Identification and Concentration of Phenolic and Carbonyl Compounds in Florida Honeys

MISSING IMAGE

Material Information

Title:
Identification and Concentration of Phenolic and Carbonyl Compounds in Florida Honeys
Physical Description:
1 online resource (73 p.)
Language:
english
Creator:
Marshall, Sara M
Publisher:
University of Florida
Place of Publication:
Gainesville, Fla.
Publication Date:

Thesis/Dissertation Information

Degree:
Master's ( M.S.)
Degree Grantor:
University of Florida
Degree Disciplines:
Food Science and Human Nutrition
Committee Chair:
Gu, Liwei
Committee Members:
Ellis, James
Schneider, Keith R

Subjects

Subjects / Keywords:
carbonyls -- florida -- honey -- phytochemicals
Food Science and Human Nutrition -- Dissertations, Academic -- UF
Genre:
Food Science and Human Nutrition thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract:
Honeys contain phenolic compounds and a-dicarbonyls with antioxidant and anti-microbial capacities, respectively.  The type and concentration of these compounds vary depending on the floral source and geographical location where the honey is produced.  Forty-three varietal honeys, including 26 monofloral and 17 multi-floral honeys were sampled from different regions of Florida.  The monofloral honeys included those from orange blossom, mangrove, tupelo, palmetto, Brazilian pepper, blueberry, blackberry, gallberry, avocado, and white clover.  These honeys were evaluated for their antioxidant capacity, total phenolic content, and free radical scavenging capacity.  Phenolic phytochemicals and a-dicarbonyls were identified and quantified using HPLC-DAD-MSn.  Avocado honeys had a total phenolic content of 1,570 µg GAE/ml, which was higher than all other Florida varieties and certified Manuka honeys.  White clover honey showed the lowest total phenolic content of 250 µg GAE/ml.  The free radical scavenging capacities were tested using the Oxygen Radical Absorbance Capacity assay (ORAC).  The ORAC values of the honeys ranged from 1.50-28.0 µmol TE/g.  Tupelo, avocado and a multi-floral honey showed the highest ORAC values.  All honeys contained 3-deoxyglucosone at a higher concentration than methylglyoxal or glyoxal.  Manuka honeys had higher concentrations of methylglyoxal than other varieties.  Chrysin, 2-cis, 4-trans and 2-trans, 4-trans-abscisic acid, pinocembrin, and pinobanksin were found in nearly all honeys examined.  The plant hormone 2-cis, 4-trans-abscisic acid was found at the highest concentration in many of the honeys.
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility:
by Sara M Marshall.
Thesis:
Thesis (M.S.)--University of Florida, 2013.
Local:
Adviser: Gu, Liwei.
Electronic Access:
RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2014-08-31

Record Information

Source Institution:
UFRGP
Rights Management:
Applicable rights reserved.
Classification:
lcc - LD1780 2013
System ID:
UFE0045510:00001


This item is only available as the following downloads:


Full Text

PAGE 1

1 IDENTIFICATION AND CONCENTRATION OF PHENOLIC AND CARBONYL COMPOUNDS IN FLORIDA HONEYS By SARA M. MARSHALL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2013

PAGE 2

2 2013 Sara M. Marshall

PAGE 3

3 To my family, Marty, Julie, Melissa, Kelly, Kristin, and Ruby, you have all been there to support, love and encourage me in all my wild endeavors.

PAGE 4

4 ACKNOWLEDGMENTS

PAGE 5

5 TABLE OF CONTENTS p age ACKNOWLEDGMENTS ................................ ................................ ................................ .. 4 LIST OF TABLES ................................ ................................ ................................ ............ 7 LIST OF FIGURE S ................................ ................................ ................................ .......... 8 LIST OF ABBREVIATIONS ................................ ................................ ............................. 9 ABSTRACT ................................ ................................ ................................ ................... 11 CHAPTER 1 INTRODUCTION ................................ ................................ ................................ .... 13 Honey ................................ ................................ ................................ ..................... 13 Phenolic Phytochemicals ................................ ................................ ........................ 14 Antimicrobial Activity ................................ ................................ ............................... 17 Summ ary ................................ ................................ ................................ ................ 19 Research Objectives ................................ ................................ ............................... 19 2 DETERMINATION OF ANTIOXIDANT CAPACITIES, DICARBONYLS, AND PHENOLIC PHYTOCHEMICALS IN FLORIDA VARIETAL HONEYS USING HPLC DAD ESI MS N ................................ ................................ .............................. 25 Background ................................ ................................ ................................ ............. 25 Materials and Meth ods ................................ ................................ ............................ 26 Chemicals ................................ ................................ ................................ ......... 26 Samples ................................ ................................ ................................ ........... 26 Folin Ciocalteu Assay ................................ ................................ ....................... 27 DPPH A ssay ................................ ................................ ................................ ..... 27 Oxygen Radical Absorbance Capacity (ORAC) Assay ................................ ..... 28 Colorimeter Assay ................................ ................................ ............................ 28 Dicarbonyls ................................ ................................ .......... 29 Dicarbonyls ................................ ................................ ....... 29 Solid Phase Extraction of Phenolic Phytochemicals ................................ ......... 30 HPLC Analysis of Phenolic Phytochemicals ................................ ..................... 30 Statistical Analysis ................................ ................................ ............................ 31 Results and Discussion ................................ ................................ ........................... 32 Total Phenolic Content, Antioxidant Capacity, and Color Analysis ................... 32 Dicarbonyls ................................ ............. 35 Identification and Quantification of Phenolic Phytochemicals ........................... 37 Hierarchical Cluster Analysis ................................ ................................ ............ 41 Summary ................................ ................................ ................................ ................ 41

PAGE 6

6 3 CONCLUSIONS ................................ ................................ ................................ ..... 66 LIST OF REFERENCES ................................ ................................ ............................... 67 BIOGRAPHICAL SKETCH ................................ ................................ ............................ 73

PAGE 7

7 LIST OF TABLES Table page 1 1 Commonly reported phytochemicals in multi and monofloral honeys. ............... 20 1 2 Previously reported concentrations of dicarbonyls in various monofloral honeys. ................................ ................................ ................................ ............... 23 1 3 Previously reported an timicrobial activity of different varietal honeys. ................ 24 2 1 Floral sources, harvesting region and time of monofloral honeys. ...................... 42 2 2 Harvesting region and time of multi floral honeys. ................................ .............. 43 2 3 Total phenolic content, free radical scavenging, antioxidant capacities, and color analysis of monofloral honeys. ................................ ................................ ... 44 2 4 Total Phenolic content, free radical scavenging, antioxidant capacities, and color analysis of multi floral honeys ................................ ................................ .... 46 2 5 dicarbonyls after derivatization with o phenylenediamine using HPLC ESI MS n ................................ ................................ ......................... 47 2 6 dicarbonyl content of monofloral honeys. ................................ ........................ 48 2 7 dicarbonyl content of multi floral honeys. ................................ ........................ 49 2 8 Identification of phytochemicals in honeys by HPLC DAD ESI MS n .................. 50 2 9 Content of phenolic compounds in monofloral honeys (g/g). ............................ 51 2 10 Content of phenolic compounds in monofloral honeys (g/g). ............................ 53

PAGE 8

8 LIST OF FIGURES Figure page 2 1 dicarbonyls in standar d solution (A), Manuka honey 1c, and White Clover honey 11b after derivatization. ............................... 55 2 2 di carbonyls in Avocado honey, Orange Blossom honey, Palmetto honey, and Tupelo honey after derivatization. ......................... 56 2 3 dicarbonyls in Multi floral hon ey 14 Multi floral honey 23 and Multi floral honey 25 after derivatization. ................................ .... 57 2 4 Product ion spectra (MS 2 ) of tentatively identified compounds trans trans abscisic acid pinobanksin 5 methylether, and pi nobanksin. .............................. 58 2 5 Proposed fragmentation of tentatively identified compounds 2 trans 4 trans abscisic acid pinobanksin 5 methyl ether, and pinobanksin. .............................. 59 2 6 HPLC chromatogram of phenolic phyt ocheicals in Palmetto honey 5a and Palmetto honey 5b ................................ ................................ ............................. 60 2 7 HPLC chromatogram of phenolic ph ytochemicals in Manuka honey 1a and Manuka honey 1b. ................................ ................................ .............................. 61 2 8 HPLC chromatogram of phenolic phytochemicals in Orange Blossom honey 2a Avocado honey 10a and Gallberry honey 9b. ................................ .............. 62 2 9 HPLC chromatogram of phenolic phytochemic als in Multi floral honey 13 and Multi floral honey 23. ................................ ................................ .................. 63 2 10 Hierarchical clustering of monofloral honeys on the basis of phenolic phytochemical composition. ................................ ................................ ................ 64 2 11 Hierarchical clustering of multi floral honeys on the basis of phe nolic phytochemical composition ................................ ................................ ................ 65

PAGE 9

9 LIST OF ABBREVIATIONS AAPH azotis(2 amidinopropane) DAD Diode array detector DPPH 2,2 diphenyl 1 picrylhydrazyl g Gram GAE Gallic acid equivalents h Hour (s) HPLC High performance liquid chromatography L Liter Microgram l Microliter mol Micromole min M inute ( s ) ml Milliliter mm Millimeter MS Mass spectrometer m/z Mass to charge ratio nm Nanometer OPD Ortho phenelyenediamine ORAC Oxygen radical absorbance capacity psi Pounds per square inch rpm Revolutions per minute TE Trolox equivalents Trolox 6 Hydroxy 2,5,7,8 tetramethylchroman 2 carboxylic acid UV Ultraviolet

PAGE 10

10 v Volume Vis Visible w Weight

PAGE 11

11 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science IDENTIFICATION AND CONCENTRATION OF PHENOLIC AND CARBONYL COMPOUNDS IN FLORIDA HONEYS By Sara M. Marshall August 2013 Chair: Liwei Gu Major: Food Science and Human Nutrition

PAGE 12

12

PAGE 13

13 CHAPTER 1 INTRODUCTION Honey

PAGE 14

14 Phenolic Phytochemicals

PAGE 15

15

PAGE 16

16

PAGE 17

17 Antimicrobial Activity

PAGE 18

18

PAGE 19

19 Summary Research Objectives 1. To evaluate antioxidant capacity, phenolic conte nt and color in Florida and M anuka honeys. 2. To investigate the di carbonyl and phenolic phytoch emicals present in Florida and M anuka honeys using HPLC DAD ESI MS n

PAGE 20

20 Table1 1. Commonly reported phytochemicals in multi and monofloral honeys. Phytoch emicals Total Concentration Type of honeys Reference Gallic acid 0.8 2372 Coconut, Gelam Australian Jelly Bush, Manuka, heather, linden, lavender, Kanuka, 1, 5 6, 26 27 Caffeic Acid 0.22 18.4 Coconut, Gelam Australian Jelly Bush, Manuka, Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, lavender, heather 1, 5 6, 26, 28 29 Benzoic Acid 0.797 1.84 Coconut, Gelam 5 Hydroxybenzoic acid 0.24 62.1 Heather, linden, buckwheat, soy, clover, fireweed, acacia 1, 6, 9, 29 Ferulic acid 0.23 58.6 Gelam Australian Jelly Bush, Manuka, Linen vine, morning, glory, Christmas vine, heather, buckwheat 5 6, 26, 28 29 Cinnamic acid 0.19 5.4 Gelam lavender, heather, buckwheat, Hawaiian Christmas berry, soy, tupelo, clove, fireweed, acacia 5 6, 9 Chlorogenic acid 0.7 33.4 Australian Jelly Bush, Manuka, lavender, heather, buckwheat 6, 26, 29 Coumaric acid 0.1 47.4 Australian Jelly Bush, Manuka, Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, lavender, heather, b uckwheat, soy, clover, fireweed 6, 9, 26, 28 29 Ellagic acid 0.4 27.0 Australian Jelly Bush, Manuka, heather, buckwheat 6, 26, 29 Syringic acid 0.1 4.6 Australian Jelly Bush, Manuka, Linen vine, morning, glory, black mangrove, heather, linden, clover, Kanuka 6, 9, 26 29 Vanillic acid 0.1 30.3 Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, lavender, heather, buckwheat, tupelo, clover 1, 6, 9, 28 29 Rosmarinic acid 0.19 15.1 Buckwheat, heather 29 Phenyllactic acid 20 1900 Manuka, kanuka 27 Methyl syringate 1.7 207 Manuka, kanuka 27 Pinobanksin 0.1 15.6 Australian Jelly Bush, Canola, cherry, eucalyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, Spanish multi floral, buckwheat, soy, tupelo, clove, fireweed, acacia 7, 9, 26, 30 31

PAGE 21

21 Table1 1. contd Phytochemicals Total Concentration Type of honeys Reference Myricetin 0.3 19.1 Australian Jelly Bush, Manuka, singing bean, eucalyptus, buckwheat, heather 26, 28, 30 Tricetin 0.7 6.8 Australian Jelly Bush, eucalyptus 26, 30 Quercetin 0.05 11.9 Australian Jelly Bush, Manuka Canola, eucalyptus, lucerne, orange, rapeseed, rosemary, taraxacum, tilia, sunflower, linden, heather, Spanish multi floral, Melon, pumpkin, cherry, dandelion, maple, pinetree, buckwheat, soy, clover, acacia 1, 7 9, 26, 29 31 Luteolin 0.03 5.7 Australian Jelly Bush, Manuka, canola, eucalyptus, lavender, linden, orange, rhododendron, taraxacum, Spanish multi floral, rosemary, Melon, pumpkin, cherry, dandelion, maple, pinetree 7 8, 26, 30 31 Kaempferol 0.1 3.9 Australian Jelly Bush, Manuka, Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, Canola, cherry, euc alyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, linden, heather, Spanish multi floral, Melon, pumpkin, cherry, dande lion, maple, pinetree buckwheat, soy, tupelo, clove, acacia 1, 7 9, 26, 28 31 Apigenin 0.03 2.1 Spanish multi floral, rosemary 7, 31 Pinocembrin 0.12 15.6 Australian Jelly Bush, Manuka, Canola, cherry, eucalyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, Spanish multi floral buckwheat, soy, tupelo, clove, fireweed, acacia 7, 9, 26, 30 31 Chrysin 0 .06 4.0 Australian Jelly Bush, Manuka, Canola, cherry, eucalyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, heather, buckwheat, soy, tupelo, clove, fireweed, acacia 7, 9, 26, 29 31 Isorhamnetin 0.15 4.7 Australian Jelly Bush, Manuka, Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, Spanish multi floral, rosemary, Melon, pumpkin, cherry, dandelion, maple, pine tree 7 8, 26, 28, 31

PAGE 22

22 Table1 1. contd Phytochemicals Total Concentration Type of honeys Reference Acacetin 0.1 1.3 Canola, cherry, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower 30 Galangin 0.05 3.99 Canola, cherry, eucalyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, Melon, pumpkin, cherry, dandelion, maple, pinetree, heather, buckwheat, soy, tupelo, clove, acacia 7 9, 29 31 Isosakuranetin 1.30 6.20 Canola, cherry, linden, lucerne, orange, rapeseed, rosemary, taraxacum, tilia 30 Tectochrysin 0.04 2.6 Australian Jelly Bush, Canola, cherry, lucerne, orange, rapeseed, rosemary, taraxacum, tilia, Spanish multi floral 7, 26, 30 31 Phloroglucinol 0.15 0.23 Linen vine, morning, glory, black mangrove 28 genkwanin 0.07 0.39 Spanish Multi floral 7 rutin 1.6 5.0 Linden, heather 1 Quercetin 3 methyl ether 0.07 3.7 Australian Jelly Bush, Canola, cherry, e ucalyptus, lavender, linden, lucerne, orange, rapeseed, rhododendron, rosemary, taraxacum, tilia, sunflower, Spanish multi floral 7, 26, 30 Kaempferol 8 methyl ether 0.2 2.6 Australian Jelly Bush Manuka, Spanish multi floral 7, 26 dimethyl ether 0.09 2.1 Australian Jelly Bush, Manuka, Spanish multi floral 7, 26 8 methoxykaempferol 0.04 1.16 Linen vine, morning, glory, black mangrove, singing bean, Christmas vine, Spanish multi floral, rosemary 7, 28, 31 2 t rans 4 trans Abscisic acid 6.3 310 Australian Jelly Bush, Manuka, Tea tree, crow ash, brush box, heath, sunflower 26, 29, 32 2 c is 4 trans Abscisic Acid 0.2 121 Australian Jelly Bush Manuka, buckwheat, heather, Tea tree, crow ash, brush box, heath, sunflower, soy, tupelo, clover, fireweed, acacia, Kanuka 9, 26 27, 29, 32

PAGE 23

23 Table1 2. Previously reported concentrations of dicarbonyls in various monofloral honeys. N/A, not available. ND, not detected.

PAGE 24

24 Table1 3. Previously reported antimicrobial acti vity of different varietal honeys.

PAGE 25

25 CHAPTER 2 DETERMINATION OF ANTIOXIDANT CAPACITIES DICARBONYLS, AND PHENOLIC PHYTOCHEMICALS IN FLORIDA VARIETAL HONEYS USING HPLC DAD ESI MS N Background

PAGE 26

26 Materials and Methods Chemic als Samples

PAGE 27

27 Folin Ciocalteu Assay DPPH Assay

PAGE 28

28 Oxygen Radical Abso rbance Capacity (ORAC ) Assay Colorimeter Assay

PAGE 29

29 D icarbonyl s D icarbonyls

PAGE 30

30 Solid Phase Extraction of Phenolic Phytochemicals HPLC Analysis of Phenolic Phytochemicals

PAGE 31

31 Statistical Analysis

PAGE 32

32 Results and Discussion Total Phenolic Content, Antioxidant Capacity and Color Analysis

PAGE 33

33

PAGE 34

34

PAGE 35

35 Identification D icarbonyls

PAGE 36

36

PAGE 37

37 Identification and Quantification of Phenolic Phytochemicals

PAGE 38

38 Phenolic Acids: Peaks 1 was confirmed to be coumaric acid by comparing retention time and mass spectra with authentic standards. Terpenoids: Peak 4 was identified as 2 cis, 4 trans abscisic acid by comparing with authentic standard. It produced an [M H] at m/z 263 that further dissociated to form m/z 219 and m/z 153 after loss of CO 2 and the s ide chain, respectively. P eak 3 also produced m/z 263 [M H] (Figure 2 4A ). This peak had two main fragments m/z 204 after the loss of both CO 2 and CH 3 and m/z 219 after the loss of CO 2 The peak was tentatively identified as 2 trans, 4 trans abscisic acid. Fragmentation pattern of 2 trans, 4 trans abscisic acid are shown in Figure 2 5A Both isomers of abscisic acid had been identified in other honey varieties 26, 29, 57, 59 Flavanones: Peak 10 was identified as pinocembrin by comparing retention time and mass spectra with its standard. Peak 10 gave an ion at m/z 255 [M H] which further dissociated into m/z 213 from the loss of C 2 H 2 O [42Da] and m/z 151 from the RDA reaction 56 Flavonols: Multiple flavonols were identified in the honeys. Peak 2 was rutin. It produced m/z 609 [M H] which further dissociated into m/z 301 after the loss of the rutinose group corresponding to the deprotonated quercetin aglycone 53, 61 Peak 6 was confirmed to be quercetin. The maximum absorbance was seen at 340nm Its retention times and mass spectrum matched those of an authentic standard. Peak 9 was identified as kaempfero l by comparing retention time and mass spectra with authentic standards. Kaempferol produced an ion at m/z 285 [M H] and two product ions at m/z

PAGE 39

39 26 7 [M H H 2 O ] and m/z 151 from RDA reaction Peak 10 contained two flavonoids, galangin and chrysin. Galangin produced an ion with m/z 269 [M H] which further dissociated into m/z 197, which was formed from the loss of both a CO 2 and a CO [62 Da] group and m/z 227 Flavanonols: The product ion spectrum of p eak 5 is depicted in Figure 2 4B This peak pr oduced m/z 285 [M H] which further dissociated into multiple ions m/z 267 from the loss of water and m/z 252 from the c ombine loss of methyl and water (Figure 2 5B ). It was tentatively identified as pinobanksin 5 methyl ether by comparing the mass spect ra with previous research 54 55 Peak 7 produced m/z 271 [M H] which further dissociated into a main fragment m/z 253 corresponding to the loss of water (Figure 2 4C ). Its fragmentation pattern can be seen in Figure 2 5C and was tentatively identified as pi nobanksin 55 P inobanksin and its derivatives had been previously identified in honey and other bee products 54 55 Flavones: Luteolin (peak 8) and chrysin (peak 11 ) were identified in honey by comparing retention time and mass spectra with standards These flavones had been previously identified in many different varieties of honeys and thus their presence would not be beneficial in authenticating a particular variety of honey 31, 38, 62

PAGE 40

40

PAGE 41

41 Hierarchical Cluster Analysis Summary

PAGE 42

42 Table 2 1. Floral sources, harvesting region and time of monofloral honeys. Sample No. Floral Type Region of Florida Season Harvested Sample No. Floral Type Region of Florida Season Harvested 1a Manuka 16+ New Zealand Unknown 5c Palmetto South Unknown 1b Manuka 15+ New Zealand Unknown 5d Palmetto South Unknown 1c Manuka 12+ New Zealand Unknown 6a Brazilian Pepper Central Fall 2010 2a Orange blossom Central Spring 2011 6b Brazilian Pepper Central Unknown 2b Orange blossom North Unknown 6c Brazilian Pepper North Fall 2010 2c Orange blossom South Unknown 7 Blueberry South Unknown 2d Orange blossom Central Unknown 8 Blackberry North Summer 2010 3 Mangrove South Unknown 9a Gallberry Central Unknown 4a Tupelo Central Unknown 9b Gallberry North Unknown 4b Tupelo North Unknown 9c Gallberry Central Unknown 4c Tupelo North Unknown 10a Avocado Central Unknown 4d Tupelo North Unknown 10b Avocado South Unknown 4e Tupelo North Unknown 11a White Clover South Unknown 5a Palmetto North Spring 2010 11b White Clover North Unknown 5b Palmetto Central Summer 2010

PAGE 43

43 Table2 2. Harvesting region and time of multi floral honeys. Sample No. Floral Type Region of Florida Season Harvested 12 Wild Central Fall 2010 13 Wild North Summer 2010 14 Wild South Fall 2010 15 Wild Central Fall 2010 16 Wild Central Fall 2010 17 Wild Central Summer 2010 18 Wild North Fall 2010 19 Wild Central Fall 2010 20 Wild Central Fall 2010 21 Wild Central Summer 2010 22 Wild North Spring 2011 23 Wild Central Fall 2010 24 Wild Central Fall 2010 25 Wild Central Spring 2011 26 Wild Central Fall 2010 27 Wild Central Fall 2010 28 Wild North Fall 2010

PAGE 44

44 Table2 3. Total phenolic content, free radical scavenging, antioxidant capacities, and color analysis of monofloral honeys. Honeys Total Phenolics (g/g) DPPH (mol TE/g honey) ORAC (mol TE/g honey) # ABS 450 (AU, 50% w/v) 1a 1 08014.2 a 1.37 0.665 b 15.49.31 a 0.2980.018 b 1b 77427.0 b 1.35 0.218 b 6.920.233 0.3100.014 a 1c 1 03046.1 a 1.38 0.244 b 11.33.22 b 0.2240.010 c 2a 82917.8 b 1.40 0.005 b 6.163.35 c 0.3480.018 a 2b 59328.4 c 0.282 0.115 d 1.481.36 d 0.0770.005 d 2c 38614.5 d 0.686 0.262 d 4.260.961 d 0.1170.013 d 2d 2863.30 d 0.384 0.251 d 4.872.08 d 0.0840.003 d 3 73033.9 c 2.16 0.172 a 7.460.329 b 0.4890.040 a 4a 82023.0 b 1.36 0.324 b 7.690.639 b 0.2410.017 4b 77315.7 b 1.13 0.182 c 6.861.14 c 0.1450.003 d 4c 99712.4 a 1.94 0.148 a 28.01.40 a 0.2180.012 c 4d 64925.8 c 1.77 0.090 a 11.81.07 b 0.2080.011 c 4e 69115.8 c 1.78 0.099 a 12.74.56 b 0.1920.010 c 5a 76727.1 0.679 0.231 d 5.090.420 c 0.1630.008 c 5b 85112.3 b 1.22 0.250 c 12.80.961 a 0.2480.065 b 5c 5307.76 d 1.22 0.130 4.770.632 d 0.2840.065 b 5d 4571.73 d 0.938 0.137 c 5.770.486 c 0.1430.008 d 6a 91911.2 a 1.66 0.018 b 5.483.38 c 0.3530.021 a 6b 89123.1 b 1.55 0.079 b 15.03.85 a 0.2640.012 b 6c 64313.3 c 2.18 0.183 a 10.60.683 b 0.2920.017 b 7 4664.91 d 0.723 0.287 d 3.133.98 d 0.2690.012 b 8 53231.1 d 0.753 0.184 d 6.270.592 c 0.1680.005 c 9a 1 00013.7 a 0.826 0.326 c 16.51.78 a 0.2720.010 b 9b 69447.6 c 0.970 0.077 c 3.180.575 d 0.1150.000 d 9c 73611.9 c 0.870 0.128 c 11.62.91 b 0.1720.115 c 10a 1 3609.93 a 2.75 0.267 a 15.56.12 a 0.6040.020 a 10b 1 57033.4 a 3.33 0.183 a 14.34.03 a 1.760.065 a

PAGE 45

45 Table2 3. contd Results are mean SD of three determinations on fresh weight basis. #ORAC values are mean of two determinations. Values in each column are grouped into four quartiles (a>75 th b=50 th 75 th c=25 th 50 th and d<25 th percentile, median not labeled). Numbers in bold are low, high and med ian values in each column. Honeys Total Phenolics (g/g) DPPH (mol TE/g honey) ORAC (mol TE/g honey) # ABS 450 (AU, 50% w/v) 11a 84541.0 b 0.893 0.145 c 3.850.06 d 0.2990.049 a 11b 25117.6 d 0.440 0.041 d 6.270.59 c 0.0550.002 d Range 251 1 570 0.282 3.33 1.48 28.0 0.055 1.76 Average 735 1.31 9.13 0.290

PAGE 46

46 Table2 4. Total Phenolic content, free radical scavenging, antioxidant capacities, and color analysis of multi floral honeys Results are mean SD of three determinations on fresh weight basis. #ORAC values are mean of two determinations. Values are grouped into four quartiles (a>75 th b=50 th 75 th c=25 th 50 th and d<25 th percentile, median not labeled). Numbers in bold are low, high and median values in each column. Honeys Total Phenolics (g/g) DPPH (mol TE/g honey) ORAC (mol TE/g honey) # ABS 450 (AU, 50% w/v) 12 85325.8 b 1.85 0.156 b 6.624.79 c 0.2920.013 13 9363.84 a 1.08 0.014 d 18.25.10 a 0.2200.017 d 14 1 04012.6 a 1.49 0.233 b 15.91.68 a 0.3410.019 b 15 93317.6 a 1.66 0.111 b 6.051.07 c 0.4120.019 a 16 84413.1 b 1.10 0.217 d 10.82.37 b 0.2670.016 c 17 9816.82 a 1.28 0.132 c 4.673.16 d 0.4800.035 a 18 88039.6 b 1.48 0.220 b 12.62.20 a 0.3040.004 b 19 66212.1 c 2.07 0.124 a 6.700.040 c 0.3800.056 a 20 67022.6 c 2.07 0.05 a 12.72.99 a 0.2330.011 d 21 64918.7 c 2.02 0.319 a 4.130.57 d 0.2820.013 c 22 47810.2 d 1.27 0.113 c 9.346.24 b 0.2990.035 b 23 81515.8 1.69 0.116 b 7.212.58 b 0.5080.053 a 24 4005.24 d 0.875 0.101 d 2.200.087 d 0.1490.009 d 25 60414.8 d 1.43 0.188 c 7.050.632 0.3010.018 b 26 5189.31 d 1.13 0.048 d 4.700.851 d 0.2420.008 d 27 6302.10 c 2.19 0.116 a 11.82.37 b 0.2510.014 c 28 84632.0 b 1.48 0.207 5.676.97 c 0.2610.016 c Range 400 1 040 0.875 2.19 2.20 18.2 0.149 0.508 Average 748 1.42 8.87 0.305

PAGE 47

47 Table2 d icarbonyls after derivatization with o phenylenediamine using HPLC ESI MS n Peak Identified Compound RT (min) [M+H] + ( m/z ) MS 2 ( m/z ) 1 o phenylenediamine 4.9 109 none 2 glucosone 14. 4 251 233, 173, 215 3 3 deoxyglucosone 20 4 235 217, 199 4 Glyoxal 31 6 ND ND 5 Methylglyoxal 3 3 6 145 11 9 ND not determined on MS n

PAGE 48

48 Table2 dicarbonyl content of monofloral honeys. Sample No. 3 Deoxyglucosone (g/g) Glyoxal (g/g) Methylglyoxal (g/g) Total Carbonyl (g/g) 1 a 636 48 .8 4.39 0.660 86.9 0.967 727 49.8 1b 558 13 .2 5.13 0.074 483 10.7 1047 23.6 1c 646 40.2 3.09 0.182 92.1 0.343 741 39.8 2a 684 34.5 4.53 1.01 6.09 1.27 695 33.2 2b 28811. 9 5.70 0.4 62 6.19 1.46 300 12.7 2c 463 6.13 2.96 0.127 4.24 0.396 471 5.62 2d 20621.4 2.19 0.345 3.68 1. 49 212 2 1 6 3 808 16 .6 2.92 0.111 5.15 0 277 816 16.8 4a 614 23.4 2.90 1.19 4.85 0.619 622 24.8 4b 502 23.5 3.93 1.22 5.90 1.35 512 24.5 4c 267 1 0.3 6.49 0.110 7.98 0.172 281 10.3 4d 377 11.2 1.78 0.228 4.21 0.375 383 11 8 4e 259 12.7 2 .68 0.257 4.970.582 266 13.3 5a 47435.1 2.95 0.222 5.80 0.255 483 34.8 5b 831 3.46 6.10 0.315 10.81.77 848 23.2 5c 730 28. 7 2.23 0.109 4.53 1.01 737 29.1 5d 612 10.8 3.63 0.292 3.88 1.49 620 9 .59 6a 693 11.2 2.78 0.59 4.03 0.717 699 11.5 6b 473 2.60 4.33 0.084 6.40 1.05 484 2.68 6c 890 40.0 2.33 0.271 4.50 0.235 897 40.3 7 746 37 .8 3.92 0.321 8.78 0.539 759 37.9 8 551 70.0 2.19 0.338 4.34 0 .471 557 70 7 9a 517 3.15 3.75 1.39 7.09 2.52 528 6.55 9b 466 24.9 2.76 0.694 4.88 1.0 5 474 26.6 9c 701 39.9 7.35 0.935 13.0 4.30 722 35.3 10a 2557 64. 4 4.00 0.756 6.19 0.920 2568 65.9 10b 3662 76.9 7.23 0.17 5 9.98 0.575 3679 77.6 11a 1209 42.0 3.31 0.362 9.58 0.883 1221 41.5 11b 282 4.95 3.57 0.333 6.23 0.212 292 5.17 Range 206 3662 1.78 7.23 3.68 483 212 3679 Average 748 4.03 28.5 781 Results are mean standard deviation of three determinations on fresh weight ba sis.

PAGE 49

49 Table2 dicarbonyl content of multi floral honeys. Sample No. 3 Deoxyglucosone (g/g) G lyoxal (g/g) Methylglyoxal (g/g) Total Carbonyl (g/g) 12 8833 46 5.32 0.892 7.44 0.615 8 9 6 2.10 13 372 17.2 2.44 0.778 5.23 1.15 380 19.0 14 754 17.6 4.11 1.56 6.80 1.98 765 1 8.0 15 817 75.0 3.29 0.207 4.90 0.529 825 74.5 16 786 52.9 3.800.439 6.61 0515 796 53 7 17 678 109 3.96 0. 915 5.31 0.948 687 111 18 459 9 .0 5 3.220.0 87 6.98 0.388 469 9 .44 19 884 21.8 2.490.321 3.63 0.284 890 22.3 20 519 34.0 1.63 0. 151 3.45 0.194 524 34.1 21 901 15.0 3.22 0. 211 6.27 0.339 911 1 5.3 22 727 8.95 3.27 0. 245 6.38 0.187 753 37.7 23 1239 162 5.22 0. 194 6.76 0.485 1251 1 61 24 359 25.8 2.020.107 4.66 0.884 366 2 6.8 25 555 8.74 2.69 0. 333 4.76 1.53 563 8.90 26 523 8.96 3.20 0.151 6.03 1.70 533 9. 23 27 662 9.82 2. 8 9 0.159 5.200.248 670 9 5 5 28 655 13.6 3.89 0. 370 6.97 0.762 666 1 3.4 Range 359 1239 1.63 5.32 3.45 7.44 366 1251 Average 693 3.33 5.73 703 Results are mean standard deviation of three determinatio ns on fresh weight basis.

PAGE 50

50 Table2 8. Identification of phytochemicals in honeys by HPLC DAD ESI MS n Nine compounds were identified by comparing with authentic standards. Three compounds with were t entatively ide ntified by mass spectra. Peak No. Compound Molecular weight R etention time (min) [M H] ( m/z ) MS 2 ( m/z ) 1 Coumaric Acid 164 2 2.5 163 119 2 Rutin 610 32 609 301 3 2 t rans 4 t rans abscisic acid* 264 34.7 263 219, 204, 201 4 2 cis 4 trans a bscisic a cid 264 37.8 263 219, 153 5 Pinobanksin 5 methyl ether* 286 39 285 267 252 239 6 Quercetin 302 39.7 301 179, 151 7 Pinobanksin* 272 40. 4 271 253, 215, 151 8 Luteolin 286 42 285 243 223, 199 9 Kaempferol 286 4 2.7 2 85 257, 151 10 Pinocembrin 256 46 .3 255 213 151 11 Chrysin Galangin 254 270 48 253 269 209 227, 213, 197

PAGE 51

51 Table2 9. Content of phenolic compounds in monofloral honeys (g/g). Sample Coumaric acid Rutin 2 trans, 4 trans abscisic acid 2 cis, 4 trans abscisic acid Quercetin 1a, Manuka 16+ 0.8080.04 ND 0.710 0.11 1.55 0.19 0.552 0.06 1b, Manuka 15+ ND ND ND 0.525 0.22 0. 4950.24 1c, Manuka 12+ 0.1030.04 ND 1.54 0.392 2.770.69 0.3960.11 2a, Orange blossom ND 0.0190.008 5.071.09 29.17.92 0.278 0.097 2b, Orange blossom 0.4370.26 0.055 0.002 5.80 0.08 15.1 0.11 0.6500.04 2c, Orange blossom ND 0.083 0.039 0.100 0.04 0.486 0.21 0.5020.24 2d, Orange blossom 0.3800.12 0.060 0.001 2.03 0.11 5.12 0.27 1.15 0.06 3, M angrove 0.2870.03 0.0360.005 1.27 0.28 5.36 0.74 0.350 0.12 4a, Tupelo 0.6040.29 ND 19.1 5.0 1 27.0 1.94 1.224 0.07 4b, Tupelo ND ND 7.50 0.36 9.70 0.38 0.436 0.04 4c, Tupelo 0.3560.09 0.118 0.013 17.1 1.87 18.2 3.15 1.70 0.48 4d, Tupelo 0.4370.14 ND 20.51.15 24.01.71 0.6460.32 4e, Tupelo 0.3550.18 0.0310.021 4.53 1.3 4 5.95 0.78 ND 5a, Palmetto 0.7450.03 0.0340.005 14.4 0.40 25.5 1.00 0.6890.244 5b, Palmetto ND 0.053 0.012 12.7 1.86 21.1 2.47 ND 5c, Palmetto 1.2080.49 0.0360.014 2.08 0.73 8.00 2.73 0.711 0.25 5d, Palmetto 0.2740.14 0.0870.001 0.333 0.07 0.472 0.03 0.9390.11 6a, Brazilian Pepper 0.1470.03 ND 0.664 0.03 4.67 0.07 ND 6b, Brazilian Pepper 0.1870.07 0.070 0.013 0.892 0.39 2.51 0.62 0.399 0. 06 7, Blueberry 1.4430.21 0.0220.004 1.14 0.05 3.38 0.12 0.304 0.03 8, Blackberry 0.4030.03 0.0150.001 1.490.22 3.750.06 0.241 0.02 9a, Gallberry 0.1850.05 ND 7.53 0.49 24.0 1.77 0.317 0.24 9b, Gallberry 0.2950.14 ND 26 .1 11.1 27.6 11.8 0.3410.161 9c, Gallberry 0.5080.16 0.0220.003 13.1 1.01 24.3 2.57 0.344 0.07 10a, Avocado 0.1570.08 0.017 0.003 11.5 3.35 2 6 .2 3.17 0.108 0.02 10b, Avocado 0.2240.10 0.0890.018 1.85 0.39 6.17 1.25 0.747 0.103 11a, White Clover 0.2010.04 0.1270.005 0. 992 0.18 1.53 0.72 ND 11b, White Clover 0.51790.07 0.0120.004 0.4680.07 0.455 0.05 0.304 0.02

PAGE 52

52 Table2 9. contd Sample Pinobanksin Luteolin Kaempferol Pinocembrin Chrysin +Galangin Total Conc 1a Manuka 16+ 0.9260.11 1.050.113 0.693 0.09 0.742 0.09 1.08 0.10 8.11 0.81 1b Manuka 15+ 2.40 0.53 0.907 0.16 0.260 0.11 2.75 0.69 2.16 0.51 9.50 2.37 1c Manuka 12+ 0.444 0.01 0.6320.15 0.402 0.17 0.513 0.15 0.524 0.05 7.32 1.14 2a Orange blossom 1.680.38 0.3150. 10 0. 3890.10 1.330.31 0. 7920.24 39.0 10.1 2b Orange blossom 1.52 0.01 0.077 0.01 1.550.11 1.07 0.01 0.465 0.02 26.80.21 2c Orange blossom 0.156 0.07 0.094 0.03 1.090.45 0.039 0.01 ND 2.54 1.12 2d Orange blossom 0.446 0.01 0.07 0.01 3.120.16 0.146 0.01 0.079 0.02 12.6 0.62 3 M angrove 0.508 0.02 0.432 0.07 0.332 0.06 0.198 0.02 0.105 0.03 8.89 1.09 4a Tupelo 6.07 0.19 ND 2.110.05 2.65 0.08 1.73 0.13 60.5 7. 4 4b Tupelo 1.72 0.03 ND 0.6100.33 ND 0.158 0.01 20.1 1.0 7 4c Tupelo 1.74 0.26 ND 4.66 0.42 0.213 0.02 ND 44.05.8 4d Tupelo 4.170.39 0.434 0.18 3.020.15 2.840.25 1.410.08 57.54.09 4e Tupelo 2.30 0.16 ND 1.180.30 1.63 0.14 0.753 0.05 16.72.87 5a Palmetto 0.8320.03 0.277 0.06 1.450.13 0.064 0.02 0.148 0.04 44.21.81 5b Palmetto 3.71 0.33 ND 0.5830.14 1.17 0.191 0.701 0.07 40.14.75 5c Palmetto 3.77 1.28 0.386 0.16 1.520.52 2.250.76 1.25 0.42 21.27.33 5d Palmetto 0.070 0.01 0.415 0.07 0.5650.10 0.032 0.01 ND 3.19 0.29 6a Brazilian Pepper 2.06 0.05 0.068 0.00 0.3470.01 1.48 0.04 1.00 0.07 10.40.09 6b Brazilian Pepper 4.31 0.49 0.7330.062 0.795 0.09 2.65 0.26 1.96 0.20 14.52.22 7 Blueberry 4.56 0.16 0.172 0.023 0.511 0. 03 2.63 0.07 1.30 0.09 15.50.55 8 Blackberry 0.837 0.64 0.138 0.04 0.6780.73 0.6740.07 0.6280.03 8.860.43 9a Gallberry 0.620 0.07 0.133 0.02 0.391 0.03 0.357 0.04 0.230 0.03 33.82.61 9b Gallberry 2.57 1.07 0.027 0.02 0.3220.17 0.084 0.02 ND 57.4 24.5 9c Gallberry 1.88 0.28 ND 0.4250.04 1.04 0.16 0.476 0.05 42.13.9 10a Avocado ND 0.345 0.06 0.228 0.05 ND ND 38.65.5 10b Avocado ND 0.450 0.23 0.792 0.52 ND 0.035 0.00 10.41.30 11a White Clover 0.798 0.17 ND 0.431 0.10 0.497 0.5 0.370 0.02 4.911.11 11b White Clover 3.00 0.22 0.203 0.01 5.48 0.60 5.44 0.38 2.61 0.10 18.41.53 Results are mean standard deviation of three determinations on fresh weight basis ND, not detected 2 trans 4 trans abscisic acid was quantified using the 2 cis 4 trans abscisic acid as a standard Pinobanksin was quantified using pinocembrin as a standard

PAGE 53

53 Table2 10. Content of phenolic compounds in monofloral honeys (g/g). Sample Coumaric acid Rutin 2 trans 4 trans abscisic acid 2 cis 4 trans abscisic acid Quercetin 12 0.114 0.02 ND 0.488 0.03 1.56 0.09 ND 13 0.139 0.05 0.01 0.00 12.7 2.15 36.4 2.54 0. 307 0.09 14 0.083 0.00 0.180.01 3.230.06 9.39 0.14 ND 15 0.055 0.01 0.0840.02 1.17 0.17 3.88 0.22 ND 16 0.985 0.08 0.0750.00 19.2 0.52 32.1 1.23 0.5210.02 17 2.39 0.33 ND 2.29 0.06 8.95 0.21 0.6170.02 18 0.987 0.06 ND 7.56 0.12 18.2 0.24 0.2150.04 19 0.616 0.10 0.0440.00 0.723 0.23 2.41 0.49 0.5780.12 20 0.206 0.06 ND ND 1.52 0.15 0.363 0.01 21 0.188 0.10 ND 0.291 0.05 1.14 0.09 0.1920.02 22 0.272 0.07 0.0300.01 9.35 1.1 17.5 1.3 0.5570.16 23 0.533 0.22 0.0540.01 5.32 1.57 20.7 2.4 0.494 0.05 24 1.80 0.97 0.1010.02 2.01 0.08 4.08 0.16 0.410 0.08 25 ND 0.1520.04 3.78 0.27 10.90.77 0.423 0.02 26 1.73 1.06 ND 5.65 0.48 17.5 0.62 0.183 0.08 28 0.171 0.04 ND 9.654.02 25.4 5.41 ND

PAGE 54

54 Table2 10. contd Sample Pinobanksin Luteolin Kaempferol Pinocembrin Chrysin +Galangin Total Conc 12 1.14 0.12 ND 0. 199 0.03 0. 776 0.13 0.489 0.11 4.92 0.69 13 0.867 0.11 0.263 0.09 0.3130.15 0.620 0. 09 0.4390.05 96.7 4.8 14 0.199 0.01 0.3990.03 0.5410.15 0.0530.00 0. 0 30.00 29.3 11 15 0.691 0.02 0.237 0. 0 1 1.81 0.13 0.395 0.00 0.2910.04 7.22 0.61 16 4.59 0.07 ND 0.790.00 1.88 0.05 1.22 0.03 71.6 2.8 17 3.95 0.12 0.1350.00 ND 1.51 0.05 1.08 0.04 24.2 1.59 18 4.95 0.07 0.345 0. 01 0.2900.09 3.17 0.08 1.71 0.05 53.6 2.8 19 0.488 0.1 0.1960.02 0.6360.12 0.2580.05 0.1590.02 3.41 0.99 20 0.3850.02 0.115 0.00 0.5270.02 0.2190.02 0.1620.00 1.43 0.26 21 0.714 0.03 0.031 0.00 0.3220.17 0.4730.02 0.3040.03 1.93 0.25 22 2.16 0.33 0.2260.08 1.750.50 1.57 0.19 0.775 0.18 37.7 2.4 23 3.57 0.16 0.1790.00 0.654 0.01 1.69 0.06 1.080.06 40.7 4.6 24 1.100.05 ND 1.570.29 0.2080.01 0.1390.02 5.55 0.71 25 ND 0.3110.07 1.940.18 0.124 0.02 ND 12.1 3.8 26 0.4710.02 0.1750.01 0.3710.01 0.1540.02 ND 23.0 0.69 28 0.4420.075 0.183 0.03 0.326 0. 04 0.489 0.08 0.2610.01 68.6 2.3 R esults are mean standard deviation of three determinations on fresh weight basis ND, not detected 2 trans 4 trans abscis ic acid was quantified using the 2 cis 4 trans abscis ic acid as a standard P inobanksin was quantified using pinocembrin as a standard.

PAGE 55

55 Figure2 1. dicarbonyls in standa rd solution (A), Manuka honey 1c (B), and White Clover honey 11b (C) after derivatization 1. o phenylenediamine 2. glucosone 3. 3 deoxyglucosone 4. glyoxal 5. m ethylglyoxal

PAGE 56

56 Figure2 2. dicarbonyls in Avocado honey 10a (A), Orange Blossom honey 2a (B), Palmetto honey 5b (C), and Tupelo honey 4b (D) after derivatization 1. o phenylenediamin e 2. glucosone 3. 3 deoxyglucosone 4. glyoxal 5. methylglyoxal

PAGE 57

57 Figure2 3. dicarbonyls in Multi floral honey 14 (A), Multi floral honey 23 (B), and Multi floral honey 25 (C) after derivatization 1. o phenylenediamine 2. glucosone 3. 3 deoxyglucosone 4. glyoxal 5. methylglyoxal

PAGE 58

58 Figure2 4. P roduct ion spectra (MS 2 ) of tentatively identified compounds trans trans abscisic acid (A), pinobanksin 5 methylether (B), and pinobanksin (C ).

PAGE 59

59 Figure2 5. Proposed fragmentation of tentatively identified compounds 2 trans 4 trans abscisic acid (A) pinobanksin 5 methyl ether (B ), and pinobanksin (C)

PAGE 60

60 Figure2 6 HPLC chromatogram of phenolic phytocheicals in Palmetto honey 5a (A) and Palmetto honey 5b (B) Peak number and identi fication are listed in Table 2 8.

PAGE 61

61 Figure2 7 HPLC chromatogram of phenolic phytochemicals in Manuka honey 1a (A) and Manuka honey 1b (B) Peak number and identification are listed in Table 2 8.

PAGE 62

62 Figure2 8 HPLC chromatogram of phenolic phytochemicals in Orange Blossom honey 2a (A), Avocado honey 10a (B), and Gallberry honey 9b (C ). Peak number and identification are listed in Table 2 8.

PAGE 63

63 Figure2 9 HPLC chromatogram of phenolic phytochemicals in Multi floral honey 13 (A), and Multi floral honey 23 (B) Peak number and identification are listed in Table 2 8.

PAGE 64

64 Figure2 10. H ierarchical clustering of m onofloral honeys on the basis of phenolic phytochemical composition.

PAGE 65

65 Figure2 11. H ierarchical clustering of mult i floral honeys on the basis of phenolic phytochemical composition. Numbers in parenthesis indicate the sample number.

PAGE 66

66 CHAPTER 3 CONCLUSIONS Florida honeys contain antioxidant phenolic phytochemicals and anti dicarbonyls Concentration and composition of these compounds varied according to floral source, harvesting season, and locations Floral source appears to be the most significant influence on honey characteristics Results suggest that Florida honey may have medicinal benefits due to their antioxidant capacity and concentrations of dicarbonyls.

PAGE 67

67 LIST OF REFERENCES 1. Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K., Solid phase extraction procedure for deter mination of phenolic acids and some flavonols in honey. Journal of Chromatography A 2008, 1187 18 24. 2. Baltrusaityte, V.; Venskutonis, P. R.; Ceksteryte, V., Radical scavenging activity of different floral origin honey and beebread phenolic extracts. F ood Chemistry 2007, 101 502 514. 3. Hadjmohammadi, M. R.; Nazari, S.; Kamel, K., Determination of Flavonoid Markers in Honey with SPE and LC using Experimental Design. Chromatographia 2009, 69 1291 1297. 4. Dimitrova, B.; Gevrenova, R.; Anklam, E., Analysis of phenolic acids in honeys of different floral origin by solid phase extraction and high performance liquid chromatography. Phytochemical Analysis 2007, 18 24 32. 5. Aljadi, A. M.; Kamaruddin, M. Y., Ev aluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry 2004, 85 513 518. 6. Andrade, P.; Ferreres, F.; Amaral, M. T., Analysis of honey phenolic acids by hplc, its application to honey botanical charac terization. Journal of Liquid Chromatography & Related Technologies 1997, 20 7. Ferreres, F.; Tomasbarberan, F. A.; Soler, C.; Garciaviguera, C.; Ortiz, A.; Tomaslorente, F., A SIMPLE EXTRACTIVE TECHNIQUE FOR HONEY FLAVONOID HPLC ANALYSIS. Apidologie 1994, 25 21 30. 8. Petrus, K.; Schwartz, H.; Sontag, G., Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry 2011, 400 2555 2563 9. Gheldof, N.; Wang, X. H.; Engeseth, N. J., Identification and quantification of antioxidant components of honeys from various floral sources. Journal of Agricultural and Food Chemistry 2002, 50 5870 5877. 10. Meda, A.; Lamien, C. E.; Romito, M.; Mi llogo, J.; Nacoulma, O. G., Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry 2005, 91 571 577. 11. Bertoncelj, J.; Dobersek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry 2007, 105 822 828.

PAGE 68

68 12. Beretta, G.; Orioli, M.; Facino, R. M., Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA. hy926). Planta Medica 2007, 73 13. Brudzynski, K.; Kim, L., Storage induced chemical changes in active components of honey de regulate its antibacterial activity. Food Chemistry 2011, 126 1155 1163. 14. Al Mamary, M.; Al Meeri, A.; Al Habori, M., Antio xidant activities and total phenolics of different types of honey. Nutrition Research 2002, 22 1041 1047. 15. Chang, X.; Wang, J.; Yang, S.; Chen, S.; Song, Y., Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys. Food & Fun ction 2011, 2 541 546. 16. Atrott, J.; Henle, T., Methylglyoxal in Manuka Honey Correlation with Antibacterial Properties. Czech Journal of Food Sciences 2009, 27 S163 S165. 17. Adams, C. J.; Boult, C. H.; Deadman, B. J.; Farr, J. M.; Grainger, M. N. C.; Manley Harris, M.; Snow, M. J., Isolation by HPLC and characterization of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey (vol 343, pg 651, 2008). Carb ohydrate Research 2009, 344 2609 2609. 18. Mavric, E.; Wittmann, S.; Barth, G.; Henle, T., Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular Nutrition & Food Research 2008, 52 483 489. 19. Weston, R. J.; Brocklebank, L. K.; Lu, Y. R., Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chemistry 2000, 70 20. Weston, R. J.; Mitchell, K. R.; All en, K. L., Antibacterial phenolic components of New Zealand manuka honey. Food Chemistry 1999, 64 295 301. 21. Molan, P. C., Potential of honey in the treatment of wounds and burns. American journal of clinical dermatology 2001, 2 13 9. 22. Adams, C. J .; Manley Harris, M.; Molan, P. C., The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Research 2009, 344 1050 1053. 23. Oelschlaegel, S.; Gruner, M.; Wang, P. N.; Boettcher, A.; Koelling Speer, I.; Speer, K., Classification and Characterization of Manuka Honeys Based on Phenolic Compounds and Methylglyoxal. Journal of Agricultural and Food Chemistry 2012, 60 24. Molan, P., Honey: antimicrobial actions and role in disease management. In New strategies combatin g bacterial infection Ahmad, I.; Aqil, F., Eds. 2009; pp 229 253.

PAGE 69

69 25. Wahdan, H. A. L., Causes of the antimicrobial activity of honey. Infection 1998, 26 26 31. 26. Yao, L. H.; Datta, N.; Tomas Barberan, F. A.; Ferreres, F.; Martos, I.; Singanusong, R. Flavonoids, phenolic acids and abscisic acid in Australian and New Zealand Leptospermum honeys. Food Chemistry 2003, 81 159 168. 27. Stephens, J. M.; Schlothauer, R. C.; Morris, B. D.; Yang, D.; Fearnley, L.; Greenwood, D. R.; Loomes, K. M., Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chemistry 2010, 120 78 86. 28. Alvarez Suarez, J. M.; Gon zalez Paramas, A. M.; Santos Buelga, C.; Battino, M., Antioxidant Characterization of Native Monofloral Cuban Honeys. Journal of Agricultural and Food Chemistry 2010, 58 9817 9824. 29. Jasicka Misiak, I.; Poliwoda, A.; Deren, M.; Kafarski, P., Phenolic c ompounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chemistry 2012, 131 30. Truchado, P.; Ferreres, F.; Tomas Barberan, F. A., Liquid chromatography tandem mass spectrometry reveals the widespread oc currence of flavonoid glycosides in honey, and their potential as floral origin markers. Journal of Chromatography A 2009, 1216 31. Gil, M. I.; Ferreres, F.; Ortiz, A.; Subra, E.; Tomasbarberan, F. A., Plant phenolic metabolites and floral origin of rosemary honey. Journal of Agricultural and Food Chemistry 1995, 43 32. Yaoa, L.; Jiang, Y. M.; Singanusong, R.; Datta, N.; Raymont, K., Phenolic acids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for flo ral authentication. Food Research International 2005, 38 33. Weigel, K. U.; Opitz, T.; Henle, T., Studies on the occurrence and formation of 1,2 dicarbonyls in honey. European Food Research and Technology 2004, 218 147 151. 34. Marceau, E.; Yaylayan, V A., Profiling of alpha Dicarbonyl Content of Commercial Honeys from Different Botanical Origins: Identification of 3,4 Dideoxyglucoson 3 ene (3,4 DGE) and Related Compounds. Journal of Agricultural and Food Chemistry 2009, 57 10837 10844. 35. Estevinho L.; Pereira, A. P.; Moreira, L.; Dias, L. G.; Pereira, E., Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. In Food and Chemical Toxicology 2008; Vol. 46, pp 3774 3779.

PAGE 70

70 36. Brudzynski, K.; Miotto, D., Th e relationship between the content of Maillard reaction like products and bioactivity of Canadian honeys. Food Chemistry 2011, 124 869 874. 37. Efem, S. E. E.; Udoh, K. T.; Iwara, C. I., The antimicrobial spectrum of honey and its clinical significance. Infection 1992, 20 227 229. 38. Ferreres, F.; Garciaviguera, C.; Tomaslorente, F.; Tomasbarberan, F. A., Hesperetin A marker of the floral origin of citrus honey. Journal of the Science of Food and Agriculture 1993, 61 39. Liu, H.; Liu, H.; Wang, W.; K hoo, C.; Taylor, J.; Gu, L., Cranberry phytochemicals inhibit glycation of human hemoglobin and serum albumin by scavenging reactive carbonyls. Food & function 2011, 2 475 82. 40. Singleton, V. L.; Rossi, J. A., Colorimetry of total phenolics in grapes a nd wine with phosphomolybdic phosphotungstic acid reagents. Amer J Enol Viticult 1965, 16 41. Sandhu, A. K.; Gu, L., Antioxidant Capacity, Phenolic Content, and Profiling of Phenolic Compounds in the Seeds, Skin, and Pulp of Vitis rotundifolia (Muscadin e Grapes) As Determined by HPLC DAD ESI MSn. Journal of Agricultural and Food Chemistry 2010, 58 42. Brand Williams, W.; Cuvelier, M. E.; Berset, C., Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft and Technologie 1995, 28 43. Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R. M., Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta 2005, 533 44. Andrade P.; Ferreres, F.; Amaral, M. T., Analysis of honey phenolic acids by hplc, its application to honey botanical characterization. Journal of Liquid Chromatography & Related Technologies 1997, 20 2281 2288. 45. Martos, I.; Cossentini, M.; Ferreres, F.; TomasBarberan, F. A., Flavonoid composition of Tunisian honeys and propolis. Journal of Agricultural and Food Chemistry 1997, 45 46. Martos, I.; Ferreres, F.; Tomas Barberan, F. A., Identification of flavonoid ma rkers for the botanical origin of Eucalyptus honey. Journal of Agricultural and Food Chemistry 2000, 48 47. Martos, I.; Ferreres, F.; Yao, L. H.; D'Arcy, B.; Caffin, N.; Tomas Barberan, F. A., Flavonoids in monospecific Eucalyptus honeys from Australia. Journal of Agricultural and Food Chemistry 2000, 48

PAGE 71

71 48. Khalil, M. I.; Moniruzzaman, M.; Boukraa, L.; Benhanifia, M.; Islam, M. A.; Islam, M. N.; Sulaiman, S. A.; Gan, S. H., Physicochemical and Antioxidant Properties of Algerian Honey. Molecules 2012, 1 7 11199 11215. 49. Gheldof, N.; Engeseth, N. J., Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. Journal of Agricultural and Food Chemistry 2002, 50 3050 3055. 50. Schwartz, M., Natural Distribution and Abundance of Forest Species and Communities in Northern Florida. Ecology 1994, 75 687 705. 51. Mittelmaier, S.; Fuenfrocken, M.; Fenn, D.; Fichert, T.; Pi schetsrieder, M., Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences 2010, 878 877 882. 52 Gensberger, S.; Mittelmaier, S.; Glomb, M. A.; Pischetsrieder, M., Identification and quantification of six major alpha dicarbonyl process contaminants in high fructose corn syrup. Analytical and Bioanalytical Chemistry 2012, 403 2923 2931. 53. Biesaga M.; Pyrzynska, K., Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. Journal of Chromatography A 2009, 1216 54. Falcao, S. I.; Vilas Boas, M.; Estevinho, L. M.; Barros, C.; Domingues, M. R. M.; Cardoso, S. M., P henolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Analytical and Bioanalytical Chemistry 2010, 396 55. Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P., Analysis of the polyphenolic fraction of propolis from di fferent sources by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2007, 45 56. Medana, C.; Carbone, F.; Aigotti, R.; Appendino, G.; Baiocchi, C., Selective analysis of phenolic compounds in propolis by H PLC MS/MS. Phytochemical Analysis 2008, 19 57. Bertoncelj, J.; Polak, T.; Kropf, U.; Korosec, M.; Golob, T., LC DAD ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chemistry 2011, 127 58. Truchado, P.; Vit, P.; Ferreres, F.; Tomas Barberan, F., Liquid chromatography tandem mass spectrometry analysis allows the simultaneous characterization of C glycosyl and O glycosyl flavonoids in stingless bee honeys. Journal of Chromatography A 2011, 1218

PAGE 72

72 59. Ferreres, F.; Andrade, P.; TomasBarberan, F. A., Natural occurrence of abscisic acid in heather honey and floral nectar. Journal of Agricultural and Food Chemistry 1996, 44 60. Tomas Barberan, F. A.; Martos, I.; Ferreres, F.; Radovic, B. S.; Anklam, E., HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of the Science of Food and Agriculture 2001, 81 61. Sun, J.; Liang, F.; Bin, Y. ; Li, P.; Duan, C., Screening non colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12 679 693. 62. Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin Leclercq, J., Deter mination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry 2001, 12 63. Hammel, Y. A.; Mohamed, R.; Gremaud, E.; LeBreton, M. H.; Guy, P. A., Multi screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography tandem mass spectrometry. Journal of Chromatography A 2008, 1177 58 76. 64. Daniele, G.; Maitre, D.; Casabianca, H., Identification quantification and carbon stable isotopes determinations of organic acids in monofloral honeys. A powerful tool for botanical and authenticity control. Rapid Communications in Mass Spectrometry 2012, 26 1993 1998. 65. Barganska, Z.; Slebioda, M.; Namie snik, J., Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control 2013, 31 196 201. 66. Hermosin, I.; Chicon, R. M.; Cabezudo, M. D., Free amino acid composition and botanical origin of honey. Food Chemistry 2003, 83 263 268.

PAGE 73

73 BIOGRAPHICAL SKETCH Sara Marshall graduated from the University of Florida with a Bachelor of Science degree in food science and human n utr ition with a specialization in food science and a specialization in n utrition in May 2011 From there, she accepted a tion in food s cience under the advisement of Dr. Liwei Gu at the University of Florida Sara graduated in food science and human n utrition in August 2013 Sara accepted an i ntern ship for a governmental research and product develop ment company in Iceland in 2013 Upon completion of her inter n ship she hopes to enter the food industry as a Research Scientist