An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female

MISSING IMAGE

Material Information

Title:
An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female Internal Electron Sources
Physical Description:
1 online resource (150 p.)
Language:
english
Creator:
O'reilly, Shannon E
Publisher:
University of Florida
Place of Publication:
Gainesville, Fla.
Publication Date:

Thesis/Dissertation Information

Degree:
Master's ( M.S.)
Degree Grantor:
University of Florida
Degree Disciplines:
Biomedical Engineering
Committee Chair:
Bolch, Wesley Emmett
Committee Members:
Hintenlang, David Eric
Rill, Lynn Neitzey

Subjects

Subjects / Keywords:
adult -- dosimetry -- electron -- female -- icrp -- image -- skeletal
Biomedical Engineering -- Dissertations, Academic -- UF
Genre:
Biomedical Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract:
The geometries of the skeletal regions of the body are difficult to model, particularly those comprising the bone trabeculae and bone marrow. Irradiation of hematopoietically active bone marrow and osteoprogenitor cells that line the bone surfaces has been found to induce radiogenic leukemia and radiogenic bone cancer, respectively.  The active marrow and bone endosteum are typically adopted as surrogate tissue regions for dosimetric assessment of these cell populations.   Most previous skeletal dosimetry models do not account for electron escape and cross-fire from cortical bone, assume regions of infinite spongiosa, disregard varying cellularity effects on active marrow self-irradiation, and do not utilize the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells – shallow marrow. Each of these limitations was addressed in the present dosimetry model for the ICRP reference adult female.  Electron transport was performed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. Macrostructures and microstructures were modeled separately.  Individual bone macrostructures were obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while microstructures were derived from microCT images of sampled skeletal regions obtained from a 45-year-old female cadaver.  Source regions considered were active marrow, inactive marrow, trabecular bone volume, cortical bone volume and cortical bone surfaces.  Marrow cellularities were varied from 10 to 100 percent for active marrow self-irradiation simulations.  A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically.  The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study.  The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow the past Stabin and Segal model at high energies (due to that models use of an infinite expanse of trabecular spongiosa).
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility:
by Shannon E O'reilly.
Thesis:
Thesis (M.S.)--University of Florida, 2013.
Local:
Adviser: Bolch, Wesley Emmett.
Electronic Access:
RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2014-08-31

Record Information

Source Institution:
UFRGP
Rights Management:
Applicable rights reserved.
Classification:
lcc - LD1780 2013
System ID:
UFE0046051:00001


This item is only available as the following downloads:


Full Text

PAGE 1

1 AN IMAGE BASED SKELETAL DOSIMETRY MODEL FOR THE ICRP REFERENCE ADU LT FEMALE INTERNAL ELECTRON SOURCES By SHANNON E. O'REILLY A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2013

PAGE 2

2 2013 Shannon E. O'Reilly

PAGE 3

3 To my parents

PAGE 4

4 ACKNOWLEDGMENTS I would like to thank my committee chair, Dr. Wesley Bolch, for all the guidance and opportunities he has provided. I would like to thank my committee members, Dr. David Hintenlang and Dr. Lynn Rill, for all the knowledge they have instilled in me and the time they have taken to provide me with direction. I would also like the thank Dr. Didier Rajon for his help in segmenting and resampling the images used in this study I am indebted to the previous students who developed the methodology behind this stud y: Deanna Pa fundi, Matthew Hough, Lindsay Sinclair, and Michael Wayson. Finally, I would like to thank Matthew Maynard and David Borrego for their invaluable assistance with scripting and programming and Emily Marshall for her efforts with data processing

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ .. 4 LIST OF TABLES ................................ ................................ ................................ ............ 7 LIST OF FIGURES ................................ ................................ ................................ ........ 10 LIST OF ABBREVIATIONS ................................ ................................ ........................... 16 ABSTRACT ................................ ................................ ................................ ................... 19 CHAPTER 1 INTRODUCTION ................................ ................................ ................................ .... 21 Skelet al Structure and Formation ................................ ................................ ........... 21 Skeletal Dosimetry Targets ................................ ................................ ..................... 21 Previous Dosimetry Studies ................................ ................................ .................... 22 University of Leeds Bone Dosimetry Unit ................................ ......................... 23 S nyder Study: MIRD Pamphlet No. 11 ................................ ............................. 24 Cristy and Eckerman Studies: MIRDOSE 3 ................................ ...................... 24 Bouchet et al. Study ................................ ................................ ......................... 25 Stabin a nd Siegel Study: OLINDA/EXM ................................ ........................... 26 Image based Models ................................ ................................ ........................ 26 Types of models ................................ ................................ ......................... 27 Hough et al. study ................................ ................................ ...................... 27 Improvements in Skeletal Dosimetry ................................ ................................ ....... 28 Reasoning Behind Shallow Marrow Thickness Redefinition ................................ ... 28 2 MATERIALS AND METHODS ................................ ................................ ................ 29 Cadaver Selection and Image Acquisition ................................ .............................. 29 Macrostructure Modeling ................................ ................................ ........................ 30 Vertebrae ................................ ................................ ................................ .......... 31 Lone Bone Shaft Modeling ................................ ................................ ............... 32 Volume Error Corrections ................................ ................................ ................. 33 Microstructure Modeling ................................ ................................ .......................... 33 Cellularity ................................ ................................ ................................ ................ 34 Radiation Transp ort ................................ ................................ ................................ 35 Macrostructure Runs ................................ ................................ ........................ 35 Long Bone Shafts ................................ ................................ ............................. 36 Microstructu re Runs ................................ ................................ ......................... 36 Physics Considerations ................................ ................................ .................... 37

PAGE 6

6 3 RESULTS AND DISCUSSION ................................ ................................ ............... 50 Volume Fractions and Mass Distributions ................................ ............................... 50 Absorbed Fractions and Specific Absorbed Fractions ................................ ............ 51 Skeletal Regions with Multiple Samples ................................ ........................... 53 Computing absorbed and specific absorbed fractions ............................... 53 Examining sample contributions ................................ ................................ 54 Skeletal Average ................................ ................................ .............................. 56 Computations for adult female model ................................ ........................ 56 Comparisons with previous dosimetry models ................................ ........... 57 Effects of Varying Cellularity ................................ ................................ ................... 59 4 CONCLUSIONS AND FUTURE WORK ................................ ................................ 79 Future Work ................................ ................................ ................................ ............ 79 Sensitivity Study on Tagging of the Shallow Marrow Layer .............................. 79 Trabecular Bone Surfaces ................................ ................................ ................ 80 S Values ................................ ................................ ................................ ........... 81 APPENDIX A TABLES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS TO ACTIVE MARROW TARGETS ................................ ................................ ......... 82 B TABLES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORB ED FRACTIONS TO SHALLOW MARROW TARGETS ................................ ................................ ..... 98 C FIGURES OF SKELETAL SITE SPECIFIC ABSORBED FRACTIONS TO ACTIVE MARROW TARGETS ................................ ................................ ............. 121 D FIGURES OF SKELETAL SITE SPECIFIC ABSORBED FRACTIONS TO SHALLOW MARROW TARGETS ................................ ................................ ......... 130 LIST OF REFERENCES ................................ ................................ ............................. 148 BIOGRAPHICAL SKETCH ................................ ................................ .......................... 150

PAGE 7

7 LIST OF TABLES Table page 2 1 The bone size, resulting voxel resolution, and number of voxels for the macrostructu re of each skeletal region. ................................ .............................. 38 2 2 Matrix dimensions for the separated vertebrae. ................................ .................. 39 2 3 Dimensions used for the long bone shaft cylinder models in MCNPX. ............... 39 2 4 Matrix dimensions for the skeletal microstructure. ................................ .............. 40 2 5 ICRP 70 defined cellularit y factors used for each skeletal site microstructure. ... 41 2 6 Elemental compositions and densities used for the material definitions for each skeletal site macrostructure. ................................ ................................ ...... 42 2 7 Elemental compositions and densities used for the material definitions for each skeletal site microstructure. ................................ ................................ ....... 43 3 1 Spongiosa and cortical volume fractions in the skeletal regions of the adult female. ................................ ................................ ................................ ................ 60 3 2 Marrow, trabecular, and shallow marrow volume fractions as a percentage of spongiosa volume and shallow marrow volume fraction as a percent of marrow volume for the skeletal regions of the adult female. ............................... 61 3 3 Distribution of mineral bone in the present model for the adult female, compared to the mineral bone distributions compute d in a study by Johnson and a study by Spiers and Beddoe for an adult. ................................ ................. 62 3 4 Total active marrow and inactive marrow masses for t he skeletal regions of the adult female, using ICRP 70 recommended cellularities, and comparison of the total mass values with those stated for the reference adult female in ICRP 89. ................................ ................................ ................................ ............. 63 3 5 Total skeletal mass for each skeletal region of the adult female, less that of cartilage, and a comparison of total skeletal mass with the ICRP 89 value for the reference adult female. ................................ ................................ ................. 64 3 6 Skeletal averaging parameters for active marrow, inactive marrow, trabecular bone volume, and cortical bone volume sources used for calculating skeletal averaged absorbed fractions for the UF adult female model. ............................. 65 3 7 Skeletal averaged absorbed fractions for a ctive marrow and shallow marrow targets in the adult female. ................................ ................................ ................. 66

PAGE 8

8 3 8 Skeletal averaged specific absorbed fractions (g 1 ) for active marrow and shallow marrow targets in the adult female. ................................ ....................... 67 A 1 Specific absorbed fractions (g 1 ) for active marrow targets in the craniofacial bones. ................................ ................................ ................................ ................. 83 A 2 Specific absorbed fractions (g 1 ) for active marrow targets in the mandible. ....... 84 A 3 Specific absorbed fractions (g 1 ) for active marrow targets in the cervical vertebrae. ................................ ................................ ................................ ........... 85 A 4 Specific absorbed fractions (g 1 ) for active marrow targets in the thoracic vertebrae. ................................ ................................ ................................ ........... 86 A 5 Specific absorbed fractions (g 1 ) for active marrow targets in the lumbar vertebrae. ................................ ................................ ................................ ........... 87 A 6 Specific absorbed fractions (g 1 ) for active m arrow targets in the sternum. ........ 88 A 7 Specific absorbed fractions (g 1 ) for active marrow targets in the ribs. ............... 89 A 8 Specific absorbed fractions (g 1 ) for active marrow targets in the scapulae. ....... 90 A 9 Specific absorbed fractions (g 1 ) for active marrow targets in the clavicles. ........ 91 A 10 Specific absorbed fractions (g 1 ) for active marrow targets in the os coxae. ....... 92 A 11 Specific absorbed fractions (g 1 ) for active marrow targets in the sacrum. ......... 93 A 12 Specific ab sorbed fractions (g 1 ) for active marrow targets in the proximal humeri. ................................ ................................ ................................ ............... 94 A 13 Specific absorbed fractions (g 1 ) for active marr ow targets in the proximal femora. ................................ ................................ ................................ ............... 95 A 14 Specific absorbed fractions (g 1 ) for active marrow targets in the humeral upper shafts. ................................ ................................ ................................ ....... 96 A 15 Specific absorbed fractions (g 1 ) for active marrow targets in the femoral upper shafts. ................................ ................................ ................................ ....... 97 B 1 Specific absorbed fractions (g 1 ) for shallow marrow targets in the craniofacial bones. ................................ ................................ ................................ ................. 99 B 2 Specific absorbed fractions (g 1 ) for shallow marrow targets in the mandible. .. 100 B 3 Specific absorbed fractions (g 1 ) for shallow marrow targets in the cervical vertebrae. ................................ ................................ ................................ ......... 101

PAGE 9

9 B 4 Specific absorbed fractions (g 1 ) for shallow marrow targets in the thoracic vertebrae. ................................ ................................ ................................ ......... 102 B 5 Specific absorbed fractions (g 1 ) for shallow marrow targets in the lumbar vertebrae. ................................ ................................ ................................ ......... 103 B 6 Specific absorbed fractions (g 1 ) for shallow marrow targets in the sternum. .... 104 B 7 Specific absorbed fractions (g 1 ) for shallo w marrow targets in the ribs. ........... 105 B 8 Specific absorbed fractions (g 1 ) for shallow marrow targets in the scapulae. .. 106 B 9 Specific absorbed fractions (g 1 ) for shallow marrow targets in the clavicles. ... 107 B 10 Specific absorbed fractions (g 1 ) for shallow marrow targets in the os coxae. .. 108 B 11 Specific absorbed fractions (g 1 ) for shallow marrow targets in the sacrum. ..... 109 B 12 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the humeri. ................................ ................................ ....................... 110 B 13 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the radii. ................................ ................................ ........................... 111 B 14 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the ulnae. ................................ ................................ ......................... 112 B 15 Specific absorbed fractions (g 1 ) for shallow marrow targets in the wrists and hands. ................................ ................................ ................................ ............... 113 B 16 Specific absorbed fractions (g 1 ) for shallow marrow targets in the shafts of the arm bones. ................................ ................................ ................................ .. 114 B 17 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the femora. ................................ ................................ ....................... 115 B 18 Specific absorbed fractions (g 1 ) for shallow marrow targets in the patellae. .... 116 B 19 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the tibiae. ................................ ................................ ......................... 117 B 20 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the fibulae. ................................ ................................ ....................... 118 B 21 Specific absorbed fractions (g 1 ) for shallow marrow targets in the ankles and feet. ................................ ................................ ................................ .................. 119 B 22 Specific absorbed fractions (g 1 ) for shallow marrow targets in the shafts of the leg bones. ................................ ................................ ................................ ... 120

PAGE 10

10 LIST OF FIGURES Figure page 2 1 Pre segmented, post filtered microCT single slice image of the third cervical vertebra. ................................ ................................ ................................ ............. 44 2 2 Post segmented, post filtered microCT single slice image of the third cervical vertebra (using a threshold value of 172). ................................ .......................... 44 2 3 Complete UFHADF phantom and the removed full skeleton of the UFHADF. .... 45 2 4 Seperated proximal, upper shaft, lower shaft and distal regions of the adult female femur. ................................ ................................ ................................ ...... 45 2 5 Image slice from ImageJ TM of the adult female cranium illustrating the streaking artifact that can occur from voxelization. ................................ ............. 46 2 6 Depiction of the process used to separate the vertebrae into individual vertebra in Rhinoceros TM through the use of cutting planes (for the lumbar and th oracic vertebrae) and control point deletion (for the cervical vertebrae). A) Lumbar vertebrae and separated L1 vertebra. B) Thoracic vertebrae and separated T9 vertebra. C) Cervical vertebrae and separated C3 vertebra. ........ 47 2 7 Mandible of the UFHADF phantom. A) Prior to repair, with spongiosa (pink) breaking through the cortical layer (gray). B) Repaired. ................................ .... 48 2 8 Image slice of the microstructure of the sacrum (cellularity of 60%) with the shallow marrow labeled (inactive shallow marrow in blue and active sha llow marrow in orange). ................................ ................................ ............................. 48 2 9 The macrostructure and microstructure (with microCT image slice) for the adult female sternum. ................................ ................................ ......................... 49 2 10 Varying cellularity of the os coxae, with dark gray being the inactive marrow, white active marrow, and black is the mineral bone. A) 10% cellularity. B) ICRP 70 cellularity of 48% C) 90% cellularity. ................................ ................... 49 3 1 Absorbed fractions for active marrow irradiating active marrow for the sternum of the UF adult femal e and the UF adult male at ICRP 70 reference cellularity. ................................ ................................ ................................ ........... 68 3 2 Contributions of frontal, occipital, and parietal bone sample ab sorbed fractions to the craniofacial absorbed fractions for active marrow self irradiation at ICRP 70 reference cellularity. ................................ ........................ 68

PAGE 11

11 3 3 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to active marrow by trabecular ina ctive marrow source at ICRP 70 reference cellularity. ................................ ... 69 3 4 Contributions of frontal, occipital, and parietal bone sample absorb ed fractions to the craniofacial absorbed fractions to active marrow by trabecular bone volume source at ICRP 70 reference cellularity. ................................ ........ 69 3 5 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to active marrow by cortical bone volume source at ICRP 70 reference cellularity. ................................ ........ 70 3 6 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to shallow marrow by trabecular active marrow source at ICRP 70 reference cellularity. ..................... 70 3 7 Comparison of absorbed fraction to active marrow for an active marrow sour ce in the lumbar vertebra (L1 L5) when the separated vertebra were used as the macrostructure and when the entire lumbar vertebral column was used as the macrostructure. ................................ ................................ ........ 71 3 8 Comparison of absorbed fraction to shallow marrow for an active marrow source in the lumbar vertebra (L1 L5) when the separated vertebra were used as the macrostructure and when the entire lumbar vertebral co lumn was used as the macrostructure. ................................ ................................ ........ 71 3 9 Skeletal averaged absorbed fractions to active marrow in the adult female by active ma rrow, inactive marrow, trabecular bone volume, and cortical bone volume sources. ................................ ................................ ................................ 72 3 10 Comparison of absorbed fractions for active marrow self irradiation for each reference cellularity and the resulting skeletal average value. ........................... 72 3 11 Comparison of absorbed fractions for active marrow with an inactive marrow ICRP 70 reference cellularity and the resulting sk eletal average value. ............. 73 3 12 Comparison of absorbed fractions for active marrow with cortical bone volume source for each bone site that contains active marrow at each average value. ................................ ................................ ................................ .... 73 3 13 Comparison of absorbed fractions for active marrow with trabecular bone volume source for each bone site that contains active marrow at each average value. ................................ ................................ ................................ .... 74

PAGE 12

12 3 14 Comparison of skeletal averaged absorbed fractions to active marrow by active marrow source of the UFADF from this study to the UFADM, UF15YF, Stabin and Segal AD, and ICRP 110 ADF models. ................................ ............ 74 3 15 Comparison of skeletal averaged absorbed fractions to active marrow by inactive marrow source of the UFADF from this study to the UFADM and ICRP 110 ADF models. ................................ ................................ ...................... 75 3 16 Comparison of skeletal aver aged absorbed fractions to active marrow by trabecular bone volume source of the UFADF from this study to the UFADM, UF15YF, Stabin and Segal AD, and ICRP 110 ADF models. ............................. 75 3 17 Comparison of skeletal averaged absorbed fractions to active marrow by cortical bone volume source of the UFADF from this study to the UFADM and ICRP 110 ADF models. ................................ ................................ ...................... 76 3 18 Comparison of skeletal averaged absorbed fractions to shallow marrow by an active marrow source of the UFADF from this study to the UFADM, UF15YF, Stabin and Segal AD, and ICRP 110 ADF models. ............................. 76 3 19 The effect of varying cellularity on absorbed fractions for active marrow self ir radiation in the sternum. ................................ ................................ ................... 77 3 20 The effect of varying cellularity on specific absorbed fractions for active marrow self irradia tion in the sternum. ................................ ............................... 77 3 21 The lack of effect of varying cellularity on absorbed fractions for shallow marrow when active marrow is the source, for the sternum. .............................. 78 C 1 Electron absorbed fractions to active marrow targets in the craniofacial bones for TAM, TI M, TBV, and CBV sources. ................................ ............................. 122 C 2 Electron absorbed fractions to active marrow targets in the mandible for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 122 C 3 Electron absorbed fractions to active marrow targets in the cervical vertebrae for TAM, TIM, TBV, and CBV source s. ................................ ............................. 123 C 4 Electron absorbed fractions to active marrow targets in the thoracic vertebrae for TAM, TIM, TBV, and CBV sources. ................................ ............................. 123 C 5 Electron absorbed fractions to active marrow targets in the lumbar vertebrae for TAM, TIM, TBV, and CBV sources. ................................ ............................. 124 C 6 Electron absorbed fractions to active marrow targets in the sternum for TAM, TIM, TBV, and CBV sources. ................................ ................................ ............ 124

PAGE 13

13 C 7 Electron absorbed fractions to active marrow targets in the ribs for TAM, TIM, TBV, and CBV sources. ................................ ................................ .................... 125 C 8 Electron absorbed fractions to active marrow targets in the scapulae for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 125 C 9 Electron absorbed fractions to active marrow targets in the clavicles for TAM, TIM, TBV, and CBV sources. ................................ ................................ ............ 126 C 10 Electron absorbed fractions to active marrow targets in the os coxae for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 126 C 11 Electron absorbed fractions to active marrow targets in the sacrum for TAM, TIM, TBV, and CBV sources. ................................ ................................ ............ 127 C 12 Electron absorbed fractions to active marrow targets in the proximal humeri for TAM, TIM, TBV, and CBV sources. ................................ ............................. 127 C 13 Electron absorbed fractions to active marrow targets in the proximal femora for TAM, TIM, TBV, and CBV sources. ................................ ............................. 128 C 14 Electron absorbed fractions to active marrow targets in the humeral upper shafts for MAM, MIM, CBS, and CBV sources. ................................ ................ 128 C 15 Electron absorbed fractions to active marrow targets in the femoral upper shafts for MAM, MIM, CBS, and CBV sources. ................................ ................ 129 D 1 Electron absorbed fractions to shallow marrow targets in the craniofacial bones for TAM, TIM, TBV, and CBV sources. ................................ .................. 131 D 2 Electron absorbed fractions to shallow marrow targets in the mandible for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 131 D 3 Electron absorbed fractions to shallow marrow targets in the cervical vertebrae for TAM, TIM, TBV, and CBV sources. ................................ ............. 132 D 4 Electron absorbed fractions to shallow marrow targets in the thoracic vertebrae for TAM, TIM, TBV, and CBV sources. ................................ ............. 132 D 5 Electron absorbed fractions to shallow marrow targets in the lumbar vertebrae for TAM, TIM, TBV, and CBV sources. ................................ ............. 133 D 6 Electron absorbed fractions to shallow marrow targets in the sternum for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 133 D 7 Electron absorbed fractions to shallow marrow targets in the ribs for TAM, TIM, TBV, and CBV sources. ................................ ................................ ............ 134

PAGE 14

14 D 8 Electron absorbed fractions to shallow marrow targets in the scapulae for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 134 D 9 Electron absorbed fractions to shallow marrow targets in the clavicles for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 135 D 10 Electron absorbed fractions to shallow marrow targets in the os coxae for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 135 D 11 Electron absorbed fractions to shallow marrow targets in the sacrum for TAM, TIM, TBV, and CBV sources. ................................ ................................ .. 136 D 12 Electron absorbed fractions to shallow marrow targets in the proximal humeri for TAM, TIM, TBV, and CBV sources. ................................ ............................. 136 D 13 Electron absorbed fractions to shallow marrow targets in the distal humeri for TIM, TBV, and CBV sources. ................................ ................................ ............ 137 D 14 Electron absorbed fractions to shallow marrow targets in the proximal radii for TIM, TBV, and CBV sources. ................................ ................................ ...... 137 D 15 Electron absorbed fractions to shallow marrow targets in the distal radii for TIM, TBV, and CBV sources. ................................ ................................ ............ 138 D 16 Electron absorbed fractions to shallow marrow targets in the proximal ulnae for TIM, TBV, and CBV sources. ................................ ................................ ...... 138 D 17 Electron absorbed fractions to shallow marrow targets in the distal ulnae for TIM, TBV, and CBV sources. ................................ ................................ ............ 139 D 18 Electron absorbed fractions to shallow marrow targets in the wrists and hands for TIM, TBV, and CBV sources. ................................ ............................ 139 D 19 Electron absorbed fractions to shallow marrow targets in the humeral upper shafts for MAM or MIM, CBS, and CBV sources. ................................ ............. 140 D 20 Electron absorbed fractions to shallow marrow targets in the humeral lower shafts for MIM, CBS, and CBV sources. ................................ ........................... 140 D 21 Electron absorbed fractions to shallow marrow targets in the radial shafts for MIM, CBS, and CBV sources. ................................ ................................ .......... 141 D 22 Electron absorbed fractions to shallow marrow targets in the ulnar shafts for MIM, CBS, and CBV sources. ................................ ................................ .......... 141 D 23 Electron absorbed fractions to shallow marrow targets in the proximal femora for TAM, TIM, TBV, and CBV sources. ................................ ............................. 142

PAGE 15

15 D 24 Electron absorbed fractions to shallow marrow targets in the distal femora for TIM, TBV, and CBV sources. ................................ ................................ ............ 142 D 25 Electron absorbed fractions to shallow marrow targets in the patellae for TIM, TBV, and CBV sources. ................................ ................................ .................... 143 D 26 Electron absorbed fractions to shallow marrow targets in the proximal tibiae for TIM, TBV, and CBV sources. ................................ ................................ ...... 143 D 27 Electron absorbed fractions to shallow marrow targets in the distal tibiae for TIM, TBV, and CBV sources. ................................ ................................ ............ 144 D 28 Electron absorbed fractions to shallow marrow targets in the proximal fibulae for TIM, TBV, and CBV sources. ................................ ................................ ...... 144 D 29 Electron absorbed fractions to shallow marrow targets in the distal fibulae for TIM, TBV, and CBV sources. ................................ ................................ ............ 145 D 30 Electron absorbed fractions to shallow marrow targets in the ankles and feet for TIM, TBV, and CBV sources. ................................ ................................ ...... 145 D 31 Electron absorbed fractions to shallow marrow targets in the femoral upper shafts for MAM or MIM, TBV, and CBV sources. ................................ .............. 146 D 32 Electron absorbed fractions to shallow marrow targets in the femoral lower shafts for MIM, CBS, and CBV sources. ................................ ........................... 146 D 33 Electron absorbed fractions to shallow marrow targets in the fibular shafts for MIM, CBS, and CBV sources. ................................ ................................ .......... 147 D 34 Electron absorbed fractions to shallow marrow targets in the tibial shafts for MIM, CBS, and CBV sources. ................................ ................................ .......... 147

PAGE 16

16 LIST OF ABBREVIATIONS 3D three dimensional AD adult ADF adult female AF absorbed fraction ALRADS Advanced Laboratory for Radiation Dosimetry Studies AM active marrow BS bone surface CB cortical bone CBIST chord based infinites spongiosa transport CBS HC cortical bone surface along Haversian canals CBS MC cortical bone surface of medullary cavity CBV cortical bone volume CBVF cortical bone volume fraction CF cellularity factor CT computed tomography EF escape fraction EGS4 Electron Gamma Shower version 4 EGSnrc Electron Gamma Shower National Research Council ICRP International Commission on Radiological Protection IM inactive marrow ITS Integrated Tiger Series MAM medullary active marrow M ATLAB TM Matrix Laboratory MB mineral bone

PAGE 17

17 MC medullary cavity MCNPX Monte Carlo N Particle Extended MIM medullary inactive marrow MIRD Medical Internal Radiation Dose committee MST Miscellaneous skeletal tissue MV marrow volume NMR nuclear magnetic resonance NURBS non uniform rational b splines OLINDA/EXM Organ Level Internal Dose Assessment/Exponential Modeling PIRT paired image radiation transport PRESTA Parameter Reduced Electron Step Transport Algorithm ROI region of interest SAF specific absorbed fraction SIRT single image radiation transport SMVF shallow marrow volume fraction SP spongiosa SV spongiosa volume SVF spongiosa volume fraction TAM trabecular active marrow TIM trabecular inactive marrow TB trabecular bone TBS trabecular bone su rface TBV trabecular bone volume TBVF trabecular bone volume fraction TM total marrow

PAGE 18

18 TM 50 total shallow marrow UF University of Florida UF15YF UF fifteen year old female model UFADF UF adult female model UFADM UF adult male model UFHADF UF adult hybrid female computational phantom VBIST Voxel Based Infinite Spongiosa Transport VBRST Voxel Based Restricted Spongiosa Transport VERT L lumbar vertebrae

PAGE 19

19 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science AN IMAGE BASED SKELETAL DOSIMETRY MODEL FOR THE ICRP REFERENCE ADULT FEMALE INTERNAL ELECTRON SOURCES By August 2013 Chair: Wesley Bolch Major: Biomedical Engineering The geometries of the skeletal regions of the body are difficult to model, particularly those comprising the bone trabeculae and bone marrow. I rradiation of hematopoietically active bone marrow and osteoprogenitor cells that line the bone surf aces has been found to induce radiogenic leukemia and radiogenic bone cancer, respectively. The active marrow and bone endosteum are typically adopted as surrogate tissue regions for dosimetric assessment of these cell populations. Most previous skeletal dosimetry models do not account for electron escape and cross fire from cortical bone, assume regions of infinite spongiosa, disregard varying cellularity effects on active marrow self irradiation, and do not utilize the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells shallow marrow Each of these limitations was addressed in the present dosimetry model for the ICRP reference adult female. Electron transport was performed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. Macrostructures and microstructures were modeled separately. Individual bone macrostructures were obtained from the whole body hybrid computation al phantom of

PAGE 20

20 the UF series of reference phantoms, while microstructures were derived from microCT images of sampled skeletal regions obtained from a 45 year old female cadaver. Source regions considered were active marrow, inactive marrow, trabecular bon e volume, cortical bone volume and cortical bone surfaces. Marrow cellularities were varied from 10 to 100 percent for active marrow self irradiation simulations A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulat ed or modeled analytically. The method of combining macro and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al study. The calculated skeletal averaged absorbed fractions for each source target combination were found to follow similar trends of more recent dosimetry models (image based models) and did not follow the past Stabin and Segal model at high energies (due to that models use of an infinite expanse of trabecular spongiosa).

PAGE 21

21 CHAPTER 1 INTRODUCTION Skeletal Structure and Formation Bone is primarily an organic matrix comprised principally of the protein collagen and other proteins, carbohydrates, and lipids. 1 Calcium phosphate constitutes the inorganic portions of bone. The organic matrix is formed by the osteoblasts, or bone forming cells and then mineralized. This process results in the hard structure, whic h is constantly being remodeled by the osteoc lasts, bone resorbing cells and the osteoblasts. 1, 2 Osteoblasts are a derivative of osteoprogenitor cells 3 while osteoclasts are derived from hematopoietic stem cells. 4 There are two main types of bone: cortical and trabecular. Cortical bone, also known as compact bone, is the hard, dense structure that forms the outer portions of all skeletal sites, and is heav ily partitioned on the long bone shafts Trabecular bone is much more porous, and for this reason it is also known as spongy or cancellous bone. Trabecular bone is partitioned in the interior regions of the skeletal regions and in the ends of the long bone s 1 The combined tissues of the bone trabeculae and marrow are typically known as spon giosa. Instead of a spongiosa region, the long bone shafts in adult subjects contain a medullary cavity, almost entirely comprised of inactive marrow (with the exception of the upper shafts of the femora and humeri ), and is devoid of bone trabeculae. The layer of cells that line the surfaces of bone that border bone marr ow is known as the endosteum. 1 Skeletal Dosimetry Targets The skeletal regions of the body are difficult to model for dosimetric purposes due to the ir complex 3D geometry in the regions that comprise the trabecular bone and

PAGE 22

22 bone marrow. The skeletal system is an amalgamation of tissues which inc lude cortical and trabecular bone, bone marrow, periosteum, endosteum, and cartilage. 1 The irradiation of t he hematopoietically active (or red) bone marrow has been shown to cause radiogenic leukemia. 5 Irradiating the osteoprogenitor cells that line the trabecular bone surface or surfaces of the cortical bone in the long bone shafts has been foun d to lead to radiogenic bone cancer. In bone dosimetry studies, red marrow is used as a surrogate for hematopoietically active bone marrow and endosteum is used as a surrogate for the osteoprogenitor cells along the bone surfaces. For the se reasons, the International Commission on Radiological Protection (ICRP) has assigned tissue weighting factors for red marrow and endosteal surfaces. 5 Active marrow is often the dose limiting organ in radiotherapy, due to concerns with marrow toxicity. 6, 7 Previous Dosimetry Studies Currently, there are two main classes of models for bone dosimetry: chord length based models and image based models. In chord length based models, the particles are modeled as traveling in straight paths through the trabecular bone and bone marrow. 8 The distance the particle travels is thought to be equal to the measured and sampled chord length following the assembly of omni directional distributions of these chord lengths The bone model provided in ICRP Publication 30 is a chord based model. 9 For image based models, three dimensional images are taken of the trabeculae through the use of nuclear magnetic resonance (NMR) microscopy or micro computed tomography (microCT). 10 These images are subsequen tly used as the inputs for the geometry of the bone structure for radiation transport calculations.

PAGE 23

23 University of Leeds Bone Dosimetry Unit The foundation of chord length based models originated from the work of Frederick Spiers and the Bone Dosimetry Rese arch Unit, which included PhD student Phillip Darley, Joanne Whitwell, and Alun Beddoe, at the University of Leeds 11 A 44 year old adult male cadaver was used in the Spiers study. Contact radiographs were taken of seven bone sites: parietal bone, cervical vertebra, lumbar vertebra, rib, iliac crest, femur head, and femur neck. 12 It is important to note that the skeletal masses used were taken from a previous study by Mechanik and were not determined based on the bone sites and cadaveric subject used in the Leeds study 13 Spier s PhD student Philip Darley created the object plane scanning microscope that was used to determine the pathlength distributions through both marrow cavities and across the bone trabeculae 11 This was necessary in order to analyze the anisotropic nature of t he spongiosa, and it was the data that arose from the use of this bone scanner that allowed for the creation of omnidirectional pathlength distributions. Whitwell 12 determined mean dose factors for the red bone marrow and endosteal tissues for the seven bone sites in the Leeds 44 year old adult human skeleton. The endosteal thickness used at that time was assumed to be 10 m. The radionuclides modeled in this study were 14 C, 45 Ca, 22 Na, 18 F, 32 P, 90 Y, and 90 Sr. Whitwell performed Monte Carlo calculations using the previously determined pathlength distributions to determine these mean dose factors. She modeled the beta particles as being emitted uniformly throughout the volume of the mineral bone. The pathlength distributions determined by this dosimetry group were used as t he foundation for the majority of the skeletal dosimetry models that followed. Such

PAGE 24

24 models include those in MIRD Pamphlet No. 11 and ICRP Publication 30, as well as the software codes MIRDOSE3 and OLINDA/EXM, which will be discussed further. 10 S nyder S tudy: MIRD Pamphlet No. 11 In MIRD Pamphlet No. 11, only the average dose to the bone is provided and is said to be due to the total energy of the ele ctron, less the energy deposited in the marrow. 14 This does not allow for el ectron escape from the cortical bone. The report states that if only a total value (time integrated activity) to the bone is provided then it is assumed that half is in the cortical bone and half is in the trabecular bone. A uniform distribution of the radionuclide through the bone volume is assumed. In this pamphlet, the radionuclide S values for the total bon e and red marrow are provided for 117 radionuclides. 14 The absorbed fraction s used in this pamphlet for photons of energies less than 300 keV for bone irradiating red marrow have been said to be high and do not account for charged particle disequilibrium at the levels of the individual marrow cavities 15 Cristy and Eckerman S tudies: MIRDOSE 3 With the work of Cristy and Eckerman came the introduction of modeling the energy deposited by secondary electrons from photon interactions. 15 Eckerman utilized Spiers chord length distributions and methodology for the transport of electrons to determine electron absorbed fractions for seven bone types. The fractional abundance of each bone type in the fifteen different skeletal regions in the Cristy and Eckerman phantom series was used to determine absorbed fractions for these regions. 15 These electron absorb ed fractions were computed over the energy range of 0.001 to 4 MeV. 16

PAGE 25

25 Skeletal averaged monoenergetic electron absorbed fractions were provided for a newborn, 1 year old, 5 year old, 10 yea r old, 15 year old, and adult. 16 Also, in this study the cellularity factor, defined as the fraction of marrow that is hematopoietic active, is taken into account. It is noted that the cellularity factor for different bone sites changes with age. For the calculation of the absorbed fractions the targets were stated to be red marrow and bo ne surfaces. Bone surfaces are further defined as the 10 m endosteal tissue. The sources are red marrow, cortical bone surfaces, cortical bone volume, trabecular bone surfaces and trabecular bone volume. 16 The Eckerman model is used in MIRDOSE 3, 15 which is an internal dose calculation software program utilized for commonly used radionuclides in nuc lear medicine. 17 MIRDOSE 3 was written by Dr. Michael Stabin. 17 D ose conversion factors and absorbed doses for individual skeletal regions and skeletal average are provided in this software for adults and children of varying age. Bouchet et al. S tudy A model for electron transport through the trabecular and cortical bone was developed by Bouchet et al 18 The basis of this model still lies in the chord length distributions developed by Spiers, however three dimensiona l transport was implemented through the use of the EGS4 Parameter Reduced Electron Step Transport Algorithm (PRESTA) Monte Carlo code. Electron absorbed fractions were determined for seven trabecular bone sites. The source and target regions for the trab ecular bone used for this model were the trabecular bone volume, the marrow space, and the trabecular bone endosteum. The source and target regions used for the cortical bone were the cortical bone volume, cortical Haversian canals, and the cortical bone

PAGE 26

26 endosteum. Electron absorbed fractions were determined for three cortical bone sites: the cortex of the humerus, femur, and tibia. From these absorbed fractions, Bouchet was able to determine radionuclide S values for 22 different bone sites. In this stu dy, Bouchet was able to use data from the newer ICRP publication, ICRP 70. 15 Stabin and Siegel S tudy: OLINDA/EXM Stabin and Siegel 19 created a revised bone dosimetry model by essentially taking portions of the Eckerman model and the Bouchet model. In obtaining the values for low energies, the Bouchet model was utilized, while the Eckerman model was utilized for medium to high energies. The Bouchet model was used for the low energy component because at low energies the range of the electrons should be comparable to the cells within the marrow space, meaning the electron absorbed fr actions should approach unity, not the cellularity factor, as they did in the Eckerman model. The increase in electron energy would cause the electron range to increase, leading to the electrons traversing multiple cells, and at high energies crossing mar row cavities before complete energy deposition. This means that the energy deposited in the active marrow would be proportional to the cellularity factor. 19 The work in this study is used in the code OLINDA/EXM, which was written by Stabin. OLINDA/EXM is a code used in nuclear medicine studies to calculate organ doses and effective doses. 20 Image based Models Early work done by the University of Florida with image based models showed that the Eckerman model was underestimating the absorbed fractions for total red marrow irradiating total red marrow for energies below 200 keV. 15 It also showed that the Bouchet model overestimated the absorbed fraction of active marrow self irradiation for energies above 20 keV.

PAGE 27

27 Types of models Currently, the three main forms of image based models are Voxel Based Infinite Spongiosa Transport (VBIST), Voxel Based Restricted Spongiosa Transport (VBRST), and Paired Image Radiation Transport (PIRT). 8 Each of these bone dosimetry models utilize NMR or microCT imaging of the spongiosa, provid ing a three dimensional model. These methods differ on the way the macrostructure is defined. In the VBIST method, there is no macrostructure defined and infinite spongiosa transport is modeled, as seen with the previous chord length based models. A styl ized model of the cortical bone is used to represent the macrostructure in the VBRST model. The PIRT model uses ex vivo CT imaging of the bone for the macrostructure. In PIRT simulations, the macrostructure and microstructure are run simultaneously, allo wing and accounting for electron escape from the spongiosa, into the cortical bone. 8 Hough et al. study A study conducted by Hough et al 10 used the PIRT method to create a skeletal dosimetry model for the ICRP adult male. The macrostructure was derived through an ex vivo whole body CT scan, at 1 mm resolution, of a 40 year old male cadaver. For the geometry of the microstructure ex vivo microCT images were taken of spongiosa samples from 38 bone sites, at 30 m resolution. For the radiation transport the EGSnrc based Paired Image Radiation Transport code by Shah was used. The electron energies ranged from 1 keV to 10 MeV and the electrons were monoenergetic. The targets in this study were the active marrow and the endosteum. The endosteum was extended to 50 m, rather than the previously used 10 m, due to the change in the definition by the ICRP. The cortical bone volume, cortical bone surfaces, trabecular

PAGE 28

28 bone volume, trabecular bone surfaces, inactive marrow and active marrow were sources in this study. The SAFs were computed for the range of cellularities from 10% to 100% (in increments of 10%) for total active marrow source to total active marrow target. Improvements in Skeletal Dosimetry Four main areas of potential improvement can be identified within many previous dosimetry models, of which are still employed in commonly used software toda y. These areas include the lack of modeling electron escape from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self irradiation, and the use of the outdated ICRP definition of a shall ow marrow thickness (10 microns rather than the current 50 microns). 10 Each limitation was accounted for in the present dosimetry model. Reasoning B ehind S hallow M arrow T hickness R edefinition The altering of the definition for the thickness of the endosteal layer arose from a study on radium dial painters and radium induced fibrosarcoma s 3 A fibrotic layer of 50 microns, located between the bone surfaces and marrow cells, was observed through the use of an electron microscope. This replacement tissue layer was thought to be correlated with the tumor induction.

PAGE 29

29 CHAPTER 2 MATERIALS AND METHODS Cadaver Selection and Image Acquisition For this study a 45 year old female cadaver was used. The macrostructure was derived from a whole body in vivo CT and ex vivo CT images taken after the harvesting of the cadaver bones. These CT scans were performed on a 64 slice Toshiba CT scanner in the Department of Radiology at Shands Hospital at the University of Florida (UF) For the ex vivo CT imaging the following skeletal sites were excised, due to the presence of active marrow: the cranium, mandible, clavicles, scapulae, sternum, vertebrae (cervical, thoraci c, and lumbar), ribs (upper, middle, and lower), os coxae, sacrum, patellae, and the proximal and distal ends of the humeri, radii, ulnae, femora, tibiae, and fibulae. For each skeletal site, two ex vivo scans were completed each with a 1mm slice thickn ess one with a bone filter, and the other with a soft tissue filter. These separat e images were acquired to optimize the visualization of the boundary between the cortical and spongiosa regions. From these images and the bone mass values provided in IC RP Publication 89 for the reference female, targeted cortical bone and spongiosa volumes were determined for each skeletal site. The harvesting and image acquisition was conducted by previous graduate students who m were members of the Advanced Laboratory for Radiation Dosimetry Studies (ALRADS) at the University of Florida Through inspection of the ex vivo images a region of interest was chosen from each bone sample for mic roCT imaging. The microCT imaging was performed by SCANCO in Brttisellen ( Switzerland) at a n isotropic resolution of 30 microns. The se images were later converted to a 50 micron isotropic resolution, for ease in labeling the

PAGE 30

30 first voxel layers within marrow as the target region shallow marrow Multiple steps were necessary to convert the microCT images into a useful form for radiation transport. First, a region of interest had to be determined for each image, removing any cortical bone from the selected ROI Next, in order to increase the signal to noise ratio of each image, a median filter was applied. An example of an image from a single slice of the third cervical vertebrae after this median filter was applied can be seen in Figure 2 1 Next a threshold value for the gray level was determined that optimized the appearanc e of the interface of the trabecular bone and marrow cavities. These steps were completed by Lindsay Sinclair Finally, using this determined threshold value, the images were segmented into binary image s 7 The segmenting was performed using the Bone Dos imetry and Imaging program 21 Figure 2 2 shows a post segmented image slice of the third cervical verte brae, with a threshold value of 172 The increased ability to delineate the boundaries between the bone trabeculae and marrow cavity is clear from the comparison of the pre and post segmented slices of the third cervical vertebrae. Macrostructure Modeling Thirty four bone si t es constitute the modeled macrostructure of the adult female: the cranium, mandible, vertebrae (cervical, thoracic, lumbar), sternum, ribs, scapulae, clavicles, os coxae, sacrum, humeri, radii, ulnae, wrists and hands, femora, tibiae, fibulae, patellae an d ankles and feet. Each bone site was isolated from the UF hybrid adult female ( UFHADF ) phantom, seen in Figure 2 3 to be voxelized for the geometry input into MCNPX (Los Alamos National Laboratory, Los Alamos, NM) The long bones were divided into the proximal end, shaft, and distal end. The shafts of the femora and humeri were further divided into the upper and lower shaft, due to the

PAGE 31

31 presence of active marrow in the upper shafts and not in the lower. 2 Figure 2 4 shows this division of the femur For the appendicular skeleton, only one side the right side of the body was modeled, with the exception of the os coxae. The approximate height, width, and depth of the bone macrostructure sites were measu red in Rhinoceros TM (McNeel North America, Seattle, WA) in order to determine an isotropic voxel resolution, with Equation 2 1 22 (2 1) where r isotropic is the isotropic voxel resolution, X is the measured height ( in cm ) Y is the measured width ( in cm ) Z is the measured depth ( in cm ) and N is the target voxel matrix size. The targeted matrix size was 5.42 x 10 7 as previously determined by Wayson 22 to be the total number of voxel elements that can be efficiently modeled in MCNP, with the given computing resources Due to the existence of a larger prevalence of a streaking artifact with some of the macrostructure bone s ites after voxelization, the voxel resolutions of these sites were altered to help alleviate this problem. An example of this streaking artifact in the voxel version of the cranium is seen in Figure 2 5 The voxel resolutions range d from 149 to 670 micro ns, for the proximal radii and ribs respecti vely, and are listed in Table 2 1 along with the measured bone dimensions Vertebrae MicroCT images were obtained from multiple vertebral samples, including L1 L5, T1, T3, T6, T9, T12, C3 and C6. Consequently the vertebral column of the reference phantom was partitioned into these individual vertebrae Vertebral partitioning was accomplished with various Rhinoceros TM commands, primarily cutting planes and

PAGE 32

32 control point deletion and manipulation The cutting planes were used for the lumbar and thoracic vertebrae while control points were used for the cervical vertebrae This more complicated method was employed for the cervical vertebrae due to the more overlapping nature of the vertebra, and the need to pro perly isolate them. An image illustrating this process is provided in Figure 2 6 The voxel element matrix sizes for these separated vertebrae are provided in Table 2 1 The separated lumbar vertebrae were voxelized at a n isotropic resolution of 0.18 mm and the separated cervical and thoracic vertebrae at a n isotropic resolution of 0.20 mm. Lone B one S haft M odeling The long bone shafts were modeled in MCNPX using c ylinder s. The effective radius of the medullary cavity was determined by using Equation 2 2 5 (2 2) where r medullary marrow is the effective radius of the medullary cavity ( in cm ) V medullary marrow is the combined volume of the medullary marrow of the left and right shaft for that skeletal site ( in cm 3 ) and h is the length of the shaft ( in cm ) The length of each shaft was measured in Rhinoceros TM The cortical bone surrounding the lon g bone shafts was modeled as a cylindrical shell in MCNP X. The outer radius of this cortical bone shell was calculated using Equation 2 3 (2 3) where r cortical bone is the effect ive outer radius of the cortical bone shell ( in cm ) V is the entire volume of the left and right shaft ( in cm 3 ) and h is the length of the shaft ( in cm ) The shallow marrow was modeled as a 50 micron thick shell just within the cylindrical

PAGE 33

33 volume of the medullary marrow cavity Therefore, the outer radius of the medullary cavity and the outer radius of the shallow marrow shell are equivalent The outer radii of the medullary cavities, inner radius of the shallow marrow shell, outer radius of the cortical bone shell and the heights of the shafts are provided in Table 2 3 Volume Error Corrections Upon voxelization, the volumes of t hree bone sites (the cranium, mandible and the entire set of cervical vertebrae) in the UFHADF phantom did not match their expected val ues. For the cranium and mandible the disparity was due to an offset mesh process intended to separate cortical and spongiosa region s during phantom construction. However, as seen in Figure 2 7A spongiosa was left protruding through the cortical layer o f the mandible as a result of the process A similar effect was also observed in the cranium. A broad set of Rhinoceros TM smoothing and mesh repair tools were employed to correct these issues The repaired mandible can be seen in Figure 2 7 B The spong iosa volume of the cervical vertebrae was found to be smaller than the desired value by 25.4 %. The cortical volume was 30.6% below the targeted value. These volumes were adjusted by using the 3D scale tool in Rhinoceros TM Microstructure Modeling The following 37 skeletal si tes were cored and imaged, therefore constituting the microstructure of the adult female : C3, C6, L1 L5, T1, T3, T6, T9, T12, clavicle, craniofacial bones (frontal, parietal, occipital), mandible, os coxae, patella, sacrum, scapula, sternum, femur (distal, proximal head, proximal neck), and the proximal and distal ends of the fibula, humerus, radius, tibia, and ulna The microstructure was not

PAGE 34

34 available for the wrists and hands and ankles and feet ; subsequently the distal femora and distal humeri were used as surrogates. Each mic roCT image was converted (from the 30 micron imaging resolution) to have an isotropic voxel resolution of 50 m. This resolution was chosen to be the same as the definition of th e shallow marrow thickness in order to label the first layer of marrow voxels that surrounded bone trabeculae as the endosteal target region. The labeling of the shallow marrow can be seen in Figure 2 8 with the inactive shallow marrow in orange and the active shallow marrow in b lue. The matrix size for each microstructure sample is provided in Table 2 4 The inactive marrow and active marrow portions of the shallow marrow had different tag numbers for tallying purposes in MCNPX This process was followed due to the total activ e marrow also being a target region; the refore the portion of active marrow in TM 50 needed to be accounted for in the calculation of total marrow absorbed fractions as well as the calculation for shallow marrow absorbed fractions Figure 2 9 shows an exa mple of a 3D rendering of the macrostructure and microstructure (derived from microCT images, one of which is represented) for the sternum. Cellularity Marrow c ellularity is defined as the fraction of total marrow space that is hematopoietically active, an d is taken to be the percent of total marrow volume that is occupied by active bone marrow. 7 As inactive (or yellow) marrow is primarily composed of adipocytes, the marrow cellularity defined in this study is equivalent to one minus the marrow fat fraction. ICRP Publication 70 provides reference values for the cellularity of each skeletal site fo r the adult female, which are provided in Table 2 5 2 For the humeri

PAGE 35

35 the long bone and does not specify the distributio n among the proximal end and upper shaft. 2 For this study, the proximal ends were given a cellularity factor of 0.35 and the upper shafts a cellularity factor of 0.15, resulting in a linear average of 0.25 fo r the upper halves of the humeri and femora As individual patient s may have marrow cellularities that differ from ICRP reference values, v ersions of each microstructure were created in which the cellularity was incremented by 10%, up to 100% (at which point the marrow cavity was comprised entirely of active marrow). A version of each microstructure was also created at its ICRP 70 reference cellularity. An example of the varying cellularity in the microstructure images can be seen in Figure 2 10 for the os coxae. Radiation Transport Twenty five different mono energetic electron energies were run for each macro and microstructure ranging from 10 keV to 1 MeV The elemental compositions and densities used for the mater ial definition s in MCNPX for macro and microstructure of each skeletal site are available in Tables 2 6 22 and 2 7 1 respectively Macrostructure R uns Electron transport using MCNPX v2.7 was run for a ll thirty four bone site s as well as the separated lumbar vertebrae. For each skeletal site, two separate runs were completed (at each given energy), one with t he source defined as the cortical bone volum e and the other with the source defined as spongiosa volume This was to take into account cortical bone cross fire and electron escape from the cortical and spongiosa regions. It is important to note that be cause cortical bone microstructure is not a part of this study the electron sources on the surfaces of the H aversian canals are

PAGE 36

36 represented by the CBV source For each source the target region was the spongiosa A *F8 tally was used to measure the amoun t of energy deposited (in MeV) by electrons and photons in the defined target region. This resulted in a total of 975 electron transport runs in MCNPX. The number of particle histories for the macrostructure ranged from 300,000 to 70 million, which decre as ed with increasing particle energy and resulted in statistical tally errors to within 1%; however, most tally errors were well below 1%. Long Bone S hafts For the long bone shafts, the cortical bone volume, medullary marrow, and cortical bone surfaces we re each ru n separately as the defined source region The 50 micron shallow marrow shell was the only target for all the shafts with the except ion of the uppe r femora and humer i, which also contained active marrow as a target. This resulted in a total of 650 electron transport runs in MCNPX. The cortical bone surface source was defined as a 1 micron thick layer at the interface face of the cortical bone shell and medullary marrow (0.5 microns on each side). Due to the considerably simpler cylinder geom etry of the long bone shafts only a range of 30,000 to 40 million particles w as necessary for statistical errors to be within 1 % Microstructure Runs All thirty seven microstructure skeletal regions were modeled in MCNPX v2.7 for electron transport The defined target regions, and therefore regions that were tallied in MCNPX, were the active marrow and the shallow marrow. Source regions included: active marrow, inactive marrow, trabecular bone volume, cortical bone volume, and cortical bone surfac es. Trabecular bone surfaces were not included as source regions at this time, but will be added in the future. A gain, *F8 tallies were used to measure the

PAGE 37

37 amount of energy deposited (in MeV) in defined target regions. In order to model the microstructu re as infinite spongiosa, reflective surfaces were employed in MCNPX. When a particle would r each the boundaries of the entire voxel model it would be reflected back, without any energy loss or interaction occurring. Each microstructure was run at 10%, 2 0%, 40%, 60%, 80%, 100%, and ICRP reference cellularity for that skeletal site. Active marrow, inactive marrow, and trabecular bone were run separately as sources. The total number of microstructure electron transport runs was 5750. The number of partic le histories for the microstructure ranged from 500,000 to 10 million with an average of 3 million again decreasing with increasing energy. This range of particle histories was used to keep statistical tally errors below 1%; however, most tally errors w ere well below 1%. Physics Considerations Integrated Tiger Series (ITS) indexing was used, rather than the default MCNPX electron energy bin indexing, as ITS indexing is a more accurate algorithm for energy binning ITS indexing use s the nearest bin elect ron energy rather than a bin centered value. 22 The effect of varying the estep, an input parameter in the material card of MCNPX, on the resulting tally means was investigated. The number of electron substeps per electr on energy step is equivalent to the estep of that material. The region of interest for this study was the endosteal layer as this was the thinnest target region, and therefor e the area that would be most a ffected. When comparing the tallies resulting from using the suggested number of electron substeps to that of the default value the difference observed was less than 1%. Therefore the use of the default value was deemed sufficient

PAGE 38

38 Table 2 1. The bone size, resulting voxel resolution and number of voxels for the macrostructure of each skeletal region. Bone size (cm) Voxel r esolution (m m) Number of v oxels Skeletal s ite Width Depth Height Width Depth Height Cranium 14.19 19.37 16.47 0. 439 329 446 381 Mandible 10.26 8.89 7.50 0. 240 434 376 316 Scapulae 14.54 11.78 14.69 0. 359 402 330 411 Clavicles 13.64 7.63 2.62 0. 171 795 446 149 Sternum 4.92 4.36 16.74 0. 188 269 241 892 Ribs 27.72 17.70 33.27 0. 670 415 265 499 C ervical vertebrae 7.95 7.04 10.63 0. 222 357 312 464 Thoracic vertebrae 6.64 8.57 29.14 0. 350 190 292 832 Lumbar vertebrae 8.40 9.07 17.44 0. 290 287 336 599 Sacrum 11.04 8.39 11.87 0. 273 406 336 430 Os coxae 25.85 13.23 20.01 0. 510 510 261 396 Humeri, proximal 5.25 5.02 5.94 0. 160 323 313 365 Humeri, upper shaft 3.26 2.76 10.51 0. 240 139 116 437 Humeri, lower shaft 3.35 2.54 10.76 0. 200 162 126 533 Humeri, distal 6.33 3.70 6.92 0. 160 395 226 432 Radii, proximal 2.38 2.20 2.86 0. 149 160 150 189 Radii, shaft 2.60 3.95 18.49 0. 190 142 204 971 Radii, distal 2.93 3.21 3.74 0. 170 170 188 220 Ulnae, proximal 3.60 3.53 5.41 0. 170 211 205 318 Ulnae, shaft 2.57 3.19 18.60 0. 240 108 135 772 Ulnae, distal 1.54 2.08 3.26 0. 150 103 141 219 Wrists and H =h ands 4.91 10.94 17.41 0. 370 133 296 469 Femor a, proximal 8.55 5.86 7.23 0. 188 452 316 378 Femora, upper shaft 4.45 3.81 14.56 0. 166 269 229 873 Femora, lower shaft 3.62 3.27 14.49 0. 200 225 320 724 Femora, distal 7.69 7.27 6.48 0. 188 406 380 343 Tibiae, proximal 7.21 5.69 6.33 0. 200 361 450 316 Tibiae, shaft 3.57 3.24 23.78 0. 245 186 304 972 Tibiae, distal 5.20 4.05 4.60 0. 170 306 517 269 Fibulae, proximal 2.62 2.36 4.20 0. 150 175 157 280 Fibulae, shaft 2.44 2.30 23.60 0. 300 83 76 785 Fibulae, distal 1.75 2.48 6.11 0. 151 119 149 404 Patellae 4.56 2.01 3.72 0. 160 281 125 232 Ankles and f eet 9.06 24.36 8.72 0. 330 275 735 264

PAGE 39

39 Table 2 2. Matrix dimensions for the separated vertebra e Bone s ite Number of v oxels X Y Z C3 297 238 103 C6 308 313 127 T1 365 366 105 T3 285 708 131 T6 334 603 107 T9 292 702 135 T12 234 621 242 L1 319 561 259 L2 357 513 263 L3 405 451 251 L4 376 429 189 L5 406 420 187 Table 2 3. Dimensions used for the long bone shaft cylinder models in MCNPX. Skeletal s ite Measu red medullary m arrow h eight (cm) Measured height standard deviation (cm) Calculated medullary m arrow r adius (cm) Calculated outer cortical b one r adius (cm) Calculated medullary e ndosteum r adius (cm) Humerii, upper shaft 9.755 0.095 0.617 0.861 0.612 H umerii, lower shaft 9.995 0.117 0.573 0.798 0.568 Radii, shaft 17.532 0.159 0.378 0.540 0.373 Ulna, shaft 17.443 0.032 0.411 0.590 0.406 Femora, upper shaft 14.642 0.065 0.839 1.157 0.834 Femora, lower shaft 14.108 0.048 0.914 1.264 0.909 Tibia, shaf t 23.744 0.05 0 0.727 0.783 0.722 Fibula, shaft 23.761 0.054 0.228 0.349 0.223

PAGE 40

40 Table 2 4 Matrix dimensions for the skeletal microstructure. Matrix size Bone sites x y z C3 249 134 131 C6 161 274 172 Clavicle 277 177 86 Femur, distal 396 429 239 Fibula, distal 446 231 144 Humerus, distal 547 158 180 Radius, distal 301 247 145 Tibia, distal 351 264 306 Ulna, distal 189 152 95 Frontal 132 103 17 L1 423 344 369 L2 269 237 216 L3 299 204 186 L4 229 245 184 L5 224 152 176 Mandible 112 76 56 Occipital 161 125 12 Os c oxae 136 103 69 Parietal 88 86 17 Patella 204 103 81 Femur, proximal head 227 161 179 Femur, proximal neck 204 42 77 Fibula, proximal 209 115 115 Humerus, proximal 194 134 127 Radius, proximal 110 120 105 Tibia, proximal 155 146 189 Ulna, proximal 180 95 120 Ribs, lower 96 29 28 Ribs, upper 84 39 37 Sacrum 140 85 105 Scapula 90 103 65 Sternum 144 142 100 T1 81 63 87 T3 106 100 91 T6 100 111 106 T9 109 109 102 T12 159 123 137

PAGE 41

41 Table 2 5 ICRP 70 defined cellularity fa ctors used for each skeletal site microstructure. Bone s ites Cellularity C3 0.7 C6 0.7 Clavicle 0.33 Femur, distal 0 Fibula, distal 0 Humerus, distal 0 Radius, distal 0 Tibia, distal 0 Ulna, distal 0 Frontal 0.38 L1 0.7 L2 0.7 L3 0.7 L4 0.7 L5 0.7 Mandible 0.38 Occipital 0.38 Os c oxae 0.48 Parietal 0.38 Patella 0 Femur, proximal head 0.35 Femur, proximal neck 0.15 Fibula, proximal 0 Humerus, proximal 0.35 Radius, proximal 0 Tibia, proximal 0 Ulna, proximal 0 Ribs, lower 0.7 Ribs, upper 0.7 Sacrum 0.48 Scapula 0.38 Sternum 0.7 T1 0.7 T3 0.7 T6 0.7 T9 0.7 T12 0.7

PAGE 42

42 Table 2 6. Elemental compositions and densities used for the material definitions for each skeletal site macrostructure. Skeletal s ite Element Density (Spongiosa / Medullary c avity) H C N O Na Mg P S Cl K Ca Fe (g/cm 3 ) Craniofacial bones 5.96 26.74 3.47 42.31 0.23 0.16 6.42 0.25 0.02 0.00 0.01 14.42 1.600 Mandible 9.95 46.78 2.21 36.03 0.13 0.09 1.48 0.17 0.02 0.00 0.01 3.09 1.131 Scapulae 9.20 44.81 2.39 35.30 0.15 0.11 2.47 0.18 0.01 0.01 5.35 0.03 1.047 Clavicles 9.69 46.12 2.20 35.71 0.14 0.09 1.86 0.17 0.02 0.00 0.01 3.96 1.067 Sternum 9.83 38.69 2.91 44.13 0.12 0.13 1.28 0.19 0.04 0.00 0.03 2.59 1.086 Ribs 9.46 38.67 2.96 42.80 0.13 0.14 1.79 0.20 0.03 0.00 0.02 3.74 1.093 Cervical vertebrae 8.88 35.53 3.10 43.95 0.15 0.14 2.51 0.21 0.04 0.00 0.02 5.42 1.170 Thoracic vertebrae 9.68 39.34 2.92 42.90 0.13 0.13 1.50 0.19 0.03 0.00 0.02 3.08 1.114 Lumbar vertebrae 9.57 39.47 2.93 42.36 0.13 0.14 1.66 0.19 0.03 0.00 0.02 3.44 1.126 Sacrum 9.44 38.41 2.97 43.00 0.14 0.14 1.81 0.20 0.03 0.00 0.02 3.79 1.138 Os coxae 9.77 43.18 2.49 39.15 0.13 0.10 1.58 0.18 0.03 0.00 0.02 3.31 1.046 Humeri, proximal 9.96 48.99 1.95 33.70 0.13 0.07 1.60 0.16 0.02 0.00 0.01 3.38 1.080 Humeri, upper shaft (MC) 11.17 55.37 1.52 31.46 0.10 0.05 0.12 0.13 0.02 0.00 0.01 0.00 0.989 Humeri, lower shaft (MC) 11.47 63.26 0.76 24.19 0.10 0.00 0.10 0.10 0.01 0.00 0.00 0.00 0.981 Humeri, distal 9.49 50.91 1.64 29.87 0.15 0.05 2.42 0.15 0.01 0.00 0.01 5.30 1.135 Radii, proximal 10.25 55.61 1.30 27.72 0.13 0.03 1.53 0.13 0.01 0.00 0.01 3.28 1.089 Radii, shaft (MC) 11.48 63.67 0.74 23.80 0.10 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.981 Radii, distal 9.91 53.57 1.45 28.62 0.14 0.04 1.93 0.14 0.01 0.00 0.01 4.19 1.101 Ulnae, proximal 9.38 50.25 1.69 30.16 0.15 0.05 2.55 0.15 0.01 0.00 0.01 5.60 1.223 Ulnae, shaft (MC) 11.48 63.65 0.74 23.83 0.10 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.981 Ulnae, distal 9.63 51.81 1.57 29.45 0.15 0.05 2.25 0.15 0.01 0.00 0.01 4.92 1.016 Wrists and h ands 9.49 50.94 1.64 29.84 0.15 0.05 2.42 0.15 0.01 0.00 0.01 5.30 1.062 Femora, proximal 9.38 45.14 2.19 35.58 0.15 0.08 2.29 0.17 0.02 0.00 0.01 4.96 1.199 Femora, upper shaft (MC) 11.14 54.02 1.58 32.77 0.10 0.05 0.12 0.13 0.03 0.00 0.02 0.00 0.989 Femora, lower shaft (MC) 11.47 63.32 0.75 24.14 0.10 0.00 0.10 0.10 0.01 0.00 0.00 0.00 0.981 Femora, distal 9.55 51.19 1.62 29.80 0.15 0.05 2.34 0.15 0.01 0.00 0.01 5.13 1.164 Patellae 9.55 51.04 1.62 29.96 0.15 0.05 2.34 0.15 0.01 0.00 0.01 5.11 1.149 Tibiae, proximal 9.91 53.52 1.45 28.69 0.14 0.04 1.92 0.14 0.01 0.00 0.01 4.17 1.123 Tibiae, shaft (MC) 11.46 62.82 0.78 24.62 0.10 0.00 0.10 0.10 0.01 0.00 0.01 0.00 0.981 Tibiae, distal 9.80 52.83 1.50 28.99 0.14 0.04 2.06 0.14 0.01 0.00 0.01 4.48 1.135 Fibulae, proximal 10.38 56.46 1.24 27.33 0.13 0.03 1.37 0.13 0.01 0.00 0.01 2.91 1.091 Fibulae, shaft (MC) 11.47 63.15 0.76 24.30 0.10 0.00 0.10 0.10 0.01 0.00 0.00 0.00 0.981 Fibulae, dista l 9.54 51.12 1.62 29.83 0.15 0.05 2.36 0.15 0.01 0.00 0.01 5.16 1.144 Ankles and f eet 9.55 51.14 1.62 29.86 0.15 0.05 2.34 0.15 0.01 0.00 0.01 5.13 1.063 (All cortical b one) 3.57 15.95 4.19 44.82 0.30 0.20 9.40 0.30 0.00 0.00 0.00 21.27 1.900

PAGE 43

43 Table 2 7 Elemental compositions and densities used for the material definitions for each skeletal site microstructure. Element Density (g/cm 3 ) Skeletal tissue H C N O Na Mg P S Cl K Ca Fe Active marrow 10.50 41.40 3.40 43.90 0.10 0.20 0.20 0.20 0.00 0.00 0.00 0.10 1.03 Inactive marrow 11.50 64.40 0.70 23.10 0.10 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.98 Mineral bone 3.50 16.00 4.20 44.50 0.30 0.20 9.50 0.30 0.00 0.00 21.50 0.00 1.90 Data adapted from ICRP 1

PAGE 44

44 Figure 2 1. Pre segmented, post filtered microCT single slice image of the third cervical vertebra. Figure 2 2. Post segmented, post filtered microCT single slice image of the third cervical vertebra ( using a threshold value of 1 72 )

PAGE 45

45 Figure 2 3. Complete UFHADF phantom and the removed full skeleton of the UFHADF. Figure 2 4 Seperated proximal, upper shaft, lower shaft and distal regions of the adult female femur.

PAGE 46

46 Figure 2 5. Image slice from ImageJ TM of the adult female cranium illustrating the streaking artifact that can occ ur from voxelization.

PAGE 47

47 A B C Figure 2 6. D epiction of the process used to separate the vertebrae into individual vertebra in Rhinoceros TM through the use of cutting planes (for the lumbar and thoracic vertebrae) and control point deletion (for the cervical vertebrae) A) L umbar vertebrae and separated L1 vertebra. B) T horacic vertebrae and separated T9 vertebra. C) C ervical vertebrae and separated C3 vertebra.

PAGE 48

48 A B Figure 2 7. Mandible of the UFHADF phantom. A) Prior to repair, with spongiosa (pink) breaking through the cortical layer (gray). B) Repaired. Figure 2 8. Image slice of the microstructure of the sacrum (cellularity of 60%) with the shallow marrow labeled ( inactive shallow marrow in blue and active shallow marrow in orange )

PAGE 49

49 Figure 2 9. The macrostructure and microstructure (with microCT image slice) for the adult female sternum. A B C Figure 2 10. Varying cellularity of the os coxae, with dark gray being the inactive marrow, white active marrow, and black is the mineral bone. A) 10% cellularity. B) ICRP 70 cellularity of 48%. C) 90% cellularity.

PAGE 50

50 CHAPTER 3 RESULTS AND DISCUSSION Volume Fractions and Mass Distributions Cortical bone volume and spongiosa volume fractions were computed for the macrostructure of each skeletal site and are provided in Table 3 1. Using the microCT images and an inhouse MATLAB TM (The MathWorks, Inc., Natick, MA) code voxelcount ( which counts the number of voxel elements of each tag number ) the marrow volume, trabecular bone volume, and shallow marrow volume were computed for each microstructure. The marrow volume fraction, trabecular bone volume fraction, and shallow marrow volume fraction (SMVF) for each skeletal site were determined as a percent of the spongiosa and are provided in Table 3 2. The SMVF was also determined as a percent of marrow volume. The SMVF of each long bone shaft was found using Equation 3 1 5 and is provided in Table 3 2 (3 1) where SMVF shaft is the shallow marrow volume fraction of the shaft as a percent of medullary volume, r medullary marrow is the entire radius of the medullary marrow cavit y ( in cm ) and the 0.005 is the 50 micron thickness of the shallow marrow layer. The distribution of mineral bone in each skeletal site as a percent age of cortical bone and percent age of trabecular bone are provided in Table 3 3. These values were comp ared with those of an adult provided in a study by Johnson 23 in 1964 and another study by Spiers and Beddoe 24 in 1983 The most notable difference is seen in the craniofacial bones with the percent cortical bone being significantly lower than that of the Johnson study.

PAGE 51

51 The masses for the active marrow and inactive marrow were determined for each skeletal site and are presented in Table 3 4 These values were compared to the ICRP 89 provided values, 1 with the active marrow mass varying by 1.23% and the inactive marrow mass varying by 0.71%. T otal skeletal mass es for each skeletal region of the adult female, less that of cartilag e are in Table 3 5. When compared to the value provided by ICRP 89 for the reference adult female total skeletal mass, the difference was found to be only 0.15%. Absorbed Fractions and Specific Absorbed Fractions The absorbed fractions (AF) for each s ource and target combination were computed. The absorbed fractions for the macrostructure and microstructure were each computed using Equation 3 2. = (3 2) where (r T r S ,E i ) is the absorbed fraction for each source (r S ) and target (r T ) combination at a given energy ( E i ) E deposited (r T r S ,E i ) is the energy deposited in that target ( in MeV ) for the given source for a given initial electron energy, and E emitted (r S ,E i ) is the energy emitted from that source ( in MeV ) The total or combined absorbed fraction for each skeletal site was determined using Equation 3 3. (3 3) where C (r T r S ,E i ) is the combined AF for each source (r S ) and target (r T ) combination at a given initial electron energy for a skeletal site, MAC ( r T,MAC r s,MAC E i ) is the AF for the macrostructure of that skeletal site with the SV or MC as the target region (r T,MAC ) r s ,MAC is the source region of the macrostructure (either SV or CBV), and MIC (r T r S ,E i )

PAGE 52

52 is the AF for the microstructure of that skeletal site. When determining the AF for each skeletal site when the CBV was the source region Equation 3 4 was used (adapted from Equation 2 4 in Wayson 22 ). (3 4) where C (r T r S ,E i ) is the combined AF for each target (either AM or TM 50 ) with CBV as the source at a given initial electron energy fo r a skeletal site, MAC (SV/MC r S ,E i ) is the AF for the macrostructure of that skeletal site with a SV or MC target region, MIC (r T r S ,E i ) is the AF for the microstructure of that skeletal site, CF is the ICRP 70 reference cellularity, and TBVF is the trabecular bone volum e fraction This method of combining the macro and microstructure was found to yield AFs similar to those of the UFADM, which were determined using the PIRT method. An example of this AF comparison can be seen in Figure 3 1, with the skeletal site being the sternum and the source/target combination being AM to AM. The specific absorbed fractions (SAF s ) were then computed using Equation 3 5 = (3 5 ) where (r T r S ,E i ) is the SAF for each source and target combination at a given energy E i C (r T r S ,E i ) is the previously defined combined AF, and m T,CF is the mass of the target ( in g ) for a given cellularity. Appendix A contains tables of all the skeletal site specific SAF s to AM targets. The skeletal site specific SAFs to TM 50 targets are available in tabular form in Appendix

PAGE 53

53 B. The skeletal site specific AFs to AM targets and TM 50 targets can all be visualized graphically in Appendix C and D, respectively. Sk eletal Re gions with Multiple S amples Computing absorbed and specific absorbed fractions For the skeletal regions that had multiple samples taken (eg. the craniofacial bones), an average absorbed fraction needed to be determined. For active marrow sources, a bone site averaged SAF is given as: 5 (3 6 ) where (r T AM) avg is the average AF to either AM or TM 50 with an AM source for the skeletal site, MVF i is the marrow volume fraction for the microstructure sample i and (r T AM) i is the AF to either AM or TM 50 for an AM source for that microstructure For inactive marrow sources, the averaging expression used is: 5 (3 7 ) where (r T IM) avg is the average AF to either AM or TM 50 with an IM source for the skeletal site, MVF i is the microstructure MVF and (r T IM) i is the AF to either AM or TM 50 for an IM source for that microstructure. For a trabecular bone volume source, the following averaging expression was applied: 5 (3 8 ) where (r T IM) avg is the average AF to either AM or TM 50 with an TBV source for the skeletal site, TBVF i is the microstructure TBVF and (r T IM) i is the AF to either AM or TM 50 with an TBV source for that microstructure. Finally, for cortical bone volume sources, the following averaging equation was used: 5

PAGE 54

54 (3 9 ) where (r T CBV) avg is the average AF to either AM or TM 50 with an CBV source for the skeletal site, (r T CBV ) i is the AF to either AM or TM 50 with an TBV source for that microstructure, and n is the number of microstructure samples for that skeletal site. The specific absorbed fractions for the skeletal regions that had multiple microstructure samples were simpl y computed using Equations 3 10, 3 11, 3 12 and 3 13 5 (3 10 ) (3 11 ) (3 12 ) (3 13 ) where (r T AM ) avg (r T IM ) avg (r T T BV) avg (r T CBV) avg are the average SAFs for AM or TM 50 for AM, IM, TBV, and CBV sources, respectively, and m T is the mass of the target (in g) Examining sample contributions Craniofacial bones : The contributions from multiple microstructure s amples to a single skeletal site averaged absorbed fraction were examined. The AFs for AM self irradiation for the frontal bone, occipital bone, and parietal bone were compared to the average AF computed for the craniofacial bones in Figure 3 2 At low e nergies (below 70 keV), the AFs are approximately equal. They begin to diverge after 70 keV, with the frontal bone being the greatest and parietal being the lowest. This is to be expected as

PAGE 55

55 the MVF is the highest for the frontal bone, and the lowest for the parietal bone This trend of divergence at approximately 70 keV is also seen in Figures 3 3, 3 4, and 3 5 which show the AF to AM by TIM, TBV, and CBV electron sources respectively. The AFs for the frontal bone are again the highest for each source and the AFs for the parietal the lowest. This trend of the frontal bone AFs being the greatest and parietal bone AFs being the lowest is reversed when examining the AFs to TM 50 for an AM source at low energies (up to approximately 200 keV), as seen in Figure 3 6 At higher energies these AFs begin to converge and decrease, due to the increased initial electron energy allowing the particle to transverse the shallow marrow l ayer. Separated Lumbar Vertebrae : The difference observed in the AFs when using the entire lumbar vertebral column as the macrostructure for each lumbar vertebra versus using the individual (previously separated) lumbar vertebrae (L1 L5) as the macrostru cture was also examined. Figure 3 7 shows the AFs for each lumbar vertebra with the two different macrostructures for AM self irradiation. There is a clear divergence at high energies between the vertebral column macrostructure version and the separated vertebrae macrostructure version. This is primarily due to the existence of cross fire between the vertebrae when the entire column is used as the macrostructure, leading to the higher AFs. The same divergence is seen when the AFs to AM by IM, TBV, and C BV sources are examined as well The highest divergence is seen between the L1 AFs, which have a ratio of 1.35. The divergence decreases with each lumbar vertebra (L2 L5) due to the increase in size in the vertebra, therefore leading to less electron esc ape and cross fire. The same trends can be seen in Figure 3 8 when the target is TM 50

PAGE 56

56 Skeletal A verage Computations for adult female model The skeletal averaged values for the AFs and SAF s for the adult female were computed. Skeletal averaging weigh ting factors for each source tissue were calculated using E quation 3 14 : 5 (3 14 ) where f s,i is the skeletal averaging parameter for a given source s and skeletal site i, m s,i is the mass of that source ( in g ) in the given skeletal site, and (m s ) skeleton is the mass of the source ( in g ) in the entire female skeleton. These parameters are presented in Table 3 6. The skeletal averaged absorbed fraction for each source to target combination w as then computed as follows: 5 (3 15 ) where f s,i is the skeletal averaging parameter, (r T r S ;CF ICRP ) i is the AF for each source and target combination ran at the ICRP reference cellularity factor for each skeletal site i. These skeletal averaged AF s for the adult female are in Table 3 7. The corresponding specific absorbed fractions are in Table 3 8. The skeletal averaged absorbed fracti ons to active marrow by active marrow, inactive marrow, trabecular bone volume and cortical bone volume sources are graph ically represented in Figure 3 9 The AF for AM self irradiation for each skeletal site and the skeletal averaged value are presented in Figure 3 10 For high energies (approximately 1 MeV to 10 MeV) the (AM AM) is greatest for the lumbar vertebrae. For energies below 300 keV the upper shafts of the femora have the lowest (AM AM). Above 300 keV the craniofacial bones exhibit the lowest (AM AM)

PAGE 57

57 The absorbed fractions for active marrow targets and inactive marrow, cortical bone volume and trabecular bone volume sources are shown in Figures 3 11 3 12 3 13 respectively, for each skeletal site T he skeletal averaged values are also presented For IM sources, t he skeletal averaged values are lower than the majority of the AFs for the different skeletal regions This is due to a large percent of total inactive marrow being located in skeletal regions that do not contain act ive marrow and the use of the source mass in the calculation of the skeletal averaging parameters. The (AM IM), (AM CBV), and (AM TBV) at energies above 300 keV are lowest in the craniofacial bones. For energies above 1 MeV the lumbar vertebrae have t he greatest (AM IM), (AM CBV), and (AM TBV). Between 70 and 900 keV, the absorbed fractions to AM with an IM source are greatest for the sternum. Comparisons with previous dosimetry models These skeletal ave raged AFs were compared to previous models includi ng the University of Florida 15 year old female (UF15YF) 5 UFADM 10 Stabin and Segal adult ( AD) 19 and the ICRP 110 adult female (ADF) The values used for the ICRP 110 ADF were derived from the skeletal averaging parameters provided in Hough et a l 10 Figure 3 14 shows the skeletal averaged AFs to AM by an AM source for each model. Each model follows a similar trend, with the exception of the Stabin and Segal model for high energies. The AF begins to plateau with increasing energy, which is due to the use of infinite spongiosa transport, and therefore the lack of electron escape. Also, the Stabin and Segal model only provides AFs for up t o 4 MeV. Figure 3 15 shows the skeletal averaged absorbed fractions to AM by an IM source for this model, the UFADM, and the ICRP 110 ADF only as this data was not

PAGE 58

58 available for the other models. Each model follow s a similar trend with the absorbed fractions increasing until just above 100 keV and then decreasing; t he UFADF AF s being the highest In Figure 3 16 the five previously discussed models are compared for the AF to AM irradiated by the T BV. Again a similar trend is see n between the models, with the AFs increasing until approximately 500 keV and then decreasing, with the exception of the Stabin and Segal model due to the modeling of infinite spongiosa. The skeletal average AFs to AM by T BV of the UFADF and ICRP 110 ADF follow very closely. Figure 3 17 shows the skeletal averaged AFs to AM by a CBV source for this model, the UFADM, and the ICRP 110 ADF, as this data was not available for the other models. As expected, the skeletal averaged absorbed fractions to AM due to CBV irradiation are significantly lower than those due to AM, IM and TBV sources as this is a surrounding source rather than an innate source The UFADF absorbed fractions for this source to target combination fall be tween those of the adult male (highe st) and those of the ICRP 110 ADF. The substantial effect of the change in the definition of the shallow marrow thickness from 10 microns to 50 microns on the AFs can be seen in Figure 3 1 8 Of the five models compared, the Stabin and Segal model is the o nly one to use the previous 10 micron definition. This causes the absorbed fraction to shallow marrow from active to be significantly lower. Of the remaining four models, the (TM 50 AM) are smallest for the UFADF due to the shallow marrow masses being lo wer, therefore having a smaller volume being irradiated.

PAGE 59

59 Effects of Varying Cellularity The AF and SAF for AM self irradiation are dependent on the cellularity. This is clearly seen in Figures 3 19 and 3 20 which show the effects of varying cellularity on the AF and SAF, respectively, for AM self irradiation for the adult female sternum. The AF to AM is greatest for a cellularity of 100% and decreases with decreasing cellularity. The SAF is greatest for 10% cellularity and decreases with increasing ce llularity, due to the increase in mass. The difference in SAFs at low energies is greatest between the smaller cellularities and decreases with increasing cellularity. The other source and target combinations do not display this cellularity dependence. For this reason, those other combinations had been run at the ICRP 70 reference cellularit y for each skeletal site as previously mentioned. An example of the cellularity independence can be seen in Figure 3 21 which shows the AF to shallow marrow with varying cellularities. The different cellularities cannot be visualized as each line lies atop one another, therefore showing independence.

PAGE 60

60 Table 3 1 Spongiosa and cortical volume fractions in the ske letal regions of the adult female. Skeletal s ite SVF MCVF CBVF Cranium 0.4114 0.5886 Mandible 0.4983 0.5017 Cervical v ertebrae 0.6420 0.3580 Thoracic v ertebrae 0.7892 0.2108 Lumbar v ertebrae 0.8495 0.1505 Sternum 0.7388 0.2612 Ribs 0.5707 0.4293 Scapulae 0.6107 0.3893 Clavicles 0.5646 0.4354 Os coxae 0.7700 0.2300 Sacrum 0.7418 0.2582 Humeri p roximal 0.8807 0.1193 Humeri upper s haft 0.3531 0.6469 Humeri lower s haft 0.3509 0.6491 Humeri d istal 0.7639 0.2361 Radii p roximal 0.7447 0.2553 Radii, s haft 0.3390 0.6610 Radii, d istal 0.8256 0.1744 Ulnae, p roximal 0.8123 0.1877 Ulnae, s haft 0.3385 0.6615 Ulnae, d istal 0.8179 0.1821 Wrists and h ands 0.3533 0.6467 Femora, p roximal 0.9007 0.0993 Femora, upper s haft 0.5250 0.4750 Femora, lower s haft 0.5227 0.4773 Femora, d istal 0.8559 0.1441 Patellae 0.8589 0.1411 Tibiae, p roximal 0.8828 0.1172 Tibiae, s haft 0.4718 0.5282 Tibiae, d istal 0.8517 0.1483 Fibulae, p roximal 0.8344 0.1656 Fibulae, s haft 0.3136 0.6864 Fibulae, d istal 0.7427 0.2573 Ankles and f eet 0.6852 0.3148

PAGE 61

61 Table 3 2 Marrow, trabecular, and shallow marrow volume fractions as a percentage of spongiosa volume and shallow marrow volume fraction as a percent of marrow volume for the skeletal regions of the adult female. Skeletal s ite MVF (%SV) TBVF (%SV) SMVF (%SV) SMVF (%MV) Cranium 0.321 0.679 0.134 0.416 Mandible 0.851 0.150 0.059 0.069 Cervical v ertebrae 0.822 0.178 0.157 0.191 Thoracic v ertebrae 0.886 0.114 0.106 0.119 Lumbar v ertebrae 0.874 0.126 0.104 0.119 Sternum 0.918 0.082 0.056 0.061 Ribs 0.909 0.091 0.074 0.081 Scapulae 0.947 0.054 0.066 0.070 Clavicles 0.923 0.078 0.055 0.060 Os coxae 0.954 0.046 0.047 0.049 Sacrum 0.850 0.150 0.104 0.122 Humeri, proximal 0.909 0.092 0.083 0.091 Humeri, upper shaft 1.000 0.000 0.015 Humeri, lower shaft 1.000 0.000 0.019 Humeri, distal 0.831 0.169 0.123 0.148 Radii, proximal 0.882 0.118 0.088 0.100 Radii, shaft 1.000 0.000 0.028 Radii, distal 0.869 0.131 0.103 0.118 Ulnae, proximal 0.735 0.265 0.151 0.205 Ulnae, shaft 1.000 0.000 0.022 Ulnae, distal 0.927 0.073 0.081 0.087 Wrists and h ands 0.831 0.169 0.123 0.148 Femora, proximal 0.775 0.225 0.120 0.155 Femora, upper shaft 1.000 0.000 0.012 Femora, lower shaft 1.000 0.000 0.011 Femora, distal 0.818 0.182 0.121 0.148 Patellae 0.815 0.185 0.134 0.164 Tib iae, proximal 0.843 0.157 0.131 0.155 Tibiae, shaft 1.000 0.000 0.014 Tibiae, distal 0.830 0.170 0.124 0.149 Fibulae, proximal 0.880 0.121 0.099 0.113 Fibulae, shaft 1.000 0.000 0.041 Fibulae, distal 0.821 0.179 0.116 0.142 Ankles and f eet 0.818 0.182 0.121 0.148 Distal femora and distal humeri were used as surrogate for ankles and feet and wrists and h ands, respectively.

PAGE 62

62 Table 3 3. Distribution of mineral bone in the present model for the adult female, compared to the mineral bone distributions computed in a study by Johnson and a study by Spiers and Beddoe for an adult. Distribution of mineral bone Skeletal s ite Present m odel Johnson (1964) Spiers & Beddoe (1983) %CB %TB %CB %TB %CB %TB Craniofacial b ones 68 32 95 5 Mandible 87 13 95 5 Scapulae 92 8 94 6 Clavicles 91 9 94 6 Sternum 81 19 94 6 Ribs 89 11 94 6 Cervical v ertebrae 76 24 24 76 Thoracic v ertebrae 70 30 24 76 Lumbar v ertebrae 59 41 34 66 Sacrum 70 30 75 25 Os coxae 87 13 81 19 Humeri 85 15 80 20 90 10 Radii 92 8 84 16 87 13 Ulnae 83 17 87 13 87 13 Wrist and h ands 92 8 95 5 Femora 71 29 67 33 77 23 Patellae 46 52 Tibiae 77 23 74 26 83 17 Fibulae 87 13 95 5 89 11 Ankles and f eet 72 28 95 5

PAGE 63

63 Table 3 4 Total active marrow and inactive marrow masses for the skeletal regions of the adult female, using ICRP 70 recommended cellularities, and comparison of the total mass values with those stated for the reference adult female in ICRP 89. Skeletal s ite AM m ass (g) IM m ass (g) Cranium 30.18 46.85 Mandible 7.96 12.38 Cervical v ertebrae 30.11 12.28 Thoracic v ertebrae 114.93 46.87 Lumbar v ertebrae 143.82 58.64 Sternum 18.71 7.63 Ribs 115.17 46.96 Scapulae 68.81 106.78 Clavicles 8.90 17.20 Os coxae 230.64 238.09 Sacrum 60.05 61.88 Humeri, proximal 35.97 63.56 Humeri, upper shaft 3.64 19.61 Humeri, lower shaft 0.00 20.16 Hume ri, distal 0.00 49.42 Radii, proximal 0.00 7.93 Radii, shaft 0.00 15.37 Radii, distal 0.00 15.72 Ulnae, proximal 0.00 24.59 Ulnae, shaft 0.00 18.23 Ulnae, distal 0.00 5.80 Wrists and h ands 0.00 32.98 Femora, proximal 32.19 91.88 Femora, upper shaf t 9.99 53.89 Femora, lower shaft 0.00 72.50 Femora, distal 0.00 160.10 Patellae 0.00 17.17 Tibiae, proximal 0.00 135.12 Tibiae, shaft 0.00 76.76 Tibiae, distal 0.00 47.09 Fibulae, proximal 0.00 11.13 Fibulae, shaft 0.00 7.75 Fibulae, distal 0.00 9.06 Ankles and f eet 0.00 201.44 Total skeleton 911.07 1812.84 ICRP 89 reference 900.00 1800.00 Percent difference 1.23 % 0.71 %

PAGE 64

64 Table 3 5 Total skeletal mass for each skeletal region of the adult female, less that of cartilage, and a comparison of total skeletal mass with the ICRP 89 value for the reference adult female. Skeletal Site Mass (g) Cranium 1028.71 Mandible 73.90 Cervical v ertebrae 114.95 Thoracic v ertebrae 294.12 Lumbar v ertebrae 337.49 Sternum 50.50 Ribs 445.04 Scapulae 423.09 Clavicles 73.21 Os coxae 794.40 Sacrum 259.87 Humeri, proximal 149.66 Humeri, upper shaft 106.73 Humeri, lower shaft 93.90 Humeri, distal 106.48 Radi i, proximal 16.31 Radii, shaft 74.63 Radii, distal 28.23 Ulnae, proximal 57.79 Ulnae, shaft 88.55 Ulnae, distal 9.36 Wrists and h ands 185.94 Femora, proximal 230.76 Femora, upper shaft 178.22 Femora, lower shaft 202.82 Femora, distal 301.25 Patellae 32.02 Tibiae, proximal 228.26 Tibiae, shaft 245.75 Tibiae, distal 86.33 Fibulae, proximal 19.34 Fibulae, shaft 41.21 Fibulae, distal 20.70 Ankles and f eet 490.20 Total 6889.72 ICRP 89 Reference 6900.00 % Difference 0.15 % ICRP value for mass is for total skeleton less cartilage.

PAGE 65

65 Table 3 6 Skeletal averaging parameters for active marrow, inactive marrow, trabecular bone volume, and cortical bone volume sources used for calculating skeletal averaged absorbed fractions for the UF adult female model. Skeletal Site Skeletal Averaging Parameters f s,i AM IM TBV CBV Cranium 0.033 0.026 0.326 0.202 Mandible 0.009 0.007 0.007 0.015 Cervical v ertebrae 0.033 0.007 0.018 0.017 Thoracic v ertebrae 0.126 0.026 0.041 0.029 Lumbar v ertebrae 0.158 0.032 0.057 0.024 Sternum 0.021 0.004 0.005 0.006 Ribs 0.126 0.026 0.032 0.079 Scapulae 0.076 0.059 0.020 0.071 Clavicles 0.010 0.009 0.004 0.013 Os coxae 0.253 0.131 0.045 0.087 Sacrum 0.066 0.034 0.043 0.030 Humeri, proximal 0.039 0.035 0.020 0.009 Humeri, upper shaft 0.004 0.011 0.000 0.026 Humeri, lower shaft 0.000 0.011 0.000 0.023 Humeri, distal 0.000 0.027 0.020 0.011 Radii, proximal 0.000 0.004 0.002 0.002 Radii, shaft 0.000 0.008 0.000 0.018 Radii, distal 0.000 0.009 0.005 0.002 Ulnae, proximal 0.000 0.014 0.018 0.005 Ulnae, shaft 0.000 0.010 0.000 0.022 Ulnae, distal 0.000 0.003 0.001 0.001 Wrists and h ands 0.000 0.018 0.014 0.045 Femora, proximal 0.035 0.051 0.072 0.011 Femora, upper shaft 0.011 0.030 0.000 0.035 Femora, lower shaft 0.000 0.040 0.000 0.040 Femora, distal 0.000 0.088 0.073 0.020 Patellae 0.000 0.009 0.008 0.002 Tibiae, proximal 0.000 0.075 0.051 0.013 Tibiae, shaft 0.000 0.042 0.000 0.052 Tibiae, distal 0.000 0.026 0.020 0.006 Fibulae, proximal 0.000 0.006 0.003 0.002 Fibulae, shaft 0.000 0.004 0.000 0.010 Fibulae, distal 0.000 0.005 0.004 0.002 Ankles and f eet 0.000 0.111 0.091 0.069

PAGE 66

66 Table 3 7 Skeletal averaged absorbed fractions for active marrow and shallow marrow targets in the adult female. Energy (MeV) (AM AM) (AM IM) (AM TBV) (AM CBV) (TM 50 AM) (TM 50 IM) (TM 50 TBV) (TM 50 CBV) (TM 50 CBS MC ) 0.010 9.82E 01 8.27E 03 1.13E 03 5.63E 05 9.61E 02 1.08E 01 3.62E 03 2.50E 02 4.88E 01 0.015 9.64E 01 1.66E 02 2.23E 03 1.12E 04 9.51E 02 1.07E 01 7.11E 03 2.28E 02 4.75E 01 0.020 9.41E 01 2.75E 02 3.71E 03 1.89E 04 9.38E 02 1.06E 01 1.18E 02 2.33E 02 4.65E 01 0.030 8.86E 01 5.32E 02 7.35E 03 3.82E 04 9.07E 02 1.02E 01 2.30E 02 2.11E 02 4.78E 01 0.040 8.21E 01 8.33E 02 1.20E 02 6.37E 04 8.68E 02 9.77E 02 3.69E 02 1.84E 02 4.95E 01 0.050 7.57E 01 1.12E 01 1.71E 02 9.29E 04 8.28E 02 9.30E 02 5.11E 02 1.59E 02 5.06E 01 0.060 6.96E 01 1.40E 01 2.26E 02 1.27E 03 7.87E 02 8.82E 02 6.57E 02 1.35E 02 5.06E 01 0.080 6.13E 01 1.75E 01 3.47E 02 2.06E 03 7.19E 02 8.04E 02 8.94E 02 1.02E 02 4.33E 01 0.10 5.77E 01 1.86E 01 4.67E 02 2.92E 03 6.83E 02 7.62E 02 1.01E 01 9.06E 03 3.49E 01 0.15 5.32E 01 1.91E 01 7.82E 02 5.31E 03 6.48E 02 7.20E 02 1.12E 01 8.38E 03 2.21E 01 0.20 5.06E 01 1.88E 01 1.04E 01 7.75E 03 6.47E 02 7.18E 02 1.09E 01 8.51E 03 1.57E 01 0.30 4.74E 01 1.81E 01 1.34E 01 1.26E 02 6.56E 02 7.26E 02 1.01E 01 9.33E 03 9.83E 02 0.40 4.55E 01 1.77E 01 1.44E 01 1.71E 02 6.55E 02 7.24E 02 9.64E 02 1.03E 02 7.14E 02 0.50 4.42E 01 1.73E 01 1.48E 01 2.15E 02 6.48E 02 7.17E 02 9.34E 02 1.13E 02 5.62E 02 0.60 4.30E 01 1.70E 01 1.48E 01 2.53E 02 6.38E 02 7.09E 02 9.08E 02 1.23E 02 4.71E 02 0.80 4.09E 01 1.63E 01 1.46E 01 3.12E 02 6.16E 02 6.91E 02 8.65E 02 1.38E 02 3.57E 02 1.0 3.89E 01 1.57E 01 1.42E 01 3.45E 02 5.93E 02 6.72E 02 8.27E 02 1.47E 02 2.91E 02 1.5 3.48E 01 1.43E 01 1.30E 01 3.62E 02 5.38E 02 6.26E 02 7.47E 02 1.50E 02 2.05E 02 2.0 3.14E 01 1.31E 01 1.19E 01 3.41E 02 4.90E 02 5.82E 02 6.80E 02 1.42E 02 1.61E 02 3.0 2.63E 01 1.11E 01 1.01E 01 2.84E 02 4.14E 02 5.07E 02 5.75E 02 1.17E 02 1.14E 02 4.0 2.27E 01 9.58E 02 8.79E 02 2.32E 02 3.59E 02 4.45E 02 4.97E 02 9.44E 03 8.83E 03 5.0 1.99E 01 8.42E 02 7.79E 02 1.91E 02 3.17E 02 3.94E 02 4.38E 02 7.74E 03 7.02E 03 6.0 1.78E 01 7.50E 02 6.99E 02 1.59E 02 2.85E 02 3.53E 02 3.90E 02 6.45E 03 5.83E 03 8.0 1.47E 01 6.13E 02 5.80E 02 1.14E 02 2.36E 02 2.87E 02 3.18E 02 4.66E 03 4.34E 03 10.0 1.25E 01 5.15E 02 4.92E 02 8.53E 03 2.00E 02 2.40E 02 2.67E 02 3.52E 03 3.47E 03

PAGE 67

67 Table 3 8 Skeletal averaged specific absorbed fractions (g 1 ) for active marrow and shallow marrow targets in the adult female. Energy (MeV) (AM AM) (AM IM) (AM TBV) (AM CBV) (TM 50 AM) (TM 50 IM) (TM 50 TBV) (TM 50 CBV) (TM 50 CBS MC ) 0.010 1.08E 03 9.08E 06 1.24E 06 6.18E 08 3.27E 04 3.69E 04 1.23E 05 8.50E 05 1.66E 03 0.015 1.06E 03 1.82E 05 2.44E 06 1.23E 07 3.24E 04 3.65E 04 2.42E 05 7.76E 05 1.62E 03 0.020 1.03E 03 3.02E 05 4.08E 06 2.08E 07 3.19E 04 3.60E 04 4.01E 05 7.93E 05 1.58E 03 0.030 9.72E 04 5.84E 05 8.07E 06 4.19E 07 3.09E 04 3.48E 04 7.83E 05 7.17E 05 1.63E 03 0.040 9.01E 04 9.15E 05 1.32E 05 6.99E 07 2.95E 04 3.32E 04 1.25E 04 6.28E 05 1.69E 03 0.050 8.31E 04 1.23E 04 1.87E 05 1.02E 06 2.82E 04 3.16E 04 1.74E 04 5.41E 05 1.72E 03 0.060 7.64E 04 1.53E 04 2.48E 05 1.39E 06 2.68E 04 3.00E 04 2.24E 04 4.58E 05 1.72E 03 0.080 6.73E 04 1.92E 04 3.80E 05 2.26E 06 2.45E 04 2.74E 04 3.04E 04 3.47E 05 1.47E 03 0.10 6.34E 04 2.04E 04 5.13E 05 3.21E 06 2.32E 04 2.59E 04 3.45E 04 3.08E 05 1.19E 03 0.15 5.84E 04 2.09E 04 8.58E 05 5.83E 06 2.20E 04 2.45E 04 3.80E 04 2.85E 05 7.52E 04 0.20 5.55E 04 2.06E 04 1.14E 04 8.51E 06 2.20E 04 2.44E 04 3.72E 04 2.90E 05 5.33E 04 0.30 5.20E 04 1.99E 04 1.47E 04 1.38E 05 2.23E 04 2.47E 04 3.44E 04 3.17E 05 3.35E 04 0.40 5.00E 04 1.94E 04 1.58E 04 1.88E 05 2.23E 04 2.46E 04 3.28E 04 3.51E 05 2.43E 04 0.50 4.85E 04 1.90E 04 1.62E 04 2.36E 05 2.20E 04 2.44E 04 3.18E 04 3.85E 05 1.91E 04 0.60 4.72E 04 1.86E 04 1.63E 04 2.78E 05 2.17E 04 2.41E 04 3.09E 04 4.18E 05 1.60E 04 0.80 4.49E 04 1.79E 04 1.60E 04 3.43E 05 2.10E 04 2.35E 04 2.94E 04 4.70E 05 1.22E 04 1.0 4.27E 04 1.72E 04 1.56E 04 3.78E 05 2.02E 04 2.29E 04 2.82E 04 5.00E 05 9.90E 05 1.5 3.82E 04 1.57E 04 1.43E 04 3.97E 05 1.83E 04 2.13E 04 2.54E 04 5.12E 05 6.97E 05 2.0 3.45E 04 1.43E 04 1.31E 04 3.75E 05 1.67E 04 1.98E 04 2.31E 04 4.82E 05 5.47E 05 3.0 2.89E 04 1.22E 04 1.11E 04 3.11E 05 1.41E 04 1.73E 04 1.96E 04 3.97E 05 3.87E 05 4.0 2.49E 04 1.05E 04 9.65E 05 2.55E 05 1.22E 04 1.52E 04 1.69E 04 3.21E 05 3.00E 05 5.0 2.19E 04 9.24E 05 8.54E 05 2.09E 05 1.08E 04 1.34E 04 1.49E 04 2.63E 05 2.39E 05 6.0 1.96E 04 8.24E 05 7.67E 05 1.74E 05 9.70E 05 1.20E 04 1.33E 04 2.20E 05 1.98E 05 8.0 1.62E 04 6.73E 05 6.36E 05 1.25E 05 8.03E 05 9.77E 05 1.08E 04 1.59E 05 1.48E 05 10.0 1.37E 04 5.65E 05 5.40E 05 9.36E 06 6.80E 05 8.16E 05 9.08E 05 1.20E 05 1.18E 05

PAGE 68

68 Figure 3 1. Absorbed fractions for active marrow irradiating active marrow for the sternum of the UF adult female and the UF adult male at ICRP 70 reference cellularity Figure 3 2 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions for active marrow self irradiation at ICRP 70 reference cellularity

PAGE 69

69 Figure 3 3 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to active marrow by trabecular inactive marrow source at ICRP 70 reference cellularity Figure 3 4 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to active marrow by trabecular bone volume source at ICRP 70 reference cellularity

PAGE 70

70 Figure 3 5 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fracti ons to active marrow by cortical bone volume source at ICRP 70 reference cellularity Figure 3 6 Contributions of frontal, occipital, and parietal bone sample absorbed fractions to the craniofacial absorbed fractions to shallow marrow by trabecular a ctive marrow source at ICRP 70 reference cellularity

PAGE 71

71 Figure 3 7 Comparison of absorbed fraction to active marrow for an active marrow source in the lumbar vertebra (L1 L5) when the separated vertebra were used as the macrostructure and when the entir e lumbar vertebra l column was used as the macrostructure. Figure 3 8 Comparison of absorbed fraction to shallow marrow for an active marrow source in the lumbar vertebra (L1 L5) when the separated vertebra were used as the macrostructure and when the entire lumbar vertebra l column was used as the macrostructure.

PAGE 72

72 Figure 3 9 Skeletal averaged absorbed fractions to active marrow in the adult female by active marrow, inactive marrow, trabecular bone volume, and cortical bone volume sources. Figure 3 10 Comparison of absorbed fractions for active marrow self irradiation for each bone site that contains active marrow reference cellularity and the resulting skeletal average value.

PAGE 73

73 Figure 3 11 Comparison of absorbed fractions for active marrow with an inactive marrow source for each bone site that contains active marrow at each and the resulting skeletal average value. Figure 3 12 Comparison of absorbed fractions for active marrow with cortical bone volume source for each bone site that contains active marrow at each skeletal and the resulting skeletal average value.

PAGE 74

74 Figure 3 13 Comparison o f absorbed fractions for active marrow with trabecular bone volume source for each bone site that contains active marrow at each skeletal and the resulting skeletal average value. Figure 3 14 Comparison of skeletal averaged absorbed fractions to active marrow by active marrow source of the UFADF from this study to the UFADM, UF15YF, Stabin and Segal AD, and ICRP 110 ADF models.

PAGE 75

75 Figure 3 15 Comparison of skeletal averaged absorbed fractions to active marrow by inactive marrow source of the UFADF from this study to the UFADM and ICRP 110 ADF models. Figure 3 16 Comparison of skeletal averaged absorbed fractions to active marrow by trabecular bone volume source of the UFADF from this study to the UFADM, UF15Y F, Stabin and Segal AD, and ICRP 110 ADF models.

PAGE 76

76 Figure 3 17 Comparison of skeletal averaged absorbed fractions to active marrow by cortical bone volume source of the UFADF from this study to the UFADM and ICRP 110 ADF models. Figure 3 18 Compari son of skeletal averaged absorbed fractions to shallow marrow by an active marrow source of the UFADF from this study to the UFADM, UF15YF, Stabin and Segal AD, and ICRP 110 ADF models.

PAGE 77

77 Figure 3 19 The effect of varying cellularity on absorbed fracti ons for active marrow self irradiation in the sternum. Figure 3 20 The effect of varying cellularity on specific absorbed fractions for active marrow self irradiation in the sternum.

PAGE 78

78 Figure 3 21 The lack of effect of varying cellularity on absorbed fractions for shallow marrow when active marrow is the source for the sternum.

PAGE 79

79 CHAPTER 4 CONCLUSIONS AND FUTURE WORK An image based skeletal dosimetry model was created for the ICRP reference adult female. The active marrow, inactive m arrow, and total skeletal masses were 1.23%, 0.71%, and 0.15% within the ICRP 89 reference values. Absorbed fractions and specific absorbed fractions were determined for the 34 skeletal sites for active marrow and shallow marrow targets over a discrete el ectron energy range from 1 keV to 10 MeV Source regions included (as applicable): active marrow, inactive marrow, trabecular bone volume, cortical bone volume, and cortical bone surfaces. The method of combining macro and microstructure absorbed fract ions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male. Electron escape and cross fire were accounted for. The ICRP change in the definition of the shallow marrow th ickness from 10 microns to 50 microns was also taken into account. Absorbed fractions for each skeletal site and skeletal averaged values were found to follow the expected trends for each source region. An absorbed fraction and specific absorbed fraction dependence on cellularity for cases of active marrow self irradiation was shown. The absence of such a dependence on the irradiation of the shallow marrow was also presented. Future Work Sensitivity Study on T agging of the S hallow M arrow L ayer The shall ow marrow volumes, and therefore masses, were found to be lower than previously expected, possibly affecting the absorbed fractions. However, the expected shallow marrow volumes were determined using a PIRT code that randomly

PAGE 80

80 samples the 60 micron (ie. no t 50 micron) resolution image and determines if the point sampled is within the defined shallow marrow thickness. When tagging the shallow marrow voxels in the microstructure models only those marrow voxels that shared a face with trabecular bone were tag ged as endosteum. The voxels that shared a corner were not tagged as their square diagonal was not within 50 microns. The tagging of these voxels would have over estimated the shallow marrow volumes. An investigation on the use of mesh tallies to only t ally (measure energy deposited within) the portion of these voxels that is within 50 microns will be done. A sensitivity study on the variability in the absorbed fractions between the current definition and the new method will be completed. Trabecular B one Surfaces Absorbed fractions and specific absorbed fractions for active marrow and shallow marrow targets will be calculated for trabecular bone surface sources for each skeletal site in the adult female that contains bone trabeculae. Differences in the definition of what constitutes a trabecular bone surface have been seen in the literature. Some models define the surface to be infini tely thin (ie. having no volume) 9, 25 while others use a one micron thick definition. 26, 27 The reasoning behind the use of a surface with a 1 micron thickness is due to studies of bone seeking radionuclides that show the radionuclide, such as 45 Ca lies within an appr oximate thickness of 1 micron on the surface of the trabeculae For this reason, this definition may be more realistic. A sensitivity study will be conducted in order to see how much variability these two definitions cause in the absorbed fractions. An M CNPX source generator defining the surface between the interface of each marrow and trabecular bone voxel has already been created The source inputs for each skeletal site have already been

PAGE 81

81 generated and just need to be run. The source generator will be modified to label a 0.5 micron thick layer on each side of the marrow/bone boundary as well and subsequent source input files generated. S Values S values will be calculated for the following radionuclides: 90 Sr, 89 Sr 90 Y, and 45 Ca S values for 90 Sr, 89 Sr, and 90 Y have been calculated for the UFADM phantom and will be used for comparison. 10 45 Ca was chosen as well because it is also a beta emitter and was used in the discussion on defining trabecular bone surfaces.

PAGE 82

82 APPENDIX A TABLES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS TO ACTIVE MARROW TARGETS This is an appendix of tabulated skeletal site specific specific absorbed fraction s to active marrow targets for the University of Florida adult female reference phantom for a range of 33 discrete energies from 1 keV to 10 MeV The sources included are: active marrow (AM), inactive marr ow (IM), trabecular bone volume (TBV), cortical bone volume (CBV), medullary active marrow (MAM), medullary inactive marrow (MIM), and the cortical bone surfaces of the medullary cavity (CBS MC ). The cellularity was varied from 10 to 100% for active marrow self irradiation. All other sources were run at ICRP 70 reference cellularity.

PAGE 83

83 Table A 1. Specific absorbed fractions (g 1 ) for active marrow targets in the craniofacial bones. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 38% (ICRP 70) IM TBV CBS HC or CBV 0.001 1.26E 02 1.40E 02 1.57E 02 1.80E 02 2.10E 02 2.52E 02 3.15E 02 4.20E 02 6.30E 02 1.26E 01 3.31E 02 4.80E 05 2.27E 06 1.02E 07 0.0015 1.26E 02 1.40E 02 1.57E 02 1.80E 02 2.10E 02 2.52E 02 3.14E 02 4.19E 02 6.28E 02 1.26E 01 3.31E 02 7.26E 05 3.43E 06 1.55E 07 0.002 1.26E 02 1.40E 02 1.57E 02 1.80E 02 2.09E 02 2.51E 02 3.14E 02 4.18E 02 6.27E 02 1.25E 01 3.30E 02 9.56E 05 4.52E 06 2.04E 07 0.003 1.26E 02 1.40E 02 1.57E 02 1.79E 02 2.09E 02 2.51E 02 3.13E 02 4.17E 02 6.25E 02 1.25E 01 3.29E 02 1.46E 04 6.89E 06 3.11E 07 0.004 1.26E 02 1.39E 02 1.57E 02 1.79E 02 2.09E 02 2.50E 02 3.12E 02 4.16E 02 6.23E 02 1.24E 01 3.29E 02 1.89E 04 8.94E 06 4.04E 07 0.005 1.26E 02 1.39E 02 1.57E 02 1.79E 02 2.08E 02 2.49E 02 3.11E 02 4.14E 02 6.21E 02 1.24E 01 3.28E 02 2.48E 04 1.17E 05 5.28E 07 0.006 1.26E 02 1.39E 02 1.56E 02 1.78E 02 2.08E 02 2.49E 02 3.10E 02 4.13E 02 6.19E 02 1.23E 01 3.27E 02 2.74E 04 1.30E 05 5.87E 07 0.008 1.25E 02 1.39E 02 1.56E 02 1.78E 02 2.07E 02 2.48E 02 3.09E 02 4.11E 02 6.14E 02 1.23E 01 3.25E 02 4.14E 04 1.94E 05 8.79E 07 0.010 1.25E 02 1.39E 02 1.56E 02 1.77E 02 2.06E 02 2.46E 02 3.07E 02 4.08E 02 6.10E 02 1.22E 01 3.23E 02 4.19E 04 2.00E 05 9.00E 07 0.015 1.25E 02 1.37E 02 1.54E 02 1.74E 02 2.02E 02 2.41E 02 2.99E 02 3.96E 02 5.90E 02 1.17E 01 3.14E 02 8.41E 04 3.93E 05 1.78E 06 0.020 1.24E 02 1.36E 02 1.51E 02 1.71E 02 1.97E 02 2.34E 02 2.89E 02 3.80E 02 5.64E 02 1.11E 01 3.03E 02 1.39E 03 6.55E 05 3.01E 06 0.030 1.21E 02 1.32E 02 1.45E 02 1.62E 02 1.85E 02 2.17E 02 2.64E 02 3.44E 02 5.02E 02 9.79E 02 2.77E 02 2.68E 03 1.30E 04 5.99E 06 0.040 1.18E 02 1.27E 02 1.38E 02 1.52E 02 1.70E 02 1.96E 02 2.35E 02 3.00E 02 4.30E 02 8.19E 02 2.45E 02 4.18E 03 2.13E 04 9.85E 06 0.050 1.15E 02 1.22E 02 1.31E 02 1.42E 02 1.56E 02 1.76E 02 2.07E 02 2.57E 02 3.59E 02 6.62E 02 2.15E 02 5.60E 03 3.01E 04 1.42E 05 0.060 1.12E 02 1.17E 02 1.23E 02 1.31E 02 1.42E 02 1.57E 02 1.79E 02 2.16E 02 2.90E 02 5.13E 02 1.85E 02 6.90E 03 3.98E 04 1.90E 05 0.080 1.05E 02 1.07E 02 1.11E 02 1.15E 02 1.20E 02 1.28E 02 1.39E 02 1.58E 02 1.96E 02 3.08E 02 1.42E 02 8.38E 03 6.07E 04 2.94E 05 0.10 9.74E 03 9.92E 03 1.01E 02 1.04E 02 1.07E 02 1.13E 02 1.22E 02 1.33E 02 1.55E 02 2.24E 02 1.24E 02 8.49E 03 8.09E 04 4.03E 05 0.15 7.90E 03 7.98E 03 8.09E 03 8.21E 03 8.37E 03 8.59E 03 8.92E 03 9.47E 03 1.06E 02 1.38E 02 9.01E 03 7.33E 03 1.32E 03 6.31E 05 0.20 6.40E 03 6.46E 03 6.52E 03 6.60E 03 6.70E 03 6.83E 03 7.04E 03 7.38E 03 8.06E 03 1.01E 02 7.09E 03 6.04E 03 1.71E 03 8.09E 05 0.30 4.75E 03 4.78E 03 4.81E 03 4.85E 03 4.90E 03 4.97E 03 5.09E 03 5.26E 03 5.62E 03 6.67E 03 5.11E 03 4.56E 03 2.10E 03 1.10E 04 0.40 4.15E 03 4.17E 03 4.19E 03 4.22E 03 4.25E 03 4.30E 03 4.38E 03 4.50E 03 4.73E 03 5.43E 03 4.40E 03 4.03E 03 2.18E 03 1.38E 04 0.50 3.84E 03 3.86E 03 3.88E 03 3.90E 03 3.92E 03 3.96E 03 4.01E 03 4.10E 03 4.27E 03 4.77E 03 4.03E 03 3.77E 03 2.19E 03 1.64E 04 0.60 3.64E 03 3.65E 03 3.66E 03 3.68E 03 3.70E 03 3.73E 03 3.77E 03 3.84E 03 3.97E 03 4.37E 03 3.78E 03 3.58E 03 2.17E 03 1.89E 04 0.80 3.33E 03 3.34E 03 3.35E 03 3.36E 03 3.38E 03 3.40E 03 3.43E 03 3.48E 03 3.57E 03 3.83E 03 3.44E 03 3.30E 03 2.09E 03 2.31E 04 1.0 3.10E 03 3.10E 03 3.12E 03 3.12E 03 3.14E 03 3.15E 03 3.17E 03 3.21E 03 3.27E 03 3.47E 03 3.18E 03 3.08E 03 2.00E 03 2.63E 04 1.5 2.64E 03 2.65E 03 2.65E 03 2.66E 03 2.67E 03 2.68E 03 2.69E 03 2.71E 03 2.75E 03 2.86E 03 2.70E 03 2.64E 03 1.77E 03 3.03E 04 2.0 2.30E 03 2.30E 03 2.30E 03 2.31E 03 2.32E 03 2.32E 03 2.33E 03 2.34E 03 2.37E 03 2.45E 03 2.33E 03 2.30E 03 1.57E 03 3.02E 04 3.0 1.80E 03 1.80E 03 1.81E 03 1.81E 03 1.81E 03 1.82E 03 1.82E 03 1.83E 03 1.85E 03 1.88E 03 1.83E 03 1.81E 03 1.25E 03 2.49E 04 4.0 1.48E 03 1.49E 03 1.49E 03 1.49E 03 1.49E 03 1.50E 03 1.50E 03 1.51E 03 1.52E 03 1.54E 03 1.50E 03 1.49E 03 1.04E 03 1.92E 04 5.0 1.27E 03 1.27E 03 1.27E 03 1.27E 03 1.27E 03 1.28E 03 1.28E 03 1.28E 03 1.29E 03 1.31E 03 1.28E 03 1.27E 03 8.92E 04 1.51E 04 6.0 1.11E 03 1.11E 03 1.11E 03 1.11E 03 1.12E 03 1.12E 03 1.12E 03 1.12E 03 1.13E 03 1.14E 03 1.12E 03 1.12E 03 7.85E 04 1.22E 04 8.0 8.98E 04 8.99E 04 9.01E 04 9.02E 04 9.03E 04 9.05E 04 9.07E 04 9.08E 04 9.11E 04 9.20E 04 9.07E 04 9.03E 04 6.38E 04 8.59E 05 10.0 7.61E 04 7.62E 04 7.63E 04 7.64E 04 7.66E 04 7.66E 04 7.68E 04 7.69E 04 7.72E 04 7.79E 04 7.68E 04 7.66E 04 5.42E 04 6.49E 05

PAGE 84

84 Table A 2. Specific absorbed fractions (g 1 ) for active marrow targets in the mandible. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 38% (ICRP 70) IM TBV CBS HC or CBV 0.001 4.77E 02 5.30E 02 5.96E 02 6.81E 02 7.95E 02 9.54E 02 1.19E 01 1.59E 01 2.39E 01 4.79E 01 1.26E 01 2.09E 04 1.57E 05 6.74E 07 0.0015 4.77E 02 5.30E 02 5.96E 02 6.81E 02 7.95E 02 9.53E 02 1.19E 01 1.59E 01 2.39E 01 4.78E 01 1.26E 01 3.16E 04 2.37E 05 1.02E 06 0.002 4.77E 02 5.30E 02 5.95E 02 6.80E 02 7.94E 02 9.52E 02 1.19E 01 1.58E 01 2.38E 01 4.77E 01 1.25E 01 4.16E 04 3.13E 05 1.34E 06 0.003 4.77E 02 5.29E 02 5.95E 02 6.80E 02 7.92E 02 9.49E 02 1.18E 01 1.58E 01 2.37E 01 4.75E 01 1.25E 01 6.35E 04 4.77E 05 2.05E 06 0.004 4.77E 02 5.29E 02 5.94E 02 6.79E 02 7.91E 02 9.47E 02 1.18E 01 1.58E 01 2.37E 01 4.73E 01 1.25E 01 8.23E 04 6.20E 05 2.65E 06 0.005 4.77E 02 5.29E 02 5.94E 02 6.78E 02 7.90E 02 9.45E 02 1.18E 01 1.57E 01 2.36E 01 4.71E 01 1.24E 01 1.08E 03 8.09E 05 3.47E 06 0.006 4.77E 02 5.29E 02 5.93E 02 6.77E 02 7.88E 02 9.43E 02 1.18E 01 1.57E 01 2.35E 01 4.69E 01 1.24E 01 1.19E 03 9.01E 05 3.85E 06 0.008 4.77E 02 5.28E 02 5.92E 02 6.75E 02 7.85E 02 9.39E 02 1.17E 01 1.56E 01 2.33E 01 4.66E 01 1.23E 01 1.80E 03 1.35E 04 5.80E 06 0.010 4.76E 02 5.27E 02 5.91E 02 6.73E 02 7.83E 02 9.35E 02 1.16E 01 1.55E 01 2.32E 01 4.62E 01 1.23E 01 1.82E 03 1.39E 04 5.89E 06 0.015 4.76E 02 5.25E 02 5.86E 02 6.65E 02 7.70E 02 9.16E 02 1.14E 01 1.50E 01 2.24E 01 4.45E 01 1.20E 01 3.66E 03 2.72E 04 1.18E 05 0.020 4.75E 02 5.22E 02 5.79E 02 6.54E 02 7.53E 02 8.92E 02 1.10E 01 1.45E 01 2.15E 01 4.24E 01 1.16E 01 6.07E 03 4.53E 04 1.99E 05 0.030 4.74E 02 5.14E 02 5.64E 02 6.28E 02 7.14E 02 8.33E 02 1.01E 01 1.31E 01 1.92E 01 3.72E 01 1.06E 01 1.17E 02 8.87E 04 4.01E 05 0.040 4.72E 02 5.04E 02 5.45E 02 5.97E 02 6.68E 02 7.65E 02 9.10E 02 1.16E 01 1.65E 01 3.12E 01 9.51E 02 1.84E 02 1.45E 03 6.72E 05 0.050 4.69E 02 4.95E 02 5.27E 02 5.68E 02 6.22E 02 6.98E 02 8.12E 02 1.00E 01 1.39E 01 2.53E 01 8.44E 02 2.48E 02 2.05E 03 9.76E 05 0.060 4.67E 02 4.86E 02 5.09E 02 5.39E 02 5.79E 02 6.35E 02 7.18E 02 8.58E 02 1.14E 01 1.97E 01 7.42E 02 3.08E 02 2.73E 03 1.33E 04 0.080 4.61E 02 4.71E 02 4.84E 02 5.00E 02 5.20E 02 5.48E 02 5.90E 02 6.60E 02 8.02E 02 1.22E 01 6.03E 02 3.87E 02 4.19E 03 2.18E 04 0.10 4.56E 02 4.62E 02 4.71E 02 4.81E 02 4.95E 02 5.13E 02 5.39E 02 5.84E 02 6.72E 02 9.34E 02 5.48E 02 4.13E 02 5.65E 03 3.08E 04 0.15 4.39E 02 4.43E 02 4.48E 02 4.53E 02 4.60E 02 4.69E 02 4.82E 02 5.03E 02 5.46E 02 6.70E 02 4.86E 02 4.24E 02 9.85E 03 5.55E 04 0.20 4.23E 02 4.26E 02 4.29E 02 4.33E 02 4.38E 02 4.44E 02 4.52E 02 4.66E 02 4.94E 02 5.72E 02 4.55E 02 4.16E 02 1.40E 02 7.97E 04 0.30 3.95E 02 3.97E 02 3.99E 02 4.02E 02 4.05E 02 4.08E 02 4.13E 02 4.21E 02 4.37E 02 4.78E 02 4.15E 02 3.95E 02 2.04E 02 1.26E 03 0.40 3.75E 02 3.76E 02 3.78E 02 3.80E 02 3.82E 02 3.85E 02 3.88E 02 3.94E 02 4.04E 02 4.32E 02 3.90E 02 3.76E 02 2.39E 02 1.74E 03 0.50 3.59E 02 3.60E 02 3.61E 02 3.63E 02 3.65E 02 3.67E 02 3.69E 02 3.74E 02 3.82E 02 4.02E 02 3.71E 02 3.61E 02 2.57E 02 2.21E 03 0.60 3.45E 02 3.46E 02 3.47E 02 3.49E 02 3.51E 02 3.52E 02 3.54E 02 3.58E 02 3.65E 02 3.81E 02 3.56E 02 3.48E 02 2.65E 02 2.65E 03 0.80 3.21E 02 3.22E 02 3.23E 02 3.24E 02 3.26E 02 3.27E 02 3.29E 02 3.31E 02 3.36E 02 3.47E 02 3.30E 02 3.25E 02 2.68E 02 3.43E 03 1.0 3.01E 02 3.01E 02 3.02E 02 3.03E 02 3.05E 02 3.05E 02 3.07E 02 3.09E 02 3.13E 02 3.21E 02 3.08E 02 3.04E 02 2.64E 02 4.02E 03 1.5 2.56E 02 2.56E 02 2.57E 02 2.58E 02 2.59E 02 2.60E 02 2.61E 02 2.62E 02 2.65E 02 2.70E 02 2.62E 02 2.60E 02 2.40E 02 4.58E 03 2.0 2.20E 02 2.20E 02 2.21E 02 2.21E 02 2.22E 02 2.23E 02 2.23E 02 2.24E 02 2.27E 02 2.30E 02 2.24E 02 2.23E 02 2.11E 02 4.30E 03 3.0 1.67E 02 1.68E 02 1.68E 02 1.69E 02 1.69E 02 1.70E 02 1.70E 02 1.71E 02 1.72E 02 1.74E 02 1.71E 02 1.70E 02 1.64E 02 3.12E 03 4.0 1.34E 02 1.34E 02 1.34E 02 1.35E 02 1.35E 02 1.36E 02 1.36E 02 1.37E 02 1.38E 02 1.39E 02 1.36E 02 1.36E 02 1.32E 02 2.18E 03 5.0 1.11E 02 1.11E 02 1.11E 02 1.12E 02 1.12E 02 1.12E 02 1.13E 02 1.13E 02 1.14E 02 1.15E 02 1.13E 02 1.13E 02 1.10E 02 1.58E 03 6.0 9.45E 03 9.47E 03 9.50E 03 9.52E 03 9.56E 03 9.57E 03 9.59E 03 9.63E 03 9.69E 03 9.78E 03 9.62E 03 9.61E 03 9.43E 03 1.18E 03 8.0 7.27E 03 7.28E 03 7.30E 03 7.32E 03 7.35E 03 7.36E 03 7.38E 03 7.40E 03 7.45E 03 7.50E 03 7.40E 03 7.39E 03 7.29E 03 7.29E 04 10.0 5.91E 03 5.92E 03 5.94E 03 5.96E 03 5.98E 03 5.99E 03 6.00E 03 6.02E 03 6.06E 03 6.10E 03 6.02E 03 6.01E 03 5.95E 03 4.94E 04

PAGE 85

85 Table A 3. Specific absorbed fractions (g 1 ) for active marrow targets in the cervical vertebrae. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 70% (ICRP 70) IM TBV CBS HC or CBV 0.001 2.32E 02 2.58E 02 2.91E 02 3.32E 02 3.87E 02 4.65E 02 5.81E 02 7.75E 02 1.16E 01 2.32E 01 3.32E 02 9.92E 05 1.25E 05 6.13E 07 0.0015 2.32E 02 2.58E 02 2.90E 02 3.32E 02 3.87E 02 4.64E 02 5.80E 02 7.74E 02 1.16E 01 2.32E 01 3.32E 02 1.50E 04 1.89E 05 9.28E 07 0.002 2.32E 02 2.58E 02 2.90E 02 3.32E 02 3.87E 02 4.64E 02 5.80E 02 7.72E 02 1.16E 01 2.32E 01 3.32E 02 1.97E 04 2.48E 05 1.22E 06 0.003 2.32E 02 2.58E 02 2.90E 02 3.31E 02 3.86E 02 4.63E 02 5.78E 02 7.70E 02 1.15E 01 2.31E 01 3.31E 02 3.02E 04 3.79E 05 1.87E 06 0.004 2.32E 02 2.58E 02 2.90E 02 3.31E 02 3.85E 02 4.62E 02 5.77E 02 7.68E 02 1.15E 01 2.30E 01 3.31E 02 3.91E 04 4.92E 05 2.42E 06 0.005 2.32E 02 2.58E 02 2.89E 02 3.30E 02 3.85E 02 4.61E 02 5.75E 02 7.65E 02 1.15E 01 2.29E 01 3.30E 02 5.12E 04 6.43E 05 3.17E 06 0.006 2.32E 02 2.57E 02 2.89E 02 3.30E 02 3.84E 02 4.60E 02 5.74E 02 7.63E 02 1.14E 01 2.28E 01 3.30E 02 5.67E 04 7.15E 05 3.50E 06 0.008 2.32E 02 2.57E 02 2.89E 02 3.29E 02 3.83E 02 4.58E 02 5.70E 02 7.58E 02 1.13E 01 2.26E 01 3.29E 02 8.55E 04 1.07E 04 5.29E 06 0.010 2.32E 02 2.57E 02 2.88E 02 3.28E 02 3.81E 02 4.56E 02 5.67E 02 7.54E 02 1.13E 01 2.24E 01 3.28E 02 8.65E 04 1.10E 04 5.35E 06 0.015 2.32E 02 2.55E 02 2.85E 02 3.24E 02 3.75E 02 4.46E 02 5.54E 02 7.33E 02 1.09E 01 2.16E 01 3.24E 02 1.74E 03 2.17E 04 1.08E 05 0.020 2.31E 02 2.54E 02 2.82E 02 3.18E 02 3.66E 02 4.34E 02 5.36E 02 7.05E 02 1.04E 01 2.06E 01 3.18E 02 2.88E 03 3.60E 04 1.82E 05 0.030 2.30E 02 2.49E 02 2.74E 02 3.05E 02 3.47E 02 4.05E 02 4.93E 02 6.39E 02 9.31E 02 1.81E 01 3.05E 02 5.57E 03 7.13E 04 3.66E 05 0.040 2.28E 02 2.44E 02 2.64E 02 2.89E 02 3.23E 02 3.71E 02 4.43E 02 5.62E 02 8.00E 02 1.51E 01 2.89E 02 8.70E 03 1.17E 03 6.07E 05 0.050 2.26E 02 2.38E 02 2.54E 02 2.74E 02 3.01E 02 3.38E 02 3.93E 02 4.86E 02 6.72E 02 1.23E 01 2.74E 02 1.17E 02 1.66E 03 8.84E 05 0.060 2.24E 02 2.33E 02 2.44E 02 2.59E 02 2.79E 02 3.06E 02 3.47E 02 4.15E 02 5.51E 02 9.58E 02 2.59E 02 1.45E 02 2.19E 03 1.20E 04 0.080 2.19E 02 2.24E 02 2.30E 02 2.37E 02 2.48E 02 2.61E 02 2.82E 02 3.16E 02 3.84E 02 5.88E 02 2.37E 02 1.81E 02 3.35E 03 1.93E 04 0.10 2.14E 02 2.17E 02 2.21E 02 2.26E 02 2.33E 02 2.42E 02 2.55E 02 2.76E 02 3.19E 02 4.46E 02 2.26E 02 1.91E 02 4.53E 03 2.70E 04 0.15 2.01E 02 2.02E 02 2.05E 02 2.07E 02 2.11E 02 2.15E 02 2.21E 02 2.31E 02 2.52E 02 3.11E 02 2.07E 02 1.91E 02 7.70E 03 4.77E 04 0.20 1.89E 02 1.90E 02 1.92E 02 1.93E 02 1.96E 02 1.99E 02 2.03E 02 2.09E 02 2.22E 02 2.60E 02 1.93E 02 1.83E 02 1.04E 02 6.74E 04 0.30 1.74E 02 1.75E 02 1.76E 02 1.77E 02 1.78E 02 1.80E 02 1.82E 02 1.86E 02 1.93E 02 2.13E 02 1.77E 02 1.72E 02 1.32E 02 1.07E 03 0.40 1.66E 02 1.67E 02 1.68E 02 1.68E 02 1.69E 02 1.71E 02 1.72E 02 1.75E 02 1.79E 02 1.93E 02 1.68E 02 1.65E 02 1.39E 02 1.49E 03 0.50 1.60E 02 1.60E 02 1.61E 02 1.62E 02 1.63E 02 1.64E 02 1.65E 02 1.67E 02 1.70E 02 1.80E 02 1.62E 02 1.59E 02 1.39E 02 1.92E 03 0.60 1.54E 02 1.55E 02 1.55E 02 1.56E 02 1.57E 02 1.58E 02 1.59E 02 1.60E 02 1.63E 02 1.70E 02 1.56E 02 1.54E 02 1.38E 02 2.30E 03 0.80 1.44E 02 1.44E 02 1.45E 02 1.45E 02 1.46E 02 1.47E 02 1.47E 02 1.48E 02 1.51E 02 1.56E 02 1.45E 02 1.44E 02 1.33E 02 2.86E 03 1.0 1.35E 02 1.35E 02 1.35E 02 1.36E 02 1.36E 02 1.37E 02 1.38E 02 1.38E 02 1.40E 02 1.44E 02 1.36E 02 1.35E 02 1.26E 02 3.12E 03 1.5 1.14E 02 1.15E 02 1.15E 02 1.15E 02 1.16E 02 1.16E 02 1.17E 02 1.17E 02 1.18E 02 1.20E 02 1.15E 02 1.15E 02 1.10E 02 3.04E 03 2.0 9.87E 03 9.90E 03 9.93E 03 9.95E 03 9.99E 03 1.00E 02 1.01E 02 1.01E 02 1.02E 02 1.03E 02 9.95E 03 9.92E 03 9.60E 03 2.67E 03 3.0 7.76E 03 7.77E 03 7.80E 03 7.82E 03 7.84E 03 7.86E 03 7.89E 03 7.91E 03 7.96E 03 8.04E 03 7.82E 03 7.80E 03 7.62E 03 1.99E 03 4.0 6.50E 03 6.51E 03 6.53E 03 6.55E 03 6.57E 03 6.58E 03 6.61E 03 6.63E 03 6.66E 03 6.72E 03 6.55E 03 6.54E 03 6.41E 03 1.52E 03 5.0 5.66E 03 5.67E 03 5.69E 03 5.70E 03 5.72E 03 5.73E 03 5.75E 03 5.76E 03 5.79E 03 5.83E 03 5.70E 03 5.69E 03 5.60E 03 1.21E 03 6.0 5.01E 03 5.03E 03 5.04E 03 5.05E 03 5.07E 03 5.08E 03 5.10E 03 5.11E 03 5.13E 03 5.16E 03 5.05E 03 5.05E 03 4.97E 03 9.91E 04 8.0 4.13E 03 4.14E 03 4.15E 03 4.16E 03 4.18E 03 4.18E 03 4.20E 03 4.21E 03 4.23E 03 4.25E 03 4.16E 03 4.16E 03 4.11E 03 7.04E 04 10.0 3.50E 03 3.50E 03 3.51E 03 3.52E 03 3.53E 03 3.54E 03 3.55E 03 3.56E 03 3.57E 03 3.59E 03 3.52E 03 3.52E 03 3.48E 03 5.18E 04

PAGE 86

86 Table A 4 Specific absorbed fractions (g 1 ) for active marrow targets in the thoracic vertebrae. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 70% (ICRP 70) IM TBV CBS HC or CBV 0.001 6.09E 03 6.77E 03 7.61E 03 8.70E 03 1.02E 02 1.22E 02 1.52E 02 2.03E 02 3.05E 02 6.09E 02 8.70E 03 2.64E 05 3.61E 06 2.26E 07 0.0015 6.09E 03 6.77E 03 7.61E 03 8.69E 03 1.01E 02 1.22E 02 1.52E 02 2.03E 02 3.04E 02 6.08E 02 8.69E 03 4.00E 05 5.46E 06 3.42E 07 0.002 6.09E 03 6.76E 03 7.61E 03 8.69E 03 1.01E 02 1.22E 02 1.52E 02 2.02E 02 3.03E 02 6.07E 02 8.69E 03 5.26E 05 7.20E 06 4.51E 07 0.003 6.09E 03 6.76E 03 7.60E 03 8.68E 03 1.01E 02 1.21E 02 1.51E 02 2.02E 02 3.02E 02 6.04E 02 8.68E 03 8.04E 05 1.10E 05 6.88E 07 0.004 6.09E 03 6.76E 03 7.59E 03 8.67E 03 1.01E 02 1.21E 02 1.51E 02 2.01E 02 3.01E 02 6.02E 02 8.67E 03 1.04E 04 1.43E 05 8.92E 07 0.005 6.09E 03 6.75E 03 7.58E 03 8.65E 03 1.01E 02 1.21E 02 1.51E 02 2.01E 02 3.00E 02 6.00E 02 8.65E 03 1.36E 04 1.86E 05 1.17E 06 0.006 6.09E 03 6.75E 03 7.58E 03 8.64E 03 1.01E 02 1.20E 02 1.50E 02 2.00E 02 2.99E 02 5.97E 02 8.64E 03 1.51E 04 2.07E 05 1.30E 06 0.008 6.08E 03 6.74E 03 7.56E 03 8.62E 03 1.00E 02 1.20E 02 1.50E 02 1.99E 02 2.97E 02 5.93E 02 8.62E 03 2.28E 04 3.10E 05 1.95E 06 0.010 6.08E 03 6.73E 03 7.55E 03 8.59E 03 9.99E 03 1.19E 02 1.49E 02 1.98E 02 2.95E 02 5.88E 02 8.59E 03 2.30E 04 3.18E 05 1.98E 06 0.015 6.08E 03 6.70E 03 7.48E 03 8.49E 03 9.83E 03 1.17E 02 1.45E 02 1.92E 02 2.86E 02 5.67E 02 8.49E 03 4.63E 04 6.28E 05 3.95E 06 0.020 6.07E 03 6.66E 03 7.40E 03 8.35E 03 9.61E 03 1.14E 02 1.40E 02 1.85E 02 2.73E 02 5.39E 02 8.35E 03 7.68E 04 1.05E 04 6.65E 06 0.030 6.04E 03 6.55E 03 7.19E 03 8.01E 03 9.11E 03 1.06E 02 1.29E 02 1.68E 02 2.44E 02 4.74E 02 8.01E 03 1.48E 03 2.07E 04 1.34E 05 0.040 6.01E 03 6.43E 03 6.95E 03 7.62E 03 8.51E 03 9.76E 03 1.16E 02 1.48E 02 2.10E 02 3.97E 02 7.62E 03 2.32E 03 3.39E 04 2.23E 05 0.050 5.98E 03 6.30E 03 6.71E 03 7.23E 03 7.93E 03 8.91E 03 1.04E 02 1.28E 02 1.77E 02 3.23E 02 7.23E 03 3.13E 03 4.83E 04 3.27E 05 0.060 5.94E 03 6.18E 03 6.48E 03 6.86E 03 7.38E 03 8.09E 03 9.16E 03 1.09E 02 1.45E 02 2.52E 02 6.86E 03 3.89E 03 6.40E 04 4.45E 05 0.080 5.86E 03 5.98E 03 6.14E 03 6.34E 03 6.61E 03 6.97E 03 7.52E 03 8.41E 03 1.02E 02 1.55E 02 6.34E 03 4.86E 03 9.81E 04 7.30E 05 0.10 5.77E 03 5.86E 03 5.96E 03 6.09E 03 6.27E 03 6.50E 03 6.85E 03 7.41E 03 8.53E 03 1.19E 02 6.09E 03 5.16E 03 1.33E 03 1.04E 04 0.15 5.54E 03 5.58E 03 5.64E 03 5.71E 03 5.80E 03 5.92E 03 6.09E 03 6.36E 03 6.89E 03 8.46E 03 5.71E 03 5.28E 03 2.24E 03 1.93E 04 0.20 5.33E 03 5.37E 03 5.41E 03 5.45E 03 5.52E 03 5.59E 03 5.71E 03 5.88E 03 6.22E 03 7.21E 03 5.45E 03 5.18E 03 3.00E 03 2.85E 04 0.30 5.05E 03 5.08E 03 5.10E 03 5.13E 03 5.17E 03 5.22E 03 5.28E 03 5.38E 03 5.57E 03 6.10E 03 5.13E 03 4.99E 03 3.86E 03 4.71E 04 0.40 4.89E 03 4.91E 03 4.93E 03 4.95E 03 4.98E 03 5.02E 03 5.07E 03 5.13E 03 5.26E 03 5.61E 03 4.95E 03 4.86E 03 4.15E 03 6.56E 04 0.50 4.76E 03 4.78E 03 4.80E 03 4.81E 03 4.84E 03 4.87E 03 4.91E 03 4.96E 03 5.06E 03 5.31E 03 4.81E 03 4.75E 03 4.22E 03 8.34E 04 0.60 4.64E 03 4.66E 03 4.68E 03 4.69E 03 4.72E 03 4.74E 03 4.77E 03 4.81E 03 4.90E 03 5.10E 03 4.69E 03 4.64E 03 4.23E 03 9.81E 04 0.80 4.43E 03 4.44E 03 4.46E 03 4.47E 03 4.49E 03 4.51E 03 4.54E 03 4.57E 03 4.63E 03 4.77E 03 4.47E 03 4.44E 03 4.14E 03 1.16E 03 1.0 4.23E 03 4.24E 03 4.25E 03 4.27E 03 4.28E 03 4.30E 03 4.32E 03 4.35E 03 4.39E 03 4.50E 03 4.27E 03 4.24E 03 4.00E 03 1.24E 03 1.5 3.76E 03 3.77E 03 3.78E 03 3.79E 03 3.80E 03 3.82E 03 3.83E 03 3.85E 03 3.88E 03 3.95E 03 3.79E 03 3.78E 03 3.62E 03 1.21E 03 2.0 3.35E 03 3.36E 03 3.37E 03 3.38E 03 3.40E 03 3.41E 03 3.42E 03 3.43E 03 3.46E 03 3.50E 03 3.38E 03 3.37E 03 3.26E 03 1.09E 03 3.0 2.75E 03 2.76E 03 2.77E 03 2.78E 03 2.79E 03 2.79E 03 2.80E 03 2.81E 03 2.83E 03 2.86E 03 2.78E 03 2.77E 03 2.70E 03 8.40E 04 4.0 2.35E 03 2.36E 03 2.36E 03 2.37E 03 2.38E 03 2.39E 03 2.39E 03 2.40E 03 2.42E 03 2.43E 03 2.37E 03 2.37E 03 2.31E 03 6.69E 04 5.0 2.07E 03 2.08E 03 2.09E 03 2.09E 03 2.10E 03 2.10E 03 2.11E 03 2.12E 03 2.13E 03 2.14E 03 2.09E 03 2.09E 03 2.05E 03 5.54E 04 6.0 1.87E 03 1.88E 03 1.88E 03 1.89E 03 1.89E 03 1.90E 03 1.90E 03 1.91E 03 1.92E 03 1.93E 03 1.89E 03 1.88E 03 1.85E 03 4.69E 04 8.0 1.56E 03 1.57E 03 1.57E 03 1.58E 03 1.58E 03 1.59E 03 1.59E 03 1.60E 03 1.60E 03 1.61E 03 1.58E 03 1.58E 03 1.55E 03 3.42E 04 10.0 1.32E 03 1.33E 03 1.33E 03 1.34E 03 1.34E 03 1.34E 03 1.35E 03 1.35E 03 1.36E 03 1.36E 03 1.34E 03 1.33E 03 1.31E 03 2.52E 04

PAGE 87

87 Table A 5 Specific absorbed fractions (g 1 ) for active marrow targets in the lumbar vertebrae. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 70% IM TBV CBS HC (ICRP 70) or CBV 0.001 4.87E 03 5.41E 03 6.08E 03 6.95E 03 8.11E 03 9.73E 03 1.22E 02 1.62E 02 2.43E 02 4.87E 02 6.95E 03 2.11E 05 2.52E 06 1.76E 07 0.0015 4.87E 03 5.41E 03 6.08E 03 6.95E 03 8.11E 03 9.72E 03 1.22E 02 1.62E 02 2.43E 02 4.86E 02 6.95E 03 3.20E 05 3.81E 06 2.66E 07 0.002 4.87E 03 5.41E 03 6.08E 03 6.94E 03 8.10E 03 9.71E 03 1.21E 02 1.62E 02 2.43E 02 4.85E 02 6.94E 03 4.21E 05 5.02E 06 3.50E 07 0.003 4.87E 03 5.40E 03 6.07E 03 6.93E 03 8.08E 03 9.69E 03 1.21E 02 1.61E 02 2.42E 02 4.83E 02 6.93E 03 6.43E 05 7.66E 06 5.34E 07 0.004 4.87E 03 5.40E 03 6.07E 03 6.93E 03 8.07E 03 9.67E 03 1.21E 02 1.61E 02 2.41E 02 4.81E 02 6.93E 03 8.33E 05 9.95E 06 6.93E 07 0.005 4.86E 03 5.40E 03 6.06E 03 6.92E 03 8.05E 03 9.65E 03 1.20E 02 1.60E 02 2.40E 02 4.79E 02 6.92E 03 1.09E 04 1.30E 05 9.07E 07 0.006 4.86E 03 5.39E 03 6.06E 03 6.91E 03 8.04E 03 9.63E 03 1.20E 02 1.60E 02 2.39E 02 4.77E 02 6.91E 03 1.21E 04 1.45E 05 1.01E 06 0.008 4.86E 03 5.39E 03 6.04E 03 6.89E 03 8.01E 03 9.59E 03 1.19E 02 1.59E 02 2.38E 02 4.74E 02 6.89E 03 1.82E 04 2.16E 05 1.51E 06 0.010 4.86E 03 5.38E 03 6.03E 03 6.87E 03 7.98E 03 9.54E 03 1.19E 02 1.58E 02 2.36E 02 4.70E 02 6.87E 03 1.84E 04 2.22E 05 1.54E 06 0.015 4.86E 03 5.36E 03 5.98E 03 6.78E 03 7.85E 03 9.35E 03 1.16E 02 1.53E 02 2.28E 02 4.53E 02 6.78E 03 3.70E 04 4.37E 05 3.07E 06 0.020 4.85E 03 5.32E 03 5.91E 03 6.67E 03 7.68E 03 9.10E 03 1.12E 02 1.48E 02 2.19E 02 4.31E 02 6.67E 03 6.14E 04 7.31E 05 5.21E 06 0.030 4.83E 03 5.24E 03 5.75E 03 6.41E 03 7.28E 03 8.51E 03 1.03E 02 1.34E 02 1.95E 02 3.79E 02 6.41E 03 1.19E 03 1.45E 04 1.04E 05 0.040 4.81E 03 5.14E 03 5.56E 03 6.09E 03 6.81E 03 7.81E 03 9.31E 03 1.18E 02 1.68E 02 3.18E 02 6.09E 03 1.86E 03 2.37E 04 1.75E 05 0.050 4.78E 03 5.04E 03 5.37E 03 5.79E 03 6.34E 03 7.12E 03 8.29E 03 1.02E 02 1.41E 02 2.58E 02 5.79E 03 2.51E 03 3.37E 04 2.55E 05 0.060 4.75E 03 4.95E 03 5.19E 03 5.49E 03 5.90E 03 6.48E 03 7.33E 03 8.76E 03 1.16E 02 2.01E 02 5.49E 03 3.12E 03 4.47E 04 3.48E 05 0.080 4.69E 03 4.79E 03 4.92E 03 5.08E 03 5.29E 03 5.58E 03 6.02E 03 6.74E 03 8.17E 03 1.24E 02 5.08E 03 3.90E 03 6.86E 04 5.69E 05 0.10 4.63E 03 4.70E 03 4.78E 03 4.89E 03 5.02E 03 5.21E 03 5.49E 03 5.94E 03 6.84E 03 9.51E 03 4.89E 03 4.14E 03 9.29E 04 8.08E 05 0.15 4.45E 03 4.49E 03 4.54E 03 4.60E 03 4.68E 03 4.76E 03 4.89E 03 5.11E 03 5.54E 03 6.79E 03 4.60E 03 4.24E 03 1.59E 03 1.49E 04 0.20 4.29E 03 4.32E 03 4.36E 03 4.39E 03 4.44E 03 4.50E 03 4.60E 03 4.73E 03 5.01E 03 5.81E 03 4.39E 03 4.17E 03 2.17E 03 2.19E 04 0.30 4.07E 03 4.09E 03 4.11E 03 4.14E 03 4.17E 03 4.21E 03 4.26E 03 4.34E 03 4.49E 03 4.92E 03 4.14E 03 4.02E 03 2.90E 03 3.61E 04 0.40 3.95E 03 3.96E 03 3.98E 03 4.00E 03 4.03E 03 4.05E 03 4.09E 03 4.15E 03 4.25E 03 4.54E 03 4.00E 03 3.93E 03 3.19E 03 5.09E 04 0.50 3.86E 03 3.88E 03 3.89E 03 3.91E 03 3.93E 03 3.95E 03 3.98E 03 4.02E 03 4.11E 03 4.32E 03 3.91E 03 3.85E 03 3.31E 03 6.57E 04 0.60 3.79E 03 3.80E 03 3.82E 03 3.83E 03 3.85E 03 3.87E 03 3.90E 03 3.93E 03 4.00E 03 4.17E 03 3.83E 03 3.79E 03 3.35E 03 7.88E 04 0.80 3.67E 03 3.68E 03 3.69E 03 3.70E 03 3.72E 03 3.74E 03 3.76E 03 3.78E 03 3.83E 03 3.95E 03 3.70E 03 3.68E 03 3.35E 03 9.65E 04 1.0 3.55E 03 3.56E 03 3.58E 03 3.59E 03 3.60E 03 3.61E 03 3.64E 03 3.65E 03 3.69E 03 3.79E 03 3.59E 03 3.57E 03 3.31E 03 1.06E 03 1.5 3.29E 03 3.30E 03 3.31E 03 3.32E 03 3.33E 03 3.34E 03 3.36E 03 3.37E 03 3.40E 03 3.46E 03 3.32E 03 3.31E 03 3.14E 03 1.11E 03 2.0 3.05E 03 3.06E 03 3.07E 03 3.08E 03 3.09E 03 3.10E 03 3.11E 03 3.13E 03 3.16E 03 3.19E 03 3.08E 03 3.07E 03 2.95E 03 1.07E 03 3.0 2.66E 03 2.67E 03 2.68E 03 2.68E 03 2.69E 03 2.70E 03 2.71E 03 2.72E 03 2.74E 03 2.76E 03 2.68E 03 2.68E 03 2.61E 03 9.39E 04 4.0 2.36E 03 2.37E 03 2.38E 03 2.38E 03 2.39E 03 2.40E 03 2.41E 03 2.41E 03 2.43E 03 2.45E 03 2.38E 03 2.38E 03 2.33E 03 8.11E 04 5.0 2.13E 03 2.14E 03 2.15E 03 2.15E 03 2.16E 03 2.16E 03 2.17E 03 2.18E 03 2.19E 03 2.20E 03 2.15E 03 2.15E 03 2.11E 03 7.05E 04 6.0 1.95E 03 1.96E 03 1.96E 03 1.97E 03 1.98E 03 1.98E 03 1.99E 03 1.99E 03 2.00E 03 2.02E 03 1.97E 03 1.97E 03 1.94E 03 6.20E 04 8.0 1.68E 03 1.68E 03 1.69E 03 1.69E 03 1.70E 03 1.70E 03 1.71E 03 1.71E 03 1.72E 03 1.73E 03 1.69E 03 1.69E 03 1.67E 03 4.88E 04 10.0 1.46E 03 1.46E 03 1.47E 03 1.47E 03 1.48E 03 1.48E 03 1.49E 03 1.49E 03 1.50E 03 1.50E 03 1.47E 03 1.47E 03 1.46E 03 3.84E 04

PAGE 88

88 Table A 6 Specific absorbed fractions (g 1 ) for active marrow targets in the sternum (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10 % 70% (ICRP 70) IM TBV CBS HC or CBV 0.001 3.74E 02 4.16E 02 4.68E 02 5.35E 02 6.23E 02 7.48E 02 9.35E 02 1.25E 01 1.87E 01 3.75E 01 5.35E 02 1.65E 04 1.82E 05 1.09E 06 0.0015 3.74E 02 4.16E 02 4.68E 02 5.34E 02 6.23E 02 7.47E 02 9.34E 02 1.24E 01 1.86E 01 3.74E 01 5.34E 02 2.49E 04 2.76E 05 1.65E 06 0.002 3.74E 02 4.16E 02 4.67E 02 5.34E 02 6.22E 02 7.47E 02 9.33E 02 1.24E 01 1.86E 01 3.74E 01 5.34E 02 3.28E 04 3.63E 05 2.17E 06 0.003 3.74E 02 4.15E 02 4.67E 02 5.33E 02 6.21E 02 7.45E 02 9.31E 02 1.24E 01 1.85E 01 3.72E 01 5.33E 02 5.01E 04 5.55E 05 3.32E 06 0.004 3.74E 02 4.15E 02 4.67E 02 5.32E 02 6.20E 02 7.43E 02 9.28E 02 1.24E 01 1.85E 01 3.71E 01 5.32E 02 6.49E 04 7.20E 05 4.29E 06 0.005 3.74E 02 4.15E 02 4.66E 02 5.32E 02 6.19E 02 7.42E 02 9.26E 02 1.23E 01 1.84E 01 3.69E 01 5.32E 02 8.50E 04 9.40E 05 5.64E 06 0.006 3.74E 02 4.15E 02 4.66E 02 5.31E 02 6.18E 02 7.40E 02 9.23E 02 1.23E 01 1.84E 01 3.68E 01 5.31E 02 9.41E 04 1.05E 04 6.21E 06 0.008 3.74E 02 4.14E 02 4.65E 02 5.30E 02 6.16E 02 7.37E 02 9.18E 02 1.22E 01 1.82E 01 3.65E 01 5.30E 02 1.42E 03 1.57E 04 9.44E 06 0.010 3.74E 02 4.14E 02 4.64E 02 5.28E 02 6.14E 02 7.34E 02 9.14E 02 1.21E 01 1.81E 01 3.62E 01 5.28E 02 1.44E 03 1.60E 04 9.44E 06 0.015 3.74E 02 4.12E 02 4.60E 02 5.22E 02 6.04E 02 7.19E 02 8.92E 02 1.18E 01 1.75E 01 3.49E 01 5.22E 02 2.88E 03 3.17E 04 1.93E 05 0.020 3.73E 02 4.10E 02 4.55E 02 5.13E 02 5.91E 02 7.00E 02 8.63E 02 1.13E 01 1.68E 01 3.32E 01 5.13E 02 4.78E 03 5.28E 04 3.27E 05 0.030 3.72E 02 4.04E 02 4.43E 02 4.93E 02 5.60E 02 6.54E 02 7.95E 02 1.03E 01 1.50E 01 2.92E 01 4.93E 02 9.24E 03 1.04E 03 6.57E 05 0.040 3.71E 02 3.97E 02 4.29E 02 4.70E 02 5.24E 02 6.01E 02 7.16E 02 9.07E 02 1.29E 01 2.45E 01 4.70E 02 1.45E 02 1.70E 03 1.10E 04 0.050 3.70E 02 3.90E 02 4.15E 02 4.47E 02 4.89E 02 5.49E 02 6.39E 02 7.88E 02 1.08E 01 1.99E 01 4.47E 02 1.95E 02 2.42E 03 1.60E 04 0.060 3.68E 02 3.83E 02 4.02E 02 4.25E 02 4.56E 02 5.00E 02 5.66E 02 6.74E 02 8.91E 02 1.55E 01 4.25E 02 2.43E 02 3.20E 03 2.18E 04 0.080 3.65E 02 3.73E 02 3.83E 02 3.95E 02 4.11E 02 4.33E 02 4.67E 02 5.21E 02 6.29E 02 9.60E 02 3.95E 02 3.04E 02 4.89E 03 3.56E 04 0.10 3.62E 02 3.67E 02 3.74E 02 3.81E 02 3.92E 02 4.06E 02 4.28E 02 4.62E 02 5.30E 02 7.37E 02 3.81E 02 3.25E 02 6.56E 03 5.04E 04 0.15 3.53E 02 3.56E 02 3.59E 02 3.63E 02 3.69E 02 3.76E 02 3.87E 02 4.03E 02 4.36E 02 5.34E 02 3.63E 02 3.37E 02 1.11E 02 9.10E 04 0.20 3.44E 02 3.46E 02 3.49E 02 3.52E 02 3.56E 02 3.61E 02 3.68E 02 3.78E 02 3.99E 02 4.62E 02 3.52E 02 3.35E 02 1.50E 02 1.32E 03 0.30 3.30E 02 3.32E 02 3.34E 02 3.35E 02 3.38E 02 3.41E 02 3.45E 02 3.51E 02 3.62E 02 3.96E 02 3.35E 02 3.27E 02 2.04E 02 2.21E 03 0.40 3.19E 02 3.20E 02 3.22E 02 3.23E 02 3.25E 02 3.28E 02 3.31E 02 3.35E 02 3.42E 02 3.65E 02 3.23E 02 3.18E 02 2.33E 02 3.15E 03 0.50 3.10E 02 3.11E 02 3.13E 02 3.14E 02 3.15E 02 3.17E 02 3.20E 02 3.23E 02 3.29E 02 3.46E 02 3.14E 02 3.09E 02 2.47E 02 4.12E 03 0.60 3.02E 02 3.03E 02 3.04E 02 3.05E 02 3.06E 02 3.08E 02 3.10E 02 3.13E 02 3.17E 02 3.31E 02 3.05E 02 3.02E 02 2.53E 02 5.03E 03 0.80 2.86E 02 2.87E 02 2.88E 02 2.89E 02 2.90E 02 2.92E 02 2.93E 02 2.95E 02 2.99E 02 3.09E 02 2.89E 02 2.87E 02 2.55E 02 6.35E 03 1.0 2.72E 02 2.73E 02 2.74E 02 2.75E 02 2.76E 02 2.77E 02 2.78E 02 2.80E 02 2.82E 02 2.90E 02 2.75E 02 2.73E 02 2.50E 02 7.01E 03 1.5 2.39E 02 2.40E 02 2.41E 02 2.41E 02 2.42E 02 2.43E 02 2.44E 02 2.45E 02 2.47E 02 2.51E 02 2.41E 02 2.40E 02 2.27E 02 7.11E 03 2.0 2.09E 02 2.10E 02 2.11E 02 2.11E 02 2.12E 02 2.13E 02 2.14E 02 2.14E 02 2.16E 02 2.19E 02 2.11E 02 2.11E 02 2.02E 02 6.36E 03 3.0 1.62E 02 1.63E 02 1.63E 02 1.64E 02 1.64E 02 1.65E 02 1.66E 02 1.66E 02 1.67E 02 1.69E 02 1.64E 02 1.64E 02 1.60E 02 4.49E 03 4.0 1.30E 02 1.30E 02 1.31E 02 1.31E 02 1.32E 02 1.32E 02 1.33E 02 1.33E 02 1.34E 02 1.35E 02 1.31E 02 1.31E 02 1.29E 02 3.08E 03 5.0 1.07E 02 1.08E 02 1.08E 02 1.08E 02 1.09E 02 1.09E 02 1.10E 02 1.10E 02 1.10E 02 1.11E 02 1.08E 02 1.08E 02 1.07E 02 2.18E 03 6.0 9.14E 03 9.17E 03 9.20E 03 9.22E 03 9.25E 03 9.28E 03 9.31E 03 9.33E 03 9.37E 03 9.46E 03 9.22E 03 9.22E 03 9.10E 03 1.61E 03 8.0 6.99E 03 7.02E 03 7.04E 03 7.06E 03 7.08E 03 7.10E 03 7.13E 03 7.14E 03 7.17E 03 7.23E 03 7.06E 03 7.05E 03 6.99E 03 9.65E 04 10.0 5.65E 03 5.66E 03 5.68E 03 5.70E 03 5.72E 03 5.73E 03 5.75E 03 5.76E 03 5.78E 03 5.84E 03 5.70E 03 5.70E 03 5.65E 03 6.36E 04

PAGE 89

89 Table A 7 Specific absorbed fractions (g 1 ) for active marrow targets in the ribs (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 70% (ICRP 70) IM TBV CBS HC or CBV 0.001 6.08E 03 6.75E 03 7.60E 03 8.68E 03 1.01E 02 1.22E 02 1.52E 02 2.03E 02 3.04E 02 6.08E 02 8.68E 03 2.66E 05 3.24E 06 2.09E 07 0.0015 6.08E 03 6.75E 03 7.59E 03 8.68E 03 1.01E 02 1.21E 02 1.52E 02 2.02E 02 3.03E 02 6.07E 02 8.68E 03 4.03E 05 4.89E 06 3.16E 07 0.002 6.08E 03 6.75E 03 7.59E 03 8.67E 03 1.01E 02 1.21E 02 1.52E 02 2.02E 02 3.03E 02 6.05E 02 8.67E 03 5.30E 05 6.45E 06 4.16E 07 0.003 6.08E 03 6.75E 03 7.58E 03 8.66E 03 1.01E 02 1.21E 02 1.51E 02 2.01E 02 3.02E 02 6.03E 02 8.66E 03 8.10E 05 9.83E 06 6.36E 07 0.004 6.08E 03 6.74E 03 7.58E 03 8.65E 03 1.01E 02 1.21E 02 1.51E 02 2.01E 02 3.01E 02 6.01E 02 8.65E 03 1.05E 04 1.28E 05 8.24E 07 0.005 6.07E 03 6.74E 03 7.57E 03 8.64E 03 1.01E 02 1.20E 02 1.50E 02 2.00E 02 3.00E 02 5.98E 02 8.64E 03 1.37E 04 1.67E 05 1.08E 06 0.006 6.07E 03 6.74E 03 7.56E 03 8.62E 03 1.00E 02 1.20E 02 1.50E 02 2.00E 02 2.99E 02 5.96E 02 8.62E 03 1.52E 04 1.86E 05 1.19E 06 0.008 6.07E 03 6.73E 03 7.55E 03 8.60E 03 1.00E 02 1.20E 02 1.49E 02 1.98E 02 2.97E 02 5.91E 02 8.60E 03 2.30E 04 2.77E 05 1.80E 06 0.010 6.07E 03 6.72E 03 7.53E 03 8.58E 03 9.97E 03 1.19E 02 1.48E 02 1.97E 02 2.95E 02 5.87E 02 8.58E 03 2.32E 04 2.86E 05 1.82E 06 0.015 6.06E 03 6.69E 03 7.47E 03 8.47E 03 9.80E 03 1.17E 02 1.45E 02 1.92E 02 2.85E 02 5.65E 02 8.47E 03 4.67E 04 5.60E 05 3.66E 06 0.020 6.06E 03 6.64E 03 7.38E 03 8.33E 03 9.59E 03 1.14E 02 1.40E 02 1.84E 02 2.73E 02 5.38E 02 8.33E 03 7.74E 04 9.34E 05 6.16E 06 0.030 6.03E 03 6.54E 03 7.18E 03 8.00E 03 9.09E 03 1.06E 02 1.29E 02 1.67E 02 2.43E 02 4.72E 02 8.00E 03 1.49E 03 1.84E 04 1.25E 05 0.040 6.00E 03 6.42E 03 6.94E 03 7.60E 03 8.49E 03 9.73E 03 1.16E 02 1.47E 02 2.09E 02 3.95E 02 7.60E 03 2.34E 03 3.02E 04 2.08E 05 0.050 5.97E 03 6.29E 03 6.70E 03 7.22E 03 7.91E 03 8.88E 03 1.03E 02 1.28E 02 1.76E 02 3.20E 02 7.22E 03 3.15E 03 4.29E 04 3.03E 05 0.060 5.93E 03 6.17E 03 6.47E 03 6.85E 03 7.36E 03 8.07E 03 9.13E 03 1.09E 02 1.44E 02 2.50E 02 6.85E 03 3.90E 03 5.69E 04 4.14E 05 0.080 5.85E 03 5.98E 03 6.13E 03 6.33E 03 6.59E 03 6.96E 03 7.50E 03 8.39E 03 1.02E 02 1.54E 02 6.33E 03 4.87E 03 8.72E 04 6.79E 05 0.10 5.76E 03 5.85E 03 5.95E 03 6.08E 03 6.25E 03 6.48E 03 6.83E 03 7.39E 03 8.51E 03 1.18E 02 6.08E 03 5.17E 03 1.17E 03 9.66E 05 0.15 5.53E 03 5.58E 03 5.64E 03 5.70E 03 5.80E 03 5.91E 03 6.08E 03 6.34E 03 6.87E 03 8.38E 03 5.70E 03 5.28E 03 1.89E 03 1.79E 04 0.20 5.31E 03 5.35E 03 5.39E 03 5.43E 03 5.50E 03 5.57E 03 5.68E 03 5.85E 03 6.19E 03 7.13E 03 5.43E 03 5.17E 03 2.45E 03 2.64E 04 0.30 4.93E 03 4.95E 03 4.97E 03 5.00E 03 5.04E 03 5.09E 03 5.15E 03 5.24E 03 5.42E 03 5.90E 03 5.00E 03 4.87E 03 3.17E 03 4.27E 04 0.40 4.61E 03 4.63E 03 4.65E 03 4.67E 03 4.70E 03 4.73E 03 4.78E 03 4.84E 03 4.96E 03 5.27E 03 4.67E 03 4.59E 03 3.50E 03 5.63E 04 0.50 4.34E 03 4.35E 03 4.37E 03 4.39E 03 4.41E 03 4.44E 03 4.47E 03 4.51E 03 4.60E 03 4.82E 03 4.39E 03 4.33E 03 3.61E 03 6.72E 04 0.60 4.09E 03 4.10E 03 4.12E 03 4.13E 03 4.15E 03 4.17E 03 4.20E 03 4.24E 03 4.31E 03 4.48E 03 4.13E 03 4.09E 03 3.58E 03 7.50E 04 0.80 3.63E 03 3.64E 03 3.66E 03 3.67E 03 3.69E 03 3.70E 03 3.72E 03 3.75E 03 3.79E 03 3.90E 03 3.67E 03 3.64E 03 3.33E 03 8.13E 04 1.0 3.22E 03 3.22E 03 3.24E 03 3.25E 03 3.26E 03 3.27E 03 3.29E 03 3.31E 03 3.34E 03 3.42E 03 3.25E 03 3.23E 03 3.02E 03 7.83E 04 1.5 2.41E 03 2.42E 03 2.43E 03 2.44E 03 2.45E 03 2.45E 03 2.47E 03 2.48E 03 2.50E 03 2.54E 03 2.44E 03 2.43E 03 2.32E 03 5.67E 04 2.0 1.89E 03 1.90E 03 1.91E 03 1.91E 03 1.92E 03 1.92E 03 1.93E 03 1.94E 03 1.95E 03 1.98E 03 1.91E 03 1.91E 03 1.85E 03 3.82E 04 3.0 1.29E 03 1.30E 03 1.30E 03 1.31E 03 1.31E 03 1.31E 03 1.32E 03 1.32E 03 1.33E 03 1.34E 03 1.31E 03 1.30E 03 1.28E 03 1.92E 04 4.0 9.77E 04 9.79E 04 9.82E 04 9.85E 04 9.88E 04 9.91E 04 9.95E 04 9.98E 04 1.00E 03 1.01E 03 9.85E 04 9.84E 04 9.67E 04 1.13E 04 5.0 7.92E 04 7.94E 04 7.96E 04 7.98E 04 8.01E 04 8.03E 04 8.07E 04 8.09E 04 8.13E 04 8.19E 04 7.98E 04 7.98E 04 7.86E 04 7.53E 05 6.0 6.74E 04 6.76E 04 6.78E 04 6.80E 04 6.83E 04 6.84E 04 6.87E 04 6.89E 04 6.92E 04 6.97E 04 6.80E 04 6.80E 04 6.71E 04 5.54E 05 8.0 5.30E 04 5.31E 04 5.33E 04 5.34E 04 5.36E 04 5.38E 04 5.40E 04 5.41E 04 5.43E 04 5.46E 04 5.34E 04 5.34E 04 5.29E 04 3.50E 05 10.0 4.36E 04 4.37E 04 4.38E 04 4.39E 04 4.41E 04 4.42E 04 4.44E 04 4.45E 04 4.47E 04 4.49E 04 4.39E 04 4.39E 04 4.36E 04 2.42E 05

PAGE 90

90 Table A 8 Specific absorbed fractions (g 1 ) for active marrow targets in the scapula e (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 38% (ICRP 70) IM TBV CBS HC or CBV 0.001 5.52E 03 6.14E 03 6.91E 03 7.89E 03 9.20E 03 1.10E 02 1.38E 02 1.84E 02 2.77E 02 5.53E 02 1.45E 02 2.42E 05 4.93E 06 1.19E 07 0.0015 5.52E 03 6.14E 03 6.90E 03 7.89E 03 9.19E 03 1.10E 02 1.38E 02 1.84E 02 2.77E 02 5.52E 02 1.45E 02 3.66E 05 7.45E 06 1.80E 07 0.002 5.52E 03 6.14E 03 6.90E 03 7.88E 03 9.19E 03 1.10E 02 1.38E 02 1.84E 02 2.76E 02 5.51E 02 1.45E 02 4.82E 05 9.82E 06 2.37E 07 0.003 5.52E 03 6.13E 03 6.90E 03 7.87E 03 9.17E 03 1.10E 02 1.37E 02 1.83E 02 2.75E 02 5.49E 02 1.45E 02 7.37E 05 1.50E 05 3.62E 07 0.004 5.52E 03 6.13E 03 6.89E 03 7.86E 03 9.15E 03 1.10E 02 1.37E 02 1.83E 02 2.74E 02 5.47E 02 1.44E 02 9.55E 05 1.94E 05 4.70E 07 0.005 5.52E 03 6.13E 03 6.88E 03 7.85E 03 9.14E 03 1.10E 02 1.37E 02 1.82E 02 2.73E 02 5.44E 02 1.44E 02 1.25E 04 2.54E 05 6.13E 07 0.006 5.52E 03 6.12E 03 6.88E 03 7.84E 03 9.12E 03 1.09E 02 1.36E 02 1.82E 02 2.72E 02 5.42E 02 1.43E 02 1.38E 04 2.83E 05 6.84E 07 0.008 5.52E 03 6.12E 03 6.86E 03 7.82E 03 9.09E 03 1.09E 02 1.36E 02 1.81E 02 2.70E 02 5.38E 02 1.43E 02 2.09E 04 4.22E 05 1.02E 06 0.010 5.52E 03 6.11E 03 6.85E 03 7.80E 03 9.06E 03 1.08E 02 1.35E 02 1.79E 02 2.68E 02 5.34E 02 1.42E 02 2.11E 04 4.35E 05 1.06E 06 0.015 5.51E 03 6.08E 03 6.79E 03 7.70E 03 8.91E 03 1.06E 02 1.32E 02 1.74E 02 2.60E 02 5.15E 02 1.38E 02 4.25E 04 8.54E 05 2.05E 06 0.020 5.50E 03 6.04E 03 6.72E 03 7.57E 03 8.72E 03 1.03E 02 1.28E 02 1.68E 02 2.49E 02 4.89E 02 1.34E 02 7.05E 04 1.42E 04 3.44E 06 0.030 5.49E 03 5.96E 03 6.54E 03 7.28E 03 8.26E 03 9.66E 03 1.17E 02 1.52E 02 2.22E 02 4.30E 02 1.23E 02 1.36E 03 2.82E 04 6.94E 06 0.040 5.47E 03 5.85E 03 6.32E 03 6.93E 03 7.73E 03 8.87E 03 1.06E 02 1.34E 02 1.91E 02 3.60E 02 1.10E 02 2.13E 03 4.58E 04 1.16E 05 0.050 5.45E 03 5.74E 03 6.11E 03 6.58E 03 7.21E 03 8.10E 03 9.43E 03 1.16E 02 1.61E 02 2.93E 02 9.77E 03 2.88E 03 6.49E 04 1.71E 05 0.060 5.42E 03 5.64E 03 5.91E 03 6.26E 03 6.72E 03 7.37E 03 8.34E 03 9.96E 03 1.32E 02 2.28E 02 8.59E 03 3.58E 03 8.60E 04 2.32E 05 0.080 5.36E 03 5.48E 03 5.63E 03 5.80E 03 6.04E 03 6.37E 03 6.87E 03 7.68E 03 9.32E 03 1.41E 02 6.99E 03 4.50E 03 1.32E 03 3.79E 05 0.10 5.31E 03 5.39E 03 5.48E 03 5.60E 03 5.75E 03 5.96E 03 6.28E 03 6.80E 03 7.83E 03 1.08E 02 6.36E 03 4.80E 03 1.75E 03 5.38E 05 0.15 5.16E 03 5.21E 03 5.26E 03 5.32E 03 5.40E 03 5.50E 03 5.66E 03 5.91E 03 6.41E 03 7.80E 03 5.70E 03 4.97E 03 2.80E 03 9.91E 05 0.20 5.04E 03 5.07E 03 5.11E 03 5.16E 03 5.21E 03 5.28E 03 5.39E 03 5.55E 03 5.87E 03 6.75E 03 5.41E 03 4.95E 03 3.51E 03 1.46E 04 0.30 4.87E 03 4.90E 03 4.92E 03 4.95E 03 4.99E 03 5.03E 03 5.10E 03 5.18E 03 5.36E 03 5.83E 03 5.10E 03 4.86E 03 4.15E 03 2.34E 04 0.40 4.74E 03 4.76E 03 4.79E 03 4.81E 03 4.83E 03 4.87E 03 4.92E 03 4.98E 03 5.10E 03 5.41E 03 4.92E 03 4.76E 03 4.31E 03 3.21E 04 0.50 4.62E 03 4.64E 03 4.66E 03 4.68E 03 4.70E 03 4.73E 03 4.77E 03 4.82E 03 4.91E 03 5.13E 03 4.77E 03 4.65E 03 4.34E 03 4.07E 04 0.60 4.50E 03 4.52E 03 4.54E 03 4.55E 03 4.57E 03 4.60E 03 4.63E 03 4.67E 03 4.76E 03 4.93E 03 4.63E 03 4.55E 03 4.30E 03 4.92E 04 0.80 4.27E 03 4.29E 03 4.31E 03 4.32E 03 4.34E 03 4.35E 03 4.38E 03 4.42E 03 4.48E 03 4.60E 03 4.38E 03 4.33E 03 4.17E 03 6.40E 04 1.0 4.06E 03 4.07E 03 4.09E 03 4.10E 03 4.11E 03 4.13E 03 4.16E 03 4.18E 03 4.23E 03 4.32E 03 4.16E 03 4.11E 03 4.00E 03 7.43E 04 1.5 3.57E 03 3.59E 03 3.60E 03 3.61E 03 3.62E 03 3.64E 03 3.66E 03 3.68E 03 3.71E 03 3.76E 03 3.66E 03 3.63E 03 3.57E 03 8.14E 04 2.0 3.17E 03 3.18E 03 3.19E 03 3.20E 03 3.21E 03 3.22E 03 3.24E 03 3.25E 03 3.28E 03 3.31E 03 3.23E 03 3.22E 03 3.18E 03 7.51E 04 3.0 2.53E 03 2.54E 03 2.55E 03 2.55E 03 2.56E 03 2.57E 03 2.58E 03 2.59E 03 2.61E 03 2.63E 03 2.58E 03 2.57E 03 2.55E 03 5.68E 04 4.0 2.07E 03 2.08E 03 2.09E 03 2.09E 03 2.10E 03 2.11E 03 2.12E 03 2.13E 03 2.14E 03 2.15E 03 2.12E 03 2.11E 03 2.10E 03 4.19E 04 5.0 1.75E 03 1.76E 03 1.76E 03 1.77E 03 1.77E 03 1.78E 03 1.79E 03 1.79E 03 1.80E 03 1.81E 03 1.79E 03 1.78E 03 1.77E 03 3.17E 04 6.0 1.51E 03 1.52E 03 1.52E 03 1.53E 03 1.53E 03 1.54E 03 1.55E 03 1.55E 03 1.56E 03 1.57E 03 1.55E 03 1.54E 03 1.54E 03 2.48E 04 8.0 1.20E 03 1.21E 03 1.21E 03 1.22E 03 1.22E 03 1.22E 03 1.23E 03 1.23E 03 1.24E 03 1.25E 03 1.23E 03 1.23E 03 1.22E 03 1.65E 04 10.0 1.01E 03 1.01E 03 1.01E 03 1.02E 03 1.02E 03 1.02E 03 1.03E 03 1.03E 03 1.04E 03 1.04E 03 1.03E 03 1.03E 03 1.02E 03 1.19E 04

PAGE 91

91 Table A 9 Specific absorbed fractions (g 1 ) for active marrow targets in the clavicles. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 33% (ICRP 70) IM TBV CBS HC or CBV 0.001 3.71E 02 4.12E 02 4.63E 02 5.29E 02 6.18E 02 7.41E 02 9.26E 02 1.23E 01 1.85E 01 3.70E 01 1.12E 01 1.63E 04 1.94E 05 5.92E 07 0.0015 3.71E 02 4.12E 02 4.63E 02 5.29E 02 6.17E 02 7.40E 02 9.25E 02 1.23E 01 1.85E 01 3.69E 01 1.12E 01 2.46E 04 2.94E 05 8.94E 07 0.002 3.71E 02 4.12E 02 4.63E 02 5.29E 02 6.17E 02 7.40E 02 9.24E 02 1.23E 01 1.85E 01 3.69E 01 1.12E 01 3.24E 04 3.87E 05 1.18E 06 0.003 3.71E 02 4.11E 02 4.62E 02 5.28E 02 6.15E 02 7.38E 02 9.22E 02 1.23E 01 1.84E 01 3.67E 01 1.12E 01 4.95E 04 5.91E 05 1.80E 06 0.004 3.70E 02 4.11E 02 4.62E 02 5.27E 02 6.14E 02 7.36E 02 9.19E 02 1.22E 01 1.83E 01 3.66E 01 1.11E 01 6.42E 04 7.67E 05 2.33E 06 0.005 3.70E 02 4.11E 02 4.62E 02 5.27E 02 6.13E 02 7.35E 02 9.17E 02 1.22E 01 1.83E 01 3.64E 01 1.11E 01 8.41E 04 1.00E 04 3.05E 06 0.006 3.70E 02 4.11E 02 4.61E 02 5.26E 02 6.12E 02 7.33E 02 9.14E 02 1.22E 01 1.82E 01 3.63E 01 1.11E 01 9.30E 04 1.11E 04 3.38E 06 0.008 3.70E 02 4.10E 02 4.60E 02 5.24E 02 6.10E 02 7.30E 02 9.10E 02 1.21E 01 1.81E 01 3.60E 01 1.10E 01 1.40E 03 1.67E 04 5.09E 06 0.010 3.70E 02 4.10E 02 4.59E 02 5.23E 02 6.08E 02 7.27E 02 9.05E 02 1.20E 01 1.80E 01 3.57E 01 1.09E 01 1.42E 03 1.71E 04 5.18E 06 0.015 3.70E 02 4.08E 02 4.56E 02 5.17E 02 5.98E 02 7.12E 02 8.83E 02 1.17E 01 1.74E 01 3.44E 01 1.06E 01 2.85E 03 3.38E 04 1.03E 05 0.020 3.70E 02 4.06E 02 4.50E 02 5.08E 02 5.85E 02 6.93E 02 8.55E 02 1.12E 01 1.66E 01 3.28E 01 1.03E 01 4.74E 03 5.61E 04 1.73E 05 0.030 3.69E 02 4.00E 02 4.39E 02 4.88E 02 5.55E 02 6.48E 02 7.88E 02 1.02E 01 1.49E 01 2.88E 01 9.36E 02 9.15E 03 1.11E 03 3.48E 05 0.040 3.67E 02 3.93E 02 4.24E 02 4.65E 02 5.20E 02 5.95E 02 7.09E 02 8.99E 02 1.28E 01 2.41E 01 8.30E 02 1.43E 02 1.82E 03 5.85E 05 0.050 3.66E 02 3.86E 02 4.11E 02 4.42E 02 4.85E 02 5.44E 02 6.33E 02 7.81E 02 1.08E 01 1.96E 01 7.27E 02 1.94E 02 2.58E 03 8.46E 05 0.060 3.64E 02 3.79E 02 3.97E 02 4.21E 02 4.52E 02 4.95E 02 5.60E 02 6.68E 02 8.84E 02 1.53E 01 6.29E 02 2.41E 02 3.42E 03 1.15E 04 0.080 3.61E 02 3.69E 02 3.79E 02 3.91E 02 4.07E 02 4.29E 02 4.62E 02 5.16E 02 6.25E 02 9.47E 02 4.97E 02 3.03E 02 5.25E 03 1.85E 04 0.10 3.58E 02 3.63E 02 3.69E 02 3.77E 02 3.88E 02 4.02E 02 4.23E 02 4.57E 02 5.26E 02 7.27E 02 4.45E 02 3.24E 02 7.07E 03 2.60E 04 0.15 3.48E 02 3.51E 02 3.55E 02 3.59E 02 3.65E 02 3.72E 02 3.82E 02 3.98E 02 4.31E 02 5.25E 02 3.93E 02 3.36E 02 1.19E 02 4.59E 04 0.20 3.40E 02 3.42E 02 3.45E 02 3.48E 02 3.52E 02 3.56E 02 3.63E 02 3.74E 02 3.95E 02 4.54E 02 3.70E 02 3.35E 02 1.61E 02 6.53E 04 0.30 3.26E 02 3.28E 02 3.30E 02 3.31E 02 3.34E 02 3.37E 02 3.41E 02 3.47E 02 3.58E 02 3.90E 02 3.45E 02 3.26E 02 2.16E 02 1.08E 03 0.40 3.16E 02 3.17E 02 3.18E 02 3.20E 02 3.22E 02 3.24E 02 3.27E 02 3.31E 02 3.39E 02 3.60E 02 3.30E 02 3.17E 02 2.41E 02 1.54E 03 0.50 3.06E 02 3.07E 02 3.09E 02 3.10E 02 3.12E 02 3.13E 02 3.16E 02 3.19E 02 3.25E 02 3.40E 02 3.18E 02 3.09E 02 2.52E 02 2.01E 03 0.60 2.98E 02 2.99E 02 3.00E 02 3.01E 02 3.03E 02 3.04E 02 3.06E 02 3.09E 02 3.14E 02 3.26E 02 3.08E 02 3.01E 02 2.56E 02 2.47E 03 0.80 2.82E 02 2.83E 02 2.84E 02 2.85E 02 2.86E 02 2.87E 02 2.89E 02 2.91E 02 2.94E 02 3.03E 02 2.90E 02 2.86E 02 2.54E 02 3.33E 03 1.0 2.67E 02 2.67E 02 2.68E 02 2.69E 02 2.70E 02 2.71E 02 2.73E 02 2.74E 02 2.77E 02 2.83E 02 2.74E 02 2.71E 02 2.47E 02 4.03E 03 1.5 2.32E 02 2.32E 02 2.33E 02 2.34E 02 2.35E 02 2.35E 02 2.36E 02 2.37E 02 2.39E 02 2.43E 02 2.37E 02 2.36E 02 2.21E 02 4.77E 03 2.0 2.00E 02 2.01E 02 2.01E 02 2.02E 02 2.03E 02 2.03E 02 2.04E 02 2.05E 02 2.06E 02 2.09E 02 2.05E 02 2.04E 02 1.94E 02 4.56E 03 3.0 1.49E 02 1.50E 02 1.50E 02 1.51E 02 1.51E 02 1.52E 02 1.52E 02 1.53E 02 1.54E 02 1.55E 02 1.53E 02 1.52E 02 1.47E 02 3.28E 03 4.0 1.15E 02 1.15E 02 1.16E 02 1.16E 02 1.17E 02 1.17E 02 1.17E 02 1.18E 02 1.18E 02 1.19E 02 1.18E 02 1.17E 02 1.14E 02 2.16E 03 5.0 9.20E 03 9.22E 03 9.26E 03 9.28E 03 9.31E 03 9.34E 03 9.38E 03 9.40E 03 9.45E 03 9.50E 03 9.40E 03 9.38E 03 9.21E 03 1.44E 03 6.0 7.63E 03 7.65E 03 7.68E 03 7.70E 03 7.72E 03 7.74E 03 7.78E 03 7.79E 03 7.83E 03 7.88E 03 7.79E 03 7.78E 03 7.67E 03 1.00E 03 8.0 5.69E 03 5.70E 03 5.72E 03 5.74E 03 5.76E 03 5.78E 03 5.80E 03 5.81E 03 5.83E 03 5.87E 03 5.81E 03 5.80E 03 5.74E 03 5.61E 04 10.0 4.55E 03 4.56E 03 4.57E 03 4.58E 03 4.60E 03 4.61E 03 4.63E 03 4.64E 03 4.66E 03 4.68E 03 4.64E 03 4.64E 03 4.59E 03 3.58E 04

PAGE 92

92 Table A 10 Specific absorbed fractions (g 1 ) for active marrow targets in the os coxae. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 48% (ICRP 70) IM TBV CBS HC or CBV 0.001 2.08E 03 2.31E 03 2.60E 03 2.97E 03 3.47E 03 4.16E 03 5.20E 03 6.93E 03 1.04E 02 2.09E 02 4.34E 03 9.20E 06 1.50E 06 4.25E 08 0.0015 2.08E 03 2.31E 03 2.60E 03 2.97E 03 3.46E 03 4.15E 03 5.19E 03 6.92E 03 1.04E 02 2.08E 02 4.33E 03 1.39E 05 2.26E 06 6.43E 08 0.002 2.08E 03 2.31E 03 2.60E 03 2.97E 03 3.46E 03 4.15E 03 5.18E 03 6.91E 03 1.04E 02 2.08E 02 4.33E 03 1.83E 05 2.98E 06 8.47E 08 0.003 2.08E 03 2.31E 03 2.59E 03 2.96E 03 3.46E 03 4.14E 03 5.17E 03 6.89E 03 1.03E 02 2.07E 02 4.32E 03 2.80E 05 4.54E 06 1.29E 07 0.004 2.08E 03 2.31E 03 2.59E 03 2.96E 03 3.45E 03 4.13E 03 5.16E 03 6.87E 03 1.03E 02 2.06E 02 4.31E 03 3.62E 05 5.90E 06 1.68E 07 0.005 2.08E 03 2.31E 03 2.59E 03 2.95E 03 3.44E 03 4.12E 03 5.14E 03 6.85E 03 1.03E 02 2.05E 02 4.30E 03 4.75E 05 7.70E 06 2.19E 07 0.006 2.08E 03 2.30E 03 2.59E 03 2.95E 03 3.44E 03 4.11E 03 5.13E 03 6.83E 03 1.02E 02 2.05E 02 4.29E 03 5.26E 05 8.57E 06 2.43E 07 0.008 2.08E 03 2.30E 03 2.58E 03 2.94E 03 3.43E 03 4.10E 03 5.10E 03 6.79E 03 1.02E 02 2.03E 02 4.27E 03 7.93E 05 1.28E 05 3.66E 07 0.010 2.08E 03 2.30E 03 2.58E 03 2.94E 03 3.41E 03 4.08E 03 5.08E 03 6.75E 03 1.01E 02 2.02E 02 4.25E 03 8.03E 05 1.32E 05 3.73E 07 0.015 2.08E 03 2.29E 03 2.56E 03 2.90E 03 3.36E 03 4.00E 03 4.96E 03 6.56E 03 9.78E 03 1.94E 02 4.16E 03 1.61E 04 2.59E 05 7.41E 07 0.020 2.08E 03 2.28E 03 2.53E 03 2.85E 03 3.29E 03 3.89E 03 4.80E 03 6.32E 03 9.36E 03 1.85E 02 4.05E 03 2.67E 04 4.33E 05 1.25E 06 0.030 2.07E 03 2.25E 03 2.46E 03 2.74E 03 3.12E 03 3.64E 03 4.42E 03 5.74E 03 8.36E 03 1.62E 02 3.78E 03 5.17E 04 8.59E 05 2.54E 06 0.040 2.07E 03 2.21E 03 2.39E 03 2.62E 03 2.92E 03 3.35E 03 3.99E 03 5.06E 03 7.20E 03 1.36E 02 3.46E 03 8.09E 04 1.40E 04 4.27E 06 0.050 2.06E 03 2.17E 03 2.31E 03 2.49E 03 2.73E 03 3.06E 03 3.56E 03 4.39E 03 6.06E 03 1.11E 02 3.15E 03 1.09E 03 2.00E 04 6.26E 06 0.060 2.05E 03 2.14E 03 2.24E 03 2.37E 03 2.55E 03 2.79E 03 3.15E 03 3.76E 03 4.99E 03 8.65E 03 2.85E 03 1.36E 03 2.64E 04 8.56E 06 0.080 2.04E 03 2.08E 03 2.14E 03 2.21E 03 2.30E 03 2.42E 03 2.61E 03 2.91E 03 3.53E 03 5.36E 03 2.45E 03 1.71E 03 4.06E 04 1.41E 05 0.10 2.03E 03 2.06E 03 2.09E 03 2.14E 03 2.20E 03 2.28E 03 2.40E 03 2.59E 03 2.98E 03 4.13E 03 2.30E 03 1.83E 03 5.48E 04 2.02E 05 0.15 1.99E 03 2.01E 03 2.03E 03 2.05E 03 2.08E 03 2.12E 03 2.18E 03 2.27E 03 2.46E 03 3.01E 03 2.13E 03 1.92E 03 9.11E 04 3.79E 05 0.20 1.96E 03 1.97E 03 1.98E 03 2.00E 03 2.03E 03 2.05E 03 2.09E 03 2.15E 03 2.28E 03 2.62E 03 2.06E 03 1.92E 03 1.19E 03 5.67E 05 0.30 1.91E 03 1.92E 03 1.93E 03 1.94E 03 1.96E 03 1.97E 03 2.00E 03 2.03E 03 2.10E 03 2.29E 03 1.98E 03 1.91E 03 1.49E 03 9.49E 05 0.40 1.88E 03 1.89E 03 1.90E 03 1.91E 03 1.92E 03 1.93E 03 1.95E 03 1.97E 03 2.02E 03 2.15E 03 1.94E 03 1.89E 03 1.60E 03 1.32E 04 0.50 1.86E 03 1.86E 03 1.87E 03 1.88E 03 1.89E 03 1.90E 03 1.91E 03 1.93E 03 1.97E 03 2.07E 03 1.90E 03 1.87E 03 1.66E 03 1.69E 04 0.60 1.83E 03 1.84E 03 1.85E 03 1.85E 03 1.86E 03 1.87E 03 1.88E 03 1.90E 03 1.93E 03 2.01E 03 1.88E 03 1.85E 03 1.68E 03 2.07E 04 0.80 1.79E 03 1.79E 03 1.80E 03 1.80E 03 1.81E 03 1.82E 03 1.83E 03 1.84E 03 1.87E 03 1.92E 03 1.82E 03 1.80E 03 1.69E 03 2.81E 04 1.0 1.74E 03 1.74E 03 1.75E 03 1.76E 03 1.76E 03 1.77E 03 1.78E 03 1.79E 03 1.81E 03 1.86E 03 1.77E 03 1.76E 03 1.68E 03 3.44E 04 1.5 1.62E 03 1.63E 03 1.64E 03 1.64E 03 1.65E 03 1.65E 03 1.66E 03 1.67E 03 1.69E 03 1.71E 03 1.66E 03 1.65E 03 1.60E 03 4.32E 04 2.0 1.52E 03 1.52E 03 1.53E 03 1.53E 03 1.54E 03 1.54E 03 1.55E 03 1.56E 03 1.57E 03 1.59E 03 1.55E 03 1.54E 03 1.51E 03 4.52E 04 3.0 1.32E 03 1.33E 03 1.33E 03 1.34E 03 1.34E 03 1.35E 03 1.35E 03 1.36E 03 1.37E 03 1.38E 03 1.35E 03 1.35E 03 1.33E 03 4.18E 04 4.0 1.16E 03 1.16E 03 1.17E 03 1.17E 03 1.18E 03 1.18E 03 1.18E 03 1.19E 03 1.20E 03 1.21E 03 1.18E 03 1.18E 03 1.17E 03 3.57E 04 5.0 1.02E 03 1.02E 03 1.03E 03 1.03E 03 1.04E 03 1.04E 03 1.04E 03 1.05E 03 1.05E 03 1.06E 03 1.04E 03 1.04E 03 1.03E 03 2.98E 04 6.0 9.08E 04 9.11E 04 9.14E 04 9.17E 04 9.20E 04 9.23E 04 9.26E 04 9.29E 04 9.36E 04 9.43E 04 9.24E 04 9.23E 04 9.17E 04 2.47E 04 8.0 7.37E 04 7.39E 04 7.42E 04 7.44E 04 7.47E 04 7.49E 04 7.52E 04 7.54E 04 7.59E 04 7.64E 04 7.50E 04 7.50E 04 7.46E 04 1.73E 04 10.0 6.19E 04 6.21E 04 6.23E 04 6.25E 04 6.27E 04 6.29E 04 6.31E 04 6.33E 04 6.37E 04 6.41E 04 6.30E 04 6.29E 04 6.27E 04 1.26E 04

PAGE 93

93 Table A 11 Specific absorbed fractions (g 1 ) for active marrow targets in the sacrum. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 48% (ICRP 70) IM TBV CBS HC or CBV 0.001 8.00E 03 8.88E 03 9.99E 03 1.14E 02 1.33E 02 1.60E 02 2.00E 02 2.67E 02 4.00E 02 7.98E 02 1.67E 02 3.45E 05 4.09E 06 1.56E 07 0.0015 8.00E 03 8.88E 03 9.99E 03 1.14E 02 1.33E 02 1.60E 02 2.00E 02 2.66E 02 4.00E 02 7.97E 02 1.66E 02 5.22E 05 6.18E 06 2.36E 07 0.002 7.99E 03 8.88E 03 9.98E 03 1.14E 02 1.33E 02 1.60E 02 1.99E 02 2.66E 02 3.99E 02 7.95E 02 1.66E 02 6.88E 05 8.14E 06 3.11E 07 0.003 7.99E 03 8.87E 03 9.97E 03 1.14E 02 1.33E 02 1.59E 02 1.99E 02 2.65E 02 3.98E 02 7.92E 02 1.66E 02 1.05E 04 1.24E 05 4.74E 07 0.004 7.99E 03 8.87E 03 9.96E 03 1.14E 02 1.33E 02 1.59E 02 1.98E 02 2.64E 02 3.96E 02 7.89E 02 1.65E 02 1.36E 04 1.61E 05 6.15E 07 0.005 7.99E 03 8.86E 03 9.95E 03 1.14E 02 1.32E 02 1.58E 02 1.98E 02 2.63E 02 3.95E 02 7.86E 02 1.65E 02 1.78E 04 2.10E 05 8.03E 07 0.006 7.99E 03 8.86E 03 9.94E 03 1.13E 02 1.32E 02 1.58E 02 1.97E 02 2.63E 02 3.94E 02 7.83E 02 1.65E 02 1.97E 04 2.34E 05 8.94E 07 0.008 7.99E 03 8.85E 03 9.92E 03 1.13E 02 1.32E 02 1.57E 02 1.96E 02 2.61E 02 3.91E 02 7.77E 02 1.64E 02 2.98E 04 3.50E 05 1.34E 06 0.010 7.99E 03 8.84E 03 9.90E 03 1.13E 02 1.31E 02 1.57E 02 1.95E 02 2.59E 02 3.88E 02 7.71E 02 1.63E 02 3.02E 04 3.60E 05 1.37E 06 0.015 7.97E 03 8.79E 03 9.82E 03 1.11E 02 1.29E 02 1.54E 02 1.90E 02 2.52E 02 3.76E 02 7.43E 02 1.60E 02 6.05E 04 7.09E 05 2.70E 06 0.020 7.96E 03 8.73E 03 9.70E 03 1.09E 02 1.26E 02 1.49E 02 1.84E 02 2.43E 02 3.60E 02 7.07E 02 1.55E 02 1.00E 03 1.18E 04 4.59E 06 0.030 7.92E 03 8.59E 03 9.43E 03 1.05E 02 1.19E 02 1.40E 02 1.70E 02 2.20E 02 3.21E 02 6.22E 02 1.45E 02 1.94E 03 2.34E 04 9.31E 06 0.040 7.88E 03 8.43E 03 9.11E 03 9.99E 03 1.12E 02 1.28E 02 1.53E 02 1.94E 02 2.76E 02 5.21E 02 1.32E 02 3.04E 03 3.83E 04 1.55E 05 0.050 7.83E 03 8.26E 03 8.79E 03 9.48E 03 1.04E 02 1.17E 02 1.36E 02 1.68E 02 2.32E 02 4.23E 02 1.20E 02 4.10E 03 5.45E 04 2.26E 05 0.060 7.77E 03 8.09E 03 8.48E 03 8.99E 03 9.66E 03 1.06E 02 1.20E 02 1.44E 02 1.91E 02 3.30E 02 1.08E 02 5.09E 03 7.22E 04 3.10E 05 0.080 7.65E 03 7.82E 03 8.03E 03 8.29E 03 8.64E 03 9.12E 03 9.83E 03 1.10E 02 1.34E 02 2.04E 02 9.23E 03 6.37E 03 1.11E 03 5.04E 05 0.10 7.53E 03 7.64E 03 7.78E 03 7.95E 03 8.18E 03 8.48E 03 8.94E 03 9.69E 03 1.12E 02 1.55E 02 8.56E 03 6.77E 03 1.50E 03 7.15E 05 0.15 7.19E 03 7.25E 03 7.33E 03 7.42E 03 7.54E 03 7.69E 03 7.91E 03 8.27E 03 8.99E 03 1.10E 02 7.72E 03 6.88E 03 2.58E 03 1.30E 04 0.20 6.87E 03 6.92E 03 6.98E 03 7.04E 03 7.12E 03 7.21E 03 7.36E 03 7.60E 03 8.07E 03 9.35E 03 7.24E 03 6.71E 03 3.54E 03 1.89E 04 0.30 6.45E 03 6.48E 03 6.52E 03 6.56E 03 6.61E 03 6.67E 03 6.75E 03 6.88E 03 7.14E 03 7.82E 03 6.68E 03 6.40E 03 4.72E 03 3.06E 04 0.40 6.23E 03 6.26E 03 6.28E 03 6.31E 03 6.35E 03 6.40E 03 6.46E 03 6.55E 03 6.73E 03 7.18E 03 6.41E 03 6.22E 03 5.16E 03 4.30E 04 0.50 6.09E 03 6.11E 03 6.13E 03 6.16E 03 6.19E 03 6.22E 03 6.28E 03 6.34E 03 6.48E 03 6.82E 03 6.23E 03 6.09E 03 5.32E 03 5.59E 04 0.60 5.97E 03 5.98E 03 6.01E 03 6.03E 03 6.06E 03 6.09E 03 6.13E 03 6.19E 03 6.31E 03 6.56E 03 6.10E 03 5.99E 03 5.39E 03 6.89E 04 0.80 5.76E 03 5.78E 03 5.79E 03 5.81E 03 5.84E 03 5.86E 03 5.90E 03 5.94E 03 6.03E 03 6.21E 03 5.87E 03 5.80E 03 5.38E 03 9.82E 04 1.0 5.57E 03 5.59E 03 5.61E 03 5.62E 03 5.65E 03 5.67E 03 5.70E 03 5.73E 03 5.80E 03 5.93E 03 5.67E 03 5.62E 03 5.31E 03 1.14E 03 1.5 5.15E 03 5.17E 03 5.18E 03 5.20E 03 5.22E 03 5.23E 03 5.26E 03 5.28E 03 5.33E 03 5.41E 03 5.24E 03 5.20E 03 5.02E 03 1.38E 03 2.0 4.78E 03 4.79E 03 4.81E 03 4.82E 03 4.84E 03 4.85E 03 4.87E 03 4.89E 03 4.93E 03 4.99E 03 4.85E 03 4.84E 03 4.71E 03 1.42E 03 3.0 4.17E 03 4.18E 03 4.19E 03 4.20E 03 4.22E 03 4.23E 03 4.25E 03 4.26E 03 4.29E 03 4.32E 03 4.23E 03 4.22E 03 4.15E 03 1.32E 03 4.0 3.70E 03 3.71E 03 3.72E 03 3.73E 03 3.74E 03 3.75E 03 3.76E 03 3.78E 03 3.80E 03 3.83E 03 3.75E 03 3.75E 03 3.70E 03 1.16E 03 5.0 3.34E 03 3.34E 03 3.35E 03 3.36E 03 3.37E 03 3.38E 03 3.39E 03 3.40E 03 3.43E 03 3.44E 03 3.38E 03 3.38E 03 3.34E 03 1.01E 03 6.0 3.04E 03 3.05E 03 3.06E 03 3.07E 03 3.08E 03 3.09E 03 3.10E 03 3.11E 03 3.12E 03 3.14E 03 3.09E 03 3.08E 03 3.06E 03 8.83E 04 8.0 2.58E 03 2.58E 03 2.59E 03 2.59E 03 2.60E 03 2.61E 03 2.62E 03 2.62E 03 2.64E 03 2.65E 03 2.61E 03 2.61E 03 2.59E 03 6.71E 04 10.0 2.21E 03 2.22E 03 2.23E 03 2.23E 03 2.24E 03 2.24E 03 2.25E 03 2.26E 03 2.27E 03 2.28E 03 2.24E 03 2.24E 03 2.23E 03 5.17E 04

PAGE 94

94 Table A 1 2 Specific absorbed fractions (g 1 ) for active marrow targets in the proximal humeri (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 35% (ICRP 70) IM TBV CBS HC or CBV 0.001 9.73E 03 1.08E 02 1.22E 02 1.39E 02 1.62E 02 1.95E 02 2.43E 02 3.24E 02 4.87E 02 9.73E 02 2.78E 02 4.24E 05 6.46E 06 2.65E 07 0.0015 9.73E 03 1.08E 02 1.22E 02 1.39E 02 1.62E 02 1.94E 02 2.43E 02 3.24E 02 4.86E 02 9.71E 02 2.78E 02 6.41E 05 9.76E 06 4.00E 07 0.002 9.73E 03 1.08E 02 1.22E 02 1.39E 02 1.62E 02 1.94E 02 2.43E 02 3.23E 02 4.85E 02 9.69E 02 2.77E 02 8.44E 05 1.29E 05 5.27E 07 0.003 9.73E 03 1.08E 02 1.21E 02 1.39E 02 1.62E 02 1.94E 02 2.42E 02 3.22E 02 4.84E 02 9.65E 02 2.76E 02 1.29E 04 1.96E 05 8.05E 07 0.004 9.73E 03 1.08E 02 1.21E 02 1.38E 02 1.61E 02 1.93E 02 2.41E 02 3.22E 02 4.82E 02 9.62E 02 2.76E 02 1.67E 04 2.55E 05 1.04E 06 0.005 9.73E 03 1.08E 02 1.21E 02 1.38E 02 1.61E 02 1.93E 02 2.41E 02 3.21E 02 4.80E 02 9.58E 02 2.75E 02 2.19E 04 3.32E 05 1.37E 06 0.006 9.73E 03 1.08E 02 1.21E 02 1.38E 02 1.61E 02 1.92E 02 2.40E 02 3.20E 02 4.79E 02 9.54E 02 2.74E 02 2.42E 04 3.70E 05 1.51E 06 0.008 9.72E 03 1.08E 02 1.21E 02 1.38E 02 1.60E 02 1.92E 02 2.39E 02 3.18E 02 4.76E 02 9.47E 02 2.73E 02 3.65E 04 5.53E 05 2.28E 06 0.010 9.72E 03 1.08E 02 1.21E 02 1.37E 02 1.60E 02 1.91E 02 2.38E 02 3.16E 02 4.72E 02 9.40E 02 2.71E 02 3.70E 04 5.70E 05 2.31E 06 0.015 9.71E 03 1.07E 02 1.20E 02 1.36E 02 1.57E 02 1.87E 02 2.32E 02 3.07E 02 4.57E 02 9.06E 02 2.64E 02 7.43E 04 1.12E 04 4.64E 06 0.020 9.70E 03 1.06E 02 1.18E 02 1.33E 02 1.54E 02 1.82E 02 2.24E 02 2.95E 02 4.38E 02 8.62E 02 2.55E 02 1.23E 03 1.88E 04 7.95E 06 0.030 9.67E 03 1.05E 02 1.15E 02 1.28E 02 1.46E 02 1.70E 02 2.07E 02 2.68E 02 3.91E 02 7.58E 02 2.33E 02 2.38E 03 3.70E 04 1.60E 05 0.040 9.63E 03 1.03E 02 1.11E 02 1.22E 02 1.36E 02 1.56E 02 1.86E 02 2.36E 02 3.36E 02 6.35E 02 2.08E 02 3.73E 03 6.05E 04 2.69E 05 0.050 9.58E 03 1.01E 02 1.08E 02 1.16E 02 1.27E 02 1.43E 02 1.66E 02 2.05E 02 2.83E 02 5.16E 02 1.83E 02 5.04E 03 8.57E 04 3.97E 05 0.060 9.53E 03 9.92E 03 1.04E 02 1.10E 02 1.18E 02 1.30E 02 1.47E 02 1.75E 02 2.33E 02 4.03E 02 1.59E 02 6.28E 03 1.13E 03 5.48E 05 0.080 9.43E 03 9.63E 03 9.89E 03 1.02E 02 1.06E 02 1.12E 02 1.21E 02 1.35E 02 1.64E 02 2.49E 02 1.27E 02 7.88E 03 1.74E 03 8.97E 05 0.10 9.32E 03 9.46E 03 9.63E 03 9.84E 03 1.01E 02 1.05E 02 1.10E 02 1.20E 02 1.38E 02 1.91E 02 1.14E 02 8.42E 03 2.35E 03 1.26E 04 0.15 9.04E 03 9.12E 03 9.21E 03 9.32E 03 9.46E 03 9.65E 03 9.93E 03 1.04E 02 1.12E 02 1.37E 02 1.01E 02 8.69E 03 3.98E 03 2.23E 04 0.20 8.80E 03 8.85E 03 8.92E 03 9.00E 03 9.10E 03 9.23E 03 9.41E 03 9.69E 03 1.03E 02 1.19E 02 9.53E 03 8.62E 03 5.30E 03 3.19E 04 0.30 8.50E 03 8.54E 03 8.59E 03 8.64E 03 8.70E 03 8.78E 03 8.89E 03 9.05E 03 9.36E 03 1.02E 02 8.95E 03 8.47E 03 6.77E 03 5.37E 04 0.40 8.35E 03 8.39E 03 8.42E 03 8.46E 03 8.52E 03 8.57E 03 8.66E 03 8.77E 03 8.99E 03 9.57E 03 8.70E 03 8.38E 03 7.24E 03 7.80E 04 0.50 8.25E 03 8.28E 03 8.32E 03 8.35E 03 8.40E 03 8.44E 03 8.50E 03 8.59E 03 8.77E 03 9.19E 03 8.54E 03 8.30E 03 7.41E 03 1.04E 03 0.60 8.16E 03 8.19E 03 8.22E 03 8.25E 03 8.30E 03 8.33E 03 8.39E 03 8.46E 03 8.61E 03 8.95E 03 8.42E 03 8.23E 03 7.49E 03 1.29E 03 0.80 8.00E 03 8.03E 03 8.06E 03 8.09E 03 8.12E 03 8.15E 03 8.20E 03 8.26E 03 8.37E 03 8.62E 03 8.23E 03 8.09E 03 7.53E 03 1.71E 03 1.0 7.85E 03 7.87E 03 7.90E 03 7.93E 03 7.96E 03 7.99E 03 8.03E 03 8.08E 03 8.17E 03 8.36E 03 8.05E 03 7.95E 03 7.50E 03 1.99E 03 1.5 7.49E 03 7.51E 03 7.54E 03 7.56E 03 7.59E 03 7.61E 03 7.65E 03 7.68E 03 7.75E 03 7.87E 03 7.66E 03 7.60E 03 7.31E 03 2.29E 03 2.0 7.14E 03 7.16E 03 7.19E 03 7.21E 03 7.23E 03 7.25E 03 7.28E 03 7.31E 03 7.38E 03 7.46E 03 7.30E 03 7.25E 03 7.06E 03 2.34E 03 3.0 6.48E 03 6.50E 03 6.52E 03 6.54E 03 6.56E 03 6.58E 03 6.60E 03 6.63E 03 6.67E 03 6.72E 03 6.61E 03 6.58E 03 6.48E 03 2.20E 03 4.0 5.85E 03 5.87E 03 5.89E 03 5.90E 03 5.93E 03 5.94E 03 5.96E 03 5.98E 03 6.02E 03 6.06E 03 5.97E 03 5.95E 03 5.88E 03 1.96E 03 5.0 5.27E 03 5.29E 03 5.30E 03 5.32E 03 5.34E 03 5.35E 03 5.37E 03 5.39E 03 5.42E 03 5.45E 03 5.38E 03 5.36E 03 5.31E 03 1.70E 03 6.0 4.73E 03 4.75E 03 4.76E 03 4.77E 03 4.79E 03 4.80E 03 4.82E 03 4.84E 03 4.86E 03 4.89E 03 4.83E 03 4.81E 03 4.77E 03 1.45E 03 8.0 3.80E 03 3.81E 03 3.83E 03 3.83E 03 3.85E 03 3.86E 03 3.87E 03 3.88E 03 3.90E 03 3.92E 03 3.88E 03 3.87E 03 3.84E 03 1.02E 03 10.0 3.07E 03 3.08E 03 3.09E 03 3.10E 03 3.11E 03 3.11E 03 3.13E 03 3.14E 03 3.15E 03 3.16E 03 3.13E 03 3.12E 03 3.11E 03 7.02E 04

PAGE 95

95 Table A 13 Specific absorbed fractions (g 1 ) for active marrow targets in the proximal femora. (AM AM) (AM r S ) Cellularity Source t issue r S Energy (MeV) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 25% (ICRP 70) IM TBV CBS HC or CBV 0.001 7.77E 03 8.63E 03 9.71E 03 1.11E 02 1.29E 02 1.55E 02 1.94E 02 2.59E 02 3.88E 02 7.77E 02 3.11E 02 3.66E 05 3.51E 06 2.68E 07 0.0015 7.77E 03 8.63E 03 9.70E 03 1.11E 02 1.29E 02 1.55E 02 1.94E 02 2.58E 02 3.88E 02 7.75E 02 3.10E 02 5.53E 05 5.31E 06 4.05E 07 0.002 7.77E 03 8.62E 03 9.70E 03 1.11E 02 1.29E 02 1.55E 02 1.94E 02 2.58E 02 3.87E 02 7.74E 02 3.10E 02 7.28E 05 6.99E 06 5.34E 07 0.003 7.76E 03 8.62E 03 9.69E 03 1.11E 02 1.29E 02 1.55E 02 1.93E 02 2.57E 02 3.86E 02 7.71E 02 3.09E 02 1.11E 04 1.07E 05 8.15E 07 0.004 7.76E 03 8.61E 03 9.68E 03 1.10E 02 1.29E 02 1.54E 02 1.93E 02 2.57E 02 3.84E 02 7.68E 02 3.08E 02 1.44E 04 1.39E 05 1.06E 06 0.005 7.76E 03 8.61E 03 9.67E 03 1.10E 02 1.29E 02 1.54E 02 1.92E 02 2.56E 02 3.83E 02 7.65E 02 3.07E 02 1.89E 04 1.81E 05 1.38E 06 0.006 7.76E 03 8.60E 03 9.66E 03 1.10E 02 1.28E 02 1.54E 02 1.92E 02 2.55E 02 3.82E 02 7.62E 02 3.06E 02 2.09E 04 2.01E 05 1.54E 06 0.008 7.76E 03 8.59E 03 9.64E 03 1.10E 02 1.28E 02 1.53E 02 1.91E 02 2.53E 02 3.79E 02 7.56E 02 3.04E 02 3.15E 04 3.01E 05 2.30E 06 0.010 7.75E 03 8.58E 03 9.62E 03 1.10E 02 1.27E 02 1.52E 02 1.90E 02 2.52E 02 3.76E 02 7.50E 02 3.02E 02 3.19E 04 3.09E 05 2.36E 06 0.015 7.74E 03 8.54E 03 9.53E 03 1.08E 02 1.25E 02 1.49E 02 1.85E 02 2.45E 02 3.64E 02 7.23E 02 2.93E 02 6.41E 04 6.10E 05 4.66E 06 0.020 7.72E 03 8.48E 03 9.42E 03 1.06E 02 1.22E 02 1.45E 02 1.79E 02 2.36E 02 3.49E 02 6.88E 02 2.81E 02 1.06E 03 1.02E 04 7.92E 06 0.030 7.68E 03 8.33E 03 9.15E 03 1.02E 02 1.16E 02 1.35E 02 1.65E 02 2.14E 02 3.11E 02 6.05E 02 2.53E 02 2.05E 03 2.02E 04 1.58E 05 0.040 7.62E 03 8.16E 03 8.82E 03 9.68E 03 1.08E 02 1.24E 02 1.48E 02 1.88E 02 2.68E 02 5.07E 02 2.20E 02 3.21E 03 3.32E 04 2.65E 05 0.050 7.56E 03 7.98E 03 8.50E 03 9.17E 03 1.01E 02 1.13E 02 1.32E 02 1.63E 02 2.25E 02 4.12E 02 1.88E 02 4.33E 03 4.70E 04 3.86E 05 0.060 7.49E 03 7.80E 03 8.19E 03 8.68E 03 9.33E 03 1.02E 02 1.16E 02 1.39E 02 1.84E 02 3.21E 02 1.57E 02 5.39E 03 6.21E 04 5.27E 05 0.080 7.35E 03 7.51E 03 7.72E 03 7.97E 03 8.31E 03 8.78E 03 9.48E 03 1.06E 02 1.29E 02 1.98E 02 1.15E 02 6.72E 03 9.54E 04 8.53E 05 0.10 7.20E 03 7.31E 03 7.45E 03 7.61E 03 7.83E 03 8.13E 03 8.58E 03 9.30E 03 1.07E 02 1.50E 02 9.88E 03 7.08E 03 1.30E 03 1.20E 04 0.15 6.79E 03 6.85E 03 6.92E 03 7.00E 03 7.12E 03 7.26E 03 7.48E 03 7.83E 03 8.52E 03 1.05E 02 8.10E 03 6.98E 03 2.24E 03 2.10E 04 0.20 6.41E 03 6.45E 03 6.50E 03 6.56E 03 6.64E 03 6.73E 03 6.87E 03 7.10E 03 7.54E 03 8.82E 03 7.27E 03 6.59E 03 3.11E 03 2.93E 04 0.30 5.92E 03 5.94E 03 5.98E 03 6.01E 03 6.06E 03 6.11E 03 6.20E 03 6.32E 03 6.56E 03 7.25E 03 6.42E 03 6.00E 03 4.16E 03 4.70E 04 0.40 5.71E 03 5.73E 03 5.75E 03 5.78E 03 5.82E 03 5.86E 03 5.92E 03 6.00E 03 6.17E 03 6.64E 03 6.07E 03 5.78E 03 4.50E 03 6.68E 04 0.50 5.58E 03 5.60E 03 5.63E 03 5.65E 03 5.68E 03 5.71E 03 5.76E 03 5.83E 03 5.96E 03 6.30E 03 5.88E 03 5.66E 03 4.64E 03 8.75E 04 0.60 5.49E 03 5.51E 03 5.53E 03 5.55E 03 5.58E 03 5.60E 03 5.64E 03 5.70E 03 5.80E 03 6.08E 03 5.74E 03 5.57E 03 4.71E 03 1.06E 03 0.80 5.33E 03 5.35E 03 5.37E 03 5.38E 03 5.41E 03 5.43E 03 5.46E 03 5.50E 03 5.58E 03 5.78E 03 5.53E 03 5.41E 03 4.76E 03 1.31E 03 1.0 5.21E 03 5.22E 03 5.24E 03 5.25E 03 5.28E 03 5.29E 03 5.32E 03 5.35E 03 5.42E 03 5.57E 03 5.38E 03 5.28E 03 4.76E 03 1.45E 03 1.5 4.94E 03 4.95E 03 4.97E 03 4.98E 03 5.00E 03 5.01E 03 5.03E 03 5.05E 03 5.10E 03 5.20E 03 5.07E 03 4.99E 03 4.66E 03 1.57E 03 2.0 4.69E 03 4.70E 03 4.72E 03 4.73E 03 4.74E 03 4.76E 03 4.78E 03 4.79E 03 4.83E 03 4.90E 03 4.81E 03 4.73E 03 4.52E 03 1.57E 03 3.0 4.24E 03 4.25E 03 4.26E 03 4.27E 03 4.28E 03 4.29E 03 4.31E 03 4.32E 03 4.35E 03 4.40E 03 4.33E 03 4.26E 03 4.18E 03 1.45E 03 4.0 3.83E 03 3.84E 03 3.85E 03 3.86E 03 3.87E 03 3.88E 03 3.90E 03 3.91E 03 3.93E 03 3.96E 03 3.91E 03 3.84E 03 3.82E 03 1.29E 03 5.0 3.46E 03 3.47E 03 3.48E 03 3.48E 03 3.50E 03 3.50E 03 3.52E 03 3.52E 03 3.54E 03 3.57E 03 3.53E 03 3.47E 03 3.47E 03 1.13E 03 6.0 3.12E 03 3.13E 03 3.14E 03 3.15E 03 3.16E 03 3.16E 03 3.17E 03 3.18E 03 3.19E 03 3.22E 03 3.19E 03 3.13E 03 3.14E 03 9.69E 04 8.0 2.55E 03 2.55E 03 2.56E 03 2.56E 03 2.57E 03 2.58E 03 2.58E 03 2.59E 03 2.60E 03 2.62E 03 2.60E 03 2.55E 03 2.57E 03 7.02E 04 10.0 2.10E 03 2.11E 03 2.11E 03 2.12E 03 2.12E 03 2.13E 03 2.13E 03 2.14E 03 2.15E 03 2.16E 03 2.14E 03 2.10E 03 2.13E 03 5.01E 04

PAGE 96

96 Table A 14. Specific absorbed fractions (g 1 ) for active marrow targets in the humeral upper shafts. (MAM r S ) Energy Source t issue r S (MeV) MAM MIM CBS MC CBV 0.001 2.75E 01 1.85E 04 2.10E 02 3.47E 07 0.0015 2.74E 01 2.80E 04 2.10E 02 5.24E 07 0.002 2.74E 01 3.69E 04 2.09E 02 6.90E 07 0.003 2.73E 01 5.64E 04 2.08E 02 1.05E 06 0.004 2.72E 01 7.31E 04 2.07E 02 1.37E 06 0.005 2.71E 01 9.57E 04 2.06E 02 1.79E 06 0.006 2.70E 01 1.06E 03 2.06E 02 1.98E 06 0.008 2.68E 01 1.60E 03 2.04E 02 2.99E 06 0.010 2.66E 01 1.62E 03 2.02E 02 3.02E 06 0.015 2.57E 01 3.24E 03 1.97E 02 6.08E 06 0.020 2.45E 01 5.39E 03 1.92E 02 1.00E 05 0.030 2.17E 01 1.04E 02 1.98E 02 2.04E 05 0.040 1.84E 01 1.63E 02 2.06E 02 3.38E 05 0.050 1.53E 01 2.21E 02 2.11E 02 4.98E 05 0.060 1.23E 01 2.75E 02 2.14E 02 6.90E 05 0.080 8.19E 02 3.46E 02 2.17E 02 1.14E 04 0.10 6.71E 02 3.74E 02 2.19E 02 1.66E 04 0.15 5.33E 02 3.93E 02 2.22E 02 3.22E 04 0.20 4.87E 02 3.99E 02 2.22E 02 5.06E 04 0.30 4.43E 02 3.99E 02 2.22E 02 9.21E 04 0.40 4.23E 02 3.90E 02 2.21E 02 1.39E 03 0.50 4.07E 02 3.85E 02 2.19E 02 1.89E 03 0.60 3.93E 02 3.77E 02 2.17E 02 2.39E 03 0.80 3.71E 02 3.60E 02 2.11E 02 3.44E 03 1.0 3.52E 02 3.44E 02 2.07E 02 4.48E 03 1.5 3.05E 02 3.00E 02 1.94E 02 6.90E 03 2.0 2.63E 02 2.60E 02 1.78E 02 8.33E 03 3.0 1.94E 02 1.92E 02 1.44E 02 8.85E 03 4.0 1.48E 02 1.47E 02 1.11E 02 7.56E 03 5.0 1.19E 02 1.18E 02 8.83E 03 6.19E 03 6.0 9.90E 03 9.87E 03 7.37E 03 5.17E 03 8.0 7.45E 03 7.40E 03 5.47E 03 3.88E 03 10.0 5.97E 03 5.94E 03 4.34E 03 3.11E 03

PAGE 97

97 Table A 15 Specific absorbed fractions (g 1 ) for active marrow targets in the femoral upper shafts. (MAM r S ) Energy Source t issue r S (MeV) MAM MIM CBS MC CBV 0.001 1.00E 01 6.75E 05 7.66E 03 1.01E 07 0.0015 9.99E 02 1.02E 04 7.64E 03 1.52E 07 0.002 9.97E 02 1.34E 04 7.62E 03 2.01E 07 0.003 9.93E 02 2.05E 04 7.59E 03 3.06E 07 0.004 9.90E 02 2.66E 04 7.55E 03 3.98E 07 0.005 9.86E 02 3.48E 04 7.51E 03 5.19E 07 0.006 9.82E 02 3.86E 04 7.48E 03 5.79E 07 0.008 9.75E 02 5.81E 04 7.41E 03 8.63E 07 0.010 9.68E 02 5.89E 04 7.33E 03 8.93E 07 0.015 9.35E 02 1.18E 03 7.15E 03 1.74E 06 0.020 8.93E 02 1.96E 03 6.99E 03 2.84E 06 0.030 7.90E 02 3.79E 03 7.20E 03 5.74E 06 0.040 6.71E 02 5.94E 03 7.49E 03 9.50E 06 0.050 5.56E 02 8.02E 03 7.67E 03 1.41E 05 0.060 4.46E 02 1.00E 02 7.78E 03 1.95E 05 0.080 2.99E 02 1.27E 02 7.90E 03 3.20E 05 0.10 2.44E 02 1.36E 02 7.98E 03 4.66E 05 0.15 1.95E 02 1.44E 02 8.07E 03 9.02E 05 0.20 1.78E 02 1.46E 02 8.11E 03 1.42E 04 0.30 1.64E 02 1.47E 02 8.12E 03 2.60E 04 0.40 1.57E 02 1.46E 02 8.07E 03 3.92E 04 0.50 1.52E 02 1.44E 02 8.02E 03 5.32E 04 0.60 1.48E 02 1.42E 02 7.97E 03 6.72E 04 0.80 1.42E 02 1.38E 02 7.84E 03 9.74E 04 1.0 1.36E 02 1.33E 02 7.73E 03 1.27E 03 1.5 1.23E 02 1.21E 02 7.37E 03 2.02E 03 2.0 1.11E 02 1.10E 02 6.98E 03 2.63E 03 3.0 8.94E 03 8.89E 03 6.18E 03 3.24E 03 4.0 7.15E 03 7.11E 03 5.24E 03 3.26E 03 5.0 5.85E 03 5.82E 03 4.31E 03 2.91E 03 6.0 4.92E 03 4.90E 03 3.62E 03 2.51E 03 8.0 3.71E 03 3.70E 03 2.73E 03 1.93E 03 10.0 2.99E 03 2.98E 03 2.18E 03 1.56E 03

PAGE 98

98 APPENDIX B TABLES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS TO SHALLOW MARROW TARGETS This is an appendix of tabulated skeletal site specific specific absorbed fractions to shallow marrow targets for the University of Florida adult female reference phantom for a range of 33 discrete energies from 1 keV to 10 MeV. The sources included (when applicable) are: active marrow (AM), inactive marrow (IM), trabecular bone volume (TBV), and cortical bone volume (CBV). The cellularity was varied from 10 to 100% for active marrow self irradiation. All other sources were run at ICRP 70 reference cellu larity, the value of which is indicated for each skeletal site.

PAGE 99

99 Table B 1. Specific absorbed fractions (g 1 ) for shallow marrow targets in the craniofacial bones TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 1.33E 02 1.33E 02 6.85E 06 8.72E 08 0.0015 1.33E 02 1.32E 02 9.95E 06 1.45E 07 0.002 1.32E 02 1.32E 02 1.36E 05 2.25E 07 0.003 1.32E 02 1.32E 02 2.29E 05 2.27E 07 0.004 1.32E 02 1.32E 02 2.58E 05 3.44E 07 0.005 1.31E 02 1.31E 02 3.18E 05 5.44E 07 0.006 1.31E 02 1.31E 02 4.24E 05 8.17E 07 0.008 1.30E 02 1.30E 02 6.99E 05 2.11E 07 0.010 1.29E 02 1.29E 02 4.80E 05 1.00E 06 0.015 1.27E 02 1.27E 02 9.41E 05 1.97E 06 0.020 1.25E 02 1.25E 02 1.56E 04 3.31E 06 0.030 1.20E 02 1.20E 02 3.06E 04 6.45E 06 0.040 1.14E 02 1.13E 02 4.93E 04 1.03E 05 0.050 1.07E 02 1.06E 02 6.85E 04 1.44E 05 0.060 9.97E 03 9.88E 03 8.85E 04 1.87E 05 0.080 8.70E 03 8.64E 03 1.24E 03 2.75E 05 0.10 7.89E 03 7.78E 03 1.47E 03 3.67E 05 0.15 6.21E 03 6.18E 03 1.89E 03 5.73E 05 0.20 5.13E 03 5.12E 03 2.15E 03 7.48E 05 0.30 4.00E 03 3.99E 03 2.38E 03 1.05E 04 0.40 3.58E 03 3.58E 03 2.41E 03 1.33E 04 0.50 3.36E 03 3.36E 03 2.39E 03 1.60E 04 0.60 3.21E 03 3.20E 03 2.35E 03 1.85E 04 0.80 2.97E 03 2.96E 03 2.25E 03 2.27E 04 1.0 2.77E 03 2.77E 03 2.15E 03 2.60E 04 1.5 2.39E 03 2.38E 03 1.89E 03 3.00E 04 2.0 2.08E 03 2.08E 03 1.67E 03 3.00E 04 3.0 1.64E 03 1.64E 03 1.33E 03 2.48E 04 4.0 1.35E 03 1.35E 03 1.11E 03 1.91E 04 5.0 1.16E 03 1.15E 03 9.47E 04 1.50E 04 6.0 1.01E 03 1.01E 03 8.33E 04 1.22E 04 8.0 8.20E 04 8.20E 04 6.76E 04 8.57E 05 10.0 6.95E 04 6.96E 04 5.74E 04 6.47E 05

PAGE 100

100 Table B 2 Specific absorbed fractions (g 1 ) for shallow marrow targets in the mandible. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 5.00E 02 5.07E 02 2.23E 04 6.95E 07 0.0015 5.00E 02 5.07E 02 3.36E 04 1.05E 06 0.002 4.99E 02 5.06E 02 4.43E 04 1.38E 06 0.003 4.97E 02 5.05E 02 6.76E 04 2.11E 06 0.004 4.97E 02 5.03E 02 8.78E 04 2.74E 06 0.005 4.95E 02 5.02E 02 1.15E 03 3.58E 06 0.006 4.94E 02 5.00E 02 1.28E 03 3.98E 06 0.008 4.92E 02 4.98E 02 1.90E 03 5.97E 06 0.010 4.87E 02 4.94E 02 1.97E 03 6.09E 06 0.015 4.82E 02 4.88E 02 3.84E 03 1.21E 05 0.020 4.75E 02 4.80E 02 6.39E 03 2.03E 05 0.030 4.58E 02 4.62E 02 1.24E 02 4.02E 05 0.040 4.37E 02 4.40E 02 1.98E 02 6.58E 05 0.050 4.15E 02 4.17E 02 2.73E 02 9.34E 05 0.060 3.92E 02 3.94E 02 3.49E 02 1.24E 04 0.080 3.57E 02 3.58E 02 4.69E 02 1.96E 04 0.10 3.38E 02 3.40E 02 5.29E 02 2.73E 04 0.15 3.16E 02 3.17E 02 5.88E 02 4.86E 04 0.20 3.10E 02 3.12E 02 5.91E 02 7.04E 04 0.30 3.12E 02 3.13E 02 5.45E 02 1.15E 03 0.40 3.16E 02 3.16E 02 4.96E 02 1.63E 03 0.50 3.16E 02 3.16E 02 4.58E 02 2.11E 03 0.60 3.12E 02 3.12E 02 4.29E 02 2.56E 03 0.80 3.02E 02 3.02E 02 3.84E 02 3.36E 03 1.0 2.90E 02 2.89E 02 3.48E 02 3.98E 03 1.5 2.55E 02 2.55E 02 2.83E 02 4.59E 03 2.0 2.21E 02 2.21E 02 2.38E 02 4.34E 03 3.0 1.71E 02 1.71E 02 1.79E 02 3.17E 03 4.0 1.37E 02 1.37E 02 1.42E 02 2.22E 03 5.0 1.14E 02 1.14E 02 1.17E 02 1.60E 03 6.0 9.73E 03 9.74E 03 9.98E 03 1.20E 03 8.0 7.50E 03 7.51E 03 7.65E 03 7.44E 04 10.0 6.11E 03 6.12E 03 6.21E 03 5.04E 04

PAGE 101

101 Table B 3 Specific absorbed fractions (g 1 ) for shallow marrow targets in the cervical vertebrae. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 2.40E 02 2.40E 02 7.93E 05 6.25E 07 0.0015 2.40E 02 2.40E 02 1.20E 04 9.45E 07 0.002 2.40E 02 2.40E 02 1.58E 04 1.24E 06 0.003 2.39E 02 2.39E 02 2.41E 04 1.90E 06 0.004 2.39E 02 2.39E 02 3.13E 04 2.46E 06 0.005 2.38E 02 2.38E 02 4.08E 04 3.22E 06 0.006 2.38E 02 2.38E 02 4.55E 04 3.57E 06 0.008 2.37E 02 2.37E 02 6.80E 04 5.38E 06 0.010 2.36E 02 2.36E 02 7.00E 04 5.45E 06 0.015 2.33E 02 2.34E 02 1.37E 03 1.09E 05 0.020 2.30E 02 2.30E 02 2.28E 03 1.84E 05 0.030 2.23E 02 2.22E 02 4.44E 03 3.64E 05 0.040 2.13E 02 2.13E 02 7.12E 03 5.95E 05 0.050 2.03E 02 2.03E 02 9.87E 03 8.49E 05 0.060 1.93E 02 1.92E 02 1.27E 02 1.13E 04 0.080 1.76E 02 1.76E 02 1.73E 02 1.76E 04 0.10 1.67E 02 1.67E 02 1.96E 02 2.44E 04 0.15 1.58E 02 1.58E 02 2.13E 02 4.34E 04 0.20 1.58E 02 1.58E 02 2.06E 02 6.29E 04 0.30 1.60E 02 1.60E 02 1.85E 02 1.04E 03 0.40 1.58E 02 1.58E 02 1.75E 02 1.48E 03 0.50 1.55E 02 1.55E 02 1.68E 02 1.91E 03 0.60 1.51E 02 1.51E 02 1.61E 02 2.30E 03 0.80 1.42E 02 1.42E 02 1.50E 02 2.87E 03 1.0 1.34E 02 1.34E 02 1.40E 02 3.14E 03 1.5 1.15E 02 1.15E 02 1.19E 02 3.07E 03 2.0 9.97E 03 9.97E 03 1.02E 02 2.71E 03 3.0 7.86E 03 7.86E 03 8.02E 03 2.02E 03 4.0 6.60E 03 6.60E 03 6.72E 03 1.55E 03 5.0 5.75E 03 5.75E 03 5.84E 03 1.23E 03 6.0 5.11E 03 5.10E 03 5.18E 03 1.01E 03 8.0 4.21E 03 4.21E 03 4.27E 03 7.16E 04 10.0 3.57E 03 3.57E 03 3.61E 03 5.26E 04

PAGE 102

102 Table B 4 Specific absorbed fractions (g 1 ) for shallow marrow targets in the thoracic vertebrae. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 6.29E 03 6.28E 03 3.39E 05 2.31E 07 0.0015 6.29E 03 6.28E 03 5.12E 05 3.49E 07 0.002 6.28E 03 6.27E 03 6.74E 05 4.59E 07 0.003 6.27E 03 6.26E 03 1.03E 04 7.01E 07 0.004 6.26E 03 6.25E 03 1.34E 04 9.09E 07 0.005 6.24E 03 6.23E 03 1.75E 04 1.19E 06 0.006 6.23E 03 6.22E 03 1.94E 04 1.32E 06 0.008 6.21E 03 6.20E 03 2.91E 04 1.98E 06 0.010 6.18E 03 6.17E 03 2.97E 04 2.02E 06 0.015 6.12E 03 6.11E 03 5.91E 04 4.02E 06 0.020 6.04E 03 6.03E 03 9.82E 04 6.72E 06 0.030 5.85E 03 5.83E 03 1.91E 03 1.34E 05 0.040 5.61E 03 5.59E 03 3.07E 03 2.19E 05 0.050 5.36E 03 5.34E 03 4.26E 03 3.15E 05 0.060 5.11E 03 5.08E 03 5.47E 03 4.21E 05 0.080 4.70E 03 4.68E 03 7.42E 03 6.71E 05 0.10 4.49E 03 4.47E 03 8.33E 03 9.47E 05 0.15 4.35E 03 4.34E 03 8.70E 03 1.76E 04 0.20 4.44E 03 4.44E 03 7.94E 03 2.67E 04 0.30 4.63E 03 4.63E 03 6.43E 03 4.58E 04 0.40 4.66E 03 4.66E 03 5.75E 03 6.47E 04 0.50 4.61E 03 4.61E 03 5.39E 03 8.30E 04 0.60 4.54E 03 4.55E 03 5.14E 03 9.80E 04 0.80 4.38E 03 4.38E 03 4.79E 03 1.17E 03 1.0 4.20E 03 4.20E 03 4.51E 03 1.25E 03 1.5 3.76E 03 3.76E 03 3.94E 03 1.22E 03 2.0 3.37E 03 3.37E 03 3.49E 03 1.10E 03 3.0 2.78E 03 2.78E 03 2.84E 03 8.50E 04 4.0 2.38E 03 2.38E 03 2.42E 03 6.78E 04 5.0 2.10E 03 2.10E 03 2.13E 03 5.61E 04 6.0 1.89E 03 1.89E 03 1.92E 03 4.75E 04 8.0 1.59E 03 1.59E 03 1.60E 03 3.47E 04 10.0 1.34E 03 1.34E 03 1.35E 03 2.56E 04

PAGE 103

103 Table B 5 Specific absorbed fractions (g 1 ) for shallow marrow targets in the lumbar vertebrae. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 5.02E 03 5.03E 03 2.42E 05 1.79E 07 0.0015 5.02E 03 5.02E 03 3.65E 05 2.70E 07 0.002 5.01E 03 5.02E 03 4.81E 05 3.56E 07 0.003 5.01E 03 5.01E 03 7.34E 05 5.44E 07 0.004 5.00E 03 5.00E 03 9.53E 05 7.05E 07 0.005 4.99E 03 4.99E 03 1.24E 04 9.23E 07 0.006 4.98E 03 4.98E 03 1.39E 04 1.02E 06 0.008 4.96E 03 4.96E 03 2.07E 04 1.54E 06 0.010 4.94E 03 4.94E 03 2.13E 04 1.57E 06 0.015 4.89E 03 4.89E 03 4.18E 04 3.12E 06 0.020 4.83E 03 4.82E 03 6.94E 04 5.27E 06 0.030 4.68E 03 4.67E 03 1.35E 03 1.04E 05 0.040 4.49E 03 4.47E 03 2.18E 03 1.71E 05 0.050 4.29E 03 4.27E 03 3.02E 03 2.45E 05 0.060 4.08E 03 4.06E 03 3.89E 03 3.29E 05 0.080 3.75E 03 3.73E 03 5.29E 03 5.21E 05 0.10 3.58E 03 3.57E 03 5.96E 03 7.32E 05 0.15 3.47E 03 3.45E 03 6.35E 03 1.35E 04 0.20 3.52E 03 3.52E 03 5.96E 03 2.03E 04 0.30 3.68E 03 3.68E 03 5.05E 03 3.49E 04 0.40 3.73E 03 3.73E 03 4.61E 03 5.01E 04 0.50 3.72E 03 3.72E 03 4.37E 03 6.52E 04 0.60 3.70E 03 3.70E 03 4.22E 03 7.85E 04 0.80 3.62E 03 3.62E 03 4.00E 03 9.67E 04 1.0 3.54E 03 3.53E 03 3.83E 03 1.06E 03 1.5 3.31E 03 3.31E 03 3.49E 03 1.12E 03 2.0 3.08E 03 3.08E 03 3.22E 03 1.08E 03 3.0 2.70E 03 2.70E 03 2.79E 03 9.52E 04 4.0 2.41E 03 2.41E 03 2.47E 03 8.24E 04 5.0 2.18E 03 2.17E 03 2.23E 03 7.17E 04 6.0 1.99E 03 1.99E 03 2.04E 03 6.31E 04 8.0 1.71E 03 1.71E 03 1.74E 03 4.96E 04 10.0 1.49E 03 1.49E 03 1.52E 03 3.90E 04

PAGE 104

104 Table B 6 Specific absorbed fractions (g 1 ) for shallow marrow targets in the sternum. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 3.81E 02 3.80E 02 2.96E 04 1.09E 06 0.0015 3.81E 02 3.79E 02 4.47E 04 1.66E 06 0.002 3.80E 02 3.79E 02 5.89E 04 2.18E 06 0.003 3.79E 02 3.78E 02 8.98E 04 3.33E 06 0.004 3.79E 02 3.78E 02 1.17E 03 4.31E 06 0.005 3.78E 02 3.77E 02 1.52E 03 5.66E 06 0.006 3.77E 02 3.76E 02 1.70E 03 6.24E 06 0.008 3.76E 02 3.75E 02 2.53E 03 9.46E 06 0.010 3.74E 02 3.73E 02 2.61E 03 9.49E 06 0.015 3.71E 02 3.70E 02 5.12E 03 1.93E 05 0.020 3.66E 02 3.65E 02 8.48E 03 3.26E 05 0.030 3.54E 02 3.53E 02 1.65E 02 6.46E 05 0.040 3.40E 02 3.39E 02 2.64E 02 1.06E 04 0.050 3.26E 02 3.24E 02 3.63E 02 1.53E 04 0.060 3.11E 02 3.09E 02 4.65E 02 2.04E 04 0.080 2.87E 02 2.86E 02 6.23E 02 3.24E 04 0.10 2.75E 02 2.75E 02 6.90E 02 4.53E 04 0.15 2.69E 02 2.69E 02 7.10E 02 8.19E 04 0.20 2.75E 02 2.75E 02 6.52E 02 1.21E 03 0.30 2.84E 02 2.85E 02 5.45E 02 2.08E 03 0.40 2.88E 02 2.88E 02 4.79E 02 3.03E 03 0.50 2.86E 02 2.86E 02 4.36E 02 3.99E 03 0.60 2.83E 02 2.83E 02 4.04E 02 4.90E 03 0.80 2.75E 02 2.74E 02 3.57E 02 6.24E 03 1.0 2.65E 02 2.65E 02 3.24E 02 6.93E 03 1.5 2.36E 02 2.36E 02 2.72E 02 7.07E 03 2.0 2.08E 02 2.08E 02 2.31E 02 6.35E 03 3.0 1.63E 02 1.63E 02 1.73E 02 4.49E 03 4.0 1.31E 02 1.31E 02 1.37E 02 3.09E 03 5.0 1.08E 02 1.08E 02 1.13E 02 2.19E 03 6.0 9.22E 03 9.23E 03 9.53E 03 1.62E 03 8.0 7.07E 03 7.07E 03 7.25E 03 9.69E 04 10.0 5.71E 03 5.71E 03 5.82E 03 6.39E 04

PAGE 105

105 Table B 7. Specific absorbed fractions (g 1 ) for shallow marrow targets in the ribs. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 6.26E 03 6.29E 03 4.17E 05 2.13E 07 0.0015 6.26E 03 6.29E 03 6.30E 05 3.22E 07 0.002 6.25E 03 6.28E 03 8.30E 05 4.24E 07 0.003 6.24E 03 6.27E 03 1.27E 04 6.48E 07 0.004 6.23E 03 6.26E 03 1.65E 04 8.40E 07 0.005 6.22E 03 6.25E 03 2.15E 04 1.10E 06 0.006 6.21E 03 6.23E 03 2.39E 04 1.22E 06 0.008 6.18E 03 6.21E 03 3.57E 04 1.83E 06 0.010 6.16E 03 6.19E 03 3.69E 04 1.86E 06 0.015 6.10E 03 6.13E 03 7.20E 04 3.73E 06 0.020 6.02E 03 6.04E 03 1.19E 03 6.23E 06 0.030 5.84E 03 5.85E 03 2.32E 03 1.25E 05 0.040 5.61E 03 5.62E 03 3.72E 03 2.04E 05 0.050 5.37E 03 5.37E 03 5.14E 03 2.93E 05 0.060 5.12E 03 5.11E 03 6.59E 03 3.93E 05 0.080 4.70E 03 4.71E 03 8.86E 03 6.26E 05 0.10 4.50E 03 4.52E 03 9.85E 03 8.82E 05 0.15 4.38E 03 4.40E 03 9.78E 03 1.64E 04 0.20 4.41E 03 4.42E 03 8.84E 03 2.47E 04 0.30 4.37E 03 4.37E 03 7.37E 03 4.09E 04 0.40 4.27E 03 4.27E 03 6.28E 03 5.49E 04 0.50 4.14E 03 4.14E 03 5.50E 03 6.64E 04 0.60 3.97E 03 3.97E 03 4.94E 03 7.45E 04 0.80 3.59E 03 3.59E 03 4.17E 03 8.14E 04 1.0 3.21E 03 3.21E 03 3.59E 03 7.88E 04 1.5 2.44E 03 2.44E 03 2.61E 03 5.73E 04 2.0 1.92E 03 1.92E 03 2.01E 03 3.87E 04 3.0 1.32E 03 1.32E 03 1.36E 03 1.95E 04 4.0 9.97E 04 9.97E 04 1.02E 03 1.14E 04 5.0 8.10E 04 8.09E 04 8.21E 04 7.65E 05 6.0 6.90E 04 6.90E 04 6.97E 04 5.63E 05 8.0 5.42E 04 5.42E 04 5.46E 04 3.56E 05 10.0 4.47E 04 4.47E 04 4.48E 04 2.46E 05

PAGE 106

106 Table B 8 Specific absorbed fractions (g 1 ) for shallow marrow targets in the scapulae TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 5.85E 03 5.71E 03 6.88E 05 1.23E 07 0.0015 5.84E 03 5.70E 03 1.04E 04 1.85E 07 0.002 5.84E 03 5.70E 03 1.37E 04 2.44E 07 0.003 5.83E 03 5.69E 03 2.09E 04 3.73E 07 0.004 5.82E 03 5.68E 03 2.72E 04 4.85E 07 0.005 5.80E 03 5.67E 03 3.54E 04 6.31E 07 0.006 5.79E 03 5.66E 03 3.95E 04 7.06E 07 0.008 5.77E 03 5.64E 03 5.89E 04 1.05E 06 0.010 5.75E 03 5.62E 03 6.08E 04 1.09E 06 0.015 5.70E 03 5.57E 03 1.19E 03 2.11E 06 0.020 5.62E 03 5.49E 03 1.98E 03 3.52E 06 0.030 5.44E 03 5.32E 03 3.83E 03 6.99E 06 0.040 5.23E 03 5.11E 03 6.08E 03 1.15E 05 0.050 5.02E 03 4.90E 03 8.34E 03 1.66E 05 0.060 4.80E 03 4.69E 03 1.06E 02 2.22E 05 0.080 4.47E 03 4.37E 03 1.39E 02 3.54E 05 0.10 4.32E 03 4.27E 03 1.49E 02 4.99E 05 0.15 4.37E 03 4.34E 03 1.37E 02 9.33E 05 0.20 4.55E 03 4.54E 03 1.10E 02 1.41E 04 0.30 4.73E 03 4.72E 03 7.82E 03 2.32E 04 0.40 4.71E 03 4.71E 03 6.64E 03 3.21E 04 0.50 4.65E 03 4.64E 03 6.04E 03 4.10E 04 0.60 4.56E 03 4.56E 03 5.64E 03 4.96E 04 0.80 4.36E 03 4.36E 03 5.08E 03 6.49E 04 1.0 4.16E 03 4.16E 03 4.68E 03 7.54E 04 1.5 3.69E 03 3.69E 03 3.97E 03 8.28E 04 2.0 3.27E 03 3.27E 03 3.46E 03 7.64E 04 3.0 2.62E 03 2.62E 03 2.72E 03 5.78E 04 4.0 2.15E 03 2.15E 03 2.21E 03 4.28E 04 5.0 1.82E 03 1.82E 03 1.86E 03 3.23E 04 6.0 1.57E 03 1.57E 03 1.60E 03 2.52E 04 8.0 1.25E 03 1.25E 03 1.27E 03 1.68E 04 10.0 1.05E 03 1.05E 03 1.06E 03 1.21E 04

PAGE 107

107 Table B 9. Specific absorbed fractions (g 1 ) for shallow marrow targets in the clavicles. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 3.88E 02 3.87E 02 3.25E 04 6.09E 07 0.0015 3.87E 02 3.87E 02 4.92E 04 9.21E 07 0.002 3.87E 02 3.86E 02 6.48E 04 1.21E 06 0.003 3.86E 02 3.86E 02 9.88E 04 1.85E 06 0.004 3.85E 02 3.85E 02 1.28E 03 2.40E 06 0.005 3.85E 02 3.84E 02 1.67E 03 3.14E 06 0.006 3.84E 02 3.83E 02 1.87E 03 3.49E 06 0.008 3.83E 02 3.82E 02 2.79E 03 5.24E 06 0.010 3.81E 02 3.80E 02 2.87E 03 5.35E 06 0.015 3.77E 02 3.76E 02 5.63E 03 1.06E 05 0.020 3.72E 02 3.71E 02 9.33E 03 1.77E 05 0.030 3.60E 02 3.59E 02 1.81E 02 3.50E 05 0.040 3.45E 02 3.43E 02 2.89E 02 5.77E 05 0.050 3.30E 02 3.28E 02 3.99E 02 8.19E 05 0.060 3.14E 02 3.12E 02 5.12E 02 1.09E 04 0.080 2.88E 02 2.87E 02 6.85E 02 1.71E 04 0.10 2.76E 02 2.76E 02 7.60E 02 2.36E 04 0.15 2.69E 02 2.68E 02 7.89E 02 4.16E 04 0.20 2.74E 02 2.75E 02 7.25E 02 6.05E 04 0.30 2.85E 02 2.86E 02 5.93E 02 1.03E 03 0.40 2.89E 02 2.89E 02 5.15E 02 1.49E 03 0.50 2.88E 02 2.88E 02 4.67E 02 1.97E 03 0.60 2.84E 02 2.84E 02 4.33E 02 2.44E 03 0.80 2.74E 02 2.74E 02 3.85E 02 3.30E 03 1.0 2.63E 02 2.62E 02 3.50E 02 4.01E 03 1.5 2.31E 02 2.31E 02 2.88E 02 4.78E 03 2.0 2.01E 02 2.01E 02 2.41E 02 4.58E 03 3.0 1.52E 02 1.52E 02 1.72E 02 3.31E 03 4.0 1.18E 02 1.18E 02 1.29E 02 2.18E 03 5.0 9.44E 03 9.45E 03 1.01E 02 1.46E 03 6.0 7.86E 03 7.86E 03 8.25E 03 1.02E 03 8.0 5.87E 03 5.86E 03 6.11E 03 5.69E 04 10.0 4.70E 03 4.69E 03 4.85E 03 3.64E 04

PAGE 108

108 Table B 10. Specific absorbed fractions (g 1 ) for shallow marrow targets in the o s coxae TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 2.17E 03 2.15E 03 2.99E 05 4.35E 08 0.0015 2.16E 03 2.15E 03 4.52E 05 6.58E 08 0.002 2.16E 03 2.15E 03 5.96E 05 8.67E 08 0.003 2.16E 03 2.14E 03 9.09E 05 1.32E 07 0.004 2.15E 03 2.14E 03 1.18E 04 1.72E 07 0.005 2.15E 03 2.13E 03 1.54E 04 2.24E 07 0.006 2.15E 03 2.13E 03 1.72E 04 2.49E 07 0.008 2.14E 03 2.12E 03 2.56E 04 3.74E 07 0.010 2.13E 03 2.11E 03 2.64E 04 3.82E 07 0.015 2.11E 03 2.09E 03 5.18E 04 7.57E 07 0.020 2.09E 03 2.07E 03 8.57E 04 1.27E 06 0.030 2.02E 03 2.00E 03 1.67E 03 2.54E 06 0.040 1.95E 03 1.92E 03 2.66E 03 4.20E 06 0.050 1.87E 03 1.84E 03 3.67E 03 6.06E 06 0.060 1.78E 03 1.76E 03 4.68E 03 8.13E 06 0.080 1.66E 03 1.64E 03 6.24E 03 1.31E 05 0.10 1.60E 03 1.59E 03 6.86E 03 1.85E 05 0.15 1.60E 03 1.59E 03 6.73E 03 3.49E 05 0.20 1.66E 03 1.65E 03 5.73E 03 5.33E 05 0.30 1.76E 03 1.76E 03 4.16E 03 9.21E 05 0.40 1.80E 03 1.80E 03 3.42E 03 1.30E 04 0.50 1.80E 03 1.81E 03 3.03E 03 1.68E 04 0.60 1.81E 03 1.80E 03 2.78E 03 2.06E 04 0.80 1.78E 03 1.78E 03 2.43E 03 2.81E 04 1.0 1.75E 03 1.75E 03 2.21E 03 3.46E 04 1.5 1.65E 03 1.65E 03 1.91E 03 4.35E 04 2.0 1.55E 03 1.55E 03 1.73E 03 4.57E 04 3.0 1.36E 03 1.36E 03 1.46E 03 4.23E 04 4.0 1.19E 03 1.19E 03 1.26E 03 3.62E 04 5.0 1.05E 03 1.05E 03 1.10E 03 3.01E 04 6.0 9.35E 04 9.34E 04 9.71E 04 2.50E 04 8.0 7.59E 04 7.59E 04 7.82E 04 1.75E 04 10.0 6.39E 04 6.38E 04 6.53E 04 1.28E 04

PAGE 109

109 Table B 11. Specific absorbed fractions (g 1 ) for shallow marrow targets in the sacrum. TM 50 r S ) Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV 0.001 8.26E 03 8.23E 03 3.36E 05 1.58E 07 0.0015 8.25E 03 8.22E 03 5.08E 05 2.39E 07 0.002 8.24E 03 8.21E 03 6.70E 05 3.16E 07 0.003 8.22E 03 8.19E 03 1.02E 04 4.81E 07 0.004 8.21E 03 8.18E 03 1.33E 04 6.25E 07 0.005 8.19E 03 8.16E 03 1.73E 04 8.16E 07 0.006 8.18E 03 8.15E 03 1.93E 04 9.09E 07 0.008 8.14E 03 8.11E 03 2.88E 04 1.36E 06 0.010 8.11E 03 8.08E 03 2.97E 04 1.40E 06 0.015 8.03E 03 8.00E 03 5.82E 04 2.74E 06 0.020 7.92E 03 7.89E 03 9.66E 04 4.62E 06 0.030 7.66E 03 7.62E 03 1.88E 03 9.23E 06 0.040 7.33E 03 7.29E 03 3.00E 03 1.51E 05 0.050 6.99E 03 6.96E 03 4.17E 03 2.16E 05 0.060 6.65E 03 6.61E 03 5.35E 03 2.90E 05 0.080 6.08E 03 6.05E 03 7.24E 03 4.56E 05 0.10 5.80E 03 5.78E 03 8.15E 03 6.39E 05 0.15 5.55E 03 5.53E 03 8.80E 03 1.16E 04 0.20 5.62E 03 5.61E 03 8.42E 03 1.74E 04 0.30 5.83E 03 5.83E 03 7.35E 03 2.93E 04 0.40 5.88E 03 5.89E 03 6.86E 03 4.19E 04 0.50 5.86E 03 5.85E 03 6.59E 03 5.50E 04 0.60 5.81E 03 5.81E 03 6.41E 03 6.81E 04 0.80 5.68E 03 5.68E 03 6.11E 03 9.76E 04 1.0 5.54E 03 5.54E 03 5.86E 03 1.13E 03 1.5 5.18E 03 5.18E 03 5.35E 03 1.38E 03 2.0 4.83E 03 4.83E 03 4.94E 03 1.43E 03 3.0 4.23E 03 4.23E 03 4.30E 03 1.32E 03 4.0 3.76E 03 3.76E 03 3.81E 03 1.17E 03 5.0 3.40E 03 3.40E 03 3.42E 03 1.02E 03 6.0 3.10E 03 3.10E 03 3.13E 03 8.89E 04 8.0 2.62E 03 2.62E 03 2.64E 03 6.76E 04 10.0 2.26E 03 2.26E 03 2.27E 03 5.21E 04

PAGE 110

110 Table B 12. Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the humeri Proximal h umeri Distal h umeri TM 50 r S ) TM 50 r S ) Source t issue r S Source t issue r S Energy (MeV) AM IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 1.01E 02 1.01E 02 7.13E 05 3.08E 07 2.04E 02 7.32E 05 4.54E 07 0.0015 1.01E 02 1.01E 02 1.08E 04 4.65E 07 2.04E 02 1.11E 04 6.86E 07 0.002 1.01E 02 1.01E 02 1.42E 04 6.13E 07 2.03E 02 1.46E 04 9.04E 07 0.003 1.01E 02 1.01E 02 2.17E 04 9.36E 07 2.03E 02 2.22E 04 1.38E 06 0.004 1.01E 02 1.00E 02 2.81E 04 1.21E 06 2.03E 02 2.89E 04 1.79E 06 0.005 1.01E 02 1.00E 02 3.67E 04 1.59E 06 2.02E 02 3.77E 04 2.34E 06 0.006 1.00E 02 9.99E 03 4.09E 04 1.76E 06 2.02E 02 4.20E 04 2.60E 06 0.008 1.00E 02 9.95E 03 6.10E 04 2.65E 06 2.01E 02 6.27E 04 3.90E 06 0.010 9.97E 03 9.91E 03 6.30E 04 2.70E 06 2.00E 02 6.46E 04 3.98E 06 0.015 9.87E 03 9.81E 03 1.23E 03 5.37E 06 1.98E 02 1.27E 03 7.92E 06 0.020 9.74E 03 9.68E 03 2.05E 03 9.11E 06 1.95E 02 2.11E 03 1.32E 05 0.030 9.42E 03 9.36E 03 3.99E 03 1.79E 05 1.89E 02 4.09E 03 2.62E 05 0.040 9.03E 03 8.96E 03 6.37E 03 2.91E 05 1.80E 02 6.56E 03 4.27E 05 0.050 8.62E 03 8.56E 03 8.81E 03 4.16E 05 1.72E 02 9.09E 03 6.11E 05 0.060 8.21E 03 8.14E 03 1.13E 02 5.56E 05 1.63E 02 1.17E 02 8.10E 05 0.080 7.55E 03 7.52E 03 1.51E 02 8.71E 05 1.49E 02 1.58E 02 1.27E 04 0.10 7.25E 03 7.22E 03 1.68E 02 1.21E 04 1.42E 02 1.78E 02 1.75E 04 0.15 7.14E 03 7.13E 03 1.73E 02 2.13E 04 1.35E 02 1.93E 02 3.07E 04 0.20 7.42E 03 7.39E 03 1.54E 02 3.12E 04 1.36E 02 1.86E 02 4.44E 04 0.30 7.89E 03 7.86E 03 1.21E 02 5.44E 04 1.40E 02 1.69E 02 7.64E 04 0.40 8.02E 03 8.01E 03 1.09E 02 8.01E 04 1.40E 02 1.63E 02 1.11E 03 0.50 8.04E 03 8.01E 03 1.04E 02 1.07E 03 1.38E 02 1.59E 02 1.47E 03 0.60 8.03E 03 8.01E 03 9.99E 03 1.34E 03 1.37E 02 1.55E 02 1.83E 03 0.80 7.95E 03 7.93E 03 9.47E 03 1.78E 03 1.34E 02 1.49E 02 2.49E 03 1.0 7.86E 03 7.83E 03 9.07E 03 2.07E 03 1.30E 02 1.43E 02 2.95E 03 1.5 7.58E 03 7.57E 03 8.34E 03 2.40E 03 1.21E 02 1.30E 02 3.43E 03 2.0 7.28E 03 7.26E 03 7.77E 03 2.45E 03 1.12E 02 1.18E 02 3.43E 03 3.0 6.64E 03 6.63E 03 6.89E 03 2.31E 03 9.46E 03 9.76E 03 2.97E 03 4.0 6.01E 03 6.00E 03 6.19E 03 2.06E 03 7.93E 03 8.12E 03 2.37E 03 5.0 5.42E 03 5.41E 03 5.55E 03 1.79E 03 6.72E 03 6.83E 03 1.83E 03 6.0 4.87E 03 4.86E 03 4.97E 03 1.53E 03 5.78E 03 5.87E 03 1.41E 03 8.0 3.92E 03 3.91E 03 3.97E 03 1.08E 03 4.51E 03 4.57E 03 8.90E 04 10.0 3.17E 03 3.16E 03 3.20E 03 7.40E 04 3.71E 03 3.74E 03 6.05E 04

PAGE 111

111 Table B 1 3 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the radii. Proximal r adii Distal r adii TM 50 r S ) TM 50 r S ) Source t issue r S Source t issue r S Energy (MeV) IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 2.02E 01 1.05E 03 5.54E 06 6.40E 02 2.98E 04 2.34E 06 0.0015 2.02E 01 1.59E 03 8.38E 06 6.40E 02 4.51E 04 3.53E 06 0.002 2.02E 01 2.09E 03 1.10E 05 6.39E 02 5.94E 04 4.65E 06 0.003 2.01E 01 3.19E 03 1.68E 05 6.38E 02 9.07E 04 7.10E 06 0.004 2.01E 01 4.14E 03 2.19E 05 6.37E 02 1.18E 03 9.20E 06 0.005 2.01E 01 5.41E 03 2.85E 05 6.36E 02 1.54E 03 1.20E 05 0.006 2.00E 01 6.03E 03 3.18E 05 6.34E 02 1.71E 03 1.34E 05 0.008 1.99E 01 9.01E 03 4.75E 05 6.32E 02 2.56E 03 2.01E 05 0.010 1.99E 01 9.26E 03 4.90E 05 6.29E 02 2.64E 03 2.04E 05 0.015 1.97E 01 1.82E 02 9.58E 05 6.23E 02 5.16E 03 4.08E 05 0.020 1.94E 01 3.02E 02 1.60E 04 6.15E 02 8.58E 03 6.87E 05 0.030 1.88E 01 5.87E 02 3.18E 04 5.94E 02 1.67E 02 1.35E 04 0.040 1.80E 01 9.40E 02 5.22E 04 5.69E 02 2.68E 02 2.23E 04 0.050 1.71E 01 1.31E 01 7.48E 04 5.43E 02 3.72E 02 3.16E 04 0.060 1.63E 01 1.68E 01 9.89E 04 5.16E 02 4.78E 02 4.21E 04 0.080 1.49E 01 2.27E 01 1.54E 03 4.74E 02 6.44E 02 6.61E 04 0.10 1.42E 01 2.55E 01 2.14E 03 4.53E 02 7.24E 02 9.14E 04 0.15 1.37E 01 2.72E 01 3.77E 03 4.36E 02 7.69E 02 1.62E 03 0.20 1.39E 01 2.56E 01 5.55E 03 4.46E 02 7.17E 02 2.38E 03 0.30 1.45E 01 2.17E 01 9.67E 03 4.65E 02 6.11E 02 4.10E 03 0.40 1.46E 01 2.00E 01 1.41E 02 4.67E 02 5.68E 02 5.96E 03 0.50 1.44E 01 1.91E 01 1.87E 02 4.64E 02 5.47E 02 7.85E 03 0.60 1.42E 01 1.83E 01 2.30E 02 4.58E 02 5.27E 02 9.46E 03 0.80 1.38E 01 1.71E 01 2.96E 02 4.46E 02 4.99E 02 1.16E 02 1.0 1.33E 01 1.59E 01 3.33E 02 4.34E 02 4.74E 02 1.26E 02 1.5 1.20E 01 1.35E 01 3.46E 02 3.99E 02 4.23E 02 1.29E 02 2.0 1.08E 01 1.16E 01 3.16E 02 3.65E 02 3.80E 02 1.19E 02 3.0 8.39E 02 8.75E 02 2.29E 02 3.01E 02 3.09E 02 9.30E 03 4.0 6.49E 02 6.72E 02 1.52E 02 2.46E 02 2.51E 02 6.84E 03 5.0 5.14E 02 5.27E 02 9.88E 03 2.02E 02 2.05E 02 4.91E 03 6.0 4.20E 02 4.29E 02 6.62E 03 1.68E 02 1.70E 02 3.50E 03 8.0 3.09E 02 3.14E 02 3.50E 03 1.23E 02 1.24E 02 1.90E 03 10.0 2.45E 02 2.49E 02 2.19E 03 9.74E 03 9.82E 03 1.18E 03

PAGE 112

112 Table B 1 4 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the ulnae Proximal u lnae Distal u lnae TM 50 r S ) TM 50 r S ) Source t issue r S Source t issue r S Energy (MeV) IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 4.09E 02 8.61E 05 1.09E 06 1.73E 01 1.50E 03 8.77E 06 0.0015 4.09E 02 1.30E 04 1.65E 06 1.73E 01 2.27E 03 1.33E 05 0.002 4.08E 02 1.71E 04 2.18E 06 1.73E 01 2.99E 03 1.75E 05 0.003 4.07E 02 2.62E 04 3.32E 06 1.73E 01 4.57E 03 2.67E 05 0.004 4.07E 02 3.39E 04 4.32E 06 1.72E 01 5.93E 03 3.45E 05 0.005 4.06E 02 4.43E 04 5.62E 06 1.72E 01 7.74E 03 4.52E 05 0.006 4.05E 02 4.93E 04 6.28E 06 1.72E 01 8.63E 03 5.01E 05 0.008 4.03E 02 7.38E 04 9.34E 06 1.71E 01 1.29E 02 7.54E 05 0.010 4.01E 02 7.58E 04 9.70E 06 1.71E 01 1.33E 02 7.67E 05 0.015 3.97E 02 1.49E 03 1.88E 05 1.69E 01 2.60E 02 1.53E 04 0.020 3.91E 02 2.47E 03 3.17E 05 1.67E 01 4.31E 02 2.57E 04 0.030 3.77E 02 4.83E 03 6.30E 05 1.61E 01 8.83E 02 5.12E 04 0.040 3.60E 02 7.74E 03 1.02E 04 1.54E 01 1.33E 01 8.34E 04 0.050 3.42E 02 1.07E 02 1.45E 04 1.48E 01 1.84E 01 1.20E 03 0.060 3.23E 02 1.38E 02 1.92E 04 1.41E 01 2.34E 01 1.59E 03 0.080 2.93E 02 1.87E 02 2.97E 04 1.31E 01 3.08E 01 2.51E 03 0.10 2.77E 02 2.13E 02 4.09E 04 1.27E 01 3.37E 01 3.48E 03 0.15 2.56E 02 2.43E 02 7.15E 04 1.27E 01 3.26E 01 6.23E 03 0.20 2.50E 02 2.51E 02 1.03E 03 1.32E 01 2.78E 01 9.24E 03 0.30 2.46E 02 2.50E 02 2.03E 03 1.37E 01 2.16E 01 1.61E 02 0.40 2.43E 02 2.47E 02 2.50E 03 1.36E 01 1.92E 01 2.31E 02 0.50 2.40E 02 2.44E 02 3.31E 03 1.34E 01 1.79E 01 2.91E 02 0.60 2.37E 02 2.41E 02 4.08E 03 1.32E 01 1.68E 01 3.32E 02 0.80 2.31E 02 2.34E 02 5.26E 03 1.26E 01 1.52E 01 3.71E 02 1.0 2.25E 02 2.27E 02 5.95E 03 1.20E 01 1.38E 01 3.76E 02 1.5 2.09E 02 2.10E 02 6.45E 03 1.04E 01 1.14E 01 3.36E 02 2.0 1.94E 02 1.95E 02 6.25E 03 8.87E 02 9.48E 02 2.75E 02 3.0 1.66E 02 1.67E 02 5.28E 03 6.34E 02 6.62E 02 1.63E 02 4.0 1.41E 02 1.42E 02 4.23E 03 4.68E 02 4.82E 02 9.25E 03 5.0 1.20E 02 1.20E 02 3.30E 03 3.68E 02 3.77E 02 5.70E 03 6.0 1.03E 02 1.03E 02 2.53E 03 3.03E 02 3.10E 02 3.85E 03 8.0 7.81E 03 7.80E 03 1.51E 03 2.24E 02 2.28E 02 2.09E 03 10.0 6.24E 03 6.24E 03 9.76E 04 1.79E 02 1.82E 02 1.32E 03

PAGE 113

113 Table B 1 5 Specific absorbed fractions (g 1 ) for shallow marrow targets in the wrists and hands TM 50 r S ) Source t issue r S Energy (MeV) IM TBV CBS HC or CBV 0.001 3.09E 02 1.11E 04 3.17E 07 0.0015 3.09E 02 1.68E 04 4.80E 07 0.002 3.08E 02 2.21E 04 6.32E 07 0.003 3.08E 02 3.37E 04 9.64E 07 0.004 3.07E 02 4.37E 04 1.25E 06 0.005 3.06E 02 5.71E 04 1.63E 06 0.006 3.06E 02 6.36E 04 1.82E 06 0.008 3.05E 02 9.50E 04 2.72E 06 0.010 3.03E 02 9.78E 04 2.80E 06 0.015 3.00E 02 1.92E 03 5.50E 06 0.020 2.96E 02 3.19E 03 9.17E 06 0.030 2.85E 02 6.20E 03 1.83E 05 0.040 2.73E 02 9.92E 03 2.99E 05 0.050 2.59E 02 1.37E 02 4.27E 05 0.060 2.46E 02 1.76E 02 5.71E 05 0.080 2.24E 02 2.37E 02 9.01E 05 0.10 2.12E 02 2.67E 02 1.26E 04 0.15 2.01E 02 2.87E 02 2.28E 04 0.20 2.00E 02 2.73E 02 3.35E 04 0.30 2.00E 02 2.43E 02 5.45E 04 0.40 1.96E 02 2.28E 02 7.37E 04 0.50 1.89E 02 2.17E 02 9.19E 04 0.60 1.83E 02 2.07E 02 1.09E 03 0.80 1.69E 02 1.89E 02 1.37E 03 1.0 1.56E 02 1.72E 02 1.58E 03 1.5 1.27E 02 1.37E 02 1.73E 03 2.0 1.04E 02 1.10E 02 1.50E 03 3.0 7.47E 03 7.71E 03 9.53E 04 4.0 5.85E 03 5.99E 03 6.21E 04 5.0 4.85E 03 4.93E 03 4.42E 04 6.0 4.16E 03 4.23E 03 3.33E 04 8.0 3.22E 03 3.26E 03 2.08E 04 10.0 2.62E 03 2.64E 03 1.41E 04

PAGE 114

114 Table B 1 6 Specific absorbed fractions (g 1 ) for shallow marrow targets in the shafts of the arm bones Humeral upper shafts Humeral lower shafts Radial shafts Ulnar shafts (TM 50 r S ) (TM 50 r S ) (TM 50 r S ) (TM 50 r S ) Source tissue r S Source tissue r S Source tissue r S Source tissue r S Energy (MeV) MAM or MIM CBS MC CBV MIM CBS MC CBV MIM CBS MC CBV MIM CBS MC CBV 0.001 4.68E 02 1.48E+00 2.42E 05 4.65E 02 1.35E+00 2.45E 05 6.21E 02 1.19E+00 2.91E 05 6.06E 02 1.27E+00 2.79E 05 0.0015 4.68E 02 1.48E+00 3.67E 05 4.65E 02 1.34E+00 3.70E 05 6.21E 02 1.19E+00 4.40E 05 6.06E 02 1.26E+00 4.22E 05 0.002 4.68E 02 1.48E+00 4.83E 05 4.64E 02 1.34E+00 4.88E 05 6.20E 02 1.19E+00 5.80E 05 6.05E 02 1.26E+00 5.57E 05 0.003 4.68E 02 1.47E+00 7.37E 05 4.63E 02 1.33E+00 7.44E 05 6.19E 02 1.18E+00 8.84E 05 6.04E 02 1.25E+00 8.48E 05 0.004 4.68E 02 1.46E+00 9.55E 05 4.62E 02 1.33E+00 9.66E 05 6.18E 02 1.18E+00 1.15E 04 6.03E 02 1.25E+00 1.10E 04 0.005 4.68E 02 1.46E+00 1.25E 04 4.61E 02 1.32E+00 1.26E 04 6.17E 02 1.17E+00 1.50E 04 6.02E 02 1.24E+00 1.43E 04 0.006 4.68E 02 1.45E+00 1.38E 04 4.60E 02 1.31E+00 1.40E 04 6.15E 02 1.16E+00 1.67E 04 6.01E 02 1.23E+00 1.61E 04 0.008 4.68E 02 1.43E+00 2.09E 04 4.58E 02 1.30E+00 2.10E 04 6.13E 02 1.15E+00 2.48E 04 5.98E 02 1.22E+00 2.38E 04 0.010 4.68E 02 1.42E+00 2.11E 04 4.56E 02 1.29E+00 2.16E 04 6.11E 02 1.14E+00 2.59E 04 5.96E 02 1.21E+00 2.50E 04 0.015 4.68E 02 1.38E+00 4.25E 04 4.51E 02 1.25E+00 4.24E 04 6.05E 02 1.11E+00 5.00E 04 5.90E 02 1.18E+00 4.78E 04 0.020 4.68E 02 1.35E+00 6.96E 04 4.47E 02 1.22E+00 6.87E 04 5.99E 02 1.09E+00 8.24E 04 5.84E 02 1.15E+00 7.79E 04 0.030 4.68E 02 1.39E+00 1.41E 03 4.37E 02 1.26E+00 1.40E 03 5.84E 02 1.12E+00 1.72E 03 5.70E 02 1.18E+00 1.63E 03 0.040 4.65E 02 1.44E+00 2.33E 03 4.23E 02 1.30E+00 2.31E 03 5.66E 02 1.16E+00 2.87E 03 5.52E 02 1.23E+00 2.69E 03 0.050 4.68E 02 1.47E+00 3.44E 03 4.06E 02 1.33E+00 3.45E 03 5.43E 02 1.18E+00 4.10E 03 5.30E 02 1.25E+00 3.98E 03 0.060 4.68E 02 1.47E+00 4.73E 03 3.88E 02 1.33E+00 4.71E 03 5.19E 02 1.18E+00 5.68E 03 5.06E 02 1.25E+00 5.40E 03 0.080 4.65E 02 1.26E+00 7.11E 03 3.50E 02 1.14E+00 6.98E 03 4.69E 02 1.01E+00 8.45E 03 4.57E 02 1.07E+00 8.10E 03 0.10 4.59E 02 1.01E+00 8.71E 03 3.27E 02 9.19E 01 8.64E 03 4.36E 02 8.14E 01 1.05E 02 4.26E 02 8.63E 01 1.00E 02 0.15 4.56E 02 6.42E 01 1.07E 02 2.95E 02 5.82E 01 1.05E 02 3.96E 02 5.17E 01 1.29E 02 3.87E 02 5.47E 01 1.22E 02 0.20 4.59E 02 4.54E 01 1.16E 02 2.83E 02 4.11E 01 1.15E 02 3.79E 02 3.66E 01 1.39E 02 3.71E 02 3.88E 01 1.34E 02 0.30 4.54E 02 2.85E 01 1.24E 02 2.73E 02 2.58E 01 1.21E 02 3.61E 02 2.30E 01 1.49E 02 3.53E 02 2.44E 01 1.41E 02 0.40 4.36E 02 2.07E 01 1.30E 02 2.64E 02 1.87E 01 1.27E 02 3.52E 02 1.67E 01 1.56E 02 3.43E 02 1.77E 01 1.48E 02 0.50 4.36E 02 1.62E 01 1.34E 02 2.63E 02 1.47E 01 1.31E 02 3.46E 02 1.32E 01 1.61E 02 3.37E 02 1.40E 01 1.54E 02 0.60 4.27E 02 1.35E 01 1.36E 02 2.59E 02 1.23E 01 1.33E 02 3.38E 02 1.11E 01 1.66E 02 3.32E 02 1.17E 01 1.58E 02 0.80 4.16E 02 1.01E 01 1.39E 02 2.51E 02 9.28E 02 1.38E 02 3.29E 02 8.38E 02 1.74E 02 3.18E 02 8.87E 02 1.66E 02 1.0 3.92E 02 8.30E 02 1.44E 02 2.45E 02 7.49E 02 1.43E 02 3.12E 02 6.85E 02 1.76E 02 3.11E 02 7.23E 02 1.67E 02 1.5 3.46E 02 5.77E 02 1.46E 02 2.27E 02 5.25E 02 1.42E 02 2.76E 02 4.89E 02 1.60E 02 2.83E 02 5.12E 02 1.59E 02 2.0 3.02E 02 4.58E 02 1.35E 02 2.09E 02 4.19E 02 1.27E 02 2.31E 02 4.03E 02 1.50E 02 2.39E 02 4.26E 02 1.48E 02 3.0 2.27E 02 3.46E 02 1.19E 02 1.62E 02 3.17E 02 1.15E 02 1.54E 02 2.71E 02 1.20E 02 1.61E 02 2.94E 02 1.23E 02 4.0 1.75E 02 2.68E 02 1.06E 02 1.22E 02 2.40E 02 9.97E 03 1.12E 02 2.05E 02 9.07E 03 1.17E 02 2.19E 02 9.59E 03 5.0 1.40E 02 2.11E 02 9.02E 03 9.70E 03 1.86E 02 8.12E 03 8.87E 03 1.58E 02 7.34E 03 9.54E 03 1.69E 02 7.67E 03 6.0 1.15E 02 1.72E 02 7.49E 03 7.96E 03 1.55E 02 6.83E 03 7.30E 03 1.32E 02 6.19E 03 7.83E 03 1.41E 02 6.36E 03 8.0 8.90E 03 1.30E 02 5.68E 03 5.87E 03 1.15E 02 5.16E 03 5.51E 03 9.80E 03 4.59E 03 5.76E 03 1.06E 02 4.79E 03 10.0 7.18E 03 1.01E 02 4.54E 03 4.87E 03 9.17E 03 4.05E 03 4.33E 03 7.83E 03 3.64E 03 4.68E 03 8.22E 03 3.91E 03

PAGE 115

115 Table B 17 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the femora. Proximal femora Distal femora TM 50 r S ) TM 50 r S ) Source tissue r S Source tissue r S Energy (MeV) AM IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 9.23E 03 9.26E 03 2.10E 05 2.90E 07 6.36E 03 2.04E 05 1.40E 07 0.0015 9.22E 03 9.25E 03 3.17E 05 4.38E 07 6.35E 03 3.09E 05 2.12E 07 0.002 9.21E 03 9.25E 03 4.18E 05 5.77E 07 6.35E 03 4.07E 05 2.79E 07 0.003 9.19E 03 9.23E 03 6.37E 05 8.80E 07 6.34E 03 6.20E 05 4.26E 07 0.004 9.17E 03 9.21E 03 8.27E 05 1.14E 06 6.32E 03 8.06E 05 5.52E 07 0.005 9.15E 03 9.19E 03 1.08E 04 1.49E 06 6.31E 03 1.05E 04 7.22E 07 0.006 9.13E 03 9.17E 03 1.20E 04 1.66E 06 6.30E 03 1.17E 04 8.03E 07 0.008 9.09E 03 9.13E 03 1.80E 04 2.48E 06 6.27E 03 1.75E 04 1.20E 06 0.010 9.05E 03 9.09E 03 1.85E 04 2.55E 06 6.25E 03 1.80E 04 1.23E 06 0.015 8.96E 03 8.99E 03 3.63E 04 5.02E 06 6.18E 03 3.54E 04 2.43E 06 0.020 8.83E 03 8.86E 03 6.02E 04 8.47E 06 6.10E 03 5.86E 04 4.04E 06 0.030 8.51E 03 8.53E 03 1.18E 03 1.66E 05 5.89E 03 1.15E 03 7.97E 06 0.040 8.13E 03 8.14E 03 1.89E 03 2.73E 05 5.63E 03 1.84E 03 1.31E 05 0.050 7.72E 03 7.72E 03 2.63E 03 3.88E 05 5.37E 03 2.55E 03 1.86E 05 0.060 7.31E 03 7.30E 03 3.39E 03 5.16E 05 5.09E 03 3.29E 03 2.46E 05 0.080 6.60E 03 6.60E 03 4.65E 03 8.04E 05 4.64E 03 4.49E 03 3.84E 05 0.10 6.21E 03 6.20E 03 5.34E 03 1.11E 04 4.41E 03 5.11E 03 5.31E 05 0.15 5.71E 03 5.71E 03 6.11E 03 1.95E 04 4.19E 03 5.68E 03 9.48E 05 0.20 5.57E 03 5.57E 03 6.20E 03 2.80E 04 4.21E 03 5.56E 03 1.38E 04 0.30 5.54E 03 5.54E 03 5.96E 03 4.72E 04 4.31E 03 5.17E 03 2.35E 04 0.40 5.50E 03 5.51E 03 5.82E 03 6.85E 04 4.32E 03 5.02E 03 3.42E 04 0.50 5.46E 03 5.46E 03 5.75E 03 9.03E 04 4.31E 03 4.93E 03 4.56E 04 0.60 5.42E 03 5.43E 03 5.68E 03 1.10E 03 4.29E 03 4.85E 03 5.70E 04 0.80 5.34E 03 5.34E 03 5.55E 03 1.37E 03 4.24E 03 4.73E 03 7.89E 04 1.0 5.25E 03 5.25E 03 5.44E 03 1.52E 03 4.20E 03 4.62E 03 9.59E 04 1.5 5.03E 03 5.03E 03 5.19E 03 1.66E 03 4.05E 03 4.37E 03 1.18E 03 2.0 4.81E 03 4.81E 03 4.95E 03 1.67E 03 3.90E 03 4.14E 03 1.25E 03 3.0 4.38E 03 4.38E 03 4.48E 03 1.54E 03 3.60E 03 3.75E 03 1.23E 03 4.0 3.98E 03 3.98E 03 4.06E 03 1.38E 03 3.31E 03 3.40E 03 1.13E 03 5.0 3.60E 03 3.60E 03 3.67E 03 1.20E 03 3.02E 03 3.08E 03 1.01E 03 6.0 3.25E 03 3.25E 03 3.31E 03 1.04E 03 2.77E 03 2.81E 03 8.98E 04 8.0 2.65E 03 2.65E 03 2.70E 03 7.52E 04 2.31E 03 2.34E 03 6.83E 04 10.0 2.19E 03 2.19E 03 2.23E 03 5.37E 04 1.95E 03 1.97E 03 5.13E 04

PAGE 116

116 Table B 1 8 Specific absorbed fractions (g 1 ) for shallow marrow targets in the patellae TM 50 r S ) Source tissue r S Energy (MeV) IM TBV CBS HC or CBV 0.001 5.86E 02 2.80E 04 3.87E 06 0.0015 5.86E 02 3.69E 04 5.09E 06 0.002 5.84E 02 5.62E 04 7.77E 06 0.003 5.83E 02 7.31E 04 1.01E 05 0.004 5.82E 02 9.53E 04 1.32E 05 0.005 5.81E 02 1.06E 03 1.47E 05 0.006 5.79E 02 1.59E 03 2.19E 05 0.008 5.76E 02 1.64E 03 2.25E 05 0.015 5.70E 02 3.20E 03 4.44E 05 0.020 5.63E 02 5.32E 03 7.47E 05 0.030 5.44E 02 1.03E 02 1.48E 04 0.040 5.20E 02 1.66E 02 2.41E 04 0.050 4.96E 02 2.30E 02 3.45E 04 0.060 4.70E 02 2.96E 02 4.57E 04 0.080 4.31E 02 4.00E 02 7.14E 04 0.10 4.09E 02 4.52E 02 9.85E 04 0.15 3.90E 02 4.94E 02 1.73E 03 0.20 3.91E 02 4.84E 02 2.52E 03 0.30 3.97E 02 4.49E 02 4.33E 03 0.40 3.96E 02 4.33E 02 6.26E 03 0.50 3.92E 02 4.22E 02 8.05E 03 0.60 3.87E 02 4.13E 02 9.42E 03 0.80 3.76E 02 3.97E 02 1.10E 02 1.0 3.65E 02 3.82E 02 1.17E 02 1.5 3.37E 02 3.46E 02 1.16E 02 2.0 3.09E 02 3.15E 02 1.07E 02 3.0 2.56E 02 2.59E 02 8.37E 03 4.0 2.12E 02 2.14E 02 6.23E 03 5.0 1.76E 02 1.77E 02 4.52E 03 6.0 1.48E 02 1.49E 02 3.31E 03 8.0 1.10E 02 1.10E 02 1.86E 03 10.0 8.69E 03 8.72E 03 1.16E 03

PAGE 117

117 Table B 19. Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the tibiae. Proximal tibiae Distal tibiae TM 50 r S ) TM 50 r S ) Source tissue r S Sour ce tissue r S Energy (MeV) IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 7.47E 03 2.83E 05 2.03E 07 2.14E 02 7.38E 05 6.21E 07 0.0015 7.46E 03 4.28E 05 3.07E 07 2.14E 02 1.12E 04 9.38E 07 0.002 7.45E 03 5.63E 05 4.05E 07 2.14E 02 1.47E 04 1.24E 06 0.003 7.44E 03 8.59E 05 6.17E 07 2.13E 02 2.24E 04 1.89E 06 0.004 7.42E 03 1.12E 04 8.02E 07 2.13E 02 2.91E 04 2.45E 06 0.005 7.41E 03 1.46E 04 1.04E 06 2.12E 02 3.80E 04 3.20E 06 0.006 7.39E 03 1.62E 04 1.17E 06 2.12E 02 4.24E 04 3.56E 06 0.008 7.36E 03 2.42E 04 1.74E 06 2.11E 02 6.32E 04 5.33E 06 0.010 7.33E 03 2.50E 04 1.80E 06 2.10E 02 6.53E 04 5.46E 06 0.015 7.26E 03 4.90E 04 3.51E 06 2.08E 02 1.28E 03 1.08E 05 0.020 7.16E 03 8.11E 04 6.01E 06 2.05E 02 2.12E 03 1.81E 05 0.030 6.93E 03 1.58E 03 1.18E 05 1.98E 02 4.13E 03 3.60E 05 0.040 6.63E 03 2.54E 03 1.92E 05 1.89E 02 6.66E 03 5.88E 05 0.050 6.33E 03 3.52E 03 2.75E 05 1.81E 02 9.24E 03 8.42E 05 0.060 6.01E 03 4.52E 03 3.66E 05 1.72E 02 1.19E 02 1.12E 04 0.080 5.50E 03 6.14E 03 5.77E 05 1.57E 02 1.62E 02 1.75E 04 0.10 5.25E 03 6.93E 03 8.03E 05 1.49E 02 1.84E 02 2.41E 04 0.15 5.07E 03 7.44E 03 1.45E 04 1.42E 02 2.01E 02 4.27E 04 0.20 5.18E 03 6.98E 03 2.13E 04 1.44E 02 1.93E 02 6.24E 04 0.30 5.39E 03 6.16E 03 3.67E 04 1.49E 02 1.73E 02 1.08E 03 0.40 5.42E 03 5.92E 03 5.34E 04 1.49E 02 1.66E 02 1.57E 03 0.50 5.40E 03 5.79E 03 7.10E 04 1.49E 02 1.62E 02 2.09E 03 0.60 5.38E 03 5.69E 03 8.86E 04 1.48E 02 1.59E 02 2.59E 03 0.80 5.31E 03 5.54E 03 1.18E 03 1.45E 02 1.54E 02 3.37E 03 1.0 5.23E 03 5.42E 03 1.38E 03 1.42E 02 1.50E 02 3.84E 03 1.5 5.04E 03 5.15E 03 1.59E 03 1.35E 02 1.40E 02 4.27E 03 2.0 4.84E 03 4.92E 03 1.64E 03 1.27E 02 1.31E 02 4.24E 03 3.0 4.44E 03 4.48E 03 1.56E 03 1.12E 02 1.15E 02 3.78E 03 4.0 4.05E 03 4.09E 03 1.42E 03 9.89E 03 1.01E 02 3.18E 03 5.0 3.70E 03 3.72E 03 1.25E 03 8.69E 03 8.80E 03 2.62E 03 6.0 3.37E 03 3.39E 03 1.09E 03 7.63E 03 7.71E 03 2.13E 03 8.0 2.80E 03 2.81E 03 8.10E 04 5.93E 03 5.97E 03 1.38E 03 10.0 2.33E 03 2.34E 03 5.93E 04 4.71E 03 4.74E 03 8.99E 04

PAGE 118

118 Table B 20 Specific absorbed fractions (g 1 ) for shallow marrow targets in the spongiosa regions of the fibulae Proximal fibulae Distal fibulae TM 50 r S ) TM 50 r S ) Source tissue r S Source tissue r S Energy (MeV) IM TBV CBS HC or CBV IM TBV CBS HC or CBV 0.001 9.04E 02 4.67E 04 4.11E 06 1.11E 01 3.64E 04 3.20E 06 0.0015 9.03E 02 7.06E 04 6.20E 06 1.11E 01 5.51E 04 4.85E 06 0.002 9.02E 02 9.31E 04 8.18E 06 1.11E 01 7.26E 04 6.38E 06 0.003 9.01E 02 1.42E 03 1.25E 05 1.11E 01 1.11E 03 9.76E 06 0.004 8.99E 02 1.84E 03 1.62E 05 1.10E 01 1.44E 03 1.26E 05 0.005 8.97E 02 2.41E 03 2.11E 05 1.10E 01 1.88E 03 1.66E 05 0.006 8.95E 02 2.68E 03 2.37E 05 1.10E 01 2.09E 03 1.82E 05 0.008 8.92E 02 4.00E 03 3.50E 05 1.10E 01 3.12E 03 2.78E 05 0.010 8.88E 02 4.12E 03 3.67E 05 1.09E 01 3.22E 03 2.77E 05 0.015 8.79E 02 8.09E 03 7.02E 05 1.08E 01 6.30E 03 5.67E 05 0.020 8.67E 02 1.34E 02 1.18E 04 1.07E 01 1.05E 02 9.48E 05 0.030 8.38E 02 2.61E 02 2.34E 04 1.03E 01 2.04E 02 1.89E 04 0.040 8.02E 02 4.18E 02 3.82E 04 9.84E 02 3.28E 02 3.09E 04 0.050 7.65E 02 5.79E 02 5.45E 04 9.38E 02 4.55E 02 4.38E 04 0.060 7.27E 02 7.43E 02 7.22E 04 8.88E 02 5.87E 02 5.82E 04 0.080 6.67E 02 1.00E 01 1.13E 03 8.08E 02 7.99E 02 9.05E 04 0.10 6.38E 02 1.12E 01 1.55E 03 7.65E 02 9.08E 02 1.25E 03 0.15 6.17E 02 1.18E 01 2.72E 03 7.22E 02 1.01E 01 2.19E 03 0.20 6.34E 02 1.09E 01 3.98E 03 7.24E 02 9.84E 02 3.19E 03 0.30 6.57E 02 9.27E 02 6.88E 03 7.37E 02 8.93E 02 5.48E 03 0.40 6.57E 02 8.69E 02 1.00E 02 7.34E 02 8.49E 02 7.95E 03 0.50 6.51E 02 8.31E 02 1.30E 02 7.22E 02 8.19E 02 1.05E 02 0.60 6.43E 02 8.02E 02 1.52E 02 7.10E 02 7.94E 02 1.27E 02 0.80 6.25E 02 7.51E 02 1.79E 02 6.81E 02 7.48E 02 1.58E 02 1.0 6.03E 02 7.07E 02 1.88E 02 6.51E 02 7.06E 02 1.73E 02 1.5 5.51E 02 6.11E 02 1.84E 02 5.77E 02 6.13E 02 1.71E 02 2.0 4.97E 02 5.31E 02 1.65E 02 5.06E 02 5.29E 02 1.50E 02 3.0 3.96E 02 4.11E 02 1.19E 02 3.86E 02 3.96E 02 1.01E 02 4.0 3.14E 02 3.24E 02 8.13E 03 2.98E 02 3.04E 02 6.47E 03 5.0 2.52E 02 2.58E 02 5.47E 03 2.38E 02 2.42E 02 4.22E 03 6.0 2.07E 02 2.11E 02 3.75E 03 1.97E 02 1.99E 02 2.90E 03 8.0 1.53E 02 1.55E 02 2.02E 03 1.46E 02 1.48E 02 1.61E 03 10.0 1.21E 02 1.23E 02 1.27E 03 1.17E 02 1.18E 02 1.02E 03

PAGE 119

119 Table B 21 Specific absorbed fractions (g 1 ) for shallow marrow targets in the ankles and feet TM 50 r S ) Source tissue r S Energy (MeV) IM TBV CBS HC or CBV 0.001 5.06E 03 1.62E 05 9.06E 08 0.0015 5.05E 03 2.45E 05 1.37E 07 0.002 5.05E 03 3.23E 05 1.80E 07 0.003 5.04E 03 4.93E 05 2.75E 07 0.004 5.03E 03 6.40E 05 3.57E 07 0.005 5.01E 03 8.35E 05 4.67E 07 0.006 5.00E 03 9.31E 05 5.19E 07 0.008 4.98E 03 1.39E 04 7.79E 07 0.010 4.96E 03 1.43E 04 7.96E 07 0.015 4.91E 03 2.81E 04 1.58E 06 0.020 4.84E 03 4.65E 04 2.63E 06 0.030 4.68E 03 9.11E 04 5.25E 06 0.040 4.47E 03 1.46E 03 8.58E 06 0.050 4.26E 03 2.03E 03 1.22E 05 0.060 4.04E 03 2.61E 03 1.64E 05 0.080 3.68E 03 3.56E 03 2.57E 05 0.10 3.49E 03 4.04E 03 3.59E 05 0.15 3.30E 03 4.47E 03 6.49E 05 0.20 3.30E 03 4.37E 03 9.55E 05 0.30 3.36E 03 4.03E 03 1.56E 04 0.40 3.34E 03 3.88E 03 2.16E 04 0.50 3.30E 03 3.77E 03 2.77E 04 0.60 3.26E 03 3.68E 03 3.36E 04 0.80 3.17E 03 3.53E 03 4.46E 04 1.0 3.08E 03 3.38E 03 5.35E 04 1.5 2.85E 03 3.07E 03 6.43E 04 2.0 2.64E 03 2.80E 03 6.52E 04 3.0 2.28E 03 2.37E 03 5.81E 04 4.0 1.98E 03 2.04E 03 4.90E 04 5.0 1.74E 03 1.78E 03 4.06E 04 6.0 1.55E 03 1.58E 03 3.39E 04 8.0 1.26E 03 1.28E 03 2.39E 04 10.0 1.06E 03 1.07E 03 1.74E 04

PAGE 120

120 Table B 22 Specific absorbed fractions (g 1 ) for shallow marrow targets in the shafts of the leg bones Femoral upper shafts Femoral lower shafts Fibular shafts Tibial shafts (TM 50 r S ) (TM 50 r S ) (TM 50 r S ) (TM 50 r S ) Source tissue r S Source tissue r S Source tissue r S Source t issue r S Energy (MeV) MAM or MIM CBS MC CBV MIM CBS MC CBV MIM CBS MC CBV MIM CBS MC CBV 0.001 1.55E 02 6.74E 01 8.78E 06 1.40E 02 6.46E 01 7.61E 06 1.37E 01 1.60E+00 5.00E 05 1.33E 02 4.89E 01 4.04E 05 0.0015 1.55E 02 6.72E 01 1.33E 05 1.39E 02 6.44E 01 1.15E 05 1.37E 01 1.60E+00 7.56E 05 1.33E 02 4.87E 01 6.10E 05 0.002 1.55E 02 6.70E 01 1.75E 05 1.39E 02 6.43E 01 1.51E 05 1.37E 01 1.59E+00 9.97E 05 1.33E 02 4.86E 01 8.04E 05 0.003 1.55E 02 6.67E 01 2.67E 05 1.39E 02 6.40E 01 2.31E 05 1.37E 01 1.59E+00 1.52E 04 1.32E 02 4.84E 01 1.23E 04 0.004 1.55E 02 6.64E 01 3.47E 05 1.39E 02 6.36E 01 3.00E 05 1.36E 01 1.58E+00 1.97E 04 1.32E 02 4.81E 01 1.59E 04 0.005 1.55E 02 6.60E 01 4.52E 05 1.39E 02 6.33E 01 3.92E 05 1.36E 01 1.57E+00 2.58E 04 1.32E 02 4.79E 01 2.08E 04 0.006 1.55E 02 6.57E 01 5.05E 05 1.38E 02 6.30E 01 4.35E 05 1.36E 01 1.56E+00 2.87E 04 1.32E 02 4.76E 01 2.32E 04 0.008 1.55E 02 6.50E 01 7.51E 05 1.38E 02 6.23E 01 6.54E 05 1.36E 01 1.55E+00 4.28E 04 1.31E 02 4.71E 01 3.45E 04 0.010 1.55E 02 6.43E 01 7.80E 05 1.38E 02 6.17E 01 6.67E 05 1.35E 01 1.53E+00 4.42E 04 1.31E 02 4.67E 01 3.57E 04 0.015 1.55E 02 6.26E 01 1.51E 04 1.37E 02 6.01E 01 1.33E 04 1.34E 01 1.49E+00 8.66E 04 1.30E 02 4.54E 01 6.97E 04 0.020 1.55E 02 6.11E 01 2.46E 04 1.35E 02 5.87E 01 2.16E 04 1.33E 01 1.46E+00 1.43E 03 1.29E 02 4.44E 01 1.16E 03 0.030 1.54E 02 6.28E 01 4.93E 04 1.32E 02 6.04E 01 4.31E 04 1.29E 01 1.50E+00 2.93E 03 1.25E 02 4.57E 01 2.34E 03 0.040 1.54E 02 6.51E 01 8.15E 04 1.27E 02 6.26E 01 7.16E 04 1.25E 01 1.55E+00 4.83E 03 1.21E 02 4.74E 01 3.85E 03 0.050 1.54E 02 6.65E 01 1.21E 03 1.22E 02 6.39E 01 1.06E 03 1.21E 01 1.58E+00 7.09E 03 1.17E 02 4.84E 01 5.77E 03 0.060 1.54E 02 6.65E 01 1.66E 03 1.16E 02 6.39E 01 1.44E 03 1.15E 01 1.58E+00 9.79E 03 1.11E 02 4.84E 01 7.95E 03 0.080 1.54E 02 5.70E 01 2.49E 03 1.06E 02 5.48E 01 2.14E 03 1.04E 01 1.36E+00 1.47E 02 1.01E 02 4.14E 01 1.18E 02 0.10 1.53E 02 4.59E 01 3.02E 03 9.81E 03 4.41E 01 2.62E 03 9.72E 02 1.09E+00 1.83E 02 9.27E 03 3.33E 01 1.44E 02 0.15 1.55E 02 2.91E 01 3.73E 03 8.86E 03 2.79E 01 3.21E 03 8.82E 02 6.95E 01 2.21E 02 8.49E 03 2.11E 01 1.76E 02 0.20 1.51E 02 2.06E 01 4.06E 03 8.55E 03 1.97E 01 3.51E 03 8.34E 02 4.93E 01 2.43E 02 8.10E 03 1.49E 01 1.91E 02 0.30 1.51E 02 1.29E 01 4.32E 03 8.24E 03 1.23E 01 3.71E 03 7.88E 02 3.11E 01 2.61E 02 7.84E 03 9.36E 02 2.04E 02 0.40 1.50E 02 9.31E 02 4.55E 03 8.15E 03 8.93E 02 3.90E 03 7.65E 02 2.28E 01 2.75E 02 7.61E 03 6.77E 02 2.10E 02 0.50 1.49E 02 7.30E 02 4.59E 03 8.06E 03 7.00E 02 3.97E 03 7.36E 02 1.80E 01 2.89E 02 7.53E 03 5.32E 02 2.00E 02 0.60 1.49E 02 6.11E 02 4.73E 03 7.92E 03 5.85E 02 4.06E 03 7.17E 02 1.53E 01 3.01E 02 7.47E 03 4.46E 02 1.80E 02 0.80 1.44E 02 4.60E 02 4.89E 03 7.69E 03 4.40E 02 4.18E 03 6.66E 02 1.18E 01 3.11E 02 7.26E 03 3.34E 02 1.47E 02 1.0 1.37E 02 3.70E 02 4.95E 03 7.56E 03 3.52E 02 4.28E 03 6.16E 02 9.79E 02 2.99E 02 7.19E 03 2.70E 02 1.23E 02 1.5 1.28E 02 2.55E 02 5.20E 03 7.38E 03 2.45E 02 4.52E 03 4.40E 02 7.10E 02 2.81E 02 6.70E 03 1.82E 02 9.00E 03 2.0 1.15E 02 2.03E 02 5.05E 03 6.99E 03 1.94E 02 4.44E 03 3.23E 02 5.20E 02 2.33E 02 6.24E 03 1.45E 02 7.36E 03 3.0 9.52E 03 1.51E 02 4.48E 03 6.31E 03 1.42E 02 3.97E 03 2.04E 02 3.38E 02 1.54E 02 5.31E 03 1.08E 02 5.98E 03 4.0 7.75E 03 1.22E 02 4.12E 03 5.55E 03 1.17E 02 3.65E 03 1.51E 02 2.49E 02 1.14E 02 4.17E 03 8.57E 03 5.11E 03 5.0 6.32E 03 9.95E 03 3.81E 03 4.53E 03 9.69E 03 3.43E 03 1.18E 02 1.94E 02 9.04E 03 3.30E 03 6.82E 03 4.19E 03 6.0 5.31E 03 8.30E 03 3.36E 03 3.79E 03 8.07E 03 3.09E 03 9.93E 03 1.59E 02 7.51E 03 2.84E 03 5.69E 03 3.61E 03 8.0 3.99E 03 6.21E 03 2.61E 03 2.89E 03 5.89E 03 2.44E 03 7.45E 03 1.20E 02 5.79E 03 2.09E 03 4.22E 03 2.73E 03 10.0 3.24E 03 5.00E 03 2.10E 03 2.29E 03 4.72E 03 1.97E 03 5.96E 03 9.82E 03 4.59E 03 1.73E 03 3.41E 03 2.18E 03

PAGE 121

121 APPENDIX C FIGURES OF SKELETAL SITE SPECIFIC ABSORBED FRACTIONS TO ACTIVE MARROW TARGETS This is an appendix of figures showing the skeletal site specific absorbed fractions to active marrow targets for the University of Florida adult female reference phantom for a range of 33 discrete energies from 1 keV to 10 MeV. The sources included are: active marrow (AM), inactive marrow (IM), trabecular bone volume (TBV), and cortical bone volume (CBV). The cellularity was varied from 10 to 100% for active marrow self irradiation. All other sources were run at ICRP 70 reference cellularity, the value of which is indicated for each skeletal site.

PAGE 122

122 Figure C 1. Electron absorbed fractions to active marrow targets in the craniofacial bones for T AM, T IM, TBV, and CBV sources. Figure C 2. Electron absorbed fractions to active marrow targets in the mandible for T AM, T IM, TBV, and CBV sources.

PAGE 123

123 Figure C 3. Electron absorbed fractions to active marrow targets in the cervical vertebrae for TAM, TIM, TBV, and CBV sources. Figure C 4. Electron absorbed fractions to active marrow targets in the thoracic vertebrae for TAM, TIM, TBV, and CBV sources.

PAGE 124

124 Figure C 5. Electron absorbed fractions to active marrow targets in the lumbar vertebrae for TAM, TIM, TBV, and CBV sources. Figure C 6. Electron absorbed fractions to active marrow targets in the sternum for TAM, TIM, TBV, and CBV sources.

PAGE 125

125 Figure C 7. Electron absorbed fractions to active marrow targets in the ribs for TAM, TIM, TBV, and CBV sources. Figure C 8. Electron abso rbed fractions to active marrow targets in the scapulae for TAM, TIM, TBV, and CBV sources.

PAGE 126

126 Figure C 9. Electron absorbed fractions to active marrow targets in the clavicles for TAM, TIM, TBV, and CBV sources. Figure C 10. Electron absorbed fractions to active marrow targets in the os coxae for TAM, TIM, TBV, and CBV sources.

PAGE 127

127 Figure C 11. Electron absorbed fractions to active marrow targets in the sacrum for TAM, TIM, TBV, and CBV sources. Figure C 12. Electron absorbed fractions to active marrow targets in the proximal humeri for TAM, TIM, TBV, and CBV sources.

PAGE 128

128 Figure C 13. Electron absorbed fractions to active marrow targets in the proximal femora for TAM, TIM, TBV, and CBV sources. Figure C 1 4 Electron absorbed fractions to active marrow targets in the humeral upper shafts for MAM, MIM, CBS and CBV sources.

PAGE 129

129 Figure C 15. Electron absorbed fractions to active marrow targets in the femoral upper shafts for MAM, MIM, CBS and CBV sources.

PAGE 130

130 APPENDIX D FIGURES OF SKELETAL SITE SPECIFIC ABSORBED FRACTIONS TO SHALLOW MARROW TARGETS This is an appendix of figures illustrating the skeletal site specific absorbed fractions to shallow marrow targets for the University of Florida adult female reference phantom for a range of 33 discrete energies from 1 keV to 10 MeV. The sources included (when applicable) are: trabecular active marrow (TAM), trabecular inactive marrow (TIM), trabecular bone volume (TBV), cortical bone volume (CBV), medullary active marrow (MAM), medullary inactive marrow (MIM), and the cortical bone surfaces of the medullary cavity (CBS MC ). The cellularity was varied from 10 to 100% for active marrow self irradiation. All other sources were run at ICRP 70 reference cellulari ty.

PAGE 131

131 Figure D 1. Electron absorbed fractions to shallow marrow targets in the craniofacial bones for TAM, TIM, TBV, and CBV sources. Figure D 2. Electron absorbed fractions to shallow marrow targets in the mandible for TAM, TIM, TBV, and CB V sources.

PAGE 132

132 Figure D 3. Electron absorbed fractions to shallow marrow targets in the cervical vertebrae for TAM, TIM, TBV, and CBV sources. Figure D 4. Electron absorbed fractions to shallow marrow targets in the thoracic vertebrae for TAM, TIM, TBV, and CBV sources.

PAGE 133

133 Figure D 5. Electron absorbed fractions to shallow marrow targets in the lumbar vertebrae for TAM, TIM, TBV, and CBV sources. Figure D 6. Electron absorbed fractions to shallow marrow targets in the sternum for TAM, TIM, TB V, and CBV sources.

PAGE 134

134 Figure D 7 Electron absorbed fractions to shallow marrow targets in the ribs for TAM, TIM, TBV, and CBV sources. Figure D 8. Electron absorbed fractions to shallow marrow targets in the scapulae for TAM, TIM, TBV, and CBV sources.

PAGE 135

135 Figure D 9. Electron absorbed fractions to shallow marrow targets in the clavicles for TAM, TIM, TBV, and CBV sources. Figure D 10. Electron absorbed fractions to shallow marrow targets in the os coxae for TAM, TIM, TBV, and CBV sources.

PAGE 136

136 Figure D 1 1 Electron absorbed fractions to shallow marrow targets in the sacrum for TAM, TIM, TBV, and CBV sources. Figure D 12. Electron absorbed fractions to shallow marrow targets in the proximal humeri for TAM, TIM, TBV, and CBV sources.

PAGE 137

137 Figure D 1 3 Electron absorbed fractions to shallow marrow targets in the distal humeri for TIM, TBV, and CBV sources. Figure D 1 4 Electron absorbed fractions to shallow marrow targets in the proximal radii for TIM, TBV, and CBV sources.

PAGE 138

138 Figure D 1 5 Electron absorbed fractions to shallow marrow targets in the distal radii for TIM, TBV, and CBV sources. Figure D 1 6 Electron absorbed fractions to shallow marrow targets in the proximal ulnae for TIM, TBV, and CBV sources.

PAGE 139

139 Figure D 1 7 El ectron absorbed fractions to shallow marrow targets in the distal ulnae for TIM, TBV, and CBV sources. Figure D 1 8 Electron absorbed fractions to shallow marrow targets in the wrists and hands for TIM, TBV, and CBV sources.

PAGE 140

140 Figure D 19 Electron absorbed fractions to shallow marrow targets in the humeral upper shafts for MAM or M IM, CBS and CBV sources. Figure D 20 Electron absorbed fractions to shallow marrow targets in the humeral lower shafts for M IM, CBS and CBV sources.

PAGE 141

141 Figure D 21 Electron absorbed fractions to shallow marrow targets in the radial shafts for M IM, CBS and CBV sources. Figure D 22 Electron absorbed fractions to shallow marrow targets in the ulnar shafts for M IM, CBS and CBV sources.

PAGE 142

142 Figure D 23 Electron absorbed fractions to shallow marrow targets in the proximal femora for TAM, TIM, TBV, and CBV sources. Figure D 24 Electron absorbed fractions to shallow marrow targets in the distal femora for TIM, TBV, and CBV sources.

PAGE 143

143 Figure D 2 5 Electron absorbed fractions to shallow marrow targets in the patellae for TIM, TBV, and CBV sources. Figure D 26 Electron absorbed fractions to shallow marrow targets in the proximal tibiae for TIM, TBV, and CBV sources.

PAGE 144

144 Figure D 27 Electron absorbed fractions to shallow marrow targets in the distal tibiae for TIM, TBV, and CBV sources. Figure D 28 Electron absorbed fractions to shallow marrow targets in the proximal fibulae for TIM, TBV, and CBV sources.

PAGE 145

145 Figure D 29 Electron absorbed fractions to shallow marrow targets in the distal fibulae for TIM, TBV, and CBV sources. Figure D 3 0 Electron absorbed fractions to shallow marrow targets in the ankles and feet for TIM, TBV, and CBV sources.

PAGE 146

146 Figure D 31 Electr on absorbed fractions to shallow marrow targets in the femoral upper shafts for MAM or M IM, TBV, and CBV sources. Figure D 32 Electron absorbed fractions to shallow marrow targets in the femoral lower shafts for M IM, CBS and CBV sources.

PAGE 147

147 Figure D 33 Electron absorbed fractions to shallow marrow targets in the fibular shafts for M IM, CBS and CBV sources. Figure D 34 Electron absorbed fractions to shallow marrow targets in the tibial shafts for M IM, CBS and CBV sources.

PAGE 148

148 LIST OF RE FERENCES 1 ICRP, "ICRP Publication 89: Basic anatomical and physiological data for use in radiological protection: reference values," Ann. ICRP 32, (2002). 2 ICRP, "ICRP Publication 70: Basic anatomical and physiological data for use in radiological protection The skeleton," Ann. ICRP 25, (1995). 3 W. Gossner, "Target cells in internal dosimetry," Rad. Prot. Dos. 105 39 42 (2003). 4 H.K. Vnnen, H. Zhao, M. Mulari, J.M. Halleen, "The cell biology of osteoclast function," J Cell Sci 113 377 381 (2000). 5 D. Pafundi, "Image based skeletal tissue and electron dosimetry models for the ICRP reference pediatric age series," Doctoral Dissertation, 1 474 (2009). 6 G Sgouros, "Bone marrow dosimetry for radioimmunotherapy: Theoretical considerations," J. Nucl. Med. 34 689 694 (1993). 7 V. Lewington, "Cancer therapy using bone seeking isotopes," Phys. Med. Biol. 41 2027 2042 (1996). 8 A.P. Shah, D.W. Jokisch, D.A. Rajon, C.J. Watchman, P.W. Patton, W.E. Bolch, "Chord based versus voxel based methods of electron transport in the skeletal tissues," Med Phys 32 3151 3159 (2005). 9 ICRP, "ICRP Publication 30: Limits for intakes of radionuclides by workers," Ann. ICRP 8, (1982). 10 M. Hough, P. Johnson, D. Rajon, D. Jokisch, C. Lee, W. Bolch, "An image based skeletal dosimetry model for the ICRP reference adult male internal electron sources," Phys. Med. Biol. 56 2309 2346 (2011). 11 A. Beddoe, P. Darley, F. Spiers, "Measurements of trabecular bone structure in man," Phys. Med. Biol. 21 589 607 (1976). 12 J. Whitwell, F. Spiers, "Calculated beta ray dose factors for trabecular bone," Phys. Med. Biol. 21 16 38 (1976). 13 H. Woodard, E. Holodny, A summary of the data of mechanik on the distribution of human bone marrow," Phys Med Biol 5 57 59 (1960). 14 for selected radionuclides and organs, MIRD Pamp hlet No. 11," (New York, New York, 1975). 15 M. Stabin, K. Eckerman, W. Bolch, L. Bouchet, P. Patton, "Evolution and status of bone and marrow dose models," Cancer Biother. Radiopharm. 17 427 433 (2002).

PAGE 149

149 16 K. Eckerman, M. Stabin, "Electron absorbed fractio ns and dose conversion factors for marrow and bone by skeletal regions," Health Phys. 78 199 214 (2000). 17 M.G. Stabin, "MIRDOSE: personal computer software for internal dose assessment in nuclear medicine," J Nucl Med 37 538 546 (1996). 18 L. Bouche t, W. Bolch, R. Howell, D. Rao, "S Values for Radionuclides Localiz ed within the Skeleton," J. Nucl. Med. 41 189 212 (2000). 19 M. Stabin, J. Siegel, "Physical models and dose factors for use in internal dose assessment," Health Phys. 85 294 310 (2003). 20 M.G. Stabin, R.B. Sparks, E. Crowe, "OLINDA/EXM: the second generation personal computer software for internal dose assessment in nuclear medicine," J Nucl Med 46 1023 1027 (2005). 21 D.A. Rajon, J.C. Pichardo, J.M. Brindle, K.N. Kielar, D.W. Jokisch, P.W. Patton, W.E. Bolch, "Image segmentation of trabecular spongiosa by visual inspection of the gradient magnitude," Phys Med Biol 51 4447 4467 (2006). 22 M. Wayson, "Computational internal dosimetry methods as applied to the University of Florida ser ies of hybrid phantoms," Doctoral Dissertation, 1 480 (2012). 23 L. Johnson, "Morphologic analysis in pathology: The kinetics of disease and general biology of bone," Bone Biodynamics, 543 654 (1964). 24 F.W. Spiers, A.H. Beddoe, "Sites of incidence of osteo sarcoma in the long bones of man and the beagle," Health Phys. 44 49 64 (1983). 25 S. King, "Experimental surface or volume deposition of radionuclides in post mortem specimens of trabecular bone," Phys Med Biol 27 123 132 (1981). 26 N. Huiling, R. Rich ardson, "Radiation dose to trabecular bone marrow stem cells from 3 H, 14 C and selected emitters incorporated in a bone remodeling compartment," Phys. Med. Biol. 54 963 979 (2009). 27 L. Riggs, J. Marshall, J. Jowsey, R. Heaney, J. Bassingthwaighte, "Quantitative 45 Ca autoradiography of human bone," J. Lab. Clin. Med. 78 585 595 (1971).

PAGE 150

150 BIOGRAPHICAL SKETCH S he moved to Florida at the age of five. She is the daughter of Gary and Christine Benzenberg. In 2007 she graduated valedictorian from Allen D. Nease high school. She completed her undergraduate studies at the University of Florida while in the honors p rogram. In 2011 she received her Bachelor of Science for Nuclear Engineering and a minor in p hysics. She then continued her studies at the University of Florida in the Department of Biomedical Engineering for her graduate work