Colloid Transport in Surface Runoff through Dense Vegetation

MISSING IMAGE

Material Information

Title:
Colloid Transport in Surface Runoff through Dense Vegetation
Physical Description:
1 online resource (214 p.)
Language:
english
Creator:
Yu,Congrong
Publisher:
University of Florida
Place of Publication:
Gainesville, Fla.
Publication Date:

Thesis/Dissertation Information

Degree:
Doctorate ( Ph.D.)
Degree Grantor:
University of Florida
Degree Disciplines:
Agricultural and Biological Engineering
Committee Chair:
Munoz-Carpena, Rafael
Committee Co-Chair:
Gao, Bin
Committee Members:
Haman, Dorota Z
Kiker, Gregory
Johnson, Judith Ann

Subjects

Subjects / Keywords:
colloids -- contaminant -- environmental -- numerical -- surface -- vegetation
Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre:
Agricultural and Biological Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract:
Colloids are widely distributed in the aquatic environment, both in groundwater and surface water. The mechanisms related to colloid transport in porous media are intensively investigated because colloids can facilitate contaminant migration in soils and groundwater. However, the migration of colloids in overland flow is not clear. In this dissertation, laboratory runoff experiments were designed to examine the migration dynamics of colloids and tracer (bromide) in overland flow and soil drainage. On a first laboratory experiment on bare ground (rainfall-runoff sand box of 153 cm length under 64 mm/hour rainfall and 0.31 L/min inflow 80 min -30 min bromide/colloid injection and 50 min flushing- events), the surface transport of a colloid (kaolinite, 0.4 ?m diameter, inflow concentration of 179 mg/L, zeta potential -33 mV) showed no statistical difference to that of bromide, although colloids were filtered effectively through the sand in the subsurface flow in agreement with existing colloid filtration theory. In a second experiment with dense vegetation (Bahia grass implanted in the same rainfall-runoff box), colloids (carboxylated polystyrene latex microspheres, 0.3 ?m diameter, zeta potential -28 mV, inflow concentration 10 mg/l) were removed from the surface runoff on the surface of the plant stems and leaves, or by the soil particles and vegetation roots when infiltrated into soil profile, with a total removal rate of 67% of the colloids compared to 26% in the previous experiment. Through the batch adsorption experiments, we also found that plant parts (leave, stem and root) showed different colloid adsorption capacity (highest for roots). The roles of ionic strength, colloid size, inflow rate, and vegetation type on the removal of colloids by dense vegetation were investigated in a smaller scale runoff experiment through two types of dense vegetation (Bahia and Rye grasses). The Vegetative Filter Strip Modeling System-Transport and Reaction Simulation Engine (VFSMOD-RSE) was used to explore the experimental bromide and colloid transport data. In addition to deposition to vegetation, diffusion driven exchange between colloids in the soil pore water and surface runoff was also considered in the model. Factors identified by porous media classic filtration theory were also found important (and following the same trends) in our surface vegetation studies. The deposition of colloids on the vegetation increased with increases in solution ionic strength and particle size, and with decreases in flow rate. We also found vegetation type played an important role on colloid transport with more deposition onto Rye grass than onto Bahia grass under the same experimental conditions. This dissertation showed that dense vegetation can be an effective pollution control practice effectively reduce the colloid concentration in surface runoff and identified some of the key elements governing the effectiveness of the removal process.
General Note:
In the series University of Florida Digital Collections.
General Note:
Includes vita.
Bibliography:
Includes bibliographical references.
Source of Description:
Description based on online resource; title from PDF title page.
Source of Description:
This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility:
by Congrong Yu.
Thesis:
Thesis (Ph.D.)--University of Florida, 2011.
Local:
Adviser: Munoz-Carpena, Rafael.
Local:
Co-adviser: Gao, Bin.

Record Information

Source Institution:
UFRGP
Rights Management:
Applicable rights reserved.
Classification:
lcc - LD1780 2011
System ID:
UFE0043275:00001


This item is only available as the following downloads:


Full Text

PAGE 1

1 COLLOID TRANSPORT IN SURFACE RUNOFF THROUGH DENSE VEGETATION By CONGRONG YU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011

PAGE 2

2 2011 Congrong Yu

PAGE 3

3 To my family

PAGE 4

4 ACKNOWLEDGMENTS I would like to thank my advisor Dr. Rafael Muoz Carpena for academic guidance and encour agement during the process of me pursuing a doctorate de gree. Dr. Muoz Carpena intellectual idea s and advice to my research were invaluable. I would also thank Dr s Bin G ao, Dorota Haman, Greg Kiker and Judy Johnson for their continuo us support as members of my academic committee. T hanks go es out to committe e Co Chair Dr. Bin Gao, who provided laboratory support, experiment guidance and grea t energy in paper revising to Dr.Haman, for the fiscal and spiritual support to Dr. Kiker and Dr. Johnson for their academic support Thanks go to P aul Lane Steven Feagle Orlando Lanni and Danny Burch for their wonderful technical skill s. I would like to thank eve ry one in the David Kaplan Stuart Muller Zuzanna Zajac Oscar Perez Ovilla group : Yuan Tian, Lei Wu, Ying Yao, Mandu Inyang Hao Chen and Wenchuang Ding, for providing an ideal environment in which to study and conduct research I learned a lot from both group s L ast, but not the leas t, I deeply thank my family and friends for their tremendous support and encourage ment to let me pursue my dream.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ .. 4 LIS T OF TABLES ................................ ................................ ................................ ............ 8 LIST OF FIGURES ................................ ................................ ................................ ........ 10 ABSTRACT ................................ ................................ ................................ ................... 12 CHAPTER 1 INTRODUCTION ................................ ................................ ................................ .... 14 Fate and Transport of Colloids in the Environment ................................ ................. 14 Colloids ................................ ................................ ................................ ............. 14 Colloids in the Aquatic Environment ................................ ................................ 15 Colloids in Agriculture ................................ ................................ ....................... 16 Colloid Fate and Transport in Porous Media ................................ .................... 16 Classical Colloid Filtration Theory ................................ ................................ .... 18 Fate and Transport of Colloids in Dense Vegetation ................................ .............. 19 Dense Vegetation ................................ ................................ ............................. 19 Colloids Fate and Transport in Dense Vegetation ................................ ............ 20 Theoretical Framework ................................ ................................ ........................... 21 Overland Flow ................................ ................................ ................................ .. 21 Colloid Fate and Transport ................................ ................................ ............... 22 Advection and dispersion ................................ ................................ ........... 22 Deposition of colloids on the stem of the grass ................................ .......... 22 Exchanges between the liquid phase and the solid phase in soil profile .... 23 Objectives ................................ ................................ ................................ ............... 24 2 A LABORATORY STUDY OF COLLOID AND SOLUTE TRANSPORT IN SURFACE RUNOFF ................................ ................................ ............................... 26 Introductory Remarks ................................ ................................ .............................. 26 Materials and Methods ................................ ................................ ............................ 28 Materials ................................ ................................ ................................ ........... 28 Surfa ce Runoff System ................................ ................................ ..................... 29 Runoff Experiments ................................ ................................ .......................... 30 Statistical Analysis ................................ ................................ ............................ 31 R esults and Discussion ................................ ................................ ........................... 31 Flow Distribution ................................ ................................ ............................... 31 Subsurface Transport of Bromide and Kaolinite ................................ ............... 32 Surface Transport of Bromide and Kaolinite ................................ ..................... 33 Chapter Conclusions ................................ ................................ ............................... 35

PAGE 6

6 3 EFFECT OF DENSE VEGETATION ON C OLLOID TRANSPORT IN SURFACE RUNOFF ................................ ................................ ................................ ................. 46 Introductory Remarks ................................ ................................ .............................. 46 Materials and Methods ................................ ................................ ............................ 48 Materials ................................ ................................ ................................ ........... 48 Surface Runoff System ................................ ................................ ..................... 49 Runoff Experiment ................................ ................................ ............................ 50 Adsorption Experiment ................................ ................................ ..................... 51 Results and Discussion ................................ ................................ ........................... 51 Adsorption Isotherms ................................ ................................ ....................... 51 Flow Distribution in Dense Vegetation System under Simulated Rainfall ......... 52 Colloid Transport through Dense Vegetation ................................ .................... 53 Colloid Transport in Drainage Flows ................................ ................................ 54 Dense Vegetation Effect on the Removal of Colloids ................................ ....... 55 Chapter Conclusions ................................ ................................ ............................... 56 4 CHEMICAL AND PHYSICAL FACTORS CONTROLLING THE RUNOFF REMOVAL OF COLLOIDS BY DENSE VEGETATION ................................ .......... 63 Introductory Remarks ................................ ................................ .............................. 63 Theory ................................ ................................ ................................ ..................... 66 Overland Flow ................................ ................................ ................................ .. 66 Transport (Advection and Dispersion) ................................ .............................. 67 Deposition of Colloids on Grass Surface ................................ .......................... 67 Exchanges Between the Liquid and Solid Phases in the Topsoil Exchange Layer ................................ ................................ ................................ ............. 67 Materials and Methods ................................ ................................ ............................ 69 Materials ................................ ................................ ................................ ........... 69 Runoff Experiment ................................ ................................ ............................ 70 Modeling Tools ................................ ................................ ................................ 71 Results and Discussion ................................ ................................ ........................... 74 Effect of Ionic Strength ................................ ................................ ..................... 74 Effect of Particle Size ................................ ................................ ....................... 76 Effect of Flow Rate ................................ ................................ ........................... 77 Effect of Vegetation Type ................................ ................................ ................. 78 Chapter Conclusions ................................ ................................ ............................... 79 5 CONCLUSIONS ................................ ................................ ................................ ..... 89 Colloid Transport in Surface Runoff on Bare Soil ................................ ................... 89 Colloid Transport in Surface Runoff on Vegetated Soil ................................ ........... 90 Factors Controlling Surface Removal of Colloids by Dense Veg etation ................. 91 Recommendations for Future Work ................................ ................................ ........ 92

PAGE 7

7 APPENDIX A SUMMARY OF EXPERIMENTAL CONDITIONS OF COLLOID TRANSPORT IN SURFACE RUN OFF ................................ ................................ ............................... 93 B INPUT FILES FOR TRANSPORT AND REACTION SIMULATION ENGINE (RSE) ................................ ................................ ................................ ...................... 95 C EXPERIMENTAL DATA IN CHAPTER 2 ................................ .............................. 101 D EXPERIMENTAL DATA IN CHAPTER 3 ................................ .............................. 191 E EXPERIMENTAL DATA IN CHAPTER 4 ................................ .............................. 205 LIST OF REF ERENCES ................................ ................................ ............................. 208 BIOGRAPHICAL SKETCH ................................ ................................ .......................... 214

PAGE 8

8 LIST OF TABLES Table page 2 1 Experimental conditi ons of colloid transport in surface runoff on bare soil. ........ 36 3 1 Experimental conditions of colloid transport in surface runoff on vegetated soil. ................................ ................................ ................................ ..................... 57 3 2 Langmuir model results of colloids adsorption onto different grass parts. .......... 57 3 3 Water, bromide and colloids distribution in the runoff and drainage. .................. 57 4 1 Summary of the experimental conditions and optimized model parameters for bromide and colloid transport in the dense vegetation systems. ........................ 81 A 1 Comparison of experimental conditions of colloid transport in overland flow on bare soil and densely vegetated soil ................................ .............................. 93 A 2 Characteristics of colloids used in chapter 2 and chapter 3 ................................ 93 A 3 Reported parameter values used in chapter 4 ................................ .................... 93 C 1 Water flow summary for bromide runoff experiments on bare soil .................... 102 C 2 Bromide run #1 water flow and rainfall data ................................ ..................... 103 C 3 Bromide run #2 water flow and rainfall data ................................ ..................... 109 C 4 Bromide run #3 water flow and rainfall data ................................ ..................... 115 C 5 Bromide run #4 water flow and rainfall data ................................ ..................... 119 C 6 Bromide run #5 water flow and rainfall data ................................ ..................... 124 C 7 Bromide run #6 water flow and rainfall data ................................ ..................... 129 C 8 Bromide run #7 water flow and rainfall data ................................ ..................... 133 C 9 Bromide run #8 water flow and rainfall data ................................ ..................... 138 C 10 Bromide run #9 water flow and rainfall data ................................ ..................... 144 C 11 Bromide normalized concentration in outflow for run #1 9 ................................ 150 C 12 Water flow summary for kaolinite runoff experiments on bare s oil .................... 155 C 13 Kaolinite run #1 water flow and rainfall data ................................ ..................... 156

PAGE 9

9 C 14 Kaolinite run #2 water flow and rainfall data ................................ ..................... 159 C 15 Kaolinite run #3 water flow and rainfall data ................................ ..................... 163 C 16 Kaolinite run #4 water flow and rainfall data ................................ ..................... 16 6 C 17 Kaolinite run #5 water flow and rainfall data ................................ ..................... 172 C 18 Kaolinite run #6 water flow and rainfall data ................................ ..................... 176 C 19 Kaolinite run #7 water flow and rainfall data ................................ ..................... 181 C 20 Kaolinite normalized concentration in outflow for run #1 7 ............................... 187 D 1 Adsorption isotherms of colloids onto different grass parts .............................. 191 D 2 Water flow summary for runoff experiments on densely vegetated soil ............ 192 D 3 Run #1 water flow and rainfall data ................................ ................................ .. 193 D 4 Run #2 water flow and rainfall data. ................................ ................................ 197 D 5 Bromide and colloid normalized concentration in outflow for run #1 ................. 203 D 6 Bromide and colloid normalized concentration in outflow for run #2 ................. 204 E 1 Ionic strength effect ................................ ................................ .......................... 205 E 2 Colloid size effect ................................ ................................ ............................. 205 E 3 Inflow rate effect ................................ ................................ ............................... 206 E 4 Vegetation type effect ................................ ................................ ....................... 207

PAGE 10

10 LIST OF FIGURES Figure page 1 1 Colloids size distribution ................................ ................................ ..................... 25 2 1 Kaolinite diameter distribution measured by nanosight LM10 HS with blue laser. ................................ ................................ ................................ ................... 37 2 2 Schematic of the laboratory runoff experiment setup. ................................ ........ 38 2 3 Rainfall simulation system for the laboratory runoff experiment ......................... 39 2 4 Laboratory runoff experiment set up ................................ ................................ ... 40 2 5 Transport of bromide in subsurface flow ................................ ............................. 41 2 6 Transport of kaolinte in subsurface flow ................................ ............................. 42 2 7 Correlati on between kaolinite and bromide in subsurface flow. .......................... 43 2 8 Transport of bromide and kaolinite in surface flow ................................ ............. 44 2 9 Correlation between kaolinite and bromide in surface flow ................................ 45 3 1 Bahia grass planted in laboratory soil box as dense vegetation ......................... 58 3 2 Langmui r adsorption isotherms of colloids onto different grass parts ................. 59 3 3 Breakthrough concentration of bromide and colloids in overland flow through dense vegetation ................................ ................................ ................................ 60 3 4 Breakthrough concentration of bromide and colloids in drainage flows .............. 61 3 5 Distributions of colloids in bare soil and dense vegetation systems at the end of the runoff experiments. ................................ ................................ ................... 62 4 1 Conceptual model for surface transport and removal of colloids by dense vegetation. ................................ ................................ ................................ .......... 82 4 2 Expe rimental setup employed in the colloid transport studies ............................ 83 4 3 Effect of ionic strength on colloid transport in overland flow through dense vegetation ................................ ................................ ................................ ........... 84 4 4 Effect of colloid size on colloid transport in overland flow through dense vegetation ................................ ................................ ................................ ........... 85

PAGE 11

11 4 5 Colloid transport in overland flow through dense vegetation at differen t flow rates ................................ ................................ ................................ ................... 86 4 6 Colloid transport in overland flow through different vegetation types .................. 87 4 7 Trends of the factor effects on c olloids recovery rates ................................ ....... 88 A 1 Experimental set up for surface runoff experiment in Chapter 2 and 3: .............. 94

PAGE 12

12 Abstract of Dissertation Presented to the Graduate Scho ol of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy COLLOID TRANSPORT IN SURFACE RUNOFF THROUGH DENSE VEGETATION By Congrong Yu August 2011 Ch air: Rafael Muoz Carpena Co chair: Bin Gao Major: Agricultural and Biological Engineering Colloids are widely distributed in the aquatic environment, both in groundwater and surface water The mechanisms related to colloid transport in porous media are intensively investigated because colloids can facilitate contaminant migration in soils and groundwater. However, the migration of colloids in overland flow is not clear. In this dissertatio n, laboratory runoff experiments were designed to examine the migration dynamics of colloids and tracer (bromide) in overland flow and soil drainage. On a first laboratory experiment on bare ground (rainfall runoff sand box of 153 cm length under 64 mm/hou r rainfall and 0.31 L/min inflow 80 min 30 min bromide/colloid injection and 50 min flushing inflow concentration of 179 mg/L, zeta potential 33 mV) showed no statistical differen ce to that of bromide, although colloids were filtered effectively through the sand in the subsurface flow in agreement with existing colloid filtration theory. In a second experiment with dense vegetation (Bahia grass implanted in the same rainfall runoff potential 28 mV, inflow concentration 10 mg/l) were removed from the surface runoff on the surface of the plant stems and leaves, or by the soil particles and vegetation r oots

PAGE 13

13 when infiltrated into soil profile, with a total removal rate of 67% of the colloids compared to 26% in the previous experiment. Through the batch adsorption experiments, we also found that plant parts (leave, stem and root) showed different colloid a dsorption capacity (highest for roots). The roles of ionic strength, colloid size, inflow rate, and vegetation type on the removal of colloids by dense vegetation were investigated in a smaller scale runoff experiment through two types of dense vegetation (Bahia and Rye grasses). The Vegetative Filter Strip Modeling System Transport and React ion Simulation Engine (VFSMOD RSE) was used to explore the experimental bromide and colloid transport data. In addition to deposition to vegetation, diffusion driven ex change between colloids in the soil pore water and surface runoff was also considered in the model. Factors identified by porous media classic filtration theory were also found important (and following the same trends) in our surface vegetation studies. Th e deposition of colloids on the vegetation increased with increases in solution ionic strength and particle size, and with decreases in flow rate. We also found vegetation type played an important role on colloid transport with more deposition onto Rye gra ss than onto Bahia grass under the same experimental conditions. This dissertation showed that dense vegetation can be an effective pollution control practice effectively reduce the colloid concentration in surface runoff and identified some of the key ele ments governing the effect iveness of the removal process.

PAGE 14

14 CHAPTER 1 INTRODUCTION Fate and Transport of Colloids in the Environment Colloids One of the biggest challenges in environmental science is to predict the fate of pollutants in groundwater and sur face water. Colloids, with high surface area (100 800 m 2 g 1 ) ( Kretzschmar and Schafer, 2005 ) and mobility, are recognized as a third p hase of contaminants, after the aqueous phase and stationary solid matrix, which can significantly influence contaminant transport in the environment. Colloids ca n also be contaminants themselves, such as pathogenic bacteria and viruses Colloids are defined as particles with at least one dimension smaller than 10 m. They can be categor ized into (1) inorganic colloids, including colloidal mineral s, clay s engin eered nanomaterials etc. matters and biocolloids (i.e., viruses, bacteria, and protozoa). Colloid size range overlaps with the dimension of sediment s and molecular solutes (Figure1 1) Usually, in water chemical analyses a 0.45 m filter is used to divid e sediment particles and solutes. Recent studies suggest that this approach needs to be modified to reflect the water quality importance of colloidal particles that because of their small size share solute and particle properties, particularly with respect to contaminant fate and transport and nutrient budgets. In addition, it is unclear whether the transport behavior of colloids in the environment is similar to solutes or sediment, or colloids have their own transport pattern. U nderstanding colloid fate and transport in the environment is thus of paramount importance.

PAGE 15

15 Colloids in the Aquatic Environment Aquatic colloids include a variety of organic and inorganic materials O rganic colloids include ma such as humic substances They also include b such as microorganisms and viruses. Aquatic i norganic colloids consist of microemulsions of nonaqueous phase liquids, mineral precipitat es and weathering products, precipitates of transuranic elements such as plutonium, and rock and mineral fragments ( McCarthy and Zachara, 1989 ) pathogen ic risk to t he water resources and the mobility of hydrophobic contaminants, metals and radionuclides can be enhanced by both inorganic (clay minerals, oxides, and carbonates et c .) and organic colloids (humic sub stances and microbial exudates et c .) ( Harter et al. 2000 ) Therefore, it is important to understand the mechanisms that can control the mobility of colloids in the aquatic environment. Mobile colloidal particles are ubiquitous in soil and groundwater system Colloid s can be generated from mobilization of existing colloid sized minerals or in situ precipitation of supersaturated mineral phase and organic particles ( Ryan and Elimelech, 1996 ) They are abundant in groundwater with concentration varying from 10 8 to 10 12 particles per liter ( Kaucner et al. 2005 ) In surface water, in addition to those from soils, colloids could come from waste of animal feeding operations, municipal wastewater treatment plant effluent, bio solids and on site treatment systems. During heavy rainfall event s soil erosion can bring significant amounts of colloid al particles into adjacent water bodies. Disturbance of a land surface can also add colloids (and toxic substances attached to them) to surface water bodies. The amount of colloids in the surface water can be estimated with s olution

PAGE 16

16 turbidity by measuring the amount of light reflected by the particles In addition, the concentrations of biocolloids in surface water can also be determined using the viable cell count method. For example, U.S. Geological Survey Fact Sheet 085 98 found that single fecal coliform (i.e., biocolloid) concentration from agricultural basins in North and South Carolina, could be as high as 120,000 21 0 ,600 colonies per l iter ( USGS, 1998 ) The presence of both biocolloids and abiotic colloids in surface water impose a pote ntial risk to the public health Colloids in Agriculture In agricultural fields, w aste discharges from animal feeding operations include both abiotic and biocolloids; agricultural irrigation mobilizes colloidal phosphorus complexes and o ther forms of colloidal particles in soils; rainfall induced soil erosion on farm land could also bring large amounts of colloidal clay minerals into surface runoff and into adjacent water bodies. Mobile colloids in hydrological paths can deteriorate the water quality not only because some of them are pathogenic contaminants (e.g., bacteria and viruses cause waterborne diseases ), but also because they may facilitate the transport of other highly reactive contaminants in streams and groundwater (McCarthy an d Zachara, 1989; 2006; Sun et al., 2010; Bin et al., 2011). For example, colloids can facilitate the transport of the phosphorus or chemical toxicants (diverse synthetic and geogenic chemicals) in agricultural effluents. Once entering public waters and dri nking water aquifers, these colloids present a risk to the public health. It is therefore important develop effective technologies to remove colloidal particles from agricultural runoff. Colloid Fate and Transport in Porous M edia Column experiments, field scale experiment s and modeling investigations of colloid transport in porous media are reaching maturity. Colloid retention and transport

PAGE 17

17 in porous media can be modeled as being controlled by advection, dispersion and deposition processes A good synopsis of the development of transport and deposition models for colloids has been provided by Loveland et al. (2003): "Initially, colloid transport mod els portrayed the attachment of to porous media as equilibrium sorption. Later, colloid filtration (irreversible first order attachment) was introduced in conjunction with equilibrium sorption in two site models. In most cases, colloid transport in homogeneous porous media was adequately characterized by first order attachment and rel The Derjaguin, Landau, Verwey and Overbeek (DLVO) theory (Bradford and Torkzaban, 2008) was introduced to explain the attachment mechanism s in the view of energy balance between the electrostatic and the Van der Waals force s In addition, the classi cal colloid filtration theory (Yao et al., 1973) was developed and successfully applied to describe the retention and transport of colloids in porous media (a brief description of the classical colloid filtration theory can be found in the next section). Up to today, further advances have focused on the dynamics of particle deposition (blocking and ripening), physical retardation mechanism s (e.g., pore straining and film straining), surface geochemical heterogeneity, and physical heterogeneity of the porou s medi a ( Bradford et al., 2007 ). In column experiment s the effect of flow pH and ionic strength, initial input concentration, flow rate on colloid retention and transport in porous media were investigated (Gamerdinger and Kaplan 2001; Zevi, Dathe et al. 2009; Walshe, Pang et al. 2010; Zhuang, Goeppert et al. 2010). Findings from previous studies have indicated that the retention and transport of colloidal particles in the subsurfac e are mainly affected by three categories of factors and their combinations : 1) structure and surface

PAGE 18

18 properties of porous media, 2) physicochemical and/or biological properties of colloids, 3) fluctuations in water saturation, flow velocity and chemistry (e.g., ionic strength and pH ). Classical Colloid F iltratio n T heory The cl assical colloid filtration theory developed by Yao et al. (1973) is the most commonly used approach for predicting particle deposition behavior in saturated porous media. Based on the theory, deposition of colloidal particles onto stationary surfaces durin g filtration includes two steps: transport and attachment. Transport of colloidal particles from pore fluid to the vicinity of a filter grains in porous media can be described by three independent processes: interception, sedimentation, and Brownian (chemi cal) diffusion. Transport of particles by interception occurs when a particles moving along a streamline contact the collector due to its small size. Gravitational sedimentation refers to the settling of particles with densities greater than that of the fl uid onto the collector surface. Diffusion controls smaller particles to contact with the collector grains. Yao et al. (1973) presented the first water filtration model suggesting that the three transport mechanism are additive. Attachment of colloidal part icles to a stationary surface is dominated by the sum of electrical double layer and van der Waals interactions in the framework of the DLVO theory. removal of suspended particl es is represented by first order kinetics, resulting in concentrations of suspended and retained particles that decay exponentially with distance, which is a function of time. Laboratory and field experiment s were conducted( Gamerdinger and Kaplan 2001; Zev i, Dathe et al. 2009; Walshe, Pang et al. 2010; Zhuang, Goeppert et al. 2010 ) and results from these studies validated the

PAGE 19

19 classical colloidal filtration theory in describing colloid retention and transport in porous media Fate and Transport of Colloids i n Dense Vegetation Dense Vegetation Natural dense vegetation (grasslands and meadows) or implanted (vegetative filter strips, VFS) has been proven to be effective in reducing the non point source pollutions from agricultural field and urban areas. Vegetat ive filter strips (VFS) a common runoff pollution control practice, are designed to intercept surface runoff located at the down slope field border. They can control erosion caused by runoff and rainfall and remove runoff sediment, nitrogen, dissolved org anic carbon, pesticide, phosphorus and fecal bacteria (Stevens and Quinton 2009). These VFS reduce nutrient and pesticide soil profile, through contact between dissol ved phase nutrients and pesticides with soil and vegetation in the filter strip, and by reducing flow velocities to the point where eroded sediment particles ( with sorbed nutrient and pesticide s) can settle out of the water. It is suggested that a well ins talled VFS can remove suspended sediments (up to 90%), phosphorus (75%), nitrogen (87%), and pesticides (40%) (Koelsch et al., 2006; Dosskey et al., 2007; Fox et al., 2010; Muoz Carpena et al., 2010). In addition, studies have been conducted to investigat e the removal efficiency of VFSs to fecal bacteria from manure in surface runoff Results from these studies suggested that dense vegetation could reduce the loading of pathogens from surface runoff (Trask et al., 2004; Guber et al., 2007; Fox et al., 2011 ).

PAGE 20

20 Colloids Fate and Transport in Dense V egetation In subsurface flow, the removal of colloids could be viewed as using soil grains as a filter to remove colloidal particles through surface deposition. Similarly, in overland flow water, dense vegetation co uld be used as a filter to remove colloids through deposition onto plant surfaces. Currently, r esearch on surface removal and transport of colloid s in dense vegetation is mainly focused on biocolloids. It is still at the early stage of empirically testing the effectiveness of dense vegetation to remove pathogens from the surface runoff. The effects of several physical factors, such as length and vegetation type, rainfall intensity, land slope, infiltration capacity on biocolloids transport were also invest igated in laboratory experiments. Tate et al (2004) and Trask and Kalita (2004) supported the efficacy of vegetative filter strips for retaining Cryptosporidium parvum from cattle feces in laboratory scale experiments. They also investigated the effects of land slopes, vegetation and rainfall intensity. Fe rguson, et al. (2007) conducted field scale experiments with natural soil and natural vegetation to quantify the transport of microbial solids and found that transportation efficiency increased with decrea sing size of microorganisms. Mankin et al. (2007) found that E. coli sorption to both soil and sand particles was reversible, but E. coli detachment from sand was nearly 100% of attached cells after one washing, whereas a total of less than 15% of cells we re detached from soil after three washings. Based on these results, they suggest that d ifferences in sorption and reversibility between sand and soil will lead to different patterns of retention and transport in the environment for those two media. Fox, et al. (2011) recently determined vegetative filter strips (VFS) effectiveness in removing E.coli from runoff relative to inflow rate, infiltration capacity, and flow concentration in a laboratory

PAGE 21

21 scale VFS soil box. Experimental work about the pathogenic ba cteria transport in the dense vegetation is continuing, and all the research supports the potential effectiveness of dense vegetation either from the field scale or laboratory scale experiment. Mathematical models have also been developed to simulate bioc olloid transport in dense vegetation, but most of the models assumed the transport of biocolloids in surface runoff is simil ar to that of reactive solute. Pachepsky, et al. (2006) developed a reactive solu te transport model to simulate the transport of man ure borne pathogen through dense vegetation in surface runoff and the model simulation matched the experimental data well. Nevertheless, the actual effect on biocolloid removal of surface depos ition on dense vegetation cannot be separated from bacterial gr owth and decay effects in these type s of model formulations. Alternative approaches, especially approaches based on the classical colloid filtration theory, thus should be considered in modeling the fate and transport of colloids in dense vegetation in sur face runoff. Theoretical Framework Overland Flow Water flow in the dense vegetation can be described by the kinetic wave approximation of the Saint ( Lighthill and Whitham, 1955 ) (1 1) where h is depth of overland flow [L], q is the flow per unit width of the plane [L 2 T 1 ], and is the rainfall intensity [LT 1 ]. A uniform flow equation can be used as a link between the q and the h, such as (1 2)

PAGE 22

22 where S 0 is the slope of the plane [LL 1 dimensionless. Colloid Fate and Transport Transport is defined as concentration change in response to water flow and mass exchange processes Generally colloid t ransport in dense vegetation in surface runoff can be summarized into following processes : advection dispersion, exchange between solid and liquid phase, deposition on the surface of grass stem and soil grains ( Grolimund et al. 1998 ; Socolofsky, 2005 ; Tu fenkji, 2007 ) Advection and dispersion Mathematical models of colloids transport in dense vegetation media generally involve a simplified form of the advection dispersion equation, which can be derived from the basic mass balance principles. ( 1 3 ) where C is the colloid concentration in the surface runoff water [ML 3 ] t is the time [T] x is the distance from colloid pollution source [L] D is the average dispersivity coefficient [L 2 T 1 ] for colloid in the longitudin al direction, v is the average colloidal particle transport velocity [LT 1 ]. Deposition of colloids on the stem of the grass We can consider the dense vegetation as a special porous media with high porosity Under steady state condition s colloid transport through dense vegetation then can be modeled with the advective dispersive transport equation including a term of first order colloid deposition (Eq. 4 4 ) which is the same as in filtration model ( Kretzschmar et al. 1997 ) :

PAGE 23

23 ( 1 4 ) w here K g is the first order deposition rate coefficient [T 1 ] Exchanges between the liquid phase and the solid phase in soil profile We assume mass exchange between the overland flow and the soil underneath is also important to colloid transport in dense vegetation ( Wallach et al.; 1989, Gao et al., 2004b). The mass conservation of colloids in dense vegetation in the overland flow can and the exchange layer theory (Gao et al., 2004b; Walter et al., 2007): ( 1 5 ) ( 1 6 ) where C is contaminant concentration in the surface runoff water [M L 3 ], t is the time [ T ], q is the overland flow rate [L 2 T 1 ], h is the ponding water depth [L], x is the coordinate parallel to overland flow [L], D is the dispersion coefficient [L 2 T 1 ], k g is a rate coefficient describing the deposition onto grass surfaces [T 1 ], k ei and k eo are rate coefficients of mass exchange betw een overland flow and the exchange layer [T 1 ] (Gao et al., 2004b; profile, C e dimensionless constant controlling the exchangeable con centration in the exchange layer. For non equals unity, indicating all the concentration entering the exchange layer is available for mass exchange between the soil and overland flow (Gao et al., 2004b). In this study, because the growth of vegetation would increase the hetero geneity and reactivity of the soil in the exchange layer, thus 0 < 1, reflecting part of the concentration in the soil

PAGE 24

24 exchange layer is un exchangeable (i.e., tr apped in immobile water zone and/or attached on soil surfaces). Objectives The purpose of this research is to investigate the removal of colloidal particles from overland flow by dense vegetation and to explore through a combination of experimental and num erical tools the main factors involved in surface removal of colloids by dense vegetation The specific objectives of this research are: To determine the transport behavior of colloids in surface runoff on bare soil as a baseline for comparison with dense vegetation. To determine the transport behavior of colloids in surface runoff through dense vegetation Investigate the key colloid removal factors in dense vegetation: colloid size, ionic strength, vegetation type and flow rate through a combination of adv anced experimental and numerical modeling methods.

PAGE 25

25 Figure 1 1 Colloids size distribution

PAGE 26

26 CHAPTER 2 A LABORATORY STUDY OF COLLOID AND SOLUTE TRANSPORT IN SURFACE RUNOFF 1 Introduct ory Remarks Colloids (i.e., particles with diameter in the range of distributed in the environment ( Stumm, 1977 ) There are mainly two categories of natural colloids: (1) biocolloids including viruses, bacteria, and some of the protozoa, and (2) abiotic colloids including all kinds of colloidal minerals and natural organic matters. Once mobilized by water flow, colloids may pose risks to surface water and groundwater quality not only because many biocoll oids are pathogenic, but also found in soils and water ( Flury and Qiu, 2008 ; Gao et al. 2011 ) It is therefore important to study the transmission of colloids and their consequent fate in the hydrol ogical pathways. In the literature, research of colloids in water resources mainly focuses on their fate and transport in the subsurface, such as groundwater and soil vadose zone. A number of experimental and modeling investigations have been conducted to explore the retention and transport mechanisms of colloids and colloid contaminant complexes in soils under both water saturated and unsaturated conditions ( Ryan and Elimelech, 1996 ; McCarthy and McKay, 2004 ) Findings from laboratory experiments indicate that the transport of colloids in soils is controlled by multiple retention/release mechanisms, such as grain surface deposition, pore straining, air water interface deposition, film straining, and immobile water trapping ( Ryan and Elimelech, 1996 ; Gao et al. 2006 ) 1 Reprinted with permission from Yu, C R et al., 2011. A laborato ry study of colloid and solute transport in surface runoff on saturated soil. J Hydrol, 402(1 2): 159 164.

PAGE 27

27 The improved understanding of colloid transport mechanisms informed the construction and refinement of mathematical models to predict their fate and transport in the subsurface environment ( Simunek et al. 2006 ; Flury and Qiu, 2008 ) Most of these models are based on the advection dispersion equations coupled with reactions, which are similar to the models developed for solute transport in soils. However, the transport behavior of colloids in soils may differ from that of chemical solute because of the size exclusion effect and the distinct retention mechanisms ( Chrysikopoulos and AbdelSalam, 1997 ; Simunek et al., 2006 ) The different breakthrough behavior between colloids and solute in soils has been well documented ( Keller et al. 2004 ; Bradford et al. 2005 ) Although colloid facilitated transport is also an important contamination process to surface water, fate and transport of colloids in overland flow has received relatively less resea rch attention ( Haygarth et al., 2006 ; Leguedois et al., 2008 ) Colloidal contaminants (e.g. colloid metal complexes) in surface runoff are often treated as dissolved phase if they can pass through a 0.45 m filter ( Lead and Wilkinson, 2006 ) Ren et al. ( 2002 2005 ) however, demonstrated that colloidal particles with sizes equal or smaller than 0.45 m played significant roles in facilitating trace metal transport in surface stream water. Simil arly, Heathwaite et al. ( 2005 ) showed that the release of phosphorus from agricultural soils to surface runoff was mainly controlled by soil colloids with siz e between 0.001 to 2 m. Several laboratory and field studies have also been conducted to examine the fate and transport of biocolloids in surface runoff ( Oliver et al. 2005 ; Kay et al. 2007 ) Mathematical models of biocolloid transport in overland flow have been proposed and model simulations have been tested against experimental

PAGE 28

28 data ( Pachepsky et al. 2006 ; Kouznetsov et al. 2007 ) Nevertheless, there is still a debate in the literature on how colloidal particles a re transported in surface runoff. While some suggested that colloid transport in surface runoff is similar to that of chemical solute ( Edwards et al., 1996 ; Roodsari et al., 2005 ) ; others showed that colloids may behave substantially different from chemical solutes in surface runoff ( Crane et al., 1983 ; Dosskey et al., 2007 ) Further investigations are therefore needed to improve current understanding of the fate and transport of colloids in surface runoff ( Kay et al., 2007 ) This study used a series of laboratory experiments to examine the transport behavior of colloids in surface runoff. A soil box packed with sand was placed u nder a laboratory rainfall simulator to compare the transport beh avior of colloids and solutes. A natural clay colloid (kaolinite) and a conservative chemical solute (bromide) were applied to one end of the soil box as inflow during a simulated rainfall ev ent. Effluent samples were collected from the other end of the soil box and from four drainage pipes to determine colloid and solute breakthrough concentrations. Multiple runoff experiments were conducted and statistical analysis was conducted to aid in th e data interpr etation. Our objectives were to 1) identify similarities and differences between colloids and solutes in surface flow as well as in subsurface flow; and 2) determine the governing processes that control the fate and transport of colloids in surface runoff. Materials and Methods Materials Kaolinite powder (Thiele Kaolin Company) was used t o make a colloidal kaolinite suspension; about 10 g of dried kaolinite powder (at 100 o C for 2 hours) was suspended in 700 mL of deionized (DI) water. The kaolinite suspension was shaken, placed in an

PAGE 29

29 ultrasonic bath for 30 minutes, and then let stand for 24 hours. The fraction of kaolinite remaining in suspension after 24 hours was siphoned into a second flask The concentration of kaolinite in an aliquot o f this stock suspension was determined gravimetrically before diluting the stock to colloid suspensions used in the experiments. The mean sizes of the kaolinite colloids, as determined by Nanosight LM10 HS with the blue laser did not vary significantly du ring the experiments and the average diameters were about 0.4 m (0.05 1 m ) as in Figure 2 1. Additional characteri stics of the colloid used are given in Appendix A (Tables A 1 and A 2). Quartz sand (Standard Sand & Silica Co.) was used as experimental so il. The sand had a size range between 0.5 to 0.6 mm and was used as received. The bulk density of the sand was 1.54 g/cm 3 Sodium bromide (certified, Fisher Scientific) was used in the experiment as th e conservative chemical solute. The materials and envir onmental condition was summarized in Table 2 1. Surface Runoff System A stainless steel box with dimensions of 153.1 cm long, 40.2 cm wide, and 10 cm deep was used to hold the experimental soil (Figure 2 2 ) The bottom of the box was separated into 4 sha llow compartments, which were 5 cm deep and each equipped with a drainage outlet to partition infiltration along the flow path (numbered as 1 4 in Figure 2 2 ). The quartz sand was wet packed in the compartments as saturated soil with a depth of 5 cm, which would prevent any lateral subsurface flow among the compartments. About 12 kg sand was used to fill each compartment The packed soil box was then placed on an adjus table shelf at a slope of 1.7 degree A spreader consisting of a PTFE tube with uniformly distributed small holes was placed at the up end of the soil box to distribute inflow (Figure 2 2 ). A peristaltic pump was connected to

PAGE 30

30 each side of the PTFE tube to apply a constant inflow at 0.31 L/minute. A rain shielded trough was mounted at the lower end of the box to collect outflow. Four PTFE funnels are mounted below at the drainage outlets to collect infiltrating water. Cumulative flow from the surface runoff and drainages outlets were collected and continuously monitored during the experiment with ECH2O Dielectric Aquameters (Decagon Devices, Inc.) that record the water level in the collection containers below the box. The real time data were recorded with a CR 10 data logger every 30 seconds Additional photos of equipment are in Appendix A ( Figur e A 1 ) This surface runoff system included a rain simulator located in the Water Resources Lab at the University of Florida. The rain simulator used a peristaltic pump and a pressure gauge to supply a constant flow to a tee jet 1/2 HH SS 50 WSQ nozzle (Sp raying Systems Co. Wheaton, IL) to generate a simulated rainfall (Figure 2 3 ). Uniformity tests indicated that the rain simulator can generate uniform rainfall over the entire soil box with uniformity greater than 90% The rainfall intensity was adjusted to a constant rate of 64 mm/hour for all runoff experiment conducted, which was equivalent to a flow rate to the outflow end of the box of 0.66 L/min (i.e., 1.07 L/min/m 2 ). This rain intensity was chosen because it can represent a typical 10 year storm retur n period for the duration of 70 minutes in the Alachua County of State of Florida. The soil box was placed to be 2 meters below the rainfall simulator and six manual rain gauges and one electronic rain gauge were used to monitor the intensity during the ex periments (Figure 2 4) Runoff Experiments To initiate a runoff experiment, simulated rainfall and inflow with colloid free water were first applied to the soil box for two hours to establish a steady flow condition for the

PAGE 31

31 overland flow and subsurface dra inage. Once the flow was stabilized, the colloid suspension (100 ppm) was introduced to the inflow spreader for 30 minutes. The inflow was then switched back to water at the same flow rate for another 50 minutes. Water samples were collected from the surfa ce runoff and the four drainage outlets during the colloid injection. Colloid concentrations in the samples were determined by measuring the total extinction of light at a wavelength of 350 nm with UV visible spectrophotometry. To insure the data quality, transport experiments of colloids were repeated six times. Bromide was applied to the surface runoff system as a conservative solute for the transport studies. The experimental procedures were the same as those used for the colloid and an ion chromatograp h (Dionex Inc. ICS90) was used to determine bromide concentrations in water samples. Similarly, bromide transport experiments were repeated eight times to insure the data quality. Statistical Analysis Average breakthrough concentrations for all the bromi de and kaolinite experiments were reported in this study with stan dard error of the mean ( SEM) t test was used to compare the concentration distributions of bromide with kaolinite in surface elation coefficient was used to evaluate the statistical dependence between bromide and kaolinite in the effluents. Results and Discussion Flow D istribution Measurements of flow distribution in the runoff system indicated that surface flow (0.60 L/min) w as much higher than drainage flow (0.073, 0.094, 0.079, and 0.081 L/min for drainage # 1 4, respectively). The recorded cumulative flow in the surface runoff and drainage flow was used to determine the water balance of the runoff system. For all the

PAGE 32

32 experi ments, the total flow recovered from the surface and drainage was close to the total water input with an error smaller than 5%. This result indicated that the surface runoff system was sui t for the transport experiments. Because the rainfall intensity used in this study was relatively high, surface runoff accounted for about 2/3 of the total outflow, indicating that surface runoff dominated the transport process in the runoff system. Subsurface T ransport of B romide and K aolinite Subsurface transport of br omide in the soil box showed typical breakthrough behavior (Figure 2 5 ). After application, bromide was first detected at drainage outlet # 1 and the breakthrough responses increased for all the four drainage outlets with further bromide injection. Only ab out 29% of the total bromide was recovered from the four drainage outlets, confirming the dominance of surface runoff to the transport process in the system. Drainage # 1 had the highest breakthrough concentrations because bromide concentrations in overlan d flow were higher in the first segment. Because of rainfall dilution effect, the other three drainage outlets showed much lower breakthrough concentrations than the drainage #1. The breakthrough concentrations of drainage #4, however, were slightly higher than those of drainage #3, probably due to experimental uncertainties. The breakthrough responses of kaolinite in the four drainage outlets followed similar patterns to those of bromide (Figure 2 6 ). The normalized breakthrough concentrations (i.e. C/C 0 ) however, were lower for kaolinite than bromide. This was most obvious at drainage #1 where the average peak breakthrough concentration of bromide reached about 0.4, while that of kaolinite was about 0.3. Only about 23% of the total kaolinite was recovere d from the four drainage outlets. The lower breakthrough of

PAGE 33

33 kaolinite in the subsurface runoff was due to the filtration of colloids by the sand ( Gao et al. 2004a ; Chen et al. 2005 ) After t he breakthrough responses were slightly quicker for kaolinite than bromide, which can be attributed to the size exclusion effect of colloids in porous media ( Keller et al. 2004 ; Bradford et al. 2005 ) Because the sampling interval used in the experiment was not small enough, kaolinite b reakthrough at all drainage outlets appeared to be almost instantaneous after the pulse was applied (Figure 2 6 ) The t concentrations showed that their concentration distributions were sta tistically different in the subsurface flow ( p correlated with equals to 0.70 in drainage ( p <0.0001). Linear regression of kaolinite and bromide concentration in drainages (Figure 2 7 ) showed that the slope is smaller than one (0.74), confirming that kaolinite had a lower mobility in the subsurface flow than bromid e. Surface Transport of B romide and K aolinite Bromide showed very fast breakthrough in surface runoff after it had been applied, corresponding to the high surface flow rate (Figure 2 8 a) The bromide concentrations remained relatively high (C/C 0 > 0.2) f or almost the entirely bromide injection period and then dropped dramatically when inflow was switched to water. At the end of the experiment, the bromide concentration demonstrated a long tail, indicating the slow releasing of chemicals from the soil into the surface runoff. The release of chemicals from soil to surface runoff may be attributed to several mechanisms including film diffusion ( Wallach et al., 1988 ; Wallach and Vangenuchten, 1990 ) raindrop induced exchange ( Gao et al., 2004b ; 2005 ; Walter et al., 2007 ) and pumping exchange

PAGE 34

34 ( Packman et al., 2000 ; Ren and Packman, 2002 ) Because surface runoff dominated the transport processes, about 50% of the total bromide was recovered from the surface runoff, which was much higher than that from subsurface flow Although the bromide tracer is nonreactive, its total recovery rate (i.e., sum of the surface and subsurface recovery rates) at the end of the experiment was only close to 80%. This incomplete recovery could be attributed to two reasons: 1) there was still a certain amount of bromide in the soil at the end of the experiment, as evidenced in the breakthrough curves of both drainage and surface flow; and 2) raindrops could splash certain amount of bromide out of the runoff system, particularly in the area close to the edges of th e soil box. Responses of kaolinite in the surface runoff resembled those of bromide and the peak concentrations also covered almost the entire kaolinite injection period (Figure 2 8 b) Similarly, about 51 % of the total kaolinite was recovered from the su rface runoff, which was also much higher than that from subsurface flow. The kaolinite concentration in the runoff also had a long tail, but it was slightly lower than that of bromide. This is probably because the colloids had a lower concentration in soil pore water compared to bromide, which had no interactions with the sand grains. The t concentrations in runoff could not prove that their distributions were statistically different in the surface runoff ( p positively correlated with equals to 0.99 ( p < 0.0001). Linear regression results (Figure 2 9 ) showed that the slope is close to one (0.93), suggesting that kaolinite and bromide transport in surface runoff was almost identical under the experimental conditions

PAGE 35

35 tested. The results presented here indicated that colloids in overland flow on bare soils may behave similar to chemical solutes, when the surface runoff dominates the transport processes. Under such conditions, factors such as dispersion/diffusion, and exchanging/pumping ma y have little effect on the concentration profile of colloids in surface flow However, these factors could play important roles in controlling the mass transfer processe s within the overland flow and between the overland flow and the soil underneath under other conditions. For example, if the overland flow was much slower, colloid and bromide might not behave the same in the surface runoff because of the differences in their dispersion/diffusion rates and release rates from soil to the over land flow. The fate and transport of colloids in surface runoff may also be affected by scale factors, such as travel distance, plot length, soil depth, and source loading, which are also governing factors of hill slope runoff and erosion ( Parsons et al., 2006 ) Chapter C onclusion s Laboratory runoff experiments were conducted to examine the transport dynamics of kaolinite and bromide in overland flow and soil drainage. We found that the transport of kaolinite in drainage flow was lower than that of bromide, which is in agreement to colloid filtration theory. The transport of kaolinite in surface runoff almost resembled that of bromide and statistical analysis confirmed their strong positive correlation with a slope close to one. The similarity between kaolinite and bromide transport in overland flow can be attributed to the dominance of surface runoff i n the transport processes under the experimental condition tested

PAGE 36

36 Table 2 1. Experimental conditions of colloid transport in surface runoff on bare soil Materials Colloids Kaolinite powder Tracer 40 ppm Sodium Bromide Soil Bed 0.5 to 0.6 mm washed quartz s and, porosity 0.43, slope 1.7%, dimension (153.1 40.2 *10 cm) Environmental Conditions Inflow rate 0.31 L/Min Rainfall intensity 64 mm/hour (uniformity > 90%) Ionic Strength regular tap water (0.558 mMol)

PAGE 37

37 Figure 2 1. Kaolinite diameter distribution measured by nanosight LM10 HS with blue laser. The lines of different colors are independent measurements

PAGE 38

38 Figure 2 2 Schematic of the laboratory runoff experiment setup. Pictures of some components can be found in Fi gures 2 3, 2 4 and in Appendix (Figure A 1)

PAGE 39

39 Figure 2 3 Rainfall simulation system for the laboratory runoff experiment Rainfall simulator

PAGE 40

40 Figure 2 4 Laboratory runoff experiment set up

PAGE 41

41 Figure 2 5 Transport of bromide in s ubsurface flow 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 1 0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 2 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 3 0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 4

PAGE 42

42 Figure 2 6 Transport of kaolinte in subsurface flow 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 1 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 2 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 3 0 0.1 0.2 0.3 0.4 0.5 0 50 100 Normalized Concemtration (C/C 0 ) Time (min) Drainage # 4

PAGE 43

43 Figure 2 7 Correlation between kaolinite and bromide in subsurface flow. y = 0.7394x R = 0.8168 0 0.1 0.2 0.3 0 0.1 0.2 0.3 Normalized kaolinite Concentration Normalized Bromide Concentration 1:1 Line

PAGE 44

44 Figure 2 8 Transport of bromide and kaolinite in surface flow : (a) bromide and (b) kaolinite 0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80 100 Normalized Concemtration (C/C0) Time (min) a 0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80 100 Normalized Concemtration (C/C0) Time (min) b

PAGE 45

45 Figure 2 9 Correlation between kaolinite and bromide in surface flow 0 0.3 y = 0.9334x R = 0.9895 0 0.1 0.2 0.3 0 0.1 0.2 0.3 Normalized Kaolinite Concentration Normalized Bromide Concentration 1:1 Line

PAGE 46

46 CHAPTER 3 EFFECT OF DENSE VEGETATION ON COLLOID TRANSPORT IN SURFACE RUNOFF Introduc tory Remarks Colloids refer to suspended particles with sizes between 1 nm to 10 abiotic or biotic forms (Stumm, 1977) Once entering the aquatic environment, colloids can play an important role in controlling contaminant fate and transport. Abiotic colloids such as clay particles may carry strongly adsorbed contaminants (i.e. heavy metals, agrichemicals, etc.) and thus enhance their mobility in subsurface and surface flows to deteriorate the aquatic environment (McCarthy and Zachara, 1989; Sun et al., 2010) Some of the biotic colloids (biocolloids) including pathogenic m icroorganisms are on the from various sources, particularly from agricultural land (Kouznetsov et al., 2007; Steenhuis et al., 2006) Reduction of quantity and mobili ty of colloids in surface water flow is therefore critical to protect water quality in aquatic systems. Most of the research of colloids in aquatic systems has been focused on their fate and transport in subsurface environment, such as in soil vadose zone and groundwater (Bin et al., 2011; Flury and Qiu, 2008) Only few studies have investigated colloid transport in surface runoff, which may have an immediate deteriorative effect on water quality. For example, surface runoff from agricultural practices and waste water discharges often contains large amount of colloids (Haygarth et al., 2006; Heathwaite et al., 2005) If those colloids (particularly biocolloids) are not removed from overland flow, they may pose risks to ecosystems when reaching surface water bodies. Natural or implanted dense vegetation, such as vegetative filter strips (VFS), has been suggested to be effective in attenuating the loading of chemical contaminants and

PAGE 47

47 sediments from agricultural lands to runoff (Abu Zreig et al., 2004; Dosskey et al., 2007; Fox et al., 2010; Kuo and Muoz Carpena, 2009) VFS is a surface filtration system with a land area of either planted or indigenous dense vegetation, which is easy to install, low cost, and require little maintenance compared to structures l ike settling basins or other constructed elements. They remove sediments and solutes from surface runoff mainly through two mechanisms: 1) slowing down surface runoff to decrease flow transport capacity and facilitate sedimentation; and 2) enhancing infilt ration compared with the source area (Krutz et al., 2005) It has been demonstrated that a well installed VFS can reduce as high as 60 100% of sediments and nutrients from surface runoff traveled through it (Gharabaghi et al., 2006; Muoz Carpena et al., 1 999; Sabbagh et al., 2009) Young et al. (1980) used different types of dense vegetation to evaluate VFS effectiveness and showed an average 83% removal of total nutrients and a 70% of fecal coliform. Because VFS has high potential for reducing nonpoint so urce pollutions, it is among the best management practices recommended by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) for reducing nonpoint source pollutions (Krutz et al., 2005) Although VFS is suggested to be effective in removing biocolloids (pathogens) from surface runoff, only few laboratory experiments have been conducted to investigate the fate and transport of colloids in dense vegetation (Fox et al., 2011; Guber et al., 2007; Trask et al., 2004) more, some studies indicated that all manure born constituents are transported primarily in solute phase, thus the transport and fate of biocolloid in surface vegetation should be dominated by mechanisms similar to those of solute transport (Edwards et al ., 1996; Roodsari et al., 2005) Other

PAGE 48

48 experimental data showed that the transport mechanisms may be different for biocolloids and chemical solutes (Barfield et al., 1998; Crane et al., 1983; Dosskey et al., 2007) As pointed out by Haygarth et al. (2006) and Leguedois et al. (2008) despite the importance of colloids to water quality, theories and mechanisms that govern colloid fate and transport through surface vegetation remain surprisingly poorly understood. In a previous study (Yu et al., 2011) we com pared the transport behavior of clay colloids and bromide in overland flow on a bare soil (i.e. no surface vegetation) in a laboratory runoff system during simulated rainfall events. Kaolinite and bromide were found to behave similarly in overland flow ove r the bare soil when infiltration is limited and surface runoff dominates the transport processes. As a follow up, this study was designed to determine the effect of dense vegetation on the fate and transport of colloids in surface runoff. A laboratory run o ff system was used to compare the transport behavior of colloids (fluorescent microspheres) and bromide in overland flow through dense surface veget ation The specific objectives were to 1) measure the sorption of colloids onto different vegetation part s; and 2) compare the filtration and transport of colloids and bromide in the surface vegetation system. Materials and Methods Materials Carboxylated polystyrene latex microspheres (Magsphere, Inc) with an average diameter of 0.3 m were chosen as experime ntal colloids; they are commonly used as surrogates for both abiotic and biotic natural colloids (Morales et al., 2009; Zevi et al., 2006) The microspheres were fluorescent labeled and had a density of 1.05 g/cm 3 In the experiment, colloid input concent ration was adjusted to about 10 mg/L by diluting the stock microsphere suspension.

PAGE 49

49 given in Appendix A (Tables A 1 and A 2) Sodium bromide (certified, Fisher Scientific) at the concentration of 40 ppm wa s used in the experiment as the conservative chemical solute. Quartz sand (Standard Sand & Silica Co.) with a size range between 0.5 to 0.6 mm was used as experimental soil. The sand was packed into a stainless steel box measured 153.1 cm long, 40. 2 cm wid e, and 10 cm deep (Figure 3 1a). The bottom of the box was separated by vertical stainless plates into four shallow compartments of 5 cm deep. Each of the compartments was equipped with a drainage outlet to partition inf iltration along the flow path. About 12 kg sand was packed to a bulk density of 1.54 g/cm 3 in each compartment at a depth of 5.2 cm, which would eliminate the lateral subsurface flow from one compartment to another. Bahia grass ( paspalum notatum ), which is a drought resistant turf grass, was selected as experimental vegetation, because it requires low maintenance and is best for warm and humid climate (e.g., Florida). Grass seeds were planted 1 cm deep in the soil box with a density of 76 g/m 2 The vegetated soil box was then frequently irrig ated and fertilized for about four months in field conditions to establish the dense vegetation on top of the sand (Figure 3 1b). The dense vegetation in the soil box had an average density of 5791 stems per square meter. The height of the dense vegetation was maintained at 8 cm. The materials and environmental condition was summarized in Table 3 1. Surface Runoff System The surface runoff system in this study was similar to the one reported by Yu et al. (2011) Briefly, the soil box with dense vegetation w as p laced about 10 feet below a rainfall simulator on a metal shelf at a slope of 1.7 degrees. A PTFE spreader was used

PAGE 50

50 to apply lateral surface inflow with colloid or bromide solutions to the container from the upper side (Fig. 1a). A peristaltic pump con trolled the inflow at a constant rate of 0.31 L/minute. Outflow runoff samples were collected at the lower end of the box, at the same time drainage samples were collected from the four outlets under each of the soil compartments. The cumulative flow from the surface runoff and drainage outlets was measured from water levels in collection containers (Fig. 1b) recorded continuously during the experiment using dielectric probes (ECH2O, Decagon Devices, Inc.) and a CR10 data logger. Uniform rainfall over the d ense vegetation was generated by a rainfall simulator equipped with a tee jet 1/2 HH SS 50 WSQ nozzle (Spraying Systems Co. Wheaton, IL) (Figure 3 1a). The rainfall intensity was controlled by a pump and a pressure valve and gauge to a constant rate of 64 mm/hour, which was equivalent to a flow rate into the box of 0.66 L/min (i.e., 1.07 L/min/m 2 ). Additional details on the runoff system construction and instrumentation are provided by Yu et al. (2011) Runoff Experiment Simulated rainfall and inflow with colloid free water were first applied to the dense vegetation box for about two hours, preconditioning the runoff experiment system to reach steady flows in both surface runoff and drainage out lets (Figure 3 1a). The fluorescent microsphere suspension was then injected to the dense vegetation box through the inflow spreader as a 30 minutes pulse. After that, the inflow was switched back to water to flush the mobile colloids out of the system for an additional 50 minutes. Surface runoff and subsurface draina ge samples were collected during the experiment at approximate 2 minute intervals. A fluorescent spectrophotometer (Perkin Elmer LS 45) was used to determine colloid concentrations in the samples at wavelengths of 488 nm (exciting) and 509 nm (emission). Bromide solution was also applied to the surface

PAGE 51

51 runoff system as a conservative tracer. The experimental procedures were the same as those used for the colloids. The bromide concentrations in the samples were determined by an ion chromatograph (Dionex In c. ICS90). Duplicated experiments were conducted for the transport experiments. Average breakthrough concentrations are reported. Adsorption Experiment The capacity of colloid adsorption on the vegetation was determined in batch adsorption experiment. Fre sh grass samples were collected from the dense vegetation box and cleaned with water. The samples were then divided into three parts: leaf, stem, and root for immediate use in the adsorption experiment. Paper tissues were used to sorb the external water on the samples. In the batch test, about 0.1g (fresh weight) of the adsorbent (i.e., leaf, stem, or root) was added to 50 ml digestion vessels (Environmental Express) filled with 25 mL colloid suspension of different concentrations ranging from 0 to 25 mg/L at 200 rpm in a mechanical shaker at room temperature for 24 hrs. All the liquid samples were then withdrawn for equilibrium colloid concentrations with the fluorescent spectrophotometer. The amount of colloids adsorbed was determined through mass balance calculation. Blank experiments without adsorbents or colloids were conducted as experimental controls and the adsorption experiments were conducted in triplicate. Results and Discussion Adsorption Isotherms Although the isotherms showed large variances, all the three grass parts demonstrated good ability to remove colloids from water (Figure 3 2). The three adsorption isotherms were L type and could be described with the Langmuir equation:

PAGE 52

52 ( 3 1) where K represents the Langmuir bonding term related to interaction energy (L mg 1 ), Q denotes the Langmuir maximum capacity (mg kg 1 ), and C e is the equilibrium solution concentration (mg L 1 ) of the sorbent The Langmuir model barel y described the isotherm of grass stem ( R 2 = 0.66), but fitted the average isotherm data of grass leaf and root very well with R 2 greater than 0.9 ( Table 3 2 ) The best fit Langmuir capacities (Q) were between 455.3 and 1188.3 mg kg 1 ( Table 3 2 ), suggesti ng that the dense vegetation can be used as a filter material to remove colloids from colloid contaminated water. A quick survey of the Bahia grass used in this study showed that the leaf, stem, and root of a single grass had an estimated weight of 0.24, 0 .12, and 0.33 g, respectively. Based on the Langmuir capacities, it was estimated that the dense vegetation used in this study had potential ability to sorb as many as 703.1 mg colloids from surface runoff (i.e., stem 313.7 mg and leaf 389.4 mg) and 1397.6 mg colloids from subsurface flow (root). In the overland flow, because the contact time between the grass and colloid water was shorter, colloid removal rate by grass would be less than the maximum capacities estimated here. Flow Distribution in Dense Veg etation System under Simulated Rainfall Although the dense vegetation on the soil box could alter hydraulic conductivity of the sand in each compartment, flow distribution in the system only slightly differed from that of our previous study that used a bar e soil box (Yu et al., 2011) Similar to the previous study, measurements of flow distribution in the dense vegetation system also indicated the dominance of the surface runoff (0.59 L/min), which was much higher than the drainage flows (0.06, 0.12, 0.07, and 0.07 L/min for drainage # 1 4, respectively).

PAGE 53

53 The drainage rates in the experiment were relatively low for saturated sandy soils because of the added water holding effect of the dense grass root system and the small drainage holes on the soil box, whi ch could limit the drainage flows at saturation (Yu et al., 2011) Colloid Transport through Dense Vegetation Because surface flow rate was faster than the drainage rates, bromide showed rapid breakthrough in overland flow through the dense vegetation (Fig ure 3 3). After the pulse injection, the breakthrough concentrations of bromide climbed quickly to a peak and stayed at that level during the application pulse. The relative concentrations (C/C 0 ) of bromide in the outflow were low (less than 0.15), probabl y due to the combined effects of rainfall dilution and mass transfer into the soil underneath (Walter et al., 2007) After the inflow was switched to water, bromide breakthrough concentrations dropped quickly but maintained a tailing of low bromide concent rations at the end of the experiment (Figure 3 3). Colloid transport was lower in the dense vegetation than that of bromide (Figure 3 3). During the pulse injection period, the peak colloid concentrations were slightly lower than bromide peak concentratio ns. After the inflow was switched to water, colloid breakthrough concentrations also reduced but quickly to zero without the tailing. Mass balance calculation indicated that more than 36.9% of the total bromide was recovered from the surface runoff, which was higher than the re covery rate of coll oids (28.7%) ( Table 3 3 ). This result is consistent with the findings from the batch adsorption experiment and suggests that the recovery difference (at least 8.2%) could be attributed to the removal of colloids fro m surface runoff by the dense vegetation. Under the experimental conditions, the overland flow was shallow (~ 5 mm) and thus we infer that

PAGE 54

54 most of the colloids were removed by the stem of the vegetation. The total amount colloids removed by the stem (7.6 m g) was only about 2.4% of the estimated maximum capacity (313.7 mg), suggesting that, in spite of its potentially high colloid sorption ability, the actual removal efficiency of the dense vegetation under the dynamic runoff conditions could be limited beca use of insufficient contact between colloids and the vegetation. Reducing flow rate or increasing flow residence time therefore could enhance the removal of colloids from surface runoff by dense vegetation. Colloid Transport in Drainage Flows Both bromide and the colloids showed low breakthrough behaviors (Figure 3 4) in four drainage outlets. Drainage # 1 showed the highest breakthrough concentrations of both bromide and colloids because it was the closest one to the injection location. Due to the rainfall dilution effect, the other three drainage outlets showed lower breakthrough concentrations than drainage #1. Only less than 1% of colloids were recovered from the drainage #3 and #4 ( Table 3 3 ). The breakthrough responses of the colloids in the four drain age outlets were much lower than those of bromide, the non reactive tracer, suggesting high removal of colloids (>27.3%) from the subsurface flows ( Table 3 3 ). The lower breakthrough of colloids in the subsurface drainages could be attributed to two reason s: 1) the filtration of colloids by the sand (Chen et al., 2005; Gao et al., 2004) ; and 2) the adsorption of the colloids onto the grass root, as suggested by the batch sorption experiment (Figure 3 2c). Although only a shallow soil layer (5cm) was used in this study, colloid removal rate by the soil and grass root was much higher than by dense vegetation on the surface, which is consistent with a recent study by Fox et al (2011) Both results

PAGE 55

55 suggest that enhanced infiltration should be the main removal me chanism when utilizing dense vegetation to reduce colloidal contaminants in surface runoff. Dense Vegetation Effect on the Removal of Colloids The recovery differences between colloids and bromide (8.2% for surface and 27.3% for subsurface) represent mainl y the colloids deposition and surface exchange processes by the soil/vegetation system. The total amount of colloids removed at the surface (7.6 mg) was only about 2.4% of the estimated maximum capacity of the vegetation stems (313.7 mg from the adsorption studies). Limited contact between colloids and the vegetation in dynamic conditions. Higher removal of colloids (>27.3%) from the subsurface flows because: 1) the filtration of colloids by the sand; 2) the adsorption of the colloids onto the grass root as (suggested by the batch sorption experiment). The material and environmental condition of surface runoff experiment on bare soil and densely vegetated soil (Table 3 1 ) were similar, except the model colloids on bare However, the characteristic of two colloid models were comparable, as sh own in Appendix A (Tables A 2) Both colloids were negatively charged, with similar Zeta potential and colloid size. Thus, t he colloid removal rate of bare soil could be compared with densely vegetated soil (Figure 3 5) Because the dense vegetation, 41 % m ore colloids were removed than that from bare s oil, with 22% less in surface runoff and 19% less in subsurface drainage water. Dense vegetation can improve the retention of colloidal particle in surface runoff.

PAGE 56

56 Chapter C onclusions Laboratory experiments were conducted to investigate the effect of dense vegetation on colloid transport and removal in overland flow and subsurface drainage Batch experiments showed that grass leaf, stem, and root could effectively adsorb aqueous colloids. This was confirmed b y the laboratory runoff experiments under a simulated rainfall event. Comparisons of the breakthrough behaviors of bromide and colloids in overland flow through dense vegetation demonstrated that the dense vegetation system could remove colloidal particles from surface runoff. The vegetation effect of the surface removal of colloids is also supported by an earlier study of surface runoff colloidal transport on bare soil, where colloids behaved like the bromide tracer used as a benchmark and experienced no s ignificant removal from the surface flow (Yu et al 2011). In addition, the soil (and root) underneath the vegetation also showed strong ability to remove colloids from the drainage flows. Our results suggest that naturally dense vegetation, if properly in stalled and maintained in the form of vegetative filter strips, can be used to reduce the load of colloidal contaminants to surface water.

PAGE 57

57 Table 3 1. Experimental conditions of colloid transport in surface runoff on vegetated soil. Materials Colloids Carboxylated polystyrene latex microspheres Tracer 40 ppm Sodium Bromide Soil Bed 0.5 to 0.6 mm washed quartz sand, porosity 0.43, slope 1.7%, dimension (153.1 40.2 *10 cm) Environmental Conditions Inflow rate 0.31 L/Min Rainfall int ensity 64 mm/hour (uniformity > 90%) Ionic Strength regular tap water (0.558 mMol) Table 3 2 Langmuir model results of colloids adsorption onto different grass parts. Grass Part K (L/mg) Q (mg/kg) R 2 Leaf 0.729 455.3 0.95 Stems 0.177 733.5 0.66 Roots 0.114 1188.3 0.92 Table 3 3 Water, bromide and colloids distribution in the runoff and drainage. %Recovery Runoff Drainage 1 Drainage 2 Drainage 3 Drainage 4 Total Water 62.76% 6.82% 12.74% 8.14% 7.22% 97.70% Bromide > 36.93% > 10.35% > 15. 07% > 3.89% > 2.48% > 68.73% Colloids 28.72% 1.37% 2.49% 0.37% 0.31% 33.26% *:Calculated from the incompeleted breakthrough courves, which underestimated the recovery rates.

PAGE 58

58 Figure 3 1 Bahia grass planted in laboratory soil box as dense vegetat ion: A) schematic, B ) view of the vegetated soil boxes with Bahia grass. A ) B )

PAGE 59

59 Figure 3 2 Langmuir adsorption isotherms of colloi ds onto different grass parts: A) leaf, B) stems, and C ) roots (symbols = experimental data, lines = model simulations) A ) C ) B )

PAGE 60

60 Figure 3 3 Breakthrough concentration of bromide and colloids in overland flow through dense vegetation (symbols = experimental data, lines =average data). 0 0.03 0.06 0.09 0.12 0.15 0 10 20 30 40 50 60 C/C0 Time Bromide Colloids Run1 Run2

PAGE 61

61 Figure 3 4 Breakthrough concentration of bromide and colloids in drainage f lows (symbols = experimental data, lines =average data). 0 0.1 0.2 0.3 0 10 20 30 40 50 60 C/C0 Time Drainage # 1 Bromide Colloids Run1 Run2 0 0.1 0.2 0.3 0 10 20 30 40 50 60 C/C0 Time Drainage # 2 Bromide Colloids Run1 Run2 0 0.1 0.2 0.3 0 10 20 30 40 50 60 C/C0 Time Drainage # 3 Bromide Colloids Run1 Run2 0 0.1 0.2 0.3 0 10 20 30 40 50 60 C/C0 Time Drainage # 4 Bromide Colloids Run1 Run2

PAGE 62

62 Figure 3 5. Distributions of colloids in bare soil and dense vegetation systems at the end of the runoff experiments.

PAGE 63

63 CHAPTER 4 CHEMICAL AND PHYSICAL FACTORS CONTROLLING THE RUNOFF REMOVAL OF COLLOID S BY DENSE VEGETATION Introduct ory Remarks Reducing non point source pollution in agriculture ha s been one of the most challenging problems of environmental protection. Colloids, which are defined as particles with at least one dimension smaller than 10 m, are among the most common components in the effluents from agricultural practices. For example, w aste discharges fr om animal feeding operations include both abiotic and bio col loids; agricultural irrigation mobilize s particulate phosph orus and other forms of col loidal particles in soils; rain fall induced soil erosion on farm land could also bring large amount s of colloidal clay minerals into surface runoff and into adjacent water bodies. Mobile colloids in hydrological paths can deterio rate the water quality not only because some of them are natural born contaminants (e.g., pathogenic bacteria and viruses), but also because they may facilitate the transport of other reactive contaminants in streams and groundwater ( McCarthy and Zachara, 1989 ; 2006 ; Sun et al. 2010 ; Bin et al. 2011 ) Once entering public waters and drinking water aquifers, these colloids present a risk to the public health. Although extensive research has been conducted to reduce the contamination risks of colloids in groundwater there are only few studies in the literature explored the removal and transport of colloids in surface runoff (Pachepsky et al., 2006; Fox et al., 2011; Yu et al., 2011) Due to the nature of surface runoff for rapidly transfer ring contaminants to surfac e water bodies, mobile colloids in the surface runoff may present high contamination risks to the environment because they can efficiently facilitate the transport of various water pollutants, such as nutrients, heavy metals, persistent organic

PAGE 64

64 pollutant ( POPs) and pathogens ( Heathwaite et al. 2005 ; Ren and Packman, 2005 ; Haygarth et al. 2006 ; Kouznetsov et al. 2007 ) Nutrients can cause eutrophication in lake s or river s and h al organs of living organisms. POPs can also threat the health of whole ecosystem s when they enter the food chain. Pathogen s in surface water may cause serious problems to public health, particularly with respect to disease outbreaks. Natural d ense vegetation (grasslands and meadows) or i mplanted ( vegetative filter strip s, VFS) is widely relied upon in natural and in agricultural land s for non point source pollution control. It is suggested that a well installed VFS can remove suspended sediments (up to 90%), phosphorus (75%), ni trogen (87%), and pesticides (40 %) ( Koelsch et al. 2006 ; Dosskey et al. 2007 ; Fox et al. 2010 ; Muoz Carpena et al. 2010 ) In addition, dense vegetation has been found to be effective in removing bio colloid s from surface runoff. A number of studies have been conducted to investigate the removal efficiency of VFSs to fecal bacteria from manure. Results from these studies suggested that dense vegetation could reduce the loading of pathogens from surface runoff ( Trask et al. 2004 ; Guber et al. 2007 ; Fox et al. 2011 ) Our study presented in Chapter 3 ( Yu et al. 2011 ) also demonstrates that in a laboratory setting dense vegetation (Bahia grass) grown on a sandy soil box (1.5 m by 0.5 m) can effectively remove abiotic colloids ( carboxylated polystyrene latex microspheres 0.3 diameter zeta potential 28 mV, inflow concentration 10 mg/l) from surface runoff with a removal rate close to 67 %. Several physicochemical factors, including pollutant characteristics, vegetation composition and density, soil properties, and the phys ical dimensions of the filter strip,

PAGE 65

65 have been identified to be important to the effectiveness of VFS to remove chemical solutes and sediments from runoff. Relative ly few investigations have been conducted to explore the factors that may impact the filtrat ion and transport of colloidal particles in dense vegetation. In laboratory experiments, Tate et al ( 2004 ) and Trask et al. ( 2004 ) found that land slope, vegetation density, and rainfall intensity are among the most important factors that control the removal of Cryptosporidium parvum released from cattle feces on soil surface. Similarly, Fox et al. ( Fox et al. 2011 ) recently demonstrated the importance of inflow rate, infiltration capacity, and initial concentration on filtrat ion of E. coli by dense vegetation in a laboratory VFS soil box. Field experiments conducted by Ferguson et al. ( Ferguson et al., 2007 ) also showed that colloid size played an important role in controlling the mobility of microorganisms (biocolloids) in dense vegetation. Additional investigations, especially integrated systematic experimental and modeling studies, are thus needed to advance current understandings of the physicochemical determinants of colloid removal in dense vegetation. Mathematical mo dels have been developed to aid in the interpretation of biocolloids (pathogenic bacteria) transport and removal in dense vegetation, but most of these models assume that the transport of biocolloids in surface runoff is similar to that of reactiva e solut e. Pachepsky, et al. (2006) developed a reactive solute transport model to simulate the transport of manure borne pathogen (E. coli) through dense vegetation in surface runoff and the model simulation matched the experimental data well. Nevertheless, the actual effect on biocolloid removal of surface deposition on dense vegetation cannot not be separated from bacterial growth and decay effects in

PAGE 66

66 these type of model model formulations. Alternative approaches, especially approaches based on the classical co lloid filtration theory, thus should be considered in modeling the fate and transport of colloids in dense vegetation in surface runoff. Theor y Transport is defined as concentration change in response to water flow and mass exchange processes Generally c olloid t ransport in dense vegetation in surface runoff can be summarized into following processes : advection dispersion, exchange between solid and liquid phase, deposition on the surface of grass stem and soil grains ( Grolimund et al. 1998 ; Socolofsky, 2005 ; Tufenkji, 2007 ) Dynamic flow conditions must be described prior to the interpretation of the fate and transport processes. A short description of the flow and transport theory is provided below as background for the interpretation of the experimental data collected in this study. Overland Flow Surf ace flow in dense vegetation can be described by the kinetic wave approximation of the Saint ( Lighthill and Whitham, 1955 ) (4 1) where h is depth of overland flow [L], q is the flow per unit width of the plane [L 2 T 1 ], and is the net lateral exchange defined as the difference between rainfall and soil infiltration rates [LT 1 ]. A uniform flow e quation can be used as a link between the q and the h, such as (4 2)

PAGE 67

67 where S 0 is the slope of the plane [LL 1 ], and n dimensionless. This approach has been used succ essfully to described flow in vegetative filter strips (Muoz Carpena et al., 1993a,b; 1999). Transport ( Advection and D ispersion) Mathematical models of colloids transport in dense vegetation media generally involve a simplified form of the advection disp ersion equation, which can be derived from basic mass balance principles. ( 4 3 ) where C is the colloid concentration in the surface runoff water [ML 3 ] t is the time [T] x is the distance from colloid pollution source [L] D is the average dispersivity coefficient [L 2 T 1 ] for colloid in the lo ngitudinal direction, v is the average colloidal particle transport velocity [LT 1 ]. Deposition of Colloids on Grass S urface We can consider the dense vegetation as a special porous media with high porosity Under steady state condition s colloid transport through dense vegetation then can be modeled with the advective dispersive transport equation including a term of first order colloid deposition (Eq. 4 4 ) which is the same as in filtration model ( Kretzschmar et al. 1997 ) : ( 4 4 ) w here K g is the first order deposition rate coefficient [T 1 ] Exchanges Between the L iquid and Solid P hase s in the Topsoil Exchange L ayer We assume mass exchange between the overland flow and the soil underneath is also important to colloid transport in dense vegetation ( Wallach et al.; 1989, Gao et al.,

PAGE 68

68 2004b) (Figure 4 1). The mass conservation of colloids in dense vegetation in the n model and the exchange layer theory (Gao et al., 2004b; Walter et al., 2007): ( 4 5 ) ( 4 6 ) where C is colloid concentration in the surface runoff water [M L 3 ], t is the time [ T ], q is the overland flow rate [L 2 T 1 ], h is the ponding water depth [L], x is the coordinate parallel to overland flow [L], D is the dispersion coefficient [L 2 T 1 ], k g is a rate coefficient describing the deposition onto grass surfaces [T 1 ], k ei and k eo are rate coefficients of mass exchange between overland flow and the exchange layer [T 1 ] (Gao et al., 2004b; profile, C e dimensionless constant controlling the exchangeable con centration in the exchange layer. For non equals unity, indicating all the concentration entering the exchange layer is available for mass exchange between the soil and overland flow (Gao et al., 2004b). In this study, because the growth of vegetation would increase the hetero geneity and reactivity of the soil in the exchange layer, thus 0 < 1, reflecting part of the concentration in the soil exchange layer is un exchangeable (i.e., tr apped in immobile water zone and/or attached on soil surfaces). This study was designed to explore surface transport and filtration of colloids in dense vegetation under various physicochemical conditions. Laboratory experiments

PAGE 69

69 were conducted to determin e the effects of runoff in flow ionic strengths, flow velocities, colloid sizes, and vegetation types on colloid removal in a vegetated soil box. The experiment al data are interpreted with the aid of a conservative tracer (bromide) study conducted simultane ously on the same dense vegetation system and mathematical model simulations Our objectives were to 1) understand the effect of physicochemical factors, including ionic strength, colloid size, flow rate and vegetation types, on the attenuation and transp ort of colloidal particles in dense vegetation, and 2) explore mathematical models to simulate the fate and transport of colloids in overland flow through dense vegetation. Materials and Methods Materials Carboxylated polystyrene latex microspheres (Magsp here, Inc.) with an average diameter of 0.3 m were chosen as experimental colloids, because they are commonly used as surrogates for both abiotic and biotic natural colloids ( Gao et al., 2006 ; Morales et al., 2009 ) The microspheres were labeled with yellow/green fluorescence dye and had a density of 1.05 g/cm 3 In the experiment, colloid input concentration was adj usted to about 1 2 mg/L by diluting the stock microsphere suspension. Sodium bromide (certified, Fisher Scientific) was used in the experiment as the conservative chemical solute. The bromide was mixed with the microsphere suspension to a concentration of 4 0 mg/L and was applied to the surface runoff system as a conservative tracer. Quartz sand (Standard Sand & Silica Co.) was used as experimental soil. The sand had a size range between 0.5 to 0.6 mm and a bulk density of 1.54 g/cm 3 The sand was used as re ceived and was paced in a small size soil sunoff box measured 20.32 cm long, 19.05 cm wide, and 10 cm deep (Figure 4 2 ). The soil box was made of

PAGE 70

70 clear polyvinyl chloride (PVC). The box was equipped with a drainage outlet to partition infiltration at the b ottom end during the saturate process before the experiment start. Sand was packed to constant bulk density in the box to a depth of 5 cm. Bahia grass ( Paspalum notatum ) and Perennial Rye grass ( Lolium perenne L.), which are drought resistant turf grasses, were selected as experimental vegetation, because they require low maintenance and are best for warm and humid climate. Grass seeds were planted 1 cm deep in the soil box with a density of 76 g/m2. The vegetated soil box was then irrigated and fertilized for about three months in a greenhouse to create dense vegetation (distance between the stem was < 2 cm) on top of the sand. The height of the dense vegetation was maintained at 8 cm by clipping Runoff Experiment Surface runoff experiments were conducted using the vegetated soil runoff boxes under different physicochemical conditions (Figure 4 2 ). To start a transport study, colloid free water was first applied using a peristaltic pump with an end flow spreader to the vegetat ed soils box to flush the soil and reach steady flow conditions. Once the overland flow stabilized, the inflow was then switched to the experim ental solution containing both colloid and bromide. Because this study was designed to study colloid transport in surface flow, the drainage ou tlet on the soil box was closed during the experiment. The solution was injected to the dense vegetation box through the inflow spreader as a 10 minutes pulse. After that, the inflow was switched back to water to flush the mobile colloids out of the system Surface runoff samples were collected during the experiment at different time intervals. A fluorescent spectrophotometer (Perkin Elmer LS 45) was used to determine colloid concentrations in the samples at wavelengths of 488 nm (exciting) and 509 nm (emis sion). Bromide concentrations in the

PAGE 71

71 samples were determined by an ion chromatograph (Dionex Inc. ICS90). D uplicated or triplicated experiments were conducted for the transport experiments. Average breakthrough concentrations were reported. The effects of flow rates, ionic strengths, colloid sizes, and vegetation types on the microspheres and bromide transport and retention in the dense vegetation were tested. Regular tap water with mean ionic strength of about 0.6 mM ol ( Alstad et al., 2005 ; Shipley et al., 2009 ) was used in the study. To study the ionic strength effect, KCl was added to the tap water in some experim ental runs to make a high ionic strength stock solution of 100 m illi M ole /L iter Small (0.3 m), medium (2 m), large (10.5 m) colloids were used in the study at low ionic strength (i.e., tap water) to test the size effect on colloid transport in dense veg etation systems. All these experiment were conducted at fixed inflow rate s of 62 mL/min or 84 mL/min controlled by the inflow peristaltic pump. Table 4 1 summarize s the experimental conditi o ns. Modeling Tools Equations 4 5 4 6 were solved numerically (fin ite elements method) for a zero initial concentrations, a pulse input boundary condition at inflow, and a zero concentration gradient boundary condition at the outflow. A computer code for hydrology and reactive transport in vegetative filter strip s was used in this study to solve the governing equations ( Perez Ovilla, 2010 ) The model consists of the hydrological and water quality numerical model VFSMOD coupled to dynamic multireactive transport component (RSE). Vegetative Filter Strip Modeling System (VFSMOD W), is a field scale, mechanistic, storm based numerical model developed to route the incoming hydrograph and sediment from an adjacent field through a VFS and to calculate the resulting outflow, infiltration, and sediment trapping

PAGE 72

72 efficiency (Muoz Carpena et al., 1993a,b, 1999; Muoz Carpena and Parsons, 2004, 2008 ). Researchers have successfully tested the model in a variety of field experiments with good agreement between model predictions and measured values of infiltration, outflow, and trapping efficiency for particles (Muoz Carpena et al., 1999; Abu Zreig, 20 01; Abu Zreig et al., 2001; Dosskey et al., 2002; Fox et al., 2005; Han et al., 2005), and phosphorus (particulate and dissolved) (Kuo, 2007; Kuo and Muoz Carpena, 2009). VFSMOD W is currently used in conjunction with other watershed tools and models to d evelop criteria and response curves to assess buffer performance and placement at the watershed level (Yang and Weersink. 2004; Dosskey et al., 2005, 2006, 2008; Tomer et al., 2009; White and Arnold, 2009). Recent studies have extended the modeling tool to successfully calculate pesticide trapping efficiency (Fox and Sabbagh, 2009; Sabbagh et al., 2009; Poletika et al., 2009). These studies identified that performance of VFS for pesticide trapping depends on hydrologic conditions (precipitation, infiltratio n, and runoff), the filter design (length, slope, and densities of vegetation cover), and characteristics of the incoming pollutants (sediment and pesticides). VFSMOD W can be used to describe flow dynamics in dense vegetation systems, including changes in flow derived from sediment deposition, physically based time dependent soil water infiltration. It also handles complex storm pattern and intensity and varying surface conditions along the filter ( Munoz Carpena and Parsons, 1999 ) The VFSMOD contains a transport component that solves the Advection Dispersion Reaction Equation (ADR) using a split operator scheme of the type Transport Reaction Transport at each time step, which means that t he pollutant is

PAGE 73

73 transported; using half of the time step, then is reacted for the full time step, and then transported for the remaining time step (Prez Ovilla, 2011). The transport part of the ADR is solved using a standard Bubnov Galekin cubic/quadratic Finite Element Method with a time weighting (Crank Nicholson algorithm ) method for the temporal derivative. The reactive term is based on a user defined conceptual model RSE (Jawitz et al., 2008; James et al 2009) where interactions and reactions are inp ut into the program as a XML file, so the source code is not modified depend ing o n the type of kinetics and interactions of the transported pollutant. The elements defined for the reactive term are solved in the form of a system of ordinary differential eq uations (ODE) using the fourth order Runge Kutta method. In general the conceptual model considers the pollutants as mobile or stabile, depending if the y move with runoff (i.e. soluble compounds) or stay in the same place during the simulation (i.e. pollu tant soil porewater concentration, absorbed pollutant to soil and vegetation, etc). This module has been tested using analytical solutions with simple first order decay reaction and Monod kinetics for single and coupled species under steady state condition s (Perez Ovilla, 2011). T he model ing tool was parametrized to explore the experimental data. Firstly, the hydrological event was simulated to match the flow conditions (hydrograph) measured at the outlet of the soil runoff box (Fig. 4 2). This yielded a st eady surface water depth ( h ) of 0.16 cm, that closely match the observed values. The measured soil porosity ( ) was 0.43. Exchange layer depth ( d e ) depends on the soil surface conditions and the soil properties of texture, strength, and permeability (Ahujia, et al., 1981). Donigian et al. (1977) used a surface layer thickness of 0.2 0.6 cm, Ahuja et al (1981) cal culated the effective average depth which ranged between 0.2 0.3 cm from experiments, and Gao

PAGE 74

74 et al. (2004 ) employed 0.4 0.7cm. Based on these values we used 0.37cm as the effect ive exchange depth in this model. T he transport of bromide was simulated as a non reactive tracer with VFSMOD RSE to estimate the best fit values of the dispersion coefficient ( D ), the mass exchange rate ( k ei and k eo ), and In our exploratory simulations, we assumed that colloids had the same D and k ei as bromide in the system ( Gao et al., 2005 ; Tian et al., 2010 ) Secondly, VFSMOD RSE with the parameter values D and k ei was calibrated to simulate the transport of colloids in the system under different physicochemical conditions The inverse calibration procedure was perform by honorin g the range of values reported in previous studies (Appendix A, Table A 3). Results and Discussion The optimized values of k g k eo for each type of experiment are summarize d on Table 4 1 and a detailed description of the factor effects is provided below. Effect of I onic S trength Because drainage was blocked in the vegetated soil box during the experiment, almost all the inflow (98.5 99.5%) was recovered in the surface runof f, suggesting the system was well controlled and ready f or the transport studies. Both bromide and colloids showed quick responses when applied to the surface vegetation systems (Figure 4 3 ). The peak concent ration of bromide reached about 80% of that of stock solution (i.e., 0.80C 0 ). Bromide breakthrough concentrations decreased quickly but maintained a tail after the inflow was switch to water (Figure 4 1). The peaks of the two colloid breakthrough curves at different ionic strength conditions were lower than that of bromide and only reached about 0.70C 0 and 0.65C 0 for low (0.558m illi M oles ) and high ionic strength (100.558 m illi M oles ) conditions, respectively. The tails of the colloid

PAGE 75

75 breakthrough curves were also slightly lower than that of bromide breakthrough curve. These results are consistent with our previous findings in a larger scale vegetated soil box that dense vegetation can effectively remove colloidal particles from surface runoff ( Yu et al. 2011 ) Mass balance calculation indicated that about 80.0% of bromide was recovered from the overland flow at the end of the experiment (Figure 4 1); indicating part of the tracer was trapped in the soil underneath the v egetation. The incomplete exchange of tracer between overland flow and soil could be attributed to that the growth of vegetation may increase the heterogeneity of the soil to create immobile or stagnant zones. Previous studies have demonstrated those immob ile water zones in soils can trap both solutes and colloids ( Gaudet et al. 1977 ; Gao et al. 2006 ) As anticipat ed, the recovery rates of colloids under the two ionic strength conditions were lower than that of bromide, confirming the removal of colloids from overland flow by the dense vegetation. Slightly fewer colloids were recovered from the runoff under high ion ic strength (65.4%) than under low ionic strength (69.8%) conditions. Because bromide is a non reactive, conservative tracer, relative recovery rate was used in this study to show the interactions between collo ids and the surface vegetation: (4 7 ) A decreasing trend of relative colloi d recovery rate was observed in the experiment when ionic strength increased ( Figure 4 7 (b) ). Previous studies of colloid transport in porous media suggested that an order of magnitude h igh er solution ionic strength would promote colloid deposition onto surrounding media significantly by reducing repulsive interaction energies between colloid and medium surfaces ( Gao et

PAGE 76

7 6 al., 2004a ; Zevi et al., 2009 ) .Although the decreasing colloid relative recovery rate was not as significant as in porous media, the experiment result indicated the deposition of collo ids on dense vegetation obey colloid filtration theory. Simulations of the mathematical model described the experimental data of bromide and colloid transport at the two ionic strengths very well (Figure 4 3 ). The Nash Sutcliffe model efficiency coefficien t s of the simulations were larger than 0.90 ( Table 4 1). The best fit parameter k ie of colloidal particles in the system was assumed to be the same as bromide. The best fit k g values for low and high ionic strength expe riments were 0.003 and 0.009 S 1 res pectively ( Table 4 1). The deposition rate increased with larger ionic strength, confirming the promoting effect of ionic strength on colloid removal in dense vegetation system. In most of the field conditions, surface runoffs often contain high concentrat ion of ions, such as irrigation may mobilize salts in the some soil types and geologic formations or irrigation water itself with high salt content may be introduced to surface water. Well installed and maintained dense vegetation systems, such as grasslan ds or vegetative filter strips, therefore would be an effective tool to remove colloidal contaminant from surface runoff. Effect o f Particle Size The mobility of colloids in the dense vegetation systems decreased with increasing particle size (Figure 4 4 ). Colloid breakthrough was highest at particle size of 0.3 m and lowest at particle size of 10.5 m. Mass balance calculation indicated that the recovery rate of the large and the small colloids in the dense vegetation systems were 72.0% and 56.8%, respect ively. A decreasing trend of relative colloid recovery rate was observed with increases in colloidal size(Figure 4 7 (a)). A quantitative relationship between the colloid size and the relative recovery rate can be established with further

PAGE 77

77 studies. The mode l simulations also fitted the experimental data of different colloid sizes very well (Figure 4 4 ). The best fit k g values increased from 0.002 to 0.016 S 1 when the particle size increased from 0.3 to 10.5 m (1), indicates strong dependence of colloidal r emoval by dense vegetation on particle size. In addition, when assuming the exchange rate k ei of colloids the same as bromide, the best illustrat ing fewer amounts of colloids was available in the exchange proces s with the colloid size increasing from 0.3 to 10.5 um It was probably because larger colloids were eas ier to be retained in the soil profile. S trong size effect on colloid transport in porous media has also been observed in many previous studies ( Elimelech, 1994 ; Xu et al., 2006 ) For example, Elimelech ( Elimelech, 1994 ) showed that enhancement in particle deposition rate is not only dependent on particle size but also passes through a maximum as the particle size increases at low ionic strength conditions. Because only three colloid sizes were tested in this study, it is unclear whether there exists such a colloid size at which the enhancement in particle deposition rate reaches max imum. Further investigations are still needed to determine the relationship between particle size and their deposition rate in dense vegetation in overland flow. Effect of Flow R ate When a low flow rate (i.e., 64 mL min 1) was used in the experiment, the transport of both bromide and colloids reduced in the vegetative systems (Figure 4 5 ). The peak concentration of bromide and colloids only reached 0.70C 0 and 0.60C 0 respectively. Mass balance calculation indicated that about 70% of bromide and 60% of col loids were recovered from overland flow at the end of the experiment, which was lower than the recovery rates in the high flow rate experiments (i.e., 82 mL min 1) under same

PAGE 78

78 conditions. Relative colloid recovery rate also decreased when flow rate decrease d (Figure 4 7(c)). The model simulation results indicated the rates of colloid deposition (k g ) and entering the exchange layer (k ei ) were higher in the low flow rate experiment than in the high flow rate experiment ( Table 4 1). Probably because slow flow c an increase the resident time of colloids in the dense vegetation systems and thus promotes their deposition onto grass surfaces and entering soil exchange layer. Lower flow rate can enhance the deposition and exchange process. When dense vegetation is ins talled as a vegetative filter strip for non point source pollution, one of its major functions is to reduce flow rate to increase contaminant resident time ( Muoz Carpena et al. 2010 ) It is therefore anticipated that a well installed vegetative filte r strip would also increase the resident time of colloidal contaminants and thus could be used to reduce their loading in surface runoff Effect of Vegetation Type The transport of bromide in the Rye grass was higher than that in the Bahia grass under the same experimental conditions (Figure 4 6 ). About 85% of bromide was recovered from the overland flow in the Rye grass (80% in Bahia), indicating less solute was trapped in the soil stagnate zones. The transport of colloid in the Rye grass, however, was s lightly lower than that in the Bahia grass (Figure 4 6). About 65% of colloids was recovered from the overland flow in the Rye grass (69.8% in Bahia), illustrating more colloids were deposited onto the Rye grass surfaces. In Figure 4 7 (d), the colloid rel ative recovery rate of Bahia grass was much higher than that of Rye grass. The model also described the transport of bromide and colloids in the R ye grass systems fairly well (Figure 4 6 ). The k ei value of Rye g showing that t he root system of Bahia can enhance the bromide diffusion into the soil

PAGE 79

79 pore water. As colloids transported through dense vegetation, the best fit k eo and k g values in the Rye grass experiments were higher than those in the Bahia grass experiment, which is consistent with the experimental data. The differences in transport behaviors between bromide and colloids in the two grasses emphasized the importance of vegetation type on colloid transport and removal in dense vegetation systems. The differences may be caused by the different grass densities, surface area which can contact with colloids in the surface water, and characteristic of the grasses surface (like surface charge). Although several types of grasses have been used as natural filters (grasslands or vegetative filter strips) for non point pollution control, there is limited information about the performance of different grass species in dense vegetation to removal contaminants from runoff, particularly with respect to colloidal contaminants, such as pathogenic microorganisms. It is therefore necessary to conduct additional investigations to understand the effect of vegetation type on colloid transp ort in over land flow through dense vegetation. Chapter Conclusions In this study, a number of experiment s were conducted to study the transport and removal of colloidal particles in dense vegetation under different conditions. A conceptual model was developed and modeling tools were applied to simulate the experimental data and to help data interpretations. Our results indicated that increases in solution ionic strength and increases in particle size can enhance the removal of colloids in dense vegetation systems. We also found that the performances of the dense vegetation systems various with vegetation type s. Although further investigations are still needed, our findings suggested that, when design a dense vegetation system (e.g., vegetative filter strip) for pollution control, factors as solution chemistry, contaminant

PAGE 80

80 properties, and vegetation types shoul d be considered in the design, installation, and maintenance, particularly when the system is for removal colloidal contaminants, such as pathogenic microorganisms.

PAGE 81

81 Table 4 1 Summary of the experimental conditions and optimized model parameters for bromide and colloid transport in the dense vegetation systems. Note: 1 The number s in the parentheses indicate the amount of colloidal particles per liter No. Experimental conditions Optimized model parameters Solution Concentration (ppm) 1 I onic Strength Colloid Size (m) Flow Rate (mL min 1 ) Grass Type D (m 2 s 1 ) k g ( s 1 ) k ei ( s 1 ) k eo ( s 1 ) Correlation Coefficient 1 Bromide 40 low 84 Bahia 0.050 0.029 0.007 0.75 0.9287 2 Colloid 11 (2.6 10 9 ) high 2 .0 84 Bahia 0.050 0.009 0.029 0.007 0.60 0.9343 3 Colloid 11 (2.6 10 9 ) low 2 .0 84 Bahia 0.050 0.003 0.029 0.007 0.60 0.9196 4 Colloid 11 (7 .6 10 11 ) low 0.3 84 Bahia 0.050 0.002 0.029 0.007 0.68 0.9393 5 Colloid 11 (1.8 10 7 ) low 10.5 84 Bahia 0.050 0.016 0.029 0.017 0.50 0.9208 6 Bromide 40 low 62 Bahia 0.050 0.037 0.005 0.65 0.9454 7 Colloid 11 (7.6 10 11 ) low 0.3 62 Bahia 0.050 0.009 0.037 0.011 0.6 0 0.9376 8 Bromide 40 low 84 Rye 0.050 0.025 0.007 0.75 0.8572 9 Colloid 11 ( 2.610 9 ) low 2 .0 84 Rye 0.050 0.007 0.025 0.009 0.5 0 0.863 0

PAGE 82

82 Figure 4 1. Conceptual model for surface transport and removal of colloids by dense vegetation. k g is a rate coefficient describing the deposition onto grass surfaces, k ei and k eo are rate coefficients of mass exchange between controlling the exchangeable concentration in the soil exchange layer.

PAGE 83

83 Figure 4 2 Experimental setup employed in t he col loid transport studies: A) schematic; B ) view of the runoff collector with dense vegetation (Bahia grass).The dimen sions of the runoff collector is L20 x W19 x D10 cm, with soil depth 5 cm. The components of the vegetation runoff system are labeled in the figure. A ) B ) H=10cm W = 20 cm

PAGE 84

84 Figure 4 3 Effect of ionic strength on colloid transport in overland flow through dense vegetation (symbols= experimental data line = simulation results). 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 C/C 0 (%) Time (Seconds) Bromide Low Ionic Strength High Ionic Strength Model_Bromide Model_Low Ionic Strength Model_High Ionic Strength

PAGE 85

85 Figure 4 4 Effect of colloid size on colloid transport in overland flow t hrough dense vegetation (symbols= experimental data line = simulation results). 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 C/C 0 (%) Time (Seconds) Model_0.3um Model_2um Model_10.5um 0.3um 2um 10.5um

PAGE 86

86 Figure 4 5 Colloid transport in overland flow through dense vegetation at different flow rates: A ) high (84 mL/min) and B ) low ( 62 mL/min) (symbols= experimental da ta line = simulation results). 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 C/C0 (%) Time (Seconds) Bromide Colloids Model_Bromide Model_Colloids 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 C/C 0 (%) Time (Seconds) Bromide Colloids Model_Bromide Model_Colloids A ) B )

PAGE 87

87 Figure 4 6 Colloid transport in overland flow through different vegetation types: A) Bahia and B ) Rye grasses (symbols= experimental data line = simulation results). 0 10 20 30 40 50 60 70 80 0 500 1000 1500 2000 C/C0 (%) Time (Seconds) Bromide Colloids Model_Bromide Model_Colloids 0 10 20 30 40 50 60 70 80 90 0 500 1000 1500 2000 C/C0 (%) Time (Seconds) Bromide Colloids Model_Bromide Model_Colloids B ) A )

PAGE 88

88 Figure 4 7 Trends of the factor effect s on colloids recovery rates: A) colloid size; B) ionic strength; C ) surfac e runoff inflow velocity; and D ) vegetation type. A ) B ) C ) D )

PAGE 89

89 CHAPTER 5 CONCLUSIONS The surface removal and transport of colloidal particles by dense vegetation has been examined by integratio n of laboratory experiments and exploratory modeling with the numerical model (VFSMOD RSE). L ab oratory scale surface runoff system s consisting of rainfall simulator, soil box es inflow devi c e, runoff and drainage collectors w ere designed and used in this study Well controlled runoff experiments were conducted to compare the transport behavior of colloids to bromide in overland flow on bare and vegetated soil surface s In addition, chemical and physical factors controlling the surface removal and transpor t of colloids in dense vegetation were also investigated. A conceptual model was developed based on the experimental findings. VFSMOD RSE was applied to obtain model simulations of colloid transport through dense vegetation in overland flow. It was found that dense vegetation is effective in removing colloids from surface runoff, and the model developed and tested showed promising capacity to predict the fate and transport of colloids and colloidal contaminants in dense vegetation and the potential for re moval. Colloid Transport in Surface Runoff on Bare Soil In Chapter 2, laboratory runoff experiments were conducted on bare soil to examine the transport dynamics of kaolinite and bromide in overland flow and soil drainage. The breakthrough curve of Kaoli nite and bromide were monitored continuously. The experiment results indicate that the transport of kaolinite in subsurface (soil drainage) flow was lower than that of bromide, which is in agreement to colloid filtration theory A total of 26% of the input colloids were removed by a 5 cm

PAGE 90

90 deep 153.2 cm long soil bed. However, the transport of kaolinite in surface runoff almost resembled that of bromide indicating no removal in overland flow. Colloid Transport in Surface Runoff on Vegetated Soil In Chapter 3, laboratory runoff experiments similar to those in Chapter 2 were conducted with fluorescent latex microspheres (of equivalent average characteristics to kaolinite from the bare soil experiments) on vegetated soil with Bahia grass. Comparisons of the bre akthrough behaviors of bromide and colloids in overland flow through dense vegetation demonstrated that the dense vegetation system also remove d effectively colloidal particles from surface runo ff In addition, the soil (and root) underneath the vegetation also showed enhanced ability to remove colloids from the drainage flows. Adsorption batch experiments confirmed that grass leaf, stem, and root could effectively adsorb aqueous colloids and different grass parts demonstrated different adsorption capacity (root > stem > leave). The recovery differences between colloids and bromide (8.2% for surface and 27.3% for subsurface) represent mainly the colloid deposition and surface exchange processes by the soil/vegetation system. The total amount of colloids rem oved at the surface (7.6 mg) was only about 2.4% of the estimated maximum capacity of the vegetation stems (313.7 mg from the adsorption studies), because of limited contact between colloids and the vegetation in dynamic conditions. Higher removal of col loids (>27.3%) from the subsur face flows can be attributed to 1) the filtration of colloids by the sand; 2) the adsorption of the colloids onto the grass root as suggested by the batch sorption experiments. In the runoff experiments in Chapter 2, k aolinit e recovery rates in the surface flow and drainage were 51% and 23% respectively, while 26% of k aolinite was retained in the soil profile. In the runoff experiments through dense vegetation of Chapter 3, 28.7 %

PAGE 91

91 microspheres was recovered in overland flow, a nd 4.5% recovered in the drainage so t he 153 cm length Bahia vegetation retained almost 6 7 % of the inputs colloid s This indicate s that dense vegetation, if properly installed and maintained in the form of vegetative filter strips, can be used to reduce t he load of colloidal contaminants to surface water. Factors Controlling Surface Removal of Colloids by Dense Vegetation In Chapter 4, an analogy between soil porous media and overland flow through dense vegetation is proposed. A number of experiments were conducted to investigate the key factors that have been typically identified by porous media classic filtration theory, which included ionic strength, colloid size, flow rate, and vegetation type. Our results indicated that increases in solution ionic st rength and increases in particle size can enhance the removal of colloids in dense vegetation systems. We also found that the performance of the dense vegetation systems varies with vegetation types. A numerical model VFSMOD RSE that incorporated overlan d flow with transport, classic filtration theory and a solute soil exchange layer concept was used to interpret the removal of colloids in the dense vegetation under various conditions. In the colloid exchange process, the soil pore water was divided int o non mobile water, in which colloidal particles are retained and mobile water, in which colloids could diffused back to surface water. Based on classic filtration model, the removal of suspended particles is described by first order kinetics, resulting in concentrations of suspended and retained particles that decay exponentially with time ( distance ) A n excellent agreement was found between model predictions and observations from the runoff experiments. Both experimental and modeling results showed enviro nmental factors, such as ionic

PAGE 92

92 strength, can control the deposition and exchange process, thus play an important role in controlling colloid transport and removal in the dense vegetation. Recommendations for Future Work Recommendations for future studies a re as follow: To quantify relationship between solution ionic strength, vegetation density, flow rate and colloid removal rate in dense vegetation To conduct field scale experiments of colloid removal in overland flow on vegetated soils To develop experim ental and/or theoretical methods for model parameterizations To upscale and test the model at the field scale or watershed scale.

PAGE 93

93 APPENDIX A SUMMARY OF EXPERIMENTAL CONDITION S OF COLLOID TRANSPORT IN SURFACE RUNOFF Table A 1. Comparison of experimental condition s of colloid transport in overland flow on bare soil (Chapter 2) and densely vegetated soil (Chapter 3) Chapter 2 Chapter 3 Colloids Kaolinite powder Carboxylated polystyrene latex microspheres Tracer 40 ppm Sodium Bromide 40 ppm Sodium Bromide Soil Bed 0.5 to 0.6 mm washed quartz s and, porosity 0.43, slope 1.7%, dimension (153.1 40.2 *10 cm) 0.5 to 0 .6 mm washed quartz sand, porosity 0.43, slope 1.7%, dimension (153.1 40.2 *10 cm) Inflow rate 0.31 L/Min 0.31 L/Min Rainfall intensity 64 mm/hour (uniformity > 90%) 64 mm/hour (uniformity > 90%) Ionic Strength regular tap water (0.558 mMol) regular t ap water (0.558 mMol) Table A 2. Characteristic s of colloids used in chapter 2 (kaolinite) and chapter 3 (microspheres) kaolinite Carboxylated polystyrene latex microspheres Average 0.4 (0.05 1.0) 0.3 0 Zeta potential (mv) 33.11 28 .00 Table A 3. Reported parameter values* used in chapter 4 as guidelines to optimize model parameters. D (m 2 s 1 ) k g (s 1 ) k ei (s 1 ) k eo (s 1 ) > 10 13 10 3 10 1 > 10 4 > 10 4 0 1 *: Obta ined from Gao et al., 2004; Wallach et al.,1989; and Walter et. al., 2007.

PAGE 94

94 Figure A 1. Experimental set up for surface runoff experiment in Chapter 2 and 3 : A ) the soil container, B ) peristaltic pump C ) scale to measure the weigh t of the soil box with water, D ) ECH2O Dielectric Aquameters A ) C ) D ) B )

PAGE 95

95 APPENDIX B INPUT FILES FOR TRANSPOR T AND REACTION SIMULATION ENGINE ( RSE) BrNoRain.xml all all surface_water BrInRunoff 10.0 BrInSoil 10.0 longitudinal_dispersivity 10.0 transverse_dispersivity 10.0

PAGE 96

96 molecular_diffusion 0.00001
surface_porosity 1.0 subsurface_longitudinal_dispersivity 10.0 subsurface_transverse_dispersivity 10.0 subsurface_molecular_diffusion 0.00001 subsurface_porosity 1.0 TSED 1.0 FSED 1.0

PAGE 97

97
CSED 1.0 SEDVFS 1.0 FPI 1.0 HRO 1.0 K1 0.0 K2 0.0 Alfa 0.0


PAGE 98

98
BrInRunoff 1*K1*(BrInRunoff)+K2*(BrInSoil) BrInSoil Alfa*K1*(BrInRunoff) 1*K2*(BrIn Soil)
BrNoRain.igr 2.2 .24 .001 .011 0 -------------------------------------------SS(cm) Vn(s/cm^1/3) H(cm) Vn2(s/m^1/3) ICO(0 or 1 ) BrNoRain.irn 4 0 Nrain, rpeak (m/s) 0 0 600 0 1800 0 2000 0 BrNoRain.iro 0.1905 0.2032 Swidth(m), Slength(m) 8 0.0000014 nbcroff, bcropeak(m3/s) 0 0 1 0.0000014 10 0.0000014 600 0.0000014 1800 0.0000014 1801 0

PAGE 99

99 1900 0 2500 0 BrNoRain.isd 1 .01 .00001 .42 Npart, Coarse, Ci(g/cm3), Por .0023 2.6 Dp(cm), SG(g/cm3) BrNoRain.iwq 3 'BrNoRain.xml' 'BrNoRainOut.xml' 'rs1' 1 BrInRunoff 100 0.05 2.08E 9 0 1 BrInSoil 0 3 K1 0.0265 K2 0.007 Alfa 0.5 0 BrNoRain.ikw Unit9, g8, u183 91 .15 .2032 57 .5 .8 350 3 1 1 4 0 .4 .03 .05 .4 .03 .1 .4 .03 .2032 .4 .03 1 ------------------------------------title fwidth vl n thetaw cr maxiter npol ielout kpg nprop sx(iprop), rna(iprop), soa(iprop), iprop=1,nprop WQ flag=1 if Pesticides Bayer Option has b een chosen BrNoRain.isd 7 .5 0.034 .434 'NPART, COARSE, CI(g/cm3), POR 0.0013 2.65 'DP(cm), SG(g/cm3) ----------------------------------------------------------------------------BrNoRain.iso

PAGE 100

100 .0 .08 .425 .425 0 .55 -----------------------------------Ks(m/s) Sav(m) Theta s Theta i Sm(m) Schk(ponding ck)

PAGE 101

101 APPENDIX C EXPERIMENTAL DATA IN CHAPTER 2

PAGE 102

102 Table C 1. Water flow summary for bromide runoff experiments on bare soil Run Time Inflow DR#1 DR#2 DR#3 DR#4 RO Rainfall Area of the box L/min mm/hour cm2 # 1 July 07,09 0.344 0.0986 0.1442 0.1258 0.1099 0.4763 60.61 6154.62 # 2 July 08,09 0.335 0.0914 0.1466 0.1276 0.1283 0.4465 59.95 6154.62 # 3 Aug 11,09 0.333 0.1048 0.0828 0.1045 0.1375 0.5618 54.44 6154.62 # 4 Aug 13,09 0.299 0.0895 0.0848 0.1006 0.1268 0.5636 54.70 6154.62 # 5 Sep 09,09 0.302 0.1168 0.1202 0.0787 0.1 0.5085 64.17 6228.96 # 6 Sep 12,09 0.307 0.0957 0.1055 0.0624 0.0767 0.5993 65 .17 6228.96 # 7 Sep 14,09 0.302 0.0762 0.083 0.0544 0.0579 0.6431 65.22 6228.96 # 8 Oct 14,09 0.303 0.0088 0.0078 0.0055 0.0036 0.8512 62.94 6228.96 # 9 Nov 18,09 0.295 0.0683 0.0459 0.0608 0.0262 0.6841 68.70 6228.96

PAGE 103

103 Table C 2 Bromide run #1 water flow and rainfall data (bromide was applied to the system at time zero, negative time represents prewashing). Time (min) DR#1 (L) DR#2 (L) DR#3 (L) DR#4 (L) RO (L) Rainfal l (mm) 30.5 0.6994 0.6423 0.7677 0.7725 0.5642 0.0000 30 0.7161 0.6598 0.7810 0.7935 0.5636 0.7880 29.5 0.7438 0.6925 0.8172 0.8264 0.5654 1.3130 29 0.7697 0.7369 0.8561 0.8592 0.5700 1.8380 28.5 0.8009 0.7773 0.8926 0.8944 0.6017 2.6260 28 0.8 341 0.8269 0.9366 0.9300 0.6893 3.1510 27.5 0.8680 0.8720 0.9755 0.9604 0.7989 3.6760 27 0.8953 0.9202 1.0230 1.0007 0.9403 4.4640 26.5 0.9276 0.9653 1.0666 1.0378 1.0814 4.9890 26 0.9609 1.0108 1.1140 1.0777 1.2659 5.5140 25.5 0.9883 1.0587 1.15 80 1.1123 1.4586 6.3020 25 1.0219 1.1085 1.2142 1.1558 1.6448 6.8270 24.5 1.0555 1.1626 1.2733 1.2054 1.8171 7.3520 24 1.0976 1.2183 1.3310 1.2501 2.0407 8.1400 23.5 1.1361 1.2776 1.3882 1.2968 2.2686 8.6650 23 1.1729 1.3335 1.4421 1.3425 2.4998 9.1900 22.5 1.2142 1.4069 1.4963 1.3935 2.7382 9.7150 22 1.2543 1.4766 1.5573 1.4496 3.0137 10.5030 21.5 1.3006 1.5464 1.6137 1.4928 3.2895 11.0280 21 1.3425 1.6273 1.6686 1.5356 3.5403 11.8160 20.5 1.3915 1.6936 1.7180 1.5838 3.7954 12.3410 20 1.4339 1.7637 1.7678 1.6371 4.0330 12.8660 19.5 1.4739 1.8288 1.8096 1.6772 4.2820 13.3910 19 1.5155 1.8847 1.8608 1.7156 4.5323 14.1790 18.5 1.5676 1.9271 1.9105 1.7662 4.8174 14.7040 18 1.6122 1.9881 1.9676 1.8313 5.0779 15.2290 17.5 1.6586 2. 0462 2.0270 1.8557 5.3687 15.7540 17 1.7038 2.1038 2.0850 1.8941 5.6513 16.5420 16.5 1.7572 2.1733 2.1521 1.9384 5.9234 17.0670 16 1.8038 2.2338 2.2102 1.9881 6.2051 17.8550 15.5 1.8430 2.3028 2.2786 2.0315 6.4737 18.3800 15 1.8821 2.3705 2.3447 2.0841 6.7506 18.9050 14.5 1.9253 2.4429 2.4217 2.1397 7.0360 19.6930 14 1.9649 2.5292 2.4836 2.1966 7.3298 20.2180 13.5 2.0034 2.6056 2.5655 2.2527 7.5812 20.7430 13 2.0453 2.6850 2.6348 2.3069 7.8646 21.5310 12.5 2.0888 2.7664 2.7046 2.3674 8.1 552 22.0560 12 2.1302 2.8401 2.7912 2.4207 8.4258 22.5810 11.5 2.1762 2.9167 2.8485 2.4761 8.6744 23.1060 11 2.2230 2.9936 2.9167 2.5401 8.9564 23.8940

PAGE 104

104 Table C 2. Continued. 10.5 2.2477 3.0658 2.9848 2.6011 9.1864 24.1570 10 2.3612 3.1774 3.0966 2.7995 9.8386 24.4200 9.5 2.4017 3.2250 3.1381 2.8461 9.8993 24.9450 9 2.4589 3.2976 3.2144 2.9032 9.9298 25.4700 8.5 2.4998 3.3645 3.2638 2.9401 9.9909 26.2580 8 2.5644 3.4103 3.3412 2.9911 10.1138 26.7830 7.5 2.6112 3.4762 3.4047 3.0518 10.237 7 27.3080 7 2.6770 3.5604 3.4833 3.1225 10.4252 28.0960 6.5 2.7429 3.6477 3.5460 3.1839 10.6468 28.6210 6 2.8018 3.7218 3.6170 3.2410 7.7091 29.1460 5.5 2.8679 3.8046 3.6801 3.2895 0.6567 29.9340 5 2.9191 3.8934 3.7562 3.3302 0.7046 30.4590 4.5 2.9823 3.9729 3.8182 3.3853 0.8184 30.9840 4 3.0365 4.0473 3.8795 3.4312 0.9580 31.7720 3.5 3.0863 4.1212 3.9479 3.4889 1.1036 32.2970 3 3.1433 4.2010 4.0266 3.5604 1.2813 32.8220 2.5 3.2064 4.2737 4.0937 3.6053 1.4711 33.3470 2 3.2531 4.3423 4. 1585 3.6713 1.6609 34.1350 1.5 3.3016 4.4117 4.2388 3.7173 1.8288 34.6600 1 3.3412 4.4631 4.2920 3.7728 2.0270 35.1850 0.5 3.3825 4.5323 4.3608 3.8182 2.2457 35.9730 0 3.4382 4.6023 4.4288 3.8873 2.4696 36.4980 0.5 3.4804 4.6732 4.5149 3.9369 2.668 9 37.0230 1 3.5317 4.7449 4.6023 3.9950 2.9032 37.8110 1.5 3.5749 4.7992 4.6732 4.0505 3.1524 38.3360 2 3.6360 4.8723 4.7269 4.1212 3.4256 38.8610 2.5 3.6816 4.9463 4.7810 4.1666 3.6507 39.3860 3 3.7277 5.0212 4.8723 4.2190 3.9213 39.9110 3.5 3.7818 5.0969 4.9278 4.2836 4.1373 40.6990 4 3.8243 5.1928 5.0024 4.3558 4.3676 41.2240 4.5 3.8749 5.2704 5.0779 4.4117 4.6200 41.7490 5 3.9182 5.3490 5.1735 4.4631 4.8723 42.2740 5.5 3.9714 5.4483 5.2509 4.5323 5.1928 42.7990 6 4.0314 5.5289 5.3292 4.5672 5 .4885 43.3240 6.5 4.0761 5.6307 5.3885 4.6376 5.7757 44.1120 7 4.1325 5.7132 5.4684 4.7089 6.0306 44.6370 7.5 4.1813 5.7966 5.5289 4.7629 6.3160 45.1620 8 4.2339 5.8809 5.6102 4.8174 6.5881 45.6870 8.5 4.2853 5.9661 5.6719 4.8723 6.8685 46.4750 9 4.3 389 6.0522 5.7548 4.9278 7.1330 47.0000 9.5 4.3947 6.1174 5.8176 5.0024 7.4046 47.5250 10 4.4459 6.2051 5.8809 5.0589 7.6578 48.0500

PAGE 105

105 Table C 2. Continued. 10.5 4.4976 6.2715 5.9447 5.1160 7.9169 48.8380 11 4.5672 6.3608 6.0306 5.1735 8.1820 49.3630 1 1.5 4.6200 6.4510 6.0956 5.2315 8.4258 49.8880 12 4.6732 6.5193 6.1611 5.2900 8.7024 50.4130 12.5 4.7449 6.6111 6.2272 5.3490 8.9280 51.2010 13 4.7992 6.6806 6.2937 5.4084 9.1574 51.7260 13.5 4.8540 6.7741 6.4058 5.4684 9.3614 52.2510 14 4.9092 6.8448 6.4284 5.5289 9.5683 52.7760 14.5 4.9837 6.9399 6.4965 5.5694 9.7479 53.5640 15 5.0400 7.0119 6.5651 5.6307 9.9298 54.0890 15.5 5.0779 7.0844 6.6342 5.6925 1.1649 54.6140 16 5.1351 7.1574 6.7039 5.7340 0.6893 55.4020 16.5 5.1928 7.2309 6.7741 5.7966 0.8047 55.9270 17 5.2509 7.3050 6.8212 5.8387 0.9561 56.4520 17.5 5.3096 7.4046 6.8922 5.9234 1.1277 56.9770 18 5.3490 7.4547 6.9638 5.9661 1.3316 57.7650 18.5 5.4084 7.5304 7.0360 6.0091 1.5392 58.2900 19 5.4684 7.6066 7.1086 6.0739 1.7140 58.8150 1 9.5 5.5289 7.6834 7.1574 6.1174 1.9071 59.3400 20 5.5694 7.7607 7.2309 6.1831 2.1151 60.1280 20.5 5.6102 7.8125 7.3050 6.2272 2.3550 60.6530 21 5.6719 7.8907 7.3547 6.2937 2.5966 61.1780 21.5 5.7132 8.0222 7.4296 6.3608 2.8413 61.7030 22 5.7548 8.1285 7.4799 6.4058 3.0966 62.4910 22.5 5.8176 8.2627 7.5558 6.4510 3.3618 63.0160 23 5.8598 8.3440 7.6322 6.5193 3.6389 63.5410 23.5 5.9234 8.3985 7.7091 6.5651 3.8826 64.0660 24 5.9876 8.4532 7.7866 6.6111 4.1147 64.8540 24.5 6.0306 8.5081 7.8385 6.6806 4.3372 65.3790 25 6.0739 8.5633 7.8907 6.7506 4.6023 65.9040 25.5 6.1174 8.5910 7.9694 6.7741 4.8723 66.4290 26 6.1611 8.6466 8.0222 6.8212 5.1735 66.9540 26.5 6.2051 8.6744 8.1019 6.8922 5.4885 67.7420 27 6.2493 8.7303 8.1552 6.9399 5.7757 68.2670 2 7.5 6.2715 8.7865 8.2358 6.9878 6.0522 68.7920 28 6.3160 8.8429 8.3168 7.0601 6.3160 69.5800 28.5 6.3608 8.8712 8.3985 7.1086 6.5881 70.1050 29 6.4284 8.9564 8.4532 7.1574 6.8685 70.6300 29.5 6.4737 9.0135 8.5357 7.2309 7.1330 71.1550 30 6.5421 9.0997 8.6188 7.2802 7.3796 71.6800 30.5 6.5881 9.1574 8.6744 7.3298 7.6322 72.4680 31 6.6342 9.2154 8.7584 7.3796 7.8646 72.9930

PAGE 106

106 Table C 2. Continued. 31.5 6.6806 9.2736 8.8429 7.4296 8.1552 73.5180 32 6.7272 9.3614 8.8995 7.4799 8.3985 74.0430 32.5 6.774 1 9.3907 8.9564 7.5558 8.6188 74.5680 33 6.8212 9.4792 9.0135 7.6066 8.8712 75.3560 33.5 6.8685 9.5385 9.0709 7.6578 9.0997 75.8810 34 6.9399 1.2261 9.1574 7.7349 9.3028 76.4060 34.5 6.9878 0.6696 9.2154 7.7866 9.5088 77.1940 35 7.0601 0.6774 9.2736 7 .8385 9.6578 77.7190 35.5 7.0844 0.7090 9.3028 7.8907 9.8993 78.2440 36 7.1330 0.7408 9.3614 7.9431 1.2278 78.7690 36.5 7.1818 0.7757 9.4202 7.9958 0.7153 79.2940 37 7.2309 0.8184 9.4792 8.0487 0.8281 80.0820 37.5 7.3050 0.8579 9.5088 8.1285 0.9532 80 .6070 38 7.3547 0.8976 9.5683 8.1820 1.1206 81.1320 38.5 7.4046 0.9366 9.5980 8.2358 1.3100 81.6570 39 7.4547 0.9814 9.6279 8.2898 1.5233 82.1820 39.5 7.5051 1.0281 9.6878 8.3440 1.7236 82.9700 40 7.5304 1.0734 9.6878 8.3985 1.9201 83.4950 40.5 7.606 6 1.1206 9.7479 8.4532 2.1236 84.0200 41 7.6322 1.1649 9.7781 8.5081 2.3788 84.5450 41.5 7.7091 1.2201 4.6732 8.5633 2.6213 85.3330 42 7.7607 1.2782 0.6686 8.6188 2.8533 85.8580 42.5 7.7866 1.3329 0.6714 8.7024 3.1459 86.3830 43 7.7866 1.4015 0.6900 8 .7303 3.3936 86.9080 43.5 7.8646 1.4627 0.7131 8.8147 3.6757 87.6960 44 7.9169 1.5298 0.7458 8.8712 3.9432 88.2210 44.5 7.9694 1.6017 0.7781 8.9280 4.1895 88.7460 45 7.9958 1.6594 0.8105 8.9564 4.3947 89.2710 45.5 8.0487 1.7220 0.8513 9.0135 4.6554 90 .0590 46 8.1019 1.8047 0.8872 9.0709 4.9278 90.5840 46.5 8.1552 1.8727 0.9253 9.0997 5.2509 91.1090 47 8.1820 1.9253 0.9648 9.1864 5.5694 91.6340 47.5 8.2358 1.9899 1.0027 9.2154 5.8387 92.1590 48 8.2898 2.0545 1.0394 9.2736 6.1174 92.9470 48.5 8.344 0 2.1047 1.0852 9.3028 6.4284 93.4720 49 8.3712 2.1752 1.1211 9.3320 6.6806 93.9970 49.5 8.4258 2.2447 1.1660 9.3907 6.9878 94.5220 50 8.4532 2.3028 1.2101 9.4497 7.2802 95.3100 50.5 8.5081 2.3674 1.2616 9.4792 7.4799 95.8350 51 8.5633 2.4302 1.3056 9 .5088 7.7607 96.3600 51.5 8.6188 2.5030 1.3516 9.5385 8.0487 96.8850 52 8.6466 2.5866 1.4096 9.5683 8.2898 97.6730

PAGE 107

107 Table C 2. Continued. 52.5 8.6744 2.6712 1.4655 9.5980 8.5081 98.1980 53 8.7303 2.7534 1.5205 9.6279 8.7584 98.7230 53.5 8.7584 2.8269 1.5920 9.6578 8.9850 99.2480 54 8.8147 2.9081 1.6463 9.6878 9.2154 100.0360 54.5 8.8429 2.9848 1.7006 9.7178 9.3907 100.5610 55 8.8995 3.0709 1.7492 9.7781 9.5980 101.0860 55.5 8.9280 3.1446 1.7997 9.8083 9.7479 101.6110 56 8.9850 3.2157 1.8422 9.8993 9.9603 102.1360 56.5 9.0135 3.2935 1.9001 0.6379 10.1756 102.9240 57 9.0709 3.3618 1.9516 0.6355 10.3938 103.4490 57.5 9.1285 3.4536 2.0124 0.6443 10.7747 103.9740 58 9.1574 3.5346 2.0609 0.6525 10.8713 104.4990 58.5 9.2154 3.6141 2.1141 0.6689 10.90 36 105.0240 59 9.2736 3.6920 2.1723 0.6983 10.9359 105.8120 59.5 9.2736 3.7713 2.2299 0.7278 2.0462 106.3370 60 9.3320 3.8611 2.2857 0.7594 0.6817 106.8620 60.5 9.3614 3.9432 2.3364 0.7964 0.7870 107.3870 61 9.3907 4.0330 2.4080 0.8235 0.9049 107.9120 61.5 9.4202 4.1195 2.4750 0.8566 1.0608 108.4370 62 9.4497 4.2010 2.5522 0.8903 1.2464 108.9620 62.5 9.5088 4.2770 2.6281 0.9300 1.4305 109.4870 63 9.5385 4.3574 2.7034 0.9648 1.6212 110.2750 63.5 9.5980 4.4288 2.7652 1.0002 1.8129 110.8000 64 9.627 9 4.5149 2.8425 1.0529 2.0016 111.3250 64.5 9.6878 4.5847 2.9044 1.1068 2.2063 111.8500 65 9.7178 4.6554 2.9549 1.1434 2.4334 112.3750 65.5 9.7781 4.7089 3.0087 1.1838 2.6553 112.9000 66 9.8083 4.7810 3.0889 1.2189 2.8788 113.6880 66.5 4.9650 4.8540 3 .1551 1.2739 3.1108 114.2130 67 0.6707 4.9278 3.2170 1.3233 3.3673 114.7380 67.5 0.6710 5.0024 3.3030 1.3796 3.6214 115.2630 68 0.6728 5.0779 3.3508 1.4394 3.8641 116.0510 68.5 0.6763 5.1543 3.4158 1.5027 4.0857 116.5760 69 0.6900 5.2315 3.4847 1.5603 4.3037 117.1010 69.5 0.7135 5.3096 3.5547 1.6047 4.5149 117.6260 70 0.7281 5.4084 3.6257 1.6571 4.7629 118.1510 70.5 0.7500 5.4684 3.6816 1.7022 5.0024 118.1510 71 0.7662 5.5086 3.6964 1.7500 5.2315 118.1510 71.5 0.7713 5.5086 3.7158 1.7874 5.4284 11 8.1510 72 0.7701 5.5086 3.7083 1.8005 5.5694 118.1510 72.5 0.7705 5.5086 3.7068 1.8088 5.6307 118.1510 73 0.7674 5.5086 3.7054 1.8080 5.6307 118.1510

PAGE 108

108 Table C 2. Continued. 73.5 0.7697 5.5289 3.7098 1.8154 5.6513 118.1510 74 0.7685 5.5086 3.7158 1.816 3 5.6513 118.1510 74.5 0.7697 5.5086 3.7098 1.8204 5.6513 118.1510 75 0.7765 5.5086 3.7098 1.8238 5.6307 118.1510 75.5 0.7822 5.5086 3.7083 1.8254 5.6513 118.1510 76 0.7826 5.5086 3.7128 1.8304 5.6513 118.1510 76.5 0.7814 5.5086 3.7039 1.8304 5.6513 1 18.1510 77 0.7810 5.5086 3.7024 1.8330 5.6513 118.1510 77.5 0.7814 5.5086 3.7039 1.8338 5.6513 118.1510 78 0.7822 5.5086 3.7054 1.8397 5.6513 118.1510 78.5 0.7814 5.5086 3.7039 1.8405 5.6513 118.1510 79 0.7814 5.5086 3.7054 1.8430 5.6513 118.1510 79. 5 0.7822 5.5086 3.7054 1.8430 5.6513 118.1510 80 0.7814 5.5086 3.7039 1.8422 5.6513 118.1510 80.5 0.7822 5.5086 3.7039 1.8439 5.6513 118.1510 81 0.7822 5.5086 3.6994 1.8439 5.6513 118.1510 81.5 0.7806 5.5086 3.7009 1.8439 5.6513 118.1510 82 0.7802 5.5 086 3.7039 1.8464 5.6513 118.1510 82.5 0.7797 5.5086 3.6964 1.8430 5.6513 118.1510 83 0.7793 5.5086 3.7024 1.8472 5.6513 118.1510 83.5 0.7781 5.5086 3.6964 1.8439 5.6513 118.1510 84 0.7793 5.5086 3.7054 1.8481 5.6513 118.1510 84.5 0.7789 5.5086 3.7039 1.8472 5.6513 118.1510 85 0.7793 5.5086 3.7054 1.8481 5.6513 118.1510 85.5 0.7793 5.5086 3.7054 1.8481 5.6513 118.1510 86 0.7789 5.5086 3.7039 1.8489 5.6513 118.1510 86.5 0.7785 5.5086 3.7009 1.8481 5.6513 118.1510 87 0.7797 5.5289 3.7068 1.8540 5.65 13 118.1510 87.5 0.7793 5.5086 3.7054 1.8540 5.6513 118.1510 88 0.7793 5.5086 3.7054 1.8540 5.6513 118.1510 88.5 0.7797 5.5289 3.7083 1.8548 5.6513 118.1510 89 0.7789 5.5086 3.7054 1.8523 5.6513 118.1510 89.5 0.7793 5.5086 3.7054 1.8591 5.6513 118.151 0 90 0.7781 5.5086 3.7024 1.8565 5.6513 118.1510 90.5 0.7785 5.5086 3.7024 1.8574 5.6513 118.1510 91 0.7789 5.5086 3.7039 1.8582 5.6513 118.1510 91.5 0.7793 5.5086 3.7054 1.8591 5.6513 118.1510 92 0.7797 5.5289 3.7068 1.8633 5.6513 118.1510 92.5 0.77 85 5.5086 3.7068 1.8574 5.6513 118.1510 93 0.7773 5.5289 3.7128 1.8667 5.6513 118.1510 93.5 0.7761 5.5086 3.7098 1.8718 5.6513 118.1510 94 0.7765 5.5086 3.7098 1.8744 5.6513 118.1510

PAGE 109

109 Table C 2. Continued. 94.5 0.7781 5.5086 3.7054 1.8744 5.6513 118.15 10 95 0.7781 5.5086 3.7024 1.8735 5.6513 118.1510 95.5 0.7773 5.5086 3.7083 1.8847 5.6513 118.1510 96 0.7797 5.5289 3.7158 1.8829 5.6513 118.1510 96.5 0.7781 5.5086 3.7113 1.8838 5.6513 118.1510 97 0.7781 5.5086 3.7068 1.6047 5.6513 118.1510 Note: th e relation between the sensor mV and water volume was: Volume (L) = EXP( 2.05705+0.00624*mV 0.000001695*mV^2) Table C 3 Bromide run #2 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 30 0.6215 0.6117 0.61 49 0.6078 0.5567 0.0000 29.5 0.6218 0.6123 0.6172 0.6075 0.5573 0.5250 29 0.6212 0.6146 0.6215 0.6081 0.5564 1.0500 28.5 0.6228 0.6189 0.6291 0.6097 0.5570 1.5750 28 0.6245 0.6328 0.6385 0.6117 0.5670 2.1000 27.5 0.6258 0.6665 0.6696 0.6172 0.583 9 2.8880 27 0.6295 0.7020 0.6962 0.6322 0.6423 3.4130 26.5 0.6352 0.7438 0.7323 0.6595 0.7146 3.9380 26 0.6477 0.7882 0.7646 0.6943 0.8071 4.4630 25.5 0.6717 0.8431 0.8047 0.7323 0.9132 4.9880 25 0.7002 0.8890 0.8457 0.7685 1.0378 5.7760 24.5 0 .7251 0.9385 0.9008 0.8084 1.1723 6.3010 24 0.7477 0.9863 0.9356 0.8435 1.3432 6.8260 23.5 0.7785 1.0404 0.9848 0.8899 1.5027 7.3510 23 0.8042 1.0884 1.0301 0.9356 1.6586 8.1390 22.5 0.8349 1.1394 1.0750 0.9726 1.8146 8.6640 22 0.8720 1.2007 1.12 22 1.0153 2.0016 9.1890 21.5 0.8999 1.2616 1.1660 1.0676 2.1820 9.7140 21 0.9323 1.3329 1.2290 1.1183 2.3892 10.2390 20.5 0.9629 1.4156 1.2825 1.1780 2.5777 10.7640 20 0.9933 1.4864 1.3490 1.2231 2.7805 11.5520 19.5 1.0163 1.5661 1.4076 1.2844 2. 9961 12.0770 19 1.0337 1.6212 1.4641 1.3477 3.2290 12.6020 18.5 1.0713 1.6904 1.5140 1.4022 3.4579 13.1270 18 1.0992 1.7645 1.5816 1.4551 3.6728 13.6520 17.5 1.1383 1.8296 1.6364 1.5205 3.8903 14.1770 17 1.1706 1.8993 1.6928 1.5764 4.0873 14.7020 16.5 1.2177 1.9614 1.7500 1.6326 4.3037 15.2270 16 1.2471 2.0224 1.8088 1.7061 4.5323 15.7520

PAGE 110

110 Table C 3. Continued. 15.5 1.2887 2.0850 1.8684 1.7621 4.7810 16.5400 15 1.3355 2.1464 1.9149 1.8146 5.0400 17.0650 14.5 1.3757 2.2122 1.9720 1.8787 5 .3096 17.5900 14 1.4123 2.2917 2.0416 1.9288 5.5491 18.1150 13.5 1.4545 2.3519 2.0953 1.9845 5.7966 18.6400 13 1.5005 2.4249 2.1627 2.0407 6.0522 19.1650 12.5 1.5341 2.5041 2.2368 2.1170 6.2937 19.9530 12 1.5742 2.5821 2.2968 2.1733 6.5193 20.478 0 11.5 1.6114 2.6712 2.3632 2.2408 6.7506 21.0030 11 1.6571 2.7511 2.4344 2.3150 6.9878 21.5280 10.5 1.7038 2.8281 2.5106 2.3777 7.2309 22.0530 10 1.7443 2.9438 2.5855 2.4472 7.4799 22.8410 9.5 1.7735 3.0049 2.6519 2.5325 7.7091 23.3660 9 1.824 6 3.0825 2.7417 2.6078 7.9431 23.8910 8.5 1.8633 3.1603 2.8042 2.6758 8.1820 24.4160 8 1.9123 3.2410 2.8897 2.7546 8.3985 24.9410 7.5 1.9428 3.3261 2.9661 2.8341 8.6188 25.4660 7 1.9792 3.4019 3.0087 2.9068 8.8429 25.9910 6.5 2.0133 3.4819 3.0722 2.9786 9.0422 26.7790 6 2.0453 3.5720 3.1537 3.0429 9.2154 27.3040 5.5 2.0963 3.6565 3.2197 3.1199 2.4397 27.8290 5 2.1255 3.7322 3.2840 3.1879 0.6345 28.3540 4.5 2.1665 3.8274 3.3604 3.2450 0.7300 28.8790 4 2.2044 3.9151 3.4312 3.3139 0.8384 29 .6670 3.5 2.2250 3.9965 3.4889 3.3728 0.9672 30.1920 3 2.2546 4.0777 3.5575 3.4494 1.1107 30.7170 2.5 2.3049 4.1520 3.6257 3.5088 1.2838 31.2420 2 2.3467 4.2355 3.6964 3.5821 1.4739 31.7670 1.5 2.3871 4.3104 3.7502 3.6477 1.6532 32.2920 1 2.429 1 4.3760 3.8259 3.7083 1.8163 32.8170 0.5 2.4879 4.4459 3.8919 3.7803 1.9989 33.3420 0 2.5303 4.5149 3.9588 3.8611 2.1956 34.1300 0.5 2.5933 4.5847 4.0378 3.9322 2.4017 34.6550 1 2.6258 4.6732 4.1034 4.0076 2.6022 35.1800 1.5 2.6919 4.7269 4.1682 4.0 729 2.8042 35.7050 2 2.7488 4.7992 4.2537 4.1422 3.0314 36.2300 2.5 2.7829 4.8723 4.3187 4.2042 3.2585 37.0180 3 2.8377 4.9463 4.3862 4.2670 3.4989 37.5430 3.5 2.9007 5.0212 4.4631 4.3406 3.7532 38.0680 4 2.9611 5.1160 4.5323 4.4288 3.9729 38.5930 4. 5 3.0087 5.1928 4.5847 4.4803 4.1585 39.1180 5 3.0556 5.2704 4.6376 4.5497 4.3591 39.6430

PAGE 111

111 Table C 3. Continued. 5.5 3.1069 5.3687 4.7089 4.6200 4.6023 40.4310 6 3.1459 5.4684 4.7992 4.6910 4.8540 40.9560 6.5 3.1892 5.5491 4.8723 4.7629 5.1351 41.4810 7 3.2384 5.6513 4.9278 4.8357 5.3885 42.0060 7.5 3.2827 5.7340 5.0400 4.9278 5.6513 42.5310 8 3.3357 5.8176 5.1160 4.9837 5.9021 43.0560 8.5 3.3714 5.9021 5.1543 5.0589 6.1392 43.8440 9 3.4019 5.9876 5.2315 5.1351 6.3832 44.3690 9.5 3.4438 6.0739 5.3 096 5.2121 6.6342 44.8940 10 3.5031 6.1611 5.3885 5.2900 6.8685 45.4190 10.5 3.5532 6.2493 5.4684 5.3490 7.1330 45.9440 11 3.5879 6.3160 5.5289 5.4084 7.3547 46.4690 11.5 3.6316 6.4058 5.6102 5.5086 7.5812 47.2570 12 3.6728 6.4965 5.6719 5.5898 7.8125 47.7820 12.5 3.7173 6.5651 5.7548 5.6307 8.0487 48.3070 13 3.7682 6.6574 5.8387 5.7132 8.2898 48.8320 13.5 3.8152 6.7506 5.9234 5.7757 8.5081 49.3570 14 3.8488 6.8212 6.0091 5.8598 8.7303 50.1450 14.5 3.9089 6.8922 6.0739 5.9234 8.9280 50.6700 15 3. 9525 6.9638 6.1174 5.9876 9.1285 51.1950 15.5 4.0060 7.0601 6.1831 6.0522 9.3028 51.7200 16 4.0425 7.1086 6.2493 6.1174 9.4497 52.2450 16.5 4.1002 7.2063 6.3384 6.2051 0.6423 52.7700 17 4.1438 7.2802 6.4058 6.2493 0.7072 53.2950 17.5 4.2059 7.3547 6.4 737 6.3384 0.8184 54.0830 18 4.2604 7.4296 6.5421 6.4058 0.9580 54.6080 18.5 4.3070 7.5051 6.6342 6.4737 1.1041 55.1330 19 4.3558 7.5812 6.6806 6.5421 1.2592 55.6580 19.5 4.4117 7.6322 6.7506 6.6111 1.4489 56.1830 20 4.4631 7.7091 6.8212 6.6806 1.6220 56.7080 20.5 4.4976 7.7866 6.8922 6.7506 1.8047 57.4960 21 4.5672 7.8385 6.9638 6.8212 1.9765 58.0210 21.5 4.6200 7.9169 7.0360 6.8922 2.1733 58.5460 22 4.6732 7.9694 7.1086 6.9638 2.3829 59.0710 22.5 4.7089 8.0222 7.1818 7.0360 2.5899 59.5960 23 4. 7629 8.1019 7.2555 7.1086 2.8114 60.1210 23.5 4.8174 8.1552 7.3298 7.1818 3.0302 60.6460 24 4.8723 8.2089 7.3796 7.2555 3.2558 61.1710 24.5 4.9278 8.2627 7.4799 7.3298 3.4989 61.9590 25 4.9650 8.3168 7.5304 7.3796 3.7412 62.4840 25.5 5.0024 8.3712 7.5 812 7.4547 3.9557 63.0090 26 5.0589 8.4258 7.6578 7.5304 4.1536 63.5340

PAGE 112

112 Table C 3. Continued. 26.5 5.1160 8.4806 7.7349 7.6066 4.3558 64.0590 27 5.1543 8.5357 7.8125 7.6834 4.5847 64.8470 27.5 5.2121 8.5910 7.8646 7.7607 4.8357 65.3720 28 5.2509 8.64 66 7.9431 7.8385 5.1160 65.8970 28.5 5.3096 8.7024 8.0222 7.8907 5.3885 66.4220 29 5.3490 8.7584 8.0753 7.9694 5.6513 66.9470 29.5 5.4084 8.8429 8.1552 8.0487 5.9021 67.4720 30 5.4483 8.9280 8.2358 8.1019 6.1392 67.9970 30.5 5.4885 8.9850 8.2898 8.155 2 6.3608 68.7850 31 5.5491 9.0709 8.3712 8.2358 6.6111 69.3100 31.5 5.5898 9.1285 8.4258 8.3168 6.8448 69.8350 32 5.6307 9.2154 8.4806 8.3985 7.1086 70.3600 32.5 5.6719 9.3028 8.5633 8.4532 7.3547 70.8850 33 5.7548 1.9836 8.6188 8.5357 7.5812 71.4100 33.5 5.7340 0.6831 8.6744 8.6188 7.8125 72.1980 34 5.7340 0.6686 8.7584 8.6744 8.0487 72.7230 34.5 5.7757 0.6835 8.7865 8.7303 8.2627 73.2480 35 5.8387 0.7187 8.8712 8.7865 8.5081 73.7730 35.5 5.8809 0.7579 8.9280 8.8712 8.7303 74.2980 36 5.9021 0.79 76 8.9850 8.8995 8.9280 75.0860 36.5 5.9447 0.8397 9.0135 8.9564 9.1574 75.6110 37 6.0091 0.8831 9.0709 9.0135 9.3320 76.1360 37.5 6.0522 0.9300 9.1285 9.0709 1.1294 76.6610 38 6.0956 0.9755 9.1864 9.1285 0.6936 77.1860 38.5 6.1392 1.0189 9.2154 9.186 4 0.8034 77.7110 39 6.1831 1.0697 9.2736 9.2154 0.9314 78.2360 39.5 6.2272 1.1189 9.3028 9.2736 1.0873 79.0240 40 6.2715 1.1677 9.3614 9.3028 1.2483 79.5490 40.5 6.3160 1.2243 9.3614 9.3614 1.4551 80.0740 41 6.3832 1.2764 9.4202 9.3907 1.6448 80.5990 41.5 6.4284 1.3393 9.4497 9.4202 1.8288 81.1240 42 6.4737 1.4176 9.5088 9.4792 2.0215 81.6490 42.5 6.5193 1.4914 9.5385 9.5088 2.2269 82.1740 43 6.5651 1.5661 9.5980 9.5683 2.4525 82.9620 43.5 6.6111 1.6478 9.6578 1.5450 2.6770 83.4870 44 6.6574 1.72 36 9.7178 0.6598 2.8812 84.0120 44.5 6.7039 1.7989 4.8723 0.6567 3.1290 84.5370 45 6.7506 1.8642 0.6965 0.6647 3.3701 85.0620 45.5 6.7976 1.9279 0.6714 0.6753 3.6404 85.5870 46 6.8448 1.9944 0.6824 0.6965 3.8672 86.1120 46.5 6.8922 2.0535 0.7068 0.726 2 4.0681 86.9000 47 6.9399 2.1207 0.7365 0.7642 4.2853 87.4250

PAGE 113

113 Table C 3. Continued. 47.5 7.0119 2.1849 0.7685 0.7976 4.5149 87.9500 48 7.0360 2.2437 0.8038 0.8341 4.7449 88.4750 48.5 7.0844 2.3130 0.8513 0.8658 5.0400 89.0000 49 7.1330 2.3777 0.8872 0.8999 5.3292 89.5250 49.5 7.1818 2.4482 0.9220 0.9394 5.6102 90.0500 50 7.2309 2.5215 0.9672 0.9848 5.8809 90.8380 50.5 7.2802 2.6078 1.0052 1.0291 6.1174 91.3630 51 7.3050 2.6735 1.0498 1.0798 6.3832 91.8880 51.5 7.3547 2.7581 1.0873 1.1355 6.6342 92.4130 52 7.4046 2.8389 1.1294 1.1826 6.8685 92.9380 52.5 7.4547 2.9265 1.1803 1.2404 7.1330 93.4630 53 7.5051 3.0062 1.2332 1.2844 7.3796 94.2510 53.5 7.5558 3.0979 1.2887 1.3316 7.6066 94.7760 54 7.5812 3.1629 1.3342 1.3823 7.8385 95.3010 54.5 7.6 322 3.2437 1.3989 1.4421 8.0753 95.8260 55 7.6834 3.3275 1.4469 1.4822 8.3168 96.3510 55.5 7.7091 3.4103 1.5027 1.5661 8.5357 96.8760 56 7.7607 3.4918 1.5464 1.6167 8.7584 97.4010 56.5 7.7866 3.5734 1.6258 1.6671 8.9850 98.1890 57 7.8385 3.6551 1.6818 1.7046 9.1574 98.7140 57.5 7.8907 3.7457 1.7371 1.7637 9.3320 99.2390 58 7.9431 3.8289 1.7890 1.8229 9.4792 99.7640 58.5 7.9694 3.9136 1.8372 1.8787 0.6954 100.2890 59 8.0222 4.0029 1.8941 1.9314 0.7061 100.8140 59.5 8.0753 4.1018 1.9437 1.9881 0.808 0 101.3390 60 8.1285 4.1895 2.0007 2.0453 0.9413 102.1270 60.5 8.1285 4.2587 2.0416 2.0916 1.0906 102.6520 61 8.1820 4.3389 2.0981 2.1560 1.2592 103.1770 61.5 8.2358 4.4117 2.1550 2.2142 1.4414 103.7020 62 8.2627 4.4976 2.2044 2.2716 1.6341 104.2270 62.5 8.3168 4.5672 2.2656 2.3364 1.8005 105.0150 63 8.3712 4.6376 2.3334 2.4017 1.9944 105.5400 63.5 8.3985 4.7089 2.4007 2.4728 2.1849 106.0650 64 8.4258 4.7810 2.4675 2.5347 2.4017 106.5900 64.5 8.4532 4.8540 2.5423 2.6089 2.6056 107.1150 65 8.5081 4.9278 2.6078 2.6919 2.8317 107.6400 65.5 8.5357 5.0024 2.6781 2.7628 3.0441 108.4280 66 8.5910 5.0779 2.7581 2.8257 3.2706 108.9530 66.5 8.6188 5.1543 2.8353 2.8971 3.5103 109.4780 67 8.6466 5.2121 2.9117 2.9636 3.7667 110.0030 67.5 8.7024 5.3096 2.9 736 3.0390 4.0029 110.5280 68 8.7303 5.3885 3.0365 3.1160 4.2010 111.0530

PAGE 114

114 Table C 3. Continued. 68.5 8.7865 5.4885 3.1069 3.1919 4.3947 111.5780 69 8.8147 5.5694 3.1721 3.2464 4.6554 112.1030 69.5 8.8712 5.6513 3.2317 3.3125 4.8908 112.8910 70 8.8995 5.7340 3.3016 3.3618 5.1735 113.4160 70.5 8.9280 5.8176 3.3577 3.4256 5.4284 113.4160 71 8.9564 5.8598 3.4130 3.4861 5.6925 113.4160 71.5 8.9850 5.8598 3.4089 3.5174 5.8809 113.4160 72 8.9564 5.8598 3.4075 3.5274 6.0522 113.4160 72.5 8.9850 5.8598 3. 4103 3.5360 6.2051 113.4160 73 8.9850 5.8598 3.4075 3.5389 6.3384 113.4160 73.5 8.9850 5.8598 3.4075 3.5417 6.3608 113.4160 74 8.9850 5.8598 3.4089 3.5446 6.3608 113.4160 74.5 8.9850 5.8598 3.4047 3.5503 6.3832 113.4160 75 8.9564 5.8598 3.3963 3.5475 6.3608 113.4160 75.5 8.9850 5.8598 3.4005 3.5518 6.3832 113.4160 76 8.9850 5.8598 3.3977 3.5518 6.3608 113.4160 76.5 8.9850 5.8598 3.4005 3.5590 6.3608 113.4160 77 8.9850 5.8598 3.3991 3.5590 6.3608 113.4160 77.5 8.9850 5.8598 3.3991 3.5590 6.3608 113 .4160 78 8.9850 5.8598 3.3991 3.5590 6.3608 113.4160 78.5 8.9850 5.8598 3.4005 3.5590 6.3608 113.4160 79 8.9850 5.8598 3.3977 3.5575 6.3608 113.4160 79.5 8.9850 5.8809 3.3991 3.5604 6.3608 113.4160 80 8.9850 5.8809 3.3991 3.5691 6.3608 113.4160 80.5 8.9850 5.8598 3.4005 3.5691 6.3608 113.4160 81 8.9564 5.8598 3.4019 3.5705 6.3608 113.4160 81.5 8.9564 5.8598 3.3632 3.5792 6.3608 113.4160 82 8.9850 5.8598 3.3687 3.5893 6.3608 113.4160 82.5 8.9850 5.8598 3.4130 3.5908 6.3608 113.4160 83 8.9564 5.859 8 3.4144 3.5864 6.3608 113.4160 83.5 8.9850 5.8809 3.4186 3.5922 6.3608 113.4160 84 8.9850 5.8598 3.4158 3.5893 6.3608 113.4160 84.5 8.9850 5.8598 3.4158 3.5893 6.3608 113.4160 85 8.9850 5.8598 3.4200 3.5966 6.3608 113.4160 85.5 8.9850 5.8598 3.4200 3 .5951 6.3608 113.4160 86 8.9850 5.8598 3.4186 3.5922 6.3608 113.4160 86.5 8.9850 5.8598 3.4158 3.5908 6.3608 113.4160 87 8.9850 5.8598 3.4005 3.5908 6.3608 113.4160 87.5 8.9850 5.8598 3.4116 3.5908 6.3608 113.6790 88 8.9564 5.8598 3.4228 3.5951 6.3608 113.6790 88.5 8.9564 5.8809 3.4089 3.6009 6.3608 113.6790 Note: Negative time represents pre washing.

PAGE 115

115 Table C 4 Bromide run #3 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6577 0.6443 0.6318 0.6328 0.5833 0.0000 9.5 0.6643 0.6470 0.6369 0.6 352 0.5833 0.7880 9 0.6693 0.6494 0.6396 0.6409 0.5953 1.3130 8.5 0.6717 0.6536 0.6423 0.6464 0.6735 1.8380 8 0.6749 0.6591 0.6474 0.6567 0.8231 2.6260 7.5 0.6922 0.6686 0.6584 0.6746 0.9938 3.1510 7 0.7183 0.6803 0.6788 0.7031 1.2171 3.6760 6. 5 0.7450 0.6994 0.7079 0.7312 1.4614 4.4640 6 0.7741 0.7244 0.7278 0.7697 1.7014 4.9890 5.5 0.8051 0.7396 0.7594 0.8059 1.9499 5.5140 5 0.8315 0.7634 0.7810 0.8375 2.2014 6.3020 4.5 0.8645 0.7870 0.8151 0.8804 2.4836 6.8270 4 0.8999 0.8071 0.8414 0.9178 2.7476 7.3520 3.5 0.9267 0.8371 0.8711 0.9590 3.0479 7.8770 3 0.9571 0.8618 0.9058 0.9987 3.3480 8.6650 2.5 0.9873 0.8922 0.9394 1.0456 3.6654 9.1900 2 1.0174 0.9146 0.9711 1.1014 3.9651 9.7150 1.5 1.0539 0.9432 1.0083 1.1512 4.2421 10.24 00 1 1.0782 0.9662 1.0399 1.2118 4.5497 11.0280 0.5 1.1339 0.9780 1.0666 1.2580 4.8723 11.5530 0 1.1575 1.0118 1.1041 1.3088 5.2121 12.0780 0.5 1.1960 1.0250 1.1428 1.3646 5.5694 12.8660 1 1.2446 1.0524 1.1798 1.4325 5.8809 13.3910 1.5 1.2925 1.087 3 1.2272 1.4886 6.2272 13.9160 2 1.3477 1.1118 1.2616 1.5421 6.5421 14.4410 2.5 1.3810 1.1456 1.3094 1.6002 6.8448 15.2290 3 1.4197 1.1734 1.3516 1.6686 7.1574 15.7540 3.5 1.4558 1.2001 1.3915 1.7220 7.4547 16.2790 4 1.5005 1.2296 1.4332 1.7800 7.7866 16.8040 4.5 1.5421 1.2641 1.4607 1.8338 8.0753 17.3290 5 1.5957 1.2900 1.5176 1.8889 8.3712 18.1170 5.5 1.6532 1.3278 1.5705 1.9420 8.6466 18.6420 6 1.6873 1.3678 1.6250 1.9908 8.9280 19.1670 6.5 1.7379 1.3975 1.6624 2.0352 9.2154 19.6920 7 1.7866 1 .4524 1.6889 2.1019 9.4497 20.2170 7.5 1.8380 1.5076 1.7299 2.1685 1.8676 21.0050 8 1.8710 1.5406 1.7776 2.2358 0.6792 21.5300 8.5 1.9314 1.5749 1.8146 2.2917 0.8294 22.0550 9 1.9711 1.6212 1.8574 2.3591 0.9933 22.5800

PAGE 116

116 Table C 4. Continued. 9.5 2.006 1 1.6733 1.8967 2.4376 1.2065 23.1050 10 2.0407 1.7030 1.9437 2.5096 1.4325 23.8930 10.5 2.0832 1.7419 1.9765 2.5699 1.6463 24.4180 11 2.1264 1.7866 2.0133 2.6507 1.8744 24.9430 11.5 2.1685 1.8121 2.0591 2.7406 2.0916 25.7310 12 2.2063 1.8380 2.1075 2 .7995 2.3508 26.2560 12.5 2.2487 1.8642 2.1502 2.8873 2.6496 26.7810 13 2.3018 1.9071 2.1946 2.9599 2.9240 27.3060 13.5 2.3550 1.9420 2.2517 3.0238 3.2197 27.8310 14 2.4007 1.9854 2.3069 3.0889 3.5619 28.3560 14.5 2.4546 2.0143 2.3809 3.1669 3.8734 29 .1440 15 2.5041 2.0443 2.4175 3.2437 4.1438 29.6690 15.5 2.5766 2.0720 2.4653 3.2949 4.4117 30.1940 16 2.6394 2.0991 2.5096 3.3590 4.7269 30.7190 16.5 2.6907 2.1331 2.5600 3.4242 5.0589 31.5070 17 2.7628 2.1762 2.6112 3.5046 5.4084 32.0320 17.5 2.812 6 2.2181 2.6655 3.5821 5.7132 32.5570 18 2.9093 2.2527 2.7359 3.6477 6.0306 33.0820 18.5 2.9599 2.2998 2.7971 3.7232 6.3384 33.8700 19 3.0289 2.3447 2.8606 3.8015 6.6574 34.3950 19.5 3.0863 2.3861 2.9142 3.8826 6.9878 34.9200 20 3.1472 2.4196 2.9699 3 .9525 7.3050 35.4450 20.5 3.1800 2.4514 2.9974 4.0155 7.6066 36.2330 21 3.2370 2.4911 3.0645 4.0793 7.9169 36.7580 21.5 3.2962 2.5379 3.1134 4.1601 8.2358 37.2830 22 3.3480 2.5955 3.1590 4.2306 8.5081 37.8080 22.5 3.3991 2.6530 3.2210 4.3187 8.8147 38 .3330 23 3.4565 2.6988 3.2719 4.3896 9.0709 39.1210 23.5 3.4989 2.7406 3.3152 4.4631 9.3614 39.6460 24 3.5590 2.7852 3.3770 4.5323 9.5980 40.1710 24.5 3.6068 2.8281 3.4382 4.6200 9.8386 40.6960 25 3.6492 2.8654 3.4819 4.6910 10.0522 41.4840 25.5 3.68 61 2.9105 3.5060 4.7629 3.7788 42.0090 26 3.7562 2.9524 3.5864 4.8540 0.6609 42.5340 26.5 3.8000 3.0049 3.6404 4.9278 0.7874 43.0590 27 3.8503 3.0467 3.6787 5.0212 0.9518 43.5840 27.5 3.8934 3.0940 3.7562 5.0779 1.1400 44.3720 28 3.9572 3.1212 3.7939 5.1735 1.3711 44.8970 28.5 4.0171 3.1590 3.8304 5.2509 1.6032 45.4220 29 4.0841 3.2038 3.9136 5.3292 1.8055 45.9470 29.5 4.1163 3.2491 3.9525 5.4084 2.0388 46.7350 30 4.1650 3.2922 4.0108 5.4684 2.2857 47.2600

PAGE 117

117 Table C 4. Continued. 30.5 4.2306 3.3385 4.0761 5.5491 2.5721 47.7850 31 4.2920 3.3811 4.1228 5.6307 2.8485 48.3100 31.5 4.3541 3.4214 4.1699 5.6925 3.1342 48.8350 32 4.3896 3.4579 4.2339 5.7757 3.4776 49.6230 32.5 4.4459 3.4932 4.2587 5.8598 3.7698 50.1480 33 4.5149 3.5374 4.3204 5.9234 4. 0649 50.6730 33.5 4.5672 3.5893 4.3947 6.0091 4.3507 51.1980 34 4.6376 3.6462 4.4288 6.0739 4.6200 51.7230 34.5 4.6910 3.6846 4.4803 6.1392 4.9650 52.5110 35 4.7449 3.7247 4.5497 6.2272 5.2900 53.0360 35.5 4.7992 3.7803 4.6200 6.2937 5.6307 53.5610 3 6 4.8908 3.8213 4.6554 6.3608 5.9661 54.0860 36.5 4.9278 3.8842 4.7089 6.4284 6.2937 54.6110 37 5.0024 3.9322 4.7629 6.4965 6.5881 55.3990 37.5 5.0589 3.9745 4.8174 6.5881 6.9399 55.9240 38 5.0969 4.0155 4.8723 6.6574 7.2555 56.4490 38.5 5.1543 4.0569 4.9463 6.7272 7.5558 57.2370 39 5.2315 4.1034 4.9837 6.7976 7.8385 57.7620 39.5 5.2704 4.1438 5.0589 6.8922 8.1552 58.2870 40 5.3292 4.1960 5.0969 6.9638 8.4532 58.8120 40.5 5.3687 4.2339 5.1543 7.0119 8.7303 59.3370 41 5.4483 4.2786 5.2315 7.0844 9. 0135 59.8620 41.5 5.4885 4.3187 5.2704 7.1574 9.3028 60.6500 42 5.5491 4.3507 5.3490 7.2309 4.5149 61.1750 42.5 5.6102 4.3947 5.4084 7.3050 0.6717 61.7000 43 5.6513 4.4459 5.4684 7.3796 0.7981 62.2250 43.5 5.7132 4.4803 5.5289 7.4547 0.9551 62.7500 4 4 5.7548 4.5323 5.5694 7.5304 1.1501 63.5380 44.5 5.8387 4.5672 5.6307 7.6066 1.3922 64.0630 45 5.8598 4.6023 5.6925 7.7091 1.6440 64.5880 45.5 5.9447 4.6376 5.7548 7.7607 1.8439 65.1130 46 5.9876 4.6732 5.7966 7.8385 2.0878 65.6380 46.5 6.0522 4.7089 5.8598 7.9169 2.3622 66.1630 47 6.0956 4.7629 5.9234 7.9958 2.6281 66.9510 47.5 6.1831 4.7992 5.9876 8.0487 2.9216 67.4760 48 6.2272 4.8357 6.0522 8.1285 3.1866 68.0010 48.5 6.2715 4.8723 6.1174 8.2089 3.4989 68.5260 49 6.3384 4.9092 6.1611 8.2898 3. 8122 69.0510 49.5 6.4058 4.9650 6.2051 8.3440 4.0986 69.8390 50 6.4510 5.0024 6.2715 8.4532 4.3727 70.3640 50.5 6.4965 5.0400 6.3160 8.5357 4.6910 70.8890 51 6.5421 5.0589 6.3608 8.5910 5.0024 71.4140

PAGE 118

118 Table C 4. Continued. 51.5 6.6111 5.1351 6.4284 8 .6744 5.3687 72.2020 52 6.6574 5.1735 6.4737 8.7303 5.7340 72.7270 52.5 6.7272 5.2121 6.5421 8.8147 6.0522 73.2520 53 6.7976 5.2509 6.5881 8.8995 6.3608 73.7770 53.5 6.8448 5.2900 6.6342 8.9564 6.6574 74.5650 54 6.8922 5.3490 6.6806 9.0135 7.0119 75.0 900 54.5 6.9638 5.3885 6.7506 9.0997 7.3298 75.6150 55 7.0119 5.4684 6.7976 9.1574 7.6322 76.1400 55.5 7.0601 5.5086 6.8448 9.2154 7.9169 76.6650 56 7.1086 5.5491 6.8922 9.2736 8.2089 77.4530 56.5 7.1574 5.5898 6.9399 9.3320 8.5081 77.9780 57 7.2063 5.6513 6.9878 9.3907 8.7865 78.5030 57.5 7.2555 5.7132 7.0601 9.4497 9.0709 79.0280 58 7.3298 5.7548 7.1086 9.5088 9.3320 79.5530 58.5 7.3796 5.7966 7.1574 9.5385 3.0479 80.3410 59 7.4296 5.8387 7.2063 9.5980 0.6774 80.8660 59.5 7.4799 5.8809 7.2802 9 .6279 0.8235 81.3910 60 7.5304 5.9447 7.3298 9.6878 0.9648 81.9160 60.5 7.5812 5.9876 7.3796 9.7178 1.1815 82.4410 61 7.6322 6.0306 7.4296 9.7479 1.4022 83.2290 61.5 7.6834 6.0739 7.5051 9.8083 1.6265 83.7540 62 7.7349 6.1174 7.5304 9.8386 1.8633 84.2 790 62.5 7.7866 6.1611 7.6066 9.8689 2.1010 84.8040 63 7.8385 6.2272 7.6578 9.9298 2.3529 85.5920 63.5 7.8907 6.2715 7.7349 9.9909 2.6303 86.1170 64 7.9431 6.3160 7.7866 3.0416 2.8824 86.6420 64.5 7.9958 6.3608 7.8385 0.6574 3.1972 87.1670 65 8.0487 6.4284 7.8907 0.6630 3.5160 87.6920 65.5 8.0753 6.4510 7.9431 0.6788 3.7894 88.4800 66 8.1552 6.5193 7.9958 0.7105 4.0601 89.0050 66.5 8.1820 6.5421 8.0487 0.7377 4.3389 89.5300 67 8.2627 6.5881 8.1019 0.7658 4.6910 90.0550 67.5 8.3168 6.6342 8.1820 0 .8026 4.9837 90.5800 68 8.3440 6.6806 8.2358 0.8341 5.3292 91.3680 68.5 8.3985 6.7272 8.2898 0.8769 5.6719 91.8930 69 8.4532 6.7741 8.3440 0.9127 6.0091 92.4180 69.5 8.5081 6.8212 8.4258 0.9385 6.3384 92.9430 70 8.5357 6.8685 8.4806 0.9750 6.6342 93.4 680 70.5 8.5633 6.9161 8.5081 1.0148 6.9638 94.2560 71 8.6188 6.9399 8.5633 1.0613 7.2802 94.7810 71.5 8.6744 6.9878 8.6188 1.1025 7.5812 95.3060 72 8.7024 7.0119 8.6744 1.1575 7.8646 95.8310

PAGE 119

119 Table C 4. Continued. 72.5 8.7584 7.0601 8.7584 1.2112 8.1 820 96.6190 73 8.7865 7.1086 8.8147 1.2702 8.4806 97.1440 73.5 8.8429 7.1574 8.8429 1.3088 8.7584 97.6690 74 8.8995 7.1818 8.8995 1.3620 9.0422 98.1940 74.5 8.9280 7.2309 8.9564 1.4156 9.3028 98.7190 75 8.9850 7.2802 9.0135 1.4829 9.5683 99.2440 75.5 9.0422 7.3298 9.0422 1.5305 9.7781 100.0320 76 9.0709 7.3547 9.0997 1.5838 4.7089 100.5570 76.5 9.1285 7.4046 9.1574 1.6478 0.6162 101.0820 77 9.1864 7.4296 9.2154 1.7109 0.6972 101.6070 77.5 9.2154 7.4799 9.2736 1.7629 0.8337 102.3950 78 9.2736 7.53 04 9.3028 1.8213 1.0017 102.9200 78.5 9.3028 7.5558 9.3320 1.8847 1.2130 103.4450 79 9.3614 7.6066 9.3907 1.9349 1.4565 103.9700 79.5 9.3907 7.6322 9.4202 1.9729 1.6532 104.4950 80 9.4202 7.6578 9.4792 2.0324 1.8523 105.0200 80.5 9.4497 7.7091 9.5088 2.0850 1.9192 105.0200 81 9.4792 7.7091 9.5088 2.1369 1.9420 105.0200 81.5 9.5088 7.7349 9.5088 2.1502 1.9332 105.0200 82 9.5088 7.7091 9.5088 2.1541 1.9297 105.0200 82.5 9.5088 7.7349 9.5088 2.1579 1.9332 105.0200 83 9.5088 7.7349 9.5088 2.1589 1.934 1 105.0200 83.5 9.5088 7.7349 9.5385 2.1665 1.9341 105.0200 84 9.5088 7.7349 9.5088 2.1675 1.9349 105.0200 84.5 9.5088 7.7349 9.5385 2.1685 1.9349 105.0200 85 9.5088 7.7349 9.5088 2.1617 1.9411 105.0200 Table C 5 Bromide run #4 water flow and rainf all data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6315 0.6087 0.6052 0.5981 0.5570 0.0000 9.5 0.6358 0.6091 0.6068 0.5981 0.5570 0.5250 9 0.6402 0.6120 0.6130 0.5981 0.5597 1.0500 8.5 0.6433 0.6159 0.6182 0.5988 0.6169 1.575 0 8 0.6477 0.6185 0.6195 0.6001 0.7427 2.3630 7.5 0.6515 0.6228 0.6258 0.6020 0.9225 2.8880 7 0.6570 0.6301 0.6358 0.6071 1.1406 3.4130 6.5 0.6696 0.6433 0.6512 0.6251 1.3889 3.9380 6 0.6885 0.6640 0.6700 0.6553 1.6478 4.7260 5.5 0.7120 0.6874 0.6969 0.6980 1.8439 5.2510

PAGE 120

120 Table C 5. Continued. 5 0.7369 0.7050 0.7195 0.7270 2.1350 5.7760 4.5 0.7543 0.7221 0.7528 0.7547 2.4814 6.5640 4 0.7919 0.7438 0.7830 0.7842 2.7852 7.0890 3.5 0.8117 0.7697 0.8067 0.8294 3.0940 7.6140 3 0.8448 0.7981 0.8354 0.8605 3.4242 8.1390 2.5 0.8720 0.8273 0.8649 0.8981 3.7352 8.6640 2 0.9054 0.8487 0.8935 0.9328 4.0314 9.4520 1.5 0.9460 0.8845 0.9215 0.9765 4.3305 9.9770 1 0.9653 0.9086 0.9547 1.0148 4.6732 10.5020 0.5 0.9962 0.9323 0.9784 1.0597 5.02 12 11.2900 0 1.0276 0.9590 1.0108 1.0971 5.3885 11.8150 0.5 1.0529 0.9868 1.0466 1.1450 5.7340 12.3400 1 1.0804 1.0189 1.0798 1.2007 6.0306 12.8650 1.5 1.1211 1.0472 1.1123 1.2440 6.3160 13.6530 2 1.1524 1.0734 1.1484 1.2919 6.6111 14.1780 2.5 1.1826 1.1030 1.1855 1.3412 6.8922 14.7030 3 1.2189 1.1344 1.2231 1.4015 7.2063 15.2280 3.5 1.2555 1.1586 1.2586 1.4489 7.5051 15.7530 4 1.2900 1.1861 1.2993 1.5119 7.7866 16.5410 4.5 1.3246 1.2166 1.3438 1.5691 8.1019 17.0660 5 1.3724 1.2501 1.3889 1.6288 8.3985 17.5910 5.5 1.3836 1.2807 1.4264 1.6710 8.7024 18.1160 6 1.4244 1.3163 1.4732 1.7283 9.0135 18.6410 6.5 1.4462 1.3516 1.5169 1.7767 9.2736 19.4290 7 1.4914 1.3949 1.5735 1.8279 4.5149 19.9540 7.5 1.5334 1.4380 1.6190 1.8778 0.6553 20.4790 8 1. 5772 1.4843 1.6594 1.9332 0.7952 21.0040 8.5 1.6047 1.5190 1.6928 1.9738 0.9696 21.7920 9 1.6563 1.5742 1.7307 2.0224 1.1826 22.3170 9.5 1.7077 1.6227 1.7678 2.0757 1.4285 22.8420 10 1.7323 1.6640 1.8121 2.1407 1.6710 23.3670 10.5 1.7678 1.6975 1.8515 2.2005 1.8967 23.8920 11 1.8129 1.7403 1.8838 2.2606 2.1426 24.6800 11.5 1.8582 1.7816 1.9297 2.3293 2.4154 25.2050 12 1.8924 1.8121 1.9729 2.4017 2.7034 25.7300 12.5 1.9332 1.8481 2.0097 2.4750 3.0238 26.2550 13 1.9729 1.8898 2.0554 2.5325 3.3248 26 .7800 13.5 2.0124 1.9349 2.1010 2.6123 3.6580 27.3050 14 2.0343 1.9676 2.1426 2.6815 3.9698 28.0930 14.5 2.0878 2.0061 2.1878 2.7464 4.1780 28.6180 15 2.1179 2.0370 2.2319 2.8221 4.4803 29.1430 15.5 2.1474 2.0591 2.2756 2.8836 4.7992 29.6680

PAGE 121

121 Table C 5. Continued. 16 2.1927 2.0935 2.3334 2.9413 5.1543 30.1930 16.5 2.2112 2.1340 2.3829 3.0049 5.5086 30.7180 17 2.2527 2.1772 2.4408 3.0722 5.8598 31.5060 17.5 2.2958 2.2093 2.4901 3.1381 6.1831 32.0310 18 2.3334 2.2527 2.5423 3.2104 6.4965 32.5560 18 .5 2.3705 2.3028 2.6123 3.2665 6.7976 33.0810 19 2.4144 2.3467 2.6610 3.3248 7.1330 33.8690 19.5 2.4632 2.3850 2.7127 3.3894 7.4296 34.3940 20 2.5183 2.4217 2.7793 3.4635 7.7349 34.9190 20.5 2.5600 2.4525 2.8269 3.5360 8.0487 35.4440 21 2.6089 2.5009 2.8776 3.5864 8.3440 35.9690 21.5 2.6781 2.5456 2.9277 3.6624 8.6466 36.7570 22 2.7208 2.5910 2.9836 3.7307 8.9280 37.2820 22.5 2.7746 2.6484 3.0352 3.7909 9.2154 37.8070 23 2.8377 2.6919 3.1005 3.8595 9.4497 38.3320 23.5 2.8873 2.7394 3.1368 3.9260 2 .9961 39.1200 24 2.9463 2.7923 3.1826 3.9918 0.6918 39.6450 24.5 2.9911 2.8365 3.2437 4.0617 0.8226 40.1700 25 3.0479 2.8776 3.2881 4.1325 0.9888 40.6950 25.5 3.0889 2.9191 3.3385 4.1960 1.1989 41.4830 26 3.1251 2.9699 3.3853 4.2653 1.4435 42.0080 26 .5 3.1905 3.0251 3.4382 4.3271 1.6686 42.5330 27 3.2317 3.0569 3.4932 4.3947 1.9079 43.0580 27.5 3.2679 3.0915 3.5446 4.4803 2.1627 43.8460 28 3.3398 3.1329 3.6009 4.5323 2.4133 44.3710 28.5 3.3659 3.1826 3.6683 4.6200 2.6896 44.8960 29 3.4284 3.2290 3.7143 4.6910 2.9524 45.4210 29.5 3.4720 3.2733 3.7698 4.7629 3.2317 45.9460 30 3.5003 3.3193 3.8091 4.8174 3.4918 46.7340 30.5 3.5460 3.3618 3.8611 4.8908 3.7698 47.2590 31 3.5937 3.4228 3.9260 4.9650 4.0681 47.7840 31.5 3.6272 3.4691 3.9698 5.0212 4 .3558 48.3090 32 3.6787 3.5231 4.0330 5.0969 4.6732 48.8340 32.5 3.7188 3.5547 4.0793 5.1928 5.0024 49.3590 33 3.7607 3.6053 4.1292 5.2509 5.3490 50.1470 33.5 3.8061 3.6477 4.1829 5.3096 5.7340 50.6720 34 3.8503 3.6994 4.2421 5.3885 6.0739 51.1970 34 .5 3.9043 3.7337 4.2803 5.4483 6.4058 51.7220 35 3.9338 3.7879 4.3389 5.5086 6.7039 52.2470 35.5 3.9950 3.8350 4.3947 5.5898 7.0601 53.0350 36 4.0282 3.8919 4.4459 5.6513 7.3796 53.5600 36.5 4.0857 3.9385 4.4803 5.7132 7.6322 54.0850

PAGE 122

122 Table C 5. Conti nued. 37 4.1276 3.9855 4.5497 5.7757 7.9169 54.6100 37.5 4.1617 4.0203 4.6023 5.8598 8.2358 55.3980 38 4.2141 4.0665 4.6732 5.9234 8.5357 55.9230 38.5 4.2653 4.1018 4.7089 5.9876 8.8429 56.4480 39 4.3087 4.1487 4.7629 6.0522 9.1285 56.9730 39.5 4.3473 4.1928 4.8174 6.0956 9.3907 57.4980 40 4.4117 4.2388 4.8723 6.1831 4.6376 58.0230 40.5 4.4459 4.2703 4.9463 6.2272 0.7035 58.5480 41 4.4976 4.3020 5.0024 6.2937 0.8303 59.0730 41.5 4.5497 4.3473 5.0589 6.3608 1.0078 59.8610 42 4.6200 4.3879 5.1160 6. 4284 1.2296 60.3860 42.5 4.6732 4.4288 5.1735 6.4965 1.4510 60.9110 43 4.7089 4.4631 5.2315 6.5651 1.7109 61.4360 43.5 4.7629 4.4976 5.2900 6.6342 1.9271 61.9610 44 4.8174 4.5497 5.3292 6.7039 2.1617 62.7490 44.5 4.8723 4.6023 5.3885 6.7741 2.4376 63. 2740 45 4.9278 4.6376 5.4284 6.8448 2.7289 63.7990 45.5 4.9650 4.6732 5.4684 6.9161 3.0062 64.3240 46 5.0212 4.7269 5.5491 6.9638 3.3302 65.1120 46.5 5.0589 4.7629 5.5898 7.0360 3.6272 65.6370 47 5.1160 4.7992 5.6513 7.0844 3.8950 66.1620 47.5 5.1735 4.8357 5.7132 7.1574 4.1748 66.6870 48 5.2315 4.8908 5.7548 7.2309 4.4631 67.2120 48.5 5.2704 4.9278 5.8176 7.3050 4.7810 67.7370 49 5.3292 4.9837 5.8809 7.3796 5.1160 68.2620 49.5 5.3490 5.0212 5.9234 7.4296 5.4684 68.7870 50 5.4084 5.0589 5.9876 7. 5051 5.7966 69.5750 50.5 5.4483 5.0969 6.0306 7.5558 6.0956 70.1000 51 5.4885 5.1543 6.0956 7.6322 6.4284 70.6250 51.5 5.5491 5.1928 6.1392 7.7349 6.7272 71.1500 52 5.6102 5.2315 6.1831 7.7866 7.0360 71.6750 52.5 5.6307 5.2900 6.2272 7.8385 7.3796 72. 4630 53 5.6719 5.3292 6.2937 7.9169 7.6578 72.9880 53.5 5.7340 5.3885 6.3384 7.9694 7.9694 73.5130 54 5.7757 5.4483 6.3832 8.0487 8.2627 74.0380 54.5 5.8387 5.5086 6.4510 8.1285 8.5633 74.5630 55 5.8598 5.5491 6.4965 8.1820 8.8429 75.0880 55.5 5.9234 5.5898 6.5421 8.2627 9.1285 75.8760 56 5.9661 5.6513 6.6111 8.3168 9.3614 76.4010 56.5 6.0306 5.6925 6.6574 8.3712 9.5980 76.9260 57 6.0739 5.7548 6.7039 8.4532 4.6200 77.4510 57.5 6.1392 5.7966 6.7506 8.5357 0.6616 77.9760

PAGE 123

123 Table C 5. Continued. 58 6.1831 5.8387 6.7976 8.5910 0.6903 78.7640 58.5 6.2272 5.8809 6.8448 8.6744 0.8337 79.2890 59 6.2715 5.9447 6.9161 8.7303 1.0007 79.8140 59.5 6.3160 5.9876 6.9638 8.8147 1.2042 80.3390 60 6.3832 6.0306 7.0119 8.8712 1.4366 80.8640 60.5 6.4058 6.0739 7 .0360 8.9280 1.6671 81.6520 61 6.4510 6.1174 7.1086 8.9850 1.8932 82.1770 61.5 6.4965 6.1611 7.1574 9.0422 2.1179 82.7020 62 6.5421 6.2051 7.2063 9.0997 2.4133 83.2270 62.5 6.5881 6.2493 7.2555 9.1574 2.6632 84.0150 63 6.6574 6.2937 7.3298 9.2154 2.95 12 84.5400 63.5 6.6806 6.3608 7.3547 9.3028 3.2424 85.0650 64 6.7506 6.4058 7.4046 9.3320 3.5604 85.5900 64.5 6.7976 6.4510 7.4799 9.3907 3.8365 86.3780 65 6.8448 6.4965 7.5304 9.4497 4.0889 86.9030 65.5 6.8685 6.5421 7.5812 9.5088 4.3490 87.4280 66 6.9399 6.5881 7.6322 9.5385 4.6554 87.9530 66.5 6.9638 6.6342 7.6834 9.5980 4.9650 88.4780 67 7.0360 6.6806 7.7349 9.6279 5.3292 89.2660 67.5 7.0601 6.7272 7.8125 9.6578 5.6719 89.7910 68 7.1330 6.7741 7.8646 9.6878 5.9876 90.3160 68.5 7.1574 6.8212 7 .9169 9.7178 6.3160 90.8410 69 7.2063 6.8685 7.9694 9.7781 6.6342 91.3660 69.5 7.2555 6.9161 8.0222 9.8083 6.9399 92.1540 70 7.3050 6.9399 8.0753 9.8386 7.2063 92.6790 70.5 7.3298 6.9878 8.1019 9.8689 7.5051 93.2040 71 7.3796 7.0119 8.1552 1.2042 7.81 25 93.7290 71.5 7.4296 7.0601 8.2358 0.6630 8.0753 94.2540 72 7.4799 7.1086 8.2898 0.6623 8.3712 95.0420 72.5 7.5304 7.1574 8.3440 0.6686 8.6744 95.5670 73 7.5812 7.2063 8.3985 0.6867 8.9564 96.0920 73.5 7.6322 7.2309 8.4532 0.7112 9.2154 96.6170 74 7.6834 7.2802 8.5081 0.7446 9.4792 97.1420 74.5 7.7349 7.3298 8.5633 0.7697 9.6878 97.9300 75 7.7607 7.3796 8.6188 0.8092 9.8993 98.4550 75.5 7.8125 7.4296 8.6744 0.8388 10.1138 98.9800 76 7.8385 7.4547 8.7303 0.8764 1.9640 99.5050 76.5 7.8907 7.5051 8.7865 0.9008 0.6623 100.2930 77 7.9169 7.5304 8.8429 0.9418 0.8067 100.8180 77.5 7.9694 7.5812 8.8712 0.9770 0.9662 101.3430 78 8.0222 7.6322 8.9280 1.0113 1.1501 101.8680 78.5 8.0753 7.6578 8.9850 1.0487 1.3737 102.3930

PAGE 124

124 Table C 5. Continued. 79 8.1 019 7.7091 9.0422 1.0879 1.5957 102.9180 79.5 8.1552 7.7349 9.0709 1.1294 1.8063 103.7060 80 8.1820 7.7607 9.1285 1.1746 2.0034 104.2310 80.5 8.2358 7.8125 9.1864 1.2195 2.2024 104.2310 81 8.2898 7.8385 9.2154 1.2678 2.2457 104.2310 81.5 8.3168 7.8646 9.2445 1.3031 2.2586 104.2310 82 8.3168 7.8646 9.2445 1.3170 2.2616 104.2310 82.5 8.3168 7.8646 9.2445 1.3208 2.2666 104.2310 83 8.3168 7.8646 9.2445 1.3240 2.2706 104.2310 83.5 8.3168 7.8646 9.2445 1.3278 2.2756 104.2310 84 8.3168 7.8646 9.2445 1.32 84 2.2776 104.2310 84.5 8.3168 7.8646 9.2445 1.3303 2.2786 104.2310 85 8.3168 7.8646 9.2445 1.3303 2.2786 104.2310 Table C 6 Bromide run #5 water flow and rainfall data Accumulated Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.632 5 0.6345 0.6133 0.6071 0.5472 0 9.5 0.6389 0.6406 0.6149 0.6087 0.5475 0.5250 9 0.6423 0.6494 0.6162 0.6117 0.5489 1.3130 8.5 0.6484 0.6623 0.6179 0.6176 0.5718 1.8380 8 0.6682 0.6893 0.6218 0.6248 0.6668 2.3630 7.5 0.6922 0.7221 0.6332 0.6385 0. 7940 2.8880 7 0.7146 0.7528 0.6474 0.6588 0.9465 3.6760 6.5 0.7404 0.7911 0.6654 0.6803 1.1305 4.2010 6 0.7822 0.8239 0.6821 0.7035 1.3233 4.7260 5.5 0.8138 0.8539 0.7038 0.7304 1.5537 5.2510 5 0.8453 0.8949 0.7232 0.7466 1.7629 6.0390 4.5 0.86 67 0.9272 0.7497 0.7753 1.9703 6.5640 4 0.9090 0.9633 0.7681 0.7989 2.1985 7.0890 3.5 0.9295 1.0007 0.7911 0.8260 2.4397 7.6140 3 0.9687 1.0435 0.8121 0.8539 2.6942 8.4020 2.5 1.0078 1.0814 0.8345 0.8813 2.9413 8.9270 2 1.0472 1.1145 0.8561 0.906 7 3.2410 9.4520 1.5 1.0761 1.1575 0.8769 0.9475 3.5288 10.2400 1 1.1129 1.1989 0.9040 0.9834 3.8030 10.7650 0.5 1.1434 1.2380 0.9225 1.0174 4.0330 11.2900 0 1.1838 1.2788 0.9523 1.0435 4.2737 11.8150 0.5 1.2404 1.3297 0.9731 1.0724 4.5323 12.3400 1 1.2975 1.3783 0.9987 1.1211 4.8357 12.8650 1.5 1.3214 1.4380 1.0311 1.1490 5.1543 13.3900

PAGE 125

125 Table C 6. Continued. 2 1.3764 1.4893 1.0539 1.1815 5.4483 14.1780 2.5 1.4298 1.5442 1.0756 1.2231 5.7548 14.7030 3 1.4725 1.6077 1.1003 1.2574 6.0522 15.2280 3.5 1.5334 1.6679 1.1288 1.2943 6.3608 15.7530 4 1.5920 1.7252 1.1614 1.3335 6.6342 16.2780 4.5 1.6326 1.7743 1.1757 1.3750 6.9399 17.0660 5 1.6756 1.8313 1.2207 1.4116 7.2309 17.5910 5.5 1.7156 1.8864 1.2495 1.4871 7.5304 18.1160 6 1.7743 1.9402 1.2 739 1.5240 7.8125 18.6410 6.5 1.8154 1.9810 1.3050 1.5794 8.0753 19.1660 7 1.8659 2.0297 1.3425 1.6129 8.3440 19.9540 7.5 1.9062 2.0776 1.3711 1.6609 8.6188 20.4790 8 1.9729 2.1236 1.4096 1.6873 8.8995 21.0040 8.5 2.0179 2.1617 1.4565 1.7331 9.1285 21 .5290 9 2.0581 2.2161 1.4725 1.7743 9.3028 22.0540 9.5 2.1132 2.2696 1.5140 1.8088 9.3028 22.5790 10 2.1483 2.3262 1.5457 1.8439 9.9813 23.3670 10.5 2.1849 2.3736 1.5957 1.8795 10.0967 23.8920 11 2.2417 2.4312 1.6326 1.9140 10.2313 24.4170 11.5 2.294 7 2.4901 1.6717 1.9649 10.3988 24.9420 12 2.3406 2.5577 1.7101 2.0034 10.5959 25.4670 12.5 2.3965 2.6269 1.7315 2.0370 10.8254 25.9920 13 2.4696 2.7034 1.7670 2.0804 11.0192 26.5170 13.5 2.5237 2.7652 1.7997 2.1340 11.3252 27.3050 14 2.5810 2.8317 1.8 405 2.1772 11.4616 27.8300 14.5 2.6405 2.8946 1.8625 2.2289 11.6951 28.3550 15 2.7104 2.9537 1.9001 2.2706 11.9410 28.8800 15.5 2.7758 3.0087 1.9271 2.3201 12.1670 29.4050 16 2.8353 3.0709 1.9587 2.3570 12.4657 30.1930 16.5 2.8995 3.1381 1.9863 2.4217 12.7832 30.7180 17 2.9836 3.1972 2.0070 2.4610 13.0485 31.2430 17.5 3.0302 3.2598 2.0425 2.5183 13.2899 31.7680 18 3.1121 3.3302 2.0813 2.5821 13.5632 32.2930 18.5 3.1839 3.3936 2.1085 2.6382 13.8351 33.0810 19 3.2424 3.4593 2.1464 2.6747 14.1202 33. 6060 19.5 3.3084 3.5260 2.1801 2.7452 14.4379 34.1310 20 3.3535 3.5864 2.2122 2.7959 14.7712 34.6560 20.5 3.4242 3.6492 2.2427 2.8582 15.0785 35.4440 21 3.4705 3.7128 2.2887 2.9068 15.3550 35.9690 21.5 3.5131 3.7879 2.3140 2.9636 15.6636 36.4940 22 3 .5705 3.8580 2.3622 3.0062 15.9602 37.0190 22.5 3.6184 3.9260 2.4112 3.0569 16.2427 37.8070

PAGE 126

126 Table C 6. Continued. 23 3.6950 4.0060 2.4600 3.1044 16.5337 38.3320 23.5 3.7502 4.0745 2.4944 3.1616 16.8332 38.8570 24 3.8137 4.1422 2.5478 3.2144 17.1153 39 .3820 24.5 3.8488 4.2042 2.5888 3.2585 17.4046 39.9070 25 3.9291 4.2753 2.6337 3.3084 17.6740 40.6950 25.5 3.9824 4.3271 2.6632 3.3577 17.9215 41.2200 26 4.0393 4.3913 2.7115 3.4075 18.2023 41.7450 26.5 4.1147 4.4459 2.7523 3.4550 18.4313 42.2700 27 4.1911 4.5149 2.7959 3.5003 18.6641 42.7950 27.5 4.2372 4.5672 2.8353 3.5460 18.8710 43.5830 28 4.3154 4.6200 2.8873 3.6155 19.5154 44.1080 28.5 4.3608 4.6910 2.9142 3.6846 19.5789 44.6330 29 4.4631 4.7449 2.9649 3.7412 19.7026 45.1580 29.5 4.5149 4.7 992 2.9886 3.7864 19.8678 45.6830 30 4.5672 4.8357 3.0226 3.8259 20.0302 46.2080 30.5 4.6200 4.9092 3.0632 3.8919 20.2297 46.9960 31 4.7089 4.9650 3.1134 3.9463 20.4401 47.5210 31.5 4.7992 5.0212 3.1381 3.9588 20.6461 48.0460 32 4.8540 5.0779 3.1760 3 .9432 20.8717 48.5710 32.5 4.9092 5.1351 3.2104 3.9729 21.0872 49.0960 33 4.9650 5.2121 3.2464 4.0108 21.3321 49.6210 33.5 5.0400 5.2704 3.2881 4.0681 21.5814 50.1460 34 5.1160 5.3292 3.3261 4.1244 21.8534 50.6710 34.5 5.1543 5.4084 3.3467 4.1650 22.1 308 51.1960 35 5.2121 5.4684 3.3936 4.2141 22.4156 51.9840 35.5 5.2704 5.5289 3.4298 4.2770 22.7122 52.5090 36 5.3490 5.6102 3.4691 4.3439 22.9696 53.0340 36.5 5.4084 5.6719 3.5145 4.3777 23.2217 53.5590 37 5.4483 5.7340 3.5475 4.4117 23.5087 54.0840 37.5 5.5086 5.8176 3.5879 4.4803 23.8174 54.6090 38 5.5898 5.8809 3.6287 4.5323 24.1220 55.3970 38.5 5.6102 5.9447 3.6624 4.5672 24.4405 55.9220 39 5.6925 6.0091 3.6890 4.6200 24.7308 56.4470 39.5 5.7548 6.0739 3.7322 4.6732 25.0541 56.9720 40 5.8176 6.1611 3.7773 4.7449 25.3447 57.4970 40.5 5.8809 6.2272 3.8030 4.7810 25.6217 58.0220 41 5.9234 6.2937 3.8427 4.8357 25.9312 58.8100 41.5 6.0091 6.3608 3.8873 4.8908 26.2257 59.3350 42 6.0739 6.4284 3.9229 4.9278 26.5032 59.8600 42.5 6.1392 6.4965 3. 9745 5.0024 26.7879 60.3850 43 6.2051 6.5651 4.0250 5.0779 27.0531 60.9100 43.5 6.2493 6.6342 4.0633 5.1351 27.3242 61.4350

PAGE 127

127 Table C 6. Continued. 44 6.3160 6.7039 4.0970 5.1735 27.6014 62.2230 44.5 6.3832 6.7506 4.1325 5.2315 27.8560 62.7480 45 6.451 0 6.8212 4.1764 5.2900 28.0864 63.2730 45.5 6.5193 6.8685 4.2059 5.3292 28.3207 63.7980 46 6.5651 6.9399 4.2471 5.4084 28.5289 64.3230 46.5 6.6111 6.9878 4.2903 5.4483 28.7400 64.8480 47 6.7039 7.0601 4.3372 5.5086 28.9540 65.3730 47.5 6.7506 7.1086 4 .3777 5.5694 28.9540 66.1610 48 6.8212 7.1818 4.4117 5.6102 29.6361 66.6860 48.5 6.8922 7.2555 4.4459 5.6719 29.7398 67.2110 49 6.9399 7.3050 4.4976 5.7132 29.8835 67.7360 49.5 7.0119 7.3547 4.5323 5.7548 30.0467 68.2610 50 7.0601 7.4046 4.5847 5.7966 30.2584 68.7860 50.5 7.1086 7.4547 4.6200 5.8598 30.4638 69.3110 51 7.1818 7.5304 4.6554 5.9021 30.6823 70.0990 51.5 7.2309 7.5812 4.6910 5.9661 30.8933 70.6240 52 7.3050 7.6066 4.7449 6.0522 31.1292 71.1490 52.5 7.3547 7.6578 4.7992 6.0956 31.3884 7 1.6740 53 7.4296 7.7349 4.8357 6.1174 31.6413 72.1990 53.5 7.4799 7.7866 4.8723 6.1831 31.8990 72.7240 54 7.5558 7.8385 4.9278 6.2272 32.1991 73.5120 54.5 7.6066 7.8907 4.9650 6.2937 32.4900 74.0370 55 7.6578 7.9431 5.0212 6.3160 32.7525 74.5620 55.5 7.7349 7.9958 5.0589 6.3608 33.0141 75.0870 56 7.7607 8.0222 5.0969 6.4284 33.2744 75.6120 56.5 7.8385 8.0753 5.1351 6.4737 33.5740 76.1370 57 7.8646 8.1285 5.1928 6.5421 33.8818 76.9250 57.5 7.9431 8.1820 5.2315 6.5881 34.2049 77.4500 58 7.9958 8.23 58 5.2704 6.6574 34.5847 77.9750 58.5 8.0487 8.2627 5.3292 6.6806 34.9416 78.5000 59 8.1019 8.3168 5.3885 6.7506 35.2700 79.0250 59.5 8.1552 8.3440 5.4284 6.7976 35.5651 79.5500 60 8.2358 8.3985 5.4684 6.8448 35.8463 80.0750 60.5 8.2627 8.4258 5.5086 6.8922 36.1358 80.6000 61 8.3168 8.4806 5.5491 6.9399 36.4339 81.3880 61.5 8.3712 8.5081 5.5898 6.9878 36.6889 81.9130 62 8.4258 8.5357 5.6307 7.0360 36.9762 82.4380 62.5 8.4806 8.5910 5.6925 7.0844 37.2709 82.9630 63 8.5357 8.6466 5.7132 7.1574 37.54 50 83.4880 63.5 8.5910 8.7024 5.7548 7.2063 37.8252 84.2760 64 8.6466 8.7303 5.7966 7.2555 38.0537 84.8010 64.5 8.6744 8.7865 5.8598 7.3050 38.2860 85.3260

PAGE 128

128 Table C 6. Continued. 65 8.7303 8.8429 5.9021 7.3796 38.4925 85.8510 65.5 8.7865 8.8995 5.9447 7.4046 38.7019 86.3760 66 8.8429 8.9564 5.9661 7.4799 38.9143 86.9010 66.5 8.8995 9.0422 6.0091 7.5304 39.1606 87.6890 67 8.9564 9.0709 6.0522 7.5812 39.4739 88.2140 67.5 8.9850 9.1285 6.0956 7.6322 39.8253 88.7390 68 9.0422 9.1864 6.1392 7.6834 39.8 899 89.2640 68.5 9.0997 9.2445 6.1831 7.7349 39.8899 89.7890 69 9.1574 9.3028 6.2051 7.8125 39.9224 90.5770 69.5 9.1864 9.3614 6.2493 7.8385 39.9224 91.1020 70 9.2445 9.4202 6.2937 7.8907 39.9224 91.6270 70.5 9.2736 9.4792 6.3384 7.9431 39.9224 92.152 0 71 9.3320 9.5385 6.3608 7.9958 40.6087 92.6770 71.5 9.3614 9.6279 6.4058 8.0222 40.7143 93.2020 72 9.4202 9.6878 6.4510 8.1019 40.8584 93.7270 72.5 9.4497 9.7781 6.4965 8.1285 41.0129 94.2520 73 9.5088 9.8386 6.5193 8.1820 41.2173 95.0400 73.5 9.56 83 9.9298 6.5651 8.2358 41.4400 95.5650 74 9.6279 10.0215 6.6111 8.2898 41.6459 96.0900 74.5 9.6578 10.0830 6.6342 8.3440 41.8512 96.6150 75 9.7178 10.1447 6.6806 8.3985 42.0764 97.1400 75.5 9.7781 10.1447 6.7039 8.4532 42.3136 97.6650 76 9.8386 10.84 15 6.7506 8.5081 42.5617 98.1900 76.5 9.8689 10.8080 6.7976 8.5357 42.8072 98.9780 77 9.9298 10.8003 6.8212 8.5910 43.0945 99.5030 77.5 9.9603 10.8027 6.8685 8.6466 43.3971 100.0280 78 10.0215 10.8146 6.9161 8.6744 43.6711 100.5530 78.5 10.0522 10.835 4 6.9638 8.7303 43.9284 101.0780 79 10.1138 10.8600 6.9878 8.7584 44.1728 101.6030 79.5 10.1756 10.8889 7.0360 8.7865 44.4547 102.1280 80 10.2377 10.9136 7.0601 8.8429 44.7397 102.9160 80.5 10.2999 10.9518 7.1086 8.8712 45.0193 102.9160 81 10.3312 10. 9788 7.1330 8.9280 45.1151 102.9160 81.5 10.3625 10.9895 7.1818 8.9564 45.1538 102.9160 82 10.3625 10.9895 7.1818 8.9850 45.1733 102.9160 82.5 10.3625 10.9882 7.1818 9.0135 45.1733 102.9160

PAGE 129

129 Table C 7 Bromide run #6 water flow and rainfall data V olume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6199 0.6026 0.6045 0.5962 0.5670 0.0000 9.5 0.6199 0.6026 0.6045 0.5962 0.5670 0.5250 9 0.6222 0.6029 0.6065 0.5962 0.5676 0.5250 8.5 0.6245 0.6055 0.6087 0.5962 0.5934 0.7880 8 0.6271 0.6084 0.6107 0.5975 0.7270 0.5250 7.5 0.6315 0.6133 0.6133 0.5981 0.9058 0.5250 7 0.6409 0.6232 0.6202 0.5981 1.1079 0.5250 6.5 0.6588 0.6413 0.6332 0.6013 1.3464 0.7880 6 0.6771 0.6647 0.6477 0.6117 1.5942 0.5250 5.5 0.6998 0.6932 0.6703 0.624 2 1.8430 0.5250 5 0.7195 0.7251 0.6831 0.6416 2.0776 0.7880 4.5 0.7423 0.7500 0.6943 0.6560 2.3612 0.5250 4 0.7689 0.7854 0.7090 0.6717 2.6382 0.5250 3.5 0.8001 0.8138 0.7251 0.6907 2.9475 0.5250 3 0.8290 0.8474 0.7415 0.7127 3.2665 0.5250 2.5 0.8561 0.8818 0.7610 0.7289 3.5995 0.7880 2 0.8876 0.9137 0.7765 0.7469 3.8795 0.5250 1.5 0.9225 0.9427 0.7927 0.7670 4.1601 0.5250 1 0.9556 0.9740 0.8121 0.7854 4.4631 0.5250 0.5 0.9839 1.0042 0.8315 0.8159 4.7992 0.5250 0 1.0194 1.0353 0.8566 0. 8384 5.1543 0.7880 0.5 1.0618 1.0745 0.8711 0.8561 5.5086 0.5250 1 1.0976 1.1101 0.8903 0.8773 5.8387 0.5250 1.5 1.1217 1.1479 0.9169 0.9045 6.1611 0.5250 2 1.1535 1.1867 0.9361 0.9328 6.5193 0.7880 2.5 1.1896 1.2237 0.9614 0.9604 6.8448 0.5250 3 1.2 213 1.2574 0.9740 0.9878 7.1574 0.5250 3.5 1.2543 1.2987 0.9967 1.0224 7.4799 0.7880 4 1.2906 1.3445 1.0179 1.0446 7.8125 0.5250 4.5 1.3310 1.3982 1.0383 1.0687 8.1552 0.5250 5 1.3646 1.4614 1.0629 1.0933 8.4532 0.5250 5.5 1.4123 1.5176 1.0965 1.1222 8.7584 0.5250 6 1.4593 1.5698 1.1112 1.1450 9.0422 0.7880 6.5 1.4991 1.6288 1.1428 1.1884 9.2736 0.5250 7 1.5291 1.6717 1.1603 1.2237 9.5088 0.5250 7.5 1.5772 1.7220 1.2106 1.2477 1.1838 0.7880 8 1.6174 1.7662 1.2278 1.2764 0.8030 0.5250 8.5 1.6756 1 .8138 1.2574 1.3144 0.9451 0.5250 9 1.7188 1.8523 1.2776 1.3483 1.1372 0.5250 9.5 1.7597 1.8941 1.2956 1.3737 1.3561 0.5250

PAGE 130

130 Table C 7. Continued. 10 1.7948 1.9393 1.3335 1.4163 1.6227 0.7880 10.5 1.8204 1.9845 1.3522 1.4510 1.8372 0.5250 11 1.8667 2. 0179 1.3816 1.4752 2.0935 0.5250 11.5 1.9019 2.0628 1.4002 1.5076 2.3622 0.5250 12 1.9393 2.1151 1.4380 1.5413 2.6621 0.5250 12.5 1.9756 2.1589 1.4850 1.5942 2.9649 0.7880 13 2.0215 2.2083 1.5133 1.6167 3.2895 0.5250 13.5 2.0628 2.2566 1.5522 1.6532 3 .6243 0.5250 14 2.0981 2.3079 1.5749 1.6873 3.9541 0.5250 14.5 2.1435 2.3591 1.6077 1.7180 4.2339 0.7880 15 2.1762 2.4112 1.6273 1.7548 4.5323 0.5250 15.5 2.2151 2.4675 1.6555 1.7882 4.8540 0.5250 16 2.2487 2.5150 1.6857 1.8138 5.1928 0.5250 16.5 2.2 988 2.5799 1.6998 1.8388 5.5694 0.7880 17 2.3467 2.6371 1.7315 1.8847 5.9234 0.5250 17.5 2.3913 2.6965 1.7670 1.9157 6.2937 0.5250 18 2.4376 2.7534 1.7898 1.9481 6.6111 0.5250 18.5 2.5020 2.8161 1.8138 1.9720 6.9638 0.5250 19 2.5500 2.8776 1.8414 2.00 07 7.3050 0.7880 19.5 2.5989 2.9351 1.8693 2.0324 7.6066 0.5250 20 2.6598 2.9861 1.9097 2.0665 7.9431 0.5250 20.5 2.7196 3.0429 1.9218 2.1019 8.2627 0.7880 21 2.7664 3.0953 1.9508 2.1369 8.5910 0.5250 21.5 2.8317 3.1564 1.9818 2.1656 8.8712 0.5250 22 2.9044 3.2104 2.0061 2.2053 9.1574 0.5250 22.5 2.9674 3.2665 2.0352 2.2437 9.3907 0.5250 23 3.0200 3.3248 2.0581 2.2857 9.6279 0.7880 23.5 3.0632 3.3825 2.0757 2.3283 9.8689 0.5250 24 3.1095 3.4410 2.1170 2.3694 10.1138 0.5250 24.5 3.1629 3.5003 2.14 45 2.4175 10.3938 0.5250 25 3.2197 3.5575 2.1714 2.4632 2.1170 0.5250 25.5 3.2692 3.6170 2.1898 2.5041 0.7520 0.7880 26 3.3125 3.6713 2.2132 2.5368 0.9003 0.5250 26.5 3.3508 3.7322 2.2467 2.5777 1.0852 0.5250 27 3.3936 3.7985 2.2796 2.6213 1.3163 0.52 50 27.5 3.4354 3.8611 2.3150 2.6644 1.5581 0.5250 28 3.4804 3.9213 2.3457 2.7301 1.8063 0.7880 28.5 3.5303 3.9776 2.3944 2.7687 2.0306 0.5250 29 3.5705 4.0409 2.4397 2.8030 2.3272 0.5250 29.5 3.6170 4.1002 2.4707 2.8497 2.6045 0.5250 30 3.6624 4.1568 2.4987 2.8910 2.8788 0.5250 30.5 3.6964 4.2026 2.5161 2.9228 3.1695 0.7880

PAGE 131

131 Table C 7. Continued. 31 3.7427 4.2537 2.5489 2.9649 3.5460 0.5250 31.5 3.7985 4.3087 2.6101 2.9999 3.8641 0.5250 32 3.8442 4.3676 2.6450 3.0352 4.1455 0.5250 32.5 3.8981 4.4 288 2.6838 3.0825 4.4631 0.5250 33 3.9432 4.4631 2.7057 3.1225 4.7629 0.7880 33.5 3.9934 4.5323 2.7406 3.1524 5.1351 0.5250 34 4.0521 4.5847 2.7699 3.1919 5.5086 0.5250 34.5 4.0986 4.6376 2.8149 3.2357 5.8387 0.7880 35 4.1536 4.6732 2.8485 3.2719 6.20 51 0.5250 35.5 4.1977 4.7269 2.8922 3.3098 6.5651 0.5250 36 4.2587 4.7810 2.9388 3.3426 6.8922 0.5250 36.5 4.3087 4.8357 2.9450 3.3797 7.2309 0.5250 37 4.3608 4.8723 2.9636 3.4200 7.5558 0.5250 37.5 4.4288 4.9278 3.0074 3.4593 7.8646 0.7880 38 4.4803 4.9837 3.0213 3.5017 8.2089 0.5250 38.5 4.5149 5.0589 3.0799 3.5389 8.5357 0.5250 39 4.5672 5.0969 3.0966 3.5835 8.8147 0.5250 39.5 4.6376 5.1543 3.1368 3.6141 9.0997 0.7880 40 4.6910 5.2315 3.1760 3.6507 9.3614 0.5250 40.5 4.7449 5.2900 3.1985 3.697 9 0.6980 0.5250 41 4.7810 5.3490 3.2170 3.7277 0.7854 0.5250 41.5 4.8540 5.4084 3.2679 3.7743 0.9585 0.5250 42 4.9092 5.4684 3.2746 3.8182 1.1586 0.5250 42.5 4.9463 5.5491 3.3112 3.8580 1.3909 0.7880 43 5.0024 5.6102 3.3412 3.8965 1.6679 0.5250 43.5 5.0589 5.6719 3.3659 3.9400 1.8941 0.5250 44 5.1160 5.7340 3.4256 3.9792 2.1772 0.5250 44.5 5.1735 5.7966 3.4424 4.0266 2.4610 0.7880 45 5.2121 5.8598 3.4861 4.0697 2.7417 0.5250 45.5 5.2704 5.9234 3.5145 4.1066 3.0569 0.5250 46 5.3096 5.9661 3.5389 4 .1471 3.3839 0.5250 46.5 5.3687 6.0306 3.5835 4.1895 3.7083 0.7880 47 5.4284 6.0956 3.6111 4.2339 4.0330 0.5250 47.5 5.4684 6.1611 3.6521 4.2820 4.3087 0.5250 48 5.5086 6.2051 3.6950 4.3288 4.6376 0.5250 48.5 5.5694 6.2715 3.7517 4.3676 4.9650 0.5250 49 5.6307 6.3384 3.7698 4.4288 5.3490 0.7880 49.5 5.6513 6.4058 3.8030 4.4631 5.7132 0.5250 50 5.7340 6.4737 3.8411 4.4976 6.0739 0.5250 50.5 5.7757 6.5193 3.8718 4.5323 6.4058 0.5250 51 5.8176 6.5651 3.8919 4.5672 6.7272 0.7880 51.5 5.8598 6.6342 3. 9074 4.6200 7.0844 0.5250

PAGE 132

132 Table C 7. Continued. 52 5.9234 6.7039 3.9698 4.6554 7.4296 0.5250 52.5 5.9876 6.7506 4.0060 4.7089 7.7349 0.5250 53 6.0306 6.8212 4.0489 4.7629 8.0487 0.5250 53.5 6.0956 6.8685 4.0697 4.7992 8.3712 0.5250 54 6.1392 6.9161 4 .1098 4.8540 8.6744 0.7880 54.5 6.1831 6.9638 4.1422 4.8908 8.9850 0.5250 55 6.2272 7.0360 4.1895 4.9278 9.2445 0.5250 55.5 6.2715 7.0844 4.2174 4.9650 9.5088 0.5250 56 6.3160 7.1330 4.2488 5.0024 9.6878 0.5250 56.5 6.3832 7.1818 4.2488 5.0589 1.2344 0.7880 57 6.4284 7.2555 4.3372 5.1160 0.7806 0.5250 57.5 6.4737 7.3298 4.3507 5.1735 0.9422 0.5250 58 6.5193 7.3796 4.3930 5.2121 1.1518 0.5250 58.5 6.5881 7.4296 4.4288 5.2509 1.3829 0.5250 59 6.6342 7.4547 4.4631 5.3096 1.6190 0.7880 59.5 6.6806 7. 5304 4.4803 5.3490 1.8633 0.5250 60 6.7506 7.5812 4.5323 5.3885 2.0916 0.5250 60.5 6.7976 7.6322 4.5672 5.4284 2.4017 0.5250 61 6.8448 7.6578 4.6023 5.4684 2.6701 0.7880 61.5 6.8922 7.7091 4.6200 5.5086 2.9661 0.5250 62 6.9638 7.7607 4.6554 5.5491 3.3 084 0.5250 62.5 7.0119 7.8125 4.6732 5.5898 3.6301 0.5250 63 7.0601 7.8646 4.7269 5.6307 3.9291 0.5250 63.5 7.1086 7.9169 4.7629 5.6719 4.2174 0.7880 64 7.1574 7.9431 4.7992 5.7132 4.4976 0.5250 64.5 7.2063 8.0222 4.8357 5.7757 4.8540 0.5250 65 7.255 5 8.0487 4.8540 5.7966 5.2121 0.5250 65.5 7.3298 8.1019 4.8908 5.8598 5.5898 0.5250 66 7.3547 8.1285 4.9278 5.9021 5.9021 0.7880 66.5 7.4046 8.1820 4.9463 5.9234 6.2493 0.5250 67 7.4547 8.2089 5.0024 5.9876 6.5651 0.5250 67.5 7.5051 8.2627 5.0400 6.03 06 6.9161 0.5250 68 7.5558 8.2898 5.0779 6.0739 7.2309 0.7880 68.5 7.6066 8.3440 5.1160 6.1174 7.5812 0.5250 69 7.6578 8.3712 5.1543 6.1392 7.9169 0.5250 69.5 7.6834 8.4258 5.1928 6.1831 8.2089 0.5250 70 7.7349 8.4532 5.2315 6.2272 8.5357 0.5250 70.5 7.7866 8.4806 5.2509 6.2715 8.8147 0.7880 71 7.8385 8.5081 5.2900 6.2937 9.0709 0.5250 71.5 7.8907 8.5357 5.3292 6.3608 9.3614 0.5250 72 7.9169 8.5910 5.3687 6.4058 0.6849 0.5250 72.5 7.9694 8.6188 5.4084 6.4284 0.7642 0.5250

PAGE 133

133 Table C 7. Continued. 7 3 8.0222 8.6466 5.4483 6.4737 0.9290 0.7880 73.5 8.0753 8.7024 5.4885 6.5193 1.1239 0.5250 74 8.1019 8.7303 5.5289 6.5651 1.3567 0.5250 74.5 8.1552 8.7584 5.5694 6.6111 1.6137 0.5250 75 8.2089 8.8147 5.6102 6.6342 1.8388 0.5250 75.5 8.2627 8.8712 5.63 07 6.7039 2.0637 0.7880 76 8.3168 8.8995 5.6513 6.7272 2.3498 0.5250 76.5 8.3712 8.9564 5.6925 6.7741 2.6146 0.5250 77 8.3985 9.0135 5.7340 6.8212 2.9130 0.5250 77.5 8.4532 9.0709 5.7548 6.8685 3.2237 0.7880 78 8.4806 9.0997 5.7966 6.8922 3.5662 0.525 0 78.5 8.5357 9.1574 5.8387 6.9399 3.8765 0.5250 79 8.5910 9.2154 5.9021 6.9878 4.1487 0.5250 79.5 8.6188 9.2736 5.9447 7.0119 4.4631 0.7880 80 8.6466 9.3028 5.9661 7.0601 4.7629 0.5250 80.5 8.6744 9.3614 6.0091 7.0844 5.0969 0.5250 81 8.7303 9.4202 6.0306 7.1330 5.4084 0.2630 81.5 8.7584 9.4497 6.0522 7.1818 5.5289 0.0000 82 8.7865 9.4792 6.0956 7.2309 5.5694 0.0000 82.5 8.7865 9.4792 6.0956 7.2802 5.5694 0.0000 83 8.7865 9.4792 6.1174 7.2802 5.5694 0.0000 83.5 8.7865 9.4792 6.1174 7.2802 5.5694 0.0000 84 8.7865 9.5088 6.1174 7.2802 5.5694 0.0000 84.5 8.7865 9.5088 6.1174 7.2802 5.5898 0.0000 85 8.7865 9.5088 6.1174 7.2802 5.5898 0.0000 85.5 8.7865 9.5088 6.1174 7.2802 5.5898 0.0000 86 8.7865 9.5088 6.1174 7.2802 5.5898 0.0000 86.5 8.7865 9 .5088 6.1392 7.2802 5.5898 0.0000 Table C 8 Bromide run #7 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6242 0.6049 0.6285 0.5962 0.5510 0.0000 9.5 0.6245 0.6062 0.6322 0.5962 0.5510 0.5250 9 0.6268 0.6097 0.6423 0.5962 0.5531 0.5250 8.5 0.6271 0.6127 0.6440 0.5969 0.5956 0.5250 8 0.6301 0.6159 0.6450 0.5972 0.7213 0.7880 7.5 0.6325 0.6228 0.6470 0.5972 0.9160 0.5250 7 0.6433 0.6318 0.6474 0.5985 1.1439 0.5250 6.5 0.6553 0.6426 0.6539 0.600 1 1.4183 0.5250 6 0.6651 0.6556 0.6647 0.6007 1.6873 0.7880

PAGE 134

134 Table C 8. Continued. 5.5 0.6813 0.6742 0.6774 0.6039 1.9367 0.5250 5 0.6962 0.6962 0.6893 0.6127 2.2666 0.5250 4.5 0.7105 0.7127 0.7057 0.6228 2.5777 0.5250 4 0.7285 0.7419 0.7153 0.63 38 2.8800 0.5250 3.5 0.7543 0.7642 0.7342 0.6494 3.2491 0.7880 3 0.7850 0.7895 0.7481 0.6640 3.5980 0.5250 2.5 0.8117 0.8201 0.7638 0.6817 3.8950 0.5250 2 0.8341 0.8431 0.7745 0.6980 4.1911 0.5250 1.5 0.8522 0.8724 0.7927 0.7120 4.5323 0.5250 1 0.8760 0.8999 0.8067 0.7297 4.9092 0.5250 0.5 0.9049 0.9253 0.8243 0.7504 5.2900 0.7880 0 0.9304 0.9441 0.8414 0.7681 5.6513 0.5250 0.5 0.9551 0.9667 0.8566 0.7862 5.9661 0.5250 1 0.9799 0.9942 0.8773 0.8047 6.3384 0.5250 1.5 1.0148 1.0276 0.8967 0. 8231 6.6806 0.5250 2 1.0353 1.0545 0.9188 0.8431 6.9878 0.5250 2.5 1.0602 1.0804 0.9347 0.8596 7.3796 0.7880 3 1.0960 1.1107 0.9456 0.8782 7.7349 0.5250 3.5 1.1134 1.1434 0.9648 0.8999 8.1019 0.5250 4 1.1512 1.1700 0.9873 0.9197 8.4258 0.5250 4.5 1.1 666 1.1966 0.9977 0.9375 8.7584 0.5250 5 1.1908 1.2231 1.0133 0.9595 9.0135 0.5250 5.5 1.2201 1.2616 1.0301 0.9740 9.0709 0.5250 6 1.2513 1.2962 1.0555 1.0098 4.4976 0.7880 6.5 1.2739 1.3240 1.0666 1.0291 0.6932 0.5250 7 1.3019 1.3606 1.0890 1.0435 0. 8218 0.5250 7.5 1.3483 1.4062 1.1014 1.0687 1.0174 0.5250 8 1.3829 1.4558 1.1339 1.0890 1.2398 0.5250 8.5 1.4055 1.4942 1.1450 1.1047 1.5076 0.5250 9 1.4441 1.5479 1.1706 1.1305 1.7653 0.5250 9.5 1.4879 1.5905 1.1850 1.1535 2.0324 0.5250 10 1.5198 1. 6410 1.2154 1.1821 2.3488 0.5250 10.5 1.5537 1.6694 1.2398 1.2077 2.6678 0.5250 11 1.5883 1.7148 1.2574 1.2231 2.9786 0.7880 11.5 1.6174 1.7516 1.2801 1.2410 3.3180 0.5250 12 1.6478 1.7849 1.3050 1.2696 3.6890 0.5250 12.5 1.6857 1.8121 1.3284 1.3031 4 .0029 0.5250 13 1.7315 1.8481 1.3554 1.3316 4.3187 0.5250 13.5 1.7532 1.8847 1.3829 1.3522 4.6554 0.5250 14 1.7997 1.9236 1.4123 1.3849 5.0589 0.5250 14.5 1.8229 1.9561 1.4400 1.4076 5.4684 0.7880 15 1.8633 1.9845 1.4773 1.4407 5.8176 0.5250

PAGE 135

135 Table C 8. Continued 15.5 1.8872 2.0124 1.5005 1.4718 6.2272 0.5250 16 1.9244 2.0462 1.5219 1.4900 6.5651 0.5250 16.5 1.9587 2.0795 1.5457 1.5219 6.9399 0.5250 17 1.9980 2.1104 1.5838 1.5530 7.3050 0.7880 17.5 2.0224 2.1502 1.6122 1.5764 7.6834 0.5250 18 2.0 480 2.1820 1.6356 1.6114 8.0222 0.5250 18.5 2.0748 2.2259 1.6640 1.6341 8.3440 0.5250 19 2.1160 2.2726 1.6912 1.6609 8.7024 0.5250 19.5 2.1483 2.3099 1.7148 1.6826 9.0135 0.5250 20 2.1820 2.3519 1.7387 1.7085 9.2736 0.7880 20.5 2.2063 2.3819 1.7443 1. 7411 9.6578 0.5250 21 2.2437 2.4154 1.7670 1.7686 0.7972 0.5250 21.5 2.2686 2.4546 1.7907 1.7857 0.8273 0.5250 22 2.3038 2.5106 1.8263 1.8055 0.9883 0.5250 22.5 2.3498 2.5489 1.8422 1.8355 1.2219 0.5250 23 2.3850 2.5989 1.8752 1.8565 1.4907 0.7880 23 .5 2.4281 2.6416 1.9045 1.8855 1.7572 0.5250 24 2.4761 2.6907 1.9306 1.9088 2.0133 0.5250 24.5 2.5074 2.7394 1.9516 1.9384 2.3477 0.5250 25 2.5555 2.7864 1.9774 1.9587 2.6337 0.5250 25.5 2.5989 2.8305 1.9980 1.9845 2.9512 0.5250 26 2.6439 2.8703 2.020 6 2.0097 3.2881 0.7880 26.5 2.6724 2.9167 2.0434 2.0416 3.6565 0.5250 27 2.7104 2.9537 2.0711 2.0730 3.9918 0.5250 27.5 2.7570 2.9961 2.1000 2.0991 4.3120 0.5250 28 2.8018 3.0314 2.1293 2.1236 4.6554 0.5250 28.5 2.8521 3.0735 2.1637 2.1627 5.0212 0.78 80 29 2.8995 3.1212 2.1839 2.1927 5.4084 0.5250 29.5 2.9549 3.1695 2.2083 2.2161 5.7966 0.5250 30 2.9986 3.2131 2.2289 2.2487 6.1611 0.5250 30.5 3.0403 3.2544 2.2537 2.2706 6.5421 0.5250 31 3.0799 3.3016 2.2877 2.3008 6.8922 0.7880 31.5 3.1342 3.3467 2.3150 2.3303 7.2555 0.5250 32 3.1642 3.3797 2.3272 2.3622 7.6066 0.5250 32.5 3.2038 3.4144 2.3643 2.3955 7.9694 0.5250 33 3.2424 3.4550 2.3798 2.4049 8.2898 0.5250 33.5 3.2800 3.5088 2.4165 2.4334 8.6188 0.5250 34 3.3139 3.5590 2.4472 2.4739 8.9280 0.7880 34.5 3.3549 3.5951 2.4675 2.4998 9.2154 0.5250 35 3.3922 3.6374 2.5085 2.5281 9.4497 0.5250 35.5 3.4354 3.6742 2.5423 2.5688 3.4480 0.5250 36 3.4649 3.7247 2.5766 2.6000 0.7489 0.5250

PAGE 136

136 Table C 8. Continued 36.5 3.5017 3.7667 2.5989 2.6337 0.913 7 0.7880 37 3.5274 3.8304 2.6292 2.6530 1.1266 0.5250 37.5 3.5691 3.8734 2.6575 2.6953 1.3626 0.5250 38 3.6068 3.9229 2.6884 2.7266 1.6478 0.5250 38.5 3.6374 3.9698 2.7104 2.7546 1.8984 0.5250 39 3.6772 4.0108 2.7243 2.7876 2.1820 0.5250 39.5 3.7009 4.0601 2.7876 2.8209 2.4868 0.7880 40 3.7277 4.1050 2.8090 2.8546 2.7959 0.5250 40.5 3.7577 4.1471 2.8389 2.8849 3.1212 0.5250 41 3.7894 4.1879 2.8654 2.9105 3.4946 0.5250 41.5 3.8442 4.2322 2.9019 2.9376 3.8611 0.5250 42 3.8795 4.2670 2.9203 2.9711 4 .1764 0.7880 42.5 3.9182 4.3104 2.9636 3.0125 4.4976 0.5250 43 3.9604 4.3524 2.9836 3.0403 4.8908 0.5250 43.5 4.0108 4.3913 3.0150 3.0658 5.2704 0.5250 44 4.0425 4.4288 3.0505 3.0979 5.6719 0.5250 44.5 4.1034 4.4803 3.0786 3.1264 6.0522 0.5250 45 4.1 373 4.5149 3.1069 3.1669 6.4058 0.5250 45.5 4.1813 4.5497 3.1407 3.1972 6.7506 0.5250 46 4.2306 4.6023 3.1669 3.2210 7.1330 0.7880 46.5 4.2803 4.6376 3.2011 3.2450 7.4799 0.5250 47 4.3104 4.6910 3.2210 3.2813 7.8646 0.5250 47.5 4.3608 4.7089 3.2491 3. 3112 8.2089 0.5250 48 4.4117 4.7449 3.2935 3.3563 8.5081 0.5250 48.5 4.4459 4.7992 3.3289 3.3963 8.8429 0.7880 49 4.4976 4.8540 3.3508 3.4172 9.0997 0.5250 49.5 4.5497 4.8908 3.3811 3.4452 1.9123 0.5250 50 4.5847 4.9278 3.4144 3.4720 0.7681 0.5250 50 .5 4.6200 4.9650 3.4340 3.5103 0.9229 0.5250 51 4.6732 5.0024 3.4748 3.5374 1.1316 0.5250 51.5 4.7089 5.0400 3.5031 3.5734 1.4042 0.7880 52 4.7629 5.0969 3.5374 3.6039 1.6686 0.5250 52.5 4.7992 5.1351 3.5763 3.6462 1.9552 0.5250 53 4.8540 5.1928 3.587 9 3.6816 2.2328 0.5250 53.5 4.8908 5.2315 3.6287 3.7068 2.5281 0.5250 54 4.9463 5.2704 3.6580 3.7502 2.8257 0.7880 54.5 4.9837 5.3292 3.6757 3.7803 3.1564 0.5250 55 5.0400 5.3885 3.7128 3.8030 3.5274 0.5250 55.5 5.0779 5.4284 3.7487 3.8411 3.8503 0.52 50 56 5.1160 5.4684 3.7833 3.8672 4.1764 0.5250 56.5 5.1735 5.5289 3.8152 3.9089 4.4976 0.5250 57 5.1928 5.5694 3.8365 3.9385 4.8357 0.5250

PAGE 137

137 Table C 8. Continued 57.5 5.2509 5.6307 3.8780 3.9839 5.2509 0.5250 58 5.2704 5.6719 3.9120 4.0139 5.6513 0.78 80 58.5 5.3292 5.7132 3.9291 4.0425 6.0306 0.5250 59 5.3687 5.7757 3.9729 4.0761 6.4058 0.5250 59.5 5.4084 5.8176 3.9997 4.1082 6.7506 0.5250 60 5.4483 5.8809 4.0362 4.1422 7.1086 0.5250 60.5 5.4885 5.9021 4.0601 4.1846 7.4547 0.5250 61 5.5289 5.9447 4.0841 4.2092 7.8125 0.7880 61.5 5.5694 6.0091 4.1179 4.2405 8.1552 0.5250 62 5.6102 6.0522 4.1536 4.2720 8.5081 0.5250 62.5 5.6513 6.1174 4.1731 4.3037 8.7865 0.5250 63 5.6925 6.1611 4.2042 4.3524 9.0422 0.5250 63.5 5.7340 6.2051 4.2421 4.3862 3.022 6 0.5250 64 5.7757 6.2493 4.2753 4.4117 0.7285 0.5250 64.5 5.8387 6.3160 4.3053 4.4459 0.8813 0.7880 65 5.8809 6.3384 4.3372 4.4803 1.0798 0.5250 65.5 5.9234 6.4058 4.3727 4.5323 1.3107 0.5250 66 5.9447 6.4284 4.3947 4.5672 1.5794 0.5250 66.5 5.9876 6.4737 4.4288 4.5847 1.8254 0.5250 67 6.0306 6.5193 4.4459 4.6200 2.1094 0.7880 67.5 6.0739 6.5651 4.4976 4.6554 2.3934 0.5250 68 6.1174 6.6111 4.5323 4.6910 2.7196 0.5250 68.5 6.1611 6.6574 4.5497 4.7269 3.0314 0.5250 69 6.1831 6.7039 4.5847 4.7810 3 .3950 0.5250 69.5 6.2272 6.7506 4.6200 4.8174 3.7472 0.7880 70 6.2937 6.7976 4.6376 4.8540 4.0441 0.5250 70.5 6.3160 6.8212 4.6732 4.8723 4.3743 0.5250 71 6.3608 6.8685 4.7089 4.9092 4.7269 0.5250 71.5 6.4058 6.9161 4.7449 4.9278 5.0779 0.5250 72 6.4 510 6.9399 4.7629 4.9650 5.4885 0.7880 72.5 6.4965 6.9878 4.7992 5.0212 5.8809 0.5250 73 6.5193 7.0360 4.8357 5.0589 6.2272 0.5250 73.5 6.5651 7.0844 4.8723 5.0969 6.6111 0.5250 74 6.6111 7.1818 4.9092 5.1351 6.9638 0.5250 74.5 6.6574 7.2309 4.9278 5. 1543 7.3298 0.5250 75 6.7039 7.2802 4.9463 5.1928 7.6834 0.5250 75.5 6.7272 7.3298 4.9837 5.2315 8.0222 0.5250 76 6.7741 7.3547 5.0024 5.2704 8.3168 0.7880 76.5 6.8212 7.3796 5.0400 5.3096 8.6466 0.5250 77 6.8685 7.4296 5.0969 5.3292 8.9280 0.5250 77 .5 6.9161 7.4547 5.1351 5.3687 9.1864 0.5250 78 6.9399 7.5051 5.1735 5.4084 6.6111 0.5250

PAGE 138

138 Table C 8. Continued 78.5 6.9878 7.5558 5.2121 5.4483 0.7466 0.7880 79 7.0119 7.5812 5.2509 5.4684 0.8337 0.5250 79.5 7.0601 7.6066 5.2704 5.5086 1.0184 0.5250 80 7.0844 7.6578 5.3096 5.5491 1.2338 0.5250 80.5 7.1330 7.6834 5.3292 5.5694 1.4879 0.5250 81 7.1574 7.7091 5.3687 5.5898 1.6129 0.0000 81.5 7.1818 7.7349 5.3885 5.6307 1.6448 0.0000 82 7.2063 7.7607 5.4084 5.6719 1.6402 0.0000 82.5 7.2063 7.7607 5.4 084 5.6925 1.6410 0.0000 83 7.2063 7.7607 5.4084 5.7132 1.6402 0.0000 83.5 7.2063 7.7607 5.4284 5.7132 1.6371 0.0000 84 7.2063 7.7607 5.4284 5.7132 1.6364 0.0000 84.5 7.2063 7.7607 5.4284 5.7132 1.6371 0.0000 85 7.2063 7.7607 5.4284 5.7132 1.6356 0.00 00 85.5 7.2063 7.7607 5.4483 5.7132 1.6318 0.0000 86 7.2063 7.7607 5.4483 5.7132 1.6303 0.0000 86.5 7.2063 7.7607 5.4483 5.7132 1.6311 0.0000 Table C 9 Bromide run #8 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rai nfall 10 0.6332 0.6133 0.6078 0.6068 0.5627 0.0000 9.5 0.6332 0.6133 0.6087 0.6068 0.5624 0.2630 9 0.6332 0.6133 0.6113 0.6068 0.5627 0.7880 8.5 0.6332 0.6133 0.6113 0.6068 0.5630 1.3130 8 0.6332 0.6133 0.6110 0.6068 0.5636 1.8380 7.5 0.6332 0 .6140 0.6117 0.6068 0.6068 2.3630 7 0.6332 0.6149 0.6104 0.6068 0.8193 2.8880 6.5 0.6332 0.6153 0.6110 0.6068 1.1512 3.4130 6 0.6332 0.6153 0.6110 0.6068 1.5327 3.9380 5.5 0.6342 0.6153 0.6110 0.6068 1.8898 4.4630 5 0.6352 0.6153 0.6097 0.6068 2. 3252 4.7260 4.5 0.6352 0.6176 0.6097 0.6071 2.7628 5.2510 4 0.6352 0.6176 0.6094 0.6068 3.2304 5.7760 3.5 0.6352 0.6176 0.6097 0.6071 3.7352 6.3010 3 0.6352 0.6176 0.6087 0.6084 4.1650 6.8260 2.5 0.6352 0.6176 0.6087 0.6075 4.6200 7.3510 2 0.63 69 0.6176 0.6087 0.6081 5.1351 7.8760 1.5 0.6375 0.6176 0.6094 0.6084 5.6719 8.4010 1 0.6375 0.6195 0.6110 0.6087 6.1392 8.9260

PAGE 139

139 Table C 9. Continued 0.5 0.6375 0.6199 0.6110 0.6081 6.6342 9.4510 0 0.6379 0.6199 0.6110 0.6084 7.1086 9.9760 0.5 0.63 99 0.6202 0.6110 0.6078 7.5812 10.5010 1 0.6406 0.6212 0.6110 0.6087 8.0222 11.0260 1.5 0.6419 0.6222 0.6130 0.6087 8.5081 11.5510 2 0.6426 0.6245 0.6130 0.6087 8.9280 12.0760 2.5 0.6460 0.6265 0.6136 0.6087 9.2445 12.6010 3 0.6464 0.6271 0.6149 0.608 7 0.7195 13.1260 3.5 0.6470 0.6275 0.6143 0.6087 0.8561 13.6510 4 0.6488 0.6315 0.6146 0.6087 1.1389 14.1760 4.5 0.6525 0.6332 0.6169 0.6087 1.5041 14.7010 5 0.6532 0.6342 0.6176 0.6087 1.8548 15.2260 5.5 0.6560 0.6355 0.6172 0.6087 2.2736 15.4890 6 0.6598 0.6389 0.6182 0.6087 2.7104 16.0140 6.5 0.6626 0.6416 0.6212 0.6087 3.1642 16.5390 7 0.6640 0.6416 0.6205 0.6100 3.6331 17.0640 7.5 0.6640 0.6447 0.6199 0.6097 4.0761 17.5890 8 0.6703 0.6481 0.6222 0.6094 4.5323 18.1140 8.5 0.6732 0.6515 0.6235 0.6107 5.0779 18.6390 9 0.6742 0.6515 0.6245 0.6097 5.6102 19.1640 9.5 0.6756 0.6546 0.6265 0.6100 6.1392 19.6890 10 0.6781 0.6584 0.6281 0.6097 6.6574 20.2140 10.5 0.6821 0.6626 0.6298 0.6107 7.1818 20.7390 11 0.6871 0.6640 0.6332 0.6110 7.6322 21.2 640 11.5 0.6853 0.6637 0.6338 0.6104 8.1552 21.7890 12 0.6903 0.6682 0.6342 0.6113 8.6188 22.0520 12.5 0.6943 0.6735 0.6382 0.6110 9.0709 22.5770 13 0.6958 0.6760 0.6402 0.6110 9.5088 23.1020 13.5 0.6998 0.6785 0.6433 0.6117 3.1212 23.6270 14 0.7020 0.6835 0.6512 0.6133 0.7670 24.1520 14.5 0.7050 0.6871 0.6505 0.6133 0.9967 24.6770 15 0.7098 0.6929 0.6577 0.6133 1.3278 25.2020 15.5 0.7127 0.6976 0.6584 0.6133 1.6951 25.7270 16 0.7157 0.6983 0.6598 0.6133 2.0416 26.2520 16.5 0.7187 0.6991 0.6595 0 .6136 2.4440 26.7770 17 0.7202 0.7035 0.6612 0.6136 2.8873 27.3020 17.5 0.7262 0.7075 0.6689 0.6143 3.3673 27.8270 18 0.7274 0.7105 0.6700 0.6162 3.8765 28.3520 18.5 0.7339 0.7142 0.6724 0.6162 4.2803 28.8770 19 0.7388 0.7187 0.6703 0.6176 4.7629 29.1 400 19.5 0.7442 0.7221 0.6778 0.6179 5.3096 29.6650 20 0.7489 0.7262 0.6838 0.6182 5.8598 30.1900

PAGE 140

140 Table C 9. Continued 20.5 0.7532 0.7346 0.6813 0.6199 6.3608 30.7150 21 0.7575 0.7323 0.6828 0.6208 6.8448 31.2400 21.5 0.7606 0.7342 0.6849 0.6208 7.35 47 31.7650 22 0.7654 0.7400 0.6907 0.6218 7.8385 32.2900 22.5 0.7658 0.7442 0.6903 0.6238 8.2627 32.8150 23 0.7693 0.7497 0.6947 0.6265 8.7303 33.3400 23.5 0.7733 0.7532 0.6932 0.6268 9.1864 33.6030 24 0.7765 0.7575 0.7038 0.6285 9.5980 34.1280 24.5 0.7826 0.7630 0.7057 0.6308 6.3832 34.6530 25 0.7862 0.7697 0.7031 0.6322 0.7415 35.1780 25.5 0.7907 0.7701 0.7094 0.6365 0.9600 35.7030 26 0.7935 0.7737 0.7116 0.6355 1.2368 36.2280 26.5 0.7944 0.7761 0.7131 0.6372 1.6114 36.7530 27 0.7985 0.7793 0.7 112 0.6355 1.9472 37.2780 27.5 0.8030 0.7854 0.7187 0.6385 2.3447 37.8030 28 0.8076 0.7866 0.7191 0.6399 2.7675 38.3280 28.5 0.8121 0.7931 0.7232 0.6416 3.2384 38.8530 29 0.8180 0.7976 0.7308 0.6447 3.7562 39.3780 29.5 0.8214 0.7993 0.7304 0.6457 4.15 03 39.9030 30 0.8286 0.8071 0.7350 0.6488 4.6023 40.4280 30.5 0.8298 0.8047 0.7331 0.6505 5.0969 40.9530 31 0.8328 0.8105 0.7361 0.6532 5.6307 41.4780 31.5 0.8388 0.8142 0.7373 0.6522 6.0956 42.0030 32 0.8444 0.8172 0.7388 0.6553 6.6111 42.5280 32.5 0.8492 0.8226 0.7442 0.6598 7.1086 42.7910 33 0.8548 0.8247 0.7481 0.6616 7.5812 43.3160 33.5 0.8579 0.8281 0.7481 0.6616 8.0487 43.8410 34 0.8605 0.8315 0.7504 0.6612 8.4806 44.3660 34.5 0.8649 0.8367 0.7536 0.6661 8.9280 44.8910 35 0.8684 0.8379 0.7 543 0.6686 9.3614 45.4160 35.5 0.8715 0.8418 0.7567 0.6672 9.7479 45.9410 36 0.8760 0.8466 0.7587 0.6682 10.0830 46.4660 36.5 0.8796 0.8479 0.7658 0.6717 10.4567 46.9910 37 0.8849 0.8509 0.7689 0.6735 1.2819 47.5160 37.5 0.8867 0.8518 0.7729 0.6767 0. 8427 48.0410 38 0.8922 0.8557 0.7733 0.6746 1.1344 48.5660 38.5 0.8971 0.8614 0.7745 0.6781 1.4496 49.0910 39 0.9017 0.8640 0.7806 0.6774 1.7849 49.3540 39.5 0.9049 0.8640 0.7781 0.6785 2.1878 49.8790 40 0.9095 0.8680 0.7826 0.6799 2.5821 50.4040 40. 5 0.9132 0.8769 0.7854 0.6817 3.0037 50.9290 41 0.9178 0.8769 0.7858 0.6864 3.4550 51.4540

PAGE 141

141 Table C 9. Continued 41.5 0.9215 0.8791 0.7899 0.6864 3.9510 51.9790 42 0.9234 0.8822 0.7887 0.6853 4.3794 52.5040 42.5 0.9281 0.8899 0.7919 0.6893 4.8357 53.02 90 43 0.9361 0.8976 0.7972 0.6911 5.3490 53.5540 43.5 0.9418 0.9040 0.8047 0.6943 5.8387 54.0790 44 0.9499 0.9049 0.8059 0.6962 6.3384 54.6040 44.5 0.9542 0.9058 0.8076 0.6969 6.8212 55.1290 45 0.9590 0.9150 0.8105 0.6987 7.3050 55.6540 45.5 0.9624 0 .9183 0.8138 0.7050 7.7866 56.1790 46 0.9653 0.9243 0.8188 0.7050 8.1820 56.7040 46.5 0.9667 0.9225 0.8180 0.7057 8.5081 57.2290 47 0.9721 0.9290 0.8235 0.7109 8.8429 57.7540 47.5 0.9770 0.9337 0.8252 0.7112 9.2445 58.0170 48 0.9893 0.9385 0.8260 0.71 46 2.9649 58.5420 48.5 0.9938 0.9422 0.8354 0.7187 0.7016 59.0670 49 0.9972 0.9499 0.8379 0.7202 0.9295 59.5920 49.5 0.9992 0.9566 0.8457 0.7236 1.2048 60.1170 50 1.0027 0.9590 0.8401 0.7262 1.5566 60.6420 50.5 1.0073 0.9604 0.8479 0.7270 1.9271 61.16 70 51 1.0123 0.9662 0.8479 0.7331 2.2988 61.6920 51.5 1.0143 0.9662 0.8513 0.7331 2.6632 62.2170 52 1.0179 0.9711 0.8539 0.7335 3.1186 62.7420 52.5 1.0214 0.9775 0.8601 0.7350 3.6068 63.2670 53 1.0245 0.9789 0.8570 0.7381 4.0393 63.7920 53.5 1.0296 0 .9843 0.8631 0.7411 4.4803 64.3170 54 1.0353 0.9918 0.8653 0.7454 4.9278 64.8420 54.5 1.0415 0.9938 0.8693 0.7458 5.4885 65.3670 55 1.0487 0.9992 0.8729 0.7500 6.0091 65.8920 55.5 1.0545 1.0068 0.8818 0.7508 6.4965 66.1550 56 1.0587 1.0057 0.8782 0.75 47 6.9638 66.6800 56.5 1.0613 1.0088 0.8818 0.7547 7.4296 67.2050 57 1.0687 1.0118 0.8818 0.7571 7.8907 67.7300 57.5 1.0734 1.0189 0.8935 0.7606 8.3712 68.2550 58 1.0782 1.0245 0.8913 0.7606 8.8147 68.7800 58.5 1.0814 1.0265 0.8922 0.7646 9.2445 69.30 50 59 1.0852 1.0337 0.8903 0.7693 1.1637 69.8300 59.5 1.0900 1.0373 0.9017 0.7721 0.8281 70.3550 60 1.0933 1.0389 0.9045 0.7765 1.0745 70.8800 60.5 1.0965 1.0456 0.9090 0.7769 1.4489 71.4050 61 1.1019 1.0503 0.9090 0.7810 1.7841 71.9300 61.5 1.1052 1 .0513 0.9127 0.7826 2.1474 72.4550 62 1.1090 1.0550 0.9118 0.7818 2.5533 72.9800

PAGE 142

142 Table C 9. Continued 62.5 1.1150 1.0602 0.9095 0.7858 2.9949 73.5050 63 1.1189 1.0634 0.9183 0.7858 3.4396 74.0300 63.5 1.1244 1.0713 0.9243 0.7907 3.8888 74.5550 64 1.1 300 1.0745 0.9262 0.7948 4.3120 74.8180 64.5 1.1372 1.0798 0.9328 0.7989 4.8174 75.3430 65 1.1439 1.0873 0.9370 0.8001 5.3096 75.8680 65.5 1.1855 1.0911 0.9361 0.8055 5.8176 76.3930 66 1.1873 1.0949 0.9427 0.8026 6.3160 76.9180 66.5 1.1873 1.0943 0.94 32 0.8047 6.7741 77.4430 67 1.1902 1.0949 0.9446 0.8096 7.2802 77.9680 67.5 1.1960 1.1079 0.9503 0.8101 7.7349 78.4930 68 1.2007 1.1107 0.9532 0.8113 8.1820 79.0180 68.5 1.2042 1.1150 0.9542 0.8159 8.6466 79.5430 69 1.2077 1.1211 0.9604 0.8172 9.0709 80.0680 69.5 1.2095 1.1261 0.9662 0.8214 6.6806 80.5930 70 1.2171 1.1344 0.9643 0.8243 0.7005 81.1180 70.5 1.2219 1.1383 0.9696 0.8281 0.8773 81.6430 71 1.2272 1.1417 0.9755 0.8328 1.1467 82.1680 71.5 1.2284 1.1411 0.9745 0.8286 1.5091 82.6930 72 1.2 308 1.1467 0.9839 0.8328 1.8701 83.2180 72.5 1.2362 1.1535 0.9804 0.8320 2.2289 83.7430 73 1.2446 1.1552 0.9893 0.8379 2.6484 84.2680 73.5 1.2489 1.1649 0.9923 0.8401 3.0543 84.7930 74 1.2531 1.1688 0.9903 0.8431 3.4975 85.3180 74.5 1.2580 1.1757 0.99 42 0.8466 3.9541 85.8430 75 1.2647 1.1821 1.0052 0.8466 4.3913 86.3680 75.5 1.2678 1.1838 1.0068 0.8492 4.8540 86.6310 76 1.2733 1.1902 1.0057 0.8553 5.3490 87.1560 76.5 1.2782 1.1908 1.0128 0.8548 5.8809 87.6810 77 1.2832 1.1966 1.0138 0.8566 6.3832 88.2060 77.5 1.2863 1.2007 1.0143 0.8596 6.8212 88.7310 78 1.2919 1.2059 1.0179 0.8605 7.3050 89.2560 78.5 1.2968 1.2059 1.0184 0.8631 7.7866 89.7810 79 1.3056 1.2177 1.0260 0.8631 8.2358 90.3060 79.5 1.3119 1.2207 1.0301 0.8680 8.7024 90.8310 80 1.3 176 1.2296 1.0363 0.8720 9.0997 91.3560 80.5 1.3208 1.2266 1.0353 0.8729 9.4497 91.8810 81 1.3227 1.2350 1.0394 0.8738 9.8083 92.4060 81.5 1.3316 1.2362 1.0394 0.8764 10.0522 92.4060 82 1.3361 1.2471 1.0435 0.8818 10.1756 92.4060 82.5 1.3412 1.2471 1. 0487 0.8854 10.2377 92.4060 83 1.3509 1.2525 1.0513 0.8881 10.2377 92.4060

PAGE 143

143 Table C 9. Continued 83.5 1.3574 1.2580 1.0529 0.8903 10.2377 92.4060 84 1.3620 1.2635 1.0650 0.8931 10.2377 92.4060 84.5 1.3646 1.2671 1.0629 0.8962 10.2377 92.4060 85 1.3698 1.2708 1.0687 0.8990 10.2377 92.4060 85.5 1.3731 1.2720 1.0687 0.9003 10.2377 92.4060 86 1.3764 1.2733 1.0687 0.8999 10.2377 92.4060 86.5 1.3770 1.2764 1.0724 0.9003 10.2377 92.4060 87 1.3770 1.2788 1.0761 0.9017 10.2377 92.4060 87.5 1.3770 1.2801 1. 0719 0.9040 10.2377 92.4060 88 1.3770 1.2832 1.0740 0.9067 10.2377 92.4060 88.5 1.3777 1.2807 1.0745 0.9049 10.2377 92.4060 89 1.3816 1.2794 1.0782 0.9063 10.2377 92.4060 89.5 1.3816 1.2794 1.0766 0.9072 10.2377 92.4060 90 1.3810 1.2801 1.0772 0.9086 10.2377 92.4060 90.5 1.3810 1.2801 1.0777 0.9095 10.2377 92.4060 91 1.3836 1.2794 1.0798 0.9086 10.2377 92.4060 91.5 1.3816 1.2794 1.0804 0.9086 10.2377 92.4060 92 1.3823 1.2819 1.0847 0.9090 10.2377 92.4060 92.5 1.3849 1.2838 1.0825 0.9127 10.2377 92 .4060 93 1.3856 1.2850 1.0820 0.9118 10.2377 92.4060 93.5 1.3902 1.2838 1.0820 0.9146 10.2377 92.4060 94 1.3902 1.2838 1.0836 0.9141 10.2377 92.4060 94.5 1.3896 1.2838 1.0820 0.9160 10.2377 92.4060 95 1.3902 1.2838 1.0836 0.9160 10.2377 92.4060 95.5 1.3902 1.2838 1.0868 0.9169 10.2377 92.4060 96 1.3902 1.2838 1.0847 0.9169 10.2377 92.4060 96.5 1.3902 1.2838 1.0847 0.9169 10.2377 92.4060 97 1.3902 1.2856 1.0852 0.9164 10.2377 92.4060 97.5 1.3902 1.2856 1.0841 0.9150 10.2377 92.4060 98 1.3902 1.286 3 1.0841 0.9150 10.2377 92.4060 98.5 1.3902 1.2863 1.0841 0.9146 10.2377 92.4060 99 1.3915 1.2856 1.0841 0.9169 10.2377 92.4060 99.5 1.3949 1.2900 1.0847 0.9164 10.2377 92.4060 100 1.3949 1.2900 1.0841 0.9183 10.2377 92.4060 100.5 1.3949 1.2919 1.0841 0.9183 10.2377 92.4060 101 1.3962 1.2912 1.0847 0.9192 10.2377 92.4060 101.5 1.3975 1.2919 1.0847 0.9215 10.2377 92.4060

PAGE 144

144 Table C 10 Bromide run #9 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6205 0.6087 0.6026 0.5981 0.5591 0.2630 0.5 0.6232 0.6087 0.6026 0.5981 0.6372 0.7880 1 0.6251 0.6087 0.6026 0.5981 0.8500 1.3130 1.5 0.6278 0.6100 0.6062 0.5981 1.1063 1.8380 2 0.6311 0.6127 0.6081 0.5981 1.3770 2.3630 2.5 0.6358 0.6146 0.6146 0.5988 1.65 17 2.8880 3 0.6477 0.6159 0.6179 0.5981 1.9314 3.1510 3.5 0.6640 0.6176 0.6255 0.5981 2.2388 3.6760 4 0.6842 0.6185 0.6436 0.5994 2.5445 4.2010 4.5 0.7042 0.6232 0.6553 0.6004 2.8885 4.7260 5 0.7244 0.6318 0.6735 0.6004 3.2665 5.2510 5.5 0.7388 0.642 6 0.6856 0.6004 3.6316 5.7760 6 0.7630 0.6550 0.6998 0.6010 3.9666 6.0390 6.5 0.7781 0.6665 0.7195 0.6026 4.2886 6.5640 7 0.7993 0.6781 0.7458 0.6026 4.6554 7.0890 7.5 0.8239 0.6922 0.7598 0.6033 5.0589 7.6140 8 0.8474 0.7083 0.7903 0.6045 5.4684 8.13 90 8.5 0.8592 0.7247 0.8071 0.6062 5.8598 8.6640 9 0.8760 0.7404 0.8294 0.6078 6.2493 8.9270 9.5 0.9008 0.7516 0.8513 0.6117 6.6111 9.4520 10 0.9234 0.7681 0.8711 0.6172 6.9878 9.9770 10.5 0.9441 0.7826 0.8944 0.6285 7.3547 10.5020 11 0.9711 0.8030 0 .9146 0.6385 7.6834 11.0270 11.5 0.9918 0.8218 0.9356 0.6453 8.0487 11.5520 12 1.0098 0.8354 0.9484 0.6491 8.3712 12.0770 12.5 1.0286 0.8500 0.9784 0.6577 8.7024 12.6020 13 1.0576 0.8636 0.9873 0.6682 9.0135 13.1270 13.5 1.0820 0.8831 1.0209 0.6760 3. 0696 13.6520 14 1.1074 0.9045 1.0368 0.6838 0.7450 13.9150 14.5 1.1333 0.9169 1.0581 0.6922 0.9067 14.4400 15 1.1649 0.9337 1.0814 0.7057 1.1074 14.9650 15.5 1.1884 0.9480 1.0933 0.7105 1.3503 15.4900 16 1.2106 0.9677 1.1222 0.7165 1.6326 16.0150 16. 5 1.2368 0.9789 1.1339 0.7202 1.8984 16.5400 17 1.2708 0.9982 1.1626 0.7342 2.1917 16.8030 17.5 1.2900 1.0184 1.1937 0.7489 2.5106 17.3280 18 1.3144 1.0347 1.2007 0.7567 2.8305 17.8530 18.5 1.3432 1.0456 1.2344 0.7666 3.1905 18.3780 19 1.3639 1.0597 1 .2635 0.7793 3.5749 18.9030 19.5 1.4217 1.0756 1.2912 0.7887 3.9074 19.4280

PAGE 145

145 Table C 10. Continued 20 1.4407 1.0911 1.3201 0.7927 4.2488 19.6910 20.5 1.4739 1.1068 1.3516 0.8047 4.6023 20.2160 21 1.5062 1.1222 1.3764 0.8105 4.9837 20.7410 21.5 1.5442 1.1445 1.4062 0.8201 5.4284 21.2660 22 1.5749 1.1649 1.4332 0.8281 5.8387 21.7910 22.5 1.6227 1.1826 1.4928 0.8332 6.2272 22.3160 23 1.6517 1.2036 1.5133 0.8418 6.6342 22.5790 23.5 1.6943 1.2278 1.5399 0.8535 6.9878 23.1040 24 1.7315 1.2464 1.5639 0.8 579 7.3547 23.6290 24.5 1.7492 1.2665 1.5942 0.8658 7.7349 24.1540 25 1.7825 1.2850 1.6295 0.8729 8.1019 24.6790 25.5 1.8113 1.3037 1.6524 0.8827 8.4806 25.2040 26 1.8397 1.3214 1.6881 0.8926 8.8147 25.7290 26.5 1.8710 1.3477 1.7101 0.8999 9.1285 26.2 540 27 1.8950 1.3691 1.7387 0.9086 9.3907 26.7790 27.5 1.9455 1.3949 1.7629 0.9178 9.6878 27.3040 28 1.9765 1.4237 1.7989 0.9272 1.1942 27.5670 28.5 2.0097 1.4489 1.8254 0.9385 0.8231 28.0920 29 2.0398 1.4704 1.8540 0.9489 1.0098 28.6170 29.5 2.0554 1.4977 1.8744 0.9556 1.2483 29.1420 30 2.0823 1.5262 1.9071 0.9629 1.5370 29.6670 30.5 2.1019 1.5479 1.9253 0.9696 1.7890 30.1920 31 2.1455 1.5698 1.9516 0.9770 2.0748 30.7170 31.5 2.1617 1.6017 1.9774 0.9868 2.3902 30.9800 32 2.2053 1.6280 2.0161 0.9 967 2.7301 31.5050 32.5 2.2398 1.6578 2.0334 1.0128 3.0684 32.0300 33 2.2746 1.6842 2.0637 1.0255 3.4438 32.5550 33.5 2.2988 1.7093 2.0916 1.0363 3.8182 33.0800 34 2.3447 1.7395 2.1255 1.0477 4.1503 33.6050 34.5 2.3725 1.7589 2.1521 1.0708 4.5149 34.1 300 35 2.4059 1.7816 2.1694 1.0852 4.8723 34.6550 35.5 2.4419 1.8080 2.2093 1.0943 5.3096 35.1800 36 2.4750 1.8279 2.2269 1.1129 5.7340 35.7050 36.5 2.5030 1.8489 2.2676 1.1228 6.1174 36.2300 37 2.5500 1.8701 2.2887 1.1383 6.5193 36.4930 37.5 2.5666 1.8889 2.3221 1.1490 6.9161 37.0180 38 2.6224 1.9071 2.3591 1.1643 7.2802 37.5430 38.5 2.6496 1.9244 2.4028 1.1815 7.6578 38.0680 39 2.7023 1.9499 2.4440 1.2024 8.0222 38.5930 39.5 2.7558 1.9685 2.4632 1.2166 8.3712 39.1180 40 2.7995 1.9962 2.4911 1.2 338 8.7303 39.6430 40.5 2.8497 2.0124 2.5456 1.2458 9.0709 39.9060

PAGE 146

146 Table C 10. Continued 41 2.8849 2.0315 2.5777 1.2574 9.3614 40.4310 41.5 2.9351 2.0572 2.6011 1.2708 9.6279 40.9560 42 2.9748 2.0748 2.6281 1.2807 9.9298 41.4810 42.5 3.0074 2.0897 2. 6758 1.2925 10.2688 42.0060 43 3.0454 2.1094 2.7115 1.3075 10.7106 42.5310 43.5 3.0876 2.1359 2.7476 1.3335 0.8971 43.0560 44 3.1134 2.1531 2.7628 1.3419 0.7972 43.3190 44.5 3.1433 2.1752 2.8042 1.3509 1.0027 43.8440 45 3.1813 2.1946 2.8413 1.3606 1.2 574 44.3690 45.5 3.2104 2.2142 2.8776 1.3816 1.5450 44.8940 46 3.2517 2.2319 2.8971 1.4042 1.8304 45.4190 46.5 3.2786 2.2487 2.9376 1.4035 2.1047 45.9440 47 3.3207 2.2776 2.9686 1.4244 2.4270 46.2070 47.5 3.3385 2.2998 3.0037 1.4421 2.7452 46.7320 48 3.3742 2.3252 3.0289 1.4586 3.0966 47.2570 48.5 3.4103 2.3426 3.0505 1.4614 3.4833 47.7820 49 3.4242 2.3684 3.0773 1.5027 3.8473 48.3070 49.5 3.4663 2.3997 3.0992 1.5020 4.1699 48.8320 50 3.4861 2.4249 3.1316 1.5198 4.5323 49.3570 50.5 3.5217 2.4429 3.1511 1.5226 4.9278 49.6200 51 3.5662 2.4664 3.1919 1.5392 5.3687 50.1450 51.5 3.6024 2.4911 3.2197 1.5727 5.7757 50.6700 52 3.6316 2.5226 3.2517 1.5786 6.1611 51.1950 52.5 3.6639 2.5467 3.2881 1.5927 6.5421 51.7200 53 3.6816 2.5799 3.3152 1.6114 6.9 161 52.2450 53.5 3.7188 2.6123 3.3453 1.6318 7.3050 52.7700 54 3.7562 2.6439 3.3853 1.6349 7.6578 53.2950 54.5 3.7879 2.6724 3.4200 1.6563 8.0753 53.5580 55 3.8137 2.6953 3.4452 1.6686 8.4258 54.0830 55.5 3.8442 2.7150 3.4875 1.6842 8.7584 54.6080 56 3.9151 2.7429 3.5117 1.6951 9.0709 55.1330 56.5 3.9338 2.7664 3.5417 1.7085 9.3614 55.6580 57 3.9776 2.7900 3.5705 1.7252 1.1966 56.1830 57.5 4.0235 2.8161 3.6068 1.7492 0.7818 56.7080 58 4.0681 2.8449 3.6507 1.7645 0.9653 57.2330 58.5 4.0937 2.8727 3.6713 1.7767 1.2201 57.4960 59 4.1357 2.9007 3.6964 1.7931 1.4949 58.0210 59.5 4.1585 2.9240 3.7277 1.7981 1.7678 58.5460 60 4.1977 2.9438 3.7577 1.8179 2.0554 59.0710 60.5 4.2240 2.9624 3.7864 1.8414 2.3850 59.5960 61 4.2670 2.9936 3.8243 1.8355 2.7 185 59.8590 61.5 4.3070 3.0074 3.8519 1.8540 3.0799 60.3840

PAGE 147

147 Table C 10. Continued 62 4.3372 3.0302 3.8919 1.8625 3.4396 60.9090 62.5 4.3947 3.0632 3.9229 1.8778 3.8304 61.4340 63 4.4459 3.0876 3.9619 1.8889 4.1879 61.9590 63.5 4.4803 3.1108 4.0044 1. 9131 4.5497 62.4840 64 4.5149 3.1433 4.0266 1.9271 4.9278 63.0090 64.5 4.5497 3.1747 4.0553 1.9341 5.3490 63.2720 65 4.6023 3.1985 4.0937 1.9384 5.7340 63.7970 65.5 4.6200 3.2250 4.1131 1.9836 6.1174 64.3220 66 4.6732 3.2437 4.1552 2.0016 6.5193 64.84 70 66.5 4.7089 3.2665 4.1977 2.0133 6.8685 65.3720 67 4.7629 3.2989 4.2174 2.0206 7.2802 65.6350 67.5 4.7629 3.3180 4.2537 2.0334 7.6322 66.1600 68 4.8174 3.3439 4.2836 2.0480 8.0222 66.6850 68.5 4.8357 3.3701 4.3070 2.0665 8.3985 67.2100 69 4.8908 3 .3977 4.3423 2.0850 8.7303 67.7350 69.5 4.9278 3.4200 4.3760 2.1057 9.0422 68.2600 70 4.9837 3.4480 4.4117 2.1094 9.3320 68.5230 70.5 5.0024 3.4691 4.4459 2.1207 9.5683 69.0480 71 5.0400 3.4975 4.4631 2.1283 1.9499 69.5730 71.5 5.0779 3.5217 4.4976 2. 1560 0.7850 70.0980 72 5.1160 3.5460 4.5149 2.1694 0.9667 70.6230 72.5 5.1351 3.5806 4.5672 2.1868 1.1931 71.1480 73 5.1928 3.6039 4.6023 2.1878 1.4893 71.4110 73.5 5.2315 3.6243 4.6376 2.2093 1.7751 71.9360 74 5.2509 3.6462 4.6554 2.2259 2.0730 72.46 10 74.5 5.2900 3.6757 4.6910 2.2427 2.3923 72.9860 75 5.3292 3.7113 4.7089 2.2636 2.6976 73.5110 75.5 5.3687 3.7322 4.7629 2.2706 3.0632 73.7740 76 5.4084 3.7562 4.7992 2.2837 3.4536 74.2990 76.5 5.4284 3.7849 4.8174 2.2988 3.8259 74.8240 77 5.4684 3 .8106 4.8723 2.3252 4.1373 75.3490 77.5 5.5086 3.8396 4.9092 2.3344 4.4976 75.8740 78 5.5491 3.8672 4.9278 2.3488 4.8723 76.3990 78.5 5.5694 3.8965 4.9650 2.3560 5.3096 76.9240 79 5.6102 3.9276 5.0024 2.3767 5.7132 77.1870 79.5 5.6513 3.9494 5.0400 2. 4017 6.1392 77.7120 80 5.6719 3.9682 5.0779 2.4070 6.4965 78.2370 80.5 5.6925 3.9934 5.0969 2.4228 6.8922 78.7620 81 5.7340 4.0203 5.1351 2.4344 7.2802 79.2870 81.5 5.7757 4.0505 5.1928 2.4525 7.6578 79.8120 82 5.8176 4.0761 5.2121 2.4675 8.0222 80.33 70 82.5 5.8598 4.1050 5.2509 2.4804 8.3712 80.6000

PAGE 148

148 Table C 10. Continued 83 5.9021 4.1292 5.2900 2.5041 8.7303 81.1250 83.5 5.9447 4.1536 5.3292 2.5237 9.0422 81.6500 84 5.9876 4.1780 5.3490 2.5336 9.3028 82.1750 84.5 6.0091 4.2010 5.3885 2.5347 9.56 83 82.7000 85 6.0306 4.2207 5.4284 2.5577 9.8689 83.2250 85.5 6.0956 4.2438 5.4684 2.5655 10.2688 83.4880 86 6.1174 4.2637 5.4885 2.5732 0.7339 84.0130 86.5 6.1611 4.2920 5.5289 2.6191 0.8522 84.5380 87 6.1831 4.3204 5.5491 2.6179 1.0399 85.0630 87.5 6.2051 4.3389 5.5898 2.6382 1.2925 85.5880 88 6.2493 4.3642 5.6307 2.6575 1.5779 85.8510 88.5 6.2937 4.3879 5.6513 2.6747 1.8523 86.3760 89 6.3384 4.4117 5.6925 2.6930 2.1369 86.9010 89.5 6.3832 4.4288 5.7132 2.7185 2.4589 87.4260 90 6.4058 4.4459 5. 7548 2.7254 2.7935 87.9510 90.5 6.4510 4.4631 5.7757 2.7476 3.1329 88.2140 91 6.4737 4.4803 5.8176 2.7640 3.5231 88.7390 91.5 6.4965 4.4976 5.8598 2.7876 3.8981 89.2640 92 6.5651 4.5323 5.8809 2.7959 4.2026 89.7890 92.5 6.5881 4.5497 5.9234 2.8173 4.5 323 90.3140 93 6.6111 4.5847 5.9661 2.8293 4.9092 90.8390 93.5 6.6574 4.6023 5.9876 2.8485 5.3292 91.1020 94 6.7039 4.6376 6.0306 2.8679 5.7548 91.6270 94.5 6.7272 4.6554 6.0522 2.8788 6.1611 92.1520 95 6.7506 4.6732 6.0956 2.8958 6.5421 92.6770 95.5 6.7741 4.6910 6.1174 2.9019 6.9161 93.2020 96 6.8212 4.7089 6.1392 2.9290 7.3298 93.4650 96.5 6.8685 4.7269 6.1831 2.9364 7.6834 93.9900 97 6.8922 4.7629 6.2051 2.9587 8.0753 94.5150 97.5 6.9399 4.7992 6.2493 2.9773 8.4258 95.0400 98 6.9638 4.8357 6. 2937 2.9786 8.7584 95.5650 98.5 7.0119 4.8723 6.3160 2.9974 9.0422 96.0900 99 7.0360 4.9278 6.3608 3.0251 9.3028 96.6150 99.5 7.0844 4.9650 6.3832 3.0352 9.5683 96.8780 100 7.0844 5.0024 6.4058 3.0467 9.7781 97.4040 100.5 7.1086 5.0400 6.4284 3.0620 9 .8689 97.4040 101 7.1330 5.0589 6.4510 3.0876 9.8993 97.4040 101.5 7.1330 5.0589 6.4737 3.0953 9.8993 97.4040 102 7.1330 5.0589 6.4737 3.1044 9.8993 97.4040 102.5 7.1330 5.0589 6.4737 3.1044 9.8993 97.4040 103 7.1330 5.0589 6.4737 3.1095 9.8993 97.404 0 103.5 7.1330 5.0589 6.4737 3.1199 9.8993 97.4040

PAGE 149

149 Table C 10. Continued 104 7.1330 5.0589 6.4737 3.1199 9.8993 97.4040 104.5 7.1330 5.0589 6.4737 3.1225 9.8993 97.4040 105 7.1330 5.0589 6.4737 3.1251 9.8993 97.4040 105.5 7.1330 5.0589 6.4737 3.1303 9.8993 97.4040 106 7.1330 5.0589 6.4737 3.1316 9.8993 97.4040 106.5 7.1330 5.0589 6.4737 3.1316 9.8993 97.4040 107 7.1330 5.0589 6.4737 3.1342 9.8993 97.4040 107.5 7.1330 5.0589 6.4737 3.1355 9.8993 97.4040 108 7.1330 5.0589 6.4737 3.1355 9.8993 97.40 40 108.5 7.1330 5.0589 6.4737 3.1407 9.8993 97.4040 109 7.1330 5.0589 6.4737 3.1472 9.8993 97.4040 109.5 7.1330 5.0589 6.4737 3.1472 9.8993 97.4040 110 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 110.5 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 111 7. 1330 5.0589 6.4737 3.1485 9.8993 97.4040 111.5 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 112 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 112.5 7.1574 5.0589 6.4737 3.1524 9.9298 97.4040 113 7.1330 5.0589 6.4737 3.1564 9.9298 97.4040 113.5 7.1330 5.058 9 6.4737 3.1590 9.9298 97.4040 114 7.1330 5.0589 6.4737 3.1564 9.9298 97.4040 114.5 7.1574 5.0589 6.4737 3.1564 9.9298 97.4040 115 7.1574 5.0589 6.4737 3.1603 9.9298 97.4040 115.5 7.1330 5.0589 6.4737 3.1603 9.9298 97.4040 116 7.1574 5.0779 6.4737 3.1 603 9.9298 97.4040 116.5 7.1574 5.0779 6.4737 3.1603 9.8993 97.4040 117 7.1574 5.0779 6.4737 3.1603 9.9298 97.4040 117.5 7.1574 5.0779 6.4737 3.1721 9.8993 97.4040

PAGE 150

150 Table C 11 Bromide normalized concentration in outflow for run #1 9 # 1 # 2 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0483 0.0003 0.0077 0.0043 0.1272 2 0.0015 0.0306 0.0000 0.0049 0.0826 4 0.3389 0.0151 0.1164 0.108 1 0.2160 4 0.2174 0.0914 0.0099 0.0606 0.2001 6 0.4549 0.0302 0.2011 0.1869 0.2545 6 0.3047 0.1282 0.0229 0.0811 0.2293 8 0.5042 0.0430 0.2253 0.2601 0.2819 8 0.3596 0.1303 0.0334 0.0854 0.2483 10 0.5224 0.0373 0.2268 0.2745 0.2979 10 0.3878 0.1371 0.0405 0.0956 0.2706 15 0.5500 0.0454 0.1497 0.2313 0.3219 15 0.4123 0.1580 0.0719 0.1544 0.2848 20 0.5650 0.0589 0.0676 0.2632 0.3731 20 0.4241 0.1796 0.1093 0.2316 0.2945 25 0.5767 0.0700 0.0592 0.4031 0.3442 25 0.4357 0.1810 0.1416 0.3099 0.2988 30 0.0667 0.4713 0.3294 30 0.4411 0.1913 0.1519 0.3223 0.2934 32 0.5434 0.0827 0.0739 0.4732 0.2437 32 0.4288 0.1583 0.1512 0.3022 0.1708 34 0.2170 0.0567 0.0711 0.3006 0.0915 34 0.0965 0.0646 0.1428 0.2051 0.0768 36 0.1226 0.0464 0.0598 0.2680 0.0 644 36 0.0766 0.0582 0.1373 0.1896 0.0641 38 0.0844 0.0394 0.0563 0.2597 0.0554 38 0.0404 0.0486 0.1287 0.1690 0.0493 40 0.0646 0.0396 0.0515 0.2417 0.0470 40 0.0197 0.0413 0.1257 0.1478 0.0426 45 0.0343 0.0385 0.0595 0.1839 0.0372 45 0.0000 0.0335 0.1026 0.1151 0.0299 50 0.0228 0.0403 0.0675 0.1391 0.0291 50 0.0000 0.0307 0.0661 0.0707 0.0239 55 0.0262 0.0428 0.0437 0.0814 0.0194 55 0.0000 0.0305 0.0382 0.0364 0.0161 60 0.0395 0.0402 0.0259 0.0496 0.0173 60 0.0000 0.0278 0.0247 0.0184 0.0129 65 0.0576 0.0387 0.0152 0.0377 0.0109 65 0.0174 0.0258 0.0160 0.0091 0.0089 70 0.0761 0.0358 0.0082 0.0240 0.0101 70 0.0308 0.0239 0.0000 0.0052 0.0063

PAGE 151

151 Table C 11 Continued # 3 # 4 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0719 0.0000 0.0052 0.0112 0.1723 2 0.0223 0.0000 0.0003 0.0012 0.1471 4 0.3252 0.0147 0.1179 0.1336 0.2066 4 0.2802 0.0166 0.0810 0.1181 0.1956 6 0.3870 0.026 4 0.1504 0.1651 0.2130 6 0.3628 0.0334 0.1218 0.1592 0.2238 8 0.4172 0.0322 0.1672 0.1764 0.2205 8 0.4044 0.0423 0.1489 0.1882 0.2328 10 0.4400 0.0348 0.1773 0.1850 0.2220 10 0.4322 0.0516 0.1593 0.2031 0.2432 15 0.4510 0.0447 0.1935 0.1966 0.2311 1 5 0.4633 0.0577 0.1810 0.2238 0.2439 20 0.4706 0.0538 0.2090 0.2087 0.2405 20 0.4621 0.0558 0.2005 0.2293 0.2403 25 0.4740 0.0599 0.2167 0.2159 0.2380 25 0.4717 0.0573 0.2061 0.2329 0.2494 30 0.4799 0.0629 0.2247 0.2187 0.2441 30 0.4741 0.0597 0.2176 0.2329 0.2334 32 0.4483 0.0651 0.2289 0.2074 0.0777 32 0.4507 0.0595 0.2247 0.2331 0.0599 34 0.1594 0.0531 0.1223 0.0927 0.0355 34 0.1967 0.0485 0.0946 0.0965 0.0133 36 0.0962 0.0388 0.0926 0.0582 0.0298 36 0.1186 0.0360 0.0705 0.0603 0.0238 38 0.0 612 0.0310 0.0845 0.0434 0.0262 38 0.0799 0.0276 0.0664 0.0466 0.0204 40 0.0427 0.0253 0.0862 0.0357 0.0231 40 0.0553 0.0215 0.0716 0.0375 0.0179 45 0.0198 0.0167 0.0970 0.0250 0.0165 45 0.0267 0.0133 0.0885 0.0234 0.0137 50 0.0120 0.0063 0.1062 0.02 22 0.0112 50 0.0175 0.0068 0.0951 0.0163 0.0098 55 0.0138 0.0080 0.1168 0.0188 0.0078 55 0.0182 0.0100 0.0944 0.0102 0.0068 60 0.0232 0.0207 0.1196 0.0158 0.0054 60 0.0257 0.0210 0.0852 0.0073 0.0059 65 0.0352 0.0385 0.1176 0.0137 0.0040 65 0.0374 0 .0392 0.0676 0.0054 0.0053 70 0.0482 0.0530 0.0976 0.0134 0.0022 70 0.0474 0.0485 0.0475 0.0044 0.0050 75 0.0587 0.0585 0.0731 0.0125 0.0014 75 0.0600 0.0532 0.0356 0.0058 0.0025 80 0.0663 0.0635 0.0570 0.0119 0.0018 80 0.0698 0.0549 0.0294 0.0069 0. 0018

PAGE 152

152 Table C 10. Continued # 5 # 6 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0615 0.0000 0.0001 0.0006 0.0958 2 0.0438 0.0000 0.00 09 0.0000 0.1161 4 0.2351 0.1324 0.0217 0.0030 0.1359 4 0.2150 0.0727 0.0082 0.0371 0.1762 6 0.2804 0.1649 0.0447 0.0163 0.1452 6 0.2626 0.0952 0.0200 0.0516 0.1722 8 0.3009 0.1782 0.0507 0.0225 0.1486 8 0.2788 0.1029 0.0255 0.0619 0.1832 10 0.3164 0.1859 0.0553 0.0246 0.1435 10 0.2946 0.1147 0.0278 0.0677 0.1789 15 0.3490 0.2047 0.0664 0.0356 0.1602 15 0.3129 0.1209 0.0276 0.0698 0.1907 20 0.3723 0.2181 0.0732 0.0446 0.1631 20 0.3335 0.1298 0.0300 0.0706 0.1957 25 0.3872 0.2386 0.0776 0.0770 0 .1755 25 0.3447 0.1565 0.0350 0.0760 0.2019 30 0.3957 0.3175 0.1342 0.0741 0.1835 30 0.3606 0.2445 0.0665 0.0792 0.2037 32 0.3502 0.3415 0.1858 0.0789 0.0998 32 0.3598 0.2782 0.0947 0.0851 0.0878 34 0.1825 0.2323 0.1934 0.0643 0.0463 34 0.1769 0.235 3 0.1120 0.0695 0.0452 36 0.1528 0.2103 0.1945 0.0472 0.0429 36 0.2259 0.1570 0.1175 0.0595 0.0437 38 0.1570 0.2097 0.1995 0.0453 0.0425 38 0.2290 0.1665 0.1234 0.0589 0.0439 40 0.1647 0.2120 0.2046 0.0459 0.0419 40 0.1795 0.2343 0.1296 0.0610 0.0446 45 0.1753 0.2209 0.2125 0.0494 0.0404 45 0.2092 0.2501 0.1372 0.0672 0.0453 50 0.1757 0.2242 0.2093 0.0541 0.0398 50 0.2266 0.2547 0.1412 0.0735 0.0448 55 0.1785 0.2115 0.2006 0.0585 0.0340 55 0.2348 0.2285 0.1359 0.0777 0.0414 60 0.1736 0.1413 0.1 580 0.0606 0.0298 60 0.2310 0.1386 0.1061 0.0775 0.0383 65 0.1484 0.0943 0.0808 0.0544 0.0250 65 0.1933 0.0915 0.0581 0.0692 0.0343 70 0.0977 0.0597 0.0545 0.0478 0.0180 70 0.1272 0.0603 0.0437 0.0579 0.0296 75 0.0628 0.0380 0.0393 0.0403 0.0123 75 0.0876 0.0423 0.0327 0.0501 0.0251 80 0.0456 0.0285 0.0283 0.0332 0.0088 80 0.0644 0.0311 0.0272 0.0445 0.0222

PAGE 153

153 Table C 11 Continued # 7 # 8 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0 000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0168 0.0000 0.0000 0.0000 0.1325 2 0.0000 0.0000 0.0000 0.0000 0.1643 4 0.1712 0.0441 0.0127 0.0329 0.1665 4 0.0000 0.0000 0.0000 0.0000 0.1920 6 0.2175 0.0726 0.0203 0.0493 0.1734 6 0.0005 0.0000 0.0000 0.0000 0.1985 8 0.2381 0.0773 0.0278 0.0574 0.1810 8 0.0288 0.0047 0.0000 0.0000 0.2028 10 0.2503 0.0820 0.0267 0.0610 0.1797 10 0.0809 0.0196 0.0000 0.0000 0.1965 15 0.2741 0.0851 0.0247 0.0634 0.1828 15 0.1306 0.0407 0.0000 0.0000 0.2064 20 0.2834 0.0881 0.0275 0.0671 0.1884 20 0.1802 0.0584 0.0000 0.0000 0.2153 25 0.2917 0.1167 0.0333 0.0685 0.1864 25 0.2028 0.0690 0.0000 0.0001 0.2156 30 0.3035 0.1954 0.0634 0.0670 0.1990 30 0.2101 0.0740 0.0002 0.0000 0.2133 32 0.3042 0.2283 0.0884 0.0685 0.0848 32 0.2172 0.0747 0.0002 0.0000 0.0412 34 0.1456 0.2078 0.0989 0.0543 0.0444 34 0.2194 0.0748 0.0003 0.0000 0.0253 36 0.1144 0.1971 0.1009 0.0394 0.0412 36 0.2223 0.0769 0.0009 0.0000 0.0197 38 0.1127 0.2019 0.1044 0.0370 0.0414 38 0.17 02 0.0716 0.0023 0.0000 0.0189 40 0.1220 0.2133 0.1093 0.0386 0.0408 40 0.0993 0.0511 0.0088 0.0000 0.0178 45 0.1550 0.2253 0.1169 0.0463 0.0412 45 0.0503 0.0448 0.0390 0.0012 0.0157 50 0.1775 0.2428 0.1184 0.0563 0.0407 50 0.0305 0.0767 0.0821 0.014 5 0.0147 55 0.1946 0.2215 0.1113 0.0679 0.0387 55 0.0203 0.1179 0.1205 0.0444 0.0144 60 0.2078 0.1349 0.0925 0.0751 0.0344 60 0.0148 0.1569 0.1588 0.0824 0.0143 65 0.2000 0.0895 0.0647 0.0738 0.0315 65 0.0129 0.1888 0.1908 0.1165 0.0148 70 0.1530 0. 0660 0.0514 0.0646 0.0267 70 0.0138 0.2126 0.2096 0.1426 0.0146 75 0.1071 0.0508 0.0426 0.0558 0.0238 75 0.0198 0.2194 0.1711 0.1585 0.0143 80 0.0844 0.0419 0.0358 0.0469 0.0206 80 0.0257 0.1982 0.1327 0.1609 0.0144

PAGE 154

154 Table C 11 Continued # 9 Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0342 0.0000 0.0000 0.0000 0.1182 4 0.1150 0.0002 0.0003 0.0000 0.1608 6 0.1433 0.0042 0.0019 0.0021 0.1686 8 0.1607 0.0107 0.0039 0.0059 0.1842 10 0.1709 0.0145 0.0056 0.007 9 0.1837 15 0.1877 0.0251 0.0092 0.0116 0.1982 20 0.2017 0.0398 0.0113 0.0134 0.2132 25 0.2275 0.0480 0.0138 0.0166 0.2100 30 0.2353 0.0571 0.0196 0.0165 0.2261 32 0.2245 0.0601 0.0238 0.0196 0.0706 34 0.1488 0.0663 0.0294 0.0196 0.0469 36 0.1323 0. 0580 0.0365 0.0172 0.0400 38 0.1329 0.0526 0.0412 0.0136 0.0367 40 0.1410 0.0519 0.0442 0.0121 0.0324 45 0.1565 0.0608 0.0524 0.0113 0.0299 50 0.1660 0.0763 0.0556 0.0137 0.0274 55 0.1707 0.0908 0.0607 0.0240 0.0232 60 0.1561 0.0962 0.0587 0.0406 0.0 211 65 0.1054 0.0440 0.0582 0.0174 70 0.1148 0.1085 0.0314 0.0719 0.0149 75 0.0810 0.0882 0.0237 0.0811 0.0123 80 0.0574 0.0613 0.0177 0.0807 0.0094 85 0.0470 0.0447 0.0148 0.0758 0.0069 90 0.0396 0.0317 0.0141 0.0653 0.0060

PAGE 155

155 Table C 12. Water fl ow summary for kaolinite runoff experiments on bare soil Run Time Inflow DR#1 DR#2 DR#3 DR#4 RO Rainfall Area of the box L/min mm/hour cm 2 # 1 June 24,09 0.36104 0.1802 0.2331 0.1613 0.1472 0.2682 63.86 6154.62 # 2 July 1,09 0.361 0.1024 0 .1845 0.1542 0.1409 0.3808 62.29 6154.62 # 3 July 2,09 0.361 0.0947 0.1739 0.1449 0.1408 0.409 59.57 6154.62 # 4 Sep 23,09 0.298 0.0461 0.0478 0.0356 0.0297 0.7479 62.67 6154.62 # 5 Sep 25,09 0.297 0.0326 0.0363 0.0266 0 .024 0.7813 62.94 6228.96 # 6 Oct 01,09 0.304 0.0241 0.0101 0.0185 0.0152 0.8172 62.00 6228.96 # 7 Nov 18,09 0.295 0.0683 0.0459 0.0608 0.0262 0.6841 68.70 6228.96

PAGE 156

156 Table C 13 Kaolinite run #1 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 0 0.6443 0.6162 0.6315 0.6228 0.5636 0.788 0.5 0.6781 0.6477 0.6392 0.6248 0.5645 1.313 1 0.7339 0.7165 0.6570 0.6332 0.5673 1.838 1.5 0.7785 0.7968 0.6922 0.6494 0.5734 2.626 2 0.8397 0.8818 0.7361 0.6774 0.5793 3.151 2.5 0.9058 0.9667 0.7802 0.7187 0.5969 3.676 3 0.9658 1.0529 0.8345 0.7634 0.6460 4.464 3.5 1.0363 1.1036 0.8760 0.7976 0.6998 4.989 4 1.1052 1.1161 0.9281 0.8422 0.7591 5.514 4.5 1.1643 1.1954 0.9609 0.8796 0.8167 6.039 5 1.2320 1.2819 1.0113 0.9188 0.8827 6.827 5.5 1.3246 1.4076 1.0655 0.9638 0.9604 7.352 6 1.4082 1.5356 1.1294 1.0123 1.0317 7.877 6.5 1.4808 1.6671 1.2001 1.0644 1.1250 8.402 7 1.5742 1.7915 1.2714 1.1014 1.2278 9.19 7.5 1.6764 1.9053 1.3477 1.1501 1.3233 9.7 15 8 1.7548 2.0161 1.4455 1.2142 1.4224 10.24 8.5 1.8439 2.0499 1.5212 1.2635 1.5334 11.028 9 1.9227 2.0508 1.6017 1.3195 1.6152 11.553 9.5 2.0016 2.1113 1.6764 1.3672 1.7022 12.078 10 2.0776 2.2073 1.7411 1.4339 1.8055 12.866 10.5 2.1617 2.3344 1.80 80 1.4914 1.9071 13.391 11 2.2358 2.4514 1.8727 1.5617 2.0079 13.916 11.5 2.3395 2.5910 1.9411 1.6295 2.1160 14.704 12 2.4334 2.7301 2.0179 1.6772 2.2319 15.229 12.5 2.5030 2.8691 2.0869 1.7395 2.3508 15.754 13 2.6202 3.0011 2.1608 1.7939 2.4440 16.27 9 13.5 2.7301 3.1394 2.2368 1.8498 2.5467 17.067 14 2.8473 3.2746 2.3252 1.9079 2.6553 17.592 14.5 2.9761 3.4228 2.4291 1.9658 2.7829 18.117 15 3.0786 3.5676 2.5150 2.0270 2.9105 18.905 15.5 3.1919 3.7039 2.6134 2.0888 3.0429 19.43 16 3.2759 3.8488 2 .7046 2.1521 3.1721 19.955 16.5 3.3783 3.9997 2.8138 2.2328 3.3071 20.48 17 3.4946 4.1390 2.9032 2.2968 3.4480 21.268 17.5 3.5922 4.2604 2.9949 2.3622 3.5676 21.793 18 3.6861 4.3862 3.0684 2.4376 3.6920 22.318 18.5 3.7607 4.4976 3.1524 2.5150 3.8198 2 2.843 19 3.8488 4.6200 3.2384 2.5944 3.9369 23.631 19.5 3.9400 4.7449 3.3302 2.6735 4.0649 24.156

PAGE 157

157 Table C 13 Continued. 20 4.0378 4.8723 3.4200 2.7523 4.1829 24.681 20.5 4.1536 5.0212 3.5074 2.8305 4.3120 25.206 21 4.2537 5.1543 3.6039 2.8934 4.4459 25.994 21.5 4.3591 5.2900 3.6950 2.9624 4.6023 26.519 22 4.4803 5.4284 3.7833 3.0416 4.7449 27.044 22.5 4.5847 5.5898 3.8672 3.1082 4.8908 27.569 23 4.6910 5.7132 3.9479 3.1760 5.0589 28.357 23.5 4.8174 5.8598 4.0521 3.2517 5.2315 28.882 24 4.9092 6 .0091 4.1438 3.3098 5.3885 29.407 24.5 5.0212 6.1392 4.2372 3.3825 5.5491 29.932 25 5.1160 6.2715 4.3271 3.4663 5.6925 30.72 25.5 5.2315 6.4284 4.4288 3.5346 5.8598 31.245 26 5.3490 6.5421 4.5497 3.6111 5.9876 31.77 26.5 5.4483 6.6806 4.6376 3.6861 6. 1392 32.295 27 5.5491 6.7976 4.7089 3.7622 6.2937 33.083 27.5 5.6102 6.9161 4.7992 3.8335 6.4284 33.608 28 5.7132 7.0360 4.8908 3.9089 6.5651 34.133 28.5 5.8176 7.1574 5.0024 3.9839 6.7039 34.921 29 5.9021 7.2802 5.0969 4.0681 6.8448 35.446 29.5 6.00 91 7.4046 5.2121 4.1406 7.0119 35.971 30 6.0956 7.5304 5.2900 4.2256 7.1330 36.496 30.5 6.2051 7.6322 5.3885 4.3020 7.3050 37.284 31 6.3160 7.7607 5.4885 4.3794 7.4296 37.809 31.5 6.4058 7.8646 5.5898 4.4631 7.5812 38.334 32 6.4965 7.9694 5.6925 4.549 7 7.7091 39.122 32.5 6.5881 8.0753 5.7966 4.6376 7.8646 39.647 33 6.7039 8.1552 5.8809 4.7089 8.0222 40.172 33.5 6.7976 8.2627 5.9661 4.7992 8.1820 40.697 34 6.8922 8.3440 6.0739 4.8908 8.3168 41.485 34.5 6.9878 8.4258 6.1392 4.9650 8.4532 42.01 35 7 .0844 8.4806 6.2272 5.0212 8.5910 42.535 35.5 7.1818 8.5633 6.3384 5.0969 8.7303 43.323 36 7.2802 8.6466 6.4284 5.1928 8.8712 43.848 36.5 7.3547 8.7303 6.5193 5.2704 9.0135 44.373 37 7.4547 8.8429 6.6111 5.3490 9.1574 44.898 37.5 7.5558 8.9564 6.7039 5.4284 9.2736 45.686 38 7.6578 9.0422 6.7976 5.5289 9.3907 46.211 38.5 7.7349 9.1574 6.8922 5.5898 9.5088 46.736 39 7.8385 9.2445 6.9878 5.6513 9.5980 47.524 39.5 7.9169 9.3907 7.0844 5.7340 9.6878 48.049 40 7.9958 9.5088 7.1818 5.8176 6.5881 48.574 40.5 8.1019 9.6578 7.2802 5.8809 0.5946 49.099

PAGE 158

158 Table C 13 Continued. 41 8.1552 1.9543 7.3796 5.9661 0.6325 49.887 41.5 8.2358 0.6595 7.4799 6.0522 0.7016 50.412 42 8.3440 0.6682 7.5812 6.1174 0.7642 50.937 42.5 8.4258 0.7124 7.6578 6.1831 0.8384 51.7 25 43 8.5081 0.7606 7.7607 6.2715 0.9211 52.25 43.5 8.5633 0.8290 7.8385 6.3384 1.0158 52.775 44 8.6466 0.8958 7.9169 6.4058 1.1250 53.3 44.5 8.7303 0.9682 8.0222 6.4965 1.2380 54.088 45 8.8147 1.0389 8.1019 6.5881 1.3698 54.613 45.5 8.9280 1.1145 8. 2358 6.6574 1.4935 55.138 46 9.0135 1.1954 8.3168 6.7272 1.6152 55.663 46.5 9.0997 1.2894 8.4258 6.8212 1.7307 56.451 47 9.1574 1.3922 8.5081 6.8685 1.8557 56.976 47.5 9.2154 1.5083 8.5910 6.9638 1.9827 57.501 48 9.3320 1.6273 8.6744 7.0360 2.1094 58. 026 48.5 9.3907 1.7244 8.7584 7.1330 2.2576 58.814 49 9.5088 1.8346 8.8429 7.2063 2.3913 59.339 49.5 9.5980 1.9323 8.8995 7.3050 2.5139 59.864 50 9.6578 2.0297 8.9564 7.3547 2.6678 60.652 50.5 9.7479 2.1217 8.9850 7.4296 2.8042 61.177 51 9.8386 2.222 0 8.9850 7.5304 2.9562 61.702 51.5 9.8993 2.3354 9.0422 7.6066 3.1212 62.227 52 10.0215 2.4482 9.1285 7.6834 3.2800 63.015 52.5 10.0830 2.5511 9.1864 7.7607 3.4368 63.54 53 10.2066 2.6827 9.2736 7.8385 3.5966 64.065 53.5 10.3312 2.8042 9.3320 7.9169 3 .7412 64.59 54 10.4252 2.9277 9.3907 7.9958 3.8811 65.378 54.5 10.0522 3.0454 9.4202 8.0753 4.0124 65.903 55 0.6817 3.1734 9.4792 8.1820 4.1390 66.428 55.5 0.6896 3.2989 9.5385 8.2358 4.2703 66.953 56 0.7112 3.4368 9.5980 8.3168 4.4117 67.741 56.5 0. 7489 3.5662 9.6878 8.3985 4.5672 68.266 57 0.8001 3.6964 9.7781 8.4806 4.7449 68.791 57.5 0.8561 3.8198 9.8386 8.5633 4.8908 69.316 58 0.9155 3.9557 9.1864 8.6466 5.0400 70.104 58.5 0.9692 4.0777 0.6831 8.7303 5.2121 70.629 59 1.0230 4.2026 0.6835 8.7 865 5.3687 71.154 59.5 1.0847 4.3406 0.7127 8.8712 5.5491 71.679 60 1.1484 4.4631 0.7516 8.9280 5.7132 72.204 60.5 1.2225 4.5672 0.7866 8.9850 5.8598 72.992 61 1.3006 4.6732 0.8256 9.0709 6.0091 73.517 61.5 1.3862 4.7810 0.8760 9.0997 6.1611 74.042

PAGE 159

159 T able C 13 Continued. 62 1.4496 4.8908 0.9225 9.1574 6.3160 74.83 62.5 1.5205 5.0400 0.9819 9.2445 6.4510 75.355 63 1.6054 5.1735 1.0337 9.3320 6.6111 75.88 63.5 1.6936 5.2900 1.0917 9.3614 6.7506 76.405 64 1.7784 5.4483 1.1563 9.4202 6.9161 77.193 6 4.5 1.8693 5.5898 1.2142 9.4497 7.0601 77.718 65 1.9490 5.7132 1.2819 5.9447 7.2063 78.243 65.5 2.0343 5.8598 1.3606 0.6379 7.3547 78.768 66 2.1170 6.0091 1.4366 0.6392 7.4799 79.556 66.5 2.1791 6.1392 1.5155 0.6419 7.6322 80.081 67 2.2556 6.2937 1.59 87 0.6488 7.7866 80.606 67.5 2.3334 6.4284 1.6803 0.6546 7.9169 81.394 68 2.4207 6.5421 1.7460 0.6735 8.0753 81.919 68.5 2.5248 6.6806 1.8154 0.7038 8.2089 82.444 69 2.6213 6.8212 1.8855 0.7431 8.3440 83.232 69.5 2.7104 6.9399 1.9525 0.7878 8.4806 83. 757 70 2.8437 7.0601 2.0233 0.8252 8.6188 84.282 70.5 2.9487 7.1818 2.0953 0.8636 8.7584 84.807 71 3.0658 7.3050 2.1752 0.9067 8.8995 85.595 71.5 3.1669 7.4296 2.2457 0.9561 9.0422 86.12 72 3.2638 7.5558 2.3324 0.9957 9.1864 86.645 72.5 3.3632 7.6578 2.4207 1.0327 9.2736 87.17 73 3.4354 7.7607 2.4944 1.0713 9.3907 87.17 73.5 3.4522 7.7607 2.5194 1.1167 9.3907 87.17 Table C 14 Kaolinite run #2 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 0 0.6242 0.6328 0.6396 0.6001 0.5691 0 0.5 0.6235 0.6325 0.6399 0.5997 0.5688 0.263 1 0.6248 0.6345 0.6416 0.5991 0.5679 0.788 1.5 0.6288 0.6505 0.6481 0.6023 0.5685 1.313 2 0.6315 0.6907 0.6643 0.6065 0.5755 2.101 2.5 0.6348 0.7438 0.6965 0.6110 0.5902 2.626 3 0.64 02 0.8005 0.7327 0.6248 0.6440 3.151 3.5 0.6501 0.8627 0.7830 0.6577 0.7198 3.939 4 0.6724 0.9150 0.8264 0.6903 0.8176 4.464 4.5 0.7013 0.9804 0.8698 0.7308 0.9361 4.989 5 0.7297 1.0425 0.9211 0.7575 1.0466 5.777 5.5 0.7524 1.1041 0.9745 0.7907 1.2054 6.302 6 0.7814 1.1711 1.0235 0.8324 1.3593 6.827 6.5 0.8180 1.2452 1.0756 0.8645 1.5226 7.615

PAGE 160

160 Table C 14. Continued. 7 0.8583 1.3151 1.1206 0.8917 1.6803 8.14 7.5 0.8881 1.4096 1.1740 0.9333 1.8388 8.665 8 0.9183 1.4949 1.2326 0.9731 2.0097 9.19 8. 5 0.9619 1.6009 1.2869 1.0219 2.1966 9.715 9 0.9868 1.6818 1.3574 1.0581 2.3674 10.503 9.5 1.0184 1.7825 1.4271 1.0976 2.5655 11.028 10 1.0524 1.8650 1.5162 1.1406 2.7699 11.553 10.5 1.0825 1.9446 1.5972 1.2030 2.9624 12.341 11 1.1206 2.0188 1.6594 1. 2446 3.1695 12.866 11.5 1.1649 2.0963 1.7180 1.3310 3.3963 13.391 12 1.1913 2.1772 1.7857 1.3457 3.5879 14.179 12.5 1.2338 2.2646 1.8481 1.4062 3.7939 14.704 13 1.2819 2.3488 1.9097 1.4648 3.9871 15.229 13.5 1.3259 2.4302 1.9765 1.5155 4.1748 15.754 14 1.3593 2.5226 2.0425 1.5720 4.3710 16.279 14.5 1.4082 2.6416 2.0991 1.6273 4.6023 17.067 15 1.4572 2.7452 2.1723 1.6733 4.8174 17.592 15.5 1.4963 2.8401 2.2358 1.7275 5.0779 18.117 16 1.5588 2.9351 2.3150 1.7841 5.3292 18.642 16.5 1.6092 3.0238 2.3 819 1.8263 5.5694 19.43 17 1.6578 3.1212 2.4696 1.8761 5.7966 19.955 17.5 1.7030 3.2224 2.5358 1.9288 6.0091 20.48 18 1.7476 3.3289 2.6112 1.9765 6.2493 21.005 18.5 1.8030 3.4298 2.6896 2.0288 6.4510 21.53 19 1.8388 3.5274 2.7793 2.0850 6.6806 22.318 19.5 1.8872 3.6316 2.8764 2.1531 6.8922 22.843 20 1.9227 3.7502 2.9611 2.2093 7.1330 23.368 20.5 1.9658 3.8442 3.0264 2.2666 7.3298 24.156 21 2.0124 3.9494 3.1031 2.3334 7.5304 24.681 21.5 2.0535 4.0553 3.1800 2.4038 7.7607 25.206 22 2.0925 4.1568 3. 2571 2.4643 7.9694 25.731 22.5 2.1331 4.2521 3.3289 2.5347 8.2089 26.519 23 2.1656 4.3558 3.4019 2.6101 8.4258 27.044 23.5 2.2063 4.4288 3.4593 2.6689 8.6188 27.569 24 2.2576 4.5149 3.5460 2.7324 8.8429 28.094 24.5 2.3028 4.6200 3.6316 2.8054 9.0422 2 8.882 25 2.3467 4.6910 3.7083 2.8751 9.2154 29.407 25.5 2.3986 4.7810 3.7849 2.9463 9.4202 29.932 26 2.4419 4.8540 3.8549 2.9924 9.5683 30.72 26.5 2.4987 4.9650 3.9338 3.0556 9.7178 31.245 27 2.5434 5.0589 4.0076 3.1225 9.8689 31.77 27.5 2.6134 5.154 3 4.0986 3.1879 10.0215 32.295

PAGE 161

161 Table C 14. Continued 28 2.6655 5.2509 4.1682 3.2397 10.1756 32.82 28.5 2.7208 5.3687 4.2471 3.2895 10.3625 33.608 29 2.8018 5.4684 4.3271 3.3563 10.6150 34.133 29.5 2.8727 5.5694 4.3913 3.4312 10.8713 34.658 30 2.9240 5.6719 4.4803 3.4932 10.9359 35.183 30.5 2.9636 5.7966 4.5672 3.5532 10.9684 35.971 31 3.0163 5.8809 4.6376 3.6272 12.2800 36.496 31.5 3.0837 5.9876 4.7089 3.7128 0.6338 37.021 32 3.1212 6.1174 4.7810 3.7939 0.6570 37.546 32.5 3.1655 6.2051 4.8540 3.8 672 0.7634 38.071 33 3.2157 6.3160 4.9463 3.9447 0.8658 38.859 33.5 3.2813 6.4284 5.0400 4.0346 0.9972 39.384 34 3.3275 6.5193 5.1351 4.1050 1.1563 39.909 34.5 3.3701 6.6342 5.2121 4.1862 1.3113 40.434 35 3.4144 6.7272 5.2900 4.2703 1.4662 41.222 35. 5 3.4705 6.8212 5.3885 4.3439 1.6364 41.747 36 3.4875 6.9161 5.4684 4.4288 1.8071 42.272 36.5 3.5446 7.0119 5.5491 4.5149 1.9472 42.797 37 3.6024 7.1086 5.6307 4.6023 2.1236 43.585 37.5 3.6521 7.1818 5.7132 4.6732 2.3150 44.11 38 3.7083 7.3050 5.7966 4.7629 2.5281 44.635 38.5 3.7532 7.4046 5.9021 4.8540 2.7138 45.16 39 3.7985 7.4799 5.9876 4.9278 2.9117 45.948 39.5 3.8365 7.5812 6.0739 5.0024 3.1264 46.473 40 3.9027 7.6578 6.1611 5.0969 3.3302 46.998 40.5 3.9557 7.7607 6.2272 5.1735 3.5547 47.523 41 3.9997 7.8385 6.3160 5.2509 3.7622 48.311 41.5 4.0697 7.9694 6.4058 5.3292 3.9619 48.836 42 4.1179 8.0222 6.4737 5.4084 4.1325 49.361 42.5 4.1813 8.1019 6.5421 5.4885 4.3104 49.886 43 4.2504 8.1820 6.6342 5.5898 4.5323 50.674 43.5 4.3053 8.2627 6. 7272 5.6513 4.7629 51.199 44 4.3676 8.3440 6.8212 5.7340 4.9837 51.724 44.5 4.4288 8.3985 6.8922 5.8176 5.2315 52.249 45 4.4976 8.4532 6.9638 5.9021 5.4885 53.037 45.5 4.5497 8.5357 7.0360 5.9876 5.7132 53.562 46 4.6023 8.5910 7.1086 6.0739 5.9234 54. 087 46.5 4.6554 8.6466 7.2063 6.1392 6.1392 54.612 47 4.7449 8.7303 7.2802 6.2272 6.3608 55.137 47.5 4.7992 8.8147 7.3547 6.2937 6.5881 55.925 48 4.8723 8.9280 7.4547 6.3608 6.8212 56.45 48.5 4.9278 9.0135 7.5304 6.4510 7.0360 56.975

PAGE 162

162 Table C 14. Con tinued 49 4.9837 9.0997 7.6066 6.5421 7.2309 57.5 49.5 5.0589 9.1864 7.6834 6.6342 7.4547 58.288 50 5.1160 9.2736 7.7866 6.7039 7.6578 58.813 50.5 5.1735 9.3907 7.8907 6.7976 7.9169 59.338 51 5.2315 9.4792 7.9431 6.8685 8.1019 59.863 51.5 5.2704 9.568 3 8.0222 6.9399 8.2898 60.388 52 5.3292 9.6878 8.1285 7.0360 8.5081 61.176 52.5 5.4084 9.8386 8.2089 7.1086 8.7024 61.701 53 5.4684 4.9092 8.3168 7.2063 8.8712 62.226 53.5 5.5289 0.6556 8.3712 7.2802 9.0709 63.014 54 5.5694 0.6501 8.4532 7.3547 9.2445 63.539 54.5 5.6307 0.6581 8.5357 7.4296 9.4202 64.064 55 5.6719 0.6871 8.6188 7.5051 9.5683 64.589 55.5 5.7132 0.7247 8.7024 7.6066 9.7178 65.114 56 5.7757 0.7757 8.7865 7.6834 2.1094 65.639 56.5 5.8387 0.8281 8.8429 7.7349 0.6318 66.427 57 5.9021 0 .8836 8.9280 7.8385 0.7168 66.952 57.5 5.9661 0.9432 8.9850 7.9169 0.8290 67.477 58 6.0306 1.0047 9.0709 7.9958 0.9432 68.002 58.5 6.0739 1.0724 9.1285 8.0753 1.0708 68.79 59 6.1174 1.1372 9.1864 8.1820 1.2243 69.315 59.5 6.1831 1.2083 9.2445 8.2358 1 .3843 69.84 60 6.2272 1.2764 9.3028 8.3440 1.5617 70.628 60.5 6.2715 1.3580 9.3614 8.3985 1.7093 71.153 61 6.3384 1.4524 9.3907 8.4806 1.8565 71.678 61.5 6.3832 1.5500 9.4202 8.5633 2.0215 72.466 62 6.4510 1.6532 9.4792 8.6466 2.2014 72.991 62.5 6.51 93 1.7460 9.5385 8.7584 2.4144 73.516 63 6.5651 1.8355 9.5683 8.8147 2.5944 74.041 63.5 6.6111 1.9209 9.6578 8.8995 2.7371 74.829 64 6.6806 2.0143 1.9114 8.9850 2.9240 75.354 64.5 6.7272 2.0804 0.6595 9.0422 3.1018 75.879 65 6.7741 2.1627 0.6661 9.099 7 3.3139 76.667 65.5 6.8448 2.2586 0.6954 9.1574 3.5389 77.192 66 6.9161 2.3436 0.7266 9.2445 3.7247 77.717 66.5 6.9638 2.4344 0.7701 9.3028 3.9151 78.505 67 7.0360 2.5358 0.8047 9.3614 4.0825 79.03 67.5 7.0601 2.6484 0.8518 9.4202 4.2604 79.555 68 7 .1330 2.7546 0.8958 9.4497 4.4459 80.08 68.5 7.1818 2.8618 0.9385 9.5088 4.6376 80.605 69 7.2309 2.9587 0.9918 9.5385 4.8540 81.393 69.5 7.2802 3.0569 1.0435 9.5683 5.0779 81.918

PAGE 163

163 Table C 14. Continued 70 7.3547 3.1642 1.0933 9.6279 5.3292 82.443 70.5 7.4046 3.2786 1.1445 9.6878 5.5491 83.231 71 7.4296 3.3880 1.2007 9.7178 5.7340 83.231 71.5 7.5051 3.4889 1.2507 9.7781 5.9234 83.231 72 7.5304 3.5734 1.2801 9.8386 6.0306 83.231 72.5 7.5812 3.6331 1.3037 9.8689 6.0522 83.231 Table C 15 Kaolinite r un #3 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 0 0.7094 0.6640 0.6781 0.6616 0.5657 0 0.5 0.7109 0.6654 0.6792 0.6626 0.5654 0.525 1 0.7150 0.6703 0.6813 0.6728 0.5654 1.05 1.5 0.7187 0.6771 0.6831 0.6742 0.5657 1.575 2 0.7266 0.7135 0.7075 0.6760 0.5814 2.1 2.5 0.7446 0.7606 0.7442 0.6896 0.6094 2.625 3 0.7662 0.8042 0.7814 0.7229 0.6746 3.413 3.5 0.7956 0.8531 0.8226 0.7606 0.7626 3.938 4 0.8269 0.9109 0.8658 0.8092 0.8583 4.463 4.5 0.8605 0.9716 0 .9178 0.8483 0.9638 4.988 5 0.8804 1.0306 0.9614 0.8913 1.0814 5.513 5.5 0.9090 1.0890 1.0128 0.9356 1.2213 6.301 6 0.9385 1.1546 1.0560 0.9789 1.3691 6.826 6.5 0.9696 1.2189 1.0998 1.0260 1.5305 7.351 7 1.0007 1.2906 1.1546 1.0687 1.6772 7.876 7.5 1 .0281 1.3600 1.2160 1.1250 1.8238 8.401 8 1.0671 1.4558 1.2708 1.1832 1.9836 9.189 8.5 1.0971 1.5406 1.3278 1.2368 2.1512 9.714 9 1.1311 1.6440 1.3982 1.2962 2.3416 10.239 9.5 1.1620 1.7259 1.4773 1.3387 2.5096 10.764 10 1.2024 1.8204 1.5356 1.4069 2. 6907 11.289 10.5 1.2428 1.8984 1.6182 1.4655 2.8800 12.077 11 1.2813 1.9640 1.6702 1.5269 3.0722 12.602 11.5 1.3214 2.0407 1.7379 1.5950 3.2854 13.127 12 1.3606 2.1160 1.8138 1.6601 3.5160 13.652 12.5 1.4009 2.2024 1.8667 1.7220 3.7262 14.177 13 1.45 65 2.2847 1.9349 1.7816 3.9120 14.965 13.5 1.4942 2.3694 1.9899 1.8355 4.0937 15.49 14 1.5442 2.4568 2.0563 1.9019 4.2720 16.015 14.5 1.5868 2.5533 2.1207 1.9720 4.4803 16.54 15 1.6349 2.6473 2.1820 2.0297 4.7089 17.328

PAGE 164

164 Table C 15. Continued 15.5 1.6 873 2.7417 2.2546 2.0841 4.9278 17.853 16 1.7259 2.8389 2.3252 2.1397 5.1928 18.378 16.5 1.7751 2.9364 2.3923 2.2024 5.4284 18.903 17 1.8171 3.0200 2.4847 2.2656 5.6513 19.691 17.5 1.8540 3.1095 2.5644 2.3272 5.8598 20.216 18 1.8967 3.2091 2.6587 2.40 28 6.0956 20.741 18.5 1.9367 3.3152 2.7382 2.4814 6.2937 21.266 19 1.9649 3.4089 2.8281 2.5622 6.4965 22.054 19.5 2.0007 3.5017 2.9007 2.6157 6.7039 22.579 20 2.0361 3.6068 3.0037 2.7057 6.9399 23.104 20.5 2.0841 3.7054 3.0786 2.7664 7.1574 23.629 21 2.1207 3.7879 3.1459 2.8138 7.3547 24.417 21.5 2.1598 3.9136 3.2370 2.8995 7.5558 24.942 22 2.1927 4.0076 3.3261 2.9748 7.7607 25.467 22.5 2.2328 4.1212 3.3950 3.0530 7.9694 25.992 23 2.2736 4.2322 3.4875 3.1342 8.1820 26.517 23.5 2.3160 4.3104 3.564 7 3.2051 8.3712 27.305 24 2.3601 4.4117 3.6389 3.2827 8.5633 27.83 24.5 2.3902 4.4976 3.7307 3.3412 8.7584 28.355 25 2.4536 4.6023 3.8000 3.4214 8.9564 28.88 25.5 2.4955 4.6732 3.8780 3.4804 9.1285 29.668 26 2.5303 4.7449 3.9416 3.5575 9.3028 30.193 26.5 2.5788 4.8357 4.0203 3.6331 9.4792 30.718 27 2.6405 4.9278 4.1034 3.7024 9.6279 31.243 27.5 2.6804 5.0024 4.1748 3.7713 9.7479 31.768 28 2.7347 5.1160 4.2438 3.8442 9.8993 32.556 28.5 2.8102 5.1928 4.3439 3.9182 10.0522 33.081 29 2.8751 5.2900 4. 4117 3.9839 10.2688 33.606 29.5 2.9240 5.3885 4.4976 4.0585 10.4567 34.131 30 2.9798 5.5086 4.5672 4.1341 10.7427 34.919 30.5 3.0327 5.6102 4.6554 4.2108 10.9036 35.444 31 3.0940 5.6925 4.7269 4.2853 10.9359 35.969 31.5 3.1603 5.7966 4.7810 4.3423 10. 9359 36.494 32 3.2051 5.9021 4.8723 4.4117 10.9684 37.019 32.5 3.2464 6.0091 4.9463 4.4976 10.9684 37.544 33 3.2962 6.1174 5.0212 4.5672 11.9600 38.332 33.5 3.3426 6.2051 5.1160 4.6554 0.6739 38.857 34 3.3963 6.3160 5.1928 4.7269 0.7567 39.382 34.5 3 .4312 6.4284 5.2704 4.7992 0.8627 39.907 35 3.4593 6.4965 5.3490 4.8357 0.9863 40.432 35.5 3.4975 6.5881 5.4284 4.9463 1.1372 41.22 36 3.5417 6.7039 5.4885 5.0024 1.3037 41.745

PAGE 165

165 Table C 15. Continued 36.5 3.5879 6.7976 5.5898 5.0779 1.4836 42.27 37 3. 6462 6.8922 5.6719 5.1543 1.6617 42.795 37.5 3.6920 6.9638 5.7548 5.2315 1.8338 43.32 38 3.7247 7.0601 5.8387 5.3292 2.0043 44.108 38.5 3.7743 7.1574 5.9021 5.4084 2.2200 44.633 39 3.8167 7.2555 5.9876 5.4885 2.4376 45.158 39.5 3.8565 7.3547 6.0522 5. 5694 2.6394 45.683 40 3.8919 7.4296 6.1392 5.6307 2.8281 46.208 40.5 3.9385 7.5051 6.2272 5.7132 3.0543 46.996 41 3.9839 7.5812 6.2937 5.7966 3.2786 47.521 41.5 4.0378 7.6834 6.3608 5.8809 3.5203 48.046 42 4.0825 7.7349 6.4510 5.9447 3.7698 48.571 42 .5 4.1260 7.8125 6.5193 6.0091 4.0076 49.096 43 4.1682 7.9169 6.5881 6.0956 4.2158 49.884 43.5 4.2256 7.9958 6.6574 6.1611 4.4288 50.409 44 4.2820 8.0487 6.7272 6.2272 4.6376 50.934 44.5 4.3372 8.1285 6.7976 6.3160 4.8723 51.459 45 4.3913 8.1820 6.892 2 6.3832 5.1351 51.984 45.5 4.4459 8.2627 6.9638 6.4510 5.4084 52.772 46 4.4976 8.3440 7.0360 6.5421 5.6513 53.297 46.5 4.5497 8.3985 7.1086 6.6342 5.8598 53.822 47 4.6023 8.4532 7.1818 6.7272 6.1174 54.347 47.5 4.6554 8.5081 7.2309 6.7741 6.3608 54.8 72 48 4.7269 8.5910 7.3298 6.8685 6.5881 55.397 48.5 4.7810 8.6466 7.4046 6.9399 6.8212 56.185 49 4.8357 8.7303 7.4799 7.0119 7.0601 56.71 49.5 4.8908 8.8147 7.5558 7.0844 7.3050 57.235 50 4.9463 8.8995 7.6322 7.1574 7.5304 57.76 50.5 5.0024 8.9850 7 .7091 7.2309 7.7349 58.285 51 5.0779 9.0709 7.7866 7.3298 7.9694 58.81 51.5 5.1160 9.1285 7.8646 7.3796 8.2089 59.335 52 5.1928 9.2154 7.9431 7.4547 8.4258 60.123 52.5 5.2121 9.3028 7.9958 7.5304 8.6466 60.648 53 5.2704 9.3907 8.0753 7.6066 8.8429 61. 173 53.5 5.3490 9.5088 8.1285 7.6834 9.0709 61.698 54 5.3885 3.1394 8.2358 7.7607 9.2736 62.223 54.5 5.4483 0.7198 8.2898 7.8385 9.4497 62.748 55 5.5086 0.7135 8.3985 7.9169 9.6279 63.536 55.5 5.5491 0.7206 8.4532 7.9958 9.8083 64.061 56 5.6102 0.746 6 8.5357 8.0753 1.8388 64.586 56.5 5.6307 0.7952 8.5910 8.1552 0.6602 65.111 57 5.6925 0.8422 8.6744 8.2358 0.7536 65.636

PAGE 166

166 Table C 15. Continued 57.5 5.7548 0.8890 8.7303 8.2898 0.8645 66.161 58 5.7966 0.9366 8.7865 8.3712 0.9918 66.949 58.5 5.8598 0. 9863 8.8429 8.4532 1.1383 67.474 59 5.9234 1.0399 8.9280 8.5357 1.3151 67.999 59.5 5.9447 1.1019 8.9850 8.5910 1.5005 68.524 60 6.0091 1.1614 9.0422 8.6744 1.6756 69.049 60.5 6.0522 1.2171 9.0997 8.7303 1.8472 69.574 61 6.0956 1.2832 9.1285 8.8147 2.0 206 70.099 61.5 6.1611 1.3509 9.2154 8.8712 2.2044 70.887 62 6.2051 1.4230 9.2736 8.9280 2.4122 71.412 62.5 6.2493 1.5133 9.3028 9.0135 2.6236 71.937 63 6.2937 1.5994 9.3614 9.0422 2.8197 72.462 63.5 6.3608 1.6795 9.3907 9.0997 3.0238 72.987 64 6.405 8 1.7727 9.4202 9.1864 3.2652 73.512 64.5 6.4510 1.8582 9.4792 9.2445 3.5031 74.037 65 6.5193 1.9297 9.5385 9.3028 3.7367 74.562 65.5 6.5651 2.0052 9.5683 9.3614 3.9354 75.35 66 6.5881 2.0692 9.6279 9.3907 4.1228 75.875 66.5 6.6574 2.1455 9.6878 9.420 2 4.3255 76.4 67 6.7039 2.2122 9.7479 9.4792 4.5323 76.925 67.5 6.7741 2.2827 9.8083 9.5088 4.7629 77.45 68 6.8212 2.3674 9.8689 9.5683 4.9837 77.975 68.5 6.8685 2.4397 9.9298 9.5980 5.2704 78.763 69 6.9399 2.5183 9.9909 9.6578 5.5289 79.288 69.5 6.9 878 2.6022 10.0215 9.6878 5.7757 79.813 70 7.0119 2.6930 10.0830 9.7178 5.9876 80.338 70.5 7.0601 2.7888 10.1756 9.8083 6.2272 80.601 71 7.1086 2.8582 10.2066 9.8689 6.4284 80.601 71.5 7.1330 2.8666 10.2066 9.9298 6.6111 80.601 72 7.1330 2.8715 10.237 7 9.9603 6.6806 80.601 72.5 7.1330 2.8764 10.2377 9.9603 6.6806 80.601 Table C 16 Kaolinite run #4 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6218 0.6087 0.6182 0.6004 0.5531 0.0000 9.5 0.6255 0.61 04 0.6199 0.6017 0.5537 0.5250 9 0.6318 0.6117 0.6212 0.6049 0.5679 1.0500 8.5 0.6345 0.6127 0.6218 0.6081 0.6803 1.5750 8 0.6416 0.6133 0.6232 0.6084 0.9022 2.1000 7.5 0.6484 0.6149 0.6248 0.6084 1.1694 2.6250

PAGE 167

167 Table C 16. Continued 7 0.6546 0.6 169 0.6265 0.6068 1.4871 2.8880 6.5 0.6626 0.6208 0.6265 0.6068 1.7825 3.4130 6 0.6693 0.6285 0.6315 0.6071 2.1179 3.9380 5.5 0.6598 0.6382 0.6355 0.6081 2.4793 4.4630 5 0.6665 0.6508 0.6402 0.6094 2.8389 4.9880 4.5 0.6724 0.6658 0.6450 0.6094 3. 2277 5.5130 4 0.6778 0.6739 0.6512 0.6120 3.6477 6.0380 3.5 0.6907 0.6849 0.6591 0.6130 4.0235 6.5630 3 0.7024 0.6932 0.6672 0.6146 4.4288 7.0880 2.5 0.7116 0.7053 0.6792 0.6166 4.8540 7.3510 2 0.7229 0.7187 0.6922 0.6195 5.3096 7.8760 1.5 0.73 31 0.7346 0.7057 0.6235 5.6925 8.4010 1 0.7477 0.7489 0.7027 0.6305 6.0956 8.9260 0.5 0.7658 0.7646 0.7142 0.6358 6.4965 9.4510 0 0.7761 0.7834 0.7247 0.6433 6.8922 9.9760 0.5 0.7948 0.8038 0.7335 0.6488 7.3050 10.5010 1 0.8101 0.8130 0.7442 0.6577 7.7091 11.0260 1.5 0.8256 0.8294 0.7575 0.6700 8.1285 11.5510 2 0.8479 0.8479 0.7650 0.6774 8.5357 12.0760 2.5 0.8557 0.8636 0.7878 0.6907 8.8712 12.3390 3 0.8778 0.8809 0.7981 0.6922 9.2154 12.8640 3.5 0.8913 0.8953 0.8126 0.7064 4.5847 13.3890 4 0. 8990 0.9118 0.8163 0.7105 0.7281 13.9140 4.5 0.9132 0.9323 0.8294 0.7221 0.9026 14.4390 5 0.9290 0.9441 0.8431 0.7285 1.1250 14.9640 5.5 0.9465 0.9643 0.8505 0.7369 1.4197 15.4890 6 0.9624 0.9799 0.8702 0.7450 1.7419 16.0140 6.5 0.9789 0.9903 0.8769 0 .7587 2.0343 16.5390 7 0.9928 1.0083 0.8908 0.7681 2.3736 17.0640 7.5 1.0123 1.0291 0.9054 0.7753 2.7301 17.5890 8 1.0240 1.0529 0.9197 0.7846 3.1355 17.8520 8.5 1.0389 1.0650 0.9253 0.7915 3.5245 18.3770 9 1.0524 1.0761 0.9323 0.8059 3.9447 18.9020 9.5 1.0756 1.0911 0.9523 0.8088 4.2853 19.4270 10 1.0927 1.1101 0.9672 0.8226 4.6732 19.9520 10.5 1.1008 1.1239 0.9765 0.8341 5.0969 20.4770 11 1.1217 1.1400 0.9873 0.8453 5.5491 21.0020 11.5 1.1361 1.1586 1.0027 0.8470 5.9876 21.2650 12 1.1552 1.1809 1.0199 0.8627 6.4058 21.7900 12.5 1.1734 1.2007 1.0337 0.8720 6.8212 22.3150 13 1.1913 1.2189 1.0440 0.8809 7.2555 22.8400 13.5 1.2083 1.2356 1.0498 0.8949 7.6322 23.3650

PAGE 168

168 Table C 16. Continued 14 1.2272 1.2604 1.0793 0.9013 8.0222 23.8900 14.5 1.253 7 1.2807 1.0895 0.9137 8.3985 24.4150 15 1.2714 1.3050 1.0954 0.9290 8.7584 24.9400 15.5 1.2906 1.3271 1.1134 0.9333 9.1285 25.4650 16 1.3170 1.3470 1.1217 0.9418 9.3614 25.9900 16.5 1.3316 1.3685 1.1411 0.9551 9.6878 26.5150 17 1.3548 1.3982 1.1711 0 .9711 1.2452 26.7780 17.5 1.3685 1.4237 1.1711 0.9775 0.7232 27.3030 18 1.3876 1.4545 1.1867 0.9952 0.9370 27.8280 18.5 1.4116 1.4794 1.2148 1.0088 1.1977 28.3530 19 1.4359 1.5083 1.2356 1.0174 1.4907 28.8780 19.5 1.4593 1.5334 1.2392 1.0296 1.7931 29 .4030 20 1.4711 1.5588 1.2555 1.0472 2.1066 29.9280 20.5 1.4893 1.5794 1.2739 1.0587 2.4482 30.4530 21 1.5356 1.6062 1.3025 1.0719 2.8054 30.9780 21.5 1.5442 1.6326 1.3075 1.0793 3.2144 31.2410 22 1.5698 1.6617 1.3310 1.0900 3.6068 31.7660 22.5 1.600 2 1.6896 1.3399 1.1014 4.0044 32.2910 23 1.6288 1.7156 1.3646 1.1228 4.3574 32.8160 23.5 1.6410 1.7419 1.3803 1.1333 4.7629 33.3410 24 1.6795 1.7637 1.3989 1.1501 5.1928 33.8660 24.5 1.6803 1.7849 1.4312 1.1614 5.6513 34.3910 25 1.7164 1.8071 1.4462 1 .1706 6.0739 34.9160 25.5 1.7267 1.8246 1.4579 1.1948 6.4965 35.4410 26 1.7589 1.8456 1.4759 1.1977 6.9161 35.9660 26.5 1.7718 1.8684 1.4970 1.2166 7.3298 36.2290 27 1.7972 1.8941 1.5012 1.2266 7.7349 36.7540 27.5 1.8121 1.9157 1.5291 1.2338 8.1019 37 .2790 28 1.8439 1.9376 1.5486 1.2513 8.5081 37.8040 28.5 1.8523 1.9596 1.5742 1.2647 8.8429 38.3290 29 1.8967 1.9836 1.5987 1.2844 9.1864 38.8540 29.5 1.9131 2.0025 1.6084 1.2987 1.0286 39.3790 30 1.9499 2.0206 1.6212 1.3138 0.8418 39.9040 30.5 1.954 3 2.0398 1.6356 1.3348 1.0311 40.4290 31 1.9667 2.0628 1.6640 1.3509 1.2962 40.9540 31.5 1.9854 2.0869 1.6710 1.3613 1.6242 41.2170 32 2.0115 2.1047 1.6936 1.3836 1.9455 41.7420 32.5 2.0197 2.1245 1.7109 1.3882 2.2546 42.2670 33 2.0443 2.1435 1.7283 1 .4089 2.6484 42.7920 33.5 2.0692 2.1627 1.7548 1.4190 3.0327 43.3170 34 2.0916 2.1839 1.7548 1.4359 3.4312 43.8420 34.5 2.1170 2.2014 1.7816 1.4620 3.8320 44.3670

PAGE 169

16 9 Table C 16. Continued 35 2.1302 2.2250 1.7981 1.4662 4.1813 44.8920 35.5 2.1397 2.2527 1.8113 1.4850 4.5847 45.4170 36 2.1878 2.2776 1.8229 1.4998 5.0212 45.9420 36.5 2.1917 2.2978 1.8246 1.5119 5.4684 46.2050 37 2.2142 2.3160 1.8506 1.5248 5.9234 46.7300 37.5 2.2437 2.3477 1.8633 1.5363 6.3608 47.2550 38 2.2457 2.3663 1.8872 1.5566 6.7 741 47.7800 38.5 2.2706 2.3882 1.8950 1.5786 7.2063 48.3050 39 2.2857 2.4059 1.9062 1.5823 7.6066 48.8300 39.5 2.3109 2.4323 1.9201 1.5994 8.0222 49.3550 40 2.3447 2.4610 1.9411 1.6235 8.3985 49.8800 40.5 2.3488 2.4857 1.9525 1.6295 8.7865 50.4050 41 2.3809 2.5020 1.9792 1.6478 9.0997 50.9300 41.5 2.3902 2.5270 1.9926 1.6586 4.4976 51.4550 42 2.4154 2.5522 1.9980 1.6818 0.7139 51.7180 42.5 2.4493 2.5832 2.0152 1.6975 0.9081 52.2430 43 2.4718 2.6146 2.0499 1.7085 1.1501 52.7680 43.5 2.4901 2.6405 2.0609 1.7172 1.4759 53.2930 44 2.5347 2.6701 2.0795 1.7387 1.7605 53.8180 44.5 2.5522 2.6965 2.1038 1.7629 2.1000 54.3430 45 2.5732 2.7278 2.1207 1.7767 2.4568 54.8680 45.5 2.6022 2.7464 2.1359 1.7816 2.8425 55.3930 46 2.6405 2.7746 2.1455 1.7939 3.2 104 55.9180 46.5 2.6621 2.8007 2.1541 1.8113 3.6861 56.4430 47 2.6919 2.8269 2.1646 1.8246 4.0729 56.7060 47.5 2.7150 2.8606 2.2024 1.8405 4.4288 57.2310 48 2.7640 2.8849 2.2083 1.8574 4.8723 57.7560 48.5 2.7864 2.9117 2.2467 1.8744 5.3292 58.2810 49 2.8138 2.9401 2.2457 1.8924 5.7966 58.8060 49.5 2.8485 2.9661 2.3038 1.9036 6.2272 59.3310 50 2.8849 2.9899 2.3008 1.9166 6.6574 59.8560 50.5 2.9081 3.0087 2.3109 1.9402 7.0360 60.3810 51 2.9364 3.0327 2.3385 1.9499 7.5051 60.6440 51.5 2.9686 3.0594 2.3581 1.9685 7.8907 61.1690 52 2.9899 3.0799 2.3913 1.9783 8.2898 61.6940 52.5 3.0264 3.1108 2.3955 1.9953 8.6744 62.2190 53 3.0429 3.1394 2.4165 2.0052 9.0709 62.7440 53.5 3.0773 3.1603 2.4302 2.0206 9.4202 63.2690 54 3.1031 3.1892 2.4493 2.0334 0.6 693 63.7940 54.5 3.1238 3.2131 2.4782 2.0480 0.8126 64.3190 55 3.1721 3.2424 2.5041 2.0655 1.0498 64.5820 55.5 3.1813 3.2625 2.5204 2.0860 1.3233 65.1070

PAGE 170

170 Table C 16. Continued 56 3.2157 3.2854 2.5204 2.0972 1.6532 65.6320 56.5 3.2344 3.3112 2.5688 2. 1113 1.9605 66.1570 57 3.2571 3.3426 2.5821 2.1264 2.2998 66.6820 57.5 3.2840 3.3701 2.5866 2.1407 2.6758 67.2070 58 3.3071 3.3936 2.6236 2.1569 3.0632 67.7320 58.5 3.3385 3.4172 2.6473 2.1801 3.4946 68.2570 59 3.3494 3.4424 2.6621 2.1966 3.9089 68.78 20 59.5 3.3770 3.4677 2.6861 2.2191 4.2720 69.3070 60 3.3853 3.4946 2.7278 2.2378 4.6732 69.5700 60.5 3.4214 3.5174 2.7534 2.2616 5.1351 70.0950 61 3.4508 3.5374 2.7464 2.2746 5.5694 70.6200 61.5 3.4593 3.5647 2.7758 2.2867 6.0091 71.1450 62 3.4875 3 .5893 2.8007 2.3038 6.4510 71.6700 62.5 3.5160 3.6155 2.8269 2.3242 6.8685 72.1950 63 3.5374 3.6477 2.8449 2.3416 7.3050 72.7200 63.5 3.5547 3.6787 2.8691 2.3622 7.6834 73.2450 64 3.5893 3.7054 2.8861 2.3850 8.1285 73.7700 64.5 3.6068 3.7307 2.9056 2. 4059 8.5081 74.2950 65 3.6272 3.7577 2.9167 2.4249 8.8995 74.5580 65.5 3.6433 3.7818 2.9438 2.4440 9.2154 75.0830 66 3.6728 3.8076 2.9761 2.4568 6.3832 75.6080 66.5 3.6846 3.8304 2.9911 2.4825 0.7765 76.1330 67 3.7247 3.8611 3.0150 2.4987 0.8894 76.65 80 67.5 3.7382 3.8934 3.0390 2.5204 1.1183 77.1830 68 3.7577 3.9182 3.0671 2.5336 1.4339 77.7080 68.5 3.7894 3.9416 3.0709 2.5589 1.7395 78.2330 69 3.7985 3.9666 3.0876 2.5799 2.0730 78.7580 69.5 3.8304 3.9934 3.1160 2.6045 2.3923 79.2830 70 3.8611 4 .0250 3.1433 2.6236 2.7558 79.8080 70.5 3.8811 4.0409 3.1472 2.6416 3.1394 80.0710 71 3.8811 4.0633 3.1616 2.6553 3.5749 80.5960 71.5 3.9089 4.0889 3.1721 2.6758 3.9510 81.1210 72 3.9494 4.1098 3.2131 2.6988 4.3120 81.6460 72.5 3.9776 4.1390 3.2410 2. 7266 4.7629 82.1710 73 3.9997 4.1699 3.2544 2.7347 5.1928 82.6960 73.5 4.0266 4.1911 3.2625 2.7652 5.6513 83.2210 74 4.0521 4.2207 3.2746 2.7864 6.0739 83.7460 74.5 4.0857 4.2421 3.3112 2.8007 6.4965 84.2710 75 4.1098 4.2687 3.3139 2.8054 6.9161 84.79 60 75.5 4.1341 4.2886 3.3426 2.8353 7.3298 85.3210 76 4.1748 4.3087 3.3426 2.8389 7.7349 85.8460 76.5 4.1748 4.3322 3.3880 2.8582 8.1019 86.3710

PAGE 171

171 Table C 16. Continued 77 4.2010 4.3541 3.3839 2.8691 8.5081 86.6340 77.5 4.2256 4.3743 3.4103 2.8873 8.89 95 87.1590 78 4.2488 4.3947 3.4396 2.9068 9.2154 87.6840 78.5 4.2803 4.4288 3.4494 2.9203 1.9881 88.2090 79 4.3104 4.4459 3.4635 2.9425 0.7927 88.7340 79.5 4.3271 4.4631 3.4918 2.9549 0.9967 89.2590 80 4.3608 4.4803 3.5145 2.9786 1.2440 89.7840 80.5 4.3913 4.4976 3.5317 2.9899 1.5603 90.0470 81 4.4117 4.5323 3.5446 3.0150 1.7148 90.0470 81.5 4.4459 4.5497 3.5662 3.0390 1.7564 90.0470 82 4.4459 4.5847 3.5835 3.0530 1.7605 90.0470 82.5 4.4631 4.5847 3.6097 3.0696 1.7605 90.0470

PAGE 172

172 Table C 17 Kaol inite run #5 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6218 0.6235 0.6004 0.5946 0.5510 0.0000 9.5 0.6235 0.6242 0.6004 0.5962 0.5510 0.2630 9 0.6275 0.6265 0.6007 0.5969 0.5774 0.5250 8.5 0.6285 0.6285 0.6026 0.5962 0.6732 0.5250 8 0.6311 0.6308 0.6026 0.5972 0.8827 0.5250 7.5 0.6352 0.6315 0.6026 0.5981 1.1586 0.5250 7 0.6382 0.6338 0.6026 0.5997 1.5091 0.2630 6.5 0.6419 0.6365 0.6033 0.6004 1.8548 0.5250 6 0.6453 0.6389 0.6045 0.6004 2 .2191 0.5250 5.5 0.6419 0.6423 0.6068 0.6004 2.5922 0.5250 5 0.6443 0.6488 0.6097 0.6010 2.9961 0.5250 4.5 0.6443 0.6539 0.6120 0.6007 3.4340 0.5250 4 0.6440 0.6616 0.6182 0.6004 3.8198 0.2630 3.5 0.6464 0.6693 0.6251 0.6017 4.2075 0.5250 3 0.6 515 0.6799 0.6332 0.6026 4.6732 0.5250 2.5 0.6532 0.6922 0.6413 0.6052 5.1543 0.5250 2 0.6512 0.7020 0.6515 0.6062 5.6102 0.5250 1.5 0.6563 0.7105 0.6598 0.6081 6.0306 0.2630 1 0.6640 0.7217 0.6672 0.6146 6.4965 0.5250 0.5 0.6626 0.7323 0.6760 0. 6179 6.9399 0.5250 0 0.6654 0.7415 0.6813 0.6232 7.3796 0.5250 0.5 0.6724 0.7547 0.6878 0.6315 7.7866 0.5250 1 0.6792 0.7693 0.6947 0.6409 8.2627 0.2630 1.5 0.6874 0.7842 0.7038 0.6477 8.6744 0.5250 2 0.6980 0.7956 0.7101 0.6563 9.0709 0.5250 2.5 0.7 068 0.8038 0.7153 0.6647 9.3907 0.5250 3 0.7131 0.8184 0.7331 0.6436 1.1723 0.5250 3.5 0.7229 0.8315 0.7404 0.6532 0.7989 0.2630 4 0.7312 0.8414 0.7481 0.6602 1.0042 0.5250 4.5 0.7392 0.8492 0.7540 0.6651 1.3208 0.5250 5 0.7500 0.8649 0.7622 0.6710 1. 6250 0.5250 5.5 0.7551 0.8760 0.7705 0.6774 1.9358 0.5250 6 0.7705 0.8764 0.7761 0.6882 2.2927 0.2630 6.5 0.7802 0.8872 0.7826 0.6947 2.6724 0.5250 7 0.7887 0.9017 0.7911 0.6998 3.0684 0.5250 7.5 0.7960 0.9164 0.8014 0.7064 3.5103 0.5250 8 0.7972 0.9 290 0.8101 0.7127 3.9136 0.5250 8.5 0.8038 0.9427 0.8146 0.7232 4.3104 0.5250 9 0.8163 0.9532 0.8243 0.7285 4.7449 0.5250 9.5 0.8303 0.9653 0.8358 0.7339 5.1928 0.2630

PAGE 173

173 Table C 17. Continued 10 0.8474 0.9814 0.8453 0.7493 5.6513 0.5250 10.5 0.8518 0.9 898 0.8522 0.7614 6.1174 0.5250 11 0.8579 1.0017 0.8605 0.7737 6.5651 0.5250 11.5 0.8680 1.0174 0.8715 0.7810 7.0119 0.5250 12 0.8787 1.0250 0.8809 0.7874 7.4547 0.5250 12.5 0.8836 1.0399 0.8926 0.7952 7.8646 0.2630 13 0.8990 1.0560 0.9022 0.8034 8.28 98 0.5250 13.5 0.9114 1.0687 0.9137 0.8117 8.6744 0.5250 14 0.9253 1.0825 0.9229 0.8214 9.0709 0.5250 14.5 0.9389 1.0927 0.9342 0.8286 9.3907 0.5250 15 0.9523 1.1118 0.9446 0.8358 1.2148 0.5250 15.5 0.9590 1.1233 0.9537 0.8414 0.8034 0.5250 16 0.9731 1.1389 0.9692 0.8470 1.0545 0.2630 16.5 0.9848 1.1495 0.9765 0.8587 1.3278 0.5250 17 0.9977 1.1643 0.9878 0.8715 1.6486 0.5250 17.5 1.0057 1.1809 1.0007 0.8818 1.9508 0.5250 18 1.0276 1.1908 1.0133 0.8922 2.3324 0.5250 18.5 1.0332 1.2089 1.0209 0.904 9 2.7046 0.5250 19 1.0571 1.2249 1.0347 0.9127 3.0799 0.2630 19.5 1.0650 1.2392 1.0451 0.9225 3.5074 0.5250 20 1.0782 1.2592 1.0529 0.9323 3.9494 0.5250 20.5 1.0868 1.2690 1.0618 0.9446 4.3171 0.5250 21 1.1014 1.2850 1.0740 0.9513 4.7269 0.5250 21.5 1.1096 1.3050 1.0873 0.9667 5.1928 0.2630 22 1.1178 1.3189 1.1107 0.9834 5.6719 0.5250 22.5 1.1372 1.3399 1.1355 0.9918 6.1392 0.5250 23 1.1495 1.3522 1.1501 0.9992 6.5881 0.5250 23.5 1.1637 1.3856 1.1660 1.0103 7.0119 0.5250 24 1.1821 1.3989 1.1711 1 .0194 7.4296 0.2630 24.5 1.1972 1.4156 1.1878 1.0347 7.8385 0.5250 25 1.2089 1.4325 1.2036 1.0456 8.2358 0.5250 25.5 1.2284 1.4579 1.2231 1.0660 8.6466 0.5250 26 1.2368 1.4752 1.2225 1.0740 9.0135 0.5250 26.5 1.2440 1.4921 1.2452 1.0820 9.3320 0.5250 27 1.2604 1.5176 1.2543 1.0895 9.6578 0.5250 27.5 1.2801 1.5413 1.2678 1.0992 9.9603 0.2630 28 1.2950 1.5559 1.2739 1.1090 10.3625 0.5250 28.5 1.3201 1.5809 1.2925 1.1222 10.8390 0.5250 29 1.3316 1.6062 1.3081 1.1316 0.7146 0.5250 29.5 1.3496 1.6311 1.3278 1.1400 0.8479 0.5250 30 1.3633 1.6433 1.3342 1.1512 1.0927 0.2630 30.5 1.3737 1.6540 1.3412 1.1752 1.3896 0.5250

PAGE 174

174 Table C 17. Continued 31 1.3856 1.6795 1.3483 1.1826 1.7196 0.5250 31.5 1.4062 1.6998 1.3652 1.1919 2.0398 0.5250 32 1.4257 1.7204 1.3777 1.2065 2.4122 0.5250 32.5 1.4332 1.7331 1.3882 1.2231 2.7841 0.5250 33 1.4503 1.7581 1.4029 1.2266 3.1892 0.5250 33.5 1.4683 1.7727 1.4210 1.2356 3.6624 0.2630 34 1.4907 1.7915 1.4319 1.2507 4.0314 0.5250 34.5 1.5190 1.8030 1.4448 1.2690 4.428 8 0.5250 35 1.5284 1.8221 1.4641 1.2770 4.8540 0.5250 35.5 1.5442 1.8397 1.4780 1.2887 5.3885 0.5250 36 1.5625 1.8599 1.4886 1.2968 5.8809 0.2630 36.5 1.5831 1.8701 1.4956 1.3208 6.3384 0.5250 37 1.6039 1.8889 1.5091 1.3374 6.7741 0.5250 37.5 1.6265 1.9062 1.5240 1.3483 7.2309 0.5250 38 1.6410 1.9244 1.5428 1.3574 7.6578 0.5250 38.5 1.6440 1.9411 1.5537 1.3685 8.0487 0.5250 39 1.6679 1.9543 1.5654 1.3770 8.4532 0.2630 39.5 1.6826 1.9676 1.5779 1.3922 8.8712 0.5250 40 1.6983 1.9827 1.5912 1.4129 9 .2154 0.5250 40.5 1.7188 1.9935 1.6032 1.4285 9.5088 0.5250 41 1.7283 2.0106 1.6159 1.4407 0.6943 0.5250 41.5 1.7532 2.0279 1.6280 1.4510 0.8422 0.5250 42 1.7678 2.0425 1.6463 1.4634 1.1057 0.5250 42.5 1.7890 2.0591 1.6555 1.4746 1.3711 0.2630 43 1.8 047 2.0804 1.6694 1.4857 1.7403 0.5250 43.5 1.8113 2.0972 1.6881 1.5005 2.0591 0.5250 44 1.8439 2.1141 1.7006 1.5133 2.4059 0.5250 44.5 1.8659 2.1283 1.7148 1.5298 2.8126 0.5250 45 1.8795 2.1502 1.7299 1.5413 3.2330 0.5250 45.5 1.8872 2.1617 1.7363 1. 5749 3.6565 0.2630 46 1.9053 2.1820 1.7484 1.5890 4.0633 0.5250 46.5 1.9236 2.1936 1.7589 1.5979 4.4631 0.5250 47 1.9323 2.2083 1.7710 1.6099 4.8908 0.5250 47.5 1.9587 2.2279 1.7816 1.6152 5.3490 0.5250 48 1.9720 2.2517 1.8005 1.6288 5.8387 0.5250 48 .5 1.9917 2.2686 1.8154 1.6387 6.2937 0.5250 49 2.0106 2.2947 1.8288 1.6486 6.7272 0.2630 49.5 2.0279 2.3150 1.8422 1.6563 7.1818 0.5250 50 2.0416 2.3252 1.8565 1.6710 7.6322 0.5250 50.5 2.0600 2.3406 1.8616 1.6920 8.0487 0.5250 51 2.0850 2.3632 1.876 9 1.7006 8.4532 0.5250 51.5 2.1010 2.3829 1.8881 1.7077 8.8712 0.5250

PAGE 175

175 Table C 17. Continued 52 2.1047 2.4017 1.9062 1.7220 9.2154 0.5250 52.5 2.1264 2.4175 1.9183 1.7379 6.6806 0.2630 53 2.1445 2.4429 1.9323 1.7662 0.6929 0.5250 53.5 2.1521 2.4578 1. 9516 1.7776 0.8894 0.5250 54 2.1685 2.4836 1.9640 1.7857 1.1239 0.5250 54.5 2.1956 2.5096 1.9827 1.7931 1.4489 0.5250 55 2.1966 2.5281 1.9935 1.8063 1.7452 0.5250 55.5 2.2210 2.5445 1.9998 1.8246 2.1226 0.5250 56 2.2279 2.5533 2.0115 1.8263 2.4610 0.2 630 56.5 2.2417 2.5888 2.0261 1.8338 2.8691 0.5250 57 2.2576 2.6168 2.0398 1.8464 3.2491 0.5250 57.5 2.2837 2.6371 2.0554 1.8548 3.7158 0.5250 58 2.2998 2.6564 2.0692 1.8633 4.1163 0.5250 58.5 2.3059 2.6793 2.0878 1.8761 4.5149 0.5250 59 2.3303 2.704 6 2.1104 1.8864 4.9837 0.2630 59.5 2.3519 2.7312 2.1207 1.9001 5.4483 0.5250 60 2.3663 2.7499 2.1369 1.9097 5.9021 0.5250 60.5 2.3892 2.7687 2.1388 1.9253 6.3384 0.5250 61 2.4091 2.7912 2.1502 1.9358 6.7976 0.5250 61.5 2.4249 2.8114 2.1665 1.9499 7.23 09 0.5250 62 2.4440 2.8305 2.1868 1.9587 7.6322 0.5250 62.5 2.4750 2.8618 2.2053 1.9756 8.0753 0.2630 63 2.4933 2.8824 2.2181 1.9890 8.4806 0.5250 63.5 2.5128 2.9056 2.2427 2.0016 8.8995 0.5250 64 2.5183 2.9253 2.2566 2.0197 9.2445 0.5250 64.5 2.5434 2.9450 2.2726 2.0306 6.8212 0.5250 65 2.5710 2.9711 2.2907 2.0471 0.6976 0.5250 65.5 2.5877 2.9899 2.3049 2.0683 0.8505 0.2630 66 2.6033 3.0024 2.3150 2.0720 1.1178 0.5250 66.5 2.6258 3.0213 2.3272 2.0785 1.4298 0.5250 67 2.6575 3.0467 2.3416 2.0888 1.7379 0.5250 67.5 2.6827 3.0645 2.3601 2.1047 2.0591 0.5250 68 2.7023 3.0863 2.3829 2.1236 2.3705 0.2630 68.5 2.7301 3.1069 2.4049 2.1340 2.7912 0.5250 69 2.7687 3.1329 2.4175 2.1521 3.1774 0.5250 69.5 2.7935 3.1577 2.4344 2.1665 3.6257 0.5250 70 2. 8138 3.1760 2.4493 2.1781 4.0665 0.5250 70.5 2.8317 3.1879 2.4643 2.2083 4.3862 0.5250 71 2.8521 3.2051 2.4782 2.2220 4.8723 0.2630 71.5 2.8812 3.2330 2.4965 2.2299 5.3292 0.5250 72 2.8885 3.2585 2.5106 2.2388 5.7966 0.5250 72.5 2.9191 3.2746 2.5237 2 .2487 6.2051 0.5250

PAGE 176

176 Table C 17. Continued 73 2.9562 3.3003 2.5390 2.2626 6.6806 0.5250 73.5 2.9611 3.3248 2.5644 2.2766 7.1086 0.5250 74 2.9873 3.3412 2.5877 2.2968 7.5304 0.5250 74.5 3.0264 3.3728 2.6000 2.3120 7.9431 0.5250 75 3.0390 3.3880 2.6123 2.3283 8.3712 0.2630 75.5 3.0594 3.4061 2.6269 2.3539 8.7865 0.5250 76 3.0825 3.4270 2.6416 2.3715 9.1574 0.5250 76.5 3.0953 3.4494 2.6587 2.3819 9.4497 0.5250 77 3.1095 3.4734 2.6919 2.4112 0.6756 0.5250 77.5 3.1459 3.4918 2.7115 2.4112 0.8388 0.5250 78 3.1734 3.5103 2.7278 2.4238 1.0660 0.5250 78.5 3.1853 3.5288 2.7441 2.4365 1.3535 0.2630 79 3.1972 3.5561 2.7640 2.4589 1.6679 0.5250 79.5 3.2330 3.5806 2.7805 2.4814 1.9667 0.5250 80 3.2491 3.5908 2.7900 2.4998 2.3529 0.5250 80.5 3.2531 3.6068 2 .8078 2.5074 2.6942 0.0000 81 3.2679 3.6301 2.8281 2.5215 2.7841 0.0000 81.5 3.2908 3.6492 2.8437 2.5303 2.8161 0.0000 82 3.3030 3.6698 2.8558 2.5412 2.8197 0.0000 82.5 3.3084 3.6787 2.8630 2.5555 2.8185 0.2630 Table C 18 Kaolinite run #6 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6436 0.6130 0.6045 0.6199 0.5700 0.0000 9.5 0.6470 0.6133 0.6055 0.6205 0.5697 0.2630 9 0.6491 0.6153 0.6068 0.6215 0.5921 0.5250 8.5 0.6519 0.6176 0.6071 0.6222 0.7 075 0.5250 8 0.6546 0.6195 0.6078 0.6208 0.9215 0.5250 7.5 0.6546 0.6215 0.6087 0.6205 1.2136 0.5250 7 0.6543 0.6218 0.6087 0.6199 1.5312 0.5250 6.5 0.6567 0.6242 0.6110 0.6199 1.8633 0.2630 6 0.6609 0.6265 0.6133 0.6199 2.2063 0.5250 5.5 0.662 6 0.6301 0.6133 0.6199 2.6101 0.5250 5 0.6651 0.6318 0.6149 0.6199 3.0112 0.5250 4.5 0.6693 0.6332 0.6176 0.6199 3.4677 0.5250 4 0.6696 0.6332 0.6179 0.6199 3.8950 0.5250 3.5 0.6739 0.6352 0.6238 0.6208 4.3288 0.5250 3 0.6785 0.6315 0.6301 0.6218 4.7810 0.5250 2.5 0.6828 0.6278 0.6358 0.6218 5.2509 0.2630 2 0.6882 0.6308 0.6464 0.6242 5.7548 0.5250 1.5 0.6947 0.6315 0.6525 0.6242 6.2051 0.5250

PAGE 177

177 Table C 18. Continued 1 0.7027 0.6335 0.6553 0.6261 6.6574 0.5250 0.5 0.7090 0.6365 0.6647 0.6 268 7.1330 0.5250 0 0.7109 0.6369 0.6724 0.6288 7.5812 0.5250 0.5 0.7183 0.6409 0.6796 0.6325 8.0222 0.5250 1 0.7270 0.6426 0.6817 0.6335 8.4532 0.5250 1.5 0.7392 0.6474 0.6893 0.6402 8.8995 0.2630 2 0.7438 0.6522 0.6947 0.6413 9.3028 0.5250 2.5 0.74 77 0.6556 0.7027 0.6447 9.6279 0.5250 3 0.7563 0.6574 0.7090 0.6484 1.9446 0.5250 3.5 0.7670 0.6602 0.7187 0.6553 0.7579 0.5250 4 0.7689 0.6616 0.7210 0.6577 0.9839 0.5250 4.5 0.7725 0.6633 0.7213 0.6595 1.2764 0.5250 5 0.7713 0.6658 0.7221 0.6623 1.6 174 0.5250 5.5 0.7826 0.6707 0.7244 0.6724 1.9490 0.5250 6 0.7891 0.6771 0.7408 0.6721 2.3354 0.2630 6.5 0.7940 0.6774 0.7327 0.6785 2.7441 0.5250 7 0.8038 0.6817 0.7454 0.6838 3.1537 0.5250 7.5 0.8121 0.6871 0.7462 0.6849 3.5879 0.5250 8 0.8180 0.69 29 0.7547 0.6911 3.9934 0.5250 8.5 0.8239 0.6940 0.7587 0.6951 4.3930 0.5250 9 0.8345 0.6958 0.7666 0.6991 4.8357 0.5250 9.5 0.8431 0.7005 0.7753 0.7024 5.3292 0.5250 10 0.8479 0.7031 0.7810 0.7094 5.8387 0.5250 10.5 0.8561 0.7075 0.7927 0.7146 6.2715 0.5250 11 0.8675 0.7083 0.7960 0.7172 6.7506 0.2630 11.5 0.8778 0.7127 0.8059 0.7244 7.2063 0.5250 12 0.8876 0.7142 0.8155 0.7308 7.6578 0.5250 12.5 0.9003 0.7191 0.8197 0.7300 8.0753 0.5250 13 0.9095 0.7225 0.8379 0.7377 8.5081 0.5250 13.5 0.9141 0 .7293 0.8505 0.7469 8.9280 0.5250 14 0.9206 0.7327 0.8548 0.7532 9.3028 0.5250 14.5 0.9290 0.7381 0.8684 0.7602 1.9640 0.5250 15 0.9427 0.7450 0.8684 0.7670 0.7587 0.5250 15.5 0.9456 0.7485 0.8764 0.7737 0.9883 0.2630 16 0.9537 0.7536 0.8804 0.7781 1. 2906 0.5250 16.5 0.9765 0.7540 0.8885 0.7854 1.6410 0.5250 17 0.9997 0.7622 0.8981 0.7935 1.9499 0.5250 17.5 0.9997 0.7670 0.9090 0.7985 2.3221 0.5250 18 1.0078 0.7713 0.9118 0.8038 2.7324 0.5250 18.5 1.0083 0.7761 0.9215 0.8101 3.1655 0.5250 19 1.02 91 0.7826 0.9290 0.8167 3.6053 0.2630 19.5 1.0358 0.7858 0.9456 0.8273 4.0203 0.5250

PAGE 178

178 Table C 18. Continued 20 1.0566 0.7919 0.9475 0.8315 4.4288 0.5250 20.5 1.0618 0.7972 0.9494 0.8358 4.8908 0.5250 21 1.0676 0.8055 0.9503 0.8410 5.4084 0.5250 21.5 1 .0814 0.8071 0.9633 0.8470 5.8809 0.5250 22 1.0798 0.8117 0.9662 0.8557 6.3384 0.5250 22.5 1.0890 0.8235 0.9789 0.8627 6.8212 0.5250 23 1.1150 0.8315 0.9799 0.8671 7.2802 0.5250 23.5 1.1172 0.8324 0.9848 0.8729 7.7349 0.2630 24 1.1261 0.8345 0.9918 0. 8746 8.1820 0.5250 24.5 1.1339 0.8422 1.0123 0.8840 8.6188 0.5250 25 1.1450 0.8453 1.0189 0.8903 9.0135 0.5250 25.5 1.1575 0.8531 1.0123 0.8990 9.3614 0.5250 26 1.1569 0.8548 1.0291 0.9035 2.0061 0.5250 26.5 1.1700 0.8596 1.0472 0.9109 0.7846 0.5250 27 1.1855 0.8645 1.0650 0.9215 1.0317 0.5250 27.5 1.2042 0.8684 1.0655 0.9253 1.3367 0.2630 28 1.2272 0.8733 1.0772 0.9304 1.6686 0.5250 28.5 1.2237 0.8827 1.0847 0.9403 1.9872 0.5250 29 1.2641 0.8836 1.0933 0.9422 2.3767 0.5250 29.5 1.2647 0.8903 1.1 047 0.9503 2.7464 0.5250 30 1.2727 0.8935 1.1063 0.9532 3.1813 0.5250 30.5 1.2931 0.8944 1.1123 0.9575 3.6053 0.2630 31 1.3031 0.9026 1.1206 0.9619 4.0314 0.5250 31.5 1.3201 0.9058 1.1361 0.9687 4.4459 0.5250 32 1.3252 0.9114 1.1428 0.9740 4.8908 0.52 50 32.5 1.3399 0.9183 1.1546 0.9789 5.3885 0.5250 33 1.3425 0.9188 1.1580 0.9853 5.8809 0.5250 33.5 1.3731 0.9253 1.1723 0.9878 6.3608 0.5250 34 1.3698 0.9300 1.1844 0.9992 6.7976 0.5250 34.5 1.3909 0.9337 1.1902 1.0078 7.2555 0.2630 35 1.4149 0.9361 1.1977 1.0128 7.6834 0.5250 35.5 1.4237 0.9456 1.2089 1.0235 8.1285 0.5250 36 1.4116 0.9542 1.2148 1.0240 8.5633 0.5250 36.5 1.4149 0.9551 1.2207 1.0394 9.0135 0.5250 37 1.4448 0.9571 1.2392 1.0456 4.5847 0.5250 37.5 1.4278 0.9648 1.2471 1.0487 0.708 3 0.2630 38 1.4558 0.9677 1.2568 1.0597 0.9045 0.5250 38.5 1.4773 0.9750 1.2629 1.0660 1.1746 0.5250 39 1.4746 0.9740 1.2819 1.0681 1.4970 0.5250 39.5 1.4711 0.9794 1.2968 1.0836 1.8304 0.5250 40 1.5048 0.9878 1.2968 1.0857 2.1917 0.5250 40.5 1.5048 0.9928 1.3025 1.0949 2.5799 0.5250

PAGE 179

179 Table C 18. Continued 41 1.5248 0.9987 1.3094 1.0960 2.9886 0.2630 41.5 1.5757 1.0027 1.3227 1.1014 3.4242 0.5250 42 1.5551 1.0083 1.3316 1.1107 3.8749 0.5250 42.5 1.5786 1.0118 1.3509 1.1167 4.2886 0.5250 43 1.5823 1.0128 1.3620 1.1316 4.9463 0.5250 43.5 1.6205 1.0133 1.3587 1.1378 5.5086 0.5250 44 1.6295 1.0179 1.3672 1.1462 5.9876 0.2630 44.5 1.6440 1.0224 1.3982 1.1535 6.4510 0.5250 45 1.6609 1.0230 1.3935 1.1631 6.8922 0.5250 45.5 1.6686 1.0281 1.3909 1.172 3 7.3547 0.5250 46 1.6904 1.0291 1.4096 1.1803 7.7866 0.5250 46.5 1.6998 1.0373 1.4237 1.1902 8.2358 0.5250 47 1.7196 1.0487 1.4298 1.1925 8.6744 0.5250 47.5 1.7315 1.0513 1.4496 1.2059 9.0709 0.5250 48 1.7395 1.0571 1.4641 1.2183 9.4497 0.2630 48.5 1.7476 1.0650 1.4829 1.2266 0.6965 0.5250 49 1.7597 1.0687 1.4907 1.2296 0.8315 0.5250 49.5 1.7662 1.0761 1.4907 1.2428 1.0761 0.5250 50 1.7964 1.0798 1.5012 1.2543 1.4049 0.5250 50.5 1.7931 1.0814 1.5048 1.2574 1.7283 0.5250 51 1.8105 1.0831 1.5219 1 .2665 2.0683 0.2630 51.5 1.8271 1.0992 1.5262 1.2739 2.4419 0.5250 52 1.8288 1.1008 1.5464 1.2844 2.8257 0.5250 52.5 1.8599 1.1041 1.5551 1.2881 3.2949 0.5250 53 1.8684 1.1096 1.5537 1.3012 3.7188 0.5250 53.5 1.8710 1.1172 1.5713 1.3119 4.1195 0.5250 54 1.8975 1.1222 1.6009 1.3259 4.5497 0.5250 54.5 1.9027 1.1288 1.5987 1.3316 5.0212 0.2630 55 1.9131 1.1339 1.6084 1.3374 5.5086 0.5250 55.5 1.9297 1.1372 1.6190 1.3470 6.0091 0.5250 56 1.9464 1.1428 1.6235 1.3580 6.4510 0.5250 56.5 1.9490 1.1512 1. 6280 1.3672 6.9161 0.5250 57 1.9676 1.1552 1.6425 1.3829 7.3547 0.5250 57.5 1.9810 1.1603 1.6609 1.3856 7.8125 0.5250 58 1.9998 1.1631 1.6686 1.3982 8.2627 0.5250 58.5 2.0016 1.1734 1.6803 1.4143 8.6744 0.2630 59 2.0179 1.1803 1.7006 1.4251 9.0997 0.5 250 59.5 2.0306 1.1861 1.6990 1.4305 9.4497 0.5250 60 2.0379 1.1878 1.7164 1.4441 1.9114 0.5250 60.5 2.0535 1.1925 1.7196 1.4510 0.7543 0.5250 61 2.0591 1.1948 1.7267 1.4620 0.9947 0.5250 61.5 2.0757 1.2007 1.7411 1.4655 1.3025 0.5250

PAGE 180

180 Table C 18. Co ntinued 62 2.0963 1.2089 1.7468 1.4739 1.6517 0.5250 62.5 2.1010 1.2095 1.7653 1.4864 1.9703 0.2630 63 2.1141 1.2177 1.7694 1.4998 2.3416 0.5250 63.5 2.1302 1.2237 1.7710 1.5041 2.7231 0.5250 64 2.1455 1.2332 1.7964 1.5162 3.1511 0.5250 64.5 2.1521 1. 2392 1.8096 1.5226 3.5908 0.5250 65 2.1656 1.2495 1.8071 1.5363 4.0092 0.5250 65.5 2.1830 1.2525 1.8154 1.5457 4.3845 0.5250 66 2.1888 1.2555 1.8321 1.5566 4.7992 0.2630 66.5 2.2044 1.2635 1.8372 1.5581 5.3292 0.5250 67 2.2132 1.2708 1.8498 1.5742 5.7 966 0.5250 67.5 2.2259 1.2739 1.8489 1.5823 6.2493 0.5250 68 2.2427 1.2863 1.8591 1.5868 6.7272 0.5250 68.5 2.2546 1.2925 1.8778 1.6047 7.1818 0.2630 69 2.2726 1.2950 1.8744 1.6122 7.6322 0.5250 69.5 2.2897 1.3056 1.8915 1.6152 8.0753 0.5250 70 2.295 8 1.3163 1.9036 1.6364 8.5081 0.5250 70.5 2.3079 1.3182 1.9088 1.6448 8.8995 0.5250 71 2.3242 1.3221 1.9157 1.6471 9.2736 0.5250 71.5 2.3426 1.3303 1.9314 1.6532 1.1786 0.5250 72 2.3601 1.3361 1.9341 1.6578 0.8354 0.2630 72.5 2.3715 1.3432 1.9428 1.66 63 1.0895 0.5250 73 2.3850 1.3503 1.9561 1.6873 1.4170 0.5250 73.5 2.3850 1.3626 1.9720 1.6936 1.7468 0.5250 74 2.4007 1.3704 1.9685 1.7030 2.0767 0.5250 74.5 2.4165 1.3770 1.9890 1.7053 2.4750 0.5250 75 2.4344 1.3882 2.0025 1.7228 2.8800 0.5250 75.5 2.4440 1.3922 2.0034 1.7259 3.2949 0.2630 76 2.4568 1.4002 2.0133 1.7662 3.7262 0.5250 76.5 2.4707 1.4022 2.0306 1.7629 4.1244 0.5250 77 2.4890 1.4123 2.0306 1.7678 4.5323 0.5250 77.5 2.5204 1.4237 2.0416 1.7751 5.0212 0.5250 78 2.5303 1.4305 2.0581 1.7808 5.4885 0.5250 78.5 2.5544 1.4353 2.0748 1.7907 5.9661 0.5250 79 2.5644 1.4448 2.0897 1.7972 6.4510 0.5250 79.5 2.5777 1.4538 2.0944 1.8030 6.8922 0.2630 80 2.5899 1.4579 2.1019 1.8146 7.3298 0.5250 80.5 2.6089 1.4634 2.1075 1.8171 7.7607 0.2630 81 2.6281 1.4746 2.1226 1.8254 8.0487 0.2630 81.5 2.6360 1.4808 2.1293 1.8346 8.1285 0.0000 82 2.6507 1.4886 2.1464 1.8456 8.1552 0.0000 82.5 2.6655 1.5005 2.1455 1.8532 8.1552 0.0000

PAGE 181

181 Table C 18. Continued 83 2.6712 1.5112 2.1675 1.8565 8.1552 0.000 0 83.5 2.6735 1.5119 2.1694 1.8667 8.1552 0.0000 84 2.6735 1.5155 2.1685 1.8650 8.1552 0.0000 84.5 2.6724 1.5162 2.1733 1.8667 8.1552 0.0000 85 2.6735 1.5183 2.1743 1.8735 8.1552 0.0000 85.5 2.6724 1.5190 2.1762 1.8710 8.1552 0.0000 86 2.6712 1.5226 2.1772 1.8718 8.1552 0.0000 86.5 2.6724 1.5233 2.1772 1.8718 8.1552 0.0000 Table C 19 Kaolinite run #7 water flow and rainfall data Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 10 0.6205 0.6087 0.6026 0.5981 0.5591 0.2630 0.5 0.6232 0 .6087 0.6026 0.5981 0.6372 0.7880 1 0.6251 0.6087 0.6026 0.5981 0.8500 1.3130 1.5 0.6278 0.6100 0.6062 0.5981 1.1063 1.8380 2 0.6311 0.6127 0.6081 0.5981 1.3770 2.3630 2.5 0.6358 0.6146 0.6146 0.5988 1.6517 2.8880 3 0.6477 0.6159 0.6179 0.5981 1.9314 3.1510 3.5 0.6640 0.6176 0.6255 0.5981 2.2388 3.6760 4 0.6842 0.6185 0.6436 0.5994 2.5445 4.2010 4.5 0.7042 0.6232 0.6553 0.6004 2.8885 4.7260 5 0.7244 0.6318 0.6735 0.6004 3.2665 5.2510 5.5 0.7388 0.6426 0.6856 0.6004 3.6316 5.7760 6 0.7630 0.6550 0 .6998 0.6010 3.9666 6.0390 6.5 0.7781 0.6665 0.7195 0.6026 4.2886 6.5640 7 0.7993 0.6781 0.7458 0.6026 4.6554 7.0890 7.5 0.8239 0.6922 0.7598 0.6033 5.0589 7.6140 8 0.8474 0.7083 0.7903 0.6045 5.4684 8.1390 8.5 0.8592 0.7247 0.8071 0.6062 5.8598 8.664 0 9 0.8760 0.7404 0.8294 0.6078 6.2493 8.9270 9.5 0.9008 0.7516 0.8513 0.6117 6.6111 9.4520 10 0.9234 0.7681 0.8711 0.6172 6.9878 9.9770 10.5 0.9441 0.7826 0.8944 0.6285 7.3547 10.5020 11 0.9711 0.8030 0.9146 0.6385 7.6834 11.0270 11.5 0.9918 0.8218 0.9356 0.6453 8.0487 11.5520 12 1.0098 0.8354 0.9484 0.6491 8.3712 12.0770 12.5 1.0286 0.8500 0.9784 0.6577 8.7024 12.6020 13 1.0576 0.8636 0.9873 0.6682 9.0135 13.1270 13.5 1.0820 0.8831 1.0209 0.6760 3.0696 13.6520

PAGE 182

182 Table C 19. Continued 14 1.1074 0 .9045 1.0368 0.6838 0.7450 13.9150 14.5 1.1333 0.9169 1.0581 0.6922 0.9067 14.4400 15 1.1649 0.9337 1.0814 0.7057 1.1074 14.9650 15.5 1.1884 0.9480 1.0933 0.7105 1.3503 15.4900 16 1.2106 0.9677 1.1222 0.7165 1.6326 16.0150 16.5 1.2368 0.9789 1.1339 0. 7202 1.8984 16.5400 17 1.2708 0.9982 1.1626 0.7342 2.1917 16.8030 17.5 1.2900 1.0184 1.1937 0.7489 2.5106 17.3280 18 1.3144 1.0347 1.2007 0.7567 2.8305 17.8530 18.5 1.3432 1.0456 1.2344 0.7666 3.1905 18.3780 19 1.3639 1.0597 1.2635 0.7793 3.5749 18.90 30 19.5 1.4217 1.0756 1.2912 0.7887 3.9074 19.4280 20 1.4407 1.0911 1.3201 0.7927 4.2488 19.6910 20.5 1.4739 1.1068 1.3516 0.8047 4.6023 20.2160 21 1.5062 1.1222 1.3764 0.8105 4.9837 20.7410 21.5 1.5442 1.1445 1.4062 0.8201 5.4284 21.2660 22 1.5749 1 .1649 1.4332 0.8281 5.8387 21.7910 22.5 1.6227 1.1826 1.4928 0.8332 6.2272 22.3160 23 1.6517 1.2036 1.5133 0.8418 6.6342 22.5790 23.5 1.6943 1.2278 1.5399 0.8535 6.9878 23.1040 24 1.7315 1.2464 1.5639 0.8579 7.3547 23.6290 24.5 1.7492 1.2665 1.5942 0. 8658 7.7349 24.1540 25 1.7825 1.2850 1.6295 0.8729 8.1019 24.6790 25.5 1.8113 1.3037 1.6524 0.8827 8.4806 25.2040 26 1.8397 1.3214 1.6881 0.8926 8.8147 25.7290 26.5 1.8710 1.3477 1.7101 0.8999 9.1285 26.2540 27 1.8950 1.3691 1.7387 0.9086 9.3907 26.77 90 27.5 1.9455 1.3949 1.7629 0.9178 9.6878 27.3040 28 1.9765 1.4237 1.7989 0.9272 1.1942 27.5670 28.5 2.0097 1.4489 1.8254 0.9385 0.8231 28.0920 29 2.0398 1.4704 1.8540 0.9489 1.0098 28.6170 29.5 2.0554 1.4977 1.8744 0.9556 1.2483 29.1420 30 2.0823 1 .5262 1.9071 0.9629 1.5370 29.6670 30.5 2.1019 1.5479 1.9253 0.9696 1.7890 30.1920 31 2.1455 1.5698 1.9516 0.9770 2.0748 30.7170 31.5 2.1617 1.6017 1.9774 0.9868 2.3902 30.9800 32 2.2053 1.6280 2.0161 0.9967 2.7301 31.5050 32.5 2.2398 1.6578 2.0334 1. 0128 3.0684 32.0300 33 2.2746 1.6842 2.0637 1.0255 3.4438 32.5550 33.5 2.2988 1.7093 2.0916 1.0363 3.8182 33.0800 34 2.3447 1.7395 2.1255 1.0477 4.1503 33.6050 34.5 2.3725 1.7589 2.1521 1.0708 4.5149 34.1300

PAGE 183

183 Table C 19. Continued 35 2.4059 1.7816 2.1 694 1.0852 4.8723 34.6550 35.5 2.4419 1.8080 2.2093 1.0943 5.3096 35.1800 36 2.4750 1.8279 2.2269 1.1129 5.7340 35.7050 36.5 2.5030 1.8489 2.2676 1.1228 6.1174 36.2300 37 2.5500 1.8701 2.2887 1.1383 6.5193 36.4930 37.5 2.5666 1.8889 2.3221 1.1490 6.91 61 37.0180 38 2.6224 1.9071 2.3591 1.1643 7.2802 37.5430 38.5 2.6496 1.9244 2.4028 1.1815 7.6578 38.0680 39 2.7023 1.9499 2.4440 1.2024 8.0222 38.5930 39.5 2.7558 1.9685 2.4632 1.2166 8.3712 39.1180 40 2.7995 1.9962 2.4911 1.2338 8.7303 39.6430 40.5 2.8497 2.0124 2.5456 1.2458 9.0709 39.9060 41 2.8849 2.0315 2.5777 1.2574 9.3614 40.4310 41.5 2.9351 2.0572 2.6011 1.2708 9.6279 40.9560 42 2.9748 2.0748 2.6281 1.2807 9.9298 41.4810 42.5 3.0074 2.0897 2.6758 1.2925 10.2688 42.0060 43 3.0454 2.1094 2. 7115 1.3075 10.7106 42.5310 43.5 3.0876 2.1359 2.7476 1.3335 0.8971 43.0560 44 3.1134 2.1531 2.7628 1.3419 0.7972 43.3190 44.5 3.1433 2.1752 2.8042 1.3509 1.0027 43.8440 45 3.1813 2.1946 2.8413 1.3606 1.2574 44.3690 45.5 3.2104 2.2142 2.8776 1.3816 1. 5450 44.8940 46 3.2517 2.2319 2.8971 1.4042 1.8304 45.4190 46.5 3.2786 2.2487 2.9376 1.4035 2.1047 45.9440 47 3.3207 2.2776 2.9686 1.4244 2.4270 46.2070 47.5 3.3385 2.2998 3.0037 1.4421 2.7452 46.7320 48 3.3742 2.3252 3.0289 1.4586 3.0966 47.2570 48. 5 3.4103 2.3426 3.0505 1.4614 3.4833 47.7820 49 3.4242 2.3684 3.0773 1.5027 3.8473 48.3070 49.5 3.4663 2.3997 3.0992 1.5020 4.1699 48.8320 50 3.4861 2.4249 3.1316 1.5198 4.5323 49.3570 50.5 3.5217 2.4429 3.1511 1.5226 4.9278 49.6200 51 3.5662 2.4664 3 .1919 1.5392 5.3687 50.1450 51.5 3.6024 2.4911 3.2197 1.5727 5.7757 50.6700 52 3.6316 2.5226 3.2517 1.5786 6.1611 51.1950 52.5 3.6639 2.5467 3.2881 1.5927 6.5421 51.7200 53 3.6816 2.5799 3.3152 1.6114 6.9161 52.2450 53.5 3.7188 2.6123 3.3453 1.6318 7. 3050 52.7700 54 3.7562 2.6439 3.3853 1.6349 7.6578 53.2950 54.5 3.7879 2.6724 3.4200 1.6563 8.0753 53.5580 55 3.8137 2.6953 3.4452 1.6686 8.4258 54.0830 55.5 3.8442 2.7150 3.4875 1.6842 8.7584 54.6080

PAGE 184

184 Table C 19. Continued 56 3.9151 2.7429 3.5117 1.6 951 9.0709 55.1330 56.5 3.9338 2.7664 3.5417 1.7085 9.3614 55.6580 57 3.9776 2.7900 3.5705 1.7252 1.1966 56.1830 57.5 4.0235 2.8161 3.6068 1.7492 0.7818 56.7080 58 4.0681 2.8449 3.6507 1.7645 0.9653 57.2330 58.5 4.0937 2.8727 3.6713 1.7767 1.2201 57.4 960 59 4.1357 2.9007 3.6964 1.7931 1.4949 58.0210 59.5 4.1585 2.9240 3.7277 1.7981 1.7678 58.5460 60 4.1977 2.9438 3.7577 1.8179 2.0554 59.0710 60.5 4.2240 2.9624 3.7864 1.8414 2.3850 59.5960 61 4.2670 2.9936 3.8243 1.8355 2.7185 59.8590 61.5 4.3070 3.0074 3.8519 1.8540 3.0799 60.3840 62 4.3372 3.0302 3.8919 1.8625 3.4396 60.9090 62.5 4.3947 3.0632 3.9229 1.8778 3.8304 61.4340 63 4.4459 3.0876 3.9619 1.8889 4.1879 61.9590 63.5 4.4803 3.1108 4.0044 1.9131 4.5497 62.4840 64 4.5149 3.1433 4.0266 1.9 271 4.9278 63.0090 64.5 4.5497 3.1747 4.0553 1.9341 5.3490 63.2720 65 4.6023 3.1985 4.0937 1.9384 5.7340 63.7970 65.5 4.6200 3.2250 4.1131 1.9836 6.1174 64.3220 66 4.6732 3.2437 4.1552 2.0016 6.5193 64.8470 66.5 4.7089 3.2665 4.1977 2.0133 6.8685 65.3 720 67 4.7629 3.2989 4.2174 2.0206 7.2802 65.6350 67.5 4.7629 3.3180 4.2537 2.0334 7.6322 66.1600 68 4.8174 3.3439 4.2836 2.0480 8.0222 66.6850 68.5 4.8357 3.3701 4.3070 2.0665 8.3985 67.2100 69 4.8908 3.3977 4.3423 2.0850 8.7303 67.7350 69.5 4.9278 3.4200 4.3760 2.1057 9.0422 68.2600 70 4.9837 3.4480 4.4117 2.1094 9.3320 68.5230 70.5 5.0024 3.4691 4.4459 2.1207 9.5683 69.0480 71 5.0400 3.4975 4.4631 2.1283 1.9499 69.5730 71.5 5.0779 3.5217 4.4976 2.1560 0.7850 70.0980 72 5.1160 3.5460 4.5149 2.1 694 0.9667 70.6230 72.5 5.1351 3.5806 4.5672 2.1868 1.1931 71.1480 73 5.1928 3.6039 4.6023 2.1878 1.4893 71.4110 73.5 5.2315 3.6243 4.6376 2.2093 1.7751 71.9360 74 5.2509 3.6462 4.6554 2.2259 2.0730 72.4610 74.5 5.2900 3.6757 4.6910 2.2427 2.3923 72.9 860 75 5.3292 3.7113 4.7089 2.2636 2.6976 73.5110 75.5 5.3687 3.7322 4.7629 2.2706 3.0632 73.7740 76 5.4084 3.7562 4.7992 2.2837 3.4536 74.2990 76.5 5.4284 3.7849 4.8174 2.2988 3.8259 74.8240

PAGE 185

185 Table C 19. Continued 77 5.4684 3.8106 4.8723 2.3252 4.137 3 75.3490 77.5 5.5086 3.8396 4.9092 2.3344 4.4976 75.8740 78 5.5491 3.8672 4.9278 2.3488 4.8723 76.3990 78.5 5.5694 3.8965 4.9650 2.3560 5.3096 76.9240 79 5.6102 3.9276 5.0024 2.3767 5.7132 77.1870 79.5 5.6513 3.9494 5.0400 2.4017 6.1392 77.7120 80 5 .6719 3.9682 5.0779 2.4070 6.4965 78.2370 80.5 5.6925 3.9934 5.0969 2.4228 6.8922 78.7620 81 5.7340 4.0203 5.1351 2.4344 7.2802 79.2870 81.5 5.7757 4.0505 5.1928 2.4525 7.6578 79.8120 82 5.8176 4.0761 5.2121 2.4675 8.0222 80.3370 82.5 5.8598 4.1050 5. 2509 2.4804 8.3712 80.6000 83 5.9021 4.1292 5.2900 2.5041 8.7303 81.1250 83.5 5.9447 4.1536 5.3292 2.5237 9.0422 81.6500 84 5.9876 4.1780 5.3490 2.5336 9.3028 82.1750 84.5 6.0091 4.2010 5.3885 2.5347 9.5683 82.7000 85 6.0306 4.2207 5.4284 2.5577 9.868 9 83.2250 85.5 6.0956 4.2438 5.4684 2.5655 10.2688 83.4880 86 6.1174 4.2637 5.4885 2.5732 0.7339 84.0130 86.5 6.1611 4.2920 5.5289 2.6191 0.8522 84.5380 87 6.1831 4.3204 5.5491 2.6179 1.0399 85.0630 87.5 6.2051 4.3389 5.5898 2.6382 1.2925 85.5880 88 6.2493 4.3642 5.6307 2.6575 1.5779 85.8510 88.5 6.2937 4.3879 5.6513 2.6747 1.8523 86.3760 89 6.3384 4.4117 5.6925 2.6930 2.1369 86.9010 89.5 6.3832 4.4288 5.7132 2.7185 2.4589 87.4260 90 6.4058 4.4459 5.7548 2.7254 2.7935 87.9510 90.5 6.4510 4.4631 5 .7757 2.7476 3.1329 88.2140 91 6.4737 4.4803 5.8176 2.7640 3.5231 88.7390 91.5 6.4965 4.4976 5.8598 2.7876 3.8981 89.2640 92 6.5651 4.5323 5.8809 2.7959 4.2026 89.7890 92.5 6.5881 4.5497 5.9234 2.8173 4.5323 90.3140 93 6.6111 4.5847 5.9661 2.8293 4.90 92 90.8390 93.5 6.6574 4.6023 5.9876 2.8485 5.3292 91.1020 94 6.7039 4.6376 6.0306 2.8679 5.7548 91.6270 94.5 6.7272 4.6554 6.0522 2.8788 6.1611 92.1520 95 6.7506 4.6732 6.0956 2.8958 6.5421 92.6770 95.5 6.7741 4.6910 6.1174 2.9019 6.9161 93.2020 96 6.8212 4.7089 6.1392 2.9290 7.3298 93.4650 96.5 6.8685 4.7269 6.1831 2.9364 7.6834 93.9900 97 6.8922 4.7629 6.2051 2.9587 8.0753 94.5150 97.5 6.9399 4.7992 6.2493 2.9773 8.4258 95.0400

PAGE 186

186 Table C 19. Continued 98 6.9638 4.8357 6.2937 2.9786 8.7584 95.565 0 98.5 7.0119 4.8723 6.3160 2.9974 9.0422 96.0900 99 7.0360 4.9278 6.3608 3.0251 9.3028 96.6150 99.5 7.0844 4.9650 6.3832 3.0352 9.5683 96.8780 100 7.0844 5.0024 6.4058 3.0467 9.7781 97.4040 100.5 7.1086 5.0400 6.4284 3.0620 9.8689 97.4040 101 7.1330 5.0589 6.4510 3.0876 9.8993 97.4040 101.5 7.1330 5.0589 6.4737 3.0953 9.8993 97.4040 102 7.1330 5.0589 6.4737 3.1044 9.8993 97.4040 102.5 7.1330 5.0589 6.4737 3.1044 9.8993 97.4040 103 7.1330 5.0589 6.4737 3.1095 9.8993 97.4040 103.5 7.1330 5.0589 6. 4737 3.1199 9.8993 97.4040 104 7.1330 5.0589 6.4737 3.1199 9.8993 97.4040 104.5 7.1330 5.0589 6.4737 3.1225 9.8993 97.4040 105 7.1330 5.0589 6.4737 3.1251 9.8993 97.4040 105.5 7.1330 5.0589 6.4737 3.1303 9.8993 97.4040 106 7.1330 5.0589 6.4737 3.1316 9.8993 97.4040 106.5 7.1330 5.0589 6.4737 3.1316 9.8993 97.4040 107 7.1330 5.0589 6.4737 3.1342 9.8993 97.4040 107.5 7.1330 5.0589 6.4737 3.1355 9.8993 97.4040 108 7.1330 5.0589 6.4737 3.1355 9.8993 97.4040 108.5 7.1330 5.0589 6.4737 3.1407 9.8993 97. 4040 109 7.1330 5.0589 6.4737 3.1472 9.8993 97.4040 109.5 7.1330 5.0589 6.4737 3.1472 9.8993 97.4040 110 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 110.5 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 111 7.1330 5.0589 6.4737 3.1485 9.8993 97.4040 111.5 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 112 7.1330 5.0589 6.4737 3.1511 9.8993 97.4040 112.5 7.1574 5.0589 6.4737 3.1524 9.9298 97.4040 113 7.1330 5.0589 6.4737 3.1564 9.9298 97.4040 113.5 7.1330 5.0589 6.4737 3.1590 9.9298 97.4040 114 7.1330 5.058 9 6.4737 3.1564 9.9298 97.4040 114.5 7.1574 5.0589 6.4737 3.1564 9.9298 97.4040 115 7.1574 5.0589 6.4737 3.1603 9.9298 97.4040 115.5 7.1330 5.0589 6.4737 3.1603 9.9298 97.4040 116 7.1574 5.0779 6.4737 3.1603 9.9298 97.4040 116.5 7.1574 5.0779 6.4737 3 .1603 9.8993 97.4040 117 7.1574 5.0779 6.4737 3.1603 9.9298 97.4040 117.5 7.1574 5.0779 6.4737 3.1721 9.8993 97.4040 Note: The flow data was the same as bromide run #9

PAGE 187

187 Table C 20 Kaolinite normalized concentration in outflow for run #1 7 # 1 # 2 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.3017 0.2210 0.1072 0.0320 0.0840 2 0.0948 0.0759 0.0222 0.0356 0.1519 4 0.3260 0.2376 0.1138 0.05 08 4 0.2628 0.1310 0.1378 0.0907 0.1707 6 0.3602 0.2486 0.1348 0.0829 0.1127 6 0.3192 0.1458 0.1734 0.1082 0.1794 8 0.3691 0.2619 0.1370 0.0983 0.1204 8 0.3441 0.1599 0.1902 0.1230 0.1788 10 0.3768 0.2586 0.1425 0.0972 0.1260 10 0.3575 0.1720 0.154 6 0.1008 0.2056 15 0.3746 0.2287 0.1459 0.1160 0.1414 15 0.3777 0.1915 0.1465 0.0927 0.2352 20 0.3878 0.2066 0.1680 0.1348 0.1514 20 0.3864 0.1875 0.0081 0.1331 0.2641 25 0.4000 0.1691 0.1967 0.1204 0.1680 25 0.3925 0.1566 0.2534 0.1989 0.2581 30 0 .4088 0.2033 0.1845 0.1436 0.1691 30 0.4005 0.1546 0.2211 0.1653 0.3159 32 0.1691 0.1414 0.1127 0.1083 0.0873 32 0.3515 0.0874 0.2016 0.0934 0.1149 34 0.0851 0.0972 0.0807 0.0707 0.0442 34 0.1559 0.0349 0.1815 0.0786 0.0397 36 0.0840 0.0718 0.0519 0 .0243 36 0.0874 0.0188 0.1633 0.0692 0.0296 38 0.0586 0.0674 0.0674 0.0431 0.0177 38 0.0531 0.0101 0.1559 0.0679 0.0269 40 0.0586 0.0652 0.0685 0.0398 0.0155 40 0.0087 0.1559 0.0659 0.0255 45 0.0663 0.0575 0.0641 0.0276 0.0066 45 0.0228 0.0040 0.12 50 0.0612 0.0208 50 0.0740 0.0420 0.0552 0.0276 0.0022 50 0.0148 0.0013 0.0887 0.0390 0.0168 55 0.0751 0.0243 0.0254 0.0210 0.0011 55 0.0161 0.0020 0.0511 0.0242 0.0121 60 0.0773 0.0077 0.0055 0.0110 0.0000 60 0.0235 0.0054 0.0181 0.0134 0.0108 65 0.0674 0.0000 0.0000 0.0033 0.0000 65 0.0336 0.0114 0.0060 0.0081 0.0087 70 0.0486 0.0000 0.0000 0.0000 0.0000 70 0.0410 0.0161 0.0013 0.0000 0.0081

PAGE 188

188 Table C 20 Continued # 3 # 4 Time (min) DR#1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0995 0.1184 0.0027 0.0176 0.1001 2 0.0000 0.0000 0.0000 0.0000 0.1165 4 0.2842 0.2355 0.1035 0.0913 0.1252 4 0.0838 0.0341 0.0007 0.0000 0.1805 6 0.3221 0.284 8 0.1441 0.1089 0.1204 6 0.1226 0.0579 0.0061 0.0061 0.1894 8 0.3471 0.3133 0.1658 0.1184 0.1272 8 0.1438 0.0668 0.0102 0.0136 0.1914 10 0.3586 0.3166 0.1935 0.1353 0.1313 10 0.1547 0.0763 0.0109 0.0164 0.1921 15 0.3748 0.2429 0.2348 0.1813 0.1955 1 5 0.1744 0.0818 0.0123 0.0184 0.1976 20 0.3762 0.2077 0.2578 0.2037 0.1820 20 0.1853 0.0818 0.0129 0.0198 0.1983 25 0.3917 0.2185 0.2774 0.2145 0.2118 25 0.1949 0.1008 0.0136 0.0198 0.2044 30 0.4032 0.2240 0.2219 0.3261 0.2165 30 0.1901 0.1717 0.0388 0.0218 0.2248 32 0.3403 0.0873 0.3187 0.2091 0.1258 32 0.2024 0.1989 0.0552 0.0232 0.0913 34 0.1421 0.0399 0.2172 0.1055 0.0433 34 0.1247 0.1935 0.0743 0.0273 0.0368 36 0.0778 0.0298 0.1698 0.0798 0.0311 36 0.0729 0.1853 0.0811 0.0279 0.0334 38 0.0 562 0.0257 0.1455 0.0677 0.0250 38 0.0559 0.1867 0.0899 0.0273 0.0320 40 0.0392 0.0223 0.1245 0.0609 0.0210 40 0.0545 0.1880 0.0967 0.0293 0.0307 45 0.0230 0.0210 0.0846 0.0548 0.0129 45 0.0702 0.2037 0.1104 0.0375 0.0286 50 0.0210 0.0230 0.0609 0.04 74 0.0068 50 0.0940 0.2133 0.1158 0.0456 0.0245 55 0.0284 0.0250 0.0352 0.0298 0.0047 55 0.1138 0.1955 0.1220 0.0525 0.0204 60 0.0386 0.0250 0.0088 0.0237 0.0020 60 0.1226 0.1240 0.1104 0.0572 0.0164 65 0.0467 0.0203 0.0020 0.0129 0.0000 65 0.1294 0 .0784 0.0749 0.0559 0.0129 70 0.0487 0.0135 0.0000 0.0061 0.0000 70 0.1145 0.0491 0.0450 0.0443 0.0095 75 0.0906 0.0334 0.0286 0.0347 0.0061 80 0.0729 0.0238 0.0204 0.0286 0.0048

PAGE 189

189 Table C 20 Continued # 5 # 6 Time (min) DR #1 DR#2 DR#3 DR#4 RO Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0000 0.0000 0.0000 0.1952 2 0.0000 0.0000 0.0000 0.0000 0.1431 4 0.0384 0.0098 0.0000 0.0000 0.2076 4 0.0298 0.0000 0.0000 0.0000 0.2420 6 0.1158 0.0293 0.0000 0.0000 0.2486 6 0.1210 0.0068 0.0009 0.0000 0.2505 8 0.1555 0.0403 0.0000 0.0000 0.2616 8 0.1627 0.0170 0.0017 0.0000 0.2496 10 0.1724 0.0429 0.0000 0.0000 0.2570 10 0.1857 0.0230 0.0017 0.0000 0.248 8 15 0.1965 0.0488 0.0000 0.0020 0.2577 15 0.2130 0.0307 0.0034 0.0009 0.2547 20 0.2024 0.0566 0.0000 0.0039 0.2642 20 0.2232 0.0324 0.0034 0.0026 0.2462 25 0.1991 0.0566 0.0000 0.0091 0.2609 25 0.2215 0.0239 0.0017 0.0026 0.2445 30 0.2011 0.0638 0. 0000 0.0104 0.2746 30 0.2300 0.0256 0.0017 0.0034 0.2607 32 0.2030 0.0638 0.0026 0.0098 0.0657 32 0.2300 0.0341 0.0051 0.0051 0.1039 34 0.1497 0.0469 0.0104 0.0098 0.0260 34 0.2079 0.0409 0.0094 0.0043 0.0290 36 0.0768 0.0202 0.0189 0.0085 0.0241 36 0.1176 0.0443 0.0170 0.0060 0.0239 38 0.0495 0.0104 0.0260 0.0065 0.0215 38 0.0724 0.0383 0.0230 0.0085 0.0222 40 0.0384 0.0059 0.0312 0.0046 0.0202 40 0.0494 0.0392 0.0307 0.0136 0.0213 45 0.0000 0.0416 0.0410 0.0039 0.0189 45 0.0222 0.0520 0.0392 0.0281 0.0187 50 0.0026 0.0573 0.0482 0.0059 0.0189 50 0.0179 0.0682 0.0460 0.0452 0.0153 55 0.0748 0.0104 0.0527 0.0078 0.0150 55 0.0239 0.0843 0.0605 0.0486 0.0128 60 0.0931 0.0130 0.0540 0.0098 0.0124 60 0.0375 0.1039 0.0520 0.0690 0.0119 65 0.10 28 0.0143 0.0299 0.0104 0.0091 65 0.0520 0.1099 0.0426 0.0750 0.0094 70 0.1022 0.0150 0.0117 0.0091 0.0078 70 0.0656 0.0971 0.0273 0.0699 0.0077 75 0.0878 0.0137 0.0052 0.0065 0.0046 75 0.0758 0.0758 0.0179 0.0520 0.0060 80 0.0703 0.0104 0.0020 0.003 9 0.0033 80 0.0801 0.0596 0.0170 0.0366 0.0043

PAGE 190

190 Table C 20 Continued # 7 Time (min) DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0531 0.0000 0.0000 0.0052 0.1550 4 0.1540 0.0000 0.0000 0.0010 0.2019 6 0.1821 0.0073 0.0021 0.0042 0.2102 8 0.2008 0.0146 0.0052 0.0094 0.2258 10 0.2092 0.0187 0.0073 0.0125 0.2248 15 0.2185 0.0312 0.0135 0.0166 0.2383 20 0.2331 0.0479 0.0166 0.0187 0.2487 25 0.2518 0.0614 0.0166 0.0229 0.2445 30 0.2591 0.0656 0.0229 0.0229 0.2601 32 0.237 3 0.0708 0.0260 0.0260 0.0853 34 0.1644 0.0739 0.0302 0.0260 0.0541 36 0.1405 0.0656 0.0354 0.0219 0.0437 38 0.1332 0.0583 0.0375 0.0094 0.0395 40 0.1322 0.0562 0.0406 0.0146 0.0343 45 0.1322 0.0593 0.0447 0.0125 0.0281 50 0.1270 0.0614 0.0458 0.0146 0.0239 55 0.1270 0.0645 0.0468 0.0187 0.0187 60 0.1217 0.0645 0.0406 0.0239 0.0166 65 0.0989 0.0676 0.0281 0.0281 0.0125 70 0.0676 0.0624 0.0187 0.0312 0.0094 75 0.0437 0.0479 0.0125 0.0323 0.0083 80 0.0281 0.0302 0.0083 0.0312 0.0062 85 0.0208 0.0 208 0.0062 0.0250 0.0042 90 0.0156 0.0135 0.0052 0.0208 0.0031

PAGE 191

191 APPENDIX D EXPERIMENTAL DATA IN CHAPTER 3 Table D 1. Adsorption isotherms of colloids onto different grass parts (leaf, stems, and roots). X mean Y mean X SEM Y SEM Model Leave 0 0 0 0 0.000 0.439 51.858 0.124 11.683 110.405 0.558 123.679 0.191 35.093 131.586 1.923 268.309 0.380 81.393 265.756 3.165 390.961 0.579 82.114 317.624 9.504 375.653 0.533 87.359 397.875 17.288 403.879 0.871 217.070 421.830 Stem 0 0 0 0 0.000 0.5 15 71.462 0.118 4.307 61.270 0.861 88.276 0.140 43.361 97.008 2.383 219.027 0.357 56.168 217.622 5.154 349.923 9.399 458.289 0.151 97.321 458.129 18.918 234.165 0.592 74.246 564.819 Root 0 0 0 0 0.000 1.057 55.931 0.052 13.179 127.842 1.6 98 192.760 3.391 266.902 0.069 26.871 331.318 6.034 484.276 10.409 808.606 0.104 147.160 644.872 17.982 705.448 0.573 113.608 798.691

PAGE 192

192 Table D 2. Water flow summary for runoff experiments on densely vegetated soil Run Time Inflow DR#1 DR #2 DR#3 DR#4 RO Rainfall Area of the box L/min mm/hour cm 2 # 1 Aug 10,10 0.2518 0.07 0.12 0.08 0.07 0.56 66.47 6228.96 # 2 Aug 14,10 0.2485 0.05 0.12 0.07 0.06 0.62 66.47 6228.96

PAGE 193

193 Table D 3 Run #1 water flow and rainfall data (bromide and colloid were mixed in the inflow). Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 0 0.8243 0.7543 0.7331 0.6803 0.6436 0 0.5 0.8205 0.7528 0.7331 0.6799 0.6436 0.263 1 0.8209 0.7500 0.7339 0.6796 0.6436 0.526 1.5 0.8209 0.7504 0.7335 0.67 96 0.6443 1.051 2 0.8222 0.7504 0.7316 0.6778 0.6433 1.576 2.5 0.8180 0.7481 0.7285 0.6767 0.6413 2.101 3 0.8180 0.7481 0.7285 0.6763 0.6406 2.626 3.5 0.8167 0.7485 0.7293 0.6749 0.6413 3.151 4 0.8184 0.7500 0.7300 0.6753 0.6413 3.676 4.5 0.8176 0.74 89 0.7293 0.6739 0.6416 4.201 5 0.8151 0.7485 0.7270 0.6728 0.6413 4.464 5.5 0.8172 0.7458 0.7278 0.6856 0.6470 4.989 6 0.8281 0.7481 0.7331 0.6907 0.6682 5.514 6.5 0.8315 0.7493 0.7373 0.6940 0.7709 6.039 7 0.8388 0.7547 0.7415 0.6969 1.0214 6.564 7 .5 0.8440 0.7737 0.7536 0.7042 1.4062 7.089 8 0.8539 0.8126 0.7685 0.7061 2.0052 7.352 8.5 0.8631 0.8518 0.7919 0.6994 2.7115 7.877 9 0.8800 0.8985 0.8328 0.7020 3.6199 8.402 9.5 0.9192 0.9418 0.8649 0.7020 4.6732 8.927 10 0.9760 0.9858 0.9109 0.7180 5.8598 9.452 10.5 0.9997 1.0363 0.9484 0.7365 7.1818 9.715 11 1.0301 1.0992 0.9770 0.7489 8.8147 10.24 11.5 1.0587 1.1734 1.0194 0.7931 10.4883 10.765 12 1.0841 1.2398 1.0692 0.8063 12.1053 11.29 12.5 1.1288 1.3151 1.1156 0.8388 14.0819 11.815 13 1.1 654 1.4116 1.1666 0.8760 16.1742 12.34 13.5 1.2001 1.5027 1.2183 0.9031 18.4789 12.603 14 1.2326 1.5727 1.2671 0.9351 20.6267 13.128 14.5 1.2598 1.6601 1.3025 0.9677 22.8742 13.653 15 1.3451 1.7866 1.3580 0.9992 24.8770 14.178 15.5 1.3843 1.8710 1.412 9 1.0270 27.0019 14.703 16 1.4170 1.9614 1.4683 1.0847 29.1228 15.228 16.5 1.4690 2.0739 1.5312 1.1134 31.1557 15.753 17 1.5312 2.1936 1.5927 1.1832 33.0229 16.016 17.5 1.6174 2.3181 1.6410 1.2142 34.6623 16.541 18 1.6563 2.4472 1.7006 1.2112 36.0934 17.066 18.5 1.7792 2.6000 1.7613 1.2801 37.3265 17.591 ` 1.8659 2.7628 1.8129 1.3252 38.3177 18.116

PAGE 194

194 Table D 3. Continued. 19.5 1.8907 2.9044 1.8924 1.3554 39.0779 18.379 20 1.9543 3.0556 1.9525 1.3836 39.5837 18.904 20.5 2.0043 3.2064 2.0152 1.4510 3 9.8421 19.429 21 2.0480 3.3742 2.0832 1.4787 39.8695 19.954 21.5 2.1445 3.5403 2.1685 1.5779 37.9392 20.479 22 2.2132 3.7307 2.2417 1.6212 1.0245 21.004 22.5 2.2857 3.9229 2.3313 1.6842 1.1546 21.529 23 2.3809 4.1195 2.4291 1.7148 1.5537 22.054 23.5 2.4536 4.3507 2.5139 1.7492 2.0508 22.317 24 2.5655 4.5497 2.5922 1.8213 2.6269 22.842 24.5 2.6168 4.7629 2.7023 1.9209 3.4075 23.367 25 2.7324 5.0024 2.8138 1.9175 4.3811 23.892 25.5 2.8341 5.2315 2.9253 2.0242 5.5694 24.417 26 2.9093 5.4684 3.0188 2 .0711 6.8685 24.942 26.5 2.9798 5.7132 3.0940 2.1694 8.1552 25.205 27 3.0696 6.0091 3.2131 2.2656 9.6279 25.73 27.5 3.2064 6.2937 3.2949 2.3283 11.7978 26.255 28 3.2935 6.5651 3.3977 2.4112 13.6367 26.78 28.5 3.4033 6.7976 3.4975 2.4281 15.6184 27.305 29 3.5446 7.0844 3.6155 2.5347 17.8497 27.83 29.5 3.6580 7.3796 3.7592 2.5544 20.1483 28.355 30 3.7577 7.7607 3.8734 2.6348 22.2977 28.88 30.5 3.9012 8.0753 4.0108 2.7138 24.6544 29.405 31 3.9918 8.3712 4.1260 2.7971 26.6500 29.668 31.5 4.1292 8.702 4 4.2421 2.8824 28.8242 30.193 32 4.2504 9.0422 4.3947 2.9861 30.7907 30.718 32.5 4.4117 9.3614 4.5149 3.0773 32.6839 31.243 33 4.4976 9.7479 4.6554 3.1472 34.3547 31.768 33.5 4.7089 10.0830 4.7810 3.1695 35.9135 32.293 34 4.8540 10.4252 4.9463 3.2773 37.1744 32.818 34.5 4.9837 10.7747 5.1160 3.4061 38.2164 33.343 35 5.1160 11.1641 5.2509 3.4889 39.0037 33.606 35.5 5.2509 11.5285 5.4084 3.5676 39.5372 34.131 36 5.4284 11.7978 5.4885 3.6964 39.8196 34.656 36.5 5.5694 12.1742 5.6307 3.8030 39.8775 3 5.181 37 5.7132 12.6632 5.7757 3.8981 39.7324 35.706 37.5 5.8598 13.1270 5.9234 3.9635 39.4059 36.231 38 5.9661 13.4535 6.0522 4.0777 38.9576 36.756 38.5 6.1831 13.8584 6.2937 4.1390 1.0954 37.281 39 6.3160 14.2320 6.4510 4.2421 1.1344 37.544 39.5 6. 5193 14.6489 6.6574 4.3490 1.5148 38.069 40 6.6806 15.0718 6.8685 4.3896 1.9516 38.594

PAGE 195

195 Table D 3. Continued 40.5 6.8448 15.4613 7.0360 4.4803 2.4901 39.119 41 6.9878 15.8159 7.2309 4.7269 3.2558 39.644 41.5 7.1818 16.2142 7.4547 4.7992 4.0187 40.169 42 7.2802 16.6169 7.6066 4.8540 5.0212 40.694 42.5 7.4296 17.0648 7.8125 4.9837 6.0956 40.957 43 7.6066 17.4762 8.0487 5.0969 7.3796 41.482 43.5 7.9958 18.0586 8.2627 5.1928 8.7584 42.007 44 8.2089 18.4367 8.4532 5.3292 10.3312 42.532 44.5 8.3440 18.8 176 8.6188 5.5086 12.1397 43.057 45 8.6188 19.2866 8.8429 5.7966 13.9327 43.582 45.5 8.8429 19.8023 9.0709 5.7757 16.0942 44.107 46 8.9850 20.1917 9.2736 5.8176 17.9332 44.632 46.5 9.0997 20.6267 9.4202 5.9447 19.9319 44.895 47 9.3028 21.0639 9.5980 6 .0522 22.1207 45.42 47.5 9.5385 21.4590 9.8993 6.1831 24.2091 45.945 48 9.7178 21.9439 10.1138 6.2493 26.3411 46.47 48.5 9.7781 22.2977 10.3312 6.4510 28.5240 46.995 49 9.9298 22.7410 10.6468 6.4965 30.3804 47.258 49.5 10.1756 23.2297 10.8713 6.7741 3 2.1459 47.783 50 10.3312 23.7192 11.0986 6.7741 33.7916 48.308 50.5 10.6150 24.2091 11.3288 7.0119 35.0946 48.833 51 10.6787 24.6099 11.4950 7.1086 36.4995 49.358 51.5 10.9359 25.0549 11.7640 7.2555 37.6424 49.883 52 11.2628 25.4994 12.0709 7.3796 38. 5671 50.408 52.5 11.5285 25.8987 12.3476 7.6066 39.2432 50.671 53 11.7640 26.3411 12.5927 7.6578 39.6589 51.196 53.5 11.8998 26.7821 12.9833 7.9169 39.8622 51.721 54 12.1742 27.2212 13.2716 8.0222 39.8214 52.246 54.5 12.4873 27.6145 13.4535 8.0753 38. 3177 52.771 55 12.6986 28.0492 13.6736 8.3168 0.9947 53.034 55.5 12.8761 28.3949 13.8584 8.5910 1.1552 53.559 56 13.1631 28.8670 14.0819 8.7584 1.4718 54.084 56.5 13.4900 29.2502 14.3451 8.8995 1.9774 54.609 57 13.7104 29.7143 14.7253 9.1574 2.4217 55 .134 57.5 13.8584 30.1320 14.9944 9.2736 3.1498 55.659 58 14.1944 30.5451 15.3049 9.4497 3.9027 56.184 58.5 14.3451 30.9128 15.6184 9.7781 4.8908 56.709 59 14.6871 31.3165 15.8555 9.8083 5.9876 56.972 59.5 14.8788 31.6355 16.1342 9.9909 7.2555 57.497 60 15.3049 31.9900 16.3748 10.1138 8.7303 58.022 60.5 15.5005 32.4165 16.7386 10.3312 10.2999 58.547 61 15.6973 32.6839 16.9421 10.3938 11.6964 59.072

PAGE 196

196 Table D 3. Continued 61.5 15.8555 32.9855 17.1467 10.4883 13.4170 59.597 62 16.2142 33.3930 17.4349 10.6787 15.3439 60.122 62.5 16.3748 33.7557 17.7249 10.8068 17.2700 60.385 63 16.7386 34.1459 18.0167 11.0660 19.3723 60.91 63.5 16.9421 34.4580 18.3103 11.2298 21.5911 61.435 64 17.2700 34.8303 18.6480 11.4617 23.6747 61.96 64.5 17.4762 35.0618 18.9 451 11.6290 25.6326 62.485 65 17.8081 35.3212 19.2438 11.8318 27.7016 63.01 65.5 17.9749 35.6060 19.5869 12.0709 29.6723 63.535 66 18.1423 35.9437 19.8455 12.2088 31.5163 63.798 66.5 18.4789 36.2407 20.1483 12.5224 32.7975 64.323 67 18.7327 36.4711 20 .4524 12.6632 35.2569 64.848 67.5 19.1583 36.7226 20.6703 12.7694 36.4711 65.373 68 19.3723 37.0185 21.0200 13.1270 37.6188 65.898 68.5 19.5869 37.2510 21.2832 13.3078 38.5855 66.423 69 19.8023 37.4746 21.6351 13.5266 39.2432 66.686 69.5 20.0617 37.68 93 21.8998 13.6367 39.6741 67.211 70 20.3654 37.8948 22.2534 14.0072 39.8724 67.736 70.5 20.6267 38.0696 22.4749 14.0819 39.8214 68.261 71 20.8450 38.2573 22.7854 14.3451 39.5507 68.786 71.5 21.0200 38.3966 23.1408 14.2696 39.0250 69.311 72 21.3271 38 .5671 23.4076 14.5726 38.3852 69.574 72.5 21.5911 38.7450 23.6747 14.8020 37.4848 70.099 73 21.8115 38.8944 23.8973 14.9944 36.5675 70.362 73.5 22.2977 39.0633 24.1200 15.2659 35.1733 70.625 74 22.4749 39.1490 24.3872 15.2659 34.2651 70.888 74.5 22.74 10 39.2301 24.6989 15.6184 34.1254 71.413 75 23.0519 39.3667 25.0549 15.9747 34.0198 71.938 75.5 23.3187 39.4561 25.3662 16.0543 34.0198 72.463 76 23.6302 39.5276 25.6326 16.4150 33.9844 72.988 76.5 23.8973 39.5925 25.8543 16.4957 33.9135 73.513 77 24 .1200 39.6665 26.1201 16.5360 35.4169 74.038 77.5 24.4763 39.7167 26.3853 16.6169 0.8461 74.563 78 24.6989 39.7769 26.7380 16.9830 0.7024 74.826 78.5 25.0105 39.8237 26.9579 17.4762 0.6623 75.351 79 25.1884 39.8485 27.3087 17.6004 0.6436 75.876 79.5 2 5.5882 39.8687 27.6145 17.8497 0.6311 76.401 80 25.8100 39.8818 28.0058 18.0586 0.6205 76.926 80.5 26.0315 39.8830 28.3086 18.2263 0.6113 77.451 81 26.2527 39.8731 28.6100 18.5633 0.6192 77.976 81.5 26.5177 39.8555 28.8670 18.7327 0.8146 78.239 82 26. 8700 39.8254 29.0802 18.9026 1.0884 78.764

PAGE 197

197 Table D 3. Continued 82.5 27.2212 39.7843 29.2077 19.0303 1.4815 79.289 83 27.5272 39.7449 29.5461 19.2438 2.0034 79.814 83.5 27.7887 39.6918 29.8819 19.5010 2.5944 80.339 84 28.1358 39.6219 30.1735 19.8023 3 .4691 80.864 84.5 28.3086 39.5507 30.3804 19.8887 4.3271 81.389 85 28.6100 39.4282 30.5862 20.2785 5.3885 81.652 85.5 28.7815 39.3480 30.8315 20.4524 6.6806 82.177 86 29.0802 39.2485 31.1153 20.6703 8.2358 82.702 86.5 29.2077 39.1548 31.3165 20.7576 9 .8083 83.227 87 29.3772 39.0400 31.5163 21.0200 11.4950 83.227 87.5 29.6723 38.8850 31.7147 21.2832 12.6986 83.49 88 29.9237 38.7691 31.9508 21.5911 13.0550 83.49 88.5 30.1735 38.6472 32.1459 21.6792 13.2353 83.49 89 30.3391 38.5378 32.3780 21.9439 13 .3078 83.49 89.5 30.5040 38.4434 32.4932 21.9881 13.1992 83.49 90 30.5862 38.3852 32.6459 22.0765 13.2353 83.49 90.5 30.5862 38.3459 32.6839 22.3420 13.1631 83.49 91 30.6272 38.3060 32.7975 22.3863 13.1270 83.49 91.5 30.6272 38.2657 32.7975 22.4306 13 .0910 83.49 Table D 4 Run #2 water flow and rainfall data. Volume (L) mm Time (min) DR#1 DR#2 DR#3 DR#4 RO Rainfall 0 2.1483 0.6020 0.6026 0.6045 0.5633 0 0.5 2.1541 0.6013 0.6026 0.6045 0.5630 0.263 1 2.1550 0.6010 0.6026 0.6045 0.5630 0.788 1.5 2.1550 0.6013 0.6026 0.6045 0.5627 1.313 2 2.1560 0.6033 0.6026 0.6045 0.5630 1.838 2.5 2.1560 0.6033 0.6026 0.6045 0.5636 2.363 3 2.1560 0.6026 0.6026 0.6045 0.5737 2.626 3.5 2.1550 0.6029 0.6026 0.6045 0.5758 3.151 4 2.1550 0.6026 0.6026 0.6045 0.57 86 3.676 4.5 2.1560 0.6026 0.6026 0.6045 0.6110 4.201 5 2.1560 0.6029 0.6026 0.6045 0.6162 4.726 5.5 2.1589 0.6026 0.6026 0.6052 0.5889 5.251 6 2.1579 0.6029 0.6042 0.6068 0.6342 5.514 6.5 2.1868 0.6033 0.6055 0.6068 0.7225 6.039 7 2.2546 0.6071 0.60 81 0.6087 0.8470 6.564 7.5 2.2958 0.6146 0.6100 0.6087 1.0373 7.089 8 2.3120 0.6251 0.6136 0.6110 1.2653 7.614 8.5 2.3416 0.6440 0.6189 0.6127 1.5298 8.139 9 2.6258 0.6689 0.6305 0.6133 1.7662 8.402

PAGE 198

198 Table D 4. Continued 9.5 0.6831 0.6940 0.6443 0.616 6 2.0288 8.927 10 0.6447 0.7153 0.6539 0.6205 2.3272 9.452 10.5 0.6423 0.7454 0.6647 0.6285 2.6269 9.977 11 0.6419 0.7810 0.6806 0.6413 2.9562 10.502 11.5 0.6413 0.8126 0.6969 0.6563 3.2935 11.027 12 0.6402 0.8461 0.7109 0.6689 3.6316 11.29 12.5 0.63 99 0.8782 0.7281 0.6871 3.9463 11.815 13 0.6399 0.9141 0.7466 0.7024 4.2438 12.34 13.5 0.6399 0.9518 0.7626 0.7153 4.5847 12.865 14 0.6406 0.9863 0.7802 0.7327 4.9650 13.39 14.5 0.6399 1.0194 0.7960 0.7497 5.3292 13.653 15 0.6399 1.0539 0.8130 0.7701 5.6925 14.178 15.5 0.6392 1.0943 0.8375 0.7858 6.0522 14.703 16 0.6379 1.1300 0.8548 0.7993 6.3832 15.228 16.5 0.6399 1.1878 0.8649 0.8197 6.7506 15.753 17 0.6399 1.2089 0.8953 0.8367 7.0844 16.278 17.5 0.6392 1.2586 0.9239 0.8531 7.4046 16.541 18 0. 6392 1.3050 0.9437 0.8693 7.8125 17.066 18.5 0.6385 1.3567 0.9643 0.8917 8.1285 17.591 19 0.6382 1.4102 0.9848 0.9067 8.4258 18.116 19.5 0.6416 1.4607 1.0052 0.9281 8.7584 18.379 20 0.6419 1.5162 1.0204 0.9542 9.0709 18.904 20.5 0.6440 1.5654 1.0440 0 .9765 9.3320 19.429 21 0.6440 1.6032 1.0602 0.9928 9.5683 19.954 21.5 0.6443 1.6663 1.0857 1.0103 1.3355 20.479 22 0.6443 1.7156 1.1014 1.0240 0.7300 20.742 22.5 0.6443 1.7694 1.1266 1.0245 0.8627 21.267 23 0.6443 1.8263 1.1479 1.0250 1.0487 21.792 2 3.5 0.6443 1.8847 1.1706 1.0347 1.2838 22.317 24 0.6443 1.9332 1.1983 1.0415 1.5248 22.842 24.5 0.6457 1.9747 1.2338 1.0608 1.7645 23.367 25 0.6443 2.0197 1.2592 1.0777 2.0052 23.892 25.5 0.6450 2.0730 1.2863 1.1025 2.2998 24.155 26 0.6470 2.1160 1.31 38 1.1277 2.5390 24.68 26.5 0.6443 2.1646 1.3367 1.1439 2.8281 25.205 27 0.6443 2.2142 1.3639 1.1683 3.1485 25.73 27.5 0.6457 2.2736 1.3982 1.1931 3.4946 26.255 28 0.6453 2.3283 1.4359 1.2177 3.8000 26.518 28.5 0.6443 2.3850 1.4620 1.2586 4.0825 27.04 3 29 0.6453 2.4440 1.4949 1.2838 4.3777 27.568 29.5 0.6470 2.5030 1.5284 1.3151 4.7089 28.093 30 0.6481 2.5644 1.5559 1.3399 5.0779 28.618

PAGE 199

199 Table D 4. Continued. 30.5 0.6474 2.6405 1.5883 1.3672 5.4483 29.143 31 0.6481 2.6919 1.6137 1.3909 5.7966 29.6 68 31.5 0.6484 2.7523 1.6425 1.4257 6.1392 30.193 32 0.6491 2.8161 1.6717 1.4469 6.4737 30.718 32.5 0.6519 2.8861 1.7022 1.4787 6.7741 30.981 33 0.6519 2.9401 1.7267 1.5076 7.1330 31.506 33.5 0.6529 3.0011 1.7581 1.5341 7.4799 32.031 34 0.6539 3.0645 1.7825 1.5610 7.8125 32.556 34.5 0.6556 3.1251 1.8096 1.5853 8.1552 33.081 35 0.6581 3.1866 1.8372 1.6129 8.5081 33.344 35.5 0.6598 3.2450 1.8608 1.6425 8.7865 33.869 36 0.6630 3.3030 1.8838 1.6679 9.0997 34.394 36.5 0.6710 3.3645 1.9062 1.6904 9.332 0 34.919 37 0.6821 3.4312 1.9332 1.7117 9.3907 35.182 37.5 0.6925 3.5031 1.9631 1.7363 0.7083 35.707 38 0.7031 3.5662 1.9827 1.7670 0.7646 36.232 38.5 0.7139 3.6214 2.0052 1.7898 0.9272 36.757 39 0.7285 3.6875 2.0352 1.8080 1.1288 37.282 39.5 0.7469 3.7502 2.0665 1.8338 1.3374 37.807 40 0.7559 3.8076 2.0907 1.8481 1.5786 38.332 40.5 0.7685 3.8718 2.1170 1.8855 1.8229 38.857 41 0.7870 3.9354 2.1474 1.9027 2.0683 39.12 41.5 0.8055 4.0013 2.1723 1.9271 2.3798 39.645 42 0.8188 4.0601 2.1985 1.9614 2. 6101 40.17 42.5 0.8354 4.1228 2.2269 1.9836 2.8995 40.695 43 0.8522 4.1879 2.2517 2.0061 3.2397 41.22 43.5 0.8724 4.2421 2.2927 2.0306 3.5691 41.483 44 0.8867 4.3037 2.3242 2.0609 3.8795 42.008 44.5 0.8949 4.3541 2.3426 2.0795 4.1406 42.533 45 0.9197 4.4117 2.3674 2.1038 4.4459 43.058 45.5 0.9399 4.4631 2.4038 2.1293 4.8174 43.583 46 0.9575 4.5149 2.4387 2.1569 5.1543 43.846 46.5 0.9716 4.5672 2.4707 2.1878 5.5491 44.371 47 0.9957 4.6200 2.5096 2.2142 5.8809 44.896 47.5 1.0078 4.6910 2.5500 2.244 7 6.2051 45.421 48 1.0327 4.7449 2.5877 2.2847 6.4965 45.946 48.5 1.0581 4.7992 2.6247 2.3170 6.8212 46.471 49 1.0766 4.8540 2.6610 2.3467 7.1574 46.734 49.5 1.0976 4.9092 2.7023 2.3663 7.4799 47.259 50 1.1134 4.9837 2.7441 2.3986 7.8125 47.784 50.5 1.1383 5.0400 2.7758 2.4365 8.1285 48.309 51 1.1592 5.0969 2.8078 2.4643 8.4532 48.834

PAGE 200

200 Table D 4. Continued. 51.5 1.1769 5.1735 2.8473 2.4998 8.7865 49.359 52 1.1983 5.2315 2.8788 2.5336 9.0709 49.622 52.5 1.2332 5.3096 2.9142 2.5688 9.3320 50.147 53 1.2464 5.3687 2.9500 2.6089 9.5683 50.672 53.5 1.2825 5.4483 2.9873 2.6598 0.7528 51.197 54 1.2975 5.5086 3.0200 2.6873 0.8570 51.46 54.5 1.3246 5.5898 3.0505 2.7104 1.0306 51.985 55 1.3554 5.6513 3.0876 2.7441 1.2243 52.51 55.5 1.3896 5.7132 3.1277 2.7864 1.4531 53.035 56 1.4076 5.7757 3.1524 2.8209 1.6803 53.56 56.5 1.4524 5.8387 3.1813 2.8558 1.9114 53.823 57 1.4641 5.9234 3.2144 2.8824 2.1502 54.348 57.5 1.5005 5.9876 3.2477 2.8983 2.4101 54.873 58 1.5298 6.0522 3.2813 2.9302 2.6678 55.398 5 8.5 1.5486 6.1174 3.3166 2.9686 2.9450 55.923 59 1.5809 6.1831 3.3494 3.0112 3.2719 56.448 59.5 1.6265 6.2493 3.3866 3.0403 3.5966 56.973 60 1.6448 6.3160 3.4270 3.0722 3.8780 57.498 60.5 1.6772 6.3832 3.4593 3.1095 4.1309 58.023 61 1.6881 6.4510 3.48 61 3.1329 4.4117 58.286 61.5 1.7307 6.4965 3.5231 3.1590 4.7449 58.811 62 1.7556 6.5651 3.5590 3.1985 5.0969 59.336 62.5 1.7857 6.6342 3.5908 3.2210 5.4483 59.861 63 1.8188 6.7039 3.6316 3.2544 5.7966 60.386 63.5 1.8372 6.7741 3.6713 3.2854 6.1174 60. 649 64 1.8591 6.8448 3.7068 3.3166 6.4510 61.174 64.5 1.9062 6.9161 3.7397 3.3508 6.7272 61.699 65 1.9297 6.9638 3.7788 3.3825 7.0601 62.224 65.5 1.9499 7.0119 3.8167 3.4172 7.3796 62.487 66 1.9729 7.0844 3.8488 3.4382 7.6834 63.012 66.5 1.9863 7.133 0 3.8826 3.4705 8.0222 63.537 67 2.0279 7.1818 3.9198 3.5017 8.2898 64.062 67.5 2.0526 7.2555 3.9541 3.5331 8.6188 64.587 68 2.0785 7.3298 3.9934 3.5604 8.8712 65.112 68.5 2.0916 7.3796 4.0362 3.5980 9.1574 65.375 69 2.1340 7.4547 4.0729 3.6301 9.3907 65.9 69.5 2.1531 7.5051 4.1098 3.6654 4.8540 66.425 70 2.1820 7.5558 4.1455 3.7024 0.6846 66.95 70.5 2.2132 7.6066 4.1764 3.7427 0.8026 67.475 71 2.2477 7.6578 4.2125 3.7667 0.9873 67.738 71.5 2.2736 7.7091 4.2421 3.7879 1.1671 68.263 72 2.2988 7.76 07 4.2753 3.8198 1.3989 68.788

PAGE 201

201 Table D 4. Continued. 72.5 2.3211 7.8125 4.3070 3.8503 1.6756 69.313 73 2.3591 7.8907 4.3490 3.8934 1.9062 69.576 73.5 2.3923 7.9431 4.3879 3.9338 2.1772 70.101 74 2.4355 7.9958 4.4288 3.9682 2.4376 70.626 74.5 2.4482 8 .0487 4.4631 4.0013 2.7057 71.151 75 2.4922 8.0753 4.4976 4.0409 2.9836 71.676 75.5 2.5412 8.1285 4.5323 4.0809 3.2949 71.939 76 2.5611 8.1820 4.5672 4.1066 3.6214 72.464 76.5 2.5710 8.2089 4.6200 4.1325 3.9120 72.989 77 2.6439 8.2627 4.6554 4.1699 4. 1764 73.514 77.5 2.6621 8.3168 4.6910 4.1993 4.4631 74.039 78 2.7046 8.3712 4.7269 4.2339 4.8174 74.564 78.5 2.7266 8.3985 4.7629 4.2687 5.1928 74.827 79 2.7593 8.4532 4.7992 4.3003 5.5289 75.352 79.5 2.8245 8.4806 4.8357 4.3339 5.9021 75.877 80 2.84 01 8.5081 4.8723 4.3727 6.2051 76.402 80.5 2.8885 8.5633 4.9092 4.3947 6.5193 76.665 81 2.9167 8.5910 4.9463 4.4288 6.8212 77.19 81.5 2.9611 8.6466 5.0024 4.4631 7.1818 77.715 82 2.9899 8.6744 5.0400 4.4976 7.4799 78.24 82.5 3.0378 8.7303 5.0779 4.532 3 7.7866 78.765 83 3.0722 8.7584 5.1160 4.5672 8.1019 79.29 83.5 3.1044 8.8147 5.1543 4.6200 8.3985 79.815 84 3.1472 8.8712 5.2121 4.6554 8.7024 80.078 84.5 3.1708 8.9564 5.2315 4.6732 8.9850 80.603 85 3.2144 9.0135 5.2704 4.7269 9.2445 81.128 85.5 3 .2558 9.0422 5.3292 4.7629 9.4792 81.653 86 3.2908 9.0997 5.3490 4.7810 9.7178 82.178 86.5 3.3152 9.1574 5.3885 4.7810 9.9909 82.441 87 3.3467 9.2154 5.4284 4.7810 10.2377 82.441 87.5 3.3770 9.2736 5.4684 4.7810 10.3938 82.441 88 3.4033 9.3320 5.5086 4.7810 10.4252 82.441 88.5 3.4368 9.3614 5.5491 4.7810 10.4567 82.441 89 3.4452 9.4202 5.5694 4.7992 10.4883 82.441 89.5 3.4607 9.4497 5.5898 4.8357 10.4883 82.441 90 3.4932 9.4792 5.6102 4.8540 10.4883 82.441 90.5 3.4918 9.5088 5.6307 4.8540 10.4883 82.441 91 3.4975 9.5088 5.6513 4.9278 10.4883 82.441 91.5 3.4960 9.5088 5.6513 4.9278 10.4883 82.441 92 3.4960 9.5385 5.6719 4.9463 10.4883 82.441 92.5 3.4960 9.5385 5.6719 4.9463 10.4883 82.441 93 3.4960 9.5385 5.6719 4.9463 10.4883 82.441

PAGE 202

202 Table D 4 Continued. 93.5 3.4960 9.5385 5.6719 4.9650 10.4883 82.441 94 3.4960 9.5385 5.6719 4.9650 10.4883 82.441 94.5 3.4960 9.5385 5.6925 4.9837 10.4883 82.441 95 3.4960 9.5385 5.6925 4.9837 10.4883 82.441 95.5 3.4960 9.5385 5.6925 4.9837 10.4883 82.441 9 6 3.4975 9.5385 5.6925 5.0024 10.4883 82.441 96.5 3.4975 9.5385 5.6925 5.0024 10.4883 82.441 97 3.4975 9.5385 5.6925 5.0024 10.4883 82.441 97.5 3.5017 9.5385 5.6925 5.0212 10.4883 82.441 98 3.4989 9.5385 5.6925 5.0212 10.4883 82.441 98.5 3.4975 9.5385 5.6925 5.0400 10.4883 82.441 99 3.4975 9.5385 5.6925 5.0589 10.4883 82.441 99.5 3.5017 9.5385 5.6925 5.0589 10.4883 82.441 100 3.4989 9.5385 5.6925 5.0779 10.4883 82.441 100.5 3.5031 9.5385 5.6925 5.0779 10.4883 82.441 101 3.5017 9.5385 5.6925 5.0779 10.4883 82.441 101.5 3.4354 9.5385 5.6925 5.0779 10.4883 82.441 102 3.0479 9.5385 5.6925 5.0969 10.4883 82.441 102.5 3.0188 9.5385 5.6925 5.0969 10.4883 82.441 103 3.0226 9.5385 5.6925 5.1351 10.4883 82.441 103.5 3.0213 9.5385 5.6925 5.1351 10.4883 8 2.441 104 3.0049 9.5385 5.6925 5.1351 10.4883 82.441 104.5 2.9986 9.5385 5.6925 5.1351 10.4883 82.441 105 2.9986 9.5385 5.6925 5.1351 10.4883 82.441 105.5 2.9986 9.5385 5.6925 5.1351 10.4883 82.441 106 2.9986 9.5385 5.6925 5.1351 10.4883 82.441 Note : B romide and c olloid were mixed in the inflow

PAGE 203

203 Table D 5. Bromide and colloid normalized concentration in outflow for run #1 Bromide Colloids Time (min) DR#1 DR#2 DR#3 DR#4 RO DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.00 00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0015 0.0000 0.0664 0.0045 0.0000 0.0018 0.0000 0.0979 4 0.0501 0.0402 0.0120 0.1176 0.0340 0.0031 0.0004 0.0312 0.1372 6 0.1066 0.0655 0.0211 0.0005 0.1302 0.0406 0.0095 0.0025 0.0452 0.1438 8 0.1 550 0.0928 0.0320 0.0044 0.1308 0.0446 0.0111 0.0070 0.0510 0.1385 10 0.1855 0.1057 0.0396 0.0105 0.1431 0.0458 0.0124 0.0067 0.0503 0.1427 15 0.2215 0.1307 0.0487 0.0229 0.1428 0.0488 0.0124 0.0076 0.0523 0.1329 20 0.2544 0.1573 0.0536 0.0325 0.1345 0.0463 0.0130 0.0112 0.0516 0.1226 25 0.2751 0.1732 0.0571 0.0392 0.1404 0.0443 0.0124 0.0106 0.0563 0.1291 30 0.3010 0.1806 0.0629 0.0457 0.1360 0.0463 0.0113 0.0108 0.0568 0.1195 32 0.2960 0.1878 0.0614 0.0485 0.1247 0.0447 0.0121 0.0103 0.0552 0 .1010 34 0.2980 0.1941 0.0606 0.0542 0.0782 0.0409 0.0114 0.0114 0.0501 0.0366 36 0.2490 0.1665 0.0589 0.0598 0.0392 0.0164 0.0077 0.0091 0.0216 0.0000 38 0.1769 0.1443 0.0557 0.0649 0.0269 0.0066 0.0015 0.0072 0.0071 0.0000 40 0.1498 0.1401 0.0542 0.0645 0.0216 0.0039 0.0007 0.0081 0.0039 0.0000 45 0.1085 0.1467 0.0628 0.0642 0.0172 0.0026 0.0004 0.0046 0.0006 0.0000 50 0.0844 0.1536 0.0631 0.0600 0.0149 0.0005 0.0011 0.0022 0.0006 0.0000 55 0.0731 0.1497 0.0732 0.0495 0.0159 0.0000 0.0000 0. 0040 0.0000 0.0000 60 0.0920 0.1458 0.0702 0.0469 0.0160 0.0000 0.0000 0.0015 0.0000 0.0000 65 0.1238 0.1223 0.0698 0.0283 0.0160 0.0000 0.0000 0.0017 0.0000 0.0000 70 0.1627 0.0859 0.0604 0.0155 0.0000 0.0000 0.0006 0.0000 0.0000 75 0.1919 0.0526 0.0452 0.0141 0.0000 0.0000 0.0000 0.0000 0.0000 80 0.2044 0.0300 0.0327 0.0133 0.0000 0.0000 0.0000 0.0000 0.0000

PAGE 204

204 Table D 6. Bromide and colloid normalized concentration in outflow for run #2 Bromide Colloids Time (min) DR#1 DR#2 DR# 3 DR#4 RO DR#1 DR#2 DR#3 DR#4 RO 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2 0.0000 0.0001 0.0000 0.0000 0.0239 0.0354 0.0004 0.0000 0.0000 0.0000 4 0.0116 0.0351 0.0000 0.0000 0.1072 0.1211 0.0159 0.0306 0.0000 0.0000 6 0.0734 0.0866 0.0097 0.0020 0.1238 0.1273 0.0420 0.0464 0.0072 0.0023 8 0.1330 0.1173 0.0241 0.0073 0.1301 0.1240 0.0520 0.0522 0.0119 0.0044 10 0.1685 0.1325 0.0325 0.0130 0.1342 0.1238 0.0553 0.0515 0.0121 0.0066 15 0.2108 0.1608 0.0441 0.0274 0 .1369 0.1173 0.0541 0.0547 0.0129 0.0074 20 0.2419 0.1869 0.0516 0.0403 0.1349 0.1144 0.0567 0.0566 0.0129 0.0087 25 0.2663 0.1986 0.0539 0.0484 0.1378 0.1126 0.0550 0.0563 0.0117 0.0090 30 0.2796 0.2085 0.0588 0.0569 0.1359 0.1067 0.0547 0.0542 0.0 116 0.0096 32 0.2848 0.2159 0.0600 0.0585 0.1301 0.0998 0.0537 0.0536 0.0120 0.0087 34 0.2864 0.2143 0.0610 0.0603 0.0863 0.0380 0.0511 0.0487 0.0119 0.0087 36 0.2514 0.1613 0.0586 0.0659 0.0379 0.0000 0.0269 0.0192 0.0083 0.0092 38 0.1843 0.1313 0. 0494 0.0690 0.0247 0.0000 0.0103 0.0098 0.0029 0.0069 40 0.1491 0.1229 0.0417 0.0691 0.0198 0.0000 0.0062 0.0070 0.0007 0.0048 45 0.1122 0.1265 0.0430 0.0677 0.0139 0.0000 0.0048 0.0054 0.0000 0.0042 50 0.0894 0.1296 0.0548 0.0621 0.0112 0.0000 0.00 02 0.0039 0.0000 0.0027 55 0.0681 0.1293 0.0643 0.0562 0.0106 0.0000 0.0002 0.0022 0.0005 0.0022 60 0.0699 0.1275 0.0693 0.0510 0.0102 0.0000 0.0000 0.0044 0.0000 0.0021 65 0.1107 0.1212 0.0707 0.0456 0.0105 0.0000 0.0000 0.0009 0.0000 0.0009 70 0.1 784 0.0925 0.0690 0.0332 0.0124 0.0000 0.0000 0.0006 0.0008 0.0000 75 0.2157 0.0649 0.0584 0.0231 0.0121 0.0000 0.0000 0.0006 0.0000 0.0005 80 0.2387 0.0422 0.0428 0.0363 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000

PAGE 205

205 APPENDIX E EXPERIMENTAL DATA IN CHAP TER 4 Table E 1. Ionic strength effect (C/C 0 *100%) Time (min) Bromide Low High 0.00 0.0000 0.0000 0.0000 0.37 6.2610 19.9812 4.4985 2.37 57.4662 58.0051 55.1070 4.37 70.8690 65.6969 64.7623 6.37 76.0888 68.0917 65.7352 8.37 78.7505 70.5462 65.1728 10.37 76.2539 55.6603 57.2884 12.37 18.3586 11.5505 14.4735 14.37 8.5963 4.6123 4.7779 16.37 4.9813 2.4812 3.2579 18.37 3.4818 1.5436 1.9804 20.37 2.7131 0.9352 0.6671 22.37 2.2893 0.5207 0.5063 24.37 2.1037 0.4871 0.4378 26.37 2.1167 0.3863 0.3496 28.37 2.0177 0.3189 0.2091 Table E 2. Colloid size effect (C/C 0 *100%) Time (min) 0.00 0.0000 0.0000 0.0000 0.37 27.1763 19.9812 26.5382 2.37 65.1038 58.0051 55.1083 4.37 70.0979 65.6969 55.6667 6.37 73.8699 68.0917 58.3076 8.37 73.0645 70.5462 55.8462 10.37 39.9312 55.6603 34.4218 12.37 11.3159 11.5505 4.72 89 14.37 4.4643 4.6123 0.8617 16.37 2.2473 2.4812 0.3358 18.37 1.4122 1.5436 0.1890 20.37 0.9023 0.9352 0.2129 22.37 0.6196 0.5207 0.2251 24.37 0.5234 0.4871 0.1443 26.37 0.3687 0.3863 0.0580 28.37 0.3223 0.3189 0.0319

PAGE 206

206 Table E 3. Inflow rate effe ct 62ml/min. (C/C 0 *100%) Time (min) Bromide Colloids 0.00 0.0000 0.0000 0.32 0.5785 1.4895 0.82 24.7566 35.9265 1.32 36.7871 44.9156 1.82 43.3073 49.8245 2.32 47.4679 53.8823 2.82 51.9492 56.2117 3.82 56.3308 58.4441 4.82 61.1328 59.2616 5.82 6 2.0422 62.4421 7.82 64.0401 61.7217 9.82 66.6711 62.0054 11.82 67.8489 60.7436 12.82 69.5593 62.6176 13.32 66.5369 56.8277 13.82 37.2140 25.1755 14.32 26.2790 16.4514 14.82 21.3462 12.1734 15.32 16.9260 9.4147 15.82 15.2410 7.3988 16.82 11.8246 4.5617 17.82 9.6887 3.1656 19.82 7.5090 1.7545 23.82 5.3998 0.6794 27.82 4.3716 0.3920 38.82 3.2940 0.1717

PAGE 207

207 Table E 4. Vegetation type effect (C/C 0 *100%) Time (min) Bromide Colloids 0.00 0.0000 0.0000 0.37 0.0000 0.0000 0.87 14.7569 15.3165 1.37 44.2194 40.6102 1.87 57.0094 50.5143 2.37 64.0846 54.5724 2.87 68.5029 58.1746 3.37 71.7535 61.0173 3.87 73.9968 61.3308 4.37 75.5667 62.8507 4.87 77.3854 62.5648 5.87 79.2005 63.3444 7.87 81.9711 64.4241 9.87 83.5386 64.6281 10.3 7 84.4649 65.5237 10.87 68.7915 52.7084 11.37 37.3563 26.2069 11.87 25.3632 16.4084 12.37 18.4316 11.8926 12.87 14.1887 8.0726 13.37 11.4937 5.7488 13.87 9.7774 4.3625 14.37 8.2643 3.3118 14.87 7.2690 2.4559 15.87 5.9610 1.9510 17.87 4.4205 0.51 63 19.87 3.5935 0.2767 21.87 3.0852 0.1819 23.87 2.7951 0.1098 25.87 2.3473 0.0385 27.87 2.1355 0.0035 29.87 1.9384 0.0212

PAGE 208

208 LIST OF REFERENCES Alstad, N.E.W., Kjelsberg, B.M., Vollestad, L.A., Lydersen, E., Poleo, A.B.S., 2005. T he significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.). Environmental Pollution 133, 333 342. Bin, G., Cao, X.D., Dong, Y., Luo, Y.M., Ma, L.Q., 2011. Colloid Deposition and Release in Soils and Their Association Wit h Heavy Metals. Critical Reviews In Environmental Science And Technology 41, 336 372. Bradford, S.A., Simunek, J., Bettahar, M., Tadassa, Y.F., van Genuchten, M.T., Yates, S.R., 2005. Straining of colloids at textural interfaces. Water Resources Research 4 1, W10404, doi:10410.11029/12004WR003675. Chen, G., Flury, M., Harsh, J.B., Lichtner, P.C., 2005. Colloid facilitated transport of cesium in variably saturated Hanford sediments. Environmental Science & Technology 39, 3435 3442. Chrysikopoulos, C.V., Abdel Salam, A., 1997. Modeling colloid transport and deposition in saturated fractures. Colloid Surface A 121, 189 202. Crane, S.R., Moore, J.A., Grismer, M.E., Miner, J.R., 1983. Bacterial Pollution from Agricultural Sources a Review. Transactions of the Asa e 26, 858 &. Dosskey, M.G., Hoagland, K.D., Brandle, J.R., 2007. Change in filter strip performance over ten years. Journal Of Soil And Water Conservation 62, 21 32. Edwards, D.R., Moore, P.A., Daniel, T.C., Srivastava, P., 1996. Poultry litter treated len gth effects on quality of runoff from fescue plots. Transactions of the Asae 39, 105 110. Elimelech, M., 1994. Effect of Particle Size on the Kinetics of Particle Deposition under Attractive Double Layer Interactions. J Colloid Interf Sci 164, 190 199. Fer guson, C.M., Davies, C.M., Kaucner, C., Krogh, M., Rodehutskors, J., Deere, D.A., Ashbolt, N.J., 2007. Field scale quantification of microbial transport from bovine faeces under simulated rainfall events. Journal of Water and Health 5, 83 95. Flury, M., Qi u, H.X., 2008. Modeling colloid facilitated contaminant transport in the vadose zone. Vadose Zone Journal 7, 682 697. Fox, G.A., Matlock, E.M., Guzman, J.A., Sahoo, D., Stunkel, K.B., 2011. Escherichia coli Load Reduction from Runoff by Vegetative Filter S trips: A Laboratory Scale Study. J Environ Qual, 980 988. Fox, G.A., Munoz Carpena, R., Sabbagh, G.J., 2010. Influence of flow concentration on parameter importance and prediction uncertainty of pesticide trapping by vegetative filter strips. Journal of Hy drology 384, 164 173.

PAGE 209

209 Gao, B., Cao, X., Dong, Y., Luo, Y., Ma, L.Q., 2011. Colloid deposition and release in soils and their association with heavy metals. Critical Reviews In Environmental Science And Technology 41, 1 37. Gao, B., Saiers, J.E., Ryan, J., 2006. Pore scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research 42 W01410, doi:01410.01029/02005WR004233. Gao, B., Saiers, J.E., Ryan, J.N., 2004a. Deposition and mobilization of clay colloids in unsaturated porous media. Water Resources Research 40, W08602, doi:08610.01029/02004WR003189. Gao, B., Walter, M.T., Steenhuis, T.S., Hogarth, W.L., Parlange, J.Y., 2004b. Rainfall induced chemical transport from soil t o runoff: theory and experiments. Journal of Hydrology 295, 291 304. Gao, B., Walter, M.T., Steenhuis, T.S., Parlange, J.Y., Richards, B.K., Hogarth, W.L., Rose, C.W., 2005. Investigating raindrop effects on transport of sediment and non sorbed chemicals f rom soil to surface runoff. Journal Of Hydrology 308, 313 320. Gaudet, J.P., Jegat, H., Vachaud, G., Wierenga, P.J., 1977. Solute Transfer, with Exchange between Mobile and Stagnant Water, through Unsaturated Sand. Soil Sci Soc Am J 41, 665 671. Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., Sticher, H., 1998. Transport of in situ mobilized colloidal particles in packed soil columns. Environmental Science & Technology 32, 3562 3569. Guber, A.K., Karns, J.S., Pachepsky, Y.A., Sa deghi, A.M., Van Kessel, J.S., Dao, T.H., 2007. Comparison of release and transport of manure borne Escherichia coli and enterococci under grass buffer conditions. Letters In Applied Microbiology 44, 161 167. Harter, T., Wagner, S., Atwill, E.R., 2000. Col loid transport and filtration of Cryptosporidium parvum in sandy soils and aquifer sediments. Environmental Science & Technology 34, 62 70. Haygarth, P.M., Bilotta, G.S., Bol, R., Brazier, R.E., Butler, P.J., Freer, J., Gimbert, L.J., Granger, S.J., Kruege r, T., Macleod, C.J.A., Naden, P., Old, G., Quinton, J.N., Smith, B., Worsfold, P., 2006. Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues. Hydrological Process es 20, 4407 4413. Heathwaite, L., Haygarth, P., Matthews, R., Preedy, N., Butler, P., 2005. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. Journal of Environmental Quality 34, 287 298.

PAGE 210

210 Kaucner, C., Davies, C.M ., Ferguson, C.M., Ashbolt, N.J., 2005. Evidence for the existence of Cryptosporidium oocysts as single entities in surface runoff. Water Science and Technology 52, 199 204. Kay, D., Edwards, A.C., Ferrier, R.C., Francis, C., Kay, C., Rushby, L., Watkins, J., McDonald, A.T., Wyer, M., Crowther, J., Wilkinson, J., 2007. Catchment microbial dynamics: the emergence of a research agenda. Progress in Physical Geography 31, 59 76. Keller, A.A., Sirivithayapakorn, S., Chrysikopoulos, C.V., 2004. Early breakthrough of colloids and bacteriophage MS2 in a water saturated sand column. Water Resources Research 40, Koelsch, R.K., Lorimor, J.C., Mankin, K.R., 2006. Vegetative treatment systems for management of open lot runoff: Review of literature. Applied Engineering In Agriculture 22, 141 153. Kouznetsov, M.Y., Roodsari, R., Pachepsky, Y.A., Sheltonc, D.R., Sadeghi, A.M., Shirmohammadi, A., Starr, J.L., 2007. Modeling manure borne bromide and fecal coliform transport with runoff and infiltration at a hillslope. Journ al of Environmental Management 84, 336 346. Kretzschmar, R., Barmettler, K., Grolimund, D., Yan, Y.D., Borkovec, M., Sticher, H., 1997. Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resourc es Research 33, 1129 1137. Kretzschmar, R., Schafer, T., 2005. Metal retention and transport on colloidal particles in the environment. Elements 1, 205 210. Lead, J.R., Wilkinson, K.J., 2006. Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry 3, 159 171. Leguedois, S., Ellis, T.W., Hairsine, P.B., Tongway, D.J., 2008. Sediment trapping by a tree belt: processes and consequences for sediment delivery. Hydrological Processes 22, 3523 3534. Lighthill, M.J., Whitham G.B., 1955. ON KINEMATIC WAVES .1. FLOOD MOVEMENT IN LONG RIVERS. Proceedings of the Royal Society of London Series a Mathematical and Physical Sciences 229, 281 316. McCarthy, J.F., McKay, L.D., 2004. Colloid Transport in the Subsurface: Past, Present, and Future Challenges. Vadose Zone Journal, 3:326 337 (2004). McCarthy, J.F., Zachara, J.M., 1989. Subsurface transport of contaminants mobile colloids in the subsurface environment may alter the transport of contaminants. Environmental Science & Technol ogy 23, 496 502.

PAGE 211

211 Morales, V.L., Gao, B., Steenhuis, T.S., 2009. Grain Surface Roughness Effects on Colloidal Retention in the Vadose Zone. Vadose Zone Journal 8, 11 20. Muoz Carpena, R., Fox, G.A., Sabbagh, G.J., 2010. Parameter Importance and Uncertainty in Predicting Runoff Pesticide Reduction with Filter Strips. Journal Of Environmental Quality 39, 630 641. Munoz Carpena, R., Parsons, J.E., 1999. Evaluation of VFSmod, a vegetative filter strips hydrology and sediment filtration model. ASAE/CSAE SCGR Ann ual International Meeting, Toronto, Ontario, Canada, 18 21 July, 1999., 6. Oliver, D.M., Clegg, C.D., Haygarth, P.M., Heathwaite, A.L., 2005. Assessing the potential for pathogen transfer from grassland soils to surface waters. Advances in Agronomy, Vol 85 85, 125 180. Pachepsky, Y.A., Sadeghi, A.M., Bradford, S.A., Shelton, D.R., Guber, A.K., Dao, T., 2006. Transport and fate of manure borne pathogens: Modeling perspective. Agricultural Water Management 86, 81 92. Packman, A.I., Brooks, N.H., Morgan, J.J., 2000. A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resources Research 36, 2351 2361. Parsons, A.J., Brazier, R.E., Wainwright, J., Powell, D.M., 2006. Scale relationships in hillslope runoff and erosion. Earth Surface Processes And Landforms 31, 1384 1393. Perez Ovilla, O., 2010. Modeling runoff pollutant dynamics through vegetative filter strips: a flexible numerical approach. Agricultural & Biological Engineering. University of Florida, Gainesvi lle, p. 195. Ren, J.H., Packman, A.I., 2002. Effects of background water composition on stream subsurface exchange of submicron colloids. J Environ Eng Asce 128, 624 634. Ren, J.H., Packman, A.I., 2005. Coupled stream subsurface exchange of colloidal hemat ite and dissolved zinc, copper, and phosphate. Environmental Science & Technology 39, 6387 6394. Roodsari, R.M., Shelton, D.R., Shirmohammadi, A., Pachepsky, Y.A., Sadeghi, A.M., Starr, J.L., 2005. Fecal coliform transport as affected by surface condition. Transactions of the Asae 48, 1055 1061. Ryan, J.N., Elimelech, M., 1996. Colloid mobilization and transport in groundwater. Colloid Surface A 107, 1 56. Shipley, H.J., Yean, S., Kan, A.T., Tomson, M.B., 2009. Adsorption of arsenic to magnetite nanoparticl es: effect of particle concentration, pH, ionic strength, and temperature. Environmental Toxicology and Chemistry 28, 509 515.

PAGE 212

212 Simunek, J., He, C.M., Pang, L.P., Bradford, S.A., 2006. Colloid facilitated solute transport in variably saturated porous media: Numerical model and experimental verification. Vadose Zone Journal 5, 1035 1047. Socolofsky, S.A.a.J., G. H., 2005. Special topics on mixing and transport in the environment. Steenhuis, T.S., Dathe, A., Zevi, Y., Smith, J.L., Gao, B., Shaw, S.B., DeAlwis, D., Amaro Garcia, S., Fehrman, R., Cakmak, M.E., Toevs, I.C., Liu, B.M., Beyer, S.M., Crist, J.T., Hay, A.G., Richards, B.K., DiCarlo, D., McCarthy, J.F., 2006. Biocolloid retention in partially saturated soils. Biologia 61, S229 S233. Stumm, W., 1977. Ch emical Interaction in Particle Separation. Environmental Science & Technology 11, 1066 1070. Sun, H.M., Gao, B., Tian, Y.A., Yin, X.Q., Yu, C.R., Wang, Y.Q., Ma, L.N.Q., 2010. Kaolinite and Lead in Saturated Porous Media: Facilitated and Impeded Transport. J Environ Eng Asce 136, 1305 1308. Tate, K.W., Pereira, M.D.C., Atwill, E.R., 2004. Efficacy of vegetated buffer strips for retaining Cryptosporidium parvum. Journal of Environmental Quality 33, 2243 2251. Tian, Y.A., Gao, B., Silvera Batista, C., Ziegler K.J., 2010. Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research 12, 2371 2380. Trask, J.R., Kalita, P.K., Kuhlenschmidt, M.S., Smith, R.D., Funk, T.L., 2004. Overland and near surface transport of Cryptospori dium parvum from vegetated and nonvegetated surfaces. Journal Of Environmental Quality 33, 984 993. Tufenkji, N., 2007. Modeling microbial transport in porous media: Traditional approaches and recent developments. Advances in Water Resources 30, 1455 1469. Wallach, R., Jury, W.A., Spencer, W.F., 1988. Transfer of Chemicals from Soil Solution to Surface Runoff a Diffusion Based Soil Model. Soil Sci Soc Am J 52, 612 618. Wallach, R., Vangenuchten, M.T., 1990. A physically based model for predicting solute t ransfer from soil solution to rainfall induced runoff water. Water Resources Research 26, 2119 2126. Walter, M.T., Gao, B., Parlange, J.Y., 2007. Modeling soil solute release into runoff with infiltration. Journal of Hydrology 347, 430 437. Xu, S.P., Gao, B., Saiers, J.E., 2006. Straining of colloidal particles in saturated porous media. Water Resour. Res. 42, W12S16, doi:10.1029/2006WR004948. Yu, C.R., Gao, B., Muoz Carpena, R., 2011. Effect of Dense Vegetation on Colloid Transport and Removal in Surface Runoff. Submitted.

PAGE 213

213 Zevi, Y., Dathe, A., Gao, B., Zhang, W., Richards, B.K., Steenhuis, T.S., 2009. Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength. Water Resources Research 45, W12403.

PAGE 214

214 BIOGRA PHICAL SKETCH Congrong Yu was born in Yunnan, China. In 2003 she obtained the degree of Bachelor of Science in the major of e nvironmental s ciences and in 2006 the Master of Science in e nvironmental m anagement and p lanning, both from Nankai University of Ch ina. In 2006, she came to US and received her Ph.D. in Agricultural and Biological Engineering with a Hydrologic Sciences concentration from the University of Florida in the summer of 2011.