant.) If the classical angles

are modeled as polynomials in time, then the new angles can also be so expressed.

Let the classical precession angles be approximated by the polynomials


=E


where T


(kT


9kTk


z=E


ZkTk


denotes time in Julian centuries from the standard J2000.0 epoch.


(3-13)


These must be


substituted into equations (3-10) through (3-12) and the trigonometric functions approx-

imated by polynomials.

For the sine,


sin 0 = 0


+0(0')


= (OT


S+02T2


+03T3


+ 4T4) (1


+ 02T2)3


+ O(T5)


= O1T+02T2


+ (93 -


+(04 02T4


+ O(Ts5).


(3-14)


Similarly for the cosine,









Using these two expansions, the expansion for the functions of (Lo + ) follows:


sin(Lo + () = sin


cos Lo + cos ( sin Lo


= sinLo+(1CicosLo)T+(


cosLo


+ [(C3


- 6f ) cos Lo


sin Lo]T


+ [(C4 C2)cOS


- (C


14 ) sin Lo]T4


+ O(T5);


(3-16)


cos(Lo + () = cos C cos Lo sin ( sin Lo


= cos


- (Ci


sin Lo)T


- ( f2 cosLo +


sin Lo)T2


cos Lo + (C3


1- )sin Lo]T3
-- 6% 8111)


- 24C)cosLo+ (C4(4- 21


) sin Lo]T4


+ 0(T5).


(3-17)


The last series expansion that will be used more than once is for the arctangent func-


tion. Let yo + Ay = tan


-(xo + Ax). A Taylor expansion of the right-hand side gives


Ay=


tan-1 X0 + Ax


dtan


S(Ax)
+ 2!


d2 tan


(Ax)3
+ 3!


d3 tan


S(Ax)4
+ 4!


d4 tan


+ 0 [(Aax)].


(3-18)


Since xo = tan Yo, the first four derivatives can be expressed as


dtan1 x
dx

d2tan-1 x
dx2

d3 tan-1 x
dx3

d4 tan-1 x


1 + tan2 Yo


-2tanYo


(1 + tan2 yo)2


6 tan2 Yo


(1 + tan2 yo)3


24(tan yo


co2
= COS


(3-19)


(3-20)


= -2 sinyocos3 yo;


= 6 sin2 Yo0 COS4 Y0 2 cos6 yo;


-tan3 Yo)


--d4 /t i 9 \


(3-21)


= 24(sin yo cos7 Yo sin3 yn cos5 /n ).


(3-22)


- f jsinLo)T2


- ClC2


22 -


- [(Cila + 1









= x1T


+x2T2


+ x3T3


+ x4T4


+ 0(T).


(3-23)


The next three powers of Ax,


complete to T4


are then


(Ax)


= xrT2


+ 2x1x2T3


ix3)T4


+O(T);


(Ax)3


(Ax)4


= xiT3


+3x2


= ixT4


+O(T);


(3-25)


+ O(T).


(3-26)


When these expressions for (Ax


Taylor expansion,


k and the values of the derivatives are inserted into the


the resulting equation is of the form


= yIT+ y2T2


+ y3T3


+ y4 T4


+O(T5)


(3-27)


with the coefficients Yk given by


= x2


-~2 sin Y cos3 ;
-xi1SInDoc0 CO yo;


(3-29)


= -3


cos


-2x


lX2 sin yo cos3 yo + x3(sin2 Y0o cos4 o i cos6 Yo);


(3-30)


= X4 COS


x4(sin yo cos7


-xlx3) sin Yo co
- sin3 o cos5
-sin yo cos 1


Y0 + 3xx2(sin2 yo cos4 Y0 cos6 Y0)


(3-31)


Additional expansions are required,


be developed below


3.3.1


but because they will be used but once, they will


as the need arises.


. The Expansion for I


The inclination I of the invariable plane to the equator of date is given by equation
/'*5_1 (\ ^k ^rn


= a1


x2T4


-(Z+






55
First the expressions for cos 0, sin 0, and sin(Lo + () must be substituted into the argument

for the arccosine:


I = cos-1 ([1 a 2T2


- 0102T3 (003 + 2*,2


- 4T4)] cosio


+ [01T + 02T2 + (03-61 T3 + (4 1 2)T4]
x (sin Lo + (Ci( cos Lo)T + ((2 cos Lo (2 sin Lo)T2


+[(C3
+ [((4


- 6() cosLo (1(iC2 sin Lo]T3
- 2f(2)cosLo ((iC3 + _J )sinLoT}si In o


+O0(TS))


(3-32)


= cos


-(1 -(l !022


- 02T3 (0103 + 22 4 )T cosIo


+ {(01 sin Lo)T + (02 sin Lo + 0i(i cosLo)T2
+ [(03 1 11C2) sin Lo + (01(2 + 02(1)cosLo]T3


+ [(04 -2 12
+ (091( 3+02


12 11i(2) sin Lo


+" 3(1 103( 1iC13) cosLojT4 sin Io


+ O(Ts5))


= cos


(3-33)


-1 { coslo + (01sin Lo sin Io)T


+ (02 sin Lo sin lo + 01(1 cos Lo sin Jo 02 cos Io)T2
+ [(3 ? -- 2 C) sin Lo sin Io + (01 (2 2C1) cos Lo sin Io
O102 cos lo]T3
+ [(04 }02 02(2 01(12)sin Losin Io
+ (9C3 +92 2 +3(C 1,a 01,i() cosLosinlo


+ (204 0103 22 )cos0o]T4 + O(T5) }


(3-34)


=- cos


-1 [cosIo + CT + c2T2 +c3T3 + cT4 + O(T5)],


(3-35)


where the Ck in equation (3-35) are defined by the various coefficients of Tk in equation

(3-34).

Now equation (3-35) has the form









c= ciT+c2T2


+ c3T3


+ cT4


+ 0(T5).


(3-37)


We therefore perform a Taylor expansion of the arccosine function, as was done above for

the arctangent:


I = cos


-1 Xo + c


dcos


c2
+2!


c3
+3!


d3 cos


c4
+ .


d4 cos


+ 0(c5).


(3-38)


Since xo = cos lo, the leading term is simply Io.


The first four derivatives become


d cos- x
dx

d2 cos-1 x
dx2

d3cos-1x
dx3

d4 cos-1 x


(1 -2)1/2

X
x
(1 X2)3/2

1+2a:2
(1 2)5/2
(1 x)/


9x + 6x3


- x2)


1
sinT0o


cos I0
sin3 To


1 + 2 cos2 0


(3-39)


(3-40)


(3-41)


sin5 o


9 cos Io + 6 cos3 Io


(3-42)


sin7 Io


When one substitutes into equation (3-38) the expression in equation (3-37) for c, along


the values


of the derivatives in


equations (3-39) through


(3-42), one obtains an


equation giving the coefficients Ik of the various powers of T in terms of the ck:


I= Io (ciT


+ c2T2


+ c3T3


smTo)


- j(cT+c c2T2


+c3T3


+ c4T ) s3 0
Vsm I'o/


d2 cos









=Io- CT
sm Io


c2
- (
\sin Io


C COS 10
2sin3 I0 /


c C
- sn +
\sin Io


CiC2 cos To


c?(1 +


2 cos2


[o) T


sin3 1o


(c) +


2clC3)cos Io


2 sin3 Io


c (9 cos o + 6 cos3 Jo0) 4
24 sin7 1o


+ 0(T)


(3-44)


=-Io+I T+I2T2


+ 3T3


+ 4T4


+0(Ts5).


(3-45)


This last equation also shows, as expected


that I --* Io as T


-+0.


The last step is of course to obtain the coefficients Ik in terms of the coefficients Ok and


in the approximation polynomials for 0 and


by substituting the various coefficients in


equation (3-34) into equation (3-44). After some tedious algebra, one obtains


Cl
sin Io


= 01 sin Lo;


c2
sin Io


O? sin Lo sin Io


sin Io


(3-46)


c cos I0
2 sin3 1o


02 sin Lo sin Io + O i1 cos Lo sin Io 12 cos Io
_2 1 c sI


sin Io
(0l sin Lo sin Jo)2 cos Jo
2 sin3 Io


= 02 sin Lo 01(i cos Lo + j.of


Lo cot Io;


(3-47)


C3sin
sin Io


C C2 COS l0


cl(1 +


sin3 Jo


cos2 Io)


sin5 1o


(03 6 I1iC2) sinLo sin lo + (01G2 + 21) cos Lo sin 0o 012 cos lo
T






58
= (-3 + 0 + 0(3) sin Lo (01(2 + 2i) cos Lo
+ cot lo(0102 cos2 Lo 02C1 sin Lo cos Lo)
+ cot2 o[3(1 sin Lo sin3 Lo)] csc2 o(0 sin3 Lo)
= (-03 + 011i2) sin Lo (01(2 + 02(1)cosLo + 9 cOs2 Lo sin Lo
+ cot lo(0102 cos2 Lo 0Ci(1 sin Lo cos Lo)
+ cot2 lo[f( sin Lo cos2 Lo)]; (3-48)

Sc4_ (cj +2cic3)coslo
TA -- -- --
sin -o 2 sin3 o
c c2(1 + 2 cos2 Io) c4(9 cosIo+ 6 cos3 Io)
2 sin5 1o 24 sin7 Io
= [(4 212 22 1 1 2) sin osino
+ (01(3 + 02(2 + 03(1 C1 1i13) cos Lo sinlo
+ (gOf 0j03 420) cos o / sin Jo
[(02 sin Lo sin o + 0iCi (cos Lo sin 1o j09 cos o)2
+ 2(0i sin Lo sin Io)[(93 lo3 ^ 2) sin Lo sin Io
+ (02(1 + 01i2)cos Lo sin Io 0192 cos Jo]] coso/(2 sin3 o)
[(01 sin Lo sin lo)2 (02 sin Lo sin Io + 01 (1 cos Lo sin Io cos lo)
x (1 + 2 cos2 o)]/(2 sins Io)
[(0i sinLosin o)4(9cos o10 + 6cos3 Io)]/(24sin7 Io)
= [- 04 + 01(1(2 + 02(01 + (12)] sin Lo
+[-01(3-02(2- 03(1 11+ 6l(i 1 + C2)] cosLo
+ cot o [ + ( + (2) sin Lo + (0103 2t0 12) cos2 Lo
cotlto[ +~i ( +9 9 lsnL (1322111

(20102(1 + 022)sin Locos Lo]
+ cot2" Io [01202 (2 sin Lo sin3 Lo) + 03 (1( cos Lo sin2 Lo cos Lo)]
+ cot3 Io [0(9f(- + sin2 Lo 1 sin4 Lo)]
+ csc2 o [ 101 sin2 Lo(02 sin Lo + 01(1 cos Lo)]
+ cot Io csc2 Io jje sin2 o(2 3 sin2 Lo)
= (-94 1(2 1C2) sin Lo + j-902 sin Lo cos2 Lo 91i sin2 Lo cos Lo
I F .- It 11 n r 1 n .,- /^ n\2 7-








+ cot3 I0 [(-


S+ 3 sin2 Lo -


sin4 Lo)


(3-49)


Equations (3-46) through (3-49) are the desired results for the coefficients of I


3.3.2.


The Expansion for L


The right ascension of the ascending node of the invariable plane on the equator of


date, denoted by


L, is given by equation (3-11):


L = plg [cos 0 sin(Lo + () sin Io sin 0 cos Jo, cos(Lo + () sin 1o] +


(3-11)


= tan


_-1 cos cos(


Lo


) sin I0 sin 0 cos Io\
+ () sin o


In order to derive the coefficients Lk such that


L= Lo + L1T


+L2T2


+L3T3


+ L4T4


+O(T5),


(3-50)


one must develop both the numerator and denominator of the argument of the arctangent

as approximation polynomials, obtain their quotient, and expand the arctangent itself.

Denote the numerator of the argument of the arctangent in equation (3-11) by n and


the denominator by d.


Then inserting the results of equations (3-14) through (3-17) gives


the following:


n = cos 0 sin(Lo + () sin Io sin 0 cos Io


- 0102 T3


- (0103 + i922


x {sin Lo + ( cos Lo)T


cos Lo


- 141 sin Lo)T


+[((3
+ [(14


- R?) cos Lo


- (1(2 sin Lo]T


cosL


241) sin Lo]T } sin 1o


l- 2T2
~- 2VllA


- N 4)1


- 1i)


- (1(3 +








-(03


- ia) coslo]T3


+ {[4


- 0102l 1


- )] + 0 (2] cosLo sin o


+ [-0103


S12 +.4" (0 +-4)]sinLosinmo


-(04


- 2 1 2f) COS to} 4


+O(T5)


(3-51)


d = cos(Lo + C) sin lo


= { cos Lo


- ((~1 sin Lo)T


- (lcos


Lo+


sin Lo)T2


- [(1(2 cos Lo + (Ca


j fil) sin Lo]T3


- [(ia+3


(14) cosLo + (44


- ((2) sin Lo]T4} sinlo + 0(T5)


= cos Lo sin Io ((1 sin Lo sin lo )T


- (1('2cosLo +


sin Lo) sin loT2


cosLo + ((3


- 1() sin Lo] sin IoT3


--[((1(Ca


-24 4lcos


) sin Lo]sin IoT4


+0(T5).


(3-52)


If the leading terms in both n and d are factored out, the argument of the arctangent in

equation (3-11) takes the form


sinLo sin Iofl1 + nT


cos Lo sin Io[1


-diT


+n2T2
- d2 T2


+ n3T3
-a 3T
- da T


+n4T4
- d4T4


+ O(T)]
+ O(T5)]


1 + n1T + n2T2
= tan Lo -dT -d2T2
V1 -diT -d2/


n3T3
-d3T3


+n4T4
-d4T4


(3-53)


since sin Io $ 0.


(The minus signs in the denominator cancel some of the minus signs in


equation (3-52) and also facilitate expansion of the quotient later.)


Now the coefficients


nk and dk are given by


= (1 cot Lo 9 cot Io csc Lo;


3-54)


n2 = (2 cot Lo


- 02 cot Io csc Lo;


(3-55)


- 1/"3
641


- -12C1) cotLo ((1(2 + 102)


- (03 l) cot Io CSC Lo;


(3-56)


-- 2 ,2 +


-2 l2


Lo + ((4


+ O(T5) y
+ O(TS) '


- (02l 12)








d = C(1 tan Lo;


(3-58)


tan Lo + 21;


(3-59)


A13)tanLo+ (2;


(3-60)


(3-61)


The next step is to expand


the quotient that forms the argument of the arctangent


function in equation (3-11). Denote the quotient by q; one obtains by simple long division


1+nlT+n2T2
q 1 diT d2T2


+ n3T3
- d3T3


+ n4T4
- d4T4


+O(T5)
+ O(TP)


(3-62)


+ d1)T +(n2


+d2 +dinl +d#)T2


+ (rn3 + d3 + 2did2


+ d2n1


+ din2


+ dinl + d3)T3


+ (n4 + d4 + 2did3 + d2n2


+ d + 2did2n1 + 3d(d2


+ din3 + d1n2 + dIn + d4)T4


+ O(T5)


(3-63)


= 1 + qi T + q2T2


+ q3T3


+ q4T4


+ O(Ts5).


(3-64)


This leaves equation (3-11) in the form


-l(qtan Lo) +


(3-65)


= tan-1 { tan Lo + tan Lo[qiT + q2T2


+ q3T3


+ q4T4


+O(T5)]}


+ziT+z2T2


+ z3T3


+ z4T4


+ O(T5).


(3-66)


The expansion for the arctangent was given above in equations (3-27) through (3-31).


Here L0 plays the r6le of x0, and qk tanLo are to be substituted for Xk.


When


z is added,


the expansion becomes:


L1 = (qitan Lo)


Lo + z1


(3-67)


L = tan


d2 = (2


d3 =(


d4 = ((4 1_2


)tan Lo + (1 3 +K 2C2 14l


= 1 + (nl


,


b *








L4 = (q4 tan Lo) cos2 Lo [(q2 + 2qlq3) tan2 Lo] sin Lo cos3 Lo


+ 3q1q2 tan3 Lo(sin2 Lo cos4 Lo


-- 3 COS6


+ (qi tan Lo)4(sin Lo cos


- sin3 Lo cos


Lo) + z4.


(3-70)


It is easiest to leave the tan Lo with the qk.

Now replacing nk and dk with their values from equations (3-54) through (3-61) gives


ql tan Lo = (i + di) tan Lo

= [Ci(1 cot L0 01 cot Io csc Lo + Ci(1 tan Lo] tan Lo


= (C 1 cot Io secLo + C(1 tan


= (1 sec Lo 01 cot Io sec Lo;

q2 tanLo = (n2 + d2 + din1 + df)tanLo


(3-71)


= {[C2cot Lo


- ( + C(1)


- 02 cot Io csc


Lo] + ((2 tan Lo + 4l2)


+ ((1 cot Lo O8 cot Io csc Lo)((1 tan Lo) + ((1 tan Lo)2} tan Lo


= [C2


- 2(~1 + C)tanLo


- 02 cot Io


sec Lo


tan2 Lo + 2C? tan Lo)


+ ((1 tan Lo


- 0 (1 cot lo sin Lo tan Lo) + (2 tan" Lo


02 cot Io


sec Lo + (12 tan Lo


- 909 tan Lo0


- 01(1 cot Io tan Lo


sec Lo;


(3-72)


q3 tanLo = [In3 + n2d1 + ni(dt + d2) + d3 d3 + 2did2]tanLo


- 2IC(1)cotLo


+ [(2 cot Lo


- (w +
!(2
-- 21,


+0102)


2 cot Io


- 1) cot o cscLo
tan Lo)


csc Lo((1


+ ((1 cot Lo 01 cot Io csc Lo)[((1 tan Lo)2


+ [(Ca


- 6(3) tanLo + (12] + (Ci1 tan Lo)3


+ 2((1 tan Lo)(C2 tan Lo + zi2)} tan Lo


= [(3


- !-1
6 %1


- 2 ,11


- (( (2 + 192)tanLo


- (03


- 6
~6Gi)


cot Io


sec Lo]


+ [(1(2 tanLo


- i(0? + ( tan


- 02 ( cot In tan Lo sec


tan Lo + (1)]


Lo-


1-3l
_ !S1


-(o03


s--






63

= ((3 + 3 1 l f1) sec2 Lo + 2(1(2 tan Lo sec2 Lo 0102 tan Lo
+ (3 tan2 Lo sec2 Lo
1 3
+cot Io sec Lo[-03 + 1 ? 112 (2(1 + 1i(2) tan Lo
01f tan2 Lo]; (3-73)
q4 tanLo = (n4 + d4 + 2did3 + d2n2 + d2 + 2dld2n1 + 3d d2
+ din3 + d n2 +dni + dl)tanLo

= ({[4 2(2(1 (2) 01021] cot Lo
[9103 + (1C3 + C82 2-2) 1*2 *(0 + l4)]
-(04 -102 ) cot Io cscLo }
+ [((4 1' (2) tan Lo + (1(3 + 22 -- 41
+ 2((C tan Lo)[(C3 k3 tanLo + (1(2)
+ ((2 tan Lo + )1)[1 cot Lo 2 + (12) 02 cot Io csc Lo]
+((2tanLo+ 2 )2
+ 2(C1 tan Lo)((2 tan Lo + 1f)((1 cotLo 1 cot o sc Lo)
1/-
+ 3((1 tanLo)((2 tanLo + 2(1)
+ (1Ci tan Lo)[(C3 63( 10 (C) cot Lo
((1(2 + 0102)- (03- 13) cot o cscLo]
+ (C tan Lo)-(2 cot Lo -0 + (12) 02 cot Io csc Lo]
+ ((1 tan Lo)3((1 cotL0 01 cot Io cscLo) + ((C tan Lo)4) tanLo

= [(4 2(0 2) -0 021
-t019,(1l3+ 2121)-- 002-
[0103 + 3 + + 2) + (f)] tanLo
(04 0 02) cot Iosec Lo]
2+ [(14 22)tan2 Lo + ((1(3 + (22 f tanLo]
+(2(1iC3 tan3 Lo j-f tan3 Lo+2C(2 tan2 Lo)
+ [ tan Lo (2(10 + C12) tan2 Lo 02(2 cot o tanLosecLo
+ (12 t1C2)tanLo- 0212cotlo secLol
+ ((22 tan3 Lo + (122 tan2 Lo + 4?1 tanLo)
+ (2(1(2 tan2 Lo + (4 201 2 cot 10 tan2 Lo sec Lo 01i3 cot Jo sec Lo)
i /o/'2i +.__.4 r i 3/-4 ..... r \








+ ((1f tan3 Lo 01( cot Io tan3 Lo sec Lo) + (1 tans Lo
C


= ((4 + 1


--01021- 1422)sec2 Lo


+ 2(1( 3


- 012 12)tanLo


tan2 Lo


Lo + C14 tan3 Lo sec2 Lo


- ( 2 + 0103 14) tan Lo


sec Lo[(0120


2-- 4
2 lC3


+(1


- 212C 1CC2)
-02(2 -93a1)tanLo


- (02 ( + 201(1(2)tan2 Lo


- 01iC3 tan3 Lo].


(3-74)


The final step is


to substitute these values for the qk tan Lo into equations (3-67)


through (3-70). For L1, we obtain


Li = (qitanLo)


Lo + zi


(3-67)


= (C1


Lo 091 cot Io sec Lo) cos Lo + zi


= C1 + zl 01 cot Io COs Lo.


(3-75)


Next, we get for L2:


L2 = (q2 tanLo)cos2 Lo (qi tan Lo)2


sin Lo cos3 Lo + z2


(3-68)


= C2


- 02 cot Io sec Lo + (2 tan Lo sec2 Lo


- 2 1 tan Lo


- 011C cot Io tan Lo sec


Lo] cos2 Lo


- (C


01 cot Io sec Lo)2 sin Lo cos3 Lo +


- 02 cot Io cos Lo + (2 tan Lo


- 102 sin Lo cos Lo 11 cot Io sin Lo
--21l


- (C? tan Lo


z2--


- 201(1 cot Io sin Lo + 01 cot2 1o sin Lo cos Lo)


02 cot Io cos Lo + 01 (1 cot Io sin Lo


- 0f sin L0 cos Lo(cot2


I0+o).


(3-76)


+( f 4
+ 3(12(
+ cot Io


Lo-


- 0- 6






65
The right-hand side of equation (3-69) for L3 has three terms involving qk, plus z3.

Let us include z3 in the first term (which will contain (3); the three terms become, in order:


L3a = (q3 tanLo) cos2 Lo +


- 092l )


Lo +2((42 tanLo


Lo 6102tanLo


+ (Cf tan2 Lo


+ cot losecLo[-a03 +


-01(2 tan2 Lo]}


-(92C1 +1C2)tan Lo


Lo+z3


- 02 jl + 2(1C


- 011i2)


tan Lo
cosLo


- 019 2 sin Lo cos Lo + (Cf tan2 Lo


- (02( + 012) sinLo


- ~iC( sin Lo tan Lo];

2(qiq2 tan2 Lo) sinLo cos3 Lo


((1 sec2 Lo 0 cot lo secLo)


(3-77)


x (C2


Lo 02 COt Jo


sec Lo + 2 tan Lo sec Lo 92 tan Lo
--2 1tnL


0(1i cot JIo tanLo
x sin Lo cos3 Lo


sec Lo)


- 2C


tan Lo


- 2(C tan2 Lo


- 0(1 sin2 Lo


+ cot o [2(01(2 + 02(1)sin Lo + 40i1C sin Lo tan Lo 0 sin2 Lo cos Lo]


+ cot


1o(-20102 sin Lo cos Lo


- 20121C sin2 Lo);


(3-78)


(qi tan Lo)3(sin


Lo cOS4 Lo -


1 cos6 Lo)


= ((C sec2 Lo 0i cot Io sec Lo)3(sin2 Lo cos4 Lo cos6 Lo)


= ( tan2 Lo


+ cot


-1+cot
--341 -cotlI0(


2 o(3021 sin2


-301(i'C sin Lo tan Lo + 30i12 cos Lo)


313
Scot3 Io(-0c si2 Lo cos Lo + isf cos3 Lo).


The desired coefficient L3 is the sum of these three:


(3-79)


- 11


= (C+ R


z3 + 3 (l


+ cot lo[(-03 + 1-


L3b =


_ 12 2









+ cot


2 lo0 124(sin2 Lo


- cos Lo)


- 20102 sin Lo cos Lo


+ cot3 Io[(03( cos3 Lo


- sin Lo cos


(3-80)


Finally, equation (3-70) for L4 contains four terms on its right-hand side:


L4a = (q4 tan Lo) cos2 Lo + z4


= {((4 + ( 2


- O 02 41


+ 2((3


tan2 Lo


l12
-- 21l


-- (fl)tanLo
Lo + (4 tan3 Lo


- (? 02 + 003 )tanLo


+(1Of4


2-^4
2- 04l
- 02(


- 0?v(s
501 r3
-- 1 1~


- 02(2 01(1(2)
- 02(2 03(1)tanLo


- (02(2 +


1 1(2) tan2 Lo


- 1(1 tan3 Lo]}


Lo + z4


= C4


+ z4 + 1C(2


- 9102 (1


1 2
-- 2 l


- (22 + 0103


- 10f) sin Lo


+ 14
--(3,l +


- 2)9 tanLo + 3(2(2 tan


Lo + (f tan3 Lo


+ cot Io[((01202


-01 1 2)cos Lo


+(0Ci


- 01(3


- 0242


- 031)sinLo


01(1(2) sin Lo tan Lo 01(3 sin Lo tan2 Lo];


(3-81)


- [(22 + 2qiq3) tan2 Lo] sin Lo cos3 Lo


- 02 COt Io


sec Lo + (12 tan Lo


L 20 tan Lo


- 01 (1 cot I0o tan Lo sec Lo


- 01 cot Io


x {((a + 4


sec Lo)


- 1i ( l) sec2 Lo


+ 2(1(2 tan Lo


+ cot lo secLo[-03 + j0


Lo 0102 tan Lo + (3 tan2 Lo sec Lo


- 212
- 2tl,


- (02( + 01(2)tanLo


tan Lo + 022 cot2 Io sin Lo


- 01(2 tan2 Lo


cos Lo + (4 tan3


}) sin Lo cos3 Lo


Lo + 1 sin


+ 2 cot2
01(1 cot2


Io sin2 Lo tan Lo


- 202 (2 cot lo sin Lo + 2(t2


(2 tan2 Lo


- 0?2 sin2 Lo


+ ot I

+3(,(2
+ cot Io


sec Lo[( O1 8


cos Lo


L4b =


sec Lo


Lo cos Lo


Lo)].


- 02121


5- /-3
-- 6i1i


- (02Cl2 +


= (








+ C( tan3 Lo


+cotlo[(-0a3l + tCi


- (0?13 -C- 1 2)sin Lo


- (011 +j01(12)sinLotanLo -


01( sinLo tan2 Lo


- cot Io[(01(3 + 031


- 0 02 sin2


Lo cosLo + 01(?13 tan


sin Lo + 201 (1


sin Lo tan Lo


Lo sin Lo


- cot2 o[(-0103 + I


- -Of 2) sin Lo cos Lo


- ( i02(1 + 2)sin2


- Of sin2


Lo tan Lo] }


+ 201 02 1i) sin


- 14- sin3 L0 cos Lo


-r4 9(2) tanLo 9f2Sin2
--3"1 + lS / a ^ + 01l 1 sln2


Lo tan Lo 6(C tan2 Lo


- 3c4 tan3 Lo


+ cot Io sin Lo[201(3 + 202 2


+ 2039


- 391(1 + O 31C


- 30f02 sin Lo cos Lo


- O1i1 sin2 Lo + (801i(1C2 + 402 (f) tan Lo + 601i13 tan2 Lo


+ cot2 Io sin Lo[(-O2 + 34l


- (40102C1 + 202


- 20103


- 0 ff1) cos Lo


)sinLo 30 (2 sin Lotan Lo];


L4c = 3q1q2 tan3 Lo(sin2 Lo cos4 Lo cos6 Lo)

= 3(1Ci sec2 Lo 01 cot Io sec Lo)2


(3-82)


Lo 02 cot Io


01i1 cot Io tan Lo
X (sin2 Lo cos4 Lo 1


sec Lo + C2 tan Lo sec2 Lo tan L


sec Lo)


cos6 Lo)


01 cot Io cos Lo)


- 02 COt I0 COS


Lo + ( tan Lo j0 sin Lo cos Lo 01(1 cot Io sin Lo)


x (3 tan2 Lo 1)


- iO22 sin Lo cos Lo + (1 tan Lo
--2 isioo1ian


+ cot Io(-02(C cos Lo


- 01 ?13 sin Lo


- 201(1(2 cos Lo + 03 sin Lo


- 20163 sin Lo)


+ cot


Io(20i02 C


Lo +


0~2Q sin Lo co


s2 Lo 201(3 Sin Lo)


+cot3 Io(-00 2 COS3 L0o


- 013i sin Lo co


s2 Lo)](3tan2 Lo -1)


A


AL i 9,. r T* r ifl/ A-/ I r r


- (0()


=(


+ (-


- 2ClC3


x ((2


= ((1 -


x ((2


= [C1


^- -< -fc








+ cot2 Io[(-20102(1


- O(C2)cos2 Lo+ i- sin Lo cOS3 Lo 30(2C sin Lo cosLo


+ (601021


+ 3022) sin2 Lo


- 1f sin3 Lo cos


Lo + 909fC sin2


Lo tan Lo]


+ cot3 Io[0(02 cos3 Lo + 06(i sin L0o cos2 Lo


- 302 sin Lo cos Lo


- 303C sin3 Lo];


(3-83)


L4d = (qi tan Lo)4(sin Lo cos7


Lo sin3 Lo cos5 Lo)


Lo 01 cot Io sec Lo)4 (sin Lo cos7 Lo sin3 Lo cos5 Lo)


= ((Ci 1 cot Io cos Lo) (tanLo tan3 Lo)

= (1 (tan Lo tan3 Lo)


+ cot Io[401(13(sin Lo tan2 Lo
+ cot2 Io[60 (f(sin Lo cos Lo


+ cot3 Io[40(3 (sin3 Lo


- sin Lo)]
- sin2 Lo tan Lo)]


- sin Lo cos2 Lo)]


(3-84)


+ cot4 Io[01 (sin Locos3 Lo sin3 Lo cos Lo)].


Their sum gives L4:


-12 I2
- -~l


- 0102 (1


1 2
- 2


- sin2 Lo) + 0~


- 0l03+ 9f) sin Lo cos Lo


sin2 Lo


+ cot Io{[-04 + 01(1(2 + 0212C + 222 (


1 sin3 Lo cos Lo
- 3 sin2 Lo)] cos Lo


+ [(a + 02(2 + 0a3l


-&(OC + 0C)+0C9(sin2


Lo-2


Lo)] sin Lo}


+ cot2 Io[(20C12


- 02 +


- 201 03) sin Lo cos Lo


- (2012 + 12C2)(cos2 Lo sin2 Lo)


+2a sin Lo cos Lo(cos2 Lo
+ cot3 o10[002 cos Lo(cos2 Lo


+ cot4 2o[1 sin Lo cos Lo(cos2 Lo


- 3 sin2 Lo)]


- 3 sin2 Lo)


- 0(i sin Lo(3 cos2 Lo sin2 Lo)]


- sin2 Lo)].


(3-85)


Equations (3-75), (3-76),


(3-80), and (3-85) therefore contain the final results for the first


four coefficients of the approximation polynomial for L. No attempt has been made here to
J J A i'r 1 1 "/ ) r 9 1 \


= ((i


12 2
-L- (f1 1


L4 = (4 + z4






69

relatively time-consuming on a computer, and there will be no significant cancellation in

the subtraction.


3.3.3.


The Expansion for A


The angle A is measured along the invariable plane; its origin is the ascending node

of the invariable plane on the mean equator of J2000.0, and its endpoint is the ascending


node of the invariable plane on the mean equator of date.


The exact expression for A was


found at the beginning of this section:


A = plg [cos(Lo + () sin 0, sin Io cos 0 cos Io sin 0 sin(Lo + ()] .


(3-12)


We will expand the right-hand side of this equation in a manner similar to the expansion

of L in the previous subsection, resulting in an expression of the form


A = A1T + A2T2


+Aa3T3


+ A4T4


+ O(T5).


(3-86)


As in the previous subsection, denote the two arguments of the plg function in equation

(3-12) by n and d respectively, as these are the numerator and denominator of the argument


of the implied arctangent.


(Although the notation is the same, the values of the symbols


are obviously quite different in this subsection.)


Substituting the expansions for the sine


and cosine of 0 and (Lo + () from equations (3-14) through (3-17) gives:


n = cos(Lo + () sin 0


= [cosLo


- K1


-(C sin Lo)T
(2cos Lo + ((3


sin Lo)T2


- 3C?)sin Lo]T3


- [((1iG+ -


- C-)fcosLo +(4


'


) sin Lo]T4


O(T5)]


-(J^zcos


Lo+


-1_


^ Jj


,








- O0 l 0141


) cos Lo


- (0I(3 + 02(2 + 03(1


1a3
--6 1l<1~


- -01(43) sin Lo]T4


+ O(T5);


(3-87)


d = sin Io cos 0 cos Io sin 0 sin(Lo +


= sin Io [1


- 0102 T3


_ 11)T4


-(0193 + 2I2


+ O(T5)]


1_


- cosIo[0iT + 02T2


+(o4


- 12)T4


+O(Ts5)]


x { sinLo + ((i


cosLo)T+ ((2cosLo 2( sinLo)T2


+[(C3
+ [((4


- i COs Lo


- (1(2 sin Lo]T3


) cos Lo


- ((Cl3 +


-24 sin LojT4


+O(T5)}


= sin Io


- (01 sinLocos Io)T


(02 sin Lo cos o + 01(1 cos Lo cos To + j sin Io)T


- [(03
- [(04


6 1
- 2!
l2 "I


+(01(3+02


- -i0(j)sinLocoslo + (O1


- o0(1
2 + 3C l


+ 02 (1) cosLo cos o + 1i 02 sin Io]T3


- l ,1 2)sin Lo cos Io


- 01(1
l03/-
-- lql


cosLo sin lo


+ (0103 + 2!2


- 01)sinIo]T4


+O(T5).


(3-88)


The absence of a constant term in the numerator is consistent with the statement made


earlier that


0OatT


= 0. The algebra is simplified, however, if we divide both numer-


ator and denominator by the the constant term in the denominator, namely sin Io; this is


permissible because (as stated before) o0


This leaves the argument of the arctangent


in equation (3-12) in the form


n1T+n2T2


-diT


- d2T2


+ n3T3


- d3T3


+ n4T4


+O(T5)


(3-89)


- d4T4 + O(T5)


with the coefficients nk and dk given by


nl = 01 cos Lo csc lo;


(3-90)


- -1 2


A =


- 2,1T


+(03o


-1^2
-- 2("


92


-- 1011 (1









- (lC(3 + 2C2 +3C1


S 0- -l1)sminLo]jcsclo;


(3-93)


(3-94)


d2 = 02 sin Lo cot Io + 09 (1 cos Lo cot Io + 1 9;


d3 = (03 Of3


0i() sin Lo cot Io + (01


(3-95)


(3-96)


91022
--2li2n


~ 2-1


+ (013 + 02(2 + 03(1


+(1+02
31-(9103+"1-2 2


The next step,


- 0i(1i2)sinLocotIo


10
--6l l


- 91 Ci) cos Lo cot Io


-lOf ).
~ 24 t/ )


(3-97)


as before, is to expand the quotient that forms the argument of the


arctangent function in (3-12).


Once again we shall denote the quotient by q.


By an even


simpler long division than before,


n1T+n2 T2


-diT


-d2T2


+ n3T3


+


-d3T3


n4T4 +0(T6)
-d4T4 +O(T)


(3-98)


= 1+niT+(n2+ddn1)T2


+ (n3 + din2 + d2n1 + dzni)T3


+ (n4 + din3 + d2n2


+ d3nl + d n2 + 2did2ni + dinl)T4


+O(T5)


(3-99)


- 1+qiT+q2T


2 + q3T3


+ q4T4


+ O(T5).


(3-100)


The expressions for the qk are given by:


9qi = n1


= 01 cosLo csc Io;

q2 = n2 + dilnt


= [(02 cosLo 01(i sin Lo) csc o] + (Oi sin Lo cot Io)(9i cos Lo csc Jo)


(3-101)


= [02 cos Lo 0~i1 sin Lo + cot lo(0i sin Lo cos Lo)] csc lo;

-- .i 1. ,7-Iy _L ,7-Lyi- r, .


(3-102)


di = O1 sin Lo cot lo


+ 02 ( 1) COS Lo cot Io + 102;


I)-


q=


d4 4 (04


A








+ (0i sin Lo cot lo)2 (01 cos Lo csc Io)


-_ 01(1) cos


- (01(2 + 02(i)sinLo


+ cot 1o [20192 sin Lo cos Lo + 9 (1( (
+ cot2 Io(9f sin2 Lo cos Lo) } csc Io;


- sin2 Lo)]


(3-103)


q4 = n4 + din3 + d2n2 + d3n1 + d n2 + 2dld2nl + d1ni


= [(4


- 12


- 02(2


3 +02


- 011iCi(2) cos Lo


+031


- -1


--61


l) sin Lo


+ (01 sin Lo cot Io){[(03


- 101(1) cos0o


+ (02 sin Lo cot Io + 01(i cos Lo cot Io + j0 )[(62


i0f3
- 61


- (91(2 + 02(1)sinLo


cos Lo


- 01 (1 sin Lo)


- 011'i) sin Lo cot Io + (01(2 + 02(1) cos Lo cot Io + 0102]


x (0i cosLo csc lo)


+ (0x sin Lo cot o)2 [(02 cos


- 011 sin Lo)csc Io]


+ 2(01 sin Lo cot lo )(02 sin Lo cot Io + 9 i( cos


x (01 cos Lo csc lo)
+ (01 sin Locot lo)3(09 cos Locsc lo)


= {((4 + 022


- (0143 + 0242 0331 + 3 C1o


- 1i() sin Lo


+ cot Io[(20103


-2t(2


+022 + 3 1)sinLocos


+ (20102(1 + (42)(cos2 Lo


- sin2 Lo)]


+ cot2 Io[3102 sin2 Lo cos Lo + 0f (1i sin Lo(2 cos2 Lo sin2 Lo)]


+ cot3 Io(Oe sin3 Lo cos Lo)}


csc Io.


(3-104)


This leaves equation (3-12) in the simple form


tan 1 q


(3-105)


= tan-1 [qiT + q2T2


+ q93T3


+ q94T4


+ O(T5)].


(3-106)


Once again we employ equations (3-27) through (3-31).


This time, however.


Xn is zero.


= {(o3 + 3


csc lo }
csclo}


L0ocot I0o + )


- 01(1(2)cosLo


- (81


- Of3


- (l2








A1 = ql


(3-107)


= 1 cos Lo csc lo;


(3-108)


A2 = q2


(3-109)

(3-110)


= [02 cos Lo 01(1 sin Lo + cot Io(9i sin Lo cos Lo)] csc lo;


(3-111)


= {(03 + 361


- 1i()cos


+ 02 1i) sin Lo


+ cot o [20102 sin Lo co


s Lo + C1(cos2


- sin2 Lo)]


+ cot2 Jo(93 sin2 Lo cos Lo)} csc Io
- -6" cos3 Lo csc3 Io


= (3


- i(l+- 3 1 COs2


Lo) cos Lo


+ 02 (1) sin Lo


+ cot 10o [20102 sin Lo cos Lo + OPCi(cos


-sin Lo)]


+ cot


2 Io[O3(sin2 Lo cos Lo


- cos Lo)]}


csc 1o


(3-112)


A4 = 94 9l 92


(3-113)


= { (04 + 12 02


- 91(1


) cos Lo


- (013 + 02C2 +C O3(1 + 31


+ cot lo[(20103


- 619i1) sin Lo


- 20112 ( 22 1) sinLocosLo


+(20102(1 122)(cos2 Lo


+ cot


- sin


2 Io[3002 sin2 Lo cos Lo + 913 sin Lo(2 cos2 Lo -sin2 Lo)]


+ cot3 Io(0O sin3 Lo cos Lo)} csclo
- (0(02 cos3 Lo 1Ca cos2 Lo sin Lo + 94 sin Lo cos3 Lo cot lo) csc3 Io


= {(04


- (01(3 + 022 3(1 31


- 1il) sin Lo + 01i cos2 Lo sin Lo


+ cot Io [(201i 03


- 201( + 022 +


0 ) sin Lo cos Lo


+ (2091021 122)(cos2 Lo


- sin2 Lo)


- 01 sin Lo cos3 Lo]


+ cot2 lo[02 02 cos


Lo(3s2Lo


- cOS2


+ 0(1 sin Lo(3cos2 Lo -


sin2 Lo)]


I _- f E I n [ / a P T- 1 .


+ 0202 sin2 Lo) cos Lo


A3 = q3 -


- (01


- (01


- 2 12


- o2(42


-i 01 1









A = AzIT+A2T2


+ A3T3


+ A4T4


+ O(T5).


(3-86)


These expressions,


together with


the corresponding equations for


Ik and


Lk that were


developed


in the


previous


two subsections,


complete the analytical


development of the


short-term theory of general precession relative to the invariable plane of the Solar System.


Numerical Results and Verification


The right ascension &o and declination So of the angular momentum vector of the Solar


System were found in Chapter


to be


= 2735'109262;
= 6659'2811003.


(2-43)
(2-44)


From these angles, the right ascension of the ascending node of the invariable plane on the

mean equator of J2000.0 is


Lo = ao 270


= 351'091262,


(2-45)


and the inclination of the invariable plane to the mean equator of J2000.0 is


Io-= 90


- 60o = 23000'311!997.


(2-46)


Now in order to obtain numerical


values for the coefficients for the polynomials in


L, I, and


we also require numerical


values


for the coefficients of


0, and


IAU currently recommends the values of these quantities which were published by Lieske


et al. (1977) in


their Table 5.


However, these coefficients have been rounded, and using


'1 1 1 1* i 1 1 i i 1 1 1 I 1 r 1 i .








Table 3-1.


Full-Precision


Values of Current Precessional Constants


2306'1218108282


+0'.301


87986821595


+0'e017997590049701


Lieske


2004'13109489144
-0':42665200261276
-0'.041832591413886


s) from that printout are presented in Table 3-1


2306'!21810


82828


+1'!09467786


21317


+0'e018202974269150


These values are given to sixteen


digits, representing essentially the full precision of a Univac double-precision number.


The formulas for the coefficients in


the polynomial expansions of L,


and A


were


found in


the previous section in terms of the corresponding coefficients of the precession


angles (,


0, and


z and of the initial


angles


and lo.


Given


the numerical


values in


Table 3-1 and the above values for L0 and Io


the coefficients Lk,


k, and Ak have the


values listed in Table 3-2.


Table 3-2.


Constants in the Short-Term Theory


3051'09'!262
-96"!7230


-1'94824
0'006539
0'!0000881


2300'313997
-134'6685
0'!49754
O'1006173


-0'!0000188


01'000
5116"'1809


2'!92466


-0!005636
-0'!0000736


It must be noted here that the numbers in the last row of Table 3-2 were obtained


under the assumption that (4


=z4


as the theory developed by Lieske et al. (1977)


only goes to the third power of time.


There is no contribution from these coefficients until


the fourth power of time in any event.


The values for


L4, I4, and A4


arise solely from


products of coefficients with subscripts 1 to 3. Th4

be said to be deterministicc" in that they appear


e results in the last row of Table 3


as a consequence of the transformation


to the invariable plane; their true values cannot be found without first having values for







76

While L0 and I0 are intended to represent the orientation of the invariable plane in


the Qo system, there is no such restriction in the equations themselves.


Any nonrotating


plane will do. In particular,


if Lo is set to zero and I is set to Co,


the obliquity at epoch,


the invariable plane is replaced by the ecliptic of J2000.0.


In this instance, the resulting


L(T) is none other than the negative of the accumulated planetary precession )(A(T) (in


Lieske's

of J2000


notation)

. denoted


; I(T) is the angle between

)A(T) by Lieske; and A(T)


the mean equator of date and the ecliptic


is the accumulated luni-solar precession,


CA(T).


When this test


case


was run, the output coefficients duplicated Lieske's


results for


these angles to better than a microarcsecond.


This increases one's


confidence that both


the theory itself and the computer program that calculates the coefficients are correct-at

least in those terms independent of sin L0.

A further verification is possible by comparing the angles obtained by evaluating the


rigorous formulas for


and A in equations (3


-10) through (3


-12) with


the results


obtained from evaluating the time polynomials.


(Since the


"rigorous"


equations depend


on ,


0, and


, their absolute accuracy depends on the accuracy with which these angles


themselves are modeled.)


If these comparisons are made at regular time intervals on either


side of the origin, the differences between the rigorous angles and the polynomial approx-

imations should not show any systematic trend except proportional to the fifth or higher


powers of time.


This is indeed the


case


for various random values of L0 and Io in addition


to the two


cases


mentioned above.


For the adopted invariable plane,


the differences SL


, 61, and 6A between the rigorous


angles and polynomial approximations are presented in Table 3-3. Even after two centuries








Table 3-3.

T


Comparison of Rigorous Angles and Polynomial Approximations


-2.0
-1.5
-1.0
-0.5


0"0000078626


0'!0000001


8587


0'f0000002438
0'0000000076
O'fOoooooo000000000ooo
-010000000075
-0!0000002398
-00000018127
-0'0000076039


-0'0000034404


-0!000000


-0t0000001086
-0't0000000034
0O0o00000000o
0'0000000034
00000001107
0'!0000008443
0'10000035746


'0f0000103361
0'0000024600
0"!0000003249
0'0000000102
0ft000000000
-00000000102
-0"!0000003290
-0'0000025064
-0'!0000105968


Precession Between Two Arbitrary Times


The short-term theory as it has been presented thus far provides only for processing

from the standard epoch (J2000.0) to another date. In this section there will be developed

expressions for precession from one arbitrary time to another.

For the sake of clarity, the matrix P from equation (3-4) will now be denoted by


In this way the initial and final time arguments of P are given explicitly,


(3-115)


as is the dependence


, I, and A on the final time T.


The precession matrix from one arbitrary time T1


to a second time T2 can be thought


as first processing from T1


back to J2000.0, then from J2000.0 to T2.


Therefore


P(T1 -* T2)= P(0 -* T2) P(T1 0).


(3-116)


Because the precession matrix is orthogonal, this is equivalent to


- I -


P(0 -+ T) = R3[-L(T)] R [-I(T)] R3[-A(T)] R (Io) R3(Lo).
















. of J2000.0


T(T,)


L(T1)


Eq. of epoch


T(T2-)_ L(T2)


of date


Figure 3-4.


Precession Between Two Arbitrary Times


P(Ti -- T2)


L(T2) R1


(T2)] R3[-A(T2)] Ri(Io) R3(Lo)}


x{R3

= {R3[-


L(T1)] R1


L(T2)


I(Ti)] R3 [-


I(T2)] R3


AT1)] Ri(Io) R3(Lo)}T


A(T2)] Ri(Io) R3(Lo)}


x {Ra(


= Ra3[-


Lo)RI(-


L(T2j)] R1


lo)R3


I(T2)] R3


(Ti)] R[I(T1)


R3[L(Ti)]}


- A(T2)] R1 [1(T1)]Ra[L(T1)],


(3-11


which is geometrically evident from Figure 3-4.


Equation (3-11


) in fact has the same


structure


as equation (3-4), except that Lo0


and Io


are replaced


by their values at Ti,


and A is replaced by the accumulated angle from T1


to T2. IfTi is zero,


equation (3-


reduces to equation (3-4) exactly. Also, if Ti and T2 be exchanged, equation (3-118) shows


that resulting matrix P(T2


-- T1) is the transpose of P(Ti1


as in fact it must be.


-* T),


= {R3








- A(T)


= (AiT2 +


T2 A3T 23+A424)


- (A Ti AT + A3T1 + A4T4 )


= [AI(T1 i+ t)+


A2(T + t)


2 A3(T1 t)3


+ A4(T+ t)4


- (A T1 + A2T2


A4T4)


= Ait+ A2(
+ A4(4T:


+ 6Tit2 +


A3(3T12 + 3Tit2


4Tit3


+t3)


+t4)


= (A


+2A2


Ti + 3A3T2


+4A4T13)


+ 3A3T1 6A4T12)t2


+(A2
+ (A3


+ 4A4T1)t3


(3-119)


The last form of equation (3


-119) is in the traditional two-argument form used by Lieske


et al.


(1977),


with T1 replacing their T inside the parentheses.


Numerically, with the expansion restricted to the third power of time,


A(T2)


A(Ti)


= (5116'.1809 +


'189432T1


- 0'.016908T2)t


+ (2'.92466


- 0"'!016908Tr1)t2


- 0'!005636t3


(3-120)


A more subtle numerical problem that occurs


-* 0 involves near cancellation in


the off-diagonal elements of P


. Clearly, in the limit as t


- 0, P must approach the identity


matrix


However, the individual terms in any one element will not vanish; rather, they will


tend to cancel.


Certainly the right-hand side of equation (3-118) can be multiplied out to


give the individual terms of the P


by judicious applications of the identity


cos x


the gross cancellations can be avoided.


sin2(lx-


However


(3-121)


the result is a dramatic increase in the


A(T )


- A3T3 3 -






80
author believes that a straightforward mechanization of (3-118), using (3-120) to compute

A(T2) A(Ti), is probably to be preferred.


Summary and Discussion


This chapter has developed the short-term aspect of precession theory using the in-


variable plane of the Solar System as a reference plane.


The classical precession matrix


that rotates from the Earth mean equator and equinox of epoch (T1 centuries past J2000)

to the Earth mean equator and equinox of date (T2 T1 + t centuries past J2000) is the

product of five elementary rotations:


P = R3[-L(T2)] RI[-I(T2)] R3[A(Ti) A(T2)


R1 [I(Ti)] R3 [L(Ti)],


(3-118)


where the angles on the right-hand side of the equation are computed by:


L(T)


= 351'09I.262


- 92'!7230T


- 1'!94824T2


+ 0'!006539T3;


(3-122)


I(T)


= 23000'311!997


- 134'16685T + O'049754T2


+ 0'!006173T3


(3-123)


A(T2) A(Tr)


= (5116'.'1809 + 5'189432T1 0"'016908T2)t


+ (2'!92466


- '0016908T1)t2


- 0'!005636t3.


(3-120)


This version of the matrix P agrees with the classical matrix (Lieske 1979) to better than


0"0001 for IT I


< 1 century,


with virtually all the difference due to the neglected "deter-


ministic" fourth-order terms.

The accuracy with which either theory tracks the actual processional motion of the

Earth depends on the time span over which the model for the precession angles (A, 0A, and

ZA is valid. Laskar (1986) found a fourth-order term in the accumulated general precession









only 2.5 centuries on either side of J2000.0.


This topic will be addressed in more detail in


Chapter 5, after the long-term theory will have been presented.


Equation (3-118) for the matrix P is unnecessarily


complicated, since any rotation


matrix can be expressed as the product of three, not five, elementary rotations.


The best


way to eliminate the extra two rotations would be to refer the origin for the right ascension


system not to the vernal equinox, as has been done by


European astronomers since the


Renaissance, but instead to the intersection of the Earth mean equator and the invariable


The precession matrix would then be written as


P' = Ri[-I(T2)] R3[A(T1) A(T2)] R1 i[I(Ti)];


now only equations (3-120) and (3-123) are required to evaluate the matrix.


This change would cause all right ascensions to be decreased by


variations in right ascension to be decreased by dL/dT


(3-124)


L(T) and all annual


. (There would be no change to the


declination system.) In particular, at the standard epoch J2000.0 one would subtract L0 =


15m24s.6175 from all right ascensions, and add


= 6118153/century to all centennial


variations min right ascension.

Such a change would involve a radical redefinition of the standard coordinate systems


that have been


used in astronomy for centuries.


The r6le of the vernal equinox as the


origin for right ascensions would be lost; in effect the ecliptic itself would be replaced by


the invariable plane.


The origin of right ascension would still be defined by the intersection


of two planes; however, only one of them (the equator) would be moving.


The resulting


theory,


when


put into


practice, is


simpler,


because only two different


polynomials


plane.


are







82

This is not to imply that the concept of the ecliptic has completely outworn its use-


fulness. Any analytical theory of precession must use the ecliptic.

over time, both the Sun and Moon are found in the ecliptic. The s


When suitably averaged


;ecular torque that causes


luni-solar precession will therefore be a function of the location of the ecliptic and of the

obliquity.

One of the major objections to using the invariable plane in this fashion will be: "But

we can't observe the invariable plane, and we can observe the ecliptic directly!" Both halves

of this claim cannot simultaneously be true if identical assumptions are used to evaluate

their truth.

Can we observe the invariable plane? There is no flashing beacon in the sky that marks


the plane, true, but that is also true of the ecliptic.


We do observe the apparent locations


of the planets; centuries of observations have furnished reliable mean motions and mean


orbits.


Spacecraft encounters have given


us both reliable initial conditions and dramatic


improvements in our estimates of the planetary masses.


So while we do not observe the


invariable plane per se, we certainly do have enough information at hand, all gleaned from

observation, to enable us to determine its orientation.


Can we actually observe the ecliptic? The Sun itself does not lie in the ecliptic.


we observe is the apparent direction to the Sun.


What


This is affected by the light-time correction;


by annual, monthly, and diurnal aberration; and by diurnal and monthly parallax.


(The


monthly effects are caused by the motion of the Earth about the Earth-Moon barycenter.)

A glance at an ephemeris of the Sun as expressed in ecliptic coordinates will confirm this:


the Sun's


geocentric latitude can reach almost one arcsecond in magnitude. All these effects






83

will determine an osculating orbit, to be sure; but this is not the ecliptic, as the ecliptic


is defined as the mean orbit (whatever that is) of the Earth-Moon barycenter.


therefore account somehow for planetary perturbations in


One must


deriving the orientation


motion of the ecliptic from observations.

Therefore both planes require for their determination the entire system of planetary

masses and orbits as well as models for reducing apparent positions to true ones. No object


(as a general rule) lies in either plane.

but the conclusion is unavoidable: if


The details of the reduction are of course different,


the ecliptic can be said to be observable, then so is


the invariable plane; and if the invariable plane is said to be unobservable, then so is the

ecliptic.


The only reason therefore to prefer one to the other is convenience.


simplicity of the precession


Is the relative


theory using the invariable plane outweighed by centuries of


observations (not to mention tradition) referred to the vernal equinox? The answer to this

question must be given by the astronomical community as a whole.
















CHAPTER 4
THE LONG-TERM THEORY


Overview


As pointed out by Simon Newcomb (1906) and reinforced by Lieske et at (1977), it is

not possible to develop rigorous analytic formulas for the precession angles that are valid


for all time.


The reasoning behind this statement is that the equations of motion of both


the ecliptic and the mean equator cannot be integrated analytically in their most general

form. Lieske et al. took the velocity of the ecliptic pole vector to be parabolic in time; they

obtained it by fitting a second-degree polynomial through the values of the perturbation


function at three epochs.


This provided an approximate expression, as a cubic in


time,


for the ecliptic pole.


The cubic polynomial for the ecliptic pole was next substituted into


Newcomb's equation of motion for the mean celestial


pole;


another analytic integration


supplied an approximation for the location of the mean celestial pole; and the locations of

both poles yielded the desired precession angles.

Accurate precession angles over long periods of time must, however, be obtained by


numerical integration.


The orientation of the ecliptic pole-that is, of the vector normal


to the mean orbit of the Earth-Moon barycenter-has already


been obtained by Laskar


(1990) over an interval of +500,000 years from


the standard epoch J2000.0,


as part of


a revision of his


"Numerical


General


Theory"


of the Solar System


(Laskar


1985,


1986,







85

Given the ecliptic pole and the eccentricity of the Earth's orbit, the angular speed


of the celestial


pole can


be found.


This work uses the equations of motion in the form


developed by Kinoshita (1975, 1977), a more complete accounting of the torques on the


Earth than Newcomb's model.


Kinoshita's result for the speed of luni-solar precession is


then used to integrate the motion of the celestial pole.


The equations are close enough to


linear that a simple fourth-order Runge-Kutta integrator (Abramowitz and Stegun 1964,


Section 25.5.10),


with a constant step size, sufficed to give numerical accuracies on


order of a nanoarcsecond after 500,000 years.


Coordinates of both poles were written to a


file at regular intervals.

Given the poles of the ecliptic and equator, it is a straightforward matter to obtain the


desired precession angles.


These are found, not by the historical developments of spherical


trigonometry, but by the simpler methods of vector algebra. All of the classical precession


angles, as well as the angles L, I, and A using the invariable plane,


were determined at


each output point.

Since the resulting output file is quite large (one output point per century for a million


years), the results were condensed


by fitting Chebyshev polynomials through


the values


for each angle, in a manner similar to that employed in the production of JPL planetary


ephemerides


(Newhall


1989).


These Chebyshev


coefficients form


the final result of the


long-term theory.

The individual sections of this chapter describe the various facets of this procedure in


detail: Laskar's


theory for the ecliptic; the development of the equations of motion of the


celestial pole, including Kinoshita's equation for the speed of luni-solar precession; their








The Motion of the Ecliptic


The problem of finding the orientation of the ecliptic, and indeed of the orbits of all


the planets, is an old one in the field of celestial mechanics. The work of Jacques Laskar

builds on the strong French tradition started by Laplace, Le Verrier, and Lagrange and


continuing today with Duriez (1977, 1979)

Laskar's "Numerical General Theory"


and Bretagnon (1982).

(NGT) uses a combination of analytical and


numerical methods to evaluate the mean orbital elements of the first eight planets (Laskar

1985). First the disturbing function was developed to second order in the planetary masses


and fifth degree in eccentricity and inclination.


This process yielded some 153,824 monomial


terms in the differential equations for the eccentricity and inclination of the planetary orbits.


These equations were then integrated numerically.


The initial orbital elements in Laskar's


work were based on


Bretagnon's (1982)


VSOP


theory;


the planetary masses are those


currently recommended by the International Astronomical Union (1976).

A subsequent paper by Laskar (1988) isolated the most prominent frequencies in the

eccentricity and inclination variables for the planets. In this technique, Laskar took a Fast

Fourier Transform of each component under study, found the frequency with the strongest

amplitude, subtracted that term from the original, and repeated the process to find the


next most significant term.

for the outer planets. Such


His work stopped after 80 terms for the inner planets and 50


Sa formulation would have been very useful for this work, but


for the fact that Laskar's Fourier representation does not preserve the initial conditions.


I therefore requested from Laskar a file of the eccentricity and inclination


variables


themselves. He very graciously sent me such a file, not from the original NGT but from a








= e sin w

= e cos w.


p = sin 1TIA sin IAA,

q = sin 1f7TACOSIHA,


where e is the eccentricity, w the longitude of perihelion,


longitude of the ascending node (of the descending node,

the Earth-Moon barycenter, all reckoned with respect to 1


q are identically zero at J2000.0 (T


4-1


(4-3)

(4-4)


rAI the inclination, and 11A the


the E


< 0) of the mean orbit of

System. Therefore p and


=0).


The standard orbital elements may be retrieved from these by


= v/h2 + k2


(4-5)


= plg(h, k);


(4-6)


sgnT sin


-1 Vp2 q2


(4-7)


= plg(psgnT


,qsgnT).


In equations (4-6) and (4-8), the notation follows Eichhorn (1987/88


as the quadrant of


w and of HA is sensitive to the signs of the numerator and denominator; this is the ATAN2


function of Fortran.


The factors sgn T


in equations (4-


7) and (4


) provide continuity for


TA and HA


as T passes through zero,


as p and q change signs then. (Otherwise the derivative


of rA would change sign instantaneously, and HA itself would suffer a discontinuity of 180


Equation (4-


) cannot be evaluated at T


= 0; then HA assumes its limiting value.


The equations of motion will turn out to be evaluated most easily if the unit vector


directed to the ecliptic pole is expressed in terms of its rectangular coordinates.


Relative







88

In order to save computer time during the integration, the p and q values for each


record were transformed at the start into s and c. These were then stored along with h and

k in 1001-element arrays, which were interpolated as needed. The interpolating polynomial


was selected to be the unique eleventh-order polynomial passing through twelve consecutive

points bracketing the interpolation time. (To improve the numerical stability of the process,

the Chebyshev representation was chosen in lieu of the simple polynomial representation.)

Except at the very beginning or end of the file, six points out of the twelve preceded the


interpolation time and six followed it.


This scheme guarantees that the interpolated result


will be the tabular value at each point in


the table;


the discontinuity


between regimes


enters only at the first derivative, and this should be small due to the high degree of the fit.


Subroutines DPFIT and DCPVAL, of JPL


s MATH77 library (JPL Applied Mathematics


Group 1987), performed the polynomial construction and evaluation, respectively.


The Equations of Motion for the Celestial Pole


The development of the equations of motion for the mean celestial pole (the vector


normal to the mean equator of date) proceeds in several logical steps.


equation of motion in vector form.


One begins with the


From this relatively simple equation the derivatives of


the components of the pole vector are found, since it is the components that are actually


integrated.


Finally


Kinoshita's expression for the rate of luni-solar precession is adopted,


and the appropriate constants of his theory are found.


4.3.1.


The Vector Equation of Motion


The principal source of the motion of the celestial pole is a torque produced by the







89

precession may be obtained by considering the Sun and Moon to be smeared into a ring

around the ecliptic, and the oblateness of the Earth likewise to be concentrated into a ring


around the equ

the ecliptic, e.


ator.


These two rings have a mutual inclination equal to the obliquity of


The resulting torque on the equatorial ring is in the direction of the line


of intersection of the two planes (the vernal equinox), and its magnitude is proportional

to sin 2e. A detailed derivation is given in chapter 8 of Woolard and Clemence (1966) and

need not be repeated here.


The second contribution to the motion of the celestial pole is the so-called


precession."


"geodesic


Although de Sitter (1916) first showed that general relativity predicts that


spinning bodies in a gravitational field will undergo a forced precession, only two decades


later did


de Sitter and


Brouwer (1938) include its effect


in luni-solar precession.


effect of geodesic precession is also a torque in the direction of the vernal equinox, but its

magnitude is proportional to sin e instead of sin 2e.

Since sin2e = 2sin ecos e, the magnitudes of the two torques may be combined into

an expression of the form


= (P cos


pg) sin


(4-10)


where Q is the celestial pole vector, a unit vector; P is Newcomb's


"Precessional Constant"


(Newcomb 1906, p.


228); and pg


is the rate of geodesic precession.


Neither P nor pg is quite


constant, as both depend slightly on the eccentricity of the Earth's


orbit, which varies over


time.

Now the dot product of two unit vectors gives the cosine of the angle between them,

and the magnitude of the cross product of two unit vectors is the (positive) sine of the an1le




Full Text

PAGE 1

$ 7+(25< 2) 7+( ($57+f6 35(&(66,21 5(/$7,9( 72 7+( ,19$5,$%/( 3/$1( 2) 7+( 62/$5 6<67(0 %\ :,//,$0 0$11 2:(1 -5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW k E\ :LOOLDP 0DQQ 2ZHQ -U

PAGE 3

'(',&$7,21 ,Q WKH ZHH KRXUV RI 0DUFK D ILYH\HDUROG ER\ ZDV DZDNHQHG E\ KLV JUDQGn IDWKHU LQ RUGHU WR VHH D WRWDO HFOLSVH RI WKH PRRQ 7KLUW\ \HDUV KDYH SDVVHG WKH ER\ KDV EHFRPH D PDQ DQG KLV LQWHUHVW LQ DVWURQRP\ SODQWHG WKDW QLJKW KDV WDNHQ URRW DQG EORVVRPHG ,W LV WKHUHIRUH WR WKH PHPRU\ RI 5 :DOGR +DPEOHWRQ f WKDW WKLV GLVVHUWDWLRQ LV ORYLQJO\ GHGLFDWHG

PAGE 4

$&.12:/('*0(176 1R HQWHUSULVH RI WKLV QDWXUH FDQ EH DFFRPSOLVKHG ZLWKRXW WKH VXSSRUW RI PDQ\ RWKHUV 0\ FKDLUPDQ 'U +HLQULFK (LFKKRUQ DQG P\ FROOHDJXH DW WKH -HW 3URSXOVLRQ /DERn UDWRU\ 'U -D\ + /LHVNH UHYLHZHG HDUO\ YHUVLRQV RI WKH PDQXVFULSW WKH TXDOLW\ RI WKLV GLVVHUWDWLRQ KDV EHHQ KHOSHG LPPHDVXUDEO\ E\ WKHLU FULWLTXHV 7KH DXWKRU EHQHILWHG IURP PDQ\ FRQYHUVDWLRQV ZLWK WKHP DQG ZLWK 'UV ( 0\OHV 6WDQGLVK DQG ; ; 1HZKDOO RI -3/ DQG ZLWK 'U -DFTXHV /DVNDU RI WKH %XUHDX GHV /RQJLWXGHV /DVNDUfV FRRSHUDWLRQ LQ SURn YLGLQJ KLV WDEXODWLRQ RI WKH (DUWKnV RUELWDO SDUDPHWHUV LQ DGYDQFH RI SXEOLFDWLRQ LV JUHDWO\ DSSUHFLDWHG 7KH XQZDYHULQJ HQFRXUDJHPHQW RI P\ VXSHUYLVRUV DW -3/ 'UV 6WHSKHQ 3 6\QQRWW DQG -DPHV 3 0F'DQHOO ZDV PRVW KHOSIXO DV ZHOO )LQDOO\ WKH DXWKRU LV LQGHEWHG WR (YD (LFKKRUQ IRU WUDQVODWLQJ WKH SDSHU E\ 6KDUDI DQG %XGQLNRYD )LQDQFLDO VXSSRUW ZDV SURYLGHG DW YDULRXV WLPHV E\ WKH WXLWLRQ DVVLVWDQFH SURJUDP RI WKH -HW 3URSXOVLRQ /DERUDWRU\ E\ D *UDGXDWH &RXQFLO )HOORZVKLS IURP WKH 8QLYHUVLW\ RI )ORULGD DQG E\ D *UDGXDWH )HOORZVKLS IURP WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ &RPSXWHU VXSSRUW ZDV SURYLGHG E\ -3/fV 1DYLJDWLRQ 6HFWLRQ 7KH DXWKRU LV JUDWHIXO WR DOO WKHVH LQVWLWXWLRQV 7KH 16) UHTXLUHV LQ DGGLWLRQ WKH IROORZLQJ DFNQRZOHGJPHQW DQG GLVFODLPHU f7KLV PDWHULDO LV EDVHG RQ ZRUN VXSSRUWHG XQGHU D 1DWLRQDO 6FLHQFH )RXQGDWLRQ *UDGXn DWH )HOORZVKLS $Q\ RSLQLRQV ILQGLQJV FRQFOXVLRQV RU UHFRPPHQGDWLRQV H[SUHVVHG LQ WKLV SXEOLFDWLRQ DUH WKRVH RI WKH DXWKRU DQG GR QRW QHFHVVDULO\ UHIOHFW WKH YLHZV RI WKH 1DWLRQDO ,9 6FLHQFH )RXQGDWLRQf

PAGE 5

7KH 7J; SURJUDP .QXWK f W\SHVHW WKH GLVVHUWDWLRQ 7KH 3*3/27 VXEURXWLQH OLEUDU\ 3HDUVRQ f ZDV XVHG WR FUHDWH WKH ILJXUHV 7KH KLJK TXDOLW\ RI WKH DSSHDUDQFH RI WKLV GLVVHUWDWLRQ LV GXH WR WKHVH WZR SURJUDPV QHYHUWKHOHVV DQ\ GHIHFWV LQ OD\RXW RU HUURUV LQ VXEVWDQFH DUH VROHO\ WKH UHVSRQVLELOLW\ RI WKH DXWKRU Y

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LY /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 L[ $%675$&7 [ &+$37(56 ,1752'8&7,21 %DFNJURXQG 1RWDWLRQ 'HILQLWLRQV 7+( '(7(50,1$7,21 2) 7+( ,19$5,$%/( 3/$1( ,QWURGXFWLRQ -3/ 3ODQHWDU\ (SKHPHULGHV 7KH 0 3ODQHWDU\ (SKHPHULV 7KH 7RWDO 2UELWDO $QJXODU 0RPHQWXP RI WKH 6RODU 6\VWHP 7KH 8QFHUWDLQW\ LQ WKH 7RWDO 2UELWDO $QJXODU 0RPHQWXP 7KH 5RWDWLRQDO $QJXODU 0RPHQWXP RI WKH 6RODU 6\VWHP 7KH $GRSWHG 2ULHQWDWLRQ RI WKH ,QYDULDEOH 3ODQH 7+( 6+2577(50 7+(25< ,QWURGXFWLRQ $QDO\WLF )RUPXODV IRU ; DQG $ 6HULHV ([SDQVLRQV IRU ; DQG $ 7KH ([SDQVLRQ IRU 7KH ([SDQVLRQ IRU ; 7KH ([SDQVLRQ IRU $ 1XPHULFDO 5HVXOWV DQG 9HULILFDWLRQ 3UHFHVVLRQ %HWZHHQ 7ZR $UELWUDU\ 7LPHV 6XPPDU\ DQG 'LVFXVVLRQ

PAGE 7

7+( /21*7(50 7+(25< 2YHUYLHZ 7KH 0RWLRQ RI WKH (FOLSWLF 7KH (TXDWLRQV RI 0RWLRQ IRU WKH &HOHVWLDO 3ROH 7KH 9HFWRU (TXDWLRQ RI 0RWLRQ 7KH (TXDWLRQ RI 0RWLRQ LQ &RPSRQHQW )RUP .LQRVKLWDfV ([SUHVVLRQ IRU /XQLVRODU 3UHFHVVLRQ 7KH 1XPHULFDO ,QWHJUDWLRQ RI WKH 0RWLRQ RI WKH &HOHVWLDO 3ROH 7KH 'HWHUPLQDWLRQ RI WKH 3UHFHVVLRQ $QJOHV 7KH &KHE\VKHY 5HSUHVHQWDWLRQ RI WKH 3UHFHVVLRQ $QJOHV ,OO 6RXUFHV RI (UURU LQ WKH /RQJ7HUP 7KHRU\ &21&/86,216 7KH 6KRUW7HUP DQG /RQJ7HUP 7KHRULHV &RPSDUHG &RPSDULQJ WKH &ODVVLFDO DQG ,QYDULDEOH 3ODQH 3UHFHVVLRQ )RUPXODWLRQV 6XPPDU\ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ f f 9OO

PAGE 8

/,67 2) 7$%/(6 SDJH 'HILQLWLRQV RI 6\PEROV 3K\VLFDO &RQVWDQWV IURP WKH 0 (SKHPHULV 9HFWRUV IURP WKH 0 (SKHPHULV DW $XJXVW (7 $VWHURLG 9HFWRUV DW $XJXVW (7 5HODWLYLVWLF 0DVVHV IURP WKH 0 (SKHPHULV DW $XJXVW (7 3ODQHWDU\ 0DVVHV DQG 8QFHUWDLQWLHV &RYDULDQFHV RI WKH 3ODQHWVf 2UELWDO $QJXODU 0RPHQWD )XOO3UHFLVLRQ 9DOXHV RI &XUUHQW 3UHFHVVLRQDO &RQVWDQWV &RQVWDQWV LQ WKH 6KRUW7HUP 7KHRU\ &RPSDULVRQ RI 5LJRURXV $QJOHV DQG 3RO\QRPLDO $SSUR[LPDWLRQV $VWURQRPLFDO &RQVWDQWV IRU .LQRVKLWDfV /XQLVRODU 3UHFHVVLRQ 0RGHO &OLHE\VKHY 3RO\QRPLDO &RHIILFLHQWV IRU WKH /RQJ7HUP 7KHRU\ 3RO\QRPLDO &RHIILFLHQWV IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 &KHE\VKHY &RHIILFLHQWV IRU D 4D DQG =D IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 3RO\QRPLDO &RHIILFLHQWV IRU D DQG ]D IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 f§ 3RO\QRPLDO &RHIILFLHQWV IURP WKH /RQJ7HUP DQG 6KRUW7HUP 7KHRULHV 1HDU 7 f§ f}f 9OOO

PAGE 9

/,67 2) ),*85(6 SDJH 7KH (TXDWRULDO &RRUGLQDWH 6\VWHP 7KH (FOLSWLF &RRUGLQDWH 6\VWHP 7KH (IIHFW RI WKH *HRFHQWULF /XQDU 2UELW RQ WKH ,QYDULDEOH 3ODQH 7KH 'LUHFWLRQ RI WKH 7RWDO $QJXODU 0RPHQWXP 0 (SKHPHULVf 7KH 'LUHFWLRQ RI WKH 7RWDO $QJXODU 0RPHQWXP '( (SKHPHULVf 7KH 2ULHQWDWLRQ RI WKH ,QYDULDEOH 3ODQH 7KH &ODVVLFDO 3UHFHVVLRQ $QJOHV e DQG ] 3UHFHVVLRQ $QJOHV 8VLQJ WKH ,QYDULDEOH 3ODQH 7KH (TXDWRUV DQG WKH ,QYDULDEOH 3ODQH 3UHFHVVLRQ %HWZHHQ 7ZR $UELWUDU\ 7LPHV 6SKHULFDO &RRUGLQDWHV IRU 4 LQ WKH (R 6\VWHP 7KH 3UHFHVVLRQ $QJOHV IRU 2QH 0LOOLRQ
PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 7+(25< 2) 7+( ($57+f6 35(&(66,21 5(/$7,9( 72 7+( ,19$5,$%/( 3/$1( 2) 7+( 62/$5 6<67(0 %\ :LOOLDP 0DQQ 2ZHQ -U 'HFHPEHU &KDLUPDQ +HLQULFK (LFKKRUQ 0DMRU 'HSDUWPHQW $VWURQRP\ 7KH PRVW FRPPRQO\ XVHG IRUPXODV IRU WKH ULJRURXV DSSOLFDWLRQ RI JHQHUDO SUHFHVVLRQ HPSOR\ WKUHH VXFFHVVLYH VPDOO URWDWLRQV E\ ZKLFK WKH HTXDWRULDO FRRUGLQDWH V\VWHP DW HSRFK LV DOLJQHG ZLWK WKH HTXDWRULDO V\VWHP RI GDWH 7KLV GLVVHUWDWLRQ SUHVHQWV DQ DOWHUQDWH PHWKRG IRU DSSO\LQJ SUHFHVVLRQ LQ ZKLFK WKH URWDWLRQ DQJOHV DUH LQWLPDWHO\ WLHG WR WKH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP 7KH ZRUN LQYROYHG LQ FRQVWUXFWLQJ WKLV WKHRU\ GLYLGHV QHDWO\ LQWR WKUHH SDUWV )LUVW WKH QHZHVW SODQHWDU\ HSKHPHULV IURP WKH -HW 3URSXOVLRQ /DERUDWRU\ SURGXFHG DIWHU WKH 9R\DJHU HQFRXQWHU ZLWK 1HSWXQH DOORZV RQH WR LQIHU WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH ZLWK D VWDQGDUG HUURU RQ WKH RUGHU RI nL 6HFRQG WKH FRHIILFLHQWV LQ WKH DSSUR[LPDWLRQ SRO\QRPLDOV IRU WKH QHZ DQJOHV DUH IRXQG LQ WHUPV RI WKHLU FRXQWHUSDUWV LQ WKH FXUUHQWO\ DFFHSWHG ,$8 WKHRU\ WKLV fVKRUWWHUP WKHRU\f OLNH WKH ,$8 RQH LV YDOLG IRU D IHZ FHQWXULHV QHDU WKH SUHVHQW WLPH 7KLUG WKH PRWLRQ RI WKH (DUWKfV QRUWK SROH LV LQWHJUDWHG QXPHULFDOO\ RYHU D PLOOLRQ\HDU WLPH VSDQ YDOXHV IRU ERWK WKH VWDQGDUG SUHFHVVLRQ DQJOHV DQG WKH QHZ RQHV DUH LQIHUUHG DW GLVFUHWH WLPHV IURP WKH LQWHJUDWLRQ DQG &KHE\VKHY SRO\QRPLDOV DUH ILW WR WKHVH YDOXHV JLYLQJ WKH fORQJWHUP WKHRU\f %RWK WKH ORQJWHUP DQG VKRUWWHUP WKHRULHV DUH VLPSOHU WR XVH WKDQ WKH FXUUHQW RQHV [

PAGE 11

$ FRPSDULVRQ RI WKH ORQJWHUP DQG VKRUWWHUP WKHRULHV UHYHDOV WZR SRVVLEOH LPSURYHn PHQWV WR WKH ,$8 V\VWHP RI FRQVWDQWV 7KH KLJKHURUGHU WHUPV LQ .LQRVKLWDfV PRGHO IRU WKH ULJLG (DUWK XVHG LQ WKH ORQJWHUP WKHRU\ FKDQJH WKH WLPH GHULYDWLYH RI 1HZFRPEfV 3UHFHVVLRQDO &RQVWDQW IURP f§7 SHU -XOLDQ FHQWXU\ WR f§nLFHQWXU\ DW WKH VWDQn GDUG HSRFK /DVNDUfV LQYHVWLJDWLRQ LQWR WKH PRWLRQ RI WKH HFOLSWLF DOVR XVHG LQ WKH ORQJWHUP WKHRU\ \LHOGV f§nLFHQWXU\ IRU WKH UDWH RI FKDQJH RI WKH REOLTXLW\ YHUVXV WKH FXUUHQWO\DGRSWHG f§FHQWXU\ ;,

PAGE 12

&+$37(5 ,1752'8&7,21 %DFNJURXQG 7KH VORZ PRWLRQ RI WKH FHOHVWLDO SROH KRZHYHU RQH GHILQHV LWf DPRQJ WKH VWDUV DQG WKH FRQFRPLWDQW VORZ ZHVWZDUG GULIW RI WKH ORFDWLRQ RI WKH YHUQDO HTXLQR[ DUH WKH UHVXOW RI WKH SK\VLFDO SURFHVV NQRZQ DV DVWURQRPLFDO SUHFHVVLRQ 7KH IRUPHU HIIHFW UHVXOWV IURP WKH JUDYLWDWLRQDO LQWHUDFWLRQ RI WKH 6XQ DQG 0RRQ ZLWK WKH REODWH (DUWK WKLV SURGXFHV D WRUTXH ZKLFK FKDQJHV WKH GLUHFWLRQ RI WKH (DUWKfV URWDWLRQDO DQJXODU PRPHQWXP YHFWRU 7KH VKRUW SHULRG SRUWLRQ RI WKLV SKHQRPHQRQ LV NQRZQ DV fQXWDWLRQf DQG ZLOO QRW EH WUHDWHG LQ GHSWK KHUH WKH ORQJSHULRG SDUW LV fOXQLVRODU SUHFHVVLRQf $V WKH ORQJHVW QXWDWLRQ SHULRG LV DERXW \HDUV ZKLOH WKH VKRUWHVW SHULRG RI OXQLVRODU SUHFHVVLRQ LV DERXW \HDUV WKHUH LV D FOHDQ GLYLVLRQ EHWZHHQ WKH WZR PDQLIHVWDWLRQV RI WKH VDPH SK\VLFDO SURFHVVf ,Q DGGLWLRQ WKH JUDYLW\ RI WKH RWKHU SODQHWV LQ WKH 6RODU 6\VWHP SHUWXUEV WKH (DUWKfV RUELW FKDQJLQJ WKH RULHQWDWLRQ RI LWV PHDQ RUELWDO SODQH WKH HFOLSWLFf 7KH LQIOXHQFH RI WKLV RULHQWDWLRQ FKDQJH RQ WKH GLUHFWLRQ RI WKH PHDQ YHUQDO HTXLQR[ LV FDOOHG fSODQHWDU\ SUHFHVVLRQf 6LQFH WKH YHUQDO HTXLQR[ OLHV DW WKH LQWHUVHFWLRQ RI WKH (DUWKfV PHDQ HTXDWRU DQG WKH HFOLSWLF LWV ORFDWLRQ LV DIIHFWHG E\ ERWK PRWLRQV 7KH UHVXOWDQW RI OXQLVRODU DQG SODQHWDU\ SUHFHVVLRQ LV DFFRUGLQJO\ FDOOHG fJHQHUDO SUHFHVVLRQf /XQLVRODU SUHFHVVLRQ ZDV GLVFRYHUHG LQ WKH VHFRQG FHQWXU\ %& E\ +LSSDUFKXV ZKR QRWHG V\VWHPDWLF GLIIHUHQFHV EHWZHHQ HFOLSWLF ORQJLWXGHV ZKLFK KH REVHUYHG DQG WKRVH REn VHUYHG E\ 7LPRFKDULV RYHU D FHQWXU\ HDUOLHU /LHVNH f 7KH VSHHG RI SODQHWDU\ SUHFHVn VLRQ LV VORZHU E\ D IDFWRU RI DERXW WKDQ WKDW RI OXQLVRODU SUHFHVVLRQ FRQVHTXHQWO\ WKH

PAGE 13

PRWLRQ RI WKH HFOLSWLF ZDV QRW VXVSHFWHG XQWLO 1HZWRQ DSSOLHG KLV WKHRU\ RI JUDYLWDWLRQ WR WKH PRWLRQV RI WKH SODQHWV 7KH WKHRU\ RI JHQHUDO SUHFHVVLRQ LV ERWK G\QDPLF DQG NLQHPDWLF LQ QDWXUH 7KH G\n QDPLFV HQWHUV LQWR WKH GLIIHUHQWLDO HTXDWLRQV RI PRWLRQ IRU WKH HFOLSWLF RU HTXLYDOHQWO\ IRU WKH SROH RI WKH HFOLSWLFf DQG IRU WKH HTXDWRU RU WKH FHOHVWLDO SROHf 2QFH WKHVH HTXDWLRQV DUH LQWHJUDWHG WKH PRWLRQ RI WKH YHUQDO HTXLQR[ DQG RI WKH HTXDWRULDO DQG HFOLSWLF FRRUGLQDWH D[HV EHFRPHV D SUREOHP LQ URWDWLRQDO NLQHPDWLFV 3UHFHVVLRQ WKHRU\ DFFRUGLQJO\ LV GHYHOn RSHG LQ WHUPV RI DQJOHV E\ ZKLFK RQH FDQ URWDWH FRRUGLQDWH IUDPHV IURP WKHLU RULHQWDWLRQ DW RQH HSRFK WR WKDW DW DQRWKHU 7KH FXUUHQW WKHRU\ RI SUHFHVVLRQ ZDV GHYHORSHG E\ /LHVNH HW DO f ,WV WLPH RULJLQ LV WKH EHJLQQLQJ RI WKH DVWURQRPLFDO -XOLDQ \HDU RU QRRQ G\QDPLFDO WLPH RQ -DQXDU\ -XOLDQ (SKHPHULV 'DWH f 7KLV ]HUR HSRFK LV GHQRWHG f-f DQG WLPH 7 LQ WKLV WKHRU\ LV PHDVXUHG LQ XQLWV RI -XOLDQ FHQWXULHV RI GD\V RI G\QDPLFDO WLPH 7KH FXUUHQW GLVWLQFWLRQ EHWZHHQ fWHUUHVWULDO G\QDPLFDO WLPH DQG fEDU\FHQWULF G\n QDPLFDO WLPHf D SHULRGLF GLIIHUHQFH RI QR PRUH WKDQ WZR PLOOLVHFRQGV LV RI QR FRQVHTXHQFH LQ D WKHRU\ ZKRVH UDWHV GR QRW H[FHHG WZR GHJUHHV SHU FHQWXU\f 7KH SDSHU RI /LHVNH HW DO LV EDVHG RQ )ULFNHfV f GHWHUPLQDWLRQ RI WKH VSHHG RI OXQLVRODU SUHFHVVLRQ DQG RQ 1HZn FRPEfV f ZRUN RQ WKH PRWLRQ RI WKH HFOLSWLF WKH ODWWHU XSGDWHG ZLWK PRGHUQ YDOXHV RI WKH PDVVHV RI WKH SODQHWV :KLOH WKH URWDWLRQ PDWUL[ DSSURDFK WR SUHFHVVLRQ LV IXOO\ ULJRURXV JLYLQJ H[DFW UHn VXOWV IRU WKH HIIHFWV RI SUHFHVVLRQ RQ HTXDWRULDO FRRUGLQDWHV WKH IRUPXODV IRU HYDOXDWLQJ WKH SUHFHVVLRQ DQJOHV WKHPVHOYHV DUH RQO\ DSSUR[LPDWH /LHVNH HW DO SURYLGH WKLUGGHJUHH SRO\QRPLDOV LQ 7 IRU HDFK DQJOH 7KHVH SRO\QRPLDOV DUH DFFXUDWH WR ZLWKLQ D PLOOLDUFVHF RQG IRU DERXW WZR FHQWXULHV RQ HLWKHU VLGH RI VR WKH\ DUH HDVLO\ VXIILFLHQW IRU WKH

PAGE 14

UHGXFWLRQ RI PRGHUQ SUHFLVH DVWURPHWULF REVHUYDWLRQV +RZHYHU D EOLQG DSSOLFDWLRQ RI WKH SRO\QRPLDOV RYHU PLOOHQLD ZLOO SURGXFH JURWHVTXHO\ ZURQJ UHVXOWV 6HYHUDO DXWKRUV KDYH H[DPLQHG SUHFHVVLRQ WKHRU\ RYHU PXFK ORQJHU WLPH LQWHUYDOV +HUH RQH JHQHUDOO\ H[SUHVVHV WKH RULHQWDWLRQ RI WKH HFOLSWLF DV D VXP RI WULJRQRPHWULF WHUPV GHULYHG IURP ORQJSHULRG SODQHWDU\ SHUWXUEDWLRQV H[SUHVVLRQV IRU WKH DFFXPXODWHG JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH IROORZ 7KLV PHWKRG ZDV GHYHORSHG E\ %URXZHU DQG YDQ :RHUNRP f FRUUHFWHG E\ 6KDUDI DQG %XGQLNRYD f DQG H[WHQGHG WR ILYH PLOOLRQ \HDUV E\ %HUJHU f %HUJHUfV ZRUN ZDV EDVHG RQ %UHWDJQRQfV f WKHRU\ ZKLFK ZDV FRPSOHWH WR VHFRQG RUGHU LQ WKH SODQHWDU\ PDVVHV DQG WR WKLUG GHJUHH LQ HFFHQWULFLW\ DQG LQFOLQDWLRQ 7KH JRDO RI WKLV GLVVHUWDWLRQ LV WR GHYHORS D WKHRU\ RI SUHFHVVLRQ LQ ZKLFK WKH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP LV XVHG DV D IXQGDPHQWDO UHIHUHQFH SODQH 3UHFHVVLRQ DQJOHV UHIHUUHG WR WKH LQYDULDEOH SODQH FDQ EH XVHG LQ ERWK VKRUWWHUP DQG ORQJWHUP DSSOLFDWLRQV :LWK D VXLWDEOH FKDQJH LQ WKH RULJLQ RI ULJKW DVFHQVLRQV WKH QHZ SUHFHVVLRQ WKHRU\ EHFRPHV VLPSOHU FRPSXWDWLRQDOO\ WKDQ WKH FXUUHQW WKHRU\ 7KH ZRUN GHVFULEHG KHUH GLYLGHV QHDWO\ LQWR WKUHH SDUWV ,Q &KDSWHU WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH LV IRXQG IURP WKH PRVW UHFHQW SODQHWDU\ HSKHPHULV SURGXFHG DW WKH -HW 3URSXOVLRQ /DERUDWRU\ &KDSWHU SUHVHQWV IRUPXODV E\ ZKLFK WKH SRO\QRPLDO FRHIILFLHQWV RI WKH QHZ SUHFHVVLRQ DQJOHV PD\ EH FDOFXODWHG IURP WKRVH RI WKH FXUUHQW WKHRU\ WKH UHVXOWV ZKHQ WKH YDOXHV LQ WKH /LHVNH HW DO f SDSHU DUH DGRSWHG PD\ EH FDOOHG WKH fVKRUWWHUP WKHRU\f &KDSWHU LV GHYRWHG WR WKH fORQJWHUP WKHRU\f GHYHORSHG E\ QXPHULFDO LQWHJUDWLRQ RI WKH SRVLWLRQ RI WKH FHOHVWLDO SROH WKH HTXDWLRQV RI PRWLRQ DUH WKRVH RI .LQRVKLWD f ZKLOH WKH f1XPHULFDO *HQHUDO 7KHRU\f RI /DVNDU f SURYLGHG WKH RULHQWDWLRQ RI WKH HFOLSWLF $ ILQDO FKDSWHU FRPSDUHV WKH WZR WKHRULHV 7KH UHPDLQGHU RI WKLV FKDSWHU SUHVHQWV WKH QRWDWLRQ DQG GHILQLWLRQV WKDW DUH XVHG WKURXJKRXW WKH GLVVHUWDWLRQ

PAGE 15

1RWDWLRQ 7DEOH IRXQG DW WKH HQG RI WKLV FKDSWHU SUHVHQWV D OLVW RI DOO WKH V\PEROV XVHG WKURXJKRXW WKLV GLVVHUWDWLRQ ZLWK WKHLU GHILQLWLRQV DQG WKH QXPEHU RI WKH VHFWLRQ LQ ZKLFK WKH V\PERO ILUVW DSSHDUV 7KH WDEOH FRQWDLQV /DWLQ V\PEROV ILUVW WKHQ *UHHN WKHQ VSHFLDO DVWURQRPLFDO V\PEROV ZLWK WKH ILUVW WZR SDUWV LQ DOSKDEHWLFDO RUGHU 6FDODU TXDQWLWLHV LQFOXGLQJ FRPSRQHQWV RI YHFWRUV DQG HOHPHQWV RI PDWULFHVf DUH VHW LQ LWDOLF W\SH WKURXJKRXW WKLV ZRUN 9HFWRUV DUH JLYHQ LQ EROGIDFH URPDQ W\SH LQGLYLGXDO URZV RU FROXPQV RI PDWULFHV DUH FRQVLGHUHG WR EH YHFWRUV IRU WKLV SXUSRVH 0DWULFHV DSSHDU LQ D EROGIDFH VDQVVHULI IRQW WKH VDPH IRQW LV XVHG IRU ERWK URWDWLRQ PDWULFHV DQG FRYDULDQFH PDWULFHV 7KLV VFKHPH IROORZV VWDQGDUG W\SRJUDSKLFDO SUDFWLFH IRU VFDODUV DQG YHFWRUV WKH W\SRJUDSK\ IRU PDWULFHV LV WKDW XVHG E\ *ROGVWHLQ f 7KLV SDSHU IROORZV FRPPRQO\ DFFHSWHG QRWDWLRQ IRU WKH SUHFHVVLRQ DQJOHV 7KH V\VWHP RI QRWDWLRQ IRU WKH FRHIILFLHQWV RI WKHVH DQJOHV SLRQHHUHG E\ /LHVNH HW DO f LV FRPSOHWH DQG XQDPELJXRXV DW WKH VDPH WLPH WKH GLDFULWLFDO PDUNV FDQ EH DZNZDUG 'HYLDWLRQV IURP WKHLU V\VWHP DUH FDUHIXOO\ QRWHG ERWK LQ 7DEOH DQG DW WKHLU ILUVW XVH LQ WKH WH[W (TXDWLRQV DUH QXPEHUHG E\ FKDSWHU LQ RUGHU RI WKHLU ILUVW DSSHDUDQFH :KHQ DQ HTXDn WLRQ DSSHDUV PRUH WKDQ RQFH DOO RFFXUUHQFHV DUH ODEHOHG ZLWK WKH RULJLQDO HTXDWLRQ QXPEHU 'HILQLWLRQV ,QVRIDU DV SRVVLEOH DOO WKH WHUPLQRORJ\ XVHG LQ WKLV GLVVHUWDWLRQ LV FXUUHQWO\ LQ XVH E\ WKH DVWURQRPLFDO FRPPXQLW\ $Q H[FHOOHQW JORVVDU\ DSSHDUV LQ VHFWLRQ 0 RI WKH DQQXDO YROXPHV RI 7KH $VWURQRPLFDO $OPDQDF SXEOLVKHG MRLQWO\ E\ WKH 8QLWHG 6WDWHV 1DYDO 2En VHUYDWRU\ DQG WKH 5R\DO *UHHQZLFK 2EVHUYDWRU\ 7KH UHDGHU LV UHIHUUHG WKHUH IRU WHUPV QRW GHILQHG EHORZ $ fFRRUGLQDWH V\VWHP LV D VHW RI WKUHH PXWXDOO\ SHUSHQGLFXODU &DUWHVLDQ FRRUGLQDWH D[HV ZLWK HTXDO XQLWV RI OHQJWK DORQJ HDFK D[LV $OO FRRUGLQDWH V\VWHPV XVHG LQ WKLV

PAGE 16

GLVVHUWDWLRQ DUH ULJKWKDQGHG LI WKH WKUHH D[HV EH GHQRWHG LQ RUGHUf E\ [ \ DQG DQG LI WKH [ DQG \D[HV DUH SODFHG RQ D SLHFH RI SDSHU VXFK WKDW [ LQFUHDVHV WR WKH ULJKW DQG \ LQFUHDVHV XSZDUG WKHQ WKH D[LV SRLQWV RXW RI WKH SDSHU WRZDUG WKH REVHUYHU 7KH UHFWDQJXODU FRPSRQHQWV RI D YHFWRU DUH WDNHQ WR IRUP D FROXPQ YHFWRU D PDWUL[ ZLWK RQO\ RQH FROXPQf 9HFWRUV DUH DOVR VSHFLILHG LQ WHUPV RI WKHLU VSKHULFDO FRRUGLQDWHV OHQJWK RU PDJQLWXGHf U ORQJLWXGH DQJOH $ DQG ODWLWXGH DQJOH c 7KH WUDQVIRUPDWLRQ IURP ^U $"` LQWR UHFWDQJXODU FRPSRQHQWV [\]f7 LV U FRV $ FRV U VLQ $ FRV U VLQ I WKLV LV D YHFWRU HTXDWLRQ 7KH LQYHUVH WUDQVIRUPDWLRQ FRQVLVWV RI WKH WKUHH VFDODU HTXDWLRQV U \M [ \ f $ SOJ\ [f f WDQ \-[ \f f 7KH QRWDWLRQ fSOJ\D"ff LQ HTXDWLRQ f ZDV LQWURGXFHG E\ (LFKKRUQ f DV DQ DOn WHUQDWH WR WKH PRUH XVXDO WDQB\[f 7KH UDQJH RI WKH SLJ IXQFWLRQ LV SOJ\ [f r WKH TXDGUDQW GHSHQGV RQ WKH VLJQV RI [ DQG \ LQGLYLGXDOO\ ,Q WKH )RUWUDQ SURJUDPPLQJ ODQJXDJH $ ZRXOG EH HYDOXDWHG DV $7$1 \ f 1R VXFK FRQIXVLRQ H[LVWV IRU HTXDWLRQV f DQG f U LV QRQQHJDWLYH DQG c KDV WKH VDPH UDQJH DV WKH SULQFLSDO YDOXH RI WKH DUFWDQJHQW (TXDWLRQ f LV JLYHQ LQ WHUPV RI WKH DUFWDQJHQW UDWKHU WKDQ WKH PRUH XVXDO VLQf rf IRU QXPHULFDO UHDVRQV WKH DUFVLQH ORVHV LWV SUHFLVLRQ ZKHQ LWV DUJXPHQW DSSURDFKHV s )LQDOO\ LI U WKH HTXDWLRQV IRU $ DQG DUH WHFKQLFDOO\ LQGHWHUPLQDWH WKH DQJOHV E\ FRQYHQWLRQ DVVXPH WKHLU OLPLWLQJ YDOXHV DV U f§ 5RWDWLRQV DUH JLYHQ LQ PDWUL[ IRUP $ URWDWLRQ PDWUL[ LV WKRXJKW RI DV DQ RSHUDWRU URWDWLQJ WKH FRRUGLQDWH D[HV UDWKHU WKDQ DV D SK\VLFDO URWDWLRQ RI WKH YHFWRU WR ZKLFK

PAGE 17

WKH PDWUL[ LV DSSOLHG 7KHUH DUH WKUHH HOHPHQWDU\ URWDWLRQ PDWULFHV GHQRWHG 5f HDFK SURGXFLQJ D URWDWLRQ E\ VRPH DQJOH DERXW RQH RI WKH WKUHH FRRUGLQDWH D[HV 7KH VWDQGDUG VLJQ FRQYHQWLRQ DSSOLHV WR WKH DQJOHV IRU LQVWDQFH D URWDWLRQ DERXW WKH D[LV E\ D SRVLWLYH DQJOH FDUULHV WKH [D[LV WRZDUG WKH ROG \D[LV :ULWWHQ RXW WKH WKUHH HOHPHQWDU\ URWDWLRQ PDWULFHV DUH ? 5Lf FRV VLQ f ? f§ VLQ FRV FRV f§ VLQ ? 5 f f ? VLQ FRV f FRV VLQ ? 5f f§VLQ FRV f 9 R 3UHFHVVLRQ WKHRU\ LV LQWLPDWHO\ FRQFHUQHG ZLWK WKH RULHQWDWLRQ RI WKH fPHDQ HTXDWRULDO FRRUGLQDWH V\VWHP 7KH D[LV GHQRWHG 4f RI WKLV V\VWHP LV GLUHFWHG WR WKH PHDQ &HOHVWLDO (SKHPHULV 3ROH WKH [D[LV LV GLUHFWHG WRZDUG WKH PHDQ YHUQDO HTXLQR[ DQG LV V\PEROL]HG E\ WKH fUDPfV KRUQV RI $ULHV 7f WKH \D[LV \Jf GLUHFWHG WRZDUG ULJKW DVFHQVLRQ K DQG GHFOLQDWLRQ r FRPSOHWHV WKH ULJKWKDQGHG WULDG 7KH ZRUG fPHDQf LQ WKLV FRQWH[W LQGLFDWHV WKDW WKH HIIHFWV RI QXWDWLRQ DUH GLVUHJDUGHGf 7KLV V\VWHP LV DOVR FDOOHG WKH fPHDQ HTXDWRU DQG HTXLQR[f HLWKHU fRI HSRFKf RU fRI GDWHf 7KH fHSRFKf LV WKH LQLWLDO WLPH IRU SUHFHVVLRQ XVXDOO\ DQG WKH fGDWHf UHIHUV WR DQ DUELWUDU\ ILQDO WLPH IRU SUHFHVVLRQ )LJXUH VKRZV WKH FRRUGLQDWH D[HV RI WKLV V\VWHP ZLWK FLUFOHV PDUNLQJ WKH SODQHV RI WKH HTXDWRU DQG WKH HFOLSWLF 7KH RWKHU FRRUGLQDWH V\VWHP XVHG LQ WKLV ZRUN LV WKH fHFOLSWLF FRRUGLQDWH V\VWHPf DOVR FDOOHG WKH fHFOLSWLF DQG HTXLQR[ RI HSRFKf RU fRI GDWHf +HUH WKH D[LV LV GLUHFWHG WRZDUG WKH QRUWK HFOLSWLF SROH WKH ]D[LV LV LGHQWLFDO WR WKDW RI WKH PHDQ HTXDWRULDO FRRUGLQDWH

PAGE 18

(FOLSWLF (TXDWRU )LJXUH 7KH (TXDWRULDO &RRUGLQDWH 6\VWHP (TXDWRU )LJXUH 7KH (FOLSWLF &RRUGLQDWH 6\VWHP

PAGE 19

V\VWHP DQG DJDLQ WKH \D[LV FRPSOHWHV WKH ULJKWKDQGHG WULDG 7KH EDVLV XQLW YHFWRUV DUH GHQRWHG 7 IRU WKH [D[LV \H IRU \ DQG ( IRU ] )LJXUH GHSLFWV WKH HFOLSWLF FRRUGLQDWH V\VWHP 7KH YHFWRUV ( DQG 4 DSSHDU LQ ERWK ILJXUHV WKH DQJOH EHWZHHQ WKHP LV e WKH REOLTXLW\ RI WKH HFOLSWLF )RU WKH VDNH RI EUHYLW\ (LFKKRUQfV f VLQJOHOHWWHU QRWDWLRQ IRU FRRUGLQDWH V\Vn WHPV ZLOO RIWHQ EH XVHG 7KH PHDQ HTXDWRULDO V\VWHP RI GDWH LV FDOOHG WKH f4 V\VWHPf DQG WKH HFOLSWLF FRRUGLQDWH V\VWHP RI GDWH LV OLNHZLVH FDOOHG WKH f( V\VWHPf 7KHLU FRXQWHUn SDUWV DW HSRFK FDUU\ D VXEVFULSW ]HUR 4R DQG (R! UHVSHFWLYHO\ 7KH RULHQWDWLRQ RI WKH 4R V\VWHP LV GHILQHG LPSOLFLWO\ E\ WKH ULJKW DVFHQVLRQV DQG GHFOLQDWLRQV DW RI WKH IXQGDPHQWDO VWDUV LQ WKH ). VWDU FDWDORJ )ULFNH HW DO f 7ZR RWKHU HTXDWRULDO V\VWHPV DUH VWLOO LQ IUHTXHQW XVH 7KH f% ).f V\VWHPf LV GHILQHG E\ WKH SRVLWLRQV DQG SURSHU PRWLRQV RI WKH ). VWDU FDWDORJ )ULFNH DQG .RSII f DW HSRFK % WKH EHJLQQLQJ RI %HVVHOLDQ \HDU RU -XOLDQ (SKHPHULV 'DWH f 2EVHUYDWLRQV VXEVHTXHQW WR WKRVH XVHG LQ WKH ). KDYH UHYHDOHG D VPDOO EXW VLJQLILFDQW V\VWHPDWLF HUURU LQ WKH ). SURSHU PRWLRQV LQ ULJKW DVFHQVLRQ &RQVHTXHQWO\ WKLV V\VWHP DOWKRXJK LQWHQGHG WR EH LQHUWLDO LV LQ VORZ URWDWLRQ DERXW LWV ]D[LV 1R GRXEW IXWXUH REVHUYDWLRQV ZLOO UHYHDO D VLPLODU IODZ DOEHLW RI VPDOOHU PDJQLWXGH LQ WKH ).f %\ FRQWUDVW WKH SODQHWDU\ HSKHPHULGHV GHYHORSHG DW WKH -HW 3URSXOVLRQ /DERUDWRU\ -3/f DUH LQWHJUDWHG QXPHULFDOO\ LQ D FRRUGLQDWH V\VWHP WKDW LV LQHUWLDO E\ FRQVWUXFWLRQ 7KH ODWHVW DYDLODEOH HSKHPHULV SURGXFHG IRU WKH 9R\DJHU SURMHFW DIWHU WKH 1HSWXQH HQn FRXQWHU KDV LWV FRRUGLQDWH D[HV DOLJQHG ZLWK WKH % ).f V\VWHP DERYH DW HSRFK % 7KLV QRQURWDWLQJ V\VWHP ZLOO EH GHQRWHG f(0(f LQ DFFRUGDQFH ZLWK -3/ SDUODQFH LQ RUGHU WR GLVWLQJXLVK LW IURP WKH URWDWLQJ % ).f V\VWHP

PAGE 20

7DEOH 'HILQLWLRQV RI 6\PEROV 6\PERO 6HFWLRQ 'HILQLWLRQ $ 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP WKH PHDQ HFOLSWLF DQG HTXLQR[ RI LQWR WKH PHDQ HTXDWRU DQG HTXLQR[ RI GDWH $ f 7KH VPDOOHVW SULQFLSDO PRPHQW RI LQHUWLD RI WKH (DUWK f 6XEVFULSW GHQRWLQJ WKH DFFXPXODWHG SUHFHVVLRQ DQJOH UDWKHU WKDQ LWV UDWH D 7KH VHPLPDMRU D[LV RI DQ RUELW XVXDOO\ ZLWK D VXEVFULSW WR LQGLFDWH WKH RUELWLQJ ERG\ DN &RHIILFLHQWV RI &KHE\VKHY SRO\QRPLDOV REWDLQHG IURP -3/ SODQHWDU\ HSKHPHULGHV % 3UHIL[ GHQRWLQJ D %HVVHOLDQ \HDU % f 7KH LQWHUPHGLDWH SULQFLSDO PRPHQW RI LQHUWLD RI WKH (DUWK f 6XEVFULSW GHQRWLQJ WKH (DUWK0RRQ EDU\FHQWHU % 7KH PHDQ HTXDWRULDO FRRUGLQDWH V\VWHP DW HSRFK % XVHG ZLWK D IROORZLQJ ).f WR GHQRWH WKH URWDWLQJ V\VWHP RI WKH ). VWDU FDWDORJ % 7KH LQVWDQW RI WLPH FRUUHVSRQGLQJ WR WKH VWDUW RI WKH %HVVHOLDQ \HDU -XOLDQ (SKHPHULV 'DWH & 7KH ODUJHVW SRODUf SULQFLSDO PRPHQW RI LQHUWLD RI WKH (DUWK F f 7KH VSHHG RI OLJKW LQ YDFXR f 7KH SURGXFW VLQU FRVLO\ &IF 7KH FRHIILFLHQW RI 7N LQ WKH H[SUHVVLRQ IRU WKH FRVLQH RI WKH DQJOH 7KH -DFRELDQ RI WKH WUDQVIRUPDWLRQ IURP UHFWDQJXODU FRRUGLQDWHV LQWR ULJKW DVFHQVLRQ DQG GHFOLQDWLRQ G 7KH SRO\QRPLDO IRUPLQJ WKH GHQRPLQDWRU LQ WKH TXRWLHQW QG GN 7KH FRHIILFLHQW RI 7N LQ WKH GHQRPLQDWRU SRO\QRPLDO G ( 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP (K WR ( FRRUGLQDWHV ( 7KH QRUWK HFOLSWLF SROH YHFWRU

PAGE 21

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ ( 7KH FRRUGLQDWH V\VWHP GHILQHG E\ WKH HFOLSWLF DQG PHDQ HTXLQR[ RI GDWH ( 7KH FRRUGLQDWH V\VWHP GHILQHG E\ WKH HFOLSWLF DQG PHDQ HTXLQR[ RI HSRFK H 7KH RUELWDO HFFHQWULFLW\ RIWHQ XVHG ZLWK D VXEVFULSW WR GHQRWH WKH RUELWLQJ ERG\ (0( 7KH QRQURWDWLQJ FRRUGLQDWH V\VWHP DOLJQHG ZLWK WKH % ).f V\VWHP DW HSRFK % 7KH XQLYHUVDO FRQVWDQW RI JUDYLWDWLRQ + 7KH -DFRELDQ RI WKH WUDQVIRUPDWLRQ IURP 6HW ,,, FRRUGLQDWHV LQWR UHFWDQJXODU FRRUGLQDWHV LQ WKH RUELWDO V\VWHP + 7KH UDWLR RI WKH PRPHQWV RI LQHUWLD RI WKH (DUWK K $Q DQJXODU PRPHQWXP YHFWRU K 7KH XQLW YHFWRU LQ WKH GLUHFWLRQ RI WKH RUELWDO DQJXODU PRPHQWXP RI D SODQHW K f 7KH PDJQLWXGH RI DQJXODU PRPHQWXP f 2QH RI WKH WZR UHFWDQJXODU FRPSRQHQWV JLYLQJ WKH HFFHQWULFLW\ DQG ORQJLWXGH RI SHULKHOLRQ RI WKH (DUWKnV RUELW f 7KH VWHSVL]H LQ D QXPHULFDO LQWHJUDWLRQ f 7KH URWDWLRQDO PRPHQW RI LQHUWLD RI D ERG\ f 7KH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH PHDQ HTXDWRU RI GDWH OR 7KH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH PHDQ HTXDWRU RI HSRFK K 7KH FRHIILFLHQWV RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ RI L f 5XQQLQJ LQGH[ RYHU DOO ERGLHV RQ D -3/ SODQHWDU\ HSKHPHULV ILOH f 7KH LQFOLQDWLRQ RI D SODQHWDU\ RUELW WR WKH (0( [\ SODQH f 2UGLQDO QXPEHU RI WKH VHW RI &KHE\VKHY FRHIILFLHQWV WR EH XVHG IRU ILQGLQJ SUHFHVVLRQ DQJOHV DW D JLYHQ GDWH LQ WKH ORQJWHUP WKHRU\

PAGE 22

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ -f 3UHIL[ GHQRWLQJ D -XOLDQ \HDU 7KH PHDQ HTXDWRULDO FRRUGLQDWH V\VWHP DW HSRFK DV UHDOL]HG E\ WKH ). VWDU FDWDORJ 7KH VWDQGDUG HSRFK IRU SUHFHVVLRQ WKHRU\ -XOLDQ (SKHPHULV 'DWH RU -DQXDU\ G\QDPLFDO WLPH f 7KH *DXVVLDQ JUDYLWDWLRQDO FRQVWDQW f $ UXQQLQJ LQGH[ RU WKH SRZHU RI WLPH 7 f 2QH RI WKH WZR UHFWDQJXODU FRPSRQHQWV JLYLQJ WKH HFFHQWULFLW\ DQG ORQJLWXGH RI SHULKHOLRQ RI WKH (DUWKnV RUELW )XQGDPHQWDO UDWH RI OXQLVRODU SUHFHVVLRQ DWWULEXWDEOH WR WKH 6XQ )XQGDPHQWDO UDWH RI OXQLVRODU SUHFHVVLRQ DWWULEXWDEOH WR WKH 0RRQ /R /N 0 0 0N 7KH DQJOH PHDVXUHG DORQJ WKH HTXDWRU RI GDWH IURP WKH PHDQ YHUQDO HTXLQR[ RI GDWH WR WKH LQWHUVHFWLRQ RI WKH LQYDULDEOH SODQH DQG WKH HTXDWRU RI GDWH WKH ULJKW DVFHQVLRQ RI WKLV SRLQW 6DPH DV DERYH EXW XVLQJ WKH HTXDWRU DQG PHDQ YHUQDO HTXLQR[ RI HSRFK 7KH FRHIILFLHQWV RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ RI / 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP WKH (0( V\VWHP LQWR WKH RUELWDO V\VWHP S Kf RI D SODQHW 7KH PHDQ DQRPDO\ RI D SODQHW 7KH OXQDU FRHIILFLHQWV LQ ,YLQRVKLWDfV H[SUHVVLRQ IRU OXQLVRODU SUHFHVn VLRQ P 0DVV P 1 7KH UHFLSURFDO PDVV RI D SODQHW PkUDf 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP PHDQ HTXDWRULDO FRRUn GLQDWHV WR WUXH HTXDWRULDO FRRUGLQDWHV WKH fQXWDWLRQ PDWUL[f 7KH DQDORJ WR 1 DERYH ZLWK WKH LQWHUVHFWLRQ RI WKH LQYDULDEOH SODQH DQG HTXDWRU UHSODFLQJ WKH YHUQDO HTXLQR[

PAGE 23

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ 1 7KH YHFWRU GLUHFWHG WRZDUG WKH DVFHQGLQJ QRGH RI WKH HFOLSWLF RI RQ WKH HFOLSWLF RI GDWH IRU 7 f RU WRZDUG WKH GHn VFHQGLQJ QRGH LI 7 Q 7KH YHFWRU GLUHFWHG WRZDUG WKH DVFHQGLQJ QRGH RI WKH LQYDULDEOH SODQH RQ WKH PHDQ HTXDWRU RI Q f 7KH GHJUHH RI WKH KLJKHVW &KHE\VKHY SRO\QRPLDO ZKRVH FRHIILFLHQW LV LQFOXGHG LQ WKH GDWD UHFRUGV RI D -3/ SODQHWDU\ HSKHPHULV ILOH f 7KH SRO\QRPLDO IRUPLQJ WKH QXPHUDWRU LQ WKH TXRWLHQW QG f 7KH PHDQ PRWLRQ RI D SODQHW QN 7KH FRHIILFLHQW RI 7N LQ WKH QXPHUDWRU SRO\QRPLDO Q QD 7KH UDWH RI UHJUHVVLRQ RI WKH QRGHV RI WKH 0RRQnV RUELW RQ WKH HFOLSWLF D QHJDWLYH TXDQWLW\f 2UGHU RI WHUPV ZKLFK DUH RPLWWHG IURP DQ HTXDWLRQ DV LQ 7f 3 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP WKH PHDQ HTXDWRU DQG HTXLQR[ RI HSRFK WR WKH PHDQ HTXDWRU DQG HTXLQR[ RI GDWH WKH fSUHFHVVLRQ PDWUL[f 3n 7KH DQDORJ WR 3 DERYH ZLWK WKH LQWHUVHFWLRQ RI WKH LQYDULDEOH SODQH DQG HTXDWRU UHSODFLQJ WKH YHUQDO HTXLQR[ 3 1HZFRPEfV f3UHFHVVLRQDO &RQVWDQWf 7KLV LV QRW WKH VDPH DV WKH VRFDOOHG fFRQVWDQW RI SUHFHVVLRQf S EHORZ 3N 7KH FRHIILFLHQW RI 7N LQ WKH SRO\QRPLDO IRU 1HZFRPEfV f3UHFHVVLRQDO &RQVWDQWf $ 3 7KH XQLW YHFWRU GLUHFWHG WRZDUG SHULKHOLRQ RI D SODQHW 3 f 2QH RI WKH WZR UHFWDQJXODU FRPSRQHQWV JLYLQJ WKH LQFOLQDWLRQ DQG QRGH RI WKH HFOLSWLF RI GDWH RQ WKH HFOLSWLF RI f 7KH VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH DOVR NQRZQ DV WKH fFRQVWDQW RI SUHFHVVLRQf 3D 7KH DFFXPXODWHG JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH IURP WR GDWH GHQRWHG SD E\ /LHVNH HW DO f 3D 7KH UDWH RI JHRGHVLF SUHFHVVLRQ

PAGE 24

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ 3O 7KH 4 7KH 4 7KH 4 7KH 4R 7KH $ T 7KH T f 7 f LN 7KH 5 cf 7KH 7KH VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH DW -f 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP WKH PHDQ HTXDWRU DQG LQYDULDEOH SODQH RI WR WKH PHDQ HTXDWRU DQG YHUQDO HTXLn QR[ RI GDWH 7KH YHFWRU GLUHFWHG WRZDUG WKH &HOHVWLDO (SKHPHULV 3ROH 7KH FRRUGLQDWH V\VWHP GHILQHG E\ WKH PHDQ HTXDWRU DQG YHUQDO HTXLn QR[ RI GDWH 7KH FRRUGLQDWH V\VWHP GHILQHG E\ WKH PHDQ HTXDWRU DQG YHUQDO HTXLn QR[ RI HSRFK 7KH XQLW YHFWRU GLUHFWHG WRZDUG r WUXH DQRPDO\ LQ WKH RUELWDO SODQH RI D SODQHW f 7KH TXRWLHQW RI WZR SRO\QRPLDOV T f§ QG f 2QH RI WKH WZR UHFWDQJXODU FRPSRQHQWV JLYLQJ WKH LQFOLQDWLRQ DQG QRGH RI WKH HFOLSWLF RI GDWH RQ WKH HFOLSWLF RI 7KH FRHIILFLHQW RI 7N LQ WKH TXRWLHQW RI WZR SRO\QRPLDOV 7KH HOHPHQWDU\ URWDWLRQ PDWUL[ ZKLFK URWDWHV WKH FRRUGLQDWH V\VWHP E\ DQJOH DERXW D[LV ZKHUH L f§ RU IRU WKH [ \ RU D[LV 5 f 7KH UDGLXV RI D URWDWLQJ ERG\ f .LQRVKLWDfV UDWH RI OXQLVRODU SUHFHVVLRQ 7KH SRVLWLRQ RI D ERG\ UHODWLYH WR WKH EDU\FHQWHU RI WKH 6RODU 6\VWHP f 7KH PDJQLWXGH RI DQ DUELWUDU\ YHFWRU f 7KH PDJQLWXGH RI WKH GLIIHUHQFH RI WKH EDU\FHQWULF SRVLWLRQ YHFWRUV RI WZR ERGLHV 6 KL 7KH FRYDULDQFH PDWUL[ RI WKH 6HW ,,, HOHPHQWV DQG PDVV RI D SODQHW 6 STK 7KH FRYDULDQFH PDWUL[ RI WKH DQJXODU PRPHQWXP RI D SODQHW UHIHUUHG WR LWV RUELWDO SODQH

PAGE 25

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ 6[\] 7KH FRYDULDQFH PDWUL[ RI WKH DQJXODU PRPHQWXP RI D SODQHW UHIHUUHG WR % HTXDWRULDO FRRUGLQDWHV 6 D6 7KH FRYDULDQFH PDWUL[ RI WKH RUELWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP LQ WHUPV RI WKH ULJKW DVFHQVLRQ DQG GHFOLQDWLRQ RI WKH DQJXODU PRPHQWXP YHFWRU 6N 7KH VRODU FRHIILFLHQWV LQ .LQRVKLWDfV H[SUHVVLRQ IRU OXQLVRODU SUHFHVn VLRQ V f ,Q F\OLQGULFDO FRRUGLQDWHV WKH GLVWDQFH IURP D SRLQW WR WKH D[LV f 7KH TXDQWLW\ VLQ LVLQ A 7 7KH URWDWLRQ PDWUL[ ZKLFK WUDQVIRUPV IURP WKH (0( V\VWHP DV UHDOL]HG E\ WKH '( SODQHWDU\ HSKHPHULVf LQWR WKH V\VWHP DV UHDOL]HG E\ WKH '( SODQHWDU\ HSKHPHULVf 7 7KH WUDQVSRVH RI D PDWUL[ RU FROXPQ YHFWRU 7 7LPH PHDVXUHG LQ -XOLDQ FHQWXULHV SDVW 7F 7KH FHQWUDO WLPH LQ D WLPH LQWHUYDO RI WKH WDEOH RI ORQJWHUP &KHE\ VKHY FRHIILFLHQWV 7L f 7KH HDUOLHVW WLPH FRYHUHG E\ RQH UHFRUG RI D -3/ SODQHWDU\ HSKHPn HULV ILOH f 7KH LQLWLDO WLPH ZKHQ RQH GHVLUHV WR DSSO\ SUHFHVVLRQ EHWZHHQ WZR DUELWUDU\ WLPHV 7 f 7KH ODWHVW WLPH FRYHUHG E\ RQH UHFRUG RI D -3/ SODQHWDU\ HSKHPn HULV ILOH f 7KH ILQDO WLPH ZKHQ RQH GHVLUHV WR DSSO\ SUHFHVVLRQ EHWZHHQ WZR DUELWUDU\ WLPHV 7N[f 7KH &KHE\VKHY SRO\QRPLDO RI WKH ILUVW NLQG RI GHJUHH N W 7KH WLPH LQWHUYDO 7 f§ ? ZKHQ RQH GHVLUHV WR DSSO\ SUHFHVVLRQ EHn WZHHQ WZR DUELWUDU\ WLPHV Y 7KH YHORFLW\ RI D ERG\ UHODWLYH WR WKH EDU\FHQWHU RI WKH 6RODU 6\VWHP Y 7KH VSHHG RI D ERG\ UHODWLYH WR WKH EDU\FHQWHU RI WKH 6RODU 6\VWHP

PAGE 26

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ ; 7KH ILUVW &DUWHVLDQ FRRUGLQDWH D[LV RU WKH SURMHFWLRQ RI D YHFWRU LQ WKDW GLUHFWLRQ \ H 7KH XQLW YHFWRU LQ WKH \ GLUHFWLRQ RI WKH ( V\VWHP \ T 7KH XQLW YHFWRU LQ WKH \ GLUHFWLRQ RI WKH 4 V\VWHP \ 7KH VHFRQG &DUWHVLDQ FRRUGLQDWH D[LV RU WKH SURMHFWLRQ RI D YHFWRU LQ WKDW GLUHFWLRQ ] f 7KH WKLUG &DUWHVLDQ FRRUGLQDWH D[LV RU WKH SURMHFWLRQ RI D YHFWRU LQ WKDW GLUHFWLRQ f 7KH DFFXPXODWHG DQJOH PHDVXUHG DORQJ WKH HTXDWRU RI GDWH IURP WKH LQWHUVHFWLRQ RI WKH HTXDWRU RI GDWH DQG HTXDWRU RI HSRFK WR WKH \D[LV RI WKH PHDQ HTXDWRULDO V\VWHP RI GDWH WKLV LV GHQRWHG DV ]D E\ /LHVNH HW DO f =$ $QRWKHU QRWDWLRQ IRU ]D DERYH ]N 7KH FRHIILFLHQWV RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ IRU ]D? WKH FRHIn ILFLHQWV ] DQG = DUH GHQRWHG ]? DQG ]?n UHVSHFWLYHO\ E\ /LHVNH HW DO f D f 5LJKW DVFHQVLRQ LQ SDUWLFXODU RI WKH DQJXODU PRPHQWXP YHFWRU RI WKH 6RODU 6\VWHP f $Q\ RQH RI WKH SUHFHVVLRQ DQJOHV D R 7KH ULJKW DVFHQVLRQ RI WKH DQJXODU PRPHQWXP YHFWRU RI WKH 6RODU 6\VWHP LQ WKH 4 V\VWHP Sf D? 7KH FRHIILFLHQW RI 7N D SRO\QRPLDO FRHIILFLHQWf IRU DQ\ RQH RI WKH SUHFHVVLRQ DQJOHV &f DN 7KH FRHIILFLHQW RI rUf D &KHE\VKHY FRHIILFLHQWf IRU DQ\ RQH RI WKH SUHFHVVLRQ DQJOHV S 7KH JHQHUDOL]HG ODWLWXGH DQJOH RI D YHFWRU 7KH FRHIILFLHQW RI PRPHQW RI LQHUWLD RI D ERG\ $ 7KH DQJOH PHDVXUHG DORQJ WKH LQYDULDEOH SODQH IURP WKH LQWHUVHFn WLRQ RI WKH LQYDULDEOH SODQH DQG WKH PHDQ HTXDWRU RI WR WKH LQWHUVHFWLRQ RI WKH LQYDULDEOH SODQH DQG WKH PHDQ HTXDWRU RI GDWH

PAGE 27

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ $D 7KH FRHIILFLHQW RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ IRU $ $, 7KH GLIIHUHQFH EHWZHHQ WKH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH WUXH HTXDWRU RI GDWH DQG WKH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH PHDQ HTXDWRU RI GDWH $ S 7KH 6HW ,,, SDUDPHWHU VSHFLI\LQJ D URWDWLRQ RI DQ RUELWDO SODQH DERXW LWV OLQH RI DSVLGHV $ T 7KH 6HW ,,, SDUDPHWHU VSHFLI\LQJ D URWDWLRQ RI DQ RUELWDO SODQH DERXW WKH ODWXV UHFWXP $V 1XWDWLRQ LQ REOLTXLW\ $LS 1XWDWLRQ LQ ORQJLWXGH 6 'HFOLQDWLRQ LQ SDUWLFXODU RI WKH DQJXODU PRPHQWXP YHFWRU RI WKH 6RODU 6\VWHP 6R 7KH GHFOLQDWLRQ RI WKH DQJXODU PRPHQWXP YHFWRU RI WKH 6RODU 6\VWHP LQ WKH 4R V\VWHP $ f 7KH GLIIHUHQFH EHWZHHQ WKH DQJOH $ TYf DV FRPSXWHG IURP WKH ULJRURXV HTXDWLRQ DQG IURP WKH SRO\QRPLDO DSSUR[LPDWLRQ f 7KH GLIIHUHQFH EHWZHHQ WKH DQJOH $ PHDVXUHG WR WKH WUXH HTXDWRU RI GDWH DQG WKH DQDORJRXV DQJOH PHDVXUHG WR WKH PHDQ HTXDWRU RI GDWH 6, 7KH GLIIHUHQFH EHWZHHQ WKH DQJOH TYf DV FRPSXWHG IURP WKH ULJRURXV HTXDWLRQ DQG IURP WKH SRO\QRPLDO DSSUR[LPDWLRQ 6/ 7KH GLIIHUHQFH EHWZHHQ WKH DQJOH / TYf DV FRPSXWHG IURP WKH ULJRURXV HTXDWLRQ DQG IURP WKH SRO\QRPLDO DSSUR[LPDWLRQ e 7KH REOLTXLW\ RI WKH HFOLSWLF WKH LQFOLQDWLRQ RI WKH HFOLSWLF RI GDWH WR WKH HTXDWRU RI GDWH 6R 7KH REOLTXLW\ RI WKH HFOLSWLF DW F 7KH DFFXPXODWHG DQJOH PHDVXUHG DORQJ WKH HTXDWRU RI IURP WKH "D[LV RI WKH 4R V\VWHP WR WKH LQWHUVHFWLRQ RI WKH HTXDWRU RI DQG WKH HTXDWRU RI GDWH GHQRWHG D E\ /LHVNH HW DO f

PAGE 28

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ D $QRWKHU QRWDWLRQ IRU $ DERYH &IF 7KH FRHIILFLHQWV RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ IRU $ WKH FRHIn ILFLHQWV DQG DUH GHQRWHG > DQG >n UHVSHFWLYHO\ E\ /LHVNH HW DO f H f 7KH ORQJLWXGH DQJOH LQ F\OLQGULFDO FRRUGLQDWHV f 7KH GLKHGUDO DQJOH EHWZHHQ WKH HTXDWRU RI DQG WKH HTXDWRU RI GDWH WKH DQJOH EHWZHHQ WKH &HOHVWLDO (SKHPHULV 3ROHV RI DQG RI GDWH GHQRWHG $ E\ /LHVNH HW DO f $ $QRWKHU QRWDWLRQ IRU $ DERYH N 7KH FRHIILFLHQWV RI 7N LQ WKH SRO\QRPLDO H[SDQVLRQ IRU WKH FRHIn ILFLHQWV DQG DUH GHQRWHG > DQG UHVSHFWLYHO\ E\ /LHVNH HW DO f $ 7KH DQJOH PHDVXUHG LQ WKH HFOLSWLF RI GDWH IURP WKH PHDQ YHUQDO HTXLQR[ RI GDWH WR WKH LQWHUVHFLRQ RI WKH HFOLSWLF RI GDWH DQG WKH HFOLSWLF RI GHQRWHG E\ /LHVNH HW DO f $ 7KH JHQHUDOL]HG ORQJLWXGH DQJOH RI D YHFWRU 3 7KH UHVW PDVV RI D ERG\ PXOWLSOLHG E\ 3r 7KH UHODWLYLVWLF PDVV RI D ERG\ PXOWLSOLHG E\ 7KH DQJOH PHDVXUHG LQ WKH HFOLSWLF RI IURP WKH PHDQ YHUQDO HTXLQR[ RI WR WKH LQWHUVHFWLRQ RI WKH HFOLSWLF RI GDWH DQG WKH HFOLSWLF RI WKH HFOLSWLF ORQJLWXGH RI WKH DVFHQGLQJ QRGH RI WKH HFOLSWLF RI GDWH GHQRWHG EY /LHVNH HW DO f n$ 7KH DQJOH EHWZHHQ WKH HFOLSWLF RI GDWH DQG WKH HFOLSWLF RI WDNHQ WR EH QHJDWLYH IRU 7 GHQRWHG [$ E\ /LHVNH HW DO f 92 7KH ORQJLWXGH RI WKH (DUWKfV SHULKHOLRQ LQ WKH (R V\VWHP 3 7KH GHQVLW\ RI D URWDWLQJ REMHFW *[ 7KH VWDQGDUG GHYLDWLRQ RU GLVSHUVLRQf RI WKH UDQGRP TXDQWLW\ [ 7 7KH GLPHQVLRQOHVV WLPH DUJXPHQW WR &KHE\VKHY SRO\QRPLDOV

PAGE 29

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ 7KH FRODWLWXGH DQJOH RI WKH &HOHVWLDO (SKHPHULV 3ROH UHIHUUHG WR WKH HFOLSWLF DQG PHDQ HTXLQR[ RI 7KH LQVWDQWDQHRXV VSHHG RI OXQLVRODU SUHFHVVLRQ WKH UDWH DW ZKLFK WKH PHDQ YHUQDO HTXLQR[ RI GDWH PRYHV DORQJ WKH PRYLQJ HFOLSn WLF RI GDWH rO!L 7KH VSHHG RI OXQLVRODU SUHFHVVLRQ DW 7KH DQJOH PHDVXUHG DORQJ WKH HFOLSWLF RI IURP WKH PHDQ YHUn QDO HTXLQR[ RI WR WKH LQWHUVHFWLRQ RI WKH HFOLSWLF RI DQG WKH HTXDWRU RI GDWH WKH DFFXPXODWHG OXQLVRODU SUHFHVVLRQ GHQRWHG LS D E\ /LHVNH HW DO f ; 7KH LQVWDQWDQHRXV VSHHG RI SODQHWDU\ SUHFHVVLRQ WKH UDWH DW ZKLFK WKH PHDQ YHUQDO HTXLQR[ RI GDWH PRYHV DORQJ WKH PRYLQJ PHDQ HTXDWRU RI GDWH ;? 7KH VSHHG RI SODQHWDU\ SUHFHVVLRQ DW ;D 7KH DQJOH PHDVXUHG DORQJ WKH HTXDWRU RI GDWH IURP WKH YHUQDO HTXLn QR[ RI GDWH WR WKH LQWHUVHFWLRQ RI WKH PHDQ HTXDWRU RI GDWH DQG WKH HFOLSWLF RI WKH DFFXPXODWHG SODQHWDU\ SUHFHVVLRQ GHQRWHG ?D E\ /LHVNH HW DO f  f 7KH URWDWLRQ UDWH RI D ERG\ f 7KH URWDWLRQ UDWH RI WKH (DUWK X 7KH DUJXPHQW RI SHULKHOLRQ RI D SODQHWDU\ RUELW UHIHUUHG WR WKH (0( FRRUGLQDWH V\VWHP L$ 7KH LQFOLQDWLRQ RI WKH HFOLSWLF RI WR WKH PHDQ HTXDWRU RI GDWH GHQRWHG &R D E\ /LHVNH HW DO f k 7KH 6XQ 7KH SODQHW 0HUFXU\ 7KH SODQHW 9HQXV k 7KH (DUWK 7KH SODQHW 0DUV

PAGE 30

7DEOH FRQWLQXHG 6\PERO 6HFWLRQ 'HILQLWLRQ b 7KH SODQHW -XSLWHU K 7KH SODQHW 6DWXUQ 7KH SODQHW 8UDQXV 7KH SODQHW 1HSWXQH ( 7KH SODQHW 3OXWR L 7KH (DUWKfV 0RRQ 7 7KH XQLW YHFWRU GLUHFWHG WRZDUG WKH PHDQ YHUQDO HTXLQR[ RI GDWH D 7KH ORQJLWXGH RI WKH DVFHQGLQJ QRGH

PAGE 31

&+$37(5 7+( '(7(50,1$7,21 2) 7+( ,19$5,$%/( 3/$1( ,QWURGXFWLRQ 7KH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP LV ULJRURXVO\ GHILQHG DV WKDW SODQH ZKLFK FRQWDLQV WKH FHQWHU RI PDVV RI WKH 6RODU 6\VWHP DQG LV SHUSHQGLFXODU WR WKH WRWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP 7KLV GHILQLWLRQ KROGV IRU ERWK FODVVLFDO DQG UHODWLYLVWLF SK\VLFV 7KH fWRWDO DQJXODU PRPHQWXPf PXVW ULJRURXVO\ LQFOXGH URWDWLRQDO DQJXODU PRPHQWXP DV ZHOO DV RUELWDO DQJXODU PRPHQWXP DQG LW PXVW DFFRXQW IRU DOO WKH PDVV LQ WKH 6RODU 6\VWHP VDWHOOLWHV DVWHURLGV DQG FRPHWV LQ DGGLWLRQ WR WKH 6XQ DQG SODQHWV 1HYHUWKHOHVV WKH PDMRU FRQWULEXWRU WR WKH WRWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP LV WKH RUELWDO DQJXODU PRPHQWXP RI WKH SODQHWV LQ SDUWLFXODU RI -XSLWHU 7KH JRDO RI WKLV FKDSWHU LV WR GHWHUPLQH WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH RU HTXLYDOHQWO\ WR HVWLPDWH WKH GLUHFWLRQ RI WKH WRWDO DQJXODU PRPHQWXP 7KLV WDVN LV PDGH PXFK HDVLHU WKDQNV WR WKH DYDLODELOLW\ RI FRPSXWHUUHDGDEOH SODQHWDU\ HSKHPHULV ILOHV DQG LW FDQ SURYLGH UHOLDEOH UHVXOWV QRZ WKDW WKH PDVVHV RI WKH RXWHU SODQHWV KDYH EHHQ GHWHUPLQHG IURP VSDFHFUDIW HQFRXQWHUV 7KH DQJXODU PRPHQWD RI WKH ODUJHVW DVWHURLGV PXVW EH LQFOXGHG 7KH ODUJHVW DVWHURLG &HUHVf KDV DERXW ; VRODU PDVV 6FKXEDUW 1HZKDOO HW DO f RU ; a -XSLWHU PDVV :LWK D VHPLPDMRU D[LV RI $8 ,QVW 7HRU $VWURQ f WKH PDJQLWXGH RI LWV DQJXODU PRPHQWXP LV ; f WKDW RI -XSLWHU 'XH WR WKH IDLUO\ ORZ LQFOLQDWLRQ RI &HUHVf RUELW WKH HIIHFW RI &HUHV RQ WKH GLUHFWLRQ RI WKH LQYDULDEOH SODQH ZLOO EH D IDFWRU

PAGE 32

RI DERXW ILYH OHVV WKDQ WKLV DERXW ; UDGLDQ RU 2nL2O 7KLV LV FRPSDUDEOH WR WKH XQFHUWDLQW\ IRXQG LQ 6HFWLRQ DQG WKHUHIRUH PXVW EH LQFOXGHG 6PDOOHU DVWHURLGV LQGLYLGXDOO\ ZLOO KDYH DQ HIIHFW FRUUHVSRQGLQJO\ OHVV 7DNHQ DV DQ HQVHPEOH WKHLU DQJXODU PRPHQWXP VKRXOG OLH YHU\ FORVH WR WKH QRUPDO WR WKH LQYDULDEOH SODQH WKXV ZKLOH WKH PDJQLWXGH RI WKH WRWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP ZRXOG EH LQFUHDVHG WKH GLUHFWLRQ RI WKH WRWDO DQJXODU PRPHQWXP ZRXOG EH YLUWXDOO\ XQFKDQJHG 6R VPDOO DVWHURLGV DQG E\ LPSOLFDWLRQ FRPHWV DQG VPDOOHU ERGLHV FDQ EH VDIHO\ LJQRUHG DW WKLV WLPH 5RWDWLRQDO DQJXODU PRPHQWXP ZLOO DOVR EH LJQRUHG EXW IRU DQ HQWLUHO\ GLIIHUHQW UHDVRQ WKH ODUJH XQFHUWDLQW\ LQ WKH 6XQfV URWDWLRQDO DQJXODU PRPHQWXP 7KLV WRSLF LV H[SORUHG LQ PRUH GHSWK LQ 6HFWLRQ 7KH DSSURDFK DGRSWHG KHUH ZLOO EH WR FRPSXWH WKH RUELWDO DQJXODU PRPHQWXP RI HDFK SODQHWDU\ V\VWHP FRPSULVHG RI WKH SODQHW DQG LWV VDWHOOLWHVf XQGHU WKH DVVXPSWLRQ WKDW HDFK SODQHWDU\ V\VWHP LV D SRLQW PDVV $FFRUGLQJO\ WKLV FKDSWHU ZLOO ILUVW GHVFULEH WKH PRVW UHFHQW SODQHWDU\ HSKHPHULV ILOH SURGXFHG DW WKH -HW 3URSXOVLRQ /DERUDWRU\ 7KH UHODWLYLVWLF HTXDWLRQV JLYLQJ WKH RUELWDO DQJXODU PRPHQWXP RI WKH 6XQ DQG SODQHWV DUH SUHVHQWHG QH[W 7KHQ WKH WRWDO DQJXODU PRPHQWXP ZLOO EH IRXQG DQG LWV XQFHUWDLQW\ HVWLPDWHG )RU PRVW SODQHWV WKH SURGXFW RI WKH XQLYHUVDO JUDYLWDWLRQDO FRQVWDQW DQG WKH ERG\fV PDVV LV NQRZQ PXFK PRUH SUHFLVHO\ WKDQ WKH PDVV LWVHOI 7KLV DULVHV EHFDXVH RQO\ WKHLU SURGXFW W\SLFDOO\ GHQRWHG E\ cLf HQWHUV LQWR WKH HTXDWLRQV RI PRWLRQ 7KH YDOXH RI PXVW EH GHWHUPLQHG LQ WKH ODERUDWRU\ E\ PHDVXULQJ WKH JUDYLWDWLRQDO IRUFH EHWZHHQ WZR ERGLHV RI NQRZQ PDVV PRGHUQ PHDVXUHPHQWV HJ /XWKHU DQG 7RZOHU f JLYH LWV YDOXH WR RQO\ ILYH SODFHV 6LQFH D YHFWRU PDLQWDLQV LWV RULHQWDWLRQ ZKHQ PXOWLSOLHG E\ D QRQ]HUR FRQVWDQW VFDODU WKH GLUHFWLRQ RI WKH DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP GRHV QRW FKDQJH LI DOO PDVVHV UD DUH HYHU\ZKHUH UHSODFHG E\ WKH FRUUHVSRQGLQJ

PAGE 33

7KURXJKRXW WKLV UHPDLQGHU RI WKLV FKDSWHU WKH ZRUG fPDVVf ZLOO WKHUHIRUH EH WDNHQ WR PHDQ UDWKHU WKDQ LWVHOI f0DVVf DFFRUGLQJO\ LV PHDVXUHG LQ XQLWV RI OHQJWKWLPH ,Q SDVVLQJ WKH VTXDUH RI WKH *DXVVLDQ FRQVWDQW RI JUDYLWDWLRQ N JLYHV WKH VRODU PDVV H[DFWO\ $8GD\ LI k LV VSHFLILHG LQ NQUVHF WKH OHQJWK RI WKH $8 IROORZVf -3/ 3ODQHWDU\ (SKHPHULGHV 7KH SODQHWDU\ HSKHPHULV ILOHV SURGXFHG E\ WKH -HW 3URSXOVLRQ /DERUDWRU\ SURYLGH WKH IRXQGDWLRQ IRU DOO 1$6$fV GHHSVSDFH PLVVLRQV ,Q DGGLWLRQ WR SURYLGLQJ WKH SRVLWLRQ DQG YHORFLW\ RI WKH 6XQ 0RRQ DQG QLQH SODQHWV WKHVH ILOHV DOVR LQFOXGH WKH YDOXHV RI WKH SK\VLFDO FRQVWDQWV WKDW ZHUH XVHG LQ WKHLU JHQHUDWLRQ 7KHVH FRQVWDQWV LQFOXGH WKH VSHHG RI ILJKW WKH OHQJWK RI WKH DVWURQRPLFDO XQLW H[SUHVVHG LQ NLORPHWHUVf DQG WKH PDVVHV RI WKH SODQHWV 7KH FRQVWDQWV DUH UHDG E\ WKH SURJUDPV WKDW LQWHJUDWH WKH HTXDWLRQV RI PRWLRQ RI QDWXUDO VDWHOOLWHV RU RI D VSDFHFUDIW WKLV LQVXUHV FRPSDWLELOLW\ EHWZHHQ ILOHV 3ODQHWDU\ HSKHPHULV ILOHV DUH SURGXFHG E\ WKH f6RODU 6\VWHP 'DWD 3URFHVVLQJ 6\VWHPf 66'36f ZKLFK ZDV RULJLQDOO\ GHVLJQHG E\ &KDUOHV / /DZVRQ f DQG LV QRZ PDLQWDLQHG E\ ( 0\OHV 6WDQGLVK -U DQG ; ; 1HZKDOO 7KH 66'36 KDV WKUHH PDLQ IXQFWLRQV LW UHGXFHV DVWURPHWULF REVHUYDWLRQV ERWK JURXQGEDVHG DQG IURP VSDFHFUDIWf WR GHWHUPLQH D VHW RI LQLWLDO FRQGLWLRQV IRU WKH 6RODU 6\VWHP ERGLHV LW LQWHJUDWHV WKH HTXDWLRQV RI PRWLRQ DQG LW WUDQVIRUPV WKH LQWHJUDWRU RXWSXW LQWR DQ HDVLO\ LQWHUSRODWHG HSKHPHULV ILOH 7KH UHDGHU LV UHIHUUHG WR 1HZKDOO HW DL f 6WDQGLVK Df RU 1HZKDOO f IRU D PRUH FRPSOHWH GHVFULSWLRQ RI WKH 66'36 DQ RYHUYLHZ RI WKH V\VWHP IRU RXU SXUSRVHV KHUH LV SUHVHQWHG EHORZ 7KH FRRUGLQDWH V\VWHP XVHG LQ WKH 66'36 LV UHODWLYLVWLF WKH LVRWURSLF f3DUDPHWHUL]HG 3RVW1HZWRQLDQ 331f PHWULF :LOO 1HZKDOO HW DO f 7KH RULJLQ RI WKH V\VWHP LV WKH 6RODU 6\VWHP EDU\FHQWHU 7KH D[LV LV LGHQWLFDO WR WKH (DUWK PHDQ FHOHVWLDO QRUWK

PAGE 34

SROH DW D VWDQGDUG HSRFK HLWKHU % DV UHDOL]HG E\ WKH ). FDWDORJf RU ).f 7KH [D[LV LV GLUHFWHG WR WKH FRUUHVSRQGLQJ ). RU ).f fFDWDORJ HTXLQR[ff WKH ]HUR SRLQW IRU PHDVXULQJ ULJKW DVFHQVLRQVf DW WKDW HSRFK 6LQFH WKH HTXDWLRQV RI PRWLRQ LQWHJUDWHG E\ WKH 66'36 DUH H[SUHVVHG LQ DQ LQHUWLDO FRRUGLQDWH V\VWHP ]H WKHUH DUH QR &RULROLV DFFHOHUDWLRQV LQ WKH GLIIHUHQWLDO HTXDWLRQVf WKH UHVXOWLQJ HSKHPHULV UHDOL]HV E\ FRQVWUXFWLRQ DQ LQHUWLDO FRRUGLQDWH V\VWHP :KHQ WKH % HSRFK LV XVHG WKH UHVXOWLQJ LQHUWLDO FRRUGLQDWH V\VWHP LV WHUPHG (0( DQ DEEUHYLDWLRQ IRU f(DUWK PHDQ HTXDWRU RI ff LQ RUGHU WR GLVWLQJXLVK LW IURP WKH VORZO\ URWDWLQJ FRRUGLQDWH V\VWHP RI WKH ). FDWDORJ 7KH ILUVW VWHS LQ WKH SURGXFWLRQ RI D QHZ SODQHWDU\ HSKHPHULV LV WKH HVWLPDWLRQ RI WKH PDVVHV DQG LQLWLDO SRVLWLRQV DQG YHORFLWLHV RI WKH SULQFLSDO ERGLHV LQ WKH 6RODU 6\VWHP 7KH D SULRUL PRGHO LV DQ HDUOLHU HSKHPHULV 7KH GDWD 6WDQGLVK Df LQFOXGH JURXQG EDVHG RSWLFDO REVHUYDWLRQV UDGDU UDQJLQJ GDWD DQG VSDFHFUDIW UDQJLQJ GDWD 7KH ODWWHU WZR FODVVHV SURYLGH DFFXUDWH V\QRGLF SHULRGV LQGHSHQGHQW RI WUDQVLW FLUFOH REVHUYDWLRQV WKLV LQ WXUQ JLYHV WKH SODQHWVf LQHUWLDO PHDQ PRWLRQV 6LQFH WUDQVLW REVHUYDWLRQV DUH PDGH UHODWLYH WR IXQGDPHQWDO VWDUV WKH RIIVHW DQG GULIW RI WKH IXQGDPHQWDO FDWDORJ ). RU ).f YHUQDO HTXLQR[ DUH WKHUHIRUH YLVLEOH LQ WKH UHVLGXDOV DQG WKHVH TXDQWLWLHV FDQ EH HVWLPDWHG 7KH VHFRQG VWHS LQ WKH SUHSDUDWLRQ RI DQ HSKHPHULV LV WKH QXPHULFDO LQWHJUDWLRQ 7KH HTXDWLRQV RI PRWLRQ 1HZKDOO HW DO f DUH IXOO\ UHODWLYLVWLF LQ WKHLU WUHDWPHQW RI WKH JUDYLWDWLRQDO IRUFHV (DFK SODQHW RWKHU WKDQ WKH (DUWK LV WDNHQ WR EH D SRLQW ZKRVH PDVV LV WKH VXP RI WKH PDVVHV WKDW FRPSULVH WKDW SODQHWDU\ V\VWHP (DFK SRLQW PDVV WKHUHIRUH GHn ILQHV WKH EDU\FHQWHU RI LWV SODQHWDU\ V\VWHP 7KLV VFKHPH LV FRQVLVWHQW ZLWK WKH RWKHU -3/ HSKHPHULV ILOHV IRU LQVWDQFH D VDWHOOLWH HSKHPHULV ILOH DVVRFLDWHG ZLWK D SDUWLFXODU SODQHW ZLOO \LHOG SRVLWLRQV RI WKH VDWHOOLWHV DQG RI WKDW SODQHW UHODWLYH WR WKH VDPH EDU\FHQWHUf

PAGE 35

6HYHUDO DVWHURLGV DUH LQFOXGHG DV SHUWXUELQJ ERGLHV WKHLU RUELWV DUH JLYHQ DQDO\WLFDOO\ EXW WKH\ WKHPVHOYHV DUH QRW LQWHJUDWHG 7KH (DUWK DQG 0RRQ KRZHYHU DUH LQFOXGHG DV VHSDUDWH ERGLHV +HUH WKH ORZRUGHU JUDYLW\ KDUPRQLFV RI ERWK (DUWK DQG 0RRQ DUH PRGHOHG DV DUH WKH (DUWK WLGHV DQG OXn QDU OLEUDWLRQV 7KHVH DFFHOHUDWLRQV DUH YLWDO IRU WKH SURGXFWLRQ RI DQ DFFXUDWH JHRFHQWULF HSKHPHULV IRU WKH 0RRQ 7KHUHIRUH WKH 66'36 LQWHJUDWLRQ LV HIIHFWLYHO\ RI DQ HOHYHQERG\ V\VWHP WKH QLQH SODQHWV WKH 6XQ DQG WKH 0RRQ 7KH LQWHJUDWHG SRVLWLRQV DQG YHORFLWLHV DUH ZULWWHQ WR D ILOH IRU IXUWKHU SURFHVVLQJ 7KH WKLUG VWHS SURGXFHV WKH SODQHWDU\ HSKHPHULV ILOH LWVHOI 7R VDYH VWRUDJH VSDFH DQG WR PDNH LQWHUSRODWLQJ HDVLHU D SODQHWDU\ HSKHPHULV ILOH FRQWDLQV D &KHE\VKHY UHSUHVHQWDWLRQ RI WKH PRWLRQV RI WKH SODQHWV 1HZKDOO f 7KH ILQDO HSKHPHULV ILOH FRQWDLQV PDQ\ UHFRUGV ZLWK HDFK UHFRUG FRYHULQJ D IL[HG WLPH LQWHUYDO (DFK UHFRUG LQ WXUQ FRQWDLQV FRHIILFLHQWV RI &KHE\VKHY SRO\QRPLDOV XVHG LQ WKH LQWHUSRODWLRQ RI SRVLWLRQ DQG YHORFLW\ ,I 7? 7 7 ZKHUH 7 LV WKH GHVLUHG LQWHUSRODWLRQ WLPH DQG 7? DQG 7 DUH WKH VWDUW DQG HQG WLPHV RI WKH UHFRUG EUDFNHWLQJ 7 WKHQ WKH [ FRPSRQHQW RI SRVLWLRQ LV IRXQG E\ Q [ ADN7NUf f N ZKHUH WKH r DUH WKH &KHE\VKHY SRO\QRPLDOV RI WKH ILUVW NLQG VHH IRU LQVWDQFH 5LYOLQ f U LQ WKH UDQJH _U_ LV D GLPHQVLRQOHVV PHDVXUH IRU WLPH GHILQHG E\ 7L7 7f ?^77[f f WKH DN DUH WKH FRHIILFLHQWV UHDG IURP WKH ILOH DQG Q LV WKH GHJUHH RI WKH KLJKHVW SRO\QRPLDO UHWDLQHG W\SLFDOO\ 6LPLODUO\ WKH [ FRPSRQHQW RI YHORFLW\ LV IRXQG E\ GLIIHUHQWLDWLQJ HTXDWLRQ f

PAGE 36

 Q0 f Ff§ 7KH \ DQG  FRPSRQHQWV DUH IRXQG LQ WKH VDPH PDQQHU ,Q SUDFWLFH WKH YDOXHV RI 7AUf DQG 7Uf DUH IRXQG UHFXUVLYHO\ LQ D ORZOHYHO VXEURXWLQH 8VHUV QHHG RQO\ FDOO D KLJKHUOHYHO VXEURXWLQH SDVVLQJ WKH WLPH DQG GHVLUHG SODQHWV DQG UHWULHYLQJ WKH SRVLWLRQ DQG YHORFLW\ YHFWRUV 7KH &KHE\VKHY FRHIILFLHQWV DUH ILW WR SRVLWLRQV DQG YHORFLWLHV RXWSXW IURP WKH QXPHULn FDO LQWHJUDWRU WKH ILWWLQJ SURFHVV ZKLFK LV FRQVWUDLQHG WR PDWFK ERWK SRVLWLRQ DQG YHORFLW\ DFURVV D UHFRUG ERXQGDU\ LV GHVFULEHG E\ 1HZKDOO f 7KH &KHE\VKHY UHSUHVHQWDWLRQ KDV EHHQ IRXQG WR PDWFK WKH LQWHJUDWHG WUDMHFWRU\ WR ZLWKLQ D WROHUDQFH RI PP LQ SRVLn WLRQ WKLV LV PDQ\ RUGHUV RI PDJQLWXGH EHORZ WKH DFFXUDF\ WR ZKLFK WKH SODQHWVf SRVLWLRQV DUH FXUUHQWO\ NQRZQ 7KH 0 3ODQHWDU\ (SKHPHULV 7KH SDUWLFXODU HSKHPHULV ILOH XVHG LQ WKLV ZRUN NQRZQ LQWHUQDOO\ DV 0 DIWHU WKH LGHQWLILFDWLRQ QXPEHU RI WKH UXQ ZKLFK FUHDWHG LW KDV D VOLJKWO\ GLIIHUHQW KLVWRU\ IURP WKH VFKHPH RXWOLQHG DERYH ,W ZDV SURGXFHG E\ -DFREVRQ HW DO f XVLQJ -3/fV 2UELW 'HWHUPLQDWLRQ 3URJUDP 2'3 0R\HU f LQ WKH ILQDO VWHSV RI SRVWIOLJKW DQDO\VLV RI WKH 9R\DJHU HQFRXQWHU ZLWK 1HSWXQH 6WRQH DQG 0LQHU f ,WV SUHFXUVRU NQRZQ ZLWKLQ -3/ DV '( ZDV FUHDWHG E\ 6WDQGLVK f WR VHUYH DV DQ D SULRUL HSKHPHULV IRU WKH 1HSWXQH HQFRXQWHU ,Q DFFRUGDQFH ZLWK 9R\DJHU SURMHFW UHTXLUHPHQWV '( DQG WKHUHIRUH 0f LV RQ WKH (0( V\VWHP D HTXLYDOHQW LV NQRZQ DV '( 7KHVH HSKHPHULGHV VXSHUVHGH '( ZKLFK LV VWLOO XVHG LQ WKH SURGXFWLRQ RI WKH DQQXDO YROXPHV RI WKH $VWURQRPLFDO $OPDQDF HJ 8612 DQG 5*2 f 7KH '( HSKHPHULV LQFOXGHG ILYH DVWHURLGV DV SHUWXUELQJ ERGLHV &HUHV 3DOODV 9HVWD ,ULV DQG %DPEHUJD

PAGE 37

7KHVH ILYH DVWHURLGV ZHUH IRXQG WR KDYH WKH ODUJHVW HIIHFW RQ WKH 9LNLQJ ODQGHU UDQJLQJ REVHUYDWLRQV $V 9R\DJHU HQFRXQWHUHG 1HSWXQH WKH GDWD LW FROOHFWHG ERWK UDGLRPHWULF DQG RSWLFDOf KHOSHG WR UHQGHU 1HSWXQHfV HSKHPHULV PRUH DFFXUDWH 7KH SODQHWDU\ HSKHPHULV ILOH XVHG GXULQJ HQFRXQWHU RSHUDWLRQV ZDV DFFRUGLQJO\ XSGDWHG IURP WLPH WR WLPH 'XH WR WLPH FRQVWUDLQWV WKH IXOO 66'36 ZDV QRW H[HFXWHG 5DWKHU 1HSWXQHfV RUELW DQG PDVV ZHUH PHUHO\ OLQHDUO\ FRUUHFWHG EDVHG RQ SDUDPHWHUV HVWLPDWHG E\ WKH 2'3 7KH PDVVHV DQG RWKHU SK\VLFDO FRQVWDQWV XVHG E\ WKH 0 HSKHPHULV DUH SUHVHQWHG LQ 7DEOH $V PHQWLRQHG DERYH WKH fPDVVHVf DOO LQFOXGH D IDFWRU RI DQG WKH VDWHOOLWHV RI WKH VXSHULRU SODQHWV DUH LQFOXGHG ZLWK WKHLU SULPDULHV 7DEOH 3K\VLFDO &RQVWDQWV IURP WKH 0 (SKHPHULV 0DVV RI 0HUFXU\ LT 0DVV RI 9HQXV cLT 0DVV RI (DUWK Lp 0DVV RI 0DUV V\VWHP FU 0DVV RI -XSLWHU V\VWHP ILA 0DVV RI 6DWXUQ V\VWHP 0DVV RI 8UDQXV V\VWHP cLt 0DVV RI 1HSWXQH V\VWHP IO\ 0DVV RI 3OXWR SOXV &KDURQ 0DVV RI WKH 6XQ cLp 0DVV RI WKH 0RRQ cLL 0DVV RI (DUWK SOXV 0RRQ 0DVV RI &HUHV 0DVV RI 3DOODV 0DVV RI 9HVWD 0DVV RI ,ULV 0DVV RI %DPEHUJD /HQJWK RI DVWURQRPLFDO XQLW 6SHHG RI OLJKW LQ YDFXR F (DUWK0RRQ PDVV UDWLR k NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF NPVHF [ f $8GD\ [ f $8GD\ [ $8GD\ ; $8GD\ [ f $8GD\ NP NPVHF 7KH 7RWDO 2UELWDO $QJXODU 0RPHQWXP RI WKH 6RODU 6\VWHP 6LQFH D SODQHWDU\ HSKHPHULV LV SURGXFHG DFFRUGLQJ WR WKH SUHFHSWV RI JHQHUDO UHODWLYLW\ ILQGLQJ WKH DQJXODU PRPHQWXP RI D ERG\ DERXW WKH 6RODU 6\VWHP EDU\FHQWHU LV QRW D WULYLDO

PAGE 38

WDVN 7KH ORFDWLRQ RI WKH 6RODU 6\VWHP EDU\FHQWHU LV GHILQHG LPSOLFLWO\ E\ HTXDWLRQ f RI 6WDQGLVK HW DO f (AUr af L ZKHUH U LV WKH SRVLWLRQ RI ERG\ L UHODWLYH WR WKH 6RODU 6\VWHP EDU\FHQWHU DQG cLr LV LWV UHODWLYLVWLF PDVV FRUUHFWHG IRU ERWK VSHFLDO DQG JHQHUDO UHODWLYLW\ HIIHFWVf 2QH FDOFXODWHV XVLQJ HTXDWLRQ f RI WKH VDPH UHSRUW ,Q WKLV HTXDWLRQ LV WKH UHVW PDVV RI ERG\ L Y L LV WKH VSHHG RI ERG\ L UHODWLYH WR WKH 6RODU 6\VWHP EDU\FHQWHU F LV WKH VSHHG RI OLJKW DQG U f f UW U M LV VWULFWO\ VSHDNLQJ WKH PDJQLWXGH RI WKH GLIIHUHQFH RI WKH EDU\FHQWULF SRVLWLRQ YHFWRUV RI ERG\ L DQG DQRWKHU ERG\ M 1HZKDOO HW DO f SRLQW RXW WKDW HTXDWLRQV f DQG f DUH LQWHUGHSHQGHQW LQ SUDFWLFH WKH 6XQfV SRVLWLRQ LV QRW LQWHJUDWHG DW DOO EXW LV LQIHUUHG IURP HTXDWLRQ f 7KH RUELWDO DQJXODU PRPHQWXP RI ERG\ L LV WKHQ IRXQG E\ %XUNKDUGW f K Qr
PAGE 39

WKLV ZLOO SUHVXPDEO\ JLYH WKH PRVW DFFXUDWH SRVLWLRQ DQG YHORFLW\ IRU 1HSWXQH 7KH UHVXOWn LQJ SRVLWLRQV YHORFLWLHV DQG DQJXODU PRPHQWD IURP HTXDWLRQ f RI WKH HOHYHQ ERGLHV RQ WKH ILOH DUH SUHVHQWHG LQ 7DEOH WKRVH RI WKH ILYH DVWHURLGV DSSHDU LQ 7DEOH DQG WKH UHODWLYLVWLF PDVVHV IURP HTXDWLRQ f DUH SUHVHQWHG LQ 7DEOH ,Q 7DEOH WKH VRODU SRVLWLRQ DQG YHORFLW\ DUH IRXQG IURP HTXDWLRQ f 7KH WRWDO RI WKHVH DQJXODU PRPHQWD LV [ ? K [ NPVHF f ? [ 7KH VSKHULFDO FRRUGLQDWHV RI K DUH _K_ ; NPVHF f D A KP f 6 A rn f 7KH ULJKW DVFHQVLRQ DQG GHFOLQDWLRQ KHUH DUH VWLOO H[SUHVVHG LQ WKH (0( FRRUGLQDWH V\VWHP RI WKH HSKHPHULV WKH XQFHUWDLQW\ LQ WKHVH QXPEHUV LV GLVFXVVHG LQ WKH QH[W VHFWLRQ $ VWUDLJKWIRUZDUG DSSOLFDWLRQ RI HTXDWLRQ f ZLOO QRW \LHOG DQ XQYDU\LQJ UHVXOW 7KH QRGHV RQ WKH HFOLSWLF RI WKH 0RRQfV JHRFHQWULF RUELW UHJUHVV ZLWK D ZHOONQRZQ SHULRG RI \HDUV WKLV UHJUHVVLRQ LV WKH UHVXOW RI WKH JUDYLWDWLRQDO LQIOXHQFH RI ERWK WKH (DUWKfV REODWHQHVV DQG WKH 6XQ 6LQFH WKH 0RRQfV JHRFHQWULF RUELWDO SODQH WKXV FKDQJHV WKH FRQn WULEXWLRQ RI WKH 0RRQ WR K DOVR YDULHV 7KH GLUHFWLRQ RI WKH (DUWKfV URWDWLRQDO DQJXODU PRPHQWXP YDULHV GXH WR QXWDWLRQ ZLWK WKH VDPH SHULRGf§DQ HTXDO DQG RSSRVLWH HIIHFWf§ WKXV HQVXULQJ WKDW WKH WRWDO DQJXODU PRPHQWXP LV FRQVHUYHGf 7KHUHIRUH LW LV SUHIHUDEOH WR FRQVLGHU WKH (DUWK0RRQ EDU\FHQWHU LWVHOI WR EH D VLQJOH ERG\ DV LV DOUHDG\ GRQH LPSOLFLWO\ E\ WKH 66'36 IRU WKH VXSHULRU SODQHWV 7KH (DUWK0RRQ EDU\FHQWHU GHQRWHG E\ VXEVFULSW %f KDV SRVLWLRQ

PAGE 40

7DEOH 9HFWRUV IURP WKH 0 (SKHPHULV DW $XJXVW (7 %RG\ U 9 K 0HUFXU\ ; [ \ [ ] ; 9HQXV ; [ \ [ ] [ (DUWK ; [ \ ; ] [ 0DUV ; [ \ [ ] [ -XSLWHU ; [ \ [ ] ; 6DWXUQ ; [ \ [ ] [ 8UDQXV ; [ \ [ ] ; 1HSWXQH ; [ \ [ ] [ 3OXWR ; [ \ [ ] [ 6XQ ; ; \ [ ] ; 0RRQ ; [ \ [ ] [ (DUWK ; [ 0RRQ \ ; EDU\FWU ] ;

PAGE 41

7DEOH $VWHURLG 9HFWRUV DW $XJXVW (7 %RG\ U 9 K &HUHV ; \ ] 3DOODV ; \ ] 9HVWD ; \ ] ,ULV ; \ ] %DPEHUJD ; \ ] 7DEOH 5HODWLYLVWLF 0DVVHV IURP WKH 0 (SKHPHULV DW $XJXVW (7 %RG\ 0HUFXU\ 9HQXV (DUWK 0DUV V\VWHP -XSLWHU V\VWHP 6DWXUQ V\VWHP 8UDQXV V\VWHP 1HSWXQH V\VWHP 3OXWR SOXV &KDURQ 6XQ 0RRQ (DUWK SOXV 0RRQ &HUHV 3DOODV 9HVWD ,ULV %DPEHUJD Lr NPVHFf

PAGE 42

0kUp 0U ^ Lk 0 DQG LV DVVLJQHG D PDVV 0E 0k 0L f f :KHQ WKH (DUWK0RRQ EDU\FHQWHU LV WUHDWHG DV D VLQJOH ILFWLWLRXV ERG\ WKH WRWDO RUELWDO DQJXODU PRPHQWXP LV LQVWHDG [ ? K [ NPVHF f ? [ ZLWK FRUUHVSRQGLQJ VSKHULFDO FRRUGLQDWHV K [ NPVHF f D b K Pr f r rnnn f )LJXUH VKRZV WKH GLIIHUHQFH EHWZHHQ WKH YHFWRU K FRPSXWHG E\ HTXDWLRQ f DQG WKDW FRPSXWHG XVLQJ WKH (DUWK0RRQ EDU\FHQWHU LQVWHDG RI WKH (DUWK DQG 0RRQ LQGLYLGXn DOO\ 7KLV SORW ZDV DFWXDOO\ JHQHUDWHG IURP WKH ORQJHU '( HSKHPHULV LQ RUGHU WR VKRZ WKH HIIHFW PRUH FOHDUO\ WKH UHVXOWV IURP WKH 0 HSKHPHULV DUH QHDUO\ LGHQWLFDO 7KH \HDU RVFLOODWLRQ ZLWK DQ DPSOLWXGH RI DUFVHF GRPLQDWHV $Q DQQXDO SHUWXUEDWLRQ LQ WKH OXQDU RUELW LV DOVR DSSDUHQW 1HLWKHU HTXDWLRQ f QRU HTXDWLRQ f JLYHV WKH GHVLUHG UHVXOW ,I WKH 0 HSKHPHULV LV LQWHUSRODWHG DW YDULRXV RWKHU WLPHV K LV VHHQ WR EH D IXQFWLRQ RI WLPH ZLWK D WZHOYH\HDU SHULRGLFLW\ LQGLFDWLYH RI DQ XQEDODQFHG -XSLWHU1HSWXQH FRXSOH 7KH H[SODn QDWLRQ IRU WKLV SHULRGLFLW\ LV UDWKHU VLPSOH WKH HSKHPHULGHV RI ERWK -XSLWHU DQG 1HSWXQH

PAGE 43

7LPH \HDUVf )LJXUH 7KH (IIHFW RI WKH *HRFHQWULF /XQDU 2UELW RQ WKH ,QYDULDEOH 3ODQH

PAGE 44

ZHUH LQWHJUDWHG XVLQJ WKH '( YDOXH RI 1HSWXQHfV PDVV NPVHF 6WDQ GLVK f 7KH 9R\DJHU GDWD FDXVH WKH HVWLPDWH RI 1HSWXQHfV PDVV WR LQFUHDVH E\ b WR WKH YDOXH VKRZQ LQ 7DEOH :KHQ WKH HVWLPDWH RI 1HSWXQHfV PDVV LQFUHDVHG WKH JUDYLWDWLRQDO DWWUDFWLRQ E\ 1HSWXQH RQ -XSLWHU RXJKW DOVR WR KDYH LQFUHDVHG +RZHYHU WKH 2'3 FRUUHFWHG RQO\ 1HSWXQHfV HSKHPHULV WKH RSHUDWLRQDO VRIWZDUH FDQQRW FKDQJH WKH RUELWV RI WKH RWKHU SODQHWV ZKHQ WKH PDVV RI RQH SODQHW FKDQJHV 7KHUHIRUH WKH 0 HSKHPHULV FRQWDLQV LQ HIIHFW D SDLU RI IRUFHV -XSLWHU RQ 1HSWXQH DQG YLFH YHUVDf WKDW DUH QRW HTXDO DQG RSSRVLWH 7KH WRWDO DQJXODU PRPHQWXP RI WKH V\VWHP LV WKHUHIRUH QRW VWULFWO\ FRQVHUYHG 7KH PDJQLWXGH RI WKH LPEDODQFH YDULHV ZLWK WKH WZHOYH\HDU V\QRGLF SHULRG RI -XSLWHU DQG 1HSWXQH )LJXUH GLVSOD\V WKH ULJKW DVFHQVLRQ DQG GHFOLQDWLRQ RI K DV D IXQFWLRQ RI WLPH IRU WKH HQWLUH VL[WHHQ\HDU VSDQ RI WKH 0 HSKHPHULV 7KH WZHOYH\HDU SHULRGLFLW\ LV TXLWH REYLRXV LQ WKH ILJXUH &RUUHVSRQGLQJ SORWV XVLQJ WKH '( HSKHPHULV VKRZQ WR WKH VDPH VFDOH LQ )LJXUH DUH TXLWH VWDEOH E\ FRQWUDVWf 7KH DYHUDJH YDOXH RI WKHVH FRRUGLQDWHV ZLOO EH WDNHQ DV WKH GLUHFWLRQ RI WKH WRWDO RUELWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP WKH PDJQLWXGH LV JLYHQ E\ HTXDWLRQ f &RQVHTXHQWO\ ZH KDYH [ ? K [ NPVHF f ? [ _K_ ; NPVHF f D r KPr f r rn f 7KLV UHVXOW ZKLFK LV VWLOO H[SUHVVHG LQ (0( FRRUGLQDWHV ZLOO EH DGRSWHG IRU WKH WRWDO RUELWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP

PAGE 45

7LPH \HDUVf )LJXUH 7KH 'LUHFWLRQ RI WKH 7RWDO $QJXODU 0RPHQWXP 0 (SKHPHULVf

PAGE 46

KPV r r KPr 7LPH \HDUVf )LJXUH 7KH 'LUHFWLRQ RI WKH 7RWDO $QJXODU 0RPHQWXP '( (SKHPHULVf

PAGE 47

7KH 8QFHUWDLQW\ LQ WKH 7RWDO 2UELWDO $QJXODU 0RPHQWXP 7KH XQFHUWDLQW\ LQ WKH WRWDO RUELWDO DQJXODU PRPHQWXP K RI WKH 6RODU 6\VWHP DV IRXQG LQ WKH SUHYLRXV VHFWLRQ PD\ EH HVWLPDWHG WKURXJK DSSO\LQJ WKH VWDQGDUG IRUPXODV RI HUURU SURSDJDWLRQ %HYLQJWRQ f WR HTXDWLRQ f 7KH 66'36 VROYHV QRW IRU LQLWLDO SRVLWLRQ DQG YHORFLW\ EXW UDWKHU IRU FKDQJHV WR WKH f6HW ,,,f RUELWDO HOHPHQWV RI %URXZHU DQG &OHPHQFH f $ DD $H $ S $ H$FM DQG $ X $0 7KHVH SDUDPHWHUV UHSUHVHQW WKH IUDFWLRQDO FKDQJH LQ VHPLPDMRU D[LV FKDQJH LQ HFFHQWULFLW\ URWDWLRQV RI WKH RUELWDO SODQH DERXW WKH DSVLV DERXW WKH ODWXV UHFWXP DQG DERXW DERXW WKH RUELW QRUPDO DQG WKH FKDQJH LQ WKH PHDQ DUJXPHQW RI ODWLWXGH 7KHVH DUH UHIHUUHG WR HDFK SODQHWfV RVFXODWLQJ RUELW DW D VWDQGDUG HSRFK WKH WUDQVIRUPDWLRQ IURP 6HW ,,, HOHPHQWV LQWR FKDQJHV LQ WKH SRVLWLRQ DQG YHORFLW\ YHFWRUV LV ZHOO GHILQHG 7KH RUELWDO DQJXODU PRPHQWXP IRU D SODQHW LV JLYHQ E\ K QfDO Hf K f $ ZKHUH K WKH XQLW YHFWRU LQ WKH GLUHFWLRQ RI WKH SRVLWLYH RUELW QRUPDO GHILQHV WKH WKLUG D[LV RI WKH RUELWDO FRRUGLQDWH V\VWHP 7KH ILUVW DQG VHFRQG XQLW YHFWRUV WKDW GHILQH WKH RUELWDO FRRUGLQDWH V\VWHP DUH UHVSHFWLYHO\ WKH QRUPDOL]HG f/DSODFH YHFWRUf S GLUHFWHG WRZDUG WKH ? SHULKHOLRQ DQG T K [ S 7KH URWDWLRQ PDWUL[ IURP (0( HTXDWRULDO FRRUGLQDWHV LQWR WKH RUELWDO V\VWHP S J Kf LV 0 505L5Qf f /HW WKH [ FRYDULDQFH PDWUL[ IURP WKH 66'36 IRU D SODQHW EH GHQRWHG E\ 6P WKH URZV DQG FROXPQV FRUUHVSRQG WR IROORZHG E\ WKH VL[ 6HW ,,, SDUDPHWHUV 7KHQ WKH FRYDULDQFH PDWUL[ RI K H[SUHVVHG LQ RUELWDO FRRUGLQDWHV LV JLYHQ E\ VSTK KVLXKW f

PAGE 48

ZKHUH WKH PDWUL[ + FRQVLVWV RI SDUWLDO GHULYDWLYHV RI K ZLWK UHVSHFW WR WKH VHYHQ SDUDPHWHUV KTL KK` ^L $ DD $H $ S $ T H$X $ D $0 ` r ? K f ?KS KLLRQf K KH^ Hf )LQDOO\ WKH XQFHUWDLQW\ LQ K PXVW EH URWDWHG LQWR (0( HTXDWRULDO FRRUGLQDWHV JLYLQJ f 7KH RUELWDO HOHPHQWV KHUH FDQ EH WDNHQ WR EH WKH RVFXODWLQJ HOHPHQWV DW DQ\ HSRFK ZKLFK DUH HDVLO\ DFFHVVLEOH IURP FRQYHUWLQJ SRVLWLRQ DQG YHORFLW\ YHFWRUVf ZLWKRXW LQWURGXFn LQJ XQGXH HUURU LQ WKH FDOFXODWLRQ DIWHU DOO WKH JRDO LV PHUHO\ WR GHWHUPLQH WKH XQFHUWDLQW\ LQ K 7KH PDMRU FRQWULEXWLRQ WR 6[\] ZLOO EH IURP WKH XQFHUWDLQWLHV LQ WKH SODQHWDU\ PDVVHV 7KHVH XQFHUWDLQWLHV DUH XVXDOO\ H[SUHVVHG LQ XQLWV RI LQYHUVH VRODU PDVVHV VR WKDW D SODQHWfV LQYHUVH PDVV kSWr $FFRUGLQJO\ A72r 9L U+L f 9DOXHV IRU UD DQG 7r1 IURP 6WDQGLVK f DUH SUHVHQWHG LQ 7DEOH DORQJ ZLWK WKH UHVXOWLQJ DA IURP HTXDWLRQ f ([FHSW IRU 3OXWR WKH PDVV XQFHUWDLQWLHV DUH W\SLFDOO\ ILYH RU VL[ RUGHUV RI PDJQLWXGH OHVV WKDQ WKH PDVVHV WKHPVHOYHV %\ FRQWUDVW WKH XQFHUWDLQW\ LV $S RU $T LV W\SLFDOO\ 2nn2O DW PRVW nL IRU 3OXWR RU 2f UDGf $OWKRXJK WKH XQFHUWDLQWLHV LQ WKH DVWHURLGVf PDVVHV LV D VL]HDEOH IUDFWLRQ RI WKHLU PDVVHV WKHPVHOYHV WKH FRQWULEXWLRQ RI WKH DVWHURLGV WR K LV VPDOO LQ DQ\ HYHQW WKHUH LV QR KDUP LQ RPLWWLQJ WKH f DVWHURLGV LQ WKLV HUURU DQDO\VLV

PAGE 49

7DEOH 3ODQHWDU\ 0DVVHV DQG 8QFHUWDLQWLHV %RG\ QLL DQ 0HUFXU\ 9HQXV (DUWK SOXV 0RRQ 0DUV V\VWHP -XSLWHU V\VWHP 6DWXUQ V\VWHP 8UDQXV V\VWHP 1HSWXQH V\VWHP 3OXWR SOXV &KDURQ 7KH FRYDULDQFH PDWUL[ 6[\] IRU HDFK SODQHW LV JLYHQ LQ 7DEOH DV H[SHFWHG WKH PDMRU FRQWULEXWRU LV WKH XQFHUWDLQW\ LQ WKH PDVVHV 7KH XQFHUWDLQW\ LQ WKH WRWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP LV VLPSO\ WKH VXP RI WKHVH PDWULFHV JLYHQ DW WKH HQG RI WKH WDEOH DV RQH FDQ LJQRUH FRUUHODWLRQV EHWZHHQ SDUDPHWHUV IRU RQH SODQHW DQG WKRVH RI WKH RWKHUV 7KH LQWHUSODQHW FRUUHODWLRQ FRHIILFLHQWV IRU WKH RXWHU SODQHWV ZKLFK FDUU\ WKH EXON RI WKH DQJXODU PRPHQWXPf DUH UDUHO\ DERYH RQH SHUFHQW %\ FRQWUDVW WKH SDUDPHWHUV IRU WKH LQQHU SODQHWV DUH YHU\ KLJKO\ FRUUHODWHG EXW WKH LQQHU SODQHWVf PDVVHV DUH VR ORZ DQG WKHLU FRQWULEXWLRQ WR K VR VPDOO WKDW WKHVH FRUUHODWLRQV FDQ VDIHO\ EH LJQRUHG 7KH ILQDO VWHS LV WR WUDQVIRUP WKH XQFHUWDLQW\ LQ K LQWR XQFHUWDLQWLHV LQ WKH DGRSWHG ULJKW DVFHQVLRQ D DQG GHFOLQDWLRQ RI WKH QRUPDO WR WKH LQYDULDEOH SODQH 6LQFH WDQ D K\K[ DQG VLQ K]K WKH -DFRELDQ RI WKH WUDQVIRUPDWLRQ LV T G^K;\ K\L K=` G^D` KKO KLf K.KO K?f B ? ? K[KK\KO K\KWK \KA KL KUnN f n n 7KH UHVXOWLQJ FRYDULDQFH PDWUL[ RI D DQG LV WKHUHIRUH f

PAGE 50

7DEOH %RG\ 0HUFXU\ 9HQXV (DUWK 0DUV -XSLWHU 6DWXUQ 8UDQXV 1HSWXQH 3OXWR &RYDULDQFHV RI WKH 3ODQHWVn 2UELWDO $QJXODU 0RPHQWD [ NPVf \ NPVf ] NPVf ; ; [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ ; ] [ [ [ ; [ [ r [ r \ [ r [ [ ] [ r [ [ ; [ r [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ ; [ [ [ \ [ [ [ ] [ [ [ 7RWDO

PAGE 51

[ [ a [ [ UDGLDQV f 7KH UHVXOWLQJ VWDQGDUG HUURUV LQ WKH RULHQWDWLRQ RI WKH WRWDO RUELWDO DQJXODU PRPHQWXP RI WKH 6RODU 6\VWHP DUH DD FRV f f 7KH FRUUHODWLRQ EHWZHHQ D DQG LV LQGLFDWLQJ WKDW WKH fHUURU HOOLSVHfn LV TXLWH HORQJDWHG WKH VHPLPDMRU DQG VHPLPLQRU D[HV RI WKH HUURU HOOLSVH DUH DQG DQG WKH PDMRU D[LV KDV D SRVLWLRQ DQJOH RI r ,W LV DSSDUHQW WKDW WKH HIIHFWV RI WKH 0RRQfV QRGDO UHJUHVVLRQ )LJXUH f DQG RI WKH XQEDODQFHG -XSLWHU1HSWXQH FRXSOH )LJXUH f DUH ERWK TXLWH VPDOO LQ FRPSDULVRQ WR WKHVH HUURUV 7KH PDMRU REVWDFOH WR VKULQNLQJ WKH HUURU HYHQ IXUWKHU LV WKH UHPDLQLQJ XQFHUWDLQW\ LQ 3OXWRfV PDVV DQG WR D OHVVHU H[WHQW LQ LWV RUELW +XEEOH 6SDFH 7HOHVFRSH REVHUYDWLRQV VKRXOG UHVROYH 3OXWR DQG &KDURQ WKHUHE\ JLYLQJ D UHOLDEOH VHPLPDMRU D[LV RI WKHLU UHODWLYH RUELW DQG LPSURYLQJ WKH HVWLPDWH RI WKH VXP RI WKHLU PDVVHV ,QFUHDVHV LQ WKH SUHFLVLRQ RI 3OXWRfV RUELW HVWLPDWH FDQ FRPH RQO\ DIWHU GHFDGHV RI DGGLWLRQDO REVHUYDWLRQ 1HYHUWKHOHVV EHIRUH WKH 9R\DJHU HQFRXQWHU ZLWK 1HSWXQH WKH PDVV RI 1HSWXQH ZDV EHOLHYHG NQRZQ WR SHUFHQW WKLV DORQH ZRXOG KDYH SURGXFHG DQ XQFHUWDLQW\ RI DERXW LQ WKH UHVXOWV 7KH LPSURYHPHQW LQ WKH NQRZOHGJH RI WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH UHDOL]HG E\ WKH 9R\DJHU PLVVLRQ LV HYLGHQW 7KH 5RWDWLRQDO $QJXODU 0RPHQWXP RI WKH 6RODU 6\VWHP 7KH URWDWLRQDO DQJXODU PRPHQWXP K RI D ERG\ DERXW DQ DGRSWHG D[LV LV JLYHQ E\ LQWHJUDWLQJ RYHU WKH ERG\fV PDVV

PAGE 52

K f§ -[\ f§ \[f GP f ,Q WKH W\SLFDO FDVH RI VROLGERG\ URWDWLRQ DERXW WKH ]D[LV WUDQVIRUPDWLRQ LQWR F\OLQGULFDO FRRUGLQDWHV V\]f \LHOGV K VIOGP f ZKHUH  LV WKH URWDWLRQ UDWH )RU VSKHULFDOO\ V\PPHWULF ERGLHV RI UDGLXV L" ZKRVH GHQVLW\ S LV D IXQFWLRQ RQO\ RI WKH LQWHUQDO UDGLXV U WKH LQWHJUDO WDNHV WKH IRUP U5 K _U!ULLGU f -R IRU FRQVWDQW S K AUS5r6O ?05  f $Q HYDOXDWLRQ RI HTXDWLRQ f WKH JHQHUDO FDVH ZLOO KDYH WKH VDPH IXQFWLRQDO IRUP DV HTXDWLRQ f H[FHSW WKDW WKH FRQVWDQW ZLOO EH UHSODFHG E\ D FRHIILFLHQW ZKRVH YDOXH GHSHQGV RQ WKH ERG\fV GHQVLW\ DQG DQJXODU VSHHG DV D IXQFWLRQ RI SRVLWLRQ 5 DQG f FDQ EH WDNHQ WR EH D UHIHUHQFH UDGLXV DQG URWDWLRQ UDWH UHVSHFWLYHO\ :LWKLQ WKH 6RODU 6\VWHP WKH 6XQ KDV WKH ODUJHVW URWDWLRQDO DQJXODU PRPHQWXP LWV HQRUPRXV PDVV RYHU D WKRXVDQG WLPHV -XSLWHUfVf DQG UDGLXV QHDUO\ WHQ WLPHV -XSLWHUfVf PRUH WKDQ FRPSHQVDWH IRU LWV VORZ URWDWLRQ UDWH $Q DSSUR[LPDWH HYDOXDWLRQ RI HTXDWLRQ f XVLQJ WKH SRODU URWDWLRQ UDWH DQG VHWWLQJ WR DFFRXQW LQ SDUW IRU FHQWUDO FRQn GHQVDWLRQ JLYHV K ; NPVHF IRU WKH VRODU URWDWLRQDO DQJXODU PRPHQWXP 7KLV LV DERXW RQH SHUFHQW RI WKH WRWDO RUELWDO DQJXODU PRPHQWXP RI WKH SODQHWV DQG REYLRXVO\ VKRXOG EH LQFOXGHG LQ WKH FDOFXODWLRQ RI WKH RULHQWDWLRQ RI WKH UHDO LQYDULDEOH SODQH 7KH XQFHUWDLQW\ DWWDFKHG WR WKLV QXPEHU LV KRZHYHU XQDFFHSWDEO\ ODUJH 7KH PDVV GLVWULEXWLRQ FDQ LQ SULQFLSOH EH REWDLQHG IURP D QXPHULFDO LQWHJUDWLRQ RI D VWHOODU LQWHULRU

PAGE 53

PRGHO F ,EHQ f EXW GXH WR XQFHUWDLQWLHV LQ WKH RSDFLW\ HQHUJ\ JHQHUDWLRQ DQG FRQYHFWLRQ PRGHOV WKH UHVXOWV DUH SUREDEO\ JRRG WR QRW PXFK PRUH WKDQ WKUHH RU IRXU GLJLWV )XUWKHUPRUH WKH SKRWRVSKHUH RI WKH 6XQ GRHV QRW URWDWH XQLIRUPO\ WKH VLGHUHDO URWDn WLRQ SHULRG YDULHV IURP GD\V DW WKH VRODU HTXDWRU WR GD\V DW WKH SROHV +RZDUG DQG +DUYH\ f 7KHVH UDWHV FDQ RQO\ EH REWDLQHG WKURXJK PHDVXUHPHQWV RI 'RSSOHU VKLIWV DW WKH VRODU OLPE WKH PRUH SUHFLVH WHFKQLTXHV DSSOLHG WR WKH SODQHWV DQDO\VLV RI SHULRGLF UDGLR HPLVVLRQV RU ODQGPDUN WUDFNLQJf FDQQRW EH XVHG $OWKRXJK UHFHQW GHYHORSPHQWV LQ KHOLRVHLVPRORJ\ FDQ LQ SULQFLSOH GHWHUPLQH WKH URWDWLRQ FKDUDFWHULVWLFV RI WKH VRODU LQWHULRU UHVXOWV WR GDWH DUH LQ DW EHVW TXDOLWDWLYH DJUHHPHQW IRU H[DPSOH 'XYDOO HW DO %URZQ DQG 'XYDOO HW DO f )RU ERWK WKHVH UHDVRQV WKH URWDWLRQDO DQJXODU PRPHQWXP RI WKH 6XQ LV QRW NQRZQ WR WKH SUHFLVLRQ QHFHVVDU\ WR LQFOXGH LW LQ D SUHFLVH GHWHUPLQDWLRQ RI WKH LQYDULDEOH SODQH 7KH SUXGHQW FRXUVH RI DFWLRQ LV WKHUHIRUH WR LJQRUH DOO URWDWLRQ DQG WR GHILQH WKH fZRUNLQJ PRGHOrf RI WKH LQYDULDEOH SODQH DV RSSRVHG WR WKH fFRQFHSWXDOfr GHILQLWLRQf DV WKDW SODQH ZKLFK FRQWDLQV WKH 6RODU 6\VWHP EDU\FHQWHU DQG LV QRUPDO WR WKH WRWDO RUELWDO DQJXODU PRPHQWXP RI WKH 6XQ SODQHWV DQG ODUJHVW DVWHURLGV 7KLV GHFLVLRQ LV DOVR MXVWLILHG RQ WKH JURXQGV WKDW URWDWLRQ RI WKH SODQHWV DV ZHOO DV RI WKH 6XQf GRHV QRW HQWHU LQWR WKH HTXDWLRQV RI PRWLRQ RI WKH SODQHWDU\ EDU\FHQWHUV DV FXUUHQWO\ IRUPXODWHG LQ WKH 66'36 1HZKDOO HW DO f 7KH 6XQ LV DVVXPHG VSKHULFDOO\ V\PPHWULF WKHUH LV QR GHWHFWDEOH SHUWXUEDWLRQ HYHQ RQ 0HUFXU\fV SHULKHOLRQ GXH WR VRODU REODWHQHVV &RQVHTXHQWO\ WKHUH LV DOVR QR PHFKDQLVP ZKHUHE\ WKH 6XQfV VSLQ D[LV FDQ EH PDGH WR SUHFHVV QRWLFHDEO\f :KLOH WKH (DUWKfV URWDWLRQ GRHV ILJXUH FRQVSLFXRXVO\ LQWR WKH HTXDWLRQV JRYHUQLQJ WKH 0RRQfV PRWLRQ WKH DFWXDO LQWHJUDWLRQ LV RI WKH (DUWK0RRQ EDU\FHQWHU DQG RI WKH JHRFHQWULF OXQDU RUELW 1HZKDOO HW DO f 7KHUHIRUH WKH fZRUNLQJ

PAGE 54

PRGHOf IRU K LV H[SHFWHG WR UHPDLQ FRQVWDQW DQG LQGHHG DV VHHQ LQ 6HFWLRQ WKLV LV UHDVRQDEO\ WUXH RI D SODQHWDU\ HSKHPHULV ILOH 7KH WZR WKHRULHV VKRUWWHUP DQG ORQJWHUPf WKDW DUH GHYHORSHG LQ WKH QH[W WZR FKDSn WHUV RI WKLV ZRUN GR QRW GHSHQG RQ WKH VSHFLDO SK\VLFDO QDWXUH RI WKH LQYDULDEOH SODQH $Q\ SODQH WKDW GRHV QRW FKDQJH LWV RULHQWDWLRQ UHODWLYH WR DQ LQHUWLDO FRRUGLQDWH V\VWHP ZLOO VXIILFH 6R WKHUH LV QR UHDVRQ WR LQVLVW RQ WKH LQFOXVLRQ RI URWDWLRQDO DQJXODU PRPHQWXP 7KH $GRSWHG 2ULHQWDWLRQ RI WKH ,QYDULDEOH 3ODQH 6LQFH URWDWLRQDO DQJXODU PRPHQWXP LV QRW LQFOXGHG LQ WKH ZRUNLQJ GHILQLWLRQ RI WKH LQYDULDEOH SODQH WKH WRWDO RUELWDO DQJXODU PRPHQWXP IRXQG DERYH EHFRPHV WKH QRUPDO YHFWRU WR WKH LQYDULDEOH SODQH +RZHYHU WKH YHFWRU K IRXQG DERYH ZDV VSHFLILHG LQ (0( FRRUGLQDWHV ,Q RUGHU WR WUDQVIRUP WR RQH PXVW QRW XVH WKH VWDQGDUG SURFHGXUH $RNL HW DO f IRU WUDQVIRUPLQJ VWDU FRRUGLQDWHV IURP WKH % ).f V\VWHP WR WKH ).f V\VWHP EHFDXVH WKH 0 HSKHPHULV LV DOUHDG\ LQHUWLDO WKHUH LV QR QHHG IRU WKH HTXLQR[ GULIW WHUP 5DWKHU 6WDQGLVK f SXEOLVKHG D [ URWDWLRQ PDWUL[ 7 WKDW WUDQVIRUPV SRVLWLRQV DQG YHORFLWLHV IURP WKH '( HSKHPHULV WKH SUHGHFHVVRU RI 0f WR WKH FRUUHVSRQGLQJ SRVLWLRQV DQG YHORFLWLHV LQ '( ? 7 f ? :KHQ WKH YHFWRU K IURP HTXDWLRQ f LV PXOWLSOLHG RQ WKH OHIW E\ 7 DERYH WKH UHVXOWLQJ YHFWRU ZLOO EH H[SUHVVHG LQ FRRUGLQDWHV 7KLV LV WKH UHVXOW ZH VHHN D r KPL R r rn f f

PAGE 55

\r )LJXUH 7KH 2ULHQWDWLRQ RI WKH ,QYDULDEOH 3ODQH 7KH LQYDULDEOH SODQH FDQ DOVR EH GHVFULEHG E\ JLYLQJ WKH ULJKW DVFHQVLRQ = RI LWV DVFHQGLQJ QRGH RQ WKH (DUWKfV PHDQ HTXDWRU RI ZKLFK GLUHFWLRQ LV GHILQHG E\ Q 4R ; K ZKHUH 4R f7 LQ HTXDWRULDO FRRUGLQDWHVf DQG WKH LQFOLQDWLRQ ,T RI WKH LQYDULDEOH SODQH WR WKH (DUWKfV PHDQ HTXDWRU RI )LJXUH VKRZV WKH DQJOHV T DQG /T DV ZHOO DV WKH VSKHULFDO FRRUGLQDWHV RI K 7KHVH TXDQWLWLHV DUH UHODWHG E\ 7R f§ f A QPr f ,R f§ r f§ R f A rnO f 7KH VWDQGDUG HUURU LQ WKHVH QXPEHUV LV QRW DSSUHFLDEO\ FKDQJHG IURP WKH (0( YDOXHV LQ HTXDWLRQV f DQG f ,W LV QRW PHDQLQJIXO WR FDUU\ PRUH GLJLWV WKDQ WKH

PAGE 56

XQFHUWDLQWLHV SHUPLW DFFRUGLQJO\ WKH DERYH UHVXOWV IRU WKHVH DQJOHV ZLOO EH URXQGHG WR WKH QHDUHVW 2nL22O DQG WKH URXQGHG YDOXHV ZLOO EH DGRSWHG IRU WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH RWR rn s f  rn sn f /R ROnnn s f OR rns f 7KHVH YDOXHV ZLOO EH XVHG WKURXJKRXW &KDSWHUV

PAGE 57

&+$37(5 7+( 6+2577(50 7+(25< ,QWURGXFWLRQ 7KH SUHFHVVLRQ PDWUL[ 3 ZKLFK WUDQVIRUPV IURP WKH 4R V\VWHP RI HSRFK LQWR WKH 4 V\VWHP RI GDWH FDQ EH EXLOW XS IURP HOHPHQWDU\ URWDWLRQ PDWULFHV LQ VHYHUDO ZD\V /LHVNH HW DO f ZKR SUHVHQW WKH FXUUHQWO\DFFHSWHG VKRUWWHUP WKHRU\ FRQVWUXFW 3 PRVW HDVLO\ LQ WHUPV RI WKH WKUHH DQJOHV e DQG 1HZFRPE $QGR\HU f E\ 3 5]f 5f 5&f f 7KHVH WKUHH DQJOHV DUH DSSUR[LPDWHG LQ WKDW SDSHU E\ FXELF SRO\QRPLDOV QRW LQ WKH LQLWLDO DQG ILQDO WLPHV EXW LQ WKH LQLWLDO WLPH 7 DQG WKH GLIIHUHQFH W EHWZHHQ WKH LQLWLDO DQG ILQDO WLPHV :KHQ WKH LQLWLDO WLPH LV WKH VWDQGDUG HSRFK /LHVNH HW DO f GHQRWH WKHVH DQJOHV E\ $ 4D DQG $ UHVSHFWLYHO\ 7KH FRHIILFLHQWV RI WKH YDULRXV SRZHUV RI WLPH DUH GHQRWHG WKHUH DV D &L7 >7 7 f DQG VLPLODUO\ IRU WKH RWKHU WZR DQJOHV ,Q WKLV FKDSWHU WKH WLOGH DQG VXEVFULSW $ ZLOO EH VXSSUHVVHG IRU FODULW\ VLQFH DQ LQWHUPHGLDWH HSRFK GRHV QRW HQWHU XQWLO WKH HQG RI WKH FKDSWHU WKHUH LV QR DPELJXLW\ UHTXLULQJ GLDFULWLFDO PDUNV DQG VLQFH WKH UDWHV DV IXQFWLRQV RI WLPH DUH QRW SURPLQHQW WKHUH LV QR QHHG IRU WKH VXEVFULSW WR GHQRWH DFFXPXODWHG DQJOHV 7KH LQLWLDO HSRFK -f LV WDNHQ WR EH WKH ]HUR SRLQW RI WKH WLPH DQG WKH ILQDO HSRFK WKH fGDWHff LV GHQRWHG E\ 7 DQG

PAGE 58

PHDVXUHG LQ -XOLDQ FHQWXULHV SDVW )XUWKHUPRUH WKH V\VWHP RI SULPHV DQG VXEVFULSWV XVHG LQ WKH SDSHU E\ /LHVNH HW DO LV UHSODFHG E\ D V\VWHP RI VXEVFULSWV RQO\ LQGLFDWLQJ WKH SRZHU RI 7 7KXV ZLWKLQ WKLV FKDSWHU ZH ZLOO XVH WKH QRWDWLRQ & &O" &7 &7 7 7f f DQG DQDORJRXVO\ IRU WKH RWKHU DQJOHV )LJXUH VKRZV WKH FRRUGLQDWH D[HV RI ERWK V\VWHPV DQG WKH WKUHH fFODVVLFDOf DQJOHV 5HDGLQJ WKH ULJKWKDQG VLGH RI HTXDWLRQ f IURP ULJKW WR OHIW WKH URWDWLRQ 5f§ef SODFHV WKH LQLWLDO \D[LV PDUNHG \T LQ WKH ILJXUH DW WKH LQWHUVHFWLRQ RI WKH WZR HTXDWRUV 7KH VHFRQG URWDWLRQ PRYHV WKH SROH IURP 4R WR 4 DQG WKH WKLUG URWDWLRQ SXWV WKH \D[LV DW LWV ILQDO ORFDWLRQ DORQJ \T 7KH HFOLSWLFV RI HSRFK DQG RI GDWH DUH VXSSUHVVHG LQ WKH ILJXUH IRU FODULW\ 7KH SUHFHVVLRQ PDWUL[ 3 FDQ DOVR EH H[SUHVVHG E\ WKH IROORZLQJ VHTXHQFH RI URWDWLRQV 3 5 f§7f 5Lf 5$f 5L,f 5eRf f )LJXUH VKRZV WKH FRRUGLQDWH D[HV RI HSRFK DQG RI GDWH IURP WKH VDPH SHUVSHFWLYH DV )LJXUH QRZ WKH LQYDULDEOH SODQH DQG WKH ILYH DQJOHV RI HTXDWLRQ f DSSHDU $ PDJQLILHG GUDZLQJ RI WKH UHJLRQ QHDU WKH YHUQDO HTXLQR[HV DOVR DSSHDUV DV )LJXUH ,Q HTXDWLRQ f WKH ILUVW ULJKWPRVWf URWDWLRQ PRYHV WKH D[LV WR WKH LQWHUVHFWLRQ RI WKH HTXDWRU RI DQG WKH LQYDULDEOH SODQH 7KH VHFRQG URWDWLRQ SXWV WKH \D[LV DQG FRQVHTXHQWO\ WKH HQWLUH [\ SODQHf LQWR WKH LQYDULDEOH SODQH 7KHVH WZR URWDWLRQV GHSHQG RQO\ RQ WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH DW WKH VWDQGDUG HSRFK 7KH ODVW WKUHH URWDWLRQV DUH IXQFWLRQV RI WLPH ILUVW D URWDWLRQ DERXW WKH SROH RI WKH LQYDULDEOH SODQH PRYHV WKH [D[LV RQWR WKH HTXDWRU RI GDWH WKHQ D URWDWLRQ DERXW WKH LQWHUPHGLDWH DUD[LV

PAGE 59

)LJXUH 7KH &ODVVLFDO 3UHFHVVLRQ $QJOHV e DQG SODFHV WKH \D[LV RQ WKH HTXDWRU RI GDWH DQG ODVW D URWDWLRQ DERXW WKH YHFWRU 4 WKH ILQDO D[LVf SRVLWLRQV WKH eD[LV DW WKH YHUQDO HTXLQR[ RI GDWH 7KH SXUSRVH RI WKH VKRUWWHUP WKHRU\ LV WR SURYLGH DQDO\WLFDO DQG QXPHULFDO H[SUHVVLRQV IRU WKH FRHIILFLHQWV RI WKH DQJOHV ; DQG $ 7KHVH DUH REWDLQHG E\ HTXDWLQJ WKH H[SUHVVLRQV IRU 3 LQ HTXDWLRQV f DQG f DERYH VROYLQJ IRU ; ; DQG $ LQ WHUPV RI ; =R DQG DQG H[SDQGLQJ WKH VROXWLRQV LQ SRZHUV RI WLPH 7KH WKHRU\ LV GHYHORSHG WR 7 HYHQ WKRXJK /LHVNH HW DO f JR RQO\ DV IDU DV 7 7KH H[WUD WHUP ZLOO JLYH DQ LQGLFDWLRQ RI WKH VXIILFLHQF\ RI WKH QHZ WKHRU\ WR PRGHO SUHFHVVLRQ ZLWK RQO\ FXELF SRO\QRPLDOV LI WKH FRHIILFLHQWV RI 7 ZHUH ODUJH HYHQ LQ WKH DEVHQFH RI IRXUWKGHJUHH FRHIILFLHQWV IRU DQG WKHQ WKH WKHRU\ ZRXOG EH LQDGHTXDWH

PAGE 60

(T RI GDWH )LJXUH 3UHFHVVLRQ $QJOHV 8VLQJ WKH ,QYDULDEOH 3ODQH (TXDWRU RI HSRFK (TXDWRU RI GDWH )LJXUH 7KH (TXDWRUV DQG WKH ,QYDULDEOH 3ODQH

PAGE 61

$QDO\WLF )RUPXODV IRU 7 7 DQG $ (TXDWLQJ WKH WZR H[SUHVVLRQV IRU WKH SUHFHVVLRQ PDWUL[ DERYH JLYHV 5]f 5f 5&f 5/f 5f 5f§$f 5L27Rf 5/Rf f 7KH GHVLUHG DQJOHV PD\ EH LVRODWHG RQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f E\ PXOWLSO\LQJ ERWK VLGHV RQ WKH ULJKW E\ 57Rf 5Lf§7Rf SURGXFLQJ 5Af 5f 5& Rf 5L-Ef 57f 5Lf 5$f f 2QH FDQ H[SDQG ERWK VLGHV RI HTXDWLRQ f REWDLQLQJ WKH PDWUL[ HOHPHQWV VLQ $ VLQ FRV $ VLQ 7 VLQ 7 VLQ 7 DQG FRV 7 VLQ LQ WHUPV RI e ] DQG 7R 7KH DQJOHV WKHPVHOYHV IROORZ HDVLO\ 7KH DOJHEUD LV VLPSOLILHG FRQVLGHUDEO\ KRZHYHU LI RQH ILUVW PXOWLSOLHV ERWK VLGHV RI HTXDWLRQ f RQ WKH OHIW E\ 5]f 7KLV URWDWLRQ FRPELQHV ZLWK 5f§/f RQ WKH ULJKWKDQG VLGH WR \LHOG 5f 5>7 &f@ 5LRf 5>7 =f` 5f 5$f f 1H[W WKH WZR VLGHV DUH H[SDQGHG 7KH OHIWKDQG VLGH RI HTXDWLRQ f EHFRPHV 5f 5>7R@5LRf FRV FRV7 &f VLQ7 &f VLQFRV7R &f f§ FRVVLQ=R &fFRV f§ VLQ VLQ 7R FRV 7R &f FRV ,R f§ VLQ VLQ 7 &f FRV 7R FRV VLQ 7R FRV VLQ 7 &f VLQ cR f§ VLQ FRV 7T FRV7 ef VLQ 7R VLQ VLQ7R &f VLQ 7 FRV FRV 7R L WKH ULJKWKDQG VLGH LV

PAGE 62

5>/]f? 5f 5$f FRV= VLQ= VLQ = FRV= ]f FRV $ ]f FRVVLQ $ f§ FRV f§ ]f VLQ $ VLQ ]f FRV FRV $ VLQ= f§ ]f VLQ ]f FRV $ ]f FRVVLQ $ f§ VLQ f§ ]f VLQ $ FRV f§ ]f FRV FRV $ f§ FRV= f§ ]f VLQ ? ‘ f 9 VLQ VLQ $ VLQ FRV $ FRV 7KH DQJOH LV WKHQ IRXQG IURP HTXDWLQJ WKH f FRPSRQHQWV FRV >FRV FRV 7R VLQ VLQ=R &f VP AR@r f 7KHQ DVVXPLQJ WKDW A VR WKDW WKH IDFWRUV VLQ FDQ EH FDQFHOOHG WKH f DQG f FRPSRQHQWV \LHOG = E\ / SLJ >FRV VLQ=R &f VLQ OR a VLQ # FRV FRV= VLQ T@ ] f DQG WKH f DQG f FRPSRQHQWV JLYH $ E\ $ SLJ >VLQ FRV/R ef" FRV VLQ ,T f§ VLQ VLQ=R &f FRV OR@ f§f ZKHUH SOJ"[f LV GHILQHG LQ 6HFWLRQ WR EH WKH IRXUTXDGUDQW DUFWDQJHQW 7KHUH LV QR VLJQ DPELJXLW\ LQ HLWKHU FDVH EHFDXVH LV UHVWULFWHG WR WKH ILUVW RU VHFRQG TXDGUDQWV WKHUHIRUH VLQ DOZD\V 7KH H[WUHPH FDVH RI QHYHU RFFXUV LQ SUDFWLFH DV WKH (DUWKfV HTXDWRU LV DOZD\V LQFOLQHG DW OHDVW r WR WKH LQYDULDEOH SODQHf (TXDWLRQV f WKURXJK f DUH WKHUHIRUH ULJRURXVO\ FRUUHFW IRU DOO SRVVLEOH YDOXHV RI DQG DOO SK\VLFDOO\ UHDVRQDEOH YDOXHV IRU ,T DQG R 7KHVH GHILQLWLRQV DOVR UHSURGXFH FRUUHFWO\ WKH GHVLUHG EHKDYLRU DV 7 SDVVHV WKURXJK ]HUR )RU 7 e DQG ] DUH DOO QHJDWLYH E\ FRQYHQWLRQ 7KH ILUVW DUJXPHQW LQ HTXDWLRQ f ZLOO EH QHJDWLYH DQG WKH VHFRQG DUJXPHQW SRVLWLYH IRU UHDVRQDEO\ VPDOO YDOXHV RI

PAGE 63

e DQG ] JXDUDQWHHLQJ WKDW $ 6LPLODUO\ IRU VPDOO SRVLWLYH YDOXHV RI e DQG ] FRUUHVSRQGLQJ WR 7 f ERWK DUJXPHQWV DUH SRVLWLYH DQG $ ZLOO EH SRVLWLYH DV ZHOO (TXDWLRQ f IRU = UHGXFHV WR ILUVW RUGHU WR =R & ]? WKHUHIRUH = LV FRQWLQXRXV QHDU WKH WLPH RULJLQ )LQDOO\ LI 7 RQH UHFRYHUV f§ =R / f§ =R DQG $ 6HULHV ([SDQVLRQV IRU = DQG $ *LYHQ WKDW WKH DQJOHV = DQG $ DUH IRXQG E\ HTXDWLRQV f WKURXJK f DERYH WKHLU EHKDYLRU ZLWK WLPH GHSHQGV RQ WKH EHKDYLRU RI WKH fFODVVLFDOf DQJOHV e DQG ] WKDW DSSHDU RQ WKH ULJKWKDQG VLGHV 7KH DQJOHV =R DQG =R DUH FRQVWDQWf ,I WKH FODVVLFDO DQJOHV DUH PRGHOHG DV SRO\QRPLDOV LQ WLPH WKHQ WKH QHZ DQJOHV FDQ DOVR EH VR H[SUHVVHG /HW WKH FODVVLFDO SUHFHVVLRQ DQJOHV EH DSSUR[LPDWHG E\ WKH SRO\QRPLDOV F ] <]m7Nn af N N Nf§ ZKHUH 7 GHQRWHV WLPH LQ -XOLDQ FHQWXULHV IURP WKH VWDQGDUG HSRFK 7KHVH PXVW EH VXEVWLWXWHG LQWR HTXDWLRQV f WKURXJK f DQG WKH WULJRQRPHWULF IXQFWLRQV DSSUR[n LPDWHG EY SRO\QRPLDOV )RU WKH VLQH VLQ s 26f 7 7 7 7f ?97 H7I 7f L7 7 _"f7 RL \UA 7f f 6LPLODUO\ IRU WKH FRVLQH &26 ? A 2f L LU W Uf AL7f RWf ??7 7 ; ?? ??f7D 7f f

PAGE 64

8VLQJ WKHVH WZR H[SDQVLRQV WKH H[SDQVLRQ IRU WKH IXQFWLRQV RI /T 4 IROORZV VLQ=R &f VLQ FRV ;R FRV & VLQ  VLQ / &L FRV /f7 & FRV / I &L VLQ /f7 >& _&Lf FRV / && VLQ /@7 >& .L&fFRV= && A&LfVLQ=@U 7f f FRV=R &f f§ FRV & FRV A f§ VLQ & VLQ /R FRV / &O VLOO /Rf7 _&L FRV R & VLQ /f7 >&& &26 /R & .LfVLQ AR@U >&& f&Lf FRV /T & &L &f VLQ /S@7 7f f 7KH ODVW VHULHV H[SDQVLRQ WKDW ZLOO EH XVHG PRUH WKDQ RQFH LV IRU WKH DUFWDQJHQW IXQFn WLRQ /HW \R $\ WDQ [[T $[f $ 7D\ORU H[SDQVLRQ RI WKH ULJKWKDQG VLGH JLYHV \ $\ WDQ [ $[ GWDQ [ G[ ;T $[f G" WDQ [ G[ [ $[f G WDQ O[ G[ $[f G WDQ [ ;4 G[ >$]f@ f r 6LQFH [T WDQ \R WKH ILUVW IRXU GHULYDWLYHV FDQ EH H[SUHVVHG DV GWDQ [ G[ ;T WDQ \ FRV \R f G WDQ [ G[ WDQ \R ;4 WDQ \f VLQ \ FRV \ f G WDQ O [ G[ ;T WDQ R f§ WDQ \f VLQ \ FRV \ FRV \ G WDQ [ G[ ; R WDQ \S WDQ \f WDQ \f f R VLQ R FRVn \ f§ VLQ \ FRV \Rf f 1H[W OHW $[ EH UHSUHVHQWHG DV D SRO\QRPLDO LQ WLPH

PAGE 65

$[ [L 7 [7 [7 [7 7f f 7KH QH[W WKUHH SRZHUV RI $[ FRPSOHWH WR 7 DUH WKHQ $[f [?7 [L[ 7 [? [[[f7 7f f $[f ;M7 [[7 7f f $[f [?7D 7f f :KHQ WKHVH H[SUHVVLRQV IRU $[fr DQG WKH YDOXHV RI WKH GHULYDWLYHV DUH LQVHUWHG LQWR WKH 7D\ORU H[SDQVLRQ WKH UHVXOWLQJ HTXDWLRQ LV RI WKH IRUP $ \ \L7 7 \7 \7 7f f ZLWK WKH FRHIILFLHQWV \A JLYHQ E\ L [D FRV R f [ FRV R [ VLQ \ FRV \ f [ FRV R [L[ VLQ \ FRV \ [VLQ \ FRV \ A FRV f f [ FRV [@ [D[f VLQ \ FRV \ [[VLQ \ FRV M FRV f [VLQ FRV VLQ \ FRV \f f $GGLWLRQDO H[SDQVLRQV DUH UHTXLUHG EXW EHFDXVH WKH\ ZLOO EH XVHG EXW RQFH WKH\ ZLOO EH GHYHORSHG EHORZ DV WKH QHHG DULVHV 7KH ([SDQVLRQ IRU 7KH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH HTXDWRU RI GDWH LV JLYHQ E\ HTXDWLRQ f DERYH FRV >FRV FRV 7R VLQ VLQ/ & f VLQ T@ f

PAGE 66

)LUVW WKH H[SUHVVLRQV IRU FRV VLQ DQG VLQ\ ef PXVW EH VXEVWLWXWHG LQWR WKH DUJXPHQW IRU WKH DUFFRVLQH L FRV >L ?H?7 HH7 HH ?H? sR?fW` FRVL >2L7 7 ccf7 sf7@ ; ^ VLQ / &O &26 /f7 FRV / _&L VLQ =fU >& f§ ,&Lf FRV;R f§ && VLQ ;R@7 >& .L &f FRV ;R && ., & f VLQ /@7 ` VLQ 7ff f FRV > LU MU ?H@ A"fW@FRVR ^L VLQ /f7 VLQ /R L&L FRV /Tf7a > a A f§ &Lf VLQ / L& &Lf FRVL@U > f§ AA f§ &L f§ &L &f VLQ /T L& & &L f§ A &L a OAL&Lf FRV =R@7` VLQ R 7ff f FRV ^ FRV ,R L VLQ /R VLQ ,Rf7 VLQ / VLQ L&L FRV /R VLQ _" FRV ,Rf7 > f§ A f§ &Lf VLQ /R VLQ ,R L& &Lf FRV /R VLQ ,T FRV ,R@7 > ?H?H L&O &&f VLQ /R VLQ L & & &L f§ "&L f§ L&LfFRV /R VLQ ,R e" _fFRVR@7 7f` f FRV > FRV ,T ? F?7 F7a F7 F?7 7f@ f ZKHUH WKH &N LQ HTXDWLRQ f DUH GHILQHG E\ WKH YDULRXV FRHIILFLHQWV RI 7N LQ HTXDWLRQ f 1RZ HTXDWLRQ f KDV WKH IRUP FRV FRV ,T Ff f ZKHUH

PAGE 67

F F[7 F7 F7 F7 7f f :H WKHUHIRUH SHUIRUP D 7D\ORU H[SDQVLRQ RI WKH DUFFRVLQH IXQFWLRQ DV ZDV GRQH DERYH IRU WKH DUFWDQJHQW f 6LQFH [T FRVT WKH OHDGLQJ WHUP LV VLPSO\ ,T 7KH ILUVW IRXU GHULYDWLYHV EHFRPH GFRV [ L P f f G[ ;T Df f VLQ T f G FRV[ ; FRV -R f G[ ;T f§ Df VLQ -R f GFRV[ [ 7 FRVZ ,R f G[ [ LR &1 VLQ ,R G FRV[ D D FRV -T FRV -T f G[ ;U! L ;f VLQ ,T :KHQ RQH VXEVWLWXWHV LQWR HTXDWLRQ f WKH H[SUHVVLRQ LQ HTXDWLRQ f IRU F DORQJ ZLWK WKH YDOXHV RI WKH GHULYDWLYHV LQ HTXDWLRQV f WKURXJK f RQH REWDLQV DQ HTXDWLRQ JLYLQJ WKH FRHIILFLHQWV RI WKH YDULRXV SRZHUV RI 7 LQ WHUPV RI WKH F K FL7 F7 F7 F7f L&O7 &U FU &Uf &26 -R VLQ / c&O7 F7 F7 F7f s&O7 F7 F7 F7f FRV ,R VLQ ,R FRV ,R FRV ,R VLQ ,T 7f f

PAGE 68

OR F L VLQ ,T 7 & VLQ ,T F? &26 OR VLQ OR 7 & VLQ OR &D VLQ ,T &?& HRV OR W F HRV f 4 fL W B VLQ R VLQ OR 7 FM FLFf FRV TFO HRV f FnHRV HRV f aaU VLQ VLQ VLQ Uf U f ,?7 7 7 7 7f f 7KLV ODVW HTXDWLRQ DOVR VKRZV DV H[SHFWHG WKDW f§! T DV 7 f§! 7KH ODVW VWHS LV RI FRXUVH WR REWDLQ WKH FRHIILFLHQWV ,N LQ WHUPV RI WKH FRHIILFLHQWV 2N DQG &N LQ WKH DSSUR[LPDWLRQ SRO\QRPLDOV IRU DQG e E\ VXEVWLWXWLQJ WKH YDULRXV FRHIILFLHQWV LQ HTXDWLRQ f§f LQWR HTXDWLRQ f $IWHU VRPH WHGLRXV DOJHEUD RQH REWDLQV K &O ? VLQ /R VLQ VLQ T VLQ R / ? VLQ 7R & VLQ F? FRV R VLQ T VLQ VLQ ? L FRV VLQ OR a FRV $f VLQ R L VLQ /R VLQ Rf FRVR VLQ R VLQ /R f§ 2LL FRV 7R ?? FRV 7 FRW & &?& FRV FO FRV f VLQ ,W R VLQ 7R VLQ T f f a a &Lf VLQ / VLQ 2& A&Lf FRV  VLQ $f a L FRV VLQ 7R L VLQ 7 VLQ Rf VLQ 7 VLQ L&L FRV 7 VLQ FRV f FRV 7 VLQ 7R L VLQ 7 VLQ 7fO FRV 7f VLQ 7

PAGE 69

f§ & f VP /R f§ ? &O f FRV /R FRW =2L &26 /R f§ M&O 6+ /R &26 =f FRW =R> R VLQ R f§ VLQ =Rf@ HVF =R_ VLQ /Rf _L&LfVLQ=R L& f &Lf FRV =R e" FRV = VLQ /R FRW RO &26 /R L&O VLQ  &26 =Rf FRW /R>? VLQ /R FRV /Rf@ B F B F FLFf FRV ,T VLQ /R VLQ = F?F FRV =Rf F FRV=R FRV =Rf VLQ = VLQ = >m‘ -IWLIW &O &L &f 6LQ = VLQ = L& & &L f HALA f HA &Lf FRV /R VLQ =R AL f ??fTRV,R?, VLQ OR > VLQ /R VLQ = L&L FRV = VLQ f§ AG? FRV = f VLQ=RVLQRf> A f f A L &f VLQ /R VLQ =T &L L&f FRV= VLQ= FRV=@@ FRV = VLQ =f >L VLQ =R VLQ =Tf VLQ =T VLQ =T L&L FRV =T VLQ = f§ AL FRV =T f ; f@ >L VLQ =T VLQ=RfFRV= FRV =f@VLQn =Tf > f§ L&L & &Lf@ VLQ =R > f L& f & f &L RL&L" &Lf@ FRV=R FRW =R > f§ A &L f VPf /R f§ &O f &26f /R f§ L&L L &f VLQ =R FRV =T@ FRW = >L_ VLQ /R f§ VLQ =f &L FRV /R f§ VLQ = FRV =f@ FRW OR > fJ VU /R M VLQ =f@ HVF = > f§ A VLQ =R VLQ =R L&L FRV =f@ FRW = HVF = >_M VLQ = VLQ =f@ L&L& &LfVLQ = ?? VLQ = FRV = _&L VLQ / FRV= > f§ L& f§ & f &L &Lf@ FRV=R FRW = > fA < VLQ /R i VLQ =f _^&L VLQ / f A &O f &26f =R f§ &O & f VLQ =R &26 =T@ FRW =T >iM VLQ =T FRV = < FRV =T f§ VLQ = FRV =f@

PAGE 70

(TXDWLRQV f WKURXJK f DUH WKH GHVLUHG UHVXOWV IRU WKH FRHIILFLHQWV RI 7KH ([SDQVLRQ IRU 7KH ULJKW DVFHQVLRQ RI WKH DVFHQGLQJ QRGH RI WKH LQYDULDEOH SODQH RQ WKH HTXDWRU RI GDWH GHQRWHG E\ ; LV JLYHQ E\ HTXDWLRQ f SLJ >FRV VLQ=R &f VLQ T VLQ FRV FRVT &f VLQ AR@ ] f L FRV VLQ /R &f VLQ R f§ VLQ FRV R WDQ f§7f§ Y ] FRV 4 VLQ ,T ,Q RUGHU WR GHULYH WKH FRHIILFLHQWV /N VXFK WKDW / /T /^7 /7 /7 /7 ^7f f RQH PXVW GHYHORS ERWK WKH QXPHUDWRU DQG GHQRPLQDWRU RI WKH DUJXPHQW RI WKH DUFWDQJHQW DV DSSUR[LPDWLRQ SRO\QRPLDOV REWDLQ WKHLU TXRWLHQW DQG H[SDQG WKH DUFWDQJHQW LWVHOI 'HQRWH WKH QXPHUDWRU RI WKH DUJXPHQW RI WKH DUFWDQJHQW LQ HTXDWLRQ f E\ Q DQG WKH GHQRPLQDWRU E\ G 7KHQ LQVHUWLQJ WKH UHVXOWV RI HTXDWLRQV f§f WKURXJK f JLYHV WKH IROORZLQJ Qf§ FRV VLQ/T efVLQf a VLQRFRV >L ?R?W a :n7 a 0V sH?f7$@ [ ^ VLQ L &L FRV /f7 & FRV L _&L VLQ /f7 >&D .LfFRV /R a && VLQ /@7 >& .&f FRVLR && 5_ &LfVLQR@7`VLQR > ?H?U HA7 P ?H? AfU@ FRV RWf VLQ VLQ &L FRV VLQ f§ ? FRV f7 >& FRV VLQ M&L ?f VLQ VLQ FRV @7 >& .L B &Lf &262 VLQR && 0f VLQ  VLQ L

PAGE 71

L"fFRVR@U ^>& f§ L &L a A A AfA@ FRV/ VLQ > # # f§ && f§ A G A&L A &Lf@ VLQ /T VLQ m _" f FRV ` 7 7f f G FRVT 2 VLQ R ^ HRV /R &O VLQ /f7 _&L FRV & VLQ /f7 >&& HRV / e .LfVLQ AR@U >&& A&fFRVR & .L&f VLQ @7` VLQ R 7f HRV /R VLQ R f§ e VLQ /R VLQRf7 f§ _&L FRV /R e VLQ=Rf VLQ=R7 >&& HRV = e AeIfVLQ=R@VLQU >eLe AeLfFRV= e e ef VLQ @ VLQU 7f f ,I WKH OHDGLQJ WHUPV LQ ERWK Q DQG G DUH IDFWRUHG RXW WKH DUJXPHQW RI WKH DUFWDQJHQW LQ HTXDWLRQ f WDNHV WKH IRUP Q B VLQ / VLQ > Q?7 Q7 UD7 Q7 7f@ G a FRV / VLQ -> G^7 G7 G7 G7 7f@ Q[U QU QU Q7 47f? DQ 9 L7 G7 G= G7 7f f VLQFH VLQ 7R A 7KH PLQXV VLJQV LQ WKH GHQRPLQDWRU FDQFHO VRPH RI WKH PLQXV VLJQV LQ HTXDWLRQ f DQG DOVR IDFLOLWDWH H[SDQVLRQ RI WKH TXRWLHQW ODWHUf 1RZ WKH FRHIILFLHQWV ULN DQG GN DUH JLYHQ E\ QL &L FRW = ? FRW ,R HVF f Q & FRW / ?^? &Lf FRW, HVF/ f Q e .L .&Lf FRW eLe :f a .f FRW FVF f Q >e f§ A ef f§ eO@ &2W /R a > eOe M e f B eO B eO f@ f§ IWr ??f FRW HVF f

PAGE 72

GL &L WDQ ; f G & WDQ / _&L f G ,, .LfWDQ; && f G 9 ,, n ?&O&f WDQ / && & B f&L f f 7KH QH[W VWHS LV WR H[SDQG WKH TXRWLHQW WKDW IRUPV WKH DUJXPHQW RI WKH DUFWDQJHQW IXQFWLRQ LQ HTXDWLRQ f 'HQRWH WKH TXRWLHQW E\ T RQH REWDLQV E\ VLPSOH ORQJ GLYLVLRQ Q?7 Q7 Q7 Q7 47rf? T 9 GL7 G7 G7 G7 7f f f§ QL G?f7 Q ? G G?Q? G?f7 A ID G?G GQ? 7 G?Q G?Q? G?f7 7 X G G?G 7 GWL ? GA 7 G?G7L? 7 AGAGR G?Q Ff; 7f O TL7 T7 7 T7 7f 7KLV OHDYHV HTXDWLRQ f LQ WKH IRUP ; WDQB WDQ ;Rf f§ WDQ ^ WDQ ;R WDQ ;R>L; T7a 7 7 7f@` ][7 ]7 ]7 ]7 7f f 7KH H[SDQVLRQ IRU WKH DUFWDQJHQW ZDV JLYHQ DERYH LQ HTXDWLRQV f WKURXJK f +HUH ;R SOD\V WKH UROH RI DQG AWDQ;R DUH WR EH VXEVWLWXWHG IRU [A :KHQ ] LV DGGHG WKH H[SDQVLRQ EHFRPHV /L TL WDQ ;Rf FRV ;R ]L f O WDQ ; f FRV ;R f§ L WDQ ;f VLQ ;R FRV ; ]? f O WDQ ;Rf FRV ;R f f§ L WDQ ;Rf VLQ ;R FRV ; WDQ ;T fVLQ ; FRV ; f§ ? FRV ;f ] f f f f f

PAGE 73

/ WDQ -Rf FRV -R f§ >" f WDQ /R@ VLQ -R FRV /R IW WDQ -RVLQ /R FRV /R f§ M FRV /Rf WDQ-R f VLQ /R FRVn /R f§ VLQ /R FRV /Rf f ,W LV HDVLHVW WR OHDYH WKH WDQ -R ZLWK WKH TA 1RZ UHSODFLQJ ULN DQG GA ZLWK WKHLU YDOXHV IURP HTXDWLRQV f WKURXJK f JLYHV TL WDQ /R QL G?f WDQ /R f§ >&L FRW /R f§ ? FRW OR HVF /R &L WDQ /T@ WDQ /R f§ FRW OR VHF /R &L WDQ /R f§ &L VHF /R f§ L FRW R VHF -R f $ WDQ /R Q A A G?f WDQ /R ^>& FRW -" &Of K FRW HVF /R@ & WDQ /R _&Lf &L FRW /R f§ ? FRW OR HVF =;& WDQ /Rf &L WDQ /Rf ` WDQ /R >& _L &Of WDQ FRW -R VHF -@ & WDQ / _&L WDQ -f &L WDQ /R L&L FRW VLQ WDQ -Rf &L WDQ 2 22 & VHF /R f§ 2 FRW OR VHF &L WDQ VHFrn /T f§ WDQ f§ L&L FrW -R WDQ VHF -R f WDQ -R >Q 7,G? QLGM f  G U @ WDQ -R ^& f§ JL f§ &Lf FrW -R f§ && AAf a A f§ H Lf FRW -R HVF -R >& FRW ?? &Lf FRW HVF -@&L WDQ -f &L FRW ? FRW -R HVF -f>&L WDQ -f & WDQ M&Lf@ >& f§ H &Lf WDQ -R &&@ &L WDQ -Rf &L WDQ -;& WDQ ?]?f` WDQ >& .L f A &O && L!fWDQ -f FRW VHF -@ >&& WDQ _&LAL &Lf WDQ A&O FRW WDQ VHF -@ &L WDQ && WDQ _&L a L& FrW -R WDQ VHF ? & FRW OR WDQ VHF f§ ??? FrW -R VHF -f >& a &Lf WDQ -@ && WDQ -R &L WDQ -R && WDQ -T &L WDQ -Tf

PAGE 74

_&L f &Lf VHF ; && WDQ /R VHF ; ; WDQ ; WDQ /R VHF /R FRW VHF ;R> AL f§ L&L a A&L rf WDQ ;R Le WDQ /@ f A WDQ /R f§ IW M GA eG?Gb I A f,f A f, FFAL + GAG G?7LR f G@n7L GAL? r GAf WDQ;R f§ ^>&L f§ _&AL &Lf f &L@ FrW /R > &O A _f f &O f A &Of@ f§ _fFRW;R FVF;` >& f§ &O &f WDQ ;R && & f &@ &L WDQ ;T f>& a J&Lf WDQ /R &&@ & WDQ /R M&L-IRFRW ; ?^? &Lf FRW;FVF;@ & WDQ /R ?&L < L WDQ / ;& WDQ / I&L f&L FRW R L FRW HVF /f &L WDQ Rf& WDQ /R &Lf &LWDQ;f>& O&L a A &Of FrW /R && 0f r R#Lf FRWR HVF@ &L WDQ ,Rf>& FRW / ?^? &_f FRW HVF /@ &L WDQ =f&L FRW / FRW HVF /f &L WDQ /ff WDQ / >&a&c&cf:L >0 && A Gf a AL&L f§ A &Lf@ WDQ; f§ __ f FRW / VHH=R@ >& a &&f WDQn /R && _&L f§ &f WDQ;@ && WDQ /R f§ M&L WDQ /R &L& WDQ /Rf >&_ WDQ / M&; &Lf WDQ / & FRW / WDQ / VHF / .& a .LpL &Lf WDQ /R Ar &L FRW / VHF /? &O WDQ /R && WDQ /R M&L WDQ=Rf &L & WDQ / &L L&L& FRW WDQ / VHF 0L FRW VHF f &L & WDQ /R _&L WDQ /f >&& f§ H&L f§ ^&Lf WDQ /R f§ && 0&f WDQ /R a &L AL&LfFRW WDQ= VHF /@ >&& WDQ /R ?&0 &Lf WDQ = 0 FRW WDQ = VHF =@

PAGE 75

r WDQ /R L&L FrW R WDQ /R VHH /Rf & WDQ /R L f§ & &O & f§ &O a A & f VHFf 2 & & f§ tLLfWDQ R VHH /R WDQ /R VHH ; WDQ /R VHH /R f§ L f§ Acf WDQ /R FRW VHH =>_L A f A L f &L f f§ f§ f WDQ R f§ rLf WDQ /R f§ WDQ /R` f 7KH ILQDO VWHS LV WR VXEVWLWXWH WKHVH YDOXHV IRU WKH JAWDQLR LQWR HTXDWLRQV f WKURXJK f )RU ;L ZH REWDLQ ;L WDQ ;T f FRV ;R ]? f f§ L VHF ;R f§ ? FRW R VHF ;Rf FRV ;R ]? f§ &L ]? f§ FRW T FRV ;T f 1H[W ZH JHW IRU / / WDQ ;Rf FRV ; L WDQ ;R f VLQ ; FRV / ] f > VHF /R f§ 2 FRW VHF /R WDQ / VHF / f§ ?? WDQ ;R f§ FRW WDQ ; VHF ;R@ FRV /R f§ VHF ;R f§ FRW R VHF ;Rf VLQ ;R FRV ;R ] r FRW FRV / L WDQ ; f§ ?? VLQ ;R FRV ;R f§ FRW R VLQ ;R L WDQ ;R LL FRW VLQ ;R ? FRW R VLQ ; FRV ;Rf & A FRW FRV ;R FRW VLQ ; ? VLQ ; FRV ;FRW _f f 1RWH WKDW WKH WHUPV LQYROYLQJ WDQ; FDQFHO +HXULVWLF UHDVRQLQJ VXJJHVWV DV PXFK VLQFH WKHUH PXVW EH QR VLQJXODULW\ LQYROYLQJ ;T UHJDUGOHVV RI ZKLFK TXDGUDQW LW KDSSHQV WR RFFXS\ 7KH VDPH ZLOO DOVR EH VHHQ WR KROG IRU ; DQG ;

PAGE 76

7KH ULJKWKDQG VLGH RI HTXDWLRQ f IRU 7 KDV WKUHH WHUPV LQYROYLQJ TSOXV = /HW XV LQFOXGH = LQ WKH ILUVW WHUP ZKLFK ZLOO FRQWDLQ ef WKH WKUHH WHUPV EHFRPH LQ RUGHU D WDQ f FRV 7 ] ^e .L f ALeLf VHF eLe WDQ 7 VHF 7 ?2 WDQ7 e WDQ 7R VHF 7R FRW 7R VHF 7R >f§ A f§ ALe f§ Ae Aef WDQ 7R Le WDQ 7@` FRV 7 ] f§ ] e a eLe WDQ 7R f§ VLQ  FRV 7R e WDQ 7R FRW ,R>f§ H A f§ AO&Lf FRV 7R f§ &L L& f VOQ  Le VLQ 7 WDQ 7@ f 7 TL T WDQ 7f VLQ 7 FRV 7 f§ eL VHF 7 L FRW 7 VHF 7f [ e VHF 7 f§ FRW VHF 7 e WDQ 7 VHF 7 f§ ?? WDQ 7 f§ L e FRW 7R WDQ 7R VHF 7Rf [ VLQ 7 FRV 7R eLe WDQ 7 f§ e WDQ 7 eL VLQ 7R FRW 7R>Le eLf VLQ 7 Le VLQ 7 WDQ 7 VLQ 7 FRV 7@ FRW 7RL VLQ 7 FRV 7 eL VLQ 7f f 22 $ T WDQ 7Rf VLQf 7 FRV 7R e VHF 7R L FRW 7 VHF 7fVLQ 7R FRV 7 f§ M FRV 7Rf e WDQ 7R f§ A&L K FRW 7Rf§Le VLQ 7R WDQ 7R Le^ FRV 7Rf FRW ReL VLQ 7 f§ -e FRV 7f FRW 7f§ VLQ 7 FRV 7 A FRV 7f f 7KH GHVLUHG FRHIILFLHQW 7 LV WKH VXP RI WKHVH WKUHH  e ] _LeL L VLQ 7 FRV 7 eL VLQ 7 FRW 7R >f§ A ?#? &If FRV 7R L & &Lf VLQ 7T f§ VLQ 7R FRV 7T@

PAGE 77

FRW R > &O VLQ /R f§ FRV =f f§ L VLQ /R FRV =R@ FRW ,R>? FRV /R f§ VLQ =R FRV =f@ f )LQDOO\ HTXDWLRQ f IRU = FRQWDLQV IRXU WHUPV RQ LWV ULJKWKDQG VLGH =D WDQ /Rf FRV = ] f§ ^& &L & L&L f Af VHH /R f, &L &L G && f§ A &Lf WDQ /R VHFf /T &L & WDQ /R VHF = &L WDQ = VHF = f§ f§ WDQ=R FRW /R VHF =. AA a a A&L a A &L &f A &L f§ WAL&L f A& a A& f§ &LfWDQ= a A&L L&&f WDQ =R f§ LL WDQ =R@` FRV /R e f§ &L  &O & f &O a A & f§ A A f LAO f VLQ /R &26 /R & & && f A&f WDQ /R && WDQ /R &L WDQ /R FRW ,R>^?? ?&L A &L ef FRV /T A &O f A &O f A& f§ f§ A&O f VLQ /R A&L L&L&f VLQ /R WDQ / L&L VLQ / WDQ /R@ f /LE a >TO Af WDQ =@ VLQ /R FRV / >& VHF /R FRW /R VHF / & WDQ / VHF = ?G? WDQ = f§ L &L FRW OR WDQ /R VHF =@ eL VHF /R f§ ? FRW VHF /Rf [ ^& & a A &LfVHF /R && WDQ /R VHF /R f§ WDQ /R &L WDQ = VHF /R FRWR VHF =R>f§ JAL f§ A &L A&L L&f WDQ=R ?&L WDQ R@`f VLQ = FRV = f§ f§ & WDQ = A FrW K VLQ /R FRV = &L WDQ /R ?? VLQ = FRV /R e FRW /R VLQ /R WDQ /R f§ & FRW /R VLQ /R eI e WDQ /R f§ I e VLQ /R f§ L e e FRW /R VLQ /R WDQ /R f§ e FRW VLQ /R WDQ /R fb ^ FRW /R VLQ /R FRV / LeL FRW /R VLQ /R e VLQ /R WDQ = f§ Le FRW VLQ = WDQ = e FRW VLQ =f ^eLe OeL Lef WDQ=R e"eL WDQ = LeL VLQ =

PAGE 78

& WDQ /R FRW R>f§ A J A a AAO AL&L&f VcQ /R f§ & &L&f VLQ /R WDQ /R f§ L&L VLQ /R WDQ /R@ FRW -R>L& &L "&Of VLQ = L& VLQ = WDQ = f§ VLQ =R HRV /R L&L WDQ /R VLQ =R@ FRW R>f§ H WL &f VLQ /R HRV = f§ L &L &f VLQ /R ? & VLQ = WDQ=@` L & L &Lf VLQ /R f§ ?? VLQ /R HRV = & f && _ L&f WDQ= &L VLQ = WDQ = eI WDQ = e WDQ /R FRW OR VLQ =T>Le e eL f§ _e iLe f§ VLQ /R HRV =R eL VLQ = Le e ef WDQ = Le WDQ =@ FRW =R VLQ =R> f§R  f§ f§ ef FRV =R LeL M ef VLQ = e VLQ = WDQ =@ 2 R 2 W ? ? WDQ =RVLQ =R HRV =R f§ A HRV =Rf eL VHH =R f§ L FRW = VHH =f 2 2 2 ; e VHH =R f§ FRW = VHF =R eI WDQ =R VHH = f§ AL WDQ =R L e FRW /R WDQ =R VHH =Rf [ VLQ /R HRV =R f§ HRV =Rf e f§ L FRW /T FRV =R f ; e FRW =R FRV =R e WDQ = f§ ?? VLQ = FRV =R f§ LeL FRW OR VLQ =Rf ; WDQ /R f§ f >e e L & VLQ = FRV = e WDQ = 2 4 4 2 FRW =R f§ e FRV =R f§ L e VLQ =R f§ LeLe HRV =R VLQ =R FRVf =R f§ Le VLQ /Rf FRW =RLeL HRV =R e VLQ = HRV = f§ Le VLQ =f FRW =Rf§ HRV =R f§ eL VLQ =R HRV =Rf@ WDQ =R f§ f f§ e^e ?2?HO VLQ =R HRV =R e WDQ /R ??e VLQ = WDQ /R e e WDQ = e WDQ = FRW R>e Le ef FRV= Le VLQ = "e VLQ = HRV = AeL VLQ =R e Le ef VLQ = WDQ =T f§ Le VLQ = WDQ =@

PAGE 79

FRW ,T >f§L &L f§ f FRV /R ?r VLQ =R FRV /R f§ VLQ =R FRV /R ALA&L L&f VLQ /R f§ ? VLQ /R FRV = &L VLQ  WDQ =@ FRW R>L FRV =R &L VP  FRV = f§ VLQ /R FRV /R f§ &L VLQ =R@ f =G JL WDQ =RfVLQ /R FRVn =R f§ VLQ /R FRV =Rf &O VHF =R f§ L FRW OR VHF =fVLQ = FRVn = f§ VLQ = FRV =Rf f§ &L f§ L FRW =R FRV =RfWDQ =R f§ WDQ =Rf &WDQ =R f§ WDQ =Rf FRW OR >$2L &L VLQ =R WDQ =R f§ VLQ =Rf@ FRW R>&VLQ =R FRV =R f§ VLQ =R WDQ =Rf@ FRW =R >A&L VLQ /T f§ VLQ = FRV = f@ FRW =R>VLQ =RFRV /R f§ VLQ =T FRV=Tf@ f 7KHLU VXP JLYHV = & = a ??& A& A f 0 AfVLQAR FRV /R f§ 2LGL &L FRV =T f§ VLQ =Rf L& VLQ /R f§ ?? VLQ /R FRV =T FRW =R ^>f§2 ? &L & ?# &L A A f§ VLQ =Rf@ FRV =R >L& A & A &L f§ cA &L AL&Lf A &L VLQ =R f§ FRV =Rf@ VLQ =R` FRW =R>&L f ? a Lf VLQ =R FRV =R 0&LL&fFRV =R VLQ =f A VLQ =R FRV =RFRV =R f§ VLQ =Rf@ FRW =R>2 FRV =RFRV =T f§ VLQ =Rf f§ &L VLQ =R FRV =R f§ VLQ =Rf@ FRW =R> VLQ =T FRV =RFRV =T f§ VLQ =Tf@ f (TXDWLRQV f f f DQG f WKHUHIRUH FRQWDLQ WKH ILQDO UHVXOWV IRU WKH ILUVW IRXU FRHIILFLHQWV RI WKH DSSUR[LPDWLRQ SRO\QRPLDO IRU = 1R DWWHPSW KDV EHHQ PDGH KHUH WR XVH FRPPRQ WULJRQRPHWULF LGHQWLWLHV WR VLPSOLI\ VXEH[SUHVVLRQV VXFK DV FRV =R f§ VLQ =Rf EHFDXVH LQ SUDFWLFH RQH ZRXOG QRW ZLVK WR FRPSXWH FRV=T GLUHFWO\ VLQHV DQG FRVLQHV DUH

PAGE 80

UHODWLYHO\ WLPHFRQVXPLQJ RQ D FRPSXWHU DQG WKHUH ZLOO EH QR VLJQLILFDQW FDQFHOODWLRQ LQ WKH VXEWUDFWLRQ 7KH ([SDQVLRQ IRU $ 7KH DQJOH $ LV PHDVXUHG DORQJ WKH LQYDULDEOH SODQH LWV RULJLQ LV WKH DVFHQGLQJ QRGH RI WKH LQYDULDEOH SODQH RQ WKH PHDQ HTXDWRU RI DQG LWV HQGSRLQW LV WKH DVFHQGLQJ QRGH RI WKH LQYDULDEOH SODQH RQ WKH PHDQ HTXDWRU RI GDWH 7KH H[DFW H[SUHVVLRQ IRU $ ZDV IRXQG DW WKH EHJLQQLQJ RI WKLV VHFWLRQ f :H ZLOO H[SDQG WKH ULJKWKDQG VLGH RI WKLV HTXDWLRQ LQ D PDQQHU VLPLODU WR WKH H[SDQVLRQ RI / LQ WKH SUHYLRXV VXEVHFWLRQ UHVXOWLQJ LQ DQ H[SUHVVLRQ RI WKH IRUP $ $M7 $ R7 $ 7 $7 7f f $V LQ WKH SUHYLRXV VXEVHFWLRQ GHQRWH WKH WZR DUJXPHQWV RI WKH SLJ IXQFWLRQ LQ HTXDWLRQ f E\ Q DQG G UHVSHFWLYHO\ DV WKHVH DUH WKH QXPHUDWRU DQG GHQRPLQDWRU RI WKH DUJXPHQW RI WKH LPSOLHG DUFWDQJHQW $OWKRXJK WKH QRWDWLRQ LV WKH VDPH WKH YDOXHV RI WKH V\PEROV DUH REYLRXVO\ TXLWH GLIIHUHQW LQ WKLV VXEVHFWLRQf 6XEVWLWXWLQJ WKH H[SDQVLRQV IRU WKH VLQH DQG FRVLQH RI DQG =T IURP HTXDWLRQV f WKURXJK f JLYHV Q FRV/T &f VLQ > FRV /T &O VLQ /f7 _&L FRV R  VLQ /f7 >&& FRV=R &V .LfVLQ R@7 >& 9&Lf FRV /T & &&f VLQ R@" 7f@ [ >;7 7 ?f7 sLf7 7f@ L FRV /Tf7 6R FRV /R &O VLQ /Rf7 >m a _L&LfFRV;R m& &OfVLQ /R`7

PAGE 81

> f§ A f§ &O f§ O&O&f &2V;R L&D & &L _"&L LL&LfVLQ=R@7 7f f FO VLQ FRV f§ FRV VLQ VLQ ; &f VLQ -R > ??7 7 ?? scf7 7f@ FRV >; 7 7 "f7 "f7 7f@ [ ^ VLQ / &L FRV /f7 & FRV / _&L VLQ /f7 >& f§ c&f FRV /R f§ && VLQ /R@7 >& &L&fFRV/T && A&LfVLQ -R@7 7f` VLQ OR f§ ? VLQ /R FRV ,Tf7 VLQ /R FRV 7R L&L FRV ; FRV ?4? VLQ ,Rf7 > &Of VLQ -R &26 -R & &Lf FRV =RFRV VLQ ,T@7 > _" &O O&O&fVLQ -RFRVR L& & &L f§ L &L f§ "&O f &26 /R VLQ -R ?? 9"fVLQ,R?7 7f f 7KH DEVHQFH RI D FRQVWDQW WHUP LQ WKH QXPHUDWRU LV FRQVLVWHQW ZLWK WKH VWDWHPHQW PDGH HDUOLHU WKDW $ DW 7 7KH DOJHEUD LV VLPSOLILHG KRZHYHU LI ZH GLYLGH ERWK QXPHUn DWRU DQG GHQRPLQDWRU E\ WKH WKH FRQVWDQW WHUP LQ WKH GHQRPLQDWRU QDPHO\ VLQR WKLV LV SHUPLVVLEOH EHFDXVH DV VWDWHG EHIRUHf 7R 7KLV OHDYHV WKH DUJXPHQW RI WKH DUFWDQJHQW LQ HTXDWLRQ f§f LQ WKH IRUP Q 7L?7 7 QR7 Q7 7 7f G G[7 G7 G7 G7 7f ZLWK WKH FRHIILFLHQWV QA DQG Gr JLYHQ E\ P L FRV /R HVF R Q FRV /R ?&L VLQ /Rf FVF Q > _" r L &Lf FRV /R & &LfVLQ /@FVF/? ULL > A &O O&O&fF2V/2 f f f f

PAGE 82

f§ & f§ A &L f§ L&LfVP /R@ FVFR f G? VLQ  FRW R f VLQ /T FRW 7R LeL FRV /R FRW R ??n f G A" R L&f VLQ /R FRW R L& &Lf FRV /R FRW f G 2 ?? &L f L&L&f VLQ /T FRW R & & &O f§  &O f "&O f FRV /R FRW R L LB;fL f 7KH QH[W VWHS DV EHIRUH LV WR H[SDQG WKH TXRWLHQW WKDW IRUPV WKH DUJXPHQW RI WKH DUFWDQJHQW IXQFWLRQ LQ f 2QFH DJDLQ ZH VKDOO GHQRWH WKH TXRWLHQW E\ T %\ DQ HYHQ VLPSOHU ORQJ GLYLVLRQ WKDQ EHIRUH QLU QU Q7 QU 4Uf ? T 9 GL7 GR7 G7 G7 7Kff f§ Q?7 ? m GLQ? f7f A G?8 GMLLLf7 Q G?Q A ‘‘ GQ? GAUL LOG?GnQ? GAQL f7 7f TL7 7 7 "7 =f 7KH H[SUHVVLRQV IRU WKH TN DUH JLYHQ E\ T? QL FRV / &6& f Q FL =M > FRV /R f§ L&L VLQ /Rf FVFR@ L VLQ /R FRW RfL FRV /R FVFRf > FRV = f§ L&L VLQ / FRW R VLQ /R FRV =Rf@ FVF f m LALm GQL G?QL > _" L&Lf FRV /T L& &f VLQ@ FVFR L VLQ =R FRWRf> FRV =R f§ L&L VLQ =Rf FVFR@ VLQ =R FRW L&L FRV =T FRW \fL FRV =T FVFTf f f f

PAGE 83

L VLQ /R FRW ORfGL FRV /R HVF ORf ^ L f§ A &Lf FRV /R f§ L &Lf VLQ R FRW =R > VLQ =R FRV /R &LFrV /R f§ VLQ /Rf@ FRW 2" VLQ = HRV f` HVF = f§f 2 4 Q GMQ GQ A G[Q GLGQ GAL >m AA A O f &26 /R A A f§ AL&L f§ JLLf VLQ R@ HVF ; VLQ / FRWRf^> ML&fFRV;R L &Lf VLQ /@ FVF` VLQ /R FRW OR LL HRV /R FRW OR Af> HRV /R f§ LL VLQ Rf HVF OR@ > f f§ AO& f VLQ /R FRW OR Of &26 /R FRW OR @ [ L FRV /R HVH ORf L VLQ /R FRW ORf> HRV /R f§ LL VLQ /Rf HVF OR@ L VLQ /R FRW OR f VLQ /R FRW OR LL FRV /R FRW OR Af ; FRV /R FVFRf L VLQ =R FRW RfL HRV =R HVF ORf ^ f A O f &O & f &26 =R a &  &L f§ J f VLQ =R FRW = >L _^f VLQ = FRV = ^fFRVf =T f§ VLQf =Rf@ FRW =R> VLQ /R FRV=R L VLQ =RFRV =R f§ VLQ =Rf@ FRW OR VLQ /R HRV =f` HVH = f 7KLV OHDYHV HTXDWLRQ f§f LQ WKH VLPSOH IRUP $ WDQ T f f§ WDQ >TL7 T7a 7 TA7r 7f@ f§f 2QFH DJDLQ ZH HPSOR\ HTXDWLRQV f WKURXJK f 7KLV WLPH KRZHYHU [ LV ]HUR ZKLFK JUHDWO\ VLPSOLILHV WKH H[SDQVLRQ WKH TA KHUH UHSODFH WKH DQG WKH \r EHFRPH WKH $M ZKLFK DUH WKH GHVLUHG FRHIILFLHQWV GLUHFWO\ 6LQFH DOO WHUPV FRQWDLQLQJ VLQAR GLVDSSHDU WKH UHVXOW LV

PAGE 84

$L T[ ? HRV /R HVF $ TL f§ > HRV /R f§ ? &L VLQ /R FRW OR ? VLQ /R HRV /Rf@ HVF OR $ T f§ ^ f O&O f FRV /R f§ ? & &O f VLQ  FRW R>L VLQ FRV &LFRV /R VLQ /f@ FRW 2" VLQ /R FRV f` HVH f§ HRV T HVH R ^ AL&L A HRV f FRV R &LfVLQ FRW R >AL VLQ R HRV R ?&L HRV /R f§ VLQ /Rf@ FRW R >VLQ /R FRV f§ HRV f@` HVH $ L 4 ^ f§ A &O f§ A &O & f HRV R a O& c &O AO&O f§ J A &O f VcQ /R FRW R>L f§ e ? ?f VLQ R FRV R LL AL&fHRV VLQ f@ FRW 2> VLQ R FRV /R &L VLQ R HRV f§ VLQ Rf@ FRW R VLQ R FRV f` FVF 4 2 2 $ $ 4 2 f§ > HRV /R f§ L&L HRV VLQ ? VLQ HRV FRW f HVH ^ ?&O a && L VLQ /Rf FRV /R f§ L & & &L L &L f§ L &Lf VLQ /R L &L HRVn /R VLQ /R FRW R >L &L f VLQ /R FRV /R &O & fFRV /R VLQ /f ^ VLQ / HRV /@ FRW OR> HRV /V/ f§ HRV /f &L VLQ /R HRV / VLQ Rf@ FRW ,R>G? VLQ /R FRV =RVLQ /R f§ HRV Rf@` HVF f (TXDWLRQV f f f DQG f FRQWDLQ WKH H[SUHVVLRQV IRU LQ WKH H[SDQVLRQ f f f f f f f

PAGE 85

$ $M7 $ U $ 7 $7 7f f 7KHVH H[SUHVVLRQV WRJHWKHU ZLWK WKH FRUUHVSRQGLQJ HTXDWLRQV IRU ,? DQG /Ia WKDW ZHUH GHYHORSHG LQ WKH SUHYLRXV WZR VXEVHFWLRQV FRPSOHWH WKH DQDO\WLFDO GHYHORSPHQW RI WKH VKRUWWHUP WKHRU\ RI JHQHUDO SUHFHVVLRQ UHODWLYH WR WKH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP 1XPHULFDO 5HVXOWV DQG 9HULILFDWLRQ 7KH ULJKW DVFHQVLRQ D DQG GHFOLQDWLRQ  RI WKH DQJXODU PRPHQWXP YHFWRU RI WKH 6RODU 6\VWHP ZHUH IRXQG LQ &KDSWHU WR EH D rn f 6 rn f )URP WKHVH DQJOHV WKH ULJKW DVFHQVLRQ RI WKH DVFHQGLQJ QRGH RI WKH LQYDULDEOH SODQH RQ WKH PHDQ HTXDWRU RI LV / D r ROnnn f DQG WKH LQFOLQDWLRQ RI WKH LQYDULDEOH SODQH WR WKH PHDQ HTXDWRU RI LV ,R r 6 rnnn f 1RZ LQ RUGHU WR REWDLQ QXPHULFDO YDOXHV IRU WKH FRHIILFLHQWV IRU WKH SRO\QRPLDOV LQ ; DQG $ ZH DOVR UHTXLUH QXPHULFDO YDOXHV IRU WKH FRHIILFLHQWV RI e DQG 7KH ,$8 FXUUHQWO\ UHFRPPHQGV WKH YDOXHV RI WKHVH TXDQWLWLHV ZKLFK ZHUH SXEOLVKHG E\ /LHVNH HW DO f LQ WKHLU 7DEOH +RZHYHU WKHVH FRHIILFLHQWV KDYH EHHQ URXQGHG DQG XVLQJ WKHLU URXQGHG YDOXHV PLJKW SURGXFH DQ HUURU LQ WKH ODVW GHFLPDO SODFH 7R DYRLG WKLV SRVVLELOLW\ REWDLQHG IURP /LHVNH SULYDWH FRPPXQLFDWLRQf D FRPSXWHU SULQWRXW RI WKH UXQ WKDW JHQHUDWHG WKH QXPEHUV LQ WKHLU 7DEOH 7KH YDOXHV IRU N DQG =N P\ QRWDWLRQ QRW

PAGE 86

7DEOH )XOO3UHFLVLRQ 9DOXHV RI &XUUHQW 3UHFHVVLRQDO &RQVWDQWV &L ; nn ][ & nL ] A & nn f§ 7 ] /LHVNHfVf IURP WKDW SULQWRXW DUH SUHVHQWHG LQ 7DEOH 7KHVH YDOXHV DUH JLYHQ WR VL[WHHQ GLJLWV UHSUHVHQWLQJ HVVHQWLDOO\ WKH IXOO SUHFLVLRQ RI D 8QLYDF GRXEOHSUHFLVLRQ QXPEHU 7KH IRUPXODV IRU WKH FRHIILFLHQWV LQ WKH SRO\QRPLDO H[SDQVLRQV RI = DQG $ ZHUH IRXQG LQ WKH SUHYLRXV VHFWLRQ LQ WHUPV RI WKH FRUUHVSRQGLQJ FRHIILFLHQWV RI WKH SUHFHVVLRQ DQJOHV DQG ] DQG RI WKH LQLWLDO DQJOHV =R DQG ,T *LYHQ WKH QXPHULFDO YDOXHV LQ 7DEOH DQG WKH DERYH YDOXHV IRU /R DQG R WKH FRHIILFLHQWV =r r DQG KDYH WKH YDOXHV OLVWHG LQ 7DEOH f 7DEOH &RQVWDQWV LQ WKH 6KRUW7HUP 7KHRU\ /R rn rn $R /[ f§nn K $[ O f§ $ O D f§ O K f§ D f§ ,W PXVW EH QRWHG KHUH WKDW WKH QXPEHUV LQ WKH ODVW URZ RI 7DEOH ZHUH REWDLQHG XQGHU WKH DVVXPSWLRQ WKDW r f§ ? f§ =? f§ DV WKH WKHRU\ GHYHORSHG E\ /LHVNH HW DO f RQO\ JRHV WR WKH WKLUG SRZHU RI WLPH 7KHUH LV QR FRQWULEXWLRQ IURP WKHVH FRHIILFLHQWV XQWLO WKH IRXUWK SRZHU RI WLPH LQ DQ\ HYHQW 7KH YDOXHV IRU = DQG $ DULVH VROHO\ IURP SURGXFWV RI FRHIILFLHQWV ZLWK VXEVFULSWV WR 7KH UHVXOWV LQ WKH ODVW URZ RI 7DEOH FDQ EH VDLG WR EH fGHWHUPLQLVWLFf LQ WKDW WKH\ DSSHDU DV D FRQVHTXHQFH RI WKH WUDQVIRUPDWLRQ WR WKH LQYDULDEOH SODQH WKHLU WUXH YDOXHV FDQQRW EH IRXQG ZLWKRXW ILUVW KDYLQJ YDOXHV IRU & DQG = 6LQFH WKHVH DUH QRW JLYHQ E\ /LHVNH HW DO\ WKH\ FDQQRW DSSHDU LQ D WKHRU\ WKDW LV WR GXSOLFDWH WKHLUV 1HYHUWKHOHVV WKH PDJQLWXGH RI WKHVH WHUPV JLYHV DQ LQGLFDWLRQ RI WKH DELOLW\ RI WKUHH WHUPV LQ HDFK DQJOH WR SURGXFH WKH VDPH UHVXOWV DV FODVVLFDO WKHRU\

PAGE 87

:KLOH /R DQG ,R DUH LQWHQGHG WR UHSUHVHQW WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH LQ WKH 4R V\VWHP WKHUH LV QR VXFK UHVWULFWLRQ LQ WKH HTXDWLRQV WKHPVHOYHV $Q\ QRQURWDWLQJ SODQH ZLOO GR ,Q SDUWLFXODU LI /R LV VHW WR ]HUR DQG ; LV VHW WR e! WKH REOLTXLW\ DW HSRFK WKH LQYDULDEOH SODQH LV UHSODFHG E\ WKH HFOLSWLF RI ,Q WKLV LQVWDQFH WKH UHVXOWLQJ /7f LV QRQH RWKHU WKDQ WKH QHJDWLYH RI WKH DFFXPXODWHG SODQHWDU\ SUHFHVVLRQ ;D^7f LQ /LHVNHfV QRWDWLRQf ,7f LV WKH DQJOH EHWZHHQ WKH PHDQ HTXDWRU RI GDWH DQG WKH HFOLSWLF RI GHQRWHG X!D7f E\ /LHVNH DQG $7f LV WKH DFFXPXODWHG OXQLVRODU SUHFHVVLRQ RU nL3D7f :KHQ WKLV WHVW FDVH ZDV UXQ WKH RXWSXW FRHIILFLHQWV GXSOLFDWHG /LHVNHfV UHVXOWV IRU WKHVH DQJOHV WR EHWWHU WKDQ D PLFURDUFVHFRQG 7KLV LQFUHDVHV RQHfV FRQILGHQFH WKDW ERWK WKH WKHRU\ LWVHOI DQG WKH FRPSXWHU SURJUDP WKDW FDOFXODWHV WKH FRHIILFLHQWV DUH FRUUHFWf§DW OHDVW LQ WKRVH WHUPV LQGHSHQGHQW RI VLQ ;R $ IXUWKHU YHULILFDWLRQ LV SRVVLEOH E\ FRPSDULQJ WKH DQJOHV REWDLQHG E\ HYDOXDWLQJ WKH ULJRURXV IRUPXODV IRU ; ; DQG $ LQ HTXDWLRQV f WKURXJK f ZLWK WKH UHVXOWV REWDLQHG IURP HYDOXDWLQJ WKH WLPH SRO\QRPLDOV 6LQFH WKH fULJRURXVf HTXDWLRQV GHSHQG RQ e DQG ] WKHLU DEVROXWH DFFXUDF\ GHSHQGV RQ WKH DFFXUDF\ ZLWK ZKLFK WKHVH DQJOHV WKHPVHOYHV DUH PRGHOHGf ,I WKHVH FRPSDULVRQV DUH PDGH DW UHJXODU WLPH LQWHUYDOV RQ HLWKHU VLGH RI WKH RULJLQ WKH GLIIHUHQFHV EHWZHHQ WKH ULJRURXV DQJOHV DQG WKH SRO\QRPLDO DSSUR[n LPDWLRQV VKRXOG QRW VKRZ DQ\ V\VWHPDWLF WUHQG H[FHSW SURSRUWLRQDO WR WKH ILIWK RU KLJKHU SRZHUV RI WLPH 7KLV LV LQGHHG WKH FDVH IRU YDULRXV UDQGRP YDOXHV RI ;T DQG ; LQ DGGLWLRQ WR WKH WZR FDVHV PHQWLRQHG DERYH )RU WKH DGRSWHG LQYDULDEOH SODQH WKH GLIIHUHQFHV ; ; DQG $ EHWZHHQ WKH ULJRURXV DQJOHV DQG SRO\QRPLDO DSSUR[LPDWLRQV DUH SUHVHQWHG LQ 7DEOH (YHQ DIWHU WZR FHQWXULHV EHIRUH RU DIWHU WKH ODUJHVW GLIIHUHQFH DPRXQWV WR EDUHO\ 2nL222O ,W LV DSSDUHQW IURP WKLV WDEOH WKDW WKH GRPLQDQW WHUP LQ HDFK FROXPQ LV LQGHHG SURSRUWLRQDO WR 7

PAGE 88

7DEOH &RPSDULVRQ RI 5LJRURXV $QJOHV DQG 3RO\QRPLDO $SSUR[LPDWLRQV 7 / $ 2nI2222 n nL n n f§ 2nL2222222222 2nL2222222222 2nL2222222222 n f§nL f§ nL f§nn nn f§nL nL 3UHFHVVLRQ %HWZHHQ 7ZR $UELWUDU\ 7LPHV 7KH VKRUWWHUP WKHRU\ DV LW KDV EHHQ SUHVHQWHG WKXV IDU SURYLGHV RQO\ IRU SUHFHVVLQJ IURP WKH VWDQGDUG HSRFK -f WR DQRWKHU GDWH ,Q WKLV VHFWLRQ WKHUH ZLOO EH GHYHORSHG H[SUHVVLRQV IRU SUHFHVVLRQ IURP RQH DUELWUDU\ WLPH WR DQRWKHU )RU WKH VDNH RI FODULW\ WKH PDWUL[ 3 IURP HTXDWLRQ f ZLOO QRZ EH GHQRWHG E\ 3 7f 5>/7f@ 5L>7f@ 5>$7f@ 0Rf 5eRf f ,Q WKLV ZD\ WKH LQLWLDO DQG ILQDO WLPH DUJXPHQWV RI 3 DUH JLYHQ H[SOLFLWO\ DV LV WKH GHSHQGHQFH RI 7 DQG $ RQ WKH ILQDO WLPH 7 7KH SUHFHVVLRQ PDWUL[ IURP RQH DUELWUDU\ WLPH ? WR D VHFRQG WLPH 7 FDQ EH WKRXJKW RI DV ILUVW SUHFHVVLQJ IURP 7? EDFN WR WKHQ IURP WR 79 7KHUHIRUH 3? 79f 3 79f 3P f %HFDXVH WKH SUHFHVVLRQ PDWUL[ LV RUWKRJRQDO WKLV LV HTXLYDOHQW WR 3L 7f 3 Uf 3 7UI f f ([SDQGLQJ WKH ULJKWKDQG VLGH JLYHV

PAGE 89

)LJXUH 3UHFHVVLRQ %HWZHHQ 7ZR $UELWUDU\ 7LPHV SP 7f ^5>,7f@ 5L>Wf@ U>f§$7f@ UA,Rf U[f` [ ^5>/^7[f? 5APf@ 5>$7Lf@ 5Rf 5;Rf`7 ^5>f§,Uf@ 5D>7f@ 5>$7f@ 5LRf 5f` [ ^5LRf 5LRf 5>$7Lf@ A>7Lf@ 5>L7Lf@` 5>/7f` 5L>7f@ 5>$7[f $7f@ 5O>,7f` 5>;7Df@ f ZKLFK LV JHRPHWULFDOO\ HYLGHQW IURP )LJXUH (TXDWLRQ f LQ IDFW KDV WKH VDPH VWUXFWXUH DV HTXDWLRQ f H[FHSW WKDW / DQG DUH UHSODFHG E\ WKHLU YDOXHV DW 7? DQG $ LV UHSODFHG E\ WKH DFFXPXODWHG DQJOH IURP 7? WR 79 ,I 7? LV ]HUR HTXDWLRQ f UHGXFHV WR HTXDWLRQ f H[DFWO\ $OVR LI 7? DQG 7 EH H[FKDQJHG HTXDWLRQ f VKRZV WKDW UHVXOWLQJ PDWUL[ 37 f§! 7Lf LV WKH WUDQVSRVH RI 37? f§ 7f DV LQ IDFW LW PXVW EH 7KH PRVW REYLRXV SUREOHP ZLWK HTXDWLRQ f DV LW VWDQGV LV D VXEWUDFWLRQ RI WZR QHDUO\ HTXDO TXDQWLWLHV ZKHQ IRUPLQJ $7f f§ $7Lf WKH QHJDWLYH RI ZKLFK LV WKH DUJXPHQW RI WKH WKLUG URWDWLRQ PDWUL[ 'HILQH W 7 f§ WKHQ IURP HTXDWLRQ f

PAGE 90

$Uf $7Df $7 $7 $7 $7f $M7L $U $7 DWf >$M7M Lf $7L f $7 WI $7L Lf@ $[7M $7 $7 $7f $ [W $7L f $7 7L Wf $7 7L 7L f $L $7 $ 7 $7f $ $U $7f $ $7Lf $ f 7KH ODVW IRUP RI HTXDWLRQ f LV LQ WKH WUDGLWLRQDO WZRDUJXPHQW IRUP XVHG E\ /LHVNH HW DO f ZLWK 7? UHSODFLQJ WKHLU 7 LQVLGH WKH SDUHQWKHVHV 1XPHULFDOO\ ZLWK WKH H[SDQVLRQ UHVWULFWHG WR WKH WKLUG SRZHU RI WLPH $7f $7Mf 7 nn7fr 2nn2LHJ267[fr f $ PRUH VXEWOH QXPHULFDO SUREOHP WKDW RFFXUV DV W f§! LQYROYHV QHDU FDQFHOODWLRQ LQ WKH RIIGLDJRQDO HOHPHQWV RI 3 &OHDUO\ LQ WKH OLPLW DV W 3 PXVW DSSURDFK WKH LGHQWLW\ PDWUL[ +RZHYHU WKH LQGLYLGXDO WHUPV LQ DQ\ RQH HOHPHQW ZLOO QRW YDQLVK UDWKHU WKH\ ZLOO WHQG WR FDQFHO &HUWDLQO\ WKH ULJKWKDQG VLGH RI HTXDWLRQ f FDQ EH PXOWLSOLHG RXW WR JLYH WKH LQGLYLGXDO WHUPV RI WKH 3 E\ MXGLFLRXV DSSOLFDWLRQV RI WKH LGHQWLW\ FRVDr f§ VLQ_Df f WKH JURVV FDQFHOODWLRQV FDQ EH DYRLGHG +RZHYHU WKH UHVXOW LV D GUDPDWLF LQFUHDVH LQ WKH QXPEHU RI WHUPV UHTXLUHG WR H[SUHVV HDFK HOHPHQW RI 3 7KHVH WHUPV DUH QRW JXDUDQWHHG WR EH DOO RI WKH VDPH VLJQ DQG VR WKH SUREOHP RI FDQFHOODWLRQ PD\ QRW LQ IDFW EH UHVROYHG 7KH

PAGE 91

DXWKRU EHOLHYHV WKDW D VWUDLJKWIRUZDUG PHFKDQL]DWLRQ RI f XVLQJ f WR FRPSXWH $ 7Rf f§ $7Lf LV SUREDEO\ WR EH SUHIHUUHG 6XPPDU\ DQG 'LVFXVVLRQ 7KLV FKDSWHU KDV GHYHORSHG WKH VKRUWWHUP DVSHFW RI SUHFHVVLRQ WKHRU\ XVLQJ WKH LQn YDULDEOH SODQH RI WKH 6RODU 6\VWHP DV D UHIHUHQFH SODQH 7KH FODVVLFDO SUHFHVVLRQ PDWUL[ WKDW URWDWHV IURP WKH (DUWK PHDQ HTXDWRU DQG HTXLQR[ RI HSRFK 7? FHQWXULHV SDVW -f WR WKH (DUWK PHDQ HTXDWRU DQG HTXLQR[ RI GDWH 7 7? W FHQWXULHV SDVW -f LV WKH SURGXFW RI ILYH HOHPHQWDU\ URWDWLRQV 3 5>7f@ 5[>7f@ 5>$7[f $7f@ 5[>7[f@ 5>,7;f@ OO6f ZKHUH WKH DQJOHV RQ WKH ULJKWKDQG VLGH RI WKH HTXDWLRQ DUH FRPSXWHG E\ /7f rn 7 O7 7 f ,7f rnn nn7 7 7 f $7f $7;f 7; "fr nn7;f nr f 7KLV YHUVLRQ RI WKH PDWUL[ 3 DJUHHV ZLWK WKH FODVVLFDO PDWUL[ /LHVNH f WR EHWWHU WKDQ 2nL222O IRU ?7? FHQWXU\ ZLWK YLUWXDOO\ DOO WKH GLIIHUHQFH GXH WR WKH QHJOHFWHG fGHWHUn PLQLVWLFf IRXUWKRUGHU WHUPV 7KH DFFXUDF\ ZLWK ZKLFK HLWKHU WKHRU\ WUDFNV WKH DFWXDO SUHFHVVLRQDO PRWLRQ RI WKH (DUWK GHSHQGV RQ WKH WLPH VSDQ RYHU ZKLFK WKH PRGHO IRU WKH SUHFHVVLRQ DQJOHV D DQG ]$ LV YDOLG /DVNDU f IRXQG D IRXUWKRUGHU WHUP LQ WKH DFFXPXODWHG JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH S$ LQ WKH DPRXQW RI f§ n7 DQG D VPDOO WHUP LQ WKH REOLTXLW\ RI GDWH f§ n7 ,I WKHVH QXPEHUV DUH LQGLFDWLYH RI WKH EHKDYLRU RI WKH RWKHU DQJOHV WKH FXUUHQW SRO\QRPLDOV LQ 7 ZLOO EHJLQ WR VKRZ HUURUV RQ WKH RUGHU RI 2nL22O DIWHU

PAGE 92

RQO\ FHQWXULHV RQ HLWKHU VLGH RI 7KLV WRSLF ZLOO EH DGGUHVVHG LQ PRUH GHWDLO LQ &KDSWHU DIWHU WKH ORQJWHUP WKHRU\ ZLOO KDYH EHHQ SUHVHQWHG (TXDWLRQ f IRU WKH PDWUL[ 3 LV XQQHFHVVDULO\ FRPSOLFDWHG VLQFH DQ\ URWDWLRQ PDWUL[ FDQ EH H[SUHVVHG DV WKH SURGXFW RI WKUHH QRW ILYH HOHPHQWDU\ URWDWLRQV 7KH EHVW ZD\ WR HOLPLQDWH WKH H[WUD WZR URWDWLRQV ZRXOG EH WR UHIHU WKH RULJLQ IRU WKH ULJKW DVFHQVLRQ V\VWHP QRW WR WKH YHUQDO HTXLQR[ DV KDV EHHQ GRQH E\ (XURSHDQ DVWURQRPHUV VLQFH WKH 5HQDLVVDQFH EXW LQVWHDG WR WKH LQWHUVHFWLRQ RI WKH (DUWK PHDQ HTXDWRU DQG WKH LQYDULDEOH SODQH 7KH SUHFHVVLRQ PDWUL[ ZRXOG WKHQ EH ZULWWHQ DV 3n 5L>7f@ 5>$Lf $7f@ 5L>-7Lf@ f QRZ RQO\ HTXDWLRQV f DQG f DUH UHTXLUHG WR HYDOXDWH WKH PDWUL[ 7KLV FKDQJH ZRXOG FDXVH DOO ULJKW DVFHQVLRQV WR EH GHFUHDVHG E\ /7f DQG DOO DQQXDO YDULDWLRQV LQ ULJKW DVFHQVLRQ WR EH GHFUHDVHG E\ G/G7 7KHUH ZRXOG EH QR FKDQJH WR WKH GHFOLQDWLRQ V\VWHPf ,Q SDUWLFXODU DW WKH VWDQGDUG HSRFK RQH ZRXOG VXEWUDFW 7R Pr IURP DOO ULJKW DVFHQVLRQV DQG DGG f§/? f§ rFHQWXU\ WR DOO FHQWHQQLDO YDULDWLRQV LQ ULJKW DVFHQVLRQ 6XFK D FKDQJH ZRXOG LQYROYH D UDGLFDO UHGHILQLWLRQ RI WKH VWDQGDUG FRRUGLQDWH V\VWHPV WKDW KDYH EHHQ XVHG LQ DVWURQRP\ IRU FHQWXULHV 7KH UROH RI WKH YHUQDO HTXLQR[ DV WKH RULJLQ IRU ULJKW DVFHQVLRQV ZRXOG EH ORVW LQ HIIHFW WKH HFOLSWLF LWVHOI ZRXOG EH UHSODFHG E\ WKH LQYDULDEOH SODQH 7KH RULJLQ RI ULJKW DVFHQVLRQ ZRXOG VWLOO EH GHILQHG E\ WKH LQWHUVHFWLRQ RI WZR SODQHV KRZHYHU RQO\ RQH RI WKHP WKH HTXDWRUf ZRXOG EH PRYLQJ 7KH UHVXOWLQJ WKHRU\ ZKHQ SXW LQWR SUDFWLFH LV VLPSOHU EHFDXVH RQO\ WZR GLIIHUHQW SRO\QRPLDOV DUH QHHGHG DQG EHFDXVH RQO\ RQH RI WKRVH WZR KDV WZR DUJXPHQWV 7KH FODVVLFDO WKHRU\ XVHV WKUHH SRO\QRPLDOV DOO RI ZKLFK KDYH WZR DUJXPHQWV

PAGE 93

7KLV LV QRW WR LPSO\ WKDW WKH FRQFHSW RI WKH HFOLSWLF KDV FRPSOHWHO\ RXWZRUQ LWV XVHn IXOQHVV $Q\ DQDO\WLFDO WKHRU\ RI SUHFHVVLRQ PXVW XVH WKH HFOLSWLF :KHQ VXLWDEO\ DYHUDJHG RYHU WLPH ERWK WKH 6XQ DQG 0RRQ DUH IRXQG LQ WKH HFOLSWLF 7KH VHFXODU WRUTXH WKDW FDXVHV OXQLVRODU SUHFHVVLRQ ZLOO WKHUHIRUH EH D IXQFWLRQ RI WKH ORFDWLRQ RI WKH HFOLSWLF DQG RI WKH REOLTXLW\ 2QH RI WKH PDMRU REMHFWLRQV WR XVLQJ WKH LQYDULDEOH SODQH LQ WKLV IDVKLRQ ZLOO EH f%XW ZH FDQfW REVHUYH WKH LQYDULDEOH SODQH DQG ZH FDQ REVHUYH WKH HFOLSWLF GLUHFWO\f %RWK KDOYHV RI WKLV FODLP FDQQRW VLPXOWDQHRXVO\ EH WUXH LI LGHQWLFDO DVVXPSWLRQV DUH XVHG WR HYDOXDWH WKHLU WUXWK &DQ ZH REVHUYH WKH LQYDULDEOH SODQH" 7KHUH LV QR IODVKLQJ EHDFRQ LQ WKH VN\ WKDW PDUNV WKH SODQH WUXH EXW WKDW LV DOVR WUXH RI WKH HFOLSWLF :H GR REVHUYH WKH DSSDUHQW ORFDWLRQV RI WKH SODQHWV FHQWXULHV RI REVHUYDWLRQV KDYH IXUQLVKHG UHOLDEOH PHDQ PRWLRQV DQG PHDQ RUELWV 6SDFHFUDIW HQFRXQWHUV KDYH JLYHQ XV ERWK UHOLDEOH LQLWLDO FRQGLWLRQV DQG GUDPDWLF LPSURYHPHQWV LQ RXU HVWLPDWHV RI WKH SODQHWDU\ PDVVHV 6R ZKLOH ZH GR QRW REVHUYH WKH LQYDULDEOH SODQH SHU VH ZH FHUWDLQO\ GR KDYH HQRXJK LQIRUPDWLRQ DW KDQG DOO JOHDQHG IURP REVHUYDWLRQ WR HQDEOH XV WR GHWHUPLQH LWV RULHQWDWLRQ &DQ ZH DFWXDOO\ REVHUYH WKH HFOLSWLF" 7KH 6XQ LWVHOI GRHV QRW OLH LQ WKH HFOLSWLF :KDW ZH REVHUYH LV WKH DSSDUHQW GLUHFWLRQ WR WKH 6XQ 7KLV LV DIIHFWHG E\ WKH OLJKWWLPH FRUUHFWLRQ E\ DQQXDO PRQWKO\ DQG GLXUQDO DEHUUDWLRQ DQG E\ GLXUQDO DQG PRQWKO\ SDUDOOD[ 7KH PRQWKO\ HIIHFWV DUH FDXVHG E\ WKH PRWLRQ RI WKH (DUWK DERXW WKH (DUWK0RRQ EDU\FHQWHUf $ JODQFH DW DQ HSKHPHULV RI WKH 6XQ DV H[SUHVVHG LQ HFOLSWLF FRRUGLQDWHV ZLOO FRQILUP WKLV WKH 6XQfV JHRFHQWULF ODWLWXGH FDQ UHDFK DOPRVW RQH DUFVHFRQG LQ PDJQLWXGH $OO WKHVH HIIHFWV FDQ EH UHPRYHG PDWKHPDWLFDOO\ LI ZH NQRZ WKH PRWLRQ RI WKH (DUWK DQG RI WKH REVHUYHU UHODWLYH WR WKH JHRFHQWHU WR WKH UHTXLUHG SUHFLVLRQ (YHQ VR WKH UHVXOW LV VLPSO\ WKH LQIHUUHG GLUHFWLRQ IURP WKH (DUWK0RRQ EDU\FHQWHU WR WKH 6XQ $ VHW RI VXFK REVHUYDWLRQV

PAGE 94

ZLOO GHWHUPLQH DQ RVFXODWLQJ RUELW WR EH VXUH EXW WKLV LV QRW WKH HFOLSWLF DV WKH HFOLSWLF LV GHILQHG DV WKH PHDQ RUELW ZKDWHYHU WKDW LVf RI WKH (DUWK0RRQ EDU\FHQWHU 2QH PXVW WKHUHIRUH DFFRXQW VRPHKRZ IRU SODQHWDU\ SHUWXUEDWLRQV LQ GHULYLQJ WKH RULHQWDWLRQ DQG PRWLRQ RI WKH HFOLSWLF IURP REVHUYDWLRQV 7KHUHIRUH ERWK SODQHV UHTXLUH IRU WKHLU GHWHUPLQDWLRQ WKH HQWLUH V\VWHP RI SODQHWDU\ PDVVHV DQG RUELWV DV ZHOO DV PRGHOV IRU UHGXFLQJ DSSDUHQW SRVLWLRQV WR WUXH RQHV 1R REMHFW DV D JHQHUDO UXOHf OLHV LQ HLWKHU SODQH 7KH GHWDLOV RI WKH UHGXFWLRQ DUH RI FRXUVH GLIIHUHQW EXW WKH FRQFOXVLRQ LV XQDYRLGDEOH LI WKH HFOLSWLF FDQ EH VDLG WR EH REVHUYDEOH WKHQ VR LV WKH LQYDULDEOH SODQH DQG LI WKH LQYDULDEOH SODQH LV VDLG WR EH XQREVHUYDEOH WKHQ VR LV WKH HFOLSWLF 7KH RQO\ UHDVRQ WKHUHIRUH WR SUHIHU RQH WR WKH RWKHU LV FRQYHQLHQFH ,V WKH UHODWLYH VLPSOLFLW\ RI WKH SUHFHVVLRQ WKHRU\ XVLQJ WKH LQYDULDEOH SODQH RXWZHLJKHG E\ FHQWXULHV RI REVHUYDWLRQV QRW WR PHQWLRQ WUDGLWLRQf UHIHUUHG WR WKH YHUQDO HTXLQR[" 7KH DQVZHU WR WKLV TXHVWLRQ PXVW EH JLYHQ E\ WKH DVWURQRPLFDO FRPPXQLW\ DV D ZKROH

PAGE 95

&+$37(5 7+( /21*7(50 7+(25< 2YHUYLHZ $V SRLQWHG RXW E\ 6LPRQ 1HZFRPE f DQG UHLQIRUFHG E\ /LHVNH HW DO f LW LV QRW SRVVLEOH WR GHYHORS ULJRURXV DQDO\WLF IRUPXODV IRU WKH SUHFHVVLRQ DQJOHV WKDW DUH YDOLG IRU DOO WLPH 7KH UHDVRQLQJ EHKLQG WKLV VWDWHPHQW LV WKDW WKH HTXDWLRQV RI PRWLRQ RI ERWK WKH HFOLSWLF DQG WKH PHDQ HTXDWRU FDQQRW EH LQWHJUDWHG DQDO\WLFDOO\ LQ WKHLU PRVW JHQHUDO IRUP /LHVNH HW DO WRRN WKH YHORFLW\ RI WKH HFOLSWLF SROH YHFWRU WR EH SDUDEROLF LQ WLPH WKH\ REWDLQHG LW E\ ILWWLQJ D VHFRQGGHJUHH SRO\QRPLDO WKURXJK WKH YDOXHV RI WKH SHUWXUEDWLRQ IXQFWLRQ DW WKUHH HSRFKV 7KLV SURYLGHG DQ DSSUR[LPDWH H[SUHVVLRQ DV D FXELF LQ WLPH IRU WKH HFOLSWLF SROH 7KH FXELF SRO\QRPLDO IRU WKH HFOLSWLF SROH ZDV QH[W VXEVWLWXWHG LQWR 1HZFRPEnV HTXDWLRQ RI PRWLRQ IRU WKH PHDQ FHOHVWLDO SROH DQRWKHU DQDO\WLF LQWHJUDWLRQ VXSSOLHG DQ DSSUR[LPDWLRQ IRU WKH ORFDWLRQ RI WKH PHDQ FHOHVWLDO SROH DQG WKH ORFDWLRQV RI ERWK SROHV \LHOGHG WKH GHVLUHG SUHFHVVLRQ DQJOHV $FFXUDWH SUHFHVVLRQ DQJOHV RYHU ORQJ SHULRGV RI WLPH PXVW KRZHYHU EH REWDLQHG E\ QXPHULFDO LQWHJUDWLRQ 7KH RULHQWDWLRQ RI WKH HFOLSWLF SROHf§WKDW LV RI WKH YHFWRU QRUPDO WR WKH PHDQ RUELW RI WKH (DUWK0RRQ EDU\FHQWHUf§KDV DOUHDG\ EHHQ REWDLQHG E\ /DVNDU f RYHU DQ LQWHUYDO RI s \HDUV IURP WKH VWDQGDUG HSRFK DV SDUW RI D UHYLVLRQ RI KLV f1XPHULFDO *HQHUDO 7KHRU\f RI WKH 6RODU 6\VWHP /DVNDU f +LV UHVXOWV REWDLQHG E\ LQWHJUDWLQJ VRPH WHUPV DUH H[SUHVVHG DV VHWV RI FRPSRQHQWV DW \HDU LQWHUYDOV IURP ZKLFK WKH HFOLSWLF SROH FDQ EH REWDLQHG DW DQ\ WLPH E\ LQWHUSRODWLRQ

PAGE 96

*LYHQ WKH HFOLSWLF SROH DQG WKH HFFHQWULFLW\ RI WKH (DUWKfV RUELW WKH DQJXODU VSHHG RI WKH FHOHVWLDO SROH FDQ EH IRXQG 7KLV ZRUN XVHV WKH HTXDWLRQV RI PRWLRQ LQ WKH IRUP GHYHORSHG E\ .LQRVKLWD f D PRUH FRPSOHWH DFFRXQWLQJ RI WKH WRUTXHV RQ WKH (DUWK WKDQ 1HZFRPEfV PRGHO .LQRVKLWDfV UHVXOW IRU WKH VSHHG RI OXQLVRODU SUHFHVVLRQ LV WKHQ XVHG WR LQWHJUDWH WKH PRWLRQ RI WKH FHOHVWLDO SROH 7KH HTXDWLRQV DUH FORVH HQRXJK WR OLQHDU WKDW D VLPSOH IRXUWKRUGHU 5XQJH.XWWD LQWHJUDWRU $EUDPRZLW] DQG 6WHJXQ 6HFWLRQ f ZLWK D FRQVWDQW VWHS VL]H VXIILFHG WR JLYH QXPHULFDO DFFXUDFLHV RQ WKH RUGHU RI D QDQRDUFVHFRQG DIWHU \HDUV &RRUGLQDWHV RI ERWK SROHV ZHUH ZULWWHQ WR D ILOH DW UHJXODU LQWHUYDOV *LYHQ WKH SROHV RI WKH HFOLSWLF DQG HTXDWRU LW LV D VWUDLJKWIRUZDUG PDWWHU WR REWDLQ WKH GHVLUHG SUHFHVVLRQ DQJOHV 7KHVH DUH IRXQG QRW E\ WKH KLVWRULFDO GHYHORSPHQWV RI VSKHULFDO WULJRQRPHWU\ EXW E\ WKH VLPSOHU PHWKRGV RI YHFWRU DOJHEUD $OO RI WKH FODVVLFDO SUHFHVVLRQ DQJOHV DV ZHOO DV WKH DQJOHV ; DQG $ XVLQJ WKH LQYDULDEOH SODQH ZHUH GHWHUPLQHG DW HDFK RXWSXW SRLQW 6LQFH WKH UHVXOWLQJ RXWSXW ILOH LV TXLWH ODUJH RQH RXWSXW SRLQW SHU FHQWXU\ IRU D PLOOLRQ \HDUVf WKH UHVXOWV ZHUH FRQGHQVHG E\ ILWWLQJ &KHE\VKHY SRO\QRPLDOV WKURXJK WKH YDOXHV IRU HDFK DQJOH LQ D PDQQHU VLPLODU WR WKDW HPSOR\HG LQ WKH SURGXFWLRQ RI -3/ SODQHWDU\ HSKHPHULGHV 1HZKDOO f 7KHVH &KHE\VKHY FRHIILFLHQWV IRUP WKH ILQDO UHVXOW RI WKH ORQJWHUP WKHRU\ 7KH LQGLYLGXDO VHFWLRQV RI WKLV FKDSWHU GHVFULEH WKH YDULRXV IDFHWV RI WKLV SURFHGXUH LQ GHWDLO /DVNDUfV WKHRU\ IRU WKH HFOLSWLF WKH GHYHORSPHQW RI WKH HTXDWLRQV RI PRWLRQ RI WKH FHOHVWLDO SROH LQFOXGLQJ .LQRVKLWDfV HTXDWLRQ IRU WKH VSHHG RI OXQLVRODU SUHFHVVLRQ WKHLU VXEVHTXHQW LQWHJUDWLRQ WKH HTXDWLRQV IRU WKH SUHFHVVLRQ DQJOHV DQG WKH &KHE\VKHY ILWWLQJ SURFHVV $ ILQDO VHFWLRQ HVWLPDWHV WKH PDJQLWXGH RI WKH LQWHJUDWLRQ HUURUV ZKLFK DUH VKRZQ WR EH IDU OHVV LPSRUWDQW WKDQ WKH XQFHUWDLQW\ LQ WKH LQLWLDO FRQGLWLRQV

PAGE 97

7KH 0RWLRQ RI WKH (FOLSWLF 7KH SUREOHP RI ILQGLQJ WKH RULHQWDWLRQ RI WKH HFOLSWLF DQG LQGHHG RI WKH RUELWV RI DOO WKH SODQHWV LV DQ ROG RQH LQ WKH ILHOG RI FHOHVWLDO PHFKDQLFV 7KH ZRUN RI -DFTXHV /DVNDU EXLOGV RQ WKH VWURQJ )UHQFK WUDGLWLRQ VWDUWHG E\ /DSODFH /H 9HUULHU DQG /DJUDQJH DQG FRQWLQXLQJ WRGD\ ZLWK 'XULH] f DQG %UHWDJQRQ f /DVNDUfV f1XPHULFDO *HQHUDO 7KHRU\f 1*7f XVHV D FRPELQDWLRQ RI DQDO\WLFDO DQG QXPHULFDO PHWKRGV WR HYDOXDWH WKH PHDQ RUELWDO HOHPHQWV RI WKH ILUVW HLJKW SODQHWV /DVNDU f )LUVW WKH GLVWXUELQJ IXQFWLRQ ZDV GHYHORSHG WR VHFRQG RUGHU LQ WKH SODQHWDU\ PDVVHV DQG ILIWK GHJUHH LQ HFFHQWULFLW\ DQG LQFOLQDWLRQ 7KLV SURFHVV \LHOGHG VRPH PRQRPLDO WHUPV LQ WKH GLIIHUHQWLDO HTXDWLRQV IRU WKH HFFHQWULFLW\ DQG LQFOLQDWLRQ RI WKH SODQHWDU\ RUELWV 7KHVH HTXDWLRQV ZHUH WKHQ LQWHJUDWHG QXPHULFDOO\ 7KH LQLWLDO RUELWDO HOHPHQWV LQ /DVNDUfV ZRUN ZHUH EDVHG RQ %UHWDJQRQfV f 9623 WKHRU\ WKH SODQHWDU\ PDVVHV DUH WKRVH FXUUHQWO\ UHFRPPHQGHG E\ WKH ,QWHUQDWLRQDO $VWURQRPLFDO 8QLRQ f $ VXEVHTXHQW SDSHU E\ /DVNDU f LVRODWHG WKH PRVW SURPLQHQW IUHTXHQFLHV LQ WKH HFFHQWULFLW\ DQG LQFOLQDWLRQ YDULDEOHV IRU WKH SODQHWV ,Q WKLV WHFKQLTXH /DVNDU WRRN D )DVW )RXULHU 7UDQVIRUP RI HDFK FRPSRQHQW XQGHU VWXG\ IRXQG WKH IUHTXHQF\ ZLWK WKH VWURQJHVW DPSOLWXGH VXEWUDFWHG WKDW WHUP IURP WKH RULJLQDO DQG UHSHDWHG WKH SURFHVV WR ILQG WKH QH[W PRVW VLJQLILFDQW WHUP +LV ZRUN VWRSSHG DIWHU WHUPV IRU WKH LQQHU SODQHWV DQG IRU WKH RXWHU SODQHWV 6XFK D IRUPXODWLRQ ZRXOG KDYH EHHQ YHU\ XVHIXO IRU WKLV ZRUN EXW IRU WKH IDFW WKDW /DVNDUfV )RXULHU UHSUHVHQWDWLRQ GRHV QRW SUHVHUYH WKH LQLWLDO FRQGLWLRQV WKHUHIRUH UHTXHVWHG IURP /DVNDU D ILOH RI WKH HFFHQWULFLW\ DQG LQFOLQDWLRQ YDULDEOHV WKHPVHOYHV +H YHU\ JUDFLRXVO\ VHQW PH VXFK D ILOH QRW IURP WKH RULJLQDO 1*7 EXW IURP D PRUH UHFHQW DQG DV \HW XQSXEOLVKHG f LQWHJUDWLRQ 7KLV ILOH VSDQV RQH PLOOLRQ \HDUV \HDUV RQ HLWKHU VLGH RI -f DW \HDU LQWHUYDOV WKXV LW FRQVLVWV RI UHFRUGV (DFK UHFRUG FRQWDLQV WKH TXDQWLWLHV

PAGE 98

K f§ H VLQ ]X N f§ H FRV WX S f§ VLQ ?ND VLQ ,, T f§ VLQ ?ND FRV ,7A f f f f ZKHUH H LV WKH HFFHQWULFLW\ YR WKH ORQJLWXGH RI SHULKHOLRQ A WKH LQFOLQDWLRQ DQG A WKH ORQJLWXGH RI WKH DVFHQGLQJ QRGH RI WKH GHVFHQGLQJ QRGH LI 7 f RI WKH PHDQ RUELW RI WKH (DUWK0RRQ EDU\FHQWHU DOO UHFNRQHG ZLWK UHVSHFW WR WKH (T V\VWHP 7KHUHIRUH S DQG T DUH LGHQWLFDOO\ ]HUR DW 7 f 7KH VWDQGDUG RUELWDO HOHPHQWV PD\ EH UHWULHYHG IURP WKHVH E\ H ?K N f 92 SLJ KNf f 7$ VJQ 7 VLQ ?-S T f SOJ3 VJQ 7 VJQ7f f ,Q HTXDWLRQV f DQG f WKH QRWDWLRQ IROORZV (LFKKRUQ f DV WKH TXDGUDQW RI YR DQG RI A LV VHQVLWLYH WR WKH VLJQV RI WKH QXPHUDWRU DQG GHQRPLQDWRU WKLV LV WKH $7$1 IXQFWLRQ RI )RUWUDQ 7KH IDFWRUV VJQ7 LQ HTXDWLRQV f DQG f SURYLGH FRQWLQXLW\ IRU n.D DQG A DV 7 SDVVHV WKURXJK ]HUR DV S DQG T FKDQJH VLJQV WKHQ 2WKHUZLVH WKH GHULYDWLYH RI WWD ZRXOG FKDQJH VLJQ LQVWDQWDQHRXVO\ DQG A LWVHOI ZRXOG VXIIHU D GLVFRQWLQXLW\ RI rf (TXDWLRQ f FDQQRW EH HYDOXDWHG DW 7 WKHQ A DVVXPHV LWV OLPLWLQJ YDOXH 7KH HTXDWLRQV RI PRWLRQ ZLOO WXUQ RXW WR EH HYDOXDWHG PRVW HDVLO\ LI WKH XQLW YHFWRU GLUHFWHG WR WKH HFOLSWLF SROH LV H[SUHVVHG LQ WHUPV RI LWV UHFWDQJXODU FRRUGLQDWHV 5HODWLYH WR WKH HFOLSWLF DQG PHDQ HTXLQR[ RI WKH HFOLSWLF SROH ( LV JLYHQ E\ S9a 3 4 Y O f§ S T S Tf 9O V F ( VLQ 7D VLQ ,, D VLQ 7D FRV &26 $ f

PAGE 99

,Q RUGHU WR VDYH FRPSXWHU WLPH GXULQJ WKH LQWHJUDWLRQV WKH S DQG T YDOXHV IRU HDFK UHFRUG ZHUH WUDQVIRUPHG DW WKH VWDUW LQWR V DQG F 7KHVH ZHUH WKHQ VWRUHG DORQJ ZLWK K DQG N LQ HOHPHQW DUUD\V ZKLFK ZHUH LQWHUSRODWHG DV QHHGHG 7KH LQWHUSRODWLQJ SRO\QRPLDO ZDV VHOHFWHG WR EH WKH XQLTXH HOHYHQWKRUGHU SRO\QRPLDO SDVVLQJ WKURXJK WZHOYH FRQVHFXWLYH SRLQWV EUDFNHWLQJ WKH LQWHUSRODWLRQ WLPH 7R LPSURYH WKH QXPHULFDO VWDELOLW\ RI WKH SURFHVV WKH &KHE\VKHY UHSUHVHQWDWLRQ ZDV FKRVHQ LQ OLHX RI WKH VLPSOH SRO\QRPLDO UHSUHVHQWDWLRQf ([FHSW DW WKH YHU\ EHJLQQLQJ RU HQG RI WKH ILOH VL[ SRLQWV RXW RI WKH WZHOYH SUHFHGHG WKH LQWHUSRODWLRQ WLPH DQG VL[ IROORZHG LW 7KLV VFKHPH JXDUDQWHHV WKDW WKH LQWHUSRODWHG UHVXOW ZLOO EH WKH WDEXODU YDOXH DW HDFK SRLQW LQ WKH WDEOH WKH GLVFRQWLQXLW\ EHWZHHQ UHJLPHV HQWHUV RQO\ DW WKH ILUVW GHULYDWLYH DQG WKLV VKRXOG EH VPDOO GXH WR WKH KLJK GHJUHH RI WKH ILW 6XEURXWLQHV '3),7 DQG '&39$/ RI -3/fV 0$7+ OLEUDU\ -3/ $SSOLHG 0DWKHPDWLFV *URXS f SHUIRUPHG WKH SRO\QRPLDO FRQVWUXFWLRQ DQG HYDOXDWLRQ UHVSHFWLYHO\ 7KH (TXDWLRQV RI 0RWLRQ IRU WKH &HOHVWLDO 3ROH 7KH GHYHORSPHQW RI WKH HTXDWLRQV RI PRWLRQ IRU WKH PHDQ FHOHVWLDO SROH WKH YHFWRU QRUPDO WR WKH PHDQ HTXDWRU RI GDWHf SURFHHGV LQ VHYHUDO ORJLFDO VWHSV 2QH EHJLQV ZLWK WKH HTXDWLRQ RI PRWLRQ LQ YHFWRU IRUP )URP WKLV UHODWLYHO\ VLPSOH HTXDWLRQ WKH GHULYDWLYHV RI WKH FRPSRQHQWV RI WKH SROH YHFWRU DUH IRXQG VLQFH LW LV WKH FRPSRQHQWV WKDW DUH DFWXDOO\ LQWHJUDWHG )LQDOO\ .LQRVKLWDfV H[SUHVVLRQ IRU WKH UDWH RI OXQLVRODU SUHFHVVLRQ LV DGRSWHG DQG WKH DSSURSULDWH FRQVWDQWV RI KLV WKHRU\ DUH IRXQG 7KH 9HFWRU (TXDWLRQ RI 0RWLRQ 7KH SULQFLSDO VRXUFH RI WKH PRWLRQ RI WKH FHOHVWLDO SROH LV D WRUTXH SURGXFHG E\ WKH JUDYLWDWLRQDO DWWUDFWLRQ RI WKH 6XQ DQG 0RRQ RQ WKH REODWH (DUWK 7KH SHULRGLF SDUW RI WKH WRUTXH WKDW LV WKH SDUW ZKRVH SHULRGV DUH OHVV WKDQ \HDUVf JLYHV ULVH WR QXWDWLRQ ZKLOH WKH WLPHDYHUDJHG SDUW SURGXFHV OXQLVRODU SUHFHVVLRQ 7KH FKDUDFWHU RI OXQLVRODU

PAGE 100

SUHFHVVLRQ PD\ EH REWDLQHG E\ FRQVLGHULQJ WKH 6XQ DQG 0RRQ WR EH VPHDUHG LQWR D ULQJ DURXQG WKH HFOLSWLF DQG WKH REODWHQHVV RI WKH (DUWK OLNHZLVH WR EH FRQFHQWUDWHG LQWR D ULQJ DURXQG WKH HTXDWRU 7KHVH WZR ULQJV KDYH D PXWXDO LQFOLQDWLRQ HTXDO WR WKH REOLTXLW\ RI WKH HFOLSWLF H 7KH UHVXOWLQJ WRUTXH RQ WKH HTXDWRULDO ULQJ LV LQ WKH GLUHFWLRQ RI WKH OLQH RI LQWHUVHFWLRQ RI WKH WZR SODQHV WKH YHUQDO HTXLQR[f DQG LWV PDJQLWXGH LV SURSRUWLRQDO WR VLQH $ GHWDLOHG GHULYDWLRQ LV JLYHQ LQ FKDSWHU RI :RRODUG DQG &OHPHQFH f DQG QHHG QRW EH UHSHDWHG KHUH 7KH VHFRQG FRQWULEXWLRQ WR WKH PRWLRQ RI WKH FHOHVWLDO SROH LV WKH VRFDOOHG fJHRGHVLF SUHFHVVLRQf $OWKRXJK GH 6LWWHU f ILUVW VKRZHG WKDW JHQHUDO UHODWLYLW\ SUHGLFWV WKDW VSLQQLQJ ERGLHV LQ D JUDYLWDWLRQDO ILHOG ZLOO XQGHUJR D IRUFHG SUHFHVVLRQ RQO\ WZR GHFDGHV ODWHU GLG GH 6LWWHU DQG %URXZHU f LQFOXGH LWV HIIHFW LQ OXQLVRODU SUHFHVVLRQ 7KH HIIHFW RI JHRGHVLF SUHFHVVLRQ LV DOVR D WRUTXH LQ WKH GLUHFWLRQ RI WKH YHUQDO HTXLQR[ EXW LWV PDJQLWXGH LV SURSRUWLRQDO WR VLQH LQVWHDG RI VLQH 6LQFH VLQ V VLQH FRVH WKH PDJQLWXGHV RI WKH WZR WRUTXHV PD\ EH FRPELQHG LQWR DQ H[SUHVVLRQ RI WKH IRUP G 4 G7 3 FRVH f§ SJf VLQH f ZKHUH 4 LV WKH FHOHVWLDO SROH YHFWRU D XQLW YHFWRU 3 LV 1HZFRPEfV f3UHFHVVLRQDO &RQVWDQWf 1HZFRPE S f DQG SJ LV WKH UDWH RI JHRGHVLF SUHFHVVLRQ 1HLWKHU 3 QRU SJ LV TXLWH FRQVWDQW DV ERWK GHSHQG VOLJKWO\ RQ WKH HFFHQWULFLW\ RI WKH (DUWKfV RUELW ZKLFK YDULHV RYHU WLPH 1RZ WKH GRW SURGXFW RI WZR XQLW YHFWRUV JLYHV WKH FRVLQH RI WKH DQJOH EHWZHHQ WKHP DQG WKH PDJQLWXGH RI WKH FURVV SURGXFW RI WZR XQLW YHFWRUV LV WKH SRVLWLYHf VLQH RI WKH DQJOH EHWZHHQ WKHP 7KH IDFWRUV FRVH DQG VLQ H LQ HTXDWLRQ f FDQ WKHUHIRUH EH UHSODFHG E\ 4 ( DQG _4 [ (_ ZKHUH ( LV WKH XQLW YHFWRU LQ WKH GLUHFWLRQ WRZDUG WKH QRUWK HFOLSWLF SROH %XW VLQFH WKH WRUTXH LV DOUHDG\ GLUHFWHG WRZDUG WKH YHUQDO HTXLQR[ LH WRZDUG 4[( ZH

PAGE 101

FDQ XVH WKH FURVV SURGXFW LWVHOI UDWKHU WKDQ PHUHO\ LWV PDJQLWXGH 7KXV HTXDWLRQ f LV H[SUHVVHG LQ YHFWRU QRWDWLRQ E\ U4 G7 >34 f (f S@4 [ ( f 7KLV IRUP RI WKH HTXDWLRQ ZDV JLYHQ E\ )DEUL f )XUWKHU VLPSOLILFDWLRQ LV SRVVLEOH )URP HTXDWLRQ f RI /LHVNH HW DO f WKH YDOXH RI 3 DW GHQRWHG 3! FDQ EH H[SUHVVHG DV 3R 3L 3Jf VHF eR ;7 f ZKHUH SL LV WKH VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH D IXQGDPHQWDO FRQVWDQWf ;L LV WKH UDWH RI SODQHWDU\ SUHFHVVLRQ DQG e LV WKH REOLTXLW\ DOO DW )XUWKHU VLQFH WKH UDWH RI OXQLVRODU SUHFHVVLRQ DW LSL LV DOVR JLYHQ E\ WKH VDPH VHW RI HTXDWLRQV DV 3L;L FRVe f WKH TXDQWLW\ LQ EUDFNHWV LQ HTXDWLRQ f§f FDQ EH H[SUHVVHG DV 3FRVH SJ >S 3Jf VHFH ?@ FRVe 3J f§ S ; FRV e 9} f 7KLV HTXDWLRQ DSSOLHV IRU DOO WLPHV 7 QRW PHUHO\ DW WKH LQLWLDO HSRFK WKHUHIRUH WKH VXEVFULSWV GHQRWLQJ WKH TXDQWLWLHV KDYH EHHQ GURSSHG 7KH HTXDWLRQ RI PRWLRQ IRU WKH FHOHVWLDO SROH WKXV EHFRPHV 9Y f4 [ ( f WKLV HTXDWLRQ VKRZV H[SOLFLWO\ WKH GHSHQGHQFH RQ 7 RI WKH UDWH RI OXQLVRODU SUHFHVVLRQ PHDVXUHG UHODWLYH WR WKH HFOLSWLF RI GDWH

PAGE 102

7KH (TXDWLRQ RI 0RWLRQ LQ &RPSRQHQW )RUP (TXDWLRQ f LV D YHFWRU HTXDWLRQ DQG WKXV YDOLG LQ DQ\ LQHUWLDO FRRUGLQDWH V\VWHP 7KH FKRLFH RI FRRUGLQDWH V\VWHPV LV WKHUHIRUH DUELWUDU\ DV LV WKH FKRLFH RI UHSUHVHQWDWLRQV RI WKH FRPSRQHQWV UHFWDQJXODU RU VSKHULFDOf RI WKH YHFWRU 4 $FFRUGLQJO\ WKH FRRUGLn QDWH V\VWHP WKDW PDNHV WKH QXPHULFDO LQWHJUDWLRQ WKH PRVW VWDEOH DQG SHUPLWV WKH HDVLHVW FRPSXWDWLRQ RI WKH GHULYDWLYHV LV WKH SURSHU RQH WR FKRRVH /DVNDUfV UHVXOWV IRU WKH PRWLRQ RI WKH HFOLSWLF ZHUH H[SUHVVHG UHODWLYH WR WKH LQHUWLDO (R V\VWHP +LV YDULDEOHV S DQG T FDQ EH WUDQVIRUPHG HDVLO\ LQWR V DQG F E\ HTXDWLRQ f JLYLQJ WKH UHFWDQJXODU FRPSRQHQWV RI ( UHIHUUHG WR WKLV VDPH FRRUGLQDWH V\VWHP )RU WKLV UHDVRQ DORQH WKH (T V\VWHP ZRXOG EH D JRRG FKRLFH IRU WKH RULHQWDWLRQ RI WKH FRRUGLQDWH V\VWHP LQ ZKLFK WKH LQWHJUDWLRQ LV SHUIRUPHG 7KH FKRLFH EHWZHHQ UHFWDQJXODU DQG VSKHULFDO FRRUGLQDWHV IRU UHSUHVHQWLQJ 4 DOVR UHn YHDOV WKDW D FRRUGLQDWH V\VWHP EDVHG RQ WKH HFOLSWLF LV WR EH SUHIHUUHG 6LQFH WKH GHULYDWLYH RI 4 LV SHUSHQGLFXODU WR 4 LWVHOI WKH PDJQLWXGH RI 4 ZLOO QRW FKDQJH ,I VSKHULFDO FRRUGLn QDWHV UDGLXV U FRODWLWXGH DQJOH ORQJLWXGH DQJOH M! )LJXUH f DUH DGRSWHG IRU 4 U LV WKHUHIRUH FRQVWDQW DQG WKH QXPEHU RI FRPSRQHQWV WR EH LQWHJUDWHG LV RQO\ WZR X DQG Mf )LQDOO\ LI ( ZHUH VWDWLRQDU\ DQG LI A ZHUH FRQVWDQW HTXDWLRQ f VKRZV WKDW 4 ZRXOG GHVFULEH D ULJKW FLUFXODU FRQH ZKRVH D[LV LV SDUDOOHO WR ( ERWK WKH DQJXODU UDWH RI 4 DQG WKH REOLTXLW\ ZRXOG EH FRQVWDQW ,Q WKLV f]HURWKRUGHUf DSSUR[LPDWLRQ X ZRXOG EH FRQVWDQW DQG -f ZRXOG EH D OLQHDU IXQFWLRQ RI WLPH )RU WKHVH UHDVRQV WKH LQWHJUDWLRQ LV EHVW FDUULHG RXW XVLQJ VSKHULFDO SRODU FRRUGLQDWHV IRU 4 UHIHUUHG WR WKH ( V\VWHP 7KH GHULYDWLYHV RI X DQG M! DUH WKHUHIRUH UHTXLUHG 'HQRWH WKH UHFWDQJXODU FRPSRQHQWV RI 4 E\ 4[ 4\ 4fW DQG VLPLODUO\ IRU ( 7KHQ HTXDWLRQ f EHFRPHV LQ UHFWDQJXODU FRRUGLQDWHV 4r? 4\(] 4](\ ? M 4\ A M 4]([ f§ 4;(= ?4] f ?4[(\ a 4\([ f

PAGE 103

( R \( 1RZ )LJXUH 6SKHULFDO &RRUGLQDWHV IRU 4 LQ WKH (T 6\VWHP RM f§ FRV 4] f 'LIIHUHQWLDWLQJ WKLV JLYHV /4 VLQX 4\( ; 4[(\f f VLQX! >VLQ X VLQ I!f VLQ WD VLQ 8$f f§ VLQR FRV !f f§ VLQ Q$ FRV ,IAf@ WLVLQ WA FRVLOOA f§ M!f f 6LPLODUO\ VLQFH A f§ 9At4\L 4[fL f WKH GHULYDWLYH LV

PAGE 104

! f 4 [4 \ 4 \4 [ 4O 4O VLQ XM >4[4]([ f§ 4[(]f f§ 4\4\( 4](\f` 4]^4[([ 4\(\f VLQ XM ( f FRVX>VLQX FRV I!fVLQ WWD VLQ Af VLQ X VLQ !ff§ VLQ LFRV Af@ VLQ XM &26 77D A>FRWFMVLQ LU D VLQQ f§ff f§ FRV UA@ f &OHDUO\ WKH FRODWLWXGH DQJOH XM LV MXVW WKH VHSDUDWLRQ EHWZHHQ WKH FHOHVWLDO SROH RI GDWH DQG WKH HFOLSWLF SROH RI RU HTXLYDOHQWO\ WKH LQFOLQDWLRQ RI WKH HTXDWRU RI GDWH WR WKH HFOLSWLF RI 6LPLODUO\ WKH ORQJLWXGH DQJOH Mf LV r DKHDG RI WKH ORQJLWXGH RI WKH GHVFHQGLQJ QRGH RI WKH HTXDWRU RI GDWH RQ WKH HFOLSWLF RI WKLV QRGH LV WKH SRLQW PDUNHG E\ 7L LQ )LJXUH RI /LHVNH HW DO f 7KH DQJOHV XM DQG If DUH UHODWHG WR DQJOHV LQ WKDW SDSHU E\ XM XM D f DQG I! r [c$ f 2QH DVSHFW RI HTXDWLRQ f GHVHUYHV IXUWKHU FRPPHQW $W 7 ZKHQ WD If f§9E LQWXLWLYHO\ FRQVLVWHQW ZLWK HTXDWLRQ f %XW ZKHQ LU$ WKLV VLPSOH UHODWLRQ GRHV QRW KROG 7KH H[SODQDWLRQ LV WKDW LMM DFWXDOO\ UHSUHVHQWV WKH LQVWDQWDQHRXV UDWH RI OXQL VRODU SUHFHVVLRQ UHODWLYH WR WKH HFOLSWLF RI GDWH LW LV QRW HTXDO WR GA$G7A ZKLFK LV PHDVXUHG DORQJ WKH HFOLSWLF RI -

PAGE 105

.LQRVKLWDfV ([SUHVVLRQ IRU /LPLVRODU 3UHFHVVLRQ $V ZH KDYH VHHQ DERYH WKH UDWH RI OXQLVRODU SUHFHVVLRQ UMf FDQ EH H[SUHVVHG IROORZLQJ /LHVNH HW DO f DV 3 FRV H f§ SJ f 2YHU WKH VKRUW WHUP LW LV VXIILFLHQW WR PRGHO 3 DV 3R 3L7 /LHVNH HW DO XVH 3? f§ nL SHU FHQWXU\f DQG SJ FDQ EH UHJDUGHG DV FRQVWDQW VLQFH LW LV D UHODWLYHO\ VPDOO TXDQWLW\ 3 SHU FHQWXU\f )RU DQ LQWHJUDWLRQ H[WHQGLQJ RYHU D PLOOLRQ \HDUV PRUH SUHFLVH H[SUHVVLRQV RI WKHVH TXDQWLWLHV DUH QHHGHG $ EHWWHU IRUPXODWLRQ IRU 3 FRVH ZDV JLYHQ E\ .LQRVKLWD f .LQRVKLWDfV RULJLQDO YHUVLRQ HTXDWLRQ f RI KLV SDSHUf KDV D VLJQ HUURU WKH FRUUHFW YHUVLRQ HTXDWLRQ f RI /DVNDU f LV P NPW & f§ $ f§ % & U L Y Z FRV V 0T M0f FRVH 0L f§ VLQ H 0 UUL^ Q? &$% PL 6OQUL & FRV H f§ f NPR & $ % M A + UU >R a R rrf FRV J_ & f +HUH N LV WKH *DXVVLDQ JUDYLWDWLRQDO FRQVWDQW WKH LfV DUH PDVVHV LQ XQLWV RI WKH VRODU PDVV WKH DfV DUH WKH PHDQ RUELWDO VHPLPDMRU D[HV f LV WKH (DUWKfV URWDWLRQ UDWH $ % DQG & DUH WKH (DUWKfV SULQFLSDO PRPHQWV RI LQHUWLD ZLWK & EHLQJ WKH SRODU PRPHQWf LV WKH 0RRQfV PHDQ PRWLRQ QQ LV WKH 0RRQfV QRGDO UDWH D QHJDWLYH TXDQWLW\ DQG WKH DQG 6L DUH QXPHULFDO IDFWRUV GHWHUPLQHG E\ .LQRVKLWD 7KH UHVXOWLQJ UDWH 5 LV SULPDULO\ D IXQFWLRQ RI WKH REOLTXLW\ DOWKRXJK WKH (DUWKfV HFFHQWULFLW\ HQWHUV LQWR 6Rn OL 0? DQG 0 EH QHJOHFWHG HTXDWLRQ f§f WDNHV WKH IRUP 5 RF FRV H f

PAGE 106

ZKHUH WKH FRQVWDQW RI SURSRUWLRQDOLW\ FRQWDLQV DOO WKH DVWURQRPLFDO DQG JHRSK\VLFDO FRQn VWDQWV DERYH $ FRPSDULVRQ RI WKLV ZLWK HTXDWLRQ f§f VKRZV FOHDUO\ WKDW .LQRVKLWDfV UDWH LV QRW A LWVHOI EXW UDWKHU 3FRVV VLQFH SJ LV QRW SUHVHQW LQ KLV HTXDWLRQ 7KXV IURP HTXDWLRQ f 5 7 3L 3J ;O &26e f 2I DOO WKH FRQVWDQWV DSSHDULQJ LQ HTXDWLRQ f RQO\ WKH UDWLR RI WKH PRPHQWV RI LQHUWLD + & f§ $ f§ %f& LV QRW NQRZQ (TXDWLRQV f DQG f WKXV FRPELQH WR \LHOG D TXDGUDWLF HTXDWLRQ IRU + D+ EOO F f ZLWK D f§ f§f§0 f r PH UUL^ LLULQ FRV eT f§ f f E NPW tk 0R ?0f FRVR 0Ln FRV R >6R \f FRVR@ VLQ f & 3L 3J ;O &26 L f 7KH VROXWLRQ RI HTXDWLRQ f LV WKH XVXDO + E s \E f§ DF D f 7KH SK\VLFDOO\ UHDO VROXWLRQ GHPDQGV WKH QHJDWLYH VLJQ EHIRUH WKH VTXDUH URRW 6LQFH E LV ERWK GRPLQDQW DQG QHJDWLYH HTXDWLRQ f DV LW VWDQGV FRQWDLQV D QHDU FDQFHOODWLRQ LQ WKH QXPHUDWRU 7KH HTXDWLRQ LV LQVWHDG UHOLDEO\ HYDOXDWHG 3UHVV HW DL 6HFWLRQ f E\

PAGE 107

+ F ?E f§ $DF f§ E f ,W VWLOO UHPDLQV WR H[SUHVV SJ DQG 6R LQ WHUPV RI WKH HFFHQWULFLW\ RI WKH (DUWKfV RUELW %DUNHU DQG 2n&RQQHOO f JLYH 3J k Qp FDkO Hb< f ZKHUH cLp LV WLPHV WKH 6XQfV PDVV Qk LV WKH (DUWKfV PHDQ PRWLRQ F LV WKH VSHHG RI OLJKW DQG Dk DQG Hk DUH WKH VHPLPDMRU D[LV DQG HFFHQWULFLW\ RI WKH (DUWKfV RUELW $V IRU R HTXDWLRQ f RI /DVNDU f UHDGV 6 HOfa ; f 7KH FRQVWDQW WHUP ZDV DGGHG E\ /DVNDU WR UHFRQFLOH WKH ILUVW WHUP RQ WKH ULJKWKDQG VLGH ZLWK .LQRVKLWDfV YDOXH 6R DW 7 LW DFFRXQWV IRU WKH GHSDUWXUH RI WKH (DUWKfV RUELW IURP .HSOHULDQ PRWLRQ 7KH UDWH RI SODQHWDU\ SUHFHVVLRQ DW WKH HSRFK ;L f! OV IURP HTXDWLRQ f RI /LHVNH HW DO f &6& eR f 7 f 7KH GHULYDWLYH ZDV IRXQG E\ ILWWLQJ D WHQWKRUGHU SRO\QRPLDO WKURXJK /DVNDUfV FHQWUDO HOHYHQ SRLQWV IRU V LQ D PDQQHU VLPLODU WR WKDW GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ DQG WKHQ GLIIHUHQWLDWLQJ WKH SRO\QRPLDO DQG HYDOXDWLQJ LW DW 7 f§ 1RZ WKH YDOXH RI + FDQ EH IRXQG (TXDWLRQV f DQG f JLYH SJ DW HSRFK DQG ZKLFK DSSHDU LQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f 7KH UHPDLQLQJ TXDQWLWLHV LQ HTXDWLRQV f WKURXJK f DUH NQRZQ LQ SDUWLFXODU WKH REOLTXLW\ DW HSRFK DQG WKH VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH HR DQG S UHVSHFWLYHO\ DUH VHW WR

PAGE 108

WKHLU FXUUHQWO\DFFHSWHG YDOXHV :LWK D DQG F HYDOXDWHG HTXDWLRQ f FDQ EH VROYHG IRU + 1XPHULFDO YDOXHV RI WKH YDULRXV FRQVWDQWV DSSHDULQJ ZLWKLQ WKLV VHFWLRQ DUH FROOHFWHG ZLWK WKHLU VRXUFHV LQ 7DEOH 7KHVH YDOXHV \LHOG GV aG7 AFHQWXU\ f 7 ;L FHQWXU\ f OnOFHQWXU\ f 7 + f 7KH FRQVWDQWV N DQG Np LQ .LQRVKLWD f DUH WKHQ N Af§+ OnnFHQWXU\ / O A Np N Pp  D + 7FHQWXU\ k f f 7KHVH ODVW WZR YDOXHV DUH VRPHZKDW GLIIHUHQW IURP .LQRVKLWDfV UHVXOWV ZKLFK DUH nn DQG nn SHU FHQWXU\ UHVSHFWLYHO\ SUREDEO\ GXH WR KLV XVH RI ROGHU YDOXHV IRU WKH YDULRXV PDVVHV 7KHLU VXP DJUHHV TXLWH ZHOO WKLV LQGLFDWHV D VOLJKW GLIIHUHQFH LQ GLYLGLQJ WKH FDXVH RI OXQLVRODU SUHFHVVLRQ EHWZHHQ WKH 6XQ DQG WKH 0RRQ 7KH 1XPHULFDO ,QWHJUDWLRQ RI WKH 0RWLRQ RI WKH &HOHVWLDO 3ROH 7KH QXPHULFDO LQWHJUDWLRQ RI 4 LV VWUDLJKWIRUZDUG 7KH LQWHJUDWLRQ LWVHOI LQYROYHV EXW WZR GHSHQGHQW YDULDEOHV XM DQG WKH WZR GLIIHUHQWLDO HTXDWLRQV f DQG f DUH RI WKH ILUVW RUGHU )XUWKHUPRUH &M LV IDLUO\ VPDOO VLQFH RQH RI WKH IDFWRUV LV VLQ LW D DQG m f LWVHOI LV QRW ODUJH DQG Mf LV QHDUO\ FRQVWDQW VLQFH WKH OHDGLQJ WHUP LQ Mf LV FRVWD

PAGE 109

7DEOH $VWURQRPLFDO &RQVWDQWV IRU .LQRVKLWDfV /XQLVRODU 3UHFHVVLRQ 0RGHO 4XDQWLW\ 9DOXH N $8GD\ $8 NP P Pp PH Pp Dp $8 NP Qp UDGFHQWXU\ QW FHQWXU\ UDQ f§FHQWXU\ IW VHF 0R 0[ P P V HR rn 3L nFHQWXU\ 6RXUFH ,$8 f ,$8 f ,$8 f ,$8 f %UHWDJQRQ f &KDSURQW7RX] DQG &KDSURQW f %UHWDJQRQ f &KDSURQW7RX] DQG &KDSURQW f &KDSURQW7RX] DQG &KDSURQW f $RNL HW DO f .LQRVKLWD f .LQRVKLWD f .LQRVKLWD f .LQRVKLWD f .LQRVKLWD f ,$8 f ,$8 f )DQF\ LQWHJUDWLRQ WHFKQLTXHV DUH QRW QHFHVVDU\ WR LQWHJUDWH VR VLPSOH D VHW RI HTXDWLRQV 5DWKHU VLQFH RXWSXW LV GHVLUHG DW HTXDOO\ VSDFHG WLPH LQWHUYDOV D IL[HGVWHS LQWHJUDWRU LV LQGLFDWHG 2I WKHVH WKH IRXUWKRUGHU 5XQJH.XWWD PHWKRG $EUDPRZLW] DQG 6WHJXQ 6HFWLRQ f ZDV VHOHFWHG DV LW FRPELQHV UHOLDEOH UHVXOWV ZLWK HDVH RI SURJUDPPLQJ A 7KH GHULYDWLYHV X DQG S DUH REWDLQHG LQ VHYHUDO VWHSV )LUVW /DVNDUfV WDEOHV SURYLGH E\ LQWHUSRODWLRQ WKH YDULDEOHV K DQG N ZKLFK \LHOG WKH HFFHQWULFLW\ RI WKH (DUWKfV RUELW E\ HTXDWLRQ f 7KLV YDOXH RI Hp ZDV VXEVWLWXWHG LQWR HTXDWLRQV f DQG f IRU WKH UDWH RI JHRGHVLF SUHFHVVLRQ DQG WKH YDOXH RI .LQRVKLWDfV FRHIILFLHQW 6Rf /DVNDUfV WDEOHV ZHUH DJDLQ LQWHUSRODWHG WKLV WLPH IRU F DQG 7KHVH \LHOGHG ERWK UHFWDQJXODU DQG VSKHULFDO FRRUGLQDWHV IRU WKH YHFWRU ( E\ HTXDWLRQ f 7KH GRW SURGXFW RI ( DQG 4 ZKLFK LV FRV ZDV WKHQ IRXQG DQG VLQH DQG VLQH ZHUH FDOFXODWHG IURP WKH FRVLQH (TXDWLRQ f JDYH .LQRVKLWDfV UDWH DQG HTXDWLRQ f \LHOGHG LS )LQDOO\ X DQG S ZHUH IRXQG IURP HTXDWLRQV f DQG f 7KLV SURFHVV ZDV SHUIRUPHG IRXU WLPHV SHU LQWHJUDWLRQ VWHS

PAGE 110

7KH LQLWLDO FRQGLWLRQV DUH VWUDLJKWIRUZDUG DW 7 7KH LQWHJUDWLRQ H[WHQGHG IRUZDUG IURP 7 8T R f r f 7 WR 7 FHQWXULHV WKHQ EDFNZDUG IURP 7 WR 7 FHQWXULHV 7KH VWHS VL]H ZDV GHWHUPLQHG E\ H[DPLQLQJ WULDO \HDU LQWHJUDWLRQV LQ ZKLFK WKH HFOLSWLF SROH DQG UDWH RI OLPLVRODU SUHFHVVLRQ ZHUH WKRVH RI /LHVNH HW DO f 7KH SUHn FHVVLRQ DQJOHV LQIHUUHG IURP WKH LQWHJUDWHG FHOHVWLDO SROH ZHUH H[DPLQHG DV WKH VWHS VL]H ZDV YDULHG IURP RQH FHQWXU\ WR RQH \HDU HYHQ ZLWK D RQHFHQWXU\ VWHS VL]H WKH LQWHJUDWLRQ HUURU DIWHU WZR VWHSV ZDV DW WKH ADUFVHFRQG OHYHO $ VWHS VL]H RI FHQWXU\ ZDV FKRVHQ WR EH VDIH 7KH 'HWHUPLQDWLRQ RI WKH 3UHFHVVLRQ $QJOHV 7KH RXWSXW IURP WKH QXPHULFDO LQWHJUDWRU FRQVLVWLQJ RI WKH FRRUGLQDWHV RI WKH SROHV 4 DQG ( UHIHUUHG WR WKH PHDQ HFOLSWLF DQG HTXLQR[ RI SURYLGHV VXIILFLHQW LQIRUPDWLRQ IRU WKH FDOFXODWLRQ RI ERWK WKH IXOO VHW RI FODVVLFDO SUHFHVVLRQ DQJOHV DQG WKH DQJOHV = DQG $ LQYROYLQJ WKH LQYDULDEOH SODQH 7KHVH DQJOHV FDQ DOO EH H[SUHVVHG DV WKH ODWLWXGH RU ORQJLWXGH DQJOHV RI VSHFLILF YHFWRUV ZLWK UHVSHFW WR FRRUGLQDWH V\VWHPV WKDW FDQ EH LPPHGLDWHO\ UHDOL]HG IURP 4 DQG ( 7KH REOLTXLW\ RI WKH HFOLSWLFf§WKH DQJOH EHWZHHQ WKH HFOLSWLF RI GDWH DQG WKH HTXDWRU RI GDWHf§LV JLYHQ E\ HLWKHU RI H f§ VLQ _4 [ (_ FRV $4(f O f 7KH IRUPXODWLRQ LQ WHUPV RI WKH FURVV SURGXFW DQG DUFVLQH LV PRUH VWDEOH QXPHULFDOO\ VLQFH e r

PAGE 111

7KH DFFXPXODWHG SUHFHVVLRQ DQJOHV D D DQG ]D DUH IRXQG E\ GHFRPSRVLQJ WKH VWDQGDUG URWDWLRQ PDWUL[ 3 ZKLFK WUDQVIRUPV IURP WKH 4R V\VWHP WR WKH 4 V\VWHP $OO WKHVH DQJOHV EHLQJ PHDVXUHG IURP WKH VWDQGDUG HSRFK DUH JLYHQ WLOGHV LQ /LHVNH HW DO f IRU FODULW\ WKH WLOGHV DUH RPLWWHG KHUHf ,Q RUGHU WR REWDLQ 3 LW LV ILUVW QHFHVVDU\ WR FDOFXODWH WKH SRVLWLRQV RI WKH FRRUGLQDWH D[HV RI WKH 4 V\VWHP 7KH D[LV RI WKLV V\VWHP LV DOUHDG\ DW KDQG LW LV 4 7KH [D[LV LV WKH YHUQDO HTXLQR[ RI GDWH 7 JLYHQ E\ 7 4 [ (f VLQH f 7KH \D[LV FRPSOHWHV WKH WULDG \J 4 ; 7 f 6LQFH WKH FRPSRQHQWV RI WKUHH YHFWRUV DUH VWLOO VSHFLILHG LQ WKH ( V\VWHP WKH PDWUL[ $ IRUPHG E\ ZLOO WUDQVIRUP IURP (T LQWR 4 7KH PDWUL[ 3 IROORZV IURP WKLV E\ 3 $ 5LHRf f EHFDXVH 5LeRf URWDWHV IURP 4R LQWR ( *LYHQ 3 LW LV D VLPSOH PDWWHU WR UHFRQVWUXFW WKH DFFXPXODWHG SUHFHVVLRQ DQJOHV D D DQG ]Df %\ GHILQLWLRQ 3 5 b $f 5Df 5f§&2 :ULWLQJ RXW WKH SURGXFW RI WKH WKUHH HOHPHQWDU\ URWDWLRQ PDWULFHV JLYHV

PAGE 112

&26 =$ FRV D &26 D f§ VLQ ]D VLQ D VLQ ]D FRV D FRV FRV ]D VLQ A VLQ D FRV D f§ FRV ]D FRV D VLQ D f§ VLQ ]D FRV e f§ VLQ ]D FRV VLQ D FRV ]D FRV D f§ VLQ D VLQ D f§ &26 VLQ $ f§ VLQ A VLQ D ,PPHGLDWHO\ D LV JLYHQ E\ f 6LQFH FRVD f§ FRV f§ Df WKHUH LV D VLJQ DPELJXLW\ 7KLV DPELJXLW\ H[WHQGV WR WKH RWKHU WZR DQJOHV DV ZHOO VLQFH WKH SURGXFW 5r ]$f 5$f 5r 8f \LHOGV H[DFWO\ WKH VDPH PDWUL[ DV WKH ULJKWKDQG VLGH RI HTXDWLRQ f 7KH DPELJXLW\ LV UHVROYHG E\ WKH FRQYHQWLRQ WKDW $ OLNH WWD DERYHf PXVW KDYH WKH VDPH VLJQ DV 7 7KLV FRQYHQWLRQ LV IROORZHG LPSOLFLWO\ LQ WKH FXUUHQW SUHFHVVLRQ WKHRULHV VLQFH WKH SRO\QRPLDO IRU D JLYHV QHJDWLYH YDOXHV IRU 7 DQG SRVLWLYH YDOXHV IRU 7 7KHUHIRUH D VJQ 7 FRV 3 f 7KH SULQFLSDO YDOXH RI WKH DUFFRVLQH IXQFWLRQ LV WR EH XVHG KHUH 7KH DQJOHV D tQG =$ IROORZ IURP SOJI f§ 3f LI 7 2 LI 7 f ^ SOJA 73fff LI 7 SOJ73" 3f" LI 7 ]D LI 7 f ^ SOJA 3f LI 7 0XOWLSOHV RI r DUH WR EH DGGHG DV QHFHVVDU\ DV ZLWK WKH DQJOHV D DQG ]D DUH QHJDWLYH E\ FRQYHQWLRQ LI 7

PAGE 113

$Q DOWHUQDWLYH ZD\ RI FRQVWUXFWLQJ WKH PDWUL[ 3 LV WR H[SUHVV LW DV 3 t[Df 5LZDf 5Af 5LHf f ZKHUH [D LV WKH DFFXPXODWHG SODQHWDU\ SUHFHVVLRQ IURP WR GDWH XD LV WKH LQFOLQDWLRQ RI WKH HTXDWRU RI GDWH WR WKH HFOLSWLF RI DQG LS D LV WKH DFFXPXODWHG OXQLVRODU SUHn FHVVLRQ IURP WR GDWH $ FRPSDULVRQ RI HTXDWLRQV f DQG f UHYHDOV WKDW WKH SURGXFW RI WKH WKUHH OHIWPRVW URWDWLRQ PDWULFHV RQ WKH ULJKWKDQG VLGH RI HTXDWLRQ f LV VLPSO\ WKH PDWUL[ $ GHILQHG E\ HTXDWLRQ f 0XOWLSO\LQJ WKHVH RXW \LHOGV $ 5;Df 5 A$ f 59P f f FRV?$ FRV LS D FRV [D VLQ LS $ VLQ [D FRV XD VLQ LS D VLQ [D FRV XD FRV LS D VLQ [D FRV LS$ VLQ [D VLQ LS$ FRV [D FRV XD VLQ LS D FRV [D FRV OMD FRV LS D 9 VLQ XD VLQ LS D VLQ XD FRV LS D VP [D VLQ XD ? FRV [D VQLFD f f FRV XD 6LQFH XD LV DOZD\V SRVLWLYH WKH DFFXPXODWHG SODQHWDU\ SUHFHVVLRQ [D LV JLYHQ XQDPELJXn RXVO\ E\ ;D SOJAL f f ,Q SUDFWLFH 0 LV DOZD\V QHJDWLYH VR WKDW [D DOZD\V IDOOV LQ WKH ILUVW RU IRXUWK TXDGUDQW 7KH DQJOHV XD DQG LS D FDQ DOVR EH GHWHUPLQHG HDVLO\ IURP HTXDWLRQ f EXW XD LV RQH RI WKH YDULDEOHV EHLQJ LQWHJUDWHG DQG LS D LV HDVLO\ IRXQG IURP S YLD HTXDWLRQ f 7KH ODVW FODVVLFDO SUHFHVVLRQ DQJOH LV WKH DFFXPXODWHG JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH 3Df )ROORZLQJ WKH GHYHORSPHQW RI $QGR\HU f DQG /LHVNH HW DO f ZULWH 3D $D f

PAGE 114

ZKHUH LV PHDVXUHG DORQJ WKH HFOLSWLF RI GDWH IURP WKH YHUQDO HTXLQR[ RI GDWH WR WKH LQWHUVHFWLRQ RI WKH HFOLSWLFV RI GDWH DQG RI HSRFK A LV PHDVXUHG DORQJ WKH HFOLSWLF RI HSRFK IURP WKH YHUQDO HTXLQR[ RI HSRFK WR WKH VDPH LQWHUVHFWLRQ 7KLV LQWHUVHFWLRQ GHQRWHG E\ 1 OLHV LQ WKH GLUHFWLRQ H[SUHVVHG LQ (T FRRUGLQDWHVf  FVf7 LI 7 1 OLP FVf7 LI 7 @ Wf§R 8FVf7 LI 7 ZKHUH F DQG V DUH WKH YDOXHV LQWHUSRODWHG IURP /DVNDUfV WDEOHV $V 7 f§ WKH GLUHFWLRQ RI 1 LV ZHOO GHILQHG HYHQ WKRXJK WKH PDJQLWXGH RI WKH YHFWRU YDQLVKHV :KHQ 1 LV URWDWHG LQWR WKH ( V\VWHP LWV ORQJLWXGH DQJOH LV $A 7KH RUWKRJRQDO PDWUL[ WR SHUIRUP WKLV URWDWLRQ LV VLPSO\ ? ( ( [ 7f7 M f VR WKDW $M SLJ >(1f (1fL@ f 7KH ORQJLWXGH RI WKH QRGH A LV VLPLODUO\ JLYHQ DV 8$ 3OJL9L9f f ,I 7 ( LV WKH LGHQWLW\ PDWUL[ JLYLQJ $A A RU )LQDOO\ WKH DQJOHV UHODWLYH WR WKH LQYDULDEOH SODQH PXVW EH IRXQG )URP &KDSWHU WKH SUHFHVVLRQ PDWUL[ 3 FDQ EH ZULWWHQ DV 3 5,f 5Lf 5$f 5Lf 5eRf f 'HILQH WKH PDWUL[ 4 E\

PAGE 115

4HH 35Bf5LRf f 5Lf 5Lf 5$f f FRV / FRV $ VLQ / FRV VLQ $ VLQ / FRV $ f§ FRV / VLQ $ VLQ / FRV FRV $ VLQ / VLQ $ FRV / FRV VLQ $ FRV / FRV FRV $ 9 VLQ VLQ $ VLQ FRV $ VLQ / VLQ ? FRV / VLQ FRV f (TXDWLRQ f \LHOGV WKH GHVLUHG DQJOHV E\ / SLJ4L 4f f FRV4 f $ 3OJ" f f 7KHVH UHVXOWV DUH XQDPELJXRXV HYHQ IRU 7 f§ EHFDXVH IRU DOO WLPHV 7 ,Q SUDFWLFH 4 LV IRXQG IURP HTXDWLRQ f XVLQJ WKH PDWUL[ 3 IRXQG E\ HTXDWLRQ f 7KH HTXDWLRQV LQ WKLV VHFWLRQ ZHUH HYDOXDWHG RQFH SHU FHQWXU\ XVLQJ WKH RXWSXW ILOH IURP WKH QXPHULFDO LQWHJUDWRU DQG WKH YDOXHV RI / DQG GHWHUPLQHG LQ &KDSWHU 7KH HOHYHQ DQJOHV WKXV IRXQG  $ $ ]$ LS$ [D S$ L DQG $f ZHUH ZULWWHQ WR D ILOH IRU IXUWKHU SURFHVVLQJ )LJXUH SUHVHQWV SORWV RI WKH HOHYHQ DQJOHV RYHU WKH HQWLUH WLPH VSDQ FRYHUHG E\ WKH LQWHJUDWLRQ 7KH SORWV IRU A S$ DQG $ DUH QHDUO\ VWUDLJKW OLQHV RQ WKH VFDOH RI WKH ILJXUH KRZHYHU WKHVH DQJOHV DUH E\ QR PHDQV OLQHDU IXQFWLRQV RI WLPH

PAGE 116

GHJf GHJf 7 FHQWXULHV IURP -f )LJXUH 7KH 3UHFHVVLRQ $QJOHV IRU 2QH 0LOOLRQ
PAGE 117

GHJf B .D GHJf 7 FHQWXULHV IURP -f )LJXUH FRQWLQXHG Ff 3UHFHVVLRQ $QJOH $ Gf 3UHFHVVLRQ $QJOH ]$

PAGE 118

GHif D GHVf In222 7 FHQWXULHV IURP -f )LJXUH FRQWLQXHG Hf /XQL6RODU 3UHFHVVLRQ ?Mf f 3ODQHWDU\ 3UHFHVVLRQ ?$

PAGE 119

3$ GHJf D GHJf 7 FHQWXULHV IURP -f )LJXUH FRQWLQXHG Jf ,QFOLQDWLRQ RI (FOLSWLF RI 'DWH WR (FOLSWLF RI (SRFK Kf *HQHUDO 3UHFHVVLRQ LQ /RQJLWXGH S?

PAGE 120

, GHJf / GHJf 7 FHQWXULHV IURP -f )LJXUH FRQWLQXHG Lf 3UHFHVVLRQ $QJOH / Mf 3UHFHVVLRQ $QJOH ,

PAGE 121

7 FHQWXULHV IURP -f )LJXUH FRQWLQXHG Nf 3UHFHVVLRQ $QJOH $

PAGE 122

,OO 7KH &KHE\VKHY 5HSUHVHQWDWLRQ RI WKH 3UHFHVVLRQ $QJOHV 7KH ILQDO VWHS LQ WKH ORQJWHUP WKHRU\ LV WR SURYLGH SRO\QRPLDOV WKURXJK ZKLFK WKH SUHFHVVLRQ DQJOHV FDQ EH LQWHUSRODWHG DW DQ\ GHVLUHG WLPH 6LQFH WKH XVH RI &KHE\VKHY SRO\QRPLDOV KDV SURYHG WR EH ZRUWKZKLOH LQ WKH FRQVWUXFWLRQ RI HSKHPHULV ILOHV DW -3/ WKLV ZDV D QDWXUDO FKRLFH KHUH DV ZHOO %RWK WKH OHQJWK RI WKH WLPH LQWHUYDOV WR EH ILW DQG WKH GHJUHH RI WKH SRO\QRPLDOV DUH DUELWUDU\ D JRRG FKRLFH VKRXOG PLQLPL]H WKH WRWDO QXPEHU RI FRHIILFLHQWV UHTXLUHG IRU WKH HQWLUH PLOOLRQ \HDUV ZKLOH UHWDLQLQJ DFFHSWDEOH DFFXUDF\ 2QH IHDWXUH GHHPHG GHVLUDEOH SURYHG WR UHVWULFW WKH WLPH LQWHUYDOV WR MXVW D IHZ SRVVLEOH YDOXHV ,Q RUGHU WR SURYLGH D ZD\ RI UHODWLQJ WKH VKRUWWHUP DQG ORQJWHUP WKHRULHV WKH WLPH 7 f§ PXVW RFFXU LQ WKH FHQWHU RI DQ LQWHUYDO UDWKHU WKDQ DW D ERXQGDU\ 7KLV LPSOLHV DQ RGG QXPEHU RI LQWHUYDOV 1RZ WKH LQWHJUDWLRQ LQWHUYDO ZDV D PLOOLRQ \HDUV RU FHQWXULHV WKHUHIRUH WKH QXPEHU RI ILWWLQJ LQWHUYDOV PXVW EH DQ RGG IDFWRU RI QDPHO\ RU 6LQFH WKH FHOHVWLDO SROH PDNHV DSSUR[LPDWHO\ UHYROXWLRQV DERXW WKH HFOLSWLF SROH RI HSRFK GXULQJ WKH PLOOLRQ \HDUV WKH ILUVW WZR FKRLFHV DUH REYLRXVO\ RXW RI WKH TXHVWLRQ 7KH IRXUWK RSWLRQ ZRXOG QRW KDYH VKRUWHQHG WKH LQWHUSRODWLQJ SRO\QRPLDOV HQRXJK WR FRPSHQVDWH IRU WKH ILYHIROG LQFUHDVH LQ LQWHUYDOV &RQVHTXHQWO\ WKH PLOOLRQ\HDU LQWHJUDWLRQ ZDV EURNHQ LQWR LQWHUYDOV RI \HDUV HDFK 7KH FODVVLFDO SUHFHVVLRQ DQJOHV $ A DQG =D SURYHG LPSRVVLEOH WR ILW 5HFDOO WKDW D LV WKH QRUWK SRODU GLVWDQFH RI WKH FHOHVWLDO SROH RI GDWH DV PHDVXUHG LQ WKH 4 V\VWHP D LV WKH QHJDWLYH RI WKH ULJKW DVFHQVLRQ RI WKH FHOHVWLDO SROH RI GDWH DJDLQ PHDVXUHG LQ WKH 4R V\VWHP DQG =D LV r SOXV WKH ULJKW DVFHQVLRQ RI WKH FHOHVWLDO SROH RI HSRFK ZLWK UHVSHFW WR WKH 4 V\VWHP 1RZ HYHU\ \HDUV RU VR WKH (DUWK FRPSOHWHV D SUHFHVVLRQDO $ F\FOH DQG WKH FHOHVWLDO SROH PDNHV D FORVH DSSURDFK WR WKH FHOHVWLDO SROH RI HSRFK ,I WKH WZR SROHV ZHUH HYHU H[DFWO\ SDUDOOHO D ZRXOG KDYH D FXVS DW DQG D DQG ]D ZRXOG HDFK XQGHUJR r GLVFRQWLQXLWLHV (YHQ WKRXJK WKH WZR SROHV QHYHU GR FRLQFLGH H[FHSW DW

PAGE 123

7 f WKH TXDOLWDWLYH EHKDYLRU LV VLPLODU JRHV WKURXJK D VKDUS PLQLPXP DOWKRXJK QRW D FXVSf DQG D DQG ]HDFK PRYH TXLFNO\ EXW QRW LQVWDQWDQHRXVO\f WKURXJK r )LJXUH SUHVHQWV SORWV RI WKHVH DQJOHV DW WKH FORVH RI WKH QH[W F\FOH VRPH \HDUV LQ WKH IXWXUH 7KH WLPH VFDOH RYHU ZKLFK D DQG ]D FKDQJH LV DERXW FHQWXULHV VLQFH WKLV LV RQH IRUWLHWK RI D ILWWLQJ LQWHUYDO RQH ZRXOG QHHG D SRO\QRPLDO RI DW OHDVW IRUWLHWK GHJUHH LQ RUGHU WR ILW WKH FXUYH &RQVHTXHQWO\ WKHVH WKUHH DQJOHV ZHUH QRW ILW 7KLV LV QR JUHDW ORVV EHFDXVH WKH SUHFHVVLRQ PDWUL[ FDQ EH REWDLQHG MXVW DV HDVLO\ IURP WKH RWKHU FODVVLFDO DQJOHV 7KH UHPDLQLQJ HLJKW DQJOHV ZHUH DSSUR[LPDWHG E\ QLQWKGHJUHH SRO\QRPLDOV WR DQ DYHUDJH DFFXUDF\ RI DERXW a GHJUHH RQ WKH RUGHU RI D DUFVHFRQG 7KLV DFFXUDF\ VKRXOG VXIILFH IRU DQ\ ORQJWHUP ZRUN 6XEURXWLQH '3),7 -3/ $SSOLHG 0DWKHPDWLFV *URXS f SHUIRUPHG WKH ILWWLQJ WKLV LV WKH VDPH URXWLQH WKDW SURYLGHG WKH LQWHUSRODWLQJ SRO\QRPLDOV IRU /DVNDUfV WDEOHV 7KH LQWHUSRODWLQJ SRO\QRPLDOV ZHUH FRQVWUDLQHG WR PDWFK WKH WDEXODU YDOXHV DW WKH HQGn SRLQWV RI HDFK ILWWLQJ LQWHUYDO DVVXULQJ FRQWLQXLW\ RI WKH LQWHUSRODWHG YDOXHV DFURVV LQWHUYDO ERXQGDULHV ,Q DGGLWLRQ WKH SRO\QRPLDOV LQ WKH FHQWHU LQWHUYDO ZHUH FRQVWUDLQHG WR SDVV WKURXJK WKH WDEXODU YDOXHV DW 7 7KH FRQVWUDLQWV ZHUH SURJUDPPHG VLPSO\ E\ JLYLQJ WKHVH SRLQWV D VWDQGDUG GHYLDWLRQ RI LQVWHDG RI XQLW\ DFFRUGLQJ WR WKH VXEURXWLQH GRFXPHQWDWLRQ WKLV LV VXIILFLHQW WR IRUFH WKH SRO\QRPLDOV WR WKHVH SRLQWV WR WKH FRPSXWHUfV LQWHUQDO SUHFLVLRQ '3),7 UHWXUQV LQ DGGLWLRQ WR WKH &KHE\VKHY FRHIILFLHQWV D YDULDEOH JLYLQJ WKH D SRVn WHULRUL VWDQGDUG GHYLDWLRQ RI WKH GLIIHUHQFH EHWZHHQ WKH WDEXODU YDOXHV DQG WKH SRO\QRPLDO DSSUR[LPDWLRQV 7KH ODUJHVW YDOXHV IRXQG ZHUH ; f GHJUHH RU nn IRU LS D DQG ?$ ZLWKLQ WKH ILIW\QLQWK \HDU LQWHUYDO 7 f 7KH ZRUVW ILW WR WKH DQJOHV

PAGE 124

GHJf D GHJf &$ GHJf 7 FHQWXULHV IURP -f )LJXUH 7KH 3UHFHVVLRQ $QJOHV $ $ DQG ]$ 1HDU 7

PAGE 125

7 DQG $ ZDV PRUH WKDQ DQ RUGHU RI PDJQLWXGH EHWWHU 0RUH W\SLFDO UHVXOWV ZHUH RQ WKH RUGHU RI GHJUHH 7DEOH SUHVHQWV WKH SULQFLSDO UHVXOWV RI WKLV LQYHVWLJDWLRQ &KHE\VKHY FRHIILFLHQWV IRU WKH UHPDLQLQJ HLJKW DQJOHV (DFK SDJH FRQWDLQV DOO WKH FRHIILFLHQWV IRU RQH WLPH LQWHUYDO 7KH FROXPQ RI QXPEHUV XQGHU HDFK DQJOH JLYHV WKH FRHIILFLHQWV DW IRU DQJOH D ZLWK D DW WKH WRS DQG DJ DW WKH ERWWRP 7KH V\PERO D KHUH UHSUHVHQWV DQ\ RI WKH HLJKW DQJOHVf $OO RI WKH FWL DUH JLYHQ LQ GHJUHHV *LYHQ D WLPH 7 PHDVXUHG LQ -XOLDQ FHQWXULHV IURP ZLWK ?7? 7DEOH LV HPSOR\HG DV IROORZV )LUVW GHWHUPLQH  WKH LQWHUYDO QXPEHU E\ L /7 f f 7KH V\PEROV _B DQG GHQRWH WKDW WKH TXRWLHQW LV WR EH WUXQFDWHG WR DQ LQWHJHU &RQVHTXHQWO\ WKH YDOXH RI L ZLOO UDQJH IURP WR 7KH FHQWUDO WLPH 7F RI WKH LQWHUYDO LV JLYHQ E\ 7F  f 7KH DUJXPHQW RI WKH &KHE\VKHY SRO\QRPLDOV LV WKHQ FI HTXDWLRQ ff 7 f§ 7F 7 )LQDOO\ DQJOH D LV IRXQG E\ D -AN7NUf f N ZKHUH 7AUf LV WKH &KHE\VKHY SRO\QRPLDO RI WKH ILUVW NLQG RI GHJUHH N DV LQ HTXDWLRQ f 7KH UHVXOW LV D7f H[SUHVVHG LQ GHJUHHV &RSLHV RI 7DEOH LQ FRPSXWHUUHDGDEOH IRUP PD\ EH REWDLQHG IURP WKH DXWKRU f

PAGE 126

6RXUFHV RI (UURU LQ WKH /RQJ7HUP 7KHRU\ 'XULQJ WKH YHULILFDWLRQ RI WKH QXPHULFDO LQWHJUDWRU VHYHUDO WHVWV ZHUH UXQ WR PDNH VXUH WKDW QXPHULFDO SUREOHPV ZHUH QRW VLJQLILFDQW 7KH ILUVW FKHFN RQ WKH LQWHJUDWLRQ ZDV PDGH E\ VWDUWLQJ DQRWKHU LQWHJUDWLRQ DW 7 f§ FHQWXULHV XVLQJ WKH UHVXOWV RI WKH ILUVW LQWHJUDWLRQ DV LQLWLDO FRQGLWLRQV DQG SURFHHGLQJ IRUZDUG RQH PLOOLRQ \HDUV WR 7 FHQWXULHV $W 7 WKH VHFRQG LQWHJUDWLRQ UHSURGXFHG 6R WR WKH ODVW ELW DQG LWV YDOXH RI WKH SUHFHVVLRQ DQJOH ZDV [ DUFVHF $W 7 f§ FHQWXULHV WKH SUHFHVVLRQ DQJOHV DJUHHG WR EHWWHU WKDQ ILYH QDQRDUFVHFRQGV 7KLV LQVLJQLILFDQW GLIIHUHQFH FDQ EH DVFULEHG WR URXQGRII HUURU GXULQJ WKH LQWHJUDWLRQ $ GLIIHUHQW DSSURDFK LV UHTXLUHG WR HYDOXDWH WKH GLIIHUHQFH EHWZHHQ WKH QXPHULFDOO\ LQWHJUDWHG UHVXOWV DQG WKH WUXH XQNQRZQf LQWHJUDO 7KLV HUURU DULVHV EHFDXVH WKH 5XQJH .XWWD SURFHGXUH DVVXPHV D IRXUWKRUGHU SRO\QRPLDO IRU WKH GHULYDWLYH IXQFWLRQ ZKHUHDV WKH WUXH GHULYDWLYH FRQWDLQV KLJKHURUGHU WHUPV 7KH GLIIHUHQFH EHWZHHQ WKH WUXH DQG QXPHULFDO DQVZHUV ZKHQ LQWHJUDWHG RYHU D FRQVWDQW LQWHUYDO LV SURSRUWLRQDO WR WKH IRXUWK SRZHU RI WKH VWHSVL]H K $FFRUGLQJO\ WKH PLOOLRQ\HDU IRUZDUG LQWHJUDWLRQ DERYH ZDV UHSHDWHG ZLWK K GRXEOHG WR M FHQWXU\ $W WKH HQG RI WKH LQWHJUDWLRQ 7 f WKH SUHFHVVLRQ DQJOHV DJUHHG ZLWK WKH SUHYLRXV UHVXOWV WR EHWWHU WKDQ RQH [DUFVHF 7KH GLIIHUHQFH EHWZHHQ WKH LQLWLDO LQWHJUDWLRQ DQG WKH WUXWK VKRXOG WKHUHIRUH EH D IDFWRU RI VPDOOHU 7KXV WKH LQWHJUDWLRQ SURFHGXUH LWVHOI LV QRW H[SHFWHG WR EH WKH GRPLQDQW VRXUFH RI HUURU 7KH XQFHUWDLQW\ LQ WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH ZDV IRXQG DW WKH HQG RI &KDSWHU WR EH RQ WKH RUGHU RI nn +RZHYHU WKLV WRR LV QRW ZRUULVRPH VLQFH WKH VXEVHTXHQW GHYHORSPHQWV UHTXLUH RQO\ D IL[HG SODQH QRW QHFHVVDULO\ WKH LQYDULDEOH SODQH LWVHOI 6R WKH UHVXOWV IRU R DQG /T FDQ EH FRQVLGHUHG WR EH FRQYHQWLRQDO FRQVWDQWV ZLWKRXW HUURU LI WKH GHWHUPLQDWLRQ RI WKH LQYDULDEOH SODQH ZHUH WR FKDQJH WKH DQJOHV 7 DQG $ LQ 7DEOH FRXOG WKHQ EH LQWHUSUHWHG DV UHIHUULQJ WR DQ DUELWUDU\ SODQH FORVH WR EXW QRW

PAGE 127

FRLQFLGHQW ZLWK WKH LQYDULDEOH SODQH %XW LI DQG = ZHUH WR EH FKDQJHG RQO\ = DQG $ ZRXOG FKDQJH DV D UHVXOW DQG WKRVH RQO\ E\ DQ DPRXQW VLPLODU WR WKH FKDQJHV LQ 7R RU = 7KH QXPHULFDO LQWHJUDWLRQ LWVHOI ZRXOG QRW EH DIIHFWHG 7KH GRPLQDQW XQFHUWDLQW\ LQ WKH ORQJWHUP WKHRU\ LV LQ WKH LQLWLDO VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH 7KH FXUUHQWO\DFFHSWHG YDOXH RI nnFHQWXU\ PD\ EH LQ HUURU E\ D VLJQLILFDQW IUDFWLRQ RI DQ DUFVHFRQG SHU FHQWXU\ LQ RWKHU ZRUGV E\ RQH SDUW LQ $QG VLQFH WKLV XQFHUWDLQW\ LV LQ D UDWH WKH HUURU LQ WKH DFFXPXODWHG DQJOH SD ZLOO JURZ URXJKO\ OLQHDUO\ ZLWK WLPH $IWHU \HDUV DQ HUURU RI FHQWXU\ LQ S? ZRXOG FDXVH DQ HUURU RI KDOI D GHJUHH LQ SDf $Q HUURU RI WKLV PDJQLWXGH HDVLO\ VZDPSV DOO RWKHU HIIHFWV )RU WKLV UHDVRQ LW LV IUXLWOHVV DW WKH PRPHQW WR H[WHQG WKH LQWHJUDWLRQ PXFK SDVW WKH PLOOLRQ\HDU LQWHUYDO FRYHUHG KHUH 7KHUH LV FRQVLGHUDEOH KRSH WKDW YHU\ORQJ EDVHOLQH LQWHUIHURPHWU\ 9/%,f DQG OXQDU ODVHU UDQJLQJ //5f GDWD ZLOO VRRQ SURYLGH D PXFK PRUH SUHFLVH YDOXH RLS? =KX HW DO f KDYH DOUHDG\ SXEOLVKHG D QHZ YDOXH IRU WKH UDWH RI OXQL VRODU SUHFHVVLRQ EDVHG RQ 9/%, GDWD DORQH ZKRVH VWDQGDUG HUURU LV RQO\ 2nnFHQWXU\ D IRUWKFRPLQJ SDSHU E\ :LOOLDPV HW DO f XVLQJ //5 GDWD JLYHV D VLPLODU VWDQGDUG HUURU :KHQ PRUH SUHFLVH YDOXHV ZLOO KDYH EHHQ DGRSWHG E\ WKH ,$8 LW ZLOO EH SRVVLEOH WR H[WHQG WKH LQWHJUDWLRQ RYHU DW OHDVW WHQ WLPHV WKH FXUUHQW LQWHUYDO 5HVXOWV IURP VXFK D SURMHFW ZKHQ FRPSDUHG ZLWK WKH JHRORJLFDO UHFRUG PLJKW HYHQ JLYH LQVLJKW LQWR WKH ORQJWHUP FKDQJH LQ OHQJWK RI WKH GD\ DQG WKH WLGDO GHFHOHUDWLRQ RI WKH 0RRQ

PAGE 128

7DEOH &KHE\VKHY 3RO\QRPLDO &RHIILFLHQWV IRU WKH /RQJ7HUP 7KHRU\ ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 e GHJf [ a [ [ a ; a [ f§ ; [ [ a [ n3D GHJf [ a [ [ [ ; ; f ; a [ a XD GHJf [ [ [ [ [ a [ [ [ f f§ [ a ;D GHJf ; ; [ ; [ a [ a ; a [ [ 3D GHJf [ f ; [ [ f [ a [ a [ f§ [ $ GHJf [ [ [ a [ [ f [ a ; f [ f ,GHJf [ [ f [ f f§ [ a [ [ f [ a [ f [ f / GHJf ; [ ; [ f ; [ ; [ a [ a [

PAGE 129

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ ,2 [ f [ [ [ a [ [ [ a [ [ [ a [ f ; LR ; a [ [ ,2 [ ,2 9 GHJf $ GHJf [ ,2f [ [ a ; a [ a [ a [ [ n [ ,2f [ ; f ; ; f [ [ a [ ,2 X$ GHJf GHJf [ ,2 [ [ ,2 [ [ f [ ,2 [ ,2 [ [ a [ ,2n ; ,2 [ a [ a [ ,2 ; a ; ,2 [ n [ ,2 ; GHJf / GHJf [ ,2 [ ,2 [ a ; ; [ [ f [ f ; a ; a [ ; f [ O2f ; ,2 ; [ f [ n [ ,2

PAGE 130

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ ; f [ [ a [ a [ [ [ f [ f Lf$ GHJf ; a [ a [ a [ a [ f [ [ [ f X$ GHJf [ [ a [ f f§ [ [ a [ a [ f§ ; a ; GHJf ; O2 ; [ [ ; a ; [ [ a 3$ GHJf [ a [ a [ [ [ a [ a [ a [ a $ GHJf ; [ a [ f [ f [ f [ [ [ f GHJf [ O2 [ f [ a [ [ f§ [ ; f [ [ / GHJf ; a ; ; f [ a [ a [ [ [ a [ f

PAGE 131

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf ; [ a ; f [ a [ a [ f [ ; a [ L!$ GHJf [ [ [ [ [ a [ [ a ; f XD GHJf [ [ [ f [ a [ [ ; n [ [ a ;D GHJf ; f [ a [ [ f ; [ [ [ a 3$ GHJf [ ; a [ a [ [ f [ f [ [ f $ GHJf [ [ [ f ; [ a ; O2 [ [ f ,GHJf [ a [ B [ a ; f ; ; ; a [ a [ / GHJf [ [ [ f [ [ [ [ [ [

PAGE 132

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ a [ f [ a [ a [ a [ [ f [ [ a !D GHJf [ a ; a [ O2 [ a [ a ; O2 [ GHJf [ a ; ; [ f [ O2 ; f [ [ ; GHJf ; ; a [ a [ [ [ a [ O2 [ 3D GHJf ; [ a [ [ a [ O2 [ O2f f§ [ a [ f $ GHJf [ O2 [ a [ f [ a [ O2f [ f [ O2 [ O2 ,GHJf [ a [ a ; O2 [ [ [ [ O2 [ a / GHJf f§ [ a ; [ [ a [ O2 [ [ O2f [ [ O2

PAGE 133

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ f [ f [ a [ f [ [ a [ a [ f [ aX LI $ GHJf ; [ O2 [ [ a [ f ; f [ a [ X$ GHJf [ [ [ a [ a [ [ f§ [ [ [ ;D GHJf [ [ f ; [ f [ a [ [ f [ a [ n 3D GHJf [ ; f [ O2f [ [ a ; a [ [ $ GHJf [ O2f [ [ a [ [ f [ [ a [ ,GHJf [ [ [ a [ a [ f [ a [ [ a [ O2 / GHJf [ O2 [ [ [ a ; ; f ; f ;

PAGE 134

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ ; a ; [ a [ a [ f [ a [ [ a f f $ GHJf [ O2 [ [ a [ f [ f [ a [ f GHJf [ a [ ; f ; f [ a [ [ [ a 3D GHJf ; [ a [ a [ [ [ O2f [ a [ f $ GHJf [ [ f f§ [ [ [ a [ f [ fp [ f ,GHJf [ [ a ; a ; [ [ f ; [ f ;D GHJf [ [ ; f§ [ [ ; f [ [ f / GHJf [ [ f ; a [ a [ a [ a [ ; f

PAGE 135

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ a [ a [ f [ a [ f [ [ a [ a LS $ GHJf [ [ [ f [ f [ a [ ; ; X$ GHJf [ f ; n [ f [ f [ a [ a [ [ O2 [ f ;D GHJf [ ; [ B [ [ [ [ ; O2f [ a 3D GHJf [ [ f [ a [ ; [ [ [ a $ GHJf [ [ f [ O2 [ f [ [ ; a [ ,GHJf [ O2 [ [ a [ a [ a [ f [ a [ f / GHJf ; f [ f ; [ [ a [ ; a [ a

PAGE 136

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ n [ [ a [ a [ a [ a [ [ a [ a $ GHJf ; O2 [ On2 [ O2 [ [ a [ f§ [ [ f X$ GHJf [ [ [ f [ a ; O2 [ f [ [ ; GHJf [ ; [ a [ [ [ [ f [ 3D GHJf [ ; a [ a [ a [ n [ [ a ; a $ GHJf ; ; f [ a [ a [ [ [ f [ f ,GHJf [ O2n [ [ [ a [ [ [ a [ / GHJf [ [ [ a [ [ f [ a [ f [

PAGE 137

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf f [ O2 [ a [ [ [ f [ a f [ [ [ f [ a [ a [ a [ f [ [ f ; ; GHJf $ GHJf ; ; [ a [ f [ f [ f [ a [ [ [ f [ f [ ; a [ [ f f [ a X$ GHJf GHJf ; O2 [ [ O2 [ a [ a [ [ [ a ; [ n [ [ f [ [ a [ a [ ; O2 ;D GHJf / GHJf ; O2 [ n [ O2 [ ; a ; [ n [ [ f ; a [ f [ ; ; O2f [ [ ; [ n

PAGE 138

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ a [ [ O2 f [ f§ ; a [ f [ [ a A$ GHJf [ O2n [ a [ a [ a [ ; a [ [ a ZD GHJf [ [ [ [ a [ f [ f [ a [ [ f ;D GHJf ; ; O2f [ a [ [ f [ O2 [ ; [ 3D GHJf [ a ; a [ f [ a ; a ; a [ [ f $ GHJf [ O2 [ f [ f [ [ O2 [ a [ a [ a ,GHJf [ O2 [ O2 ; [ [ [ [ a [ O2 [ / GHJf [ ; [ O2 [ [ a ; [ [ [ f

PAGE 139

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ fr [ [ a ; f [ [ [ [ [ a L!$ GHJf [ a [ [ a [ a [ a [ a ; [ a X$ GHJf [ fr [ O2 [ a [ a [ a [ f ; a [ a f§ [ ;D GHJf f§ ; B [ [ a [ [ f [ [ [ 3D GHJf [ [ ; f [ [ [ f [ O2f [ $ GHJf [ O2f [ f [ [ f [ a [ [ a [ GHJf [ a [ a [ a ; a [ f ; a [ a [ a / GHJf ; a ; [ a [ a [ f [ [ [ ;

PAGE 140

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 H GHJf [ [ ; [ a [ O2 ; ; a [ a [ a GHJf [ a [ [ [ n [ f [ [ f XD GHJf ; f [ a [ a [ [ a [ [ a [ ;D GHJf [ a [ [ a [ [ f [ O2 [ a [ [ 3D GHJf [ [ [ [ a [ f [ [ a [ a $ GHJf [ [ f [ [ f [ [ f [ a [ a ,GHJf ; [ [ f [ a [ f [ f [ f f§ [ a [ f / GHJf ; ; a f§ [ a [ [ a [ f [ a [

PAGE 141

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf 3D GHJf [ O2 [ a [ f [ f [ a [ f f [ a [ a ; [ a [ [ a [ [ a [ ; a [ D GHJf $ GHJf ; B ; O2f ; [ a [ [ ; f ; a [ [ a [ a [ a V [ a [ f [ f [ a 8-$ GHJf GHJf [ [ [ ; [ a ; [ a [ [ [ O2f [ [ a [ [ [ a [ a [ [ a ;$ GHJf / GHJf ; ; [ [ [ O2f ; f [ [ [ [ O2 [ f [ [ a [ a [ O2 ; a [ ; a

PAGE 142

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ [ a [ a [ [ ; [ a ; a 9X GHJf [ [ O2 [ [ [ f ; [ f [ f Xf$ GHJf [ [ [ a ; a [ a [ [ [ f ;D GHJf [ [ [ [ [ a [ [ a [ f 3D GHJf ; f§ [ [ [ a [ [ f [ a [ a $ GHJf ; [ [ a [ [ [ a ; [ ,GHJf [ [ f [ ; f [ [ [ [ a [ / GHJf [ O2 [ a [ O2 [ [ O2 [ a [ [ [ a

PAGE 143

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 e GHJf 3D GHJf [ [ a [ n ; a ; f [ a [ f [ a [ f [ a [ a [ f [ [ a [ a [ n [ Lf$ GHJf $ GHJf ; O2 [ [ ; [ a [ [ a [ ; f [ ; ; [ [ ; f ; O2n X$ GHJf GHJf [ [ ; [ [ a [ O2 ; a ; f [ a [ a [ f [ a [ f [ [ [ f [ a ; ;$ GHJf / GHJf ; O2 f [ [ O2f [ [ [ a [ [ a [ a b [ O2 [ n ; a [ [ ; ; f [ [

PAGE 144

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ a ; f [ a ; a [ [ a ; [ a [ $ Lf$ GHJf [ O2n [ a f§ ; [ [ f [ a [ ; a X$ GHJf [ O2 [ [ a [ [ f [ [ a [ f§ [ ;D GHJf [ a [ a [ f [ a [ a [ [ ; f 3D GHJf ; O2 [ ; f [ f [ a [ f [ a [ a $ GHJf ; ; f ; [ a [ ; a ; a [ a ,GHJf [ [ a [ f ; ; f [ a [ [ [ / GHJf [ [ [ [ O2 [ a [ a [ [ a ;

PAGE 145

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ a [ a [ O2f [ a [ [ O2 [ a [ a [ a [ [ [ a [ ; a [ [ f [ a $ GHJf $ GHJf [ a [ [ a [ [ f [ f [ a [ a [ a [ f [ [ f [ a [ ; [ a f$ GHJf GHJf [ O2 [ [ a [ f [ a [ a [ [ [ [ f [ [ f [ a [ a [ f [ a [ a ;D GHJf / GHJf [ a [ O2f ; [ a [ [ f [ O2f [ [ f [ f ; O2 [ f [ [ [ [ ; a

PAGE 146

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ [ [ a [ ; O2 [ [ a [ a [ O2 D GHJf ; [ a [ [ [ f [ ; a [ f LR$ GHJf [ a [ a [ O2f [ f [ f [ a [ [ f ;D GHJf ; ; O2 ; O2 f§ [ [ [ f [ [ O2f [ O2 3D GHJf [ a [ [ ; [ a [ a [ a [ a $ GHJf ; O2 ; O2 ; a [ a [ a [ f [ f [ O2f ,GHJf [ n [ [ a [ [ f [ [ n [ [ a / GHJf [ [ [ a [ a [ ; [ a [ O2

PAGE 147

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf S$ GHJf [ O2 [ [ [ a [ a ; a [ f [ f [ a [ a [ [ f [ [ a [ [ f ; L!$ GHJf $ GHJf ; O2 [ [ [ a [ a [ f [ [ a [ a ; [ f ; [ f [ a [ X$ GHJf GHJf ; [ [ f ; ; f [ a [ a ; f ; a ; ; [ a [ [ f ; [ a GHJf / GHJf [ ; ; ; f [ [ a [ [ f [ O2f [ ; [ f [ [ [ f [ f

PAGE 148

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ [ a [ a [ [ a [ [ a [ a !D GHJf ; O2A [ [ a [ a ; a [ ; f [ f X$ GHJf n [ a [ ; [ O2 [ f [ O2 [ ; a GHJf ; a [ a ; a [ [ a [ [ [ a 3D GHJf [ [ a [ a [ [ [ O2 f§ ; [ $ GHJf ; [ [ [ ; f ; f ; [ GHJf [ [ a [ [ a [ f [ [ f [ / GHJf ; [ a [ a ; a [ a [ a [ [

PAGE 149

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ a ; a [ [ a [ [ [ f [ a $ GHJf [ [ ; a [ a f§ [ [ [ a [ X$ GHJf [ a [ a ; [ a [ a [ ; f [ f ;D GHJf [ [ [ [ [ [ a [ f§ ; 3D GHJf [ [ a [ a ; [ [ a [ [ a $ GHJf ; O2f [ a ; f [ [ a [ a [ a [ ,GHJf [ [ [ ; [ O2 f§ [ [ [ / GHJf [ [ f [ f [ f [ [ a [ [ a

PAGE 150

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ f [ [ a [ f ; f [ ; [ a GHJf [ a [ ; a [ [ f [ a [ a X$ GHJf ; [ [ a [ a f§ [ [ [ [ a ;D GHJf f§ [ [ a [ a [ a [ [ [ f 3D GHJf [ O2f f§ [ [ a [ f [ f ; [ a [ $ GHJf [ [ [ [ a [ [ a [ f [ ,GHJf [ O2 [ ; [ f [ f [ f [ ; / GHJf [ [ [ a [ a [ a [ f [ a [ f

PAGE 151

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ B [ a [ a [ a [ [ a ; a ; [ a $ GHJf ; a [ a [ a [ a ; a [ ; XD GHJf [ [ [ O2n [ ; a ; a [ a [ ;D GHJf [ f [ a [ f [ [ [ [ 3D GHJf [ a [ f [ a ; [ a [ [ a [ a $ GHJf [ [ a [ a ; [ a [ [ [ GHJf [ [ a [ [ [ a [ f [ a [ / GHJf ; [ f§ [ [ [ a [ [ f [

PAGE 152

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 e GHJf [ [ f§ [ ; a [ a [ [ f [ [ 9X GHJf [ ; [ a [ [ f [ [ a [ X$ GHJf ; [ f ; a [ a [ a [ [ a [ ;D GHJf f§ ; B [ O2 [ a [ [ a [ [ f [ a 3D GHJf [ [ a ; a [ a [ f [ a [ [ $ GHJf ; [ f [ f [ [ a [ a ; f [ a GHJf f§ ; B [ a [ f [ [ a [ f [ a [ / GHJf ; [ f [ [ [ f [ [ [

PAGE 153

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf S$ GHJf [ [ a [ [ f [ a [ a [ [ [ a [ [ [ [ O2 [ a [ [ [ f n3D GHJf $ GHJf [ [ [ a [ [ [ a [ a [ a [ [ a [ [ O2 ; [ a [ a [ 8f$ GHJf GHJf [ [ a [ [ [ [ a [ f [ [ a [ f [ [ a [ a [ a [ [ [ a GHJf / GHJf [ r [ [ O2f ; a [ f [ a [ f ; a [ O2f [ [ a [ [ ; f [ f [ f [

PAGE 154

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf 3D GHJf [ a ; f [ [ a [ a ; [ a [ f [ [ [ [ f [ [ f [ [ O2 [ D GHJf $ GHJf [ a ; O2 [ [ [ a [ O2 [ f [ ; a [ [ a [ f [ f [ a [ f [ f XD GHJf GHJf [ [ O2 [ [ [ f [ [ a [ [ f ; [ ; [ ; f ; n [ ; f [ a GHJf / GHJf [ ; ; [ a [ [ a [ f [ [ [ [ [ a [ O2f f [ [ f [ f [ a ; f

PAGE 155

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ ; ,2 [ [ ,2n [ a [ f [ a [ a [ LR f [ ,2 [ LR [ LR [ [ ,2 [ ,2 [ LR D GHJf $ GHJf [ [ ; ,2 [ a ; [ ,2 ; ,2 ; ,2 ; [ ,2 ; f [ ; ,2 [ a ; ; ,2 8D GHJf GHJf ; ,2 ; ,2 ; ,2 [ a ; ; ,2 ; f [ f ; a [ ; f [ f ; ,2 [ ,2 ; ,2 [ ,2 ; ,2 [ ,2 ; GHJf / GHJf ; ,2 [ ,2 ; ,2 [ ,2 [ ,2 [ [ ,2 [ ,2n [ ,2 [ [ [ ,2 [ a ; [ a ; ,2 [ [ ,2

PAGE 156

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf f ; f [ f [ [ [ a [ [ [ O2f [ [ a [ f [ f [ [ a [ a [ f f [ a GHJf $ GHJf ; O2 [ a [ a [ a ; a [ f [ a [ a [ a [ a [ n [ a ; ; ; X$ GHJf GHJf [ O2 [ [ a [ f [ [ [ a [ f [ f [ a [ a [ [ [ a [ [ [ ;[ GHJf / GHJf [ [ [ O2 [ O2f ; f [ [ a ; a [ [ a [ a f ; f ; a [ a ; f [ ; a

PAGE 157

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf S$ GHJf ; [ a [ [ a [ f [ [ a f ; [ [ a [ O2 [ ; [ [ a [ [ a GHJf $ GHJf ; ; n [ [ a [ [ a [ a ; [ f [ a [ [ a [ [ [ [ f XD GHJf GHJf [ [ [ [ [ [ [ [ f [ ; f [ a [ f [ f [ [ a ; O2 f [ f ;r GHJf / GHJf ; n [ ; O2 [ f [ a [ ; f ; f [ a [ O2 ; a ; a [ f [ f ; ; n

PAGE 158

7DEOH FRQWLQXHG ‘ ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf S$ GHJf ; [ a [ [ [ f [ f ; a [ a [ n [ $ [ f [ a ; [ f ; [ a ; a GHJf $ GHJf [ [ O2 [ f [ a [ [ [ a [ a [ a [ f [ a [ [ [ a [ a X$ GHJf GHJf [ O2 [ f [ a [ [ a [ a [ [ a [ [ [ f [ a [ f [ f [ f [ GHJf / GHJf [ [ [ O2 ; a ; f ; a [ f ; ; [ [ [ [ a [ [ [ f

PAGE 159

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 f§ e GHJf 3D GHJf [ ; [ [ [ f [ a [ f f [ f f [ a [ a [ [ a [ f ; a [ a [ [ a Lf$ GHJf $ GHJf [ [ O2f [ O2f [ f [ a [ [ f [ f [ [ n [ f [ a [ n [ f [ f [ a X$ GHJf GHJf [ O2 [ [ [ a [ a [ [ ; ; [ f [ a [ f [ f ; f [ [ f [ f GHJf / GHJf [ [ a ; O2 ; f [ ; a [ f [ f [ [ f [ a [ a [ [ O2n [ f [ a

PAGE 160

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf 3D GHJf [ f [ a [ [ a [ [ a [ [ [ [ O2 [ a [ [ [ a [ [ a [ a L!$ GHJf $ GHJf [ f [ [ a [ a ; a [ a [ f [ a [ [ a [ a [ f ; a [ a X$ GHJf GHJf ; [ ; [ [ a [ a ; a [ ; a ; O2f [ [ ; f [ [ a [ a GHJf / GHJf [ O2 f [ O2 [ a [ f [ f [ f [ f [ [ [ f [ [ f [ n ; f [ a [

PAGE 161

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ ; ,2 [ a [ a ; f [ f [ a [ [ a [ [ a [ [ a [ a [ a [ a L!$ GHJf $ GHJf [ f [ f ; O2 [ a [ a ; a ; a [ a [ [ [ a [ O2f [ a [ a [ a f$ GHJf GHJf ; a ; a ; [ n [ [ f [ f [ a [ a [ a [ [ f [ [ [ a [ a [ ;$ GHJf / GHJf ; a [ a ; O2 [ [ f [ [ f [ a [ a [ f [ [ a [ f [ O2 [ f [

PAGE 162

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 H GHJf S$ GHJf [ [ a [ [ f [ f [ [ n [ [ f [ a [ [ a f [ a ; f [ [ [ a $ GHJf $ GHJf ; [ [ a [ [ [ a [ ; f [ f [ f [ a [ a [ [ a [ X$ GHJf GHJf [ O2 ; f [ f [ ; [ [ f [ [ f [ f [ a [ a [ f [ ; f ; ;! GHJf / GHJf [ O2f ; ; [ [ f [ a [ a [ f [ a [ [ f [ [ O2 [ a f ; a [ ;

PAGE 163

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf f S$ GHJf [ [ f [ ; [ a [ a [ [ a ; O2 [ f [ a [ n [ ; a [ a [ f f [ a L!$ GHJf $ GHJf [ O2A ; n [ a [ [ O2f [ [ a ; 0 [ [ a ; [ n [ a [ [ [ a mL GHJf GHJf [ O2 [ [ [ [ f [ f [ f [ [ a [ f [ [ [ [ [ f [ f [ [ GHJf / GHJf [ [ [ a ; f [ f [ f [ f ; a [ f [ [ f [ [ ; f [ f [ [ f

PAGE 164

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf 3D GHJf [ [ a ; [ ; f [ f [ [ f [ a [ [ [ [ [ a [ [ O2 f [ a GHJf f $ GHJf ; a [ [ a [ f [ f ; [ a [ a [ a [ f [ f [ [ a [ f [ a [ f f :D GHJf GHJf [ [ a [ [ [ f [ a [ a [ f [ a [ a [ [ O2 [ O2 [ [ [ [ f GHJf / GHJf [ [ n [ [ ; a ; a [ [ O2f [ [ n ; f [ f [ a [ f [ f [ a [ [ f

PAGE 165

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ [ O2 [ a ; a [ a [ a ; [ [ f [ f [ a [ ; [ f [ a ; L!$ GHJf $ GHJf [ [ [ a [ a [ f [ f [ ; f [ f [ a [ f [ a [ f [ f [ a [ a f XM$ GHJf GHJf [ [ n [ a [ a ; f [ a [ [ O2 [ [ a [ O2 [ a [ a [ f [ [ ;D GHJf / GHJf ; [ [ f [ a [ [ f [ f [ ; [ f [ [ f [ a ; [ [ a

PAGE 166

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ f [ ; ; [ f [ [ f [ a [ [ a [ [ [ b [ a [ a [ [ 9X GHJf $ GHJf [ ,4 [ O2A [ f [ [ f [ a ; a [ a ; f [ a [ a [ a ; a ; [ a ; a f X!$ GHJf GHJf [ [ f [ [ a [ f [ f [ O2 [ f [ a [ [ a [ f [ a [ ; a [ f [ f [ a ;$ GHJf / GHJf [ [ O2 ; [ n ; ; [ f [ f [ f [ [ a [ O2 [ f [ f [ [ f [ [ a

PAGE 167

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 H GHJf S$ GHJf [ [ a [ [ f [ a [ &7 [ a [ [ f [ a [ a [ a [ a [ [ f [ [ f GHJf $ GHJf [ O2 ; [ [ a [ a [ a [ f [ [ O2 ; a ; O2 [ O2 [ [ ; f [ a X$ GHJf GHJf [ ; O2 [ a [ f [ f ; [ f [ f ; f [ [ f [ f [ [ f ; [ [ a ; GHJf / GHJf [ f [ ; [ a [ f [ a [ [ a [ f [ [ a [ [ a [ f ; f [ ;

PAGE 168

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf 3D GHJf [ O2 [ a ; ; a [ a [ a [ [ f [ a [ a [ [ [ [ f ; a [ [ a L!$ GHJf $ GHJf ; ; [ a [ [ O2 [ O2 [ [ ; a ; a [ [ a [ a ; a [ [ a f!$ GHJf GHJf ; [ [ [ [ a [ [ f [ a [ a [ f ; [ f [ a [ f [ [ f [ O2 ;D GHJf / GHJf ; ; [ O2n ; a [ [ f [ [ [ a [ f [ a [ a [ f ; [ [ a [

PAGE 169

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ a ; f ; a [ f [ a ; [ a [ a [ a [ a [ a ; f ; [ f [ a [ f ; a 9X GHJf $ GHJf [ [ [ a [ [ a [ ; f ; f ; f ; f [ a [ a [ f [ [ [ a XD GHJf GHJf [ [ a [ O2 [ O2 [ a [ a [ f [ a [ a [ a [ [ O2f [ a [ a [ f [ f ; a [ a ;D GHJf / GHJf ; ; f [ [ [ f [ a [ f [ f [ O2f [ [ O2 [ a [ f [ O2f [ f ; [

PAGE 170

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ ; [ OR [ ,2 [ [ a [ a [ a ; LR ; a ; a [ [ LR [ f ; ,2n [ ,2 ; ,2 GHJf $ GHJf [ [ LR [ ; LR [ [ ,2 [ [ a [ a [ f [ a [ a [ a [ [ f [ ,2 8-$ GHJf GHJf [ [ [ ,2 [ [ [ a [ a [ [ f [ f [ ,2 [ f [ [ a [ ,2 [ $ [ ,2 f ;D GHJf / GHJf [ a ; ,2 [ a ; a [ [ ,2 [ f ; [ f ; f [ f [ ,2 ; a ; ,2 [ f ; ,2

PAGE 171

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ a [ a [ a [ a [ f [ [ a [ L!$ GHJf ; [ a [ a f§ [ [ a [ a ; f [ f X$ GHJf [ [ [ a [ a [ a [ [ [ a [ f ;$ GHJf ; ; [ [ a [ [ [ a [ f [ [ f 3D GHJf [ O2f [ f [ f [ ; O2 ; [ a [ a $ GHJf [ f [ [ [ [ [ a [ [ ,GHJf [ O2n [ a [ [ [ a [ O2 [ [ / GHJf ; aD ; [ [ a ; a [ f [ a [

PAGE 172

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ B [ a [ f ; a [ a [ f [ a [ a [ f L!$ GHJf [ [ a [ a [ f [ f [ [ a [ X$ GHJf [ O2A [ [ f ; O2 [ f ; f ; f [ f [ GHJf ; [ [ f [ [ ; [ O2 [ ; 3D GHJf [ O2 [ f ; a [ a [ [ [ [ $ GHJf [ [ a [ [ [ ; f [ a [ a ,GHJf [ O2 [ [ a [ f ; O2f [ [ [ / GHJf [ [ a [ f [ [ [ a [ f [ ,4

PAGE 173

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ a [ [ [ [ f [ f [ a ; f [ f [ a [ a [ [ a [ a [ f ; a L!$ GHJf $ GHJf ; [ [ [ f [ f [ a [ f [ [ [ [ [ f [ a [ a [ a [ X$ GHJf GHJf ; a [ O2 [ f [ O2 [ [ [ [ O2 [ f [ [ O2 [ f ; [ a [ f [ ;D GHJf / GHJf [ [ [ ; a [ a [ a [ a [ [ f [ a [ a [ f ; a [ [ [ f [ a

PAGE 174

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf ; ; f ; [ [ f [ a [ [ [ [ [ [ [ [ a [ a [ f [ f !$ GHJf $ GHJf [ O2 [ [ a [ a [ O2 [ f f [ [ [ a [ [ n [ [ a [ ; f ; f XD GHJf GHJf [ [ f [ O2n [ [ f [ [ a [ f [ ; [ [ f ; [ [ ; ; [ ; GHJf [ O2f [ [ a [ f [ a [ f ; [ a [ f / GHJf [ [ a [ [ ; ; a [ [ a

PAGE 175

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf ; [ a [ a [ [ f [ ; [ [ a GHJf ; [ [ a [ a [ [ f ; n X$ GHJf [ [ f [ [ f ; a f§ [ a [ [ ;D GHJf [ [ a [ f [ [ f [ [ 3D GHJf [ O2 [ a [ [ f [ [ [ [ a $ GHJf [ a [ ; [ a [ f [ a [ GHJf ; [ f [ a [ O2 [ [ a [ f [ a / GHJf [ [ [ a ; a [ a [ a [ [ f [ a

PAGE 176

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ [ ; a ; f ; [ a [ a [ a LS D GHJf [ ; [ A [ f [ a [ O2 f§ [ a [ GHJf [ a [ f [ f [ a [ f [ a [ a [ [ a ;D GHJf ; [ f [ [ f [ a [ [ [ O2f [ f 3D GHJf [ a [ ; f ; f [ f [ a [ f ; a $ GHJf [ a [ [ [ f [ a [ f ; O2f [ ,GHJf [ O2f [ [ f [ a [ [ a [ a [ O2f [ / GHJf ; [ n [ [ [ [ ; [ a [ a

PAGE 177

7DEOH FRQWLQXHG b ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf ; [ a [ [ a [ [ [ a [ f [ 9X GHJf [ [ a [ a [ a ; a ; [ a 8-$ GHJf [ [ a [ ; O2 [ [ a [ O2 [ ;$ GHJf ; [ f [ [ f [ a [ a ; a 3D GHJf ; [ f [ a [ [ [ a [ [ O2 $ GHJf [ ; a [ O2 [ O2f [ ; a [ [ O2 ,GHJf [ a [ f [ [ ; a [ f [ a f§ [ / GHJf [ O2 [ f§ ; a [ O2 [ ; f [ ; f ;

PAGE 178

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ [ [ [ a [ a [ f [ ; a [ f [ a [ a ; f [ f [ f ; ; a AD GHJf $ GHJf ; O2 [ a [ [ [ a [ [ a [ [ O2A [ [ a [ f [ [ a [ [ X$ GHJf GHJf [ [ O2f [ O2 [ O2 [ [ [ f [ a [ [ ; a [ f [ [ a [ [ [ a [ f GHJf / GHJf [ ; n [ f [ ; ; a [ [ a [ [ [ ; a [ ; f [ [ f [ ; f

PAGE 179

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ [ [ O2 [ a [ a [ [ a [ [ f [ ; a [ a [ a [ [ f [ [ L!$ GHJf $ GHJf [ [ O2 [ f [ [ a [ ; f [ O2f [ [ O2n [ fp [ a [ f [ a ; a [ Y$ GHJf GHJf [ O2f [ n [ a [ f [ n [ a [ [ a [ [ f [ ; f ; [ a [ f [ [ a ;D GHJf / GHJf ; f ; ; ; a ; a [ f [ a [ [ f ; ; f [ a ; O2 ; ; [ f ;

PAGE 180

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ n [ [ O2f [ a [ [ [ a [ f [ a [ a [ [ f [ ; f ; a [ a [ a Lf$ GHJf $ GHJf [ ; [ [ a ; a [ [ a [ O2 [ a ; [ [ f [ [ a [ a [ X$ GHJf GHJf [ n [ [ [ [ a [ [ a [ f [ a [ f [ ; a [ f [ f ; O2 ; [ [ ;D GHJf [ n / GHJf ; [ ; f ; a [ [ [ [ f [ f [ a [ a [ n [ [ [ [ [

PAGE 181

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf S$ GHJf [ [ a [ a [ [ f [ f [ a [ a ; f ; a ; [ f [ a [ a ; f ; [ a LS D GHJf $ GHJf [ [ ; [ a [ f [ f [ O2 ; f [ a [ a [ [ [ a [ a [ a [ f X$ GHJf GHJf [ [ [ B [ f [ a [ a [ f [ f [ a [ [ a [ f [ a [ f [ a [ a [ [ f ;D GHJf / GHJf [ O2 [ O2 [ ; O2 [ a [ [ [ f [ [ [ f [ f [ [ [ a [ [ f

PAGE 182

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ [ a [ a ; f ; [ [ f [ a f§ [ a 9X GHJf [ [ [ ; a [ [ O2n [ a [ 8-$ GHJf [ ; [ f [ f [ [ f ; f [ [ a ;D GHJf [ [ f [ f [ [ [ f [ a 3D GHJf [ [ [ a [ O2 [ [ a ; [ $ GHJf ; f§ [ [ a ; a [ [ [ f [ GHJf [ [ O2f [ ; a [ [ f [ [ f§ [ / GHJf ; ; a [ [ ; f [ [ a [

PAGE 183

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf S$ GHJf [ [ f [ [ a [ f [ f ; a [ ; [ a [ f [ a [ a [ f [ f [ [ L!$ GHJf $ GHJf ; [ [ a [ a [ a ; a [ f ; a [ a [ a [ [ f [ a [ f f [ f YD GHJf GHJf [ [ a [ a [ a [ a [ a [ [ f [ a ; [ f [ [ [ f [ f [ f ;$ GHJf / GHJf [ [ O2 [ ; [ a [ a ; a [ [ ; O2 [ [ [ f [ a [ f [ f

PAGE 184

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ f FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ a ; [ f [ [ a [ [ [ f [ f ; [ a [ [ a [ [ f [ a [ !D GHJf $ GHJf [ a [ [ [ f [ a [ [ [ [ [ a [ f [ [ a [ a [ [ a XD GHJf GHJf [ O2 [ [ [ O2 [ a [ O2 [ f ; f [ [ f [ f [ [ f [ ; a [ a [ a [ n ;D GHJf / GHJf [ O2 ; a ; [ [ [ f [ f [ a [ f [ n [ f [ ; a [ f [ f [ a [ a

PAGE 185

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf [ [ [ a [ a [ a [ [ [ a [ f LS D GHJf [ a [ [ a [ [ a f§ [ [ a XD GHJf [ [ [ a [ a ; a [ f [ a f§ [ a ;D GHJf [ n [ a [ f ; f [ a [ [ f 3$ GHJf [ ; [ a ; f [ [ O2 [ O2 [ a $ GHJf ; [ a [ f [ a [ [ f [ [ O2 GHJf [ [ f [ [ a ; a [ [ O2 [ a / GHJf ; B ; a [ O2 [ f [ a [ [ f [ f

PAGE 186

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ ‘ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf [ a [ a [ n [ f [ a [ f [ a [ f f [ a [ f [ a [ f [ O2 [ [ [ [ !D GHJf $ GHJf [ [ [ B [ [ a [ f [ a [ a [ a [ [ a [ f ; [ ; ; XD GHJf GHJf [ [ O2 [ [ ; f [ a ; [ [ ; f ; f [ a [ a ; [ f [ O2 [ ;$ GHJf / GHJf ; O2 [ ; [ O2 [ a ; [ ; [ f [ [ a [ [ f [ a [ ,4 [ f

PAGE 187

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf ; a [ a [ a [ f [ a [ f [ [ f [ [ a [ a [ [ a [ [ a [ a f [ $ GHJf $ GHJf [ [ f [ f ; a [ a [ a ; f [ ; [ [ a [ n [ O2 [ a :D GHJf GHJf [ a [ [ a [ a [ a ; f [ [ [ [ [ [ [ a [ a ; f [ n ;D GHJf / GHJf ; [ O2 ; [ [ a [ [ f [ O2f [ f [ f [ f [ [ [ [ O2n [ a

PAGE 188

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ H GHJf [ [ a [ a [ a [ a [ O2 ; a ; a [ a Lf$ GHJf ; [ a ; f [ f [ O2 [ a [ [ f 8-$ GHJf [ O2 [ [ a [ O2 [ a ; a [ [ O2 [ ; GHJf [ O2 [ [ a [ [ a [ a [ [ ; 3D GHJf [ f [ a [ a [ O2 [ a ; ; O2 ; $ GHJf ; O2 [ a [ O2 [ f [ f [ f ; [ O2 ,GHJf [ f§ [ ; O2 [ a [ [ [ a [ / GHJf [ [ a [ f [ [ [ [ a [

PAGE 189

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ f§ 7 f§ e GHJf 3D GHJf ; O2 [ f [ a [ f [ a [ a [ a [ a [ a ; a [ [ [ a [ a [ a [ [ f 9X GHJf $ GHJf [ O2 [ n [ a [ f [ a [ f ; f ; ; a [ a ; [ a [ [ [ [ X$ GHJf GHJf [ O2n [ O2 [ f [ O2n [ f [ a [ [ [ [ f [ f [ f [ f [ f ; a f ; n [ f [ f ;D GHJf / GHJf ; ; [ B [ a [ f [ f [ a [ O2 ; a [ a ; [ a [ [ a [ [ [

PAGE 190

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ f§ 7 H GHJf [ f [ a [ O2 [ O2f [ f [ f [ a [ a [ D GHJf ; [ f§ [ [ a [ a [ a [ [ [ f GHJf [ a [ a [ a [ [ a [ [ a [ [ ;$ GHJf [ [ [ [ a [ a [ f f§ [ [ a [ f ; f 3D GHJf [ O2f [ O2 [ [ [ a [ f ; a [ a [ $ GHJf ; O2n [ [ f [ a [ a [ f [ a [ a [ a ,GHJf [ O2 [ a [ f§ [ [ [ [ [ / GHJf [ [ O2 [ a [ f [ ; ; ; [ a

PAGE 191

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ B [ a [ a [ a ; f [ a [ f [ [ ,2 GHJf ; [ [ [ O2n [ a [ [ f [ a X!$ GHJf [ [ [ a [ a [ O2f [ a [ f f§ [ a ; ;D GHJf ; O2n ; f [ [ [ [ f [ a [ ; 3D GHJf [ O2f [ a ; [ f ; f [ f [ [ f $ GHJf ; O2f [ [ a [ f [ [ O2f [ O2 [ GHJf ; f [ O2 f§ [ a [ f [ f [ [ a [ a [ a / GHJf ; a ; a [ a [ f [ O2 ; a [ [ O2 [

PAGE 192

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ O2A [ a [ a [ [ a [ [ [ [ O2f GHJf [ a [ ; f [ a [ a [ O2f [ a [ f X$ GHJf [ a [ [ a [ a [ a ; [ a [ f§ [ ;D GHJf ; a ; [ [ a [ f [ a [ [ f [ 3D GHJf [ [ a [ a [ [ [ [ f [ $ GHJf [ [ [ [ [ [ [ a [ ,GHJf [ O2 [ [ [ [ ; [ [ a [ / GHJf ; ; O2 [ [ a [ f§ [ a [ [ O2 [

PAGE 193

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf ; [ [ [ f ‘ [ a [ [ f [ a [ a L!$ GHJf ; O2 ; a [ f [ [ [ a [ [ a X$ GHJf [ [ a [ a [ ; f [ a [ f f§ [ 3D GHJf [ [ [ a [ f [ n [ a ; f [ O2 $ GHJf [ [ f [ a [ f ; f [ [ a [ f ,GHJf [ O2 [ [ O2f [ a [ a ; a [ f [ a [ ;D GHJf [ [ f [ n [ f§ [ ; a [ [ [ / GHJf ; [ f [ [ [ a [ a [ a [ O2 ; f

PAGE 194

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; ; a ; a [ 2A [ a [ f [ a [ a GHJf ; [ a [ [ a [ a ; f [ f§ ; YD GHJf [ O2 [ [ a [ [ f [ a [ a f§ [ [ a ;$ GHJf ; [ [ [ [ [ [ O2f [ a [ 3D GHJf [ a [ a [ a [ f [ [ a [ [ a $ GHJf ; [ a [ a [ f [ [ [ a [ ,GHJf [ f [ [ a [ a [ a [ a [ [ O2 [ O2 / GHJf [ O2 ; B [ a f§ [ [ a [ f [ [ [

PAGE 195

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf ; f f§ [ [ a [ a [ f [ a [ a [ a [ a GHJf [ a [ f ; [ f [ f [ a [ a X$ GHJf [ [ a [ [ a [ [ [ a [ a ;D GHJf [ [ O2 f§ [ a [ [ a [ [ [ [ 3D GHJf ; [ f [ [ a [ a [ O2 [ a [ f $ GHJf [ ; ; ; f [ a [ [ a [ ,GHJf [ O2 [ [ a [ [ f [ a [ [ [ / GHJf [ [ a [ [ ; [ f [ f [ f

PAGE 196

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ [ f [ a [ O2A [ a [ f [ a [ p [ r!$ GHJf [ O2 [ ; [ ; [ [ a [ :L GHJf [ O2n [ f [ [ [ a ; [ [ O2 [ a ;D GHJf ; O2 ; [ [ a [ n [ O2 [ f [ ; fp 3D GHJf [ [ f [ [ [ [ O2 [ p [ p $ GHJf [ [ [ f ; a [ O2f ; a ; [ f ,GHJf [ O2 [ f [ [ O2 [ O2 [ [ [ / GHJf ; O2 [ f [ [ [ f§ ; [ p ;

PAGE 197

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; f [ f [ f [ [ O2 [ f§ ; [ !D GHJf [ [ a [ f f§ [ [ [ a [ a [ f YD GHJf [ [ f§ [ [ a [ a [ f [ a f§ [ [ GHJf [ ; f [ a [ f ; [ [ f [ 3D GHJf [ [ [ a [ a f§ [ [ O2 [ [ a $ GHJf ; O2 [ [ a [ a [ f [ a [ a [ f GHJf [ [ O2 f§ [ f [ a ; a [ O2f [ [ [ a / GHJf ; ; a [ f ; ; [ f [ [

PAGE 198

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf ; [ a [ [ f [ [ f ; p [ p [ L!$ GHJf [ f§ [ [ a ; a [ a ; [ ; f X$ GHJf [ [ [ ; [ a [ a [ [ f [ p ;D GHJf [ [ [ a [ f [ [ f [ O2 [ [ p 3D GHJf [ f [ a [ [ f [ f [ f [ [ f $ GHJf [ [ f [ [ a ; f [ f [ [ a ,GHJf [ [ a [ a [ [ a [ O2 [ p [ O2 / GHJf ; [ [ [ O2 ; [ [ O2 [ p

PAGE 199

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ f [ f [ [ f [ f [ [ a [ f§ [ L!$ GHJf ; O2n [ a ; a [ a [ a [ f [ a [ a X$ GHJf ; O2 [ a [ [ [ ; [ f [ [ a ;D GHJf [ n [ O2 [ f [ f [ a [ a ; f [ [ a 3D GHJf [ f [ a [ [ a [ a [ f [ a [ f $ GHJf [ [ a ; [ a [ f§ [ [ a [ ,GHJf ; O2 [ O2 [ [ [ f ; [ f [ [ a / GHJf ; f§ [ [ [ f [ a [ ; [ f [ a

PAGE 200

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ f [ f [ a [ a [ O2 ; f [ a GHJf ; [ [ f [ [ [ a f§ [ a [ Xf$ GHJf [ [ ; a [ f [ [ ; a [ GHJf [ [ [ f [ [ a [ [ [ a 3D GHJf [ [ a [ a [ ; a [ [ O2 [ a $ GHJf ; [ O2 ; a [ a [ f ; [ a [ f GHJf [ f [ [ [ a [ [ f [ f [ a / GHJf [ ; ; f [ a [ a [ a [ f [ f [

PAGE 201

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ [ a [ f§ [ ; a [ [ a [ a [ O2 L!$ GHJf ; a ; [ a [ f [ f ; a [ f X$ GHJf [ [ [ a [ [ [ a [ [ ;D GHJf [ [ a [ [ a [ a [ a f§ [ 3D GHJf [ [ f [ f [ O2 [ O2 [ a [ a [ $ GHJf [ O2f [ ; [ a ; a ; [ [ O2 GHJf [ [ O2 [ [ [ [ a [ f [ a [ / GHJf [ [ a [ a [ f [ a ; f [ O2 [ a

PAGE 202

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ [ f [ f ; a [ f [ f [ ; [ a Lf$ GHJf [ [ [ [ f [ a [ a [ f Xf$ GHJf [ [ a [ [ a [ a ; a [ f [ a ;D GHJf [ [ f [ ; a [ a [ a [ 3D GHJf [ [ [ a [ f [ [ a [ a [ $ GHJf [ O2 [ f [ a [ [ f [ [ a [ a GHJf [ O2 [ [ a [ [ a ; O2 [ a [ / GHJf [ O2 [ a [ [ [ a [ a [ O2 ;

PAGE 203

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; [ a [ [ a [ O2n [ a f§ [ [ a L!$ GHJf [ B [ [ [ a [ ; [ a [ 8$ GHJf [ [ [ f [ a f§ [ [ a [ f [ ;D GHJf ; B [ [ f [ ; [ a [ [ 3D GHJf [ [ n ; ; a [ a [ [ a [ $ GHJf [ O2 [ a [ O2 [ a [ f [ [ f [ ,GHJf ; [ [ a [ f [ [ a ; a [ a / GHJf ; [ [ a [ [ f [ a [ a [

PAGE 204

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3$ GHJf [ ; [ f [ [ [ [ f [ a [ a [ a [ [ f [ [ a [ f [ [ $ GHJf $ GHJf ; [ O2 [ a [ a ; a [ a [ [ a [ [ f [ [ a ; [ ; a [ XD GHJf GHJf [ [ O2 [ [ a ; a [ a [ ; [ a ; f ; a [ a ‘ [ fp ; a [ a [ f ; f ;$ GHJf / GHJf ; [ a [ O2 ; ‘ ; [ [ [ a [ f [ f [ O2 [ [ [ O2 ; f ; f ; f

PAGE 205

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ B ; a [ f [ a [ [ [ a [ f [ a LS $ GHJf [ [ [ a [ [ a [ ; ; X$ GHJf [ B [ [ a [ a [ ; [ [ a ;$ GHJf ; f§ [ B [ a [ a ; [ f f§ [ [ 3D GHJf [ [ [ a [ [ a [ f§ [ a [ f $ GHJf [ O2f [ [ a [ [ a [ [ ; f ,GHJf [ f [ a [ f [ f [ [ [ ; / GHJf [ [ ; [ f [ ; f [ a [ f [ f

PAGE 206

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ fr [ a [ f [ [ [ [ a [ a [ a Ln$ GHJf [ [ a [ [ [ ; a [ a [ X$ GHJf [ fr [ a [ f [ [ a [ [ [ a f§ [ ; GHJf ; [ [ [ f [ a [ f [ ; a ; 3$ GHJf [ n [ [ O2n [ f [ [ f [ [ $ GHJf [ [ a [ f [ ; [ O2 [ a [ ,GHJf [ [ [ f [ a [ [ [ [ O2 [ / GHJf [ ; f [ [ [ a [ [ [

PAGE 207

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ [ a ; a [ a f [ f [ [ a [ O2 [ a [ [ [ f [ a ; a ; f [ a [ O2 n3D GHJf $ GHJf [ ; [ f ; f ; f [ a [ [ f [ [ a [ a [ f [ a [ f [ f [ a X$ GHJf GHJf ; [ O2 [ [ [ f [ [ f [ f ; [ O2 [ [ a [ a [ f [ a [ f [ [ a ;! GHJf ; O2n / GHJf [ [ [ a [ O2 [ a [ f [ n [ O2 [ a ; f ; [ [ f [ a [ f [ ;

PAGE 208

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ a [ [ a ; f [ a [ [ O2 [ !D GHJf ; f f§ [ B [ a [ [ a [ [ [ XD GHJf [ [ [ [ f [ [ a [ a [ a [ ;$ GHJf ; [ [ [ [ [ [ [ 3D GHJf [ O2 [ a [ a [ a [ ; f [ a ; O2 $ GHJf [ [ f [ O2 [ a [ a ; a ; f [ O2 GHJf [ ; a [ a [ a [ f [ [ f [ / GHJf ; [ B ; a [ f [ a [ [ a [ a [ O2

PAGE 209

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf ; [ f [ f [ [ a [ [ [ a [ [ [ a [ [ [ O2 ; a [ [ f GHJf $ GHJf [ O2 [ ; a ; ; a ; a ; a [ O2f [ a [ a [ a [ O2 [ a [ [ [ O2f X$ GHJf GHJf [ O2f [ f [ O2f [ f [ a [ a ; [ a [ a [ f [ [ [ f ; [ [ f [ a ;$ GHJf / GHJf [ [ O2 [ a [ a [ [ O2 [ a [ [ [ O2 [ f [ a [ f [ a [ f [

PAGE 210

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf 3D GHJf ; [ a [ [ a [ a ; f [ a [ [ ; f ; a [ a [ a [ f [ f [ f [ a 9X GHJf $ GHJf ; [ ; [ [ [ [ [ a [ [ f [ V [ f [ [ [ a [ X!$ GHJf GHJf [ O2f ; ; [ f [ f [ [ [ O2 [ [ a [ [ a [ f [ a [ a [ [ O2 ;$ GHJf / GHJf [ [ O2 ; ; a [ a ; a [ a [ f [ O2f ; [ [ [ ; n [ f [ a

PAGE 211

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ [ [ [ [ a [ [ [ a ; f 9X GHJf [ f [ [ [ f [ a [ [ f X$ GHJf [ [ a ; a f§ [ [ [ f [ a [ f ;D GHJf [ [ f [ a [ [ [ a [ 3D GHJf [ f§ [ [ [ f [ a [ a [ a [ f $ GHJf [ [ f [ [ a [ a [ ; [ ,GHJf [ [ a [ a [ [ a [ f [ n ; / GHJf ; ; [ O2 [ [ [ [ [ f

PAGE 212

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ O2 [ a [ [ [ [ [ ; a [ L!$ GHJf [ [ a ; a [ f [ [ a [ X$ GHJf [ [ a [ ; a [ [ f [ a [ a ;D GHJf [ O2 [ O2f [ [ f [ a [ a [ a 3$ GHJf [ f [ f [ a [ [ a [ f [ f [ O2 $ GHJf [ O2 [ f [ [ a [ [ [ a [ ,GHJf [ [ O2 [ a [ [ a [ a [ [ ; / GHJf ; n [ ; [ a [ [ f [ O2f [ O2

PAGE 213

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ f [ f [ [ [ [ n [ [ [ 9X GHJf ; [ [ a [ O2 [ [ [ [ f XD GHJf [ [ f [ [ a [ a [ O2 [ [ ;D GHJf [ n [ O2 [ f ; [ [ [ a [ f 3D GHJf [ [ a [ [ a [ f [ [ f [ a $ GHJf [ [ f [ [ [ f [ a [ a [ a GHJf [ [ [ [ f [ a [ [ a [ f / GHJf ; ; a [ a [ a [ [ a [ f [ f

PAGE 214

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ a [ [ [ f [ [ a [ a GHJf ; [ a ; [ [ a [ a ; [ X$ GHJf [ O2 [ a [ a [ a [ [ [ f [ GHJf [ [ a [ [ a [ n [ [ [ f 3D GHJf [ f [ a [ a [ f [ [ f [ [ a $ GHJf [ [ f [ [ f§ [ f§ [ [ [ GHJf [ [ O2f [ a [ [ a ; [ [ a [ / GHJf ; [ a [ a [ ; a [ [ [ [ f

PAGE 215

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf ; [ [ [ f [ a [ a ; a [ a ; f Lf$ GHJf [ O2 ; [ f [ [ a [ [ a [ X$ GHJf [ O2 [ [ [ f [ f [ a [ a [ [ a ;D GHJf [ a ; [ a [ a ; f [ [ f [ 3D GHJf [ [ O2 [ a [ O2f [ a [ O2 [ a [ a $ GHJf [ O2n [ [ a [ f [ O2 [ a [ a [ a GHJf [ a [ [ [ [ a [ a [ O2 [ a / GHJf ; a [ O2 ; a [ a [ a [ a [ a [ f [

PAGE 216

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ [ a [ a [ a [ a [ f [ ; a 9f$ GHJf [ [ f [ f [ a ; a [ [ a [ D GHJf [ [ a [ a ; a [ [ a [ [ a [ a ;D GHJf ; O2n [ ; a [ [ f [ n [ [ [ 3D GHJf [ a [ [ a [ [ a [ [ a [ O2f $ GHJf ; [ [ a [ [ a [ a [ [ ,GHJf [ O2 [ r [ a [ f ; a [ a [ f [ [ f / GHJf [ B [ ; [ O2n [ [ O2 [ a [ [ a

PAGE 217

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; a [ f [ f [ f [ a [ a [ f [ WS$ GHJf [ [ a [ f [ [ f [ a [ a [ X$ GHJf [ ; f [ a [ f [ [ ; a [ a [ ;D GHJf [ [ O2 [ [ [ f [ f [ a [ f [ 3D GHJf [ [ f [ [ a [ [ a [ f [ a $ GHJf [ [ [ f [ [ a [ a [ a [ a ,GHJf [ [ [ ; a [ a [ [ f [ [ f / GHJf [ ; [ [ [ f ; [ f [ a [ O2

PAGE 218

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ n [ f [ O2n [ f [ f [ [ a [ [ a IS$ GHJf [ f§ [ B [ [ a [ f§ [ ; [ X$ GHJf [ [ [ a ; [ f ; O2f [ ; f [ GHJf ; ; [ f [ [ a ; a [ [ a 3D GHJf [ O2 [ a [ [ a [ f [ a [ [ a $ GHJf [ [ a [ f [ a [ ; f [ [ O2f ,GHJf [ [ ; f [ f§ [ [ [ O2 [ [ O2 / GHJf ; ; a [ a ; f§ ; [ f ; [ O2 [

PAGE 219

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ f§ [ f [ a [ a [ a [ a ; f [ a [ L!$ GHJf [ ; f [ [ [ [ [ [ a :L GHJf [ O2 [ f [ a [ f ; [ a [ [ a ;$ GHJf [ B [ [ [ a [ a [ [ [ 3D GHJf [ ; f [ a [ a [ [ f [ a [ $ GHJf [ a [ a ; a ; [ [ [ [ ,GHJf [ O2 [ [ f [ f ; a [ ; [ [ / GHJf ; ; a [ f [ [ f [ f [ f [ [ [ f

PAGE 220

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ a [ [ ; [ a [ ; a 9X GHJf ; [ [ [ [ a [ [ a [ f XD GHJf [ f [ a [ O2 [ [ [ [ a [ ;D GHJf [ [ ; [ f [ f [ [ a [ a 3D GHJf [ O2n [ [ [ f ; f [ a [ [ f $ GHJf ; [ a [ [ [ f ; a [ a [ ,GHJf [ [ [ [ [ f [ f [ a [ a [ f / GHJf [ a [ ; a [ a [ f [ a [ a [

PAGE 221

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ ; a [ ; [ f ; [ a [ [ f $ GHJf [ a ; [ a ; [ a ; [ f YD GHJf [ a [ a [ [ [ a [ a [ [ O2 3$ GHJf [ [ a [ [ a [ f [ a [ a [ $ GHJf ; [ a [ a [ a [ [ a [ ; GHJf ; a [ [ a [ [ [ [ [ f ;$ GHJf ; ; a [ [ n [ [ [ [ / GHJf [ [ [ a [ a [ f [ a [ O2f [ ;

PAGE 222

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ [ a [ a [ [ [ [ a [ [ ; a [ [ a [ a ; f [ a [ a [ f r,!$ GHJf $ GHJf ; f [ f [ [ f [ ; ; f [ a [ f [ [ f [ a [ f [ a [ f X$ GHJf GHJf [ [ [ [ [ [ f ‘ [ [ f [ f [ f [ a [ [ n [ f ‘ [ a [ a [ f ;D GHJf / GHJf ; ‘ ; a [ a [ f [ a ; f [ f [ a [ f ; a [ f [ n [ [ [ [ O2A

PAGE 223

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ [ f [ f [ f [ f§ [ [ a [ Lf$ GHJf ; O2 [ [ a [ f [ O2 [ [ f ; 3D GHJf [ [ f [ [ [ ; [ [ $ GHJf ; [ [ [ [ [ f§ [ a ; X!$ GHJf [ [ [ a [ f [ f [ [ [ [ f ;$ GHJf [ f ; [ f [ [ a [ f [ [ ,GHJf [ [ [ [ a f§ [ [ a [ f [ f / GHJf [ a [ O2 ; a f§ [ [ [ [ ; [ a

PAGE 224

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; f [ [ a [ [ a [ [ [ O2 D GHJf [ [ [ a [ [ [ a [ a [ X!$ GHJf [ n [ a [ a [ [ a [ ; [ [ f ;D GHJf [ [ [ [ a [ f ; [ f [ [ a [ a 3D GHJf [ a [ a [ a [ ; a [ O2 [ a [ a $ GHJf ; [ a [ f [ a [ [ a [ a [ ,GHJf [ [ [ [ a [ O2 [ a [ a [ f [ / GHJf [ ; [ f [ a [ f [ [ f [

PAGE 225

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ a [ a [ a [ a [ [ [ [ a [ f f3D GHJf ; [ a [ a [ [ ; f ; a f§ [ 8D GHJf [ ; a [ ; a [ ; ; [ f ; f ;D GHJf ; [ [ O2 [ f [ [ a [ f ; [ a [ 3D GHJf [ n [ a [ [ O2f [ a [ a [ a [ O2f $ GHJf [ [ f [ [ a [ ; a [ a [ a ,GHJf [ [ a ; [ ; [ O2 [ p ; a / GHJf [ O2 [ f [ [ [ f ; [ f [ f

PAGE 226

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ ; f [ [ [ f f [ a [ [ a [ [ f [ a ; O2 ; a ; [ a [ [ a L!$ GHJf $ GHJf [ [ [ f ; [ [ a [ [ a ; a ; [ [ ; f ; f [ a ; f X$ GHJf GHJf [ [ [ O2 [ O2 [ f [ f [ a [ a [ f [ ; [ [ f [ [ f [ [ a [ ; GHJf / GHJf [ ; O2f [ a [ O2f [ f [ f [ O2r [ a [ f [ [ f [ f [ a [ a ; f [

PAGE 227

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ a [ [ a [ f [ f [ a [ a [ [ O2 [ a [ a [ a [ a ; f [ f [ a [ GHJf $ GHJf ; ; ; [ f [ a [ [ a [ [ n [ [ ; ; [ [ a [ X$ GHJf GHJf [ O2 [ [ B [ O2 [ a [ f [ [ a [ [ a [ [ [ f [ [ a [ [ [ f ;D GHJf / GHJf ; [ O2 [ [ [ a [ f [ f [ a [ a [ [ a [ f [ f [ f [ f [ a

PAGE 228

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf S$ GHJf [ ; f [ O2f [ a [ f [ a [ [ a [ [ a [ [ a ; a [ a [ f [ [ f L!$ GHJf $ GHJf [ [ ; a [ f [ a [ ; a [ f f [ a [ f [ f [ f [ [ a [ [ OMD GHJf GHJf [ O2 [ a [ a [ a [ f [ [ a [ [ f [ a ; [ [ [ [ a [ f [ O2f GHJf / GHJf ; a [ ; ; f ; f [ f [ f [ ; [ ; f [ [ [ [ f [ [

PAGE 229

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf ; O2 [ a ; a [ a [ a [ [ [ f [ f [ f [ [ ‘ [ a ; [ a [ f [ GHJf $ GHJf [ O2 [ [ a [ [ a ‘ [ f [ a ; f [ a [ f [ f f ; a [ a ‘ [ f [ a [ f X$ GHJf GHJf [ f [ ; f [ a [ [ [ a [ a [ f [ f [ a [ ; f ; [ n [ a [ a [ a ;D GHJf / GHJf [ O2f [ O2 ; a [ a [ ; [ [ f [ a [ f [ O2f [ a [ n [ O2f [ a [ a ; f [ f

PAGE 230

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ a [ [ a [ [ [ [ [ GHJf [ [ f§ [ [ [ a [ a [ a [ XD GHJf [ a [ a [ f [ [ [ a [ a [ ;D GHJf [ ; [ [ [ a [ ; [ [ 3D GHJf [ f ; [ [ a [ a [ f [ [ $ GHJf [ n [ a [ a [ [ f [ [ f [ a ,GHJf [ a ; f [ a [ a [ ; ; a [ [ a / GHJf ; [ ; f [ [ [ a ; a ; f [ a [

PAGE 231

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ O2A [ f [ a [ [ O2n [ f [ a [ f [ a L!$ GHJf [ [ O2f [ f [ a ; f [ a [ a [ XD GHJf ; f [ [ O2 [ f [ a [ f [ a [ a [ ;D GHJf f§ ; B ; ; [ a [ f [ O2 ; f [ [ a 3$ GHJf [ O2 [ a [ a [ O2 [ [ O2 [ a [ $ GHJf [ O2 [ f [ a [ a ; f [ f [ a [ a ,GHJf ; [ f [ a [ O2 [ a [ a [ a [ a [ O2 / GHJf [ O2 [ [ a [ a [ O2n [ O2 [ a [ f [

PAGE 232

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ f [ a [ [ [ a [ a [ a [ a [ a GHJf ; [ a [ a [ a [ [ [ [ a XD GHJf [ ; [ a ; [ f f§ [ f [ f [ [ ;D GHJf [ [ [ [ [ a ; [ [ [ 3D GHJf [ a [ [ f [ [ [ [ a [ $ GHJf ; O2 [ a f§ ; f [ a [ [ [ f [ GHJf [ [ [ [ [ a [ a [ a [ a [ / GHJf ; [ a [ f [ [ a [ ; a [

PAGE 233

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; f [ f ; O2 [ [ a [ a [ a f§ [ $ GHJf ; [ a ; f§ [ [ O2 ; O2f [ O2 [ O2n X$ GHJf [ ; [ a [ O2 [ O2 [ f [ [ a [ a ;D GHJf ; f [ [ a [ a [ [ [ [ O2 [ O2 3D GHJf [ [ a [ a [ f [ O2f [ O2 [ [ a $ GHJf ; [ [ f [ [ f [ [ ; f ,GHJf [ [ f [ [ f [ O2 [ O2 [ [ [ / GHJf [ [ f [ f [ [ O2n [ [ O2 [

PAGE 234

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ [ a [ [ a [ [ ; O2n [ a [ fV [ a [ f [ a [ n [ a [ f [ [ a $ GHJf $ GHJf [ [ n [ a ; [ a [ O2 ; a [ a [ [ f ; ; a [ a [ a [ a [ n XD GHJf GHJf [ [ O2 [ [ [ [ ; a [ a [ a [ a [ f [ f [ O2 [ a [ f ; [ [ ;$ GHJf / GHJf [ ; ; [ a [ a [ f [ [ [ ; a [ f [ f [ f ; [ [ n

PAGE 235

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ a [ a [ [ [ p [ a [ f !$ GHJf ; [ [ [ a [ [ f [ [ f XD GHJf [ [ [ a [ a [ a [ O2n [ [ a f§ ; ;$ GHJf ; O2 ; f [ [ O2 ; [ f [ a [ a 3D GHJf [ [ a [ a [ O2 ; [ f [ a [ a $ GHJf ; [ [ O2 [ a [ a [ O2n [ [ a GHJf [ O2 [ [ a [ a ; ; a [ a [ a [ O2 / GHJf [ O2n [ [ [ O2 ; [ a [ [ a

PAGE 236

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ ; f [ f [ [ [ a [ f [ [ a L!$ GHJf [ [ [ [ [ [ a ; a [ a XD GHJf [ [ ; [ a ; [ a [ a [ a ;D GHJf [ ; [ [ f [ O2n [ [ [ f 3D GHJf [ ; a [ ; a [ a [ [ a [ a $ GHJf [ O2 [ a [ a [ [ a [ a [ a [ ,GHJf [ O2 [ a ; a [ [ f [ f [ f [ / GHJf ; ; a [ a [ [ [ [ a [ a

PAGE 237

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ [ a [ [ a [ [ f [ f L!$ GHJf [ [ O2 [ f [ f [ ; a [ f [ a X$ GHJf [ f [ ; a [ [ ; a [ O2 ; a [ a ;$ GHJf ; [ a ; [ f [ a [ [ [ O2 [ f 3D GHJf [ [ a [ f [ [ a ; [ a [ f $ GHJf ; [ a [ O2 [ f [ f [ O2 [ f [ f ,GHJf [ O2 [ O2 [ ; a [ f ; f [ [ [ / GHJf ; O2 [ a [ O2 [ [ f [ [ [ a

PAGE 238

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ n [ a [ a [ [ a [ f ; a [ a [ f !$ GHJf [ ; a [ a ; [ a f§ [ a ; a m; GHJf ; [ [ f [ f f§ [ [ a [ a [ a ;D GHJf ; [ [ [ f ; a [ f [ f 3D GHJf [ [ a [ a [ a [ a ; f [ a [ f $ GHJf [ n [ f ; a [ a ; a [ a [ a [ a GHJf [ n [ a [ ; [ a [ [ ; [ a / GHJf [ [ O2 [ [ [ [ O2 [ f [ a f§ [

PAGE 239

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf ; f [ [ a ; f [ f [ a [ [ a [ [ a [ f [ a [ a [ a ; a ; [ a LS$ GHJf $ GHJf [ O2 [ ; [ a [ f [ O2 ; ; a [ ; a [ [ ; a ; [ a [ a X$ GHJf GHJf [ [ n [ O2 ; a[ [ a [ O2 [ a ; [ [ f [ a [ [ [ f [ [ [ O2f [ ;D GHJf / GHJf ; [ O2f [ ; [ a [ n [ a [ [ [ [ [ f [ f [ a ; a [ [

PAGE 240

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ O2A [ [ f [ a ; [ O2A [ f [ ; a L!$ GHJf ; ; f [ a [ a [ a [ O2f [ [ a X$ GHJf [ [ f [ a [ [ [ a [ a [ ;$ GHJf [ n [ [ a [ a ; a [ a [ a ; 3D GHJf [ [ a [ a ; a [ a ; [ a [ O2 $ GHJf [ f [ a [ O2 [ [ a [ a [ f [ a GHJf [ a [ [ [ f [ f [ [ a [ [ a / GHJf [ ; [ a [ [ [ [ [ f [ f

PAGE 241

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; a [ f [ a [ [ f [ a [ [ a LS $ GHJf [ B [ [ f [ f [ f ; ; f [ a X!$ GHJf [ ; f [ f ; [ f ; a [ [ f ;D GHJf [ ; f [ a [ f [ [ a [ [ 3D GHJf [ a [ [ a [ ; [ a [ a [ O2f $ GHJf [ a [ f [ f [ a [ a ; f ; [ a GHJf [ O2 [ [ f [ a [ [ f [ [ [ f / GHJf [ O2f ; ; a ; [ f f§ [ ; [ a [ f [ f

PAGE 242

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ a [ [ a ; [ [ [ f ; [ a [ [ a [ a [ a [ [ a [ a [ GHJf $ GHJf [ ; [ O2 [ [ f [ [ [ f ; [ a ; [ [ f [ f [ f [ a XD GHJf GHJf [ a [ [ [ [ f [ f [ [ a [ a [ [ f [ f [ a [ [ [ f [ ; a GHJf [ n / GHJf ; O2 [ [ f [ f [ ; f [ a [ f [ [ a [ [ [ n [ a [ [ n [ f [ a

PAGE 243

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 H GHJf [ O2 ; f [ a [ a [ a [ ; a ; a [ a nf3D GHJf [ n [ a [ a [ a [ a [ Of [ r [ XD GHJf ; O2 [ [ f [ [ a ; [ [ a ; GHJf [ [ a [ f [ [ [ a [ n 3D GHJf [ O2 [ [ f [ f [ a ; [ [ $ GHJf ; f [ f ; f [ [ f [ a [ [ f ,GHJf [ O2 [ f [ a [ a [ a [ f [ a [ O2 [ / GHJf [ [ O2 [ [ O2 ; ; f ; f [ ; f [ f

PAGE 244

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f ; [ O2 [ a [ a ; a [ O2 [ Lf$ GHJf ; a [ O2n [ O2 [ a ; a [ [ a XD GHJf [ B ; a [ O2 [ f [ f [ [ a ; f ;$ GHJf [ [ a [ f ; [ O2 [ a [ [ f 3D GHJf [ [ a ; [ f [ ; [ a [ a $ GHJf [ ; [ [ [ O2 [ O2n [ a [ ,GHJf [ O2 ; a [ O2 [ f [ a ; O2 [ a ; a ; / GHJf ; [ [ a [ ; a ; f [ [ a [

PAGE 245

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf 3D GHJf [ [ [ a [ [ a [ [ f [ [ f ; [ ; ; f ; f [ [ a [ a Lf$ GHJf $ GHJf [ O2 [ f [ [ a [ [ f [ [ a [ a [ O2f ; ‘ [ a [ f [ a [ a [ Z$ GHJf GHJf ; [ [ ‘ [ B [ a [ a [ [ a [ O2f [ [ f ; a [ [ a [ [ a [ [ ;D GHJf / GHJf ; n ; O2 [ O2 [ [ [ a [ a [ [ n ; f [ f [ f ; f [ f [ a [ f [ f

PAGE 246

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf ; f§ [ ; a ; [ [ f [ a [ [ GHJf [ [ a [ [ a [ ; ; f X!$ GHJf [ [ f [ f [ [ a ; [ a ; ;r GHJf [ [ f [ f [ a [ a [ [ 3D GHJf [ ; [ a [ a [ a [ [ [ O2f $ GHJf ; [ f [ O2 [ f [ [ [ a [ a GHJf ; [ a [ a [ a [ a [ ; f [ f / GHJf [ ; f [ [ ; [ [ a [

PAGE 247

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F f§ FRYHULQJ WKH WLPH VSDQ 7 e GHJf ; [ a [ a [ a [ [ a ; n [ [ O2 LS $ GHJf ; [ a [ f [ a ; [ f [ f [ f X$ GHJf f§ [ B [ n [ a f§ ; [ [ [ [ f [ f ; GHJf ; [ ; [ [ [ [ [ a [ 3D GHJf [ [ a f§ [ [ [ [ a [ [ a $ GHJf [ [ f [ a [ f [ a [ a ; O2 [ a ,GHJf [ [ [ a [ f [ f [ [ a [ [ a / GHJf [ ; a [ f [ f f§ [ [ a [ a [ f

PAGE 248

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ [ f [ [ O2A ; [ [ [ L!$ GHJf [ O2 [ a [ f [ O2 [ a [ f [ a XD GHJf [ [ [ [ [ f [ [ a [ ;D GHJf ; O2f [ [ O2f [ [ [ a [ [ 3D GHJf [ [ f [ a [ a [ f [ a [ [ $ GHJf [ [ [ f§ ; [ ; a [ [ ,GHJf ; [ f [ [ [ [ f [ [ / GHJf ; [ f [ [ a [ a [ [ O2f [

PAGE 249

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ ; a [ a [ [ a [ [ [ a [ a $ GHJf ; O2 [ ; [ ; ; a [ [ f fD GHJf [ O2A [ O2 [ f [ [ a [ [ a [ a [ ;D GHJf ; ; ; [ [ a [ f [ a [ [ 3D GHJf ; [ f [ [ a [ [ f [ f [ a $ GHJf ; O2 [ a [ [ f ; f [ ; [ ,GHJf [ [ [ [ a [ a [ f [ [ [ f / GHJf [ [ [ [ a f§ [ [ [ [

PAGE 250

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf f 3D GHJf [ a [ f [ a [ f ; a [ a [ a [ [ f [ f [ [ f ; [ ; ; [ 9}$ GHJf $ GHJf [ [ O2 ; O2 [ a [ a [ a [ f ; [ f [ f [ f [ a [ n [ a [ a [ XD GHJf GHJf [ [ ; [ [ a [ f [ a [ [ [ a [ f [ f [ [ f [ [ a [ [ ;D GHJf / GHJf [ O2 [ n [ [ [ a [ f [ f [ [ a ; a [ a [ f [ f ; f ; f ;

PAGE 251

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ a ; ; f [ [ [ f [ [ L!$ GHJf ; [ a [ f [ f [ a ; a [ f [ a GHJf [ [ [ f [ [ [ [ f [ a [ a ;D GHJf ; f [ O2 ; f [ [ [ [ f [ [ a 3D GHJf [ [ a [ ; a [ a ; [ O2 [ f $ GHJf [ [ f [ a [ f [ a [ f [ [ ,GHJf [ [ [ f [ [ a [ a [ f [ [ a / GHJf ; ; a [ a [ a [ a [ a [ f [ f

PAGE 252

7DEOH FRQWLQXHG ,QWHUYDO &HQWUDO WLPH 7F FRYHULQJ WKH WLPH VSDQ 7 e GHJf [ [ f [ f [ a [ [ [ f [ [ O2 !D GHJf ; a [ f [ a [ a ; a [ f [ a [ O2 X!D GHJf ; f [ O2 [ f [ [ O2f [ [ a ; a [ f ;D GHJf [ ; a [ ; ; f [ f [ f [ f 3D GHJf [ [ f [ [ a [ ; [ [ f $ GHJf ; O2 [ f [ a [ f [ a [ f [ [ GHJf [ a [ [ f [ a [ O2 [ f ; a [ ; a / GHJf ; O2f ; O2 [ O2 ; f [ [ [ [ a [ [ O2

PAGE 253

&+$37(5 &21&/86,216 7KH SUHYLRXV WKUHH FKDSWHUV KDYH GLVFXVVHG WKH RULHQWDWLRQ RI WKH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP DQG KDYH SUHVHQWHG QHZ IRUPXODWLRQV IRU SUHFHVVLRQ XVLQJ WKH LQYDULDEOH SODQH DV D UHIHUHQFH SODQH 7KLV ILQDO FKDSWHU ZLOO FRPSDUH WKH EHKDYLRU RI WKH VKRUWWHUP DQG ORQJWHUP WKHRULHV QHDU 7 f§ FRQWUDVW WKH WUDGLWLRQDO DSSURDFK WR SUHFHVVLRQ ZLWK WKH PHWKRGV GHYHORSHG KHUH DQG ILQDOO\ JLYH D VXPPDU\ RI WKH GLVVHUWDWLRQ DV D ZKROH 7KH 6KRUW7HUP DQG /RQJ7HUP 7KHRULHV &RPSDUHG ,Q ERWK WKH VKRUWWHUP DQG ORQJWHUP WKHRULHV ZKLFK ZHUH SUHVHQWHG LQ &KDSWHUV DQG DERYH WKH SUHFHVVLRQ PDWUL[ 3 ZDV H[SUHVVHG DV D SURGXFW RI ILYH HOHPHQWDU\ URWDn WLRQV 3 5=f 5Lf 5$f 5L-f 5;f f 7KH RQO\ UHDO GLIIHUHQFH EHWZHHQ WKH WZR WKHRULHV LV LQ WKH PHWKRG E\ ZKLFK = DQG $ DUH FDOFXODWHG DV IXQFWLRQV RI 7 ,Q WKH VKRUWWHUP WKHRU\ WKHVH DQJOHV DUH GHYHORSHG DV IRXUWKGHJUHH SRO\QRPLDOV LQ 7 DQG WKH QXPHULFDO YDOXHV RI WKH FRHIILFLHQWV DUH GHULYHG IURP WKH FRHIILFLHQWV RI WKH FODVVLFDO SUHFHVVLRQ DQJOHV e" DQG b$ DV JLYHQ E\ /LHVNH HW DO f 6LQFH /LHVNH HW FLO GR QRW FDUU\ WKHLU H[SDQVLRQ WR 7 WKH FRHIILFLHQWV RI WKH 7 WHUPV LQ WKH QHZ VKRUWWHUP WKHRU\ FRXOG QRW EH FDOFXODWHG DQG ZHUH FRQVHTXHQWO\ RPLWWHGf ,Q WKH ORQJWHUP WKHRU\ &KHE\VKHY SRO\QRPLDOV WR GHJUHH QLQH ZHUH ILW RYHU \HDU LQWHUYDOV WR WKH DQJOHV REWDLQHG IURP D PLOOLRQ\HDU QXPHULFDO LQWHJUDWLRQ EDVHG

PAGE 254

RQ WKH ZRUN RI /DVNDU f IRU WKH PRWLRQ RI WKH HFOLSWLF DQG .LQRVKLWD f IRU WKH PRWLRQ RI WKH HTXDWRU &RHIILFLHQWV IRU WKH VL[W\WKLUG LQWHUYDO RI WKH ORQJWHUP WKHRU\ FRYHULQJ WKH WLPH VSDQ f§ 7 H ZLWKLQ \HDUV RI -f DUH SUHVHQWHG RQ SDJH DV SDUW RI 7DEOH )RU WKLV VSHFLDO FDVH VLQFH WKH FHQWUDO WLPH LV ]HUR WKH GLPHQVLRQOHVV WLPH U WKDW LV WKH DUJXPHQW RI WKH &KHE\VKHY SRO\QRPLDOV LV VLPSO\ 7 7KH &KHE\VKHY SRO\QRPLDOV WKURXJK GHJUHH QLQH DUH JLYHQ HJ LQ 7DEOH RI $EUDPRZLW] DQG 6WHJXQ f 8Uf L f 87f U f 8Uf U f§ L f 8Uf U f§ U f 8Uf W 6W f 8Uf U U U f 8Uf U f &1 UU f 8Uf U U U U f : U U U U f 8Uf U U U U U f /HW WKH &KHE\VKHY FRHIILFLHQWV RI VRPH DQJOH D EH GHQRWHG E\ ROA? 6LPLODUO\ OHW WKH FRUUHVSRQGLQJ SRO\QRPLDO FRHIILFLHQWV EH GHQRWHG E\ TA )RU DQ\ WLPH 7 WKH UHODWLRQVKLS EHWZHHQ WKH WZR VHWV RI FRHIILFLHQWV LV MXVW D7f  D>&f7NUf  D>Sf7N f N N ZKHUH 7NUf DJDLQ LV WKH &KHE\VKHY SRO\QRPLDO RI WKH ILUVW NLQG RI GHJUHH t DV JLYHQ LQ HTXDWLRQV f WKURXJK f DERYH DQG 7N LV MXVW WKH NWK SRZHU RI WKH WLPH 7 :KHQ

PAGE 255

WKH OLWHUDO H[SDQVLRQV RI WKH &KHE\VKHY SRO\QRPLDOV DUH LQVHUWHG LQWR HTXDWLRQ f DQG U UHSODFHG E\ 7 WKH VKRUWWHUP FRHIILFLHQWV IROORZ E\ HTXDWLQJ OLNH SRZHUV RI 7 Sf DR ] &f DR &fr! r! &f m f Sf D? &f m&f D>&f D?&f mL&ff f nD V Ff DFf D-&f F&ff f f Ff D&f DA&f ‘ &ff f 3 ,, Ff DJ&f DJ&f f f S ,, D&f R&f &ff f DSf D a DJ&f DJ&ff f Sf DFf &ff f DSf D mJ&f f f TSf D DA&f f 7DEOH SUHVHQWV WKH SRO\QRPLDO FRHIILFLHQWV GHULYHG LQ WKLV ZD\ IURP WKH ORQJWHUP b WKHRU\ 7KH OD\RXW RI WKLV WDEOH LV WKH VDPH DV IRU 7DEOH H[FHSW WKDW WKH FRHIILFLHQWV QRZ PXOWLSO\ SRZHUV RI 7 LQVWHDG RI WKH &KHE\VKHY SRO\QRPLDOV DQG WKDW DQJOHV DUH QRZ H[SUHVVHG LQ XQLWV RI DUFVHFRQGV LQVWHDG RI GHJUHHV 7KLV WDEOH ZDV DOVR JHQHUDWHG E\ FRPSXWHU DQG LV UHSURGXFHG ZLWKRXW DQ\ FKDQJHV 5RXQGRII HUURU KDV SURGXFHG YHU\ VPDOO YDOXHV IRU WKH OHDGLQJ WHUPV LQ 9E ?D 3D DQG $ WKHVH VKRXOG DOO EH H[DFWO\ ]HUR DW 7 7KH 7 WHUPV LQ OD DQG 3D DOVR GR QRW KDYH TXLWH WKHLU FRUUHFW YDOXHV 7KLV FDQ EH DWWULEXWHG WR HUURUV LQ WKH &KHE\VKHY ILWWLQJ SURFHVV LWVHOI DV WKH GLIIHUHQFHV DUH EHORZ WKH ]DUFVHF OHYHO W\SLFDO RI WKH UHOLDELOLW\ RI WKH ILW 7KH DFFXPXODWHG DQJOHV D 4D DQG ]D ZKLFK FRXOG QRW LQ JHQHUDO EH ILW ZLWKRXW XVLQJ HLWKHU H[WUHPHO\ VPDOO LQWHUYDOV RU SURKLELWLYHO\ KLJK GHJUHH FDQ LQGHHG EH ILW UHOLDEO\ RYHU WKH FHQWHU LQWHUYDO DV WKHUH LV QR QHDU GLVFRQWLQXLW\ WKHUH 7DEOH SUHVHQWV WKH &KHE\VKHY

PAGE 256

7DEOH 3RO\QRPLDO &RHIILFLHQWV IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 Vf f§ [ ; O2f [ ; a [ ; ; [ a f ; a f§ ; ; a [ f [ a [ [ f [ f A f ; a ; f [ f [ a [ f ; a [ a [ a [ a ; f [ a [ a ; f [ f [ a [ aQ ; [ O2 3$ f [ [ f ; f [ a [ O2 [ a [ O2 [ O2 $ f f§ ; ; f ; a [ a [ f ; [ a [ f [ a ; a f§ [ f [ [ O2f [ f [ O2 [ O2 /^f [ f [ f [ f [ a ; f ; a [

PAGE 257

FRHIILFLHQWV IRU WKHVH WKUHH DQJOHV LQ XQLWV RI GHJUHHV DV LQ 7DEOH DQG 7DEOH SUHVHQWV WKH GHULYHG SRO\QRPLDO FRHIILFLHQWV LQ XQLWV RI DUFVHFRQGV DV LQ 7DEOH )RU WKH VDNH RI FRPSDULVRQ WKH SRO\QRPLDO FRHIILFLHQWV IURP 7 WR 7 IURP 7DEOHV DQG DUH UHSHDWHG DORQJ ZLWK WKHLU VKRUWWHUP FRXQWHUSDUWV LQ 7DEOH ([FHSW IRU WKH FRHIILFLHQWV IRU 7 DQG $ ZKLFK DUH FRSLHG IURP 7DEOH WKH VKRUWWHUP YDOXHV DUH WKRVH RI /LHVNH HW DO f 7KH REOLTXLW\ DW HSRFK Rf DQG WKH VSHHG RI JHQHUDO SUHFHVVLRQ LQ ORQJLWXGH DW HSRFK SLf DUH LGHQWLFDO IRU ERWK WKHRULHV 2QH PLJKW H[SHFW WKDW WKH UHPDLQLQJ FRHIILFLHQWV ZRXOG DOVR EH LGHQWLFDO EXW WKLV LV FOHDUO\ QRW WKH FDVH 7KHUH DUH WZR PDMRU UHDVRQV IRU WKH GLVDJUHHPHQW )LUVW WKH PRWLRQ RI /DVNDUfV HFOLSWLF LV VOLJKWO\ GLIIHUHQW IURP WKDW RI /LHVNH HW DO f /DVNDUfV WDEOH JDYH D YDOXH IRU VL WKH UDWH RI VLQ VLQ A DW 7 f RI nn SHU FHQWXU\ VHH HTXDWLRQ f DERYHf ZKHUHDV /LHVNH HW DO IRXQG V? nLOFHQWXU\ 7KH GLIIHUHQFH LV QRW LQ WKH DGRSWHG SODQHWDU\ PDVVHV DV ERWK VRXUFHV XVH WKH VDPH YDOXHV QRU LV LW OLNHO\ WR EH LQ /DVNDUfV QHJOHFW RI 3OXWR DV 7DEOH RI /LHVNH HW DO f JLYH 3OXWRfV HIIHFW RQ V DV f§ nLFHQWXU\ 7KH GLIIHUHQFH LV PRVW OLNHO\ GXH WR GLIIHUHQFHV LQ WKH ZD\ ORQJSHULRG SHUWXUEDWLRQV RQ WKH HFOLSWLF DUH WUHDWHG E\ 1HZFRPE DQG E\ /DVNDU 7KH GLIIHUHQFH LQ V? YDOXHV LPPHGLDWHO\ DIIHFWV [L! WKH UDWH RI SODQHWDU\ SUHFHVVLRQ DW 7 f§ VLQFH ;L LV MXVW V? FVFeR $QG VLQFH S? LV KHOG FRQVWDQW D FKDQJH LQ ?L ZLOO IRUFH D FRPSHQVDWLQJ FKDQJH LQ AL WKH UDWH RI OXQLVRODU SUHFHVVLRQ DW 7 EHFDXVH WKHVH TXDQWLWLHV DUH UHODWHG E\ 3L ;L FRVe f &KDQJHV WR eL DQG ]? IROORZ 7KH VHFRQG PDMRU QXPHULFDO GLIIHUHQFH EHWZHHQ WKH VKRUWWHUP DQG ORQJWHUP UHVXOWV FDQ EH WUDFHG WR WKH WHUPV LQ .LQRVKLWDfV IRUFH PRGHO ZKLFK FRQWDLQ 0? DQG $ 7KHVH

PAGE 258

7DEOH &KHE\VKHY &RHIILFLHQWV IRU D 4D DQG =D IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 f§ D GHJf [ ; LRa ; [ [ LR ; f [ [ LR ; a D GHJf [ ,2 [ ,2 [ ,2 [ f ; ; f [ f ; a [ ,2 =$ GHJf ; ,2 [ [ [ ,2 [ [ ,2 ; ,2 [ [ f

PAGE 259

7DEOH 3RO\QRPLDO &RHIILFLHQWV IRU e D DQG IURP WKH /RQJ7HUP 7KHRU\ 1HDU 7 f§ X f ; a [ [ f [ [ ; [ [ f [ O2 RD Q [ f [ ; [ [ ; a ; [ [ a A f ; [ ; a [ f ; ; ; a ;

PAGE 260

7DEOH 3RO\QRPLDO &RHIILFLHQWV IURP WKH /RQJ7HUP DQG 6KRUW7HUP 7KHRULHV 1HDU 7 f§ /RQJ7HUP 6KRUW7HUP &KDSWHU f &KDSWHU f e f§ f§ e f§ f§ e nn 3L 3 3 RnLRRRRRH &O & & 2nn f§ f§nL f§ f§n =? = On n ! ! f§ f§ ! f§ f§2nL22O ;L n ; f§ ; nL f§n 8! 8 f§nL f§nn /L f§ f§ X nn X nL K f§ K K $ nO $ $ f§nn nn

PAGE 261

WHUPV ZHUH QRW NQRZQ WR 1HZFRPE LI WKH\ DUH RPLWWHG .LQRVKLWDfV UDWH RI OXQLVRODU SUHFHVVLRQ DQ LQVWDQWDQHRXV UDWH PHDVXUHG DORQJ WKH PRYLQJ HFOLSWLF RI GDWHf UHGXFHV WR 5 f§ 0N RtRfFRVe f 7KH WHUPV LQ 0 DQG 6 DOVR XQNQRZQ WR 1HZFRPE KDYH EHHQ HOLPLQDWHG IURP WKLV HTXDWLRQ DV ZHOO 7KLV KRZHYHU ZLOO QRW FKDQJH WKH JLVW RI WKH DUJXPHQWf 7KH H[SUHVVLRQ LQ SDUHQWKHVHV EHFRPHV 1HZFRPEfV 3UHFHVVLRQDO &RQVWDQW 3 LWV UDWH DW 7 3L DULVHV WKURXJK WKH GHSHQGHQFH RI 6R RQ WKH (DUWKfV HFFHQWULFLW\ G6 GHp ? GHp ,7 Mff§T f /LHVNH HW DO f DGRSWHG 3? f§ nLFHQWXU\ :KHQ .LQRVKLWDfV WHUPV ZLWK 0? DQG 0 DUH DGGHG WKH DGGLWLRQDO GHSHQGHQFH RQ H JLYHV ULVH WR QHZ WHUPV LQ 3? 7KH UHYLVHG HTXDWLRQ LV 3 G6S UIHp ? GHp G7 Mff§T N 0L G FRV H G7 VLQ V 0U UUL Q + G FRV H Pp PD G7 FRV V f 7 7KH FKDQJH LQ 3L VKRZV XS LQ WKH 7 WHUPV LQ nWS$ DQG DQG H[WHQGV WR WKH DQJOHV A" D DQG ]D WKURXJK WKHP 7KH GLIIHUHQFHV LQ WKH 7 WHUPV RI WKHVH ODVW WKUHH DQJOHV FDQ EH DQDO\]HG XVLQJ HTXDWLRQ f RI /LHVNH HW DO f WR LQIHU D FKDQJH RI f§ nLFHQWXU\ LQ 3L WKHUHIRUH .LQRVKLWDfV PRGHO LPSOLHV 3L nFHQWXU\ f 6KRXOG WKH FXUUHQWO\DFFHSWHG YDOXH RI 3L EH FKDQJHG WR WKH YDOXH JLYHQ DERYH" 7KHUH LV OLWWOH VHQVH LQ PDNLQJ VXFK D FKDQJH XQWLO D PRUH SUHFLVH FRQVWDQW RI SUHFHVVLRQ LV DGRSWHG

PAGE 262

E\ WKH ,$8 6LPLODUO\ WKH YDOXH RI VL DERYH GHULYHV XOWLPDWHO\ IURP '( 1XPHULFDOO\ GHWHUPLQHG YDOXHV IRU DOO WKH F DQG V FRHIILFLHQWV XVLQJ D SRVW1HSWXQH VXFFHVVRU WR WKH '( HSKHPHULV PLJKW EH DGRSWHG DV SDUW RI WKH VDPH SDFNDJH RI FKDQJHV &RPSDULQJ WKH &ODVVLFDO DQG ,QYDULDEOH 3ODQH 3UHFHVVLRQ )RUPXODWLRQV :H KDYH QRZ WKUHH ZD\V RI FRPSXWLQJ WKH SUHFHVVLRQ PDWUL[ IRU WUDQVIRUPLQJ HTXDWRn ULDO FRRUGLQDWHV IURP PHDQ RI WR PHDQ RI GDWH 3 5rDf 5Df 0 a&Df f A;$f 5Lf§8Df A r3Df 5LeRf f 5f§ef5Lf§f 5 $f 5Lf 5ef f 7KH ILUVW PHWKRG XVHV WKUHH (XOHU DQJOHV DQG LV WKH PRVW GLUHFW ZD\ RI WUDQVIRUPLQJ HTXDn WRULDO FRRUGLQDWHV $Q DGGLWLRQDO DGYDQWDJH LV WKDW WKH ILUVW DQG ODVW URWDWLRQV DUH DERXW WKH ]D[LV WKH DUJXPHQWV D DQG ]D FRPELQH WULYLDOO\ ZLWK WKH LQLWLDO DQG ILQDO ULJKW DVn FHQVLRQ UHVSHFWLYHO\ LQ HIIHFW UHGXFLQJ WKH SUREOHP WR RQH URWDWLRQ E\ D +RZHYHU WKH WKUHH DQJOHV XQGHUJR UDSLG FKDQJHV ZKHQHYHU WKH FHOHVWLDO SROH SDVVHV QHDU LWV SRVLWLRQ DW 7 f§ FRQVHTXHQWO\ WKLV PHWKRG LV QRW ZHOO VXLWHG IRU ORQJWHUP ZRUN 7KH VHFRQG PHWKRG XVHV D VHTXHQFH RI IRXU URWDWLRQV EXW RQO\ WKUHH RI WKH IRXU URWDWLRQ DQJOHV DUH IXQFWLRQV RI WLPH 7KH IRUPXODWLRQ LV D ELW PRUH FRPSOLFDWHG WKDQ WKH ILUVW PHWKRG SDUWO\ EHFDXVH RI WKH H[WUD URWDWLRQ DQG SDUWO\ EHFDXVH WKH ILUVW URWDWLRQ PDWUL[ LV QRW DQ 5 PDWUL[ 7KLV GHILFLHQF\ LV PRUH WKDQ RYHUFRPH E\ WKH EHWWHU ORQJWHUP EHKDYLRU RI WKH URWDWLRQ DQJOHV 2YHU WKH ORQJ WHUP LS$ LV FORVH WR D OLQHDU IXQFWLRQ RI WLPH DQG ;D AG XD RVFLOODWH VORZO\ LQ D FRPSOLFDWHG IDVKLRQ QHYHUWKHOHVV WKHVH DQJOHV DUH DOO ZHOO EHKDYHG DQG DPHQDEOH WR &KHE\VKHY HFRQRPL]DWLRQ &RQVHTXHQWO\ WKH VHFRQG IRUPXODWLRQ LV EHWWHU IRU ORQJWHUP XVH

PAGE 263

7KH WKLUG IRUPXOD IRU 3 LV DW ILUVW JODQFH HYHQ PRUH LQYROYHG WKDQ WKH ILUVW WZR EHFDXVH LW FRQWDLQV ILYH URWDWLRQV $JDLQ RQO\ WKUHH RI WKH DQJOHV DUH IXQFWLRQV RI WLPH DV R DQG /R DUH FRQVWDQW +RZHYHU LI WKH LQWHUVHFWLRQ RI WKH PHDQ HTXDWRU DQG WKH LQYDULDEOH SODQH ZHUH WR EH DGRSWHG DV WKH RULJLQ IRU ULJKW DVFHQVLRQV WKH ILUVW DQG ILIWK URWDWLRQV ZRXOG YDQLVK OHDYLQJ RQFH DJDLQ WKUHH URWDWLRQV EXW RQO\ WZR RI WKHP DQG $f IXQFWLRQV RI WLPH 7KLV FKDQJH RI RULJLQ ZRXOG WKHUHIRUH PDNH WKH WKLUG PHWKRG WKH VLPSOHVW RI DOO $ FRPSDULVRQ RI HTXDWLRQV f DQG f IRU 3 VKRZV WKDW $ KDV WKH FKDUDFWHU RI WKH DFFXPXODWHG OXQLVRODU SUHFHVVLRQ DV ERWK DUH WKH DUJXPHQWV RI WKH FHQWUDO URWDWLRQ LQ D VHTXHQFH 6LPLODUO\ LV FRPSDUDEOH WR XD DQG = FRUUHVSRQGV WR WKH DFFXPXODWHG SODQHWDU\ SUHFHVVLRQ [Df &RPSDULVRQV RI WKH SORWV RI WKHVH WKUHH SDLUV RI DQJOHV )LJXUH f VKRZV WKDW WKH DQJOHV LQYROYLQJ WKH LQYDULDEOH SODQH DUH EHWWHU EHKDYHG WKDQ WKHLU FODVVLFDO FRXQWHUSDUWV 7KH UDQJH RI [D LV VRPH r IURP f§" WR r EXW = LV UHVWULFWHG WR sr RYHU WKH VDPH PLOOLRQ\HDU LQWHUYDO )XUWKHUPRUH WKH YDULDWLRQV LQ = VHHP VPRRWKHU WKDQ WKRVH LQ [Df 6LPLODU EHKDYLRU KROGV IRU DQG XD WKH UDQJH RI LV r ZKLOH WKDW RI WRD LV r 7KHVH UHVXOWV PHUHO\ LQGLFDWH WKDW WKH HFOLSWLF RQ DYHUDJH LV FORVHU WR WKH LQYDULDEOH SODQH WKDQ LW LV WR WKH HFOLSWLF 7KLV LV VKRZQ DOVR E\ )LJXUH LQ ZKLFK WKH ULJKW DVFHQVLRQ DQG GHFOLQDWLRQ RI WKH ZDQGHULQJ HFOLSWLF SROH DUH SORWWHG WRJHWKHU ZLWK WKH SROH RI WKH DGRSWHG LQYDULDEOH SODQH (YHQ RYHU WKH VKRUW WHUP WKH DQJOHV = DQG $ DUH MXVW DV ZHOO EHKDYHG DV D D DQG ]Df 7KH SRO\QRPLDO FRHIILFLHQWV =A A DQG $r JLYHQ LQ 7DEOH DUH DOO RI VLPLODU PDJQLWXGH WR WKH FRUUHVSRQGLQJ FRHIILFLHQWV er r DQG ]r LQ 7DEOH 7KLV LQGLFDWHV WKDW SRO\QRPLDOV LQ HLWKHU VHW RI DQJOHV ZLOO \LHOG UHVXOWV RI URXJKO\ WKH VDPH DFFXUDF\ $V VKRZQ LQ 6HFWLRQ WKH IRUPXODWLRQ LQ WHUPV RI WKH LQYDULDEOH SODQH LV PXFK VLPSOHU IRU SUHFHVVLRQ EHWZHHQ WZR DUELWUDU\ HSRFKV ,Q WKLV FDVH RQO\ WKH FKDQJH LQ $ IURP 7? WR QHHGV WR EH GHYHORSHG DV D WZRDUJXPHQW SRO\QRPLDO LQ WKH VKRUWWHUP

PAGE 264

P 5LJKW DVFHQVLRQ -f )LJXUH (TXDWRULDO &RRUGLQDWHV RI WKH (FOLSWLF 3ROH DQG RI WKH 3ROH RI WKH ,QYDULDEOH 3ODQH 7KH SRVLWLRQV RI WKH HFOLSWLF SROH DW 7 f§ f§ 7 DQG 7 DUH PDUNHG ZLWK DQ RSHQ VTXDUH RSHQ FLUFOH DQG ILOOHG FLUFOH UHVSHFWLYHO\ 7KH SRVLWLRQ RI WKH SROH RI WKH LQYDULDEOH SODQH LV PDUNHG ZLWK DQ DVWHULVN WKHRU\ WKH SRO\QRPLDOV IRU DQG / DUH HYDOXDWHG RQFH DW 7? DQG DJDLQ DW 7L %\ FRQWUDVW WKH FODVVLFDO IRUPXODWLRQ H[SUHVVHV DOO LWV DQJOHV DV IXQFWLRQV RI ERWK 7? DQG ; f§ 7?f $QRWKHU FRPSDULVRQ WKDW FDQ EH PDGH LQYROYHV QXWDWLRQ WKH SHULRGLF GLVSODFHPHQW RI WKH fWUXHf FHOHVWLDO SROH UHODWLYH WR WKH fPHDQf FHOHVWLDO SROH GHILQHG E\ SUHFHVVLRQ RQO\ 6WDQGDUG SUDFWLFH GHILQHV WZR DQJOHV WKH QXWDWLRQ LQ REOLTXLW\ $V DQG WKH QXWDWLRQ LQ ORQJLWXGH $A WKH FXUUHQW H[SUHVVLRQV IRU WKHVH DQJOHV DUH JLYHQ E\ :DKU f 7KH QXWDWLRQ PDWUL[ 1 ZKLFK URWDWHV IURP PHDQRIGDWH FRRUGLQDWHV LQWR WUXHRIGDWH LV

PAGE 265

1 5L>H $Hf@ 5$f5LHf f 7KLV PDWUL[ KRZHYHU GRHV QRW LQWHUDFW QLFHO\ ZLWK HLWKHU WKH ILUVW RU VHFRQG IRUPXODWLRQ IRU 3 ,W VKRXOG EH SRVVLEOH WR GHULYH QHZ QXWDWLRQ DQJOHV $, DQG $ VXFK WKDW WKH FRPELQHG SUHFHVVLRQQXWDWLRQ PDWUL[ ZRXOG EH JLYHQ E\ 1n3n 5> $f@ 5$ 6$f 5Lf 7KH SULPHV GHQRWH DV LQ 6HFWLRQ WKDW ULJKW DVFHQVLRQV DUH UHFNRQHG IURP WKH LQYDULDEOH SODQHf 6XFK D IRUPXODWLRQ ZRXOG PDNH QXWDWLRQ PXFK HDVLHU WR DSSO\ D IXOO GHYHORSPHQW RI HTXDWLRQ f OLHV RXWVLGH WKH VFRSH RI WKLV ZRUN )LQDOO\ DQ LPSRUWDQW FRQVHTXHQFH RI VZLWFKLQJ WR WKH LQYDULDEOH SODQH LV WKDW SUHFHVn VLRQ WKHRU\ LWVHOI LV VLPSOLILHG WKH HTXDWRULDO FRRUGLQDWH V\VWHP ZRXOG EH GHILQHG E\ RQH PRYLQJ SODQH WKH HTXDWRUf DQG RQH IL[HG SODQH WKH LQYDULDEOH SODQHf UDWKHU WKDQ E\ WZR PRYLQJ SODQHV WKH HFOLSWLF DQG HTXDWRUf 7KH VWDQGDUG FRQFHSWV RI OXQLVRODU SUHFHVVLRQ SODQHWDU\ SUHFHVVLRQ DQG JHQHUDO SUHFHVVLRQ KDYH KLVWRULFDOO\ EHHQ UDWKHU GLIILFXOW RQHV IRU JHQHUDWLRQV RI DVWURQRP\ VWXGHQWV WKHLU LQWHUDFWLRQ FDQ EH VXEWOH :LWK WKH XVH RI WKH LQYDULDEOH SODQH WR GHILQH WKH RULJLQ IRU ULJKW DVFHQVLRQV WKH QHHG IRU D IRXUWK URWDWLRQ SODQHWDU\ SUHFHVVLRQf LV DEDQGRQHG WKLV LV VR EHFDXVH XQOLNH WKH HFOLSWLFf WKH LQYDULDEOH SODQH LV IL[HG LQ VSDFH 7KXV WKHUH ZRXOG EH QR QHHG WR GLVWLQJXLVK EHWZHHQ OXQLVRODU DQG JHQHUDO SUHFHVVLRQ 7KH HFOLSWLF LV VWLOO QHFHVVDU\ DV LWV RULHQWDWLRQ GHWHUPLQHV WKH VSHHG DQG GLUHFWLRQ RI WKH PRWLRQ RI WKH PHDQ FHOHVWLDO SROH 6HFWLRQ f EXW VLQFH WKH DSSHDUV H[SOLFLWO\ RQO\ LQ WKH GLIIHUHQWLDO HTXDWLRQV QRW LQ WKH URWDWLRQ PDWULFHVf LWV PRn WLRQ LV LQ HIIHFW QRZ VXERUGLQDWHG WR WKDW RI WKH HTXDWRU 7KH SHGDJRJLFDO DGYDQWDJHV RI WKH QHZ VFKHPH VKRXOG EH DSSDUHQW 3UHFHVVLRQ WKHRU\ UHIHUUHG WR WKH LQYDULDEOH SODQH ZKHQ FRPSDUHG WR WKH FXUUHQW IRUn PXODWLRQ LQ WHUPV RI WKH HFOLSWLF LV WKXV VHHQ WR EH VLPSOHU LQ SUDFWLFH IHZHU SRO\QRPLDOV

PAGE 266

WR HYDOXDWH ZLWK IHZHU DUJXPHQWVf DQG IDU VLPSOHU FRQFHSWXDOO\ 7KH SULFH WR EH SDLG LQ RUGHU WR SXW WKH QHZ WKHRU\ LQWR SUDFWLFH LV VWHHS DQG SHUKDSV SURKLELWLYH WKH RULJLQ RI WKH ULJKW DVFHQVLRQ V\VWHP ZRXOG EH FKDQJHG 1RW RQO\ ZRXOG DOO ULJKW DVFHQVLRQV FKDQJH EXW VR ZRXOG WKHLU DQQXDO YDULDWLRQV 7KH IRUPXODWLRQ IRU VLGHUHDO WLPH ZRXOG FKDQJH WR UHIOHFW WKH GLVSODFHPHQW DQG PRWLRQ RI WKH QHZ RULJLQ UHODWLYH WR WKH PHDQ HTXLQR[ )XWXUH UHUHGXFWLRQV RI SXEOLVKHG REVHUYDWLRQV ZRXOG KDYH WR LQFOXGH WKH WUDQVIRUPDWLRQ LQWR WKH QHZ V\VWHP D VXEWUDFWLRQ RI /7f IURP WKHLU ULJKW DVFHQVLRQVf $QG VWXGHQWV ZRXOG VWLOO EH UHTXLUHG WR OHDUQ ERWK QHZ DQG ROG HTXDWRULDO FRRUGLQDWHV 6XFK D FKDQJH ZRXOG FRQVHn TXHQWO\ EH HYHQ PRUH IDUUHDFKLQJ WKDQ WKH UHGHILQLWLRQ RI JDODFWLF FRRUGLQDWHV RU WKH DGRSWLRQ RI WKH V\VWHP LW FRXOG RQO\ EH DGRSWHG DIWHU FDUHIXO FRQVLGHUDWLRQ E\ WKH HQWLUH DVWURQRPLFDO FRPPXQLW\ 6XPPDU\ 7KLV GLVVHUWDWLRQ KDV JLYHQ DQ DOWHUQDWLYH PHWKRG IRU FRPSXWLQJ WKH SUHFHVVLRQ PDWUL[ 3 D URWDWLRQ PDWUL[ WKDW WUDQVIRUPV IURP WKH (DUWK PHDQ HTXDWRU DQG YHUQDO HTXLQR[ RI WKH VWDQGDUG HSRFK WR WKH (DUWK PHDQ HTXDWRU DQG YHUQDO HTXLQR[ RI GDWH 7KH QHZ PHWKRG HPSOR\V WKH LQYDULDEOH SODQH RI WKH 6RODU 6\VWHP ZKRVH LQFOLQDWLRQ DQG DVFHQGLQJ QRGH / ERWK UHFNRQHG LQ WKH PHDQ HTXDWRULDO V\VWHP RI HSRFK -f ZHUH IRXQG LQ &KDSWHU WR EH R r s nn f / r7snn f 7KH SUHFHVVLRQ PDWUL[ LV ZULWWHQ 3 5/f 5f 5$f 5LIRf 5eRf f ZKHUH WKH DQJOHV / DQG $ DUH IXQFWLRQV RI WLPH

PAGE 267

)RU GDWHV QRW PRUH WKDQ D IHZ FHQWXULHV IURP WKH WLPHYDU\LQJ DQJOHV PD\ EH H[SUHVVHG DV FXELF SRO\QRPLDOV LQ 7 ZKLFK LV WKH WLPH PHDVXUHG LQ -XOLDQ FHQWXULHV IURP / rn nn7 7 U f rn nnU n7 U f $ O7 7 7 f 7KH FRHIILFLHQWV LQ WKHVH WKUHH HTXDWLRQV ZHUH IRXQG LQ &KDSWHU WKH\ DUH EDVHG RQ WKH ZRUN RI /LHVNH HW DO f 7KH PDWUL[ 3 IRXQG WKLV ZD\ DJUHHV ZLWK WKHLUV WR WKH OLPLWV RI WKHLU WKHRU\ )RU GDWHV ZLWKLQ \HDUV RI WKH DQJOHV DUH H[SUHVVHG LQ VXPV RI &KHE\ VKHY SRO\QRPLDOV WKH SRO\QRPLDO FRHIILFLHQWV IRU HDFK RI GLIIHUHQW \HDU WLPH LQn WHUYDOV DUH JLYHQ LQ 7DEOH +HUH WKH DQJOHV DUH IRXQG E\ A /IFUIFUf N f \!7IFUf N f $ A $N7NUf N f ,Q WKHVH HTXDWLRQV WKH DUH WKH &KHE\VKHY SRO\QRPLDOV RI WKH ILUVW NLQG RI GHJUHH N DQG W LV D GLPHQVLRQOHVV WLPH JLYHQ LQ WHUPV RI 7 E\ L >7 ff 7F  f W W UFfR f

PAGE 268

7KH FRHIILFLHQWV /N ,N DQG $N D[H IRXQG RQ WKH ]WK SDJH RI 7DEOH 7KHVH FRHIILFLHQWV DORQJ ZLWK VLPLODU RQHV IRU WKH FODVVLFDO SUHFHVVLRQ DQJOHV ZHUH REWDLQHG IURP D QXPHULFDO LQWHJUDWLRQ RI WKH PRWLRQ RI WKH PHDQ FHOHVWLDO SROH XVLQJ .LQRVKLWDfV f IRUPXODWLRQ IRU LWV UDWH DQG /DVNDUfV f VROXWLRQ IRU WKH RULHQWDWLRQ RI WKH HFOLSWLF 3UHFHVVLRQ EHWZHHQ WZR DUELWUDU\ WLPHV 7? DQG 7R FDQ LQ WKHRU\ EH REWDLQHG E\ PDWUL[ PXOWLSOLFDWLRQ ZLWK WKH VWDUWLQJ DQG HQGLQJ WLPHV QRZ H[SOLFLW LQ WKH QRWDWLRQ 37L f§ 7f 3 f§}‘ 7f 3 f§r 7LfU f :KHQ WKH ULJKWKDQG VLGH LV H[SDQGHG WZR SDLUV RI HOHPHQWDU\ URWDWLRQV FDQFHO OHDYLQJ 3L 7f 5V>/7f? 5L>Uf@ 5>$7[f $7f@ 5L>7Lf@ 5>;7Lf@ f )RU VKRUWWHUP ZRUN WKH DQJOHV / DQG DUH IRXQG E\ HTXDWLRQV f DQG f DV EHIRUH DQG WKH GLIIHUHQFH EHWZHHQ WKH WZR YDOXHV IRU $ LV EHVW HYDOXDWHG E\ GHILQLQJ W 7L f§ 7? DQG WKHQ HYDOXDWLQJ $7f $Lf nn7 07"fW nn 7LfL L f )RU ORQJWHUP ZRUN $f DQG $7Lf ZRXOG SUREDEO\ EH IRXQG LQGHSHQGHQWO\ DQG VXEn WUDFWHG DV ZULWWHQ 7KH PDWUL[ 3 ZRXOG EH VLPSOLILHG FRQVLGHUDEO\ LI DVWURQRPHUV ZHUH WR VKLIW WKH RULJLQ RI ULJKW DVFHQVLRQV IURP WKH YHUQDO HTXLQR[ WR WKH QHDUE\ LQWHUVHFWLRQ RI WKH HTXDWRU DQG WKH LQYDULDEOH SODQH $UJXPHQWV LQ IDYRU RI WKLV UDGLFDO UHGHILQLWLRQ RI ULJKW DVFHQVLRQ ZHUH SUHVHQWHG LQ 6HFWLRQV DQG SULPDULO\ WKDW SUHFHVVLRQ WKHRU\ ZRXOG WKHUHE\ EH PDGH VLPSOHU ERWK LQ FRQFHSW DQG LQ SUDFWLFH 7KH RQO\ VXEVWDQWLDO DUJXPHQW DJDLQVW WKLV SURSRVDO LV WKDW LW PLJKW EH PRUH GLIILFXOW WR UHGXFH ROG REVHUYDWLRQV UHIHUUHG WR WKH YHUQDO

PAGE 269

HTXLQR[ :KHWKHU WKH SUHFHVVLRQ WKHRU\ SURSRVHG KHUH LV WR FRPH LQWR JHQHUDO XVH GHSHQGV WKHUHIRUH RQ D GHFLVLRQ WKDW FDQ RQO\ EH PDGH E\ WKH HQWLUH DVWURQRPLFDO FRPPXQLW\

PAGE 270

5()(5(1&(6 $EUDPRZLW] 0 DQG 6WHJXQ $ f +DQGERRN RI 0DWKHPDWLFDO )XQFWLRQV 1DWLRQDO %XUHDX RI 6WDQGDUGV $SSO 0DWK 6HULHV 8 6 *RYHUQPHQW 3ULQWLQJ 2IILFH :DVKn LQJWRQf $QGR\HU + f %XOO $VWURQ $RNL 6 *XLQRW % .DSODQ + .LQRVKLWD + 0F&DUWK\ ' DQG 6HLGHOPDQQ 3 f $VWURQ $VWURSK\V $RNL 6 6RPD 0 .LQRVKLWD + DQG ,QRXH f $VWURQ $VWURSK\V %DUNHU % 0 DQG 2f&RQQHOO 5 ) f 3K\V 5HY %HUJHU $ / f $VWURQ $VWURSK\V %HYLQJWRQ 3 5 f 'DWD 5HGXFWLRQ DQG (UURU $QDO\VLV IRU WKH 3K\VLFDO 6FLHQFHV 0F*UDZ+LOO %RRN &RPSDQ\ 1HZ
PAGE 271

'XULH] / f $SSURFKH F9XQ 7KRULH *QUDOH 3ODQWDLUH HQ YDULDEOHV HOOLSWLTXHV K OLRFHQWULTXHV WKHVLV /LOOH 'XYDOO 7 / -U ']LHPERZVNL : $ *RRGH 3 5 *RXJK 2 +DUYH\ : DQG /HLEDFKHU : f 1DWXUH 'XYDOO 7 / -U +DUYH\ : DQG 3RPHUDQW] 0 $ f 1DWXUH (LFKKRUQ + f &HO 0HFK SDUW )DEUL ( f $VWURQ $VWURSK\V )ULFNH : f $VWURQ $VWURSK\V )ULFNH : DQG .RSI) $ f )RXUWK )XQGDPHQWDO &DWDORJXH ).If 9HUII $VWURQ 5HFKHQ,QVW +HLGHOE 9HUODJ %UDXQ .DUOVUXKHf )ULFNH : 6FKZDQ + DQG /HGHUOH 7 f )LIWK )XQGDPHQWDO &DWDORJXH ).f 9HUII $VWURQ 5HFKHQ,QVW +HLGHOE 9HUODJ %UDXQ .DUOVUXKHf *ROGVWHLQ + f &ODVVLFDO 0HFKDQLFV VHFRQG HGLWLRQ $GGLVRQ:HVOH\ 3XEOLVKLQJ &RPn SDQ\ 5HDGLQJ 0DVVf +RZDUG 5 DQG +DUYH\ : f 6RO 3K\V ,EHQ -U f $VWURSK\V ,QVWLWXW 7HRUHWLFKHVNR\ $VWURQRPLL $NDGHPLL 1DXN 6665 f (IHPHULG\ 0DO\NK 3ODQHW 1DXND /HQLQJUDGf ,QWHUQDWLRQDO $VWURQRPLFDO 8QLRQ f 7UDQV ,$8 ;9,$ SDUW &RQWRSRXORV HG 5HLGHO 3XEOLVKLQJ &RPSDQ\ 'RUGUHFKWf -DFREVRQ 5 $ /HZLV 2ZHQ : 0 5LHGHO ( 5RWK & 6\QQRWW 6 3 DQG 7D\ORU $ ,, f f(SKHPHULGHV RI WKH 0DMRU 1HSWXQLDQ 6DWHOOLWHV 'HWHUPLQHG IURP (DUWK%DVHG $VWURPHWULF DQG 9R\DJHU ,PDJLQJ 2EVHUYDWLRQVf $,$$ SDSHU $$6$,$$ $VWURG\QDPLFV &RQI 3RUWODQG 2UH -HW 3URSXOVLRQ /DERUDWRU\ $SSOLHG 0DWKHPDWLFV *URXS f 0$7+ 5HOHDVH $ /Ln EUDU\ RI 0DWKHPDWLFDO 6XESURJUDPV IRU )RUWUDQ -HW 3URSXOVLRQ /DERUDWRU\ GRFXPHQW 5HY $ .LQRVKLWD + f 6PLWKVRQ $VWURSK\V 2EV 6SHF 5HS .LQRVKLWD + f &HO 0HFK .QXWK ( f 7KH 7SI;ERRN $GGLVRQ:HVOH\ 3XEOLVKLQJ &RPSDQ\ 5HDGLQJ 0DVVf /DVNDU f $VWURQ $VWURSK\V

PAGE 272

/DVNDU f $VWURQ $VWURSK\V /DVNDU f $VWURQ $VWURSK\V /DVNDU f $VWURQ $VWURSK\V LQ SUHSDUDWLRQ /DZVRQ & / f -HW 3URSXOVLRQ /DERUDWRU\ 6HFWLRQ &RPSXWLQJ 0HPRUDQGXP 1R /LHVNH + f $VWURQ $VWURSK\V /LHVNH + f &HO 0HFK /LHVNH + /HGHUOH 7 )ULFNH : DQG 0RUDQGR % f $VWURQ $VWURSK\V /XWKHU * DQG 7RZOHU : 5 f 3K\V 5HY /HWW 0R\HU 7 f 0DWKHPDWLFDO )RUPXODWLRQ RI WKH 'RXEOH3UHFLVLRQ 2UELW 'HWHUPLQDn WLRQ 3URJUDP '32'3f -HW 3URSXOVLRQ /DERUDWRU\ 7HFK 5HS 1HZFRPE 6 f $VWURQ 3DS SDUW 1HZFRPE 6 f $ &RPSHQGLXP RI 6SKHULFDO $VWURQRP\ 0DFPLOODQ &RPSDQ\ 1HZ
PAGE 273

6WDQGLVK ( 0 -U .HHVH\ 0 6 : DQG 1HZKDOO ; ; f -3/ 'HYHORSPHQW (SKHP HULV 1XPEHU -HW 3URSXOVLRQ /DERUDWRU\ 7HFK 5HS 6WRQH ( & DQG 0LQHU ( f 6FLHQFH 8QLWHG 6WDWHV 1DYDO 2EVHUYDWRU\ DQG 5R\DO *UHHQZLFK 2EVHUYDWRU\ f 7KH $VWURn QRPLFDO $OPDQDF IRU WKH \HDU 8 6 *RYHUQPHQW 3ULQWLQJ 2IILFH :DVKLQJWRQ DQG +HU 0DMHVW\fV 6WDWLRQHU\ 2IILFH /RQGRQf :DKU 0 f 7KH 7LGDO 0RWLRQV RI D 5RWDWLQJ (OOLSWLFDO (ODVWLF DQG 2FHDQOHVV (DUWK 3K' GLVVHUWDWLRQ 8QLY RI &RORUDGR :LOO & 0 f ([SHULPHQWDO *UDYLWDWLRQ % %HUWRWWL HG $FDGHPLF 3UHVV 1HZ
PAGE 274

%,2*5$3+,&$/ 6.(7&+ :LOOLDP 0DQQ 2ZHQ -U D QDWLYH RI %DOWLPRUH 0DU\ODQG UHFHLYHG KLV %6 GHJUHH ZLWK KRQRUV IURP WKH &DOLIRUQLD ,QVWLWXWH RI 7HFKQRORJ\ LQ DQG KLV 06 GHJUHH IURP WKH 8QLYHUVLW\ RI )ORULGD LQ +H KDV EHHQ HPSOR\HG VLQFH DW WKH -HW 3URSXOVLRQ /DERUDWRU\ LQ 3DVDGHQD &DOLIRUQLD ZKHUH DV D PHPEHU RI 9R\DJHUfV QDYLJDWLRQ WHDP KH HVWLPDWHG WKH RUELWV RI WKH VPDOO VDWHOOLWHV RI 8UDQXV DQG 1HSWXQH +H KDV UHFHLYHG D 1Dn WLRQDO 0HULW 6FKRODUVKLS D 8QLYHUVLW\ RI )ORULGD *UDGXDWH &RXQFLO )HOORZVKLS D 1DWLRQDO 6FLHQFH )RXQGDWLRQ *UDGXDWH )HOORZVKLS DQG D 1DWLRQDO $HURQDXWLFV DQG 6SDFH $GPLQLVn WUDWLRQ ([FHSWLRQDO 6HUYLFH 0HGDO +H ZDV HOHFWHG WR WKH 3KL .DSSD 3KL KRQRU VRFLHW\ LQ +H LV D PHPEHU RI WKH $PHULFDQ $VWURQRPLFDO 6RFLHW\ 2ZHQ OLYHV LQ $OWDGHQD &DOLIRUQLD ZLWK KLV ZLIH (OL]DEHWK DQG WKUHH FKLOGUHQ +LV LQWHUHVWV LQFOXGH SLDQR RUJDQ VLQJLQJ LQ PL[HG FKRLUV FRLQ FROOHFWLQJ DQG DPDWHXU DVWURQn RP\

PAGE 275

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH ?MS VFRSH DQG TXDOLW\ DV D GLVVHUn WDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ +HLQULFK (LFKKRUQ &KDLU 3URIHVVRU RI $VWURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUn WDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI $VWURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUn WDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ P 3 2OLYHU VVRFLDWH 3URIHVVRU RI $VWURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUn WDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6PLW $VVRFLDWH 3URIHVVRU RI $VWURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUn WDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /VHUFF -D\ + /LHVNH 6HQLRU 5HVHDUFK 6FLHQWLVW -HW 3URSXOVLRQ /DERUDWRU\ &DOLIRUQLD ,QVWLWXWH RI 7HFKQRORJ\

PAGE 276

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI $Vn WURQRP\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 277

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EC33EUK17_VD1SIO INGEST_TIME 2017-07-11T22:16:06Z PACKAGE AA00002116_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES