<%BANNER%>

Classical Representation of Quantum Systems at Equilibrium

MISSING IMAGE

Material Information

Title:
Classical Representation of Quantum Systems at Equilibrium
Physical Description:
1 online resource (111 p.)
Language:
english
Creator:
Dutta, Sandipan
Publisher:
University of Florida
Place of Publication:
Gainesville, Fla.
Publication Date:

Thesis/Dissertation Information

Degree:
Doctorate ( Ph.D.)
Degree Grantor:
University of Florida
Degree Disciplines:
Physics
Committee Chair:
Dufty, James W
Committee Co-Chair:
Cheng, Hai Ping
Committee Members:
Muttalib, Khandker A
Reitze, David H
Ladd, Anthony J

Subjects

Subjects / Keywords:
dft -- fluids -- hnc -- quantum -- rpa
Physics -- Dissertations, Academic -- UF
Genre:
Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract:
A quantum system at equilibrium is represented by an effective classical system, chosen to reproduce thermodynamic and structural properties. The motivation is to allow application of classical strong coupling theories and classical simulations like molecular dynamics and Monte Carlo to quantum systems at strong coupling. The correspondence is made at the level of the grand canonical ensembles for the two systems. The effective classical system is defined in terms of an effective temperature, local chemical potential, and pair potential. These are determined formally by requiring the equivalence of the grand potentials and their functional derivatives of the quantum and representative classical systems. The mapping is inverted using the classical density functional theory to solve for these three parameters. Practical forms of these formal solutions are obtained using the classical liquid state theories like hypernetted chain approximation (HNC). The mapping is applied to the ideal Fermi gas is demonstrated and the details of the thermodynamics of the effective system is derived explicitly. As the next application we consider the uniform electron gas and an explicit form for the effective interaction potential is obtained in the weak coupling limit. The pair correlation functions are calculated using the HNC equations and compared with path integral Monte Carlo data and other theoretical models like Perrot Dharma-wardana. Excellent agreement is obtained over a wide range of temperatures and densities. The last application is to the shell structure of harmonically bound charges. We show that in the mean field limit, the quantum effects of degeneracy and diffraction produce shells at very low temperatures.
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility:
by Sandipan Dutta.
Thesis:
Thesis (Ph.D.)--University of Florida, 2013.
Local:
Adviser: Dufty, James W.
Local:
Co-adviser: Cheng, Hai Ping.

Record Information

Source Institution:
UFRGP
Rights Management:
Applicable rights reserved.
Classification:
lcc - LD1780 2013
System ID:
UFE0045418:00001

MISSING IMAGE

Material Information

Title:
Classical Representation of Quantum Systems at Equilibrium
Physical Description:
1 online resource (111 p.)
Language:
english
Creator:
Dutta, Sandipan
Publisher:
University of Florida
Place of Publication:
Gainesville, Fla.
Publication Date:

Thesis/Dissertation Information

Degree:
Doctorate ( Ph.D.)
Degree Grantor:
University of Florida
Degree Disciplines:
Physics
Committee Chair:
Dufty, James W
Committee Co-Chair:
Cheng, Hai Ping
Committee Members:
Muttalib, Khandker A
Reitze, David H
Ladd, Anthony J

Subjects

Subjects / Keywords:
dft -- fluids -- hnc -- quantum -- rpa
Physics -- Dissertations, Academic -- UF
Genre:
Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract:
A quantum system at equilibrium is represented by an effective classical system, chosen to reproduce thermodynamic and structural properties. The motivation is to allow application of classical strong coupling theories and classical simulations like molecular dynamics and Monte Carlo to quantum systems at strong coupling. The correspondence is made at the level of the grand canonical ensembles for the two systems. The effective classical system is defined in terms of an effective temperature, local chemical potential, and pair potential. These are determined formally by requiring the equivalence of the grand potentials and their functional derivatives of the quantum and representative classical systems. The mapping is inverted using the classical density functional theory to solve for these three parameters. Practical forms of these formal solutions are obtained using the classical liquid state theories like hypernetted chain approximation (HNC). The mapping is applied to the ideal Fermi gas is demonstrated and the details of the thermodynamics of the effective system is derived explicitly. As the next application we consider the uniform electron gas and an explicit form for the effective interaction potential is obtained in the weak coupling limit. The pair correlation functions are calculated using the HNC equations and compared with path integral Monte Carlo data and other theoretical models like Perrot Dharma-wardana. Excellent agreement is obtained over a wide range of temperatures and densities. The last application is to the shell structure of harmonically bound charges. We show that in the mean field limit, the quantum effects of degeneracy and diffraction produce shells at very low temperatures.
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility:
by Sandipan Dutta.
Thesis:
Thesis (Ph.D.)--University of Florida, 2013.
Local:
Adviser: Dufty, James W.
Local:
Co-adviser: Cheng, Hai Ping.

Record Information

Source Institution:
UFRGP
Rights Management:
Applicable rights reserved.
Classification:
lcc - LD1780 2013
System ID:
UFE0045418:00001


This item has the following downloads:


Full Text

PAGE 1

CLASSICALREPRESENTATIONOFQUANTUMSYSTEMSATEQUILIBRIUMBySANDIPANDUTTAADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHYUNIVERSITYOFFLORIDA2013

PAGE 2

c2013SandipanDutta 2

PAGE 3

Tomyparents 3

PAGE 4

ACKNOWLEDGMENTS Firstandforemost,IwouldliketothankmyadvisorandmentorProfessorJimDuftywithoutwhoseguidanceandencouragementthisworkwouldnothavebeenpossible.IwouldalsoliketoacknowledgeJefferyWrightonforhelpingmewiththecomputations.Further,IwouldliketothankmycommitteemembersProfessorCheng,ProfessorLadd,ProfessorMuttalibandProfessorReitzefortheirsupport.ThisworkwasmadepossiblebythegrantsfromDOE. 4

PAGE 5

TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFFIGURES ..................................... 7 ABSTRACT ......................................... 9 CHAPTER 1INTRODUCTION ................................... 11 2CORRELATIONSINQUANTUMSYSTEMS .................... 18 2.1QuantumTheoriesForElectronSystems .................. 18 2.1.1FermiLiquidTheory .......................... 18 2.1.2RandomPhaseApproximationWithLocalFieldCorrections .... 19 2.1.3DynamicalMeanFieldTheory ..................... 21 2.1.4HohenbergKohnDensityFunctionalTheory ............. 21 2.2ClassicalMethods:QuantumPotentials ................... 22 2.2.1ClassicalDFT .............................. 25 2.2.2PerrotDharma-wardanaMethod ................... 26 2.3WhyWeChoseClassicalApproachInsteadOfQuantumtheories(OurMotivation) ................................... 27 3THEEFFECTIVECLASSICALSYSTEM ..................... 29 3.1DenitionOfTheRepresentativeClassicalSystem ............. 29 3.1.1ThermodynamicsFromStatisticalMechanics ............ 29 3.1.2ConstructionOfTheEffectiveClassicalSystem:Classical-Quan-tumCorrespondenceConditions ................... 33 3.1.3InversionOfTheCorrespondenceConditions ............ 35 3.1.4HypernettedChainApproximation .................. 38 3.2PeculiarityOfTheThermodynamicsOfTheEffectiveSystem ....... 40 3.3Example-IdealFermiGas .......................... 41 3.4Summary .................................... 49 4UNIFORMELECTRONGAS ............................ 50 4.1ThermodynamicsOfTheEffectiveClassicalSystem ............ 50 4.1.1ClassicalPotentialcc(r) ....................... 52 4.1.2ClassicalEffectiveTemperatureAndChemicalPotential ...... 56 4.2RadialDistributionFunctionAndThermodynamics ............. 57 4.2.1Thermodynamics ............................ 61 4.3KelbgFittingForTheEffectivePotentialcc ................ 62 4.4Summary .................................... 65 5

PAGE 6

5SHELLFORMATIONINNONUNIFORMSYSTEMS ............... 66 5.1ZeroTemperatureClassicalDensity ..................... 66 5.2ShellModels .................................. 67 5.3FiniteTemperatureFormalism ......................... 68 5.3.1ShellFormationInAPolynomialPotential .............. 70 5.4ShellFormationInQuantumSystems .................... 74 5.4.1EffectiveLocalChemicalPotentialForIdealFermiGas ....... 74 5.4.2TheQuantumEffectsOnTheShellFormationInTheMeanFieldTheory .................................. 75 5.4.3NDependenceOfRadiusOfTheTrap ................ 77 5.5Summary .................................... 78 6CONCLUSION .................................... 80 7OTHERAPPLICATIONSOFTHEFORMALISM ................. 83 7.1DensityProleOfCoulombSystemsInAHarmonicTrap ......... 83 7.2SpinPolarizedUniformElectronGas ..................... 83 7.3MagneticSusceptibilityAtFiniteTemperaturesOfTheIdealFermiGas 84 7.4CrystalLatticeSystems ............................ 85 7.52DElectronGas ................................ 86 APPENDIX AEXACTCOUPLEDEQUATIONSFORnc(r)ANDgc(r,r0) ............ 87 BINHOMOGENEOUSIDEALFERMIGAS ..................... 90 CQUANTUMPRESSURE ............................... 94 DSTATICSTRUCTUREFACTORINRPA ...................... 96 EPROPERTIESOFEFFECTIVEINTERACTIONPOTENTIALFORRPASYS-TEMS ......................................... 101 FIDEALFERMIGASINAHARMONICTRAP ................... 104 REFERENCES ....................................... 107 BIOGRAPHICALSKETCH ................................ 111 6

PAGE 7

LISTOFFIGURES Figure page 1-1Thetemperaturedensityplotshowingtheregimeofthewarmdensematter[ 12 ]. .......................................... 12 1-2ThecomparisonbetweenthedensityproleobtainedbyWrightonetal.andthatoftheclassicalMCisshown.ThebridgetermsneedtobeaddedtotheHNCequationstogetgoodagreement[ 46 ]. .................... 16 3-1Thecomparisonoftheexactdensity(asinEquation( 3 ))fortheidealFermigasfor100particlesinaharmonictrapwiththatobtainedusingLDA(Equa-tion( 3 )). ...................................... 44 3-2IdealgasPaulipairpotentialasafunctionofr=r=r0fort=0,0.1,1,10[ 35 ]. 46 3-3Idealgasreducedclassicaltemperaturetc=Tc=TFasafunctionoft=T=TF.AlsoshownistheresultofPDW[ 35 ]. ................... 47 3-4Idealgasdimensionlesschemicalpotentialc=Fasafunctionoft.Alsoshownisthecorrespondingquantumchemicalpotential=F+tln2[ 35 ]. ....... 47 4-1Demonstrationofcrossoverforr4(t,rs,r)toCoulombwitheffectivecou-plingconstant)]TJ /F4 7.97 Tf 6.78 -1.8 Td[(e(t,rs)givenbyEquation( 4 ),forrs=5andt=0.5,1and10[ 48 ].Alsoshownarethecorrespondingresultsforr4PDW(t,rs,r). .... 55 4-2QuantumRPApressurepRPAatt=0asafunctionofrs[ 48 ]. ......... 57 4-3ClassicalreducedtemperatureTc=TFasafunctionoftforrs=0,1,3and4[ 48 ]. .......................................... 58 4-4Dimensionlessclassicalchemicalpotentialc=EFasafunctionoftforrs=1,3,5[ 48 ]. ...................................... 58 4-5Radialdistributionfunctiong(r)forrs=6att=0.5,1,4,8.AlsoshownaretheresultsofPIMC[ 48 ]. .............................. 59 4-6Radialdistributionfunctiong(r)forrs=6att=0.5,1,4,8.AlsoshownaretheresultsofPDW[ 48 ]. ............................... 60 4-7Radialdistributionfunctiong(r)forrs=5att=0.5,1and10.AlsoshownaretheresultsofTanaka-Ichimaru[ 48 ]. ...................... 60 4-8Radialdistributionfunctiong(r)fort=0atrs=1,5,10.AlsoshownareresultsfromPIMCanddiffusionMonteCarlo.ThePIMCanddiffusionMonteCarloplotsareindistinguishable[ 11 48 ]. ..................... 61 4-9Dimensionlessclassicalpressurepc=(nF)asafunctionoftforrs=1,3,5.AlsoshownarethecorrespondingmodiedRPAresults[ 48 ]. .......... 62 7

PAGE 8

4-10ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=8forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. .......................................... 62 4-11ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=0.5forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. 63 4-12ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=1forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. 63 4-13ComparisonofthepaircorrelationfunctionsforthemodiedKelbgpotentialatt=0forrs=1,6,10and40withPIMCatt=0.0625anddiffusionMonteCarloatt=0[ 59 ]. .................................. 64 5-1MeaneldclassicaldensityproleforN=100particlesforvariousvaluesof)]TJ /F1 11.955 Tf 6.77 0 Td[(.ThemeaneldCoulomblimit)]TJ /F2 11.955 Tf 10.1 0 Td[(!1isastepfunction[ 46 ]. ......... 69 5-2ThedensityproleinthemeaneldlimitofCoulombsystemsindifferentpoly-nomialtrappotentialsfor)-277(=40 .......................... 72 5-3Thevariationofthedensityprolewiththecouplingconstant)]TJ /F1 11.955 Tf 10.1 0 Td[(for100parti-clesinthetrap[ 46 ]. ................................. 72 5-4Thevariationofthedensityprolewiththenumberofparticlesinthetrapfor)-277(=100[ 46 ]. ..................................... 73 5-5Thellingoftheshellsandthedependenceofthepopulationineachshellonthetotalnumberofparticlesinthetrapisshown.Alsoshownarethecorre-spondingMCandMDdata[ 46 ]. .......................... 73 5-6Effectiveclassicaltrappotential4cc(r)=)-404(=(cc(r))]TJ /F3 11.955 Tf 12.56 0 Td[(cc(0))=)]TJ /F1 11.955 Tf 10.09 0 Td[(asafunctionofrfort=0.5,10[ 48 ].Alsoshownistheharmonicpotential. .... 75 5-7Diffractionmeaneldapproximatedensityprolefor)-328(=3andt=0.1,0.5,1[ 48 ]. .......................................... 76 5-8Comparisonof)]TJ /F6 11.955 Tf 9.3 0 Td[(c(r)andVK(r)att=0.1,0.27bothcorrespondingto)-351(=3[ 48 ].AlsoshownistheCoulomblimitq2=r. .................. 76 5-9Exchangemeaneldapproximatedensityproleforrs=5andt=0.5,1,2,5,10[ 48 ]. .......................................... 77 8

PAGE 9

AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofDoctorofPhilosophyCLASSICALREPRESENTATIONOFQUANTUMSYSTEMSATEQUILIBRIUMBySandipanDuttaAugust2013Chair:JamesWDuftyCochair:Hai-PingChengMajor:PhysicsAquantumsystematequilibriumisrepresentedbyaneffectiveclassicalsystem,chosentoreproducethermodynamicandstructuralproperties.ThemotivationistoallowapplicationofclassicalstrongcouplingtheoriesandclassicalsimulationslikemoleculardynamicsandMonteCarlotoquantumsystemsatstrongcoupling.Thecor-respondenceismadeatthelevelofthegrandcanonicalensemblesforthetwosystems.Theeffectiveclassicalsystemisdenedintermsofaneffectivetemperature,localchemicalpotential,andpairpotential.Thesearedeterminedformallybyrequiringtheequivalenceofthegrandpotentialsandtheirfunctionalderivativesofthequantumandrepresentativeclassicalsystems.Themappingisinvertedusingtheclassicaldensityfunctionaltheorytosolveforthesethreeparameters.Practicalformsoftheseformalsolutionsareobtainedusingtheclassicalliquidstatetheorieslikehypernettedchainapproximation(HNC).ThemappingisappliedtotheidealFermigasisdemonstratedandthedetailsofthethermodynamicsoftheeffectivesystemisderivedexplicitly.Asthenextapplicationweconsidertheuniformelectrongasandanexplicitformfortheeffectiveinteractionpotentialisobtainedintheweakcouplinglimit.ThepaircorrelationfunctionsarecalculatedusingtheHNCequationsandcomparedwithpathintegralMonteCarlodataandothertheoreticalmodelslikePerrotDharma-wardana.Excellentagreementisobtainedoverawiderangeoftemperaturesanddensities.Thelastappli-cationistotheshellstructureofharmonicallyboundcharges.Weshowthatinthemean 9

PAGE 10

eldlimit,thequantumeffectsofdegeneracyanddiffractionproduceshellsatverylowtemperatures. 10

PAGE 11

CHAPTER1INTRODUCTIONTheliteratureonthethermodynamicsofquantumsystemsatzeroandveryhightemperaturesisvastandwelldeveloped.Manyexperimentsandsimulationshavebeenperformedaroundroomtemperatureandveryhightemperatures.SinceroomtemperatureisusuallysmallcomparedtotheFermienergyofmostsystems,whichisintheorderoftenthousandkelvin,thesesystemscanbesuccessfullydescribedbyzerotemperaturetheoriesliketheFermiliquidtheory[ 1 3 ]orthezero-temperaturedensityfunctionaltheory(DFT)[ 1 4 6 ].Ontheotherextreme,atveryhightemperatures,weakcouplingtheorieslikeDebye-Huckelarequitesuccessful.Veryrecentlyanewclassofquantumsystemscalledwarmdensematter(complexion-electronsystems)[ 7 10 ],hasemergedforwhichthetraditionalzeroandhightemperaturetheoriesfail.Althoughtheionsaretypicallysemi-classical,theelectronscanhavemoderatetostrongcouplinganddegeneracy.ThisisroughlytheregimeatwhichthetemperaturesarecomparabletotheFermitemperatureandthedensitiesareclosetosolid.ThetypicaltemperaturesanddensitiesforwarmdensematterareshownbelowinFigure 1-1 .AsofnowwehaveahostofexperimentaldataandsimulationmethodslikethepathintegralMonteCarlo(PIMC)[ 11 ],butwelackaneffectivetheory.Thebasicproblemliesintheconditionsforwhichboththestrongcouplingandthestrongquantumeffectsoccurtogetheratnitetemperatures.Newtheoreticalideasandmethodsareneedednowtoexplainthephysicsofsomeoftheinterestingphenomenaassociatedwithsuchsystems.Thegeneralobjectivehereistoaddressthisproblemwithanewmethodbasedonexploitingstrongcouplingclassicalmany-bodymethodsforapplicationtothesequantumsystems.Thezerotemperaturetheoriesaredifculttoextendtonitetemperatures.TheFermiliquidtheoryisbasedonthepicturethattheenergylevelsoftheinteractingsystemcanbeadiabaticallymodiedintotheweaklyinteractingsystem[ 1 3 ],whichisusuallytrueonlyatverylowtemperatures.Thequasi-particles,onwhichtheFermiliquid 11

PAGE 12

Figure1-1. Thetemperaturedensityplotshowingtheregimeofthewarmdensematter[ 12 ]. theoryisbased,haveshortlifetimesatnitetemperaturesandthisiswherethetheorybreaksdown.AnothersuccessfulzerotemperaturetheoryistheKohnShamformulationofdensityfunctionaltheory[ 1 4 6 ],whichisbasedonthellingupofthelowestenergyKohn-Shamorbitalsatzerotemperature.Atnitetemperaturesmoreandmoreoftheseorbitalsarelledandthecalculationsbecomeincreasinglydifcult.Atmoderatelyhightemperaturesthepracticalcalculationsdonotconverge.Furthermore,theformoftheexchange-correlationpartofthefreeenergyisnotknownatnitetemperatures,hencetheorbitalsdonotcapturethephysicsaccurately.Othermethodslikethelocaleldcorrectiontheories[ 1 13 ],whichaddscorrelationstoweaklycoupledtheoriesliketherandomphaseapproximation(RPA),failatthemetallicdensitiesandlowtemperatureswheretheygivenegativepaircorrelationsatshortdistances.Dynamicalmeaneldtheoryassumesrstthattheproblemofinterestcanberepresented(approximately)byalatticemodel[ 14 18 ].Thislatticesystemisthenmappedexactlyontoanimpurityproblemthatcanbesolvedapproximately.Itisnotclearhowthisapproachcanbeappliedtothedisordered,uid-likestatesofWDM. 12

PAGE 13

Acompletelydifferentapproachistheattempttoapplyeffectivestrongcouplingmethodsofclassicalstatisticalmechanicstoquantumsystemsusingeffectivequan-tumpotentials[ 19 33 ].Thequantumpotentialsaredenedtoincorporateselectedquantumeffectsintotheclassicalsystems.MolecularDynamics(MD)isverysuccessfulindescribingthedynamicsandthecorrelationsforclassicalsystems[ 32 ].MDisalsobeusedwiththequantumpotentialstostudystrongcorrelationsinquantumsystems.MolecularDynamicsandclassicalMonteCarlomethodsarefarlesscomputationallyintensivethanquantumsimulationslikepathintegralMonteCarlo(PIMC).Inaddition,thereexistsalargeliteratureinliquidstatetheorylikehypernettedchainapproximation(HNC)andPercusYevick(PY)whichsuccessfullydescribethestrongcorrelationsinclassicalsystems[ 32 ].Theseequationsareeasytosolvenumerically,whichledustoadoptthemodiedclassicalmethodsinsteadofthetraditionalquantumtheories.RecentlyPerrotandDharma-wardana(PDW)introducedaneffectivetemperatureaswellasaquantumpotentialtoprovideamodelthatcandescribetheequilibriumpropertiesofhydrogenandtheuniformelectrongasforawiderangeoftemperaturesanddensities[ 29 33 34 ].Theysplittheireffectivepotentialfortheuniformelectrongasintoanoninteractingterm,alsocalledthePaulipotential,andaregularizedCoulombterm,forwhichtheyusetheDeustchpotential.Writingthepotentialinthiswayimpliesthattheexactidealgasexchangeeffectsarerecoveredinthelimittheinteractionsarezero.TheyintroducedtheconceptoftheeffectivetemperatureTc=p T2+T20whichremainsniteatT=0.ThequantityT0isdeterminedbyequatingtheexchange-correlationenergyofthequantumsystematT=0obtainedfromsimulationdatatotheexcessenergyoftheclassicalsystems.ThiseffectivetemperatureTccapturesadditionalquantummany-bodyeffectsbeyondthoseoftheeffectivepairpotential.Theirotherideawastousetheireffectivepotentialintheclassicalliquidstatetheorylikethehypernettedchainapproximation(HNC)topredictthepaircorrelationfunctionsforthe 13

PAGE 14

uniformelectrongasatequilibrium.Theirphenomenologicalworkprovidedanadditionalmotivationformoresystematicwork.Thegeneralobjectiveaddressedinthisworkistodevelopasystematictheorytoexplainthethermodynamicsofthestronglycorrelatedquantumplasmasthatwillworkforawiderangeoftemperaturesanddensities.Ourapproachistoconstructaneffectiveclassicalsystemthatwillrepresentthethermodynamicsofthequantumsystemwewanttodescribe[ 35 ].Theparticlesinthequantumsysteminteractthroughapotential(r,r0)inthepresenceofanexternalpotentialext(r).InthegrandensembletherelevantthermodynamicvariablesarethetemperatureTandchemicalpotential.Theeffectiveclassicalsystemhasthecorrespondingeffectivepotentialsc(r,r0)andc,ext(r)attheeffectivethermodynamicvariablesTcandcrespectively.Theunknowneffectivepotentialsandthermodynamicvariablesfortheeffectivesystemaredeterminedbymappingthethermodynamicsoftheclassicalsystemtothatofthequantumsystem.Sincewehavetodeterminethreeunknownparametersweneedthreeequivalentconditions.Wesetthepressure,densityandpaircorrelationfunctionsforthequantumandtheclassicalsystemequaltoeachother.Tosolvefortheeffectiveparameters,weinvertthemappingdenedabove.Theinversionisdonewithintheclassicaldensityfunctionaltheorywhichrelatestheexternalpotentialandtheinteractionpotentialtothedensitiesandthepaircorrelationfunctionsrespectively[ 44 45 ].Exactinversionisverydifcultsincethatwouldinvolvethesolutionoftheclassicalmany-bodyproblem.HoweverwithinapproximationsliketheintegralequationsinliquidstatetheorylikeHNCandPercus-Yevickthiscanbedonetoagoodapproximation[ 32 ].Theeffectivetemperatureisdeterminedfromthevirialequationforpressureandtheequivalenceconditionsofthepressures.Inthiswaywehavetheeffectivepotentialsandtheclassicalthermodynamicalvariablesintermsofthequantumquantities:pressure,densityandpaircorrelationfunction.Itseemslikecalculatingthepressure,densityandpaircorrelationsthemselves 14

PAGE 15

wouldinvolvesolvingthefullquantummanybodyproblemandhencelittleprogresshasbeenmade.Howeverthereexistsomeknownlimitsfromwhichtheexactexpressionsforthesequantitiescanbeevaluatedasapproximations.Theeffectiveparameters,calculatedwiththeseapproximatequantumquantities,arethenputintosomestrongcouplingclassicaltheoriestoobtainthedesiredthermodynamicalquantities.Thusthecorrelationsintheresultantquantitiesareincorporatedintwosteps:thequantumcorrelationsareincorporatedintheeffectiveparametersinsomesimplequantumapproximation,suchasweakcouplingRPA,andthenstrongercorrelationsareobtainedthroughtheevaluationofpropertiesbyachosenstrongcouplingclassicalmethodlikeHNCequationsorMDsimulations.AsarstapplicationweconsidertheidealFermigas.AlthoughtheidealFermigasisasimplenon-interactingsystem,thecorrespondingeffectiveclassicalsystemiscomplicatedbecauseoftheinteractionscomingfromthePauliexclusionstatistics.TheeffectivetemperaturestaysnitebecauseoftheniteenergiesoftheFermionsatzerotemperatures.SomeresultsfortheaverageinternalenergyandtheentropywhicharetruefortheidealFermisystemsisrecoveredforitsclassicalcounterpart.Thenextapplicationistotheuniformelectrongasorjellium.TheeffectivepotentialisconstructedtoincludetheexchangeeffectsthroughthePaulipotentialandtheCoulombeffectsthroughtheweakcouplingRPAlimit.ThepaircorrelationfunctionsarethencalculatedwiththiseffectivepotentialusingtheHNCequations.TheagreementbetweentheseresultsandthequantumsimulationdatafromPIMCandPDWmodelisquitegoodoverawiderangeoftemperaturesanddensities.Theseresultsarenextappliedtothechargesconnedinaharmonictrap.Suchsystemsareimportantformodelinglasercooledionsinaharmonictrapandelectronsinquantumdots.TheHNCequationsweresuccessfullyusedbyWrightonetal.[ 46 ]topredicttheshellformationinclassicalCoulombsystemsinaharmonictrap.TheirresultsagreedquitewellwiththeclassicalMCsimulationsasshownbelowinFigure 1-2 andprovidedmotivationto 15

PAGE 16

extendourworktoconnedsystems.ForclassicalCoulombsystemsinaharmonictraponlythestrongcorrelationsproduceshells.Consequentlywedonotgetanyshellstructureinthemeaneldlimitforanyvalueofthecouplingconstant[ 46 ].Hereweexplorethepossibleoriginsofshellformationduetothequantumeffectsofdiffractionanddegeneracy.WeusetheeffectivepotentialstoincludeappropriatequantumeffectsandsolveforthedensityusingtheHNCequations.Evenatthemeaneldlevelwegetshellsatverylowtemperaturesanddensities(largecouplingconstant). Figure1-2. ThecomparisonbetweenthedensityproleobtainedbyWrightonetal.andthatoftheclassicalMCisshown.ThebridgetermsneedtobeaddedtotheHNCequationstogetgoodagreement[ 46 ]. TherestoftheChaptersarearrangedinthefollowingway: 1. InChapter 2 weexploreinfurtherdetailsomeoftheavailabletheoriesthattreatstrongcorrelationsinboththeclassicalandquantumsystems.FirstwelookattheFermiliquidtheory,itscentralconcepts,formalismandlimitations.TheRPAwiththelocaleldcorrectionsisbrieydiscussedinparticulartheearliestone,theSTLSscheme.Webrieylookintothedensityfunctionaltheory(DFT)forbothclassicalandquantumasourmodelisbasedontheseconcepts.Lastlywelookintothehistoryanddevelopmentofquantumpotentialsandthemostsuccessfulapplicationsofthisapproach.WediscussindetailtherecentclassicaltheorybyPerrotandDharma-wardana. 2. Chapter 3 setsupthetheoreticalframeworkonwhichtherestofthisworkisbuilt.Weconstructaneffectiveclassicalsystemthatdescribesthethermodynamicsofagivenquantumsystem.Wedenetheeffectivepotentialsandeffectivethermodynamicvariablesfortheeffectiveclassicalsystembyequatingthethreethermodynamicquantitiesoftheclassicalandthequantumsystem.Themapis 16

PAGE 17

invertedusingtheclassicaldensityfunctionaltheoryandthevirialequation.Thepeculiarityofthethermodynamicsoftheeffectivesystemisdiscussed.FinallytheclassicalmappingisappliedtotheidealFermigas. 3. InChapter 4 weexploretheeffectivesystemfortheuniformelectrongasorjellium.FortheuniformelectrongasweseparatetheinteractionpotentialintoanidealgasandaCoulombterm,whichisdeterminedusingweakcouplingRPA.WeusetheHNCequationstocalculatethepaircorrelationfunctions.WecomparethesepaircorrelationswiththoseofthePerrot-DharmawardanamodelandthesimulationdatafromPIMC.Theregimeofthevalidityofthismodelisbrieydiscussed.Otherthermodynamicquantitieslikethepressureandchemicalpotentialarealsopredictedusingthismodelandcomparedwithotherdata. 4. InChapter 5 ,rsttheexistingclassicaltheoreticalmodelsforshellformationarebrieyreviewed.Theclassicalmapisthengeneralizedtotheconnedquantumsystems.Thedensityprolefortheeffectivesystemiscalculatedandthequantumeffectsofdiffractionanddegeneracyontheshellformationisdiscussedinthemeaneldlimit.Inthemeaneldlimit,theclassicalCoulombsystemsdonotproduceshellsatanyvalueofthecouplingconstantinaharmonictrap.However,weshowthatquantumdiffractionandexchangeeffectsleadtoshellformationinthislimit. 5. InChapter 7 ,webrieymentionsomepossibleapplicationsofthismaptothecorrelatedquantumsystemslikethespinpolarizedelectrongasandthelatticesystems.Thecompleteresultsforthesesystemshavenotbeenfullyworkedoutwithourmapyet. 17

PAGE 18

CHAPTER2CORRELATIONSINQUANTUMSYSTEMSThisChapterisdividedintotwosections.Intherstsection 2.1 webrieyreviewthequantumtheoriesliketheFermiliquidtheory,theRPAwiththelocaleldcorrections,thedensityfunctionaltheory(DFT)andthedynamicalmeaneldtheory(DMFT).Wediscusshowthecorrelationsandmany-bodyeffectsarebuiltintothesetheories.Althoughthesetheoriesareverysuccessfulattheirrespectivedomains,inthewarmdensematterconditionswhereweareinterestedintheyfail.Inthesecondsection 2.2 welookattheclassicalmethodtodescribethequantumcorrelationsusingthequantumpotentials.ThequantumpotentialsareusedinclassicalstrongcouplingtheorieslikeclassicalDFT,liquidstatetheories,MolecularDynamicsandclassicalMonteCarlosimulationstodescribecorrelationsinquantumsystems.Therecentsuccessofthesemi-classicalformalismbyPerrotandDharma-wardanaforuniformquantumsystemsandtheclassicalstronglycoupledliquidstateformalismbyWrightonetal.providedmotivationtolooktoclassicalmethodsforourwork.WediscussbrieythePerrotDharma-wardanamodel. 2.1QuantumTheoriesForElectronSystemsInthissectionwebrieylookintosomeofthequantumtheoriesthatarecommonlyusedtostudyelectronsystems. 2.1.1FermiLiquidTheoryFermiLiquidtheoryiswidelyusedtostudycorrelationsinFermisystemsatverylowtemperatures[ 1 3 ].Westartwithanon-interactingsystemandthenturnontheinteractionsadiabatically.Incaseofnoenergylevelcrossing,thisinteractingsystemwillhaveasetofeigenvalueswhichisinone-to-onecorrespondencewiththoseofthenon-interactingsystem.Thusthetheorymapsstronglycoupledsystemstoweaklycoupledsystems,withthestrongcorrelationsabsorbedintotheeffectivemassesandotherparametersofthequasi-particles.Thesharplydenedsingleparticleenergy 18

PAGE 19

statesgetbroadenedbyswitchingontheinteractions,thewidthofwhicharegivenbytheinverselifetimeofthequasi-particles.TheFermiliquidtheorysuccessfullydescribesstronglycorrelatedquantumsystemsatverylowtemperatures.Howeveritbreaksdownatnitetemperaturesduetotworeasons:i)thehigherenergystatesgetlledandtheFermisurfaceisnotwelldenedii)thequasi-particlesbecomeveryunstable. 2.1.2RandomPhaseApproximationWithLocalFieldCorrectionsTheresponsefunctionsarewidelyusedtostudythecollectiveandmany-particleexcitationsandtheirassociatedequilibriumstructurefactors,inandaroundtheequilib-rium[ 1 ].Theuctuationdissipationtheorem[ 37 38 ]relatestheresponsefunctionstothestructurefactor,fromwhichtheotherthermodynamicquantitiesarecalculated.Thesimplestmethodfortheresponsefunctioncalculationistherandomphaseapproxima-tion(RPA)whichholdsforweaklycoupledsystems[ 51 ].ToincludestrongcorrelationsthelocaleldcorrectionsareaddedtotheRPA.Whenatestchargemovesthroughanelectrongas,itisnotonlyinuencedbytheexternalpotentialextbutalsobythedensityuctuationsduetothemotionofthetestcharge.Hencetheparticleseesaneffectivepotential:Rdr0ext(r0,!)=(r,r0,!),i.e.theexternalpotentialmodiedbythemedium.TheFouriertransformofthedielectricfunction,intheeffectivepotentialforanuniformelectrongasisgivenby:(k,!)=1)]TJ /F3 11.955 Tf 11.96 0 Td[((k)nn(q,!) (2)wherennistheproperdensity-densityresponsefunctionandtheinteractionpotential.Undertherandomphaseapproximation[ 1 ],wekeeponlythenon-interactingpartoftheproperresponsefunctionalsocalledtheLindhardfunction.FurtherdetailsaboutthestructurefactorandotherthermodynamicquantitiesintheRPAapproximationaregivenintheAppendix D .AsaresultRPAworksforweaklyinteractingsystems.ThesituationisremediedbyintroducingthelocaleldcorrelationsG(q,!)toaddthemany-bodyeffectsmissinginRPAduetoneglectingthenon-idealgasterms.Thisisaccomplished 19

PAGE 20

byreplacingtheinteractionpotential(q)ofthesystemby(q)(1)]TJ /F6 11.955 Tf 12.36 0 Td[(G(q,!))inalltheRPAcomputations.ThisnotonlypreservesthesimpleformoftheRPAbutatthesametimeaddstheexchangeandcorrelationeffects.Thelocaleldcorrectionsarerelatedtotheresponsefunctionsbytheidentity:(q)G(q,!)=1 (q,!))]TJ /F5 11.955 Tf 31 8.09 Td[(1 0(q,!) (2)wherethe0isthenon-interactingresponsefunction.TherstattempttoestimatetheformoftheeldcorrectionswasbyHubbard[ 40 ].HeassumedafrequencyindependentformforGforthesamespins:G(q)=q2 q2+k2F (2)andG=0fordifferentspins.Theeldcorrectionshavesomeexactanalyticallimits,suchasq!0,G(q,!)!0andq!1,G(q,!)!1.AmongtheearliestmethodstocalculatetheeldtechniquesistheSTLSscheme[ 13 ].InSTLStheeldcorrectionsarecalculatedselfconsistentlyfromthestaticstructurefactorandtheuctuationdissipationtheorematzerotemperature.S(q)=)]TJ /F12 11.955 Tf 14.04 8.09 Td[(~ nZd!=nn(q,!)nn(q,!)=0(q,!) 1)]TJ /F6 11.955 Tf 11.95 0 Td[(vq[1)]TJ /F6 11.955 Tf 11.95 0 Td[(G(q,!)]0(q,!)G(q)=)]TJ /F5 11.955 Tf 10.59 8.09 Td[(1 nZdq0 (2)3q.q0 q2vq0 vq[S(q0)]TJ /F7 11.955 Tf 11.96 0 Td[(q))]TJ /F5 11.955 Tf 11.96 0 Td[(1] (2)WhiletheSTLSimprovesthepaircorrelationfunctionsfromtheRPA,theystillgonegativeclosetotheoriginatmetallicdensities.ThecorrelationenergyisingoodagreementwithMonteCarlosimulationsandexhibitthecorrectr)]TJ /F9 7.97 Tf 6.58 0 Td[(1sbehavioratlargevaluesofrs.Theplasmondispersionrelationwhichisobtainedfromthepolesofthedensity-densityresponsefunctiongoesnegativeatmetallicdensities.Alsothecompressibilitysumruleisviolatedatthoseregimes.ThezerotemperatureEquations 20

PAGE 21

( 2 )havebeenextendedtonitetemperaturesbyTanakaandIchimaru[ 39 41 ].TheonlydifferenceatnitetemperaturesisthestaticstructurefactorequationgetsmodiedbyaBosedistributionterm:S(q)=)]TJ /F12 11.955 Tf 14.04 8.08 Td[(~ nZd!coth(~!)=nn(q,!) (2)ThenitetemperatureSTLSagainbreaksdownatmetallicdensitiesandsuffersthesameproblemastheSTLS[ 39 ]. 2.1.3DynamicalMeanFieldTheoryDynamicalmeaneldtheory(DMFT)isusedtostudystronglycorrelatedlatticesystems[ 14 17 ].TheDMFTassociatesasingle-siteeffectivedynamicsthroughalocalGreen'sfunctionG0(i!n)whichdoesnotdependonthemomentum.G0isrelatedtotheon-siteGreen'sfunctionG(i!n),whichiscalculatedlater,throughG0(i!n)=i!n++G(1!n))]TJ /F9 7.97 Tf 6.59 0 Td[(1)]TJ /F6 11.955 Tf 11.95 0 Td[(R[G(i!n)]] (2)AHubbardHamiltonian[ 42 ]andanimaginary-timeactionfunctionalSedenedforthelatticesystem.ThisformalismissolvedbymappingittoanAndersonimpuritymodel(AM)[ 18 ].DMFTcanbeusedtodeterminethestabilityoflongrangedsystems,theunderstandingtheHubbardmodelandtheMottinsulatortransitionandhightemperaturesuperconductors.Howeveritisnotclearhowthistheorycanbeappliedtothewarmdensemattersystems. 2.1.4HohenbergKohnDensityFunctionalTheoryThethermodynamicsofamany-particlequantumsystemisdeterminedfromthegrandpotentialthrough()=)]TJ /F8 7.97 Tf 15.86 14.95 Td[(1XN=0zNDNje)]TJ /F14 7.97 Tf 6.59 0 Td[((cKN+bV+Rdrbn(r)ext(r)jNE (2)whereN,KN,VandextaretheN-particlemany-bodywavefunction,kinetic,inter-actionandtheexternalpotentialrespectively.TheHohenberg-Kohn-Mermintheorem 21

PAGE 22

providesanalternatedescriptionofthethermodynamicsintermsoftheequilibriumdensityofthesystem[ 4 6 ].Thetheoremclaimsthatthegroundstatedensityuniquelydeterminestheexternalpotentialthatgivesrisetoit[ 43 ].Thetheoremhasbeenex-tendedtonitetemperaturesbyMermin[ 6 ].Theproofofthetheoremisbasedonminimizingthegrandpotentialwithrespecttothedensitymatrix.Thegrandpotentialfunctionalisgivenby:[]=)]TJ /F6 11.955 Tf 9.3 0 Td[(Tr^^H)]TJ /F3 11.955 Tf 11.96 0 Td[(^N+ln^ (2)Thegrandpotentialisgivenby:=)]TJ /F9 7.97 Tf 10.86 4.71 Td[(1 lnTrexp()]TJ /F3 11.955 Tf 9.29 0 Td[((^H)]TJ /F3 11.955 Tf 11.95 0 Td[(^N))andtheequilibriumdensitymatrixby:^0=exp()]TJ /F3 11.955 Tf 9.3 0 Td[((^H)]TJ /F3 11.955 Tf 12 0 Td[(^N))=Trexp()]TJ /F3 11.955 Tf 9.3 0 Td[((^H)]TJ /F3 11.955 Tf 11.96 0 Td[(^N)).TheMermintheoremstatesthat[^]>[^0]foralldensitymatrices^.ThepracticalimplementationofMermin'stheoremhoweverisverycomplicatedasitinvolvesthesolutionoftheoperatorequations.KohnandShamdevelopedanelegantrepresentationoftheDFTwhichgivestheexactresultatthelevelofanon-interactingsystem[ 5 ].TheirapproachinvolvessolvingsingleparticleorbitalequationswithKohn-ShampotentialsandprovidesapracticalimplementationoftheDFTtheoryatzerotemperature.KohnandShamwrotetheirpotentialasaHartreepartandtherestcalledtheexchange-correlationpart.Howevertheexchange-correlationpotentialisunknown.TheKohn-Shamapproachisnotpracticalatnitetemperaturessincethecomputationsdonotconverge. 2.2ClassicalMethods:QuantumPotentialsInthissectionwelookintovarioustechniquestoincorporatequantumeffects,inparticularquantumexchangeanddiffraction,intoclassicalsystems.Thisisdoneusingthequantumpotentials.Thequantumpotentialsarethepotentialsusedinclassicalsystemsthatincorporatequantumeffectsbyappropriateparameterizationorformsforthesepotentials.ForexampleaquantumpotentialreplacingtheclassicalCoulombpotentialisaDeutschpotential[ 21 ]thatregularizestheCoulombpotentialattheorigin, 22

PAGE 23

removingtheclassicalsingularityduetothediffractioneffects.Theparametersinthequantumpotentialsaredeterminedusingsimulationdataorexactknownlimitsforthequantumsystems.Intherestofthesectionwelookintovariouswaystobuildthequantumpotentials.ThesepotentialsarethenputintosomeclassicalstrongcouplingtheoriesliketheclassicalDFT,classicalliquidstatetheoriesandtheclassicalsimulationstostrongcorrelations.TheeffectivepotentialeisacombinationofNparticlepotentialseN,whicharedenedintermsoftheNparticleSlatersumsWNforthequantumsystemsby:1 N!NZdr(N)WN(r(N))=Trhexp()]TJ /F3 11.955 Tf 9.3 0 Td[(^H)ieN(r(N))=)]TJ /F6 11.955 Tf 9.3 0 Td[(ln(WN(r(N)))e=NXi
PAGE 24

whereijisthetwoparticledensitymatrixincoordinaterepresentation.Intheweakcouplinglimitthediagonalelementofthedensitymatrixcanbecalcu-latedexactly:4K(xij)=qiqj ijxij1)]TJ /F6 11.955 Tf 11.95 0 Td[(exp()]TJ /F6 11.955 Tf 9.3 0 Td[(x2ij)+p xij(1)]TJ /F6 11.955 Tf 11.95 0 Td[(erf(xij)) (2)whichiscalledtheKelbgpotential,wherexij=rij=ij.TheKelbgformcanbegeneral-izedbyaddinganextraparameter,ijtogivesomeeffectsoftheboundstates.AddingthisextraparameterpreservestherstderivativeoftheKelbgpotentialbutatthesametimecontrolstheheightofthepotentialattheorigin.Todeterminetheparameterij,theeffectivepotentialisdenedas:exp()]TJ /F3 11.955 Tf 9.3 0 Td[(ij)Sij,whereSijisthebinarySlatersumofparticlesiandj.Fromthisweobtain:ij=)]TJ 10.49 16.7 Td[(p ijqiqj ln[Sij(rij=0,)] (2)Inparticulartheelectron-electronSlatersumattheoriginisgivenby:See(ree=0,)=2p eeZ10exp()]TJ /F6 11.955 Tf 9.3 0 Td[(x2)xdx 1)]TJ /F6 11.955 Tf 11.96 0 Td[(exp()]TJ /F3 11.955 Tf 9.3 0 Td[(ee=x) (2)whereee=qiqj=ij.WiththisnewparameterijthemodiedKelbglookslike:4K(xij)=qiqj ijxij1)]TJ /F6 11.955 Tf 11.95 0 Td[(exp()]TJ /F6 11.955 Tf 9.3 0 Td[(x2ij)+p xij ij(1)]TJ /F6 11.955 Tf 11.96 0 Td[(erf(xijij)) (2)UsingthispotentialFilinov[ 27 28 ]couldexplaintheformationofhydrogenatomsusingclassicalstatisticalmechanics.AsdiscussedabovethequantumpotentialsusedinMDorclassicalMCsimulationscanbeusedtodescribestrongcorrelationsforquantumsystems.Theclassicaldensityfunctionaltheoryisanothertheoreticaltooltodothesame.SinceourformalismisbasedonclassicalDFTwewilldiscussthistheoryindetailinthesubsection 2.2.1 24

PAGE 25

2.2.1ClassicalDFTJustlikethequantumDFT,theclassicalDFTprovidesaformalismtoincludestrongcorrelationsinclassicalsystems[ 44 45 ].ThereasonforthediscussionoftheclassicalDFTinthisChapteristobroadenthescopeoftheclassicalmethodsofthequantumpotentialsandthePDWformalism.ThissectionprovidesaquickoverviewoftheclassicalDFTthatwillbediscussedindetailinChapter 3 .ThequantumeffectswillbeincorporatedthroughtheappropriatethermodynamicquantitiesintheclassicalDFTequations.InclassicalDFTthegrandpotentialfunctionaliswrittenas:[n;ext]=F[n]+Zdrn(r)(ext(r))]TJ /F3 11.955 Tf 11.96 0 Td[() (2)whereF[n]=P1N=0R^KN+^VN+kbTln(N!hDN)+kBTlnf[ext[n]]dpNdqNinDdimensions.TheEuler-Lagrangeequationis:F[n] n(r)=)]TJ /F3 11.955 Tf 11.95 0 Td[(ext(r) (2)NexttheF[n]iswrittenastheidealgaspartFidandtheexcesspartFex[ 45 ].ItcanbeshownthatFid=n(r)=ln(n(r)D).TheNthordercorrelationfunctionisdenedas:cN(r1,r2,...,rN)=)]TJ /F3 11.955 Tf 45.41 8.09 Td[(NFex[n] n(rN)n(rN)]TJ /F9 7.97 Tf 6.58 0 Td[(1)...n(r1) (2)ThesecondordercorrelationfunctioniscalledthedirectcorrelationfunctionandisrelatedtothepaircorrelationfunctiongthroughtheOrnsteinZernikeequation:g(r1,r2))]TJ /F5 11.955 Tf 11.96 0 Td[(1=c2(r1,r2)+Zdr3(g(r1,r3))]TJ /F5 11.955 Tf 11.95 0 Td[(1)n(r3)c2(r3,r2) (2) 25

PAGE 26

Usingtheaboveexpressionstheexcessfreeenergyatdensityn(r)canbewrittenintermsofthatatdensityn0(r)as:Fex[n]=Fex[n0]+Zdr1[)]TJ /F6 11.955 Tf 11.95 0 Td[(ln(n0(r1)))]TJ /F3 11.955 Tf 11.95 0 Td[(ext(r1;n0)(n(r1)]TJ /F6 11.955 Tf 11.96 0 Td[(n0(r1))))]TJ /F5 11.955 Tf 10.49 8.09 Td[(1 2Z10dZ0d0Zdr1dr2c2(r1,r2;n0)@n0(r1) @0@n0(r2) @0 (2)wheren(r)=(1)]TJ /F3 11.955 Tf 12.58 0 Td[()n0(r)+n(r).Theaboveexpressionforexcessfreeenergyisstilldifculttocalculatebecauseofthenon-localdependenceondensity.Inmostcasesthereferencedensityischosentobeuniformdensityn0(r)=n0andalsothenonlocaldensityisreplacedbythelocaldensity.Onesuchtheories,Ramakrishnan-Yussouff,canpredictthefreezingofliquids.Thereplacementofthenon-localdensitydependencebythecorrespondinglocaloneisalsocalledhypernettedchainapproximation.FurtherdetailsisgiveninAppendix A .TheclassicalDFTprovidesausefulformalismtoincludemany-bodyeffectsatnitetemperature.ThecalculationsareeasieraswedonothavetosolvetheeigenvalueequationasKohn-ShamDFT. 2.2.2PerrotDharma-wardanaMethodPerrotandDharma-wardanaprovidedacomputationallysimpleandnovelmethodforcalculatingthepaircorrelationfunctionsandotherthermodynamicquantitiesfortheuniformelectrongas(UEG)usingonlytheinformationaboutthecorrelationenergyEcobtainedfromPIMCatzerotemperature[ 29 33 34 ].Theyusedclassicalliquidstatetheory,theHNCapproximationtoobtainthepaircorrelationfunctiong(r)fortheUEGbyputtinginquantummany-bodyeffectsthroughaquantumpotentialc(r)andaneffectivetemperatureTc.TheeffectivepotentialiswrittenasacombinationofPaulipotential(0)andtheDeustchpotentialcc(r)=(cc)(0)(r)+)]TJ /F4 7.97 Tf 6.78 -1.8 Td[(c r(1)]TJ /F6 11.955 Tf 11.96 0 Td[(exp()]TJ /F6 11.955 Tf 9.3 0 Td[(r=c)) (2)TheDeustchpotentialisasimplerttingfunctionthantheKelbgpotentialinEquation( 2 ).ThePaulipotential(0)containstheexchangeeffectsandtheDeustchpotential 26

PAGE 27

containstheCoulombeffectsalongwithdiffraction.ThePDWpotentialisparameterizedbytheeffectivetemperatureTcthroughtheeffectivecouplingconstant)]TJ /F4 7.97 Tf 6.77 -1.8 Td[(candthethermalwavelengthc.Sincetheleadingenergydependenceontemperatureisquadratic,theeffectivetemperatureisassumedoftheformTc=p T2+T20.TisthetemperatureoftheactualquantumsystemandT0isthetemperatureoftheclassicaluidwhenthetemperatureofthequantumsystemiszero.Atagivendensityn,T0isdeterminedbysettingthecorrelationenergyEc(n)ofUEGequaltotheexcessenergyoftheclassicalsystematthetemperatureT0.T0isttedtoaform1=(a+bp rs+crs),wherers=(3=(4n))1=3.Thecoefcientsa,bandcareobtainedfromvariationalMonteCarloanddiffusionMonteCarlottingdataforEcforrsrangingfrom1and10.Usingthiseffectivepotentialc(r)andtemperatureTcintheHNCequationsg(r)=exp()]TJ /F3 11.955 Tf 9.3 0 Td[(cc(r)+g(r))]TJ /F5 11.955 Tf 11.95 0 Td[(1)]TJ /F6 11.955 Tf 11.95 0 Td[(c(r)) (2)theywereabletosuccessfullyreproducethepaircorrelationfunctionsforUEGintwoandthreedimensionsatzerotemperature.Thefunctionc(r)inEquation( 2 )isobtainedusingtheOrnstein-Zernikeequationg(r))]TJ /F5 11.955 Tf 11.96 0 Td[(1=c(r)+nZdr0(g(jr)]TJ /F7 11.955 Tf 11.95 0 Td[(r0j))]TJ /F5 11.955 Tf 11.96 0 Td[(1)c(r0) (2)ThedetailsabouttheHNCequationsarediscussedfurtherinChapter 3 .Thepaircorrelationfunctions,thespecicheatandotherthermodynamicquantitiescalculatedusingthismodelagreequitewellwiththedatafromthequantumsimulations. 2.3WhyWeChoseClassicalApproachInsteadOfQuantumtheories(OurMotivation)Allthequantumtheoriesdiscussedinthesection 2.1 failintheregimeofwarmdensematter.EithertheconceptstheyarebasedoncannotbeeasilyextendedtonitetemperaturesliketheFermiliquidtheoryandDFTortheirpredictionofsomeofthefundamentalthermodynamicquantitiesiswrongliketheSTLStheory.Quantum 27

PAGE 28

simulationslikePIMCiscomputationallymoreintensivethantheclassicalMolecularDynamicsandMonteCarlo.Intheclassicaltheorieswedonothavetosolvetheeigenvaluesastheoperatorformalismofthequantumtheories.TheformalismbyPerrotandDharma-wardanashowthatusingappropriatequantumpotentialsandtheconceptofeffectivetemperature,theclassicaltheoriescansuccessfullypredicttheuniformelectrongasoverawiderangeoftemperatureanddensities.Wrightonetal.usedtheHNCequationstostudytheshellformationinstronglycorrelatedclassicalsystems.ThedensityprolepredictedbythemisinexcellentagreementwiththeclassicalMCdata.Thesetwoworksprovideduscondencethattheclassicalmethodsaregoingtoworkforthewarmdensematterconditionsforjelliumandcanbefurtherextendedtoconnedquantumsystems.ThePerrowDharma-wardanamodelishoweverphenomenologicalanditisnotclearwhatkindofphysicsgivessuchgoodagreement.InthenextChapterwebuildasystematictheorybasedontheclassicalapproachincorporatingsomeexactlimitsofthequantumsystems.Asisseenlaterourclassicalformalismsuccessfullypredictstheessentialthermodynamicsoftheuniformelectrongasandsomeinterestingphysicsfortheconnedsystems. 28

PAGE 29

CHAPTER3THEEFFECTIVECLASSICALSYSTEMInthisChapterweconstructaformalismtodescribequantumcorrelations,developpracticalwaysofimplementingitandthenapplyittothecaseoftheidealFermigas.Weexplicitlybuildaneffectiveclassicalsystemhavingthethermodynamicsandtheequilib-riumstructureofthequantumsystemwewanttodescribe[ 35 ].Thethermodynamicsoftheeffectivesystemdependsonthreeparameters:effectiveinteractionpotentialc,effectivelocalchemicalpotentialcandeffectivetemperatureTc.Theseparametersaredeterminedbymappingselectedquantumpropertiesontotheclassicalsystem.Theexplicitcalculationoftheseparametersisonlyformalbecauseitrequiresasolutiontotheclassicalmanybodyproblem.ForpracticalapplicationsweintroduceapproximationsliketheweakcouplingclassicalapproximationandtherandomphaseapproximationforthequantumsystemsasillustratedinChapters 4 .InthisChapterweapplythisformalismtotheidealFermigasandinterprettheresults,asarstillustration. 3.1DenitionOfTheRepresentativeClassicalSystem 3.1.1ThermodynamicsFromStatisticalMechanicsConsideraquantumsystemofNparticlesinsideavolumeVinanexternalpoten-tialext.Theparticlesareinteractingthoughapair-potential.WechosetheGrandcanonicaldescriptionforthesystem,hencethethermodynamicsofthesystemneedstwoparameters,theinversetemperatureandthechemicalpotential.TheHamilto-nianofthesystemdoesnotdependontheinternaldegreesoffreedomlikespin.Itisoftheform:H=K++ext (3)whereKdenotesthetotalkineticenergy,K=NXi=1p2i 2m (3) 29

PAGE 30

isthetotalinteractionpotentialenergyamongparticles,extisthetotalexternalpotentialactingonthesystem.=1 2NXij(qi,qj),ext=NXi=1ext(qi) (3)Thesecanbewrittenintheequivalentforms:^ext=NXi=1ext(^qi)=Zdrext(r)^n(r)^=NXi6=j(^qi,^qj)=Zdrdr0(r,r)^g(r,r0) (3) (3)where^n(r)=PNi=1(^qi)]TJ /F7 11.955 Tf 11.14 0 Td[(r)and^g(r,r0)=^n(r)^n(r0))]TJ /F5 11.955 Tf 11.25 0 Td[(^n(r)(r)]TJ /F7 11.955 Tf 11.15 0 Td[(r0).IntheGrandensembletheHamiltonianoccursincombinationwiththechemicalpotential^H)]TJ /F3 11.955 Tf 11.96 0 Td[(N=^K+^+^ext (3)=^K+Zdrdr0(r,r)^g(r,r0))]TJ /F10 11.955 Tf 11.95 16.27 Td[(Zdr()]TJ /F3 11.955 Tf 11.95 0 Td[(ext(r))^n(r) (3)Thequantityintheaboveequation)]TJ /F3 11.955 Tf 12.22 0 Td[(ext(r)iscalledthelocalchemicalpotentialandisdenotedbythesymbol(r).Allthermodynamicquantitiescanbederivedfromthegrandpotential[ 47 ].Itdependsonthreethermodynamicparameters:theinversetemperature,thelocalchemicalpotential(r),andthevolumeV,andisgivenby(j,)=)]TJ /F3 11.955 Tf 9.3 0 Td[()]TJ /F9 7.97 Tf 6.59 0 Td[(1lnXNTrNe)]TJ /F14 7.97 Tf 6.58 0 Td[((^H)]TJ /F4 7.97 Tf 6.58 0 Td[(N) (3)ThesymbolTrNdenotesatraceovertheNparticleantisymmetricwave-functionsforFermionsorsymmetricwave-functionsforBosons.FromtheEquations( 3 )and( 3 )weseethatisafunctionoftheinversetemperatureandfunctionalsoftheinteractionpotentialandlocalchemicalpotential.Fromnowonweusethe 30

PAGE 31

(parametersjfunctionals)notationtomakethedistinctionbetweentheparameterandfunctionaldependence.ThedependenceonthevolumeVisleftimplicit.Inthegrandensemblethepressurep(j,)isrelatedtothegrandpotentialby:p(j,)V=)]TJ /F5 11.955 Tf 9.29 0 Td[((j,) (3)TherstorderderivativesofthegrandpotentialgivetheinternalenergyE(j,)andaveragenumberdensityn(r;j,)andaveragepaircorrelationfunctiong(r,r0;j,)E(j,)=@(j,) @j(r) (3)n(r;j,)V=)]TJ /F3 11.955 Tf 10.49 8.09 Td[((j,) (r)j (3)(j,) (r,r0)j,n(r;j,)n(r0;j,)g(r,r0;j,)=hbn(r)bn(r0);j,i)]TJ /F6 11.955 Tf 19.26 0 Td[(n(r;j,)(r)]TJ /F7 11.955 Tf 11.95 0 Td[(r0) (3)ascanbeseenfromEquation( 3 ).Higherorderderivativesprovidetheuctuations(susceptibilities)andstructurefunctions.Inparticular,thesecondfunctionalderivativewithrespectto(r)isrelatedtotheresponsefunction(r,r0;j)1 2(j,) (r)(r0)j=)]TJ /F3 11.955 Tf 9.3 0 Td[((r,r0;j,)=)]TJ /F5 11.955 Tf 10.99 8.08 Td[(1 Z0d0De0Hbn(r)e)]TJ /F14 7.97 Tf 6.59 0 Td[(0Hbn(r0);j,E (3)wherebn(r)=bn(r))]TJ /F6 11.955 Tf 12.69 0 Td[(n(r),andhX;j,idenotesanequilibriumgrandcanonicalaverageofthequantityX.NextweconsideraclassicalsystemwithNparticlesinteractingviaapairpotentialcandactedonbyanexternalpotentialext,candconnedtothesamevolumeV.Thesystemhasachemicalpotentialcandinversetemperaturec.TheHamiltonianHc 31

PAGE 32

hasthesameformasinEquation( 3 )exceptthatthepotentialenergyfunctionsinEquation( 3 )aredifferent,anddenotedbyc=1 2NXi6=jc(qi,qj),c,ext=NXi=1c,ext(qi) (3)Thelocalchemicalpotentialisc(r)c(r)c)]TJ /F3 11.955 Tf 11.95 0 Td[(c,ext(r) (3)Theclassicalgrandpotentialisdenedintermsofthesequantitiesbyc(cjc,c)=)]TJ /F5 11.955 Tf 11.3 0 Td[(lnXN1 3NcN!Zdq1..dqNe)]TJ /F14 7.97 Tf 6.59 0 Td[(c(c)]TJ /F15 7.97 Tf 6.59 6.42 Td[(Rdrc(r)bn(r)) (3)Here,c=)]TJ /F5 11.955 Tf 5.48 -9.69 Td[(2c~2=m1=2isthethermaldeBrogliewavelengthassociatedwiththetemperaturec.TheintegrationforthepartitionfunctionistakenovertheNparticlecongurationspace.ThethermodynamicalquantitiesfortheclassicalsystemaredeterminedinthesamewayasinEquations( 3 )-( 3 )forthequantumsystem.pc(cjc,c)V=)]TJ /F5 11.955 Tf 9.3 0 Td[(c(cjc,c) (3)Ec(cjc,c)=@cc(cjc,c) @cjcc,c (3)nc(r;cjc,c)=)]TJ /F3 11.955 Tf 10.49 8.09 Td[((cjc,c) c(r)jc,c (3)1 c2(cjc,c) c(r)c(r0)jc,c)]TJ /F3 11.955 Tf 21.92 0 Td[(c(r,r0;cjc,c)=)-166(hbn(r)bn(r0);cjc,cic (3) 32

PAGE 33

(cjc,c) c(r,r0)jc,cnc(r;cjc,c)nc(r0;cjc,c)gc(r,r0;cjc,c)=hbn(r)bn(r0);cjc,cic)]TJ /F6 11.955 Tf 11.95 0 Td[(nc(r;cjc,c)(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0) (3)ThedifferencefromtheEquations( 3 )-( 3 ),istheensembleaveragingforaclassicalsystemisdonebyintegratingoverthephasespace.TheEquations( 3 )-( 3 )haveanadditionalconstraintthatthederivativesaretakenatconstantpairpotentialc.Thisisnecessarybecausewewillseelaterthattheinteractionpotentialoftheclassicalsystemcdependsonthetemperaturecandc.SeeSection 3.2 belowforfurtherelaboration. 3.1.2ConstructionOfTheEffectiveClassicalSystem:Classical-QuantumCorrespondenceConditionsOurgoalinthissectionistoconstructaneffectiveclassicalsystemthatwouldhavesomeselectedthermodynamicpropertiesasthequantumsystemwewanttodescribe.Thethermodynamicsofthiseffectivesystemisunknownatthisstage,becausethethreeingredientsofthegrandpotential:theeffectiveinversetemperature,c,thelocalchemicalpotentialc(r),andtheinteractionpotentialamongtheparticlesc(r,r0)arestillunknown.Determiningthesequantitiesinvolveexpressingthemasfunctionsorfunctionalsofthecorrespondingquantumquantities:,(r),and(r,r0).Sincewehavethreeunknownquantitiesfortheeffectivesystem,weneedthreeequivalentconditionsrelatingtheeffectiveclassicalandquantumsystem.Thisisaccomplishedbyrequiringthenumericalequivalenceoftwoindependentthermodynamicpropertiesandonestructuralpropertyfortheclassicalandquantumsystems.Onechoiceistheequalityofthegrandpotentials,sincethegrandpotentialscompletelydeterminethethermodynamicsofanysystem.Thetwoadditionalchoicesareequivalenceofitsrstfunctionalderivativeswithrespecttothelocalchemicalpotentialandtheinteraction 33

PAGE 34

potential.c(cjc,c)(j,) (3)c(cjc,c) c(r)jc,c(j,) (r)j (3)c(cjc,c) c(r,r0)jc,c(j,) (r,r0)j, (3)Theequivalenceconditionscanbeexpressedintermsofphysicalquantities.Inthegrandcanonicalensemble,thegrandpotentialisproportionaltothepressure,anditsrstderivativeswithrespecttothepairandexternalpotentialsarethedensityandthepaircorrelationfunctionsrespectively,asseenfromtheEquations( 3 )and( 3 ).SotheEquations( 3 )and( 3 )canbereinterpretedas:pc(cjc,c)p(j,) (3)nc(r;cjc,c)n(r;j,) (3)gc(r,r0;cjc,c)g(r,r0;j,) (3)Theequivalenceofthepaircorrelationfunctionsabovefollowsintwosteps:i)fromtheEquation( 3 ) c(r,r0)=n(r)n(r0)g(r,r0)andii)theequivalenceofthedensities.TheEquation( 3 )canalsobeinterpretedintermsoftheequivalenceofdensityuctuationshbn(r)bn(r0);cjc,cichbn(r)bn(r0);j,i (3)Insummary,theclassical-quantumcorrespondenceconditionsaretheequivalenceofthepressures,densities,andpaircorrelationfunctions.Therearesomealternatescenariosforthechoiceoftheequivalenceconditions.AnalternativechoicetoEquation( 3 )wouldbetoequatethesecondfunctionalderivativesofthegrandpotentialwithrespecttothelocalchemicalpotential,whichfrom 34

PAGE 35

Equations( 3 )-( 3 )implies:c(r,r0;cjc,c)(r,r0;j,).However,werunintoproblemsbecausetheclassicalresponsefunctionhasasingularcontributionproportionalto(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0)thatisnotpresentinthequantumresponsefunction,whichmakesthemapcomplicated.Usingtheequivalenceoftheclassicalandquantumformsforthepaircorrelationfunctionsdonothavethisproblem.InthiswaythethreeEquations( 3 )determine,formally,theclassicalparametersc,c,andcasfunctionsof,andfunctionalsof(r),and(r,r0)c=c(j,),c=c(r;j,),c=c(r,r0;j,) (3)Sofarwehavedenedaneffectiveclassicalsystemandprovidedequivalentconditionstocalculatethedetailsofitsthermodynamics.ItisnecessarytoinverttheseequivalenceconditionstodeterminethethreeparametersasisdoneinSection 3.1.3 3.1.3InversionOfTheCorrespondenceConditionsTheclassicaldensityfunctionaltheoryprovidesawaytoinvertthetwoequivalentconditionsinEquations( 3 )fordensityandpaircorrelationfunctions,tosolvefortheeffectivepotentialsinEquation( 3 ).Thisformalismrelatestheinteractionpotentialandtheexternalpotentialtothepaircorrelationfunctionanddensity,respectively.SeeAppendix A forfurtherdetails.lngc(r,r0)=)]TJ /F3 11.955 Tf 9.3 0 Td[(cc(r,r0)+Z10dZdr00c(2)c(r,r00jnc+nc(gc)]TJ /F5 11.955 Tf 11.96 0 Td[(1))nc(r00)(gc(r00,r0))]TJ /F5 11.955 Tf 11.95 0 Td[(1), (3)ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(nc(r)3c=cc(r)+Z10dZdr00c(2)c(r,r00jnc)nc(r00) (3)wheretheconstantcinEquation( 3 )isthethermaldeBrogliewavelengthevaluatedattheclassicaltemperaturecdenedbelow,c=)]TJ /F5 11.955 Tf 5.48 -9.68 Td[(2~2c=m1=2.ThefunctionccinEquations( 3 )and( 3 )isthedirectcorrelationfunctionanditisdeterminedfrom 35

PAGE 36

thepaircorrelationfunctiongcviatheOrnstein-Zernikeequation:(gc(r,r0))]TJ /F5 11.955 Tf 11.96 0 Td[(1)=cc(r,r0jnc)+Zdr00cc(r,r00jnc)nc(r00)(gc(r00,r0))]TJ /F5 11.955 Tf 11.95 0 Td[(1), (3)Thevirialequationfortheclassicalpressure(obtainedbydifferentiatingc(cjc,c)withrespecttothevolume)iscpc(cjc,c)=1 VZdrnc(r)1+1 3rrcc(r))]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 6Zdr0nc(r0)gc(r,r0)r0r0cc(r,r0) (3)ItprovidesthethirdinversionofthepressureequivalenceinEquation( 3 )tosolvefortheeffectivetemperaturec.SeeAppendix A forfurtherelaboration.InSection 3.1.4 wegetexplicitformsfortheeffectivepotentialsandtheeffectivetemperatureintermsofthequantumquantities.WerewritetheEquations( 3 )and( 3 )andthenusetheequivalenceconditionsinEquations( 3 )toreplacealltheclassicalpaircorrelationsgcanddensitiesncbythecorrespondingquantumquantitiesgandn:cc(r)=3 2lnc +ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(n(r)3)]TJ /F10 11.955 Tf 11.95 16.27 Td[(Z10dZdr00c(2)(r,r00jn)n(r00) (3)cc(r,r0)=)]TJ /F5 11.955 Tf 11.29 0 Td[(lng(r,r0)+Z10dZdr00c(2)(r,r00jn+n(g)]TJ /F5 11.955 Tf 11.95 0 Td[(1))n(r00)(g(r00,r0))]TJ /F5 11.955 Tf 11.96 0 Td[(1), (3)c(2)(r,r0jn)=(g(r,r0))]TJ /F5 11.955 Tf 11.95 0 Td[(1))]TJ /F10 11.955 Tf 11.95 16.27 Td[(Zdr00c(2)(r,r00jn)n(r00)(g(r00,r0))]TJ /F5 11.955 Tf 11.95 0 Td[(1) (3)OnthelefthandsideoftheEquations( 3 )and( 3 )wehavetheeffectivelocalchemicalpotentialandinteractionpotentialfortheclassicalsystemsthatwewantedtocalculate.Therighthandsidesoftheseequationsdependonlyonthequantumquantities,nandg.Thec(2)isdenedbytheOrnstein-Zernickeequation,Equation 36

PAGE 37

( 3 ),intermsofthequantumpaircorrelationfunctiongbytheequivalenceconditioninEquation( 3 ).Finally,anequationforc=isobtainedbyusingtheequivalenceoftheclassicalandquantumpressurespc=p,Equation( 3 ),towritec =cpc p (3)orwithEquation( 3 )c =1 pVZdrn(r)1+1 3rrcc(r))]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 6Zdr0n(r0)g(r,r0)r0r0cc(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j) (3)Equations( 3 ),( 3 ),( 3 ),and( 3 )thendeterminetheclassicalpa-rametersasc=,cc(r),andcc(r,r0)fromthepropertiesofthegivenquantumsystemc=c(jn,g),c(r)=c(r,jn,g),c(r,r0)=c(r,r0,jn,g) (3)whichisequivalenttoEquation( 3 )(correspondingtoachangeofvariablesfrom,ton,gforthequantumsystem).Althoughtheseequationslooksimple,thecalculationofcc,ccandcisdifcultbecausewestillneedtosolvetheclassicalmany-bodyproblemhiddeninsidethefunctionalc(2)(r,r00j).Anexactcalculationwouldinvolvesolvingthehigherordercorrelationfunctionsandthereisnosimplewaytodeterminethesefunctions.Hencewewillhavetointroducesomeapproximationsforpracticalapplications.Tillnowtheformalismisexact.InSection 3.1.4 approximationsareintroducedtosolvetheclassicalmany-bodyproblem.Thesearecalledthehypernettedchainapproximation(HNC)whichformsaclosedsetofequationsreplacingEquations( 3 )and( 3 ).Thegeneralcoursewewillfollowis:i)Firstsimplifythemany-bodytermsinthecorrelationfunctionsc(2)(r,r00j)usingtheHNCequations.ii)useapproximationstocalculatethequantuminputsinthemap:pressure,densityandpaircorrelations. 37

PAGE 38

Thetypeofapproximationwillbespecictothequantumsystemwewanttodescribe.ThenputtheseintotheEquations( 3 ),( 3 )and( 3 )togetc,candc.iii)Usetheseeffectiveparameterstocalculatepropertiesofinterestusingvarioustoolsinclassicalstatisticalmechanics(liquidstatetheory,densityfunctionaltheory,moleculardynamics,classicalMonteCarlo). 3.1.4HypernettedChainApproximationHypernettedchainapproximatinisaclosurerelationthatrelatesthepaircorrelationfunctionanddensitytotheinteractionpotentialandtheexternalpotentialthroughtheuseoftheOrnstein-Zernikeequation,Equation( 3 ).Thisinvolvesreplacingthenon-localdensitydependenceofthecorrelationfunctionalsinEquations( 3 )and( 3 )bythelocaldensitydependence:c(2)c(r,r00jnc)!c(2)c(r,r00jnc),c(2)c(r,r00jnc+nc(gc)]TJ /F5 11.955 Tf 11.96 0 Td[(1))!c(2)c(r,r00jnc) (3)ThenEquations( 3 )and( 3 )becomeln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(nc(r)3c=cc(r)+Zdr0c(2)c(r,r0jnc)nc(r00). (3)lngc(r,r0jnc)=)]TJ /F3 11.955 Tf 9.3 0 Td[(cc(r,r0)+Zdr00c(2)c(r,r00jnc)nc(r00)(gc(r00,r0jnc))]TJ /F5 11.955 Tf 11.95 0 Td[(1) (3)TogetherwiththeOrnstein-Zernickeequation,Equation( 3 ),theyformaclosedsetofequationsthatdeterminethedensityandpaircorrelationfunctionforthegivenpotentials.ThisistheHNCofliquidstatetheory,generalizedtospatiallyinhomogeneoussystems[ 54 ].ItisknowntogiveverygoodresultsforuniformCoulombsystems[ 32 ]andforinhomogenous,connedCoulombsystemsevenatstrongcouplingconditions[ 46 49 ]. 38

PAGE 39

TheeffectivepotentialsinEquations( 3 )and( 3 )havethefollowingformwithinHNCapproximation:cc(r)=ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(n(r)3c)]TJ /F10 11.955 Tf 11.96 16.28 Td[(Zdr00c(2)(r,r00jn)n(r00) (3)cc(r,r0)=)]TJ /F5 11.955 Tf 11.29 0 Td[(ln(1+h(r,r0jn))+h(r,r0jn))]TJ /F6 11.955 Tf 11.96 0 Td[(c(r,r0jn) (3)andtheOrnstein-Zernickeequation,Equation( 3 a),isunchangedc(2)(r,r0jn)=h(r,r0jn))]TJ /F10 11.955 Tf 11.95 16.27 Td[(Zdr00c(2)(r,r00jn)n(r00)h(r00,r0jn) (3)Theholefunction,h(r,r0jn)hasbeenintroducedfornotationalsimplicityh(r,r0jn)=g(r,r0jn))]TJ /F5 11.955 Tf 11.96 0 Td[(1 (3)SimilarapproximationshavetobemadeinEquation( 3 )forc=,toprovidepracticalformstodeterminec=forgivenappropriatequantuminput.Foruniformsystems,thesecondtermofEquation( 3 )issimplyrelatedtothestaticstructurefactorS(k)Zdr00c(2)(r,r00jn)n(r00)!nZdr00c(2)(r)]TJ /F7 11.955 Tf 11.95 0 Td[(r00,n)=1)]TJ /F5 11.955 Tf 33.47 8.08 Td[(1 S(k=0) (3)FortheuniformsystemslikejelliumandtheidealFermiuidsatzerotemperature,S(k)vanishesask!0andthiscontributiontoccdiverges.Thereforeforsuchsystems,insteadofEquation( 3 )analternativeformderivedusingacouplingconstantintegrationandtheHNCapproximation[ 45 ]isused,cc=ln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(nc3c)]TJ /F6 11.955 Tf 11.96 0 Td[(nZdrc(r,n)+cc(r))]TJ /F5 11.955 Tf 13.15 8.08 Td[(1 2h(r,n)(h(r,n))]TJ /F6 11.955 Tf 11.96 0 Td[(c(r,n)) (3) 39

PAGE 40

3.2PeculiarityOfTheThermodynamicsOfTheEffectiveSystemThedenitionoftheequivalentclassicalsystemassuresthatthepressureanddensityinthegrandensemblegivethecorrectquantumresults(inprinciple),e.g.pc(cjc,c)V=)]TJ /F5 11.955 Tf 9.3 0 Td[(c(cjc,c)=p(j,)V=)]TJ /F5 11.955 Tf 9.3 0 Td[((j,) (3)Howeverpropercareshouldbetakenwiththefunctionalderivativesfortheeffectiveclassicalsystem.Theeffectiveparametersc,candcarecoupledandarenotindependentvariablesasthoseofthequantumsystem.AsaresultwhiletakingthederivativesinEquations( 3 )-( 3 )wehavetoholdthepotentialcconstant.Sinceallthreequantitiesarecoupled,asmallvariationinonewouldchangetheothers.Therefore,thevariationofthepressureleadsto(inthefollowingthevolumeVisalwaysheldconstant)(pcV)=@pcV @cjc,c+Zdrdr0pcV c(r,r0)jc,c@c(r,r0) @cjcc+ZdrpcV c(r)jc,c+Zdr0dr00pcV c(r0,r00)jc,cc(r0,r00) c(r)jcc(r)eScdTc+Zdrenc(r)c(r) (3)ThesecondequalitydenestheclassicalthermodynamicentropyandthermodynamicdensityintermsofthegrandpotentialTceSc=)]TJ /F3 11.955 Tf 9.3 0 Td[(c@pcV @cjc,c+Zdrdr0pcV c(r,r0)jc,c@c(r,r0) @cjc=c@c @cjc (3)enc(r)=pcV c(r)jc,c+Zdr0dr00pcV c(r0,r00)jc,cc(r0,r00) c(r)jc=)]TJ /F3 11.955 Tf 16.68 8.09 Td[(c c(r)jc (3) 40

PAGE 41

Similarly,theclassicalinternalenergyisdenedbyeEcTceSc+Zdrenc(r)c(r))]TJ /F6 11.955 Tf 11.95 0 Td[(pcV=@c @cjc)]TJ /F10 11.955 Tf 11.29 16.27 Td[(Zdrcc(r)c cc(r)jc (3)=@cc @cjcc (3)NotethatderivativesinthelastequalitiesofEquations( 3 )-( 3 )donothavetherestrictionofconstantc.Thesesamerelationshipsholdforthequantumpropertiesaswell,sincetheyarethegeneraldenitionsofthermodynamicsforthechosenvariables,and.Inthequantumcaseisindependentofthethermodynamicvariablesandhenceisconstantinthevariations.Thisleadstotheequivalentexpressionsintermsofequilibriumaveragesn(r)=)]TJ /F3 11.955 Tf 16.68 8.09 Td[( (r)j=hbn(r)i,E=@ @j=DbHE (3)However,intheclassicalcasetheaboveleadstoenc(r)=hbn(r)ic)]TJ /F10 11.955 Tf 11.96 16.28 Td[(Zdr0dr00c c(r0,r00)jc,cc(r0,r00) c(r)jc (3)eE=hHic+Zdr0dr00cc c(r0,r00)jccc(r0,r00) cc(r)jc (3)Forexample,thethermodynamicdensity,enc(r),differsfromtheaveragedensityofthetextabove,nc(r),becausethelatterisdenedasaderivativeofthegrandpotentialatconstantc. 3.3Example-IdealFermiGasAsarstapplicationoftheabovemap,weconsiderthesimplestquantumsystem,theidealFermigas.FornowweconsideraninhomogeneousunpolarizedidealFermi 41

PAGE 42

systemandcalculateallthequantuminputsthatgointotheeffectivequantities.H)]TJ /F3 11.955 Tf 11.96 0 Td[(N!Zdr^p2 2m)]TJ /F3 11.955 Tf 11.96 0 Td[((r)bn(r) (3)Sinceforanon-interactingsystemthehamiltonianisthesumofsingleparticleHamil-tonians,allthethermodynamicquantitiesofthesystemcanbewrittenintermsofthecorrespondingthermodynamicquantitiesofasingleparticlesystem[ 47 ].p(j)Vp(j,=0)V=)]TJ /F9 7.97 Tf 6.59 0 Td[(1(2s+1)Zdrhrjln1+e)]TJ /F14 7.97 Tf 6.59 0 Td[(bp2 2m)]TJ /F14 7.97 Tf 6.58 0 Td[((br)jri (3)n(r,j)n(r,j,=0)=(2s+1)hrjexpbp2 2m)]TJ /F3 11.955 Tf 11.96 0 Td[((br)+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1jri (3)g(r,r0;j)g(r,r0;j,=0) (3)=1)]TJ /F5 11.955 Tf 26.5 8.09 Td[(1 2s+1n(r,r0)n(r0,r) n(r,r)n(r0,r0),n(r,r0)=hrjexpbp2 2m)]TJ /F3 11.955 Tf 11.96 0 Td[((br)+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1jr0i (3)wherehrjXjr0idenotesamatrixelementincoordinaterepresentation,andsisthespin.Tofurthersimplifytheoperatorequations,Equations( 3 )-( 3 ),wehavetointroduceacompletesetofwave-functions nandsolvetheenergyeigenvaluesnforthesingleparticlehamiltonian(bp2=2m))]TJ /F3 11.955 Tf 11.95 0 Td[((^q).p(j)V=)]TJ /F9 7.97 Tf 6.58 0 Td[(1(2s+1)1Xn=0ln(1+exp()]TJ /F3 11.955 Tf 9.29 0 Td[((n)]TJ /F3 11.955 Tf 11.95 0 Td[())) (3)n(r,j)=(2s+1)(exp((n)]TJ /F3 11.955 Tf 11.95 0 Td[())+1))]TJ /F9 7.97 Tf 6.58 0 Td[(1j n(r)j2 (3)g(r,r0;j)=1)]TJ /F5 11.955 Tf 26.5 8.09 Td[(1 2s+1n(r,r0)n(r0,r) n(r,r)n(r0,r0),n(r,r0)=1Xn=0(exp((n)]TJ /F3 11.955 Tf 11.96 0 Td[())+1))]TJ /F9 7.97 Tf 6.59 0 Td[(1 ?n(r) n(r0), (3) 42

PAGE 43

Forslowlyvaryingexternalpotentialsapracticalapproximationisobtainedbyreplacingtheoperator(^q)byitseigenvalue(r),alsoknownasalocaldensityapproximation,whichisequivalenttoreplacingthenon-localdensitydependencebythelocaldensityasseenbelow.Thisapproximationusuallyworkswellforsystemswhennodiscreteboundstatesareformed.Theexpectationvaluesabovethencanbecalculatedassimpleintegralsp(j)!1 VZdr(2s+1)1 h3Zdpp2 2me(p2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((r))+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1 (3)n(r,j)!(2s+1)h)]TJ /F9 7.97 Tf 6.59 0 Td[(3Zdpe(p2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((r))+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1 (3)n(r,r0)!1 h3Zdpei ~p(r)]TJ /F9 7.97 Tf 6.59 0 Td[(r0)e(p2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((R))+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1,R=r+r0 2 (3)TheresultsinEquation( 3 )arethefamiliarnitetemperatureThomas-Fermiap-proximationsforthethermodynamics,whileEquation( 3 )isitsextensiontostructure[ 55 ].Theexpressionsforn(r,j)andn(r,r0)arenolongerfunctionalsof(r),butratherlocalfunctionsof(r)and(R),respectively.Practicaltsforn(r,j)andthisinversionaregiveninAppendix B ,alongwithsimplicationofn(r,r0).ThecomparisonofthedensityobtainedusingtheLDAwiththeexactdensitycalculationinEquation( 3 )isshowninFigure( 3-1 )atrs=10for100particles.Forsmallrsandlargenum-berofparticlesinthetrap,LDAagreeswellwiththeexactdensitycalculation.Atverylowtemperaturesandlargevaluesofrs,LDAdensitiesdifferfromtheactualdensitiesclosetotheorigin.ThedetailsofthewavefunctionsusedtogeneratetheplotisgiveninAppendix F .Eventhoughthequantumsystemisnon-interacting,thecorrespondingclassicalsystemisnon-trivialbecausec(qi,qj)6=0.Thisisbecausetheclassicalpairinterac-tionsarerequiredtoreproducetheeffectsofthequantumstatistics.Wearestillrequired 43

PAGE 44

Figure3-1. Thecomparisonoftheexactdensity(asinEquation( 3 ))fortheidealFermigasfor100particlesinaharmonictrapwiththatobtainedusingLDA(Equation( 3 )). tosolvethecomplicatedclassicalmanybodyproblem.ThisisaddressedwithintheHNCapproximationdescribedabovebyEquations( 3 )and( 3 )togetherwiththeOrnstein-Zernickeequation,Equations( 3 )and( 3 )forc=.Theeffectivepotentialandtheeffectivetemperaturecanbeexplicitlycalculatednumerically,howevercandcbothdependontheexternalpotentialthroughthelocalchemicalpotentialc(r).ToillustratetheabovediscussioninmoredetailwerestrictourselvestoauniformunpolarizedidealFermigas((r)=).FortheuniformgastheEquations( 3 )-( 3 )fortheeffectiveparameterssimplifytoc =n p1)]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 6nZdrg(r)rrcc(r) (3)cc=ln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(nc3c)]TJ /F6 11.955 Tf 11.95 0 Td[(nZdrc(r)+cc(r))]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 2h(r)(h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(c(r)) (3)cc(r)=)]TJ /F5 11.955 Tf 11.3 0 Td[(ln(1+h(r))+h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(c(r) (3)c(r)=h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(nZdr0c(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)h(r0) (3) 44

PAGE 45

Thesuperscript(2)onc(2)(r)andthedependenceofc(r),h(r)onthermodynamicvariableshasbeensuppressedforsimplicity.Theselasttwoequationscanbesolvedforcc(r)usingh(r)fromEquations( 3 )and( 3 )intheuniformlimit.Withthatresult,c=canbecalculatedfromEquation( 3 ),andthenccdeterminedfromEquation( 3 ).ThedimensionlesspotentialccwillbereferredtoasthePaulipotential.Fromnowonweuseonlydimensionlessparameters.Thedimensionlessdistanceisgivenbyr=r=r0,wherer0isthemeandistancebetweenparticlesrelatedtotheuniformdensityby4r30=3=1=n.TheplotsofthePaulipotentialatdifferenttemperaturesareshowninFigure 3-2 asafunctionofthedimensionlesscoordinater.ThethermodynamicsofaquantumsystemisparameterizedbythetemperatureTandthedensityn.Inourdiscussionsweusedimensionlesstemperaturetanddimensionlessaverageinter-particledistancersinstead.Theyaredenedbyrs=r0=aBwhereaBistheBohrradius,andt=F=forthetemperaturerelativetotheFermitemperature()]TJ /F9 7.97 Tf 6.59 0 Td[(1F=F=~2)]TJ /F5 11.955 Tf 5.48 -9.68 Td[(32n2=3=2m).Forexample,intheseunitsn3=8=)]TJ /F5 11.955 Tf 5.48 -9.68 Td[(31=2t3=2andtheclassicallimitoccursfort>>1wherethedistancebetweenparticlesislargecomparedtothethermaldeBrogliewavelengthandthedegeneracyeffectsarelow.Thethermodynamicsoftheidealgaspropertiesisindependentofrsandcanbeobtainedasthers!0limitofanyquantumsystem.Figure 3-2 showsthePaulipotentialfort=0,10)]TJ /F9 7.97 Tf 6.59 0 Td[(1,1,and10.ThePaulipotentialisrepulsivebecauseofthePauliexclusionprinciple,niteatr=0forspin-lesssystems,andmonotonicallydecreasing.Thebehaviorisexponentialathightemperatures,butanr)]TJ /F9 7.97 Tf 6.58 0 Td[(2algebraictaildevelopsforlowtemperaturest,arisingfromthedirectcorrelationfunctionc(2)(r)inEquation( 3 ).Thegrandpotentialdoesnotexistforsuchapotentialwhichdecaysslowerthanr)]TJ /F9 7.97 Tf 6.58 0 Td[(3inthreedimension[ 47 ]anditwouldappearthattheequivalentclassicalsystemproposedherefailsevenforthissimplestcaseofanidealFermigas.However,weadoptthesametechniquethatis 45

PAGE 46

Figure3-2. IdealgasPaulipairpotentialasafunctionofr=r=r0fort=0,0.1,1,10[ 35 ]. usedtocurethelongrangedproblemfortheCoulombsystemsbyaddingauniformneutralizingbackground(onecomponentplasma).Thesameprocedurecanbeusedhere,i.e.,aclassicalsystemisconsideredwhereauniformcompensatingbackgroundtermhasbeenaddedtotheHamiltonian.ChangingtheHamiltonianimpliesreplacinggc(r,r0)bygc(r,r0))]TJ /F5 11.955 Tf 11.93 0 Td[(1inthepressureequationEquation( 3 ),sothatEquation( 3 )becomesc =n p1)]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 6nZdrh(r)rrcc(r) (3)Figure 3-3 showstheclassicaltemperaturerelativetotheFermitemperature,F=ctc,asafunctionoftobtainedfromEquation( 3 ).ItisseenthattheclassicaltemperatureTcremainsniteatT=0,andcrossesovertoTc=Tathightemperatures.ThenitenessofTcwhenT=0resultsbecauseaquantumsystemhasaniteaveragekineticenergyatT=0.ThePDWmodelpostulatesthephenomenologicalformTc=)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(T2+T201=2.ThemodeloriginallyusestheaverageenergyperparticleatT=0toevaluateT0=2TF=5.TheresultfromEquation( 3 )isquitecloseTc(t=0)0.43TF.Tocomparethedependenceatnitet,thePDW 46

PAGE 47

Figure3-3. Idealgasreducedclassicaltemperaturetc=Tc=TFasafunctionoft=T=TF.AlsoshownistheresultofPDW[ 35 ]. formisalsoshowninFigure 3-3 withT0=Tc(t=0).ItisseenthattheresultsarequitesimilaralthoughthePDWformhasasomewhatfastercrossovertotheclassicallimit. Figure3-4. Idealgasdimensionlesschemicalpotentialc=Fasafunctionoft.Alsoshownisthecorrespondingquantumchemicalpotential=F+tln2[ 35 ]. Sincethereisnoexternalpotential,thelocalchemicalpotentialisaconstantc.Figure 3-4 showssimilarresultsforc=FasafunctionoftobtainedfromEquation( 3 ).Alsoshownistheresultforthequantum=F.Bothformsdependonlyont(independentofrs).Athightemperaturesthechemicalpotentialoftherepresentativesystemgoesovertoln(n3)asinEquation( 3 )whilethequantumchemicalpotential 47

PAGE 48

goesovertoln(n3=2).Theydifferbyaconstantamountofln(2)athightempera-turesduetotheinternalspindegreesoffreedominthequantumcalculation.ThisisaccommodatedinthecomparisonshowninFigure 3-4 .NowthatwehavedeterminedtheeffectivepotentialandtheeffectivetemperaturefortheuniformidealFermigas,itwouldbeusefultolookattheaverageinternalenergyofthesystem.FortheidealFermigas,theaverageenergyisrelatedtothepressureasE=3 2pV.First,notethatallthedimensionlessthermodynamicquantitiesforboththeidealFermigasanditseffectiveclassicalsystemdependononlyonethermodynamicparameterz=e.Inparticularcpc3c=G(z) (3)ThespecicformforG(z)isnotrequiredforthepresentdiscussion.Thecorrespondingquantumresultisp3=f3=2(z),wheref3=2(z)istheFermiintegralofAppendix B ,( B ).AlthoughG(z)andf3=2(z)arequitedifferent,thefactthattheybothdependonlyonzimpliesthattherelationshipamongdifferentthermodynamicpropertiesisthesameinbothclassicalandquantumcases.Forexample,theenergyperparticleisdeterminedfromthepressureviathethermodynamicdenitionEquation( 3 )withEquation( 3 )eEc=@cpcV @cjc,cc=@G(z)V=3c @cjc,cc=)]TJ /F6 11.955 Tf 9.3 0 Td[(VG(z)@)]TJ /F9 7.97 Tf 6.59 0 Td[(3c @cjzc=2 3pcV (3)Thecontributionfrom@G(z)=@cjzc,Vvanishessincez=z(zc).Thisfollowsondimensionalgroundssincezisdimensionless,andthereisnoadditionalenergyscaletomakecdimensionless.Hencetheclassicalcalculationgivestheknownexactquantumresult.Thisnon-trivialresultforaclassicalinteractingsystemisastrongconrmationoftheeffectiveclassicalmapdenedhere.AsnotedinSection 3.2 ,itcanbeveriedthattheclassicalaverageoftheclassicalHamiltoniandoesnotgivethecorrectrelationship 48

PAGE 49

tothepressure.Insteaditisnecessarytodenetheinternalenergythermodynamically,asisdoneinEquation( 3 ).InasimilarwayitisveriedthattherelationshipoftheclassicalentropytothepressureanddensityisthesameasinthequantumcaseTcSc=5 2pcV)]TJ /F3 11.955 Tf 11.95 0 Td[(c Nc (3)ThisisaformoftheSackur-Tetrodeequationvalidforthequantumcase.Itisem-phasizedthatthesesimpleidealquantumgasresultsarebeingretainedforthemorecomplexeffectiveclassicalsystemwithpairinteractionsviathePaulipotential. 3.4Summary 1. Wedevelopedaformalismtodescribethequantumcorrelationsusingclassicalmethods. 2. Wedevelopaformalismthatconstructsaneffectiveclassicalsystembymappingitsthermodynamicstothatofthequantumsystemwewanttodescribe.Thethermodynamicsoftheeffectivesystemisdescribedcompletelybytheeffectiveinteractionpotential,theeffectiveexternalpotentialandtheeffectivetemperature. 3. Sincetherearethreeunknowns,thetwoeffectivepotentialsandtheeffectivetemperature,weneedthreeequivalentconditionstosolvethem.Wedothatbyequatingthepressure,densityandthepaircorrelationsfortheeffectiveclassicalandthequantumsystem. 4. ThemapisinvertedusingtheclassicaldensityfunctionaltheoryandfurthersimpliedusingtheHNCapproximation. 5. ThemapisappliedtotheidealFermigas.Theeffectivequantitiesforitseffectiveclassicalsystemhavebeencalculatedandplotted.TheresultE=3=2pV,whichistrueforthequantumsystem,isrecoveredfortheeffectivesystemalso. 49

PAGE 50

CHAPTER4UNIFORMELECTRONGASTheformalismdevelopedinChapter 3 isnowappliedtotheuniformelectrongasorjellium[ 48 ].Thecalculationofthethreeparametersoftheeffectiveclassicalsystemforjelliumneedsthreequantuminputs.However,gettingtheexactexpressionsforthequantuminputsforjellium(pressuresandpaircorrelationfunctions)isconsiderablymoredifcultthanfortheidealFermigas.HenceinthisChapterthesequantitiesarecalculatedwithintherandomphaseapproximation.Moreprecisely,wedenetheeffectiveparameterssuchthattheypreservetheidealgasandtheexactweakcouplinglimits.Oncewedeterminethethreeparameters,theyareusedwiththeclassicalstrongcouplingHNCequationstoobtainthepaircorrelationfunctionsandotherthermodynamicfunctions.ThepaircorrelationfunctionsarecomparedwithothertheorieslikePDWandSTLSandsimulationmethodslikePIMC.TheagreementwiththesimulationdataandPDWmodelisquitegood.Otherthermodynamicfunctionslikethepressureandthechemicalpotentialarealsocalculated. 4.1ThermodynamicsOfTheEffectiveClassicalSystemTheinteractingelectrongasorjelliumisasystemofelectronsinteractingviatheCoulombinteractionsembeddedinanuniformneutralizingbackground.Theneutralizingbackgroundisrequiredforthethermodynamicstabilityofasysteminteractingwithlongrangedforces[ 47 ].Theuniformelectrongasisthestartingmodelforthestudyofelectroninteractionsinthemetals,lattices,andplasmas[ 52 ].Thecorrespondingclassicalsystemiscalledtheonecomponentplasma.InthisChapterwewilllookintoboththethermodynamicsandstructureofjellium.Weconstructtheparametersoftheeffectiveclassicalsystem,c=1=kBTc,c(r),andc(r,r0),whichareexactintheweakcouplinglimit.TheeffectiveinteractionpotentialisthenusedinHNCequationstocalculatethepaircorrelationfunctiontofurtherincludeclassicalstrongcouplingeffects. 50

PAGE 51

Onceweobtainthepaircorrelationfunctions,thepressureandotherquantitiescanbederivedusingtheclassicalstatisticalmechanics.TosummarizetheresultsofChapter 3 ,theclassicalparametersforanuniformquantumsystemaredenedasfollowing.FirstthepairpotentialisobtainedfromtheinversionoftheHNCequationcc(r)=)]TJ /F5 11.955 Tf 11.29 0 Td[(ln(1+h(r))+h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(c(r) (4)wherethedirectcorrelationfunctioncintheequationaboveisdeterminedfromtheOrnstein-Zernikeequation[ 32 ]:c(r)=h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(nZdr0c(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)h(r0) (4)Theclassicaltemperatureisobtainedfromthecorrespondenceconditionofequalpressures,Equation( 3 ),andtheclassicalvirialequationc =cpc p=n p1)]TJ /F6 11.955 Tf 13.15 8.09 Td[(n 6Zdrh(r)rrcc(r) (4)whereweusedtheeffectivepotentialderivedinEquation( 4 ).Thereplacementofthepaircorrelationfunctiong(r)bytheholefunctionh(r)=g(r))]TJ /F5 11.955 Tf 12.14 0 Td[(1occursbecauseoftheuniformneutralizingbackground[ 32 ].Theclassicalactivityccisgivenby[ 45 ]cc=ln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(n3c)]TJ /F6 11.955 Tf 11.95 0 Td[(nZdrc(r)+cc(r))]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 2h(r)(h(r))]TJ /F6 11.955 Tf 11.96 0 Td[(c(r)) (4)wherec=(2c~2=m)1=2.Thefunctionsgareallthequantumpaircorrelationfunctions.TheclassicalpaircorrelationfunctionshavebeenreplacedbythequantumpaircorrelationsbyusingtheequivalenceconditionsinEquations( 3 ).Inthefollowingsectionsweconsiderauniformelectrongaswithdimensionlesstemperaturetandaverageinterparticledimensionlessdistancers.Theobjectivehereistondawaytoputappropriateapproximationsintothesystemforpracticaluse. 51

PAGE 52

4.1.1ClassicalPotentialcc(r)ThedominantexchangeeffectshavealreadybeenincludedinthequantitiescalculatedinChapter 3 fortheidealFermigas.Thereforeitisconvenienttowrite[ 35 ]cc(r)intheformcc(r)=(cc(r))(0)+(r) (4)wherethersttermisthePaulipotentialand(r)istheCoulombinteractionterm.ThePaulipotentialcapturestheidealgasexchangeeffectsandtheCoulombtermcontainsthemodicationsoftheCoulombinteractionbyboththeexchangeandthediffractioneffects.Writingtheeffectivepotentialinthiswayimplieswerecovertheidealgasresultsinthelimitofzerointeractions.Intheclassicallimit,thePaulipotentialvanishesandtheCoulombpartbecomestheCoulombpotential.Intheweakcouplinglimit,thedirectcorrelationfunctionbecomesproportionaltothepotentialcc(r)!)]TJ /F6 11.955 Tf 24.58 0 Td[(c(r),(cc(r))(0)!)]TJ /F6 11.955 Tf 24.58 0 Td[(c(0)(r) (4)ThisgivesanexplicitformfortheCoulombterm(r)=)]TJ /F10 11.955 Tf 11.29 9.68 Td[()]TJ /F6 11.955 Tf 5.48 -9.68 Td[(c(r))]TJ /F6 11.955 Tf 11.95 0 Td[(c(0)(r).Thusweproposeanapproximationfortheeffectivepotential:cc(r)!(cc(r))(0))]TJ /F10 11.955 Tf 11.95 9.68 Td[()]TJ /F6 11.955 Tf 5.48 -9.68 Td[(c(r))]TJ /F6 11.955 Tf 11.96 0 Td[(c(0)(r)(w) (4)where)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(c(r))]TJ /F6 11.955 Tf 11.96 0 Td[(c(0)(r)(w)denotesaweakcouplingcalculationofthedirectcorrelationfunctionsfromtheOrnstein-Zernickeequation,Equation( 4 ).Thisapproximationclearlyincorporatestheidealgasandweakcouplinglimits.FortheclassicalOCP(Coulombpotential)thisyieldstheDebye-Huckelapproximationtog(r).Inthequan-tumcase,theweakcouplinglimitgRPA(r)canbecalculatedexplicitlyusingtherandomphaseapproximation[ 1 ].TodeterminecweusegRPAintheOrnstein-Zernikeequation, 52

PAGE 53

Equation( 4 ).c(r)(w)=1 nZdk (2)3e)]TJ /F4 7.97 Tf 6.58 0 Td[(ikrSRPA(k))]TJ /F5 11.955 Tf 11.96 0 Td[(1 SRPA(k) (4)whereSRPA(k)istheRPAstaticstructurefactorSRPA(k)=1+nZdreikrhRPA(r) (4)FinallythemodiedCoulombpotential(r)inEquation( 4 )becomes(r)!1 nZdk (2)3e)]TJ /F4 7.97 Tf 6.59 0 Td[(ikr1 SRPA(k))]TJ /F5 11.955 Tf 28.27 8.09 Td[(1 S(0)(k) (4)ThedenitionofSRPA(k)intermsoftheLindhardfunctionandtheRPAdielectricfunctionisgiveninAppendix D .Theproofofsomeofthelimitsof(r)=(t,rs,r)isgiveninAppendix D .TheRPAstructurefactorbehavesasSRPA(k)/k2becauseoftheperfectscreeningsumrule.Aconsequenceofthisisthatforlarger=r=r0,(r)hasaCoulombtailasshownintheAppendix D .limr(t,rs,r)!)]TJ /F4 7.97 Tf 6.78 -1.79 Td[(e(t,rs)r)]TJ /F9 7.97 Tf 10.82 0 Td[(1 (4)where)]TJ /F4 7.97 Tf 6.77 -1.79 Td[(e(t,rs)isaneffectiveCoulombcouplingconstant)]TJ /F4 7.97 Tf 6.77 -1.79 Td[(e(t,rs)=2 ~!pcoth(~!p=2),)]TJ /F2 11.955 Tf 36.75 0 Td[(q2 r0 (4)Here!p=p 4nq2=mistheplasmafrequency.Thedimensionlessparameteris~!p=(4=3))]TJ /F5 11.955 Tf 5.48 -9.68 Td[(2p 3=21=3p rs=tsoforxedrsthehighandlowtemperaturelimitsare)]TJ /F4 7.97 Tf 6.78 -1.8 Td[(e!8><>:,~!p<<1)]TJ /F9 7.97 Tf 6.68 -4.97 Td[(4 3rs1=2,~!p>>1 (4) 53

PAGE 54

ThecoefcientoftheCoulombtailfollowsfromthefactthattheRPAincorporatestheexactperfectscreeningsumrule[ 1 50 51 ].Itisillustratedforr(t,rs,r)inFigure 4-1 atrs=5forseveralvaluesoft.AlsoshowninthisgurearetheresultsfromthePDWclassicalpotentialwhichwebrieydiscussedinSection 2.2.2 (cc(r))PDW=(cc(r))(0)+PDW(r) (4)ThePaulipotential(cc(r))(0)asinisthesameasinEquation( 4 )butitsCoulombpartPDW(r)isgivenbytheDeutschpotential[ 21 ]PDW(r)=PDWq2 r1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F4 7.97 Tf 6.59 0 Td[(r=PDW,PDW=PDW~2 m1=2 (4)wherePDW=1=kBTPDWandTPDW)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(T2+T201=2.ThusthePDWpotentialdependsononlyoneunspeciedparameterT0.SincethePaulipotentialisindependentofrs,thedensitydependenceinthepotentialoccursthroughT0.TheT0=T0(rs)isobtainedbyrequiringthattheclassicalexcessenergyatT0matchesthequantumexchange-correlationenergyobtainedfromquantumsimulationatT=0.T0isttedtoaform[ 33 34 ]T0'TF a+bp rs+crs (4)witha=1.594,b=)]TJ /F5 11.955 Tf 9.3 0 Td[(0.3160,andc=0.0240whendiffusionMonteCarlodataisused.ForvariationalMonteCarlodata,thettingparametersarea=1.3251,b=)]TJ /F5 11.955 Tf 9.3 0 Td[(0.1779andc=0.0.ThePDWpotentialisquitesimilartotheapproximateformofourpotentialinEquation( 4 )atrs=5.Greaterdiscrepanciesoccurforbothlargerandsmallerrsexceptathighertemperatures.Furthercommentsonthiscomparisonaregivenbelow. 54

PAGE 55

Figure4-1. Demonstrationofcrossoverforr4(t,rs,r)toCoulombwitheffectivecouplingconstant)]TJ /F4 7.97 Tf 6.78 -1.8 Td[(e(t,rs)givenbyEquation( 4 ),forrs=5andt=0.5,1and10[ 48 ].Alsoshownarethecorrespondingresultsforr4PDW(t,rs,r). Closetotheoriginr<<1,(t,rs,r)approachesanitevaluesotheCoulombpotentialisregularized.(t,rs,0)=1 nZdk (2)31 SRPA(k))]TJ /F5 11.955 Tf 28.27 8.08 Td[(1 S(0)(k) (4)TheintegralconvergesbecausetheRPAstaticstructurefactorsforlargekapproach1ask)]TJ /F9 7.97 Tf 6.58 0 Td[(4duetoquantumeffects(cuspcondition[ 57 ]).Finally,anotherlimitobtainedintheAppendix D isthatforlargersandlarget(lowdensity,hightemperature)inwhichcasetheKelbgpotential[ 20 ]isrecoveredlimt,rs>>1(t,rs,r)!K(t,r)=)]TJ ET q .478 w 180.86 -461.63 m 191.1 -461.63 l S Q BT /F6 11.955 Tf 180.86 -472.82 Td[(r)]TJ /F5 11.955 Tf 5.48 -9.68 Td[(1)]TJ /F5 11.955 Tf 11.96 0 Td[(exp()]TJ /F6 11.955 Tf 9.29 0 Td[(r2=a2)+p r=a(1)]TJ /F5 11.955 Tf 11.96 0 Td[(erf(r=a)) (4)witha==(p 2r0).TheKelbgpotentialisobtainedastheweakcouplinglimitoftheeffectivepotentialdenedusingthetwoparticledensitymatrix.ThedetailsaregiveninChapter 2 .Thislimitisapproachedtowithin10percentatt=10and1rs10.NOTE:i)TherearetwowaystocalculatetheRPAstaticstructurefactorSRPA(k).Onewayistousethedenitionofthestaticstructurefactorasafrequencyintegralofthedynamicstructurefactor.Atsmallmomentumkvalues,theintegrand(thedynamicstructurefactor)startsdevelopingsharppeaks.Thepeaksoccurbecauseoftheplasma 55

PAGE 56

oscillationswherethedielectricfunction(thedenominatoroftheintegrand)becomesverysmall.Thenumericalestimationoftheintegrationisverydifcultatsmallmomen-tum.Toovercomethisproblemweusedthefrequencysummationrepresentationofthestaticstructuregivenin[ 39 ].TheexplicitformoftheintegralandthefrequencysumsaregivenintheAppendix D .ii)Whenexpressedintermsofthedensity,thedegeneracyparameterzthatoccursintheFermifunctioninthestructurefactorcalculationdependsonthechemicalpotentialoftheidealFermigas,notthatforjellium.Thischoiceofzpreservestheexactscreeningsumrule. 4.1.2ClassicalEffectiveTemperatureAndChemicalPotentialTheapproximatetemperatureandchemicalpotentialequationsareobtainedfollowingthesamelogicofsplittingthethermodynamicquantitiesintoanidealgastermandaninteractionterm.Theinteractiontermisdeterminedfromtheweakcouplingformsofthesequantities.c=(0)c+)]TJ /F3 11.955 Tf 5.48 -9.69 Td[(RPAc)]TJ /F3 11.955 Tf 11.96 0 Td[(RPA,(0)c (4)cc=(cc)(0)+(cc)RPA)]TJ /F5 11.955 Tf 11.95 -.17 Td[((cc)RPA,(0) (4)where(0)cand(cc)(0)denotetheidealgasresultsof[ 35 ],andfromEquations( 4 )and( 4 )RPAc=nh1)]TJ /F4 7.97 Tf 13.15 4.71 Td[(n 6RdrhRPA(r)rr(cc(r))RPAi pRPA (4)(cc)RPA=3 2lnRPAc +ln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(n3RPA+1 2nZdrhRPA(r)hRPA(r)+(cc(r))RPA (4)TheRPAresultsforpRPAand)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(n3RPAarecomputedfromthePadetsofreference[ 52 ]. 56

PAGE 57

Figure4-2. QuantumRPApressurepRPAatt=0asafunctionofrs[ 48 ]. Thepressureforjelliumbecomesnegativeatlargersandsmallt[ 52 53 ].Forrealsystems,thepressureispositiveasfollowsfromtheconvexityofthefreeenergyasafunctionofthevolume.Thisconvexitydoesnotholdforjellium[ 45 47 ].Thepressureoftheeffectiveclassicalsystematthecorrespondingtemperatureanddensitiesisstillpositive.FromtheEquation( 4 )wegetunphysicalresultslikenegativetemperatures.SincepRPAintheEquation( 4 )isamonotonicfunctionoft,forsometemperaturet=t0,pRPA=0.Thissituationoccursforrs4.Thereforeforjellium,thisisoneoftheequivalenceconditionsthatshouldbereplacedbyadifferentcondition(e.g.,equivalenceofinternalenergies).Instead,theanalysishereisrestrictedtot>t0(rs)toassurepositivepressure.Figure 4-3 showstc=Tc=TFasafunctionoftcalculatedfromEquation( 4 )forrs=0,1,3,4,and5.Figure 4-4 showsthecorrespondingresultsforc=FcalculatedfromEquation( 4 ). 4.2RadialDistributionFunctionAndThermodynamicsWecanusetheapproximateeffectivepotentialgivenbytheEquations( 4 )and( 4 )inMDorusetheEquations( 4 )and( 4 )tocalculatethepaircorrelationfunctionsg(r).Theresultingfunctionghastwokindsofcorrelationsbuiltintoit:i)theweakcouplingcorrelationsinRPA(ringdiagrams)throughSRPAandii)classicalstrongcouplingeffects(e.g.,moleculardynamicssimulation,HNCequations).Herewewill 57

PAGE 58

Figure4-3. ClassicalreducedtemperatureTc=TFasafunctionoftforrs=0,1,3and4[ 48 ]. Figure4-4. Dimensionlessclassicalchemicalpotentialc=EFasafunctionoftforrs=1,3,5[ 48 ]. solveforgusingtheHNCapproximationEquations( 4 )and( 4 )lng(r)=)]TJ /F3 11.955 Tf 9.3 0 Td[(cc(r)+h(r))]TJ /F6 11.955 Tf 11.96 0 Td[(c(r),c(r)=h(r))]TJ /F6 11.955 Tf 11.95 0 Td[(nZdr0c(jr)]TJ /F7 11.955 Tf 11.95 0 Td[(r0j)h(r0) (4)TheeffectivepotentialintheformalisminChapter 3 isdenedusingtheHNCequationswhichtakesthequantumpaircorrelationfunctionasinput.ButtheEquation( 4 )producesthepaircorrelationfunctionastheoutput.Althoughitlookslikeacircularlogic,thefactisweconstructedccusingonlytheweakcouplingformoftheHNCequations.Thequantuminputforccandg(r)iscalculatedusingtheRPAtheory, 58

PAGE 59

hencethenalpaircorrelationfromtheEquation( 4 )containstheeffectsfromtheweakquantumcorrelationsandthestrongclassicalcorrelations.TheformoftheHNCequationsguaranteesg(r)alwaysstayspositivejustasnotedin[ 33 ].IncontrastthepaircorrelationfunctionbecomesnegativeatshortdistancesforlargevaluesofrsandlowtemperaturesintypicalcalculationsbasedonstaticlocaleldcorrectionstoRPA.Thecomputationofg(r)fromEquation( 4 )hasbeendoneusingNg'smethod[ 58 ]bysplittingtheinteractionpotentialintoalongrangedandashortrangedpartfollowingthatreference.TheEquations( 4 )and( 4 )donotusethepressureortemperaturecalculations.Hencetheydonothavetherestrictiontopositivepressuresandtheassociatedrestrictiononrs.TheresultsareshowninFigure 4-5 forthecaseofrs=6att=0.5,1,4and8.AlsoshownaretheresultsfromtherecentrestrictedPIMC[ 11 ].Theagreementisquitegood.Figure 4-6 showsthesameconditionsasFigure 4-5 forcomparisonwiththeresultsofPDW.Theagreementisremarkableeventhoughtheyhaveverydifferentorigins.Thisagreementbetweenthepredictionshere,PIMC,andPDWextendstootherstateconditionsaswell,exceptforsmalltandverylargers. Figure4-5. Radialdistributionfunctiong(r)forrs=6att=0.5,1,4,8.AlsoshownaretheresultsofPIMC[ 48 ]. Othertheoreticalmodelsforg(r)arebasedonmodifyingthedielectricformalismoftheRPAbyincludinglocaleldcorrections.TheSTLSmodel[ 13 ]isoneofthe 59

PAGE 60

Figure4-6. Radialdistributionfunctiong(r)forrs=6att=0.5,1,4,8.AlsoshownaretheresultsofPDW[ 48 ]. earliestself-consistentatT=0,latergeneralizedtonitetemperaturebyTanakaandIchimaru(TI)[ 39 ].WebrieylookedatboththeRPAandSTLSschemeinSection 2.1.2 .AtmetallicdensitiesandlowtemperaturesTIfoundthatthepaircorrelationfunctionsbecomenegativeasshowninFigure 4-7 .TheRPAresultsaresignicantlymorenegativeinthisrange.Figure 4-7 showsthecomparisonofthepaircorrelationfunctionfromourmodelwithTIatrs=5att=0.5,1and10.BothRPAanditsimprovedTIoverestimatethesizeoftheelectroncorrelationhole[ 1 ]atlargervaluesforrs. Figure4-7. Radialdistributionfunctiong(r)forrs=5att=0.5,1and10.AlsoshownaretheresultsofTanaka-Ichimaru[ 48 ]. 60

PAGE 61

Figure4-8. Radialdistributionfunctiong(r)fort=0atrs=1,5,10.AlsoshownareresultsfromPIMCanddiffusionMonteCarlo.ThePIMCanddiffusionMonteCarloplotsareindistinguishable[ 11 48 ]. ThePDWg(r)isingoodagreementwithdiffusionMCdataatt=0[ 33 ]forrs=1,5,10.ThePDWmodeldependsononeparameterT0whichcontainsallthequantummany-bodyeffects.Itisdeterminedbyttingtheclassicalexcessenergytothet=0exchange/correlationenergyfromMCdata.Itisimpressivethatthisprovidesgoodresultsforg(r)acrossarangeofbothrsandt.Figure 4-8 showsacomparisonoftheresultsofthepresentanalysiswiththesameT=0diffusionMCdata[ 56 ],andalsotherecentPIMCforT=0.065atrs=1,10.ThegoodagreementisquitesurprisingsincethereisnoMCparametrizationinthepresentanalysisandallquantuminputisviatheRPAandidealgasexchange.However,itisrecalledthattheRPApreservestheexactquantummechanicsoftheperfectscreeningsumrulethatgovernsthecrossovertotheexactlargerCoulomblimit.ThisisdiscussedfurtherinSection 4.1.1 4.2.1ThermodynamicsThepredictedpressure,pcinatomicunits,fortheeffectiveclassicalsystemisobtainedfromcpc nc=1)]TJ /F5 11.955 Tf 13.15 8.09 Td[(1 6nZdrh(r)rrcc(r) (4) 61

PAGE 62

usingtheeffectivetemperature,Equation( 4 ),andthefullpaircorrelationfunctionobtainedfromtheEquation( 4 ).Figure 4-9 showsthisasafunctionoftforrs=1,3and5.AlsoshownarethecorrespondingresultsformodiedRPA(usingthetsfromreference[ 53 ]). Figure4-9. Dimensionlessclassicalpressurepc=(nF)asafunctionoftforrs=1,3,5.AlsoshownarethecorrespondingmodiedRPAresults[ 48 ]. Figure4-10. ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=8forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. 4.3KelbgFittingForTheEffectivePotentialccThecalculationoftheeffectivepotentialcintheEquation( 4 )iscomplicatedasitinvolvescomputingtheRPAstructureandthenthedirectcorrelationfunction. 62

PAGE 63

Figure4-11. ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=0.5forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. Figure4-12. ThepaircorrelationfunctioniscalculatedusingthemodiedKelbgpotentialatt=1forrs=1,6,10and40.ComparisonwiththePIMCisalsoshown[ 59 ]. Forpracticalapplicationitwouldbemoreconvenienttoobtainattingfunctionforthepotential.chasanexactKelbgformathightemperaturesasprovedinAppendix D .TheeffectivepotentialisrequiredtohaveaCoulombtailwhichhasthecouplingcoefcientdeterminedbytheexactscreeningsumrule.TheeffectivecouplingconstantisgivenbytheformintheEquation( 4 ).First,theweakcouplingKelbgformEquation 63

PAGE 64

Figure4-13. ComparisonofthepaircorrelationfunctionsforthemodiedKelbgpotentialatt=0forrs=1,6,10and40withPIMCatt=0.0625anddiffusionMonteCarloatt=0[ 59 ]. ( 4 )isimprovedbyincludinganotherparameter[ 27 ]4K(r)=)]TJ ET q .478 w 146.05 -294.28 m 156.29 -294.28 l S Q BT /F6 11.955 Tf 146.05 -305.47 Td[(r1)]TJ /F6 11.955 Tf 11.96 0 Td[(exp()]TJ /F5 11.955 Tf 9.3 0 Td[((ar)2)+p (ar) erfc(ar) (4)where=)]TJ /F9 7.97 Tf 11.93 5.48 Td[(()]TJ /F4 7.97 Tf 4.82 0 Td[(rs)1=2 ln(S()]TJ /F4 7.97 Tf 8.27 0 Td[(rs))anda=(rs=\1=2.ThefunctionSisthetwoelectronSlatersumattheorigin.S(x)=)]TJ /F5 11.955 Tf 9.3 0 Td[((4x)1=2Z10dye)]TJ /F4 7.97 Tf 6.59 0 Td[(y2y 1)]TJ /F6 11.955 Tf 11.95 0 Td[(ep x=y (4)ThenewparameteraffectstheheightofthemodiedpotentialinEquation( 4 )attheoriginwhileitkeepstherstderivativeofthepotentialthesameastheoriginalKelbgpotential,Equation( 4 ).Second,inorderforthiseffectivepotentialtoagreewiththecorrectlargedistancebehavioroftheoriginaleffectivepotential,Equation( 4 ),theCoulombcoefcient)]TJ /F1 11.955 Tf -436.52 -23.91 Td[(inEquation( 4 )shouldbereplacedbytheeffectivecouplingconstant)]TJ /F4 7.97 Tf 6.78 -1.79 Td[(e,Equation( 4 ).Weproposetheformoftheeffectivepotential[ 59 ]cc(r)=(cc)(0)(r)+4K(r) (4) 64

PAGE 65

ThiseffectivepotentialcanbeusedintheHNCequations,Equations( 4 ),toobtainthepaircorrelationfunctionsg(r)atvarioustemperaturesanddensities.ThecomparisonofthepaircorrelationfunctionswiththePIMCdataisshownbelow.Theagreementisgoodatrelativelyhightemperaturet=8for1rs40asshowninFigure 4-10 .Figures 4-11 and 4-12 showthecomparisonatt=0.5and1respectively.Againtheagreementisgoodexceptatverylowdensitiesrs=40.Itestimatesthelocationofthepeakofthepaircorrelationfunctiongcorrectlybutunderestimatesitsheight.AlsoshowninFigure 4-13 isthecomparisonofgwiththatofPIMCatt=0.0625anddiffusionMonteCarloatzerotemperature.Fromtheguresitisseenthatghasaweakdependenceonthetemperatureforrs>1andt0.5. 4.4Summary 1. Weconstructedtheeffectiveclassicalsystemforjellium. 2. Theeffectiveinteractionpotentialciswrittenassumoftheexchangeterm(Paulipotential)andCoulombinteractionterm.TheexplicitformoftheCoulombtermisobtainedusingweakcouplingclassicaltheoryandquantumrandomphaseapproximation.TheresultisaregularizedCoulombpotentialatsmallr,andaCoulombtailwhosecoefcientisdeterminedbytheexactscreeningsumrule. 3. ThepaircorrelationswerecalculatedusingtheHNCequationsandtheeffectivepotentialandcomparedwiththePDWtheoryandPIMC. 4. Theeffectivetemperatureandtheeffectivechemicalpotentialarealsocalculatedwithintheweakcouplingapproximations.ThenthefullpressureandchemicalpotentialwerecalculatedfromtheHNCequations. 65

PAGE 66

CHAPTER5SHELLFORMATIONINNONUNIFORMSYSTEMSThisChaptergivesabriefoverviewoftheclassicaltheoriesoftheshellformationduetoclassicalcorrelations.Thisisthenusedasthebasisforstudyingquantumeffectsontheshellformationviatheeffectiveclassicalsystem.ZerotemperatureclassicalDFTisusedtoobtainthegroundstatedensitybyminimizingtheenergyfunctional[ 60 ].ThecontributionsofthecorrelationsareincludedusingLDAandtsforthecorrelationenergiesforuniformsystem[ 61 ].Theshellmodelsphenomenologicallyconstructtheenergyfunctionalthatareparameterizedbythenumberofshells,theirpositionandthenumberofchargesineachshellandthenminimizedittosolvefortheseparameters.Wrightonetal.[ 46 49 ]successfullyusedclassicalDFTandHNCtoincludethecorrelationsatnitetemperatures.Theshellformationduetostrongquantumcorrelationsinultra-coldatomsinatrapandquantumdotsisstudiedonlyatzerotemperature.Sincetherearenonitetemperaturetheoriestoexplaintheshellsinthesesystems,wewillextendourformalisminChapter 3 totheconnedquantumsystems.Webrieylookintothemechanismoftheshellformation:quantumeffectsandquantumcorrelations.WeprimarilyusethemodelofWrightonetal.andtheclassicalmapofChapter 3 and 4 tostudyquantumeffectsintheshellformationinaharmonictrap.TheeffectivepotentialsandcorrelationfunctionsofthepreviousChaptersareusedintheHNCequationstocalculatethedensityproleoftheeffectivesystem.Thedensityofclassicalsystemsdependsontwoparameters,thenumberofparticlesinthetrapandthestrengthofthepotential(couplingconstant).Thisdependencewillbediscussedfortheclassicalsystemsfollowingthediscussioninreference[ 46 49 ]andwillbeextendedtothequantumsystemsinthemeaneldtheory. 5.1ZeroTemperatureClassicalDensityJustasinthezerotemperaturequantumDFT,theaverageenergyofaclassicalsystemisminimizedattheequilibriumdensityproleinclassicalDFT[ 60 ].Toobtain 66

PAGE 67

thedensityprolewewritetheaverageenergyasafunctionalofthedensity.LetusconsiderasystemofNparticlesinanexternalpotentialext(r)andinteractingvia(r,r0).TheHamiltonianisgivenby:^H=NXi=1^p2i 2m+Zdrext^n(r)+Zdrdr0(r,r0)^g(r,r0) (5)Theaverageenergyisgivenby:E=h^Hi=3 2kBT+NZdrextn(r)+N(N)]TJ /F5 11.955 Tf 11.96 0 Td[(1) 2Zdrdr0(r,r0)g(r,r0)n(r)n(r0) (5)whereh^n(r)i=n(r)istheaveragedensityandh^g(r,r0)i=g(r,r0)n(r)n(r0)istheaveragepaircorrelationfunction.Sincethepaircorrelationfunctionsaredifculttocalculate,Henningetal.[ 61 ]includedcorrelationsthroughalocaldensityapproximation.Thisisdoneinthefollowingsteps:Startwithenergyexpressionfortheuniformsystem:Rdrdr0(r,r0)g(r,r0)n(r)n(r0)!n2Rdrdr0(r)]TJ /F7 11.955 Tf 12.6 0 Td[(r0)(h(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0)+1)=Vn2(k)+Ecorr.ThecorrelationpartofenergyEcorrisgivenforYukawapotentialbyanapproximateformbyTotsujietal[ 62 ]:Ecorr=)]TJ /F5 11.955 Tf 9.3 0 Td[(1.44q2n4=3exp()]TJ /F5 11.955 Tf 9.3 0 Td[(0.375n)]TJ /F9 7.97 Tf 6.59 0 Td[(1=3+0.000074(n)]TJ /F9 7.97 Tf 6.59 0 Td[(1=3)4).UsingLDAtheuniformdensitynisreplacedbynon-uniformdensityn(r).Theenergyisnowminimizedtosolveforthegroundstatedensity.EvenafterincludingthecorrelationsthroughLDA,itfailstoproduceanyshellstructure.Howeveritagreesquitewellwiththeaveragedshelldensitiesfromthesimulations. 5.2ShellModelsShellmodelsattempttoexplainthelocationandnumberoftheshellsandthenumberofparticlesinashellbyminimizingtheenergyfunction[ 63 65 ].ItassumesadensityrepresentedbyasetofnestedshellsnSM(r)=LX=1N(jrj)]TJ /F6 11.955 Tf 17.93 0 Td[(R) 4R2 (5) 67

PAGE 68

whereLrepresentsthetotalnumberofthinshells,locatedataradiusRandwithnumberofparticlesNinthethshell.TheenergyisdenedasafunctionofthisshellmodeldensitynSM.ForYukawasystems(q2 rexp()]TJ /F3 11.955 Tf 9.3 0 Td[(r)),theaveragetotalenergyisthesumofthreeterms[ 64 65 ]ESM=Eext+Eintra+Einter (5)Eext=LXnu=1Next(R) (5)Eintra=LXnu=1Nq2eR Rsinh(R) RN 2 (5)Einter=LXnu=1Nq2eR RLX
PAGE 69

bytheuniformcorrelationsofOCPsystemscOCP(r)]TJ /F7 11.955 Tf 10.32 0 Td[(r0).TheresultsherearespecializedtotheirworkontheCoulombsystemsinharmonictraps.Thustheinteractionpotentialis(r)=)]TJ ET q .478 w 54 -56.78 m 62.17 -56.78 l S Q BT /F4 7.97 Tf 54 -63.89 Td[(randthelocalchemicalpotential)]TJ /F9 7.97 Tf 13.7 4.71 Td[()]TJ ET q .478 w 268 -56.78 m 272.82 -56.78 l S Q BT /F9 7.97 Tf 268.19 -63.89 Td[(2(r)2,r=r=r0,)-391(=q2=r0.TheuniformcorrelationsforsuchsystemareobtainedfromtheHNCequationsforthepaircorrelationfunctionsfortheonecomponentplasmaandtheOrnstein-Zernikeequation,Equation( 4 ).Atthemeaneldlevel,whichmeansreplacingc(r)!)]TJ /F5 11.955 Tf 26.27 0 Td[()]TJ /F3 11.955 Tf 6.77 0 Td[(=r,theydidnotgetanyshellsforanyvalueofthecouplingconstant)]TJ /F1 11.955 Tf 6.78 0 Td[(,asshowninFigure 5-1 .HoweverincludingthecorrelationsintheHNCequationsproducedshellsforstrongcoupling)]TJ /F3 11.955 Tf 10.1 0 Td[(>>1asshowninFigure 5-3 Figure5-1. MeaneldclassicaldensityproleforN=100particlesforvariousvaluesof)]TJ /F1 11.955 Tf 6.78 0 Td[(.ThemeaneldCoulomblimit)]TJ /F2 11.955 Tf 10.1 0 Td[(!1isastepfunction[ 46 ]. Wegeneralizetheirresultstothequantumsystems.Wewillusethesameequation,Equation( 5 ),butthequantuminformationisincorporatedviathetwoinputs,theeffectivelocalchemicalpotentialcandthedirectcorrelationscforjelliumcalculatedinChapter 4 .IntherestofthisChapter,weaddressthequestionwhetherthequantumeffectscanproduceshellstructureinthemeaneldlimit.Theeffectivelocalchemicalpotentialcisnolongerharmonic,butismodiedbyquantumeffectsasisshownbelow.Henceaninterestingpreliminaryexplorationwouldbetogeneratethedensityproleforsomegeneralexternalpolynomialpotentialsatmeaneldandseethe 69

PAGE 70

effectsoftheirshapeonthepossibilityofshellformation.Theeffectivelocalchemicalpotentialcorrespondingtotheclassicalharmonictrapchangesitsshapeatdifferenttemperaturesanddensities.Knowingtheeffectsoftheshapeoftheexternalpotentialontheshellformationwouldhelpusstudytheinuenceofthequantumeffectsatdifferenttemperatureanddensityrange. 5.3.1ShellFormationInAPolynomialPotentialConsideraclassicalsystemofNparticlesinteractingviaapotentialconnedbyatrappotentialext.ThetotalpotentialenergyoftheHamiltonianisgivenbytheEquation( 5 ).TheradiusofthetrapR,whichistheaveragepositionoftheoutermostparticle,isdenedtobethepositionwheretheforcesduetotheinteractionpotentialofotherparticlesontheoutermostparticleisbalancedbytheforceduetothetrappotentialrext(r).FortheparticularcaseofCoulombinteractions(r)=q2=randaclassofexternalpotentialslabeledbyaparameter,ext(r,),theforcebalanceconditiongives0ext(R,)=(N)]TJ /F5 11.955 Tf 11.96 0 Td[(1)q2 R2, (5)Usingthefollowingidentities:4nr30=3=14nR3=3=N)R3=r30N, (5)andthelastequationfromEquation( 5 ),wegetr20N2=30ext(r0N1=3,)=(N)]TJ /F5 11.955 Tf 11.96 0 Td[(1)q2 (5)Thedimensionlesspotentialenergyforthesystemis:(ri)=)]TJ /F10 11.955 Tf 29.59 20.45 Td[( N1=3 r0Xiext(rir0,) 0ext(r0N1=3,)+1 2Xi6=j1 jri)]TJ /F7 11.955 Tf 11.95 0 Td[(rjj!, (5) 70

PAGE 71

where)-281(=q2=r0.Inparticularforapolynomialexternalpotentialoftheformext(r,)=rn,thetotalpotentialbecomes:=)]TJ /F10 11.955 Tf 21.38 20.44 Td[( N(2)]TJ /F4 7.97 Tf 6.59 0 Td[(n)=3 nXirin+1 2Xi6=j1 jri)]TJ /F7 11.955 Tf 11.96 0 Td[(rjj!, (5)Inparticularforaharmonictrapwehavethetotalpotential:=)]TJ /F10 11.955 Tf 21.39 20.45 Td[( 1 2Xiri2+1 2Xi6=j1 jri)]TJ /F7 11.955 Tf 11.95 0 Td[(rjj! (5) (5)WecannowcalculatethedensityprolefromtheEquation( 5 ).Formostexper-imentsandsimulationsitismoreconvenienttousetheaveragenumberofparticlesinthetrapNinsteadofthechemicalpotential.TheconversionbetweenthetwoisdoneusingtheequationRdrn(r,)=N.Theresultis:n(r)=Nexp()]TJ /F5 11.955 Tf 9.29 0 Td[()]TJ /F6 11.955 Tf 6.78 0 Td[(U(r)) Rdr0exp()]TJ /F5 11.955 Tf 9.3 0 Td[()]TJ /F6 11.955 Tf 6.77 0 Td[(U(r0)))]TJ /F6 11.955 Tf 6.78 0 Td[(U(r)=ext(r)+NRdr0exp()]TJ /F5 11.955 Tf 9.3 0 Td[()]TJ /F6 11.955 Tf 6.77 0 Td[(U(r0))cOCP(jr)]TJ /F7 11.955 Tf 11.95 0 Td[(r0j) Rdr0exp()]TJ /F5 11.955 Tf 9.3 0 Td[()]TJ /F6 11.955 Tf 6.77 0 Td[(U(r0)) (5)where)-318(=q2=r0.Alltheaboveequationscanbewrittenintermsofthedimensionlessdistancex=r=r0.WecancalculatethedensityproleforvariouspolynomialpotentialsasinEquation( 5 ):ext(x)=)]TJ /F4 7.97 Tf 34.86 4.7 Td[(N(2)]TJ /F16 5.978 Tf 5.76 0 Td[(n)=3 nxninthemeaneldlimiti.e.replacingcOCP(r)]TJ /F7 11.955 Tf 11.95 0 Td[(r0)by)]TJ /F3 11.955 Tf 9.29 0 Td[((r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0),oftheEquation( 5 ).TheresultsareshowninFigure 5-2 .TheplotsshowthatinthemeaneldlimitwedonotgetanyshellforthelinearandharmonictrapsasfoundbyWrightonetal.[ 46 ].Howeverhigherordertrappolynomialsproduceshellsi.e.whentheeffectivelocalchemicalpotentialissteeperthantheharmonicpotentialwegetshells.Fortherestofthesection,wefocusononlytheharmonictrappotentials.Theaboveresultscanbegeneralizedbeyondthemeaneldbyincludingthecorrelations 71

PAGE 72

Figure5-2. ThedensityproleinthemeaneldlimitofCoulombsystemsindifferentpolynomialtrappotentialsfor)-277(=40 fromtheuniformOCP,cOCP.Thedensityproledependsontwoparameters)]TJ /F1 11.955 Tf 10.1 0 Td[(andN,soitisinterestingtoseehowthedensitychangesastheseparametersarechanged.ForxednumberofparticlesinthetrapN,thesharpnessoftheshellsincreasesasweincrease)]TJ /F1 11.955 Tf 10.1 0 Td[(butthenumberandthepositionofshellsremainsunchanged[ 46 ]asshowninFigure 5-3 Figure5-3. Thevariationofthedensityprolewiththecouplingconstant)]TJ /F1 11.955 Tf 10.09 0 Td[(for100particlesinthetrap[ 46 ]. Intheothercaseataconstant)]TJ /F1 11.955 Tf 6.77 0 Td[(,thenumberofshellsincreasesaswechangingNasisshowninFigure 5-4 72

PAGE 73

Figure5-4. Thevariationofthedensityprolewiththenumberofparticlesinthetrapfor)-278(=100[ 46 ]. Figure 5-5 showshowtheshellsarelledandwhennewshellsareformed.ThenumberofparticlesineachshellvariesasN2=3.Fromtheseresultsweconcludethat Figure5-5. Thellingoftheshellsandthedependenceofthepopulationineachshellonthetotalnumberofparticlesinthetrapisshown.AlsoshownarethecorrespondingMCandMDdata[ 46 ]. onlythestrongcorrelations)]TJ /F3 11.955 Tf 12.61 0 Td[(>>1produceshellstructure.ThesingularityoftheCoulombpotentialattheorigindestroystheshellsforclassicalparticlesinthemeaneldlimit.Theshellsinaharmonictrapareequi-spacedandthepositionoftheshellsvariesasN2=3.TheHNCequationsprovideagooddescriptionofthestrongcorrelationsintheclassicalsystemsasshowninFigure 1-2 andFigure 5-5 73

PAGE 74

5.4ShellFormationInQuantumSystemsForquantumsystemswestillcanusetheclassicalequationstoobtainthedensityprole[ 46 ].Usingtheeffectivelocalchemicalpotentialc(r)fromChapter 3 andtheuniformcorrelationscforjelliumcalculatedinChapter 4 wecanincorporateappropriatequantumeffects.ln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(n(r)3c=cc(r)+Zdr0c(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)n(r0) (5)AnequivalentrepresentationisintermsoftheaveragenumberofparticlesinthetrapNsimilartothediscussioninEquation( 5 ).Thedensityisthengivenby:n(r)=Nexp()]TJ /F3 11.955 Tf 9.3 0 Td[(U(r)) Rdr0exp()]TJ /F3 11.955 Tf 9.3 0 Td[(U(r0))U(r)=cc(r))]TJ /F10 11.955 Tf 11.96 16.27 Td[(Zdr0c(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)n(r0) (5)Withoutthediffractionandexchangeeffects,thelocalchemicalpotentialinEquation( 5 )isharmonic.Asarstestimateofquantumeffectsontheeffectivelocalchemicalpotential,weneglecttheCoulombinteractionsamongtheparticlesandconsidertheeffectivelocalchemicalpotentialwithonlytheexchangeeffects. 5.4.1EffectiveLocalChemicalPotentialForIdealFermiGasThelocalchemicalpotentialfortheidealFermigasisgivenby:(cc)(0)(r)=ln)]TJ /F6 11.955 Tf 5.47 -9.69 Td[(n(0)(r)((0)c)3)]TJ /F10 11.955 Tf 11.95 16.27 Td[(Zdr0c(0)(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)n(0)(r0) (5)wheren(0)andc(0)arethedensityanddirectcorrelationfunctionsoftheidealFermigascalculatedinChapter 3 .Thedensityn(0)canbecalculatedintwoways:bysummingoveralltheeigenfunctionsoftheharmonicHamiltonian,orbyalocaldensityapproxima-tion.SomettingfunctionsforthelatterisgiveninAppendix B .ThedetailsofthedensityexpressionsareprovidedinChapter 3 .ThedensityprolecalculatedintwodifferentwaysdonotdiffermuchasdiscussedinSection 3.3 74

PAGE 75

Thelocalchemicalpotential()(0)iscalculatedusingEquation( 5 )withthedensitiescalculatedusingLDAEquations( 3 3 3 ).Theplotsof()(0)forrsandtemperaturest=0.5and10forN=100particlesareshowninFigure 5-6 : Figure5-6. Effectiveclassicaltrappotential4cc(r)=)-277(=(cc(r))]TJ /F3 11.955 Tf 11.96 0 Td[(cc(0))=)]TJ /F1 11.955 Tf 10.1 0 Td[(asafunctionofrfort=0.5,10[ 48 ].Alsoshownistheharmonicpotential. ItcanbeseenfromFigure 5-6 that()(0)differsfromtheharmonicpotentialatintermediatedistancesatverylowtemperatures.Atlargedistancesithasaharmonicasymptote. 5.4.2TheQuantumEffectsOnTheShellFormationInTheMeanFieldTheoryForclassicalCoulombsystemsinaharmonictrapwedonotgetshellsinthemeaneldforanyvalueofthecouplingconstantasdiscussedinSection 5.3 .Inthissectionwestudythequantumeffectsontheshellformationinthemeaneldlimit.Firstweconsiderthediffractioneffect.DiffractioneffectsareputintoclassicalsystemsbyusingaregularizedCoulombpotentialfortheinteractionpotential.InourcasewechoosetheKelbgpotentialfortheinteractionpotentialandtheharmonicpotentialfortheexternalpotential.Thusoursystemhasonlydiffractioneffects.InthemeaneldlimitwegetshellsatverylowtemperaturesasshowninFigure 5-7 for)-363(=3att=0.1,0.5and1.TheshellformationisbecauseofthefactthattheKelbgpotentialisregularizedatthe 75

PAGE 76

Figure5-7. Diffractionmeaneldapproximatedensityprolefor)-277(=3andt=0.1,0.5,1[ 48 ]. originandatverylowtemperaturesitcanmimicthestrongcorrelationsoftheclassicalOCPasshowninFigure 5-8 Figure5-8. Comparisonof)]TJ /F6 11.955 Tf 9.3 0 Td[(c(r)andVK(r)att=0.1,0.27bothcorrespondingto)-278(=3[ 48 ].AlsoshownistheCoulomblimitq2=r. Tostudythedegeneracyeffects,weneglectthediffractioneffectsbyusingtheCoulombpotentialastheinteractionpotential,butkeeptheexchangeeffectsintheexternalpotentiali.e.use()(0).Againwegetshellsatlowtemperaturesforrs=5att=0.5,1,2,5and10for100particlesasshowninFigure 5-9 .Tounderstandthemechanismoftheshellformationfordegeneracyeffects,wenotethatinthecaseofthe 76

PAGE 77

polynomialpotentials,rn,wegetshellsforn>2asshowninFigure 5-2 .Thusasthesteepnessofthepotentialsincreasewegetshells.Atlowtemperaturesanddensitiestheclassicalharmonicpotentialismodiedbythestrongdiffractioneffects,makingitsteeperthantheharmonicpotential.Alsothecouplingconstantislargeatverylowtemperatureswhichisanotherfactorfortheshellformation.Thusthequantumeffectsofdiffractionanddegeneracyproduceshellsatverylowtemperatureseveninthemeaneldlimit. Figure5-9. Exchangemeaneldapproximatedensityproleforrs=5andt=0.5,1,2,5,10[ 48 ]. 5.4.3NDependenceOfRadiusOfTheTrapInthissectionwestudyhowtheradiusofthetrapvariesaswechangetheaveragenumberofparticlesinthetrap.Inparticularweareinterestedinhowthequantumsystemswoulddifferfromtheclassicalsystemsinthewaytheshellsarelled.Theforcebalanceconditioncanbeusedtocalculatethepositionoftheoutermostshell.ThedependenceoftheradiusofthetrapRonthenumberofparticlesNrelatestothepositionoftheothershellsalso.ForclassicalCoulombsystemsinaharmonictraptheradiusofthetrap(positionoftheoutermostparticles)variesasN1=3.ThesamemethodcanbeappliedtotheeffectivepotentialtopredicttheRvsNbehaviorforthequantumsystemsinharmonictraps.Thesepredictionscanbecomparedwiththeexperimental 77

PAGE 78

datafortheultra-coldionsandthequantumdotsinharmonictrapstocheckthevalidityofourformalism.TokeepthingssimpleweconsidertheKelbginteractionpotentialK(r)=)]TJ ET q .478 w 50.46 -56.78 m 55.28 -56.78 l S Q BT /F4 7.97 Tf 50.95 -63.89 Td[(r1)]TJ /F6 11.955 Tf 11.96 0 Td[(exp()]TJ /F6 11.955 Tf 9.3 0 Td[(r2=2K)+p r Kerfc(r=K)fortheeffectiveinteractionpotentialandtheharmonicpotentialastheexternalpotential.ThiswouldgiveustheforcebalanceconditionfromtheEquation( 5 )forthediffractioneffectsonly:0ext(r)=N)]TJ /F5 11.955 Tf 11.95 0 Td[(1 NZdr0n(r0)r(K(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j))=0 (5)Atlowtemperatures!1,andasaresultK(r)!1 2.Atthelimitofhightemper-atures!0weget0K(r)!)]TJ /F5 11.955 Tf 25.73 0 Td[(1+1 22Kr2.UsingtheseresultsinEquation( 5 )weget!0,m!2R=(N)]TJ /F5 11.955 Tf 11.95 0 Td[(1)q2 R2 (5)!1,m!2R=Nq2 2K (5)Fromtheaboveequations,weseethatinthequantumlimit,theradiusofthetrapRdependsonthetotalnumberofparticlesinthetrapNasRN,whileintheclassicallimitthedependenceisRN1=3.ThusthetrappotentialisstrongcomparedtotheCoulombrepulsionathightemperatureswhileatlowtemperaturestheparticlesspreadoutwardduetothestrongerCoulombrepulsion. 5.5Summary 1. Welookedatclassicaltheoriesthatstudystrongcorrelationsinshellformation:zerotemperatureclassicalDFT,shellmodelandnitetemperatureformalismbyWrightonetal. 2. TheexplanationbehindshellformationintheclassicalCoulombsystemsisdiscussed.Thedependenceofthenumberofparticlesintheshellandthepositionoftheshellsonthetotalnumberofparticlesinthetrapandthecouplingconstanthasalsobeendiscussed. 3. Weextendedthemaptoconnedquantumsystemsusingtheeffectivepotentialsandthecorrelationsofjelliumfromthepreviouschapters. 78

PAGE 79

4. WestudiedthemodicationsduetothequantumexchangeeffectstotheharmonicpotentialincaseoftheidealFermigas. 5. Welookedintothepossiblemechanismforshellformationinthequantumsys-tems.Inparticular,toconsiderthequantumeffectsofdiffractionweconsiderKelbgpotentialinaharmonictrap.SimilarlyfordegeneracyeffectsweconsidertheCoulombinteractionsamongtheparticlesandanexternalpotentialmodiedfromtheharmonicformbythediffractioneffects.Inbothcasesweobtainshellsatthelowtemperaturesanddensitieseveninthemeaneldlimit.Weexplainedthepossiblemechanismbehindtheshellformationduetothequantumeffects. 79

PAGE 80

CHAPTER6CONCLUSIONThereexistanumberofquantummany-bodytheoriestostudythecorrelatedquantumsystemsatzerotemperature.Eithertheirextensiontobothnitetemperaturesandstrongcouplingarenotstraightforwardortheyarecomputationallyintensive.PerrotandDharma-wardanacouldsuccessfullypredictsomeofthethermodynamicsoftheuniformelectrongasbyusingasimpleclassicalmapping.Howevertheirmodelisphenomenologicalandthefunctionalformsoftheireffectiveparameterswereguessedfromthephysicsofthesystems.Ourobjectivehasbeentoprovideasystematicandgeneralformalismthatwouldincorporatesomeoftheirideasbutwouldbeapplicabletoalargeclassofsystems.Inthisthesiswehaveconstructedanoveltechniquetodescribethequantumcorrelationsusingtheclassicalmany-bodytheory,inparticularusingtheclassicalDFT.Theprocedurehasbeendevisedtoworkforanyquantumsystemswithanygeneralinteractionandexternalpotentialoverawiderangeoftemperaturesanddensities.Wehaverstconstructedaclassicalrepresentativesystemthatdescribesthethermodynamicsofagivenquantumsystem.Itsthermodynamicsisdescribedbythreeparameters:aneffectiveinteractionpotential,localchemicalpotentialandtemperature.Theseparametersaredeterminedbyamapfromthethermodynamicsoftheclassicalrepresentativesystemtothatofthequantumsystem.TheyaredeterminedbyinvertingthemapusingclassicalDFTandthevirialequations.Thedependenceoftheclassicalparametersoneachothergiverisetosomepeculiarthermodynamicsfortheeffectiveclassicalsystem.TheidealFermigasandweakcouplinglimitsoftheuniformelectrongashavebeenworkedoutexplicitly.Theidealgasresultsarerecoveredbytakingthers!0limitoftheinteractingsystem.SincebothourandPDWmodelhavethesameidealgaslimits,theagreementbetweenthetwoisgoodatsmallrsvalues.Howeverthedensity 80

PAGE 81

dependenceof)]TJ /F4 7.97 Tf 6.77 -1.79 Td[(eofthePDWmodeleffectivepotentialatT=0is)]TJ /F2 11.955 Tf 10.1 0 Td[(/rs(a+bp rs+crs)andforourmodel)]TJ /F4 7.97 Tf 6.77 -1.8 Td[(e/r1=2sdependence.Hencetheresultsfromthetwomodelsdifferatlargedensitiesandlowtemperatures.TheeffectiveinteractionpotentialforourmodelisrequiredtohaveaCoulombtailfromtheperfectscreeningsumrule.TheKelbgformofthepotentialisrecoveredathightemperaturesandlowdensities.ThepaircorrelationfunctionshavebeencalculatedusingtheHNCequationsandcomparedwiththePIMCandPDWdata.Theagreementisgoodinthedensityrangers=1and10foralltemperatures.Thusthismodelwouldbeabletodescribewellallmetallicsystemsandwarmdensemattersystems.Manyofthequantumtheoriesfailtogivepositivepaircorrelationfunctionsattheserangeofdensities.Itappearsthatbyimposingthesumruleconstraintontheeffectivepotentialwecancapturetheessentialmanybodyeffectsofthejellium.Thepaircorrelationfunctions,calculatedusingtheHNCequationsforbothourmodelandPDWtheory,havegoodagreementeventhoughtheeffectivepotentialsaredifferent.Thismaybebecausethenon-linearequationsofHNCmayhavemultiplesolutionsforthesamepaircorrelationfunction.Thepressureofjelliumbecomesnegativeatmetallicdensitiesandlowtemperatures,theequivalenceofthequantumandclassicalpressuresbreaksdownatthatregime.Thiswouldimplyanegativeeffectivetemperatureandwemightneedtoreneitusingsomeotherequivalencecondition.Anotherapplicationofourmodelhasbeentotheconnedchargesinaharmonictrap.Wrightonetal.successfullypredictedtheshellformationforstrongcoupling.TheirdensityprolecalculatedusingtheHNCequationisingoodagreementwiththeclassicalMonteCarlodata.WehaveappliedtheeffectivepotentialsfromourapproachintheHNCequationstogeneratethedensityproleforthequantumsystems.Thisprocedurehasbeenusedtostudythequantumeffectsontheshellformation.Inthemeaneldlimitthereisnoshellformationintheclassicalsystem,butthereisforthequantumsystem.Welookedintothediffractionanddegeneracyeffectsseparately. 81

PAGE 82

Forthediffraction,weconsideredtheKelbgpotentialinaharmonictrap.Asecondmechanismforshellformationisfoundfordegeneracyeffectswithaneffectiveexternalpotential,whichistheharmonicpotentialmodiedbythequantumeffectsofdegeneracyandCoulombinteractions.Atlowtemperaturesanddensitiesbotheffectsproduceshellseveninthemeaneldlimit.TheradiusofthetrapfortheclassicalquantumsystemhasN1=3dependence,forNparticlesinthetrap.Forthequantumsystem,theradiusofthetrapatlowtemperatureshasNdependencewhileathightemperatureswerecovertheclassicalresult.Thisformalismcanbeimmediatelyappliedtospinpolarizedsystems,magneticsystemsandlatticesystemsasisshowninthenextchapter. 82

PAGE 83

CHAPTER7OTHERAPPLICATIONSOFTHEFORMALISMInthisChapterweconsidersomeadditionalapplicationsoftheformalismforfuturestudy. 7.1DensityProleOfCoulombSystemsInAHarmonicTrapInChapter 5 weseethatinthemeaneldlimitthequantumeffectsproduceshellstructurewhichismissingtheclassicalsystems.Thisdoesnotimplythatwewillalwayshavemoreshellsinthequantumsystemthanaclassicalsystemwiththesamepotential.InfactwefoundthatthePaulipotentialbroadenstheshellsandthustheexchangeeffectsmaydestroytheshellformation.InChapter 5 wehavetreatedthetwoquantumeffects,degeneracyanddiffractionseparately.Ifweputthemalltogetherwendthatthenalshellstructurehasastronginuencefromthediffractionthanthedegeneracythanthediffractioneffect.Ifweincreasethenumberofparticlesintheshell,inthemeaneldlimit,wedonotnecessarilygetmoreshells. 7.2SpinPolarizedUniformElectronGasWhenthereisamagneticeld,theHamiltonianacquiresaspindependentterm.Thespininclassicalsystemsistreatedasdifferentspeciesofparticles.Thuswehavedifferentinteractionpotentialsamongtheparticlesdependingonthespeciestheybelongto.Thusfor"and#spinsinthequantumsystemwehavefourcomponentsforallthethermodynamicalquantities"","#,#"and##.TheOrnstein-Zernikeequationsplitsintocomponentstoohij(r)=cij(r)+XknkZdr0hik(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j)ckj(r0) (7)wherenkisthedensityofthespinspeciesk.Theeffectiveinteractionpotentialsimilarlyhasfourcomponents[ 33 ]:(cc)ij(r)=(cc)(0)ij(r)+4ij(r) (7) 83

PAGE 84

whereij="","#,#",##.Forsamespinspeciesi=j,(cc)(0)ij(r)issingularattheoriginbecauseofthesingularityofthesamespinPaulipotential,otherwisetheyarenite.AsaresultwhenusedintheHNCequations,thepaircorrelationfunctioniszeroattheoriginasexpectedforaquantumsystemduetothePauliexclusionprinciple.The4ijistheaboveequationiscalculatedusingtheRPAjustlikethediscussioninChapter 4 .PDWassumedaspinindependentformfor4ij.FromtheseresultsthemagneticsusceptibilitycanbecalculatedasshowninSection 7.3 fortheidealFermigas. 7.3MagneticSusceptibilityAtFiniteTemperaturesOfTheIdealFermiGasLetthedensitiesofthetwospincomponents,1and2withspinsSi=S(S=1 2),beni=n 2(1), (7)wherenistheaveragedensityofthesystem.TheHNCequationforthedensitybecomesln(ni3)=)]TJ /F3 11.955 Tf 11.96 0 Td[(BSi+XjZdr0njcji(r0) (7)=)]TJ /F6 11.955 Tf 11.96 0 Td[(BSi+Xjnjcji(k=0) (7)hij(r)=cij(r)+XknkZdr0cik(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0)hkj(r0) (7) (7) 84

PAGE 85

h12(r)=h21(r)=0h11(r)=h22(r))c12(r)=c21(r)=0cii(r)=hii(r) 1+nihii(r), (7)Subtractionofdensityofonecomponentfromanother:lnn2 n1=B+1 1+n1h11(k=0))]TJ /F5 11.955 Tf 53.22 8.09 Td[(1 1+n2h11(k=0) (7)Themagnetizationisgivenby:M=S(n1)]TJ /F6 11.955 Tf 11.96 0 Td[(n2)=1 2n, (7)HencetheEquation( 7 )alongwiththeEquation( 7 )giveln(1)]TJ /F5 11.955 Tf 11.95 0 Td[(2M=n 1+2M=n)=B+1 1+n1h11(k=0))]TJ /F5 11.955 Tf 53.21 8.08 Td[(1 1+n2h11(k=0)=B)]TJ /F6 11.955 Tf 82.71 8.09 Td[(nh11(k=0) (1+1 2nh11(k=0))2)]TJ /F5 11.955 Tf 11.95 0 Td[((1 2nh11(k=0))2=B)]TJ /F5 11.955 Tf 76.16 8.08 Td[(2Mh11(k=0) (1+1 2nh11(k=0))2)]TJ /F5 11.955 Tf 11.95 0 Td[((Mh11(k=0))2, (7)whereh11(k=0)=)]TJ /F9 7.97 Tf 10.49 4.71 Td[(1 2Rdkn2(k) n2fromthediscussioninChapter 3 .Thisdiscussioncanbeeasilyextendedtointeractingsystems,wherewecanusedthespinpolarizedpaircorrelationfunctiondiscussedinSection 7.2 7.4CrystalLatticeSystemsThetheoriesthatexistforquantumsystemsinaperiodicpotential,ext(r+R)=ext(r)withlatticevectorsR,usuallyuseindependentelectronmodel.Theinteractions 85

PAGE 86

amongtheelectronsareelectronsareneglected.ThesolutionofthesingleparticleSchroedingerequationinperiodicpotentialisaBlockwavevector n,kwiththeproperty: n,k(r)=exp(ik.r)un,k(r)withun,k(r)=un,k(r+R)andkthecrystalmomentum.Theenergyeigenvaluesaregivenby:n(k)=n(k+K)whereKisthereciprocalvector.Thetightbindingmodelassumesthatlatticeismadeofweaklyoverlappingatomicsystems.Hencethesingleparticlewave-functionsinthelatticecanbewrittenasasumofsingleparticleatomicorbitals.Theeffectiveclassicalsystemstillhasthreeparametersweneedtodetermine.ConsideraquantumCoulombsysteminaperiodicpotentialext.Weassumethelatticesymmetryispreservedinthemap.Alsoforsimplicityweconsidertheeffectivepairpotentialtodependontherelativecoordinates.Hencecc(r)]TJ /F7 11.955 Tf 10.4 0 Td[(r0)=PR(cc)UEG(r)]TJ /F7 11.955 Tf 10.4 0 Td[(r0)where(cc)UEGistheeffectiveinteractionpotentialdeterminedinChapter 4 usingRPAtheory.TheHNCequationforthisnon-uniformsystemishighlycomplicated.Howeverevenifwereplacethenon-uniformdensitybyanuniformaveragedensityofthesystem,thenthepaircorrelationsdoesnothavetheperiodicityofthelattice:g(r)=XRg0(jr)]TJ /F7 11.955 Tf 11.96 0 Td[(Rj) (7)whereg0aresomeperiodicfunctionwiththeperiodicityofthelattice.ThisisbecausetheHNCequationisanon-linearequationinc.Thesameconclusioncanbedrawnfromthedensity. 7.52DElectronGasFormaterialswhereelectronsareconnedtotwodimensionslikegraphene,theanalysisof2Dsystemsbecomesimportant.Importantapplicationsaretheshellformationinthequantumdots.For2DsystemstheFouriertransformoftheCoulombpotentialisdifferentthanthe3Dsystems.Thesumrulesarealsodifferentandtheformoftheeffectivepotentialarecompletelydifferentthanthe3Dcase. 86

PAGE 87

APPENDIXAEXACTCOUPLEDEQUATIONSFORNC(R)ANDGC)]TJ /F7 11.955 Tf 5.48 -9.68 Td[(R,R0Thisappendixoutlinestheoriginoftheexactequations,Equations( 3 )-( 3 ),fortheclassicaldensityandpaircorrelationfunctionfromtheclassicaldensityfunctionaltheory(DFT).WegofromlocalchemicalpotentialrepresentationsofthermodynamicsthroughthegrandpotentialtothedensityrepresentationsthoughfreeenergybytheuseoftheLegenderetransform.Fc(cjnc)=c(cjc)+Zdrc(r)nc(r) (A)wherethefreeenergyisafunctionaloftheclassicaldensityandthegrandpotentialofc(r).ThedensityandlocalchemicalpotentialareconjugatetooneanotherFc nc(r)=c(r). (A)ThefreeenergyisnowdividedintoitsidealclassicalgascontributionF(0)c=)]TJ /F3 11.955 Tf 9.3 0 Td[()]TJ /F9 7.97 Tf 6.58 0 Td[(1cRdr[1)]TJ /F5 11.955 Tf 11.29 0 Td[(ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(n(r)3n(r),wherec=)]TJ /F5 11.955 Tf 5.48 -9.69 Td[(2~2c=m1=2,andtheremainderFc,extheinteractionpart,sothattheEquation( A )becomesanequationforthedensitycc(r)=ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(nc(r;c)3c)]TJ /F6 11.955 Tf 11.95 0 Td[(c(1)c(r;cjnc) (A)Herec(1)c(rjnc)istherstofafamilyoffunctions(directcorrelationfunctions)denedbyderivativesofthefreeenergyc(m)c(r1,..,r1;cjnc))]TJ /F3 11.955 Tf 21.92 0 Td[(mFc nc(r1)..nc(rm) (A)Equation( A )relatesthedensitync(r)toagivenexternalpotential(recallc(r)=c)]TJ /F3 11.955 Tf 12.63 0 Td[(c,ext,(r)).Nowaninterestingcaseiswhenoneoftheparticlesinthesystemistreatedasanimpurityatsomepointr0.Thentheinteractionpotentialc(r)becomestheexternalpotentialfortheotherparticles.Thusthetotalexternalpotentialisc,ext+candthedensityoftheparticlesinthenewexternalpotentialisrelatedtothepaircorrelations 87

PAGE 88

anddensityoftheoriginalsystembync(r,r0)=nc(r)gc(r,r0). (A)TheequationcorrespondingtoEquation( A )forthisnewexternalpotentialisln)]TJ /F6 11.955 Tf 5.48 -9.68 Td[(nc(r)gc(r,r0)3c=cc(r))]TJ /F3 11.955 Tf 11.96 0 Td[(cc(r,r0)+c(1)c(r;cjncgc). (A)Finally,subtractingEquation( A )fromEquation( A )givesthedesiredequationforgc(r,r0)ln)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(gc(r,r0)3c=)]TJ /F3 11.955 Tf 9.3 0 Td[(cc(r,r0)+c(1)c(r;cjncgc))]TJ /F6 11.955 Tf 11.96 0 Td[(c(1)c(r;cjnc). (A)Thenotationusedimpliesthatthefunctionalc(1)c(r;cj)inbothEquations( A )and( A )arethesame.Thisfollowsfromdensityfunctionaltheorywhereitisdemonstratedthatthefreeenergyisauniversalfunctionalofthedensity,thesameforallexternalpotentials.Equations( 3 )and( 3 )nowfollowdirectlyfromEquations( A )and( A )andtheidentityc(1)c(r;cjX)=c(1)c(r;cjY)+Z10d@c(1)c(r;cjX+(1)]TJ /F3 11.955 Tf 11.96 0 Td[()Y)=c(1)c(r;cjY)+Z10dZdr0c(1)c(r;cjX+(1)]TJ /F3 11.955 Tf 11.95 0 Td[()Y) nc(r0)(X(r0))]TJ /F6 11.955 Tf 11.95 0 Td[(Y(r0))=c(1)c(r;cjY)+Z10dZdr0c(2)c(r,r0;cjX+(1)]TJ /F3 11.955 Tf 11.95 0 Td[()Y)(X(r0))]TJ /F6 11.955 Tf 11.96 0 Td[(Y(r0)) (A)withappropriatechoicesforXandY.TheOrnstein-Zernickeequation,Equation( 3 ),isanidentityobtainedasfollows.Thesecondfunctionalderivativeofthegrandpotentialisrelatedtothepaircorrelationfunctionby 88

PAGE 89

2()]TJ /F3 11.955 Tf 9.29 0 Td[(cc) c(r)c(r0)=nc(r0) c(r)=cnc(r0)[(r)]TJ /F7 11.955 Tf 11.95 0 Td[(r0)+nc(r)(gc(r,r0))]TJ /F5 11.955 Tf 11.96 0 Td[(1)], (A)Similarly,thesecondderivativeofthefreeenergyis2Fc nc(r0)nc(r)=c(r) nc(r0)=)]TJ /F9 7.97 Tf 6.59 0 Td[(1cnc(r))]TJ /F9 7.97 Tf 6.59 0 Td[(1(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0))]TJ /F6 11.955 Tf 11.96 0 Td[(nc(r)c(2)c(r,r0jn). (A)ThenthechainruleZdr00nc(r) c(r00)c(r00) nc(r0)=(r)]TJ /F7 11.955 Tf 11.95 0 Td[(r0) (A)canbewrittenZdr00[(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r00)+nc(r)(gc(r,r00))]TJ /F5 11.955 Tf 11.96 0 Td[(1)](r00)]TJ /F7 11.955 Tf 9.3 0 Td[(r0))]TJ /F6 11.955 Tf 11.96 0 Td[(nc(r00)c(2)c(r00,r0jn)=(r)]TJ /F7 11.955 Tf 11.96 0 Td[(r0). (A)ThisgivestheOrnstein-Zernickeequation,Equation( 3 ). 89

PAGE 90

APPENDIXBINHOMOGENEOUSIDEALFERMIGASThethermodynamicandstructuralpropertiesofaninhomogeneousidealFermigasarestraightforwardtocalculateinarepresentationthatdiagonalizestheeffectivesingleparticleHamiltonianbp2 2m)]TJ /F3 11.955 Tf 11.96 0 Td[((br) k(r)=k k(r) (B)whereklabelsthecorrespondingquantumnumbers.ForFermionswithspins,thequantumnumbersarelabeledby=(s,k).TheHamiltonianinsecondquantizedformisthensimplyH=Xkaya, (B)whereay,aarethecreationandannihilationoperatorsforoccupationofthestatesf kg.Thenthepressureisfounddirectlyfromevaluationofthegrandpotentialcp(j)V=Xln)]TJ /F5 11.955 Tf 5.48 -9.69 Td[(1+e)]TJ /F14 7.97 Tf 6.59 0 Td[(k=Tr(1)ln1+e)]TJ /F14 7.97 Tf 6.59 0 Td[(bp2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((br)=(2s+1))]TJ /F9 7.97 Tf 6.59 0 Td[(1Zdrhrjln1+e)]TJ /F14 7.97 Tf 6.59 0 Td[(bp2 2m)]TJ /F14 7.97 Tf 6.58 0 Td[((br)jri (B)whereacoordinaterepresentationhasbeenusedinthelastexpression.Thelocaldensityandpaircorrelationfunctionareobtainedfromtheoneatwoparticledensitymatricies.Inthediagonalrepresentationtheseare(1)(1;2)=ay1a2=ay1a11,2 (B)(2)(1,2;3,4)=ay1ay2a4a3=(1,32,4)]TJ /F3 11.955 Tf 11.95 0 Td[(1,42,3)ay1a1ay2a2 (B)wherethemeanoccupationnumberisaya0=,0)]TJ /F6 11.955 Tf 5.48 -9.69 Td[(ek+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1. (B) 90

PAGE 91

Thecoordinaterepresentationsare(1)(r,1;r0,2)=Xk1,k2 1(r) 2(r0)ay1a2=1,2hrjlnebp2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((br)+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1jr0i1,2n(r,r0) (B)(2)(r1,1,r2,2;r01,3,r02,4)=Xk1..k6 1(r1) 2(r2) 3(r01) 4(r02)ay1ay2a4a3=1,32,4Xk1 1(r1) 1(r01)ay1a1Xk2 2(r2) 2(r02)ay2a2)]TJ /F3 11.955 Tf 11.96 0 Td[(1,42,3Xk1 1(r1) 1(r02)ay1a1Xk2 2(r2) 2(r01)ay2a2 (B)Thediagonalelementsare(1)(r,1;r,1)=n(r,r) (B)(2)(r1,1,r2,2;r1,1,r2,2)=(1)(r1,1;r1,1)(1)(r2,2;r2,2))]TJ /F3 11.955 Tf 11.96 0 Td[(1,2(1)(r1,1;r2,1)(1)(r2,2;r1,2) (B)Finally,thedensityandpaircorrelationfunctionareidentiedfromthesummationoverspinstatesn(r)=X1(1)(r,1;r,1)=(2s+1)n(r,r) (B)n(r1)n(r2)g(r1,r2)=X1,2(2)(r1,1,r2,2;r1,1,r2,2)=n(r1)n(r2))]TJ /F5 11.955 Tf 11.96 -.16 Td[((2s+1)n(r1,r2)n(r2,r1) (B) 91

PAGE 92

ThisgivestheresultsEquations( 3 )and( 3 ).Thelocaldensityandpaircorrelationfunctionaredeterminedfromthefunctionn(r,r0)obtainedfromthesingleparticledensitymatrixfromtheEquation( B ),n(r,r0)=hrjebp2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((br)+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1jr0i. (B)Inthelocaldensityapproximationofthetext,(br)!(R),whereR=(r+r0)=2,thisbecomesEquation( 3 )n(r,r0)=1 h3Zdpei ~p(r)]TJ /F9 7.97 Tf 6.59 0 Td[(r0)e(p2 2m)]TJ /F14 7.97 Tf 6.59 0 Td[((R))+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1. (B)Furthersimplicationispossibletogetn(r,r0)3=2 jr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0jZ10dxxz)]TJ /F9 7.97 Tf 6.59 0 Td[(1(R)ex2+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1sin)]TJ /F5 11.955 Tf 5.48 -9.68 Td[(2p xjr)]TJ /F7 11.955 Tf 11.96 0 Td[(r0j=, (B)withz(R)=e(R) (B)Accordinglythedensityandpressuresimplifyton(r)3=(2s+1)n(r,r)3=(2s+1)f3=2(z(r)), (B)p3=1 VZdr(2s+1)f5=2(z(r)), (B)withthedenitionsf3=2(z)=4 p Z10dxx2z)]TJ /F9 7.97 Tf 6.59 0 Td[(1ex2+1)]TJ /F9 7.97 Tf 6.58 0 Td[(1,f5=2(z)=8 3p Z10dxx4z)]TJ /F9 7.97 Tf 6.58 0 Td[(1ex2+1)]TJ /F9 7.97 Tf 6.59 0 Td[(1. (B) 92

PAGE 93

Attingfunctionforthedensityintermsofthelocalchemicalpotentialisgivenbyf3=2(e)=e)]TJ /F14 7.97 Tf 6.59 0 Td[(+1=2())]TJ /F9 7.97 Tf 6.59 0 Td[(11=2()=3r 2h(+2.13)+)]TJ /F2 11.955 Tf 5.48 -9.68 Td[(j)]TJ /F5 11.955 Tf 11.96 0 Td[(2.13j2.4+9.65=12i)]TJ /F9 7.97 Tf 6.59 0 Td[(3=2 (B) 93

PAGE 94

APPENDIXCQUANTUMPRESSUREHerewederivetheexpressionforpressureforaninhomogeneousFermigas.WeconsideraquantumsysteminavolumeVwiththeinteractionpotential(r)andexternalpotentialext.pV=lnTr(e)]TJ /F14 7.97 Tf 6.58 0 Td[(bH) (C)wherebH=bK+b+bextP=1 @VlnTr(e)]TJ /F14 7.97 Tf 6.58 0 Td[(cHV)=D@VcHVE (C)Tre)]TJ /F14 7.97 Tf 6.59 0 Td[(bH=ZidqiDq1,q2..,qNje)]TJ /F14 7.97 Tf 6.59 0 Td[(bHbSjq1..qNE (C)wherewehaveintroducedcompletesetofketsqisuchthatjqij=1.Hencethewavefunctionsareindependentofthevolumeofthesystem.Wecandenethehamiltonianintermsofdimensionlessmomentumandpositionoperatorsbp=V1=3bpandbq=bq=V1=3:bH=NXibpi2 2m+1 2Zdr1dr2(r1,r2)bg(r1,r2))]TJ /F10 11.955 Tf 11.96 16.27 Td[(Zdr(r)b(r)=1 V2=3NXibpi2 2m+1 2Zdq1dq2(q1V1=3,q2V1=3)bg(q1,q2))]TJ /F10 11.955 Tf 11.96 16.28 Td[(Zdq(qV1=3)b(q) (C) 94

PAGE 95

whereri=V1=3qi.e)]TJ /F14 7.97 Tf 6.59 0 Td[(bHV+V=e)]TJ /F14 7.97 Tf 6.59 0 Td[(cHV)]TJ /F5 11.955 Tf 11.95 0 Td[(VZ0d0e)]TJ /F9 7.97 Tf 6.58 0 Td[(()]TJ /F14 7.97 Tf 6.59 0 Td[(0)cHV@VcHVe)]TJ /F14 7.97 Tf 6.59 0 Td[(0cHV+O(2V) (C)Usingthiswecanprove:@VTre)]TJ /F14 7.97 Tf 6.58 0 Td[(cHV=D@VcHVE (C)@VcHV=)]TJ /F5 11.955 Tf 15.49 8.09 Td[(2 3VNXibpi2 2m+1 3VZdr1dr2r1@r1(r1,r2)bg(r1,r2))]TJ /F5 11.955 Tf 18.16 8.09 Td[(1 3VZdrr@r(r)b(r), (C)p=)]TJ /F5 11.955 Tf 10.5 8.09 Td[(2n 3*bpi2 2m++1 3VZdr1dr2r1@r1(r1,r2)n(r1)n(r2)g(r1,r2))]TJ /F5 11.955 Tf 18.15 8.09 Td[(1 3VZdrr@r(r)n(r), (C) 95

PAGE 96

APPENDIXDSTATICSTRUCTUREFACTORINRPATherearetwoequivalentrepresentationsoftheRPAstaticstructurefactorasgiveninreferences[ 1 ]:SRPA(k)=)]TJ /F12 11.955 Tf 10.51 8.09 Td[(~ nZd! 1 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!I(!,k) (D)where(!,k)=1 V(k)(1)]TJ /F4 7.97 Tf 6.59 0 Td[(V(k)(0)(!,k))andV(k)=4e2 k2.The(0)(!,k)isthenon-interactingresponse:(0)(!,k)=lim!0(2s+1) 4p 3Z1dxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2)1 )]TJ /F6 11.955 Tf 11.95 0 Td[(x)]TJ /F3 11.955 Tf 11.96 0 Td[(+i)]TJ /F5 11.955 Tf 46.93 8.09 Td[(1 )]TJ /F6 11.955 Tf 11.96 0 Td[(x++i (D)where=q 4p and=~! 4.AnotherrepresentationoftheRPAstaticstructurefactorfollowsfromconvertingthefrequencyintegralintheaboveequationtoasumofdiscretefrequencies[ 39 ].SRPA(x=k=kF)=3 2l=1Xl=(x,l) 1+(2)]TJ /F3 11.955 Tf 38.82 0 Td[(=x2)(x,l) (D)where(x,l)=1 2xZ10dyy exp[(y2=))]TJ /F3 11.955 Tf 11.95 0 Td[(]+1ln(2l)2+(x2+2xy)2 (2l)2+(x2)]TJ /F5 11.955 Tf 11.95 0 Td[(2xy)2 (D)Theconstantisdeterminedfromthenormalizationconditions.I1=2()=2 3)]TJ /F9 7.97 Tf 6.59 0 Td[(3=2withI()=R10dtt exp(t)]TJ /F14 7.97 Tf 6.59 0 Td[()+1.ToprovethattheRPAstructurefactorsatisestheexactscreeningsumrule,welookatSRPA(k)forsmallvaluesofk.TheintegrandinEquation( D )forsmallkvaluesbecomessharplypeakedaroundtwospecicfrequenciesp[ 1 ].Wewilltrytondoutthefunctionalformoftheintegrandaroundthosefrequenciesanddothefrequencyintegraltoprovethesumrule.Forsmallk,theintegrandissharplypeakedbecausethe 96

PAGE 97

denominatorofinEquation( D ),(,)=(1)]TJ /F6 11.955 Tf 12.12 0 Td[(V(k)(0)(!,k))becomesverysmall.Thesefrequenciesareactuallythezerosoftherealpartof(,p)=0.Thereasonisthatsincetheimaginarypartofisafastdecayingfunction,iftherealpartiszerothedenominatorbecomessmall.<(,p)=0)1)]TJ /F3 11.955 Tf 13.15 8.09 Td[(V(k)(2s+1) 3<(0)(k,p)=0=(,p)= (D)Forsmallkvaluessomesimplicationscanbemadetothefunctionalformof(0)lim!0(0)(,))]TJ /F5 11.955 Tf 31.63 8.09 Td[(1 2p Zdxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2)1 ()]TJ /F6 11.955 Tf 11.96 0 Td[(x)2+i<(0)(,))]TJ /F5 11.955 Tf 28.49 8.09 Td[(1 p PZdxln(1+ze)]TJ /F4 7.97 Tf 6.58 0 Td[(x2)1 ()]TJ /F6 11.955 Tf 11.96 0 Td[(x)2=(0)(,)p n (D) (D)Wecanexpand(,)aboutp(,)(,p)+@ @j=p()]TJ /F3 11.955 Tf 11.96 0 Td[(p)+O(()]TJ /F3 11.955 Tf 11.96 0 Td[(p)2)=i)]TJ /F3 11.955 Tf 13.15 8.09 Td[(V(k)(2s+1) 3@ @<(0)(k,p)()]TJ /F3 11.955 Tf 11.95 0 Td[(p)@ @<(0)(k,p)2 p PZdxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2) (p)]TJ /F6 11.955 Tf 11.96 0 Td[(x)32 pp PZdxln(1+ze)]TJ /F4 7.97 Tf 6.58 0 Td[(x2) (p)]TJ /F6 11.955 Tf 11.95 0 Td[(x)2+2 pp PZdxxln(1+ze)]TJ /F4 7.97 Tf 6.58 0 Td[(x2) (p)]TJ /F6 11.955 Tf 11.95 0 Td[(x)3=2<(,p) p+O(1 4p)V(k)(2s+1) 3@ @<(0)(k,p)=@ @j=p2 p(,)2 p(i+()]TJ /F3 11.955 Tf 11.96 0 Td[(p)) (D) (D) 97

PAGE 98

Forsmallkvaluesthemaincontributiontotheintegrandinequation( D )comesfromaroundthepeaksaroundpSRPA(k)=)]TJ /F5 11.955 Tf 24.19 8.09 Td[(4 nV(k)Z1d 1 1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4=(1 (,))=)]TJ /F5 11.955 Tf 24.19 8.08 Td[(4 nV(k)Zp+p)]TJ /F14 7.97 Tf 6.58 0 Td[(d 1 1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4=(1 (,)))]TJ /F5 11.955 Tf 24.19 8.09 Td[(4 nV(k)Zp)]TJ /F14 7.97 Tf 6.58 0 Td[()]TJ /F14 7.97 Tf 6.58 0 Td[(p+d 1 1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4=(1 (,)) (D)Letslookattheintegralaroundthepeakaroundp.S(k)=)]TJ /F5 11.955 Tf 24.19 8.08 Td[(4 nV(k)Zp+p)]TJ /F14 7.97 Tf 6.59 0 Td[(d 1 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4=1 (,)=2 nV(k)Zp+p)]TJ /F14 7.97 Tf 6.59 0 Td[(d 1 1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4p()]TJ /F3 11.955 Tf 11.96 0 Td[(p)=2 nV(k)p 1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4p (D) (D)Similarlywegetcontributionfromanotherpeakat)]TJ /F3 11.955 Tf 9.3 0 Td[(pbyreplacingp!)]TJ /F3 11.955 Tf 26.94 0 Td[(pandaddingthetwoweget:S(k).around.peaks=2 nV(k)p 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F9 7.97 Tf 6.58 0 Td[(4p)]TJ /F5 11.955 Tf 30.22 8.09 Td[(2 nV(k)p 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e4p=1 nV(k)2pcoth(2p) (D)Theexactscreeningsumrule:nZdrdr0S(rjr0) jrj=~p 2coth(~p 2)V(k)nS(k)=2pcoth(2p) (D)wherethedenitionofdimensionlessfrequency:p=~!p=(4)hasbeenusedabove.Toproveathightemperaturet>>1thestructurefactorgoestotheDebyelimit,wedene0= 2p tandthentakelimit0!0for(0).Wechangethemomentumscaling 98

PAGE 99

from=k 4p tok=krsandredenethedimensionlessfrequencyas=~! 4kin(0)(0)(,)=)]TJ /F5 11.955 Tf 22.38 8.09 Td[(1 4p Zdxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2)1 )]TJ /F5 11.955 Tf 11.96 0 Td[((x)]TJ /F3 11.955 Tf 11.95 0 Td[()+i)]TJ /F5 11.955 Tf 51.82 8.09 Td[(1 )]TJ /F5 11.955 Tf 11.95 0 Td[((x+)+i(0)(k0,0=0)=)]TJ /F5 11.955 Tf 31.01 8.09 Td[(1 4p k0Zdxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2)1 =0)]TJ /F5 11.955 Tf 11.95 0 Td[((x)]TJ /F6 11.955 Tf 11.95 0 Td[(k0)+i)]TJ /F5 11.955 Tf 69.56 8.08 Td[(1 =0)]TJ /F5 11.955 Tf 11.96 0 Td[((x+k0)+i (D)Thesusceptibilitycanbeexpressedintermsofthedimensionlesssusceptibilityasshownbelow(0)(k,!)=(2s+1) 3(0)(k0,=0) (D)Inthehightemperaturelimitz<<1,hencethedimensionlesssusceptibilityinEquation( D )canbewrittenaslim0!0(0)(k0,=0)=)]TJ /F5 11.955 Tf 19.01 8.09 Td[(1 2p Zdxze)]TJ /F4 7.97 Tf 6.58 0 Td[(x21 (=0)]TJ /F6 11.955 Tf 11.96 0 Td[(x)2+i=z p Zdxxe)]TJ /F4 7.97 Tf 6.59 0 Td[(x21 =0)]TJ /F6 11.955 Tf 11.95 0 Td[(x+i=z p PZdxxe)]TJ /F4 7.97 Tf 6.59 0 Td[(x21 =0)]TJ /F6 11.955 Tf 11.96 0 Td[(x)]TJ /F6 11.955 Tf 11.95 0 Td[(izp =0e)]TJ /F9 7.97 Tf 6.58 0 Td[((=0)2=)]TJ /F6 11.955 Tf 9.29 0 Td[(zG(=0))]TJ /F6 11.955 Tf 11.95 0 Td[(izp =0e)]TJ /F9 7.97 Tf 6.58 0 Td[((=0)2 (D)TheRPAstructurefactor( D )inthislimitbecomesSRPA(k)=)]TJ /F5 11.955 Tf 10.49 8.08 Td[(4k3 3)]TJ /F10 11.955 Tf 11.32 24.47 Td[(Zd1 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4k=(k0,=0)=)]TJ /F5 11.955 Tf 10.49 8.09 Td[(4k30 3)]TJ /F10 11.955 Tf 17.51 24.47 Td[(Zd1 1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F9 7.97 Tf 6.58 0 Td[(4k0=(k0,))]TJ /F6 11.955 Tf 24.89 8.08 Td[(k2 3)]TJ /F10 11.955 Tf 9.96 24.48 Td[(Zd1 =(k0,)=)]TJ /F6 11.955 Tf 12.27 8.09 Td[(k2 3)]TJ /F10 11.955 Tf 9.96 24.48 Td[(Zd1 = 1 1+3)]TJ ET q .478 w 256.88 -546.71 m 269.85 -546.71 l S Q BT /F4 7.97 Tf 256.88 -554.43 Td[(k2G()+i3)]TJ ET q .478 w 316.83 -546.71 m 329.8 -546.71 l S Q BT /F4 7.97 Tf 316.83 -554.43 Td[(k2p e)]TJ /F14 7.97 Tf 6.58 0 Td[(2!=)]TJ /F6 11.955 Tf 12.27 8.09 Td[(k2 3)]TJ /F2 11.955 Tf 7.97 8.2 Td[(< 1 1+3)]TJ ET q .478 w 218.15 -586.57 m 231.12 -586.57 l S Q BT /F4 7.97 Tf 218.15 -594.28 Td[(k2G(0))]TJ /F5 11.955 Tf 11.95 0 Td[(1!=k2 k2+3)]TJ ET BT /F1 11.955 Tf 431.47 -618.02 Td[((D) 99

PAGE 100

wheretheKramer-Kronigequations[ 51 ],zn3 2s+1andG(0)=1havebeenusedinthelastequation.HereweshowthatatlargektheRPAstructurefactorbehaveslikek)]TJ /F9 7.97 Tf 6.59 0 Td[(4[ 57 ].AtthislimitV(k)issmall,andwecanexpandinpowersofV(k):SRPA(k)=)]TJ /F12 11.955 Tf 10.5 8.09 Td[(~ nZ1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!)V(k)Im1 1)]TJ /F6 11.955 Tf 11.95 0 Td[(V(k)(2s+1)(0)(k,!)=)]TJ /F12 11.955 Tf 10.5 8.08 Td[(~ nZ1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!)Im(2s+1)(0)(k,!)+V(k)(2s+1)2(0)2(k,!)+..1)]TJ /F12 11.955 Tf 13.16 8.09 Td[(~ nV(k)(2s+1)2Z1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.59 0 Td[(~!)=((0)(k,!))21)]TJ /F12 11.955 Tf 13.16 8.09 Td[(~ nV(k)(2s+1)24 ~Z1d (1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4)=((0)(,))21)]TJ /F5 11.955 Tf 13.25 8.08 Td[(1 nV(k)(2s+1)21 Z1d =((0)(,))21)]TJ /F5 11.955 Tf 13.25 8.09 Td[(1 nV(k)(2s+1)21 <((0)(,0))2=1)]TJ /F5 11.955 Tf 13.25 8.08 Td[(1 nV(k)(2s+1)21 (<(0)(,0))2Re(,0,z)=)]TJ /F5 11.955 Tf 22.38 8.09 Td[(1 2p g()=)]TJ /F5 11.955 Tf 22.38 8.09 Td[(1 2p P(Z1dxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2) )]TJ /F6 11.955 Tf 11.96 0 Td[(x=1 2p P(Z1dxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2) x)]TJ /F5 11.955 Tf 21.67 8.09 Td[(1 2p P(Z1dxln(1+ze)]TJ /F4 7.97 Tf 6.59 0 Td[(x2) )]TJ /F6 11.955 Tf 11.96 0 Td[(xf3=2(z) 4SRPA()1)]TJ /F5 11.955 Tf 13.15 10.21 Td[(\(2s+1)2f23=2(z) 43n31 4 (D)AgaintheKramers-Kronigrelationshasbeenused. 100

PAGE 101

APPENDIXEPROPERTIESOFEFFECTIVEINTERACTIONPOTENTIALFORRPASYSTEMSTheintegralrepresentationoftheRPAstructurefactorwillbeusedinthissectiontoprovethatatverylowdensitiesandhightemperatures,inEquation( 4 )wouldlooklikeaKelbgpotential.Inthislimitthefugacity,z,isverysmall,z<<1.Thuswecanexpandtheresponsefunction,Equation( D ),inpowersofz.SRPA(k)=)]TJ /F12 11.955 Tf 10.5 8.09 Td[(~ nZ1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!)V(k)Im1 1)]TJ /F6 11.955 Tf 11.96 0 Td[(V(k)(2s+1)(0)(k,!)=)]TJ /F12 11.955 Tf 10.5 8.09 Td[(~ nZ1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!)Im(2s+1)(0)(k,!)+V(k)(2s+1)2(0)2(k,!)+..=S(0)(k))]TJ /F12 11.955 Tf 13.16 8.08 Td[(~ nV(k)(2s+1)2Z1d! (1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F14 7.97 Tf 6.59 0 Td[(~!)Im((0)(k,!))2=S(0)(k))]TJ /F5 11.955 Tf 13.15 8.09 Td[(2~ nV(k)(2s+1)2Z1d! (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F14 7.97 Tf 6.58 0 Td[(~!)Im(0)(k,!)Re(0)(k,!)=S(0)(k)+V(k)f(k) (E)wheref(k)=)]TJ /F9 7.97 Tf 10.98 4.7 Td[(2~ n(2s+1)2R1d! (1)]TJ /F4 7.97 Tf 6.59 0 Td[(e)]TJ /F20 5.978 Tf 5.76 0 Td[(~!)Im(0)(k,!)Re(0)(k,!).Theexpressionforfcanbesimplied:f()=)]TJ /F5 11.955 Tf 11 8.08 Td[(2~ n(2s+1)24 ~2 6Z1d (1)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(4)Im(0)(,)Re(0)(,)=2~ n(2s+1)24 ~2 6Z1d (1)]TJ /F6 11.955 Tf 11.95 0 Td[(e)]TJ /F9 7.97 Tf 6.58 0 Td[(4)1 4p z(e)]TJ /F9 7.97 Tf 6.59 0 Td[((+)2)]TJ /F6 11.955 Tf 11.96 0 Td[(e)]TJ /F9 7.97 Tf 6.59 0 Td[(()]TJ /F14 7.97 Tf 6.59 0 Td[()2) (E)p 4z(g(+))]TJ /F6 11.955 Tf 11.96 0 Td[(g()]TJ /F3 11.955 Tf 11.95 0 Td[())=n 2(2s+1)2Z1d e)]TJ /F9 7.97 Tf 6.59 0 Td[(()]TJ /F14 7.97 Tf 6.59 0 Td[()2(g(+))]TJ /F6 11.955 Tf 11.96 0 Td[(g()]TJ /F3 11.955 Tf 11.95 0 Td[()) (E) 101

PAGE 102

e()=SRPA() SRPA())]TJ /F5 11.955 Tf 11.96 0 Td[(1)]TJ /F6 11.955 Tf 23.6 8.08 Td[(S(0)() S(0)())]TJ /F5 11.955 Tf 11.96 0 Td[(1=S(0)()+V()f())]TJ /F5 11.955 Tf 11.95 0 Td[(1 S(0)()+V()f())]TJ /F6 11.955 Tf 23.59 8.09 Td[(S(0)() S(0)())]TJ /F5 11.955 Tf 11.95 0 Td[(1V()f() S(0)()=V()f() (S(0))2() (E)sinceS(0)()=1+n3h()1+O(z).Hence:e()=V()f() (E)f()Z1de)]TJ /F14 7.97 Tf 6.59 0 Td[(2(g(+2))]TJ /F6 11.955 Tf 11.96 0 Td[(g())=Z1d e)]TJ /F14 7.97 Tf 6.59 0 Td[(2ReZ1e)]TJ /F4 7.97 Tf 6.59 0 Td[(x21 +2)]TJ /F6 11.955 Tf 11.95 0 Td[(x+i)]TJ /F5 11.955 Tf 36.26 8.09 Td[(1 )]TJ /F6 11.955 Tf 11.96 0 Td[(x+i=Z1de)]TJ /F14 7.97 Tf 6.59 0 Td[(2ReZ1e)]TJ /F9 7.97 Tf 6.59 0 Td[((x+)21 2)]TJ /F6 11.955 Tf 11.96 0 Td[(x+i)]TJ /F5 11.955 Tf 36.13 8.08 Td[(1 0)]TJ /F6 11.955 Tf 11.96 0 Td[(x+i=Z1dxe)]TJ /F4 7.97 Tf 6.59 0 Td[(x2=2ReZ1de)]TJ /F9 7.97 Tf 6.58 0 Td[((x=2+)21 2)]TJ /F6 11.955 Tf 11.95 0 Td[(x+i)]TJ /F5 11.955 Tf 36.14 8.09 Td[(1 0)]TJ /F6 11.955 Tf 11.95 0 Td[(x+i=Z1dxe)]TJ /F4 7.97 Tf 6.59 0 Td[(x2=2p p 2Re1 2)]TJ /F6 11.955 Tf 11.96 0 Td[(x+i)]TJ /F5 11.955 Tf 36.13 8.09 Td[(1 0)]TJ /F6 11.955 Tf 11.96 0 Td[(x+i=r 2g(p 2))]TJ /F6 11.955 Tf 11.96 0 Td[(g(0)=r 2g(p 2) (E)HencewehavefromEquation( E ):e()=V()f()g(p 2) 3 (E)whichcanbeshowntobetheFouriertransformoftheKelbgpotential4K(x)=1 x(1)]TJ /F6 11.955 Tf 12.66 0 Td[(exp()]TJ /F6 11.955 Tf 9.3 0 Td[(x2=2K)+p x=K(1)]TJ /F6 11.955 Tf 12.66 0 Td[(erf(x=K))).Hencewehaveprovedthatathightemperaturesandlowdensities,behaveslikeaKelbgpotential. 102

PAGE 103

Inthissection,wewillshowthattheeffectiveinteractionpotentialhasaCoulombtailandhowitfollowsfromtheperfectscreeningsumrule.Wearegoingtouseanimportantfact:thelargedistancebehaviorofafunctionisgovernedbythesmallmomentumbehaviorofitsFouriertransform.FromEquation( 4 ):](k)=1 n1 SRPA(k))]TJ /F5 11.955 Tf 28.28 8.09 Td[(1 S(0)(k) (E)InthesmallklimitS(k)=~k2 2m!pcoth(~!p=2),where!pistheplasmafrequency.ButS(0)(k)goestoanitenumber.Thus1 SRPA(k)>>1 S(0)(k)forsmallkvalues.Hence:e(k)2m!p n~k2coth(~!p=2) (E)Writinge(k)=4r0)]TJ /F16 5.978 Tf 4.82 -1.4 Td[(e k2,wegetaswastobeprovedinEquation( 4 ):)]TJ /F4 7.97 Tf 6.78 -1.79 Td[(e=2 ~!pcoth(~!=2))]TJ -117.47 -32.96 Td[()-277(=q2 r0 (E) 103

PAGE 104

APPENDIXFIDEALFERMIGASINAHARMONICTRAPHerewederivetheLDAformEquation( 3 )ofthedensityprolefortheidealFermigasinaharmonictrapatzerotemperature.n(0)(x)r30=1 (2)3Zdk1 exp(q2a0(k)2 2r20+1 2q2 r0x2)=z+1=1 (2)3Zdk(k)2 2r2s+1 2rsx2)]TJ /F3 11.955 Tf 11.96 0 Td[(F=1 22Zdkk2(k)2 2r2s+1 2rsx2)]TJ /F3 11.955 Tf 11.95 0 Td[(F=p 2r3s 32(F)]TJ /F6 11.955 Tf 14.85 8.08 Td[(x2 2rs)3=4 (F) (F)TheparameterFisobtainedbyintegratingthedensityinEquation( F )togetthetotalnumberofparticlesinthetrap.f3=2()=4 3p 3=2n(0)(r)=2)]TJ /F9 7.97 Tf 6.58 0 Td[(3f3=2(exp((0)(r)))8 3p ((0)(r))3 3Zn(0)(r)dr=N)N=16 3p 2(m! ~)3ZF0(F=(m!2))]TJ /F6 11.955 Tf 11.96 0 Td[(r2)3=2r2dr)F=~!3N 1=3 (F) 104

PAGE 105

Theexactequationfordensityforanon-interactingFermisystemisgivenintermsofthesingleparticlewavefunctionsbyn(r)=hXi(qi)]TJ /F7 11.955 Tf 11.96 0 Td[(r)i=X,0h0j(bq)]TJ /F6 11.955 Tf 11.95 0 Td[(r)jiha+0ai=X,0Zdr0h0jr0i(r0)]TJ /F7 11.955 Tf 11.96 0 Td[(r)hr0jiha+ai,0=Xj (r)j2n (F) (F)where isthesingleparticlenon-interactingwavefunctionandnistheFermidistribu-tionwithenergy.AtT=0,thedensityequationbecomes:n(r)=Xklmr 23 2k+2l+3k!lr2le)]TJ /F9 7.97 Tf 6.58 0 Td[(2r2 (2k+2l+1)!!(L(l+1=2)k(2r2))2Y2lm(,), (F)where=m!2 2~.Usingtheforcebalanceconditionwegetanequality2r20=p rs.Henceintermsofdimensionlessdistancex=r=r0,thedensityequationbecomesn(r)=Xklm,k0l0m0s r3=2s s 2k+l+2k!rl=2sx2le)]TJ 6.59 5.41 Td[(p rsx2 (2k+2l+1)!!s 2k0+l0+2k0!rl0=2sx2l0e)]TJ 6.58 5.41 Td[(p rsx2 (2k0+2l0+1)!!L(l+1=2)k(p rsx2)L(l0+1=2)k0(p rsx2)Ylm(,)Yl0m0(,) (F)Iftheangularsymmetryisnotbroken,theangularintegralscanbeperformed:n(r)=Xklms r3=2s 2k+l+2k!rl=2sx2le)]TJ 6.59 5.42 Td[(p rsx2 (2k+2l+1)!!(L(l+1=2)k(p rsx2))2=Xkls r3=2s 2k+l+2k!rl=2sx2le)]TJ 6.59 5.41 Td[(p rsx2 (2k+2l+1)!!(2l+1)(L(l+1=2)k(p rsx2))2=Xnls r3=2s 2n=2+l=2+2(n=2)]TJ /F5 11.955 Tf 11.95 0 Td[(1=2)!rl=2sx2le)]TJ 6.58 5.42 Td[(p rsx2 (n+l+1)!!(2l+1)(L(l+1=2)n=2)]TJ /F9 7.97 Tf 6.59 0 Td[(1=2(p rsx2))2 (F) 105

PAGE 106

Intheaboveequationwereplacequantumnumberkbythequantumnumbernbytherelationship2k=n)]TJ /F6 11.955 Tf 12.81 0 Td[(l.Togureoutwhatvaluesof(n,l)tosumover,weconsiderthecaseofN=100particlesandtrytogureouthowmanyofthese(n,l)arelledup.DuetospindegeneracyweneedtoconsiderN=2=50particlesllingupthestates.Theconstraintsonlandmare:)]TJ /F6 11.955 Tf 9.3 0 Td[(mlmandl=0,2,..,n)]TJ /F5 11.955 Tf 12.63 0 Td[(2,nfornevenandl=1,3,..,n)]TJ /F5 11.955 Tf 12.73 0 Td[(2,n.Thedegeneracycalculationgives:n=0,1,..4arecompletelylledandtherestofthe15electronsllupthefollowingquantumnumbers(k=(n)]TJ /F6 11.955 Tf 11.95 0 Td[(l)=2,l)!(1,3),(2,1)inthen=5level.TheFermienergyinthiscaseistheenergyofthehighestelectron:F=~!(n+3=2)=~!(5+3=2)=~!6.5.ThisishigherthanpredictedbytheLDAinEquation( F ).Thenumberofparticlestheshellwithquantumnumberncanholdis(n+1)(n+2) 2.Henceifshellstilln0arecompletelylled,thenthetotalnumberofparticlesinthesystemisPn0n=0(n+1)(n+2) 2=1 6(n0+1)(n0+2)(n0+3).IfwehaveNparticlesinthesystem,thenforlargenumberofparticles:n0(6N)1=3.HencetheFermienergyforlargenon-interactingsystemisF~!(6N)1=3.LDAinEquation( F ):F=(3N )1=3~!underestimatestheFermienergy. 106

PAGE 107

REFERENCES [1] G.GiulianiandG.Vignale,QuantumTheoryoftheElectronLiquid,(CambridgeU.Press,Cambridge,2005). [2] L.D.Landau,TheoryoftheFermiliquid,SovietPhysicsJETP3,920925,(1957). [3] L.D.Landau,OnthetheoryoftheFermiliquid,Sov.Phys.JETP8,7074,(1959). [4] P.HohenbergandW.Kohn,Phys.Rev.136,B864(1964) [5] W.Kohn,L.J.Sham,Phys.Rev.140,A1133(1965). [6] N.D.Mermin,Phys.Rev.137,A1441(1965). [7] C.JonesandM.Murillo,HighEnergyDensityPhysics3,379(2007). [8] F.Grazianietal,HighEnergyDensityPhysics8,105(2012). [9] R.Rozner,D.Hammer,andT.RothmanBasicResearchNeedsinHighEn-ergyDensityLaboratoryPhysics,(U.S.Dept.ofEnergy,2010),Chapter6andreferencestherein. [10] R.P.Drake,HighEnergyDensityPhysics,Phys.Today63,28-33(2010)andrefs.therein. [11] E.Brown,B.Clark,J.DuBois,D.Ceperley,PathIntegralMonteCarloSimulationoftheWarm-DenseHomogeneousElectronGas,condmatarXiv:1211.6130,2012. [12] RichardW.Lee,presentationPlasmaandwarmdensematterstudies,LCLSStanford. [13] K.Singwi,A.Sjolander,M.Tosi,andR.Land,Phys.Rev.B1,1044(1970). [14] A.Georges,G.Kotliar,W.KrauthandM.Rozenberg,Rev.Mod.Phys.68,13(1996). [15] A.GeorgesandG.Kotliar,Phys.Rev.B45,6479(1992). [16] W.MetznerandD.VollhardtPhys.Rev.Lett.62,324(1989). [17] G.Kotliar,S.Y.Savrasov,K.Haule,V.S.Oudovenko,O.Parcollet,andC.A.Marianetti,Rev.Mod.Phys.78,865(2006). [18] P.W.Anderson,Phys.Rev.124,41(1961). [19] G.E.Uhlenbeck,L.Gropper,Phys.Rev.41(1932)79. [20] G.Kelbg,Ann.Phys.12,219(1963). [21] C.Deutsch,Phys.Lett.A60,317(1977). 107

PAGE 108

[22] H.Minoo,M.Gombert,andC.Deutsch,Phys.Rev.A23,924(1981). [23] T.DunnandA.Broyles,Phys.Rev.157,1(1967). [24] F.Lado,J.Chem.Phys.47,5369(1967). [25] M.A.Pokrant,J.Chem.Phys.62(1975)4959. [26] T.Morita,Prog.Theor.Phys.20,920(1958);23,829(1960). [27] ForadditionalearlyreferencesseeW.Ebeling,A.Filinov,M.Bonitz,V.Filinov,andT.Pohl,J.Phys.A39,4309(2006). [28] A.Filinov,V.Golubnychiy,M.Bonitz,W.Ebeling,andJ.Dufty,Phys.Rev.E70,046411(2004). [29] M.W.C.Dharma-wardana,Int.J.Quant.Chem.112,53(2012). [30] J.Dufty,S.Dutta,M.Bonitz,andA.Filinov,Int.J.Quant.Chem.109,3082(2009). [31] J.W.DuftyandS.Dutta,Contrib.PlasmaPhys.52,100(2012). [32] J-PHansenandI.MacDonald,TheoryofSimpleLiquids,(AcademicPress,SanDiego,CA,1990). [33] M.W.C.Dharma-wardanaandF.Perrot,Phys.Rev.Lett.84,959(2000). [34] F.PerrotandM.W.C.Dharma-wardana,Phys.Rev.B62,16536(2000). [35] J.DuftyandS.Dutta,ClassicalRepresentationofaQuantumSystematEquilib-rium:Theory,(toappearinPhys.Rev.E),arXiv:1211.5177. [36] J.M.Luttinger,Anexactlysolublemodelofamany-fermionsystem,JournalofMathematicalPhysics4,11541162,(1963). [37] R.Kubo,J.Phys.Soc,Japan,12,570(1957). [38] H.B.CallenandT.A.Welton,Phys.Rev.83,34(1951). [39] S.TanakaandS.Ichimaru,J.Phys.Soc.Japan55,2278(1986). [40] K.S.Singwi,M.P.Tosi,R.H.Land,andA.Sjlander,Phys.Rev.176,589(1968). [41] P.VashistaandK.S.Singwi,Phys.Rev.B6,875(1972). [42] J.Hubbard,ProceedingsoftheRoyalSocietyofLondon276(1365):238257,(1963). [43] DensityFunctionalTheory:AnAdvancedCourse,E.EngelandR.M.Dreizler(Springer,Heidelberg,2011). 108

PAGE 109

[44] J.Lutsko,RecentDevelopmentsinClassicalDensityFunctionalTheory,Adv.Chem.Phys.144,S.Rice,ed.(J.Wiley,Hoboken,NJ,2010). [45] M.BausandJ.P.Hansen,Phys.Rep.59,1(1980). [46] J.Wrighton,J.W.Dufty,H.Kahlert,andM.Bonitz,Phys.Rev.E80,066405(2009). [47] Huang,Kerson(1990),StatisticalMechanics,Wiley,JohnSons,ISBN0-471-81518-7,OCLC15017884. [48] S.DuttaandJ.Dufty,ClassicalRepresentationofaQuantumSystematEquilib-rium:Applications,Phys.Rev.E(toappear),arXiv:1211.5185. [49] J.Wrighton,H.Kahlert,T.Ott,P.Ludwig,H.Thomsen,J.Dufty,andM.Bonitz,Contrib.PlasmaPhys.52,45(2012). [50] D.BrydgesandPh.Martin,J.Stat.Phys.96,1163(1999). [51] D.PinesandPh.Nozieres,TheTheoryofQuantumLiquids,(Benjamin,NY,1966). [52] D.Kremp,M.Schlanges,W.Kraeft,QuantumStatisticsofNonidealPlasmas,(Springer-Verlag,Berlin,2005). [53] F.PerrotandM.W.C.Dharma-wardana,Phys.Rev.A30,2169(1984). [54] P.Attard,J.Chem.Phys.91,3072(1989),equation(18). [55] J.W.DuftyandS.Trickey,Phys.Rev.B84,125118(2011). [56] G.OrtizandP.Ballone,Phys.Rev.B50,1391(1994). [57] J.Kimball,Phys.Rev.A7,1648(1973);A.Rajagopal,J.Kimball,andM.Baner-jee,Phys.Rev.B18,2339(1978). [58] K-CNg,J.Chem.Phys.61,2680(1974). [59] S.DuttaandJ.Dufty,JelliumatWarm,DenseMatterConditions,arXiv:1302.4507. [60] C.Henning,H.Baumgartner,A.Piel,P.Ludwig,V.Golubnychiy,M.Bonitz,andD.Block,Phys.Rev.E74,056403(2006). [61] C.Henning,P.Ludwig,A.Filinov,A.Piel,andM.Bonitz,Phys.Rev.E76,036404(2007). [62] H.Totsuji,JournalofPhysicsA:MathematicalandGeneral,vol.39,45654569,(2006). [63] K.TsurutaandS.Ichimaru,PhysicalReviewA,48,1339,(1993). 109

PAGE 110

[64] R.W.HasseandV.V.Avilov,PhysicalReviewA,44,4506,(1991). [65] W.D.KraeftandM.Bonitz:ThermodynamicsofacorrelatedconnedplasmaII.Mesoscopicsystem.JournalofPhysics:ConferenceSeries(2006),vol.35:pp.94109 110

PAGE 111

BIOGRAPHICALSKETCH SandipanDuttawasborninIndia.HehadhisnalexamatUniversityofFloridaonApril15,2013. 111