<%BANNER%>

Control of Supersonic Cavity Flow by Leading Edge Blowing

Permanent Link: http://ufdc.ufl.edu/UFE0043052/00001

Material Information

Title: Control of Supersonic Cavity Flow by Leading Edge Blowing
Physical Description: 1 online resource (105 p.)
Language: english
Creator: LUSK,WILLIAM T
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: BLOWING -- CAVITY -- SUPERSONIC
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The supersonic flow over a cavity and its control is a fluid dynamics problem that is becoming increasingly relevant to modern aircraft design. The flow over an open cavity creates large turbulent intensities and large fluctuating pressure loads throughout the inside of the cavity. A method of suppressing these loads is the application of fluidic blowing at the leading edge of the cavity which alters the properties of the shear layer above the cavity. The present study is aimed at understanding the uncontrolled cavity flow as well as the effects of control on the flow over a cavity with a length-to-depth ratio of 6 and a freestream Mach number of 1.44. The control method selected for this study is leading edge blowing through configurations of one continuous slot and segmented arrangements of three and five slots. Time-resolved fluctuating surface pressure measurements were acquired and analyzed using conventional statistical analysis techniques. Specifically this involved analyzing the root mean square, spectral, coherence, and correlation levels. Two- and three-component velocity fields were acquired at various locations in the cavity to examine the streamwise and flow-perpendicular planes. Analysis of the velocity fields indicates that the 5-slot configuration is the most effective of those tested. While all tested configurations showed some reduction in fluctuating pressure loads, this configuration showed the highest values of reduction both in broadband and resonant values with the smallest amount of mass flow being injected through the slots. All configurations were effective at pushing the high turbulence levels of the shear layer up out of the cavity, with the 3- and 5-slot configurations also significantly diminishing the overall turbulence levels. The 3- and 5-slot configurations created streamwise aligned vortical structures that helped to break up the coherent features in the shear layer, thereby reducing the effect of the impingement on the aft wall and impeding the resonance in the cavity.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by WILLIAM T LUSK.
Thesis: Thesis (M.S.)--University of Florida, 2011.
Local: Adviser: Ukeiley, Lawrence S.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0043052:00001

Permanent Link: http://ufdc.ufl.edu/UFE0043052/00001

Material Information

Title: Control of Supersonic Cavity Flow by Leading Edge Blowing
Physical Description: 1 online resource (105 p.)
Language: english
Creator: LUSK,WILLIAM T
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: BLOWING -- CAVITY -- SUPERSONIC
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The supersonic flow over a cavity and its control is a fluid dynamics problem that is becoming increasingly relevant to modern aircraft design. The flow over an open cavity creates large turbulent intensities and large fluctuating pressure loads throughout the inside of the cavity. A method of suppressing these loads is the application of fluidic blowing at the leading edge of the cavity which alters the properties of the shear layer above the cavity. The present study is aimed at understanding the uncontrolled cavity flow as well as the effects of control on the flow over a cavity with a length-to-depth ratio of 6 and a freestream Mach number of 1.44. The control method selected for this study is leading edge blowing through configurations of one continuous slot and segmented arrangements of three and five slots. Time-resolved fluctuating surface pressure measurements were acquired and analyzed using conventional statistical analysis techniques. Specifically this involved analyzing the root mean square, spectral, coherence, and correlation levels. Two- and three-component velocity fields were acquired at various locations in the cavity to examine the streamwise and flow-perpendicular planes. Analysis of the velocity fields indicates that the 5-slot configuration is the most effective of those tested. While all tested configurations showed some reduction in fluctuating pressure loads, this configuration showed the highest values of reduction both in broadband and resonant values with the smallest amount of mass flow being injected through the slots. All configurations were effective at pushing the high turbulence levels of the shear layer up out of the cavity, with the 3- and 5-slot configurations also significantly diminishing the overall turbulence levels. The 3- and 5-slot configurations created streamwise aligned vortical structures that helped to break up the coherent features in the shear layer, thereby reducing the effect of the impingement on the aft wall and impeding the resonance in the cavity.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by WILLIAM T LUSK.
Thesis: Thesis (M.S.)--University of Florida, 2011.
Local: Adviser: Ukeiley, Lawrence S.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0043052:00001


This item has the following downloads:


Full Text

PAGE 8

du/dy

PAGE 13

Basics of Cavity Flow

PAGE 14

b Re/ 0 b Re 0 = = St f L U m M k k

PAGE 15

M Control of Cavity Flow

PAGE 18

M M M 3D cavity model M M M

PAGE 19

M

PAGE 20

Facility and Operating Conditions

PAGE 21

= 1+

PAGE 22

b Re/ 0 L D Cavity Model

PAGE 24

Surface Pressure Measurements

PAGE 25

Particle Image Velocimetry General PIV Setup

PAGE 26

Two Component PIV

PAGE 27

Three Component PIV y

PAGE 28

Uncertainty Pressure Measurement s =1 =164 = 12 .5%.

PAGE 29

E = 13+0. 50 = 13%. PIV Measurements

PAGE 30

= = 3+2+2.5 =4.4%.

PAGE 33

Surface Pressure Root Mean Square = 1 Pi N =

PAGE 34

= 1 1 ( ) Prms Power Spectral Density ( ) = ( ) xi T f

PAGE 35

= = =0,1,, 1 N ( ) = = exp 2 fA k = N/2 fA ( ) = 2 ( ) ( ) = 1 2 [ ( 2 ) 1 ] 1 ( ) ( ) = 0 ( 2 ) nd xy Pxy X Y x y ,= Pxx f Q

PAGE 36

Cross Coherence and Cross Correlation Pxy x y ( ) =( ) ( ) ( ) ( ) = 1 = 1 0 1 N r x y r t x y =0

PAGE 37

Particle Image Velocimetry Outlier Detection

PAGE 38

u v u v

PAGE 40

Statistical Methods and Turbulence = = 1 = = 1 = 1 1 = 1 1 = + = +

PAGE 41

= 1 Proper Orthogonal Decomposition

PAGE 42

u C = ( ) u t snapshot M u i M = 1 M ( ) ( ) ( ) ( ) = P =

PAGE 43

( ) = ( ) ( ) ( ) ( ) (n) = ( ) i i N N < M N N M

PAGE 44

x M

PAGE 45

x/Dy/D 0 2 4 6 -1 0 1 2 x/Dy/D 0 2 4 6 -1 0 1 2 x/Dy/D 0 2 4 6 -1 0 1 2 y/DMode 1 50 snapshots 0 2 4 6 -1 0 1 2 0 0.02 0.04 Mode 2 0 2 4 6 -1 0 1 2 -0.05 0 0.05 Mode 3 0 2 4 6 -1 0 1 2 -0.05 0 0.05 y/D 250 snapshots 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 y/D 500 snapshots 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0.04 y/D 750 snapshots 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 x/Dy/D 1000 snapshots 0 2 4 6 -1 0 1 2 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02

PAGE 47

Initial Surface Pressure Data Analysis C = / V U w C

PAGE 48

Power Spectral Density

PAGE 50

x/D x/D

PAGE 51

Coherence and Correlation

PAGE 52

x/D

PAGE 53

x/D x/D x/D

PAGE 56

x/D x/D x/D x/D x/D

PAGE 59

-6 -4 -2 0 2 4 6 x 10-4 -0.5 0 0.5 1 (s)Rxy -6 -4 -2 0 2 4 6 x 10-4 -0.5 0 0.5 1 (s)Rxy -6 -4 -2 0 2 4 6 x 10-4 -0.5 0 0.5 1 (s)Rxy -6 -4 -2 0 2 4 6 x 10-4 -0.5 0 0.5 1 (s)Rxy

PAGE 60

Two Component PIV z Centerline Planes

PAGE 62

=

PAGE 65

OffCenterline Planes z/D z/D

PAGE 68

Three Component PIV x x x/D x/D

PAGE 69

Mean Velocity U x/D z/D z/D

PAGE 70

z/D z/D

PAGE 71

Fluctuating Velocity x/D

PAGE 72

x/D z/D

PAGE 73

U x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1

PAGE 74

U x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3

PAGE 75

U x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15

PAGE 76

x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0 x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0 x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0 x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0

PAGE 77

0 du/dy

PAGE 78

y/DBaseline 0 2 4 6 -1 0 1 2 0 0.02 0.04 y/D 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 y/D 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/Dy/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05 1-slot 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05 3-slot 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05 5-slot 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05

PAGE 79

y/DBaseline 0 2 4 6 -1 0 1 2 0 0.01 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/Dy/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 1-slot 0 2 4 6 -1 0 1 2 0 0.01 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 3-slot 0 2 4 6 -1 0 1 2 0 0.01 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 5-slot 0 2 4 6 -1 0 1 2 0 0.01 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02

PAGE 80

z/D z/D z/D U x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 x/Dy/D 0 2 4 6 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1

PAGE 81

z/D z/D z/D U x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.1 0.2 0.3

PAGE 82

z/D z/D z/D U x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15 x/Dy/D 0 2 4 6 -1 0 1 2 0 0.05 0.1 0.15

PAGE 83

z/D z/D z/D x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0 x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0 x/Dy/D 0 2 4 6 -1 0 1 2 -0.03 -0.02 -0.01 0

PAGE 84

0

PAGE 85

y/DBaseline 0 2 4 6 -1 0 1 2 0 0.02 0.04 y/D 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 y/D 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/Dy/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05 3-slot 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05 5-slot 0 2 4 6 -1 0 1 2 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 0 2 4 6 -1 0 1 2 -0.06 -0.04 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.04 -0.02 0 0.02 0.04 x/D 0 2 4 6 -1 0 1 2 -0.05 0 0.05

PAGE 86

y/DBaseline 0 2 4 6 -1 0 1 2 0 0.01 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 y/D 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/Dy/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 3-slot 0 2 4 6 -1 0 1 2 0 0.01 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02 5-slot 0 2 4 6 -1 0 1 2 0 0.01 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 0 0.02 0 2 4 6 -1 0 1 2 -0.02 -0.01 0 0.01 x/D 0 2 4 6 -1 0 1 2 -0.02 0 0.02

PAGE 87

w v x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1

PAGE 88

w v x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1

PAGE 89

w,v x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1 z/Dy/D -2 -1 0 1 2 -1 0 1 2 -0.2 0 0.2 0.4 0.6 0.8 1

PAGE 90

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25

PAGE 91

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25

PAGE 92

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 0.2 0.25

PAGE 93

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0.05 0.1 0.15

PAGE 94

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15

PAGE 95

x/D x/D x/D x/D x/D x/D U. z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0.05 0.1 0.15 z/Dy/D -2 -1 0 1 2 -1 0 1 2 0 0.05 0.1 0.15

PAGE 96

Summary of Resul ts

PAGE 98

Future Work

PAGE 101

AIAA Journal Random Data Journal of Fluid Mechanics Journal of Computational and Graphical Statistics Progress in Aerospace Sciences Applied Optics

PAGE 102

Experiments in Fluids Journal of Fluid Mechanics Turbulence, Coherent Structures, Dynamical Syst ems, and Symmetry Journal of Chemometrics Journal of Fluid Mechanics 5th International Symposium on Particle Image Velocimetry Journal of Aircraft Atmospheric Turbulence and Radio Wave Propagation

PAGE 103

Physical R eview E Physics of Fluids AIAA Journal Measurement Science and Technology Journal of Fluids Engineering Annual Review of Fluid Mechanics Physics of Fluid s A Journal of Aircraft AIAA Journal Quarterly of Applied Mathematics Journal of Aircraft

PAGE 104

AIAA Journal AIAA Journal Journal of Aircraft Chemometrics and Intelligent Laboratory Systems AIAA Journal