<%BANNER%>

Modern Threats To The Lepidoptera Fauna In The Florida Ecosystem

Permanent Link: http://ufdc.ufl.edu/UFE0042932/00001

Material Information

Title: Modern Threats To The Lepidoptera Fauna In The Florida Ecosystem
Physical Description: 1 online resource (182 p.)
Language: english
Creator: PARIS,THOMSON M
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: BIOLOGICAL -- CONTROL -- INTRODUCED -- LARVA -- LEPIDOPTERA -- NONTARGET -- PARASITOID -- PESTICIDE -- RURAL -- TACHINIDAE -- URBAN
Entomology and Nematology -- Dissertations, Academic -- UF
Genre: Entomology and Nematology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In the present study, I examine the possible threats to the Lepidoptera fauna of Florida. Factors affecting the Lepidoptera fauna in Florida ecosystems include native and exotic parasitoids. Over 3,000 larvae of Lepidoptera were sampled in Alachua, Broward, and Miami-Dade Counties in August 2009 -September 2010. The larvae were reared in the lab. To-date, a total of 596 parasitoids were obtained from the rearings. The survey provided information about the prevalence of parasitoids on select native species and populations of Lepidoptera in Florida. The differences between host-parasitoid interactions in urban and rural settings and the possible effect of pesticides on these interactions are reported.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by THOMSON M PARIS.
Thesis: Thesis (M.S.)--University of Florida, 2011.
Local: Adviser: Sourakov, Andrei.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2013-04-30

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0042932:00001

Permanent Link: http://ufdc.ufl.edu/UFE0042932/00001

Material Information

Title: Modern Threats To The Lepidoptera Fauna In The Florida Ecosystem
Physical Description: 1 online resource (182 p.)
Language: english
Creator: PARIS,THOMSON M
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: BIOLOGICAL -- CONTROL -- INTRODUCED -- LARVA -- LEPIDOPTERA -- NONTARGET -- PARASITOID -- PESTICIDE -- RURAL -- TACHINIDAE -- URBAN
Entomology and Nematology -- Dissertations, Academic -- UF
Genre: Entomology and Nematology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In the present study, I examine the possible threats to the Lepidoptera fauna of Florida. Factors affecting the Lepidoptera fauna in Florida ecosystems include native and exotic parasitoids. Over 3,000 larvae of Lepidoptera were sampled in Alachua, Broward, and Miami-Dade Counties in August 2009 -September 2010. The larvae were reared in the lab. To-date, a total of 596 parasitoids were obtained from the rearings. The survey provided information about the prevalence of parasitoids on select native species and populations of Lepidoptera in Florida. The differences between host-parasitoid interactions in urban and rural settings and the possible effect of pesticides on these interactions are reported.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by THOMSON M PARIS.
Thesis: Thesis (M.S.)--University of Florida, 2011.
Local: Adviser: Sourakov, Andrei.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2013-04-30

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0042932:00001


This item has the following downloads:


Full Text

PAGE 1

1 MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011

PAGE 2

2 2011 Thomson Paris

PAGE 3

3 To my mother and father who helped foster my love for butterflies

PAGE 4

4 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement th roughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Macks Fish Camp, Susan Casey and Caseys Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES ...........................................................................................................................8 LIST OF FIGUR ES .........................................................................................................................9 ABSTRACT ...................................................................................................................................13 CHAPTER 1 INTRODUCTION ..................................................................................................................14 Threats to the Florid a Ecosystem ...........................................................................................14 Project Objectives ...................................................................................................................15 2 INVASIVE FIRE ANTS, SOLENOPSIS INVICTA AND NATIVE PLANTS IN FLORIDA ...............................................................................................................................16 Invasive Fire Ants ...................................................................................................................16 Exotic Plants ...........................................................................................................................19 3 PARASITOIDS OF LEPIDOPTERA PARASITOIDS AND THEIR EFFECT ON NATIVE POPULATIONS IN FLORIDA ..............................................................................21 Biological Control Agents ......................................................................................................21 Biological Control ...........................................................................................................21 Diptera: Tachinidae .........................................................................................................22 Objective ..........................................................................................................................23 Materials and Methods ...........................................................................................................23 Natural History and Natural Enemies of Non Target Species ........................................23 Natural History of Lepidoptera Species Surveyed for Parasitoidism in Florida in 20092010. ...................................................................................................................24 Gulf Fritillary, Agraulis vanillae (Linnaeus) (Lepidoptera: Nymphalidae) .............24 Zebra Longwing, Heliconius charithonia (Linnaeus) (Lepidoptera: Nymphalidae). ......................................................................................................26 Long Tailed Skipper, Urbanus proteus (Linnaeus) (Lepidoptera: Hesperiidae) .....28 Dorantes Longtail. Urba nus dorantes (Stoll) (Lepidoptera: Hesperiidae) ...............30 Monarch, Danaus plexippus Linnaeus (Lepidoptera: Nymphalidae) ......................31 Fall Webworm Hyphantria cunea Drury (Lepidoptera: Arctiidae) ........................36 Eastern tent caterpillar, Malacosoma americanum (Fabricius) (Lepidoptera: Lasiocampidae) .....................................................................................................40 Parasitoid Checklists for Six Additional Lepidoptera Hosts Collected During Survey ..........................................................................................................................43

PAGE 6

6 Tawny emperor, Asterocampa clyton (Boisduval & Leconte) (Lepidoptera: Nymphalidae) .......................................................................................................43 Polydamas Swallowtail, Battus polydamas lucayus (Rothschild & Jordan) (Lepidoptera: Papilionidae) ..................................................................................44 Mourning Cloak, Nymphalis anti opa (Linnaeus) Lepidoptera: Nymphalidae .........44 Brazilian Skipper, Calpodes ethlius (Stoll) (Lepidoptera: Hesperiidae) ..................45 White Marked Tussock Moth, Orgyia leucostigma (JE Smith) (Lepidoptera: Noctuidae) .............................................................................................................46 Survey Protocol ......................................................................................................................47 Collecting Localities ........................................................................................................47 Collecting and Rearing ....................................................................................................47 Specimen Preservation and Identification .......................................................................48 Phot ography .....................................................................................................................49 Results and Discussion ...........................................................................................................49 4 DIFFERENCES BETWEEN HOSTPARASITOID RELATIONSHIPS IN URBAN AND RURAL SETTINGS .....................................................................................................66 U rbanization and Parasitoidism ..............................................................................................66 The Effect of Urbanization on Biodiversity ....................................................................66 Hypotheses for the Effect of Urbanization on Parasitoidism rates ..................................67 Objective ..........................................................................................................................69 Materials and Methods ...........................................................................................................69 Habitat Types ...................................................................................................................69 Tropical hammock ....................................................................................................69 Pine flatwood ............................................................................................................69 Freshwater marshes ..................................................................................................70 Disturbed habitat ......................................................................................................70 Beaches .....................................................................................................................70 Mangrove .................................................................................................................71 Urban versus Rural Settings ............................................................................................71 Data Analysis ...................................................................................................................71 Results .....................................................................................................................................73 Urban and Rural Settings .................................................................................................73 Parasitoidism Ratios in Rural Versus Urban Habitats .....................................................74 Gainesville, FL .........................................................................................................74 Miami, FL .................................................................................................................75 Discussion ...............................................................................................................................75 5 POSSIBLE EFFECTS OF PESTICIDES ON THE HOST PARASITOID RELATIONSHIPS OF LEPIDOPTERA AND PARASITOIDS ...........................................96 Pesticides and Parasitoids .......................................................................................................96 Are Pesticides Negative or Positive? ...............................................................................96 Response of Caterpillars to Pesticides .............................................................................96 Ef fect of Pesticides on Parasitoids ..................................................................................97 Materials and Methods ...........................................................................................................97

PAGE 7

7 Collection and Rearing ....................................................................................................97 Locations .........................................................................................................................97 Results .....................................................................................................................................99 Discussion .............................................................................................................................100 6 DISCUSSION AND CONCLUSIONS ................................................................................113 APPENDIX: TACHINIDAE:DIPTERA OF FLORIDA AND THEIR HOSTS ........................116 Description of Checklist .......................................................................................................116 Checklist of Diptera: Tachinidae in Florida and their Known Hosts ...................................117 LIST OF REFERENCES .............................................................................................................165 BIOGRAPHICAL SKETCH .......................................................................................................182

PAGE 8

8 LIST OF TABLES Table page 31 Life Table for Hyphantria cunea at NS1 in the First generation of 1967 (a fter Ito & Miyahsita 1968).Note: L I, LII, etc. mean the first instar larva, secondinstar larva, etc. ......................................................................................................................................50 32 Collection localities for survey of parasitoids in Florida. ..................................................51 33 Taxa, whose larvae were collected and reared as part of parasitoid study in Florida in 20092010. .........................................................................................................................54 34 Diversity of Parasitoids affecting Lep idoptera hosts. ........................................................55 41 Habitat quantification for YMCA Road Gainesville, FL Scale: 3128 ft per 2 cm. ...........80 42 Description of Habit at types. .............................................................................................81 43 Sample sizes and parasitoid percentages (parasitoids/total adults eclosed) for each collection site in Gainesville and Miami, FL .....................................................................82 51 Parasitoid percentage in both pesticide and non pesticide settings in Alachua county. ..108 52 Parasitoid percentage and diversity in Pesticide and nonPesticide settin gs in Florida counties MiamiDade and Broward. ................................................................................111 53 Sample sizes and parasitoid percentages (parasitoids/total adults eclosed) for each collection site in Gainesville and Miami, FL ...................................................................112

PAGE 9

9 LIST OF FIGURES Figure page 31 Map of Gainesville with collection sites labled. See Table 3 1 for names of collection sites. ...................................................................................................................52 32 Map of Miami, FL with collection sites labeled by letters. See Table 3 1 for names of collection sites. ...................................................................................................................53 33 Chrysotachina sp. 1, voucher # 833, (Diptera: Tachinidae) a larval parasitoid of the Longtail Skipper Urbanus proteus (Lepidoptera: Hesperiidae). .......................................56 34 Chrysotachina sp. 2,voucher # 147, (Diptera: Tachinidae) a larval parasitoi d of the Longtail Skipper, Urbanus proteus (Lepidoptera: Hesperiidae). ......................................56 35 Aplomya theclarum,voucher # 1467, (Diptera: Tachinidae) a larval parasitoid of the Appalachian Azure, Celastrina ne glectamajor (Lepidoptera: Lycaenidae). .....................57 36 Tachinidae sp. 4.voucher # 805, (Diptera: Tachinidae)a larval parasitoid of theGulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae). ................................................57 37 Tachinidae sp. 5, voucher # 807, (Diptera: Tachinidae) a larval parasitoid of theDorantes Longtail, Urbanus dorantes (Lepidoptera: Hesperiidae). .............................58 38 Tachinidae sp. 6, voucher # 1460, (Diptera: Tachinidae) a larval parasitoid of theMonarch, Danaus plexippus (Lepidoptera: Nymphalidae) ...........................................58 39 Tachinidae sp. 7, voucher # 1168, (Diptera: Tachinidae)a larval parasitoid of the: Eastern Tent Caterpillar Moth, Malacosoma americanum (Lepidoptera: Lasiocampidae) .................................................................................................................59 310 Tachinidae sp. 8, voucher # 1148, (Dipte ra: Tachinidae) a larval parasitoid of host White marked Tussock Moth, Orgyia leucostigma (Lepidoptera: Lymantriidae). ...........59 311 Tachinidae sp. 9,voucher # 1337, (Diptera: Tachinidae)a larval pa rasitoid of the Mourning Cloak, Nymphalis antiopa ( Lepidoptera: Nymphalidae). .................................60 312 Tachinidae sp. 10.voucher # 807, (Diptera: Tachinidae) a larval parasitoid of theDorantes Longtail, Urbanus dorantes (Lepidoptera: Hesperiidae), ..............................60 313 Campopleginae sp. 1,voucher # 3019, (Hymenoptera: Ichneumonidae) a larval parasitoid of the Eastern Tent Caterpillar, Moth, Malacosoma americanum (Lepidoptera: Lasiocampidae) ...........................................................................................61 314 Campopleginae sp. 2,voucher # 1470, (Hymenoptera: Ichneumonidae) a larval parasitoid of theAppalachian Azure, Celastrina neglectamajor ( Lepidoptera: Lycaen idae). .......................................................................................................................61

PAGE 10

10 315 Chalcidoidea sp. 1, voucher # 1321, (Hymenoptera: Chalcidoidea) a larval parasitoid of theTussock moth (Lepidoptera: Lymantriidae) .............................................................62 316 Mesochorinae sp 1, voucher # 981, (Hymenoptera: Ichneumonidae) a larval parasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae). ................62 317 Braconidae sp. 1, voucher # 1046, (Hymenoptera: Braconidae) a larval parasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae). .....................................63 318 Chalcidoidea sp. 1, voucher # 1101, (Hymenoptera: C halcidoidea) a larval parasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae). .................................63 319 Chalcidoidea sp. 2, voucher # 1453, (Hymenoptera: Chalcidoidea) an egg parasitoid of t he Cecropia silkmoth, Hyalophora cecropia (Lepidoptera: Saturniidae). ...................64 320 Chalcidoidea sp. 3, voucher # 1454, (Hymenoptera: Chalcidoidea) a larval parasitoid of theFall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae). ..................................64 321 Chalcidoidea sp. 4, voucher # 1510, (Hymenoptera: Chalcidoidea) a larval parasitoid of theGulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae). ...............................65 322 Chalcidoidea sp. 5, voucher # 2402, (Hymenoptera: Chalcidoidea) a parasitoid of the Gulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae). ........................................65 41 Land usage in the United States from 1960 to 2000 (after Stein et al. 2000). ..................78 42 Habitat quantification via Satellite Images. August 1, 2010, Google Ear th, Scale: 3130 ft. per 2 cm, 12 cm x 18 cm (total area 216 cm2) Total Area: 18.98 mi2 ..................79 43 Comparison and contrast of the range of percentages of three characters (streets, buildings, and t rees/shrubs) found in thirteen collection areas. .........................................83 44 Habitat quantification for YMCA Road Dec 17, 2007, Google Earth, Scale 3128 ft (. 216 cm2, 12 cm x 18 cm) ...................................................................................................84 45 Habitat quantification for SW 63rd AveDec 17, 2007, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm ) ..................................................................................................84 46 Habitat quantification for 301 Shell s tation Dec 17, 2007, Google Earth, Scale 3134 ft. (216 cm2, 12 cm x 18 cm) .............................................................................................85 47 Habitat quantification for Stadium by pool Dec 17, 2007, Google Earth, Scale 3131 ft. (216 cm2, 12 cm x 18 cm ) .............................................................................................85 48 Habitat quantification for NATL Dec 17, 2007, Google Earth, Scale 3134 ft. (216 cm2, 12 cm x 18 cm ) ..........................................................................................................86 49 Habitat quant ification for NW 98 St Dec 17, 2007, Google Earth, Scale 3128 ft. (216 cm2, 12 cm x 18 cm ) ..........................................................................................................86

PAGE 11

11 410 Habitat quantification for Santa Fe Dec 17, 2007, Google Earth, Scale 3131 ft. (216 cm2, 12 c m x 18 cm ) ..........................................................................................................87 411 Habitat quantification for Kanapaho Park Dec 17, 2007, Google Earth, Scale 3128 ft. (216 cm2, l12 cm x 18 cm ) .................................................................................................87 412 Habitat quantification for Everglades Holiday Park April 1, 2010, Google Earth, Scale 3135 ft. (216 cm2, 12 cm x 18 cm ) ...........................................................................88 413 Habitat quantification for South Florida Water Manageme nt April 1, 2010, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm ) ................................................................88 414 Habitat quantification for Casey's Corner Nursery August 1, 2010, Google Earth, Scale 3133 ft. (216 cm2, 12 cm x 18 cm ) ...........................................................................89 415 Habitat quantification for UF Tropical Research Station August 1, 2010, Google Earth, Scale 3133 ft. (216 cm2, 12 cm x 18 cm ) ................................................................89 416 Habitat quantification for Abandoned Plot August 1, 2010, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm) .............................................................................................90 417 Habitat quantification for Bill Baggs Cape Florida State Park April 1, 2010, Google Earth, Scale 3128 ft ............................................................................................................90 418 Percentage of parasitoids (Diptera: Tachinidae) affecting hosts Agraulis vanillae in urban and rural settings in Gainesville, FL from October to December 2009 ...................91 419 Percentage of parasitoids (Diptera:Tachinidae and *Hymenoptera:Ichneumonidae) affecting hosts Hyphantria cunea in urban and rural settings in Gainesville, FL in July 2010 ............................................................................................................................92 420 Comparison of parasitoids affecting Hyphantrea cunea in April and July in rural Gainesville, FL. ..................................................................................................................93 421 Percentage of parasitoids (Diptera: Tachinidae) affecting hosts Urbanus proteus in urban and rural settings in Gainesville, FL from September to October in 2009 and from August to September in 2010 ....................................................................................94 422 Percentage of parasitoids (Hymenoptera: Chalcidae) affecting hosts Agraulis vanillae in urban and rural settings in Miami, FL from April to September in 2010. .......95 51 Map of Gai nesville with pesticide spray zones. ...............................................................102 52 Map of Miami with 2009 and 2010 pesticide spray zones. .............................................103 53 Percentage of parasi toids (Diptera: Tachinidae) affecting hosts Agraulis vanillae in pesticide and nonpesticide settings in Gainesville, FL from October to December 2009..................................................................................................................................104

PAGE 12

12 54 Percentage of parasitoids (Dipte ra: Tachinidae) affecting hosts Urbanus proteus in pesticide and nonpesticide settings in Gainesville, FL from September to October in 2009 and from August to September in 2010 ..................................................................105 55 Percen tage of parasitoids (Diptera:Tachinidae and*Hymenoptera:Ichneumonidae) affecting hosts Hyphantria cunea in pesticide and nonpesticide settings in Gainesville, FL in July 2010 ............................................................................................106 56 Percenta ge of parasitoids (Hymenoptera: Chalcidae) affecting hosts Agraulis vanillae in pesticide and nonpesticide settings in Miami, FL from April to September in 2010. ..........................................................................................................107

PAGE 13

13 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By Thomson Mason Paris May 2011 Chair: Andrei Sourakov Major: Ent omology and Nematology In the present study, I examine the possible threats to the Lepidoptera fauna of Florida. Factors affecting the Lepidoptera fauna in Florida ecosystems include native and exotic parasitoids. Over 3,000 larvae of Lepidoptera were sam pled in Alachua, Broward, and Miami Dade Counties in August 2009 September 2010. The larvae were reared in the lab. Todate, a total of 596 parasitoids were obtained from the rearings. The survey provided information about the prevalence of parasitoids on select native species and populations of Lepidoptera in Florida. The differences between host parasitoid interactions in urban and rural settings and the possible effect of pesticides on these interactions are reported.

PAGE 14

14 CHAPTER 1 INTRODUCTION Threats to the Florida Ecosystem Florida has significant pressure on its ecosystem due to a variety of factors that include urbanization, pesticide and herbicide usage, and the introduction of nonnative species. These factors have led to some anecdotal reports of a decrease in Florida Lepidoptera species, especially in South Florida. Several isolated refuges within the city limits of certain south Florida cities (for example, Castellow Hammock Park and Camp Owaissa Park) seem to possess a greater butterfly diversity than large tracts of protected land (for example, Biscayne National Park and Everglades National Park) (Minno & Minno 2009). There are anecdotal observations that butterfly diversity might be higher in relatively urban areas that are sprayed for mosquitoes than in the unsprayed areas (Daniels pers. comm. 2010; Minno & Minno 2009). The impact of urbanization on an ecosystem is not only species extermination, but also the alteration of the balance of the ecosystem. Florida experiences a high influx of exotic species (Frank & McCoy 1995). Biological control agents are one type of nonnative species introduced into the Florida ecosystem (Frank & McCoy 1995). While their negative effect on the native species has not been found in Florida, further north, the introduced parasitoid Compsilura concinnata (Diptera: Tachinidae) has had a negative impact on the local Saturniidae population (Boettner et al.2000, Kellog et al .2003). In 1993, Frank and McCoy published a list of all known introduced insects into Florida, whi ch included 351 invertebrates (1993). One hundred and fifty four were reported as being established in Florida (Frank & McCoy 1993). By excluding the list of established insects to those that were only introduced for biological control, Frank and McCoy red uced the list to 60 invertebrates (2007). After a thorough examination of biological records of each of the 60 species, 10 were found to be a potential risk to nontarget populations. None of the

PAGE 15

15 ten detrimental biological agents were found to have had a m arked negative effect on nontarget populations (Frank & McCoy 2007). Project Objectives The influence of factors like parasitoids and urbanization on the Florida ecosystem is the focus of this study. Both direct and indirect effects are evaluated in this study. Indirect effects with respect to urbanization involve factors,such as presence of exotic parasitoids and fire ants, that have established in new niches due to urbanization. These nonnatives outcompeted old occupants in recently formed urban habita ts. Indirect effects also include the impact of pesticides on insects, accidental invaders (fire ants), exotic plants, and native parasitoids as well as nonnative parasitoids. Some parasitoids might have been introduced intentionally, to control the accid ental invaders, such as Lymantria dispar (Linnaeus) (Lepidoptera:Lymantriidae). Direct effects include pesticides usage and intentional habitat destruction during development. The goal of my project is to explore possible variation in parasitism of native butterfly species caused by native and exotic parasitoids in a variety of habitats throughout Florida, with special emphasis on urban and rural areas, as well as areas with heavy versus little or no mosquito spraying. Additionally, I am providing a compre hensive review of scientific literature pertaining to harmful effects of introduced arthropods on Florida Lepidoptera populations.

PAGE 16

16 CHAPTER 2 INVASIVE FIRE ANTS, SOLENOPSIS INVICTA AND NATIVE PLANTS IN FLORIDA Invasive Fire Ants The state of Florida conta ins the highest number of exotic ants (52 species) in the United States (Deyrup et al. 2000). The exotic ants have varying degrees of impact on Florida ecosystems. Several of the more intrusive and devastating species to Florida ecosystems include Solenops is invicta Buren (Hymenoptera: Formicidae), Pseudomyrmex gracilis (Fabricius) (Hymenoptera: Formicidae), Camponotus planatus (Roger) (Hymenoptera: Formicidae), Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae) (Deyrup et al. 1984 2000). Exotic ants were introduced to Florida initially via the importation of exotic plants and as stowaways in cargo ships. Because of higher monitoring efforts of plants imported to the US, more recent exotic ant invasions have occurred via airplanes (Deyrup et al. 2000). One of the most successful invaders to enter the United States, accidentally, is the Red Imported Fire Ant, Solenopsis invicta. Approximately 50 years after its introduction into the United States, S. invicta inhabits 150 million hectares (Meer et al. 1986). The origin of S. invicta in the United States was Mobile, Alabama around 1933 via a cargo ship. Solenopsis invictas establishment of a beachhead in Mobile, Alabama was preceded by the arrival of its close relative, the Black Fire Ant, Solenopsis richteri Buren (Hymenoptera: Formicidae), in 1928 (Tschinkel 2006). Solenopsis invicta was spread by the shipment of plant material to a variety of nurseries and by 1953 it had been identified in 10 states and 109 counties in the southeastern part of the Unite d States (Tschinkel 2006). King and Tschinikel (2008) aptly point out that S. invicta is not a driver of ecological change but merely a passenger. Solenopsis invictas success upon arriving in new territories stems from its high reproductive capacity. Each colony of fire ants can produce 3 to 5 thousand queens per colony per year (Lofgren and Meer 1986). Further

PAGE 17

17 enhancing S. invictas ability for colonization is the fact that many of its natural enemies, such as parasitoids and pathogens, are lost upon col onization (Yang et al. 2010). As S. invicta has multiplied and expanded across the southeastern region of the United States, questions have arisen regarding its impact on newly invaded ecosystems. In some cases, S. invicta has been shown to actually reduce the population of some pest species, such as, the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), the horn fly, Haematobia irritans (Linnaeus) (Diptera: Muscidae) and the tobacco budworm, Heliothis virescens (Fabricius) (Lep idoptera:Noctuidae) (Wojcik 2001). Solenopsis invicta is relatively nonspecific in it prey selection, which has had a detrimental effect on the beneficial arthropod communities where S. invicta has invaded (Eubanks et al. 2002; Forys et al. 2001; Morrison 2002; Porter et al. 1990; Risch 1982; Vinson 1990; Wojcik 2001). Allen et al. (2001) found that a general reduction in the arthropod population and subsequent reduction in the population of the Loggerhead shrike, Lanius ludovicianus Linnaeus (Passeriform es: Laniidae), was linked to the presence of S. invicta. Other studies point to S. invicta having a more moderate effect on the ecosystem (Morrison & Porter 2003). It appears, that the initial negative effects of S. invicta in a newly invaded ecosystem may become more moderate over time (Morrison 2002). Morrison found that otherwise identical plots that possess S. invicta had greater ant and arthropod diversity then those plots that possessed less S. invicta (2002). The negative impacts of S. invicta on Le pidoptera in Florida have been reported in several studies (e. g., Kenis et al. 2009). Forys et al.estimated the potential negative effect of S. invicta on Heraclides aristodemus ponceanus (Schaus) (Lepidoptera: Papilionidae) by studying the egg, larvae, and pupa life stages of Heraclides cresphontes (Cramer) (Lepidoptera: Papilionidae) in the Florida Keys. The investigators chose H. cresphontes as their study model for H. a.

PAGE 18

18 ponceanus (Schaus) because both feed on plants in the family Rutaceae and both are members of the same lepidotperan family, Papilionidae. The investigators concluded that S. invicta was likely to be endangering the survival of H. a. ponceanus in the Florida Keys (Forys et al. 2001). Further research is needed directly with H. a. ponceanus and S. invicta to be able to make more conclusive statements regarding S. invictas affect on H. a. ponceanus. The interaction between the foraging S. invicta at each of the three life stages (eggs, larvae, and pupae) of H. a. ponceanus could be variabl e and perhaps even at some stage beneficial. For example, the Cyclargus thomasi bethunebakeri Comstock & Huntington was also found to be at risk from predation by S. invicta, but after further study was observed receiving ant tending behaviors in the field (Trager & Daniels 2009). Solenopsis invicta has hampered Lepidoptera larvae from becoming successfully established as biological control agents against invasive water lettuce, Azolla caroliniana Willd. (Azollaceae: Salviniales) (Cuda et al. 2007; Cuda et al. 2004; Dray Jr. 2001).Stemming the negative effect of Solenopsis invicta has been attempted through the use of pesticides. Bacillus thuringiensis Berliner pesticides were used to control S. invicta in an area where Lepidoptera were being used as biolog ical control agents to control an invasive aquatic weed Azolla carolinana Willd. (Azollaceae: Salviniales). Following the application of the pesticide, and subsequent reduction in the population of S. invicta, the Lepidoptera biological control agents were able to flourish and successfully control the invasive weed (Cuda et al. 2004). Meer et al. (1986) promote the benefits of an integrated pest management approach for the control of S. invicta 1986). As a method for management, Forys et al. (2001) found t hat insecticide treatments using Andro for S. invicta were ineffective. Instead of insecticides, cultural practices such as habitat restoration of the Florida Keys hardwood hammock were cited as the

PAGE 19

19 preferred long term method for S.invictas control in the Florida Keys (Forys 2001). Forys et al. (2001) found that there was a greater abundance of S. invicta where the habitat had undergone modification, which included paths, roads, and powerlines. Exotic Plants As in the case with nonnative insects, the introduction of nonnative plants has resulted in changes to the ecosystems in south Florida. There are several examples of Lepidoptera benefitting from the exploitation of introduced plants. Erynnis baptisiae (Forbes) (Lepidoptera: Hesperiidae) has made a tr ansition from its traditional host Wild Indigo, Baptisia tinctoria (Linnaeus) (Fabales: Fabaceae), to an invasive plant Crown Vetch, Securigera varia (Linnaeus) (Fabales: Fabaceae),a plant originally used to stem soil erosion along roadsides (Department of Conservation and Recreation). Staphylus hayhurstii (Edwards) (Hesperiidae: Lepidoptera), has expanded its range to the north, because of the introduction of Lambs quarters, Chenopodium album Linnaeus (Caryophyllales: Amaranthaceae). Chenopodium album was introduced into the United States accidentally through contaminated agricultural seed packets (Schweintz 1832; Mack & Erneberg 2002). Despite the above examples, most of the exotic plant introductions to the United States have not benefited butterflies. Some plant introductions have been detrimental to butterflies. Garlic weed, Alliaria petiolata (Bieb.) Cavara & Grande (Brassicales: Brassicaceae), has chemical markers that induce a higher attractiveness to the West Virginia white butterfly, Pieris virginiensis Edwards (Lepidoptera: Pieridae:) than its typical host plants Dentaria diphylla and Dentaria laciniata (Brassicales: Brassicaceae) (Cech and Tudor 2005). Alliaria petiolata was probably introduced into the United States by settlers as a food or med icinal crop (Nuzzo 1993). Pieris virginiensis larvae that develop on this exotic host die by the 1st or 2nd instar. Likewise, Vincetoxicum nigrum Kartesz & Gandhi(Gentianales: Asclepiadaceae) causes mortality to larvae of Danaus plexippus (Linnaeus) (Nympha lidae:

PAGE 20

20 Lepidoptera) (Casagrande & Dacey 2001; Haribal & Renwick 1998). Vincetoxicum nigrum which outcompetes native milkweeds, was first introduced into the United States from Europe in gardens as a weed, in 1882 between New England and Pennsylvania (Shee ly & Dudley 1996). The train of invasive species starts with Chinese tallow, Sapium sebiferum Melaleuca, Melaleuca quinquenervia, Brazilian pepper tree, Schinus terebinthifolius Australian pine, Casuarina equisetifolia, Chinaberry, Melia azedarach,and mimosa tree, Albizia julibrissin etc.

PAGE 21

21 CHAPTER 3 PARASITOIDS OF LEPIDOPTERA PARASITOIDS AND THEIR EFFECT ON NATIVE POPULATIONS IN FLORIDA Biological Control Agents Biological Control Unlike the accidental introduction of ants, many biological control agents have been purposefully introduced into Florida over the past hundred years. Frank and McCoy (1993) report that of the 351 potential biological control agents brought into Florida, 154 were released into the wild. Of the insects released, 24.5 % were targe ting insect pests, the remainder targeted weedy plants. Of the total number of insect pests targeted, 24% were Lepidoptera (Frank & McCoy 1993). In an analysis of the potential risk of classical biological control, it was found that 24 agents could threate n nontarget species of insects in their host range. Of these 24 agents, 10 agents were implicated to have caused population changes in nontarget species and four agents were shown to affect non target species populations (Frank & McCoy 2007). These four species included Cotesia flavipes Cameron (Hymenoptera: Braconidae), Aphytis holocanthus DeBache (Hymenoptera: Aphelinidae), Coccinella septempunctata DeBach (Coleoptera: Coccinellidae), Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) (Frank & McCoy 2007). The ability of exotic species to exploit native arthropod communities is evident in Hawaii (Kaufman & Wright 2009). Of the parasitoids affecting Lepidoptera larvae collected in the field in Hawaii, 84% were biological control agents. Among the larvae that were collected in the field in Hawaii, as much as 21% were parasitized (Henneman & Memmott 2001). It should be noted that all of these biological control agents were generalists released before 1945. It is important to note that following 1945, in Hawaii, there was a significant change in biological control practices from releasing generalist parasitoids to only releasing specialist parasitoids into the targeted ecosystem (Henneman & Memmott 2001).

PAGE 22

22 The biological control agent, Compsilura concinnata (Meigen) (Diptera: Tachnidae) was released to control 13 pest species among which was the gypsy moth, Lymantria dispar (Linnaeus) (Lepidoptera: Lymantriidae) in New England in 1918 (Boettner et al .2000). As in the biological control agents of Ha waii, Compsilura concinnata is a generalist parasitoid and developed a non target host range, which included silk moths, family Saturniidae. The effects of this newly formed parasitoid host relationship have been linked to the marked decline of several spe cies of silk moths in New England (Boettner et al. 2000). Kellog et al (2003) found parasitism by the parasitoid C. concinnata of Actias luna Linnaeus (Lepidoptera: Saturniidae) larvae to be between zero and 62%. Diptera: Tachinidae Though parasitic Dipt era in general are not considered to be as effective parasites as parasitic Hymenoptera (Askew 1971; Quicke 1997), there are more than 10,000 species of Tachinidae in the world (OHara 2008), which are capable of parasitizing a wide array of insect hosts. As a result, Tachinidae have been used as biological control agents to help stem the growth of unwanted pests without the use of pesticides. Such practices have on occasion resulted in unanticipated negative effects towards nontarget species. Compsilura c oncinatta is a biological control agent introduced into New England to help control the Gypsy moth, but has been found to have adverse effect on the populations of several species of moths in the family Saturniidae (Boettner 2000; Kellog 2003). Little is known about the Neotropical and Australasian Tachinidae. Illustrating this fact was a study carried out in Costa Rica, which divided a set of 17 seemingly generalist parasitoids into 32 highly host specific cryptic species through the aid of DNA barcoding (Smith et al. 2006). OHara estimates that 5,000 species of Tachinidae are undescribed in the neotropics and Australasian regions (OHara 2008).

PAGE 23

23 While the Neotropical and Australian regions of the world have great gaps in the knowledge of Tachinidae, the Nearctic region has benefited from the work of specialists such as James OHara and Paul Arnaud. Arnaud (1978) compiled an exhaustive set of data comprising all the known host species for Tachinidae in North America up to 1973. OHara and Wood report tha t 261 species of Tachinidae are found in Florida alone (2004) (see Appendix for more information). Objective The present study attempts to discern the effect of native and introduced parasitoid species on native species of Lepidoptera in Florida in a var iety of natural and man made ecosystems. This study consisted of collecting Lepidoptera larvae in several different localities in Florida, rearing them through on their hostplants while collecting data on ratio of parasitism, as well as voucher specimens of resulting parasitoids Materials and Methods Natural History and Natural Enemies of Non Target Species As a preparations for the parasitoid survey, parasitoid records for the thirteen species of Lepidoptera listed in Table 3 3 were found by consulting K rombein et al .(1979) for Hymenopteran parasitoids and Arnaud (1978) for Tachinid parasitoids. A literature search in Google Scholar was conducted to obtain more recent parasitoidhost records. Seven Lepidoptera species were surveyed and hence a short descr iption that includes the biology, life cycle, host plants, and parasitoid predators is provided below for each of these species. The Lepidoptera species whose larvae were only occasionally collected, are listed further, with only a checklist of their paras itoids provided.

PAGE 24

24 Natural History of Lepidoptera Species Surveyed for Parasitoidism in Florida in 20092010. Gulf Fritillary, Agraulis vanillae (Linnaeus) (Lepidoptera: Nymphalidae) The common name, Gulf Fritillary, is derived from frequent observations of this species flying over the Gulf of Mexico (Pyle 1981). Agraulis vanillae is a species that is capable of surviving in and near urban centers (Wagner 2005). This fact is related to A. vanillae s preference for disturbed habitats that contain its host, P assiflora and nectar sources. During migration, it can be found in almost any habitat (Cech & Tudor 2005). A. vanillae is distributed throughout Florida and the southeast (Kimball 1965). Agraulis vanillae nigrior is the typical variety encountered in the east (Cech & Tudor 2005). In 1932, a subspecies of A. vanillae was found, in Key Largo, called Agraulis vanillae comstocki (Forsyth 1932). Although isolated forms, such as Agraulis vanillae comstocki exist, A. vanillae s habit of migration precludes it from developing discernable forms (Cech & Tudor 2005). Distribution: A. vanillae is seen year round in parts of Florida and Texas (Wagner 2005). Adult strays have extended its northward range into Ohio, New York, and Pennsylvania (Cech & Tudor 2005; Whan & Belth 1992). Description: The egg is oval in shape. The surface is not smoothe, but has columnar ridges rising from the base to the crest of the egg. At the crest, the egg is flattened and the small protuberances form a circle. The egg is creamy yellow. The larva is bright orange with ribbons of brown. It can reach 1.5 in length (Minno et al. 2005). Wagner reports that Texas varieties of A. vanillae have ribbons of purple instead of brown (2005). Large black spines also extend out from the larval body.

PAGE 25

25 The pupa is light brown with splotches of white and darker brown. A few spots of silver are on the back. The chrysalis appears to resemble a bird dropping and/or a withered leaf (Wagner 2005). The adult is bright orange on the dorsal part of the forewing and hindwing. The tips of the wings have black spots. The ventral view of the hind wings and forewings reveals large silver spots. Males have a pheromone circulating structure on multiple veins of the dorsal forewing (Rauser & Rutoski 2003). Biology: Th e life cycle of A. vanillae begins with the female ovipositing a single egg on a Passiflora spp. The author has observed the female laying an egg adjacent to, but not on the host. Hosts Plants: Passiflora incarnata; Passiflora suberosa; Passiflora multiflora; and Other Passiflora species. The aposematically colored larvae are toxic to predators (Cech & Tudor 2005), while the adults are preyed upon by Grossbeaks and Orioles (Brower 1985) and probably other birds. More recent studies indicate that abd ominal glands present in both sexes of adult A. vanillae may be defense against predation (Ross et al. 2001). The pupa stage follows the larval stage. Pupation has been noted as far as fifty feet from the nearest host plant (Kimball 1965). It has been thought that in the southern United States, A. vanillae overwinter as adults (Cech & Tudor 2005). Surviving winter, however, may be accomplished during the pupal and larval stages in northcentral Florida (Sourakov 2009). While the immatures of A. vanillae may be able to endure freezing temperatures, adults undergo seasonal migrations. In Florida, adults can be observed flying north in the spring (between February and June) and south in the fall (between August and November) (Walker 1978; 1991;

PAGE 26

26 2001). Number s of migrating Lepidoptera, including Agraulis vanillae, flying north in the spring have been estimated to be four million and, in the fall, 40 million (Walker 1991). Agraulis vanillae males seek to copulate with females that have recently emerged, are no t yet able to fly, or are still partially in the pupa (Tveten, J. & Tveten, G. 1996). Natural Enemies: Several types of birds have been observed eating adult A. vanillae although this seems to rarely occur in the wild, which include Grossbeaks and Oriole s (Brower 1985; Ross et al.2001). Parasitoids known to use A. vanillae as a host are: Hymenoptera Chalcidoidea Chalcididae Chalcis flavipes (Fabricius) Pteromalus puparum Linnaeus (Krombein 1979) Diptera Oestroidea Tachinidae Compsilura concinnata (Meigen) Arnaud (1969) Chetogena claripennis (Macquart) Arnaud (1978) Lespesia aletiae (Riley) Hyphantrophaga virilis (Aldrich & Webber), undetermined Hyphantrophaga sp. (Sourakov 2009) Zebra Longwing, Heliconius charithonia (Linnaeus) (Lepidoptera: Nymphalidae). Heliconius charithonia is the state butterfly of Florida (Cech & Tudor 2005). It is fitting that Florida chose H. charithonia, because it was the first butterfly described in Florida (Bartram 1996). It is one of the longest livi ng butterflies, which may be due to its habit of pollen feeding (Gilbert 1972).

PAGE 27

27 Distribution: Heliconius charithonia is a widespread species extending from South America to southern parts of Georgia. Adults may wander as far north as New York (Cech & Tudor 2005). It can also be seen year round in South Florida and Texas (Wagner 2005). Description: The egg is oval in shape and has ridges that proceed upward in columns. The egg is blunt at the crest and the ridges form circles. It is yellow in color. The larvae are white with black spines that may reach up to 1.7 in length. The white body is interspersed with black dots. The head of the larva contains two black hornlike spines that project forward. The pupa is light brown with dark brown splotches and s ilver spots. The pupa is shaped like a sea horse. The small jaws and reflecting silver spots give the pupa a menacing appearance to potential prey (Minno, M. C. & Minno, M. 1999). Adults have forewings that extend out beyond the width of the hind wing. The wings are chiefly black in color and have long thin stripes of yellow that extend across both the hind wing and the forewing. The ventral parts of adults have small red dots close to the thorax that is on both the hind wings and forewings. Biology: He liconius charithonia females oviposit eggs laid in clusters on new growth in shady areas on a variety of Passiflora spp. Host plants: Passiflora incarnata; Passiflora lutea ; Passiflora suberosa; and Passiflora multiflora (Minno, M.C. & Minno M. 1999; C ech & Tudor 2005). The longevity of the adults is linked to their ability to include pollen in their diet. Pollen consumption is achieved by the secretion of enzymes from the proboscis, allowing adequate digestion (Cech & Tudor 2005; Wagner 2005).

PAGE 28

28 Like many other Heliconius spp., H. charithonia exhibits pupal mating. The only description of which is based on observations conducted in Gainesville, FL. Males began congregating on the pupa days prior to the female becoming pharate. During this anticipatory period fights between rival males took place. Male copulation occurred two to three hours prior to the eclosion of the female (Sourakov 2008). Another unique behavior among the Heliconius spp. is group sleeping. Adults sleep in groups of 25 to 30 calle d crches (Cech & Tudor 2005). The benefit of the crches formation include (a) shelter, (b) a drier area compared to the surrounding habitat, and (c) reduced light conditions (Salcedo 2010). Natural Enemies: After 22 surveys, egg parasitism for H. charit honia was found to average 53.0 5.0% with an average of 6.6 0.6 wasps (n=34; range: 114) (Fleming et al .2005). Diptera Oestroidea Tachinidae Unidentified Tachinidae larva (Quintero 1988) Hymenoptera Chalcidoidea Trichogrammatidae unidentified Trichogrammatid wasp. (Fleming et al. 2005) LongTailed Skipper, Urbanus proteus (Linnaeus) (Lepidoptera: Hesperiidae) Urbanus proteus or leaf roller, as it is commonly called, is a migratory species that occurs in the southern region of the United States. Its range is limited by its inability to tolerate freezing temperatures (Opler 1992). From the mid 1800s to the mid 1900s adults were observed in parts of the northeast United States, after which, adults were not observed for about

PAGE 29

29 forty years in the northeast. Perhaps, as a result of additional soy bean fields, adults were again observed in the northeast during the 1990s (Cech & Tudor 2005). Distribution: Urbanus proteus is a year round resident in parts of Florida and Texas. Dur ing the summer months, adults venture as far north as New England, Kansas, and Illinois. The planting of soy beans in various regions seems to be related to its distribution (Walker 1978; Cech & Tudor 2005). Description: The egg is laid singly or stacked on two or three other eggs (pers. observation; Greeney & Sheldon 2008). The egg is circular with smooth ridges forming 10 or 11 sectors and yellow in color. The larva grows to 1.5 in length (Minno et al 2005) and is made up of several shades of green, y ellow, and black. Two yellow stripes sandwiched between a black stripe run along the dorsal surface of the larva. The head capsule is reddish brown, except for the area on the front that has a black spot. Two eyespots by the stemmata are orange. The pupa is brown and covered with a white dust that acts as a waterproofing agent (Scott 1992). The adult is brown and possesses metallic blue green on the forewings and hind wings near the body. Semitransparent spots are present on the forewing and the hind w ing has a long tail. Males possess a row of androconial scales along the costal margin of the forewing. Biology: As noted above, females oviposit 1 to several eggs (>1 = stacked) on a wide variety of host plants in the pea family (Minno et al.2005). Larv ae form three to five different leaf shelters during their five instar larval cycle (Greeney & Sheldon 2008). Adults have been observed migrating north in the spring and south in fall (Walker 1978; 2001). In the spring and summer, less adults are observed in Florida (Kimball 1965). In fall,

PAGE 30

30 there is an increased amount of adults observed, which could be due to an increase in the abundance of soybean farms in the southeast (Cech & Tudor 2005). Natural Enemies: Predators of U. proteus include many spp. of P olistes (Hymenoptera: Vespidae) and Euthyrhynchus floridanus (Linnaeus) (Hemiptera: Pentatomidae). Another significant factor effecting mortality a nuclear polyhedrosis virus has been reported. Its infestation has been noted to result in the death of as ma ny as 40 to 50 % of fall larvae in one study (Capinera 2007). Diptera Oestroidea Tachinidae Lespesia aletiae (Riley) Nemorilla pyste (Walker) (Arnaud 1978) Chrysotachina alcedo (Loew) (Arnaud 1978; Capinera 2007) Dorantes Longt ail. Urbanus dorantes (Stoll) (Lepidoptera: Hesperiidae) Urbanus dorantes was recently introduced to Florida in 1969 (Knudson 1974). The origin of this introduction was shown to be Texas and not the Caribbean due to the immense sea barrier required to orig inate directly from the Antilles would be unlikely (Miller, L. & Miller, J. 1970). The multiple shared characteristics between Urbanus proteus and Urbanus dorantes give rise to questions regarding the mechanisms involved in the process of speciation (Cech & Tudor 2005). Distribution: In the United States Urbanus dorantes is regularly found in Florida, southern Texas, and southern Arizona (Minnoet al. 2005). Occasionally, Urbanus dorantes strays north to North Carolina and Virginia, while its southern border is Argentina (Cech & Tudor 2005).

PAGE 31

31 Description: The egg is circular in shape and has ridges that divide the egg up into 10 or 11 sectors. The crest of the egg is blunt and the ridges form a circular ridge. It is light green in color. The larva is eit her orange and yellow with brown spots or green and yellow with brown spots. There is a green stripe that runs from the head to the end of the abdomen on the dorsal surface of the body. The head capsule is uniformly brown, which distinguishes U. dorantes l arvae from Urbanus proteus larvae (Wagner 2005). The pupa is brown with scattered dark brown spots. The adult is very similar to Urbanus proteus but it lacks the blue green metallic scales near the body. Semitransparent spots are present on the forewing and the hind wing has a long tail. Biology: A single egg is oviposited by the female on the host (Minno, M. C. & Minno, M. 1999). Adults produce several broods per year. It differs from Urbanus protesus in that, it is not a migrating species. Therefore, parts of Florida have Urbanus dorantes adults year round (Minno, M. C. & Minno, M. 2005). Natural Enemies: Hymenoptera Ichneumonoidea Ichneumonidae *Ichneumon panamensis Cameron *Trogomorpha arrogans (Cresson) *Trogomorpha trogiformis (Cre sson) *Ichneumon ferrugator Fabricius (Krombein 1979) The above mentioned species list represents parasitoids of Hesperiidae and could only potentially be implicated as parasitoids for Urbanus dorantes and Urbanus proteus. Monarch, Danaus plexippus Li nnaeus (Lepidoptera: Nymphalidae) Danaus plexippus is probably the most charismatic species on earth, which is the result of its handsome appearance and habit of migrating to Mexico to escape the winter. The location of

PAGE 32

32 the destination in Mexico to which a dult D. plexippus in the eastern United States migrated remained a mystery for many years. In 1977, Kenneth Bruegger discovered that the adults were heading to Michoacan, Mexico (Urquhart, F., & Urquhart, N. 1976; Brower 1977). The elevation of the mounta ins around Michoacan, Mexico is between 10 000 to 11,000 feet and the forest is dominated by firs. While Monarchs are not considered endangered, the yearly migration of Monarchs inhabiting localities east of the Rockies to high altitude forests in Mexico is considered by the International Union for Conservation of Nature as an endangered phenomenon. The North American Monarch Conservation Plan represents a concerted effort on the part of scientists, government officials, and laymen to help keep the Monarch migration intact. D. plexippus is facing pressures including, but not limited to, (a) habitat destruction, (b) predators (mice and birds), (c) lack of food, and (d) a protozoan called Ophryocystis elektroschirra (Cech & Tudor 2005). Distribution: Danaus plexippus are found throughout the state of Florida. Worldwide distribution is quite broad, ranging from western and northern South America to southern Canada. Following a colonization event in the 19th century, Monarchs were established in Australia, Micr onesia, Madeira, Canary Islands, Spain, Portugal, and other islands throughout the Atlantic and Pacific. Description: The egg is yellow white and has an oval shape with a pointed crest. It has very fine ridges rising up from the base and proceeding to the tip of the base. The larva possesses yellow, black, and white transverse stripes. Four black fleshy filaments protrude out of the caterpillars body. One pair comes out of the thorax and the other pair comes out near the rear of the caterpillar. Black st rips are located on the white head of the caterpillar.

PAGE 33

33 The pupa is mint green with a black and gold band along the underside of the abdomen. The head has six pairs of gold spots, which differs from the Queen pupa, Danaus gilippus (Cramer) (Lepidoptera: Ny mphalidae), which has only four pairs at the head. One pair of gold spots resides near the oculus. Another pair of gold spots resides near the labrum. Two pairs of gold spots rest between the oculus and the labrum at the head of the pupa, which differentia tes the Monarch from the Queen butterfly. Two final pairs of gold spots occur at the top of the thorax. The forewing also has a gold dot. The pupa has a black cremaster with a pair of black spots at the top of the anal area. The adult wingspan ranges from 8 cm to 11 cm. The upper side of the Monarch butterfly is chiefly orange with black veins and borders. The black borders and the tips of the forewings have white spots. The coloration of the underside is chiefly white cream orange on the lower hind wings and a more pale orange on the forewings. Like the upper side, black covers the veins and forms the borders of the wings. White spots intersperse the black borders on both the lower side of the hind wings and fore wings. Males have a small patch of androconial scales on the hind wings on vein Cu2. The patch is visible on both the upperside and underside of the wings. Males are slightly larger than the females. In males, hair pencils are present at the tip of the abdomen. Females lack the small patch of andro conial scales on the hind wings on vein Cu2. They also possess a greater amount of brown scales on the orange patches of the wings and more black scales along the veins. This makes the female appear to have larger veins and a duller complexion (Minno, M.C. & Minno, M. 1999). Biology: Female D. plexippus oviposits a single egg on the host plant. Host plants are from the family Asclepiadaceae and include Sarcostemma clausum ; Morrenia odorata;

PAGE 34

34 Asclepias curassavica ; Asclepiascurtissii ; Asclepiashumistrata; As clepiasincarnata; Asclepiaslongifolia ; Asclepiasperennis ; Asclepiastomentosa; and Asclepiastuberosarolfsii (Minno, M. C., & Minno, M. 1999). The larvae are surface feeders on their host. Later instar larvae will prey upon the earlier instar larvae and eg gs of their own species (Minno, M. C. & Minno, M. 1999). D. plexippus are multivoltine and in Florida, they are more visible during the spring (March to May) and fall (August to December), and there is a resident population of Monarchs that are visible in Central and Southern Florida year round (Minno, M. C. & Minno, M. 1999). D. plexippus are slow deliberate fliers that cruise at an altitude of 1 to 2 meters, but during migration, they reach higher altitudes between 600 and 1250 meters. Scientists pursuing Monarchs during this migration period noted that the D. plexippus seemed to be taking advantage of thermals (Gibo 1981). D. plexippus have been reported to be overwintering in Apalachicola ,Florida as early as 1875 1876 (Kimball 1965). During the 1950s and 60s the original 18751876 overwintering sites of D. plexippus and many additional overwintering sites were documented. The new sites included Cedar Key; Lighthouse point; East point; St. Josephs Key; Springfeild; Alligator Point (Wakulla county); The everglades; Miami; and Dry Tortugas, FL (Kindall 1965).

PAGE 35

35 Natural Enemies: While many birds avoid the D. plexippus adult, some birds such as Orioles, Jays, and Grosbeaks have developed the ability to eat adults (Calvert et al.1979). Several species of mice are another major predator of the overwintering adults (Brower et al.1985). Up to ten parasitoids of Lespesia archippivora (Riley) (Diptera: Tachinidae) have been found inside a D. plexippus larva. It was found that the later the instar the more lik ely more than one L. archippivora would be recoverved (Oberhauser et al.2007). The average incidence of parasitism of D. plexippus larva by L. archippivora was 11% (Oberhauser et al .2007). The incidence of parasitism by Sturmia convergens Wiedemann (Dipte ra:Tachinidae)and Paradrino laevicula (Mesnil) (Diptera: Tachinidae) in Australia varied from 11% to 100% (Zalucki 1981). Hymenoptera Chalcidoidea Pteromalidae Pteromalus cassotis Walker (Krombein 1979) Perilampidae Perilampus hyalinus (Say) (Oberhauser & Solensky 2004) Trichogrammatidae Trichogramma pretiosum Riley (Querino et al 2002) Trigonaloidea Trigonalidae Taeniogonalos raymenti Carmean & Kimsey (Clarke & Zalucki 2001) Diptera Oe stroidea Tachinidae Exorista mella (Walker) Lespesia schizurae (Townsend) (Arnaud 1978) *Lespesia archippivora (Riley) (Arnaud 1978; Oberhauser et al.2007) **Paradrino laevicula (Mesnil) **Sturmia convergens Wiedemann (Cantrell 1986) *possibly exhibiting superparatism (Oberhauser et al.2007) ** Australian spp. (Cantrell 1986)

PAGE 36

36 Fall Webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae) The fall webworm, Hyphantria cunea, is an invader to the United States, Japan, China, and Korea (Nordin & OCanna 1985; Yang & Zhang 2007). The gregarious larvae form large tents around the host. Currently, the taxonomic status of Hyphantria cunea as a single species remains intact. The variations in phenotypes and behavior have resulted into some discussion concerning the possibility that a sympatric speciation has occurred (Takeda 2005). In Japan, DNA barcoding of the mitochondria suggests two species are occurring sympatrically along with numerous behavioral and morphological differences between the two forms (Gomi et al. 2004) Distribution: The Hyphantria cuneas northern range limit occurs at the latitude of 5055 where there are less than 200 days of 42 F (Morris 1963). The single voltine and chiefly black headed and dark bodied larva occurs above the latitude 40. Whereas the multivoltine cycles persist with both red and black headed larvae and the bodies of the larva are generally lighter green (Wagner et al. 1998). In the United States, the southern limit of its range is Mexi co. Hyphantria cunea has been introduced from the United States to Europe and Asia and has expanded its range so as to be considered to inhabit all suitable habitats of the holarctic region (Worth 1994). Description: The egg mass of Hyphantria cunea is al most iridescent green in color. The mean egg mass is between 400 to1000 (Ito et al. 1969). The larva is hairy and has a lime green body with black spots. Farther north, the larvae are more dark black or brown than lime green and black spotted (Morris 1963). The head capsules are found in two colors red or black (Takeda 2005). Larvae form a large tent structure around the foliage they are consuming. The red morph larva stays in the shelter of the tent throughout the

PAGE 37

37 larval stage, while the black morph leaves the tent after the fifth instar (Ito & Warren 1973; Takeda 2005). There are five grades of larva color according to Masaki and Ito (1977). Grade 1 body color yellow, setae white with black spots; Grade 2 body color a mosaic of yellow and brown, setae white with black spots; Grade 3 dorsal body gray black, lateral body yellow, setae white; Grade 4 body color solid gray to black, lateral body with black gray, and yellow spots setae white, black turbercules; and Grade 5 dorsal body is uniformly black, lateral body black or dark gray, setae black The pupa of Hyphantria cunea is covered with a cocoon that many times contains fragments of leftover foliage. The pupa is brown. The adult female is immaculate from either the red or black morphs (Takeda 200 5). The adult males on the other hand can have spotted or immaculate wings. The red headed larva never produces spotted males, while the black headed males may produce spotted males (Takeda 2005). Biology: There are definite geographic regions where black headed larvae dominate (northern climes, e.g. Nova Scotia), red larvae dominate (southern climes, e.g. Florida), and regions where mosaics form (in between the southern and northern climes, e.g. South Dakota) (Ito & Hattori 1973). The adaption of the bla ck form to emerge prior to the red form is, possibly, caused by the red forms superior ability to survive in the wild, which could stem from differences in (a) net (b) mating style, (c) time of eating, (d) length of stay in the tent, and (e) inception of diapause (Masaki & Ito 1977; Takeda 2005). Host Plants: The wide range of the Hyphanea cunea is due to the larvae being the consummate generalist. There is no other insect on the planet that has been recorded eating more plant species than Hyphanea cunea (Worth 1994). The ability to successfully generalize and

PAGE 38

38 consume a wide variety of hosts that may even possess toxic materials is a hallmark of the family Arctiidae (Krasnoff & Dussourd 1989). Economic Importance: Hyphanea cunea has caused the destructio n of many ornamental trees and forests throughout the holarctic regions of the world (Franz 1961; Yang & Zhang 2007). It has notably been implicated as a pest of sericulture, because of its preference for mulberry leaves (Nordin & OCanna 1985). Natural Enemies: From the egg to the first larval instar there is approximately 50 to 60 % mortality, but predation of Hyphanea cunea is most severe from the fourth instar to the pupa with between 98 and 99 % mortality (Masaki & Ito 1977). The high mortality stems from bird predation see Table 3 1. Some of the major hymenopteran predators are Polistes annularis (Linnaeus) (Hymenoptera: Vespidae) and Polistes fuscatus (Hymenoptera: Vespidae) (Krombein et al. 1979). Parasitoids: Parasitoids found infecting Hyphanea c unea are Sinophorus validus (Cresson) (Hymenoptera: Ichneumonidae) ; Meteorus hyphantriae Riley (Hymenoptera: Braconidae) ; Apanteles hyphantriae Riley (Hymenoptera: Braconidae) ; Elachertus hyphantriae Crawford (Hymenoptera: Eulophidae); and Mericia ampelus (Walker) (Diptera: Tachinidae) which affected the black and red race larvae with an incidence of parasitism at 34% and 39% respectively (Nordin 1972). Hymenoptera Ichneumonoidea Braconidae Aleiodes sanctihyacinthi (Provancher) Apanteles diacrisiae Ga han Apanteles hyphantriae Riley Microplitis hyphantriae Ashmead Meteorus bakeri Cook and Davis Meteorus hyphantriae Riley (Krombein et al. 1979)

PAGE 39

39 ***Rogas malacosomatos Mason (Mason 1979) Chalcidae *Brachymeria obscurata (Walker) ( Ito & Yamada 1968) Ichneumonidae Itoplectis inquisitor Say Vulgichneumon brevicinctor (Say) Ichneumon navus Say Therion morio (Fabricius) Therion sassacus Vier Sinophorus validus (Cresson) Hyposoter fugitivus (Say) Hyposoter rivalis (Cresson) (Kro mbein et al. 1979) Hyposoter pilosulus Prov Campoplex validus Cress. (Tadic 1977) Enicospilus glabratus Say Casinaria genuina (Norton) Casinaria limenitidis Howard (Krombein et al. 1979) *Coccygomimus disparis (Viereck) (Ito & Yamada 1968 ) Pimpla turionellae Linnaeus (Arthur & Wylie 1959) Pteromalidae Dibrachys cavus (Walker) Eulophidae Elachertus hyphantriae Crawford Syntomosphyrum esurus (Riley) (Krombein et al. 1979) **Chouioia cunea Yang (Yang 2007) Torym idae *Monodontomerus minor (Ratzeburg) (Ito & Yamada 1968) Trichogrammatidae Trichogrammadendrolimi Matsumura (Kato et al. 1951) Diptera Oestroidea Tachinidae Lespesia aletiae (Riley) Chetogena claripennis (Macquart)

PAGE 40

40 Cheto gena scutellaris (Van der Wulp) Hyphantrophaga hyphantriae (Townsend) Blondelia hyphantriae (Tothill) (Arnaud 1978) *Exorista japonica Townsend *Zanillia libatrix Panz. *Pales pavida Meigen (Ito & Yamada 1968) Mericia ampelus (Walker) (Tadic 1977) Lespesia frenchii (Williston) (Arnaud 1978; Tadic 1977) *Japan (Ito & Yamada 1968) **China (Yang 2007) *** parasitoid of Malacosoma spp. (Mason 1979) Eastern tent caterpillar, Malacosoma americanum (Fabricius) ( Lepidoptera: Lasiocampidae) The eastern tent caterpillar, Malacosoma americanum, is widespread in the eastern part of north America (Stehr & Cook 1968). Larvae of M. americanum emerge from the egg diapause, due to environmental changes and begin feeding ( Fitzgerald 1995). Distribution: M. americanum is distributed along the eastern part of the United States and the southeastern part of Canada (Stehr & Cook 1968). Description: The eggs are laid as a group of 200 to 300 (Stehr & Cook 1968). Eggs are dark brown. The larva is partly dark brown and golden yellow. The larvae possess nonpigmental coloration. The dorsal white stripe and the lateral blue stripe on the larval body are caused arrangement of the microtubercles (Stehr & Cook 1968). The lateral blue s tripes with yellow borders, on the larval body, are broken up by white and black patches. The pupa is brown and is surrounded by an off white cocoon.

PAGE 41

41 The adult is brown to reddish brown and hairy. The forewings possess two vertical white stripes. The fe male has less distinctive white stripes on the forewing and thinner antennae. The males are smaller in size than the females. Biology: After the oviposition of the eggs by the female, the eggs are very quick to complete embryogenesis, but do not come out of the egg until the next spring (Fitzgerald 1995). The tents constructed by the larvae are designed according to the orientation of the light source. In a series of experiments, altering the light source produced a corresponding alteration in the location for the entrance to the larval tent (Fitzgerald & Willer 1983). Feeding occurs outside the larval tent, which requires the larva to forage. During foraging a silk line is made along the route taken. When food is discovered the silken trail is reinforced with more silk and the pheromone 5bcholestane 3 one (Fitzgerald 1995). Synthetic duplicates of this pheromone are attractive or even more attractive to larva (Fitzgerald 1995). Natural Enemies: Larval predation is very high in M. americanum Its many predators include numerous bird species, certain Hymenoptera, Hemiptera, Coleoptera as well as a host of parasitoids. After the eggs are laid and sometimes after the eggs have undergone embryogensis, an egg parasitoid oviposits in the egg (Maple 1937). The tim ing of egg parasitoid eclosion is dependent on whether they are a generalist or a specialist. Specialist egg parasitoids emerge after the larvae have emerged (85 to 115 days following larval emergence (Liu 1926)) and have begun feeding on the host plant, while generalists usually emerge prior to larval emergence (Fitzgerald 1995). Hymenoptera Ichneumonoidea Ichneumonidae Hyposoter fugitivus (Say)

PAGE 42

42 (Krombein et al .1979) Labrorychus analis (Say) Gellus tenellus (Say) (Dethier 1980) Eni cospilus cushmani Gauld (Gauld 1988) Coccygomimus disparis (Viereck) (Schaefer et al 1989) Itoplectis conquisitor (Say) (Witter & Kulman 1972) Torymidae Monodontomerus minor (Ratzeburg) (Krombein et al. 1979) Eulophidae Tetrastichus malacosomae Girault Tetrastichus silvaticus Gahan Tetrastichus sp. Braconidae Phobocampa clisiocampae Weed Therion sp. (Dethier 1980) Platygastroidea Scelionidae Telenomus clisiocampae Riley Chalcidoidea Encrytidae Oencyrtus clisiocampae Ashmead Oencyrtus sp. Aphelinidae Ablerus clisiocampae (Ashmead) Ablerus sp. Eupelmidae Anastatus sp. Trichogrammatidae Trichogramma evanescens West Trichogramma minutum Riley ( Fitzgerald 1995) Cha lcididae Brachymeria ovata (Say) (Dethier 1980) Diptera Oestroidea Tachinidae Carcelia laxifrons Villeneuve (introduced) Lespesia aletiae (Riley)

PAGE 43

43 Lespesia datanarum (Townsend) Lespesia schizurae (Townsend) Chetogena claripennis (Macquar t) Chetogena edwardsii (Williston) Chetogena lophyri (Townsend) Blepharipa pratensis (Meigen) (introduced) Archytas lateralis (Macquart) (Arnaud 1978) *Compsilura concinnata (Meigen) Leschenaultia exul (Townsend) ( Fitzgerald 1995) Euphororocera tachinomoides (Townsend) Hyphantrophaga hyphantriae (Townsend) Achaetonera sp. (Dethier 1980) Lespesia archippivora (Williston) Lespesia frenchii (Williston) Exorista mella (Walker) (Arnaud 1978; Dethier 1980) Sarcophagidae **Sarcophaga aldrichi Parker (Hodson 1939) *Obligatory to Malacosoma americanum **Facultative to Malacosoma americanum Parasitoid Checklists for Six Additional Lepidoptera Hosts Collected During Survey Tawny emperor, Asterocampa clyton (Boi sduval & Leconte) (Lepidoptera: Nymphalidae) The gregarious behavior of this species gives rise to high incidence of parasitism (Cech & Tudor 2005). Hymenoptera Platygastroidea Scelionidae (Friedlander 1985) Diptera Oestroidea Tachinidae Chetogena claripennis (Macquart) (Arnaud 1978)

PAGE 44

44 Polydamas Swallowtail, Battus polydamas lucayus (Rothschild & Jordan) (Lepidoptera: Papilionidae) Members of the genus Battus seem to be protected from parasitoid attack by the reservation of chemicals from their host Aristolochia spp. (Sime 2002) Mourning Cloak, Nymphalis antiopa (Linnaeus) Lepidoptera: Nymphalidae Hymenoptera Chalcidoidea Pteromalidae Pteromalus puparum Linnaeus (Krombein et al. 1979) Diptera Oestroidea Tachinidae Lespesia aletiae (Riley) Lespesia archippivora (Riley) Lespesia dubia (Williston) Lespesia frenchii Williston Chetogena claripennis (Macquart) Chetogena edwardsii (Williston) Exorista mella (Walker) Hyphantrophaga blanda (Osten Sacken) Hemisturmia parva (Bigot) Winthemia sinuate Reinhard (Arnaud 1978) Cecropia silkmoth, Hyalophora cecropia (Linnaeus) (Lepidoptera: Saturniidae) Diptera Oestroidea Tachinidae Lespesia datanarum (Townsend) Lespesia frenchii Williston Chetogena claripennis (Macquart) Wint hemia datanae (Townsend) (Arnaud 1978) Compsilura concinnata (Meigen) (Boettner et al.2000) Hymenoptera Ichneumonoidea Ichneumonidae Theronia atalantae fulvescens ( Cresson ) Gambrus extrematis (Cresson) Enicospilus americanus (Christ) (Krombein et al 1979)

PAGE 45

45 Ephialtes capulifera (Kriechbaumer) Theronia atalantae fulvescens (Cresson) Gnotus sp. Gambrus polyphemi H.Townes Agrypon illinois Dasch Braconidae Cotesia sp. Chalcidoidea Torymidae Monodontomerus minor (Ratzeb urg) Perilampidae Perilampus hyalinus (Say) Pteromalidae Psychophagus omnivorus (Walker) Dibrachyscavus (Walker) Chalcididae Conura maria (Riley) Eulophidae Dimmockia incongrua (Ashmead) Cirrospilus inimicus Gahan Pediobius tarsal is (Ashmead) Winthemia cecropia (Riley) Winthemia datanae (Townsend) Winthemia leucanae (Kirkpatrick) Winthemia militaris (Walsh) Winthemia quadripustulata (Fabricius) Eusisyropa virilis (Aldrich & Webber) Lespesia sp., archippivora complex Lespesia french ii (Williston) Lespesia samiae (Webber) (Piegler 1994) Brazilian Skipper, Calpodes ethlius (Stoll) (Lepidoptera: Hesperiidae) Hymenoptera Chalcidoidea Encyrtidae *Ooencyrtus calpodicus Noyes Chalcididae Brachymeria incerta (Cresson) Tric hogrammatidae Xenufens ruskini Girault (Krombein et al.1979) Trichogramma minutum Riley (Moore 1928). Diptera Oestroidea

PAGE 46

46 Tachinidae Hyphantrophaga blanda (Osten Sacken) Lixophaga diatraeae Townsend (Arnaud 1978) *Caribbean sp. White Ma rked Tussock Moth, Orgyia leucostigma (JE Smith) (Lepidoptera: Noctuidae) Hymenoptera Ichnemonoidea Ichneumonidae Itoplectis inquisitor Say Pimpla annulipes Say Gelis insolitus (Howard) Adiastola americana Howard (Howard 1897) Apant eles acronyctae (Riley) Apanteles diacrisiae Gahan Apanteles hyphantriae Riley Bracon xanthonotus Ashmead Iseropus coelebs (Walsh) Theronia atlanta fulvescens (Cresson) Gelis insolitus (Howard) Canadensis burkei (Viereck) (Krombein et al.1979) Hyposot er spp. (Guzo & Stoltz 1985) Braconidae Meteorus autographae Muesebeck (Krombein et al.1979) Cotesia melanoscela (Ratzeburg) (Guzo & Stoltz 1985) Cotesia delicatus (Howard) Meteorus hyphantriae Riley Meteorus communis (Cresson) (Howard 1897) Chalcidoidea Pteromalidae Psychophagus omnivorus (Walker) Tritneptis hemerocampae Viereck Eulophidae Syntomosphyrum esurus (Riley) Syntomosphyrum orgyiazle Burks (Krombein et al 1979) Dipter Oester oidea Tachinidae

PAGE 47

47 Aphantorhaphopsis samarensis (Villeneuve) (introduced)** (Fuester et al.2001) Chetogena claripennis (Macquart) Exorista griseomicans Van der Wulp Nilea lobeliae (Coquillett) Lespesia aletiae (Riley) Lespesia frenchii Williston Exorista mella (Walker) Winthemia 4 pustulata Fabricius Amorphota orgyiae Howard (Howard 1897) Bessa selecta (Meigen) Chetogena edwardsii (Williston) Chetogena floridensis (Townsend) Hyphantrophaga hyphantriae (Townsend) Patelloa leucaniae (C oquillett) Winthemia datanae (Townsend) (Arnaud 1978) Survey Protocol Collecting Localities In the fall 2009, Lepidoptera caterpillars of species listed above were collected thoughout Alachua county (Florida). In 2010, Broward and Miami Dade counties were included in the survey. The collecting sites were each grouped into ~19 mi2blocks. When more than one site was present in a block, the sites were clumped together. Table 31 shows the locality data (GPS readings) for the collecting sites. Figure 3 1 shows the locations for collection sites in the vicinities of Gainesville, Alachua County. Figure 32 shows the locations for collection sites in Miami, FL. Collecting and Rearing The methods for collecting larvae were influenced by the work of Daniel Janzen a nd his team of parataxonomists in Costa Rica (Janzen & Hallwachs 2009). Janzens team begins by searching for Lepidopteran larvae in the field on a variety of hostplants. The discovered

PAGE 48

48 Lepidopteran larvae are collected and reared to adult hood. The rear ed adults are recorded and sent to experts for identification and DNA barcoding. Larvae were collected on host plants in the wild. Initially, all larval instars were included into the survey; however, high mortality during rearing led to a revising of the protocol to collecting 3rd through 5th instars only. Upon collection of a larva in the wild, the host plant, date, and location where the caterpillar was found were recorded. The collected caterpillars were taken to the lab and placed into small plastic o r Styrofoam cups. The containers holding the caterpillars were labeled with the date and a voucher number. Each voucher number was entered into a MSExcel file that helped track the dates of collection, pupation, eclosion, larva species, host plant informa tion, and the outcome of rearing (presence or absence of parasitism). Caterpillars in containers were fed on host plant cuttings or artificial diet (Wards Stonefly Heliothis Diet) until the larva pupated or died. When an adult Lepidoptera or parasitoid ec losed from a pupa, it was frozen at 918 Celsius and stored until curation could be undertaken. Specimen Preservation and Identification Dead adults were curated and placed into a collection box for storage. Voucher specimens of adult tachinid flies were sent to James E. OHara at Invertebrate Biodiversity Agriculture and Agri Food Canada, Ottawa, Ontario, Canada for identification and deposition of voucher specimens. Adult parasitoids of the families Ichneumonidae and Braconnidae were identified with the aid of specialists at the Department of Plant Industry in Gainesville, FL and Dr. Andrei Sourakov at the Florida Museum of Natural History. A leg was removed and placed in 85 % alcohol for future DNA barcoding analysis. Legs of parasitoids were sent with v oucher numbers to the Biodiversity Institute of Ontario at the University of Guelph.

PAGE 49

49 Photography Voucher specimens of adult parasitoids were photographed with Syncroscopy AutoMontage digital microscopy system at the Entomology and Nematology Department a t the University of Florida. Results and Discussion Over 3,000 larvae were collected between August 2009 and September 2010. To date, 596 parasitoid pupae and adults have been recovered. The list of species of Lepidoptera larvae collected during the surve y is found in Table 33. Twenty six morphospecies were identified from the 596 recovered parasitoids. The list of parasitoid species reared from the Lepidoptera larvae can be found in Table 34. Figures 33 through 322 are AutoMontage Images of the paras itoids listed in Table 3 4. The highest number of parasitoids was obtained from Urbanus proteus and with one exception were species of Tachinidae. Hyphantria cunea followed closely behind, as the host for mostly hymenopteran species. The rate of parasiti sm was quite variable depending on location and species. Danaus plexipus larvae from MSA nursery in Loxahatchee, FL had 70% parasitism (N= 54). Conversely, D. plexippus larvae from Fairchild Tropical Botanical Gardens in Miami, FL had a parasitism rate of 0% (N=15). Interestingly, no parasitoids were recovered from some of the species, such as Heliconius charithonia and Battus polydamus (Table 3 3).

PAGE 50

50 Table 3 1. Life Table for Hyphantria cunea at NS1 in the First generation of 1967 (after Ito & Miyahsita 1 968).Note: L I, LII, etc. mean the first instar larva, secondinstar larva, etc. x l x d x F d x 100q x Egg 4287 Unhatched 134 3.1 L hatched 4153 Spiders and unknown 746 18.0 L I 3407 Physiological causes 104 3.1 Spiders and unknown 1093 32.1 L II 2210 P hysiological causes 11 0.5 Spiders and unknown 322 14.6 L III 1877 Spiders and unknown 463 24.7 L IV 1414 Great tit young 680 48.1 Mainly adult birds 693 49.0 L VII 41 Birds and Polistes 29 70.7 Prepupa 12 Tachinid parasites 3 25.0 Pupa 9 Tachi nid parasites 1 11.1 Disease 1 11.1 Adult 7 Total mortality= 4280 99.84%

PAGE 51

51 Table 3 2. Collection localities for survey of parasitoids in Florida. County Florida Location Map Cod e GPS coordinates Miami Dade Abandoned Plot, G 25'23.13"N 80 28'32.26"W Miami Dade Fairchild Tropical Botanic Gardens E 25'36.04"N 80'18.22"W Miami Dade UF Trop. Research Station F 25'24.16"N 80'52.84"W Miami Dade Casey's Corner Nursery H 25'13.41"N 80'35.01"W Broward South Florida Water Management District A 26 5'23.07"N 80'39.37"W Miami Dade Mack's Fishing Camp C 25'46.40"N 80'21.01"W Miami Dade Everglades Holiday Park B 26 3'39.95"N 80'27.48"W Miami Dade Bill Baggs Cape Florida SP D 25'37.82"N 80 9'32.02"W Alachua NW 83 rd St/NW 39th Ave 0 29'19.03"N 82'48.89"W Alachua SW 23rd St AA 29'36.83"N 82'24.46"W Alachua I 75/NW 39th Ave M 29'16.74"N 82'32.07"W Alachua Natural Area T 29'3.76"N 82'1.77"W Alachua Kanapaho Park KK 29 37'12.63"N 82'4.42"W Alachua SE Williston Rd Z 29'51.40"N 82'17.28"W Alachua NE Waldo Rd/SE 11th St Y 29'0.11"N 82'41.60"W Alachua SW 13th St/SW 9th Rd U 29'27.97"N 82'21.12"W Alachua NW 39 th Ave Q 29'20.61"N 82'24.1 9"W Alachua Stadium by Pool X 29'39.43"N 82'25.29"W Alachua Apartments near dead end W 29'11.59"N 82'4.20"W Alachua SW 34 th / SW 63rd Ave JJ 29'35.78"N 82'36.28"W Alachua Lake Wauberg South GG 29'20.96"N 82'9.01"W Alachu a SW 63rd Ave DD 29'39.03"N 82'27.47"W Alachua SW 66 PL CC 29'28.65"N 82'29.19"W Alachua SE 134 th Ave HH 29'55.31"N 82'2.69"W Alachua Lake Wauberg North EE 29'0.13"N 82'30.61"W Alachua SE 134 th Ave (2) FF 29'47.99"N 82'36.50"W Bradford Shady Oak butterfly farm I 29'23.94"N 82'16.03"W Alachua Railroad tracks off of 301 K 29'50.09"N 82 8'22.18"W Alachua Bat Conservancy J 29'33.24"N 82'27.90"W Alachua Long Leaf Pine Plot L 29'33.82"N 8 2'35.76"W Alachua NW 98 St/NW 37 Pl N 29'14.63"N 82'6.37"W Alachua Santa Fe library P 29'59.86"N 82'52.87"W Alachua NW 23 RD St R 29'26.48"N 82'2.56"W Alachua 34 th St S 29'53.43"N 82'9.98"W Alachua 2 nd Ave/SE 6 th St V 29'1.57"N 82'7.99"W Alachua SW 63 rd Ave (Farm) BB 29'36.51"N 82'13.25"W

PAGE 52

52 Figure 31. Map of Gainesville with collection sites labled. See Table 3 1 for names of collection sites.

PAGE 53

53 Figure 32. Map of Miami, FL with collection site s labeled by letters. See Table 3 1 for names of collection sites.

PAGE 54

54 Table 3 3. Taxa, whose larvae were collected and reared as part of parasitoid study in Florida in 20092010. Species Family #of individual larvae collected Number of parasitoids reared Battus polydamas Papilionidae 27 0 Agraulis vanillae Nymphalidae 280 33 Heliconius charithonia Nymphalidae 42 0 Danaus plexippus Nymphalidae 54 13 Asterocampa clyton Nymphalidae 31 2 Nymphalis antiopa Nymphalidae 2 2 Dryas iulia Nymphalidae 1 0 Euptoieta claudia Nymphalidae 2 1 Urbanus proteus Hesperiidae 1,252 341 Urbanus dorantes Hesperiidae 14 1 Calpodes ethlius Hesperiidae 42 0 Hyphantria cunea Arctiidae 444 177 Malacosoma americanum Lasiocampidae 144 10 Hyalophora cecropia Saturn iidae 1 1 Antheraea polyphemus Saturniidae 1 0 Orgyia leucostigma Lymantriidae 22 6 Lymantriidae spp. Lymantriidae 26 10

PAGE 55

55 Table 3 4. Diversity of Parasitoids affecting Lepidoptera hosts. Host Species Location Parasitoid Diversity of Parasitoids Urb anus proteus Gainesville, FL Diptera:Tachinidae Chrysotachina sp. 1 Gainesville, FL Diptera:Tachinidae Chrysotachina sp. 2 Miami, FL Hymenoptera: Braconidae Braconid sp. 1 Urbanus dorantes Gainesville, FL Diptera:Tachinidae Tachinid sp. 3 Agraulis vanillae Gainesville, FL Diptra: Tachinidae Tachinid sp. 4 Gainesville, FL Hymenoptera: Chalcidoidae Chalcid sp. 1 Miami, FL Hymenoptera: Chalcidoididae Chalcid sp. 2 Miami, FL Hymenoptera: Chalcidoididae Chalcid sp. 3 Asterocampa clyton Gainesville FL Diptera: Tachinidae Tachinid sp. 5 Euptoieta claudia Miami, FL Hymenoptera: Ichneumonidae Ichneumonidae sp.1 Celastrina neglectamajor Huntindon Co. PA Diptera: Tachinidae Tachinid sp. 6 Hymenoptera: Ichneumonidae Campopleginae sp. 1 Danaus ple xippus Loxahatchee, FL Diptera: Tachinidae Tachinid sp. 7 Nymphalis antiopa Gainesville, FL Diptera: Tachinidae Tachinid sp. 8 Malacosoma americanum Gainesville, FL Diptera: Tachinidae Tachinid sp. 9 Hymenoptera: Ichneumonidae Campopleginae sp. 2 Hyp hantria cunea Gainesville, FL Hymenoptera: Ichneumonidae Mesochorinae sp. 1 Gainesville, FL Hymenoptera: Braconidae Braconidae sp. 2 Gainesville, FL Hymenoptera:Chalcidoidea Chalcidae sp. 4 Gainesville, FL Hymenoptera: Chalcidoidea Chalcidae sp. 5 H yalophora cecropia Gainesville, FL Hymenoptera:Chalcidoidea Chalcidae sp. 6 Orgyia leucostigma Gainesville, FL Diptera: Tachinidae Tachinid sp. 10 Lymantriidae Gainesville, FL Hymenoptera: Chalcidoidea Chalcidae sp. 7 Noctuid sp. 1 Miami, FL Hymenopte ra: Braconidae Braconid sp. 3 Miami, FL Hymenoptera: Bracnoidae Braconid sp. 4 Noctuid sp. 2 Miami, FL Hymenoptera: Braconidae Braconid sp. 5

PAGE 56

56 Figure 33. Chrysotachina sp. 1, voucher # 833, (Diptera: Tachinidae) a larval parasitoid of the Longtai l Skipper Urbanus proteus (Lepidoptera: Hesperiidae). Figure 34. Chrysotachina sp. 2,voucher # 147, (Diptera: Tachinidae) a larval parasitoid of the Longtail Skipper, Urbanus proteus (Lepidoptera: Hesperiidae).

PAGE 57

57 Figure 3 5. Aplomya theclarum,voucher # 1467, (Diptera: Tachinidae) a larval parasitoid of the Appalachian Azure, Celastrina neglectamajor (Lepidoptera: Lycaenidae). Figure 3 6. Tachinidae sp. 4.voucher # 805, (Diptera: Tachinidae)a larval parasitoid of theGulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae).

PAGE 58

58 Figure 3 7. Tachinidae sp. 5, voucher # 807, (Diptera: Tachinidae) a larval parasitoid of theDorantes Longtail, Urbanus dorantes (Lepidoptera: Hesperiidae). Figure 3 8. Tachinidae sp. 6, voucher # 1460, (Diptera: Tachi nidae) a larval parasitoid of theMonarch, Danaus plexippus (Lepidoptera: Nymphalidae)

PAGE 59

59 Figure 3 9. Tachinidae sp. 7, voucher # 1168, (Diptera: Tachinidae)a larval parasitoid of the: Eastern Tent Caterpillar Moth, Malacosoma americanum (Lepidoptera: Lasi ocampidae) Figure 3 10. Tachinidae sp. 8, voucher # 1148, (Diptera: Tachinidae) a larval parasitoid of host White marked Tussock Moth, Orgyia leucostigma (Lepidoptera: Lymantriidae).

PAGE 60

60 Figure 3 11. Tachinidae sp. 9,voucher # 1337, (Diptera: Tachinidae )a larval parasitoid of the Mourning Cloak, Nymphalis antiopa ( Lepidoptera: Nymphalidae). Figure 3 12. Tachinidae sp. 10.voucher # 807, (Diptera: Tachinidae) a larval parasitoid of theDorantes Longtail, Urbanus dorantes (Lepidoptera: Hesperiidae),

PAGE 61

61 Fi gure 3 13. Campopleginae sp. 1,voucher # 3019, (Hymenoptera: Ichneumonidae) a larval parasitoid of the Eastern Tent Caterpillar, Moth, Malacosoma americanum (Lepidoptera: Lasiocampidae) Figure 3 14. Campopleginae sp. 2,voucher # 1470, (Hymenoptera: Ic hneumonidae) a larval parasitoid of theAppalachian Azure, Celastrina neglectamajor ( Lepidoptera: Lycaenidae).

PAGE 62

62 Figure 3 15. Chalcidoidea sp. 1, voucher # 1321, (Hymenoptera: Chalcidoidea) a larval parasitoid of theTussock moth (Lepidoptera: Lymantriidae ) Figure 3 16. Mesochorinae sp 1, voucher # 981, (Hymenoptera: Ichneumonidae) a larval parasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae).

PAGE 63

63 Figure 3 17. Braconidae sp. 1, voucher # 1046, (Hymenoptera: Braconidae) a larval pa rasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae). Figure 3 18. Chalcidoidea sp. 1, voucher # 1101, (Hymenoptera: Chalcidoidea) a larval parasitoid of the Fall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae).

PAGE 64

64 Figure 3 19. Chalcidoidea sp. 2, voucher # 1453, (Hymenoptera: Chalcidoidea) an egg parasitoid of the Cecropia silkmoth, Hyalophora cecropia (Lepidoptera: Saturniidae). Figure 3 20. Chalcidoidea sp. 3, voucher # 1454, (Hymenoptera: Chalcidoidea) a larval parasit oid of theFall Webworm, Hyphantrea cunea (Lepidoptera: Arctiidae).

PAGE 65

65 Figure 3 21. Chalcidoidea sp. 4, voucher # 1510, (Hymenoptera: Chalcidoidea) a larval parasitoid of theGulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae). Figure 3 22. Ch alcidoidea sp. 5, voucher # 2402, (Hymenoptera: Chalcidoidea) a parasitoid of the Gulf Fritillary, Agraulis vanillae (Lepidoptera: Nymphalidae).

PAGE 66

66 CHAPTER 4 DIFFERENCES BETWEEN HOSTPARASITOID RELATIONSHIPS IN URBAN AND RURAL SETTINGS U rbanization and Parasitoidism Butterflies have managed to survive in both urban and rural environments. The world is currently undergoing urbanization at an unprecedented rate. As of 2001, 80% of Americans now live near urban centers (USCB 2001). The scale of urbanization threatens to erode the balance of biodiversity and create an environment with vacant niches for invaders to dominate (McKinney 2006). As Figure 41 illustrates, in 2000, the amount of land dedicated to urbanization was significantly greater than the amount d edicated to conservation (Stein 2000). Habitat destruction and/or alteration is one of many factors affecting species survival. In the present chapter, the effects produced by the alteration of landscape from rural to urban are examined in a brief literatu re review. This review of urban rural relationships will provide another factor in species survival, a background to the question of butterfly population decline in South Florida, and how this question is related to parasitoids. Concerning parasitoids, spe cial attention will be given to the Tachinidae in the order Diptera. The Effect of Urbanization on Biodiversity The destruction of habitat by urbanization creates large tracts of habitat that are very similar. Inside these tracts are pockets of unaltered habitat that, in part, resemble the original ecosystem. The creatures that inhabit these small pockets of natural habitat are many times overpowered by weed like species that are present in many urban environments. The weed like species are able to overpower the native species and become established in the remaining pockets of natural (rural) habitat, because of a lack of predatory pressure (McKinney 2002). As a result, the diversity of plants, birds, insects, and mammals in urban centers is less than half the diversity found in rural areas (Kowarik 1995; Kurta 2002; Denys and Schmidt 1998; McIntyre

PAGE 67

67 2000; MackinRogalska et al 1998). Sometimes, as in the European Carabid beetles ( Coleoptera:Carabidae) species do not respond to urbanization, and maintai n population levels (structure) similar to those in rural areas (Niemela 2002). Nonnative species tend to have greater population sizes towards the centers of urban areas (Stein 2000). While the species diversity of insects, birds, mammals, and plants is reduced in urban centers, suburban areas have an increase in diversity. The species diversity of birds, butterflies, mammals, bumblebees, ants, lizards, and plants has been shown in some suburban areas to be greater than the diversity found in rural areas (Racey & Euler 1982; Blair 2001; Pawlikoski & Pokornieka 1990; Nuhn & Wright 1979; Germaine & Wakeling 2000; Kowarik 1995). Suburban areas that have higher animal diversity than rural areas also tend to have a high diversity of plant species. Urban centers have a greater proportion of man made structures and materials than suburban or rural spaces and thus are lower in biodiversity The diversity of birds, insects, mammals, amphibians, and reptiles is related to the species diversity and abundance of plants (Majer 1997; Shugart et al. 1975; Goldstein et al. 1986; Dickman 1987; McIntyre 2000). Hypotheses for the Effect of Urbanization on Parasitoidism rates The differences noted above occurring along urbanrural gradients bring into question the impact of urbanization to a given area. Three hypotheses are cited by Hamback et al (2007) to describe the ecosystems found in modified habitats. First, rates of immigration of species are decreased and extinction rates of species are increased locally as the size of the core habitat is reduced and the size of the edge habitat is increased (Hanski 1999). Second, local growth rates are adversely affected by modified habitats (Summerville & Crist 2004). Third, the habitat specialists are impacted negatively by the in crease in the abundance of generalists and matrix specialists that flourish within the smaller core habitat and larger edge habitats. Furthermore, the

PAGE 68

68 increase in numbers of alternative species that are generalists or matrix specialists may cause species d iversity to remain high, but modified (Burke & Nol 2000; Ewers & Didham 2008). The above mentioned hypotheses are reiterated to give perspective on the effect of habitat modification on species diversity. It is interesting to note that in the literatur e there is a wide disparity of opinions regarding the effect of urbanization or habitat modification on biodiversity. Sometimes, the correlation between plot size and biodiversity is positive, while other times the correlation is neutral or negative (Bonie r et al.2007; Bowers & Matter 1997; Clergeau et al 1998; Clergeau et al 2001; Connor et al 2000; Didham et al 1996; Hamback et al 2007; Kurta et al 1992; McGeoch & Chown 1997; Niemel et al 2002; Raguso & Llorente Bousquets 1990). There is an unequa l effect of habitat modification on various trophic levels in the ecosystem. Parasitoids, for instance, are particularly vulnerable to habitat modification (Didham et al 1996). Pockets of isolated herbivore host plants surrounded by disturbed habitats have been shown to have a significantly lower incidence of parasitoid abundance (Kahn & Cornell 1989; Kreuss & Tscharntke 1994). At a different level, parasitoid species abundance has also been noted to vary temporally and spatially (Inclan and Stireman 2011) Urbanization and habitat destruction or modification can cause alteration of the food webs. Nonnative plants, for example might replace native vegetation. Similarly, herbivorous insects, predatory insects, and parasitoids can begin to consume the avail able energy or food resources. The evolving urban ecosystem may appear to have a significant amount of species diversity, but the energy flow within the ecosystem that formerly included only native species must now include invasive organisms on all trophic levels (Tylianaskis et al. 2007). Parasitoid abundance and diversity should decrease towards the urban center and increase in the rural and suburban areas. The level of increase in parasitoid abundance and diversity is

PAGE 69

69 dependent on edge effects and plant species diversity and abundance (Didham et al 1996; Kahn & Cornell 1989; Kreuss & Tscharntke 1994). Objective The present study attempts to investigate parastioid populations in both urban and rural settings in Alachua County, Broward County, and Miami Dade County, Florida over the course of one year. Materials and Methods Habitat Types A variety of habitats found in Florida were also represented in our study: at least one and sometimes more than one of the six most common habitats in Florida were pres ent within 19 mi2 block from each of the collecting sitea. The typical Florida habitats include: Tropical hammock Tropical hammocks are threatened by urbanization in South Florida. Hammocks range from MiamiDade County to Martin County. This tropical habit at contains plants such as Florida boxwood, Schaefferia frutescens Jacq. (Celastrales: Celastraceae) Lignum vitae, Guaiacum sanctum Linnaeus (Zygophyllales: Zygophyllaceae) Manchineel tree, Hippomane mancinella Linnaeus (Malpighiales: Euphoribiaceae) Gumb o limbo, Bursera simaruba (Linnaeus) Sarg. (Sapindales: Burseraceae) Black ironwood, Krugiodendron ferreum (Vahl) Urban (Rosales: Rhamnaceae) and Inkwood, Exothea paniculata (Juss.) Radlk. (Sapindales: Sapindaceae) (Karim & Main 2009) Pine flatwood Pine f latwoods are the most widespread habitat type in Florida. The soil is not well drained, and the dominant vegetation consists of the following species: Longleaf Pine, Pinus palustris Mill. (Pinales:Pinaceae) Slash Pine, Pinus elliottii Engelm. (Pinales: P inaceae) Pawpaw, Asimina reticulata Shuttleworth (Magnoliales: Annonaceae) Tarflower, Befaria racemosa Vent. (Ericales: Ericaceae) and

PAGE 70

70 Fetterbush, Lyonia lucida (Lam.) (Ericales: Ericaceae) (Minno & Minno 1999). Freshwater marshes Fresh water marshes are wetlands that have no or very few trees. Plants that are present in this habitat include Carolina Willow, Salix caroliniana Michx (Malpighiales:Salicaceae) Wax Myrtle, Myrica sp. (Fagales: Myricaceae) Saltbush, Atriplex sp. (Caryophyllales: Amaranthace ae) Silverling, Baccharis halimifolia, (Asterales: Asteraceae) Elderberry Sambucus canadensis Linnaeus (Dipsacales: Adoxaceae) Alligator flag, Thalia geniculata Linnaeus(Zingerberales: Marantaceae) (Minno & Minno 1999) Disturbed habitat As a result of urbanization and agriculture there are large areas of disturbed habitat. These areas can be of importance to Lepidoptera conservation becasues they are dominated by by many nectar and hostplants for butterflies. Plants that dominate disturbed habitats incl ude Florida beggarweed, Bidens alba Linnaeus (Asterales: Asteraceae) Tick trefoil, Desmodium spp. (Fabales: Fabaceae) Passion flower, Passiflora spp. (Malpighiales: Passifloraceae) Beaches The beach is a very harsh habitat that does not have a large vari ety of Lepidoptera. Plants that dominate this region include Coco Plum, Chrysobalanus icaco Linnaeus (Malpighiales: Chrysobalanaceae) Beach Croton, Croton punctatus N von Jacquin(Malpighales: Euphorbiaceae) Saw Palmetto, Serenoa repens (Bartram) J. K. Sma ll (Arecales: Arecaceae) Golden Creeper, Ernodia littoralis, ((Small) R. W. Long (Rubiales: Rubiaceae) Railroad vine, Ipomea pes caprae (Linnaeus) R. Brown (Solanales: Convolvulaceae) Passion flower, Passiflora spp. (Malpighiales: Passifloraceae) (Minno & M inno 1999)

PAGE 71

71 Mangrove Mangrove habitat consists of trees that flourish around sea level and the high spring tide mark.Mangrove trees that occur in this habitat include the Red mangrove, Rhizophora mangle Linnaeus (Malpighiales: Rhizophoraceae) Black mangrov e, Avicennia germinans (Linnaeus) Linnaeus (Lamiales: Acanthaceae) and White mangrove, Laguncularia racemosa (Linnaeus) C.F. Gaertn. (Myrtales: Combretaceae) (Rey & Rutledge 2002) Urban versus Rural Settings Each of the collection sites possessed one or m ore of the above mentioned habitat types. To determine whether the habitats found at the collection sites were in urban or rural settings satellite imagery was employed via Google Earth. Figure 4 2 illustrates the 216 cm2 divisions. The satellite images we re scaled to 2 cm=3130 2.4 feet. The scale bar was not identical for each ~ 19 mi2 block, because of variation in the zoom settings in Google Earth. Grids were formed using Photoshop. The following categories were used to determine the nature of each square found on the grid, which are as follows: Pasture/Agriculture, Roads, Buildings, Wetlands, and Trees and Shrubs. If a cm2 on the statelite image, visibly possesses none of the above mentioned categories, it was given a colored dot. After all the dots ha d been assigned, they were tallied. Data Analysis Larvae were collected and reared to pupation according to the steps outlined in the Meterials and Methods section of Chatper 3. The outcome of rearing of each caterpillar was recorded and databased accordi ng to their collection site and species. During the course of the survey, the suburban and rural sites were visited multiple times at different times of the year in

PAGE 72

72 order to collect caterpillars. To perform the data analysis, parasitoidism rates for the ca terpillars collected during one season and within a single collecting locality were considered a single data point. Statistical analysis The Mann Whitney, a nonparametric rank sum test was used to compare the percentages of parasitoids obtained from the la rvae of Urbanus proteus in pesticide settings and nonpesticide settings. The equation for the MannWhitney statistic for the percentage of parasitoids found in urban settings is given below. Uu ( nu)( nr) ( nu)( nu 1 ) 2 Tu The equation for the MannWhitney statistic for the percentag e of parasitoids found in urban settings is given below. Ur ( nu)( nr) ( nr)( nr 1 ) 2 Tr The standard errors and means for the urban and rural samples are calculated from the data in Table 4 3. Standard Error Equation for urban settings ( u = urban) SX u Sfn For the remaind er of species that had a total sample size n<7, confidence intervals were used to compare the of percentage of parasitoidsobtained in urban and rural settings in Gainesville, FL and Miami, FL. The small sample sizes prevented an accurate assessment from a normality test.

PAGE 73

73 Confidence Interval Equation X sX t To complete the Confidence Interval calculation we use degrees of freedom ( n1= t ) with a level of confidence of .95. Confidence Interval Equation for urban settings X u sX u t Standard Error Equation for rural set tings ( r =rural) SX r Sfn The nonpesticide collection settings possessed number of samples from the rural collection settings. Therefore, a different Confidence Interval was used. The degrees of freedom ( n1= t ) with a level of confidence of .95. Confidence Interval Equation for rural settings X r sX r t Results Urban and Rural Settings Total tallies of the grid were made into 14 blocks of ~19 mi2. Figure 4 3 illustrates that rural and urban habitats have significant differences between the incidence of streets and building s. The differences between urban and rural habitat according to the above mentioned criterion would have been more significant without including Bill Baggs Cape Florida State Park, which possessed a large amount of water cells in the ~ 19 mi2 block that ga ve an abnormal urban setting. Figure 4 3 also shows that there is no significant difference between the incidence of trees and shrubs in urban and rural settings. Figures 44 through Figures 417 graphically depict the percentage of cells (216 total) poss essing Pasture/Agriculture, Roads, Buildings,

PAGE 74

74 Wetlands, and Trees and Shrubs.Table 41illustrates how the graphs were quantified. Table 42 outlines the total results for the urban and rural settings and also includes the habitat type(s) found ineachblock. Setting identification using satellite images yielded three rural sites and five urban sites in Gainesville, FL. In Miami, FL, setting identification using satellite images yielded five urban sites and one rural site. Bill Baggs Cape Florida State Park fa lsely appears to be a rural site (see Figure 4 17 and explanation above), but is misleading because of being an island and having less possible land. The key differences between the urban and rural habitat were the percentage of buildings and roads found in the grid. In Gainesville, rural settings averaged 27.2% and 22.4% for presence of roads and buildings, respectively. Conversely, urban habitat averaged 69.7 % and 66.2% for presence of roads and buildings, respectively. In Miami, only one rural location proved to yield the proper type of larvae for comparison. Urban locations in Miami, averaged 86.6% and 66.4 % for presence of roads and buildings, respectively. While there were key differences in the presence of buildings and roads, none of the sites wa s lacking in trees and shrubbery. Wetlands habitat was not the dominant habitat in any of the sites: Gainesville sites had a median of only 2.3 % and Miami sites had a mean of 11.7 % of water The South Florida Water Management Site had a 46% presence of wetlands. Pasture/Agriculture prevalence at the sites was more prevalent in Miami (Mean 29.3 %) than Gainesville (Mean 10.875 %). In Miami, FL, the sites in Homestead, FL were had a high prevalence of agricultural sites with a mean of 58.7%. Parasitoidism R atios in Rural Versus Urban Habitats Gainesville, FL The number of parasitoids affecting Lepidoptera hosts was significantly different for several species of Lepidoptera in Gainesville between urban and rural habitat. The most

PAGE 75

75 significant result was found in Urbanus proteus which showed a much higher rate of parasitism in urban settings, see Figure 421. After conducting the MannWhitney test (P<0.05) for data from Urbanus proteus, the null hypothesis was rejected that the two populations are identical and the alternative hypothesis that the percentage of parasitioidism are different was accepted. All of the parasitoids that affected U. proteus were Tachinids. Like Urbanus proteus Agraulis vanillae tended toward more parasitism in urban settings, but the difference was reliant on only three sites and a smaller sample size, see Figure 4 18.Hyphantrea cunea tended to show higher parasitism in rural settings during the month of July by tachinids, but the difference was like, Agraulis vanillae due to a small number sample locations. There was an interesting difference in parasitoids affecting Hyphantrea cunea in one rural sight between April and June in 2010, see Figure 4 20. Further study of the phenology of parasitoids affecting Hyphantrea cunea throughout the year could prove interesting. Miami, FL In Miami, poor sample sizes and only one rural site resulted in asignificant difference between urban and rural sites, see Figure 4 22 and Table 43. A. vanillae were parasitized by Hymenoptera:Chalcidae in Miami, FL while in Gainesville, FL they were parasitzed by Diptera:Tachinidae. The small sample size was a limiting factor in the ability to analyze the data form A. vanillae Discussion Frank and McCoy (2007) only considered introduced biological conrol agents that had become established in Florida. Hawkins et al. (1999) noted that established biological control agenst are not as detrimental to nontarget species as nonestablished biological control agents. The ten biological control agents considered to be pot entially harmful in Florida, have not been documented up to this point as adversely affecting nontarget species. More research is needed to

PAGE 76

76 assess the impact these biological control agents are having on nontarget species in Florida. Regarding Lepidoptera, two families of leaf miners (Gracillariidae and Lyonetiidae) are particularly at risk of biological control agents (Frank and McCoy 2007). Higher incidence of parasitoids in urban areas supports the hypothesis that altered habitats may have high species diversity and that habitat modification affects the integrity of preexisting food webs (Tylianakis et al 2007). In Ecuador, Tylianakis et al. (2007) found that species richness remained high in both undisturbed and disturbed habitats, however the food web structure was significantly different. Mysteriously, aggregations, of parasitoids are known to occur in locations where their host is even absent (Hassell 1984). The insect herbivore population is not necessarily correlated to the presence of suitable host plants and habitat; parasitoids are thought to be responsible for this phenomenon. For example, Orgyia vetusta Boisduval (Lepidoptera: Lymantriidae) was found in fragmentary spaces throughout seemingly suitable habitat, which was explained by their inte raction with predators and parasitoids (Maron & Harrison 1997). The effect of parasitoids on insect populations has been the object of several metadata analyses. Hawkins states that the susceptibility hypothesis is the most likely method to explain the host deaths caused by parasitoids (1994). The susceptibility hypothesis states that feeding niches/refuges are the key factors affecting the relationship between the host and parasitoid. Feeding niches are the host plants that herbivores feed on and the predators that prey upon the herbivores. The refuges provide protection for the hosts and serve as a barrier for the parasitoids. The combination of these two factors affects the numbers of parasitoids and their hosts in an ecosystem (Hawkins 1994; Hawkins et al 1993). Models that accurately predict the effect of

PAGE 77

77 parasitoid populations on nontarget host species are important in making decisions regarding the introduction of biological control agents (Frank & McCoy 2007; Roitberg 2000).

PAGE 78

78 Figure 4 1. Land usage in the United States from 1960 to 2000 (after Stein et al. 2000).

PAGE 79

79 Figure 4 2. Habitat quantification via Satellite Images. August 1, 2010, Google Earth, Scale: 3130 ft. per 2 cm, 12 cm x 18 cm (total area 216 cm2) Total Area: 18.98 mi2

PAGE 80

80 Table 41. Habitat quantification for YMCA Road Gainesville, FL Scale: 3128 ft per 2 cm. # cm 2 % mi 2 Pasture/Agriculture 12 5.6 1.0 Roads 65 30.0 5.7 Buildings 3 1.4 0.3 Wetlands 11 5.1 1.0 Trees and Shrubs 207 95.8 18.2 Total 216 100 19.0

PAGE 81

81 Table 4 2. Description of Habitat types. Site name Habitat Type(s) Setting % p % s % b % w % t YMCA Pine Flatland, Freshwater Marsh, Disturbed Habitat r 6.0 30.0 1.4 5.1 96.0 SW 63 rd Pine Flatland, Disturbed Habitat r 11.0 26.4 11.0 0 100.0 Shell Pine Flatland, Disturbed Habitat r 37.5 25.5 11.0 0 100.0 NW 98 St Pine Flatland, Freshwater Marsh, Disturbed Habitat u 14.0 54.2 38.4 1.4 100.0 Kanapaho Park Pine Flatland, Freshwater Marsh, Disturbed Habitat u 0 55.0 49.1 10.2 100.0 NATL Pine Flatland, Freshwater M arsh, Disturbed Habitat u 7.9 84.0 82.4 3.7 96.8 Santa Fe Pine Flatland, Disturbed Habitat u 0 58.8 66.2 0 100.0 Stadium by Pool Gainesville, FL Pine Flatland, Disturbed Habitat u 0 96.3 94.9 0 99.5 Bill Baggs Cape Florida State Park* Pine Flatland, Disturbed Habitat, Beaches, Mangrove, Tropical Hammock u 0 31.5 18.5 3.2 32.8 Casey's Corner Nursery, Homestead, FL Pine Flatland, Disturbed Habitat u 54.2 88.4 54.2 0 78.2 UF Tropical Research Station Pine Flatland, Disturbed Habitat u 91.2 93.1 51.9 0 65.3 Abandoned Plot, Homstead, FL Pine Flatland, Disturbed Habitat u 30.6 96.8 94.0 0 71.8 Fairchild Botanical and Tropical Gardens, Disturbed Habitat, Mangrove, Tropical Hammock u 0 68.1 65.3 20.4 82.9 South Floida Water Management Pine Flatland, Dis turbed Habitat, Freshwater Marshes r 0 32.9 6.0 46.8 100 Note: urban=u, rural=r, pasture/agriculture=p, roads=s, buildings=b, wetlands=w, and trees and shrubs =t. Bill Baggs Cape F lorida State Park is located on a peninsula, which affects the ratios

PAGE 82

82 Tab le 4 3. Sample sizes and parasitoid percentages (parasitoids/total adults eclosed) for each collection site in Gainesville and Mi ami, FL Lepidoptera and Location Sample Size Quadrat Number 1 2 3 4 5 Urbanus proteus Gainesville, FL n=306 Urban (parasito id/total ecalosed) .301 ,214 ,620 .666 n=120 Rural (parasitoid/total eclosed ) .01086 0 0 Agraulis vanillae Gainesville, FL n=63 Urban (parasitoid/total eclosed) .41 ,32 n 16 Rural (parasitoid/total eclosed) 0 Hyphantrea cunea Gainesville, FL n=128 Urban (parasitoid/total eclosed) .187 .696 n=294 Rural (parasitoid/total eclosed) 0.056 .0476 Agraulis vanillae Miami, FL n=77 Urban (parasitoid/total eclosed) .143 .304 .143 .2 0 n=2 Rural (parasitoid/total eclosed) 0

PAGE 83

83 Figure 4 3. Comparison and contrast of the range of percentages of three characters (streets, buildings, and trees/shrubs) found in thirteen collection areas. 100 80 60 40 20 Streets Rural Streets Urban Buildin gs Rural Buildings Urban Trees /Shrubs Rural Trees/Shrubs Urban Percentage (%) of cells possessing a certain character r

PAGE 84

84 Figure 4 4. Habitat quantification for YMCA Road Dec 17, 2007, Google Earth, Scale 3128 ft (. 216 cm2, 12 cm x 18 cm) Figure 4 5. Habitat quantification for SW 63rd AveDec 17, 2007, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (%) of cells possessing a certain character

PAGE 85

85 Figure 4 6. Habitat quantification for 301 Shell station Dec 17, 2007, Google Earth, Scale 3134 ft. (216 cm2, 12 cm x 18 cm) Figure 4 7. Habitat quantification for Stadium by pool Dec 17, 2007, Google Earth, Scale 3131 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a Percentage (%) of cells possessing a certain character

PAGE 86

86 Figure 4 8. Habitat quantification for NATL Dec 17, 2007, Google Earth, Scale 3134 ft. (216 cm2, 12 cm x 18 cm ) Figure 4 9. Habitat quantification for NW 98 St Dec 17, 2007, Google Earth, Scale 3128 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (% ) of cells possessing a certain character

PAGE 87

87 Figure 4 10. Habitat quantification for Santa Fe Dec 17, 2007, Google Earth, Scale 3131 ft. (216 cm2, 12 cm x 18 cm ) Figure 4 11. Habitat quantification for Kanapaho Park Dec 17, 2007, Google Earth, Scale 3128 ft. (216 cm2, l12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (%) of cells possessing a certain character

PAGE 88

88 Figure 4 12. Habitat quantification for Everglades Holiday Park Apr il 1, 2010, Google Earth, Scale 3135 ft. (216 cm2, 12 cm x 18 cm ) Figure 4 13. Habitat quantification for South Florida Water Management April 1, 2010, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (%) of cells possessing a certain character

PAGE 89

89 Figure 4 14. Habitat quantification for Casey's Corner Nursery August 1, 2010, Google Earth, Scale 3133 ft. (216 cm2, 12 cm x 18 cm ) Figure 4 15. Habitat quantification for UF Tropical Research Station August 1, 2010, Google Earth, Scale 3133 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (%) of cells possessing a certain character

PAGE 90

90 Figure 4 16. Habitat quantification for Abandoned Plot August 1, 2010, Google Earth, Scale 3130 ft. (216 cm2, 12 cm x 18 cm) Figure 4 17. Habitat quantification for Bill Baggs Cape Florida State Park April 1, 2010, Google Earth, Scale 3128 ft. (216 cm2, 12 cm x 18 cm ) Percentage (%) of cells possessing a certain character Percentage (%) of cells possessing a certain character

PAGE 91

91 Figure 4 18. Percentage of parasitoids (Diptera: Tachinidae) affecting hosts Agraulis vanillae in urban and rural settings in Gainesville, FL from October to December 2009 (N=79, rural=16, urban=63).

PAGE 92

92 Figure 4 19. Percentage of parasitoids (Diptera:Tachinidae and *Hymenoptera:Ichneumonidae) affecting hosts Hyphantria cunea in urban and rural settings in Gainesville, FL in July 2010 (N=422: rural=294, urban=128).

PAGE 93

93 Figure 4 20. Comparison of parasitoids affecting Hyphantrea cunea in April and July in rural Gainesville, FL. Parasitoid Percentag e (%)

PAGE 94

94 Figure 4 21. Percentage of parasitoids (Diptera: Tachinidae) affecting hosts Urbanus proteus in urban and rural settings in Gainesville, FL from September to October in 2009 and from August to September in 2010 (N=426: rural=120, urban=306).

PAGE 95

95 Figure 4 22. Percentage of parasitoids (Hymenoptera: Chalcidae) affecting hosts Agraulis vanillae in urban and rural settings in Miami, FL from April to September in 2010. (N=79:rual=2, urban=77).

PAGE 96

96 CHAPTER 5 POSSIBLE EFFECTS OF PESTICIDES ON THE HOST PARASITOID RELATIONSHIPS OF LEPIDOPTERA AND PARASITOIDS Pesticides and Parasitoids Are Pesticides Negative or Positive? Isolated refuges within the city limits in South Florida (for example, Castellow Hammock Park and Camp Owaissa Park) possess greater butterfly diversity than large tracts of protected land (for example, Biscayne National Park and Everglades National Park) (Minno 2009). Several studies have documented the negative impacts of pesticide on butterflies and other nont arget arthropods (Eliazar & Emmel 1991; Eliazar 1992; Emmel 1991a; Hennessey & Habeck 1991; Hennessey et al 1992; Oberhauser et al.2009; Salvato 1998; 1999; 2001; Zhong et al 2003a; 2003b; Zhong 2009). This is contrary to some anecdotal reports, which st ate that butterfly diversity is actually higher in relatively urban areas that are heavily sprayed for mosquitoes (Jaret Daniels pers. comm. 2010; Minno 2009). Response of Caterpillars to Pesticides The persistence of butterflies in heavily sprayed areas further complicates the difficulty of linking pesticide usage and butterfly mortality (Carroll & Loye 2006; Pyle 1976). The highly variable nature of larval toxicity could factor into the confusing nature of the relationship between butterflies and pesti cides. For example, Spodoptera frugiperda exhibits varying susceptibility to the insecticides Methonyl, Diazinon, and Permethrin. LD 50 of each of these pesticides increases with each larval instar. Conversely and atypically, Bombyx mori most tolerates an emulsion of Pyrmethrin in the first instar (Yu 2008). Timing of Bacillus thuringiensis application was a factor in the rate of host mortality in Lymantria dispar (Linnaeus) (Erb et al.2001). Pesticides indirectly benefit the parasitoids by causing the host Lymantria

PAGE 97

97 dispar (Linnaeus), to develop more slowly and thus be susceptible to parasitoid attack for a longer period of time (Weseloh 1983; Mascarenhas & Luttrell 1997). Effect of Pesticides on Parasitoids Pesticides can affect parasitoids most profoundly (Theiling 1988, Rebek & Sadof 2003). The effect pesticides have on parasitoid populations can be positive, negative or neutral (Erb et al.2001). Pesticides may make hosts less desirable to parasitoids. For example, Gypsy moth, Lymantria dispar (Linnae us) hosts fed sublethal doses of Bacillus thurigensis were preferentially less parasitized by Compsilura concinnata (Meigen) (Erb et al 2001). Pesticides may affect the ability of the parasitoid to forage for hosts (Stapel 2000). Parasitism following Bt infection of the host results in death to both parasitoid and host (Nealis &Frankenhyzen 1990; Ulpah & Kok 1996, Blumberg et al. 1997). Objective The intent of this study is to examine possible effects of mosquito spraying on butterflies within a sample area. Materials and Methods Collection and Rearing Collection and Rearing of caterpillars were performed as stated in the Materials and Methods section of chapter 3. Locations Locating sites that used pesticides and sites that did not use pesticides was a ccomplished by contacting Mosquito Control in Gainesville, FL and in Miami, FL. Gainesville, FL mosquito control has a website, which indicates the locations and times of mosquito aldulticide application ( http://www.cityofgainesville.org/GOVERNMENT/CityDepartmentsNZ/PublicWorks/Mosquito Control/tabid/272/Default.aspx#Spray_Zones__map_and_schedule ). A map of the mosquito

PAGE 98

98 spray zones for Gainesville, FL is found in Figure 51. Miami, FL mosquito control does not place spraying times and locations on a public website, but relayed the information regarding spraying times and locations upon request, see Figure 52. Gainesville, FL mosquito control uses the pesticide Aqua Reslin, which is a permethrin insecticide that is applied by vehicle mounted Ultra Low Volume Aerosol Generators. Miami Dade mosquito control uses Dibrom Naled, which is an organophosphat e applied by low aerial applications. Statistical analysis The Mann Whitney, a nonparametric rank sum test was used to compare the percentages of parasitoids obtained from the larvae of Urbanus proteus in pesticide settings and nonpesticide settings. Th e equation for the Mann Whitney statistic for the percentage of parasitoids found in pesticide settings is given below. Up ( np)( nnp) ( np)( np 1 ) 2 Tp The equation for the MannWhitney statistic for the percentage of parasitoids found in nonpesticide settings is given below. Unp ( np)( nnp) ( nnp)( nnp 1 ) 2 Tnp For th e remainder of species that had a total sample size n<7, confidence intervals were used to compare the of percentage of parasitoids obtained in pesticide and nonpesticide settings in Gainesville, FL and Miami, FL. The small sample sizes prevented an accur ate assessment from a normality test. Confidence Interval Equation X sX t

PAGE 99

99 The standard errors and means for the pesticide and nonpesticide samples are calculated from the data in Table 5 3. Standard Error Equation for pesticide settings ( p= pesticide) SX p Sfn To co mplete the Confidence Interval calculation we use degrees of freedom ( n1= t ) with a level of confidence of .95. Confidence Interval Equation for pesticide settings X p sX p t Standard Error Equation for nonpesticide settings ( np=nonpesticide) SX np Sfn The nonpesticid e collection settings possessed number of samples from the pesticide collection settings. Therefore, a different Confidence Interval was used. The degrees of freedom ( n1= t ) with a level of confidence of .95. Confidence Interval Equation for nonpesticide settings X np sX np t Results While Gainesville, FL did not have noticeable differences between pesticide settings, Miami, FL showed a difference between sample populations of Agraulis vanillae when pesticide settings were the discriminating factor. Table 5 1 is a list of the collection sites in Gainesville, FL and Table 5 2 gives a similar list for Miami, FL. Both tables give information on each sites pesticide history and percentage of parasitoids found. Agraulis vanillae had parasitism rate of 0% at Fairchild Trop ical Botanical Gardens, but this was also the case for South Florida Water

PAGE 100

100 Management District, which was a non pesticide site (it should be noted that the South Florida Water Management District had a very small sample size n=2), see Figure 5 6. The stats istical analysis of the data obtained for Agraulis vanillae was limited by the small sample size obtained. The target species in Gainesville, FL ( Hyphantrea cunea and Urbanus proteus ) did not show significant differences in respect to the percentage of par asitism occurring between non pesticide settings and pesticide settings, see Figures 5 5 and 54. Agraulis vanillae did appear to show some difference in parasitoidism between non pesticide and pesticide settings, but the small sample size again was a limi ting factor in the ability to analyze the data, see Figure 5 3. Discussion Resistance to organic pesticides was first observed in the house fly, Musca domestica, (Diptera: Muscidae) (Bruce and Decker 1952). Two mechanisms caused the house fly to develop r esistance, which include higher DDT dehydrochlorinase and mutant Na+ channels (Walker 2008). Resistance occurs because of natural selection, which is the process that allows certain traits to be passed on to the next generation. Natural selection favors a variety of tactics some of which include: genetic mutation, behavioral modifications, increased excretion, increased sequestering of toxic chemicals, and a more protective cuticle. More exact measurements regarding the application of mosquito pesticides w ill provide a more concrete estimate regarding how much pesticides are applied in each site. Potential variations in mosquito pesticide application occur due to the amount of rainfall in both Gainesville, FL and Miami, FL. Also useful, would be a study of whether resistance is occurring in either the parasitoids or the Lepidoptera hosts. Future studies investigating pesticide effect on nontarget species in Florida could include topical application bioassays for resistance monitoring. The resistance ratios of Lethal Concentration to larvae and parasitoids in urban and rural settings would provide a much more

PAGE 101

101 precise tool for assessing the effect of pesticides. Resistance in either population could be compared to a known susceptible population. Differences of resistance in urban and rural settings in different localities could also be compared. A careful analysis of the Lethal Concentration values for Lepidoptera larvae over the course of multiple instars would assess the variability of pesticide effect on sp ecific Lepidoptera larvae.

PAGE 102

102 Figure 5 1. Map of Gainesville with pesticide spray zones.

PAGE 103

103 Figure 5 2. Map of Miami with 2009 and 2010 pesticide spray zones.

PAGE 104

104 Figure 5 3. Percentage of parasitoids (Diptera: Tachinidae) affecting hosts Agraulis v anillae in pesticide and nonpesticide settings in Gainesville, FL from October to December 2009(N=79: pesticide=34, nonpesticide=45). *There was only one sample, therefore there was no standard error for this bar.

PAGE 105

105 Figure 5 4. Percentage of parasi toids (Diptera: Tachinidae) affecting hosts Urbanus proteus in pesticide and nonpesticide settings in Gainesville, FL from September to October in 2009 and from August to September in 2010 (N=425: pesticide=239, nonpesticide=186).

PAGE 106

106 Figure 5 5. Perc entage of parasitoids (Diptera:Tachinidae and*Hymenoptera:Ichneumonidae) affecting hosts Hyphantria cunea in pesticide and nonpesticide settings in Gainesville, FL in July 2010 (N=432: pesticide=138, nonpesticide=294). *The standard error exceeds the bounds of the graph in both directions for nonpesticide and in the negative direction for the pesticide bars.

PAGE 107

107 Figure 5 6. Percentage of parasitoids (Hymenoptera: Chalcidae) affecting hosts Agraulis vanillae in pesticide and nonpesticide settings in Miami, FL from April to September in 2010 (N=79: pesticide=35, nonpesticide=44).

PAGE 108

108 Table 5 1. Parasitoid percentage in both pesticide and non pesticide settings in Alachua county. Pesticide (p)/ Non Pesticide (n) pesticide application frequency Location Spec ies sample size (n) % Parasitoids Parasitoid Family p 6 times (zone 4 ) NATL Urbanus proteus 129 0.65 Diptera: Tachinidae p 3 times (zone 10) 23rd & Bee Unit Urbanus proteus 20 0.45 Diptera: Tachinidae n 3 times (zone 16) SW 39 Blvd/SW 37 Blvd Ur banus proteus 12 0.47 Diptera: Tachinidae n 7 times (zone 1) NW 95th Ave Blvd Urbanus proteus 8 0.17 Diptera: Tachinidae n 5 times (zone 3) NW 23r Near school Urbanus proteus 8 0.75 Diptera: Tachinidae n zone 1 (7 times) NW 39th Ave/NW 34th St, Gainesv ille, FL Urbanus proteus 1 0 -Lake Wauberg North Entrance Urbanus proteus 4 0 n YMCA Road Urbanus proteus 88 0.01 Diptera: Tachinidae n SW 63rd Ave Urbanus proteus 9 0 n SW 63rd Ave & 34th St Urbanus proteus 3 0 n Shell gas statio n Urbanus proteus 16 0 n NW 98 St/NW 37 Pl Urbanus proteus 45 0.29 Diptera: Tachinidae n 39th Ave & NW 92nd CT Urbanus proteus 10 0.45 Diptera: Tachinidae n 5916 39th Ave Urbanus proteus 5 0.40 Diptera: Tachinidae n Kanapaho Park Urbanus pr oteus 11 0.55 Diptera: Tachinidae

PAGE 109

109 Table 5 1. Continued. Pesticide (p)/ Non Pesticide (n) Pesticide application frequency Location Species sample size (n) % Parasitoi ds Parasitoid Family n SW 63rd Blvd/Archer Road Urbanus proteus 17 0 n Near Unity Church and Santa Fe College Urbanus proteus 6 0.33 Diptera: Tachinidae n Santa Fe Library N Rd/NW 83rd St Gainesville, FL Urbanus proteus 24 0.75 Diptera: Tachinidae p 6 times) (zone 4) NATL Agraulis vanilae 34 0.32 Diptera: Tachinidae n Ka napaho Park Agraulis vanilae 29 0.41 Diptera: Tachinidae n 2 mi. S. of Orange Heights Agraulis vanilae 0 0 p 3 times each (zone 9 & 11) 200 298 Florida 331 Malacosoma americanum 9 0.11 Diptera: Tachinidae n YMCA Road Malacosoma americanum 11 .45 Diptera: Tachinidae (4) Hymenoptera: Ichneumonidae (1) n 1725 SW 66th Pl Malacosoma americanum 14 0 p 3 times (zone 12) Apartments near dead end Hyphantria cunea 107 0.06 Diptera: Tachinidae (6) p 2 times (zone 8) Stadium by Pool Gainesville, F L Hyphantria cunea 21 0.05 Hymenoptera: Ichneomonida

PAGE 110

110 Table 5 1. Continued Pesticide (p)/ Non Pesticide (n) Pesticide application frequency Location Species sample size (n) % Parasitoids Parasitoid Family n Lake Wauberg South Entrance Hyphantria cunea 123 0.19 Diptera: Tachinidae (2) Hymenoptera: Braconidae (21) n SW 63rd Ave & 34th St Hyphantria cunea 181 0.70 Hymenoptear: Braconidae (123); Hymenoptera: Ichnemonidae (3)

PAGE 111

111 Table 52. Parasitoid percentage and diversity in Pesticide and nonPesticide settings in Florida counties MiamiDade and Broward. Pesticide (p)/ Non Pesticide (n) Pesticide application frequency Location Species sample size (n) % of Parasitoid s Parasitoid Family p pesticide (both years) Fairchild Botanical and Tropical Gardens, Agraulis vanillae 129 0 p non Bill Baggs Cape Florida State Park Agraulis vanillae 20 0.142857 143 Hymenoptera: Chalcidae n non Casey's Corner Nursery, Homestead, FL Agraulis vanillae 35 0.304347 826 Hymenoptera: Chalcidae n non UF Tropica l Research Station Agraulis vanillae 8 0.142857 143 Hymenoptera: Chalcidae n non Abandoned Plot, Homstead, FL Agraulis vanillae 8 0.2 Hymenoptera: Chalcidae n non South Floida Water Management Agraulis vanillae 1 0

PAGE 112

112 Table 5 3. Sample sizes and paras itoid percentages (parasitoids/total adults eclosed) for each collection site in Gainesville and Miami, FL Lepidoptera and Location Sample Size Quadrat Number 1 2 3 4 5 6 7 8 9 10 11 12 Urbanus proteus Gainesville, FL n=186 Pesticide setting (parasitoid /total eclosed) 0.651 0.45 0.471 0.167 0.75 0 n=239 Non Pesticide (parasitoid/total eclosed) 0 0.0109 0 0 0 0.2889 0.455 0.4 0.55 0 0.33 0.75 Agraulis vanillae Gainesville, FL n=34 Pesticide setting (parasitoid/total eclosed) 0.324 n= 45 Non Pesticide (parasitoid/total eclosed) 0 0.0109 Hyphantrea cunea Gainesville, FL n=138 Pesticide setting (parasitoid/total eclosed) .0561 0.048 n=294 Non Pesticide (parasitoid/total eclosed) 0.187 0.696 Agraulis van illae Miami, FL n=35 Pesticide setting (parasitoid/total eclosed) 0 n=44 Non Pesticide (parasitoid/total eclosed) 0.143 0.304 0.143 0.20 0

PAGE 113

113 CHAPTER 6 DISCUSSION AND CONCLUSIONS T he survey of nontarget species of Lepidoptera hosts resulted in twenty six morpho species of parasitoids. Parasitoid existing host records are being examined to add new records resulting from the present survey. DNA barcoding of each of the parasitoids encountered will provide future researchers with a database for identification. Now known to be a threat to nontarget species, Compsilura concinnata was released in Florida as a biological control agent, but failed to become established (Frank & McCoy 2007). Many introduced species, like C. concinnata, have the ability to outcompete other native parasitoids and thus expand their range (DeMoraes & Mescher 2005). When considering possible effects on nontarget species, the parasitoids ability for intrinsic competition, life history plasticity, and evolutionary ecol ogy are useful tools for assessing the potential for harm (Roitberg 2000). An example of life history plasticity is the social wasp invasion, which exhibits larger colony size and increased longevity in Hawaii as compared to its native land of western Nort h America (Wilson et al. 2009). Parasitoid abundance sometimes exhibits heterogeneity in uniform habitats (Martin et al. 1976). This being considered, parasitoid abundance is affected by several factors, some of which are described in this paragraph. Para sitoid abundance was correlated with tree/shrub richness, broad leaf cover, and canopy area in England and plant abundance in the Amazon (Fraser et al. 2007, Sksjrv et al. 2006). Ground vegetation while not important for forest ecosystems was important for agricultural systems (Risch 1979). In the present study, significant differences in parasitoid abundance in hosts of Urbanus proteus were noted between urban and rural settings in Florida ecosystems. Broad leaf cover, tree/shrub richness, and canopy a rea were important factors in determining parasitoid abundance

PAGE 114

114 in England (Fraser et al. 2007). So to understand why the differences occurred between urban and rural settings, the diversity of plants found at each of our collection setting was considered. Gainesville collection site had approximately 100% coverage with trees/shrubs. Miami collection settings were divided into three groups, which are as follows: ~100% trees/shrubs (Figures 1213), 6585% trees/shrubs (Figures 14 16), and 35% trees/shrubs (Fi gure 4 17). A more detailed survey of the tree/plant fauna in each setting, could help illucidate why the differences in parasitoid abundance are occurring. As the number of trophic levels between parasitoids and plants increases, the relationship between parasitoid abundance and plant abundance decreases (Fraser et al. 2007). Because Lepidoptera larvae (parasitoid hosts) in this study were all herbivores, the parasitoid abundance should exhibit a high correlation to the plant abundance. In Argentina and E cuador, parasitoid abundance was not found to be lower in disturbed habitats and habitat specialization of parasitoids was observed (Salvo et al. 2005, Tylianakis et al. 2007). High parasitoid abundance generally correlates with high parasitoid diversity ( Tylianakis et al. 2007). Further studies are needed to confirm our data on parasitoid abundance in different types of habitat. Two skipper species, Urbanus dorantes and Urbanus proteus (Lepidoptera: Hesperiidae), possess very similar life histories. More collection of the less frequently encountered larvae of Urbanus dorantes would allow for a improving comparison of the kinds and abundance of parasitoids affecting these two species Such study could provide clues regarding their speciation. Intense manage ment, such as the heavy use of pesticides, has been previously associated with decreased parasitoid abundance (Garcia 1993). No significant differences in parasitoid abundance in nontarget hosts were found because of pesticide application in Gainesville, F L. In Miami, there was a significant difference between places that receive pesticide spraying vs. those

PAGE 115

115 that do not. The observed difference in parasitoid abundance between pesticide and nonpesticide settings in Miami and the lack of such a difference i n Gainesville might be due to different mosquito control strategies. Gainesville mosquito control uses the mosquito pesticide Aqua Reslin and a truck application system. MiamiDade mosquito control uses the mosquito pesticide Dibrom Naled and an aerial app lication system. Another aspect that needs to be addressed in the future studies is the possibility that some nontarget species are becoming resistant to pesticides. A comparison of known susceptible larvae to larvae collected in various sites in Miami and Gainesville, FL could test for resistant populations. The method of statistical analysis involved the use of MannWhitney test and Confidence Intervals. Only one of the four analyzed data sets involving urban and rural effects appeared to have statistica lly significant results. None of the four analyzed data sets involving pesticide and nonpesticide settings had significant results. More data collection of some of the target species could give significance to trends that are apparent in the target specie s Agraulis vanillae. Agraulis vanillae seemed to show different rates of parasitoidism in pesticide and nonpesticide settings. The insufficient sample size for several of the target species is partly an artifact of the difficulty of conducting a field study involving larvae. Finding enough larvae at the proper time of the year is dependent on many factors outside of the researchers control. The benefit of conducting a field study of this kind is that the field conditions are not being modified. Thus, alth ough more challenging, this kind of research (vs. controlled experiments with sentinel larvae) can be more informative of what is occurring in the real world.

PAGE 116

116 APPENDIX TACHINIDAE:DIPTERA OF FLORIDA AND THEIR HOSTS Description of Checklist T he catalogue of the known species of Tachinidae in Florida presented below is an adaptation of a catalogue by OHara and Woods (2004): Catalogue of the Tachinidae (Diptera) of America: north of Mexico. Tachinidae species included here within are either the ones occur ring in Florida or have an unknown distribution within North America. Furthermore, the host information was included from Arnaud (1978): A host parasite catalogue of North American Tachinidae (Diptera) (1978). Furthermore, the presence of the Lepidopter a hosts in Florida was identified by examining Heppener (2007): The Lepidoptera of Florida: Introduction and catalog, Part 1. And finally, the hosts that do not occur in Florida are presented in parenthesis along with nonLepidoptera host records for eac h of the tachinid species. The present list will hopefully serve as a useful reference for the future research on the subject. By selecting 261 species found in Florida of the total of 1,324 species in OHaras catalogue, I hope to provide a more focused attention to our state. A specific reference to Lepidoptera hosts of Tachinidae and native vs. exotic status of both host and parasitoid species should facilitate future research efforts on the subject. In the list below, the Tachinidae species that occur in Florida are organized into four subfamilies: Dexinae, Exoristinae, Phasiinae, and Tachininae. If a host has been recorded for a particular parasitoid, it is listed below the tachinid species name. Records for nonFlorida Lepidoptera host species are indicated by an *. The orders of nonLepidoptera hosts (if any) are also listed. Existing frequent uncertainties regarding the distribution range of parasitoids are indicated by a ?.

PAGE 117

117 Checklist of Diptera: Tachinidae in Florida and their Known Hosts D iptera Oesteroidea Tachinidae 1. Campylocheta townsendi (Smith) Host: unknown 2. Spathidexia creolonsis Reinhard Host: Hesperiidae spp. 3. Spathidexia dunningii Coqillett Host: Lepidoptera: Hesperiidae *Ochlodes yuma (W.H. Edwards) Host: Hyme noptera 4. Spathidexia reinhardi Arnaud Host: Lepidoptera Hesperiidae spp. 5. Thelaira americana Brooks Host: Lepidoptera Arctiidae Diacrisia virginica (Fabricius) Estigmene acrea (Drur 6. Uramya rubripes Aldrich Host: unknown 7. Chaetonopsis spinosa Coquillett Host: unknown 8. Chaetoplagia atripennis Coquillett Host: unknown 9. Muscopteryx hinei Reinhard Host: unknown 10. Phyllomya polita Coquillett Host: unknown 11. Plagiomima alternata Aldrich Host: unknown 12. Wagneria major Curran Host: Le pidoptera:

PAGE 118

118 Noctuidae Choephora fungoroum Grote and Robinson 13. Wagneria vernata West Host: Lepidoptera: Noctuidae Protorthodes oviduca (Gene) *Xylena sp. Orthosia hibisci (Guene) 14. Acantholespesia comstocki Williston Host: Lepidoptera: C ossidae Cossula magnifica Strecker) Megathymidae Megathymus yuccae (Boisduval and LeConte) Pyralidae Melitara dentate (Grote) *Olycella junctolineella (Hulst) Ostrinia spp. *Ostrinia obliteralis (Walker) Ostrinia penitalis Grote Host: Hymenoptera: 15. Ametadoria harrisinae Coquillett Host: Lepidoptera: Zygaenidae Acoloithus sp. Harrisina spp. Harrisina Americana (Gurin Mneville) *Harrisina brillians Barnes and McDunnough 16. Carcelia diacrisiae Sellers Host: Lepidoptera: Arc tiidae *Diachorsia virginica (Fabricius) Estigmene acrea (Drury) 17. Carcelia formosa Aldrich and Webber Host: Lepidoptera: Noctuidae Acronicta hamamelis Guene Agrotis ipsilon (Hufnagel) Lithophane disposita Morrison Lithophane innominata Smith Lithophane spp.

PAGE 119

119 Saturniidae Automeris io (Fabricius) 18. Carcelia inflatipalpis Aldrich and Webber Host: unknown 19. Carcelia lagoae Townsend Host: Lepidoptera: Arctiidae *Ecpantheria icasia (Cramer) *Halisidota spp. Megalopygidae *Lagoa sp. *Megalopyge krugii (Dewitz) Megalopyge opercularis (J. E. Smith) Pyralidae *Eulepte concordalis Hbner ? Omphalocera cariosa Lederer 20. Carcelia languida Walker Host: Lepidoptera Arctiidae *Ecpantheria deflorata (Fabricius) Estigmene acrea (Drury) 21. Carcelia laxifrons Villeneuve (introduced) Host: Lepidoptera: Arctiidae *Apantesis proxima (Gurin Mneville) Lasiocampidae Malacosoma americanum (Fabricius) Malacosoma disstria Hbner Lymantriidae *Euproctis chrysorrhoea (Linnaeu s) *Nygmia phaeorrhoea (Donovan) Lymantria dispar (Linnaeus) Notodontidae Schizura concinna (J.E. Smith) 22. Drino antennalis Reinhard Host: unknown 23. Drino incompta (van der Wulp) Host: Lepidoptera: Citheroniidae Eacles imperialis (Drury)

PAGE 120

120 S aturniidae Hemileuca maia (Drury) Sphingidae Agrius cingulatus (Fabricius) Ceratomia amyntor (Hbner) Ceratomia catalpae (Boisduval) Ceratomia undulosa (Walker) Hyles lineata (Fabricius) Manduca quinquemaculata (Haworth) Manduca sexta (Linna eus) Manduca spp. Eumorpha achemon (Drury) Eumorpha vitis (Linnaeus) Sphinx chersis (Hbner) 24. Drino rhoeo(Walker) Host: Lepidoptera: Psychidae Thyridopteryx ephemeraeformis (Haworth) Sphingidae Agrius cingulatus (Fabricius) *Agrius convolvuli (Linnaeus) Manduca quinquemaculata (Haworth) Manduca sexta (Linnaeus) *Manduca sexta jamaicensis (Butler) Eumorpha achemon (Drury) 25. Lespesia aletiae (Riley) Host: Lepidoptera: Arctiidae Spilosoma virginica (Fabricius) Estigmene acrea (Drury) Estigmene sp. *Halysidota maculata (Harris) Halysidota tessellaris (J.E. Smith) Halysidota sp. Hyphantria cunea (Drury) Hyphantria sp. Seirarctia echo (J.E. Smith) Utetheisa ornatrix bella (Linnaeus) Brassolidae *Opsiphanes t amarindi Felder Ctenuchidae *Ceramidia butleri Mscler Syntomeida epilais (Walker) Lymire edwardsii (Grote)

PAGE 121

121 Geometridae *Ennomos subsignarius (Hbner) Hesperiidae *Autochthon cellus (Boisduval and LeConte Epargyreus clarus (Cramer) Urbanus proteus (Linnaeus) Lasiocampidae Malacosoma americanum (Fabricius) Limacodidae *Sibine apicalis Dyar Lymantriidae Orgyia. Leucostigma (J.E. Smith) Orgyia sp. Lymantria dispar (Linnaeus) *Stilpnotia salicis (Linnaeus) Megalopygidae Megalopyge opercularis (J.E. Smith) Lagoa pyxidifera (J.E. Smith) Megalopyge sp. Noctuidae Alabama argillacea (Hbner) Heliothis zea (Boddie) Heliothis sp. Mocis latipes (Guene) Plathypena scabra (Fabricius) Pseudaletia unipuncta (Haworth) P seudoplusia includens (Walker) Spodoptera frugiperda (J.E. Smith) Spodotera ornithogalli (Guene) Trichoplusia ni (Hbner) Xanthopastis timais (Cramer) Notodontidae Cerura spp. Dasylophia anguina (J.E. Smith) Datana ministra (Drury) Heter ocampa manteo (Doubleday) Nymphalidae Asterocampa sp. Nymphalis antiopa (Linnaeus) Polygonia inerrogationis (Fabricius) Vanessa cardui (Linnaeus) Pieridae Pieris protodice Boisduval and LeConte Pieris rapae (Linnaeus) Pyralidae Evergestis rimosalis (Guene)

PAGE 122

122 Olycella junctolineela (Hulst) Saturniidae Hemileuca maia (Drury) Sphingidae Ceratomia catalpae (Boisduval) Pholus sp. Host: Coleoptera 26. Lespesia archippivora (Riley) Host: Lepidoptera Arctiidae Estigmene acrea (Drury) Estigmene sp. Euchaetes egle (Drury) *Halisidota caryae (Harris) *Tyria jacobaeae (Linnaeus) Citheroniidae Citheronia regalis (Fabricius) Geometridae *Anacamptodes fragilaria (Grossbeck) *Scotorythra paludicola (Butler) *Scotorythra rara (B utler) Lasiocampidae Malacosoma americanum (Fabricius) *Malacosoma californicum (Packard) *Malacosoma californicumambisimile (Dryar) *Malacosoma californicumcalifornicum (Packard) *Malacosoma californicumfragile (Stretch) *Malacosoma californi cumpluviale (Dyar) *Malacosoma californicumrecenseo Dyar *Malacosoma constrictum (H. Edwards) Malacosoma disstria Hbner *Malacosoma incrvum discoloratum (Neumoegen) *Malacosoma incurvum incurvum (H. Edwards) Lycaenidae *Lampides boeticus (Lin naeus) Noctuidae *Agrotis crinigera (Butler) *Agrotis dislocata (Walker) Agrotis ipsilon (Hufnagel) Alypia octomaculata (Fabricius) Anomis hawaiiensis (Butler) Anomis noctivolans (Butler) *Autographa californica (Speyer) Elydna nonagrica (W alker) *Euxoa vestigialis (Rottenburg)

PAGE 123

123 Feltia sp. Feltia subterranea (Fabricius) Heliothis hawaiiensis (Quaintance and Brues) Helicoverpa zea (Boddie) Heliothis spp. *Peridroma coniotis (Hampson) *Peridroma coniotis coniotis (Hampson) P eridroma saucia (Hbner) Polydesma umbricola Boisduval Pseudaletia unipuncta (Haworth) *Scotogramma trifolii (Rottenburg) *Spodoptera exempta (Walker) Spodoptera exigua (Hbner) Spodoptera frugiperda (J.E. Smith) *Spodoptera mauritia (Boisduval) Spodoptera ornithogalli (Guene) *Spodoptera praefica (Grote) Spodoptera spp. Trichoplusia ni (Hbner) Notodontidae Schizura concinna (J.E. Smith) Nymphalidae *Anaea glycerium (Doubleday) Danaus gillippus berenice (Cramer) Danaus plexi ppus plexippus (Linnaeus) Nymphalis antiopa (Linnaeus) *Nymphalis milberti (Godart) Vanessa atalanta(Linnaeus) Vanessa cardui (Linnaeus) *Vanessa carye Hbner Papilionidae Papilio sp. Pieridae Colias eurytheme Boisduval Pieris protodice Boisd uval and LeConte Pieris rapae (Linnaeus) Pieris sp. Pyralidae *Hedylepta accepta (Butler) *Hedylepta blackburni (Butler) *Loxostege commixtalis (Walker) *Loxostege similalis (Guene) *Loxostege sticticalis (Linnaeus) Sphingidae Sphinx sp Yponomeutidae

PAGE 124

124 *Mapsidius iridescens Walsingham Host: Hymenoptera 27. Lespesia cuculliae (Webber) Host: Lepidoptera: Arctiidae Estigmene acrea (Drury) Noctuidae *Cucllia spp. Notodontidae Dasylophia anguina (J.E. Smith) Datana angusii G rote and Robinson 28. Lespesia datanarum (Townsend) Host: Lepidoptera: Bombycidae Bombyx sp. Citheroniidae *Anisota rubicunda (Fabricius) Anisota senatoria J.E. Smith *Anisota virginiensis (Drury) Anisota sp. Lasiocampidae Malacosoma ameri canum (Fabricius) Malacosoma californicum (Packard) Malacosoma californicum lutescens (Neumoegen & Dyar) Malacosoma incurvum incurvum (H.Edwards) Notodontidae Datana integerrima Grote and Robinson Datana ministra (Drury) Datana spp. Pyralidae Loxostege sticticalis (Linnaeus) Saturniidae Antheraea polyphemus (Cramer) Hyalophora gloveri (Strecker) Hyalophora nakomis Brodie Hyalophora sp. Platysamia cecropia (Linnaeus) Platysamia euryalus (Boisduval) 29. Lespesia dubia (Williston) Host: Lepidoptera Nymphalidae Nymphalis antiopa (Linnaeus)

PAGE 125

125 30. Lespesia fasciagaster Beneway Host: unknown 31. Lespesia ferruginea Reinhard Host: unknown 32. Lespesia frenchii Williston Host: Lepidoptera Arctiidae Diacrisia virginica (Fabricius) Euchaetias egle (Drury) *Halisidota caryae (Harris) Halisidota tessellaris (J.E. Smith) Hyphantria cunea (Drury) Bombycidae *Bombycidae species Citheroniidae *Anisota rubicunda (Fabricius) Anisota senatoria (J.E. Smith) *Aniso ta virginiensis (Drury) Citheronia regalis (Fabricius) Saturniidae Eacles imperialis (Drury) Geometridae Geometridae sp. Lasiocampidae Malacosoma americanum (Fabricius) *Malacosoma californicum (Packard) *Malacosoma californicum californic um (Packard) *Malacosoma californicum fragile (Stretch) *Malacosoma californicum lutescens (Neumoegen and Dyar) *Malacosoma californicum pluviale (Dryar) *Malacosoma constrictum (H. Edwards) Malacosoma disstria Hbner Malacosoma spp. Ly mantriidae Orgyia leucostigma (J.E. Smith) *Hemerocampa vetusta (Boisduval) *Nygmia phaeorhoea (Donovan) Lymantria dispar (Linnaeus) *Stilpnotia salicis (Linnaeus) Noctuidae *Faronta diffusa (Walker) Helicoverpa zea (Boddie) *Hydraecia im manis Guene Hypsoropha hormos Hbner

PAGE 126

126 Noctuidae spp. Notodontidae Datana angusii Grote and Robinson Datana integerrima Grote and Robinson Datana ministra (Drury) Datana sp. Clostera inclusa Hbner Nymphalidae Nymphalis antiopa (Linnaeus ) Vanessa atalanta(Linnaeus) Vanessa cardui (Linnaeus) Papilionidae *Papilio bairdii oregonius Edwards *Papilio eurymedon Lucas Papilio glaucus Linnaeus *Papilio glaucus canadensis Rothschild and Jordan *Papilio multicaudata Kirby Papilio polyxenes Fabricius Papilio polyxenes asterius Stoll *Papilio rutulus Lucas Papilio troilus Linnaeus Papilio sp. Pieridae Pieris rapae (Linnaeus) Pyralidae Pyralidae sp. Saturniidae Actias luna (Linnaeus) Antheraea polyphemus (Cramer) *Attacus sp. Automeris io (Fabricius) Callosamia promethea (Drury) *Hyalophora calleta (Westwood) *Hyalophora columbia Smith Hyalophora cecropia (Linnaeus) *Platysamia euryalus (Boisduval) *Samia cynthia (Drury) *Samia cynthia advena (Packard) Sphingicampa bicolor (Harris) Sphingidae *Ceratomia amyntor (Hbner) Ceratomia catalpae (Boisduval) Ceratomia undulosa (Walker) Manduca quinquemaculata (Haworth) Pachysphinx modesta (Harris) Paonias myops (J.E. Smith)

PAGE 127

127 *Smerint hus cerisyi Kirby Smerinthus jamaicensis (Drury) Sphinx chersis (Hbner) Sphinx kalmiae J.E. Smith Sphingidae sp. Host: Orthoptera Host: Hymenoptera 33. Lespesia laniiferae (Webber) Host: Lepidoptera Arctiidae Eupseudosoma involutum floridanum Grote Pyralidae *Laniifera cyclades Druce 34. Lespesia pilatei (Coquillett) Host: unknown 35. Lespesia rileyi (Williston) Host: Lepidoptera Papilionidae Papilio cresphontes Cramer *Papilio thoas Linnaeus 36. Lespesia rubra ( Townsend) Host: unknown 37. Lespesia rubripes Sabrosky Host: unknown 38. Lespesia schizurae (Townsend) Host: Lepidoptera Arctiidae Euchaetis egle (Drury) Lasiocampidae Malacosoma americanum (Fabricius) Notodontidae Heterocampa biundata Walker Heterocampa sp. *Schizura ipomaeae Doubleday Schizura unicornis (J.E. Smith) Sphingidae *Eumorpha pandorus (Hbner) Nymphalidae Danaus plexippus plexippus (Linnaeus) 39. Nilea lobeliae (Coquillett)

PAGE 128

128 Host: Lepidoptera Lymantriidae Orgyia leucostigma (J. E. Smith) Noctuidae Acronicta spp. Acronicta betulae Riley? Acronicta grisea Walker Acronicta hamamelis Guene Acronicta lobeliae Guene Alabama argillacea (Hbner) 40. Nilea mathesoni (Reinhard) Host: Lepidoptera Lymantriidae spp. 41. Siphosturmia me lampyga (Reinhard) Host: unknown 42. Siphosturmia phyciodis (Coquillett) Host: Lepidoptera Nymphalidae Phyciodes tharos (Drury) Phyciodes spp. 43. Siphosturmia rostrata (Coquillett) Host: unknown 44. Austrophorocera coccyx Aldri ch & Webber Host: Lepidoptera Limacodidae Phobetron pithecium (J.E. Smith) *Sibine stimulea (Clemens) Notodontidae Datana ministra (Drury) 45. Austrophorocera einaris (Smith) Host: unknown 46. Austrophorocera imitator (Aldrich & Webber) Host: unkown 47. Bessa selecta (Meigen) (introduced) Host: Lepidoptera Diprionidae Diprion hercyniae (Hartig) Diprion polytomum (Hartig)

PAGE 129

129 Neodiprion lecontei (Fitch) Neodiprion swainei Middleton Lymantriidae Orgyia leucostigma (J.E. Smith) Tenthredini dae Hemichroa crocea (Fourcroy) Pikonema alaskensis (Rohwer) Pikonema dimmockii (Cresson) Priophorus morio (Lepeletier) Pristiphora erichsonii (Hartig) Pristiphora geniculata (Hartig) Host: Hymenoptera 48. Chetogena claripennis (Macquart) Host: Lepidopt era Arctiidae Apantesis oithona Strecker Apantesis proxima (Gurin Mneville) Eubaphe aurantiaca rubicundaria (Hbner) Euchaetias egle (Drury) Halisidota tessellaris (J.E. Smith) Hyphantria cunea (Drury) Utetheisa ornatrix bella (Linnaeus) Citheroniidae Anisota rubicunda (Fabricius) Anisota senatoria J.E. Smith Ctenuchidae Lymire edwardsii (Grote) Gelechiidae Anarsia lineatella Zeller Geometridae Cingilia catenaria (Cramer) Itame sulphurea (Packard) Philtraea elegantaria (H. Edwards) Semiothisa nept aria (Guene) Hesperiidae Epargyreus clarus (Cramer Lasiocampidae Malacosoma americanum (Fabricius) Malacosoma disstria Hbner Malacosomasp. Limacodidae Sibine stimulea (Clemens) Lymantriidae Euproctis chrysorrhoea (Linnaeus) Orgyia leu costigma (J.E. Smith)

PAGE 130

130 Nygmia phaeorrhoea (Donovan) Porthetria dispar (Linnaeus) Stilpnotia salicis (Linnaeus) Megalopygidae Lagoasp. Megalopyge crispata (Packard) Megalopyge opercularis (J.E. Smith) Megalopyge pyxidifera (J.E. Smith) Noctuidae Acro nicta hamamelis Guene Actebia fennica (Tauscher) Agrotis ipsilon (Hufnage1) Alabama argillacea (Hbner) Amathes c nigrum (Linnaeus) Eubolina sp. ? Euxoa auxiliaris (Grote) Faronta diffusa (Walker) Feltia ducens Walker Feltia subgothica (Haworth) Feltia h erilis (Grote) Feltia subgothica (Haworth) Heliothis virescens (Fabricius) Heliothis zea (Boddie) Hydroecia immanis Gunee Lithophane spp. (including L. disposita Morrison, L. innominata (Smith) and/or L. petulca Grote), Mocis spp. (including M. latipes ( Guene) and/or M. repanda (Fabricius)) Peridroma saucia (Hbner) Plathypena scabra (Fabricius) Plathypena scabra (Fabricius)? Pseudaletia unipuncta (Haworth) Scotogramma trifolii (Rottenburg) Spodoptera eridania (Cramer) Spodoptera frugiperda (J.E. Smith) Spodoptera praefica (Grote) Notodontidae Datana angusii Grote & Robinson Datana contracta Walker Datana integerrima Grote & Robinson Datana ministra (Drury) Datana perspicua Grote & Robinson Datanasp. Ichthyura inclusa Hbner Schizura concinna (J. E. Smith) Schizura unicornis (J.E. Smith)

PAGE 131

131 Nymphalidae Agraulis vanillae Linnaeus Asterocampa clyton (Boisduval & LeConte) Chlosyne lacinia (Geyer) Nymphalis antiopa (Linnaeus) Polygonia comma (Harris) Polygonia interrogationis (Fabricius) Pier idae Colias eurytheme Boisduval Pieris rapae (Linnaeus) Pschidae Thyridopteryx ephemeraeformis (Haworth) Pyralidae Crambus mutabilis Clemens Crambus spp. Saturniidae Automeris io (Fabricius) Callosamia promethea (Drury) Hemi leuca electra Wright Hemileuca nevadensis Stretch Hemileuca oliviae Cockerel1 Hemileuca spp. (including H. lucina H. Edwards and/or H. maia (Drury)) Platysamia cecropia (Linnaeus) Sphingidae Ceratomia catalpae (Boisduval) Ceratomia undulosa (Walker) Sphinx chersis (Hbner) Zygaenidae Harrisina americana (Gurin Mneville) Host: Hymenoptera~ Host: Coleoptera 49. Chetogena edwardsii (Williston) Host: Lepidoptera Lasiocampidae Malacosoma americanum (Fabricius) Malacosoma disstria Hbner Lymantriidae Orgyia leucostigma (J.E. Smith) Noctuidae *Euxoa messoria (Harris) Euxoa spp. Notodontidae Datana integerrima Grote and Robinson Datana ministra (Drury)

PAGE 132

132 *Symmerista canicosta Franclemont Nymphalidae Anaea andria Scudder Asterocampa celtis (Boisduval and LeConte) Nymphalis antiopa (Linnaeus) Host: Hymenoptera 50. Chetogena indivisa (Aldrich and Webber) Host: unknown 51. Chetogena omissa (Reinhard) Host: Lepidoptera Noctuidae Heliothis sp. Peridroma saucia (Hbner) Spodoptera ornithogalli (Gune) Pieridae Colias eurytheme Boisduval Pyralidae *Loxostege sticticalis (Linnaeus) (Arnaud 1978) 52. Chetogena scutellaris (van der Wulp) Host: Lepidoptera Arctiidae Apantesis oithona Strecker Hyphantria cunea (Drury) Citheroniidae Anisota sp. near rubicunda (Fabricius) Ctenuchidae Lymire edwardsii (Grote) Syntomeida epilais (Walker) Geometridae Ennomos subsignarius (Hbner) Melanchroia cephise (Cramer) Hesperiidae Epargyreus clarus (Cramer) Noctuidae Alabama argillacea (Hbner) Anticarsia gemmatalis Hbner Heliothis zea (Boddie) Plathypena scabra (Fabricius) Pseudaletia unipuncta (Haworth) Pseudoplusia includens (Walker) Spodoptera frugiperda (J.E. Smith) (Arnaud 1978)

PAGE 133

133 Spodoptera eridania (Cramer) (Sourakov & Mitchell 2002) Notodontidae Datana integerrima Grote & Robinson Datana major Grote & Robinson Datana ministra (Drury) Ichthyura inclusa Hbner Ichthyura spp. (including I. apicalis Walker or I. inclusa Hbner) Pieridae Pieris protodice Boisduval & LeConte Saturniidae Saturnia galbina (Clemens) Sphingidae Ceratomia catalpae (Boisduval) Zygaenidae Harrisina americana (Gurin Mneville) Host: Coleoptera 53. Chetogena lophyri (Townsend) Host: Lepidoptera Lasiocampidae Malacosoma americanum (Fabricius) Host: Hymenoptera 54. Chetogena floridensis (Townsend) Host: Lepidoptera Pyralidae *Crambus trisectus ( Walker ) Elasmopalpus lignosellus (Zeller) Pyrausta tyralis (Guene) 55. Exorista dydas (Walker) Host: Hymenoptera 56. Exorista mella (Walker) Host: Lepidoptera Arctiidae *Apantesis nevadensis superba (Stretch) Apantesis oithona Strecker *Apantesis philyra (Drury) Cycnia tenera Hbner Spilosoma virginica (Fabricius) Estigmene acrea (Drury) Euchaetes egle (Drury) Halysidota harrisii Walsh

PAGE 134

134 Halysidota tessellaris (J.E. Smith) *Hyphantria textor (Harris) Pyrrharctia isabella (J.E. Smith) Bombycidae Bombycidae spp. Lasiocampidae Epicnaptera americana (Harris) Malacosoma americanum (Fabricius) *Malacosoma californicum (Packard) *Malacosoma californicum californicum (Packard) *Malacosoma californicum fragile (Stretch) *Malacosoma californicum lutescens (Neumoegen and Dyar) *Malacosoma californicum pluviale (Dyar) *Malacosoma constrictum (H. Edwards) Malacosoma disstria Hbner Malacosoma incurvum incurvum (H. Edwards) Malacosoma sp. *Phyllodesma americana (Harris) *Tolype laricis (Fitch) Tolype velleda (Stoll) Lymantriidae *Dasychira basiflava (Packard ) *Dasychira vagans (Barnes and McDunnough) *Euproctis chrysorrhoea (Linnaeus) Orgyia leucostigma (J.E. Smith) Hemerocampa pseudotsugata McDunnough Hemerocampa vetusta (Boisduval) Lymantria dispar (Linnaeus) Nygmia phaeorrhoea (Donovan) *Nygmia phaeorrhoea (Donovan) Orgyia antiqua (Linnaeus) Orgyia leucostigma (J.E. Smith) *Orgyia pseudotsugata McDunnough *Orgyia vetusta (Boisduval) Porthetria dispar (Linnaeus) *Stilpnotia salicis (Linnaeus) Noctuidae Acronicta americana (Harris) Acron icta lepusculina Guene Acronicta rubricoma Guene Acronicta sp. Pseudaletia unipuncta (Haworth) Pyreferra hesperidago (Guene) *Simyra henrici (Grote)

PAGE 135

135 Notodontidae Clostera inclusa Hbner Datana integerrima Grote and Robinson Datana mini stra (Drury) Schizura concinna (J.E. Smith) Nymphalidae Danaus plexippus plexippus (Linnaeus) Nymphalis antiopa (Linnaeus) Polygonia interrogationis (Fabricius) Saturniidae Callosamia promethea ( Drury ) *Hemileuca oliviae Cockerell Host: Hymenoptera 57. Phorocera aequalis (Reinhard) Host: Lepidoptera Noctuidae Catocala ilia (Cramer) ( Strazanac et al. 2001) 58. Phorocera auriceps Wood Host: unknown 59. Tachinomyia floridensis Townsend Host: unknown 60. Tachinomyia variata Curran Ho st: Lepidoptera Arctiidae Hypoprepia fucosa Hbner Hypoprepia miniata (Kirby) ( Strazanac et al. 2001) Lasiocampidae *Malacosoma californicum pluviale (Dyar) Lymantriidae Lymantria dispar (Linnaeus) Noctuidae *Nephelodes emmedonia (Crame r) ( Arnaud 1978) Catocala ilia (Cramer) Lithophane antennata (Walker) Orthosia rubescens (Walker) ( Strazanac et al. 2001) 61. Allophorocera australis (Coquillett) Host: unknown

PAGE 136

136 62. Argyrophylax albincisus (Wiedemann) Host: Lepidoptera Pyralidae *Eulepte concordalis Hbner Omoides indicata (Fabricius) Hymenia perspectalis (Hbner) Spoladea recurvalis (Fabricius) *Maruca testulalis (Geyer) Pilemia periusalis (Walker) *Pilocrocis inguinalis (Guene) *Psara pallicaudalis Snel len 63. Atacta brasiliensis Schiner Host: Lepidoptera Noctuidae Mocis latipes (Guene)? Sphingidae Manduca spp. 64. Belvosia borealis Aldrich Host: Lepidoptera Sphingidae Ceratomia catalpae (Boisduval) Ceratomia undulosa (Walker) Saturniidae s pp. Hesperiidae spp. Noctuidae spp. 65. Belvosia luteola Coquillett Host: Lepidoptera Noctuidae Armyworm(s) Saturniidae spp. Sphingidae spp. Hesperiidae spp. 66. Belvosia slossonae Coquillett Host: Lepidoptera Saturniidae spp. Sphingidae spp. Hesperiidae spp. Noctuidae spp. 67. Belvosia townsendi Aldrich Saturniidae spp. Sphingidae spp.

PAGE 137

137 Hesperiidae spp. Noctuidae spp. Host: Lepidoptera Citheroniidae Citheronia regalis (Fabricius) Eacles imperialis (Drury) Sphingidae Cera tomia amyntor (Hbner) 68. Blepharipa fimbriata (Wulp) Host: unknown 69. Blepharipa pratensis (Meigen) (introduced) Host: Lepidoptera Lasiocampidae Malacosoma americanum (Fabricius) Malacosoma disstria Hbner Lymantriidae *Euproctis chrysorrhoea (Linnaeus) Lymantria dispar (Linnaeus) *Stilpnotia salicis (Linnaeus) Noctuidae Catocala sp. Lithophane spp. Notodontidae Datana integerrima Grote and Robinson Symmerista albifrons (J.E. Smith) 70. Chaetogaedia analis (Wulp) Host: Lepidoptera Arctiidae Arctiidae spp. Geometridae Ennomos subsignarius (Hbner) Noctuidae Lacinipolia renigera (Stephens) 71. Chaetoglossa nigripalpis Townsend Host: unknown 72. Chaetoglossa picticornis Townsend Host: unknown 73. Distichonaautumnalis T ownsend Host: unknown

PAGE 138

138 74. Distichona kansensis (Townsend) Host: unknown 75. Erynnia tortricis Coquillett Host: Lepidoptera Coleophoridae *Coleophora fuscedinella Zeller *Coleophora malivorella Riley Gelechiidae Anarsia lineatella Zeller Pectino phora gossypiella (Saunders) Noctuidae Bellura obliqua (Walker) Olethreutidae Ancylis comptana (Frlich) Ancylis comptana floridana (Zeller) Ancylis comptana fragariae (Walsh and Riley) *Evora hemidesma (Zeller) Grapolita molesta (Busck) Cy dia pomonella (Linneaus) *Melissopus latiferreanus (Walsingham) *Proteoteras willingana (Kearfott) *Rhyacionia buoliana (Schiffermller) Psychidae Thyridopteryx ephemeraeformis (Haworth) Pyralidae Desmia funeralis (Hbner) Etiella zinckenella (Treitschke) Homoeosoma electellum (Hulst) Moodna ostrinella (Clemens) Tortricidae *Acleris variana (Fernald) *Archips cerasivoranus (Fitch) *Archips fervidanus (Clemens) *Archips rosanus (Linnaeus) Choristoneura rosaceana (Harris) Platyn ota flavedana Clemens Sparganothis sulfureana (Clemens) Tortricidae sp 76. Euceromasia floridensis Reinhard Host: Lepidoptera Yponomeutidae Urodus parvulus (H. Edwards)

PAGE 139

139 77. Frontiniella parancilla Townsend Host: Lepidoptera Gelechiidae Gnorimo schema sp. Pyralidae Tetralopha scortealis (Lederer) 78. Frontiniella surstylata O'Hara 79. Gaediopsis flavipes Coquillett 80. Gonia crassicornis (Fabricius) Host: Lepidoptera Noctuidae Feltia subterranea (Fabricius) *Prodenia sunia (Guene) Spodoptera eridania (Cramer) Spodoptera exigua (Hbner) Spodoptera frugiperda (J.E. Smith) Host: Coleoptera 81. Gonia senilis Williston Host: unknown 82. Houghia coccidella (Townsend) Host: unknown 83. Houghia setinervis (Coquillett) Host: unknown 84. Houghia setipennis Coquillett 85. Hyphantrophaga blanda (Osten Sacken) Host: Lepidoptera Arctiidae Hyphantrea cunea (Drury) Hyphantria textor (Harris) Citheroniidae Anisota rubicunda (Fabricius) Gelechiidae *Filatima monotaeniella (Bottimer) Geometridae *Cingilia catenaria (Cramer) Ennomos subsignarius (Hbner) *Hydria undulata (Linnaeus) *Isturgia truncataria (Walker) *Nepytia phantasmaria (Strecker)

PAGE 140

140 Hesperiidae Calpodes ethlius (Stoll) Epargyreus clarus (Cramer) Erynnis brizo (B oisduval & LeConte) Limacodidae *Euclea cippus Cramer Euclea delphinii Boisduval Lymantriidae *Euproctis chrysorrhoea (Linnaeus) ? *Nygmia phaeorrhoea (Donovan) *Orgyia antiqua (Linnaeus) *Stilpnotia salicis (Linnaeus) Noctuidae Alabam a argillacea (Hbner) Anomis erosa Hbner Catocala spp. *Hypena humuli (Harris) Mocis spp. Phosphila turbulenta Hbner Plathypena scabra (Fabricius) Spodoptera frugiperda (J.E. Smith) Nymphalidae Nymphalis antiopa (Linnaeus) Polygonia interrogationis (Fabricius) Vanessa atalanta (Linnaeus) Vanessa cardui (Linnaeus) Oecophoridae *Depressaria pastinacella (Duponchel) Depressaria spp. *Psilocorsis faginella (Chambers) *Psilocorsis fletcherella Gibson Olethreutidae Gretchena boll iana (Slingerland) Psychidae Thyridopteryx ephemeraeformis (Haworth) Pyralidae *Acrobasis comptoniella Hulst Acrobasis indigenella (Zeller)? Alatuncusia bergi (Mschler) Dichogama redtenbacheri Lederer *Loxostege similalis (Guene) *Nephopteryx subcaesiella (Clemens) Nephopteryx subfuscella (Ragonot) Tetralopha robustella Zeller Sphingidae Smerinthus jamaicensis (Drury)

PAGE 141

141 Sphecodina abbottii Swainson Tortricidae Archips argyrospila (Walker) *Archips cerasivoranus (Fitc h) *Archips fervidanus (Clemens) Argyrotaenia mariana (Fernald) 86. Hyphantrophaga hyphantriae (Townsend) Host; Lepidoptera Arctiidae Cycnia inopinatus (H. Edwards) Cycnia tenera Hbner Euchaetes egle (Drury) Hyphantria cunea (Drury) *Hyphantr ia textor (Harris) Citheroniidae Anisota senatoria J.E. Smith Geometridae *Eucaterva variaria Grote Eulithis diversilineata (Hbner) Lasiocampidae *Gloveria howardi Dyar Malacosoma americanum (Fabricius) *Malacosoma californicum (Packard) *Malacosoma incurvum discoloratum (Neumoegen) *Malacosoma incurvum incurvum (H. Edwards) Megalopygidae Lagoa crispata (Packard) Noctuidae Heliothis zea (Boddie) Spodoptera frugiperda (J.E. Smith) Nymphalidae *Nymphalis milberti (Godart) Pyra lidae *Acrobasis caryae Grote Desmia funeralis (Hbner) *Loxostege similalis (Guene) Omphalocera cariosa Lederer Pempelia spp. Pyralidae spp. Sphingidae Ceratomia catalpae (Boisduval) Ceratomia undulosa (Walker) 87. Hyphantrophaga seller si (Sabrosky) Host: unknown

PAGE 142

142 88. Patelloa leucaniae (Coquillett) Host: Lepidoptera Lymantriidae Euproctis chrysorrhoea (Linnaeus) Orgyia leucostigma (J.E. Smith) Noctuidae Alabama argillacea (Hbner) Pseudaletia unipuncta (Haworth) ( Arnaud 1978) Acronicta modica Walker (Strazanac et al. 2001) Notodontidae Datana ministra (Drury) Heterocampa guttivitta (Walker) Psychidae *Thyridopteryx ephemeraeformis (Haworth) Pyralidae *Loxostege similalis (Guene) Host: Cole optera? 89. Patelloa meracanthae (Greene) Host: Coleoptera 90. Prospherysa pulverea (Coquillett) Host: unknown 91. Pseudochaeta argentifrons Coquillett Host: Lepidoptera Arctiidae *Cisthene nexa (Boisduval) *Tigrioides bicolor (Grote) ( Arnaud 1978) Hypoprepia fucosa Hubner Hypoprepia miniata (Kirby) ( Strazanac et al 2001) Bombycidae Bombycidae spp. Pyralidae Hahncappsiamancalis (Lederer)

PAGE 143

143 92. Pseudochaeta brooksi Sabrosky & Arnaud Host: unknown 93. P seudochaeta perdecora Reinhard Host: unknown 94. Pseudochaeta pyralidis Coquillett Host: Lepidoptera: Nymphalidae Vanessa cardui (Linnaeus) Pyralidae Tetralopha asperatella (Clemens) 95. Spallanzania floridana Townsend Host: unknown 96. Spallanzani a hebes (Falln) Host: Lepidoptera Noctuidae Feltia subterranea (Fabricius) 97. Spallanzania hesperidarum (Williston) Host: Lepidoptera Hesperiidae Epargyreus clarus (Cramer) 98. Masiphya confusa Aldrich Host: unknown 99. Masiphya floridana (Towns end) Host: unknown 100. Diotrephes atriventris Walker Host: unknown 101. Hemisturmia parva (Bigot) Host: Lepidoptera Glyphipterygidae *Anthophila pariana (Clerck) Nymphalidae Nymphalis antiopa (Linnaeus) Olethreutidae Ancylis comptana (Frlich) Pterophoridae *Pterophorus periscelidactylus Fitch Pyralidae Acrobasis indigenella (Zeller)

PAGE 144

144 Loxostege similalis (Guene) Udea rubigalis (Guene) Tortricidae *Acleris minuta (Robinson) *Acleris variana (Fernald) *Archips argyrospilus (Walker) *Archips cerasivoranus (Fitch) Archips rileyana (Grote) *Argyrotaenia citrana (Fernald) Argyrotaenia velutinana (Walker) Choristoneura fumiferana (Clemens) Choristoneura pinus Freeman Choristoneura rosaceana (Harris) Tortricidae sp. 102. Nemorilla pyste (Walker) Host: Lepidoptera Gelechiidae *Filatima persicaeella (Murtfeldt) Glyphipterygidae *Anthophila pariana (Clerck) Hesperiidae Urbanus proteus (Linnaeus) Lycaenidae *Strymon ontario autolycus (Edwards) Lymantriidae Lymantria dispar (L innaeus) Noctuidae Achatodes zeae (Harris) Heliothis zea (Boddie) *Prodenia sunia (Guene) Spodoptera frugiperda (J.E. Smith) Trichoplusia ni (Hbner) Oecophoridae Depressaria pastinacella (Duponchel) Olethreutidae Ancylis comptana (Frlich) Ancylis comp tana fragariae (Walsh & Riley) Episimus argutanus (Clemens) *Evora hemidesma (Zeller) *Exartema sericoranum Walsingham Grapholitha molesta (Busck) *Rhopobota naevana (Hbner) *Rhyacionia buoliana (Schiffermller) Spilonota ocellana (Denis & Schiffermller ) Pyralidae

PAGE 145

145 *Acrobasis betulella Hulst *Acrobasis caryae Grote Acrobasis caryivorella Ragonot *Acrobasis comptoniella Hulst *Acrobasis coryliella Dyar Acrobasis indigenella (Zeller) Acrobasis juglandis (LeBaron) Acrobasis rubrifasciella Packard Microthyr is anormalis (Guene) ? Asciodes gordialis (Guene) Desmia funeralis (Hbner) Diaphania hyalinata (Linnaeus) Diatraea saccharalis (Fabricius) Omiodes indicata (Fabricius) Hellula phidilealis (Walker) Hellula rogatalis (Hulst) Herpetogramma bipunctalis (F abricius) Hulstia undulatella (Clemens) Spoladea recurvalis (Fabricius) *Loxostege similalis (Guene) *Maruca testulalis (Geyer) *Nephopteryx subcaesiella (Clemens) Ostrinia nubilalis (Hbner) Ostrinia spp. Herpetogramma bipunctalis (Fabricius) Phlyctaen ia coronata tertialis (Guene) Lygropia tripunctata (Fabricius) Pococera scabridella (Ragonot) *Psara pallicaudalis Snellen *Pyrausta futilalis (Lederer) Pyrausta signatalis (Walker) Pyrausta tyralis (Guene) Tetralopha asperatella (Clemens) Tortricidae *Acleris minuta (Robinson) *Acleris variana (Fernald) *Adoxophyes furcatana (Walker) *Amorbia emigratella Busck *Aphelia alleniana (Fernald) *Archippus packardianus (Fernald) *Archips argyrospilus (Walker) *Archips cerasivoranus (Fitch) Archips fervidanus (Clemens) *Archips griseus (Robinson) *Archips purpuranus (Clemens) *Archips rosanus (Linnaeus)

PAGE 146

146 Argyrotaenia velutinana (Walker) Choristoneura fumiferana (Clemens) *Choristoneura houstonana (Grote) Choristoneura parallela (Robinson) Choristoneura pinus Freeman *Choristoneura rosaceana (Harris) *Pandemis pyrusana (Kearfott) Sparganothis sulfureana (Clemens) Yponomeutidae *Yponomeuta malinella Zeller Yponomeuta multipunctella Clemens *Yponomeuta padella (Linnaeus) 103. Winthemia citheroniae Sabrosky Host: Lepidoptera Saturniidae Citheronia regalis Fabricius Eacles imperialis (Drury) 104. Winthemia datanae (Townsend) Host: Lepidoptera Arctiidae Spilosoma virginica (Fabricius) Estigmene acrea (Drury) Euchaetes egle (Drury) Pyrrharctia isabell a (J.E. Smith) Arctiidae sp. Citheroniidae Dryocampa rubicunda (Fabricius) Anisota senatoria J.E. Smith Lasiocampidae Malacosoma disstria Hbner Lymantriidae Orgyia leucostigma (J.E. Smith) Noctuidae Acronicta impleta Walker Pseudaletia unipuncta (Haworth) Catocalinae sp. Notodontidae *Datana anguii Grote and Robinson Datana integerrima Grote and Robinson Datana ministra (Drury) Datana perspicua Grote and Robinson Datana spp. Oligocentria lignicolor (Walker) *Hyperaeschra str agula (Grote)

PAGE 147

147 *Pheosia rimosa Packard Schizura badia (Packard) Schizura concinna (J.E. Smith) *Schizra ipomaeae Doubleday Schizura leptinoides (Grote) Schizura unicornis (J.E. Smith) Saturniidae Hyalophora cecropia (Linnaeus) *Samia cynthia advena (Packard) Sphingidae Ceratomia catalpae (Boisduval) Lathoe juglandis (J.E. Smith) Paonias excaecatus (J.E. Smith) *Sphinx drupiferarum J.E. Smith Sphinx gordius Cramer 105. Winthemia deilephilae (Osten Sacken) Host: Lepidoptera Sphingidae Hyles l ineata (Fabricius) Sphinx sp. 106. Winthemia floridensis Guimares Host: unknown 107. Winthemia intermedia Reinhard Host: Lepidoptera Noctuidae Pseudoplusia includens (Walker) 108. Winthemia okefenokeensis Smith Host: unknown 109. Winthemia rufopicta (Bigot) Host: Lepidoptera Geometridae Alsophila pometaria (Harris) Lasiocampidae Lasiocampidae spp. Noctuidae Alypia octomaculata (Fabricius) *Xestia c nigrum (Linnaeus) Amphipyra pyramidoides Guene Anticarsia gemmatalis Hbner *C eramica picta (Harris) *Cucullia convexipennis Grote and Robinson

PAGE 148

148 *Epiglaea apiata (Grote) Helicoverpa zea (Boddie) Heliothis spp. Lithophane antennata (Walker) Lithophane spp. *Luperina stipata (Morrison) Oligia fractilinea (Grote) Pap aipema cataphracta (Grote) *Papaipema nebris (Guene) Peridroma saucia (Hbner) Condica sutor (Guene) Pseudaletia unipuncta (Haworth) *Spaelotis clandestina (Harris) Spodoptera eridania (Cramer) Spodoptera frugiperda (J.E. Smith) Spodopter a ornithogalli (Guene) Trichoplusia ni (Hubner) *Xylena nupera (Lintner) Noctuid spp. Notodontidae Heterocampa guttivitta (Walker) Sphingidae Hemaris diffinis (Boisduval) Sphingidae spp. 110. Winthemia sinuate Reinhard Host: Lepidoptera N octuidae *Luperina stipata (Morrison) Platyhypena scabra (Fabricius) Spodoptera frugiperda (J.E. Smith) Calpe canadensis Bethune Geometridae *Cingilia catenaria (Cramer) *Erannis tiliaria (Harris) Hesperiidae *Thymelicus lineola (Ochsenheim er) Lasiocampidae *Tolype laricis (Fitch) Notodontidae Schizura unicornis (J.E. Smith) Nymphalidae Nymphalis antiopa (Linnaeus) 111. Billaea claripalpis (Wulp) (introduced) Host:Lepidoptera

PAGE 149

149 Pyralidae Chilo plejadellus Zincken *Diatraea cons iderate Heinrich *Diatraea grandiosella Dyar *Diatraea magnifactella Dyar Diatraea saccharalis Fabricius *Diatraea tabernella Dyar Diatraea spp. Ostrinia nubilalis (Hbner) *Zeadiatraea lineolata (Walker) 112. Megapariopsis opaca (Coquille tt) Host: Coleoptera 113. Microchaetina cinerea van der Wulp Host: unknown 114. Microchaetina mexicana (Townsend) Host:unknown 115. Phasiops flavus Coquillett Host: Lepidoptera Pyralidae Crambus spp. Host:Diptera 116. Nicephorus floridensis Reinhard Host: unknown 117. Ptilodexia incerta West Host: unknown 118. Ptilodexia ponderosa (Curran) Host: unknown 119. Ptilodexia prexaspes (Walker) Host: unknown 120. Ptilodexia rufipennis (Macquart) Host: Coleoptera 121. Prosenoides flavipes Coquillett Host :unknown 122. Zelia tricolor (Coquillett) Host: Coleoptera

PAGE 150

150 123.Zelia vertebrata (Coquillett) Host: Coleoptera 124. Zelia zonata ( Coquillett) Host: Coleoptera 125. Oestrophasia calva Coquillett Host:unknown 126. Oestrophasia sabroskyi (Guimares) Host :unknown 127. Beskia aelops (Walker) Host: Lepidoptera Noctuidae Alabama argillacea (Hbner) Tettigoniidae Neoconocephalus robustus robustus (Scudder) Host: Hemiptera (Heteroptera) 128. Epigrimyia polita Townsend Host: unknown 129. Euthera tentat rix Loew Host: Hemiptera 130. Cordyligaster septentrionalis Townsend Host:unknown 131. Euantha litturata (Olivier) Host:unknown 132. Leskiopsis thecata (Coquillett) Host:unknown 133. Catharosia nebulosa (Coquillett) Host:unknown 134. Cylindromyia nana (T ownsend) Host:unknown 135. Cylindromyia binotata (Bigot) Host: Lepidoptera Saturniidae Actias luna (Linnaeus) Host: Hemiptera

PAGE 151

151 136. Cylindromyia euchenor (Walker) Host: Lepidoptera Noctuidae Pseudaletia unipuncta (Haworth) Host: Orthoptera Host: He miptera 137. Cylindromyia fumipennis (Bigot) Host: Hemiptera 138. Cylindromyia propusilla Sabrosky & Arnaud Host: unknown 139. Cylindromyia interrupta (Meigen) Host: unknown 140. Gymnoclytia immaculata ( Macquart) Host: Lepidoptera Noctuidae Pseudaletia unipuncta (Haworth Host: Hemiptera 141. Gymnoclytia unicolor (Brooks) Host: unknown 142. Leucostoma acirostre Reinhard Host: Hemiptera 143. Euclytia flava (Townsend) Host: unknown 144. Phasia occidentis (Walker) Host: Hemiptera 145. Phasia robertsoni (Townsend) Host: Hemiptera 146. Trichopoda lanipes (Fabricius) Host: Hemiptera 147. Trichopoda pennipes (Fabricius) (introduced) Host: Hemiptera 148. Xanthomelanodes arcuatus (Say) Host: unknown

PAGE 152

152 149. Xanthomelanodes atripennis (Say) Host: unknown 150. Zaira georgiae (Brauer & Bergenstamm) Host: Coleoptera 151. Zaira aurigera (Coquillett) Host: unknown 152. Zaira angustifrons (Reinhard) Host: unknown 153. Vibrissina spinigera (Townsend) Host:Lepidoptera Host: Hymenoptera 154. Vibrissina hylotomae (Coquillett) Host: Lepidoptera Notodontidae Heterocampa guttivitta (Walker) 155. Thelairodoria setinervis (Coquillett) Host: unknown 156. Sphaerina linearis (Townsend) Host: unknown 157. Phasmophaga floridensis (Greene) Host: unknown 158. Phasmophaga antennalis Townsend Host: Orthoptera 159. Phasmophaga americana (Coquillett) Host: Orthoptera 160. Oxynops anthracinus (Bigot) Host: Lepidoptera Pyralidae *Pyrausta futilalis (Lederer) 161. Opsomeigenia flavipalpis (Reinhard) Host: unknown 162. Myiopharus sedulous (Reinhard)

PAGE 153

153 Host: unknown 163. Myiopharus infernalis (Townsend) Host: Lepidoptera Tortricidae Archips argyrospila (Walker) Host: Coleoptera 164. Myiopharus floridensis (Townsend) Host: Lepidoptera Pterophoridae Hellinsia homodact ylus (Walker) 165. Myiopharus ancilla (Walker) Host: Lepidoptera Gelechiidae *Filatima persicaeella (Murtfeldt) Host: Coleoptera 166. Myiopharus americanus (Bigot) Host: Coleoptera. 167. Miamimyia cincta Townsend Host: Orthoptera 168. Medina barbata (Coquillett) Host: Coleoptera 169. Lixophaga variabilis (Coquillett)_ Host: Lepidoptera Noctuidae Anomis erosa Hbner Papaipema cataphracta (Grote) *Papaipema nebris (Guene) Plagiomimicus spumosum (Grote) Trichoplusia ni (Hbner) Olethre utidae Ancylis comptana (Frlich) Epiblema otiosanum (Clemens) Epiblema scudderiana (Clemens) Epiblema strenuana (Walker) Eumarozia malachitana (Zeller) Grapholita molesta (Busck) Cydia caryana (Fitch) Cydia pomonella (Linnaeus) Rhyacioni a rigidana (Fernald)

PAGE 154

154 Suleima helianthana (Riley) Pyralidae Desmia funeralis (Hbner) Homoeosoma electellum (Hulst) *Loxostege similalis (Guene) Ostrinia nubilalis (Hbner) Ostrinia penitalis (Grote) Ostrinia spp. Pyralidae spp. Host: Col eoptera Host: Hymenoptera 170. Lixophaga plumbea Aldrich Host: Lepidoptera Olethreutidae Grapholita molesta (Busck) Rhyacionia frustrana (Comstock) Phaloniidae Phalonia oenotherana Riley Pyralidae *Pyrausta futilalis (Lederer) Tortricidae X enotemna pallorana (Robinson) 171. Lixophaga mediocris Aldrich Host: Lepidoptera Gelechiidae Frumenta nundinella (Zeller) Limacodidae *Cnidocampa flavescens (Walker) Olethreutidae Grapholita molesta (Busck) *Laspeyresia caryana (Fithch) *Rhya cionia buoliana (Schiffermller) Rhyacionia frustrana (Comstock) Rhyacionia rigidana (Fernald) Suleima helianthana (Riley) 172. Lixophaga diatraeae Townsend Host: Lepidoptera Arctiidae *Utetheisa venusta Dalman Hesperiidae Calpodes ethlius (Sto ll) Noctuidae Spodoptera frugiperda (J.E. Smith) Pyralidae

PAGE 155

155 *Diatraea canella Hampson Diatraea crambidoides (Grote) Diatraea saccharalis (Fabricius) Diatraea spp. *Zeadiatraea lineolata (Walker) 173. Eucelatoria rubentis (Coquillett) Host: L epidoptera Noctuidae Pseudaletia unipuncta (Haworth) Spodoptera exigua (Hbner) 174. Eucelatoria procincta (Reinhard) Host: unknown 175. Eucelatoria dimmocki (Aldrich) Host: Coleoptera 176. Eucelatoria bigeminata (Curran) Host: unknown 177. Chaetostigmoptera rostrata (Coquillett) Host: unknown 178. Chaetostigmoptera crassinervis (Walton) Host: unknown 179. Chaetonodexodes vanderwulpi (Townsend) Host: Coleoptera 180. Blondelia obconica (Walker) Host: unknown 181. Blondelia hyphantriae (Tothill) Host: Lepidoptera Arctiidae *Diacrisia virginica (Fabricius) Halysidota harrisii Walsh Halysidota tessellaris (J.E. Smith) Hyphantria cunea (Drury) *Hyphantria textor (Harris) Noctuidae Bomolocha abalienalis (Walker) Bomolocha deceptalis (W alker) *Ceramica picta (Harris) Lithophane antennata (Walker)

PAGE 156

156 Lithophane sp. Arnaud 1978 *Orthosia rubescens (Walker) Phoberia atomaris Hbner (Strazanac et al. 2001) Notodontidae Heterocampa guttivitta (Walker) 182. Belida pus illa (Reinhard) Host: unknown 183. Anisia serotina (Reinhard) Host: unknown 184. Anisia optata (Reinhard) Host: unknown 185. Anisia gilvipes (Coquillett) Host: Orthoptera 186. Admontia tarsalis Coquillett Host: Lepidoptera Noctuidae spp. Host: Dipter a 187. Juriniopsis floridensis Townsend Host: Lepidoptera? Arctiidae *Ecpantheria deflorata (Fabricius) 188. Jurinia smithi (van der Wulp) Host: unknown 189. Epalpus signifer (Walker) Host: Lepidoptera Noctuidae Lithophane spp. 190. Deopalpus hi rsutus Townsend Host: unknown 191. Copecrypta ruficauda (van der Wulp) Host: Lepidoptera Noctuidae Ogdoconta cinereloa (Guene) Plathypena scabra (Fabricius) Aegeriidae

PAGE 157

157 *Sylvora acerni (Clemens) 192. Archytas metallicus (Robineau Desvoidy) Host: Lepidoptera Arctiidae *Ecpantheria deflorata (Fabricius) Noctuidae Spodoptera frugiperda (J.E. Smith) Catacola spp. Notodontidae Datana angusii Grote and Robinson Datana integerrima Grote and Robinson Datana ministra (Drury) Datana perspicua Grote and Robinson 193. Archytas lateralis (Macquart) Host: Lepidoptera Lasiocampidae Malacosoma americanum (Fabricius) *Malacosoma californicum (Packard) *Malacosoma californicum fragile (Strecth) *Malacosoma californicum lutescens (Neumoeg en and Dyar) *Malacosoma californicum constrictum (H. Edwards) *Malacosoma incurvum incurvum (H. Edwards) Malacosoma spp. 194. Archytas convexiforceps Brooks Host: unknown 195. Archytas rufiventris Curran Host: unknown 196. Archytas nonamensis Ra vlin Host: unknown 197. Archytas marmoratus Townsend Host: Lepidoptera Noctuidae Agrotis ipsilon (Hufnagel) Aletia spp. Helicoverpa zea (Boddie) Heliothis sp. Laphygma spp. Leucania latiuscula Herrich Schaeffer Mocis spp.

PAGE 158

158 Pseudaletia unipuncta (Haworth) Spodoptera frugiperda (J.E. Smith) Spodoptera latifascia (Walker) 198. Archytas californiae (Walker) Host: Lepidoptera Arctiidae *Cycnia oregonensis (Stretch) Noctuidae *Spodoptera praefica (Grote) Trichoplusia ni (Hbner) 199. Archytas apicifer (Walker) Host: Lepidoptera Lasciocampidae *Malacosoma californicum (Packard) Noctuidae Peridroma saucia (Hbner) Pseudaletia unipuncta (Haworth) Spodoptera frugiperda (J.E. Smith) 200. Siphona multifaria O'Hara Host: unknown 201. Siphona floridensis O'Hara Host: unknown 202. Ceromya elyii (Walton) Host: unknown 203. Ceromya americana (Townsend) Host: Lepidoptera Noctuidae Zale lunata (Drury) ( Strazanac et al. 2001) Notodontidae Schizura concinna (J.E. Smith) 204. Actia dimorpha O'Hara Host: unknown 205. Actia diffidens Curran Host: Lepidoptera Olethretidae Spilonota ocellana (Denis and Schiffermller) Tortricidae

PAGE 159

159 *Acleris va riana (Fernald) Choristoneura conflictana (Walker) 206. Mauromyia brevis (Coquillett) Host: unknown 207. Lypha melobosis (Walker) Host: unknown 208. Exoristoides johnsoni Coquillett Host: Coleoptera 209. Exoristoides blattarius O'Hara Host: unknown 210. Dichocera orientalis Coquillett Host: unknown 211. Chrysotachina slossonae (Coquillett) Host: Lepidoptera Hesperiidae *Thymelicus lineola (Ochsenheimer) Host: Coleoptera 212. Chrysotachina longipennis O'Hara Host: unknown 213. Chrysotachina alce do (Loew) Host: Lepidoptera Hesperiidae Urbanus proteus (Linnaeus) Lacosomidae Cicinnus melsheimeri (Harris) 214. Chromatocera setigena (Coquillett) Host: unknown 215. Ormia reinhardi (Sabrosky) Host: unknown 216. Ormia ochracea (Bigot) Host: Orth optera 217. Ormia dominicana Townsend Host: unknown

PAGE 160

160 218. Ormia brevicornis brevicornis Townsend Host: unknown 219. Ormia punctata RobineauDesvoidy Host: Diptera 220. Ormia ineifrons Sabrosky Host: unknown 221. Ormia depleta (Wiedemann) (introduced) H ost: Orthoptera (Frank 1996) 222. Neaera mirabilis (Townsend) Host: unknown 223. Gnadochaeta metallica (Townsend) Host: Lepidoptera Noctuidae Pseudaletia unipuncta (Haworth) Host: Coleoptera 224. Gnadochaeta globosa (Townsend) Host: Coleoptera 225. Gnadochaeta crudelis (Wiedemann) Host: unknown 226. Cholomyia inaeqipes Bigot Host: Coleoptera 227. Paradidyma singularis (Townsend) Host: Lepidoptera 228. Paradidyma conica (Townsend) Host: unknown 229. Paradidyma apicalis Reinhard Host: unknown 230. Paradidyma angusticornis (Townsend) Host: unknown 231. Paradidyma affinis Reinhard Host: unknown 232. Microphthalma disjuncta (Wiedemann)

PAGE 161

161 Host: Coleoptera 233. Leskia depilis (Coquillett) Host: Lepidoptera Pyralidae *Macrobotys aeglaelis (Walker ) 234. Genea robertsonii (Townsend) Host: unknown 235. Genea pavonacea (Reinhard) Host: unknown 236. Genea texensis (Townsend) Host: Lepidoptera Pyralidae Desmia funeralis (Hbner) Pyrausta spp.? Tortricidae 237. Genea tenera (Wiedemann) Host: Lepidoptera Olethreutidae Eucosma sp. Grapholita molesta (Busck) Cydnia pomonella (Linnaeus) Pyralidae Acrobasis indigenella (Zeller) Acrobasis juglandis (LeBaron) Desmia funeralis (Hbner) *Dioryctria abietella (Denis and Sciffermller) Homoeosoma electellum (Hulst) Herpetogramma pertextalis (Lederer) Tetralopha sp. 238. Genea cinerea (James) Host: unknown 239. Genea brevirostris (James) Host: Lepidoptera Olethreutidae Grapholita molesta (Busc k) *Laspeyresia caryana (Fitch) *Laspeyresia pomonella (Linnaeus) 240. Genea aurea James

PAGE 162

162 Host: Lepidoptera Pyralidae Tetralopha subcanalis (Walker) 241. Crocinosoma cornuale Reinhard Host: unknown 242. Clausicella setigera (Coquillett) Host: unknow n 243. Clausicella floridensis (Townsend) Host: Lepidoptera Olethreutidae Endothenia hebesana Walker Epiblema tripartitana (Zeller) Suleima helianthana (Riley) Pyralidae *Alberada parabates (Dyar) Homoeosoma electellum (Hulst) Plodia interpunctella (Hbner) Plodia sp. 244. Phytomyptera vitinervis (Thompson) Host: Lepidoptera Gelechiidae Aristotelia roseosufusella Clemens *Coleotechinites coniferella (Kearfott) *Coleotechinites piceaella (Kearfott) *Coleotechnites sp. Exoteleia p inifoliella (Chambers) Olethreutidae *Epinotia nanana (Treitschke) Tineidae 245. Phytomyptera ruficornis (Greene) Host: unknown 246. Phytomyptera melissopodis (Coquillett) Host: Lepidoptera Oleuthretidae *Melissopus latiferreanus (Walsingham) Host : Coleoptera 247. Phytomyptera longicornis (Coquillett) Host: unknown

PAGE 163

163 248. Phytomyptera johnsoni (Coquillett) Host: unknown 249. Phytomyptera exul (Walker) Host: unknown 250. Phytomyptera convecta (Walker) Host: Lepidoptera Pyralidae *Acrobasis comptoniella Hulst Tortricidae Croesia albicomana (Clemens)? 251. Neomintho curulis (Reinhard) Host: unknown 252. Neomintho celeries (Townsend) Host: Lepidoptera Limacodidae *Packardia ceanothi Dyar 253. Panzeria ruficauda (Brauer) Host: unknown 254. Linnaemya speculifera (Walker) Host: unknown 255. Linnaemya comta (Falln) Host: Lepidoptera Noctuidae Agrotis gladiaria Morrison Agrotis ipsilon (Hufnagel) Agrotis malefida Guene *Agrotis orthogonia Morrison Agrotis venerabilis Walker *Copablepharon viridisparsa Dod Euxoa auxiliaries (Grote) *Euxoa messoria (Harris) *Euxoa ochrogaster (Guene) *Euxoa tristicula (Morrison) Euxoa sp. *Feltia subterranea (Fabricius) Peridroma saucia (Hbner) *Polia acutermina (Smith) Spodoptera frugiperda (J.E. Smith) Noctuidae sp.

PAGE 164

164 Host:Coleoptera 256. Ceracia dentata (Coquillett) Host: Orthoptera 257. Acemya masurius (Walker) 258. Trichopoda plumipes (Fabricius) 259. Licophaga jennei Aldrich 260. Uramya pristis Walker 261. Archytas rufiventris Curran

PAGE 165

165 LIST OF REFERENCES ALLEN, C. R., LUTZ, S., LOCKLEY, T., PHILLIPS JR., S. A., AND DEMARAIS, S. 2001. The NonIndigenous Ant, Solenopsis invicta, Reduces Loggerhead Shrike and Native Insect Abundance. J. Agr. Urban Ent omol 18(4): 249259. ALTIERI, M. A. CURE, J.R. AND GARCIA, M. A. 1993. The Role and Enhancement of Parasitic Hymenoptera Biodiversity in Agroecosystems. LASALLE, J. AND GAULD, I.D. Hymenoptera and Biodiversity. C.A.B. International. 257275. ANDRESEN, E., 2003.Effect of Forest Fragmentation On Dung Beetle Communities and Functional Consequences for Plant Regeneration. Ecography 26(1): 8797. ANONYMOUS. 1999. Invasive Alien Plant Species of Virginia Crown Vetch ( Coronilla varia L.). Department of Conservati on and Recreation. Richmond, VA. ARNAUD, P.H., JR. 1969. Compsilura concinnata (Meigen) (Diptera: Tachinidae) reared from Agraulis vanillae incarnata (Riley) (Lepidoptera: Nymphalidae) at San Leandro, California. Pan Pacific Entomol. 45(1): 77. ARNAUD, P. H., Jr. 1978. A Host Parasite Catalog of North American Tachinidae (Diptera). United States Department of Agriculture.Miscellaneous Publication 1319.Washington, D.C. 860 pp. A RTHUR A. P., AND W YLIE H. G. 1959. Effects of host size on sex ratio, developme nt time and size of Pimpla turionellae (Hymenoptera: Ichneumonidae). Entomophaga4: 297301. ASKEW, R.R. 1971. Parasitic Insects. Elsevier, New York, NY. 316 pp. B ARTRAM W. 1996.In T. P. Slaughter [ed.], Bartram Travels and other writings.Library of Ameri ca, New York. 701 pp. BERNAYS, E. A., AND CORNELIUS, M. L. 1989. Generalist Caterpillar Prey Are More Palatable than Specialists for the Generalist Predator Iridomyrmex humilis Oecologia 79(3): 427430. BLAIR, R.B. 2001. Birds and butterflies along urban gradients in two ecoregions of the U.S. Pages 35 56 in LOCKWOOD, J.L. AND MCKINNEY, M.L. eds. Biotic Homogenization. Norwell (MA): Kluwer. BLUMBERG, D., NAVON, A., KEREN, S., GOLDENBERG, S., AND FERKOVICH S. M. 1997.Interactions Among Helicoverpa armiger a (Lepidoptera: Noctuidae), its Larval Endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis J. Econ. Entmol .90: 11811186. BOETTNER, G. H., ELKINTON, J. S., AND BOETTNER, C. J. 2000.Effects of a Biological Control Int roduction on Three Nontarget Native Species of Saturniid Moths. Conserv. Biol. 14(6): 17981806.

PAGE 166

166 BONIER, F., MARTIN, P. R., AND WINGFIELD, J. C. 2007. Urban Birds Have Broader Environmental Tolerance. Biology Letters, 3(6): 670673. BOWERS, M. A., AND MATT ER, S. F. 1997. Landscape Ecology of Mammals: Relationships between Density and Patch Size. J. Mammal. 78(4): 9991013. B ROWER L. P., CALVERT W. H., HENDRICK, L. E., AND CHRISTIAN, J. 1977.Biological observations of an overwintering colony of monarch but terflies (Danaus plexippus, Danaidae) in Mexico, J. Lepid.Soc. 31: 232242. B ROWER L. P. 1985.In R. I. Vane Wright and P.R. Ackery [ed.], Chemical Defenses in Butterflies. The Biology of Butterflies: Symposium of the Royal Entomological Society of London No. 11, 2nd edition. Academic Press, Harcourt Brace Jovanovich, London. 429 pp. B ROWER L. P., H ORNER B. E., M ARTY, M. A., M OFFIT C. M., AND V ILLA R, B. 1985. Mice ( Ptermyscus maniculatus P. spicilegus and Microtus mexicanus ) as predators of overwinte ring monarch butterflies (Danaus plexippus ) in Mexico.Biotropica 17: 8999. BURKE, D. M., AND NOL, E. 2000.Landscape and Fragment Size Effects on Reproductive Success of Forest Breeding Birds in Ontario. Ecol. Appl. 10(6): 17491761. CALVERT W. W., HEDRIC K L. E., AND BROWER, L. P 1979. Mortality of the monarch butterfly (Danaus plexippus L.) avian predation at five overwintering sites in Mexico. Science. 204: 847851. CANTRELL B. K. 1986. Descriptions of the partial life histories of some Australian Tac hinidae (Diptera). Aust ralian J Entomol 25(3): 215221. CAPINERA, J. L. 2007. Urbanus proteus (Lepidoptera: Hesperiidae). EENY 1, Featured Creatures University of Florida, Gainesville, FL. ( http://creatures.if as.ufl.edu ) CARROLL, S., AND LOYE, J. 2006.Invasion, Colonization, and Disturbance; Historical Ecology of the Endangered Miami Blue Butterfly. J. Insect Conserv. 10(1): 1327. CECH, R., AND TUDOR, G. 2005. Butterflies of the East Coast: An Observer's Gui de. Princeton, N. J., Princeton University Press. 345 pp. CLARKE, A. R., AND ZALUCKI, M. P. 2001.Taeniogonalos raymenti Carmen & Kimsey (Hymenoptera: Trigonalidae) reared as a hyperparasite of Sturmia convergens (Weidemann) (Diptera: Tachinidae), a primary parasite of Danaus plesippus (L.) (Lepidoptera: Nymphalidae). Pan pacific Entomol. 77(2): 6870. CLERGEAU, P., JOKIMKI, J., AND SAVARD, J. L. 2001. Are Urban Bird Communities Influenced by the Bird Diversity of Adjacent Landscapes? J. Appl. Ecol. 38(5): 11221134.

PAGE 167

167 CLERGEAU, P., SAVARD, J. L., MENNECHEZ, G., AND FALARDEAU, G. 1998. Bird Abundance and Diversity along an UrbanRural Gradient: A Comparative Study between Two Cities on Different Continents. Condor 100(3): 413425. CONNOR, E. F., COURTNEY, A. C., AND YODER, J. M. 2000. Individuals Area Relationships: The Relationship between Animal Population Density and Area. Ecology81(3): 734748. CUDA, J. P., BRAMMER, A. S., PEREIRA, R. M., AND BROZA, M. 2004.Interference of Natural Regulation of Azolla caroliniana by the Red Imported Fire Ant. Aquatics 26: 2026. CUDA, J. P., DUNFORD, J. C., AND LEAVENGOOD, J. M. 2007. Invertebrate Fauna Associated with Torpedograss, Pancium repens (Cyperales: Poaceae), in Lake Okeechobee, Florida, and Biological Control. F la. Entomol. 90(1): 238248. DE MORAES, C. M. D., and MESCHER, M. C. 2005.Intrinsic Competition Between Larval Parasitoids with Different Degrees of Host Specificity. Ecol. Entomol. 30(5): 564570. DECKER, G.C. AND BRUCE, W.N. 1952.House Fly Resistance to Chemicals. Am. Soc. Trop. Med. H. 1(3):395403. DENYS, C. AND SCHMID T, H. 1998. I nsect communities on experimental mugwort ( Artemisia vulgaris L.) plots along an urban gradient, Acta Oecol. 113: 269277. DETHIER V.G. 1980. The World of the tent makers: A natural history of the eastern tent caterpillar. Nature. University of Massachusetts Press, Amherst. 148 pp. DEVRIES, P.J., AND WALLA, T. R. 2001. Species Diversity and Community Structure in Neotropical Fruit Feeding Butterflies. Biol. J. Linn. Soc. 74( 1): 1 15. DEYRUP, M. A., CARLIN, N., TRAGER, J., AND UMPHREY, G. 1988. A Review of the Ants of the Florida Keys. Fla. Entomol. 71(2): 163176. DEYRUP, M., DAVIS, L., AND COVER, S. 2000 (Sep.Dec.). Exotic Ants in Florida.Transactions of the American Entomological Society (1890) 126(3/4): 293326. DICKMAN, C. R. 1987. Habitat Fragmentation and Vertebrate Species Richness in an Urban Environment. J. Appl. Ecol. 24:337351. DIDHAM, R. K., GHAZOUL, J., STORK, N. E., AND DAVIS, A. J. 1996. Insects in Fragmente d Forests: A Functional Approach. Trends Ecol. Evol. 11(6): 255260. DRAY, J. F. A. 2001. Lessons from Unsuccessful Attempts to Establish Spodoptera pectinicornis (Lepidoptera: Noctuidae), a Biological Control Agent of Waterlettuce Biocontrol Sci. Techn. 11(3): 301316.

PAGE 168

168 ELIAZAR, P. J. 1992. Impact of Two Mosquito Adulticides, Naled and Fenthion, on Selected Nontarget Lepidopteran Species.Scientific Publishers, Gainesville, FL pp. ELZEN, G. W. 1989. Sublethal Effects of Pesticides on Beneficial Parasitoids pp. 129150. In P. C. Jepson [ed.], Pesticides and nontarget invertebrates.Intercept, London. EMMEL, T. C. 1991. Mosquito control pesticides: Ecological impacts and management alternatives: Proceedings of a conference held on January 18, 1991 at the Uni versity of Florida, Gainesville, Florida. Scientific Publishers, Gainesville, FL. EMMEL, T. C. 1995. Status Survey and Habitat Requirements of Florida's Endemic Schaus Swallowtail Butterfly. Tallahassee, FL: Nongame Wildlife Program, Florida Game and Fre sh Water Fish Commission. EMMEL, T. C., AND TUCKER, J. C. 1991. Mosquito Control Pesticides: Ecological Impacts and Management Alternatives. Scientific Publishers, Gainesville, FL. 105 pp. ERBA, S. L., BOURCHIERB, R. S., FRANKENHUYZENC, K. V., AND SMITH A. S. M. 2001. Sublethal Effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the Tachinid Parasitoid Compsilura concinnata (Diptera: Tachinidae). Environ. Entomol. 30(6): 11741181. EUBANKS, M. D., BLACKWELL, S. A., PARRISH, C. J., DELAMAR, Z. D., AND HULL SANDERS, H. 2002. Intraguild Predation of Beneficial Arthropods by Red Imported Fire Ants in Cotton. Environ. Entomol. 31(6): 11681174. EWERS, R. M., AND DIDHAM, R. K. 2008.Pervasive Impact of La rge Scale Edge Effects on a Beetle Community. Proc. Natl. Acad. Sci. U. S. A. 105(14): 54265429. FITZGERALD T.D. 1995. The Tent Caterpillars.Cornell University Press, Ithaca, NY. 303 pp. FITZGERALD T. D., AND WILLER, D. E. 1983. Tent building behavior of the eastern tent caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). J. Kansas Entomol. Soc 56(1): 2031. FLEMING T. F., ERRANO D. S., AND NASAR J. 2005. Dynamics of a Subtropical Population of the Zebra Longwing Butterfly Heliconius charithonia (Nymphalidae). Florida Entomol. 88(2): 169172. FORYS, E. A., ALLEN, C. R., AND WOJCIK, D.P. 2001. The Likely Cause of Extinction of the Tree Snail Orthalcus reses reses (Say). J. Molluscan Stud. 67(3): 369376. FORYS, E. A., QUISTORFF, A., AND A LLEN, C. R. 2001. Potential Fire Ant (Hymenoptera: Formicidae) Impact on the Endangered Schaus Swallowtail (Lepidoptera: Papilionidae). Florida Entomol. 84(2): 254258. FORSYTH, M. S. 1932.Variant of Agraulis vanillae discovered on Florida Keys. Lep. News 1:2.

PAGE 169

169 FRANK, J. H., AND MCCOY, E. D. 1993. Introduction to the Behavioral Ecology of Introduction.The Introduction of Insects into Florida. Florida Entomol. 76(1): 153. FRANK, J. H., AND MCCOY, E. D. 1995. The Good, the Bad, and the Beautiful: NonIndigeno us Species. Florida Entomolo. 78(1): 115. FRANK, J. H., AND MCCOY, E. D. 2007. The Risk of Classical Biological Control in Florida. Biol. Control 41(2): 151174. FRANZ J. M. 1961.Biological control of pest insects in Europe. Annu. Rev. Entomol. 6: 183200. FRASER, S.M. DYTHAM, C. AND MAYHEW, P.J. 2007. Determinants of parasitoid abundance and diversity in woodland habitats. J. App. Eco. 44(2): 352369. FRIEDLANDER T. P. 1985. Egg Mass Design Relative to Surface Parasitzing Parasitoids, with Note s on Asterocampa clyton (Lepidoptera: Nymphalidae). J. Res. Lepid. 24(3): 250257. FUESTER, R.W. KENIS, M., SWAN, K.S., KINGSLEY, P,C,. LOPEZ VAAMONDE, C., AND HERARD, F. 2001. Host range of Aphantorhaphopsis samarensis (Diptera:Tachinidae), a larval parasite of the gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 30(3): 605611. GAULD, I.D. 1988. The species of the Enicospilus americanus complex (Hymenoptera: Ichneumonidae) in eastern North America. Syst. Ent. 13(1):3153. GERMAINE, S.S. AND W A KELING, B.F. 2001. L izard species distributors and habitat occupation along an urban gradient in Tucson, Arizona, USA. Bio. Conserv. 97:229237. GIBO D. L. 1981. Altitudes attained by migrating monarch butterflies, Danaus p. plexippus (Lepidoptera: Danai dae), as reported by glider pilots. Can. J. Zool. 59: 571 572. GILBERT L. E. 1972. Pollen feeding and reproductive biology of Heliconius butterflies, Proceedings of the National Academy of Sciences, New York, 69(6): 14031407. GOLDSTEIN, E. L., GROSSS, M., AND DEGRAAF, R. M. 1986. Breeding Birds and Vegetation: A Quantitative Assessment. Urban Ecol. 9:377385. GOMI T., MURAJI, M., AND TAKEDA, M. 2004.Mitochondrial DNA analysis of the introduced fall webworm showing its shift in the life cycle Japan. J. Entomol. Sci. 7: 183188.pp.212237 GREENEY H. F., AND SHELDON, K. S. 2008. Comments on Larval Shelter Construction and Natural History of Urbanus proteus Linn., 1758 (Hesperiidae: Pyrginae) In Southern Florida. J. Lepid. Soc. 62(2): 108110. GUREVITCH J., AND PADILLA, D.K. 2004. Are Invasive Species a Major Cause of Extinctions? Trends Ecol. Evol. 19(9): 470474.

PAGE 170

170 GUZO, D, AND STOLTZ, D. B. 1985. Obligatory multiparasitism in the tussock moth, Orgyia leucostigma. Parasitol. 90(1): 110. HAMBCK, P. A., AND ENGLUND, G. 2005. Patch Area, Population Density and the Scaling of Migration Rates: the Resource Concentration Hypothesis Revisited. Ecol. Letters 8(10): 10571065. HAMBCK, P. A., SUMMERVILLE, K. S., STEFFAN DEWENTER, I., KRAUSS, J., ENGLUND, G., AND CRIST, T. O. 2007. Habitat Specialization, Body Size, and Family Identity Explain Lepidopteran Density Area Relationships in a Cross Continental Comparison. Proc. Natl. Acad. Sci. U. S. A. 104(20): 83688373. HANSKI, I. 1999. Metapopulation Ecology. Oxfo rd University Press, Oxford 313 pp. HARIBAL, M. AND RENWICK, J. A. 1998. Identification and distribution of oviposition stimulants for monarch butterflies in hosts and nonhosts.J. Chem. Ecol 24: 891904. HASSELL, M.P. 1984. Parasitism in patchy environments: inverse density dependence can be stabilizing. J. Math. Appl. Med. Biol. 1(1):123133. HAWKINS, B. A. 1994.Pattern and Process in Host Parasitoid Interactions. Cambridge University Press [England]: New York. HAWKINS, B.A. MILLS N.J., JERVIS M.A., AN D PRICE P.W. 1999. Is the biological control of insects a natural phenomenon?, Oikos 86 (1999), pp. 493506 HAWKINS, B. A., THOMAS, M. B., AND HOCHBERG, M. E. 1993. Refuge Theory and Biological Control. Science 262(5138): 1429 1432. HENNEMAN, M. L., AND M EMMOTT, J. 2001. Infiltration of a Hawaiian Community by Introduced Biological Control Agents. Science 293(5533): 13141316. HEPPENER, J. B. 2007. The Lepidoptera of Florida: Introduction and catalog, Part 1. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 2007. HODSON, A. C. 1939.Sarcophaga aldrichi Parker as a parasite of Malacosoma distria Hbner. J. Econ. Entomol. 32:396 401. HOWARD, L.O. 1897. A study in insect parasitism: a consideration of the parasites of the w hite marked tussock moth, with an account of their habits and interrelations, and with descriptions of new species. United States Bureau of Entomology Techinical Series No 5. Government Printing Office: Washington. 62 pp. INCLAN, D.J., AND ST IREMAN, J.O. III. 2011. T achinid (Diptera: Tachinidae) Parasitoid Diversity and temporal Abundance at a Single Site in the Northeastern United States. Annals of the Entomological Society of America 104(2): 287296.

PAGE 171

171 ITO Y., AND HATTORI I. 1973. Status of Blackheaded and Red Headed Types of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) III. Distribution of Various Types and the Discussion on the Relationship Among Them. Applied Entomology and Zoology 10(3): 189202. ITO Y., AND MIYASHITA, K. 1968. Biology of Hyph antria cunea Drury (Lepiodptea Arctiidae) in Japan. V. Preliminary life tables and mortality data in urban areas. Res. Popul. Ecol. 10: 1777209. ITO, Y., SHIBAZAKI, A., AND IWAHASHI, O. 1969. Biology of Hyphantria cunea Drury (Lepidoptera:Arctiidae) in Ja pan. IX. Population Dynamics. Res. Popul. Ecol. XI: 211228. ITO, Y., AND WARREN, L.O. 1973. Status of blackheaded and redheaded types of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). I. Biology of two types and results of crossing experiment. Appl e. Ent. Zool. 8: 151171. JANZEN, D. AND HALLWACHS, W. 2009. Dynamic database for an inventory of the macrocaterpillar fauna, and its food plants and parasitoids, of Area de Conservacion Guanacaste (ACG), northwestern Costa Rica (nn SRNP nnnnn voucher code s) < http://janzen.sas.upenn.edu >. KAHN, D. M., AND CORNELL, H. V., 1989. Leafminers, Early Leaf Abscission, and Parasitoids: A Tritrophic Interaction. Ecology, 70(5): 12191226. KARIM, A AND MAIN, M.B. 2009.Tr opical Hardwood Hammocks in Florida. Florida Department of Wildlife Ecology and Conservation. Cooperative Extension Service, Institute of Food and Agricultural Sciences (IFAS), University of Florida. WEC 181. KATO, S., HATAI, N., IIJIMA, N., INOUE, T ., AN D KAWASAKI, R. 1951.Results of surveys on natural enemies of Hyphantria cunea in 1950.Japanese Journal of Plant Protection22:714. KAUFMAN, L., AND WRIGHT, M. 2009.The Impact of Exotic Parasitoids on Populations of a Native Hawaiian Moth Assessed Using Life Table Studies. Oecologia 159(2): 295304. KELLOGG, S. K., FINK, L. S. AND BROWER, L. P. 2003. Parasitism of Native Luna Moths, Actias luna (L.) (Lepidoptera: Saturniidae) by the Introduced Compsilura concinnata (Meigen) (Diptera: Tachinidae) in Central Vi rginia, and Their Hyperparasitism by Trigonalid Wasps (Hymenoptera: Trigonalidae). Environ. Entomol. 32(5): 10191027. KENIS, M., AUGER ROZENBERG, M., ROQUE S, A., TIMMS, L., P CRC C., COCK, M., SETTELE, J., AUGUSTI N, S. AND LOPEZ VAAMONDE, C. 2009. Ecolog ical Effects of Invasive Alien Insects.Biol. Invasions, 11(1): 2145. KIMBALL C. 1965. The Lepidoptera of Florida An Annotated Checklist.Division of Plant Industry.State Department of Agriculture, Gainesville, FL. 263 pp.

PAGE 172

172 KING, J. R. AND TSCHINKEL, W. R. 2008. Experimental Evidence that Human Impacts Drive Fire Ant Invasions and Ecological Change. Proc. Natl. Acad. Sci .U. S. A. 105(51): 2033920343. KNUDSON, E. C. 1974. Urbanus dorantes dorantes Stoll (Hesperiidae): Another example of Floridas population explosion. J. Lepid. Soc..28(3):246248. KOWARIK, I. 1995. O n the role of alien species in urban flora and vegetation. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions. General aspects and special problems. SPB Academic Publ. Amsterdam: 85103. KRASNOFF, S. B., AND DUSSOURD, D. E. 1989. Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids.J. Chem. Ecol. 15: 4760. KROMBEIN, K. V., HUR D, P. D., JR., SMITH D. R., AND BURKS, B. D. 1979. Catalog of Hymenoptera in America north of Mexico. Vol. 1. Symphyta and Apocrita (Parasitica). Smithsonian Institution Press, Washington, D.C. KRUESS, A. AND TSCHARNTKE, T. 1994. Habitat Fragmentation, Species Loss, and Biological Control. Science, 264(5165): 1581 1584. KURTA, A., AND TERAMINO, J. A. 1992. Bat Community Structure in an Urban Park. Ecography, 15(3): 257261. LIU, C. L. 1926. On some factors of natural control of the eastern tent caterpillar ( Malacosoma americana Harris) with notes on the biology of the host. Ph.D. dissertation. Cornell University, Ithaca, N.Y. LOFGREN, C. S., AND VANDER MEER, R. K. 1986. Fire ants and leaf cutting ants: Biology and management. Westview Press, Boulder, CO. MACK, R. N., AND ERNEBERG, M. 2002. The United States Naturaliz ed Flora: Largely the Product of Deliberate Introductions. Annals of the Missouri Botanical Garden, Missouri Botanical Garden Press89(2):176189. MAKIN ROGALSKA R. PINOWKI, J. SOLON, J. AND WOJCIK, Z. 1988. Changes in vegetation, avifauna, and small mamma ls in suburban habitat. Pol. Ecol. Stud. 14: 293330. MAJER, J. D., 1997. Invertebrates Assist the Restoration Process: An Australian Perspective, pp.212237 In K. M. Webb, N. R. and P. J. Edwards [eds.], Restoration Ecology and Sustainable Development. Ur banska. Cambridge University Press, Cambridge, United Kingdom. MAPLE J. D. 1937. The biology of Ooencyrtus johnsoni (Howard), and the role of the egg shell in the respiration of certain encyrtid larvae (Hymenoptera). Ann. Entomol. Soc. Am 30: 123154.

PAGE 173

173 M ARON, J. L., AND HARRISON, S. 1997. Spatial Pattern Formation in an Insect Host Parasitoid System. Science, 278(5343): 1619 1621. MARTIN, P.B. LINGREN, P.D. GREENE, G.L. AND RIDGWAY, R.L. 19 76. P arasitization of two species of Plusinae and Heliothis spp. a fter rleases of Trichogrammapretiosum in seven crops. Env. Ent. 5(5): 991995. MASAKI, S., AND ITO, Y. 1977. Speciation, pp.149168 In T. Hidaka [ed.], Adaptation and Speciation in the Fall Webworm. Kodansha Ltd., Tokyo. MASCARENHAS, V. J., AND LUTTRELL, R. G. 1997. Combined Effect of Sublethal Exposure to Cotton Expressing the Endotoxin Protein of Bacillus thuringiensis and Natural Enemies on Survival of Bollworm (Lepidoptera: Noctuidae) Larvae. Environ. Entomol. 26(4): 939945. MASON, W. R. M. 1979. A ne w Rogas (Hymenoptera : Braconidae) parasite of tent caterpillars ( Malacosoma spp., Lepidoptera: Lasiocampidae) in Canada. Canadian Entomol. 111: 783786. MCALPINE, J. F. 1981.Morphology and Terminology Adults.pp. 963. In J. F. Mcalpine et al. [eds] Man ual of Nearctic Diptera. Volume 1. Agric. Canada Monograph 28. MCGEOCH, M .A., AND CHOWN, S. L.1997. Impact of Urbanization on a Gall Inhabiting Lepidoptera Assemblage: The Importance of Reserves in Urban Areas. Biodiversity Conserv. 6(7): 979993. MCINTYR E, N. E. 2000. Ecology of Urban Arthropods: A Review and a Call to Action. Ann. Entomol. Soc. Am. 93(4): 825835. MCKINNEY, M. L. 2002.Urbanization, Biodiversity, and Conservation. BioScience. 52(10): 883890. (USCB) U.S. Census Bureau. 2001. Statistical A bstract of the United States. Government Printing Office, Washington D.C. MCKINNEY, M. L. 2006. Urbanization. Biological Conservation. 127(3): 247260 MEER, R. K. V., PEREIRA, R. M., PORTER, S. D., VALLES, S. M., AND OI, D. H. 2007. Area Wide Suppression of Invasive Fire Ant Solenopsis spp. Populations ed. VREYSEN, M.J.B.In Area Wide Control of Insect Pests. Dordrecht, Netherlands. MILLER, L. D., AND M ILLER, J. Y. 1970.Pieris protodice and Urbanus dorantes in southern Florida. J. Lepid. Soc. 24: 244247. MI NNO, M. C., AND MINNO, M. 1999.Florida Butterfly Gardening A Complete Guide to Attracting, Identifying, and Enjoying Butterflies of the Lower South.University Press of Florida, Gainesville, FL 210 pp. MINNO M. C., and MINNO, M. 2009.A Plan to Conserve Rare Butterflies in the Florida Keys. Report to the Florida Keys Mosquito Control District, Key West, FL. 193 pp.

PAGE 174

174 MINNO, M. C., BUTLER J. F., AND HALL, D W 2005. Florida Butterfly Caterpillars and Their Host Plants. University Press of Florida, Gainesville FL 341pp. MISPAGEL, M. E. 1990. Proceedings of the 1990 Imported Fire Ant Conference: April 23, 1990, Hilton Hotel, College Station, Texas, 1990, Texas A&M University. MOORE, M. B. 1928.A study of the life history and habits under Florida conditions of the canna butterfly (Brazilian skipper), Calpodes ethlius (Cramer), an insect pest of the canna.M.S. thesis, University of Florida, Gainesville p. 95. MORRIS, R. F. 1963.Synonymy and color variation in the fall webworm, Hyphantria cunea Drury (Lepidoptera : Arctiidae). Canadian Entomol. 95: 121723. MORRISON, L. W. 2002. Long Term Impacts of an ArthropodCommunity Invasion by the Imported Fire Ant, Solenopsis invicta.Ecology, 83(8), 23372345. MORRISON, L.W., AND PORTER, S.D. 2003. Positive Association Betw een Densities of the Red Imported Fire Ant Solenopsisinvicta (Hymenoptera: Formicidae), and Generalized Ant and Arthropod Diversity. Environ. Entomol. 32(3): 548554. NEALIS V., AND FRANKENHUYZEN, K. 1990. Interactions Between Bacillus thuringiensis Berli ner and Apanteles fumiferanae Vier. (Hymenoptera: Braconidae), a Parasitoid of the Spruce Budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Canadian Entomol. 122: 585594. NIEMALA, J., KOTZE, D. J., VENN, S., LYUBOMIR, P., STOYANOV, I., SPENCE, J., HARTLEY, D., AND MONTES, E. 0. 2002. Carabid Beetle Assemblages (Coleoptera:Carabidae) Across Urban Rural gradients: an International Comparison. Landscape Ecology. 17(5). NORDIN, G. L., AND O CANNA, D. 1985. Developmental Threshold Temperat ures and Thermal Constants for Two types of Fall Webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), occuring in central Kentucky. J. Kansas Entomol. Soc. 58(4): 626630. NORDIN, G. L., RENNE LS, R. G., AND MADDOX, J. V. 1972. Parasites and pathoge ns of the fall webworm in Illinois. Environ. Entomol. 1: 351 354. NUHN, T.P. AND WRIGHT, C.G. 1979. An ecological survey of ants in a landscaped suburban habitat. Am.Mid. Nat. 102: 353362. NUZZO, V.A., 1993. Distribution and spread of the invasive bienni al garlic mustard (Alliaria petiolata) in North America, pp. 137146. In MCKNIGHT, B.N., (ed.), Biological Pollution. Indiana Academy of Science Indianapolis, Indiana, 261 pp. OBERHAUSER, K., MANWEILER, S., LELICH, R., BLANK, M., BATALDEN, R., REBECCA, V AND DE ANDA, A. 2009. Impacts of Ultra Low Volume Resmethrin Applications on NonTarget Insects. J. Am. Mos.q Control Assoc. 25(1): 8393.

PAGE 175

175 OBERHAUSER, K. S., AND SOLENSKY, M. J. 2004. The Monarch butterfly: biology and conservation. Cornell University Pr ess, Ithaca, NY. 248 pp. O'BRIEN, D. M., BOGGS, C. L AND FOGEL, M. L., 2003. Pollen Feeding in the Butterfly Heliconius charitonia: Isotopic Evidence for Essential Amino Acid Transfer from Pollen to Eggs. Proceedings of the Royal Society of London, Serie s B. Biological Sciences, 270(1533): 26312636. OHARA, J. E., 2002. Revision of the Polideini (Tachinidae) of America North of Mexico. Studia dipterologica. Supplement 10. OHARA, J. E. 2008. Tachinid Flies (Diptera: Tachinidae). pp. 36753686, In J. L. C apinera, [ed.], Encyclopedia of Entomology. 2nd Edition. Springer Netherlands, Dordrecht. O'HARA, J.E. AND WOOD, D.M. 2004. Catalogue of the Tachinidae (Diptera) of America north of Mexico.Memoirs on Entomology, International 18: 410 pp. Accessed via http://www.hr rna.com/RNA/Other%20insect%20pages/Eastern%20Tachinids.htm OPLER P. A. 1992.A Field Guide to the Butterflies.Houghton Mifflin, Boston. 540 pp. PAWLIKOWSKI, T AND POKORNIECKA, J. 1990. Observations on the structure of bumblebee communities of the twonforest areas in Torun Basin, North Poland. Acta Universitatis Nicolai Copernici Biologia 37:3 22. PETRICE, T.R., STRAZANAC, J.S., AND BUTLER, L. 2004. A survey of Hymenopteran Parasitoids of Forest Macrolepidoptera in the Central Appalachians. J. Econ. Entomol. 97(2):451459. PIEGLER R. S. 1994. Catalog of Parasitoids of Saturniidae of the World.Journal of Research on the Lepidoptera.33:1121. PINHEIRO, C.E.G. 1996. Palatablility and Escaping Ability in Neotropical Butterflies: Tests with Wild Kingbirds ( Tyrannus melancholicus Tyrannidae). Biol. J. Linn. Soc. 59(4): 351365. PORTER, S. D., AND SAVIGNANO, D. A. 1990. Invasion of Polygyne Fire Ants Decimates Nat ive Ants and Disrupts Arthropod Community. Ecology 71(6): 20952106. PYLE, R. M. 1976.Conservation of Lepidoptera in the United States.Biological Conservation, 9(1): 5575. PYLE, R. M. 1981. The Audubon Society Field Guide to North American Butterflies, Ch anticleer Press, Random, Knopf, New York. QUERINO, R. B., MORAES, R. C., AND ZUCCH I, R. A. 2002.Relative wasp analysis to study orphological variations in the genital capsule of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Neotrop. Entom ol. [Online] 31(2): 217224.

PAGE 176

176 QUICKE, D. L. L. 1997. Parasitic wasps. Chapman & Hall. London. 470 pp. QUINTERO, H. E. 1988. Population Dynamics of the Butterfly Heliconius charithonia L. in Puerto Rico.Caribbean Journal of Science 24(34):155160. RACEY, G. D. AND EULER, D. L. 1982.Small mammal and habitat response to shoreline cottage development in central Ontario, Canada. Canadian Journal of Zoology 60: 865880. RAGUSO, R.A. AND LORENTEBOUSEQUETS, J. 199091. The Butterflies (Lepidoptera) of the Tuxt las Mts., Veracruz, Mexico, Revisited: Species Richness and Habitat Disturbance. Journal of Research on the Lepidoptera, 29(12): 105133. RAUSER, C.L., AND RUTOSKI, R. L. 2003 Male specific structures on the wings of the Gulf Fritillary butterfly, Agrauli s vanillae (Lepidoptera: Nymphalidae). J. Lep. Soc. 57 (4): 279283. REBEK, E. J., AND SADOF, C. S. 2003. Effects of Pesticide Applications on the Euonymus Scale (Homoptera:Diaspididae) and its Parasitoid, Encarsia citrina (Hymenoptera: Aphelinidae). 96(2 ): 446452. REY, J.R. AND RUTLEDGE, C.R. 2009. Mangroves. Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. ENY 660 (IN 195). RICE, W.R. 1989. Analyzing Tables of Statistical Tests. Evolution. 43:203208. RISCH, S.J. 1979. A comparison, by sweep sampling, of the insect fauna from corn and sweet potato monocultures and dicultrues in Costa Rica.Oecologica 42:195211. RISCH, S. J. AND CARROLL, C. R. 1982. Effect of a Keystone Predaceous Ant, Solenopsis geminata, on Arthropods in a Tropical Agroecosystem.Ecology, 63(6), 19791983. ROITBERG, B,D, 2000. Threats, Flies, and Protocol Gaps: Can Evolutionary Ecology Save Biological Conrol. In HOCHBERG, M. E., AND IVES, A. R. 2000. Parasitoid population biology.Princeton University Press, Princeton, New Jersey 366 pp. ROSS, G. N., FALES, H. M., LLOYD, H. A., JONES, T., SOKOLOSKI E. A., MARSHALL, B.K., ET. AL. 2001. Novel chemistry of abdominal defensive glands of Nymphalid butterfly Agraulis vanillae J. Chem. Ecol. 27(6): 12191228. SKSJRV, I.E. RUOKO LAINEN, K. TUOMISTO, H. HAABJA, S. FIN E, P.V.A. CARDENAS, G. MESONES, I. AND TARGAS, V. 2006. Comparing composition and diversity of parasitoid wasps and plants in an Amazonian rainforest-mosaic. J. Trop. Eco. 22: 167-176.

PAGE 177

177 SAARINEN, E.V. and DANIELS, J.C., 2006. Miami Blue Butterfly Larvae (Lepidoptera: Lycaenidae) and Ants (Hymeoptera: Formicidae): New Information on the Symbionts of an Endangered Taxon. The Florida Entomolo gist, 89(1), 6974. SALCEDO, C. 2010.Environmental Elements Involved in Communal Roosting in Helconius Butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3): 907911. SALVATO, M., 1998. The Florida Keys, a Paradise Endangered. American Butterflies, 6, 2635. SALVATO, M., 2001.Influence of Mosquito Control Chemicals on Butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the Lower Florida Keys.Journal of the Lepidopterists Society, 55(1), 814. SALVATO, M.H. 1999. Factors influencing the declini ng populations of three butterfly species in south Florida and the lower Florida Keys. MS Thesis, University of Florida. Gainesville, Florida. SALVO, A. FENOGLIO, M.S. AND VIDELA, M. 2005. Parasitism of a leafminer in managed verusus natural habitas. Agric ult. Ecosys. Environ. 109(34): 213220. SCHAEFER, P.W., FESTER, R.W., CHIANESE, R.J., RHOADS, L.D., TICHENOR, R.B. Jr. 1989. Introduction and Nort American establishment of Coccygomimus disparis (Hymenoptera: Ichneumonidae), a polyphagous pupal parasite of Lepidoptera, including gypsy moth. Environ. Entomol. 18(6):11171125. SCHWEINITZ, L.D., 1832. Remarks on the Plants of Europe Which have Become Naturalized in a More or Less Degree, in the United Stats. Ann. Lyceum Nat. Hist. New York 3:148155. SCOTT JA. 1992. The Butterflies of North America: A Natural History and Field Guide. Stanford University Press, Palo Alto. SCUDDER, S.H., DAVIS, W.M., WOODWORTH, C.W., HOWARD, L.O., RILEY, C.V., WILLISTON, S.W. 1889. The butterflies of the eastern United State s and Canada: with special reference to New England. SHAFER, C.L., 2008. Terrestrial Nature Reserve Design at the Urban/Rural Interface. Urban Ecol, Section VI. 715737. SHEELEY, S.E., RAYNAL, D.J., 1996. The Distribution and Status of Species of Vincetox icum in Eastern North America. Bulletin of the Torrey Botanical Club. 123(2): 148156. SHUGART, H.H., ANDERSON, S.H., STRAND, R.H., 1975. Dominant Patterns in Bird Populations of the Eastern Deciduous Forest Birds. Proceedings of the Symposium on Management of Forest and Range Habitats for Nongame Birds 2:9095. SIME, K. 2002. Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator Ecological Entomology 27(3): 337345.

PAGE 178

178 SMITH, D.S., MILLER, J.Y. and MILLER, L.D., 1994. The Butterflies of the West Indies and South Florida.Oxford ;New York, NY ;Tokyo: Oxford Univ. Pr. SMITH, M.A., WOODLEY, N.E., JANZEN, D.H., HALLWACHS, W. and HEBERT, P.D.N., 2006. DNA Barcodes Reveal Cryptic Host Specificity Within the Presumed Polyphag ous Members of a Genus of Parasitoid Flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 36573662. SOURAKOV, A. 2008. Pupal mating in Zebra longwing ( Heliconius charithonia): photographic evidence. News of the Lepidopters Society 50(1): 2632. SOURAKOV, A. 2009.Notes on the biology of the Gulf Fritillary Agraulis vanillae (Lepidoptera: Nymphalidae) in northcentral Florida. Journal of the Lepidopterists Soc iety 63(2) 127. SOURAKOV, A., AND MITCHELL, E.R. 2002. Laboratory Biology of Chetogena scutellaris (Diptera: Tachinidae), A Parasitoid of Noctuidae, Reared On Fall Armyworm and Cabbage Looper. Florida Entomol. 85(2):341343. SOUTHWOOD, R., 1978. Ecological methods : with Particular Refer ence to the Study of Insect Populations. London; New York. Wiley, Chapman and Hall. STAPEL, J. O., CORTESERO, A. M., AND LEWIS, W. J. 2000. Disruptive Sublethal Effects of Insecticides on Biological Control: Altered Foraging Ability and Life Span of a Parasitoid after Feeding on Extrafloral Nectar Cotton Treated with Systematic Insecticides. Biological Control. 17: 243249. STEFFAN DEWENTER, I. AND TSCHARNTKE, T. 1999.Effects of Habitat Isolation on Pollinator Communities and Seed Set. Oecologia, 121(3): 432440. STEHR, F. W., AND COOK, E. F. 1968. A revision of the genus Malacosoma Hbner in North America (Lepidoptera: Lasiocampidae): systematics, biology immatures, and parasites Bulletin of the United States National Museum, 276. STEIN, B. A., KUTNER, L., AND ADAMS, J. 2000. Precious Heritage. Oxford (United Kingdom): Oxford University Press, Oxford. STIREMAN, J. O., O'HARA, J. E., AND WOOD, D. M. 2006. Tachinidae: Evolution, Behavior, and Ecology. Annu. Rev. Entomol. 51(1): 525555. STIREMAN, J. O., AND SINGER, M. S. 2003. What Determines Host Range in Parasitoids? An Analysis of a Tachinid Parasitoid Community. Oecologia, 135(4): 629638. STRAND, M.R. 2000. Developmental Traits and Life History Evolution in Parasitoids. In HOCHBERG, M. E., AND IVES, A. R. 2000. Parasitoid population biology.Princeton University Press, Princeton, New Jersey.

PAGE 179

179 STRAZANAC, J.S., PLAUGHTER, C.D., PETRICE, T.R. AND BUTLER, L. 2001. New Tachinidae (Diptera) Host Records of Eastern North American Forest Canopy Lepidoptera: Bas eline Data in a Bacillus thuriengiensis Variety kurkstaki Nontarget Study. Forest Entomol. 94(5): 11281134. SUMMERVILLE, K. S., AND CRIST, T. O. 2004. Contrasting Effects of Habitat Quantity and Quality on Moth Communities in Fragmented Landscapes. Ecogr aphy, 27(1), 312. SUMMERVILLE, K. S., AND LEWIS, M. N. 2005. Restoring Lepidopteran Communities to Oak Savannas: Contrasting Influences of Habitat Quantity and Quality. Restoration Ecol. 13(1): 120128. TADIC, M. D. 1977.Natural Enemies of fall webworm ( H yphantria cunea Dr.) in North America. Biocontrol 8(4):245252. TAKEDA, M. 2005.Differentiation in life cycle of sympatric populations of two forms of Hyphantria moth in central Missouri. J. Entomol Sci 8(2): 211218. THILING, K. M., AND CROFT, B. A. 1988. Pesticide Side Effects on Arthropod Natural Enemies: a Database Summary. Agriculture, Ecosystems, and Environment. 191(21): 191218. TRAGER, M., AND DANIELS, J. 2009. Ant Tending of Miami Blue Butterfly Larvae (Lepidoptera: Lycaenidae): Partner Diversi ty and Effects on Larval Performance. Florida Entomologist. 92(3): 474482. TSCHINKEL, W. R. 2006.The Fire Ants. Cambridge, Massachusetts: The Belknap Press of Harvard University Press. TVETEN, J., AND TVET EN G. 1996. Butterflies of Houston & Southeast Tex as, University of Texas Press, Austin. TYLIANAKIS, J. M., TSCHARNTKE, T., AND LEWIS, O.T. 2007. Habitat Modification Alters the Structure of Tropical Host Parasitoid Food Webs. Nature, 445(7124): 202205. URQUHART, F. A., AND URQUHART, N. R. 1976. The over wintering site of the eastern population of monarch butterfly ( Danaus p. plexippus ) in southern Mexico. J. Lepid. Soc. 30:153158. WAGNER D. L 2005.Caterpillars of Eastern North America.Princeton University Press.Princeton WAGNER, D. L., GILES V., REAR DON, R. C., AND MCMANUS, M. L. 1998.Caterpillars of eastern Forests.U.S. Department of Agriculture, Forest Health Technology Enterprise Team. WALKER, C.H. 2008. Organic pollutants: an ecotoxicological perspective. Boca Raton, FL. CRC Press 414 pg.

PAGE 180

180 WALKER, T. J 1978. Migration and re emigration of butterflies through north peninsular Florida: Quantification with Malaise traps, J. Lepid. Soc. 32: 178190. WALKER, T. J 1991. Butterfly migration from and to peninsular Florida. Ecological Entomology, 16:241 252. WALKER, T. J. 2001. Butterfly migrations in Florida: Seasonal patterns and long term changes, Environmental Entomology, Entomological Society of America, 30(6): 10521060. WESELOH, R. M., AND READIS, T. G., R. MOORE, E. B., ANDERSON, J. F., DUBOIS, N. R., AND LEWIS, F. B. 1983. Field Confirmation of a Mechanism Causing Synergism Between Bacillus thuringiensis and the Gypsy moth parasitoid, Apanteles melanoscelus J. Invertebr. Pathol. 99103: 41. WHAN, P. W., AND BEL TH, J. E. 1992. Second Ohio recor d of Agraulis vanillae (Lepidoptera, Nymphalidae). Ohio J. Sci. 92(4): 121122. WILSON, E. E., MULLEN, L. M., AND HOLWAY, D. A., 2009. Life History Plasticity Magnifies the Ecological Effects of a Social Wasp Invasion. Proceedings of the National Academy of Sciences, 106(31): 1280912813. WITTER, J. A., AND K ULMAN, H. M. 1972. Estimating the number of eggs per egg mass of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Michigan Entomol. 2:6371. WOJCIK, D., ALLEN, C., BRENN ER, R., FORYS, E., JOUVENAZ, D., AND LUTZ, R. 2001. Red Imported Fire Ants Impact On Biodiversity. American Entomol. 47(1): 1623. WOOD, D. M., AND WHEELER, A. G. Jr. (1972): First record in North America of the centipede parasite Loewia foeda (Diptera: Ta chinidae). Canadian Entomologist 104: 13631367; Ottawa. WORTH, R. A. 1994.Book of Insect Records, Chapter 2Greatest Host Range.Department of Entomology & Nematology, University of Florida, Gainesville. YANG, C., YU, Y., VALLES, S., OI, D., CHEN, Y., SHOEMAKER, D., WU, W. AND SHIH, C. 2010. Loss of Microbial (Pathogen) Infections Associated with Recent Invasions of the Red Imported Fire Ant Solenopsis invicta. Biol. Invasions. 12(9): 33073318. YANG, Z. Q., AND ZHANG, Y. A. 2007.Researches on technique s for biocontrol of the fall webworm, Hyphantria cunea, a severe invasive insect pest to China.Chinese Bulletin of Entomol.44(4): 465471. YU, S. J., 2008. The Toxicology and Biochemistry of Insecticides. Boca Raton: CRC Press/Taylor & Francis. ZALUCKI, M. P 1981. Temporal and Spatial Variation of Parasitism in Danaus plexippus (L.) (Lepidoptera: Nymphalidae: Danainae). Australian EntomologyMagazine 8(1): 38.

PAGE 181

181 ZHONG, H., DUKES, J., GREER, M., HESTER, P., SHIRLEY, M. and ANDERSON, B., 2003. Ground Deposition Impact of aerially Applied Fenthion on the Fiddler Crabs, Uca pugilator ..Journal of American Mosquito Control Association.19(1), 4752. ZHONG, H., LATHAM, M., HESTER, P.G., FROMMER, R.L. and BROCK, C., 2003. Impact of Naled on Honey Bee Apis mellifera L. Survival and Productivity: Aerial ULV Application Using a FlatFan Nozzle System. Archives of Environmental Contamination and Toxicology, 45(2), 216220. ZHONG, H., LATHAM, M., PAYNE, S., AND BROCK, C. 2004. Minimizing the Impact of the Mosquito Adulticide Naled on Honey Bees, Apis mellifera (Hymenoptera: Apidae): Aerial Ultra Low Volume Application Using a HighPressure Nozzle System. J. Econ. Entomol., 97(1): 17.

PAGE 182

182 BIOGRAPHICAL SKETCH Thomson Paris was born in November of 1984, in Loma Linda, California. His interest in butterflies was aroused when his mother read to him at the age of five, a book about butterfly collecting called Eyes for Benny by Anna Weaver. With the support of his parents, his interest in Lepidoptera grew and developed. Field trips wit h the Kentucky Lepidopterists Society and the Lepidopterists Society Meetings in Colorado advanced his entomological knowledge still further. During these field trips several notable acquaintances were made including Drs. Charles Covell and Thomas Emmel. In the spring of 1999, Thomson participated in a Lepidoptera expedition to Bolivia with Dr. Emmel, which further heightened his interest in the study of Lepidopterology. Thomson continued to develop his love for nature by beginning a life list of birds i n 2002. In the fall of 2008, Thomson enrolled at Southern Adventist University as a Biology Major. In May 2008, he graduated cum laude with a B.S. in biology. The following fall, he enrolled in the Masters of Science program at the University of Florida in the Entomology and Nematology Department. In May 2011, he received his M.S. degree and is planning to continue his education in pursuit of a Ph.D. in entomology.