![]() ![]() |
![]() |
UFDC Home | myUFDC Home | Help |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Full Text | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PAGE 1 ASPECTRALMETHODFORNETWORKCACHEPLACEMENTBASEDONCOMMUTETIMEByPRIYANKASINHAATHESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA2013 PAGE 2 c2013PriyankaSinha 2 PAGE 3 Tomyparents(Mr.PradipSinhaandMrs.RekhaSinha),andmyuncle(Mr.ShaktiChatterjee) 3 PAGE 4 ACKNOWLEDGMENTS ThisthesiswouldnothavebeenpossiblewithouttheguidanceandthehelpofDr.JohnM.Shea.Iwouldliketothankhimforhisencouragementandhisvaluableguidanceinthepreparationandcompletionofthiswork.Iwouldalsoliketothankmyfamilyandfriendsforalltheirinvaluablesupport. 4 PAGE 5 TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 ABSTRACT ......................................... 9 CHAPTER 1INTRODUCTION ................................... 10 1.1ProblemOverview ............................... 10 1.2LiteratureReview ................................ 11 1.3SchemesthatAimtoImproveDataAccessEfciency ........... 12 1.3.1ImproveDataAccessEfciencywithSingleDataItem: ....... 12 1.3.2ImproveDataAccessEfciencywithMultipleDataItems: ..... 14 1.4SchemesthatAimtoImproveEnergyConsumption: ............ 16 1.5ContributionandOrganizationofthisThesis ................. 17 2SYSTEMMODELANDPROBLEMFORMULATION ............... 18 2.1SystemModel ................................. 18 2.1.1Topology ................................. 18 2.1.2LinkModel ................................ 19 2.2ProblemFormulation .............................. 20 2.2.1ExpectedCommuteTime ....................... 20 2.2.2UsingSpectralEmbeddingtoExpressCommuteTimeasEuclideanDistance ................................. 21 2.2.3OptimalityCriterion ........................... 23 3CLUSTERINGALGORITHM ............................ 24 3.1SelectionofAlgorithm ............................. 24 3.2PartitioningAroundMedoids(PAM)Algorithm ................ 25 3.3PAMforCacheSelection ........................... 26 3.4PAMParametersandPerformance ...................... 27 3.5MotivatingExample .............................. 28 4NETWORKSIMULATION .............................. 31 4.1Simulation .................................... 31 4.2Results ..................................... 33 5CONCLUSION .................................... 39 5 PAGE 6 REFERENCES ....................................... 40 BIOGRAPHICALSKETCH ................................ 43 6 PAGE 7 LISTOFTABLES Table page 4-1Simulationparameters ................................ 32 7 PAGE 8 LISTOFFIGURES Figure page 2-1TheGilbert-Elliotmodel ............................... 19 3-1Minimumaveragecommutetimeovermultipleruns. ............... 27 3-2AveragecommutetimebetweenverticesandmedoidsasafunctionofnumberofiterationsinthePAMclusteringalgorithm. .................... 28 3-3Clustersformedbydistance-basedPAMclustering. ............... 29 3-4Clustersformedbycommute-timebasedPAMclustering. ............ 29 4-1Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.01. ... 33 4-2Averageaccesslatencyvspgbforpbg=0.6androutingfrequency=0.01. ... 34 4-3Averageaccesslatencyvspgbforpbg=0.2androutingfrequency=0.01. ... 35 4-4Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.02. ... 36 4-5Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.05. ... 37 8 PAGE 9 AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofMasterofScienceASPECTRALMETHODFORNETWORKCACHEPLACEMENTBASEDONCOMMUTETIMEByPriyankaSinhaMay2013Chair:JohnM.SheaMajor:ElectricalandComputerEngineeringInformationcachinginnetworkscanbeusedtoreducelatencyandincreasereliabilityinaccessinginformationandalsotoreducenetworktrafc.Inwirelessnetworks,changingchannelconditionsmayimpacttheavailabilityofcaches,andthisshouldbetakenintoaccountwhendeterminingwhereinthenetworkscacheswillbeplaced.Inthisthesis,weinvestigatethisproblemandproposethatexpectedcommutetimebetweenanodesanditscorrespondingcacheisagoodmeasuretooptimizebecauseittakesintoaccountboththedistancesbetweenthenodeandthecacheandthenumberofpathsbetweenthenodeandthecache.Wethendevelopanefcientwaytoplacethecachesusingspectralclustering.TheperformanceofcacheplacementbasedonexpectedcommutetimeiscomparedtotheperformanceofcacheplacementbasedonEuclideandistanceTheresultsshowthatformostofnetworktopologies,thecommute-timebasedclusteringoutperformsprovidesbetteraccesslatencythandistance-basedclustering. 9 PAGE 10 CHAPTER1INTRODUCTION 1.1ProblemOverviewIncommunicationsnetworks,informationmaybecachedatlocationsthroughoutthenetworktoreducethecostinaccessingthatinformation.Forinstance,bycachingtheinformationclosetothenodesaccessingit,theinformationcangenerallybeaccessedatlowerlatency,higherspeed,andwithhigherreliability.IntheInternet,thisapproachhasspawnedthecreationofcontentdeliverycompanies,suchasAkamai.Cachingisalsoimportantinmilitarynetworks,andespeciallyindistributedwirelessnetworksinwhichcommunicationsoverlongroutesarepronetofailure.Inthisthesis,wefocusonthecaseofcacheplacementinwirelessadhocnetworks,andthediscussionwillbebasedonthisscenario.However,mostoftheideasandtechniquesareapplicabletootherwirelessandwiredcommunicationsnetworkswithminimalmodication.Animportantconsiderationiswheretoplacecachesinthenetwork.Thecachesshouldbedistributedthroughoutthenetworksothattheinformationiseasilyaccessiblebytheothernodesinthenetwork.Here,easilyaccessiblemayincludevariouscriteria,suchasshortpathsfromanodetothenearestcache.Givensuchapath,additionalcriteriacouldbethatithavehighreliability,highcapacity,orlowercongestion.Reliabilitycanbefurtherenhancedifthecacheisaccessibleviamultiplepossibleroutes.Inthisthesis,weproposetousetechniquesfromspectralgraphtheorytooptimizetheplacementofcachesinadistributedwirelessnetwork,withdynamiclinkstates.Informationiscachedatasetofnodesthatminimizestheexpectedcommutetimetonearbynodesthatmayaccessthecaches.Aswediscussfurtherbelow,expectedcommutetimebetweentwonodesisameasurethatnotonlydecreasesbothwhenthelengthofanypathconnectingthetwonodesdecreasesbutalsodecreaseswhenthenumberofpathsconnectingtwonodesincreases.Inaddition,byusingaspectralembeddingofthenodeadjacencyinformationintoahigh-dimensionalEuclidean 10 PAGE 11 space,theexpectedcommutetimeamongnodesinagraphcanbecalculatedusingEuclideandistance.Thislatterapproachallowsforcachestobeplacedusingsimplerepresentative-basedclusteringalgorithmsandalsoallowsformoreefcient,approximateoptimizationoftheexpectedcommutetimebyembeddingthenodesofthegraphinalower-dimensionalEuclideanspace.Resultsarepresentedtodemonstratetheeffectivenessofthealgorithms. 1.2LiteratureReviewSincewirelessnetworkshavelimitedcommunicationbandwidth,datacachingmaybeausefulapproachtoimprovetheefciencyofthedataaccess.Anumberofrecentandpastworkshavetackledtheproblemofcacheplacementinwirelessnetworks,andtheycanbebroadlycategorizedbasedonthefollowingcriteria: 1. Optimizationobjective: (a) Improvethedataaccessefciency (b) Improvetheenergyconsumption (c) Improvetherateofutilizationandcache-hitratio 2. Numberofdataitemsinnetwork: (a) Cacheplacementinanetworkwithsingledataitem (b) Cacheplacementinanetworkwithmultipledataitems:Theclassofproblemswithmultipledataitems,canagainbeclassiedonbasisofthesizeofdata: i. Uniform-sizedataitems ii. Nonuniform-sizedataitems 3. Optimizationapproach:Optimalcacheplacementforanetworkwithageneralgraphtopologyandasingletypeofdataitemisgenerallyformulatedasoneoftwodifferentgraph-theoryproblems: (a) Inthefacilitylocationproblem,thegoalistominimizethesumofthetotalcosts(cachesetupcost+accesscost)incurredduetocachingateachnodeinacertaincacheplacement,withoutanyconstraint,and (b) Inthek-medianproblem,thegoalistominimizethetotalaccesscostwithamaximumofkcachenodes. 11 PAGE 12 Cacheplacementproblemscanbefurtherclassiedintermsofthecomplexityofthealgorithmthatsolvesthem.Forinstance,boththefacilitylocationandk-medianproblemsareNP-hard,meaninganalgorithmforsolvingitcanbetranslatedintooneforsolvinganyNP-problem(nondeterministicpolynomialtimeproblem).TherearecertainworksthatareformulatedasAPX-hardproblems(approximableproblemsthatdoesnothaveapolynomialtimeapproximationscheme)like[ 1 ].Butinordertobeabletondasolutiontothesecacheplacementproblems,wemustovercomethehardnessorthenonapproxamibility.SeveralNP-hardorAPX-hardproblemshavebeensolvedusingconstant-factorapproximationalgorithms(polynomial-timeapproximationalgorithmswithapproximationratioboundedbyaconstant)aftercircumventingthehardnessorthenonapproximability.Example:[ 1 ]overcomesanonapproximabilityproblembychoosingtomaximizethereductionintotalaccesscostinsteadofminimizingthetotalaccesscost.SeveralworksovercomethehardnessofaNP-hardproblembyconsideringtreenetworksinsteadofgeneralgraphtopologies,[ 2 ],[ 3 ],[ 4 ],[ 5 ]. 4. Centralizedvs.distributed:Adistributedalgorithmhastheadvantageofbeingimplementableinanetworkwithdynamictrafcoveracentralizedone. 5. Memoryconstraint:Someoftheexistingworkstakeintoconsiderationthatthenodesinthenetworkmayhavelimitedmemoryandhenceposetheproblemwithamemoryconstraint[ 6 ].Inotherwork,memoryisnotconsideredaconstraint.Sincetheseclassicationcriteriaareoverlapping,weusetherstcriterion(optimizationobjective)asourprimarycriterionindescribingtheexistingliteratureoncacheplacementinwirelessnetworks. 1.3SchemesthatAimtoImproveDataAccessEfciency 1.3.1ImproveDataAccessEfciencywithSingleDataItem:In[ 7 ],thecacheplacementproblemisposedasatrade-offbetweenover-headcostduetocacheplacementandaccesslatency.ApolynomialtimealgorithmisdesignedtoapproximatelysolvetheNP-hardproblemofminimizingtheweightedsum 12 PAGE 13 ofoverheadcostandaccesslatency.Thealgorithmcanbeimplementedinadistributedandasynchronousfashion.In[ 8 ],ahybridcache-placementschemeisdevelopedthatcarriesoutanoptimaltradeoffbetweenthedisseminationandaccessoverheadcostandtheaccesslatency.Theproposedschemeusesaroutingnavigationalgraphthatguresoutthepotentialrelationshipamongthenodesintheroutingpaths,usingthecurrentdataaccesspatterns,andaclusteringstrategytopartitionthemultihopwirelessnetworktopicksuitablenodesforcacheplacementfromasetofnodesrelatedtotheusers'application.Thisapproachhelpsthecacheplacementschemebeadaptivetochangesindataaccesspatternswhileminimizingthenumberofcachenodes.Theschemeresultsinasmalleroverheadcostthanoodingandachievesasignicantimprovementwhenthenumberofnodesislarge.In[ 1 ]anevolutionaryapproachhasbeenproposedforndinganoptimalwebproxycacheplacementthatminimizestheaverageresponsetimeforaccessingthewebcontent.Whencomparedtothetraditionalapproacheslikedynamicprogrammingandpacketlevelsimulation,theevolutionaryapproachissaidtohavesimilarresultsaspacket-levelsimulationforsimplenetworks,whilebeingcomputationallyfaster.Theevolutionaryalgorithmhandleslargescalenetworksequallywellasthedynamicprogrammingapproach.Optimizingthecacheplacementtotradeoffbetweenthetotaltrafccostandaverageaccessdelayinwirelessmulti-hopadhocnetworksisconsideredin[ 2 ].SincedynamicnetworktopologiesareconsideredtheapproachiscalledDynamicCachePlacement(DCP).Unlikeotherdataaccessefciencyoptimizationproblems,DCPtakestheimpactofcontentionsinthewirelessnetworksintoaccount:hopcounts,whichareoftenusedtomeasurethetotalcostofcaching,resultindifferentperformancesdependingonthecontention/trafcloadsonthepaths.Threekindoftrafcowsareconsideredinthecachingsystem:AccessFlow:traversalofnodesfordataaccess,ReplyFlow(RF):Traversalofnodesforreplyingtodatarequestsfromcachenodes,andUpdateFlow:traversalofnodesforupdatingcache 13 PAGE 14 content.DCPaimstoselectcandidatenodesforcacheplacementsoastoreducetheaccesstrafcowsandincreasetheupdatetrafcowstothebestofthepossibilitiesandselectcachenodeswithfewercontentionsfromthecandidates.In[ 9 ]aneffectiveandlowcostcacheplacementschemeformobileP2Pnetworksisproposed,alongwithaschemetoupdatethecacheplacementasthenetworkevolves.Bothschemesareimplementableinadecentralizedmanner.In[ 10 ],aheuristiccache-distributionalgorithmisdevelopedthataimsatimprovingdocumentdownloadlatencybyimprovingtheovernetworklatency.Thisschemeestimatesthetrafcateachcacheofamesh-networkandbasedonthetrafc,eachcacheisassignedasuitablepercentageofthetotalstoragecapacityofthenetwork.Refs.[ 11 ]and[ 12 ]designoptimaldynamicprogrammingpolynomialalgorithmsforsolvingk-medianproblemsinundirectedanddirectedtrees,respectively.Inotherworks,[ 13 ]considerstheplacementofktransparentcaches,[ 14 ]considersacostmodelinvolvingreads,writes,andstorage,and[ 15 ]presentadistributedalgorithmforsensornetworkstoreducethetotalpowerexpended. 1.3.2ImproveDataAccessEfciencywithMultipleDataItems:Optimizingcacheplacementinadhocnetworkwithmultipletypesofdataitemsisthefocusof[ 16 ],inwhichthreedifferentalgorithmsareproposed.Intherst,eachnodecachestheitemsmostfrequentlyaccessedbyit.Thesecondapproacheliminatesreplicationsamongneighboringnodesintroducedbytherstapproach.Thethirdapproachrequirescreationofstablegroupstogatherneighborhoodinformationanddeterminecachingplacements.Theapproachin[ 16 ]isextendedin[ 17 ]and[ 18 ]bygeneralizingtheaboveapproachesforpush-basedsystemsandupdates,respectively.Here,[ 17 ]improvesusesapush-basedapproachtoshortentheaverageresponsetimefordataaccess,and[ 18 ]triestoimprovedataaccessibilityforsystemsinwhichthedataitemsareupdatedperiodically. 14 PAGE 15 Severalotherreferencesalsoconsidercacheplacementwithmultipledatatype.Ref.[ 19 ]suggeststransparentreplicaplacementintreenetworkstominimizetotaldatatransfercost.Tosupportdataaccessinamultipledataitemenvironment,[ 3 ]devisesthreesimpledistributedcachingtechniques:CacheData(cachesdataitemsthatarepassingby),CachePath(cachesthepathtothenearestcacheofthepassing-bydataitem),andHybridCache(whichcachesthedataitemifitssizeissmallenoughorthepathtothedataotherwise).TheyuseLRU(leastrecentlyused)policyforcachereplacement.Ref.[ 20 ],proposesa20.5-approximationnon-distributed(wheredistributedimplementationisnotpossible)algorithmforanon-APXoptimalcacheplacementwithuniform-sizemultipledataitems,asnopolynomial-timesolutionexistsforthenonuniform-sizedataitems.However,theirapproach(asnotedbythemselves)isnotamenabletoanefcientdistributedimplementation.Ref.[ 6 ]isasimilarworkthatminimizesthetotaldataaccesscostinadhocnetworkswithmultipleuniform-size(generalizabletonon-uniformsizedataitems)dataitemsandnodeswithlimitedmemorycapacity.Acentralizedtractablealgorithmwithaprovableperformanceboundisdeveloped.Thealgorithmisalsosuitabletoanaturaldistributedimplementation.Namely,acentralized4-approximationalgorithm(2-approximationforuniform-sizedataitems),andalocalizeddistributedalgorithm,basedontheapproximationalgorithmandcapableofhandlingmobilityofnodesanddynamictrafcconditionshavebeendevised.In[ 21 ],adatacachingalgorithmisproposedforadhocnetworkswithmultipledataitemsandwhosenodesexchangeinformationitemsinapeer-to-peermanner.Ateachnode,uponreceivingrequestedinformation,itdeterminesthecachedroptimeoftheinformationorwhichcontenttoreplaceforthenewlyarrivedinformation.Anearoptimalcacheplacementisproposedtomaximizereductioninoverallaccesscostwhilemeetingthelimitedmemoryconstraint,whichinturnleadstobetterbandwidthusageandenergysavings.Thealgorithmsproposedinthispaperarebothanalyticallytractablewithaprovableperformanceboundinacentralizedsettingandarealsoamenabletoa 15 PAGE 16 naturaldistributedimplementation.In[ 22 ]aneffectiveandlowcostcacheplacementstrategy,combinedwithanupdatescheme,hasbeenproposedwhichissuitablefordecentralizedimplementationinamobilepeer-to-peernetwork.Thispaperalsocomparesitsplacementandupdateschemewithvariousplacement-onlyschemeslikeGlobalBenetBasedCachePlacement(GBCP),LocalBenetBasedCachePlacement(LBCP)andClusterBasedCachePlacement(CBCP),andRandomPlacement(RAND)andestablishesthatacombinationofplacementandupdatedoesbetterthantheotherthreeplacementschemesintermsofaveragehopcountrequiredtotransmitasegmentofdata. 1.4SchemesthatAimtoImproveEnergyConsumption:In[ 4 ],cache-placementalgorithmsaredevelopedtominimizetheoverallaccesscostwithanupdatecostconstraint,thusreducingenergyconsumptionandtakingcareofresourceefciency.Dynamicprogrammingisusedtosolvetheoptimalcache-placementproblemfortreetopologies,andapolynomialtimealgorithmisdevelopedtoapproximatelysolvetheNP-hardcacheplacementproblemforgeneralgraphtopologies.Distributedimplementationsofthesealgorithmsarealsodeveloped.In[ 5 ]acachingschemethatoptimallytrades-offbetweenenergyconsumptionandaccesslatencyinwirelessadhocnetworkisdeveloped.Theproblemisaspecialcaseoftheconnectedfacilitylocationproblem,whichisknowntobeNP-hard.Apolynomialtimealgorithmforthesamehasbeendeveloped,whichprovidesasub-optimalsolutioninarbitrarynetworktopologies.Thisalgorithmcanbeimplementedinadistributedandasynchronousmanner.Inthecaseofatreetopology,thealgorithmgivesoptimalsolution.Anenergy-conservingcachingschemeforwirelesssensornetworksisdevelopedin[ 23 ].FindingthelocationsofthenodesforcachingdatatominimizecommunicationcostcorrespondstondingthenodesofaweightedMinimumSteinertreewhoseedgeweightsdependontheedge'sEuclideanlengthanditsdatatrafcrate.This 16 PAGE 17 treeiscalledaSteinerDataCachingTree(SDCT).ExpressionsdeterminingtheexactlocationofaSteinerpointforasetofthreenodesbasedontheirlocationarederivedalongwiththeirdatarefreshraterequirements.Basedonthese(optimality)results,adynamic,distributed,energy-conservingapplication-layerservicefordatacachingandasynchronousmulticastispresented.Areviewofthevariousdatacachingtechniquesinwirelesssensornetworks(WSNs)ispresentedin[ 24 ].In[ 15 ],adistributedapplication-layerserviceforcacheplacementandasynchronousmulticastinwirelesssensornetworkshasbeenproposedforplacingreplicasofrequesteddataitemsandupdatingtheminsuchamannersoastominimizethefrequencyofcommunication,whichresultsinreducedcommunicationoverheadandhencereducedpowerconsumption. 1.5ContributionandOrganizationofthisThesisTheexistingworkoncacheplacementfocusesonnetworksinwhichthelinksarereliable.Inwirelessmeshandadhocnetworks,dependingonthecommunicationfrequenciesandmobilityrates,thelinksmayoftenexperienceoutagesbecauseofmultipathfading.Thus,inthisthesiswefocusonthedesignofacacheplacementstrategytoimproveperformanceinthepresenceoflinkfailures.Therestofthisdocumentisorganizedasfollows.In chapter2 ,thesystemmodelispresented,andtheproposedmetricforoptimizingcacheplacementispresented.In chapter3 ,wedescribehowspectralclusteringalgorithmscanbeusedtoapproximatetheoptimalcacheplacements.In chapter4 ,wedescribeanetworksimulationthatwasusedtocompareperformanceoftheproposedcacheplacementalgorithmwithareferencealgorithm,andperformanceresultsarepresentedtoshowtheadvantagesofthecacheplacementalgorithmwepropose.Finally,in chapter5 ,conclusionsaredrawnandpossibleextensionstothisworkarediscussed. 17 PAGE 18 CHAPTER2SYSTEMMODELANDPROBLEMFORMULATION 2.1SystemModelWeconsiderawirelessnetworkwithstatictopologybuttime-varyingcommunicationlinks.Thisscenariocanmodelaslowlymovingadhocnetworkovershorttimeframesandissufcienttodemonstratewhethertheproposedcache-placementtechniquescanimproveperformanceinthepresenceoflinkqualityuctuations.Forthepurposesofthisstudy,atanygiventime,communicationoveralinkbetweentworadiosiseitherpossible(thelinkisup)ornotpossible(thelinkisdown).Linksareassumedtotransitionbetweenupanddownaccordingtoarandomprocess.Thus,wecancharacterizethenetworkintermsofitstopologyandthelinkmodel. 2.1.1TopologyConsiderrstthefullnetworktopology,whichconsistsofthesetofcommunicators(nodes)alongthesetoflinkswhenalllinksareup.ThefullnetworktopologycanberepresentedbyasimpleweightedgraphG=(V,E),whereVisthesetofvertices(representingthedataornodesinthenetwork)andEisthesetofedgesconnectingtheverticesinV.Forconvenience,letN=jVjbethenumberofvertices,ornodes,inthenetwork.WeassumethatGisaconnectedgraph,whichmeansthatthereisapathfromanyvertextoanyothervertex.Ifanedgeexistsbetweentwoverticesviandvj,thenthoseverticeshaveanonzerosimilarityorafnitymeasure,aij0whichistheweightassignedtothatedge.Largerweightsindicatethatcommunicationiseasierbetweenthenodes,intermsofanappropriatemeasure,suchasthroughputorreliability.TheweightscanbecollectedintoaweightedadjacencymatrixA=[aij],i,j=1,2,...,N.Herewij=0ifviandvjdonotshareanedgeorifi=j.Thedegreeofvertexvi2Visdi=PNj=1aij.LetDbethediagonalmatrixwithDii=di.Animportantmatrixthatwewillutilizelateristhe(unnormalized)LaplacianmatrixforG,whichisL=D)]TJ /F8 11.955 Tf 11.96 0 Td[(A. 18 PAGE 19 2.1.2LinkModelAspreviouslymentioned,atanygiventime,agivencommunicationlinkmayeitherbeupordown.Forconvenience,wedividetimeintoslotsandcharacterizethestateofeachedgeGineachslot.Weassumethatthestatesfordifferentlinksareindependent,whichmaynotnecessarilybetrueinsituationssuchasshadowing;howeverthiswillbetrueifthelinkqualityiscausedbyfadinginarichmultipathenvironment.Formostsituationsthatcauselinkqualitytouctuate,suchasfadingorshadowing,thelinkqualitywillnotbeindependentfromslottoslot.Tomodelthedependencebetweenslots,inthisthesis,weusetheGilbert-Elliotchannelmodel,whichisbasedonatwo-statediscrete-timeMarkovchain.Thetwostatesarethegoodstateandthebadstate,wherethelinkisupwhentheMarkovchainisinthegoodstateandthelinkisdownwhentheMarkovchainisinthebadstate.AstatediagramfortheGilbert-Elliotchannelisshownin Figure2-1 Figure2-1. TheGilbert-Elliotmodel Letpgbdenotetheconditionalprobabilitythatthenextstateisthebadstategiventhatthecurrentstateisthegoodstate.Similarly,letpbgdenotetheconditionalprobabilitythatthenextstateisthegoodstategiventhatthecurrentstateisthebadstate.TheGilbert-Elliotmodelcanbecompletelycharacterizedbyspecifyingtheprobabilitiesoftransitioningtotheoppositestate.(Thetworemainingstatetransitionprobabilitiesaregivenbypbb=1)]TJ /F3 11.955 Tf 12.55 0 Td[(pbgandpgg=1)]TJ /F3 11.955 Tf 12.55 0 Td[(pgb).Theexpectednumberofslotsforwhichaparticularlinkstaysinagivenstateisknownasthestatesojourntime,whichinturndependsonthetransitionprobabilitiesgiventhatthechannelisinthat 19 PAGE 20 particularstate.ThestatesojourntimesforthegoodandbadstateareTg=1=pgbandTb=1=pbg,respectively. 2.2ProblemFormulationWeconsidertheproblemofhowtoplaceKcachesamongtheNnodesinthenetworktominimizethelatencyfortheNnodestoaccessthecacheddata.LetCVbethesubsetofnodesatwhichdatawillbecached.Weconsidercacheplacementundertheassumptionthateachnodewillaccessasinglecacheforwhichithasthesmallestcosttoaccess.Inawirelessnetwork,evenifthelinksarereliable,thetimetofulllcacherequestsmaybeextremelydifculttocharacterizebecauseofcontentionissuesandqueuingdelays.Thus,weconsiderinsteadminimizingacostfunctionthatencodesfeaturesthatimpactlatency.Forexample,ifthelinksarereliable,stable,andmulti-pathroutingisnotused,thecostmaybethenumberofedgesthatmustbetraversedorthesumofacostfunctioncomputedfromtheweightsontheedges(suchasw)]TJ /F10 7.97 Tf 6.59 0 Td[(1ij).However,innetworkswithtime-varyinglinkquality,suchmeasuresmayresultinpoorperformancebecausetheydependonasingleroutefromthenodestothecaches,andtheseroutesmaybreakbecauseofchangesinlinkquality.Thus,itisdesirabletouseadistancemeasurethatincorporatespathlength,linksweights,andinformationaboutmultipleroutesbetweenthenodes.Onesuchmeasureisexpectedcommutetime. 2.2.1ExpectedCommuteTimeExpectedcommutetimeisdenedintermsofarandomwalkonthegraphG.Everyvertexinthegraphisassociatedwithastateinadiscrete-timehomogeneousMarkovchain.Lets(t)bethestateoftheMarkovChainattimet.Thenweletthetransitionprobabilitiesbetweenstatesbeproportionaltotheweightsoftheedgesemergingfromthestates.Thus,thesingle-steptransitionprobabilityfromstateitostatejisgivenbyP[s(t+1)=jjs(t)=i]=aij=di=pij.Sincethegraphisconnectedandtheedgesarenotdirected,theMarkovchainisirreducible. 20 PAGE 21 Considerthetimetorstreachsomestatekfromstatei,Tik.Formally,Tij=minft0js(t)=jands(0)=ig.Theexpected(oraverage)rst-passagetimefromstateitostatejism(jji)=E[Tij].Detailsofthecalculationofm(jji)aregivenin[ 25 ].Notethatm(jji)isnotnecessarilyequaltom(ijj),sincetheydepend,respectively,ontheprobabilitiesofleavingstateiandleavingstatej,whichareingeneraldifferent.Thus,m(jji)isnotadistancemeasure.However,considertheexpectedcommutetime,n(i,j)=m(jji)+m(ijj), (2)whichistheexpectedtimeforarandomwalkertorstreachstatejandthentorstreturntostatei.Thenn(i,j)isavaliddistancemeasure[ 25 ].Theexpectedcommutetimen(i,j)hastheusefulpropertythatitdecreaseswhenanyofthepathsbetweeniandjareshortenedorifadditionalpathsareaddedbetweeniandj.ThiscanbeshowntrueviaanisomorphismwithelectricalresistivenetworksandapplicationofRayleigh'sMonotonicityLaw[ 25 26 ].Thesepropertiesmaketheexpectedcommutetimeagoodcandidateforadistancemeasuretouseinselectingcachelocationsinacommunicationsnetworkbecausetheyencodenotonlythedistancebetweenthenodesandthecachesbutalsotherobustnessofthecachetolinkfailuresbecauselowerexpectedcommutetimebetweennodesisalsoassociatedwithmultiplepathsconnectingthenodes. 2.2.2UsingSpectralEmbeddingtoExpressCommuteTimeasEuclideanDis-tanceExpectedcommutetimehasanotherpropertythatmakesitagoodcandidateasadistancemeasure.ItcanbecomputedusingEuclideandistancebyanappropriateembeddingoftheverticesofthegraphintoahigh-dimensionalEuclideanspace.Thedetailsofthisapproacharegivenin[ 25 ]andsummarizedhereforclarity.LetLydenotetheMoore-PenroseinverseofL.NotefurtherthatLyisthediscreteGreen'sfunctionforL(withnoboundaryconditions)[ 27 ].LycanbewrittenintermsoftheLaplacianmatrix 21 PAGE 22 L,asLy=L)]TJ /F8 11.955 Tf 13.15 8.09 Td[(eeT n)]TJ /F10 7.97 Tf 6.59 0 Td[(1+eeT n, (2)wherenisthenumberofverticesofGande=[1,1,...,1]T.LetVGbethevolumeofthegraph,VG=nXi=1di. (2)Thentheexpectedcommutetimebetweennodesiandjisn(i,j)=VG(ei)]TJ /F8 11.955 Tf 11.96 0 Td[(ej)TLy(ei)]TJ /F8 11.955 Tf 11.95 0 Td[(ej), (2)whereeiistheunitvectoroflengthnwithzerosinallpositionsexceptfortheithposition,whichisone.InsteadofcomputingthecommutetimeusingLyand( 2 ),weinsteadproposetoembedtheverticesofGaspointsinaEuclideanspacewherethecommutetimecanbecomputedusingEuclideandistance.SinceLyisareal-symmetricmatrix,ishasaspectralfactorizationoftheformLy=UpUT.HerepisadiagonalmatrixwiththeeigenvaluesofLyonthediagonal,andUisamatrixwhosecolumnsaretheeigenvectorsofLy.Then( 2 )canberewrittenasn(i,j)=VG(xi)]TJ /F8 11.955 Tf 11.95 0 Td[(xj)T(xi)]TJ /F8 11.955 Tf 11.95 0 Td[(xj)=VGkxi)]TJ /F8 11.955 Tf 11.96 0 Td[(xjk2, (2)wherexi=p1=2UTei.Thus,thecoordinatesofalloftheembeddedverticesisgivenbythecolumnsofthematrixXgivenbyX=p1=2UT (2)Asnotedin[ 25 ],itisnotnecessarytocomputeLytocomputethespectralembeddinggivenby( 2 ).LetfyigbetheeigenvaluesofLy,andfigbetheeigenvalues 22 PAGE 23 ofL.ThenLandLyhavethesameeigenvectors,andyi=1=i(exceptfortheeigenvalue0,whichissharedbybothmatrices).Thus,theprojectionin( 2 )canbecarriedoutdirectlyfromtheeigenvaluesandeigenvectorsofL. 2.2.3OptimalityCriterionWewishtochooseasubsetCVsuchthattheexpectedcommutetimefromthenodesVtothecachesCisinminimizedaccordingtosomecostcriterion.Aspreviouslymentioned,weassumethateachnodeisassignedtoaccessonecache.Thus,thenetworkispartitionedbasedonwhichcachesthenodesareassignedto.LetC(Vi)bethecachetowhichvertexiisassigned,andletV(Cj)denotethesetofverticesassignedtocacheCj.Below,weassumethatspecifyingfC(Vi)gforallVi2VimplicitlyspeciesC.Wecalltheoptimizationcriterionforselectionofwhichnodeswillactascachesandforassignmentofnodestocachestheminimumaveragecommutetime(MACT):MACT=argminfC(Vig1 jVjXC2CXV2V(C)n(V,C) (2)Notethattheterm1=jVjisaconstantthatcanbeomittedinthecomputations.Theallocationofcachescanbesolvedefcientlyviaclustering,asdetailedinthenextchapter. 23 PAGE 24 CHAPTER3CLUSTERINGALGORITHM 3.1SelectionofAlgorithmAsmentionedin[ 28 ]clusteringalgorithmscanbebroadlydividedintotwoclasses:basedonhierarchicalmethodsandbasedonpartitioningmethods.Hierarchicalalgorithmsagaincanbeoftwomaintypes:agglomerativeanddivisive.Inagglomerativealgorithms,everyobjectformsaseparatecluster,andinconsecutivestepsclustersaremerged,untilthedesirednumberofclustersisachieved.Incontrast,divisiveclusteringstartsbyassigningallobjectstoasinglecluster,andsplittingoneclusterineachsubsequentstep.Thesplittingstopsafterdesirednumberofclustershavebeenachieved.Inthisworkwechoosetoworkwithpartitioningalgorithmsbecauseofaninherentdisadvantageofhierarchicalmethodstheirinabilitytoundoamergingorsplittingoftwoclusters,eveniftheirregroupingresultsinasmalleraveragedissimilarityinthenewcluster.Thispropertytypicallyresultsininferiorclusteringperformance.Ontheotherhand,apartitioningalgorithmtriestondoutthebestclusteringbyputtingthemostsimilarobjectstogetherinacluster.TherearevarioustypesofpartitioningalgorithmslikeK-means,K-medians,K-medoids,andfuzzyanalysis.WechosetoworkwithK-medoidalgorithmsbecauseunlikeK-meansproblems,K-medoidsclusteringproblemschooseasetofKobjectsfromthegivensetofobjectstobetherepresentativeoftheclustersandassociateseachoftherestoftheobjectstooneofthechosenKrepresentatives.InadditionK-medoidalgorithmsareknowntohandlelargedatasetsmoreefcientlyandneedsnomodicationfortranslationororthogonaltransformationofdatapoints.PartitioningAroundMedoids(PAM)isoneofthebestknownK-medoidalgorithms.AlthoughPAMhasaveryhighcomputationalcomplexity,weselectedPAMforourpurposeasitprovidesuswithveryhighqualityclusteringresultsandneedslittlemodicationfor 24 PAGE 25 handlingEuclideancriteria,andinthisthesisouraimistoachievethebestpossibleclusteringquality.Alternatively,theCLARANSalgorithmcanbeused,withlowercomplexity.CLARANSistheacronymforAClusteringAlgorithmbasedonRandomizedSearch).Thegeneralproblemofclusteringcanbeviewedastheproblemofsearchingagraphwhereeverynoderepresentsasolutioni.e.asetofkmedoids.Twonodesarecalledneighborsiftheirsetdiffersbyonlyoneobject.Thereforeeachnodehasn(n-k)numberofneighbors,wherekisthenumberofclusters.Thuseachnodecanbeassignedcostdenedasthetotaldissimilaritybetweeneveryobjectandmedoidsofitsclusters.ThusPAMisthesearchforaminimumonthisgraph,andateachstepalltheneighborsofthecurrentnodeischecked,andthecurrentnodereplacedwiththeneighborthathastheminimumnegativecost.WhereasPAMchecksallthenodes,CLARANSdrawsasampleofneighborsdynamically.ThisisthekeydifferencebetweenPAMandCLARANS.CLARANSismoreefcientandscalablethanPAMis. 3.2PartitioningAroundMedoids(PAM)AlgorithmPAMwasdevelopedbyKaufmanandRousseeuwandisdocumentedin[ 29 ,Ch.2].TheobjectiveofPAMistominimizetheaveragedissimilaritybetweenanobjectanditsmedoid.ThealgorithmstartsinaBUILDphaseinwhichmedoidsareselected,andthenexecutesaSWAPphaseinwhichalternatenodesareevaluatedasmedoids. 1. BUILDphase:InthisphasePAMselectsKobjectsrandomlyfromthegivensetofNobjectsandcallsthemthemedoidpoints.Nexteachof(N)]TJ /F3 11.955 Tf 12.34 0 Td[(K)objectsareassignedtooneoftheclustersrepresentedbythosekmedoidsonbasisoftheobjectssimilaritytothosemedoidobjects.IfapointPihasminimumdissimilaritywithamedoidpointPm,comparedtoallothermedoids,thenPiisassignedtotheclusterbelongingtoPm.ThustheinitialclustersareformedintheBUILDstage. 2. SWAPphase:HerewerstcomputetheoverallreductioninaveragedissimilaritybyreplacingeachmedoidOmbyeachofthenon-medoidobjectsOm0inthecluster.Thereplacementthatprovidesthemaximumreductioninoverallaveragedissimilarityisthenimplementedbyactuallymakingthereplacement.Inthisprocesswealsoconsiderthetransferofanon-medoidobjectOifromoneexistingclustertotheclusterbelongingtothesecondnearestmedoidOm2dependingon 25 PAGE 26 changesthatareinictedbyreplacingamedoidwithanon-medoidpoint.Therecanbefoursuchsituations: (a) OiisinitiallyassignedtotheclusterbelongingtothemedoidpointOm.NowifOmisreplacedbyOm0whichismoredissimilartoOiascomparedtothenearestmedoidpointOm2,thenthepointOiwouldmovetotheclusterrepresentedbyOm2.Thisimpliesthisreplacementincreasesaveragedissimilarity,i.e.thecostofsuchreplacementispositiveandcanbegivenbyCosti=dissimilarity(Oi,Om2))]TJ /F3 11.955 Tf 11.95 0 Td[(dissimilarity(Oi,Om). (b) OiisapartoftheclusterrepresentedbyOmandOm2ismoredissimilartoOithanthenon-medoidOm0,soOistaysinthesameclusterwhichisnowrepresentedbyOm0.Thecostassociatedmightbenegativeorpositiveandisgivenbycosti=dissimilarity(Oi,Om0)dissimilarity(Oi,Om). (c) OiisapartofaclusterrepresentedbyOm2andnotOm.NowOmisreplacedbyOm0,whileOiismoresimilartoitscurrentmedoidOm2thantoOm0.SoOistaysinthesamecluster,andthecostassociatedisthiscosti=0. (d) OiisapartofaclusterrepresentedbyOm2andnotOm.ThistimeOiislesssimilartoitscurrentmedoidOm2thanOm0,sowhenOmisreplacedbyOm0,OimovesfromtheclusterrepresentedbyOm2totheclusterrepresentedbyOm0.Costassociatedisnegativeandisgivenascosti=dissimilarity(Oi,Om0))]TJ /F3 11.955 Tf 11.96 0 Td[(dissimilarity(Oi,Om2).Thetotalcost(CT)ofreplacinganexistingmedoidOmbyanon-medoidOm0iscomputedbysummingthecostscalculatedaboveoverallthenon-medoids,i.e.CT(Om,Om0)=Picosti.Thepairof(Om,Om0).thatprovidesanegativeminimumtotalcostisselected. 3.3PAMforCacheSelectionInthisworkweusePAMtoselectasubsetofthecommunicatorstoserveascaches.WeusePAMtopartitionthenodesintoKclustersforwhichthemedoidswillbeassignedthecaches.PAMisappliedtondthecacheassignmentsfortwodifferentapproaches.Intherst,thedissimilaritybetweentwoverticesismeasuredbytheEuclideandistancebetweentheverticesofagraphinaR2subspace.Inthesecond,thedissimilaritybetweentwoverticesisgivenbytheexpectedcommutetimebetweenthosevertices.TherstapproachisthemosttraditionalformofPAM.ThesecondapproachcanalsobedirectlyimplementedusingthePAMalgorithmusing( 2 ),whichshowsthat 26 PAGE 27 Figure3-1. Minimumaveragecommutetimeovermultipleruns. expectedcommutetimecanbecomputedusingEuclideandistancebyusingaspectralembeddingoftheverticesofthegraphintoahigh-dimensionalspace.Wenotethatadirectspectralembeddingdoesrequirethatthegraphtopologybefullyconnected,andweonlyconsiderthisscenariointhiswork. 3.4PAMParametersandPerformanceSincePAMdependsonarandomizedsearch,resultsmayvaryeachtimethealgorithmisrun.Therefore,inordertondthebestresult,theclusteringalgorithmisrunforseveraltimesforeachtopology,andtheclusteringcorrespondingtotheminimumaveragecostischosen. Figure3-1 isaplotthatshowshowtheaveragecostobtainedforacommute-timebasedPAMina100-nodetopologywith5clustersvarywithmultipleruns. 27 PAGE 28 Figure3-2. AveragecommutetimebetweenverticesandmedoidsasafunctionofnumberofiterationsinthePAMclusteringalgorithm. Theresultsin Figure3-2 showtheaveragecommutetimebetweenthenon-medoidnodesandthemedoids(wherethecacheswillbeplaced)asafunctionofthenumberofiterationsinthePAMalgorithm.Asexpected,theplotismonotonicallydecreasing,howevertheperformancesaturatesafter6iterations. 3.5MotivatingExampleWeuseanexampleofasmall,simplenetworktodemonstratethedifferencebetweentheresultsobtainedbythedistance-basedclusteringandcommute-timebasedclusteringalgorithms.Atotalof18nodesarepartitionedinto2clusters. Figure3-3 showstheclusterassignmentandcacheassignmentforthedistance-basedclusteringalgorithm,and Figure3-4 showstheclusterassignmentandcacheassignmentforthecommute-timebasedclusteringalgorithm.Solidlinesbetweenverticesindicatethattheverticesshareacommunicationlink.Redandbluenodecolorsdifferentiatethetwoclusters,andthecirclednodesarethemedoidsoftheclusters,wherethecacheswillbeplaced.ConsidertheresultswhenPAMisappliedtothistopologywiththedistance-basedmetric,whichisshownin Figure3-3 .Theresultsmatchwithintuition.Thenetworkis 28 PAGE 29 Figure3-3. Clustersformedbydistance-basedPAMclustering. Figure3-4. Clustersformedbycommute-timebasedPAMclustering. partitioneddownthemiddleintotwoequal-sizedclusters,withthenodenearthemiddleofeachcluster(nodes0and9)assignedasthemedoids.Whenthesametopologyisclusteredusingcommute-timebasedPAMclusteringalgorithm,wegetdifferentresults.Althoughthetwoclustersarethesame,themedoidsoftheclustershavechangedtonodes5andnodes10,asshownin Figure3-4 .Themedoidschosenbythecommute-timebasedPAMcanbereachedbyeverynodeexceptfornodes0and9by 29 PAGE 30 twopaths,thusresultinginalowercommutetimeforthosenodes.Ifoneofthelinksontheringfails,thenwiththecommute-timebasedmedoidassignment,thenodeswillbeabletoreroutethecachingtrafcaroundthefailedlink,whereasthedistance-basedmedoidassignmenthasacriticaldependenceforallnodesonthelinksbetweenvertices0and9.Wenotethatexpectedcommutetimealsohastheadvantageofprovidingabettermedoidlocationbasedonnetworklinksevenintheabsenceoflinkfailures.Tomakearoughestimateofthenetworkperformanceunderthetwotypesofclustering,wecomputetheaveragehopcountbetweeneachcommunicator(vertex)anditscorrespondingcache(medoid).Sinceinbothcasethetwoclustersformedaresymmetric,theaveragehopcountisequaltothehopcountofanyoneoftheclusters.Lethcdistandhccomdenotethehopcountsunderdistance-basedclusteringandcommute-timebasedclustering,respectively.Then,itiseasytoseethathcdist=1=9(hc(9,10)+hc(9,11)+hc(9,17)+hc(9,12)+hc(9,16)+hc(9,13)+hc(9,15)+hc(9,14))=1/9(1+22+23+24+5)=2.67;hccom=1=9(hc(0,1)+hc(0,2)+hc(0,8)+hc(0,3)+hc(0,7)+hc(0,4)+hc(0,6)+hc(0,5))=1/9(4+23+22+21+1)=1.88;Soweseeaperformanceimprovementofapproximately30percentfromtheuseofcommute-timebasedclustering.Inthefollowingchapter,weuseanetworksimulationtoseeifthisimprovementandthepotentialrobustnesstolinkfailurestranslatesintoimprovementsincacheaccesslatencies. 30 PAGE 31 CHAPTER4NETWORKSIMULATION 4.1SimulationInthischapter,wereportonresultsofusingnetworksimulationtoevaluatetheperformanceoftheproposedclusteringalgorithmsinrandomconnectednetworkswithtime-varyinglinks.Weevaluatetheperformanceofthedistance-basedandcommute-timebasedcacheplacementalgorithmsbycomputingthetotaltimerequiredtocompleteaseriesofcacherequests,fromwhichwecomputetheaveragecacheaccesslatency.Thenetworksimulationusesaslottedprotocol.Eachtopologyissimulatedovermanyslots,andtheaccesslatenciesareaveragedovermanyrandomlygeneratedconnectedtopologies.Thesimulationmodelisaslottedsystem,andthefollowingactivitiestakeplaceineachoftheslots: 1. Allthenon-medoidnodesinthenetwork,generateacacherequestwithacertaincacherequestprobability(pcache).Anodethathasalreadygeneratedacacherequestbutdidnotcompletethedataaccessyetisnotallowedtogenerateanothercacherequest. 2. Nodesthathavegeneratedacacherequest,pushtherequestpackettotheirrespectivesendqueue.Eachnodeinthenetworkisassignedaninnitequeue,wherethepacketstotransmittedarestoredinFIFObasis. 3. Toemulatethefactthattheupdatefrequencyofroutingtablesistypicallymuchsmallerthanthepackettransmissiontime,theroutingtablesareupdatedbycalculatingtheminimum-hoppathbetweeneachpairofnodesduringeveryrthtransmissioninterval.Wecall1=rtheroutingupdatefrequency. 4. Eachnodewithanon-emptysendqueuewilltrytosendtherstpacketintheirsendqueuetothenext-hopforthatpacketwithtransmissionprobabilitypT. 5. Ifanodetransmitsinaninterval,thenitusesitsroutingtabletondapathbetweenitselfandthedestinationnode. 6. Ifthelinkbetweenthecurrentnodeandthenextnodeinthepathisup,thepacketissenttothenextnode,otherwisethepacketstaysinthesendqueueofthecurrentnode. 31 PAGE 32 7. Afteradatapacketreachestheintendednode,thedataaccessisassumedtobecompleted,andthecurrenttimestampisstoredasreceivetimefortheparticularnode. 8. Thedifferencebetweenthetransmittimeandreceivetimegivesthethedataaccesstimeforthenode. 9. Atthenendofeachslot,thelinkstateisupdatedaccordingtothestatetransitionprobabilitiesofthechannel. Table4-1. Simulationparameters ParameterValue pcache0.05ptrans0.6pbg0.8,0.6,0.2pgb0.05to0.5Numberofnodes100Numberofclusters5Routingfrequency0.01,0.02,0.05 Simulationswererunfordifferentvaluesofthestatetransitionprobabilities.Foreachsetofvalues,50randomlygeneratedtopologiesweresimulated.Foreachtopology,thesimulationwasrunfor10,000slots.Thedataaccesstimeswereaveragedforaparticulartopologywereaveragedtoproducetheaveragelatencyforthattopology,andtheoverallaveragelatencywasdeterminedbyaveragingtheseoverthe50differenttopologies.Theparametersofthesimulationarecollectedin 4-1 Differenttopologiesweregeneratedbyrandomlyvaryingtheconnectivitydistance,eldsizeandcoordinatesoftheverticesornodesinthenetworkononthey.Sinceweneedaconnectedgraph,aftergeneratingeachrandomtopology,acheckisperformedtomakesuretheproducedtopologyisaconnectedgraph.Ifnotwetrytoconvertitintoaconnectedgraphbyvaryingtheconnectivitydistance.Connectivitydistanceisthemaximumdistancebywhichtwonodesthatshareanedge,canbeapartby.Theparametereldsizedeterminesthemaximumrangeofthexandy-coordinatesinthetopology. 32 PAGE 33 4.2ResultsAsthepgbdecreases,andthereforechannelsremaindownforalongerperiodoftime.Wesimulateoursystemi.e.computetheaverageaccesslatencyforaxedvalueofpbgandplotitasafunctionofpgb.Asexplainedbythefollowinggures,foraxedpbg,asthepgbgoesuptheaccesslatencyincreasesandcommutetimebasedclusteringgivesaloweraccesslatencyascomparedtotheclusteringbasedondistance-basedclustering.Wealsoseethatforlowervalueofpbgalsoaccesslatencyincreases,althoughthecommutetimebasedclusteringprovidesuswithabetterperformance.Wealsovarytheroutingfrequencyasaparameter,andassuggestedbytheresults,astheroutingfrequencyincreasestheoverallaccesslatencydecreasesmaintainingasuperiorperformancebythecommutetimebasedclustering. Figure4-1. Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.01. Theresultsin Figure4-1 showtheaverageaccesslatencyasafunctionoftheprobabilityoftransitioningfromthegoodstatetothebadstate,pbgforthetwodifferent 33 PAGE 34 clusteringalgorithmswithpgb=0.8,androutingfrequency=0.01.Theresultsshowthatthecommute-timebasedcacheplacementalgorithmprovidessignicantlybetterperformancethancacheplacementbasedonEuclideandistance.Forexampleatpbg=0.3,theaccesslatencyforcommute-timebasedcacheplacementis20,whereastheaccesslatencyfordistance-basedcacheplacementis130.Forthevaluesconsideredinthisgraph,commute-timecacheplacementproducesareductioninaverageaccesslatencyofatleast85%. Figure4-2. Averageaccesslatencyvspgbforpbg=0.6androutingfrequency=0.01. Theresultsin Figure4-2 showtheaverageaccesslatencyasafunctionoftheprobabilityoftransitioningfromthegoodstatetothebadstate,pbgforthetwodifferentclusteringalgorithmswithpgb=0.6,androutingfrequency=0.01.Theresultsshowthatthecommute-timebasedcacheplacementalgorithmprovidesignicantlybetterperformancethancacheplacementbasedonEuclideandistance.Forexampleatpbg=0.3,theaccesslatencyforcommute-timebasedcacheplacementis100, 34 PAGE 35 whereastheaccesslatencyfordistance-basedcacheplacementis550.Forthevaluesconsideredinthisgraph,commute-timecacheplacementproducesareductioninaverageaccesslatencyofatleast80%.Ifwecomparethisresultwiththatof Figure4-1 ,wewouldseethatduetoanincreaseinthesojourntimeinthebadstate,i.e.duetoanincreaseinpgb,theperformanceofboththealgorithmshavedegradedascomparedtothatin Figure4-1 ,althoughthecommute-timebasedalgorithminthiscasealsoperformsbetterthanthedistancebasedalgorithm. Figure4-3. Averageaccesslatencyvspgbforpbg=0.2androutingfrequency=0.01. Theresultsin Figure4-3 showtheaverageaccesslatencyasafunctionoftheprobabilityoftransitioningfromthegoodstatetothebadstate,pbgforthetwodifferentclusteringalgorithmswithpgb=0.2,androutingfrequency=0.01.Theresultsshowthatthecommute-timebasedcacheplacementalgorithmprovidesignicantlybetterperformancethancacheplacementbasedonEuclideandistance.Forexampleatpbg=0.3,theaccesslatencyforcommute-timebasedcacheplacementis200, 35 PAGE 36 whereastheaccesslatencyfordistance-basedcacheplacementis800.Forthevaluesconsideredinthisgraph,commute-timecacheplacementproducesareductioninaverageaccesslatencyofatleast75%.Ifwecomparethisresultwiththatof Figure4-1 and Figure4-2 ,wewouldseethatduetoanincreaseinthesojourntimeinthebadstate,i.e.duetoanincreaseinpgb,theperformanceofboththealgorithmshavedegradedascomparedtothatin Figure4-1 and Figure4-2 ,althoughthecommute-timebasedalgorithminthiscasealsoperformsbetterthanthedistancebasedalgorithm. Figure4-4. Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.02. Theresultsin Figure4-4 showtheaverageaccesslatencyasafunctionoftheprobabilityoftransitioningfromthegoodstatetothebadstate,pbgforthetwodifferentclusteringalgorithmswithpgb=0.8,androutingfrequency=0.02.Theresultsshowthatthecommute-timebasedcacheplacementalgorithmprovidesignicantlybetterperformancethancacheplacementbasedonEuclideandistance.Forexampleatpbg=0.3,theaccesslatencyforcommute-timebasedcacheplacementis100, 36 PAGE 37 whereastheaccesslatencyfordistance-basedcacheplacementis225.Forthevaluesconsideredinthisgraph,commute-timecacheplacementproducesareductioninaverageaccesslatencyofatleast55%.Ifwecomparethisresultwiththatof Figure4-1 ,wecanseethatanincreaseinroutingfrequencyhasimprovedtheperformanceofthenetworkforboththealgorithm.Theperformancegapbetweenthetwoalgorithmhasreducedwiththeincreaseintheroutingfrequency,althoughthecommute-timebasedalgorithmcontinuestomaintainabetterperformanceattheincreasedroutingfrequencyaswell. Figure4-5. Averageaccesslatencyvspgbforpbg=0.8androutingfrequency=0.05. Theresultsin Figure4-5 showtheaverageaccesslatencyasafunctionoftheprobabilityoftransitioningfromthegoodstatetothebadstate,pbgforthetwodifferentclusteringalgorithmswithpgb=0.8,androutingfrequency=0.05.Theresultsshowthatthecommute-timebasedcacheplacementalgorithmprovidesignicantlybetterperformancethancacheplacementbasedonEuclideandistance.Forexampleatpbg= 37 PAGE 38 0.3,theaccesslatencyforcommute-timebasedcacheplacementis25,whereastheaccesslatencyfordistance-basedcacheplacementis160.Forthevaluesconsideredinthisgraph,commute-timecacheplacementproducesareductioninaverageaccesslatencyofatleast84%.Ifwecomparethisresultwiththatof Figure4-1 ,wecanseethatanincreaseinroutingfrequencyhasimprovedtheperformanceofthenetworkforboththealgorithm.Theperformancegapbetweenthetwoalgorithmhasreducedwiththeincreaseintheroutingfrequency,althoughthecommute-timebasedalgorithmcontinuestomaintainabetterperformanceattheincreasedroutingfrequencyaswell.Bycomparingtheresultof Figure4-4 with Figure4-5 ,wecanseethatwithafurtherincreaseinroutingfrequencyfrom0.02to0.05,theperformanceofbothalgorithms,haveimprovedfurtherascomparedtothatin Figure4-4 38 PAGE 39 CHAPTER5CONCLUSIONInthisthesis,weproposeacacheplacementschemetoreducedataaccesslatencyinadhocnetworkswithunreliablelinks.Inparticular,wehavedevelopedaclusteringalgorithmthatpartitionsthenetworkonthebasisofexpectedcommutetime.Sincecommutetimebetweenapairofnodesdecreaseswithdecreaseinthedistancebetweenthetwopointsandwithanincreaseinthenumberofpathsconnectingthem,thecommute-time-basedclusteringalgorithmprovidesuswithcluster-representativesthathasbetterconnectivity,thusminimizingtheprobabilitythatanodecannotreachitsdesignatedcache.Wehavecomparedthenetworkperformanceusingtheproposedalgorithmtotheperformanceofthesamenetworkwithclustersassignedusingalocation-basedalgorithm.Theresultsshowthatthedataaccesslatencyforcommute-timebasedcacheplacementismuchlowertothatofthelocation-basedalgorithm.Potentialfutureextensionstothisworkincludeinvestigatingothertheoptimalitycriteriabasedonexpectedcommutetime.Forexample,possibleothercriteriainclude: 1. Minimummax-sumcommutetime(MMSCT):Heplsbalancenumberofnodesassignedtocaches.MMSCT=argminfC(VigmaxC2CXV2V(C)n(V,C) (5) 2. Min-Maxcommutetime(MMCT):Optiimizeswors-casecommutetime.MMCT=argminfC(VigmaxV2Vn(V,C(V)) (5)ThePAMalgorithmhashighcomplexityandisnoteasilymodiedtohandlenon-Euclideancriteria,suchasMMSCTandMMCT.ThustooptimizeMMSCTandMMCT,onecanutilizerandomizedsearch,similartotheCLARANSalgorithm[ 28 ].Anotherareaforfutureworkistodevelopdecentralizedversionsofthesealgorithms,especiallyforupdatingcachelocationsinmobilenetworks. 39 PAGE 40 REFERENCES [1] G.Houtzager,C.Jacob,andC.Williamson.Anevolutionaryapproachtooptimalwebproxycacheplacement.2006IEEECongressonEvolutionaryComputation,pages1522,2006. [2] X.Fan,J.Cao,andW.Wu.Contention-awaredatacachinginwirelessmultihopadhocnetworks.MobileAdhocandSensorSystems,2009.MASS'09.IEEE6thInternationalConferenceon12-15Oct.2009,pages1,2009. [3] L.YinandG.Cao.Supportingcooperativecachinginadhocnetworks.IEEETrans.MobileComputing,5:77,2006. [4] B.TangandH.Gupta.Cacheplacementinsensornetworksunderanupdatecostconstraint.JournalofDiscreteAlgorithms5,7:289,2007. [5] P.Nuggehalli,V.Srinivasan,andC.-F.Chiasserini.Energy-efcientcachingstrategiesinadhocwirelessnetworks.MobiHoc'03,pages25,2003. [6] B.Tang,H.Gupta,andS.Das.Benet-baseddatacachinginadhocnetworks.IEEETRANSACTIONSONMOBILECOMPUTING,7:289,2008. [7] P.Nuggehalli,V.Srinivasan,C.-F.Chiasserini,andR.R.Rao.Efcientcacheplacementinmulti-hopwirelessnetworks.IEEE/ACMTRANSACTIONSONNETWORKING,14:1045,2006. [8] Y.XinandF.Dan.Ahybridcacheplacementschemeformulti-hopwirelessservicenetwork.WuhanUniversityandSpringer-VerlagBerlinHeidelberg,15:308,1987. [9] F.Ye,Q.Li,andEChen.Contention-awaredatacachinginwirelessmultihopadhocnetworks.MobileAdhocandSensorSystems,2009.MASS'09.IEEE6thInternationalConferenceon12-15Oct.2009,pages1,2009. [10] A.Tamir.AnO(pn2)algorithmforp-medianandrelatedproblemsontreegraphs.OperationsResearchLetters,19,1996. [11] A.Tamir.AnO(pn2)algorithmforp-medianandrelatedproblemsontreegraphs.OperationsResearchLetters,19,1996. [12] A.Vigneron,L.Gao,M.J.Golin,G.F.Italiano,andB.Li.Analgorithmforndingak-medianinadirectedtree.InformationProcessingLetters,74,1996. [13] P.Krishnan,D.Raz,andY.Shavitt.Thecachelocationproblem.IEEE/ACMTrans.Networking,8,2000. [14] K.Kalpakis,K.Dasgupta,andO.Wolfson.Steiner-optimaldatareplicationintreenetworkswithstoragecosts.Proc.Int'lSymp.DatabaseEng.andApplications(IDEAS'01),2001. 40 PAGE 41 [15] S.Bhattacharya,H.Kim,S.Prabh,andT.Abdelzaher.Energy-conservingdataplacementandasynchronousmulticastinwirelesssensornetworks.Proc.ACMInt'lConf.MobileSystems,Applications,andServices(MobiSys'03),2003. [16] T.Hara.Effectivereplicaallocationinadhocnetworksforimprovingdataaccessibility.Proc.IEEEINFOCOM'01,2001. [17] T.Hara.Cooperativecachingbymobileclientsinpush-basedinformationsystems.Proc.ACMInt'lConf.InformationandKnowledgeManagement(CIKM'02),2002. [18] T.Hara.Replicaallocationinadhocnetworkswithperiodicdataupdate.Proc.Int'lConf.MobileDataManagement(MDM'02),2002. [19] J.Xu,B.Li,andD.L.Lee.Placementproblemsfortransparentdatareplicationproxyservices.IEEEJ.SelectedAreasinComm,20,2002. [20] I.BaevandR.Rajaraman.Approximationalgorithmsfordataplacementinarbitrarynetworks.Proc.ACM-SIAMSymp.DiscreteAlgorithms(SODA'01),2001. [21] C.SrinivasandS.Khan.Datacachingplacementbasedoninformationdensityinwirelessadhocnetwork.InternationalJournalofEngineeringResearchandApplications(IJERA)ISSN:2248-9622www.ijera.com,2:120,2012. [22] F.Ye,Q.Li,andE.Chen.Benetbasedcachedataplacementandupdateformobilepeertopeernetworks.Ubi-mediaComputing(U-Media)20103rdIEEEInternationalConferenceon5-6July2010,pages50,2010. [23] K.S.PrabhandT.F.Abdelzaher.Energy-conservingdatacacheplacementinsensornetworks.ACMTransactionsonSensorNetworks,1:178,2003. [24] S.Pant,N.Chauhan,andP.Kumar.Effectivecachebasedpoliciesinwirelesssensornetworks:Asurvey.InternationalJournalofComputerApplications(0975-8887),pages17,2010. [25] F.Fouss,A.Pirotte,J.-M.Renders,andM.Saerens.Anovelwayofcomputingdissimilaritiesbetweennodesofagraph,withapplicationtocollaborativeltering.InProc.15thEuropeanConf.onMachineLearning(ECML2004),WorkshoponStatisticalApproachesforWebMining(SAWM),pages26,2004. [26] P.G.DoyleandJ.L.Snell.RandomWalksandElectricalNetworks.CarusMathematicalMonographs.MathematicalAssnofAmerica,1984.Updatedversionavailableonlineat http://math.dartmouth.edu/~doyle/docs/walks/walks.pdf asofJuly2012. [27] FanChungandS.-T.Yau.Discretegreen'sfunctions.J.CombinatorialTheory,SeriesA,91(12):191,2000.URL http://www.sciencedirect.com/science/article/pii/S0097316500930942 41 PAGE 42 [28] R.T.NgandJ.Han.Clarans:amethodforclusteringobjectsforspatialdatamining.IEEETrans.Knowl.DataEng.,14(5):1003,Sep./Oct.2002. [29] L.KaufmanandP.J.Rousseeuw.FindingGroupsinData:AnIntroductiontoClusterAnalysis.Wiley,NewYork,1990. 42 PAGE 43 BIOGRAPHICALSKETCH PriyankaSinhawasbornin1987,inRampurhat,India.Shereceivedherbachelor'sdegreeinelectricalengineeringwithrst-class-distinctionfromNationalInstituteofTechnology,Durgapur,India,in2010,andhermaster'sdegreeinelectricalandcomputerengineeringfromtheUniversityofFlorida,Gainesville,USA,inMay2013.WhilepursuinghergraduatedegreesattheUniversityofFlorida,sheworkedonhermaster'sThesisunderthesupervisionofherthesiscommitteeChair,JohnM.Shea.Herresearchinterestsarewirelesscommunicationsandnetworks. 43 |