<%BANNER%>

Data Structures and Algorithms for Resource Scheduling in High Speed Networks

Permanent Link: http://ufdc.ufl.edu/UFE0042471/00001

Material Information

Title: Data Structures and Algorithms for Resource Scheduling in High Speed Networks
Physical Description: 1 online resource (147 p.)
Language: english
Creator: Li, Yan
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: algorithm, bandwidth, data, multiple, optical, resource, scheduling, structure, twin, wavlength
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Large scale scientific applications require the collaboration of geographically distributed computational resources, that are connected by high speed and dedicated networks. These distributed computational resources, together with the network connecting them, define a heterogeneous computational environment. Finding an optimal resource allocation schedule is key to providing effective and reliable computation services in this environment. This dissertation focuses on resource scheduling problems for dedicated high speed networks. We formulate a series of scheduling problems according to various scheduling needs and performance metrics. We propose a set of data structures that characterize the temporal behavior of various resources. Based on these data structures, we propose algorithms for resource allocation and path computation for each formulated scheduling problem. We develop multi-path reservation algorithms for in-advance scheduling of large file transfers from multiple sources to multiple destinations. When the requests are processed one by one in online mode, a new max-flow based greedy algorithm and four variants that adapt the $k$-shortest paths and $k$-disjoint paths algorithms are proposed. Further, to find an earliest-finishing schedule for a batch of file transfers, a linear programming based algorithm is developed. We develop an extended network model that supports optical switches with or without wavelength converters. We customize some existing routing and resource allocation algorithms to the optical environment and study the impact of different wavelength conversion schemes for resource scheduling. We also present a novel wavelength assignment strategy that alleviates the need to keep track of the bandwidth allocation status of each wavelength. A Multiple Resource Reservation Model (MRRM) is presented for the case when multiple types of resources are scheduled together. This model enables the monitoring and scheduling of multiple heterogeneous and distributed resources. MRRM provides a unified representation for multiple types of distributed resources, and represents resource constraints such as compatibility and accessibility. Using MRRM, we solve the Multiple Resource First Slot (MRFS) problem based on a collection of algorithms that are customized for different request and resource types. We also consider the wavelength assignment problem in Time-domain Wavelength Interleaved Networks (TWIN). We propose a 2-step process to compute the wavelength assignment for a given set of the traffic demands. The goal of our scheduling algorithm is to find out the assignment that uses the minimum number of wavelengths. We show that this wavelength assignment problem is NP-Complete by reducing the Graph Coloring problem to it. Four greedy heuristics are presented to compute a near optimal solution within reasonable time. For each proposed algorithm, we conduct extensive experiments under various topologies and workloads to evaluate its performance and efficiency.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yan Li.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Sahni, Sartaj.
Local: Co-adviser: Ranka, Sanjay.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042471:00001

Permanent Link: http://ufdc.ufl.edu/UFE0042471/00001

Material Information

Title: Data Structures and Algorithms for Resource Scheduling in High Speed Networks
Physical Description: 1 online resource (147 p.)
Language: english
Creator: Li, Yan
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: algorithm, bandwidth, data, multiple, optical, resource, scheduling, structure, twin, wavlength
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Large scale scientific applications require the collaboration of geographically distributed computational resources, that are connected by high speed and dedicated networks. These distributed computational resources, together with the network connecting them, define a heterogeneous computational environment. Finding an optimal resource allocation schedule is key to providing effective and reliable computation services in this environment. This dissertation focuses on resource scheduling problems for dedicated high speed networks. We formulate a series of scheduling problems according to various scheduling needs and performance metrics. We propose a set of data structures that characterize the temporal behavior of various resources. Based on these data structures, we propose algorithms for resource allocation and path computation for each formulated scheduling problem. We develop multi-path reservation algorithms for in-advance scheduling of large file transfers from multiple sources to multiple destinations. When the requests are processed one by one in online mode, a new max-flow based greedy algorithm and four variants that adapt the $k$-shortest paths and $k$-disjoint paths algorithms are proposed. Further, to find an earliest-finishing schedule for a batch of file transfers, a linear programming based algorithm is developed. We develop an extended network model that supports optical switches with or without wavelength converters. We customize some existing routing and resource allocation algorithms to the optical environment and study the impact of different wavelength conversion schemes for resource scheduling. We also present a novel wavelength assignment strategy that alleviates the need to keep track of the bandwidth allocation status of each wavelength. A Multiple Resource Reservation Model (MRRM) is presented for the case when multiple types of resources are scheduled together. This model enables the monitoring and scheduling of multiple heterogeneous and distributed resources. MRRM provides a unified representation for multiple types of distributed resources, and represents resource constraints such as compatibility and accessibility. Using MRRM, we solve the Multiple Resource First Slot (MRFS) problem based on a collection of algorithms that are customized for different request and resource types. We also consider the wavelength assignment problem in Time-domain Wavelength Interleaved Networks (TWIN). We propose a 2-step process to compute the wavelength assignment for a given set of the traffic demands. The goal of our scheduling algorithm is to find out the assignment that uses the minimum number of wavelengths. We show that this wavelength assignment problem is NP-Complete by reducing the Graph Coloring problem to it. Four greedy heuristics are presented to compute a near optimal solution within reasonable time. For each proposed algorithm, we conduct extensive experiments under various topologies and workloads to evaluate its performance and efficiency.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Yan Li.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Sahni, Sartaj.
Local: Co-adviser: Ranka, Sanjay.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042471:00001


This item has the following downloads:


Full Text

PAGE 1

DATASTRUCTURESANDALGORITHMSFORRESOURCESCHEDULINGINHIGHSPEEDNETWORKSByYANLIADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHYUNIVERSITYOFFLORIDA2010

PAGE 2

c2010YanLi 2

PAGE 3

Idedicatemydissertationtomybeloveddaughter,Sarah,andmywife,LuChen. 3

PAGE 4

ACKNOWLEDGMENTS IwanttothankmyPhDadvisers:Dr.SartajSahniandDr.SanjayRanka.YouprovidedmethechancetofulllmydreamofbecomeaPhDinoneofthebestuniversitiesintheworld.Youtaughtmehowtoperformtherealacademicalresearches.Youinspiredmewithyourbrilliantmindandtrainedmyhowtoattackthosedifcultproblemsinmyway.Youbroughtmecondencetosolvetheproblemsbymyselfwhilepatientlysupportmebypointingouteventhesmallestaws.YoualsoprovidemethecomfortresearchenvironmentssothatIcandedicatedmyselftotheresearches.Yourdemeanors,yourkindnessesandyourwaysofthinkingwillbethebestexamplesformethroughallmylife.Iwanttothankmywife,Dr.LuChen.Youaretheonethatshareallmytroubles,myhappiness,mydesperationandmyhopes.Lookingbackalltheseyears,IcannotimaginehowIcangainwhatIhavetodaywithoutyou.Youtakecareofthefamily,youobtainedyourPhDtogetherwithme,andthemostamazingpart,youbroughtusourmostvaluabletreasure:littleSarah.Icannotexpectanymorefromyou.Iknowbehindallofthese,itisyournumerouseffortsandendlesspatients.Wordsarenotenoughtoexpressmysincerelyappreciationtoyou.However,Istillwanttosaythat,youarethebestgiftthatIhaveeverreceivedinallmylife.IwanttothankmyparentsinChina.Itisyouthattaughtmerightandwrong,theintegrityandproudandwhatarereallyvaluedforme;Itisyouthatstandallthelonelinessandmissingandencouragemepursuemyowndreaminothersideoftheocean.NowIhaveachieveyourexpectations.Now,IamaDoctorandafather.Iwillfollowtheexamplesyousettome.Iwilltrymybesttobringhappinessformyfamilymembers.Andforyoutwo,youwillalwaysbetheonesthatIlovethemost.Finally,IwanttothankallthepeoplesImeethere.ItisyouthatbringmeallthehappytimeinGainesville.Withoutyou,IwouldnotaccomplishmyPhDsosmoothand 4

PAGE 5

productive.Thesememorieswillforeverbeembeddeddeeplyinmymindandneverwillfadeaway. 5

PAGE 6

TABLEOFCONTENTS page ACKNOWLEDGMENTS .................................. 4 LISTOFFIGURES ..................................... 9 ABSTRACT ......................................... 13 CHAPTER 1INTRODUCTION ................................... 15 1.1ProblemOverview ............................... 15 1.2OurContributions ................................ 17 1.3OrganizationOfThisdissertation ....................... 19 2TEMPORALNETWORKMODEL ......................... 20 2.1SlottedTime .................................. 20 2.2ContinuousTime ................................ 21 3SCHEDULINGINGENERALNETWORKS .................... 23 3.1ProblemDenition ............................... 23 3.2Single-PathScheduling ............................ 24 3.2.1ProblemDenitions ........................... 24 3.2.2PathComputationAlgorithms ..................... 25 3.2.2.1Fixedslot ........................... 25 3.2.2.2Maximumbandwidthinaslot ................ 28 3.2.2.3Maximumduration ...................... 28 3.2.2.4Firstslot ........................... 28 3.2.2.5Allslots ............................ 30 3.2.2.6Allpairsallslots ....................... 30 3.2.3PerformanceMetrics .......................... 31 3.2.3.1Spacecomplexity ...................... 31 3.2.3.2Timecomplexity ....................... 33 3.2.3.3Effectiveness ......................... 33 3.2.4Experiments ............................... 36 3.3Multiple-PathScheduling ........................... 42 3.3.1ProblemDenition ........................... 42 3.3.1.1Datastructures ........................ 43 3.3.2OptimalSolutionandN-BatchHeuristics ............... 44 3.3.2.1N-Batchheuristics ...................... 48 3.3.3OnlineSchedulingAlgorithms ..................... 49 3.3.3.1Greedyalgorithm ...................... 49 3.3.3.2Greedyschedulingwithnishtimeextension(GOS-E) .. 52 3.3.3.3K-Pathalgorithms ...................... 53 6

PAGE 7

3.3.4ExperimentalEvaluation ........................ 54 3.3.4.1Experimentalframework .................. 54 3.3.4.2Singlestarttimescheduling(SSTS) ............ 55 3.3.4.3Multiplestarttimescheduling(MSTS) ........... 58 3.3.4.4GOSv.s.GOS-E ...................... 61 3.4GeneralNetworkSchedulingAlgorithmsSummary ............. 63 4SCHEDULINGINOPTICALNETWORKS ..................... 65 4.1ProblemDenition ............................... 65 4.2SchedulinginFullWavelengthConversionNetwork ............ 67 4.2.1ProblemDenition ........................... 67 4.2.2RoutingAlgorithms ........................... 68 4.2.3WavelengthAssignmentAlgorithms .................. 71 4.2.4PerformanceEvaluation ........................ 73 4.2.5Experiments ............................... 74 4.2.5.1Simulationenvironment ................... 74 4.2.5.2Evaluatedalgorithms .................... 75 4.2.5.3Resultsandobservations .................. 76 4.3SchedulinginSparseWavelengthConversionNetwork ........... 77 4.3.1ProblemDescription .......................... 77 4.3.2ExtendedNetworkModel ....................... 79 4.3.3RoutingandWavelengthAssignmentAlgorithms .......... 81 4.3.3.1ExtendedBellman-Fordalgorithmforsparsewavelengthconversion .......................... 81 4.3.3.2k-Alternativepathalgorithm ................. 82 4.3.3.3Breakingthetiesinpathselection ............. 83 4.3.3.4Wavelengthassignment ................... 84 4.3.4ExperimentalEvaluation ........................ 85 4.3.4.1Experimentalframework .................. 85 4.3.4.2Slacktie-breakingscheme ................. 87 4.3.4.3Blockingprobability ..................... 89 4.3.4.4Requests'averagestarttime ................ 92 4.3.4.5Schedulingoverhead .................... 94 4.3.4.6Algorithmswitchingstrategy ................ 95 4.4OpticalNetworkSchedulingSummary .................... 97 5MULTIPLERESOURCESCHEDULING ...................... 99 5.1ProblemDenition ............................... 99 5.2ResourceModelandDataStructure ..................... 101 5.2.1ResourceModel:MRRM ....................... 101 5.2.2DataStructures ............................. 105 5.3ProblemDenition ............................... 106 5.4MultipleResourceSchedulingAlgorithm ................... 107 5.4.1WS)]TJ /F4 11.955 Tf 11.96 0 Td[(RCSchedulingAlgorithm .................... 108 7

PAGE 8

5.4.2WN)]TJ /F4 11.955 Tf 11.95 0 Td[(RCSchedulingAlgorithm .................... 110 5.4.3WS)]TJ /F4 11.955 Tf 11.96 0 Td[(RNSchedulingAlgorithm .................... 111 5.4.4WN)]TJ /F4 11.955 Tf 11.95 0 Td[(RNSchedulingAlgorithm .................... 113 5.5Evaluation .................................... 113 5.5.1EvaluationEnvironment ........................ 113 5.5.2ResultsandObservations ....................... 114 6SCHEDULINGINTIME-DOMAINWAVELENGTHINTERLEAEDNETWORKS 117 6.1ProblemDenition ............................... 117 6.2RelatedWork .................................. 119 6.3NetworkModelandProblemDenition .................... 121 6.4TreeConstruction ................................ 124 6.5Tree-WavelengthAssignment ......................... 126 6.5.1GenericFormoftheTree-WavelengthAssignmentProblem .... 126 6.5.2GreedyHeuristics ........................... 129 6.6Evaluation .................................... 132 6.6.1ExperimentalFramework ........................ 132 6.6.2EvaluationResults ........................... 133 7CONCLUSION .................................... 138 REFERENCES ....................................... 141 BIOGRAPHICALSKETCH ................................ 147 8

PAGE 9

LISTOFFIGURES Figure page 1-1TopologyofInternet2. ................................ 15 2-1Time-bandwidthlist ................................. 21 3-1ModiedDijkstra'salgorithm ............................ 29 3-2PseudocodeforextendedFloydalgorithm .................... 31 3-3Algorithmtimecomplexities ............................. 34 3-4Classicationofxed-slotalgorithms ........................ 35 3-5TopologiesofAbilenenetwork,MCInetwork,Burchard'snetworkandClusternetwork ........................................ 37 3-6AcceptanceratiovsrequestsnumberinAbileneMCIBurchardandClusternetwork ........................................ 39 3-7Acceptanceratiovsrequestsnumberinvariousrandomtopologies ....... 40 3-8AcceptanceratiovsmeanrequestsdurationinAbileneMCIBurchardandClusternetwork .................................... 40 3-9Acceptanceratiovsmeanrequestsdurationinvariousrandomtopologies ... 41 3-10AcceptanceratiovsmeanrequestsbandwidthinAbileneMCIBurchardandClusternetwork .................................... 41 3-11Acceptanceratiovsmeanrequestsbandwidthinvariousrandomtopologies .. 42 3-12Basicintervals .................................... 44 3-13GreedyonlineschedulingalgorithmGOS ..................... 51 3-14Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesinMCIusingSSTS. ..................................... 55 3-15Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesin100nodesrandomtopologyusingSSTS. ....................... 55 3-16Comparisonofdifferentalgorithms'MFTrandomTopologiesofdifferentsizeusingSSTS. ..................................... 56 3-17Comparisonofdifferentalgorithms'executiontimeondifferentnumbersoflesonMCInetworkusingSSTS. ......................... 57 3-18Comparisonofdifferentalgorithms'executiontimeondifferentnumbersofleson100nodesrandomtopologyusingSSTS. ................ 57 9

PAGE 10

3-19Comparisonofdifferentalgorithms'MFTexecutiontimeonrandomtopologieswithdifferentsizeusingSSTS. ........................... 58 3-20Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesinMCIusingMSTS. ..................................... 59 3-21Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesin100nodesrandomtopologyusingMSTS. ....................... 59 3-22Comparisonofdifferentalgorithms'MFTinrandomtopologiesofdifferentsizeusingMSTS. ..................................... 59 3-23Comparisonofdifferentalgorithms'executiontimeinMCInetworkusingMSTS. ............................................. 60 3-24Comparisonofdifferentalgorithms'executiontimein100nodesrandomtopologyusingMSTS. ..................................... 60 3-25Comparisonofdifferentalgorithms'executiontimeonrandomtopologieswithdifferentsizeusingMSTS. ............................. 60 3-26ComparisononnumberofMax-FlowsiscomputedbyGOS-EandGOSin100noderandomnetwork. ............................. 61 3-27ComparisononexecutiontimeusedbyGOS-EandGOSin100-noderandomnetwork. ....................................... 62 3-28ComparisononnumberofMax-FlowsiscomputedbyGOS-EandGOSin100noderandomnetwork. ............................. 62 3-29ComparisononexecutiontimeusedbyGOS-EandGOSin100-noderandomnetwork. ....................................... 62 4-1Arequesttablewith5requests ........................... 72 4-2ComparisonofwavelengthassignmentusingdifferentschemesforrequesttableofFigure 4-1 .................................. 73 4-3Timecomplexityofdifferentalgorithms ....................... 74 4-4NSFandGEANTnetwork .............................. 75 4-5Networkacceptanceratiovsnumberofrequests ................. 76 4-6Acceptanceratiovsrequestsnumberinvariousrandomtopologies ....... 77 4-7ExtendedNetworkModel .............................. 80 4-8ExtendedNetworkModel .............................. 84 4-9NetworkTopologies ................................. 86 10

PAGE 11

4-10Differenthvaluesfordifferenttopologies.NetworkTrafcLoad:=0.05 ... 88 4-11Benetofslacktie-breakingschemeinvarioustopologies.NetworkTrafcLoad:=0.05. ................................... 88 4-12BlockingProbabilityvs.WavelengthConverterRatioinvarioustopologywithlowtrafcload. .................................... 90 4-13BlockingProbabilityvs.WavelengthConverterRatioinvarioustopologywithhightrafcload. ................................... 90 4-14Totalresourceconsumptionina100-noderandomnetworkunderdifferentworkload. ....................................... 91 4-15AverageRequestStartTimevs.WavelengthConverterRatioinvarioustopologywithlowtrafcload. ................................. 92 4-16AverageRequestStartTimevs.WavelengthConverterRatioinvarioustopologywithhightrafcload. ................................ 93 4-17AveragecomputationtimeofEBF-SandKDP-S. ................. 94 4-18TheperformanceofalgorithmswitchingstrategyinSlowTrafcPatternSwitching. ............................................. 95 4-19TheperformancealgorithmswitchingstrategyinFastTrafcPatternSwitching. ............................................. 96 5-1GeneralModelofMRRM .............................. 101 5-2DetailedModelofMRRM .............................. 104 5-3WS)]TJ /F4 11.955 Tf 11.96 0 Td[(RCSchedulingAlgorithm .......................... 110 5-4ExtendedBellman-Fordalgorithm ......................... 112 5-5Ourco-schedulingalgorithms'performanceonacceptanceratio. ........ 115 5-6Ourco-schedulingalgorithms'performanceonconvergespeed. ........ 115 6-1AnexampleofTWINnetwork. ........................... 123 6-2AnexampleofTWINTreeConstruction. ..................... 124 6-3ThegreedyalgorithmforTree-Construction .................... 125 6-4ReductionfromGraph-Coloringproblemtotree-wavelengthassignmentproblem. ............................................. 128 6-5NetworkTopologies ................................. 133 11

PAGE 12

6-6TheperformancesofwavelengthassignmentheuristicsunderdifferentnumberofrequestsinMCInetwork. ............................ 134 6-7Theperformancesofwavelengthassignmentheuristicsunderdifferentnumberofrequestsin100-noderandomtopologies. ................... 134 6-8Theperformancesofwavelengthassignmentheuristicsinrandomnetworkswithvarioussizes. .................................. 135 6-9Thealgorithmrunningtimeofwavelengthassignmentheuristicsunderdifferentnumberofrequestsin100nodenetworks. .................... 136 6-10Thealgorithmrunningtimeofwavelengthassignmentheuristicsinrandomnetworkswithvarioussizes. ............................ 137 12

PAGE 13

AbstractofDissertationPresentedtotheGraduateSchooloftheUniversityofFloridainPartialFulllmentoftheRequirementsfortheDegreeofDoctorofPhilosophyDATASTRUCTURESANDALGORITHMSFORRESOURCESCHEDULINGINHIGHSPEEDNETWORKSByYanLiDecember2010Chair:SatarjSahniCochair:SanjayRankaMajor:ComputerEngineering Largescalescienticapplicationsrequirethecollaborationofgeographicallydistributedcomputationalresources,thatareconnectedbyhighspeedanddedicatednetworks.Thesedistributedcomputationalresources,togetherwiththenetworkconnectingthem,deneaheterogeneouscomputationalenvironment.Findinganoptimalresourceallocationscheduleiskeytoprovidingeffectiveandreliablecomputationservicesinthisenvironment.Thisdissertationfocusesonresourceschedulingproblemsfordedicatedhighspeednetworks.Weformulateaseriesofschedulingproblemsaccordingtovariousschedulingneedsandperformancemetrics.Weproposeasetofdatastructuresthatcharacterizethetemporalbehaviorofvariousresources.Basedonthesedatastructures,weproposealgorithmsforresourceallocationandpathcomputationforeachformulatedschedulingproblem. Wedevelopmulti-pathreservationalgorithmsforin-advanceschedulingoflargeletransfersfrommultiplesourcestomultipledestinations.Whentherequestsareprocessedonebyoneinonlinemode,anewmax-owbasedgreedyalgorithmandfourvariantsthatadaptthekshortestpathsandkdisjointpathsalgorithmsareproposed.Further,tondanearliest-nishingscheduleforabatchofletransfers,alinearprogrammingbasedalgorithmisdeveloped. 13

PAGE 14

Wedevelopanextendednetworkmodelthatsupportsopticalswitcheswithorwithoutwavelengthconverters.Wecustomizesomeexistingroutingandresourceallocationalgorithmstotheopticalenvironmentandstudytheimpactofdifferentwavelengthconversionschemesforresourcescheduling.Wealsopresentanovelwavelengthassignmentstrategythatalleviatestheneedtokeeptrackofthebandwidthallocationstatusofeachwavelength. AMultipleResourceReservationModel(MRRM)ispresentedforthecasewhenmultipletypesofresourcesarescheduledtogether.Thismodelenablesthemonitoringandschedulingofmultipleheterogeneousanddistributedresources.MRRMprovidesauniedrepresentationformultipletypesofdistributedresources,andrepresentsresourceconstraintssuchascompatibilityandaccessibility.UsingMRRM,wesolvetheMultipleResourceFirstSlot(MRFS)problembasedonacollectionofalgorithmsthatarecustomizedfordifferentrequestandresourcetypes. WealsoconsiderthewavelengthassignmentprobleminTime-domainWavelengthInterleavedNetworks(TWIN).Weproposea2-stepprocesstocomputethewavelengthassignmentforagivensetofthetrafcdemands.Thegoalofourschedulingalgorithmistondouttheassignmentthatusestheminimumnumberofwavelengths.WeshowthatthiswavelengthassignmentproblemisNP-CompletebyreducingtheGraphColoringproblemtoit.Fourgreedyheuristicsarepresentedtocomputeanearoptimalsolutionwithinreasonabletime. Foreachproposedalgorithm,weconductextensiveexperimentsundervarioustopologiesandworkloadstoevaluateitsperformanceandefciency. 14

PAGE 15

CHAPTER1INTRODUCTION 1.1ProblemOverview Manylarge-scalescienticandcommercialapplicationsproducelargeamountsofdata,oftheorderofterabytestopetabytes,whichmustbetransferredacrosswide-areanetworks.Forexample,forane-Scienceapplication,datasetsproducedonasupercomputerinLosAngelesmayneedtobestreamedtoaremotestoragecenterinHoustonforanalysis.TheresultsthenaresenttoAtlantaandvisualizedtheretoguidethenextroundtheexperiments.Whendataprovidersandconsumersaregeographicallydistributed,dedicatedconnectionsareneededtoeffectivelysupportavarietyofremotetasks[ 46 ].Morespecically,dedicatedbandwidthchannelsarecriticalinthesetaskstooffer(i)largecapacityformassivedatatransferoperations,and(ii)dynamicallystablebandwidthformonitoringandsteeringoperations.Itisimportantthatthesechannelsbeavailablewhenthedataisorwillbereadytobetransferred.Thus,theabilitytoreservesuchdedicatedbandwidthconnectionseitheron-demandorin-advanceiscriticaltobothclassesofoperations. Figure1-1. TopologyofInternet2. 15

PAGE 16

Toprovidededicatednetworkconnectionserviceforthepreviousexample,themanagerofthehighspeednetworkthatconnectsthesesites(likeInternet2[ 29 ],Figure 1-1 )shouldaddressthefollowingissues: (a) Resourcemonitoringandmanagement.Toprovidearesourcereservationserviceonanetwork,itisfundamentaltoacknowledgethestatusofavailableresourcesandreservethemforacertainperiodoftime.Moresophisticatedresourcereservationmechanismscanonlybebuiltwiththesupportofthesetwobasicfunctionalities. (b) Dynamicandscalableresourcemodel.Asthelinkcapacityofanetworkissharedbydifferentrequestsfromtimetotime,adynamicresourcemodelthatrepresentsthechangingstatusofthenetwork'savailableresourcesisneeded.Plus,tobecapableoftheincreasingdemandsforthefutureapplications,thisresourcemodelisalsoexpectedtobescalablewiththenetworksizeandthenumberofrequests. (c) Efcientschedulingalgorithmsforvariousreservationrequests.Basedontheaboveresourcemodel,algorithmsareneededtondpathsthatfulllusers'requests.Userrequestsgenerallyspecifysourceanddestinationnodesaswellasbandwidthandduration.Whenthejobstarttimeistheprimaryconcern,thebandwidthschedulerneedtondtheearlieststarttimeforwhichafeasiblenetworkpathisavailable.Whenthejobrequiresalargeamountofbandwidth,multi-pathschedulingisneededtofullltheresourcerequirement.Whentherequiredpathisnotavailableduetolinkoutage,analterativepathneedtobecomputedandre-allocated.Hence,foreachtypeofrequest,weneedacorrespondingalgorithmtoeffectivelycomputethebestresourceallocationschedule. Inthisdissertation,wefocusonthelasttwoofthesethreeissuesandproposedatastructuresandalgorithmsforvariousresourceschedulingproblemsindedicatedhighspeednetworks. Theimportanceofdedicatedconnectioncapabilitieshasbeenrecognized,andseveralnetworkresearchprojectsarecurrentlyunderwaytodevelopresourceschedulingcapabilities.TheseincludeUserControlledLightPaths(UCLP)[ 61 ],UltraScienceNet(USN)[ 47 ],Circuit-switchedHigh-speedEnd-to-EndTransportArcHitecture(CHEETAH)[ 74 ],Enlightened[ 18 ],DynamicResourceAllocationviaGMPLSOpticalNetworks(DRAGON)[ 2 ],JapaneseGigabitNetworkII[ 31 ],BandwidthonDemand(BoD)onGeant2network[ 22 ],On-demandSecureCircuitsandAdvance 16

PAGE 17

ReservationSystem(OSCARS)[ 4 ]ofESnet,HybridOpticalandPacketInfrastructure(HOPI)[ 28 ],BandwidthBrokers[ 72 ]andothers.Inaddition,productionnetworksatthenationalandinternationalscalewithsuchcapabilitiesarebeingdeployedbyInternet2andLHCNet[ 37 ].Suchdeploymentsareexpectedtobeontheincreaseandproliferateintobothsharedandprivatenetworkinfrastructuresacrosstheglobeinthecomingyears. Bandwidthreservationsystemsoperateinoneoftwomodes: (a) Inon-demandscheduling,bandwidthisreservedforatimeperiodthatbeginsatthecurrenttime. (b) Inin-advancescheduling,bandwidthisreservedforatimeperiodthatbeginsatsomefuturetime. Inreality,on-demandschedulingisaspecialcaseofin-advancescheduling;thefuturetimeforeachschedulingrequestisseparatedfromthetimeatwhichtherequestismadebyatimeintervalofzero.Hence,inourresearch,alltheproblemsareformulatedforthein-advanceschedulingmodeandthesolutionsarenaturallyadaptedtotheon-demandcase. 1.2OurContributions Thecontributionsofthisdissertationarelistedbelow: (a) DynamicResourceModel.Torepresentthechangingresourceavailabilityinthenetwork,wedenedasetofdatastructuresthatcoupethetimeinformationtogetherwithresourceavailability.Wealsodiscussindetailthepros-and-consoftwodifferenttimerepresentations:continuoustimemodelanddiscretetimemodel. (b) SinglePathSchedulinginGeneralNetworks.Singlepathschedulingisthesimplestandmostcommonreservationmode,aseachrequestonlyasksforasinglepathinthenetwork.Forthistypeofscheduling,wehavecategorizedseveraldifferentproblemsbasedondifferentobjectives,includingxedslot,maximumbandwidthinslot,maximumduration,rstslot,allslotsandall-pairsall-slots.Foreachproblem,wehaveproposedseveralalgorithmsasitssolution.Someofthesealgorithmsareadaptedfromoriginalon-demandschedulingalgorithms,whileothersarerstproposedbyus.Ourexperimentsindicatethatforthosexed-slotproblem,theminimum-hopfeasiblepathalgorithmoftheseonlargenetworkswhileDAFPisbestonsmallnetworks.Forotherproblems,as 17

PAGE 18

noprioralgorithmshavebeenproposed,ourevaluationsshowonlytheowntheefciencyofourproposedalgorithms. (c) MultiplePathsSchedulinginGeneralNetworks.Itiswellknownthatusingmultiplepathsutilizestheavailablenetworkresourcesmoreeffectively[ 10 ].Toexplorethebenetsbroughtbymulti-pathrouting,theEarliestFinishTimeFileTransferProblem(EFTFTP)isproposed.Inthisproblem,leshavetobetransferredfrommultiplesourcestomultipledestinationsandtheobjectiveistominimizedtheoverallnishtimeofalltransfers.Tosolvethisproblem,twodifferentapproachesareproposedandcompared:onlinescheduling,inwhichtheletransfersarescheduledonebyone;andbatchscheduling,inwhichwescheduleallletransferstogether.Optimalsolutionsandheuristicsareprovidedforthesetwoapproach.Ourexperimentsshowthatonlineschedulingalgorithmgeneratescheduleswithamaximumnishtimeslightlylargerthanthoseobtainedbythebatchscheduling.However,onlineschedulingismoretimeefcientandprovidesbetteraveragenishtimes.Hence,onlineschedulingpresentsagoodbalanceamongmaximumnishtime,meannishtime,andcomputationtime. (d) SchedulinginOpticalNetworkswithFullWavelengthConversion.Manyhighspeednetworksarebasedonopticalinterconnectsandopticalswitches.Alightpathinanopticalnetworkhastotwoconstraints:wavelengthcontinuityconstraintandwavelengthsharingconstraint.Pathcomputationandresourceallocationalgorithmsforgeneralnetworksmaynotbesuitableforopticalnetworks.Hence,were-designourxed-slotandrst-slotalgorithmsfortheopticalenvironmentandconsiderthewavelengthassignmentproblem.OurresultsshowthattheExtendedBellmanFord(EBF)algorithmhasbetterperformancethatotheralgorithms.Forheterogeneousnetworks,ListSlidingWindow(LSW)algorithmalsoprovidedcomparablesolutions;whileforhomogeneousnetworksModiedSwitchPathFirst(MSPF)algorithmandModiedSwitchWavelengthFirst(MSWF)algorithmprovidecomparablesolutions.Wealsoshowedthatadeferredwavelengthassignmentstrategycanbeusedeffectivelyinconjunctionwithourroutingalgorithms. (e) SchedulinginOpticalNetworkswithSparseWavelengthConversion.Althoughfull-wavelengthconversionprovideagreatconvenienceforopticalnetworkscheduling,thehighcostsandtheaddedlatencyintroducedbywavelengthconvertersmakesparsewavelengthconversionanattractiveoptioninopticalnetworkdesign.Hence,weexaminetheimpactofsparsewavelengthconversionforresourceschedulingonopticalnetworks.Weproposeanewnetworkmodeltoemulatethefull-conversionalgorithmsinsparseconversionnetworks.Usingthismodel,weconductedextensiveexperimentstoassesstheimpactofwavelengthconvertersontheFirst-SlotRWAalgorithms'performance.Ourexperimentsindicatethatincreasingwavelengthconvertershaspositiveimpactonblockingperformance,butverylittleimpactontheavailabilityofearlierstarttimes.Wealsoshowthatfornetworksnolargerthanseveralhundredsnodes,deploywavelength 18

PAGE 19

convertersatmost60%ofnodesisenoughtoprovidesatisfyingperformance.Additionally,analgorithmswitchingstrategythatadaptstheschedulingalgorithmasthecurrentworkloadchangesisproposed.Whenthenetwork'strafcpatterndoesnotchangingdramatically,thisstrategyprovidesconsiderableperformanceimprovements. (f) MultipleResourcesScheduling.Toprovideacompleteserviceguaranteeforacomplexe-Scienceapplication,notonlynetworkconnections,butalsocomputationalresources,suchasCPUtimeanddiskspaceshouldbereserved.WeproposeaMultipleResourcesReservationModel(MRRM)thatrepresentsheterogeneousresourcesinauniedwaywhilekeepingtheirdiversity.WealsodenetheMultipleResourceFirstSlot(MRFS)problemanddivideitintofoursub-problems.ForeachsalientinstanceofMRFS,analgorithmispresentedtosolveitbasedonMRRM.Experimentsonaheterogeneouscomputernetworkshowthatouralgorithmsarescalablelinearlyintermsofnetworksizeandrequestratio. (g) SchedulinginTWIN.Time-domainWavelengthInterleavingNetwork(TWIN)isanovelopticalnetworkarchitecture.InTWIN,trafcfromdifferentsourcenodesmayshareonewavelengththroughTimeDimensionMultiplexing(TDM)inthenetworkiftheirhavethesamedestination.Thisnewfeaturemayimprovethelinkcapacityutilizationbyprovidingmuchnergranularityinopticalbandwidthreservationformulti-source-single-destinationtrafcs.Inthisdissertation,weconsiderthewavelengthassignmentproblemsinTWINnetworks.Severalalgorithmsforthisproblemareproposedandevaluated. 1.3OrganizationOfThisdissertation Therestofthisdissertationisorganizedasfollows.InChapter2,wepresentsthetemporalnetworkmodelandrelateddatastructures,whicharefundamentalforallfollowingchapters.InChapter3,ourresearchesonthegeneralnetworkmodelispresented,wherefractionalreservationofalink'scapacityisallow.Chapter4discussesbandwidththeschedulingprobleminthespeciccontextofopticalnetworks.Chapter5proposesanovelmultipleresourceschedulingmodelandcorrespondingschedulingalgorithms.Chapter6solvesthewavelengthassignmentprobleminTime-domainWavelengthInterleavedNetworks.WeconcludethisdissertationinChapter7. 19

PAGE 20

CHAPTER2TEMPORALNETWORKMODEL WeassumethatthenetworkisrepresentedasagraphG=(V,E).Eachnodeofthisgraphrepresentsadevicesuchasaswitchforlayers1-2andarouterforlayer3;andeachedgerepresentsalinksuchasSONETorEthernet.Whendevelopinganin-advancereservationsystemonemustdecideonarepresentationoftime.Theoptionsaretoeitherconsidertimeasdividedintoequalsizeslotsasisdonein[ 12 19 23 54 58 ]ortoconsidertimeasbeingcontinuousasin[ 46 48 52 73 ]. 2.1SlottedTime Explicitintheslottedmodelof[ 12 23 ]istheuseofanarraytostorelinkstatusforeachtimeslot.So,forexample,wemayuseatwo-dimensionalarraybsuchthatb[l,t]givesthebandwidthavailableonlinklinslott.Theuseofthismodeloftimehasseveralmeritsanddemerits.ThemeritsincludeitssimplicityandthefactthatthestatusofalinklinanyslottmaybedeterminedinO(1)time.Someofthedemeritsare: 1. Weneedtodecidethegranularityofatimeslot.Doesaslotrepresentaminute,anhour,aday,oraweekoftime?Thegranularityofatimeslotdeterminesthenumberoftimeslotsweneedtoprovisionforinourarrayb.So,iftheadvanceschedulerpermitsreservationstobemadeuptoayearinadvanceofthejobcompletiontime,thenumberoftimeslots(i.e.,sizeoftheseconddimensionofourarray),T,willneedtobe52incaseatimeslotrepresentsaweekand525,600incaseatimeslotis1minute(weassumea365-dayyear).Assumingthatittakes4bytestostoretheavailablebandwidthofalinkandanetworkwith1000links,thememoryrequiredforthelinkstatusarraybis208,000byteswhenweemploya1-weekgranularityandisabout2GBfora1-minutegranularity.Ontheotherhand,thepotentialtowastealotofresourcesishighwhenweusea1-weekgranularity.Thisisbecausetheschedulercanallocateonlyanintegralnumberofslotstoareservationrequest.So,ifataskneedsafractionalnumberofslots,theschedulermustroundtothenearestinteger.Arequestfor(say)1.1slotsresultsintheallocationof2slots.Witha1-weekgranularity,a1-minutetask,whichtiesupasource-destinationpathfor1-weekresultsina0.01%utilization! 2. Therun-timeofreservationalgorithmsisoftenafunctionofT,thetotalnumberofslots,or,thedurationofareservationrequestorboth.So,forexample,ittakesO()timetodeterminewhetherlinklhasbandwidthbavailableineachofslotst,,t+)]TJ /F6 11.955 Tf 12.39 0 Td[(1.Thisdeterminationistobemadetoverifythatlinklisavailable 20

PAGE 21

forabandwidthbreservationofdurationbeginningatslott.TondtherstslotduringwhichlinklhasabandwidthofatleastbavailabletakesO(T)time. 3. Theexacttimeofday/week/yearrepresentedbyslottcannotbexed.Inotherwordstheslotb[l,t]cannotbeassociatedwith(say)weektofayearwhenusingaslotgranularityof1week.Thisisbecausethereservationsystemneedstooperateessentiallyforeverusingthesamearray.Astimeadvancesfrom1weektothenextweneedtodroptheslotthatrepresentedtheelapsedweekandaddaslottorepresenttheweekthatisnowayearaway.Todothisefciently,wemustusetheslotsassociatedwitheachlinkinacircularmannerasisdoneinthecirculararray-representationofaqueue[ 51 ]. 2.2ContinuousTime Inthecontinuoustimemodeladoptedby[ 46 48 52 73 ],thestatusofeachlinklismaintainedusingatime-bandwidthlist(TBlist)TB[l]thatiscomprisedoftuplesoftheform(ti,bi),wheretiisatimeandbiisabandwidth.ThetuplesonaTBlistareinincreasingorderofti.If(ti,bi)isatupleofTB[l](otherthanthelastone),thenthebandwidthavailableonlinklfromtitoti+1isbi.When(ti,bi)isthelasttuple,abandwidthofbisavailablefromtito1.ConsiderthelinkshowninFigure 2-1 .Thegraphisapictorialrepresentationofthebandwidthavailableonthislinkasafunctionoftime.So,forexample,abandwidthof5isavailablefromtime0totime1andtheavailablebandwidthfrom2to3is4.ThecorrespondingTBlistis[(0,5),(1,2),(2,4),(3,5),(4,1),(5,5)]. Figure2-1. Time-bandwidthlist 21

PAGE 22

WenotethatTBlistsmaybeusedintheslottedmodeloftimeaswellwithtirepresentingaslotratherthanatime.Inthiscase,TB[4]=[(2,10),(9,5),(20,50)]wouldmeanthatlink4hasanavailablebandwidthof10inslots2through8,abandwidthof5inslots9through19,andabandwidthof50inslots20andbeyond;thelinkisnotavailableinslot1. EachTBlistmayberepresentedasanarraylinearlistusingdynamicarrayresizingasdescribedin[ 51 ]orasalinkedlist. Thedemeritsofthecontinuoustimemodelincludeitsrelativecomplexity(linearlistsaresomewhatmoredifculttohandlethanarrays)andthecomplexityofdeterminingthestatusofalinkatanygiventime.ThelattercanbedoneinO(logIjTB[l]j))timeusingabinarysearchincaseofanarraylinearlistandinO(jTB[l]j)timeincaseofalinkedTBlist.Someofthemeritsofthistimemodelare: 1. Thereisnoneedtopickatimegranularityortoplaceaboundonthelengthofthebookaheadperiod(i.e.,wedon'tneedtolimitourselvestoreservationsthatcompletewithinayear(say)). 2. Thememoryrequiredtorepresentalinkstate(i.e.,theTBlist)isafunctionofthetimevariationinlinkbandwidthavailabilityratherthantheschedulinghorizonT.So,forexample,alinkwithbandwidthcapacity100andnoreservationsisrepresentedbytheTBlist[(0,100)]irrespectiveofhowfaraheadonecanschedule.Ontheotherhand,iftheavailablebandwidthchangesattimes0,10,and40,theTBlistwillhave3tuples.Wenotethatthetimevariationinlinkbandwidthislooselyrelatedtothenumberoftasksscheduledonthatlink. 3. Therun-timeofreservationalgorithmsisnotafunctionoftheschedulinghorizon.Instead,itisafunctionofthesizeoftheTBlists,which,inturn,dependsonthenumberoftasksthathavebeenscheduled. Becauseofthecorrespondencebetweenaslotandtime,weoftenusethetwotermsinterchangeably. 22

PAGE 23

CHAPTER3SCHEDULINGINGENERALNETWORKS 3.1ProblemDenition Muchoftheresearchonbandwidthschedulinghavefocusedonreservingasinglepathforaspeciedbandwidthrequest.Foron-demandscheduling,itistypicallysupportedbyMultipleProtocolLabelSwitching(MPLS)[ 8 11 ]atlayer3andbyGeneralizedMPLS(GMPLS)[ 67 ]atlayers1and2.Algorithmsforon-demandschedulingaredescribedin[ 24 40 41 64 ],andimplementedbyCHEETAH,DRAGON,HOPI,UCLPandJGN.GeantII,OSCARS,USNandEnlightensupportin-advanceschedulingandalgorithmsforin-advanceschedulingaredescribedin[ 12 23 46 48 52 ],forexample. Ontheotherhand,itiswellknownthatusingmultiplepathscanutilizetheavailablenetworkresourcesmoreeffectively[ 10 ].Themulti-pathreservationproblemisformulatedin[ 10 ]asanetworkowproblemwiththeobjectiveofminimizinglinkcongestion.Algorithmsfordelay-constrainedletransferusingmultiplepathsareproposedin[ 49 ].Multi-pathletransferwithbothlinkutilizationconstraintsandpathlengthconstraintsisconsideredin[ 36 ].Amaximumconcurrentowformulationisusedin[ 45 ]tosolvethelargeletransferproblemwithxedstartandendtimes.Itsobjectiveistomaximizenetworkthroughput.[ 45 ]alsodevelopslinearprogrammingmodelstomaximizenetworkthroughputandproposestwoheuristicsformulti-pathrouting.Therstheuristic,k-ShortestPaths(KSP),usesthek-shortestpathsalgorithmof[ 69 ]tocomputeknotnecessarilydisjointpathsfromthesourcetothedestination.Theschedulingoftheletransferisrestrictedtothesekpaths.Thesecondheuristic,k-DisjointPaths(KDP),computeskdisjointpathsfromsourcetodestinationbyeliminatingthelinkscontainedinpreviouslycomputedpathsbeforecomputingthenextpath;eachpathcomputationgeneratestheshortestpathintheremainingnetwork. 23

PAGE 24

Inthischapter,weuseanetworkmodelinwhichallthenetworklinksallowfractionalbandwidthreservation.Inthiscase,wecanreserveanyamountofbandwidthonanylinkprovidedthereisenoughcapacityavailable.However,inthenextchapter,theintegerconstraintforbandwidthreservationisintroducedtoaccommodateforopticalnetworkconstraints. InSection 3.2 ,asetofin-advanceschedulingproblemsaredenedandcorrespondingalgorithmsareproposedandevaluated.InSection 3.3 ,amultiplepathschedulingproblemEarliestFinishTimeFileTransferProblem(EFTFTP)isproposedandsolvedbybothoptimalsolutionsandheuristics. 3.2Single-PathScheduling 3.2.1ProblemDenitions Thefollowingproblemsareofinterestinthecontextofin-advancescheduling. 1. FixedSlot:Reserveapathwithbandwidthbfromthesourcestothedestinationdfromtimetstarttotimetend. 2. MaximumBandwidthinSlot:Findthelargestbandwidthbsuchthatthereisabandwidthbpathfromthesourcestothedestinationdfromtimetstarttotimetend.Reservesuchapath. 3. MaximumDuration:Findthemaximumdurationsuchthatthereisabandwidthbpathfromthesourcestothedestinationdfromtimetstarttotimetstart+.Reservesuchapath. 4. FirstSlot:Findtheleasttforwhichthereisapathwithbandwidthbfromthesourcestothedestinationdfromtimettotimet+,whereisthedurationforwhichthepathisdesired.Reservesuchapath. 5. AllSlots:Findallrangesrsuchthatforeveryt2r,thereisabandwidthbpathfromthesourcestothedestinationdfromtimettotimet+.Reservesuchapathforauserselectedtinoneofthefoundranges. 6. AllPairsAllSlots:Foreverysource-destinationpair(s,d),ndallrangesrsuchthatforeveryt2r,thereisabandwidthbpathfromstodfromtimettotimet+. 24

PAGE 25

Thexed-slotproblemisreferredtoastheconnectionfeasibilityproblemin[ 23 ].Thesoonestcompletionproblemformulatedin[ 23 ]isreferredtoastherstavailabletransmissionperiodin[ 12 ];bothareidenticaltotherst-slotproblemstatedabove. Inadditiontothepathproblemsdenedabove,anin-advancereservationsystemmayimplementaggregatepathreservationalgorithmsinwhichtheavailablebandwidthonthereservedpathmaychangeduringthecourseofthereservationinterval.Theintegraloftheavailablebandwidthoverthereservationintervalistomeetaprespeciedrequirement.Aggregatedatareservationalgorithmsareusefulindatatransferapplicationswherewearenotconcernedwithtransferringdataatauniformratebutjustwithcompletingthetransferby(say)agivendeadline.[ 23 ]showsthattheaggregatepathreservationproblemisNP-hard. 3.2.2PathComputationAlgorithms WedescribeonlythealgorithmsneededtocomputethepathsforthevariousproblemsdescribedinSection 3.2.1 .TheactualschedulingorreservationofthefoundpathrequiresustoupdatetheTBlistsortheb-arrayentriesforthelinksonthepathaswellastosignaltheroutersonthepathatthereservedtime.Theformerisarelativelystraightforwardprocessandthelatterrequirestheuseofspecicsignalingprotocols. 3.2.2.1Fixedslot OftheproblemslistedinSection 3.2.1 ,thexed-slotproblemisthemoststudied.Thealgorithmsthathavebeenproposedaredescribedbelow. 1. FeasiblePath(FP):Alinkofthenetworkisfeasibleforxed-slotschedulingifftheavailablebandwidthonthelinkatalltimesintheinterval[tstart,tend]isb.Letpbeapathfromthesourcestothedestinationd.pisafeasiblepathiffitiscomprisedonlyoffeasiblelinks.InFPscheduling,afeasiblepathisreserved.Suchapathmaybefoundbyperformingasearch(depth-orbreadth-rst,forexample[ 51 ])onthesubgraphofG,calledthefeasiblesubgraph,obtainedfromGbyeliminatingalllinksthatarenotfeasible.FPschedulingisdonein[ 23 ]. 2. MinimumHopFeasiblePath(MHFP):Thenumberoflinksonapathisitshopcount.InMHFPscheduling,aminimum-hopfeasiblepathisreserved.Suchapathmaybefoundbyperformingabreadth-rstsearchonthefeasiblesubgraphof 25

PAGE 26

G.NoticethatFPschedulingisthesameasMHFPschedulingwhenthesearchmethodusedbyFPschedulingisbreadthrst.MHFPschedulingisusedinUSNandthepathcomputationalgorithmisformallystatedin[ 52 ]. 3. Widest/ShortestFeasiblePath(WSFP):Thisisanadaptationofthewidest-shortestmethodproposedin[ 24 ]foron-demandscheduling.Letpbeafeasiblepath.Letbminbbetheminimumbandwidthavailableonanylinkofpatanyinstantintheschedulinginterval[tstart,tend].InWSFPscheduling,weusetheminimum-hopfeasiblepaththathasthemaximumbminvalue.Tiesarebrokenarbitrarily.NoticethatWSFPschedulingisMHFPschedulingwithaspeciedtiebreaker.WSFPschedulingissuggestedin[ 12 ].AWSFPmaybefoundbyrunningamodiedBellman-FordalgorithmonthefeasiblesubgraphofG[ 24 ];theweightofalinkistheminimumbandwidthavailableonthatlinkduringtheinterval[tstart,tend]orbyrunningamodiedversionofDijkstra'sshortestpathalgorithmonthisfeasiblesubgraph[ 40 ].Inthelattercase,whenselectingthenextshortestpath,priorityisgiventonext-pathcandidateswithleasthopcountandtiesarebrokenbyusingthebminvalueofthepath. 4. Shortest/WidestFeasiblePath(SWFP):ThisisavariantofWSFPschedulingthatwasrstproposedforon-demandscheduling[ 64 ].Weselectafeasiblepaththathasmaximumbminvalue.Tiesarebrokenbyfavoringpathswithsmallerhopcounts.AnSWFPpathmaybefound[ 40 ]byrstrunningDijkstra'sshortestpathalgorithmmodiedtondapathwithmaximumbminandthendoingabreadth-rstsearchtondaminimum-hoppathwiththismaximumbminvalue;thebreadth-rstsearchignoreslinksthatviolatethisbminrequirement. 5. ShortestDistanceFeasiblePathAlgorithms(SDFP):Thesealgorithmsndashortestpath(thelengthofapathbeingthesumoftheweightsofthelinksonthatpath)inthefeasiblesubgraphofG.AnSDFPpathmaybefoundusingDijkstra'sshortestpathalgorithm. SDFPalgorithmsdifferintheirselectionofacostmetricforfeasiblelinks.SDFP-min(minimumSDFP)isanextensionoftheshortestdistancepathalgorithmforon-demandscheduling[ 41 ]tothecaseofin-advancescheduling.Theweightofafeasiblelinkisthereciprocaloftheminimumbandwidthavailableonthatlinkduringtheschedulinginterval[tstart,tend]. InSDFP-avg(averageSDFP),theweightofafeasiblelinkisthereciprocaloftheaverage(ratherthantheminimum)bandwidthavailableonthatlinkduringtheperiod[tstart,tend]. 6. DynamicAlternativeFeasiblePath(DAFP):Again,thisisanadaptationofthedynamicalternativepathalgorithmoriginallyproposedforon-demandscheduling[ 40 ].LethbethenumberofhopsintheMHFP.InDAFP,weuseawidestfeasiblepath(i.e.,onewithmaximumbminvalue)thathasnomorethanh+1hops.Suchapathmaybefound[ 40 ]byrestrictingtheBellman-FordalgorithmproposedforWSFPtousenopathwithmorethanh+1hops.WenotethatwhileDAFP 26

PAGE 27

guaranteestondafeasiblepathwheneversuchapathexists,thedynamicalternativepathalgorithmof[ 40 ]providesnosuchguarantee. 7. OSPFLikeAlgorithms:TheseareshortestpathalgorithmsthatworkonGorsomesubgraphofGotherthanthefeasiblesubgraph.Theydifferinhowthelinkweightsaredenedand/orinhowthesubgraphisdened.SincethesealgorithmsdonotworkonthefeasiblesubgraphofG,theymaygenerateaninfeasiblepathandsofailtoschedulearequestinsomecaseswhereoneoftheaforementionedfeasiblepathalgorithmssucceed.TheshortestpathmaybefoundusingDijkstra'salgorithm. InmostimplementationsoftheOSPFalgorithm,theweightofalinkisdenedtobethereciprocalofitsbandwidthcapacity.Notethatthisbandwidthisnotthelink'savailablebandwidthatanygiventimebutthelink'snominalunloadedbandwidth.So,theweightofa10Gblinkis1/10regardlessofthealreadyscheduledloadonthatlink.TheOSPFpathistheshortestpathinthegraphGusingtheselinkweights.IncasetheOSPFpathisnotfeasibleforxed-slotscheduling,thereservationrequestisdenied. IntheversionofOSPF-TEimplementedinOSCARS[ 4 ],youremovefromthenetworkgraphGthoselinksthatdonothaveanavailablebandwidththatisatleastbatthetimetheschedulingrequestisprocessed(notattimetstart);linkweightsareasforOSPF.Theshortestpathinthisreducedgraphisfoundandanattemptismadetoschedulethereservationrequestonthispath.AswithOSPF,theOSPF-TEpathmaynotbefeasible.NotethateventhoughtheOSPF-TEpathhasenoughbandwidthatthetimethepathiscomputed,itmaynothavesufcientbandwidthduringthereservationperiod[tstart,tend].ThefeasibilityoftheOSPF-TEpathisveried,inOSCARS,byusingadatabaseofpreviouslymadereservations.IncasetheOSPF-TEpathisinfeasible,theschedulingrequestisdenied. 8. kDynamicPaths(kDP):ThesealgorithmsareanextensionofOSPF-likealgorithms.RecognizingthatanOSPF-likealgorithmmayfailtondafeasiblepathinanetworkthathasafeasiblepath,kDPalgorithmsgenerateadditionalpathswiththehopethatoneoftheadditionalpathswillbefeasible.AnOSPF-likealgorithmgeneratesashortestpathandsucceedswhenthisshortestpathisfeasibleandfailsotherwise.InakDPalgorithm,whenthegeneratedpathisinfeasible,wereducethecurrentgraphbyremovingfromitlinksonthegeneratedinfeasiblepathwhoseavailablebandwidthduringthereservationinterval[tstart,tend]islessthanb.Wethenndtheshorteststodpathinthisreducedgraph.Thispathcomputationandgraphreductionprocessisrepeatedatmostktimes.Theprocessterminateswhentherstfeasiblepathisfoundorwhenkinfeasiblepathshavebeengenerated. kDP-OSPFandkDP-OSPF-TEarenaturalextensionsofOSPFandOSPF-TE.kDP-LOADisanadaptationofthealgorithmsusedin[ 58 ]forin-advanceschedulingofopticalnetworks.InkDP-LOAD,eachlinkisassignedaweightequaltothetotalloadalreadyscheduledonthatlink.Moreprecisely,alink'sweightistheaggregateallocatedbandwidthonthelinkbeginningatthecurrenttimeand 27

PAGE 28

goinguptothelatestscheduledtime.SomeotheradaptationsarekDPA-mininwhichthelinkweightisthereciprocaloftheminimumbandwidthavailableintheinterval[tstart,tend](asinSDFP-min)andkDP-avginwhichthelinkweightisthereciprocaloftheaveragebandwidthavailableinthisinterval(asinSDFP-avg). 9. kStaticPaths(kSP):Inthisalgorithm,wehaveuptokprecomputedpathsbetweeneverypairofsource-destinationvertices.Toscheduleapathbetweensandd,weexamine,insomeorder,theuptokprecomputedpathsforthepair(s,t)andselecttherstthatisfeasiblefortheinterval[tstart,tend].Ifnoneisfeasible,theschedulingrequestisdenied. 3.2.2.2Maximumbandwidthinaslot ThiscomputationisachievedbymodifyingDijkstra'sshortestpathalgorithm[ 51 ]asshowninFigure 3-1 .Here,b[u][v]istheminimumbandwidthavailableontheedge(u,v)duringthespeciedinterval/slotandbw[u]isthemaximumbandwidthalongpathsfromthesourcestovertexuundertheconstraintthatthesepathsgothroughonlythoseverticestowhichamaximumbandwidthpathhasbeenfoundalready.ThecomplexityofthealgorithmisO(n2)forageneralnvertexgraph.However,practicalnetworkgraphshaveO(n)edgesandthecomplexitybecomesO(nlogn)whenamaxheap(forexample)isusedtomaintainthebwvalues. 3.2.2.3Maximumduration Asnotedin[ 23 ],themaximumdurationproblemisverysimilartothewidestpathproblem,whichinturnisidenticaltothemaximumbandwidthproblem.Theweightofalinkissettothemaximumduration,beginningattstartforwhichthelinkhasabandwidthofbormoreavailable.Thewideststodpathinthisweightedgraphisthemaximumdurationpath.ThepathisfoundusingamodiedDijkstra'salgorithmasforthemaximumbandwidthinslotproblem. 3.2.2.4Firstslot Threedifferentalgorithmshavebeenproposedfortherstslotproblem[ 23 52 58 ]. 1. SlottedSlidingWindow(SSW):Theslidingwindowrstalgorithmproposedin[ 58 ]foropticalnetworksisavariationofthesoonestcompletionalgorithmproposedin[ 23 ].Boththesealgorithmstrytheslotststart,tstart+1,,inthisorder,tondtheleasttforwhichthegraphGhasafeasiblepath(i.e.,anstod 28

PAGE 29

MaxBandwidth(s,d,prev) { bw[i]=b[s][i],1in. prev[i]=s,1in. prev[s]=0. InitializeLtobealistwithallverticesotherthans. for(i=1,i
PAGE 30

3. ExtendedBellmanFord(EBF):Thisalgorithmforrstslotwasproposedin[ 52 ].First,weextendthenotionofanSTlistforalinktothatforapathinthenaturalway.Next,denest(k,u)tobetheunionoftheSTlistsforallpathsfromvertexstovertexuthathaveatmostkedgesonthem.Clearly,st(0,u)=;foru6=sandst(0,s)=[0,1].Also,st(1,u)=ST(s,u)foru6=sandst(1,s)=st(0,s).Fork>1(actuallyalsofork=1),weobtainthefollowingrecurrence st(k,u)=st(k)]TJ /F6 11.955 Tf 9.61 0 Td[(1,u)[f[vsuchthat(v,u)isanedgefst(k)]TJ /F6 11.955 Tf 9.6 0 Td[(1,v)\ST(v,u)gg(3) where[and\arelistunionandintersectionoperations.Forann-vertexgraph,st(n)]TJ /F6 11.955 Tf 12.7 0 Td[(1,d)givesthestarttimesofallpathsfromstodthathavebandwidthbavailableforaduration.Theavalueoftherst(a,b)pairinst(n)]TJ /F6 11.955 Tf 12.04 0 Td[(1,d)givesthedesiredrstslot. TheBellman-Fordalgorithm[ 51 ]maybeextendedtocomputest(n)]TJ /F6 11.955 Tf 12.47 0 Td[(1,d).Theextensionmerelyworkswithstlistsratherthanwithscalarsandisdescribedin[ 52 ]. 3.2.2.5Allslots Thereappearstobejustonealgorithmthathasbeenproposedfortheallslotsproblem.ThisistheextendedBellman-Fordalgorithm[ 52 ]tocomputest(n)]TJ /F6 11.955 Tf 12.16 0 Td[(1,d)(seeprecedingdiscussionofrstslotalgorithms).Asnotedabove,st(n)]TJ /F6 11.955 Tf 11.99 0 Td[(1,d)givesthestarttimesofallpathsfromstodthathavebandwidthbavailableforaduration. 3.2.2.6Allpairsallslots TheextendedBellman-Ford(EBF)algorithmofSection 3.2.2.4 computesst(u)=st(n)]TJ /F6 11.955 Tf 12.7 0 Td[(1,u)foragivensourcevertexsandalluinO(nel)time.st(u)givesthestarttimeofallavailableslotsofdurationdandbandwidthb.So,inO(nel),usingEBF,weareabletodetermineallavailableslotsfromstoeveryothervertexu(includingvertexd).Furthermore,todetermineallavailableslotsbetweenallpairsofvertices,wemayruntheEBFalgorithmforntimes,oncewitheachvertexasthesourcevertexs.So,thetimeneededtodetermineallslotsbetweenallpairsofverticesisO(n2el).AnalternativestrategytodetermineallavailableslotsbetweenallpairsofverticesistoextendFloyd'sall-pairsshortestpathalgorithm[ 51 ]asisdonein[ 47 ].Figure 3-2 givestheresultingextension.Here,st(u,v)istheSTlistforpathsfromutov.Initially,st(u,v)=ST(u,v).Ontermination,st(u,v)givesallpossiblestarttimesforpathsfromutov. 30

PAGE 31

algorithmExtendedFloyd() { for(intk=1;k
PAGE 32

memoryrequiredforlinkstatusinformationis,therefore,(eT),whereeisthenumberoflinksinthenetwork.Inthecontinuoustimemodel,whereTBlistsareusedtostorelinkstatus,weneedO(PijTB[i]j),wherejTB[i]jisthesizeoftheTBlistforlinki.AsnotedinChapter2,theslottedmodelisaspecialcaseofthecontinuousmodelandTBlistsmayalsobeusedforthislattermodel.Whenthisisdone,thesizeofeachTBlistisboundedbyTandtheTBlistrepresentationtakesO(eT)memory.ForalightlyloadedsysteminwhichthesizeofTBlistismuchlessthanitsmaximumpossiblesizeofT,theTB-listschemeusesmuchlessmemorythanisusedbytheslotted-arrayrepresentation.Infact,whennotasksarescheduled,theTB-listrepresentationuses(e)memoryvs.(T)memoryfortheslotted-arrayrepresentation.AttheotherextremewhereeachTBlisthasTpairs,theTB-listrepresentationtakesabouttwicethememorytakenbythearrayrepresentation(notethateachentryonaTBlistisapairwhileeacharrayentryisasingleton). Inadditiontothememoryrequiredtostorenetworkstatus,memoryisneededtorunthepathcomputationalgorithms.Algorithmsemployingagraphsearchstrategysuchasbreadth-rstsearchneedO(n)spacetokeeptrackofwhichverticeshaveorhavenotbeenvisitedsofar.Notethatwemaydeterminewhetherornotalinkisfeasiblewhilethebreadth-rstsearchalgorithmisrunningandsonoadditionalspaceisneededtomaintainthefeasiblesubgraphofG.ThosethatusesomeversionofDijkstra'sshortestpathalgorithm,needO(n)spaceforapriorityqueueandO(e)spaceforthelinkweightsthatareinuse. ForBellman-Fordextensions,weneedspaceforthelinkSTlistsandthepathstlists.ThenumberoflinkSTlistsise.AlthoughthereareO(n2)pathstlists,thecomputationofst(k,)canbedonein-place(i.e.,usingthesamespaceasusedbyst(k)]TJ /F6 11.955 Tf 12.86 0 Td[(1,)[ 52 ]).So,spaceforO(n)stlistsisneeded.Fortheslottedmodel,TisanupperboundonthesizeofanST/stlist.So,Bellman-FordextensionsrequireanadditionalO((n+e)T)memorytorun.Inlightlyloadedsystems,thesizeofanstlist 32

PAGE 33

ismuchlessthanTandcorrespondinglylessmemoryisneeded.Forthecontinuousmodel,thesizeofanST/stlistcouldbeaslargeasthenumberoftasksscheduledsofar.However,inrealisticapplications,weexpectthesizetobeconsiderablylessthantheTvalueforacorrespondingslottedsystem. TheFloydextensionusedintheall-pairsall-slotsproblemrequiresannnarrayofstlists.ThememoryforthisarraycorrespondstothatforO(n2)stlists.Boundsonthesizeofanstlistwerediscussedinthepreviousparagraph. 3.2.3.2Timecomplexity Figure 3-3 summarizesthetimecomplexityofeachofthealgorithmsdescribedinSection 3.2.2 .Weassumealsothatthenumberoflinkseisatleastequaltothenumberofnodesn.ThealgorithmsofSection 3.2.2 thatworkonthefeasiblesubgraphofGmaybeimplementedtoeitherbeginbyidentifyingthefeasiblelinksofGormaycheckeachlinkforfeasibilitywhenthelinkisrstexamined.Ineithercase,O(e)timeisspentonlinkfeasibilitycheckswhentheslotted-arraymodelisused.Inthecontinuousmodel,feasibilitycheckstakeO(L)time,whereListhesumofthelengthsoftheTBlists.Ineithercase,theremainderofthealgorithmtakesO(e)time. Whenthenumberofpreviouslyscheduledjobsissmall,theTBlistsalsoaresmallinsize.However,intheworstcase,thesizeofaTBlistmaybeT.So,forlightlyloadedsystems,weexpectthecontinuousversionofanalgorithmtooutperform(intermsofruntimeandmemory)thecorrespondingslotted-arrayversion.Thisisthetypicaltrade-offbetweensparseanddensedata-structurerepresentations.Additionally,theslotted-arrayversionsforthexedslotandmaxbandwidthproblemsareexpectedtooutperformthecorrespondingcontinuousversionswhentherequestedreservationdurationissmall. 3.2.3.3Effectiveness Therearetwoaspectstoeffectivenessguaranteesandutilization.Guaranteeshastodowithwhetherornottheschedulingalgorithmprovidesanyguaranteeonitsresult.Forexample,doesaxed-slotalgorithmguaranteetondafeasiblewhenever 33

PAGE 34

Problem Algorithm SlottedArray Continuous FixedSlot FP O(e) O(e+L) MHFP O(e) O(e+L) WSFP O(e+nlogn) O(e+L+nlogn) SWFP O(e+nlogn) O(e+L+nlogn) SDFP O(e+nlogn) O(e+L+nlogn) DAFP O(e+nlogn) O(e+L+nlogn) OSPF O(e+n(+logn)) O(e+L+nlogn) kDP O(ke+minfkn,eg+knlogn)) O(ke+L+knlogn) kSP O(minfkn,eg+kn) O(L+kn) MaxBandwidth Dijkstra O(e+nlogn) O(e+L+nlogn) MaxDuration Dijkstra O(eT+nlogn) O(e+L+nlogn) FirstSlot SSW-MHFP O(eT) )]TJ ET q .398 w 472.97 -190.78 m 472.97 -176.34 l S Q q .398 w 0 -205.23 m 0 -190.78 l S Q q .398 w 101.82 -205.23 m 101.82 -190.78 l S Q BT /F1 11.955 Tf 107.8 -200.9 Td[(LSW O((q+T)e) O(qe+L) EBF O(nel+eT) O(nel+L) AllSlots EBF O(nel+eT) O(nel+L) AllPairsAllSlots Floyd O(n3l+eT) O(n3l+L) l=sizeoflongeststlist q=numberofdifferentaisintheSTlists L=sumoflengthsofTBlists Figure3-3. Algorithmtimecomplexities suchapathexits?Doesarst-slotalgorithmactuallyndtheearliestfeasiblepath?Forthexed-slotproblem,allalgorithmsotherthantheOSPF-like,kdynamicpaths,andkstaticpathsalgorithmsprovideaguarantee.Fortheremainingin-advanceschedulingproblems,allalgorithmsdescribedinSection 3.2.2 ,otherthantherst-slotalgorithmof[ 58 ],provideaguarantee.Figure 3-4 givesapossiblehierarchicalclassicationofthexed-slotalgorithmsofSection 3.2.2.1 Sincetheschedulingalgorithmsworkinanonlinemode(i.e.,schedulingrequestsareprocessedintheordertheyarriveatthebandwidthmanagementsystemandadecisiononwhetherornottomaketherequestedreservationmadeonthebasisoflinkstatesatthetimethereservationrequestisprocessedwithoutregardtofuturerequests),thelinkstatusatthetimeadecisionismadeonthecurrentrequestbeingprocesseddependsondecisionsmadeinthepast.Thesepastdecisionsareafunctionofthepathcomputationalgorithm(s)inuse.Supposethatxed-slotreservationrequests 34

PAGE 35

Figure3-4. Classicationofxed-slotalgorithms A,B,andCarriveatthebandwidthmanagementsysteminthisorder.RequestAmaybedeniedbyOSPF-TE(asOSPF-TEprovidesnoguarantee)andacceptedbyFP.Asaresult,thenetworkstatefollowingtheprocessingofrequestAisdifferentwhenthebandwidthmanagementsystemusesOSPF-TEforxed-slotreservationthanwhenitusesFP.Consequently,itisentirelypossiblethatOSPF-TEthenacceptsBandCwhileFPrejectsbothBandC.HencenetworkutilizationasmeasuredbythenumberofacceptedrequestsortotalnetworkbandwidththathasbeenscheduledmaybemoreusingOSPF-TEthatprovidesnoguaranteethanwhenusingFPthatprovidesaguarantee! Burchard[ 12 ]considerstwoutilizationmetricsrequestblockingratio(RBR)andbandwidthblockingratio(BBR),which,foranymeasurementinterval,aredenedas: RBR=numberofrejectedrequests totalnumberofrequests BBR=sumofbandwidth-durationproductsofrejectedrequests sumofbandwidth-durationproductsofallrequests Equivalently,wemayuserequestacceptance(RAR)andbandwidthacceptance(BAR)ratios,whicharedenedas: 35

PAGE 36

RAR=1)]TJ /F4 11.955 Tf 11.96 0 Td[(RBR BAR=1)]TJ /F4 11.955 Tf 11.96 0 Td[(BBR WenotethatBBRalsohasbeenusedinthecontextofon-demandscheduling(see[ 40 ],forexample). 3.2.4Experiments Foreachofthemaxbandwidth,maxduration,allslots,andallpairsallslotsproblems,onlyonealgorithmhasbeenproposedandsonorelativeeffectivenesscomparisonispossible.Fortherstslotproblem,therearethreealgorithmsSSW-MHFP,LSW,andEBF.All3guaranteetondtherstslotcorrectly.Hence,barringdifferencesresultingfromtheirpossibleimplementationusingdifferenttiebreakers,eachisjustaseffective.Ofcourse,therewillbesomedifferenceinthecomputer-timetakentoexecuteeachalgorithm(asindicatedinSection 3.2.3.2 ).Thereforeanexperimentalevaluationofeffectivenessisneededonlyforthevariousalgorithmsproposedforthexedslotproblem. WeprogrammedthevariousxedslotalgorithmsinC++andmeasuredtheeffectivenessofeachusingtheRARandBARmetrics.Althoughweexperimentedwithbothvariants(SDFP-minandSDFP-avg)ofSDFP,wereportonlytheresultsforSDFP-minastheretheresultsforbothvariantsarecomparable.ForOSPF,weprogrammedtheOSPF-TEvariantthatisusedinOSCARS[ 4 ].ThekDPvarianttestedbyusiskDP-LOADwithk=4.WeusedthisvariantasitisthevariantusedinEnlightened[ 18 ].Finally,forkSP,wesetkto4andused4shortestpaths. Fortestnetworks,weusedthetheAbilenenetwork[ 5 ],19-nodeMCInetworkandthe16-nodeclusternetworkof[ 40 ],the11-nodenetworkof[ 12 ],andseveralrandomlygeneratedtopologies.ThebackboneoftheAbilenenetworkusedbyushas11nodesasshowninFigure 6-5A andeachbackbonenodehasa5-nodestubnetworkattached 36

PAGE 37

toit.Thebandwidthofeachlinkis155Mbps.Thebandwidthofeachlinkinthenetworkof[ 12 ](Figure 3-5C )is100Mbps.Figures 3-5B and 3-5D givetheMCIandclustertopologiestogetherwiththelinkbandwidths.Therandomnetworkswetriedhad200,400,or800nodesandtheout-degreeofeachnodewasrandomlyselectedtobebetween3and7.Toensurenetworkconnectivity,therandomnetworkhasbidirectionallinksbetweennodesiandi+1forevery1i
PAGE 38

wererandomlyselectedusingauniformrandomnumbergenerator.ThetimeatwhichtherequestismadefollowedaPoissondistribution.Therequestedstarttimewassettobethetimeatwhichtherequestismadeplusarandomlygeneratedlag.Sincetheresultsarerelativelyinsensitivetothelagtime,wearbitrarilysetthemeanlagtimetobe100units. Forourexperiments,wehadthreecontrolparametersnumberofrequestsinthestudyinterval,meandurationofaschedulingrequest,andmeanbandwidthofarequest.Thestudyintervalwasarbitrarilysetto2000timeunits;thenumberofrequestsinthestudyintervalwassettooneofthevalues200,400,600,800,and1000fortherandomnetworksandtooneof100,200,300,400,and500fortheremainingnetworks;theallowablemeanrequestdurationswere200,400,600,800,and1000timeunits;andtheallowablemeanrequestbandwidthswere500,1000,1500,2000,and2500Mbpsfortherandomnetworksand10,30,50,70and90Mbpsfortheremainingnetworks.Foreachsettingofthe3controlparameters,weran10trials.Inthecaseofrandomnetworks,thenetworktopologywasrandomlyregeneratedforeachofthe10trials.Foreachtrial,wemeasuredtherequestacceptanceandbandwidthacceptanceratios(RARandBAR).Inreportingourresults,wecomputedtheaverageRARforallconductedexperimentswithagivennetworkandxedvalueforoneofthe3controlparameters.So,forexample,wecomputedtheaverageRARforthe250(5requestdurations*5requestbandwidths*10trials)experimentsdoneontheMCInetworkwiththenumberofrequestsinthestudyintervalbeing100. Sincetherelativeperformanceofthexed-slotalgorithmsisratherinsensitivetowhetherweusetheRARorBARmetric,wereportonlyontheRARresults.Figure 3-6 andFigure 3-7 givetheaverageacceptanceratiosforthexed-slotalgorithmsofSection 3.2.2.1 asafunctionofthenumberofrequestsinthestudyinterval.OnnetworkssuchastheMCI,Cluster,andBurchardnetworks,thathavearelativelysmallnumbernodes,thedynamicalternativefeasiblepathalgorithm(DAFP)givesbest 38

PAGE 39

performanceconsistentlyacrosstherangeofnumberofrequeststestedbyus.Theminimumhopfeasiblepathalgorithm(MHFP)isconsistentlysecondbest.However,onlargernetworkssuchastheAbilenenetwork,whichhas66nodes,andtherandomnetworksthathave200+nodes,MHFPisconsistentlysuperiortoDAFP.Forthetestedlargernetworks,MHFPisbestandDAFPissecondbest.Generally,thexed-slotalgorithmsOSPF,kDP,andkSPthatdonotguaranteetomakeareservationwhensuchareservationispossiblefaredworsethanthealgorithmsthatprovidesuchaguarantee.However,attimes,theperformanceofthebestnoguaranteealgorithmwasquiteclosetoorslightlybetterthanthatoftheworstguaranteealgorithm.Onournon-randomnetworks,OSPFconsistentlyhadtheworstperformance.However,onourrandomnetworks,kDPwasconsistentlyworstand,often,byquiteamargin.Asexpected,asthenetworkgetssaturated(i.e.,thenumberofrequestsinthestudyintervalincreases),theRARforallalgorithmsdeclinesandtherateofdeclineisaboutthesameforallalgorithms. AAbilene BMCI CBurchard DCluster Figure3-6. AcceptanceratiovsrequestsnumberinAbileneMCIBurchardandClusternetwork 39

PAGE 40

A200nodes B400nodes C800nodes Figure3-7. Acceptanceratiovsrequestsnumberinvariousrandomtopologies Figures 3-8 3-9 givetheaverageacceptanceratiosforthexed-slotalgorithmsofSection 3.2.2.1 asafunctionofthemeanrequestduration.Therelativeperformanceofthealgorithmsisthesameasforthecasewhenwexedthenumberofrequestsratherthanthemeanrequestduration. AAbilene BMCI CBurchard DCluster Figure3-8. AcceptanceratiovsmeanrequestsdurationinAbileneMCIBurchardandClusternetwork 40

PAGE 41

A200nodes B400nodes C800nodes Figure3-9. Acceptanceratiovsmeanrequestsdurationinvariousrandomtopologies Figures 3-10 3-11 givetheaverageacceptanceratiosasafunctionofthemeanrequestbandwidth.Therelativeperformanceofthealgorithmsisthesameasforthecasewhenwexedeitherthenumberofrequestsorthemeanrequestduration. AAbilene BMCI CBurchard DCluster Figure3-10. AcceptanceratiovsmeanrequestsbandwidthinAbileneMCIBurchardandClusternetwork 41

PAGE 42

A200nodes B400nodes C800nodes Figure3-11. Acceptanceratiovsmeanrequestsbandwidthinvariousrandomtopologies 3.3Multiple-PathScheduling 3.3.1ProblemDenition 2ConsiderascenarioofFusionExperiments[ 21 ],whichiscollaborationconsistingofresearchersindifferentEuropeancountries.Aftereachroundofexperiments,thesimulationdataaregeneratedindifferentsitesandprocessedbysupercomputersacrossthecontinent.Moreover,thedatatransferandprocessingtimeislimitedsincethenextroundofexperimentswillbeguidedbytheresultsfromthepreviousones.Thus,theletransfertimemaybecomeamajorbottlenecktoimprovetheexperiment'sefciency.Thedelayofanyletransferinthebatchwouldcausebiglosstothewholeproject.Inthispaper,wemodelsuchproblemastheBatched-FilePathSchedulingProblem(BFPSP),wherethegoalistominimizetheoveralltransfertimeofmultipleone-to-oneletransfers.Withoutlosinggenerality,weassumethatalltheletransferrequestsarepre-speciedbeforeschedulingstarts.Clearly,suchanalgorithmcanalsobeusedbybatchthenewlyarrivedrequestsatappropriateintervalswhentheyarrive.Inin-advancedscheduling[ 23 ],eachletransfermayhaveadifferentstarttime.Theirearlieststarttimecanbedenedbytheuseintheirrequests.Butactualstarttimeis 2Thissectionissubmittedthejournalofsupercomputingin2009andstillunderreview. 42

PAGE 43

decidedbytheschedulingalgorithmsatruntime.Inthispaper,weprovidebothoptimalandapproximatesolutionsforthisproblemandevaluatetheminmultiplescenarios. AllschedulingapproachescanbeconsideredasanvariationoftheBatchScheduling.Weassumethatallrequestsarecollectedasabatchinthescheduler;therequestsinabatcharescheduledasagroupwithcertainperiodicity.Obviously,ifalltheletransferrequestsarebatchedasonegroup,thesolutionisoptimal,whichisdenotedasAll-Batch.All-Batchisverytimeconsumingforlargebatchsizes.Also,itisnotrealisticasthearrivaltimeoftherequestsmaynotbethesame.WepresentanumberofheuristicsthathavemuchlowertimecomplexitythanusingAll-Batch,buthavesimilarperformanceandtheaddedbenetthatalltherequestsmaynotbeknownbeforehand.Theproposedapproach,N-Batch,groupsrequestsintobatchofconstantsizeNandscheduleseachbatchseparately.Forthespecialcaseofbatchsizeequalto1,theschedulingisequivalenttoOnlineScheduling.Forthiscase,wedeveloptwosetsofheuristics:GOSandk-Path. Wehavecomparedallthesealgorithmsforavarietyofscenariosandperformancemetrics.OursimulationsshowthatbothN-BatchandGOSprovidesschedulesthatarecomparableinqualitytousingAll-Batch,butrequiresignicantlylessschedulingtimethanusingAll-Batch.GOSiscomparabletoN-Batchbutrequiressignicantlylesscomputationtime.WealsoinvestigateGOS-Ealgorithmsthatminimizepathswitchingoverhead,whichisavariantofGOS.GOS-Eisknowntohavegoodperformancewhenpathswitchingoverheadcannotbeignored. 3.3.1.1Datastructures RecallthedatastructureTime-BandwidthList(TBList)introducedinChapter2.LetT=[T0,T1,],T0
PAGE 44

example,assumethesearetheonlytwolinksinthenetwork.TheTBlistfortherstlinkis[(0,5),(1,2),(2,5)]andthatforthesecondlinkis[(0,5),(1.5,3),(2,5)].Theglobaltimelistforourexampleis[0,1,1.5,2].Intheinterval[0,1),theavailablebandwidthonthetwolinksis5whereasintheinterval[1,1.5),therstlinkhasanavailablebandwidthof2whilethesecondlink'savailablebandwidthis5,andneitheroflinks'bandwidthchangeswithinthisbasicinterval. Figure3-12. Basicintervals Theintervals[T0,T1),[T1,T2),intheglobaltimelistarereferredasbasicintervals.Atanytimewithinacertainbasicinterval,eachedgehasaconstantamountofavailablebandwidth.Basicintervalsobtainedfromtheglobaltimelistcanbeorderedusingtherelationship[a,b)<[c,d)iffbc(notethatthebasicintervalsofaglobaltimelistaredisjointandthata
PAGE 45

Step1: Determinetheminimumnishtime,minFinishTime. Step2: Determinealetransferschedulethatachievesthisminimumnishtime. Tondouttheminimumnishtime,weconstructaglobaltimelistfromtheTBlistsofalllinksasbeforeandthenconstructthebasicintervalsfromthisglobaltimelist.Thebasicinterval[Ti,Ti+1)isreferredtosimplyasbasicintervali.Todeterminetheminimumnishtime,weusealinearprogramming(LP)modeltodetermine,foraspeciedbasicintervali,theminimumtimewithinthisbasicintervalbywhichitispossibletocompleteallletransfersinthegivenrequestsetF.ThisLPmodelwillhavenofeasiblesolutionforbasicintervalsiifitisn'tpossibletocompletetheletransferbytimeTi+1.Inthiscase,minFinishTimemustlieinabasicintervalq>i.SupposethevalueofLP'sobjectivefunctionftisavalidtimewithinthebasicintervali.ThenallthejobsinthebatchFcanbenishedbyft.Now,TiftTi+1.Ifft>Ti,minFinishTime=ft.However,whenft=Ti,itispossibletocompletetheletransfersinanintervalq
PAGE 46

minft (3) subjecttoXk:(l,k)2Efjlk(q))]TJ /F13 11.955 Tf 21.34 11.35 Td[(Xk:(k,l)2Efjkl(q)=08j2F,8l2V,l6=sj,l6=dj,0qi (3) iXq=0(Xk:(l,k)2Efjlk(q))]TJ /F13 11.955 Tf 21.34 11.36 Td[(Xk:(k,l)2Efjkl(q))=8><>:fjifl=sj)]TJ /F4 11.955 Tf 9.29 0 Td[(fjifl=dj8j2F (3) Xj2Ffjlk(q)blk(Tq)(Tq+1)]TJ /F4 11.955 Tf 11.96 0 Td[(Tq),8(l,k)2E,q
PAGE 47

transferamountsarenon-negativeinpermissiblebasicintervalsandEquation 3 ensuresthattheletransferamountsare0innon-permissiblebasicintervals. OnecanverifythateachsolutiontoEquation 3 through 3 denesavalidletransferscheduleforallrequestsinFandthatthenishtimeofthisscheduleisatmostft.Further,theinclusionofEquation 3 determinestheminimumnishtimeundertheconstraintthatnoletransfermaytakeplaceinintervalsq>i.Also,Equations 3 through 3 havenofeasiblesolutionifftheletransferscannotbescheduledsoastocompletebytimeTi+1. Asnotedabove,sincefractionalowisallowed,minFinishTimeispolynomiallysolvable[ 6 ].AbinarysearchoverthebasicintervalsisneededtodeterminetheintervalwhereminFinishTimeislocatedandalsoexactvalueofminFinishTime.ThisrequiresustosolveO(logB)LPs,whereBisthenumberofbasicintervals. Althoughthefjlk(q)sthatdetermineminFinishTimedenealetransferschedulethatachievesthisnishtime,thesefjlk(q)smaydeneatransferschedulethatincludescycles.Thatis,wehaveportionsofalebeingmovedfromnodeatonodebandbacktonodea,forexample,inthesamebasicinterval.Whilethesecyclicowsdonotnegativelyimpacttheoverallnishtime,theyaffectavailablebandwidthcapacityandsonegativelyimpactourabilitytoscheduleletransfersinfutureperiods. InStep2,weovercomethedecienciesoftheletransferscheduleobtainedfromStep1byusingaslightlydifferentLPformulationthatisgivenbyEquations 3 through 3 .Inthisformulation,weminimizesthesumofthefjlk(q)valuesacrossallbasicintervals.ThevalueU=minFinishTimecomputedinStep1isusedtolimittheletransfers'startandendtimes.WealsouseitodenotethebasicintervalforwhichTiminFinishTimeTi+1.ItisobviousthatthesolutiontoEquations 3 through 3 maycontainnocycle,oritcannotbeoptimal,sincewecanalwaysremovecyclesandproduceabettersolution. 47

PAGE 48

minXj2JX(l,k)2EiXq=0fjlk(q) (3) subjecttoXk:(l,k)2Efjlk(q))]TJ /F13 11.955 Tf 21.33 11.36 Td[(Xk:(k,l)2Efjkl(q)=08j2F,8l2V,l6=sj,l6=dj,0qi (3) iXq=0(Xk:(l,k)2Efjlk(q))]TJ /F13 11.955 Tf 21.34 11.36 Td[(Xk:(k,l)2Efjkl(q))=8><>:fjifl=sj)]TJ /F4 11.955 Tf 9.3 0 Td[(fjifl=dj8j2F (3) Xj2Ffjlk(q)blk(Tq)(Tq+1)]TJ /F4 11.955 Tf 11.95 0 Td[(Tq),8(l,k)2E,qi (3) fjlk(q)0,[Tq,Tq+1][Sj,U],8(l,k)2E,8j2F (3) fjlk(q)=0,[Tq,Tq+1]*[Sj,U],8(l,k)2E,8j2F (3) WenotethatwhiletheLPofEquations 3 through 3 issolvedO(logB)(Bisthenumberofbasicintervals)times,theLPofEquations 3 through 3 issolvedonlyonceasaminimum-costowproblem.UsingtheSuccessiveShortestPathalgorithm[ 6 ],thisowproblemcanbesolvedwithO(Elog(U)),whereEisnumberoflinksinthenetworkwhileUisthelargestamountofow.Thejustdescribedtwo-stepbatchschedulingalgorithmisreferredtoasalgorithmAll-Batch. 3.3.2.1N-Batchheuristics AswewillseeinSection 3.3.4 ,thecomputingtimerequiredtocomputetheoptimalscheduleusingalgorithmAll-Batchisveryhigh.OnewaytodecreasethecomputationtimeisthedividethesetofletransfersintosmallerbatchesofsizeNandprocessthemonebyone.WhenN>1,thecorrespondingheuristiciscalledN-Batch.ThesolutionforN-Batchisasfollows.Thebatchesareprocessedoneatatimesequentiallyinanincreasingorderofthebatch'scollectingtimes.Whencomputingtheoptimalscheduleforagivenbatch,thestarttimeforthatbatchisgivenbytheendtime(thetimeofthe 48

PAGE 49

lastscheduledjob)ofthepreviousbatch.Theoverallnishtimeisthenishtimeofthelastbatchscheduled. Asweusethegreedyapproachtoprocessalltherequests,oneofthekeyissuesistodecidethegreedyselectioncriterion.[ 9 ]suggestedthatLargestFileFirst(LFF)isareasonableandquiteeffectiveheuristictoselecttherequest(s)greedily.Thisapproachisbasedontheintuitionthatthelargerleswilltakemoretimetotransfer.WhenschedulingthelargestNlesrst,thelargerlesaregivenmorepriorityinthetheresourcecontention,whichresultsinapotentiallyearliernishtimeforthelargeletransfers.Sincetheselongtransfersactuallydeterminetheoverallnishtimeoften,thisheuristicisexpectedtoimprovetheoverallnishtime.ThisexpectationisborneoutinourexperimentaalevaluationandtheobservednishtimesareclosetothoseoftheoptimalsolutionsgeneratedbyAll-Batch. 3.3.3OnlineSchedulingAlgorithms Whenthebatchsizeequals1,theBFPSPturnsintoaninstanceofOnlineScheduling,whereallletransfersarescheduledonebyonewithoutusinganyknowledgeofthetransfersscheduledlaterinthesequence. Weproposesixonlineletransferschedulingalgorithms.InSections 3.3.3.1 and 3.3.3.2 ,wedescribetheGOSandGOS-Ealgorithms.Theremainingfouralgorithmsarevariationsofthek-PathheuristicsandaredescribedinSection 3.3.3.3 .Thegreedyalgorithm,GOS,employsnetworkowstominimizethenishtimeofeachsingleletransferbeingscheduled.GOS-Econsidersthepathswitchingoverhead.The4k-Pathheuristicsusethethek-shortestpathsork-disjointpathstocomputethescheduleonasmallernetworkthantheoriginalone.Theseadaptationsreducethecomplexityoftheschedulingalgorithm,butyieldlittleinmaximumnishtime. 3.3.3.1Greedyalgorithm Ourgreedyonlinealgorithm,GOS,schedulesaletransfer(si,di,fi,Si)byexaminingthebasicintervalsinthenetwork'scurrentglobaltimelistinincreasing 49

PAGE 50

order.TheexaminationbeginswiththebasicintervalthatincludesthetimeSi.Ineachexaminedinterval,wetransferasmuchoftheleasispossible.Thismaximumamountcanbedeterminedusingamax-owalgorithm(see[ 6 ],forexample).Theexaminationofbasicintervalsstopswhenallfibytesofthelehavebeenscheduled.Figure 3-13 givestheprocedureofourgreedyonlinealgorithm,GOS,toscheduletheithrequest.Inthespecicationofthisalgorithm,weconstructareducedgraphNfromGwithonlythelinkshavesomeavailablebandwidthincurrentbasicinterval.weusethetermmaxowlinkstodenotethoseedgesofNthathaveanon-zeroowinthemaxowsolutionforN.Also,notethatmaxFlowmaybezeroinsomebasicintervalsandcareneedstobetakenwhenprogrammingalgorithmGOStoavoidadividebyzeroerrorwhencomputingrfs=maxFlow. Theorem3.1. IfGhasapathfromsitodi,thenAlgorithmGOSschedulestheithletransferrequest(si,di,fi,Si)soastocompleteattheearliestpossibletime. Proof. Fromthefollowingfacts(a)Ghasapathfromsitodi,(b)theratedcapacityofeachlinkofGismorethan0,(c)thelastbasicintervaloftheglobaltimelistalwaysextendsto1,and(d)theavailablebandwidthofeachlinkisitsratedcapacityduringthislastbasicinterval,itfollowsthatthemaxowfromsitodiinthelastbasicintervalisnon-zeroandsotheremaininglesizerfscanalwaysbescheduledfortransferinthislastbasicinterval.Hence,GOSisabletoscheduleeveryletransferrequest. LetthenishtimeofaletransferscheduleconstructedbyGOSbeft.NotethatftisthevalueofmaxTimewhenGOSterminates.Weshow,bycontradiction,thatftistheearliestpossibletimeatwhichthisletransfercancomplete.Supposethereisanothertransferschedule,S,forthesamerequestthatcompletesthetransferbytimeft0
PAGE 51

GOS(i,G) { ConstructthecurrentglobaltimelistTfromthe TBlists; DeletefromTallTiSi; InsertSiand1intoTandrelabelthemembersofTin ascendingorderbeginningwiththelabelT0; rfs=fi;//remaininglesize j=0;//basicintervalindex; while(rfs>0) { LetNbethenetworkderivedfromGbyassigning toeachlinkacapacityequalstoitsavailable bandwidthinthebasicinterval[Tj,Tj+1), Removethelinkswith0capacityfromN; maxFlow=MaxowfromsitodiinN; maxTime=minfTj+rfs=maxFlow,Tj+1g; size=(maxTime)]TJ /F4 11.955 Tf 11.96 0 Td[(Tj)maxFlow; SchedulethetransferofsizebytesfromTjto maxTimeusingthemaxowlinks; UpdatetheTBlistsofthemaxowlinks; rfs)]TJ /F6 11.955 Tf 12.62 0 Td[(=size; j++; } } Figure3-13. GreedyonlineschedulingalgorithmGOS theGOSschedule.Thisisn'tpossiblesincetheGOSscheduletransfersthemaximumpossibleamountineachbasicintervalpriortoq.Ifq0=q,thensinceft0
PAGE 52

nisthenumberofverticesinthenetworkowgraph.Fornetworkswithfewedges,thesparsegraphnetworkowalgorithmofSleatorandTarjan(see[ 6 ],forexample)maybeused.ThecomplexityofthisalgorithmisO(nmlogn),wheremisthenumberoflinksinthenetwork.Whenschedulingtheithletransfer,thesizeoftheglobaltimelistisatmost2i,sinceeachpreviouslyscheduledrequestwillincreasethesizeofglobaltimelistbyatmost2:job'sstartandendtime.So,thecomplexityofGOSisO(n3i)whenthepush-relabelmaxowalgorithmisusedandO(nmilogn)whenthesparsegraphmaxowalgorithmisused.SincetypicalcomputernetworksaregenerallysparseandhaveonlyO(n)links,usingthesparsegraphmaxowalgorithmresultsinacomplexityofO(n2ilogn)forGOS. 3.3.3.2Greedyschedulingwithnishtimeextension(GOS-E) IntheGOSalgorithm,thenetworkowiscomputedforeachbasicinterval.Thisimpliesthat,foraletransferthatlastsnconsecutivebasicintervals,uptonestablishingandtearingdownoperationsonowpathwouldtakeplaceinthenetwork.Moreover,giventhefactthatmulti-pathsarerequiredforeachow,thepathswitchingoverheadwouldsignicantlyaffecttheGOS'sperformanceinpractice. Todecreasetheswitchingoverhead,GOS-Eisproposedtoreducethenumberofpathswitchingsbyreducingthetotalnumberofbasicintervalsinthenetwork.InGOS-E,wetriedtoextendthecurrentjob'snishtimetothetheendofnearestlaterbasicintervalti,iftiisnottoofarawayfromft,whichistheearliestnishtimecomputedfromGOS.Theextensioncanbedonebyeitherdirectlyover-reservingthebandwidthinthelastbasicintervalinvolvedintheletransferaccordingtotheoriginalreservationplanfromGOS,orreducetheamountofrequiredbandwidthinthelastintervaltocopewiththelongertransfertime,whichwillnotwastebandwidth.Asbandwidthresourcesarelimitedinourscenario,wetakethesecondapproach.Theextensionscopeshouldbelimitedtoacertainrangesothattheperformanceonasingleletransferisnotgreatlyaffected. 52

PAGE 53

WithGOS-E,weareabletoeliminatethesmallbasicintervalsbymergingthemintothepreviouslargeintervalsbyreducingitslinkbandwidth.Assmallintervalsgenerallyperformsmalleramountofletransfersthanlargeintervals,thismergingprocessactuallycostslittleadditionalnetworkthroughputbutprovidesthepotentialtoreducetheoverallpathswitchingoverhead.Intheevaluationsection,wewilltestthisheuristicandcomparewiththeoriginalGOSalgorithm,Also,therelationshipbetweentheextensionscopeandalgorithmperformanceisdiscussed. 3.3.3.3K-Pathalgorithms Anotherapproachtoacceleratethealgorithmistoreducetheproblemsize.WeincorporatetheideabehindKSP[ 69 ]andKDP[ 45 ]schedulingintoalgorithmGOSsoastocomputethemax-owinareducednetwork.IntheKSPandKDPadaptations,whenschedulingtherequest(si,di,fi,Si),welimitourresourceallocationstoasubgraphdenedbythekpathsfromsitodi.InthecaseoftheKDPadaptation,sincethekpathsaredisjoint,themaxowfromsitodiinanybasicintervaliseasilyseentobethesumoftheminimumavailablecapacityofalinkoneachofthekpaths.So,weavoidrunningacomplexnetworkowalgorithmtodeterminethemaxow.InthecaseoftheKSPadaptation,sincethepathsarenotdisjoint,westillneedtoruntheGOSalgorithmonthenetworkformedbythesekpaths.However,sincethesizeofthenetworkbeingconsideredissmaller,runtimeisreduced. ForboththeKSPandKDPadaptations,wedeneastaticandadynamicvariant.Inthestaticvariantthecostofalinkisdenedtobeitsratedcapacity(alternatively,someothernon-changingcostmaybeassigned)andthekpathsbetweeneverypairofnodes,whetherdisjointornot,arecomputedonceatthersttimearequestarrivesforthispairofnodesandusedirectlyfortheschedulingrequestbetweenthesamesource/destinationpairafterward.Inthedynamicvariant,linksareassignedacosteachtimeaschedulingrequestarrivesandthekshortestpathstousearecomputedusingthesenewlyassignedlinkcosts.Thecostassignedtoalinkinthedynamicvariantis 53

PAGE 54

proportionaltothefractionofitsratedcapacitythathasbeencommittedfromthecurrenttimetothenishtimeofthelastnishingletransfersofarscheduledinthenetwork.Inbothstaticanddynamicvariants,thelengthofapathisthesumofthelinkcosts.ThestaticanddynamicvariantsoftheKSPandKDPadaptationsofGOSarereferredtoasKSP-S,KSP-D,KDP-S,andKDP-D,respectively. 3.3.4ExperimentalEvaluation 3.3.4.1Experimentalframework Inthissection,wemeasuretheperformanceofthebatchschedulingalgorithminSection 3.3.2 andonlineschedulingalgorithmsinSection 3.3.3 .Forourexperiments,weusedtheMCInetworkandrandomtopologiesthatgeneratedatruntime. Filetransferrequestsweresyntheticallygenerated.Eachrequestisdescribedbythe4-tuple(sourcenode,destinationnode,lesize,requeststarttime).Thesourceanddestinationnodesforeachrequestwereselectedusingauniformrandomnumbergenerator.Thelesizeisalsouniformlydistributedbetween10GBand100GB.TheearliesttimeatwhichaletransfercanstartfollowedaPoissondistributionandtherequestarrivalrate(requestdensity)variedfrom0.05requests/timeunitto10requests/timeunit.Ourexperimentsstartedwithacleannetwork(i.e.,noexistingscheduledtransfers)andsimulatedthejobarrivalprocessfor100timeunits.So,forexample,witharequestdensityof5requests/timeunit,onerunofourexperimentwouldprocessapproximately500requests. Weusedthemaxnishtime(MFT),i.e.thetimewhenallletransfersinthesequencenishastheperformancemetric.Theexecutiontimeofanalgorithmismeasuredinseconds.ForGOS-E,theextensionscopeissettobeeither2%,5%or10%ofthecurrentletransfer'sduration.SupposethattheletransferJi,withstartandendtimeSiandEi,respectively,isbeingscheduled.SupposethatEi'snearestfuturebasicintervalendsatT.Then,theextensionofEitoTisperformedwhen(T)]TJ /F4 11.955 Tf 11.95 0 Td[(Ei)(Ei)]TJ /F4 11.955 Tf 11.95 0 Td[(Si)ExtensionScope. 54

PAGE 55

FortheKSPandKDPvariantsofGOS,wesetk,thenumberofpaths,to16.Thissettingisconsistentwiththeresultsof[ 45 ],whichshowthatnotmuchimprovementcanbeobtainedfromusingahigherk,andisalsoconsistentwithourownexperimentsonschedulingletransfersthatindicate16tobeagoodchoicefork. 3.3.4.2Singlestarttimescheduling(SSTS) AspecialcaseofBFPSPhasalllesreadyfortransferatthesametime,whichmeansallrequestsinthebatchhavethesameSi.Thisspeciaalcasearises,forexamp[le,whenallletranferrequestsoriginatefromasinglegroupofusers.Forthisexperiment,wesetSi=0foralltransferrequests.Thenumberoflestobescheduledvariesfrom200to1000.Thesizeoftherandomnetworkvariesfrom100nodesto500nodes. Figure3-14. Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesinMCIusingSSTS. Figure3-15. Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesin100nodesrandomtopologyusingSSTS. 55

PAGE 56

Figure3-16. Comparisonofdifferentalgorithms'MFTrandomTopologiesofdifferentsizeusingSSTS. Figures 3-14 and 3-15 showthemaximumnishtimeoftheschedulesforvariousnumberoflesontheMCInetworkanda100-noderandomnetwork,respectively.AllthealgorithmsproposedinSections 3.3.2 and 3.3.3 arecomparedexceptforGOS-E.ThemainobjectiveofGOS-Eistoreducethepathswitchingoverhead.Thisisnotaddressedbytheotheralgorithms.Figure 3-16 showshowtheschedulingresultschangeasnetworksizeincreasesandthenumberofrequestsisxedat400.Wemakethefollowingobservations. a. Batchschedulingperformsbetterthanonlineschedulinginallcases.Thelargerthebatchsize,thebettertherelativeperformanceofbatchscheduling.Inlargenetworkslikerandom-100,largerbatchsizehassignicantlylargerimprovementsontheoverallperformance;however,insmallnetworkslikeMCI,theimpactofbatchsizeisrelativelysmall. b. Whenbatchsizeis50,N-Batchperformsaswellastheoptimalbatchscheduleinmostcases.GOShasthebestperformanceamongonlineschedulingalgorithmsinallcases.Insmallnetworks,GOSperformsalmostaswellastheoptimalsolution.Inlargenetworks,theimprovementacheivedbyusingAll-Batchisusuallynomorethan5%overGOS. c. Amongthe4k-Pathheuristics,twoKDPheuristicsperformbetterthantheKSPheuristicsanddynamiclinkcostcanimprovetheperformance.Thiscanbepartlyattributedtothecongestionavoidancemechanismthatdynamiclinkcostprovided.Withoutdoubt,KDP-Dprovidesthebestperformanceamongthe4k-Pathheuristics.AlthoughnotcomparabletoGOSalgorithmforlargenetworks,theirperformancegapissmallenoughtobeacceptableforsmalltopologies. 56

PAGE 57

d. TheMFTincreasesasthenumberoflesincreases.Theamountofthisincreaseisfasterinsmallnetworksthaninlargeones,assmallnetworksarebecomecongestedandfullyloadedsooner.Ontheotherhand,MFTdecreasesasthenetworksizeincrease,asthenetworkprovidesmorebandwidthresourcesinaglobalview. Insummary,theAll-Batch'sadvantageoverN-BatchandGOSisnotobvious,especiallyinsmallnetworks.WhenthebatchsizeNreaches50,theperformancegapisrelativelysmallandcanbeignoredinmanypracticalscenarios. Figure3-17. Comparisonofdifferentalgorithms'executiontimeondifferentnumbersoflesonMCInetworkusingSSTS. Figure3-18. Comparisonofdifferentalgorithms'executiontimeondifferentnumbersofleson100nodesrandomtopologyusingSSTS. Weweremotivatedtoexploreonlineschedulingheuristicsbythedesiretoreducethecomputingtimerequiredbythescheduler.Ourheuristicssolveaneasiermax-owproblemratherthanthecomplexandtimeconsumingLPformulationsolvedbyAll-Batch.Figures 3-17 and 3-18 showtheexecutiontimefortheMCInetworkandfora 57

PAGE 58

randomnetworkwith100nodes,respectively.Thehorizontalaxisisthenumberoflestobescheduled.Theexecutiontimeismeasuredinseconds. Inallcases,theexecutiontimeofouronlinealgorithmsismuchlessthanthatofthebatchalgorithm.Insmallnetworks,theschedulingtimeisacceptableforallalgorithms.Lessthan2minutesaretakentoobtaintheoptimalscheduleinMCIfor1000lerequests;theonlinealgorithmstakeseveralseconds.Inlargenetworks,ouronlineheuristicsaredramaticallyfasterthanthebacthschedulingalgorithm. Figure3-19. Comparisonofdifferentalgorithms'MFTexecutiontimeonrandomtopologieswithdifferentsizeusingSSTS. Figure 3-19 showsthealgorithms'executiontimeforvariousnetworksizes.Duringthetest,wescheduled400jobsusingSSTS.Weobservedthat,althougheveryalgorithms'executiontimeincreaseswithnetworksize,thetimerequiredbyAll-BatchandN-Batchactuallyincreasemuchfasterthanthatrequiredbyouronlinealgorithms.Thisisduetothelowercomplexityoftheonlinealgorithms.Inthe500nodetopology,GOSonlytakesseveralminutes,butAll-Batchtakesabout2hourstocomputetheoptimalschedule,whichexceedstheactualletransfertimeinourexperiments. 3.3.4.3Multiplestarttimescheduling(MSTS) BFPSPactuallydoesnotrequirealltheletransferstostartatthesametime.Whenjobsstartatvarioustimes,thetotaltrafcloadisexpectedtobelessintensivethantheSSTScase,sincetheletransfersarelessoverlappedduetothedifferenceintheirstarttime. 58

PAGE 59

Figure3-20. Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesinMCIusingMSTS. Figure3-21. Comparisonofdifferentalgorithms'MFTfordifferentnumberoflesin100nodesrandomtopologyusingMSTS. Figures 3-20 to 3-25 givetheexperimentalresultsusingMSTS.Figures 3-20 3-21 and 3-22 showhowthemaximumnishtimechangeswithnumberofrequestsandnetworksize.Figures 3-23 3-24 and 3-25 showthealgorithmsscalabilitywithincreasingnumberofrequestsornetworksize.TheobservationsfromMSTSaresimilar Figure3-22. Comparisonofdifferentalgorithms'MFTinrandomtopologiesofdifferentsizeusingMSTS. 59

PAGE 60

Figure3-23. Comparisonofdifferentalgorithms'executiontimeinMCInetworkusingMSTS. Figure3-24. Comparisonofdifferentalgorithms'executiontimein100nodesrandomtopologyusingMSTS. tothoseforSSTS.ThebatchalgorithmsoutperformonlineonesintermsofMFTvalue,butrequiresignicantlylongercomputationtime.Thebatchalgorithmsalsoshowworsescalabilitywithbothnetworksizeandnumberofrequests.GOSperformsbetterthanallotheronlineheuristicsandprovidesverygoodscheduleswithverysmallexecutiontime. Figure3-25. Comparisonofdifferentalgorithms'executiontimeonrandomtopologieswithdifferentsizeusingMSTS. 60

PAGE 61

3.3.4.4GOSv.s.GOS-E Whenpathswitchingoverheadisconsidered,theGOS'spotentialtoswitchpathforeverybasicintervalcanpossiblybecomeitsmajordrawback.Thisproblemismoreseverewhentheleistransferredusingmultiplepaths.Inthissection,GOS-EisevaluatedandcomparedwiththeoriginalGOSalgorithm. Whenperformingthetest,oneoftheimportantissuesistosimulatethepathswitchingoverhead.Fromtheprevioussection,weknowthatpathswitchinghappensonlybetweentwoadjacentbasicintervals.Soweaddalagoftlinoursimulationbetweeneachbasicintervaltorepresentthedelayduetopathswitching.Inourexperiments,wesetthedelaytobe1secondforestablishingandtearingdownanopticalpath.Thatis,ifthescheduleforacertainletransferchangesitsroutesmtimesduringthetransfer,adelayof2msecondswillbeaddedtoitsnishtime. Figure3-26. ComparisononnumberofMax-FlowsiscomputedbyGOS-EandGOSin100noderandomnetwork. ThetestisperformedonGOSandthreeGOS-Evariantswithdifferentextensionscopes:2%,5%and10%,whichmeansGOS-Ecansearchforthenextexistingbasicintervalandextendthecurrentscheduleintherangeof2%,5%and10%,respectively.Figures 3-26 and 3-27 showtheMFTperformanceforallfouralgorithms,withandwithoutpathswitchingdelaycounted.Wecanseethatwhenthepathswitchingdelayisnotaccountedfor,theschedulesgeneratedbyGOS-Etakemoretimetocompletetheletransfers,butwhenthepathswitchingdelayisaccountedfor,GOS-Eactually 61

PAGE 62

Figure3-27. ComparisononexecutiontimeusedbyGOS-EandGOSin100-noderandomnetwork. Figure3-28. ComparisononnumberofMax-FlowsiscomputedbyGOS-EandGOSin100noderandomnetwork. outperformsGOS.WealsonoticethatalargerextensionscopedoesnotimplybetterMFT,asGOS-Ewith5%extensionscopegeneratesbetterschedulesthanwithanextensionscopeof10%.Althoughtheswitchingoverheadcanbereducedusingalarger Figure3-29. ComparisononexecutiontimeusedbyGOS-EandGOSin100-noderandomnetwork. 62

PAGE 63

extensionscope,theactualletransfertimeincreases,whichcompromisesthebenetoffewerpathswitchings. Figure 3-28 comparestheaverageroundsofmax-owcomputationforeachrequestinGOS-EwithGOS,whileFigure 3-29 comparestheirexecutiontimes.Theseresultsshowthatbacauseofthereductioninthenumberofmax-owcomputationrounds,theexecutiontimeforGOS-EislowerascomparedtotheGOSalgorithm.Also,theexecutiontimeisfurtherreducedwithlargerextensionscopesalbeitatapriceoflongerMFT.However,inlargenetworks,thisdegradationisconsiderablysmall.ThismakesGOS-Emoreattractiveforlargenetworks. 3.4GeneralNetworkSchedulingAlgorithmsSummary Inthischapter,wehavecategorizedthedifferentbandwidthalgorithmsthathavebeenproposedforin-advanceschedulingbyboththeproblembeingaddressed(xedslot,maximumbandwidthinslot,maximumduration,rstslot,allslots,all-pairsall-slots).Inaddition,wehaveproposedseveralnewalgorithms(SWFP,SDFP,DAFP,kDP,andkSP)forthexed-slotproblemthatareadaptationsofalgorithmsproposedearlierforon-demandscheduling.AlthoughtheDAFPalgorithmproposedbyusisanadaptationofthedynamicadaptivepathalgorithmproposedforon-demandschedulingin[ 40 ],DAFPguaranteestondafeasiblepathwheneversuchapathexistswhereasthedynamicadaptivepathalgorithmof[ 40 ]doesnotprovidesuchaguarantee.Wehaveconductedextensiveexperimentswiththevariousxed-slotalgorithmsforin-advancescheduling.Ourexperimentsindicatethattheminimum-hopfeasiblepathalgorithmproposedbyusin[ 52 ]isthebest(inthesenseofmaximizingnetworkutilization)oftheseonlargenetworks.Fornetworkswithasmallnumberofnodes(say20orless),theDAFPalgorithmproposedinthispaperisbest.Fromthestandpointofalgorithmiccomplexity,MHFPisconsiderablyfasterthanDAFP. Wehavealsodevelopedseveralmulti-pathreservationalgorithmsforin-advanceschedulingofsingleandmultipleletransfersinconnection-orientedopticalnetworks. 63

PAGE 64

Anoveltwo-stepsolution,All-Batch,hasbeendevelopedtocomputescheduleswithminimumnishtime(i.e.,optimalschedules).AnN-Batchheuristicwasdevelopedtoenablebatchschedulinginmorerealisticscenarios.Wealsoproposedanewmax-owbasedgreedyalgorithm(GOS)andfourvariantsofk-pathalgorithmstoreducecomputationtime.Theseheuristicsscheduleanindividualletransfertocompleteattheearliestpossibletime.ExtensivesimulationsusingbothrealworldnetworksandrandomtopologiesshowthatGOSpresentsagoodbalanceamongmaximumnishtime,meannishtime,andcomputationtime.Furtherreductionincomputationtimebysacricingmaximumnishtimemaybeobtainedusingourk-Pathvariants.Ofthese,KDP-Dworksbest.Whenpathswitchingoverheadisconsidered,GOS-Eprovidesgoodperformance. Inthefuture,itwouldbeusefultoexploreBATCHalgorithmsthatalsoincorporatethemeannishtimeintheoptimizationmetric.Also,whenswitchingtheletransferstothescenarioofOn-demandscheduling,thedelaycausedbythebatchingprocessmustalsobetakenintoaccount.Thereforestudyingthetradeoffbetweenthebatchsizeandthedelayincurredisofinterest. 64

PAGE 65

CHAPTER4SCHEDULINGINOPTICALNETWORKS 4.1ProblemDenition Dedicatedconnectionsareneededtoeffectivelysupportavarietyofgeographicallydistributedapplicationtasks.Manyhighspeednetworksthatprovidededicatedconnectionsarebasedonopticalinterconnectsandopticalswitches.Forthesenetworks,thebandwidthalongagivenlinkcanbedecomposedintomultiplewavelengths.ThebandwidthschedulingandpathcomputationprobleminthecontextofopticalnetworksisusuallycalledRWA(RoutingandWavelengthAssignment)[ 71 ].AlgorithmsforRWAmayhavetoadheretooneormoreofthefollowingconstraints: 1. Wavelengthcontinuityconstraint:Thisconstraintforcesthatasinglelightpathmustoccupythesamewavelengththroughoutallthelinksthatitspans.Thisconstraintisnotrequiredwhenanopticalnetworkisequippedwithwavelengthconverters.Whensuchconvertersarepresent,thenetworkiscalledwavelengthconvertiblenetwork.Thealgorithmspresentedinthispaperassumethateitherwavelengthconversionisavailableatallswitchesornotavailableatanyswitch. 2. Wavelengthsharingconstraint:Formanydeployments,itismosteffectivetoconsiderthebandwidthonalinkasconsistingofintegermultiplesofwavelengthandasinglewavelengthasaunitforassignmenti.e.,onewavelengthisoccupiedbyonlyonereservationatacertainpointoftime.Thealgorithmsinthispaperassumethatthisconstraintneedstobesatised.ItisworthnotingthattechniquesbasedonTimeDivisionMultiplexing(TDM)/WavelengthDivisionMultiplexing(WDM)[ 73 ]allowfordecomposingthebandwidthonawavelength. TheEnlightenedproject[ 18 ]hasdevelopedseveralroutingalgorithmsforopticalnetworksassumingwavelengthconvertibilityandnowavelengthsharingconstraints.TheyaredevelopedusingtheFlexibleAdvanceReservationModel(FARM)[ 58 ]thattriestoreducetheblockingprobabilityofrequestsbyassigningaschedulingwindowforeachrequest[ 27 ].ThealgorithmsdevelopedintheEnlightenedprojectcanbetermedaskDynamicPaths(kDP)algorithmsaccordingtotheclassicationof[ 32 ].Thesealgorithmsdonotguaranteedtondafeasiblepathwheneversuchapathispresent. Thewavelengthassignmentproblemisarelativelyorthogonalproblemfromtheroutingproblemandmanyheuristicshavebeendevelopedforitssolution[ 71 ].Forour 65

PAGE 66

experimentalcomparisons,weusethewavelengthassignmentpolicyasproposedforthatgivenroutingalgorithm. InSection 4.2 ,weextendedtheExtendedBellman-Ford(EBF)algorithmtoincorporatethewavelengthsharingandwavelengthcontinuityconstraints.WealsoproposemodiedversionsofthealgorithmsintheEnlightenedsystemforcontinuoustimemodel.ThesealgorithmsarecalledModiedSwitchPathFirst(MSPF)andModiedSwitchWindowFirst(MSWF).MSPFtriestondtheearliestpathwithintheschedulingwindow,whileMSWFtriestondtheshortestpathwithintheschedulingwindow.Moreover,adeferredwavelengthassignmentstrategyispresented.Thisstrategyonlycountsthenumberofwavelengthsthatareusedonalink.Theactualassignmentofthewavelengthisdonewhentherequestisactuallyfullled. Althoughthedesignandimplementationofafull-conversionschedulerisrelativelystraightforward,thehighcostandtheaddedlatencyintroducedbywavelengthconvertersmakesparse-conversionmoreattractiveinpractice.ExistingresearchonOn-Demandschedulinghasshownthatwavelengthconvertershavethepotentialtoimproveblockingperformancesignicantlyandthatitisnecessaryonlyforarelativelysmallfractionofthenodestohaveawavelengthconvertertoachieveblockingperformancecomparabletothatoffullwavelengthconversion[ 14 35 56 ].Sinceon-demandschedulingreservesapathforaxedtimeslot,thisresultappliesdirectlytotheFixed-Slotscenario. InSection 4.3 ,wepresentanewnetworkmodelthatthatcanemulatetheexistingfull-conversionalgorithmswhenonlyasubsetofnodeshaveawavelengthconverter.WedemonstratetheutilityofthisapproachusingtheExtendedBellman-Ford(EBF)andk-AlternativePath(k-Path)algorithms.Weevaluatethealgorithmson3performancesmetrics:blockingprobability,averagestarttimeandschedulingoverhead.Blockingprobability,whichmeasurestheratioofblockedrequeststothenumberofscheduledrequests,istheprimarymetricusedtoevaluateaschedulingalgorithm. 66

PAGE 67

Averagestarttime,whichpresentshowearlytherequestedlightpathisavailable,isofspecialimportanceintheFirst-Slotscenario.Schedulingoverhead,whichcomparesalgorithmsaccordingtotheircomputationcosts,isanimportantmetricforthealgorithmspracticality. 4.2SchedulinginFullWavelengthConversionNetwork 4.2.1ProblemDenition AnopticalnetworktopologyisrepresentedasagraphG=(V,E,W)whereVisthesetofnodes,EisthesetoflinksandWisthesetofwavelengthssupportedbyeachlink.Anin-advancereservationrequestforalightpathcanbemadebetweenanytwonodesonG.AlgorithmsforRWAmayhavetoadheretothewavelengthcontinuityandwavelengthsharingconstraintsasdescribedintheintroduction.WeusetheFlexibleAdvanceReservationModel(FARM).Thismodeltriestoreducetheblockingprobabilityofrequestsbyassigningaschedulingwindowforeachrequest[ 27 ]. Inthissection,weaddressthefollowingqueries: 1. Findtheleasttimetwithintheschedulingwindowforwhichthereisapathwithanavailablewavelengthfromthesourcestothedestinationdfromtimettotimet+durandreservesuchapath.ThisisavariationoftheFirst-SlotProblemin[ 52 ]. 2. Findtheshortestpathwithanavailablebandwidthfromasourcestoadestinationdwithintheschedulingwindowandreservesuchapath. EachrequestRforasinglelightpathisdenedasfollows:R=[s,d,dur,start,end],wheresisthesourcenodeofthelightpath,disthedestinationnodeofthelightpath,duristhereservationduration,andstartandendarethestarttimeandendtimeoftheschedulingwindowrespectively.Theschedulingwindowmustbelargerthanthereservationdurationd.Theschedulermustcheckifapathisavailableduringanypossibleintervalintheschedulingwindow.Inslottedtimemodel,theintervalswillbe[start+t,start+t+dur]wheret=0,1,2,....,end)]TJ /F4 11.955 Tf 12.03 0 Td[(start)]TJ /F4 11.955 Tf 12.03 0 Td[(dur.Inthecontinuoustimemodel,adiscreteslidingapproachmaymissintermediatestarttimes. 67

PAGE 68

Thealgorithmspresentedin[ 58 ]donotguaranteetondafeasiblesolutionevenifasolutionispresent.Thealgorithmsdevelopedinthissectionprovidesuchguarantees.Wecomparethetimerequirementsandtheeffectivenessofthesealgorithmsinthefollowingsections.Theroutingandthewavelengthassignmentportionsofthesealgorithmsarepresentedinseparatesubsections. 4.2.2RoutingAlgorithms Thegoaloftherstqueryistondthepathwiththeleaststarttimeduringaschedulingwindow,whilethegoalofthesecondqueryistondthepathwithshortestdistance/hopduringaschedulingwindow.Wedeveloptwoalgorithms-ModiedSwitchPathFirst(MSPF)andListSlidingWindow(LSW)-foransweringtherstquery.Wealsodeveloptwoalgorithms-ModiedSlideWindowFirstAlgorithm(MSWF)andExtendedBellman-FordAlgorithm(EBF)foransweringthesecondquery.Thesearedescribedindetailintherestofthissection. Thealgorithmsdevelopedin[ 58 ]canbetermedaskDynamicPaths(kDP)algorithmaccordingtotheclassicationof[ 32 ].Thesealgorithmscheckkdynamicpathsbasedonthecurrentnetworkstatusandtestthemfortheirfeasibility.Ifmorethanonepathsarefoundtobefeasible,tiesarebrokenappropriately.Thesealgorithmsdonotguaranteetondafeasiblesolutionevenifasolutionispresent.Experimentalresults[ 58 ]showedthatwhenthelinkcostsaredynamicallyupdatedtoincorporatecurrentallocationandprovideLoadBalancing(LB),theblockingrateissignicantlyreduced.TheLoadBalancing(LB)scheme[ 58 ]assignsthecostofalinkwithnoreservationtobeequalto1.Thiscostisincrementedasadditionalreservationsareassignedtothelink.ThetwoversionsbasedonloadbalancingusingthedifferentapproachestochoosebetweenmultiplepathsarecalledSwitchPathFirst(LB-SPF)andSwitchWindowFirst(LB-SWF)algorithm.LB-SPFtriestondthepathstartingearliestwithintheschedulingwindow,whileLB-SWFtriestondtheshortestpathwithintheschedulingwindow.Wehaveextendedthesealgorithmsforthecontinuoustime 68

PAGE 69

modeltoprovidecomparisonswithouralgorithmsandarecalledMSPFandMSWFrespectively. ModiedSwitchPathFirstAlgorithm(MSPF) .Fortheslottedtimemodel,thisalgorithmstartsatthebeginningoftheschedulingwindow.ItcomputestheshortestpathusingDijkstra'salgorithm.Ifthispathisfeasible,itassignsanavailablewavelengthalongthepath;else,itdeletesthebusylinksonthepathandrecomputestheshortestpath.Foragivenxedreservationinterval[tstart,tstart+duration],thisshortestpathcomputationhastoberepeatedatmostktimes.Ifnofeasiblepathisfound,thereservationintervalisincrementedbyoneslotuntiltheinterval'sendtimeequalstheschedulingwindow'sendtime.Toadaptthisapproachtothecontinuoustimemodel,weadvancetothenextstarttimeintheSTlistinsteadofslidingthereservationintervalbyonetimeslot.Themodiedalgorithmisasfollows: Step1: SortallavaluesintheSTlistofeachlinkinthenetwork.Foreachaiinthesortedlist,repeatSteps2and3atmostktimes. Step2: Computetheshortestpathbasedoncurrentlinkcosts.Verifyfeasibilityforreservationintervalstartingattimeai. Step3: Ifthepathisfeasible,stopthealgorithmandreturnthispath;elsedeleteallthebusylinksonthepath. ModiedSwitchWindowFirstAlgorithm(MSWF) .TheoriginalSWFalgorithmissimilartoSPFexceptthatitslidesthereservationintervalbeforeswitchingthepath.Thisrequiresacheckonallthepossiblereservationintervalswithintheschedulingwindowforonepathbeforecheckingthenextpath.Forthecontinuoustimemodel,modiedalgorithmscanbeimplementedinseveralways.Onepossiblevariationisasfollows: TheintersectionofalltheSTlistsonapathcanbeusedtoderivethefeasibilityofagivenpath.Ifthepathisfeasible,anearlieststarttimecanbeeasilyderivedbyusing 69

PAGE 70

thesmallestnumberintheintersectedlist.Thealgorithmattemptsatmostkdifferentpathsandcheckallthepossiblestarttimeforeachpathasfollows: Step1: ComputetheshortestpathanditassociatedSTlists.VerifythepathbyintersectingalltheseSTlists. Step2: IfintersectedSTlistisnotempty,returnthispathwithrstpossiblestarttime,elseremovethebusiestlinkduringthewindow. Step3: Repeatstep1and2forktimes.Ifnoneofthepathisfeasible,rejecttherequest. Ifthenetworkisequippedwithwavelengthconverters,onesingleSTlistcanbemanagedperonelink.Fornetworkswithnowavelengthconverters,asinglepathhastobetreatedasmultiplesub-pathscorrespondingtoeachwavelengthandrepeattheprocessoverallsub-paths. TheMSPFandMSWFalgorithmsarenotguaranteedtondasolutionevenifoneexists.Theyonlytrykdynamicpaths,wherekisarbitrarilyspeciedinadvance.Inthefollowing,wedescribetwoalgorithmsListSlidingWindow(LSW)andExtendedBellmanFord(EBF)thatareguaranteedtondafeasiblepathifoneexists. Wealsomodifytwoalgorithmsfrompreviouschaptertoprovideaguaranteeonndingafeasiblepathifoneexists: 1. ListSlidingWindow(LSW)TheLSWalgorithm[ 32 ]ndsthepathwiththeleaststarttime.ThisalgorithmsortsalltheavaluesinSTlistsofeachlinkinthenetwork.Itdeterminesthesmallestaiforwhichafeasiblepathisavailablebyscanningthislistsequentially.Thesearchforafeasiblepathusesabreadth-rstsearch[ 32 ].Theexecutiontimecanbeimprovedbysavingandutilizingthebreadthrstsearchcomputationsfromthepriorstarttimes.Forexample,thebreadthrstsearchforaicanusethesearchcomputationsrequiredforthebreadthrstsearchofai)]TJ /F9 7.97 Tf 6.58 0 Td[(1utilizingthefollowingobservation:Thebreadth-rstsearchmustscantheSTlistofeachwavelengthoneachlinkthatistraversedduringthesearch,thisscanmaybeginwherethemostrecentscanofthislist(fromthebreadth-rstsearchforanearlierai)wascompleted. 2. ExtendedBellman-Ford(EBF)Thisalgorithmndstheminimumhoppathwithinaschedulingwindow.ItwasoriginallyproposedfortheFirstSlotandAll-AvailableSlotsproblemsin[ 52 ].Wedevelopamodiedversionoftheoriginal 70

PAGE 71

EBFalgorithmsothatitcanstopassoonastheSTlistatthedestinationnodeisnotempty.ItalsoextendsthenotionofanSTlistforalinktoincorporatelightpaths.Theresultingstarttimecorrespondstothesolutionwithminimumhoppath. 4.2.3WavelengthAssignmentAlgorithms Onceapathisfound,thewavelengthassignmentalgorithmisapplied.Thisalgorithmisrelativelyorthogonaltotheroutingalgorithmalthoughitsharesthecurrentreservationinformationwithit.Whennowavelengthconversionisallowed,weextendedeachalgorithmbyapplyingtheroutinetoeachwavelengthsequentiallyi.e.aFirst-Fitwavelengthassignmentschemeisused. Whenwavelengthconversionisallowed,exibleheuristicscanbedesignedsincewecanchooseanyavailablewavelengthinalink.Severalmetricssuchasmin-leadingormin-trailinggap[ 58 ]canbeusedinadditiontopath-widemetrics.Topickupthemostappropriatewavelengthamongpossiblewavelengths,theMin-Leading-Gapstrategybasesitsdecisionontheleadinggapbetweenthenewandpreviousreservations.WeusetheMin-Leading-Gapstrategy[ 58 ]fortheMSPFandMSWFalgorithm;wealwayschoosetheonethatproducestheminimumleadinggapwiththeassignmentofthecurrenttask.Thisstrategywasshowntohavethebestperformancein[ 58 ]forlinkutilizationandacceptanceratio. ForLSWandEBFalgorithms,weproposeanewmechanismcalleddeferredwavelengthassignment.Thismechanismdefersassigningaspecicwavelengthatreservationtime.Adeferredstrategyonlycountsthenumberofwavelengthsthatareusedonalink.Theactualassignmentofthewavelengthisdoneatthetimeoftherequestisactuallyfullled.Adeferredwavelengthstrategycanbeshowntoalwaysguaranteeafeasiblesolutionaslongasthetotalamountofreservedbandwidthdoesnotexceedthetotalcapacityofbandwidthofalinkataspecicpointoftime.Thisalleviatestheneedtokeeptrackofbandwidthallocationstatusofeachwavelength.Only,acountneedstobemaintainedforeachlink. 71

PAGE 72

ReqID Source Destination StartTime EndTime R1 n0 n1 t0 t2 R2 n0 n1 t4 t6 R3 n0 n1 t0 t3 R4 n0 n1 t2 t5 R5 n0 n1 t2 t5 Figure4-1. Arequesttablewith5requests AnalgorithmbasedontheleftedgealgorithmforchannelassignmentintheVLSIroutingcontext[ 26 ]canbeusedforthispurpose.Although,thisalgorithmwasforbatchassignment,itmaybeadaptedtoourcontextasbelow: 1. Assignjobssolongasnolinkhasmorethankjobsassignedatanytime,wherekisthenumberofwavelengths. 2. Atcurrenttimet,assigneachjobthatbeginsattimettoanyoneoftheavailablewavelengthonthepathreservedforthisjob;thewavelengthisthesameforeachlinkonthereservedpath.Consideranylinke.Ifthelinkhasqjobsscheduledtostartatt,itcanhaveatmostk)]TJ /F4 11.955 Tf 12.12 0 Td[(qjobscontinuingfrombeforet.Hencethereareatleastqwavelengthsavailableonefromtto1. Thus,itcanbeshownthatifthereservednumberofwavelengthsdoesnotexceedthemaximumnumberofwavelengthsofalink,allrequestscanbeaccommodatedwithdeferredwavelengthassignment. Figure 4-1 showsanexampleofarrivingrequests;thenetworkhasonlytwonodesn0andn1thatareconnectedtoeachotherbyalinkwith3wavelengths(1,2and3).Therequestsaresortedinascendingorderofarrivaltime,i.e.,R1arrivedbeforeR2.Apictorialcomparisonbetweenmin-leadinggapanddeferredwavelengthassignmentisshowninFigure 4-2 .Themin-leadinggapwavelengthassignmentschemeschedulesrequestsinarst-come-rst-servefashion,i.e.,R1!R2!R3!R4!R5.ThisresultsinasituationthatR2isscheduledon1,R3on2,R4on3andnallyR5failstobescheduled.Usingadeferredwavelengthassignment,allrequestsareacceptedsincethelinkiscomputedtobeavailablefortheperiod[t2,t5].Duringthisperiodthenumberofallocatedwavelengthsislessthanorequalto2.Thedeferredwavelengthassignment 72

PAGE 73

scheme(Figure 4-2 (b))schedulesrequestsaccordingtostarttimesofacceptedrequests.Att0,R1andR3areactivated,andscheduledon1and2respectively.R4andR5arescheduledon1and3att2.Finallyatt4,thereisstillroomat2forR2andR2isscheduled. Figure4-2. ComparisonofwavelengthassignmentusingdifferentschemesforrequesttableofFigure 4-1 4.2.4PerformanceEvaluation Inadditiontothetraditionalmetricsofspaceandtimecomplexity,theeffectivenessofanin-advanceschedulingalgorithminaccommodatingreservationrequestsiscritical.Thespacecomplexityneedstobereasonable.Thatis,thespacerequirementshouldnotexceedtheavailablememoryonthecomputeronwhichthebandwidthmanagementsystemistorun.Thetimecomplexityisimportantasthisinuencestheresponsetimeofthebandwidthmanagementsystemand,inturn,determineshowmanyreservationrequeststhissystemcanprocessperunittime.Schedulingeffectivenessis,ofcourse,criticalasrevenueisgeneratedonlyfromtasksthatareactuallyscheduled. Figure 4-3 summarizesthetimecomplexityofeachofthealgorithmsdescribedinSection 3.2.2 .Ifdeferredwavelengthassignmentisusedforawavelengthassignmentalgorithmcombinedwithacertainroutingalgorithmonawavelengthconvertiblenetwork,allabovementionedcomplexitieswillbesmallerbythefactorofWsinceitonlycountsthenumberofwavelengthsthatareusedonalink. 73

PAGE 74

Problem Algorithm SlottedArray Continuous FirstSlot SPF O(k(nlogn+Wdn)) O(qk(nlogn+L)) LSW O(ed) O(q(e+L))) AnySlot SWF O(k(nlogn+Wdn)) O(qk(nlogn+L)) EBF O(nel+ew) O(nel+L) d=durationofarequest,k=numberofpathstotry l=sizeoflongeststlistwithinaschedulingwindow q=numberofdifferentaisintheSTlistswithinaperiod L=sumoflengthsofTBlists,=endofschedulingwindow-d w=sizeofschedulingwindow Figure4-3. Timecomplexityofdifferentalgorithms 4.2.5Experiments Inthissection,werstbrieypresentoursimulationenvironmentincludingthenetworktopologiesusedandtherequestgenerationprocess.Wethenpresentthekeyvariationsthatwereimplementedandcompared.Thisisfollowedbyourexperimentalresultsandobservations. 4.2.5.1Simulationenvironment Fortestnetworks,weusedthe24-nodeNSFnetwork(Figure 4-4A )and33-nodeGEANTnetwork(Figure 4-4B )of[ 58 ],the19-nodeMCInetworkandthe16-nodeclusternetworkof[ 40 ],the11-nodenetworkof[ 12 ],theAbilenenetwork[ 5 ],andseveralrandomlygeneratedtopologies.Althoughmanyofthesenetworks(exceptNSFandGEANT)donotuseopticalinterconnects,weconvertedthesenetworksintoopticalnetworksbysettingthenumberofwavelengthsbasedontheoriginalbandwidthoflinks;Forexample,theMCInetworkthathasbandwidthsrangingfrom45Mbpsto310Mbpswasconvertedtoacorrespondingopticalnetworkbydividingthebandwidthofeachlinkby5. Therandomnetworksweusedforoursimulationshad200,400,or800nodes.Theout-degreeofeachnodewasrandomlyselectedtobebetween3and5.Toensurenetworkconnectivity,therandomnetworkhadbidirectionallinksbetweennodesiandi+1forevery1i
PAGE 75

ANSF BGEANT Figure4-4. NSFandGEANTnetwork Wegeneratedasyntheticsetofreservationrequestsinthesamewayasinpreviouschapters.Foreachtrial,wemeasuredtherequestacceptanceandbandwidthacceptanceratiosfor10timesandpresentstheaveragevalueoftheresults. 4.2.5.2Evaluatedalgorithms Thereareseveralvariantsforeachbasicalgorithmthatisdescribedintheprevioussectionbasedonthepropertiesofnetwork(convertersorlackofconverters)andwhetherornotadeferredstrategywasusedforwavelengthassignment.Forexample,thethreevariantofModiedSwitchPathFirst(MSPF)areasfollows: 1. MSPFw/converterandw/wavelengthassignment, 2. MSPFw/converteranddeferredwavelengthassignment,and 3. andMSPFw/oconverter SimilarvariationscanalsobederivedforModiedSwitchWindowFirst(MSWF)algorithms. ListSlidingWindow(LSW)andExtendedBellman-Ford(EBF)algorithmshavetwovariantsdependingonthepresenceorabsenceofwavelengthconvertersintheopticalnetwork.Forthesealgorithms,deferredwavelengthassignmentisassumedforthenetworkswithoutconverters.Forexample,thevariationsforLSWarelabeledasLSWw/ConvandLSWw/oConvrespectively.Weprogrammedallthereasonablevariantsfor 75

PAGE 76

eachbasicalgorithmsinC++andmeasuredtheireffectiveness.Wealsostudiedtheimpactofusingconvertersontheeffectiveness. 4.2.5.3Resultsandobservations Figures 4-5 and 4-6 providetheaverageacceptanceratiosforthealgorithmsasafunctionofthenumberofrequestsinthestudyintervalfortwonetworktopologies.Theaverageacceptanceratiosforthesealgorithmsasafunctionofthemeanrequestdurationforthevariousnetworktopologiesweresimilar. ANSF BGEANT CBurchard DCLUSTER EAbilene FMCI Figure4-5. Networkacceptanceratiovsnumberofrequests Ourexperimentalresultsshowthefollowing: 76

PAGE 77

A200nodes B400nodes C800nodes Figure4-6. Acceptanceratiovsrequestsnumberinvariousrandomtopologies 1. EBFconsistentlyoutperformedallotheralgorithms.Fortheremainingalgorithms,therelativeperformancevariesbasedonnetworkproperties.Forhomogeneousnetworktopologies(NSF,GEANT,BurchardandAbilene)(resultsnotpresentedduetospacelimitations)thathavesamenumberofwavelengthsonallthelinks,MSWFperformsbetterthanMSPFandLSW.However,fornon-homogeneousnetworktopologies(MCI,clusterandrandomnetworks),LSWhasbetterperformancethanMSWFandMSPF. 2. Fornon-homogeneoustopologies,thealgorithmsthatdonotguaranteetondfeasiblereservations(MSPFandMSWF)faredworsethanthealgorithmsthatprovidesuchaguarantee.However,attimes,theperformanceofthebestnoguaranteealgorithmwasquiteclosetoorslightlybetterthanthatoftheworstguaranteealgorithm.Asthenetworkgotsaturated(i.e.,thenumberofrequestsinthestudyintervalincreases),theRARforallalgorithmsdeclinedandtherateofdeclineforthenoguaranteealgorithmwasfoundtobehigherthanguaranteealgorithm.algorithms. 3. Therelativeperformanceofthealgorithmsdoesnotchangesignicantlywithmeanrequestduration.However,theperformancegapgrowslargerasthemeanrequestdurationdecreases.Theperformancedifferenceusingdeferredwavelengthassignmentmethodornotusingitwasnotsignicant. 4. Theuseofwavelengthconvertersgenerallyledtobetterperformance.Thus,theadditionalexibilitythatwavelengthconvertersprovideinanetworkisworthwhile. 4.3SchedulinginSparseWavelengthConversionNetwork 4.3.1ProblemDescription Inopticalnetworkscheduling,theprimaryconcernisroutingandwavelengthassignment(RWA).Wavelengthdivisionmultiplexing(WDM)allowsmultiplelightpathsfromdifferentuserstoshareoneopticalbersimultaneously.Normally,afeasible 77

PAGE 78

lighpathintheopticalnetworkhastofulllthewavelengthcontinuityconstraint,whichforcesasinglelightpathtooccupythesamewavelengththroughoutallthelinksthatitspans.However,thisconstraintisrelaxedinanopticalnetworkthatisequippedwithwavelengthconverters.Thesignalsreceivedbyawavelengthconvertermaybetransmittedonadifferentwavelengthinthenexthop.Wheneverynodeinthenetworkisequippedwithawavelengthconverter,thenetworksupportsfullwavelengthconversion.Whenonlysomeofthenetworknodeshaveawavelengthconverter,thenetworksupportssparsewavelengthconversion. Theimpactofwavelengthconvertersinall-opticalroutinghasbewidelystudied.[ 56 ]showedthatforcertaintopologiesandxed-pathrouting,sparsewavelengthconversionisalmostaseffectiveasfullwavelengthconversion.[ 14 16 ]haveinvestigatedtheperformanceofthek-AlternativePathsalgorithmsinthepresenceofwavelengthconverters.Theirfocusistheblockingprobabilityofsparsewavelengthconversionforonon-demandscheduling.[ 33 ]considersin-advanceschedulingusingacontinuoustimemodelandevaluatesthevariousalgorithms'blockingperformanceforfullwavelengthconversionandlowworkload. Inthissection,ourprimarygoalistostudytheimpactofwavelengthconvertersonFirst-SlotschedulingandtoanalyzethetemporalbehavioroftypicalRWAalgorithmsinthecontextofsparsewavelengthconversion.Extensiveexperimentalresultsarepresentedinthispaper.Accordingtoourtestresults,increasingthefractionofnodeswithwavelengthconvertersisofgreatervalueforblockingperformanceinrelativelylowtrafccasesthaninthehighworkloadcases.However,theaveragestarttimesarealmostunaffectedbywavelengthconvertersratioexceptforthemarginallyimprovementinsmalltopologies. Anotherkeyconsiderationhereistoexploretheadvantagesanddisadvantagesofthe2schedulingstrategiesrepresentedbyEBFandk-Pathrespectively.Intuitively,alwaysacceptingarequestwheneverthereisafeasiblelightpathinthenetwork,which 78

PAGE 79

isdonebyEBF,shouldprovidebetterperformancethanlimitingthesearchforafeasiblepathtoasmallsetofcandidatepathsasisdoneink-Path.However,ourresultsshowthatthisstatementisonlytruewhentheoverallworkloadissmallcomparedtonetworkcapacity.EBFoftenschedulesarequestonalongerpaththanusedbythek-Path.So,whentheworkloadishigh,theadditionalresourcesutilizedbyEBFtoacceptarequestnegativelyimpactstheacceptanceoffuturerequests.Ourresultsclearlydemonstratethesetradeoffs:EBFperformsbetterwhennetworkcapacityisamplefortherequestedworkload,butk-Pathoutperformswhenthetrafcscongestthenetwork.Thisobservationleadsustoproposeahybridapproachthatautomaticallyswitchesbetweenthetwoalgorithmsbasedoncurrentnetworktrafc. Wealsostudydifferenttie-breakingapproacheswhenmultiplepathsarefeasibleandtheimpactofdifferenttie-breakingschemesonoverallperformanceinthepresenceofsparsewavelengthconversion.Aslacktie-breakingschemeisproposedanditsperformancerelativetootherwidelyusedstrategiesisanalyzed. 4.3.2ExtendedNetworkModel ThetopologyofaopticalnetworkwithsparseconversionisrepresentedasagraphG=(V,E,W)whereVisthesetofopticalswitchesorrouters,EisthesetofopticallinksandWisthenumberofwavelengthssupportedbyeachlink.EachnodeninVisassociatedwithabooleanfunctionF(n),whichistrueifandonlyifthenodeisequippedwithwavelengthconverter.Toemulatethefull-conversionalgorithms,werstconverttheabovegraphintoanewgraphG0=(V0,E0).TomapnodesetGtoG0,foranoden2V,ifnequipsawavelengthconverter(i.e.F(n)istrue),acorrespondingnoden0willbeinsertedintoV0.IfF(n)isfalse,Wpseudo-nodes(n01,n02,...,n0w)willbeinserted.WisthenumberofwavelengthsdenedinG.Foralinkl2E,ifeconnects2nodeswithconverters,itwillbemappedtoalinkl0inE0;else,lwillbemappedintoWpseudo-links(l01,l02,...,l0w)andeachpseudo-linkstandsforaspecicwavelengththatcarriedinl.In 79

PAGE 80

theextendedmodel,l0iisincidentton0iifflisincidenttonintheoriginalgraphandl0iandn0iistheirithpseudocopyrespectively. Figure 4-7 showsaexampleofa4-noderingtopology.Thenetworkcontains2wavelengthconverters,nodesAandB.Eachlinkcarries2wavelengths.Itsextendedpresentation,shownontherightside,contains6nodesand7links.Eachnon-converternodesaresplitinto2pseudo-nodes(nodesfC1,C2gfornodeCandfD1,D2gfornodeD).Eachopticallinkthatisincidenttoanon-converternodeissplitinto2pseudo-linksandeachpseudo-linkstandsforoneindividualwavelength(link(B,C1)and(B,C2)forlink(B,C)forexample).Twopseudo-nodesthatareadjacentintheextendedmodelmustfulll2conditions:1)theircorrespondingnodesareadjacentintheoriginalgraph,and2)theyareeitherconverternodesortheirwavelengthindexmatches. Figure4-7. ExtendedNetworkModel TheextendedgraphG0isequivalenttotheoriginalgraphG.EveryfeasiblelightpathinGhasacorrespondingpathinG0andviceversa.Thewavelengthcontinuityconstraintisalsopreservedintheextendedmodel.IfnodenhasnowavelengthconverterinG,everycorrespondingpseudo-noden0iinG0isincidentbyandonlybythepseudo-linksofwavelengthindexi.Hence,wecandirectlyapplytheRWAalgorithmsthatoriginallydesignedforfull-conversion/no-conversionnetworkstothesparseconversionscenariowithlittleadaptation. Whenschedulingarequest,ifthesourceordestinationnodesareextendedtomultiplepseudo-nodes,theRWAalgorithmneedstocheckeverycorrespondingpseudo-source-destinationpairs.SoatmostW2roundsoftheoriginalalgorithmare 80

PAGE 81

neededintheextendedmodel,whereWisthemaximumnumberofwavelengthcarriedbyalinkinthenetwork.Also,duringthemodelextension,thegraphsizecanincreasebyatmostWtimesforitslinkandnodenumber.Therefore,analgorithm'scomputationtimeontheextendedmodelG0isboundedbyaconstantratio(apolynomialofW)ofthecomputationtimeforthatalgorithminfull-conversionscenarios,whichrunsontheoriginalnetworkG.So,theadaptedalgorithmhasthesameasymptoticcomplexityasitsoriginalversion. Inthispaper,weemployExtendedBellman-Fordalgorithmandk-AlternativepathalgorithmasourRWAalgorithms.ThedetailofthealgorithmswillbepresentedinSection 4.3.3 4.3.3RoutingandWavelengthAssignmentAlgorithms TheRWAalgorithmforFirst-Slotproblemusuallycontains3steps: 1. Identifytheearlieststarttime. 2. Findtheshortestpaththatprovidessuchstarttime. 3. Assignthewavelength. Asthewavelengthassignmentareindependentfromtherst2steps,mostRWAalgorithmshandlethisstepseparately.Inourpaper,EBFandk-pathalgorithmproceedtherst2steps.AwavelengthassignmentstrategycalledLeastConversionAssignmentisexplainedinSection 4.3.3.4 4.3.3.1ExtendedBellman-Fordalgorithmforsparsewavelengthconversion ExtendedBellman-Fordalgorithm[ 52 ]appliestheBellman-Fordshortestpathalgorithm[ 17 ]totheSTlistsonlinksthatmayconnectsourceanddestination.Thekeystepsofthealgorithmareasfollows: 1. Letst(k,u)representtheunionoftheSTlistsforalllightpathsfromvertexstovertexuthathaveatmostkedges.Clearly,st(0,u)=;foru6=sandst(0,s)=[0,1].Also,st(1,u)=ST(s,u)foru6=sandst(1,s)=st(0,s).Fork>=1,the 81

PAGE 82

followingrecurrencecanbederived: st(k,u)=st(k)]TJ /F6 11.955 Tf 11.95 0 Td[(1,u)[f[v,(v,u)2Efst(k)]TJ /F6 11.955 Tf 11.96 0 Td[(1,v)\ST(v,u)gg 2. Constructthelistst(n)]TJ /F6 11.955 Tf 12.44 0 Td[(1,d),whichgivesthestarttimesofallpathsfromstodthathavebandwidthBWavailableforadurationDur.Ifst(n)]TJ /F6 11.955 Tf 12.05 0 Td[(1,d)isnotempty,ainitsrst(a,b)pairistheearlieststarttimeforthiscurrentsource/destinationpair,denotedasesti. 3. Forallpossiblesource/destinationpairs,ndtheminimumestiastheearlieststarttimefortherequestandthecorrespondingsource/destinationpair(si,di)arerecorded. 4. Removethelinksthatcannotprovidetherequestedbandwidthattheearliestnishtime. 5. RunBreath-FirstSearch[ 17 ]ontheextendedmodelandndashortestroutefromthesitodi,maptheroutebacktotheoriginalgraph. ThecomplexityofintersectionandunionoperationislineartothelengthofthecurrentSTList.Foreachiterationofconstructingst(k,d)forst(k)]TJ /F6 11.955 Tf 12.33 0 Td[(1,d),weneedstocomputetheSTListforeachlinkandeachcomputationtakesO(L)time,whereListhelengthofthelongeststlist.SincetheconstructioniteratesatmostN)]TJ /F6 11.955 Tf 12.23 0 Td[(1times,thecomplexityoftheextendedBellman-FordalgorithmisO(NEL),whereNandEisthenumberofnodesandlinksinthegraph. 4.3.3.2k-Alternativepathalgorithm Thek-AlternativepathalgorithmisextendedfromtheshortestpathalgorithmsroutingusedbyOSPFinInternetrouting.RecognizingthatanOSPF-likealgorithmmayfailtondafeasiblepathinanetworkthathasafeasiblepath,k-Pathalgorithmgeneratesadditionaldisjointpathswiththehopethatoneoftheadditionalpathswillbefeasible.ByconstructingSTListoneachpath,itiseasytodecidewhichpathprovidesearlieststarttime.Iftheallgeneratedpathisinfeasible,therequestisreject. Thekpathscanbeeitherxedordynamicallygenerated.k-Fixedpatharecomputedforeachnodepairbeforetherstschedulingbeginsaccordingtosomegivenlinkcosts.Thek-dynamicpatharecomputedforeveryrequestaccordingto 82

PAGE 83

currentnetworkstatus.Usually,themostcongestlinkwillhavelargecostsoastobeavoidinthepathcomputation.[ 45 ]haveshownthek-Dynamicpathscanprovideamuchlargernetworkthroughputthank-Fixedpaths,especiallywhenthetrafcloadisrelativelylargeforthenetwork'scapacity.So,inthispaper,weadoptthethisk-DynamicpathsalgorithmandcallitKDP. 4.3.3.3Breakingthetiesinpathselection Whenmultiplepathscansatisedauser'srequest,atie-breakingschemeisneededtoselectoneofthemastheactualscheduledpath.Themoststraightforwardschemebreakstiesbasedonrst-t(FF)strategyorShortestPath(SP)strategy.First-tstrategyterminatesthepathselectiononceasucceedpathisfound.Shortest-pathstrategychosethepathwithminimumhopnumber.Bothstrategiesarewidelyusedinnon-conversionandfull-conversionscenarios,butusingthemdirectlyinSparsewavelengthconversionneedscarefulconsiderationasthesepathsarecomputedonextendedmodels. Intheextendedmodel,theshortestpathdoesnotnecessarilycorrespondstotheshortestpathintheoriginalgraphforsamesource/destinationpairs.Figure 4-8 givesanexampleofa4-noderingwithonly2converters,nodesAandC.Eachlinkconsists2wavelengths.Atsomeconjuncture,theavailablewavelengthsareshowninextendedgraphontherightside.Forarequestof1wavelengthofcapacityfromnodeBtoA.Twocandidatepathsareavailable:B1!C!D1!AandB2!A.Assumethatbothpathprovidesthesamestarttime,TheFirst-Fittie-breakingschemewillchoosethepair(B1,A)assourceanddestinationwhenthenode-pairsarecheckedinlexicalorderandtheShortestPathtiebreakingschemewillchoosethe3-hoppathasitistheoneavailableB1toA. Atie-breakingschemethatchoosetheshortestpathbyexaminingallsource-destinationpairs,ratherthantherstsucceedpair,wouldsolvetheproblem.However,consideringonlythepathlengthwouldnotbeenoughinthecontextofsparseconversion.In 83

PAGE 84

Figure4-8. ExtendedNetworkModel networkswithoutwavelengthconversion,shorterpathismorelikelyhavecommonwavelengths,thereforelesslikelytoblocktherequests.However,thepresentofwavelengthconvertersreducesthecorrelationbetweenpathlengthandpathcapacitiesduetotheeliminationofthewavelengthcontinuityconstraint.Hence,intermsofloadbalancing,choosinglongerpathwithhighercapacitymayalsoreducethepotentialcongestionbyalleviatethetrafcintheshortpaths.Inthispaper,insteadofusingFirst-FitstrategyinoriginalEBFandKDPalgorithm,weemployaslacktie-breakingschemethatselectsthepaththatatmosthhopslongerthantheshortestpathbuthavethemostfreewavelengthsamongallthepathsthathavefewerorequalhopcounts.WecallthesevariantEBF-SandKDP-S. Intuitively,hshouldnotbetoolargeorthebenetofloadbalancingwouldbecanceledbythewasteoflinkcapacitiesonlongerpaths.InSection 4.3.4 ,wewillcomparingtheFirst-FitschemewithSlackschemeandperformanumericanalysisonthechoiceofhindifferentscenarios. 4.3.3.4Wavelengthassignment Withthepresenceofwavelengthconverters,wavelengthassignmentbecomeslessimportantinopticalrouting.However,aswavelengthconversioncontributesaconsiderabledelayintheopticaltransmission[ 16 ],aproperwavelengthassignmentwouldpotentiallyreducesuchoverheads. Forthoselinksthatconnecttoanon-converternodes,thewavelengthassignmentisquitestraightforward,asthespecicwavelengthhasbeenalreadyidentiedwith 84

PAGE 85

thelightpathduringthepathselectionprocess.However,forthoselinksconnecttwowavelengthconverters,weapplytheleastconversionassignmentratherthantherst-talgorithmusedinmostRWAalgorithms.Inleastconversionassignment,thelinkthatconnects2converterswillusethesamewavelengtheitherasitsprevioushoporasitnexthopunlessneitherwavelengthsisnotavailable.Forinstance,letl2Econnectstwowavelengthconverters,wibethewavelengthassignedforthepreviouslinkonthepathandfwngbethesetofcommonwavelengthofbothlandl'snextlink.Ifwiisavailableonl,weassignthiswitothelightpath,elseweassignanywavelengthinfwngiffwng6=;.Ifneitherisavailable,arandomavailablewavelengthinassigned.Thisstrategycanalwaysguaranteeafeasiblesolutionwhileavoidingtheunnecessaryconversions. 4.3.4ExperimentalEvaluation 4.3.4.1Experimentalframework Inthissection,wemeasuretheperformanceoftheschedulingalgorithmsdescribedinSection 4.3.3 andanalyzehowwavelengthconvertersaffectsthealgorithms'performanceinvariousscenarios.Wecomparethetie-breakingschemesinSection 4.3.3.3 toshowtheeffectivenessofourslackstrategy;WeanalyzetheperformanceofRWAalgorithmsfor3metrics:blockingprobability,averagestarttimeandexecutiontime.Inourexperiments,blockingprobabilityismeasuredbyratioofrejectedrequestscomparingtothetotalsubmittedrequest.Averagestarttimeismeasuredbytheaveragedelaybetweenthereservationwindow'sstarttimeforajobanditsactualstarttime.Executiontimemeasurestheconvergencespeedofeachalgorithmandhowitvarieswithnetworksizeandworkloads.Wealsoproposedaself-adaptivealgorithmswitchingstrategythatdynamicallychoosethesuitablealgorithmaccordingtothecurrentworkload.Theperformanceofthisswitchstrategyistestedinvariousscenarios. Tosimulateae-Sciencebackbone,weusea10-noderingtopology,a25-nodemesh-torustopology,arealwork11-nodeAbilenenetwork(Figure 4-9 )andseveral 85

PAGE 86

randomlygeneratedtopologies.Eachlinkisassumedtocarry10wavelengths.Forrandomlygeneratedtopologies,wesettheout-degreeofeachnodetoberandomintegersbetween3and7.Toensurenetworkconnectivity,therandomnetworkhasbidirectionallinksbetweennodesiandi+1forevery1i
PAGE 87

willcomparethealgorithmsperformanceunderdifferentWLCRatiotoplottheimpactofwavelengthconverters.Althoughasimplestrategyisappliedhere,ourexpectationisthataperformancecomparisonbetweendifferentapproachesshouldbeapplicableevenwhenamoresophisticatedplacementisused. Filetransferrequestsaresyntheticallygenerated.Eachrequestisdescribedbythe6-tuple(si,di,BWi,Duri,STi,ETi).Thesourceanddestinationnodesforeachrequestwereselectedusingauniformrandomnumbergeneratorsothattheworkloadisdistributeduniformlyamongdifferentnodepairs.Withoutlossofgenerality,weassumeeachrequestasksforacapacityofonly1wavelength.Thedurationisuniformlydistributedwithinarangeof100to500timeunits.ThearrivaloftherequestfollowsaPoissondistributionwithrate.Thereservationwindowstartsatsometimeaftertherequests'arrival.Astheresultsarerelativelyinsensitiveforthislag,wearbitrarilychoseitas100timeunits.Thelengthofthewindowisrandomlyselectfrom2to4timesoftherequestduration. WeassumethattherequestsarriveinaPoissonprocessforeachsource/destinationpairwithanarrivalrate.Followingtheexperimentalsettingin[ 56 ],ispickedintherangefrom0.01requests/timeunitto0.1requests/timeunitforeachnodepair.So,forexample,withaarrivalrateof0.05requests/timeunit,onerunofourexperimentona100noderandomtopologywouldprocessapproximately5105requestsduringthetestswhichlasts1000timeunits.Allourexperimentassumethatwestartwithnoloadi.e.,noexistingscheduledtransfers. 4.3.4.2Slacktie-breakingscheme RecallthatinSection 4.3.3.3 ,toselectthebestcandidatepath,weconsiderallthepathsthatareatmosthhopslongerthantheshortestpath.Hence,toevaluatetheperformanceoftheseheuristics,wemustrstdecidethevalueoftheh.Figure 4-10 explorehowh'svalueinuencetheblockingperformanceofEBF)]TJ /F4 11.955 Tf 12.53 0 Td[(Sinvarioustopologies.Inthesmalltopologylike8-nodering,h=1providesthebestperformance, 87

PAGE 88

ARing BRandom Figure4-10. Differenthvaluesfordifferenttopologies.NetworkTrafcLoad:=0.05 whileinthe100-noderandomnetwork,theh=2caseismarginallybetterthanh=1.Also,largehvalueslike3or4actuallydeterioratetheperformanceasthelinkcapacityiswastedbychoosinglongpaths.Inourtest,h=1isalsothebestchoiceforMesh-TorusandAbilene.Similarresults(notpresentedhere)werealsoobservedforKDP)]TJ /F4 11.955 Tf 12.47 0 Td[(S.Inthefollowingtests,wechoseh=1inforRing,AbileneandMesh-Torustopologiesandh=2forrandomnetwork. ARing B100-nodeRandom Figure4-11. Benetofslacktie-breakingschemeinvarioustopologies.NetworkTrafcLoad:=0.05. Figure 4-11 depictsthewavelengthconverters'impactonblockingperformancebyvaryingthewavelengthconverterratioforvarioustopologies.EBF-SandKDP-SusethesimpleFirst-Fittie-breakingschemebutEBF-SandKDP-Semployslackscheme.WeobservethatthealgorithmswithslackschemeworkmuchbetterthanthealgorithmsusingFFschemeinallcases.Thus,choosinglongerpathinpresenceofexcess 88

PAGE 89

capacitybenetstheblockingperformanceforsparsewavelengthconversion.AnotherobservationisthatwhenWLCRatioequals20%,theblockingprobabilityofFirst-Fitalgorithmsisworsethannothavinganyconverters.Thisphenomenoncanbeexplainedasfollows:whennowavelengthconverterisavailable,manyrequestsarerejectedduetolackofcontinuouswavelength,buttheacceptedrequestaremoreevenlydistributedamongallwavelengthsandlonglightpathsarelesslikelytobeestablished.Whenasmallnumberofnodesareequippingwithconverters,thetrafcscheduledbyFirst-Fitstrategyaremorelikelytousethoselongpathsbetweenwithwavelengthsoflowerindex,asshowninSection 4.3.3.3 .Theadditionalbenetfromhaving20%convertersisnotenoughtocoverthedegradationduetothewastedcapacityoflongpaths.Althoughthisdegradationcanbecompensatedbyeitherinsertingmoreconverters,asplottedinFigure 4-11 ,usingtheslackschemeisobviouslymoreeffectiveandeconomical.WealsonoticethattheimprovementbroughtbytheslackschemeinRingandAbilenetopologyisnotasmuchasinmesh-torusandrandomtopology.Thisisconsistentwiththeconclusionin[ 56 ],whichstatesthatwavelengthconversioncanhelpmoreinthetopologieswithmoredivergenceandconnectivity,asmorevariantsinthepathsareavailable. InthetestforbothFigure 4-17 andFigure 4-11 ,thenetworktrafcloadissettoamoderatedegree:=0.05.However,similarresultsarealsoobservedunderdifferentworkloads. 4.3.4.3Blockingprobability Inthissection,theblockingperformanceofEBF-SandKDP-SareevaluatedandcomparedtheFixed-ShortestPathroutingalgorithm.ForFixed-ShortestPathrouting,notie-breakisspeciedasonlyonepathisavailable.However,asFirst-Fitwavelengthassignmentisapplied,Fixed-ShortestPathroutingisdenotedasSP-FFinourdiagrams.Figure 4-12 andFigure 4-13 depictthehowtheblockingprobabilitieschangedwithwavelengthconverterratioinRing,Mesh-Torus,AbileneandRandom-100topology. 89

PAGE 90

ARing B100-nodeRandom Figure4-12. BlockingProbabilityvs.WavelengthConverterRatioinvarioustopologywithlowtrafcload. Figure 4-12 presenttheresultsobtainedwhenthenetwork'strafcloadisrelativelylow:2[0.01,0.05],whileFigure 4-13 presenttheresultwhenworkloadisrelativelyhigh:2(0.05,0.1]. ARing B100-nodeRandom Figure4-13. BlockingProbabilityvs.WavelengthConverterRatioinvarioustopologywithhightrafcload. FromFigure 4-12 andFigure 4-13 ,wenotethatIncreasingthewavelengthconverterratiocandecreasetheblockingprobabilitiesforallalgorithms.However,theimprovementisalsodependentonthenetwork'strafcload.Whennetworktrafcloadisrelativelylow,EBFonlyneedsabout40%ofwavelengthconverterstoprovideasatisfactoryblockingperformance,buttheblockingprobabilitiesofKDPandSPdecreasesmoregraduallyastheincreaseofWLCRatio.Whentrafcloadishigh,increasingthewavelengthconvertershasonlymarginalimprovementonallalgorithms.Thiscanbeexplainedasfollows.EBFexploresthenetworkmorethoroughlyforan 90

PAGE 91

availablepaththanKDPandSP.Withasmallamountofconverters,EBFisabletosatisfythetrafcdemandsbutKDPandSPcannot.However,whentrafcloadishigh,majorityofblockingoccursduetolackoflinkcapacitiesbutnottheavailabilityofcontinuouswavelengths.Hence,increasingwavelengthconvertershaslittleimpactinheavyloads. Wealsonotethatinalltopologies.EBF-SandKDP-SalgorithmscanachieveamuchsmallerblockingprobabilitycomparingtoSP-FFalgorithm.InsimpletopologieslikeRing(Figure 4-12A and 4-13A ),EBF-SandKDP-SleadsSP-FFforabout2-5%onblockingprobability,whileinthosemorecomplextopologieslikerandomnetwork(Figure 4-12B and 4-13B ),theadvantagesaredoubled.Thisisconsistentwiththeresultsin[ 14 ]thatshortest-pathroutingislesslikelytobeimprovedduetothesmallnumberofalternativelightpaths. ALowWorkload BHighWorkload Figure4-14. Totalresourceconsumptionina100-noderandomnetworkunderdifferentworkload. AnotherimportantobservationisthatEBFoutperformsKDPinlowtrafcworkloads(Figure 4-12 ),butKDPleadsEBFinhightrafcworkloads(Figure 4-13 ).Thiscanbeexplainedasfollows:EBFtriestondanypossiblepathforcurrentrequestifitexists,butKDPonlytestsnomorethankpaths.Whenthelong-termtrafcloadislow,thenetwork'scapacityisampletoaccommodatemostrequests,theEBFthatactsgreedilywouldacceptmorerequeststhanKDP.However,whentrafcloadishigh,limitingtheroutestoonlythoseshortpathsandrejectsomelongpathswoulddenitely 91

PAGE 92

benetthescheduleoffuturerequests.Inthatcase,themoreconservativeKDPwouldprovideabetterperformanceinthelongrun. ThisobservationcanalsobesupportedbythefactthatEBFactuallyconsumesnetworkbandwidthfasterthanKDPdoes.Figure 4-14 depictsthetotalamountsoflinkcapacitiesthatEBFandKDPconsumeunderdifferentworkloads.ThetotalresourceamountsaredenedasPp2RLP(Dur(p)length(p)),whereRLPisthesetofallestablishedlightpaths,Dur(p)islightpathp'sdurationandlength(p)isp'shopcount.Weseethat,forthesamerequestset,EBFconsumesmorelinkcapacitiesthanKDPinlowworkloadcases,asKDPrejectsthoselong-pathrequestswhileEBFacceptsthem.Whentheworkloadishigh,KDP,whichrejectssomeearlylong-pathrequests,substantiallyacceptsmorerequestsinthelongrun.Therefore,thetotalamountsoflinkcapacitiesbothalgorithmsconsumesarealmostequalinhighworkload. 4.3.4.4Requests'averagestarttime ARing B100-nodeRandom Figure4-15. AverageRequestStartTimevs.WavelengthConverterRatioinvarioustopologywithlowtrafcload. Intheall-opticalroutingarea,blockingprobabilityisalwaystheprimaryconcern,butforthisspecialcaseofFirst-Slotscheduling,theavailabilityofearlierstarttimemayalsobeanimportantmetrictoevaluateascheduler'sperformance.Figure 4-15 andFigure 4-16 presenttheinuenceofwavelengthconverterratioontherequests'averagestarttime.Similarwiththeprevioussection,Figure 4-15 showsthestarttimeperformanceinthelowtrafccaseandFigure 4-16 showsthetestresultinhighworkloadcases. 92

PAGE 93

ARing B100-nodeRandom Figure4-16. AverageRequestStartTimevs.WavelengthConverterRatioinvarioustopologywithhightrafcload. Toexcludetheimpactofblockedrequestsontheaveragerequeststarttime,wesetthereservationwindowforeachrequesttoalargeenoughtimeintervalsuchthateveryrequestwillbeacceptedatsometimewithinthewindow.Fromtheabovegures,wecanobservethatincreasingwavelengthconvertershaspositiveimpactsontherequests'starttime,buttheimprovementsarenotasobviousastheimpactonblockingperformance,especiallyforEBF-SandKDP-S.InRingtopology,theimprovementfrom0%WLCratioto100%WLCratioisonlyabout5%inlowtrafcloadcase,and15%inhightrafcloadcases.Inrandomtopology,theimprovementsarealmostnegligible. WealsonotethatEBF-SandKDP-SleadtheaveragestarttimeoverSP-FFinallcase.TheadvantagesarelargerinrandomtopologythaninRingtopologyandtheyincreaseastheworkloadincrease.ThisshowsthatEBF-SandKDP-ShavetheabilitytoscheduletherequestsinamoreparallelwaythanSP-FF.Whenthenetworkcapacitiesareamplefortherequests,EBF-SandKDP-Sprovidemuchfasterschedules.Whenthetrafccongeststhenetwork,thoseforthcomingrequestshavetowaitforpreviousrequeststonishduetolackofnetworkcapacity,whichreduceEBF-SandKDP-S'sadvantages. Similartotheresultsinprevioussection,EBF-SagainoutperformedKDP-Sinlowworkloadcasesonaveragestarttime,andKDP-Sgainsbetterperformanceforconservativereservationstrategyintheheavyworkload.Whenthenetworks'capacityis 93

PAGE 94

relativeamplecomparingtotherequestedworkload,EBF-ShastheabilitytostartthejobearlierthanKDP-S,buttheirperformancesareverycloseinlargetopologies.Whentheworknetworkisundercongestionbyhighrequestrates,KDP-Sleadstheaveragestarttimeinalltopologiesanditsadvantagearemoreobservableinlargenetworks. 4.3.4.5Schedulingoverhead Inthissection,wediscussabouttheschedulingoverheadofourRWAalgorithms.Figure 4-17 presentscomparisonsontheschedulingoverheadofEBF-SandKDP-SwithvariousWLCratioandnetworksize.TheseresultsshowthatEBF-Sisabout2-5timesslowerthanKDP-SanditscomputationtimegrowsfasterthanKDP-Swiththeincreaseofnetworksize.TheexecutiontimedecreaseswiththeincreaseinWLCratio,asthesizeofextendednetworkissmaller.However,evenfora400-nodetopology,EBF-Scanschedulearequestaveragelywithinseveralseconds.Thisshouldbeacceptableinmostscenarios. ACTvs.WLCRatio BCTvs.NetworkSize Figure4-17. AveragecomputationtimeofEBF-SandKDP-S. Insummary,equippingthenetworkwithsomewavelengthconvertersdoimprovetheblockingperformance,butaddingmoreconverteraftercertainthresholddoesnotbringmorebenets.Meanwhile,thetrafcloadandnetworktopologyalsocastgreatinuenceontheblockingprobability.Fortheaveragestarttime,wefoundthattheeffectofwavelengthconverterratioisminorforbothEBF-SandKDP-S,butthetrafcloadandnetworktopologyhavemoreevidentinuencesonthismetric.Comparingtwoalgorithms,EBF-Sgenerallyperformsbetterinthelowtrafccases,butKDP-Sisa 94

PAGE 95

betterchoicewhenthetrafcloadisheavy.KDP-SisfasterthanEBF-Sinallcase,butinevenintheworstcase,EBF-Scanstillscheduletherequestsinanacceptablespeed. 4.3.4.6Algorithmswitchingstrategy WendoutinSection 4.3.4.3 andSection 4.3.4.5 thatthegreedyapproachEBF-Shasbetterperformancewhenthetrafcloadiscomparablylight,whiletheconservativeapproachKDP-Sworksmoreeffectivelyinthehighworkloadcase.Inthissection,weproposeaself-adaptivealgorithmswitchingstrategythatautomaticallychoosesEBF-SorKDP-Saccordingtocurrenttrafcloadinthenetwork. Themainideaoftheswitchstrategyisasfollow.Thetimedomainisdividedintoequal-lengthtimeslots.Theschedulerrunsbothalgorithmsimultaneouslyoneachrequest,thechoiceofwhoseresulttoapplyincurrenttimeslotismadeatthebeginningofthisslot,assumingcurrenttrafchasthesimilarpatternasinlastslot.Theperformancesofthecandidatealgorithmscanbeevaluatedbyeithertheirblockingperformance,oraveragestarttimeoftherequestsscheduledinthelastslot,oracombinationofthetwo.Comparingthestatisticalperformanceofbothalgorithmsinthelastslot,thealgorithmthatperformedbetterinthelastslottakeseffectinthecurrentslot.Ifitdoesnotperformasgoodastheotheroneincurrentslot,theschedulewillswitchtoitsalternativeatthebeginningofthenextslot. ABlockingPerformance BStartTimePerformance Figure4-18. TheperformanceofalgorithmswitchingstrategyinSlowTrafcPatternSwitching. 95

PAGE 96

ABlockingPerformance BStartTimePerformance Figure4-19. TheperformancealgorithmswitchingstrategyinFastTrafcPatternSwitching. Toevaluatetheperformanceofouralgorithmswitchstrategy,wedesigned2scenarios:slowtrafcpatternswitching(STPS)andfasttrafcpatternswitching(FTPS).Inourtest,weassumetherequestarrivalrateisrandomlyselectedfromtherange[0.01,0.1]andthelengthofeachtimeslotis10timeunits.InSTPSscenario,thearrivalratechangesitsvaluewith50%probabilityevery100timeunites.InFTPSscenario,thearrivalratechangesitsrangewith50%probabilityevery10timeunits. Figure 4-18 andFigure 4-19 depictstheblockingandstarttimeperformanceofourswitchstrategyinbothscenariosina100-noderandomtopology.DS-SSalgorithmstandsfortheswitchstrategyworkedintheSTPSscenario,whileDS-FSalgorithmstandsfortheswitchstrategyworkedintheFTPSscenario.TheresultsshowthatthehybridalgorithmworkedinSTPSscenario,DS-SS,havethebestperformanceonbothmetrics,asthehistoryinformationfromlastslotpredictthecurrenttrafcpatternquiteaccurately.Ontheotherhand,theperformanceofDS-FSalgorithmwhichworkedinFTPSscenariodegradeddramaticallyduetotheincreasingprobabilityofinaccuratepredictionsinFTPSscenario.Insomecases,DS-FSevenprovidestheworstperformance.So,whenthetrafcpatternremainstaticorchangedinfrequently,ouralgorithmswitchstrategycanprovideaprettygoodperformancebysyntheticthemeritsofbothalgorithms.However,whenthetrafcpatternischangingfrequently,theswitchstrategydoesnotguaranteeanyimprovementcomparingtoeitherEBF-SorKDP-S. 96

PAGE 97

4.4OpticalNetworkSchedulingSummary Inthischapter,weconductedextensivesimulationstoevaluatetheperformanceofalgorithmsforavarietyofrequestpatternsandnetworktopologies.OurresultsshowthatExtendedBellmanFord(EBF)algorithmhasconsistentlybetterperformancethatotheralgorithms.Fornon-homogonousnetworks,LSWalsoprovidedcomparablesolutions;whileforhomogeneousnetworksMSPFandMSWFprovidecomparablesolutions.Oursimulationswereperformedforpresenceorabsenceofconvertersthatcanbeusedtoconvertfromagivenwavelengthtoanotherwavelength.Ourexperimentalresultsshowedthattheuseofwavelengthconvertersgenerallyledtobetterperformance.Thus,theadditionalexibilitythatwavelengthconvertersprovideinanetworkisworthwhile.Wealsoshowedthatadeferredwavelengthassignmentstrategycanbeeffectivelyusedinconjunctionwiththeroutingalgorithms.Adeferredstrategyonlycountsthenumberofwavelengthsthatareusedonalink.Since,theactualassignmentofthewavelengthisdoneatthetimeoftherequestfulllment,thisalleviatestheneedofkeepingtrackofbandwidthallocationstatusofeachwavelength.Adeferredwavelengthstrategyalwaysguaranteestondafeasiblesolutionaslongasthetotalamountofreservedbandwidthdoesnotexceedthetotalcapacityofbandwidthofalinkataspecicpointoftime. Inthischapter,wealsoexaminedtheimpactofsparsewavelengthconversiononFirst-Slotscheduling.Weproposedanewnetworkmodeltoemulatethefull-conversionalgorithmsinsparseconversionnetworks.Usingthismodel,weconductedextensiveexperimentstoassesstheimpactofwavelengthconvertersonFirst-SlotRWAalgorithms'performance.Thisassessmentusedthreemetrics:blockingprobability,averagestarttimeandschedulingoverhead.Ourexperimentshaveindicatethatincreasingwavelengthconvertershaspositiveimpactonblockingperformance,butverylittleimpactontheavailabilityofearlierstarttimes.Meanwhile,asmostimprovementsareachievedbyhavingnomorethan60%nodeswithconverters,deployingtoomany 97

PAGE 98

wavelengthconvertersmaynotbeworththeadditionalcost.WealsoproposedaSlacktie-breakingschemewhenmultiplefeasiblepathsareavailable.Thistie-breakingschemeisshowntohavemuchbetterperformancethanthetraditionalFirst-FitorShortest-Pathtie-breakingschemes.ThecomparisonsbetweenEBFandKDPalsoleadtotheconclusionthatacceptingrequestsgreedilywouldprovidebetterperformancesinlowtrafcloadcase,butrejectingsomerequestswithlongpathcanbeasuperiorstrategywhenworkloadishigh.Analgorithmswitchingstrategythatadaptstheschedulingalgorithmasthecurrentworkloadchangesisproposed.Whenthenetworktrafcpatternchangesslowly,thisstrategyhasconsiderableadvantageoverstaticalgorithms.Overall,ourresultsshowthataddingasmallnumberofwavelengthconvertersmayhavealimitpositiveimpactonFirst-Slotscheduling.However,thisimpactshouldbecarefullyweightedagainsttheadditionalcost. 98

PAGE 99

CHAPTER5MULTIPLERESOURCESCHEDULING 5.1ProblemDenition Manycomplexe-Scienceapplicationsrequirealargeamountofschedulableresourceswhicharesubjectedtodynamicchanges.Theabilitytoreservevarioustypesofcomputationalresourcessuchasbandwidthchannels,CPU,memoryanddiskspacehasbecomeakeyrequirementforoveralleffectivenessforthee-Sciencecommunity.Tomeetthisneed,weproposeaframeworkforconductingadvancereservations,admissioncontrol,andschedulingofnetworkservicerequestsalongwithotherresourcessuchasCPUs,memory,diskspace,andsoftwarelicenses.Thisframeworkissegregatedfromtheschedulingofnetworkresourcessuchasnetworkbandwidth.Forexample,LSF-HPC[ 44 ]andMaui[ 42 ],whicharepopularhigh-performancecomputingschedulersforclustersandsupercomputers,donotschedulenetworkresources,althoughtheyareabletodoadvancereservationofresourcessuchasCPUs,memory,diskspace,andsoftwarelicenses[3].ThesameistrueforCondor(UniversityofWisconsin'shighthroughputscheduler),PBS(portablebatchsystem-theparallelschedulerfortheIBMSP2)andVMWareESX.Ontheotherhand,networkbandwidthmanagementsystemssuchasthoseforUltraScienceNet(USN)andESnetdonotschedulecomputerresources.TheSharcsystem[ 63 ]modeledbothnetworkandCPUresourcesintheclustersasuniedresourcesblocks,buttheconstrainsamongresources,suchasnetworktopology,resourcecompatibilitiesarenotconsidered. Weenvisionanenvironmentinwhichacomputationalnetworkcontainshundredsofnodes,andcomputationalresourceswithdifferentplatforms.Whenmultipleresourcesarereserved,theirtopologies,dependencies,andcompatibilitiesmustbehandled.Thepurposeofourpaperistodevelopaco-schedulerthatsimultaneouslyschedules 99

PAGE 100

multipletypesofresourceswithanetworkfocusbasedonaourMultipleResourcesReservationModel(MRRM).WithMRRM,wecan 1. givemultipleheterogeneousresourcesauniedpresentation,butstillkeeptheirdiversity; 2. efcientlypresentthevarioustypesofconstraintsamongdifferentresources,suchascompatibility,accessibility,andassignability;aswellas 3. fordifferenttypeofuser'requests,themodelcanbeexibleenoughtoadjusttheresourcepresentationforbetterschedulingefciency. WedeneaMultipleResourceFirstSlotproblem(MRFS)withtheobjectiveofdeterminingtheearliesttimethatcanbeusedtoreserveallresourcesrequiredtocomputeagivenrequest.WedividetheMRFSproblemintofoursub-problems,basedon(a)whethertherequestconsistsofmultiplesubtasksthatcanbeassignedtodifferentresources,and(b)whethereachresourcecanbeassignedindependently. Insystemandarchitectureeld,manypaperalsofocusedonresourcereservation.[ 20 ]proposedtheGARAframeworkthatallowmultipleresourcestobemonitoredandreservedinaClustersystem.InGARA,allresourcesareconsiderasuniedblockssothatonesinglealgorithmisenoughtohandleallresources.However,GARAisonlyaframeworkforresourcemanagement,Nospecicalgorithmismentioned.[ 62 ]modeleddifferentresourcesasqueues.Onerequestisallowedtoenterthequeueiffcurrentresourcefullltheuser'srequest.[ 62 ]alsogroupsresourcesofsametypeinasinglelayersuchthatrequestinlayericanonlyaccesslayeri+1orlayeri)]TJ /F6 11.955 Tf 12.87 0 Td[(1afteritsworkinlayerinished.Actually,thislayeredmodelisnotonlywidelyusedinmosthardwarearchitectures,butisalsoappliedtomanysoftwares,suchasTCP/IPprotocolstack.Inthispaper,wealsousesuchlayeredmodeltopresentourlocalcomputationalresources.However,[ 62 ]doesnothandlethedependencyandcompatibilityconstrainsatthesamelevelofdetailordelitythatourMRRMformalismdoes.In[ 7 ],theresourcesaregroupedaccordingtotheirtyperatherthantheirphysical 100

PAGE 101

Figure5-1. GeneralModelofMRRM residency,whichbroughtconvenienceforcentralizedscheduling,alsotheresourceaccessibilityproblemisproposed,butonlythefullyaccessiblemodelisused. 5.2ResourceModelandDataStructure 5.2.1ResourceModel:MRRM Whendevelopingaresourcereservationsystem,onemustrstdesignarepresentationalformalism.Forexample,acomputationalsystemcanbeviewedasanetworkwithcomputationorstoragecentersattachedtosomeofitsedgenodes.Datasetsaregeneratedorprocessedusingtheseattachedresources,andaretransmittedthroughthenetworkfromoneedgeroutertoanother. Forthevastmajorityofe-Scienceapplications,resourcescanbeclassiedintonetworkresourcesandlocalcomputationalresources.Networkresourcestransferuserdatafromonesitetoanother,andincludebutarenotlimitedtoopticallinks,routersandswitches.LocalcomputationalresourcesincludeCPU,memory,harddiskandotherresourcesusedinprocessinguserrequests.Figure 5-1 providesageneralviewofMRRM'sbasicstructure. AsmentionedinSection 5.1 ,oneofthemajorgoalofourresourcemodelistoprovideauniedviewformultipletypesofresources.OurMRRMrepresentsanetworkintermsofagraphG=(V,E).TheorganizationofGmirrorstheconnectivityofthecomputationalnetworkbeingmodeled.EachswitchorrouterisrepresentedasanodeinV,whileeachnetworklinkismappedtoanedgeinE.Behindtheedgerouters,eachcomputationorstoragecentergroupsitsownlocalcomputationalresourcesinrelatedclusters.Eachclusterisrepresentedasasub-graphattachedtooneoftheedge 101

PAGE 102

routers.Asingleresourceunitismodeledasaresourcelinkandisassociatedwithanedge.Wechoosethisrepresentationforthefollowingreasons: 1. Itisnaturaltopresentnetworksasgraphsandassociatelinkbandwidthwithedgesinthegraph,asinmajorityofnetworkmodels. 2. Inthereservationaspect,mappingaCPUnode,amemoryblockoraharddiskintoaedgeinthegraphisfeasible,sinceourmainmodelingconcernpertainstorepresentingtheamountofavailableresources.WecanthuspresentaCPU'scapacityinthesamemannerasnetworklinkbandwidth. 3. Thecompatibilityanddependencyconstrainsamongdifferenttypesofresourcescanberepresentedasconnectivityconstraintsamongresourcelinksinthegraph. 4. Auniedviewofdifferentresourcetypesfacilitatesalgorithmdesignformultipleresourcesscheduling.Wecanextendtheknowngraph-based,singleresourceschedulingalgorithms[ 25 48 52 ]tothecurrentscenario,whileinheritingtheirattributes. Acomputationalsystemisthereforemodeledasagraphwiththecommunicationnetworkinthemiddle,andcomputationalresourcesattachedtonetworkedgenodes,asshowninFigure 5-1 .However,incontrasttotraditionalgraphrepresentationsofanetwork,twonewresearchchallengesemergedfromtheMRRMrepresentation: 1. Howdowemodelheterogeneousresourceswithauniedrepresentationthatdoesnotreduceoreliminatetheirdiversity? 2. Howdowemodelthecompatibilityandassignabilityconstraintsamongdifferentresources? Tosolvetheheterogeneityproblem,werstassigneachresourcelinkatypeID(T)]TJ /F4 11.955 Tf 12.1 0 Td[(ID),tospecifyitstype-forexample,CPU,Memory,ormoregenerally,Resource1,Resource2,etc.WiththetypeID,alllocalresourcescanbegroupedintooneofseveralmulti-partitionedresourceconstraintgraphs(MPRCGs),whichenablesresourceswiththesametypetobemanagedasonegroup.Thisgroupingstrategyfulllstherequirementsofauserrequestwithrespecttoresourcegranularity,asopposedtoasingleresourceunit.Typically,auseronlycaresaboutthequantityofagivenresourcetypethatwillbeavailable,butnotwhetherhisjobwillberunonagivenCPUnode 102

PAGE 103

orstoredinaparticularmemoryblock.Thisisreasonableinpractice,becausetheorganizationsofsupercomputersvaryfromonearchitecturetoanother,butshareasimilarlayeredstructure.Forexample,aCPUcanaccessmemorydirectly,butnotaharddisk.Ifapagefaultoccurs,thenthediskwillwritetothememory,butnotdirectlythroughthememorytotheCPU. CompatibilityisanotherimportantissueinMRRM.Usually,wehavemultiplechoiceswithinagivenresourcetype.However,notallresourceunitsofagiventypeareappropriatetoperformauser-orsystem-denedtask.Forexample,ifauserprogramiswritteninnativeIntelx86code,thenitwilllikelynotrunonaMIPSCPU.Inthiscase,computationalnodesthatdonotsupportIntelx86codeshouldbeexcludedforreservationbytheco-scheduler.Similarly,ifaprogramcanbeparallelized,thentheCPUsinvolvedinparallelcomputationmustbecompatibleintermsofcodetypeandmethodofdatasharingacrossmultipleresourceunitsinMRRM.Thus,wesupplyacompatibilityID(C-ID)toeachresource,whichfacilitatesgroupingofresourceswiththesameT-IDintodifferentcompatibilityclasses.Inourcurrentapproach,auserspeciesajobintermsofitscompatibilityID,andallresourceswiththesameC-IDwillbeconsideredforreservation.IfnoC-IDisspecied,thenalltheresourcesclassesareavailableforthisrequest. Afurtherconsiderationinvolvesaccessibility.Forexample,somecomputersuseDistributedSharedMemorytoprovideallCPUnodesfullaccesstothememorymodel.However,othersystemsonlyallowcertainCPUstoaccessspecicmemorypartitions,duetosecurityconcernsorphysicalconnectivity.Asimilarsituationalsocanexistwithmemoryandharddiskconnections.OurMRRMiscapableofsimulatingeachofthesescenarios.IftworesourcelinkswithindifferentMPRCGsareaccessibletoeachother,thenaspecicauxiliarylinkwithunlimitedcapacityconnectsthetwolinks.IfallresourcesinoneMPRCGareaccessibletoallresourcesinanotherMPRCG,thenaconnectionismadeattheMPRCGlevel,sothateveryresourcelinkineitherMPRCG 103

PAGE 104

Figure5-2. DetailedModelofMRRM isconnectedwitheveryresourcelinkintheotherMPRCG.Becausetheseauxiliarypathshaveunlimitedcapacity,theywillonlyidentifyresourceaccessibility,andwillnotinuencethereservationprocess. Figure 5-2 providesadetailedexampleofMRRMonalocalsite,whereallresourceswiththesametypeIDaregroupedwithinanMPRCG.ResourcesinoneMPRCGneedonlyaccesstheresourcesinthatMPRCG'sneighborhood.WithineachreservationMPRCG,resourceswiththesamecompatibilityIDarere-groupedtogethersuchthatparallelprogramscanrunusingallresourcesinanyoneoftheinnercycles.IftwoMPRCGsarecompletelyaccessibletoeachother,thenwe(a)addadummynodebetweentheMPRCGs,and(b)addanauxiliarylinkwithunlimitedcapacitybetweeneachresourcelink'sendnodeandthedummynode.InFigure2,thisprocessisshownbetweenresourcetypesAandB.Addingthisdummynode,asopposedtoconstructingafullyconnectedbipartitegraphdirectlybetweentwoMPRCGs,reducesthealgorithmscomplexitybyreducingthenumberofedgesinthegraph.Forexample,supposewehaveNresourcelinks.Then,afullyconnectedbipartitegraphrequiresN2auxiliarylinks,butonly2Nauxiliarylinkswhenanextradummynodeisadded.IncasetheresourcesinoneMPRCGcanonlyaccesspartoftheresourcesinitsneighborhood,thenadirectauxiliarylinkisrequiredtorepresentthisaccessibilitybetweentwodifferentresources.InFigure 5-2 ,thisisrepresentedbetweenresourcetypesBandC. 104

PAGE 105

AlsonoticethatwehavealltheresourcelinksinoneendofanMPRCG(e.g.,left-mostorright-mostMPRCGinFigure 5-2 )connectedtotheedgerouterwiththesameauxiliarylinks,soastohaveallcomputationalresourcesattachedtothenetwork.Wealsoaddadummynodeasasinknodeinthelocalgraph,suchthatresourcelinksattheoppositeendoftheMPRCGwillconnecttothisdummynode.Thus,allresources,whethernetworkorlocalcomputationalresources,areconnectedtoprovideasingleMRRMgraph.Tofulllauserjobschedulingrequest,theschedulingalgorithmthenattemptstondasingleormultiplepathfromthesourcesinknodetothedestinationsinknode.Thiscanprovideasmanyresourcesfromallresourcetypesastheuserspeciesforjobcompletion. Finally,withoutlossofgenerality,weassumethatinonesite,itslocalcomputationalresourcescaneitherbeallfullyaccessibleorallpartlyaccessible. 5.2.2DataStructures Anotherimportantaspectofourresourcemodelisitstemporalrepresentation,whichdescribestime-varyingresourcequantities.Theoptionsaretoeitherconsidertimeasdividedintoequalsizeslotsasisdonein[ 12 19 23 58 ]ortoconsidertimeasbeingcontinuousasin[ 32 46 48 52 ].Theslottedtimemodelusesanarrayforeachedgeinthegraphtorecorditsresourcestatusforeachtimeslot.Forexample,wemayuseatwodimensionalarrayRsuchthatR[d,t]givesthediskspaceavailableonharddiskdinslott. Inthecontinuoustimemodel,thestatusofeachresourceunitismaintainedusingatime-resourcelist(TRlist)thatsimulatetheTBListinthepreviouschapters.wechosecontinuoustimemodelwithTRListtopresentthetimedomainandthecorrespondingresourcequantity.Theadvantageofcontinuoustimedomainare:(i)continuoustimemodelisamorenaturalrepresentationforthetime.Thechangeoflinkbandwidthmayapplytoanypointinthetimedomain,whichisunabletobedescribedintheslottedtimemodel.(ii)thereisnoneedtopickatimegranularityortoplaceaboundonthe 105

PAGE 106

lengthofthelookaheadperiod.(iii)Theamountofmemoryrequiredtorepresentalinkstate(i.e.,theTRlist)isonlyafunctionofthetimevariationinresourceavailabilityratherthanthelengthschedulinghorizonTorthelengthoftheunittime.Moreover,therun-timeofreservationalgorithmsisafunctionofthesizeoftheTRlists.Thissizedependsonthenumberoftasksthathavebeenscheduled.Thelimitationsofthecontinuoustimemodelincludeitsrelativecomplexity.Ifarrayisused,thecomplexityofdeterminingthestatusofalinkatanygiventimewillbeO(logjTR[l]j)usingbinarysearch.Meanwhile,thesameoperationinslottedtimemodelonlytakesO(1)time.Becauseofthecorrespondencebetweenaslotandtime,weoftenusethetwotermsinterchangeably. Wealsoemploytwootherdatastructures:SteadyStageandST(StartTime)List.SteadyStagefromthepreviouschapters.ThewholeMRRM'schangingstatusovertimecanbeshownasaseriesofsteadystages.RecallthatthecapacityofalinkispresentedbyaTRlist,whichisaarrayoftime-resourcetuples.IfonlyconsiderthetimepartoftheTRlist,t0,t1,t2...tq,anytimeinterval[ti,ti+1]formsasteadystageofthatlink.Hence,ifweunionthetimepartsofeachresourcelink'sTRlisttogether,wewillobtainaglobaltimelist.LetT0
PAGE 107

ForaMRFSrequest,theuserwantstohavetheresourcereadyasearlyaspossiblewithinaReservationTimeWindow.Thiswindowspecifytheearlieststarttimeandlatestnishtimeoftheuser'sjob.AMRFSrequestisa6-tuple(s,d,dur,ResWin,RV,shareable).sanddarethesourceanddestinationnodeofthedatatransfer,thecomputationalresourcesattachedtosanddarethecomputationalresourcesthataregoingtobereserved.duristhedurationthatthoseresourcesneedstobereserved.ResWinisthereservationwindow,userjobmuststartandendwithinthiswindow,whichmeansthejob'sstarttimemustbeinthetimeinterval[st,et)]TJ /F4 11.955 Tf 13.04 0 Td[(dur].RVisavectorthatcontainstheallresourcerequirements.EachelementinRVspeciestheamountofonecertaintypeofresourcesthatneedtobereserved.Conventionally,weusetherstelementRV[0]topresenttherequiredbandwidthfromstod.ShareableisaBooleantagthatindicatewhetherthejob'sworkloadcanbesplitamongdifferentresourceunits.Ifshareableistrue,thentheuserrequestcanbefullledwithaggregatedcomputationalresourcesandmultiplenetworkpaths.Otherwise,wecanreservemultipleresourcesunitsineachlocalresourcestageandmulti-pathsinthenetwork. ForaMRFSrequesttobeaccepted,theschedulerneedstondouttheminimumt2[st,et)]TJ /F4 11.955 Tf 12.49 0 Td[(dur],suchthatwithin[t,t+dur],asinglepath/multipaththatconnectssanddcanprovideabandwidth/aggregatedbandwidthofRV[0].Also,withinthesametimeinterval,ineachresourcestagethatattachedtosandd,atleastoneresourceunit/compatiblesetcanprovideenoughresource/aggregatedbandwidthtofulllthecorrespondingrequirement. 5.4MultipleResourceSchedulingAlgorithm Basedonwhetherjobcanbesplitandwhetherthelocalresourcesarefullyaccessible,wedividedtheMRFSprobleminto4sub-problems: 107

PAGE 108

WS-RC:Theworkloadcanbesplit,andlocalcomputationalresourcesareconstrainedonaccessibility,whichmeansresourcesinonelayercanonlyaccesspartoftheresourcesinitsneighborhoodlayer. WN-RC:Theworkloadcannotbesplit,butlocalcomputationalresourcesareconstrainedonaccessibility. WS-RN:Theworkloadcanbesplit,andlocalcomputationalresourcesarenotconstrainedonaccessibility. WN-RN:Theworkloadcannotbesplit,butlocalcomputationalresourcesarenotconstrainedonaccessibility. FortheMRFSschedulingproblem,everytimearequestarrivesatthecentralizedcontroller,thecentralizedcontrollerwillselectthecorrespondingschedulingalgorithmaccordingtotheshareableagintherequestandthelocalresources'accessibility.Thisalgorithmwillcomputetheearliestnishtimethatfulllthejob'sresourceanddurationrequirement.Inthissection,wewillgivethedetailofall4algorithmsthatcorrespondtothe4sub-problemsproposedabove. 5.4.1WS)]TJ /F4 11.955 Tf 11.95 0 Td[(RCSchedulingAlgorithm Iftheworkloadcanbesplit,thengivenrequestriandthemulti-resourcegraphG,thealgorithmdiscoversthemaximumowfromsource'ssinktodestination'ssinkforeachbasicintervalwithinthereservationwindow.Theschedulerthenattemptstoidentify(a)ifthereareenoughresourceswithinthecurrentbasicintervalBIi[iftrue,BIiismarkedasfeasible];and(b)whetherornotthereexistsoneconsecutive(i.e.,temporallyconnected)sequencesofbasicintervals[BIi,BIi+1,...,BIj]withtotallengthlongerthantherequireddurationdur.Ifsuchasequenceisfound,thentheearliestpossiblestarttimeofthesequencebecomestherstpossiblestarttimeoftheuser'srequest. Whenrunningthemaximumowalgorithminourmultipleresourcegraph,theoriginalalgorithmcannotbeapplieddirectly.Imagingthemultipathfroms'ssinktod's 108

PAGE 109

sink,itmaygothroughresourcelinkswithvarioustypes.Theowalonesuchmultipathwillnotmakeanysenseontheresourcecapacityfromstod.Tosolvethisproblem,wescalethelinkcapacityofcertaintypes'resourcelinks.Foreachsinglerequest,wewillproduceacopyofcurrentmodel,let'ssayG0.Then,wewillchosetherequirementofoneresourceasbasevalue,andalltheotherresourcelinkswithdifferenttypewillscaletheircapacitynumericallybytheratiooftheircorrespondingrequirementstothebasevalue.Forexample,wechosenetworkbandwidthasourbaseresource.Letbandwidth'srequestbe10(MB=s)andCPU'srequestbe5(GHz).Inthiscase,wewillscalealltheCPUresourcelinks'capacitybyafactorof2andwealsoneedtosettheCPUtorequirementfrom5GHzto10GHz.Inthisway,weachievethenumericunicationamongdifferenttypeofresources,whichenablesthetraditionalmaximumowtorundirectlyonourscaledgraph.Aftertheowcomputation,theowsizeiscomparedwiththebasevalue,ifowsizeislargerthanbasevalue,currentsteadystageisconsideredtobefeasiblefortherequest.ThedetailofWS)]TJ /F4 11.955 Tf 11.47 0 Td[(RCSchedulingAlgorithmisshownbelow. Hereweusethemin-cutalgorithm[ 6 ]tosolvethemax-owproblem.ThecomplexityoftheaboveWS)]TJ /F4 11.955 Tf 12.94 0 Td[(RCschedulingalgorithmisO(jSSRWjN3),wherejSSRWjisthesizeofsteadystagelistwhatiswithinthereservationwindowandN=NN+Ns+Nd.NNisthenumberofnodesinthenetwork.NsandNdthenumberoflocalcomputationalresourcesattachedtosandd.WealsonotethatanypathintheMRRMmodelcanbedividedinto3separateparts:thepaththroughthelocalresourcesattachedtos,thenetworkpathandthepaththroughthelocalresourcesattachedtod.These3partsareindependentwitheachother,sotheowonthese3partscanbecalculatedseparately.Theglobalmaximumowequalstotheminimumofthethree.Withthisheuristic,thecomplexityofWS)]TJ /F4 11.955 Tf 12.26 0 Td[(RCschedulingalgorithmcanbereducedtoO(jSSRWj(Ns3+NN3+Nd3). 109

PAGE 110

WS-RCScheduling(reqi,G) { Randomlychooseresourcerkasbaseresource; G0=Scale(G,rk); BuildtheglobaltimelistLfromG',removealltheTioutsidetheschedulingwindowreqi.ResWin; IdentifyalltheSteadyStages; ForeachSteadyStageSSi { MFi=MaxFlow(G0,SSi); if(MFibasevalue) MarkSSiasafeasibleSteadyStage; } TraversetheSteadyStagelistagain.ndouttherstconsecutivefeasiblesteadystageslistwhichislongerthanreqi.dur; if(suchlistexist); accepttherequest; setlist'sthestarttimeasrequest'sstarttime; else rejecttherequest; } Figure5-3. WS)]TJ /F4 11.955 Tf 11.95 0 Td[(RCSchedulingAlgorithm 5.4.2WN)]TJ /F4 11.955 Tf 11.95 0 Td[(RCSchedulingAlgorithm IntheWN)]TJ /F4 11.955 Tf 12.23 0 Td[(RCcase,theworkloadcanonlybetransferredonasinglepathinthenetworkandcanonlybeprocessedusingasingleunitofeachtypelocalcomputationalresource.InourMRRMmodel,schedulingaWN)]TJ /F4 11.955 Tf 12.76 0 Td[(RCistondasinglepathfromsource'ssinktodestination'ssink.Here,wewillusetheExtendedBellman-Fordalgorithmproposedin[ 52 ]tosolvethisproblem. First,wewillextendtheconceptofanSTlistforanedgeapath.Letst(k,u)betheunionoftheSTlistsforallpathsfromvertexstovertexuthathaveatmostkedgesonthem.Clearly,st(0,u)=;foru6=sandweassumest(0,s)=[0,1].Also,st(1,u)=ST(s,u)foru6=sandst(1,s)=st(0,s).Fork>1(actuallyalsofork=1), 110

PAGE 111

weobtainthefollowingrecurrence st(k,u)=st(k)]TJ /F6 11.955 Tf 11.96 0 Td[(1,u)[f[v:(v,u)isanedgefst(k)]TJ /F6 11.955 Tf 11.96 0 Td[(1,v)\ST(v,u)gg (5) where[and\arelistunionandintersectionoperations.Forann-vertexgraph,st(n)]TJ /F6 11.955 Tf -448.71 -23.91 Td[(1,d)givesthestarttimesofallfeasiblepathsfromstod.TheBellman-Fordalgorithm[ 51 ]maybeextendedtocomputest(n)]TJ /F6 11.955 Tf 11.95 0 Td[(1,d). Itiseasytoseethatthecomputationofthest(,)smaybedoneinplace(i.e.,st(k,u)overwritingst(k)]TJ /F6 11.955 Tf 13.14 0 Td[(1,u))andthecomputationoftheststerminatedwhenst(k)]TJ /F6 11.955 Tf 12.41 0 Td[(1,u)=st(k,u)forallu.Withtheaboveobservation,herewegivethedetailofExtendedBellman-Fordalgorithm. EachiterationoftheforlooptakesO(L)time,whereListhelengthofthelongeststlist.SincethisforloopisiteratedatotalofO(NE)times,thecomplexityoftheextendedBellman-FordalgorithmisO(NEL),whereNandEisthenumberofnodesandlinksinthewholemultipleresourcegraph. WhenusingtheextendedBellman-Fordalgorithmtosolvetherstslotproblem,werstndtheearlieststarttimetforafeasiblepathusingExtendedBellmanFord.Then,theactualpathmaybecomputedusingBFSwherethefeasibilityofeachlinkiscomputedbyxedthejob'ststart=tandtend=t+dur.AlsoBFSguaranteedtondtheshortestfeasiblepathinthegraph. 5.4.3WS)]TJ /F4 11.955 Tf 11.95 0 Td[(RNSchedulingAlgorithm IntheWS)]TJ /F4 11.955 Tf 12.97 0 Td[(RNscenario,theWS)]TJ /F4 11.955 Tf 12.97 0 Td[(RCschedulingalgorithmcandirectlybeapplied.However,thisdoesnotexploitthefullaccessibilityoflocalresourcesandtheMPRCGgraphalthoughthiswouldgreatlysimplifyourschedulingprocessforthelocalcomputationalresources.TheWS)]TJ /F4 11.955 Tf 11.95 0 Td[(RNalgorithmproceedsasfollows. Firstly,thenetworkpathcomputationproceedsseparatelyfromlocalresourcepathcomputation.Whencomputingthefeasibilityofagivenbasicinterval,themax-ow 111

PAGE 112

ExtendedBellman-Ford(s,d) { initializest()=st(0,); //computest()=st(n)]TJ /F6 11.955 Tf 11.95 0 Td[(1,) putthesourcevertexintolist1; for(intk=1;k
PAGE 113

Inthiscase,wedonotneedtoscaleourmultipleresourcegraphandwedonotneedtorunthemax-owalgorithmonthelocalcomputationalresources.Thus,weonlycheckeachlocalresourcestageforeachcorrespondingrequestbyvisitingeachresourcelinkforO(1)times.Sincethelistunionandintersectioncanalsobenishedinlineartime,wecanreducethealgorithmruntimetoO(jSSRWj(Ns+NN3+Nd). 5.4.4WN)]TJ /F4 11.955 Tf 11.95 0 Td[(RNSchedulingAlgorithm TheWN)]TJ /F4 11.955 Tf 12.36 0 Td[(RNproblemissimilartothepreviousWS)]TJ /F4 11.955 Tf 12.36 0 Td[(RNproblem.Inparticular,anetworkpathcanbecomputedviatheExtendedBellman-Fordalgorithmtoyieldtherststarttime.Thiscomputationisfollowedbybreadth-rstsearchtoidentifythepath.Forlocalcomputationalresources,wecanapplythesameapproachasinWS)]TJ /F4 11.955 Tf 12.5 0 Td[(RN.However,WN)]TJ /F4 11.955 Tf 12.02 0 Td[(RNneglectsthegroupingofresourcesaccordingtocompatibility.Sincetherequestedjobcannotbesplit,onlyoneresourceunitineachresourcepartitionisrequired.Inthatcase,thealgorithm'scomplexityisboundedbyO(NNENL+Ns+Nd) 5.5Evaluation 5.5.1EvaluationEnvironment WetestedourworkonaUSNETsimulatoratOakRidgeNationalLaboratory(ORNL).OuralgorithmswereintegratedwiththemiddlewarethatiscurrentlyusedatORNLandUniversityofMemphis,inordertoco-schedulenetwork,processorandstorageresourcessimultaneously.However,thecurrenttestbedatORNLhaslimitedstorageandcomputeresources.Thus,themaintestobjectivewastoensurethatthenetworkbandwidthschedulingcapabilitycorrectlyreservedbandwidthonthesoftwaretestbed.Basedonextensivetesting,ouralgorithmswereabletoeffectivelyreservebandwidth,aswellasgeneratereservationinstructionsforthevirtualprocessorandstoragesystemsthatweassumedtobepresentontheUSNETendnodes. Wemeasuredtheperformanceofthe4multipleresourceschedulingalgorithmsonrandomgeneratednetwork.Forourexperiments,therandomnetworkswetriedhad100,200,300,400or500nodesandtheout-degreeofeachnodewasrandomly 113

PAGE 114

selectedtobebetween3and7.Toensurenetworkconnectivity,therandomnetworkhasbidirectionallinksbetweennodesiandi+1forevery1i
PAGE 115

AAcceptanceratiovs.requestdensity BAcceptanceratiovs.networksize Figure5-5. Ourco-schedulingalgorithms'performanceonacceptanceratio. Acomputetimevs.requestdensity Bcomputetimevs.networksize Figure5-6. Ourco-schedulingalgorithms'performanceonconvergespeed. theaverageacceptanceratioandalgorithmruntimeasafunctionofnetworksize.Theresultisacquiredunderarequestdensityof3requestspersecond. Ourexperimentresultsshowthefollowing: 1. Theincreaseofrequestdensitywilldegradeeveryalgorithms'performance.Asmorerequestcomeintothesystemwithinthesametimeinterval,thenetworkbecomescongested,hencemorerequestswererejectedsincenotenoughresourcesareavailable.Inthemeantime,asmorerequestsarerunninginthesystemsimultaneously,thelengthofGlobaltimelistandSTlistincreases,whichleadstolongeralgorithms'runtime. 2. Asthenetworksizeincreases,thesystemgainslargercapacitytoaffordmorejobsrunningwithincertaintimeperiod.Sotherequests'acceptanceratioactuallyincreasedtogetherwiththenetworksize.However,theincreaseofnetworksizemakesthemax)]TJ /F4 11.955 Tf 12.11 0 Td[(owalgorithmandEBFalgorithmtakemoretimetoconverge.So,thealgorithmruntimestillincreased. 3. Whenmultiplepathsareallowedandresourcesarefullyshared,theschedulercanbetterutilizesystemresources,soastoacceptmorerequests.However,the 115

PAGE 116

resultingmulti-pathalgorithmsrequiremorecomputationtimetoobtainafeasibleresult. 4. Generallyspeaking,all4algorithmsscalesverywellwitheithersystemsizeorrequestdensity.Evenwhentheworkloadishigh,onerequestaveragelytakeslessthanaminutetondoutschedulingresult. 116

PAGE 117

CHAPTER6SCHEDULINGINTIME-DOMAINWAVELENGTHINTERLEAEDNETWORKS 6.1ProblemDenition Time-domainWavelengthInterleavedNetworking(TWIN)isanoptics-basedtransportnetworkarchitecturethataimstoprovidecosteffectiveopticalgrooming[ 43 50 65 ].Traditionalopticalnetworksworkinoneofthefollowingtwomodes:opticalcircuitswitching(OCS)oropticalpacketswitching(OPS).InOCSnetworks,thenestbandwidthgranularityofferedbyanopticalswitchisatawavelengthlevel,i.e.onesinglewavelengthonabercanbeusedbyonlyoneend-to-endtrafcandcannotbesharedwithothertrafc.Thisisnoteffectivewhenthetrafcdemandismuchlowerthanthewavelengthcapacity.Attheotherextreme,OPSnetworkspermitsharingofopticallinksbytrafcwithdifferentsourcesanddestinations.Thesenetworks,whichareenabledbyoptical-electronic-optical(OEO)conversionateachnodeinthenetwork,tendtoincurarelativelyhighsystemcostandtransmissiondelay,asOEOconvertersaregenerallyexpensiveandtheconversionprocessistime-consumingcomparingtodirectcircuitswitching.SometechniqueshavebeenintroducedtoimprovetheutilizationofopticallinksbysimulatingOPSoverOCS,suchasopticalburstswitching(OBS)[ 60 ].However,OBSstillneedshigh-speedopticalswitchesandacontentionalgorithmateachswitch. Widjjaetal.etc.proposedTWINtoovercomelinkutilizationproblemsinOCSbutavoidthehighcostanddelaysresultingfromOEOconvertersbeingdeployedatalltheopticalswitches[ 65 ].TWINperformsopticalgroomingonlyatitsedgeswitchesandthenetworkcoreispurelybasedonpassivewavelength-selectiveswitches(WSS)thatroutethewavelengthsfromtheiringressportstotheappropriateegressports[ 55 ].InaTWINnetwork,theedgenodescanbeeithersourcesordestinations.Atransmitterwithamulti-frequencylaserislocatedateachsourcenode.Withthistransmitter,sourcenodescanchangethewavelengthoftheiropticalsignalinsub-nanoseconds[ 34 ].Sourcenodescollectdataunitsfromvariousclientsandassembledataunitsforthesame 117

PAGE 118

destinationintooneburst.Whensendingtheburst,thesourcechangesitsfast-tunablelasertothewavelengthuniquelyassignedtothatdestination.Theintermediatenodesrouteopticalburstsbasedpurelyonthewavelengthoftheburst.Whentheburstisreceivedatitsdestination,itisdisassembledandforwardedtothecorrespondingclients.Ascurrentopticalswitchescannotseparatetheburststhatsharethesamewavelength,onlytrafcwiththesamedestinationmayshareawavelengthinthetime-domain.Thisconstraintleadstotree-likeroutesinthenetworkforeverydestination,wherethedestinationistherootandthesourcesaretheleaves. Inthischapter,wediscussthewavelengthassignmentproblemforTWINnetworks(TWIN-WA).Wesolvethisproblemusingatwo-phaseprocess:TreeConstructionandTree-WavelengthAssignment.Tree-Constructiongroupsthetrafcdemandswiththesamedestinationtogetherandconstructsthecorrespondingdestinationtrees.Tree-WavelengthAssignmentprocessassignswavelengthstothedestinationtreesconstructedinthepreviousstep.ThegoaloftheTree-Wavelengthassignmentphaseistominimizethetotalnumberofwavelengthsneededtoaccommodatethetrafcdemands. WeshowthattheminimumnumberofdestinationtreescanbeconstructedusingagreedyapproachintheTreeConstructionphase.FortheTree-WavelengthAssign-mentproblem,weproveitsNP-CompletenessbyreducingtheGraph-Coloringproblemtoit.Weproposeagreedystrategythatmatchesdestinationtreesandwavelengthsonebyone.Wealsoproposedtwotreesortingmethodsandtwowavelengthsortingmethodstoregulatetheorderoftree-wavelengthmatching.Whendifferenttreesortingandwavelengthsortingmethodsareappliedtothetree-wavelengthassignmentscheme,fourheuristicsarepresented:MC-BF,MC-MF,MP-BFandMP-MF.Extensivesimulationsareconductedtoevaluatetheperformancesoftheseheuristics.Theresultsshowthatperformingsortingondestinationtreesandwavelengthsimprovestheassignmentresults,especiallyunderlowtrafcloads.However,performingsorting 118

PAGE 119

bringssomeextraoverheadtothesortheuristics'runningtime,butoverallcomputationcostsremainacceptable.Inlargetopologieswithheavyworkload,theheuristicwithoutanysortingbecomescompetitiveasitcanprovidesimilarschedulingperformancewithmuchlesscomputationalcost. Therestofthischapterisorganizedasfollows.InSection 6.2 ,wediscussrelatedwork.InSection 6.3 ,weexplaintheTWINarchitectureindetailanddenetheTWIN-WAproblemformally.InSection 6.4 ,agreedyalgorithmforTree-Constructionispresented.InSection 6.5 ,weprovetheNP-CompletenessofTree-Wavelengthassign-mentproblemandfourheuristicsarediscussed.Section 6.6 presentsanexperimentalevaluationofthefourheuristicsforTree-Wavelengthassignment.Section??givestheconclusions. 6.2RelatedWork OpticalCircuitSwitching(OCS)withwavelength-dimensionmultiplexing(WDM)[ 30 ]providesthemosteconomicalsolutionforhighspeedopticalnetworks.However,theinexibleroutingschemeandcoarsemultiplexinggranularitymakeitonlysuitableforthelong-livedlargebulkdatatransfers.Ontheotherhand,OpticalPacketSwitching(OPS)[ 59 ]andOpticalBurstSwitching(OBS)[ 13 ]havebeenproposedtoprovidesub-wavelengthschedulinggranularityandthecapabilityofdynamicrouting.However,theultra-highspeedoptical-electronic-opticalswitchesthatarerequiredintheOPS/OBSnetworksarenormallyexpensiveanddifculttomaintain.ThehighcostindeploymentandmaintenanceinhibittheuseofOPSandOBSinmodernnetworks. Time-domainWavelengthInterleavedNetworking(TWIN)hasbeenproposedtollthegapsbetweenOCSandOPS/OBS.ThearchitectureofTWINisintroducedin[ 65 ].ThegoalofTWINistoprovidesub-wavelengthgranularityfortrafcschedulingwithoutusingexpensivehighspeedopticalswitchesinthenetworks.TWINachievesthisbyonlyallowinglightpathswiththesamedestinationtoshareawavelength.Asthetrafconthesamewavelengthwillnotbesplitagain,theeconomicalswitches 119

PAGE 120

usedinOCSnetworksareabletoroutetheburstsinTWINnetworks.TWINbringsnewchallengestotraditionalopticalschedulingapproaches.[ 53 ]presentssomebasicideasintheroutingtheburstschedulinginTWINnetworksandproposedaperformancemeasurementframework.[ 50 ]investigatedtheopticalburstschedulingprobleminTWINnetworks.Theyshowthatachievingthemaximumthroughputwithzeropropagationdelayisequivalenttotheoptimalmatchingprobleminbipartitegraphs.Theyalsodemonstratethatevenwhenpropagationdelayisnon-negligible,afactor-2approximateschedulingalgorithmexiststomaximizethethroughput.Meanwhile,[ 66 ]focusedontheprovidingbetterQoSinTWINnetworks.TheyintroducedanIntegerLinearProgrammingformulationthatminimizethequeueingdelayoftheopticalbursts.TheyalsoproposedtheDestinationSlotSet(DSS)algorithmtoapproximatelysolvetheproblemwithinreasonabletime. Inthischapter,wefocusonthewavelengthassignmentproblemforTWINnetworks.Traditionalwavelengthassignmentstrategiestaketheavailablewavelengthnumberasthemainconstraint.However,asfractionalwavelengthisallowed,andthegeneraltrafcowisassumedinsub-wavelengthlevel,TWINwavelengthassignment(TWIN-WA)isrelaxedfromtheintegercapacityconstraintintraditionalnetworks.ThemainconcerninTWIN-WAistheconictontopologiesamongmultipledestinationtreeswhentheyshareonewavelength.Moreover,insteadofassigningwavelengthtoeachlightpath,TWINassignswavelengthstoadestinationtree.TraditionalwavelengthassignmentproblemarenormallyequivalenttotheBin-Packingproblem[ 1 ].However,TWINnetworks'wavelengthassignmentproblemisavariationoftheGraph-Coloringproblem[ 3 ],asshowninSection 6.5.1 [ 23 33 40 ]togetherprovideasummaryontheexistingwavelengthassignmentstrategies.ThemostpopularwavelengthassignmentstrategiesareFirst-FitandBest-Fit,wherethewavelengthsarematchedwiththerequestaccordingtoarandomorderortotheirremainingcapacities.[ 33 ]proposedadeferredwavelengthassignmentstrategy 120

PAGE 121

foropticalnetworkswithwavelengthconverterprovides.Thisstrategyimprovestherequestacceptingratebydeferringthewavelengthassignmentfromschedulingtimetoactualjobstarttime.[ 38 ]proposedtheleast-conversionassignmentschemethatattemptstoreducethewavelengthconversionoverheadinsparsewavelengthconverternetworks. InTWINnetworks,thesimplestwavelengthassignmentstrategyistoassigneachdestinationtreeanindividualwavelength.However,thisstrategyrequiresthatthenumberofavailablewavelengthsbeequaltothenumberofdestinationtrees.[ 43 ]investigatesascenariowherethenumberofavailablewavelengthsarelessthanthenumberofdestinationnodes.AwavelengthreuseschemeisproposedasanextensiontoTWIN.ItallowsmultipledestinationtreestoshareawavelengthusingTime-DomainMultiplexing.Toavoidthecollisionsamongtrafcows,thesourcesnodesthatbelongtodifferentdestinationtreesshouldworkinatime-sharingmannerandacomprehensiveburstschedulingalgorithmisneeded.Toprovidefairnessamongtreesthatshareawavelength,thedatabufferforeachsourcenodeismonitored.Adestinationtreewillcontendforaacertainwavelengthwhenthelengthofitssourcenodes'inputbuffersgrowsbeyondacertainthreshold.Astheinputdatarateisalwaysassumedtobelessthanthelinkcapacity,nodestinationtreewillneedtokeepoccupyingawavelengthandsendingdata.Ouralgorithmconsidersthewavelengthreuseprobleminadifferentdirection:multipledestinationtreesshareonewavelengthiftheirtopologiesarecompatible.Oncethewavelengthisassigned,thesourcenodescanworkinafullloadtotransmittheburstwithoutworryingabouttheowcollisions,whichgreatlysimpliestheburstscheduling. 6.3NetworkModelandProblemDenition Onthespectrumofopticalnetworks,TWINnetworksresidebetweentheOCSandOPSnetworks.Comparedtothesetraditionalopticalnetworks,theTWINposesfollowingnewfeatures: 121

PAGE 122

1. SimilartotraditionalOCSnetworks,TWIN'sdataburststravelalongthelightpathusingapre-assignedwavelength.However,awavelengthcanbesharedbymultipletrafcowsfromdifferentsources,onlyiftheirtotalowsizedoesnotexceedthewavelengthcapacity. 2. Ascurrentopticalswitchescannotseparatetheburststhatsharethesamewavelength,trafcononeopticallinkhastoberoutedtothesamedestinationiftheyareusingthesamewavelength.SoTWINlightpathswithsamedestinationaregroupedtogetherasatreestructurewherethedestinationistherootandthesourcesaretheleaves.Wavelengthsareassignedtoeachofthesetrees,ratherthantoasinglelightpath. Figure 6-1 showsasimpleTWINnetwork.Twosourcenodes,S1andS2aresendingtrafctotwodestinationnodes,D1andD2.A5-nodecommunicationnetworkconnectsthesourcesandthedestinations.Inthenetwork,thereare4differentlightpaths:(S1,D1),(S2,D1),(S1,D2)and(S2,D2).Beforethewavelengthsareassigned,theselightpathsaregroupedinto2treestructuresaccordingtotheirdestination,denotedasT1=<(S1,S2),D1>andT2=<(S1,S2),D2>,respectively.D1istherootofT1whileD2istherootofT2.Thenetworkcontainstwowavelengths:W1andW2.Eachdestinationtreehastobeassignedtoawavelengthbeforethetransmissioncanstart.Inthesimplestcase,T1isassignedwavelengthW1andT2isassignedwavelengthW2.Duringthetransmission,S1andS2interleavetheirtrafctoD1andD2bytuningthecoloroftheirlasertothecorrespondingwavelength.Foreachnodeinthecommunicationnetwork,aroutingtableismaintainedtoindicatetheoutgoingportfordifferentwavelengths.Whenthetrafcarriveattheinternalswitches,routingisperformedusingonlytherulesintheroutingtableandthecoloroftheincomingbursts.Thisguaranteesthatopticalburstsofagivenwavelengthwillberoutedtotheintendeddestination.Forexample,inFigure 6-1 ,nodeamustcombinethetrafcfromnodeS1anddonwavelengthW1andforwardistothelinkthatconnectstonodeb,accordingtotheroutingtable.Nodeb,afterreceivingtheburstsonwavelengthW1,willforwardthemtonodeD1,whichistheirdestination. 122

PAGE 123

Figure6-1. AnexampleofTWINnetwork. Fortrafcwhoserequiredbandwidthisfractiontothewavelengthcapacity,TWINnetworkswillgreatlyfacilitatetheirschedulingbyprovidingmoreexibleandner-grainedroutingandwavelengthassignmentscheme.Mostopticalnetworksstillusestaticroutinginthehighspeedmodeaschangingtherouteson-the-yincursveryhighoverheads.Therefore,inthispaper,wealsoassumethatthepathforeachsource/destinationpairaspre-computed,andfocusourresearchonthewavelengthassignmentproblemforTWINnetworks(TWIN-WA).GivenaTWINnetworkG=,atrafcdemandisdenedasr=(s,d,bw),wheres,d2Visthesourceanddestinationnodeofthetrafcow,andbw2(0,1]isthefractionofthewavelengthcapacityrequired.TWIN-WAtakesasetoftrafcdemandsRasinput.Thegoalistoaccommodatethealldemandsr2Rusingaminimumnumberofwavelengths. AsdescribedinSection 6.1 ,TWIN-WAissolvedusinga2-stepprocess.IntheTree-Constructionphase,weconstructthedestinationtreesandintheTree-Wavelengthassignmentphase,weperformthewavelengthassignment.DuringtheTree-Constructionphase,thetrafcdemandsinRaregroupedtogetherbytheirdestination.Ineachgroup,thecorrespondinglightpathsaremergedtogethertoformadestinationtree.Asfractionaljobassignmentisallowed,asimplegreedyalgorithmwillgeneratethedestinationtreesetwithminimumsize.Tree-Wavelengthassignmentalgorithmsassigneachdestinationtreeawavelength.Weshowthatndinganoptimal 123

PAGE 124

assignmentthatusesthefewestnumberofwavelengthisNP-Hard.Severalheuristicsarethenproposedforwavelengthassignment. 6.4TreeConstruction InaTWINnetworkG,adestinationtreefornodeDiisdenotedasT(Di)=(,Di),whereisthesetofallsourcenodesinT(Di).GiventhesetoftrafcdemandsR,weneedtorstconstructdestinationtreesfromthelightpathsbeforewecanactuallyassignthewavelength.ThisprocessiscalledTree-Construction.ThegoalofthisprocessistominimizethetotalnumberofthedestinationtreesintheresultsetT(D). Figure6-2. AnexampleofTWINTreeConstruction. Inthischapter,weallowthetrafcrequest(s,d,bw)tobepartitionedintomultiplesub-requeststhatcanbeassignedtodifferentdestinationtrees.Thisisreasonableasmostmodernopticalswitchesarecapableoftransmitting/receivingdataburstsondifferentwavelengthssimultaneously.Aslongasthedestinationnodesarecapableofpackageorderingandre-assembly,fulllingonerequestwithmultipledataowsistotallyfeasible.Ontheotherhand,ifwesimplymergingallthelightpathswiththesamedestination,theresultingdestinationtreemaynotbeadmissibletothenetwork,asthetotalowsizeforonedestinationmayexceedthewavelengthcapacity.Figure 6-2 showsanexampleoftreeconstruction.Threesourcenodes,S1,S2andS3,aretosenddata 124

PAGE 125

TreeConstruction(G,R) { results=;Groupthetrafcdemandsaccordingtotheirdestinations. for(eachdestinationgroupDG(Di)) { InitializeanewdestinationtreeTj(Di). Tj(Di).capcity=wavlengthcapacity. curTree=Tj(Di). for+(eachtrafcdemandsrinDG(Di)) { Mergethelightpathfromr.stor.dintoTj(Di). if(r.bwcurTree.capacity) Insertanewdemand(s,d,r.bw)]TJ /F4 11.955 Tf 11.95 0 Td[(capacity)intoDG(Di). AddcurTreeintoresults. InitializeanewdestinationtreeTj+1(Di). curTree=Tj+1(Di). } } } returnresults; } Figure6-3. ThegreedyalgorithmforTree-Construction tonodeDsimultaneously.Thedatarateateachsourcenodeis0.6.Ifwemergeall3lightpathsintoonedestinationtree,thetotaltrafconlink(a,D)wouldexceedthewavelengthcapacity.Sothedemandshavetobesplitintotwoseparatedestinationtrees,i.e.T0(D)=(,D)andT1(D)=(,D).Moreover,whencomposingthedestinationtrees,weshouldtrytouseupallthewavelengthcapacities,astheunutilizedcapacitycannotbesharedbyotherdestinationtrees.Basedontheaboveobservations,weproposedthefolloinggreedyalgorithmtocomputetheminimumdestinationtreeset,asshowninFigure 6-3 OurTree-Constructionalgorithmrstgroupsthetrafcdemandsaccordingtotheirdestination.Thiscanbedonebysimplyscanningthedemandsetonce.Foreachgroup, 125

PAGE 126

thecorrespondingdestinationtreesareconstructedgreedily.Ifaddingthecurrentlightpathtothecurrentdestinationtreewouldexceeditswavelengthcapacity,wesplitthecurrentrequestintotwosub-requests.Therstpartjoinsthecurrenttreeandusesallitsremainingcapacity.Thesecondpartstartsanewdestinationtreeintowhichweattempttomergetheremainingpathsinthecurrentgroup.Theoptimalityofthisgreedyalgorithmisobviousasthenumberofresulttreesisminimizedforeachdestinationnodes.ThetimecomplexityofthistreeconstructionalgorithmisO(jVjjRj),wherejRjisthesizeofthetrafcdemandsetandjVjisthenumberofnodesinthenetwork,whichboundslengthofallpossiblelightpaths. 6.5Tree-WavelengthAssignment Whenadataburstisreadytobesentout,thesourcenodeneedtoknowwhichwavelengthitwillusetotransmittheburstforitsintendeddestination.InTWINnetwork,thisisdecidedbythetree-wavelengthassignmentprocess.Intraditionalopticalnetworks,wavelengthsareassignedtospeciclightpaths.However,inTWINnetworkseachdestinationtreeisassignedawavelength.Inthissection,wediscussdifferentstrategiesofassigningwavelengthstodestinationtrees.Thedestinationtreesareconstructedintheprevioustreeconstructingphase.Ourgoalistominimizethenumberofwavelengthsthatweusetoaccommodateallthetrees.InSection 6.5.1 ,weintroducethegenericformofthetree-wavelengthassignmentproblemandprovethatcomputingtheoptimaltree-wavelengthassignmentisNP-Hard.InSection 6.5.2 ,fourgreedyheuristicsareproposedtoapproximatelysolvetheprobleminreasonabletime. 6.5.1GenericFormoftheTree-WavelengthAssignmentProblem WenotethatinTWINnetworks,twodestinationtreesthatsharesomelinkscannotbeassignedtothesamewavelength,astheTWINswitcheswillnotbeabletodistinguishtheirtrafc.So,treesthathavecommonlinksareconsideredinconictforwavelengthassignment.Ontheotherhand,treesthatdonotnotshareanylink 126

PAGE 127

canbeassignedthesamewavelengthwithoutinterference.Suchtreesaresaidtobecompatible. Anotherobservationfortree-wavelengthassignmentisthatadestinationtreemaybeassignedmorethanonewavelength.Thatis,somesource-destinationpathsmayuseonewavelengthwhiletheotherpathsuseadifferentwavelengths.Inparticular,wecandivideadestinationtreeintoacompatiblepartandaconictpartwithrespecttoacurrentwavelengthsthathasalreadybeenassignedtosomeothertrees,andassignthecompatibleparttothecurrentwavelength.Notethatthesplitalwaysstartsfromthesourcenodes(leafnodes),andendsatthedestination(root).Sincethedestinationnodesisabletoreceivedataowfrommultiplewavelengthssimultaneously,splittingdestinationtreeasdescribeddoesnotaffectthecorrectnessofthedatatransmission.However,itprovidesmoreexibilitywhenweresolvetheconictsamongdestinationtrees. Basedontheaboveobservations,thegenericformofthetree-wavelengthas-signmentproblemisasfollow:GivenasetofdestinationtreesDT=(t0,,ti)onaTWINnetworkG,minimizethetotalnumberofwavelengthsthatareneededtoaccommodateallthetreesinDT,withoutviolatingthefollowingconstraints:1).Destinationtreesthatshareawavelengthshouldbecompatiblewitheachother.2).Destinationtreeobtainedfromthetreeconstructionphaseiseitherassignedasinglewavelength,orsplitintoseveralpartswitheachpartbeingassignedtodifferentwavelengths. Theorem6.1. Theabovetree-wavelengthassignmentproblemisNP-Hard. Proof. WeprovethisbyreducingtheGraph-Coloringproblemtothetreeassignmentproblem.Graph-Coloringisawell-knownNP-Completeproblem.GivenagraphG,wewanttocoloralltheverticeswithaminimumnumberofcolorssuchthatnotwoadjacentverticeshavethesamecolor. 127

PAGE 128

WerstconstructacorrespondingTWIN-WAinstancebasedonaGraph-ColoringinstanceG.ForeachnodeviinG,weinitializeacorrespondingtreeti,whichonlycontainsitsrootnoderi.Foreachlink(vi,vj)inG,weinsertanewedge(nij 1,nij 2)tobothtreestiandtj.Weappendthisnewedgetothelastinsertednodeinthetree,sothetreehasachain-likestructure.Figure 6-4 givesasimpleexample.Nodev1andv2areadjacentinG.Sowehaveedge(n12 1,n12 2)appendedtonodesr1andr2fortreest1andt2respectively.Forthesamereason,edge(n13 1,n13 2)isappendedtonoden12 2int1andnoder3int3.AfterwenishtheabovestepsforalllinksinE,wehaveadestinationtreesetDT=(t1,t2,,tn).WeconstructaTWINnetworkGtfromDTbymergingthetopologyofallthetreesinDT.Intheexample,weobtaina7-nodegraphGtbymergingtreest1,t1andt3inDT. Figure6-4. ReductionfromGraph-Coloringproblemtotree-wavelengthassignmentproblem. FromtheconstructionofDTandGt,wecanseethatiftwoverticesviandvjareadjacentinG,treetiandtjmusthaveacommonlinknij 1andnij 2,whichmeanstiandtjareinconictinthetree-wavelengthassignmentprocessfornetworkGt.Ontheother 128

PAGE 129

hand,iftwotreestiandtjareinconictforwavelengthassignment,theymustsharetheedgefromnij 1tonij 2andthatedgeistheonlylinkthatiscommontobothtrees.Fromtheconstruction,theremustbealinkbetweenverticesviandvjinG.Meanwhile,ifthetreesareallintheshapeofachain,asinourconstruction,splittingatreebringsnobenettothewavelengthassignmentprocess.Therefore,intheoptimalassignmentforDTonGt,everytreeinDTisassignedtoasinglewavelength. Now,letkbetheminimumnumberofcolorsweneedtocolorGandmbetheminimumnumberofwavelengthsweneedtoaccommodateallthetreesinDT.Basedontheaboveobservation,weclaimthatk=m.First,weshowthatkwavelengthsissufcient,ifwecancolorGusingatmostkcolors.OurwavelengthassignmentschemeistoassigntreetithewavelengthWj,jkifthecorrespondingvertexviinGiscoloredusingcolorCj.Sincetiwillnotbesplit,andalltheverticesinGthatarecoloredwithCjcannotbeadjacenttoeachother,wecanguaranteethattiwillbecompatibletoanyothertreesthatareassignedthewavelengthWj.Now,weshowthatGalsocanbecoloredwithoutconictusingatmostmdifferentcolors,whenevermwavelengthsaresufcientfortheconstructedtreesetDT.ForeachnodeviinG,ifitscorrespondingtreetiisassignedtowavelengthWj,itwillbecoloredwithCj.SincethereisnoconictinWj,nodeswithcolorCjwillnotbeadjacenttoeachotherinG.Thereforethecolorofviisvalid. Fromtheabovestatements,Graph-Coloringcanbereducedtothetree-wavelengthassignmentprobleminpolynomialsteps.Sotree-wavelengthassignmentisaNP-Hardproblem. 6.5.2GreedyHeuristics Inthissection,weproposeasetofgreedyheuristicstocomputeanapproximatelyoptimalassignmentinreasonabletime.Theseheuristicshaveasimilarmainprocesswhencomputingthewavelengthassignment.However,theydifferfromeachotherintheordertheinputdestinationtreesandtheexistingwavelengthsareassigned. 129

PAGE 130

Themainideaofourgreedyheuristicsisasfollows.ThedestinationtreesinDTarecheckedonebyoneaccordingtothetreesortingorder.Adestinationtreeismatchedagainstalreadyassignedwavelengthsaccordingtothewavelengthsort-ingorder.FortreetiandwavelengthWj,ifpartofticantintowavelengthWj,tiisdividedandapartofitisassignedtheWj.TherestoftiisthenmatchedagainstthewavelengthsWj+1andsoon.Ifallthein-usewavelengthstogethercannotaccommodateti,anewwavelengthisopenedfortheunassignedpartofti. Wepropose2differentapproachestosortthedestinationtrees. 1. MostConictsTreeFirst(MC):ThetreesaresortedindecreasingorderoftothenumberothertreesinDTwithwhichtheyhaveaconict,denotedasCNi.Thisissortingcriterionisbasedontheideathatifweassigntreeswithmoreconictsrst,wemayreachtheminimumnumberofrequiredwavelengthsveryquickly.Then,forthosetreeswithlessconicts,thereisahigherchancethattheywilltintotheexistingwavelengths. 2. MostProcessedTreeFirst(MP):LetPibethenumberofconictedtreesoftithathavealreadybeenassignedwavelengths.InsteadofchoosingtreeswithlargerCNivalues,wepickuptreesthathashigherPivalues.Eachtimeafteratreeisassigned,thePivaluesofalltheunassignedtreesareupdatedandtheonewiththelargestPivalueischosenasthenexttreetobeassignedwavelengths.WhenmultipletreeshavethesamePi,thetiebreakerwillbethevalueoftheirCNivalue.ThethoughtbehindthisorderingissimilartotheMCordering.Moreover,MPorderishopedtoimprovetheMCorderbykeepingtheprioritiessynchronizedwiththeresultoftheexistingassignments. Wealsoproposetwosortingordersforwavelengths. 1. Best-FitWavelengthFirst(BF):Thein-usewavelengthsaresortedinthedecreasingorderofthenumberoflinksinthenetworkthatdonotusethiswavelength.Thisorderisupdatedeverytimeatree-wavelengthassignmentiscompleted. 2. Most-FitWavelengthFirst(MF):Everytimebeforeadestinationtreeisbeingassigned,theexistingwavelengthsaresortedbythesizeofthesubtreetheycanaccommodateforthecurrenttree.Wemeasurethesubtreesizebycountingthenumberofsourcenodesthatcanbecontainedinthecurrentwavelength.Ifonewavelengthcanholdalargernumberofthesourcenodesandtheircorrespondinglightpaths,itwillhavehigherpriorityduringthematching.Thewavelengthsre-orderingistriggeredatruntimewheneverthecurrenttreeischanged.Eitherasplitonthecurrenttree,oranewtreeistakenoutfromDTforassignment.We 130

PAGE 131

alsonotethatthereisnoneedtocompletelysortallthewavelengthsduringtheupdates.Theonlywavelengthweareinterestedinistheonethatcanaccommodatethelargestsubtree.ThereforeweonlyneedtondtheMost-Fitwavelengths,ratherthansortallwavelengths. Combiningthedifferenttreesortingandwavelengthsortingmethodstogether,weobtain4differentheuristicsfortree-wavelengthassignment:MC-BF,MC-MF,MP-BFandMP-MF.Thecomplexityofeachofourheuristicsisasfollows: 1. MC-BF:LetjVjbethenumberofverticesintheTWINnetworkandjTjbethenumberofdestinationtreesinDT.Whenwedeterminetheconictsbetweeneachpairoftrees,ittakesO(jVj)timeaseachtreemaycontainatmostjVj)]TJ /F6 11.955 Tf 18.82 0 Td[(1edges.SinceeverypairoftreesinDTischecked,countingtheconictsforthewholeDTsettakesO(jVjjTj2)time.ThesortingtakesanotherO(jTjlog(jTj))time.ThereforecomputingtheMCordertakesO(jVjjTj2)time.Duringtheassignmentprocess,themaximumnumberofwavelengthneededisjTj.SothenumberofmatchesforeachdestinationtreeisO(jTj).Foreachtreewavelengthpair,ittakesO(jVj)timetomatchthem.SotheprocessingtimeforonesingledestinationtreeisboundedbyO(jVjjTj).TomaintaintheBForder,weneedtoupdatethewavelengthcapacitiesandsortthem.IttakesanotherO(jTjlog(jTj))time.SotheoverallprocessingtimeforonedestinationtreeisO(jVjjTj+jTjlog(jTj)).ThetotalcomplexityforMC-BFalgorithmisO(jVjjTj2+(jVjjTj+jTjlog(jTj)jTj)=O(jVjjTj2). 2. MC-MF:TondtheMost-Fitwavelengthstothecurrenttree,weneedtomatchthetreeagainstallthewavelength,ThistakesO(jVjjTj)time.AdestinationtreewillsplitatmostjVj)]TJ /F6 11.955 Tf 18.73 0 Td[(1timesduringtheassignment,soO(jVj2jTj)timeistakentoprocessonedestinationtree.TheoverallcomplexityforMC-MFisO(jVjjTj2+jVj2jTj2)=O(jVj2jTj2)),whereO(jVjjTj2)istheMCsortingtimeandO(jVj2jTj2)isthetree-wavelengthmatchingtime. 3. MP-BF:Ifthetreeorderisupdateddynamically,extraO(T)operationsareaddedtotheprocessingofeachdestinationtree.However,theseextraoperationsdonotchangedtheasymptoticcomplexityforthetree-wavelengthmatchingprocess.TheoverallMP-BFcomplexityisthesameasforMC-MF:O(jVjjTj2). 4. MP-MF:SimilartoMP-BF,theextraoperationsrequiredtomaintaintheMPorderisdominatedbytheothertree-wavelengthassignmentoperations.Thus,theseextraoperationsdonotaffecttheasymptoticcomplexityofMP-MF,whichisstillO(jVj2jTj2). 131

PAGE 132

6.6Evaluation 6.6.1ExperimentalFramework Inthissection,wemeasuretheperformanceofthewavelengthassignmentheuristicsdescribedinSection 6.5 andevaluatehowdifferentsortingschemesaffecttheperformancesinvariousscenarios.Besidescomparisonontheoptimalityofthetheirassignments,wealsomeasuretheexecutiontimeofeachheuristicandstudyhowexecutiontimevarieswithnetworksizeandworkloads.Weimplementedano-sortversionofthegreedyheuristicsthatdoesnotdothesortingstepsforeitherthedestinationtreesorthewavelengths.Bycomparingtheno-sortheuristicwiththeonesweproposedinSection 6.5.2 ,wecaninvestigatetheimpactofthesortingsteps.Foreverytestcase,wealsoprovidealower-boundfortheoptimalsolution(LB).Thelower-boundiscomputedbycountingtheoccurrencesofeachnetworklinksinalldestinationtrees.Themaximumcountamongallthelinksisthelowerboundfortheminimumnumberofwavelengthsweneed.Withthisbound,wecanestimatehowwellourheuristicscandointheexperiments. Tosimulateaopticalnetwork,weusea25-nodemesh-torustopology,arealworld19-nodeMCInetwork(Figure 6-5 )andseveralrandomlygeneratedtopologies.Forrandomlygeneratedtopologies,wesettheout-degreeofeachnodetobearandomintegersbetween5and7.Toensurenetworkconnectivity,therandomnetworkhasbidirectionallinksbetweennodesiandi+1forevery1i
PAGE 133

AMCI BMesh Figure6-5. NetworkTopologies istotallyrandom.Thesourcesanddestinationdarethenselectedusingauniformrandomnumbergeneratorfromtherespectivesetssothattheworkloadisdistributeduniformlyamongdifferentnodepairs.TherequiredowsizeBWisgeneratedusingachoppedNormalDistributionN(0.1,2.510)]TJ /F9 7.97 Tf 6.59 0 Td[(3).Usingthisdistribution,about96%oftheowssizesareintheinterval(0,0.2).Generatedowsizearediscardedifitsvalueisoutsidetherange(0,1).Astheexpectationoftrafcdemandsisonly0.1,mostadmissibledestinationtreesgeneratedwillcomprisemultiplelightpaths. Foreachtestcase,themaximumnumberoftrafcdemandsisboundedbythenumberofsource-destinationpairs.ThisnumberisdenotedasMaxLoad.Forexample,ina100-noderandomnetwork,ifwemark40%ofthenodesassourcenodesand20%nodesasdestinationnodes,wewillhaveatmost800differentsource-destinationpairs.Thatwouldbethemaximumnumberoflightpathsthatweneedtohandleinthetestcase.Duringtheexperiments,ourworkloadsarevariedfrom20%ofMaxLoadto100%ofMaxLoad. 6.6.2EvaluationResults Figures 6-6 and 6-7 presenttheevaluationresultsforourwavelengthassignmentheuristicsundervarioustrafcloadsinMCIandrandomnetworks.Intheexperiments,weproducetrafcloadsthatare20%,40%,60%,80%and100%oftheMaxLoad.Fromtheexperimentalresults,wemakethefollowingobservations: 133

PAGE 134

Figure6-6. TheperformancesofwavelengthassignmentheuristicsunderdifferentnumberofrequestsinMCInetwork. Figure6-7. Theperformancesofwavelengthassignmentheuristicsunderdifferentnumberofrequestsin100-noderandomtopologies. 1. All4heuristicsthatweproposeinSection 6.5.2 generatebetterassignmentsthantheno-sortheuristicinalltestscenarios.Theseheuristicsoutperformtheno-sortheuristicwithmoreobviousmarginsinthelighttrafcloads(lessthan60%)thaninheavytrafcloads.Thisshowsthatthesortingthetreesandwavelengthsprovidesmorehelptothewavelengthassignmentwhenthenetworkislessoccupied.Whenthenetworkslinksaresaturated,rearrangetheorderofmatchwillnotbeabletoimprovetheschedulingmuch. 134

PAGE 135

2. Amongthefourgreedheuristics,MP-MFheuristicgivesthebestperformanceinalltestcases.Regardingthesortingmethodsforthedestinationtrees,theMPheuristicsprovidesbetterassignmentsthantheMCheuristics.Thismeansadjustingthetreeorderdynamicallyprovidesmorereasonablematchingordersduringthetree-wavelengthassignment.Ontheotherhand,theMFheuristicsoutperformtheBFheuristicswhentheworkloadishigh(morethan80%).However,whentheworkloadislessthan40%,theperformancesofMFheuristicsandBFheuristicsarecomparable.Thisshowsthatwhenthetrafcloadishigh,amorecarefulchoiceonthewavelength,likeMF,isnecessarytoprovideabetterassignment.Whenthereareplentyofresourcesavailable,arelativelycrudesorting,likeBF,issufcient. 3. Whenthetrafcloadislight,thesortedheuristicsprovidearesultsclosetothelowerbound,i.e.averygoodapproximationontheoptimalsolution.Whentrafcloadishigh,theassignmentsfromtheheuristicsarerelativelyfarawayfromthelowerbound.However,thisdoesnotnecessarilymeanthattheheuristicscannotapproximatetheoptimalsolutionsunderhighworkloads,asthelowerboundsmaynottightlyboundtheoptimalsolutionswhentrafcloadishigh. 4. Thenumberofwavelengthsneededincreasedwiththetrafcload.InsmallnetworkslikeMCIandMesh,theneedforextrawavelengthsincreasesfasterthaninlargerandomnetworks.Thereasonisthatitislesslikelytonddisjointlightpathsfordifferentsource-destinationpairs.Whentrafcloadincreases,conictsaremorefrequentinsmallnetworksthaninlargenetworks. Figure6-8. Theperformancesofwavelengthassignmentheuristicsinrandomnetworkswithvarioussizes. Figure 6-8 presentstheperformanceoftheheuristicsonrandomtopologiesofvarioussizewhenthenumberoftrafcdemandsis800.Wecanseethatwiththe 135

PAGE 136

increaseofthenetworkcapacity,fewerwavelengthsarerequiredtoaccommodatetherequestset.However,whenthenetworksizeismorethan400nodes,theimprovementsarealmostnegligible.Recallthatduringthetreeconstructionphase,multipledestinationtreesarebuiltifthetotaltrafcsizeexceedsthewavelengthcapacity.Sowhenthenetworktopologyislargeenoughtoresolvemostconictsinthetreetopologies,theminimumnumberofwavelengthsneededinsuchnetworksisheavilyinuencedbythemaximumnumberofadmissibletreesthatsharethesamedestination,i.e.thecapacityofthewavelengthagainbecomesthemainconstraint. Figure6-9. Thealgorithmrunningtimeofwavelengthassignmentheuristicsunderdifferentnumberofrequestsin100nodenetworks. Figure 6-9 presentstherunningtimeofourwavelengthassignmentheuristicsunderdifferentworkloadsandFigure 6-10 givestherunningtimeasafunctionofthenetworksize.Weseethattheno-sortheuristicisalwaysthefastestalgorithms.Thedifferenceintherunningtimeincreaseasthenetworksizegrows,aswellasthetrafcloadsincrease.Heuristicsusingthesametreesortingalgorithmsgenerallyhavethesamerunningtime,whichmeanstheoverheadbroughtbythetwowavelengthsortingmethodsaresimilartoeachother.Forheuristicsusingdifferenttreesortingscheme,wenotethattheMCsortingisfasterthantheMPsorting.However,theirperformancegap 136

PAGE 137

Figure6-10. Thealgorithmrunningtimeofwavelengthassignmentheuristicsinrandomnetworkswithvarioussizes. ismuchsmallerthanthegapwiththeno-sortheuristic.Althoughthesortedheuristicsarerelativelyslowcomparedtotheno-sortheuristics,theiroverallcomputationalcostsarestillacceptable.Inbestcases,theaverageschedulingtimeforonerequestislessthan5seconds.Intheworstcase,theaverageschedulingtimeislessthan30secondsfortheslowestheuristic. Asasummary,thesortingschemesprovideconsiderablebenetstotheTWINwavelengthassignments.Theimprovementismorewithrelativelylowworkload.However,thesortheuristics'runningtimeisaffectedbytheextraoverheadbroughtbythesortingprocess.Nevertheless,therunningtimesarestillreasonableevenintheworstcase.Theno-sortheuristiciscompetitivewhenthenetworksarelargeandtrafcdemandsareheavy.Itprovidesmuchfasterschedulingspeedwhileyieldinglittleintheassignmentoptimality. 137

PAGE 138

CHAPTER7CONCLUSION Thisdissertationhasfocusedonsolvingvariousresourceschedulingproblemsinhighspeednetworks.Ourcontributionsareconcludebelow. Wedenedasetofdatastructurestorepresentthechangingstatusofavailableresources.Wediscussedindetailtheprosandconsofthecontinuoustimemodelanddiscretetimemodel.WeusedTime-BandwidthListtoassociatetemporalinfowiththeresourceavailability.WeusedStartTimeListtoindicatethefeasibilityofanetworkpathforcertainuserrequests.WealsousedSteadyStagestorepresenttheperiodsduringwhichresourceavailabilityisstaticforthewholenetwork.Foropticalnetworks,anextendednetworkmodelwaspresentedtodealwiththewavelengthconvertersinthenetwork.Formultipleresourcescheduling,theMRRMmodelwaspropose.Inthismodel,differenttypesofresourcesareuniformlyrepresentedusingagraphbasedmodel. Severalschedulingproblemsforsinglepathschedulingingeneralnetworks,includingxedslot,maximumbandwidthinslot,maximumduration,rstslot,allslotsandall-pairsall-slotswereconsidered.Foreachproblem,weproposedseveralalgorithms(DAFP,kDP,andkSPforxedslotproblem,LSWandEBFforrstslotproblemandsoon).Wealsoconductedextensiveevaluationsofeachalgorithminvarioustestenvironmentstoassessitsperformance. WedenedtheEarliestFinishTimeFileTransferProblem(EFTFTP)toexplorethebenetbroughtbymulti-pathroutingforlargeletransfersfrommultiplesourcestomultipledestinations.Wedevelopedseveralmulti-pathreservationalgorithmstosolvethisproblemfortheonlineandbatchschedulingcases.Anewmax-owbasedgreedyalgorithm(GOS)andseveralnovelvariantsofthek-shortestpathsalgorithmswereproposedforonlinescheduling.AnovelLPformulationwasusedtodevelopanoptimalalgorithmforbatchscheduling.Extensivesimulationsusingbothrealworldandrandom 138

PAGE 139

networksshowthatourGOSalgorithmprovidesagoodbalanceamongmaximumnishtime,averagenishtime,andcomputationalcomplexity.Thisalgorithmmaybeextendedtothecasewhenswitchingoverheadisnotnegligible. Wehaveextendedthealgorithmsoriginallyproposedforgeneralnetworkstoincorporatethewavelengthsharingandwavelengthcontinuityconstraintsofopticalnetworks.Wemodiedtwoexistingopticalnetworkschedulingalgorithms(MSPFandMSWF)toachievebetterperformance.Wealsoshowedthatadeferredwavelengthassignmentstrategycanbeeffectivelyusedinconjunctionwithmanyroutingalgorithms.Thiseffectivelyalleviatestheneedtokeeptrackofthebandwidthallocationstatusofeachwavelength.OurresultsshowthattheadaptedEBFalgorithmperformsbetterthanotheralgorithms.Forheterogeneousnetworks,LSWalsoprovidedcomparablesolutions;whileforhomogeneousnetworksMSPFandMSWFprovidecomparablesolutions. Besidesfull-wavelengthconversion,wealsoexploredtheimpactofsparsewavelengthconversiononrst-slotscheduling.Weproposedanewnetworkmodeltoemulatethefull-conversionalgorithmsinsparseconversionnetworks.Usingthismodel,weconductedextensiveexperimentstoassesstheimpactofwavelengthconvertersonFirst-SlotRWAalgorithms'performance.Ourexperimentsindicatedthatincreasingwavelengthconvertershaspositiveimpactonblockingperformance,butverylittleimpactontheavailabilityofearlierstarttimes.Wealsoshowedthatfornetworksnolargerthanseveralhundrednodes,deployingwavelengthconvertersonatmost60%ofnodeswouldbeenoughtoprovideasatisfyingperformance.Additionally,analgorithmswitchingstrategythatadaptstheschedulingalgorithmasthecurrentworkloadchangeswasproposed.Whenthenetwork'strafcpatterndidnotchangingdramatically,thisstrategyresultedinconsiderableperformanceimprovement. Weconsideredthemultipleresourceschedulingproblem,andpresentedseveralsolutionsintermsofamulti-resourcemodel.Weproposedaexibleandefcient 139

PAGE 140

multi-resourcereservationmodel(MRRM)andsolvedfourinstancesofthemultiplereservationrstslot(MFRS)problem.Basedonourmodel,fouralgorithmsweredevelopedforeachindividualinstanceofMRFS.Experimentsonaheterogeneouscomputernetworkshowedthatouralgorithmsscalelinearlyintermsofnetworksizeandrequestratio. Weproposeda2-stepprocesstosolvethewavelengthassignmentproblemforTWINnetworks.WeshowedthatdeterminingthewavelengthassignmentthatusetheminimumnumberofwavelengthsisaNP-Completeproblem.Fourgreedyheuristicsarepresentedtocomputetheapproximatedsolutionwithinreasonabletime.Theevaluationresultsshowthatperformingsortingondestinationtreesandwavelengthsimprovestheassignmentresults,especiallyunderlowtrafcloads.However,performingsortingbringssomeextraoverheadstothesortheuristics'runningtime,butoverallcomputationcostsarestillacceptable.Meanwhile,inlargetopologieswithheavyworkloads,theno-sortheuristicbecomescompetitiveasitcanprovidesimilarschedulingperformancewithmuchlesscomputationalcost. 140

PAGE 141

REFERENCES [1] BinPackingProblem. Http://mathworld.wolfram.com/BinPacking.html [2] DynamicresourceallocationviaGMPLSopticalnetworks. Http://dragon.maxgigapop.net [3] GraphColoringProblem. Http://mathworld.wolfram.com/GraphColoring.html [4] On-demandSecureCircuitsandAdvanceReservationSystem. Http://www.es.net/oscars [5] Abilene.Abilene. Http://abilene.internet2.edu [6] Ahuja,Ravindra,Magnanti,Thomas,andOrin,James.NetworkFlows:Theory,Algorithms,andApplications.PrenticeHall,1993. [7] Aron,Mohit,Druschel,Peter,andZwaenepoel,Willy.Clusterreserves:amechanismforresourcemanagementincluster-basednetworkservers.InMeasurementandModelingofComputerSystems.2000,90. [8] Aukia,P.,Kodialam,M.,Koppol,P.V.N.,Lakshman,T.V.,Sarin,H.,andSuter,B.RATES:AserverforMPLStrafcengineering.IEEENetwork(March/April2000):34. [9] Banerjee,Amitabha,chunFeng,Wu,Ghosal,Dipak,andMukherjee,Biswanath.AlgorithmsforIntegratedRoutingandSchedulingforAggregatingDatafromDistributedResourcesonaLambdaGrid.IEEETrans.ParallelDistrib.Syst.19.2008.24. [10] Banner,RonandOrda,Ariel.Multipathroutingalgorithmsforcongestionminimization.IEEE/ACMTrans.Network15(2007):413. [11] Black,U.MPLSandLabelSwitchingNetworks.Prentice-HallPub.,2002. [12] Burchard,L.O.Ontheperformanceofnetworkswithadvancereservations:Applications,architecture,andperformance.JournalofNetworkandSystemsManagement.2005. [13] Chen,Yang,Qiao,Chunming,andYu,Xiang.Opticalburstswitching:anewareainopticalnetworkingresearch.IEEENetwork18(2004).3:16. [14] Chu,XiaowenandLi,Bo.ADynamicRWAAlgorithminaWavelength-RoutedAll-OpticalNetworkwithWavelengthConverters.INFOCOM.2003. [15] Chu,Xiaowen,Li,Bo,andChlamtac,Imrich.WavelengthConverterPlacementUnderDifferentRWAAlgorithmsinWavelength-RoutedAll-OpticalNetworks.IEEETransactiononCommunications51(2003).5:607. 141

PAGE 142

[16] Chu,Xiaowen,Liu,Jiangchuan,andZhan,Zhensheng.AnalysisofSparse-PartialWavelengthConversioninWavelength-RoutedWDMNetworks.INFOCOM.2004. [17] Cormen,T.H.,Leiserson,C.E.,Rivest,R.L.,andStein,C.IntroductiontoAlgorithms.NewYork:TheMITPress,2001. [18] enlightened.EnlightenedComputing, http://www.enlightenedcomputing.org/ [19] Foster,I.,Kesselman,C.,Lee,C.,Lindell,R.,Nahrstedt,K.,andRoy,A.Adistributedresourcemanagementarchitecturethatsupportsadvancereservationsandco-allocation.7thIntl.WorkshoponQualityofService(IWQoS)(1999):27. [20] Foster,Ian,Kesselman,Carl,Lee,Craig,Lindell,Bob,Nahrstedt,Klara,andRoy,Alain.Adistributedresourcemanagementarchitecturethatsupportsadvancereservationsandco-allocation.InProceedingsoftheInternationalWorkshoponQualityofService.1999,27. [21] Fusion.InternationalThermonuclearExperimentalReactor. Http://www.iter.org [22] geant.Geant2, http://www.geant2.net [23] Guerin,R.andOrda,A.Networkswithadvancereservations:Theroutingperspective.Proceedingsofthe19thAnnualJointConferenceoftheIEEEComputerandCommunicationsSocietiesINFOCOM.2000.118. [24] Guerin,R,Orda,A,andWilliams,D.QoSroutingmechanismsandOSPFextensions.IETFInternetDraft.1996. [25] Guerin,R.A.andOrda,A.QoSroutinginnetworkswitrhinaccurateinformation:Theoryandalgorithms.IEEE/ACMTransactionsonNetworking7(1999).3:350. [26] Hashimoto,A.andStevens,J.Wireroutingbyoptimizingchannelassignmentwithinlargeapertures.Proc.8thDeasignAutomationWorkshop.1971.155. [27] He,Eric,Wang,Xi,andLeigh,Jason.Aexibleadvancereservationmodelformulti-domainwdmopticalnetworks.IEEEGRIDNETS2006.2006. [28] hopi.HybridOpticalandPacketInfrastructure, http://networks.internet2.edu/hopi [29] internet2.Internet2. Http://www.internet2.edu [30] Ishio,H.,Minowa,J.,andNosu,K.Reviewandstatusofwavelength-division-multiplexingtechnologyanditsapplication.vol.2.1984.448463. 142

PAGE 143

[31] jgn2.JGNII:AdvancedNetworkTestbedforResearchandDevelopment, http://www.jgn.nict.go.jp [32] Jung,Eunsung,Li,Yan,Ranka,Sanjay,andSahni,Sartaj.AnElvaluationofIn-AdvanceBandwidthSchedulingAlgorithmsforConnection-orientedNetworks.ProceedingsofInternationalSymposiumonParallelArchitectures,Algorithms,andNetworks.2008. [33] Jung,Eunsung,Li,Yan,Ranka,Sanjay,andSahni,Sartaj.PerformanceEvaluationofRoutingandWavelengthAssignmentAlgorithmsForOpticalNetworks.13thIEEESymposiumonComputersandCommunications.2008. [34] Kauer,M.Terabitburstswitching.2002.3.3.3. [35] Kovacevic,MilanandAcampora,AnthonyS.BenetsofWavelengthTranslationinAll-OpticalClear-ChannelNetworks.IEEEJournalonSelectedAreasinCommunications14(1996).5:868. [36] Lee,Y.,Seok,Y.,Choi,Y.,andKim,C.AConstrainedMultipathTrafcEngineeringSchemeforMPLSNetworks.Communications,2002.ICC2002.IEEEInternationalConferenceon.vol.4.2002,24312436. [37] lhcnet.LHCNet:TransatlanticNetworkingfortheLHCandtheU.S.HEPCommunity, http://lhcnet.caltech.edu/ [38] Li,Yan,Ranka,Sanjay,andSahni,Sartaj.In-AdvanceFirst-SlotSchedulingwithWavelengthConversionfore-ScienceApplications.InProceedingsofTheIEEESymposiumonSignalProcessingandInformationTechnology.2010. [39] Li,Yan,Ranka,Sanjey,andSahni,Sartaj.TechReportofCISEUF:In-AdvancedFirst-SlotSchedulingwithSpareWavelengthConversionfore-ScienceApplications.(2009). [40] Ma,Q.andSteenkiste,P.Onpathselectionfortrafcwithbandwidthguarantees.5thIntl.Conf.onNetworkProtocols(ICNP).1997.191. [41] Ma,Q.,Steenkiste,P.,andZhang,H.Routinghigh-bandwidthtrafcinmax-minfairsharenetworks.ACMSIGCOMM.1996.115. [42] Maui.Maui. Http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php/ [43] Nuzman,CarlandWidjaja,Indra.Time-DomainWavelengthInterleavedNetworkingwithWavelengthReuse.INFOCOM.2006. [44] PlatfromLSF.PlatfromLSF. Http://www.platform.com/Products/platform-lsf 143

PAGE 144

[45] Rajah,Kannan,Ranka,Sanjay,andXia,Ye.SchedulingBulkFileTransferswithStartandEndTimes.6thIEEEInternationalSymposiumonNetworkComputingandApplications.2007,295. [46] Rao,N.S.,Carter,S.M.,Wu,Q.,Wing,W.R.,Zhu,M.,Mezzacappa,A.,Veeraraghavan,M.,andBlondin,J.M.Networkingforlarge-scalescience:Infrastructure,provisioning,transportandapplicationmapping.ProceedingsofSciDACMeeting.2005. [47] Rao,N.S.V.,Wing,W.R.,Carter,S.M.,andWu,Q.UltraScienceNet:NetworkTestbedforLarge-ScaleScienceApplications.IEEECommunicationsMagazine(2005). [48] Rao,N.S.V.,Wu,Q.,Carter,S.M.,Wing,W.R.,A.Banerjee,D.Ghosal,andMukherjee,B.ControlPlaneforAdvanceBandwidthSchedulinginUltraHigh-SpeedNetworks.INFOCOM2006WorkshoponTerabitsNetworks.2006. [49] Rao,NageswaraS.V.andBatsell,StephenGordon.QoSRoutingViaMultiplePathsUsingBandwidthReservation.INFOCOM.1998,11. [50] Ross,Kevin,Bambos,Nicholas,Kumaran,Krishnan,Saniee,Iraj,andWidjaja,Indra.SchedulingBurstsinTime-DomainWavelengthInterleavedNetworks.vol.21.2003.1441. [51] Sahni,S.Datastructures,algorithms,andapplicationsinC++.SiliconPress,2005.SecondEdition. [52] Sahni,Sartaj,Rao,Nageshwara,Ranka,Sanjay,Li,Yan,Jung,Eun-Sung,andKamath,Nara.BandwidthSchedulingandPathComputationAlgorithmsforConnection-OrientedNetworks.SixthInternationalConferenceonNetworking(ICN'07).2007.47. [53] Saniee,Iraj,Widjaja,Indra,andMorrison,John.PerformanceofadistributedschedulingprotocolforTWIN.SIGMETRICSPerformanceEvaluationReview32(2004).2:38. [54] Schelen,G.andPink,S.Anagent-basedarchitectureforadvancereservations.22ndAnnualConferenceonComputerNetworks.1997. [55] SHIMOMURA,KazuhikoandKAWAKITA,Yasumasa.WavelengthSelectiveSwitchUsingArrayedWaveguideswithLinearlyVaryingRefractiveIndexDistribution.PhotonicsBasedonWavelengthIntegrationandManipulation.2005.341. [56] Subramaniam,Suresh,Azizoglu,Murat,andSomani,ArunK.All-opticalnetworkswithsparsewavelengthconversion.IEEE/ACMTrans.Netw.4(1996).4:544. [57] Subramaniam,Suresh,Azizoglu,Murat,andSomani,ArunK.OntheOptimalPlacementofWavelengthConvertersinWavelength-RoutedNetworks.INFOCOM.1998,902. 144

PAGE 145

[58] Tanwir,S.,Battestilli,L.,Perros,H.,andKarmous-Edwards,G.Dynamicschedulingofnetworkresourceswithadvancereservationinopticalgrids.In-ternationalJournalofNetworkManagement.vol.18.2008.79. [59] Tucker,RodneyS.Opticalpacketswitching:Arealitycheck.OpticalSwitchingandNetworking5(2008).1:2. [60] Turner,JonathanS.Terabitburstswitching.vol.8.1999.3. [61] UCLP.UserControlledLightPathProvisioning, http://phi.badlab.crc.ca/uclp [62] Urgaonkar,Bhuvan,Pacici,Giovanni,Shenoy,Prashant,Spreitzer,Mike,andTantawi,Asser.Ananalyticalmodelformulti-tierinternetservicesanditsapplications.InProc.ofACMSIGMETRICS.2005,291. [63] Urgaonkar,BhuvanandShenoy,Prashant.Sharc:ManagingCPUandNetworkBandwidthinSharedClusters.Tech.rep.,IEEETransactionsonParallelandDistributedSystems,2001. [64] Wang,Z.andCrowcroft,J.Quality-of-serviceroutingforsupportingmultimediaapplications.IEEEJSAC.1996.1228. [65] Widjaja,Indra,Saniee,Iraj,Giles,Randy,andMitra,Debasis.Lightcoreandintelligentedgeforaexible,thin-layered,andcost-effectiveopticaltransportnetwork.vol.41.2003.530. [66] Xue,Daojun,Qin,Yang,andSiew,CheeKheong.Performanceanalysisofanoveltrafcschedulingalgorithminslottedopticalnetworks.ComputerCommunications30(2007).18:3559. [67] Yamanaka,N.,Shiomoto,K.,andOki,E.GMPLSTechnologies.CRCTaylorFrancisPub,2006. [68] Yates,JenniferM.,Rumsewicz,MichaelP.,andLacey,JonathanP.R.WavelengthConvertersinDynamically-RecongurableWDMNetworks.IEEECommunicationsSurveysandTutorials2(1999).2. [69] Yen,JinY.Findingthekshortestlooplesspathsinanetwork.ManagementScience.1971. [70] Zang,Hui,Huang,Renxiang,andPan,James.DesigningaHybridShared-MeshProtectedWDMNetworkswithSparseWavelengthConversionandRegeneration.(2002). [71] Zang,Hui,Jue,JasonP.,andMukherjee,Biswanath.AReviewofRoutingandWavelengthAssignmentApproachesforWavelength-RoutedOpticalWDMNetworks.OpticalNetworksMagazine.2000. 145

PAGE 146

[72] Zhang,Z.L.,Duan,Z.,andHou,Y.T.DecouplingQoScontrolfromcorerouters:Anovelbandwidthbrokerarchitectureforscalablesupportofguaranteedservices.Proc.ACMSIGCOMM.2000. [73] Zheng,Jun,Zhang,Baoxian,andMouftah,H.T.Towardautomatedprovisioningofadvancereservationserviceinnext-generationopticalinternet.IEEECommunica-tionsMagazine44(2006).12:68. [74] Zheng,X.,Veeraraghavan,M.,Rao,N.S.V.,Wu,Q.,andZhu,M.CHEETAH:Circuit-switchedhigh-speedend-to-endtransportarchitecturetestbed.IEEECommunicationsMagazine(2005). 146

PAGE 147

BIOGRAPHICALSKETCH YanLireceivedhisPh.D.oncomputerscienceinUniversityofFloridainDecember2010.HewasworkingunderthesupervisionofDr.SartajSahniandDr.SanjayRanka.Hisresearchinterestsarethealgorithmsanddatastructuresfortheresourceschedulinginhighspeednetwork.YanLireceivedhisB.S.inHuazhongUniversityofScienceandTechnologyin2003andhisM.S.inInstituteofSoftware,ChineseAcademyofSciencein2006.HeisnowpursuingPhDinUniversityofFlorida. 147