<%BANNER%>

Dynamics and Nonlinear Control of Electromagnetic Docking/Assembly and Proximity Operations

Permanent Link: http://ufdc.ufl.edu/UFE0044797/00001

Material Information

Title: Dynamics and Nonlinear Control of Electromagnetic Docking/Assembly and Proximity Operations
Physical Description: 1 online resource (93 p.)
Language: english
Creator: Huo, Ke
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: assembly -- control -- docking -- dynamics -- electromagnetic
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The use of electromagnetic actuators in attitude control system has been considered as an effective and reliable approach for low Earth orbit (LEO) satellites. One recent application is Electromagnetic Formation Flight (EMFF) which controls the relative translational degrees of freedom between satellites. Compared to the use of traditional thrusters, using an electromagnetic force and torque in multi-spacecrafts missions has some distinct advantages, such as no propellant consumption and plume contamination, as well as continuous controllability. The advantages of electromagnets however come at the cost of highly nonlinear and coupled dynamics. Extending the EMFF approach to rendezvous and docking, this paper focuses on providing small satellites a docking capability in both axial and circumferential directions through the use of two sets of electromagnetic coils. For implementation, a novel control strategy is also presented. The first problem which needs to be solved is the model of electromagnetic field and generated force and torque between two electromagnetic coils. The force and torque are not only functionally related to the characteristics of the coils but are also dependent on the relative position and attitude of the two satellites in proximity of one another. Both a numerically exact model and an analytic far-field model have been built and compared in this paper. This thesis provides a capable electromagnetic docking strategy for two satellites. Each of the satellites in electromagnetic docking system is equipped with reaction wheels and a set of three orthogonal current driven coils. With the assistance of reaction wheels, decoupling the 3-dimensional docking problem to several steps of principal basic cases provides full docking capabilities of the small satellites. Dynamics analysis and nonlinear controller design have been developed. As well, an overall control strategy and a complete simulation have been demonstrated. Power consumption and disturbances due to both gravity and the earth magnetic field are considered in an on-orbit scenario.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Ke Huo.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Wiens, Gloria J.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0044797:00001

Permanent Link: http://ufdc.ufl.edu/UFE0044797/00001

Material Information

Title: Dynamics and Nonlinear Control of Electromagnetic Docking/Assembly and Proximity Operations
Physical Description: 1 online resource (93 p.)
Language: english
Creator: Huo, Ke
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: assembly -- control -- docking -- dynamics -- electromagnetic
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The use of electromagnetic actuators in attitude control system has been considered as an effective and reliable approach for low Earth orbit (LEO) satellites. One recent application is Electromagnetic Formation Flight (EMFF) which controls the relative translational degrees of freedom between satellites. Compared to the use of traditional thrusters, using an electromagnetic force and torque in multi-spacecrafts missions has some distinct advantages, such as no propellant consumption and plume contamination, as well as continuous controllability. The advantages of electromagnets however come at the cost of highly nonlinear and coupled dynamics. Extending the EMFF approach to rendezvous and docking, this paper focuses on providing small satellites a docking capability in both axial and circumferential directions through the use of two sets of electromagnetic coils. For implementation, a novel control strategy is also presented. The first problem which needs to be solved is the model of electromagnetic field and generated force and torque between two electromagnetic coils. The force and torque are not only functionally related to the characteristics of the coils but are also dependent on the relative position and attitude of the two satellites in proximity of one another. Both a numerically exact model and an analytic far-field model have been built and compared in this paper. This thesis provides a capable electromagnetic docking strategy for two satellites. Each of the satellites in electromagnetic docking system is equipped with reaction wheels and a set of three orthogonal current driven coils. With the assistance of reaction wheels, decoupling the 3-dimensional docking problem to several steps of principal basic cases provides full docking capabilities of the small satellites. Dynamics analysis and nonlinear controller design have been developed. As well, an overall control strategy and a complete simulation have been demonstrated. Power consumption and disturbances due to both gravity and the earth magnetic field are considered in an on-orbit scenario.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Ke Huo.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Wiens, Gloria J.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0044797:00001


This item has the following downloads:


Full Text

PAGE 1

DYNAMICSANDNONLINEARCONTROLOFELECTROMAGNETICDOCKING/ASSEMBLYANDPROXIMITYOPERATIONSByKEHUOATHESISPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFMASTEROFSCIENCEUNIVERSITYOFFLORIDA2012

PAGE 2

c2012KeHuo 2

PAGE 3

Tomyparents 3

PAGE 4

ACKNOWLEDGMENTS Iwouldliketakethetimetopubliclyacknowledgeandthank:committeemembers,Dr.Wiens,CarlD.CraneandPrabirBarooah,forallthefeedbacksonmythesis,professorsfromclass,WarrenDixonandNormanG.Fitz-Coy,forlecturinggreatonnonlinearcontrolanddynamicsrespectively.IalsowanttothankYimingXu,KarlBrandt,YilunLiu,PaulMoore,forthegreatsupports.Ofcourse,anotherpersonIshouldthankismygirlfriendwhohasn'tbeenappearingforlasttwoyears.AdditionallythanksgoouttoallthehelpIhavereceivedinwriting. 4

PAGE 5

TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 LISTOFSYMBOLS .................................... 10 ABSTRACT ......................................... 13 CHAPTER 1INTRODUCTION ................................... 15 1.1Motivation .................................... 15 1.2PreviousRelativeWork ............................ 16 1.3OverviewoftheResearchandThesis .................... 18 2MODELLINGTHEELECTROMAGNETICFORCESADCTORQUES ..... 20 2.1Overview .................................... 20 2.2DerivationoftheExactModel ......................... 20 2.2.1MagneticField ............................. 20 2.2.2ForceandTorque ............................ 23 2.3Far-FieldModelofElectromagneticForceandTorque ........... 24 2.3.1DerivationofFar-FieldModel ..................... 24 2.3.22Dimensional(2-D)CoplanarCase ................. 28 2.3.3Co-AxialTwistCase .......................... 30 2.3.43Dimensional(3-D)Representation ................. 32 2.3.5DipoleLinearSuperposition ...................... 35 2.4ModelEvaluation ................................ 36 3DYNAMICMODELS ................................. 38 3.1Overview .................................... 38 3.2SystemDescription .............................. 38 3.2.1GeometryofDifferentCoordinateSystem .............. 38 3.2.2DockingStrategy ............................ 42 3.3BasicDynamicFundamentalEquations ................... 43 3.4DynamicsforSpecicSteps .......................... 43 3.4.1Step1.A ................................. 43 3.4.1.1Translationaldynamics ................... 44 3.4.1.2Rotationaldynamics ..................... 47 3.4.2Step1.B ................................. 49 3.4.2.1Translationaldynamics ................... 50 5

PAGE 6

3.4.2.2Rotationaldynamics ..................... 51 3.4.3Step1.C ................................. 52 3.4.3.1Translationaldynamics ................... 53 3.4.3.2Rotationaldynamics ..................... 53 3.4.4Step2 .................................. 54 4CONTROLLAWSANDSIMULATIONRESULTS ................. 56 4.1Overview .................................... 56 4.2ControlStrategy ................................ 56 4.3ControllerDesignforEachStep ........................ 58 4.3.1ControllerforStep1.A ......................... 61 4.3.1.1Step1.A.0controlofdand ................ 62 4.3.1.2Step1.A.1controldand ................. 65 4.3.2ControllerforStep1.B ......................... 65 4.3.2.1Step1.B.0controldand ................. 66 4.3.2.2Step1.B.1controldand ................. 66 4.3.3ControllerforStep1.C ......................... 67 4.3.4ControllerforStep2 .......................... 68 4.4AssumptionsforSimulationParameters ................... 68 4.5SimulationandResult ............................. 70 4.5.1SeparateSimulationResultforEachController ........... 70 4.5.1.1SimulationforStep1.A.0 .................. 70 4.5.1.2SimulationforStep1.A.1 .................. 73 4.5.1.3SimulationforStep1.C ................... 74 4.5.1.4SimulationforStep2 .................... 76 4.5.2CompleteSimulation .......................... 76 5THELOWEARTHORBITCHALLENGES ..................... 82 5.1Overview .................................... 82 5.2GravitationalField ............................... 82 5.3GeomagneticField ............................... 85 6CONCLUSION .................................... 88 6.1SummaryoftheThesis ............................ 88 6.2FutureWork ................................... 89 APPENDIX AMATRIXNORM .................................... 90 REFERENCES ....................................... 91 BIOGRAPHICALSKETCH ................................ 93 6

PAGE 7

LISTOFTABLES Table page 4-1InitialconditionforsimulationofStep1.A.0 .................... 72 4-2InitialconditionsforsimulationofStep1.A.1 .................... 73 4-3InitialconditionsforsimulationofStep1.C ..................... 75 4-4Initialconditionsforcompletesimulation ...................... 78 4-5Completesimulationresult ............................. 79 7

PAGE 8

LISTOFFIGURES Figure page 1-1MagneticactuatorcongurationinaCubeSat. .................. 16 1-2Electromagneticformationightvehicle. ...................... 17 1-3Electromagneticdockingstrategy. ......................... 18 2-1Aloopofcurrent. ................................... 22 2-2Twoloopsofcurrent. ................................. 23 2-32dimensional(2-D)coplanarcoils. ......................... 29 2-4Alignedconguration. ................................ 30 2-5Torquesvarywithangles. .............................. 31 2-6Intersectinglinesforcontrollostfortorques. .................... 31 2-7Co-axialtwistcase. ................................. 32 2-8Euleranglerepresentation. ............................. 33 2-9Linearsuperposition. ................................. 35 2-10Comparingthefar-eldforcemodelagainsttheexactmodel. .......... 36 2-11Comparingthefar-eldtorquemodelagainsttheexactmodel. ......... 36 3-1Geometryofdifferentcoordinatesystem. ..................... 39 3-2Denitionofrotatedreferencecoordinatesystem. ................. 40 3-3Relationshipbetweenbodyxedframeandrotatedreferenceframe. ...... 41 3-4SubdivisionforStep1. ................................ 42 3-53dimensional(3-D)illustrationforStep1.A. .................... 44 3-6FrontviewofStep1.A. ................................ 45 3-73-DillustrationforStep1.B. ............................. 50 3-8FrontviewofStep1.B. ................................ 50 3-93-DillustrationforStep1.C. ............................. 52 3-10FrontviewofStep1.C. ................................ 53 3-113-DillustrationforStep2. .............................. 54 8

PAGE 9

4-1Repeatelectromagneticdockingstrategy. ..................... 57 4-2Roughdockingmechanism:foldabledockingMechanism ............ 58 4-3Controlowchartpart1. .............................. 59 4-4Controlowchartpart2. .............................. 60 4-5Controldiagram. ................................... 61 4-6Simulationresultforinitialcondition1. ....................... 71 4-7Simulationresultforinitialcondition2. ....................... 71 4-8Simulationresultforinitialcondition3. ....................... 72 4-9SimulationresultforStep1.A.1ininitialcondition1. ............... 74 4-10SimulationresultforStep1.A.1ininitialcondition2. ............... 75 4-11SimulationforStep1.Cininitialcondition1withsaturation. ........... 76 4-12SimulationforStep1.Cininitialcondition2withsaturation. ........... 77 4-13SimulationresultforStep2. ............................. 77 4-14Completesimulationforinitialcondition1:signal. ................. 79 4-15Completesimulationforinitialcondition1:magneticmoment. .......... 80 4-16Completesimulationforinitialcondition2:signal. ................. 80 4-17Completesimulationforinitialcondition2:magneticmoment. .......... 81 5-1A2-Dcaseconcernsorbitaldynamics. ....................... 83 5-2Asimple2-Dcaseconcernsgeomagneticeld. .................. 86 9

PAGE 10

LISTOFSYMBOLS ATheareaenclosedbyacoilloopA VectorpotentialB Magneticeldwithunitoftesla(symbolT)E ElectriceldwithunitofV/mF ForceF exExternalforceFAReferenceframexedonfoilAF AReactionforceoncurrentloopAFITheinterialreferenceframeFoTheorbitreferenceframeFRRotatedreferenceframeH AoAngularmomentumofbodyAaboutpointoiCurrentthroughacoilJ CurrentdensityvectorwithunitofA/mJ dDisplacementcurrentdensityvectorl LinesegmentofthecoilL1Thespaceofboundedsequences MagneticdipolemomentmMassmAMassofbodyA 10

PAGE 11

0Permeabilityoffreespaceconstant,410)]TJ /F8 7.97 Tf 6.58 0 Td[(6N/A)]TJ /F8 7.97 Tf 6.58 0 Td[(2NNumberofturnsinacoil^n TheunitvectoralongaxisofcoillooprGradientoperatorr Divergencer Curl! AngularvelocityC! A=BAngularvelocityofbodyAwithrespecttoFrameBexpressedinFrameCP ALinearmomentumofbodyATheratioofacircle'scircumferencetoitsdiameterR(x,)PrincipalrotationmatrixofangleaboutxaxisR(y,)PrincipalrotationmatrixofangleaboutyaxisR(z, )Principalrotationmatrixofangle aboutzaxisRA=BRotationmatrixfromFrameAtoFrameB Torqueaboutthecenterofaloop ATorqueaboutthecenterofaloopA exExternaltorqueUPotentialenergyuControlinputsignalu Controlinputsignalvector 11

PAGE 12

VLLyapunovcandidatefunction^x Unitvectoralongxaxis^y Unitvectoralongyaxis^z Unitvectoralongzaxis 12

PAGE 13

AbstractofThesisPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofMasterofScienceDYNAMICSANDNONLINEARCONTROLOFELECTROMAGNETICDOCKING/ASSEMBLYANDPROXIMITYOPERATIONSByKeHuoAugust2012Chair:GloriaJ.WiensMajor:AerospaceEngineeringTheuseofelectromagneticactuatorsinattitudecontrolsystemhasbeenconsideredasaneffectiveandreliableapproachforlowEarthorbit(LEO)satellites.OnerecentapplicationisElectromagneticFormationFlight(EMFF)whichcontrolstherelativetranslationaldegreesoffreedombetweensatellites.Comparedtotheuseoftraditionalthrusters,usinganelectromagneticforceandtorqueinmulti-spacecraftsmissionshassomedistinctadvantages,suchasnopropellantconsumptionandplumecontamination,aswellascontinuouscontrollability.Theadvantagesofelectromagnetshowevercomeatthecostofhighlynonlinearandcoupleddynamics.ExtendingtheEMFFapproachtorendezvousanddocking,thispaperfocusesonprovidingsmallsatellitesadockingcapabilityinbothaxialandcircumferentialdirectionsthroughtheuseoftwosetsofelectromagneticcoils.Forimplementation,anovelcontrolstrategyisalsopresented.Therstproblemwhichneedstobesolvedisthemodelofelectromagneticeldandgeneratedforceandtorquebetweentwoelectromagneticcoils.Theforceandtorquearenotonlyfunctionallyrelatedtothecharacteristicsofthecoilsbutarealsodependentontherelativepositionandattitudeofthetwosatellitesinproximityofoneanother.Bothanumericallyexactmodelandananalyticfar-eldmodelhavebeenbuiltandcomparedinthispaper.Thisthesisprovidesacapableelectromagneticdockingstrategyfortwosatellites.Eachofthesatellitesinelectromagneticdockingsystemisequippedwithreaction 13

PAGE 14

wheelsandasetofthreeorthogonalcurrentdrivencoils.Withtheassistanceofreactionwheels,decouplingthe3-dimensionaldockingproblemtoseveralstepsofprincipalbasiccasesprovidesfulldockingcapabilitiesofthesmallsatellites.Dynamicsanalysisandnonlinearcontrollerdesignhavebeendeveloped.Aswell,anoverallcontrolstrategyandacompletesimulationhavebeendemonstrated.Powerconsumptionanddisturbancesduetobothgravityandtheearthmagneticeldareconsideredinanon-orbitscenario. 14

PAGE 15

CHAPTER1INTRODUCTION 1.1MotivationIngeneral,autonomousrendezvousanddockingtechnologyincludestwospacecraftsstartingataremotedistance,comingtogetherintoacommonorbit,rendezvous,dockingandcontrolofthenewcombinedspacecraft[ 19 ].Traditionaluseofthistechnologycontainsspaceexplorationandsupplyandrepairofvehicles[ 11 ].Moreover,therehasbeenatendencyinrecentyearstodevelopaspacecraftmodulararchitecturedesignconcept[ 14 ].Thisconceptexpandsapplicationandneedsofthedockingtechnologymorewidely.Proximityoperationsanddockingarecriticalphasesofarendezvousanddockingmissionduetobothtranslationalandrotationalmaneuversarerequired.Somecriticalissuesduetouseoftraditionalmaneuveringtechniques,suchasathrusterbasedpropellantsystem,arepronetoplumeimpingementandthepossibilityofcollisioncausedbythediscontinuouspropulsion[ 19 ].Inspiredbyacommondailyphenomenonthattwomagnetscanadjusttherelativepositionandattitude,andthenachieveself-docking,theideaofintroducingelectromagneticforceandtorqueintodocking/assemblyandproximityoperationsistheapproachofinterestinthisthesis.Comparedtotheuseofthrusters,usinganelectromagneticforceandtorquehassomedistinctadvantages,suchasnopropellantconsumptionandplumecontamination,aswellascontinuouscontrollability.Theadvantagesofelectromagnetshowevercomeatthecostofhighlynonlinearandcoupleddynamics.Thisthesisstartsfromtheideaofelectromagneticdocking,providesacapablewaytoimplementthisideainascenariowithfairassumptions,demonstratesacompletedockingmissionsimulationinthisscenario. 15

PAGE 16

1.2PreviousRelativeWorkTheexploitationoftheuseofmagneticforceandtorqueinspacemissionscanberoughlycategorizedintothefollowingthreeareas:usingelectromagneticactuatorsproventobeaneffectiveandreliableattitudecontrolsystemforlowEarthorbit(LEO)satellites[ 16 ];theelectromagneticformationight(EMFF)controlstherelativetranslationaldegreesoffreedombetweensatellites[ 15 ];andelectromagneticdocking/assemblyconsideringbothtranslationalandrotationaldegreesoffreedom[ 22 23 ].Inthefollowingparagraphs,previousworkrelatedtothesethreetypesofapplicationsisintroduced.Theelectromagneticactuatorsinanattitudecontrolsystemoperateonthebasisofinteractionbetweenasetofthreeorthogonalcurrent-drivenmagneticcoilsandthegeomagneticeld.Thesecoilscanthereforegeneratecorrespondingtorques.Thesetorquescaneitherbeusedtodumpangularmomentum[ 2 ]ortoactivelycontrolattitude.First,themagneticcontrolsystemisdesignedforusewithsomestabilizationmethodsuchasspinningandbiasmomentum[ 17 ].Then,inmorerecentdecades,purelymagneticattitudecontrolhasbeenstudied.Duetothelowcost,exibleshaping,lowenergyconsuming,simplehardwarerequirementformoderateattitudecontrolofmagneticattitudecontrol,magneticactuatorsarepreferredinsmallsatellitesandmicro-satellites,asshowninFigure 1-1 [ 5 ]. Figure1-1. MagneticactuatorcongurationinaCubeSat. Theconceptofusingelectromagneticforcetoprovidetherelativepositioningcontrolforsatellitesformationighthavebeenresearchedbytwomaingroups:MIT 16

PAGE 17

SpaceSystemsLab[ 15 ],andtheUniversityofTokyo/ISAS[ 9 ].TheEMFFuseshightemperaturesuperconductingwiretechnologytogeneratetheelectromagneticforcetomaintainandrecongurethesatellitesformation[ 1 ].TheEMFFconcentratesontranslationaldegreesoffreedomcontrol.Itisassumedthatthetorqueandangularmomentumgeneratedduringtheoperationwillbeabsorbedbyreactionwheels[ 15 ]. Figure1-2. Electromagneticformationightvehicle. SpacecraftelectromagneticdockingtechnologyissimilartotheEMFFconception(Figure 1-2 ),yetthemaindifferencebetweenthesetwoinclude,bothtranslationalandrotationalcontrolhavetobeconcerned.Analogyofthedailymagnetsattractionphenomenontodockingproblemisstraightforward.Aconceptofself-dockingcapabilityofelectromagnetspresentsthatundersomespecicconstraintsforinitialconditions,therelativeposition/attitudeautomaticallydecreasingtozero,notconsideringthedockingvelocity[ 22 23 ].Then,reference[ 22 23 ]hasconstrainedthedockingproblemtosmallrelativeattitudeassumption.Aswell,therelativevelocityistheonlycontrolobjective.However,thelinearizationbasedonsmallrelativeattitudeandcoplanarassumptionmakesthispaperinsubstantialinsomedegree.Basedontheabove,thisthesisprovidesafeasiblewaytouseelectromagneticindocking/assemblyandproximityoperationforsmallsatellitesundersomefairassumptions.Notonlythetranslationalcontrolbutalsotherotationalcontrolduringthedockingprocesshasbeeninvestigated.DifferentfromEMFFconception,thetorquesgeneratedduetothemisalignmentofdipoleshavebeenconsideredasthetorquesourceforattitudeadjustment,insteadofbeencanceledbyreactionwheels. 17

PAGE 18

1.3OverviewoftheResearchandThesisElectromagneticdockinginthisthesisistheideaofusingsetsoforthogonalcurrentdrivencoils,coupledwithreactionwheels,toprovidetherelativepositionandattitudecontrolindockingmission.Noticethat,thereactionwheelsinthisthesisareusedonlyforstabilizingthesatellitewhenthedockingstrategyneeds,thetorquegeneratedbyelectromagneticcoilsprovidethecontrolofrelativeattitude.Thedockingstrategyisdesignedtoadjusttheattitudeandtrackadesireddistancetrajectorysimultaneously,thenmaintaintheadjustedrelativeattitudeandtrackadesiredapproachingtrajectory.Theattitudeadjustmenthasbeendecoupledtotwosteps,alignmentofthedominantringsandtwistadjustmentofcoilsperpendiculartothedominantcoilaboutthealignedco-axial.TheFigure 1-3 demonstratesthedockingstrategy. Figure1-3. Electromagneticdockingstrategy. Theelectromagneticdockinghaswideprospectsofapplicationsinthefuture: 18

PAGE 19

Orbitservicecouldbenetfromtheimprovementofcontinuouscontrollabilityandzeropropellantconsumption. Thinkingaboutaseriesofmodulesequippedwithelectromagneticdockingsystem,eachofthemhasapartialfunction.Bydockingtogethertheymighthaveabilitytocooperateasacompletefunctionalsatellite. Ifaconceptualyingspaceroboticsisdesignedtobemanipulatedbyasetofcoilsequippedonthemotherstation,thenthepropulsionsystemandattitudecontrolsystemofroboticscouldbediminished. Also,consideringself-assemblyarchitectureinthespace,byusingautonomouselectromagneticdockingtechnology,onlythemainbodyneedsfullattitudecontrolsystemandpropulsionsystem.Thestructureofthisthesisisdevelopedassuch:InChapter 2 ,exactmodelandfareldmodelofelectromagneticforceandtorquehasbeenpresentedandcompared.Thischapteristhebasisofderivationofdynamicsequations.InChapter 3 ,detailsofthesystemdescriptionhavebeendemonstrated,followedbytheoveralldockingstrategyintroduction.Dockingmissionhasbeendividedtoseveralstepsofprincipalbasiccases.Thedevelopmentofdynamicmodelsofprincipalbasiccasesconstitutesthemainbodyofthischapter.InChapter 4 ,controlstrategyandcontrollerdesignforeachstephasbeeninvestigated.Aswell,simulationresultsofeachcontrolleraredemonstratedanddiscussed.Acompletesimulationcombinedthesecontrollersguidedbythecontrolstrategyispresented.InChapter 5 ,challengeswhenthissystemisoperatinginLEOscenariohavebeenshown.Difcultiesandpossiblesolutionshavebeendiscussed.InChapter 6 ,summaryandmaincontributesofthisthesishavebeenconcluded.Somesuggestionsonfutureworkalsoareincluded. 19

PAGE 20

CHAPTER2MODELLINGTHEELECTROMAGNETICFORCESADCTORQUES 2.1OverviewInthisthesis,theelectromagneticdockingsystemconsistsoftwosatellites.Eachsatelliteisequippedwithoneormorecoils.Tostudythedynamicsandderivethedynamicsequationsofthissystem,onemustrstdevelopthetheoreticalmodelsofthemagneticeld,forcesandtorquesgenerated.Usingtheprincipleofmagneticeldtheory[ 13 ],thefollowingsectionsdescribetheapplicabletheory.Basedonthistheory,thecorrespondingforceandtorqueequationsneededforgeneratingthefulldynamicmodelarepresented.Chapter 3 willdetailthecorrespondingdynamicsequations. 2.2DerivationoftheExactModel 2.2.1MagneticFieldThedifferencebetweenelectriceldE andthemagneticeldB :electricchargeisapointsourceofE ,whilemotionofchargedparticles,(i.e.current),isthesourceofB .Theliteraturesshowthattherearenoexperimentsindicatingexistenceofmagneticmonopolesormagneticcharge,thoughsearchingforthemcontinuestobeaninterestingchallenge[ 13 ].sinceamagneticelddoesnothaveapointsource,thedivergenceofthemagneticeldmustbezero,andcanbeexpressedas: r B =0 ,(2)whereristhegradientoperator,r B =0 isthedivergenceofB .ThecurlofmagneticeldisgivenbyAmpere'sequationformagnetostatics,i.e.fortheeldfromcurrentdistributionwhichisconstantintime r B =0J ,(2) 20

PAGE 21

whereJ isthecurrentdensityvector,and0isthepermeabilityoffreespace.Equation( 2 )canalsobemodiedasfollowingfortimevariantproblems. r B =0(J +J d),(2)whereJ disdisplacementcurrentdensityvector.Inalaboratorysystemofchargesandcurrents,thedisplacementcurrentisnormallyverysmallcomparedtotypicalchargecurrents.ToobserveJ dexperimentallyrequireshighfrequencies,largeelectriceld,orboth.Furthermore,thepresumptionthatthemagneticeldsandcurrentswillvaryslowlyovertimecouldbemade,thenmagnetostaticscanbeassumed.ByintroducingavectorpotentialA ,theelectromagneticeldcanbeexpressedas: B =r A .(2)Fromreference[ 13 ],thegeneralsolutionforA couldbewrittenas: A (s)=0 4ZZZVolJ ( ) js )]TJ /F4 11.955 Tf 11.96 0 Td[( jd3 ,(2)where isthepositionvectoroftheelementvolume(d3 =dxdydz)withinelectricalconductingmaterial,s isthepositionvectorfromtheelementvolumetopotentialvector'slocation.Foracurrentloop,asshowninFigure 2-1 ,thewireisassumedtohavenegligiblethickness,andthecurrentdensityiszeroeverywherebutwithinthewire.TheequationforthevectorpotentialatlocationPcanthenbereducedtoapathintegralaroundtheloopofcurrent. A (s )=0Ni 4I1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kdl ,(2)whereNisthenumberofturns;iisthecurrent,s isthevectorfromasmallsegmentofthecoil,dl ,topointP,a istheradialpositionvectorofsegmentdl relativetothecenterofcoil. 21

PAGE 22

Figure2-1. Aloopofcurrent. Substitutinginto( 2 )to( 2 ),themagneticeldcanbeexpressedas: B =r 0Ni 4I1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kdl .(2)SincetheoperationHisbasedons ,itcancommutewithintegrand.Also,byusing r 1 ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a k=)]TJ /F3 11.955 Tf 18.94 8.09 Td[(s )]TJ /F3 11.955 Tf 11.95 0 Td[(a ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a k3,(2)( 2 )gives B =0Ni 4Is )]TJ /F3 11.955 Tf 11.96 0 Td[(a ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a k3dl .(2)Duetothedifcultyofintegratingthereciprocalofthesquareofmagnitudeoftheks )]TJ /F3 11.955 Tf 12.71 0 Td[(a k3,solvingforthemagneticeldisnotstraightforward.Assuch,themagneticeldB canonlybewrittenanalyticallyintermsofellipticalintegralswhenitisoffaxis.Fortheoffaxiscasethemagneticeldcanbeexpressedintermsofradialandaxialcomponentsas[ 4 ]:B =0Ni 2a1 p QE(m)1)]TJ /F4 11.955 Tf 11.95 0 Td[(2B)]TJ /F4 11.955 Tf 11.96 0 Td[(2B Q)]TJ /F9 11.955 Tf 11.96 0 Td[(4B+K(m)^z +0Ni 2a1 p QE(m)1+2B+2B Q)]TJ /F9 11.955 Tf 11.95 0 Td[(4B)]TJ /F3 11.955 Tf 11.95 0 Td[(K(m)^r (2) 22

PAGE 23

whereE(m)istherstkindofellipticalintegral,andK(m)isthesecondkindofellipticalintegral,and B=r a,B=z a,B=z r,QB=(1+B)2+2B,mB=r 4B QB.(2) 2.2.2ForceandTorqueInthissection,theforceandtorquearederivedsothatonemaymodeltheinteractionbehaviorbetweenofthetwosatellites.Figure 2-2 illustratesthefundamentalcongurationofthecoilseachrepresentsasatellite. Figure2-2. Twoloopsofcurrent. Whenawirecarryinganelectricalcurrentisplacedinamagneticeld,eachmovingcharges,experiencesheLorentzforce.ByusingLorentzforcelaw,foreachsmallsegmentofwiredl carryingcurrenti,theforceactingonthissegmentisgivenby: dF =idl B .(2)Integrating( 2 )overthelengthofthewire,totalelectromagneticforceonthewireisgivenby: F =iZdl B ,(2) 23

PAGE 24

ApplyingthisequationtothecaseillustratedinFigure 2-2 ,theforceactingonthesecondloopofcurrentis: F B=iBZdlB B A,(2)inwhichB AistheelectromagneticeldatpositionofdlB createdbyloopA.ThereactionforceactsoncurrentloopAisofcourse: F A=)]TJ /F3 11.955 Tf 9.29 0 Td[(F B=)]TJ /F3 11.955 Tf 9.3 0 Td[(iBZdl BB A.(2)ThetorqueonloopBaboutthecenteroftheloopduetoincrementalforcedF Bisgivenby: B=Za BdF B.(2)CombiningtheaboveequationswiththeeldresultsinSection 2.2.1 ,theequationsforbothforceandtorquehavedoubleintegrals,whichlimitstheabilitytosolvethemanalytically.Consequently,insightsabouttheforceandtorquemodelarehardtodetermine.Therefore,toobtainapproximationsthatcanbederivedanalytically,simplicationandlinearisationbyusingTaylorserieswillbeusedinthefollowingsection. 2.3Far-FieldModelofElectromagneticForceandTorque 2.3.1DerivationofFar-FieldModelAtasufcientlylargedistance,themagneticeldgeneratedbyacurrentloopbehavesasamagneticdipolewhenitcomestoasufcientlargedistance.Hence,acurrentloopcouldbevisualizedasabarmagnetalignedwiththeaxisofthelooppointinginthedirectiongivenbyrighthandrule.Toanalyticallyexpressthisbehavior,theforceandtorqueexpressioncontainsks )]TJ /F3 11.955 Tf 11.96 0 Td[(a kterminthedominator.Whenlargedistanceassumptionismade,wecansimplifythemodeldueto ka kks k.(2) 24

PAGE 25

Expand1=ks )]TJ /F3 11.955 Tf 11.95 0 Td[(a kabouta=s0usingTaylorseriesyields 1 ks )]TJ /F3 11.955 Tf 11.96 0 Td[(a k=1 s+s a s3+H.O.T,(2)wheres a isdotproductofvectorss anda ,andH.O.Tarethehigherordertermsthatareapproximatedtobezero.Substituting( 2 )into( 2 )and( 2 )forthemagneticvectorpotential,andobservingthersttermwith1=sintegratestozero,then:A (s )=0 4ZZZ1 s+s a s3J ( )d3 =0 4ZZZs a s3J ( )d3 (2)andA (s )=0Ni 4I1 s+s a s3dl =0Ni 4s3I(s a )dl (2)Usingvectorcalculus,ithasbeenproveninreference[ 13 ],theintegralin( 2 )and( 2 )canberewrittenas:ZZZs s3J ( )d3 = s (2)NiIs a dl = s (2)inwhich iscalledmagneticdipolemoment: =1 2ZZZ J ( )d3 .(2)Substitutebackto( 2 ),thevectorpotentialofamagneticdipolecanbeexpressedas: A (s )=0 4 s s3.(2)Foracurrentloop,themagneticdipolemomentis: =NiI1 2a dl =NiA^n ,(2)whereNisthenumberofturns,iisthecurrent,Aistheareaenclosedbytheloop,and^n isthevectoralongtheaxisoftheloop.Thecorrespondingmagneticeld 25

PAGE 26

mathematicalexpressionthentakestheform: B =r A =0 4r ( s s3),(2)Usingthepropertiesofthegradientoperator(r ) r (u v )=u (r v ))]TJ /F3 11.955 Tf 11.96 0 Td[(v (r u )+(v r )u )]TJ /F9 11.955 Tf 11.96 0 Td[((u r )v ,(2)yields r ( s s3)= (r s s3))]TJ /F3 11.955 Tf 15.61 8.09 Td[(s s3(r )+(s s3r ) )]TJ /F9 11.955 Tf 11.96 0 Td[(( r )s s3.(2)Since isnotafunctionofs,thenr 0and(s s3r ) 0 .Therefore,r s s3=@ @xx s3+@ @yy s3+@ @zz s3=1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5x2+1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5y2+1 s3)]TJ /F9 11.955 Tf 15.8 8.09 Td[(3 x5z2=0, (2)( r)s s3=x@ @xx s3+y@ @yy s3+z@ @zz s3=x^e x s3)]TJ /F9 11.955 Tf 15.38 8.08 Td[(3 s5xs +y^e y s3)]TJ /F9 11.955 Tf 15.38 8.08 Td[(3 s5ys +z^e z s3)]TJ /F9 11.955 Tf 15.37 8.08 Td[(3 s5zs =1 s3 )]TJ /F9 11.955 Tf 13.15 8.09 Td[(3s s5(s ). (2)Finally,wehave: B =0 43s (s ) s5)]TJ /F4 11.955 Tf 15 9.38 Td[( s3=B (s ),(2)whichvariesins and ).Forthefar-eldapproximations a .Hence,thepotentialenergyofamagneticdipoleofcoilBinamagneticeldofcoilA(B A(d )isgivenby: U(d )=)]TJ /F4 11.955 Tf 9.3 0 Td[( BB A(d ),(2)whered isthevectorconnectingthecenterofdipoleAtodipoleB,B A(d )istheapproximationofB A(s ),and BismagneticmomentduetocoilB.Theforceondipole 26

PAGE 27

Bissimplyderivedfromthegradientofthepotentialenergy. F B=rU=r( BB A)=0 4r3( Bd )(d A) d5)]TJ /F4 11.955 Tf 13.15 9.88 Td[( B A d3.(2)Again,noting Aand Barenotfunctionsofd,thereforer A=0,r B=0.Similartotheabovederivation,( 2 )resultsin F B=)]TJ /F9 11.955 Tf 10.5 8.09 Td[(30 4)]TJ /F9 11.955 Tf 9.3 0 Td[(( A B)d d5)]TJ /F9 11.955 Tf 11.96 0 Td[(( Ad ) B d5)]TJ /F9 11.955 Tf 11.96 0 Td[((d B) A d5+5( Ad )(d B)d d7.(2)Atorqueappliedoverarotationisequaltothechangeinpotentialenergy. dU=)]TJ /F4 11.955 Tf 9.3 0 Td[( d =)]TJ /F9 11.955 Tf 9.3 0 Td[(d B ,(2)where d =d .(2)Then, )]TJ /F4 11.955 Tf 11.96 0 Td[( d =)]TJ /F9 11.955 Tf 9.3 0 Td[((d )B =)]TJ /F9 11.955 Tf 9.3 0 Td[(( B )d ,(2)and B= BB A.(2)Substituting, B=0 4 B3( Ad )d d5)]TJ /F4 11.955 Tf 13.15 9.88 Td[( A d3.(2)ByusingNewton'sthirdlaw,wehave: F A=)]TJ /F3 11.955 Tf 9.3 0 Td[(F B.(2)Note:F Acouldhavebeenderivedusing F A=rU=r( AB B),(2)whichyieldsthesameexpressionas( 2 ). 27

PAGE 28

Duetotheconservationofangularmomentum:sincetherearenoexternalforceandtorqueactedonthissystem,thetotalangularmomentumshouldbezero: A+ B+d F B=0 .(2)Therefore,wecandeterminetorqueactingonloopA: A=)]TJ /F4 11.955 Tf 9.3 0 Td[( B)]TJ /F3 11.955 Tf 11.96 0 Td[(d F B.(2)Theabovecompletesthederivationoftheforcesandtorquesinthevectorfar-eldmodelbetweentwocurrentsloops.TheanalysisofthedynamicsofthissystemdetailedinChapter 3 isbasedonthismodel.Thedynamicscanbedescribedfortwocases:2dimensional(2-D)coplanar,co-axialtwist.Thesetwospecialcaseswillleverageforachievingorientationandpositioncontroloftwosatelliteswhichingeneralcouldbeuncontrollableinatleastonedegreeoffreedom.Thefollowingsections, 2.3.2 through 2.3.4 ,providerepresentationsofforceandtorqueforthreedifferentcases.Theconciseformandcomputationalconvenienceofthismodelwillshownaswell. 2.3.22Dimensional(2-D)CoplanarCaseInthe2-Dcoplanarcase,twocurrentloopsAandBarerestrictedtoaplaneasshowinginFigure 2-3 .Thexzcoordinatesystemisinertialcoordinatesystem,FI;xAzAandxBzBarebodyxedcoordinatesystemsFAandFB,coilAandcoilBrespectively;andxRzRisrotatedreferencecoordinatesystem,FR.Forcomputingconvenience,theforceandtorqueisderivedintheFRframe.ReferringtoFigure 2-3 ,thedipolemomentvectorofcoilAandB(alignedwithaxesxAandxB,respectively)arerstalignedwithxR,thenrotate()]TJ /F4 11.955 Tf 12.54 0 Td[(=2)and()]TJ /F4 11.955 Tf 12.54 0 Td[(=2)respectivelyaboutyR. 28

PAGE 29

Figure2-3. 2dimensional(2-D)coplanarcoils. InFR,thedipolemomentcanberepresentedas:R A=Asin^x R+Acos^z R, (2)R B=Bsin^x R+Bcos^z R, (2)Rd =d ^z R. (2)Substituting( 2 )into( 2 ),( 2 ),( 2 )and( 2 )resultsinfollowinginteractionforcesandtorquesactingonthetwocoilsintherotatedreferencecoordinatesystem,FR.F A=30 4AB d4()]TJ /F9 11.955 Tf 9.3 0 Td[((cossin+cossin)^x R+(2coscos)]TJ /F9 11.955 Tf 11.95 0 Td[(sinsin)^z R), (2)F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 4AB d4()]TJ /F9 11.955 Tf 9.3 0 Td[((cossin+cossin)^x R+(2coscos)]TJ /F9 11.955 Tf 11.95 0 Td[(sinsin)^z R), (2) A=)]TJ /F4 11.955 Tf 12.18 8.08 Td[(0 4AB d3(2sincos+cossin)^y R, (2) B=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2cossin+sincos)^y R. (2)Fromtheaboveforceandtorqueequations,onecanobservesomeintuitivepropertiesoftwodipoles.AsFigure 2-4 shows,whenandarezero,theforceisonly 29

PAGE 30

alongwiththezRaxis,aswellthetorquebecomestobezero.I.e.attractionorrepulsiveforcesarepresentwhenthetwocoilsareperfectlyaligned.Inthisconguration,forceandtorqueequationsreducetobe: Figure2-4. Alignedconguration. F A=30 4AB d4^z R,F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 4AB d4^z R, A= B=0 .(2)AsFigure 2-5 shows,thereareasetoflinesduetotheintersectionofthe Asurfacewiththezeroplane.Noticethatforcomputationalconvenience,thefactor0AB 4d3hasbeennormalizedas1.Theselinescorrespondtothevaluesofandforwhenthecontrollabilityof Avanishes.Similarsituationwilloccurfor B.ObservingtheintersectionlinesinFigure 2-6 ,itisfoundthatthecontrolislostsimultaneouslyforboth Aand Bat(,)=f...,()]TJ /F4 11.955 Tf 9.3 0 Td[(,),(0,0),(,)]TJ /F4 11.955 Tf 9.3 0 Td[(),...g,f...,()]TJ /F4 11.955 Tf 9.3 0 Td[(=2,)]TJ /F4 11.955 Tf 9.29 0 Td[(=2),(=2,)]TJ /F4 11.955 Tf 9.3 0 Td[(=2),(=2,=2),...g,andf...,()]TJ /F4 11.955 Tf 9.3 0 Td[(,0),(,0),(0,)]TJ /F4 11.955 Tf 9.3 0 Td[(),...g. 2.3.3Co-AxialTwistCaseInco-axialcase,twocurrentloopsCandDarerestrictedtobeco-axialinzRasshowninFigure 2-7 .ThexRzRcoordinatesystemisrotatedreferencecoordinate 30

PAGE 31

ATorqueactingoncoilA BTorqueactingoncoilBFigure2-5. Torquesvarywithangles. Figure2-6. Intersectinglinesforcontrollostfortorques. system,FR.RefertoFigure 2-7 ,dipolemomentvectorsofcoilCandD(alwaysalignedwithxCandxD,respectively)arerstalignedwithxR.ThenrotateandrespectivelyaboutzR.Whenthetwoanglesarezeros,thecoilsCandDareintheyRzRplane.ThefollowingmathematicalexpressionsrepresentdipolemomentsinFR:R C=Ccos^x R+Csin^y R, (2)R D=Dcos^x R+Dsin^y R, (2)Rd =d^z R. (2) 31

PAGE 32

Figure2-7. Co-axialtwistcase. Substituteto( 2 ),( 2 ),( 2 )and( 2 ),wehave:F C=30cD 4d4cos()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2)F D=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30cD 4d4cos()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2) C=)]TJ /F4 11.955 Tf 10.49 8.08 Td[(0cD 4d3sin()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2) D=0cD 4d3sin()]TJ /F4 11.955 Tf 11.96 0 Td[()^z R, (2)Somepropertiesoftheforceandtorqueinthiscasecanbeconcluded.First,forcesareonlyonthe^z Raxis.Thismeansthatoncetwocoilsentertheco-axialconguration,theywouldstayinthisconguration.Second,torquesarefunctionsofcDand()]TJ /F4 11.955 Tf 12.01 0 Td[().Systemwouldlosecontroloftorquewhen)]TJ /F4 11.955 Tf 12.12 0 Td[(=0,happens.However,thissituationingeneralsatisesdockingrequirementsofalignment(eitherN,NorN,Saligned).MoredetailsaboutthissingularitywillbeshowninChapter 3 2.3.43Dimensional(3-D)RepresentationInthissectiontheEulerAngleareusedwhichareknownfortheirintuitivenesstorepresenttherotationfromrotatedreferencecoordinatesystemFRtobodyxedcoordinatesystem,FAandFB.3-2-1sequencerotationwillbeused. 32

PAGE 33

ReferringtoFigure 2-8 ,thedipolemomentvectorsofcoilAandB(whicharealwaysalignedwithxAandxB)areinitiallyalignedwithzR,thenrotateandrespectivelyaboutzR,followingbyrotating()]TJ /F4 11.955 Tf 12.94 0 Td[(=2)aboutbodyxedaxisyAand()]TJ /F4 11.955 Tf 12.19 0 Td[(=2)aboutbodyxedaxisyB.Sincetheaxialsymmetryofrings,thelastrotationsaboutxAandxBdonotaffecttheforceandtorquecalculation. Figure2-8. Euleranglerepresentation. ThedirectcosinematrixrepresentsthetransformationfromFRtoFA,couldbewrittenasproductoftwoprinciplerotationmatrices:RR=A=R2()]TJ /F4 11.955 Tf 13.15 8.09 Td[( 2)R3()=266664sin0cos010)]TJ /F9 11.955 Tf 11.29 0 Td[(cos0sin377775266664cossin0)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0001377775=266664sincossinsincos)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0)]TJ /F9 11.955 Tf 11.29 0 Td[(coscos)]TJ /F9 11.955 Tf 11.29 0 Td[(cossinsin377775. (2) 33

PAGE 34

InFR,dipolemomentvectorofringAcouldbedescribedas:R A=RR=AA A=266664sincossinsincos)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0)]TJ /F9 11.955 Tf 11.29 0 Td[(coscos)]TJ /F9 11.955 Tf 11.29 0 Td[(cossinsin377775266664A00377775=A266664sincossinsincos377775. (2)Similarly,wecanderiveR Bouteasily. R B=B266664sincossinsincos377775.(2)Also, Rd =26666400d377775.(2)Substitute( 2 ),( 2 )and( 2 )to( 2 )and( 2 ),wehaveforceandtorqueactonringBrepresentedinreferenceframe:RF B=30AB 4d4266664cossincos+sincoscoscossinsin+sincossinsinsincos()]TJ /F4 11.955 Tf 11.96 0 Td[())]TJ /F9 11.955 Tf 11.96 0 Td[(2coscos377775, (2)R B=0AB 4d3266664sincossin+2cossinsin)]TJ /F9 11.955 Tf 11.29 0 Td[(sincoscos+2cossincos)]TJ /F9 11.955 Tf 11.3 0 Td[(sinsinsin()]TJ /F4 11.955 Tf 11.95 0 Td[()377775. (2) 34

PAGE 35

2.3.5DipoleLinearSuperpositionWithoutlossofgenerality,assumesatelliteAandBareequippedbythreeorthogonalcurrentrings,thentheelectromagneticforcesactingonringsequippedonsatelliteBcouldbecalculatedbysumminguptheforcesduetothemagneticeldgeneratedbyeachringonsatelliteA. F B=3Xj=13Xi=1f ij,(2)wheref ijistheforceactingonj-thringonsatelliteBduetotheeldgeneratedbyi-thringonsatelliteA.Figure 2-9 showsthelinearsuperposition Figure2-9. Linearsuperposition. Notice,thatthefar-eldmodelforforceandtorqueislinearfunctionofthemagneticdipolemoments.Therefore,threeorthogonaldipolescouldbeconsideredasasetofbasisofaR3space.Thatmeans,onecanconsidercombinationofthesethreedipolevectorsasanewdipolevector.Bychangingthedipolemomentofeachoforthogonalrings,wehavetheabilitytocontrolboththedirectionandmagnitudeoftheoveralldipolevector. =3Xi=1 i.(2)Thelinearsuperpositionsimpliesthedynamicmodelwhenitinvolvesmulti-ringspersatellite. 35

PAGE 36

2.4ModelEvaluationToverifythesuitabilityoftheaboveapproximationsusedinmodelling,theforcesandtorquesofthefar-eldmodelandexactmodelarecompared.Figure 2-10 presentsthepercentageerrorofmagnitudewiththecoilsindifferentcongurations.Figure 2-11 presentstheresultsfortorque. Figure2-10. Comparingthefar-eldforcemodelagainsttheexactmodel. Figure2-11. Comparingthefar-eldtorquemodelagainsttheexactmodel. 36

PAGE 37

Usually,weadmitamodelisvalidwhenthepercentageerrorislessthan10%.Fromthetwogures,wecanseetheerrorvarieswithdifferentcongurationofcoils.Yet,overall,whendistanceisaboveapproximately6timesofthecoilradii,errorstayslessthan10%. 37

PAGE 38

CHAPTER3DYNAMICMODELS 3.1OverviewThepurposeofthischapteristodevelopsystemmodels.Thesemodelswillbeusedforsimulatingandcontrollerdesign.Thischapterwillstartsoffwithsystemdescriptionaswellastheoveralldockingstrategy.Specically,3-Ddocking/operationproblemwillbedecoupledtobeseveralstepsofprincipalbasiccases,suchas2-Dco-planarsinglecoilcaseandco-axialtwistsinglecoilcase.Next,thegeneralrigidbodydynamicmodelingprocedurewillbepresented.Then,developmentofdynamicmodelsofprincipalbasiccasesconstitutesthemainbodyofthischapter.Inthenextchapter,theopenloopbehaviorsofthesecases,andsubsequentcontrollersdesignfortheprincipalbasiccases,willbeinvestigated.Theoverallcontrolschemewillalsobedescribed,detailinghowtheresultingcontrollerisimplementable. 3.2SystemDescriptionTheelectromagneticdocking/proximityoperationsysteminthisthesistypicallyinvolvestwocooperativeentitiessuchassatellites,spacecraftsorassemblypartsinspace.Eachofthemwillbeequippedwiththreeorthogonalcurrentloops.Focusingonthedynamicsandcontrolproblemofthissystem,thedocking/operation/assemblywillbesimpliedasfollowsintosequentialoperationalsteps:Step1,adjusttheattitudeandmaintainaconstantdistanceortrackadesiredtrajectoryrstly;andStep2,maintaintheadjustedrelativeattitudeandtrackadesiredapproachingtrajectory. 3.2.1GeometryofDifferentCoordinateSystemSinceorbitaldynamicsisnottheprimaryobjectiveinthisthesis,severalsimpli-cationswillbemadehere.Consequently,thedenitionsofcoordinatesystemmightbeslightlydifferentfromcommonuses.InertialframeFIissettobetheECIreferenceframewhichhasitsoriginatthecenteroftheEarth,oneaxisaalinedwithnorthpole,onepointstovernalequinox,and 38

PAGE 39

thethirdonecompletesarighthandedaxissystem.OrbitframeFoisdenedassuch,itsoriginissameasECIframe's,oneaxispointstowardstheorbitalplanenormal,oneaxisalignedwiththesemi-majoraxisoftheobit,thethirdonecompletesarighthandedaxissystem.TheFAandFBaredenedasbodyxedcoordinatesystemtorepresenttheorientationsofsatelliteAandB.Figure 3-1 illustratesthesedenitions.Withoutlosinggenerality,setFI=Fo,showedasrightpartofFigure 3-1 .Fortheconvenienceofelectromagneticforceandtorquerepresentation,FRisdenedasrotatedreferencecoordinatesystem,inwhichzRaxisisalignedwithdistancevectord pointsfromoriginofFAtooriginofFB,asshowninFigure 3-2 .OriginofFRisatthecenterofmassofthesystemoftwosatellites. Figure3-1. Geometryofdifferentcoordinatesystem. SinceFRisalwayschangingwiththepositionsofOAandOB,forderivationconvenience,alocalinorbitframeFLisdenedassuch:originistheoriginFR,oneaxisisnormaltotheorbitalplane,secondonetowardsthevelocitydirection,thirdonecompletetherighthandcoordinatesystem.Figure 3-2 alsoshowstherelationshipbetweenFRandFI.MovingFItooriginOAisjustfordrawingconvenience.RotationmatrixfromFRtoFIcouldbeexpressedas: RR=I=R(y,y)R(x,)]TJ /F4 11.955 Tf 9.3 0 Td[(x),(3)where x=tan)]TJ /F8 7.97 Tf 6.58 0 Td[(1dx dz,y=sin)]TJ /F8 7.97 Tf 6.59 0 Td[(1dx d.(3) 39

PAGE 40

Figure3-2. Denitionofrotatedreferencecoordinatesystem. Also,dx,dyanddzarethreecomponentsofvectord .Averyusefulterm,dominantaxis,isdenedtobetheaxisalignedwiththeapproachaxisforthedockingmechanism.AsshowninFigure 3-3 ,xAandxBarethedominantaxesforsatelliteAandBrespectively.Theringperpendiculartodominantaxisisdenedasthedominantring.Bydeningadominantaxis,thecontrolobjectiveofachievingarelativeattitudebetweensatellitesnecessaryfordockingbecomesdetermininghowtoalignthesedominantaxesandtwistabouttheco-axisafterthealignment.Now,startingwithrepresentationoforientationsofAandB,areductiontheofdegreesoffreedomisdiscussedhere.The3-2-1sequentialEuleranglerotationisusedforrepresentingtheorientationsofbodyxedcoordinatesystemFAandFBwithrespecttoFR.ReferringtoFigure 3-3 ,rotationfromFRtoFBhasbeenshownas:FBisinitiallyalignedwithFR,thenrotateaboutzR,followingbyrotatingand)]TJ /F4 11.955 Tf 12.54 0 Td[(=2aboutbodyxedaxisyB,thenrotate aboutbodyxedaxisxB.RotationmatrixfromFRtoFBisexpressedas: RB=R=R(x, )R(y,)]TJ /F4 11.955 Tf 11.95 0 Td[(=2)R(z,).(3) 40

PAGE 41

Figure3-3. Relationshipbetweenbodyxedframeandrotatedreferenceframe. ItissimilartogetFA:FAisinitiallyalignedwithFR,thenrotateaboutzR,followingbyrotatingand)]TJ /F4 11.955 Tf 12.71 0 Td[(=2aboutbodyxedaxisyA,thenrotateaboutbodyxedaxisxA.RotationmatrixfromFRtoFAisexpressedas: RA=R=R(x,)R(y,)]TJ /F4 11.955 Tf 11.96 0 Td[(=2)R(z,).(3)Consideringthatwearedealingwithalignmentproblemoftworings,recallsomecontentsinChapter 2 .PerSection 2.3.4 andbecauseoftheaxialsymmetryofrings,rotationsaboutxAandxBdeterminingdonotaffecttheforceandtorquegeneratedbythesetworings.Consideringthatthealignmentproblemisdealingwiththerelativeattitudebetweentwodominantrings,the3-2sequentialEuleranglerotationcouldbeusedtoidentifytheattitudeofdominantrings.Thethirdrotationaboutthedominantaxiscouldbehandledinthetwiststep.Again,toemphasizethepeculiaritiesofdynamicsbetweencurrentloops,wewillstartfromdeepspaceassumption.Fordeepspacemissions,orbitaldynamics(theinuenceofearthgravityandgeomagneticeld)isusuallyignored.Deepspaceassumptionisthebaseofderivationsofthischapter'sdynamicequations.Sinceindeepspaceassumptiontheorbitdynamicsarenotconsidered,theassumptionthatFLis 41

PAGE 42

alignedwithFIcanbemade.Chapter5willdiscussmoreabouttheimpactofignoringtheorbitaldynamicsandgeomagneticeldontheperformanceofthecontroller. 3.2.2DockingStrategyAsdiscussedinlastsection,thecontrolobjectiveofadjustingtherelativeattitudecanbeseparatedintotwosequentialsteps:aligningthedominantaxeswiththedistancevector(i.e.,thezR),followedbytwistingthesatellitesaboutthealignedaxiszRtothenaldesiredrelativeattitude.Further,thealignmentin3-Drealitycanbeobtainedbybreakingtheprocedureintotwoindependent2-Dcoplanarcases.First,alignonedominantaxiswithzR,thenalignanother.Withoutlosinggenerality,wechoosetorstalignxAwithzR.Detailsabouthowtodecouplethe3-Dcasealignmentcaseinto2-DcoplanarcasesareinSection 3.4 ,includingthedynamicsforeachspecicstep.Oncethedominantaxesareco-axialwithzRtwistingthesatellitesabouttheco-axisisthelaststepforattitudeadjustment.Thisstepcanbeachievedbutrequiresareductioninthecontrolleddegreesoffreedomofthesystemasmentionedinlastsection.Overall,Step1canbedividedinto3sequentialsteps:Step1.A,Step1.B,andStep1.C.OnceStep1isaccomplished,Step2isjusta1-Ddistancecontrolproblem.SeeFigure 3-4 Figure3-4. SubdivisionforStep1. 42

PAGE 43

Oneimportantremark:inStep1.AandStep1.B,takingintoaccounttheproblemofdegreeoffreedom,torquesactonSatelliteAandSatelliteBaresettobecanceledbyreactionwheelsrespectively. 3.3BasicDynamicFundamentalEquationsMomentumofrigidbodyAisdenotedasP A.Ifwechoosethecenterofmasscasreferencepoint,P Aisgivenby: P Ac=mv c,(3)inwhich,misthemassofA,v cisthevelocityofc.Forconvenienceofrepresentation,P AcsometimesissimpliedtobeP A.AngularmomentumofrigidbodyAaboutreferencepointoisdenotedasH Ao.Ifwechoosethecenterofmasscasreferencepoint,H Acisgivenby[ 7 ] H Ac=I! ,(3)where! isangularvelocityofA.Generally,dynamicequationsofrigidbodyAincludetranslationalequationandrotationalequation. _P Ac+[! ]P Ac=f ex,(3)wheref existheexternalforceactonbodyA. _H Ac+[! ]H Ac= ex,(3)where existheexternaltorqueactonbodyA. 3.4DynamicsforSpecicSteps 3.4.1Step1.AInthisstep,alignmentofxBwithd (zR)willbeaccomplished.OrientationofSatelliteAisxed.Comparingtothegeneralcoplanarcase,in3-Dreality,alignmentdoesnothavetohappeninplanexRzR.Therefore,anauxiliarycoordinatesystemFisdened. 43

PAGE 44

AsshownintheFigure 3-5 ,FisinitiallyalignedwithFR,thenrotatesangleaboutaxiszR.Thearrowofthisrotationinthegureisjustforshowingthepositivedirectionof.RotationmatrixfromFRtoFisgivenby: Figure3-5. 3dimensional(3-D)illustrationforStep1.A. R=R=R(z,)=266664cossin0)]TJ /F9 11.955 Tf 11.29 0 Td[(sincos0001377775.(3)Now,itiseasytoseethat,dominantaxisxBanddistancevectorzRbothlieinplanexz.Therefore,Step1.Aisactuallyasimplecoplanarcasewhichoccursinthisplane.InFigure 3-6 ,frontviewofplanexzshowshowthisstepreducestothegeneral2-Dcoplanarcase. 3.4.1.1TranslationaldynamicsThedynamicequationsforStep1.AwillbederivedincoordinatesystemF.PositionvectorofAandBinFcanbeexpressedas: p A=00)]TJ /F6 7.97 Tf 10.49 4.71 Td[(d 2>,p B=00d 2>.(3) 44

PAGE 45

Figure3-6. FrontviewofStep1.A. ChoosingtheseAandBlocationsinFisforcalculationconvenience.Thus,momen-tumsofAandBrepresentedinFaregivenby P A=mA(_p A+! =Ip A),P B=mB(_p A+! =Ip B),(3)inwhich,mAandmBaremassofAandB,! =IistheangularvelocityofFwithrespecttoinertialframe.Consideringthatinthis2-Dcoplanarcasethemotionhappensoccursinplane,itdoesnotchangetherotationmatrixfromFRtoF,R=R,whichmeansangularvelocityofFisthesameof! =I: =I=! R=I.(3)Duetothedeepspaceassumption(FI=FL), =I=! R=I=! R=L=2666640_0377775.(3)Notice,inlowearthorbitcase,! L=Iisnolongerzero.Chapter 5 showsmoreaboutthisinuenceonthemodelingandcontrollerperformance. 45

PAGE 46

Substituting,wehave: P A=mA266664)]TJ /F6 7.97 Tf 10.5 5.12 Td[(d_ 20)]TJ /F8 7.97 Tf 11.83 6.48 Td[(_d 2377775,P B=mB266664d_ 20_d 2377775.(3)Recall( 3 ),wehave: _P A+! =IP A=F A.(3)Substitute( 3 )to( 3 ),wegot: mA264)]TJ /F6 7.97 Tf 10.49 5.11 Td[(d 2)]TJ /F8 7.97 Tf 14.48 6.88 Td[(_d_ 2)]TJ /F8 7.97 Tf 14.49 6.88 Td[(_d_ 20)]TJ /F8 7.97 Tf 13.5 6.48 Td[(d 2+d_2 2375=F A.(3)InF, Aonlygivescomponentsinplanexz, A=266664x0z377775=A266664sin~0cos~377775.(3)Also, BinthisstepisonlygivenbydominantringofB: B=Bx^x B.(3)Substitute Aintoto( 2 ),forceactonAisgivenby: F A=30 4Bx d4266664)]TJ /F4 11.955 Tf 9.3 0 Td[(zsin)]TJ /F4 11.955 Tf 11.95 0 Td[(xcos02zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin377775.(3) 46

PAGE 47

Then,assumemA=mB=3m,wheremisthemassofeachcoil,aftersomereorganization,translationaldynamicsequationsaregivenby:=1 m0 2Bx d5(zsin+xcos))]TJ /F9 11.955 Tf 13.15 8.09 Td[(2_d_ d, (3)d=)]TJ /F9 11.955 Tf 12.34 8.09 Td[(1 m0 2Bx d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2. (3)SinceforthesystemofsatelliteAandB,thereisnoexternalforce,thechangeinmomentumofthiswholesystemequalszero.ThustakingthetimederivativeofP Bwillgiveouttheexacttwoequations. 3.4.1.2RotationaldynamicsSinceinStep1.A,attitudeofsatelliteAisxed,rotationaldynamicequationforBwillbederived.AngularmomentumofBaboutcenterofmassrepresentedinFisasfollows: H Bc=IB! B=I,(3)inwhichIBistheinertiamatrixofBaboutcenterofmassrepresentedinF.Byusingtransformationofinertiamatrix,wehave: IB=R>B=BIBRB=,(3)whereRB=isrotationmatrixfromFtobodyxedframe: RB==R(y,)]TJ /F4 11.955 Tf 13.15 8.09 Td[( 2).(3)Aswell,forthreeringswithradiusr,massm, BIB=2mr2266664100010001377775.(3) 47

PAGE 48

SinceR>B=RB==Iidentity, IB=2mr2266664100010001377775.(3)Note,inthisthesis,onlythemassandinertiaofthethreecoilsisusedintheanalysis.However,infuturesimulations,thesetermscaneasilybeupdatedtoincludethefullsatellitemassandinertia.AngularvelocityofBwithrespecttoinertiaframerepresentedinF,! B=Iisgivenby: B=I=! B=+! =I,(3)where B==2666640_0377775,! =I=2666640_0377775.(3)Substituting,wehave H Bc=IB! B=I=2mBr2B2666640_+_0377775(3)TaketimederivativeofH Bc, _H Bc+[! =I]H Bc= B.(3)Substitute( 3 )and( 3 )into( 3 ),wehaverotationaldynamicsequations: 2mr22666640+0377775= B.(3) 48

PAGE 49

Recall( 2 ),wehave: B=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 4B d3(2zsin+xcos).(3)Combine( 3 )and( 3 ),wehave: =)]TJ /F4 11.955 Tf 12.18 8.08 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 12.68 2.65 Td[(.(3)Then,wehave: =)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 12.44 8.09 Td[(1 m0 2Bx d5(zsin+xcos)+2_d_ d.(3)Rememberthe Aisgeneratedbythreeorthogonalrings,representationinF.Therefore, AmustbetransferredbacktoFA.IfwecancelthetorqueactingonsatelliteAbymomentummanagement,rotationmatrixfromFRtoFR,RA=R,willbeaconstantmatrix.Also,satelliteBonlyrotatesintheplanexz.Hence, A A=R>A=RR A=R>A=RR>=R A.(3) 3.4.2Step1.BStep1.Bhappensinplanexz,inwhichxAandzRlie.DynamicsequationsforthisstepisderivedincoordinatesystemF.AnauxiliarycoordinatesystemFisdenedasfollows.AsshownintheFigure 3-7 and 3-8 ,FisinitiallyalignedwithFR,thenrotatesangleaboutaxiszR.Thearrowofthisrotationinthegureisjustforshowingthepositivedirectionof.RotationmatrixfromFRtoFisgivenby: R=R=R(z,).(3)DerivationofdynamicequationsissimilartoStep1.A.Remember,orientationofsatelliteBissettobexedinthisstep. 49

PAGE 50

Figure3-7. 3-DillustrationforStep1.B. Figure3-8. FrontviewofStep1.B. 3.4.2.1TranslationaldynamicsBasically,thereisnodifferencefromStep1.A'sdynamicsmodelingexceptforderivingincoordinatesystemFR.Tosavespace,onlyimportantresultswillbeshowninthissection.Translationaldynamicsequationisgivenby: 3m266664)]TJ /F6 7.97 Tf 10.5 5.86 Td[(d 2)]TJ /F8 7.97 Tf 14.49 7.63 Td[(_d_ 2)]TJ /F8 7.97 Tf 14.49 7.63 Td[(_d_ 20)]TJ /F8 7.97 Tf 10.85 6.48 Td[(d 2+d_2 2377775=F A.(3) 50

PAGE 51

InF, Bonlygivescomponentsinplanexz, B=266664x0z377775=B266664sin~0cos~377775(3)Also, AinthisstepisonlygivenbydominantringofA: A=Ax^x A.(3)Substitute Bintoto( 2 ),forceactingonAisgivenby: F A=30 4Ax d4266664)]TJ /F4 11.955 Tf 9.3 0 Td[(xcos)]TJ /F4 11.955 Tf 11.96 0 Td[(zsin02zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin377775.(3)Reorganizing,=1 m0 2Ax d5(xcos+zsin))]TJ /F9 11.955 Tf 13.15 8.09 Td[(2_d_ d, (3)d=1 m0 2Ax d4(2zcos)]TJ /F4 11.955 Tf 11.95 0 Td[(xsin)+d_2. (3) 3.4.2.2RotationaldynamicsSimilarly,onlymainequationswillbeshownforStep1.B. 2mr22666640+0377775= A.(3)Byusing( 2 ),torqueactonAisgivenby: A=2666640)]TJ /F5 7.97 Tf 11.53 5.26 Td[(0 8AB d3(2zsin+xcos)0377775(3) 51

PAGE 52

Therefore =)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8Ax d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 14.99 8.09 Td[(1 m0 2B d5(xcos+zsin)+2_d_ d.(3)Transfer BtoFB: B B=R>B=RR>=R B.(3) 3.4.3Step1.CAfterStep1.AandStep1.B,bothtwodominantaxesarealignedwithdistancevector.ControllingthedistancebetweenofAandBnowreducestoa1-Dattractionorrepulsivecase.Whentwistingothercoilswhichareperpendiculartothedominantringsaboutco-axial,wehave2satevariablesdandangledifference(')]TJ /F4 11.955 Tf 13.01 0 Td[( )withonlyoneinput(AyBy)whichmeansthatdistancecontrolcannotbeguaranteed.However,byintroducinga`roughdocking'approachwhichisdenedasdistancemaintenancebyusingmechanicalcontacts,thetwistingthesatelliteaboutco-axiscouldbeaccomplished.Inthisstep, A A=2666640Ay0377775,B B=2666640By0377775.(3) Figure3-9. 3-DillustrationforStep1.C. 52

PAGE 53

Figure3-10. FrontviewofStep1.C. 3.4.3.1TranslationaldynamicsFromSection 2.3.3 ,wehavetheforcegeneratedbytheAyandBycomponents: F A=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R,F B=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( )^z R.(3)Sumup, F A=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R,F B=30AyBy 4d4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( )^z R.(3)Fortranslationaldynamicsthereisonlyonestatevariable,d.TimederivativeofmomentumforAcouldbeexpressed: )]TJ /F9 11.955 Tf 11.96 0 Td[(3md 2=F A.(3)Reorganizing: d=0AyBy 2md4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( ).(3) 3.4.3.2RotationaldynamicsFromSection 2.3.3 ,wehavethetorquegeneratedbytheAyandBy: A=)]TJ /F4 11.955 Tf 10.49 8.09 Td[(0AyBy 4d3sin(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R, B=0AyBy 4d3sin(')]TJ /F4 11.955 Tf 11.95 0 Td[( )^z R.(3) 53

PAGE 54

TimederivativeofangularmomentumsforAandBarederivedas: 266664002mr2'377775= A,266664002mr2 377775= B.(3)Subtracting: ')]TJ /F9 11.955 Tf 14.13 2.66 Td[( =)]TJ /F4 11.955 Tf 10.5 8.09 Td[(0AyBy 4mr2sin(')]TJ /F4 11.955 Tf 11.96 0 Td[( ).(3) 3.4.4Step2InStep2,therelativeattitudehasbeenadjustedbyStep1.Hence,onlythingneedingtobeaccomplishedinthisstepisgeneratingattractionorrepulsiveforcerepulsivewithdockingmechanism.Sincetheforcedirectionisalongthedistancevector,itisbasicallya1-Dcase.Inthisstep,thedominantringsareusedtogeneratetheforce. A A=266664Ax00377775,B B=266664Bx00377775.(3) Figure3-11. 3-DillustrationforStep2. 54

PAGE 55

FromSection 2.3.2 ,theforceandtorquefor1-Dcasehasbeenderived: F A=30 2AxBx d4^z R,F B=)]TJ /F9 11.955 Tf 10.49 8.09 Td[(30 2AxBx d4^z R,(3)TimederivativeofmomentumforAisderivedas: )]TJ /F9 11.955 Tf 11.96 0 Td[(3md 2=F A.(3)Reorganizing: d=)]TJ /F4 11.955 Tf 14.02 8.08 Td[(0 mAxBx d4.(3)Pertheabove,thesetofdynamicmodelsthatcapturethebehaviorofthetwosatellitesinthepresenteddockingstrategywillnowbeusedforderivingthecontrollerforthemagneticcoildockingsystem.Designdetailsandsimulatedresultsarepresentedinthenextchapter. 55

PAGE 56

CHAPTER4CONTROLLAWSANDSIMULATIONRESULTS 4.1OverviewInthischapter,theoverallcontrolstrategyforthemagneticcoildockingapproachisshown.Detailsofthecontrollerdesignforeachstepinthedockingispresented.Thisisfollowedbysimulationresultsoftheindividualcontrollersanddemonstrationofthesequentialcombinationofthesecontrollers.AllthesimulationsareperformedusingMatlabandSimulink.Importantassumptionsare: Fullrelativepositionandattitudeestimationcanbeachieved,includingrelationshipbetweenFRandbodyxedframesFAandFB.WhichmeansthatbothRB=RandRA=Rarereachable. The3-2-1sequentialEulerangles(,,,,'and )canbedeterminedfromrotationmatrix. Forconvenience,thed,,,,,'and arethestatevariablesdirectlyusedinsimulation. Therelativepositioncanbeusedtodetermineand. Firstordertimederivativeofd,,,,,', ,andcanbemeasured.Determining_,_,_,_,_',and_ isreasonableiftheangularvelocitysensorsisequipped.Relativevelocityestimationbetweentwosatelliteswillgive_d,_,and_.Since,positionandattitudeestimationisawholenewarea,thisthesiswillfocusonthedynamicsandcontrollerdesignforeachstepinthedockingstrategywhereallthestatesandtheirtimederivativesaremeasureddirectlyand/orestimated. 4.2ControlStrategyPerthecontrolstrategymentionedinSection 3.2.2 ,thecorrespondingcontrolowchartisdesignedtomorefullydemonstratetheapproachofthisthesisrefertoFigure 4-3 and 4-4 .Tohelpvisualizingeachstepofthisowchart,Figure 1-3 isrepeatedhere. 56

PAGE 57

Note:inthisthesis,detumblingFRorandisdenedassuch,consideringthesetwosatellitesasasystem,preventingtherotationoftwosatellitesaboutthecenterofmassofthissystem.Note,itisdifferentfromdetumblingasatellitewhichmeansstabilizingtheattitudeofthissatellite.Also,a`roughdocking'approachisdenedasdistancemaintenancebyusingmechanicalcontacts.Figure 4-2 hasshownasuitabledockingmechanism.Thisfoldabledockingmechanism[ 20 ]givesthedistanceconstraintaswellasthecircumferentialconstraint,meanwhile,itleavesonedegreeoffreedomfortwistingabouttheco-axial. Figure4-1. Repeatelectromagneticdockingstrategy. Figure 4-5 showsthecorrespondingcontroldiagramanditsimplementationasusedinsimulation.Thecontrolstrategyisimplementedtothistwosatellitesystembyusingamulti-porttriggerandswitch.Toguaranteetheinputisimplementable,inputsaturationisnecessary.DisturbanceDandDNareintroducedtoexaminetherobustnessofthecontrollers. 57

PAGE 58

Figure4-2. Roughdockingmechanism:foldabledockingMechanism Asindicatedinpriorchapters,thecontrolisachievedbyacombinationofcontrollerswhereeachcontrollerisdesignedusingthecorrespondingdynamicmodelforthespecicstepinthealignmentanddockingprocess.Asshownintheowchartandcontroldiagram,therearesteps1.A.,1.B.and2withtransitionalmodes(e.g.,steps1.A.0,1.A.1/1.B.0,1.B.1)betweencontrollersinvolvingthereactionwheelstates.Thetransitionalmodesuseeachsatellite'sreactionwheelstoconstrainthesatellitebehaviorsuchthatitsdynamicscanbeapproximatedasthe2-DcasespresentedinChapter 3 .Thus,severalcontroltriggerindicesaredenedforjudgingstepscompletedornot,switchingfromonestep'scontrollertothenextcontroller.Criterionsofthesetriggerswillbedenedlaterinthesimulationsection. 4.3ControllerDesignforEachStepReferringto[ 10 ],Lyapunovbasedhighgainrobustcontrollerdesignmethodologyisappliedinfollowingcontrollerdesigns. 58

PAGE 59

Figure4-3. Controlowchartpart1. 59

PAGE 60

Figure4-4. Controlowchartpart2. 60

PAGE 61

Figure4-5. Controldiagram. 4.3.1ControllerforStep1.ARecallthedynamicsequationsforStep1.A:=1 m0 2B d5(zsin+xcos))]TJ /F9 11.955 Tf 13.15 8.08 Td[(2_d_ d, (4)d=)]TJ /F9 11.955 Tf 12.34 8.08 Td[(1 m0 2B d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2, (4)=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 8B d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 15 8.09 Td[(1 m0 2B d5(zsin+xcos)+2_d_ d. (4)Noticethatthereare3statesvariablesinthissystem,yetonlytwoinputsxBandzBcouldbesupplied.Comparingtothecontrolobjectiveinthisstep(showninFigure 3-4 ),controllingisforthepurposeofaligningB'sdominantaxiswithdistancevector,controllingdgivestheabilityofregulatingthedistanceortrackingadesiredtrajectory,controllingisfordetumblingtherotatedreferencecoordinatesystemFR.Toavoidcollision,controllingdshouldalwaystakeprecedenceoverothertwoobjectives.Thus,wedividedthisstepintotwosmallsteps:controldandtoachievethecontrolobjectiveofaligning,setattitudeofsatelliteBtobexedanddrivetobezero.Betweenthesetwosmallsteps,atriggerswitchshouldbedesigned. 61

PAGE 62

4.3.1.1Step1.A.0controlofdandTokeepthecontrollerdesignprocessconcise,replacezBxandxBxwithu1andu2, 264d375=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 1 d4sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 81 d3mr2+1 m0 21 d5cos375264u1u2375+2642d_2d_2 d375,(4)andreorganizedynamicsmodelassuchaform: q =B(q ,_q )u +G(q ,_q )+D,(4)inwhich q =264d375,_q =264_d_375,q =264d375,u =264u1u2375,B=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 1 d4sin)]TJ /F11 11.955 Tf 11.29 9.69 Td[()]TJ /F5 7.97 Tf 7.72 -4.43 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.3 9.69 Td[()]TJ /F5 7.97 Tf 7.71 -4.43 Td[(0 81 d3mr2+1 m0 21 d5cos375,G=2642d_2d_2 d375,(4)andD 2R2isunknowndisturbancecausedbythemodelinaccuracyorsomeotherfactors.Controlobjectivearesettobe: e =q )]TJ /F3 11.955 Tf 11.96 0 Td[(q des!0 ,_e =_q )]TJ /F9 11.955 Tf 13.59 0 Td[(_q des!0 ,(4)inwhichq desisthedesiretrajectoryforq ,_q desistimederivativeof_q .Beforedesignofthecontroller,somepropertiesshouldbeprovedorassumedasfollows[anewclassofmodularadaptivecontrollers,[ 12 ].TheB)]TJ /F8 7.97 Tf 6.59 0 Td[(1isassumedtoexist.Theq desisdesignedsuchthatn-thorderoftimederivativeofq desexistsandis 62

PAGE 63

bounded.Ifq ,_q 2L1,thenB,G,D2L1(L1meansbeingbounded).FormatrixB,q ,_q 2L1)Bij2L1(refertoAppendix A ),andBij2L1)B.Also,forvectorG,q ,_q 2L1)Gi2L1,thenjGj=p G21+G22isboundedtoo.TheboundednessaboutunknowndisturbanceDmustbeassumed.ToproveB)]TJ /F8 7.97 Tf 6.59 0 Td[(1exists,fromthefar-eldmodelassumptioninSection 2.3.1 wehaverd.Thusr2=d2,ahigherordertermforr=d,r2=d2=0canbeassumed.Then,inmatrixB,thefollowingapproximationcouldbemade: 0 41 d3mr2+1 m0 21 d5sin=0 41 d3mr2sin.(4)Similarly, )]TJ /F11 11.955 Tf 11.96 16.86 Td[(0 81 d3mr2+1 m0 21 d5cos=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 81 d3mr2cos.(4)Then, det(B)1 m0 1 d40 81 d3mr26=0.(4)So,matrixBcanbeconsideredasinvertible.Insteadofusingbacksteppingdesignmethod,lteredtrackingerrorisintroducedhere, r =_e +ce ,(4)wherecisapositiveconstant.Openloopanalysisoferror: _q =q )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+c_e =B(q ,_q )u +G(q ,_q )c_e )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+D.(4)Designu as: u =B)]TJ /F8 7.97 Tf 6.59 0 Td[(1()]TJ /F3 11.955 Tf 9.3 0 Td[(G)]TJ /F3 11.955 Tf 11.96 0 Td[(ce +q des)]TJ /F3 11.955 Tf 11.95 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r ).(4)Bysuchdesign,sincer ismeasureable,u isimplementable.Also,sinceB,G,D2L1,q ,q des2L1also_q ,_q des2L1,conclusionu 2L1canbemade. 63

PAGE 64

Closedloopanalysisoferror: _r =q )]TJ /F9 11.955 Tf 12.2 0 Td[(q des+c_e =)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r )]TJ /F3 11.955 Tf 11.95 0 Td[(k2r +D,(4)inwhich,k1andk2aredesignedtobepositiveconstant.Forclosedloopstabilityanalysis,Lyapunovstabilityanalysismethodisused.LetVLbeacontinuouslydifferentiablepositivedenitefunctiondenedas: VL=1 2r >r .(4)TaketimederivativeofVL, _VL=1 2r >_r .(4)Substitutingwehave:_VL=R >()]TJ /F3 11.955 Tf 9.3 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r +D)=)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r >r )]TJ /F9 11.955 Tf 11.95 0 Td[((k2r >r )]TJ /F3 11.955 Tf 11.96 0 Td[(r >D+1 4k2D>D)+1 4k2D>D=)]TJ /F3 11.955 Tf 9.3 0 Td[(k1r >r )]TJ /F3 11.955 Tf 11.95 0 Td[(k2(r )]TJ /F9 11.955 Tf 19.53 8.09 Td[(1 2k2D)>(r )]TJ /F9 11.955 Tf 19.53 8.09 Td[(1 2k2D)+1 4k2D>D)]TJ /F3 11.955 Tf 21.92 0 Td[(k1VL+", (4)Inwhich "=1 4k2D>D.(4)Ifk2canbepickedbigenough,wecanhaveaverysmall".Consequently, VL(t)VL(0)e)]TJ /F6 7.97 Tf 6.59 0 Td[(k1t)]TJ /F4 11.955 Tf 11.95 0 Td[("k1(1)]TJ /F3 11.955 Tf 11.96 0 Td[(e)]TJ /F6 7.97 Tf 6.59 0 Td[(k1t).(4)Thus,globalultimateboundedresulthasbeenproven.Thelargerk2is,thebettercontrolperformanceitdemonstrates. 64

PAGE 65

Recall( 3 )and( 3 )inSection 3.4.1 A=266664x0z377775, B=Bx^x B.(4)ActualcontrolinputarefromthreeorthogonalringsonsatellitesAandB,thefollowingequationgivesouthowtotransfer Abacktobodyxedcoordinatesystem: A A=R>A=RR A=R>A=RR>=R A.(4)Aswell,BxisgeneratedbydominantringofsatelliteB. 4.3.1.2Step1.A.1controldandInthisstep,attitudesofsatelliteAandBaresettobexed.Similartocontrollerdesignfordand,,highgainrobustcontrollerfordandcouldbedesigned.First,reorganizethedynamicequationsintheformofq =B(q ,_q )u +G(q ,_q )+D, q =264d375=2641 m0 21 d5cos1 m0 21 d5cos)]TJ /F8 7.97 Tf 11.79 4.7 Td[(1 m0 1 d4cos1 m0 21 d4sin375264u1u2375+2642d_2)]TJ /F8 7.97 Tf 10.5 6.48 Td[(2_d_2 d375.(4)ThedesignedcontrollerhasthesameformwithStep1.A.0: u =B)]TJ /F8 7.97 Tf 6.59 0 Td[(1()]TJ /F3 11.955 Tf 9.3 0 Td[(G)]TJ /F3 11.955 Tf 11.96 0 Td[(c_e+q des)]TJ /F3 11.955 Tf 11.95 0 Td[(k1r )]TJ /F3 11.955 Tf 11.96 0 Td[(k2r ).(4)Similarityforstabilityanalysisalsoexists. 4.3.2ControllerforStep1.BThereisatrickydifferencebetweenStep1.BandStep1.A.Tosavecontroleffort,detumblingfor_willconcentrateondriving_tozero,thus,afterStep1.Acompleted,therewillbeaconstantstays.However,sinceduringthedetumblingprocess(Step1.A.1),attitudesofsatelliteAandBarestabilizedbyangularmomentum,aconstantwillnotaffecttherelationshipbetweenFA,FB,andFR. 65

PAGE 66

DuetothehighsimilaritybetweenStep1.AandStep1.B,thecontrollerdesignmethodforStep1.BfollowsthesamedesignprocessasStep1.A.Recallthedynamicsequations:=1 m0 2Ax d5(xcos+zsin))]TJ /F9 11.955 Tf 13.15 8.08 Td[(2_d_ d, (4)d=)]TJ /F9 11.955 Tf 12.33 8.08 Td[(1 m0 2Ax d4(2zcos)]TJ /F4 11.955 Tf 11.96 0 Td[(xsin)+d_2, (4)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 8Ax d3mr2(2zsin+xcos))]TJ /F9 11.955 Tf 15 8.09 Td[(1 m0 2Ax d5(xcos+zsin)+2_d_ d. (4) 4.3.2.1Step1.B.0controldandOrganizethedynamicequations: 264d375=264)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 1 d4cos1 m0 21 d4sin)]TJ /F11 11.955 Tf 11.29 9.68 Td[()]TJ /F5 7.97 Tf 7.71 -4.42 Td[(0 41 d3mr2+1 m0 21 d5sin)]TJ /F11 11.955 Tf 11.29 9.68 Td[()]TJ /F5 7.97 Tf 7.72 -4.42 Td[(0 81 d3mr2+1 m0 21 d5cos375264u1u2375+264d_22_d_ d375(4)whereu isdenedas: 264u1u2375=264AxzAxx375.(4) 4.3.2.2Step1.B.1controldandOrganizethedynamicequationsas: 264d375=2641 m0 21 d5sin1 m0 1 d4cos)]TJ /F8 7.97 Tf 11.79 4.71 Td[(1 m0 21 d4cos1 m0 21 d4sin375264u1u2375+264d_2)]TJ /F8 7.97 Tf 10.5 5.87 Td[(2_d_ d375(4)ThendesignedinputhasthesameformasintheStep1.A.1.RefertoSection 3.4.2 ,transformationof BtobodyxedframeFB,actualinputB Bisgivenby: B=R>B=RR>=R B.(4)Also,AxisgivenbydominantringofsatelliteA. 66

PAGE 67

4.3.3ControllerforStep1.CRecallthedynamicequationinSection 3.4.3 .Inthisstep,amechanicallatchisintroducedtokeepdistanceaconstant.Thus,theangledifferencebetweenyAandyB,(')]TJ /F4 11.955 Tf 11.95 0 Td[( )istheonlyoneweneedtoconcern.d=0AyBy 2md4cos(')]TJ /F4 11.955 Tf 11.96 0 Td[( ), (4)')]TJ /F9 11.955 Tf 14.14 2.66 Td[( =)]TJ /F4 11.955 Tf 11.38 8.09 Td[(0AyBy 4mr2d3sin')]TJ /F4 11.955 Tf 11.96 0 Td[( (4)Letq=')]TJ /F4 11.955 Tf 11.95 0 Td[( ,u=AyBy: q=)]TJ /F4 11.955 Tf 27.12 8.09 Td[(0u 4mr2d3sinq.(4)ExaminethepropertiesmentionedinSection 4.3.1.1 ,sinqhassingularitywhenq=0,pi.Thismightcausecontrolinputtobeunbounded.Thussaturationforinputuisnecessary.Also,whentheinitialconditionissettobeq=,whichmeansyAandyBareintheoppositedirection,thecontrollerwillbeinvalid.Ifitisthiscase,asymmetricmechanicaldesignfordockingmechanismcouldturnq=tobeavaliddockingattitude.Controllerobjectivecouldbeexpressedas: e=q)]TJ /F3 11.955 Tf 11.96 0 Td[(qdes!0.(4)FollowingthesimilarLyapunovbasedcontrollerdesignmethod,timederivativeoflterederrorr=_e+ce,canbeexpressedas: _r=q+c_e=)]TJ /F4 11.955 Tf 27.12 8.09 Td[(0u 4mr2d3(sinq+c_e).(4)inwhichcisapositiveconstant.Designthecontrolleras: u=)]TJ /F9 11.955 Tf 10.5 8.09 Td[(4mr2d3 sinq0()]TJ /F3 11.955 Tf 9.3 0 Td[(c_e+qdes)]TJ /F3 11.955 Tf 11.96 0 Td[(k_e)]TJ /F3 11.955 Tf 11.95 0 Td[(kcq),(4)wherekisapositiveconstant. 67

PAGE 68

Morediscussionaboutthebehaviorofthiscontrollerwillbeconductedinsimulationsection.Itishardtotellifuisbounded,sincewhenq!0,_e,qdes,and_e!0.Informationontheconvergespeedsareneededtoverifyboundednessofu. 4.3.4ControllerforStep2Recalldynamicequationforthisstep.Noticethat,sincethisstepiscooperatingwiththedockingmechanism,whilethedynamicmodelisonlyfortheidealdockingsituation,anindicativecontrollerisdevelopedhere. d=)]TJ /F4 11.955 Tf 14.02 8.09 Td[(0 mAxBx d4.(4)ExaminethepropertiesmentionedinSection 4.3.1.1 ,assumethenaldwhichdockingmechanismrequiresisdf,then)]TJ /F5 7.97 Tf 18.01 5.25 Td[(0 md4canbeconsideredasboundedandinvertible.Controlobjectiveissettobetrackingadesiredtrajectoryddes,thentheerroris: e=d)]TJ /F3 11.955 Tf 11.96 0 Td[(ddes.(4)Introducinglterederror: r=_e+ce.(4)Again,Tokeepthecontrollerdesignprocessconcise,replaceAxBxwithu,anddesigncontrolinputas: u=)]TJ /F4 11.955 Tf 10.49 8.09 Td[(md4 0()]TJ /F3 11.955 Tf 9.3 0 Td[(kr+ddes)]TJ /F3 11.955 Tf 11.95 0 Td[(c_e),(4)inwhichkischosentobeapositiveconstant.Closedloopstabilityanalysishasnodifferencefromabovecontrollerdesigns. 4.4AssumptionsforSimulationParametersSincethissystemisdesignedfordocking/proximityoperationsofsmallsatellitesorsmallassemblyparts,alltheassumptionsfortheparametersandlimitationsarebasedoncommondesignsforsmallsatellitesormicrosmallsatellites.TakeCubeSatwhichisapopularprogramforsmallsatellitesforexample[ 6 ],thetotalmassofsuchasatellitesliesintheorderof1kg,typicalsizeis0.1m0.1m0.1m,powerbudget 68

PAGE 69

forsatelliteusuallystaysafewwatts(however,newtechnologyinvolvesthemembranelikecongurationofsolarcellsmightgivesmorethan20W(Watts)power).Note,whensatellitesaresetindockingmode,mostofthepowerwillbeusedfordockingmissionincludingactuatingthedockingprocess,measuringandcontrollercomputing.Satellitesinthisthesisaresimpliedtodistributethemassuniformlytothecoils.Basedontheaboveinformation,satellitesmassandcoilradiusaresetas: m=1kg,r=0.1m.(4)Assumptionof4.5Wbudgetfordrivingtheelectromagneticcoilsforeachsatellitecanbefairlymade.Thenforeachcoil,1.5Wisthepowerlimitation.Referringtothedesignofmagnetictorquerin[ 5 ]and[ 8 ],thepowerdissipationinonecoilcanbedeterminedby: P=i2R,(4)whereiiscurrentincoil,andRisresistanceofthecoil.Thecoilresistanceisgivenby: R=2Nr aw,(4)whereNisthenumberorturns,ristheradiusofcoil,=1.5510)]TJ /F8 7.97 Tf 6.58 0 Td[(8mforcopperwire,awissectionareaofthecoil.Foracoilwithradiusof0.1m,aw25mm2isreasonableandsuitableforinertialmatrixassumptioninChapter 3 .Recall( 2 )magneticmomentofacoilisgivenby: =Nr2i=Nr2r Paw 2Nr.(4)ThelargerNis,thelargerthecoilcangenerate.Thus,asmalldiameter(dw)ofcopperwirewithinsulationwhichisavailablehasbeenchosentobe0.15mm.ThenN=4aw d2wcanbeapproximated. 69

PAGE 70

Substituting,alimitationforthemagneticmomentonecoilcangeneratemax=73Am2thencanbedesigned.Additionally,disturbancesandnoisesinsimulationwillbedesignedaswhitenoiseswhichhaveanorderoftenthofinputforcesandtorques.Undertheseassumptions,simulationsforseparatestepsandseveralcompletesimulationresultcombinedwithcontrolstrategyindifferentscenarioswillbeinvestigatedinfollowingsections. 4.5SimulationandResult 4.5.1SeparateSimulationResultforEachControllerBeforecompletesimulationsfordifferentdockingscenariosbegin,vericationforeachcontrollerisessential.Alsotherearesomedetailsaboutthesecontrollerarediscussed.BecauseofthesimilaritybetweenStep1.AandStep1.B,simulationsforStep1.AincludingStep1.A.0andStep1.A.1coulddemonstratetheperformanceofcontrollersinbothofthesetwosteps. 4.5.1.1SimulationforStep1.A.0Consideringthedockingstrategy,aregulationford0and0todesiredconstantddesanddesissimulated.Acontinuoustrajectoryqcfrominitialvalueq0toqdeshasbeendesignedassuch: qc=q0+(qdes)]TJ /F3 11.955 Tf 11.96 0 Td[(q0)tanh(!t)]TJ /F4 11.955 Tf 11.96 0 Td[())]TJ /F9 11.955 Tf 11.96 0 Td[(tanh()]TJ /F4 11.955 Tf 9.3 0 Td[() 1)]TJ /F9 11.955 Tf 11.96 0 Td[(tanh()]TJ /F4 11.955 Tf 9.3 0 Td[(),(4)where!isapositiveconstantfactoradjustingthetimethetrajectorytakestoconvergetoqdes,thelargeritis,thefastertrajectoryconverge,thelargercontroleffortitneeds.RecalltheowchartinFigure 4-3 and 4-4 eachstepneedsacriteriontojudgewhetherthisstepisnishedandtrigcorrespondingcontrollerandangularmomentummanagementbehavior.ForStep1.A.0,itissettobetsA1.Itisdenedtobe1whenthefollowingconditionsaresatised:q)]TJ /F3 11.955 Tf 11.96 0 Td[(qdes0.01,_q0.001otherwise,itstays0.Tofullyinspecttheperformanceofcontroller,3setofinitialconditionshavebeentested,asshowninTable 4-1 70

PAGE 71

ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-6. Simulationresultforinitialcondition1. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-7. Simulationresultforinitialcondition2. 71

PAGE 72

Table4-1. InitialconditionforsimulationofStep1.A.0 d0(m)_d0(m/s)0_0(1/s) 11.50=3021.50.01=2)]TJ /F9 11.955 Tf 9.3 0 Td[(0.0230.8)]TJ /F9 11.955 Tf 9.3 0 Td[(0.020.01 ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-8. Simulationresultforinitialcondition3. Sincethedockingscenariosareallsettostartfromattitudestableinitialconditions,_0isalwayssettobe0.Also,consideringtheinputlimits,_d0cannotbelarge.Actually,forobjectwithdimensionof0.1m,0.01m/sisareasonableassumption.Desiredconstantddesanddesaresettobe1mand0radrespectively.Simulationresultsfortheseconditionsincludingstatesvariable,errorandinput,aredemonstratedinthefollowinggures:Figure 4-6 ,Figure 4-7 ,Figure 4-8 .Thedesignedsmoothtrajectoriesfromd0and0toddesanddeshavebeendemonstratedinplotAofeachgure.CombiningwithplotB,presentingthetrackingerror,andplotC,presentingtheinputs,onecandrawaconclusionthatwhencontrolsignalsstaysintherangeofinputlimitations(generallyfrom0-10sand20-30s),trackingerrorhasa 72

PAGE 73

goodperformance(under1103).However,eventhesaturationaffectsthetrackingerrors(generallyfrom10-20s),astimegoesby,errorstillcanbedriventozero.TriggerindicatortsA1isturnedonabout32sto35s,whichmeansthetimeconsumptionforthisstepisacceptableconsideringanusualcompletedockingmissionrequires5)]TJ /F1 11.955 Tf 9.3 0 Td[(10minutes[ 19 ].Alsothegoodperformanceontrackingerrorindicatesthatthiscontrollerissuitableforthegeneralreasonableinitialvelocitiesandanglerates. 4.5.1.2SimulationforStep1.A.1Since,thecontrolobjectivesinthissteparedistanceregulatingortracking,anddetumblingtherotatedreferenceframe,themaincontroleffortshouldbespentondistancecontrolanddetumbling(_!0).Whendesignthetrajectory,desiredtrajectoryofusuallyispreferredtodrivetoaconstantnearbyinitialcondition0.Withoutloseofgenerality,controlobjectivearesettoberegulatingtoddes=1anddes=0+.Inwhichisasmallangle,againtosavecontrolenergy,signofisdenedduetoinitialratesof_0.Carefulchoosingofwillreducethetimetoachievecontrolobjective.Inthisstep,sincetheattitudesofsatelliteAandBaresettobestabilizedbyreactionwheels,issettobe0,sois_.Also,duetothetrigconditionofStep1.A.1(q)]TJ /F3 11.955 Tf 11.71 0 Td[(qdes0.01,_q0.001),initialcondition_d0issettobenolargerthan0.001,_0isthevalueof_whenStep1.A.1istriggered.Yettotestifytherobustnessofthecontroller,thefollowing2initialconditionswithfairlylarge_d0and_showninTable 4-2 aretested. Table4-2. InitialconditionsforsimulationofStep1.A.1 d0(m)_d0(m/s)0_0(1/s) 11.2)]TJ /F9 11.955 Tf 9.3 0 Td[(0.01=30.0220.80.02=2)]TJ /F9 11.955 Tf 9.29 0 Td[(0.02 Followingtheguidelineinthebeginningparagraph,des==3+=10anddes==2)]TJ /F4 11.955 Tf 12.33 0 Td[(=10.Thesimulationresultsforcondition1and2aredemonstratedin2gures,Figure 4-9 andFigure 4-10 .SimilarwithStep1.A.0,thetrackingerrorshowsagoodperformancewhensaturationsarenotreached(from10-80s).Detumbling 73

PAGE 74

a0.02rad/slevel_ismoretimeconsumingthandrivingtozeroinStep1.A.0.ReferringtotheplotD,trigconditionsareusuallysatisedataround90s.Nevertheless,inacompletesimulation,Step1.A.1alwayshappensaftercontrolobjectivesofStep1.A.0hasbeenachievedwhichcomesusuallywithasmall_(about0.005rad/s).Ifthisisthecase,thentimeconsumptionwillbereduced.MoredetailsaboutthiscanbereachedincompletesimulationsinSection 4.5.2 ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-9. SimulationresultforStep1.A.1ininitialcondition1. 4.5.1.3SimulationforStep1.CThisstepstartswithroughdocking,whichxedthedistancebetweentwosatellites.Onlytwistingangledifference')]TJ /F4 11.955 Tf 13.12 0 Td[( willbedealtwithinthisstep.Assumeroughdockingkeepsdistancetobedr=0.5,twosetsofinitialconditionswillbetestedforthiscontroller,asshowninTable 4-3 .TriggertsCisdenedtobe1when')]TJ /F4 11.955 Tf 12.51 0 Td[( 0.001,_')]TJ /F9 11.955 Tf 15.53 2.65 Td[(_ 0.001.SimulationresultsfortwoinitialconditionswithinputsaturationareillustratedinFigure 4-11 and 4-12 .TrajectoryiswellfollowedbyobservingtheplotAandB.As 74

PAGE 75

ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-10. SimulationresultforStep1.A.1ininitialcondition2. Table4-3. InitialconditionsforsimulationofStep1.C '0)]TJ /F4 11.955 Tf 11.95 0 Td[( 0(rad)_'0)]TJ /F9 11.955 Tf 15.53 2.66 Td[(_ 0(1/s) 1=2)]TJ /F9 11.955 Tf 9.29 0 Td[(0.012)]TJ /F4 11.955 Tf 9.3 0 Td[(=30.02 discussedinthecontrollerdesignprocedureinSection 4.3.3 ,boundednessofcontrolinputscannotbeguaranteed.ComparingplotAandplotC,singularityofcontrolinputhappenswhenyisclosetozero.However,astimegoesby,onecanobservethissingularityisanonetimeaccident.Afterthat,theinputconvergestoaconstant.And,plotDshowstrigindicatorts2isturnedonaround30s.Comparingwith( 4 ),throughtadditionalsimulations,anunconrmedconclusioncanbeinductedthat: limt!+1u=4k2mr2d3 0.(4)inthetwosimulationsshown,kischosentobe0.1,limt!+1u=12.5Am2Am2.Sumup,saturationforthisstepisnecessaryforthesingularityissue.Tokeeptheachieved 75

PAGE 76

objective,aconstantinputisneeded.Thus,cooperatingwithdockingmechanismisessentialforthisstep.Also,timeconsumptionisacceptable. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-11. SimulationforStep1.Cininitialcondition1withsaturation. 4.5.1.4SimulationforStep2Initialconditionforthisstepiscomingfromtheroughdockingsetting.Assumeroughdockingkeepsdistancetobedr=0.5.Theactualrequireddistanceformechanicallatchissettobeddes=0.3.SimulationresultisshowninFigure 4-13 .Triggercriterionissatisedaround25s.TrackingerrorinplotBpresentsagoodperformanceofthiscontroller.Timeconsumptionandenergyconsumptionperformwellinthis1-Dattractioncase. 4.5.2CompleteSimulationInthissection,onecompletesimulationisdemonstrated.Withoutlossofgenerality,2setsofinitialconditionsaresetasTable 4-4 .Exceptforintroducingcontrolalgorithminthissection,transformingvirtualcontrolinputsforeachsteptoactualcurrentsofringsisalsoincluded. 76

PAGE 77

ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-12. SimulationforStep1.Cininitialcondition2withsaturation. ADesiredtrajectoryandactualsignal BError CInput DTriggerFigure4-13. SimulationresultforStep2. 77

PAGE 78

Table4-4. Initialconditionsforcompletesimulation d(m)_d(m/s)(rad)(-)(-)(-)'(-) (-) 11.50.01 3)]TJ /F8 7.97 Tf 10.5 4.71 Td[(3 4)]TJ /F5 7.97 Tf 10.5 4.71 Td[( 4 6 5)]TJ /F5 7.97 Tf 10.5 4.71 Td[( 221.70.02)]TJ /F5 7.97 Tf 10.49 4.7 Td[( 3)]TJ /F5 7.97 Tf 10.5 4.7 Td[( 3)]TJ /F5 7.97 Tf 10.5 4.7 Td[( 6 4)]TJ /F8 7.97 Tf 10.49 4.7 Td[(3 4 Observingthevirtualcontrolinputuforeachstep,takeStep1.Aforexample: u =264u1u2375=264zBxxBx375.(4)Calculatethemagnitudeforinput: u=q u21+u22=Bxq 2z+2x.(4)Assumetwosatellitehasthesamepowersupplyability,thenmake Bx=q 2z+2x=p u.(4)Thus,magneticmomentumofArepresentedinF, A,isgivenby: A=266664x0z377775.(4)Transfer AtoFA, A =R>A=RR A=RA=RR=R A.(4)Refertotheequations( 3 )and( 3 )forRA=RandR=RinSection 3.2.1 and 3.4.1 .ItisstraightforwardtocalculateA A.Also,BxisgeneratedbydominantringofB,B Bisobviouslyshownas: B B=266664Bx00377775.(4)Thetransformationsforotherstepsaresimilartothisprocedure. 78

PAGE 79

Thefollowingtwosetofgures(Figure 4-14 and 4-15 andFigure 4-16 and 4-17 )showthed,,,and(')]TJ /F4 11.955 Tf 12.34 0 Td[( )variesduringdifferentsteps,andthecontrolinputs(Ax,Bx,Ay,By,AzandBz)generatedbyeachofthecoilswhichareperpendiculartoaxesxA,xB,yA,yB,zA,andzB,respectively.Also,vetrigindicatorsforStep1.A.1,Step1.B.0,Step1.B.1,Step1.C,Step2anddockingcompletion(tsA1,tsB,tsB1,tsC,ts2andtsf)havebeendemonstrated.RefertoTable 4-5 ,controlobjectivesandtriggertimeforeachstephavebeenshowed. Table4-5. Completesimulationresult StepnameControlobjectiveTriggertimefornextstep(s) Step1.A.0Regulatedto1m,to0tsA1(32,44s)Step1.A.1Detumbling(_!0),keepingdtsB(107,118s)Step1.B.0Regulatedtodr(0.5m),to0tsB1(140,152s)Step1.B.1Detumbling(_!0),keepingdtsC(210,188s)Step1.CRoughdocking,regulate(')]TJ /F4 11.955 Tf 11.95 0 Td[( )to0ts2(247,226s)Step2Drivedistancetoddes(0.3m)tsf(270,249s) Figure4-14. Completesimulationforinitialcondition1:signal. Tosummarize,thecontrollersfordifferentstepsareunitedtogetherandtestedfor2generaldifferentscenariostodemonstratetheeffectivenessofthedockingandcontroloftwosatelliteseachequippedwith3orthogonalmagneticcoils.Theaboveresults 79

PAGE 80

Figure4-15. Completesimulationforinitialcondition1:magneticmoment. Figure4-16. Completesimulationforinitialcondition2:signal. 80

PAGE 81

Figure4-17. Completesimulationforinitialcondition2:magneticmoment. showthewholedockingmissioncostslessthan300swhichisthegeneraltimewithotherdockingpropellentsystemwillcost.RecallSection 4.4 ,thepowerrequirementsforthecasespresentedmatchwiththeinputlimitationanalysis.Aswell,foreachstep,disturbancescausedbyinaccuracyofdynamicsmodel,forceandtorquegeneratedbyuncertainties,andcomponentsofforcesantorquesactingoutofthealignmentplanesoraxeshavebeenaddedtosimulation.TherobustnessofthecontrollersstaysconsistentwiththeresultsshowninseparatesimulationsinSection 4.5.1 .Thus,underdeepspaceassumptions,thisdockingstrategyandcontrollawareapplicableforsmallsatellitesorassemblyparts.Innextchapter,moredetailsaboutexpandingthisdockingstrategytolowEarthorbitscenarioswillbeintroduced. 81

PAGE 82

CHAPTER5THELOWEARTHORBITCHALLENGES 5.1OverviewComparingtodeepspaceassumption,therealityinlowearthorbit(LEO)introducesasetofchallenges,includingtheeffectsoftheEarth'sgravitationaleldandmagneticeld.InSection 5.2 and 5.3 ,thesetwowillbeaddressed.Byasimple2-Dcase,thischapterpresentsthedynamicsequationsinLEOscenario.Aswelldifferencesfromthedeepspacescenarioaredemonstrated.Difcultiesofsolvingthisproblemhavebeendiscussed. 5.2GravitationalFieldWhenitcomestoinorbitcase,twotypesoftermsmainlyaffectthedockingdynamics:oneistheEarthgravity,anotheroneisorbitalangularvelocity.RecallSection 3.2.1 ,thegeometryofdifferentcoordinatesystem,whenthedocking/assemblyareoperatinginsomeorbitinsteadofindeepspace,FI6=FL.Consequently,! L=I6=0 .TakedynamicsforStep1.Aforexample.! =I=! R=L+! L=I, (5)P A=mA(_p A+! =IP A)=mA(_p A+(! R=L+! L=I)P A), (5)_P A+(! R=L+! L=I)P A=F A, (5)inwhichF Aincludebothelectromagneticforceandgravityforce.Similarchangeswillhappentorotationaldynamics.Fordescribingtheorbitalrelativeposition/attitudeproblem,whentheEarthismodeledasaperfectsphere,Clohessy-Wiltshire(CW)orHill'sequationsareusually 82

PAGE 83

used[ 18 ].SinceCWequationsareexpressedinthelocalinorbitframeFLasfollowing,Lx+n2Lx=LFx m, (5)Ly)]TJ /F9 11.955 Tf 11.95 0 Td[(3n2Ly)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_z=LFy m, (5)Lz+2nLy=LFz m, (5)whereLFistheforceactonthisobjectexceptgravity,nistheorbitalfrequency,givenby: n=r e r3e,(5)wherethegravitationalconstantofEarthe=3.98105km3=s2,reistheorbitalradiusofthesetwosatellites'centerofmass.Whenstudyinginorbitcase,translationaldynamicsmodelispreferredtobederivedinFL.Thecomplexityoftransfermatrixandstatesvariableestimationin3-Drealityisnothelpfulfordemonstratinghoworbitcaseshouldbederived.Thus,asimplenew2-DcaseasshowninFigure 5-1 ispresentedinthissection. Figure5-1. A2-Dcaseconcernsorbitaldynamics. 83

PAGE 84

AssumedipoleAandBaregeneratedbyringAandB,whichhastheidenticalsizeandmass.Inthiscase,byusingCW( 5 ),translationaldynamicsequationsarederivedas:LyA)]TJ /F9 11.955 Tf 11.96 0 Td[(3n2LyA)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_zA=LFy m, (5)LzA+2nLyA)]TJ /F9 11.955 Tf 11.96 0 Td[(2nL_zA=LFz m. (5)PositionofOArepresentedinFLis(LyA,LzA),misthemassofringA,and 264LFyLFz375=264cossin)]TJ /F9 11.955 Tf 11.3 0 Td[(sincos375264RFAyRFAz375.(5)where cos=LyA p Ly2A+Lz2A,sin=LzA p Ly2A+Lz2A.(5)RecallexpressionsforelectromagneticforceinSection 2.3.2 264RFAyRFAz375=30 4AB d42642cosRcosR)]TJ /F9 11.955 Tf 11.95 0 Td[(sinRsinR)]TJ /F9 11.955 Tf 11.29 0 Td[(cosRsinR)]TJ /F9 11.955 Tf 11.96 0 Td[(cosRsinR375,(5)whered=2p Ly2A+Lz2A.Therotationaldynamicsequationcanbeeasilyderivedsincethisisacoplanarcase:Ix(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2sinRcosR+cosRsinR), (5)Iy(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4AB d3(2cosRsinR+sinRcosR), (5)whereIxisthexcomponentofinertiaofringA=B.Observingthedynamicsequations,anddnolongerstayindynamicsequationsexplicitly.Eithercontrolobjectiveneedstobetransformedorthedynamicequationshould.Itdependsontheactualsensorsandstatesestimationmethod.Especially,whenitcomesto3-D,thetransformingbecomesmoredifcult.However,thedocking 84

PAGE 85

strategyandcontrollerdesignmethodshowninChapter 4 stillworks.Besides,whentheorbitperiodislongenoughcomparingtotheconsumedtimeondocking,theinuenceoforbitdynamicscouldbeconsideredasdisturbances.Basedonmoreknowledgeonstatesestimation,consideringaboutorbitdynamicswillbecomeeasier.Infuturework,thispartishighlyrecommended. 5.3GeomagneticFieldWhenthissystemisoperatinginEarth'smagneticeld,theelectromagneticcoilsproduceforceandtorqueonthesatellites.Forcegeneratedbygeomagneticeldisafunctionofthegradientofthelocalmagneticeld[ 15 ]: F GM=rBE ,(5)whereBEisthemagnitudeoflocalmagneticeld, isadipolemomentgeneratedbythecoil.Torquegeneratedbygeomagneticeldisgivenby: GM= B E.(5)Byexaminingandthequalitativeanalysis[ 15 ],theamountofdisturbanceforceproducedonsatelliteduetogeomagneticeldislessthantenthsofapercentoftheinteractingforcesbetweentwosatellites.However,thetorqueisonthesameorderofinteractingtorque.Sowhengeomagneticeldisconsidered,thedisturbanceforceisnegligible,whilethetorquemustbetakenintoaccount.TakethesimpleexampleinSection 5.2 forexample,consideringthesmallsizeofcoils,thedirectionandmagnitudeofB Eareassumedxed,presentedinFigure 5-2 .Thetorqueproducedbygeomagneticeldcanbecalculated:L AG=L ALB E=A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5)L BG=L BLB E=B(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5) 85

PAGE 86

Figure5-2. Asimple2-Dcaseconcernsgeomagneticeld. Therotationaldynamicsequationsbecome:Ix(R+)=)]TJ /F4 11.955 Tf 12.17 8.08 Td[(0 4AB d3(2sinRcosR+cosRsinR)+A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy), (5)Iy(R+)=)]TJ /F4 11.955 Tf 12.17 8.09 Td[(0 4AB d3(2cosRsinR+sinRcosR)+B(cosRBEz)]TJ /F9 11.955 Tf 11.95 0 Td[(sinRBEy). (5)Thesimilardockingstrategycanbetransplantedtothiscase.Firststep,setattitudeofAxed,regulateRtozero.ThensetBxed,regulateRtozero.Considerbothofthetwodipolesaresteerable,whichmeansanydirectionandmagnitudeofthemagneticmomentcanbegenerated.Taketherststepforexample,reorganizeitas: Ix(R+)=)]TJ /F4 11.955 Tf 12.18 8.09 Td[(0 4A d3(2sinRBy+cosRBz)+A(cosRBEz)]TJ /F9 11.955 Tf 11.96 0 Td[(sinRBEy),(5)inwhichBy=BcosR,Bz=BsinR.Itisinterestingthatthereare3inputs(A,ByandBz).RecallthecontrolobjectiveforStep1.AinSection 4.3.1 :controllingisforthepurposeofaligningB'sdominantaxiswithdistancevector,controllingdgivestheabilityofregulatingthedistanceor 86

PAGE 87

trackingadesiredtrajectory,controllingisfordetumblingtherotatedreferencecoordinatesystemFR.Thedynamicequationshows3degreesoffreedom.SeparatingStep1.Atotwostepsistryingtoavoidtheproblemoflackingcontrolinput.Afterintroducinggeomagnetic,allthe3controlobjectivescanbedoneinonecontroller.Thiscouldalsobeapartoffuturework. 87

PAGE 88

CHAPTER6CONCLUSION 6.1SummaryoftheThesisThisthesisstartsfromtheideathatusingelectromagneticforceandtorquetoadjusttherelativepositionsandattitudesindocking/assemblyandotherproximityoperations.Basedonsomecarefulassumptions,thisthesisinvestigatesacapabledockingstrategytoachievethisgoal.Thekeyobjectivesofthisthesisweretopresentthiselectromagneticdockingideaisfeasiblefromthedynamicsandcontrolpointofview.Inthefollowingparagraphs,thechapter-wisesummaryofthisthesisaredemonstrated:Chapter 1 introducesthebasicideaofelectromagneticdockingandshowstheadvantagesoverconventionalpropulsion.Also,previousrelativeworksandthedifferencesfromotherresearcheshavebeenprovided.Chapter 2 usestheprincipleofmagneticeldtheory,describestheapplicabletheoryofmagneticeldmodelforthisthesis.Exactmodelhasbeenpresentedrstly,andthenlinearizationofthismodelleadstoafareldmodel.Baseonthisfareldmodel,forceandtorqueequationsforseveralprincipalbasiccongurationsofcoilshavebeenderived.Chapter 3 describesthesystemandtheoveralldockingstrategywithdeepspaceassumption.Decoupling3-Dproblemtoseveralstepsofprincipalbasiccasesincluding2-Dco-planarcase,co-axialtwistcaseand1-Ddistancecontrolcase.Thendevelopmentofdynamicmodelsforeachofthesecaseshasbeeninvestigated.Chapter 4 demonstratestheoverallcontrolstrategywhichaccommodateswiththedockingstrategy.Then,thecontrollerdesignandsimulationresultsofeachstephavebeenpresented.Aswell,acompletedockingproceduresimulationhasbeenperformed.Chapter 5 statesthedifcultieswhenthissystemisoperatinginlowearthorbit.Basedonasimple2-Dcase,thischapterpresentshowthegravitationaleldand 88

PAGE 89

geomagneticeldaffectthissystem.Afterdiscussionaboutthedynamicofthissimplecase,suggestionsforfutureworkdirectionshavebeengiven.Thisthesisstartsanewthinkingofintroducingelectromagneticforcesandtorquestodocking/assemblyandproximityoperationsmissions,whichiscombiningthetranslationalandrotationaldegreesoffreedomtogetheranddesigningcontrollawforthem.Otherpresentedworksusuallydecoupledthemtotwoindependentproblembycooperatingwithacompleteattitudecontrolsystem.Though,thisapproachisstraightforwardtothink,italsolosestheinsightaboutthebehavioursofelectromagneticforcesandtorques,abouthowtheyarecoupledwiththerelativepositionandattitude.Byaseriesofsimulations,thedockingstrategyinthisthesishasbeenproventobefeasibleandrobustformulti-scenarios.Also,powerconsumptionandtimecosthavebeendemonstratedsuitableforsmallspacevehicles. 6.2FutureWorkThisthesisconcentratesontheconceptionofelectromagneticdocking/assemblyandproximityoperationsystemfromthebasicdynamicsandcontrolpointofview.Thusnecessaryassumptionsabouttheworkscenario,implementmethodsandequipmentshavebeenmade.Severalrecommendationsaregivenforfuturework:Theinputsaturationinuencesthecontrollerperformanceheavily.Controllerdesignwithsaturationcompensatorisagooddirectiontoimprovetheperformance.Combiningwithstatesestimationresearch,inorbitcasecanbeinvestigatedmoredeep.BasedontheideaintroducedinChapter 5 abouthowtoexploitgeomagneticeldforthissystem,3-Dexpansioncouldbepartofthefuturework. 89

PAGE 90

APPENDIXAMATRIXNORMAmatrixnormisanaturalextensionofthenotionofavectornormtomatrices[ 3 ],[ 21 ].Thep-normforanmmatrixAisdenedas: kAkp=maxx6=0kAxkp kxkp.(A)Inthecaseofp=1,thenormcanbecomputedas: kAk1=max1jnmXi=1jaijj,(A)whichissimplythemaximumabsolutecolumnsumofthematrixA.Incaseofp=1thenormscanbecomputedas: kAk1=max1jmnXj=1jaijj,(A)whichisthemaximumabsoluterowsumofthematrixA.The2-normistheone,usuallyusedinboundingamatrix.ThereisaninequalitiesrelationshipamongkAk2andkAk1andkAk1:1 p nkAk1kAk2p mkAk1, (A)1 p mkAk1kAk2p nkAk1. (A)So,provingmatrixAisbounded,isequivalenttoprovingeveryabsolutecolumnsumofthematrixAisbounded.ItissufcienttohaveeveryabsoluteelementofmatrixAbebounded. 90

PAGE 91

REFERENCES [1] Ahsun,U.Dynamicsandcontrolofelectromagneticsatelliteformations.Ph.D.thesis,MassachusettsInstituteofTechnology.Dept.ofAeronauticsandAstronautics.,2007. [2] Camillo,P.J.andMarkley,F.L.Orbit-averagedbehaviorofmagneticcontrollawsformomentumunloading.JournalofGuidanceandControl3(1980):563. [3] Demmel,J.W.AppliedNumericalLinearAlgebra.SIAM,1997. [4] Dennison,E.Off-AxisFieldDuetoaCurrentLoop.2005.URL http://www.netdenizen.com/emagnet/offaxis/iloopoffaxis.htm [5] Graversen,T.,Frederiksen,M.K.,andVedstesen,S.V.AttitudeControlsystemforAAUCubeSat.Master'sthesis,AalborgUniversity,2002. [6] Hank,H.,Jordi,P.S.,Augustus,S.M.,Schinichi,N.,andRobert,J.T.CubeSat:AnewGenerationofPicosatelliteforEducationandIndustryLow-CostSpaceExperimentation.14thAnnual/USUConferenceonSmallSatellites5(2000). [7] Hughes,P.C.SpacecraftAttitudeDynamics.DoverPublications,2004. [8] Jens,G.DevelopmentofanActiveMagneticAttitudeDeterminationandControlSystemforPicosatellitesonhighlyinclinedcircularLowEarthOrbits.Master'sthesis,SchoolofAerospace,MechanicalandManufacturingEngineering,Science,EngineeringandTechnologyPortfolio,RMITUniversity,2006. [9] Kaneda,R.,Yazaki,F.,Sakai,S.,Hashimoto,T.,andSaito,H.TheRelativePositionControinFormationFlyingSatellitesusingSuper-ConductingMagnets.2ndInternationalSymposiumonFormationFlyingMissionsandTechnologies.2004. [10] Khalil,H.K.NonlinearSystems.PrenticeHall,Inc.,2002,3rded. [11] Lee,D-RandPernicka,H.OptimalControlforProximityOperationsandDocking.InternationalJournalofAeronauticalandSpaceSciences11(2010).3:206. [12] M.Patre,P.,MacKunis,W.,Dupree,K.,andDixon,W.E.Anewclassofmodularadaptivecontrollers,PartI:Systemswithlinear-in-the-parametersuncertainty.AmericanControlConference(2008):1208. [13] Pollack,G.L.andStump,D.R.Electromagnetism.AddisonWesley,2002. [14] Reynerson,C.M.Spacecraftmodulararchitecturedesignforon-orbitservicing.IEEEAerospaceConferenceProceedings4(2000):227238. 91

PAGE 92

[15] Schweighart,S.A.Electromagneticformationightdipolesolutionplanning.Ph.D.thesis,MassachusettsInstituteofTechnology,Dept.ofAeronauticsandAstronautics,2005. [16] Silani,E.andLovera,M.Magneticspacecraftattitudecontrol:asurveyandsomenewresults.ControlEngineeringPractice13(2005):357C371. [17] Sofyali,A.andAslan,A.R.Magneticattitudecontrolofsmallsatellites:asurveyofapplicationsandadomesticexample.Tech.rep.,IstanbulTechnicalUniversity,SpaceSystemsDesignandTestingLaboratuary,2011. [18] Steve,N.ASEN5050SpaceightDynamics.2011.URL http://ccar.colorado.edu/asen5050/ASEN5050/Lectures_files/lecture11.pdf [19] Werts,J.R.andBell,R.AutonomousRendezvousandDockingTechnologies-StatusandProspects.ProceedingsofSPIEAeroSenseSymposium5088(2003):20. [20] Wiens,G.J.andMaldonado,L.AutonomousTorque-ActuatedFoldableDockingMechanismforSmallSpaceVehicles.2011FloridaConferenceonRecentAdvancesinRobotics1(2011):200. [21] Wikipedia,thefreeencyclopedia.Matrixnorm.2010.URL http://en.wikipedia.org/wiki/Matrix_norm [22] Zhang,Y.W.,Yang,L.P.,Zhu,Y.W.,Ren,X.H.,andHuang,H.Self-dockingcapabilityandcontrolstrategyofelectromagneticdockingtechnology.ActaAstronautica69(2011):1073C1081. [23] .Nonlinear6-DOFcontrolofspacecraftdockingwithinter-satelliteelectromagneticforce.ActaAstronautica77(2012):97. 92

PAGE 93

BIOGRAPHICALSKETCH KeHuoreceivedhisBachelorofScienceinAerospaceEngineeringfromtheBeihangUniversity,China,in2009,MasterofScienceinAerospaceEngineeringfromtheUniversityofFloridain2012. 93