<%BANNER%>

Precursors for Metal-Organic Chemical Vapor Deposition of Thin Films

Permanent Link: http://ufdc.ufl.edu/UFE0044327/00001

Material Information

Title: Precursors for Metal-Organic Chemical Vapor Deposition of Thin Films
Physical Description: 1 online resource (67 p.)
Language: english
Creator: Denomme, Dan R
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: films -- organometallic -- precursors -- thin
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: A variety of metal-organic complexes to be used as precursors for chemical vapor deposition (CVD) of thin films were designed and synthesized. Tetra(?3-phenylpropargyl)zirconium was created as a precursor for zirconium carbide (ZrC) thin films. ZrC thin films have been used in many applications, one of those being a component in field emitter arrays replacing thermionic emitters in vacuum tubes as electron sources. The phenylpropargyl zirconium compound was created by reacting ZrCl4 with phenylpropargylmagnesium bromide to yield the first known example of a homoleptic propargyl complex. Characterization was done by 1H NMR spectroscopy and X-ray crystallography showing all four phenylpropargyl ligands coordinated to the Zr center in an ?3-mode resulting in a complex of D2d symmetry. Dicarbonylmethylcyclopentadienyl ruthenium was synthesized from triruthenium dodecacarbonyl and characterized by 1H NMR, X-ray crystallography, and TGA. This volatile compound is an effective precursor for deposition of ruthenium metal thin films, which have great potential as a copper diffusion barrier in integrated circuits. Initial CVD experiments have been conducted. An analogous compound, dicarbonylmethylcyclopentadienyl iron was synthesized to further study the thermal decomposition during CVD. The iron derivative is similar in structure and volatility allowing it to be a viable model compound for CVD optimization. A third group of metal-organic precursors was researched. These compounds contain the general formula W(NNCR2)Cl4, where R = phenyl or tolyl. The diazo complexes of tungsten are a new class of potential precursors for deposition of WNx and WNxCy thin films, a proven copper diffusion barrier material. Synthesis has been attempted by combining WCl4 with the corresponding diazo ligand. Preliminary results and characterization with 1H NMR spectroscopy indicate the compounds have been produced with CVD experiments pending
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Dan R Denomme.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Mcelwee-White, Lisa A.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0044327:00001

Permanent Link: http://ufdc.ufl.edu/UFE0044327/00001

Material Information

Title: Precursors for Metal-Organic Chemical Vapor Deposition of Thin Films
Physical Description: 1 online resource (67 p.)
Language: english
Creator: Denomme, Dan R
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2012

Subjects

Subjects / Keywords: films -- organometallic -- precursors -- thin
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: A variety of metal-organic complexes to be used as precursors for chemical vapor deposition (CVD) of thin films were designed and synthesized. Tetra(?3-phenylpropargyl)zirconium was created as a precursor for zirconium carbide (ZrC) thin films. ZrC thin films have been used in many applications, one of those being a component in field emitter arrays replacing thermionic emitters in vacuum tubes as electron sources. The phenylpropargyl zirconium compound was created by reacting ZrCl4 with phenylpropargylmagnesium bromide to yield the first known example of a homoleptic propargyl complex. Characterization was done by 1H NMR spectroscopy and X-ray crystallography showing all four phenylpropargyl ligands coordinated to the Zr center in an ?3-mode resulting in a complex of D2d symmetry. Dicarbonylmethylcyclopentadienyl ruthenium was synthesized from triruthenium dodecacarbonyl and characterized by 1H NMR, X-ray crystallography, and TGA. This volatile compound is an effective precursor for deposition of ruthenium metal thin films, which have great potential as a copper diffusion barrier in integrated circuits. Initial CVD experiments have been conducted. An analogous compound, dicarbonylmethylcyclopentadienyl iron was synthesized to further study the thermal decomposition during CVD. The iron derivative is similar in structure and volatility allowing it to be a viable model compound for CVD optimization. A third group of metal-organic precursors was researched. These compounds contain the general formula W(NNCR2)Cl4, where R = phenyl or tolyl. The diazo complexes of tungsten are a new class of potential precursors for deposition of WNx and WNxCy thin films, a proven copper diffusion barrier material. Synthesis has been attempted by combining WCl4 with the corresponding diazo ligand. Preliminary results and characterization with 1H NMR spectroscopy indicate the compounds have been produced with CVD experiments pending
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Dan R Denomme.
Thesis: Thesis (M.S.)--University of Florida, 2012.
Local: Adviser: Mcelwee-White, Lisa A.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2012
System ID: UFE0044327:00001


This item has the following downloads:


Full Text

PAGE 1

1 PREC U RSORS FOR M E T A L ORG A NIC C H E M ICAL V A POR DE P O S I T I O N OF T HIN FI L M S ! ! ! ! By DAN R. DENOM M E ! ! ! ! ! ! ! A T H E SIS PRE S E N T E D T O T HE G RAD U A TE SC H O O L OF T HE UNIVERS I T Y OF FL O RIDA IN PA R TI A L FULF I LL M E N T OF T HE RE Q UIREM E N T S FOR T HE DE G R EE O F M AS T ER OF SCIEN C E U N I V ERS I T Y O F F L O RIDA 20 1 2

PAGE 2

2 ! ! ! ! ! ! 2 0 1 2 D a n D e n o m m e

PAGE 3

3 ACKN O W L E D G E M E N T S T h is t h e sis w ou ld no t h a v e bee n po ss i b le w it hou t t h e g u i d an ce a n d p a ti en c e o f m y res ea rch ad v isor P r o f e ss o r Lisa McEl w e e W h it e I a m a lso i nd e b t e d t o man y c o l l ea g ue s w h o h a v e s up p o rted m e a l o n g th e w a y a c oup le o f t ho s e w h o ha v e be e n c r u cial a re JŸ r g e n K o l l e r a n d K R an d a ll Mc C lai n I a m e x tre m e ly g ra t e f u l to K ha l i l A bb o u d f o r b e ing a g re a t men t o r, f r i e n d an d bo ss. I o w e m y d e ep e st g ratit ud e to m y f r i e n d s a n d f a m i l y w h o ha v e be e n crucial to m y s u cc e ss.

PAGE 4

4 T A B L E OF CON T ENTS pa g e ACKN O W L E D G E M E N T S ............................................................... ............................... 3 L I S T O F TA B L ES ............................... ....... ........................ ............................... ............ 6 L I S T O F F I GURE S ............................... ............................... ............................... .......... 7 L I S T O F SC H E M ES ............................... .......... ..................... ............................... ........ 8 AB S T RA C T ............................... ............................... ............................... ..................... 9 C H AP T ER 1 IN T ROD U C T I ON ............................... .... ........................... ............................... .... 11 T h in Fi l m s ............................... ............................... ............................... ............... 11 Ch em ical V a p o r De po sition a n d A t o m ic La y e r De po sition ....... ........................ ...... 11 I n t e rc o nne c ts ............................... ............................... ............................... .... 11 Re f ra c t o ry Me ta l N i trid e s ............................... ............................... ............. ..... 12 2 ZIR C ONIUM CAR B IDE PREC U RSORS ............................... ................................ 14 B a ck g ro un d ............................... ............................... ............................... ............. 14 Res u lts a n d Discu s si o n .............................. ........................................................... 16 Co n clusi o n ............................... ............................... ............................... .............. 24 E x pe r i men t a l S e ct i o n ................ ............................................... .............................. 25 3 CO M POUN D S FOR DE P O S I T I ON O F RU A ND FE T HIN F I L M S ......................... 28 B a ck g ro un d ............................... ............................... .................. ............. ............. 28 Res u lts a n d Discussi o n ............................... ........................................................... 29 Co n clusi o n ............................... ............................... ............................... ............. 35 E x pe r i men t a l S e ct i o n ............................................................... .............................. 37 4 PREC U RSORS FOR T U N G S T EN N I T RIDE T HIN FI L M S ............................... ..... 40 B a ck g ro un d ...................... ......... ............................... ............................... ............. 40 Res u lts a n d Discussi o n ............................... ........................................................... 41 E x pe r i men t a l S e ct i o n ........................... .................................... .............................. 42 APPEN D IX A N M R DA T A ............................... ............................... ............................... ............. 44 B IR S PE C T R U M ............................... ... ............................ ............................... ....... 50

PAGE 5

5 C X R A Y C R Y S T A L L O G RA P HY T A B L E S ............................... ............................... 51 D M O L EC U L AR ORB I T A L DI A GRAM O F 4 ............................... ................... ............ 61 REFEREN C E S ............................... ............................... ............................... .............. 62 BI O GRAPHIC A L S K E T CH ............................... ............................................................ 6 7

PAGE 6

6 L I S T O F TA B L ES T a b le pa g e 2 1 C r y st a l l o g ra ph ic S t ruc t u ral Data f o r 3 ............................... ............................... 19 2 2 S e lec t e d B on d A n g les ( ¡ ) a n d D is t an c e s () f o r 3 ............................... .. ............ 20 2 3 S e le c t e d B on d Dist an c e s () f o r 2 2 7 ............................... ............................... .. 21 3 1 C r y st a l l o g ra ph ic S t ruc t u ral Data f o r 7 ............................... ............................... 30 3 2 P a rame te rs f o r S el e c t e d CVD R u n s w it h C o m p ou n d 8 .............................. ...... 36 C 1 Atomic Coordinates for 3 .................................................. ............................... 51 C 2 B on d Lengths and An g les 3 .................................................... ............ ............... 51 C 3 Anisotropic Displacement Parameters for 3 ...................... ............................. .. 56 C 4 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for 7 ... 57 C 5 B on d Lengths and An g les 7 ................. ....................................... .............. ......... 60 C 6 Anisotropic Displacement Parameters for 7 ................ ................ .............. ......... 60

PAGE 7

7 L I S T O F F I GURES Fi g u re pa g e 1 1 Du a l Damasc e n e S tr u ct u re....... ........................ ............................... ................. 13 2 1 E x amp les o f p hen y l p r opa r gy l z i r c on ium c om p le x e s ............................... .......... 16 2 2 1 H a n d 13 C c h e m ical s h ifts f o r on e o f t h e f ou r e q u i v a le n t ph e n y lpro pa r gy l l ig and s o f 3 ............................... ............................... ............................... ......... 17 2 3 T h e r ma l e l l ips o ids d r a w i n g o f t h e mol e c u lar s truc tu re o f 3 ............................... 19 2 4 Res on a n ce s t r u ct u res o f p r o pa r gy l z i r c on ium c omp l e x ............................... ...... 21 2 5 O p ti m i z e d d e r i v a ti v e o f 3 f o r D F T c a lcul a ti o n s ............................... ................... 22 2 6 De g ene rate HOMO (t o p ) a n d HOM O 2 (b o t t o m ) o f p ro p a r g yl c omp l e x 4 ........... 2 3 2 7 L U M O (top l e f t ), L U M O+1 (t o p ri g h t), a n d d eg ene rate L U M O+2 (b o t t o m ) o f p ro pa r gy l c omp lex 4 ............................... ........................................................... 24 3 1 Ru th e n ium d ik e t o n a t e s ............................... ............................... .................... 28 3 2 Co m p ou n d 7 ............................... ............................... ............................... ....... 29 3 3 T h e r ma l e l l ips o ids d r a w i n g o f t h e mol e c u lar s truc tu re o f 7 ............. ................... 31 3 4 Co m p ou n d 8 ............................... ............................... ............................... ....... 32 3 5 T GA d a t a o f 7 a n d 8 ............................... ........ ................................................... 33 3 6 At o m ic c o mpo sit i o n o f f i l m s f r o m th r e e s epa r a te CVD ru n s ............................... 34 4 1 Sin g l e s ou rce p re c u rsors f o r W N t h in f i l m s ........................................................ 40 4 2 D i a z o t un g st e n c o mp l e x 15 1 7 ............................... ............................... ........... 41 A 1 1 H NMR spectrum of 3 ............................................... ............................... ....... 44 A 2 1 H 13 C gHMBC spec trum of 3 .............. .. ........................................................... 45 A 3 Expansion of the 1 H 13 C gHMBC spectrum of 3 ................. ................ .............. 46 A 4 1 H NMR spectrum of 7 ...................................... ............... ........................ ......... 47 A 5 1 H NMR spectrum of 8 ......................................... ... ............................... ........... 48 A 6 1 H NMR spectrum of 9 ................................. ............................. ... ....................... 49 B 1 IR of 7 ...................................................................... ............................... ........... 50

PAGE 8

8 L I S T O F SC H E M ES Sc h e m e pa g e 2 1 S y n t he sis o f C o m p lex 3 ............................... .... ........................... ..................... 16 3 1 S y n t he sis o f 7 ............................... ............................... ............................... ..... 30 3 2 S y n t he sis o f 9 ............................... .......................... ..... ............................... ..... 35

PAGE 9

9 A b stract o f T h e sis Pr e s en t e d t o t h e G r a du a te S c h o o l o f t h e U n i v e rs i t y o f Fl o r i d a in P a rtial F u l f i l l m e n t o f t h e Re q u i r emen ts f o r t h e De g ree o f M a s t e r o f S cie n ce PREC U RSORS FOR M E T A L ORG A NIC C H E M ICAL V A POR DE P O S I T I O N OF T HIN FI L M S By Dan R. De no m m e December 2 0 1 2 Ch a i r : L isa M cEl w e e W h i te M a jor: Ch e m istry A v a r i e ty o f me t a l o r g an ic c o m p le x e s t o b e u s e d a s p rec u rsors f o r c h em ical v apo r de p o sition (CVD) o f t h i n f i l m s w e re de si g n e d an d s y n t h e si z ed T e t r a ( 3 ph e n y lpro pa r g yl ) z i r c o n ium w a s cre a t e d a s a p rec u rsor f o r z i r c on ium c a rbide (Z r C) th in f i l m s ZrC th in f i l m s h a v e bee n u s e d in m a n y app l i c a ti o n s, on e o f t h o se b e ing a c om p o n en t i n f ield e m itt e r arra y s re p laci n g t h e r m io n ic em i t t e rs i n v a c uu m t u be s a s e lec t r on s ou rce s T h e p hen y lpro pa r gy l z i rco n ium c o mp o un d w a s cre a t e d b y re a cti n g Z r C l 4 w ith ph e n y lpro pa r g yl m a g n e sium b r om i d e t o y ield t h e f i r st k n o w n e x amp le o f a h o mo l ep tic p ro pa r gy l c omp le x Ch a ract e r i z a ti o n w a s do n e b y 1 H N M R s pe ctro s c op y an d X ray c r y st a l l og ra ph y s ho w i n g a ll f o u r p h en y lpro pa r g y l l i g and s c oo r d in a t e d t o t h e Zr c e n t e r in an 3 mo d e res u lt i n g in a c o m p lex o f D 2 d s y m m e tr y D i c a rb on y l me t h y lc y cl o pen t ad i e n y l r u t hen i u m w a s s y n t he si z e d f rom t r i rut hen i u m do d e c a c a r b on y l an d c ha ract e r i z e d b y 1 H N MR X r a y c r y st a l l o g ra ph y an d T G A T h is v o la t i l e c om p o u n d is a n e f fe cti v e p rec u rsor f o r d epo sit i o n o f ru t hen i u m me t a l t h in f i l m s, w h ich ha v e g re a t po t e n ti a l a s a c o ppe r d i f f u s i o n b a r r ier in i n t e g rat e d circuits. I n itial CVD e x pe r i men ts h a v e b e e n c on d u ct e d An an a l o g ou s c o m p ou n d

PAGE 10

10 d icarb on y l me t h y lc y c lo pen t ad i e n y l i r o n w a s s y n t he si z e d t o f u rth e r s t ud y th e t he r ma l de c o m p o sition du r i n g CVD. T h e i ro n d e r i v a t i v e is si m i l a r in struct u r e a n d v o la t i l ity a l l o w ing it to b e a v ia b l e mo de l c o m p o un d f o r CVD op t i m i z a ti on A th i r d g ro u p o f m e t a l o r g an ic p rec u rsors w a s res ea rch e d T he s e c om p o u nd s c on t a i n t h e g ene r a l f o r mu la W ( N N C R 2 ) Cl 4 wh e re R = p hen y l o r t o l y l. The d ia z o c omp l e x e s o f t un g st e n a re a ne w cl a ss o f po t en ti a l p rec u rsors f o r d e po sition o f W N x an d W N x C y t h in f i l m s, a p ro v e n c o p p e r d i f f u s i o n b a r r ier m a t e r i a l. S y n t he sis ha s be e n a t t e mp t e d b y c omb i n i n g W C l 4 w ith th e c o r r e s po n d ing d ia z o li g and Prel i m in a ry res u lts an d c ha rac t e r i z a ti o n w i th 1 H N M R s pe ctros c o p y i nd ica t e t h e c o m p o und s ha v e b e e n p ro du c e d w ith CVD e x pe r i m e n ts p e n d in g

PAGE 11

11 C H AP T ER 1 IN T ROD U C T I ON Thin Fi l ms T h e a b i l ity t o p ro du c e t h in f i l m s o f v a r i ou s ma t e r i a ls ha s ha d a b ro a d i mpa ct o n man y a p p l i c a ti o n s Thi n is a rel a ti v e t e r m an d f i l m s w ith th ick n e s s e s l e ss t ha n a m ic r o m e t e r w i l l b e a dd ress e d h e r ei n W h i l e t h e f i r st r e po rt e d s t u d i e s o f t h in f i l m s w e re in t h e 1 7 th c en t u ry b y S ir I s aa c N e w t o n it w a s no t un til t h e 2 0 t h c e n t u ry tha t t h e ir rele v an ce be c a m e w e ll k no w n 1 T h in f i l m s ha v e bee n f o u n d t o b e u s e f u l in a n eno r mou s a r r a y o f a pp l i c a ti on s. T h e se a p p l i c a ti on s i n clu d e o p tic s w he re th in f i l m s c a n b e u s e d a s r e f le c t i v e o r a n t i r e f lec t i v e c oa t i n g s. This w a s f i r st s ee n in sil v e r i n g a t e c hn i q u e u s e d t o ma nu f a c t u re m i r rors in t h e 1 9 t h c en t u r y T o o ls h a v e ben e f i t e d f r om t h in f i l m c o a ti n g s t o e n han c e p r o pe rties an d e f fe cti v ene ss. O n e o f t h e most in t e res t ing f ie l d s in t h in f i l m s is m i c r oe lec t ro n ics. B a t te r i e s, c h ip s b oa rds, a n d in te g rat e d circuits ha v e ad v an c e d w ith t h e he l p o f t h in f i l m s. C he m i ca l Va por D e pos i ti o n a nd A t o mic L a y e r D e pos i tion Ch em ica l v a p o r d e po s i ti o n (CVD) a n d a t om ic la y e r d epo siti o n (A L D) a re v a lu ab le t e c hn i q ue s u s e d in t h e p ro du c ti o n o f t h in f i l m s 2 3 O n e o f t h e ad v a n t a g e s CVD a n d A L D ha v e o v e r P V D is h i g he r co n f o r ma l i ty w h e n c o v e r i n g fea t u res w ith h i g h a s p e ct rati o s c o mpa r ed t o t he ph y sical m e t hod s t h a t rel y on "l i ne o f si g h t" d epo siti o n A lso t he s e lec t ion o f p rec u rsors fo r CVD a n d A L D is l a r g e r a l l o w ing f o r a g re a t e r v a r i e ty o f ma t e r i a ls t h a t c a n b e d epo si t ed 4 Inter c onne c ts I n t e rc o nn e c ts in m ic ro e lec t ro n ic de v ices w er e ma d e f r o m a l u m i n u m u p un til t h e t u rn o f t h e m i l le nn i u m w he n In t e l an d o t he r c om p an ies be g a n t h e t r an sition t o c op p e r as

PAGE 12

12 t h e ma t e r i a l f o r m e t a l l i z a ti on C o p pe r h a s l e s s RC de la y s, t h e sl o w i n g o f e le c tro n s a lo n g a w i r e d u e to re s ist an ce an d c a p a cit a n c e t h a n a l u m in u m a n d i s l e ss likely t o e l e ctr o m i g rat e T h is h a s b e e n k no w n f o r s o m e ti m e h o w e v e r t h e te c h n o lo g y to u se c op p e r w a s no t a v a i l a b le w he n m ic r oe l e ctro n i cs w e re f i r st m a ss p r o du c e d I t w a s n 't un til 1 99 1 w he n H o w a r d d e m o n stra t e d r e a c ti v e i o n e tc h ing o n c o p pe r w h ich w a s th e c o m m o n p racti c e in f a b r i c a ti n g a lu m i n u m ba s e d i n t e rco n ne ct m a t e r ial 5 Now th e l en g th an d c o m p le x ity o f t h e i n t e rco n ne cts a re g ro w i n g an d c op p e r is n ee d e d t o mai n t a in h i g h s pe e d t ra n s f e r o f e lec t r on s. W h i l e c o p pe r h a s ad v an t a g e s o v e r al u m in u m it s t i l l d i f f u s e s in t o t h e sil i c o n a n d d ie l e ctr i c s ub str a t e s it re st s o n f o r m ing c o ppe r s i l ic i de T o p re v en t de v ice f a i l u re a d i f fu si o n ba r r ier is n ee d ed The b a r r ier ha s t o h a v e a l o w s o lu b i l ity f o r c op p e r, b e du r a b le, a n d n o t i m pe d e t h e f l o w o f e le c tro n s 6 Refr ac t o r y Met a l Nitrides Re f ra c t o ry m e t a l n it r i d e s ha v e b ee n implem e n t e d a s d i f f u si o n b a r r iers du e t o t he ir s upe rb ph y sical an d c h em ical p ro pe rt i e s. T he se t ra n siti o n me t a l n it r i de s a re e x tre m e ly ha rd, ha v e h i g h melti n g po in t s, resis t an t to c o r r o sion a n d c h e m ical re a cti v i t y an d a re c on d u cti v e. 4 T i t an i u m n it r ide w a s th e i ndu s try s ta n da rd f o r al u m i n u m d i f f u si o n b a r r iers, c u r r en tly tan t a l u m n it r ide is mo st c o m m on ly u s e d f o r co p pe r in t e rco n ne cts 7 Ta n t a lum n it r ide is a n e f fe cti v e d i f fu sion ba r r ier, h o w e v e r co ppe r doe s n o t a d h e re w e ll t o its s u rfac e t he r e f o re is a ne e d f o r a n add it i ona l l a y e r, a ta n t a l u m b i l a y e r. Cur r en t in te r c o n n e ct t e c hno lo g y is be ing pu s h e d t o its l i m its i n i n t e g rat e d circuits. M ic r op roc e ss o rs h a v e f o l l o w ed Mo o re's la w d oub l i n g t h e n u m be r o f t ra n sist o rs i n a g i v e n a rea o n a n I C e v e ry t w o y ea r s 8 T h e ma n u f a ct u r i n g o f ICs em p lo y s th e D ua l Da m a s c en e p roc e s s 9 This p ro c e ss c o n sists o f d e p o sition o f a d ie l e ctr i c m a t e r i a l, e tc h ing o f t h e de si re d f e a t u r e p h y sical v apo r d e p o sition ( P VD) o f a d iff u si o n ba r r ier

PAGE 13

13 ma t e r i a l, P VD o f a me t a l b i l a y e r t ha t C u w i l l a dhe re t o PVD o f a C u s ee d l a y e r, e lec t roc h em ical d e po s i ti o n (ECD) o f t h e C u i n t e rco n n e ct, a n d f i n a l l y c hem i c a l me c h an ical po l i s h in g Fi g u re 1 1 Du a l Damasc e n e S tr u ct u re T h e si g n i f i c an t v o l u m e o f t h e t h ree d i f f u si o n b a r r ier an d s ee d l a y e rs, c oup l e d w ith t h e de c r ea s i n g si z e o f t h e i n t e rco n ne cts a n d t he ir f e a t u res, d e m a nd s a c h an g e in d iff u si o n ba r r ier ma t e r i a l a n d / o r d e p o sition t e c hn i q ue s. T h e t h ick n e ss o f t he s e l a y e rs ne e d s to c o n ti nua l l y s h r i n k in si z e ; ho w e v e r P V D is no t a n a p p ro p r i a t e te c hn i q u e f o r t h e p ro du ct i on o f u lt ra t h i n f i l m s P h y sical v apo r d epo siti o n t e c hn i q ue s r e l y on "l i ne o f si g h t" de p o sition an d c on s e q uen tly c o n f o r ma l i ty be c ome s a g re a t e r issue a s th e f i l m t h ickn e ss de c r ea s e s 1 0 CVD a n d A L D a re s u pe r i o r al t e rn a ti v e s t o PV D p ro v idi n g c o n f o r ma l c o v e ra g e w he n depo s i ti n g d iff u sion ba r r iers.

PAGE 14

14 C H AP T ER 2 ZIR C ONIUM CAR B IDE P R EC U RSOR 1 S Ba ck grou n d Zi r c on ium c a rbide (Z r C ) h a s p r o m ise i n ma n y d iff e re n t a pp l i c a ti o n s. W i t h a ha rd n e ss o f 2 5 0 0 0 N / m m 2 Z r C is a n i d ea l c oa ti n g f o r t oo ls t ha t a re s u sc e p ti b le t o w ea r, e s pe cially too ls u s e d f o r cu t ti n g o t h e r h a rd m a t e r i a ls. Zi r c on i u m c a rbide is a lso u s e d a s a c o a ti n g fo r n u c le a r f u e l p e l l e ts b e c a u se o f i t s h i g h me lting po in t 3 4 0 0 ¡C. A no t he r u s e o f Z r C is in f ield em i t t e r arra y s (FE A s ) F E As a re r e p laci n g th e r m i on ic em it t e rs i n v a c u u m t u b e s a s e lec t ron s ou rce s W h i l e F E As ha v e m a n y ad v an t a g e s o v e r t h e he a t in du c e d f l o w o f e le c tro n s, t he y a re s till s ub ject t o f a i l u re. V a c u u m a rc i n g o r t i p du l l ing c a n l e a d t o t h e de structi o n o f t h e c a t h ode A z i r c on ium c a rb i d e t h in f i l m c o a ti n g o v e r t h e c a t h o d e c a n p ro v ide th e n e e de d s t r e n g th t o F EAs w it hou t d am p en ing t h e tra n s f e r o f e l e ctro n s, d u e t o its e l e ctr i c a l c o nd u cti v i t y o f 2 # 10 4 / $ c m a nd re l a ti v e l y l o w w o rk f un cti o n o f 4 0 e V 11 Alk y l z i rco n ium c o m po u nd s h a v e be e n u s e d a s si n g l e s ou rce p rec u r s o rs f o r CVD o f ZrC th in f i l ms 12 1 6 a s a n a lt e rn a ti v e t o g ro w t h f r o m Zr C l 4 an d m e t h an e un d e r a re du cing H 2 a t mo s phe r e a t h i g h t e m p e rat u res ( > 150 0 ¡C) 17 1 9 T h e be st e st a b l i s he d sin g le s ou rce p rec u rs o r f o r t h e CVD o f ZrC is t e tra n eo p en t y l z i r c on ium ( N p 4 Z r ). 12 14 15 20 S u cc e s s f u l CVD f r o m N p 4 Z r is p o ssibl e be c a u s e t he l a c k o f h y d ro g e n a t o m s o n t h e a lk y l l i g and s re n d e rs i t st ab l e en o u g h f o r v o l a t i l i z a ti o n a n d t r a n s po rt in a CVD r e a ct o r. ! 1 ( P o rtio n s o f C h ap t e r 2 w e re ta k e n d i r e ctly f r o m D e n o m m e D. R ; D umb r i s, S. M .; H y a t t I. F. D ; A bb oud K A.; G h i v i r i g a I ; M cEl w e e W h i t e L ., S y n t he sis a n d Elec t ro n ic S truc tu r e o f T e trakis( 3 ph e n y lpro pa rg y l ) z i rco n iu m Or g a no m e t a l l ics 20 1 0, 2 9 (2 1 ), 5 2 5 2 5 25 6 .)

PAGE 15

15 T h e ra n g e o f c o m po un d s t h a t h a v e be e n u s e d a s si n g le s o u rce p r e c u rsors f o r ea r l y m e t a l c a r b id e s is v er y s m a l l L i g and s t h a t c o n t a in h e t e ro a t o m s a re u nde si ra b le, a s i n c o r p o rati o n o f t h e add iti o na l e l e m en t i n to t h e re s u lting th in f i l m s c a n b e a n iss u e E a r l y t ra n sitio n me t a l a lk y ls w i t h Hs a re k no w n t o u n d e r g o H e l i m in a t i o n un d e r m i l d c ond iti o n s 2 1 ma king t h e m un s u i t ab le f o r CV D T h e res u lt is t ha t f e w li g and s me e t t h e n e c e s s a ry cr i t e r i a f o r u se in sin g le s o u rce Z r C p rec u rsors. Pro p a r g yl li g and s a re po t e n ti a l c a nd i d a t e s a s the y c on t a in no h e t e r oa t o m s an d n o H a t o m s 22 2 5 W e t hu s un d e rto o k a s t ud y o f z i r c on ium p ro p a r gy l c omp le x e s a s po ss i b le p r e c u rsors f o r t h e CVD o f Zr C T o ou r k no w le d g e n o ho m o le p tic p ro p a r gy l c omp l e x h a d be e n p re v io u sly re po rt e d H o w e v e r, p ro pa r gy l de r i v a ti v e s o f z i r c ono c e n e h a v e be e n p re v io u sly re po rted in t h e lit e rat u r e 22 24 26 2 9 The 18 e lec t r o n b is ( ph e n y lpro pa r g yl ) z i r c o n o c e n e c o m p lex 1 c on t a i n s o n e 1 p r opa r g y l l i g and w ith th e s e c on d p ro p a r g yl c oo rdin a t ed i n t h e 3 bo n d ing m o de 2 4 T h e si g na ls o f t h e me t h y le n e p ro t on s o f t h e p ro pa r g y l l i g an d in t h e 1 H N M R s p e ctru m a re c h a ract e r i stic o f t h e b o n d in g m o d e a nd w e re a s si g ned a t % 1 9 f o r t he 1 l ig and w h i l e t he c o r r e s po n d in g p rot o n s in t h e 3 l ig an d w e re o b s e r v e d a t 3 .3 pp m T h e 1 6 e lec t r o n ph e n y lpro pa r g yl me t h y l z i rco no c e n e c o mp lex 2 w a s s ub s e q u e n tly de scr i be d a n d a cr y st a l struct u re c o n f i rm ed 3 c oo rdin a ti o n o f t h e p hen y lpro pa r gy l l ig and. 2 7 The 1 H N M R s pe ctr u m o f t h is c o mp ou n d a lso s ho w e d t h e me t h y le n e p ro t on s o f t h e 3 l ig an d a t t h e e x pe ct e d v a lue o f 3 3 7 p p m

PAGE 16

16 ! Fi g u re 2 1 E x amp les o f p hen y l p r opa r gy l z i r c on ium c om p le x e s. Re s ults a nd D i sc u s s i on In a n e f fo r t t o p r e pa re ho m o le p tic p ro p a r gy l z i rco n ium c o mp o und s f o r use in t h e CVD o f Zr C w e f i r st r e a ct e d Zr C l 4 w i th CH 3 C CCH 2 M g Br. S ince w e w e re un a b le t o isol a t e t e tra( 3 m e t h y lpro pa r gy l ) z i rco n ium f r o m t h e o l ig o m e r i c mat e r ial tha t res u lt e d w e s y n t he si z ed te tra( 3 p hen y lpro pa r gy l ) zi r c on ium ( 3 ) a s a m ode l c o m po u n d f o r t h e p re pa r a ti o n o f mo re v o la t i l e h o mo l ep tic p r op a rg y l z i r c on ium s pe cies. The ph e n y lpro pa r g yl Gr ig n a rd r ea g en t w a s s y n t he si z e d a s de scr ib e d in t h e lit e r a t u re (Sc he m e 1 ) 3 0 3 1 T h e c o m me rc i a l l y a v a i l ab le ph e n y lpro pa r g yl a lco h o l w a s re a ct e d w ith PB r 3 a n d t h e res u lt i n g b ro m i d e w a s th e n c on v e rted t o t h e c o r r e s p o nd ing G r ig na rd re a g en t. R ea cti o n w ith Zr C l 4 a f fo rd e d 3 i n 7 4 % c r ud e y iel d Sin g le c r y st a ls o f t h e pu re ma t e r i a l c a n b e ob t a i n e d b y recr y st a l l i z a ti o n bu t c on ti n ue d h a nd l i n g o f t h e c o m p lex res u lt e d i n d e c o mpo sit i on r e nde r i n g it u n s u i t a b le f o r CVD s t ud ie s ! ! Sc h e m e 2 1 S y n t he sis o f C o m p lex 3

PAGE 17

17 8 A f t e r r e c r y st a l l i z a ti on t h e 1 H N M R o f 3 a t ro o m t e m pe ra t u re in t o lu e n e d 8 s h o w e d on l y a si n g le a l i ph a tic re s o n an c e a t % 3 21 p p m c o n sist e n t w it h 3 p hen y lpro pa r gy l l ig and s. A ll o f t h e li g and s w e re s y mme try e q u i v a le n t b y NMR an d a lt hou g h t h e c o m p lex w a s p re pa red in e t he r e a l s o l v en ts, n o o t he r s i g na ls c o r r e s po n d ing t o a dd it i ona l l ig and s s u ch a s c oo rd i na t e d s o l v en t w e re ob s e r v e d in t h e 1 H N M R s pe ctr u m T h e 1 H s p e ctr u m in T H F d 8 a t 6 0 ¡C d ispl a y s d istinct si g na ls f o r t h e a roma t ic p rot on s o f t h e f o u r e qu i v a le n t ph e n y l r in g s a t 7 3 5 ( t 7 .7 H z 8 H ) 7 2 3 ( t 7 .7 H z 4 H) an d 6 9 6 ( d 7 .7 H z 8 H) w h ich w e re a ssi g ne d a s m e t a pa ra an d o r t ho c o r r e s po n d ingl y ba s e d o n t h e ir m u ltiplic i ty a n d i n t en sity (F ig u re 1 ). ! Fi g u re 2 2 1 H a n d 13 C c h e m ical s h ifts f o r on e o f t h e f ou r e q u i v a le n t ph e n y lpro pa r gy l l ig and s o f 3. 2 T h e i n t en sity w a s re f e r en c e d t o t h e si g na l f o r t h e f ou r C H 2 g ro up s a t 3 1 0 p p m T h e 13 C c h e m ical s h i f t s w e re m ea s u r e d in t h e g H M BC s pe ctrum, w h ich w a s a c q u i r e d 2 NMR s p e c tra w ere o b t a i ne d a t 6 0 ¡ C i n T H F d

PAGE 18

18 w ith t w o d iff e re n t s p e c t ral w in do w s in f1 to d e t e ct p o ssible f o ldi n g O n e b o n d c oup l i n g s w ith th e p ro t on s i d en t i f i e d t h e o rth o m e ta a n d pa ra c a rb on s a t 1 2 7 5 1 2 8 .8 a n d 1 2 6 .7 pp m c o r r e s p o n d in g l y T h e q ua t e rn a ry c a rb o n o n t h e p hen y l mo i e ty ( C ip s o ), a t 12 9 .1 pp m c o up l e d w ith th e m e ta p rot on s T h e o rt h o p ro t on s c oup l e d w ith a q ua t e rn a ry c a rb o n a t 11 3 5 w h ich w a s a ssi g ne d a s a l p h a to t h e p h en y l. T h e m e t h y le n e p r o t o n s, o n t h e c a rb o n a t 38 7 pp m c o up l e d w ith th is la t e r car b o n w ith an o t he r q ua t e rn a ry a t 129 4 a ssi g ne d a s b et a to t h e p h en y l, an d s u rpr i s in g l y to th e o rt h o c a rb on s o n t h e ph e n y l r in g T he se 1 3 C s h ifts a re c on sis t en t w it h tho s e p re v io u sl y re po rt e d f o r 3 ph e n y lpro pa r g yl zi r c on ium c om po u nd s 1 a n d 2 T h e q ua t e rn a ry c a rb on s o f 1 w e re s ho w n t o b e l o c a t e d a t 12 0 .5 an d 1 1 4 .1 p p m w ith th e me th y le n e s h i ft a t 55 5 p pm D y nam ic e x c han g e b e t w een 3 a n d 1 c oo rd i na ti o n o f t h e p h en y lpro pa r gy l l i g an d o f 2 in s o l u t ion g a v e s h i f ts o f 112 9 98 8 a n d 30 7 pp m 2 6 T h e me th y le n e p rot on s d ispl a y e d a n n OE w ith th e o rt h o p r o t on s in t h e NO E SY s p e ctrum. E x am i na ti o n o f t h e X ray c r y st a l struct u re ( v ide i n f ra) l e a d s t o t h e c o n clusi o n t ha t t h e n O e is f r o m t h e m e t h y le n e g ro u p o n o n e p ro p a r g yl l ig a n d t o t h e p h en y l g ro u p o f a n ad ja c en t li g and C r y st a l l o g ra ph ic struc t u re d e t e r m i na ti o n ( T a b le 2 1 ) c o n f i r m e d t h e i d en t i f ica t i o n o f 3 a s t e tra( 3 p hen y lpr o pa r gy l ) z i r c on iu m T h e c r y st a l struct u re o f 3 v e r i f i e d t h e p re s en c e o f o n l y t he f o u r pr o p a r g y l l i g and s, a l l d i s p la y in g 3 c oo rdi n a ti o n (F ig u re 2 2 ). C o m p lex 3 ha s a n o v e rall D 2 d s y mme tr y a p o int g ro u p p r e v io u sly bu t rarely ob s e r v e d in o t h e r Zr c om p o u nd s 32 3 3 An E AN o f 1 6 e l e ctro n s f o r 3 res u lts f r o m ea c h ph en y lpro pa r gy l l i g an d do n a ti n g f ou r e l e ctr o n s Se le c t e d b o n d an g l e s an d d ist a n c e s o f 3 a r e s ho w n in T a b le 2

PAGE 19

19 ! ! Fi g u re 2 3 T h e r ma l e l l ips o ids d r a w i n g o f t h e mol e c u lar s tru c tu re o f 3 3 T a b le 2 1. C r y st a l l o g ra ph ic S t ruc t u ral Data f o r 3 4 E mp i r ical f o r mu l a C 3 6 H 2 8 Zr For mu la w e i g h t 551 8 T e m p e rat u re 173 (2) K W a v e l en g th 0 7 1 07 3  C r y st a l s y st e m M ono cl i n ic S pa ce g ro u p C2 / c 3 T h e r m al e l l i p s o i ds are dr a wn a t 5 0 % p r o b a b i l i t y H y d r o g e n s on t he p h e n y l r i n gs are o m i tt e d f or c l ari t y 4 R1 = & ( || F o | | F c | | ) / & | F o | w R 2 = [ & [ w ( Fo 2 Fc 2 ) 2 ] / & [ w (( F o 2 )) 2 ]] 1/2 S = [ & [ w ( F o 2 Fc 2 ) 2 ] / ( n p ) ] 1/2 w = 1 /[ 2 (F o 2 ) + ( m p ) 2 + n p ], p = [ m a x( F o 2 ,0)+ 2* F c 2 ] / 3, m a n d n are c o n s t a n t s

PAGE 20

20 T a b le 2 1 C r y st a l l o g ra ph ic S t ruc t u ral Da t a ( Co n ti n u ed ) a = 2 0 7 5 51 (1 4 )  ( = 9 0 ¡ Unit c e ll d i m en si o n s b = 8 6 2 0 3 (6)  = 1 1 ¡ c = 1 7 4 6 8 5 (1 1 )  ) = 9 0 ¡ V o l u m e 28 0 8 1 (3)  3 Z 4 De n sity (calc u la ted ) 1 3 0 5 M g / m 3 A b s o r pt i o n c oe f f ic ie n t 0 4 1 3 m m 1 F ( 000 ) 11 3 6 C r y st a l si z e 0 1 9 x 0 1 1 x 0 0 4 m m 3 T h e ta r an g e f o r d a t a c o l l e cti o n 2 1 8 t o 27 50 ¡ I nde x ra n g e s 20 h 2 6 1 1 *k 1 1 22 l 1 5 Re f l e cti on s c o l l e ct e d 93 3 4 I nd e pe n d e n t r e f l e cti o n s 32 2 6 [ R ( in t ) = 0 0 2 7 2 ] Co m p l e t e n e ss t o t h e ta = 27 5 0 ¡ 99 8 0 % A b s o rpt i o n c o r r e ct i o n I n t e g rati o n M a x an d m in. t r a n s m i ssion 0 9 8 6 1 an d 0 91 0 3 Re f i n e me n t m e t h o d Full ma trix l ea s t s q ua res o n F 2 Da t a / re s trai n ts / p a r a me t e rs 32 2 6 / 0 / 16 8 G oo d ne s s o f f it o n F 2 1 0 6 5 Fin a l R in d ices [ I > 2 si g ma (I ) ] R1 = 0 0 24 4 w R2 = 0 06 7 6 [ 2 73 0 ] R in d ices (all d a t a ) R1 = 0 0 31 2 w R2 = 0 07 0 0 La r g e st d i f f p e a k a n d ho le ho le 0 3 0 0 a n d 0 3 4 6 e  3 T a b le 2 2 S e lec t e d B on d an g les ( ¡ ) a n d d is t an c e s () f o r 3 Z r C1 2 4 9 55 (2) C 2 C 1 Zr 70 0 8 (9) Z r C2 2 4 0 43 (1) C 3 C 2 C1 154 38 (2) Z r C3 2 4 4 74 (2) C 3 C 2 Zr 77 0 1 (1) C 1 C2 1 3 7 60 (2) C 4 C 3 Zr 137 87 (1) C 2 C3 1 2 4 90 (0) C 1 Z r C1A 128 88 (8) C 3 C4 1 4 5 00 (2) C1 1 Z r C1 131 95 (5) C 2 Z r 98 4 9 (5) C 2 Z r C11 108 31 (6) C2 2 Z r C2A 96 1 1 (7) C 3 Z r C11 82 2 1 (5) Alt hou g h s tr uc tu ral da t a h a v e b ee n re p o rte d f o r se v e ral 3 p ro pa r gy l c o m p le x e s 27 t h e ( p hen y lpro pa r gy l) me t h y l z i r c ono c en e c o mp lex 2 ( T ab l e 3 ) is p e rh ap s t h e be st m o de l f o r t h e g e o me try o f t h e p ro pa r gy l l i g and s o f 3 The ph e n y lpro pa r gy l l i g and s o f

PAGE 21

21 c omp l e x e s 2 a n d 3 e x h ibit n ea r l y i den tic a l C C C bon d an g les o f 1 5 4 4 (3)¡ a n d 154 38 (2)¡, re s pe cti v e l y in d ica t ing si m i l a r b o nd ing o f t h e p ro p a r gy l mo ie t y t o t h e Zr c en t e r. T a b le 2 3 S e lec t e d B on d D ist an c e s () f o r 2 27 C 1 C 2 a 1 3 4 4 (5) C 2 C3 1 2 5 9 (4) Z r C1 2 6 5 8 (4) Z r C2 2 4 3 8 (3) Z r C3 2 3 6 1 (3) a T h e n u m be r i n g s y st e m o f t h e p r o pa r gy l l i g an d is a s s ho w n f o r c o m po u n d 3 in Fi g u re 2 T h e Zr C2 b o n d l e n g th is app ro x i ma t e ly th e s am e in t h e t w o s t ruc t u res. Ho w e v e r, t h e t h ree Z r C bo n d d ist a n c e s i n 3 a re r ou g h ly th e s am e l en g t h d i f f e r i n g on ly b y a n e t 0 0 9  o v e ral l w he re a s tho s e in 2 d i f fe r by a much l a r g e r v a lu e 0 2 9  w ith t h e C 1 C 2 C3 p la n e o f 2 c a n t e d so t h a t t h e m e t h y le n e c a r bo n C1 is f u rth e r f r o m t h e me t a l c e n t e r. F o r b o th c o m p le x e s, a n a s si g n me n t o f t h e p hen y lpro p a rg y l bond ing a s in te r m ed i a t e b e t w een t he 3 p r o pa r gy l an d a l l en y l l i m iting res onan c e s t ruct u res ( A and B ) is su ppo rt e d b y t h e bo n d l en g t h s a n d a n g les. A si m i l a r assi g n m en t o f t h e bo n d ing in Cp*( T B M ) Z r ( 3 C H 2 C CCH 3 ) w a s m ad e ba s ed o n t h e cr y st a l struct u re 28 ! ! Fi g u re 2 4 Res on a n ce s t r u ct u res o f p r o pa r gy l z i r c on ium c omp l e x ! T h e b ond i n g o f t h e p r o pa r gy l l i g and s t o t h e m e t a l c e n t e r in 3 w a s f u r t he r a na l y z e d b y den sity fun cti o na l t h eo ry c a lcul a ti on s. G eo me try op t i m i z a ti on s an d si n g l e po int c a lcul a ti on s w e re pe r f o r me d u sing th e DFT B 3L Y P 34 3 5 f u n cti o n a l an d t h e l an l 2 dz 36 37

PAGE 22

22 ba sis s e t u til i z e d in t h e Gau ssi a n 0 3 p ro g r a m pa ck a g e 3 8 C o m po sit i on s o f m o lec u l a r o rbit a ls w e re c a lcul a t e d u sing t h e A OM i x p r o g ra m 39 4 0 M o le c u lar o rbit a l p ict u res w e re g ene rat e d f r o m G ab ed it 4 1 I n itial c a lcul a ti o n s w e re pe rfor m e d o n 3 i t s e lf, h o w e v e r t h e p res en c e o f t h e p he n y l r in g s c omp l i c a t e d t h e i n t e rpre t a ti o n b y de lo c a l i zing th e mo le c u lar o rbi t a ls to s u ch a n e x t e n t t h a t v isu a l i z a ti o n w a s d if f icul t I n o rd e r to s i mp l i f y t h e ana l y sis, c a lcul a ti o n s w e re c a r r ied o u t o n t h e pa re n t t e tra p r o pa r gy l z i rco n ium c omp l e x 4 in w h ich th e ph e n y l r in g s w e re r ep lac e d w ith h y d ro g e n t o p ro v ide a c om p u t a ti o n a l mo de l s truc tu re. T h e cr y st a l log ra ph ically de t e r m in e d s t ruct u re o f 3 w a s u s e d f o r t h e p o sitio n s o f t h e n o n H a t om s o f 4 H y d ro g e n a t om s w e re p la c e d b y g eome try op t i m i z a ti o n an d t h e D 2 d s y mme try o f 3 w a s en f o rc e d in 4 ! Fi g u re 2 5 O p ti m i z e d d e r i v a ti v e o f 3 f o r D F T c a lcul a ti o n s A mol e c u lar o rbit a l d i ag ram (see A pp e nd ix D ) w a s g ene rat e d f r o m t h e c om p u t a ti o n a l r e s u lts f o r 4 a n d s ho w e d a c a l c u la t e d HOM O L U M O g a p o f 5 .2 e V. T h is s ub st a nt ial s p l i t t i n g o f t h e f r o n ti e r or b i t a ls is c on sist e n t w ith th e l a ck o f re a cti v ity o f 3 w ith o t he r sp e c i e s in th e re a cti o n m i x t u res du r ing s y n t he sis. W h i l e o t he r D 2 d Gro u p 4 me t a l c o mp le x e s h a v e be e n re p o rted i n t h e li t e rat u re 42 4 4 e x a m p les o f c o m p u t a t i ona l res u lts a re r a r e A n e l e ctro n ically si m i l a r D 2 d s y mme tric bis p en t a le n e t it a n ium c o mp lex ha d a c a lcu l a t e d HO M O L U M O g a p o f 1 9 3 e V, f a r s ma l l e r t h a n t h a t o f 3 4 2 T e tra ( 3 a l l y l ) z i r c on ium is a lso a k no w n c o m p ou n d de scr i be d a s a b r ig h t r e d s o l i d w h ich de c o m p o s e s a t 2 0 ¡C 45 4 6 Th e r ed c o lor a nd l ab i l it y o f t e tra( 3 a l l y l ) z i rco n ium s u gg e st

PAGE 23

23 t ha t its HOM O L U M O g a p m u s t a lso b e smal l e r t h a n t h a t o f 3 w h ich is a c o lor l e ss s o l i d t ha t is s t ab l e f o r m o de r a te pe r i od s o f t i m e a t r oo m t e m p e rat u r e ! Fi g u re 2 6 De g ene rate HOMO (t o p ) a n d HOM O 2 (b o t t o m ) o f p ro p a r g yl c omp l e x 4 T h e h i g h l y ing o cc up ied o rbit a ls o f 4 a re d e p ict e d in Fi g u re 3 The HO M O is lar g e l y c omp r i s e d o f two de g e n e ra t e o rbi t a ls c on t a i n ing th e p o r b it a ls o f C1 a n d C3 o f t h e p ro pa r gy l l i g and s. T h e s y m m e try d ict a t e s tha t o n e HOMO o r b it a l incl ude s t h e d y z of Zr (2 0 7 %) a n d t h e p o rbit a ls in t h e y z p la n e o f t h e p ro p a r gy l l i g and s, w h i l e th e o t he r HO M O o rbit a l u til i z e s th e d x z o f Zr (2 0 7 %) a n d t h e x z p la n e o f t h e p o rbit a ls o n t h e p ro pa r gy l l i g and T h e HO M O 2 is c o m p r i s e d ma inly o f d z 2 o n Zr (2 1 3 %) a n d xy p la n e o f t h e p o rbit a ls o n t h e l ig and Me ta l p r o pa r g yl bo n d ing d o m in a t e d b y i n t e ractio n s o f me t a l d o rbit a ls w ith p r opa r gy l MO's loc a l i z e d o n C1 a n d C3 is c on s i st en t w ith t h e c a lcul a t e d MO d i a g ra m s f o r b o nd ing in [ 3 C H 2 C CP h )Pt(P Ph 3 ) 2 ] 47 T h e L U M O o f 4 ( F i g ur e 4 ) h a s t h e s t r o n g e st p o rbit a l c on tri b u ti on s from C2 i n t h e p ro pa r gy l g ro up s. T h is is c on sist e n t w ith its d e r i v a ti o n f r o m t h e a n ti b ond ing C 1 C 2 C3

PAGE 24

24 # o rbit a l, w h ich ha s its lar g e st c o e f f ic ie n t o n C 2 T h e l a r g e st c o n trib u ti on s t o t h e L U M O f r o m Zr a re s (1 4 2 %), an d d z 2 (1 1 9 %). The L U M O+1 is ma inly c o mp r i s e d o f t h e n o n bo n d ing d x y o rbit a l o f Z r ( 86 7 %). The L U M O+2 c on sists o f t w o de g ene ra t e o rbi t a ls, o n e c om p o s e d p r im a r i ly o f Zr d x z (2 5 3 %) a n d t h e o t he r d y z (2 5 3 %). Fi g u re 2 7 L U M O (top l e f t ), L U M O+1 (top ri g h t), a n d d eg ene rate L U M O+2 (b o t t o m ) o f p ro pa r gy l c omp lex 4 T h e A O c o mpo sit i o n o f t h e L U M O p ro v id e s i n si g h t in t o w h y th is 1 6 e lec t ron e a r l y t ra n sition m e t a l c om p lex doe s n o t ha v e a n o pe n c oo rdi n a ti o n site f o r a dd it i o n o f a no t he r l ig and T h e s e cti o n o f t h e L U M O de r i v e d f r o m me t a l A O 's is s t e r i c a l l y b lock e d b y th e C H 2 g ro up s o f t h e f ou r p ro pa r gy l l i g and s. A l t h ou g h c o mp lex 3 w a s recr y st a l l i z e d f r o m T HF w ith v apo r d i f f u si o n o f p e n t a ne s, c oo rdi n a t e d T HF is no t d e t e c t e d in e it he r t h e N M R o r t h e cr y st a l str u ct u re. Co n c lu s ion T h e s y n t he sis o f 3 y iel d s, to t h e b e st o f o u r kn o w le d g e t h e f i r s t e x amp le o f a ho m o le p tic p ro p a r gy l c omp l e x an d ha s be e n s ho w n b y 1 H N M R s pe ctrosc op y an d X ray c r y st a l l og ra ph y t o ha v e a ll f o u r p h en y lpro pa r g y l l i g and s c oo r d in a t e d t o t h e Zr c e n t e r in

PAGE 25

25 an 3 mo d e res u lt i n g in a c o m p lex o f D 2 d s y m m e tr y T h e + b ond i n g in 3 w a s ana l y z e d b y DFT c a lcul a ti o n s o n th e m o de l c o m po u n d 4 T h e # bond ing f r o m t h e f ou r s y m m e try e q u i v a le n t 3 p ro pa r g yl l ig and s an d HOM O L U M O g a p o f 5 .3 e V is c on sist e n t w ith th e st ab i l ity o f t h e mol e c u l e a n d l a ck o f r e a cti v ity t o w a rd c oo rdin a ti n g s o l v en ts. E x pe r i m e n t a l S ec tion G e ne r a l Pro c e dure s All c h e m icals w e re p u rch a s e d i n re a g e n t g ra d e p u r i ty an d u s e d w ith n o f u r t he r p u r i f ica t i o n u n less o t he r w ise no t ed All man i p u l a ti on s w e re c a r r ied ou t u sing s ta n da rd Sc h le n k a n d g lo v e bo x te c hn i q ue s u nde r a n i n e r t a tmos p h e re o f a r g o n o r nitr o g e n A ll s o l v en ts, un less o t he rw ise no t ed w e re p u rch a s e d f r o m Fish e r an d pa ss e d t h ro u g h a n M. B ra u n M B SP s o lve n t pu r i f ica t i o n s y st e m o r w e re d isti l led f r o m s od i u m / b en z op he no n e p r i o r to u s e 1 H an d 13 C N M R s pe c tra w e re ob t a in e d o n V a r i a n G em i n i 3 0 0 a n d V X R 30 0 an d Merc u ry 3 0 0 s pe c trom e t e rs. I n f rar e d s p e ctra w e re m ea s u r e d o n a P e rk i n El me r 1 6 0 0 F T IR. Phe n y lprop a r g y l Br o mide. A 50 m L Sc h l e n k f lask c on t a ini n g 5 .0 m L o f e t he r an d 4 .8 g (3 7 m m o l) p hen y lpro pa r gy l a lco ho l an d 1 0 g p y r i d ine w a s c oo l e d t o 0 ¡C an d 5 .0 g (18 m mo l) p ho s p ho rus tribr o m ide w a s add e d d r o p w ise o v e r a 4 5 m in p e r i o d w ith stro n g s t i r r i n g unde r ni t ro g e n in a c c o rd an c e w ith lit e rat u re p ro c edu r e 3 0 The re s u lting m i x t u re w a s add e d t o 2 5 m L o f ice to q u e n ch th e e x c e ss P B r 3 a n d e x trac te d w ith e t he r (3 x 2 5 m L ). The o r g an ics w e re t he n w a s h e d w ith N a H C O 3 an d d r ie d o v e r Mg S O 4 f i l t e r e d a n d t h e e t he r w a s t h e n r e mo v e d b y re du c e d p res s u re. Y ield 6 .0 g 8 3 %. 1 H N M R ( C 6 D 6 ) % 4 1 (s, 2 H ) 7 4 ( m 5 H ) 13 C N M R ( C D C l 3 ) % 15 3 8 4 2 8 6 6 1 21 9 128 1 12 8 7 13 1 7

PAGE 26

26 Phe n y lprop a r g y lm a g ne s ium Bromid e A n add iti o n f u n n e l w a s c ha r g e d w ith 12 .0 g (6 1 .6 m mo l) ph en y lpro pa r gy l b ro m ide an d 3 0 m L e t he r a n d t h e m i x t u r e w a s ad d e d d r op w ise to a t h re e ne ck f lask c oo l e d t o 0 ¡C c on t a ini n g 1 8 0 g (7 5 .0 m m o l) a cti v a t e d Mg tu rnin g s w i th a fe w c r y st a ls o f H g C l 2 in e t he r o v e r a 4 h pe r i o d i n a cc o rd a n ce w ith lit e ra t u re p r e pa rati o n 3 1 A f t e r t h e a dd iti o n t h e r e a c t ion w a s re f l u x e d f o r 1 h T h e res u lting m i x t u re w a s f i l t e r e d t h ro u g h a 1 cm p a d o f Celite (pre v io u s l y d r i e d an d e v a c ua t e d ) to y ield a da rk y e l l o w s o lu t io n Y ield 3 0 m L o f a 1 8 5 M s o l u ti o n o f t h e Gr ig na rd r ea g en t, 90 1 %. 1 H N M R ( C 6 D 6 ) % 2 11 (s, 2 H ) 6 8 ( m 5 H ) Tetr a ( 3 phe n y lpro p a r g y l)zir c onium (3). An a dd iti o n f u n n e l w a s c ha r g e d w ith 20 .0 mL o f 1 8 5 M ph e n y lpro pa rg y l ma g ne si u m b r o m i d e (3 7 0 m m o l ) a n d ad d e d d ro p w ise in t o a th r e e n e ck f lask c on t a ini n g 2 1 6 g (9 2 5 m m o l) Zr C l 4 slur r ied in 1 0 0 m L e t he r o v e r a 1 h pe r io d an d s t i r red o v e rni g h t a t ro o m t e m p e ra t u re. V o la t i l e s w e re th e n re m o v e d v ia re du c e d p r e ss u re t o a f fo rd a b r o w n s o l i d T h e s o l i d w a s e x trac te d w ith 1 5 0 m L o f t o lu e n e an d f i l t e r e d t h ro u g h a f ine g lass f r i t. T h e f i l tra t e w a s c on c e n tra t e d t o a f f o rd a s o l u ti o n o f 3 f r o m w h ich t h e c o m p o u n d w a s th e n p rec i p it a t e d b y t h e a dd ition o f he x ane s. T h e r e s u lti n g s u s pen si o n w a s f i l t e red t h ro u g h a f ine g lass f r i t to c o l l e ct t h e s o l i d p recipi t a te o f 3 Y ield 3 4 4 g 74 %. T h e p ro d u ct w a s t a n in c o lor. Sin g le c r y st a ls c ou ld b e o b t a i ne d b y re p e a t e d v apo r d i f fu si o n recr y st a l l i z a ti o n u si n g T HF a n d p en t ane s un til a c o lor l e s s t o w h ite s o l i d r e ma i n ed 1 H N M R ( T HF d 8 60 ¡C) % 3 10 (s, 8 H ) 6 9 6 ( d 7 .7 H z 8 H ) 7 2 3 ( t 7 .7 H z 4 H ) 7 3 5 ( t 7 7 H z 8 H ) 13 C N M R ( T HF d 8 6 0 ¡C) % 38 7 1 13 5 1 26 7 12 7 5 1 2 8 8 1 2 9 1 1 2 9 4 C r y s tal l ographic S tr u c t u re D e t e rm i n a tion of 3 X ray e x pe r i men t a l da t a f o r 3 w e re c o l l e ct e d a t 1 7 3 K o n a S i e m en s S M A R T P L A T FORM e q u ip pe d w ith a CCD a rea

PAGE 27

27 de t e c t o r a n d a g ra p h i t e mo no c h r o ma t o r u t i l iz i n g MoK ra d ia t i o n (l = 0 7 1 07 3  ). C e ll pa r a me t e rs w e re r e f i n e d u s i n g u p t o 8 19 2 r e fl ec ti on s. A f u ll s p h e re o f d a ta ( 1 8 5 0 f r a me s ) w a s c o l l e c t ed u sin g t he sc a n me t h o d (0 3 ¡ f r a m e w id th ). T h e f i r st 5 0 f r a me s w e re r e mea s u r e d a t t h e e n d o f da ta c o l l e ct i o n t o mo n i t o r instr u m e n t a n d cr y st a l st ab i l ity ( ma x i mu m c o r r e cti o n o n I w a s < 1 % ) Ab s o rpti o n c o r r e cti o n s b y i n t e g rati o n w e re app l i e d ba s e d o n m e a s u r e d i n d e x e d cryst a l f a c e s. T h e s t ruc t u re w a s s o l v e d b y t h e Di r e ct M e t ho d s in SH E L XT L 6, 4 8 an d r e f in e d u s i n g f u l l ma trix l ea st s q ua r e s. T h e n o n H a t o m s w e re t re a t e d an is o tro p i c a l l y w he re a s t h e h y d ro g e n a t o m s w e re c a lcul a t e d in i d ea l po s i ti on s a n d w e re ridi n g o n t h e ir res pe cti v e c a rb o n a t o m s. T h e c o mp le x e s a re l o c a t e d o n 2 f o ld ro t a ti o n a x e s; t hu s a ha l f c o mp lex o cc up ies th e a s y m m e t r i c un it. A to t a l o f 1 6 8 pa r a me t e rs w e re r e f i n e d in t h e f in a l c y cle o f r e f i n e m en t u sing 2 7 3 0 r e f le c ti on s w ith I > 2 s ( I) to y ield R 1 a n d w R 2 o f 2 44 % a n d 6 76 % res p e cti v e l y R e f in e m e n t w a s d o n e u sing F 2

PAGE 28

28 C H AP T ER 3 CO M POUN D S FOR DE P O S I T I ON O F RU A ND FE T HIN F I L M S Ba ck grou n d Ru th e n ium me ta l is a p ro m is i n g m a t e r i a l f o r t h e ne x t g ene r a ti o n o f c o ppe r d i f fu si o n ba r r iers. Not on ly do e s it po s s e s a ll t h e q ua l i ti e s a ss o ci a t e d w ith g oo d d i f fu sion ba r r iers, s u ch a s h i g h me lting p o in t ha r d ne s s, c o n du cti v it y an d re l a ti v e i ne rtn e ss bu t it a lso h a s a n a f f i n ity f o r c op p e r a d s o rpti o n ma k ing it a g re a t s e e d l a y e r 4 9 5 0 The ab i l ity t o a ct a s a d i f fu si o n ba r r i e r a n d a s ee d l a y e r c a n e l i m i n a te u p t o t w o s tep s f r o m t h e d u a l da m a sc e n e p roc e ss w h ich c o u ld g re a tly re d u ce p ro d u cti o n c o st a n d s a v e v a lu ab le s pa ce i n e v e r shrinki n g i n t e g rat e d circuits. T h e re a re th r e e ma in f am i l ies o f CVD p re c u rsors f o r t h e d e p o sition o f r u t h e n i u m t h in f i l m s T h e se f a m i l ies a re r u t h e n i u m d i k e t o n a t e s rut h e n o c en e de r i v a ti v e s, an d rut hen i u m c a rb o n y l c omp le x e s. T w o e x amp l e s o f t h e d ik e t o n a t e s tha t ha v e b ee n st ud i e d f o r CVD o f ru th en i u m th i n f i l m s a re R u (o d ) 3 (od = 2 4 o ct a n e d io n a t o ) ( 5 ) a n d Ru(t m h d ) 3 (t m h d = 2 2 6 6 t e t r a m e t h y l 3 5 h e p t a n ed i o na t o ) ( 6 ) 51 52 ! ! O O O O O O R u R u O O O O O O ! 5 6 Fi g u re 3 1 R u t h e n ium d ik e t o n a t e s.

PAGE 29

29 G ene ral l y c o m po u nd s 5 a n d 6 f o r m R uO 2 du r ing CVD w i th O 2 h o w e v er t he re is on e e x amp le w he n T HF w a s u s e d a s a n i n je c ti n g li q u id w he re Ru m e t a l w a s f o r m ed po ssibly du e t o t h e c o n s um p ti o n o f O 2 du r i n g t h e o x id a ti o n o f T HF 5 3 T r i rut h en i u m do d e c a c a r b on y l, R u 3 ( C O) 12 ha s b ee n u s e d to d epo sit rut h en i u m m e t a l t h in f i l m s a t 1 5 0 ¡C. 54 Re s ults a nd D i sc u s s i on In e f fo rts t o d e v e lop a p rec u rsor t h a t w i l l p ro du ce h i g h q ua l i ty ru th en ium t h in f i l m s an d a t t h e s a m e t i m e b e o p ti ma l f o r CV D d i c a rb on y l me t h y l c y clo pe n t ad i e n y l r u t hen i u m ( 7 ) w a s ta r g e t ed ! C O Ru C O C H 3 7 Fi g u re 3 2 Co m p ou n d 7 Co m p ou n d 7 is iso e le c tro n ic to t h e ru t h eno c e n e c o m p o u nd s t ha t h a v e bee n i mp l e me n t e d in t h e p a st 5 5 M e Ru( C O) 2 Cp is p ro m is i n g f o r CVD o r A L D be c au s e o f its v o la t i l i t y C omp lex 7 s ub l i me s a t 4 0 ¡C ( 0 .1 mm H g ) 5 6 T h e s y n t h e sis w a s adop t e d f r o m Da v ids o n e t. a l. a n d i s s ho w n in S c h e m e 2 57

PAGE 30

30 cyc l opent a d i e ne ( C pH ) R u 3 ( C O ) 12 10 H ep ta n e R u 2 ( C O ) 4 ( C p ) 2 11 3 % N a H g THF ! M e R u( C O ) 2 Cp 7 Me I THF N a + [ R u( C O ) 2 C p ] Sc h e m e 3 1 S y n t he s e s o f 7 C r y st a ls o f 7 w e re o b t a in e d b y s ub l i ma ti o n T h e 1 H N M R s pe ctr u m o f 7 a t r o o m t e m pe ra t u re in c h lor o f o r m d s h o w e d res o n a n c e s a t % 5 2 3 p p m an d a t % 0 3 1 p p m C r y st a l l o g ra ph ic struc t u re d e t e r m i na ti o n ( T a b le 3 1 ) c o n f i r m e d t h e i d en t i f ica t i o n o f 7 ; t h e g eome try o f t h e c o m p o un d is t h a t o f a t h re e l e gg e d p ia n o s t oo l. T h e Cp o cc u p ies t h r e e c oo rdin a ti o n si t e s o n o n e f a ce w h i l e th e t w o c a rb on y ls an d me th y l o cc up y th e o t h e r t h re e T a b le 3 1 C r y st a l l o g ra ph ic S t ruc t u ral Data f o r 7 5 E mp i r ical f o r mu l a C 8 H 7 2 5 O 2 2 5 Ru For mu la w e i g h t 240 46 T e m p e rat u re 173 (2) K W a v e l en g th 0 7 1 07 3  C r y st a l s y st e m Ort ho rh o mb ic S pa ce g ro u p P 2 (1)2(1) 2 (1) 5 R1 = Œ ( || F o | | F c | | ) / Œ | F o | w R 2 = [ Œ [ w ( F o 2 Fc 2 ) 2 ] / Œ [ w ( F o 2 ) 2 ] ] 1/2 S = [Œ [ w ( F o 2 Fc 2 ) 2 ] / ( n p)] 1/2 w= 1 /[ s 2 (F o 2 ) + ( m p ) 2 + n p], p = [ m a x( F o 2 ,0)+ 2* F c 2 ] / 3, m & n are c o n s ta n ts

PAGE 31

31 T a b le 3 1 C r y st a l l o g ra ph ic S t ruc t u ral Da t a (C o n ti n u ed ) a = 6 8 8 8 9 (7)  a = 9 0 ¡. Unit c e ll d i m en si o n s b = 10 5 8 41 (1 0 )  b = 90 ¡. c = 11 4 6 3 8 (1 1 )  g = 90 ¡. V o l u m e 835 86 ( 1 4 )  3 Z 4 De n sity (calc u la ted ) 1 9 1 1 M g / m 3 A b s o rpt i o n c oe f f ic ie n t 1 8 2 3 m m 1 F ( 000 ) 469 C r y st a l si z e 0 1 4 2 x 0 1 3 6 x 0 1 1 m m 3 T h e ta r an g e f o r d a t a c o l l e cti o n 2 6 2 t o 27 50 ¡. I nde x ra n g e s 8 h 8 13 k 13 14 l 1 4 Re f l e cti on s c o l l e ct e d 72 0 8 I nd e pe n d e n t r e f l e cti o n s 19 1 7 [ R ( in t ) = 0 0 1 8 2 ] Co m p l e t e n e ss t o t h e ta = 100 00% 2 A 7 b s 5 o 0 r ¡ pt i o n c o r r e ct i o n No n e Re f i n e me n t m e t h o d Full ma trix l ea s t s q ua res o n F2 Da t a / re s trai n ts / p a r a me t e rs 19 1 7 / 3 / 10 4 G oo d ne s s o f f it o n F 2 1 0 8 9 Fin a l R in d ices [ I > 2 si g ma (I ) ] R1 = 0 0 19 5 w R2 = 0 04 6 4 [ 1 88 6 ] R in d ices (all d a t a ) R1 = 0 0 20 0 w R2 = 0 04 6 6 A b s o lu t e s t ru c t u re pa r am e t e r 0 50 (6) La r g e st d i f f p e a k a n d ho le 0 6 8 7 a n d 0 5 3 3 e  3 ! Fi g u re 3 3 T h e r ma l e l l ips o ids d r a w i n g o f t h e mol e c u lar s truc tu re o f 7 T h e r ma l e l l ips o ids a re d ra w n a t 50 % p r ob a b i l it y

PAGE 32

32 T o e v a lu a te t h e e f fe ct iv ene ss o f c o m po u n d 7 a s a p rec u rsor f o r t h in f i l m d epo sit i o n o f ru t h en i u m f i l m s C V D e x pe r i men ts w e re r u n I n itial re a ct i on s w e re r u n w ith H 2 a s a c o re a ct a n t a n d N 2 a s t h e c a r r ier g a s, b a s e d o n p re v io u s w o rk w ith g ro w ing tun g st e n n it r i d e ( W N ) d i f fu sion b a r r ier f i l m s T h e se e x pe r i me n ts w e re un s u c c e s s f u l, p ro b a b ly be c a u se t h e CVD c o n d itio n s f o r W N t h in f i l m s w e re t o o e x treme f o r t he se Ru p rec u rsors. I r o n ma y b e t h e s o lu t ion t o f i n e t un ing th e CVD p a ram e t e rs. T h e i r o n ana l o g u e t o 7 d icarb o n y l me t h y lc y c l op e n t ad i en y l i r o n (8) i s a n i d ea l mo d e l c o m p ou n d t o op ti m i z e c ond iti o n s f o r CVD o f Ru t h in f i l m s. E l e ctro n ically si m i l a r to 7 8 is app ro x i ma t e l y on e h u nd r e d t i m e s c he a pe r to s y n t he si z e t ha n its ru t h en i u m c oun t e rp a rt. O n e o f t h e most i mpo r t an t ph y sical p ro p e rties re g a rdi n g CVD p rec u rsors is t h e v o la t i l it y T h e r m a l g r a v i me tric a na l y sis ( T G A ) in d ica t e s t ha t bo t h c o m po u nd s s ub l i m e a ro u n d t h e s a m e t e mpe r a t u re a t a tmos p h e r i c p ress u re. ! C O F e C O C H 3 ! 8 Fi g u re 3 4 Co m p ou n d 8

PAGE 33

33 ! 80 ! 6 0 :E a ; l 4 0 ! 20 8 8 .4 2 % ! 4 0 50 60 70 Tem p e r a t u r e ( C) 80 90 U n i v ers a l V 4 5 A TA 1 00 ! 80 ! 6 0 9 1 6 :E Cl Qi 4 0 ! 20 ! 0 4 ---r -------r ---20 30 4 0 s o Tem p e r a t u r e ( c ) Figure 3 5. TGA data of 7 and B. 60 70 U n i v ers a l V 4 5 A TA

PAGE 34

34 Iron o x ide t h in f i l m s w e re ob t a in e d w ith th e c o mpo sit i o n o f 3 6 7 % Fe an d 61 1 % o x y g e n a cc o rding t o X PS me a s u reme n t s T h is is in d ica t i v e o f F e 2 O 3 I n ae r o b ic c ond iti o n s h i g he r t e mp e rat u res o f t e n l e a d t o h i g he r o x id a ti o n s t a t e s 58 6 1 Re du cing t h e t e m pe ra t u re f r o m t h e i n itial run o f 5 7 5 ¡C l e d to f i l m s w ith h i g he r Fe c on c e n tra t i o n s a n d a t h i g he r o x id a ti o n s t a t e s a s e x pe ct e d U n f o rtu n a t e ly th e f i l m s w e re c on t a m i n a t e d w ith c a rb on "# $%&# $# '#&% '#&# '# %"&( )*&# ! %+&+ ! %+&* )%&% )# %,&* -. / %# 0 +# ! '$# '## )$# )## %$# # %## "#$ % # &'( ) & # + -. ! Fi g u re 3 6 At o m ic c o mpo sit i o n o f f i l m s f r o m th r e e s epa r a te CVD r un s Rec en tly Kan jolia e t. a l ha v e p r o du c e d s o m e o f o u r t a r g e t e d p re c u rsors an d ha v e s u cc e s s f u l l y u s e d t h e m a s p r e c u rsors f o r Ru t h in f i l m s 62 6 4 T h e h i g h c a r b o n c on t e n ts in t h e f i l m s w e re a c on c e r n I n a t t e mp ts to i d en t i f y t h e c a r bo n s ou rc e d icarb on y le th y lc y clo pen t ad i en y l i r o n (9) w a s s y n t he si z e d a s o u tlin e d in S c h e m e 3

PAGE 35

35 O O C C O Fe Fe C O C O NaHg T H F ! 2 Na ! Fe C O C ! ! Na Fe C O C O E t I Fe Et T H F C C O O 9 Sc h e m e 3 2 S y n t he sis o f 9 B y re p laci n g t he me t h y l w it h an e t h y l it is likel y t he e t h y l w i l l h y d r i d e e l i m i n a te q u ick l y up o n t h e r ma l de c o m p o sitio n t hu s i f c a rb o n c o n t e n t d e c r ea s e d t h e a lk y l mo st l i k e ly is t h e c a rb o n s ou rc e C o mp o u n d 9 w a s id e n t i f i e d b y 1 H N M R % H ( C D C l 3 p p m .): 0 88 (3H, C H 3 ), 1 5 5 ( 2 H C H 2 ), 4 7 2 ( 5 H Cp). T h e CVD e x pe r i m e n ts a re s u m m a r i z e d in T a b le 3 2 Co n c lu s ion Co m p ou n d 7 w a s s y n t he si z e d a n d c h a r a ct e r i z ed P rel i m in a ry da t a a lo n g w ith e x pe r i men ts b y Kan jol i a e t. a l. i n d ica t e t h a t 7 is a v ia b le p rec u rsor f o r CVD o f Ru t h in f i l m s T h e mo d e l c om po u n d 8 ha s p r o d u c e d i r o n o x ide th in f i l m s w ith v a ry i n g i r o n and o x y g e n c on t e n t tr e nd i n g t o w a rd h i g he r p e rce n t i r o n w ith th e i n c r ea se in d e po siti o n t e m pe ra t u res.

PAGE 36

! P re c ur s o r T e m pera t ur e 7 8 8 8 8 8 8 8 8 ( ¡C) ! ! Rea ct o r 200 200 250 200 400 250 100 250 575 400 300 250 B ubb ler 45 RT 50 50 55 60 60 60 60 Hea t ing Ta pe s 50 RT 60 60 55 60 60 60 60 P res s ur e ( To rr ) ! ! B a s e 2 0 38 1 1 0 91 1 1 0 28 0 32 0 36 Rea ct o r 16 5 5 5 400 2 6 350 350 350 350 G a s e s (scc m ) Carr ier N 2 (50) N 2 (100 0) N 2 (1 00) N 2 (30) N 2 (100 0) N 2 (100 0) N 2 (100) N 2 (100) N 2 (100) Co Rea ct an t H 2 (75) NH 3 (30) NH 3 (30) NH 3 (30 ) H 2 (1000 ) H 2 (100 0) H 2 (100) H 2 (100) H 2 (100) A m b ie n t N 2 --------! S ubs t ra t e S i( 100 ) S i( 100 ) S i( 100 ) S i( 100 ) S i( 100 ) S i( 100) /S i( 111 ) S i( 100 ) S i( 100 ) S i( 100 ) Co m p o s i t ion ( % ) ! ! ! Ru -----! -! -! -! -Fe -----36 7 26 9 38 40 O -----61 1 21 1 21 8 27 8 C -----! -52 40 2 32 2 F e 2 O 3 Fe F e x O y F e F e x O y F e F e x O y A m orphou s A m orphou s A m orphou s ! T a b le 3 2 P a rame te rs f o r sel e c t e d CVD ru n s w ith c o m p ou n d 8 ! ! ! ! (200) ! ! Co m pound s C C C ! ! 36

PAGE 37

37 E x pe r i m e n t a l S ec tion G e ne r a l Pro c e dure s All c h e m icals w e re p u rch a s e d i n re a g e n t g ra d e p u r i ty an d u s e d w ith n o f u r t he r p u r i f ica t i o n u n less o t he r w ise no t ed All man i p u l a ti on s w e re c a r r ied ou t u sing s ta n da rd Sc h le n k a n d g lo v e bo x te c hn i q ue s u nde r a n i n e rt a tmos p h e re o f a r g o n o r nitr o g e n A ll s o l v en ts, un less o t he rw ise no t ed w e re p u rch a s e d f r o m Fish e r an d pa ss e d t h ro u g h a n M. B ra u n M B SP s o lve n t pu r i f ica t i o n s y st e m o r w e re d isti l led f r o m s od i u m / b en z op he no n e p r i o r to u s e 1 H an d 13 C N M R s pe c tra w e re ob t a in e d o n V a r i a n G em i n i 3 0 0 a n d V X R 30 0 an d M e rcury 30 0 s pe c trom e t e rs. I n f rar e d s p e ctra w e re m ea s u r e d o n a P e rk i n El me r 1 6 0 0 F T IR. CVD Ex pe r i m e n t s T h e th in f i l m s w e re d e po s it e d u s i n g a c u s t o m bu i l t v e rtical q ua rtz c o ld w a ll CVD rea ct o r A r e p res e n t a t iv e s amp le o f pa r a me t e rs us e d is d ispl a y e d in Ta b le 5 Fi l m c o m p o sition w a s de t e r m i n e d b y Au g e r el e ctron s p e ctrosc op y (A E S) or X PS w ith a Pe rk i n E l me r 5 1 0 0 X PS S y st e m n o m in a l l y a t 1 5 .0 k V a n d 3 0 0 W f o r t h e X r a y s ou rce ( mo n o c h r o ma t e d Al X r a y s ). T h e s pu t t e r i n g i o n w a s A r w ith a n a cc e ler a ti n g v o lt a g e o f 4 K e V. Bi s ( 5 c y c lop e n t a di e n y l di ca rbo n y l rut h e n i um ) (1 0 ). R u 3 ( C O) 1 2 (1. 91 2 g 2 9 9 1 m m o l) w a s c ha r g e d t o a th r e e n e ck ro u n d bo t t o m f lask o u t f it t e d w ith a ir i n le t a r e f lux c on d en s e r, a n d a r u b b e r se p t u m N e x t 3 0 mL o f f r e s h ly d isti l led c y clo pe n t ad i e n e ( 1 2 :1 mo lar ra t i o ), a n d 4 0 m L d ry hep t an e w e re a d ded T h e m i x t u re w a s hea t e d to r e f l u x f o r 1 h r. The s ep t u m w a s re m o v e d t o a l l o w th e h ep t a n e to e v apo rate t o ~ 5 mL a t w h ich ti me un tr e a t e d ( w e t" and o xy g ena t ed ) h ep t an e w a s add e d t o t h e f l a sk to res t o r e i n itial v o lu m e The f l a sk w a s on ce a g a in s e a led a n d a l l o w e d t o r e f lux fo r a n a dd iti o na l 3 hou rs. The s o lu t i o n w a s c oo l e d a n d f i l t e re d T h e s o l i d c o l l e c t e d f r o m f i l tra t i o n w a s

PAGE 38

38 w a s he d w ith he x ane s an d t h e n d r ie d T h e c om p o u n d w a s i de n t i f i e d b y c o m pa r i so n to l i t e rat u re da ta. 65 1 H N M R ( C D C l 3 ) 5 2 6 (s, 5 H) a n d b y I R w i th f re q uen c i e s a t 1 7 74 19 3 3 1 95 2 1 99 5 c m 1 Sodium 5 c y c lop e n ta di e n y ldi c a rbo n y l ru t hen a te ( 11 ) The d i me r R u 2 ( C O) 4 C p 2 (1. 25 2 g 2 2 5 0 m mo l) w a s d issol v e d in T HF an d c an n u la t r an s f e r r e d i n to 3 w t% Na ama l g a m in a 5 : 1 Na t o Ru mo lar ra t i o A f t e r 5 h ou rs o f stir r in g t h e s o lu t ion tu rn e d da rk re d T h e s o l u ti o n w a s s epa ra t e d f r o m t h e m e rcury b y c annu l a tra n s f e r a n d t h e n re s e r v e d in s o lu t i o n f o r t h e ne x t st e p Di ca rbo n y lm e t h y l c y c lop e n t a di e n y l rut h e nium (7). T o t h e T HF s o lu t ion c on t a i n ing th e an i o n o f 11 0 5 8 9 m L (1 1 2 5 0 m mo l) o f m e t h y l io d i d e w a s add e d a n d a l l o w e d t o s t ir o v e rni g h t. T h e T HF w a s re m o v e d b y trap to t r a p d i sti l la t ion an d t h e n f i na l p ro du ct w a s is o la te d b y s ub l i ma ti o n a t 4 0 ¡C (0.1 mm H g ). T h e c om po u n d w a s i de n t i f ied b y 1 H N M R ( C D C l 3 ) 5 2 3 (s, 5 H ) 0 3 1 (s, 3 H ). Di ca rbo n y lm e t h y l c y c lop e n t a di e n y l iron (8). M eL i ( 3 1 mL, 1 .5 : 1 mo lar ra t i o o f a lk y l l i t h ium : s ta rting ma t e r i a l ) w a s adde d t o C p Fe(CO ) 2 I (1. 0 0 0 g 3 2 9 0 m m o l) in 3 0 m L E t 2 O an d a l l o w e d t o re a ct f o r 1 h a t 7 8 ¡ C. Pro d u ct w a s is o la t e d in v a c u o and s ub l i m e d a t 5 0 ¡C ( 0 .1 mm H g ). T h e c o mp o u n d w a s i den t i f i e d b y 1 H N M R ( C D C l 3 ) 4 7 6 (s, 5 H ) 0 1 7 ( s, 3 H ). 66 D i ca rbo n y l e t h y l c y c l o pentad ie n y l iron (9 ) A 2 w t% N a Hg ama l g a m w a s p re pa r e d b y sl o w l y add ing Hg (2 1 mL ) to s m a ll p iec e s o f Na ( 0 5 9 3 g ), an d stir r ing v i g o ro u sl y T h e d i me r C p 2 F e 2 ( C O) 4 (3. 02 g 8 3 5 m m o l) w a s d issol v e d in T HF ( 2 0 m L ) an d ad d e d t o t h e a ma l g a m to r edu c e o v e rni g h t. 3 e q u i v a le n ts o f EtI (2.0 mL ) w e re

PAGE 39

39 ad d ed an d a g a in r e a c t e d o v e rni g h t. U p o n c o mp le t i on s ti r r i n g w a s c ea s e d a l l o w ing th e NaI s a lt t o s e t t le t o t h e bo t t om T h e b ro w n li q u id la y e r at t h e t o p w a s c an n u la tra n s f e r r e d t h r ou g h C e l i t e in t o a cl ea n f l a sk. T r a p t o trap d isti l la t ion w a s pe r f o r m e d t o re m o v e s o l v en t The r e ma ini n g s o l i d w a s t ra n sf e r r e d t o a s ma ll Sc h l en k f las k a n d e t he r w a s e v apo rat e d o v e r 2 da y s un d e r stro n g f l o w o f A r. C o m p o u n d 9 w a s d r i e d un d e r v a c uu m t o a f fo r d 15 % y iel d

PAGE 40

40 CH APT ER 4 PRECU RSORS FOR T UN GST EN NI T RIDE T HIN FI L MS Backgroun d T u n g ste n n itr ide is a p r omisi n g re f ract o ry n itr i d e fo r th in f il m d i ff u sio n barr iers in integ rate d circuits. Alo n g w ith the b e n e f ici a l p roperties a sso ciat e d w ith t h e re f rac to ry n itr ide s, t ung ste n n itr id e has t h e lo w e st e lect ri ca l r e sistiv it y m a king it a n id eal c a ndid a te in e lect ro n ics. I n a dditi o n t here a re n o kn o w n rea ctions o f W N w ith copp e r there fo re making it a g ood barr ie r mat e ri a l to p rev ent th e d i ffusion o f c opp e r in te rcon n e cts in to t h e sil icon and /o r si li co n s ubstrat e So m e e x a m p les o f sin g le source p recu rsors a re b is( te rt b u ty lam ino )bis( te rt buty li m ino )tun g ste n ( 1 2 ) ,6 7 b is( te rtbuty li m ino )(guanidinato )t ung ste n h y d ri d e ( 13) ,68 b is( te rtbuty li m ino )( dite rt buty l p y ra z o la to )tungste n ( 14) .69 !tBu !!NtBu H N N W tBuN N N W !tBu W NHtBu N N !tBuN N tBuN NHtBu !N N tBu !tBu 1 2 1 3 14 !Fig u re 4 1 Sing le source p rec u rsors f o r W N th in f il m s. Ou r g rou p h a s rep o rte d W Nx a n d W NxCy th in f il m d epositi o n f ro m two f a m il ies o f !CVD p recu rsors, t ung ste n i m ido a n d t u n g ste n h y d raz ido complex e s.7075 !T h e h y d raz ido co mpounds y ielded a h ig her m a x imum n itr o g e n co n te n t (24 a t %) comp a red t o their im i d o a n a log ues (1 4 a t %).7 6 The in crea se d N in c o rpo ratio n in t o t h e th in f il m s w ith the h y d raz ido co m p l e x e s could b e due t o th e w eake r N N bond c o m pared

PAGE 41

41 to t h e N C b o n d c on ne cti n g th e n it r ido f ra gme n t w ith th e re s t o f t h e li g and NMR ki ne tic st ud ies o f li g an d e x c h a n g e o f t h e c oo rdi n a t e d a c e t o n it r i l e o n t h e d i m e t h y l h y d ra z ido c omp l e x c on clu d e d a l o w G ib b s f ree ene r g y o f a cti v a ti o n 1 4 .4 k c a l / mo l 7 7 This in d ica te s th e W N b o n d b e t w ee n t h e me t a l c en t e r an d t h e h y d ra z ido n it r o g e n is w ea k an d is mo s t l i k e ly th e f i rst bo n d t o b e b rok e n i n CVD c o n d itio n s A f t e r loss o f t h e n it r i l e ma ss s pe ctr o m e try da ta f r o m t h e is o p ro p y l a n d a l l y l i m ido c o m p ou nd s s u gg e sts t h e cle a v a g e o f t h e N C b o n d in t h e i m i d o li g an d w h i l e DFT c a lcul a ti o n s an d i n situ R a m a n s pe ctrosc o p y s u gg e st cle a v a g e o f t h e N N b o n d in t h e h y d ra z ido c o mp o u n d s 77 78 Furt he r w ea k en ing o f t h e b on d b e t w ee n t h e n it r ido f ra g m e n t a n d t h e re m a i nde r o f t h e c omp l e x an d i n c o rp o r a ti n g m o re n it r o g e n i n to t h e li g and s c ou ld l e a d t o th in f i l m s w ith h i g he r co n c e n tra t i o n s o f n it r o g e n Re s ults a nd D i sc u s s i on A ne w cl a ss o f W N x a n d W N x C y c o m p o und s c on t a i n ing th e ge ne ral f o r mu la o f W ( N N C R 2 ) Cl 4 w he re R = v a r i ou s a lk y l an d a ro m a t ic c o m p o und s ( F i g u re 9 ) w e re th e ne x t t a r g e t p re c u rsor s The i n it i a l s y n t he tic s c he m e t o d e v e lop t h e s e no v e l c o m p ou n d s w a s t o f i r st c re a t e t h e d ia z o li g an d a n d t h e n a t ta c h it t o W C l 4 R R C N N Cl W Cl R = ph e ny l 15 t o l y l 16 i s obu t y l 17 Cl Cl N C C H 3 Fi g u re 4 2 D i a z o t un g st e n c o mp l e x 15 17

PAGE 42

42 (D ip hen y l me t h y le ne )h y d ra z ine 1 8 w a s re a c t e d w ith m e rcury o x ide in pe trol eu m e t he r t o a f fo rd t h e d i p h en y ldi a z o li g an d 19 1 H N M R s pe ctrum o f 1 9 a t ro o m t e m pe ra t u re in c h lor o f o r m d 3 s h o w e d a r o ma t ic pea ks a t 7 3 0 an d 7 3 0 a lo n g w ith s om e resi d u a l p e a ks f r o m t h e s t a rting ma te r ia l. Comp o u n d 1 9 w a s t he n r e a ct e d w ith W C l 4 in T HF in a t t e m p t s to ma ke 1 5 T h e 1 H N M R w a s i n c on clusi v e ho w e v e r it d id s ho w a n i n c r ea s e d a m oun t o f a r o ma tic p ea ks s h i f t e d f r o m t ha t o f t h e s ta rting ma te r i a l. At t e mp ts a t c r y st a l l i z a t i o n w e re un s u cc e s s f u l le ad ing t o t h e e x p lora t i o n o f t h e t o l y l de r i v a ti v e w h ich f r o m pa st e x pe r i en ce o f li g an d s u b stit u ti on s ha v e y iel de d si n g le c r y st a ls mo re r ead i l y T o make c o m po u n d 1 6 f i r st ( d it o l y l me t h y le n e )h y d razine ( 20 ) w a s s y n t he si z e d f r o m t h e r ea cti o n o f d it o l y lke to n e w ith h y d r a z ine in n b u t ano l. The 1 H N M R s pe ctr u m o f 2 0 a t ro o m t e m pe ra t u re in c h lo r o f o r m d 3 s ho w e d p ea k s a t 7 14 7 1 6 7 3 3 a n d 7 3 6 f o r t h e a roma t ic h y d ro g en s an d a t 2 4 0 f o r t h e m e t h y l h y d ro g en s an d 5 3 5 f o r t h e one s o n t h e a m in e E x pe r i m e n t a l S ec tion G e ne r a l Pro c e dure s All c h e m icals w e re p u rch a s e d i n r e a g e n t g ra d e p u r i ty an d u s e d w ith n o f u r t he r p u r i f ica t i o n u n less o t he r w ise no t ed All man i p u l a ti on s w e re c a r r ied ou t u sing s ta n da rd Sc h le n k a n d g lo v e bo x te c hn i q ue s u nde r a n i n e rt a tmos p h e re o f a r g o n o r nitr o g e n A ll s o l v en ts, un less o t he rw ise no t ed w e re p u rch a s e d f r o m Fish e r an d pa ss e d t h ro u g h a n M. B ra u n M B SP s o lve n t pu r i f ica t i o n s y st e m o r w e re d isti l led f r o m s od i u m / b en z op he no n e p r i o r to u s e 1 H s pe ctra w e re o b t a i n e d o n Va r ia n G e m ini 30 0 an d V X R 30 0 a n d M e rcury 30 0 s pe ctr o m e t e rs. (D i a zom e t h y l e ne)di b e nzene (1 9 ) D i ph e n y l h y d ra z in e ( 1 9 6 g ra m s 10 0 m m o l) w a s w e i g he d ou t an d a dd e d t o 2 2 1 g ra m s ( 1 0 .2 m mo l) o f m e rcury o x ide in a r o un d bo t t o m f l a sk c o n t a i n ing ~ 2 0 m L o f p e trol e u m e t he r. T h e f l a sk w a s p u t u nde r a r g o n a n d

PAGE 43

43 a c o n den s e r w a s a t ta c hed The c on t en ts w er e h e a t e d t o 5 0 ¡C f o r a pp ro x i ma t e ly 2 hou rs w ith a m in e ral o il ba t h A f t e r w a rds t h e re a cti o n w a s c oo led t o r oo m t e m p e rat u re an d f i l t e red t h ro u g h a f i n e g lass f r i t v ia c an n u l a t ra n s f er T h e res u lti n g li q u id w a s pu rple; t h e s o l v en t w a s the n p u l l e d o f f in v a c u o 1 H N M R ( C D C l 3 ): 7 15 6 9 6 p p m 4 4' ( D i a zom e t h y l e ne)bi s (met h y l benz e ne) (2 0 ) D i t o l y l k e t on e 4 .0 g ra m s (0. 01 9 mo l ) w a s c ha r g e d t o a Sc h l e n k f lask. A pp ro x i ma t e ly 2 0 mL o f ab s o lu t e e t ha n o l w a s the n a dd e d I n a 4 :1 ra t io h y d ra z in e :k e t o n e 5 6 mL (0 0 9 5 mol ) o f h y d ra z ine w a s ad d e d v ia s y r i n g e T h e m i x t u re w a s l e ft t o r e f l u x o v e rni g h t a t 120 C It w a s th e n w a s c oo led t o r o o m t e m p e rat u r e f i l t e red th r o u g h a me d i u m f r i t y iel d ing a cl ea r co l o r l e ss s o lu t i o n T h is s o lu t i o n w a s c oo led t o ~ 25 C w i th a d ry ice an d a d i c h loro b e n z en e b a th f o r 2 h ou rs. The p reci p it a te w a s t h e n f i l t e r e d an d d r i e d in v a c u o 1 H N M R ( C D C l 3 ): 7 1 1 6 95 2 09 ( D i p t o l y lm e t h y l e ne )h y dr a zine (1 6 ) T o a r ou n d b o t t o m f l a sk 0 2 7 6 g ra m s (1 2 3 m m o l) o f 2 0 w a s a d d e d a l o n g w ith 0 26 8 g r a m s (1 2 3 m mo l) o f H g O T h e f lask w a s th e n c ha r g e d w ith ~20 mL o f pe tro l e u m e t he r an d pu t un d e r an a r g o n f l o w T h e c o n t e n ts w e re hea t e d t o 50 ¡C f o r 2 h ou rs w ith a n o il b a t h A f t e r w a rds t h e r e a cti o n w a s c oo l e d t o ro o m t e mpe r a t u re t h e n f i l t e red t h ro u g h a g lass f r i t v ia c a n nu la t ra n s f e r The re s u lting l iq u id w a s pu rple. T h e s o l v en t w a s the n pu l le d o ff in v a c uo 1 H N M R ( CDCl 3 ): 7 37 7 3 0 7 18 7 1 0 2 42 2 3 2

PAGE 44

44 APPEN D IX A N M R DA T A ! ! ! Ph Zr 4 ! ! ! ! ! Fi g u re A 1 1 H N M R s pe ctrum o f 3 in T HF d 8 a t 6 0 ¡C.

PAGE 45

45 ! ! ! ! ! Ph Zr 4 ! ! ! ! ! Fi g u re A 2 1 H 13 C g H M BC s pe ctrum o f 3 in T HF d 8 a t 6 0 ¡C.

PAGE 46

46 ! ! ! ! ! Ph Zr 4 ! ! ! ! Fi g u re A 3 E x pan sion o f t h e 1 H 13 C g H M BC s pe ctrum o f 3

PAGE 47

47 ! ! ! C O R u C O C H 3 7 ! ! ! ! Fi g u re A 4 1 H N M R o f 7 in c h lor o f o r m d

PAGE 48

48 ! ! ! ! C O F e C O C H 3 8 ! ! ! Fi g u re A 5 1 H N M R o f 8 in c h lor o f o r m d

PAGE 49

49 ! ! ! Et Fe C C O O 9 ! ! ! ! Fi g u re A 6 1 H N M R o f 9 in c h lor o f o r m d

PAGE 50

50 ! ! ! ! ! ! ! ! ! Fi g u re B 1 IR o f 7 APPEN D IX B IR S PE C T R U M

PAGE 51

51 APPEN D IX C X R A Y C R Y S T A L L O G RA P HY T A B L ES ! T a b le C 1 At o m ic c oo rd i na t e s ( x 104 ) an d e q u i v a le n t i s o tro p ic d i s p lac e m e n t pa r a me t e rs ( 2 x 103 ) f o r 3 6 x y z U ( e q ) Zr 50 0 0 24 3 9 (1) 25 0 0 23 (1) C1 44 4 1 (1) 36 8 8 (2) 10 6 6 (1) 34 (1) C2 41 5 4 (1) 43 0 3 (2) 15 7 6 (1) 31 (1) C3 40 8 8 (1) 44 3 0 (2 ) 22 5 0 (1) 30 (1) C4 37 4 7 (1) 51 7 6 (2) 27 2 1 (1) 28 (1) C5 39 7 9 (1) 66 2 9 (2) 30 9 8 (1) 42 (1) C6 36 5 6 (1) 73 1 9 (2) 35 5 6 (2) 51 (1) C7 31 0 0 (1) 66 0 2 (2) 36 3 8 (1) 45 (1) C8 28 5 8 (1) 51 7 3 (2) 32 5 8 (1) 41 (1) C9 31 8 4 (1) 44 5 7 (2) 28 1 0 (1) 34 (1) C11 44 7 1 (1) 11 8 5 (2) 33 7 7 (1) 35 (1) C12 41 6 2 (1) 580 (2) 25 6 7 (1) 32 (1) C13 40 7 1 (1) 458 (2) 18 1 4 (1) 30 (1) C14 36 9 9 (1) 244 (2) 978 (1) 29 (1) C15 39 0 5 (1) 1675 (2) 791 (1) 45 (1) C16 35 4 3 (1) 2318 (2) 15 (1) 54 (1) C17 29 7 1 (1) 1548 (2) 638 (1) 45 (1) ! ! ! ! ! 6 U ( e q ) i s d e f i n e d as o n e t h ir d o f t h e t r a c e of t h e orth o g o n a l i z e d U i j t e n s or.

PAGE 52

52 T a b le C 2 B on d l en g t h s [  ] an d a n g les [¡] f o r 3 7 Z r C1 2# 1 2 4 0 43 ( 1 5 ) Z r C12 2 4 0 43 ( 1 5 ) Z r C2 2 4 0 43 ( 1 4 ) Z r C2 # 1 2 4 0 44 ( 1 4 ) Z r C3 # 1 2 4 4 74 ( 1 5 ) Z r C3 2 4 4 74 ( 1 5 ) Z r C1 3# 1 2 4 5 73 ( 1 5 ) Z r C13 2 4 5 73 ( 1 5 ) Z r C1 1# 1 2 4 8 84 ( 1 6 ) Z r C11 2 4 8 84 ( 1 6 ) Z r C1 2 4 9 55 ( 1 5 ) Z r C1 # 1 2 4 9 55 ( 1 5 ) C 1 C2 1 3 7 6 (2) C 1 H1A 0 9 9 C 1 H1B 0 9 9 C 2 C3 1 2 4 9 (2) C 3 C4 1 4 5 0 (2) C 4 C9 1 3 9 2 (2) C 4 C5 1 3 9 8 (2) C 5 C6 1 3 8 3 (3) C 5 H5A 0 9 5 C 6 C7 1 3 7 1 ( 3) C 6 H6A 0 9 5 C 7 C8 1 3 8 5 (3) C 7 H7A 0 9 5 C 8 C9 1 3 8 3 (2) C 8 H8A 0 9 5 C 9 H9A 0 9 5 C1 1 C12 1 3 7 4 (2) C1 1 H1 1 A 0 9 9 C1 1 H1 1 B 0 9 9 C1 2 C13 1 2 4 7 (2) C1 3 C14 1 4 5 2 (2) C1 4 C19 1 3 9 0 (2) C1 4 C15 1 3 9 1 (2) C1 5 C16 1 3 8 7 (3) 7 S y mm et r y t r a n s f o r m at i o n s u s ed to g e n e r a t e e q u i v a l e n t a to m s : #1 x + 1 y z+ 1 /2

PAGE 53

53 T a b le C 2 C on ti n ued C1 5 H1 5 A 0 9 5 C1 6 C17 1 3 7 8 (3) C1 6 H1 6 A 0 9 5 C1 7 C18 1 3 7 4 (2) C1 7 H1 7 A 0 9 5 C1 8 C19 1 3 8 3 (2) C1 8 H1 8 A 0 9 5 C1 9 H1 9 A 0 9 5 C1 2#1 Z r C12 96 4 1 (8) C1 2#1 Z r C2 138 02 (6) C1 2 Z r C2 98 4 9 (5) C1 2#1 Z r C2 # 1 98 4 9 (5) C1 2 Z r C2 # 1 138 01 (6) C 2 Z r C2 # 1 96 1 1 (7) C1 2#1 Z r C3 # 1 87 5 4 (6) C1 2 Z r C3 # 1 167 81 (5) C 2 Z r C3 # 1 86 0 1 (5) C2 #1 Z r C3 # 1 29 8 1 (5) C1 2#1 Z r C3 167 81 (5) C1 2 Z r C3 87 5 4 (6) C 2 Z r C3 29 8 1 (5) C2 #1 Z r C3 86 0 1 (5) C3 #1 Z r C3 90 9 6 (7) C1 2#1 Z r C1 3 # 1 29 7 0 (5) C1 2 Z r C1 3# 1 86 7 0 (5) C 2 Z r C1 3# 1 167 66 (5) C2 #1 Z r C1 3# 1 87 2 4 (5) C3 #1 Z r C1 3# 1 91 1 9 (5) C 3 Z r C1 3# 1 162 49 (5) C1 2#1 Z r C13 86 7 1 (5) C1 2 Z r C13 29 7 0 (5) C 2 Z r C13 87 2 4 (5) C2 #1 Z r C13 167 66 (5) C3 #1 Z r C13 162 49 (5) C 3 Z r C13 91 1 8 (5) C1 3#1 Z r C13 91 9 7 (7) C1 2#1 Z r C1 1 # 1 32 5 6 (5) C1 2 Z r C1 1# 1 105 29 (6) C 2 Z r C1 1# 1 105 46 (5) C2 #1 Z r C1 1# 1 108 32 (5) C3 #1 Z r C1 1# 1 84 2 1 (5)

PAGE 54

54 T a b le C 2 C on ti n ued C 3 Z r C1 1# 1 135 25 (5) C1 3#1 Z r C1 1 # 1 62 2 6 (5) C1 3 Z r C1 1# 1 82 0 4 (6) C1 2#1 Z r C11 105 29 (6) C1 2 Z r C11 32 5 6 (5) C 2 Z r C11 108 31 (6) C2 #1 Z r C11 105 46 (5) C3 #1 Z r C11 135 25 (5) C 3 Z r C11 84 2 1 (5) C1 3#1 Z r C11 82 0 4 (6) C1 3 Z r C11 62 2 6 (5) C1 1#1 Z r C11 128 49 (8) C1 2#1 Z r C1 105 47 (5 ) C1 2 Z r C1 107 96 (5) C 2 Z r C1 32 5 5 (5) C2 #1 Z r C1 105 44 (5) C3 #1 Z r C1 81 8 9 (5) C 3 Z r C1 62 3 5 (6) C1 3#1 Z r C1 135 14 (5) C1 3 Z r C1 83 7 3 (5) C1 1#1 Z r C1 72 9 3 (5) C1 1 Z r C1 131 95 (5) C1 2#1 Z r C1 # 1 107 96 (5) C1 2 Z r C1 # 1 105 47 (5) C 2 Z r C1 # 1 105 44 (5) C2 #1 Z r C1 # 1 32 5 4 (5) C3 #1 Z r C1 # 1 62 3 5 (6) C 3 Z r C1 # 1 81 8 9 (5) C1 3#1 Z r C1 # 1 83 7 3 (5) C1 3 Z r C1 # 1 35 1 4 (5) C1 1#1 Z r C1 # 1 131 95 (5) C1 1 Z r C1 # 1 72 9 3 (5) C 1 Z r C1 # 1 128 88 (8) C 2 C 1 Zr 70 0 8 (9) C 2 C 1 H1A 116 6 Z r C 1 H1A 116 6 C 2 C 1 H1B 116 6 Z r C 1 H1B 116 6 H1 A C 1 H1B 113 6 C 3 C 2 C1 154 38 ( 1 6 ) C 3 C 2 Zr 77 0 1 (1 0 ) C 1 C 2 Zr 77 3 7 (9)

PAGE 55

55 T a b le C 2 C on ti n ued C 2 C 3 C4 148 94 ( 1 5 ) C 2 C 3 Zr 73 1 9 (1 0 ) C 4 C 3 Zr 137 87 ( 1 1 ) C 9 C 4 C5 118 64 ( 1 5 ) C 9 C 4 C3 120 59 ( 1 4 ) C 5 C 4 C3 120 77 ( 1 5 ) C 6 C 5 C4 120 24 ( 1 7 ) C 6 C 5 H5A 119 9 C 4 C 5 H5A 119 9 C 7 C 6 C5 120 65 ( 1 7 ) C 7 C 6 H6A 119 7 C 5 C 6 H6A 119 7 C 6 C 7 C8 119 72 ( 1 7 ) C 6 C 7 H7A 120 1 C 8 C 7 H7A 120 1 C 9 C 8 C7 120 26 ( 1 7 ) C 9 C 8 H8A 119 9 C 7 C 8 H8A 119 9 C 8 C 9 C4 120 47 ( 1 5 ) C 8 C 9 H9A 119 8 C 4 C 9 H9A 119 8 C1 2 C1 1 Zr 70 3 5 (9) C1 2 C1 1 H1 1 A 116 6 Z r C1 1 H1 1 A 116 6 C1 2 C1 1 H1 1 B 116 6 Z r C1 1 H1 1 B 116 6 H1 1A C1 1 H1 1 B 113 6 C1 3 C1 2 C11 154 59 ( 1 6 ) C1 3 C1 2 Zr 77 5 0 (1 0 ) C1 1 C1 2 Zr 77 0 9 (9) C1 2 C1 3 C14 149 68 ( 1 6 ) C1 2 C1 3 Zr 72 8 0 (1 0 ) C1 4 C1 3 Zr 137 5 1 ( 1 1 ) C1 9 C1 4 C15 118 51 ( 1 4 ) C1 9 C1 4 C13 119 95 ( 1 4 ) C1 5 C1 4 C13 121 54 ( 1 4 ) C1 6 C1 5 C14 120 47 ( 1 6 ) C1 6 C1 5 H1 5 A 119 8 C1 4 C1 5 H1 5 A 119 8 C1 7 C1 6 C15 120 25 ( 1 6 ) C1 7 C1 6 H1 6 A 119 9 C1 5 C1 6 H1 6 A 119 9

PAGE 56

56 T a b le C 2 C on ti n ued C1 8 C1 7 C16 119 74 ( 1 6 ) C1 8 C1 7 H1 7 A 120 1 C1 6 C1 7 H1 7 A 120 1 C1 7 C1 8 C19 120 37 ( 1 5 ) C1 7 C1 8 H1 8 A 119 8 C1 9 C1 8 H1 8 A 119 8 C1 8 C1 9 C14 120 65 ( 1 4 ) C1 8 C1 9 H1 9 A 119 7 C1 4 C1 9 H1 9 A 119 7 Ta b le C 3 A n iso t r o p ic d ispl a c e m en t pa r a me t e rs (  2 x 1 0 3 ) f o r 3 8 U11 U22 U33 U23 U13 U12 Zr 24 (1) 25 (1) 21 (1) 0 9 (1) 0 C1 36 (1) 39 (1) 26 (1) 4 (1) 12 (1) 2 (1) C2 28 (1) 30 (1) 29 (1) 7 (1) 8 (1) 3 (1) C3 26 (1) 29 (1) 32 (1) 2 (1) 10 (1) 0 (1) C4 27 (1) 29 (1) 26 (1) 4 (1) 9 (1) 6 (1) C5 44 (1) 34 (1) 53 (1) 4 (1) 27 (1) 5 (1) C6 67 (1) 34 (1) 61 (1) 11 (1) 3 5 (1) 2 (1) C7 59 (1) 41 (1) 47 (1) 5 (1) 34 (1) 15 (1) C8 38 (1) 41 (1) 49 (1) 11 (1) 26 (1) 8 (1) C9 32 (1) 32 (1) 38 (1) 2 (1) 15 (1) 1 (1) C11 36 (1) 39 (1) 32 (1) 4 (1) 17 (1) 2 (1) C12 29 (1) 30 (1) 38 (1) 4 (1) 15 (1) 5 (1) C13 27 (1) 29 (1) 32 (1) 2 (1) 10 (1) 0 (1) C14 28 (1) 28 (1) 30 (1) 1 (1) 12 (1) 5 (1) C15 45 (1) 34 (1) 39 (1) 1 (1) 4 (1) 8 (1) C16 64 (1) 35 (1) 48 (1) 10 (1) 12 (1) 8 (1) C17 52 (1) 41 (1) 32 (1) 6 (1) 9 (1) 6 (1) C18 34 (1) 40 (1) 34 (1) 3 (1) 6 (1) 1 (1) C19 31 (1) 33 (1) 36 (1) 0 (1) 11 (1) 4 (1) ! ! ! 8 T he a ni s otr o p i c d i s p l a c e m e n t f a c tor e x p o n e n t t a k es t h e f or m : 2p2[ h2 a *2 U 11 + ... + 2 h k a* b* U 12 ]

PAGE 57

57 T a b le C 4 At o m ic c oo rd i na t e s ( x 1 0 4 ) a n d e q u i v a le n t is o tro p ic d i s p lac e m e n t pa r a me t e rs (  2 x 10 3 ) f o r 7 9 Ru1 x 897 (1) y 49 3 9 (1) z 82 6 7 (1) U ( e q ) 20 (1) O1 1576 (5) 69 7 6 (3) 93 5 2 (3) 56 (1) O2 1375 (5) 30 6 3 (3) 97 0 5 (3) 54 (1) O3 22 8 5 (1 7 ) 47 6 3 (1 1 ) 63 4 4 (1 0 ) 53 (3) C1 33 5 9 (5) 58 3 2 (4) 72 6 8 (4) 34 (1) C2 38 7 1 (5) 58 4 3 (3) 84 5 7 (3) 36 (1) C3 40 0 1 (6) 45 8 5 (3) 88 4 5 (3) 33 (1) C4 35 8 9 (5) 37 8 8 (3) 78 7 8 (3) 29 (1) C5 32 2 1 (5) 45 4 9 (3) 69 1 1 (3) 29 (1) C6 611 (5) 62 3 2 (3) 89 4 5 (3) 29 (1) C7 513 (5) 37 4 6 (3) 91 6 3 (3) 28 (1) C8 1246 (6) 48 4 1 (5) 69 7 1 (4) 26 (1) C8' 970 (2 0 ) 45 2 1 (1 8 ) 71 0 3 (1 2 ) 44 (5) ! ! ! ! ! ! ! ! ! 9 U(eq) i s d e f i n ed as o n e t h i r d o f t h e t r a c e of t h e o r th o g o n a li z ed U i j t e n s or.

PAGE 58

58 T a b le C 5 B on d l en g t h s [  ] an d a n g les [¡] f o r 7 Ru 1 C6 1 8 8 6 (3) Ru 1 C7 1 8 9 4 (3) Ru 1 C8' 1 9 0 4 (5) Ru 1 C8 2 0 9 8 (4) Ru 1 C1 2 2 5 5 (3) Ru 1 C4 2 2 6 3 (3) Ru 1 C5 2 2 7 0 (3) Ru 1 C3 2 2 7 0 (4) Ru 1 C2 2 2 7 2 (4) O 1 C6 1 1 3 1 (4) O 2 C7 1 1 2 4 (4) O 3 C8' 1 2 8 3 (1 4 ) C 1 C2 1 4 0 8 (5) C 1 C5 1 4 2 1 (5) C 1 H1A 0 9 5 C 2 C3 1 4 0 7 (5) C 2 H2A 0 9 5 C 3 C4 1 4 2 2 (5) C 3 H3A 0 9 5 C 4 C5 1 3 9 4 (4) C 4 H4A 0 9 5 C 5 H5A 0 9 5 C 8 H8A 0 9 8 C 8 H8B 0 9 8 C 8 H8C 0 9 8 C 6 Ru 1 C7 88 7 4 (1 2 ) C 6 Ru 1 C8' 94 9 (6) C 7 Ru 1 C8' 83 1 (6) C 6 Ru 1 C8 86 5 3 (1 7 ) C 7 Ru 1 C8 89 4 6 (1 7 ) C8' Ru 1 C8 10 6 (6) C 6 Ru 1 C1 108 61 ( 1 5 ) C 7 Ru 1 C1 160 10 ( 1 5 ) C8' Ru 1 C1 104 4 (6) C 8 Ru 1 C1 100 95 ( 1 6 ) C 6 Ru 1 C4 157 41 ( 1 5 ) C 7 Ru 1 C4 99 7 1 (1 4 ) C8' Ru 1 C4 106 8 (6) C 8 Ru 1 C4 114 25 ( 1 6 ) C 1 Ru 1 C4 60 5 9 (1 3 )

PAGE 59

59 T a b le C 5 C on ti n ued C 6 Ru 1 C5 143 35 ( 1 3 ) C 7 Ru 1 C5 127 74 ( 1 4 ) C8' Ru 1 C5 87 3 (6) C 8 Ru 1 C5 90 1 2 (1 4 ) C 1 Ru 1 C5 36 6 0 (1 4 ) C 4 Ru 1 C5 35 8 2 (1 1 ) C 6 Ru 1 C3 121 24 ( 1 5 ) C 7 Ru 1 C3 102 41 ( 1 4 ) C8' Ru 1 C3 143 3 (6) C 8 Ru 1 C3 149 53 ( 1 5 ) C 1 Ru 1 C3 60 5 8 (1 2 ) C 4 Ru 1 C3 36 5 6 (1 2 ) C 5 Ru 1 C3 60 3 7 (1 1 ) C 6 Ru 1 C2 98 7 1 (1 5 ) C 7 Ru 1 C2 133 71 ( 1 5 ) C8' Ru 1 C2 140 6 (6) C 8 Ru 1 C2 136 33 ( 1 6 ) C 1 Ru 1 C2 36 2 5 (1 4 ) C 4 Ru 1 C2 60 4 4 (1 3 ) C 5 Ru 1 C2 60 4 0 (1 2 ) C 3 Ru 1 C2 36 1 0 (1 3 ) C 2 C 1 C5 107 7 (3) C 2 C 1 Ru1 72 5 (2) C 5 C 1 Ru1 72 3 (2) C 2 C 1 H1A 126 2 C 5 C 1 H1A 126 2 Ru 1 C 1 H1A 120 8 C 3 C 2 C1 108 3 (3) C 3 C 2 Ru1 71 9 (2) C 1 C 2 Ru1 71 2 (2) C 3 C 2 H2A 125 8 C 1 C 2 H2A 125 8 Ru 1 C 2 H2A 122 7 C 2 C 3 C4 107 6 (3) C 2 C 3 Ru1 72 0 (2) C 4 C 3 Ru1 71 5 (2) C 2 C 3 H3A 126 2 C 4 C 3 H3A 126 2 Ru 1 C 3 H3A 122 C 5 C 4 C3 108 3 (3) C 5 C 4 Ru1 72 3 (2) C 3 C 4 Ru1 72 0 (2)

PAGE 60

60 T a b le C 5 C on ti n ued C 5 C 4 H4A 125 9 C 3 C 4 H4A 125 9 Ru 1 C 4 H4A 121 5 C 4 C 5 C1 108 1 (3) C 4 C 5 Ru1 71 8 4 (1 9 ) C 1 C 5 Ru1 71 1 (2) C 4 C 5 H5A 125 9 C 1 C 5 H5A 125 9 Ru 1 C 5 H5A 122 7 O 1 C 6 Ru1 177 3 (4) O 2 C 7 Ru1 178 3 (3) Ru 1 C 8 H8A 109 5 Ru 1 C 8 H8B 109 5 H8 A C 8 H8B 109 5 Ru 1 C 8 H8C 109 5 H8 A C 8 H8C 109 5 H8 B C 8 H8C 109 5 O 3 C8' Ru1 155 0 (1 5 ) Ta b le C 6 A n iso t r o p ic d ispl a c e m en t pa r a me t e rs f o r 7 Ru1 U11 15 (1) U22 21 (1) U33 24 (1) U23 1 (1) U13 1 (1) U12 1 (1) O1 52 (2) 45 (2) 72 (2) 8 (2) 13 (1) ! 12 (2) O2 56 (2) 46 (2) 60 (2) 12 (1) 11 (2) 11 (1) C1 20 (2) 41 (2) 42 (2) 16 (2) 5 (2) 2 (1) C2 19 (2) 44 (2) 44 (2) 16 (2) 4 (2) 10 (1) C3 19 (2) 54 (2) 25 (1) 0 (1) 2 (1) 1 (2) C4 18 (2) 35 (2) 32 (2) 3 (1) 3 (1) 7 (1) C5 18 (2) 53 (2) 17 (1) 1 (1) 2 (1) 4 (1) C6 25 (2) 33 (2) 31 (2) 2 (1) 3 (1) 3 (2) C7 26 (2) 29 (2) 28 (2) 2 (1) 1 (1) 3 (1)

PAGE 61

61 APPENDIXD MOLECULAR ORBITAL DIAGRAM OF 4 ! The molecular orbital diagram of 4 was generated using Microsoft Excel. ! e V 0.5 Or b ital E n e r g y 0 5 1 5 2.5 L U F O 3.5 H O F O 4.5 5.5 6.5 7 5 8 5 Zr ! ! ! ! ! ! ! Zr(C H 2C C H ) 4 4L ! ! ! H O F O + 1 bl """*" b2

PAGE 62

62 REFEREN C ES ( 1) He a v en s, O. S. O p tic a l P ro pe rties o f T h in S o l i d Fi l m s ; Ac adem ic Pr e ss dimethylamylamine 1955 (2) B u r g ra a f, P S e m ico n d u ct o r I n t e r n a ti o n a l ; p p 8 0 83 1 9 93 ( 3) Zi l k o J. L Ha n d b o o k o f Thi n Fi l m D epo sition Proc e ss e s an d T e c h n i que s ; No y e s Pub l i c a ti on s : P a rk R id g e NJ, 1 9 88 (4) J one s, A C. H it c hen s ., M. L Ch e m ic a l V a p ou r D epo siti o n ; P r e c u rso r s, Proc e ss e s, a n d A pp l i c a ti on s ; R o y a l S o cie t y o f C h e m istr y 200 9 (5) Ho w a rd, B. J.; S t e i n b ruc he l, C. A p p l i e d P h y s ics Le t t e rs 1 9 9 1 59 9 14 (6) Is t rat o v A. A.; W eb e r, E. R. Ele c troc he m S o c. Co n f. P roc. 2 0 00 2 0 00 27 90. (7) Nicolet, M. A.; Bartur, M. J. Vac. Sci. Technol. 1981, 19, 786. "#$! Bre n n e r, A E. Sc i en ce 19 9 7 27 5 1 4 01 "%$!! La ks h m in a ra y a n an S.; S t e i g e r w a ld, J ; Pr i c e D. T ; B o u r g eo is, M.; C ho w T P.; G u t m a nn R. J ; M u rarka, S P. E l e ctr o n D e vice Le t t e rs, I E EE 19 9 4 15 30 7. (1 0 ) T o k e i, Z ; S p r i n g e r L on do n L t d .: 2 00 5 p 61 (1 1 ) Ha u s e r, C. W e a r 1 9 80 62 59 (1 2 ) Girola m i, G S.; J en s e n J. A.; G o z um J. E .; P o l l in a D. M. M a t e r. R e s. S o c. Sy m p Proc. 1 9 8 8 1 2 1 4 29 (1 3 ) S m it h D. C.; R ub i a no R. R .; H ea l y M D.; S p r i n g e r, R. W M a t e r. R e s. S o c. Sy m p Proc. 1 9 9 3 2 8 2 6 43 (1 4 ) P a r m e t e r, J. E .; S m it h D. C.; He a l y M D. J. V a c. Sci. T e c h no l., A 1 994 12 21 0 7 (1 5 ) He a l y M D.; S m i t h D. C.; R ub i a no R. R.; S p r i n g e r, R. W ; P a r m e t e r, J. E. M a t e r. R e s. S o c. S y m p Proc. 19 9 4 32 7 1 27 (1 6 ) W on Y S.; Ki m Y S.; Va ra n a si, V G .; K r y l i o u k, O ; A n de rs o n T J. ; Si r i man n e C. T.; M cE l w e e W h i t e L J o u rn a l o f C r yst a l Gr o w t h 2 00 7 3 0 4 3 24 (1 7 ) Gl a ss, J. A., Jr.; P a l m is i ano N J r .; W e lsh, R. E. M a t e r. Res. So c. S y m p Proc. 1 99 9 5 55 18 5 10 5 2.

PAGE 63

63 (1 8 ) Blair, H. T.; Car r o l l D. W ; M a t t h e w s, R. B A I P C on f. P roc. 1 9 91 2 1 7 (1 9 ) W a g ne r P.; W ahm an L A ; W h it e R. W ; H o l l abau g h C. M ; Reis w i g R. D. J. Nucl. M a t e r. 1 97 6 62 2 2 1 (2 0 ) W u Y D.; P e n g Z. H.; C han K W K.; L iu, X Z.; T u i n m an A. A .; X ue Z. L Org a no m e t a l l ics 1 9 9 9 18 2 0 81 (2 1 Sc h rock, R. R ; P a r s h a l l G. W C he m ical R e vie w s 19 7 6 7 6 24 3 (2 2 ) W o j cick i A. I no r gan ic Ch e m istry C o m m un ica t io n s 2 00 2 5 8 2 (2 3 ) Do he rt y S.; C o r r i g an J. F.; Cart y A. J ; S a p pa E A d v an c e s in Org ano m e t a l l ic Ch e m istry 19 9 5 3 7 39 (2 4 ) Bloss e r, P W ; S c h i m p f f D. G ; G a l l u cci, J. C ; W o jc i cki, A Org ano m e t a l l ics 1 9 93 12 1 9 93 (2 5 ) Cas e y C. P .; Y i, C. S. J ou rn a l o f t h e A m e r i c a n C he m ical So cie t y 1 9 92 114 6 5 97 (2 6 ) Bloss e r, P W ; G a l l u cci, J. C.; W o jc i cki, A J o u rn a l o f t h e A m e r i c a n Ch e m ical So cie t y 1 9 9 3 1 1 5 2 9 9 4 (2 7 ) Bloss e r, P W ; G a l l u cci, J. C.; W o jc i cki, A J o u rn a l o f O rg a no m e t a l l ic Ch e m istry 2000 5 97 125 (2 8 ) Ro d r ig ue z G ; B a z an G. C. J o u rn a l o f t h e A m e r i c a n C he m ical So c i e ty 19 9 7 1 19 3 4 3 (2 9 ) Hort on A. D.; Orp e n A. G. Org a n o m e t a l l ics 19 9 2 1 1 8 (3 0 ) A nd rŽ, V .; R ob in, S .; R ou ss e au G. Te t r ah e d ron L e t t e rs 2 0 0 8 49 5 059 (3 1 ) La p p in, G R. J o u rn a l o f t h e A m e r i c a n C he m ical So cie t y 1 9 4 9 7 1 3 966 (3 2 ) Girola m i, G S.; W i lk in s on G .; T h o rnt o n P e t t, M.; Hurst h o u s e M. B J ou rn a l o f t h e C h e m i c a l S o cie t y Dalt o n Tra n s a cti on s 19 8 4 27 8 9 (3 3 ) He y du k, A. F.; B lac k m o re, K. J ; K e t t e rer, N. A.; Z i l ler, J. W I no rg. Ch e m 20 0 5 4 4 468 (3 4 ) B e ck e A. D. J Ch e m P h ys. 1 9 9 3 9 8 56 4 8 (3 5 ) Lee C.; Y an g W ; P a r r R. G P h ys. Rev. B 1 988 3 7 7 85 (3 6 ) V o sk o S. H.; W i lk, L .; Nus a i r M Ca n J. P h y s. 1 9 80 58 1 2 00

PAGE 64

64 (3 7 ) St e p hen s P. J ; De v l i n F. J ; C ha b a lo w ski, C. F.; F r isch, M. J J. P h ys. Ch e m 1994 9 8 1 16 2 3 (3 8 ) Gaussian 0 3, Rev i sion. F r isch, M. J.; T rucks, G. W ; S c h le g e l, H. B ; Sc u s e r i a G. E ; Ro b b M A.; C h ee s e m a n J. R.; M on t go me r y J. J. A.; V re v en T.; K ud in, K N ; B u r an t, J. C.; M i l l am J. M.; I y e ng a r, S S.; T o ma si, J ; B a ro n e V ; M ennu cci, B.; C o ssi, M.; S c a l m a n i, G .; R e g a N.; P e t e rsso n G A.; N a k a ts u j i H ; Ha d a M .; Eha r a M .; To y o t a K.; F u k ud a R.; Ha s e g a w a J.; I s h i d a M .; N a k a j i ma T.; H o n d a Y .; K it ao O ; Na k a i, H ; Kle n e M .; L i, X .; K n o x J. E.; Hratc h i a n H. P.; Cross, J. B .; B a kk e n V ; A da mo C ; J a r a m i l lo, J ; G o mpe r ts, R.; S tra t ma n n R. E .; Y a z y e v O ; A u sti n A. J ; C a mm i, R.; P o me l l i, C.; Oc h t e rsk i J. W ; A y a la, P Y .; Mor o k u m a K.; V o t h G A.; S a l v ado r, P.; D a n n e nbe r g J. J .; Zakr z e w ski, V G ; Da p p r i c h S.; D an iels, A. D.; S trai n M C ; F a rkas, O .; Malick, D. K .; Ra bu ck, A. D.; R a g ha v a c ha r i K .; For e s m a n J. B .; O rti z J. V.; C u i, Q ; B a b o u l, A. G ; Cl i f fo rd, S.; Cio s lo w ski, J .; St e f a no v B. B.; L iu, G ; L ias h en k o A ; Pisko r z P.; K o ma r o m i, I .; M a rtin, R. L ; Fo x D. J.; Ke i t h T .; Al L a h a m M. A .; P en g C. Y .; N a na y a kk a ra, A .; C ha l l a c om b e M .; G i l l, P M W ; J o h n s on B .; C hen W ; W o n g M W ; Gon z a le z C.; P o p le, J A. 2 0 0 4. (3 9 ) G o relsk y S. I ; U n i v e r s ity o f O t t a w a : 2 0 09 (4 0 ) G o relsk y S. I ; Le v e r, A. B. P. J ou rn a l o f Or g ano m e t a l l ic Ch e m istry 20 0 1 635 1 8 7 (4 1 ) Al l ou c h e A. R.; h t tp : / / g ab e d it.s ou r c e f o r g e n e t / ( 42 ) Cos tua s, K .; S a i l lard, J Y Ch e m C o m m un ( C a m b r i dge ) 1998 1 8 20 4 7 (4 3 ) Gl e it e r, R.; B e t h k e S.; Ok ub o J.; J o n a s, K. O rg ano m e t a l l ics 2 0 01 2 0 4274. (4 4 ) B e nd j aba l la h S .; K ah l a l, S .; C o st u a s, K .; BŽ v i l lo n E.; S a i l lard, J Y Ch e m istry A Eu r ope a n J ou r n a l 2 00 6 1 2 20 48 (4 5 ) B e cc on s a l l J. K.; O Br i en S Ch e m Com m un 1 9 66 3 0 2 (4 6 ) J enn in g s, J. R. J. M o l. Ca ta l. 1 99 0 5 8 9 5 (4 7 ) Gra h a m J. P .; W o j c i c k i, A .; B u rste n B. E Org a n o m e t a l l ics 1999 1 8 8 37 (4 8 ) Bruk e r A X S: M ad is o n W i sc o n sin, 20 0 0

PAGE 65

65 (4 9 ) Ch y an O ; A r una g i r i, T. N.; P on n u s w am y T J ou rn a l o f t h e Elec t roc h e m ical So cie t y 20 0 3 15 0 C3 4 7 (5 0 ) J o s e l l D.; W he e ler, D.; W i t t C ; Mo f fa t T. P Elec t roc h e m ical an d S o l i d St a te L e t te rs 20 0 3 6 C1 43 (5 1 ) B a i, G R.; W a n g A .; F o st e r, C. M .; V e tro n e J. Thin S o l i d Fi l m s 1997 310 7 5 (5 2 ) Lee J H.; K i m J Y .; Rh ee S W Elec t ro c h e m ical an d So l i d S t a te Le t t e rs 1 9 99 2 62 2 (5 3 ) K ado s h i m a M .; N ab a t am e T .; Hi r a t an i, M.; Nak a m u ra, Y .; A s an o I ; S u z u ki, T J p n J. A pp l. Ph ys. 20 0 2 41 L 3 47 (5 4 ) W ang Q .; E k e rdt, J G .; Ga y D.; S un Y M .; W h i t e J. M A pp l ie d P h ysics Le t t e rs 2 0 04 84 1 3 8 0 (5 5 ) T re n t, D. E.; P a r i s, B.; Kra u s e H. H. I no rg. C he m 196 4 3 1 0 57 (5 6 ) Ro be rts o n A H. J ; McQ u i l la n G P.; McK e a n D. C. J ou rn a l o f t h e Ch e m ical So cie t y, Dal t o n Tra n s a cti on s 1 9 95 39 5 5 (5 7 ) Da v iso n A.; Mc C le v e rt y J. A.; W i lk i n s o n G. J. Ch e m S o c. D 19 6 3 11 3 3 (5 8 ) Ras to g i A C.; D ha ra, S.; K D a s, B. J o u rn a l o f Th e E lec t ro c he m ical S o cie t y 19 9 5 14 2 3 1 4 8 (5 9 ) M a ru y ama T .; Sh in y a s h ik i Y Thin So l i d Fi l m s 1998 3 3 3 2 0 3 (6 0 ) M a t hu r, S .; V e it h M.; Si v a k o v V.; Sh e n H.; Huc h V ; Har t ma n n U .; G a o H. B Ch e m ical Va p o r De po sition 2 0 02 8 2 7 7 (6 1 ) P a rk, S ; L i m S .; C ho i, H. Ch e m istry of M a t e r i a ls 2 0 06 18 5 1 50 (6 2 ) K an jolia, R.; O ded r a R.; B oa g N. 2 0 09 p 4 7pp (6 3 ) K an jolia, R.; O ded r a R.; B oa g N.; W e y bu r n e D. 20 0 9 p 6 2p p (6 4 ) K an jolia, R. K ; A n t h is, J.; O d ed ra, R ; W i l l iam s, P.; H e y s, P. N. ECS T r an s. 2 00 8 1 6 7 9 (6 5 ) Hu m p h r i e s, A. P .; K no x S. A. R. J o u rn a l o f t h e C h e m ical So cie t y, Ch e m ical C o m m un ica t io n s 1 973 3 2 6 (6 6 ) L i, H. J.; Tur n b u l l M M J. Org a no m e t. C h e m 1991 4 19 2 4 5

PAGE 66

66 (6 7 ) Chi u H. T .; C hu a n g S H. J. M a t e r. Res. 1 9 9 3 8 1 3 53 ( 6 8 ) R i sc he D.; P a rala, H.; G e m e l, E ; W i n t e r, M.; Fisch e r, R. A. Ch e m istry of M a t e r i a ls 2 0 06 18 6 0 75 (69) El Kadri, O. M.; Heeg, M. J.; Winter, C. H. Dalton Transactions 2006, 1943. (7 0 ) Aj me ra, H. M .; A n d e rso n T J ; K o l l e r, J ; McEl w e e W h i t e L .; N o r t o n D. P. Thin S o l i d Fi l m s 200 9 51 7 6 038 (7 1 ) Aj me ra, H. M .; H e its c h A. T .; B c h i r O J.; N o rto n D. P.; R e i t f o rt, L L .; M cEl w ee W h it e L ; A n de rso n T J. J El e c tr o c he m S o c. 2 0 0 8 1 55 H 829 (7 2 ) Bc h i r O. J ; Gr e en K. M .; Hla d M S.; A n d e rso n T J ; B r oo ks, B. C.; W il de r, C. B.; P o w e l l D. H.; McEl w e e W h i t e L J. Org a n o m e t. C h e m 200 3 6 84 3 3 8 (7 3 ) Bc h i r O. J ; J o hn s t on S. W ; C u ad ra, A. C.; A nde r s on T J ; Orti z C. G ; Bro o ks, B C.; P o w e l l D. H.; McEl w e e W h i t e L J. C r yst. G r o w th 2 0 03 24 9 2 62 (7 4 ) J ohn s t on S W ; O rti z C. G .; Bc h i r O. J .; Z h an g Y .; McEl w e e W h i t e L ; A nde r s on T J. Pro c Elec t roc h e m S o c. 20 0 0 20 0 0 13 2 6 8 (7 5 ) Ki m D.; K i m O. H ; A j me ra, H. M .; A n d e rso n T.; K o l l e r, J ; M cEl w e e W h i t e L ECS T ra n s. 2 00 9 2 5 5 41 (7 6 ) K o l l e r, J. P h .D. D i ss e r t a ti on U n i v e rs i ty o f Florid a 2 00 8 (7 7 ) Lee J ; Ki m D ; K i m O. H.; A nde r s on T.; K o l l e r, J ; D e n o m m e D.; Ha b ibi, S. Z.; McEl w e e W h i t e L ECS T r an s a cti on s 28 15 (7 8 ) Bc h i r O. J ; Gr e en K. M .; A j me r a H. M.; Z a p p E. A .; A n de rso n T J.; Bro o ks, B C.; Rei t f o rt, L L ; P o w e l l D. H.; A b bo u d K. A .; McEl w e e W h i t e L J ou r n a l o f t h e A m e r i c a n C h e m ic a l S o cie t y 20 0 5 12 7 78 25

PAGE 67

67 BI O GRA PHIC A L S K E T CH Dan D e n o m m e w a s b o rn in 1 9 81 in R e d f o rd, M I. Scie n c e w a s a n i n t e rest a s ea r l y a s a g e 7 w he n h e w an t e d to b e a pa l e o n t o lo g ist. T h is de si r e l a st e d f o r a l mo s t a f u ll y ea r b e f o re h e re a l i z e d it re q u i r e d d i g g ing in d i r t. W h i l e a t t e nd ing C en tral Michi g a n Uni v e rs i t y D a n w o rked fo r Dow C hem ical in M idl and M I a s a t e c hn ical c o o p in t h e w a t e r s o lu b le po l y me r res ea rch l a bo ra t o r i e s. In 2 00 7 h e rec e i v e d h i s B S i n c h em istry f r o m CMU a n d e n rol le d in g ra d u a te s c h o o l a n d j o i n e d t h e r e s ea rch g ro u p o f Pr o f L isa M c E l w ee W h it e He received his Master of Science degree from the University of Florida in the fall of 2012.