<%BANNER%>

New Chiral Di-N-Heterocyclic Carbene Ligands and Their Application in Enantioselective Hydrogenation, Hydroformylation a...

Permanent Link: http://ufdc.ufl.edu/UFE0042497/00001

Material Information

Title: New Chiral Di-N-Heterocyclic Carbene Ligands and Their Application in Enantioselective Hydrogenation, Hydroformylation and 1,4-Conjugate Addition Reactions. a Study Toward Rational Development of Di-N-Heterocyclic Carbene Complexes in Enantioselective Catalysis.
Physical Description: 1 online resource (594 p.)
Language: english
Creator: Jeletic, Matthew
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: carbene, catalysis, conjugate, enantioselective, hydroformylation, hydrogenation, nhc
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: N-Heterocyclic carbene (NHC) ligands are becoming as ubiquitous in organometallic chemistry as the heralded phosphine ligand class. Chelating diNHC ligands are scarce compared to the number of monodentate NHC ligands available. In this work, we present a new type of C2-symmetric chiral ligand based on the trans-9,10-dihydro-9,10-ethanoanthracene-11,12-diyl (DEA) backbone and also the DEAM version (contains a methylene linker). DiNHCs have several points of optimization, including linker length, electron-donating properties of the NHC (imidazole or benzimidazole) and N-alkyl sterics (Me, iPr, MeBn, diPh, Bn, o-xylyl), that can be changed for different catalytic applications. We also present a library of electronically and sterically different azolium salt precursors, enetetramines, or NHCs built upon our DEA and DEAM ligands. The ligands are characterized by NMR techniques, X-ray crystallography, mass spectrometry and combustion analysis. The azolium salt precurors are stable to air and moisture, while the enetetramines and NHCs are not. The size of the N-alkyl sterics influences whether an enetetramine or NHC forms with the reactivity of both appearing identical. In this work, we present several new diNHC monocationic or neutral monometallic rhodium ((olefin)Rh(diNHC)+ (diolefin is norbornadiene or 1,5-cyclooctadiene) and (diNHC)Rh(CO)2+), iridium ((1,5-cyclooctadiene)Ir(diNHC)+) and palladium ((acetylacetonate)Pd(diNHC)+, (diNHC)Pd(acetate)2 and (?3-C3H5)Pd(diNHC)+) complexes. The complexes are again well characterized. The (?3-C3H5)Pd(diNHC)+ complexes form as an inseperable mixture of exo (80%) and endo (20%) isomers. The (diNHC)Rh(CO)2+ complexes exhibit a degenerate isomerization (?G? ranged from 16.6-18.5 kcal/mol) that may influence enantioselectivity during catalytic reactions. Interestingly, the DEA ligands do not undergo a degenerate isomerization below 100degreeC. In addition, bimetallic complexes formed from the DEA backbone. Larger N-alkyl groups on the DEA backbone form exclusively bimetallic complexes because of steric issues at the metal center. We finally present catalytic hydrogenation, hydrogen transfer, hydrosilylation, hydroformylation and 1,4-conjugate addition reactions. The % e.e. for hydrogenation ranged from 0-10%. for the reactions involving hydrogen. These results are attributable to either reductive elimination of the diNHC from the metal center, high temperatures necessary to achieve reaction conversion, or the inherent flexibility of the DEAM ligands. The Pd(diNHC) complexes achieved better selectivity in 1,4-conjugate addition reactions (0-67% e.e.).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Matthew Jeletic.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-12-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042497:00001

Permanent Link: http://ufdc.ufl.edu/UFE0042497/00001

Material Information

Title: New Chiral Di-N-Heterocyclic Carbene Ligands and Their Application in Enantioselective Hydrogenation, Hydroformylation and 1,4-Conjugate Addition Reactions. a Study Toward Rational Development of Di-N-Heterocyclic Carbene Complexes in Enantioselective Catalysis.
Physical Description: 1 online resource (594 p.)
Language: english
Creator: Jeletic, Matthew
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: carbene, catalysis, conjugate, enantioselective, hydroformylation, hydrogenation, nhc
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: N-Heterocyclic carbene (NHC) ligands are becoming as ubiquitous in organometallic chemistry as the heralded phosphine ligand class. Chelating diNHC ligands are scarce compared to the number of monodentate NHC ligands available. In this work, we present a new type of C2-symmetric chiral ligand based on the trans-9,10-dihydro-9,10-ethanoanthracene-11,12-diyl (DEA) backbone and also the DEAM version (contains a methylene linker). DiNHCs have several points of optimization, including linker length, electron-donating properties of the NHC (imidazole or benzimidazole) and N-alkyl sterics (Me, iPr, MeBn, diPh, Bn, o-xylyl), that can be changed for different catalytic applications. We also present a library of electronically and sterically different azolium salt precursors, enetetramines, or NHCs built upon our DEA and DEAM ligands. The ligands are characterized by NMR techniques, X-ray crystallography, mass spectrometry and combustion analysis. The azolium salt precurors are stable to air and moisture, while the enetetramines and NHCs are not. The size of the N-alkyl sterics influences whether an enetetramine or NHC forms with the reactivity of both appearing identical. In this work, we present several new diNHC monocationic or neutral monometallic rhodium ((olefin)Rh(diNHC)+ (diolefin is norbornadiene or 1,5-cyclooctadiene) and (diNHC)Rh(CO)2+), iridium ((1,5-cyclooctadiene)Ir(diNHC)+) and palladium ((acetylacetonate)Pd(diNHC)+, (diNHC)Pd(acetate)2 and (?3-C3H5)Pd(diNHC)+) complexes. The complexes are again well characterized. The (?3-C3H5)Pd(diNHC)+ complexes form as an inseperable mixture of exo (80%) and endo (20%) isomers. The (diNHC)Rh(CO)2+ complexes exhibit a degenerate isomerization (?G? ranged from 16.6-18.5 kcal/mol) that may influence enantioselectivity during catalytic reactions. Interestingly, the DEA ligands do not undergo a degenerate isomerization below 100degreeC. In addition, bimetallic complexes formed from the DEA backbone. Larger N-alkyl groups on the DEA backbone form exclusively bimetallic complexes because of steric issues at the metal center. We finally present catalytic hydrogenation, hydrogen transfer, hydrosilylation, hydroformylation and 1,4-conjugate addition reactions. The % e.e. for hydrogenation ranged from 0-10%. for the reactions involving hydrogen. These results are attributable to either reductive elimination of the diNHC from the metal center, high temperatures necessary to achieve reaction conversion, or the inherent flexibility of the DEAM ligands. The Pd(diNHC) complexes achieved better selectivity in 1,4-conjugate addition reactions (0-67% e.e.).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Matthew Jeletic.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-12-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042497:00001


This item has the following downloads:


Full Text

PAGE 1

1 NEW CHIRAL DI N HETEROCYCLIC CARBENE LIGANDS AND THEIR APP LICATION IN ENANTIOSELECTIVE HYD ROGENATION, HYDROFORMYLATION AND 1,4 CONJUGATE ADDITION REACTIONS. A STUDY TOWARD RATIONAL DEVELOPMENT OF DI N HETEROCYCLIC CARBENE COMPLEXES IN ENANTIOSELECTIVE CAT ALYSIS By MATTHEW STEPHEN JELETIC A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010

PAGE 2

2 2010 Matthew Jeletic

PAGE 3

3 To Mama San

PAGE 4

4 ACKNOWLEDGMENTS I thank my parents for all their support through the years. I would also like to thank the few good friends during my time here, in particular Vanessa for all the wonderful cooking adventures t o keep me sane during my final year here. I am appreciative for all the help of the UF staff scientists C ris Dancel, Robert Harker and Khalil Abboud. Ion Ghiviriga in particular, was very helpful with all NMR experiments and providing many invaluable co nversations. Lastly and most importantly I thank my advisor Adam Veige, for his support through the years.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ .. 4 LIST OF TABLES ................................ ................................ ................................ ............ 8 LIST OF FIGURES ................................ ................................ ................................ ........ 15 LIST OF ABBREVIATIONS ................................ ................................ ........................... 29 ABSTRACT ................................ ................................ ................................ ................... 32 CHAPTER 1 N HETEROCYCLIC CARBENE LIGANDS: AN ALTERNATIVE TO PHOSPHINES? ................................ ................................ ................................ ...... 34 1.1 Introduction ................................ ................................ ................................ ....... 34 1.2 Phosphanes: The Ideal Ligand Class? ................................ ............................. 36 1.3 Timeline of N Heterocyclic Carbene Ligands ................................ .................... 37 1.4 Ground State Electronic Structure of N Heterocyclic Carbene Ligands ............ 38 1.5 Sigma Donor Properties of N Heterocyclic Carbene Ligands ........................... 41 1.6 Pi accepting/donating Properties of N Heterocyclic Carbene Ligands .............. 43 1.7 Sterics of the N Heterocyclic Carbene Ligands ................................ ................. 45 1.8 Organometallic Carbenes Ligands ................................ ................................ .... 46 1.9 Free Carbene versus Enetetramine? ................................ ................................ 48 2 SYNTHESIS AND CHARACTERIZATION OF NE W CHIRAL DI N HETEROCYCLIC CARBENE LIGANDS. ................................ ................................ 52 2.1 Introduction ................................ ................................ ................................ ....... 52 2.2 General DEAM Ligand Synthesis ................................ ................................ ...... 53 2.3 Synthesis and Characterization of DEAM Diazolium Triflate Salts .................... 57 2.4 Synthesis and Characterization of 2 nd Generation DEAM Diazolium Salts ....... 6 7 2.5 General DEA Ligand Synthesis ................................ ................................ ........ 73 2.6 Synthesis and Characterization of DEA Benzimidazolium Triflate Salts ........... 75 2.7 Synthesis and Characterization of Enetetramine and DiNHC Ligands .............. 76 2.8 Reactivity of Enetetramine 5 Me. ................................ ................................ ...... 82 2.9 Conclusions ................................ ................................ ................................ ...... 84 3 NHCS IN METAL CATALYSIS: SYNTHESIS OF AND CHARACTERIZATION OF NEW CHIRAL DI N HETEROCYCLIC CARBENE RHODIUM, IRIDIUM AND PALLADIUM COMPLEXES. ................................ ................................ ................... 87 3.1 Introduction ................................ ................................ ................................ ....... 87 3.2 Typical NHC Metalation Procedures ................................ ................................ 88

PAGE 6

6 3. 3 M NHC Complexes in Catalysis ................................ ................................ ........ 89 3.4 M DiNHC Complexes in Enantioselective Catalysis ................................ ......... 91 3.5 Synthesis and Characterization of M onometallic (diNHC)Rh(olefin) Complexes ................................ ................................ ................................ ........... 93 3.6 Synthesis and Characterization of Bimetallic Rhodium Complexes ................ 103 3.7 Synthesis and Characterization of Rhodium(diNHC)(CO) 2 Complexes .......... 110 3.8 Synthesis and Characterization of Iridium(diNHC) Complexes ....................... 119 3.9 Synthesis and Characterization of Palladium(diNHC) Complexes .................. 123 3.10 Conclusions ................................ ................................ ................................ .. 130 4 ENANTIOSELECTIVE HYDROGENATION, HYDROSI LYLATION AND HYDROGEN TRANSFER CATALYSIS. ................................ ............................... 132 4.1 Introduction to Catalysis ................................ ................................ .................. 132 4.2 Fundamentals of Enantioselective Catalysis ................................ ................... 135 4.3 Introduction to Hydrogenation Reactions ................................ ........................ 137 4.4 M NHC Catalyst Decomposition Pathways ................................ ..................... 139 4.5 Hydrogenation of trans Methyl Stilbene with M NHC Complexes ................... 141 4.6 Hydrogenation of Methyl 2 Acetoamidoacrylate ................................ ............. 145 4.7 Hydrogen Transfer of Methyl Ketones ................................ ............................ 148 4.8 Hydrosilylation of Methyl Ketones ................................ ................................ ... 150 4.9 Conclusions ................................ ................................ ................................ .... 150 5 HYDROFORMYLATION WITH CHIRAL DINHC RHODIUM COMPLEXES. ........ 153 5.1 Introduction to Hydroformylation ................................ ................................ ..... 153 5.2 Hydroformylation of Styrene, Vinyl Acetate, and Allyl Cyanide. ...................... 156 5.3 Conclusions ................................ ................................ ................................ .... 158 6 1,4 CONJUGATE ADDITION REACTIONS OF ARYL BORONIC ACIDS TO CYCLIC ENONES WITH CHIRAL DINHC RHODIUM AND PALLADIUM COMPLEXES. ................................ ................................ ................................ ...... 160 6.1 Introduction to 1,4 additions ................................ ................................ ............ 160 6.2 Rhodium Catalyzed1,4 Conjugate Additions of Cyclic Enones to Boronic Acids ................................ ................................ ................................ .................. 163 6.3 Palladium Catalyzed1,4 Conjugate Additions of Cyclic Enones to Boronic Acids ................................ ................................ ................................ .................. 166 6.4 Conclusions ................................ ................................ ................................ .... 171 7 COMPLETE EXPERIMENTAL DETAILS. ................................ ............................. 173 7.1 General Considerations ................................ ................................ .................. 173 7.2 Analytical Techniques ................................ ................................ ..................... 174 7.3 Experimental Methods ................................ ................................ .................... 176

PAGE 7

7 APPENDIX: NMR, IR, AND X RAY DATA. ................................ ................................ 232 A.1 1D and 2D NMR Spectra ................................ ................................ ................ 233 A.2 X Ray Crystallog raphic Data ................................ ................................ .......... 398 A.3 IR Spectra ................................ ................................ ................................ ...... 533 A.4 Variable Temperature Data ................................ ................................ ............ 537 A.5 CycloNOE Data for the Degenerate Isomerization of 22 R. ........................... 543 LIST OF REFERENCES ................................ ................................ ............................. 570 BIOGRAPHICAL SKETCH ................................ ................................ .......................... 594

PAGE 8

8 LIST OF TABLES Table page 2 1 Selected NMR data for 4 Me ................................ ................................ ............. 57 2 2 MS and EA data for 4 Me ................................ ................................ .................. 57 2 3 Selected bond lengths and bond angles for 4 Me ................................ ............. 58 2 4 Selected NMR data for 4 i Pr ................................ ................................ .............. 59 2 5 MS and EA data for 4 i Pr ................................ ................................ ................... 59 2 6 Selected bond lengths and bond angles for 4 i Pr ................................ .............. 60 2 7 Selected NM R and EA data for 7 MeBn ................................ ............................ 61 2 8 Selected NMR and EA data for 7 diPh ................................ .............................. 62 2 9 Selected NMR data for 4 MeBn ................................ ................................ ........ 63 2 10 MS and EA data for 4 MeBn ................................ ................................ ............. 63 2 11 Selected NMR and EA data for 4 diPh ................................ .............................. 64 2 12 Selected NMR and EA data for 4 idiPh ................................ ............................. 65 2 13 Selected NMR and EA data for 4 o xylyl ................................ .......................... 68 2 14 Selected bond lengths and bond angles for 4 o xylyl ................................ ....... 68 2 15 Selected NMR and EA data for 4 PhEt ................................ ............................. 72 2 16 Selected NMR and EA data for [14 i Pr]I 2 ................................ .......................... 75 2 17 Selected NMR data for 5 Me ................................ ................................ ............. 77 2 18 MS and EA data for 5 Me ................................ ................................ .................. 77 2 19 Selected Bond Lengths and Bond Angles for 5 Me ................................ ........... 77 2 20 Selected NMR, and MS data for 6 i Pr ................................ ............................... 80 2 21 Selected bond lengths and bond angles for 6 i Pr ................................ .............. 80 2 22 Selected NMR and EA data for 15 i Pr ................................ ............................... 82 2 23 Selected NMR and MS data for 16 Me ................................ .............................. 83

PAGE 9

9 3 1 Selected NMR data for 16 Me ................................ ................................ ........... 95 3 2 MS and EA data for 16 Me ................................ ................................ ................ 95 3 3 Sele cted bond lengths and bond angles for 16 Me ................................ ........... 95 3 4 Characteristic 1 H NMR resonances (in ppm) of 16 R ................................ ...... 100 3 5 Characteristic 13 C { 1 H} NMR resonances (in ppm) of 16 R ............................. 100 3 6 MS and EA data for 20 Me ................................ ................................ .............. 105 3 7 Selected bond lengths and bond angles for 20 M e ................................ ......... 105 3 8 Selected NMR data for 20 i Pr ................................ ................................ .......... 106 3 9 MS and EA data for 20 i Pr ................................ ................................ ............... 107 3 10 Selected bond lengths and bond angles for 20 i Pr ................................ .......... 107 3 11 Selected NMR data for 21 i Pr ................................ ................................ .......... 109 3 12 Selected NMR data for 22 Me ................................ ................................ ......... 111 3 13 MS and EA data for 22 Me ................................ ................................ .............. 111 3 14 Selected bond lengths and bond angles for 22 Me ................................ ......... 111 3 15 Characteristic 1 H NMR resonances (in ppm) of 22 R ................................ ...... 114 3 16 Characteristic 13 C { 1 H} NMR resonances (in ppm) of 22 R ............................. 114 3 17 Characteristic IR CO stretching frequencies of 22 R ................................ ....... 114 3 18 Selected NMR data for 23 Me ................................ ................................ ......... 116 3 19 Activation parameters for 22 R ................................ ................................ ........ 118 3 20 Selected NMR data for 24 i Pr ................................ ................................ .......... 120 3 21 MS and EA data for 2 4 i Pr ................................ ................................ ............... 120 3 22 Selected bond lengths and bond Angles for 24 i Pr ................................ .......... 120 3 23 Selected NMR and EA data for 24 diPh ................................ .......................... 120 3 24 Selected bond lengths and bond angles for 25 o xylyl ................................ ... 124 3 25 Selected bond lengths and bond angles for 25 diPh ................................ ....... 127

PAGE 10

10 3 26 Selected NMR data for 26 diPh ................................ ................................ ...... 128 3 27 Selected NMR data for 27 Me ................................ ................................ ......... 130 4 1 Hydrogenation of trans methyl stilbene with rhodium and iridium diNHC complexes. ................................ ................................ ................................ ....... 1 42 4 2 Hydrogenation of methyl 2 acetamidoacrylate with 17 R and 24 R ................. 146 4 3 Hydrogen transfer of methyl ketones with 24 diPh ................................ .......... 149 5 1 Hydroformylation of styrene with 17 R 20 Me and 22 Me .............................. 157 6 1 Rhodium catalyzed 1,4 addtion conjugate addition with catalysts 16 19 ......... 164 6 2 Palladium catalyzed 1,4 conjugate addition with 25 diPh (optimization experiments). ................................ ................................ ................................ .... 167 6 3 Palladium catalyzed 1,4 conjugate addition with catalysts 25 and 26 ............. 169 7 1 Key for 1 H NMR spectrum assignments for 25 o xylyl ................................ .... 228 A 1 Crystal data, structure solution and refinement for 4 Me ................................ 400 A 2 Atomic coordinates ( x 10 4 ) and equivalent i sotropic displacement parameters ( 2 x 10 3 ) for 4 Me U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 401 A 3 Bond lengths (in ) for 4 Me ................................ ................................ ............ 403 A 4 Bond angles (in ) for 4 Me ................................ ................................ .............. 404 A 5 Anisotropic displacement parameters ( 2 x10 3 ) for 4 Me The anisotropic displacement factor exponent ta kes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 406 A 6 Hydrogen coordinates ( x 10 4 2 x 10 3 ) for 4 Me ................................ ................................ ................................ .... 408 A 7 Crystal data, structure solution and refinement for 4 i Pr ................................ .. 410 A 8 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 4 i Pr U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 411 A 9 Bond lengths (in ) for 4 i Pr ................................ ................................ ............ 412 A 10 Bond angles (in ) for 4 i Pr ................................ ................................ .............. 413

PAGE 11

11 A 11 Anisotropic displacement parameters ( 2 x10 3 ) for 4 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 414 A 12 Crystal data, structure solution and refinement for 4 o xyxyl .......................... 417 A 13 Atomic coordinates ( x 10 4 ) an d equivalent isotropic displacement parameters ( 2 x 10 3 ) for 4 o xyxyl U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ .............................. 418 A 14 Bond lengths (in ) for 4 o xy xyl ................................ ................................ .... 420 A 15 Bond angles (in ) for 4 o xyxyl ................................ ................................ ...... 423 A 16 Anisotropic displacement parameters ( 2 x10 3 ) for 4 o xyxyl The aniso tropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ .......................... 426 A 17 Crystal data, structure solution and refinement for 5 Me ................................ 428 A 18 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 5 Me U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 429 A 19 Bond lengths (in ) for 5 Me ................................ ................................ ............ 431 A 20 Bond angles (in ) for 5 Me ................................ ................................ .............. 432 A 21 Anisotropic d isplacement parameters ( 2 x10 3 ) for 5 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 433 A 22 Hydrogen coordinates ( x 10 4 ) and i 2 x 10 3 ) for 5 Me ................................ ................................ ................................ .... 435 A 23 Crystal data, structure solution and refinement for 6 i Pr ................................ .. 438 A 24 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 6 i Pr U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 439 A 25 Bond lengths (in ) for 6 i Pr ................................ ................................ ............ 441 A 26 Bond angles (in ) for 6 i Pr ................................ ................................ .............. 442 A 27 Anisotropic displacement parameters ( 2 x10 3 ) for 6 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + .. + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 443

PAGE 12

12 A 28 Hydrogen coordinates ( x 10 4 2 x 10 3 ) for 6 i Pr ................................ ................................ ................................ .... 444 A 2 9 Crystal data, structure solution and refinement for 17 Me ............................... 447 A 30 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 17 Me U(eq) is defined as o ne third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 448 A 31 Bond lengths (in ) for 17 Me ................................ ................................ .......... 450 A 32 Bond angles (in ) for 17 Me ................................ ................................ ............ 451 A 33 Anisotropic displacement parameters ( 2 x10 3 ) for 17 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 453 A 34 Hydrogen coordinates ( x 10 4 2 x 10 3 ) for 17 Me ................................ ................................ ................................ .. 455 A 35 Crystal data, structure solution and refinement for 20 Me ............................... 458 A 36 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 20 Me U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 459 A 37 Bond lengths (in ) for 20 Me ................................ ................................ .......... 460 A 38 Bond angles (in ) for 20 Me ................................ ................................ ............ 461 A 39 Anisotropic displacement parameters ( 2 x1 0 3 ) for 20 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 462 A 40 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parame 2 x 10 3 ) for 20 Me ................................ ................................ ................................ .. 463 A 41 Crystal data, structure solution and refinement for 20 i Pr ................................ 465 A 42 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) for 20 i Pr U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ................................ ................................ ........... 466 A 43 Bond lengths (in ) for 20 i Pr ................................ ................................ .......... 468 A 44 Bond angles (in ) for 20 i Pr ................................ ................................ ............ 470

PAGE 13

13 A 45 Anisotropic displacement parameters ( 2 x10 3 ) for 20 i Pr The anisotropi c displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 472 A 46 Crystal data, structure solution and refinement for 22 Me ............................... 476 A 47 Hydrogen coordinates ( x 10 4 2 x 10 3 ) for 22 Me ................................ ................................ ................................ .. 477 A 48 Bond lengths (in ) for 22 Me ................................ ................................ .......... 481 A 49 Bond angles (in ) for 22 Me ................................ ................................ ............ 483 A 50 Anisotropic displacement parameters ( 2 x10 3 ) for 22 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 487 A 51 Crystal data, structure solution and refinement for 24 i Pr ................................ 493 A 52 Hydrogen coordinates ( x 10 4 ) and isotropic displacement p 2 x 10 3 ) for 24 i Pr ................................ ................................ ................................ .. 494 A 53 Bond lengths (in ) for 24 i Pr ................................ ................................ .......... 495 A 54 Bond angles (in ) for 24 i Pr ................................ ................................ ............ 500 A 55 Anisotropic displacement parameters ( 2 x10 3 ) for 24 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 504 A 56 Crystal data, structure solution and refinement for 25 diPh ............................ 510 A 57 Hydrogen coordinates ( x 10 4 2 x 10 3 ) for 25 diPh ................................ ................................ ............................... 511 A 58 Bond lengths (in ) for 25 diPh ................................ ................................ ....... 514 A 59 Bond angles ( in ) for 25 diPh ................................ ................................ ......... 516 A 60 Anisotropic displacement parameters ( 2 x10 3 ) for 25 diPh The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ ................................ ............. 517 A 61 Crystal data, structure solution and refinement for 25 o xyxyl ........................ 524 A 62 Hydrogen coordinates ( x 10 4 ) and isotropic di 2 x 10 3 ) for 25 o xyxyl ................................ ................................ .......................... 525 A 63 Bond lengths (in ) for 25 o xyxyl ................................ ................................ .. 527

PAGE 14

14 A 64 Bond angles (in ) for 25 o xyxyl ................................ ................................ .... 529 A 65 Anisotropic displacement parameters ( 2 x10 3 ) for 25 o xyxyl The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ]. ................................ ................................ .......................... 531 A 66 Rate constant determinations by monitoring the resonance at 5.9 ppm on the INOVA 500 in acetone d 6 Data correlates to the arene ring flipping motion in 4 o xyxyl ................................ ................................ ................................ ......... 539 A 67 Rate constant determinations by monitoring the resonance at 8.80 ppm on the INOVA 500 in acetone d 6 Data correlates to the benzimidazole ring rotation motion in 4 o xyxyl ................................ ................................ ............. 540 A 68 Raw cyclone data for 22 Me (irradiated signals, X = 3.79, Y = 4.92). ............... 565 A 69 Raw cyclone data for 22 i Pr (irradiated signals, X = 4.99, Y = 5.83). ............... 565 A 70 Raw cyclone data for 22 MeBn (irradiated signals, X = 4.21, Y = 4.94). .......... 566 A 71 Raw cyclone data for 22 diPh (irradiated si gnals, X = 4.14, Y = 5.04). ............ 566 A 72 Raw cyclone data for 22 PhEt (irradiated signals, X = 4.47, Y = 4.13). ............ 567 A 73 Raw cyclone data for 22 Bn (irradiated signals, X = 4.14, Y = 4.52). ............... 567 A 74 Raw cyclone data for 22 idiPh (irradiated signals, X = 4.13, Y = 4.58). ........... 568 A 75 Activation parameters for 22 R ................................ ................................ ........ 569

PAGE 15

15 LIST OF FIGURE S Figure page 1 1 Chiral Rh phosphine catalysts employed in the synthesis of L DOPA. ............... 35 1 2 First isolated NHC complexes (Ph=phenyl). ................................ ....................... 37 1 3 First isolated free NHC (Ad=Adamantyl). ................................ ............................ 37 1 4 All known chiral diNHC architectures (Cy=cyclohexyl, Me=methyl, i Pr=isopropyl, t Bu=t butyl, Naph=naphthyl, MeBn= o methylbenyzl, Mes=mesitylene, n Pr= n propyl, diPh=diphenylmethine, PhEt=phenylmethyl methine, Bn =benzyl). For convenience only the free diNHC form is shown. ..... 39 1 5 Qualitative molecular orbital diagram for N heterocyclic carbenes. A) Inductive effects on an MO of NHCs with electron don ating groups. B) Inductive effects on an MO of NHCs with electron withdrawing groups. C) Mesomeric effects on an MO of NHCs. ................................ .............................. 40 1 6 Most important frontier orbitals of an NHC and metal disp laying the different bonding contributions of the M donation. B) NHC donation. C) M backdonation. ................................ ............................ 44 1 7 14 d interactions. ................................ ..... 44 1 8 Localized MO diagrams for different types of carbenes. ................................ ..... 46 1 9 1,3 Bis (2,6 di iso propylphenyl) 5,5 dimethyl 4,6 diketopyrimi dinyl 2 ylidene. ................................ ................................ ................................ ............... 4 8 1 10 Type 1 3 equilibrium systems. ................................ ................................ ............ 49 1 11 Taten and Chen doubly bridged type 2 system. ................................ ................. 50 2 1 Target diNHC ligand with points of optimization shown. ................................ ..... 52 2 2 General synthesis of DEAM ligand containing a benzimidazole r ing. ................. 53 2 3 Resolution of 1 using brucine. ................................ ................................ ............ 54 2 4 High pressure liquid chromatography traces of the ( S S ) 2 A) ( S S ) 2 B) ( S S ) 2 spiked with a small amount of racemic 2 ................................ ............... 55 2 5 Library of azoles for DEAM backbone (numbered as 7 R ). ................................ 56 2 6 Synthesis of t he dibenzimidazolium salt 4 R ................................ ..................... 57

PAGE 16

16 2 7 Molecular structure of 4 Me with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. .. 58 2 8 Molecular structure of 4 i Pr with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. .. 61 2 9 Synthetic equation for 7 MeBn and 7 diPh ................................ ....................... 61 2 10 Synthetic method for 7 idiPh and 7 PhEt ................................ .......................... 66 2 11 Synthesis of dibenzimidazolium salt 7 o xylyl ................................ ................... 68 2 12 Molecular structure of 4 o xylyl with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms and triflate counter i ons omitted for clarity. .. 69 2 13 Variable temperature 1 H NMR of 4 o xylyl in acetone d 6 Temperatures ( C) from top to bottom; 50, 35, 25, 15, 10, 5, 0, 5, 10, 15, 25, 35, 50, 60. ........ 70 2 14 General synthesis of DEA benzimidazolium salts. ................................ .............. 74 2 15 Synthesis of dibenzimidazolium salt [14 R]X ................................ ..................... 75 2 16 Synthesis of Enetetramine 5 Me ................................ ................................ ........ 77 2 17 Molecular structure of 5 Me with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms omitted for clarity. ................................ ......... 79 2 18 Synthetic scheme of free NHC 6 i Pr ................................ ................................ .. 79 2 19 Molecular structure of 6 i Pr with thermal ellipsoids dr awn at the 40% probability level. Hydrogen atoms omitted for clarity. ................................ ......... 81 2 20 A dioxetane prepared by Lappert. ................................ ................................ ...... 83 2 21 Synthesis of diurea 16 Me ................................ ................................ ................. 83 2 22 Strem ad for 4 MeBn (bottom right molecule). Other salts are available. .......... 85 3 1 The first abnormally b ound NHC to an iridium center. ................................ ........ 87 3 2 Representative types of mixed NHC R bidentate ligands. ................................ .. 90 3 3 First catalytic enantioselec tive reaction with a diNHC reported by Min Shi. ........ 91 3 4 Synthesis of [(diNHC)Rh(nbd/cod)]OTf complexes ( 16 R and 17 Bn ). .............. 94 3 5 E xt bound olefins in metal complexes. ................................ .............. 97

PAGE 17

17 3 6 A) Molecular structure of 16 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ion removed for cla rity. B) Top view of 16 Me ................................ ................................ ................................ .... 98 3 7 Rhodium DEA complexes containing benzimidazole and imidazole backbones. ................................ ................................ ................................ ....... 102 3 8 Synthesis of [(diNHC)Rh(nbd/cod)Cl] 2 complexes. ................................ ........... 104 3 9 Molecular structure of 20 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. ................................ ......................... 105 3 10 Molecular structure of 20 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. ................................ ......................... 109 3 11 Synthesis of complexes 2 2 R and 23 R ................................ .......................... 111 3 12 Molecular structure of 22 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and the tetrafluoroborate ion removed for clarity. ......... 113 3 13 A) Proposed mechanism for the degenerate isomerization of 22 Me B) Top view of the degenerate isomerization of 22 Me ................................ ............... 117 3 14 Isokinetic re lationship between all 22 R complexes. ................................ ........ 118 3 15 General synthetic scheme for iridium complexes 24 R ................................ .... 119 3 16 Molecular structur e of 24 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms and the triflate counter ion removed for clarity. ............ 121 3 17 Synthetic scheme for 25 o xylyl ................................ ................................ ...... 123 3 18 Molecular structure of 25 o xylyl with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ion removed for clarity. ................. 125 3 19 Molecular structure of 25 diPh with ellipsoids drawn at the 50% probability level. Triflate counter ion removed for clarity. ................................ ................... 126 3 20 Possible configurations of 25 PhEt as a d iallyl complex and observed ratios of each diastereomer after 5 d. ................................ ................................ ......... 127 3 21 General scheme for the synthesis of 27 Me ................................ .................... 129 4 1 G eneral reaction coordinate diagram for a one step catalyzed and uncatalyzed reaction. ................................ ................................ ........................ 133 4 2 General reaction coordinate diagram for an enantioselective catalyzed reaction. ................................ ................................ ................................ ............ 136

PAGE 18

18 4 3 ................ 138 4 4 NHC complex. ................................ ... 139 4 5 General hydrogenation scheme of trans methyl stilbene. ................................ 141 4 6 Hydrogenation scheme of methyl 2 acetamidoacrylate. ................................ ... 145 4 7 Results for the hydrogenation of methyl 2 acetamidoacrylate catalyzed by 24 diPh (3 mol%): 50 bars H 2 ; 50 C; CH 2 Cl 2 A) Conversion curve. B) Corresponding % e.e. versus time curve. ................................ ......................... 147 4 8 Hydrogen transfer scheme of methyl 2 acetamidoacrylate. .............................. 149 4 9 Reaction scheme for hydrosilylation of acetophenone with 25 diPh ............... 150 5 1 General hydroformylation scheme and all possible products. ........................... 153 5 2 A general Heck/Breslow hydroformylation mechanism. ................................ .... 154 5 3 Equilibrium between Rh(CO) 4 H and Rh(PPh 3 ) 4 H. ................................ ............ 154 5 4 Hydroformylation of styrene with syngas; 50 C. ................................ ............... 156 5 5 Kinetic profile for 22 Me during hydroformylation of styrene. ............................ 158 6 1 1,4 Addition mechanism proposed by Hayashi. ................................ ................ 162 6 2 Rhodium catalyzed 1,4 conjugate addition reaction with catalysts 16 19 ........ 165 6 3 addition of boronic acid s to enones. ................................ ................................ ............................... 167 6 4 Palladium catalyzed 1,4 conjugate addition of phenyl boronic acid with 2 cyclohexen 1 one using 25 diPh ................................ ................................ ..... 167 6 5 Palladium catalyzed 1,4 conjugate addition of phenyl boronic acid with 2 cyclohexen 1 one using 25 diPh and 26 R ................................ ..................... 168 7 1 Assignment key for 25 MeBn ................................ ................................ .......... 224 7 2 Assignment key for 25 o xyxyl ................................ ................................ ........ 227 A 1 1 H NMR spectrum of 4 Me in acetone d 6 ................................ ......................... 233 A 2 13 C{ 1 H } NMR spectrum of 4 Me in acetone d 6 ................................ ................. 234 A 3 1 H NMR spectrum of 4 i Pr in acetone d 6 ................................ ......................... 235

PAGE 19

19 A 4 13 C{ 1 H} NMR spectrum of 4 i Pr in acetone d 6 ................................ ................. 236 A 5 HETCOR NMR spectrum of 4 i Pr in acetone d 6 ................................ ............. 237 A 6 1 H NMR spectrum of 4 MeBn in acetone d 6 ................................ .................... 238 A 7 13 C{ 1 H} NMR spectrum of 4 MeBn in acetone d 6 ................................ ............ 239 A 8 HETCOR NMR spectrum of 4 MeBn in acetone d 6 ................................ ......... 240 A 9 1 H NMR spectrum of 4 diPh in DMSO d 6 ................................ ........................ 241 A 10 13 C{ 1 H} NMR spectrum of 4 diPh in DMSO d 6 ................................ ................ 242 A 11 gHMQC spectrum of 4 diPh in DMSO d 6 ................................ ........................ 243 A 12 1 H NMR spectrum of 4 idiPh in acetone d 6 ................................ ..................... 244 A 13 13 C{ 1 H} NMR spectrum of 4 idiPh in acetone d 6 ................................ ............. 245 A 14 HETCOR spectrum of 4 idiPh in acetone d 6 ................................ ................... 246 A 15 1 H NMR spectrum at 50 C of 4 o xyxyl in acet one d 6 ................................ .... 247 A 16 1 H NMR spectrum at 60 C of 4 o xyxyl in acetone d 6 ................................ ... 248 A 17 13 C{ 1 H} NMR spectrum at 25 C of 4 o xyxyl in acet one d 6 ............................. 249 A 18 13 C{ 1 H} NMR spectrum at 60 C of 4 o xyxyl in acetone d 6 ............................ 250 A 19 NOESY spectrum of 4 o xyxyl in acetone d 6 ................................ .................. 251 A 20 1 H NMR spectrum of 4 PhEt in DMSO d 6 ................................ ....................... 252 A 21 13 C{ 1 H} NMR spectrum of 4 PhEt in acetone d 6 ................................ .............. 253 A 22 HETCOR NMR spectrum of 4 PhEt in acetone d 6 ................................ .......... 254 A 23 1 H NMR spectrum of 5 Me in C 6 D 6 ................................ ................................ 255 A 24 13 C{ 1 H} NMR spectrum of 5 Me in THF d 8 ................................ ....................... 256 A 25 13 C DEPT spectrum of 5 Me in THF d 8 ................................ ........................... 257 A 26 1 H NMR spectrum of 5 o xyxyl in C 6 D 6 ................................ .......................... 258 A 27 1 H NMR spectrum of 6 i Pr in C 6 D 6 ................................ ................................ .. 259 A 28 13 C{ 1 H} NMR spectrum of 6 i Pr in C 6 D 6 ................................ .......................... 260

PAGE 20

20 A 29 1 H NMR spectrum of 7 MeBn in CDCl 3 ................................ ........................... 261 A 30 13 C{ 1 H} NMR spectrum of 7 MeBn in CDCl 3 ................................ .................... 262 A 31 1 H NMR spectrum of 7 diPh in CDCl 3 ................................ ............................. 263 A 32 13 C{ 1 H} NMR spectrum of 7 diPh in DMSO d 6 ................................ ................ 264 A 33 1 H NM R spectrum of 14 i Pr in CDCl 3 ................................ ............................... 265 A 34 13 C{ 1 H} NMR spectrum of 14 i Pr in CDCl 3 ................................ ....................... 266 A 35 1 H NMR spectrum of 15 i Pr in C 6 D 6 ................................ ................................ 267 A 36 13 C{ 1 H} NMR spectrum of 15 i Pr in C 6 D 6 ................................ ......................... 268 A 37 1 H NMR spectrum of 16 Me in C 6 D 6 ................................ ................................ 269 A 38 13 C{ 1 H} NMR spectrum of 16 Me in C 6 D 6 ................................ ........................ 270 A 39 1 H NMR spectrum of 17 Me in CDCl 3 ................................ .............................. 271 A 40 13 C{ 1 H} NMR spectrum of 17 Me in CDCl 3 ................................ ...................... 272 A 41 gdqCOSY NMR spectrum of 17 Me in CDCl 3 ................................ .................. 273 A 42 gHMBC NMR spectrum of 17 Me in C DCl 3 ................................ ..................... 274 A 43 gHMQC NMR spectrum (aliphatic) of 17 Me in CDCl 3 ................................ ..... 275 A 44 gHMQC NMR spectrum (aromatic) of 17 Me in CDCl 3 ................................ .... 276 A 45 NOESY NMR spectrum of 17 Me in CDCl 3 ................................ ..................... 277 A 46 1 H NMR spectrum of 17 i Pr in CDCl 3 ................................ ............................... 278 A 47 13 C{ 1 H} NMR spectrum of 17 i Pr in CDCl 3 ................................ ....................... 279 A 48 gHMQC NMR spectrum of 17 i Pr in CDCl 3 ................................ ...................... 280 A 4 9 1 H NMR spectrum of 17 MeBn in CDCl 3 ................................ ......................... 281 A 50 13 C{ 1 H} NMR spectrum of 17 MeBn in CDCl 3 ................................ .................. 282 A 51 gdqCOSY NMR spectrum of 17 Me Bn in CDCl 3 ................................ ............. 283 A 52 gHMQC NMR spectrum (aliphatic) of 17 MeBn in CDCl 3 ................................ 284 A 53 gHMQC NMR spectrum (aromatic)of 17 MeBn in CD Cl 3 ................................ 285

PAGE 21

21 A 54 gHMBC NMR spectrum of 17 MeBn in CDCl 3 ................................ ................. 286 A 55 1 H NMR spectrum of 17 diPh in CDCl 3 ................................ ........................... 287 A 56 13 C{ 1 H} NMR spectrum of 17 diPh in CDCl 3 ................................ .................... 288 A 57 gHMQC NMR spectrum of 17 diPh in CDCl 3 ................................ .................. 289 A 58 1 H NMR spectrum of 17 PhEt in CDCl 3 ................................ ........................... 290 A 59 13 C{ 1 H} NMR spectrum of 17 PhEt in CDCl 3 ................................ ................... 291 A 60 1 H NMR spectr um of 17 idiPh in CDCl 3 ................................ .......................... 292 A 61 13 C{ 1 H} NMR spectrum of 17 idiPh in CDCl 3 ................................ ................... 293 A 62 1 H NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ ................. 294 A 63 13 C{ 1 H} NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ .......... 295 A 64 gdqCOSY NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ ..... 296 A 65 gHMQC NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ ........ 297 A 66 gHMBC NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ ......... 298 A 67 NOESY NMR spectrum of 17 o xyxyl in DMSO d 6 ................................ ......... 299 A 68 1 H NMR spectrum of 20 i Pr in CDCl 3 ................................ ............................... 300 A 69 13 C{ 1 H} NMR spectrum of 20 i Pr in CDCl 3 ................................ ....................... 301 A 70 gdqCOSY NMR spectrum of 20 i Pr in CDCl 3 ................................ .................. 302 A 71 gHMQC NMR spectrum o f 20 i Pr in CDCl 3 ................................ ...................... 303 A 72 gHMBC NMR spectrum of 20 i Pr in CDCl 3 ................................ ...................... 304 A 73 NOESY NMR spectrum of 20 i Pr in CDCl 3 ................................ ...................... 305 A 74 1 H NMR spectrum of 21 i Pr in CDCl 3 ................................ ............................... 306 A 75 13 C{ 1 H} NMR spectrum of 21 i Pr in CDCl 3 ................................ ....................... 307 A 76 dqCOSY NMR spectrum of 21 i Pr in CDCl 3 ................................ .................... 308 A 77 HETCOR NMR spectrum of 21 i Pr in CDCl 3 ................................ ................... 309 A 78 1 H NMR spectrum of 22 Me in CDCl 3 ................................ .............................. 310

PAGE 22

22 A 79 13 C{ 1 H} NMR spectrum of 22 Me in CDCl 3 ................................ ...................... 311 A 80 gdqCOSY NMR spectrum of 22 Me in CDCl 3 ................................ .................. 312 A 81 gHMQC NMR spectrum (aliphatic) of 22 Me in CDCl 3 ................................ ..... 313 A 82 gHMQC NMR spectrum (aromatic) of 22 Me in CDCl 3 ................................ .... 314 A 83 gHMBC NMR spectrum of 22 Me in CDCl 3 ................................ ..................... 315 A 84 NOESY NMR spectrum of 22 Me in CDCl 3 ................................ ..................... 316 A 85 1 H NMR spectrum of 22 i Pr in CDCl 3 ................................ ............................... 317 A 86 13 C{ 1 H} NMR spectrum of 22 i Pr in CDCl 3 ................................ ....................... 318 A 87 gdq COSY NMR spectrum of 22 i Pr in CDCl 3 ................................ .................. 319 A 88 gHMQC NMR spectrum of 22 i Pr in CDCl 3 ................................ ...................... 320 A 89 gHMBC NMR spectrum of 22 i Pr in C DCl 3 ................................ ...................... 321 A 90 1 H NMR spectrum of 22 MeBn in CDCl 3 ................................ ......................... 322 A 91 13 C{ 1 H} NMR spectrum of 22 MeBn in CDCl 3 ................................ .................. 323 A 92 gdqCOSY NMR spectrum of 22 MeBn in CDCl 3 ................................ ............. 324 A 93 gHMQC NMR spectrum (aliphatic) of 22 MeBn in CDCl 3 ................................ 325 A 94 gHMQC NMR spectrum (aromatic) of 22 MeBn in CDCl 3 ............................... 326 A 95 NOESY NMR spectrum of 22 MeBn in CDCl 3 ................................ ................. 327 A 96 1 H NMR spectrum of 22 diPh in CDCl 3 ................................ ........................... 328 A 97 13 C{ 1 H} NMR spectrum of 22 diPh in CDCl 3 ................................ .................... 329 A 98 gdqCOSY NMR spectr um of 22 diPh in CDCl 3 ................................ ............... 330 A 99 gHMQC NMR spectrum (aliphatic) of 22 diPh in CDCl 3 ................................ .. 331 A 100 gHMQC NMR spectrum (aromatic) of 22 diPh in CDCl 3 ................................ 332 A 101 gHMBC NMR spectrum of 22 diPh in CDCl 3 ................................ ................... 333 A 102 NOESY NMR spectrum of 22 diPh in CDCl 3 ................................ ................... 334 A 103 1 H NMR spectrum of 22 PhEt in CDCl 3 ................................ ........................... 335

PAGE 23

23 A 104 13 C{ 1 H} NMR spectrum of 22 PhEt in CDCl 3 ................................ ................... 336 A 105 gdqCOSY NMR spectrum of 22 PhEt in CDCl 3 ................................ ............... 337 A 106 gHMQC NMR spectrum of 22 PhEt in CDCl 3 ................................ .................. 338 A 107 gHMBC NMR spectrum of 22 PhEt in CDCl 3 ................................ .................. 339 A 108 NOESY NMR spectrum of 22 PhEt in CDCl 3 ................................ .................. 340 A 109 1 H NMR spectrum of 22 Bn in CDCl 3 ................................ .............................. 341 A 110 13 C{ 1 H} NMR spectrum of 22 Bn in CDCl 3 ................................ ....................... 342 A 111 gdqCOSY NMR spectrum of 22 Bn in CDCl 3 ................................ .................. 343 A 112 gHMQC NMR spectrum of 22 Bn in CDCl 3 ................................ ..................... 344 A 113 gHMBC NMR spectrum of 22 Bn in CDCl 3 ................................ ...................... 345 A 114 NOESY NMR spectrum of 22 Bn in CDCl 3 ................................ ...................... 346 A 115 1 H NMR spectrum of 22 idiPh in CDCl 3 ................................ .......................... 3 47 A 116 13 C{ 1 H} NMR spectrum of 22 idiPh in CDCl 3 ................................ ................... 348 A 117 gdqCOSY NMR spectrum of 22 idiPh in CDCl 3 ................................ .............. 349 A 118 gHMQC NMR spectrum (alip hatic) of 22 idiPh in CDCl 3 ................................ 350 A 119 gHMBC NMR spectrum of 22 idiPh in CDCl 3 ................................ .................. 351 A 120 NOESY NMR spectrum of 22 idiPh in CDCl 3 ................................ .................. 352 A 121 1 H NMR spectrum of 23 Me in DMSO d 6 ................................ ......................... 353 A 122 13 C{ 1 H} NMR spectrum of 23 Me in DMSO d 6 ................................ ................. 354 A 123 gdqCOSY NMR spectrum of 23 Me in DMSO d 6 ................................ ............ 355 A 124 gHMQC NMR spectrum of 23 Me in DMSO d 6 ................................ ................ 356 A 125 1 H NMR spectrum of 24 i Pr in CDCl 3 ................................ ............................... 357 A 126 13 C{ 1 H} NMR spectrum of 24 i Pr in CDCl 3 ................................ ....................... 358 A 127 1 H NMR sp ectrum of 24 diPh in CDCl 3 ................................ ........................... 359 A 128 13 C{ 1 H} NMR spectrum of 24 diPh in CDCl 3 ................................ .................... 360

PAGE 24

24 A 129 gHMQC NMR spectrum of 24 diPh in CDCl 3 ................................ .................. 361 A 130 1 H NMR spectrum of 25 i Pr in CDCl 3 ................................ ............................... 362 A 131 13 C{ 1 H} NMR spectrum of 25 i Pr in CDCl 3 ................................ ....................... 363 A 132 1 H NMR spectrum of 25 MeBn in CDCl 3 ................................ ......................... 364 A 133 1 H NMR spectrum of 25 MeBn in acetone d 6 ................................ .................. 365 A 134 13 C{ 1 H} NMR spectrum of 25 MeBn in CDCl 3 ................................ .................. 366 A 135 gHMQC NMR spectrum (aliphatic) of 25 MeBn in acetone d 6 ......................... 367 A 136 gHMQC NMR spectrum (aromatic) of 25 MeBn in acetone d 6 ........................ 368 A 137 gHMBC NMR spectrum of 25 MeBn in acetone d 6 ................................ ......... 369 A 138 gdqCOSY NMR spectrum of 25 MeBn in acetone d 6 ................................ ...... 370 A 139 NOESY NMR spectrum of 25 MeBn in acetone d 6 ................................ ......... 371 A 140 1 H NMR spectrum of 25 diPh in CDCl 3 ................................ ........................... 372 A 141 13 C{ 1 H} NMR spectrum of 25 diPh in CDCl 3 ................................ .................... 373 A 142 1 H NMR spectrum of 25 PhEt in acetone d 6 at 2 5 C. ................................ ....... 374 A 143 1 H NMR spectrum of 25 PhEt in acetone d 6 at 60 C. ................................ ...... 375 A 144 1 H NMR spectrum of 25 PhEt in CDCl 3 at 25 C. ................................ .............. 376 A 145 13 C{ 1 H} NMR spectrum of 25 PhEt in CDCl 3 ................................ ................... 377 A 146 gHMQC NMR spectrum (aliphatic) of 25 PhEt in acetone d 6 .......................... 378 A 147 gHMQC NMR spectrum (aromatic) of 25 PhEt in acetone d 6 .......................... 379 A 148 gHMBC NMR spectrum of 25 PhEt in acetone d 6 ................................ ........... 380 A 149 gdqCOSY NMR spectrum of 25 PhEt in acetone d 6 ................................ ........ 381 A 150 NOESY NMR spectrum of 25 PhEt in acetone d 6 ................................ ........... 382 A 151 1 H NMR spectrum of 25 o xyxyl in CDCl 3 at t=0. ................................ ............. 383 A 152 1 H NMR spectrum of 25 o xyxyl in CDCl 3 at t=18 h. ................................ ........ 384 A 153 1 H NMR spectrum of 25 o xyxyl in CDCl 3 at t=10 d. ................................ ........ 385

PAGE 25

25 A 154 1 H NMR spectrum of 25 o xyxyl in DMSO d 6 at t=0. ................................ ....... 386 A 155 1 H NMR spectrum of 25 o xyxyl in DMSO d 6 at t=24 h. ................................ .. 387 A 156 13 C{ 1 H} NMR spectrum 25 o xyxyl in CDCl 3 ................................ ................... 388 A 157 NOESY NMR spectrum of 25 o xyxyl in CDCl 3 ................................ .............. 389 A 158 gdqCOSY NMR spectrum of 25 o xyxyl in CDCl 3 ................................ .......... 390 A 159 gHMQC NMR spectrum (aliphatic) of 25 o xyxyl in CDCl 3 ............................. 391 A 160 gHMQC NMR spectrum (aromatic) of 25 o xyxyl in CDCl 3 ............................. 392 A 161 gHMBC NMR spectrum of 25 o xyxyl in CDCl 3 ................................ .............. 393 A 162 1 H NMR spectrum of 26 diPh in CDCl 3 ................................ ........................... 394 A 163 13 C{ 1 H} NMR spectrum of 26 diPh in CDCl 3 ................................ .................... 395 A 164 1 H NMR spectrum of 27 Me in CDCl 3 ................................ .............................. 396 A 165 13 C{ 1 H} NMR spectrum of 27 Me in CDCl 3 ................................ ...................... 397 A 166 Molecular structure of 4 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. ............................ 398 A 167 Mo lecular structure of 4 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. ............................ 409 A 168 Molecular structure of 4 o xyxyl with el lipsoids drawn at the 40% probability level. Hydrogen atoms and OTf counter ions omitted for clarity. ..................... 415 A 169 Molecular structure of 5 Me with ellipsoids drawn at the 40% probability level. Hydrogen atoms omitted for clarity. ................................ ................................ .. 427 A 170 Molecular structure of 6 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. ................................ ................................ .. 436 A 171 Molecular structure of 17 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and couter ion omitted for clarity. ................................ 445 A 172 Mo lecular structure of 20 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. ................................ ......................... 456 A 173 Molecular structure of for 20 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. ................................ ......................... 464

PAGE 26

26 A 174 Molecular structure of 22 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and tetrafluoroborate counter ion omitted for clarity. ... 474 A 175 Molecular structure of 24 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ion omitted for clarity. ................... 491 A 176 Molecular structure of 25 diPh with ellipsoids drawn at the 50% probability level. Triflate counter ion omitted for clarity. ................................ .................... 508 A 177 Molecular structure of 25 o xyxyl with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ion omitted for clarity. ................... 522 A 178 IR spectrum of 16 Me (KBr pel let). ................................ ................................ ... 533 A 179 IR spectrum of 22 Me (KBr pellet). ................................ ................................ ... 533 A 180 IR spectrum of 22 i Pr (KBr pellet). ................................ ................................ .... 534 A 181 IR spectrum of 22 MeBn ................................ ................................ ................. 534 A 182 IR spectrum of 22 diPh (KBr pellet). ................................ ................................ 535 A 183 IR s pectrum of 22 PhEt ................................ ................................ ................... 535 A 184 IR spectrum of 22 Bn ................................ ................................ ...................... 536 A 185 IR spectrum of 22 idiPh ................................ ................................ .................. 536 A 186 Temperature calibration curve for the INOVA 500. ................................ ........... 538 A 187 Variable temperature NMR of 4 o xyxyl in acetone d 6 Temperatures ( C) from top to bottom; 50, 35, 25, 15, 10, 5, 0, 5, 10, 15, 25, 35, 50, 60. ...... 538 A 188 Eyring plot for the arene ring flipping motion. ................................ ................... 539 A 189 Eyring p lot for the benzimidazole ring rotation motion in 4 o xyxyl ................. 540 A 190 Variable temperature NMR of 25 o xyxyl in CDCl 3 Temperatures ( C) from top to bottom; 50, 25, 0, 25, 50. ................................ ................................ ..... 541 A 191 Variable temperature NMR of 25 o xyxyl in DMSO d 6 Temperatures ( C) from top to bottom; 120, 100, 75, 50, 25. ................................ .......................... 542 A 192 CycloNOE NMR spectrum at 5 C of 22 Me ................................ ..................... 544 A 193 CycloNOE NMR spectrum at 25 C of 22 Me ................................ ................... 545 A 194 CycloNOE NMR spectrum at 45 C of 22 M e ................................ ................... 546

PAGE 27

27 A 195 CycloNOE NMR spectrum at 5 C of 22 i Pr ................................ ..................... 547 A 196 CycloNOE NMR spectrum at 25 C of 22 i Pr ................................ ................... 548 A 197 CycloNOE NMR spectrum at 45 C of 22 i Pr ................................ ................... 549 A 198 CycloNOE NMR spectrum at 25 C of 22 MeBn ................................ .............. 550 A 199 CycloNOE NMR spectrum at 40 C of 22 MeBn ................................ .............. 551 A 200 CycloNOE NMR spectrum at 55 C of 22 MeBn ................................ .............. 55 2 A 201 CycloNOE NMR spectrum at 5 C of 22 diPh ................................ .................. 553 A 202 CycloNOE NMR spectrum at 25 C of 22 diPh ................................ ................ 554 A 203 CycloNOE NMR spectrum at 45 C of 22 diPh ................................ ................ 555 A 204 CycloNOE NMR spectrum at 5 C of 22 PhEt ................................ .................. 556 A 205 CycloNOE NMR spectrum at 25 C of 22 PhEt ................................ ................ 557 A 206 CycloNOE NMR spectrum at 45 C of 22 PhEt ................................ ................ 558 A 207 CycloNOE NMR spectrum at 15 C of 22 Bn ................................ .................. 559 A 208 CycloNOE NMR spectrum at 5 C of 22 Bn ................................ ..................... 560 A 209 CycloNOE NMR spectrum at 25 C of 22 Bn ................................ ................... 561 A 210 CycloNOE NMR spectrum at 10 C of 22 idiPh ................................ ............... 562 A 211 CycloNOE NMR spectrum at 25 C of 22 idiPh ................................ ............... 563 A 212 CycloNOE NMR spectrum at 45 C of 22 idiPh ................................ ............... 564 A 213 Eyring plot of 22 Me ................................ ................................ ........................ 565 A 214 Eyring plot of 22 i Pr ................................ ................................ ......................... 565 A 215 Eyring plot of 22 MeBn ................................ ................................ .................... 566 A 216 Eyring plot of 22 diPh ................................ ................................ ...................... 566 A 217 Eyring plot of 22 PhEt ................................ ................................ ..................... 567 A 218 Eyring plot of 22 Bn ................................ ................................ ......................... 567 A 219 Eyring plot of 22 idiPh ................................ ................................ ..................... 568

PAGE 28

28 A 220 Isokinetic relationship between all 22 R complexes. ................................ ........ 569

PAGE 29

29 LIST OF ABBREVIATION S %V Bur percent buried volume acac acetylacetonate Ad adamantyl BDE bond dissociation energy BINAM 1,1' binaphthyl 2 2' dia mine BINAP 1,1' binaphthyl 2 2' bis (diphenylphosphino) Bn benzyl CAMP methylcyclohexyl o anisylphosphane CH 3 CN acetonitrile CO carbon monoxide cod 1,5 cyclooctadiene COSY correlation spectroscopy Cy cyclohexyl DEA trans 9,10 dihydro 9,10 ethanoanthracene 1 1,12 diyl DEAM trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl DEPT distortion less enhancement by polarization transfer DFT density functional theory DIOP trans 4,5 bis (diphenylphosphinomethyl) 2,2 dimethyl 1,3 dioxolane DIPAMP dimethylph enyl o anisylphosphane diPh diphenyl methine DME 1,2 dimethoxyethane EA elemental analysis e.e. enantiomeric excess GC gas chromatography

PAGE 30

30 gHMBC heteronuclear multiple bond coherence gHMQC gradient heteronuclear multiple coherence HCl hydrochloric acid HETC OR heteronuclear correlation HPLC high pressure liquid chromatography IMes 1,3 di(1,3,5 trimethylphenyl) imidazol 2 ylidene i Pr isopropyl IR infrared KN(Si(CH 3 ) 3 ) 2 potassium bis (trimethyl)silyl amide KOTf potassium triflate L DOPA [( S ) 2 amino 3 (3,4 dihyd roxyphyenyl)propanoic acid] LiAlH 4 lithium aluminum hydride Me methyl Mes mesitylene MeBn o rtho methylbenzyl MO molecular orbital MS mass spectrometry Naph naphthylene nbd norbornadiene NHC N Heterocyclic carbene NMR nuclear magnetic resonance NOESY nuclea r Overhauser effect spectroscopy OA oxidative addition OAc acetate Ph phenyl

PAGE 31

31 PhEt phenylmethy l methine PR 3 Phosphine or phosphane RE reductive elimination RhCO 4 H rhodium tetracarbonyl hydride Rh(PPh 3 ) 3 Cl tris (triphenylpho s phine) rhodium (I) chloride SambVca Salerno molecular buried volume calculation t Bu t ertiary butyl TEM transmission electron microscopy THF tetrahydro furan TMIY 1,3,4,5 tetramethyl imidazol 2 ylidene TON turnover number TOF turnover frequency

PAGE 32

32 Abstract of Dissertation Presented to the Grad uate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy NEW CHIRAL DI N HETEROCYCLIC CARBENE LIGANDS AND THEIR APP LICATION IN ENANTIOSELECTIVE HYD ROGENATION, HYDROFORMYLATI ON AND 1,4 CONJUGATE ADDITION REACTIONS. A STUDY TOWARD RATIONAL DEVELOPMENT OF DI N HETEROCYCLIC CARBENE COMPLEXES IN ENANTIOSELECTIVE CATALYSIS By Matthew Stephen Jeletic Decembe r 2010 Chair: Adam Veige Major: Chemistry N Heterocyclic carbene (NHC) l igands are becoming as ubiquitous in organometallic chemistry as the heralded pho sphi ne ligand class. Chelating diNHC ligands are scarce compared to the number of monodentate NHC ligands available In this work, we present a new type of C 2 symmetric chir al ligand based on the trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyl (DEA) backbone and also the DEAM version (contains a methylene linker) DiNHCs have several points of optimization, incl uding linker length, electron donating properties of the NHC (imidazole or benzimidazole) and N alkyl sterics (Me, i Pr, MeBn, diPh, Bn, o xylyl ) that can be change d for different catalytic applications. W e also present a library of electronica lly and sterically different azolium salt precursors, enetetramines, or NHC s built upon our DEA and DEAM ligands. The ligands are characte rized by NMR techniques, X ray crystallography, mass spectrometry and combustion analysis. The azolium salt precurors are stable to air and moisture while the enetetramines and NHCs are not. T he size of the N alkyl sterics influences whether an enetetramine or NHC forms with the reactivity of both appear ing identical.

PAGE 33

33 In this work, we present several new diNHC monocationic or neutral monometallic rhodium ([(olefin)Rh(diNHC)] + ( di olefin i s norbornadiene or 1,5 cyclooctadiene) and [(diNHC)Rh(CO) 2 ] + ) iridium ([(1,5 cyclooctadiene)Ir(diNHC)] + ) and palladium ([(acetylacetonate)Pd(diNHC)] + [(diNHC)Pd(acetate) 2 ] and [( 3 C 3 H 5 )Pd(diNHC)] + ) complexes The c omplexes are again well characterized. The [( 3 C 3 H 5 )Pd(diNHC)] + complexes form as an inseperable mixture of exo (80%) and endo (20%) isomers. The [(diNHC)Rh(CO) 2 ] + complexes exhibit a degenerate isomerization ( G ranged from 16.6 18.5 kcal/mol) that may influence enantioselectivity during catalytic reactions. Interestingly, the DEA ligands do not undergo a degenerate isomerization below 100 C. In addition, bimetallic complexes form ed from the DEA backbone. L arger N alkyl groups on the DEA backbone form exclusively bimetallic complexes be cause of ster ic issues at the metal center. We finally present catalytic hydrogenation, hydrogen transfer hydros ilylation, hydroformylation and 1,4 conjugate addition reactions. The % e.e. for hydrogenation ranged from 0 10% for the reactions involving hydrogen. These results are attributable to either reductive elimination of the diNHC from the metal center, high temperatures necessary to achieve reaction conversion, o r the inherent flexibility of the DEAM ligands. The Pd(diNHC) complexes achieved bet ter selectivity in 1,4 conjugate addition reactions (0 67% e.e. ).

PAGE 34

34 CHAPTER 1 N HETEROCYCLIC CARBENE LIGANDS: AN ALTERNATIVE TO PHOSPHINES? 1.1 Introduction Louis Pasteur demonstrated the phenomenon of chirality in 1849 when he mechanically separated race mic tartaric acid crystals into individual enantiomers. In the 1960s, physicians administered racemic thalidomide to pregnant woman as a sedative/hypnotic agent Years later the US government discove red that the drug thalidomide cause d severe birth defe cts, stemming from its chirality. T he R enantiomer produces the desired effects, while the S enantiomer is teratogen ic This classic case exemplifies how the stereochemical differences of ena ntio mers potentially lead to di fferent pharmacological effects 1 The thalidomide case made clear that pharmaceutical companies could no longer ignore the differences of enantiomeric properties meani ng scientists need ed to develop inexpensive and efficient ways to separate enantiomers Early methods involved the use of naturally occurring chiral compounds ( for example: amino acids and carbohydrates) or biochemical and biocatalytic methods ( for examp le enzymes and microbes). Certain difficulties including s ubstrate diversity achievement of excellent en an tiomeric excess (e.e.) reaction conditions and the amount of chiral material required delayed the practical development of such methods. These d isadvantages resolving molecules. Enantioselective catalysis took nearly a century worth of work before coming to the forefront as t he most efficient way for obtain ing indi vidual enantiomers. Sabatier, Calvin and Halpern, pioneered the work in metal catalyzed hydrogenation 2 4 and in 1956,

PAGE 35

35 Akabori demonstrated enantioselective catalysis of amino acids with palladium drawn on silk. 5 Wilkinson demonstrated metal catalyzed hydrogenation at ambient temperature and pressure in 1965. 6 These seminal works set the foundation for Knowles, Noyori and Sharpless who developed enantioselective catalysis (2001 Nobel Prize). 7 9 Enantioselective catalysis entails using a small amount of catalyst to transfer chi r ality to an achiral molecule; thus Knowles, Noyori and Sharpless circumvented expensive chiral chromatographic methods. Their success using enantioselective catalysis led to industrial scale applications. As an example, [( S ) 2 amino 3 (3,4 dihydroxyphen yl) propanoic acid] ( L DOPA), the precursor to dopamine, treats Z 4 acetoxy 3 methoxyacetamidocinnamic acid yields L DOPA (Figure 1 1). Rhodium Figure 1 1. Chiral Rh p hosphine catalysts employed in the synthesis of L DOPA catalyst s supported by chiral phosphine (PR 3 ) ligands which researchers can systematically vary to achieve high e.e. (>99%) promote the enamide hydrogenation. Knowles focused his work in the early 1960s on a series of chiral monodentate PR 3

PAGE 36

36 ligands. He progressed slow ly, but overcame an initial 1% e.e. and achieved an 88% e.e. using the methylcyclohexyl o anisylphosphane (CAMP) ligand ( Figure 1 1) 3 In 1971, Kagan and Dang introduced the next generation of phosphin e ligands trans 4,5 bis (diphenylphosphinomethyl) 2,2 dimethyl 1,3 dioxolane ( DIOP Figure 1 1) 10 DIOP differs from previous ligands in that it is a chelating chiral diphosphine 11 discovery led to a surge in research on chelating di phosphines Shortly thereafter, Knowles introduced dimethylphenyl o anisylphosphane (DIPAMP), a C 2 symmetric chelating chiral di phosphine. 12 Optimization of the L DOPA synthesis took another twenty years; when Burk introduced DuPhos that yielded an incre dible e.e. greater than 99%. 13 research groups developed numerous additional chiral scaffolds for hydrogenation of a variety of substrates. 14 1.2 Phospha nes : The Ideal Ligand Class? Phosphane ligand based catalysts are effective in n umerous applications outside of hydrogenation. A quick survey of the literature on phosphines in either Scifinder or ISI Web of K nowle dge yields tens of thousands of citations, and demonstrates that phosphines, either in a ligand form or combined with a metal, are ubiquitous in inorganic/organometallic chemistry and catalysis. In fact, the number of citations increases between each decade starting in 1960 Clearly, phosphane ligands still draw nantioselective catalysis and find widespread use in industrial settings. 15 W ith all the success phosphines enjoy, they suffer four major disadvantages First the reaction can require an excess of PR 3 ligand during the catalytic reaction d ue to the equilibrium of t he PR 3 ligand either attached or not attached to the metal center 16,17 Second, some PR 3 ligands are toxic. 18 Third the

PAGE 37

37 PR 3 ligand has the propensity to oxidize to O=PR 3 under aerobic conditions. Finally, at high tempera tures significant P C bond cleavage occurs. 17 Scientists consta ntly strive to improve the unperfected, and are therefore looking for a PR 3 mimic without the added negative effects. N heterocyclic carbene (NHC) ligands once bound to a metal typically do not suffer from these effects, and are also neutral two electron donors Therefore NHC ligands represent the next logical step in replacing PR 3 ligands during catalysis. 19 48 1.3 Timeline of N Heterocyclic Carbene Ligands N heterocyclic carbene ligands fir st appeared in 1968 when fele 49 and Wanzlick 50 introduced the first metal complexes bearing NHC ligands ( Figure 1 2 ). Figu re 1 2. First isolated NHC c omplexes (Ph=phenyl). fele isolated the chromium complex in Figure 1 2 by heating [1,3 dimethylimidizolium] + [HCr (CO 5 )] while W anzlick isolated the mercury complex from 2 equivalents of 1,3 diphenylimidizolium perchlorate in the pr esence of Hg(CH 3 COO) 2 After the s e discoveries chemist s directed little attention to ward NHC s for the next twenty years, with the notable exception of Lapp e rt and co workers. 51,52 first isolable free NHC in 1991 ( Figure 1 3) led to a renewed interest in NHC chemistry Figure 1 3. First isolated free NHC (Ad=Adamantyl).

PAGE 38

38 by proving NHCs were not transient species. 53 In 1993, fele synthesized the first chelating diNHC, thereby offering the first evidence for mimicking chiral diphosphines. 54 Three years later Herrmann 55 presented the first chiral mondentate NHC and in 2000, RajanBabu 56 reported the synthesis of a complex containing the first chiral diNHC based o binaphthyl backbone (Figure 1 4). small number in existence (Figure 1 4; for illustrative purposes, only the free carbene form of each diNHC is shown). 56 76 O f the available diNHC ligands shown, only 10 contain a unique backbone (architecture). The chirality is also located on the backbone in the majority of these ligands. Herrmann et al. first installed ch iral groups on the N alkyl pendant arms, however these ligands lacked chirality on the backbone. 68,69 There remains only one other report with chirality exclusively at the N alkyl group. 77 Veige et al. presented t he first diNHC ligands with chirality in both the backbone and on the N alkyl arms. 60 This provided the opportunity to study the effect of multiple diastereomers on enantioselective catalysis. 1.4 Ground State Electronic Structure of N Heterocyclic Carbene Ligands The electron donating properties of NHCs are nearly identical to phosphines, hence earning the title of PR 3 mimics in the literature. Several key advantages render NHCs as attractive replacements for phosphines, including their non toxic nature, ease of modulation, salt precursor stability and non pyrophoric characteristics. 19,20,22,24,30,39 To fully understand the idea of the PR 3 /NHC swap as well as general N HC reactivity, a discussion of the electronic and steric parameters of NHCs is needed. Carbenes played a role as transient intermediates in organic reactions until 1988 when Bertrand et al. successfully isolated the first carbene. 78 Carbenes exhibit three

PAGE 39

39 Figure 1 4. All known chiral diNHC architectures (Cy=cyclohexyl, Me=methyl, i Pr=isopropyl, t Bu=t butyl, Naph=naphthyl, MeBn= o methylbenyzl, Mes=mesitylene n Pr= n propyl, diPh=diphenylmethine, PhEt=phenylmethyl methine, Bn=benzyl ). For convenience only the free di NHC form is shown.

PAGE 40

40 possible ground states in four electronic configurations: 3 B 1 1 1 ); 1 A 1 2 2 ); 1 B 1 1 1 ). Most non linear carbenes are in the triplet ground state natively, however carbenes that contain a heteroatom attached to the carbene center are in a stable singlet ground state 79 Tw o major factors contribute to the preferred NHC singlet ground state. The major contributor is a factor is a Figure 1 5 displays these contributions for NHC effects Figure 1 5. Qualitative molecular orbital diagram for N heterocyclic carbenes. A) Inductive effects on an MO of NHC s with electron donating groups. B) Inductive effects on an MO of NHCs with electron withdrawing groups. C) Mesomeric effects on an MO of NHCs. described in A and B, and the effects in C. For comparison, the three abbreviated molecular orbital (MO) d iagram s are constructed in the same manner on the same energy scale. T he p z orbitals and sp 2 orbitals of the carbene carbon are on the left side of each diagram and the orbitals of the substituents next to the carbene carbon are on the right side effects only perturbate the p z the substituent orbitals and carbene carbon sp 2 orbitals.

PAGE 41

41 Figure 1 5A reflects the inductive effects on a carbene with electron donating groups next to the carbene carbon. The sp 2 ca rbene carbon orbitals have the proper symmetry (a 1 and b 2 ) to interact with the symmetric and anti symmetric combinations of the electron donating substituent orbitals A good energy match between the aforementioned orbitals results because of the electro n donating groups, thereby creating a strong bonding and anti bonding MO combination. As a consequence the anti bonding MO moves closer in energy to the p z orbital generating a small HOMO LUMO gap that stabilizes the triplet ground state. Figure 1 5B refl ects the inductive effects for a carbene with electron withdraw ing substituents next to the carbene carbon as in the case of NHC ligands The sp 2 carbene carbon orbitals have the proper symmetry (a 1 and b 2 ) to interact with the symmetric and anti symmetr ic combinations of the electron withdrawing substituent orbitals. However, the sp 2 orbital resides lower in energy due to the electron wit hdrawing groups and creates a poorer energy match and smaller perturbation. This results in a larger p gap (gray ) causing the observation of a singlet state. Finally, Figure 1 5C reflects the mesomeric effects for a carbene with electron withdrawing substituents next to the carbene carbon (NHC case). T he p z orbital has the proper symmetry (b 1 ) to inte ract with the symmetric combination of the carbene substituent orbitals, forming a go od bonding and anti bonding combination orbitals remain unchanged from this combination further p gap (gray ) and stabilizing the singlet state. 1.5 Sigma Donor Properties of N Heterocyclic Carbene Ligands NHC ligands are excellent sigma donors, however several questions remain about their properties, accepting ability of NHCs and how NHC ligands rank

PAGE 42

42 donating ligands Characterizing trans M(NHC)(CO)L x complexes via infrared (IR) spectroscopy is one of the easiest and most direct expe rimental methods for probing NHC donor strength. Several spectroscopic studies monitoring the carbon monoxide ( CO ) stretching f req uencie s of trans CO M NHC systems confirm NHCs are donors than even the most electron rich phosphines 23,54,80 89 Lehmann et al. compiled M CO vibrational stretching data for a number of trans Rh(NHC)(CO) 2 X complexes and found three impo rtant trends when ranking the donor strength of the NHC. 87 First changing the size or identity of the N alkyl substituents has virtually no impact on the donor strength unless tha t group exhibits unusually large sterics. Second, t here is little variation in the wavenumbers between the different NHCs (difference between the smallest and largest NHC is only 30 cm 1 ). Lastly, NHCs as a class are more electron donating than PR 3 ligan ds The authors also gathered data for other M(NHC)(CO) x L x complexes: M=Ir, Cr, Ru, W, Pd, Hg. Calorimetric studies represent another experimental method for compar ing the donor properties of NHC versus PR 3 ligands. 21,80,90 94 The bond dissociation energy (BDE) of the NHC from a model complex is measured as well as BDE s of PR 3 ligands in equivalent complexes In a representative study, the BDE of various NHC (of the type imidazol 2 ylidene) ligands range from 12.1 21.2 kcal/mol with one outlier at 6.8 kcal/mol in the complex, Cp Ru(L)Cl. 92 The BDE of PR 3 ligands range from 9.4 10.5 kcal/mol in the same complex. The abnormally low BDE value corresponds to 1,3 diadamantyl im idazol 2 ylidene and is attributable to ste ric interactions of the adamant y l groups with the other ligands The calorimetric data leads to the same conclusions as the vibrational spectroscopy data outlined above.

PAGE 43

43 Researchers subjected NHC complexes to den sity functional theory (DFT) calculations and compared the results to crystallographic data, vibrational frequency of the M CO trans to the NHC, and BDE to co mplement the experimental data and to predict the donor properties of a large library of NHC liga nds. 42,80,95 102 The main concern as with any computational method is the reliability of the data. 42 Although the DFT calculations accurately reproduce the X ray M (NHC) distances with a n rmsd of 0.016 the calculations are not as effective at predicting the BDE or infrared (IR) stretching frequenci es 80,94,101,102 In some instance s the difference between the pre dicted and actual M CO stretch is off by as much as 20 cm 1 102 However, t he findings of all the DFT studi es are in agreement with the conclusions drawn from the experimental data, and while not perfect, the DFT methods are improving 42,99 A donors than PR 3 ligands as supported by the experimental and calculated data. One of the global ideas of this thesis is NHCs form s tronger bonds with metals and should create more robust catalysts increasing the turn over numbers during the catalytic cycle. The other idea involves the ability to cha nge and fine tune the electron donating and steric properties at will. This feature will make NHCs adaptable to a variety of reaction types, conditions, and substrate scope. 1. 6 Pi accepting /donating Properties of N Heterocyclic Carbene Ligands The chemistry community for the last decade considered NHC ligands as pure ly donors, even though NHC ligands have an empty p orbital on the carbene carbon to make accepting/donating possible ( Figure 1 6). Recent c omputational 42,101,103 112 and experimental studies 110 118 accepting is between 5 and 40% of the overall bonding in some NHC complexes T he interpretation of these studies is controversial and fosters much debate since other studies donation is

PAGE 44

44 Figure 1 6. Most important frontier orbitals of an NHC and metal displaying the different bonding contribut ions of t he M donation. B) NHC M donation. C) M backdonation. i nconsequential. 97,98,119 121 A study by Nolan et al. provides conclusive evidence for the d interactions with 14 electron rhodium and iridium NHC c omplexes stabilized by such interactions ( Figure 1 7). 122 Their computational studies of the same complexes provide supp ort for the experimental data. Figure 1 7. 14 E lectron complexes stabilized by d interactions. In another study, Cavallo et al. probed 36 M NHC complexes where the metal is formally in the d 0 d 4 d 6 d 8 or d 10 in early and late transition metals. 104 donation decreased with the largest decrease occurring between d 8 and d 10 I nterestingly the authors backdonation. Logically, the electron rich late transition backdonation while

PAGE 45

45 the electron poor backdonation. donation contribution. 1.7 Ster ics of the N Heterocyclic Carbene Ligands In 1977 Chadwick Tolman researched compiled and then wrote one of the most enlightening reviews in all of chemistry with 3,000+ citations s ince 123 In the review, that quantified both the steric and electronic parameters of hundreds of phosphorous ligan ds. Effectively his method allow ed researchers to dial in specifi c attributes of a ligand that will best optimize th eir catalytic reactions. While Tolman introduc e d a powerful tool for defining phosphanes, unfortunately in PR 3 ligands the steric and electronic parameters are tied together. The elegance and appeal of NHCs is the ability to change the sterics and electronic factors independently, thus giving better control over fine tuning these factors. The topography of NHCs are planar and fan shaped in stark contrast to the conical model for quantifying th e steric parameters of NHCs. Nolan vi ewed the NHC ligands as 90 The problem with this early model i s that Nolan tried to apply the conical steric parameter to th e NHCs. However, there i s a decent correlation between the steric and ent halpic data providing some validity s method Subsequently, Nolan and Cavello devised a new metric, percent buried volume ( %V Bur ), specific to the NHC. 94,124 The new metric better accounts for the steric pressure as a result of using NHC ligands. Th e %V Bur model calculates the percent volume occupied by NHC ligands in a sphere relative to the metal center at a radius of 3.00 This computational method

PAGE 46

46 uses the Salerno molecular buried volume calculation (SambVca, free online tool) to determine the %V Bur Cavello and Nolan subjected a number of PR 3 and NHC ligands to the %V Bur between the Tolman cone angle and the %V Bur goal that the %V Bur model will eventually become the Tolman map of NHC ligands. T here are other proposed steric metrics, however the %V Bur is by far the most widely explored and the only one discussed here 100 1.8 Organometallic Carbenes Ligands Three major classes of orga nometallic carbenes exist: Fischer carbenes, Schrock alkylidene s and NHCs The carbene ligands of Fischer 125 and Schrock 126 carbene complexes on their own are transient species, but upon coordination to a metal center become isolable L ow oxidation state metals (typically late t ransition metals) that accepto r ligands stabilize Fischer carbenes while Schrock carbenes favor the opposite features. Despite the converse characteristics, b oth these carbene types bind to the metal via a ( M=C ) double bond thus demonstrating backdonation in Fischer/Schrock complexes T he difference between the three types of carbenes is obvious when comparing the truncated MO diagrams ( Figure 1 8 ). For Figure 1 8. Localized MO diagrams for dif ferent types of carbenes

PAGE 47

47 each carbene, the metal and carbene carbon orbital energies do not match, and r esult s in a polarized M C( carbene ) bond. In the Fischer carbene case the d metal orbital is lower in energy than the p carbene carbon orbital prod ucing a partial negative charge on the metal and a partial positive charge on the carbene carbon thus rendering the carbene carbon electrophilic. Schrock alk ylidenes illustrate the opposite case, in which the metal is more positive and the carbene carbon carries a partial negative charge. Thus Schrock alkylidene s have opposite reactivity and are nucleophilic NHCS exhibit some similarities to Fischer/Schrock carbenes, but also contain unique characteristics N isolable nature. NHC s do not have a preference for oxidation state, type of ancillary ligand or transition metal. 19 48 NHCs have a similar localized MO pict ure to Fischer carbenes ( Figure 1 8) but the d metal orbital is much lower in energy than the p carbene carbon orbital resulting in a much greater polarized bond. The bond is polarized to a degree such that a single (dative) bond best represents the M C( carbene ) bonding, as opposed to a double bon d However, as mentioned in the previous section, the amount of backbonding is a point of contention. Herrman n et al. synthesized [RuCl 2 (NHC) 2 (=CHC 6 H 4 Cl )] to compare the M C bond lengths of Schrock carbenes and NHCs on the same metal center 127 The Ru C(alkylidene) bond length is 1.821(3) whereas the Ru C( NHC) bond length is longer by 0.29 ( 2.107(3) observed) This data agrees with the bonding descript ion above. Much like the Fischer/Schrock carbenes, when NHCs coordinate to a metal, the resulting complex is thermally and often air stable. The localiz ed MO picture supports NHCs as nucleophilic in nature. Contrary to this, Bielawski et al. recently reported an

PAGE 48

48 NHC that demonstrates NHCs can exhi bit electrophilicity, but also retain some customary nucleophilic characteristics 128 Figure 1 9 depicts the NHC designed by Figure 1 9. 1,3 Bis (2,6 di iso propylphenyl) 5,5 dimethyl 4,6 diket opyrimidinyl 2 ylidene Bielawski. The electron withdrawing carbonyl groups transport electron density away from the nitrogen atoms, thus preventing them from donat ing to the carbene carbon. This umpolung character may provide interesti ng reactivity when applying NHCs as organocatalysts. 129 Due to air sensitivity of NHC ligands e mploying the precursor imidazolium salt form of NHC ligands is common when using them as organocatalysts Therefore, a base is needed to deprotonate the imidazolium proton. The pK a s of imidazolium salts are approximately 20 23, de pending on the solvent, and relatively weak bases can deprotonate them. 95,130 132 More recently, Yates attemp ted to accurately determine pKa s from computational chemistry. 95 The results of Yates et al. are nearly identical to the previously reported values, but they also reported the pKa s o f ten new imidazolium salts in dimethyl sulfoxide (DMSO) and acetonitrile (CH 3 CN), with pKa s ranging from 14.5 27.9. 1.9 Free Carbene versus Enetetramine? As previously mentioned, Arduengo synthesized the first free NHC. Before that, researchers synthesiz ed NHC complexes from either an imidazolium salt precursor or an enetetramine (carbene dimer ).

PAGE 49

49 ( Figure 1 2). 133 Wanzlick complexe s co uld form via this equilibrium ( Figure 1 10). There are only a few reports Figure 1 10. Type 1 3 equilibrium systems devoted to studying the free carbene/enetetramine equilibrium. 134 144 The most com monly s tudied systems are imidazolin 2 ylidenes (type 1), imidazol 2 ylidenes (type 2) and more recently the benzimidazol 2 ylidene s (type 3) studied by Lema l 138 and Hahn. 139 The thermodynamics of type 2 NH Cs make dimerization inauspicious As for type 3 NHCs, the sterics of the R group on the NHC control if dimerization or equilibrium occur rather than the thermodynamics 35,143 The type 1 system elicits debate as to whether an equilibrium exists Lemal et al. first demonstrated that type 1 enetetramines do not dissociate even under harsh 134 case, he also provided a negative result for a crossover metathesis experiment. Further electrophile (1 equivalent provides asymmetric products). Denk et al. recently prepar ed several type 1 enetetramines and carried out crossover metathesis experiments to probe the existence of an equilibrium. 137

PAGE 50

50 point toward the Wanzlick equilibrium description H owever, the authors cannot rule out a [2+2] cycloaddition/ [2+2] cycloreversion to explain the results. As a follow up, Lemal, Liu and Hahn challe nged this work by suggest ing ings are proton catalyzed This debate continues since no clear data can confirm or deny if an equilibrium exists. The general consensus is that t here is no equilibrium for type 1 systems 143 Recent interest in studying the equilibrium and dimerization mechanism of diaminocarbenes prompted additional investigation into the thermodynamic strength of the C=C bond. 136,138 Chen and Taton synthesized a doubly bridged type 2 system with H of 4 +/ 3 kcal/mol ( Figure 1 11 ). Lemal Figure 1 11 Taten and Chen doubly bridged type 2 s ystem showed that a 1,3 di methyl dibenzimidazol 2 ylidene system had the thermodynamic parameters : H = 13.7 +/ S = 30.4 +/ 1.7 kcal/ mol. Several other studies demonstrate that type 1 imidazolin 2 ylidenes dimerize rapidly at room temperature, type 2 imidazol 2 yl idenes do not dimerize at room temperature, and type 3 benzimidazol 2 ylidenes can exhibit an equilibrium at room temperature. 141 The sterics, p gap and aromaticity (if present) all account for the difference in dimerization behavior of imidazolin 2 ylidenes and imidazol 2 ylidenes 35,143 145 ca rbenes), chemists and several inv estigators successfully synthesized new free NHCs 20,57,140,141,146 151 To obtain a free

PAGE 51

51 NH C, early studies suggested the need for either aromatic stabilization or significant steric bulk at the nitr ogen positions Arduengo demonstrated that halogens inserted on the imidazole backbone (C4 C5) can also stabilize a free NHC. 149 Alder isolated the stable acyclic free NHC bis (diisopropylamino) carbene, which did not require aromatic stabilization or significant steric bulk on the nitrogens 141 and Arduengo also isolated 1,3 dimesitylimidazol 2 ylidene. 148 Theoretical work by Schwarz et al. and Frenking suggest the dominant factor for stabilizing NHCs is the magnitude of electron donation by the nitrogen lone pairs into the empty carbene carbon p orbital. 152,153 More recently Cavallo and Nolan et al. rationalized the steric and electronic effects that contribute to dimerization through the equation: E dim =( A x NHC Steric )+( B x NHC Electronic )+ C 154 A B and C are empirical parameters that are fitted to the equation based on DFT methods. NHC Steric is simply the %V Bur value (discussed earlier). The NHC Electronic value corresponds to the energy required to promote one electron from the HOMO carbene LUMO p carbene orbital.

PAGE 52

52 CHAPTER 2 SYNTHESIS AND CHARACTERIZATION OF NEW CHIRAL DI N HETEROCYCLIC CARBENE LIGANDS. 2.1 Introduction Trost first introduced the trans 9,10 d ihydro 9,10 ethanoanthracene backbone as a ch iral auxiliary. phosphine amine, or phosphine oxide serves as the metal binding moiety. Several research groups demonstrated complexes bearing this backbone as effective enantioselective catalysts. 155 162 Several new benz imidazol 2 ylidene benz imidazolium salt imidazolium salt and imidazol 2 ylidene ligands based upon an ethanoanthracene backbone were prepared. Figure 2 1 describes s everal Figure 2 1 Target diNHC ligand with points of o ptimization shown. factors that potentially implicate this backbone, when combined with NHC units and a metal as an attractive platform for catalysis. Within the three points of optimization, many other sub features allow for more precision in developing catalysts. Changing the linker length allows for access to a rigid DEA ligand ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyl; no methylene linker) and more flexible DEAM ligand ( trans 9,10 dihydro 9,10 ethanoanthracene 11, 12 diyldimethanediyl; co n tains one methylene linker). Modifying the groups on the back of the imidazole ring ( positions C4 and donor capacity of the NHC carbon (position C2 in

PAGE 53

53 accordance with IUPAC naming ) As a side note, a special labeling syste m will be used through the rest of this thesis, where X# (C2 for example) will refer to an atomic position according to IUPAC rules, while X # (C 2 for example) will refer to an X ray label. Simultaneously, larger groups attached to C4 and C5 can change t he rigidity of the NHC once attach ed to a metal center. The NHC units are trans locked imposing C 2 symmetry on the ligand, and altering the sterics of the N alkyl R groups further defines the chiral pocket. In addition, linking R groups or making them ch iral may prov ide new reactivity. 2 2 General DEAM Ligand S ynthesis Figure 2 2 depicts the synthesis of the DEAM ligands. The first step is a Diels Alder reaction between an equivalent of anthracene and one equivalent of fumaric acid. Heating this mixture in 1:1 xylenes:dioxane at reflux for 72 h provides trans 9,10 Figure 2 2. General synthesis of DEAM ligand containing a benzimidazole ring

PAGE 54

54 dihydro 9,10 ethanoanthracene 11,12 dicarboxylic acid ( 1 ). 163 At this point th e C 2 symmetry and the chiral centers are installed. Resolution of the enantiomers 1 is achieved by one of three methods. 164 168 The most effective method is a fractional crystallization using brucine as the resol ving agent and requires one or two recrystallizations, and the yield is near quantitative ( Figure 2 3). Both enantiomers can be resolved in enantio purity greater than 99%. The ( R S ) diastereomer is not possible because the trans stereochemistry of the f umeric acid is retained during the Diels Alder reaction mechanism. Another method employs L proline however, the yield is significantly reduced and the enantio purity of each enantiomer will not exceed 96%. Figure 2 3. Resolution of 1 using b rucine.

PAGE 55

55 On ce isolated, the diacid 1 is then reduced to the corresponding diol 2 163 One equivalent of 1 is treated with four equivalents of lithium aluminum hydride ( LiA l H 4 ) in tetrahydrafuran ( THF ) and heated at reflux for 20 hour s. A modification to the reported procedure improved the yield (20%) and general ease of synthesis. Once the reaction is complete, the protocol calls for a quenching of the excess LiA l H 4 with 1 M hydrochloric acid ( HCl ) then filtering the precipitate. However, a fine gray material results from quenching with HCl that clogs the filter as well as trapping a significant portion o f the product (even when using Celite ). Quenching the reaction instead with water, while more dangerous results in a fluffy w hite powder that is easily filtere d and washed. Figure 2 4 contain s the HPLC traces of 2 and reveals that preservation of optical purity during conversion of 1 to 2 occurs. After preparation of 2 a better leaving group is required to substitute the NHC moiety. A B Figure 2 4. High pressure liquid chromatography traces of the ( S S ) 2 A ) ( S S ) 2 B) ( S S ) 2 spiked with a small amount of racemic 2 Treating an e quivalent of 2 with 2 equivalents of pyridine and trifluoromethanesulfonic anhydride in dry methylene chloride produces ditriflate 3 169

PAGE 56

56 Substitution of 3 with v arious 1 R benz imidazoles and 1 R imidazoles cleanly provides the NHC salt precursors 4 R ; Figure 2 5 depicts the library of characterized NHC units Figure 2 5. Library of azoles for DEAM backbone ( numbered as 7 R ). ( 7 R ) that incorporate the DEAM backb one. This step is useful because a number of the derivatives precipitate from solution as analytically pure material thereby eliminating extensive purification of 1 2 and 3 1 Methylbenzimidazole and 1 benzylimidazole are commercial ly available. The ot her azoles were synthesize d either from literature procedures 68,170 172 or newly developed methods ( 7 diPh 7 idiPh and 7 MeBn ). 59,60 The final step involves generating the a ctual NHC l igand itself. Simply adding a base ( 2.1 equivalents of potassium bis (trimethylsilylamide) KN(SiMe 3 ) 2 ) to 4 R provides either 5 R (enetetramine) or 6 R (free carbene). Compounds 5 R and 6 R appear quite different, but the chemistry of each spe cies are remarkable similar. Recall from Chapter 1 that the double bond in 5 R is very reactive because of t he four amine groups, unlike a prototypical hydrocarbon olefins. Both 5 R and 6 R are not stable in the presence of air or water.

PAGE 57

57 2.3 Synthesis an d C haracterization of DEAM Diazolium Triflate S alts The method for synthesizing 4 Me requires treating 2 equivalents of 1 methyl benzimidazole ( 7 Me ) with one equivalent of 3 in refluxing 1,2 dimethoxyethane (DME) ( Figure 2 6). After one hour, 4 Me precip itates from solution as a bright white microcrystalline solid in 96% yield. Elemental analysis (EA), 1 H and 13 C { 1 H} nu clear magnetic resonance (NMR) mass spectrometry (MS) and X ray crystallography establish the purity and identity of 4 Me (tables 2 1, 2 2 and 2 3). Figure 2 6 Synthesis of the dibenzimidazolium salt 4 R Table 2 1. Selected NMR data for 4 Me 1 H ( ppm), J (Hz)) a 13 C{ 1 H} ( (ppm), J (Hz)) b NC H N (9.65; s) N C HN (144.2 ; s) C H 3 (4.18; s) C H 3 (34.6 ; s) CH 2 C H (2.78; dd; 6, 6) C F 3 (122.71; q; 324) CC H C (4.55; s) a Referenced to acetone d 6 at 2.05 ppm b Referenced to acetone d 6 at 29.84 ppm. Table 2 2. MS and EA data for 4 Me MS ([C 34 H 32 N 4 ] 2+ ) EA (C 36 H 32 N 4 S 2 O 6 F 6 ) Calc. m/z : Calculated: 495.2543 C, 54.40%; H, 4.06%; N, 7.05% Found m/z : Found: 495.2532 C, 54.35%; H, 3.91%; N, 6.88% The 1 H NMR and 13 C { 1 H} NMR spectra of 4 Me confirm it has C 2 symmetry. The key assignments include the C 19 proton ( Figure 2 7) resonating as a singlet at 9.65

PAGE 58

58 Table 2 3. Selected bond lengths and bond angles for 4 Me Bond Length () Angle Angle ( ) N1 C19 1.328(3) C6 C13 C12 106.45(18) N1 C25 1.384(3) N2 C19 N1 110.2(2) N1 C27 1.465(3) N2 C18 C16 112.84(17) C16 C18 1.529(3) C17 C15 C13 113.45(18) C23 C34 1.381(4) C10 C9 C8 120.3(2) C19 N1 C27 124.7(2) C11 C12 C13 125.9(2) Figure 2 7. Molecular s tr ucture of 4 Me with thermal ellipsoids draw n at the 40% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. ppm and the corresponding carbon resonance appearing at 144.2 ppm. The methyl proton resonates upfield of the C 19 proton at 4.18 ppm. The diastereotopic methylene protons (C 17, C 18) resonate as doublets of doublets at 4.54 and 4.33 ppm. The bridgehead proton resonates as a singlet at 4.55 ppm. The bridg ehead proton is adjacent to the bridge proton, yet only a singlet is observed The dihedral angle between the bridge and bridgehead proton is 66 thus the Karplus curve helps explain the splitting. 173,174 Though a doublet with a very small coupling constant, approximately 1 Hz, should be observed, th e low resolution of the NMR spectrometer (300 MHz)

PAGE 59

59 reveals only the singlet. A quartet resonance appears at 122.7 ppm in the 13 C { 1 H} NMR spectrum with a J value of 324 Hz, attributable to the CF 3 group in the triflate counter ions. This is expected sinc e the 19 F isotope is not decoupled from the carbon channel in the NMR instrument and 19 F nuclei exhibits the same spin half moment ( I ) as a 1 H nucleus A single crystal X ray diffraction experiment also verifies the C 2 symmetry of 4 Me ( Figure 2.7) Tabl e 2 3 lists selected bond lengths and angles for 4 Me Synthesizing dibenzimidazolium salt 4 i Pr requires treating 2 equivalents of 1 isopropyl benzimidazole 170 ( 7 i Pr ) with an equivalent of 3 in refluxing DME ( Figure 2 6). 4 i Pr also precipitates from solution after one hour as a white solid in 96% yield. Multi nuclear 1D and 2D NMR, EA, X ray crystallo graphy, and MS (tables 2 4, 2 5 and 2 6), determine the identity and purity of 4 i Pr Table 2 4. Selected NMR data for 4 i Pr 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b NC H N (9.84,s) N C H N (143.9 ; s) C H 2 (4.43, 4.79; dd; 12, 15) C H(CH 3 ) 2 (46.0 ; s ) CC H C (4.43; s) CH( C H 3 ) 2 (22.1 ; s) C H (CH 3 ) 2 (5.24; sept; 6) C F 3 (121.2; q; 320) CH(C H 3 ) 2 (1.79, 1.81; d; 6) a Referenc ed to acetone d 6 at 2.05 ppm b Referenced to acetone d 6 at 29.84 ppm. Table 2 5. MS and EA data for 4 i Pr MS ([C 38 H 40 N 4 ] 2+ ) EA (C 40 H 40 N 4 S 2 O 6 F 6 ) Calculated m/z: Calculated 551.3169 C, 56.46%; H, 4.74%; N, 6.58% Found m/z: Found 551.3157 C, 56.38%; H, 4.65%; N, 6.40% The C 1 proton (Figure 2 8) of 4 i Pr resonates at 9.84 ppm as a singlet, which is in the same region as the equivalent proton on 4 Me The bridgehead protons resonate as a singlet at 4.43 ppm. The isopropyl methyl groups appear as shar p doublets at 1.79

PAGE 60

60 Table 2 6 Selected bond lengths and bond angles for 4 i Pr Bond Length () Angle Angle ( ) N1 C16 1.331(3) C16 N1 C9 124.1(2) C1 C6 1.401(3) C16 N1 C10 108.0(2) N2 C17 1.488(3) C2 C1 C6 120.4(2) C17 C18 1.505(4) C2 C1 C7 126.4(2) C8 C9 1.523(3) C6 C1 C7 113.1(2) N2 C16 N1 111.1(2) C18 C17 C19 111.6(3) ppm and 1.81 ppm and the isopropyl methine is a well defined septet resonating at 5.24 ppm. The 1 H NMR pattern clearly implicates 4 i Pr as C 2 symmetric. The isopropyl methyl carbons resonate as overlapping signals at 22.1 ppm in the 13 C{ 1 H} NMR spectrum. This resonance serves as a point of reference to identify the remaining carbon signals in a gradient heteronuclear multiple quantum coherence experiment (gHMQC ). The C 1 car bon appears at 143.9 ppm and the isop ropyl methane carbon resonates at 46.0 ppm. The triflate CF 3 signa l appears as a quartet at 121.2 ppm, with a coupling constant of 320 Hz congruent to 4 Me The solid state structure of 4 i Pr confirms the C 2 symmet ry i n agreement with the NMR data ( Figure 2 8). The singlet splitting pattern of the bridgehead methine signal is again explained by Karplus theory; the torsion angle of ( H 7 C 7 C 8 H 8 ) is 64.8 The other bond lengths and angles are consistent with 4 Me To synthesize 4 MeBn and 4 diPh a method for synthesizing the prerequisite benzimidazoles 7 MeBn and 7 diPh is needed. Both benzimidazoles are made by combining an equivalent of benzimidazole, anhydrous potassium carbonate, potassium hydroxide, the app ropriate halogenated alkyl with a catalytic amount of tetra n butylammonium bromide in refluxing xylenes (Figure 2 9). The halogenated alkyls for 4 MeBn and 4 diPh are 2 methylbenzyl bromide and chlorodiphenylmethane,

PAGE 61

61 Figure 2 8. Molecular s tr ucture of 4 i Pr with thermal ellipsoids draw n at the 40% probability level. Hydr ogen atoms and triflate counter ions omitted for clarity. Figure 2 9. Synthetic equation for 7 MeBn and 7 diPh respectively. B oth products are obtained in 67% yield as white solids. Standard NMR spectroscop ic methods elucidate d the identity of 7 MeBn and 7 diPh and c ombustion analysis confirmed the purity of both 7 diPh and 7 MeBn ( T able 2 7 and 2 8). Table 2 7 Selected NMR and EA data for 7 MeBn 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 15 H 14 N 2 ) C H 2 (5.43; s) N C HN (135.63; s) Calculated NC H N (7.84; s) C H 2 (46.58; s ) C, 81.05%; H, 6.35%; N, 12.60% C H 3 (2.33; s) C H 3 (18.76; s) Found C, 81.06%; H, 6.38%; N, 12.72% a Referenced to CD Cl 3 at 7.27 ppm, b Referenced to CD Cl 3 at 77.00 ppm. Diagnostic spectral features in the 1 H NMR spectrum of 7 MeBn include the C2 proton (7.83 ppm), o methyl (2.34 ppm) and the benzyl protons (5.34 ppm). The

PAGE 62

62 Table 2 8. Selected NMR and EA data for 7 diPh 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H } ( ppm; mult ) b EA (C 20 H 16 N 2 ) NC H N (8.31; s) N C HN (142.8 ; s) Calculated C H (C 6 H 5 ) 2 (6.97; s) C H (C 6 H 5 ) 2 (61.9 ; s) C, 84.46%; H, 5.68%; N, 9.85% Found C, 84.45%; H, 5.81%; N, 9.51% a Referenced to CD Cl 3 at 7.27 ppm, b Referenced to CD Cl 3 at 77.00 ppm corresponding carbon resona nces to these protons are 143.0 ppm, 18.9 ppm and 46.7 ppm, respectively ( T able 2 7). Remember, t he C2 label (in accordance with IUPAC naming) not to be confused with an X ray label C 2 (the dash indicates an X ray label), is the carbon in between the two nitrogen atoms. This labeling system will be used throughout the rest of the thesis when an X ray structure is unavailable. Support for the formation of the benzimidazolium salt, 7 MeBn t he C2 proton resonance of the benzim idazole is 0.4 ppm upfield relative to the C2 proton of 1 benzyl(2 methylphenyl) benzimidazole The disappearance of the broad benzimidazole amine proton signal at 10.4 ppm further confirms the successful synthesis of 1 benzyl( 2 methylphenyl) benzimidazol e Del Mazo et al. reported the 13 C { 1 H} NMR spectrum of 7 diPh but no other data or s ynthetic details were reported therefore we report the details here 175 The 13 C NMR spectrum matched this. Table 2 8 displays selected NMR and EA data. Other evidence that identities 7 diPh includes a downfield shift of the diphenyl methi ne resonance to 6.97 ppm relative to the same signal in chlorodiphenylmethane (6.12 ppm). In addition, a singlet at 8.31 ppm is att ributable to the C2 proton. Dibenzimidazolium salt 4 MeBn requires treating 2 equivalents of 1 benzyl(2 methylphenyl) benzimidazole ( 7 MeBn ) with 1 equivalent of 3 in refluxing DME ( Figure 2 6). Remov ing the solution in vacuo after 1 h provides a hygroscopic off white

PAGE 63

63 flocculent material in 93% yield. 1D and 2D NMR, MS, and EA (tables 2 9, 2 10 ) techniques determine the identity and purity of 4 MeBn Table 2 9 Selected NMR data for 4 MeBn 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b NC H N (9.65; s) N C H N (143.3 ; s) NC H 2 C (5.91, signals overlap) N C H 2 C (50.1 ; s) NC H 2 CH (4.73, 4.28; dd; 9, 15) N C H 2 CH (51.3 ; s) CC H C (4.44; s) C F 3 (122.1 ; q; 300) C H 3 (2.45; s) C H 3 (19.3 ; s) a Referenced to a t acetone d 6 2.05 ppm, b Referenced to acetone d 6 at 29.84 ppm. Table 2 10 MS and EA data for 4 MeBn MS ([C 49 H 43 N 4 SO 3 F 3 ] + ) E A (C 50 H 44 N 4 S 2 O 6 F 6 ) Calculated m/z: Calculated 825.3081 C, 61.59%; H, 4.55%; N, 5.75% Found m/z: Found 825.3020 C, 61.76%; H, 4. 66%; N, 5.41% The 1 H NMR spectrum of 4 MeBn reveals the characteristic C2 proton resonance at 9.65 ppm. Other diagnostic signals include the singlet o methyl proton (2.45 ppm) and the non benzyl diastereostopic methylene protons as a doublet of doublet s at 4.28 and 4.73 ppm. The bridgehead proton appears as a singlet at 4.44 ppm. Presumably the dihedral angle between the bridgehead and bridge proton is between 60 and 90 and the Karplus curve again explains the lack of coupling The benzyl methylene p rotons appear as a four li ne pattern with a ratio of 1:7:7 :1 in acetone d 6 indicat ing an extreme AB spin system. The 13 C { 1 H} NMR spectrum of 4 MeBn indicate s the C2 carbon is at 143.3 ppm. The carbon of the methyl group is easily assigne d as a singlet at 19.3 ppm. The tr iflate carbon resonates at 122. 1 as a quartet, displaying the same c.a. 300 Hz coupling constant as other 4 R compounds. A 2D heteronuclear correlation (HETCOR) experiment made assignment of the other aliphatic carbons possible. The ele mental

PAGE 64

64 analysis data provides conclusive evidence for the purity of 4 MeBn Table 2 10 lists the calculated values are within 0. 3% of the experimental values. Figure 2 6 depicts the synth esis of dibenzimidazolium salt 4 diPh Th e reaction involves treati ng 2 equivalents of 1 diphenylmethane benzimidazole ( 7 diPh ) with 1 equivalent of 3 in refluxing DME. Reducing the solution to 10 mL in vacuo after 1 h induces 4 diPh to precipitate as a microcrystalline material in 75% yield. The product is a hydroscopic white, flocculent material. 1D and 2D NMR techniques and combustion analysis ( T able 2 11 ) identify 4 diPh Table 2 11 Selected NMR and EA data for 4 diPh 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 60 H 48 N 4 S 2 O 6 F 6 + THF d 8 ) NC H N (9.29; s) N C HN (142.6 ; s) Calculated C H (C 6 H 5 ) 2 (7.65; s) C H(C 6 H 5 ) 2 (64.3 ; s) C, 64.62%; H, 4.93%; N, 4.71% C H 2 (3.93, 4.52; dd; 15, 9) C HCHCH 2 (43.9 ; s) Found C H CHCH 2 (4.1 2; s) C F 3 (120.7 ; q; 323) C, 64.66%; H, 4.80%; N, 4.62% a Referenced to at DMSO d 6 2.50 ppm, b Referenced to DMSO d 6 at 39.52 ppm. The 1 H NMR spectrum of 4 diPh reveals the diagnostic C2 proton resonance at 9.21 ppm. Other characteristic signals include t he diastereotopic methylene protons (3.93 and 4.52 ppm) and the singlet bridgehead methine proton (4.12 ppm). Aromatic protons from the phenyl groups obscure the location of the diphenylmethane resonance in the 1 H NMR, but a gHMBC experiment identified th is signal at 7.65 ppm. The 13 C { 1 H} NMR spectrum of 4 diPh reveal s the C2 carbon at 142.6 ppm. The tri flate carbon resonates at 120.7 as a quartet, displaying the same 323 Hz coupling constant as other 4 R compounds. A gHMQC correlation experiment made a ssignment of the other aromatic and aliphatic carbons possible. The diphenylmethan e carbon signal appears at 64.3 The 1 H NMR and 13 C { 1 H} NMR spectra routinely display the presence of exactly one molecule of DME after standard work up procedures. The E A

PAGE 65

65 data supports one molecule of DME in addition to 4 diPh If desired, heating 4 diPh under vacuum for five days removes the DME, though its removal prior to metalation is unnecessary. Most of the 4 R compounds contain a small amount of DME, but again re moval of the DME is unnecessary. Lowry and Veige previously synthesized 4 Bn 62 Synthesizing the similar d iimidazolium 4 idiPh requires treating 2 equivalents of 1 diphenyl imidazole ( 7 idiPh ) with 1 equivalent of 3 in refluxing DME ( Figure 2 6). Removing the solution in vacuo after 1 h provided a hygroscopic pale yellow flak y material in 85% yield. Unlike t he benz imidazole 4 R salts the imidazole versions tend not to precipitate from solution Also, the imidazol e versions of 4 R tend to exhibit sensitivity to water. 1D and 2D NMR and EA ( tables 2 12 ) techniques verify the identity and purity of 4 idiPh Table 2 12 Selected NMR and EA data for 4 idiPh 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 52 H 44 N 4 S 2 O 6 F 6 ) NC H N (9.04; t; <1 Hz) N C HN (137.8 ; s) Calculated C H (C 6 H 5 ) 2 (7.29; s) C H(C 6 H 5 ) 2 (68.1 ; s) C, 62.52%; H, 4.44%; N, 5.61% NC H CHN (7.96, 7.69; d; 2.5) N C HCHN (124.1, 124.3; s) Found C H 2 (3. 84, 4.35; dd; 15, 5) C H 2 (53.62; s) C, 62.41%; H, 4.45%; N, 5.31% C H CHCH 2 (4.18; d; 5) C F 3 (122.2 ; q; 320) a Referenced to acetone d 6 at 2.05 ppm, b Referenced to acetone d 6 at 29.84 ppm. The 1 H NMR spectrum of 4 idiPh reveals the indicative C2 proton re sonance at 9.04 ppm as a triplet ( J = <1 Hz) The imidazole alkenic protons resonate at 7.96 and 7.69 ppm triplets ( J = 2.5 Hz). Other distinct signals include the diastereotopic methylene protons (3.84 and 4.35 ppm) and the diphenylmethi ne proton (7.29 ppm). The bridgehead methine resonates as a doublet instead of the customary singlet observed in other 4 R species. However, the doublet is not well resolved and only extends through the top sixth of the peak. This observation strengthens the previous

PAGE 66

66 arguments about the symmetry of 4 idiPh A HETCOR experiment clarifies the identity of some of the aromatic protons as well as the carbon resonances. The 13 C { 1 H} NMR spectrum of 4 idiPh reveals a resonance at 137.8 ppm attributable to the C2 carbon whic h is upfield relative to the C2 carbon in the benzimidazolium versions of 4 R The tri flate carbon resonates at 122.2 as a quartet, exhibiting the usual 320 Hz coupling constant The imidazole bac kbone carbons resonate at 124.1 and 124.3 ppm, and is cons istent with 4 Bn Another distinct carbon signal appearing at 68.1 ppm is the diphenylmethi ne carbon. O ne caveat to the formation of 7 idiPh exists; t he N alkylated (intended) and C2 alkylated ( unintended ) products both exhibit very similar NMR spectra. A small number of groups reported different NMR spectra and melting points for 7 idiPh H owever, it is plausible none of the group s are aware of the discrepancy Clearly, a single compound cannot exhibit two different 1 H NMR spectra 171,176,177 Peris et al. 176 and Burgess et al. 171 synthesized 7 idiPh by different me thods. Peris reported a method simila r to the one shown in Figure 2.9 (through an alkyl halide), whereas Burgess started with an amine ( phenylbenzylamine, Figure 2 10). Burgess and co workers did indeed mak e Figure 2 10 Synthetic method for 7 idiPh and 7 PhEt mak e the N alkylated product as claimed, mainly because the route Burgess took already has the diphenyl group attached to th e correct atom In contrast, haloalkyl

PAGE 67

67 substitution can occur at either only leads to the correct product (barring an unlikely 1,2 shift). Following the location of the diphenylmethi ne proton in the 1 H NMR spectrum in CDCl 3 of each reported species clearly shows different products (5.26 for the C alkylated versus 6.54 for the N alkylated). Peris also failed to report or observe another broad resonance at 10.2 ppm corresponding to an NH proton which in wet solvents such as DMSO d 6 may be exchanging and thus the NH proton will broaden into the baseline. This proton was only discovered after several attempts at synthesizing 4 idiPh failed, whereas all of the other 4 R salts were made with ease. When making 7 idiPh through an amine ( Figure 2 10 ), 4 idiPh was successfully made. While this only provides ind irect evidence, gHMQC correlation spectroscopy (COSY) and 15 N NMR experiments provide more conclusive evidence However, t hese spectroscopic techniques did not provide any distinguishable data As an interesting note though, when Peris et al. added methyl iodide to the C alkylated version, they ended up getting a 1,2 shift (unknown to them) to make 1 diphenylmethyl 3 methylimidazolium iodide (their intended product). The diphenylmethi ne proton resonance was reported at 6.93 ppm, which is expected for an N alkylated diphenylmethane group 2.4 Synthesis and Characterization of 2 nd G eneration DEAM D i azolium S alts Figure 2 11 depicts the synthesis of a cyclopha nic dibenzimidazolium salt ( 4 o xylyl ). The reaction involves treating an equivalent of di( N benzimidazolyl) o xylene 172 ( 7 o xylyl ) with an equivalent of 3 in refluxing acetonitrile (CH 3 CN). After 16 h the solvent is removed in vacuo and then 200 proof ethanol is added. Gently heating the solution for 15 minutes induced the precipitation of 4 o xylyl as a white solid in 36%

PAGE 68

68 Figure 2 11. Synthesis of dibenzimidazolium salt 7 o xylyl yield. 1D and 2D NMR techniques, X ray crystallography and EA (tables 2 13 and 2 14) deduce the identity and purity of 4 o xylyl This salt exhibits a cyclophane structure, and while these structures are known in NHC chemistry, this is the first chiral version. 178 184 Table 2 13 Selected NMR and EA data for 4 o xylyl 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 42 H 34 N 4 S 2 O 6 F 6 ) NC H N (8.88; s) N C HN (14 2.6 ; s) Calculated C H 2 C (5.93; br s) C H 2 C (53.4; s) C, 58.07%; H, 3.95%; N, 6.45% C H 2 C (5.93; br s) C H 2 C (53.4 ; s) Found C H 2 CH (3.35, 4.22; dd; 15, 10) C H 2 CH (46.0 ; s) C, 57.77%; H, 3.86%; N, 6.37% CC H C (4.86; s) C F 3 (122.2 ; q; 534) a Referenced to at acetone d 6 2.05 ppm, b Referenced to acetone d 6 at 29.84 ppm. Table 2 14 Selected bond lengths and bond angles for 4 o xylyl Bond Length () Angle Angle ( ) C1 H1 0.94(3) N1 C1 N2 110.2(3) C26 H26 0.95(3) N4 C26 N3 110.4(3) N1 C1 1.329(3) N4 C33 C34 1 11.4(2) N2 C1 1.327(3) N3 C25 C24 112.3(5) N3 C26 1.337(3) C23 C24 C25 107.6(5) N4 C26 1.325(4) C24 C9 1.549(11) The solid state structure of 4 o xylyl indicates the cyclophane is C 1 symmetric, in contrast to the other 4 R ligands (Figure 2 12). In addition, the structure contains

PAGE 69

69 Figure 2 12. Molecular s tr ucture of 4 o xylyl with thermal ellipsoids draw n at the 40% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. disorder in the ethanoanthracene unit. One of the more interesting features is the linking arene ring, that hangs over the C 1 and C 26 protons. The benzimidazole groups arrange in a parallel syn fashion with a distance between the rings of 3.792 In contrast, the NMR data indicate either C 2 or C 1 symmetry depending on the temperature, with C 1 symmetry occurring at lower temperatures. The 1 H NMR spectrum of 4 o xylyl at 50 C reveals identifying resonances at 8.88 ppm (NC H N), 5.93 ppm ( o xylyl C H 2 ), 4.86 ppm ( CC H C ) and 2.64 ppm (NC H 2 CH). The C 1/C 26 proton s hifts significantly upfield from the normal range found in the other 4 R salts, possibly because of the overhanging benzene ring. The 13 C { 1 H} NMR spect rum at 25 C also displays key signals at 142.6 ppm (bs, N C HN), 53.4 ppm (bs, N C H 2 CH), 49.5 p pm (NCH 2 C H), 48.4 ppm ( C C HC) and 46.0 ppm (bs, o xylyl C H 2 ). At 25 C both the 1 H and 13 C NMR spectra reveal broad resonan ces, for instance, the o xylyl

PAGE 70

70 methylene signals. This indicates the occurrence of a fluxional process similar in behavior to other reported azolium cyclophanes. 178 184 Variable temperature 1 H NMR experiments from 60 to 50 C in acetone d 6 ( Figure 2 13) provide insight into the dynamic behavior of 4 o xylyl At the slow exchange limit ( 60 C) e very proton is in a unique environment, exemplified best by the two resonances attributable to the C 1 and C 26 proton s at 8.80 and 9.10 ppm. At the fast exchange limit, >50 C, the C 1/C 26 proton resonances coalesce and sharpen to one signal located at 8 .88 ppm. These spectra visibly demonstrate a change in symmetry on the NMR timescale from C 1 to C 2 as the temperature increases. At low temperatures, the benzimidazole rings arrange in a parallel syn fashion with the arene ring located above the C 1/C 2 6 protons (H1 and H26), Figure 2 13 Variable temperature 1 H NMR of 4 o xylyl in acetone d 6 Temperatures ( C) from top to bottom; 50, 35, 25, 15, 10, 5, 0, 5, 10, 15, 25, 35, 50, 60.

PAGE 71

71 confirmed by an nOe between H 1/H 26 and the protons on the o xylyl ring carbons (C 35, C 36, C 37 and C 38). The X ray data support the solution state assignment ( Figure 2 12 ). Specificall y, H 1 and H 26 do not exhibit nOe s with the protons on C 40 and C 33. The VT experiments reveal a coalescence temperature at 25 C for the resonance centered at 5. 93 ppm, confirming the fluxional process. A second reson ance at 8.88 ppm coalesces at 5 C. The molecule inverts by flipping the o xylyl ring back and forth con comitant w ith the interconvers ion of the benzimidazoles by rotation (180 ) from one side to the other. Measured independently, both resonances yield an Eyring plot avg = 13.4(3) kcal/mol). Bridging the wingtips of the DEAM ligand precursor 4 o xylyl is unique because t he chirality is added to the cyclophane group. Another unexplored ligand type involves introducing chirality to both the backbone and N alkyl group. Figure 2 6 depicts the synthesis of di imidazolium sal t 4 PhEt The reaction involves t reating 2 equivalent s of R 1 p henylethylane imidazole 68 ( 7 PhEt ) with an equivalent of S S 3 in refluxing DME. After 1 h the solvent is removed in vacuo in an inert atmosphere. The resulting oil is triturated with et her until a solid forms, and then the solid is put in ether and stirred overnig ht. The off white, brittle hyg roscopic material is filtered providing 4 PhEt in 80% yield. 1D a nd 2D NMR experiments and EA support the purity and identity of 4 PhEt ( T able 2 15 ). The 1 H NMR spectrum of 4 PhEt reveal s the recognizable singlet C2 proton r esonance at 9.04 ppm. The imidazole backb one proton signals resonate as broad singlets at 7.80 and 7.83 ppm. The chiral fragment methyl and methane proton signals appear at 1.92 (d) and 5.78 (q) ppm, respectively The bridgehead proton resonates at

PAGE 72

72 Table 2 15 Selected NMR and EA data for 4 PhEt 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 42 H 42 N 4 S 2 O 6 F 6 ) NC H N (9.34; s) N C HN (136.4 ; s) Calculated NC H C H N (7.80, 7. 83; s ) C H 2 (53.5 ; s) C, 57.52%; H, 4.83%; N, 6.39% C H 3 (1.92; d; 5) C H 3 (20.8; s) Found CH 3 C H (5.78; q; 10) CH 3 C H (60.7; s) C, 57.70%; H, 4.66%; N, 6.30% C H 2 (3.62, 3.87;dd; 10, 5) N C H C HN (124.0, 122.7 ; s ) CC H C (4.05; s) C F 3 (122.0; q; 300) a Referen ced to at DMSO d 6 2.50 ppm, b Referenced to acetone d 6 at 29.84 ppm 4.05 ppm as a singlet similar to other 4 R salts. The 13 C { 1 H} NMR spectrum of 4 Ph Et reveals the C2 carbon at 136.4 ppm, which again is upfield relative to benzimidazolium versions of 4 R The triflate carbon resonates as a quartet at 122.0 ppm and displays th e usual 300 Hz coupling as other 4 R compounds. The imidazole backbone carbons resonate at 124.0 and 122.7 ppm, and is consistent with 4 Bn Other distinctive resonances are the pheny l methyl methi ne carbon (20.8 ppm ) and methyl carbon (60.7 ppm). A 2D HETCOR experiment elucidates the other carbon signals. T he introduction o f two more chiral centers allows for the production of up to six diastereomers; RRRR RRSS RRRS SSSS SSRR SSRS (where the first two letters refer to the backbone chiral centers and the last two refer to the N alkyl group chiral centers ). The original workup conditions of 4 PhEt involves removing the solvent, and t hen re dissolving 4 PhEt in THF The THF is t hen dropped into ether and the resulting white precipitate filtered (all done outside the glove box). The 1 H NMR spectrum for this material indicates predomina ntly one product, however three other minor products are observed This raises the point as to w hether epimerization can during the synthesis and if epimerization does occur, at which chiral site (s) does it happen ? More importantly, if epimerization occurs on the backbone, then the enantioselectivity of the

PAGE 73

73 NHC ligands is compromised. Thus, below are experiments that provide information as to whether the diNHC can racemize The last point in the synthetic scheme that the enantioselectivi ty is checked is after the formation of 2 ( Figure s 2 2 and 2 4). The reaction f or synthesizing 3 and subsequent ly 4 R would not result in the unlikely bond breaking step required for epimerization especially considering the synthesis of 2 requires much harsher conditions A more apt scenario involves epimerization through the N alkyl group by deprotonating the ph enym ethyl methine to form an imine and sub sequent hydrolysis. If 4 PhEt is left in wet THF for a n extended period of time, the phenylethane group is replaced with a hydrogen (as determined by 1 H NMR spectroscopy). Exposing 4 PhEt to wet THF for a short amo unt of time leads to a small amount of epimerization because of microreversibility principles. T his experiment reveals four products as determined by 1 H NMR spectr oscopy. Two of the products are the SSRR and hydrolyzed amine product. Presumably the othe r two products are the SSSS and SSSR products, because a 1 H NMR spectrum reveals a single product ( SSRR ) when water is excluded While these experiments do not provide direct evidence for epimerization of the backbone, they do provide excellent support fo r a water base hydrolysis mechanism as opposed to a bond breaking one. 2.5 General DEA Ligand S ynthesis Figure 2 14 display s a general synthetic sch eme for the DEA benzimidazolium salt backbone reported by Lowry and Veige. 61 Clearly, the route requires double the number of steps as the DEAM derivative. In addition, the method t akes a minimum of 21 days to complete; fortunately most of the transformations are high yielding. The ring closing s tep is the lowest yielding step and takes 4 d and thus the weakest link in the

PAGE 74

74 Figure 2 14. General synthesis of DEA benzimidazolium sal ts. scheme, albeit, a necessary one. Several minor changes were instituted to further optimize the reported procedure, for instance resolving at the diacid ( 1 ) stage instead of the diamine ( 10 ) stage This allows easier access to >99% enantiomeric excess (ee) for each enantiomer as well as lowering the cost of the resolving agent. O n oc casion the formation of the hexa protonated version of 12 occurs during the hydrogenation of 11 The solution to th is problem is treating hexa protonat ed 12 with two equ ivalents of sodium methoxide in methanol.

PAGE 75

75 2.6 Synthesis and Characterization of DEA B enzimidazolium T riflate S alts Dibenzimidazolium salt [ 1 4 Me]OTf 2 requires treating 2 equival ents of methyl triflate with 1 equivalent of 13 in 105 C CH 3 CN ( Figure 2 15 ). Removing the solution in vacuo Figure 2 15. Synthesis of dibenzimidazolium salt [14 R]X after 2 d provided a red glassy material. This material is taken up in chloroform and the solution is washed with water. The final product is crystallized from ch loroform at 15 C providing [ 1 4 Me]OTf 2 as a white solid in 77% yield. The 1 H and 13 C{ 1 H} NMR spectra match the iodide version of [ 14 Me ]I 2 61 Dibenzimidazolium salt [ 1 4 i Pr]I 2 requires treating 4 equiv alents of 2 iodopropane with an equivalent of 13 in CH 3 CN at 105 C ( Figure 2 15). After 2 d the CH 3 CN, upon cooling of the solu ti on, is dropped into ether to induce precipitation of a red yellow solid The solid is filtered and then washed with acetone until a pale yellow material remains. The 1 H and 13 C{ 1 H} NMR spectra, and EA confirm the identity and purity of [ 1 4 i Pr]I 2 ( T abl e 2 16 ). Table 2 16 Selected NMR and EA data for [ 1 4 i Pr]I 2 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 36 H 36 N 4 I 2 ) NC H N (9.31; s) N C HN (138.7; s) Calculated C H CH 3 (4.96; sept; 6) C HCH 3 (52.7; s) C, 55.54%; H, 4.66%; N, 7.20 % NC H CH (6.91; d; 9) N C HCH (61.8; s) Found NCHC H (4.97; d; 6) NCH C H (49.2; s) C, 55.50%; H, 4.48%; N, 7.07% CHC H 3 (1.66, 1.68; d; 6) CH C H 3 (21.4, 21.6; s) a Referenced to at CD Cl 3 7.27 ppm, b Referenced to CD Cl 3 at 77.00 ppm.

PAGE 76

76 The 1 H NMR spectrum of [ 1 4 i Pr]I 2 reveals a d iagnostic C2 proton resonance at 9.31 ppm. Other characteristic signals include a singlet for the methyl s and a septet for isopropyl methine protons at 1.66/1.68 ppm and 4.96 ppm, respectively. The bridgehead proton resonates as a distinct doublet (4.97 ppm ), indicating the dihedral angle between the bridge and bridgehead protons must be significantly less than 90 The bridge proton signal is at 6.91 ppm, which is downfield of the same proton in the methyl derivative [14 Me]I 2 The aromatic proton on t he top azole ring that is closest to the ethanoanthracene backbone resonates significantly downfield at 9.96 ppm. The 13 C { 1 H} NMR spectrum of [14 i Pr]I 2 indicates that the C2 proton resonates at 138.7 ppm. Other characteristic signals i nclude the bridge carbon (61.8 ppm), bridgehead carbon (49.2 ppm) methyl carbons (21.4 and 21.6 ppm) and isopropyl methine carbon (52.7 ). Both 1D NMR spectra indicate the DEA salts like the DEAM salts are also C 2 symmetric in solution 2.7 Synthesis and C haracterization of Enetetramine and DiNHC L igands Figure 2 16 depicts the synthesis of enetetramine 5 Me Treating 1 equivalent of 4 Me with 2.1 equivalents of potassium bis trimethylsilylamide (KN(Si(CH 3 ) 3 ) 2 ) in THF at room temperature provides 5 Me as a golden yellow so lid in 78% yield. Upon addition of the base, the color changes from white to yellow. After the volatiles are removed in vacuo the resulting solid is taken up in ether and filtered. The precipitate is washed with ether to get rid of the byproduct HN(Si( CH 3 ) 3 ) 2 The crude product is then washed with THF until a white/pale yellow salt cake remains (potassium triflate, KOTf). The use of a hindered base for the synthesis is critical because using unhindered bases may deprotonate 4 Me at undesired positions Multinuclear NMR spectroscopy, EA, MS and

PAGE 77

77 X ray diffraction experiments (tables 2 17, 2 18 and 2 19), confirm the identity and purity of 5 Me Figure 2 16. Synthesis of Enetetramine 5 Me Table 2 17 Selected NMR data for 5 Me 1 H ( (ppm), J (Hz)) a 13 C{ 1 H} ( ppm)) b C H 3 (2.69; s) C H 3 (36.9 ; s) CC H C (3.72; s) C = C (123.6; s) C H 2 (3.03, 3.33; dd; 12, 12) C H 2 (54.3 ; s) a Referenced toC 6 D 6 at 7.16 ppm b Referenced to THF d 8 at 25.37 ppm. Table 2 18 MS and EA data for 5 Me MS ([C 34 H 30 N 4 ] 2+ ) EA (C 34 H 30 N 4 )+2 THF molecules LR DPI CI Calculated: 494 m/z C, 78.96%; H, 7.26%; N, 8.77% Found: C, 78.80%; H, 6.80%; N, 8.75% Table 2 19 Selected Bond Lengths and Bond Angles for 5 Me Bond Length () Angle Angle ( ) C1 C9 1.347(3) C1 N1 C2 118.14(17) N1 C1 1.431(2) C9 C1 N1 125.50(17) N1 C2 1.466(3) N1 C1 N2 106.88(15) N2 C17 1.458(2) C2 N1 C3 116.90(16) C3 C8 1.397(3) C18 C17 N2 114.89(16) C18 C17 1.543(3) C17 C18 C19 111.83(15) C14 C15 1.380(3) N2 C8 C3 108.12(16) C17 C18 C21 114.05(15)

PAGE 78

78 The a bsence of the distinct C2 proton at 9.65 ppm of 4 Me supports the assignment of 5 Me Other chemical support for an enetetramine assignment include the color change from white to yellow during the reaction, the decomposition of 5 Me in CDCl 3 denoted by a color change from yellow to green ( 4 Me is stable in CDCl 3 ), and the decomposition of 5 Me in the presence of oxygen signaled by a color change from yellow to white. However, two products are consistent with the absence of proton in the 1 H NMR spectrum : a free NHC or an enetetramine. Hahn et al demonstrated an equilibrium b etween an enetetramine and free carbene at room temperature for type 3 (benzimidazolylidene) NHCs ( Chapter 1). 139 The 1 H NMR spectrum for 5 Me display s only one product, but alone could not confirm whether the product was an enetetr amine or free NHC. The 13 C NMR spectrum confirms the identity of 5 Me as an enetetramine because the carbene ca rbon resonance appears at 123.6 ppm. A 13 C distortion less enhancement by polarization transfer ( 13 C DEPT) experiment confirms the resonance at 123.6 ppm belongs to the carbene quaternary carbon. In contrast free NHC carbon resonances typically appear between 200 and 240 ppm. 20,79 C rystals of 5 Me suitable for a single crystal X ray diffraction experiment were grown. T w o different morphologies exist that were initially thought to be the enetetramine and NHC products. X ray crysta llographic analysis on both crystals demonstrate s that both morphologies a re the enetetramine. Clearly, 5 Me contains a double bond between the carbene centers (C 1 and C 9). The C=C bond length between C 1 and C 9 in 5 Me is 1.347(3) which compares favorably with other enetetramines 20,52,61,136,138,143,185 The benzimidazole rings ar e not co planar indicating twisting across the C=C bond. The dihedral angle across the double bond is 23 The X ray structure ( Figure 2 17)

PAGE 79

79 complements the solution state NMR findings and b oth the solid state and solution state data support the assignme nt of C 2 symmetry for 5 Me Figure 2 17. Molecular structure of 5 Me with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms omitted for clarity. Figure 2 18 depicts the synthesis of NHC 6 i Pr involves treating 1 equivalent of 4 i Pr wit h 2.1 equivalents of KN(Si(CH 3 ) 3 ) 2 in THF. After 4 h the THF is removed in vacuo. The solid is ta ken up in pentanes and filtered and t he resulting salt cake is washed with copious amounts of pentanes. The filtrate is saved and the pentanes are Figure 2 18. Synthetic scheme of free NHC 6 i Pr

PAGE 80

80 removed in vacuo leaving a pale yellow solid in 82% yield. The pentane solubility of 6 i Pr is in contrast to enetetramine 5 Me 1 H and 13 C { 1 H} NMR spectroscopy, MS and single crystal X ray diffraction techniques identify the structure of 6 i Pr ( T able 2 20 and 2 21). Tab le 2 20 Selected NMR, and MS data for 6 i Pr 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b MS ([C 38 H 39 N 4 ] + ) C H 2 (4.43, 4.79; dd; 12, 15) N C N (225.6 ; s) Calculated m/z: CC H C (4.29; s) C H(CH 3 ) 2 (52.7 ; s ) 551.3169 C H (CH 3 ) 2 (4.43; sept; 6) CH( C H 3 ) 2 (23.83, 23.79; s) Found m/z: CH(C H 3 ) 2 (1.56, 1.51; d; 6) C H 2 (45.5 ; s) 551.3218 a Referenced to C 6 D 6 at 7.16 ppm b Referenced to C 6 D 6 at 128.06 ppm Table 2 21 Selected bond lengths and bond a ngles for 6 i Pr Bond Length () Angle Angle ( ) C2 C3 1.393(2) C10 C8 C9 111.67(16) C8 C9 1.515(2) C8 N2 C1 123 .00(14) C11 C12 1.528(2) N1 C1 N2 103.23(13) C11 N1 1.4566(18) C11 N1 C1 123.38(13) C8 N2 1.4792(19) C11 C12 C13 112.50(12) N1 C1 1.4566(18) N1 C2 C3 105.95(13) The disappearance of the C2 proton resonance of 4 i Pr at 9.84 ppm as well as the chemical reactivity signal the formation of 6 i Pr The observation of only one septet isopropyl methine proton resonance at 4.43 ppm (integrating to two) and two methyl proton signals at 1. 51 and 1.56 ppm clearly demonstrate s the C 2 symmetry of 6 i Pr Like the 4 R salts, the bridgehead proton resonates as a singlet (4.29 ppm), designating the retention of the large dihedral angle between the bridge and bridgehead proton. The 1 H NMR spectrum of 6 i Pr again provides no information about whether it is an enetetrami ne or free NHC. The 1 H NMR spectrum of 6 i Pr also indicates there is no detectable equilibrium between the free NHC and enetetramine forms at room temperature 35,143 The 13 C NMR spectrum clearly identifies 6 i Pr a s a free NHC with a

PAGE 81

81 carbene carbon resonance at 225.6 ppm. 79 Other identifying resonances include the isopropyl methyl (23.83 and 23.79 ppm) and methine (45.53 ppm) carbons. Figure 2 19 displ ays the results of a single crystal X ray diffraction experiment of 6 i Pr The absence of a bond between C 1 and C 1A obviously supports the free carbene structure. The X ray data also shows the solid state and solution state molecular symmetry of 6 i Pr match. A comparison between the X ray structures of 5 Me and 6 i Pr provides some insight into the amount of bulk required to prevent dimerization of the NHC moieties. 143 The dihedral angle between H 12 C 12 C 13 H 13 is 64 and supports the occurrence of only a singlet for the bridgehead proton. Figure 2 19 Molecular structure of 6 i Pr with thermal ellipsoids drawn at the 40% probability level. Hydrogen atoms omitted for clarity. T he DEA version of 6 i Pr is synthesized by applying the same method ( Figure 2 18) Treating 1 equivalent of [ 14 i Pr]I 2 with 2.1 equivalents of KN(Si(CH 3 ) 3 ) 2 in THF after work up provided 1 5 i Pr as a white powder in 60% yield. Both the DEA and DEAM

PAGE 82

82 isoprop yl NHCs are soluble in hydrocarbons which is unique to them NMR spectroscopy and EA identify 1 5 i Pr ( T able 2 22 ). Table 2 22. Selected NMR and EA data for 15 i Pr 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (C 36 H 34 N 4 ) CCHC (4.68; s) N C N (222.5 ; s) Calculated : C H CH 3 (4.19; sept; 6) C HCH 3 (51.6; s) C, 82.72%; H, 6.56%; N, 10.72% CHC H 3 (1.27, 1.20; d; 6) CH C H 3 (23.46, 23.43; s) Found : NC H CH (7.15 7.09) N C HCH (61.0; s) C, 82.56%; H, 6.60%; N, 10.60% a Referenced to C 6 D 6 at 7.16 ppm, b Referenced to C 6 D 6 at 128.06 ppm. The 1 H NMR spectrum of 15 i Pr displays diagnostic isopropyl proton resonances as a septet at 4.19 ppm (methine) and doublets at 1.20/127 ppm (methyls). The bridgehead proton as usual appears as a singlet at 4.68 ppm. More interest ingly, the corresponding bri dge proton shifts downfield into the aromatic protons obscuring the exact location (7.09 7.15 ppm ). This is 2 3 ppm more down field than the bridge protons in the DEA methyl enetetramine and NHCs 5 Me and 6 i Pr T he pocket ar ound the bridge proton being more sterically crowded accounts for the NMR shift As with the other NHCs, the 1 H NMR spectrum provides no information about t he presence of a tetraaminoethy lene bond. The 13 C spectrum did in fact confirm 1 5 i Pr a s the fre e carbene form, with a carbene carbon resonance at 222.5 ppm. The isopropyl methyls and methine carbon resonances appear in the appropriate positions; 23.46/2 3.43 and 51.6 ppm, respectively 2.8 Reactivity of Enetetramine 5 Me. Enetetrami nes have electron rich double bonds and are widely known as powerful reducing agents. For example they can abstract the chlorine atom from a chloroalkane. Lappert demonstrated the air and moistu re sensitivity of enetetramines. This explains why Wanzlick and fele could not isolate their NHC s Lapp ert also showed

PAGE 83

83 enetetramines a re chemiluminescent in air due to the formation and decay of a dioxetane species ( Figure 2 20). 52 In 1994, Thummel et al. reporte d the conversion of enetetramines to ureas. 186 This preced ent work lead us to attempt the synthesis of a chiral epoxide from 5 Me for organocatalysis applications Figure 2 20. A dioxetane prepared by Lappert. Treating 5 Me with one atmosphere of oxygen in C 6 D 6 leads to the formation of diurea 16 Me in quantita tive yield after five minutes ( Figure 2 21 ). A distinct color change from golden yellow to white occurs during the reaction. This is consistent with previous work. 186 MS, IR and multi nuclear NMR spe ctroscopy identify the composition of 16 Me ( T able 2 23 ). Figure 2 21. Synthesis of diurea 16 Me Table 2 23 Selected NMR and MS data for 1 6 Me 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b MS [C 34 H 42 N 4 O 2 +Na] + CC H C (4.19; s) C =O (154.7 ; s) Calculated m/z: C H 2 (3.41, 3.33; dd; 6, 12) C H 2 ( 47.7 ; s) 549.2260 C H 3 (2.76; s) C H 3 (28.9 ; s) Found m/z: C C HC (46.0 ; s) 549.2251 a Referenced to at C 6 D 6 7 .16 ppm b Referenced to C 6 D 6 at 128.39 ppm.

PAGE 84

84 The characteristic bridgehead proton resonates as a singlet at 4.19 ppm for 16 Me and again the Karplus curve accounts for the s inglet as in the previous molecules Another key proton resonance appears at 2.76 ppm and is attributable to the methyl protons. T he urea carbon appears at 154.7 ppm, which is in a different location than the carbene carbon, the e netetramine carbon, and the C2 azolium salt carbon. Urea carbons generally appear between 155 165 ppm. 187 The strong absorption at 1708 cm 1 in the IR spectrum provides conclusive evidence for the identity of 16 Me T reat ing 5 Me with stoichiometric amounts of iodosobenzene( C 6 H 5 IO ) (0.25, 0.5 and 1 equivalent) in an effort to make an epoxide organocatalyst, did not provide any epoxide Any number of equivalents added leads to the production of 16 Me and no epoxide product ( Figure 2 21). W hen add ing less than an equivalent of C 6 H 5 IO, appropriate mixture s (based on the equivalents of C 6 H 5 IO added) of 5 Me and 16 Me form with no other intermediates These experiments may provide some insight into the reactio n mechanism of the addition considering neither the epoxide n or monourea products form If addition of the first oxygen is k 1 forming the epoxide is k 2 and addition of the second oxygen is k 3 then the k 3 step must be much faster than k 2 in a concurrent mechanism. Therefore isolating an epoxide at room temperature is impossible. 2.9 Conclusions In summary we synthesized a new class of chiral diNHC ligand s based on the trans 9,10 dihydro 9,10 ethanoanthracene backbone. We also generated a small library o f ligands each with different features that allow us to better understand which attributes promote high enantioselectivity. In addition, these ligands fit many of the criteria for industrial viability; cheap starting materials, few steps, multi gram steps high yielding synthetic steps, and simple purification methods. The brucine resolving agent

PAGE 85

85 is also recoverable. Both the DEA and DEAM ligands are currently available through Strem Chemical Company ( Figure 2 22). This is the first step in establishing that the NHC ligands can compete with PR 3 ligands on an industrial level. Figure 2 22. Strem ad for 4 MeBn (bottom right molecule) Other salts are available. Many of the azolium salts exhibit similar spectral features. The most prominent is that the bridgehead proton is a singlet in the DEAM ligands despite the c.a. 65 C torsion angle between the bridgehead and bridge proton. The 4 idiPh ligand actually does exhibit the expected doublet splitting. In contrast to the DEAM salts the DEA salts do exhibit the expected splitting, providing good evidence that the DEA ligands are more rigid. Upon deprotonation of the 4 R C2 proton the NHC fragment forms. A masked NHC, enetetramine, and a free NHC both provide similar looking 1 H NMR spectra. The difference becomes obvious within the 13 C spectrum with a resonance far downfield in the 200 240 ppm range for the NHC Changing the size of the N alkyl group appears to

PAGE 86

86 affect whether the formation of free NHC or enetetramine occurs, with larger groups favoring the free carbene form. This trend is consistent in both the DEA and DEAM azolium salts. 61 Formation of a chiral NHC epoxide proved impossible. Interestingly 6 Me is able to activate dioxygen by clea ving the double bond, presumably going through a dioxetane intermediate and forming a thermodynamical ly stable diurea ( 16 Me ). Treating 6 Me with stoichiometric amounts of oxygen proved fruitless, as we could not form the epoxide.

PAGE 87

87 CHAPTER 3 NHCS IN METAL CATALYSIS: SYNTHESIS OF AND CHARACTERIZATION OF NEW CHIRAL DI N HETEROCYCLIC CARBENE RHODIUM, IRID IUM AND PALLADIUM COMPLEXES. 3.1 Introduction N Heterocyclic carbene complexes are becoming as ubiquitous as phosphane metal complexes. 22 26,28 33,35 38,40,42,45,188 197 The most common NHCs in metal complexes are imidazole, saturated imidazole, benzimidazole or triazole derivatives Numer ous revi ews on M NHC complexes report the metal attached to the NHC spans near ly every alkali, alkaline earth and transition metal. However, t here are far more reports of complexes favoring late transition metals such as iridium, rhodium, ruthenium and palladium Typically NHCs bind through the C2 carbene carbon to the metal, but 198,199 In ab no rmally bound complexes the metal is bound to the C4 or C5 carbon (backbone of the azole ring) Crabtree et al first observed this unusual attachment ( Figure 3 1). 200 These abnormal complexes only Figure 3 1. The first abnormally bound NHC to an iridium center. account for about 2% of all the NHC complexes reported. The cause of why abnormal binding oc curs as of yet is unknown. T o complicate matters more determining which carbon the metal is bound to by spectroscopic methods is often not clear. Thus, X ray crystallog raphy is the only way to determine where the carbon is bound.

PAGE 88

88 3.2 Typical NHC Metalation P rocedures There are seven main methods for synthesizing metal NHC complexes: 1) from enetetramines, 2) proton abstraction (from the azolium salt precursor ) 3) transm etal l ation from silver NHC complexe s 4) in situ deprotonation of the azolium salt precursors, 5) oxidative addition across a C H or C X (X = halogen) bond from an azolium salt precursor 6) direct metallation (from a metal source that contains an internal base, such as Palladium (II) acetate) and 7) thermal elimination 25,30,198 The first method involves inserting the metal into an electron rich olefin ( enetetramine ). Lapp e rt is responsible for most of these stud ies hence this process is also referred to as the 52 Recall, t here are still relatively few tethered enetetramine s, 136,172,180,186,201 203 and fewer example s of chiral version s. 57,61 The proton abstraction method in volves deprotonating the C2 carbon with a base. Her r mann first explored isolating free NHC s by using a liquid ammonia route at 40 C. 204 The yields were excellent, but the carbenes were air and moisture sensitive. Other bases exist for deprotonation that are easier and safer to handle. For instance using the hindered base potassium bis ( trimet hylsilyl amide ) (KN(SiMe 3 ) 2 ) or alkali acetates promote the deprotonation of azolium salt s but t hese bases typically provide lower yields. In 1998 Wang and Lin reported a new method for making M NHC complexes that involved making a silver NHC complex and t hen transmetallating it to gold and palladium. 205 The y performed the transmetallation under mild conditions and in most cases under aerobic atmospheres. This method was later applied to a wide variety of transition metals. 45,206 In addition, this method may allow for access to monomeric

PAGE 89

89 species when only dimeric species are accessible from other direct metallation procedures. 71,207,208 Arguably the most popular way to synthesize M NHC complexes involves generating the NHC in situ with bases such as NaH, n BuLi, or t BuOK followed by addition of the metal precursor in a one pot synthesis. Elimination of sy nthe sis and isolation of the NHC is a clear advantage because the NHC is often air/moisture sensitive. DiNHCs can present a problem if the linker protons are sufficiently acidic. Therefore to ensure deprotonation at the NHC moiety, milder bases are requir ed. Using NaOAc, Cs 2 CO 3 NEt 3 LiN( i C 3 H 7 ) 2 or KN(Si(CH 3 ) 3 ) 2 will depr otonate only at the desired azolium C2 carbon Rarer methods for complexing NHC ligands to metal centers include oxidative addition, direct metallation and thermal elimination. The oxid ative addition method was first reported in 1974, 209,210 yet was only rediscovered in 2001 by Cavell et al. 211,212 T he metal effectively activates a C2 H or C2 X bond on the azolium salt precursor. This method predominantly occurs with group 10 metals. A nother closely related method includes using a metal precursor that can act as base (providing a direct metallation). Palladium(II)acetate and other diacetates, alkoxides, hydrides and acetylacetonates are common reagents in t he direct metallation procedure and this was the first method for preparing NHC complexes. 50 This method depends on the ability of the counter ion to coordinate to the metal center after deprotonation. The last method involves thermal elimination of hy dro gen halides from the C2 carbon center. 3.3 M NHC Complexes in C atalysis There are several reports demonstrating instances NHC complexes rival or out perform PR 3 complexes. 22 Enantioselective applications lag in comparison to achiral

PAGE 90

90 t ransformations, but this area is also expanding Most notably, the many generations of Grubb s Ru c ata lyst dominate and surpass phosphine based complexes for olefin metathesis 36,37,194,197,213 216 For i nstance, e nantioselective r ing opening transformations catalyzed by Ru(NHC) complexes yielded e.e. of 95 98%. 35,216 Grubbs demonstrated enantioselective ring closing metathesis also worked well with Ru(NHC) cataly sts 216,217 Coupling reactions ( for example, Heck, Suzuki, Tsuji Trost, and Sonogashira ) provide a nother example of where NHCs outperform PR 3 ligands 24,25,33,189,191,216 C a talysis with monodentate NHC ligands is now more common outside of metathes is and cross coupling reactions. Outside of these are as there are still relatively few examples of monodentate NHC catalyst s that provide any kind of catalytic enantioselectivity 34,218 227 A more common catalyst design contains mixed NHC X bidentate ligands. NHC phosphine, NHC thioether, NHC sulfone, NHC oxazole, NHC oxazoline, NHC imine, and NHC amine ligands represent the most commonly st udied classes of ligands ( Figure 3 2). 28,34,216 Considering the recent success of catalysts bearing mixed NHC bidentate ligands, investigations in to the development of chelating di NHCs should increase rapidly. Fi gure 3 2. Representative types of mixed NHC R bidentate ligands.

PAGE 91

91 Chelating NHCs have an entropic advantage over monodentate NHCs because of the chelate effect. 30 In addition to sterics and electronic factors symmetric chelating diNHCs have a third dimension to consider the linker length 30 The linker length controls the bite angle, and also the fluxionality of the azole rings. Crabtree suggested this feature determines whether the geometry of the final complex is cis or trans, and whether the formation of a monon uc lear or dinuclear complex will occur 207 In a recent paper, Peris reviewed several complexes with different linker lengths, and confirmed 30 Longer link er lengths tend to produce complexes that are monomeric, and as a resul t linker methylene protons become diastereotopic. 3.4 M DiNHC Complexes in Enantioselective C atalysis Analogous to the number of unique chiral frameworks reported, the number of enantio selective reactions reported with chiral diNHC ligands remain scarce, but are growing quickly. Most of these reports come from one group and only five of the ligands r eported yield optical catalytic activity. Shi et al. demonstrated the first enantiosel ective catalytic reaction between methyl ketones and diphenyl silanes obtaining 34 96 % e.e. and moderate conversions. 67 Figure 3 3 depicts the room temperature, rhodium Figure 3 3. First catalytic enantioselectiv e reaction with a diNHC reported by Min Shi. catalyzed hydrosilylation of acetophenone with diphenylsilane. The pre catalyst is a six coordinate octahedral rhodium (III) complex with an NHC derived from the 1,1'

PAGE 92

92 binaphthyl 2 2' diamine (BINAM) ba ckbone. The results are not that surprising Yoon. 228 The privileged term arises from the fact that the se ligands typically provide high enantio discrimination across a number of reactions. BINAM is C 2 symmetric (effectively halving the possible diastereotopic transition states) and exploits the restricted rotation about the biaryl bond provi ding a rigid backbone. In 2007, using t he same rhodium catalyst, Shi et al. hydrosilylated methyl and ethyl esters with silanes and achieved 80 99% e.e. 229 Shi et al. followed up this work by synthesizing four coordinate palladium (II) catalysts built upon the BINAM and the H 8 BINAM (rings that are not linked by a biaryl bond are saturated) NHCs with either two acetate aquo or iodide ancillary ligands. These catalysts provide d moderate to high enantioinduction for a number of coupling reactions; allylation of aldehydes, 230 arylboronic acid addition to enones 231 indole addition to N tosylarylimines, 232 arylboronic acid addition to N tosylarylimines, 233 arylboronic acids addition to 2 aryl 4 piperidones, 234 keto ester addition to N Boc imines, 235 and ar ylboronic acid addition to N Boc imines. 236 Shi also recently reported an arylboronic acid addition to arylaldehydes with low to moderate enantioselectivities. 237 S hi and co workers reported an asymmetric allylic a lkylation in 2008 that provided low yields and e.e.s (<10%). 238 They rationalized the yields by claiming the palladium center was too electron rich resulting from t donation of the diNHC ligand. The last two reports certainly indicate no ligand (not even privileged ones) will provide great results across every reaction. Noteworthy is that Shi et al. performed all the above reactions at room temperature.

PAGE 93

93 There a re other reports of enantioselective reactions done at higher temperatures with mixed results for e.e. In an early report Douthwaite et al. demonstrate d an intramolecular cyclization of amides to form oxindoles yielding 11% e.e. 71 Shi et al reported oxidative kinetic resolution of secondary alcohols with the above men tioned palladium(II) catalysts giv ing 36 99 % e.e. 239,240 In 2010, Sanchez, Iglesias and co workers hydrogenated ( Z ) ethyl benzamidocinnamates providing 5 98% e.e. with palladium, gold and rhodium catalysts. 241 The backbone of the catalyst is trans 2,2 dimethyl 1,3 dioxolane 72,73 and it bind s Rh(I) in a cis orientation. In addition, t he sterics of the substrate in this report heavily influence d the amount of chiral induction achi eved. Also recently, Nagel and Diez report ed transfer hydrogenation of 2 propanol to ketones at 82 C with a [Ir(diNHC)cod]PF 6 catalyst. 242 The e.e. ranged from 0 68% with catalyst loadings of 0.1 mol%. Lastly, Mauduit et al. report ed a copper catalyzed conjugate addition reaction (5% e.e.) with an in sit u generated catalyst. 66 This remains the only report where the suspected catalyst is not isolated ahead of time. Veige et al. also report ed enantioselective catalytic reactions with diNHCs, but discussion will be reserved for later Chapter s. 3.5 Synthesis and Characterization of M onometal lic (diNHC)Rh(olefin) C omplexes As mentioned previously there a re a number of methods leading to metal NHC complexes. By far the easiest method is to generate the NHC in situ and will be a common topic in the upcoming section This work focuses on the late transition metals; rhodium, iridium and palladium. Figure 3 4 display s a synthetic scheme for making [(diNHC)Rh(nbd/cod)]OTf complexes ( 16 R and 17 Bn ) The diNHC R groups ar e Me, i Pr, MeBn, Bn, PhEt, diPh, idiPh (remember the azole ring is imidazole and not benzimidazole) o xylyl

PAGE 94

94 Figure 3 4. Synthesis of [(diNHC)Rh(nbd/cod)]OTf complexes ( 16 R and 17 Bn ) Complex 16 Me is prepared by treating an equivalent of enetetramine 5 Me with one equivalent of rhodium bis (norbornadiene) tetrafluoroborate ([Rh(nbd) 2 ]BF 4 ) in THF at room temperature. After 12 h 16 Me precipitates from solution as a golden yellow microcrystalline solid in 97% yield. Room temperature metallation with enetetramines usually requires harsh conditions or long reaction times, which can lead to undesired side reactions. 52 The strained double bond of 5 Me promotes its room temperature metallation to rhodium and subsequently, complexation renders the ligand inert to oxygen and water. Refluxing 16 Me in wet, oxygenate d DMSO d 6 corroborates the stability 5 Me after metallat ion. Also, a counterion exchange of BF 4 for OTf occurs

PAGE 95

95 during the reaction. This happens because enetetramine 5 Me is not completely purified before its metallation with [Rh(nbd) 2 ]BF 4 and as a resu lt some KOTf is carried through the synthesis. Complex 16 Me is characterized by 1 H NMR, 13 C NMR, 2 D NMR, X ray crystallograp hy, MS and EA (tables 3 1, 3 2 and 3 3). Table 3 1. Selected NMR data for 1 6 Me 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b CC H C (4.68, 4.29; d; 2) N C N (194.76, 194.55; d; 56) C H 3 (4.70, 3.96; s) Rh C H (79.76, 77.41, 74.41, 65.24; d; 7.5) NC H CHCH 2 (4.68, 4.29; d t ) a Referenced to CDCl 3 at 7.27 ppm b Referenced to CDCl 3 at 7 7.00 ppm Table 3 2. MS and EA data for 1 6 Me MS ([C 41 H 38 N 4 Rh] + ) E.A. (C 42 H 38 N 4 SO 3 F 3 Rh) Calculated: Calculated: m/z: 689.2146 C, 60.13%; H, 4.58%; N, 6.68% Found: Found: m/z: 689.2161 C, 60.42%; H, 4.47%; N, 6.71% Table 3 3. Selected bond l engths an d bond a ngles for 1 6 Me Bond Length () Angle Angle ( ) C1 Rh1 2.052(4) C9 Rh1 C40 97.48 C9 Rh1 2.036(4) C9 Rh1 C41 100.60(14) C40 Rh1 2.180(4) C1 Rh1 C38 100.23 C41 Rh1 2.183(4) C1 Rh1 C37 100.29 C37 Rh1 2.185(4) C9 Rh1 C1 89.19 C38 Rh1 2.202(4) C3 8 Rh1 C40 66.66(16) C1 N1 1.359(5) C37 Rh1 C41 66.20 C40 C41 1.372(6) N1 C1 N2 104.9(3) C37 C38 1.372(7) C39 C40 C41 106.3(4) C36 C41 C40 107.4(4) C37 C38 C39 106.4(4) C36 C37 C38 107.2(4) The 1 H NMR spectrum of 1 6 Me reveals an elaborate set of resonances that each integrate to one proton. This indicate s the molecular symmetry of 1 6 Me lowers from C 2 to C 1 Thus, every proton on 1 6 Me is chemically and magnetically distinct. Correlation

PAGE 96

96 spectroscopy (COSY), heteronuclear multiple quantum c oherence (HMQC), heteronuclear multiple bond coherence (HMBC) and nuclear overhauser effect spectroscopy (NOESY) correlation experiments allow for complete assignment of 16 Me In particular, the NOESY experiment establishes a starting point on 1 6 Me from which to make the unique correlations. The bridgehead protons resonate at 4.68 and 4.29 ppm as doublets with coupling constant s of 2 Hz. Other distinct peaks include the methyl proton signals appear ing at 3.96 and 4.70 ppm The 13 C NMR spectrum further confirms the C 1 symmetry of 16 Me in that every carbon is chemically and magnetically distinct. The carbene carbo ns resonate at 194.8 and 194.6 ppm. They appear as d oublets with a J value of 56 Hz because rhodium has a spin moment of and the rhodium n uclei are not decoupled from the carbon nuclei The coupling constant of this carbon is comparable to other Rh NHC complexes. 67,85,88,243 246 The olefin carbons resonate at 79.8 77.4, 74.4 and 65.2 ppm. These re sonances also appear as doublets, but with smaller J values of 7.5 Hz. The 13 C NMR spectrum prov ides more information of how nbd binds to rhodium. Olefins bind to metal centers through when possible, the metal ce nter donates electron density from its d orbital orbital of the olefin. If s i gnificant backbonding occurs then a metalacyclopropane structure forms, and if little backbonding occurs then a Dewar Chatt structure dominates ( Figure 3 5). T he amount of backbonding often falls in between these two extremes. NMR is a great tool to gauge the amount of back donation in these systems. Free norbornadiene (nbd) olefin carbons resonate at 143.4 ppm. The nbd olefin carbons in 1 6 Me resonate at 79. 8, 77.4, 74.4 and 65.2 ppm. This shift of approximately 70 ppm

PAGE 97

97 Figure 3 5. E bound o lefins in metal complexes indicates there is some back donation from the rhodium to nbd, however most of the shift is a result of the nbd coordinating to the rhodium itself. 247,248 The nbd olef in bond lengths in the crystal structure of 1 6 Me are 0.03 longer than the free norbornadiene olefin bond lengths, which also supports the backbonding arguments 249 Figure 3 6A depict s the data o f 1 6 Me for a single crystal X ray diffraction experiment. The lowered symmetry becomes clear when viewing the X ray structure of 1 6 Me from the top perspect ive ( Figure 3 6B). The Rh C(carbene ) is shorter than the Rh C(olefin) by 0.15 and is consistent with a weak elongated single bond. A typical Rh C bond is 1.995 2.100 249 The lowered symmetry comes from an unexpected binding orientation of 5 Me The Rh C(carbene ) distances of 2.052(4) a nd 2.036(4) are comparable to other Rh C(carbene NHC ) bonds. 67 When 1 6 Me is observed from the top perspective, one benzimidazole ring system lines up parallel with the ethanoanthracene backbone, while the other b enzimidazole ring system is perpendicular to the backbone. The X ray structure also indicates the presence of a triflate counter ion. This further supports the triflate ion is carried through the synthesis of 5 Me and then a counter ion exchange occurs b etween triflate and tetrafluoroborate. In addition, t he dihedral angle between the bridgehead protons and the bridge protons is 56 The singlet bridge proton and dihedral angle are thus cons istent with the Karplus curve The s e data indicate the solid s tate structure and liquid phase structure are

PAGE 98

98 comparable. More importantly, this implies complex 16 Me has li mited solution phase dynamics. Figure 3 6. A ) Molecular s tructure of 1 6 Me with ellipsoids drawn at the 5 0% probability level. Hyd rogen atoms a nd triflate counter ion removed for clarity. B) Top view of 1 6 Me

PAGE 99

99 C omplex 16 o xylyl is prepared from the isolated enetetramine 5 o xylyl in the same way as 16 Me Though the enetetramine i s not well characterized, it is likely an enetetramine because th e short bridging group would most likely induce dimerization of the carbenes. The 1 H NMR spectrum of 16 o xylyl displays a mix of a majo r and minor product s attributable to havin g the arene ring orient over the nbd (minor product) or away from the nbd gro up (major product). An alternate expla nation may be that a mono and bimetallic product forms This is unlikely as the 1 H NMR spectrum displays two C 1 symmetric compounds. The bimetallic compound cannot align with the azole rings in an anti manner due to sterics. Thus the bimetallic compound would have to align the azole rings syn however this would likely cause severe steric crowding. T he other 16 R derivatives are synthesized by generating the carbene in situ The most likely species here is the free carbene as the large r R groups will prevent dimerization as discussed in Chapter s 1 and 2. The method involves treating an equivalent of the azolium salt precursor ( 4 R ) with 2.2 eqiuvalents of KN(Si(CH 3 ) 3 ) 2 and 1.05 equivalents of [Rh(nbd) 2 ]BF 4 in THF a t 35 C ( all in one pot ). The next day hexane is used to precipitate 16 R as a bright yellow powder. 1D and 2D NMR techniques as well as combustion analysis confirm the identit y and purity of complexes 16 R Complex 17 Bn was previously reported. 62 Like 16 Me the other 16 R deravatives exhibit an elaborate set of resonances indicating a lowering of the symmetry of the ligand upon coordination to the rhodium center from C 2 to C 1 Tables 3 4 and 3 5 show the mo st distinctive 1 H and 13 C NMR resonan ces, respectively, for all the 16 R deravatives.

PAGE 100

100 Table 3 4. Ch aracteristic 1 H NMR resonances (in ppm) of 16 R R RhCHCHC H 2 bridgehead bridge R methine R methyl Me 1.41, 1.47 4.29, 4.68 2.01, 5.40 N/A 3.96, 4.70 i Pr 1 .39, 1.41 4.19, 4.82 2.03, 5.22 5.34, 6.38 1.04, 1.60, 1.86, 1.94 MeBn 1.25, 1.34 4.42, 4.91 2.19, 5.42 N/A 2.57, 2.66 diPh 1.19, 1.23 4.35, 5.00 2.18, 5.17 7.24, 8.53 N/A PhEt 1.20, 1.31 4.28, 4.58 1.86, 4.93 5.16, 6.83 0.69, 1.97 idiPh 1.10, 1.15 4.3 1, 4.68 1.93, 5.08 7.72 N/A Table 3 5. C haracteristic 13 C { 1 H} NMR resonances (in ppm) of 16 R R Rh C H (d, J = 7.5 Hz) RhCHCH C H 2 Carbene (d, J = 57 Hz) R methine (non aromatic) R methyl Me 65.2, 74.4, 77.4, 79.8 68.2 194.6, 194.8 N/A 35.7, 38.0 i Pr 65 .1, 70.6, 74.8, 80.3 67.8 192.2, 192.0 55.8, 55.3 21.1, 21.4, 21.5, 22.5 MeBn 67.6, 74.2, 76.2, 79.6 67. 9 194.2, 194.5 N/A 19.3, 19.4 diPh 67.3, 70.7, 75.4, 81.0 68.1 194.9, 194.7 68.8, 68. N/A PhEt 66.8, 67.1, 67.5, 73.3 67.1 180.5, 180.9 60.0, 61.4 2 1.0, 23.6 idiPh 66.8, 69.8, 72.4, 76.6 67.4 181.6, 180.7 68.6, 69.3 N/A The nbd bridge ( RhCHCHC H 2 ), and the DEAM backbone bridge and bridgehead proton resonances provide unique signatures for metalation of the rhodium to the DEAM ligand. The nbd bridge protons resonate as a complex doublet of triplets. The nbd bridgehead protons are diastereotopic and cause the complicated splitting. The diNHC bridgehead protons resonate as sharp singlets in comparison to the olefinic and bridgehead nbd protons which resonate as broader singlets. The diNHC bridge protons resonate with a distinctive multiplet/triplet pattern. The low symmetry creates two distinct environments for these two proton s, separating the resonances by approximately 3 ppm, whereas the other r esonance pairs are separated by app roximately 1 ppm. The asymmetric alignment of the azole rings with the ethanoanthracene backbone manifests itself in another way also. Complex 16 PhEt

PAGE 101

101 and 16 idiPh both have imidazole type NHC units The bridge protons of the imidazole complexes shift upfield in the 1 H NMR spectrum relative to complexes with benzimidazole NHC units Perhaps, the extra length of the benzimidazole ring system helps to s hield the bridge protons more effectively than the imidazole The pr oton shifts in 16 diPh and 16 idiPh provide a direct comparison for this argument (2.18, 5.17 versus 1.93, 5.08, respectively) albeit small The nbd bridge, Rh olefin and Rh carbene carbon resonances provide distinct evidence for the formation of complexe s 16 R The olefin carbon signal s appear as doublets with coupling const ants of approximately 7.5 Hz. The carbene carbons also resonate as doublets but with a larger J value of 57 Hz. These signals resonate in the appropriat e area for metal bound carben es, 52 and t he 15 ppm difference between the carbene carbon r esonance s in the imida zole versus benzimidazole complexes demonstrate the electron donating differences between the azole rings ( see Table 3 5 approximately 180 ppm for imidzole and 195 ppm for benzimidazole ) Shifti ng of the olefin carbon resonances of 16 Ph Et and 16 idiPh upfield (approximately 1 2 ppm) relative to the benzimidazole versions of 16 R also demonstrat e the electron donating differences that the azole rings impart on the rhodium center through the trans effect The monometallic complexes wi th the more rigid DEA backbone are synthesized either by generating the diNHC in situ or isolating the diNHC ahead of time. Complex [ 18 Me ]I was previously reported by the Veige group ( Figure 3 7). 61 However, the procedure reported produces a mixture of mono and bimetallic (NHC(codRhCl) 2 ) species. If the synthesis is carried out only at 35 C and using the isolated diNHC, then only the monometallic species forms For rea sons that will be discussed in Section 3.7

PAGE 102

102 Figure 3 7. Rhodium DEA complexes containing benzimidazole and imidazole backbones. the need for a triflate counter ion on 18 Me is essential. Complex [ 18 Me ]OTf is synthesized by treating an equivalent of [14 Me]OTf with an equivalent of [Rh(cod )Cl] 2 and 2.1 equivalents of KN(Si(CH 3 ) 3 ) 2 at 35 C. The result is a mix of mono and bimetallic species. The monometallic species is present in 4% yield. Experiments meant to drive the yield toward the monometal lic species failed. Interestingly, while t ryin g to isolate the enetetramine f r o m of [14 Me]OTf the potassium metalated species may have formed instead. There is previous precedent for potassium species when using KN(Si(CH 3 ) 2 ) 2 as a base. 143 The 1 H NMR spectrum exhibits a doublet upfield at approximately 9 ppm, the same location that a bridgehead proton signal of a rh od ium metalated species appears In addition, the 1 H NMR spectrum ha s signatures of a C 1 symmetric compound. Furthermore, the compound is stable in chlorinated solvents, wheres NHC species rapidly decompose. Surprisingly, the potassium complex does a ct as a transmetalating agent similar to silver complexes but u nf ortunately this method produces about 1 5 % monom etallic species (and 95% bimetallic complex) The 1 H NMR spectra of [ 18 Me]X (X=I or OTf) match as expected

PAGE 103

103 The motivation for synthesizing a triflate version of 18 Me will become obvious in the discussion of 23 Me The most successful method for obtain ing [18 Me]I is a simple counter ion exchange of iodide for triflate. Complex [18 Me]I is treated w ith an equivalent of AgOTf in 1:1 CH 3 CN :methylene chloride and then stir r ed overnight in the dark. The silver iodide precipitate is filtered off. An impor tant note to remember i s that only halogen counter ions will exchange to another ion (triflate in this case) because of the thermodynamic driving force of AgX precipitation. Also all of the iodide must be removed for this method t o be useful (see discussi on in S ection 3.7). Synthesizing c omplex 19 i Pr is acheived in a one pot synthesis by treating an equivalent of the isopropyl iodide salt precurser with an equivalent of [Rh(cod)Cl] 2 and 2.1 equivalents of KN(Si(CH 3 ) 3 ) 2 at 35 C. Crystallizing the crud e compound from 3:1 THF:CH 2 Cl 2 provides 19 i Pr i n 92% yield. The complex is slightly sensitive to water, in that water causes 19 i Pr to become oily. The isopropyl methine and methyl proton resonances (5.31/4.39 and 1.51/1.38/1.28/1.27, respectively) in t he 1 H NMR spectrum aid in identifying 19 i Pr In the 13 C NMR spectrum of 19 i Pr t he carbene carbon signals resonate as doublets ( J = 53 Hz) at 178.0 and 177.8 ppm, comparable to other metalated imidazole NHCs. The olefin carbon signals appear a s double ts at 92.4, 88.6, 87.5, and 85.4 ppm. The olefin here is cod instead of nbd The more downfield olefin carbon resonances indicate cod is a weaker donor than nbd Finally combustion analysis confirmed the purity of 19 i Pr 3.6 Synthesis and C haracterizat io n of Bimetallic Rhodium C omplexes In analogous PR 3 studies, the catalyst is often made in situ, and therefore is not isolated. This presents a possible problem in identifying the active species during a

PAGE 104

104 catalytic reaction. When treating a bidentate lig and with a metal source, a monometallic and/or bimetallic species can form. Therefore fundamental studies with different guesses as to catalyst identity during in situ applications. Synthesizing b imetallic complex 20 Me is accomplished by treating an equivalent of rhodium 1,5 cyclooctadiene chloride dimer ([Rh(cod)Cl] 2 ) with an equivalent of enetetramine 5 Me in THF at room temperature ( Figure 3 8). Ye llow crystals precipitate from solution after 12 h provid ing 20 Me in 74% yield. Complex 20 Me has no or minimal solubility in common deut erated solvents, which prevents NMR spectroscopic analysis. The MS E A and a single X ray crystallographic experiment confirm the identity and purity of 20 Me (tables 3 6 and 3 7). Figure 3 8. Synthesis of diNHC[ Rh(nbd/cod)Cl] 2 complexes.

PAGE 105

105 Table 3 6. MS and EA data for 20 Me MS ([C 50 H 54 N 4 Rh 2 Cl] + ) E.A. (C 50 H 54 N 4 Cl 2 Rh 2 ) Calculated: Calculated: m/z: 951.2421 C, 60.80%; H, 5.51%; N 5.67% Found: Found: m/z: 951.2106 C, 60.62%; H, 5.98%; N, 5.22% Table 3 7. Selected bond lengths and bond a ngles for 20 Me Bond Length () Angle Angle ( ) C9 Rh 1.998(6) C9 Rh Cl 92.2(3) C1 Rh 2.116(6) C9 Rh C1 91.94(16) C8 Rh 2.101(5) C9 Rh C8 8 8.5(2) C4 Rh 2.172(6) Cl Rh C4 81.5(3) C5 Rh 2.190(6) Cl Rh C5 91.78(18) Cl Rh 2.3816(15) Cl Rh C8 150.59(17) C4 C5 1.338(9) C9 Rh C4 161.3(2) C1 C8 1.396(8) N1 C9 N2 104.8(5) The solid state structure of 20 Me (Figure 3 9) is a bimetallic complex that is C 2 symmetric in contrast to the C 1 symmetric monometallic species 16 R Crabtree previously demonstrated that treating the dimer material, [Rh(cod)Cl] 2 with chelating diNHCs leads to different products depending on the temperature, linker length, and the Figure 3 9. Molecular structure of 20 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity.

PAGE 106

106 size of the N alkylated group. 207 Room te mperature metalations with linker lengths of two or three carbon atoms produce d bimetallic complexes. Complex 20 Me has a linker also indicates the coordination geom etry of each metal center is square planar and contains bond angles of nearly 90 ( T able 3 7 ). While 20 Me is C 2 symmetric, each localized metal center is in a C 1 symmetric environment. The metal centers also orient away from each other stacking between the coplanar benzimidazole rings, with a separation of 3.54 The Rh ( C 9 ) bond length is 1.998(6) which is again consistent with other Rh C(NHC carbene ) bonds. 67 The (C 4)=(C 5) and (C 1)=(C 8 ) bond lengths differ by 0.058(9) These Rh C (olefin) bond lengths differ by 0.071 (6) 0.084 (6) because of the different trans influences from the chloride versus the NHC ligand. The trans influence from the NHC causes a longer Rh C (olefin) bond resulting in a shorter (C 4)=(C 5) bond because of the reduced back donation from the Complex 20 i Pr is also synthesized in a similar method to 20 Me by treating 1 equivalent of diNHC 6 i Pr with equivalent of [Rh(cod)Cl] 2 i n THF at room temperature ( Figure 3 8). White micro crystals precipitate from solution after 12 hours providing 20 i Pr in 25% yield. 1 H NMR, 13 C NMR, 2D NMR, MS, EA and X ray crystallography determine the identity and purity of 20 i Pr (tables 3 8, 3 9 an d 3 10). Table 3 8. Selected NMR data for 20 i Pr 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b C H (CH 3 ) 2 (6.83; sept; 5) N C N (194.5 ; d; 56) CHCC H (4.83 4.60; br) Rh C H (100.6 98.1, 69.4, 69.2 ; d; 9) CH(C H 3 ) 2 (1.92, 1.81; d; 5) a Referenced to CDCl 3 at 7.27 ppm, b Referenced to CDCl 3 at 77.00 ppm

PAGE 107

107 Table 3 9. MS and EA data for 20 i Pr MS ([C 50 H 54 N 4 ClRh 2 ] + ) E.A. (C 50 H 54 N 4 Cl 2 Rh 2 ) Calculated: Calculated: m/z: 951.2124 C, 62.10%; H, 6.19%; N, 5.37% Found: Found: m/z: 951.2106 C, 62.00%; H, 6.34%; N, 5.09% Table 3 10. Selected bond l engths and bo nd a ngles for 20 i Pr Bond Length () Angle Angle ( ) C19 Rh1 2.028(4) C19 Rh1 Cl1 87.99(10) C20 Rh1 2.100(4) C19 Rh1 C20 91.19(15) C27 Rh1 2.126(3) C19 Rh1 C27 95.43(15) C23 Rh1 2.218(4) Cl1 Rh1 C23 92.83(11) C24 Rh1 2.218(4) Cl1 Rh1 C24 91.43(11) C l1 Rh1 2.3812(10) Cl1 Rh1 C20 156.94(11) C20 C27 1.394(5) C19 Rh1 C23 163.24(15) C23 C24 1.369(5) N1 C19 N2 105.8(3) The number of resonances in the 1 H and 13 C NMR spectrum indicate that the bimetallic complex 20 i Pr is C 2 symmetric. A single isopropy l methine proton signal resonating as a septet appears at 6.83 ppm and con firms the previous symmetry arguments. Lik ewise only two isopropyl methyl proton signals resonate as doublets at 1.81 and 1.92 ppm. The diagnostic carbon resonances include t he car bene and the olefin carbons Th e NHC carbon resonates at 194.5 ppm as a doublet with a coupling constant of 56 Hz, and is consistent with the carbene coupling constant of 1 6 R complexes. The cod olefinic c arbons resonate at 100.6, 98.1, 69.4 and 69.2 ppm These signal s resonate as the expected doublets with coupling constants of 9 Hz. The alkene carbons of unbound cod appear at 128.7 ppm, and therefore the observation of upfield cod olefin carbon resonances in 20 i Pr suggest the bonding is between a met alacyclopropane and bound olefin.

PAGE 108

108 The olefin carbon signals of 16 R resonate between 65 80 ppm. Half of the olefin carbon signals resonate significantly downfield of 80 ppm. First principles and NMR theory aid in the tentative assignment of the cod olefi n signals trans to the chloride at 100.6 and 98.1 ppm. Variations of B net at the individual nuclei, where B net =B 0 (1 determines the chemical complicated and made up of shielding, deshielding and non localized effects terms. For 13 C NMR resonances the deshielding para para is proportional to 1/r 3 where r is the distance of the non s electrons from the carbon nuclei. 173,174 The chloride ligand is a weaker trans ligand than the NHC ligand and this causes the Rh cod bond trans to the NHC to elongate more than the Rh cod trans to the chloride Therefore, this is also consistent with the tentative assignment of the cod carbons trans to the NHC appearing at 69.4 and 69.2 ppm. 2D gHMBC and gHMQC correlation experiments confirm these assignments. A single crystal X r ay diffraction experiment confirm s the NMR findings that 20 i Pr is C 1 symmet ric ( Figure 3 10). This clearly indicates the symmetry of 20 i Pr changes from the solid state to the liquid phase. The bond angles and bond lengths of 20 i Pr are comparable to those of 20 Me Complex 20 i Pr is a bimetallic complex with each rhodium ion in square plana r geometry. The two cod olefin bonds on Rh1 differ in length by 0.025(5) Analogous to 20 Me t his difference in bond length is attributable to the different trans influences of chloride and NHC ligands. The X ray data also indicates th e Rh C (olefin) trans to the NHC is 0.092(4) 0.118(4) longer than the Rh C (olefin) trans to the chloride because of the trans influence as in 20 Me

PAGE 109

109 Figure 3 10 Molecular s tructure of 20 i Pr with ellipsoids draw n at the 50% probability level. Hydrog en atoms omitted for clarity. Bimetallic complex 21 i Pr is synthesized by treating an equivalent of rhodium [Rh(cod)Cl] 2 with an equivalent of DEA derivative diNHC 15 i Pr in THF at 35 C (see Figure 3 8 for a general scheme). The final solution is stirr ed for 40 hours at room temperature. The rigidity of the backbone and larger sterics is the cause for longer reaction times compared to the DEAM bimetallic complexes ( 20 R ). Golden yellow crystals grow from slow diffusion of hexanes into CHCl 3 providing 21 i Pr in 89% yield. Multinuclear NMR techniques and EA confirm the identity and purity of 21 i Pr (Table 3 11). Table 3 11 Selected NMR data for 21 i Pr 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b E.A. (C 52 H 58 N 4 Rh 2 Cl 2 ) C H (CH 3 ) 2 (6.79; sept ; 5) N C N (197.6; d; 50) Calculated : C H 2 ( 0.34 0.41, 1.63 1.54, Rh C H (100.3, 99.4, 69.2, 67.8; d; 5 C, 61.47%; H, 5.76%; N, 5.52% 0.82 0.75, 1.48 1.43; m) and 15) Found: C H (CH 3 ) 2 (6.79; sept; 5) N C N (197. 6; d; 50) C, 61.27%; H, 5.73%; N, 5.44% NCHC H (5.13; s) C H 3 (20.8, 21.3 ) C H 3 (1.79, 1.77; d; 10) C H (CH 3 ) 2 (54.0) a Referenced to CDCl 3 at 7.27 ppm, b Referenced to CDCl 3 at 77.00 ppm

PAGE 110

110 The 1 H and 13 C NMR spectra indicate 21 i Pr is C 2 symmetric and therefore a bimetallic species. The methyl and meth ine proton resonances in each spectrum allow for identification of 21 i Pr ( T able 3 10). A single carbene carbon resonates at 197. 6 ppm in the 13 C NM R spectrum confirming the the azole ring of the NHC is b ound to the metal center The olefin carbons reson ate as doublets a t 100.3, 99.4, 69.2 and 67.8 ppm. The trans effect of the chloride and NHC ligands again explain the large disparity between the two groups of olefin carbon resonances ( c.a. 68 and 100 ppm). A 2D COSY experiment confirms all the other as signments in the 1D NMR s pectr um The EA of 21 i Pr is within t he expected range indicating high p urity. As a last note, m any species were not fruitful A possible explanation is the rigidity of the back bone and size of the isopropyl group exceeds the maximum sterics allowable to form a monometallic species. 3.7 Synthesis and Characterization of R hodium(diNHC)(CO) 2 C omplexes The motivation for making dicarbonyl derivatives is to make better pre catalysts for hydroformylat ion reactions. Figure 3 11 depict s the synthesis of complexes 22 R and 23 R Complex 22 R is synthesized by treating the precursor nbd or cod complex es ( 17 1 8 ). As a representative example, 22 Me is synthesized by treating 16 R with 1 atmosphere of carbon monoxide in a minimal amount of chloroform. The resulting solution is stirred for 16 hours at room temperature to provide a yellow powder in 92% yield. A counter ion exchange occurs because potassium tetrafluoroborate is carried thro ugh the synthesis of 16 Me 1 H NMR, 13 C NMR, 2D NMR, MS, IR, E.A. and X ray crystallography ( T a ble 3 12, 3 13 and 3 14 ) determine the identity of 22 Me The 1 H NMR spectrum of 22 Me, simlar to 16 Me, exhibits a convoluted spectrum indicating the symmetry as C 1 for 22 Me The two methyl group protons resonate as

PAGE 111

111 Figure 3 11. Synthesis of complexes 22 R and 23 R Table 3 12 Selected NMR data for 22 Me 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b CC H C (4.11, 4.61; d; 1) N C N (186.32, 185.57; d; 34) C H 3 (3.84, 4.44; s) R C O (179.96, 179.93; d; 45) CH 2 C H (1.97, 4.66; br t; 7.5, 10 C H 3 (37.70, 36.17; s) a Referenced to CDCl 3 at 7.27 ppm, b Reference d to CDCl 3 at 77.00 ppm Table 3 13 MS and EA data for 22 Me MS ([C 36 H 30 N 4 RhO 2 ] + ) E.A. C 38 H 32 N 4 RhO 2 BF 4 Cl 6 Calculated: Calculated: m/z: 653.1418 C, 46.61%; H, 3.49%; N, 5.71% Found: Found: m/z: 653.1348 C, 47.08%; H, 3.26%; N, 6.10% Table 3 14 Sele cted bond lengths and bond angles for 22 Me Bond Length () Angle Angle ( ) C36 Rh1 1.874(5) Rh1 C36 O2 175.2(6) C35 Rh1 1.897(4) C36 Rh1 C35 94.23(19) C34 Rh1 2.063(3) C25 Rh1 C35 89.34(16) C25 Rh1 2.078(4) C25 Rh1 C34 90.19(13) C35 O1 1.132(5) C34 Rh1 C36 86.77(16) C36 O2 1.122(5) N4 C34 N3 106.3(3) N4 C34 1.344(4) C34 Rh1 C35 176.40(17) singlets at 3.84 and 4.44 ppm confirming the symmetry of 22 Me Other diagnostic resonances include the bridgehead protons at 4.11 and 4.61 ppm each as doublet s with

PAGE 112

112 a coupling constant of 1 Hz, and the bridge proton multiplets appear at 1.97 and 4.66 ppm. The 13 C NMR spectrum of 22 Me exhibits characeristic resonances at 185.9 and 185.5 ppm (d, J = 34 Hz) attributable to the carbene carbons on the NHC Other d iagnostic resonances inc lude methyl carbon signals at 37.7 and 36.2 ppm. T he CO carbon resonates at 180.0 and 179.4 ppm as a doublet with a coupling constant of 45 Hz. 2D NMR techniques (gHMQC, gH MBC, gdqCOSY, and NOESY) allow for assignment of the chemi cal shifts of the CO and carbene carbons with certainty Also consistant with the 2D data several Rh(CO)(NHC)L x complexes indicate the Rh C(CO) coupling constants are approxim ately 10 Hz larger than Rh C(carbene NHC ) coupling constants. 85,88,243 The carbene carbon J value difference between 22 Me and the other Rh C( olefin ) species ( 16 R 17 R 18 R 19 R 20 R 21 R and 22 R ) is about 22 Hz. Carbon monoxide acceptors than olefin g roups, and th erefore more back bonding from the rhodium cen ter to the CO ligands results This causes a decrease in electron density on the rhodium center, effectively changing the electronic environment of the rhodium relative to when an olefin is bound. Back bondin g directly influences the coupling constant of Rh C( carbene NHC ), thus providing a smaller coupling constant. The IR spectrum of 22 Me complements the NMR spectral studies and confirms the presence of two CO groups. The s tretching frequencies are 2026 an d 2084 cm 1 and fall within the normal range for Rh(NHC)CO complexes. 87,115,250,251 The IR spectrum is also a great tool for judging the amount of back donation in a metal CO system. 248,252 The CO stretches at 2026 and 2084 cm 1 are sig nificantly shifted from

PAGE 113

113 unbound CO ( 2149 cm 1 ). Shifting to a lower energy is consistent with population of the A single crystal X ray diffraction experiment confirms t he substitution of norbornadiene for CO Figure 3 12 depicts the molecular stucture of 22 Me The asymmetric unit consists of two crystallographically independent molecules in the P2(1)/c space group. The diNHC coordinate s in a cis fashion along with cis carbonyls The diNHC and carbonyl gro ups coordinate to the Rh(I) ion in a square planar geometry with bond angles all near 90 ( T able 3 14 ). The typical Rh C single bond length is 1.995 2.1 00 249 The Rh C(carbene NHC ) bond lengths in 22 Me are 2.063(3) and 2.078(4) and are comparable to other Rh C ( carbene NHC where the azole rings are benzimidazoles ) bond lengths reported by Shi et al 67,229,253 The Rh C(CO) bond lengths are 1.874(5) and 1.8 97(4) and are consistent with analogous Rh(CO)(NHC) complexes. 250,251,254,255 The C O bond lengths are 1.132(5) and 1.122(5) indicating Figure 3 12 Molecular s tructure of 22 Me with ellipsoids drawn at the 5 0% probabili ty level. Hydrogen atoms and the tetrafluoroborate ion removed for clarity

PAGE 114

114 the bond i s closer to a triple bond than a double bond. These bond lengths as well as the IR CO stretching frequencies, indicate a moderate amount of back donation. The dihedral angle between the brid gehead and bridge protons ( H 14 C 14 C 16 H 16) is 66 thus justifying the doublet with a small coupling constant between these protons. The other 22 R derivatives are synthesized in nearly quantitative yield in the sam e method outlined above for 22 R Ta bles 3 15, 3 16 and 3 17 summarize the diaganostic 1 H NMR, 13 C NMR and IR data for 22 R All of th e NMR data indicate each Table 3 1 5 Ch aracteristic 1 H NMR resonances (in ppm) of 22 R R bridgehead bridge R methine ( non aromatic) R methylene R methyl i Pr 4.85, 4.07 4.58, 1.96 5.83, 4.99 N/A 1.60, 1.91, 1.85, 0.97 MeBn 4.95, 4.21 4.73, 2.20 N/A 4.63, 5.45, 5.78, 5.82 2.50, 2.48 diPh 5.04, 4.20 4.70, 2.14 7.93, 6.85 N/A N/A i diPh 4.13, 4.58 4.26, 1.93 7.30, 6.22 N/A N/A PhEt 4.13, 4.46 4.20, 1.80 6.16, 4.79 N/A 1.97, 0.53 Bn 4.14, 4.48 4.27, 1.84 N/A 4.89, 4.82, 5.49,5.27 N/A Table 3 1 6 C haracteristic 13 C { 1 H} NMR resonances (in ppm) of 22 R R N C N (d, J = 46 Hz) CO (d, J = 57 Hz) R methine (non aromatic) R meth ylene R methyl i Pr 185.6, 184.8 171.7, 177.4 57.1, 55.7 N/A 20.9, 20.7, 20.6 MeBn 185.0, 184.3 180.6, 180.3 N/A 51.0, 51.5 19.3, 19.1 diPh 183.7, 184.5 182.1, 180.1 70.8, 69.6 N/A N/A idiPh 171.3, 169.3 182.1, 180.1 70.7, 69.0 N/A N/A PhEt 168.2, 167. 7 186.5, 184.4 60.6, 63.8 N/A 19.7, 25.1 Bn 168.8, 168.9 186.1, 185.1 N/A 57.2, 55.1 N/A Table 3 17 Ch aracteristic IR CO stretching frequencies of 22 R R CO 1 (cm 1 ) CO 2 (cm 1 ) Me 2084 2026 i Pr 2083 2028 MeBn 2086 2036 diPh 2086 2 032 PhEt 207 6 201 7 Bn 2075 2011 idiPh 2078 2022

PAGE 115

115 proton and carbon are magnetically and chemically inequivalent supporting C 1 symmetric complexes. In addition the observation of two distinct C O stretches in the IR data corroborate the symmetry. The large disparity be tween the bridge proton resonances (2 2.5 ppm) further highlight s the asymmetry in 22 R The 13 C NMR data for the carbene carbon resonance and the IR data of the CO stretch demonstrate the difference in donor and accepting ability of the azole rings (be nzimidazole versus imidazole). The difference between imidazole carbene carbon resonances and benzimidazole carbene carbon resonaces are approximately 15 ppm. The difference between imidazole C O stretches and benzimidazole C O stretches are approximatel y 10 15 cm 1 These differences are actually not very large and represent a relatively small absolute difference in electron donor properties 98 ,99 Figure 3 11 depicts the DEA NHC rhodium dicarbonyl complex 23 Me However, the formation of 23 Me occurs w ithin 5 10 min as opposed to the 16 h required for the formation of 22 R The complex is difficult to isolate If the counter ion is a halogen or a halogenated salt is present during the formation of 23 Me then it will decompose within 10 min under all conditions. Recall that forming [18 Me]OTf suffers from a 5% yield, thus forming 23 Me only occurs in mg amounts. Performing a counter ion exchange of iodide for triflate in the higher yielding [18 Me]I requires removal of all AgI t o ensure that a full e xchange of the iodide occurs before stopping the reaction. Unfortunately the method h as not been pe rfected yet, and 23 Me must be formed using the lower yielding intermediate, [18 Me]OTf The spectroscopic data supports the identity of 23 Me ( T able 3 18 ).

PAGE 116

116 Table 3 18 Selected NMR data for 23 Me 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi; J (Hz)) b NCHC H (5.39, 5.43; s ) N C N (183.3, 177.9 ; d; 45 ) C H 3 (3.88, 4.13 ; s) R C O (186.1, 186.9; d; 56 ) N C H (7.35, 4.86; d ; 10) C H 3 (37.7, 34.3 ; s) a Referenced to DMSO d 6 at 2.50 ppm, b Referenced to DMSO d 6 at 39.86 ppm. Several 2D experiments, gdq COSY, gHMQC, gHMBC and NOESY, allow for the absolute assignment of all unique carbon and proton signals in 22 R and 23 R During the characterization process of 22 Me the NOESY spectrum at 25 C taken with a mixing t ime of 1 s display s several exchange cross peaks between protons with similar connectivity but different stereochemistry, e.g. H a H b or H c H d Of the two methylene protons, H c and H d on the corresponding carbon, the one with two large coupling constant s, therefore anti periplanar to H a exchanges with the proton (H b ) exhibiting only one large coupling constant on the corresponding carbon. At 15 C the exchange rate is negligible and the unique carbon and proton signals are unequivically assigned via an nOe difference experiment (cyclon O e). The exchange rates at higher temperatures imply 22 Me is fluxional. This fluxional behavior is a type of isomerization. Figure 3 13A depicts the proposed ring inversion which is best described as a degenerate isomer ism. In the first step, one of the benzimidazole rings moves into a parallel position with respect to the anthracene backbone. The rhodium center then moves upwards. Finally, the rhodium moves to the opposite side of the backbone and the benzimidazole r ing swings back into a perpendicular position. Figure 3 13B displays the top view of the degenerate isomerization for easier viewing of the overall effect. Notice that the H e proton exchanges in space relative to the backbone via the d egenerate isomeriza tion. A l so, the methylene protons, H a and H b exchange stereochemical positions. This mechanism is consistent with an nOe difference

PAGE 117

117 Figure 3 13. A) Proposed mechanism for the degenerate isomerization of 22 Me B) Top view of the degenerate isomerizati on of 22 Me experiment in which the exchange rates a re determined at 5, 25 and 45 C. The barrier to ring inversion is calculated as 16.9 +/ 1 .8 kcal/mol = 7(6) cal/mol K and is also consistent with the proposed mechanism. At the transition state, one benz imidazole must align parallel to the backbone. A small and negative entropy of activation fits the increased order at the trans ition state. However, the data interpretation is made cautiously. The degenerate isomerization is present in many of the other dicarbonyl complexes as well and the activation parameters are measured in the same way as outlined for 22 Me Table 3 19 summarizes the activation parameters for seven complexes of 22 R Notice that 22 o xylyl and 23 Me are not lis ted in the T able 3 19

PAGE 118

118 Table 3 19 Activation parameters for 22 R Complex H (kcal/mol) S (cal/mole K) G (25 C) (kcal /mol) 22 Me 14.0 +/ 1.8 9.7 +/ 6 16.9 +/ 1.8 22 i Pr 17.1 +/ 1.8 2.2 +/ 6 17.8 +/ 1.8 22 MeBn 19.5 +/ 1.8 3.3 +/ 6 18.5 +/ 1.8 22 diPh 16.9 +/ 1.8 4.9 +/ 6 18.4 +/ 1.8 22 PhEt 7.02 +/ 1.8 3 5.7 +/ 6 17.7 +/ 1.8 22 Bn 13.7 +/ 1.8 9.9 +/ 6 16.6 +/ 1.8 22 idiPh 10.9 +/ 1.8 21.0 +/ 6 17.1 +/ 1.8 22 o xylyl cannot undergo an isomerization because of the cyclophane structure and 23 Me did not display an isomerization at temperatures o f up to 100 C (the VT limits of the NMR machine). However, 23 Me may exhibit an isomerization at much high temperat ures. The interpretation of the s e data is limited to comparing the barriers to ring inversion of the complexes ( ) to each other. The activation entropies cannot be compared to each other to form arguments about the transition state of each complex because of the limitations of the experimental method Figure 3 14 depicts an isokinetic relationship exists when p lotting the enthalpy data versus the entropic data 256,257 This Figure 3 14 Isokinetic relationship between all 22 R complexes.

PAGE 119

119 means that all the complexes are undergoing the isomerization through the same me chanism as opposed to different mechanisms. A nother possible mechanism for the isomerization might involve a bond breaking event, in particular at the carbene metal bond. T his is unlikely for two reasons. First if this were the case, the isomerization event in 23 Me would occur at lower temperatures not higher, due to the additional strain within the coordination sphere Second, the crystal structure of 22 Me is one of the intermediates in the proposed isomerization mechanism. 3.8 Synthesis and Chara cterization of Iridium(diNHC) C omplexes Synthesis of third row transition metal complexes is imperative for comparative studies with the second row rhodium complexes. Iridium is a logical choice as it is in the same family as rhodium. The Iridium analogu e s of 17 R are also synthesized by in situ methods. C omplex 24 R is prepared by treating 1 equivalent of 4 R with 2.1 equivalents of Cs 2 CO 3 and 1 equivalent of 1,5 cyclooctadiene iridium acetylac e tonate ((cod)Ir(acac)) in THF at room temperature overnigh t ( Figure 3 13) After stirring the solution it is filtered and then the filtrate is slow ly dropped into 40 mL of hexanes and then filtered again The precipitate is was hed with diethylether providing an orange Figure 3 15. General synthetic scheme fo r iridium complexes 24 R

PAGE 120

120 powder in 99 and 89 % yield (R = i Pr and diPh, respectively) Multinuclear NMR techniques, EA, MS and X ray crystallography confirm the identity and purity of 24 i Pr and 24 diPh (table s 3 20, 3 21, 3 22 and 3 23 ). Table 3 20 Sele cted NMR data for 24 i Pr 1 H ( (ppm); multi; J (Hz)) a 13 C{ 1 H} ( ppm)) b C H 3 (1.80, 1.66, 1.60, 0.9; d; 6 ) C H 3 (21.0, 20.9 ; s) C H (CH 3 ) 2 (6.23, 5.05; sept; 6) C H(CH 3 ) 2 ( 55.7, 54.8; s) CC H C (4.17, 4.83; d; 3) N C N ( 188.1, 183.8, s) NCH 2 C H (2.36, 3.99; ddd, 6, 6, 1) C F 3 (121.0; q; 321 ) Ir C H (69.2, 75.3, 79.1, 85.6, s) a Referenced to CDCl 3 at 7.27 ppm, b Referenced to CDCl 3 at 77.00 ppm. Table 3 21 MS and EA data for 24 i Pr MS ([ Ir C 4 6 H 5 0 N 4 ] + ) (HR ESI FTICR+) EA ( Ir C 4 7 H 5 0 N 4 SO 3 F 3 ) Calculated (m/z): Calculated: 849.3636 C, 56.43%; H 5.05%; N, 5.60 % Found (m/z): Found: 849.3572 C, 56.21%; H, 5.08%; N, 5.25 % Table 3 22 Selected bond lengths and b ond Angles for 24 i Pr Bond Length () Angle Angle ( ) Ir(1) C(24) 2.056(9) C(40) Ir(1) C(44) 89.8(6) Ir(1) C(35) 2.081(10) C(43) Ir (1) C(44) 37.4(4) Ir(1) C(39) 2.165(10) N(1) C(24) N(2) 107.3(8) Ir(1) C(43) 2.172(9) N(2) C(25) C(26) 107.9(8) Ir(1) C(40) 2.228(11) N(1) C(17) C(16) 112.3(8) Ir(1) C(44) 2.229(10) N(1) C(17) 1.477(11) N(1) C(24) 1.503(12) N(2) C(25) 1.355(11 ) Table 3 23 Selected NMR and EA data for 24 diPh 1 H ( ppm; multi; J (Hz)) a 13 C{ 1 H} ( ppm; multi) b EA (IrC 67 H 58 N 4 SO 3 F 3 ) NCH 2 CHC H (4.41, 4.99, s) N C N (189.9, 186.9; s) Calculated: NC H C (8.38, s) Ir C H (72.3, 75.1, 81.3, 85.8, s) C, 65.24%; H, 4.69%; N, 4.48% Found: C, 65.24%; H, 4.59%; N, 4.40% a Refer enced to CD Cl 3 at 7.16 ppm, b Referenced to CD Cl 3 at 77.0 ppm.

PAGE 121

121 Spectroscopic 1 H NMR data for 24 i Pr exhibit a large number of resonances, indicating the complex is C 1 symmetric. Some of the more recognizable signals include the isopropyl methine proton sig nals as septets at 5.05 and 6.23 ppm. The four corresponding isopropyl methyl protons resonate as doublets at 0.91, 1.66, 1.80 and 2.02 ppm ( J = 6 Hz). The bridgehead protons resonate as the doublets with J values of 3 Hz. The 13 C{ 1 H} NMR spectrum displ ays diagnostic signals at 188.1 and 183.8 ppm attributable to the carbene carbons; the four cod olefinic carbons resonate at 69.2, 75.3, 79.1 and 85.6 ppm. A quartet resonance at 121.0 ppm is attributable to the carbon in the triflate counter ion. A sing le crystal X ray diffraction experiment demonstrates that the solid state symmetry of 24 i Pr agrees with the solution phase C 1 symmetry ( Figure 3 16 ). Selected crystallographic data are given in Table 3 22. The asymmetric unit consists of two Figure 3 16 Molecular s tructure of 24 i Pr with ellipsoids drawn at the 50% probabili ty level. Hydrogen atoms and the triflate counter ion removed for clarity

PAGE 122

122 crystallographically independent molecules in the Pn space group. The DEAM NHC and cod ligands coordinat e cis to the iridium center to generate a square planar geometry (e.g. C40 Ir1 C44 = 89.8(6) ). The Ir C(carbene NHC ) bond lengths are 2.056(9) and 2.081(10) Herrmann et al. report a similar complex (NHC)Ir(cod)Cl, with an Ir C(NHC) bond length of 2.0 22(7) 227 Shi et al. report shorter Ir(III) C( carbene NHC ) bond lengths for the BINAM NHC ligand (1.996(8) and 2.001(8) ), where the NHC is a 1 methylbenzimidazolidine 2 ylidene, reflecting the contracted ion radius between Ir I and Ir III 253 The two different Ir C( carbene NHC ) bond lengths in 24 i Pr though subtle, reflects the approximate 12 difference in the carbene twist angles of the two heterocycles. The average torsion angle between the hydrogen atoms ( H13 C13 C15 H15 and H14 C14 C16 H16) attached to the br idge and bridgehead carbons is approximately 70 thus supporting the small coupling constant between the bridge and bridgehead protons (3 Hz). The 1 H NMR spectrum of 24 diPh reveals an intricate pattern of resonances, attribu table to a C 1 symmetric complex. The spectrum displays two distinct bridgehead proton resonances at 4.41 and 4.99 ppm, due to the lowered symmetry. One of the diphenylmethine proton signals is located at 8.38 ppm but the second proton is indistinguishabl e from nearby aromatic protons. The 13 C{ 1 H} NMR spectrum exhibits two prominent resonances at 189.8 and 186.9 ppm, corresponding to the carbene carbons. The iridium bound cod olefin carbons resonate at 7 2.3, 75.1, 81.3 and 85.8 ppm. These complexes will be tested as a catalysts in enantioselective hydroformylation (see Chapter 5)

PAGE 123

123 3.9 Synthesis and Characterization of Palladium(diNHC) C omplexes Recall from S ecton 3.4 that Shi et al prepared Pd(diNHC) complexes that were successful in many enantioselecti ve coupling reactions. As NHC ligands (on palladium) perform better than PR 3 ligands in cross coupling reactions 33 we therefore wanted to synthes ize palladium complexes with the DEA and DEAM NHC ligands. T hree di fferent types of monometallic complexes were generated Complex 25 R is a square planar [(DEAM diNHC)Pd( 3 C 3 H 5 )]OTf (C 3 H 5 = allyl) Complex 26 diPh is a square planar [(DEAM diNHC)Pd( acac )]OTf (acac = acetylacetonate) Finally complex 27 Me is a square plana r (DEA diNHC)Pd( OAc ) 2 (OAc = acetate). The al lyl complexes are prepared in a one pot synthesis T reatin g 0.6 eq. of [Pd( 3 C 3 H 5 )Cl] 2 with an equivalent of 4 o xylyl and 2.2 eq. KN(Si(CH 3 ) 3 ) 2 at 35 C provides 25 o xylyl as colorless needles in 37% yield after recrystallization from THF:CHCl 3 (3:1) ( Figure 3 17 ). The 1 H NMR spectrum of 25 o xylyl reve als a complex Figure 3 17. Synthetic scheme for 25 o xylyl combination of signals attributable to two confomers in which the allyl fragment orients endo versus exo with respect to the o xylyl ring. Distinc t resonances for the two isomers attributable to the o xylyl diastereotopic methylene protons appear as doublets at 5.48, 5.25, 6.06, and 5.21 ppm for the exo isomer, and 5.94, 5.13, 5.19, and 5.37

PAGE 124

124 ppm for the endo isomer An nOe between H 20 and H 10 ( Figure 3 18) i dentifies the major species as the exo isomer; nOes between H 21 and H 10/H 11, and between H 19 and H 10 in the minor species demonstrate it is endo Initially, upon isolation of 25 o xylyl the 1 H NMR spectrum indicates the relative ratio of endo / exo is 40:60 but within 18 h the ratio c hanges to 19:81. A v ariable temperature 1 H NMR experim ent in the range from 50 to 110 C w as conduc ted once the mixture reached equilibrium The results did not demonstrate any coalescence or broadening of resonances, and the ratio remained constant over the 170 C temperature range. Combustion analysis h igh resolution MS and X ray crystallography support the identity of 25 o xylyl Table 3 24. Selected bond lengths and bond a ngles for 25 o xylyl Bond Length () Angle Angle ( ) Pd1 C1 2.034(2) C1 Pd C18 84.18(8) Pd1 C18 2.036(2) C1 Pd1 C19 104.31(9) Pd1 C20 2.151(3) C19 Pd1 C21 68.1(1) Pd1 2.181(12) C18 Pd1 C18 84.18(8) Pd1 C19 2.171(2) C1 Pd1 C21 172.33(9) Pd1 C21 2.179(2) C18 Pd1 C19 171.42(9) A single crystal X ray diffraction experiment c onfirms the overall identity of 25 o xylyl and the exact details of the confomers. Complex 25 o xylyl comprises a C 1 symmetric distorted square planar Pd(II) ion coordinated by the cyclophane diNHC and one 3 C 3 H 5 ligand. The solid sta te structure exhibi t s a disorder in the central allyl carbon (C 20/C and, consistent with the solution state observation, the site occupany refined with dependent occupation factors; e ndo to ex o ratio of 0.22(1) to 0.78(1), respectively ( Figure 3 18 ). The most interest ing feature of this complex is the o xylyl arene ring hangs over the palladium center and allyl ligand. The distance from the Pd atom to the centroid of the o xylyl ring is 3.297(1) Clearly, this structural

PAGE 125

125 Figure 3 18. Molecular s tructure of 25 o xylyl with ellipsoids drawn at the 50% probabili ty level. Hydrogen atoms and triflate counter ion removed for clarity feature forces the allyl down resulting in the higher ratio of the exo isomer and similar distinctions are expected during chiral induct ion steps. Often diNHC cyclophanes that chelate have the arene ring directed away from the metal center. There are two other examples in which the arene ring hangs above the metal ion, and in one instance the ring is close enough to donate electron densi ty. 179,182 This feature may allow 25 o xylyl to obtain additional electron density during catalysis when needed, for example 25 o xylyl may retain reduced Pd 0 and avoid Pd black residue formation. For reference table 3 24 outlines key bond lengths and an gles in 25 o xylyl The other derivatives of 25 R (R = i Pr, MeBn, diPh, PhEt) are synthesized similar to 25 o xylyl except the base used is cesium carbonate. An equivalent of 4 R (R = i Pr, diPh, MeBn and PhEt) is treated with 2. 2 equivalents of cesium ca rbonate and 0.6 equivalents of [Pd( 3 C 3 H 5 )Cl] 2 The solution is stirred at room temperature overnight

PAGE 126

126 and then the cesium chloride and cesium triflate are filtered from the solution A white precipitate forms upon dropping the f iltrate into ether and is isolated by filtration. Typically 25 R derivatives are analytically pure after this procedure On occasion full conversion is not achieved due to inco nsistent stirring. I n such cases addition of more base and palladium completes the reaction The 1 H a nd 13 C NMR spectra of 25 R each reveal numerous resonances similar to 25 o xylyl Two C 1 symmetric compounds isomers exist 25 R exo and 25 R endo making full assignment difficult. However, key resonances, for instance the Pd carbene carbon between 180 an d 190 ppm, provide evidence that the carbene ligands attach to the palladium metal center. Therefore EA, MS and X ray crystallography serve as the main tools to identify the 25 R complexes Figure 3 19 depicts the X ray structure of the N substituted dip henylmethane derivative 25 diPh The structure exhibits a disorder at the C 60 (C Figure 3 19. Molecular s tructure of 25 diPh with ellipsoids drawn at the 50% probabili ty level. Triflate counter ion removed for clarity

PAGE 127

127 sol ution NMR data and supporting the assignment of exo/endo allyl structures. Table 3 25 summarizes i mportant bond lengths and angles for 25 diPh Table 3 25. Selected bond lengths and bond a ngles for 25 diPh Bond Length () Angle Angle ( ) Pd1 C24 2.053(3 ) C24 Pd1 C45 97.21(13) Pd1 C45 2.086(3) C24 Pd1 C60 126.11(19) Pd1 C60' 2.124(15) C45 Pd1 C60 130.88(19) Pd1 C60 2.150(6) C24 Pd1 C59 95.13(15) Pd1 C59 2.154(4) C45 Pd1 C59 167.63(15) Pd1 C61 2.184(4) C24 Pd1 C61 162.26(15) C45 Pd1 C61 100.17 (15) C60 Pd1 C61 36.8(2) C59 Pd1 C61 67.46(17) Detailed characterization of complex 25 PhEt by NMR spectroscopic techniques revealed that the complex is not a mix of 25 PhEt endo and 25 PhEt exo but rather a mixture of diasteromers of a diallyl subst ituted complex. Figure 3 20 displays the possible diasteromer configurations for the diallyl substuted 25 PhEt as well as the ratio of each isomer observed by NMR after 5 d. The ratios were determined by integrating one of the bridgehead protons: 4.24 pp m, 1.0 ( S,S,S,S ); 4.29 ppm, 1.9 ( S,S,S,R ); 4.36 ppm, 1.9 ( S,S,R,S ); 4.42 ppm, 3.3 ( S,S,R,R ). The location of the of the bridgehead Figure 3 20. Possible configurations of 25 PhEt as a diallyl complex and observed ratios of each diastereomer after 5 d.

PAGE 128

128 resonances could be switched for the ( S,S,S,R ) and ( S,S,R,S ) diastereomers. Note, this complex is currently still under investigation. The synthesis of c omplex 26 diPh i nvolves treating 1 equivalent of 4 diPh with an equivalent of palladium bis (acetylacet onate) (Pd(acac) 2 ) and 2.1 equivalents of cesium carbonate ( Figure 3 17 displays a general scheme, but with a different metal precursor and base). The reaction is stirred overnight at room temperature and then filtered. The filtrate is dropped into hexa nes to form a white precipitate. The precipitate is then washed with ether to provide 26 diPh as a pale yellow powder in 79% yield. 1D NMR and MS techniques determine the identity of 26 diPh ( T able 3 26). Table 3 26 Selected NMR data for 26 diPh 1 H ( (ppm), J (Hz)) a 13 C{ 1 H} ( ppm)) b C H 3 (1.71, 1.84; s) N C N (187.7, 186.1 ; s ) OCC H (5.23; s) C O (167.0, 166.1 ; s ) NCH 2 C H (2.17, 6.14; dd, 6, 6) C H 3 (26.5, 26.3 ; s ) CC H C (4.17, 5.05, s) N C H (68.3, 67.9 ; s ) NC H (8.22, s) OC C H (101.0 ; s ) a Referenced to CDCl 3 at 7.27 ppm, b Referenced to CDCl 3 at 77.00 ppm. The 1 H and 13 C NMR spectra reveal a C 1 symmetric complex. Several unique 1 H NMR resonances elucidate the structure of 26 diPh The acac methyl proton signals resonate at 1.71 and 1.84 ppm, and the aca c methine proton resonates in the expected location (5.23 ppm ) The bridgehead protons resonate at 2.17 and 6.14 ppm, and the large 4 ppm difference in location highlights the distinct environment provided by the chiral environment of 26 diPh One of the diphenylmethine proton signals resonates at 8.22 ppm, while t he other proton resonates in a region with several aromatic protons that obscures the exact loc ation. The 13 C NMR spectrum also exhibits several diagnostic signals. The carbene carbons resonat e at 187.7 and 186.1 ppm. S ignals at 26.3 and 26.5 ppm are attributable to the acac methyl carbons and the corresponding

PAGE 129

129 acac methine carbon resonates at 101.0 ppm. The acac ketone carbons appear in the appropriate region as well (167.0 and 166.1 ppm). The diphenylmethine carbon s resonate at 68.3 and 67.9 ppm. Recall t he same carbons resonate in the range of 67 68 ppm in the rhodium complexes. The DEA diNHC palladium complex is synthesized in a one pot synthesis ( Figure 3 21 ). An equivalent of [ 14 Me]I 2 is treated w ith an equivalen t of palladium diacetate in Figure 3 21 General scheme for the synthesis of 27 Me THF under an inert atmosphere. After refluxing the solution under argon for 16 h, the solvent is removed in vacuo. The solid is redissolv ed in 3:1 CH 2 Cl 2 :CH 3 CN and excess silver acetate (more than 2 equivalents) is added to convert the resulting diiodide species back into a diacetate species. The reaction is stirred for an additional 3 h and then filtered through Celite The filtrate i s kept and the solvent removed. Crystals grown by a slow diffusion of hexanes into a 3:1 chloroform:benzene solution of 27 Me yield an off white solid in 34% yield. The 1 H and 13 C NMR spectra determine the identity of 27 Me ( T able 3 27). The NMR spectra are similar to all other metal complexes and exhibit a number of resonances that indicate the symmetry is C 1 symmetric. There are four methyl proton resonances grouped into two different areas of the 1 H NMR spectrum; 1.62 and 1.94 ppm are attributable to the acetate methyl protons, and 3.96 and 4.30 ppm are

PAGE 130

130 Table 3 27 Selected NMR data for 27 Me 1 H ( (ppm), J (Hz)) a 13 C{ 1 H} ( ppm)) b OCC H 3 (1.62, 1.94; s) N C N (174.7, 176.8; s) NC H 3 (3.96, 4.30; s) C O (168.2, 177.0; s) NC H (4.53, 8.87; d; 6) OC C H 3 (23.2, 24.6; s) CC H C (5.26, 5.31; s) N C H 3 (33.3, 35.8; s) a Referenced to CDCl 3 at 7.27 ppm, b Referenc ed to CDCl 3 at 77.00 ppm. attributable to to the methyl protons attached to the nitrogen atom of the NHC. The bridge protons resonate at 4.53 and 8.87 ppm. The large separation of these two resonances is again attributable to the asymmetry of the molecul e and the palladium center is likely closer in proximaty to the deshielded proton that resonates at 8.87 ppm The palladium center gets much closer to one of these protons because the DEA ligand lack s a methylene linker connecting the anthracene fragment to the NHC resulting in the unusual downfield shift for an aliphatic proton at 8.87 ppm The 13 C NMR spectrum also reveals characteristic resonances. The signals at 174.7 and 176.8 ppm are attributable to carbene carbons. The acetate ketone carbon reson ances appear at 168.2 and 177.0 ppm. There are four methyl carbon resonances grouped into two different areas of the 13 C NMR spectrum. The acetate methyl carbons ( 23.2 and 24.6 ppm) resonate upfield of the methyl carbons attached to the nitrogen atom of the NHC (33.3 and 35.8 ppm). 3.10 Conclusions In summary we synthesized and characterized several new chiral rhodium, iridium and palladium complexes. Upon coordination of the diNHC ligand to the metal center the overall symmetry changes from C 2 to C 1 M ost of the complexes were synt hesized in one pot a nd in many cases allowed easy access to the metal complex. The dicarbonyl complexes 22 R and 23 Me are sensitive to the presence of halogens during their formation. The formation and subsequent decomposit ion of [23 Me]I is observed

PAGE 131

131 within in a 10 min period by 1 H NMR spectroscopy. Following the 1 H NMR over a 2 h period reveals [23 Me]I decomposes through of intermediates before coming to an unidentified product(s). Complex [23 Me] OTf do es not exhibit thi s substitution behavior. During the characterization process we discovered a degerate isomerization occurs in the dicarbonyl complexes 22 R but not 23 Me The free energy of the isomerization or barrier to ring flipping ranged from 16.6 18.5 kcal/mol. T he isomeri zation may be a good metric of ligand flexibility The fact that chelating bidentate ancillary olefin ligands in 17 R and 18 Bn do not exhibit the iso merization lends credence to the idea of the carbonyl groups mimicking monodentate substrates t o an extent. We intend to correlate the barrier to degenerate isomerization (rate of isomerization) and the size of the N alkyl group to ligand rigidity and then to enantioselectivity. The isokinetic relationship confirms only one mechanism is operating during the isomerization adding to the potential for using G as a metric to relate sterics and enantioselectivity. The characterization of the palladium complexes also revealed unexpected results. The allyl complexes 25 R exhibited two different isomers an exo and an endo. Initially the isomers are present in a 60:40 mixture ( exo : endo ), but if left in solution long enough the mixture reaches an equilibrium of approximately 80:20. The disorder and X ray refinement parameters support the solution phase characterization results. Presumably the first step in a catalytic cycle will involve the loss of the allyl. Therefore, initially the resulting active catalyst will be equivalent regardless of whether it initiates from the exo or endo species

PAGE 132

132 CHAPTER 4 ENANTIOSELECTIVE HYDROGENATION, HYDROSILYLATION AND HYDROGEN TRANSFER CATALYSIS. 4.1 Introduction to C atalysis A catalyst by definition is a material that increases the rate of a reaction without consuming itself during the reaction. Catalysts come in two forms, homogeneous and heterogeneous, each with general advantages and disadvantages. Homogeneous catalysts are usually discrete molecular species that are in the same phase as the reactants. These catalysts allow for rapid diffusion of reag ents a nd heat into solution as well as greater control over the three dimensional (3D) structure due to the orientation of the bound ligands. As a result of the discrete 3D structure these catalysts have a propensity to provide higher reactivity and selectivit y during transformations Detrimental properties include the inability to regenerate the catalyst after d ecomposition and separating the catalyst from the product. In contrast, the disadvantages of homogeneous catalysts are the benefits of heterogeneous catalysts; low cost (absence of ligands), robustness, ease in separation and recyclability. The main disadvantage includes lack of uniformity and 3D architecture that l ead s to lower product selectivities and enantioselectivities compared to homogeneous ca talysts. 252 Regardless of the type of cat alyst, both provide rate enhancements over the unc atalyzed reactions. Figure 4 1 depicts a single step reaction coordinate diagram of how a catalyst speeds t he rate of reaction Notice that a catalyst only decreases the activation (transition state) energy and not the thermodynamic ground state properti es. Therefore changing the equilibrium of a transformation with a catalyst is impossible, except in the specific case of an exothermic reaction where the catalyst lowers the

PAGE 133

133 Figure 4 1. General reaction coordinate diagram for a one step catalyzed and un catalyzed reaction. kinetic phenomenon. Kinetic examination is simply studying how fast or slo w a transformation proceeds Common ways to quantify the efficacy of cata lysts are turnover numb ers (TON) and turnover frequencie s (TOF). TON is the moles of product formed per moles of catalyst added and the TOF is the TON per time unit. TOFs often change over the course of a reaction and thus the average TOF is the value re ported. These numbers can be somewhat misleading. A key assumption is that the moles of catalyst added are un iform in structure. Usually a pre catalyst is added that then proceeds through a series of reactions outside the catalytic cycle to form a imal species Along the way, however, there may be several less active sp ecies capable of turning over the reaction with rates that are significant or insignificant compared to the rate of the optimal active catalyst or catalyst deactivation pathw ays (hence the averaging of TOFs).

PAGE 134

134 Another possibility is that only 10 20% of the catalyst added becomes active resulting in an incorrect error in the actual TON and TOF. Identifying the active catalyst and its possible activation and deactivation pathwa ys is ideal. The solution is determining the exact nature of the catalyst and therein lies a significant problem in the field of catalysis. Halpern yst or intermediates observed are often not the true catalyst and that the observed species lead to unproductive pathways 258 264 With this in mind, determining the true identity of a catalyst is indeed difficult. From an industrial point of view the function of the catalyst species is often more important than the actual identity. From a basic research point of view, learning how the catalysts work is equally as important as the identity so new and better catalysts can be developed. In fact, several excellent contributions exist that outline methods to help solve the catalyst identity problem 265 271 A number of researchers developed tests for identifying a catalyst as homogeneous or heterogeneous. The mercury poisoning test is by far the most widely used test. This test amalgamates heterogeneous particulate with mercury to sequester its catalytic activity 272 False positives can occur if the mercury bead is not evenly distributed throughout the vessel though Also mercury does not interact with all transition metals in the same way, thus some metals such as iridium are more difficult to 273 (dibenzol[a,e] cyclooctatriene, poisons homogeneous catalysts). Again, false positives and scope present a problem. Transmission elec tron microscopy (TEM) provides strong evidence for heterogeneous catalysis, but the material observed could be decomposed and precipitated homogeneous catalyst. Other less common tests include

PAGE 135

135 phase test 274 275,276 centrifugation, and 267 Like the pre vious discussed tests, e ach of these test s has associated strengths and weaknesses. Finke argues that perhaps the most important data is the kinetic profile itself as catalysis is wholly a kinetic phenomenon. 266 Sigmoidal plots of % product formation versus tim e pro vides strong evidence for heterogeneous catalysis. Howeve r, absence of sigmoidal kinetic profiles does not automatically mean homogeneous catalysis. Finke and Widegren outlined one of the best methods for identifying a catalyst as homogeneous or heterogeneous. 266 An underlying concept for his method is that no single test on its own merits can designate the identity and provide an absolute answer Therefore combining the results of many tests provide s a better picture of the catalyst identity and operation Thus, Finke sugge sted that a combination of TEM, rate profile and poison ing tests provide the best method for solving the catalyst identity problem. The more tests the better, and though obvious, any conclusion drawn should fit all the data, even if for instance poisoning tests appear to contradict one another. 266 To validate this method, Finke et al revisited several literature examples where the catalyst identity was questionable. Finke et al often found that the catalyst proposed by the original authors was not the true catalyst, est ablishing future chemists should be more cautious in their claims. 265 271 4.2 Fundamentals of Enantioselective C atalysis The pioneering hydrogenation work of Knowles and Noyori generated intense research in enanti oselective catalysis. Enantioselective catalysis covers two main types of reactions; transforming prochiral olefins with or without enantiotopic groups and dynamic kinetic resolutions. Figure 4 2 displays a free energy versus reaction

PAGE 136

136 Figure 4 2. Gen eral reaction coordinate diagram for a n enantioselective catalyzed reaction coordinate diagram of a general one step enantioselective reaction transformed by a non racemic chiral catalyst, with each of the two pathways representing the different enantiome rs. This diagram represents a very simple case, as most reactions catalyzed by molecular species involve multiple steps. The diagram illustrates that enantiose lectivity in the product arises because one enantiomer reacts faster than the R > S ). The origin of this lies in the fact that two diastereotopic transition states form. Diastereomers obviously have different properties because of spatial arr angements, thus a diastereotopic transition state represent s different spatial arrangement s between the cat alyst and substrate. As a result small energy differences between the two enantiomers ( transition state s ) arise A bigger energy difference ( G ) between the transition states will result in a higher % e.e. The G value is not linearly correlated to e.e., but rathe r follows a typical first order concentration versus time kinetic plot 252 For instance a 0.5 kcal/mole difference

PAGE 137

137 in transition states typically provides a pproximately 40% e.e. A 1.38 and 2 k cal/mol difference offers appro ximate e.e .s of 80% and 90%, respectively. Finally, an G of 3.5 kcal/mol and higher results in an e.e. of greater t han 99%. Enantioselectivity in many cases is sensitive to solvent, temperature, reagents and pressure effects Temperature variation is the most common method for altering the % e.e. A s a ge neral rule lower temperatur es often lead to increased e.e. but the downside is that decreasing temp erature leads to a reduction in reaction rate Thus longer times are necessary for achieving full conversion, providing more time for catalyst decomposit ion and other non productive pathways to occur Generally as the G increases, the temperature effects play a greater role. The optimal G is around 1 1.4 kcal/mole. For instance at 1 kcal/mole over a temperature range of 60 to 100 C results in a 30% increase in e.e. 252 However, there are a few studies that show increasing e.e. with temperature. 276 289 One stu dy shows an inversion point in the e.e. with increasing temperature. 290 As an important note these studies involve homogeneous catalysts only. Finally a single enantiomer of the catalyst will no t always produce a product of the same enantiomer. 4.3 Introduction to Hydrogenation R eactions Sabatier first explored metal catalyzed hydrogenation of alkenes at the beginning of the 20 th century. The catalysts were heterogeneous as opposed to homogeneou s. In 1965 Wilkinson introduced rhodium (I) tris (triphenylphosphine) chloride ( Rh(PPh 3 ) 3 Cl ) the fi rst homogeneous catalyst that hydrogenate d alkenes at room temperature and 1 bar of hydrogen. 6 Figure 4.3 display s a representative olefin hydrogena tion cycle using catalyst here and the

PAGE 138

138 proposed active catalyst only contains two PR 3 ligands. The oxidative addition (OA), coordination, insertion and reductive elimination (RE) steps are c ommon to many and paved the way for enantioselective catalysis. As mentioned in Chapter 1, NHCs are a natural PR 3 replacement. Figure 4 3. Prototypical olefin hydrogena Robert Grubbs and coworkers sucessfully demonstrated the utility of replacing PR 3 with an NHC in their ruthenium s econd generation olefin metathesis catalyst. 24,213 215 N umero us additional advances in catalysis resulted because of trialkylphosphine ligand for a bulky NHC (such as 1,3 di(1,3,5 trimethylphenyl) imidazol 2 ylidene ( IMes ) ) In particular, Pd(NHC) catalysts exhibit high activity and selectivity in cross coupling reactions. 33 Hydrogenation was one of the first commericially catalyzed reactions and M PR 3 catalysts are ubiqu itous in enantioselective hydrogenation 14,15 Therefore, attempting the PR 3 / NHC switch in hydrogenation reactions is a logical

PAGE 139

139 starting point. A lkene hydrogenation with monodentate or bidentate NHC complexes yields modest results compared to analogous phosphorous based catalysts. 59,192,221,291 308 4.4 M NHC Catalyst Decomposition P athways A common decomposition pathway for NHCs under reducing conditions (hydrogenation) is NHC reductive elimination from the metal center to form the imid azolium salt [NHC H] + ( Figure 4 4 ). 309 Perhap s a s a resul t to date there are Figure 4 4. NHC complex. only two example s of enanti oselective alkene hydrogenation with NHC ligands (monodentate or bidentate) ; one provided low enantioselectivity (<10%) 300 and the other yielded >99% e.e. 241 The decomposition pathway is not limited to C H bond elimination though. In 1998, Cavell et al. demonstrated th at [( NHC)Pd(Me)cod] + (where NHC = 1,3 dimethyl im i dazol 2 ylidene) decomposes into the 1,2,3 trimethylimidazolium salt, Pd 0 and free 1,5 cyclooctadiene (cod). 310 Two years later, Cavell et al. treated [(TMIY)Pd(Me)Cl] 2 (TMIY = 1,3,4,5 tetrameth yl im i dazol 2 ylidene) with silver tetrafluoroborate and CO at 5 0 C, then warmed the mixture to 20 C. The y observed th e major 2 acyl imidazolium and minor 2 methyl imidazolium salt products 311 Over the next decade mounting experimental 309 324 and theoretical 110,211,325 327 evidence implicated RE as the major catalyst decomposition pathway for NHC complexes. Van Rensburg et al. observed C H RE of the imidazolium salt [IMes H] + from [(IMes)Co(CO) 3 ] 2 under hydroformylation conditions. 318,319 This decomposition

PAGE 140

140 pathway is not exclusive to the late transiton metals, considering Bullock et al demonstrated IMes reductively eliminates from [Cp(IMes )W(CO) 2 ][B(C 6 F 5 ) 4 ] as [IMes H][B(C 6 F 5 ) 4 ] during ketone hydrogenation. 321 Cave ll and Yates computationally explored some factors that prevent NHC RE 211,312,325 327 The activation barrier to RE increases by 5.6 kcal/mol when the N alkyl substituent changes from Cl < H < Ph < Me < Cy < i Pr < Np < t Bu. Electron donating N substituents make the Pd carbene bond more resilient toward RE and vice versa for electron withdrawing groups. 325 Changes in the carbene twist angle show only small changes in the RE activation energies due to a cancelling effect. As the carbene twist angle increases from 15 to 90 the relative barriers to R E decrease, but the ground state energies also decrease due to steric relief. 326 In a model complex with two PR 3 and one NHC ligand calculations indicate the angle between the two PMe 3 spectat or ligands, opposite the NHC, are inversely proportional to the RE activation energy. From these studies, Cavell and Yates note that using chelating NHC ligands should impede RE One type of chelating ligand is the so called mixed NHC that chelates through the NHC and an additional donor moiety (NR 2 PR 2 oxazoline, etc), but these ligands will not be discussed in detail in this thesis to keep the focus on the diNHC ligand class Mixed NH C ligands are effective for hydrogenation, including highly desirable enantioselective versions. 171,291,328 337 In the same manner, di NHC liga nds are expected to be resistent to ward RE However, there are only thr ee studies documenting hydrogenation with diNHC complexes and the studies provide contrasting results. 59,241,294

PAGE 141

141 4.5 Hydrogenation of trans Methyl S tilbene with M NHC Complexes The hydrogenation reactions are set u p inside an inert atmosphere in a 45 mL Parr Instruments metal sealable reactor In addition, moisture and oxygen free solvents are used as a pre caution to prevent decomposition of a ny metal hydride species that may form as intermed iate species. The init ial nitrogen atmosphere of the reactor is exchanged for a hydrogen atmosphere. This is accomplished by charging the reactor with 50 bars of hydrogen, stirring the solution for five minutes, and then discharging the reactor This cycle is repeated four ti mes before charging the reactor with 50 bars of hydrogen. T rans methyl stilbene, a tri substituted unactiva ted olefin ( Figure 4 5) is difficult to hydrogenate and represent s a challenging class to catalyze with a h igh degree of enantiocontrol. T able 4 1 summarizes t he hydrogenation results As a reminder the catalysts are: 20 Me [(DEAM MBI)RhCl(cod)] 2 ; 20 i Pr [DEAM IBY)Rh (cod)Cl] 2 ; 22 Me [(DEAM MBI)Rh(CO) 2 ]OTf; 1 7 Me [(DEAM MBI)Rh(nbd)]OTf; 24 i Pr [(DEAM IBY)Ir(cod)]OTf; and [Rh(nbd) 2 ]BF 4 (startin g precursor). Catalysts 20 Me 20 i Pr and 22 Me provide sluggish or no results (Table 4 1, entries 1 12). The lack of reactivity of 22 Me is not unexpected as carbon monoxide often poisons hydrogenation reactions (Table 4 1, entries 10 12). The inconsi stent results of 17 Me prompted a more careful examination of the true catalyst, as inconsistent results are often a sign of Figure 4 5. General hydrogenation scheme of trans methyl stilbene.

PAGE 142

142 Table 4 1. Hydrogenation of trans methyl stilbene with rhodium and iridium diNHC complexes. Entry temp ( C) Catalyst time/s olvent catalyst loading pressure Hg (g) yield a salt b 1 42 20 Me 22 h/CH 2 Cl 2 0.98% 50 bars 0 11% N/A 2 72 20 Me 24 h/CH 2 Cl 2 0.98% 50 bars 0 33% N/A 3 55 20 Me 23 h/CH 2 Cl 2 1.95% 50 bars 0 42% N/ A 4 46 20 Me 72 h/CH 2 Cl 2 0.98% 50 bars 0 70% N/A 5 70 20 Me 73 h/CH 2 Cl 2 1.47% 50 bars 0 0% N/A 6 68 20 Me 37 h/CH 2 Cl 2 1.47% 50 bars 0 0% N/A 7 50 20 i Pr 24 h/CH 2 Cl 2 1 mol% 50 bars 5 0% N/A 8 50 20 i Pr 24 h/CH 2 Cl 2 1 mol% 50 bars 2 0% N/A 9 50 20 i Pr 2 4 h/CH 2 Cl 2 3 mol% 50 bars 0 0% N/A 10 40 22 Me 20 h/CH 2 Cl 2 1.30% 50 bars 0 0% N/A 11 50 22 Me 24 h/CH 2 Cl 2 3 mol% 60 bars 1 0% N/A 12 50 22 Me 24 h/CH 2 Cl 2 3 mol% 80 bars 2 0% N/A 13 40 1 7 Me 24 h/CH 2 Cl 2 1 mol% 50 bars 0 >98% N/A 14 40 S 1 7 Me 24 h/CH 2 C l 2 1 mol% 50 bars 0 >98% N/A 15 40 1 7 Me 24 h/CH 2 Cl 2 1 mol% 50 bars 5.03 21% N/A 16 40 1 7 Me 24 h/CH 2 Cl 2 1 mol% 50 bars 5.16 >98% N/A 17 44 1 7 Me 24 h/CH 2 Cl 2 1 mol% 50 bars 7.434 0% N/A 18 40 1 7 Me 24 h/CDCl 3 10 mol% 50 bars 7.011 0% Yes 19 50 [Rh(nbd ) 2 ]BF 4 24 h/CH 2 Cl 2 1 mol% 50 bars 0 >98% N/A 20 50 [Rh(nbd) 2 ]BF 4 24 h/CH 2 Cl 2 1 mol% 50 bars 7.116 0% N/A 21 50 1 7 Me 24 h/CDCl 3 10 mol% 50 bars 0 80% Yes 22 25 1 7 Me 24 h/CH 2 Cl 2 1 mol% 50 bars 0 >98% Yes 23 50 1 7 Me 24 h/CH 2 Cl 2 1 mol% 25 bars 0 >98% Ye s 24 50 24 i Pr 24 h/CDCl 3 3 mol% 50 bars 0 0% No 25 97 24 i Pr 24 h/CDCl 3 5 mol% 100 bars 0 >98% Yes a Conversion determined by 1 H NMR, b checked for presence of benzimidazolium salt precursers by 1 H NMR spectroscopy. heterogeneous catalysis. Remember h eterogeneous catalysts a re traditionally believed not to provide regioselectivity or enantioselectivity. Within the last decade, however, some studies demonstrated that heterogeneous catalysts can provide enantioselectivity and regioselectivity. 338 350 These studies appear to contradict the principles of heterogeneous catalysis or colloids. They achieved this by using support systems. A p olymer acting a s a

PAGE 143

143 support system can also mimic this b ehavior. 351,352 Catalyst 1 7 Me is a perfect model to study the homogeneous or heterogeneous identity problem. Catalyst 1 7 Me provides conversion s greater than 98%, but a b lack material precipitates from solution during the course of the reaction. This provides the first evidence that decomposition of 17 Me occurs and one possibility is the formation of Rh 0 species Rh 0 and Ir 0 species, whether colloidal or nanoparticles, are well known to hydrogenate alkenes, even unactivated tetrasubstituted substrat es 266,268,353 Since these NHC ligands are chiral, any product enantioselectivity is evidence that the ligand remains bound during c atalysis, but using ( S ) 1 7 Me as the catalyst (entry 2) provides no optical induction (0% e.e.). Conducting experiments u provide s insight into the catalyst identity As mentioned, m ercury poisoning is a common method to test for M 0 sp ecies. However, there are inherent flaws associated with Hg 0 poisoning. Mercury inconsisten t ly form s an amalgam with Rh 0 and Ir 0 as with Pd 0 and therefore poisoning these species is more difficult. 266,272 E ntri es 15 18 in T able 4 1 point toward incomplete poisoning For instance compare entries 15 and 16 in T able 4 1 Though every factor is held constant, the amount of conversion changes from 21 to 100%. The only rational explanation is a difference in stir rate. Though the stir settings a re the same in both, the stir bar may not stir evenly during each experiment, resulting in uneven Hg 0 distribution throughout the reaction vessel. In another experiment adding additional Hg 0 (1.86 g) results in no conversi on. This data suggests Rh 0 as the active catalyst, but Hg 0 poisoning al one is not sufficient evidence.

PAGE 144

144 Testing [Rh(nbd) 2 ] BF 4 as a control experiment for hydrogenation of trans methylstilbene (entry 19 T able 4 1 ) reveals f ull conversion to the alkane pr oduct concomitant with the formation of a black precipitate However, when adding Hg 0 the c onversion drops to zero (entry 20 T able 4 1 ). Using the same conditions both [Rh(nbd) 2 ] BF 4 and 1 7 Me generate a catalyst capable of hydrogenating benzene. Rh I precursors are well known to break down into Rh 0 species which are excellent catalysts for benzene hydrogenation. 265,266 These results point to a common Rh 0 species as the active catalyst. O ne route to the Rh 0 spec ies is NHC reductive elimination to the corres ponding azolium salt. The observation of black precipitates p rompted a closer investigation of the reaction mixture after hydrogenation. Indeed, a 1 H NMR spectrum of the product mixture for entry 21 in T able 4 1 reveals a resonance at 9.75 ppm (DMSO d 6 ), signifiying the presence of the benzimidazolium salt 4 Me Changing the catalyst l oading, reaction temperature or pressure consistently produces 4 Me (entries 21 23 T able 4 1 ). As a side note, neither 4 M e or a hydride species form under hydrogenation conditions without the presence of a substrate. These results indicate even a di NHC ligand bound to Rh I is susceptible to RE Coupled with the Hg 0 poisoning experiments, these experiments provide strong evi dence that the true identity of the active catalyst is a Rh 0 species. To circumvent RE, one solution is to use a metal that provides stronger M carbene and M hydride bonds. Conveniently, iridium is a perfect candidate for a comparative study with 1 7 Me Using 24 i Pr as the catalyst at 50 C and 50 bar H 2 demonstrate s no conversion. Also no precipitate forms after 24 h, and the solution remains bright

PAGE 145

145 orange. A 1 H NMR spectrum of the soluti on reveals resonances attributable to 24 i Pr, though the low cata lyst loading precludes identification of all resonances. More importantly, the spectrum shows no s ignals corresponding to the benzimid azolium salt 4 i Pr However, doubling both the pressure and temperature of the reaction results in decomposition of 24 i Pr to 4 i Pr (entry 25, T able 4 1). 4.6 Hydrogenation of M ethyl 2 A cetoamidoacryla te Catalysts 1 7 R and 24 R are ineffective c atalyst s for trans methylstilbene hydrogenation mainly because they appear to break down into M 0 species. Perhaps changing to an e asier substrate to hyd rogenate may be conduc ive to the catalysts not decomposing. The rational next step is to use an activated substrate, for instance, meth yl 2 acetami doacrylate ( Figure 4 6). Table 4 2 summarizes methyl 2 acetamidoacrylate hyd rogenati on results. Performing the reaction at 50 C and 50 bars of H 2 in CDCl 3 with 17 Me indicates full conversion occurs after three hours, concomitant with fo rmation of a black precipitate. These results, coupled with the observed 0 % e.e., prompted another H g 0 experiment. Adding Hg 0 prevents catalysis. However, when increasing the size of the R gr oup on the catalyst the decomposition products disappear in the 1 H NMR spectrum. In addition, high pressure liquid chromatography ( HPLC ) analysis of the products show e.e.s of 8% ( R ) and 4% ( S ) for R = i Pr and diPh, respectively. Figure 4 6. Hydrogenation scheme of methyl 2 acetamidoacrylate.

PAGE 146

146 Table 4 2 Hydrogenation of methyl 2 acetamidoacrylate with 1 7 R and 24 R Entry Catalyst/ loading (mol %) Time (h) Hg C onversion a e.e. b 1 ( S ) 1 7 Me (1) 3 No >98% 0% 2 ( S ) 17 Me (1) 24 Yes 0% N/A 3 ( S ) 1 7 i Pr (2) 24 No 100% 8 % ( R ) 4 ( S ) 1 7 diPh (2) 24 No 100% 4% ( S ) 5 I r(cod)acac (3) 3 No >98% N/A 6 Ir(cod)acac (3) 24 Yes 0 % N/A 7 ( S ) 24 i Pr (1.5) 24 Yes >98% 0% 8 ( S ) 24 i Pr (1.5) 24 Yes 0% N/A 9 ( S ) 24 diPh (3) 36 No 93% 9 % ( R ) 10 ( S ) 24 diPh (3) 36 Yes 0% 0% a Determined by 1 H NMR (entries 1,2,5,6) and GC MS (entries 3,4,7 11) b Determined by GC MS. Absolute configuration determined from literature precedent. Changing to the Ir catalyst, 24 i Pr provide s comple te hydrogenation after 24 h (entry 7 T able 4 2 ). There is no detectable precipitate after the reaction and a bright orange solution remains. This suggests 24 i Pr survives, but a follow up Hg 0 poisoni ng experiment indicates no conversion after 24 hours. Using 24 diPh as the catalyst results in an e.e. of 9% favoring ( R ) N acetylalanine methyl ester (opposite sign of the rhodium catalysts) with a conversion of 93% after 36 hours. The Hg 0 poisoning exp eriments reveal conversion halts suggesting Ir 0 species, however achievement of some enantioselectivity seems contradictory. As a control expe riment, the iridium precursor Ir(cod)(acac) i s tested for hydrogenation, and is highly active. A susequent mer cury poisoning experiment results in no turnover Figure 4 7 A display s the kinetic profile showing an induction period followed by a linear profile for the hydrogenation of methyl 2 acetamidoacrylate with 24 diPh as the catalyst. The linear portion implie s zero order kinetics in methyl 2 a cetamidoacrylate. The induction period in the kinetic profile provides prima facie evidence for M 0 species. MS analysis yields a noteworthy peak at m/z 1099.3. The peak at 1099.3 contains an

PAGE 147

147 A B Figure 4 7. Results for the hydrogenation of methyl 2 acetamidoacrylate catalyzed by 24 diPh (3 mol%): 50 bars H 2 ; 50 C; CH 2 Cl 2 A) Conversion curve. B) Corres ponding % e.e. versus time curve. isotopic pattern indicative of [M] + and is attributable to [ 4 diPh ] + Decomposition products, including the imidazolium salt 4 diPh were not visually detected. A 1 H NMR spectrum of the product mixture also did not reveal signals attributable to ligand loss. To amplify the signal of possible decomposit ion products, 24 diPh i s subjected to catalytic conditions without the substrate. The 1 H NMR spectrum sti ll reveals no signals attributable to decomposition products. This implies that only a small portion of 24 diPh decomposes or that decomposition products only form as a result of going through the catalytic cycle. Figure 4 7 B depict s that the e.e. increases over time and then decreases, and is at a maximum at 16 h. Ty pically, an intact homogeneous catalyst will start off at a given e.e. which will then decrease as the catalyst decomposes. A

PAGE 148

148 possible scenario that fits all of the data is an Ir 0 specie s stablized by the NHC ligand as the active catalyst, while the molec ular species 24 diPh is inactive. We can reasonably assume the reaction is first order in catalyst. D oubling the loading of 24 diPh doubles the yield, but halves the e.e. at t = 16 h. In a separate experiment, pre treating 24 diPh (6 mol%) to the reactio n conditions without substrate is done to bypass the induction period and start with the active catalyst. After 24 h, the substrate is injected in to the reactor and allowed to react for 16 h The yield doubles and halves the e.e. again Adding excess 4 diPh and 2 equivalents of Cs 2 CO 3 during a catalytic hydrogenation reaction decreases the yield to 5% and th e e.e. to 6% ( S ). In summary, there is strong evidence to suggest Ir 0 species stabilized by the NHC ligand as the active catalyst, however there doe s not appear to be a way to max imize both % conversion and e.e at the same time. The iridum complexes 24 R were proposed as a way to stop RE of the diNHC ligand because of the correspondingly stronger Ir hydride bond s. The results do not indicate signif icant catalytic benefits when using iridium catalysts over rhodium (diNHC is of the DEAM type). Cavell et al. previously demonstrated a relationship between the orientation of the NHC rings with respect to each other and the barrier to RE 326 Perhaps the DEA diNHC ligand s will prevent RE by not allowing the NHC orbitals to al luded to. 326 Surprisingly, catalyst 19 Me provides no hydrogenation or any other side products even under harsh conditions ( temperatures as high as 100 C and 100 bar of H 2 gas ) 4 .7 Hydrogen T ransfer of M ethyl K etones Hydrogen transfer represents another type of hydrogenation. This class of reactions is different than a hydrogenation because hydrogen gas is not a reagent but

PAGE 149

149 rat her another reagent for example isopropanol supplies the hydrogen atoms NHC complexes are more popular in h ydrogen transfer catalyzed reactions than hydrogenation catalyzed reactions 242,291,354 360 Based on the hydrogenation results 24 diPh may work better as a catalyst for hydrogen tranfser reactions of methyl ketones ( Figure 4 8) Table 4 3 summarizes the results. The reaction is carried out at 70 C for 5 h in 2 propanol at 2 mol% catalyst loading wit h KOH as the base. The conversion is complete after 5 h, but the % e.e. is low favoring the R enantiomer in each case. The solution at the beginning of the rea ction is bright orange and turns dark orange by the end. Visual inspection of the solution at the e nd of the reaction does not reveal a precipitate, and the 1 H NMR spectrum did not display any resonances connected to ligand loss in the form of the 4 diPh salt Typically, high temperatures have an adverse effect on e.e., and as time progres ses e.e decreases. Checking e.e. at t=1 and t=5 h (entries 1 and 2 Table 4 3 ) during the hydrogen transfer of acetophenone, reveals no change in e.e. Lowering the temperature to 50 C reduces the conversion to zero after 24 h. There is only one other report of enantioselective transfer hydrogenation with Figure 4 8. Hydrogen transfer scheme of methyl 2 acetamidoacrylate Table 4 3. Hydrogen transfer of methyl ketones with 24 diPh Entry Time (h) X Y Conversion a e.e. b 1 1 H H 18% 5% ( R ) 2 5 H H >98 % 6% ( R ) 3 5 C 4 H 4 H >98% 3% ( R ) 4 5 H Br >98% 5% ( R ) 5 5 Br H >98% 5% ( R ) a Determined by 1 H NMR b Determined by HPLC. Absolute configuration determine d from literature precedent.

PAGE 150

150 diNHCs 242 T he e.e. are low to modera te but t he substrates contain more steric bulk, which may facilitate achieving a higher e.e 4 .8 Hydrosilylation of M ethyl K etones A significant demand for optically active alcohols exists in the form of active pharmaceutical ingredients (API). Chiral al cohols are also key intermediates along the synthetic rout e to making many natural products. 361 Hydrosilylation with NHC ligands is more common than in olefin and transfer hydrogenation. The first enantioselective catalytic reaction with chiral diN HC ligands was hydrosilylation of methyl ketones. 67 Reports of hyd rosilylation with bidentate 250,362 NHC catalysts exist as well as reports of asymmetric hydrosilyation wit h monodentate 220,223 225 and bidentate 67,229,253 NHC complexes. Figure 4 9 displays hydrosilylation of acetophenone using pa lladium catalyst 25 diPh Treating 1 equivalent of acetophenone with 2 equivalents of diethoxy methyl silane and 3 mol% of 25 diPh at room temperature provides 2 phenylethanol in 98% yield with an e.e. of 5% favoring the R enantiomer. Based on these findings 25 diPh is not suit able for asymmetric hydr osilylation. Changing other reaction conditions such as the number of equivalents of silane decreased both the e.e. and conversion. Figure 4 9. Reaction scheme for h ydrosilylat ion of acetophenone with 25 diPh 4.9 Conclusions In summary, we tested benc hmark hydrogenation reactions to determine the efficacy o f the catalysts. All the rhodium, iridium and palladium catalysts provide low

PAGE 151

151 enantiodiscrimination of the products. The question is obviously why? During the hydrogenation reactions (ones that u se molecular hydrogen), we provide a large volume of evidence pointing toward RE of the DEAM type diNHC ligands from the metal centers (kinetic profile, Hg poisoning, black precipitates, observation of 4 R ). Also the DEA type diNHC complexes did not prov ide any hydrogenation results even under much harsher conditions. This implies the rigidity of the DEA diNHC ligand do es not allow the orbitals of the ligand to arrange in the proper orientation to reductively eliminate, whereas the demonstrated degenera te isomerization of the DEAM complexes ( Chapter 3 ) indicates the ligand is flexible enough to permit facile RE. Thus, heterogeneous catalysis best explains the results with the exception of the the enantioselectivity Remember though, identifying the ac tive catalyst is an inexact science at best because Monitoring the e.e. with respect to time provides further evidence for the growth of M 0 particles. As the reaction proceeds the e.e. changes from 0% to a maximum of 25%, followed by a decrease to the final e.e. o f 9%. In the examples that yield enantioselectivity, the ligand must be associated with the metal particle during catalysis. Only a few documented examples exist for enantioselective catalysis by a M 0 species. 338 350 For example, nano sized M 0 species are implicated in the hydrogenation of ethyl pyruvate using Pt and Pd pre catalysts. 348 350 O ne explanation for the change in e.e. is the M 0 par ticle size must change with time. As the particle grows, the influence of the ligand on selectivity will change as a function of surface area. A maximum is reached once the optimum surface area/ligand coverage is achieved for the system, but as more M 0 s pecies initiate the selectivity drops.

PAGE 152

152 Though the evidence strongly supp orts ligand RE, the low e.e. may be a result of the flexible nature of the DEAM type ligands, whether on the surface of a particle or as a molecular species. The ring inversion barrie r is only 16 .6 18 .5 kcal/mol in the degenerate isomerization of 22 R but p erhaps this flexiblity presents too many degrees of freedom for the incoming substrate at the diastereotopic transition state. The negative hydrogenation results of the DEA type li gands lend credence to this case. Alternatively, RE and the ligand flexibility could be working simultaneously to provide low enantiocontrol in hydrogenation reactions. Picking reactions that are more amenable to our catalyst may a lso help. For instance using mo lecular hydrogen as a reagent appears conducive to reductive elimination. Picking reactions that require lower temperatures to achieve conversion or using reactions that do not require formation of hydride species are other alternatives

PAGE 153

153 CHAP TER 5 HYDROFORMYLATION WITH CHIRAL DINHC RHODIUM COMPLEXES. 5.1 Introduction to H ydroformylation Hydroformylation represents one of the most industrially important homogen e ous catalyzed reaction s by volume. 363 365 The petro chemical agrochemical and pharmaceutical industries are particularly interested in this transformation. The reaction uses syngas (CO:H 2 mix) and a catalyst, commonly rh o dium or platinum, to transform an olefin into an aldehyde ( Figure 5 1) 366 Attaining high s e lectivity of the desired Figure 5 1. General hydroformylation scheme and all possible products. product remains the major obstacle in hydroformylation. Therefore, controlling the regioselectivity (branched: linear ratio, b:l), chemoselectivity (a l dehyde, alcohol, hydrogenated product), and possibly enantioselectivity (in the branched isomer) depends on fin e tuning the reaction condition var i ables Figure 5 2 displays the general Heck/Breslow hydroformylation mechanism. 367 Early h ydroformylation catalysts involved cobalt complexes (and later rhodium) modified with CO ligands, but were not very selective. 368 Introduction of phosphorous ligands, specifica lly bulky trialkylphosphines, greatly improved the selectivity as well as operating conditions However, excess PR 3 is necessary to compensate for deleterious PR 3 substitution (with CO), PR 3 oxidation, and P C bond cle a vage as explained in Chapter 1. 16,17,369 373

PAGE 154

154 Figure 5 2. A general Heck/Breslow hydroformylation mechanism. The high concentration of CO under typical hydroformylation conditions causes liga nd competition between CO and PR 3 Thus avoiding the form ation of the highly active species A ( Figure 5 3 ) often requires excess PR 3 Pruett and Smith demonstrated this fundamental principle with an increase from 31 % to 89% in the selectivity of linear aldehyde by increasing the equivalents of P(OPh) 3 from 0 t o 60 during hydro formylation of 1 pentene. 16 The goal in hydr o formylation becomes manipulating the equilibrium such that the predominant species is D by varying CO concentration, ligand co n centration and PR 3 identity ( Figure 5 3). Replacement of the Figure 5 3. Equilibrium between Rh(CO) 4 H and Rh(PPh 3 ) 4 H.

PAGE 155

155 phosphorous ligand with an NHC is a logical next step toward stabilizing the D type intermediate due to the donor strength of the NHC. Herrmann et al. first reported and patented catalytic hydroformylation of 1 he x e ne using the mon o dentate NHC catalyst (cod )Rh(NHC)Cl (NHC = 1,3 dimethylimidazolin 2 ylide ne) 374 The product distribution was 33.8% n heptanal and 66.2% 2 methylhexanal To date, there are relatively few reports of N heterocyclic carbenes used for hydroformylation reactions as opposed to cross coupling reactions or olefin metathesis. 59,62,222,300,318,319,374 391 The reason for this may be the controversy surrounding whether the NHC ligand remains bound during hydroformylation conditions. 392 Reductive elimination is a possible decomposition pathway because molecular hydrogen is present, and presumably a hydride species forms duri ng the catalytic cycle ( Figure 5 2). As previously stated, Van Rensburg et al. observed C H RE of the imidazolium salt [IMes H] + from [(IMes)Co(CO) 3 ] 2 under hydroformylation conditions. 318,319 Crudden is an advocate of the NHC as providing significant advantages during hydroformylation conditions. 300,375 377 The experiments suggest a contradictory viewpoint. catalysts exhibit ed the same branched to linear ratio ( b : l ) reactivity as those of h er starti ng materials. She argu es that the observed different turn over frequencies (TOF) indicate d ifferent catalysts, yet provided no kinetic profiles. T he hydroformylation does not start until addition of at least an equivalent of PR 3 By her own experiments Crudden demonstrated that PR 3 ligands can substitute the NHC group. Otto et al further demonstrate d the cleavage of a Rh NHC bond using NMR techniques in situ during the

PAGE 156

156 catalytic reaction 378 While Crudden may be right abo ut the NHC, this case study again represents one must be cautious of their claims toward the identity of a catalyst. Positive enantioselective results would provide irrefutable evidence that the NHC remains bound during catalysis, or at least a portion of it (provided the NHC is the only source of chirality). 222 Not s urprisingly only a single report of enantioselective hydroformylation exists and the NHC is monodentate. 222 The e.e. was 7 12%. Final ly there are some studies that provide d clear evidence that the NHC is bound during cataly sis and provides significant benefits. 379 381 5.2 Hydroformylation of Styrene, Vinyl Acetate, and Allyl C yanide. The hydroformylation of styrene is performed under ambient conditions using wet oxygenated solvents ( Figure 5 4) However, rigorous conditions provide the same results. The initial oxygen/argon atmosphere of the Parr reactor is exchanged for a syngas atmosphere. This is accomplished by charging the reactor with 20 bars of syngas, stir ring the solution for 10 min and then discharging the reactor This cycle is repeated four times before finally charging the reactor with 50 100 bars of syngas. The reactor is then placed in a sand bath at 50 C. Figure 5 4. Hydro formylation of styrene with syn gas; 50 C Table 5 1 summarizes the results of styrene hydroformylation with 1 7 R 20 Me and 22 Me Generally, product formation is complete after 24 h at 50 C with catalyst loadings of 0.1 mol%. Solvent effects appear to have littl e impact on either conversion

PAGE 157

157 Table 5 1 Hydroformylation of styrene with 1 7 R 20 Me and 22 Me Entry Catalyst loading (mol%) Pressure (bar) Solvent Conversion a b : l b 1 ( S ) 1 7 Me (1) 50 C hloroform 0% N/A 2 ( S ) 1 7 Me (1) 100 C hloroform 100% 95:5 3 ( S ) 17 Me (0.1) 100 C hloroform 100 % 96:4 4 ( S ) 17 diPh (5) 100 T oluene 96% 96:4 5 ( S ) 22 Me (0.1) 30 C hloroform 0% N/A 6 ( S ) 22 Me (0.1) 50 C hloroform 0% N/A 7 ( S )22 Me (0.1) 80 C hloroform 100% 97:3 8 ( S ) 22 Me (0.1) 80 T oluene 100% 96:4 9 ( S ) 20 Me (0.1) 100 C hloroform 75% 94:6 10 ( S )20 Me (0.1) 100 T oluene 100% 94:6 11 [Rh(nbd) 2 ](BF 4 ) (0.1) 100 C hloroform 100% 97:3 a,b Determined by GC. or branched to linear ratios. Pre ssures less than 80 bars reduce the conversion to z ero. The b : l ratios are all suspiciously similar, approxima tely 96:4. In a study of common hydroformylation precatalysts, the b : l ratios ranged from 95:5 to 98:2 implying a common catalyst. 364 In addition, enantioselectivity is not observed. Hydroformylation of other substrates, viny l acetate and allyl cyanide, leads to the same ty pe of results as styrene. This data prompted an investigati on into the identity of the catalyst At the end of the reaction there is no black precipitate to signal decomposit ion occurs. A mercury poisoning experiment inhibits catalysis with 22 Me Since the hy droformylation products are vola tile, decomposition products are easily isolated. A 1 H NMR spectrum clearly exhibits all the resonances associated with the 4 Me precursor salt. Furthermore, the control experiment using [Rh(nbd) 2 ](BF 4 ) as the hydro formylation catalyst demonstrates a b : l of 98:2. F ollowing the hydroformylation kinetics of styrene with 22 Me yields a sigmoidal curve ( Figure 5 5). T he b : l ratio suggests a common species is responsible for hydroformylation. Considering the common b : l ratio and the observation of an induction period ( Figure 5 5), the mo st likely catalytically active

PAGE 158

158 species is rhodium tetracarbonyl hydride ( Rh(CO) 4 H ) 363,364,393 Rh(CO) 4 H is difficult to observe due to the in sta bility of the complex outside hydroformylation conditions. Recently, Garland et al. successfully identified this species by IR spectroscopic means during the hydroformylation of alkenes with the metal cluster precursor, Rh 4 (CO ) 12 393 Figure 5 5 Kinetic profile for 22 Me during hydro formylation of styrene. 5.3 Conclusions A s a general rule ligand/catalyst combinations are either good for hydroformylation or hydrogenation reactions, but not both. 394 However, two recent catalysts provide exceptio ns to this rule, with the ability to function well in both reactions. 395,396 C atalysts 16 22 did not fit well with either reaction providing low or no enantioselectivity. The results of the hydroformylation reacti ons suggest reductive elimination is a facil e process The similar b : l ratios indicate a common catalyst is most likely operating. A possibility is reductive elimination of the diNHC from the metal center to then form the highly active species Rh (CO) 4 H, which forms from a variety of pre catalysts. 393 Lack of enantioselectivity, the sigmoidal kinetic profile, observation of the benzimidazolium salt precursors and positive mercury poisoning all provide go od supporting evidence for

PAGE 159

159 rhodium tetracarbonyl hydride compound as the active c atalyst. The hydroformyla tio n experiments further reenforce three principles : First, M(diNHC) complexes are susceptible to RE decomposition pathways despite the strong donor properties of NHCs, and the chelate effect. Second, in the presence of molecula r hydrogen (gas) under catalytic conditions, RE of the DEAM ligands is a very facile process. Lastly, to maximize the benefits of a catalyst or match it to the right reaction, all aspects of the catalysts reactivity must be understood.

PAGE 160

160 CHAPTER 6 1,4 C ONJUGATE ADDITION REACTIONS OF ARYL BORONIC ACIDS TO CYCLIC ENONES WITH CHIRAL DINHC RHODIUM AND PALLADIUM COMPLEXES. 6. 1 Introduction to 1,4 addition s The 2010 Nobel Prize in chemistry recognizes the importance of palladium catalyzed carbon carbon bond fo rmation transformations as a powerful synthetic methodology. The contributions by Heck, Negishi and Suzuki only represent the pioneering efforts i n this field. Opening any organometallic or named reactions in organic chemistry textbook reveals numerous other carbon carbon coupling reactions as well as heteroatom coupling reactions. For instance, Stille, Tsuji Trost, Miyaura, Buchwald Hartwig, Sonogashira and Kumada represent a few of the other more prominent coupling re actions. The Suzuki reaction co upling reagents are aryl halides and arylboronic acids. Miyaura later extended this coupling with arylboronic acids to unsaturated ketones. 397 Miyaura et al. first reported the coupling of aryl and 1 alkenylboronic acids to a number of cyclic and acyclic enones in 1997. 397 The authors generated the catalyst in situ from rhodium(acac)(CO 2 ) and a diphopshine ligand. Of the screened ligands, 1,3 bis (diphenylphosphino)propane provided the best results. Overall the yields were moderate to excellent ranging from 28 99% between the different coupling reagents. The relat ively mild conditions allowed great chemio selectivity. The following year Miyaura and Hayashi and co workers enantioselectively catalyzed the reaction between aryl and alkenylboronic acids to cyclic and acyclic enones. 398 The authors again generated the catalyst in situ from Rh(acac)(C 2 H 4 ) 2 and ( S ) BINAP. Miyaura et al also changed the re action conditions and even raised the operating temperatures to 100 C The enantioselectivities were all in excess of 90% (except

PAGE 161

161 when they used Rh(acac)(CO) 2 as the pre catalyst) a nd the yields were again moderate to excellent. Hayashi explained that th e switch from carbon monoxide to ethylene in the rhodium starting precursor was essential for getting enantioselectivity. He argue d that ethylene is more labile than CO and thus the active catalyst is generated much faster and as a result more of the pre catalyst convert ed to the active catalyst than with Rh(acac)(CO) 2 (more non producitve pathways occur ed with the CO complex). Since these initial findings by Miyaura and Hayashi, reports on 1,4 addition s involving unsaturated enones are growing. 399 402 Catalysts with metals other than rhodium (Cu, Ni, Pt, Pd) and organometallic reagents outside RB species (Grignard reagents, RTi, RHg, RBi RSi, RZn and RSn for instance) are capable of performing a 1,4 addition coupling. 399,402,403 With so many options available for 1,4 addition s one may wonder why pick boronic acids. The choice of the organometallic reagent is simple, boronic aci ds are stable under air and moisture conditions A number of boronic acids are commercially available and in many instances very cheap This feature opens the synthetic chemist s toolbox and imagination when developing ligand libraries. B oronic acids ar e also relatively inert towards the enone reagents, whereas some of the other organometallic reagents will react to form a 1,2 addition product without the presence of a catalyst and may have special handling conditions The choice of metal also influenc es chemioselectivity and operating conditions. Copper catalysts are a popular choice Lippard et al reported the first enantioselective copper catalyzed 1,4 addition reaction b etween cyclic enones and organo lithium reagents in 1988. 404 The reaction temperatures we re below 0 C and the enanti oselectivity is as high as 14% The authors

PAGE 162

162 also observed the 1,2 addition product, which is problematic when using copper based catalysts. However, since this time several groups improved the e.e. by changing the phosphorous ligand o r organometallic re agent; organo zinc is a common choice. 399,403,405 As explained the rhodium based catalysts are more amenable to milder operating conditions as well as capable of taking advantage of boronic acid reagents. Hayashi e t al futher studied the mechanis m for the rhodium(BINAP) catalyz ed 1,4 addition reaction between phenyl boronic acid and 2 cyclohexen 1 one. 400,406 Figure 6 1 displays the mechanism. Each of the intermediates wer e synthesized or Figure 6 1. 1,4 Addition mechanism proposed by Hayashi. observed in the 31 P NMR spectr a during an actual catalytic reaction This mechanistic Hayashi et al. discovered that the identity of L heavily influenced both the rate of reaction as well as the operating conditions. More labile ligands speed up the rate of reaction and co n comitantly lower ed the reaction temperature. Removal of L from the pre catalyst generates species A

PAGE 163

163 Transmet allation of the phenyl group from the organoboron reag e nt to the rhodium center occurs next. The enone then coordinates to the rhodium center ( C ) which then inserts into the Rh C(phenyl) bond to generate an oxa allylrhodium intermediate ( D ). Hydrolysis releases the product and regenerated species A Thus, a small amount o f water or other proton source i s critical to the catal y tic cycle. If too much water wa s present, the protonalysis of species A occured releasing benzene. These studies as well as most 1,4 addition reactions are done with phosphine ligands, but now researchers are slowly applying NHC ligands to this reaction. Copper (NHC) catalyzed 1,4 addition s between enones and organometal reagents are b y far the most widely explored addi tion. 66,407 422 Organozinc is the choice reagent, however, the reaction must be carried out at temperatures less than 0 C due to the stability of organozinc. Asymmetric reactions yield enantioselectivities from 5% to 98% e.e. and moderate to excellent yields with mixed NHC ligands providing the better results. A commonly noted competing pathway is the 1,2 and 1,6 (where applicable) product pathways. As already mentioned, rhodium catalyzed 1,4 addition s for boroni c acids to enones essentially eliminates this problem, but thus far, no reports of this type exist for NHC ligands. However, Shi et al report ed a palladium catalyzed 1,4 addition of boronic acids to enones and aldehydes 231,233,234,237 The catalyst used an NHC derived from BINAM The reaction is carried out at room temperature, and t he enantioselectivities and co nversions are both excellent. 6.2 Rhodium Catalyzed1,4 Conjugate Additions of Cyclic Enones to Boroni c Acids As mentio ned above, Hayashi first successfully demonstrated a rhodium(BINAP) catalyzed enantioselective 1,4 conjugate addition between enones and boronic acids

PAGE 164

164 Since this reaction does not involve hydrogen gas, Pd (diNHC) reports 231 we thought this would be an excellent reaction to consider. Table 6 1 summarizes the results for the rhodium catalyzed 1,4 conjugate addition between Table 6 1 Rhodium catalyzed 1,4 addtion con jugate addition with catalysts 16 19 Entry Base Catalyst Time (h) Yield a % e e b 1 KOH ( S,S ) 16 Me 14 98 0 2 KOH ( S,S ) 16 o xylyl 14 95 0 3 KOH ( S,S ) 16 i Pr 14 96 0 4 KOH ( S,S ) 16 diPhl 14 98 0 5 KOH ( S S R R ) 16 PhEt 14 95 5 ( R ) 6 KOH ( S S ) 17 Bn 1 8 98 0 7 KOH ( R R ) [18 Me]I 24 56 78 ( R ) 8 KOH ( R,R ) 19 Me 23 19 5 ( R ) 9 KOH ( R,R ) 19 i Pr 24 26 7 ( R ) a i solated yield b enantiomer in parenthesis, determined by HPLC phenylboronic acid and 2 cyclohexen 1 one with catalysts 16 19 For reference, Figure 6 2 displays the rhodium catalysts and the reaction. Lowry 423 Gainesville, Fl, 2009 #3088 and Veige previously reported the results from entries 6, 7, 8 and 9 in T able 6 1, however, to better compare and contrast they are a gain reported here. The catalytic conditions displayed in Figure 6 2 were the op timized conditions found by Lowry and for comparative purposes same conditions were kept The enantioselectivities range from poor to moderate. These studies reveal that the DEAM ligands a re not capable of transferring chirality at the high temperatures required for catalytic turnover (entries 1 5, Table 6 1 ). The need for high temperatures (above 70 C ), is a direct result of poor lability of the strongly bound cod ligand One exception amongst the DEAM ligands is 4 PhEt Catalyst ( S S R R ) 16 PhEt did provide low chiral induction (5%), comparable to the DEA ligands with imidazole rings (entries 8 and 9, Table 6 1 ). This implies that the extra chiral centers on 16 PhEt

PAGE 165

165 Figure 6 2. Rhodium catalyzed 1,4 conjugate addition reaction with catalysts 16 19 provide an added benefit during catalysis when compared to the results of the similar catalysts 16 R and 1 7 Bn A plausible explanation is the N alkyl chiral centers are a ble to move more freely (compared to the ethanoanthracene backbone chiral centers) and can arrange in such a way as to better define the chiral pocket. These stereogenic centers may also move into closer proximity than the backbone stereocenters during the enantio determining step in the catalytic mechanism. T he more rigid DEA catalysts ( [ 18 Me]I and 19 R ) clearly provide better e.e. than the DEAM catalysts ( 16 R and 17 Bn ) As was discussed in Chapter s 3 and 4 the flexibility of the DEAM catalysts pro duce an undefined chiral pocket particularly at high temperatures and potentially is the reason for low % e.e. 59 Notably, even amongst the DEA versions (benzimidazole, [ 18 Me]I versus imidazole, 19 R ) a large disparity between the e.e. exists. By only changing the electron donating properties of the NHC in theory, then there should not be a large change in enantioselectivity. Several studies

PAGE 166

166 demonstrate t hat the difference s in electron donating properties between imidazole and benzimidazole versions of NHCs is very small ( see T able 3 17). 99,100 Perhaps, the added sterics of the extended azole ring in [18 Me]I provides an added degree of rigidity that is n ot present in 19 R and must account for the difference in e.e. Changing the sterics in 10 R from Me to the larger i Pr has little effect on the e.e. implying the sterics at the N alkyl group plays only a minor r ole in enantioselectivity As a last intere sting not e, the yield drastically in creases when using catalysts 16/17 R for the 1,4 conjugate addition transformation and also the rate of reaction is faster than in the DEA catalysts. This increas e may be a result of the add ed flexibility of 1 6/17 R com pared to 18/19 R thus allowing easier approach of the substrate to the metal center during catalysis. 6.3 Palladium Catalyzed1,4 Conjugate Additions of Cyclic Enones to Boronic Acids Inspired by the promising results of Shi, switching to a palladium catal ytic system ma y achieve better results than rhodium systems 231 Figure 6 3 depicts the catalytic mechanism proposed by Miyaura 424 One reason palladium species are not common in 1,4 addition s with boronic acids is because palladium catal ysts tend to promote double transmet allation of the boronic acid, thus forming a biaryl product instead of the 1,4 addition product. However, if turnover of the 1,4 addition pathway by the catalyst ( B to D ) is faster than the second transmetallation of th e arylboronic acid, then 1,4 addtion will occur. Electron deficient substrates facilitate the alkene insertion into the Pd C(phenyl), similar to other related coupling mechanisms (Heck for instance). Thus, a small excess of the phenylboronic acid must be used to account for loss of product through this unproductive pathway.

PAGE 167

167 Figure 6 1,4 addition of boronic acids to enones. Figure 6 4 Pal l adium catalyzed 1,4 conjugate addition of phenyl boronic acid w ith 2 cyclohexen 1 one using 25 diPh Table 6 2 Pal l adium catalyzed 1,4 c onjugate addition with 25 diPh (optimization experiments). Entry Base (mol%) Solvent combination % Yield a % e.e. b 1 none Dioxane:MeOH (4:1) 0 0 2 KOH (25) Dioxane:MeOH (4:1) 73 34 ( R ) 3 KOH (50) Dioxane:MeOH (4:1) >98 0 4 K 2 CO 3 (50) Dioxane:MeOH (4:1) >98 46 ( R ) 5 KOH (50) THF:H 2 O (10:1) >98 20 ( R ) 6 KOH (40) THF:H 2 O (10:1) >98 29 ( R ) 7 K 2 CO 3 (40) THF:H 2 O (10:1) >98 38 ( R ) 8 c KOH (40) THF:H 2 O (10:1) 0 0 9 c K 2 CO 3 (50) Dioxane: MeOH (4:1) 0 0 a NMR yield b enantiomer in parenthesis, determined by HPLC c T=0 C

PAGE 168

168 The results listed in table 6 2 immediately signal better results for the DEAM ligands attached to a palladium center. Figure 6 4 depicts the model catalytic reaction. Tab le 6 2 act u a lly summarizes the optimization experiments when using ( S S ) 25 diPh to catalyze the addition of phenylboronic acid to 2 cyclohexen 1 one. The choice of base as wel l as solvent combination influence s enantioselectivity and to a lesser degree the amount of conversion. Potassium carbonate provides better results than the often used potassium hydroxide. In addition the dioxane:methanol combination is the better solvent combination. The reaction does not proceed at 0 C under any of the teste d conditions. Figure 6 5. Palladium catalyzed 1,4 conjugate addition of phenyl boronic acid with 2 cyclohexen 1 one using 25 diPh and 26 R After optimizing, these conditions were applied to other catalysts and substrates. Table 6 3 summarizes the resul ts. As a reminder, figure 6 5 depicts both optimal catalytic conditions as well as the catalysts. Remember that catalysts 25 R are added

PAGE 169

169 Table 6 3 Palladium catalyzed 1,4 conjugate addition with catalysts 25 and 26 Entry Base Catalyst Time (h) % Yield a % e.e. b 1 K 2 CO 3 (50) ( S S ) 25 i Pr 48 72 0 2 KOH (33) ( S S ) 25 i Pr 48 50 0 3 K 2 CO 3 (50) ( S S ) 25 MeBn 18 >98 11 ( R ) 4 K 2 CO 3 (50) ( S S ) 25 diPh 24 >98 46 ( R ) 5 c K 2 CO 3 (50) ( S S ) 25 diPh 24 95 67 ( R ) 6 c K 2 CO 3 (50) ( R R ) 25 diPh 24 >98 67 ( S ) 7 d K 2 CO 3 (50) ( S S ) 25 diPh 24 95 44 ( R ) 8 e K 2 CO 3 (50) ( S S ) 25 diPh 24 95 40 60 ( R ) 9 f KOH (50) ( S S R R ) 25 PhEt 24 81 31 ( R ) 10 g KOH (50) ( S S R R ) 25 PhEt 24 58 11 ( R ) 11 KOH (50) ( S S R R ) 25 PhEt 48 87 32 ( R ) 12 h K 2 CO 3 (50) ( S S ) 25 o xylyl 48 >98 33 ( R ) 13 h KOH (33) ( S S ) 25 o xylyl 24 >98 50 ( R ) 14 h KOH (40) ( S S ) 26 diPh 18 0 0 15 i KOH (40) ( S S ) 26 diPh 18 50 0 a NMR yield b enantiomer in parenthesis, determined by HPLC c Mercury added d 4 fluoro phenyl boronic acid e 2 naphthl boronic acid, e.e. estimate d f T=35 C, mercury added g THF:H 2 O (10:1) h T=50 C, THF:H 2 O (10:1) i T=80 C, THF:H 2 O (10:1). as a mixture of exo and endo isomers. This should not be problematic as the first step in catalytic cycle is presumably the loss of the allyl ligand, thereby creati ng only a single isomer. The enantioselectivities range from 0 67%, which is far better than any reaction to date with the DEAM NHC ligands ( 4 R ) There appears to be a trend in the size of the alkyl and enantioselectivity for species 25 R ( i Pr
PAGE 170

170 systems ( 25 PhEt ) does not increase the enantioselectivity. While it is possible the black material is decomposed catalyst that negativily influences e.e., another possibility that fits the o bservations is mercury acts as an additive to raise the e.e., instead of a poisoning reagent. The substrate scope was expanded to include 4 fluoro phenylboronic acid and naphthalene 2 boronic acid (Table 6 3 entries 7 and 8). The e.e. of the fluoro derivative is 44%, comparable to the results of the phenylboronic substrate under the same conditions. We were unable to develop a n HPLC method for effectively analyzing the % e.e. of the product for the 2 naphthl derivative. The peaks corresponding to each of the product enantiomers are nearly separated in the HPLC trace allowing for a good estimation of the e.e. in the range of 40 to 60 %. Catalysts 25 PhEt and 25 o xylyl represent interesting NHC ligands for enantioselective cat alysis. Outside the Veige group, there are no reports of catalysis using chiral cyclophanic diNHC ligands as well as diNHC ligands with chiral N alkyl groups (not on the backbone). The enantioselectivity exhibited by complex 25 PhEt is surprising consid ering the results of both the imidazole backbone (see rhodium results, entries 8 and 9 in Table 6 1 above) and the similarly sized MeBn and i Pr R groups in 25 R O ver the temperature range of 25 35 C the e.e. did not change Catalyst 25 o xylyl provided a disappointing 50% e.e. Noteworth y the conditions employed for the other catalysts were not the best conditions for 25 o xylyl This reaction does not take place below 50 C This may indicate that the cyclophane group along with the backbone of 25 o xylyl envelops th e metal center to such a degree that the substrate experiences difficultily in get ting close enough Finally, catalyst 26 diPh was tested to help confirm that the high temperatures required in the rhodium reactions are

PAGE 171

171 attributable to th e removal of cod. Acetylacetonate, like cod, is difficult to substitute or remove from metal centers. As expected catalysis did not occur until the temperature was at least 80 C and as a consequence only racemic product forms. 6.4 Conclusions In summary, chiral rhodium and palladium diNHC complexes were applied to a 1,4 conjugate addition reaction between arylboronic acids and 2 cyclohexenone. The enantioselectivity ranged from 0 78% depending on the metal and diNHC combination. The rhodium DEAM diNHC c omplexes produce no enantioselectivity as a result of the high temperatures. At the high temperatures, the rate of degenerate isomerization is fast making the ligand flexible and may account for no enantioselectivity. However, 16 PhEt generates a 5% e.e. in contradiction to the ligand flexibility arguments suggesting the other N alkyl chiral centers influence e.e. The ability of the N alkyl chiral centers to get closer to the metal center than the ethanoanthracene backbone chiral centers, and ultimately the active site during catalysis, is a possible explanation for the enantioselectivity. The more rigid DEA complexes, in agreement with the arguments about the rigidity produce small to large e.e. The DEA ligands with imidazole backbone yield much lowe r e.e. (70% difference) than the DEA ligands with a benzimidazole. The small difference in electron donating properties should not account for this large differe nce in e.e. A steric argument fits as a better explanation for the enantioselectivity. Diff iculty in the removal of the cod ligand during the catalytic reaction mak es high temperatures necessary. Switching to a palladium metal center with the more labile allyl ligand allowed for room temperature reactions to occur with the DEAM ligands. The e.e ranged from 0 67%. Unfortunately there is no correlation between G (barrier to degenerate

PAGE 172

172 isomerization) and e.e for the 1,4 addition reaction. When the sterics become very large, however, the isomerization must be slowed indicating a more rigid ligand system such that a moderate e.e. results. Complex 25 PhEt again was an outlier in terms of the expected e.e., which again suggests the N alkyl chiral groups heavily influence the enantioselectivity. The cyclophane structure of ortho xylyl linked palladium complex ( 25 o xylyl ) provides moderate conversion and e.e., but the cyclophane ring may be too rigid as the the system only turns over above 50 C. Other applications may be better suited to this complex, for example ethylene copolymerization. Catalyst 26 diPh did not provide any conversion until raising the temperat ure to 80 C. The high temperature requirement is attributable to the strongly bond ed acac ligand. This suggests that the e.e. is not a result of switching to a palladium metal center and if the rhodium catalyzed 1,4 addition reactions could be carried ou t at lower temperat ures, similar enantioselectivities would result.

PAGE 173

173 CHAPTER 7 COMPLETE EXPERIMENTAL DETAILS. 7. 1 General C onsiderations Pentanes, hexane, ether, 1,2 dimethoxyethane (DME), acetonitrile (CH 3 CN), methylene chloride (CH 2 Cl 2 ) and tetrahydraf uran (THF) were dried using a GlassContours drying column. Chloroform (CDCl 3 ), acetone d 6 DMSO d 6 THF d 8 and benzene (C 6 D 6 ) were purchased from Cambridge Isotopes and used as is. C 6 D 6 (Cambridge Isotopes) was dried over sodium benzophenone ketotyl dis tilled, vacuum t 3 (Cambridge Isotopes) was molecular sieves. Chloro(allyl)palladium(II) ([Pd(C 3 H 5 )Cl] 2 ), bis norbornadienerhodium(I) tetra fluoroborate ([Rh(nbd) 2 ][BF 4 ]), palladium (II) diacetate (Pd(OAc) 2 ), palladium (II) bis (acetylacetonate) (Pd(acac) 2 ), (1,5 cyclooctadiene)iridium(I)(acetylacetonate) (cod)Ir(acac), bis (1,5 cyclooctadiene)iridium(I) tetrafluoroborate ([Ir(cod) 2 ][BF 4 ]), sil ver triflate (AgOTf), and chloro(1,5 cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl] 2 ) were purchased from Strem Chemicals and used without further purification. Cesium carbonate (Cs 2 CO 3 ), trans methylstilbene, methyl 2 acetamidoacrylate, acetophenone, 1 (2 naphthalenyl)ethanone, 1 (4 bromophenyl)ethanone, 1 (3 bromophenyl)ethanone, benzimidazole, chlorodiphenylmethane, 2 bromopropane, 1 benzylimidazole, 1 methylbenzimidazole, silver acetate (AgOAc), potassium bis (trimethylsilyl)amide (KN(SiMe 3 ) 2 ), triethylo rthoformate, brucine dihydrate and 2 methyl benzyl bromide were purchased from Sigma Aldrich and used without further purification. Tetra( n butyl)ammonium bromide, anthracene, fumaric acid, anhydrous potassium carbonate

PAGE 174

174 (K 2 CO 3 ), sodium hydroxide (NaOH), p dibromo o xylene, Celite and magnesium sulfate (MgSO 4 ), anhydrous sodium sulfate (Na 2 SO 4 ), lithium aluminum hydride (LiAlH 4 ), xylenes, 2 propanol, 200 proof ethanol (EtOH), dimethyl formamide (DMF),glaciel acetic acid, ethe r, hexane, THF, methanol (MeOH), dioxane, styrene, sodium methoxide and hydrochloric acid (HCl) were purchased from Fisher Scientific and used without further purification. Syn gas, carbon monoxide, argon, and hydrogen were purchased from Airgas. 7.2 Anal ytical T echniques NMR Techniques : NMR spectra were recorded on Varian Mercury 300 MHz ( 13 C=75 MHz), Varian Mercury Broad Band 300 MHz ( 13 C=75 MHz), or Varian INOVA 500 MHz ( 13 C=125 MHz) spectrometers. When needed some signals were assigned by 2 D NMR tech niques (HETCOR, dqCOSY, ROESY, DEPT, gHMBC, gHMQC, NOESY, gdqCOSY). An NOE difference experiment was used to determine the barrier to ring inversions. 1 H and 13 C{ 1 H} NMR spectra, the residual protio solvent pe ak was referenced as an internal reference. 1 H: CDCl 3 = 7.27 ppm, C 6 D 6 = 7.16 ppm, acetone d 6 = 2.05 ppm, THF d 8 = 1.73, 3.58 ppm DMSO d 6 = 2.50 ppm 13 C{ 1 H}: CDCl 3 = 77.00 ppm, C 6 D 6 = 128.39 ppm, acetone d 6 = 29.92, 206.68 ppm, THF d 8 = 25.37, 67.57 p pm, DMSO d 6 = 39.51 ppm. IR Techniques : IR spectra were recorded on a Thermo Nicolet Nexus 670 FT IR spectrometer. Spectra of solids were measured as KBr discs.

PAGE 175

175 M ass S pectrometry Techniques : Mass Spectrometry was performed at the in house facility of the Department of Chemistry at the University of Florida. Matrix assisted laser desorption ionization time of flight ( MALDI TOF), chemical ionization, electrospray ionization (ESI) gas chromatography (GC) MS and direct probe insertion methods were used. El emental Analysis : Elemental analyses were performed at either the in house facility of the Department of Chemistry at the University of Florida, by Robertson Microlit Laboratories Inc, Madison, NJ or by Complete Analysis Inc., Parsippany, NJ. HPLC Techniqu es : For HPLC analysis, Shimadzu prominence systems with a LC 20AT solvent delivery module, DGU 20A3 degasser, SPD 20A UV vis detector (225 or 254 nm), and a CBM 20A system controller were used. Chiral Columns: Kromasil 100 10 TBB (250 x 4.6 mm), Kromasil 100 10 DMB (250 x 4.6 mm) and Diacel Chiracel OJ H (0.46 cm x 25 cm). GC Techniques : GC and GC MS analyses were carried out on a Thermo Scientific Trace DSQ mass spectrometer, with helium as the carrier gas. X Ray Techniques : Data were collected at 173 K o n either a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ) or at 100 K on a Bruker DUO system equipped with an APEX II area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). The

PAGE 176

176 structure was solved by the Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were ridin g on their respective carbon atoms. 7.3 Experimental M ethods Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 dicarboxylic acid (1). Literature procedures followed. 163 Resolution of trans 9,10 dihydro 9,10 ethan oanthracene 11,12 dicarboxylic acid (1). To a 1 L erylenmeyer flask with a stir bar is added brucine dihydrate (32g, 2 eq.) then EtOH (74 mL) and finally distilled water (252 mL). The solution is gently heated while stirring. A second solution is prepare d in a beaker (10 g 1 in 74 mL ethanol). This is o nly added to the flask after 1 is all dissolved. Next increase the heat and stirring of the solution in the 1 L flask and continue until everything is in solution. Once everything is dissolved, turn off the heat and stir for 5 more minutes. Finally remove the stir bar and cover the flask with a watch glass and leave at room temperature overnight. The white crystals are filtered through a coarse fritted funnel and washed with cold MeOH (300 mL) (the filt rate contains the other enantiomer). The crystals are then transferred to a new flask and 200 mL of ether and 200 mL of 6 M HCl. Stir until the crystals are dissolved and then extract the organic layer. The aqueous layer is washed with ether (3 x 100 mL ). The organic layers are combined and dried over Na 2 SO 4 The ether is removed in vacuo to provide resolved ( S S ) 1 The e.e. is checked by HPLC; Kromasil

PAGE 177

177 110 TBB, flow rate = 2 mL/min, 97.5% hexane: 2.5% 2 210 nm). If the e.e. is >99%, then the procedure is repeated. 163 168 The other enantio mer is obtained by letting the filtrate from above sit a 5 C for 5 d The crystals are filtered through a fine fritted funnel. The filtrate is then subjected to the 6 M HCl workup outlined above. This provides resolved ( R R ) 1 The 1 H NMR spectrum matc hes the reported shifts. 163 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diol (2). To an oven dried 500 mL 3 neck flask with a stir bar is added dry THF and LiAlH 4 (8 g, 122 mmol, solution A). A separate so lution of 1 is prepared (9 g, 30.6 mmol in 50 mL dry THF, solution B). Solution B is slowly pipetted to a chilled solution A. Afterwards, the final volume is brought up to c.a. 300 mL and the final solution is then heated to reflux under argon. After 20 h the reaction is allowed to come to room temperature and then chilled in an ice bath (check reaction by thin layer chromatography to determine reaction completeness). The LiAlH 4 is then carefully quenched with water over a 2 h period until the gray mat erial appears white and flakey (if the water is added too fast, a fire may result). The solution is then filtered through a coarse fritted funnel. The solid is washed with ethyl acetate (3 x 300 mL) and then the organic and aqueous layers are separated. The organic layer is dried over Na 2 SO 4 and removed in vacuo to provide 2 as a white solid (7.75 g 95%). The 1 H NMR spectrum matches the reported shifts. 163 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 dit riflouromethane sulfonate (3). Literature procedures followed. 169

PAGE 178

178 Synthesis of trans 1,1' [ 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 methy l 1H benzimidazol 3 ium) bis (triflouromethansulfonate) [DEAM MBI][OTf] 2 (4 Me). To an oven dried 100 mL flask containing a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (3.81 g, 7.11 mmol) in dry DME (30 mL) is added 1 methylbenzimidazole ( 7 Me ) (1.88 g, 14.23 mmol). After refluxing under argon for 1 h, a white precipitate formed. This is filtered through a medium fritted funnel, washed with DME and dried in vacuo to provide analytically p ure 4 Me as a white microcrystalline powder (3.26 g, 96%). 1 H NMR (300 MHz, acetone d 6 ): 9.65 (s, 2H, NC H N), 8.00 (dd, J = 9 Hz, J = 18, 4H, NCC H CHCHC H CN, signals overlap), 7.78 (ddd, J = 9 Hz, J = 15 Hz, J = 18 Hz, 4H, NCCHC H C H CHCN), 7.76 (ddd, J = 9 Hz, J = 15 Hz, J = 18 Hz, 4H, NCCHC H C H CHCN), 7.41 7.26 (m, 4H, CHCC H CH ), 7.25 7.04 (m, 4 H, CHCCHC H ), 4.55 (s, 2H, CC H C), 4.54 (dd, J = 12 Hz, J = 15 Hz, 2H,C H 2 ) 4.33 (dd, J = 12 Hz, J = 15 Hz, 2H, C H 2 ), 4.18 (s, 6H, C H 3 ), 2.78 (dd, J = 6 Hz, J = 6Hz, 2H, CH 2 C H ). 13 C{ 1 H} NMR (75 MHz, acetone d 6 ): 144.2 (s, N C HN), 143.9 (s, CCH C ), 141.2 ( s, CCH C ), 133.67 (s, N C CH), 132.7 (s, N C CH), 128.5 (s, NCCH C H), 128.5 (s, NCCH C H), 128.1 (s, CHCCH C H), 127.9 (CHC C HCH), 127.0 (s, CHC C HCH), 125.9 (s, CHCCH C H), 122.7 (q, J = 324 Hz C F 3 ), 114.98 (s, NC C HCH), 114.90 (s, NC C HCH), 51.8 (s, C H 2 ), 46.6 (s, C C H C), 44.6 (s, CH 2 C H), 34.6 (s, C H 3 ). MS(HR ESI+):Calc. for [C 34 H 32 N 4 ] 2+ : m/z 495.2543 [M H] + Found m/z 495.2532. Anal. Calc. for C 36 H 32 N 4 S 2 O 6 F 6 : C, 54.40%; H, 4.06%; N, 7.05%. Found: C, 54.35%; H, 3.91%; N, 6.88%.

PAGE 179

179 Synthesis of trans 1,1' [ 9,10 dihydro 9, 10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 methyl 1H benzimidazol 3 ium) bis (triflouromethansulfonate) [DEAM IBI][OTf] 2 (4 i Pr). To an oven dried 100 mL flask containing a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (1.73 g, 3.26 mmol) in dry DME (30 mL) is added 1 isopropylbenzimidazole ( 7 i Pr ) (1.00 g, 6.02 mmol). After refluxing under argon for 1 h, a white precipitate formed. This is filtered through a medium fritted funnel, w ashed with DME and dried in vacuo to provide analytically pure 4 i Pr as a white microcrystalline powder (2.55 g, 96%). 1 H NMR (300 MHz, acetone d 6 ): 9.84 (s, 2H, NC H N), 8.20 (d, J = 9 Hz, 2H, NCC H CH), 7.96 (d, J = 9Hz, 2H, NCC H CH), 7.80, (dd, J = 5, J = 3 Hz, 4H, NCCHC H ), 7.23 7.29 (m, 4H, CHCC H CH), 7.13 7.22 (m, 4H, CHCCHC H) 5.24 (sept, J = 6 Hz, 2H, C H (CH 3 ) 2 ), 4.79 (dd, J = 12 Hz, 15 Hz, 2H, C H 2 ), 4.43 (s, 2H CC H C) 4.25 (dd, J = 12 Hz, J = 15 Hz, 2H, C H 2 ), 2.80 (m, 2H, CH 2 C H ), 1.81 (d, J = 6 Hz, 6 H, CH(C H 3 ) 2 ), 1.79 (d, J = 6 Hz, 6H, CH(C H 3 ) 2 ). 13 C{ 1 H} NMR (75 MHz, acetone d 6 ): 143.9 (s, N C HN), 141.4 (s, CCH C ), 140.5 (s, CCH C ), 133.1 (s, N C CH), 132.1 (s, N C CH), 128.1 (s, NCCH C H), 128.0 (s, NCCH C H), 127.6 (s, CHC C HCH), 127.2 (s, CHC C HCH) 126.7 (s, CHCCH C H), 125.2 (s, CHCCH C H), 121.2 (q, J = 320 Hz, C F 3 ), 115.2 (s, NC C HCH), 11 4.7 (s, NC C HCH), 52.7 (s, C H 2 ), 50.9 ( C H(CH 3 ) 2 ), 46.0 (s, C C HC), 44.8 (s, CH 2 C H), 22.08 (s, C H 3 ), 22.04 (s, C H 3 ). MS(HR ESI+):Calc. for [C 38 H 40 N 4 ] 2+ : m/z 551.3169 [M H] + Found m/z 551.3157. Anal. Calc. for C 40 H 40 N 4 S 2 O 6 F 6 : C, 56.46%; H, 4.74%; N, 6.58%. Fo und: C, 56.38%; H, 4.65%; N, 6.40%.

PAGE 180

180 Synthesis of trans 1,1' [ 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 (1 benzyl(2 methylphenyl)) 1H benzimidazol 3 ium) bis (triflouromethansulfonate) [DEAM MeBnBI][OTf] 2 (4 MeBn). To an oven dried 10 0 mL flask containing a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (2.52 g, 4.75 mmol) in dry DME (30 mL) is added 1 benzyl(2 methylphenyl) benzimidazole ( 7 MeBn ) (2.11 g, 9.49 mmol). A fter refluxing under argon for 1 h, the solution is removed in vacuo to provide 4 MeBn a hydroscopic off white flocculent powder (4.29 g, 93%). 1 H NMR (300 MHz, acetone d 6 ): 9.65 (s, 2H, NC H N), 8.02 (dd, J = 6 Hz, J = 3 Hz, 2H, NCC H CH), 7.96 (dd, J = 9 Hz, J = 3 Hz, 2H, NCC H CH), 7.78 (dd, J = 6 Hz, J = 3 Hz, 4H, NCCHC H ), 7.36 7.21 (m, 12H, aromatic) CHCC H CH and CHCCHC H signals overlap), 7.15 (ddd, J = 15 Hz, J = 15 Hz, J = 6 Hz, 4H, CHCCHC H ), 5.91/5.90 (4H, NC H 2 C), 4.76 (dd, J = 15 Hz, J = 3 Hz, 2H, NC H 2 CH), 4.42 (s, 2H, CC H C), 4.28 (dd, J = 15 Hz, J = 9 Hz, NC H 2 CH, 2H), 2.77 (dd, J = 3 Hz, J = 3 Hz, NCH 2 C H 2H), 2.45 (s, C H 3 6H). 13 C{ 1 H} NMR (75 MHz, acetone d 6 ): 143.3 (N C HN), 143.2 (s, N C CH), 140.5 (s, N C CH), 137.8 ( quaternary C), 132. 7 (quaternary C), 132.6 (quaternary C), 132.2 (aromatic), 131.9 (quaternary C), 130.0 (aromatic), 129.7 (aromatic), 128.22 (aromatic), 128.19 (aromatic), 127.54 (aromatic), 127.50 (aromatic), 127.20 (aromatic), 126.5 (aromatic), 125.4 (aromatic), 122.1 (q, J = 300 Hz, C F 3 ), 115.1 (NC C H), 114.9 (NC C H), 51.3 (N C H 2 CH), 50.1 (N C H 2 C), 45.9 (C C HC), 44.1 (NCH 2 C H), 19.3 ( C H 3 ). HR ESI FTICR MS: Calc. for C 49 H 43 N 4 SO 3 F 3 : m/z 825.3081 [M+SO 3 C F 3 ] + Found m/z 825.3020. Anal. Calc. for C 50 H 44 N 4 S 2 O 6 F 6 : C, 61.60%; H, 4.56%; N, 5.75%. Found: C, 61.76%; H, 4.66%; N, 5.41%.

PAGE 181

181 Synthesis of trans 1,1' [ 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 (1 diphenylmethane) 1H benzimidazol 3 ium) bis (triflouromethansulfonate) [DEAM diPhBI][OTf] 2 (4 diPh). To an oven dried 100 mL flask containing a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (2.01 g, 3.79 mmol) in dry DME (50 mL) is added 1 diphenylmethane benzimidazole ( 7 diPh ) (2.26 g, 7.95 mmol). After refluxing under argon for 1 h, the solution is reduced in vacuo to 10 mL to induce precipitatation. The white solid is filtered through a medium fritted funnel and washed w ith ether providing 4 diPh as hydroscopic white analytically pure material (4.29 g, 75%). 1 H NMR (300 MHz, acetone d 6 ): 9.29 (s, 2H, NC H N), 7.97 (dd, J = 3 Hz, J = 3 Hz, 2H, NCC H ), 7.85 (dd, J = 3 Hz, J = 3 Hz, 2H, NCC H ), 7.74 (dd, J = 3 Hz, J = 3 Hz, 4H, CC 6 H 5 aromatic), 7.65 (s, 2H, NC H C), 7.62 7.43 (m, 20H, aromatic), 7.27 (d, J = 6 Hz, 2H, CH 2 CHCHCCHC H ), 7.17 (dd, J = 9 Hz, J = 9 Hz, 2H, NCCHC H ), 7.02 (dd, J = 9 Hz, J = 9 Hz, 2H, NCCHC H ), 6.84 (d, J = 6 Hz, 2H, CH 2 CHCHCC H ), 4.52 (dd, J = 15 Hz, J = 3 Hz, 2H, C H 2 ), 4.12 (s, 2H, CC H C), 3.93 (dd, J = 15 Hz, J = 9 Hz, 2H, C H 2 ), 3.43 (s, DME), 3.24 (s, DME), 2.41 (m, 2H, CH 2 C H CH). 13 C{ 1 H} (75 MHz, acetone d 6 ): 142.6 (s, N C N), 142.0 (s, CCH C ), 139.2 (s, CCH C ), 135.9 (s,NCH C ), 135.9 (s, NCH C ), 131.6 (s, N C CH), 131.4 (s, N C CH), 129.3 (s, C C 5 H 5, 2 signals), 129.2 (s, C C 5 H 5, 2 signals), 129.1 (s, C C 5 H 5, 2 signals), 129.0 (s, C C 5 H 5, 2 signals), 128.1 (s, C C 5 H 5, 2 signals), 127.1 (s, NCCH C H), 127.1 (s, NCCH C H), 126.4 (s, CH 2 CHCHC C H), 126.1 (s, CH 2 CHCHC C H), 125.2 (s, CH 2 CHCHCCH C H), 124.0 (s, CH 2 CHCHCCH C H), 120.7 (q, J = 323 Hz, C F 3 ), 114.6 (s, NC C H), 114.0 (s, NC C H), 71.0 (DME), 64.3 (N C HC), 58.0 (DME), 50.1 ( C H 2 ), 43.9 (C C HCHCH 2 ), 42.2 (NCH 2 C H).

PAGE 182

182 Found: C, 64.66%; H, 4.80%; N, 4.62%. Calc. for (C 60 H 48 N 4 O 36 S 2 F 36 ) + 1 molecule DME (C 4 H 10 O 2 ) C, 64.62%; H, 4.93%; N, 4.71%. Synthesis of trans 1,1' [ 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 (1 diph enylmethane) 1H imidazol 3 ium) bis (triflouromethansulfonate) [DEAM idiPhBI][OTf] 2 (4 idiPh). To an oven dried 100 mL flask containing a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (1.00 g, 1.87 mmol) in dry DME (50 mL) is added 1 diphenylimidazole ( 7 idiPh ) (850 mg, 9.49 mmol). After refluxing under argon for 2 h, the solution is removed in vacuo to provide 4 idiPh a hydroscopic yellow flocculent powder (1.84 g, 98%). 1 H NMR (500 MHz, a cetone d 6 ): 9.04 (t, J = <1 Hz, 2H, NC H N), 7.96 (t, J = 2.5 Hz, 2H, NC H CHN), 7.69 (t, J = 2.5 Hz, 2H, NC H CHN), 7.53 7.44 (m, 16H, C 6 H 5 ), 7.42 7.40 (m, 4H, C 6 H 5 ), 7.29 (s, 2H, NC H C), 7.28 (d, J = 5 Hz, 2H, CC H CHCHCHC), 7.18 (d, J = 5 Hz, 2H, CC H CHCHCHC) 7.14 (dt, J = 1 Hz, J = 5 Hz, 2H, CCHC H CHCHC), 7.07 (dt, J = 5 Hz, J = 1 Hz, 2H, CCHC H CHCHC), 4.35 (dd, J = 15 Hz, J = 5 Hz, 2H, C H 2 ), 4.18 (d, J = 5 Hz, 2H, CH 2 CHC H ), 3.84 (dd, J = 15 Hz, J = 5 Hz, 2H, C H 2 ), 2.40 (ddd, J = 10 Hz, J = 5 Hz, J = 1 Hz, 2H, CH 2 C H ). 13 C{ 1 H} NMR (125 MHz, acetone d 6 ): 143.2 (s, C CHC), 140.4 (s, C CHC), 137.90 (s, NCH C ), 137.88 (s, NCH C ), 137.80 (s, N C HN), 130.27 (s, C 6 H 5 2 signals), 130.20 (s, C 6 H 5 2 signals), 130.08 (s, C 6 H 5 2 signals), 129.5 (s, C 6 H 5 2 signals), 129.2 (s, C 6 H 5 2 signals), 127.5 (s, C C HCHCHCHC ), 127.3 (s, CCH C HCHCHC), 126.4 (s, CCH C HCHCHC), 125.2 (s, C C HCHCHCHC), 124.3 (s, N C HCHN), 124.1 (s, N C HCHN), 122.2 (q, J = 320 Hz,CF 3 ), 68.1 (s, N C HC), 53.6 (s,

PAGE 183

183 C H 2 ), 46.0 (s, CH 2 CH C H), 44.6 (s, CH 2 C H). Found: C, 62.41%; H, 4.45%; N, 5.31%. Calc. for C 52 H 44 N 4 S 2 O 6 F 6 : C, 62.52%; H, 4.44%; N, 5.61%. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 ( o xylyl) bibenzimidazolium) bis (trifluoromethanesulfonate) [DEAM o XYLBI][OTf] 2 (4 o xylyl ). To an oven dried 100 mL round bottom with a stir bar and trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfon ate) ( 3 ) (2.00 g, 3.77 mmol) in dry CH 3 di( N benzimidazolyl) o xylene ( 7 o xylyl ) (1.29 g, 3.8 mmol). After refluxing under argon for 16 h, the solution is removed in vacuo The resulting solid is triturated with acetone (3 x 5 mL ) until a pale yellow solid remains. To this is added 200 proof EtOH (50 mL) and then the reaction is gently heated while agitating the flask. After 10 15 minutes, a white precipitate forms. This material is filtered and washed with diethyl ether, leavi ng 7 o xylyl as a powdery white solid (1.20 g, 36%). 1 H NMR (500 MHz, acetone d 6 @ 50 C, ) : 8.88 (s, 2H, NC H N), 8.00 (d, J = 15 Hz, aromatic), 7.92 (dd, J = 5 Hz, J = 1 Hz, aromatic), 7.72 (ddd, J = 10 Hz, J = 5 Hz, J = 5 Hz, 2H, aromatic) 7.52 (d, J = 5 Hz, 2H, aromatic), 7.44 (d, J = 5 Hz, 2H, aromatic), 7.35 (dd, J = 5 Hz, J = 5 Hz, 3H, aromatic), 7.27 7.17 (m, 7H, aromatic), 5.93 (br s, 4H, NC H C), 4.86 (s, 2H, CC H C), 4.72 (d, J = 15 Hz, 2H, NC H 2 CH), 3.35 (dd, J = 15 Hz, J = 10 Hz, 2H, NC H 2 CH), 2.64 (d, J = 10 Hz, 2H, NCH 2 C H ). 13 C{ 1 H} NMR (125 MHz, acetone d 6 25 C, ): 142.6, (s, C CHC), 141.97 (br s, N C HN), 140.9 (s, CCH C ), 135.3 (s, NCH 2 C ), 132.9 (s, N C CH), 132.5 (s, N C CH), 131.1 (s, aromatic), 128.53 (s, aromatic), 128.45 (s, aromatic), 127.7 (s, aromatic), 127.3 (s, aromatic), 125.8 (s, aromatic), 125.4 (s, aromatic), 122.2 (q, J = 5 34 Hz, C F 3 ), 114.5 (s, N C CH),

PAGE 184

184 113.4 (br s, N C CH), 53.4 (br s, N C H 2 C), 49.5 (s, C C HC), 48.4 (s, NCH 2 C H), 46.0 (s, N C H 2 CH). Anal. Calc. for C 42 H 34 N 4 S 2 O 6 F 6 : C, 58.07%; H, 3.95%; N, 6.45%. Found: C, 57.773%; H, 3.856%; N, 6.372%. Synthesis of ( S S ) trans 1,1' [ 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl] bis (3 (1 R 1 phenylethane) 1H imidazol 3 ium) bis (triflouromethansulfonate) [DEAM PhEtBI][OTf] 2 (( S S R R ) 4 PhEt). To an oven dried 100 mL flask containing a stir bar and ( S S ) trans 9,10 dihyd ro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis (trifluoromethanesulfonate) ( 3 ) (500 mg, 0.934 mmol) in dry DME (50 mL) is added ( R ) 1 phenylethaneimidiazole ( ( R R ) 7 PhEt ) (0.340 mL, 1.96 mmol). After refluxing under argon for 1 h, the solution is co oled and transferred to a glove box where the solution is removed under vacuum. The crude oil is triturated with ether (2 x 10 mL) or until a flaky white tan material is left. Then the crude solid is added to 15 mL of ether and stirred overnight and filt ered the next day through a medium fritted funnel. Finally the crunchy off white solid is dried overnight under low heat leaving ( ( S S R R ) 4 PhEt ) as a mildly hygroscopic powder (636 mg, 80%). 1 H NMR (500 MHz, (DMSO d 6 ): 9.34 (s, 2H, NC H N), 7.83 (s, 2H, NC H C H N), 7.80 (s, 2H, NC H C H N), 7.46 7.43 (m, 8H, aromatic), 7.41 7.39 (m, 2H, aromatic), 7.32 7.29 (m, 4H, aromatic), 7.19 7.18 (m, 4H, aromatic), 5.78 (q, J = 10 Hz, 2H, C H CH 3 ), 4.05 (s, 2H, CC H C), 3.87 (dd, J = 10 Hz, J = 5 Hz, 2H, C H 2 ), 3.62 (dd, J = 15 Hz, J = 10 Hz, 2H, C H 2 ), 2.17 (m, 2H, CH 2 C H ), 1.92 (d, J = 5 Hz, 6H, C H 3 ). 13 C{ 1 H} NMR (125 MHz, acetone d 6 ): 143.3 (s, CCH C ), 140.4 (s, quaternary C ), 140.0 (s, quaternary C ), 136.4 (s, N C HN), 130.1 (s, C C 5 H 5 2 si gnals), 129.9 (s, C C 5 H 5 ), 127.8 (s, C C 5 H 5 2 signals), 127.40 (s, aromatic), 127.26 (s, aromatic), 126.3 (s, aromatic), 125.0 (s,

PAGE 185

185 aromatic), 123.98 (s, N C HCHN), 122.7 (s, N C HCHN), 122.0 (q, J = 300 Hz, C F 3 ) 60.7 (s, C HCH 3 ), 53.5 (s, N C H 2 ) 46.0 (s, C C HC), 44.9 (s, NCH 2 C H), 20.8 (s, C H 3 ). Found: C, 57.70%; H, 4.66%; N, 6.30%. Calc. for C 42 H 42 N 4 S 2 O 6 F 6 : C, 57.52%; H, 4.83%; N, 6.39%. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 bi(1 methylbenzimidazolidine, DEAM MBY (5 Me). Under an inert atmos phere to a 100 mL flask containing a stirring bar and 4 Me (1.00 g, 2.01 mmol) in THF (10 mL) is added KN(Si(CH 3 ) 3 ) 2 (0.80 g, 4.03 mmol in 5 mL THF) at 35 C. After stirring the solution for 3 h, the solution is removed in vacuo leaving a golden yellow cr ude solid. After trituration with 5 mL of ether and 2 x 5 mL of pentanes the yellow solid is taken up in ether and filtered through a medium fritted funnel. The funnel is transferred to a new sidearm flask and the solid is washed with THF until a white o r pale yellow salt cake remains. The filtrate is removed in vacuo to provide 5 Me as a golden yello w powder (511 mg, 78%). Note: Usually some KOTf is carried through this synthesis. 1 H NMR (300 MHz, C 6 D 6 ). 7.12 6.89 (m, 8H, CHCC H C H ), 6.66 (ddd, J = 1 5, J = 15, J = 6, 4H, NCCHC H ), 6.40 (d, J = 6 Hz, 2H, NCC H CH), 6.08 (d, J = 6 Hz, 2H, NCC H CH), 3.72 (s, 2H, CC H C), 3.33 (dd, J = 12 Hz, J = 12, 2H, C H 2 ), 3.03 (dd, J = 12 Hz, J = 12 Hz, 2H, C H 2 ), 2.69 (s, 6H, C H 3 ), 2.63 (dd, J = 6 Hz, J = 6 Hz, 2H, CH 2 C H ). 13 C{ 1 H} NMR (75 MHz, C 4 D 8 O, ): 146.5 (s, quaternary C ), 143.2 (s, quaternary C ), 142.7 (s, quaternary C ), 141.0 (s, quaternary C ), 126. 9 (s, NCCH C H), 126.6 (s, NCCH C H), 126.3 (s, CHCCH C H), 124.9 (s, CHCCH C H), 123.6 (s, N 2 C = C N 2 ), 121.1 (s, CHC C HCH), 120.5 (s, CHC C HCH), 109.1 (s, NC C HCH), 107.5 (s, NC C HCH), 54.3 (s, C H 2 ), 49.3 (s, C C HC), 41.5 (s, CH 2 C H), 36.9 (s, C H 3 ). C 34 H 30 N 4 :

PAGE 186

186 LR DPI CI; m/z 494 (100%)[M] + Anal. Calc. for C 34 H 30 N 4 + 2 THF molecules (C 4 H 8 O): C, 78.96%; H, 7.26%; N, 8.77%. Found: C, 78.80%; H, 6.80%; N, 8.75%. Synthe sis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 bi( o xylyl) benzimidazolidine), DEAM MBY (5 o xylyl ). Under an inert atmosphere to a 15 mL screw cap vial containing a stirring bar and 4 o xylyl (0.524 g, 0.603 mmol) in THF (3 mL) is added KN(Si(CH 3 ) 3 ) 2 (0.264 g, 1.32 mmol in 3 mL THF) at 3 5 C. After stirring the solution for 1 h, the solution is removed in vacuo leaving a crude golden yellow solid. After trituration with 5 mL of ether and 2 x 5 mL of pentanes, the yellow solid is taken up in ether and filtered through a medium fritted fun nel. The funnel is transferred to a new sidearm flask and the solid is washed with 20 mL THF or until a white or pale yellow salt cake remains. The filtrate is removed in vacuo to provide 5 o xylyl as a golden yellow powder (296 mg, 88%). 1 H NMR (300 MHz C 6 D 6 ): See appendix NMR spectrum shows a mix of conformers. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 bis(1 isopropylbenzimidazolidine 2 ylidene, DEAM IBY (6 i Pr). Under an inert atmosphere to a 100 mL flask containing a stirring bar and 4 i Pr (1.431 g, 1.68 mmol) in THF (30 mL) is added KN(Si(CH 3 ) 3 ) 2 (0.692 g, 3.47 mmol in 5 mL THF) at 35 C. After stirring the solution for 3 h, the solution is removed in vacuo leaving a golden yellow crude solid. After trituration with 5 mL of ether and 2 x 5 mL of pentanes the yellow solid is taken up in ether and filtered through a medium fritted funnel. The funnel is transferred to a new sidearm flask and the solid is washed with pentanes. The filtrate is removed in vacuo to provide 6 i Pr as a white solid (yield 631 mg, 82%). 1 H NMR (300 MHz, C 6 D 6 ): 7.53 (d, J = 6 Hz, 2H, NCC H CH), 7.10 6.88

PAGE 187

187 (m, 12H, NCCHC H and CHCC H C H overlapping signals), 6.81 (d, J = 6 Hz, 2H, NCC H CH), 4.43 (sept, J = 6 Hz, 2H, C H (CH 3 ) 2 ), 4.29 (s, CC H C), 3.98 (dd, J = 15 Hz, J = 15 Hz, 2H, C H 2 ), 3.85 (dd, J = 15 Hz, J = 15 Hz, 2H, C H 2 ), 2.64 (dd, J = 6 Hz, J = 6 Hz, CH 2 C H ), 1.56 (d, J = 6 Hz, 6H, CH(C H 3 ) 2 ), 1.51 (d, J = 6 Hz, 6H, CH(C H 3 ) 2 ). 13 C{ 1 H} NMR (75 MHz, C 6 D 6 ): 225.6 (s, N C N), 144.5 (s, CCH C ), 141.5 (s, CCH C ), 136.2 (s, N C CH), 135.3 (s, N C CH), 127.3 (s, NCCH C H), 126.7 (s, NCCH C H), 126.3 (s, CHC C HCH), 124.0 (s, CHC C HCH), 121.9 (s, CHCCH C H), 121.6 (s, CHCCH C H), 110.8 (s, NC C HCH), 110.5 (s, NC C HCH), 52.7 (s, C H 3 ), 49.8 (s, C H(CH 3 ) 2 ), 47.3 (s, C C HC), 45.5 (s, CH 2 C H), 23.83 (s, CH( C H 3 ) 2 ), 23.79 (s, CH( C H 3 ) 2 ). GCMS (HRCI+): Calc. for C 38 H 39 N 4 : m/z 551.3169 [M+H] + Found m/z 551.3218. Synthesis of 1 isopropylbenzimidazole (7 i Pr). Literature procedures followed. 170 Synthesis of 1 benzyl(2 methylphenyl) benzimidazole (7 MeBn) To a 250 mL flask containing a stir bar and benzimidazole (2 g, 17 mmol) in xylenes (100 mL) is added anhydrous K 2 CO 3 (2.34 g, 17 mmol), powdered KOH (0.95 g, 17 mmol), tetrabutylammonium bromide (272.8 mg, 1.5 mmol) and 2 methylbenzyl bromide (2.27 mL, 17 mmol) in that order. After refluxing under argon for 18 h, the solution is filtered hot through Celite in a course fritted funnel. The filtrate is transferred to a new round bottom and the solution i s removed in vacuo. To the remaining oil is added 15 mL of chloroform, and then the crude product is extracted with 1 M HCl (3 x 15 mL). NaOH pellets are added until obtaining a pH of 10. The product is then extracted with chloroform (4 x 20 mL), dried over MgSO 4 and gravity filtered through course filter paper (VWR brand). The chloroform is removed in vacuo to

PAGE 188

188 provide a tan oil. The oil is then chilled to 20 C to induce crystallization. After an hour the resulting colorless crystals are washed with pentanes (3 x 15 mL) yielding 1 benzyl(2 methyl phenyl) benzimidazole ( 7 MeBn ) (2.53 g, 67%). 1 H NMR (300 MHz, CDCl 3 ): 7.86 (dd, J = 6 Hz, J = 3 Hz, 1H, CH 2 CC H ), 7.83 (s, 1H, NC H N), 7.35 7.25 (m, 5H, aromatic ), 7.17 (ddd, J = 6 Hz, J = 6 Hz, J = 3 Hz, 1 H, NCCHC H ), 6.96 (d, J = 9 Hz, 1H, NCC H ), 5.34 (s, 2H, C H 2 ), 2.34 (s, 3H, C H 3 ). 13 C NMR (75 MHz, CDCl 3 ): 143.7 (quaternary C), 142.96 (N C HN), 135.7 (quaternary C), 133.9 (quaternary C), 132.95 (quaternary C), 130.6 (aromatic), 128.2 (aromatic), 127.6 ( aromatic), 126.4 (aromatic), 122.8 (aromatic), 122.0 (aromatic), 120.2 (aromatic), 119.7 (aromatic), 46.7 ( C H 2 ), 18.9 ( C H 3 ). Found: C, 81.06%; H, 6.38%; N, 12.72%. Calc. for C 15 H 14 N 2 : C, 81.05%; H, 6.35%; N, 12.60%. GCMS (HR DIP CI+): Calc. for C 15 H 14 N 2 : m/z 223.1235 [M+H] + Found m/z 223.1216. Synthesis of 1 diphenylmethanebenzimidazole (7 diPh). To a 1 L round bottom fitted with a conderser are added the following reagents in the order listed as follows: benzimidazole (12.00 g, 0.102 mol), 500 mL xylen e s, anhydrous K 2 CO 3 (14.16 g, 0.102 mol), KOH (6.01 g, 0.107 mol) and tetra( n butyl)ammonium bromide (1.70 g, 5.27 mmol). The contents of the flask are stirred for 5 min at room temperature and then chlorodiphenylmethane (18.0 mL, 0.124 mmol) is added thr ough the top of the condenser. The reaction is heated at ref lux under argon. After 26 h the reaction mixture is filtered hot through Celite through a coarse fritted funnel. The filtrate is dried over anhydrous Na 2 SO 4 gravity filtered through coarse p aper (VWR brand) and then all the volatiles are removed in vacuo to provide a beige oil. A solution of 3:2 ethyl acetate:hexanes (300 mL) is added to the oil inducing

PAGE 189

189 precipitation. The solution is stirred with a glass rod for 20 min and then the precip itate is filtered through a coarse fritted funnel. The precipitate is then washed with ether (3 x 15 mL) providing 7 diPh as a white powder (18.20 g, 63%). 1 H NMR (300 MHz, CDCl 3 ): 8.31 (d, J = 9 Hz, 1H, NC H N), 8.05 (d, J = 9 Hz, 1H, NCHNCC H ), 7.58 (d, J = 9 Hz, 1H, NCCHC H ), 7.55 (d, J = 9 Hz, 1H, NCCHC H ), 7.51 7.41 (m, 6H, C 6 H 5 ), 7.32 (d, J = 9 Hz, 1H, CHNCC H ), 7.22 7.15 (m, 4H, C 6 H 5 ), 6.97 (d, J = 9 Hz, 1H, C H C 6 H 5 ). 13 C{ 1 H} NMR (75 MHz, DMSO d 6 ): 143.6 (CHNCHN C ), 142.8 (N C HN), 138.7 (NCH C ), 133.9 (CHN C ), 128.8 (NCHCCH C H), 128.1 (NCHCCHCH C H), 128.0 (NCHC C H), 122.5 (CHNCCH C H), 121.8 (NCHNCCH C H), 119.7 (NCHNC C H), 111.2 (CHNC C H), 61.9 (N C HC). Found: C, 84.45%; H, 5.81%; N, 9. 51%. Calc. for C 20 H 16 N 2 : C, 84.46%; H, 5.68%; N, 9.85%. Synthesis of 1 diph enylmethaneimidazole (7 idiPh). Literature preparation followed. 171 di( N benzimidazolyl) o xylene (7 o xylyl ). Literature preparation followed. 172 Synthesis of ( R ) 1 phenylethaneimidiazole (( R R ) 7 PhEt). Literature preparation followed. 60 Synthesis of 8. Literature preparation followed except heat at reflux for 18 h 425 Syn thesis of 9. Literature preparation followed. 425 S ynthesis of 10. Literature preparation followed. 425

PAGE 190

190 Synthesis of bis (2 nitrophenyl) 9,10 dihydro 9,10 ethanoanthracene 11,12 diamine (11). To an oven dried 250 mL round bottom with a stir bar is added 10 (6.43 g, 27.2 mmol), anhydrous K 2 CO 3 (8.31 g, 60 mmol), 2 fluoronitrobenzene (6.0 mL, 57 mmol) and anhydrous DMF (50 mL). The solution is heated at 60 C under argon. After 24 h, the solution is allowed to come to room temperature and then distilled water (100 mL) is added with a droppi n g funnel (1 mL every 20 s ). The bright orange precipitate is filtered through a medium fritted funnel and washed with ether (3 x 20 mL). This provided analytically pure 11 The 1 H NMR spectrum matches the reported shifts 61 Synthesis of bis (2 aminophenyl) 9,10 dihydro 9,10 ethanoanthracene 11,12 diamine (12). To a 300 mL Parr stainless steel reactor flask is added bis (2 nitrophenyl) 9,10 dihydro 9,10 ethanoanthracene 11,12 diamine ( 11 ) (13.12 g, 27.2 mmol), Pd/C (10 wt %, 50% wet, 4.05 g), CH 2 Cl 2 (100 mL) and MeOH (30 mL). The reactor is sealed off and the air in the head space and solution is exchanged for hydrogen. Then the reactor is charged with 50 bars of hydrogen gas and stirred at room temperature. After 24 h, the pressure is released and the solution is filtered through Celite through a course fritted funne l. The filtrate is then removed in vacuo providing 12 as a light brown solid. It is dried on a high vacuum line overnight. Note, if a broad resonance is observed at 9 ppm in the 1 H NMR spectrum, then the proteated version of 12 formed. Treating this wi th 2 equivalents of sodium methoxide (5.4 M) makes the non proteated version of 12 The 1 H NMR spectrum matches the reported shifts. 61

PAGE 191

191 (9,10 dihydro 9,10 ethanoanthracene 11,12 diyl) bis (1 H benzimidazole) (13). T o 100 mL round bottom is added bis (2 aminophenyl) 9,10 dihydro 9,10 ethanoanthracene 11,12 diami ne ( 12 ) (1.18 g, 2.82 mmol), para toluenesulfonic acid monohydrate (110 mg, 0.56 mmol, 0.2 eq.) in triethylorthoformate (30 mL). Thi s solution is stirred for 4 d at room temperature under argon. After the allotted time, the solution is filtered through a coarse fritted funnel. The filtrate is dropped into hexanes (500 mL) precipitating out analytically pure 13 Note, a small amount of triethylorthoformate remains, but acts as a spectator during the next reaction. The 1 H NMR spectrum matches the reporte d shifts. 61 Synthesis of trans 1,1' (9,10 dihydro 9,10 ethanoanthracene 11, 12 diyl) bis (3 methyl 1 H benzimidazol 3 ium) ditrifluorosulfonate [DEA MBI](I) 2 ( [14 Me]OTf 2 ). (9,10 dihydro 9,10 ethanoanthracene 11,12 diyl)di(1H benzimidazole) ( 13 ) (668 mg, 0.871 mmol) is dissolved in dry MeCN (10 mL) in a sealable glass reactor Methyl triflate (0.500 mL, 1.74 mmol) is then added under argon and the flask is evacuated and sealed under vacuum. The flask is covered in aluminum foil and then heated in an oil bath at 105 C. After 48 h, the mixture is cooled to room temperature. The solution is reduced to a crude red oil and then the oil is dissolved in 40 mL of CHCl 3 The red product is washed with distilled water (3 x 50 mL). The organic layer is dried over Na 2 SO 4 and then decanted. The CHCl 3 is removed in vacou and then 10 mL o f fresh CHCl 3 is added. The solution is placed in a 15 C freezer overnight allowing for the formation of crystals. The white crystals are filtered through a coarse fritted funnel

PAGE 192

192 providing [14 Me]OTf 2 (906 mg, 77%). The 1 H NMR spectrum matches the repo rted shifts of the iodide version. 61 Synthesis of trans 1,1' (9,10 dihydro 9,10 ethanoanthracene 11,12 diyl) bis (3 isopropyl 1 H benzimidazol 3 ium) diiodide [DEA IBI](I) 2 ([14 i Pr]I 2 ). (9,10 dihydro 9,10 ethanoanthracene 11,12 diyl)di(1H benzimidazole) ( 13 ) (1.00 g, 2.28 mmol) is dissolved in dry CH 3 CN (10 mL) in a sealable g lass reactor 2 iodopropane (0.675 mL, 6.84 mmol) is then added under argon and the flask is evacuated and sealed under vacuum. The flask is covered in aluminum foil and then heated in an oil bath at 105 C. After 48 h, the mixture is cooled to room temp erature. The solution is dropped into 60 mL of ether. The precipitate is then filtered and washed with acetone providing [14 i Pr]I 2 as a pale yellow solid (1.468 g, 83%). 1 H NMR (300 MHz, CDCl 3 ): 9.96 (d, J = 9 Hz, 2H, CHCHNCC H ), 9.31 (s, 2H, NC H N), 8.22 (d, J = 9 Hz, 2H, CCHCC H ), 7.82 (ddd, J = 12 Hz, J = 6 Hz, J = 1 Hz, 2H, CHCHNCCHC H ), 7.70 7.63 (m, 4H, CH 3 CHNCCHC H CH 3 CHNCC H ), 7.48 (ddd, J = 9 Hz, J = 9 Hz, J = 1 Hz, 2H, CCHCCHC H ), 7.17 (dd d, J = 9 Hz, J = 9 Hz, J = 1 Hz, 2H, CCHCCHC H ), 6.94 (d, J = 3 Hz, 2H, NC H CH), 6.78 (d, J = 6 Hz, 2H, CCHCC H ), 4.97 (d, J = 6 Hz, 2H, NCHC H ), 4.96 (sept, J = 6 Hz, 2H, C H CH 3 ), 1.68 (d, J = 6 Hz, 6H, C H 3 ), 1.66 (d, J = 6 Hz, 6H, C H 3 ). 13 C{ 1 H} NMR (75 MHz, CDCl 3 ): 138.7 (s, N C N), 138.0 (s, CH C CH), 135.8 (s, CH C CH), 131.4 (s, CCHCHN C CH), 130.6 (s, CH 3 CHN C CH), 129.4 (s, NCHCHC C H), 128.3 (s, NCHCHCCH C H), 127.9 (s, CCHCHNCCH C H and NCHCHCCH C H), 127.5 (s, CH 3 CHNCCH C H), 125.0 (s, NCHCHC C H), 117.97 (s, CCHCHNC C H), 112.8 (s, NC C H), 61.8 (s, N C HCH), 52.7 (s, C HCH 3 ), 49.2 (s,

PAGE 193

193 NCH C H), 21.6 (s, C H 3 ), 21.4 (s, C H 3 ). Found: C, 55.50%; H, 4.48%; N, 7.07%. Calc. for C 36 H 36 N 4 I 2 : C, 55.54%; H, 4.66%; N, 7.20%. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyl) bis (1 isopropylbenzimidazolidine 2 ylidene), DEA IBY (15 i Pr). Two solutions are prepared under an inert atmosphere, (A) 4 i Pr (1.00 g, 1.29 mmol in 3 mL of THF) and (B) KN(Si(CH 3 ) 3 ) 2 (528 mg, 2.64 mmol in 4 mL of THF). Both solutions are chilled to 35 C. Af ter chilling, B is added to A and the final solution is stirred and allowed to come to room temperature. After 3 h the solution is filtered through a fine fritted funnel. Then the filtrate is removed in vacou and triturated with ether (5 mL) and pentanes (2 x 5 mL). The crude product is then taken up in pentanes and filtered through a medium fritted funnel providing 5 i Pr as white solid (405 mg, 60%). 1 H NMR (300 MHz, C 6 D 6 ): 7.50 (dd, J = 6 Hz, J = 3 Hz, 2H, aromatic), 7.34 (d, J = 6 Hz, 2H, aromatic), 7.15 7.09 (m, 4H, NC H CH and aromatic), 7.04 (ddd, J = 12 Hz, J = 6 Hz, J = 3 Hz, 4H, aromatic), 7.00 6.92 (m, 4H, aromatic), 6.68 (d, J = 6 Hz, 2H, aromatic), 4.68 (s, 2H, C C H C), 4.19 (sept, J = 6 Hz, 2H, C H (CH 3 ) 2 ), 1.27 (d, J = 6 Hz, 6H, C H 3 ) and 1.20 (d, J = 6 Hz, 6H, C H 3 ). 13 C{ 1 H} NMR (125 MHz, C 6 D 6 ): 222.5 (N C N), 142.1 (s, CH C CH), 141.1 (s, CH C CH), 136.3 (s, N C CH), 136.1 (s, N C CH), 126.8 (s, aromatic), 126.6 (s, aroma tic), 126.6 (s, aromatic), 124.9 (s, aromatic), 121.9 (s, aromatic), 121.8 (s, aromatic), 111.3 (s, NC C H), 110.4 (s, NC C H), 61.0 (s, C H (CH 3 ) 2 ), 51.6 (s, N C HCH), 49.7 (s, NCH C H), 23.46 (s, C H 3 ), 23.43 (s, C H 3 ). Found: C, 82.56%; H, 6.60%; N, 10.60%. Calc. for C 36 H 34 N 4 : C, 82.72%; H, 6.56%; N, 10.72%. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 bis(1 methyl benzimidazolone) (16 Me)

PAGE 194

194 In an NMR tube, a solution of 5 Me in C 6 D 6 is exposed to air. The tube is then shaken for 5 minutes until the y ellow color dissipates to clear forming 16 Me 1 H NMR (300 MHz, C 6 D 6 ): 7.49 (d, J = 6 Hz, 2H, CHCCHC H ), 7.04 6.91 (m, 6H, CHCC H C H C H signals overlap), 6.83 (ddd, J = 15, J = 15, J = 6, 4H, NCCHC H ), 6.59 6.56 (m, 2H, NCC H CH), 6.35 6.32 (m, 2H, NCC H CH), 4.19 (s, 2H, CC H C), 3.41 (dd, J = 12 Hz, J = 6, 2H, C H 2 ), 3.33 (dd, J = 12 Hz, J = 6, 2H, C H 2 ), 2.76 (s, 6H, C H 3 ), 2.37 (dd, J = 6 Hz, J = 6 Hz, 2H, CH 2 C H ). 13 C{ 1 H} NMR (75 MHz, C 6 D 6 ): 154.74 (s, C =O), 144.4 (s, CH C CH), 141.0 (s, CH C CH), 130.9 (s, N C C H), 130.3 (s, N C CH), 127.1 (s, NCCH C H), 126.95 (s, NCCH C H), 126.4 (s, CHCCH C H), 124.1 (s, CHCCH C H), 121.4 (s, CHC C HCH), 121.3 (s, CHC C HCH), 107.9 (s, NC C HCH), 107.5 (s, NC C HCH), 47.7 (s, C H 2 ), 45.99 (s, C C HC), 44.2 (s, CH 2 C H), 26.9 (s, C H 3 ). MS(HR ESI+):Ca lc. for [C 34 H 32 N 4 O 2 ]: m/z 549.2260 [M+Na] + Found m/z 549.2251. Synthesis of the Rhodium (I) ( tran 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 methylbenzimidazolidine 2 ylidene) norbornadiene triflate, [(DEAM MbBI)Rh(nbd)][OTf] (17 Me). To a solution of 5 Me (70.0 mg, 0.142 mmol) in 5 mL THF is added a solution of [Rh(nbd) 2 ] BF 4 (50.0 mg, 0.134 mmol in 5 mL THF). The reaction is stirred overnight providing a yellow precipitate. The precipitate is filtered and washed with 2 x 3 mL o f cold THF to provide 17 Me as a bright yellow solid (95 mg, 97%). (NMR key in appendix) 1 H NMR (300 MHz, CDCl 3 ): 7.69 (dd, J = 1.7 Hz, J = 7.0 Hz, 1H, A), 7.55 (d, J = 8.2 Hz, 1H, B), 7.53 (d, 1H, C), 7.49 (d, J = 8.3 Hz, 1H, D), 7.45 (dd, J = 1.6 Hz, J = 6.6 Hz, 1H, E), 7.39 (m, 2H, F/G), 7.36 (m, 1H, H), 7.32 (dd, J = 5 Hz, J = 10 Hz, 1H, I), 7.27 (m, 2H, J/K), 7.26 (m, 2H, L/M), 7.21 (m, 1H, N), 7.20 (m, 1H, O), 7.06 (d, J

PAGE 195

195 = 8 Hz, 1H, X), 5.40 (br M, 1H, P), 4.88 (m, 3H, Q/R/S), 4.70 (s, 3H, T), 4.68 (d, J = 2 Hz, 1H, U), 4.64 (br m, 1H, V), 4.49 (dd, J = 11 Hz, J = 14 Hz, 1H, W), 4.29 (d, J = 2 Hz, 1H, Y), 4.2 4 (br m, 1H, Z), 3.96 (s, 3H, a), 3.80 (dd, J = 5 Hz, J = Hz, 1H, b), 3.75 (dd, J = 11 Hz, J = 14 Hz, 1H, c), 3.09 (br m, 1H, d), 2.37 (d, J = 14 Hz, 1H, e), 2.01 (m, 1H, f), 1.47 (d, J = 9 Hz, 1H, g), 1.41(d, J = 9 Hz, 1H, h). 13 C{ 1 H} NMR (125 MHz, CDCl 3 ): 194.8 (d, J = 5 9 Hz, A), 194.6 (d, J = 58 Hz, B), 144.5 (s, C), 144.0 (s, D ), 139.3 (s, E), 139.1 (s, F), 135.68 (s, G or H), 135.58 (s, G or H), 134.9 (s, I), 134.7 (s, J), 127.20 (s, K/L), 127.18 (s, K/L), 126.98 (s, M/N), 126.87 (s, M/N), 126.3 (s O), 125.7 (s, P), 124.1 (s, m), 123.9 (s, Q or R or S), 123.8 (s, Q or R or S), 123.6 (s, Q or R or S), 123.5 ( s, T or U), 123.4 (s, T or U), 110.9 (s, V), 110.5 (s, W), 109.7 (s, n), 109.3 (s, o), 79.8 (d, J = 7 Hz, X), 77.4 (d, J = 7 Hz, Y), 74.7 (d, J = 7 Hz, Z), 68.2 (s, a), 65.2 (d, J = 7 Hz, b), 55.0 (s, c), 52.8 (s, d), 52.6 (s, e), 50.72 (s, f or g), 50.71 (s, f or g), 48.2 (s, h), 47.9 (s, i), 46.1 (s, p), 38.0 (s, k), 35.7 (s, q). MS(HR ESI+):Calc. for [C 41 H 38 N 4 Rh] + : m/z 689.2146 M + Found m/ z 689.2161. Anal. Calc. for C 42 H 38 N 4 SO 3 F 3 Rh: C, 60.13%; H, 4.58%; N, 6.68%. Found: C, 60.42%; H, 4.47%; N, 6.71%. Synthesis of rhodium (I) ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 isopropylbenzimidazolidine 2 ylidene) norbo rnadiene triflate, [(DEAM IBY)Rh(nbd)](OTf) (17 i Pr). To a THF (2 mL) solution of 4 i Pr (108 mg, 0.127 mmol) is slowly added a solution of KN(Si(CH 3 ) 3 ) 2 (56 mg, 0.281 mmol in 3 mL of THF) at 35 C in a glovebox. After stirring this solution for 10 minutes at room temperature, it is cooled to 35 C. To this solution is then added a solution of [Rh(nbd) 2 ] BF 4 (54 mg 0.144 mmol in 4 mL of THF) and the final solution was kept at 35 C overnight. On the benchtop the solution is

PAGE 196

196 filter into a stirring solution of hexanes. After 10 minutes the yellow precipitate that forms is collected on a fine fritted funnel and washed with ether (3 x 15 mL). The precipitate is dried providing 17 i Pr as a golden yellow powder (110 mg, 92%). 1 H NMR (300 MHz, CDCl 3 ): 7.77 (dd, J = 9 Hz, J = 9 Hz, 2H, aromatic), 7.66 (dd, J = 3 Hz, J = 6 Hz, 2H, aromatic), 7.55 (dd, J = 3 Hz, J = 6 Hz, 2H, aromatic), 7.38 7.14 (m, 10 H, aromatic), 6.38 (septet, J = 6 Hz, 1H, C H (CH 3 ) 2 ), 5.34 (septet, J = 6 Hz, 1H, C H (CH 3 ) 2 ), 5.22 (d d, J = 6 Hz, J = 9 Hz, 1H, NCH 2 C H ), 5.09 (d, J = 12 Hz, 1H, NC H 2 ), 4.82 (s, 1H, NCH 2 CHC H ), 4.71 4.62 (m, 4H, RhC H (3H) and NC H 2 ), 4.19 (s, 1H, NCH 2 CHC H ), 4.10 (br s, 1H, RhCHC H ), 3.81 (m, 1H, RhC H ), 3.70 (dd, J = 9 Hz, J = 12 Hz, 1H, NC H 2 ), 2.96 (br s, 1H RhCHC H ), 2.34 (s, 1H, NC H 2 ), 2.03 (br s, 1H, NCH 2 C H ), 1.94 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.86 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.60 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.41 (dd, J = 9 Hz, J = 9 Hz, 1H, RhCHCHC H H), 1.39 (dd, J = 9 Hz, J = 9 Hz, 1H, RhCHCHCH H ), 1.04 ( d, J = 6 Hz, 3H, CH(C H 3 ) 2 ). 13 C NMR (75.36 MHz, CDCl 3 ): 192.1 (d, Rh C N, J = 57 Hz ), 191.9 (d, Rh C N, J = 57 Hz ), 144.6 (CCH C ), 143.9 (CCH C ), 139.1 (CCH C ), 138.5 (CCH C ), 136.5 (N C CH), 136.3 (N C CH), 132.0 (N C CH), 131.3 (N C CH), 129.0 (CHCCH C H), 128.2 (CHCC H C H), 126.9 (CHCCH C H), 126.7 (CHCCH C H), 126.5 (NCCH C H), 125.3 (NCCH C H), 124.0 (NCCH C H), 123.64 (CHC C H), 123.56 (CHC C H), 123.3 (CHC C H), 123.1 (CHC C H), 122.9 (NCCH C H), 112.9 (NC C H), 112.0 (NC C H), 111.0 (NC C H), 109.7 (NC C H), 80.4 (d, Rh C H, J = 8 Hz ), 74.5 (d, Rh C H, J = 8 Hz ), 70.6 (d, Rh C H, J = 8 Hz ), 67.7 (RhCHCH C H 2 ), 65.2 (d, Rh C H, J = 8 Hz ), 55.8 ( C HCH 3 ), 55.2 ( C HCH 3 ), 54.5 (N C H 2 ), 52.4 (RhCH C H), 52.0 (RhCH C H), 51.7 (NCH 2 C H), 49.8 (N C H 2 ), 47.2 (NCH 2 CH C H), 46.6 (NCH 2 CH C H), 45.2 (NCH 2 C H), 22.5 (CH C H 3 ), 21.5 (CH C H 3 ), 21.3 (CH C H 3 ), 21.1

PAGE 197

197 (CH C H 3 ). Found: C, 61.71%; H, 5.20%; N, 6.23%. Calc. for RhC 46 H 46 N 4 SO 3 F 3 ; C, 61.73%; H, 5.19%; N, 6.26%. MS(HR ESI FTICR+): Calc. for [C 45 H 46 N 4 Rh] + : m/z 745.2772 M + Found m/z 745.2782. Synthesis of rhodium (I) ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 benzyl(2 methylphenyl benzimidazolidine 2 ylidene) norbornadiene triflate, [(DEAM MBBY)Rh(nbd)](OTf) (17 MeBn). To a THF (2 mL) solution of 4 MeBn (200 mg, 0.210 mmol) is slowly added a solution of KN(Si(CH 3 ) 3 ) 2 (85 mg, 0.426 mmol in 3 mL of THF) at 35 C in a glovebox. After stirring this solution for 10 minutes at room temperature, it is cooled to 35 C. To this solution is then added a solution of [Rh(nbd) 2 ] BF 4 (80 mg, 0.214 in 4 mL of THF) and the final solution is kept at 35 C overnight. On the benchtop the solution was the yellow precipitate that forms is collected on a fine fritted funnel and washed with ether (3 x 15 mL). The pre cipitate is dried providing 17 MeBn as a golden yellow powder (164 mg, 78%). 1 H NMR (500 MHz, CDCl 3 ppm): 7.85 (d, J = 10 Hz, 1H, NCC H ), 7.80 (d, J = 10 Hz, 1H, NH 2 CHCHCHCC H ), 7.62 (d, J = 5 Hz, 1H, NH 2 CHCHCHCC H ), 6.98 7.47 (m, 16H, aromatic and NCC H ) 6.86 (d, J = 10 Hz, 1H, NCC H ), 6.56 (dd, J = 7.5 Hz, J = 7.5 Hz, 1H, CH 3 CCHC H ), 6.47 (d, J = 15 Hz, 1H, NC H 2 C), 6.40 (d, J = 5 Hz, 1H, NCC H ), 6.28 (d, J = 5 Hz, 1H,NCH 2 CC H ), 6.12 (d, J = 15 Hz, 1H, NC H 2 C), 5.48 5.51 (m, 2H, NC H 2 C and NCH 2 C H overlapping signals), 5.42 (dd, J = 7.5 Hz, J = 7.5 Hz, 1H, NCH2CCHC H ), 5.21 (d, J = 15 Hz, 1H, NC H 2 CH), 4.91 (br s, 2H, NCH 2 CHC H and RhC H overlapping signals), 4.64 (br s, 1H, R C H), 4.58 (dd, J = 10 Hz, J = 10 Hz, 1H, NC H 2 CH), 4.42 (s, 1H, NCH 2 CHC H ), 4.30 (d, J = 15 Hz, 1H,

PAGE 198

198 NC H 2 C), 4.27 (br s, 1H, RC H ), 4.03 (br s, 1H, RC H ), 3.95 (dd, J = 10 Hz, J = 10 Hz, 1H, NC H 2 CH), 3.82 (br s, 1H, RCHC H ), 3.00 (br s, 1H, RCHC H ), 2.66 (s, 3H, C H 3 ), 2.65 (d, J = 15 Hz, 1H, NC H 2 CH) 2.57 (s, 3H, C H 3 ), 2.17 2.21 (m, 1H, NCH 2 C H ), 1.34 (d, J = 5 Hz, 1H, RhCHCHC H 2 ), 1.25 (d, J = 5 Hz, 1H, RhCHCHC H 2 ). 13 C NMR (125 MHz, CDCl 3 ppm): 194.5 (d, J = 58 Hz, N C N), 194.2 (d, J = 58 Hz, N C N), 144.7 ( C CHC), 143.9 ( C CHC), 139.2 ( C CHC), 138.7 ( C CHC), 135.6 (CHCH 2 N C CH), 135.1 (CHCH 2 N C CH), 134.44 (CCH 2 N C CH), 134.38 (CH 3 C ), 134.2 (CH 3 C ), 133.7 (CCH 2 N C CH), 132.9 (NCH 2 C ), 132.5 (NCH 2 C ), 131. 0 (CH 3 C C H), 130.0 (CH 3 C C H), 128.0 (CH 3 CCH C H), 127.0 (CH 3 CCH C H + C HCHCCHC), 126.80 (NCH 2 CCH C H), 126.75 ( C HCHCCHC), 126.6 (CH C HCCHC), 126.5 ( C HCHCCHC + CH C HCCHC), 125.3 (NCH 2 CCH C H), 124.9 (NCH 2 C C H), 124.2 (CH C HCCHC), 124.1 ( C HCHCCHC), 123.9 (CHCH 2 NCCH C H), 12 3.7 (CCH 2 NCCH C H), 123.6 (CHCH 2 NCCH C H), 123.3 (CCH 2 NCCH C H), 123.0 (CH C HCCHC), 121.9 (NCH 2 C C H), 121.0 (q, J = 319 Hz, C F 3 ), 111.8 (CHCH 2 NC C H), 110.7 (CCH 2 NC C H), 110.4 (CCH 2 NC C H), 109.4 (CHCH 2 NC C H), 79.6 (d, J = 6 Hz, Rh C H), 76.2 (d, J = 6 Hz, Rh C H), 74.2 (d, J = 6 Hz, Rh C H), 71.8 (DME), 67.9 (RhCHCH C H 2 ), 67.6 (d, J = 6 Hz, Rh C H), 59.0 (DME), 54.8 (N C H 2 CH), 52.5 (RCH C H), 52.3 (RCH C H), 51.6 (N C H 2 C), 50.9 (N C H 2 C), 50.6 (N C H 2 CH), 50.4 (NCH 2 C H), 47.4 (NCH 2 CH C H), 47.3 (NCH 2 CH C H), 46.0 (NCH 2 C H), 19.4 ( C H 3 ), 19.3 ( C H 3 ). Found: C, 65.98%; H, 5.08%; N, 5.52%. Calc. for RhC 56 H 50 N 4 F 3 O 3 S: C, 66.01%; H, 4.95%; N, 5.50%. Synthesis of rhodium (I) ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane benzimidazolidine 2 ylidene) norbornadien e triflate, [(DEAM diPhBY)Rh(nbd)](OTf) (17 diPh).

PAGE 199

199 To a THF (2 mL) solution of 4 diPh (294 mg, 0.268 mmol) is slowly added a solution of KN(Si(CH 3 ) 3 ) 2 (112 mg, 0.563 mmol in 3 mL of THF) at 35 C in a glovebox. After stirring this solution for 10 minutes at room temperature, it is cooled to 35 C. To this solution is then added a solution of [Rh(nbd) 2 ] BF 4 (101 mg, 0.270 in 4 mL of THF) and th e final solution is kept at 35 C overnight. On the benchtop the solution is filtered through yellow precipitate that forms is collected on a fine fritted funnel and washed with ether (3 x 15 mL). The precipitate is dried providing 17 diPh as a golden yellow powder (2 69 mg, 88%). 1 H NMR (300 MHz, CDCl 3 ): 8.53 (s, 1H, NC H ), 8.02 (d, J = 6 Hz, 1H, NCC H ), 7.86 (d, J = 6 Hz, 1H, aromatic), 7.59 (d, J = 9 Hz, 1H, aromatic), 7.45 6.75 (m, 30H, aromatic), 7.24 (s, 1H, NC H ), 6.62 (d, J = 9 Hz, 1H, NCC H ), 6.22 (d, J = 9 Hz 2H, NCC H and aromatic), 5.37 (d, J = 12 Hz, 1H, NCH H ), 5.17 (dd, J = 9 Hz, J = 9 Hz, 1H, NCH 2 C H ), 5.00 (s, 1H, NCH 2 CHC H ), 4.80 4.72 (m, 2H, RhC H and NC H H), 4.42 (br s, 1H, RhC H ), 4.35 (s, 1H, NCH 2 CHC H ), 4.21 (dd, J = 15, J = 12, 1H, NC H H) 3.88 (br s, 1H, RhC H ), 3.46 (br s, 1H, RhCHC H ), 3.33 (br s, 1H, RhC H ), 3.03 2.99 (m, 2H, NCH H RhCHC H ), 2.18 (dd, J = 9 Hz, J = 9 Hz, 1H, NCH 2 C H ), 1.23 (dd, J = 9 Hz, J = 9 Hz, 1H, RhCHCHC H H), 1.19 (dd, J = 9 Hz, J = 9 Hz, 1H, RhCHCHCH H ). 13 C NMR (75 MHz, CDCl 3 ): 194.9 (d, J = 57 Hz Rh C N), 194.7 (d, J = 57 Hz Rh C N), 144.8 ( C CHC), 144.0 ( C CHC), 139.2 ( C CHC), 138.3 ( C CHC ), 137 .7 (NCH C ), 137.6 (NCH C ), 137.0 (NCH C ), 136.2 (NCH C ), 1 35.9 (2 overlapping signals, N C CH), 133.7 (N C CH), 133.1 (N C CH), 129.4 (aromatic), 129.0 (aromatic), 128.8 (aromatic), 128.7 (aromatic), 128.6 (aromatic), 128.5 (aromatic), 128.4 (aromatic), 128.3 (aromatic), 127.8 (aromatic), 127.7 (aromatic), 127.3 (aromatic), 127.1 (aromatic), 126.9 (aromatic), 126.8 (aromatic),

PAGE 200

200 126.71 (aromatic), 126 .66 (aromatic), 126.3 (aromatic), 125.3 (aromatic), 124.1 (aromatic), 124.0 (aromatic), 123.9 (aromatic), 123.5 (aromatic), 123.3 (aromatic), 122.8 (aromatic), 121.0 (q, J = 321 Hz C F 3 ), 114.4 (NC C H), 113.0 (NC C H), 111.4 (NC C H), 109.9 (NC C H), 80.9 (d, J = 8 Hz Rh C H), 75. 4 (d, J = 8 Hz Rh C H), 70.7 (d, J = 8 Hz Rh C H), 68.8 (N C H), 68.6 (N C H), 68.1 (RhCHCH C H 2 ), 67.3 (d, J = 8 Hz Rh C H), 54.6 (N C H 2 ), 52.5 (RhCH C H), 52.3 (NCH 2 C H), 51.5 (RhCH C H), 50.5 (N C H 2 ), 46.9 (NCH 2 CH C H) 46.7 (NCH 2 CH C H), 45.2 (NCH 2 C H). Found: C, 68.77%; H, 4.98%; N, 4.64%. Calc. for RhC 66 H 54 N 4 SO 3 F 3 ; C, 69.35%; H, 4.76%; N, 4.90%. MS(HR ESI FTICR+):Calc. for [C 65 H 54 N 4 Rh] + : m/z 993.3398 M + Found m/z 993.3399. Synthesis of rhodium (I) (( S S ) trans 9,10 dihydro 9,10 ethanoanthracene 11,1 2 diyldimethanediyl) bis (1 R 1 phenylethane imidazolidine 2 ylidene) norbornadiene triflourosulfonate, [(DEAM PEBY)Rh(nbd)](OTf) (17 PhEt). Three solutions are prepared: A, ( S S R R ) 4 PhEt (202 mg, 0.231 mmol) is suspended in 2 mL of THF; B, KN(Si(CH 3 ) 3 ) 2 (101 mg, 0.506 mmol) is suspended in 2 mL of THF; C, [ Rh(nbd) 2 ]BF 4 (86 mg, 0.230 mmol) is suspended in 3 mL of THF. Solutions A, B and C are chilled to 35 C. Half of solution B is added to solution A to make solution AB. Solution AB is then rechilled to 35 C before adding solution C and then solution B. The final solution is then chilled to 35 C overnight. The next day solution ABC is filtered through a medium fritted funnel. The filtrate is then dropped into hexanes and the yellow solid is filter ed through a fine fritted funnel. The crude yellow solidis washed with ether (3 x 10 mL). The frit is transferred to a new sidearm flask and then 3 mL of CHCl 3 is added. The yellow solid is given a quick stir with a metal spatula, then allowed to go thr ough the frit. The filtrate is then dropped into hexanes and the

PAGE 201

201 solid is filtered leaving 17 PhEt as a yellow solid (181 mg, 89%). Note, additional washing with CHCl 3 may be needed to fully get rid of KOTf, however only an elemental analysis can determi ne this. 1 H NMR (300 MHz, CDCl 3 ppm): 7.58 (dd, J = 6 Hz, J = 3 Hz, 1H, aromatic), 7.17 7.47 (m, 15H, aromatic), 7.13 (d, J = 3 Hz, 1H, NC H CHN), 7.02 (d, J = 3 Hz, 2H, NC H CHN), 6.81 (d, J = 3 Hz, 1H, NC H CHN), 6.83 (q, J = 6 Hz, 1H, NC H CH 3 ), 6.62 (dd, J = 6 Hz, J = 3 Hz, 2H, aromatic), 5.16 (q, J = 6 Hz, 1H, NC H CH 3 ), 4.93 (dd, J = 9 Hz, J = 9 Hz, 1H, NCH 2 C H ), 4.66 (dd, J = 12 Hz, J = 3 Hz, 1H, N H 2 ), 4.58 (d, J = 1 Hz, 1H, CC H C), 4.48 (br s, 1H, RhC H ), 4.28 (d, J = 1 Hz, 1H, CC H C), 4.26 4.34 (m, 2H, RhC H and NC H 2 overlapping signals), 3 .65 3.70 (m, 2H, RhC H and RhCHC H overlapping signals), 3.47 (dd, J = 12 Hz, J = 9 Hz, 1H, NC H 2 ), 3.34 (br s, 1H, RhC H ), 2.92 (br s, 1H, RhCHC H ), 2.61 (d, J = 12 Hz, 1H, NC H 2 ), 1.97 (d, J = 6 Hz, 3H, C H 3 ), 1.83 1.89 (m, 1H, NCH 2 C H ), 1.31 (d, J = 9Hz, 1H, R hCHCHC H 2 ), 1.20 (d, J = 9Hz, 1H, RhCHCHC H 2 ), 0.69 (d, J = 6 Hz, 3H, C H 3 ). 13 C NMR (75 MHz, CDCl 3 ppm): 180.9 (d, J = 57 Hz, N C N), 180.5 (d, J = 57 Hz, N C N), 144.5 (CH C CH), 144.3 (CH C CH), 142.0 (CH 3 CH C ), 141.2 (CH 3 CH C ), 139.3 (CH C CH), 138.4 (CH C CH), 12 9.3 (3 signals, aromatic), 128.7 (3 signals, aromatic), 128.0 (aromatic), 127.7 (aromatic), 126.7 (2 signals, aromatic), 126.5 (2 signals, aromatic), 126.4 (2 signals, aromatic), 126.2 (2 signals, aromatic), 125.9 (2 signals, aromatic), 125.7 (3 signals, a romatic), 125.2 (3 signals, aromatic), 124.6 (aromatic), 124.4 (aromatic), 123.6 (N C HCHNCHCH 3 ), 123.0 (N C HCHNCHCH 3 ), 118.7 (NCH C HNCHCH 3 ), 118.2 (NCH C HNCHCH 3 ), 73.3 (d, J = 7 Hz, Rh C H), 67.5 (d, J = 7 Hz, Rh C H), 67.1 (2 signals overlapping; d, J = 7 Hz, R h C H; RhCHCH C H 2 ), 66.8 (d, J = 7 Hz, Rh C H), 61.4 ( C HCH 3 ), 60.0 ( C HCH 3 ), 54.3 (N C H 2 ), 52.1 (NCH 2 C H), 51.6

PAGE 202

202 (RhCH C H), 50.4 (N C H 2 ), 47.1 (NCH 2 CH C H), 46.8 (NCH 2 CH C H and NCH 2 C H, signals overlapping), 23.6 ( C H 3 ), 21.0 ( C H 3 ). Found: C, 61.80%; H, 5.10%; N, 5.76 %. Calc. for RhSC 48 H 46 N 4 O 3 F 3 + 0.1 equivalents KCF 3 SO 3 C, 61.61%; H, 4.94%; N, 5.98%. Synthesis of rhodium (I) ( S S ) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane imidazolidine 2 ylidene) norbornadiene triflourosulfo nate, [(DEAM DPBY)Rh(nbd)](OTf) (17 idiPh). Three solutions are prepared: A, 4 idiPh (300 mg, 0.273 mmol) is suspended in 2 mL of THF; B, KN(Si(CH 3 ) 3 ) 2 (120 mg, 0.604 mmol) is suspended in 2 mL of THF; C, [ Rh(nbd) 2 ]BF 4 (86 mg, 0.288 mmol) is suspended in 3 mL of THF. Solutions A, B and C are chilled to 35 C. Half of solution B is added to solution A to make solution AB. Solution AB is then rechilled to 35 C before adding solution C and then solution B. The final solution is then chilled to 35 C overn ight. The next day solution ABC is filtered through a medium fritted funnel. The filtrate is then dropped into hexanes and the yellow solid is filtered through a fine fritted funnel. The crude yellow solidis washed with ether (3 x 10 mL). The frit is t ransferred to a new sidearm flask and then 3 mL of CHCl 3 is added. The yellow solid is given a quick stir with a metal spatula, then allowed to go through the frit. The filtrate is then dropped into hexanes and the solid is filtered leaving 17 idiPh as a yellow solid (255 mg, 89%). Note, additional washing with CHCl 3 may be needed to fully get rid of KOTf, however only an elemental analysis can determine this. 1 H NMR (300 MHz, CDCl 3 ppm): 7.72 (s, 1H, NC H C), 7.62 (dd, J = 3, J = 6 Hz, 1H, aromatic), 7.58 (d, J = 3 Hz, 1H, NC H CHN), 7.52 (dd, J = 3, J = 6 Hz, 1H, aromatic), 6.90 7.44 (m, 20H, aromatic + NC H CHN), 6.83 (d, J = 3 Hz, 1H, NC H CHN), 6.54 (d, J = 3 Hz, 2H, NC H CHN), 6.20 (d, J = 9 Hz, 2H, aromatic), 5.08 (dd, J = 6 Hz, J = 6 Hz, 1H,

PAGE 203

203 NCH 2 C H ), 4 .83 (dd, J = 3 Hz, J = 12 Hz, 1H, NC H 2 ), 4.68 (s, 1H, NCH 2 CHC H ), 4.41 (br s, 1H, RhC H ), 4.31 (s, 1H, NCH 2 CHC H ), 4.28 (br s, 1H, RhC H ), 4.20 (dd, J = 9 Hz, J = 9 Hz, 1H, NC H 2 ), 3.69 (br s, RhCHC H ), 3.48 (dd, J = 12 Hz, J = 15 Hz, 1H, NC H 2 ), 3.40 (br s, 1H, RhC H ), 3.24 (br s, 1H, RhC H ), 2.89 (br s, 1H, RhCHC H ), 2.63 (d, J = 12 Hz, 1H, NC H 2 ), 1.89 1.96 (m, 1H, NCH 2 C H ), 1.15 (d, J = 9 Hz, 1H, RhCHCHC H 2 ), 1.10 (d, J = 9 Hz, 1H, RhCHCHC H 2 ). 13 C NMR (12 5 MHz, CDCl 3 ppm): 181.4 (d, J = 56 Hz, N C N), 180.8 (d, J = 56 Hz), 144.8 (NCH 2 CHCH C ), 144.7 (NCH 2 CHCH C ), 139.9 (aromatic, q uatranary ), 139.7 (aromatic, quatranary) 139.3 (aromatic, quatranary) 138.8 (aromatic, quatranary) 138.6 (aromatic, quatranary) 138.1 (aromatic, quatranary) 129.5 (aromatic, 2 signals), 129.3 (aromatic, 5 signals), 128.9 (aromatic, 4 signals), 128.7 (aromatic, 4 signals), 127.5 (aromatic, 2 signals), 127.4 (aromatic, 2 signals), 127.1 (aromatic), 126.9 (aroma tic, 2 signals), 126.8 (aromatic), 126.6 (aromatic), 126.4 (aromatic), 125.9 (ar omatic), 125.7 (aromatic), 124.4 (aromatic), 124.2 (N C HCHN), 123.2 (N C HCHN), 121.2 (q, J = 323 Hz, C F 3 ), 121.1 (N C HCHN), 120.4 (N C HCHN) 76.5 (d, J = 6 Hz, R C H), 72.4 (d, J = 8 Hz, Rh C H), 69.7 (d, J = 6 Hz, R C H), 69.3 (N C HC), 68. 6 (N C HC), 67.4 (RhCHCH C H 2 ) 66.9 (d, J = 6 Hz, R C H), 58.1 (RhCH C H), 55.2 (N C H 2 ) 52.5 (N C H 2 C H), 52.2 (RhCH C H), 51.6 (N C H 2 ), 47.2 (NCH 2 CH C H), 46.77 (NCH 2 CH C H), 46.75 (NCH 2 C H). Synthesis of rhodium (I) ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis ( o xylyl) biimidazolidine 2 ylidene) norbornadiene triflourosulfonate, [(DEAM o xylyl )Rh(nbd)](OTf) (17 o xylyl ). To a solution of 4 o xylyl (115 mg, 0.202 mmol in 3 mL of THF) is slowly added a solution of [Rh(nbd) 2 ]BF 4 (76 mg, 0.203 mmol i n 3 mL of THF) at 35 C in a glovebox.

PAGE 204

204 The solution is then stirred overnight and allowed to come to room temperature. After stirring this solution for 10 minutes at room temperature, it is cooled to 35 C. A precipitate formed and is filtered through a medium fritted funnel. The fritted funnel is then transferred to a new sidearm flask and the precipitate is washed with 10 mL of CHCl 3 The filtrate is transferred to a 15 mL screw cap vial and capped and allowed to sit for 24 hours undisturbed. The ma terial is then filtered providing 17 o xylyl as golden yellow microcrystals (21 mg, 30%). The 1 H NMR spectrum shows a mix of conformers and convoluted mix of resonances, see Figure below. Some of the major conformer proton and carbon signals could be ide ntified, however. 1 H NMR (500, DMSO d 6 ppm): NC H 2 C, 5.51, 5.65, 7.13, 7.31; NC H 2 CH, 3.16, 3.09, 4.20, 4.45; NCH 2 C H 2.01, 6.21; NCH 2 CHC H 4.98, 5.09; RhC H 4.11, 5.09, 5.24, 5.28; RhCHC H 3.99, 4.22; RhCHCHC H 2 1.47, 1.53 13 C NMR (75 MHz, DMSO d 6 ppm): 197.2 (d, J = 56 Hz, N C N), 196.8 (d, J = 56 Hz, N C N), 142.4 (CCH C ), 141.6 (CCH C ), 140.82 (CCH C ), 140.76 (CCH C ), 136.0 (CH 2 C C CH 2 ), 135.1 (CH 2 C C CH 2 ), 135.0, 134.6, 134.4, 133.8, 133.4, 130.1, 129.5, 129.4, 129.2, 126.6, 126.5, 126.4, 126.1, 126.0, 125.3, 125.1, 124.7, 124.4, 124.0, 123.0, 122. 8, 122.6, 122.5, 111.5 (NC C H), 111.3 (NC C H), 110.3 (NC C H), 109.5 (NC C H), 77.9 (d, J = 7 Rh C H), 75.9 (d, J = 7 Hz Rh C H), 74.1 (d, J = 7 Hz Rh C H), 71.1 (d, J = 7 Hz Rh C H), 67.1 (RhCHCH C H 2 ), 54.9 (N C H 2 CH), 54.7 (N C H 2 C), 53.8 (RhCH C H), 52.6 (RhCH C H + N C H 2 C H) 52.3 (N C H 2 C), 48.8 (C C HC), 48.3 (C C HC), 46.3 (NCH 2 C H), 44.1 (NCH 2 C H). HR ESI FTICR MS: Calc. for [RhC 47 H 40 N 4 ] + m/z 763.2303 [M] + Found m/z 763.2319.

PAGE 205

205 Synthesis of rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,12 bis (1 methyl benzimidazolidine 2 ylidene) 1,5 cyclooctadiene iodide, [(DEA MBY)Rh(cod)]I [19 Me]I. 61 To a solution of trans 9,10 dihydro 9,10 ethanoanthracene 9,12 (1 methyl)bibenzimidazole) (300 mg, 0.643 mmol in 3 mL of THF) at 35 C is added a solution of [Rh(cod)Cl] 2 (157 mg, 0.321 mmol in 3 mL THF). The reaction is then placed in a freezer at 35 C over night. The formed precipitate is filtered and washed with 2 x 3 mL of cold THF to provide [19 Me]I as golden yellow crystals (490 mg, 93%). The 1 H and 13 C NMR match the previously reported ones. At this point the iodine can be switched to a triflate cou nter ion by treating [19 Me]I with an equivalent of AgOTf in 1:1 CH 3 CN:CH 2 Cl 2 The reaction is then stirred overnight in the dark and filtered the next day providing [19 Me]OTf in quantitative yield. Synthesis of rhodium(I) trans 9,10 dihydro 9,10 ethanoa nthracene 9,12 bis (1 methyl benzimidazolidine 2 ylidene) 1,5 cyclooctadiene iodide, [(DEA MBY)Rh(cod)]I [19 Me]OTf. To a solution of [14 Me]OTf 2 (500 mg, 0.652 mmol in 4 mL of THF) is slowly added a solution of KN(Si(CH 3 ) 3 ) 2 (273 mg, 1.37 mmol in 3 mL of T HF) at 35 C in a glovebox. After stirring this solution for 10 minutes at room temperature, it is cooled to 35 C. To this solution is then added a solution of [Rh(cod)Cl] 2 (159 mg, 0.325 mmol in 4 mL of THF) and the final solution is kept at 35 C over night. On the benchtop the solution is filtered through a medium fritted funnel. The precipitate is dried providing [19 Me]OTf as a golden yellow powder (23 mg, 4.6%).

PAGE 206

206 Synthesis of 2 trans 9,10 dihydro 9,10 ethanoanthracene 9,12 diyldimethanediyl) bis (1 methyl benzimidazolidine 2 ylidene) (rhodium(I) 1,5 cyclooctadiene chloride), [ 2 DEAM MBY][Rh(cod)Cl] 2 (20 Me). To a solution of 5 Me (33 mg, 0.067 mmol in 3 mL THF) was added a solution of [Rh(cod)Cl] 2 (50 mg, 0.134 mmol in 3 mL THF). The reaction was set aside overnight providing a yellow precipitate. The precipitate was filtered and washed with 2 x 3 mL of THF to provide 20 Me as a yellow crystalline solid (97 mg 74%). MS(HR ESI+):Calc. for [C 50 H 54 N 4 Cl 2 Rh 2 ]: m/z 951.2124 [M Cl] + Found m/z 951.210 6. Anal. Calc. for C 50 H 54 N 4 Cl 2 Rh 2 : C, 60.80%; H, 5.51%; N, 5.67%. Found: C, 60.62%; H, 5.98%; N, 5.22%. Solubility issues prevented collection of NMR spectral data. Synthesis of 2 trans 9,10 dihydro 9,10 ethanoanthracene 9,12 diyldimethanediyl) bis (1 isopropyl benzimidazolidine 2 ylidene) (rhodium(I) 1,5 cyclooctadiene chloride) [ 2 DEAM IBY][Rh(cod)Cl] 2 (20 i Pr). To a solution of 6 i Pr (173 mg, 0.0314 mmol in 3 mL THF) was added a solution of [Rh(cod)Cl] 2 (78 mg, 0.158 mmol in 3 mL THF). The reaction was set aside overnight and a white precipitate formed. The precipitate was filtered and washed with 2 x 3 mL of THF to provide 20 i Pr as a white microcrystalline powder (40 mg, 12% ). NMR (500 MHz, CDCl 3 ): 8.31 7.87 (br m, 2H, NCCHC H C H CHCN), 7.61 7.55 (m, 2H, NCC H CHCHC H CN), 7.50 7.41 (m, 2H, NCC H CHCHC H CN), 7.31 7.08 (m, 10H, NCCHC H C H CHCN and CHCC H C H overlapping signals) 6.83 (sept., J = 5 Hz, 2H, C H (CH 3 ) 2 ), 5.37 5.27 (m, 2H, RhC H ), 5.16 (d, J = 10 Hz, 2H, C H 2 ), 5.12 5.03 (m, 2H, RhC H ), 4.83 4.60 (m, 2H, CHCC H ), 4.57 4.32 (m, 2H, C H 2 ), 3.50 3.41 (m, 2H, RhC H ), 3.40 3.30 (m, 2H, RhCHC H 2 ), 2.59 2.40(m, 4H, RhCHC H 2 ), 2.26 2.15 (m, 2H,

PAGE 207

207 RhCHC H 2 ), 2.10 2.02 (m, 2H, RhCHC H 2 ), 2.00 1.73(m, 10H, RhCHC H 2 and CH 2 C H overlapping signals), 1.92 (d, J = 5 Hz, 2H, CH(C H 3 ) 2 ),1.82 (d, J = 5 Hz, 2H, CH(C H 3 ) 2 ). 13 C { 1 H} NMR (75 MHz, CDCl 3 ): 194.5 (d, J = 50 Hz, N C N), 144.8 (CHN C ), 140.4 (CH 2 N C ), 136.8 (CH 2 CHCHCCHCHCHCH C ), 132.6 (CH 2 CHCH C ), 127.8 (CHNCCH C H), 126.2 (CH 2 NCCH C H), 125.5 (CH 2 CHCHCCHCH C H), 123.7 (CH 2 CHCHCCH C H), 122.4 (CH 2 CHCHC C H), 122.2 (CH 2 CHCHCCHCHCH C H), 112.0 (CHNC C H), 111.1 (CH 2 NC C H), 100.6 (d, J = 9 Hz, Rh C H), 98.1 (d, J = 9 Hz, Rh C H), 69.4 (d, J = 9 Hz, Rh C H), 69.2 (d, J = 9 Hz, Rh C H), 55.0 ( C H(CH 3 ) 2 ), 50.5 (N C H 2 ), 44.83 (NCH 2 CH C H), 44.77 (NCH 2 C H), 32.9 (RhCH C H 2 ), 32.2 (RhCH C H 2 ), 29.1 (RhCH C H 2 ), 28.2 (RhCH C H 2 ), 21.5 (CH( C H 3 ) 2 ), 21.3 (CH( C H 3 ) 2 ). MS(HR ESI+):Calc. for [C 50 H 54 N 4 Cl 2 Rh 2 ]: m/z 951.2124 [M Cl] + Found m/z 951.2106. Anal. Calc. for C 54 H 64 N 4 Cl 2 Rh 2 : C, 62.10%; H, 6.19%; N, 5.37%. Found: C, 62.00%; H, 6.34%; N, 5.09%. Synthesis of 2 trans 9,10 dihydro 9,10 ethanoanthracene 9,12 bis (1 methyl benzimidazolidine 2 ylidene) (rhodium(I) 1,5 cyclooctadiene chloride) [ 2 DEAM IBY][Rh(COD)Cl] 2 (21 i Pr). Two solutions are prepared under an inert atmosphere, (A) 15 i Pr (145 mg, 0.277 mmol in 3 mL of THF) and (B) [Rh(cod)Cl] 2 (76 mg, 0.154 mmol in 4 mL of THF). Both solutions are chilled to 35 C and then B is added to A and the final solution is stirred and allowed to come to room temperature. After 40 h the solution is added to 30 mL of he xanes and then filtered. The crude product is washed through with 40 mL of ether. Golden yellow crystals are grown from slow diffusion of hexanes into CHCl 3 providing 21 i Pr (126 mg, 89 %). 1 H NMR (500 MHz, CDCl 3 ppm): 7.78 (d, J = 5 Hz, 2H,

PAGE 208

208 aromatic), 7.44 (d, J = 5 Hz, 2H, CH 3 CHNCC H ), 7.37 7.33 (m, 2H, aromatic), 7.27 (s, 2H, NC H CHN), 7.04 7.01 (m, 6H, overlapping signals, CH 3 CHNCHC H + aromatic), 6.79 (sept, J = 5 Hz, 2H, CH 3 C H ), 6.69 (dd, J = 10 Hz, J = 5 Hz, 2H, CH 3 CHNCCHCHC H ), 5.74 (d, J = 5 Hz, 2H, CH 3 CHNCCHCHCHC H ), 5.16 (ddd, J = 5 Hz, J = 1 Hz, J = 1 Hz, 2H, RhC H ), 5.13 (s, 2H, NCHC H ), 4.83 (ddd, J = 5 Hz, J = 1 Hz, J = 1 Hz, 2H, RhC H ), 2.95 2.93 (m, 2H, RhC H ), 2.39 2.31 (m, 2H, C H 2 ), 2.21 2.13 (m, 2H, C H 2 ), 1.99 1.93 (m, 2H, RhC H ), 1.82 1.76 (m, 2H, C H 2 ), 1.79 (d, J = 10 Hz, 3H, C H 3 ), 1.77 (d, J = 10 Hz, 3H, C H 3 ), 1.63 1.54 (m, 4H, C H 2 ), 1.48 1.43 (m, 2H, C H 2 ), 0.82 0.75 (m, 2H, C H 2 ), 0.34 0.41 (m, 2H, C H 2 ). 13 C NMR (125 MHz, CDCl 3 ppm): 197.6 (d, J = 50 Hz, N C N), 143.2 (CH C CH), 141.6 (CH C CH), 134.2 (CH C CH), 133.4 (CH C CH), 127.3 (2 signals, aromatic ), 127.2 (aromatic), 125.4 (aromatic), 121.9 (CH 3 CHNCCHCH C H), 121.7 (aromatic), 114.3 (CH 3 CHNCCHCHCH C H) 111.1 (CH 3 CHNC C H), 100.3 (d, J = 5Hz, Rh C H), 99.4 (d, J = 5 Hz, Rh C H), 69.2 (d, J = 15 Hz, Rh C H), 67.8 (d, J = 14 Hz, Rh C H), 64.9 (N C HCHN), 54.0 ( C HCH 3 ), 51.5 (NCH C H), 33.5 ( C H 2 ), 30.1 ( C H 2 ), 29.1 ( C H 2 ), 27.8 ( C H 2 ), 21.3 ( C H 3 ), 20.8 ( C H 3 ). Found: C, 61.27%; H, 5.73%; N, 5.44%. Calc. for C 52 H 58 N 4 Rh 2 Cl 2 : C, 61.47%; H, 5.76%; N, 5.52%. Synthesis of the rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 methylbenzimidazolidine 2 ylidene bis carbon monoxide tetrafluoroborate, [(DEAM MbBI)Rh(CO) 2 ](BF 4 ) (22 Me). To a reactor flask is added, 17 Me (600 mg, 0.716 mmol) and 3 mL chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and stirred at room temperature for 20 h. The solution is then dr opped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered,

PAGE 209

209 providing 22 Me (584 mg, 92%). IR (KBr, cm 1 ): 3481.4 br, 3037.9 br, 2939.6 br, 2083.6 s (CO), 2025.8 s (CO), 1453.5 m, 1438.5 m, 1390.2 m, 1266.9 w, 1057.1 br s, 748.1 s, 562 .0 w. Assignment key in appendix. 1 H NMR (500 MHz, CDCl 3 ): 7.71 (d, J = 10 Hz, (M/N(1H)), 7.69 (d, J = 5 Hz, K/L(1H)), 7.55 7.40 (m, overlapping signals, S/T(1H), Q/R(1H), O/P(2H), W/X(2H), K/L(1H)), 7.22 7.36 (m, overlapping signals, Y/Z(2H), S/ T(1H), U/V(2H), Q/R(1H), 7.19(d, J = 5 Hz, M/N(1H)), 4.93 (d, J = 15 Hz, 1H, C H 2 ), 4.66 (t, J = 7.5 Hz, 1H, CH 2 C H ), 4.61 (d, J = 0 Hz, 1H, CC H C), 4.44 (s, 3H, C H 3 ), 4.11 (d, J = 0 Hz, 1H, CC H C), 3.93 (dd, 1H, J = 10 Hz, J = 15 Hz, 1H, C H 2 ), 3.84 (s, 3H, C H 3 ), 3.80 (dd, J = 10 Hz, J = 15 Hz, 1H, C H 2 ), 2.24 (d, J = 15 Hz, C H 2 ), 1.97 (t, J = 10 Hz, 1H, CH 2 C H ). 13 C{ 1 H} NMR (75 MHz, CDCl 3 ): 186.3 (d, J = 34 Hz, A/B), 185.6 (d, J = 34 Hz, A/B), 179.96 (d, J = 45 Hz, C/D), 179.93 (d, J = 45 Hz, C/D), 144.1 (s, O/P), 143.5 (s, O/P), 138.2 (s, Q/R), 138.0 (s, Q/R), 135.0 (s, i/j), 134.7 (s, i/j), 134.6 (s, k/l), 133.9 (s, k/l), 127.2 (s, Y/Z) 127.1 (s, Y/Z), 126.8 (s, W/X), 126.7 (s, W/X), 125.8 (s, c/d), 125.4 (s, e/f), 125.0 (s, g/h), 124.9 (s, e/f), 124.8 (s, g/h), 124.7 (s, c/d), 124.0 (s, a/b), 122.5 (s, a/b), 111.9 (s, U/V), 111.7 (s, U/V), 110.7 (s, S/T), 109.9 (s, S/T), 54.9 (s, K/L/M /N), 51.9 (s, K/L/M/N), 49.7 (s, I/J), 47.1 (s, G/H), 46.8 (s, G/H), 45.1 (s, I/J), 37.7 (s, E/F), 36.2 (s, E/F). Found C, 47.08%; H, 3.26%; 6.10%. Calc. for RhC 38 H 32 N 4 O 2 BF 4 Cl 6 : C, 46.61%; H, 3.49%; N, 5.71%. MS(HR ESI FTICR + ): Calc. for [C 36 H 38 N 4 RhO 2 ] + : m/z 653.1418 M + Found m/z 653.1348. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 isopropylbenzimidazolidine 2 ylidene bis carbon monoxide triflate, [(DEAM IBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 i Pr).

PAGE 210

210 To a re actor flask is added, 17 i Pr (50 mg, 0.716 mmol) and 2 mL chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and allowed to sit at room temperature for 20 h. The solution is then dropped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 i Pr (43 mg, 90%). IR (KBr, cm 1 ): 3474.3 br, 3066.7 br, 2938.7 br, 2083.1 s (CO), 2028.0 s (CO), 1476.8 m, 1461.2 m, 1410.0 m, 1392.9 m, 1372.1 m, 1344.6 m, 1261.9 s 1223.7 m, 1154.8 s, 1088.9 m, 1030.6 s, 747.2 s, 638.0 s, 563.0 m. 1 H NMR (300 MHz, CDCl 3 ): 8.05 (d, J = 9 Hz, 1H, CH 2 NCC H ), 7.83 (d, J = 9 Hz, 1H, CH 2 NCC H ), 7.63 7.16 (m, 14 H, aromatic), 5.83 (sep, J = 6 Hz, 1H, C H CH 3 ), 5.17 (dd, J = 12 Hz, J = 3 Hz, 1H, C H 2 ) 4.99 (sep, J = 6 Hz, 1H, CHC H 3 ), 4.85 (s, 1H, CC H C), 4.58 (dd, J = 6 Hz, J = 6 Hz Hz, 1H, CH 2 C H ), 4.07 (s, 1H, CC H C), 3.97 (dd, J = 12 Hz, J = 12 Hz, 1H, C H 2 ), 3.80 (dd, J = 12 Hz, J = 12 Hz, 1H, C H 2 ), 2.19 (d, J = 15 Hz, 1H, C H 2 ), 1.96 (m, 1H, CH 2 C H ), 1.91 (d, J = 9 Hz, 3H, C H 3 ), 1.85 (d, J = 9 Hz, 3H, C H 3 ), 1.60 (d, J = 9 Hz, 3H, C H 3 ), 0.97 (d, J = 9 Hz, 3H, C H 3 ). 13 C{ 1 H} NMR (75 MHz, CDCl 3 ): 185.6 (d, J = 32 Hz, Rh C N), 184.9 (d, J = 34 Hz, Rh C N), 178.4 (d, J = 46 Hz, Rh C O), 177.1 (d, J = 46 Hz, Rh C O), 144.4 ( C CHC), 143.4 ( C CHC), 138.1 ( C CHC), 137.8 ( C CHC), 135.7 (N C CH), 135.4 (N C CH), 131.3 (N C CH), 131.2 (N C CH), 126.8 (aromatic), 126.7 (ar omatic), 126.5 (aromatic), 126.3 (aromatic), 125.9 (aromatic), 125.0 (aromatic, 2 signals), 124.7 (aromatic), 124.4 (aromatic), 124.1 (aromatic), 122.1 (aromatic), 120.9 (q, J = 319 Hz, CF 3 ), 113.6 (NC C H), 112.7 (NC C H), 112.4 (NC C H), 110.3 (NC C H), 57.1 ( C H CH 3 ), 55.9 ( C HCH 3 ), 54.7 ( C H 2 ), 52.4 (CH 2 C H), 49.4 ( C H 2 ), 46.17 (C C HC), 46.16 (C C HC), 44.8 (CH 2 C H), 20.9 (2 signals, C H 3 ), 20.64 ( C H 3 ), 20.60 ( C H 3 ). Found: C, 57.24%; H, 4.59%; N, 6.31%. Calc. for RhC 41 H 38 N 4 S 1 O 5 F 3 : C,

PAGE 211

211 57.35%; H, 4.46%; N, 6.52%. MS(HR ES I FTICR + ):Calc. for [C 40 H 38 N 4 RhO 2 ] + : m/z 709.2044 M + Found m/z 709.2087. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 benzyl 2 methylphenyl) benzimidazolidine 2 ylidene bis carbon monoxide triflate, [(DEAM MBBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 MeBn). To a reactor flask is added, 17 MeBn (76 mg, 0.0746 mmol) and 2 mL chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and allowed to sit at room t emperature for 20 h. The solution is then dropped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 MeBn (68 mg, 93%). IR (cm 1 ): 3060.1 br, 2927.04 br, 2086.3 m (CO), 2035.5 m (CO), 1708.3 w, 1607.0 w, 1563.4 w, 1 459.0 m, 1400.2 m, 1347.2 m, 1273.9 s, 1259.0 s, 1223.3 m, 1157.3 m, 1030.2 s, 740.3 m. 1 H NMR (5 00 MHz, CDCl 3 ): 8.15 (d, J = 3 Hz, 1H, CHCH 2 NCC H ), 7.66 (d, J = 3 Hz, 1H, NCH 2 CHCHCC H ), 7.65 (d, J = 3 Hz, 1H, NCH 2 CHCHCC H ), 7.49 (dd, J = 6 Hz, J = 3 Hz, 1H, CHCH 2 NCHC H ), 7.39 7.03 (m, 15 H, aromatic), 6.63 (d, J = 6 Hz, 1H, NCC H ), 6.59 (dd, J = 6 Hz, J = 3 Hz, 1H, NCH 2 CC H ), 6.44 (d, J = 6 Hz, 1H, CH 3 CCHC H ), 5.82 (d, J = 9 Hz, 1H, NC H 2 C), 5.78 (d, J = 9 Hz, 1H, NC H 2 C), 5.63 (dd, J = 6 Hz, J = 6 Hz, H, NCH 2 CCHC H ), 5.45 (d, J = 9 Hz, 1H, NC H 2 C), 5.31 (dd, J = 6 Hz, J = 3 Hz, 1H, NC H 2 CH), 5.15 (d, J = 3 Hz, 1H, NCH 2 CC H ), 4 .94 (s, 1H, CC H C), 4.75 4.72 (m, 1H, NCH 2 C H ), 4.63 (d, J = 9 Hz, 1H, NC H 2 C), 4.21 (s, 1H, CC H C), 4.00 (dd, J = 9 Hz, J = 6 Hz, 1H, NC H 2 CH), 3.96 (dd, J = 9 Hz, J = 6 Hz, 1H, NC H 2 CH), 2.64 (d, J = 9 Hz, 1H, NC H 2 CH), 2.50 (s, 3H, C H 3 ), 2.48 (s, 3H, C H 3 ), 2.2 2 2.19 (m, 1H, NCH 2 C H ). 13 C{ 1 H} NM R (12 5 MHz, CDCl 3 ): 185.0 (d, J = 42 Hz, N C N), 184.3 (d, J = 42 Hz, N C N), 180.6 (d, J = 47 Hz, C O), 180.3

PAGE 212

212 (d, J = 46 Hz, C O), 144.4 ( C CHC), 143.4 ( C CHC), 138.2 ( C CHC), 138.0 ( C CHC), 135.2 (CHCH 2 N C CH), 134.4 (CHCH 2 N C CH ) 134.2 ( C CH 3 ), 134.1 ( C CH 3 ), 133.9 ( CCH 2 N C CH ), 133.8 ( CCH 2 N C CH ), 131.5 ( C C C H 3 ), 131.1 ( C C C H 3 ), 130.9 ( CH 3 C C H ), 130.1 ( CH 3 C C H ), 128.2 (aromatic), 127.3 (aromatic), 127.1 (aromatic), 126.8 (aromatic), 126.7 (aromatic), 126.5 (aromatic), 126.4 (aromatic), 12 6.1 (aromatic), 125.3 (aromatic), 125.2 (aromatic), 125.0 (2 signals ), 124.8 (aromatic), 124.7 (2 signals ), 124.4 (aromatic), 122.2 (aromatic), 121.6 (aromatic), 120.8 (q, J = 319 Hz, C F 3 ), 112.5 ( CCH 2 NC C H), 112.2 ( CHCH 2 NC C H), 111.4 ( CCH 2 NC C H), 110.1 ( CHCH 2 NC C H), 55.2 (N C H 2 CH), 51.6 (NCH 2 C H ), 51.5 (N C H 2 C), 51.0 (N C H 2 C), 50.5 (N C H 2 CH), 46.8 (NCH 2 CH C H), 46.5 (NCH 2 CH C H), 45.3 (NCH 2 C H), 19.3 ( C H 3 ), 19.1( C H 3 ). Synthesis of the Rhodium (I) ( trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 d iphenylmethane benzimidazolidine 2 ylidene) bis carbon monoxide triflate, [(DEAM DPBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 diPh). To a reactor flask is added, 17 diPh (200 mg, 0.175 mmol) and 2 mL chloroform. The oxygen is then removed by a free pump thaw method. The f lask is then charged with 1 atmosphere of CO and allowed to sit at room temperature for 20 h. The solution is then dropped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 diPh (186 mg, 96%). IR (KBr, cm 1 ): 3476. 7 br, 3062.2 br, 2086.3 m (CO), 2031.8 m (CO), 1618.5 w, 1456.5 m, 1386.6 m, 1346.2 m, 1260.4 br s, 1166.9 m, 1032.1 s, 744.9 m, 639.5 m. 1 H NMR (300 MHz, CDCl 3 8.26 (d, J = 9 Hz, 1H), 7.93 (s, 1H, NC H ), 7.66 (dd, J = 6 Hz, J = 6 Hz, 2H), 7.47 7.12 (m, 16H, aromatic + NC H C), 7.00 (dd, J = 7.5 Hz, 7.5 Hz, 2H), 6.92 6.76 (m, 12H, aromatic), 6.85 (s, 1H, NC H C), 6.69 (d, J = 9 Hz, 1H), 6.41 (d, J = 9 Hz, 1H), 6 .21 (d, J = 6 Hz, 2H), 5.39 (d, J

PAGE 213

213 = 12 Hz, 1H, C H 2 ), 5.05 (s, 1H, CH 2 CHC H ), 4.69 (dd, J = 9 Hz, J = 9 Hz, 1H, CH 2 C H ), 4.16 3.96 (m, 2H, C H 2 ), 3.58 (s, 1H, CH 2 CHC H ), 2.70 (d, J = 15 Hz, 1H, C H 2 ), 2.15 (dd, J = 9 Hz, J = 9 Hz, 1H, CH 2 C H ). 13 C{ 1 H} NMR (75 MH z, CDCl 3 184.46 (d, J = 36 Hz, N C N), 183.71 (d, J = 36 Hz, N C N), 182.1 (d, J = 46 Hz, C O), 180.1 (d, J = 46 Hz, C O), 144.6 ( C CHC), 143.2 ( C CHC), 138.2 ( C CHC), 137.7 ( C CHC), 136.4 (NCH C ), 136.2 (NCH C ), 135.8 (NCH C ), 135.7 (NCH C ), 135.4 (N C CH, 2 signals overlap ping), 133.6 (N C CH), 132.9 (N C CH), 129.4 (aromatic), 129.1 (aromatic), 129.0 (aromatic), 128.8 (aromatic), 127.7 (aromatic), 127.6 (aromatic), 127.4 (aromatic), 127.3 (aromatic), 127.1 (aromatic), 126.74 (aromatic), 126.67 (aromatic), 126.4 (aromatic), 126 .2 (aromatic), 125.3 (aromatic), 125.1 (aromatic), 124.6 (aromatic), 124.4 (aromatic), 122.1 (aromatic), 121.1 (q, J = 320 Hz, C F 3 ), 114.9 (NC C H), 113.7 (NC C H), 112.7 (NC C H), 110.2 (NC C H), 70.8 (N C H), 69.6 (N C H), 55.4 ( C H 2 ), 53.5 (CH 2 C H), 50.4 ( C H 2 ), 46.3 (CH 2 CH C H), 46.1 (CH 2 CH C H), 44.9 (CH 2 C H). MS(HR ESI FTICR + ):Calc. for [C 36 H 38 N 4 RhO 2 ] + : m/z 653.1418 M + Found m/z 653.1348. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 R 1 phenylethane imidazolidine 2 ylidene) bis carbon monoxide triflate, [(DEAM PEBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 PhEt). To a reactor flask is added, 17 PhEt (65 mg, 0.0708 mmol) and 2 mL of chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 a tmosphere of CO and allowed to sit at room temperature for 20 h. The solution is then dropped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 PhEt (58 mg, 94%). IR (cm 1 ): 2075.7 m (CO), 2016.5 m (CO), 1456.9.5 w 1418.8 w, 1258.2 s, 1222.4 m, 1151.8 m, 1036.9 s, 760.6

PAGE 214

214 m, 697.4 m. 1 H NMR (300 MHz, CDCl 3 ): 7.60 (s, 1H, CH 3 CHNC H ), 7.50 (s, 1H, CH 2 NC H ), 7.43 7.40 (m, 2H, aromatic), 7.35 7.33 (m, 3H, aromatic + NCHCC H ), 7.29 7.27 (m, 2H, CH 2 NC H + aromatic), 7.24 7.19 (m, 8H, aromatic), 7.16 7.14 (m, 2H, aromatic), 6.82 (s, 1H, CH 3 CHNC H ), 6.69 6.67 (m,, 2H, NCHCC H ), 6.16 (q, J = 6 Hz, 1H, NC H CH 3 ), 4.79 (q, J = 6 Hz, 1H, NC H CH 3 ), 4.61 (dd, J = 6 Hz, J = 3 Hz, 1H, C H 2 ), 4.47 (s, 1H, CH 2 CHC H ), 4.20 (dd, J = 6 Hz, J = 6 Hz, 1H, CH 2 C H ), 4.13 (s, 1H, CH 2 CHC H ), 3.63 (dd, J = 9 Hz, J = 6 Hz, 1H, C H 2 ), 3.43 (dd, J = 9 Hz, J = 6 Hz, 1H, C H 2 ) 2.31 (d, J = 9 Hz, 1H, C H 2 ) 1.98 (d, J = 6 Hz, 3H, C H 3 ), 1.80 (dd, J = 6 Hz, J =3 Hz 1H, CH 2 C H ), 0.53 (d, J = 3 Hz, 3H, C H 3 ). 13 C{ 1 H} NMR (75 MHz, CDCl 3 ): 186.5 ( d, J = 56 Hz, C O), 185.4 (d, J =56 Hz, C O), 168.9 (d, J = 45 Hz, N C N), 167.5 (d, J = 45 Hz, N C N), 144.2 ( C CHC), 143.9 ( C CHC), 140.1 (CH 3 CH C ), 139.6 (CH 3 CH C ), 138.3 ( C CHC), 137.8 ( C CHC), 129.4 (2 signals, aromatic), 128.8 (2 signals, aromatic), 128.7 (aromatic), 128.3 (aromatic), 126.9 (aromatic), 126.8 (aromatic), 126.5 (2 signals, aromatic and NCHC C H), 126.1 (2 signals, aromatic and NCHC C H), 125.7 (3 signals, aromatic), 125.6 (CH 2 N C H), 125.3 (aromatic), 123.8 (aromatic), 122.4 (CH 2 N C H), 120.8 ( q, J = 318 Hz, C F 3 ), 119.7 (CH 3 CHN C H), 119.4 (CH 3 CHN C H), 63.5 (CH 3 C HC), 60.3 (CH 3 CH C ), 58.1 (N C H 2 ), 54.1 (N C H 2 ), 52.3 (NCH 2 C H), 46.8 (NCH 2 CH C H), 46.4 (NCH 2 C H), 46.2 (NCH 2 CH C H), 22.9 ( C H 3 ), 19.4 ( C H 3 ). Found: C, 58.42%; H, 4.52%; N, 6.31 %. Calc. for RhC 43 H 38 N 4 SO 5 F 3 : C, 58.51%; H, 4.3 4%; N, 6. 35 %. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 benzyl imidazolidine 2 ylidene) bis carbon monoxide triflate, [(DEAM BBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 Bn).

PAGE 215

215 To a reactor flask is added, 17 Bn (300 mg, 0.337 mmol) and 2 mL of chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and allowed to sit at room temperature for 20 h. The solution is then dropped int o 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 Bn (254 mg, 88%). IR (cm 1 ): 2074.9 m (CO), 2011.2 m (CO), 1497.1 w, 1457.1 w, 1418.8 w, 1259.8 s, 1223.8 m, 1151.9 m, 1046.9 s, 760.0 m, 742.0 m, 716.7 m, 704.2 m, 693 .6 m. 1 H NMR (300 MHz, CDCl 3 ): 7.52 (s, 1H, CCH 2 NCHC H ), 7.44 7.41 (m, 2H), 7.34 7.08 (m, 15H, aromatic + CCH 2 NCHC H ), 6.93 (s, 1H, CCH 2 NC H ), 6.87 (s, 1H, CCH 2 NC H ), 6.71 6.68 (m, 2H, aromatic), 5.49 (d, J = 15 Hz, 1H, NC H 2 C), 5.27 (d, J = 15 Hz, 1H, NC H 2 C), 4.90 (d, J = 15 Hz, 1H, N C H 2 C), 4.82 (d, J = 15 Hz, 1H, NC H 2 C), 4.63 (d, J = 12 Hz, 1H, NC H 2 CH), 4.48 (s, 1H, CC H C), 4.25 4.20 (m, 1H, NCH 2 C H ), 4.14 (s, 1H, CC H C), 3.67 (dd, J = 12 Hz, J = 12 Hz, 1H, NC H 2 CH), 3.51 (dd, J = 12 Hz, J = 12 Hz, 1H, NC H 2 CH), 2.58 (d, J = 12 Hz, 1H, NC H 2 CH), 1.89 1.84 (m, 1H, NCH 2 C H ). 13 C{ 1 H} NMR (75 MHz, CDCl 3 ): 186.3 (d, J = 56 Hz, C O), 185.6 (d, J =56 Hz, C O), 169.5 (d, J = 45 Hz, N C N), 168.5 (d, J = 45 Hz, N C N), 144.1 ( C CHC), 143.8 ( C CHC), 138.3 ( C CHC), 137.9 ( C CHC), 135.0 (CH 3 CH C ), 134.2 (CH 3 CH C ), 129.2 (2 signals, aromatic), 129.0 (2 signals, aromatic), 128.8 (aromatic), 128.3 (aromatic), 127.6 (aromatic), 126.84 (aromatic), 126.75 (2 signals, aromatic), 126.5 (2 signals, aromatic), 126.4 (2 signals, aromatic), 125.6 (CH 2 N C H), 125.14 (aromatic), 125.07 (aromatic), 123.8 (CH 2 N C H), 122.9 (aromatic), 122.4 ( aromatic), 122.3 (aromatic), 121.0 (q, J = 319 Hz, C F 3 ), 58.0 (N C H 2 CH), 56.8 (N C H 2 C), 54.8 (N C H 2 C), 54.3 (N C H 2 CH), 51.8 (NCH 2 C H), 46.7 (C C HC), 46.5 (C C HC), 46.4

PAGE 216

216 (NCH 2 C H). Found: C, 57.45%; H, 4.22%; N, 6.39%. Calc. for RhC 41 H 36 N 4 SO 5 F 3 : C, 57.48%; H, 4.24% ; N, 6.54%. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane benzimidazolidine 2 ylidene) bis carbon monoxide triflate, [(DEAM DPBY)Rh(CO) 2 ](SO 3 CF 3 ) (22 idiPh). To a reactor flask is adde d, 17 idiPh (200 mg, 0.155 mmol) and 2 mL of chloroform. The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and allowed to sit at room temperature for 20 h. The solution is then dropped into 10 mL of hexanes and the resulting pale yellow precipitate is filtered, providing 22 idiPh (186 mg 96 %). IR (cm 1 ): 3061.0 br, 2077.9 m (CO), 2021.8 m (CO), 1567.7 w, 1495.9 w, 1455.5 w, 1455.52 w, 1260.6 br s, 1222.2 m, 1153.0 m, 1079.9 w, 1030.0 s, 869.8 w, 84 0.1 w, 814.5 w, 744.9 m, 754.0 m. 1 H NMR (500 MHz, CDCl 3 ): 7.74 (s, 1H, CH 2 NC H ), 7.04 7.47 (m, 24H, aromatic + NC H C + 2 CH 2 NC H ), 6.94 (d, J = 5 Hz, 3H, aromatic), 6.66 (s, 1H, CHNC H ), 6.60 (d, J = 10 Hz, 1H, aromatic), 6.28 (d, J = 5 Hz, 1H, aromatic), 6.22 (s, 1H, NC H C), 4.79 (d, J = 10 Hz, 1H, C H 2 ), 4.58 (s, 1H, NCH 2 CHC H ), 4.26 (dd, J = 10 Hz, J = 10 Hz, 1H, NCH 2 C H ), 4.13 (s, 1H, NCH 2 CHC H ), 3.68 (d, J = 10 Hz, 1H, C H 2 ), 3.60 (dd, J = 10 Hz, J = 5 Hz, 1H, C H 2 ), 2.59 (d, J = 10 Hz, 1H, C H 2 ), 1.93 (dd, J = 5 Hz, J = 5 Hz, 1H, NCH 2 C H ). 13 C{ 1 H} NMR (75 MHz, C DCl 3 ): 184.5 (d, J = 36 Hz, N C N), 183.7 (d, J = 36 Hz, N C N), 182.1 (d, J = 46 Hz, C O), 180.1 (d, J = 46 Hz, C O), 144.6 ( C CHC), 143.2 ( C CHC), 138.2 ( C CHC), 137.7 ( C CHC), 136.4 (NCH C ), 136.2 (NCH C ), 135.8 (NCH C ), 135.7 (NCH C ), 135.40 (N C CH, 2 signals overlappin g), 133.6 (N C CH), 132.9 (N C CH), 129.3 (aromatic), 129.1 (aromatic), 129.0 (aromatic), 128.9 (aromatic), 128.8 (aromatic), 127.7 (aromatic),

PAGE 217

217 127.6 (aromatic), 127.4 (aromatic), 127.2 (aromatic), 127.1 (aromatic), 126.8 (aromatic), 126.7 (aromatic), 126.4 (a romatic), 126.2 (aromatic), 125.3 (aromatic), 125.1 (aromatic), 124.6 (aromatic), 124.4 (aromatic), 122.1 (aromatic), 121 (q, J = 320 Hz, C F 3 ), 114.9 (NC C H), 113.7 (NC C H), 112.7 (NC C H), 110.2 (NC C H), 70.8 (N C H), 69.6 (N C H), 55.4 ( C H 2 ), 53.5 (CH 2 C H), 50.4 ( C H 2 ), 46.3 (CH 2 CH C H), 46.1 (CH 2 CH C H), 44.9 (CH 2 C H). Found: C, 63.14%; H, 4.27%; N, 5.4 6%. Calc. for RhC 53 H 42 N 4 SO 5 F 3 : C, 63.22%; H, 4.20%; N, 5.5 6%. Synthesis of the Rhodium (I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 diyldimethanediyl) bis (1 methyl benzimidazolidine 2 ylidene) bis carbon monoxide triflate, [(DEAM DPBY)Rh(CO) 2 ](SO 3 CF 3 ) (23 Me). To J Young tube is added [19 Me]OTf and 0.5 mL of CDCl 3 The oxygen is then removed by a free pump thaw method. The flask is then charged with 1 atmosphere of CO and shaken at room temperature for 5 min (the reaction is near instantaneous, a noticeable color change from golden yellow to pale yellow occurs when the reaction is comp lete). Due to the inability, isolating large quantities of [19 Me]OTf 23 Me could not be isolated in large yields despite the quantitative conversion. 1 H NMR (500 MHz, DMSO d 6 ): 7.97 (d, J = 10 Hz, 1H, NCHCHCC H ), 7.93 (d, J = 10 Hz, 1H, CHNCC H ), 7.84 (d, J = 10 Hz, 1H, NCHCHCC H ), 7.76 (d, J = 10 Hz, 1H, CH 3 NCC H ), 7.68 (d, J = 10 Hz, 1H, CH 3 NCC H ), 7.50 7.58 (m, 4H, CCHCC H CCHCCHC H NCCHC H 2 signals ), 7.46 (dd, J = 10 Hz, J = 10 Hz, 1H, CCHCCHC H ), 7.28 7.35 (m, 4H, CH 3 NCCHC H NC H CCHCC H CCHCCHC H ), 7.20 (dd, J = 10 Hz, J = 10 Hz, 1H, CHNCCHC H ), 7.14 (dd, J = 10 Hz, J = 10 Hz, 1H, CCHCCHC H ), 6.91 (d, J = 10 Hz, 1H, CHNCC H ), 5.43 (s, 1H, NCHC H ), 5.39 (s, 1H, NCHC H ), 4.86 (d, J = 10 Hz, 1H, NC H ), 4.13 (s, 3H, C H 3 ),

PAGE 218

218 3.88 (s, 3H, C H 3 ). 13 C{ 1 H} NMR (125 MHz, DMSO d 6 ): 186.9 (d, J = 56 Hz, C O), 186.1 (d, J = 56 Hz, C O), 183.3 (d, J = 45 Hz, N C N), 177.9 (d, J = 46 Hz, N C N), 146.3 ( C CHC), 143.8 ( C CHC), 138.6 ( C CHC), 136.1 ( C CHC), 135.3 (NCH C ), 135.1 (NCH C ), 134.6 (NCH C ), 131.1 (NCH C ), 127.7 (CCHCCH C H), 127.4 (CCHCCH C H) 127.3 (CCHCCH C H), 126.9 (CCHC C H), 126.63 (CCHCCH C H), 126.60 (CCHC C H), 124.8 (CCHC C H), 124.7 (NCCH C H), 124.4 (NCCH C H), 123.9 (NCCH C H), 123.6 (NCCH C H), 122.0 (CCHC C H), 112.9 (NC C H), 112.2 (NC C H), 112.0 (NC C H), 111.9 (NC C H), 66.4 (N C H), 61.0 (N C H), 47.5 (NC H C H), 45.9 (NCH C H), 37.7 ( C H 3 ), 34.3 ( C H 3 ). Synthesis of iridium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 isopropylbenzimidazolidine 2 ylidene) 1,5 cyclooctadiene triflate, [(DEAM IBY)Ir(cod)](OTf) (24 i Pr). To a THF solut ion (2 mL) of 4 i Pr (428 mg, 0.503 mmol) and Cs 2 CO 3 (340 mg, 1.04 mmol) is added a solution of (cod)Ir(acac) (198 mg, 0.496 mmol in 2 mL of THF) at 23 C. After stirring the solution overnight it is filtered. The filtrate is then dropped into 20 mL of h exanes to form a precipitate. The precipitate is filtered and dried on a high vacuum line providing 24 i Pr as a bright orange powder (490 mg, 99%). 1 H NMR (300 MHz, CDCl 3 ): 7.90 (d, J = 9 Hz, 1H, aromatic), 7.73 (dd, J = 3 Hz, J = 6 Hz, 1H, aromatic), 7.67 (dd, J = 3 Hz, J = 6 Hz, 1H, aromatic), 7.53 (dd, J = 3 Hz, J = 6 Hz, 1H, aromatic), 7.43 7.16 (m, 12 H, aromatic), 6.23 (septet, J = 6 Hz, 1H, C H (CH 3 ) 2 ) 5.13 (d, J = 12 Hz, 1H, NC H H), 5.05 (septet, J = 6 Hz, 1H, C H (CH 3 ) 2 ) 4.83 (d, J = 3 Hz, 1H, CC H C), 4.67 4.55 (m, 3H, overlapping signals; NC H H, IrC H IrC H ), 4.17 (d, J = 3 Hz, 1H, CC H C), 3.99 (ddd, J = 6 Hz, J = 6 Hz J = 1 Hz, 1H, NCH 2 C H ), 3.80 (dd, J = 12 Hz, J = 12 Hz, 1H, NC H H), 3.62 ( dt, J = 6 Hz, J = 6 Hz, 1H, IrC H ), 2.74 ( dt, J = 6 Hz, J = 6

PAGE 219

219 Hz, 1H, IrC H ), 2.57 2.44 (m, 1H, IrCHCH H ), 2.36 (ddd, J = 6 Hz, J = 6 Hz J = 1 Hz, 1H, NCH 2 C H ), 2.28 (d, J =15 Hz, 1H, NC H H), 2.19 2.08 (m, 1H, IrCHCH H ) 2.02 (d, J = 6 Hz 3H, CH(C H 3 ) 2 ), 1.80 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.66 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.88 1.58 (m, 4H, signals overlap with isopropyl methyls, IrCHCH H ), 1.46 1.35 (m, 1H, IrCHCH H ), 0.91 (d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 0.65 0.51 (m, 1H, IrCHCH H ). 13 C NMR (75 MHz, CDCl 3 ): 188.1 (N C N), 183.8 (N C N), 145.2 (CCH C ), 143.7 (CCH C ), 139.0 (CCH C ), 138.4 (CCH C ), 136.2 (N C CH), 135.8 (N C CH), 132.1 (N C CH), 131.4 (N C CH), 127.0 (CCH C HCH), 126.9 (CCH C HCH), 126.7 (CCH C HCH), 126.4 (CCH C HCH), 126.2 (CCHC C H), 125.2 (CCHC C H), 124.2 (CCHC C H ), 124.1 (NCCH C H), 123.8 (NCCH C H), 123.8 (NCCH C H), 123.6 (NCCH C H), 122.9 (CCHC C H), 121.0 (q, J = 321 Hz, C F 3 ), 113.2 (NC C H), 112.5 (NC C H), 111.7 (NC C H), 110.2 (NC C H), 85.6 (Ir C H), 79.1 (Ir C H), 75.3 (Ir C H), 69.2 (Ir C H), 55.7 ( C H(CH 3 ) 2 ), 54.8 ( C H(CH 3 ) 2 ), 54. 7 (N C H 2 ), 51.7 (N C H 2 ), 50.8 (NCH 2 C H), 47.2 (C C HC), 47.0 (C C HC), 46.0 (NCH 2 C H), 37.1 (IrCH C H 2 ), 35.7 (IrCH C H 2 ), 28.0 (IrCH C H 2 ), 26.2 (IrCH C H 2 ), 22.6 (CH( C H 3 ) 2 ), 21.2 (CH( C H 3 ) 2 ), 21.0 (CH( C H 3 ) 2 ), 20.9 (CH( C H 3 ) 2 ). Found: C, 56.21%; H, 5.08%; N, 5.25%. Calc. for IrC 47 H 50 N 4 SO 3 F 3 : C, 56.43%; H, 5.05%; N, 5.60%. MS(HR ESI FTICR+):Calc. for [C 46 H 50 N 4 Ir] + : m/z 849.3636 M + Found m/z 849.3572. Synthesis of iridium (I) trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane benzimida zolidine 2 ylidene) 1,5 cyclooctadiene triflate, [(DEAM diPhBY)Ir(cod)](OTf) (24 diPh). To a THF solution (2 mL) of 4 diPh (432 mg, 0.393 mmol) and Cs 2 CO 3 (269 mg, 0.823 mmol) is added a solution of (cod)Ir(acac) (157 mg, 0.393 mmol in 2 mL of THF) at 23 C. After stirring the solution overnight it is filtered and then the filtrate dropped

PAGE 220

220 into 20 mL of hexanes to form a precipitate. The precipitate is filtered and dried on a high vacuum line providing 24 diPh as a bright orange powder (422 mg, 89%). 1 H NMR (500 MHz, CDCl 3 ): 8.38 (s, 1H, NC H ), 8.04 (d, J = 10 Hz, 1H, NCC H ), 7.74 (d, J = 5 Hz, 1H, aromatic), 7.57 (d, J = 5 Hz, 1H, aromatic), 7.49 7.04 (m, 20H, aromatic), 6.96 (s, 1H, NC H ), 6.90 (dd, J = 5 Hz, J = 5 Hz, 1H, aromatic), 6.86 6.76 (m, 6H, aromatic), 6.62 (d, J = 5 Hz, 1H, NCC H ), 6.55 (d, J = 5 Hz, 2H, aromatic), 6.36 (d, J = 10 Hz, 1H, NCC H ), 6.14 (d, J = 5 Hz, 2H, aromatic), 5.32 (d, J = 15 Hz, 1H, NC H H), 4.98 (s, 1H, NCH 2 CHC H ), 4.73 4.68 (m, 2H, IrC H NCH H ), 4.40 (s, 1H, NCH 2 CHC H ), 4.30 4.18 (m, 2H, NCH H NC H 2 C H ), 3.68 3.55 (m, 2H, IrC H ), 2.90 (d, J = 9 Hz, 1H, NCH H ), 2.78 (d, J = 5 Hz, 1H, IrC H ), 2.14 2.05 (br. s, 1H, NCH 2 C H ), 2.02 1.85 (m, 2H, IrCHC H 2 ), 1.67 1.53 (m, 3H, IrCHC H 2 ), 1.30 1.16 (m, 2H, IrCHC H 2 ), 0.57 0.44 (m, 1H, IrCHC H 2 ). 13 C NMR (75 MHz, CD Cl 3 ): 189.9 (Ir C N), 187.0 (Ir C N), 145.5 ( C CHC), 144.0 ( C CHC), 139.1 ( C CHC), 138.3 ( C CHC), 137.8 (NCH C ), 137.0 (NCH C ), 136.8 (NCH C ), 135.9 (NCH C ), 135.8 (N C CH), 135.4 (N C CH), 133.9 (N C CH), 133.2 (N C CH), 129.2 (aromatic), 128.9 (aromatic), 128.7 (aromati c), 128.6 (aromatic), 128.4 (aromatic), 127.9 (aromatic), 127.6 (aromatic), 127.0 (aromatic), 126.9 (aromatic), 126.8 (aromatic), 126.6 (aromatic), 126.3 (aromatic), 125.3 (aromatic), 124.4 (aromatic), 124.3 (aromatic), 123.8 (aromatic), 123.8 (aromatic), 123.6 (aromatic), 122.9 (aromatic), 115.2 (NC C H), 113.6 (NC C H), 111.8 (NC C H), 110.0 (NC C H), 85.8 (Ir C H), 81.4 (Ir C H), 75.1 (Ir C H), 72.4 (Ir C H), 68.9 (N C H), 68.2 (N C H), 54.7 (N C H 2 ), 51.5 (N C H 2 ), 51.2 (NCH 2 C H), 46.9 (NCH 2 CH C H), 46.8 (NCH 2 CH C H), 45.9 (NCH 2 C H) 36.8 (IrCH C H 2 ), 35.5 (IrCH C H 2 ), 25.8 (2 overlapping IrCH C H 2 ). Found: C, 65.24%; H, 4.59%; N, 4.40%. Calc. for IrC 67 H 58 N 4 SO 3 F 3 : C, 64.45%; H, 4.69%; N, 4.48 %.

PAGE 221

221 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 iso propyl benzimidazolidine 2 ylidene) palladium (II) ( 3 allyl) triflate, [(DEAM IBY)Pd( 3 C 3 H 5 )][OTf] (25 i Pr). Two solutions are prepared in a glovebox: (A) 200 mg (0.235 mmol) 4 i Pr and 171 mg (0.526 mmol) Cs 2 CO 3 in 2 mL THF, (B) 47 mg (0.128 mmol) [Pd(C 3 in 3 mL THF. Solution A is stirred for 2 mi n and B is added at room temperature. Solution AB is then stirred for 16 h at room temperature and then removed from the glovebox. The solution is filtered through a medium fritted funnel and the filtrate is dropped into 35 mL of hexanes. The precipitat e is filtered leaving 25 i Pr as a white solid (187 mg, 94% yield). Complex 25 i Pr is isolated as a mixture of isomers ( endo : exo 39:61), thus not all resonances can be assigned. 1 H NMR (300 MHz, CDCl 3 25 C, ): 7.81 7.74 (m, aromatic), 7.52 7.47 (m, aromatic), 7.29 7.09 (m, aromatic), 5.70 ( endo sept, J = 6 Hz, 0.67H, C H (CH 3 ) 2 ), 5.46 ( exo sept, J = 6 Hz, 1H, C H (CH 3 ) 2 ), 5.22 ( exo sept, J = 6 Hz, 1H, C H (CH 3 ) 2 ), 5.12 ( endo sept, J = 6 Hz, 0.67H, C H (CH 3 ) 2 ), 4 .95 4.81 (1 exo and 1 endo m, 1.67H, PdC H CH 2 ( exo ), PdCHC H 2 ( endo )), 4.64 ( endo s, 0.67H, CC H C), 4.59 ( exo s, 1H, CC H C), 4.42 ( endo dd, J = 6 Hz, J = 9 Hz, 0.67H, NCH 2 C H ), 4.27 4.14 (1 exo and 2 endo m, 2.34H, PdCHC H 2 ( exo ), NC H 2 ( endo ), NC H 2 ( endo )), 4.08 ( endo s, 0.67H, CC H C), 3.94 ( exo s, 1H, CC H C), 3.84 3.63 (3 exo and 3 endo m, 5.01H, PdCHC H 2 (2 exo and 2 endo ), PdC H CH 2 ( endo ), NC H 2 ( exo )), 3.38 ( exo dd, J = 9 Hz, J = 12 Hz, 1H, NCH 2 C H ), 3.12 ( exo d, J = 12 Hz, 1H, NC H 2 ), 2.97 ( exo d, J = 9 Hz, 1H, NC H 2 ), 2.57 ( endo d, J = 12 Hz, 0.67H, NC H 2 ), 2.41 ( exo d, J = 12 Hz, 1H, NC H 2 ), 2.39 ( endo d, J = 12 Hz, 0.67H, NC H 2 ), 2.00 (1 exo and 1 endo m, 1.67H, NCH 2 C H ( exo and endo )), 1.87 ( endo d, J = 9 Hz, 2H, CH(C H 3 ) 2 ), 1.81 (1 endo and 2 exo d, J =

PAGE 222

222 6 Hz, 8H, CH(C H 3 ) 2 ), 1.71 ( endo d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.58 ( exo d, J = 6 Hz, 3H, CH(C H 3 ) 2 ), 1.49 ( endo d, J = 6 Hz, 2H, CH(C H 3 ) 2 ), 1.21 ( exo d, J = 9 Hz, 3H, CH(C H 3 ) 2 ), 1.08 (1 exo and 1 endo d, J = 6 Hz, 1.67H, PdCHC H 2 ). 13 C{ 1 H} NMR (125 MH z, CDCl 3 25 C, ): 186.2 ( exo N C N), 185.8 ( endo N C N), 185.1 ( endo N C N), 185.0 ( exo N C N), 144.23 ( exo CCH C ), 144.20 ( endo CCH C ), 144.0 ( exo CCH C ), 138.2 ( exo CCH C ), 138.1 ( endo CCH C ), 138.0 ( endo CCH C ), 137.94 ( exo CCH C ), 137.93 ( endo CCH C ), 136.53 ( exo N C CH), 136.45 ( endo N C CH), 135.64 ( exo N C CH), 135.61 ( endo N C CH), 132.1 ( exo N C CH), 132.0 ( endo N C CH), 131.7 ( endo N C CH), 131.5 ( exo N C CH), 126.94, 126.87, 126.65, 126.59, 126.54, 126.52, 126.47, 125.9, 125.8, 125.24, 125.17, 124.05, 124.01, 123.95, 123.89, 123.80, 123.68, 123.59, 123.55, 123.53, 122.78, 122.09, 121.75, 119.27, 118.62, 113.32 ( endo NC C H), 113.28 ( exo NC C H), 112.35 ( endo NC C H), 112.31 ( exo NC C H), 111.27 ( endo NC C H), 111.21 ( exo NC C H), 110.03 ( endo NC C H), 109.92 ( exo NC C H), 62.15 ( endo PdCH C H 2 ) 62.14 ( endo PdCH C H 2 ), 61.60 ( exo PdCH C H 2 ), 59.59 ( exo PdCH C H 2 ), 56.71 ( exo C H(CH 3 ) 2 ), 56.32 ( endo C H(CH 3 ) 2 ), 56.01 ( endo C H(CH 3 ) 2 ), 54.85 ( exo C H(CH 3 ) 2 ), 54.61, 54.21 (2 signals), 53.93, 50.16, 49.58, 49.50, 49.35, 47.12, 47.07, 46.03, 45.96, 44.79, 44.6 1, 21.38 (2 signals, CH( C H 3 ) 2 ), 21.29 (CH( C H 3 ) 2 ), 21.18 (CH( C H 3 ) 2 ), 21.16 (2 signals, CH( C H 3 ) 2 ), 21.11 (CH( C H 3 ) 2 ), 21.00 (CH( C H 3 ) 2 ). Calc. for C 42 H 42 N 4 SPdO 3 F 3 : C, 59.61%; H, 5.00%; N, 6.62%. Found: C, 59.49%; H, 5.03%; N, 6.76%. MS(HR ESI FTICR+):Calc. f or [C 41 H 42 N 4 Pd] + : m/z 697.2532, Found m/z 697.2551. Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 benzyl 2 methylphenyl benzimidazolidine 2 ylidene) palladium (II) ( 3 allyl) triflate, [(DEAM MBBY)Pd( 3 C 3 H 5 )][OTf] ( 25 MeBn).

PAGE 223

223 Two solutions are prepared in a glovebox: (A) 500 mg (0.512 mmol) 4 MeBn and 351 mg (1.08 mmol) Cs 2 CO 3 in 2 mL THF, (B) 94 mg (0.256 mmol) [Pd(C 3 in 3 mL THF. Solution A is stirred for 2 minutes and B is added at room temperature. Soluti on AB is then stirred for 16 h at room temperature and then removed from the glovebox. The solution is filtered through a medium fritted funnel and the filtrate is dropped into 35 mL of hexanes. The precipitate is filtered leaving 25 MeBn as a white soli d (446 mg, 89% yield). Complex 25 MeBn is isolated as a mixture of endo and exo isomers, thus not all resonances were assigned Calc. for C 5 2 H 47 N 4 SPdO 3 F 3 : C, 64.29 %; H, 4.88 %; N, 5.77 %. Found: C, 64.25%; H, 4.90%; N, 5.69 %. MS(HR ESI FTICR+):Calc. for [C 5 1 H 47 N 4 Pd] + : m/z 821.2848 Found m/z 821.2867 Partial assignment of the 1 H and 13 C chemical shifts were made in acetone d 6 at 60 C, and confirm two isomers (59:3 1 ) of a molecule having the two NHC moietie s bound to the metal at the C 2 position. The in the NOESY spectrum did not allow for the individual assignment of the exo and endo conformers (allyl up or allyl down) See the assignment key below. The four bridge head protons in the nbd unit in the two conformers (4.88 4.83, 4.53 and 4.39) are identified by their long range coupling with two aromatic carbons around 125 ppm and with two or more qu aternary aromatic carbons between 140 145 ppm. They a re assigned to the major (4.83 and 4.39 ppm ) and to the minor, based on their intensitie s. The aliphatic protons in the coupling network containing the nbd moiety a re assigned from the cross peaks in the gDQCOSY spectrum, for both conformers. A gHMQC experiment allows for the assignment of t he corresponding carbons to the above protons. The C2 carbon bound to the Pd center, are identified by the chemical

PAGE 224

224 shifts at 1 90 ppm, and assigned based on the cross peaks with the methylene protons in the coupling network with the nbd Other cross peaks of these C2 carb ons assigned the benzyl methylene p rotons T he protons in the ally moiety a re indentified by a gDQCOSY experiment Figure 7 1. Assignment key for 25 MeBn Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane benzimidazolidine 2 ylidene) pal ladium (II) ( 3 allyl) triflate, [(DEAM DPBY)Pd( 3 C 3 H 5 )][OTf] (25 diPh). Two solutions are prepared in a glovebox: (A) 500 mg (0.455 mmol) 4 diPh and 310 mg (0.954 mmol) Cs 2 CO 3 in 2 mL THF, (B) 86 mg (0.236 mmol) [Pd(C 3 in 3 mL THF. Solution A is stirred for 2 minutes and B is added at room temperature. Solution AB is then stirred for 16 h at room temperature and then removed from the glovebox. The solution is filtered through a medium fritted funnel and the filtrate is dropped into 35

PAGE 225

2 25 mL of hexanes. The pre cipitate is filtered leaving 25 diPh as a white solid (485 mg, 92% yield). Complex 25 diPh is isolated as a mixture of endo and exo isomers, thus not all resonances were assigned. MS(HR ESI FTICR+):Calc. for [C 6 1 H 51 N 4 Pd ] + : m/z 945.3164 M + Found m/z 945 .3172 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 R 1 phenylethane imidazolidine 2 ylidene) palladium (II) bis ( 1 allyl) triflate, [(DEAM PEBY)Pd( 3 C 3 H 5 )][OTf] (25 PhEt). Two solutions are prepared in a glovebox: ( A) 3 00 mg (0.235 mmol) 4 PhEt and 234 mg (0. 717 mmol) Cs 2 CO 3 in 2 mL THF, (B) 63 mg (0.128 mmol) [Pd(C 3 in 3 mL THF. Solution A is stirred for 2 minutes and B is added at room temperature. Solution AB is then stirred for 16 h at room temperature. The solution is filtered through a medium fritted funnel and the filtrate is dropped into 35 mL of hexanes. The precipitate is filtered leaving 25 PhEt as a white solid (2 6 7 mg, 87 % yield). Complex 25 PhEt is isolated as a mixture of endo and exo isomer s, thus not all resonances were assigned. MS(HR ESI FTICR+):Calc. for [C 43 H 43 N 4 Pd ] + : m/z 721.2533 M + Found m/z 721.2545 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl o xylyl) bibenzimidazolidine 2 ylidene )palladium(II)( 3 allyl) triflate, [(DEAM o XYLBI)Pd( 3 C 3 H 5 )][OTf] (25 o xylyl ). Three solutions are prepared in a glovebox: (A) 476 mg (0.549 mmol) 4 o xylyl in 2 mL of THF, (B) 276 mg (1.38 mmol) KN(SiMe 3 ) 2 in 2 mL of THF and (C) 120 mg (0.327 mmol) [Pd (C 3 2 in 2 mL THF. Solution A is vigorously stirred for 2 min and then all three solutions are chilled to 35 C. After the solutions are at 35 C, solution B is added to a vigorously stirring solution of A. After five minutes the combined AB soluti on

PAGE 226

226 is rechilled to 35 C. Solution C is then added to solution AB and the final ABC solution is stirred. After 2 3 minutes solution ABC is placed in a 35 C refrigerator overnight. The solution is then brought outside the freezer and stirred for an addi tional 3 hours at room temperature. A white precipitate formed and is filtered. Crystals are grown in a vial on the bench top by a slow diffusion of hexanes into 3:1 THF/CHCl 3 solution of 25 o xylyl to provide long colorless needles in 37% yield (184 mg) Due to the mixture of isomers ( endo : exo 19:81), only some resonances can be assigned. The assignments are made according to the key below in CDCl 3 at 500 MHz ( 1 H). 13 C{ 1 H} NMR (125 MHz, CDCl 3 25 C, ): 187.7, 186.9, 142.0, 141.7, 141.5, 141.3, 140.3, 140.2, 140.0, 135.8, 134. 8, 134.7, 134.6, 134.5, 134.1, 133.4, 133.32, 133.26, 133.0, 132.6, 129.3, 128.9, 127.1, 127.0, 126.62, 126.56, 126.4, 125.8, 125.6, 125.14, 125.09, 124.8, 124.7, 124.31, 124.27 124.1, 124.0, 123.9, 123.8, 119.7, 117.7, 112.2, 111.8, 111.2, 111.0, 109.6, 109.2, 109.1, 60.8, 57.0, 56.6, 50.5, 49.9, 49.5, 48.82, 48.75, 48.43, 43.2, 43.1. Anal. Calc. for C 44 H 37 N 4 SPdO 3 F 3 : C, 61.08%; H, 4.31%; N, 6.48%. Found: C, 60.97%; H, 4.35%; N 6.38%. MS(HR ESI FTICR+):Calc. for [C 43 H 37 N 4 Pd] + : m/z 715.2063 M + Found m/z 715.2132.

PAGE 227

227 Figure 7 2. Assignment key for 25 o xyxyl

PAGE 228

228 Table 7 1. Key for 1 H NMR spectrum assignments for 25 o xylyl C# ppm ppm 26 7.15 7.52 7.15 7.52 27 7. 15 7.52 7.15 7.52 28 7.15 7.52 7.15 7.52 23 4.38 4.35 31 7.51 7.15 7.52 32 7.42 7.15 7.52 33 7.44 7.15 7.52 34 7.15 7.15 7.52 22 4.24 4.24 25 7.15 7.52 7.15 7.52 9 1.11 1.36 8 4.13, 3.10 3.26, 4.34 10 3.12 3.46 11 3.59, 4.15 3.61, 4.18 21 1.30 3.58 2.56, 3.41 20 5.1 3.71 19 1.08, 3.92 2.19, 3.26 37 5.99 5.95 36 6.08 6.11 42 7.41 7.15 7.52 41 7.43 7.15 7.52 40 7.43 7.15 7.52 39 7.45 7.15 7.52 6 7.83 7.15 7.52 5 7.43 7.15 7.52 4 7.41 7.15 7.52 3 7.22 7.15 7.52 13 5.99 7.15 7.52 14 6.97 7.15 7.52 15 7.21 7.15 7.52 16 7.60 7.15 7.52 exo endo Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl) bis (1 diphenylmethane benzimidazolidine 2 ylidene) palladium (II) ( acetylacetonate ) triflate, [(DEAM DPBY)Pd( aca c)][OTf] (26 diPh).

PAGE 229

229 Two solutions are prepared in a glovebox: ( A ) 500 mg (0.455 mmol) 4 diPh and 310 mg (0.954 mmol) Cs 2 CO 3 in 2 mL THF, ( B ) 139 mg (0.456 mmol) [Pd(C 3 in 3 mL THF. Solution A is stirred for 2 minutes and B is added at room temperat ure. Solution AB is then stirred for 16 h at room temperature and then removed from the glovebox. The solution is filtered through a medium fritted funnel and the filtrate is dropped into 35 mL of hexanes. The precipitate is filtered providing 26 diPh a s a pale yellow solid ( 399 mg, 76% yield). 1 H NMR (300 MHz, CDCl 3 ): 8.24 (dd, J = 3 Hz, J = 6 Hz, 1H, aromatic), 8.22 (s, 1H, NC H ), 7.66 (dd, J = 3 Hz, J = 6 Hz, 2H, aromatic), 7.46 7.13 (m, 21H, NC H + aromatic), 7.02 6.90 (m, 5H, aromatic), 6.84 6.75 (m, 3H, aromatic), 6.64 (d, J = 6 Hz, 2H, aromatic), 6.47 (d, J = 9 Hz, 1H, aromatic), 6.14 (dd, J = 6 Hz, J = 6 Hz, 1H, NCH 2 C H ), 5.98 (d, J = 9 Hz, 2H, aromatic), 5.32 (d, J = 15 Hz, 1H, C H 2 ), 5.23 (s, 1H, OCC H CO), 5.05 (s, 1H, NCH 2 CHC H ), 4.33 (dd, J = 9 Hz, J = 12 Hz, 1H, C H 2 ), 4.17 (s, 1H, NCH 2 CHC H ), 4.13 (dd, J = 9 Hz J = 12 Hz, 1H, C H 2 ), 2.64 (d, J = 15 Hz, 1H, C H 2 ), 2.17 (dd, J = 6 Hz, J = 6 Hz, 1H, NCH 2 C H ), 1.84 (s, 3H, C H 3 ), 1.71 (s, 3H, C H 3 ). 1 3 C { 1 H} NMR (75 MHz, CDCl 3 ): 187.7 (N C N), 186.1 (N C N), 167.0 ( C O), 166.1 ( C O), 145.0 (NCH 2 CHCH C ), 143.9 (NCH 2 CHCH C ), 138.2 (NCH 2 CHCH C ), 137.7 (NCH 2 CHCH C ), 137.5 (NCH C ) 136.0 (NCH C ) 135.5 (NCH C ) 135.3 (NCH C ) 135.2 (N C CH) 134.8 (N C CH) 133.1 (N C CH) 132.3 (N C CH) 129.1 (aromati c), 128.6 (aromatic), 128.5 (aromatic), 128.3 (aromatic), 127.9 (aromatic), 127.2 (aromatic), 127.1 (aromatic) 126.4 (aromatic), 126.1 (aromatic), 125.2 (aromatic), 125.1 (aromatic), 124.7 (aromatic), 124.3 (aromatic), 121.7 (aromatic), 115.1 (NC C H), 113.8 (NC C H), 112.6 (NC C H), 109.9 (NC C H), 101.0 (OC C HCO), 68.3 (N C H), 67.9 (N C H), 53.2 (N C H 2 ), 51.3 (NCH 2 C H), 50.2 (N C H 2 ), 46.9 (NCH 2 CH C H), 46.6 (NCH 2 CH C H), 45.8 (NCH 2 C H), 26.5

PAGE 230

230 ( C H 3 ), 26.3 ( C H 3 ). MS(HR ESI FTICR+):Calc. for [C 6 3 H 53 N 4 P dO 2 ] + : m/z 1003.3219 M + F ound m/z 1003.3252 Synthesis of trans 9,10 dihydro 9,10 ethanoanthracene 11,12 diyl) bis (1 methyl benzimidazolidine 2 ylidene) palladium (II) diacetate, (DEAM MBY)Pd(OAc) 2 (27 Me). Under an inert atmosphere, to a 100 mL round bottom flask is added 1 g (1. 38 mmol) [ 14 Me]I 2 311 mg (1.38 mmol) Pd(OAc) 2 and 10 mL THF. The round bottom is fitted with a condenser and Y adapter brought outside the inert atmosphere, and then refluxed under argon for 16 h. The solution is then cooled to room temperature and the THF is removed in vacuo. The solid is triturated with dry ether (3 x 5 mL). To the round bottom is then added 20 mL 3:1 CH 2 Cl 2 :CH 3 CN and 1 g silver acetate (6.02 mmol). The reaction is stirred for an additional 3 h at room temperature and then filtered through Celite The crude solid is crystallized from slow diffusion of 3:1 CHCl 3 :C 6 H 6 into hexanes providing 27 Me as white crystals (300 mg, 34%). 1 H NMR (300 MHz, CDCl 3 ): 8.87 (d, J = 9 Hz, 1H, NC H ), 7.77 (d, J = 6 Hz, 1H, aromatic), 7.69 7.60 (m, 3H, aromatic), 7.51 7.36 (m, 5H, aromatic), 7.29 7.07 (m, 6H, aromatic), 5.31 (s, 1H, CC H C ), 5.26 (s, 1H, CC H C), 4.53 (d, J = 9 Hz, 1H, NC H ), 4.30 (s, 3H, NC H 3 ), 3.96 (s, 3H, NC H 3 ), 1.94 (s, 3H, OCC H 3 ), 1.62 (s, 3H, OCC H 3 ). 1 3 C { 1 H} NMR (75 MHz, CDCl 3 ): 177.0 (N C N), 176.8 (N C N), 174.7 ( C O), 168.2 ( C O), 146.0 (CCH C ), 144.7 (CCH C ), 139.3 (CCH C ), 135.7 (N C CH), 135.3 (N C CH), 134.6 (N C CH), 134.5 (N C CH), 130.8 (CCH C ), 127.8 (2 sig nals, aromatic), 127.4 (aromatic), 127.2 (aromatic), 127.1 (aromatic), 126.9 (aromatic), 124.4 (aromatic), 123.7 (aromatic), 123.6 (aromatic), 123.5 (aromatic), 123.2 (aromatic), 122.7 (aromatic), 111.8 (NC C H), 111.2 (NC C H), 111.0

PAGE 231

231 (NC C H), 110.5 (NC C H), 65. 0 (N C H), 63.1 (N C H), 48.6 (C C HC), 46.8 (C C HC), 35.8 (N C H 3 ), 33.3 (N C H 3 ), 24.6 (OC C H 3 ), 23.2 (OC C H 3 ).

PAGE 232

232 APPENDIX NMR, IR, AND X RAY DATA.

PAGE 233

233 A.1 1D and 2D NMR Spectra Figure A 1. 1 H NMR spectrum of 4 Me in acetone d 6

PAGE 234

234 Figure A 2. 13 C{ 1 H} NMR spectrum of 4 Me in acetone d 6

PAGE 235

235 Figure A 3. 1 H NMR spectrum of 4 i Pr in acetone d 6

PAGE 236

236 Figure A 4. 13 C{ 1 H} NMR spectrum of 4 i Pr in acetone d 6

PAGE 237

237 Figure A 5. HE TCOR NMR spectrum of 4 i Pr in acetone d 6

PAGE 238

238 Figure A 6. 1 H NMR spectrum of 4 MeBn in acetone d 6

PAGE 239

239 Figure A 7 13 C{ 1 H} NMR spectrum of 4 MeBn in acetone d 6

PAGE 240

240 Figure A 8 HETCOR NMR spectrum of 4 MeBn in acetone d 6

PAGE 241

241 Figure A 9. 1 H NMR spectrum of 4 diPh in DMSO d 6

PAGE 242

242 Figure A 10. 13 C{ 1 H} NMR spectrum of 4 diPh in DMSO d 6

PAGE 243

243 Figure A 11. gHMQC spectrum of 4 diPh in DMSO d 6

PAGE 244

244 Figure A 12 1 H NMR spectrum of 4 idiPh in acetone d 6

PAGE 245

245 Figure A 13 13 C{ 1 H} NMR spectrum of 4 idiPh in acetone d 6

PAGE 246

246 Figure A 1 4 HETCOR spectrum of 4 idiPh in acetone d 6

PAGE 247

247 Figure A 15. 1 H NMR sp ectrum at 50 C of 4 o xyxyl in acetone d 6

PAGE 248

248 Figure A 16. 1 H NMR spectrum at 60 C of 4 o xyxyl in acetone d 6

PAGE 249

249 Figure A 17. 13 C{ 1 H} NMR spectrum at 25 C of 4 o xyxyl in acetone d 6

PAGE 250

250 Figure A 18 13 C{ 1 H} NMR spectrum at 60 C of 4 o xyxyl in acetone d 6

PAGE 251

251 Figure A 1 9 NOESY spectrum of 4 o xyxyl in acetone d 6

PAGE 252

252 Figure A 20. 1 H NMR spectrum of 4 PhEt in DMSO d 6

PAGE 253

253 Figure A 21 13 C{ 1 H} NMR spectrum of 4 PhEt in acetone d 6

PAGE 254

254 Figure A 22 H ETCOR NMR spectrum of 4 PhEt in acetone d 6

PAGE 255

255 Figure A 23 1 H NMR spectrum of 5 Me in C 6 D 6

PAGE 256

256 Figure A 24. 13 C{ 1 H} NMR spectrum of 5 M e in THF d 8

PAGE 257

257 Figure A 25. 13 C DEPT spectrum of 5 Me in THF d 8

PAGE 258

258 Figure A 26. 1 H NMR spectrum of 5 o xyxyl in C 6 D 6

PAGE 259

259 Figure A 27 1 H NMR spectrum of 6 i Pr in C 6 D 6

PAGE 260

260 Figure A 28 13 C{ 1 H} NMR spectrum of 6 i Pr in C 6 D 6

PAGE 261

261 Figure A 29 1 H NMR spectrum of 7 MeBn in CD Cl 3

PAGE 262

262 Figure A 30. 13 C{ 1 H} NMR spectrum of 7 MeBn in CD Cl 3

PAGE 263

263 F igure A 31 1 H NMR spectrum of 7 diPh in CD Cl 3

PAGE 264

264 Figure A 32. 13 C{ 1 H} NMR spectrum of 7 diPh in DMSO d 6

PAGE 265

265 Figure A 33 1 H NMR spectrum of 1 4 i Pr in CD Cl 3

PAGE 266

266 Figur e A 34. 13 C{ 1 H} NMR spectrum of 1 4 i Pr in CD Cl 3

PAGE 267

267 Figure A 35 1 H NMR spectrum of 1 5 i Pr in C 6 D 6

PAGE 268

268 Figure A 36. 13 C{ 1 H} NMR spectrum of 1 5 i Pr in C 6 D 6

PAGE 269

269 Figure A 37. 1 H NMR spectrum of 16 Me in C 6 D 6

PAGE 270

270 Figure A 38. 13 C{ 1 H} NMR spectrum of 16 Me in C 6 D 6

PAGE 271

271 Figure A 39. 1 H NMR spectrum of 17 Me in CDCl 3

PAGE 272

272 Figure A 40. 13 C{ 1 H} NMR spectrum of 17 M e in CDCl 3

PAGE 273

273 Figure A 41. gdqCOSY NMR spectrum of 17 Me in CDCl 3

PAGE 274

274 Figure A 42. gHMBC NMR spectrum of 17 Me in CDCl 3

PAGE 275

275 Figure A 43. gHMQC NMR spectrum (aliphatic) of 17 Me in CDCl 3

PAGE 276

276 Figure A 44. gHMQC NMR spectrum (aromatic) of 17 Me in CDCl 3

PAGE 277

277 Figure A 45. NOESY NMR spectrum of 17 Me in CDCl 3

PAGE 278

278 Figure A 46. 1 H NMR spectrum of 17 i Pr in CD Cl 3

PAGE 279

279 Figure A 47. 13 C{ 1 H} NMR spectrum of 17 i Pr in CD Cl 3

PAGE 280

280 F igure A 48. gHMQC NMR spectrum of 17 i Pr in CD Cl 3

PAGE 281

281 Figure A 49. 1 H NMR spectrum of 17 MeBn in CD Cl 3

PAGE 282

282 Figure A 50. 13 C{ 1 H} NMR spectrum of 17 MeBn in CD Cl 3

PAGE 283

283 Figure A 51. gdqCOSY NMR spectrum of 17 MeBn in CD Cl 3

PAGE 284

284 Figu re A 52. gHMQC NMR spectrum (aliphatic) of 17 MeBn in CD Cl 3

PAGE 285

285 Figure A 53. gHMQC NMR spectrum (aromatic)of 17 MeBn in CD Cl 3

PAGE 286

286 Figure A 54. gHMBC NMR spectrum of 17 MeBn in CD Cl 3

PAGE 287

287 Figure A 55. 1 H NMR spectrum of 17 diPh in CD C l 3

PAGE 288

288 F igure A 56. 13 C{ 1 H} NMR spectrum of 17 diPh in CD Cl 3

PAGE 289

289 F igure A 57. gHMQC NMR spectrum of 17 diPh in CD Cl 3

PAGE 290

290 F igure A 58. 1 H NMR spectrum of 17 PhEt in CD Cl 3

PAGE 291

291 F igu re A 59. 13 C{ 1 H} NMR spectrum of 17 PhEt in CD Cl 3

PAGE 292

292 F igure A 60. 1 H NMR spectrum of 17 idiPh in CD Cl 3

PAGE 293

293 F igure A 61. 13 C{ 1 H} NMR spectrum of 17 idiPh in CD Cl 3

PAGE 294

294 F igure A 62 1 H NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 295

295 F igure A 63. 13 C{ 1 H} NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 296

296 F igure A 64. gdqCOSY NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 297

297 F igure A 65. gHMQC NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 298

298 F igure A 66. gHMBC NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 299

299 F igure A 67. NOESY NMR spectrum of 17 o xyxyl in DMSO d 6

PAGE 300

300 F igure A 68. 1 H NMR spectrum of 20 i Pr in CD Cl 3

PAGE 301

301 F igure A 69. 13 C{ 1 H} NMR spect rum of 20 i Pr in CD Cl 3

PAGE 302

302 F igure A 70. gdqCOSY NMR spectrum of 20 i Pr in CD Cl 3

PAGE 303

303 F igure A 71. gHMQC NMR spectrum of 20 i Pr in CD Cl 3

PAGE 304

304 F igure A 72. gHMBC NMR spectrum of 20 i Pr in CD Cl 3

PAGE 305

305 F igure A 73. NOESY NMR spectrum of 20 i Pr in CD Cl 3

PAGE 306

306 F igure A 74. 1 H NMR spectrum of 21 i Pr in CD Cl 3

PAGE 307

307 F igure A 75. 13 C{ 1 H} NMR spectrum of 21 i Pr in CD Cl 3

PAGE 308

308 F igure A 76. dqCOSY NMR spectrum of 21 i Pr in CD Cl 3

PAGE 309

309 F igure A 77. HETCOR NMR spectrum of 21 i Pr in CD Cl 3

PAGE 310

31 0 F igure A 78. 1 H NMR spectrum of 22 Me in CD Cl 3

PAGE 311

311 F igure A 79. 13 C{ 1 H} NMR spectrum of 22 Me in CD Cl 3

PAGE 312

312 F igure A 80. gdqCOSY NMR spectrum of 22 Me in CD Cl 3

PAGE 313

313 F igure A 81. gHMQC NMR spectrum (aliphatic) of 22 Me in CD Cl 3

PAGE 314

314 F igure A 82. gHMQC NMR spectrum (aromatic) of 22 Me in CD Cl 3

PAGE 315

315 F igure A 83. gHMBC NMR spectrum of 22 Me in CD Cl 3

PAGE 316

316 F igure A 84. NOESY NMR spectrum of 22 Me in CD Cl 3

PAGE 317

317 F igure A 85. 1 H NMR spectrum of 22 i Pr in CD Cl 3

PAGE 318

318 F igure A 86. 13 C{ 1 H} NMR spectrum of 22 i Pr in CD Cl 3

PAGE 319

319 F igure A 87. gdqCOSY NMR spectrum of 22 i Pr in CD Cl 3

PAGE 320

320 F igure A 88. gHMQC NMR spectrum of 22 i Pr in CD Cl 3

PAGE 321

321 F igure A 89. gHMBC NMR spectrum of 22 i Pr in CD Cl 3

PAGE 322

322 F igure A 90. 1 H NMR spectrum of 22 MeBn in CD Cl 3

PAGE 323

323 F igure A 91. 13 C{ 1 H} NMR spectrum of 22 MeBn in CD Cl 3

PAGE 324

324 F igure A 92. gdqCOSY NMR spectrum of 22 MeBn in CD Cl 3

PAGE 325

325 F igure A 93. gHMQC NMR spectrum (aliphatic) of 22 MeBn in CD Cl 3

PAGE 326

326 F igure A 94. gHMQC NMR spectrum (aromatic) of 22 MeBn in CD Cl 3

PAGE 327

327 F igure A 95. NOESY NMR spectrum of 22 MeBn in CD Cl 3

PAGE 328

328 Figure A 96 1 H NMR spectrum of 22 diPh in CDCl 3

PAGE 329

329 F igure A 97 13 C{ 1 H} NMR spectrum of 22 diPh in CD Cl 3

PAGE 330

330 F igure A 98 gdqCOSY NMR spectrum of 22 diPh in CD Cl 3

PAGE 331

331 F igure A 99 gHMQC NMR spectrum (aliphatic) of 22 diPh in CD Cl 3

PAGE 332

332 F igure A 100 gHMQC NMR spectrum (aromatic) o f 22 diPh in CD Cl 3

PAGE 333

333 F igure A 101 gHMBC NMR spectrum of 22 diPh in CD Cl 3

PAGE 334

334 F igure A 102 NOESY NMR spectrum of 22 diPh in CD Cl 3

PAGE 335

335 F igure A 103 1 H NMR spectrum of 22 PhEt in CD Cl 3

PAGE 336

336 F igure A 104 13 C{ 1 H} NMR spectrum of 22 PhEt in CD Cl 3

PAGE 337

337 F i gure A 105 gdqCOSY NMR spectrum of 22 PhEt in CD Cl 3

PAGE 338

338 F igure A 106 gHMQC NMR spectrum of 22 PhEt in CD Cl 3

PAGE 339

339 F igure A 107 gHMBC NMR spectrum of 22 PhEt in CD Cl 3

PAGE 340

340 F igure A 108 NOESY NMR spectrum of 22 PhEt in CD Cl 3

PAGE 341

341 F igur e A 109 1 H NMR spectrum of 22 Bn in CD Cl 3

PAGE 342

342 F igure A 110 13 C{ 1 H} NMR spectrum of 22 Bn in CD Cl 3

PAGE 343

343 F igure A 11 1 gdqCOSY NMR spectrum of 22 Bn in CD Cl 3

PAGE 344

344 F igure A 112 gHMQC NMR spectrum of 22 Bn in CD Cl 3

PAGE 345

345 F igure A 113 gHM BC NMR spectrum of 22 Bn in CD Cl 3

PAGE 346

346 F igure A 114 NOESY NMR spectrum of 22 Bn in CD Cl 3

PAGE 347

347 F igure A 115 1 H NMR spectrum of 22 idiPh in CD Cl 3

PAGE 348

348 F igure A 116 13 C{ 1 H} NMR spectrum of 22 idiPh in CD Cl 3

PAGE 349

349 F igure A 117 gdqCOSY NMR spectrum of 22 idiPh in CD Cl 3

PAGE 350

350 F igure A 118 gHMQC NMR spectrum (aliphatic) of 22 idiPh in CD Cl 3

PAGE 351

351 F igure A 119 gHMBC NMR spectrum of 22 idiPh in CD Cl 3

PAGE 352

352 F igure A 120 NOESY NMR spectrum of 22 idiPh in CD Cl 3

PAGE 353

353 F igure A 121 1 H NMR spectrum of 23 Me in DMSO d 6

PAGE 354

354 F igure A 122 13 C{ 1 H} NMR spectrum of 23 Me in DMSO d 6

PAGE 355

355 F igure A 123 gdqCOSY NMR spectrum of 23 Me in DMSO d 6

PAGE 356

356 F igure A 124 gHMQC NMR spectrum of 23 Me in DMSO d 6

PAGE 357

357 F igure A 125 1 H NMR spectrum of 24 i Pr in CD Cl 3

PAGE 358

358 F igure A 126 13 C{ 1 H} NMR spectrum of 24 i Pr in CD Cl 3

PAGE 359

359 F igure A 127 1 H NMR spectrum of 24 diPh in CD Cl 3

PAGE 360

360 F igure A 12 8 13 C{ 1 H} NMR spectrum of 24 diPh in CD Cl 3

PAGE 361

361 F igure A 129 gHMQC NMR spectrum of 24 diPh in CD Cl 3

PAGE 362

362 F igure A 130 1 H NMR spectrum of 25 i Pr in CD Cl 3

PAGE 363

363 F igure A 13 1 13 C{ 1 H} NMR spectrum of 25 i Pr in CD Cl 3

PAGE 364

364 F igure A 132 1 H NMR spectrum of 25 MeBn in CD Cl 3

PAGE 365

365 F igure A 133 1 H NMR spectrum of 25 MeBn in acetone d 6

PAGE 366

366 F igure A 134 13 C{ 1 H} NMR spectrum of 25 MeBn in CD Cl 3

PAGE 367

367 Figure A 135 gHMQC NMR spectrum (aliphatic) of 25 MeBn in acetone d 6

PAGE 368

368 Figure A 136 gHMQC NMR spectrum (aromatic) of 25 MeBn in acetone d 6

PAGE 369

369 Figure A 137 gHMBC NMR spectrum of 25 MeBn in acetone d 6

PAGE 370

370 Figure A 1 38 gdqCOSY NMR spectrum of 25 MeBn in acetone d 6

PAGE 371

371 Figure A 139 NOESY NMR spectrum of 25 MeBn in acetone d 6

PAGE 372

372 F igure A 140 1 H NMR spectrum of 25 diPh in CD Cl 3

PAGE 373

373 F igure A 141 13 C{ 1 H} NMR spectrum of 25 diPh in CD Cl 3

PAGE 374

374 F igure A 142 1 H NMR spectrum of 25 PhEt in acetone d 6 at 25 C.

PAGE 375

375 F igure A 143 1 H NMR spectrum of 25 PhEt in acetone d 6 at 60 C.

PAGE 376

376 F igure A 144 1 H NM R spectrum of 25 PhEt in CDCl 3 at 25 C.

PAGE 377

377 F igure A 145 13 C{ 1 H} NMR spectrum of 25 PhEt in CD Cl 3

PAGE 378

378 Figure A 146 gHMQC NMR spectrum (aliphatic) of 25 PhEt in acetone d 6

PAGE 379

379 Figure A 147 gHMQC NMR spectrum (aromatic) of 25 PhEt i n acetone d 6

PAGE 380

380 Figure A 148 gHMBC NMR spectrum of 25 PhEt in acetone d 6

PAGE 381

381 Figure A 149 gdqCOSY NMR spectrum of 25 PhEt in acetone d 6

PAGE 382

382 Figure A 150 NOESY NMR spectrum of 25 PhEt in acetone d 6

PAGE 383

383 Figure A 151 1 H NMR spectru m of 25 o xyxyl in CDCl 3 at t=0.

PAGE 384

384 Figure A 152 1 H NMR spectrum of 25 o xyxyl in CDCl 3 at t=18 h.

PAGE 385

385 Figure A 153 1 H NMR spectrum of 25 o xyxyl in CDCl 3 at t=10 d

PAGE 386

386 Figure A 154 1 H NMR spectrum of 25 o xyxyl in DMSO d 6 at t=0.

PAGE 387

387 Figure A 155 1 H NMR spectrum of 25 o xyxyl in DMSO d 6 at t=24 h.

PAGE 388

388 Figure A 156 13 C{ 1 H} NMR spectrum 25 o xyxyl in CDCl 3

PAGE 389

389 Figure A 157. NOES Y NMR spectrum of 25 o xyxyl in CDCl 3

PAGE 390

390 Figure A 158 gdqCOSY NMR spectrum of 25 o xyxyl in CDCl 3

PAGE 391

391 Figure A 1 5 9 gHMQC NMR spectrum (aliphatic) o f 25 o xyxyl in CDCl 3

PAGE 392

392 Figure A 1 6 0 gHMQC NMR spectrum (aromatic) o f 25 o xyxyl in CDCl 3

PAGE 393

393 Figure A 1 61 gHMBC NMR spectrum of 25 o xyxyl in CDCl 3

PAGE 394

394 F igure A 162 1 H NMR spectrum of 26 diPh in CD Cl 3

PAGE 395

395 F igure A 163 13 C{ 1 H} NMR spectrum of 26 diPh in CD Cl 3

PAGE 396

396 F igure A 164 1 H NMR spectrum of 27 Me in CD Cl 3

PAGE 397

397 F igure A 165 13 C{ 1 H} NMR spectrum of 27 Me in CD Cl 3

PAGE 398

398 A.2 X Ray C rystallographic D ata Figure A 166 Molecular s tructure of 4 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. X ray experimental details for 4 Me : Data are collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms were treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. In addition to the organic dication, the asymmetric unit contains two triflate anion s, an ether molecule and a DMSO molecule. The latter two molecules are

PAGE 399

399 disordered and could not be modeled properly, thus program SQUEEZE, a part of the PLATON package of crystallographic software, is used to calculate the solvent disorder area and remove its contribution to the overall intensity data. A total of 490 parameters are refined in the final cycle of refinement using 9009 reflections with I > 2 (I) to yield R 1 and wR 2 of 5.25 % and 13.26 %, respectively. Refinement is done using F 2

PAGE 400

400 Table A 1 Crystal data, structure solution and refinement for 4 Me identification code mj02 Empirical formula C 4 2 H 48 N 4 F 6 O 8 S 3 formula wei ght 947.02 T (K) 173(2) ( ) 0.71073 crystal system Triclinic space group P a ( ) 8.9058(6) b ( ) 15.2241(11) c ( ) 17.3077(12) (deg) 79.338(1) (deg) 88.105(1) (deg) 89.178(1) V ( 3 ) 2304.8(3) Z 2 calcd (Mg mm 3 ) 1.365 crystal size ( mm 3 ) 0.13 x 0.13 x 0.03 abs coeff (mm 1 ) 0.239 F (000) 988 range for data collection 1.64 to 27.45 limiting indices h k no. of reflns coll cd 13841 no. of ind reflns ( R int ) 9009 (0.0609) completeness to = 27.45 85.4 % absorption corr Integration refinement method Full matrix least squares on F 2 data / restraints / parameters 9009 / 0 / 490 R 1, a wR 2 b [I > 2 ] 0.0525, 0.1326 R 1, a wR 2 b (all data) 0.0772, 0.1406 GOF c on F 2 0.893 largest diff. peak and hole 0 .239 and 0.435 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 401

401 Table A 2 Atomic coordinates ( x 10 4 ) and equival ent isotropic displacement parameters ( 2 x 10 3 ) fo r 4 Me U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) N1 634(2) 8440(1) 5695(1) 34(1) N2 2200(2) 8731(1) 4685(1) 27(1) N3 6960(2) 10006(1) 903(1) 34(1) N4 5260(2) 9149(1) 1588(1) 28(1) C1 3857(2) 6578(2) 3488(1) 30(1) C2 2870(3) 5887(2) 3503(2) 43(1) C3 2943(3) 5405(2) 2894(2) 55(1) C4 3959(4) 5616(2) 2279(2) 54(1) C5 4946(3) 6313(2) 2252(1) 41(1) C6 4897(3) 6800(2) 2855(1) 31(1) C7 5598(3) 7110( 2) 4357(1) 28(1) C8 6095(3) 6856(2) 5120(1) 34(1) C9 7623(3) 6765(2) 5246(1) 37(1) C10 8647(3) 6942(2) 4620(1) 35(1) C11 8169(3) 7228(2) 3857(1) 32(1) C12 6639(2) 7305(1) 3730(1) 27(1) C13 5918(2) 7564(2) 2935(1) 27(1) C14 3979(2) 7171(1) 4098(1) 27 (1) C15 4928(2) 8403(2) 3000(1) 26(1) C16 3685(2) 8146(2) 3654(1) 25(1) C17 4171(2) 8809(2) 2233(1) 30(1) C18 3604(2) 8820(2) 4209(1) 28(1) C19 2051(3) 8381(2) 5445(1) 31(1) C20 797(2) 9025(2) 4413(1) 29(1) C21 325(3) 9440(2) 3680(2) 37(1) C22 117 7(3) 9672(2) 3623(2) 45(1) C23 2163(3) 9501(2) 4280(2) 47(1) C24 1720(3) 9079(2) 5004(2) 42(1) C25 200(3) 8843(2) 5064(1) 33(1) C26 79(3) 8108(2) 6501(2) 50(1) C27 6178(2) 9832(2) 1583(1) 31(1) C28 5451(2) 8856(2) 876(1) 31(1) C29 4769(3) 8185(2) 576(1) 37(1) C30 5233(3) 8082(2) 172(2) 47(1) C31 6313(3) 8636(2) 612(2) 47(1) C32 6994(3) 9307(2) 319(1) 39(1) C33 6537(3) 9402(2) 441(1) 32(1)

PAGE 402

402 Table A 2 Continued Atom X Y Z U(eq) C34 8188(3) 10650(2) 734(2) 47(1) C35 4599(3) 2555(2) 2642(2) 46(1) C36 121(4) 7422(2) 1188(2) 62(1) S1 4898(1) 1375(1) 3045(1) 37(1) S2 200(1) 8299(1) 1732(1) 40(1) F1 4675(2) 2722(1) 1869(1) 71(1) F2 3270(2) 2839(1) 2874(1) 77(1) F3 5626(2) 3051(1) 2896(1) 72(1) F4 1168(2) 7028(2) 1009(1) 93(1) F5 756(3) 7728(2) 505(1) 99(1) F6 988(3) 6787(2) 1589(2) 101(1) O1 6366(2) 1204(1) 2735(1) 55(1) O2 4813(2) 1339(1) 3879(1) 50(1) O3 3699(2) 937(1) 2740(1) 54(1) O4 947(2) 7842(1) 2416(1) 51(1) O5 1121(2) 8919(2) 1192(1) 59(1) O6 1286(2) 8620(1) 1875(1) 55( 1)

PAGE 403

403 Table A 3 Bond lengths (in ) for 4 Me Bond Distance Bond Distance N1 C19 1.328(3) C15 C17 1.531(3) N1 C25 1.384(3) C15 C16 1.558(3) N1 C26 1.465(3) C16 C18 1.529(3) N2 C19 1.328(3) C20 C21 1.385(3) N2 C20 1.388(3) C20 C25 1.40 0(3) N2 C18 1.469(3) C21 C22 1.380(3) N3 C27 1.331(3) C22 C23 1.401(4) N3 C33 1.389(3) C23 C24 1.366(4) N3 C34 1.465(3) C24 C25 1.397(3) N4 C27 1.331(3) C28 C29 1.385(4) N4 C28 1.391(3) C28 C33 1.392(3) N4 C17 1.478(3) C29 C30 1.381(4) C1 C2 1.376( 3) C30 C31 1.397(4) C1 C6 1.406(3) C31 C32 1.377(4) C1 C14 1.519(3) C32 C33 1.397(3) C2 C3 1.392(4) C35 F1 1.315(3) C3 C4 1.368(4) C35 F2 1.329(3) C4 C5 1.381(4) C35 F3 1.330(3) C5 C6 1.387(3) C35 S1 1.823(3) C6 C13 1.515(3) C36 F6 1.324(4) C7 C8 1 .390(3) C36 F5 1.329(4) C7 C12 1.396(3) C36 F4 1.341(4) C7 C14 1.521(3) C36 S2 1.803(4) C8 C9 1.386(3) S1 O3 1.432(2) C9 C10 1.383(3) S1 O2 1.4330(18) C10 C11 1.391(3) S1 O1 1.4354(19) C11 C12 1.386(3) S2 O6 1.4336(19) C12 C13 1.520(3) S2 O4 1.4358( 18) C13 C15 1.561(3) S2 O5 1.4426(19) C14 C16 1.563(3)

PAGE 404

404 Table A 4 Bond angles (in ) for 4 Me Bond Angle Angle Bond Angle Angle C19 N1 C25 108.19(19) N1 C19 N2 110.6(2) C19 N1 C26 124.7(2) C21 C20 N2 132.2(2) C25 N1 C26 127.1(2) C21 C20 C25 121.7(2) C19 N2 C20 108.37(18) N2 C20 C25 106.10(19) C19 N2 C18 126.48(19) C22 C21 C20 116.7(2) C20 N2 C18 125.13(18) C21 C22 C23 121.3(3) C27 N3 C33 108.3(2) C24 C23 C22 122.7(2) C27 N3 C34 124.4(2) C23 C24 C25 116.2(2) C33 N3 C34 126.8(2) N1 C25 C 24 131.8(2) C27 N4 C28 108.43(18) N1 C25 C20 106.73(19) C27 N4 C17 124.57(19) C24 C25 C20 121.4(2) C28 N4 C17 126.9(2) N4 C27 N3 110.2(2) C2 C1 C6 120.0(2) C29 C28 N4 132.1(2) C2 C1 C14 127.2(2) C29 C28 C33 121.5(2) C6 C1 C14 112.8(2) N4 C28 C33 106. 4(2) C1 C2 C3 119.0(3) C30 C29 C28 116.6(2) C4 C3 C2 121.0(3) C29 C30 C31 122.0(3) C3 C4 C5 120.6(3) C32 C31 C30 121.9(2) C4 C5 C6 119.2(3) C31 C32 C33 116.1(2) C5 C6 C1 120.0(2) N3 C33 C28 106.7(2) C5 C6 C13 126.5(2) N3 C33 C32 131.3(2) C1 C6 C13 1 13.4(2) C28 C33 C32 122.0(2) C8 C7 C12 119.9(2) F1 C35 F2 108.2(2) C8 C7 C14 127.0(2) F1 C35 F3 107.9(2) C12 C7 C14 113.12(18) F2 C35 F3 106.5(2) C9 C8 C7 119.5(2) F1 C35 S1 112.2(2) C10 C9 C8 120.3(2) F2 C35 S1 111.3(2) C9 C10 C11 120.9(2) F3 C35 S1 110.5(2) C12 C11 C10 118.8(2) F6 C36 F5 108.0(3) C11 C12 C7 120.7(2) F6 C36 F4 107.0(3) C11 C12 C13 125.9(2) F5 C36 F4 105.8(3) C7 C12 C13 113.43(19) F6 C36 S2 111.9(2) C6 C13 C12 106.45(18) F5 C36 S2 112.1(2) C6 C13 C15 108.68(17) F4 C36 S2 111.7(2 ) C12 C13 C15 105.10(17) O3 S1 O2 114.93(12) C1 C14 C7 106.94(17) O3 S1 O1 114.73(13) C1 C14 C16 105.80(17) O2 S1 O1 114.73(12) C7 C14 C16 108.00(17) O3 S1 C35 103.99(13)

PAGE 405

405 Table A 4. Continued Bond Angle Angle Bond Angle Angle C17 C15 C16 108.44(17) O2 S1 C35 103.52(12) C17 C15 C13 113.45(18) O1 S1 C35 102.70(13) C16 C15 C13 109.46(17) O6 S2 O4 115.35(11) C18 C16 C15 111.06(18) O6 S2 O5 114.60(12) C18 C16 C14 112.31(17) O4 S2 O5 115.09(12) C15 C16 C14 109.16(16) O6 S2 C36 103.19(14) N4 C17 C15 1 12.84(17) O4 S2 C36 103.15(14) N2 C18 C16 111.29(18) O5 S2 C36 102.97(15)

PAGE 406

406 Table A 5 Anisotropic displacement parameters ( 2 x10 3 ) for 4 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 N1 37(1) 29(1) 35(1) 9(1) 14(1) 2(1) N2 26(1) 29(1) 26(1) 6(1) 2(1) 4(1) N3 30(1) 37(1) 31(1) 1(1) 2(1) 1(1) N4 25(1) 37(1) 20(1) 1(1) 1(1) 3(1) C1 30(1) 30(1) 31(1) 4(1) 1(1) 5(1) C2 42(2) 38( 2) 50(2) 10(1) 1(1) 7(1) C3 59(2) 48(2) 61(2) 15(2) 8(2) 12(1) C4 68(2) 52(2) 48(2) 27(2) 4(2) 1(2) C5 49(2) 43(2) 31(1) 9(1) 2(1) 9(1) C6 31(1) 33(1) 29(1) 5(1) 1(1) 8(1) C7 34(1) 22(1) 27(1) 2(1) 2(1) 4(1) C8 44(1) 27(1) 29(1) 4(1) 4( 1) 0(1) C9 49(2) 30(1) 31(1) 1(1) 12(1) 4(1) C10 33(1) 29(1) 45(1) 7(1) 7(1) 5(1) C11 29(1) 26(1) 39(1) 4(1) 2(1) 4(1) C12 31(1) 23(1) 28(1) 3(1) 2(1) 3(1) C13 26(1) 32(1) 23(1) 3(1) 4(1) 4(1) C14 30(1) 26(1) 23(1) 2(1) 5(1) 1(1) C15 23(1) 29(1) 23(1) 1(1) 3(1) 2(1) C16 23(1) 30(1) 21(1) 1(1) 4(1) 3(1) C17 26(1) 39(1) 22(1) 0(1) 4(1) 5(1) C18 21(1) 32(1) 30(1) 5(1) 8(1) 3(1) C19 34(1) 27(1) 34(1) 8(1) 2(1) 1(1) C20 28(1) 26(1) 35(1) 11(1) 3(1) 2(1) C21 37(1) 34(1) 42(1) 13(1) 3( 1) 7(1) C22 40(2) 41(2) 57(2) 15(1) 13(1) 10(1) C23 27(1) 38(2) 80(2) 26(2) 5(1) 5(1) C24 27(1) 37(1) 67(2) 23(1) 13(1) 4(1) C25 32(1) 24(1) 43(1) 11(1) 7(1) 1(1) C26 58(2) 45(2) 43(2) 4(1) 25(1) 4(1) C27 31(1) 35(1) 26(1) 4(1) 0(1) 3(1) C28 26(1) 40(1) 21(1) 4(1) 1(1) 6(1) C29 37(1) 42(2) 31(1) 0(1) 3(1) 2(1) C30 55(2) 52(2) 36(1) 10(1) 5(1) 1(1) C31 51(2) 62(2) 28(1) 7(1) 3(1) 7(1) C32 36(1) 48(2) 28(1) 4(1) 4(1) 6(1)

PAGE 407

407 Table A 5. Continued U 11 U 22 U 33 U 23 U 13 U 12 C33 28(1) 36(1) 29(1) 2(1) 0(1) 6(1) C34 40(2) 51(2) 48(2) 1(1) 6(1) 14(1) C35 51(2) 50(2) 38(2) 11(1) 6(1) 3(1) C36 56(2) 67(2) 60(2) 5(2) 6(2) 0(2) S1 38(1) 41(1) 33(1) 7(1) 3(1) 1(1) S2 27(1) 54(1) 33(1) 7(1) 1(1) 3(1) F1 108(2) 60(1) 39(1) 4(1 ) 1(1) 2(1) F2 66(1) 72(1) 90(1) 14(1) 7(1) 28(1) F3 90(1) 55(1) 74(1) 18(1) 2(1) 22(1) F4 87(2) 103(2) 99(2) 43(1) 2(1) 26(1) F5 114(2) 119(2) 72(1) 29(1) 46(1) 12(2) F6 100(2) 75(2) 127(2) 16(1) 2(2) 38(1) O1 48(1) 60(1) 56(1) 17(1) 11( 1) 13(1) O2 47(1) 65(1) 36(1) 7(1) 3(1) 1(1) O3 57(1) 52(1) 53(1) 8(1) 7(1) 17(1) O4 36(1) 70(1) 40(1) 6(1) 2(1) 1(1) O5 46(1) 73(2) 46(1) 16(1) 9(1) 15(1) O6 34(1) 66(1) 58(1) 5(1) 3(1) 8(1)

PAGE 408

408 Table A 6 Hydrogen coordinat es ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 4 Me Atom X Y Z U(eq) H2A 2150 5742 3923 51 H3A 2276 4921 2904 66 H4A 3986 5280 1868 65 H5A 5651 6458 1824 49 H8A 5393 6746 5552 40 H9A 7968 6579 5764 44 H10A 9691 6867 4712 42 H11A 8876 7368 3430 38 H13A 6684 7688 2494 33 H14A 3253 6995 4552 32 H15A 5581 8867 3154 31 H16A 2697 8157 3394 30 H17A 3539 8350 2070 36 H17B 3503 9306 2328 36 H18A 4469 8723 4560 33 H18B 3671 9433 3897 33 H19A 2848 8124 5766 37 H21A 1001 9559 3237 4 4 H22A 1550 9952 3129 54 H23A 3182 9686 4220 56 H24A 2405 8953 5442 50 H26A 926 8023 6856 75 H26B 429 7537 6524 75 H26C 630 8543 6662 75 H27A 6264 10150 2002 37 H29A 4021 7814 869 45 H30A 4804 7622 395 56 H31A 6587 8546 1127 57 H32A 7730 9682 617 47 H34A 8092 11081 1089 71 H34B 8141 10966 188 71 H34C 9152 10333 812 71

PAGE 409

409 Figure A 167 Molecular s tructure of 4 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms and triflate counter ions omitted for clarity. X ray experimental details for 4 i Pr : The X ray intensity data are measured at 100(2) K on a Bruker SMART APEXII system equipped with a graphite monochromator and a Cu K fine focus sealed tube ( = 1.54178 ) operated at 1.2 kW power (40 kV, 30 mA). The detector is placed at a distance of 3.975 cm. from the crystal. The structure is solved and refined using the Bruker SHELXTL (Version 2008.4) Software Package, using t he space group I2/a, with Z = 4 for the formula unit, ( C 38 H 40 N 4 )(SO 3 CF 3 ) 2 The final anisotropic full matrix least squares refinement on F 2 with 265 variables converged at R1 = 4.66%, for the observed data and wR2 = 12.09% for all data. The goodness of fit is 1.043. The largest peak on the final difference electron density synthesis is 0.374 e / 3 and the largest hole is 0.270 e / 3 with an RMS deviation of 0.057 e / 3 On the basis of the final model, the calculated density is 1.474 g/cm 3 and F(000), 17 68 e

PAGE 410

410 Table A 7 Crystal data, structure solution and refinement for 4 i Pr identification code mj26 Empirical formula C 4 0 H 40 N 4 F 6 O 6 S 2 formula weight 850.88 T (K) 100(2) ( ) 0.71073 crystal system Monoclinic space group I2/a a ( ) 17.252(4) b ( ) 11.873(2) c ( ) 19.042(4) (deg) 90 (deg) 100.49(3) (deg) 90 V ( 3 ) 3835.1(13) Z 4 calcd (Mg mm 3 ) 1.474 crystal size (mm 3 ) 0.09 x 0.09 x 0.03 abs coeff (mm 1 ) 0.222 F (000) 1768 range for data collection 2.03 to 25.32 limiting indices h k no. of reflns coll cd 16450 no. of ind reflns ( R int ) 3425 (0.0500) completeness to = 27.45 97.6 % absorption corr Empirical refinement method Full matrix least squares on F 2 data / restraints / parameters 3425 / 0 / 262 R 1, a wR 2 b [I > 2 ] 0.0453, 0.1020 R 1, a wR 2 b (all data) 0.0717, 0.1131 GOF c on F 2 1.031 largest diff. peak and hole 0.351 and 0.259 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 411

411 Table A 8 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 4 i Pr U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) S1 1095(1) 3047(1) 2453(1) 29(1) N1 3073(1) 8184(2) 5640(1) 19(1) F1 2(1) 4515(2) 2567(1) 47(1) O1 912(1) 3217(2) 1704(1) 40(1) C1 1765(1) 4513(2) 5469( 1) 19(1) F2 412(1) 2811(2) 2413(1) 62(1) F3 231(1) 3369(2) 3432(1) 74(1) C6 1787(1) 4519(2) 4730(1) 19(1) N2 2854(1) 9919(2) 6019(1) 23(1) C10 3522(1) 8874(2) 5129(1) 21(1) C8 2470(1) 6313(2) 5415(1) 19(1) C9 3121(1) 6950(2) 5690(1) 21(1) O2 1203(1) 1901(2) 2679(1) 62(1) O3 1668(1) 3794(2) 2831(1) 60(1) C15 3378(2) 9981(2) 5364(1) 25(1) C7 2477(1) 5066(2) 5682(1) 19(1) C4 502(2) 3687(2) 4922(2) 28(1) C12 4402(2) 9538(2) 4119(2) 32(1) C16 2696(1) 8840(2) 6159(1) 22(1) C5 1151(2) 41 12(2) 4456(1) 25(1) C20 183(2) 3449(3) 2733(2) 38(1) C3 484(2) 3670(2) 5651(2) 28(1) C11 4037(2) 8635(2) 4497(1) 25(1) C17 2618(2) 10892(2) 6503(2) 32(1) C2 1116(2) 4083(2) 5928(1) 24(1) C13 4253(2) 10647(2) 4353(2) 34(1) C14 3737(2) 10893(2) 4974(2) 31(1) C19 3342(2) 11337(3) 6761(2) 41(1) C18 1986(2) 10541(3) 7116(2) 43(1)

PAGE 412

412 Table A 9 Bond lengths (in ) for 4 i Pr Bond Distance Bond Distance S1 O1 1.418(2) N2 C17 1.488(3) S1 O3 1.423(2) C10 C11 1.389(3) S1 O2 1.428(2) C10 C15 1.397(4) S1 C20 1.815(3) C8 C9 1.523(3) N1 C16 1.331(3) C8 C8 1.563(5) N1 C10 1.394(3) C8 C7 1.567(3) N1 C9 1.472(3) C15 C14 1.393(4) F1 C20 1.329(3) C7 C6 1.513(3) C1 C2 1.386(3) C4 C3 1.382(4) C1 C6 1.401(3) C4 C5 1.391(4) C1 C7 1.512(3) C12 C11 1.378(4) F2 C20 1.330(4) C12 C13 1.399(4) F3 C20 1.323(3) C3 C2 1.386(4) C6 C5 1.385(3) C17 C18 1.505(4) C6 C7 1.513(3) C17 C19 1.517(4) N2 C16 1.326(3) C13 C14 1.375(4) N2 C15 1.402(3)

PAGE 413

413 Table A 10 Bond angles (in ) for 4 i Pr Bond Angle Angle Bond Angle Angle O1 S1 O3 115.28(15) C14 C15 C10 121.7(2) O1 S1 O2 115.61(15) C14 C15 N2 131.9(2) O3 S1 O2 113.64(16) C10 C15 N2 106.5(2) O1 S1 C20 102.23(13) C1 C7 C6 108.7(2) O3 S1 C20 104.26(15) C1 C7 C8 105.58(19) O2 S1 C20 103. 55(14) C6 C7 C8 107.00(19) C16 N1 C10 108.0(2) C3 C4 C5 120.9(2) C16 N1 C9 124.1(2) C11 C12 C13 121.7(3) C10 N1 C9 126.8(2) N2 C16 N1 111.1(2) C2 C1 C6 120.4(2) C6 C5 C4 119.2(2) C2 C1 C7 126.4(2) F3 C20 F1 106.0(3) C6 C1 C7 113.1(2) F3 C20 F2 108.8( 3) C5 C6 C1 119.9(2) F1 C20 F2 107.6(2) C5 C6 C7 127.0(2) F3 C20 S1 112.2(2) C1 C6 C7 113.0(2) F1 C20 S1 111.4(2) C16 N2 C15 107.8(2) F2 C20 S1 110.7(2) C16 N2 C17 127.0(2) C4 C3 C2 120.2(2) C15 N2 C17 124.7(2) C12 C11 C10 117.0(2) C11 C10 N1 132.2( 2) N2 C17 C18 110.1(2) C11 C10 C15 121.2(2) N2 C17 C19 108.8(2) N1 C10 C15 106.6(2) C18 C17 C19 111.6(3) C9 C8 C8 115.5(2) C1 C2 C3 119.4(2) C9 C8 C7 107.91(19) C14 C13 C12 121.8(3) C8 C8 C7 108.99(12) C13 C14 C15 116.7(3) N1 C9 C8 114.7(2)

PAGE 414

414 Table A 11 Anisotropic displacement parameters ( 2 x10 3 ) for 4 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 S1 22(1) 40(1) 23(1) 1(1) 4(1) 4(1) N1 22(1) 15( 1) 20(1) 1(1) 7(1) 2(1) F1 51(1) 45(1) 45(1) 4(1) 8(1) 20(1) O1 30(1) 66(2) 24(1) 3(1) 8(1) 2(1) C1 21(1) 10(1) 26(1) 0(1) 3(1) 1(1) F2 32(1) 63(1) 97(2) 1(1) 26(1) 8(1) F3 82(2) 112(2) 36(1) 31(1) 34(1) 52(1) C6 22(1) 12(1) 23(1) 2(1) 6(1) 3(1 ) N2 25(1) 19(1) 25(1) 5(1) 4(1) 0(1) C10 22(1) 19(1) 22(1) 2(1) 6(1) 2(1) C8 22(1) 15(1) 20(1) 0(1) 5(1) 0(1) C9 25(1) 14(1) 24(1) 0(1) 7(1) 1(1) O2 56(2) 52(2) 80(2) 17(1) 21(1) 25(1) O3 35(1) 91(2) 49(1) 27(1) 3(1) 6(1) C15 25(1) 22(1) 27(1) 1(1) 5(1) 2(1) C7 22(1) 16(1) 18(1) 1(1) 4(1) 1(1) C4 23(1) 21(1) 41(2) 2(1) 11(1) 2(1) C12 29(2) 37(2) 29(2) 2(1) 1(1) 1(1) C16 22(1) 24(1) 20(1) 3(1) 5(1) 2(1) C5 30(1) 17(1) 28(1) 3(1) 8(1) 3(1) C20 37(2) 49(2) 30(2) 12(1) 11(1) 10(2) C3 23 (1) 20(1) 38(2) 3(1) 2(1) 2(1) C11 25(1) 25(1) 26(1) 2(1) 7(1) 1(1) C17 34(2) 22(1) 38(2) 12(1) 5(1) 3(1) C2 28(1) 19(1) 24(1) 2(1) 1(1) 0(1) C13 36(2) 28(2) 37(2) 7(1) 0(1) 9(1) C14 36(2) 20(1) 38(2) 2(1) 5(1) 5(1) C19 42(2) 35(2) 45(2) 18(2) 5 (1) 6(2) C18 39(2) 41(2) 45(2) 20(2) 3(1) 0(2)

PAGE 415

415 Figure A 168 Molecular structure of 4 o xyxyl with ellipsoids draw n at the 40% probability level. Hydrogen atoms and OTf counter ions omitted for clarity. X r ay experimental d etails for 4 o xyxyl : Data were collected at 100 K on a Bruker DUO system equipped with an APEX II area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 9999 reflections. A hemisphere of data is collected using the scan method (0.5 frame width). Absorption corrections by integration are applied based on measured indexed crystal face s. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms The asymmetric unit consists of the dication, two triflate anions, an acetone solvent molecule in a general position, another acetone disordered around a 2 fold rotation axis of

PAGE 416

416 symmetry, and a disordered hexane molecule. All solvent molecules ar e disordered and could not be modeled properly, thus program SQUEEZE, a part of the PLATON package of crystallographic software, is used to calculate the solvent disorder area and remove its contribution to the overall intensity data. The 9,10 dihydroetha noanthracene 11,12 dyl fragment is disordered, and is refined in two parts with their site occupation factors dependently refined. The H1 and H26 on C1 and C26, respectively, are obtained form a Difference Fourier map and refined freely. One of the triflat e anions (S2) is also disordered and O5, O6 and the CF 3 groups are refined in two positions and their site occupation factors are dependently refined. A total of 529 parameters a re refined in the final cycle of refinement using 5802 reflections with I > 2 (I) to yield R 1 and wR 2 of 5.84 % and 16.28%, respectively. Refinement i s done using F 2 P. van der Sluis & A.L. Spek (1990). SQUEEZE, Acta Cryst. A46, 194 201 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA. Spek, A.L. (1990). PLATON, Acta Cryst A46, C 34

PAGE 417

417 Table A 12 Crystal data, structure solution and refinement for 4 o xyxyl identification code mj29 empirical formula C 42 H 34 N 4 F 6 O 6 S 2 formula weight 868.85 T (K) 100(2) ( ) 0.71073 crystal system monoclinic space grou p C2/c a ( ) 31.103(2) b ( ) 11.8780(9) c ( ) 28.914(2) (deg) 90 (deg) 115.714(2) (deg) 90 V ( 3 ) 9624.4(12) Z 8 calcd (Mg mm 3 ) 1.199 crystal size (mm 3 ) 0.22 x 0.15 x 0.10 abs coeff (mm 1 ) 0.179 F (000) 3584 range for data collection 1.45 to 25.00 limiting indices h k no. of reflns coll cd 43338 no. of ind reflns ( R int ) 8481 (0.0453) completeness to = 27.45 100 % absorption corr Numerical refinement method Full matrix least squares on F 2 d ata / restraints / parameters 8481 / 0 / 529 R 1, a wR 2 b [I > 2 ] 0.0584, 0.1628[5802] R 1, a wR 2 b (all data) 0.0806, 0.1724 GOF c on F 2 1.106 largest diff. peak and hole 0.863 and 0.583 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 418

418 Table A 13 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 4 o xyxyl U(eq) is define d as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) F1 1230(1) 585(2) 3648(1) 55(1) S1 716(1) 916(1) 4150(1) 42(1) O1 293(1) 837(2) 3669(1) 56(1) F2 1571(1) 104(2) 4447(1) 64(1) O2 698(1) 310(2) 4573(1) 56(1) F3 1010(1) 9 28(2) 3888(1) 77(1) O3 918(1) 2012(2) 4272(1) 47(1) C41 1153(1) 134(3) 4028(1) 48(1) S2 2054(1) 7406(1) 2973(1) 39(1) O4 2193(1) 8482(2) 2857(1) 47(1) O5 2361(2) 6838(4) 3386(2) 39(1) O6 1759(2) 6718(3) 2498(2) 44(1) C42 1570(3) 7889(8) 3138(4) 58(2 ) F4 1369(2) 7016(4) 3251(2) 66(1) F5 1230(2) 8436(4) 2785(2) 69(2) F6 1776(2) 8509(4) 3565(2) 67(1) O5' 2403(2) 7024(6) 3537(3) 44(2) O6' 2011(2) 6559(4) 2628(2) 36(2) C42' 1523(3) 7540(8) 3018(4) 41(2) F4' 1359(2) 6532(5) 3125(2) 55(2) F5' 1176(2 ) 7846(6) 2550(2) 79(2) F6' 1538(3) 8284(6) 3380(3) 84(2) N1 2187(1) 8590(2) 1784(1) 24(1) N2 2125(1) 6769(2) 1684(1) 26(1) N3 1785(1) 7567(2) 410(1) 27(1) N4 1814(1) 9349(2) 610(1) 25(1) C1 1888(1) 7721(2) 1644(1) 26(1) C2 2649(1) 8182(2) 1940(1) 2 5(1) C3 3088(1) 8731(2) 2130(1) 31(1) C4 3478(1) 8053(3) 2236(1) 38(1) C5 3437(1) 6878(3) 2166(1) 39(1) C6 3004(1) 6341(3) 1983(1) 33(1) C7 2608(1) 7025(2) 1871(1) 26(1) C8 1876(3) 5653(6) 1574(3) 21(2) C9 1798(3) 5257(6) 1029(3) 24(2) C10 1671(3) 3965(5) 968(2) 24(2)

PAGE 419

419 Table A 13 Continued Atom X Y Z U(eq) C11 1217(3) 3848(5) 1024(2) 25(2) C12 1156(3) 3213(5) 1398(2) 30(2) C13 716(3) 3241(6) 1405(3) 38(2) C14 351(3) 3907(6) 1064(3) 45(2) C15 418(2) 4513(5) 703(2) 32(1) C16 844(2) 4489(5 ) 671(2) 27(2) C17 1573(3) 3695(5) 409(2) 25(1) C18 1838(2) 2985(5) 250(2) 31(1) C19 1706(3) 2808(5) 275(3) 35(2) C20 1302(2) 3381(5) 621(2) 39(2) C21 1035(2) 4111(5) 471(2) 34(2) C22 1177(2) 4275(5) 54(2) 25(1) C23 971(2) 5105(5) 296(2) 25(1) C 24 1390(3) 5910(6) 597(3) 22(2) C25 1526(3) 6492(6) 209(3) 24(2) C8' 1961(3) 5619(8) 1554(3) 23(3) C9' 1895(4) 5219(8) 1036(4) 25(3) C10' 1823(3) 3910(6) 1006(3) 23(2) C11' 1364(3) 3696(6) 1048(3) 22(2) C12' 1309(3) 3135(7) 1435(3) 29(2) C13' 866(4) 3059(7) 1437(3) 35(2) C14' 459(3) 3550(8) 1049(3) 43(2) C15' 522(3) 4135(8) 643(3) 44(2) C16' 970(3) 4204(7) 663(3) 30(2) C17' 1764(3) 3559(6) 480(3) 25(2) C18' 2074(3) 2889(6) 379(3) 30(2) C19' 1978(3) 2655(6) 127(3) 42(2) C20' 1557(3) 3127(6) 5 23(3) 37(2) C21' 1251(3) 3834(7) 426(3) 37(2) C22' 1362(3) 4024(6) 85(3) 26(2) C23' 1093(3) 4818(7) 267(3) 28(2) C24' 1469(4) 5773(8) 582(4) 30(3) C25' 1628(4) 6427(8) 219(3) 26(3) C26 1534(1) 8456(2) 438(1) 29(1) C27 2258(1) 7915(2) 570(1) 26(1) C28 2665(1) 7333(2) 622(1) 32(1) C29 3079(1) 7954(3) 793(1) 34(1) C30 3091(1) 9100(3) 902(1) 35(1)

PAGE 420

420 Table A 13. Continued Atom X Y Z U(eq) C31 2691(1) 9680(2) 855(1) 31(1) C32 2272(1) 9053(2) 687(1) 25(1) C33 1651(1) 10460(2) 705(1) 30(1) C34 1 348(1) 10343(2) 992(1) 29(1) C35 867(1) 10561(2) 732(1) 34(1) C36 574(1) 10485(3) 979(1) 42(1) C37 761(1) 10180(3) 1488(1) 42(1) C38 1241(1) 9944(2) 1750(1) 33(1) C39 1544(1) 10029(2) 1512(1) 26(1) C40 2064(1) 9786(2) 1818(1) 30(1)

PAGE 421

421 Table A 14 Bond lengths (in ) for 4 o xyxyl Bond Distance Bond Distance F1 C41 1.334(4) C13 C14 1.384(11) S1 O3 1.422(2) C14 C15 1.355(9) S1 O2 1.440(2) C15 C16 1.371(9) S1 O1 1.444(2) C16 C23 1.494(8) S1 C41 1.805(4) C17 C18 1.390(8) F 2 C41 1.338(4) C17 C22 1.396(9) F3 C41 1.340(4) C18 C19 1.405(8) S2 O5 1.343(5) C19 C20 1.398(9) S2 O6' 1.383(5) C20 C21 1.394(9) S2 O4 1.435(2) C21 C22 1.398(8) S2 O6 1.517(4) C22 C23 1.504(8) S2 O5' 1.582(7) C23 C24 1.543(9) S2 C42' 1.717(9) C24 C 25 1.527(10) S2 C42 1.855(10) C8' C9' 1.499(13) C42 F5 1.283(9) C9' C24' 1.548(14) C42 F4 1.324(9) C9' C10' 1.568(12) C42 F6 1.338(11) C10' C11' 1.507(11) C42' F6' 1.356(12) C10' C17' 1.510(10) C42' F5' 1.364(10) C11' C12' 1.373(10) C42' F4' 1.388(1 1) C11' C16' 1.386(11) N1 C1 1.329(3) C12' C13' 1.385(13) N1 C2 1.393(3) C13' C14' 1.404(13) N1 C40 1.485(3) C14' C15' 1.447(11) N2 C1 1.327(3) C15' C16' 1.372(12) N2 C7 1.393(4) C16' C23' 1.540(10) N2 C8' 1.449(9) C17' C18' 1.375(11) N2 C8 1.497(7) C17' C22' 1.390(10) N3 C26 1.337(4) C18' C19' 1.389(10) N3 C27 1.398(4) C19' C20' 1.426(12) N3 C25' 1.465(9) C20' C21' 1.386(12) N3 C25 1.486(7) C21' C22' 1.385(10) N4 C26 1.325(4) C22' C23' 1.499(11) N4 C32 1.389(3) C23' C24' 1.600(12) N4 C33 1.48 1(3) C24' C25' 1.548(13) C1 H1 0.94(3) C26 H26 0.95(3) C2 C7 1.387(4) C27 C32 1.390(4) C2 C3 1.393(4) C27 C28 1.392(4) C3 C4 1.376(4) C28 C29 1.377(4)

PAGE 422

422 Table A 14. Continued Bond Distance Bond Distance C4 C5 1.409(4) C29 C30 1.395(4) C5 C6 1.372 (4) C30 C31 1.376(4) C6 C7 1.390(4) C31 C32 1.393(4) C8 C9 1.559(10) C33 C34 1.507(4) C9 C24 1.549(11) C34 C35 1.378(4) C9 C10 1.576(9) C34 C39 1.405(4) C10 C11 1.497(9) C35 C36 1.385(4) C10 C17 1.543(8) C36 C37 1.376(4) C11 C16 1.393(9) C37 C38 1.3 80(4) C11 C12 1.398(9) C38 C39 1.391(4) C12 C13 1.375(11) C39 C40 1.498(4)

PAGE 423

423 Table A 15 Bond angles (in ) for 4 o xyxyl Bond Angle Angle Bond Angle Angle O3 S1 O2 115.01(14) C13 C12 C11 117.9(6) O3 S1 O1 114.77(15) C12 C13 C14 121.1(7) O2 S1 O1 115.48(14) C15 C14 C13 119.9(7) O3 S1 C41 103.26(15) C14 C15 C16 121.2(6) O2 S1 C41 102.59(16) C15 C16 C11 118.9(5) O1 S1 C41 103.17(16) C15 C16 C23 127.4(5) F1 C41 F2 107.8(3) C11 C16 C23 113.7(6) F1 C41 F3 106.5(3) C18 C17 C22 121.2(6) F2 C41 F3 108.3(3) C18 C17 C10 126.6(6) F1 C41 S1 111.9(2) C22 C17 C10 112.2(5) F2 C41 S1 110.8(2) C17 C18 C19 120.7(6) F3 C41 S1 111.3(2) C20 C19 C18 116.9(6) O5 S2 O6' 94.8(3) C21 C20 C19 123.5(6) O5 S2 O4 119.0(2) C20 C21 C22 118.3(6) O 6' S2 O4 115.1(2) C17 C22 C21 119.4(6) O5 S2 O6 116.8(3) C17 C22 C23 113.5(5) O6' S2 O6 28.8(2) C21 C22 C23 126.8(5) O4 S2 O6 113.13(18) C16 C23 C22 108.4(5) O5 S2 O5' 15.2(3) C16 C23 C24 108.6(5) O6' S2 O5' 110.0(3) C22 C23 C24 104.1(5) O4 S2 O5' 11 0.8(3) C25 C24 C23 107.6(5) O6 S2 O5' 130.7(3) C25 C24 C9 115.2(7) O5 S2 C42' 108.5(4) C23 C24 C9 109.9(6) O6' S2 C42' 109.1(4) N3 C25 C24 112.3(5) O4 S2 C42' 109.4(3) N2 C8' C9' 116.0(7) O6 S2 C42' 84.0(4) C8' C9' C24' 114.0(8) O5' S2 C42' 101.6(4) C8' C9' C10' 108.9(7) O5 S2 C42 105.8(3) C24' C9' C10' 109.0(7) O6' S2 C42 125.2(4) C11' C10' C17' 109.3(6) O4 S2 C42 98.3(3) C11' C10' C9' 106.3(7) O6 S2 C42 99.2(4) C17' C10' C9' 106.3(6) O5' S2 C42 95.5(4) C12' C11' C16' 119.0(8) C42' S2 C42 16.2( 4) C12' C11' C10' 127.2(7) F5 C42 F4 106.1(7) C16' C11' C10' 113.6(6) F5 C42 F6 110.8(8) C11' C12' C13' 120.7(8) F4 C42 F6 106.9(7) C12' C13' C14' 121.6(9) F5 C42 S2 115.7(7) C13' C14' C15' 117.1(8) F4 C42 S2 110.2(7) C16' C15' C14' 119.1(8)

PAGE 424

424 Table A 15. Continued Bond Angle Angle Bond Angle Angle F6 C42 S2 106.8(6) C15' C16' C11' 122.4(7) F6' C42' F5' 109.9(7) C15' C16' C23' 125.0(7) F6' C42' F4' 106.4(7) C11' C16' C23' 112.6(7) F5' C42' F4' 104.0(7) C18' C17' C22' 121.4(7) F6' C42' S2 113.9(7) C18' C17' C10' 125.7(7) F5' C42' S2 108.9(6) C22' C17' C10' 112.9(7) F4' C42' S2 113.3(6) C17' C18' C19' 119.3(7) C1 N1 C2 108.4(2) C18' C19' C20' 118.0(8) C1 N1 C40 126.7(2) C21' C20' C19' 123.2(8) C2 N1 C40 124.7(2) C22' C21' C20' 116.2(8) C1 N2 C7 108.3(2) C21' C22' C17' 121.9(7) C1 N2 C8' 131.3(4) C21' C22' C23' 124.1(8) C7 N2 C8' 120.3(4) C17' C22' C23' 113.8(6) C1 N2 C8 121.3(4) C22' C23' C16' 108.7(6) C7 N2 C8 130.3(4) C22' C23' C24' 105.3(6) C8' N2 C8 11.4(5) C16' C23' C24' 105.6(6) C26 N3 C27 107.8(2) C25' C24' C9' 112.4(8) C26 N3 C25' 130.1(5) C25' C24' C23' 109.8(7) C27 N3 C25' 122.0(5) C9' C24' C23' 109.1(7) C26 N3 C25 118.0(4) N3 C25' C24' 111.2(7) C27 N3 C25 134.1(4) N4 C26 N3 110.4(3) C25' N3 C25 12.2(5) N4 C26 H26 125.2(17) C26 N4 C32 108.6(2) N3 C26 H26 124.3(17) C26 N4 C33 124.2(2) C32 C27 C28 121.7(3) C32 N4 C33 127.2(2) C32 C27 N3 106.6(2) N2 C1 N1 110.2(3) C28 C27 N3 131.7(3) N2 C1 H1 122.9(16) C29 C28 C27 116.0(3) N1 C1 H1 126.8(16) C28 C29 C30 122.2(3) C7 C2 C3 1 22.2(3) C31 C30 C29 122.1(3) C7 C2 N1 106.4(2) C30 C31 C32 115.9(3) C3 C2 N1 131.4(3) N4 C32 C27 106.6(2) C4 C3 C2 115.7(3) N4 C32 C31 131.4(2) C3 C4 C5 122.1(3) C27 C32 C31 122.1(3) C6 C5 C4 122.0(3) N4 C33 C34 111.4(2) C5 C6 C7 116.1(3) C35 C34 C39 119.8(3) C2 C7 C6 122.0(3) C35 C34 C33 118.2(2) C2 C7 N2 106.7(2) C39 C34 C33 122.0(3) C6 C7 N2 131.3(3) C34 C35 C36 120.6(3)

PAGE 425

425 Table A 15. Continued Bond Angle Angle Bond Angle Angle N2 C8 C9 108.7(5) C37 C36 C35 120.1(3) C24 C9 C8 112.2(6) C36 C37 C38 119.7(3) C24 C9 C10 108.5(6) C37 C38 C39 121.2(3) C8 C9 C10 109.2(6) C38 C39 C34 118.5(3) C11 C10 C17 109.2(5) C38 C39 C40 118.9(2) C11 C10 C9 106.3(5) C34 C39 C40 122.5(2) C17 C10 C9 104.2(5) N1 C40 C39 112.8(2) C16 C11 C12 120.8(7) C12 C11 C10 126.0(6) C16 C11 C10 113.2(5)

PAGE 426

426 Table A 16 Anisotropic displacement parameters ( 2 x10 3 ) for 4 o xyxyl The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 1 2 F1 72(1) 55(1) 60(1) 3(1) 49(1) 2(1) S1 38(1) 62(1) 29(1) 5(1) 17(1) 14(1) O1 34(1) 94(2) 35(1) 1(1) 11(1) 14(1) F2 47(1) 86(2) 53(1) 17(1) 18(1) 9(1) O2 43(1) 95(2) 32(1) 7(1) 18(1) 20(1) F3 112(2) 41(1) 94(2) 3(1) 59(2) 7(1) O3 46(1) 54(1 ) 44(1) 12(1) 23(1) 7(1) C41 56(2) 46(2) 44(2) 8(2) 22(2) 6(2) S2 63(1) 25(1) 40(1) 0(1) 33(1) 0(1) O4 63(2) 30(1) 44(1) 8(1) 21(1) 5(1) N1 29(1) 21(1) 22(1) 1(1) 9(1) 0(1) N2 31(1) 22(1) 22(1) 1(1) 8(1) 0(1) N3 35(1) 24(1) 25(1) 1(1) 16(1) 1(1 ) N4 29(1) 24(1) 24(1) 2(1) 13(1) 2(1) C1 29(2) 26(2) 20(1) 2(1) 8(1) 1(1) C2 28(2) 30(2) 18(1) 2(1) 10(1) 1(1) C3 33(2) 35(2) 25(1) 2(1) 12(1) 3(1) C4 30(2) 48(2) 34(2) 6(1) 14(1) 3(1) C5 38(2) 51(2) 36(2) 10(1) 23(2) 14(2) C6 40(2) 34(2) 27(2) 4(1) 17(1) 8(1) C7 33(2) 33(2) 13(1) 3(1) 10(1) 1(1) C26 31(2) 32(2) 24(1) 7(1) 12(1) 2(1) C27 37(2) 27(1) 17(1) 3(1) 14(1) 2(1) C28 48(2) 29(2) 25(1) 1(1) 20(1) 8(1) C29 35(2) 46(2) 27(2) 6(1) 18(1) 10(1) C30 34(2) 45(2) 32(2) 2(1) 18(1) 1(1) C31 40(2) 32(2) 25(1) 1(1) 18(1) 3(1) C32 32(2) 26(1) 19(1) 2(1) 15(1) 1(1) C33 37(2) 25(1) 29(2) 5(1) 16(1) 4(1) C34 38(2) 21(1) 29(2) 0(1) 16(1) 4(1) C35 38(2) 37(2) 29(2) 4(1) 16(1) 11(1) C36 35(2) 46(2) 46(2) 1(2) 18(2) 12(2) C37 43(2) 49(2) 42(2) 2(2) 27(2) 4(2) C38 44(2) 29(2) 31(2) 1(1) 20(1) 3(1) C39 33(2) 18(1) 30(1) 2(1) 15(1) 2(1) C40 39(2) 19(1) 29(2) 1(1) 13(1) 0(1)

PAGE 427

427 Figure A 169 Molecular structure of 5 Me with ellipsoids drawn at the 40% probability level. Hydrogen atoms omitte d for clarity. X ray experimental details for 5 Me : Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. A total of 343 parameters a re refined in the final cycle of refinement using 13240 re flections with I > 2 (I) to yield R 1 and wR 2 of 5.41 % and 12.24%, respectively. Refinement i s done using F 2

PAGE 428

428 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA. Table A 17 Crystal data, structure solution and refinement for 5 Me identification code m j15 Empirical formula C 34 H 30 N 4 formula weight 494.62 T (K) 173(2) ( ) 0.71073 crystal system Monoclinic space group P2(1)/c a ( ) 8.3292(6) b ( ) 35.314(3) c ( ) 8.6567(6) (deg) 90 (deg) 93.567(2) (deg) 90 V ( 3 ) 2541.3(3) Z 4 c alcd (Mg mm 3 ) 1.293 crystal size (mm 3 ) 0.15 x 0.08 x 0.07 abs coeff (mm 1 ) 0.077 F (000) 1048 range for data collection 1.15 to 25.00 limiting indices h k no. of reflns coll cd 13240 no. of ind reflns ( R int ) 4470 (0.0567) completeness to = 25.00 100 % absorption corr Integration refinement method Full ma trix least squares on F 2 data / restraints / parameters 4470 / 0 / 343 R 1, a wR 2 b [I > 2 ] 0.0541, 0.1224 R 1, a wR 2 b (all data) 0.0844, 0.1381 GOF c on F 2 1.038 largest diff. peak and hole 0.322 and 0.210 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w (F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 429

429 Table A 18 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 5 Me U( eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) N1 11947(2) 665(1) 6692(2) 32(1) N2 10620(2) 974(1) 4691(2) 30(1) N3 9504(2) 1564(1) 7070(2) 30(1) N4 11632(2) 1352(1) 8733(2) 30(1) C1 11076(3) 1000(1) 6292( 3) 29(1) C2 11793(4) 493(1) 8210(3) 44(1) C3 11904(3) 433(1) 5369(3) 32(1) C4 12501(3) 74(1) 5169(3) 42(1) C5 12318(4) 87(1) 3691(3) 47(1) C6 11574(3) 110(1) 2470(3) 43(1) C7 10945(3) 470(1) 2673(3) 36(1) C8 11118(3) 628(1) 4136(3) 28(1) C9 10730( 3) 1279(1) 7281(3) 30(1) C10 9721(3) 1814(1) 8338(3) 28(1) C11 8890(3) 2138(1) 8670(3) 32(1) C12 9407(3) 2345(1) 9987(3) 34(1) C13 10699(3) 2225(1) 10941(3) 33(1) C14 11534(3) 1894(1) 10607(3) 30(1) C15 11012(3) 1690(1) 9317(3) 26(1) C16 13391(3) 13 27(1) 8773(3) 39(1) C17 10273(3) 1301(1) 3696(3) 29(1) C18 8621(3) 1491(1) 3888(3) 26(1) C19 7616(3) 1274(1) 5041(3) 27(1) C20 7814(3) 1458(1) 6627(3) 34(1) C21 7592(3) 1549(1) 2329(3) 26(1) C22 6901(3) 1167(1) 1860(3) 26(1) C23 7201(3) 967(1) 533(3 ) 31(1) C24 6453(3) 619(1) 260(3) 38(1) C25 5421(3) 474(1) 1307(3) 39(1) C26 5157(3) 668(1) 2666(3) 32(1) C27 5895(3) 1015(1) 2940(3) 26(1) C28 5825(3) 1255(1) 4386(3) 26(1) C29 5309(3) 1650(1) 3911(3) 26(1) C30 4115(3) 1865(1) 4540(3) 30(1) C31 38 21(3) 2233(1) 3998(3) 34(1) C32 4693(3) 2378(1) 2833(3) 34(1)

PAGE 430

430 Table A 18. Continued Atom X Y Z U(eq) C33 5899(3) 2163(1) 2205(3) 31(1) C34 6224(3) 1803(1) 2761(3) 26(1)

PAGE 431

431 Table A 19 Bond lengths (in ) for 5 Me Bond Distance Bond Distance N1 C3 1.407(3) C13 C14 1.400(4) N1 C1 1.418(3) C14 C15 1.375(3) N1 C2 1.462(3) C17 C18 1.551(3) N2 C8 1.388(3) C18 C19 1.546(3) N2 C1 1.417(3) C18 C21 1.566(3) N2 C17 1.457(3) C19 C20 1.519(3) N3 C10 1.411(3) C19 C 28 1.564(3) N3 C9 1.438(3) C21 C22 1.514(3) N3 C20 1.484(3) C21 C34 1.514(3) N4 C15 1.408(3) C22 C23 1.384(3) N4 C9 1.448(3) C22 C27 1.400(3) N4 C16 1.466(3) C23 C24 1.390(4) C1 C9 1.349(3) C24 C25 1.385(4) C3 C4 1.377(4) C25 C26 1.391(4) C3 C8 1.3 98(3) C26 C27 1.385(3) C4 C5 1.399(4) C27 C28 1.516(3) C5 C6 1.381(4) C28 C29 1.509(3) C6 C7 1.388(4) C29 C30 1.390(3) C7 C8 1.383(3) C29 C34 1.399(3) C10 C11 1.377(3) C30 C31 1.396(4) C10 C15 1.397(3) C31 C32 1.378(4) C11 C12 1.399(4) C32 C33 1.397 (3) C12 C13 1.381(4) C33 C34 1.382(3)

PAGE 432

432 Table A 20 Bond angles (in ) for 5 Me Bond Angle Angle Bond Angle Angle C3 N1 C1 107.46(19) C10 C15 N4 109.4(2) C3 N1 C2 119.4(2) N2 C17 C18 115.14(19) C1 N1 C2 119.7(2) C19 C18 C17 111.90(19) C8 N2 C1 109.03(19) C19 C18 C21 109.39(18) C8 N2 C17 123.08(19) C17 C18 C21 113.94(19) C1 N2 C17 124.0(2) C20 C19 C18 109.7(2) C10 N3 C9 106.46(18) C20 C19 C28 113.15(19) C10 N3 C20 115.67(19) C18 C19 C28 109.24(18) C9 N3 C20 120.7(2) N3 C20 C19 113.0(2) C15 N4 C9 106.36(18) C22 C21 C34 108.31(19) C15 N4 C16 115.6(2) C22 C21 C18 107.07(18) C9 N4 C16 118.3(2) C34 C21 C18 104.11(18) C9 C1 N2 127.7(2) C23 C22 C27 120.4(2) C9 C1 N1 125.5(2) C23 C22 C21 126.3(2) N2 C1 N1 106.79(19) C27 C22 C21 113.3(2) C4 C3 C8 120.9(2) C22 C23 C24 119.3(2) C4 C3 N1 130.4(2) C25 C24 C23 120.3(2) C8 C3 N1 108.7(2) C24 C25 C26 120.6(2) C3 C4 C5 117.9(3) C27 C26 C25 119.3(2) C6 C5 C4 120.9(3) C26 C27 C22 120.1(2) C5 C6 C7 121.3(3) C26 C27 C28 126.6(2) C8 C7 C6 117.8(2 ) C22 C27 C28 113.2(2) C7 C8 N2 131.0(2) C29 C28 C27 108.43(18) C7 C8 C3 121.2(2) C29 C28 C19 107.98(19) N2 C8 C3 107.8(2) C27 C28 C19 103.75(18) C1 C9 N3 127.6(2) C30 C29 C34 120.2(2) C1 C9 N4 124.2(2) C30 C29 C28 126.6(2) N3 C9 N4 108.11(19) C34 C2 9 C28 113.1(2) C11 C10 C15 120.7(2) C29 C30 C31 119.4(2) C11 C10 N3 129.8(2) C32 C31 C30 120.2(2) C15 C10 N3 109.5(2) C31 C32 C33 120.4(2) C10 C11 C12 118.1(2) C34 C33 C32 119.7(2) C13 C12 C11 121.1(2) C33 C34 C29 119.9(2) C12 C13 C14 120.7(2) C33 C3 4 C21 126.4(2) C15 C14 C13 117.9(2) C29 C34 C21 113.6(2) C14 C15 C10 121.5(2) C14 C15 N4 129.1(2)

PAGE 433

433 Table A 21 Anisotropic displacement parameters ( 2 x10 3 ) for 5 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 N1 35(1) 34(1) 27(1) 4(1) 2(1) 8(1) N2 29(1) 36(1) 24(1) 1(1) 4(1) 6(1) N3 25(1) 40(1) 25(1) 2(1) 4(1) 7(1) N4 24(1) 37(1) 27(1) 2(1) 7(1) 4(1) C1 24(1) 35(1) 27(1) 1(1) 5(1) 5(1) C2 55(2) 45(2) 31 (2) 7(1) 4(1) 2(1) C3 28(1) 34(1) 33(2) 1(1) 3(1) 1(1) C4 49(2) 36(2) 41(2) 5(1) 5(1) 6(1) C5 56(2) 32(2) 56(2) 5(1) 14(2) 2(1) C6 46(2) 43(2) 39(2) 9(1) 9(1) 3(1) C7 32(1) 44(2) 31(1) 3(1) 1(1) 2(1) C8 24(1) 33(1) 28(1) 2(1) 2(1) 1(1) C9 2 7(1) 36(1) 25(1) 1(1) 5(1) 2(1) C10 27(1) 37(1) 19(1) 2(1) 2(1) 0(1) C11 31(1) 36(1) 28(1) 7(1) 2(1) 8(1) C12 36(2) 31(1) 36(2) 2(1) 11(1) 1(1) C13 31(1) 38(2) 32(1) 5(1) 6(1) 9(1) C14 24(1) 39(2) 26(1) 1(1) 2(1) 4(1) C15 26(1) 30(1) 24(1) 2(1 ) 1(1) 2(1) C16 25(1) 53(2) 38(2) 6(1) 6(1) 5(1) C17 24(1) 38(1) 26(1) 3(1) 1(1) 2(1) C18 21(1) 33(1) 23(1) 0(1) 2(1) 2(1) C19 21(1) 36(1) 23(1) 3(1) 1(1) 1(1) C20 25(1) 52(2) 25(1) 1(1) 3(1) 3(1) C21 24(1) 31(1) 22(1) 4(1) 1(1) 1(1) C22 23( 1) 30(1) 23(1) 3(1) 5(1) 4(1) C23 30(1) 40(2) 24(1) 0(1) 2(1) 9(1) C24 40(2) 39(2) 34(2) 10(1) 6(1) 11(1) C25 36(2) 32(2) 48(2) 7(1) 11(1) 2(1) C26 26(1) 32(1) 38(2) 3(1) 3(1) 0(1) C27 20(1) 30(1) 29(1) 3(1) 4(1) 1(1) C28 20(1) 35(1) 23(1) 3( 1) 2(1) 2(1) C29 19(1) 36(1) 21(1) 3(1) 5(1) 1(1) C30 23(1) 43(2) 23(1) 6(1) 3(1) 1(1) C31 28(1) 40(2) 33(1) 11(1) 5(1) 8(1) C32 34(2) 31(1) 37(2) 4(1) 7(1) 3(1)

PAGE 434

434 Table A 21 Continued U 11 U 22 U 33 U 23 U 13 U 12 C33 28(1) 34(1) 31(1) 1(1) 5( 1) 1(1) C34 22(1) 31(1) 23(1) 2(1) 5(1) 1(1)

PAGE 435

435 Table A 22 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 5 Me Atom X Y Z U(eq) H2A 12467 265 8303 66 H2B 10668 423 8325 66 H2 C 12141 674 9021 66 H4A 13021 61 6009 50 H5A 12712 335 3526 57 H6A 11490 2 1471 51 H7A 10414 603 1835 43 H11A 7993 2219 8023 38 H12A 8859 2571 10230 41 H13A 11024 2369 11833 40 H14A 12433 1812 11251 36 H16A 13841 1383 9821 59 H16B 13802 1510 8 044 59 H16C 13705 1070 8480 59 H17A 10323 1220 2605 35 H17B 11128 1492 3907 35 H18A 8840 1749 4337 31 H19A 8039 1009 5130 32 H20A 7134 1688 6633 41 H20B 7429 1280 7408 41 H21A 8231 1663 1506 31 H23A 7910 1066 183 38 H24A 6651 480 649 46 H25A 4 889 240 1094 47 H26A 4477 564 3398 39 H28A 5105 1142 5146 31 H30A 3504 1763 5332 36 H31A 3018 2383 4434 41 H32A 4471 2627 2455 41 H33A 6493 2264 1398 37

PAGE 436

436 Figure A 170 Molecular structure of 6 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. X ray experimental details for 6 i Pr : Data are collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. The asymmetric unit consists of a half molecule and a half THF molecule. All molecul es are located on 2 fold rotation

PAGE 437

437 symmetry elements. A total of 213 parameters are refined in the final cycle of refinement using 2905 reflections with I > 2 (I) to yield R 1 and wR 2 of 5.0% and 12.86%, respectively. Refinement is done using F 2 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA.

PAGE 438

438 Table A 23 Crystal data, structure solution and refinement for 6 i Pr identification code thom1 empirical formula C 4 2 H 46 N 4 O formula weight 622.83 T (K) 173(2) ( ) 0.71073 c rystal system Monoclinic space group C2/c A ( ) 19.3658(11) B ( ) 15.2156(9) C ( ) 11.4987(6) (deg) 90 (deg) 100.263(1) (deg) 90 V ( 3 ) 3334.0(3) Z 4 calcd (Mg mm 3 ) 1.241 crystal size (mm 3 ) 0.25 x 0.14 x 0.10 abs coeff (mm 1 ) 0.075 F (0 00) 1336 range for data collection 1.71 to 27.49 limiting indices h k no. of reflns coll cd 10713 no. of ind reflns ( R int ) 3777 (0.0487) completeness to = 27.49 98.7 % absorption corr Integration refinement method Full matrix least squares on F 2 data / restraints / parameters 3777 / 0 / 213 R 1, a wR 2 b [I > 2 ] 0.0500, 0.1286 R 1, a wR 2 b (all data) 0.0663, 0.1393 GOF c on F 2 1.048 largest diff. peak and hole 0.299 and 0.448 e 3 R1 = (||F o | |F c ||) / | F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 439

439 Table A 24 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 6 i Pr U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) N1 3691(1) 365(1) 3458(1) 25(1) N2 2685(1) 525(1) 3977(1) 28(1) C1 3289(1) 36(1) 4225(1) 30(1) C2 3361(1) 1053(1) 2773(1) 24(1) C3 2713(1) 116 3(1) 3121(1) 26(1) C4 3576(1) 1589(1) 1934(1) 28(1) C5 3128(1) 2265(1) 1472(1) 33(1) C6 2486(1) 2389(1) 1828(2) 34(1) C7 2259(1) 1841(1) 2643(2) 31(1) C8 2102(1) 436(1) 4641(2) 33(1) C9 1878(1) 517(1) 4665(2) 46(1) C10 2310(1) 808(1) 5878(2) 45(1) C11 4428(1) 142(1) 3515(1) 24(1) C12 4595(1) 405(1) 2486(1) 21(1) C13 4331(1) 1374(1) 2515(1) 22(1) C14 4515(1) 1816(1) 1430(1) 23(1) C15 4053(1) 2186(1) 500(1) 27(1) C16 4312(1) 2570(1) 439(1) 31(1) C17 5024(1) 2568(1) 455(1) 32(1) C18 549 0(1) 2183(1) 467(1) 28(1) C19 5237(1) 1814(1) 1413(1) 23(1) O1S 0 724(2) 7500 116(1) C1S 280(2) 210(2) 6732(3) 96(1) C2S 157(2) 691(2) 6961(3) 103(1) N1 3691(1) 365(1) 3458(1) 25(1) N2 2685(1) 525(1) 3977(1) 28(1) C1 3289(1) 36(1) 4225(1) 30(1) C2 3361(1) 1053(1) 2773(1) 24(1) C3 2713(1) 1163(1) 3121(1) 26(1) C4 3576(1) 1589(1) 1934(1) 28(1) C5 3128(1) 2265(1) 1472(1) 33(1) C6 2486(1) 2389(1) 1828(2) 34(1) C7 2259(1) 1841(1) 2643(2) 31(1) C8 2102(1) 436(1) 4641(2) 33(1) C9 1878(1) 517(1) 4665(2) 46(1) C10 2310(1) 808(1) 5878(2) 45(1)

PAGE 440

440 Table A 24. Continued Atom X Y Z U(eq) C11 4428(1) 142(1) 3515(1) 24(1) C12 4595(1) 405(1) 2486(1) 21(1) C13 4331(1) 1374(1) 2515(1) 22(1) C14 4515(1) 1816(1) 1430(1) 23(1) C15 4053(1) 2186(1) 500( 1) 27(1) C16 4312(1) 2570(1) 439(1) 31(1) C17 5024(1) 2568(1) 455(1) 32(1) C18 5490(1) 2183(1) 467(1) 28(1) C19 5237(1) 1814(1) 1413(1) 23(1) O1S 0 724(2) 7500 116(1) C1S 280(2) 210(2) 6732(3) 96(1) C2S 157(2) 691(2) 6961(3) 103(1)

PAGE 441

441 Table A 25 Bond lengths (in ) for 6 i Pr Bond Distance Bond Distance N1 C1 1.3701(19) C12 C13 1.563(2) N1 C2 1.3946(19) C12 C12#1 1.563(3) N1 C11 1.4566(18) C13 C14 1.514(2) N2 C1 1.373(2) C13 C19#1 1.517(2) N2 C3 1.390(2) C14 C15 1.385(2) N2 C8 1.4792(19) C14 C19 1.401(2) C2 C4 1.384(2) C15 C16 1.396(2) C2 C3 1.393(2) C16 C17 1.382(2) C3 C7 1.402(2) C17 C18 1.393(2) C4 C5 1.388(2) C18 C19 1.387(2) C5 C6 1.391(2) C19 C13#1 1.517(2) C6 C7 1.384(2) O1S C1S#2 1.363(3) C8 C9 1.515(2) O1S C1S 1.363(3) C8 C10 1.518(3) C1S C2S 1.423(4) C11 C12 1.528(2) C2S C2S#2 1.475(6)

PAGE 442

442 Table A 26 Bond angles (in ) for 6 i Pr Bond Angle Angle Bond Angle Angle C1 N1 C2 112.42(12) C2 C3 C7 120.66(14) C1 N1 C11 123.38(13) C2 C4 C5 11 7.24(14) C2 N1 C11 123.19(12) C4 C5 C6 121.29(15) C1 N2 C3 112.79(13) C7 C6 C5 121.70(15) C1 N2 C8 123.00(14) C6 C7 C3 117.20(14) C3 N2 C8 123.94(13) N2 C8 C9 110.13(14) N1 C1 N2 103.23(13) N2 C8 C10 110.51(14) C4 C2 C3 121.87(14) C9 C8 C10 111.67(16 ) C4 C2 N1 132.14(14) N1 C11 C12 115.69(12) C3 C2 N1 105.95(13) C11 C12 C13 112.50(12) N2 C3 C2 105.57(13) C11 C12 C12#1 109.51(13) N2 C3 C7 133.72(14) C13 C12 C12#1 109.27(7)

PAGE 443

443 Table A 27 Anisotropic displacement parameters ( 2 x10 3 ) for 6 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 N1 25(1) 23(1) 27(1) 0(1) 9(1) 3(1) N2 27(1) 28(1) 32(1) 0(1) 12(1) 2(1) C1 33(1) 28(1) 33(1) 2(1) 12 (1) 0(1) C2 26(1) 22(1) 25(1) 4(1) 5(1) 3(1) C3 27(1) 27(1) 25(1) 4(1) 7(1) 0(1) C4 31(1) 28(1) 27(1) 1(1) 10(1) 5(1) C5 43(1) 29(1) 28(1) 3(1) 10(1) 6(1) C6 39(1) 30(1) 32(1) 0(1) 5(1) 11(1) C7 26(1) 32(1) 34(1) 6(1) 7(1) 7(1) C8 29(1) 34(1) 38 (1) 1(1) 15(1) 0(1) C9 48(1) 38(1) 58(1) 0(1) 23(1) 9(1) C10 43(1) 54(1) 44(1) 11(1) 22(1) 5(1) C11 23(1) 24(1) 27(1) 1(1) 5(1) 3(1) C12 20(1) 20(1) 24(1) 1(1) 5(1) 1(1) C13 19(1) 23(1) 26(1) 0(1) 7(1) 1(1) C14 27(1) 18(1) 24(1) 2(1) 6(1) 1(1) C15 29(1) 23(1) 30(1) 2(1) 4(1) 3(1) C16 43(1) 24(1) 24(1) 0(1) 2(1) 6(1) C17 48(1) 26(1) 26(1) 2(1) 14(1) 2(1) C18 32(1) 25(1) 29(1) 0(1) 13(1) 1(1) C19 26(1) 18(1) 25(1) 1(1) 8(1) 1(1) O1S 250(4) 37(1) 77(2) 0 74(2) 0 C1S 149(3) 75(2) 81(2) 9 (2) 65(2) 24(2) C2S 178(4) 53(2) 84(2) 13(2) 44(2) 28(2)

PAGE 444

444 Table A 28 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 6 i Pr Atom X Y Z U(eq) H4A 4013 1499 1684 34 H5A 3263 2650 902 39 H6A 2195 2864 1503 40 H7A 1815 1920 2869 37 H8A 1694 783 4220 39 H9A 1748 736 3854 70 H9B 1474 564 5068 70 H9C 2268 868 5090 70 H10A 2450 1424 5829 68 H10B 2703 470 6312 68 H10C 1910 772 6292 68 H11A 4591 185 4257 29 H11B 4701 695 3556 29 H12A 4360 128 1730 2 6 H13A 3817 1405 2529 27 H15A 3563 2179 501 33 H16A 3997 2834 1070 37 H17A 5196 2830 1097 39 H18A 5978 2172 449 33 H1SA 791 318 6827 115 H1SB 64 357 5909 115 H2SA 602 1026 7089 123 H2SB 169 956 6291 123

PAGE 445

445 Figure A 1 7 1 Molecula r structure of 17 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms and couter ion omitted for clarity. X ray experimental data for 17 Me : Data are collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. A total of 487 parameters a re

PAGE 446

446 refined in the final cycle of refinement using 23159 re flections with I > 2 (I) to yield R 1 and wR 2 of 5.13 % and 11.11%, respectively. Refinement i s done using F 2

PAGE 447

447 Table A 29 Crystal data, struct ure solution and refinement for 17 Me identification code mj14 empiric al formula C 4 2 H 38 N 4 O 3 F 3 SRh formula weight 838.73 T (K) 173(2) ( ) 0.71073 crystal system Monoclinic space group P2(1)/c a ( ) 11.5228(2) b ( ) 18.4367(16) c ( ) 17.3807(15) (deg) 90 (deg) 101.95(2) (deg) 90 V ( 3 ) 3612.4(5) Z 4 c alcd (Mg mm 3 ) 1.542 crystal size (mm 3 ) 0.19 x 0.19 x 0.01 abs coeff (mm 1 ) 0.593 F (000) 1720 range for data collection 1.63 to 27.50 limiting indices h k no. of reflns coll cd 23159 no. of ind reflns ( R int ) 8180 (0.0698) completeness to = 27.50 98.6 % absorption corr Integration refinement method Ful l matrix least squares on F 2 data / restraints / parameters 8180 / 0 / 487 R 1, a wR 2 b [I > 2 ] 0.0513, 0.1111 R 1, a wR 2 b (all data) 0.0984, 0.1338 GOF c on F 2 1.017 largest diff. peak and hole 0.689 and 1.203 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 448

448 Table A 30 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 17 Me U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Rh1 4650(1) 2524(1) 3611(1) 23(1) S1 1515(1) 5703(1) 7524(1) 40(1) F1 323(3) 6464(2) 6826(2) 56(1) F2 526(3) 5989(2) 7919(2) 66(1) F3 680(3) 5321(2 ) 6890(2) 63(1) O1 1978(3) 6380(2) 7861(2) 51(1) O2 1806(3) 5544(2) 6776(2) 49(1) O3 1608(3) 5104(2) 8051(2) 73(1) N1 3830(3) 3622(2) 4736(2) 26(1) N2 5737(3) 3574(2) 4922(2) 22(1) N3 5458(3) 1423(2) 4943(2) 21(1) N4 3536(3) 1459(2) 4584(2) 25(1) C 1 4729(4) 3298(2) 4469(2) 25(1) C2 2581(4) 3495(3) 4421(3) 47(1) C3 4247(4) 4094(2) 5346(2) 29(1) C4 3670(4) 4517(2) 5818(3) 35(1) C5 4370(5) 4912(2) 6407(3) 41(1) C6 5600(5) 4895(2) 6528(3) 41(1) C7 6192(4) 4474(2) 6059(2) 32(1) C8 5479(4) 4072(2) 5473(2) 26(1) C9 4551(4) 1744(2) 4425(2) 23(1) C10 5010(4) 926(2) 5419(2) 23(1) C11 5564(4) 470(2) 6017(2) 28(1) C12 4825(4) 59(2) 6383(2) 32(1) C13 3593(4) 103(2) 6170(2) 34(1) C14 3041(4) 548(2) 5560(2) 31(1) C15 3788(4) 956(2) 5192(2) 25(1) C16 2345(4) 1593(3) 4132(3) 40(1) C17 6951(4) 3502(2) 4784(2) 26(1) C18 7286(4) 2753(2) 4544(2) 22(1) C19 7399(3) 2159(2) 5189(2) 20(1) C20 6711(3) 1463(2) 4908(2) 22(1) C21 8510(4) 2848(2) 4282(2) 23(1) C22 9347(3) 3120(2) 5009(2) 25(1) C23 9858(4) 380 6(2) 5113(3) 34(1) C24 10490(4) 4011(3) 5846(3) 43(1)

PAGE 449

449 Table A 30. Continued Atom X Y Z U(eq) C25 10603(4) 3537(3) 6472(3) 43(1) C26 10086(4) 2849(3) 6379(3) 34(1) C27 9443(4) 2641(2) 5641(2) 27(1) C28 8743(4) 1951(2) 5448(2) 25(1) C29 9068(3) 1621( 2) 4718(2) 25(1) C30 9375(4) 904(2) 4621(3) 31(1) C31 9520(4) 669(2) 3889(3) 35(1) C32 9343(4) 1145(2) 3257(3) 36(1) C33 9027(4) 1863(2) 3348(2) 29(1) C34 8892(4) 2102(2) 4084(2) 23(1) C35 4504(5) 2517(3) 1513(3) 49(1) C36 5557(5) 2516(2) 2231(2) 39 (1) C37 5204(5) 3172(2) 2685(2) 36(1) C38 3989(5) 3178(2) 2563(2) 37(1) C39 3548(5) 2528(2) 2016(3) 41(1) C40 3965(4) 1877(2) 2566(2) 33(1) C41 5180(4) 1873(2) 2693(2) 32(1) C42 53(4) 5865(3) 7271(3) 41(1)

PAGE 450

450 Table A 31 Bond len gths (in ) for 17 Me Bond Distance Bond Distance Rh1 C9 2.036(4) C7 C8 1.384(6) Rh1 C1 2.052(4) C10 C15 1.382(6) Rh1 C40 2.180(4) C10 C11 1.386(6) Rh1 C41 2.183(4) C11 C12 1.387(6) Rh1 C38 2.185(4) C12 C13 1.394(6) Rh1 C37 2.202(4) C13 C14 1.386(6) S1 O3 1.425(3) C14 C15 1.395(5) S1 O1 1.435(3) C17 C18 1.514(5) S1 O2 1.438(3) C18 C19 1.553(5) S1 C42 1.794(5) C18 C21 1.579(5) F1 C42 1.347(5) C19 C20 1.535(5) F2 C42 1.368(6) C19 C28 1.568(5) F3 C42 1.329(5) C21 C34 1.505(5) N1 C1 1.359(5) C21 C22 1.508(6) N1 C3 1.379(5) C22 C23 1.390(6) N1 C2 1.448(6) C22 C27 1.396(6) N2 C1 1.360(5) C23 C24 1.383(7) N2 C8 1.402(5) C24 C25 1.380(7) N2 C17 1.473(5) C25 C26 1.396(7) N3 C9 1.365(5) C26 C27 1.397(6) N3 C10 1.403(5) C27 C28 1.506(5) N3 C20 1. 460(5) C28 C29 1.522(5) N4 C9 1.363(5) C29 C30 1.387(6) N4 C15 1.390(5) C29 C34 1.397(5) N4 C16 1.455(5) C30 C31 1.386(6) C3 C8 1.392(6) C7 C8 1.384(6) C3 C4 1.396(6) C10 C15 1.382(6) C4 C5 1.373(7) C31 C32 1.388(6) C5 C6 1.390(7) C32 C33 1.390(6) C6 C7 1.401(6) C33 C34 1.392(5) C35 C39 1.542(7) C37 C38 1.372(7) C35 C36 1.550(7) C38 C39 1.549(6) C36 C41 1.543(6) C39 C40 1.546(6) C36 C37 1.544(6) C40 C41 1.372(6)

PAGE 451

451 Table A 32 Bond angles (in ) for 17 Me Bond Angle Angle Bond Angle Angle C9 Rh1 C1 89.19(15) N4 C9 N3 105.6(3) C9 Rh1 C40 97.48(15) N4 C9 Rh1 126.0(3) C1 Rh1 C40 160.03(17) N3 C9 Rh1 128.3(3) C9 Rh1 C41 100.60(16) C15 C10 C11 121.5(4) C1 Rh1 C41 159.49(17) C15 C10 N3 106.4(3) C40 Rh1 C41 36.67(17) C11 C10 N3 132.1(4) C9 Rh1 C38 155.29(17) C10 C11 C12 116.4(4) C1 Rh1 C38 100.23(16) C11 C12 C13 122.3(4) C40 Rh1 C38 66.66(16) C14 C13 C12 121.2(4) C41 Rh1 C38 78.26(17) C13 C14 C15 116.2(4) C9 Rh1 C37 163.09(17) C10 C15 N4 106.5(3) C1 Rh1 C37 100.29(16) C10 C15 C14 122.4(4) C40 Rh1 C37 78.30(16) N4 C15 C14 131.1(4) C41 Rh1 C37 66.20(16) N2 C17 C18 115.6(3) C38 Rh1 C37 36.45(18) C17 C18 C19 115.6(3) O3 S1 O1 116.2(2) C17 C18 C21 105.8(3) O3 S1 O2 115.0(3) C19 C18 C21 109.9(3) O1 S1 O2 114.1(2) C20 C19 C18 113.6(3) O3 S1 C42 103.0(2) C20 C19 C28 107.5(3) O1 S1 C42 103.1(2) C18 C19 C28 108.1(3) O2 S1 C42 103.0(2) N3 C20 C19 118.6(3) C1 N1 C3 111.8(4) C34 C21 C22 109.2(3) C1 N1 C2 124.6(4) C34 C21 C18 106.6(3) C3 N1 C2 123.6(4) C22 C21 C18 104.4(3) C1 N2 C8 111.4(3) C 23 C22 C27 120.7(4) C1 N2 C17 126.7(3) C23 C22 C21 126.3(4) C8 N2 C17 120.8(3) C27 C22 C21 112.4(3) C9 N3 C10 110.4(3) C24 C23 C22 119.7(4) C9 N3 C20 125.4(3) C25 C24 C23 119.9(4) C10 N3 C20 123.1(3) C24 C25 C26 121.1(4) C9 N4 C15 111.1(3) C25 C26 C2 7 119.2(4) C9 N4 C16 125.3(3) C22 C27 C26 119.3(4) C15 N4 C16 123.3(3) C22 C27 C28 114.1(4) N1 C1 N2 104.9(3) C26 C27 C28 126.4(4) N1 C1 Rh1 129.2(3) C27 C28 C29 108.0(3) N2 C1 Rh1 125.8(3) C27 C28 C19 108.0(3) N1 C3 C8 106.6(3) C29 C28 C19 104.9(3) N1 C3 C4 132.2(4) C30 C29 C34 120.5(4)

PAGE 452

452 Table A 32. Continued Bond Angle Angle Bond Angle Angle C8 C3 C4 121.2(4) C30 C29 C28 126.5(4) C5 C4 C3 117.1(5) C34 C29 C28 112.6(3) C4 C5 C6 121.6(4) C31 C30 C29 119.4(4) C5 C6 C7 121.9(4) C30 C31 C32 120.2(4 ) C8 C7 C6 116.0(4) C31 C32 C33 120.8(4) C7 C8 C3 122.1(4) C32 C33 C34 119.2(4) C7 C8 N2 132.5(4) C33 C34 C29 119.9(4) C3 C8 N2 105.3(4) C33 C34 C21 126.4(4) C29 C34 C21 113.6(3) C35 C39 C38 100.1(4) C39 C35 C36 94.4(3) C40 C39 C38 101.6(3) C41 C36 C37 101.7(3) C41 C40 C39 106.3(4) C41 C36 C35 99.4(4) C41 C40 Rh1 71.8(2) C37 C36 C35 99.5(4) C39 C40 Rh1 95.9(3) C38 C37 C36 107.2(4) C40 C41 C36 107.4(4) C38 C37 Rh1 71.1(3) C40 C41 Rh1 71.5(2) C36 C37 Rh1 95.5(2) C36 C41 Rh1 96.3(2) C37 C38 C39 10 6.4(4) F3 C42 F1 107.1(4) C37 C38 Rh1 72.4(2) F3 C42 F2 105.6(4) C39 C38 Rh1 95.6(3) F1 C42 F2 104.6(4) F1 C42 S1 112.2(3) F2 C42 S1 112.3(3) C35 C39 C40 100.0(4) F3 C42 S1 114.4(4)

PAGE 453

453 Table A 33 Anisotropic displacement parameters ( 2 x10 3 ) for 17 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Rh1 31(1) 19(1) 19(1) 0(1) 6(1) 1(1) S1 40(1) 43(1) 35(1) 9(1) 5(1) 7(1) F1 56(2) 52(2) 58(2) 17(2) 3( 2) 3(2) F2 61(2) 85(3) 60(2) 8(2) 27(2) 1(2) F3 54(2) 50(2) 79(2) 0(2) 4(2) 13(2) O1 49(2) 57(2) 46(2) 12(2) 7(2) 22(2) O2 57(2) 45(2) 48(2) 6(2) 20(2) 4(2) O3 52(2) 85(3) 77(3) 61(2) 2(2) 10(2) N1 29(2) 25(2) 26(2) 1(2) 9(2) 4(2) N2 29(2) 17(2) 22(2) 3(1) 9(2) 2(1) N3 25(2) 17(2) 23(2) 3(1) 8(1) 4(1) N4 25(2) 26(2) 23(2) 2(1) 4(2) 4(1) C1 28(2) 26(2) 21(2) 4(2) 5(2) 5(2) C2 33(3) 53(3) 54(3) 11(3) 5(2) 11(2) C3 39(3) 24(2) 25(2) 4(2) 11(2) 7(2) C4 45(3) 27(2) 38(3) 6(2) 22(2) 8(2) C5 70(4) 27(2) 36(3) 3(2) 30(3) 13(2) C6 75(4) 21(2) 29(2) 7(2) 16(2) 1(2) C7 43(3) 23(2) 30(2) 3(2) 9(2) 4(2) C8 41(3) 16(2) 25(2) 1(2) 12(2) 4(2) C9 28(2) 21(2) 21(2) 4(2) 7(2) 5(2) C10 30(2) 22(2) 20(2) 3(2) 10(2) 8(2) C11 38(3) 24(2) 23 (2) 0(2) 8(2) 4(2) C12 49(3) 23(2) 23(2) 1(2) 8(2) 8(2) C13 48(3) 26(2) 31(2) 0(2) 19(2) 10(2) C14 34(2) 29(2) 32(2) 4(2) 13(2) 9(2) C15 31(2) 24(2) 21(2) 3(2) 10(2) 4(2) C16 28(3) 49(3) 44(3) 9(2) 8(2) 5(2) C17 26(2) 21(2) 34(2) 3(2) 11(2) 1(2) C18 26(2) 18(2) 23(2) 1(2) 8(2) 0(2) C19 26(2) 18(2) 19(2) 4(2) 10(2) 0(2) C20 26(2) 19(2) 23(2) 1(2) 9(2) 2(2) C21 30(2) 18(2) 26(2) 4(2) 16(2) 2(2) C22 24(2) 22(2) 34(2) 6(2) 18(2) 3(2) C23 31(2) 27(2) 48(3) 5(2) 20(2) 5(2) C24 34(3 ) 39(3) 59(3) 22(3) 21(2) 11(2)

PAGE 454

454 Table A 33. Continued U 11 U 22 U 33 U 23 U 13 U 12 C25 33(3) 54(3) 41(3) 21(3) 6(2) 5(2) C26 29(2) 42(3) 31(2) 6(2) 9(2) 3(2) C27 23(2) 28(2) 32(2) 7(2) 11(2) 1(2) C28 32(2) 25(2) 20(2) 1(2) 10(2) 1(2) C29 19(2) 26(2) 29(2) 1(2) 8(2) 2(2) C30 31(2) 25(2) 37(2) 0(2) 10(2) 4(2) C31 37(3) 23(2) 47(3) 6(2) 16(2) 4(2) C32 43(3) 34(3) 38(3) 12(2) 22(2) 0(2) C33 36(2) 30(2) 26(2) 2(2) 16(2) 4(2) C34 29(2) 22(2) 22(2) 2(2) 12(2) 3(2) C35 91(4) 36(3) 21(2) 2( 2) 10(2) 11(3) C36 65(3) 32(2) 26(2) 3(2) 19(2) 10(2) C37 62(3) 22(2) 25(2) 4(2) 13(2) 11(2) C38 61(3) 19(2) 26(2) 6(2) 2(2) 1(2) C39 58(3) 32(2) 27(2) 1(2) 7(2) 5(2) C40 50(3) 23(2) 21(2) 3(2) 1(2) 9(2) C41 52(3) 19(2) 26(2) 5(2) 12(2) 1(2) C42 44(3) 37(3) 38(3) 4(2) 2(2) 9(2)

PAGE 455

455 Table A 34 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 17 Me Atom X Y Z U(eq) H2A 2493 3141 3993 71 H2B 2199 3952 4220 71 H2C 2207 3307 4838 71 H 4A 2829 4532 5735 42 H5A 4004 5204 6739 50 H6A 6053 5177 6941 49 H7A 7033 4464 6139 38 H11A 6403 439 6168 34 H12A 5172 263 6793 38 H13A 3122 177 6448 40 H14A 2202 573 5403 37 H16A 2375 1968 3736 60 H16B 1837 1758 4485 60 H16C 2021 1145 3870 60 H17A 7515 3643 5272 32 H17B 7049 3850 4369 32 H18A 6678 2593 4078 27 H19A 7113 2359 5652 24 H20A 6773 1379 4355 26 H20B 7122 1055 5222 26 H21A 8450 3192 3830 28 H23A 9773 4133 4682 41 H24A 10846 4477 5919 51 H25A 11041 3680 6973 51 H26A 10170 25 27 6814 41 H28A 8883 1604 5901 30 H30A 9485 577 5053 37 H31A 9742 181 3820 42 H32A 9438 979 2757 44 H33A 8904 2186 2913 35 H35A 4486 2955 1182 59 H35B 4472 2074 1188 59 H36A 6377 2508 2125 47 H37A 5699 3619 2797 43 H38A 3516 3632 2572 44 H39A 26 99 2533 1732 49 H40A 3480 1429 2574 39 H41A 5661 1419 2807 38

PAGE 456

456 Figure A 172 Molecular structure of 20 Me with ellipsoids drawn at the 50% probability level. Hydrogen atoms omitted for clarity. X ray experimental data for 20 Me : Data are collected at 1 73 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured index ed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their re spective carbon atoms. The asymmetric unit consists of a complex (located on a 2 fold rotation axis) and a thf molecule (also located on a 2 fold rotation axis). The latter molecule are disordered and could not be modeled

PAGE 457

457 properly, thus program SQUEEZ E, a part of the PLATON package of crystallographic software, is used to calculate the solvent disorder area and remove its contribution to the overall intensity data. A total of 263 parameters are refined in the final cycle of refinement using 5375 refle ctions with I > 2 (I) to yield R 1 and wR 2 of 5.30 % and 10.14 %, respectively. Refinement is done using F 2

PAGE 458

458 Table A 35 Crystal data, structure solution and refinement for 20 Me identification code mj09 empirical formula C 54 H 64 N 4 O Cl 2 Rh 2 formula wei ght 1061.81 T (K) 173(2) ( ) 0.71073 crystal system Trigonal space group P3(2)21 a ( ) 11.9962(2) b ( ) 11.9962(3) c ( ) 28.3024(16) (deg) 90 (deg) 90 (deg) 120 V ( 3 ) 3527.3(2) Z 3 calcd (Mg mm 3 ) 1.500 crystal size (mm 3 ) 0.12 x 0.11 x 0.02 abs coeff (mm 1 ) 0.860 F (000) 1644 range for data collection 1.96 to 27.50 limiting indices h k no. of reflns coll cd 22318 no. of ind reflns ( R int ) 5373 (0.0956) completeness to = 27.50 99.8 % absorption corr Integration refinement method Full matrix least squares on F 2 data / restraints / parameters 5373 / 0 / 263 R 1, a wR 2 b [I > 2 ] 0.0530, 0.1014 R 1, a wR 2 b (all data) 0.0985, 0.1127 GOF c on F 2 1.007 largest diff. peak and hole 0.529 and 0.751 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 459

459 Table A 36 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 20 M e U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Rh 6354(1) 5656(1) 2674(1) 30(1) Cl 6145(2) 5800(2) 3505(1) 43(1) C16 10028(6) 5976(6) 2751(2) 33(2) C11 9238(6) 4636(6) 2773(2) 34(2) C13 11056(6) 4391 (6) 2729(2) 44(2) N2 9218(5) 6494(5) 2745(2) 28(1) C21 10554(6) 10641(6) 3788(2) 30(1) N1 7982(4) 4403(4) 2779(2) 31(1) C20 11350(5) 10996(5) 3385(2) 30(1) C12 9740(6) 3815(7) 2764(2) 41(2) C9 7942(6) 5529(5) 2753(2) 30(1) C17 9628(6) 7864(6) 2682(2 ) 35(2) C18 10370(5) 8733(6) 3098(2) 30(1) C4 4345(6) 5118(7) 2595(2) 41(2) C10 6851(6) 3110(6) 2812(2) 45(2) C15 11362(6) 6552(6) 2721(2) 34(2) C22 10941(7) 11348(6) 4187(2) 38(2) C24 12985(6) 12806(6) 3815(3) 40(2) C14 11843(7) 5720(6) 2707(2) 43( 2) C25 12573(6) 12087(5) 3405(2) 37(2) C1 6059(7) 4913(6) 1978(2) 39(2) C2 4684(7) 4293(6) 1809(2) 43(2) C7 6565(7) 7222(7) 1829(2) 48(2) C8 6913(7) 6239(6) 1972(2) 38(2) C5 5046(6) 6392(7) 2530(2) 43(2) C6 5301(8) 7018(7) 2042(2) 53(2) C23 12184(6 ) 12459(6) 4205(2) 43(2) C19 10725(6) 10135(6) 2965(2) 32(1) C3 3747(6) 4095(7) 2204(2) 45(2)

PAGE 460

460 Table A 37 Bond lengths (in ) for 20 Me Bond Distance Bond Distance Rh C9 1.998(6) C4 C5 1.338(9) Rh C8 2.101(5) C4 C3 1.537(9) Rh C1 2.116(6) C15 C14 1.380(8) Rh C4 2.172(6) C22 C23 1.420(10) Rh C5 2.190(6) C24 C25 1.382(9) Rh Cl 2.3816(15) C24 C23 1.385(9) C16 N2 1.391(7) C1 C8 1.396(8) C16 C15 1.393(8) C1 C2 1.509(9) C16 C11 1.401(9) C2 C3 1.518(9) C11 C12 1.387(9) C7 C8 1.491(9) C11 N1 1. 389(7) C7 C6 1.533(9) C13 C12 1.374(8) C5 C6 1.529(9) C13 C14 1.390(9) C19 C21#1 1.525(8) N2 C9 1.383(7) N1 C10 1.467(7) N2 C17 1.472(7) C20 C25 1.396(8) C21 C22 1.346(8) C20 C19 1.506(8) C21 C20 1.410(8) C17 C18 1.528(8) C21 C19#1 1.525(8) C18 C18# 1 1.539(11) N1 C9 1.377(7) C18 C19 1.560(8)

PAGE 461

461 Table A 38 Bond angles (in ) for 20 Me Bond Angle Angle Bond Angle Angle C9 Rh C8 88.5(2) C18#1 C18 C19 109.1(3) C9 Rh C1 92.2(3) C9 N2 C16 110.7(5) C8 Rh C1 38.7(2) C9 N2 C17 123.3(5) C 9 Rh C4 161.3(2) C16 N2 C17 125.6(5) C8 Rh C4 97.1(3) C22 C21 C20 121.3(6) C1 Rh C4 81.5(3) C22 C21 C19#1 127.4(6) C9 Rh C5 162.6(3) C20 C21 C19#1 111.3(5) C8 Rh C5 82.2(3) C9 N1 C11 111.6(5) C1 Rh C5 89.7(3) C9 N1 C10 125.0(5) C4 Rh C5 35.7(2) C11 N 1 C10 123.4(5) C9 Rh Cl 91.94(16) C25 C20 C21 119.1(6) C8 Rh Cl 159.59(17) C25 C20 C19 127.1(6) C1 Rh Cl 161.45(18) C21 C20 C19 113.7(5) C4 Rh Cl 88.92(19) C13 C12 C11 116.2(6) C5 Rh Cl 91.78(18) C17 C18 C18#1 114.5(6) N2 C16 C15 131.6(6) C17 C18 C19 107.6(5) N2 C16 C11 106.9(5) N1 C9 N2 104.8(5) C15 C16 C11 121.5(5) N1 C9 Rh 125.6(4) C12 C11 N1 132.1(6) N2 C9 Rh 129.3(4) C12 C11 C16 121.9(6) N2 C17 C18 115.2(5) N1 C11 C16 105.9(5) C5 C4 C3 126.1(7) C12 C13 C14 122.0(6) C5 C4 Rh 72.8(4) C3 C4 R h 108.5(4)

PAGE 462

462 Table A 39 Anisotropic displacement parameters ( 2 x10 3 ) for 20 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Rh 23(1) 35(1) 35(1) 1(1 ) 3(1) 16(1) Cl 27(1) 59(1) 38(1) 2(1) 1(1) 17(1) C16 48(4) 34(4) 25(3) 8(3) 4(3) 27(3) C11 32(3) 37(4) 41(4) 2(3) 1(3) 24(3) C13 48(4) 47(4) 55(4) 10(3) 7(3) 38(4) N2 24(3) 33(3) 36(3) 7(2) 4(2) 21(3) C21 26(3) 25(3) 43(3) 0(3) 3(3) 15(3) N1 23(3) 22(3) 44(3) 8(2) 6(2) 8(3) C20 21(3) 16(3) 48(3) 0(2) 0(3) 5(3) C12 47(4) 41(4) 45(3) 11(3) 9(3) 29(4) C9 30(4) 26(4) 35(3) 4(3) 2(3) 15(3) C17 40(4) 29(3) 35(3) 5(3) 6(3) 16(3) C18 25(3) 24(3) 41(3) 1(3) 1(2) 12(3) C4 27(4) 56(5) 54(4) 3(4) 4(3) 32(4) C10 35(4) 22(4) 65(4) 8(3) 14(3) 4(3) C15 23(3) 45(4) 36(3) 10(3) 2(3) 20(3) C22 49(4) 28(4) 44(3) 2(3) 1(3) 25(3) C24 27(4) 21(3) 65(4) 7(3) 6(3) 7(3) C14 34(4) 58(4) 46(4) 7(3) 7(3) 31(4) C25 30(4) 18(3) 56(4) 5(3) 2(3) 6(3) C1 39(4) 44(4) 34(3) 3(3) 0(3) 21(3) C2 55(5) 40(4) 34(3) 8(3) 8(3) 24(4) C7 53(4) 51(5) 41(3) 0(3) 6(3) 28(4) C8 45(4) 35(4) 35(3) 2(3) 1(3) 21(3) C5 32(4) 44(4) 63(4) 17(3) 16(3) 27(4) C6 74(6) 49(5) 52(4) 1(3) 16(4) 43(5) C23 41( 4) 28(4) 64(4) 11(3) 14(3) 19(3) C19 37(4) 26(3) 34(3) 4(3) 6(3) 18(3) C3 42(4) 44(4) 46(4) 11(3) 13(3) 19(3)

PAGE 463

463 Table A 40 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 20 Me Atom X Y Z U(eq) H13A 11440 38 65 2720 52 H12A 9205 2907 2781 49 H17A 8855 7939 2624 42 H17B 10176 8183 2397 42 H18A 11185 8709 3141 36 H4A 3850 4864 2898 49 H10A 6068 3173 2811 68 H10B 6893 2701 3106 68 H10C 6837 2592 2542 68 H15A 11907 7459 2710 40 H22A 10386 11105 4453 46 H24A 13822 13542 3829 48 H14A 12747 6070 2682 51 H25A 13122 12334 3136 45 H1A 6478 4388 1914 47 H2A 4440 3450 1665 51 H2B 4619 4842 1562 51 H7A 6498 7217 1480 57 H7B 7269 8083 1924 57 H8A 7824 6485 1900 45 H5A 4980 6918 2791 51 H6A 5338 7859 2068 63 H6B 4580 6465 1828 63 H23A 12466 12963 4485 52 H19A 11292 10449 2680 38 H3A 3435 3234 2346 54 H3B 2995 4114 2070 54

PAGE 464

464 Figure A 173 Molecular structure of for 20 i Pr with ellipsoids drawn at the 50% probability level. Hydrogen atoms o mitted for clarity. X Ray experimental data for 20 i Pr : Data are collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. In addition to the Rh dimer, there is a benzene molecule in the asymmetric unit. A t otal of 613 parameters are refined in the final cycle of refinement using 10153 reflections with I > 2 (I) to yield R 1 and wR 2 of 4.54 % and 7.44 %, respectively. Refinement is done using F 2

PAGE 465

465 Table A 41 Crystal data, structure solution and refinement for 2 0 i Pr identification code mj22 Empirical formula C 60 H 68 N 4 Cl 2 Rh 2 formula weight 1121.90 T (K) 173(2) ( ) 0.71073 crystal system Orthorhombic space group P2(1)2(1)2(1) a ( ) 13.5851(16) b ( ) 16.976(2) c ( ) 22.353(3) (deg) 90 (deg) 90 ( deg) 90 V ( 3 ) 5155.1(10) Z 4 calcd (Mg mm 3 ) 1.466 crystal size (mm 3 ) 0.10 x 0.05 x 0.05 abs coeff (mm 1 ) 0.787 F (000) 2320 range for data collection 1.51 to 27.50 limiting indices h k no. of reflns coll cd 33786 no. of ind reflns ( R int ) 11774 (0.0862) completeness to = 27.50 99.7 % absorption corr Integration refinement method Ful l matrix least squares on F 2 data / restraints / parameters 11774 / 0 / 613 R 1, a wR 2 b [I > 2 ] 0.0454, 0.0744 R 1, a wR 2 b (all data) 0.0573, 0.0776 GOF c on F 2 1.032 largest diff. peak and hole 0.752 and 0.751 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 466

466 Table A 42 Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters ( 2 x 10 3 ) fo r 20 i Pr U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Rh1 2999(1) 6924(1) 2563(1) 22(1) Rh2 2309(1) 3082(1) 3650(1) 24(1) Cl1 4635(1) 6500(1) 2772(1) 33(1) Cl2 1739(1) 3041(1) 4652(1) 35(1) N1 3158(2) 77 28(2) 3770(1) 20(1) N2 3411(2) 8571(2) 3059(1) 22(1) N3 4299(2) 3303(2) 4198(2) 24(1) N4 3727(2) 4443(2) 3936(1) 21(1) C1 1611(3) 5789(2) 5117(2) 26(1) C2 1616(3) 5597(3) 5716(2) 36(1) C3 1431(3) 6177(3) 6135(2) 48(1) C4 1250(3) 6954(4) 5964(2) 51(1 ) C5 1243(3) 7139(3) 5362(2) 38(1) C6 1414(3) 6568(2) 4931(2) 29(1) C7 1356(3) 6659(2) 4262(2) 24(1) C8 2361(3) 6408(2) 3988(2) 21(1) C9 3215(2) 6970(2) 4096(2) 23(1) C10 3369(3) 8441(2) 4051(2) 22(1) C11 3447(3) 8647(2) 4650(2) 28(1) C12 3688(3) 9 419(2) 4774(2) 36(1) C13 3833(3) 9961(2) 4323(2) 38(1) C14 3773(3) 9759(2) 3727(2) 32(1) C15 3531(3) 8986(2) 3595(2) 23(1) C16 3034(3) 9569(2) 2270(2) 44(1) C17 3674(3) 8871(2) 2464(2) 28(1) C18 4771(3) 9063(3) 2436(2) 40(1) C19 3200(3) 7799(2) 3168 (2) 22(1) C20 1883(3) 7567(2) 2134(2) 30(1) C21 1963(3) 7474(2) 1462(2) 36(1) C22 2244(3) 6635(2) 1274(2) 34(1) C23 2928(3) 6239(2) 1719(2) 30(1) C24 2619(3) 5760(2) 2175(2) 29(1) C25 1569(3) 5570(2) 2317(2) 36(1) C26 908(3) 6296(3) 2321(2) 35(1) C 27 1442(2) 7035(2) 2526(2) 29(1) C28 3109(3) 2688(2) 2905(2) 31(1)

PAGE 467

467 Table A 42. Continued Atom X Y Z U(eq) C29 2821(3) 1850(3) 2743(2) 48(1) C30 1772(4) 1649(3) 2863(3) 64(2) C31 1323(3) 2115(3) 3369(2) 46(1) C32 853(3) 2819(3) 3277(2) 41(1) C33 755 (3) 3260(3) 2693(2) 56(2) C34 1685(3) 3359(3) 2353(2) 50(1) C35 2602(3) 3361(2) 2745(2) 29(1) C36 3501(3) 3662(2) 3948(2) 23(1) C37 4236(3) 2320(2) 5000(2) 35(1) C38 4298(3) 2447(2) 4333(2) 30(1) C39 5137(3) 2040(2) 4021(2) 37(1) C40 5041(3) 3842(2) 4329(2) 24(1) C41 5992(3) 3772(2) 4556(2) 34(1) C42 6548(3) 4446(3) 4586(2) 40(1) C43 6189(3) 5174(2) 4396(2) 35(1) C44 5251(3) 5258(2) 4174(2) 29(1) C45 4677(3) 4571(2) 4146(2) 25(1) C46 3058(3) 5065(2) 3730(2) 22(1) C47 2668(3) 5583(2) 4239(2) 19 (1) C48 613(3) 6062(2) 4045(2) 24(1) C49 242(3) 6198(2) 3730(2) 30(1) C50 850(3) 5574(3) 3565(2) 37(1) C51 599(3) 4821(3) 3723(2) 34(1) C52 252(3) 4669(2) 4050(2) 27(1) C53 856(3) 5294(2) 4209(2) 25(1) C54 1773(3) 5233(2) 4593(2) 22(1) C55 4933( 4) 6362(4) 6061(4) 85(2) C56 5781(4) 5996(4) 6224(4) 85(2) C57 5881(4) 5197(4) 6128(3) 72(2) C58 5129(5) 4799(3) 5865(3) 63(2) C59 4275(4) 5187(3) 5714(2) 51(1) C60 4184(4) 5963(3) 5803(3) 58(2)

PAGE 468

468 Table A 43 Bond lengths (in ) for 20 i Pr Bond Distance Bond Distance Rh1 C19 2.028(4) C11 C12 1.378(5) Rh1 C20 2.100(4) C12 C13 1.379(6) Rh1 C27 2.126(3) C13 C14 1.377(6) Rh1 C24 2.218(4) C14 C15 1.385(5) Rh1 C23 2.218(4) C16 C17 1.533(5) Rh1 Cl1 2.3812(10) C17 C18 1.527(5) Rh2 C36 2.008(4) C20 C27 1.394(5) Rh2 C28 2.098(4) C20 C21 1.514(6) Rh2 C35 2.114(4) C21 C22 1.534(6) Rh2 C32 2.192(4) C22 C23 1.518(5) Rh2 C31 2.209(4) C23 C24 1.369(5) Rh2 Cl2 2.3703(10) C24 C25 1.498(6) N1 C19 1.352(5) C25 C26 1.525(6) N1 C10 1.392(4) C26 C27 1.520( 5) N1 C9 1.480(4) C28 C35 1.381(5) N2 C19 1.365(4) C28 C29 1.519(5) N2 C15 1.399(5) C29 C30 1.489(6) N2 C17 1.469(5) C30 C31 1.509(7) N3 C36 1.363(5) C31 C32 1.370(6) N3 C40 1.392(5) C32 C33 1.511(7) N3 C38 1.485(5) C33 C34 1.484(7) N4 C36 1.361(5) C34 C35 1.523(6) N4 C45 1.390(5) C37 C38 1.509(6) N4 C46 1.467(4) C38 C39 1.505(5) C1 C2 1.377(6) C40 C41 1.393(5) C1 C6 1.411(5) C40 C45 1.395(5) C1 C54 1.522(5) C41 C42 1.372(6) C2 C3 1.383(6) C42 C43 1.395(6) C3 C4 1.396(7) C43 C44 1.375(6) C4 C5 1.381(7) C44 C45 1.404(5) C5 C6 1.386(6) C46 C47 1.532(5) C6 C7 1.506(6) C47 C54 1.568(5) C7 C48 1.510(5) C48 C49 1.378(5) C7 C8 1.555(5) C48 C53 1.394(5) C8 C9 1.521(5) C49 C50 1.393(5) C8 C47 1.564(4) C50 C51 1.370(6) C10 C11 1.390(5) C51 C52 1 .391(6) C10 C15 1.394(5) C52 C53 1.387(5)

PAGE 469

469 Table A 43. Bond lengths (in ) for 20 iPr. Bond Distance Bond Distance C53 C54 1.516(5) C57 C58 1.358(8) C55 C60 1.351(8) C58 C59 1.378(8) C55 C56 1.359(9) C59 C60 1.337(7) C56 C57 1.381(8)

PAGE 470

470 Table A 44 Bond angles (in ) for 20 i Pr Bond Angle Angle Bond Angle Angle C19 Rh1 C20 91.19(15) C40 N3 C38 126.9(3) C19 Rh1 C27 95.43(15) C36 N4 C45 110.8(3) C20 Rh1 C27 38.52(15) C36 N4 C46 124.6(3) C19 Rh1 C24 160.80(15) C 45 N4 C46 124.6(3) C20 Rh1 C24 96.70(15) C2 C1 C6 120.7(4) C27 Rh1 C24 80.34(16) C2 C1 C54 126.9(4) C19 Rh1 C23 163.24(15) C6 C1 C54 112.4(3) C20 Rh1 C23 81.53(15) C1 C2 C3 119.2(4) C27 Rh1 C23 88.27(16) C2 C3 C4 121.3(5) C24 Rh1 C23 35.96(14) C5 C4 C3 118.9(4) C19 Rh1 Cl1 87.99(10) C4 C5 C6 121.1(5) C20 Rh1 Cl1 156.94(11) C5 C6 C1 118.8(4) C27 Rh1 Cl1 164.36(11) C5 C6 C7 127.6(4) C24 Rh1 Cl1 91.43(11) C1 C6 C7 113.5(3) C23 Rh1 Cl1 92.83(11) C6 C7 C48 106.5(3) C36 Rh2 C28 90.18(16) C6 C7 C8 108. 5(3) C36 Rh2 C35 93.22(15) C48 C7 C8 106.1(3) C28 Rh2 C35 38.28(14) C9 C8 C7 115.8(3) C36 Rh2 C32 162.37(16) C9 C8 C47 107.6(3) C28 Rh2 C32 95.79(18) C7 C8 C47 109.7(3) C35 Rh2 C32 81.52(17) N1 C9 C8 115.4(3) C36 Rh2 C31 161.29(17) C11 C10 N1 132.0(3 ) C28 Rh2 C31 81.46(16) C11 C10 C15 121.7(3) C35 Rh2 C31 90.52(17) N1 C10 C15 106.3(3) C32 Rh2 C31 36.27(16) C12 C11 C10 116.8(4) C36 Rh2 Cl2 87.91(11) C11 C12 C13 121.4(4) C28 Rh2 Cl2 155.47(12) C14 C13 C12 122.2(4) C35 Rh2 Cl2 166.25(11) C13 C14 C1 5 117.1(4) C32 Rh2 Cl2 93.32(13) C14 C15 C10 120.7(4) C31 Rh2 Cl2 92.79(13) C14 C15 N2 133.4(4) C19 N1 C10 111.2(3) C10 C15 N2 105.8(3) C19 N1 C9 124.3(3) N2 C17 C18 110.4(3) C10 N1 C9 121.6(3) N2 C17 C16 112.7(3) C19 N2 C15 110.8(3) C18 C17 C16 112. 1(3) C19 N2 C17 123.1(3) N1 C19 N2 105.8(3) C15 N2 C17 125.0(3) N1 C19 Rh1 126.5(2) C36 N3 C40 111.6(3) N2 C19 Rh1 127.8(3) C36 N3 C38 121.3(3) C27 C20 C21 125.9(4)

PAGE 471

471 Table A 44 Continued Bond Angle Angle Bond Angle Angle C27 C20 Rh1 71.8(2) C29 C30 C31 113.7(4) C21 C20 Rh1 110.3(3) C31 C32 C33 127.0(5) C20 C21 C22 112.8(3) C31 C32 Rh2 72.5(2) C23 C22 C21 112.6(3) C33 C32 Rh2 107.9(3) C24 C23 C22 124.3(4) C34 C33 C32 115.1(4) C24 C23 Rh1 72.0(2) C33 C34 C35 113.7(4) C22 C23 Rh1 110.6(2) C28 C35 C34 123.6(3) C23 C24 C25 125.3(4) C28 C35 Rh2 70.2(2) C23 C24 Rh1 72.0(2) C34 C35 Rh2 113.3(3) C25 C24 Rh1 109.3(3) N4 C36 N3 105.3(3) C24 C25 C26 112.8(3) N4 C36 Rh2 130.7(3) C27 C26 C25 112.8(3) N3 C36 Rh2 123.9(3) C20 C27 C26 123.5(4) N3 C38 C39 1 10.8(3) C20 C27 Rh1 69.7(2) N3 C38 C37 110.0(3) C26 C27 Rh1 114.4(3) C39 C38 C37 115.7(4) C35 C28 C29 125.9(4) N3 C40 C41 133.8(3) C35 C28 Rh2 71.5(2) N3 C40 C45 105.3(3) C29 C28 Rh2 110.8(3) C41 C40 C45 120.7(4) C30 C29 C28 114.7(4) C42 C41 C40 117. 3(4) C32 C31 C30 122.3(5) C41 C42 C43 122.1(4) C32 C31 Rh2 71.2(2) C44 C43 C42 121.7(4) C30 C31 Rh2 110.9(3) C43 C44 C45 116.5(4) N4 C45 C40 106.8(3) C46 C47 C8 109.9(3) N4 C45 C44 131.4(3) C46 C47 C54 115.1(3) C40 C45 C44 121.8(3) C8 C47 C54 108.3(3 ) N4 C46 C47 113.3(3) C52 C53 C48 120.5(4) C49 C48 C53 119.4(4) C52 C53 C54 125.4(3) C49 C48 C7 127.9(3) C48 C53 C54 114.1(3) C53 C48 C7 112.6(3) C53 C54 C1 106.0(3) C48 C49 C50 120.5(4) C53 C54 C47 109.0(3) C51 C50 C49 119.6(4) C1 C54 C47 105.4(3) C58 C57 C56 118.8(6) C60 C59 C58 120.9(6) C50 C51 C52 121.0(4) C60 C55 C56 121.6(6) C53 C52 C51 119.0(4) C55 C56 C57 119.4(6) C57 C58 C59 120.1(6) C59 C60 C55 119.2(6)

PAGE 472

472 Table A 45 Anisotropic displacement parameters ( 2 x10 3 ) for 20 i Pr The aniso tropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Rh1 26(1) 22(1) 18(1) 1(1) 2(1) 2(1) Rh2 25(1) 23(1) 25(1) 2(1) 3(1) 6(1) Cl1 26(1) 38(1) 34(1) 2(1) 0(1) 3(1) Cl2 38(1) 37(1) 2 9(1) 7(1) 10(1) 4(1) N1 25(2) 16(1) 19(2) 1(1) 3(1) 1(1) N2 27(2) 16(2) 24(2) 0(1) 1(1) 0(1) N3 28(2) 19(2) 25(2) 1(1) 0(1) 1(1) N4 22(2) 20(2) 22(2) 1(1) 1(1) 1(1) C1 23(2) 31(2) 24(2) 2(2) 2(2) 3(2) C2 31(2) 52(3) 25(3) 6(2) 0(2) 5(2) C3 45(3) 79(4) 19(2) 2(2) 4(2) 8(3) C4 47(3) 67(3) 37(3) 25(3) 7(2) 6(3) C5 35(2) 40(3) 40(3) 16(2) 10(2) 3(2) C6 22(2) 36(2) 29(2) 5(2) 4(2) 1(2) C7 23(2) 21(2) 29(2) 3(2) 2(2) 1(2) C8 26(2) 19(2) 19(2) 4(1) 1(2) 1(2) C9 30(2) 20(2) 20(2) 3(2) 5(1) 3(2) C10 16(2) 24(2) 26(2) 1(2) 1(2) 1(2) C11 32(2) 27(2) 23(2) 1(2) 1(2) 3(2) C12 40(2) 37(2) 31(3) 15(2) 3(2) 0(2) C13 41(3) 20(2) 53(3) 15(2) 3(2) 8(2) C14 39(2) 21(2) 36(3) 2(2) 3(2) 3(2) C15 18(2) 27(2) 24(2) 2(2) 2(2) 1( 2) C16 50(3) 31(2) 51(3) 13(2) 3(2) 4(2) C17 36(2) 26(2) 24(2) 7(2) 5(2) 0(2) C18 44(2) 41(2) 33(3) 5(2) 5(2) 1(2) C19 19(2) 20(2) 27(2) 2(2) 0(2) 3(1) C20 34(2) 27(2) 28(2) 3(2) 6(2) 9(2) C21 35(2) 48(2) 25(2) 10(2) 6(2) 1(2) C22 38(2) 45(2) 1 9(2) 3(2) 4(2) 4(2) C23 37(2) 32(2) 22(2) 8(2) 2(2) 4(2) C24 44(2) 21(2) 22(2) 8(2) 5(2) 3(2) C25 43(2) 36(2) 29(3) 5(2) 8(2) 11(2) C26 34(2) 47(3) 24(2) 3(2) 2(2) 4(2) C27 25(2) 39(2) 24(2) 1(2) 4(2) 9(2) C28 31(2) 29(2) 34(3) 3(2) 11( 2) 3(2)

PAGE 473

473 Table A 45 Continued U 11 U 22 U 33 U 23 U 13 U 12 C29 58(3) 31(2) 54(3) 18(2) 17(2) 6(2) C30 54(3) 42(3) 95(5) 27(3) 19(3) 19(2) C31 37(2) 40(3) 60(4) 17(2) 16(2) 19(2) C32 26(2) 56(3) 42(3) 13(2) 3(2) 16(2) C33 34(2) 92(4) 44(3) 7(3) 4(2) 2(3) C34 52(3) 52(3) 46(3) 4(2) 13(2) 8(2) C35 30(2) 32(2) 25(2) 4(2) 2(2) 7(2) C36 27(2) 27(2) 15(2) 0(2) 0(2) 3(2) C37 42(2) 32(2) 32(3) 5(2) 0(2) 6(2) C38 41(3) 21(2) 29(2) 2(2) 3(2) 0(2) C39 48(2) 29(2) 35(3) 2(2) 3(2) 5(2) C40 29(2 ) 22(2) 22(2) 2(2) 2(2) 4(2) C41 33(2) 30(2) 39(3) 0(2) 11(2) 5(2) C42 27(2) 47(3) 45(3) 6(2) 12(2) 4(2) C43 31(2) 28(2) 46(3) 7(2) 1(2) 11(2) C44 29(2) 22(2) 36(3) 2(2) 0(2) 1(2) C45 24(2) 26(2) 25(2) 2(2) 2(2) 1(2) C46 26(2) 19(2) 22(2) 2 (1) 2(2) 1(2) C47 23(2) 17(2) 18(2) 2(1) 3(2) 2(2) C48 26(2) 26(2) 19(2) 5(2) 5(2) 2(2) C49 28(2) 32(2) 30(3) 6(2) 2(2) 2(2) C50 31(2) 52(3) 28(3) 1(2) 7(2) 4(2) C51 31(2) 40(2) 31(3) 5(2) 2(2) 9(2) C52 28(2) 26(2) 27(2) 1(2) 5(2) 4(2) C5 3 20(2) 31(2) 23(2) 2(2) 5(2) 0(2) C54 27(2) 20(2) 17(2) 7(1) 1(2) 1(2) C55 59(4) 64(4) 131(7) 36(4) 37(4) 25(3) C56 35(3) 100(5) 119(7) 36(5) 5(4) 23(3) C57 41(3) 92(5) 83(5) 8(4) 2(3) 2(3) C58 80(4) 51(3) 57(4) 10(3) 12(3) 3(3) C59 61(3) 51( 3) 41(3) 6(2) 0(3) 7(3) C60 52(3) 56(3) 67(4) 1(3) 12(3) 6(3)

PAGE 474

474 Figure A 174 Molecular structure of 22 Me with ellipsoids draw n at the 50% probability level. Hydrogen atoms and tetrafluoroborate counter ion omitted for clarity. X ray experimen tal data for 22 Me : Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. The asymmetric unit consists of two chemically equivalent but crystallographically in dependent complex cations, two

PAGE 475

475 tetrafluoroborate anions and four chloroform molecules of crystallization. Both borate anions are disordered by rotation around one of the B F bonds. Two of the chloroform molecules are disordered. One of them is disordere d in the position of one chlorine atom and the other is disordered and its chlorine atoms are refined in four parts. A total of 1077 parameters are refined in the final cycle of refinement using 11647 reflections with I > 2 (I) to yield R 1 and wR 2 of 4.86 % and 11.78 %, respectively. Refinement is done using F 2 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA.

PAGE 476

476 Table A 46 Crystal data, structure solution and refinement for 22 Me identificati on code tj01 empirical formula C 76 H 64 N 8 Cl 12 Rh 2 B 2 F 8 O 8 formula weight 1958.19 T (K) 173(2) ( ) 0.71073 crystal system Monoclinic space group P2(1)/c a ( ) 20.039(2) b ( ) 20.668(3) c ( ) 20.407(2) (deg) 90 (deg) 97.533(2) (deg) 90 V ( 3 ) 8379.0(17) Z 4 calcd ( m g mm 3 ) 1.466 crystal size (mm 3 ) 0.22 x 0.19 x 0.09 abs coeff (mm 1 ) 0.847 F (000) 3936 range for data collection 1.02 to 27.50 limiting indices h k no. of reflns coll cd 56208 no. of ind reflns ( R int ) 19074 (0.0799) completeness to = 27.50 99.71% absorption corr Integration refinement method Fu ll matrix least squares on F 2 data / restraints / parameters 11774 / 0 / 613 R 1, a wR 2 b [I > 2 ] 0.0454, 0.0744 R 1, a wR 2 b (all data) 0.0573, 0.0776 GOF c on F 2 1.032 largest diff. peak and hole 0.752 and 0.751 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 477

477 Table A 47 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 22 Me Ato m X Y Z U(eq) Rh1 4274(1) 5852(1) 2437(1) 36(1) O1 3460(2) 6187(2) 3540(2) 86(1) O2 3113(2) 5929(3) 1355(2) 112(2) N1 5708(1) 5873(1) 3238(1) 29(1) N2 5078(2) 5138(1) 3604(1) 35(1) N3 5093(1) 6156(1) 1307(1) 29(1) N4 5068(2) 5126(1) 1479(1) 34(1) C 1 4780(2) 7827(2) 2822(2) 31(1) C2 4217(2) 7929(2) 3123(2) 43(1) C3 3683(2) 8280(2) 2789(2) 58(1) C4 3715(2) 8520(2) 2173(2) 57(1) C5 4278(2) 8415(2) 1859(2) 45(1) C6 4813(2) 8072(2) 2185(2) 34(1) C7 5993(2) 7902(2) 3068(2) 31(1) C8 6446(2) 8097(2) 3600(2) 39(1) C9 6936(2) 8549(2) 3503(2) 48(1) C10 6979(2) 8785(2) 2873(2) 51(1) C11 6531(2) 8580(2) 2338(2) 42(1) C12 6028(2) 8149(2) 2437(2) 33(1) C13 5399(2) 7458(2) 3095(2) 29(1) C14 5472(2) 7911(2) 1923(2) 33(1) C15 5447(2) 6893(2) 2599(2) 28(1 ) C16 5529(2) 7159(2) 1904(2) 29(1) C17 5963(2) 6369(2) 2823(2) 33(1) C18 6102(2) 5564(2) 3757(2) 33(1) C19 6767(2) 5641(2) 4033(2) 43(1) C20 6990(2) 5236(2) 4553(2) 57(1) C21 6583(3) 4780(2) 4790(2) 61(1) C22 5924(2) 4691(2) 4521(2) 50(1) C23 5694 (2) 5101(2) 3990(2) 36(1) C24 4508(2) 4736(2) 3701(2) 53(1) C25 5083(2) 5610(2) 3139(2) 31(1) C26 5016(2) 6862(2) 1368(2) 34(1) C27 5458(2) 5872(2) 843(2) 30(1) C28 5782(2) 6126(2) 341(2) 36(1) C29 6082(2) 5688(2) 40(2) 43(1) C30 6073(2) 5024(2) 80 (2) 46(1) C31 5751(2) 4771(2) 579(2) 43(1)

PAGE 478

478 Table A 47. Continued Atom X Y Z U(eq) C32 5445(2) 5211(2) 961(2) 34(1) C33 4917(2) 4493(2) 1751(2) 47(1) C34 4858(2) 5697(2) 1692(2) 32(1) C35 3760(2) 6046(2) 3130(2) 56(1) C36 3540(2) 5925(3) 1770(2) 65(1 ) Rh2 867(1) 2445(1) 9651(1) 37(1) O3 1764(2) 3588(2) 9257(2) 91(1) O4 1956(2) 1471(2) 9227(2) 85(1) N5 526(2) 3103(1) 9647(1) 35(1) N6 48(2) 3607(2) 10312(1) 45(1) N7 5(1) 1236(1) 9481(1) 28(1) N8 18(2) 1485(1) 10517(1) 33(1) C37 500(2) 2669 (2) 7688(2) 28(1) C38 1084(2) 3029(2) 7596(2) 38(1) C39 1675(2) 2755(2) 7301(2) 52(1) C40 1686(2) 2111(2) 7112(2) 54(1) C41 1108(2) 1741(2) 7208(2) 40(1) C42 513(2) 2016(2) 7493(2) 29(1) C43 712(2) 2724(2) 7650(2) 33(1) C44 1199(2) 3148(2) 7487 (2) 46(1) C45 1644(2) 2942(2) 7062(2) 64(1) C46 1613(2) 2330(2) 6820(3) 71(2) C47 1141(2) 1889(2) 6992(2) 51(1) C48 691(2) 2087(2) 7411(2) 35(1) C49 164(2) 2870(2) 8066(2) 28(1) C50 153(2) 1680(2) 7666(2) 30(1) C51 232(2) 2401(1) 8663(2) 27(1) C52 315(2) 1702(2) 8431(2) 28(1) C53 771(2) 2598(2) 9225(2) 34(1) C54 914(2) 3637(2) 9881(2) 42(1) C55 1539(2) 3863(2) 9752(2) 52(1) C56 1775(3) 4419(2) 10078(2) 60(1) C57 1400(3) 4737(2) 10504(2) 69(2) C58 794(3) 4520(2) 10629(2) 64(1) C59 547(2) 3959( 2) 10304(2) 47(1) C60 571(3) 3789(2) 10717(2) 64(1) C61 62(2) 3082(2) 9908(2) 38(1) C62 145(2) 1243(2) 8758(2) 31(1)

PAGE 479

479 Table A 47. Continued Atom X Y Z U(eq) C63 427(2) 795(2) 9838(2) 28(1) C64 785(2) 272(2) 9634(2) 35(1) C65 1154(2) 84(2) 10134( 2) 38(1) C66 1161(2) 77(2) 10798(2) 42(1) C67 804(2) 595(2) 11000(2) 38(1) C68 436(2) 954(2) 10498(2) 32(1) C69 125(2) 1813(2) 11118(2) 46(1) C70 248(2) 1661(2) 9902(2) 31(1) C71 1435(2) 3162(2) 9413(2) 54(1) C72 1565(2) 1851(2) 9399(2) 54(1) F 1 5148(2) 1482(2) 645(1) 97(1) B1 4820(3) 1804(2) 132(2) 52(1) F2 5268(3) 1830(4) 337(4) 74(2) F3 4267(3) 1419(4) 225(4) 107(3) F4 4523(6) 2362(4) 210(3) 116(5) F2A 4784(9) 1569(5) 418(4) 160(8) F3A 4192(3) 1842(4) 419(4) 87(3) F4A 5062(4) 2454(4 ) 202(4) 82(3) B2 297(2) 4777(1) 7807(1) 42(1) F5 22(1) 4338(1) 7367(1) 59(1) F6 742(1) 5136(1) 7481(1) 63(1) F7 669(2) 4462(1) 8323(1) 67(1) F8 162(2) 5193(1) 8015(1) 72(1) F6' 20(17) 4773(19) 8370(10) 260(30) F7' 959(7) 4602(14) 7970(20) 290(30 ) F8' 260(20) 5384(4) 7534(11) 500(60) C73 2762(2) 3043(2) 4684(3) 72(1) Cl1 2297(3) 2896(3) 5339(3) 55(1) Cl2 2323(2) 3656(3) 4196(2) 55(1) Cl3 2955(2) 2369(2) 4299(4) 55(1) Cl1A 2062(7) 3407(7) 4885(7) 116(4) Cl2A 2353(7) 2925(7) 3722(7) 116(4) C l3A 2610(7) 2183(7) 4882(7) 116(4) Cl1B 2393(5) 2758(5) 5253(5) 58(2) Cl2B 2503(5) 3693(5) 4160(5) 58(2) Cl3B 2813(5) 2404(3) 4012(7) 58(2) Cl1C 2210(5) 3038(4) 5364(5) 64(2) Cl2C 2348(4) 3478(5) 4051(4) 64(2)

PAGE 480

480 Table A 47. Continued Atom X Y Z U(eq) Cl3C 2921(3) 2213(4) 4536(6) 64(2) Cl4 1848(1) 5704(1) 3650(1) 74(1) Cl5 2064(1) 5494(1) 2296(1) 58(1) Cl6A 1760(30) 4435(6) 3240(30) 108(10) Cl6 1521(3) 4472(3) 2985(3) 58(1) C74 1568(2) 5292(2) 2918(2) 46(1) Cl7 2503(1) 5030(1) 7374(1) 131(1) Cl8 2396(1) 5529(1) 8674(1) 85(1) Cl9 2709(1) 4191(1) 8492(1) 75(1) C75 2266(2) 4863(2) 8149(2) 63(1) Cl10 7337(1) 2281(1) 619(1) 133(1) Cl11 6494(2) 3341(1) 216(1) 190(1) Cl12 6743(1) 2412(1) 715(1) 121(1) C76 6634(2) 2532(2) 107(3) 69(1)

PAGE 481

4 81 Table A 48 Bond lengths (in ) for 22 Me Bond Distance Bond Distance Rh1 C36 1.874(5) C18 C23 1.382(5) Rh1 C35 1.897(4) C18 C19 1.387(5) Rh1 C34 2.063(3) C19 C20 1.380(5) Rh1 C25 2.078(4) C15 C17 1.526(4) O1 C35 1.132(5) C15 C16 1.54 9(4) O2 C36 1.122(5) C21 C22 1.373(6) N1 C25 1.356(4) C29 C30 1.395(5) N1 C18 1.391(4) C22 C23 1.405(5) N1 C17 1.465(4) C27 C28 1.385(5) N2 C25 1.362(4) C27 C32 1.388(4) N2 C23 1.377(5) C28 C29 1.380(5) N2 C24 1.446(5) Rh2 C72 1.882(5) N3 C34 1.355 (4) Rh2 C71 1.893(4) N3 C27 1.400(4) Rh2 C70 2.064(3) N3 C26 1.475(4) Rh2 C61 2.095(4) N4 C34 1.344(4) O3 C71 1.121(5) N4 C32 1.388(4) O4 C72 1.131(5) N4 C33 1.468(4) N5 C61 1.355(4) C1 C2 1.371(5) N5 C54 1.398(4) C1 C6 1.405(5) C30 C31 1.380(5) C1 C13 1.500(5) C31 C32 1.391(5) C2 C3 1.395(6) N5 C53 1.476(4) C11 C12 1.381(5) N6 C61 1.361(4) C3 C4 1.360(6) N6 C59 1.399(5) C12 C14 1.507(5) N6 C60 1.466(5) C4 C5 1.386(6) N7 C70 1.362(4) C13 C15 1.557(4) N7 C63 1.395(4) C5 C6 1.380(5) N7 C62 1.46 4(4) C14 C16 1.558(4) N8 C70 1.347(4) C6 C14 1.526(5) N8 C68 1.384(4) C7 C8 1.381(5) N8 C69 1.463(4) C7 C12 1.396(5) C37 C38 1.379(5) C7 C13 1.511(5) C37 C42 1.407(4) C8 C9 1.388(5) C37 C49 1.506(5) C16 C26 1.529(5) C38 C39 1.379(5) C9 C10 1.387(6) C39 C40 1.384(6) C20 C21 1.376(6) C40 C41 1.381(5) C10 C11 1.386(6) C41 C42 1.379(5)

PAGE 482

482 Table A 48. Continued Bond Distance Bond Distance C42 C50 1.505(4) F1 B1 1.336(5) C43 C44 1.384(5) B1 F2A 1.216(8) C43 C48 1.402(5) B1 F4 1.319(7) C43 C49 1.506(4 ) B1 F2 1.396(8) C44 C45 1.389(5) B1 F4A 1.430(9) C45 C46 1.357(7) B1 F3A 1.460(8) C45 C46 1.357(7) B1 F3 1.477(9) C46 C47 1.391(6) B2 F8 1.366(3) C46 C47 1.391(6) B2 F8' 1.371(4) C47 C48 1.383(5) B2 F7 1.373(3) C42 C50 1.505(4) B2 F7' 1.373(4) C43 C44 1.384(5) B2 F5 1.375(3) C43 C48 1.402(5) B2 F6' 1.384(4) C43 C49 1.506(4) B2 F6 1.393(3) C44 C45 1.389(5) C73 Cl1B 1.570(10) Cl4 C74 1.747(4) C73 Cl3 1.670(6) Cl5 C74 1.761(4) C73 Cl1A 1.689(14) Cl6A C74 1.91(2) C73 Cl2C 1.698(8) Cl6 C74 1.703( 7) C73 Cl2B 1.752(10) C52 C62 1.535(4) C73 Cl1 1.754(8) Cl7 C75 1.742(5) C73 Cl2 1.772(6) Cl8 C75 1.742(5) C73 Cl3C 1.779(9) Cl9 C75 1.744(5) C73 Cl3A 1.857(15) C50 C52 1.553(4) C73 Cl1C 1.884(10) Cl10 C76 1.719(5) C73 Cl3B 1.916(11) Cl11 C76 1.715( 5) C73 Cl2A 2.040(15) Cl12 C76 1.737(5) C51 C53 1.524(5) C54 C59 1.376(5) C51 C52 1.537(4) C54 C55 1.394(6) C48 C50 1.513(5) C55 C56 1.381(5) C49 C51 1.549(4) C57 C58 1.350(7) C63 C68 1.386(4) C56 C57 1.387(7) C63 C64 1.390(5) C58 C59 1.394(5) C64 C 65 1.390(5) C65 C66 1.394(5) C67 C68 1.394(5) C66 C67 1.380(5)

PAGE 483

483 Table A 49 Bond angles (in ) for 22 Me Bond Angle Angle Bond Angle Angle C36 Rh1 C35 94.23(19) C12 C7 C13 113.0(3) C36 Rh1 C34 86.77(16) C7 C8 C9 119.2(4) C35 Rh1 C34 176.40(17) C 11 C10 C9 120.7(4) C36 Rh1 C25 170.64(19) C10 C9 C8 120.0(4) C35 Rh1 C25 89.34(16) C12 C11 C10 119.5(4) C34 Rh1 C25 90.19(13) C47 C48 C43 120.0(3) C25 N1 C18 110.5(3) C47 C48 C50 126.9(3) C25 N1 C17 125.5(3) C43 C48 C50 113.2(3) C18 N1 C17 123.8(3) C 43 C49 C37 108.4(3) C25 N2 C23 110.5(3) C43 C49 C51 108.8(3) C25 N2 C24 125.8(3) C37 C49 C51 102.2(2) C23 N2 C24 123.7(3) C57 C58 C59 117.3(4) C34 N3 C27 110.6(3) C58 C57 C56 122.4(4) C34 N3 C26 126.5(3) C11 C12 C7 119.8(4) C27 N3 C26 122.9(3) C11 C1 2 C14 126.6(3) C34 N4 C32 111.1(3) C7 C12 C14 113.6(3) C34 N4 C33 124.8(3) C1 C13 C7 107.1(3) C32 N4 C33 124.1(3) C1 C13 C15 104.9(3) C2 C1 C6 120.1(3) C7 C13 C15 108.4(3) C2 C1 C13 126.9(3) C12 C14 C6 106.2(3) C6 C1 C13 113.1(3) C12 C14 C16 107.1(3) C1 C2 C3 119.0(4) C41 C42 C37 119.9(3) C38 C39 C40 119.9(4) C41 C42 C50 126.8(3) C41 C40 C39 120.8(4) C37 C42 C50 113.2(3) C4 C3 C2 121.0(4) C44 C43 C48 120.1(3) N5 C53 C51 111.8(3) C44 C43 C49 126.7(3) C42 C41 C40 119.6(3) C48 C43 C49 113.2(3) C3 C4 C5 120.7(4) C43 C44 C45 119.1(4) C6 C14 C16 107.2(3) C17 C15 C16 112.1(3) C46 C45 C44 120.7(4) C17 C15 C13 115.7(3) C6 C5 C4 119.0(4) C16 C15 C13 110.6(3) C55 C56 C57 121.1(5) C27 C32 N4 106.3(3) C48 C47 C46 118.9(4) C27 C32 C31 121.7(3) C5 C6 C1 120.2(3) N4 C32 C31 131.9(3) C5 C6 C14 126.7(3) C26 C16 C15 111.7(3) C1 C6 C14 113.1(3) C26 C16 C14 111.9(3) C8 C7 C12 120.8(3) C15 C16 C14 108.3(2) C8 C7 C13 126.1(3) C45 C46 C47 121.2(4)

PAGE 484

484 Table A 49. Continued Bond Angle Angle Bond Angle Angle C22 C21 C20 122.3(4) C23 C18 C19 121.4(3) C21 C20 C19 122.6(4) C23 C18 N1 106.1(3) N1 C17 C15 113.3(3) C19 C18 N1 132.5(3) N5 C61 N6 105.3(3) C20 C19 C18 116.1(4) N5 C61 Rh2 127.0(2) C42 C50 C48 108.1(3) N6 C61 Rh2 127.4(3) C42 C50 C52 106.5(3) N7 C62 C5 2 113.5(3) C48 C50 C52 105.4(3) C68 C63 C64 122.3(3) C53 C51 C52 112.9(3) C68 C63 N7 106.3(3) C53 C51 C49 113.9(3) C64 C63 N7 131.4(3) C52 C51 C49 110.4(3) C63 C64 C65 116.0(3) C62 C52 C51 110.6(3) C51 C52 C50 108.7(2) C62 C52 C50 111.2(3) C28 C29 C3 0 122.0(3) C21 C22 C23 115.5(4) C28 C27 C32 121.6(3) C64 C65 C66 121.5(3) C28 C27 N3 132.7(3) C67 C66 C65 122.4(3) C32 C27 N3 105.7(3) N2 C23 C18 106.9(3) C29 C28 C27 116.6(3) N2 C23 C22 130.9(4) N8 C68 C63 106.5(3) C18 C23 C22 122.2(4) N8 C68 C67 13 1.7(3) C66 C67 C68 116.1(3) C63 C68 C67 121.7(3) N8 C70 N7 106.5(3) N1 C25 N2 105.9(3) N8 C70 Rh2 126.4(2) N1 C25 Rh1 128.9(2) N7 C70 Rh2 127.0(2) C31 C30 C29 121.4(3) O3 C71 Rh2 178.1(4) N2 C25 Rh1 125.1(3) O4 C72 Rh2 175.4(4) N3 C26 C16 112.9(3) F2 A B1 F4 119.2(6) C30 C31 C32 116.7(3) F2A B1 F1 119.3(6) Cl3A C73 Cl2A 92.2(6) F4 B1 F1 121.6(5) Cl1C C73 Cl2A 120.5(5) F2A B1 F2 49.4(9) Cl3B C73 Cl2A 44.1(5) F4 B1 F2 113.0(7) Cl6 C74 Cl4 115.5(3) F1 B1 F2 105.3(5) Cl6 C74 Cl5 109.7(3) F2A B1 F4A 1 16.5(9) Cl4 C74 Cl5 110.6(2) F4 B1 F4A 47.0(5) Cl6 C74 Cl6A 20.1(19) F1 B1 F4A 105.3(5) Cl4 C74 Cl6A 97.7(19) F2 B1 F4A 78.1(5) Cl5 C74 Cl6A 110.9(4) F2A B1 F3A 116.2(11) Cl7 C75 Cl8 111.5(3) F4 B1 F3A 58.4(6) Cl7 C75 Cl9 109.7(3) F1 B1 F3A 94.2(4) Cl8 C75 Cl9 110.7(3) F2 B1 F3A 159.9(6)

PAGE 485

485 Table A 49. Continued Bond Angle Angle Bond Angle Angle Cl11 C76 Cl10 110.5(3) F4A B1 F3A 102.0(6) Cl11 C76 Cl12 107.9(3) F2A B1 F3 51.7(9) Cl10 C76 Cl12 110.3(3) F4 B1 F3 102.0(8) F8 B2 F7 112.3(3) Cl1A C73 Cl 2B 67.5(6) F8' B2 F7 138.1(8) Cl2C C73 Cl2B 18.9(4) F8 B2 F7' 139.3(7) Cl1B C73 Cl1 12.2(4) F8' B2 F7' 110.2(4) Cl3 C73 Cl1 113.1(3) F7 B2 F7' 44(2) Cl1A C73 Cl1 49.5(6) F8 B2 F5 110.1(2) Cl2C C73 Cl1 114.6(4) F8' B2 F5 109.9(4) Cl2B C73 Cl1 116.9(5) F7 B2 F5 110.3(2) Cl1B C73 Cl2 115.9(5) F7' B2 F5 109.7(3) Cl3 C73 Cl2 117.5(4) F8 B2 F6' 49(2) Cl1A C73 Cl2 56.7(5) F8' B2 F6' 109.4(3) Cl2C C73 Cl2 15.7(3) F7 B2 F6' 68(2) Cl2B C73 Cl2 12.5(3) F7' B2 F6' 109.2(3) Cl1 C73 Cl2 106.1(3) F5 B2 F6' 10 8.3(3) Cl1B C73 Cl3C 82.8(6) F8 B2 F6 108.2(2) Cl3 C73 Cl3C 19.5(3) F8' B2 F6 48(2) Cl1A C73 Cl3C 130.1(6) F7 B2 F6 107.6(2) Cl2C C73 Cl3C 117.6(4) F7' B2 F6 66(2) Cl2B C73 Cl3C 133.0(6) F5 B2 F6 108.1(2) F1 B1 F3 112.2(5) F6' B2 F6 142.3(7) F2 B1 F3 101.0(5) Cl1B C73 Cl3 101.2(5) F4A B1 F3 141.1(6) Cl1B C73 Cl1A 60.1(6) F3A B1 F3 66.1(5) Cl3 C73 Cl1A 137.5(6) F8 B2 F8' 63(2) Cl1B C73 Cl2C 122.1(6) Cl1 C73 Cl3C 95.0(4) Cl3 C73 Cl2C 101.8(4) Cl2 C73 Cl3C 133.0(4) Cl1A C73 Cl2C 67.1(6) Cl1B C73 Cl 3A 51.2(6) Cl1B C73 Cl2B 127.5(7) Cl3 C73 Cl3A 50.0(5) Cl3 C73 Cl2B 115.0(6) Cl1A C73 Cl3A 102.0(7) Cl3C C73 Cl1C 104.7(4) Cl2C C73 Cl3A 126.5(6) Cl3A C73 Cl1C 72.9(6) Cl2B C73 Cl3A 145.4(7) Cl1B C73 Cl3B 110.2(5) Cl1 C73 Cl3A 63.2(6) Cl3 C73 Cl3B 18 .4(3) Cl2 C73 Cl3A 136.4(6) Cl1A C73 Cl3B 127.2(6) Cl3C C73 Cl3A 31.9(5) Cl2C C73 Cl3B 83.5(6) Cl1B C73 Cl1C 22.3(4) Cl2B C73 Cl3B 97.6(6) Cl3 C73 Cl1C 122.4(4)

PAGE 486

486 Table A 49. Continued Bond Angle Angle Bond Angle Angle Cl1 C73 Cl3B 120.7(4) Cl1A C73 Cl 1C 40.3(5) Cl2 C73 Cl3B 99.2(5) Cl2C C73 Cl1C 106.7(5) Cl3C C73 Cl3B 35.6(5) Cl2B C73 Cl1C 107.3(5) Cl3A C73 Cl3B 61.4(6) Cl1 C73 Cl1C 10.1(3) Cl1C C73 Cl3B 127.9(4) Cl2 C73 Cl1C 97.0(4) Cl1B C73 Cl2A 119.9(6) C54 C59 C58 121.0(4) Cl3 C73 Cl2A 62.4(5 ) C54 C59 N6 106.4(3) Cl1A C73 Cl2A 92.6(6) C58 C59 N6 132.6(4) Cl2C C73 Cl2A 40.3(5) C59 C54 C55 121.6(4) Cl2B C73 Cl2A 57.0(6) C59 C54 N5 106.1(3) Cl1 C73 Cl2A 121.8(5) C55 C54 N5 132.3(4) Cl2 C73 Cl2A 55.8(5) C56 C55 C54 116.5(4) Cl3C C73 Cl2A 77. 3(6) C54 N5 C53 123.0(3) N4 C34 N3 106.3(3) C61 N6 C59 110.9(3) N4 C34 Rh1 127.3(2) C61 N6 C60 126.0(4) N3 C34 Rh1 126.4(2) C59 N6 C60 123.1(3) O1 C35 Rh1 177.3(4) C70 N7 C63 109.9(3) O2 C36 Rh1 175.2(6) C70 N7 C62 126.3(3) C72 Rh2 C71 92.33(17) C63 N7 C62 123.8(3) C72 Rh2 C70 87.53(15) C70 N8 C68 110.8(3) C71 Rh2 C70 179.54(17) C70 N8 C69 124.1(3) C72 Rh2 C61 177.52(16) C68 N8 C69 125.2(3) C71 Rh2 C61 89.35(16) C38 C37 C42 119.7(3) C70 Rh2 C61 90.78(14) C38 C37 C49 126.7(3) C61 N5 C54 111.3(3) C42 C37 C49 113.1(3) C61 N5 C53 125.4(3) C37 C38 C39 120.2(3)

PAGE 487

487 Table A 50 Anisotropic displacement parameters ( 2 x10 3 ) for 22 Me The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Rh1 32(1) 46(1) 32(1) 3(1) 8(1) 5(1) O1 59(2) 136(3) 70(2) 25(2) 34(2) 4(2) O2 46(2) 228(5) 60(2) 41(3) 4(2) 2(3) N1 36(2) 25(1) 25(2) 4(1) 7(1) 0(1) N2 51(2) 28(2) 26(2) 1(1) 11(1) 7(1) N3 34(2) 29(1) 24(2) 3(1) 6(1) 1(1) N4 43(2) 31(2) 27(2) 2(1) 4(1) 5(1) C1 32(2) 28(2) 33(2) 4(2) 9(2) 1(2) C2 44(2) 44(2) 46(2) 7(2) 17(2) 1(2) C3 40(3) 67(3) 68(3) 15(3) 15(2) 9(2) C4 42(3) 59(3) 69(3) 12(2) 2(2) 16(2) C5 53(3) 39(2) 43(2) 4(2) 0(2) 10(2) C6 38(2) 28(2) 35(2 ) 4(2) 6(2) 4(2) C7 35(2) 25(2) 34(2) 3(2) 10(2) 4(2) C8 40(2) 36(2) 42(2) 4(2) 6(2) 3(2) C9 36(2) 43(2) 63(3) 13(2) 3(2) 1(2) C10 35(2) 39(2) 83(3) 2(2) 20(2) 8(2) C11 45(2) 32(2) 55(3) 3(2) 20(2) 2(2) C12 36(2) 22(2) 42(2) 0(2) 14(2) 7(2) C1 3 39(2) 27(2) 22(2) 1(1) 9(2) 1(2) C14 47(2) 27(2) 28(2) 5(2) 15(2) 3(2) C15 29(2) 26(2) 28(2) 3(1) 6(1) 1(1) C16 36(2) 25(2) 28(2) 3(1) 12(2) 4(2) C17 35(2) 29(2) 36(2) 7(2) 9(2) 2(2) C18 42(2) 28(2) 30(2) 0(2) 6(2) 7(2) C19 44(2) 45(2) 40(2) 6(2 ) 3(2) 9(2) C20 51(3) 68(3) 47(3) 4(2) 8(2) 21(2) C21 86(4) 56(3) 41(3) 17(2) 5(3) 23(3) C22 83(3) 34(2) 34(2) 8(2) 6(2) 6(2) C23 60(3) 22(2) 28(2) 1(2) 11(2) 2(2) C24 75(3) 45(2) 41(2) 4(2) 18(2) 19(2) C25 43(2) 29(2) 24(2) 4(1) 11(2) 1(2) C26 50(2) 27(2) 26(2) 3(1) 8(2) 6(2) C27 34(2) 32(2) 24(2) 2(2) 1(2) 1(2) C28 40(2) 38(2) 31(2) 0(2) 7(2) 4(2) C29 44(2) 52(2) 37(2) 2(2) 16(2) 0(2)

PAGE 488

488 Table A 50 Continued U 11 U 22 U 33 U 23 U 13 U 12 C30 53(3) 49(2) 39(2) 7(2) 13(2) 9(2) C31 58(3) 34(2) 38(2) 1(2) 7(2) 7(2) C32 39(2) 34(2) 27(2) 1(2) 4(2) 1(2) C33 67(3) 28(2) 47(3) 4(2) 8(2) 8(2) C34 34(2) 34(2) 28(2) 4(2) 1(2) 1(2) C35 39(2) 77(3) 53(3) 9(2) 14(2) 10(2) C36 36(2) 116(4) 45(3) 24(3) 11(2) 1(3) Rh2 43(1) 29(1) 40(1) 5(1) 12( 1) 6(1) O3 64(2) 43(2) 159(4) 7(2) 6(2) 18(2) O4 45(2) 48(2) 161(4) 4(2) 8(2) 3(2) N5 46(2) 33(2) 25(2) 3(1) 1(1) 2(1) N6 74(2) 38(2) 26(2) 3(1) 16(2) 1(2) N7 38(2) 24(1) 23(2) 4(1) 4(1) 2(1) N8 46(2) 30(2) 25(2) 4(1) 8(1) 3(1) C37 35(2) 28(2) 21(2) 4(1) 5(1) 4(2) C38 40(2) 32(2) 42(2) 5(2) 5(2) 5(2) C39 38(2) 45(2) 69(3) 9(2) 5(2) 6(2) C40 43(2) 54(3) 59(3) 3(2) 11(2) 9(2) C41 53(2) 33(2) 32(2) 1(2) 3(2) 2(2) C42 39(2) 30(2) 17(2) 3(1) 3(2) 5(2) C43 37(2) 34(2) 28(2) 9(2) 5(2) 4(2) C44 42(2) 41(2) 57(3) 14(2) 13(2) 2(2) C45 52(3) 59(3) 88(4) 30(3) 37(3) 7(2) C46 71(3) 69(3) 83(4) 28(3) 51(3) 31(3) C47 68(3) 43(2) 47(3) 11(2) 27(2) 20(2) C48 41(2) 34(2) 29(2) 7(2) 8(2) 10(2) C49 32(2) 23(2) 28(2) 3(1) 5(2) 1(1) C50 46(2) 22(2) 23(2) 1(1) 5(2) 6(2) C51 34(2) 24(2) 22(2) 0(1) 3(1) 3(1) C52 35(2) 24(2) 23(2) 2(1) 0(1) 4(1) C53 42(2) 32(2) 26(2) 3(2) 0(2) 2(2) C54 62(3) 37(2) 24(2) 1(2) 4(2) 6(2) C55 65(3) 48(2) 41(2) 1(2) 1(2) 16(2) C56 75(3) 53(3) 50(3) 5(2) 3(2) 26(2) C57 113(5) 42(2) 51(3) 4(2) 4(3) 29(3) C58 115(4) 38(2) 37(3) 12(2) 10(3) 11(3) C59 81(3) 33(2) 26(2) 0(2) 7(2) 6(2) C60 93(4) 55(3) 49(3) 10(2) 30(3) 6(3)

PAGE 489

489 Table A 50 Continued U 11 U 22 U 33 U 23 U 13 U 12 C61 59(3) 31(2) 23(2) 3(2) 5(2) 2(2) C62 43(2) 26(2) 23(2) 0(1) 3(2) 0(2) C63 35(2) 25(2) 24(2) 6(1) 4(2) 5(2) C64 37(2) 33(2) 34(2) 7(2) 6(2) 0(2) C65 37(2) 34(2) 43(2) 13(2) 6(2) 4(2) C66 38(2) 44(2) 43(2) 13(2) 5(2) 1(2) C67 43(2) 41(2) 27(2) 8(2) 2(2) 3(2) C68 36(2) 31(2) 29(2) 6(2) 6(2) 4(2) C69 72(3) 44(2) 25(2) 2(2) 14(2) 5(2) C70 39(2) 28(2) 27(2) 5(2) 8(2) 3(2) C71 48(3) 37(2) 76(3) 4(2) 6(2) 6(2) C72 38(2) 36(2) 90(4) 7(2) 12(2) 9(2) F1 145(3) 92(2) 53(2) 26(2) 11(2) 40(2) B1 84(4) 42(3) 33(3) 11(2) 20(3) 16( 3) F2 67(4) 99(5) 59(5) 16(4) 25(3) 15(3) F3 74(5) 148(7) 105(7) 38(5) 31(4) 26(4) F4 225(12) 70(5) 55(4) 4(3) 27(6) 87(8) F2A 340(20) 110(9) 28(4) 15(5) 9(10) 126(13) F3A 59(4) 116(7) 84(5) 9(5) 2(3) 4(4) F4A 89(6) 64(4) 98(6) 22(4) 32(5) 4(4 ) B2 52(3) 34(2) 41(3) 6(2) 6(2) 5(2) F5 57(2) 58(2) 60(2) 22(1) 4(1) 2(1) F6 62(2) 57(2) 70(2) 3(2) 10(2) 20(2) F7 85(2) 52(2) 57(2) 12(1) 24(2) 6(2) F8 113(3) 53(2) 56(2) 11(2) 29(2) 29(2) C73 52(3) 65(3) 96(4) 17(3) 5(3) 5(2) Cl4 91(1) 76( 1) 55(1) 0(1) 10(1) 35(1) Cl5 61(1) 50(1) 68(1) 7(1) 30(1) 3(1) Cl6A 146(18) 48(3) 150(20) 33(6) 93(18) 28(6) Cl6 68(2) 32(2) 73(2) 12(1) 13(2) 8(1) C74 45(2) 39(2) 57(3) 3(2) 15(2) 2(2) Cl7 151(2) 171(2) 70(1) 45(1) 14(1) 13(1) Cl8 90(1) 60(1) 1 00(1) 5(1) 15(1) 1(1) Cl9 76(1) 67(1) 82(1) 14(1) 14(1) 10(1) C75 47(3) 73(3) 67(3) 6(3) 2(2) 12(2) Cl10 97(1) 229(2) 69(1) 39(1) 5(1) 12(1) Cl11 368(4) 60(1) 177(2) 14(1) 172(2) 35(2) Cl12 101(1) 168(2) 80(1) 66(1) 37(1) 71(1)

PAGE 490

490 Table A 50 C ontinued U 11 U 22 U 33 U 23 U 13 U 12 C76 59(3) 55(3) 92(4) 13(3) 12(3) 1(2)

PAGE 491

491 Figure A 175 Molecular structure of 24 i Pr with ellipsoids draw n at the 50% probability level. Hydrogen atoms and triflate counter ion omitted for cla rity. X ray experimental details for 24 i Pr : Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 ref lections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I is < 1 %). Abso rption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms are treated anisotropically, whereas the hydrog en atoms are calculated in ideal positions and are riding on their respective carbon atoms. The asymmetric unit consists of two iridium complex cations, two triflate anions, two toluene solvent molecules and

PAGE 492

492 two chloroform solvent molecules. The solvent molecules are disordered and could not be modeled properly, thus program SQUEEZE, a part of the PLATON package of crystallographic software, is used to calculate the solvent disorder area and remove its contribution to the overall intensity data. Space gr oup P2/n is checked to confirm the correct space group. The complexes are not related by a two fold rotation symmetry or an inversion center. Thus the correct space group is the reported Pn. A total of 1064 parameters are refined in the final cycle of r efinement using 19094 reflections with I > 2 (I) to yield R 1 and wR 2 of 7.50 % and 11.54 %, respectively. Refinement is done using F 2 P. van der Sluis & A.L. Spek (1990). SQUEEZE, Acta Cryst. A46, 194 201 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA. Spek, A.L. (1990). PLATON, Acta Cryst. A46, C 34

PAGE 493

493 Table A 51 Crystal data, structure solution and refinement for 24 i Pr identification code mj25 empirical formula C 119 H 117 Cl 6 N 8 Ir 2 F 6 O 6 S 2 formula weight 2530.43 T (K) 173(2) ( ) 0.71073 crystal system monoclinic space group P n A ( ) 13.2280(13) B ( ) 20.306(2) c ( ) 18.9627(19) (deg) 90 (deg) 97.224(2) (deg) 90 V ( 3 ) 5053.2(9) Z 2 calcd (Mg mm 3 ) 1.663 crystal size (mm 3 ) 0.11 x 0.11 x 0.02 abs coeff (m m 1 ) 2.906 F (000) 2554 range for data collection 1.48 to 27.50 limiting indices h k no. of reflns coll cd 34294 no. of ind reflns ( R int ) 19094 (0.0691) completeness to = 27.45 99.6 % absorption corr Integrati on refinement method Full matrix least squares on F 2 data / restraints / parameters 19094 / 2 / 1064 R 1, a wR 2 b [I > 2 ] 0.0560, 0.1154 R 1, a wR 2 b (all data) 0.0750, 0.1212 GOF c on F 2 0.980 largest diff. peak and hole 1.551 and 1.072 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 494

494 Table A 52 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters ( 2 x 10 3 ) for 24 i Pr Atom X Y Z U(eq) Ir1 8099(1) 7009(1) 6254(1) 28(1) Ir2 8567(1) 1026(1) 6564(1) 25(1) N1 6115(6) 6244(4) 6029(4) 28(2) N2 6870(6) 6200(4) 5088(4) 31(2) N3 6793(5) 8173(4) 5562(4) 32(2) N4 8304(6) 8166(4) 5204(4) 32(2) N5 6593(5) 1183(4) 5552(4) 29(2) N6 7893(5) 1418(4) 5009(4) 29(2) N7 8322(5) 2491(4) 6938(4) 28(2) N8 9917(5) 2252(4) 6944(4) 24(2) O1 4140(7) 5464(6) 7643(7) 97(4) F1 3060(10) 5737(5) 8831(5) 129(4) S1 3069(2) 5449(2) 7482(2) 54(1) O2 2666(9) 5815(7) 6885(6) 117(5) F2 2799(9) 6540(4) 8171(6) 122(4) O3 2616(8) 4832(5) 7518(6) 85(3) F3 1657(7) 5824(5) 8233(6) 117(4) C93 2630(9) 5907(6) 8203(6) 50(3) S2 2508(2) 743(1) 5543(1) 31(1) O4 1491(5) 789(4) 5158(5) 51(2) F4 3093(5) 156(4) 4435(3) 64(2) O5 3188(5 ) 1277(4) 5410(4) 41(2) F5 2488(6) 506(3) 5174(4) 58(2) O6 2553(5) 563(3) 6279(3) 39(2) F6 3995(5) 83(4) 5428(4) 66(2) C94 3030(8) 30(6) 5129(6) 47(3) C1 6059(6) 8012(5) 7820(5) 36(2) C2 6801(7) 8266(7) 8323(6) 55(3) C3 7021(8) 7934(8) 8984(6) 63( 4) C4 6534(7) 7369(7) 9105(6) 54(3) C5 5779(7) 7122(6) 8597(5) 41(3) C6 5545(7) 7425(5) 7963(5) 36(2) C7 4590(6) 8383(5) 7011(4) 28(2) C8 4086(9) 8964(5) 6828(5) 41(2) C9 3038(8) 8987(5) 6791(7) 47(3) C10 2505(6) 8438(5) 6958(5) 34(2) C11 3004(6) 7 839(5) 7144(5) 27(2) C12 4043(6) 7813(5) 7188(5) 29(2)

PAGE 495

495 Table A 52. Continued Atom X Y Z U(eq) C13 5737(7) 8264(5) 7072(5) 33(2) C14 4737(6) 7220(5) 7368(4) 21(2) C15 5944(6) 7706(4) 6564(4) 23(2) C16 5250(6) 7110(4) 6684(5) 26(2) C17 5812(7) 6441(5) 6722(5) 34(2) C18 5493(7) 5867(5) 5549(6) 34(2) C19 4570(7) 5544(5) 5603(6) 40(2) C20 4182(8) 5165(6) 5034(7) 52(3) C21 4667(9) 5112(6) 4438(7) 61(3) C22 5592(9) 5435(6) 4360(6) 50(3) C23 5971(7) 5809(5) 4940(5) 33(2) C24 6943(7) 6448(5) 5735(5) 29 (2) C25 7618(8) 6334(6) 4571(5) 47(3) C26 7058(9) 6724(7) 3940(6) 62(4) C27 8114(10) 5727(7) 4361(8) 75(4) C28 5857(6) 7899(5) 5790(5) 29(2) C29 6823(6) 8686(5) 5110(5) 31(2) C30 6080(7) 9167(5) 4888(6) 39(2) C31 6340(8) 9644(6) 4404(6) 51(3) C32 7 308(8) 9648(6) 4181(6) 51(3) C33 8027(8) 9172(6) 4394(5) 50(3) C34 7774(7) 8700(5) 4873(5) 35(2) C35 7713(6) 7837(5) 5633(5) 27(2) C36 9333(7) 7950(6) 5082(5) 41(3) C37 10142(8) 8474(6) 5308(7) 58(3) C38 9350(9) 7774(6) 4302(6) 54(3) C39 9077(8) 615 2(5) 6397(6) 43(3) C40 8469(8) 6140(6) 6957(6) 44(3) C41 8886(8) 6337(6) 7712(6) 50(3) C42 8675(8) 7064(6) 7838(6) 47(3) C43 8750(6) 7511(5) 7217(5) 32(2) C44 9510(8) 7508(7) 6756(6) 57(3) C45 10412(7) 7015(7) 6840(7) 55(4) C46 10165(8) 6336(7) 6432 (7) 54(3) C47 5915(6) 1370(5) 7983(5) 31(2) C48 6246(6) 974(5) 8574(5) 33(2) C49 5748(7) 403(5) 8667(5) 37(2) C50 4918(7) 195(5) 8202(6) 39(2)

PAGE 496

496 Table A 52. Continued Atom X Y Z U(eq) C51 4546(8) 588(6) 7619(6) 39(3) C52 5053(6) 1168(5) 7509(5) 26(2) C53 5540(6) 2541(5) 7682(5) 33(2) C54 5569(7) 3148(6) 7994(6) 42(3) C55 4758(8) 3574(6) 7832(6) 50(3) C56 3926(8) 3354(7) 7364(6) 56(4) C57 3889(7) 2748(6) 7056(6) 38(2) C58 4691(6) 2342(5) 7209(5) 33(2) C59 6368(6) 1995(5) 7777(4) 27(2) C60 4777( 6) 1649(5) 6901(5) 33(2) C61 6680(6) 1892(4) 7021(4) 24(2) C62 5736(6) 1695(5) 6492(4) 24(2) C63 5932(6) 1048(5) 6104(5) 27(2) C64 6196(7) 1340(5) 4859(5) 32(2) C65 5194(7) 1346(5) 4534(5) 34(2) C66 5058(7) 1499(6) 3813(5) 42(3) C67 5890(8) 1681(7) 3452(6) 56(3) C68 6885(7) 1657(5) 3787(5) 37(2) C69 7028(6) 1503(5) 4502(5) 29(2) C70 7630(6) 1258(5) 5636(5) 28(2) C71 8947(7) 1612(6) 4877(5) 42(3) C72 9321(7) 1242(6) 4283(6) 49(3) C73 8975(8) 2369(6) 4779(6) 49(3) C74 7209(6) 2467(4) 6743(4) 26( 2) C75 8844(6) 3071(5) 7113(5) 32(2) C76 8536(8) 3698(6) 7276(6) 45(3) C77 9299(9) 4173(6) 7430(6) 48(3) C78 10297(7) 4012(5) 7428(6) 37(2) C79 10644(7) 3413(6) 7257(5) 39(2) C80 9871(6) 2913(5) 7112(5) 32(2) C81 8955(6) 1981(5) 6812(4) 22(2) C82 1 0861(6) 1900(5) 6783(5) 29(2) C83 11281(7) 2221(5) 6162(6) 39(2) C84 11651(7) 1853(6) 7435(6) 43(3) C85 9120(7) 150(5) 6114(6) 42(3) C86 8179(9) 3(5) 6332(6) 42(3) C87 8112(9) 420(5) 7009(6) 47(3) C88 8069(8) 3(6) 7648(6) 49(3)

PAGE 497

497 Table A 52. Continu ed Atom X Y Z U(eq) C89 8669(7) 633(6) 7649(5) 36(2) C90 9656(7) 680(6) 7470(5) 37(2) C91 10312(7) 129(5) 7287(6) 41(3) C92 10166(8) 17(6) 6510(7) 51(3)

PAGE 498

498 Table A 53 Bond lengths (in ) for 24 i Pr Bond Distance Bond Distance Ir1 C24 2.056(9) F3 C93 1.307(14) Ir1 C35 2.081(10) S2 O6 1.436(7) Ir1 C39 2.165(10) S2 O5 1.451(8) Ir1 C43 2.172(9) S2 O4 1.452(8) Ir1 C40 2.228(11) S2 C94 1.824(11) Ir1 C44 2.229(10) F4 C94 1.354(12) Ir2 C81 2.046(9) F5 C94 1.313(13) Ir 2 C70 2.075(9) F6 C94 1.349(12) Ir2 C85 2.142(11) C1 C2 1.380(13) Ir2 C86 2.17(1) C1 C6 1.415(14) Ir2 C89 2.195(9) C1 C13 1.517(14) Ir2 C90 2.212(9) C2 C3 1.421(18) N1 C24 1.355(11) C16 C17 1.545(13) N1 C18 1.379(12) C3 C4 1.349(18) N1 C17 1.477(11) S1 O3 1.394(10) N2 C24 1.318(11) C4 C5 1.392(15) N2 C23 1.428(12) S1 O2 1.403(12) N2 C25 1.503(12) C5 C6 1.350(14) N3 C29 1.354(12) S1 C93 1.809(13) N3 C35 1.386(12) C6 C14 1.512(13) N3 C28 1.47(1) C7 C8 1.378(14) N4 C35 1.370(11) C7 C12 1.427(13) N4 C34 1.396(13) C7 C13 1.527(12) N4 C36 1.475(11) C8 C9 1.379(14) N5 C70 1.369(11) F2 C93 1.307(13) N5 C64 1.390(12) C9 C10 1.377(14) N5 C63 1.47(1) C60 C62 1.57(1) N6 C70 1.321(11) C10 C11 1.408(13) N6 C69 1.409(11) C61 C74 1.491(12) N6 C71 1.500 (11) C11 C12 1.367(11) N7 C81 1.372(11) C61 C62 1.552(11) N7 C75 1.384(12) C12 C14 1.527(12) N7 C74 1.472(10) C13 C15 1.534(12) N8 C81 1.381(10) C39 C40 1.410(15) N8 C80 1.382(12) C14 C16 1.554(11) N8 C82 1.503(11) C39 C46 1.481(15) O1 S1 1.412(10) C15 C28 1.509(12) F1 C93 1.301(14) C15 C16 1.553(12)

PAGE 499

499 Table A 53. Continued Bond Distance Bond Distance C40 C41 1.522(16) C41 C42 1.528(17) C18 C23 1.390(14) C82 C83 1.512(13) C18 C19 1.402(13) C82 C84 1.518(15) C19 C20 1.371(16) C42 C43 1.501(14) C 62 C63 1.545(13) C85 C86 1.392(14) C20 C21 1.373(16) C85 C92 1.527(15) C68 C69 1.381(13) C43 C44 1.414(14) C21 C22 1.412(16) C66 C67 1.417(14) C86 C87 1.557(15) C44 C45 1.549(17) C22 C23 1.378(14) C67 C68 1.389(14) C87 C88 1.492(15) C45 C46 1.594(17) C25 C27 1.475(17) C71 C72 1.489(14) C25 C26 1.544(16) C71 C73 1.550(16) C75 C76 1.383(15) C79 C80 1.442(13) C75 C80 1.395(12) C88 C89 1.506(15) C76 C77 1.400(15) C47 C48 1.403(13) C64 C65 1.389(12) C47 C52 1.420(13) C64 C69 1.403(12) C47 C59 1.478( 13) C65 C66 1.392(14) C48 C49 1.356(14) C90 C91 1.483(14) C77 C78 1.360(15) C49 C50 1.385(14) C89 C90 1.393(13) C91 C92 1.491(15) C78 C79 1.355(15) C29 C34 1.388(12) C50 C51 1.402(14) C29 C30 1.412(14) C55 C56 1.398(17) C30 C31 1.407(15) C51 C52 1.3 85(14) C57 C58 1.346(14) C56 C57 1.361(16) C31 C32 1.397(15) C52 C60 1.520(13) C36 C38 1.525(14) C53 C54 1.366(14) C36 C37 1.532(15) C53 C58 1.406(13) C32 C33 1.381(16) C53 C59 1.552(13) C33 C34 1.389(14) C54 C55 1.381(15) C59 C61 1.556(11) C58 C60 1.534(14)

PAGE 500

500 Table A 54 Bond angles (in ) for 24 i Pr Bond Angle Angle Bond Angle Angle C24 Ir1 C35 93.5(4) C35 N4 C36 123.6(9) C24 Ir1 C39 90.6(4) C34 N4 C36 125.6(8) C35 Ir1 C39 145.2(4) C70 N5 C64 109.8(7) C24 Ir1 C43 148.8(3) C70 N5 C63 128.0 (7) C35 Ir1 C43 98.0(4) C64 N5 C63 121.8(7) C39 Ir1 C43 96.0(4) C70 N6 C69 111.2(7) C24 Ir1 C40 86.7(4) C70 N6 C71 124.7(8) C35 Ir1 C40 177.4(4) C69 N6 C71 123.1(7) C39 Ir1 C40 37.4(4) C81 N7 C75 112.7(7) C43 Ir1 C40 80.6(4) C81 N7 C74 123.0(7) C24 Ir1 C44 171.4(4) C75 N7 C74 122.8(7) C35 Ir1 C44 90.4(4) C81 N8 C80 111.3(7) C39 Ir1 C44 81.8(5) C81 N8 C82 122.9(8) C43 Ir1 C44 37.4(4) C80 N8 C82 124.8(7) C40 Ir1 C44 89.8(5) O3 S1 O2 113.2(8) C81 Ir2 C70 94.9(4) O3 S1 O1 115.8(7) C81 Ir2 C85 142.2 (3) O2 S1 O1 115.6(7) C70 Ir2 C85 92.7(4) O3 S1 C93 104.1(5) C81 Ir2 C86 178.3(4) O2 S1 C93 102.3(6) C70 Ir2 C86 86.8(4) O1 S1 C93 103.5(7) C85 Ir2 C86 37.6(4) F1 C93 F3 104.2(11) C81 Ir2 C89 98.4(4) F1 C93 F2 104.3(12) C70 Ir2 C89 146.9(3) F3 C93 F2 107.7(10) C85 Ir2 C89 95.1(4) F1 C93 S1 114.3(9) C86 Ir2 C89 80.1(4) F3 C93 S1 112.2(10) C81 Ir2 C90 90.2(4) F2 C93 S1 113.4(7) C70 Ir2 C90 172.4(4) O6 S2 O5 114.1(4) C85 Ir2 C90 79.9(4) O6 S2 O4 115.3(4) C86 Ir2 C90 88.1(4) O5 S2 O4 114.8(5) C89 I r2 C90 36.9(3) O6 S2 C94 104.2(5) C24 N1 C18 110.1(8) O5 S2 C94 104.0(5) C24 N1 C17 127.4(8) O4 S2 C94 102.2(5) C18 N1 C17 122.1(8) F5 C94 F6 109.1(10) C24 N2 C23 110.9(7) F5 C94 F4 108.8(9) C24 N2 C25 124.1(8) F6 C94 F4 105.6(8) C23 N2 C25 124.9(8) F5 C94 S2 113.0(7) C29 N3 C35 110.1(7) F6 C94 S2 110.1(8) C29 N3 C28 124.7(8) F4 C94 S2 110.0(8)

PAGE 501

501 Table A 54. Continued Bond Angle Angle Bond Angle Angle C6 C1 C13 112.2(8) C28 C15 C13 114.9(8) C1 C2 C3 118.7(12) C28 C15 C16 111.8(7) C2 C1 C6 120.0(1 1) C13 C15 C16 109.1(7) C2 C1 C13 127.7(10) C6 C14 C16 108.7(6) C4 C3 C2 120.3(11) C12 C14 C16 104.0(7) C35 N3 C28 123.2(8) N2 C25 C26 107.9(8) C35 N4 C34 110.7(8) C17 C16 C15 113.7(7) C3 C4 C5 120.3(11) C17 C16 C14 110.2(7) C43 C44 Ir1 69.1(5) C15 C 16 C14 109.8(7) C45 C44 Ir1 110.1(8) C65 C64 N5 130.4(9) C6 C5 C4 121.1(11) C65 C64 C69 123.1(9) N5 C63 C62 109.3(7) N5 C64 C69 106.5(7) C64 C65 C66 115.9(8) N1 C17 C16 112.3(8) C5 C6 C1 119.5(10) C51 C52 C47 121.0(9) C5 C6 C14 126.9(10) C51 C52 C60 125.9(9) C1 C6 C14 113.6(8) C47 C52 C60 113.1(8) C8 C7 C12 120.7(8) C54 C53 C58 120.8(9) C8 C7 C13 126.8(9) C54 C53 C59 127.8(8) C12 C7 C13 112.5(8) N1 C18 C23 107.4(8) C7 C8 C9 119.5(10) N1 C18 C19 131.6(10) C58 C53 C59 111.4(8) C23 C18 C19 120.9(9) C53 C54 C55 119.4(10) C20 C19 C18 116.6(10) C10 C9 C8 120.1(9) C65 C66 C67 121.4(9) C54 C55 C56 118.0(12) C68 C67 C66 121.3(10) C57 C56 C55 123.0(11) C19 C20 C21 121.7(11) C9 C10 C11 121.3(8) C58 C57 C56 118.4(10) C90 C89 C88 124.5(10) C69 C68 C67 1 17.5(8) C90 C89 Ir2 72.2(6) C20 C21 C22 123.3(11) C12 C11 C10 118.9(9) C88 C89 Ir2 109.7(6) C90 C91 C92 112.0(9) C23 C22 C21 114(1) C91 C92 C85 116.0(9) C89 C90 C91 126.9(10) C11 C12 C7 119.4(9) C89 C90 Ir2 70.9(5) C11 C12 C14 128.0(8) C91 C90 Ir2 11 3.6(6) C7 C12 C14 112.5(7) C22 C23 C18 123.5(9) C1 C13 C7 106.5(7) C22 C23 N2 132.4(9) C1 C13 C15 106.7(8) C18 C23 N2 104.1(8) C7 C13 C15 108.9(7) N2 C24 N1 107.3(8) C48 C47 C52 119.1(9) N2 C24 Ir1 128.4(6)

PAGE 502

502 Table A 54. Continued Bond Angle Angle Bon d Angle Angle C48 C47 C59 127.3(8) N1 C24 Ir1 124.3(6) C52 C47 C59 113.6(8) C27 C25 N2 112.1(10) C6 C14 C12 107.4(8) C27 C25 C26 113.9(10) C74 C61 C62 110.4(7) C52 C60 C58 108.8(8) C74 C61 C59 114.3(7) C52 C60 C62 106.4(7) C62 C61 C59 110.2(6) C58 C6 0 C62 103.7(7) C52 C51 C50 118.3(10) C44 C45 C46 113.6(9) C57 C58 C53 120.5(10) C39 C46 C45 112.3(9) C57 C58 C60 125.0(9) C49 C48 C47 119.0(9) C53 C58 C60 114.5(8) C48 C49 C50 122.6(9) C47 C59 C53 109.9(7) C63 C62 C61 111.0(7) C47 C59 C61 106.9(7) C6 3 C62 C60 112.3(7) C53 C59 C61 104.7(7) C61 C62 C60 109.3(7) C49 C50 C51 120(1) C40 C39 C46 127.9(11) N3 C28 C15 114.8(7) C40 C39 Ir1 73.7(6) N6 C70 N5 107.2(8) C46 C39 Ir1 111.4(8) N6 C70 Ir2 128.5(6) C68 C69 C64 120.6(8) N5 C70 Ir2 123.7(6) C68 C69 N6 134.1(7) C72 C71 N6 113.4(9) C64 C69 N6 105.1(8) C72 C71 C73 113.1(9) C39 C40 C41 122.0(11) N3 C29 C34 108.7(8) C39 C40 Ir1 68.9(6) N3 C29 C30 130.3(8) C41 C40 Ir1 112.4(8) C34 C29 C30 121.0(9) N6 C71 C73 108.5(8) C31 C30 C29 116.9(9) N7 C74 C61 115.8(7) C79 C78 C77 125(1) C78 C77 C76 120.6(11) C78 C79 C80 115.1(9) C40 C41 C42 110.5(9) C32 C31 C30 120.7(11) C76 C75 N7 133.2(8) C85 C86 C87 120.6(10) C76 C75 C80 121.7(9) C85 C86 Ir2 70.1(6) N7 C75 C80 105.1(8) C33 C32 C31 122.1(10) C75 C76 C77 117.1(10) C87 C86 Ir2 113.4(7) C87 C88 C89 114.7(8) C88 C87 C86 111.3(9) C43 C42 C41 115.5(9) C32 C33 C34 117.4(9) N8 C81 Ir2 128.2(6) C86 C85 Ir2 72.3(6) N8 C82 C83 110.4(8) C92 C85 Ir2 108.8(8) N8 C82 C84 111.6(8) C29 C34 C33 121.9(10) C83 C82 C84 112.2(7) C29 C34 N4 105.3(8) C86 C85 C92 126.5(10) C33 C34 N4 132.8(9) C44 C43 C42 127.2(10)

PAGE 503

503 Table A 54. Continued Bond Angle Angle Bond Angle Angle N4 C35 N3 105.3(8) C44 C43 Ir1 73.5(6) N4 C35 Ir1 127.8(7) C42 C43 Ir1 108.5(7) N3 C35 Ir1 126.9(6) N8 C80 C75 107.1(8) N4 C36 C38 110.3(9) N8 C80 C79 132.5(8) N4 C36 C37 112.1(9) C75 C80 C79 120.3(9) C38 C36 C37 109.8(8) C43 C44 C45 122.5(12) N7 C81 N8 103.7(7) N7 C81 Ir2 127.9(5)

PAGE 504

504 Table A 55 Anisotropic displace ment parameters ( 2 x10 3 ) for 24 i Pr The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Ir1 19(1) 43(1) 23(1) 4(1) 2(1) 0(1) Ir2 20(1) 34(1) 20(1) 1(1) 3(1) 4(1) N1 26(4) 30(5) 26(4) 9(3) 0(3) 4(3) N2 31(4) 36(5) 26(4) 6(3) 6(3) 5(3) N3 21(4) 47(5) 29(4) 0(4) 8(3) 15(4) N4 27(4) 42(5) 28(4) 3(4) 6(3) 5(3) N5 16(3) 41(5) 29(4) 4(3) 2(3) 4(3) N6 17(4) 49(6) 23(4) 6(4) 5(3) 6(3) N7 10(3) 42(5) 31(4) 3(4) 4(3) 2( 3) N8 16(3) 34(5) 22(4) 0(3) 1(3) 2(3) O1 50(6) 97(8) 150(11) 2(8) 37(6) 3(5) F1 219(13) 87(7) 72(6) 7(5) 17(7) 27(7) S1 40(2) 63(2) 60(2) 9(2) 17(1) 1(1) O2 115(9) 168(13) 76(8) 33(8) 39(7) 52(9) F2 196(11) 49(6) 143(9) 5(5) 107(8) 5(6) O3 95 (7) 70(7) 96(8) 32(6) 38(6) 23(5) F3 79(6) 121(8) 168(11) 7(7) 76(7) 10(5) C93 62(7) 41(7) 53(7) 29(6) 25(6) 4(5) S2 24(1) 41(2) 27(1) 1(1) 2(1) 3(1) O4 27(4) 60(5) 63(6) 5(5) 3(4) 1(4) F4 79(5) 79(5) 37(4) 11(3) 20(3) 6(4) O5 32(4) 48(4) 42(4) 5(3) 5(3) 4(3) F5 79(5) 41(4) 51(4) 7(3) 2(4) 8(4) O6 45(4) 42(4) 28(4) 4(3) 3(3) 1(3) F6 40(3) 77(5) 78(5) 8(4) 3(3) 28(3) C94 43(6) 55(8) 41(6) 5(6) 5(5) 7(6) C1 19(4) 61(7) 30(5) 13(5) 7(4) 1(4) C2 28(5) 91(10) 45(7) 43(7) 3(5) 0(6) C3 30(6) 125(13) 32(6) 29(7) 3(5) 13(7) C4 27(5) 105(11) 26(6) 4(6) 11(4) 21(6) C5 41(6) 56(7) 31(5) 4(5) 22(4) 9(5) C6 24(4) 51(7) 33(5) 3(5) 11(4) 5(4) C7 31(4) 39(6) 16(4) 2(4) 8(4) 12(4) C8 59(6) 37(6) 29(5) 4(5) 19(5) 4(5) C9 40(6) 35(6) 65(8) 11(6) 5(5) 11(5) C10 19(4) 51(7) 33(5) 2(5) 10(4) 12(4) C11 19(4) 42(6) 23(5) 8(4) 13(3) 7(4)

PAGE 505

505 Table A 55. Continued U 11 U 22 U 33 U 23 U 13 U 12 C12 19(4) 43(6) 26(5) 6(4) 3(3) 0(4) C13 31(5) 35(6) 37(6) 9(4) 14(4) 5(4) C14 17(4) 33(5) 13(4) 4 (4) 6(3) 1(4) C15 11(3) 36(5) 22(4) 5(4) 0(3) 3(3) C16 17(4) 34(5) 28(5) 1(4) 0(3) 6(3) C17 34(5) 46(6) 26(5) 6(4) 14(4) 2(4) C18 33(5) 31(6) 36(6) 2(4) 1(4) 2(4) C19 33(5) 35(6) 52(7) 3(5) 8(5) 6(4) C20 42(6) 43(7) 67(8) 3(6) 3(6) 5(5) C 21 63(8) 58(8) 59(8) 25(7) 11(6) 15(6) C22 62(7) 61(8) 26(6) 1(5) 1(5) 13(6) C23 32(5) 29(5) 39(6) 5(4) 7(4) 0(4) C24 34(5) 33(6) 20(5) 1(4) 6(4) 10(4) C25 39(6) 78(9) 25(5) 14(5) 9(4) 13(5) C26 61(7) 93(10) 29(6) 16(6) 5(5) 27(7) C27 74( 8) 90(11) 73(9) 35(8) 49(8) 6(7) C28 18(4) 41(6) 29(5) 2(4) 9(4) 12(4) C29 18(4) 45(6) 30(5) 2(5) 1(4) 5(4) C30 29(5) 40(6) 46(6) 1(5) 1(4) 7(4) C31 42(6) 53(7) 56(8) 6(6) 4(6) 5(5) C32 51(7) 53(8) 49(7) 18(6) 4(5) 14(6) C33 47(6) 76(9) 32( 6) 9(6) 23(5) 17(6) C34 28(5) 49(6) 28(5) 6(5) 3(4) 7(4) C35 21(4) 40(6) 22(5) 4(4) 11(4) 12(4) C36 32(5) 61(7) 35(6) 10(5) 19(4) 2(5) C37 41(6) 70(9) 64(8) 1(7) 15(6) 23(6) C38 60(7) 62(8) 44(7) 10(6) 24(6) 12(6) C39 40(6) 46(7) 44(7) 18( 5) 7(5) 12(5) C40 33(6) 48(7) 48(7) 10(5) 2(5) 3(5) C41 35(6) 74(9) 37(6) 19(6) 4(5) 13(6) C42 45(6) 68(8) 29(6) 7(5) 5(5) 9(6) C43 19(4) 52(7) 23(5) 9(5) 0(4) 3(4) C44 29(5) 90(10) 48(7) 12(7) 11(5) 17(6) C45 15(5) 105(11) 44(7) 14(7) 1(4) 3(5) C46 28(5) 79(9) 54(8) 3(7) 4(5) 21(5) C47 26(4) 46(6) 24(5) 1(4) 8(4) 2(4) C48 21(4) 48(6) 32(5) 7(5) 8(4) 2(4) C49 36(5) 61(7) 15(5) 16(5) 15(4) 8(5)

PAGE 506

506 Table A 55. Continued U 11 U 22 U 33 U 23 U 13 U 12 C50 37(5) 38(6) 44(6) 1(5) 13(5) 2(4) C5 1 30(5) 50(7) 36(6) 6(5) 5(4) 5(5) C52 18(4) 47(6) 16(4) 8(4) 9(3) 0(4) C53 24(4) 45(6) 31(5) 4(4) 10(4) 5(4) C54 28(5) 59(8) 39(6) 5(5) 8(4) 11(5) C55 51(7) 47(7) 57(7) 8(6) 31(6) 16(5) C56 27(6) 95(11) 50(7) 13(7) 15(5) 1(6) C57 25(5) 50(7) 41( 6) 9(5) 9(4) 0(4) C58 23(4) 48(6) 33(5) 6(5) 17(4) 3(4) C59 20(4) 40(5) 20(4) 12(4) 2(3) 1(4) C60 17(4) 58(7) 25(5) 11(5) 11(4) 10(4) C61 14(4) 38(5) 20(4) 6(4) 0(3) 3(3) C62 20(4) 41(5) 14(4) 8(4) 11(3) 5(4) C63 14(4) 49(6) 19(4) 5(4) 5(3) 1 1(4) C64 27(5) 46(6) 23(5) 11(4) 1(4) 7(4) C65 25(4) 41(6) 37(6) 2(5) 9(4) 1(4) C66 26(5) 66(8) 33(6) 5(5) 3(4) 7(5) C67 42(6) 85(10) 39(7) 15(6) 3(5) 10(6) C68 23(4) 59(7) 30(5) 2(5) 7(4) 4(4) C69 17(4) 49(6) 23(5) 6(4) 5(3) 0(4) C70 28(5) 4 0(6) 18(4) 6(4) 6(4) 6(4) C71 25(5) 81(9) 21(5) 15(5) 0(4) 10(5) C72 26(5) 76(8) 46(7) 11(6) 10(5) 1(5) C73 46(6) 47(7) 54(7) 10(6) 3(5) 2(5) C74 27(4) 33(5) 17(4) 2(4) 6(3) 4(4) C75 17(4) 40(6) 37(5) 0(5) 2(4) 2(4) C76 28(5) 51(7) 51(7) 10(6) 13(5) 12(5) C77 72(8) 33(6) 36(6) 1(5) 0(6) 4(6) C78 36(5) 29(6) 46(6) 3(5) 1(5) 7(4) C79 21(4) 63(8) 30(5) 1(5) 3(4) 10(5) C80 22(4) 46(6) 29(5) 3(4) 7(4) 2(4) C81 13(4) 36(5) 19(4) 9(4) 5(3) 3(4) C82 14(4) 34(6) 39(6) 2(4) 7(4) 2(4) C8 3 18(4) 51(7) 49(7) 0(5) 6(4) 1(4) C84 33(5) 47(7) 53(7) 3(5) 18(5) 5(5) C85 42(6) 44(7) 42(6) 10(5) 14(5) 5(5) C86 47(6) 38(6) 41(7) 4(5) 6(5) 14(5) C87 59(7) 28(6) 58(7) 7(5) 27(6) 12(5)

PAGE 507

507 Table A 55. Continued U 11 U 22 U 33 U 23 U 13 U 12 C88 39(6 ) 66(8) 43(6) 21(6) 10(5) 6(6) C89 44(6) 54(7) 12(4) 12(4) 6(4) 12(5) C90 28(5) 61(7) 20(5) 14(5) 6(4) 0(5) C91 31(5) 47(7) 45(6) 3(5) 6(5) 2(5) C92 42(6) 48(7) 64(8) 1(6) 8(6) 3(5)

PAGE 508

508 Figure A 176 Molecular structure of 25 diPh with ellipsoids draw n at the 50% probability level. Triflate counter ion omitted for clarity. X ray experimental data for 25 diPh : Data are collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromato r utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data col lection to monitor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined usin g full matrix least squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. The asymmetric unit consists of the Pd complex cation, a triflate anio n and a THF molecule. The latter is disordered and could not be modeled properly, thus program SQUEEZE, a part of the PLATON

PAGE 509

509 package of crystallographic software, is used to calculate the solvent disorder area and remove its contribution to the overall in tensity data. The C59 C61 group is disordered with the middle CH unit occupying two positions. The disordered parts are refined with dependent occupation factors. All atoms of the triflate anion are disordered except the S atom. The final model refines two parts with their site occupation factors fixed at 50%. A total of 650 parameters are refined in the final cycle of refinement using 8485 reflections with I > 2 (I) to yield R 1 and wR 2 of 5.52 % and 14.20 %, respectively. Refinement is done using F 2 P. van der Sluis & A.L. Spek (1990). SQUEEZE, Acta Cryst. A46, 194 201 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA. Spek, A.L. (1990). PLATON, Acta Cryst. A46, C 34

PAGE 510

510 Table A 56 Crystal data, structure solution and refineme nt for 25 diPh identification code mj24 empirical formula C 66 H 59 N 4 Pd F 3 O 3 S formula weight 1151.63 T (K) 173(2) ( ) 0.71073 crystal system monoclinic space group P2(1)/c a ( ) 11.2878(8) b ( ) 26.8378(19) c ( ) 18.4977(13) (deg) 90 (de g) 96.4820(10) (deg) 90 V ( 3 ) 5567.9(7) Z 4 calcd (Mg m 3 ) 1.374 crystal size (mm 3 ) 0.19 x 0.19 x 0.08 abs coeff (mm 1 ) 0.432 F (000) 2384 range for data collection 1.48 to 27.50 limiting indices h k no. of reflns coll cd 37347 no. of ind reflns ( R int ) 12743 (0.9224) completeness to = 27.45 99.7 % absorption corr Integration refinement method Full matrix least squares on F 2 data / restraints / parameters 12743 / 60 / 650 R 1, a wR 2 b [I > 2 ] 0.0552, 0.1420 R 1, a wR 2 b (all data) 0.0853, 0.1522 GOF c on F 2 0.984 largest diff. peak and hole 1.101 and 1.002 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [ma x(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 511

511 Table A 57 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 25 diPh Atom X Y Z U(eq) Pd1 3053(1) 788(1) 2119(1) 24(1) S1 244(1) 2287(1) 4854(1) 54(1) F1 1366(5) 3099(3) 4 398(3) 86(1) F2 432(5) 3043(3) 4143(3) 86(1) F3 85(5) 3252(3) 5214(3) 86(1) O1 993(4) 2148(4) 4979(4) 70(1) O2 894(5) 2047(3) 4242(3) 70(1) O3 850(5) 2284(3) 5505(3) 70(1) C62 269(5) 2917(3) 4672(3) 64(2) F1' 1081(5) 3162(3) 4703(3) 86(1) F2' 7 89(5) 3150(3) 4568(3) 86(1) F3' 234(5) 3041(3) 5619(3) 86(1) O1' 941(4) 2116(4) 5100(4) 70(1) O2' 539(6) 2220(3) 4071(2) 70(1) O3' 1160(5) 2138(3) 5275(3) 70(1) C62' 50(5) 2902(3) 4908(3) 64(2) N1 1985(2) 974(1) 3543(2) 22(1) N2 2439(2) 191(1) 34 43(2) 25(1) N3 5411(2) 983(1) 3082(2) 22(1) N4 5759(2) 510(1) 2184(2) 24(1) C1 3824(3) 2455(1) 2647(2) 26(1) C2 3905(4) 2589(1) 1929(2) 34(1) C3 2967(4) 2833(2) 1534(2) 40(1) C4 1937(4) 2946(2) 1853(2) 42(1) C5 1855(3) 2816(1) 2568(2) 34(1) C6 2781 (3) 2566(1) 2967(2) 25(1) C7 4971(3) 2412(1) 3865(2) 25(1) C8 6081(3) 2497(1) 4247(2) 33(1) C9 6166(4) 2721(1) 4930(2) 36(1) C10 5148(4) 2863(2) 5224(2) 39(1) C11 4017(4) 2770(1) 4849(2) 32(1) C12 3941(3) 2545(1) 4175(2) 26(1) C13 4720(3) 2152(1) 31 40(2) 24(1) C14 2798(3) 2371(1) 3729(2) 26(1) C15 4008(3) 1670(1) 3273(2) 23(1) C16 2963(3) 1794(1) 3711(2) 23(1) C17 1836(3) 1510(1) 3412(2) 25(1) C18 1796(3) 750(1) 4200(2) 26(1)

PAGE 512

512 Table A 57. Continued Atom X Y Z U(eq) C19 1440(3) 951(2) 4833(2) 34 (1) C20 1343(4) 625(2) 5397(2) 44(1) C21 1596(4) 119(2) 5336(2) 49(1) C22 1959(4) 81(2) 4713(2) 41(1) C23 2073(3) 246(1) 4136(2) 30(1) C24 2415(3) 636(1) 3092(2) 23(1) C25 2720(3) 277(1) 3078(2) 28(1) C26 1603(3) 511(1) 2679(2) 30(1) C27 1674(5) 720(2) 2014(3) 59(1) C28 691(6) 953(2) 1637(3) 82(2) C29 370(5) 969(2) 1924(3) 55(1) C30 453(4) 760(2) 2576(3) 55(1) C31 528(4) 531(2) 2963(3) 49(1) C32 3470(3) 624(2) 3599(2) 35(1) C33 3148(5) 1112(2) 3703(3) 59(1) C34 3899(7) 1427(2) 41 40(3) 85(2) C35 4940(7) 1261(3) 4470(3) 91(3) C36 5268(5) 771(3) 4387(3) 75(2) C37 4523(4) 451(2) 3953(2) 51(1) C38 4791(3) 1250(1) 3618(2) 24(1) C39 6641(3) 914(1) 3146(2) 25(1) C40 7547(3) 1117(1) 3638(2) 29(1) C41 8694(3) 980(2) 3540(2) 36(1) C42 8926(3) 656(2) 2982(2) 37(1) C43 8040(3) 464(2) 2499(2) 34(1) C44 6873(3) 608(1) 2580(2) 25(1) C45 4864(3) 742(1) 2493(2) 23(1) C46 5536(3) 204(1) 1517(2) 26(1) C47 6525(3) 289(2) 1029(2) 34(1) C48 6747(4) 765(2) 802(2) 43(1) C49 7673(5) 861(2) 395(3) 61(1) C50 8372(5) 474(3) 197(3) 72(2) C51 8146(5) 4(3) 398(3) 70(2) C52 7219(4) 99(2) 813(2) 48(1) C53 5316(3) 341(1) 1678(2) 29(1) C54 4655(4) 622(2) 1147(2) 42(1) C55 4465(5) 1126(2) 1247(3) 56(1) C56 4926(5) 1348(2) 1893(3) 55(1)

PAGE 513

513 T able A 57. Continued Atom X Y Z U(eq) C57 5586(4) 1076(2) 2419(3) 51(1) C58 5781(4) 573(2) 2320(2) 39(1) C59 1321(4) 883(2) 1516(2) 47(1) C60 2135(5) 1196(3) 1225(3) 41(2) C60' 2110(14) 790(7) 1059(8) 57(5) C61 3156(4) 1013(2) 993(2) 51(1)

PAGE 514

514 Table A 58 Bond lengths (in ) for 25 diPh Bond Distance Bond Distance Pd1 C24 2.053(3) C34 C35 1.338(10) Pd1 C45 2.086(3) C35 C36 1.379(9) Pd1 C60' 2.124(15) C36 C37 1.391(7) Pd1 C60 2.150(6) C39 C44 1.379(5) Pd1 C59 2.154(4) C39 C40 1.401(5) Pd1 C61 2.184(4) C40 C41 1.377(5) S1 O3' 1.421(4) C41 C42 1.397(6) S1 O2 1.430(4) C42 C43 1.365(5) S1 O1 1.439(4) C43 C44 1.397(5) S1 O1' 1.439(4) C46 C53 1.519(5) S1 O3 1.451(4) C46 C47 1.529(5) S1 O2' 1.459(4) C47 C48 1.376(6) S1 C62' 1.665(8) C47 C52 1.388(6) S1 C62 1.724(8) C48 C49 1.379(6) F1 C62 1.374(5) C49 C50 1.378(8) F2 C62 1.368(5) C50 C51 1.349(8) F3 C62 1.372(5) C51 C52 1.394(6) F1' C62' 1.374(5) C53 C54 1.387(5) F2' C62' 1.368(5) C53 C58 1.389(5) F3' C62' 1.368( 5) C54 C55 1.385(6) N1 C24 1.359(4) C55 C56 1.383(7) N1 C18 1.395(4) C56 C57 1.370(7) N1 C17 1.465(4) C57 C58 1.384(6) N2 C24 1.358(4) C59 C60' 1.320(16) N2 C23 1.399(5) C59 C60 1.397(8) N2 C25 1.477(5) C59 H59A 0.96 N3 C45 1.354(4) C59 H59B 0.9601 N3 C39 1.392(4) C59 H59C 0.9601 N3 C38 1.463(4) C59 H59D 0.9601 N4 C45 1.367(4) C60 C61 1.367(8) N4 C44 1.407(4) C60 H59C 1.4411 N4 C46 1.479(4) C60 H60A 0.9599 C1 C2 1.388(5) C60 H61D 1.4087 C1 C6 1.409(5) C60' C61 1.341(16) C1 C13 1.518(5) C60' H 59B 1.3783 C2 C3 1.382(5) C32 C37 1.372(6) C3 C4 1.396(6) C32 C33 1.377(6) C4 C5 1.382(6) C33 C34 1.391(7)

PAGE 515

515 Table A 58. Continued Bond Distance Bond Distance C5 C6 1.383(5) C18 C19 1.388(5) C6 C14 1.501(5) C18 C23 1.396(5) C7 C8 1.386(5) C19 C20 1.3 76(6) C7 C12 1.400(5) C20 C21 1.394(6) C7 C13 1.510(5) C21 C22 1.374(6) C8 C9 1.392(5) C22 C23 1.398(5) C9 C10 1.379(6) C25 C26 1.522(5) C10 C11 1.405(6) C25 C32 1.528(5) C11 C12 1.380(5) C26 C27 1.364(6) C12 C14 1.524(5) C26 C31 1.377(6) C13 C15 1 .557(5) C27 C28 1.390(7) C14 C16 1.561(5) C28 C29 1.364(8) C15 C38 1.528(5) C29 C30 1.343(7) C15 C16 1.540(5) C30 C31 1.392(6) C16 C17 1.532(5) C18 C19 1.388(5)

PAGE 516

516 Table A 59 Bond angles (in ) for 25 diPh Bond Angle Angle Bond Ang le Angle C24 Pd1 C45 97.21(13) N1 C17 C16 110.7(3) C24 Pd1 C60' 128.4(4) C19 C18 N1 130.8(3) C45 Pd1 C60' 132.6(4) C19 C18 C23 122.5(3) C24 Pd1 C60 126.11(19) N1 C18 C23 106.7(3) C45 Pd1 C60 130.88(19) C20 C19 C18 116.5(4) C60' Pd1 C60 30.7(4) C19 C2 0 C21 121.6(4) C24 Pd1 C59 95.13(15) C22 C21 C20 122.0(4) C45 Pd1 C59 167.63(15) C21 C22 C23 117.2(4) C60' Pd1 C59 35.9(4) C18 C23 C22 120.2(3) C60 Pd1 C59 37.9(2) C18 C23 N2 105.7(3) C24 Pd1 C61 162.26(15) C22 C23 N2 134.1(4) C45 Pd1 C61 100.17(15) N2 C24 N1 106.4(3) C60' Pd1 C61 36.2(4) N2 C24 Pd1 127.2(3) C60 Pd1 C61 36.8(2) N1 C24 Pd1 126.1(2) C59 Pd1 C61 67.46(17) N2 C25 C26 111.3(3) O3' S1 O2 88.0(4) N2 C25 C32 111.2(3) O3' S1 O1 126.3(5) C26 C25 C32 115.1(3) O2 S1 O1 114.4(3) C27 C26 C31 118.1(4) O3' S1 O1' 116.4(3) C27 C26 C25 118.5(4) O2 S1 O1' 118.9(6) C31 C26 C25 123.3(4) O1 S1 O1' 10.1(6) C26 C27 C28 120.9(5) O3' S1 O3 26.2(4) C29 C28 C27 120.3(5) O2 S1 O3 114.0(3) C30 C29 C28 119.3(4) O1 S1 O3 113.8(3) C29 C30 C31 120.9(5) O1' S1 O3 104.1(4) C26 C31 C30 120.4(4) O3' S1 O2' 114.2(3) C37 C32 C33 118.9(4) O2 S1 O2' 28.4(3) C37 C32 C25 118.9(4) O1 S1 O2' 103.7(4) C33 C32 C25 122.1(4) O1' S1 O2' 112.1(3) C32 C33 C34 120.4(5) O3 S1 O2' 138.3(4) C35 C34 C33 120.5(6) O3' S1 C62' 110.1(4) C34 C35 C36 120.0(5) O2 S1 C62' 123.1(4) C35 C36 C37 120.0(6) O1 S1 C62' 97.5(5) C32 C37 C36 120.1(5) O1' S1 C62' 100.7(5) N3 C38 C15 112.2(3) O3 S1 C62' 91.5(4) C44 C39 N3 106.7(3) O2' S1 C62' 101.3(4) C44 C39 C40 122.6(3) O3' S1 C62 112.7( 4) N3 C39 C40 130.7(3) O2 S1 C62 107.0(4) C41 C40 C39 116.0(4)

PAGE 517

517 Table A 59. Continued Bond Angle Angle Bond Angle Angle O1 S1 C62 106.3(5) C40 C41 C42 121.4(4) O1' S1 C62 111.7(5) C43 C42 C41 122.2(4) O3 S1 C62 99.7(4) C42 C43 C44 117.2(4) O2' S1 C62 86.1(4) C39 C44 C43 120.5(3) C62' S1 C62 16.1(3) C39 C44 N4 105.8(3) F2 C62 F3 102.5(5) C43 C44 N4 133.7(3) F2 C62 F1 102.6(4) N3 C45 N4 105.2(3) F3 C62 F1 102.3(4) N3 C45 Pd1 125.4(2) F2 C62 S1 112.6(5) N4 C45 Pd1 129.2(2) F3 C62 S1 120.2(5) N4 C46 C53 112.8(3) F1 C62 S1 114.5(5) N4 C46 C47 110.0(3) F2' C62' F3' 102.1(4) C53 C46 C47 113.9(3) F2' C62' F1' 103.5(4) C48 C47 C52 118.7(4) F3' C62' F1' 103.0(5) C48 C47 C46 119.3(4) F2' C62' S1 123.2(6) C52 C47 C46 122.1(4) F3' C62' S1 110.1(5) C47 C 48 C49 121.0(5) F1' C62' S1 112.7(5) C50 C49 C48 119.8(5) C24 N1 C18 110.4(3) C51 C50 C49 120.0(5) C24 N1 C17 126.6(3) C50 C51 C52 120.9(5) C18 N1 C17 122.8(3) C47 C52 C51 119.6(5) C24 N2 C23 110.8(3) C54 C53 C58 119.0(4) C24 N2 C25 121.4(3) C54 C53 C46 118.1(3) C23 N2 C25 127.6(3) C58 C53 C46 122.9(3) C45 N3 C39 111.4(3) C55 C54 C53 120.9(4) C45 N3 C38 124.6(3) C56 C55 C54 119.3(4) C39 N3 C38 123.8(3) C57 C56 C55 120.3(4) C45 N4 C44 110.8(3) C56 C57 C58 120.6(4) C45 N4 C46 122.6(3) C57 C58 C53 119.9(4) C44 N4 C46 126.6(3) C60' C59 C60 49.1(7) C2 C1 C6 119.7(3) C60' C59 Pd1 70.8(7) C2 C1 C13 127.0(3) C60 C59 Pd1 70.9(3) C6 C1 C13 113.1(3) C60' C59 H59A 163.1 C3 C2 C1 120.0(4) C60 C59 H59A 117 C2 C3 C4 120.4(4) Pd1 C59 H59A 116.7 C5 C4 C3 1 19.9(4) C60' C59 H59B 72.4 C4 C5 C6 120.4(4) C60 C59 H59B 115.9 C5 C6 C1 119.7(3) Pd1 C59 H59B 116.5 C5 C6 C14 126.8(3) H59A C59 H59B 113.5

PAGE 518

518 Table A 59. Continued Bond Angle Angle Bond Angle Angle C1 C6 C14 113.5(3) C60' C59 H59C 116.4 C8 C7 C12 119. 6(3) C60 C59 H59C 72.7 C8 C7 C13 126.7(3) Pd1 C59 H59C 116.6 C12 C7 C13 113.6(3) H59A C59 H59C 46.9 C7 C8 C9 120.0(4) H59B C59 H59C 125.8 C10 C9 C8 120.1(4) C60' C59 H59D 116.5 C9 C10 C11 120.5(4) C60 C59 H59D 162.6 C12 C11 C10 119.0(4) Pd1 C59 H59D 116.7 C11 C12 C7 120.8(3) H59A C59 H59D 74.9 C11 C12 C14 125.9(3) H59B C59 H59D 46.9 C7 C12 C14 113.0(3) H59C C59 H59D 113.5 C7 C13 C1 109.4(3) C61 C60 C59 121.3(6) C7 C13 C15 106.9(3) C61 C60 Pd1 73.0(3) C1 C13 C15 102.6(3) C59 C60 Pd1 71.2(3) C6 C 14 C12 108.8(3) C61 C60 H59C 160.7 C6 C14 C16 108.3(3) C59 C60 H59C 39.5 C12 C14 C16 102.6(3) Pd1 C60 H59C 96.6 C38 C15 C16 112.4(3) C61 C60 H60A 119.1 C38 C15 C13 113.3(3) C59 C60 H60A 118.7 C16 C15 C13 110.1(3) H59B C60' H60B 74.3 C17 C16 C15 110.9 (3) C59 C60' H61A 170.6 C17 C16 C14 113.9(3) C61 C60' H61A 40.9 C15 C16 C14 109.0(3) Pd1 C60' H61A 100.7 Pd1 C60 H60A 118.9 H59B C60' H61A 147.8 H59C C60 H60A 80.1 H60B C60' H61A 74.7 C61 C60 H61D 40.4 C60' C61 C60 49.4(7) C59 C60 H61D 161.6 C60' C61 Pd1 69.4(7) Pd1 C60 H61D 99.1 C60 C61 Pd1 70.3(3) H59C C60 H61D 158.6 C60' C61 H61A 73 H60A C60 H61D 79.6 C60 C61 H61A 116.3 C59 C60' C61 129.7(14) Pd1 C61 H61A 116.7 C59 C60' Pd1 73.3(7) C60' C61 H61B 163.8 C61 C60' Pd1 74.3(7) C60 C61 H61B 116.7 C59 C60' H59B 41.6 Pd1 C61 H61B 116.7 C61 C60' H59B 171.3 H61A C61 H61B 113.6 Pd1 C60' H59B 99.8 C60' C61 H61C 117.1 C59 C60' H60B 114.2 C60 C61 H61C 163.3 C61 C60' H60B 113.8 Pd1 C61 H61C 116.9

PAGE 519

519 Table A 59. Continued Bond Angle Angle Bond Angle Angle Pd1 C60' H60B 114.1 H61A C61 H61C 47.3 H61B C61 H61C 74.7 H61C C61 H61D 113.7 C60' C61 H61D 116.2 H61A C61 H61D 125.3 C60 C61 H61D 72.1 H61B C61 H61D 47.6 Pd1 C61 H61D 116.6

PAGE 520

520 Table A 60 Anisotropic displacement p arameters ( 2 x10 3 ) for 25 diPh The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd1 22(1) 27(1) 23(1) 1(1) 0(1) 0(1) S1 44(1) 58(1) 59(1) 8(1) 7(1) 1(1) N1 20(1) 20(2) 2 6(2) 1(1) 3(1) 2(1) N2 25(2) 24(2) 27(2) 2(1) 6(1) 1(1) N3 23(1) 17(1) 25(2) 3(1) 0(1) 2(1) N4 24(2) 22(2) 25(2) 0(1) 7(1) 2(1) C1 30(2) 21(2) 28(2) 1(2) 1(2) 4(1) C2 42(2) 32(2) 27(2) 1(2) 8(2) 5(2) C3 54(3) 37(2) 27(2) 6(2) 5(2) 6(2) C4 4 1(2) 38(2) 44(2) 5(2) 9(2) 8(2) C5 29(2) 31(2) 40(2) 1(2) 1(2) 1(2) C6 27(2) 18(2) 30(2) 3(2) 4(2) 1(1) C7 31(2) 19(2) 26(2) 1(1) 5(2) 1(1) C8 32(2) 30(2) 36(2) 2(2) 3(2) 5(2) C9 41(2) 30(2) 35(2) 1(2) 8(2) 7(2) C10 57(3) 33(2) 27(2) 5(2) 1(2) 7(2) C11 41(2) 25(2) 32(2) 4(2) 11(2) 3(2) C12 31(2) 20(2) 27(2) 0(1) 5(2) 1(1) C13 22(2) 24(2) 26(2) 1(1) 6(1) 0(1) C14 28(2) 21(2) 29(2) 4(2) 6(2) 3(1) C15 23(2) 21(2) 25(2) 3(1) 1(1) 2(1) C16 22(2) 22(2) 25(2) 0(1) 3(1) 0(1) C17 22(2 ) 21(2) 33(2) 2(2) 5(1) 1(1) C18 21(2) 30(2) 27(2) 2(2) 1(1) 5(2) C19 30(2) 34(2) 38(2) 5(2) 6(2) 2(2) C20 53(3) 49(3) 32(2) 2(2) 17(2) 0(2) C21 65(3) 45(3) 40(2) 14(2) 21(2) 7(2) C22 56(3) 31(2) 39(2) 8(2) 16(2) 1(2) C23 28(2) 32(2) 31(2) 0(2) 7 (2) 3(2) C24 19(2) 22(2) 29(2) 1(1) 1(1) 4(1) C25 32(2) 26(2) 28(2) 3(2) 7(2) 2(2) C26 35(2) 20(2) 33(2) 5(2) 2(2) 2(2) C27 61(3) 74(4) 46(3) 18(3) 23(2) 29(3) C28 105(5) 98(5) 44(3) 30(3) 13(3) 51(4) C29 57(3) 54(3) 51(3) 2(2) 13(2) 23(2) C30 37(2) 57(3) 69(3) 8(3) 7(2) 11(2) C31 38(2) 58(3) 50(3) 15(2) 4(2) 9(2)

PAGE 521

521 Table A 60. Continued U 11 U 22 U 33 U 23 U 13 U 12 C32 36(2) 36(2) 31(2) 0(2) 5(2) 12(2) C33 93(4) 31(3) 50(3) 6(2) 9(3) 12(3) C34 153(6) 52(4) 46(3) 9(3) 10(4) 44(4) C35 129(6) 106(6) 34(3) 8(3) 7(3) 92(5) C36 55(3) 126(6) 40(3) 15(3) 9(2) 41(4) C37 43(3) 71(3) 40(2) 3(2) 1(2) 16(2) C38 22(2) 25(2) 26(2) 2(1) 2(1) 2(1) C39 24(2) 22(2) 30(2) 3(2) 2(2) 2(1) C40 28(2) 25(2) 34(2) 1(2) 3(2) 1(2) C41 24(2) 39(2) 43 (2) 5(2) 3(2) 3(2) C42 21(2) 45(3) 44(2) 6(2) 3(2) 3(2) C43 27(2) 38(2) 37(2) 1(2) 7(2) 5(2) C44 24(2) 22(2) 28(2) 2(2) 3(1) 0(1) C45 26(2) 19(2) 24(2) 3(1) 5(1) 0(1) C46 31(2) 25(2) 24(2) 3(2) 4(2) 2(2) C47 39(2) 36(2) 29(2) 2(2) 8(2) 0(2) C48 47(2) 44(3) 37(2) 4(2) 5(2) 5(2) C49 67(3) 68(4) 49(3) 13(3) 12(3) 23(3) C50 58(3) 106(5) 59(3) 0(3) 35(3) 22(3) C51 56(3) 93(5) 68(4) 15(3) 33(3) 4(3) C52 48(3) 54(3) 45(3) 3(2) 17(2) 6(2) C53 34(2) 24(2) 31(2) 3(2) 12(2) 3(2) C54 58(3) 29(2) 40(2) 7(2) 9(2) 4(2) C55 73(3) 35(3) 60(3) 17(2) 9(3) 8(2) C56 83(4) 20(2) 66(3) 2(2) 26(3) 6(2) C57 72(3) 33(3) 49(3) 10(2) 10(2) 10(2) C58 47(2) 32(2) 39(2) 0(2) 7(2) 3(2) C59 33(2) 70(3) 34(2) 2(2) 10(2) 6(2) C61 52(3) 71(3) 29(2) 19(2) 1(2 ) 7(2)

PAGE 522

522 Figure A 177 Molecular structure of 25 o xyxyl with ellipsoids draw n at the 50% probability level. Hydrogen atoms and triflate counter ion omitted for clarity. X ray experimental data for 25 o xyxyl : Data are collected at 100 K on a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters are refined using up to 8192 reflections. A full sphere of data (1850 frames) is collected using the scan method (0.3 frame width). The first 50 frames are re measured at the end of data collection to moni tor instrument and crystal stability (maximum correction on I is < 1 %). Absorption corrections by integration are applied based on measured indexed crystal faces. The structure is solved by the Direct Methods in SHELXTL6, and refined using full matrix l east squares. The non H atoms are treated anisotropically, whereas the hydrogen atoms are calculated in ideal positions and are riding on their respective carbon atoms. The asymmetric unit consists of the Pd complex cation, a triflate anion and a THF mol ecule disordered against a

PAGE 523

523 chloroform solvent molecule. The C19 C21 allyl group is disordered with the middle CH unit occupying two positions. The disordered parts are refined with dependent occupation factors; major to minor ration refined to 0.78(1) to 0.22(1), respectively. The THF molecule site occupation factor is fixed at 0.7 while that of the chloroform molecule is fixed at 0.3. A total of 552 parameters a re refined in the final cycle of refinement using 9418 reflections with I > 2 (I) to yield R 1 and wR 2 of 2.48 % and 6.46%, respectively. Refinement i s done using F 2 SHELXTL6 (2000). Bruker AXS, Madison, Wisconsin, USA.

PAGE 524

524 Table A 61 Crystal data, structure solution and refinement for 25 o xyxyl identifi cation code mj28 empirical formula C 47 H 43 ClN 4 Pd F 3 O 4 S formula weight 958.76 T (K) 100(2) ( ) 0.71073 crystal system monoclinic space group P2(1) a ( ) 10.7929(10) b ( ) 18.7805(17) c ( ) 11.1768(10) (deg) 90 (deg) 108.9260(10) (deg) 90 V ( 3 ) 2143.0(3) Z 2 calcd (Mg mm 3 ) 1.486 crystal size (mm 3 ) 0.28 x 0.22 x 0.09 abs coeff (mm 1 ) 0.607 F (000) 982 range for data collection 1.93 to 27.50 limiting indices h k no. of reflns coll cd 19749 no. of ind reflns ( R int ) 9600 (0.0149) completeness to = 27.45 99.8 % absorption corr Numerical refinement method Full matrix least squares on F 2 data / restraints / parameters 9600 / 4 / 552 R 1, a wR 2 b [I > 2 ] 0.0248, 0.0646 R 1, a wR 2 b (all data) 0.0255, 0.0650 GOF c on F 2 1.043 largest diff. peak and hole 1.047 and 0.742 e 3 R1 = (||F o | |F c ||) / |F o | wR2 = [ w(F o 2 F c 2 ) 2 ] / w F o 2 2 ]] 1/2 S = [ w(F o 2 F c 2 ) 2 ] / (n p)] 1/2 w= 1/[ 2 (F o 2 )+(m*p) 2 +n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 525

525 Table A 62 Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters 2 x 10 3 ) for 25 o xyxyl At om X Y Z U(eq) Pd1 7504(1) 5174(1) 692(1) 15(1) S1 7681(1) 9518(1) 2898(1) 22(1) F1 8595(2) 9857(1) 1064(2) 53(1) F2 9751(2) 9082(1) 2360(2) 54(1) F3 9833(2) 10172(2) 2924(2) 69(1) O1 7063(2) 10204(2) 2768(2) 39(1) O2 8347(2) 9298(1) 4175(2) 32(1) O3 6926(2) 8971(1) 2086(2) 38(1) O4 5771(7) 7617(3) 4785(5) 107(2) N1 5494(2) 5205(1) 2054(2) 18(1) N2 8089(2) 6562(1) 2091(2) 17(1) N3 7219(2) 4636(1) 3180(2) 16(1) N4 9583(2) 5794(1) 3033(2) 16(1) C1 8539(2) 5902(1) 1977(2) 16(1) C2 8842(2) 6884(1 ) 3222(2) 19(1) C3 8764(2) 7548(1) 3739(3) 27(1) C4 9686(2) 7688(2) 4912(3) 34(1) C5 10634(3) 7186(2) 5529(3) 36(1) C6 10727(2) 6524(1) 5007(2) 26(1) C7 9798(2) 6388(1) 3829(2) 19(1) C8 6977(2) 6918(1) 1168(2) 18(1) C9 5628(2) 6758(1) 1316(2) 17(1) C10 4854(2) 6173(1) 376(2) 17(1) C11 4473(2) 5506(1) 967(2) 22(1) C12 5305(2) 5066(1) 3208(2) 19(1) C13 4276(2) 5215(2) 3660(2) 31(1) C14 4397(3) 4964(2) 4861(3) 38(1) C15 5495(3) 4579(2) 5579(3) 38(1) C16 6539(3) 4446(2) 5132(2) 30(1) C17 6417(2) 4696(1) 3937(2) 20(1) C18 6662(2) 4942(1) 2032(2) 16(1) C19 8183(3) 5317(2) 920(2) 36(1) C20 6919(3) 5072(2) 1332(3) 24(1) C20' 7593(11) 4692(7) 1053(11) 27(3) C21 6505(3) 4464(1) 862(2) 25(1) C22 4803(2) 7463(1) 1068(2) 18(1) C23 3558(2) 6501(1 ) 547(2) 18(1) C24 3475(2) 7281(1) 1167(2) 19(1)

PAGE 526

526 Table A 62. Continued Atom X Y Z U(eq) C25 2946(2) 7552(1) 2056(2) 26(1) C26 1715(3) 7318(2) 2044(3) 31(1) C27 1029(3) 6814(2) 1163(3) 30(1) C28 1570(2) 6533(1) 291(2) 24(1) C29 2795(2) 6773(1) 285(2 ) 19(1) C30 3983(2) 7130(1) 1157(2) 18(1) C31 3849(2) 7192(1) 2432(2) 23(1) C32 4337(2) 7800(1) 2850(2) 26(1) C33 4979(2) 8322(1) 1991(2) 26(1) C34 5137(2) 8254(1) 708(2) 21(1) C35 4633(2) 7659(1) 295(2) 17(1) C36 10557(2) 5219(2) 3263(2) 21(1 ) C37 8484(2) 4267(1) 3639(2) 23(1) C38 10105(2) 4559(1) 2487(2) 19(1) C39 10732(2) 4356(1) 1627(2) 25(1) C40 10386(3) 3737(2) 928(3) 29(1) C41 9385(3) 3312(1) 1057(3) 30(1) C42 8755(2) 3504(1) 1901(2) 23(1) C43 9115(2) 4118(1) 2647(2) 19(1) C44 90 35(3) 9666(2) 2280(3) 37(1) C45 5646(7) 6865(5) 4950(8) 81(1) C46 7061(7) 6600(5) 5631(7) 81(1) C47 7345(9) 7237(5) 6564(9) 81(1) C48 6987(9) 7956(8) 5928(10) 81(1) C49 7390(20) 7214(3) 6297(6) 74(6) Cl1 6281(5) 6577(2) 5484(4) 67(1) Cl2 6752(6) 802 8(3) 5678(6) 67(1) Cl3 7662(4) 7138(2) 7902(4) 67(1)

PAGE 527

527 Table A 63 Bond lengths (in ) for 25 o xyxyl Bond Distance Bond Distance Pd1 C1 2.034(2) C6 C7 1.395(3) Pd1 C18 2.036(2) C8 C9 1.547(3) Pd1 C20 2.151(3) C9 C10 1.562(3) Pd1 C19 2.171(2) C9 C22 1.569(3) Pd1 C21 2.179(2) C10 C11 1.533(3) Pd1 2.181(12) C10 C23 1.569(3) S1 O2 1.4340(19) C12 C13 1.390(3) S1 O1 1.436(3) C12 C17 1.397(3) S1 O3 1.436(2) C13 C14 1.388(4) S1 C44 1.830(3) C14 C15 1.398(5) F1 C44 1.335(4) C15 C16 1.396(4 ) F2 C44 1.327(4) C16 C17 1.380(3) F3 C44 1.327(4) C19 1.322(13) O4 C45 1.436(10) C19 C20 1.370(4) O4 C48 1.635(13) C20 C21 1.391(4) N1 C18 1.361(3) C20' C21 1.331(12) N1 C12 1.394(3) C22 C24 1.511(3) N1 C11 1.463(3) C22 C35 1.519(3) N2 C1 1.3 52(3) C23 C30 1.508(3) N2 C2 1.399(3) C23 C29 1.517(3) N2 C8 1.466(3) C24 C25 1.393(3) N3 C18 1.355(3) C24 C29 1.397(3) N3 C17 1.398(3) C25 C26 1.396(4) N3 C37 1.468(3) C26 C27 1.394(4) N4 C1 1.357(3) C27 C28 1.392(4) N4 C7 1.399(3) C28 C29 1.399(3) N4 C36 1.470(3) C30 C31 1.390(3) C2 C3 1.390(3) C30 C35 1.403(3) C2 C7 1.392(3) C31 C32 1.399(4) C3 C4 1.390(4) C32 C33 1.390(4) C4 C5 1.396(4) C33 C34 1.394(3) C5 C6 1.392(4) C34 C35 1.386(3) C36 C38 1.500(4) C38 C39 1.396(3) C37 C43 1.504(3) C38 C43 1.408(3) C39 C40 1.382(4) C46 C47 1.550(11) C40 C41 1.387(4) C47 48 1.516(15) C41 C42 1.378(4) C49 C13 1.727(9) C42 C43 1.402(3) C49 C11 1.727(9)

PAGE 528

528 Table A 63. Continued Bond Distance Bond Distance C45 C46 1.550(11) C49 C12 1.727(9 )

PAGE 529

529 Table A 64 Bond angles (in ) for 25 o xyxyl Bond Angle Angle Bond Angle Angle C1 Pd1 C18 84.18(8) C1 N4 C36 127.33(18) C1 Pd1 C20 135.16(10) C7 N4 C36 120.85(18) C18 Pd1 C20 134.9(1) N2 C1 N4 106.08(19) C1 Pd1 C19 104.31(9) N2 C1 Pd1 123.42(15) C18 Pd1 C19 171.42(9) N4 C1 Pd1 128.68(16) C20 Pd1 C19 36.95(11) C3 C2 C7 122.2(2) C1 Pd1 C21 172.33(9) C3 C2 N2 132.0(2) C18 Pd1 C21 103.38(9) C7 C2 N2 105.84(19) C20 Pd1 C21 37.48(10) C2 C3 C4 116.1(2) C19 Pd1 C21 68.1(1) C3 C4 C5 121.6(2) C1 Pd1 C20' 137.5(3) C6 C5 C4 122.5(3) C18 Pd1 C20' 136.8(3) C5 C6 C7 115.6(2) C20 Pd1 C20' 26.5(3) C2 C7 C6 122.0(2) C19 Pd1 C20' 35.4(3) C2 C7 N4 106.20(19) C21 Pd1 C20' 35.5(3) C6 C7 N4 131.8(2) O2 S1 O1 115.21(11) N2 C8 C9 114.82(18) O 2 S1 O3 114.94(12) C8 C9 C10 112.46(18) O1 S1 O3 115.29(13) C8 C9 C22 108.47(17) O2 S1 C44 102.44(13) C10 C9 C22 108.98(17) O1 S1 C44 103.14(13) C11 C10 C9 116.43(19) O3 S1 C44 103.20(14) C11 C10 C23 107.35(17) C45 O4 C48 111.6(7) C9 C10 C23 109.51(17 ) C18 N1 C12 111.25(18) N1 C11 C10 116.01(19) C18 N1 C11 125.26(18) C13 C12 N1 132.2(2) C12 N1 C11 122.97(17) C13 C12 C17 121.6(2) C1 N2 C2 111.13(18) N1 C12 C17 106.14(18) C1 N2 C8 126.13(19) C14 C13 C12 116.6(3) C2 N2 C8 122.73(19) C13 C14 C15 121. 8(2) C18 N3 C17 111.59(18) C16 C15 C14 121.3(3) C18 N3 C37 127.45(18) C17 C16 C15 116.8(3) C17 N3 C37 120.96(18) C16 C17 C12 121.9(2) C1 N4 C7 110.75(18) C16 C17 N3 132.4(2) N1 C18 Pd1 124.94(16) C31 C30 C35 120.5(2) C20' C19 C20 43.3(5) C31 C30 C23 125.7(2) C20' C19 Pd1 72.7(5) C35 C30 C23 113.69(19) C20 C19 Pd1 70.74(15) C30 C31 C32 119.0(2) C19 C20 C21 123.8(3) C33 C32 C31 120.2(2) C19 C20 Pd1 72.31(15) C32 C33 C34 120.9(2)

PAGE 530

530 Table A 64. Continued Bond Angle Angle Bond Angle Angle C12 C17 N3 1 05.62(19) C35 C34 C33 119.1(2) N3 C18 N1 105.40(18) C34 C35 C30 120.3(2) N3 C18 Pd1 128.35(15) C34 C35 C22 126.7(2) N1 C18 Pd1 124.94(16) C30 C35 C22 112.79(19) C20' C19 C20 43.3(5) N4 C36 C38 115.20(16) C20' C19 Pd1 72.7(5) N3 C37 C43 114.95(18) C20 C19 Pd1 70.74(15) C39 C38 C43 118.9(2) C19 C20 C21 123.8(3) C39 C38 C36 119.0(2) C19 C20 Pd1 72.31(15) C43 C38 C36 122.0(2) C21 C20 Pd1 72.34(15) C40 C39 C38 121.1(2) C19 C20' C21 133.3(10) C39 C40 C41 120.1(2) C19 C20' Pd1 71.9(5) C42 C41 C40 119.7( 2) C21 C20' Pd1 72.1(5) C41 C42 C43 121.2(2) C20' C21 C20 42.8(5) C42 C43 C38 119.0(2) C20' C21 Pd1 72.3(5) C42 C43 C37 119.1(2) C20 C21 Pd1 70.18(15) C38 C43 C37 121.8(2) C24 C22 C35 108.62(18) F3 C44 F2 107.1(3) C24 C22 C9 107.10(17) F3 C44 F1 108. 3(3) C35 C22 C9 105.04(18) F2 C44 F1 107.4(2) C30 C23 C29 108.54(18) F3 C44 S1 111.1(2) C30 C23 C10 105.59(17) F2 C44 S1 111.6(2) C29 C23 C10 105.96(18) F1 C44 S1 111.2(2) C25 C24 C29 120.6(2) O4 C45 C46 105.1(7) C25 C24 C22 126.0(2) C45 C46 C47 91.8 (6) C29 C24 C22 113.3(2) C48 C47 C46 114.0(8) C24 C25 C26 119.2(2) C47 C48 O4 92.2(9) C27 C26 C25 120.4(2) Cl3 C49 Cl1 110.2(8) C28 C27 C26 120.3(2) Cl3 C49 Cl2 113.6(9) C27 C28 C29 119.5(2) Cl1 C49 Cl2 106.5(8) C24 C29 C28 119.9(2) C12 C17 N3 105.62 (19) C24 C29 C23 113.37(19) N3 C18 N1 105.40(18) C28 C29 C23 126.6(2) N3 C18 Pd1 128.35(15)

PAGE 531

531 Table A 65 Anisotropic displacement parameters ( 2 x10 3 ) for 25 o xyxyl The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U 11 + ... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd1 13(1) 17(1) 13(1) 1(1) 3(1) 2(1) S1 23(1) 23(1) 21(1) 1(1) 8(1) 0(1) F1 71(1) 60(1) 44(1) 18(1) 40(1) 22(1) F2 49(1) 68(1) 59(1) 17(1) 34(1) 28(1) F3 53(1) 74(1) 92(2) 13(2) 40(1) 31(2) O1 52( 1) 30(1) 45(1) 10(1) 31(1) 14(1) O2 37(1) 36(1) 20(1) 2(1) 8(1) 0(1) O3 33(1) 38(1) 34(1) 7(1) 2(1) 7(1) O4 172(6) 85(4) 48(3) 11(3) 15(3) 13(4) N1 14(1) 16(1) 23(1) 2(1) 6(1) 0(1) N2 13(1) 16(1) 20(1) 2(1) 2(1) 2(1) N3 16(1) 17(1) 15(1) 1(1) 4 (1) 1(1) N4 13(1) 16(1) 19(1) 1(1) 2(1) 0(1) C1 14(1) 16(1) 19(1) 2(1) 7(1) 2(1) C2 11(1) 19(1) 23(1) 1(1) 1(1) 1(1) C3 16(1) 19(1) 40(1) 3(1) 3(1) 0(1) C4 23(1) 26(1) 44(2) 17(1) 2(1) 1(1) C5 23(1) 35(2) 38(2) 15(1) 7(1) 2(1) C6 18(1) 26( 1) 27(1) 5(1) 3(1) 2(1) C7 14(1) 17(1) 24(1) 3(1) 3(1) 2(1) C8 13(1) 18(1) 21(1) 6(1) 1(1) 1(1) C9 14(1) 16(1) 19(1) 3(1) 3(1) 1(1) C10 11(1) 15(1) 23(1) 2(1) 2(1) 1(1) C11 14(1) 18(1) 32(1) 7(1) 4(1) 1(1) C12 19(1) 16(1) 24(1) 4(1) 8(1) 4(1 ) C13 24(1) 34(1) 40(1) 8(2) 18(1) 6(2) C14 34(1) 52(2) 37(1) 12(1) 24(1) 10(1) C15 42(2) 56(2) 22(1) 6(1) 18(1) 15(1) C16 31(1) 37(1) 20(1) 2(1) 7(1) 9(1) C17 20(1) 20(1) 20(1) 4(1) 8(1) 6(1) C18 13(1) 13(1) 19(1) 0(1) 2(1) 2(1) C19 45(1 ) 46(2) 21(1) 5(1) 19(1) 14(1) C21 29(1) 28(1) 17(1) 5(1) 6(1) 6(1) C22 16(1) 17(1) 19(1) 0(1) 4(1) 1(1) C23 12(1) 18(1) 21(1) 1(1) 1(1) 0(1) C24 17(1) 19(1) 22(1) 6(1) 7(1) 2(1) C25 25(1) 27(1) 28(1) 4(1) 11(1) 3(1)

PAGE 532

532 Table A 65. Continued U 11 U 2 2 U 33 U 23 U 13 U 12 C26 32(1) 33(1) 36(1) 8(1) 20(1) 6(1) C27 21(1) 30(1) 44(2) 16(1) 17(1) 4(1) C28 15(1) 20(1) 34(1) 8(1) 6(1) 0(1) C29 15(1) 18(1) 24(1) 6(1) 5(1) 3(1) C30 11(1) 20(1) 21(1) 2(1) 2(1) 1(1) C31 16(1) 28(1) 21(1) 1(1) 2(1) 4(1) C32 21 (1) 35(1) 23(1) 9(1) 8(1) 8(1) C33 22(1) 26(1) 32(1) 12(1) 12(1) 7(1) C34 16(1) 18(1) 28(1) 3(1) 7(1) 4(1) C35 13(1) 19(1) 19(1) 4(1) 4(1) 4(1) C36 15(1) 19(1) 26(1) 1(1) 1(1) 2(1) C37 16(1) 30(1) 19(1) 9(1) 1(1) 5(1) C38 14(1) 19(1) 22(1) 2(1) 2(1) 2(1) C39 19(1) 26(1) 30(1) 1(1) 10(1) 1(1) C40 27(1) 32(1) 29(1) 6(1) 11(1) 6(1) C41 30(1) 21(1) 32(1) 7(1) 2(1) 2(1) C42 18(1) 18(1) 28(1) 4(1) 0(1) 1(1) C43 15(1) 19(1) 20(1) 4(1) 2(1) 2(1) C44 38(2) 40(2) 41(2) 4(1) 22(1) 3(1) C45 60(2) 113 (4) 85(3) 16(2) 45(2) 6(2) C46 60(2) 113(4) 85(3) 16(2) 45(2) 6(2) C47 60(2) 113(4) 85(3) 16(2) 45(2) 6(2) C48 60(2) 113(4) 85(3) 16(2) 45(2) 6(2) Cl1 75(2) 56(1) 72(1) 5(1) 27(1) 13(1) Cl2 75(2) 56(1) 72(1) 5(1) 27(1) 13(1) Cl3 75(2) 56(1) 7 2(1) 5(1) 27(1) 13(1)

PAGE 533

533 A.3 IR S pectra Figure A 178 IR spectrum of 16 Me (KBr pellet). Figure A 179 IR spectrum of 22 Me (KBr pellet).

PAGE 534

534 Figure A 180 IR spectrum of 22 i Pr (KBr pellet). Figure A 181 IR spectrum of 22 MeBn

PAGE 535

535 Figure A 182 IR spectrum of 22 diPh (KBr pellet). Figure A 183 IR spectrum of 22 PhEt

PAGE 536

536 Figure A 184 IR spectrum of 22 Bn Figure A 185 IR spectrum of 22 idiPh

PAGE 537

537 A.4 Variable T emperat ure D ata Variable temperature NMR d etails: Activation parameters for rotation are measured in acetone d 6 DMSO d 6 and CDCl 3 by line shape analysis 426 429 using 1 H NMR spectroscopy in the temperature range 60 to 120 C The temperature is raised incrementally in steps of 5 15 C, and 15 minutes are allowed for temperature equilibration before shimming at each temperature. The reading of the thermocouple is corrected according to a methanol standard. All the exchange processes exhibited equal populations and thus the rates are calc ulated according to the following equations: 1. slow exchange limit: k= ( W) Where W=W W o W=width at half height and k<> v 1 v 2 Error Treatment 1. The temperature is measured and maintained by a thermocouple controlled by the console unit. Errors in fluctuation of temperature are accounted for by generating a calibration curve over the temperature range. 2. Digital resolution is 0.137 Hz. The measurement of peak frequency is 1 Hz.

PAGE 538

538 3. The standard errors on the slope and intercept for the Eyring plots are calculated and then all the errors were pr opagated (page 112, reference 4 27 ). Figure A 1 86 Temperature calibration curve for the INOVA 500. Figure A 187 Variable temperature NMR of 4 o xyxyl in acetone d 6 Temperatures ( C) from top to bottom; 50, 35, 25, 15, 10, 5, 0, 5, 10, 15, 25, 35, 50, 60.

PAGE 539

539 Table A 66 Rate constant determinations by monitoring the resonance at 5.9 ppm on the INOVA 500 in acetone d 6 Data correlates to the arene ring flipping motion in 4 o xyxyl Temp, C (probe) Temp, C (calibrated) Temp (K) W (Hz) k (1/s) G (kcal/mol) Ln(k/T) 1/T 60 61.8 211.4 17.5 50 51.5 221.7 20.0 7.9 11.9 3.3401 3 0.0045 1 35 36.0 237.1 27.0 29.8 12.2 2.0725 7 0.0042 1 25 25.7 247.4 44.0 83.3 12.2 1.0892 7 0.0040 4 0 0.1 273.2 93.0 237.2 13.0 0.1413 7 0.0036 6 5 5.2 278. 4 100.5 260.8 13.2 0.0653 5 0.0035 9 10 10.4 283.5 135.5 370.7 13.2 0.2681 4 0.0035 2 15 15.5 288.7 145.5 402.1 13.4 0.3314 7 0.0034 6 25 25.8 299.0 888.6 13.5 1.0892 4 0.0033 4 35 36.1 309.3 226.0 1164.9 13.8 1.3261 1 0.0032 3 50 51.6 324.8 95.0 Notes: G calculated from RT[Ln(k/T)+Ln(h/ coalescence temperature is 25 C Figure A 188 Eyring plot for the arene ring flipping motion. G = H T S T=298 K G =13.6 0.3 kcal/mol, H = 6.9 0.3 kcal/mol S = 22.1 1.2 cal/mol

PAGE 540

540 Table A 67 Rate con stant determinations by monitoring the resonance at 8.8 0 ppm on the INOVA 500 in acetone d 6 Data correlates to the benzimidazole ring rotation motion in 4 o xyxyl Temp, C (probe) Temp, C (calibrated) Temp (K) W (Hz) k (1/s) G (kcal/mol) Ln(k/t) 1/t 60 61.8 211.4 2.95 50 51.5 221.7 3.20 0.8 12.9 5.64272 0.00451 1 35 36.0 237.1 5.70 8.6 12.8 3.31226 0.00421 7 25 25.7 247.4 11.00 25.3 12.8 2.28074 0.00404 1 15 15.4 257.7 21.00 56.7 12.9 1.51409 0.00388 10 10.3 262.9 34.00 97.5 12.9 0.99144 0.00380 4 5 5.1 268.1 52.50 155.7 12.9 0.54347 0.00373 1 0 0.1 273.2 81.00 245.2 13.0 0.10815 0.00366 5 5.2 278.4 333.2 13.0 0.179871 0.00359 2 10 10.4 283.5 89.50 446.0 13.1 0.452977 0.00352 7 15 15.5 288.7 78.00 521.7 13.3 0.591743 0.0034 6 4 25 25.8 299 35.00 1428.0 13.2 1.563653 0.00334 5 35 36.1 309.3 20.50 3448.1 13.1 2.411301 0.00323 3 50 51.6 324.8 10.25 Notes: G calculated from RT[Ln(k/T)+Ln(h/ coalescence temperature is 5 C. Figure A 189 Eyring plot for the benzimida zole ring rotation motion in 4 o xyxyl G = H T S T=298 K G =13.1 0.3 kcal/mol, H = 11.8 0.3 kcal/mol S = 4.4 1.2 cal/mol

PAGE 541

541 Figure A 190 Variable temperature NMR of 25 o xyxyl in CDCl 3 Temperatures ( C) from t op to bottom; 50, 25, 0, 25, 50.

PAGE 542

542 Figure A 191 Variable temperature NMR of 25 o xyxyl in DMSO d 6 Temperatures ( C) from top to bottom; 120, 100, 75, 50, 25.

PAGE 543

543 A.5 CycloNOE Data for the Degenerate I somerizatio n of 22 R. NMR spectra a re recorded on a Varian Inova spectrometer equipped with a 5 mm indirect detection probe, operating at 500 MHz for 1 H and at 125 MHz for 13 C Chemical shifts are reported in ppm relative to TMS. The ring inversion rates are measure d in a CDCl 3 solution, by the method of Forsen and Hoffman. 428,429 Limited solubility precluded the use of C13 signals at natural abundance, therefore proton signals are used, and as a consequence the data suffer from the interference of the ), is monitored after the proton at Y is selectively irradiated for 10 s, in an nOe difference experiment at each temperature. The time to reach equilibrium is monitored and the temperature used in the calculation is measured by the thermocouple in the probe.

PAGE 544

544 Figure A 192 C ycloNOE NMR spectrum at 5 C of 22 Me

PAGE 545

545 Figure A 193 C ycloNOE NMR spectrum at 25 C of 22 Me

PAGE 546

546 Figure A 194 C ycloNOE NMR spectrum at 45 C of 22 Me

PAGE 547

547 Figure A 195 C ycloNOE NMR spectrum at 5 C of 22 i P r

PAGE 548

548 Figure A 196 C ycloNOE NMR spectrum at 25 C of 22 i Pr

PAGE 549

549 Figure A 197 C ycloNOE NMR spectrum at 45 C of 22 i Pr

PAGE 550

550 Figure A 198 C ycloNOE NMR spectrum at 25 C of 22 MeB n

PAGE 551

551 Figure A 199 C ycloNOE NMR spectrum at 40 C of 22 MeBn

PAGE 552

552 Figure A 200 C ycloNOE NMR spectrum at 55 C of 22 MeBn

PAGE 553

553 Figure A 201 C ycloNOE NMR spectrum at 5 C of 22 di Ph

PAGE 554

554 Figure A 202 C ycloNOE NMR spectrum at 25 C of 22 diPh

PAGE 555

555 Figure A 203 C ycloNOE NMR spectrum at 45 C of 22 diPh

PAGE 556

556 Figure A 204 C ycloNOE NMR spectrum at 5 C of 22 P hEt

PAGE 557

557 Figure A 205 C ycloNOE NMR spectrum at 25 C of 22 PhEt

PAGE 558

558 Figure A 206 C ycloNOE NMR spectrum at 45 C of 22 PhEt

PAGE 559

559 Figure A 207 C ycloNOE NMR spectrum at 15 C of 2 2 Bn

PAGE 560

560 Figure A 208 C ycloNOE NMR spectrum at 5 C of 22 Bn

PAGE 561

561 Figure A 209 C ycloNOE NMR spectrum at 25 C of 22 Bn

PAGE 562

562 Figure A 210 C ycloNOE NMR spectrum at 10 C of 22 idi Ph

PAGE 563

563 Figure A 211 C ycloNOE NMR spectrum at 25 C of 22 idiPh

PAGE 564

564 Figure A 212 C ycloNOE NMR spectrum at 45 C of 22 idiPh

PAGE 565

565 Table A 68 Raw cyclone data for 22 Me (irradiated signals, X = 3.79, Y = 4.92 ). Temp (C) T1 (s) k=(1 ) 1/T ln(k/T) 5 0.32 0.87 0.47 0.003595 6.28972 25 0.37 0.56 2.12 0.003354 4.94454 45 0.40 0.14 15.36 0.003143 3.03097 Figure A 213 Eyring plot of 22 Me Table A 69 Raw cyclone data for 22 i Pr (ir radiated signals, X = 4.99, Y = 5.83). Temp (C ) T1 (s) k=(1 ) 1/t ln(k/t) 5 0.33 0.98 0.06 0.003595 8.411 25 0.33 0.82 0.67 0.003354 6.105 45 0.34 0.46 3.45 0.003143 4.523 Figure A 214 Eyring plot of 22 i Pr

PAGE 566

56 6 Table A 70 Ra w cyclone data for 22 MeBn (irradiated signals, X = 4.21, Y = 4.94). Temp (C ) T1 (s) k=(1 ) 1/t ln(k/t) 25 1.00 0.86 0.16 0.003354 7.513 40 0.98 0.57 0.77 0.003193 6.008 55 0.97 0.22 3.66 0.003047 4.497 Figure A 215 Eyrin g plot of 22 MeBn Table A 71 Raw cyclone data for 22 diPh (irradiated signals, X = 4.14, Y = 5.04). Temp (C ) (C,t) T1 (s) k=(1 ) 1/t ln(k/t) 5 0.85 0.98 0.02 0.003595 9.357 25 0.87 0.82 0.25 0.003354 7.075 45 0.89 0.47 1.27 0 .003143 5.526 Figure A 216 Eyring plot of 22 diPh

PAGE 567

567 Table A 72 Raw cyclone data for 22 PhEt (irradiated signals, X = 4.47, Y = 4.13). Temp (C) T1 (s) ) k=(1 ) 1/t ln(k/t) 5 0.84 0.84 0.23 0.00359 5 7.112 25 0.87 0.52 1.06 0.0033 5 4 5.638 45 0.93 0.36 1.91 0.00314 3 5.115 Figure A 217 Eyring plot of 22 PhEt Table A 73 Raw cyclone data for 22 Bn (irradiated signals, X = 4.14, Y = 4.52). Temp (C) T1 (s) ) k=(1 ) 1/T ln(k/T) 15 0.84 0.93 0.10 0.00387 4 7 .905 5 0.84 0.60 0.81 0.00359 5 5.845 25 0.89 0.22 3.91 0.00335 4 4.335 Figure A 218 Eyring plot of 22 Bn

PAGE 568

568 Table A 74 Raw cyclone data for 22 idiPh (irradiated signals, X = 4.13, Y = 4.58). Temp (C) T1 (s) k=(1 ) 1/T ln(k/T ) 40 0.85 0.250 3.53 0.003193 4.486 25 0.85 0.380 1.92 0.003354 5.046 10 0.85 0.610 0.75 0.003532 5.931 5 0.850 0.880 0.16 0.003729 7.421 Figure A 219 Eyring plot of 22 idiPh

PAGE 569

569 Table A 75 Activation parameters for 22 R Complex H (kcal/mol) S (cal/mole K) G (25 o C) (kcal /mol) 22 Me 14.0 +/ 1.8 9.7 +/ 6 16.9 +/ 1.8 22 i Pr 17.1 +/ 1.8 2.2 +/ 6 17.8 +/ 1.8 22 MeBn 19.5 +/ 1.8 3.3 +/ 6 18.5 +/ 1.8 22 diPh 16.9 +/ 1.8 4.9 +/ 6 18.4 +/ 1.8 22 PhEt 7.02 +/ 1.8 3 5.7 +/ 6 17.7 +/ 1.8 22 Bn 13.7 +/ 1.8 9.9 +/ 6 16.6 +/ 1.8 22 idiPh 10.9 +/ 1.8 21.0 +/ 6 17.1 +/ 1.8 Figure A 220 Isokinetic relationship between all 22 R complexes.

PAGE 570

570 LIST OF REFERENCES (1) Cannon, J. G. Pharmacology for Chemists ; 2nd ed.; American Chemical Society and Oxford University Press: New York, 1999. (2) Sabatier, P. In Nobel Prize Stockholm, Sweden, 1912. (3) Calvin, M. J. J. Am. Chem. Soc. 1939 61 2230 2234. (4) Halpern, J.; Harrod, J. F.; James, B. R. J. Am. Chem. Soc. 1961 83 753 754. (5) Akabori, S.; Sakurai, S.; Izumi, Y.; Fujii, Y. Nature 1956 178 323 324. (6) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson., G. Chem. Commun. 1965 131 132. (7) Noyori, R. In Nobel Prize Stockholm, Swe den, 2001. (8) Knowles, W. S. Angew. Chem., Int. Ed. 2002 41 1998 2007. (9) Sharpless, B. In Nobel Prize Stockholm, Sweden, 2001. (10) Dang, T. P.; Kagan, H. B. Journal of the Chemical Society D Chemical Communications 1971 481. (11) Kagan, H. B.; L anglois, N.; Dang, T. P. J. Organomet. Chem. 1975 90 353 365. (12) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977 99 5946 5952. (13) Burk, M. J.; Feaster, J. E.; Harlow, R. L. Organometallics 1990 9 2653 2655. (14) Tang, W. J.; Zhang, X. M. Chem. Rev. 2003 103 3029 3069. (15) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches, and Solutions ; Blaser, H. U.; Schimidt, E., Eds.; Wiley VCH: Weinheim, 2004. (16) Pruett, R. L.; S mith, J. A. J. Org. Chem. 1969 34 327 330. (17) Collmann, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. J. Principles and Applications of Organotransition Metal Chemistry ; 2nd ed.; University Science: Mill Valley, 1987. (18) Department of Health and Human Services NIOSH Pocket Guide to Chemical Hazards ; Government Printing Office, 2008. (19) Herrmann, W. A.; Kcher, C. Angew. Chem., Int. Ed. 1997 36 2163 2187.

PAGE 571

571 (20) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008 47 3122 3172. (21) Jafarpo ur, L.; Nolan, S. P. Adv. Organomet. Chem. 2001 46 181 222. (22) Herrmann, W. A. Angew. Chem., Int. Ed. 2002 41 1290 1309. (23) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005 1815 1828. (24) Nolan, S. P. N Heterocyclic Carbenes in Synthesis ; Wiley VHC: Weinheim, 2006. (25) N Heterocyclic Carbenes in Transition Metal Catalysis ; Glorius, F., Ed.; Springer Berlin, 2007. (26) Clavier, H.; Nolan, S. P. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2007 103 193 222. (27) Corberan, R.; Mas Marza, E.; Peris, E. Eur. J. Inorg. Chem. 2009 1700 1716. (28) Gade, L. H.; Bellemin Laponnaz, S. Coord. Chem. Rev. 2007 251 718 725. (29) Peris, E.; Crabtree, R. H. Coord. Chem. Rev. 2004 248 2239 2246. (30) Mata, J. A.; Poyatos, M.; Peris, E. Coord. Che m. Rev. 2007 251 841 859. (31) N heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis ; Cazin, C. S. J., Ed.; Springer Verlag: Berlin, 2010. (32) Diez Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev. 2007 251 874 883. (33) Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007 46 2768 2813. (34) Douthwaite, R. E. Coord. Chem. Rev. 2007 251 702 717. (35) Perry, M. C.; Burgess, K. Tetrahedron Asymmetry 2003 14 951 961. (36) Dragutan, V.; Dragutan, I.; Demonc eau, A. Platinum Met. Rev. 2005 49 183 188. (37) Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. Coord. Chem. Rev. 2007 251 765 794. (38) Radius, U.; Bickelhaupt, F. M. Coord. Chem. Rev. 2009 253 678 686. (39) Diez Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009 109 3612 3676.

PAGE 572

572 (40) Boeda, F.; Nolan, S. P. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2008 104 184 210. (41) Cesar, V.; Bellemin Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004 33 619 636. (42) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Coord. Chem. Rev. 2009 253 687 703. (43) Khl, O. Chem. Soc. Rev. 2007 36 592 607. (44) Bantreil, X.; Broggi, J.; Nolan, S. P. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 2009 105 232 263. (45) Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007 251 642 670. (46) Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. Chem. Rev. 2009 109 3859 3884. (47) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004 43 5130 5135. (48) Regitz, M. Angew. Chem., Int. Ed. 1996 35 725 728. (49) fele, K. J. Organomet. Chem. 1968 12 P42. (50) Wanzlick, H. W.; Schonherr, H. J. Angew. Chem., Int. Ed. 1968 7 141. (51) Cardin, D. J.; Cetinkay.B; Lappert, M. F. Chem. Rev. 1972 72 5 45 574. (52) Lappert, M. F. J. Organomet. Chem. 1988 358 185 214. (53) Arduengo III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991 113 361 363. (54) fele, K.; Herrmann, W. A.; Mihalios, D.; Elison, M.; Herdtweck, E.; Scherer, W.; Mink, J. J. Organomet. Chem. 1993 459 177 184. (55) Herrmann, W. A.; Goossen, L. J.; Kocher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. 1996 35 2805 2807. (56) Clyne, D. S.; Jin, J.; Genest, E.; Gallucci, J. C.; RajanBabu, T. V. Org. Lett. 2000 2 1125 1128. (57) Jeletic, M. S.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. Organometallics 2007 26 5267 5270.

PAGE 573

573 (58) Jeletic, M. S.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. Dalton Trans. 2010 39 6392 6394. (59) Jeletic, M. S.; Jan, M. T.; Ghiviriga, I.; Abbo ud, K. A.; Veige, A. S. Dalton Trans. 2009 2764 2776. (60) Jeletic, M. S.; Veige, A. S. unpublished work. (61) Lowry, R. J.; Veige, M. K.; Clement, O.; Abboud, K. A.; Ghiviriga, I.; Veige, A. S. Organometallics 2008 27 5184 5195. (62) Lowry, R. J.; Jan, M. T.; Abboud, K. A.; Ghiviriga, I.; Veige, A. S. Polyhedron 2010 29 553 563. (63) Anezaki, S.; Yamaguchi, Y.; Asami, M. Chem. Lett. 2010 39 398 399. (64) Liu, L. J.; Wang, F. J.; Shi, M. Eur. J. Inorg. Chem. 2009 1723 1728. (65) Song, H. B.; Gu, L. N.; Zi, G. F. J. Organomet. Chem. 2009 694 1493 1502. (66) Clavier, H.; Guillemin, J. C.; Mauduit, M. Chirality 2007 19 471 476. (67) Duan, W. L.; Shi, M.; Rong, G. B. Chem. Commun. 2003 2916 2917. (68) Scherg, T.; Schneider, S. K.; Frey, G. D.; Schwarz, J.; Herdtweck, E.; Herrmann, W. A. Synlett 2006 2894 2907. (69) Schneider, S. K.; Schwarz, J.; Frey, G. D.; Herdtweck, E.; Herrmann, W. A. J. Organomet. Chem. 2007 692 4560 4568. (70) Perry, M. C.; Cui, X. H.; Burgess, K. Tetrahedron Asy mmetry 2002 13 1969 1972. (71) Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R. Organometallics 2003 22 4384 4386. (72) Marshall, C.; Ward, M. F.; Harrison, W. T. A. Tetrahedron Lett. 2004 45 5703 5706. (73) Marshall, C.; Ward, M. F.; Harrison, W. T. A. J. Organomet. Chem. 2005 690 3970 3975. (74) Shi, M.; Qian, H. X. Tetrahedron 2005 61 4949 4955. (75) Zhang, C. M.; Trudell, M. L. Tetrahedron Lett. 2000 41 595 598.

PAGE 574

574 (76) Chianese, A. R.; Crabtree, R. H. Organometallics 2005 24 4432 4436. (77) Meyer, A.; Taige, M. A.; Strassner, T. J. Organomet. Chem. 2009 694 1861 1868. (78) Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem. Soc. 1988 110 6463 6466. (79) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. R ev. 2000 100 39 91. (80) Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan, S. P. J. Am. Chem. Soc. 2005 127 2485 2495. (81) Dorta, R.; Stevens, E. D.; Hoff, C. D.; Nolan, S. P. J. Am. Chem. Soc. 2003 125 10490 10491. (82) Herrmann, W. A.; Mihalios, D.; Ofele, K.; Kiprof, P.; Belmedjahed, F. Chem. Ber. Recl. 1992 125 1795 1799. (83) Kcher, C.; Herrmann, W. A. J. Organomet. Chem. 1997 532 261 265. (84) Herrmann, W. A.; Weskamp, T.; Bohm, V. P. W. Adv. Org anomet. Chem. 2001 48 1 69. (85) Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002 649 219 224. (86) Chianese, A. R.; Li, X. W.; Janzen, M. C.; Faller, J. W.; Crabtree, R. H. Organometallics 2003 22 1663 1667. (87) Frstner, A.; Alcar azo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007 129 12676 12677, and references therein. (88) Herrmann, W. A.; Schtz, J.; Frey, G. D.; Herdtweck, E. Organometallics 2006 25 2437 2448. (89) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glori us, F. J. Am. Chem. Soc. 2004 126 15195 15201. (90) Huang, J. K.; Schanz, H. J.; Stevens, E. D.; Nolan, S. P. Organometallics 1999 18 2370 2375. (91) Huang, J. K.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc. 1999 121 2674 2678. (92) Luo, L. B.; Nolan, S. P. Organometallics 1994 13 4781 4786.

PAGE 575

575 (93) Scott, N. M.; Clavier, H.; Mahjoor, P.; Stevens, E. D.; Nolan, S. P. Organometallics 2008 27 3181 3186. (94) Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.; Cavallo, L .; Nolan, S. P. Organometallics 2003 22 4323 4326. (95) Magill, A. M.; Cavell, K. J.; Yates, B. F. J. Am. Chem. Soc. 2004 126 8717 8724. (96) Schwarz, J.; Bhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl Sieber, G. Chem Eur J 2000 6 1773 1780. (97) Boehme, C.; Frenking, G. Organometallics 1998 17 5801 5809. (98) Green, J. C.; Scurr, R. G.; Arnold, P. L.; Cloke, F. G. N. Chem. Commun. 1997 1963 1964. (99) Gusev, D. G. Organometallics 2009 28 6458 6461. (100) Gusev, D. G. Organometallics 2009 28 763 770. (101) Hu, X. L.; Castro Rodriguez, I.; Olsen, K.; Meyer, K. Organometallics 2004 23 755 764. (102) Kelly, R. A.; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics 2008 27 202 210. (103) Nemcsok, D.; Wichmann, K.; Frenking, G. Organometallics 2004 23 3640 3646. (104) Jacobsen, H.; Correa, A.; Costabile, C.; Cavallo, L. J. Organomet. Chem. 2006 691 4350 43 58. (105) Tonner, R.; Heydenrych, G.; Frenking, G. Chem Asian J 2007 2 1555 1567. (106) Lein, M.; Szabo, A.; Kovacs, A.; Frenking, G. Faraday Discuss. 2003 124 365 378. (107) McGuinness, D. S.; Saendig, N.; Yates, B. F.; Cavell, K. J. J. Am. Chem. S oc. 2001 123 4029 4040. (108) Kapp, J.; Schade, C.; ElNahasa, A. M.; Schleyer, P. V. Angew. Chem., Int. Ed. 1996 35 2236 2238. (109) Shukla, P.; Johnson, J. A.; Vidovic, D.; Cowley, A. H.; Abernethy, C. D. Chem. Commun. 2004 360 361.

PAGE 576

576 (110) Ho, V. M. ; Watson, L. A.; Huffman, J. C.; Caulton, K. G. New J. Chem. 2003 27 1446 1450. (111) Nakai, H.; Hu, X. L.; Zakharov, L. N.; Rheingold, A. L.; Meyer, K. Inorg. Chem. 2004 43 855 857. (112) Hu, X. L.; Tang, Y. J.; Gantzel, P.; Meyer, K. Organometallic s 2003 22 612 614. (113) Sanderson, M. D.; Kamplain, J. W.; Bielawski, C. W. J. Am. Chem. Soc. 2006 128 16514 16515. (114) Mercs, L.; Labat, G.; Neels, A.; Ehlers, A.; Albrecht, M. Organometallics 2006 25 5648 5656. (115) Khramov, D. M.; Lynch, V. M.; Bielawski, C. W. Organometallics 2007 26 6042 6049. (116) Fantasia, S.; Petersen, J. L.; Jacobsen, H.; Cavallo, L.; Nolan, S. P. Organometallics 2007 26 5880 5889. (117) Saravanakumar, S.; Oprea, A. I.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Chem Eur J 2006 12 3143 3154. (118) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel, W.; Frstner, A. Angew. Chem., Int. Ed. 2010 49 2542 2546. (119) Niehues, M.; Erker, G.; Kehr, G.; Schwab, P.; Frhlich, R.; Blacque, O.; Berke, H. Organometallics 200 2 21 2905 2911. (120) Lee, M. T.; Hu, C. H. Organometallics 2004 23 976 983. (121) Saravanakumar, S.; Kindermann, M. K.; Heinicke, J.; Kckerling, M. Chem. Commun. 2006 640 642. (122) Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L. ; Nolan, S. P. J. Am. Chem. Soc. 2005 127 3516 3526. (123) Tolman, C. A. Chem. Rev. 1977 77 313 348. (124) Clavier, H.; Nolan, S. P. Chem. Commun. 2010 46 841 861. (125) Fischer, E. O.; Maasbl, A. Angew. Chem., Int. Ed. 1964 3 580 582. (126) S chrock, R. R. J. Am. Chem. Soc. 1974 96 6796 6797.

PAGE 577

577 (127) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 1998 37 2490 2493. (128) Hudnall, T. W.; Bielawski, C. W. J. Am. Chem. Soc. 2009 131 16039 16041. (129) Marion, N.; Diez Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007 46 2988 3000. (130) Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K. J. Am. Chem. Soc. 2004 126 4366 4374. (131) Alder, R. W.; Allen, P. R.; Williams, S. J. J. Chem. Soc., Chem. Comm. 1995 1267 1268. (132) Kim, Y. J.; Streitwieser, A. J. Am. Chem. Soc. 2002 124 5757 5761. (133) Wanzlick, H. W.; Schikora, E. Angew. Chem., Int. Ed. 1960 72 494. (134) Lemal, D. M.; Lovald, R. A.; Kawano, K. I. J. Am. Chem. Soc. 1964 86 2518 2519. (135) Winberg, H. E.; Carnahan, J. E.; Coffman, D. D.; Brown, M. J. Am. Chem. Soc. 1965 87 2055 2056. (136) Taton, T. A.; Chen, P. Angew. Chem., Int. Ed. 1996 35 1011 1013. (137) Denk, M. K.; Hatano, K.; Martin, M. A. Tetra hedron Lett. 1999 40 2057 2060. (138) Liu, Y. F.; Lindner, P. E.; Lemal, D. M. J. Am. Chem. Soc. 1999 121 10626 10627. (139) Hahn, F. E.; Wittenbecher, L.; Le Van, D.; Frhlich, R. Angew. Chem., Int. Ed. 2000 39 541 544. (140) Alder, R. W.; Blake, M. E. Chem. Commun. 1997 1513 1514. (141) Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, A. G. Angew. Chem., Int. Ed. 1996 35 1121 1123. (142) Cardin, D. J.; Doyle, M. J.; Lappert, M. F. J. Chem. Soc., Chem. Comm. 1972 927 928. (143) Alder, R. W.; Blake, M. E.; Chaker, L.; Harvey, J. N.; Paolini, F.; Schutz, J. Angew. Chem., Int. Ed. 2004 43 5896 5911, and all references therein. (144) Denk, M. K.; Hezarkhani, A.; Zheng, F. L. Eur. J. Inorg. Chem. 2007 3527 3534.

PAGE 578

578 (145) Cheng, M. J.; Hu, C. H. Ch em. Phys. Lett. 2000 322 83 90. (146) Denk, M. K.; Thadani, A.; Hatano, K.; Lough, A. J. Angew. Chem., Int. Ed. 1997 36 2607 2609. (147) Arduengo III, A. J.; Dias, H. V. R.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1992 114 5530 5534. (148) Ardu engo III, A. J.; Goerlich, J. R.; Marshall, W. J. J. Am. Chem. Soc. 1995 117 11027 11028. (149) Arduengo III, A. J.; Davidson, F.; Dias, H. V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K. J. Am. Chem. Soc. 1997 119 12742 12749. (150) Arduengo III, A. J.; Goerlich, J. R.; Krafczyk, R.; Marshall, W. J. Angew. Chem., Int. Ed. 1998 37 1963 1965. (151) Hahn, F. E.; Wittenbecher, L.; Boese, R.; Blser, D. Chem Eur J 1999 5 1931 1935. (152) Heinemann, C.; Mller, T.; Apeloig, Y.; Schwarz, H. J. Am. Chem. Soc. 1996 118 2023 2038. (153) Boehme, C.; Frenking, G. J. Am. Chem. Soc. 1996 118 2039 2046. (154) Poater, A.; Ragone, F.; Giudice, S.; Costabile, C.; Dorta, R.; Nolan, S. P.; Cavallo, L. Organometallics 2008 27 2679 2681. (155) Trost, B. M.; van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992 114 9327 9343. (156) Trost, B. M.; Breit, B.; Peukert, S.; Zambrano, J.; Ziller, J. W. Angew. Chem., Int. Ed. 1995 34 2386 2388. (157) Trost, B. M. Acc. Chem. Res. 1996 29 355 364. (158) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006 39 747 760. (159) Trost, B. M.; Xu, J. Y.; Reichle, M. J. Am. Chem. Soc. 2007 129 282 283. (160) Belokon, Y. N.; Fuentes, J.; North, M.; Steed, J. W. Tetrahedron 2004 60 3191 3204. (161) Wang, B.; Feng, X. M.; Huang, Y. Z.; Liu, H.; Cui, X.; Jiang, Y. Z. J. Org. Chem. 2002 67 2175 2182.

PAGE 579

579 (162) Doherty, S.; Robins, E. G.; Knight, J. G.; Newman, C. R.; Rhodes, B.; Champkin, P. A.; Clegg, W. J. Organomet. Chem. 2001 640 182 196. (163) Brienne, M. J.; Jacques, J. Bull. Soc. Chim. Fr. 1973 190 197. (164) Brienne, M. J.; Jacques, J. Bull. Soc. Chim. Fr. 1974 2647 2652. (165) Thunberg, L.; Allenmark, S. J. Chromatogr. A 2004 1026 65 76. (166) Thunberg, L.; Allenmark S. Tetrahedron Asymmetry 2003 14 1317 1322. (167) Ramanathan, C. R.; Periasamy, M. Tetrahedron Asymmetry 1998 9 2651 2656. (168) Allenmark, S.; Skogsberg, U.; Thunberg, L. Tetrahedron Asymmetry 2000 11 3527 3534. (169) Gibis, K. L.; Helmchen, G. ; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1993 445 181 186. (170) Starikova, O. V.; Dolgushin, G. V.; Larina, L. I.; Ushakov, P. E.; Komarova, T. N.; Lopyrev, V. A. Russ. J. Org. Chem. 2003 39 1467 1470. (171) Perry, M. C.; Cui, X. H.; Powell, M T.; Hou, D. R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003 125 113 123. (172) Shi, Z.; Thummel, R. P. J. Org. Chem. 1995 60 5935 5945. (173) Crews, P.; Rodriguez, J.; Jaspars, M. Organic Structure Analysis ; 1st ed.; Oxford University Pr ess: New York, 1998. (174) Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds ; 6th ed.; John Wiley and Sons, Inc.: New York, 1998. (175) Elguero, J.; Claramunt, R. M.; Garceran, R.; Julia, S.; Avila, L.; Delmazo, J. M. M agn. Reson. Chem. 1987 25 260 268. (176) Corberan, R.; Sanau, M.; Peris, E. Organometallics 2006 25 4002 4008. (177) Tang, Y. Q.; Dong, Y. X.; Vennerstrom, J. L. Synthesis 2004 2540 2544. (178) Bitter, I.; Trk, Z.; Csokai, V.; Grn, A.; Balazs, B .; Toth, G.; Keseru, G. M.; Kovari, Z.; Czugler, M. Eur. J. Org. Chem. 2001 2861 2868. (179) Baker, M. V.; Bosnich, M. J.; Brown, D. H.; Byrne, L. T.; Hesler, V. J.; Skelton, B. W.; White, A. H.; Williams, C. C. J. Org. Chem. 2004 69 7640 7652.

PAGE 580

580 (180) Baker, M. V.; Brown, D. H.; Simpson, P. V.; Skelton, B. W.; White, A. H. Dalton Trans. 2009 7294 7307. (181) Baker, M. V.; Brown, D. H.; Heath, C. H.; Skelton, B. W.; White, A. H.; Williams, C. C. J. Org. Chem. 2008 73 9340 9352. (182) Baker, M. V.; B rown, D. H. Mini Reviews in Organic Chemistry 2006 3 333 354. (183) Baker, M. V.; Brown, D. H.; Haque, R. A.; Skelton, B. W.; White, A. H. Dalton Trans. 2010 39 70 72. (184) Baker, M. V.; Brown, D. H.; Haque, R. A.; Simpson, P. V.; Skelton, B. W.; Wh ite, A. H.; Williams, C. C. Organometallics 2009 28 3793 3803. (185) Arduengo III, A. J.; Goerlich, J. R.; Marshall, W. J. Liebig's Ann./Recl. 1997 365 374. (186) Shi, Z. Q.; Thummel, R. P. Tetrahedron Lett. 1994 35 33 36. (187) Pretsch, E.; Bhlma nn, P.; Affolter, C. Structure Determination of Organic Compounds: Tables of Spectral Data ; 3rd ed.; Springer Verlag: New York, 2000. (188) Marion, N.; Nolan, S. P. Chem. Soc. Rev. 2008 37 1776 1782. (189) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008 41 1440 1449. (190) Braband, H.; Kuckmann, T. I.; Abram, U. J. Organomet. Chem. 2005 690 5421 5429. (191) Wrtz, S.; Glorius, F. Acc. Chem. Res. 2008 41 1523 1533. (192) Praetorius, J. M.; Crudden, C. M. Dalton Trans. 2008 4079 4094. (193) Kasca tan Nebioglu, A.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. Coord. Chem. Rev. 2007 251 884 895. (194) Colacino, E.; Martinez, J.; Lamaty, F. Coord. Chem. Rev. 2007 251 726 764. (195) Kuhl, O. Coord. Chem. Rev. 2009 253 2481 2492. (196) Mar Diaz Requejo, M.; Perez, P. J. J. Organomet. Chem. 2005 5441 5450. (197) Samojlowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009 3708 3742. (198) Arnold, P. L.; Pearson, S. Coord. Chem. Rev. 2007 251 596 609.

PAGE 581

581 (199) Schuster, O.; Yang, L. ; Raubenheimer, H. G.; Albrecht, H. Chem. Rev. 2009 3445 3478. (200) Grndemann, S.; Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree, R. H. Chem. Commun. 2001 2274 2275. (201) Cetinkaya, B.; Hitchcock, P. B.; Lappert, M. F.; Shaw, D. B.; Spyropoul os, K.; Warhurst, N. J. W. J. Organomet. Chem. 1993 459 311 317. (202) Shi, Z. Q.; Thummel, R. P. Tetrahedron Lett. 1995 36 2741 2744. (203) Shi, Z. Q.; Goulle, V.; Thummel, R. P. Tetrahedron Lett. 1996 37 2357 2360. (204) Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J. Chem Eur J 1996 2 772 780. (205) Wang, H. M. J.; Lin, I. J. B. Organometallics 1998 17 972 975. (206) Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005 105 3978 4008. (207) Mata, J. A.; Chianese, A. R.; M iecznikowski, J. R.; Poyatos, M.; Peris, E.; Faller, J. W.; Crabtree, R. H. Organometallics 2004 23 1253 1263. (208) Wanniarachchi, Y. A.; Khan, M. A.; Slaughter, L. M. Organometallics 2004 23 5881 5884. (209) Fraser, P. J.; Roper, W. R.; Stone, F. G A. J. Chem. Soc., Dalton Trans. 1974 760 764. (210) Fraser, P. J.; Roper, W. R.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1974 102 105. (211) McGuinness, D. S.; Cavell, K. J.; Yates, B. F. Chem. Commun. 2001 355 356. (212) McGuinness, D. S.; Ca vell, K. J.; Yates, B. F.; Skelton, B. W.; White, A. H. J. Am. Chem. Soc. 2001 123 8317 8328. (213) Grubbs, R. H. In Nobel Prize Stockholm, Sweden, 2005. (214) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001 34 18 29. (215) Grubbs, R. H. Handbook o f Metathesis ; Wiley VCH: Weinheim, Germany, 2003. (216) Snead, D. R.; Seo, H.; Hong, S. Curr. Org. Chem. 2008 12 1370 1387. (217) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Organic Letters 2001 3 3225 3228.

PAGE 582

582 (218) Duguet, N.; Donaldson, A.; Leckie, S. M.; Kallstrm, E. A.; Campbell, C. D.; Shapland, P.; Brown, T. B.; Slawin, A. M. Z.; Smith, A. D. Tetrahedron Asymmetry 2010 21 601 616. (219) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P. G.; Bode, J. W. J. Am. Chem. Soc. 2010 132 8810 8812. (220 ) Faller, J. W.; Fontaine, P. P. Organometallics 2006 25 5887 5893. (221) Baskakov, D.; Herrmann, W. A.; Herdtweck, E.; Hoffmann, S. D. Organometallics 2007 26 626 632. (222) Lai, R.; Daran, J. C.; Heumann, A.; Zaragori Benedetti, A.; Rafii, E. Inorg Chim. Acta 2009 362 4849 4852. (223) Zinner, S. C.; Zhang Presse, M.; Herrmann, W. A.; Kuhn, F. E. Z Naturforsch B 2009 64 1607 1611. (224) Song, C.; Ma, C. Q.; Ma, Y. D.; Feng, W. H.; Ma, S. T.; Chai, Q.; Andrus, M. B. Tetrahedron Lett. 2005 46 3241 3244. (225) Ng, S. S.; Jamison, T. F. J. Am. Chem. Soc. 2005 127 7320 7321. (226) Enders, D.; Gielen, H.; Runsink, J.; Breuer, K.; Brode, S.; Boehn, K. Eur. J. Inorg. Chem. 1998 913 919. (227) Herrmann, W. A.; Baskakov, D.; Herdtweck, E.; Hoffma nn, S. D.; Bunlaksananusorn, T.; Rampf, F.; Rodefeld, L. Organometallics 2006 25 2449 2456. (228) Jacobsen, E. N.; Yoon, T. P. Science 2004 299 1691 1693. (229) Xu, Q.; Gu, X. X.; Liu, S. J.; Dou, Q. Y.; Shi, M. J. Org. Chem. 2007 72 2240 2242. (2 30) Wang, W. F.; Zhang, T.; Shi, M. Organometallics 2009 28 2640 2642. (231) Zhang, T.; Shi, M. Chem Eur J 2008 14 3759 3764. (232) Liu, Z.; Shi, M. Tetrahedron Asymmetry 2009 20 119 123. (233) Ma, G. N.; Zhang, T.; Shi, M. Org. Lett. 2009 11 87 5 878. (234) Xu, Q.; Zhang, R.; Zhang, T.; Shi, M. J. Org. Chem. 2010 75 3935 3937. (235) Liu, Z.; Shi, M. Organometallics 2010 2831 2834.

PAGE 583

583 (236) Liu, Z.; Shi, M. Tetrahedron 2010 2619 2623. (237) Zhang, R.; Xu, Q.; Zhang, X.; Zhang, T.; Shi, M. Tetr ahedron: Asymmetry 2010 1928 1935. (238) Zhang, T.; Shi, M.; Zhao, M. X. Tetrahedron 2008 64 2412 2418. (239) Chen, T.; Jiang, J. J.; Xu, Q.; Shi, M. Org. Lett. 2007 9 865 868. (240) Liu, S. J.; Liu, L. J.; Shi, M. Appl. Organomet. Chem. 2009 23 183 190. (241) Arnanz, A.; Gonzalez Arellano, C.; Juan, A.; Villaverde, G.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun. 2010 46 3001 3003. (242) Diez, C.; Nagel, U. Appl. Organomet. Chem. 2010 24 509 516. (243) Mayr, M.; Wurst, K.; Ongania, K H.; Buchmeiser, M. R. Chem Eur J 2004 10 1256 1266. (244) Barluenga, J.; Vicente, R.; Lopez, L. A.; Tomas, M. J. Organomet. Chem. 2006 691 5642 5647. (245) Baker, M. V.; Brown, D. H.; Simpson, P. V.; Skelton, B. W.; White, A. H.; Williams, C. C. J. Organomet. Chem. 2006 691 5845 5855. (246) Frey, G. D.; Rentzsch, C. F.; von Preysing, D.; Scherg, T.; Mhlhofer, M.; Herdtweck, E.; Herrmann, W. A. J. Organomet. Chem. 2006 691 5725 5738. (247) Salvi, N.; Belpassi, L.; Tarantelli, F. Chem Eur J 201 0 16 7231 7240. (248) Crabtree, R. H. The organometallic chemistry of the transition metals ; 4 ed.; John Wiley & Sons: Hoboken, 2005. (249) Lide, D. R. CRC Handbook of Chemistry and Physics ; 84th ed.; CRC Press: New York, 2003. (250) Viciano, M.; Mas Marza, E.; Sanau, M.; Peris, E. Organometallics 2006 25 3064 3069. (251) Leung, C. H.; Incarvito, C. D.; Crabtree, R. H. Organometallics 2006 25 6099 6107. (252) Hartwig, J. F. In Organotransition Metal Chemistry: From Bonding to Catalysis ; Universit y Science Books: Sausalito, 2010, p 539 574. (253) Chen, T.; Liu, X. G.; Shi, M. Tetrahedron 2007 63 4874 4880.

PAGE 584

584 (254) Canac, Y.; Lepetit, C.; Abdalilah, M.; Duhayon, C.; Chauvin, R. J. Am. Chem. Soc. 2008 130 8406 8413. (255) Burling, S.; Douglas, S. ; Mahon, M. F.; Nama, D.; Pregosin, P. S.; Whittlesey, M. K. Organometallics 2006 25 2642 2648. (256) Leffler, J. E. J. Org. Chem. 1955 20 1202 1231. (257) Liu, L.; Guo, Q. X. Chem. Rev. 2001 101 673 695. (258) Halpern, J. Science 1982 217 401 4 07. (259) Chan, A. S. C.; Pluth, J. J.; Halpern, J. J. Am. Chem. Soc. 1980 102 5952 5954. (260) Darensbourg, D. J.; Darensbourg, M. Y.; Goh, L. Y.; Ludvig, M.; Wiegreffe, P. J. Am. Chem. Soc. 1987 109 7539 7540. (261) Yin, C. Q.; Xu, Z. T.; Yang, S. Y.; Ng, S. M.; Wong, K. Y.; Lin, Z. Y.; Lau, C. P. Organometallics 2001 20 1216 1222. (262) Hagen, C. M.; Vieille Petit, L.; Laurenczy, G.; Suss Fink, G.; Finke, R. G. Organometallics 2005 24 1819 1831. (263) Tschan, M. J. L.; Suss Fink, G.; Cheriou x, F.; Therrien, B. Chem Eur J 2007 13 292 299. (264) Du, G. D.; Fanwick, P. E.; Abu Omar, M. M. J. Am. Chem. Soc. 2007 129 5180 5187. (265) Dyson, P. J. Dalton Trans. 2003 2964 2974. (266) Widegren, J. A.; Finke, R. G. J Mol Catal a Chem 2003 198 317 341. (267) Hamlin, J. E.; Hirai, K.; Millan, A.; Maitlis, P. M. J. Mol. Catal. 1980 7 543 544. (268) Widegren, J. A.; Finke, R. G. J Mol Catal a Chem 2003 191 187 207. (269) Hagen, C. M.; Widegren, J. A.; Maitlis, P. M.; Finke, R. G. J. Am. Ch em. Soc. 2005 127 4423 4432. (270) Lin, Y.; Finke, R. G. Inorg. Chem. 1994 33 4891 4910. (271) Finney, E. E.; Finke, R. G. Inorg. Chim. Acta 2006 359 2879 2887.

PAGE 585

585 (272) Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J. P. P. M.; Sowinsk i, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D. W.; Staudt, E. M. Organometallics 1985 4 1819 1830. (273) Anton, D. R.; Crabtree, R. H. Organometallics 1983 2 855 859. (274) Collman, J. P.; Cooke, M. P.; Dolcetti, G.; Hegedus, L. S.; Marquard.Dn; Nor ton, J. R. J. Am. Chem. Soc. 1972 94 1789 1790. (275) Collman, J. P.; Kosydar, K. M.; Bressan, M.; Lamanna, W.; Garrett, T. J. Am. Chem. Soc. 1984 106 2569 2579. (276) Watabe, K.; Charles, R.; Gilav, E. Angew. Chem., Int. Ed. 1989 28 192 194. (277 ) Schurig, V.; Ossig, J.; Link, R. Angew. Chem., Int. Ed. 1989 28 194 196. (278) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. Nature 1989 341 225 226. (279) Saito, R.; Naruse, S.; Takano, K.; Fukuda, K.; Katoh, A.; Inoue, Y. Org. Lett. 2006 8 206 7 2070. (280) Avdagic, A.; Lesac, A.; Majer, Z.; Hollosi, M.; Sunjic, V. Helv. Chim. Acta 1998 81 1567 1582. (281) Faitg, T.; Soulie, J.; Lallemand, J. Y.; Mercier, F.; Mathey, F. Tetrahedron 2000 56 101 104. (282) Yang, H.; Jonsson, A.; Wehtje, E.; Adlercreutz, P.; Mattiasson, B. Biochim. Biophys. Acta 1997 1336 51 58. (283) Park, J. K.; Lee, H. G.; Bolm, C.; Kim, B. M. Chem Eur J 2005 11 945 950. (284) Micskei, K.; Holczknecht, O.; Hajdu, C.; Patonay, T.; Marchis, V.; Meo, M.; Zucchi, C.; Pal yi, G. J. Organomet. Chem. 2003 682 143 148. (285) Ueoka, R.; Matsumoto, Y.; Nagamatsu, T.; Hirohata, S. Chem. Lett. 1984 583 586. (286) Borszeky, K.; Mallat, T.; Aeschiman, R.; Schweizer, W. B.; Baiker, A. J. Catal. 1996 161 451 458. (287) Nishida T.; Miyafuji, A.; Ito, Y. N.; Katsuki, T. Tetrahedron Lett. 2000 41 7053 7058. (288) Girard, C.; Kagan, H. B. Tetrahedron Asymmetry 1997 8 3851 3854.

PAGE 586

586 (289) Girard, C.; Kagan, H. B. Angew. Chem., Int. Ed. 1998 37 2923 2959. (290) Zhang, H. C.; Ch an, K. S. Journal of the Chemical Society Perkin Transactions 1 1999 381 382. (291) He, Y. M.; Fan, Q. H. Org. Biomol. Chem. 2010 8 2497 2504. (292) Lee, J. P.; Ke, Z. F.; Ramirez, M. A.; Gunnoe, T. B.; Cundari, T. R.; Boyle, P. D.; Petersen, J. L. Or ganometallics 2009 28 1758 1775. (293) Jurcik, V.; Nolan, S. P.; Cazin, C. S. L. Chem Eur J 2009 15 2509 2511. (294) Gandolfi, C.; Heckenroth, M.; Neels, A.; Laurenczy, G.; Albrecht, M. Organometallics 2009 28 5112 5121. (295) Heckenroth, M.; Klus er, E.; Neels, A.; Albrecht, M. Angew. Chem., Int. Ed. 2007 46 6293 6296. (296) Herrmann, W. A.; Frey, G. D.; Herdtweck, E.; Steinbeck, M. Adv. Synth. Catal. 2007 349 1677 1691. (297) Vazquez Serrano, L. D.; Owens, B. T.; Buriak, J. M. Inorg. Chim. A cta 2006 359 2786 2797. (298) Allen, D. P.; Crudden, C. M.; Calhoun, L. A.; Wang, R. Y.; Decken, A. J. Organomet. Chem. 2005 690 5736 5746. (299) Dharmasena, U. L.; Foucault, H. M.; dos Santos, E. N.; Fogg, D. E.; Nolan, S. P. Organometallics 2005 2 4 1056 1058. (300) Allen, D. P.; Crudden, C. M.; Calhoun, L. A.; Wang, R. Y. J. Organomet. Chem. 2004 689 3203 3209. (301) Vazquez Serrano, L. D.; Owens, B. T.; Buriak, J. M. Chem. Commun. 2002 2518 2519. (302) Lee, H. M.; Jiang, T.; Stevens, E. D.; Nolan, S. P. Organometallics 2001 20 1255 1258. (303) Lee, H. M.; Smith Jr., D. C.; He, Z. J.; Stevens, E. D.; Yi, C. S.; Nolan, S. P. Organometallics 2001 20 794 797. (304) Dinger, M. B.; Mol, J. C. Eur. J. Inorg. Chem. 2003 2827 2833. (305) Csab ai, P.; Joo, F. Organometallics 2004 23 5640 5643.

PAGE 587

587 (306) Corma, A.; Gutierrez Puebla, E.; Iglesias, M.; Monge, A.; Perez Ferreras, S.; Sanchez, F. Adv. Synth. Catal. 2006 348 1899 1907. (307) Kownacki, I.; Kubicki, M.; Szubert, K.; Marciniec, B. J. O rganomet. Chem. 2008 693 321 328. (308) Sprengers, J. W.; Wassenaar, J.; Clement, N. D.; Cavell, K. J.; Elsevier, C. J. Angew. Chem., Int. Ed. 2005 44 2026 2029. (309) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004 248 2247 2273. (310) McGuin ness, D. S.; Green, M. J.; Cavell, K. J.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1998 565 165 178. (311) McGuinness, D. S.; Cavell, K. J. Organometallics 2000 19 4918 4920. (312) Cavell, K. J.; McGuinness, D. S. Coord. Chem. Rev. 2004 248 671 681. (313) Danopoulos, A. A.; Tsoureas, N.; Green, J. C.; Hursthouse, M. B. Chem. Commun. 2003 756 757. (314) Campeau, L. C.; Thansandote, P.; Fagnou, K. Org. Lett. 2005 7 1857 1860. (315) Marshall, W. J.; Grushin, V. V. Organometallics 2003 22 1591 1593. (316) Caddick, S.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B.; Leonard, J.; Lewis, A. K. D.; McKerrecher, D.; Titcomb, L. R. Organometallics 2002 21 4318 4319. (317) McGuinness, D. S.; Cavell, K. J.; Skelton, B. W.; White, A. H. Organometal lics 1999 18 1596 1605. (318) van Rensburg, H.; Tooze, R. P.; Foster, D. F.; Slawin, A. M. Z. Inorg. Chem. 2004 43 2468 2470. (319) van Rensburg, H.; Tooze, R. P.; Foster, D. F.; Otto, S. Inorg. Chem. 2007 46 1963 1965. (320) Magill, A. M.; Yates, B. F.; Cavell, K. J.; Skelton, B. W.; White, A. H. Dalton Trans. 2007 3398 3406. (321) Wu, F.; Dioumaev, V. K.; Szalda, D. J.; Hanson, J.; Bullock, R. M. Organometallics 2007 26 5079 5090. (322) Cavell, K. J. Dalton Trans. 2008 6676 6685.

PAGE 588

588 (323) Nor mand, A. T.; Stasch, A.; Ooi, L. L.; Cavell, K. J. Organometallics 2008 27 6507 6520. (324) Warsink, S.; de Boer, S. Y.; Jongens, L. M.; Fu, C. F.; Liu, S. T.; Chen, J. T.; Lutz, M.; Spek, A. L.; Elsevier, C. J. Dalton Trans. 2009 7080 7086. (325) Gra ham, D. C.; Cavell, K. J.; Yates, B. F. Dalton Trans. 2006 1768 1775. (326) Graham, D. C.; Cavell, K. J.; Yates, B. F. Dalton Trans. 2005 1093 1100. (327) Graham, D. C.; Cavell, K. J.; Yates, B. F. Dalton Trans. 2007 4650 4658. (328) Cui, X. H.; Burg ess, K. Chem. Rev. 2005 105 3272 3296. (329) Kllstrm, K.; Andersson, P. G. Tetrahedron Lett. 2006 47 7477 7480. (330) Nanchen, S.; Pfaltz, A. Helv. Chim. Acta 2006 89 1559 1573. (331) Nanchen, S.; Pfaltz, A. Chem Eur J 2006 12 4550 4558. (332 ) Bappert, E.; Helmchen, G. Synlett 2004 1789 1793. (333) Focken, T.; Raabe, G.; Bolm, C. Tetrahedron Asymmetry 2004 15 1693 1706. (334) Hodgson, R.; Douthwaite, R. E. J. Organomet. Chem. 2005 690 5822 5831. (335) Seo, H.; Park, H.; Kim, B. Y.; Lee J. H.; Son, S. U.; Chung, Y. K. Organometallics 2003 22 618 620. (336) Zhou, J. G.; Ogle, J. W.; Fan, Y. B.; Banphavichit, V.; Zhu, Y.; Burgess, K. Chem Eur J 2007 13 7162 7170. (337) Crabtree, R. Acc. Chem. Res. 1979 12 331 338. (338) Blaser, H U.; Plugin, B. In Chiral Reactions in Heterogeneous Catalysis ; Jannes, G., DuBois, V., Eds.; Plenum Press: New York, 1995. (339) Studer, M.; Blaser, H. U.; Exner, C. Adv. Synth. Catal. 2003 345 45 65. (340) Bnnemann, H.; Braun, G. A. Angew. Chem., I nt. Ed. 1996 35 1992 1995. (341) Bnnemann, H.; Braun, G. A. Chem Eur J 1997 3 1200 1202. (342) Khler, J. U.; Bradley, J. S. Catal. Lett. 1997 45 203 208. (343) Khler, J. U.; Bradley, J. S. Langmuir 1998 14 2730 2735.

PAGE 589

589 (344) Murzin, D. Y.; Touk oniitty, E. React. Kinet. Catal. Lett. 2007 90 19 25. (345) Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005 127 12486 12487. (346) Toukoniitty, E.; Sevcikova, B.; Mki Arvela, P.; Wrn, J.; Salmi, T.; Murzin, D. Y. J. Catal. 2003 213 7 16. (34 7) Murzin, D. Y.; Mki Arvela, P.; Toukoniitty, E.; Salmi, T. Cat. Rev. Sci. Eng. 2005 47 175 256, and references therein. (348) Collier, P. J.; Iggo, J. A.; Whyman, R. J Mol Catal a Chem 1999 146 149 157. (349) Blaser, H. U.; Jalett, H. P.; Lotten bach, W.; Studer, M. J. Am. Chem. Soc. 2000 122 12675 12682. (350) Xing, L.; Du, F.; Liang, J. J.; Chen, Y. S.; Zhou, Q. L. J Mol Catal a Chem 2007 276 191 196. (351) Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T J. Am. Chem. Soc. 1998 120 4051 4052. (352) Chen, J. H.; Alper, H. J. Am. Chem. Soc. 1997 119 893 895. (353) Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003 125 10301 10310. (354) Cheng, Y.; Lu, X. Y.; Xu, H. J.; Li, Y. Z.; Chen, X. T.; Xue, Z. L. Inorg. Chim. Acta 2010 363 430 437. (355) Kuhl, S.; Schneider, R.; Fort, Y. Organometallics 2003 22 4184 4186. (356) Miecznikowski, J. R.; Crabtree, R. H. Organometallics 2004 23 629 631. (357) Hahn, F. E.; Holtgrewe, C.; P ape, T.; Martin, M.; Sola, E.; Oro, L. A. Organometallics 2005 24 2203 2209. (358) Yigit, M.; Yigit, B.; zdemir, I.; Cetinkaya, E.; Cetinkaya, B. Appl. Organomet. Chem. 2006 20 322 327. (359) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butl er, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008 693 1815 1821. (360) Miecznikowski, J. R.; Crabtree, R. H. Polyhedron 2004 23 2857 2872. (361) Hoveyda, A. H. In Stimulating Concepts in Chemistry ; Vogtle, F., Stoddart, J. F., Shibasaki, M., Eds.; Wiley VCH: Weinheim, 2000, p 145 162.

PAGE 590

590 (362) Fujihara, T.; Obora, Y.; Tokunaga, M.; Tsuji, Y. Dalton Trans. 2007 1567 1569. (363) Veige, A. S. Polyhedron 2008 27 3177 3189. (364) van Leeuwen, P. W. N. M.; Claver, C. Rhodium Cataly zed Hydroformylation ; Kluwer New York, 2002. (365) Bizzari, S.; Blagoev, M.; Kishi, A. Chemical Economics Handbook ; SRI Consulting: Menlo Park, 2006. (366) Cotton, F. A.; Wilkinson, G.; Murillo, C.; Bochmann, M. Advanced Inorganic Chemistry ; John Wiley a nd Sons, Inc: New York, 1999. (367) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961 83 4023 4027. (368) Agbossou, F.; Carpentier, J. F.; Mortreux, A. Chem. Rev. 1995 95 2485 2506. (369) Abatjoglou, A. G.; Bryant, D. R. Organometallics 1984 3 93 2 934. (370) Lewin, M.; Aizenshtat, Z.; Blum, J. J. Organomet. Chem. 1980 184 255 261. (371) Garrou, P. E. Chem. Rev. 1985 85 171 185. (372) Garrou, P. E.; Dubois, R. A.; Jung, C. W. Chem. Tech. 1985 15 123 125. (373) Herrmann, W. A.; Brossmer, C .; fele, K.; Beller, M.; Fischer, H. J. Organomet. Chem. 1995 491 C1 C4. (374) Herrmann, W. A.; Fischer, J.; Elison, M.; Kcher, C. (Hoechst AG), DE 4447068.1 A1, (1994); EP 0719758 A1; US 5.703.269, (1997) [Chem. Abstr. 125 (1996) 167571y]. (375) Chen, A. C.; Ren, L.; Decken, A.; Crudden, C. M. Organometallics 2000 19 3459 3461. (376) Chen, A. C.; Allen, D. P.; Crudden, C. M.; Wang, R. Y.; Decken, A. Can J Chem 2005 83 943 957. (377) Praetorius, J. M.; Kotyk, M. W.; Webb, J. D.; Wang, R Y.; Crudden, C. M. Organometallics 2007 26 1057 1061. (378) Datt, M. S.; Nair, J. J.; Otto, S. J. Organomet. Chem. 2005 690 3422 3426. (379) Gil, W.; Trzeciak, A. M.; Ziolkowski, J. J. Organometallics 2008 27 4131 4138.

PAGE 591

591 (380) Bortenschlager, M.; Mayr, M.; Nuyken, O.; Buchmeiser, M. R. J Mol Catal a Chem 2005 233 67 71. (381) Bortenschlager, M.; Schutz, J.; von Preysing, D.; Nuyken, O.; Herrmann, W. A.; Weberskirch, R. J. Organomet. Chem. 2005 690 6233 6237. (382) Poyatos, M.; Uriz, P.; Mata J. A.; Claver, C.; Fernandez, E.; Peris, E. Organometallics 2003 22 440 444. (383) Dastgir, S.; Coleman, K. S.; Cowley, A. R.; Green, M. L. H. Organometallics 2006 25 300 306. (384) Downing, S. P.; Pogorzelec, P. J.; Danopoulos, A. A.; Cole Hamilto n, D. J. Eur. J. Inorg. Chem. 2009 1816 1824. (385) Neveling, A.; Julius, G. R.; Cronje, S.; Esterhuysen, C.; Raubenheimer, H. G. Dalton Trans. 2005 181 192. (386) Zarka, M. T.; Bortenschlager, M.; Wurst, K.; Nuyken, O.; Weberskirch, R. Organometallics 2004 23 4817 4820. (387) Llewellyn, S. A.; Green, M. L. H.; Cowley, A. R. Dalton Trans. 2006 4164 4168. (388) Eilbracht, P.; Brfacker, L.; Buss, C.; Hollmann, C.; Kitsos Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.; Schmidt, A. Chem. Rev. 1999 99 3329 3365. (389) Ahmed, M.; Seayad, A. M.; Jackstell, R.; Beller, M. J. Am. Chem. Soc. 2003 125 10311 10318. (390) Seayad, A. M.; Selvakumar, K.; Ahmed, M.; Beller, M. Tetrahedron Lett. 2003 44 1679 1683. (391) Ahmed, M.; Buch, C.; R outaboul, L.; Jackstell, R.; Klein, H.; Spannenberg, A.; Beller, M. Chem Eur J 2007 13 1594 1601. (392) Jeletic, M. S.; Veige, A. S. In N Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis ; Cazin, C. S. J., Ed.; Springer: Dordrecht, 2010; Vol. 32. (393) Li, C. Z.; Widjaja, E.; Chew, W.; Garland, M. Angew. Chem., Int. Ed. 2002 41 3786 3789. (394) Axtell, A. T.; Klosin, J.; Abboud, K. A. Organometallics 2006 25 5003 5009. (395) Pilkington, C. J.; Zanotti Gerosa, A. Org. Lett. 20 03 5 1273 1275.

PAGE 592

592 (396) Yan, Y. J.; Chi, Y. X.; Zhang, X. M. Tetrahedron Asymmetry 2004 15 2173 2175. (397) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997 16 4229 4231. (398) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998 120 5579 5580. (399) Fagnou, K.; Lautens, M. Chem. Rev. 2003 103 169 196. (400) Hayashi, T. Synlett 2001 879 887. (401) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003 103 2829 2844. (402) Comprehensive Asymmetric Catalysis ; Jacob sen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, Germany, 2004; Vol. 1 3. (403) Krause, N.; Hoffmann Rder, A. Synthesis 2001 171 196. (404) Villacorta, G. M.; Rao, C. P.; Lippard, S. J. J. Am. Chem. Soc. 1988 110 3175 3182. (405) Mikami K.; Lautens, M. New Frontiers in Asymmetric Catalysis ; John Wiley and Sons: New Jersey, 2007. (406) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002 124 5052 5058. (407) Rix, D.; Labat, S.; Toupet, L.; Crevisy, C.; Mauduit M. Eur. J. Inorg. Chem. 2009 1989 1999. (408) Okamoto, M.; Yamamoto, Y.; Sakaguchi, S. Chem. Commun. 2009 7363 7365. (409) May, T. L.; Brown, M. K.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2008 47 7358 7362. (410) Matsumoto, Y.; Yamada, K. I.; Tomio ka, K. J. Org. Chem. 2008 73 4578 4581. (411) Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A. J. Organomet. Chem. 2005 690 5672 5695. (412) Clavier, H.; Coutable, L.; Toupet, L.; Guillemin, J. C.; Mauduit, M. J. Organo met. Chem. 2005 690 5237 5254. (413) Clavier, H.; Coutable, L.; Guillemin, J. C.; Mauduit, M. Tetrahedron Asymmetry 2005 16 921 924.

PAGE 593

593 (414) Kehrli, S.; Martin, D.; Rix, D.; Mauduit, M.; Alexakis, A. Chem Eur J 2010 16 9890 9904. (415) Martin, D.; Ke hrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006 128 8416 8417. (416) Fraser, P. K.; Woodward, S. Tetrahedron Lett. 2001 42 2747 2749. (417) Arnold, P. L.; Rodden, M.; Davis, K. M.; Scarisbrick, A. C.; Blake, A. J.; Wilson, C. Chem. Commun. 2004 1612 1613. (418) Arnold, P. L.; Scarisbrick, A. C.; Blake, A. J.; Wilson, C. Chem. Commun. 2001 2340 2341. (419) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. Adv. Synth. Catal. 2003 345 345 348. (420) Pytkowicz, J.; Roland, S.; Mangeney, P. Tetrahedron Asymmetry 2001 12 2087 2089. (421) Guillen, F.; Winn, C. L.; Alexakis, A. Tetrahedron Asymmetry 2001 12 2083 2086. (422) Lee, K. S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J Am. Chem. Soc. 2006 128 7182 7184. (423) Lowry, R. J., Ph. D. Thesis, University of Florida, Gainesville, Fl, 2009. (424) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem., Int. Ed. 2003 42 2768 2770. (425) Fox, M. E.; Gerlach, A.; Lennon, I. C.; Meek, G.; Praquin, C. Synthesis Stuttgart 2005 3196 3198. (426) Kegley, S. E.; Pinhas, A. R. Problems and Solutions in Organometallic Chemistry ; University Science Books, 1986. (427) Sandstrm, J. Dynamic NMR Spectroscopy ; Academic Press, 1983. (42 8) Forsen, S.; Hoffman, R. A. Acta Chem. Scand. 1963 17 1787 1798. (429) Forsen, S.; Hoffman, R. A. J. Chem. Phys. 1963 39 2892 2899.

PAGE 594

594 BIOGRAPHICAL SKETCH Matt hew Jeletic was born in July 1982 to Carolyn and Michael Jeletic. He grew up in northern Virginia outside the DC metropolitan area. During his pre college years he enjoyed math and science in school His career as a scientist began in high school when he started working for the Food and Drug Administration and conducting independent science projects. He went on to compete and win fourth place at the Intel International Science and Engineering fair, solidifying his future as a chemist. After high school Matt attended Virginia Polytechnic Institute and State University in Blacksburg, VA. He received a BS in chemistry and a BS in biochemistry in 2005. He then pursued graduate studies at the University of Florida in Gainesville, FL and eventually earned a Ph. D. in chemistry in 2010 He is moving to the University of Ottawa in Canada for a p ost doctoral position. Matt enjoys cooking all sorts of cuisine in his free time, probably because as a synthetic chemist, food is an extension of that. He also likes to play golf in the summer and ski in the winter. On rainy or slow days playing bridge or spades is a favorite activity.