<%BANNER%>

Foraging Ecology of Breeding Snail Kites (Rostrhamus sociabilis plumbeus) on Lake Tohopekaliga, Florida, USA

Permanent Link: http://ufdc.ufl.edu/UFE0045132/00001

Material Information

Title: Foraging Ecology of Breeding Snail Kites (Rostrhamus sociabilis plumbeus) on Lake Tohopekaliga, Florida, USA
Physical Description: 1 online resource (91 p.)
Language: english
Creator: Pias, Kyle E
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: availability -- behavior -- florida -- foraging -- habitat -- insularum -- kite -- paludosa -- pomacea -- prey -- rostrhamus -- snail -- sociabilis -- tohopekaliga -- use
Wildlife Ecology and Conservation -- Dissertations, Academic -- UF
Genre: Wildlife Ecology and Conservation thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In the Unites States the snail kite (Rostrhamus sociabilis plumbeus)is a federally endangered species whose population in Florida has undergone recent declines. The remaining population is heavily dependent upon the Kissimmee Chain of Lakes in central-Florida, particularly Lake Tohopekaliga (Lake Toho). This study will focus on how breeding snail kites use the lakeshore of habitat Lake Toho for foraging. I studied foraging behavior of breeding snail kites on Lake Toho by conducting observations on radio-tagged snail kites. I calculated 90% kernel home ranges using a kernel density estimator and quantified foraging habitat within the home ranges. Snail kite foraging behaviors were compared between foraging substrate communities to make inferences regarding the availability of snails in each community type. The patterns of foraging substrate use were also examined in regards to lake levels and time. My results indicate that foraging substrates that occur off the main body of Lake Toho may have higher snail availabilities, but that snail kite nests built in off-lake areas may be more vulnerable to predation. Therefore, in spite of relatively lower snail availabilities, foraging substrates that occur on Lake Toho may be more valuable to snail kites than off-lake areas. The availability of snails in on-lake foraging substrates is likely driven in part by water levels, highlighting the role of water management in maintaining foraging habitat for breeding snail kites.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Kyle E Pias.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Kitchens, Wiley M.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0045132:00001

Permanent Link: http://ufdc.ufl.edu/UFE0045132/00001

Material Information

Title: Foraging Ecology of Breeding Snail Kites (Rostrhamus sociabilis plumbeus) on Lake Tohopekaliga, Florida, USA
Physical Description: 1 online resource (91 p.)
Language: english
Creator: Pias, Kyle E
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: availability -- behavior -- florida -- foraging -- habitat -- insularum -- kite -- paludosa -- pomacea -- prey -- rostrhamus -- snail -- sociabilis -- tohopekaliga -- use
Wildlife Ecology and Conservation -- Dissertations, Academic -- UF
Genre: Wildlife Ecology and Conservation thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In the Unites States the snail kite (Rostrhamus sociabilis plumbeus)is a federally endangered species whose population in Florida has undergone recent declines. The remaining population is heavily dependent upon the Kissimmee Chain of Lakes in central-Florida, particularly Lake Tohopekaliga (Lake Toho). This study will focus on how breeding snail kites use the lakeshore of habitat Lake Toho for foraging. I studied foraging behavior of breeding snail kites on Lake Toho by conducting observations on radio-tagged snail kites. I calculated 90% kernel home ranges using a kernel density estimator and quantified foraging habitat within the home ranges. Snail kite foraging behaviors were compared between foraging substrate communities to make inferences regarding the availability of snails in each community type. The patterns of foraging substrate use were also examined in regards to lake levels and time. My results indicate that foraging substrates that occur off the main body of Lake Toho may have higher snail availabilities, but that snail kite nests built in off-lake areas may be more vulnerable to predation. Therefore, in spite of relatively lower snail availabilities, foraging substrates that occur on Lake Toho may be more valuable to snail kites than off-lake areas. The availability of snails in on-lake foraging substrates is likely driven in part by water levels, highlighting the role of water management in maintaining foraging habitat for breeding snail kites.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Kyle E Pias.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Kitchens, Wiley M.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0045132:00001


This item has the following downloads:


Full Text

PAGE 1

1 FORAGING ECOLOGY OF BREEDING SNAIL KITES ( Rostrhamus sociabilis plumbeus ) ON LAKE TOHOPEKALIGA, FLORIDA, USA By KYLE E. PIAS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2012

PAGE 2

2 2012 Kyle E. Pias

PAGE 3

3 To the kites

PAGE 4

4 ACKNOWLEDGMENTS I would first like to thank the field technicians who participated in this project; they are far too often underappreciated, yet their role could not be more vital. Cari Sebright, Shannon Behmke, Megan Ford, Nick Belfry, Carley Jennings, Jeremy Wood, and Emily Butler all spent untold and underpaid hours on airboats watching snail kites, and the project could n ot have been completed without them. I cannot adequately express my gratitude to my advisor, Wiley Kitchens. He has been a constant supporting force throughout this project. His wisdom and guidance have been invaluable as has his confidence in my abilities to move forward on my own. I have grown immensely as an ecologist because of my time with him and I cannot thank him enough. My committee members Joan Morrison and Rob Fletcher were incredible tarted me down the path of conservation biology when I was a freshman at Trinity College and she once again lent me her knowledge and experience with this project. Rob Fletcher was an amazing source of information and guidance and I would have floundered t hrough much of the analyses without his help. I need to thank the agencies and agency personnel who provided assistance and funding for this work; the United States Fish and Wildlife Service and the Florida Fish and Wildlife Conservation Commission. Paul S ouza, Sandra Sneckenberger and Zach Welch facilitated the partnerships with their respective agencies which both contributed generously to the project. I thank all of my friends and colleagues at the Florida Coop. Brian Reichert, Chris Cattau, Christa Zw eig, Zach Welch, Melissa Desa, Lara Drizd, Ellen Robertson,

PAGE 5

5 Rebecca Wilcox, and Natalie Williams all helped towards the completion of this project. A special thank you is owed to Brian Reichert who initially hired me to the snail kite project in 2008 as a field technician and opened the world of airboats and snail kites to me. Jean Olbert has been an integral part of my life, both professionally and personally, since I started on the project. She has helped me with every aspect of my work and improved me dr amatically as a scientist and as a person. Her intelligence, patience, kindness, pragmatism, and skill in the field are unparalleled and I would not have been able to finish this without her. Finally I would like to thank my parents, David and Wendy, for t heir constant support in all that I do. They instilled in me my passion to learn and my deep love for the natural world and I would not be where I am today without them.

PAGE 6

6 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ .. 4 LIST OF TABLES ................................ ................................ ................................ ............ 8 LIST OF FIGURES ................................ ................................ ................................ .......... 9 ABSTRACT ................................ ................................ ................................ ................... 11 CHAPTER 1 BACKGROUND ................................ ................................ ................................ ...... 13 The Snail Kite ................................ ................................ ................................ ......... 13 Population Status ................................ ................................ ................................ .... 14 The Island Apple Snail ................................ ................................ ............................ 15 Lake Tohopekaliga ................................ ................................ ................................ 16 Study Objectives ................................ ................................ ................................ ..... 17 2 INFERENCES ABOUT SNAIL AVAILABILITY FROM THE FORAGING BEHAVIOR OF BREEDING SNAIL KITES ON LAKE TOHOPEKALIGA ................ 22 Introduction ................................ ................................ ................................ ............. 22 Methods ................................ ................................ ................................ .................. 25 Data Collection ................................ ................................ ................................ 25 Home Range Construction ................................ ................................ ............... 27 Foraging Behavior Indices Calculations ................................ ........................... 28 Foraging Substrate Delineation ................................ ................................ ........ 29 Analysis of Foraging Substrate Comm unities ................................ ................... 30 Comparing Foraging Behaviors between Foraging Substrate Communities .... 30 Foraging Rates and Nest Fates ................................ ................................ ........ 31 Relationships between Home Range Area and Foraging Behaviors ................ 31 Results ................................ ................................ ................................ .................... 31 Multiva riate Analysis of Foraging Substrate Communities ................................ 32 Foraging Behaviors in Different Foraging Substrate Communities ................... 33 Foraging Rat es between Years and Nest Fates ................................ ............... 33 Relationships between Home Range Area and Foraging Behaviors ................ 33 Discussion ................................ ................................ ................................ .............. 34 Management Recommendations ................................ ................................ ...... 38 3 ROLE OF HABITAT STRUCTURE IN FORAGING SUBSTRATE USE BY BREEDING SNAIL KITES ON LAKE TOHOPEKALIGA ................................ ......... 49 Introduction ................................ ................................ ................................ ............. 49 Methods ................................ ................................ ................................ .................. 51

PAGE 7

7 Data Collection ................................ ................................ ................................ 51 Success Rates in Different Foraging Substrates ................................ .............. 53 Patterns in Foraging Substrate Use ................................ ................................ 53 Results ................................ ................................ ................................ .................... 55 Foraging Substrate Use ................................ ................................ ................... 55 Success Rates in Different Foraging Substrates ................................ .............. 56 Trends in Foraging Substrate Use ................................ ................................ .... 56 2010 ................................ ................................ ................................ ........... 56 2011 ................................ ................................ ................................ ........... 57 Discussion ................................ ................................ ................................ .............. 57 4 CONCLUSIONS ................................ ................................ ................................ ..... 80 LIST OF REFERENCES ................................ ................................ ............................... 84 BIOGRAPHICAL SKETCH ................................ ................................ ............................ 91

PAGE 8

8 LIST OF TABLES Table page 1 1 Characteristics of the Florida apple snail and island apple snail relevant to ail kites. ................................ ......... 19 2 1 Description of vegetation classes used in delineating foraging substrate within snail kite home ranges. ................................ ................................ ............. 40 2 2 I ndicator values for each foraging substrate class within the foraging communities in snail kite home ranges on Lake Tohopekaliga. .......................... 41 2 3 Significance of the pairwise differences in the least sq uare means estimates of foraging rates for foraging communities of snail kite home ranges on Lake Tohopekaliga. ................................ ................................ ................................ ..... 42 2 4 Significance of the pairwise differences in the least square means estimat es of perch hunting frequencies for foraging communities of snail kite home ranges on Lake Tohopekaliga. ................................ ................................ ........... 42 3 1 Frequency of use of each foraging substrate on Lake Tohopekaliga in 2010 and 2011 ................................ ................................ ................................ ........... 65 3 2 Frequency of foraging substrate use in shallow water depths (0 0.5 m). ............ 65 3 3 Frequency of foraging substrate use in mid water depths (0.5 1 m). .................. 66 3 4 Frequency of substrate use in deep water depths (>1 m). ................................ .. 66 3 5 Frequency of substrate use in off la ke areas. ................................ ..................... 66 3 6 Generalized linear model results for the three primary foraging substrates in 2010. ................................ ................................ ................................ .................. 67 3 7 Generalized linear mod el results for the four primary foraging substrates in 2011. ................................ ................................ ................................ .................. 68

PAGE 9

9 LIST OF FIGURES Figure page 1 1 The Kissimmee Chain of Lakes. ................................ ................................ ......... 20 1 2 Generalized pattern of water levels on Lake Tohopekalig a during the snail kite breeding season. ................................ ................................ ......................... 21 2 1 Locations on Lake Tohopekaliga where snail kite nests were monitored in 2010 and 2011. ................................ ................................ ................................ ... 43 2 2 Snail kite nests on Lake Tohopekaliga and the associated foraging community type. ................................ ................................ ................................ 44 2 3 Least square means estimates of foraging rates in each of five foraging communities on Lake Tohopekaliga. ................................ ................................ .. 45 2 4 Least square means estimates of perch hunting frequencies in each of five foraging communities on Lake Tohopekaliga. ................................ .................... 46 2 5 Foraging rate as a function of home range area. ................................ ................ 47 2 6 Aerial imagery of Shingle Marsh. ................................ ................................ ........ 48 3 1 Diagram of the expected changes in structure, and thus snail availability, of snail kite foraging substrates in a lacustrine system. ................................ .......... 69 3 2 Model averaged estimates of torpedograss use by breeding snail kites in 2010 on Lake Tohopekaliga plotted against lake stage. ................................ ..... 70 3 3 Model averaged estimates for the primary on lake foraging substrates used by breeding snail kites on Lake Tohopekaliga in 2010. ................................ ...... 71 3 4 Model averaged estimates of paspalidium use by breeding snail kites in 2011 on Lake Tohopekaliga plotted against month (A) and lake stage (B). ................ 72 3 5 Model averaged estimates of pickerel use by breeding snail kites in 2011 on Lake Tohopekaliga plotted against lake stage (B). ................................ ............. 73 3 6 Model averaged estimates of hydrilla use by breeding snail kites in 2011 on Lake Tohopekaliga plotted against month. ................................ ......................... 74 3 7 Model averaged estimates for the primary foraging substrates used by breeding snail kites on Lake Tohopekaliga in 2011. ................................ ........... 75 3 8 Model averaged estimates of paspalidium use by breeding snail kites in 2010 on Lake Tohopekaliga plotted against month (A) and lake stage (B). ................ 76

PAGE 10

10 3 9 Lake stages on Lake Tohopekaliga in 2010, 2011, and 20 12. ........................... 77 3 10 Model averaged estimates for the primary foraging substrates used by breeding snail kites on Lake Tohopekaliga in (A) 2010 and (B) 2011. ................ 78 3 11 Cumulative number of snail kite nesting attempts on Lake Tohopekaliga in 2010, 2011, and 2012. ................................ ................................ ........................ 79

PAGE 11

11 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Scien ce FORAGING ECOLOGY OF BREEDING SNAIL KITES ( Rostrhamus sociabilis plumbeus ) ON LAKE TOHOPEKALIGA, FLORIDA, USA By Kyle E. Pias December 2012 Chair: Wiley M. Kitchens Major: Wildlife Ecology and Conservation In the Unites States the snail kite ( Rostrha mus sociabilis plumbeus ) is a federally endangered species whose population in Florida has undergone recent declines. The remaining population is heavily dependent upon the Kissimmee Chain of Lakes in central Florida, particularly Lake Tohopekaliga (Lake T oho). This study will focus on how breeding snail kites use the lakeshore of habitat Lake Toho for foraging. I studied foraging behavior of breeding snail kites on Lake Toho by conducting observations on radio tagged snail kites. I calculated 90% kernel ho me ranges using a kernel density estimator and quantified foraging habitat within the home ranges. Snail kite f oraging behaviors were compared between foraging substrate communities to make inferences regarding the availability of snails in each community type. The patterns of foraging substrate use were also examined in regards to lake levels and time. My results indicate that foraging substrates that occur off the main body of Lake Toho may have higher snail availabilities, but that snail kite nests built in off lake areas may be more vulnerable to predation. Therefore, in spite of relatively low er snail availabilities, foraging substrates that occur on Lake Toho may be more valuable to snail kites than off lake areas. The availability of snails in on lake foraging substrates is likely driven in part by water levels,

PAGE 12

12 highlighting the role of water management in maintaining foraging habitat for breeding snail kites.

PAGE 13

13 CHAPTER 1 BACKGROUND The Snail Kite The Snail Kite ( Rostrhamus sociabilis ) is a medium size raptor with a range that extends from northern Argentina to southern Mexico and includes the United States and Cuba (Sykes et al. 1995) Three subspecies are recognized, but only one, R. s. plumbeus occurs in the in the USA, and it is restricted to wetla nds in south central Florida. Unless otherwise noted, the term snail kite will refer to R. s. plumbeus in Florida. almost entirely on one genus ( Pomacea ) of freshwater apple snail (Sykes et al. 1995) Snail kites typically forage over emergent vegetation either in the emergent littoral zones of lacustrine systems or across emergent vegetation in palustrine marshes. Snails are located either from foraging flight (course huntin g) or while perched (perch hunting) (Snyder & Snyder 1969, Beissinger 1983) During foraging flight, kites fly slowly and low (1.5 10 m) over the water (Sykes et al. 1995) Using their feet, kites pth of 16 cm as the snails climb vegetation to breathe or lay eggs (Snyder & Snyder 1969, Sykes 1987b) The snail is (Sykes et al. 1995) where the kite holds the snail shell in one foot while remov ing the fleshy body with its bill (Snyder & Snyder 1969, Snyder & Kale 1983) In Florida, snail kite nesting activity has been observed in every month of the year (Sykes et al. 1995) although the majority of nesting occurs between January and June (Sykes 1987a, Beissinger 1988, Snyder et al. 1989) with peak egg laying occurring

PAGE 14

14 from February through April (Sykes 1987c) Nests are almost always built over water (Sykes 1987a) in a variety of substrates ranging from woody plants ( Salix spp. Taxodium spp. e tc.) to herbaceous substrates ( Typha spp. Scirpus spp. etc.) (Sykes 1987a, Beissinger 1988) The average clutch size is three eggs (Sykes 1987a, Snyder et al. 1989) and incubation lasts approximately 30 days (Sykes 1987c) Young remain in the nest for a pproximately 30 days after hatching and are fed by one or both parents until they are 9 11 weeks of age (Beissinger & Snyder 1987) Population Status The snail kite is listed as federally endangered (Federal Register 1967, 2007) In 2011 the snail kite pop ulation in Florida was approximately 925 individuals (Reichert et al. 2011) compared to over 3000 kites in 1997 (Martin et al. 2007a) Recent work has shown that the major factors contributing to this decline are a reduction in adult fecundity and reduced juvenile survival (Martin et al. 2008). Along with this decline there has been a spatial shift in the locations of successful kite nesting. Water Conservation Area 3A (WCA3A), which historically was the most critical breeding site in the range (Sykes 19 83, Bennetts & Kitchens 1997, Martin et al. 2007b) has been unproductive in recent years. Between 2001 and 2010 no kites fledged from WCA3A, and in 2011 WCA3A accounted for only 5% of all fledglings produced range wide (Reichert et al. 2011) This lack o f breeding in this formerly highly productive area is most likely due to altered hydrologic conditions leading to overall degradation of suitable kite habitat (Sykes 1983, Martin et al. 2008, Zweig & Kitchens 2008) This has left the kite population heavil y concentrated and dependent upon the Kissimmee Chain of Lakes (KCOL) for breeding, particularly on Lake Tohopekaliga (Lake Toho). Since 2005,

PAGE 15

15 Lake Toho alone has accounted for 41 % of the successful nesting attempts and 57% of the fledged young produced st ate wide (Reichert et al. 2011) The Island Apple Snail In Florida, the snail kite has traditionally fed predominantly on the native Florida apple snail ( Pomacea paludosa ) (Snyder & Snyder 1969, Turner & Mikkelsen 2004) I n l ( Pomacea insularum ), native to South America, was introduced into Florida waterways via aquaculture and the aquarium trade (Rawlings et al. 2007) The island apple snail had entered Lake Toho as early as 2001, and by 200 6 had become more abundant than th e Florida apple snail throughout the lake (Desa 2008) The island apple snail regularly grows to exceed 90 mm in length while the Florida apple snail rarely grows beyond 60 mm (Sykes 1987b, Benson 2007, Darby 2007) Initially, snail kites experienced hand ling difficulties (increased drop rates and longer extraction times) with the larger snails which resulted in lower net energy gains for juvenile snail kites (Cattau et al. 2010) However, this energetic cost may only have been associated with initial inv asion of the island apple snail. Recent work has shown that the size of island apple snails eaten by snail kites on Lake Toho over the past five years has decreased (Reichert et al. 2011) Whether this is due to a normalization in the size distribution of island apple snails found on the lake, active selection of smaller island apple snails by snail kites, or some combination of the two remains to be determined. Additionally, the Florida Fish and Wildlife Conservation Commission (FFWCC) has actively engaged in a program of placing artificial platforms on Lake Toho which are used by snail kites as snail extraction perches. These flat, stable perches

PAGE 16

16 may facilitate the handling of larger island apple snails and aid in mitigating some of the energetic costs for snail kites still feeding on larger island apple snails (Pias et al. 2012) The island apple snail is more tolerant of drought than the Florida apple snail (Darby et al. 2003, Darby et al. 2004, Ramakrishnan 2007, Darby et al. 2008) and can survive on a b roader range of food resources than the Florida apple snail (Sharfstein & Steinman 2001, Morrison & Hay 2011) The Florida apple snail has a 1.0 1.5 year life span (Darby et al. 2003, Darby et al. 2008) The island apple snail on the other hand, can most likely live for multiple years (Estebenet & Martin 2002, Ramakrishnan 2007) During the egg laying season (March October) (Hanning 1979, Darby et al. 2003) both snail species are capable of laying, on average, a clutch of eggs once a week (Hanning 1979, Ba rnes et al. 2008) However, island apple snails have an average clutch size of 2064 eggs (Barnes et al. 2008) while Florida apple snails only lay about 30 eggs per clutch (Perry 1974, Hanning 1979, Turner 1996) For the above reasons, the island apple sna il may currently represent a more stable, widespread, and abundant food resource for snail kites than the Florida apple snail (Table 1 1) Lake Tohopekaliga There are six lakes in the KCOL on which kites have been observed breeding within the past five yea rs: Lake Hatchineha, Lake Jackson, East Lake Tohopekaliga (East Toho), Lake Kissimmee, Lake Runnymede, and Lake Toho (Fig. 1 1). All of these lakes, and in particular Lake Toho, are highly managed both in terms of hydrology and vegetation. Lake Toho is app roximately 8176 ha in area with an average depth of 2.1 m at its highest regulated stage (55.0 NGVD ft) (HDR Engineering Inc. 1989) Lake Toho has not experienced natural, dynamic stage levels since 1964 when water control structures

PAGE 17

17 on the lake were compl eted (Blake 1980). This impoundment was completed primarily for flood control purposes and significantly decreased the range of stage levels; lake levels previously fluctuated by a minimum of 3.2 m and now have a maximum range of 1.1 m (Wegener et al. 1973 ). These stable water levels lead to the formation of thick mono cultural bands of vegetation ( Polygonum spp. Typha spp. and Pontedaria cordata ) that separate shallow littoral areas of the lake from deeper areas (Kahl 1993, Mallison et al. 2001). Current ly, although the exact levels will vary by year and with precipitation events, the lake stage follows a regular annual pattern, with the highest water levels occurring in the winter months and the lowest levels occurring around June or July (Fig. 1 2). The lake is eutrophic, and approximately 25% of its area is comprised of emergent littoral vegetation (HDR Engineering Inc. 1989, Welch 2004) Additionally, the lake has established populations of many invasive plants, including hydrilla ( Hydrilla verticillata ), water lettuce ( Pistia stratiotes ), and water hyacinth ( Eichhoria crassipes ), that re quire constant control efforts. The combination of exotic plants, nutrient pollution, and stabilized water levels on Lake Toho result s in a highly productive littoral zo ne, which requires constant management such as herbicide applications, draw downs, and even mechanically removing accumulated muck and vegetation from the upper littoral reaches of the lake. All of these management activities have the potential to impact s nail kite breeding and foraging on Lake Toho. Study Objectives Given the imperiled status of the snail kite, the relative importance of Lake Toho to range wide breeding efforts, and the high level of anthropogenic influences on the lake, it is vital to und erstand how snail kites use the habitat on the lake for breeding. During the breeding season, snail kites use the habitat primarily in two ways. First, individual

PAGE 18

18 trees or vegetation patches are used as locations for nest ing Second, portions of the lakesh ore, containing a variety of vegetation types and patches, are used to support the foraging of the nesting kites. This study will focus on how snail kites use the lakeshore habitat for foraging. I will do so first by using snail kite foraging behavior to d raw inferences about the snail availability in different foraging communities. Second, I will examine how snail kite use of specific vegetation types changes with time and water levels.

PAGE 19

19 Table 1 1. Characteristics of the Florida apple snail and island appl e snail relevant to Florida Apple Snail ( Pomacea paludosa ) Island Apple Snail ( Pomacea insularum ) Native to Florida 1 Introduced to Lake Toho in 2001, dominant Pomacea species by 200 6 2 Single year life span 3,4 Multi year life span 5,6 30 40 eggs/clutch 7 >2000 eggs/clutch 8 Reduced drought tolerance (relative to P. insularum ) 3,4,9 Greater drought tolerance (relative to P. paludosa ) 6 Narrow diet breadth (relative to P. insularum ) 10 Broad di et breadth (relative to P. paludosda ) 11 1 Turner & Mikkelsen 2004 2 Desa 2008 3 Darby et al. 2003 4 Darby et al. 2008 5 Estebenet & Martin 2002 6 Ramakrishnan 2007 7 Perry 1974, Hanning 1979, Turner 1996 8 Barnes et al. 2008 9 Darby et al. 2004 1 0 Sharfste in & Steinman 2001 1 1 Morrison & Hay 2011

PAGE 20

20 Figure 1 1. The Kissimmee Chain of L akes. Lakes with documented snail kite breeding in the past 5 years are outlined in red.

PAGE 21

21 Figure 1 2. Generalized pattern of water levels on Lake Tohopekaliga during the snai l kite breeding season.

PAGE 22

22 CHAPTER 2 INFERENCES ABOUT SNAIL AVAILABILITY F ROM THE FORAGING BEH AVIOR OF BREEDING SNAIL KITES ON LAKE TOHOPEKALIGA Introduction The abundance of a prey item in a habitat may often be disconnected from the availability of that pr ey item to a predator (Cooper & Whitmore 1990, Hutto 1990) The disconnect between abundance of prey and availability of prey can be caused by factors such as accessibility limitations imposed by the structure of the habitat (Holmes & Schultz 1988, Hutto 1 990) The sampling techniques researchers use to estimate prey abundance/density are often inadequate in reflecting the availability of the prey item. This is because sampling techniques often cannot account for the perception of the predator, the spatial scale over which the predator is searching, or the rate of renewal of the prey item in the habitat (Hutto 1990) An alternative technique to examine the availability of a prey item is to observe the foraging behavior of the predator (Hutto 1990, Lovette & Holmes 1995) A variety of foraging behaviors may be linked to prey availability, including temporal attack rate and search tactics (Hutto 1990) Many studies have shown a link between these behaviors and prey availability (Davies & Houston 1981, Hutto 1 981, Price 1981, Janetos 1982, Robinson & Holmes 1984, Thiollay 1988) I used the foraging behavior of breeding snail kites (in terms of attack rates and search tactics) to make inferences about the snail availability (and thus foraging habitat quality) of different foraging substrate communities on Lake Tohopekaliga (Lake Toho) in Florida. The snail kite in Florida is a federally listed endangered species whose population has dropped from approximately 3400 birds statewide in 1999 to 925 birds in 2011 (Reic hert et al. 2011) Along with this decline there has been a spatial shift in the

PAGE 23

23 locations of successful snail kite nesting. Water Conservation Area 3A (WCA3A), which historically was the most critical breeding site in the range, has been unproductive in recent years (Reichert et al. 2011) This has left the breeding kite population heavily concentrated on the Kissimmee Chain of Lakes (KCOL), particularly on Lake Tohopekaliga (Lake Toho), which has accounted for 4 1 % of all successful nests range w ide since 2005 (Reichert et al. 2011) This shift is coincident with the proliferation of the exotic island apple snail ( Pomacea insularum ) throughout the KCOL. The island apple snail, native to South America (Rawlings et al. 2007), was introduced to Lake Toho as early as 2001, and by 200 6 it had become more abundant than the native Florida apple snail ( Pomacea paludosa ) throughout the lake (Desa 2008) Island apple snails are likely to remain the dominant Pomacea species on Lake Toho and will continue to spread throughout the wetlands of Florida (Rawlings et al. 2007). Island apple snails currently are the main food source for snail kites foraging on all lakes in the KCOL (Reichert et al. 2011) Currently there are a variety of methods for estimating abso lute densities of apple snails in wetland habitats (Darby et al. 1999, Darby et al. 2001, Valentine Darby et al. 2008) However, these methods do not directly address the availabili ty of the snails to snail kites and are therefore not an adequate indicator of snail kite foraging habitat quality. An available snail can be defined by three factors: the snail is visible to a not obstructed (i.e. tall vegetation tha t does not allow a kite to reach the water). Snail kites only reach about 16 cm into the water to capture snails (Snyder & Snyder 1969, Sykes 1987b) can be

PAGE 24

24 captured by kites Although Pomacea sna ils have both gills and a lung (Thiengo 1987) their survival is limited by their access to aerial respiration (Seuffert & Martn 2010) Additionally, Pomacea snails lay their eggs above the water line (Ramakrishnan 2007) and so the snails typically surfa ce to breathe and/or lay eggs. The snails must be able to climb emergent structure s to do so. Thus, the number of snails available to foraging kites depends not only on the underlying snail density, but may also depend on the vegetation type and density, w ater temperature, time of year, water clarity, and dissolved oxygen content. No method currently available is able to account for all of these factors. Typically, snail k ites forage over the emergent littoral vegetation of lakes (Sykes et al. 1995). They d o so through either course hunting or perch hunting strategies (Beissinger 1983, Sykes 1987b) Course hunting involves the snail kite searching for snails while flying slowly and low (1.5 10 m) over the water (Sykes et al. 1995) Foraging flight is easil flight (Sykes et al. 1995) Perch hunting involves the snail kite visually searching for snails while perched. When a snail is located, the kite will fly directly to retrieve the snail. The are a surveyed by this technique is fairly small, and snails are usually captured within 20 m of the perch (Sykes 1987b) Contrary to prior hypotheses (Snyder & Snyder 1969) I reason that the presence of perch hunting is likely a good indicator of high snail availability for breeding birds. For breeding birds provisioning a nest, a constant flow of food to the nestlings is required (Drent & Daan 1980) Although a snail kite may maximize its own energy gain by sitting on a perch and waiting for snails to appear it does so at the loss of energy flow to its nestlings. Logically then, a snail kite

PAGE 25

25 provisioning its nest would only perch hunt when it has access to snail availabilities that minimize the amount of time it has to wait between snails and to perches prox imal to those high snail availabilities If differences in snail kite foraging behavior among foraging substrate communities occur then foraging substrate communities with relatively high snail availability could be identified by a combination of high for aging rates and high perch hunting frequencies Furthermore, I hypothesize that snail kite foraging rates and frequency of perch hunting will be negatively correlated with home range area (Ford 1983) and therefore, that home range area can be used as a r ough indicator of foraging habitat quality as defined by snail availability Methods Data Collection T o ensure that snail kites could be located at the full extent of their home ranges, observations were conducted primarily on snail kites affixed with radi o transmitters. Snail kites were trapped on Lake Toho using aquatic bal chatri traps (Mahoney et al. 2010) and affixed with VHF radio transmitters. Transmitters were manufactured by Holohil Systems Ltd and did not weigh more than 14 g. Trapping was attempt ed from January 2009 through February 2011, during both breeding and non breeding seasons. Only non breeding kites or kites that were tending nests with eggs/nestlings were captured; kites that were in the building stage of nesting were avoided to reduce t he potential of disrupting the nesting attempt. The shore of Lake Toho was monitored monthly by airboat using a scanning radio receiver and yagi antenna during the breeding seasons (January August) of 2010 and 2011. All radioed kites were located and the ir breeding status noted. In cases where two radioed kites were found to be

PAGE 26

26 tending the same nest, one bird was randomly selected to be observed. Once a breeding radioed kite was located it was revisited every 2 4 days. Each breeding kite was observed for approximately one hour. Observations occurred between the hours of sunrise and 1 PM and between 3 PM and sunset, corresponding to the hours of greatest snail kite activity (Snyder & Snyder 1969, Sykes 1987b) During observations, the start and end times o f foraging flight effort was noted to the nearest second. For the purposes of this study, search time for perch hunting was not quantified as it is difficult to differentiate a perched kite from one that is perched and actively looking for snails. Instead, t he flight effort associated with both types of foraging was defined as the amount of time the bird spent in flight leading up to a capture attempt. A capture attempt was defined as any time a kite initiated an attempt to capture a snail by putting its fe et into the water. Capture attempts were associated with either course or perch hunting. Course hunting capture attempts were defined as being made from foraging flight, while perch hunting capture attempts were defined as those made directly from a perch. attempt points were recorded for use in calculating home ranges. Locations were estimated coord inates, using a GPS, digital compass, and laser rangefinder. Using these measurements, the GPS coordinates of the activity point could be obtained without disturbing the snail kite or the habitat it was utilizing. The accuracy of the method was determined by having three different observers estimate the location of five dowels placed randomly around a boat. The estimated locations were then compared to the

PAGE 27

27 GPS locations taken at the dowels. The average error across three observers for estimating locations w as 6.2 + 4 m (n=15; range 0.5 13 m). Observations of breeding kites continued until the nest failed, succeeded (a nest was considered successful when the young reached 30 days old), or the adult stopped tending the nest. Observations were stopped in instan presence appeared to be disturbing or influencing the behavior of the nesting birds. Home Range Construction A home range is its normal activities of food gatherin status, and the time of year. Snail kites are highly nomadic and undertake large distance movements (Bennetts & K itchens 1997) in response to a variety of conditions such as changes in hydrology, vegetation, or food abundance (Sykes et al. 1995). The annual home range of a snail kite undertaking such movements might encompass a large portion of the southern half of F lorida. However, when a snail kite is actively tending a nest, between wetland movements should be limited and its home range should be relatively small. Indeed, Fletcher et al. (2011) showed that within breeding season movements are limited across the geo graphic range of the species. Home ranges were constructed from the spatial locations of all perch points and capture attempt points collected for each monitored nest. The home ranges were constructed using the fixed kernel density estimator in ABODE (Lave r 2005) in ArcGIS 9.3. All home ranges were constructed using the unit variance and the least squares cross validation smoothing (LSCV) method, and polygons were drawn at the 90% kernel. The kernel method was chosen because it minimizes the bias of autocor related

PAGE 28

28 locations (Swihart & Slade 1997) and LSCV smoothing was used as it has been found to approximate actual utilization distributions more accurately than other methods (Worton 1989, Seaman et al. 1999). Home ranges were constructed only for kites at n ests that were visited more than three times, and for which 30 or more spatial locations had been collected (Seaman et al. 1999). Since kites forage exclusively in the aquatic environment, terrestrial areas erroneously included in the kernel estimation wer e removed. To do so, a buffer was drawn around the lakeshore that encompassed the kite activity point located furthest inland from the lakeshore, and the home range was clipped to within this buffer. Areas outside this buffer that were used specifically (s uch as retention ponds or ditches) were not clipped during this process. Foraging Behavior Indices Calculations Foraging rates associated with each kite home range were calculated as the total number of capture attempts (summed across all observation perio ds) divided by the total hours of flight effort (summed across all observation periods). Attempt rates were used as the foraging rate of interest instead of capture rates as I assume that snail kites only initiate capture attempts when they locate an avail able snail (the snail is visible to defensive response (dropping fro (Snyder & Snyder 1971) are involved in whether or not a kite actually pulls a snail from the water, and therefore capture rates and snail availability may not be as directly related as attempt rates and snail availability. The perch hunting frequencies of kites associated with each home range was calculated as the number of perch capture attempts (summed across all

PAGE 29

29 observation periods) divided by the total number of capture attempts (summed across all observation periods). Foraging Su bstrate Delineation For each year, potential foraging substrates were defined as any vegetation within which capture attempts had been observed three or more times. In 2010 and 2011 these substrates were grouped into five and six vegetation classes respec tively, representing the dominant vegetation types at the observed capture attempts (Table 2 1 ). A minimum of 10 training samples were delineated for each class and were used to run a supervised classifica tion of aerial imagery using the Feature Analyst e xtension in ArcGIS 9.3. Training samples were visually delineated from four band one m resolution aerial imagery collected by Aerial Cartographics of America Inc. on June 7 th 2010 and June 6 th 2011. All imagery bands were used for reflectance values, band s 2 and 4 were used as texture bands, and a 2009 30 m resolution bathymetry map was used as an elevation band. Each resulting vegetation class was clipped to within the lowest water line that occurred within the period of observation of each home range. Th is was done to remove foraging substrate that would have been dry at the time of the observations. Areas the snail kites used that were outside the lake (such as retention ponds and drainage ditches) were not removed during the clipping process. Due to the relatively coarse resolution of the bathymetry map this clipping method may have removed some small depressional areas used by kites that occurred above the water line. However, these areas would likely comprise only a small percentage of the home range. The percentage of each foraging substrate within the total potential foraging substrates for each home range was calculated by dividing the total area of that foraging substrate by the total area of all potential foraging substrates.

PAGE 30

30 Analysis of Foraging S ubstrate Communities the foraging substrate composition of each home range was examine d using multivariate statistics. T o identify home r anges with similar foraging substrate compositions a hierarchical, agglomerative cluster analysis was performed on the foraging substrate percentages within each home range. A relative Sorenson distance measure with a flexible beta of 0.25 was used. The optimal number of foraging substrate communities was chosen with an indicator species analysis (ISA) and the importance of each vegetation type in identifying each community was quantified All multivariate analyses were conducted using PC ORD (McCune & Mefford 2006) Comparing Foraging Behaviors between Foraging Substrate Comm unities P airwise differences between the least square means of foraging behaviors from home ranges associated with each foraging community were compared using Two models were run, one for foraging rates and one for perch hunting frequency. Foraging r ate and perch hunting frequency were used as response variable s and foraging community was used as the explanatory variable. Both models used a normal distribution and an identity link. Given that the foraging communities tende d to be spatially restricted on the lake, a random effect controlling for spatial variation was not used in these models. in SAS 9.3 (SAS 1989). Significance for these statistical tests was determined at

PAGE 31

31 Foraging Ra tes and Nest Fates Foraging rates of kites associated with successful and unsuccessful nests were compared using generalized linear mixed models the response variable and nest fate was used as the explanatory variable. M odels used a normal distribution and an identity link. To control for spatial variation in foraging rates the location of the nest within one of 11 pre defined areas on the lake (Fig. 2 1) was SAS 9.3 (SAS 1989) Relationships between Home Range Area and Foraging Behaviors The relationships between home range area and foraging rates and perch hunting frequencies were tested usin g Foraging rate and perch hunting frequency were used as response variables L og transformed home range area was used as the explanatory variable in both models. Both models used a normal distribution and an identity link. To control for spatial va riation in foraging rates and perch hunting frequencies, the location of the nest within one of 11 pre defined areas on the lake (Fig. 2 (SAS 1989) Significance for these statis Results A total of 24 adult snail kites were captured on Lake Toho between January 2009 and February 2011. This group was comprised of 13 males and 11 females. In addition to kites captured as adults, any kites that ha d been radioed as nestlings in previous years and were identified as potential breeders during the study period were monitored. In two instances, snail kites without radios were observed. This was done in areas where the individual bird could be easily loc ated and followed without the use of radio

PAGE 32

32 telemetry. These individuals were identified by leg bands, plumage characteristics, and their affinity to the nest. This resulted in a total of 27 birds being monitored in 2010, and 25 in 2011. Of these birds, 15 attempted breeding on Lake Toho in 2010 and 13 attempted in 2011. In 2010 three of the 15 breeding birds attempted multiple nests, and in 2011 six of the 13 breeding birds did so. This resulted in a total of 18 nests being monitored in 2010, and 23 nests b eing monitored in 2011. Eight nests in 2010 and six nests in 2011 were discarded from data analysis because they had fewer than three observation periods in which foraging behavior by the associated kite was observed. This resulted in a final number of 27 nests with data usable for data analysis, 10 in 2010 and 17 in 2011. These 27 nests represent 11 different areas on Lake Toho (Fig. 2 1). Multivariate Analysis of Foraging Substrate Communities From the cluster analysis and ISA there were five foraging com munities evident (torpedograss, pickerel, paspalidium, S hingle Marsh 2010, and Shingle M arsh 2011). Foraging communities were named for the dominant vegetation class within the community (as indicated by ISA importance values) except for the Shingle Marsh 2010 and Shingle Marsh 2011 communities (Table 2 2 ). The Shingle Marsh communities were both associated with one specific off lake wetland, Shingle Marsh (an impounded cattle pasture separated from the lake by a levee), which was dominated by the luziola vegetation class in 2010 and by the alligatorweed/ bladderwort vegetation class in 2011. Ten nests were associated with the torpedograss foraging community, two with pickerel, eight with paspalidium, four with Shingle Marsh 2010, and three with Shingle Mars h 2011. All five communities tended to be spatially restricted on the lake. Snail kites nests associated with the paspalidium foraging community were located primarily on the west shore of the lake, nests associated with the torpedograss community were loc ated

PAGE 33

33 predominantly on the east shore, while nests associated with the Shingle Marsh and pickerel communities were primarily located on the northwestern shore (Fig. 2 2). Foraging Behaviors in Different Foraging Substrate Communities The foraging rates of k ites associated with the Shingle Marsh 2010 (67.9 + 10 attempts/hour, n=4), Shingle Marsh 2011 (60.8 + 12 attempts/hour, n=3), and pickerel communities (63.6 + 15 attempts/hour, n=2) were significantly higher (Table 2 3 ) than those associated with the torpedogra ss (21.7 + 7 attempts/hour, n=10) and paspalidium foraging communities (26.1 + 7 attempts/hour, n=8) (Fig. 2 3). P erch hunting frequencies of kites associated with the Shingle Marsh 2010 (0.42 + 0.1, n=4) and Shingle Marsh 2011 (0.48 + 0.1, n=3) foraging communiti es were significantly higher (Table 2 4 ) than those associated with the torpedograss (0.12 + 0.1, n=10), paspalidium (0.11 + 0.1, n=8), and pickerel communities (0.12 + 0.1, n=2) (Fig. 2 4). Foraging Rates between Years and Nest Fates There was no significant di fference between the foraging rates of kites associated with successful ( 37. 0 + 9 attempts/hour, n = 12 ) and unsuccessful nests ( 43.3 + 9 attempts/hour, n= 15) (DF=16, F=0.27, p=0.61). Relationships between Home Range Area and Foraging Behaviors Home range area w 11.80 + 2. 6, p<0.001) (Fig. 2 5 ). Although a negative relationship did exist between perch hunting frequency and home range area 0.0 50 + 0.03 ), this relationship was not significant (F=3.17, DF=16, p=0.094)

PAGE 34

34 D iscussion Both torpedograss and paspalidium foraging communities may have similar snail availabilities given the similarities in foraging rates and perch hunting frequencies exhibited by kites using them Both communities occurred on the main body of Lake Toho, and torpedograss and paspalidium are similar in structure (emergent aquatic grasses). Although the pickerel community was associated with one of the highest kite foraging rates, this needs to be interpreted carefully given that only two home ranges w ere associated with this community. Overall, the two home ranges were similar in foraging substrate composition. However, one of the home ranges contained a retention pond that was heavily used by the snail kite, and thus had a n associated kite foraging ra te more than twice that of the other pickerel home range. Therefore, the high foraging rates of kites using the shallow pickerel community are likely inflated by one bird foraging in a retention pond that actually shares many of the characteristics of Shin gle Marsh (described below), and not a shallow area on the lake that is dominated by pickerel. The foraging communities that supported the highest foraging rates and perch hunting frequencies were the Shingle Marsh communities in both 2010 and 2011. The re asons for this are complex. First, perch hunting may be limited by the availability of perches (Sykes 1987b) and the Shingle Marsh area tended to be more densely Shingle Marsh is interspersed with Chinese tallow trees, cypress trees ( Taxodium spp. ), and primrose bushes ( Ludwigia spp. ). The prevalence of these perching substrates would put the birds in closer proximity to the foraging substrates, allowing them to perch hunt

PAGE 35

35 to a greater degree. Second, Shingle Marsh likely support s higher number of island apple snails due to increased nutrient loads. The runoff that this area holds tends to carry relatively high nutrient loads (HDR Engineering Inc. 1989, Richardson et al. 1990) an d the impounded pasture not only catches runoff but is also subsidized by the presence of cattle (Gathumbi et al. 2005) This would lead to eutrophic, if not hyper eutrophic conditions in this area. The resulting increases in primary productivity would sup port increases in the densities of island apple snails, which consume relatively large amounts of biomass (Baker et al. 2010) Furthermore, the additional vegetative growth ere they become available to foraging snail kites. Additionally, the unstable water levels would limit a variety of organisms, such as redear sunfish ( Lepomis microlophus ) and crayfish ( Procambarus spp. ), that are known snail predators (Snyder & Snyder 197 1, Darby et al. 2009) decreasing predation pressure on snail populations in this area. All these factors working together creates an area with high densities of island apple snails, erches directly proximal to the foraging areas to allow for perch hunting, resulting in an area with high snail availability. Home range area was not significantly related to perch hunting frequency. This is likely because perch hunting frequency is drive n in part by the proximity of perches to foraging areas, which was not accounted for in this study. However, given that h ome range area is negatively correlated with foraging rates home range area is likely a good indicator of overall snail availability, and thus for foraging habitat quality for breeding snail kites on Lake Toho. This finding is line with a previous study that used a similar

PAGE 36

36 metric (distance traveled from nest to forage) as a measure of snail abundance (Beissinger & Snyder 1987) However, this statement needs to be interpreted with care. Quality foraging habitat does not necessarily translate to quality nesting habitat. Initially, this may appear to be the case. S nail kites that forage more efficiently may increase provisioning rates to nes tlings and may therefore be able to fledge more young. Additionally, efficient foraging near the nest may affect nest success indirectly by reducing the distance and time parents are away from nests; potentially minimizing predation and/or exposure related nest failures. However, in 2010, all four nests with the highest foraging rates failed; adult kites from these nests all utilized the Shingle Marsh foraging community. Three of these failures may have been related to the fact that these snail kites chose to nest directly in Shingle Marsh. Shingle Marsh is only approximately 54 ha in size and completely surrounded on all sides by upland habitats ( pasture, oak hammocks, or disturbed levees ) (Fig. 2 6 ). W ater levels appear to be driven mainly by precipitation events; there is no observable natural water exchange between Lake Toho and Shingle Marsh. T he land is privately owned and managed, and is equipped with feeder canals and a pumping system (water removal only) to empty water as needed for cattle grazing. T he water in the marsh is relatively shallow, only reaching greater than 1 m in depth in the canal systems, and almost all the water contains either emergent or floating vegetation. G iven the small area, unpredictable hydroperiods, proximity of upland habit ats, lack of open water, and shallow depths snail kite nests placed in Shingle Marsh would be relatively exposed to predators which were the leading cause of snail kite nest failures on Lake Toho in 2010 and 2011 (Olbert, unpublished data) It would seem in this case that the Shingle Marsh area may meet the

PAGE 37

37 criteria of an ecological trap (Schlaepfer et al. 2002, Robertson & Hutto 2006) Initially, elevated snail availabilities and energetically beneficial foraging opportunities may have attracted snail ki tes to th is foraging area. However, although the quality of the habitat for restri cted diet (Morrison & Hay 2011) and reduced survival in dry conditions relative to the island apple snail (Darby et al. 2003, Darby et al. 2004, Ramakrishnan 2007) the native Florida apple snail may not be able to exist in the highly disturbed areas with unstable hydroperiods that the island apple snail can readily colonize. Florida apple snails would have been unlikely to attract snail kites to nest in such areas Therefore, areas such as Shingle Marsh represent novel foraging areas in that they would not have been viable foraging areas prior to the introduction and proliferation of the island apple snail. Historically, high availabilities of Florida apple snails may have been an indicator of quality snail kite nesting habitat However, t he ability of the exotic island apple snail to exist in a broad range of habitats on a broad range of diets effectively decouples the traditional linkage between quality foraging habitat and quality nesting habitat. The inherently low suitability of Shingle Marsh for nestin g was further reduced in June 2010; the landowner began pumping water out of the area, and lowered water levels by approximately 20 cm in six days. This left several nests dry and exposed to predation. In 2011, three kites used the off lake foraging commun ity in Shingle Marsh and all three of these nests were successful. These birds forage d extensively in Shingle Marsh and had the highest foraging rates and smallest home ranges. However, their nests were not placed in Shingle Marsh itself (presumably becaus e water levels were lower in

PAGE 38

38 Shingle Marsh throughout 2011). The nests were placed in the next nearest suitable nesting substrate, cattail ( Typha spp. ) patches on the main body of the lake, east of Shingle Marsh. These patches remained wet throughout the s eason, in relatively deep water, and were separated from the shore by a stretch of relatively un vegetated water (Fig. 2 6 ). Management Recommendations The potential for Shingle Marsh to be an ecological trap highlights the need for careful management of n esting substrates proximal to highly attractive novel foraging areas. Previously, rapid lake recession rates have caused snail kite nesting failures on Lake Toho (Kitchens, unpublished data). Care has since been taken either to keep initial water levels lo w to minimize kites being drawn into areas that will later dry out, or to keep recession rates relatively gradual so snail kites nesting on upslope areas have time to fledge young before water recedes from under their nests. This same strategy should be ap plied to novel foraging areas that snail kites may be attracted to by high availabilities of island apple snails. If novel foraging areas have water levels that can be managed, water should be maintained under any potential nesting substrate within the ar ea. If there is difficulty in controlling water levels (lack of control structures, primarily rainfall driven, etc.), it may be reasonable to remove potential nesting substrate from these areas so kites do not attempt nesting over unstable and unpredictabl e water levels. Removing substrates may be difficult because these areas are often privately owned and therefore are not subject to agency management. In these cases, the nesting substrate most proximal to these areas (that can be managed) should be kept o ptimal throughout the breeding season by maintaining stable water levels underneath the nesting substrates and open water channels between the nesting substrates and

PAGE 39

39 shore. In any case, every attempt should be made to identify novel foraging areas so they can be managed appropriately. As observed in 2011, areas such as Shingle Marsh have the potential to be valuable foraging areas for breeding snail kites, if they do not become ecological traps. T he potential for novel foraging areas to become ecological tr aps for snail kites increases the importance of maintaining traditional foraging areas on the lake. Although the torpedograss and paspalidium communities likely had lower snail availabilities than Shingle Marsh the snail availabilities in those traditiona l communities were obviously still high enough to support successful snail kite nests (as evidenced by the similarity of foraging rates between kites associated with successful and unsuccessful nests) Combined with the relative ly stable and predictable wa ter levels associated with the main body of the lake, the traditional foraging communities are likely of the highest value to snail kite breeding on Lake Toho.

PAGE 40

40 Table 2 1 Description of vegetation classes used in delineating foraging substrate within sna il kite home ranges. Class Description Years Used Paspalidium Primarily Egyptian Paspalidium, Maidencane, or a mix of both. 2010/2011 Torpedograss Primarily torpedograss 2010/2011 Pickerelweed Primarily pickerelweed, lanceleaf arrowhead, or a mix of bot h. 2010/2011 Luziola Primarily luziola, forming a loose mat on the water's surface. 2010 Smartweed Floating islands composed primarily of smartweed, primrose, or a mix of both. Foraging occurred primarily along the submerged edge of these islands. 2010 Alligator weed/ Bladderwort A mix of alligator weed and bladderwort primarily found in Shingle Marsh in 2011 2011 Hydrilla Primarily hydrilla, which may or may not be topped out. Algae growth is not present. 2011 Man made Contains foraging areas such as r etention ponds or drainage ditches. Vegetation is varied including alligator weed, water hyacinth, and assorted dead vegetation. 2011

PAGE 41

41 Table 2 2 Indicator values for each foraging substrate class within the foraging communities in snail kite home rang es on Lake Tohopekaliga. Higher values indicate greater importance in the community. Luziola Paspalidium Pickerel Smartweed Torpedograss Man made Alligator weed /Bladderwort Hydrilla Torpedograss 1 26 12 4 89 1 0 2 Pickerel 0 1 69 0 2 47 0 30 Paspali dium 0 62 5 0 9 0 0 8 Shingle Marsh 2010 98 4 6 41 1 0 0 0 Shingle Marsh 2011 0 3 4 0 0 0 100 36

PAGE 42

42 Table 2 3 Significance of the pairwise differences in the least square means estimates of foraging rates for foraging communities of snail kite home ranges on Lake indicates no significant difference. Torpedograss Pickerel Paspalidium Shingle Marsh 2010 Pickerel + Paspalidium + Shingle Marsh 2010 + + Shingle marsh 2011 + + Table 2 4 Significance of the pairwise differences in the least square means estimates of perch hunting frequencies for foraging communities of snail kite home ranges on Lake Torpedograss Pickerel Paspalidium Shingle Marsh 2010 Pickerel Paspalidiu m Shingle Marsh 2010 + + + Shingle marsh 2011 + + +

PAGE 43

43 Figure 2 1. Locations on Lake Tohopekaliga where snail kite nests were monitored in 2010 and 2011.

PAGE 44

44 Figure 2 2. Snail kite nests on Lake Tohopekaliga and the associated foraging community type.

PAGE 45

45 Figure 2 3. Least square means estimates of foraging rates in each of five foraging communities on Lake Tohopekaliga. Estimates were obtained from a GLM with a normal distribution and a log link. Number of home ranges associated with each foraging community is indicated. Bars with different numbers of have significantly different values (p<0.05). Error bars indicate 95% confidence limits.

PAGE 46

46 Figure 2 4. Least square means estimates of perch hunting frequencies in each of five foraging communitie s on Lake Tohopekaliga. Estimates were obtained from a GLM with a normal distribution and a log link. Number of home ranges associated with each foraging community is indicated. Bars with different numbers of have significantly different values (p<0.05). Error bars indicate 95% confidence limits.

PAGE 47

47 Figure 2 5. Foraging rate as a function of home range area. Points represent observed data. Predicted mean (black line) and 95% confidence interval (red dotted lines) are projected from a GLMM with a normal dis tribution and an identity link.

PAGE 48

48 Figure 2 6 Aerial imagery of Shingle Marsh. The main body of Lake Tohopekaliga can be seen on the eastern edge of the map. The approximate high pool line within the impounded area is indicated in blue. The locations of nesting trees used in 2010 by snail kites foraging within the marsh are indicated by arrows. The cattail patches used for nesting by snail kites foraging within the marsh in 2011 are outlined in green.

PAGE 49

49 CHAPTER 3 ROLE OF HABITAT STRU CTURE IN FORAGING SUBS TRATE USE BY BREEDIN G SNAIL KITES ON LAKE TOHOPEKALIGA Introduction Habitat structure often plays a role in the availability of a prey item to a predator. A predator can use habitat structure to its advantage by making use of a habitat feature that harbors concentrations of prey (Mariani & Manuwal 1990) Alternatively, the structure of foraging habitat can be limiting to a predator; vegetation can provide cover for prey (Bechard 1982, Preston 1990) or restrict the tactics that a predator can use while forag ing (Robinson & Holmes 1982) It has been demonstrated that snail kite foraging in palustrine systems in the southern Everglades of Florida is limited by the density of vegetation patches (Bennetts et al. 2006) Here, I examine the role that habitat struct ure plays in foraging substrate use by snail kites on a lacustrine system in Florida, Lake Tohopekaliga (Lake Toho). Snail kites in Florida are federally listed as an endangered species (Federal Register 1967, 2007) The Florida population has been in decl ine since 1999, and currently is numbered at approximately 925 individuals (Reichert et al. 2011) The population has also shifted spatially, with the majority of breeding now occurring in the northern extent of the range on the Kissimmee Chain of Lakes in central Florida (Reichert et al. 2011) In particular, Lake Toho has accounted for 41% of all successful nests range wide in the past 5 years. Lake Toho is highly managed in terms of water levels and vegetation (HDR Engineering Inc. 1989, Welch 2 004) Given the importance of Lake Toho to the snail kite population, it is vital to understand how management activities might affect snail kite foraging. This is especially important during the snail kite breeding season when kites

PAGE 50

50 are tied to nests and cannot move as extensively in response to changes in their foraging base. In order for vegetation and water management to proceed in a manner that is beneficial to snail kite foraging, i t is vital to understand how kites use foraging habitat on the lake an d how that use shifts over time and in response to differing water levels. The objectives for this study are to describe the patterns of foraging habitat use by snail kites on Lake Tohopekaliga in relation to habitat structure as influenced by time and wat er levels. I will then examine how these patterns might contribute to the overall capacity of the lake to support breeding snail kites. Among Falconiformes, snail kites are one of the most extreme dietary specialists in the world (Sykes et al. 1995) Snail kites forage over the emergent littoral zone of lakes and locate snails visually either from flight or from a perch Snail kites then capture snails by sticking their feet in the water to grab the snail (Snyder & Snyder 1969, Sykes 1987b, Sykes et al. 199 5) T he availability of snails in a foraging substrate is surface ( within 16 cm) (Snyder & Snyder 1969) whether the substrate is inundated or dry (Sykes et al. 1995) the abundance of snails in that substrate, and the above water stem density of that substrate (with denser substrates making snails less available) (Bennetts et al. 2006) Therefore, a change in use of a foraging substrate may represent a change in snail availability through structural changes in the habitat I hypothesize that the availability of snails in a foraging substrate (and thus use of that substrate by snail kites) will vary in relation to the inundation status of the substrate, height of t he substrate in the water column, and above water density of the substrate.

PAGE 51

51 Furthermore, each individual foraging substrate will be affected differentially by these three factors based on the physical qualities and biology of that substrate (Fig. 3 1) I h ypothesize that the availability of snails in shallow water emergent substrates such as torpedograss ( Panicum repens ) and pickerelweed ( Pontedaria cordata ) will be driven primarily by whether or not the vegetation is inundated, and therefore that use of shallow water emergent substrates will be positively related to lake stage (higher lake stages leading to greater amounts of vegetation being inundated). Since deep water submerged vegetation such as hydrilla ( Hydrilla verticillata ) is constantly inundate d and has no above water stems, I hypothesize that height in the water column will be the primary driver of snail availability in deep water submerged vegetation. Thus, use of deep water submerged substrates will increase with time as the vegetation grows Deep water emergent substrates such as paspalidium ( Paspalidium geminatum ) also remain inundated throughout the year. However, the long, thin, emergent stems of these plants do not remain vertical as water levels drop. The st ems fold over as the water drops, increasing the above water density of the substrate and thus decreasing snail availability in these substrates. Further growth of the substrate with time would further increase the above water stem densities. T herefore I hypothesize that kite use of deep water emergent substrates will be positively related to lake stage and negatively related to time. Methods Data Collection In order to follow individual kite s reliably observations were carried out primarily on radio tag ged snail kites. Trapping was attempted throughout January 2009 to

PAGE 52

52 February 2011. Snail kites were trapped using aquatic bal chatri traps (Mahoney et al. 2010), and affixed with VHF radio transmitters. Transmitters were manufactured by Holohil Systems Ltd and did not weigh more than 14 g. Only non breeding kites or kites that were tending nests with eggs/nestlings were captured; kites that were in the building stage of nesting were avoided to reduce the potential of disrupting the nesting attempt. During th e breeding seasons (January August) of 2010 and 2011, the shores of Lake Toho were monitored monthly by airboat using a scanning radio receiver and yagi antenna. During each monthly radio scan, all radioed kites were located and their breeding status not ed. Once a snail kite was determined to be tending a nest, it was revisited every 2 4 days. In cases where two radioed kites were found to be tending the same nest, one bird was randomly selected for observation Each breeding kite was observed for approxi mately one hour per observation session Observations were performed between the hours of sunrise and 1 PM and between 3 PM and sunset, corresponding to the hours of greatest snail kite activity (Snyder & Snyder 1969, Sykes 1987b) A capture attempt was d efined as any time a kite initiated an attempt to capture a snail by putting its feet into the water. A successful capture was defined as any time a kite lifted a snail fully out of the water following a capture attempt. The dominant vegetation that occurr ed within an approximate ly one m radius of the capture attempt was visually identified, and will be referred to as a foraging substrate. Additionally, each capture attempt was identified as being either on off lake (o

PAGE 53

53 Observations of breeding snail kites continued until the nest failed, the young fledged, or the adult stopped tending the nest. Observations were stopped in instances or influencing the behavior of the nesting birds (as indicated by defensive calling, lack of food delivery to nestlings, etc.). Water depth at the location of each capture attempt was calculated from a 2009 Florida Fish and Wildlife Conservation Commissio n bathymetry map. Capture attempts were classified as occurring in either a shallow (0 0.5 m), mid (0.5 1 m), or deep (>1 m) water depth. This classification was done so that the vegetation being used in each depth zone could be assessed. Water depths coul d not be determined for capture attempts that occurred outside of the lake (off lake points). Success Rates in Different Foraging Substrates the use of those substrates, t he probability of capturing a snail in emergent or submerged substrates was compared using a GLMM. Whether a capture attempt was successful or not was used as the response variable, and foraging substrate was used as the explanatory variable. To account f or variability in the success rates of individual birds, individual bird was used as a random effect. The model used a binomial distribution and a logit link. Significance for this analysis was determined at =0.05. Patterns in Foraging Substrate Use Data from each year were analyzed separately. Within each month, the number of times a snail kite attempted captures in a foraging substrate was summed across the lake. Capture attempts that occurred in a mixed su bstrate were counted evenly toward

PAGE 54

54 each individual substrate of the mix (i.e. a capture attempt in a paspalidium/hydrilla mix was counted as a capture attempt in both paspalidium and hydrilla). Trends in foraging substrate use were examined using generali zed linear models (SAS 1989) Models were run with the monthly count of capture attempts in the foraging substrate as the response variable. All models included month (as a continuous numeric variable) and monthly lake stage (obtaine d from DBhydro: http://www.sfwmd.gov/dbhydroplsql ) as explanatory variables. A constant use model was also run. Models used a Poisson distribution, a log link, and the log of the monthly total number of att empts as an offset variable. To account for potential bias in months in which fewer snail kites were observed, each monthly observation was weighted by the number of snail kites observed in that month. A set of models was run for each on lake foraging subs trate that comprised greater than 5% of all capture attempts in a year. The availability of snails in substrates that occur off the main body of Lake Toho, such as alligator weed ( Alternanthera philoxeroides ) and bladderwort ( Utricualria spp. ) is likely driven by factors different from those driving the availability of snails in on lake foraging substrates. Off lake areas may support greater abundances of snails than on lake foraging substrates (see previous chapter). Additionally, lake stages may not dir ectly affect snail availability in off lake substrates and the growth of vegetation in these areas is likely different from on lake substrates due to nutrient subsidies, the presence of grazing, etc. For these reasons, trends in use of off lake substrates cannot be analyzed in the same framework as on lake substrates and thus, will not be addressed in this study.

PAGE 55

55 information criterion (AIC c ) and AIC c weights were calculated (Ak aike 1974, Sugiura 1978) Model averaging (Burnham & Anderson 2002) was conducted on all models in the model set to obtain model averaged predictions and parameter estimates. Model averaged predictions were then plotted against both month and lake stage to assess trends in use. If snail availabilities in all substrates were equal, the substrates should be used in proportion to their abundance on the lake. I n each year t he proportion of each of the primary on lake foraging substrates within all snail kite ho me ranges was obtained (see previous chapter ) Since the aerial imagery used to identify these substrates was collected later in the growing season (June) and at relatively low lake stages in each year, these proportions represent the maximum abundances of the substrates. The proportions of the primary on lake foraging substrates were plotted as constant lines across time and lake stage. If the model averaged estimates of proportional use by foraging kites fall above this line, it can be said that kites wer e selectively foraging in that substrate. However, if the estimates fall below this line the substrate was being used less than expected (Manly et al. 2002) Results Across the 2010 and 2011 breeding seasons I observed 4 12 (2010 n=1 08; 2011 n=30 4 ) captur e attempts made by a total of 18 individual birds (2010 n=13 ; 2011 n=13), tending a total of 37 nests (2010 n=16 ; 2011 n=21). Foraging Substrate Use Across both years, snail kites on Lake Tohopekaliga used a total of 15 different foraging substrates, 10 in 2010 and 14 in 2011 (Table 3 1). In 2010, 90% of all capture

PAGE 56

56 attempts occurred in five foraging substrates and in 2011 90% of all capture attempts occurred in six foraging substrates. Overall, capture attempts that occurred at shallow depth occurred primarily in torpedog rass (43%) (Table 3 2) Both mid depth and deep water capture attempts occurred primarily in paspalidium (48% and 69% respectively) (Tables 3 3 and 3 4). Off lake capture attempts most often occurred in luziola ( Luziola fluitans ) (34% ), with alligator weed being the second most used off lake foraging substrate (28%) (Table 3 5). Success Rates in Different Foraging Substrates Snail kites were less likely to capture a snail in submerged substrates (hydrilla, luziola, bladderwort) (47.7 + 6 % success) than in emergent substrates (paspalidium, torpedograss, pickerel) (64.2 + 4% success) (F=6.53, DF=356, p=0.011). Trends in Foraging Substrate Use A set of models was run for each of three primary on lake foraging substrates in 2010 and four substr ates in 2011 (Table 3 6 and 3 7). Because not all lake stages occurred each month, I focused on model averaged estimates of foraging for lake stage and month combinations that were observed (rather than marginal predictions from models). 2010 Of the three primary foraging substrates used in 2010, only use of torpedograss seemed to exhibit a trend across the breeding season. Model averaged parameter estimates indicate that the use of torpedograss was positively associated with lake + 0.4), and this trend was observed in the model averaged predictions (Fig. 3 2 ).

PAGE 57

57 Snail kites seemed to forage selectively in t orpedograss at the highest lake stages, and used torpedograss less than expected at the lowest. Pickerel, like torpedograss was used select ively at high lake stages Paspalidium wa s used less than expected throughout the season (Fig. 3 3 ). 2011 In 2011, trends were observed in three of the four primary on lake foraging substrates. Paspalidium use was negative 0.31 + 0.1) and 0.27 + 0.1). However, model averaged predictions indicate that the negative trend existed primarily with month and not lake stage, and that the relationship with lake stage might have actually been po sitive given the observed combinations of month and stage (Fig. 3 4 ). Use of p ickerel was positively associated with lake stage + 0.1), and this outcome was also observed in the model averaged predictions (Fig. 3 5 ). Use of hydrilla was positively as sociated + 0.3), and this outcome was also observed in the model averaged predictions (Fig. 3 6 ). Snail kites seemed to forage selectively in p aspalidium early in the season, but used paspalidium less than expected for the remainder of the season. Torpedograss was used select ively early in the season an d at high lake stages, but was used less than expected a t low lake stages. Snail kites foraged selectively in pickerel at high lake stages while h ydrilla was used selectively towards the end of the nesting season (Fig. 3 7 ). Discussion T rends observed in the use of pickerel and torpedograss generally followed the expected pattern of increasing use with increasing water levels in both years. In 2011, use of paspalidium also followed the predict ed trend of less use over time and greater

PAGE 58

58 use with higher water levels. These results imply that snail kite foraging in these substrates is influenced by the structure of the substrates. The trends in use of shallow water emergent substrates can be explai ned by the inundation of these substrates at high water levels. However, as water levels drop and these substrates dry out (making snails unavailable to kites) these substrates are used less by foraging snail kites. The trends in paspalidium can be explain ed by the long paspalidium stems folding as water plants grew with time, making the snails in paspalidium unavailable to foraging kites. In 2010, model averaged predictions showed paspalidium use to be almost constant across time and lake stages (Fig. 3 8 ). This difference from the trend in 2011 might be because lake stages remained higher throughout the breeding season in 2010 (Fig. 3 9 ), reducing the amount of stem folding that would have occurred and allowing snail availability in paspalidium to remain constant throughout the season. Additionally, paspalidium was used across all depth zones in 2010, and therefore its use might not have been as strongly affected by the stru ctural changes expected in a single depth zone. An alternative explanation for this result is that snail abundances were lower in paspalidium than in other substrates in 2010 perhaps because extended periods of cold weather early in the 2010 breeding seas on may have caused either snail mortality in the colder deep water habitats or snail dispersal towards warmer shallow habitats. Lower snail abundances might also explain why paspalidium was used less than expected throughout 2010. S nail abundances likely a re not constant throughout the snail kite nesting season or even between substrates. A shift in snail abundance could cause the snail availability

PAGE 59

59 of a foraging substrate to change independently of the structure of the substrate. One potential example is w hen a pulse of water from canals flows into the lake following a storm. Given that one primary method of apple snail dispersal is floating with water flow (Rawlings et al. 2007) a pulse of water could move snails from canals into the lake and cause local increases in the snail abundance associated with foraging substrates near canal inflows. Or snails might have innate preferences for certain vegetation species, even in cases where the species are structurally similar (Baker et al. 2010) Further studies investigating the use of foraging substrates by snail kites should consider that different substrates might harbor different abundances of snails perhaps by assessing The structure of submerged vegetation such as hydrilla or bladderwort is often a to securely grab a snail, leading to the lower capture success rates observed in submerged substrate s. Although capture success differed between emergent and different substrates. Use of hydrilla (the only on lake submerged foraging substrate) increased, as expected, wit h time, and was only used less than expected at the submerged substrates was lower than in emergent substrates, but was still roughly 50% and might not be low enough to deter a snail kite from attempting captures. Additionally, snail abundances might be elevated in submerged substrates, allowing kites to forage effectively despite a lower probability of capture success.

PAGE 60

60 In both years, there were periods where all on lake substrates were being used less than expected by foraging snail kites; May June in 2010 and late April in 2011 (Fig. 3 10 ). This low use of on lake substrates could be for multiple reasons : the availability of snails in all on lake substrates was simultane ously low, another source of snails became very attractive to snail kites, or both things occurred at once. The other source of snails is likely off lake foraging areas given that observed use of the primary off lake substrates seemed to increase as use o f on lake substrates declined (Fig. 3 10). A large portion of capture attempts occurred in off lake areas in both years (47% in 2010 and 28% in 2011). Little is known about the factors driving vegetative growth and structure in off lake areas or about the abundances of island apple snails in different habitats. Therefore, it is not possible at this point to say whether off lake areas became more attractive to kites and so drew kites away from on lake foraging substrates or if on lake foraging was limited by low snail availabilities, and so kites were motivated to forage off lake. Given the large use of off lake areas by snail kites not only on Lake Toho but by snail kites elsewhere on the KCOL (Reichert et al. 2011) this is a question that merits further investigation. Additionally, the presence of hydrilla may have played a role in the length of the period that on lake foraging substrates were being used less than expected by snail kites. This period was much shorter in 2011 than in 2010; without hydrilla use, the period of low on lake use might have lasted much longer. If this is the case, the presence of hydrilla on Lake Toho may allow snail kites to continue foraging on lake when the snail availabilities in other on lake foraging substrates decrease, ra ther than relying on off lake foraging areas.

PAGE 61

61 Special attention should be paid to the use of hydrilla by snail kites. Hydrilla is an (Langeland 1996) It is capable of prolific g rowth and can grow in areas where native plant species cannot. Left unchecked potentially to the detriment of other plant species (Langeland 1996) The Florida Fish and Wildlife Conservation Commission (the agency with primary responsibility for aquatic plant management in Florida) has a variety of management plans in place that aim to limit the spread of hydrilla and control hydrilla in areas where it is already established (Florida Fish and Wildlife C onservation Commision 2012) Obvious ly hydrilla cannot go unmanaged; the negative effects of a hydrilla dominated system are well documented (Langeland 1996) However, given that island apple snails will readily graze on hydrilla (Baker et al. 2010) hydri lla may be used heavily as a foraging substrate by snail kites. Therefore, in areas where hydrilla is known to be used by snail kites, hydrilla management should take into account the availability of hydrilla as a foraging substrate for snail kites. In 201 0, the use of hydrilla by foraging snail kites was negligible, representing less than 2% of all capture attempts observed that year. However, in 2011 hydrilla was the fifth most commonly used foraging substrate, and the third most common ly used of those su bstrates that occurred within the lake boundaries. There may be several reasons for this difference. In the winter of 2009 (Nov Dec), approximately 1 400 acres of hydrilla were treated on Lake Toho (FFWCC unpub lished data). Subsequently, in early January 2 010 there were approximately ten consecutive days with minimum temperatures at or below freezing and another period of sustained cold temperature in

PAGE 62

62 late February and early March (data obtained from FAWN: htt p://fawn.ifas.ufl.edu/data/ ). The combinations of the treatments and sustained cold temperatures may have 2010 (pers. obs.), and thus, to the observed low levels of us e by snail kites. Conversely, approximately 700 acres of hydrilla were treated in the winter of 2010 (Nov Dec), a bout half of what had been treated the previous year. Additionally, although temperatures reached equivalent lows in 2011, they were never sust ained for longer than three days. Thus the knockback of hydrilla in 2011 was relatively lighter than what occurred in 2009 2010 and would have allowed for greater initial amounts of hydrilla and less growth inhibition. This difference in coverage of hydr illa was reflected in hydrilla use by snail kites in 2011, which increased almost exponentially over the course of the season (Fig. 3 6 The relationship between emergent foraging substrate use and water levels and the difference in hydrilla use between 2010 and 2011 raise several hypotheses as to the importance of these vegetation types and their role in supporting snail kite breeding. In 2010, 83 snail kite nests were located on Lake Toho, while in 2011, 98 total nests were located (Reichert et al. 2011) G iven the similarity of the pattern of lake stages in 2010 and 2011 (high water levels until March followed by a recession) (Fig. 3 9) both years would have retained emergent fo raging substrates in the beginning of the season and this is reflected in the similarity of the slopes of the curves representing cumulative nest numbers (Fig. 3 11) However in 2011, the increased use of hydrilla by foraging snail kites late in the nesti ng season may have contributed to a late season burst of nests which largely accounted for the difference in total nest numbers between the two years

PAGE 63

63 (Fig. 3 11 ). In 2012, 85 snail kite nests were located on Lake Toho. This number is similar to the number of nests found there in 2010, despite hydrilla being reportedly abundant throughout the 2012 breeding season (Welch personal communication ). However even with hydrilla supplying additional foraging areas the lake stages on Lake Toho in 2012 dropped dif ferently than in either 2010 or 2011 ; lake levels steadily decreased from January to May (Fig. 3 9 ) and would have resulted in greater losses in foraging habitat early in the season Thus, the final number of nests on Lake Toho in 2012 was similar to 2010 2011, which had both high, steady early season water levels and hydrilla, had the highest number of nests of the three years. One interpretation of these patterns is that the conditions most conducive to snail kite nesting on Lake Toho would include main taining high early season water levels to maintain early season foraging habitat and the presence of hydrilla to compensate for foraging habitat lost with dropping water levels (thus sustain ing late season nesting attempts ) (Fig. 3 1) This hypothesis coul d be examined by developing a model containing data on both hydrilla abundance and lake stage Such a model may be able to predict the capacity of Lake Toho to support snail kite nests in a given year. Although maintaining high early season water levels m ight allow for the highest number of nest attempts on Lake Toho, there is the potential that doing so could cause kites to nest in undesirable areas. Lake managers must begin dropping water levels by March 15 th and must reach low pool by June (Welch, perso nal communication). Therefore, maintaining high early season lake levels means water levels will be dropped steeply in March. Snail kite nests occurring in up slope areas of the lake when the water is dropped might dry out and thus be prone to failure. The refore it is important to

PAGE 64

64 balance the possibility of causing kites to nest in undesirable areas against the need to maintain early season foraging habitat. An alternative hypothesis for the lower number of nests on Lake Toho in 2012 is the expansion of kit e breeding to other wetlands in the range. Relative to 2011, 2012 nest numbers increased on many wetlands throughout the range, including Lake Okeechobee, East Lake Tohopekaliga, and WCA3A (Kitchens, unpublished data). The lower nest numbers on Lake Toho i n 2012 might be explained by snail kites that had previously bred on Lake Toho moving to and breeding on other wetlands. As island apple snails continue to expand throughout the wetlands of Florida, it is likely that snail kite breeding will follow suit, r esulting in a snail kite population that will be less concentrated on the KCOL.

PAGE 65

65 Table 3 1. Frequency of use of each foraging substrate on Lake Tohopekaliga in 2010 and 2011. NA indicates that a substrate was not observed being used in that year. n is the number of capture attempts observed. Foraging Substrate Overall (n=412) 2010 (n=108) 2011 (n=304) Paspalidium 0.34 0.34 0.34 Torpedograss 0.13 0.06 0.16 Luziola 0.12 0.41 <0.01 Bladderwort 0.10 NA 0.14 Alligator weed 0.09 <0.01 0.12 Hydrilla 0.09 0.0 1 0.11 Pickerel 0.08 0.08 0.08 Ditch 0.03 NA 0.04 Open Water 0.02 0.02 0.02 Spadderdock 0.01 NA 0.01 Hyacinth <0.01 NA <0.01 Lotus <0.01 <0.01 <0.01 Eel grass <0.01 <0.01 <0.01 Bulrush <0.01 <0.01 NA Water lettuce <0.01 NA <0.01 Table 3 2. Frequ ency of foraging substrate use in shallow water depths (0 0.5 m). n is the number of capture attempts observed. Foraging Substrate Overall (n=65) 2010 (n=16) 2011 (n=49) Torpedograss 0.43 0.25 0.49 Pickerel 0.26 0.06 0.33 Paspalidium 0.22 0.66 0.08 Eel Grass 0.02 0.03 0.02 Luziola 0.02 0.00 0.02 Pasture Grass 0.02 0.00 0.02 Primrose 0.02 0.00 0.02 Spadderdock 0.02 0.00 0.02

PAGE 66

66 Table 3 3. Frequency of foraging substrate use in mid water depths (0.5 1 m). n is the number of capture attempts observed Foraging Substrate Overall (n=98) 2010 (n=22) 2011 (n=76) Paspalidium 0.48 0.57 0.46 Torpedograss 0.23 0.05 0.29 Pickerel 0.12 0.16 0.11 Hydrilla 0.09 0.05 0.10 Lotus 0.03 0.00 0.03 Open Water 0.02 0.09 0.00 Bulrush 0.01 0.05 0.00 Luziola 0.01 0. 05 0.00 Water Lettuce 0.01 0.00 0.01 Table 3 4. Frequency of substrate use in deep water depths (>1 m). n is the number of capture attempts observed. Foraging Substrate Overall (n=113) 2010 (n=19) 2011 (n=94) Paspalidium 0.69 0.76 0.68 Hydrilla 0.24 0 .03 0.28 Primrose 0.04 0.16 0.01 Spadderdock 0.03 0.00 0.03 Bulrush <0.01 0.03 0.00 Lotus <0.01 0.03 0.00 Table 3 5. Frequency of substrate use in off lake areas. n is the number of capture attempts observed. Foraging Substrate Overall (n=136) 2010 ( n=51) 2011 (n=85) Luziola 0.34 0.86 0.02 Alligator weed 0.28 0.02 0.44 Bladderwort 0.17 0.00 0.27 Ditch 0.08 0.00 0.13 Open Water 0.05 0.00 0.08 Pickerel 0.03 0.08 0.00 Torpedograss 0.03 0.04 0.02 Hyacinth 0.02 0.00 0.04

PAGE 67

67 Table 3 6. Generalized l inear model results for the three primary foraging substrates in 2010. Month Stage Substrate Model C AIC C Weight Estimate SE Estimate SE Paspalidium Intercept Only 0.00 0.80 Month 3.60 0.13 0.07 0.06 Stage 4.85 0.07 0.06 0.15 Month+Stage 12.63 0.00 0.11 0.08 0.17 0.18 Torpedograss Stage 0.00 0.99 2.58 0.40 Mont h+Stage 9.01 0.01 0.10 0.10 2.70 0.42 Month 52.57 0.00 0.47 0.22 Intercept Only 53.41 0.00 Pickerel Stage 0.00 0.72 0.95 0.23 Month 2.03 0.26 0.53 0.16 Month+Stage 7.24 0.02 0.22 0.16 0.71 0.30 Intercept Only 10.24 0. 00

PAGE 68

68 Table 3 7. Generalized linear model results for the four primary foraging substrates in 2011. Month Stage Substrate Model C AIC C Weight Estimate SE Estimate SE Paspalidium Month+Stage 0.00 0.88 0.32 0.06 0.30 0.10 Month 4.01 0.12 0.18 0.03 Stage 29.92 0.00 0.16 0.05 Intercept Only 34.37 0.00 Torpedograss Month+Stage 0.00 0.63 0.19 0.07 0.40 0.14 Stage 2.36 0.19 0.69 0.08 Month 2.60 0.17 0.37 0.04 Intercept Only 77.04 0.00 Pickerel Stage 0.00 0.88 0.88 0.11 Month+Stage 4.02 0.12 0.11 0.09 0.72 0.18 Month 14.50 0.00 0.42 0.06 Intercept Only 70.22 0 .00 Hydrilla Month+Stage 0.00 0.88 1.08 0.08 0.54 0.20 Month 1.90 0.34 1.00 0.06 Stage 225.62 0.00 0.84 0.15 Intercept Only 256.70 0.00

PAGE 69

69 Figure 3 1. Diagram of the expected changes in structure, and thus snail avail ability, of snail kite foraging substrates in a lacustrine system.

PAGE 70

70 Figure 3 2 Model averaged estimates of torpedograss use by breeding snail kites in 2010 on Lake Tohopekaliga plotted against lake stage. Error bars indicate 95% confidence limits.

PAGE 71

71 Figure 3 3 Model averaged estimates for the primary on lake foraging substrates used by breeding snail kites on Lake Tohopekaliga in 2010. Estimates are plotted against month (A) and lake stage (B).

PAGE 72

72 Figure 3 4 Model averaged estimates of paspalidium use by breeding snail kites in 2011 on Lake Tohopekaliga plotted against month (A) and lake stage (B). Error bars indicate 95% confidence limits.

PAGE 73

73 Figure 3 5 Model averaged estimates of pickerel use by breeding snail kites in 2011 on Lake Tohopekaliga p lotted against lake stage (B). Error bars indicate 95% confidence limits.

PAGE 74

74 Figure 3 6 Model averaged estimates of hydrilla use by breeding snail kites in 2011 on Lake Tohopekaliga plotted against month. Error bars indicate 95% confidence limits.

PAGE 75

75 Figu re 3 7 Model averaged estimates for the primary foraging substrates used by breeding snail kites on Lake Tohopekaliga in 2011. Estimates are plotted against month (A) and lake stage (B).

PAGE 76

76 Figure 3 8 Model averaged estimates of paspalidium use by breedin g snail kites in 2010 on Lake Tohopekaliga plotted against month (A) and lake stage (B). Error bars indicate 95% confidence limits.

PAGE 77

77 Figure 3 9 Lake stages on Lake Tohopekaliga in 2010, 2011, and 2012. Data obtained from DBhydro ( http://www.sfwmd.gov/dbhydroplsql ).

PAGE 78

78 Figure 3 10 Model averaged estimates for the primary foraging substrates used by breeding snail kites on Lake Tohopekaliga in (A) 2010 and (B) 2011 Vertical red lines indicate the period d uring which all on lake foraging substrates were used less than expected. Black circles indicate the observed frequency of use of the primary off lake foraging substrate in each year.

PAGE 79

79 Figure 3 11 Cumulative number of snail kite nesting attempts on Lake Tohopekaliga in 2010, 2011, and 2012.

PAGE 80

80 CHAPTER 4 CONCLUSIONS This study has highlight ed several factors that are important to the conservation of the snail kite in Florida. Foraging communities that occur on the main body of Lake Toho are likely highly important for breeding snail kites Snail kite nests occurring on the main body of the lake experience conditions that reduce predation risk (stable and deep water levels and separation of nesting areas from terr estrial predators) However, the use of on l ake foraging substrates by kites is affected by on lake conditions. Specifically, water levels likely alter the snail availability in foraging substrates by changing the structure of the foraging substrates. Foraging substrates that occur in shallow water, such as pickerel and torpedograss, are used less by snail kites as lake levels drop and the substrates dry out. Deep water emergent substrates, such as paspalidium, are also less used at low lake levels. Dropping lake levels cause the stems to fold and fo substrate to foraging snail kites. Given that lake levels inevitably drop over the course of the snail kite nesting season, snail availability in both shallow and deep water emerg ent substrates will invariably decrease over the season as well Therefore, how lake levels are managed over the course of the snail kite breeding season is important to maintaining snail availability in on lake foraging substrates Maintaining high early season lake stages will allow for emergent foraging substrates to maintain higher snail availabilities for longer into the season. There is the potential that maintaining high early season water levels will cause kites to nest in up slope areas of the lak e that will dry out later in the season. The potential for causing kites to nest in undesirable areas must be carefully balanced with

PAGE 81

81 the need to maintain early season foraging habitat. One way to do this would be to base recession rates on how high the la ke stage is in January. If the lake is at or near maximum pool (55.0 NGVD ft) a steady recession from January to June might be preferable to ensure that kites do not attempt nesting in up slope areas. Furthermore, the greater initial area of foraging habit at (due to the high water levels) might compensate for the steady, continual loss of foraging habitat. If lake levels are already low in January, then drawing kites to nest in up slope areas becomes less of an issue; the up slope areas are likely already d ry. In this case, water levels should be maintained for as long as possible to maintain as much foraging habitat as possible. Hydrilla is an on lake foraging substrate with a structure that is not directly affected by water levels. Snail availability in hydrilla increases with time, as hydrilla grows from in the snail kite nesting season, when the snail availability in the emergent substrates has decreased. Theref ore hydrilla may be a foraging substrate that is important to sustaining snail kite nests that are initiated later in the season. It is important to note that hydrilla is likely populated predominantly by the exotic island apple snail. Therefore hydrilla would not have represented a viable foraging substrate prior to 200 6 the year when the island apple snail had become widespread throughout Lake Toho. Thus, the combined presence of the island apple snail and hydrilla on Lake Toho may sustain snail kite n esting later into the year than when emergent substrates were the only available foraging substrates Although capture success rates were lower in hydrilla hydrilla. Sn ail kites might continue to use hydrilla in spite of these lower success rates

PAGE 82

82 either because the success rates are not low enough to deter foraging or because there are elevated abundances of snails in hydrilla that compensate for the lowered success rate s. The area used by snail kites tending a nest on Lake Toho was negatively related to the foraging rate of that bird. This would imply that home range area can be used as a rough indicator of the snail availability within that area, with smaller home range s indicating higher snail availabilities. The use of home range area an indicator of foraging habitat quality is limited to snail kites actively tending nests on Lake Toho and therefore should be cautiously extended to similar systems (lakes systems suppor ting primarily island apple snails). However, further study is needed before home range area can be used as an indicator for assessing foraging habitat quality in differently structured environments that are lacking island apple snails, such as the palustr ine systems in south Florida. Snail kites foraged in areas that are outside the main body of Lake Toho in both years of the study. It would appear that the off lake areas used by snail kites have higher snail availabilities given the higher foraging rates in these areas. The snail abundances in off lake areas may be high relative to on lake foraging substrates The nutrient loading that likely occurs in off lake wetlands would increase vegetative growth that would s upport higher numbers of snails and would increase the vegetative structure needed to loft snails to within reach of a foraging snail kite. The presence of cattle in some of the off lake wetlands may additionally increase nutrient levels and therefore, benefit snail numbers. Furthermore, aquatic snail predators, such as redear sunfish and crayfish, are likely limited in areas with unstable water levels, decreasing the predation

PAGE 83

83 pressure that the snail populations experience in these areas. Additionally, foraging rates in these areas may be elevate d by the high numbers of perches directly proximal to foraging substrates, allowing snail kites to perch hunt to a greater degree. Future work should focus on how changes such as vegetation treatments, different grazing regimes, or nutrient pulses from run off affect the snail availability in off lake foraging areas, and how snail kites respond to those changes. Understanding the attractiveness of off lake foraging areas to snail kites is vital because off lake areas may serve as ecological trap s to snail ki tes that are attracted to nest there because of the high snail availabilities. Off lake areas are likely to be populated predominantly by island apple snails and so represent a novel foraging area to snail kites. Unlike traditional areas that would have be en populated by the native Florida apple snail, off lake foraging areas often have shallow, unstable water levels which may leave snail kite nests vulnerable to terrestrial predators. Snail kite nesting should be discouraged in off lake areas, either by th e removal of potential nesting substrate from within off lake areas or by providing suitable on lake nesting areas proximal to off lake foraging areas. If off lake areas can be prevented from becoming an ecological trap for snail kites, they do potentially represent high quality foraging areas that may be able to support nests when snail availability in on lake foraging substrates decreases.

PAGE 84

84 LIST OF REFERENCES Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716 723 Baker P, Zimmanck F, Baker SM (2010) Feeding rates of an introduced freshwater gastropod ( Pomacea insularum ) on native and non indigenous aquatic plants in florida. Journal of Molluscan Studies 76:138 143 Barnes MA, Fordham RK, Burks RL, Hand JJ (2008) Fecundity of the exotic apple snail, Pomacea insularum Journal of the North American Benthological Society 27:738 745 Bechard MJ (1982) Effect of vegetative cover on foraging site selection by S wainson's hawk s The Condor 84:153 159 B eissinger SR (1983) Hunting behavior, prey selection, and energetics of snail kites in Guyana : Consumer choice by a specialist. The Auk 100:84 92 Beissinger SR (1988) The snail kite. In: Palmer RS (ed) Handbook of North A merican birds, Vol 4 Yale Univers ity Press, New Haven, CT, p 148 165 Beissinger SR, Snyder NFR (1987) Mate desertion in the snail kite. Animal Behaviour 35:477 487 Bennetts RE, Darby PC, Karunaratne LB (2006) Foraging patch selection by snail kites in response to vegetation structure an d prey abundance and availability. Waterbirds 29:88 94 Bennetts RE, Kitchens WM (1997) Population dynamics and conservation of snail kites in Florida: The importance of spatial and temporal scale. Colonial Waterbirds 20:324 329 Benson AJ (2007) Pomacea i nsularum Non indigenous Aquatic Species Database http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=2599# (accessed 3 October 2012) Blake GR (1980) Land into water water into land, University Presses of Florida, Tallahassee, FL Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information theoretic approach, Springer Verlag New York Inc. New York NY Burt WH (1943) Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24:346 352

PAGE 85

85 Cattau CE, Martin J, Kitchens WM (2010) Effects of an exotic prey species on a native specialist: Example of the snail kite. Biological Conservation 143:513 520 Cooper RJ, Whitmor e RC (1990) Arthropod sampling methods in ornithology. In: Morrison ML, Ralph CJ, Verner JRJ (eds) Studies in avian biology, Vol 13, p 29 37 Darby P, Bennetts R, Percival H (2008) Dry down impacts on apple snail ( Pomacea paludosa ) demography: Implications for wetland water management. Wetlands 28:204 214 Darby P, Valentine Darby P, Percival H, Kitchens W (2001) Collecting Florida apple snails ( Pomacea paludosa ) from wetland habitats using funnel traps. Wetlands 21:308 311 Darby PC, Bennetts RE, Croop JD, Valentine Darby PL, Kitchens WM (1999) A comparison of sampling techniques for quantifying abundance of the Florida apple snail ( Pomacea paludosa SAY ). Journal of Molluscan Studies 65:195 208 Darby PC, D.J. Mellow, and M.L. Watford (2007) Food handling d ifficulties for snail kites capturing non native apple snails. Florida Field Naturalist 35:79 85 Darby PC, Glass NH, Mellow DJ, Kell SE, Eckert RE, Valentine Darby PL (2009) Apple snail demography in the E verglades: 2005 2007. Report to the U.S. Fish and Wildlife Service, Vero Beach, FL Darby PC, Valentine Darby PL, Percival HF (2003) Dry season survival in a Florida apple snail ( Pomacea paludosa SAY ) population. Malacologia 45:179 184 Darby PC, Valentine Darby PL, Percival HF, Kitchens WM (2004) Florida apple snail ( Pomacea paludosa SAY ) responses to lake habitat restoration activity. Archiv f r Hydrobiologie 161:561 575 Davies NB, Houston AI (1981) Owners and satellites: The economics of territory defence in the pied wagtail, Motacilla alba Journal of Animal Ecology 50:157 180 Desa M (2008) How aquatic fauna responded to large scale lake management in Lake T ohopekaliga, Florida. MS thesis, University of Florida Gainesville, FL Drent RH, Daan S (1980) The prudent parent: Energetic adjustments in avia n breeding. Arctic 68:225 for a flexible asymmetrical approach. Ecological Monographs 67:345 366

PAGE 86

86 Estebenet AL, Martin PR (2002) Pomacea canaliculata (G astropoda: Ampullariid ae): Life history traits and their plasticity. Biocell 26:83 89 Federal Register (1967) Endangered species list 1967. U .S. Fish and Wildlife Service p 4001 Fede ral Register (2007) Notice. U.S. Fish and Wildlife Service p 14132 14133 Fletcher RJ, Ace vedo MA, Reichert BE, Pias KE, Kitchens WM (2011) Social network models predict movement and connectivity in ecological landscapes. Proceedings of the National Academy of Sciences 108:19282 19287 Florida Fish and Wildlife Conservation Commision (2012) F WC C hydrilla management position statement http://myfwc.com/fishing/freshwater/black bass/first year updates/hydrilla/ (accessed 20 October 2012) Ford RG (1983) Hom e range in a patchy environment: Optimal foraging predictions. American Zoologist 23:315 326 Gathumbi SM, Bohlen PJ, Graetz DA (2005) Nutrient enrichment of wetland vegetation and sediments in subtropical pastures. Soil Sci Soc Am J 69:539 548 Hanning GW (1979) Aspects of reproduction in Pomacea paludosa ( M esogastropoda : Pilidae). MS thesis, Florida State University, Tallahassee, FL HDR Engineering Inc. (1989) Technical report for the development of a surface water impro vement and management plan for La ke T ohopekaliga/ East Lake T ohopekaliga Report to the South Florida Water Management District, HDR Engineering Inc. Tampa FL Holmes RT, Schultz JC (1988) Food availability for forest birds: Effects of prey distribution and abundance on bird foraging. Ca nadian Journal of Zoology 66:720 728 Hutto RL (1981) Temporal patterns of foraging activity in some wood warblers in relation to the availability of insect prey. Behavioral Ecology and Sociobiology 9:195 198 Hutto RL (1990) Measuring the availability of food resources. In: Morrison ML, Ralph CJ, Verner JRJ (eds) Studies in avian biology, Vol 13, p 20 28 Janetos AC (1982) Active foragers vs. Sit and wait predators: A simple model. Journal of Theoretical Biology 95:381 385 Kahl R (1993) Aquatic m acrophyte ecology in the upper W innebago Pool L akes, Wisconsin Technical bulletin, Wisconsin Department of Natural Resources, Madison, WI

PAGE 87

87 Langeland KA (1996) Hydrilla verticillata (L.F.) Royle (H ydrocharitaceae), T he perfect aquatic weed". Castanea 61:293 304 La ver P (2005) A BODE Virginia Tech, Blacksburg, VA Lovette IJ, Holmes RT (1995) Foraging behavior of American redstarts in breeding and wintering habitats: Implications for relative food availability. The Condor 97:782 791 Mahoney PJ, Meyer KD, Zimmerman GM, Cattau CE (2010) An aquatic bal chatri for trapping snail kites ( R ostrhamus sociabilis ). Southeastern Naturalist 9:721 730 Mallison CT, Stocker RK, Cichra CE (2001) Physical and vegetative characteristics of floating islands. Journal of Aquatic Plant Management 39:107 111 Manly BFJ McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals : Statistical design and analysis for field studies, Kluwer Academic Publishers Dordecht Mariani JM, Manuwal DA (1990) Fact ors influen cing brown creeper ( C erthia americana ) abundance patterns in the southern washington cascade range. In: Morrison ML, Ralph CJ, Verner JRJ (eds) Studies in avian biology, Vol 13, p 53 57 Martin J, Kitchens WM, Hines JE (2007a) Importance of well designed m onitoring programs for the conservation of endangered species: Case study of the snail kite. Conservation Biology 21:472 481 Martin J, Kitchens WM, Hines JE (2007b) Natal location influences movement and survival of a spatially structured population of sn ail kites. Oecologia 153:291 301 Martin J, Kitchens WM, Oli M, Cattau CE (2008) Relative importance of natural disturbances and habitat degradation on snail kite population dynamics. Endangered Species Research 6:25 39 McCune B, Mefford MJ (2006) P C ORD : Multivariate analysis of ecological data. MjM Software, Gleneden Beach, OR Morrison W, Hay M (2011) Feeding and growth of native, invasive and non invasive alien apple snails ( A mpullariidae) in the United States : Invasives eat more and grow more. Biologi cal Invasions 13:945 955 Perry MC (1974) Ecological studies of the apple snail at Lake Woodruff N ational Wildlife R efuge. Florida Scientist 36:22 30 Pias K, Welch Z, Kitchens W (2012) An artificial perch to help snail kites handle an exotic apple snail. Waterbirds 35:347 351

PAGE 88

88 Preston CR (1990) Distribution of raptor foraging in relation to prey biomass and habitat structure. The Condor 92:107 112 Price T (1981) The ecology of the greenish w arbler P hylloscopus trochiloides in its winter quarters. Ibis 123: 131 144 Ramakrishnan V (2007) Salinity, p H temperature, dessication, and hypoxia tolerance in the invasive freshwater apple snail Pomacea insularum PhD dissertation, University of Texas Arlington, TX Rawlings T, Hayes K, Cowie R, Collins T (2007) The identity, distribution, and impacts of non native apple snails in the continental U nited S tates. BMC Evolutionary Biology 7:97 Reichert B, Cattau C, Kitchens W, Fletcher R, Olbert J, Pias K, Zweig C (2011) Snail kite demograp hy annual report. Report to th e U.S. Army Corp of Engineers, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL Richardson JR, Bryant WL, Kitchens WM, Mattson JE, Pope KR (1990) An evaluation of refuge habitats and relationships to water qualit y, quantity, and hydroperiod: A synthesis report. Report to the Arthur. R. Marshall Loxahatchee National Wildlife Refuge, Florida Cooperative Fish and Wildlife Research Unit, Gainesville, FL Robertson BA, Hutto RL (2006) A framework for understanding ecol ogical traps and an evaluation of existing evidence. Ecology 87:1075 1085 Robinson SK, Holmes RT (1982) Foraging behavior of forest birds: The relationships among search tactics, diet, and habitat structure. Ecology 63:1918 1931 Robinson SK, Holmes RT (1 984) Effects of plant species and foliage structure on the foraging behavior of forest birds. The Auk 101:672 684 SAS (1989) S AS / STAT user's guide, Vol 2 SAS Institute, Cary, NC Schlaepfer MA, Ru nge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends in Ecology & E volution 17:474 480 Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA (1999) Effects of sample size on kernel home range estimates. The Journal of Wi ldlife Management 63:739 747 Seuffert M, Martn P (2010) Dependence on aerial respiration and its influence on microdistribution in the invasive freshwater snail Pomacea canaliculata (Caenogastropoda: A mpullariidae). Biological Invasions 12:1695 1708

PAGE 89

89 Shar fstein B, Steinman AD (2001) Growth and survival of the Florida apple snail ( Pomacea paludosa ) fed 3 naturally occurring macrophyte assemblages. Journal of the North American Benthological Society 20:84 95 Snyder NFR, Beissinger SR, Chandler RE (1989) Rep roduction and demography of the Florida kite. The Condor 91:300 316 Snyder NFR, Kale HW, II (1983) Mollusk predation by snail kites in Colombia The Auk 100:93 97 Snyder NFR, Snyder AH (1969) A comparative study of mollusc predation by limpkins, everglade kites, and boat tailed grackles. Living Bird 8:177 223 Snyder NFR, Snyder HA (1971) Defenses of the Florida apple snail Pomacea paludosa Behaviour 40:175 215 Sugiura N (1978) Further analysts of the data by A kaike' s information crite rion and the finite corrections. Communications in Statistics Theory and Methods 7:13 26 Swihart RK, Slade NA (1997) On testing for independence of animal movements. Journal of Agricultural, Biological, and Environmental Statistics 2:48 63 Sykes PW (19 87a) Snail kite nesting ecology in Florida Florida Field Naturalist 15:57 70 Sykes PW, Jr. (1987b) The feeding habits of the snail kite in Florida USA. Colonial Waterbirds 10:84 92 Sykes PW, Jr. (1987c) Some aspects of the breeding biology of the snail kite in Florida Journal of Field Ornithology 58:171 189 Sykes PW, Jr., Rodgers JA, Jr., Bennetts RE (1995) Snail kite. Birds of North America 171:1 32 Sykes PWJ (1983) Snail kite use of the freshwater marshes of south Florida Florida Field Naturalist 11:73 88 Thiengo SC (1987) Observations on the morphology of Po m a cea lineata (Spix, 1827) (M ollusca : A mpullariidae). Memorias de Instituto Oswaldo Cruz 88:67 71 Thiollay J M (1988) Comparative foraging success of insectivorous birds in tropical and tempe rate forests: Ecological implications. Oikos 53:17 30 Turner RL (1996) Use of stems of emergent plants for oviposition by the Florida apple snail, Pomacea paludosa and implications for marsh management. Florida Scientist 59:34 49

PAGE 90

90 Turner RL, Mikkelsen PM (2004) Annotated bibliography of the Florida apple snail, Pomacea paludosa ( SAY) (G astropoda : Ampullariidae), from 1824 to 1999, Delaware Museum of Natural History, Wilmington, DE Valentine Darby PL, Darby PC, Bennetts RE, Kitchens WM, Percival HF (2008) The use of mark recapture to estimate Florida apple snail ( Pomacea paludosa SAY ) density in wetland habitats. Florida Scientist 71:115 127 Wegener WL, Williams VP, Holcomb D (1973) Water level manipulation. Annual progress report, Florida Game and Freshwa ter Fish Commission, Tallahassee, FL Welch Z (2004) Littoral vegetation of Lake Tohopekaliga : Community descriptions prior to a large scale fisheries habitat enhancement project. MS thesis, University of Florida Gainesville, FL Worton BJ (1989) Kernel m ethods for estimating the utilization distribution in home range studies. Ecology 70:164 168 Zweig C, Kitchens WM (2008) Effects of landscape gradients on wetland vegetation communities: Information for large scale restoration. Wetlands 28:1086 1096

PAGE 91

91 B IOGRAPHICAL SKETCH Kyle Pias received his B.S. in e nvironmental s cience from Trinity College in Hartford, Connecticut. His interests include conservation biology and avian ecology. He has worked on research projects involving a variety of avian species, in cluding crested caracaras, island scrub jays, and red tailed hawks.