<%BANNER%>

The Congo-Kalahari cratonic relationship

Permanent Link: http://ufdc.ufl.edu/UFE0042183/00001

Material Information

Title: The Congo-Kalahari cratonic relationship From Rodinia to Gondwana
Physical Description: 1 online resource (234 p.)
Language: english
Creator: Newstead, Brittany
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: congo, damara, geochronology, kalahari, zircon
Geological Sciences -- Dissertations, Academic -- UF
Genre: Geology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The Congo-Kalahari cratonic relationship: From Rodinia to Gondwana By Brittany Lynn Newstead August 2010 Chair: David Foster Major: Geology Identification of Precambrian suture zones is difficult, in part, because Precambrian mobile belts typically lack Phanerozoic indicators of ocean closure such as ultra high pressure (UHP) rocks and ophiolites. Knowledge of the evolutionary paths of ancient cratons provides valuable insight into the progression of supercontinent cycles. Utilizing U-Pb and Hf analyses of detrital zircons from the Neoproterozoic Damara Belt, the orogenic belt between the Congo and Kalahari cratons in southern Africa, we compared the probable sources of detritus deposited on the margins of these continents and estimated the proportions of crustal recycling for past orogenic events. The sedimentary rocks of the Congo and Kalahari margin give distinctive zircon U-Pb age populations consistent with source terrains within the respective cratons. Detrital zircons from both cratons display U-Pb age populations at ca. 1000-1100 Ma, though the population contained in the samples collected along the Congo margin is proportionally larger, and minor populations are ca. 1800-2200 Ma. The Congo marginal strata also have a major age population at ca. 600-800 Ma, which the Kalahari marginal strata lack. The samples collected in the Damara foreland basin in the Nama Group on the Kalahari craton display a minor U-Pb age population at ca. 600-700 Ma and a major population at ca. 500 Ma. The populations displayed by the Congo marginal strata are consistent with a variety of intracratonic sources, including exposed basement inliers: the Angola basement, the Kuene intrusive complex (anorthosite), the Orue metamorphic terrane and the Kibara magmatic belt. The populations displayed by zircons collected on the Kalahari margin are consistent with contributions from a variety of Kalahari sources including: the Rehoboth Inlier, the Namaqua and Natal provinces, and the Zimbabwe and Kaapvaal cratons. The provenance and source terrains were different for the Congo and Kalahari cratonic margins during most of the Neoproterozoic. Only in strata deposited in the latest Neoproterozoic-Cambrian, during the amalgamation of Gondwana, were the detrital zircon signatures of the Congo and Kalahari margins similar. These findings suggest that the Congo and Kalahari cratons were independent of one another prior to the Damara Orogeny and assembly of Gondwana.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Brittany Newstead.
Thesis: Thesis (M.S.)--University of Florida, 2010.
Local: Adviser: Foster, David A.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042183:00001

Permanent Link: http://ufdc.ufl.edu/UFE0042183/00001

Material Information

Title: The Congo-Kalahari cratonic relationship From Rodinia to Gondwana
Physical Description: 1 online resource (234 p.)
Language: english
Creator: Newstead, Brittany
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: congo, damara, geochronology, kalahari, zircon
Geological Sciences -- Dissertations, Academic -- UF
Genre: Geology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The Congo-Kalahari cratonic relationship: From Rodinia to Gondwana By Brittany Lynn Newstead August 2010 Chair: David Foster Major: Geology Identification of Precambrian suture zones is difficult, in part, because Precambrian mobile belts typically lack Phanerozoic indicators of ocean closure such as ultra high pressure (UHP) rocks and ophiolites. Knowledge of the evolutionary paths of ancient cratons provides valuable insight into the progression of supercontinent cycles. Utilizing U-Pb and Hf analyses of detrital zircons from the Neoproterozoic Damara Belt, the orogenic belt between the Congo and Kalahari cratons in southern Africa, we compared the probable sources of detritus deposited on the margins of these continents and estimated the proportions of crustal recycling for past orogenic events. The sedimentary rocks of the Congo and Kalahari margin give distinctive zircon U-Pb age populations consistent with source terrains within the respective cratons. Detrital zircons from both cratons display U-Pb age populations at ca. 1000-1100 Ma, though the population contained in the samples collected along the Congo margin is proportionally larger, and minor populations are ca. 1800-2200 Ma. The Congo marginal strata also have a major age population at ca. 600-800 Ma, which the Kalahari marginal strata lack. The samples collected in the Damara foreland basin in the Nama Group on the Kalahari craton display a minor U-Pb age population at ca. 600-700 Ma and a major population at ca. 500 Ma. The populations displayed by the Congo marginal strata are consistent with a variety of intracratonic sources, including exposed basement inliers: the Angola basement, the Kuene intrusive complex (anorthosite), the Orue metamorphic terrane and the Kibara magmatic belt. The populations displayed by zircons collected on the Kalahari margin are consistent with contributions from a variety of Kalahari sources including: the Rehoboth Inlier, the Namaqua and Natal provinces, and the Zimbabwe and Kaapvaal cratons. The provenance and source terrains were different for the Congo and Kalahari cratonic margins during most of the Neoproterozoic. Only in strata deposited in the latest Neoproterozoic-Cambrian, during the amalgamation of Gondwana, were the detrital zircon signatures of the Congo and Kalahari margins similar. These findings suggest that the Congo and Kalahari cratons were independent of one another prior to the Damara Orogeny and assembly of Gondwana.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Brittany Newstead.
Thesis: Thesis (M.S.)--University of Florida, 2010.
Local: Adviser: Foster, David A.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0042183:00001


This item has the following downloads:


Full Text





THE CONGO-KALAHARI CRATONIC RELATIONSHIP: FROM RODINIA TO
GONDWANA




















By

BRITTANY LYNN NEWSTEAD


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNR/ERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2010

































2010 Brittany Lynn Newstead
































To my parents, who have always believed in me









ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Dave Foster, for all of his help

and wisdom throughout this process and for all he has taught me in the last two years. I

would also like to thank my other committee members, Paul Mueller and Joe Meert, for

their insightful comments and help along the way. Thanks to Ben Goscombe and Ben

Mpani for all of their help in the field. And a special thanks to George Kamenov, without

whom I would have no data. I thank all of my teachers over the years, without their

lessons I would not be here.

I thank my parents, brother and other family members for all of their support over

the years. They taught me to think for myself and encouraged my endless curiosity. I

also want to thank all of the friends near and far who have been with me throughout,

especially Alex and Kelly, who kept me sane through the worst of it. I also thank

everyone in the geology department, for all of the help and laughter.









TABLE OF CONTENTS

page

A C K N O W L E D G M E N T S ..................... ................................................................... 4

L IS T O F TA B L E S ........................... ............ ... .......................................... 7

L IS T O F F IG U R E S ........................................................................................ ....................... 1 1

L IS T O F A B B R E V IA T IO N S .............................................. .................................................. 14

A B S T R A C T ........... ..... ... ............ ... ... ......................................... ........... ..... 15

CHAPTER

1 INTR O D UC T IO N ...... ............ .................... ...................... ... ..17

2 BA C K G RO U N D ............. ..... .... .................................... ........................... .. 20

K a la ha ri C ra to n ....................................................................... ................. ... .............. 2 0
C o ngo C rato n ......... .... .................................................... 2 1
D am ara O rogeny ........ ..... ... .............. ................ ..... ............. ..........22

3 METHODS ......... ....... ................................. 27

D e trita l Z irc o n A na lys is ........................................................................... .......... .......... 2 7
W ho le R o ck A na lys is ........... ........ .............................................................. ....... ... 2 9

4 RE SULTS ................................ ........................... 32

D etrita l Z irco n G eochrono log y ................. ......... ................................... ...................... 32
N northern Forela nd Zo ne ................................................... ............. ............... 32
Northern Zone ............ ..... ........... .. ............................... 32
C central Zo ne ............................... .................... ....... ....... .......... 34
S o uthe rn Z o ne ................. .... ....................... ....... ... .....................................3 7
S southern M argin Zone ................... .......... ............... ...................... ................. 38
S o uthe rn F o re la nd Z o ne ..................... ......... ......... ....................................... 3 9
Granitic Rocks ...................... ........................... 44
K a o ko B e lt ....................... ... ....45.......... ................
Initial Hf Isotope D ata ........................ .. .. ........................ ......... 49
S m /N d A na lysis ......................................................................................... .............. 5 1
C om m on Pb ..................................... ........... ......................... 52
Trace and Major Element Analysis ............. ....................................... 52

5 D IS C U S S IO N ......... ........... .................. ................................................................. 1 8 6

D etrita l Z irco n A na lyse s ............................................................................ 18 6









S tratig ra phic C o m pa riso n ......... ................................................... .. ............. 186
Nama Group ............. .......................................... 189
G ra nitic R o cks ................. ........................ ............................... 19 1
Com prison by Structural Zone........... .... ...................................... ................. 192
K a o ko B e lt................................... ....................... 19 5
C om prison by C rato n ................. .............. .................................. ................. 196
Source Terrains ...... ...... ......... ....... .......................... 198
Congo Crato n ................ .. ............. ....... 198
Kalahari Craton ................. ... ......................... .....199
P proportions of C rusta R ecycli ng ....................................................... .......................20 1
Sedim entary M ixi ng ............................ ......... .... .. .... ..... ........ .. 203

6 C O NC LUS IO N ....... ........ .................................... .... ............. ....216

APPENDIX: GEOCHRONOLOGIC PROVINCES ................. ......................218

K a la h a ri C ra to n ...................... .. ............. .. ....................................... 2 1 8
Interior P rovi nces .......................................................................................................218
M a rg in a l P ro v in c e s .............................................................................................. 2 2 1
C o n g o C ra to n .............................................................................................................. 2 2 2
Inte rio r P ro vi nce s ............................................................2 2 2
M marginal P provinces ....................... ....................................... ..... .. ... 225

L IS T O F R E F E R E N C E S ................................................................................ .............. 22 9

B IO G R A P H IC A L S K E T C H .......................... ............................................. ....................... 2 34

























6









LIST OF TABLES


Table page

4-1 U-Pb analysis common Pb corrected results for sample BDG06-91 from the
Northern Foreland Zone, Congo Craton.................................... ........ ..... ............ 54

4-2 U-Pb analysis common Pb corrected results for sample DF09-26 from the
Northern Zone, C ongo C raton ............... ........................................ ................. 56

4-3 U-Pb analysis common Pb corrected results for sample DF09-30 from the
Northern Zone, C ongo C raton ..................... ......... .......................... ................. 59

4-4 U-Pb analysis common Pb corrected results for sample DF09-37 from the
Northern Zone, C ongo C raton ..................... ......... .......................... ................. 60

4-5 U-Pb analysis common Pb corrected results for sample DF09-43 from the
C central Zone, C ongo C raton. .............. .... .......................................................... 61

4-6 U-Pb analysis common Pb corrected results for sample DF09-44 from the
C central Zone, C ongo C raton. .............. .... .......................................................... 64

4-7 U-Pb analysis common Pb corrected results for sample CZ29 from the
C central Zone, C ongo C raton. .............. .... .......................................................... 66

4-8 U-Pb analysis common Pb corrected results for sample CZ40 from the
C central Zone, C ongo C raton. .............. .... .......................................................... 67

4-9 U-Pb analysis common Pb corrected results for sample CZ53b from the
C central Zone, C ongo C raton. .............. .... .......................................................... 68

4-10 U-Pb analysis common Pb corrected results for sample CZ35 from the
C central Zone, C ongo C raton. .............. .... .......................................................... 71

4-11 U-Pb analysis common Pb corrected results for sample DF06-22 from the
Southern Zone, Congo Craton. ........ ....................................... ......... ................. 76

4-12 U-Pb analysis common Pb corrected results for sample SZ13 from the
Southern Zone, Congo Craton. ........ ....................................... ......... ................. 77

4-13 U-Pb analysis common Pb corrected results for sample DF09-12a from the
Southern Margin Zone, Kalahari Craton. ....... ..................... ................. 82

4-14 U-Pb analysis common Pb corrected results for sample DF09-04 from the
Southern Margin Zone, Kalahari Craton. ....... ..................... ................. 84

4-15 U-Pb analysis common Pb corrected results for sample DF06-40 from the
Southern Foreland Zone, Kalahari C raton. ................ .......................... ................. 87









4-16 U-Pb analysis common Pb corrected results for sample DF06-41 from the
Southern Foreland Zone, Kalahari Craton. .................................... ........ ......... 89

4-17 U-Pb analysis common Pb corrected results for sample DF06-46 from the
Southern Foreland Zone, Kalahari Craton. ...... .............. ...... ..... ................. 91

4-18 U-Pb analysis common Pb corrected results for sample DF06-45 from the
Southern Foreland Zone, Kalahari Craton. .................................... ........ ......... 93

4-19 U-Pb analysis common Pb corrected results for sample DF06-44 from the
Southern Foreland Zone, Kalahari Craton. .................................... ........ ......... 95

4-20 U-Pb analysis common Pb corrected results for sample DF06-43 from the
Southern Foreland Zone, Kalahari Craton. ........................................................ 98

4-21 U-Pb analysis common Pb corrected results for sample DF06-18 from the
K a o k o B e lt. ................ .... ..... ............ ............................. .................. 1 0 0

4-22 U-Pb analysis common Pb corrected results for sample DF09-38 from the
K a o k o B e lt. ................ .... ..... ............ ............................. .................. 1 0 3

4-23 U-Pb analysis common Pb corrected results for sample DF09-39 from the
K a o k o B e lt. ................ .... ..... ............ ............................. .................. 1 0 6

4-24 U-Pb analysis common Pb corrected results for sample DF06-11 from the
K a o k o B e lt. ................ .... ..... ............ ............................. .................. 1 0 8

4-25 U-Pb analysis common Pb corrected results for sample DF06-17 from the
K a o k o B e lt. ................ .... ..... ... ................. ...................................... 1 1 2

4-26 U-Pb analysis common Pb corrected results for sample DF06-08 from the
K a o k o B e lt. ................ .... ..... ... ................. ...................................... 1 1 4

4-27 Lu-Hf analysis corrected results for sample DF09-26 from the Northern Zone,
Congo Craton............... ......... ........... ......... ..........................118

4-28 Lu-Hf analysis corrected results for sample DF09-30 from the Northern Zone,
C o n g o C ra to n ........... ......... ........................................................................ .. 1 1 9

4-29 Lu-Hf analysis corrected results for sample DF09-43 from the Central Zone,
C o ng o C ra to n........... ......... ................ .................................................12 0

4-30 Lu-Hf analysis corrected results for sample DF09-44 from the Central Zone,
C o ng o C ra to n........... ......... ................ .................................................12 1

4-31 Lu-Hf analysis corrected results for sample CZ29 from the Central Zone,
Congo Craton.......... .... ................................. 122









4-32 Lu-Hf analysis corrected results for sample CZ53b from the Central Zone,
C ongo C rato n............ ......... ........................ ... ......... ............. 123

4-33 Lu-Hf analysis corrected results for sample CZ35 from the Central Zone,
Congo Craton............... .......... .... .. ...... .......... 125

4-34 Lu-Hf analysis corrected results for sample DF06-22 from the Southern
Zone, C ongo C raton. .......... ...... ....... .... .......................... .. 127

4-35 Lu-Hf analysis corrected results for sample SZ13 from the Southern Zone,
C ongo C rato n. ........... ....... .... ............ ...... ............................ 128

4-36 Lu-Hf analysis corrected results for sample DF09-12a from the Southern
M arg in Zo ne K a la ha ri C rato n. ......... .................... ....... .......... ................ ................. 132

4-37 Lu-Hf analysis corrected results for sample DF09-04 from the Southern
Margin Zone, Kalahari Craton. ............... .......... ......... 133

4-38 Lu-Hf analysis corrected results for sample DF06-40 from the Southern
Foreland Zone, Kalahari C raton. .............................. ........ .......................... 134

4-39 Lu-Hf analysis corrected results for sample DF06-41 from the Southern
Foreland Zone, Kalahari C raton. .............................. ........ .......................... 135

4-40 Lu-Hf analysis corrected results for sample DF06-45 from the Southern
Foreland Zone, Kalahari C raton. .............................. ........ .......................... 136

4-41 Lu-Hf analysis corrected results for sample DF06-44 from the Southern
Foreland Zone, Kalahari C raton. .............................. ........ .......................... 137

4-42 Lu-Hf analysis corrected results for sample DF06-43 from the Southern
Foreland Zone, Kalahari C raton. .............................. ........ .......................... 138

4-43 Lu-Hf analysis corrected results for sample DF06-18 from the Kaoko Belt........139

4-44 Lu-Hf analysis corrected results for sample DF09-38 from the Kaoko Belt........141

4-45 Lu-Hf analysis corrected results for sample DF09-39 from the Kaoko Belt........142

4-46 Lu-Hf analysis corrected results for sample DF06-11 from the Kaoko Belt........143

4-47 Lu-Hf analysis corrected results for sample DF06-17 from the Kaoko Belt........144

4-48 Lu-Hf analysis corrected results for sample DF06-08 from the Kaoko Belt........146

4-49 Sm/Nd corrected results for the Northern Zone of the Congo craton..................148

4-50 Sm/Nd corrected results for the Central Zone of the Congo craton .................... 148









4-51 Sm/Nd corrected results for the Southern Zone of the Congo craton. ................148

4-52 Sm/Nd corrected results for the Southern Margin Zone of the Kalahari craton. 149

4-53 Sm/Nd corrected results for the Naukluft Nappes of the Kalahari craton .......... 149

4-54 Sm/Nd corrected results for the Southern Foreland Zone of the Kalahari
craton. ................... ...... .. .......... ............................................ 149

4-55 Sm/Nd corrected results for the Kaoko belt of the Congo craton......................49

4-56 Pb/Pb analysis data for the Northern Zone of the Congo craton..................... 149

4-57 Pb/Pb analysis data for the Central Zone of the Congo craton. ......................... 50

4-58 Pb/Pb analysis data for the Southern Zone of the Congo craton......................50

4-59 Pb/Pb analysis data for the Southern Margin Zone of the Kalahari craton ........ 150

4-60 Pb/Pb analysis data for the Naukluft Nappes of the Kalahari craton.................. 151

4-61 Pb/Pb analysis data for the Southern Foreland Zone of the Kalahari craton. .... 151

4-62 Pb/Pb analysis data for the Kaoko belt of the Congo craton. .................................. 151

4-63 Major oxide element analysis data for the Damara Orogen .................... ......... 152

4-64 Trace element analysis data for the Damara Orogen .................................. 154









LIST OF FIGURES


Figure page

1-1 Differing models of Rodinia. ................................................ ...... ................. 19

2-1 Geologic map of the Damara Orogen in central Namibia................................. 24

2-2 Structural cross section of the Damara Orogen................. ................ ................. 25

2-3 Stratigraphic column of the Damara Orogen with collected samples labeled......26

3-1 Geologic maps of the Damara Orogen with the location of collection for all
analyzed sam ples m arked. ........................................................ .................. 31

4-1 Zircon geochronology analysis for sample BDG06-91 from the Mulden
F o rm a tio n ............. ... .................................................................... ..... .... ... 15 7

4-2 Zircon geochronology analysis for sample DF09-26 from the Kuiseb Schist.....158

4-3 Zircon geochronology analysis for sample DF09-30 from the Kuiseb Schist.....159

4-4 Zircon geochronology analysis for sample DF09-44 from the Nosib Group .......160

4-5 Zircon geochronology analysis for sample CZ29 from the Khan Formation.......161

4-6 Zircon geochronology analysis for sample CZ40 from the Rossing Formation. 162

4-7 Zircon geochronology analysis for sample CZ53b from the Tinkas Formation..163

4-8 Zircon geochronology analysis for sample CZ35 from the Karibib Formation ...164

4-9 Zircon geochronology analysis for sample DF06-22 (SZ40) from the Kuiseb
Schist in the Matchless Amphibolite Belt....... .... ........................................ 165

4-10 Zircon geochronology analysis for sample SZ13 from the Kuiseb Schist...........66

4-11 Zircon geochronology analysis for sample DF09-12a from the Hakos
Form action .............................................. .......... 167

4-12 Zircon geochronology analysis for sample DF09-04 from the Naos Diamictite. 168

4-13 Zircon geochronology analysis for sample DF06-40 from the Kuibis
F o rm a tio n ................ ............................................................................ .. 16 9

4-14 Zircon geochronology analysis for sample DF06-41 from the Schwarzrand
S ubgro up. .............. .................... ................. 170









4-15 Zircon geochronology analysis for sample DF06-46 from the Schwarzrand
S ubgro up. ................. ......... ......... ............................................ 171

4-16 Zircon geochronology analysis for sample DF06-45 from the Fish River
Form action ................................................ ......... 172

4-17 Zircon geochronology analysis for sample DF06-44 from the Fish River
Form action ................................................ ......... 173

4-18 Zircon geochronology analysis for sample DF06-43 from the Fish River
Form action ................................................ ......... 174

4-19 Zircon geochronology analysis for sample DF09-37 from a granitic pluton in
the Northern Zone. ...... ...... ............................ ............... ......... 175

4-20 Zircon geochronology analysis for sample DF09-43 from the grainitic gneissic
basem ent of the C central Zone ........... ............... ............................ ................. 176

4-21 Zircon geochronology analysis for sample DF06-18 from the Hoanib River
G ro u p ........... ......... ................ ....... .............................................. .. .. 1 7 7

4-22 Zircon geochronology analysis for sample DF09-38 from the Ogden Mylonite .178

4-23 Zircon geochronology analysis for sample DF09-39 from the Ogden Mylonite. 179

4-24 Zircon geochronology analysis for sample DF06-11 from the Coastal Terrane 180

4-25 Zircon geochronology analysis for sample DF06-08 from the Khumib
T e rra n e ....... ...... ..... ... .. ......... ... .. ........................................................ 1 8 1

4-26 Zircon geochronology analysis for sample DF06-17 from the Hoanib River
Form action ................................................ ......... 182

4-27 Comprehensive plot of all epsilon Hf data for the Congo and Kalahari
cratonic margins ................... ................... .... .......... ....... 183

4-28 Comprehensive plot of all Sm-NdDm model ages against relative distance to
the S Z-S M Z boundary ................... ......... ....................................... ................. 183

4-29 Comprehensive plot of all epsilon Nd data for the Congo and Kalahari
cratonic margins. .................................... ............. ........84

4-30 Plots of Pb/Pb data .. ........... ........... ....................... ................. 184

4-31 Bivariate oxide plots of major element data ..........................................................185

4-32 Spider diagrams of rare earth element data ............... ............. 185

5-1 Detrital zircon U-Pb age populations from the Central Zone. ...............................205









5-2 Detrital zircon U-Pb age populations from the Northern Zone and Northern
Foreland Zone .................... .......................... ....................... 205

5-3 Detrital zircon U-Pb age populations from the Southern Zone ............................206

5-4 Detrital zircon U-Pb age populations from the Southern Margin Zone ...............206

5-5 Detrital zircon U-Pb age populations from the Nama Group of the Southern
Foreland Zone .................... .......................... ....................... 207

5-6 Hf isotope data for the Northern Zone on the Congo margin..............................207

5-7 Hf isotope data for the Central Zone on the Congo Margin. ...............................208

5-8 Hf isotope data for the Southern Zone on the Congo Margin...............................208

5-9 Hf isotope data for the Southern Margin Zone on the Kalahari Margin.............209

5-10 Hf isotope data for the Nama Group in the Southern Foreland Zone on the
K a la ha ri M a rg in ............................................. .. .. .......... ...........2 0 9

5-11 Probability density plot of U-Pb age populations in all zones in the Congo
cratonic m a rg in. ............. ....................................................................... .. ..... .. 2 10

5-12 Probability density plot of U-Pb age populations in all zones in the Kalahari
cratonic m a rg in. ............. ....................................................................... .. ..... .. 2 10

5-13 Hf isotope data for the zones of the Congo cratonic margin...............................211

5-14 Hf isotope data for the zones of the Kalahari cratonic margin...........................212

5-15 Probability density plot of U-Pb age populations in the Kaoko belt....................213

5-16 Hf isotope data for the Kaoko belt on the Congo cratonic margin....................213

5-17 Probability density plot of U-Pb age populations in all zones .............................214

5-18 Probability density plot of Lu-HfDM model age populations in all zones ............214

5-19 Geologic map of southern Africa. Displays locations of source terrains ............215











APWP

CHUR

CZ


DM

KZ

LA-MC-ICP-MS


MSWD

NFZ


NZ


REE

SFZ


SMZ


SZ


TRA

XRF


LIST OF ABBREVIATIONS

Apparent Polar Wander Paths

Chondritic Uniform Reservoir

Central Zone of the Damara Orogen, located on the Congo cratonic
margin

Depleted Mantle

Kaoko Belt, located on the Congo cratonic margin

Laser Ablation Multi-Collector Inductively Coupled Plasma Mass
Spectrometry

Mean Square Weighted Deviation

Northern Foreland Zone of the Damara Orogen, located on the
Congo cratonic margin

Northern Zone of the Damara Orogen, located on the Congo
cratonic margin

Rare Earth Elements

Southern Foreland Zone of the Damara Orogen, located on the
Kalahari cratonic margin

Southern Margin Zone of the Damara Orogen, located on the
Congo cratonic margin

Southern Zone of the Damara Orogen, located on the Kalahari
cratonic margin

Time Resolved Analysis

X-Ray Fluorescence









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

THE CONGO-KALAHARI CRATONIC RELATIONSHIP: FROM RODINIA TO
GONDWANA

By

Brittany Lynn Newstead

August 2010

Chair: David Foster
Major: Geology

Identification of Precambrian suture zones is difficult, in part, because

Precambrian mobile belts typically lack Phanerozoic indicators of ocean closure such as

ultra high pressure (UHP) rocks and ophiolites. Knowledge of the evolutionary paths of

ancient cratons provides valuable insight into the progression of supercontinent cycles.

Utilizing U-Pb and Hf analyses of detrital zircons from the Neoproterozoic Damara Belt,

the orogenic belt between the Congo and Kalahari cratons in southern Africa, we

compared the probable sources of detritus deposited on the margins of these continents

and estimated the proportions of crustal recycling for past orogenic events. The

sedimentary rocks of the Congo and Kalahari margin give distinctive zircon U-Pb age

populations consistent with source terrains within the respective cratons. Detrital zircons

from both cratons display U-Pb age populations at ca. 1000-1100 Ma, though the

population contained in the samples collected along the Congo margin is proportionally

larger, and minor populations are ca. 1800-2200 Ma. The Congo marginal strata also

have a major age population at ca. 600-800 Ma, which the Kalahari marginal strata lack.

The samples collected in the Damara foreland basin in the Nama Group on the Kalahari

craton display a minor U-Pb age population at ca. 600-700 Ma and a major population









at ca. 500 Ma. The populations displayed by the Congo marginal strata are consistent

with a variety of intracratonic sources, including exposed basement inliers: the Angola

basement, the Kuene intrusive complex (anorthosite), the Orue metamorphic terrane

and the Kibara magmatic belt. The populations displayed by zircons collected on the

Kalahari margin are consistent with contributions from a variety of Kalahari sources

including: the Rehoboth Inlier, the Namaqua and Natal provinces, and the Zimbabwe

and Kaapvaal cratons. The provenance and source terrains were different for the Congo

and Kalahari cratonic margins during most of the Neoproterozoic. Only in strata

deposited in the latest Neoproterozoic-Cambrian, during the amalgamation of

Gondwana, were the detrital zircon signatures of the Congo and Kalahari margins

similar. These findings suggest that the Congo and Kalahari cratons were independent

of one another prior to the Damara Orogeny and assembly of Gondwana.









CHAPTER 1
INTRODUCTION

The cycle of accretion and breakup of supercontinents is a consequence of the

ongoing geodynamic processes of plate tectonics and mantle convection. Defining the

supercontinent cycle through geologic time is, therefore, critical for understanding the

geodynamic processes of the Earth. The interactions between many continents and

microcontinents in the Precambrian, however, are poorly resolved due, in part, to

difficulties in distinguishing reactivated mobile belts or i ntracratonic basin inversion from

sutures caused by the closure of oceanic basins. Sutures marking closure of typical

Phanerozoic oceans display ophiolites, ultra-high pressure rocks, and other indicators

that have been largely removed in Precambrian rocks due to orogeny, erosion and

reactivation. Careful study and innovative interpretative methods, however, have

allowed for the identification of ocean basin closure sutures that do not display these

classic features (e.g. Burke et al., 2003). Knowledge of these ancient suture zones,

including their juxtapositions to one another and their petrologic nature (oceanic or

otherwise), is increasingly critical to our understanding of supercontinent evolution and

the individual histories and evolutionary paths of ancient cratons.

The Congo and Kalahari cratons, currently comprising much of southwestern

Africa, once formed the core of the Gondwana supercontinent, yet much of their

evolution prior to that remains unclear. Two conflicting hypotheses have been put forth

concerning their Precambrian relationship. One model postulates that Congo and

Kalahari were connected during and participated in Rodinia (Figure 1-la), were

separated bya small inland sea during rifting, and reconnected during the

amalgamation of Gondwana (e.g., Kroner and Cordani, 2003; Hanson et al., 2004). This









model is based on the similarities in the tectonic and rift-drift sedimentary histories of

the cratons. An alternate model suggests that the cratons existed independently at the

time of Rodinia with no contact before the Damara orogen and the formation of

Gondwana (Figure 1-1 b) and one or both may not have been a component Rodinia at

all (e.g., John et al., 2003; Tohver et al., 2006). Differences in paleomagnetic histories

and similarities in the Neoproterozoic sequences from most continents discount the

similar sedimentary and tectonic histories.

In this study, we analyzed individual detrital zircon grains extracted from

Neoproterozoic continent-derived, plastic, metasedimentary rocks that were originally

deposited along the margins of the Congo and Kalahari cratons during and following

continental rifting (or supercontinental breakup if the cratons were involved in Rodinia).

Geochronologic and Hf-isotopic analysis of detrital zircon grains from samples collected

within the Damara orogenic belt were used to define the provenance of the

metasedimentary rocks currently on the cratonic margins. Distinct U-Pb age populations

and Hf-isotope data reveal different sources and proportions of juvenile and recycled

crust, suggesting contrasting evolutionary histories for the Congo and Kalahari cratons

prior to the amalgamation of Gondwana in latest Neoproterozoic-Cambrian times.














WI"N


60*w


1


A

/'


MI- 1_ )tj

1

S.60
-7^--------


A' nIt.i 11r.r.,% IA L.1 -4.

1 M1- I I I-hI -PA, Ir, Wi,


WN'N





kind..


Arian crato ca 750 TMa

1300 t 10 00 MC motli bLefs


Figure 1-1. Models of Rodinia. A) Inclusive model of Rodinia includes Archean cores of

the Congo and Kalahari cratons. Figure modified from Torsvik, 2003. B)

Exclusive model of Rodinia does not contain the Congo and or Kalahari

cratons. Figure modified from Meert and Torsvik, 2003

















































19


"-a,,
i-hrr


aPim
%fta


Rodnia









CHAPTER
BACKGROUND

The Gondwana supercontinent formed through a series of orogenic events

including ocean basin closure, continental collision, and accretion. Many of the

continental fragments that comprised Gondwana were previously part of the Rodinia

supercontinent and/or related to Laurentia (e.g., Kroner and Cordani, 2003; Tohver et

al., 2006). The relationship of the Congo and Kalahari cratons during this time, to each

other and to Rodinia as a whole, is uncertain. Robust paleomagnetic data and clear

stratigraphic and structural relationships indicate that Congo and Kalahari were

connected when Gondwana was amalgamated at 550-510 Ma (e.g., Meert, 2003; Gray

et al., 2006; Johnson et al., 2006). Late Neoproterozoic paleomagnetic data is

nonexistent for Kalahari and extremely limited for Congo, restricting our knowledge of

the Congo-Kalahari relationship at that time.

Kalahari Craton

The Kalahari craton is composed of an Archaean nucleus partially encircled by

accreted Paleoproterozoic and Mesoproterozoic age belts (Jacobs et al., 2008). The

location of Kalahari within Rodinia remains unresolved. Powell and Pisarevsky (2002)

proposed a model that placed Kalahari adjacent to Western Australia, where the timing

of rifting is consistent with that observed in Kalahari. Their model, however, would

require major rifting along the eastern, rather than the observed western, margin

(Jacobs et al., 2008). Alternatively, Kalahari may have been attached to south-west

Laurentia, along the Namaqua-Natal-Maud Belt (e.g., Kroner and Cordani, 2003;

Jacobs et al., 2008; Li et al., 2008). The apparent polar wander paths (APWP) of

Kalahari and Laurentia merge by ca. 1000 Ma, which is consistent with the timing of









metamorphism along the Namaqua-Natal Belt in Kalahari and that of the Grenville Belt

in southern Laurentia (Li et al., 2008).

Congo Craton

The Congo craton is composed of various Archaean blocks, including the Angola-

Kasai block and the Tanzania craton, which were amalgamated and stabilized by the

end of the Paleoproterozoic (De Waele et al., 2008). The Congo craton's participation in

Rodinia is still a matter of debate. Rocks along the southern margin of the Congo

craton, then attached to the Sao Francisco craton of Brazil, record tectono-magmatic

events concurrent with the amalgamation of Rodinia (De Waele et al., 2008; Li et al.,

2008). This magmatism may indicate that the Congo-Sao Francisco craton collided with,

and became an integral part of, the Rodinia supercontinent. Paleomagnetic data are

compatible with two different positions for the Congo-Sao Francisco craton within

Rodinia (De Waele et al., 2008); it may have been adjacent to the Kalahari craton as

part of Laurentia or sutured to the Amazonia-Rio de la Plata craton (Li et al., 2008).

Both configurations, however, display either overlap with other (better constrained)

cratons, or are incompatible with other geologic evidence in the area, possibly indicating

that the Congo craton was not involved in Rodinia. Kroner and Cordani (2003) and De

Waele et al. (2008) argue, based on paleomagnetic and stratigraphic data, that the

Congo-Sao Francisco craton was an independent body of land. De Waele et al. (2009)

show that the Irumide belt and Paleoproterozoic Bangweulu Block were attached to the

southern margin of the Congo craton by the Mesoproterozoic. The timing of the Irumide

orogeny and that of other Mesoproterozoic orogenic terrains, such as the Choma-

Kaloma along the Kalahari cratonic margin and the Kibaran orogen along the Congo









margin, is consistent with the Congo and Kalahari cratons not having been juxtaposed

in the Mesoproterozoic (De Waele et al., 2009).

Damara Orogeny

Rift magmatism at ca. 800-750 Ma on the margins of both the Congo-Sao

Francisco and the Kalahari cratons, coupled with rift-drift sedimentation shortly

thereafter, indicate that the Congo and Kalahari cratons were not connected following

the rifting of Rodinia (Jacobs et al., 2008; Li et al., 2008). It is yet unresolved whether

the Adamastor Ocean, floored by true ocean crust, separated them, or if a small rift

caused the formation of an inland sea, the Khomas Sea, floored by continental or

transitional crust (e.g., Prave, 1996; Durr and Dingeldey, 1996; Kroner and Cordani,

2003). The cratons ultimately collided during the widespread Pan-African/Brasiliano

orogenic event at 570-500 Ma, forming the Damara-Lufilian-Zambezi Belt (Meert, 2003;

Veevers, 2003). The formation of the Damara belt was contemporaneous with the final

suturing of all major cratonic components in the amalgamation of Gondwana in the

Cambrian.

The Damara Orogen, the inland branch of which is termed the Damara Belt (Fig.

2-1), is a classic divergent orogen. It is dominated by its south-vergent zone, comprised

of the schist fabrics of the Southern Zone and the thrust system of the Southern Margin

Zone. There also exists a high temperature/low pressure metamorphic Central Zone

dominated by granitic plutons and associated metamorphic rocks. The magmatism and

structural asymmetry of the orogen suggest an Andean/Cordilleran style subduction

zone existed prior to collision between 560 and 500 Ma (Gray et al., 2006; Figure 2-2).

The major lithologic elements of the Damara Orogen are Archean and Proterozoic

basement inliers, Neoproterozoic passive margin carbonates (Otavi facies),









Neoproterozoic deep water turbidites (Swakop facess, and Neoproterozoic-Cambrian

foreland basin deposits (molasses) of northern and southern Namibia (Mulden and

upper Nama groups, respectively; Figure 2-3). The several kilometers thick

Neoproterozoic Damara Sequence is one of the most widespread units in the orogen.

These Neoproterozoic and Cambrian sequences are intruded by Pan-African aged

granitic plutons throughout the orogen.

Deposition of the Damara Sequence occurred between ca. 770 and 600 Ma,

effectively spanning the Neoproterozoic (Prave, 1996). It is composed of two major

groups: 1) the basal Nosib group, dominated by rift-related siliciclastics such as

quartzites, conglomerates and arenites, with a U-Pb and Pb-Pb age constraint at ca.

750 Ma (Prave, 1996), and 2) the overlying Otavi Group, composed of turbiditic

greywacke, pelitic schists, psammites, and occasional mafic schists (Johnson et al.,

2006). The Otavi Group contains two turbiditic carbonate formations, parts of which

have been correlated with other formations interpreted to be ca. 750-735 Ma and ca.

700 Ma (Frimmel, 1995). The uppermost Otavi also contains the extensive Kuiseb

Formation, dominated by turbiditic greywacke and pelitic schists.










Angola


Namibia


0
O













KAHOO SE OU NCE
- o wtcac tacies

PAN-AFRICAN GRANITES
ii Pos1-eonic
" Syn post t1cnc


- -;;


N HERN ZONE
DAMARA BELT
CETRAL ZONE

SOUTHERN ZONE


C


SEDIMENTARY AND VOLCANIC ROCKS




Rl, |A tfnenet
fA- t rvp o 4Atll' D*A rWM I *4
Irelikcwic L I A w <-H-,V


SCongo .clSon
""<:' "/'* ":" /









crayon




Figure 2-1. Geologic map of the Damara Orogen in central Namibia. Modified from Gray
et al., 2006.











Ma lubde fan
AmiboS HakosI Nappe Naukluft Napp s
KuKib Sc, N ilt-- 'a BXorm



turbi t Barrovan
metamorphism aon
higrh Mw P 100 km
mmr#tphirn( *(w "


Figure 2-2. Structural cross section of the Damara Orogen. Modified from Gray et al.,
2006.


Caa Kaoko Belt E

Coastal Orogen Escape Easte
Terrane Core Zone Foreland
TPMZ PMZ ST
Coastal I
Terrane Congo Provenance
S Provenance Exhumation
f .t Transtension

S| uae Transpression
G L'D -Metamorphism
Collision
60( T~sumeb Subsidence
ubgamIP Khua p Subgroup

Arc .635Ma Glacration
Subduction
S*wak% 'Ugb rn.1. Abenab
Coastal Grut Subgroup GrouD Subgroup Subsidence
Terrane
700 sequonc
715Ma Glaciation
Transgression

Ombombo
Ncn ubgrou Rifting I

80rp Group

Stostrree & Star trf &
Goscombe & Gray ( Chatrieswoth 2 i00 (, v, 2h Ha1vwfon eO al, 2001 A
Goscombe et at, A?
TPMZ Three Palms Mytonte Zone, PMZ Purmsr Mlonie Zone ST Sesfonten Thrust OT: OutjoThrus, AFAutseib Fault,
OL Okahandja Linearment MMD: Man Meiamorphc Disconhnuif UPL Uhs Pass Line HFT Hakos Frontal Thrust,
NST Nauktuft Sole Thrust SBT Schakalsberge Thrust











Damara Orogen Inland Branch


L -Jr.turfrrl .

'/h &Is I. .1 J*V


no IP '


f .S J Z rfl t* e at! w ,? f I: *b ti -4" *', ..,, ,,,;.
B
|mu a o I l IIW lllA BI) was D aft y -if wi ,wn ai mp


Gariep Belt
Port Nolith MarmorA
Zone Terrane
Thrusts S8T 11S5Ma
Kalaharld 1220Ma Exhumation
Provenance 1860MA Convergence
Provenance

Metamorphism
CoJ#sson
Subduction

cr e.n Spreading
635Ma Glacortor,

... -,...-~ Subs dence

70 Breakup
715Ma Glaciator,
"- I T Transgression



*I I Qtf
800

Fmennme. Mob Frn"w 2a C


Figure 2-3. Stratigraphic column of the Damara Orogen with collected samples labeled
in appropriate strata. A) Stratigraphic column of the Kaoko Belt of the Damara
Orogeny. B) Stratigraphic column of the Damara Belt of the Damara Orogeny.
C) Stratigraphic column of the Gariep Belt of the Damara Orogeny.









CHAPTER 3
METHODS

We collected samples of metasedimentary and igneous rocks from the Damara

Belt and surrounding regions in 2006 and 2009. Approximately 35 samples were

collected in 2006 and 50 samples were collected in 2009. Representative samples were

chosen from all major stratigraphic groups along the former Neoproterozoic-Cambrian

margins of the Congo and Kalahari cratons (Figure 3-1). A majority of the samples

collected were metamorphosed sandstones (psammites) that were likely to have detrital

zircon populations. A few pelitic samples were also collected for 40Ar/39Ar and Sm/Nd

isotopic analysis. Samples were chosen for freshness and apparent mineralogical

composition.

Detrital Zircon Analysis

U-Pb geochronology was conducted on detrital zircons from 15 samples of

metasedimentary rock collected from strata deposited along the margin of the Congo

craton and on 8 samples collected from strata deposited along the margin of the

Kalahari craton. Samples were collected from a variety of structural/metamorphic zones

across the Damara orogen between the cratons (Figure 2-3). Samples were collected

from the following structural zones: the Northern Foreland Zone, the Northern Zone, the

Central Zone, the Southern Zone, the Southern Margin Zone, the Southern Foreland

Zone, and the Kaoko Belt. Analyses were also conducted on a granitic pluton from the

Northern Zone and granitic gneissic basement from the Central Zone to investigate the

zircon populations in potential source rocks for detrital zircons.

U-Pb analyses of zircons were performed by LA-MC-ICP-MS following methods

described herein. 206Pb/238U ages were used for grains displaying ages <1 Ga and









207pb/206pb ages were used for grains displaying ages >1 Ga. The analyses were

plotted on conventional concordia diagrams and cumulative density diagrams using

ISOPLOT (Ludwig, 1995) to assess discordance due to multistage Pb loss,

metamorphism or mixing of growth zones and to determine source terrains. Discordant

grains that plotted along reliable discordia were assumed to be of the upper intercept

age and are included in probability plots as such. Discordant analyses that did not

intersect the concordia curve or plot along discordia were generally removed from

consideration and are not included in age populations plotted on histograms and

cumulative probability plots because of the possibility of multiple stages of Pb loss and

metamorphism and/or recrystallization.

Lu-Hf isotope analysis was conducted on detrital zircons from 15 metasedimentary

samples and two granitic samples collected from the Congo margin strata and on seven

samples collected from the Kalahari craton margin strata. EHf values were calculated

using the respective U-Pb ages of the adjacent laser ablation pits (DM and CHUR

values as summarized by Mueller et al., 2008). The Hf isotope data along with the U-Pb

ages were used to determine proportions of juvenile and recycled crust during orogenic

and magmatic events on the cratons, and potentially discriminate between populations

of zircons with similar U-Pb ages.

Samples were purified by standard density separation methods to attain zircon

concentrates and handpicked for mineral purity before being mounted in an epoxy block

and polished to expose the central regions of the grains. U-Pb and Hf isotopic analyses

were conducted at the University of Florida, Department of Geological Sciences, on a

Nu Plasma multicollector inductively coupled plasma source mass spectrometer (MC-









ICP-MS) equipped with three ion counters and 12 Faraday detectors. Data calibration

and drift corrections were based on multiple ablations of the reference zircons from the

Duluth Gabbro (Paces and Miller, 1993) collected from the Forest Center location (FC-

1).

Whole Rock Analysis

Representative samples from throughout the region were also analyzed for trace

element compositions on an Element2 HR-ICP-MS at the University of Florida,

Department of Geological Sciences. Samples were powdered using agate coated

cylinders to eliminate contamination. Quantification of the results was done by external

calibration using a combination of appropriate United States Geological Survey (USGS)

rock standards including andesite (AGV-1) and basalts (BCR-2 and BIR-1; as described

in USGS reference material). Splits of the samples were sent for XRF whole-rock major

element analysis to the Ontario Geological Survey in the Geoscience Laboratories.

Radiogenic isotopic analyses were performed at the University of Florida,

Department of Geological Sciences. Splits of approximately half of the sample powders

used for Nd analysis were spiked with the 149Sm/150Nd Menlo Park isotopic spike. Nd

and Pb were separated using standard chromatographic methods in a clean laboratory.

Nd isotope measurements were conducted with the Nu-Plasma "Time-Resolved

Analysis" (TRA) software. Calibration and drift corrections were based on repeated

sampling of the JNdi-1 standard (described in Tanaka et al, 2000). Pb isotopic analyses

were also conducted on the Nu Plasma MC-ICP-MS using the TI analyzation technique

described in Kamenov et al. (2004).


















KAROO SCOUENCE I
I lcarc tare\
PAN- A Hi. AP, P .HA*.rli- \ r- 1


S)DIMPENTARY AN VO( CANC ROC




lr -, l r .- ..- -
I -- .. ~. M.-M.


Northern Zone


L -'


;6I


KAROO StOuENCE
anolaurnert iso
PAN' AACAN GRANITE


SEDIMNTIARY AND VOLCANC ROCKS
:,... ..


u ...... ..... ......

6-'b qi r ii,,pi'r
I- T l .,rl .-


Namibia


at..












0,/ 1 U / r/W

KAROO SEt EE QUEN ""
.
PAN AFRCAN GRANITES
I C

SEDMENTARY AND VOLCANIC ROCKS




analyzed samples marked. A) Samples collected in northern Namibia in the







FNamibiigure 3-1. Geologic maps of the Damara O rogen with the location of collection for a II
analyzed samples marked. A) Samples collected in northern Namibia in the
Northern Foreland Zone and Northern Zone. B) Samples collected in central
Namibia from the Central Zone, Southern Zone and Southern Margin Zone.
C) Samples collected in southern Namibia from the Southern Fore land Zone.
Map modified from Gray et al., 2006.









CHAPTER
RESULTS

Detrital Zircon Geochronology

Northern Foreland Zone

Sample BDG06-91 from the Mulden Formation (Table 4-1), which has an

approximate stratigraphic age of 560 Ma (Hoffmann et al., 2004), contains four distinct

clusters of concordant grains (Figure 4-1a). The concordant clusters occur at ca. 550-

700 Ma, 950 Ma, 1850-2000 Ma and 2600 Ma. Two grains plot along a discordia with a

lower intercept of 220 200 Ma and an upper intercept of 2568 11 Ma (Figure 4-1 b).

Of the 40 grains sampled 15, or 38%, were concordant and 2, or 5%, plotted along a

discordia. Probability density plots of concordant grains and the upper intercept ages of

grains plotted along a discordia from BDG06-91 display age populations, in descending

order of relative abundance, at ca. 2566, 2600-2615, 1975-1980, 1875, 580-640, 1010

and 910 Ma (Figure 4-1c).

Northern Zone

Sample DF09-26, from the basal member of the Kuiseb Schist in the Northern

Zone (Table 4-2), has an approximate stratigraphic age of 615 Ma (Hoffmann et al.,

2004). The U-Pb concordia plot displays two distinct clusters of concordant grains at ca.

600-800 Ma and 875-1150 Ma and individual concordant grains at ca. 1700 and 1850

Ma (Figure 4-2a). Four of the discordant grains plot along a discordia with a lower

intercept of 165 110 Ma and an upper intercept of 1114 24 Ma (Figure 4-2b). Of the

78 grains sampled 48, or 62%, were concordant and 4, or 5%, plotted along a discordia

line. Probability density plots of concordant grains and the upper intercept ages of

grains plotted along the discordia from sample DF09-26 display age populations, in









descending order of relative abundance, at ca. 1115, 1030, 620, 920, 690, 780, 745,

1880, 1760 and 840 Ma (Figure 4-2c). EHf values of select concordant grains range

primarily between 0 and +10 with U-Pb ages mainly between 1140 and 600 Ma, except

for a single outlying grain with a value of -3.6 and a U-Pb age of 1875 Ma (Table 4-27;

Figure 4-2d). Lu-HfDM model ages calculated from Hf ratios measured in sample DF09-

26 range from ca. 800-1400 Ma for most of the grains with a minor age range of ca.

2000 to 2300 Ma (Figure 4-2e).

Sample DF09-30 is from an upper section of the Kuiseb Schist in the Northern

Zone (Table 4-3) and has a stratigraphic age of approximately 590 Ma (Hoffmann et al.,

2004). The U-Pb concordia plot displays four discrete concordant points which occur at

ca. 625 Ma, 1375 Ma, 1800 Ma and 2000 Ma (Figure 4-3a). The discordant grains are

quite scattered but many plot along a discordia with an apparent lower intercept of 206

210 Ma and an upper intercept of 1994 13 Ma (Figure 4-3b). Of the 28 grains

sampled 4, or 14%, were concordant and 10, or 36%, plotted along a discordia line.

Probability density plots of concordant grains and the upper intercept ages of grains

plotted along a discordia from sample DF09-30 display an age population at ca. 2021

Ma and individual grain ages of ca. 625, 1380 and 1825 Ma (Figure 4-3c). EHf values of

select concordant grains range primarily between -6 and -9 with U-Pb ages of ca. 2000

Ma, except for two outlying grains with EHf values of +4 and +1 with U-Pb ages of 1381

and 1824 Ma, respectively (Table 4-28; Figure 4-3d). Lu-HfDM model ages calculated

from Hf ratios measured in concordant grains from sample DF09-30 display a major

population at 2625-2700 Ma and a minor age range at 1700 to 2200 Ma (Figure 4-3e).









Central Zone

Sample DF09-44, from the Etusis Formation of the Nosib Group in the Central

Zone (Table 4-6), has an approximate stratigraphic age of 780 Ma (Hoffmann et al.,

2004). This formation is in stratigraphic contact with the basement. The concordia

diagram displays a single cluster of concordant grains at ca. 950-1050 Ma and one

concordant grain at ca. 2050 Ma (Figure 4-4a). A majority of the discordant grains plot

along a discordia with a lower intercept of 451 45 Ma and an upper intercept of 1057 +

11 Ma (Figure 4-4a) or along one with a lower intercept of 833 250 Ma and an upper

intercept of 2078 39 Ma (Figure 4-4b). Of the 60 grains sampled 29, or 48%, were

concordant and 24, or 40%, plotted along the discordia lines. A probability density plot

of concordant grains and the upper intercept ages of grains plotted along the discordia

from DF09-44 displays age populations, in descending order of relative abundance, at

ca. 1050, 1020, 2030-2070 and 945 Ma (Figure 4-4c). The population at 1050 Ma is

more than twice as abundant as the one at 1020 Ma. EHf values of select concordant

grains range primarily between -22 and -17 for grains with U-Pb ages of ca. 1000-1060

Ma, excepting two outlying grains with values of -3.2 and +0.5 and U-Pb ages of 2046

and 2078 Ma. respectively (Table 4-30; Figure 4-4d). Lu-HfDM model ages calculated

from Hf ratios measured in sample DF09-44, in descending order of abundance, display

age ranges at ca. 2250-2300, 2220-2240, 2320-2350, 2380-2420 and 2500 Ma (Figure

4-4e).

Sample CZ29 is from the Khan Formation of the Upper Nosib Group in the

northern Central Zone (Table 4-7) and has an approximate stratigraphic age of 750 Ma

(Hoffmann et al., 2004). The concordia plot displays two distinct clusters of concordant

grains at ca. 1000-1050 Ma and 1950-2050 Ma (Figure 4-5a). A majority of discordant









grains plot along a discordia line with a lower intercept of 212 250 and an upper

intercept of 1026 26 Ma (Figure 4-5b). Of the 19 grains sampled 4, or 21 %, were

concordant and 3, or 16%, plotted along the discordia line. Probability density plots of

the concordant grains and the upper intercept ages of grains plotted along the discordia

from CZ29 display age populations, in descending order of relative abundance, at ca.

1025, 2030 and 1010 Ma (Figure 4-5c). EHf values of four concordant grains with U-Pb

ages of 1000-1050 Ma range between -18 and -12 (Table 4-31; Figure 4-5d). Another

concordant grain with a U-Pb age of 2030 Ma display EHf values of -3.1. Lu-HfDM model

ages calculated from Hf ratios measured in sample CZ29 display populations at ca.

2050 and 2450 Ma with a less abundant age range of 2000 to 2200 Ma (Figure 4-5e).

Sample CZ40 is from the Rossing Formation in the Central Zone (Table 4-8) and

has an approximate stratigraphic age of 740 Ma (Hoffmann et al., 2004). The concordia

plot displays two distinct clusters of concordant grains at ca. 1000-750 Ma and 2000-

1800 Ma and an individual concordant grain at ca. 2650 Ma (Figure 4-6a). The only

discordant grain plots slightly above the concordia at ca. 2900 Ma. Of the 14 grains

sampled 13, or 93 %, were concordant. Probability density plots of the concordant

grains from CZ40 display age populations, in descending order of relative abundance,

at ca. 1800-1850, 900-1000, 1900-1950, 800 and 2650 Ma (Figure 4-6b).

Sample CZ53b, from the Tinkas Formation in the Upper Otavi Group in the

southern Central Zone (Table 4-9), has an approximate stratigraphic age of 700 Ma

(Hoffmann et al., 2004). The concordia plot of these data shows two clusters of

concordant grains at ca. 550-850 and 850-1150 Ma (Figure 4-7a). One discordant grain

plots along a discordia with a lower intercept of 833 170 Ma and an upper intercept of









1106 93 Ma (Figure 4-7b). Of the 110 grains sampled 63, or 57%, were concordant

and 1, or 1%, plotted along the discordia line. Probability density plots of the concordant

grains and the upper intercept ages of grains plotted along the discordia from CZ53b

display age populations, in descending order of relative abundance, at ca. 640, 1050,

700, 1090, 760, 1145, 1000 and 890 Ma (Figure 4-7c). EHf values of select concordant

grains range primarily between 0 and +13 with U-Pb ages ranging from ca. 1145 to 630

Ma, excepting three outlying grains with EHf values ranging between -15 and -13 and U-

Pb ages between ca. 1050 and 980 Ma (Table 4-32; Figure 4-7d). Lu-HfDM model ages

calculated from Hf ratios measured in sample CZ53b display populations, in decreasing

order of relative abundance, at ca. 1100-1150, 1175-1280, 1050-1100, 1400, 900-950,

1350, 1450-1525 and 2050 with a less abundant age range of 1600 to 2100 Ma (Figure

4-7e).

Sample CZ35 is from the Karibib Formation of the Mulden Group in the northern

Central Zone (Table 4-10) and has an approximate stratigraphic age of 600 Ma

(Hoffmann et al., 2004). The concordia plot displays two distinct clusters of concordant

grains at ca. 600-850 Ma and 900-1200 Ma and an individual concordant grain at ca.

2025 Ma (Figure 4-8a). Of the 110 grains sampled 75, or 68%, were concordant.

Probability density plots of concordant grains from CZ35 display age populations, in

descending order of relative abundance, at ca. 745, 680, 1090, 1050, 1010, 975, 820,

2020, 1340 and 900 Ma (Figure 4-8c). Grains with U-Pb ages between ca. 1130 and

630 Ma display EHf values of select concordant grains range primarily between -6 and

+11, except three outlying grains with values ranging between -13 and -10 and U-Pb

ages between ca. 1340 and 700 Ma and one with a value of +27 and a U-Pb age of ca.









2025 Ma (Table 4-33; Figure 4-8d). Lu-HfDM model ages calculated from Hf ratios

measured in sample CZ35 display populations, in descending order of relative

abundance, at ca. 1075-1100, 1275-1300, 1150, 1200, 1350, 950-1050 and 1650 with

less abundant age ranges from 1400 to 1800 and 2100 to 2300 Ma (Figure 4-8e).

Southern Zone

Sample DF06-22 (SZ40), with an approximate stratigraphic age of 635 Ma

(Hoffmann, 1997), is from the Kuiseb Schist within the Matchless Amphibolite Belt in the

Southern Zone (Table 4-11). The U-Pb concordia plot displays a wide spread of

concordant grains with no distinct clustering (Figure 4-9a). A majority of the discordant

grains plot along a discordia line with a lower intercept of 349 110 Ma and an upper

intercept of 1981 26 Ma (Figure 4-9b). Of the 38 grains sampled 11, or 29%, were

concordant and 5, or 13%, plotted along the discordia line. Probability density plots of

the concordant grains and the upper intercept ages of grains plotted along the discordia

from DF06-22 display age populations, in descending order of relative abundance, at

ca. 1980, 2975, 515, 2125, 630, 725, 2530, 965 and 1775 Ma (Figure 4-9c). EHf values

of select concordant grains range primarily between +3 and +11 with U-Pb ages from

ca. 975 to 520 Ma and between -8 and +2 for grains with U-Pb ages between ca. 2130

and 1960 Ma, excepting outlying grains with values of -13, -58 and +1.5 and U-Pb ages

of 973, 2540 and 2980 Ma, respectively (Table 4-34; Figure 4-9d). Lu-HfDM model ages

calculated from Hf ratios measured in sample DF06-22 range from ca. 2275-2425,

2530-2610, 1850-2000, 680-1400 and 3100-4600 Ma (Figure 4-9e).

Sample SZ13 is from the Kuiseb Formation of the Khomas Group in the northern

Southern Zone (Table 4-12) and has an approximate stratigraphic age of 600 Ma

(Hoffmann, 1997). The U-Pb concordia plot displays two distinct clusters of concordant









grains at ca. 600-800 Ma and 900-1100 Ma and two individual concordant grains at ca.

1875 and 2025 Ma (Figure 4-10a-b). Several of the discordant grains plot along a

discordia with a lower intercept of 650 40 Ma and an upper intercept of 1411 74 Ma

(Figure 4-10c). Of the 108 grains sampled 37, or 34%, were concordant and 8, or 7%,

plotted along the discordia line. Probability density plots of the concordant grains and

the upper intercept ages of grains plotted along the discordia from SZ13 display age

populations, in descending order of relative abundance, at ca. 675, 750-780, 1400, 950,

1060, 620, 1880 and 2040 Ma (Figure 4-10d). EHf values of select concordant grains

range primarily between -6 and +9 for grains with U-Pb mainly between 1100 and 590

Ma and between +10 and +17 for grains with U-Pb ages of ca. 1410 Ma (Table 4-35;

Figure 4-10e). Outlying grains display EHf values of +26, +14, +23, -7 and +4 with U-Pb

ages of 956, 1035, 1411, 1883 and 2043 Ma, respectively. Lu-HfDM model ages

calculated from Hf ratios measured in sample SZ13 display populations, in descending

order of relative abundance, at ca. 1000, 1200-1250, 1350-1400, 440-900, 1100, 1450-

1500, 1600-1650 and 1750- 2500 Ma (Figure 4-1 Of).

Southern Margin Zone

Sample DFO9-12a is from the Hakos Formation of the Kudis Subgroup in the

Southern Margin Zone (Table 4-13) and has an approximate stratigraphic age of 680

Ma (Hoffmann, 1997). The U-Pb concordia diagram displays a single cluster of

concordant grains at ca. 1000-1550 Ma and two concordant grains at ca. 1900 Ma

(Figure 4-11 a). Many of the discordant grains plot along a discordia with a lower

intercept of 388 71 Ma and an upper intercept of 1901 18 Ma (Figure 4-11b). Of the

68 grains sampled 42, or 62%, were concordant and 5, or 7%, plotted along the

discordia line. Probability density plots of concordant grains and the upper intercept









ages of grains plotted along the discordia from DF09-12a display age populations, in

descending order of relative abundance, at ca. 1900, 1235, 1200, 1345, 1040, 1120,

1485, 1280, 1570 and 1930 Ma (Figure 4-1 1c). EHf values of select concordant grains

from sample DF09-12a range between -5 and +6 with U-Pb ages between ca. 1940 and

1020 Ma (Table 4-36; Figure 4-11 d). Lu-HfDM model ages calculated from Hf ratios

range, in order of relative abundance, from ca. 1350-1530, 1630-1780, 1600, 1850-

1900, 2000 and 2050-2420 Ma (Figure 4-11e).

Sample DF09-04, with an approximate stratigraphic age of 625 Ma (Hoffmann,

1997), is from the Naos Diamictite in the Southern Margin Zone (Table 4-14). The

sample set contains two distinct clusters of concordant grains at ca. 1000-1350 Ma and

1700-2000 Ma (Figure 4-12a). A majority of the discordant grains follow the curve of the

concordia line but are slightly offset from it with no discordia line formed. Of the 60

grains sampled 41, or 68%, were concordant. Probability density plots of concordant

grains and the upper intercept ages of grains plotted along the discordia from DF09-04

display age populations, in descending order of relative abundance, at ca. 1225, 1155,

1115, 1785, 1330-1350, 1880, 1260, 1300, 1020-1050, 1400, 1990, 1850, 1520 and

1915 Ma (Figure 4-12b). EHf values of select concordant grains range primarily between

-2 and +3 with U-Pb ages primarily at ca. 1525-1060 Ma and one grain with an age of

1990 Ma, and one outlying grain with a value of -6.2 and a U-Pb age of 1262 Ma (Table

4-37; Figure 4-12d). Lu-HfDM model ages calculated from Hf ratios measured in sample

DF09-04 range between ca. 1500-1750, 1825-1900 and 1975-2300 Ma (Figure 4-12e).

Southern Foreland Zone

Sample DF06-40 is from the Kuibis Formation of the Nama Group in the Southern

Foreland Zone (Table 4-15) and has a stratigraphic age of approximately 600 Ma









(Hoffmann, 1997). The U-Pb concordia plot displays four distinct clusters of concordant

grains at ca. 1050 Ma, 1350 Ma, 2000-2100 Ma, and 2600 Ma (Figure 4-13a). A

majority of the discordant grains plot along three distinct discordia with lower intercepts

of 643 55, 795 70 and 894 99 Ma and upper intercepts of 2695 + 12, 1392 65

and 2166 20 Ma, respectively (Figure 4-13b-c). Of the 60 grains sampled 17, or 28%,

were concordant and 19, or 32%, plotted along the discordia lines. Probability density

plots of the concordant grains and the upper intercept ages of grains plotted along the

discordia from DF06-40 display age populations, in descending order of relative

abundance, at ca. 2165, 2700, 2030-2045, 1085, 1355-1375, 2110, 2555 and 1895 Ma

(Figure 4-13d). EHf values of select concordant grains from sample DF06-40 range

between -10 and +9 with U-Pb age ranging from ca. 2700 to 1085 Ma (Table 4-38;

Figure 4-13e). Lu-HfDM model ages calculated from Hf ratios range, in order of relative

abundance, from ca. 1400-1550, 2850-3000, 2400-2850 and 1900-2350 Ma (Figure 4-

13f).

Sample DF06-41 is from the Schwarzrand Subgroup of the Nama Group in the

Southern Foreland Zone (Table 4-16) and has a stratigraphic age of approximately 580

Ma (Hoffmann, 1997). The U-Pb concordia plot displays three distinct clusters of

concordant grains at 800-1100 Ma, 2300-2600 Ma and 3300 Ma (Figure 4-14a). There

is also an individual concordant grain at ca. 2800 Ma. A majority of the discordant grains

plot along two distinct discordia with lower intercepts of 496 39 and 1806 240 Ma

and upper intercepts of 896 99 and 2879 88 Ma, respectively (Figure 4-14b-c). Of

the 60 grains sampled 36, or 60%, were concordant and 11, or 18%, plotted along the

discordia lines. Probability density plots of the concordant grains and the upper intercept









ages of grains plotted along the discordia from DF06-41 display age populations, in

descending order of relative abundance, at ca. 2055, 2060-2120, 1015-1045, 2025,

1980, 1110, 835-925, 2840, 3400, 3335, 2565, 2475-2480, 2440, 2310 and 825 Ma

(Figure 4-14d). EHf values of select concordant grains range primarily between -9 and

+12 for grains displaying U-Pb ages ranging from 3336 to 833 Ma, excepting one

outlying grain with a value of -14 and a U-Pb age of 900 Ma (Table 4-39; Figure 4-14e).

Lu-HfDM model ages calculated from Hf ratios measured in sample DF06-41 range, in

descending order of relative abundance, from ca. 1180-1300, 1500-1620, 950-1000,

2700-2800, 1650-2600 and 2900-3800 Ma (Figure 4-14f).

Sample DF06-46, from the Schwarzrand Subgroup of the Nama Group in the

Southern Foreland Zone (Table 4-17), has an approximate stratigraphic age of 560 Ma

(Hoffmann, 1997). The U-Pb concordia plot displays two clusters of concordant grains

at ca. 600 Ma and 1000 Ma (Figure 4-15a). A majority of the discordant grains plot

along a discordia with a lower intercept of 153 52 Ma and an upper intercept of 1058 +

11 Ma (Figure 4-15b). Of the 40 grains sampled 6, or 15%, were concordant and 10, or

25%, plotted along the discordia line. Probability density plots of concordant grains and

the upper intercept ages of grains plotted along the discordia from DF06-46 display age

populations, in descending order of relative abundance, at ca. 1060, 585 and 1025 Ma

(Figure 4-15c). The population at ca. 1060 Ma is more than twice as abundant as the

one at ca. 585 Ma.

Sample DF06-45, from the Fish River Formation in the Nama Group of the

Southern Foreland Zone (Table 4-18), has an approximate stratigraphic age of 535 Ma

(Hoffmann, 1997). The U-Pb concordia plot displays three distinct clusters of









concordant grains at ca. 550-700 Ma, 850-1100 Ma, and 2100-2250 Ma (Figure 4-16a-

b). A majority of the discordant grains plot along a discordia with a lower intercept of

120 49 Ma and an upper intercept of 1058 14 Ma (Figure 4-16c). Of the 60 grains

sampled 39, or 65%, were concordant and 6, or 10%, plotted along the discordia line.

Probability density plots of the concordant grains and the upper intercept ages of grains

plotted along the discordia from DF06-45 display age populations, in descending order

of relative abundance, at ca. 540, 1055, 645, 2090, 2215, 865 and 940 Ma (Figure 4-

16d). The population at ca. 540 Ma is approximately twice as abundant as the one at

ca. 1055 Ma. EHf values of select concordant grains range primarily between -8 and -2

for grains with U-Pb ages between ca. 650 and 1050 Ma excepting four outlying grains

with EHf values of +2, +4, +8 and +1 with U-Pb ages of 535, 553, 1064 and 2223 Ma

(Table 4-40; Figure 4-16e). Lu-HfDM model ages calculated from Hf ratios measured in

sample DF06-45 range, in descending order of relative abundance, from ca. 1220-1460,

1460-1550, 980-1010 and 1600-2520 Ma (Figure 4-16f).

Sample DF06-44, from the Fish River Formation in the Nama Group of the

Southern Foreland Zone (Table 4-19), has a stratigraphic age of approximately 530 Ma

(Hoffmann, 1997). The U-Pb concordia plot displays two distinct clusters of concordant

grains at ca. 500-750 Ma and 950-1100 Ma and two individual concordant grains at ca.

1850 and 1950 Ma (Figure 4-17a-b). A majority of the discordant grains plot along a

discordia with a lower intercept of 444 20 Ma and an upper intercept of 1095 10 Ma

(Figure 4-17c). Of the 60 grains sampled 33, or 55%, were concordant and 7, or 12%,

plotted along the discordia line. Probability density plots of the concordant grains and

the upper intercept ages of grains plotted along the discordia from DF06-44 display age









populations, in descending order of relative abundance, at ca. 1100, 1045, 615, 525-

530, 660, 730, 945, 1925 and 1480 Ma (Figure 4-17d). The population at ca. 1100 Ma is

approximately twice as abundant as the one at ca. 1045 Ma. EHf values of select

concordant grains range primarily between -10 and +16 for grains with U-Pb ages that

range from ca. 1485 to 520 Ma, excepting one outlying grain with a value of -23 and a

U-Pb age of 954 Ma (Table 4-41; Figure 4-17e). Lu-HfDM model ages calculated from Hf

ratios measured in sample DF06-44 range, in descending order of relative abundance,

from ca. 1650-1800, 1350-1500, 925-1300 and 1850-2350 Ma (Figure 4-17f).

Sample DF06-43, from the Fish River Formation in the Nama Group of the

Southern Foreland Zone (Table 4-20), has an approximate stratigraphic age of 525 Ma

(Hoffmann, 1997). The data plotted on a conventional concordia plot show four distinct

clusters of concordant grains at ca. 550-650 Ma, 830-900 Ma, 1000-1150 Ma, and

1850-1950 Ma (Figure 4-18a-b). A majority of discordant grains plot along a discordia

with a lower intercept of 302 49 Ma and an upper intercept of 1087 14 Ma (Figure 4-

18c). Of the 60 grains sampled 30, or 50%, were concordant and 6, or 10%, plotted

along the discordia line. Probability density plots of the concordant grains and the upper

intercept ages of grains plotted along the discordia from DF06-43 display age

populations, in descending order of relative abundance, at ca. 1085, 840, 1055, 550,

610, 1870 and 1930 Ma (Figure 4-18d). EHf values of select concordant grains range

primarily between -7 and +12 for grains with U-Pb age ranging from ca. 1935 to 560 Ma

(Table 4-42; Figure 4-18e). Lu-HfDM model ages calculated from Hf ratios measured in

sample DF06-43 range, in descending order of relative abundance, from ca. 1300-1450,

1000-1180, 1290-1325, 1500-1620, 1700-2000 and 2300-2600 Ma (Figure 4-18f).









Granitic Rocks

Sample DF09-37, from a granitic pluton in the Northern Zone (Table 4-4), contains

a single population of concordant grains at ca. 525 Ma on a U-Pb concordia diagram

(Figure 4-19a). Several of the discordant grains plot along a discordia with a lower

intercept of 41 99 and an upper intercept of 604 22 (Figure 4-19b-c). Of the 26

grains sampled 6, or 23%, were concordant and 6, or 23%, plotted along the discordia

line. The weighted mean age of crystallization using 206 Pb/238 U for concordant grains

from DF09-37 is 511.3 6.6 Ma with 95% confidence and an MSWD of 0.82 (N=6;

Figure 4-19d).

Sample DF09-43 is from the granitic gneiss basement rock of the Central Zone

(Table 4-5), below the Nosib Group sample, DF09-44. The U-Pb concordia diagram

displays a single cluster of concordant grains at ca. 950-1050 Ma and one discrete

concordant grain ca. 520 Ma (Figure 4-20a). A majority of the discordant grains plot

along a discordia with a lower intercept of 277 140 Ma, an upper intercept of 1036

11 Ma and an MSWD of 2.8 (Figure 4-20b). Of the 70 grains sampled 48, or 69%, were

concordant and 14, or 20%, plotted along the discordia line. The concordant grains from

DF09-43 display a weighted mean age of crystallization of 1027.9 2.2 Ma with 95%

confidence and an MSWD of 1.2 using 207 Pb/206 Pb ages for grains with ages >1.0

Ga and 206 Pb/238 U for grains with ages <1.0 Ga (N=38; Figure 4-20c). EHf values of

select concordant grains range primarily between -20 and -11 with U-Pb ages between

ca. 1045 and 1030 Ma, excepting three outlying grains with values of -22.5, -22.5 and -

26 with U-Pb ages of ca. 1023, 1055 and 514 Ma, respectively (Table 4-29; Figure 4-

20d). Lu-HfDM model ages calculated from Hf ratios measured in sample DF06-43









range, in descending order of relative abundance, from ca. 2100-2200, 2200-2450, and

1950-2100 Ma (Figure 4-20e).

Kaoko Belt

Sample DF06-18, from the Hoanib River Formation of the Nosib Group in the

central Kaoko Belt (Table 4-21), has an approximate stratigraphic age of 770 Ma

(Stanistreet and Charlesworth, 2001). The U-Pb concordia diagram displays three

distinct clusters of concordant grains at ca. 800-1200 Ma, 1850-2050 Ma and 2600 Ma

(Figure 4-21 a). A majority of discordant grains plot along two discordia with lower

intercepts of -403 680 and -96 290 Ma and upper intercepts of 1858 18 and 2049

8.5 Ma, respectively (Figure 4-21 b). Of the 80 grains sampled 27, or 34%, were

concordant and 7, or 9%, plotted along the discordia line. Probability density plots of the

concordant grains and the upper intercept ages of grains plotted along the discordia

from DF06-18 display age populations, in descending order of relative abundance, at

ca. 2050, 1850-1865, 2625, 2085, 1210, 980, 1020-1040, 1090, 1115 and 800 Ma

(Figure 4-21 c). EHf values of select concordant grains range primarily between -18 and

+4 for grains with U-Pb ages of 980 to 1225 Ma and between -7 and +3 for grains with

U-Pb ages of 1855 to 2055 Ma (Table 4-43; Figure 4-21d). Outlying grains display EHf

values of -26 and +3 with U-Pb ages of 811 and 1090 Ma, respectively. Lu-HfDM model

ages calculated from Hf ratios measured in sample DF06-18 range from ca. 1460-1950,

2070-2160, 2250-2260, 2350 and 2470-2550 Ma (Figure 4-21 e).

Sample DF09-38, from the Ogden Mylonite in the Coastal Terrain (Table 4-22),

has an approximate stratigraphic age of 760 Ma (Goscombe and Gray, 2008). The U-Pb

concordia diagram displays a single cluster of concordant grains at ca. 1850 Ma and

one concordant grain at ca. 1400 Ma (Figure 4-22a). A majority of the discordant grains









plot along a discordia with a lower intercept of 518 89 Ma and an upper intercept of

1861.8 5.4 Ma (Figure 4-22a). Of the 59 grains sampled 40, or 68%, were concordant

and 8, or 14%, plotted along the discordia line. Probability density plots of concordant

grains and the upper intercept ages of grains plotted along the discordia from DF09-38

display age populations, in descending order of relative abundance, at ca. 1850-1875,

1780 and 1435 Ma (Figure 4-22b). The population at 1850-1875 Ma is more than 10

times more abundant than the 1780 Ma population. EHf values of select concordant

grains from sample DF09-38 range between -8 and -2 with U-Pb ages primarily

between ca. 1880 and 1830 Ma, excepting one grain with a U-Pb age of 1440 Ma

(Table 4-44; Figure 4-22c). Lu-HfDM model ages calculated from Hf ratios display

populations, in decreasing relative abundance, at ca. 2400-2450, 2500, 2400, 2525 and

2050-2300 Ma (Figure 4-22d).

Sample DF09-39, from the Ogden Mylonite in the Coastal Terrain (Table 4-23),

has an approximate stratigraphic age of 750 Ma (Goscombe and Gray, 2008). The U-Pb

concordia diagram displays a single cluster of concordant grains at ca. 2560 Ma (Figure

4-23a). A majority of the discordant grains plot along a discordia with a lower intercept

of 562 98 Ma and an upper intercept of 2606.3 7.7 Ma (Figure 4-23a). Of the 41

grains sampled 8, or 20%, were concordant and 15, or 37%, plotted along the discordia

line. A probability density plot of concordant grains and the upper intercept ages of

grains plotted along the discordia from DF09-39 displays one age population at ca.

2600-2625 Ma (Figure 4-23b). EHf values of concordant grains from sample DF09-39

range between -3 and +1 for grains with U-Pb ages between ca. 2580 and 2610 Ma,

excepting one outlying grain with an EHf value of +9 and a U-Pb age of 2606 Ma (Table









4-45; Figure 4-23c). Lu-HfDM model ages calculated from Hf ratios range, in descending

order of relative abundance, from ca. 2850-3000 and 2525-2825 Ma (Figure 4-23d).

Sample DFO6-11, from the eastern Coastal Terrane of the Kaoko Belt (Table 4-

24), has an approximate stratigraphic age of 660 Ma (Goscombe and Gray, 2008). The

U-Pb concordia diagram displays one cluster of concordant grains between ca. 600 and

900 Ma (Figure 4-24a). A majority of the discordant grains plot along a discordia with a

lower intercept of -544 180 Ma and an upper intercept of 816.9 8.1 Ma (Figure 4-

24b). Of the 110 grains sampled 62, or 56%, were concordant and 8, or 7%, plotted

along the discordia line. A probability density plot of the concordant grains and the

upper intercept ages of grains plotted along the discordia from DF06-11 display age

populations, in descending order of relative abundance, at ca. 815, 665, 765 and 790

Ma (Figure 4-24c). EHf values of select concordant grains from sample DF06-11 range

between +2 and +10 with U-Pb ages of ca. 835-620 Ma (Table 4-46; Figure 4-24d). Lu-

HfDM model ages calculated from Hf ratios range, in order of decreasing relative

abundance, from ca. 1025, 1075, 1100, 925-1000 and 1150-1250 Ma (Figure 4-24e).

Sample DF06-08, from the Khumib Terrane of the Swakop Group in the central

Orogen Core (Table 4-26), has an approximate stratigraphic age of 600 Ma (Stanistreet

and Charlesworth, 2001). The U-Pb concordia diagram displays three clusters of

concordant grains at ca. 550-825 Ma, 825-1150 Ma and 1400 Ma (Figure 4-25a-b). A

majority of the discordant grains plot along four separate discordia with lower intercepts

of 579 28, 344 150, 34 230, -374 + 330 and 324 130 Ma and upper intercepts of

1097 + 33, 1044 + 17, 1043 20, 998 + 19 and 1017 13 Ma, respectively (Figure 4-

25c). Of the 98 grains sampled 65, or 66%, were concordant and 9, or 9%, plotted along









the discordia line. Probability density plots of the concordant grains and the upper

intercept ages of grains plotted along the discordia from DF06-08 display age

populations, in descending order of relative abundance, at ca. 620, 1035, 1015, 575,

750, 1000,1080, 1130,1470, 1450, 910, 870 and 830 Ma (Fig. 4-25d). EHf values of

select concordant grains range primarily between -6 and +12 with U-Pb ages ranging

from ca. 1455 to 625 Ma, excepting two outlying grains with EHf values -10 and -15.4

and U-Pb ages of 605 and 1131 Ma, respectively (Table 4-48; Figure 4-25e). Lu-HfDM

model ages calculated from Hf ratios measured in sample DF06-08 range, in order of

decreasing relative abundance, from ca. 1100, 1250, 1000, 1525, 1400, 1600-1850 and

2000-2250 Ma (Figure 4-25f).

Sample DF06-17, from the Hoanib River Formation of the Swakop Group in the

western Kaoko Belt (Table 4-25), has an approximate stratigraphic age of 600 Ma

(Stanistreet and Charlesworth, 2001). The U-Pb concordia diagram displays two

clusters of concordant grains at ca. 1200 Ma and 1700-1850 Ma (Figure 4-26a). A

majority of discordant grains plot along two distinct discordia with lower intercepts of

1184 78 and 693 83 Ma and upper intercepts of 1937 49 and 2085 53 Ma,

respectively (Figure 4-26b-c). Of the 49 grains sampled 14, or 29%, were concordant

and 19, or 39%, plotted along the discordia line. Probability density plots of the

concordant grains and of grains plotted along the discordia lines from DF06-17 display

age populations, in descending order of relative abundance, at ca. 1730, 1755, 1705,

1825, 1835, 2075, 1620, 1670, 1780, 1230, 1215 and 1555 Ma (Figure 4-26d). In the

probability density plots 207Pb/206Pb ages were used for grains plotted along the

discordia with an upper intercept of 1937 49 Ma, whereas the upper intercept age was









used for grains that plotted along the discordia line with an upper intercept of 2085 53

Ma. EHf values of select concordant grains range primarily between -3 and 0 with U-Pb

ages of ca. 1830-1745 Ma and range between +4 and +12 for grains with U-Pb ages of

ca. 1935-2085 Ma, excepting one outlying grain with a value of +2 and a U-Pb age of

1232 Ma (Table 4-47; Figure 4-26e). Lu-HfDM model ages calculated from Hf ratios

measured in sample DF06-17 range, in decreasing order of relative abundance, from

ca. 2150-2250, 1600-2050 and 2275-2350 Ma (Figure 4-26f).

Initial Hf Isotope Data

EHf values of samples collected on the margin of the Congo craton plot primarily

between 0 and +10 for grains with U-Pb ages of ca. 550-900 Ma, except fewer than 10

grains that plot between -10 and 0 and two grains with values of -26 (Figure 4-27). In

contrast, samples collected on the margin of the Kalahari craton, in the Southern

Foreland Zone, contain EHf values that lie primarily between -10 and +3 from ca. 525-

900 Ma. There is a gap in the Kalahari data set at ca. 650-850 Ma with only two grains

in that age range; whereas the Congo craton data set is continuous.

Both cratons display a lack of grains with U-Pb ages between ca. 910 and 940 Ma

and only a few data points are available. The grains with U-Pb ages between ca. 900

and 970 Ma collected on the Congo margin display EHf values that range from -5 to +9,

except one grain with an EHf value of +26 and a U-Pb age of 955 Ma. Grains collected

in the Congo margin displaying U-Pb ages of ca. 970-1000 Ma display EHf values range

between -15 to +7. The six grains collected in the Kalahari margin displaying U-Pb ages

of ca. 900-1000 Ma display EHf values of +11, +11, -3, -8, -14 and -23. The zircons from

the Congo cratonic margin strata display EHf values ranging from -22.5 to -12 and from

0 to +14, with a higher proportion of samples in the former range, for grains with U-Pb









ages between ca. 1000 and 1100 Ma. The Kalahari cratonic margin samples exhibit EHf

values primarily between -4 and +8 for grains with U-Pb ages between ca. 1000 and

1100 Ma, except one grain with an EHf value of -10 and a U-Pb age of 1033 Ma and one

with an EHf value of -7 and a U-Pb age of 1094 Ma. Grains with U-Pb ages from ca.

1100 to 1150 Ma collected along the Congo cratonic margin have EHf values spread

from -15 to -5 and from 0 to +12 with a higher proportion of positive values. EHf data for

grains with U-Pb ages from 1150 to 1500 Ma collected in the Congo margin is sparse.

Four grains with U-Pb ages of ca. 1230-1200 display EHf values of -7 to +1, a grain with

a U-Pb age of 1339 Ma displays an EHf value of -13, another grain with a U-Pb age of

1381 Ma displays an EHf value of +4, six grains with U-Pb ages of 1411 Ma display EHf

values of +10 to +15, one grain with a U-Pb age of 1411 Ma displays an EHf value of

+23 and three grains with U-Pb ages of ca. 1475-1440 Ma display EHf values of -5.5 to

+0.5. The Kalahari margin strata display a more complete data set for grains with U-Pb

ages between 1100 and 1600 Ma. EHf values for grains collected on the Kalahari

margin with U-Pb ages from 1100 to 1170 Ma range between -1 and +7. Grains with U-

Pb ages of ca. 1200-1360 display EHf values of -6 to +5, with a higher proportion of

positive values than negative. Six grains have U-Pb ages between ca. 1575 and 1475

Ma and display EHf values of -1 to +6.

The Congo cratonic margin strata contain no grains with U-Pb ages between ca.

1500 and 1825 Ma except for three grains at ca. 1745-1760 Ma with EHf values

between -3 and 0 and one grain of the same age with an EHf value of +3. The Kalahari

margin strata display a similar lack of U-Pb ages between ca. 1600 and 1875 Ma. EHf

values for the Congo cratonic margin with U-Pb ages between ca. 1800 and 1970 Ma









primarily fall between -8 and -3, except for two grains with EHf values of -0.5 to +1 and

U-Pb ages of ca. 1825-1830 Ma and two grains displaying EHf values of +1.7 and U-Pb

ages of ca. 1875 Ma. Samples collected in the Kalahari cratonic margin with U-Pb ages

of ca. 1875 to 1940 Ma display EHf values primarily between -9 and -2 while those

displaying U-Pb ages of ca. 2030-1990 Ma display EHf values of -3 to +3. The Kalahari

margin samples display EHf values of -9 to -1 for U-Pb ages of 2125-2110 Ma and there

is a single grain with a U-Pb age of 2223 Ma and an EHf value of +1. Data sets for both

cratons are sparse for the Archean aged zircon grains, and most of the Archean grains

analyzed were highly discordant with elevated common Pb. The Congo cratonic margin

has three Archean zircons that display EHf values between 0 and -1 at ca. 2600-2560

Ma. The Kalahari cratonic margin contains two grains with U-Pb ages of ca. 2710-2690

Ma with EHf values of -1 to +2 and a grain with an EHf value of +3 and a U-Pb age of

2843 Ma.

Sm/Nd Analysis

Whole-rock Sm/Nd isotope data for 30 meta-pelitic and meta-semipelitic rocks

from the Congo and Kalahari cratonic margins (Table 4-49 through Table 4-55) gave

depleted mantle Sm-NdDM model ages (DM values as summarized by Depaolo, 1981;

CHUR values as summarized by Bouvier et al., 2008) between 1.4 and 2.8 Ga

regardless of cratonic heritage (Figure 4-28). No significant variation could be discerned

on either side of the boundary between the strata deposited along the Congo and

Kalahari cratonic margins at the Southern Zone Southern Margin Zone (SZ-SMZ)

boundary or due to the distance from the boundary; the pelitic and semipelitic strata

deposited along the margins of these two craton cratons yield indistinguishable Nd

isotopic data. ENd values at 625 Ma (Figure 4-29), a period of significant glaciation and









approximately when the strata were deposited, were statistically indistinguishable for

the two different cratonic margins. The ENd values ranged from -21 to +6 on both the

Congo and Kalahari margins. At the SZ-SMZ boundary the ENd values were primarily

between -5 and 0 with only a few samples on the Kalahari side having ENd values

between -10 and -5.

There appears to be little variation of ENd values with stratigraphic age. Samples

deposited at ca. 600-650 Ma on the cratonic margin of the Congo craton display ENd

values that range primarily between -5 and -1. Syndepositional samples on the cratonic

margin of the Kalahari craton display ENd values that range primarily between -9 and -6.

Samples collected from formations deposited prior to ca. 650 Ma or subsequent to ca.

600 Ma display a wide range of ENd values that do not appear to correlate to their timing

of deposition in any way.

Common Pb

Whole-rock Pb/Pb isotopic data was collected for 30 samples of metapelitic rock

from the Congo and Kalahari cratonic margins (Table 4-56 to Table 4-62). Regressions

of the common Pb data using 207Pb/204Pb versus 206Pb/204Pb (normalized to Abouchami

et al., 2000 values) gave reference ages of 777 +350/-890 Ma for the Kalahari Craton

strata (Figure 4-30a) and 154 +670/-1400 Ma for the Congo craton strata (Figure 4-

30b). Therefore, the whole rock common lead values for strata deposited along both

cratons are statistically indistinguishable.

Trace and Major Element Analysis

Major element analysis on 22 whole rock separates (Table 4-63) was typical of

meta-pelites and meta-psammites, consistent with the rock types analyzed. As the

same basic rock types were collected on both cratons, the similarity in major elements









was expected. Most major oxides ratios from strata derived from the cratons decrease

linearly with increasing silica content (Figure 31). Ca, Na, and to a lesser extent P, K

and Mn, show considerable scatter between 60 and 80% SiO2, but still an overall

decreasing trend with increasing silica.

Trace element analyses on 31 whole rock powders (Table 4-64) show no

significant variation in rare earth element (REE) compositions across cratons

(normalized to Sun and McDonough, 1989 values). One quartzite sample displayed

relative depletion overall, otherwise relative abundances were consistent. Such

similarity was anticipated due to the rift-drift sedimentary histories common to both

cratons. All samples display REE signatures typical of weathered metasedimentary

rocks including relative abundance in the light REE with decreasing abundance in the

heavy REE (Figure 4-32). All samples display a negative Eu anomaly, probably

indicative of plagioclase fraction in the sources of most of the continental detritus. One

sample (SZ80) also displays a positive Ce anomaly, possibly indicative of a

ferromanganese nodule derived from chemical sediment.










Table 4-1. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample BDG06-91 from the Northern Foreland Zone, Congo Craton.
Sample 2u"Pb/ lo error 2u'Pb/ lo 2UbPb/ 1o U"'Pb/lubPb 2u'Pb/2JU* ZubPb/ "U percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor

BDG06-91 1 0.0696 0.00027 1.438 0.054 0.1498 0.0056 918 16 905 44 901 63 1.83 0.99
BDG06-91 2R 0.2957 0.00651 6.667 0.296 0.1635 0.0063 3448 68 2068 77 977 70 71.66 0.87
BDG06-91 3R 0.2985 0.00491 6.660 0.271 0.1618 0.0060 3463 51 2067 70 968 67 72.05 0.91
2506
BDG06-91 4 0.1749 0.00063 11.447 0.439 0.4747 0.0181 2605 12 2560 70 158 3.80 1.00
2200
BDG06-91 5 0.1694 0.00075 9.496 0.358 0.4065 0.0152 2552 15 2387 68 139 13.77 0.99
BDG06-91 6 0.0628 0.00040 0.885 0.034 0.1022 0.0038 703 27 644 36 628 45 10.67 0.99
2478
BDG06-91 7 0.1761 0.00062 11.371 0.430 0.4683 0.0176 2616 12 2554 69 154 5.27 1.00
BDG06-91 8 0.0600 0.00022 0.763 0.029 0.0922 0.0035 603 16 576 33 569 41 5.61 1.00
1767
BDG06-91 9R 0.1259 0.00048 5.469 0.208 0.3150 0.0119 2042 13 1895 64 116 13.47 0.99
BDG06-91 10R 0.1437 0.00125 2.002 0.077 0.1010 0.0038 2273 30 1116 52 621 44 72.68 0.97
3224
BDG06-91 11R 0.2563 0.00858 3.700 0.196 0.1047 0.0043 106 1571 83 642 50 80.07 0.78
1869
BDG06-91 12R 0.1143 0.00668 2.077 0.147 0.1318 0.0053 210 1141 95 799 60 57.27 0.57
BDG06-91 13R 0.0850 0.00155 1.239 0.053 0.1057 0.0041 1316 71 818 47 648 47 50.75 0.90
1417
BDG06-91 14R 0.3932 0.00612 13.313 0.636 0.2456 0.0111 3883 47 2702 88 114 63.52 0.95
BDG06-91 15 0.0619 0.00023 0.837 0.032 0.0980 0.0037 672 16 617 35 603 43 10.29 1.00
1627
BDG06-91 16R 0.1001 0.00434 1.490 0.088 0.1079 0.0043 161 926 70 661 50 59.35 0.68
1897
BDG06-91 17 0.1216 0.00044 5.728 0.219 0.3417 0.0130 1979 13 1935 65 125 4.17 1.00
2208 1947 1713
BDG06-91 18R 0.1385 0.00680 5.805 0.366 0.3041 0.0120 170 106 118 22.43 0.63
BDG06-91 19 0.0730 0.00027 1.617 0.062 0.1606 0.0061 1014 15 977 47 961 68 5.22 1.00
2299
BDG06-91 20R 0.2013 0.00335 11.883 0.489 0.4281 0.0161 2837 54 2595 76 145 18.95 0.91
BDG06-91 21R 0.0643 0.00023 0.882 0.034 0.0994 0.0038 753 15 642 36 611 44 18.78 1.00










Table 4-1. Continued
BDG06-91 22R
BDG06-91 23

BDG06-91 24R

BDG06-91 25

BDG06-91 26R
BDG06-91 27R

BDG06-91 28R
BDG06-91 29R

BDG06-91 30R

BDG06-91 31
BDG06-91 32

BDG06-91 33R
BDG06-91 34R
BDG06-91 35R

BDG06-91 36R

BDG06-91 37

BDG06-91 38

BDG06-91 39
BDG06-91 40


0.4073 0.00704 7.928 0.341 0.1412 0.0056
0.0612 0.00023 0.809 0.031 0.0958 0.0036

0.1961 0.00093 12.140 0.470 0.4491 0.0173

0.1702 0.00070 10.065 0.386 0.4289 0.0163

0.2904 0.00354 19.544 0.798 0.4882 0.0190
0.0737 0.00027 1.494 0.057 0.1471 0.0056

0.1791 0.00065 11.370 0.438 0.4604 0.0177
0.1550 0.00320 3.541 0.152 0.1656 0.0062

0.0805 0.00317 1.215 0.066 0.1094 0.0041

0.1709 0.00064 10.971 0.415 0.4657 0.0175
0.0631 0.00027 0.904 0.035 0.1039 0.0040

0.1756 0.01989 2.534 0.315 0.1046 0.0053
0.0704 0.00064 0.949 0.037 0.0977 0.0038
0.0850 0.00155 1.955 0.084 0.1667 0.0064

0.1139 0.00041 4.722 0.182 0.3007 0.0115

0.1771 0.00063 11.573 0.445 0.4740 0.0182

0.1148 0.00043 5.044 0.193 0.3185 0.0121

0.1236 0.00078 5.800 0.224 0.3403 0.0130
0.0631 0.00047 0.913 0.035 0.1050 0.0040


3936 52
648 16

2794 16

2559 14

3420 38
1032 15

2645 12
2402 70
1210
155

2566 12
713 18
2612
377
941 37
1316 71

1862 13

2626 12

1877 14

2009 22
711 32


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


2222 76
602 34

2615 71

2440 70

3069 77
928 46

2554 71
1536 67

808 60

2520 69
654 37
1282
173
677 39
1100 57

1771 63

2570 71

1826 64

1946 66
658 37


852 63
590 42
2393
153
2303
147
2565
164
885 63
2443
155
989 69

670 48
2467
153
638 46

642 62
601 44
995 71
1696
114
2503
158
1784
118
1890
124
644 46


78.36
8.86

14.34

10.01

24.99
14.20

7.61
58.83

44.62

3.88
10.50

75.41
36.10
24.42

8.90

4.66

4.96

5.94
9.36


0.92
0.99

0.99

0.99

0.95
1.00

1.00
0.88

0.69

1.00
0.99

0.41
0.97
0.90

1.00

1.00

1.00

0.99
0.98










Table 4-2. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-26 from the Northern Zone, Congo Craton.
Sample 2u'Pb/ lo error 2"uPb/ lo 2UbPb/ 1o 2'UPb/lubPb 2u'Pb/2JU* ZUbPb/Z'"U percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor


DF09-26 02
DF09-26 03
DF09-26 04
DF09-26 05
DF09-26 06
DF09-26 07
DF09-26 08
DF09-26 09
DF09-26 10
DF09-26 11
DF09-26 12
DF09-26 13
DF09-26 14
DF09-26 15
DF09-26 16R
DF09-26 17R
DF09-26 18R
DF09-26 19
DF09-26 20
DF09-26 21R
DF09-26 22
DF09-26 23
DF09-26 24
DF09-26 25
DF09-26 26
DF09-26 27


0.0734
0.0739
0.0709
0.0736
0.0766
0.0704
0.0683
0.0702
0.0650
0.0659
0.0755
0.0722
0.0725
0.0737


0.00052
0.00045
0.00049
0.00062
0.00048
0.00066
0.00043
0.00043
0.00040
0.00041
0.00047
0.00044
0.00048
0.00045


0.999
1.657
1.161
1.156
1.853
0.971
1.304
1.444
1.138
1.186
1.810
1.618
1.558
1.732


0.022
0.036
0.025
0.026
0.041
0.024
0.028
0.031
0.024
0.027
0.039
0.036
0.034
0.037


0.099
0.163
0.119
0.114
0.175
0.100
0.138
0.149
0.127
0.131
0.174
0.163
0.156
0.170


0.0020
0.0034
0.0024
0.0024
0.0037
0.0023
0.0029
0.0031
0.0025
0.0028
0.0035
0.0035
0.0033
0.0035


1024 29
1039 25
956 28
1032 34
1111 25
940 38
879 26
934 25
773 26
804 26
1083 25
991 25
1001 27
1033 25


703 22
992 27
782 23
780 25
1064 29
689 25
847 25
907 26
771 23
794 25
1049 28
977 28
954 27
1020 28


608 24
972 38
724 28
695 28
1042 40
615 27
836 33
897 35
772 29
791 32
1034 39
972 39
934 36
1015 39


40.64
6.45
24.24
32.59
6.18
34.54
4.83
3.90
0.19
1.50
4.49
1.88
6.69
1.66


0.95
0.96
0.95
0.93
0.96
0.93
0.96
0.96
0.96
0.96
0.96
0.96
0.95
0.96


0.0797 0.00073 0.910 0.031 0.083 0.0027 1190 36 657 32 513 32 56.89 0.96
0.0677 0.00047 1.107 0.024 0.119 0.0024 858 29 756 23 723 28 15.65 0.95
0.0800 0.00104 1.039 0.026 0.094 0.0020 1198 51 723 26 580 24 51.53 0.85


0.0682
0.0656
0.0940
0.0627
0.0738
0.0777
0.0772


0.00121
0.00044
0.00083
0.00044
0.00075
0.00048
0.00076


0.828
1.085
1.237
0.904
1.341
1.739
1.770


0.031
0.024
0.029
0.021
0.031
0.037
0.042


0.088
0.120
0.096
0.105
0.132
0.162
0.166


0.0029
0.0026
0.0020
0.0023
0.0027
0.0033
0.0036


873 73
794 28
1507 33
696 30
1037 41
1140 25
1125 39


612 34
746 24
818 26
654 22
863 26
1023 27
1034 31


545 34
731 30
589 24
642 26
798 31
970 37
993 40


37.60
7.96
60.94
7.77
22.98
14.90
11.72


0.88
0.95
0.92
0.95
0.89
0.96
0.91


0.0622 0.00040 0.565 0.012 0.066 0.0013 679 28 455 16 412 16 39.32 0.95
0.0761 0.00050 1.680 0.043 0.160 0.0040 1099 26 1001 32 958 44 12.80 0.97










Table 4-2. Continued


DF09-26 28R
DF09-26 29R
DF09-26 30
DF09-26 31
DF09-26 32
DF09-26 33R
DF09-26 34
DF09-26 35R
DF09-26 36
DF09-26 37
DF09-26 38
DF09-26 39
DF09-26 40R
DF09-26 41
DF09-26 42
DF09-26 43R
DF09-26 44
DF09-26 45
DF09-26 46
DF09-26 47
DF09-26 48
DF09-26 49
DF09-26 50
DF09-26 51
DF09-26 52
DF09-26 53
DF09-26 54R
DF09-26 55R


0.1146
0.0697
0.0737
0.0685
0.0738
0.1057
0.0618
0.1047
0.0622
0.0612
0.0731


0.00271
0.00046
0.00062
0.00058
0.00064
0.00141
0.00039
0.00106
0.00039
0.00038
0.00045


0.818
1.223
1.629
1.020
1.087
1.993
0.875
2.002
0.955
0.845
1.655


0.030
0.028
0.042
0.023
0.024
0.064
0.020
0.048
0.021
0.018
0.037


0.052
0.127
0.160
0.108
0.107
0.137
0.103
0.139
0.111
0.100
0.164


0.0014
0.0028
0.0039
0.0023
0.0022
0.0040
0.0023
0.0030
0.0024
0.0021
0.0036


1874 85
919 27
1034 34
885 35
1035 35
1727 49
667 27
1709 37
682 27
645 27
1016 25


607 33
811 26
981 32
714 23
747 23
1113 43
638 22
1116 32
681 22
622 20
991 28


326 17
773 32
959 43
661 27
655 26
827 45
631 26
838 34
681 27
616 25
981 39


82.63
15.89
7.29
25.23
36.65
52.14
5.47
50.97
0.16
4.45
3.41


0.76
0.96
0.94
0.93
0.92
0.91
0.96
0.91
0.96
0.96
0.96


0.0789 0.00073 1.624 0.048 0.149 0.0042 1169 37 980 37 898 47 23.17 0.95


0.0640
0.0648
0.0605
0.0644
0.0724
0.0696
0.0611
0.0608
0.0717
0.0749
0.0718
0.0767
0.0751
0.1074


0.00046
0.00040
0.00038
0.00041
0.00045
0.00077
0.00041
0.00038
0.00044
0.00048
0.00047
0.00049
0.00071
0.00066


0.848
1.083
0.828
0.905
1.514
1.042
0.829
0.830
1.539
1.716
1.478
1.890
1.176
4.423


0.020
0.024
0.019
0.020
0.033
0.025
0.018
0.018
0.035
0.038
0.034
0.044
0.027
0.100


0.096
0.121
0.099
0.102
0.152
0.109
0.098
0.099
0.156
0.166
0.149
0.179
0.114
0.299


0.0021
0.0026
0.0022
0.0021
0.0032
0.0023
0.0020
0.0021
0.0034
0.0035
0.0033
0.0041
0.0023
0.0065


742 30
769 26
622 27
755 27
998 25
918 46
641 29
631 27
976 25
1065 26
979 27
1113 25
1071 38
1756 23


624 22
745 23
613 21
654 21
936 27
725 24
613 20
614 20
946 28
1014 28
921 28
1078 31
789 25
1716 37


592 25
738 30
611 25
626 25
910 36
665 26
606 24
610 24
934 40
992 39
898 37
1061 44
694 27
1686 65


20.13
3.97
1.81
17.09
8.78
27.54
5.49
3.32
4.29
6.87
8.25
4.59
35.15
3.96


0.95
0.96
0.96
0.96
0.96
0.88
0.95
0.96
0.96
0.96
0.96
0.96
0.91
0.96


0.0661 0.00070 0.878 0.023 0.096 0.0023 808 44 640 24 594 27 26.51 0.91
0.0618 0.00041 0.829 0.019 0.097 0.0021 667 28 613 20 599 24 10.12 0.95










Table 4-2. Continued.
DF09-26 56 0.0716 0.00044 1.514 0.033 0.153 0.0032 976 25 936 26 920 36 5.69 0.96
DF09-26 57 0.0714 0.00044 1.484 0.032 0.151 0.0031 970 25 924 26 906 35 6.58 0.96
DF09-26 58 0.0732 0.00045 1.626 0.036 0.161 0.0034 1021 25 980 28 963 38 5.64 0.96
DF09-26 59 0.0778 0.00047 1.976 0.042 0.184 0.0038 1142 24 1107 28 1091 41 4.44 0.96
DF09-26 60 0.0635 0.00040 0.950 0.020 0.108 0.0022 726 27 678 21 664 26 8.54 0.96
DF09-26 61 0.0721 0.00045 1.556 0.034 0.157 0.0033 989 25 953 27 938 36 5.15 0.96
DF09-26 62R 0.1219 0.00074 5.672 0.122 0.338 0.0069 1984 22 1927 37 1876 67 5.41 0.96
DF09-26 63 0.0756 0.00046 1.821 0.039 0.175 0.0036 1084 25 1053 28 1039 40 4.19 0.96
DF09-26 64 0.1147 0.00070 5.150 0.111 0.326 0.0067 1875 22 1844 36 1819 65 2.96 0.96
DF09-26 65 0.0728 0.00045 1.511 0.033 0.151 0.0032 1008 25 935 27 905 35 10.22 0.96
DF09-26 66R 0.0653 0.00043 0.872 0.021 0.097 0.0022 784 28 636 22 596 26 23.88 0.96
DF09-26 67 0.0657 0.00041 1.151 0.025 0.127 0.0026 797 26 778 23 772 30 3.09 0.96
DF09-26 68R 0.0829 0.00124 1.561 0.044 0.137 0.0033 1266 59 955 35 826 37 34.73 0.85
DF09-26 69 0.0651 0.00043 1.018 0.022 0.113 0.0023 778 28 713 22 693 27 10.96 0.95
DF09-26 70 0.0768 0.00054 1.496 0.034 0.141 0.0030 1116 28 929 27 853 34 23.55 0.95
DF09-26 71R 0.1252 0.00076 5.998 0.131 0.347 0.0073 2032 21 1975 38 1924 70 5.30 0.96
DF09-26 72 0.0673 0.00043 0.892 0.020 0.096 0.0021 847 27 647 21 592 24 30.11 0.96
DF09-26 73 0.0740 0.00046 1.662 0.037 0.163 0.0034 1041 25 994 28 974 38 6.44 0.96
DF09-26 74 0.0759 0.00047 1.826 0.040 0.174 0.0036 1093 25 1055 28 1038 40 5.03 0.96
DF09-26 75 0.0644 0.00056 1.006 0.025 0.113 0.0026 753 37 707 25 693 30 7.98 0.94
DF09-26 76 0.0734 0.00048 1.568 0.033 0.155 0.0031 1025 26 958 26 929 35 9.32 0.95
DF09-26 77 0.0659 0.00042 1.023 0.023 0.113 0.0024 803 27 715 23 688 28 14.28 0.96
DF09-26 78 0.0615 0.00039 0.857 0.019 0.101 0.0021 658 27 628 20 621 25 5.67 0.96
DF09-26 79 0.0715 0.00044 1.505 0.032 0.153 0.0031 971 25 932 26 917 35 5.54 0.96
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-3. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-30 from the Northern Zone, Congo Craton.
Sample 2u'Pb/ lo error 2"uPb/ lo 2UbPb/ 1o 2'UPb/lubPb 2u'Pb/2JU* UZ"Pb/'"U percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor


DF09-30 1 0.1115 0.00045
DF09-30 2 0.1232 0.00068
DF09-30 3R 0.0749 0.00116
DF09-30 4 0.1221 0.00050
DF09-30 5R 0.1195 0.00049
DF09-30 6 0.0879 0.00037
DF09-30 7 0.0627 0.00033
DF09-30 8R 0.1236 0.00070
DF09-30 9R 0.0785 0.00042
DF09-30 10R 0.1077 0.00043
DF09-30 11R 0.1293 0.00070
DF09-30 12R 0.1102 0.00045
DF09-30 13R 0.0944 0.00039
DF09-30 14 0.1248 0.00067
DF09-30 15 0.1216 0.00049
DF09-30 16 0.1214 0.00049
DF09-30 17R 0.0941 0.00038
DF09-30 18 0.1125 0.00050
DF09-30 19R 0.1227 0.00051
DF09-30 20 0.1216 0.00056
DF09-30 21 0.1223 0.00049
DF09-30 22R 0.1288 0.00052
DF09-30 23 0.1216 0.00049
DF09-30 24R 0.0882 0.00039
DF09-30 25 0.1204 0.00048


4.919
6.023
0.882
5.832
4.593
2.842
0.870
5.321
1.917
4.287
3.034
3.976
3.269
5.899
5.679
5.219
2.892
4.197
3.597
5.670
5.729
6.354
5.217
2.681
5.565


0.070
0.102
0.021
0.086
0.067
0.041
0.012
0.088
0.027
0.064
0.063
0.051
0.046
0.089
0.081
0.069
0.043
0.085
0.125
0.078
0.075
0.087
0.092
0.044
0.081


0.320
0.355
0.085
0.346
0.279
0.234
0.101
0.312
0.177
0.289
0.170
0.262
0.251
0.343
0.339
0.312
0.223
0.271
0.213
0.338
0.340
0.358
0.311
0.221
0.335


0.0044
0.0057
0.0015
0.0049
0.0039
0.0033
0.0013
0.0048
0.0023
0.0042
0.0034
0.0032
0.0033
0.0048
0.0046
0.0039
0.0032
0.0054
0.0073
0.0044
0.0042
0.0047
0.0053
0.0035
0.0047


1824 15
2003 20
1066 62
1987 15
1949 15
1381 16
697 22
2009 20
1160 21
1761 15
2088 19
1803 15
1516 15
2026 19
1980 14
1978 14
1511 15
1840 16
1996 15
1980 16
1990 14
2081 14
1980 14
1386 17
1963 + 14


1805 24
1979 29
642 22
1951 25
1748 24
1367 22
635 13
1872 28
1087 19
1691 25
1416 32
1629 21
1473 22
1961 26
1928 25
1855 22
1380 22
1673 33
1549 54
1926 23
1935 22
2026 24
1855 30
1323 24
1910 + 25


1791 43
1958 54
529 18
1919 47
1586 39
1359 34
619 16
1753 47
1052 25
1636 42
1014 38
1499 32
1446 34
1902 46
1882 45
1750 38
1298 33
1545 54
1244 78
1879 42
1887 40
1974 45
1748 52
1286 37
1865 + 45


1.76
2.22
50.38
3.39
18.58
1.62
11.23
12.72
9.34
7.10
51.43
16.81
4.60
6.12
4.96
11.49
14.09
16.01
37.68
5.11
5.20
5.15
11.70
7.20
4.98


0.96
0.95
0.76
0.96
0.96
0.96
0.93
0.94
0.93
0.96
0.97
0.95
0.96
0.93
0.96
0.95
0.96
0.98
0.99
0.94
0.95
0.96
0.97
0.96
0.96










Table 4-3. Continued.
DF09-30 26 0.1201 0.00050 5.578 0.072 0.337 0.0041 1958 15 1912 22 1873 39 4.36 0.95
DF09-30 27R 0.1378 0.00238 4.532 0.103 0.239 0.0036 2200 60 1737 38 1380 37 37.25 0.65
DF09-30 28R 0.1182 0.00048 3.728 0.054 0.229 0.0032 1930 15 1577 23 1329 34 31.13 0.96
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-4. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-37 from the Northern Zone, Congo Craton.
Sample 2u'Pb/ lo error u'Pb/ lo UbPb/ 1o ulPb/ubPb 2'Pb/ U* UtbPb/ U percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor
DF09-37 1 0.0583 0.00019 0.678 0.012 0.084 0.0015 542 14 525 15 522 17 3.60 0.98
DF09-37 2R 0.0607 0.00027 0.700 0.013 0.084 0.0015 628 19 539 15 519 18 17.35 0.97
DF09-37 3R 0.0674 0.00190 0.778 0.027 0.084 0.0018 851 117 584 31 519 21 39.02 0.60
DF09-37 5 0.0599 0.00025 0.675 0.011 0.082 0.0013 599 18 524 14 507 16 15.35 0.97
DF09-37 6 0.0597 0.00019 0.697 0.012 0.085 0.0014 594 14 537 14 524 17 11.83 0.98
DF09-37 7R 0.0623 0.00030 0.691 0.012 0.081 0.0013 683 20 534 14 500 16 26.82 0.96
DF09-37 8R 0.0850 0.00043 1.926 0.036 0.164 0.0030 1315 20 1090 25 982 33 25.30 0.96
DF09-37 9R 0.0808 0.00063 1.149 0.022 0.103 0.0018 1217 30 776 20 633 21 47.99 0.91
DF09-37 10R 0.0588 0.00017 0.632 0.011 0.078 0.0013 561 12 497 14 484 16 13.59 0.99
DF09-37 11R 0.0707 0.00076 0.906 0.017 0.093 0.0015 948 44 655 18 574 17 39.49 0.83
DF09-37 12R 0.0604 0.00023 0.652 0.011 0.078 0.0013 617 16 510 13 486 15 21.10 0.97
DF09-37 13 0.0589 0.00018 0.672 0.012 0.083 0.0014 562 13 522 14 513 17 8.57 0.98
DF09-37 14R 0.0623 0.00032 0.609 0.011 0.071 0.0012 684 22 483 13 442 14 35.33 0.96
DF09-37 15R 0.0615 0.00049 0.551 0.011 0.065 0.0012 655 34 445 14 406 14 37.97 0.91
DF09-37 16 0.0584 0.00022 0.675 0.011 0.084 0.0014 546 17 523 14 519 17 4.87 0.97
DF09-37 17R 0.0587 0.00021 0.579 0.010 0.072 0.0012 554 15 464 13 446 15 19.48 0.98
DF09-37 18R 0.0629 0.00039 0.691 0.013 0.080 0.0015 704 26 534 16 495 17 29.70 0.95
DF09-37 19 0.0592 0.00023 0.663 0.012 0.081 0.0014 575 17 516 14 504 17 12.29 0.97










Table 4-4. Continued.
DF09-37 20 0.0597 0.00018 0.655 0.011 0.080 0.0013 591 13 511 13 494 16 16.40 0.98
DF09-37 21 0.0597 0.00019 0.587 0.011 0.071 0.0013 593 13 469 14 445 15 24.93 0.99
DF09-37 22R 0.0589 0.00018 0.657 0.012 0.081 0.0014 563 13 513 14 502 17 10.71 0.99
DF09-37 23 0.0597 0.00018 0.653 0.011 0.079 0.0013 591 13 510 14 493 16 16.59 0.98
DF09-37 24 0.0591 0.00020 0.665 0.011 0.082 0.0013 571 15 518 13 506 15 11.26 0.98
DF09-37 25 0.0584 0.00017 0.657 0.011 0.082 0.0014 546 13 513 14 506 16 7.39 0.99
DF09-37 26 0.0603 0.00020 0.674 0.011 0.081 0.0013 613 14 523 13 504 15 17.78 0.98
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-5. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-43 from the Central Zone, Congo Craton.
Sample zu'Pb/ lo error 2u'Pb/ lo 2b"Pb/ 1o error zu'Pb/lubPb 2u'Pb/2' U* u"Pb/ 'U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor

DF09-43 1R 0.0702 0.00071 1.209 0.031 0.125 0.0029 933 41 805 28 760 34 18.57 0.92
DF09-43 2R 0.0711 0.00069 1.269 0.032 0.129 0.0030 960 39 832 28 785 34 18.19 0.92
DF09-43 3 0.0745 0.00073 1.640 0.043 0.160 0.0039 1055 39 985 33 956 43 9.38 0.93
DF09-43 4 0.0744 0.00072 1.653 0.045 0.161 0.0041 1051 39 990 34 964 46 8.27 0.93
DF09-43 5 0.0745 0.00072 1.675 0.044 0.163 0.0039 1054 39 999 33 975 44 7.43 0.93
DF09-43 6 0.0745 0.00072 1.656 0.043 0.161 0.0039 1055 39 992 32 964 43 8.54 0.93
DF09-43 7 0.0737 0.00071 1.561 0.042 0.154 0.0039 1033 39 955 33 922 43 10.68 0.93
DF09-43 8R 0.0705 0.00068 1.317 0.034 0.135 0.0033 943 40 853 30 820 37 13.04 0.93
DF09-43 9 0.0742 0.00072 1.642 0.044 0.160 0.0040 1047 39 986 33 960 44 8.29 0.93
DF09-43 10 0.0734 0.00074 1.566 0.045 0.155 0.0042 1025 41 957 36 928 47 9.48 0.94
DF09-43 11 0.0736 0.00072 1.631 0.043 0.161 0.0039 1032 39 982 33 961 43 6.83 0.93
DF09-43 12 0.0735 0.00071 1.575 0.042 0.155 0.0038 1029 39 960 33 931 43 9.50 0.93
DF09-43 13 0.0742 0.00072 1.661 0.044 0.162 0.0040 1046 39 994 33 971 44 7.11 0.93
DF09-43 14 0.0741 0.00072 1.688 0.043 0.165 0.0039 1043 39 1004 33 987 44 5.38 0.93
DF09-43 15 0.0741 0.00073 1.623 0.044 0.159 0.0040 1043 40 979 33 951 44 8.73 0.93










Table 4-5. Continued.
DFO9-43 16R
DF09-43 17
DF09-43 18
DF09-43 19
DF09-43 20
DF09-43 21
DF09-43 22
DF09-43 23
DF09-43 24
DF09-43 25
DF09-43 26
DF09-43 27
DF09-43 28
DF09-43 29
DF09-43 30
DF09-43 31
DF09-43 32
DF09-43 33R
DF09-43 34
DF09-43 35R
DF09-43 36
DF09-43 37
DF09-43 38
DF09-43 39
DF09-43 40
DF09-43 41
DF09-43 42
DF09-43 43
DF09-43 44


0.0690
0.0738
0.0736
0.0734
0.0730
0.0740
0.0736
0.0737
0.0735
0.0730
0.0733
0.0732
0.0735
0.0736
0.0733
0.0730
0.0733
0.1024
0.0723
0.0730
0.0724
0.0736
0.0729
0.0732
0.0730
0.0733
0.0726
0.0730


0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00072
0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00071
0.00177
0.00070
0.00071
0.00070
0.00071
0.00071
0.00071
0.00071
0.00072
0.00070
0.00071


1.218
1.605
1.700
1.625
1.586
1.669
1.672
1.632
1.683
1.572
1.600
1.599
1.696
1.705
1.718
1.652
1.716
2.843
1.593
1.417
1.591
1.614
1.678
1.731
1.648
1.676
1.702
1.719


0.043
0.041
0.045
0.043
0.042
0.045
0.043
0.043
0.045
0.049
0.043
0.042
0.044
0.045
0.046
0.043
0.047
0.101
0.043
0.044
0.044
0.040
0.043
0.046
0.042
0.044
0.047
0.045


0.128
0.158
0.167
0.161
0.158
0.163
0.165
0.161
0.166
0.156
0.158
0.158
0.167
0.168
0.170
0.164
0.170
0.201
0.160
0.141
0.159
0.159
0.167
0.171
0.164
0.166
0.170
0.171


0.0044
0.0038
0.0041
0.0040
0.0039
0.0041
0.0040
0.0039
0.0042
0.0046
0.0040
0.0038
0.0040
0.0041
0.0042
0.0040
0.0044
0.0062
0.0040
0.0042
0.0042
0.0036
0.0040
0.0042
0.0039
0.0040
0.0044
0.0041


899 43
1036 39
1031 39
1026 39
1015 39
1042 39
1030 39
1034 40
1028 39
1014 39
1023 39
1020 39
1028 39
1030 39
1023 39
1014 39
1021 39
1669 64
994 39
1013 40
997 39
1030 39
1012 39
1020 39
1014 39
1022 40
1003 39
1015 +39


809 39
972 32
1008 33
980 33
965 33
997 34
998 33
983 33
1002 34
959 38
970 34
970 32
1007 33
1010 34
1015 34
990 33
1014 35
1367 53
967 33
896 37
967 34
976 31
1000 32
1020 34
989 32
999 33
1009 35
1015 +33


777 50
945 42
999 45
960 44
944 44
977 45
984 44
961 43
991 46
936 51
948 45
948 43
999 44
1002 46
1012 47
981 44
1012 48
1183 67
957 45
850 47
954 46
952 40
995 44
1021 46
978 43
990 45
1013 49
1017 + 46


13.53
8.78
3.10
6.34
6.97
6.25
4.39
7.08
3.63
7.62
7.37
7.03
2.82
2.71
1.03
3.23
0.87
29.10
3.76
16.06
4.30
7.53
1.65
-0.09
3.48
3.13
-1.07
-0.20


0.96
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.95
0.93
0.93
0.93
0.93
0.93
0.93
0.94
0.87
0.93
0.95
0.94
0.92
0.93
0.93
0.92
0.93
0.94
0.93


0.0718 0.00070 1.544 0.040 0.156 0.0037 981 +40 948+32 935+42 4.73 0.93










Table 4-5. Continued.
DF09-43 45 0.0730 0.00072 1.720 0.047 0.171 0.0044 1015 40 1016 35 1017 48 -0.20 0.93
DF09-43 46 0.0732 0.00071 1.706 0.045 0.169 0.0042 1020 39 1011 34 1007 46 1.26 0.93
DF09-43 47R 0.0605 0.00060 0.774 0.020 0.093 0.0022 620 43 582 23 573 26 7.59 0.92
DF09-43 48 0.0576 0.00056 0.667 0.018 0.084 0.0021 515 43 519 21 520 25 -1.02 0.93
DF09-43 49 0.0721 0.00070 1.528 0.041 0.154 0.0039 987 39 942 33 923 43 6.48 0.93
DF09-43 50 0.0730 0.00071 1.726 0.048 0.171 0.0045 1014 39 1018 36 1021 50 -0.67 0.94
DF09-43 51 0.0729 0.00070 1.700 0.044 0.169 0.0040 1011 39 1008 33 1008 44 0.22 0.93
DF09-43 52 0.0729 0.00071 1.738 0.046 0.173 0.0042 1011 39 1023 34 1029 47 -1.85 0.93
DF09-43 53 0.0717 0.00070 1.647 0.043 0.167 0.0040 977 40 988 33 994 44 -1.78 0.93
DF09-43 54 0.0727 0.00070 1.716 0.044 0.171 0.0040 1005 39 1014 32 1019 44 -1.42 0.92
DF09-43 55 0.0708 0.00073 1.514 0.056 0.155 0.0055 952 42 936 45 930 62 2.23 0.96
DF09-43 56 0.0714 0.00084 1.464 0.045 0.149 0.0042 970 48 916 37 894 48 7.82 0.92
DF09-43 57 0.0724 0.00070 1.575 0.042 0.158 0.0039 997 39 960 33 945 43 5.21 0.93
DF09-43 59 0.0729 0.00071 1.721 0.046 0.171 0.0043 1011 39 1016 34 1020 47 -0.89 0.93
DF09-43 60 0.0726 0.00070 1.776 0.048 0.177 0.0044 1002 39 1037 35 1054 49 -5.19 0.93
DF09-43 61 0.0728 0.00070 1.726 0.046 0.172 0.0042 1008 39 1018 34 1024 46 -1.64 0.93
DF09-43 62 0.0720 0.00070 1.609 0.047 0.162 0.0045 987 40 973 36 969 50 1.82 0.94
DF09-43 63 0.0721 0.00070 1.702 0.044 0.171 0.0042 989 39 1009 33 1020 46 -3.17 0.93
DF09-43 64 0.0740 0.00072 1.736 0.045 0.170 0.0041 1042 39 1022 33 1013 45 2.71 0.93
DF09-43 65 0.0727 0.00070 1.731 0.046 0.173 0.0043 1007 39 1020 34 1027 47 -2.05 0.93
DF09-43 66 0.0728 0.00070 1.755 0.046 0.175 0.0043 1009 39 1029 34 1039 47 -3.04 0.93
DF09-43 67 0.0729 0.00071 1.714 0.048 0.171 0.0044 1010 40 1014 35 1016 49 -0.60 0.94
DF09-43 68 0.0731 0.00071 1.737 0.046 0.172 0.0043 1015 39 1022 34 1026 47 -1.11 0.93
DF09-43 69 0.0729 0.00070 1.761 0.049 0.175 0.0045 1011 39 1031 35 1042 50 -3.07 0.94
DF09-43 70 0.0728 0.00070 1.758 0.045 0.175 0.0042 1009 39 1030 33 1041 46 -3.20 0.93
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-6. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-44 from the Central Zone, Congo Craton.
Sample zu'Pb/ lo error 2u'Pb/ lo "2uPb/ 1o error zu'Pb/lubPb 2u'Pb/2 U* 'u"Pb/ "U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DFO9-44 1R
DF09-44 2
DF09-44 3
DF09-44 4
DF09-44 5
DF09-44 6
DF09-44 7
DF09-44 8
DF09-44 9R
DF09-44 10
DF09-44 11
DF09-44 12
DF09-44 13
DF09-44 14
DF09-44 15
DF09-44 16
DF09-44 17
DF09-44 18R
DF09-44 19
DF09-44 20
DF09-44 21
DF09-44 22R
DF09-44 23
DF09-44 24
DF09-44 25
DF09-44 26


0.0839 0.00101 2.065
0.0730 0.00039 1.546
0.0733 0.00039 1.633
0.0738 0.00041 1.652
0.0731 0.00040 1.551
0.0702 0.00040 1.250
0.0727 0.00042 1.613
0.0744 0.00043 1.568
0.0970 0.00063 2.655
0.0731 0.00039 1.579
0.0726 0.00045 1.582
0.0736 0.00041 1.682
0.0737 0.00040 1.662
0.0737 0.00042 1.690
0.0734 0.00040 1.741
0.0734 0.00040 1.658
0.0640 0.00051 0.879
0.0878 0.00105 1.086
0.1155 0.00111 4.427
0.0682 0.00046 1.127
0.0735 0.00041 1.666
0.0582 0.00038 0.704
0.0713 0.00046 1.392
0.0730 0.00042 1.602
0.0737 0.00042 1.615
0.0731 0.00039 1.598


0.053 0.178 0.0040 1291 47
0.025 0.154 0.0024 101322
0.025 0.162 0.0023 1023 22
0.026 0.162 0.0024 1037 22
0.026 0.154 0.0025 1018 22
0.020 0.129 0.0019 934 23
0.023 0.161 0.0021 1007 24
0.025 0.153 0.0023 1052 23
0.055 0.198 0.0039 1568 24
0.025 0.157 0.0023 1017 21
0.021 0.158 0.0019 1002 25
0.026 0.166 0.0024 1031 22
0.027 0.164 0.0025 1034 22
0.026 0.166 0.0024 1032 23
0.029 0.172 0.0027 1024 22
0.025 0.164 0.0023 1026 22
0.024 0.100 0.0026 741 34
0.021 0.090 0.0014 1378 46
0.151 0.278 0.0091 1887 34
0.032 0.120 0.0033 874 28
0.028 0.164 0.0026 1028 23
0.014 0.088 0.0016 537 28
0.024 0.142 0.0023 965 26
0.024 0.159 0.0022 1015 23
0.027 0.159 0.0025 1034 23
0.031 0.159 0.0030 1017 21


1137 35 1059 44 17.91 0.88


949 20
983 19
990 20
951 21
823 18
975 18
957 20
1316 31
962 19
963 17
1002 20
994 20
1004 20
1024 21
993 19
640 26
747 21
1717 56
766 30
995 21
541 16
885 20
971 19
976 21


922 27
966 25
970 26
923 27
784 21
962 23
918 26
1168 42
938 26
947 21
989 27
977 27
993 27
1025 30
978 26
613 31
554 17
1583 92
730 38
982 29
542 19
855 26
952 24
951 28


8.96 0.95
5.54 0.94
6.39 0.94
9.29 0.95
16.07 0.93
4.38 0.91
12.71 0.93
25.51 0.95
7.73 0.94
5.49 0.89
4.04 0.93
5.46 0.94
3.80 0.93
-0.05 0.95
4.64 0.93
17.26 0.96
59.77 0.80
16.11 0.96
16.39 0.97
4.44 0.94
-0.99 0.94
11.35 0.93
6.17 0.92
7.95 0.94


969 24 949 33 6.62 0.96










Table 4-6. Continued.
DF09-44 27
DF09-44 28
DF09-44 29
DF09-44 30
DF09-44 31
DF09-44 32
DF09-44 33
DF09-44 34
DF09-44 35
DF09-44 36
DF09-44 37
DF09-44 38
DF09-44 39
DF09-44 40
DF09-44 41
DF09-44 42
DF09-44 43R
DF09-44 44
DF09-44 45
DF09-44 46
DF09-44 47R
DF09-44 48
DF09-44 49
DF09-44 50
DF09-44 51
DF09-44 52R
DF09-44 53
DF09-44 54


0.0725 0.00042 1.500
0.0735 0.00040 1.573
0.0690 0.00038 1.189
0.0743 0.00042 1.665
0.0728 0.00038 1.654
0.0735 0.00041 1.717
0.0737 0.00041 1.679
0.0744 0.00041 1.739
0.0740 0.00042 1.688
0.0730 0.00040 1.653
0.0735 0.00042 1.667
0.0729 0.00040 1.701
0.0722 0.00039 1.596
0.0706 0.00041 1.360
0.0720 0.00038 1.521
0.0735 0.00041 1.698
0.1103 0.00060 3.139
0.0732 0.00042 1.665
0.0730 0.00046 1.594
0.0721 0.00046 1.507
0.1000 0.00066 2.769
0.0749 0.00121 1.761
0.0747 0.00056 1.720
0.0700 0.00062 1.396
0.0731 0.00043 1.652
0.0938 0.00101 2.530
0.1252 0.00070 5.936
0.0722 0.00038 1.497


0.021 0.150 0.0019 999 23
0.026 0.155 0.0024 1027 22
0.016 0.125 0.0016 900 23
0.026 0.163 0.0024 1049 23
0.026 0.165 0.0025 1007 21
0.027 0.169 0.0025 1028 22
0.032 0.165 0.0030 1034 22
0.028 0.169 0.0026 1053 22
0.029 0.166 0.0027 1040 23
0.027 0.164 0.0025 1015 22
0.024 0.164 0.0022 1029 23
0.026 0.169 0.0024 1010 22
0.030 0.160 0.0029 993 22
0.029 0.140 0.0028 945 24
0.024 0.153 0.0023 987 22
0.028 0.168 0.0026 1027 22
0.067 0.206 0.0043 1804 20
0.028 0.165 0.0026 1018 23
0.033 0.158 0.0032 1013 25
0.026 0.152 0.0024 989 26
0.043 0.201 0.0028 1623 24
0.042 0.171 0.0030 1065 65
0.047 0.167 0.0044 1060 30
0.033 0.145 0.0032 927 37
0.033 0.164 0.0031 1017 24
0.074 0.196 0.0053 1504 41
0.115 0.344 0.0064 2032 20
0.028 0.150 0.0027 991 22


930 17
960 20
795 15
995 20
991 20
1015 20
1001 24
1023 21
1004 22
991 21
996 18
1009 20
968 23
872 25
939 19
1008 21
1442 33
995 21
968 26
933 21
1347 23
1031 30
1016 35
887 28
990 25
1280 42
1966 34
929 23


903 21
931 27
760 18
972 26
985 27
1009 28
987 33
1010 29
989 30
981 28
982 24
1009 27
959 32
844 32
919 26
1000 28
1211 46
986 29
949 35
910 27
1181 30
1016 33
997 49
872 36
979 34
1153 57
1907 61
904 30


9.66 0.91
9.32 0.94
15.56 0.91
7.37 0.93
2.21 0.94
1.82 0.94
4.54 0.96
4.05 0.94
4.95 0.95
3.39 0.94
4.51 0.92
0.10 0.93
3.40 0.96
10.65 0.96
6.80 0.94
2.64 0.94
32.85 0.97
3.19 0.94
6.35 0.95
7.95 0.93
27.22 0.90
4.58 0.73
5.92 0.96
5.94 0.93
3.67 0.96
23.37 0.93
6.14 0.96
8.76 0.96










Table 4-6. Continued.
DF09-44 55 0.0732 0.00040 1.638 0.034 0.162 0.0033 1020 22 985 26 970 36 4.86 0.97
DF09-44 56 0.0733 0.00040 1.635 0.025 0.162 0.0023 1023 22 984 19 967 25 5.43 0.93
DF09-44 57 0.1262 0.00068 6.271 0.135 0.360 0.0075 2046 19 2014 37 1985 71 2.97 0.97
DF09-44 58 0.0675 0.00048 1.036 0.024 0.111 0.0025 854 30 722 24 680 28 20.32 0.95
DF09-44 59 0.0721 0.00043 1.442 0.023 0.145 0.0021 989 24 906 19 874 24 11.67 0.93
DF09-44 60 0.0731 0.00039 1.713 0.029 0.170 0.0028 1016 22 1013 22 1013 30 0.29 0.95
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U

Table 4-7. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample CZ29 from the Central Zone, Congo Craton.
Sample 2ulPb/ lo error 2u'Pb/ lo 2ubPb/ 1o error u"'Pb/lubPb 2u'Pb/ 2U* ubPb/ '"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
CZ29 1 0.0728 0.00011 1.529 0.026 0.152 0.0025 1009 6 942 20 915 28 9.29 1.00
CZ29 2 0.0729 0.00012 1.669 0.035 0.166 0.0035 1010 6 997 26 992 38 1.82 1.00
CZ29 3 0.1251 0.00030 6.153 0.117 0.357 0.0067 2031 9 1997 33 1968 64 3.09 0.99
CZ29 4R 0.1188 0.00267 0.721 0.022 0.044 0.0009 1938 80 551 25 278 11 85.65 0.66
CZ29 5R 0.1130 0.00061 2.416 0.040 0.155 0.0024 1849 19 1247 23 930 27 49.70 0.94
CZ29 6 0.0734 0.00010 1.686 0.027 0.167 0.0027 1024 6 1003 21 994 30 2.91 1.00
CZ29 7R 0.0702 0.00030 0.794 0.017 0.082 0.0017 934 18 593 19 509 20 45.49 0.98
CZ29 8R 0.1181 0.00034 3.418 0.061 0.210 0.0037 1928 10 1508 28 1229 39 36.26 0.99
CZ29 9R 0.0739 0.00011 1.585 0.027 0.155 0.0027 1040 6 964 21 932 30 10.31 1.00
CZ29 10R 0.0738 0.00013 1.456 0.023 0.143 0.0022 1037 7 912 19 862 25 16.86 0.99
CZ29 11R 0.0634 0.00061 0.697 0.012 0.080 0.0012 723 40 537 14 495 14 31.55 0.83
CZ29 12 0.1251 0.00024 6.095 0.094 0.353 0.0054 2030 7 1989 27 1952 51 3.83 0.99
CZ2913R 0.1262 0.00022 5.904 0.105 0.339 0.0060 2046 6 1961 31 1884 58 7.90 1.00
CZ29 14R 0.0731 0.00018 1.103 0.021 0.109 0.0021 1017 10 755 20 670 24 34.10 0.99
CZ29 15R 0.0742 0.00011 1.614 0.029 0.158 0.0028 1046 6 975 22 945 31 9.64 1.00
CZ29 16 0.0733 0.00010 1.602 0.026 0.159 0.0026 1021 6 971 21 950 29 7.00 1.00
CZ29 17 0.0721 0.00022 1.418 0.028 0.143 0.0028 989 12 896 24 860 32 13.06 0.99










Table 4-7. Continued.
CZ29 18R 0.0739 0.00016 1.606 0.025 0.158 0.0024 1039 9 972 19 944 27 9.12 0.99
CZ29 19R 0.0738 0.00014 1.645 0.026 0.162 0.0026 1037 8 987 20 966 28 6.84 0.99
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-8. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample CZ40 from the Central Zone, Congo Craton.
Sample 2u'Pb/ 1o error `u'Pb/ 1o 2u"Pb/ 1o error "u'Pb/uoPb "u'Pb/"tU* 2uoPb/ioU percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
CZ40 1 0.0684 0.00123 1.273 0.085 0.135 0.0087 881 74 833 75 817 99 7.24 0.96
1021
CZ40 2 0.0721 0.00134 1.704 0.118 0.171 0.0115 989 75 1010 87 126 -3.25 0.96
3023 3215
CZ40 3R 0.2094 0.00379 18.650 1.247 0.646 0.0416 2901 59 125 322 -10.81 0.96
1894 1959
CZ40 4 0.1116 0.00200 5.460 0.365 0.355 0.0229 1826 65 112 216 -7.32 0.96
2003 2026
CZ40 5 0.1217 0.00218 6.189 0.413 0.369 0.0237 1981 64 113 222 -2.26 0.96
1869 1911
CZ40 6 0.1116 0.00200 5.304 0.355 0.345 0.0222 1826 65 111 212 -4.67 0.96
1987 2029
CZ40 7 0.1193 0.00215 6.078 0.406 0.369 0.0238 1946 64 113 222 -4.27 0.96
1839 1860
CZ40 8 0.1111 0.00199 5.118 0.342 0.334 0.0215 1817 65 110 206 -2.37 0.96
CZ40 9 0.0713 0.00128 1.613 0.108 0.164 0.0106 966 73 975 82 980 117 -1.52 0.96
1968 2035
CZ40 10 0.1164 0.00208 5.950 0.399 0.371 0.0240 1901 64 113 224 -7.04 0.96
1090
CZ40 11 0.0717 0.00128 1.819 0.122 0.184 0.0118 976 73 1052 86 128 -11.72 0.96
CZ40 12 0.0692 0.00135 1.385 0.097 0.145 0.0097 905 80 882 81 874 109 3.33 0.96
2674 2709
CZ40 13 0.1797 0.00324 12.930 0.872 0.522 0.0339 2650 60 123 284 -2.23 0.96
1823 1808
CZ40 14 0.1126 0.00202 5.021 0.339 0.323 0.0210 1842 65 111 203 1.82 0.96
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-9. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample CZ53b from the Central Zone, Congo Craton.


Sample

CZ53b 10R
CZ53b 11
CZ53b 12R
CZ53b 13
CZ53b 14RIMR
CZ53b 14CORER
CZ53b 15R
CZ53b 16R
CZ53b 17R
CZ53b 18
CZ53b 19R
CZ53b 20R
CZ53b 21
CZ53b 22R
CZ53b 23
CZ53b 24
CZ53b 25
CZ53b 26
CZ53b 27
CZ53b 28R
CZ53b 29R
CZ53b 30R
CZ53b 31R
CZ53b 32
CZ53b 33R
CZ53b 34R


zu'Pb/ lo error 'u'Pb/
206Pb 235U*

0.0654 0.00030 0.897
0.0605 0.00021 0.875
0.0636 0.00033 0.886
0.0625 0.00060 0.923
0.0655 0.00031 0.849
0.0646 0.00031 0.868
0.0734 0.00028 1.536
0.0708 0.00083 0.922
0.0639 0.00033 0.693
0.0605 0.00021 0.865
0.0665 0.00024 1.054
0.0909 0.00079 1.005
0.0726 0.00025 1.717
0.0631 0.00044 0.868
0.0622 0.00022 0.941
0.0772 0.00081 1.838
0.0657 0.00026 1.023
0.0605 0.00021 0.897
0.0648 0.00022 1.201
0.0730 0.00035 1.187
0.0891 0.00138 0.812
0.0644 0.00024 0.860
0.0617 0.00114 0.335
0.0739 0.00025 1.804
0.0731 0.00091 1.228
0.0669 0.00028 0.668


lo 2u0Pb/ loerror


Zu'Pb/ZUbPb 2LuPb/2JDU* ZUbPb/2ZU percent rho


Age (Ma) Age (Ma)


1o a uPb/ 10 error
error* 238U
0.020 0.099 0.0022
0.017 0.105 0.0020
0.017 0.101 0.0018
0.020 0.107 0.0021
0.016 0.094 0.0017
0.020 0.097 0.0022
0.043 0.152 0.0042
0.025 0.094 0.0023
0.048 0.079 0.0054
0.017 0.104 0.0020
0.023 0.115 0.0024
0.023 0.080 0.0017
0.041 0.171 0.0040
0.025 0.100 0.0028
0.017 0.110 0.0019
0.041 0.173 0.0034
0.021 0.113 0.0023
0.016 0.108 0.0019
0.022 0.134 0.0024
0.038 0.118 0.0037
0.030 0.066 0.0022
0.017 0.097 0.0018
0.009 0.039 0.0008
0.038 0.177 0.0036
0.028 0.122 0.0023
0.012 0.072 0.0013


788 19
620 15
729 22
691 41
789 20
761 20
1026 15
952 48
739 22
622 15
824 15
1445 33
1003 14
711 29
680 15
1127 42
797 16
621 15
769 14
1015 20
1407 59
755 16
665 79
1038 14
1016 50
836 17


650 21
638 19
644 18
664 21
624 17
634 21
945 34
663 26
534 57
632 19
731 22
706 23
1015 30
634 27
673 17
1059 29
715 21
650 18
801 20
795 35
604 33
630 18
293 14
1047 27
813 25
520 14


Age (Ma)
612 26
644 24
621 21
656 24
580 20
600 25
911 47
582 27
488 65
636 24
702 28
498 20
1021 44
614 33
672 22
1027 38
690 27
659 23
813 27
719 43
413 26
597 22
249 10
1052 40
742 27
451 15


discord. factor
22.32 0.98
-3.89 0.98
14.75 0.96
5.04 0.90
26.46 0.97
21.12 0.98
11.18 0.99
38.87 0.90
33.87 1.00
-2.36 0.98
14.77 0.99
65.56 0.93
-1.80 0.99
13.68 0.97
1.18 0.98
8.79 0.88
13.37 0.98
-6.19 0.98
-5.82 0.98
29.11 0.99
70.65 0.90
20.98 0.98
62.60 0.73
-1.40 0.99
26.95 0.84
46.01 0.97










Table 4-9. Continued.
CZ53b 35
CZ53b 36R
CZ53b 36R
CZ53b 37
CZ53b 38
CZ53b 39
CZ53b 40
CZ53b 41R
CZ53b 42R
CZ53b 43
CZ53b 44
CZ53b 45R
CZ53b 46
CZ53b 47
CZ53b 48

CZ53b 49R
CZ53b 50
CZ53b 51
CZ53b 52R
CZ53b 53
CZ53b 54R
CZ53b 55R
CZ53b 56
CZ53b 57
CZ53b 58R
CZ53b 59
CZ53b 60
CZ53b 61


0.0652 0.00043 1.122
0.0661 0.00103 1.287
0.0707 0.00111 1.212
0.0618 0.00022 0.980
0.0624 0.00040 0.828
0.0607 0.00021 0.884
0.0611 0.00021 0.867
0.0654 0.00047 0.780
0.0699 0.00226 1.221
0.0764 0.00055 1.836
0.0611 0.00022 0.898
0.0769 0.00057 1.158
0.0615 0.00029 0.884
0.0685 0.00026 1.415
0.0634 0.00021 1.042

0.0774 0.00598 1.136
0.0649 0.00022 1.139
0.0651 0.00022 1.183
0.0855 0.00045 2.236
0.0624 0.00027 0.921
0.0642 0.00046 0.283
0.0649 0.00049 0.708
0.0657 0.00025 1.055
0.0745 0.00028 1.740
0.0731 0.00035 0.967
0.0720 0.00024 1.638
0.0756 0.00036 1.779
0.0669 0.00056 1.173


0.028 0.125 0.0030
0.030 0.141 0.0024
0.032 0.124 0.0026
0.021 0.115 0.0024
0.020 0.096 0.0022
0.017 0.106 0.0020
0.019 0.103 0.0022


780 28
811 65
948 64
666 15
688 27
628 15
641 15


0.023 0.086 0.0024 787 30
0.050 0.127 0.0032 926 133
0.041 0.174 0.0037 1105 29
0.019 0.107 0.0022 642 15
0.022 0.109 0.0019 1118 29
0.018 0.104 0.0020 658 20
0.028 0.150 0.0029 883 16
0.019 0.119 0.0021 723 14
1131
0.093 0.106 0.0029 307
0.021 0.127 0.0023 772 14
0.023 0.132 0.0025 777 14
0.051 0.190 0.0042 1327 20
0.021 0.107 0.0024 687 19
0.006 0.032 0.0006 749 30
0.020 0.079 0.0022 771 32
0.019 0.116 0.0021 797 16
0.039 0.169 0.0038 1055 15
0.017 0.096 0.0016 1016 20
0.033 0.165 0.0033 985 14
0.032 0.171 0.0030 1084 19
0.027 0.127 0.0027 834 35


764 27
840 26
806 29
693 21
612 22
643 19
634 20


759 35
852 27
757 30
703 28
593 26
648 24
632 26


2.57 0.96
-5.09 0.74
20.14 0.80
-5.58 0.99
13.84 0.96
-3.15 0.98
1.34 0.99


585 26 535 29 32.02 0.97


810 45
1058 29
650 20
781 21
643 19
895 23
725 19

770 87
772 19
793 21
1192 32
663 23


770 36
1036 40
653 26
669 22
639 24
901 32
726 25

653 34
772 26
799 28
1120 45
656 + 28


16.83 0.61
6.20 0.95
-1.86 0.99
40.15 0.92
2.76 0.97
-2.01 0.98
-0.55 0.98

42.30 0.33
-0.05 0.98
-2.83 0.98
15.57 0.97
4.45 0.98


253 9 203 +8 72.87 0.94


544 24
731 19
1023 29
687 18
985 26
1038 23
788 25


492 26
711 24
1010 42
591 19
986 37
1017 33
773 31


36.24 0.96
10.76 0.98
4.31 0.99
41.83 0.96
-0.12 0.99
6.14 0.96
7.28 0.93










Table 4-9. Continued.
CZ53b 62
CZ53b 63
CZ53b 64R
CZ53b 65
CZ53b 66
CZ53b 67
CZ53b 68R
CZ53b 69R
CZ53b 70R
CZ53b 71R
CZ53b 72
CZ53b 73R
CZ53b 74R
CZ53b 75
CZ53b 76
CZ53b 77
CZ53b 78
CZ53b 79
CZ53b 80
CZ53b 81
CZ53b 80CORE
CZ53b 82
CZ53b 83
CZ53b 84
CZ53b 85
CZ53b 86
CZ53b 87
CZ53b 88
CZ53b 89


0.0647 0.00024 1.148
0.0743 0.00029 1.730
0.0688 0.00028 1.007
0.0610 0.00021 0.908
0.0609 0.00022 0.941
0.0779 0.00027 2.078
0.0720 0.00058 1.321
0.0591 0.00035 0.478
0.0649 0.00068 0.329
0.0661 0.00059 0.961
0.0743 0.00025 1.763
0.0785 0.00034 1.272
0.0695 0.00040 0.854
0.0615 0.00022 0.883
0.0607 0.00021 0.860
0.0723 0.00041 1.535
0.0723 0.00025 1.640
0.0758 0.00029 1.958
0.0758 0.00029 1.958
0.0654 0.00024 1.188
0.0764 0.00028 1.829
0.0615 0.00023 0.801
0.0739 0.00027 1.718
0.0636 0.00024 1.003
0.0744 0.00026 1.784
0.0646 0.00024 1.056
0.0745 0.00026 1.823
0.0779 0.00027 2.033
0.0744 0.00026 1.793


0.021 0.129 0.0023 765 15 776 19 781 26
0.037 0.169 0.0036 1050 16 1020 28 1006 40
0.020 0.106 0.0021 892 17 707 20 651 24
0.019 0.108 0.0022 639 15 656 20 661 25
0.019 0.112 0.0022 636 16 673 19 685 25
0.036 0.193 0.0033 1145 14 1141 23 1140 35


0.032 0.133 0.0030
0.030 0.059 0.0037
0.009 0.037 0.0009


986 33 855 28 806 35


-2.16 0.98
4.15 0.98
26.99 0.98
-3.50 0.99
-7.75 0.98
0.41 0.98
18.23 0.94


569 26 396 41 368 45 35.36 1.00


770 44 288 14 233 12


0.022 0.105 0.0022 811 38 684 22 646 26
0.034 0.172 0.0032 1049 14 1032 25 1024 36
0.024 0.118 0.0022 1159 17 833 21 717 25
0.019 0.089 0.0019 913 24 627 21 551 23
0.019 0.104 0.0022 656 15 643 21 640 26
0.016 0.103 0.0019 629 15 630 18 631 22
0.029 0.154 0.0028 995 23 944 23 924 31
0.029 0.164 0.0029 995 14 985 22 982 32
0.037 0.187 0.0035 1090 15 1101 25 1108 38
0.037 0.187 0.0035 1090 15 1101 25 1108 38
0.022 0.132 0.0024 789 15 795 20 798 27
0.034 0.174 0.0032 1106 14 1056 25 1033 35
0.018 0.094 0.0021 657 16 597 20 582 25
0.042 0.169 0.0041 1039 15 1015 31 1006 45
0.020 0.114 0.0023 727 16 705 20 699 26
0.036 0.174 0.0034 1053 14 1040 26 1034 38
0.019 0.119 0.0020 760 16 732 18 724 23
0.033 0.177 0.0032 1055 14 1054 24 1054 35
0.039 0.189 0.0036 1145 14 1126 26 1118 39
0.034 0.175 0.0032 1051 14 1043 24 1040 35


69.74 0.92
20.34 0.92
2.35 0.98
38.10 0.97
39.65 0.97
2.42 0.99
-0.34 0.98
7.16 0.96
1.23 0.98
-1.63 0.98
-1.63 0.98
-1.23 0.98
6.57 0.98
11.39 0.99
3.17 0.99
3.87 0.98
1.73 0.98
4.73 0.98
0.12 0.98
2.30 0.98
1.06 0.98










Table 4-9. Continued.
CZ53b 90R
CZ53b 91R
CZ53b 92R
CZ53b 93
CZ53b 94
CZ53b 95
CZ53b 96
CZ53b 97R
CZ53b 98
CZ53b 99R
CZ53b 100R
CZ53b 101R
CZ53b 102
CZ53b 103R
CZ53b 104
CZ53b 105R
CZ53b 106
CZ53b 107
CZ53b 108
CZ53b 109R
CZ53b 110
CZ53b 111R
CZ53b 112
CZ53b 113
CZ53b 114
CZ53b 115R
CZ53b 116R


0.0611 0.00026 0.516
0.0691 0.00034 0.935
0.0675 0.00027 0.723
0.0624 0.00024 0.923
0.0661 0.00024 1.244
0.0635 0.00024 1.000
0.0686 0.00037 1.182
0.0790 0.00077 0.335
0.0608 0.00022 0.842
0.0689 0.00050 0.868
0.0634 0.00023 0.806
0.2918 0.00694 8.515
0.0626 0.00023 1.059
0.0766 0.00126 0.821
0.0663 0.00038 1.128
0.0725 0.00271 0.938
0.0613 0.00021 0.853
0.0610 0.00021 0.879
0.0731 0.00025 1.692
0.0656 0.00052 0.563
0.0736 0.00026 1.684
0.0642 0.00025 0.467
0.0608 0.00021 0.850
0.0638 0.00026 0.912
0.0639 0.00022 1.032
0.1120 0.00542 1.067
0.0663 0.00029 0.369


0.010 0.061 0.0011
0.025 0.098 0.0025
0.016 0.078 0.0017
0.017 0.107 0.0020
0.026 0.137 0.0029
0.018 0.114 0.0020
0.023 0.125 0.0024
0.010 0.031 0.0008
0.016 0.100 0.0019
0.021 0.091 0.0021
0.020 0.092 0.0023
0.283 0.212 0.0049
0.019 0.123 0.0021
0.033 0.078 0.0029
0.022 0.123 0.0023
0.040 0.094 0.0018
0.018 0.101 0.0021
0.016 0.104 0.0019
0.033 0.168 0.0033
0.019 0.062 0.0020
0.038 0.166 0.0037
0.010 0.053 0.0011
0.018 0.101 0.0021
0.018 0.104 0.0020
0.019 0.117 0.0022
0.064 0.069 0.0024
0.007 0.040 0.0007


642 19
901 20
853 16
687 16
808 15
725 16
887 22
1173 38
632 16
896 30
721 15
3427 74
695 16
1112 66
815 24
1001 152
651 14
640 15
1016 14
795 33
1030 14
749 16
633 15
736 17
740 15
1833 175


422 13
670 26
552 19
664 18
821 24
704 18
792 21
294 15
620 18
634 23
600 23
2287 60
733 18
608 37
767 21
672 41
626 20
640 17
1005 25
454 24
1002 28
389 14
624 20
658 19
720 19
737 62


383 14 40.27 0.97
604 30 32.94 0.98
483 20 43.38 0.98
658 23 4.19 0.98
826 32 -2.22 0.99
698 23 3.77 0.98
760 27 14.30 0.96
196 10 83.32 0.94
617 22 2.31 0.98
564 25 37.04 0.96
569 27 21.02 0.99
1239 52 63.86 0.70
746 24 -7.38 0.98
483 34 56.59 0.91
751 27 7.84 0.96
578 22 42.20 0.46
620 25 4.73 0.99
641 22 -0.25 0.98
1002 36 1.37 0.98
390 24 50.96 0.97
991 41 3.73 0.99
332 14 55.65 0.98
623 25 1.64 0.99
636 23 13.54 0.98
714 25 3.45 0.98
431 29 76.49 0.59


815 18 319 10 255 9 68.67 0.97


R denotes samples removed due to high error and/or discordance.










Table 4-10. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample CZ35 from the Central Zone, Congo Craton.
Sample 2u'Pb/ lo error .u'Pb/ lo Ub"Pb/ 1o error 'u'Pb/lubPb Zu'Pb/2DU* 2UbPb/2"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


0.0860
0.0636
0.0714
0.0720


0.00028
0.00020
0.00024
0.00024


2.565
0.934
1.608
1.639


0.038
0.014
0.030
0.023


0.216
0.107
0.163
0.165


0.0031
0.0015
0.0030
0.0022


1339 13
728 13
969 14
985 + 14


0.0814 0.00181 0.577 0.034 0.051 0.0028 1230 87
0.0645 0.00031 0.977 0.016 0.110 0.0018 758 20
1030 +
0.0736 0.00236 0.523 0.020 0.052 0.0010 129
0.0640 0.00021 1.147 0.023 0.130 0.0025 741 14


1291 22
670 14
973 23
985 + 17


1263 33
653 18
976 34
986 + 24


5.68
10.19
-0.71
-0.14


0.98
0.98
0.98
0.97


463 43 324 34 73.66 0.93
692 17 672 20 11.24 0.96

427 26 325 12 68.49 0.52
776 21 789 29 -6.44 0.99


CZ35 1
CZ35 2
CZ35 3
CZ35 4
CZ35 5R
CZ35 6

CZ35 7R
CZ35 8
CZ35 9R
CZ35 10R
CZ35 11
CZ35 12
CZ35 13
CZ35 14
CZ35 15R
CZ35 16
CZ35 17R
CZ35 18R
CZ35 19
CZ35 20
CZ35 21
CZ35 22
CZ35 23
CZ35 24R
CZ35 25
CZ35 26
CZ35 27


0.0693
0.0723
0.0768
0.0638
0.0765
0.0741
0.0661


0.00032
0.00023
0.00029
0.00021
0.00039
0.00147
0.00027


1.204
1.641
1.886
1.052
1.985
0.525
1.164


0.019
0.029
0.028
0.016
0.029
0.026
0.022


0.126
0.164
0.178
0.120
0.188
0.051
0.128


0.0019
0.0028
0.0025
0.0018
0.0026
0.0023
0.0024


907 19
995 13
111515
736 14
1108 20
1044 80
810 17


802 17
986 22
1076 19
730 16
1110 20
429 34
784 21


766 22
982 31
1058 28
729 21
1112 28
323 28
775 27


15.58
1.26
5.11
0.93
-0.40
69.02
4.23


0.96
0.98
0.97
0.98
0.94
0.91
0.98


0.0643 0.00050 0.946 0.016 0.107 0.0016 751 33 676 16 654 18 12.83 0.88


0.0684
0.0756
0.0744
0.0759
0.0660
0.0642
0.0651
0.0685
0.0646
0.0758


0.00048
0.00024
0.00025
0.00028
0.00029
0.00020
0.00065
0.00023
0.00021
0.00024


0.869
1.913
1.731
1.941
1.160
1.100
0.652
1.427
1.124
1.918


0.022
0.029
0.032
0.033
0.018
0.019
0.014
0.019
0.017
0.028


0.092
0.183
0.169
0.185
0.128
0.124
0.073
0.151
0.126
0.183


0.0022
0.0027
0.0031
0.0031
0.0019
0.0021
0.0014
0.0019
0.0019
0.0026


879 29
1085 13
1051 13
1093 15
805 18
749 13
779 42
882 14
760 13
1091 13


635 23
1086 20
1020 24
1095 23
782 16
753 18
509 17
900 16
765 16
1087 20


569 26
1087 29
1006 34
1097 34
775 21
756 24
452 17
908 21
767 22
1087 29


35.26
-0.16
4.25
-0.41
3.78
-0.97
41.95
-2.96
-0.93
0.35


0.96
0.98
0.98
0.98
0.96
0.98
0.89
0.97
0.98
0.98


0.0619 0.00020 0.883 0.015 0.103 0.0017 672 14 643 16 635 20 5.54 0.98










Table 4-10. Continued.
CZ35 28
CZ35 29R
CZ35 30R
CZ35 31
CZ35 32
CZ35 33R
CZ35 34
CZ35 35R
CZ35 36
CZ35 37R
CZ35 38
CZ35 39
CZ35 40
CZ35 41
CZ35 42
CZ35 43
CZ35 44
CZ35 45R
CZ35 46
CZ35 47
CZ35 48
CZ35 49
CZ35 50
CZ35 51
CZ35 52
CZ35 53
CZ35 54
CZ35 55
CZ35 56


0.0645 0.00025 0.974
0.0664 0.00029 0.976
0.0667 0.00041 1.039
0.0625 0.00020 0.988
0.0759 0.00025 1.925
0.0718 0.00147 1.266
0.0660 0.00024 1.100
0.0672 0.00037 0.738
0.0621 0.00022 0.948
0.0820 0.00075 0.764
0.0654 0.00025 1.064
0.0627 0.00020 0.986
0.1247 0.00040 6.242
0.0707 0.00024 1.587
0.0624 0.00020 0.817
0.0745 0.00026 1.628
0.0646 0.00021 1.109
0.0699 0.00096 1.155
0.0748 0.00029 1.804
0.0631 0.00020 1.024
0.0750 0.00026 1.780
0.0659 0.00024 1.093
0.0651 0.00022 1.134
0.0664 0.00023 1.254
0.0616 0.00021 0.869
0.0760 0.00025 2.049
0.0645 0.00021 1.109
0.0770 0.00025 1.991
0.0629 0.00021 0.951


0.017 0.109 0.0018 759 17 691 17
0.024 0.107 0.0026 819 18 691 25
0.022 0.113 0.0023 829 26 723 22
0.017 0.115 0.0020 690 14 697 18
0.033 0.184 0.0031 1092 13 1090 22
0.030 0.128 0.0016 980 83 830 27
0.020 0.121 0.0022 805 16 753 1 19


0.016 0.080 0.0017
0.014 0.111 0.0016


670 21
653 30
690 26
700 23
1090 33
777 18
737 25


11.68 0.97
20.16 0.98
16.72 0.96
-1.50 0.98
0.16 0.98
20.71 0.52
8.50 0.98


845 23 561 19 495 20 41.44 0.97
678 15 677 15 678 19 -0.01 0.97


0.028 0.068 0.0024 1245 36 576 32
0.016 0.118 0.0018 786 16 735 16
0.015 0.114 0.0017 699 14 697 15
0.103 0.363 0.0059 2024 11 2010 29
0.024 0.163 0.0024 948 14 965 19
0.021 0.095 0.0024 688 14 606 23
0.022 0.158 0.0021 1056 14 981 17
0.016 0.124 0.0018 762 13 758 16
0.021 0.120 0.0014 926 57 779 20
0.032 0.175 0.0030 1063 16 1047 23
0.015 0.118 0.0017 712 13 716 15
0.032 0.172 0.0030 1070 14 1038 23
0.020 0.120 0.0021 802 16 750 1 19
0.017 0.126 0.0018 778 14 769 16
0.020 0.137 0.0022 819 15 825 18
0.015 0.102 0.0018 659 15 635 17
0.043 0.195 0.0040 1096 13 1132 28
0.015 0.125 0.0017 759 13 757 15
0.031 0.187 0.0029 1122 13 1112 21
0.014 0.110 0.0016 707 14 678 15


422 29
720 20
697 19
1999 55
974 27
585 28
949 23
757 20
730 17
1040 33
718 19
1024 33
733 24
767 21
828 25
629 21
1152 43
757 19
1108 31
670 18


66.13 0.97
8.44 0.97
0.35 0.98
1.23 0.98
-2.76 0.98
14.91 0.99
10.08 0.97
0.61 0.98
21.19 0.66
2.19 0.97
-0.80 0.98
4.22 0.98
8.50 0.98
1.32 0.97
-1.20 0.98
4.55 0.98
-5.09 0.99
0.21 0.97
1.21 0.98
5.10 0.97










Table 4-10. Continued.
CZ35 57
CZ35 58R
CZ35 59R
CZ35 60
CZ35 61
CZ35 62
CZ35 63
CZ35 64
CZ35 65R
CZ35 66R
CZ35 67
CZ35 68
CZ35 69R
CZ35 70
CZ35 71
CZ35 72
CZ35 73R
CZ35 74R
CZ35 75
CZ35 76
CZ35 77
CZ35 78R
CZ35 79
CZ35 80
CZ35 81
CZ35 82
CZ35 83
CZ35 84
CZ35 85


0.0652 0.00022 1.185
0.0637 0.00068 0.453
0.0666 0.00042 0.904
0.0646 0.00022 1.074
0.0728 0.00026 1.580
0.0627 0.00033 0.900
0.0637 0.00025 0.977
0.0732 0.00041 1.797
0.0652 0.00023 0.947
0.0626 0.00023 0.663
0.0626 0.00024 0.912
0.0655 0.00021 1.123
0.0688 0.00033 0.890
0.0681 0.00028 1.291
0.0745 0.00023 1.792
0.0630 0.00022 0.982
0.0639 0.00025 0.896
0.0662 0.00038 0.612
0.0619 0.00020 0.927
0.0629 0.00022 0.912
0.0628 0.00020 0.986
0.0678 0.00051 0.970
0.0742 0.00035 1.569
0.0661 0.00034 1.115
0.0632 0.00021 0.978
0.0745 0.00024 1.732
0.0639 0.00023 1.003
0.0612 0.00021 0.899
0.0730 0.00023 1.610


0.021 0.132 0.0023 780 14
0.014 0.052 0.0015 732 45
0.018 0.098 0.0018 826 26
0.016 0.121 0.0018 760 14
0.033 0.158 0.0032 1008 14
0.015 0.104 0.0017 697 22
0.018 0.111 0.0020 731 16
0.026 0.178 0.0024 1018 23
0.015 0.105 0.0016 781 15
0.019 0.077 0.0021 696 16
0.013 0.106 0.0014 693 17
0.017 0.124 0.0018 789 13
0.019 0.094 0.0020 893 20
0.021 0.138 0.0022 872 1 17
0.026 0.174 0.0025 1056 13
0.015 0.113 0.0017 708 15
0.015 0.102 0.0017 739 16
0.040 0.067 0.0044 812 24
0.014 0.109 0.0016 671 14
0.018 0.105 0.0021 706 15
0.016 0.114 0.0018 703 14
0.023 0.104 0.0024 861 31
0.023 0.153 0.0021 1046 19
0.017 0.122 0.0017 809 21
0.014 0.112 0.0016 717 14
0.026 0.169 0.0024 1054 13
0.015 0.114 0.0017 739 15
0.012 0.106 0.0014 647 14
0.028 0.160 0.0027 1015 13


793 1 9
380 19
654 19
741 16
962 26
651 16
692 19
1044 19
677 15
516 23
658 13
764 16
646 21
842 19
1043 19
695 15
649 16
485 50
666 14
658 19
696 16
688 24
958 18
761 16
692 15
1020 19
705 15
651 13
974 22


799 26
325 18
606 21
735 21
944 36
639 19
681 24
1058 26
646 19
477 26
649 16
756 21
578 23
831 25
1037 27
691 19
625 20
419 53
665 18
645 24
695 21
637 27
921 23
745 20
686 19
1006 27
696 19
653 16
957 30


-2.49 0.98
55.66 0.94
26.65 0.95
3.31 0.97
6.33 0.99
8.34 0.95
6.83 0.98
-3.90 0.92
17.17 0.97
31.42 0.99
6.40 0.96
4.12 0.98
35.18 0.97
4.67 0.97
1.79 0.98
2.30 0.97
15.48 0.97
48.42 1.00
0.77 0.98
8.66 0.98
1.05 0.98
25.97 0.95
11.95 0.94
7.83 0.94
4.32 0.97
4.58 0.98
5.78 0.97
-0.97 0.97
5.67 0.98










Table 4-10. Continued.
CZ35 86
CZ35 87
CZ35 88R
CZ35 89
CZ35 90
CZ35 91R
CZ35 92R
CZ35 93
CZ35 94
CZ35 95
CZ35 96R
CZ35 97R
CZ35 98R

CZ35 99R
CZ35 100
CZ35 101
CZ35 102
CZ35 103
CZ35 104
CZ35 105


CZ35 106R
CZ35 107R

CZ35 108R
CZ35 109
CZ35 110R


0.0656 0.00023 1.082
0.0644 0.00022 1.071
0.0807 0.00125 0.700
0.0641 0.00041 1.081
0.0627 0.00028 0.858
0.0734 0.00102 0.373
0.0701 0.00028 0.997
0.0658 0.00021 1.119
0.0759 0.00027 1.788
0.0730 0.00024 1.626
0.0736 0.00180 0.989
0.0676 0.00075 0.716
0.0681 0.00080 0.623

0.0855 0.00225 1.141
0.0633 0.00022 0.974
0.0658 0.00021 1.155
0.0670 0.00022 1.255
0.0656 0.00022 1.114
0.0739 0.00026 1.859
0.0636 0.00021 0.997


0.0682 0.00202 0.998
0.0676 0.00031 0.705

0.0780 0.00214 1.294
0.0646 0.00022 1.058
0.0735 0.00052 0.931


0.016 0.120 0.0017
0.017 0.121 0.0019
0.016 0.063 0.0011
0.017 0.122 0.0018
0.014 0.099 0.0016
0.008 0.037 0.0006
0.022 0.103 0.0022
0.018 0.123 0.0020
0.028 0.171 0.0026
0.024 0.161 0.0023
0.032 0.097 0.0020
0.015 0.077 0.0014
0.014 0.066 0.0013

0.061 0.097 0.0045
0.016 0.112 0.0018
0.019 0.127 0.0021
0.017 0.136 0.0018
0.016 0.123 0.0018
0.028 0.182 0.0027
0.017 0.114 0.0019
0.035 0.106 0.0019
0.016 0.076 0.0017

0.042 0.120 0.0020
0.017 0.119 0.0019
0.046 0.092 0.0045


795 14
755 14
1214 61
746 27
699 19


744 16
739 16
539 19
744 16
629 15


1026 56 322 12


931 16
799 14
1092 14
1014 13
1030 99
855 46
871 49
1326 +
102
719 15
801 13
839 14
794 14
1040 14
727 14


702 22
762 18
1041 20
980 18
698 32
548 18
491 18

773 57
690 17
780 18
826 16
760 16
1066 20
702 + 17


728 20
735 21
394 13
744 20
610 18


8.38 0.97
2.67 0.98
67.58 0.74
0.25 0.91
12.69 0.96


233 8 77.26 0.79


633 26
750 23
1017 29
966 25
600 24
478 16
414 16

596 52
682 21
773 24
821 21
749 20
1080 29
695 22


31.98 0.98
6.08 0.98
6.83 0.98
4.75 0.97
41.72 0.65
44.12 0.85
52.44 0.86

55.02 0.87
5.03 0.98
3.42 0.98
2.04 0.97
5.57 0.97
-3.88 0.97
4.40 0.98


873 123 703 35 651 23 25.38 0.52
856 19 542 20 471 21 44.98 0.98
1146 +
109 843 37 733 23 35.98 0.53
761 14 733 17 724 22 4.83 0.98
1029 +29 668 +47 567 +53 44.91 0.99


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-11. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-22 from the Southern Zone, Congo Craton.
Sample 2u'Pb/ 1o error 2"uPb/ 1o 2UbPb/ 1o 'ulPb/lubPb 2u'Pb/2jU* 2UbPb/2'U percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor


DF06-22 1R
DF06-22 2
DF06-22 3
DF06-22 4
DF06-22 5
DF06-22 6
DF06-22 7R
DF06-22 8R
DF06-22 9

DF06-22 11R

DF06-22 12
DF06-22 13R
DF06-22 14R
DF06-22 15R
DF06-22 16
DF06-22 17R
DF06-22 18
DF06-22 19R
DF06-22 20
DF06-22 21
DF06-22 22R
DF06-22 23
DF06-22 24R
DF06-22 25R


0.1228
0.1229
0.1205
0.0643
0.0706
0.1075
0.0713
0.5718
0.1218


0.00102
0.00080
0.00090
0.00042
0.00046
0.00146
0.00047
0.00445
0.00079


5.407
5.752
5.814
1.062
1.582
4.777
1.330
18.609
5.755


0.108
0.093
0.100
0.019
0.029
0.096
0.029
0.408
0.104


0.319
0.340
0.350
0.120
0.162
0.322
0.135
0.236
0.343


0.0058
0.0050
0.0054
0.0020
0.0027
0.0048
0.0029
0.0048
0.0058


1997 30
1998 23
1964 27
751 28
946 27
1757 50
967 27
4438 23
1982 23


0.3802 0.02581 6.254 0.441 0.119 0.0023 3833 205


0.1678
0.1214
0.1317
0.0749
0.1160
0.1157
0.1137
0.1268
0.0601
0.1148
0.1703
0.1160
0.1768


0.00168
0.00079
0.00116
0.00050
0.00077
0.00075
0.00074
0.00084
0.00040
0.00075
0.00112
0.00077
0.00117


10.108
4.071
4.626
1.195
3.872
2.990
3.293
3.905
0.692
3.996
5.895
4.233
7.131


0.762
0.085
0.135
0.023
0.145
0.050
0.104
0.069
0.012
0.069
0.166
0.121
0.229


0.437
0.243
0.255
0.116
0.242
0.187
0.210
0.223
0.083
0.253
0.251
0.265
0.293


0.0327
0.0048
0.0071
0.0020
0.0089
0.0029
0.0065
0.0037
0.0013
0.0040
0.0069
0.0073
0.0092


2536 34
1977 23
2121 31
1066 27
1895 24
1890 23
1859 23
2054 23
609 28
1876 23
2561 22
1895 24
2623 22


1886 34
1939 28
1948 30
735 19
963 22
1781 34
859 26
3021 42
1939 31
2012
120
2444
135
1648 34
1754 48
798 21
1608 60
1405 25
1479 49
1615 28
534 14
1633 28
1960 48
1680 46
2128 56


1788 56
1886 48
1936 52
730 23
971 30
1803 47
818 32
1367 50
1902 56


10.47
5.60
1.42
2.80
-2.65
-2.61
15.32
69.20
4.06


0.91
0.91
0.90
0.93
0.93
0.74
0.95
0.93
0.93


727 27 81.03 0.27


2339 290
1405 50
1464 73
707 24
1399 92
1109 31
1231 69
1301 39
517 15
1453 42
1445 71
1515 75
1656 91


7.76
28.92
30.95
33.72
26.19
41.34
33.79
36.65
15.05
22.56
43.59
20.02
36.86


0.99
0.95
0.95
0.94
0.98
0.92
0.98
0.93
0.92
0.93
0.97
0.97
0.98


0.1747 0.00114 10.037 0.171 0.417 0.0065 2603 22 2438 31 2248 60 13.64 0.92










Table 4-11. Continued.


DF06-22 26R
DF06-22 27R
DF06-22 28R
DF06-22 29
DF06-22 30R
DF06-22 31
DF06-22 32R
DF06-22 33R
DF06-22 34R
DF06-22 35
DF06-22 36R
DF06-22 37R
DF06-22 38R
DF06-22 39


0.0771
0.1133
0.1145
0.2194
0.1172
0.0616
0.0825
0.1142
0.1354
0.1178
0.1228
0.1152
0.1156
0.1321


0.00052
0.00075
0.00076
0.00144
0.00076
0.00044
0.00126
0.00080
0.00098
0.00078
0.00612
0.00076
0.00084
0.00087


1.218 0.022 0.115 0.0020 1124 27 809 20
1.813 0.045 0.116 0.0028 1853 24 1050 32
3.174 0.068 0.201 0.0041 1872 24 1451 33
17.508 0.362 0.579 0.0114 2976 21 2963 39
3.117 0.063 0.193 0.0037 1915 23 1437 31
0.881 0.015 0.104 0.0016 661 30 641 16
1.925 0.042 0.169 0.0026 1257 60 1090 29
2.992 0.058 0.190 0.0034 1867 25 1405 29
5.740 0.117 0.307 0.0059 2169 25 1937 35
4.438 0.110 0.273 0.0065 1924 24 1719 41
1.966 0.124 0.116 0.0045 1997 177 1104 83
4.571 0.093 0.288 0.0055 1884 24 1744 34
2.901 0.049 0.182 0.0028 1889 26 1382 25
6.715 0.168 0.369 0.0089 2127 +23 2074 +44


700 23
708 32
1182 44
2946 93
1138 40
636 19
1009 28
1122 37
1730 58
1558 66
709 52
1631 55
1079 30
2024 + 84


37.69
61.78
36.87
1.00
40.58
3.67
19.69
39.89
20.26
18.99
64.50
13.39
42.85
4.81


0.93
0.96
0.95
0.95
0.95
0.91
0.70
0.93
0.94
0.96
0.61
0.95
0.90
0.96


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


Table 4-12. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample SZ13 from the Southern Zone, Congo Craton.
Sample zu'Pb/ 1o error `u'Pb/ 1o a u~Pb/ 1o 'zuPb/zuoPb u'uPb/2OU* u"Pb/zioU percent rho
206Pb 235U* error* 238U error Age (Ma) Age (Ma) Age (Ma) discord. factor
SZ13 1R 0.0785 0.00168 1.044 0.027 0.096 0.0014 1160 85 726 26 594 16 48.78 0.55
SZ13 2 0.0717 0.00066 1.630 0.031 0.165 0.0027 976 37 982 24 985 30 -0.95 0.87
SZ13 3 0.0745 0.00068 1.852 0.036 0.180 0.0031 1056 37 1064 26 1069 34 -1.20 0.88
SZ13 4 0.0644 0.00059 1.172 0.022 0.132 0.0021 755 39 787 20 800 24 -5.91 0.87
SZ13 5 0.0683 0.00077 1.170 0.022 0.124 0.0019 879 46 787 21 755 22 14.03 0.81
SZ13 6 0.0653 0.00060 1.219 0.023 0.135 0.0023 784 38 809 21 819 26 -4.56 0.88
SZ13 7R 0.0785 0.00082 1.290 0.033 0.119 0.0027 1159 41 841 29 726 32 37.33 0.91
SZ13 8 0.0613 0.00056 0.942 0.018 0.111 0.0019 650 39 674 19 682 22 -4.88 0.88










Table 4-12. Continued.
SZ13 9R 0.1151 0.00105 5.436 0.106 0.343 0.0059 1881 33 1890 33 1901 56 -1.04 0.88
SZ13 10R 0.0643 0.00067 0.928 0.016 0.105 0.0015 753 44 667 17 642 18 14.67 0.81
SZ13 11R 0.0916 0.00119 1.382 0.032 0.109 0.0021 1459 49 881 27 670 24 54.07 0.83
SZ13 12R 0.0798 0.00179 1.147 0.035 0.104 0.0021 1192 88 776 33 640 25 46.31 0.67
SZ13 13 0.0635 0.00059 1.080 0.020 0.123 0.0020 724 39 744 20 751 23 -3.80 0.87
SZ13 14 0.0648 0.00062 1.113 0.021 0.125 0.0020 767 40 759 20 758 23 1.15 0.86
SZ13 15R 0.1528 0.00399 3.219 0.165 0.153 0.0068 2377 89 1462 78 918 75 61.40 0.86
SZ13 16R 0.0761 0.00157 1.110 0.035 0.106 0.0025 1099 82 758 33 649 29 40.95 0.75
SZ13 17R 0.0679 0.00087 1.213 0.026 0.129 0.0023 866 53 806 24 786 26 9.23 0.81
SZ13 18 0.0724 0.00254 1.106 0.042 0.111 0.0017 996 143 756 40 679 19 31.84 0.39
SZ13 19 0.0911 0.00248 2.064 0.072 0.164 0.0035 1449 104 1137 47 981 39 32.27 0.62
SZ13 20R 0.1358 0.00461 5.109 0.193 0.273 0.0045 2174 118 1837 63 1557 45 28.40 0.44
SZ13 21 0.0757 0.00072 1.803 0.034 0.173 0.0028 1087 38 1046 24 1028 31 5.42 0.86
SZ13 22 0.0626 0.00057 1.008 0.019 0.117 0.0019 694 39 708 19 713 22 -2.80 0.87
SZ13 23R 0.0683 0.00073 1.075 0.019 0.114 0.0017 877 44 741 19 698 19 20.38 0.81
SZ13 24 0.0621 0.00057 0.938 0.017 0.110 0.0017 679 39 672 17 671 19 1.15 0.86
SZ13 25 0.0800 0.00109 1.925 0.045 0.175 0.0034 1196 54 1090 31 1038 37 13.17 0.82
SZ13 26 0.0620 0.00058 0.947 0.017 0.111 0.0018 674 40 676 18 678 20 -0.55 0.86
SZ13 27 0.0807 0.00116 1.811 0.038 0.163 0.0024 1214 57 1049 27 973 27 19.81 0.72
SZ13 28 0.0722 0.00068 1.678 0.031 0.169 0.0027 992 38 1000 23 1005 30 -1.35 0.86
SZ13 29 0.0625 0.00057 0.959 0.017 0.111 0.0017 692 39 683 18 681 20 1.55 0.86
SZ13 30 0.0710 0.00065 1.576 0.030 0.161 0.0027 958 37 961 24 963 30 -0.59 0.88
SZ13 31 0.0798 0.00110 1.870 0.038 0.170 0.0026 1191 55 1070 27 1013 28 14.96 0.74
SZ1332R 0.0906 0.00122 1.188 0.030 0.095 0.0020 1439 51 795 28 586 24 59.28 0.85
SZ13 33 0.0745 0.00075 1.771 0.032 0.173 0.0026 1054 40 1035 23 1027 28 2.54 0.83
SZ13 34 0.1149 0.00105 5.291 0.101 0.334 0.0056 1878 33 1867 32 1859 54 1.00 0.88
SZ13 35R 0.0731 0.00085 1.182 0.023 0.117 0.0018 1017 47 792 21 715 20 29.68 0.79










Table 4-12. Continued.


0.0653
0.0770
0.1207
0.1006
0.1211
0.2337
0.0622
0.0699
0.0644


0.00060
0.00082
0.00458
0.00188
0.00207
0.00503
0.00058
0.00066
0.00059


1.158
1.781
1.850
1.513
1.414
13.345
0.918
1.385
1.095


0.020
0.035
0.077
0.036
0.034
0.364
0.017
0.025
0.020


0.129
0.168
0.111
0.109
0.085
0.414
0.107
0.144
0.123


0.0019
0.0027
0.0020
0.0016
0.0015
0.0069
0.0018
0.0022
0.0019


784 38
1120 43
1966 135
1635 69
1972 61
3077 69
680 40
927 39
754 + 39


781 19
1039 25
1063 54
936 29
895 29
2704 51
661 18
883 21
751 +19


781 22
1001 30
680 23
668 18
525 17
2236 63
657 21
866 25
751 + 22


0.43
10.61
65.40
59.11
73.40
27.34
3.37
6.54
0.45


0.85
0.84
0.42
0.61
0.71
0.61
0.87
0.86
0.86


SZ13 36
SZ13 37R
SZ13 38R
SZ13 39R
SZ13 40R
SZ13 41R
SZ13 42
SZ13 43R
SZ13 44
SZ13 45R
SZ13 46R
SZ13 47
SZ13 48
SZ13 49R
SZ13 50R
SZ13 51
SZ13 52R
SZ13 53
SZ13 54
SZ13 55R
SZ13 56R
SZ13 57
SZ13 58
SZ13 59R

SZ13 60R
SZ13 61R
SZ13 62R


0.0676
0.0659
0.0616


0.00112
0.00061
0.00057


0.920
1.199
0.951


0.022
0.023
0.017


0.099
0.132
0.112


0.0017
0.0022
0.0017


662 23
800 21
679 18


608 19
800 25
684 20


28.87
0.23
-3.46


0.71
0.87
0.86


0.0691 0.00084 1.096 0.022 0.115 0.0019 903 50 751 21 702 21 22.20 0.80


0.3720
0.0603
0.1831
0.0694
0.0601
0.1037
0.0735
0.0735
0.0609


0.00951
0.00058
0.00194
0.00064
0.00056
0.00220
0.00068
0.00068
0.00056


8.530
0.797
11.440
1.430
0.818
1.625
1.767
1.767
0.868


0.261
0.016
0.232
0.027
0.018
0.049
0.034
0.034
0.017


0.166
0.096
0.453
0.149
0.099
0.114
0.174
0.174
0.103


0.0028
0.0016
0.0078
0.0025
0.0019
0.0024
0.0029
0.0029
0.0018


3799 77
614 42
2681 35
911 38
609 40
1691 78
1029 37
1029 37
637 39


2289 55
595 18
2559 37
902 23
607 20
980 38
1033 25
1033 25
634 19


0.0807 0.00158 1.400 0.041 0.126 0.0027 1214 77 889 34
1729 +
0.2595 0.01654 4.492 0.329 0.126 0.0045 3243 201 118
0.0781 0.00200 0.957 0.030 0.089 0.0017 1149 102 682 31
0.0680 0.00069 0.969 0.018 0.103 0.0015 868 42 688 18


993 31
591 19
2411 69
899 28
607 22
694 28
1036 32
1036 32
634 21


73.87
3.69
10.08
1.36
0.24
58.94
-0.69
-0.69
0.37


0.55
0.87
0.85
0.87
0.90
0.71
0.88
0.88
0.89


765 31 37.00 0.74


763 52
550 20
635 18


76.47
52.15
26.80


0.49
0.59
0.83


0.1073 0.01115 1.543 0.165 0.104 0.0026 1754 +380 948 +128 640 +31 63.49 0.24










Table 4-12. Continued.
SZ13 63 0.0718 0.00066 1.577 0.033 0.159 0.0030 981 37 961 26 953 33 2.78 0.90
SZ13 64R 0.0748 0.00114 1.140 0.025 0.110 0.0018 1064 61 772 24 676 20 36.42 0.72
SZ13 65R 0.2825 0.00682 5.498 0.154 0.141 0.0020 3377 75 1900 48 852 23 74.78 0.51
SZ13 66R 0.0910 0.00418 2.165 0.109 0.173 0.0036 1446 175 1170 69 1027 40 28.92 0.41
1121
SZ13 67R 0.1266 0.01292 2.017 0.212 0.116 0.0030 2052 360 138 705 35 65.62 0.25
SZ13 68R 0.0848 0.00171 2.031 0.052 0.174 0.0027 1310 78 1126 34 1034 30 21.05 0.62
SZ13 69R 0.0916 0.00117 2.069 0.042 0.164 0.0026 1458 48 1139 27 979 28 32.83 0.78
SZ13 70R 0.0757 0.00085 1.287 0.026 0.123 0.0021 1087 45 840 23 751 24 30.92 0.83
SZ13 71R 0.0708 0.00078 0.961 0.017 0.099 0.0014 950 45 684 18 606 17 36.19 0.79
SZ13 72R 0.0760 0.00072 1.773 0.035 0.169 0.0029 1096 38 1035 25 1008 32 8.04 0.87
SZ13 73 0.1257 0.00115 6.326 0.128 0.365 0.0066 2038 32 2022 35 2008 62 1.48 0.89
SZ13 74 0.0628 0.00059 0.939 0.017 0.109 0.0017 701 40 672 18 665 20 5.19 0.86
SZ13 75R 0.0644 0.00061 0.881 0.017 0.099 0.0016 755 40 642 18 610 19 19.14 0.86
SZ13 76R 0.0740 0.00300 1.120 0.049 0.110 0.0019 1040 164 763 47 672 22 35.37 0.39
SZ13 77 0.0634 0.00058 0.992 0.018 0.113 0.0018 723 39 699 19 693 21 4.18 0.87
SZ13 78R 0.1962 0.00235 13.836 0.271 0.512 0.0079 2795 39 2738 37 2665 68 4.63 0.79
SZ13 79R 0.0762 0.00146 0.915 0.025 0.087 0.0016 1101 77 659 26 538 20 51.11 0.70
SZ13 80 0.0749 0.00072 1.584 0.029 0.153 0.0023 1067 39 964 22 920 26 13.73 0.85
SZ13 81R 0.0917 0.00395 1.561 0.071 0.123 0.0018 1462 163 955 56 751 21 48.63 0.33
SZ13 82R 0.1813 0.00166 11.337 0.236 0.454 0.0085 2665 30 2551 38 2413 75 9.43 0.90
SZ13 83R 0.1043 0.00285 1.655 0.052 0.115 0.0018 1703 101 991 40 703 21 58.73 0.50
1157 +
SZ13 85R 0.1226 0.01291 2.126 0.229 0.126 0.0029 1995 374 144 764 33 61.69 0.21
SZ13 86R 0.1120 0.00223 1.566 0.042 0.101 0.0019 1832 72 957 33 623 22 65.99 0.68
SZ13 87R 0.0639 0.00063 0.893 0.015 0.101 0.0014 738 42 648 16 623 16 15.60 0.81
SZ13 88R 0.6165 0.01091 21.695 0.983 0.255 0.0106 4547 51 3170 86 1466 109 67.75 0.92
SZ13 89 0.0792 0.00115 1.825 0.038 0.167 0.0025 1178 57 1054 27 997 28 15.35 0.73










Table 4-12. Continued.
SZ13 90R 0.1198 0.00258 1.447 0.037 0.088 0.0012 1953 77 909 31 542 14 72.24 0.54
SZ13 91R 0.1835 0.00169 12.062 0.210 0.477 0.0071 2685 30 2609 32 2515 61 6.30 0.85
SZ13 92R 0.0693 0.00064 1.237 0.022 0.129 0.0020 909 38 817 20 785 23 13.62 0.86
SZ13 93R 0.1024 0.00220 2.114 0.060 0.150 0.0028 1669 79 1153 39 900 31 46.07 0.65
SZ13 94 0.0717 0.00104 1.325 0.029 0.134 0.0022 977 59 856 25 811 25 16.97 0.75
SZ13 95R 0.1039 0.00375 1.491 0.058 0.104 0.0016 1694 133 927 47 639 18 62.28 0.38
SZ13 96 0.0654 0.00060 1.123 0.020 0.124 0.0018 788 38 764 19 757 21 3.96 0.85
SZ13 97 0.0752 0.00074 1.794 0.034 0.173 0.0029 1073 40 1043 25 1030 31 3.95 0.86
SZ13 98R 0.0677 0.00094 0.942 0.020 0.101 0.0016 861 58 674 21 620 18 27.96 0.75
SZ13 99 0.0722 0.00067 1.564 0.028 0.157 0.0024 992 38 956 22 941 27 5.06 0.85
SZ13 100 0.0631 0.00062 0.982 0.019 0.113 0.0018 712 41 695 19 690 21 3.00 0.86
SZ13 101R 0.0762 0.00076 1.660 0.031 0.158 0.0024 1100 40 993 23 946 27 13.92 0.84
SZ13 102 0.0899 0.00204 2.006 0.054 0.162 0.0023 1424 87 1117 36 968 25 32.02 0.53
SZ13 103R 0.0633 0.00060 0.895 0.017 0.103 0.0017 719 40 649 18 630 19 12.42 0.86
SZ13 104 0.3323 0.00983 10.081 0.440 0.220 0.0071 3628 91 2442 79 1283 75 64.63 0.74
SZ13 105 0.0609 0.00056 0.852 0.017 0.101 0.0018 636 39 626 18 623 21 1.99 0.89
SZ13 106 0.0651 0.00060 1.135 0.021 0.126 0.0020 777 39 770 20 768 23 1.13 0.87
SZ13 107 0.0686 0.00076 1.170 0.021 0.124 0.0018 887 46 787 20 753 21 15.09 0.80
SZ13 108 0.0719 0.00066 1.582 0.028 0.160 0.0025 983 37 963 22 955 27 2.75 0.86
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-13. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-12a from the Southern Margin Zone, Kalahari Craton.
Sample 2u'Pb/ 1o error `u'Pb/ 1o "~UPb/ 1o error u'Pb/'u"Pb u'pPb/b U* zuopPb/zooU percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DF09-12a 1
DF09-12a 2
DF09-12a 3R
DF09-12a 4
DF09-12a 5R
DF09-12a 6R
DF09-12a 7R
DF09-12a 8
DF09-12a 9
DF09-12a 10
DF09-12a 11
DF09-12a 12
DF09-12a 13R
DF09-12a 14
DF09-12a 15
DF09-12a 16
DF09-12a 17
DF09-12a 18R
DF09-12a 19
DF09-12a 20R
DF09-12a 21
DF09-12a 22
DF09-12a 23
DF09-12a 24R
DF09-12a 25R
DF09-12a 26


0.0828 0.00053 2.279 0.046 0.200 0.0038 1265 25 1206 28 1174 41 7.20 0.95
0.0769 0.00047 1.880 0.037 0.177 0.0033 1119 24 1074 26 1053 36 5.88 0.95
0.0943 0.00117 2.634 0.058 0.203 0.0037 1514 47 1310 32 1190 39 21.40 0.82
0.0770 0.00050 1.928 0.039 0.182 0.0035 1120 26 1091 27 1077 38 3.84 0.95


0.0997
0.0816
0.1000
0.0824
0.0932
0.0772
0.0973
0.1160
0.0861
0.0862
0.0817
0.0818
0.0867
0.1240
0.0766
0.0829
0.0806
0.0798
0.0815
0.0942
0.1027
0.0862


0.00096
0.00058
0.00139
0.00050
0.00056
0.00047
0.00060
0.00070
0.00054
0.00054
0.00052
0.00050
0.00053
0.00075
0.00123
0.00052
0.00049
0.00052
0.00049
0.00060
0.00063
0.00053


2.094
1.327
1.923
2.341
3.191
1.941
3.512
5.330
2.124
2.777
2.270
2.344
2.635
5.361
1.822
1.915
2.219
2.148
2.229
2.584
3.741
2.637


0.053
0.054
0.069
0.044
0.059
0.037
0.068
0.107
0.063
0.051
0.043
0.046
0.048
0.122
0.046
0.046
0.042
0.040
0.043
0.079
0.075
0.049


0.152
0.118
0.140
0.206
0.248
0.182
0.262
0.333
0.179
0.234
0.201
0.208
0.220
0.313
0.172
0.167
0.200
0.195
0.198
0.199
0.264
0.222


0.0036
0.0047
0.0046
0.0037
0.0043
0.0033
0.0048
0.0064
0.0052
0.0040
0.0036
0.0039
0.0038
0.0069
0.0034
0.0039
0.0036
0.0034
0.0037
0.0059
0.0051
0.0039


1618 36
1236 28
1623 52
1256 24
1492 23
1126 24
1572 23
1896 22
1339 24
1342 24
1239 25
1240 24
1354 23
2015 21
1111 64
1268 25
1211 24
1193 26
1233 24
1512 24
1674 23
1342 24


1147 35
857 46
1089 47
1225 27
1455 28
1095 25
1530 30
1873 34
1156 40
1349 27
1203 26
1226 28
1310 27
1878 39
1053 33
1086 32
1187 26
1164 26
1190 27
1296 44
1580 32
1311 27


915 40
719 54
843 52
1208 40
1431 45
1081 36
1501 49
1855 62
1062 56
1356 42
1184 38
1219 41
1285 40
1759 68
1027 37
999 43
1175 38
1150 37
1167 39
1171 63
1512 52
1293 41


43.42
41.79
48.07
3.75
4.03
3.96
4.52
2.11
20.67
-1.04
4.41
1.66
5.07
12.70
7.59
21.20
3.00
3.55
5.32
22.58
9.63
3.66


0.93
0.98
0.92
0.95
0.94
0.95
0.95
0.95
0.98
0.94
0.94
0.95
0.94
0.96
0.77
0.96
0.95
0.94
0.95
0.98
0.95
0.94










Table 4-13. Continued.


DF09-12a 27
DF09-12a 28
DF09-12a 29
DF09-12a 30
DF09-12a 31
DF09-12a 32R
DF09-12a 33
DF09-12a 34
DF09-12a 35R
DF09-12a 36
DF09-12a 37R
DF09-12a 38
DF09-12a 39
DF09-12a 40
DF09-12a 41R
DF09-12a 42
DF09-12a 43
DF09-12a 44
DF09-12a 45
DF09-12a 46
DF09-12a 47
DF09-12a 48
DF09-12a 49R
DF09-12a 50
DF09-12a 51
DF09-12a 52
DF09-12a 53
DF09-12a 54R


0.0934 0.00057 3.196
0.1104 0.00067 3.941
0.0925 0.00056 3.150
0.1187 0.00072 5.465
0.0838 0.00051 2.433
0.0848 0.00059 0.834
0.0874 0.00053 2.662
0.0760 0.00047 1.797
0.0717 0.00047 1.466
0.0781 0.00049 1.968
0.1149 0.00070 3.780
0.0795 0.00055 2.052
0.0801 0.00049 2.103
0.0867 0.00054 2.581
0.0864 0.00053 2.296
0.0799 0.00050 2.138
0.0780 0.00048 1.943
0.0823 0.00050 2.295
0.0842 0.00052 2.457
0.0949 0.00059 3.291
0.0819 0.00050 2.267
0.0818 0.00050 2.275
0.0877 0.00124 1.639
0.1153 0.00075 4.715
0.1134 0.00068 4.332
0.0804 0.00050 2.183
0.0764 0.00047 1.784
0.0828 0.00053 1.865


0.060
0.075
0.059
0.102
0.048
0.038
0.063
0.032
0.027
0.038
0.081
0.046
0.040
0.048
0.040
0.041
0.034
0.043
0.046
0.059
0.042
0.041
0.036
0.101
0.081
0.041
0.032
0.034


0.248 0.0044 1495 23 1456 29 1431 46
0.259 0.0047 1806 22 1622 31 1485 48
0.247 0.0044 1477 23 1445 29 1424 46
0.334 0.0059 1936 22 1895 32 1859 57
0.211 0.0040 1287 24 1252 28 1233 42
0.071 0.0032 1311 27 616 42 445 39
0.221 0.0051 1369 23 1318 35 1288 53
0.172 0.0029 1095 25 1044 23 1021 32
0.148 0.0025 978 27 916 22 891 28
0.183 0.0034 1148 25 1104 26 1083 37
0.239 0.0049 1879 22 1588 34 1380 51
0.187 0.0040 1184 27 1133 30 1108 43
0.190 0.0034 1200 24 1150 26 1124 37
0.216 0.0038 1354 24 1295 27 1261 40
0.193 0.0032 1348 24 1211 25 1136 34
0.194 0.0035 1194 25 1161 26 1145 38
0.181 0.0030 1146 24 1096 23 1072 32
0.202 0.0036 1252 24 1210 26 1188 38
0.211 0.0038 1298 24 1259 27 1238 40
0.252 0.0043 1526 23 1479 28 1447 44
0.201 0.0035 1244 24 1202 26 1180 38
0.202 0.0035 1241 24 1204 26 1185 37
0.136 0.0023 1375 54 985 28 820 26
0.297 0.0061 1884 23 1770 36 1676 60
0.277 0.0049 1855 22 1699 31 1577 50
0.197 0.0035 1208 24 1176 26 1159 38
0.169 0.0029 1107 24 1039 23 1009 32
0.163 0.0028 1263 25 1069 24 977 31


4.30
17.75
3.56
3.97
4.18
66.07
5.86
6.69
8.85
5.65
26.51
6.42
6.28
6.87
15.66
4.09
6.43
5.09
4.64
5.15
5.12
4.50
40.34
11.05
14.97
3.99
8.83
22.66


0.95
0.95
0.95
0.95
0.95
0.99
0.97
0.94
0.93
0.95
0.96
0.95
0.95
0.94
0.94
0.95
0.94
0.95
0.95
0.94
0.94
0.94
0.77
0.95
0.95
0.94
0.94
0.94










Table 4-13. Continued.


DF09-12a 55R
DF09-12a 56
DF09-12a 57
DF09-12a 58R
DF09-12a 59R
DF09-12a 60
DF09-12a 61
DF09-12a 62R
DF09-12a 63
DF09-12a 64
DF09-12a 65
DF09-12a 66
DF09-12a 67R
DF09-12a 68R


0.0832
0.1134
0.1074
0.1138
0.0799
0.0813
0.0813
0.0913
0.0780
0.0803
0.0802
0.0746
0.0988
0.0735


0.00053
0.00069
0.00067
0.00069
0.00061
0.00050
0.00050
0.00057
0.00048
0.00049
0.00052
0.00046
0.00064
0.00047


0.871
4.497
2.996
4.968
1.181
2.270
2.075
2.745
1.837
1.917
1.928
1.744
2.528
1.660


0.017
0.082
0.054
0.091
0.031
0.042
0.040
0.056
0.032
0.036
0.037
0.032
0.064
0.030


0.076
0.288
0.202
0.317
0.107
0.202
0.185
0.218
0.171
0.173
0.174
0.169
0.186
0.164


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


Table 4-14. U-Pb
Sample


(MC-ICP-MS) analysis common Pb corrected results
u'uPb/ lo error '.uPb/ lo "2UPb/
206Pb 235U* error* 238U


for sample DF09-04 from the Southern Margin Zone,
lo error '.uPb/2U.Pb 2u'Pb/ 2U* ZUbPb/2'U
Age (Ma) Age (Ma) Age (Ma)


Kalahari Craton.
percent rho
discord. factor


DF09-04 1 0.0883 0.00039 2.828 0.045 0.232 0.0035 1390 17 1363 23 1347 37 3.06 0.96
DF09-04 2 0.1093 0.00037 4.796 0.079 0.318 0.0051 1787 12 1784 27 1783 50 0.22 0.98
DF09-04 3 0.1090 0.00037 4.623 0.074 0.308 0.0048 1783 12 1753 26 1730 47 2.93 0.98
DF09-04 4R 0.1365 0.00046 7.109 0.099 0.378 0.0051 2184 12 2125 25 2067 48 5.34 0.97
DF09-04 5 0.1155 0.00041 5.285 0.083 0.332 0.0051 1888 13 1866 27 1848 49 2.11 0.97
DF09-04 6R 0.0892 0.00041 2.264 0.047 0.184 0.0038 1408 18 1201 29 1090 41 22.53 0.97
DF09-04 7 0.0737 0.00025 1.713 0.026 0.169 0.0025 1032 14 1013 19 1006 28 2.55 0.97
DF09-04 8 0.0743 0.00026 1.781 0.025 0.174 0.0023 1051 14 1038 18 1033 26 1.63 0.97
DF09-04 9 0.0859 0.00031 2.641 0.040 0.223 0.0033 1337 14 1312 22 1298 35 2.88 0.97


0.0014
0.0050
0.0034
0.0055
0.0027
0.0035
0.0034
0.0042
0.0028
0.0031
0.0032
0.0030
0.0046
0.0028


1274 25
1854 22
1756 23
1861 22
1196 30
1230 24
1228 24
1452 24
1148 24
1204 24
1203 25
1058 25
1602 24
1027 26


636 19
1730 30
1406 27
1814 31
792 29
1203 26
1140 26
1341 30
1059 23
1087 25
1091 26
1025 24
1280 37
993 23


472 17
1631 50
1189 37
1775 54
657 31
1189 38
1096 37
1273 45
1017 31
1031 34
1036 35
1010 33
1098 50
979 31


62.92
12.01
32.31
4.60
45.06
3.30
10.71
12.32
11.43
14.36
13.83
4.53
31.42
4.64


0.95
0.94
0.94
0.94
0.96
0.94
0.95
0.95
0.94
0.95
0.94
0.94
0.97
0.94










Table 4-14. Continued.


DF09-04 10
DF09-04 11
DF09-04 12
DF09-04 13
DF09-04 14
DF09-04 15
DF09-04 16
DF09-04 17
DF09-04 18
DF09-04 19
DF09-04 20
DF09-04 21
DF09-04 22
DF09-04 23R
DF09-04 24
DF09-04 25
DF09-04 26R
DF09-04 27
DF09-04 28R
DF09-04 29
DF09-04 30
DF09-04 31
DF09-04 32R
DF09-04 33R
DF09-04_34R
DF09-04 35
DF09-04 36
DF09-04 37
DF09-04 38


0.0785 0.00027 2.134
0.0834 0.00028 2.584
0.1175 0.00051 5.675
0.0807 0.00030 2.161
0.0772 0.00026 1.997
0.0843 0.00036 2.460
0.0767 0.00027 1.936
0.0813 0.00029 2.373
0.0974 0.00036 3.447
0.0768 0.00027 1.984
0.0783 0.00027 2.090
0.0812 0.00028 2.345
0.1151 0.00039 5.402
0.1179 0.00063 4.929
0.0828 0.00029 2.438
0.0869 0.00031 2.723
0.0856 0.00036 2.390
0.0814 0.00028 2.260
0.0975 0.00047 2.616
0.0747 0.00026 1.757
0.0827 0.00038 2.310
0.0905 0.00032 2.868
0.1137 0.00038 4.920
0.0905 0.00047 1.818
not sampled
0.0810 0.00028 2.333
0.0868 0.00029 2.658
0.0808 0.00027 2.263
0.0783 0.00026 1.965


0.033
0.042
0.084
0.043
0.032
0.039
0.028
0.039
0.059
0.030
0.030
0.032
0.091
0.118
0.038
0.041
0.059
0.034
0.089
0.032
0.031
0.045
0.068
0.045


0.037
0.038
0.034
0.027


0.197 0.0029 1160 14 1160 21 1161 32
0.225 0.0036 1280 13 1296 24 1307 38
0.350 0.0050 1919 15 1927 25 1937 47
0.194 0.0038 1215 14 1169 28 1145 41
0.188 0.0029 1127 14 1114 21 1109 32
0.212 0.0032 1299 17 1260 23 1239 34
0.183 0.0026 1115 14 1094 19 1084 28
0.212 0.0034 1229 14 1234 23 1239 36
0.257 0.0043 1574 14 1515 27 1475 44
0.187 0.0028 1117 14 1110 20 1107 30
0.194 0.0027 1154 13 1145 19 1142 29
0.209 0.0028 1227 14 1226 19 1226 29
0.340 0.0056 1882 12 1885 29 1890 54
0.303 0.0071 1924 19 1807 40 1709 70
0.214 0.0032 1264 14 1254 22 1249 35
0.227 0.0033 1359 14 1335 22 1321 35
0.203 0.0049 1328 16 1239 35 1190 53
0.201 0.0030 1232 13 1200 21 1183 32
0.195 0.0065 1577 18 1305 49 1147 70
0.170 0.0031 1062 14 1029 24 1015 34
0.203 0.0025 1262 18 1215 19 1190 27
0.230 0.0035 1435 13 1373 23 1335 37
0.314 0.0042 1859 12 1805 23 1761 42
0.146 0.0035 1435 20 1052 32 878 40


0.209 0.0032 1221 13 1222 22 1224 34
0.222 0.0031 1356 13 1317 21 1294 33
0.203 0.0029 1216 13 1201 21 1193 31
0.182 0.0025 1156 13 1103 19 1078 27


-0.05
-2.15
-0.94
5.73
1.61
4.59
2.72
-0.84
6.32
0.87
1.07
0.01
-0.44
11.18
1.19
2.82
10.37
3.99
27.29
4.34
5.70
6.94
5.27
38.82


-0.28
4.53
1.82
6.70


0.97
0.98
0.96
0.98
0.98
0.96
0.97
0.98
0.98
0.97
0.97
0.97
0.98
0.97
0.97
0.97
0.99
0.97
0.99
0.98
0.94
0.97
0.97
0.98


0.98
0.97
0.97
0.97










Table 4-14. Continued.
DF09-04 39 0.1223 0.00041 6.078 0.095 0.361 0.0055 1990 12 1987 27 1986 52 0.15 0.98
DF09-04 40R 0.0787 0.00042 1.584 0.026 0.146 0.0023 1165 21 964 20 879 26 24.58 0.95
DF09-04 41 0.0784 0.00027 2.098 0.032 0.194 0.0029 1158 14 1148 21 1144 31 1.18 0.97
DF09-04 42 0.0817 0.00028 2.381 0.039 0.211 0.0034 1238 13 1237 23 1237 36 0.07 0.98
DF09-04 43R 0.0875 0.00033 2.296 0.050 0.190 0.0041 1372 15 1211 31 1124 44 18.06 0.98
DF09-04 44 0.0789 0.00032 2.152 0.031 0.198 0.0028 1169 16 1166 20 1165 30 0.29 0.96
DF09-04 45 0.0844 0.00030 2.602 0.043 0.224 0.0036 1302 14 1301 24 1302 38 -0.03 0.98
DF09-04 46 0.0948 0.00034 3.472 0.055 0.265 0.0041 1525 13 1521 25 1519 42 0.36 0.97
DF09-04 47 0.0798 0.00028 2.139 0.031 0.195 0.0027 1191 14 1161 20 1147 29 3.67 0.97
DF09-04 48R 0.0840 0.00032 2.291 0.042 0.198 0.0036 1293 15 1209 26 1164 39 9.99 0.98
DF09-04 49R 0.0904 0.00052 2.372 0.049 0.190 0.0038 1434 22 1234 29 1124 41 21.59 0.96
DF09-04 50 0.0766 0.00029 1.975 0.033 0.187 0.0031 1112 15 1107 23 1105 33 0.55 0.97
DF09-04 51R 0.1269 0.00042 6.204 0.107 0.355 0.0060 2055 12 2005 30 1958 57 4.70 0.98
DF09-04 52R 0.0823 0.00047 1.796 0.051 0.158 0.0044 1252 23 1044 36 948 49 24.27 0.98
DF09-04 53 0.1007 0.00039 3.666 0.061 0.264 0.0043 1637 14 1564 26 1512 44 7.66 0.97
DF09-04 54R 0.0776 0.00061 1.751 0.028 0.164 0.0023 1136 31 1027 21 978 25 13.90 0.87
DF09-04 55R 0.1114 0.00038 3.844 0.058 0.250 0.0037 1822 12 1602 24 1441 38 20.92 0.97
DF09-04 56 0.0861 0.00030 2.711 0.047 0.228 0.0039 1341 14 1331 25 1327 40 1.02 0.98
DF09-04 57 0.1137 0.00038 5.178 0.087 0.330 0.0055 1859 12 1849 29 1841 53 0.94 0.98
DF09-04 58 0.1076 0.00037 4.623 0.069 0.312 0.0045 1759 12 1753 25 1750 45 0.51 0.97
DF09-04 59 0.0856 0.00029 2.739 0.040 0.232 0.0033 1328 13 1339 22 1347 35 -1.44 0.97
DF09-04 60 0.0891 0.00030 3.040 0.045 0.248 0.0035 1406 13 1417 22 1427 37 -1.51 0.97
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-15. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-40 from the Southern Foreland Zone, Kalahari Craton.
Sample 'u'Pb/ 1o error u 'Pb/ 1o "UbPb/ 1o error 'uPb/'ubPb 2u'Pb/2DU* ZubPb/5"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DF06-40 1
DF06-40 2
DF06-40 3
DF06-40 4
DF06-40 5
DF06-40 6R
DF06-40 7
DF06-40 8R
DF06-40 9R
DF06-40 10
DF06-40 11
DF06-40 12R
DF06-40 13
DF06-40 14R
DF06-40 15
DFO6-40 16
DF06-40 17R
DF06-40 19
DF06-40 20
DF06-40 21
DF06-40 22R
DF06-40 23R
DF06-40 24
DF06-40 25
DF06-40 26
DF06-40 27
DF06-40 28


0.0796 0.00021
0.1774 0.00040
0.1271 0.00028
0.0795 0.00065
0.1324 0.00029
0.0911 0.00020
0.1887 0.00039
0.1861 0.00040
0.1256 0.00027
0.0775 0.00022
0.0756 0.00047
0.0923 0.00104
0.1242 0.00075
0.1567 0.00154
0.0882 0.00104
0.0835 0.00079
0.1459 0.00088
0.1257 0.00076
0.1588 0.00095
0.1703 0.00120
0.0883 0.00110
0.0787 0.00056
0.1250 0.00075
0.0869 0.00052
0.1544 0.00112
0.1859 0.00111
0.1256 0.00076


2.025
10.430
5.978
1.952
6.643
1.881
12.398
11.544
5.063
1.847
1.874
2.151
6.211
3.852
2.087
1.480
7.815
6.432
6.201
11.334
2.084
1.779
5.479
2.762
5.987
13.438
6.389


0.029
0.110
0.085
0.028
0.086
0.030
0.158
0.155
0.078
0.019
0.035
0.055
0.113
0.152
0.039
0.047
0.114
0.107
0.112
0.182
0.043
0.040
0.102
0.053
0.316
0.248
0.095


0.185 0.0026
0.426 0.0044
0.341 0.0048
0.178 0.0021
0.364 0.0046
0.150 0.0024
0.477 0.0060
0.450 0.0060
0.292 0.0045
0.173 0.0017
0.180 0.0032
0.169 0.0038
0.363 0.0063
0.178 0.0068
0.172 0.0025
0.128 0.0039
0.388 0.0052
0.371 0.0058
0.283 0.0048
0.483 0.0070
0.171 0.0028
0.164 0.0035
0.318 0.0056
0.230 0.0042
0.281 0.0147
0.524 0.0092
0.369 0.0050


1187 10 1124 20 1092 29
2629 7 2473 19 2291 40
2058 8 1972 25 1894 46
1186 32 1099 19 1057 23
2130 8 2065 23 2002 44
1449 8 1074 21 900 26
2730 7 2635 24 2515 52
2708 7 2568 25 2397 53
2038 8 1830 26 1654 45
1133 12 1062 13 1029 18
1085 25 1072 25 1066 34
1474 43 1165 35 1007 42
2018 21 2006 32 1996 59
2421 33 1603 63 1058 74
1387 45 1144 25 1022 27
1282 37 922 38 780 45
2299 21 2210 26 2117 48
2039 21 2036 29 2036 54
2442 20 2004 31 1609 48
2561 24 2551 30 2541 60
1389 48 1143 28 1019 31
1165 28 1038 29 979 39
2029 21 1897 32 1781 55
1358 23 1345 28 1338 44
2395 25 1974 90 1599 147
2706 20 2711 35 2719 77
2037 21 2030 26 2026 47


7.93
12.86
7.99
10.84
6.02
37.88
7.89
11.48
18.80
9.18
1.68
31.63
1.07
56.28
26.34
39.14
7.90
0.15
34.10
0.76
26.61
15.93
12.22
1.46
33.24
-0.49
0.54


0.98
0.98
0.99
0.82
0.99
0.99
0.99
0.99
0.99
0.96
0.94
0.90
0.94
0.97
0.77
0.95
0.91
0.93
0.94
0.90
0.80
0.95
0.95
0.95
0.99
0.95
0.91










Table 4-15. Continued.
DF6-40 29R 0.1327 0.00126 3.167
DF06-40 30 0.1873 0.00112 12.988
DF06-40 31R 0.1509 0.00174 3.428
DF06-40 32R 0.1319 0.00081 5.802
DF06-40 33 0.1179 0.00070 4.386
DF06-40 34 0.1659 0.00100 6.970
DF06-40 35R 0.8330 0.00857 137.257


DF06-40 36 0.0778 0.00057
DF06-40 37 0.1270 0.00078
DF06-40 38 0.0809 0.00050
DF06-40 39 0.1277 0.00078
DF06-40 40R 0.1581 0.00095
DF06-40 41 0.0805 0.00077
DF06-40 42 0.1311 0.00079
DF06-40 43 0.0794 0.00054
DF06-40 44 0.1318 0.00079
DF06-40 45R 0.1760 0.00105
DF06-40 46 0.1316 0.00079
DF06-40 47 0.1274 0.00078
DF06-40 48 0.1281 0.00077
DF06-40 49R 0.1523 0.00158
DF06-40 50R 0.1736 0.00104
DF06-40 51R 0.0779 0.00050
DF06-40 52R 0.1370 0.00085
DF06-40 53R 0.1258 0.00075
DF06-40 54 0.1249 0.00075
DF06-40 55 0.1163 0.00073
DF06-40 56 0.1841 0.00110
DF06-40 57 0.1305 0.00078


1.933
5.921
2.063
6.324
9.373
1.983
6.829
1.924
6.442
11.248
6.790
6.421
5.844
3.621
7.526
1.766
6.387
5.996
6.388
5.383
12.916
6.498


0.079
0.216
0.081
0.109
0.120
0.243
4.987
0.039
0.150
0.036
0.116
0.169
0.041
0.116
0.031
0.134
0.263
0.114
0.109
0.135
0.332
0.153
0.026
0.116
0.094
0.118
0.095
0.225
0.120


0.173 0.0040 2134 33
0.503 0.0078 2718 20
0.165 0.0034 2356 39
0.319 0.0057 2123 22
0.270 0.0072 1924 21
0.305 0.0104 2517 20
1.195 0.0416 4600 39
0.180 0.0033 1141 29
0.338 0.0083 2057 22
0.185 0.0030 1218 24
0.359 0.0062 2066 21
0.430 0.0073 2436 20
0.179 0.0032 1208 38
0.378 0.0060 2113 21
0.176 0.0026 1181 27
0.354 0.0070 2122 21
0.463 0.0105 2616 20
0.374 0.0059 2119 21
0.365 0.0058 2063 22
0.331 0.0074 2072 21
0.172 0.0157 2372 35
0.314 0.0061 2593 20
0.164 0.0022 1144 25
0.338 0.0058 2189 21
0.346 0.0050 2040 21
0.371 0.0065 2028 21
0.336 0.0056 1900 22
0.509 0.0083 2690 20
0.361 0.0063 2105 21


1449 38
2678 31
1511 37
1946 32
1709 45
2107 61
5004 72
1092 27
1964 43
1137 24
2022 32
2375 33
1110 28
2089 30
1089 21
2038 36
2544 43
2084 30
2035 30
1953 40
1554 141
2176 36
1033 19
2030 32
1975 27
2030 32
1882 30
2673 33
2045 32


1030 44
2629 67
984 38
1786 55
1541 73
1716 103
5072 242
1069 37
1879 80
1095 33
1980 59
2307 66
1061 35
2068 56
1045 28
1957 67
2457 92
2051 55
2010 55
1844 71
1026 172
1764 60
982 25
1880 55
1916 48
2035 61
1868 54
2654 71
1989 60


51.72
3.28
58.22
15.86
19.89
31.80
-10.26
6.32
8.66
10.07
4.16
5.28
12.15
2.12
11.50
7.76
6.06
3.17
2.56
10.96
56.74
31.97
14.10
14.14
6.05
-0.38
1.68
1.36
5.53


0.92
0.93
0.87
0.94
0.98
0.98
0.96
0.93
0.97
0.94
0.94
0.94
0.88
0.93
0.91
0.96
0.97
0.93
0.93
0.97
0.99
0.96
0.90
0.94
0.92
0.95
0.94
0.94
0.95










Table 4-15. Continued.
DFO6-40 58R 0.3262 0.00197 26.491 0.423 0.589 0.0087 3599 19 3364 31 2988 70 16.98 0.93
DF06-40 59 0.1209 0.00075 4.864 0.096 0.292 0.0054 1970 22 1796 33 1651 54 16.17 0.95
DF06-40 60 0.0778 0.00055 1.913 0.052 0.178 0.0047 1143 28 1085 36 1058 52 7.40 0.97
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-16. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-41 from the Southern Foreland Zone, Kalahari Craton.
Sample 'u'Pb/ lo error u 'Pb/ lo 2ubPb/ 1o error 'uPb/'ubPb 2u'Pb/2'DU* u"Pb/,"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
DF06-41 1 0.0627 0.00038 0.832 0.015 0.096 0.0017 698 26 614 17 593 20 15.11 0.94
DF06-41 2R 0.0773 0.00037 1.747 0.032 0.164 0.0029 1130 19 1026 24 979 32 13.34 0.97
DF06-41 3R 0.1213 0.00051 4.925 0.376 0.294 0.0224 1976 15 1806 125 1665 222 15.73 1.00
DF06-41 4.1 0.1587 0.00065 9.679 0.184 0.442 0.0082 2442 14 2404 35 2363 73 3.20 0.98
DF06-41 4R 0.1253 0.00051 5.883 0.128 0.340 0.0073 2033 14 1958 37 1891 70 7.01 0.98
DF06-41 6 0.1297 0.00054 6.698 0.124 0.375 0.0067 2094 15 2072 32 2052 63 1.99 0.97
DF06-41 7 0.1708 0.00070 11.309 0.212 0.480 0.0088 2566 14 2549 35 2530 76 1.37 0.98
DF06-41 8 0.1268 0.00052 6.113 0.121 0.350 0.0068 2054 14 1992 34 1934 64 5.83 0.98
DF06-41 9 0.1300 0.00058 6.619 0.123 0.369 0.0067 2098 16 2062 32 2028 63 3.31 0.97
DF06-41 10 0.1301 0.00057 6.658 0.122 0.371 0.0066 2099 15 2067 32 2037 62 2.96 0.97
DF06-41 11 0.1267 0.00054 6.280 0.117 0.360 0.0065 2052 15 2015 32 1982 62 3.42 0.97
DF06-41 12 0.1737 0.00071 10.794 0.214 0.451 0.0087 2594 14 2505 36 2400 77 7.46 0.98
DF06-41 13R 0.0708 0.00063 0.741 0.029 0.076 0.0029 951 37 563 34 472 35 50.31 0.97
DF06-41 14 0.2874 0.00117 26.609 0.512 0.672 0.0126 3403 13 3369 37 3315 97 2.59 0.98
DF06-41 15 0.1280 0.00052 6.550 0.125 0.371 0.0069 2070 14 2052 33 2037 65 1.61 0.98
DF06-41 16 0.0766 0.00032 1.926 0.036 0.182 0.0033 1110 17 1090 25 1081 36 2.58 0.97
DF06-41 17R 0.1343 0.00138 6.700 0.135 0.362 0.0063 2155 36 2072 35 1992 59 7.55 0.86
DF06-41 18 0.1247 0.00053 6.179 0.116 0.359 0.0066 2024 15 2001 33 1981 62 2.13 0.97
DF06-41 19 0.0730 0.00031 1.678 0.031 0.167 0.0030 1014 17 1000 23 995 33 1.82 0.97
DF06-41 20 0.0695 0.00029 1.436 0.028 0.150 0.0028 914 17 904 23 901 31 1.45 0.98










Table 4-16. Continued.
DF06-41 21 0.1251 0.00052 6.242 0.121 0.362 0.0068 2030 15 2010 34 1993 65 1.84 0.98
DF06-41 22 0.0740 0.00031 1.751 0.034 0.172 0.0032 1041 17 1027 25 1022 35 1.79 0.98
DF06-41 23 0.0596 0.00028 0.724 0.014 0.088 0.0016 589 20 553 16 545 20 7.48 0.97
DF06-41 24 0.1217 0.00052 5.818 0.108 0.347 0.0063 1981 15 1949 32 1921 60 3.04 0.97
DF06-41 25 0.0605 0.00028 0.772 0.015 0.093 0.0017 620 20 581 17 571 20 7.78 0.97
DF06-41 26R 0.0732 0.00052 1.285 0.036 0.127 0.0035 1020 29 839 32 773 40 24.18 0.97
DF06-41 27 0.0741 0.00031 1.760 0.033 0.172 0.0032 1045 17 1031 24 1025 35 1.85 0.97
DF06-41 28 0.1214 0.00053 5.812 0.110 0.347 0.0064 1977 16 1948 33 1922 61 2.77 0.97
DF06-41 29 0.0616 0.00037 0.825 0.016 0.097 0.0018 659 26 611 18 598 21 9.25 0.95
DF06-41 30 0.1771 0.00072 11.165 0.211 0.457 0.0084 2626 14 2537 35 2430 74 7.46 0.98
DF06-41 31R 0.0752 0.00035 1.560 0.038 0.150 0.0036 1075 19 954 30 904 41 15.87 0.98
DF06-41 32R 0.0653 0.00041 0.911 0.017 0.101 0.0018 785 26 658 18 622 21 20.76 0.94
DF06-41 33 0.0743 0.00032 1.760 0.033 0.172 0.0031 1051 17 1031 24 1022 34 2.72 0.97
DF06-41 34 0.0616 0.00035 0.831 0.016 0.098 0.0018 661 25 614 18 602 21 8.98 0.96
DF06-41 35 0.1315 0.00054 6.886 0.129 0.380 0.0069 2118 14 2096 33 2077 65 1.91 0.98
DF06-41 36 0.0755 0.00038 1.771 0.032 0.170 0.0029 1082 20 1035 23 1014 32 6.30 0.96
DF06-41 37 0.0591 0.00026 0.717 0.013 0.088 0.0016 570 19 549 16 544 19 4.41 0.97
DF06-41 38 0.1622 0.00067 10.216 0.198 0.457 0.0087 2479 14 2454 36 2427 76 2.07 0.98
DF06-41 39R 0.0604 0.00035 0.701 0.013 0.084 0.0015 618 25 539 16 521 18 15.65 0.95
DF06-41 40 0.1243 0.00052 6.171 0.117 0.360 0.0067 2019 15 2000 33 1984 63 1.74 0.98
DF06-41 41 0.0630 0.00029 0.934 0.017 0.108 0.0019 709 19 670 18 659 22 6.98 0.97
DF06-41 42R 0.1259 0.00051 5.604 0.100 0.323 0.0056 2042 14 1916 30 1805 54 11.63 0.97
DF06-41 43R 0.1852 0.00077 10.250 0.222 0.401 0.0085 2700 14 2457 40 2178 78 19.33 0.98
DF06-41 44 0.0632 0.00030 0.923 0.017 0.106 0.0019 717 20 664 18 649 23 9.40 0.97
DF06-41 45R 0.3195 0.00136 20.410 0.425 0.463 0.0094 3568 13 3110 40 2456 83 31.16 0.98
DF06-41 46 0.0733 0.00031 1.666 0.031 0.165 0.0030 1021 17 995 24 985 34 3.55 0.97
DF06-41 47 0.1273 0.00053 6.575 0.124 0.374 0.0069 2061 15 2056 33 2052 64 0.43 0.98
DF06-41 48 0.1647 0.00067 10.666 0.205 0.470 0.0088 2504 14 2494 35 2485 77 0.74 0.98
DF06-41 49 0.0626 0.00037 0.873 0.017 0.101 0.0018 694 25 637 18 622 21 10.38 0.95










Table 4-16. Continued.


DF06-41 50
DF06-41 51
DF06-41 52
DF06-41 53
DF06-41 54R
DF06-41 55
DF06-41 56
DF06-41 57
DF06-41 58
DF06-41 59


0.1319 0.00054


0.1467
0.2021
0.0690
0.0722
0.0748
0.0765
0.1321
0.1266
0.2753


0.00061
0.00083
0.00033
0.00032
0.00033
0.00032
0.00055
0.00052
0.00130


6.982 0.136 0.384 0.0073 2123 14 2109 34 2097 68


8.306
15.173
1.312
1.494
1.760
1.995
6.986
6.649
25.248


0.154
0.300
0.029
0.029
0.031
0.039
0.135
0.131
0.465


0.411
0.545
0.138
0.150
0.171
0.189
0.384
0.381
0.665


0.0074
0.0105
0.0029
0.0029
0.0029
0.0036
0.0072
0.0073
0.0118


2308 14
2843 13
897 19
991 18
1063 18
1109 17
2126 15
2051 15
3336 15


2265 33
2826 37
851 25
928 24
1031 23
1114 26
2109 34
2066 35
3317 36


2219 68
2805 88
834 33
902 32
1017 32
1117 39
2095 67
2082 69
3290 91


DF06-41 60 0.0733 0.00034 1.652 0.031 0.163 0.0030 1023 19 990 24 977 33 4.49 0.97
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-17. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-46 from the Southern Foreland Zone, Kalahari Craton.
Sample 2u'Pb/ lo error 2u'Pb/ lo Ub"Pb/ 1o error 'u'Pb/'ubPb 2u'Pb/2DU* 2UbPb/2"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
DF06-46 1R 0.4882 0.00451 22.234 0.430 0.330 0.0056 4206 27 3194 37 1841 54 56.22 0.88
DF06-46 2R 0.0771 0.00034 1.455 0.025 0.137 0.0023 1123 17 912 21 828 26 26.25 0.97
DF06-46 3R 0.5809 0.00590 38.084 1.084 0.475 0.0126 4461 30 3722 56 2510 110 43.74 0.93
DF06-46 4 0.0747 0.00033 1.757 0.030 0.171 0.0028 1061 18 1030 22 1016 31 4.25 0.97
DF06-46 5R 0.0758 0.00038 1.636 0.028 0.157 0.0026 1089 20 984 22 939 29 13.75 0.96
DF06-46 6 0.0750 0.00033 1.712 0.031 0.166 0.0029 1067 17 1013 23 989 32 7.29 0.97
DF06-46 7R 0.0754 0.00034 1.642 0.030 0.158 0.0028 1078 18 987 23 947 31 12.12 0.97
DF06-46 8R 0.0738 0.00065 0.864 0.018 0.085 0.0016 1035 36 632 20 526 19 49.17 0.91
DF06-46 9 0.0739 0.00035 1.593 0.028 0.156 0.0026 1038 19 967 21 937 29 9.64 0.96
DF06-46 10R 0.0751 0.00171 1.115 0.032 0.108 0.0019 1070 92 761 30 660 22 38.30 0.60
DF06-46 11 0.0731 0.00037 1.173 0.035 0.116 0.0035 1016 21 788 33 711 40 30.05 0.99


1.25
3.85
1.35
7.03
8.94
4.29
-0.77
1.43
-1.51
1.38


0.98
0.97
0.98
0.98
0.97
0.97
0.98
0.98
0.98
0.97










Table 4-17. Continued.


DF06-46 12R
DF06-46 13R
DF06-46 14R
DF06-46 15
DF06-46 16R
DFO6-46 17R
DF06-46 18R
DF06-46 19R
DF06-46 20
DF06-46 21
DF06-46 22
DF06-46 23R
DF06-46 24
DF06-46 25
DF06-46 26
DF06-46 27
DF06-46 28
DF06-46 29
DF06-46 30R
DF06-46 31R
DF06-46 32R
DF06-46 33
DF06-46 34R
DF06-46 35R
DF06-46 36R
DF06-46 37R
DF06-46 38


0.0764
0.0713
0.0823
0.0736
0.0758
0.0747
0.0768
0.0758
0.0741
0.0729
0.0600
0.0617
0.0732
0.0732
0.0733
0.0741
0.0609
0.0612
0.0774
0.0712
0.0799
0.0618
0.0607
0.0751
0.0677
0.0767
0.0736


0.00031
0.00031
0.00096
0.00032
0.00041
0.00032
0.00032
0.00045
0.00034
0.00030
0.00026
0.00047
0.00031
0.00032
0.00032
0.00032
0.00027
0.00033
0.00065
0.00039
0.00054
0.00031
0.00027
0.00045
0.00108
0.00038
0.00035


1.802 0.039 0.171 0.0037 1106 16 1046 28 1019 40


1.353
1.896
1.680
1.788
1.277
1.850
1.226
1.642
1.355
0.786
0.638
1.284
1.357
1.564
1.642
0.823
0.809
1.679
1.356
1.914
0.814
0.655
1.637
0.711
1.604
1.446


0.022
0.045
0.031
0.033
0.036
0.040
0.027
0.027
0.035
0.014
0.013
0.022
0.026
0.031
0.030
0.014
0.015
0.038
0.027
0.053
0.014
0.012
0.032
0.024
0.043
0.034


0.138
0.167
0.165
0.171
0.124
0.175
0.117
0.161
0.135
0.095
0.075
0.127
0.134
0.155
0.161
0.098
0.096
0.157
0.138
0.174
0.096
0.078
0.158
0.076
0.152
0.143


0.0022
0.0034
0.0030
0.0030
0.0034
0.0037
0.0025
0.0025
0.0034
0.0017
0.0014
0.0021
0.0026
0.0030
0.0028
0.0017
0.0017
0.0033
0.0027
0.0047
0.0016
0.0014
0.0029
0.0023
0.0040
0.0033


965 18
1253 46
1031 18
1090 22
1062 17
111517
1090 24
1044 18
1012 17
604 19
665 32
1018 17
1020 18
1023 18
1044 17
636 19
647 23
1132 34
964 23
1195 26
666 21
628 19
1070 24
859 66
1112 20
1030 19


869 19
1079 31
1001 24
1041 24
836 31
1063 28
813 25
986 21
870 30
589 16
501 16
838 19
870 23
956 24
986 23
610 16
602 17
1000 29
870 23
1086 37
605 16
511 14
984 24
545 28
972 33
908 28


832 25
997 38
988 33
1018 33
754 39
1039 41
716 29
962 28
816 39
585 20
467 17
773 24
814 29
928 33
962 31
603 19
591 20
942 37
835 30
1033 51
589 19
486 16
947 32
474 27
912 44
860 37


7.84
13.75
20.46
4.19
6.57
28.98
6.78
34.29
7.82
19.34
3.01
29.78
24.08
20.18
9.25
7.84
5.18
8.73
16.75
13.38
13.54
11.51
22.55
11.41
44.84
18.01
16.47


0.98
0.96
0.87
0.97
0.96
0.99
0.98
0.96
0.96
0.99
0.97
0.93
0.97
0.97
0.97
0.97
0.97
0.96
0.93
0.96
0.97
0.96
0.97
0.95
0.88
0.98
0.98










Table 4-17. Continued.
DF6-46 39R 0.0680 0.00042 1.063 0.018 0.113 0.0018 867 25 735 17 693 20 20.06 0.93
DF06-46 40R 0.0734 0.00035 1.098 0.044 0.109 0.0043 1025 19 752 42 665 50 35.12 0.99
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-18. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-45 from the Southern Foreland Zone, Kalahari Craton.
Sample u'Pb/ lo error "u'Pb/ lo 2ubPb/ 1o error u'Pb/ubPb 2u'Pb/2U* ubPb/5bU percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
DF06-45 01 0.0603 0.00048 0.739 0.013 0.089 0.0014 613 34 562 15 550 17 10.24 0.89
DF06-45 02 0.0589 0.00023 0.728 0.012 0.090 0.0014 563 17 555 14 554 17 1.53 0.97
DF06-45 03 0.0586 0.00034 0.707 0.012 0.087 0.0014 553 25 543 14 541 16 2.12 0.94
DF06-45 04 0.0681 0.00230 0.802 0.030 0.085 0.0013 871 140 598 33 529 15 39.23 0.40
DF06-45 05 0.0587 0.00027 0.715 0.011 0.088 0.0013 557 20 548 13 546 15 1.98 0.96
DF06-45 06R 0.1261 0.00048 6.331 0.094 0.364 0.0053 2044 14 2023 26 2004 50 1.93 0.97
DF06-45 07 0.0592 0.00035 0.734 0.011 0.090 0.0013 576 26 559 13 555 15 3.48 0.92
DF06-45 08 0.0706 0.00129 0.973 0.022 0.100 0.0014 947 74 690 23 614 16 35.16 0.60
DF06-45 09 0.0748 0.00037 1.783 0.029 0.173 0.0027 1064 20 1039 21 1028 30 3.34 0.95
DF06-45 10 0.0595 0.00044 0.735 0.012 0.090 0.0013 585 32 559 14 554 15 5.29 0.89
DF06-45 11 0.0609 0.00088 0.741 0.015 0.088 0.0013 635 62 563 18 546 16 14.08 0.73
DF06-45 12 0.0588 0.00027 0.705 0.011 0.087 0.0013 559 20 542 13 538 15 3.64 0.95
DF06-45 13 0.0685 0.00028 1.377 0.022 0.146 0.0022 883 17 879 19 879 25 0.45 0.97
DF06-45 14R 0.0827 0.00131 0.960 0.053 0.084 0.0045 1262 62 683 54 522 53 58.65 0.96
DF06-45 15 0.0587 0.00030 0.692 0.011 0.085 0.0013 556 22 534 13 529 15 4.74 0.95
DF06-45 16 0.0597 0.00034 0.720 0.013 0.087 0.0015 592 25 550 16 541 18 8.62 0.95
DF06-45 17 0.0601 0.00030 0.723 0.011 0.087 0.0013 607 21 552 13 540 16 11.10 0.95
DF06-45 18 0.0690 0.00276 0.822 0.035 0.086 0.0013 898 165 609 39 535 16 40.47 0.36
DF06-45 19 0.0592 0.00054 0.711 0.012 0.087 0.0012 573 39 545 14 539 15 5.93 0.84
DF06-45 20R 0.1002 0.00243 1.158 0.067 0.084 0.0044 1628 90 781 62 519 53 68.12 0.91
DF06-45 21 0.0603 0.00028 0.750 0.015 0.090 0.0018 614 20 568 17 558 21 9.10 0.97










Table 4-18. Continued.


DF06-45 22
DF06-45 23
DF06-45 24
DF06-45 25
DF06-45 26R
DF06-45 27
DF06-45 28
DF06-45 29R
DF06-45 30R
DF06-45 31
DF06-45 32R
DF06-45 33
DF06-45 34R
DF06-45 35R
DF06-45 36
DF06-45 37
DF06-45 38
DF06-45 39R
DF06-45 40
DF06-45 41
DF06-45 42
DF06-45 43
DF06-45 44
DF06-45 45
DF06-45 46
DF06-45 47
DF06-45 48
DF06-45 49R


0.0748
0.0590
0.0589
0.0606
0.1214
0.0592


0.00119
0.00029
0.00028
0.00032
0.00254
0.00028


0.0734 0.00234
0.0608 0.00034
0.0658 0.00038
0.0634 0.00040


0.0867
0.0744
0.0809
0.0752
0.0625
0.0592
0.0595
0.0628
0.0587
0.0599
0.0592
0.0595
0.0618
0.0605
0.0600
0.0722
0.0721
0.0645


0.00369
0.00034
0.00477
0.00616
0.00030
0.00028
0.00033
0.00033
0.00027
0.00036
0.00029
0.00034
0.00028
0.00033
0.00030
0.00033
0.00081
0.00120


1.371
0.690
0.699
0.724
4.185
0.704


0.043
0.014
0.014
0.015
0.244
0.014


0.133
0.085
0.086
0.087
0.250
0.086


0.0036
0.0016
0.0017
0.0017
0.0136
0.0017


1063 64
568 21
563 21
627 23
1978 74
573 21


876 36
533 16
538 17
553 17
1671 93
541 17


805 40
525 19
533 20
535 20
1439 140
534 20


24.27
7.52
5.23
14.53
27.22
6.83


0.904 0.034 0.089 0.0018 1025 129 654 36 552 21 46.16


0.702 0.014 0.084 0.0016 631 24


540 17 519 19 17.68


0.742 0.015 0.082 0.0016 800 24 564 17 507 19 36.60
0.926 0.020 0.106 0.0022 723 27 665 21 649 26 10.22


1.023
1.894
0.994
0.898
0.922
0.711
0.707
0.765
0.726
0.710
0.712
0.706
0.920
0.757
0.740
1.595
0.872
0.802


0.071
0.040
0.062
0.077
0.019
0.016
0.015
0.016
0.015
0.014
0.015
0.014
0.019
0.016
0.017
0.035
0.020
0.023


0.086
0.185
0.089
0.087
0.107
0.087
0.086
0.088
0.090
0.086
0.087
0.086
0.108
0.091
0.090
0.160
0.088
0.090


0.0047
0.0038
0.0018
0.0022
0.0021
0.0019
0.0018
0.0018
0.0018
0.0017
0.0017
0.0017
0.0022
0.0018
0.0020
0.0034
0.0017
0.0020


1355 164
1053 18
1219 232
1075 328
690 21
573 21
585 24
700 22
554 20
601 26
575 21
584 25
666 20
622 24
603 21
991 19
987 46
757 78


715 70
1079 28
700 62
650 81
663 20
545 18
543 18
577 18
554 18
544 17
546 17
542 17
663 20
572 18
563 19
968 27
637 21
598 26


530 56
1093 42
550 21
535 26
656 25
539 22
534 21
547 21
555 22
532 20
540 20
533 20
662 26
561 22
553 23
959 38
543 20
557 24


60.89
-3.83
54.85
50.20
4.89
5.94
8.71
21.89
-0.11
11.47
6.17
8.69
0.59
9.81
8.28
3.13
44.98
26.39


0.86
0.97
0.97
0.97
0.93
0.97
0.53
0.96
0.96
0.96
0.79
0.98
0.32
0.29
0.97
0.98
0.97
0.97
0.98
0.95
0.97
0.96
0.98
0.97
0.98
0.98
0.87
0.77










Table 4-18. Continued.
DF06-45 50 0.0599 0.00033 0.728 0.015 0.088
DF06-45 51 0.0593 0.00028 0.750 0.016 0.092
DF06-45 52 0.1298 0.00058 6.914 0.144 0.386
DF06-45 53R 0.0729 0.00651 0.872 0.081 0.087
DF06-45 54 0.0611 0.00036 0.781 0.018 0.093
DF06-45 55R 0.0790 0.00078 1.731 0.042 0.159
DF06-45 56R 0.0617 0.00032 0.641 0.014 0.075
DF06-45 57 0.0616 0.00029 0.893 0.019 0.105
DF06-45 58 0.0592 0.00029 0.716 0.015 0.088
DF06-45 59 0.1397 0.00064 7.801 0.180 0.405
DF06-45 60 0.0803 0.00289 0.960 0.061 0.087


0.0017
0.0019
0.0079
0.0022
0.0020


0.0036


0.0016
0.0022
0.0017
0.0092
0.0046


598 24
580 20
2095 16
1010 362
643 25


555 17
568 18
2100 37
637 86
586 20


545 20
566 22
2107 73
537 26
572 24


8.80
2.36
-0.58
46.81
11.11


1173 39 1020 31 951 40 18.88


665 23
659 20
576 21
2223 16
1204 142


503 17
648 21
548 17
2208 41
683 62


468 19
645 26
542 21
2194 84
536 54


29.60
2.02
5.76
1.29
55.46


0.96
0.98
0.98
0.27
0.97
0.92
0.97
0.98
0.97
0.98
0.83


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


Table 4-19. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-44 from the Southern Foreland Zone, Kalahari Craton.
Sample u'Pb/ lo error u'Pb/ lo UbPb/ lo error ulPb/ubPb 2uPb/ U* ZubPb/ U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
DF06-44 01 0.0640 0.00040 0.821 0.015 0.093 0.0016 741 26 609 16 574 19 22.43 0.94
DF06-44 02R 0.1785 0.00086 10.499 0.216 0.426 0.0085 2639 16 2479 38 2292 77 13.16 0.97
DF06-44 03R 0.1763 0.00067 11.416 0.219 0.470 0.0088 2619 13 2557 35 2484 77 5.15 0.98
DF06-44 04R 0.0691 0.00033 0.960 0.016 0.101 0.0016 901 19 683 17 619 19 31.22 0.96
DF06-44 05 0.0732 0.00030 1.686 0.028 0.167 0.0027 1020 16 1003 21 997 30 2.23 0.97
DF06-44 06R 0.0593 0.00026 0.687 0.013 0.084 0.0016 580 19 531 16 520 19 10.21 0.97
DF06-44 07 0.0762 0.00037 1.762 0.033 0.168 0.0030 1100 19 1032 24 1001 34 9.03 0.97
DF06-44 08 0.0741 0.00028 1.764 0.030 0.173 0.0029 1044 15 1032 22 1028 32 1.52 0.97
DF06-44 09R 0.0591 0.00040 0.681 0.012 0.084 0.0014 572 30 527 14 518 16 9.49 0.92
DF06-44 10 0.0619 0.00032 0.860 0.015 0.101 0.0017 672 22 630 16 619 20 7.94 0.95
DF06-44 11 0.0613 0.00025 0.862 0.015 0.102 0.0017 648 18 631 16 627 19 3.21 0.97
DF06-44 12 0.0647 0.00032 0.902 0.015 0.101 0.0017 766 21 653 16 621 19 18.84 0.96










Table 4-19. Continued.


DF06-44 13
DF06-44 14
DF06-44 15
DF06-44 16
DF06-44 17
DF06-44 18R
DF06-44 19
DF06-44 20
DF06-44 21R
DF06-44 22
DF06-44 23
DF06-44 24R
DF06-44 25
DF06-44 26
DF06-44 27R
DF06-44 28
DF06-44 29
DF06-44 30
DF06-44 31
DF06-44 32
DF06-44 33R
DF06-44 34
DF06-44 35R
DF06-44 36R
DF06-44 37R
DF06-44 38
DF06-44 39
DF06-44 40R


0.1182
0.0762
0.0624
0.0928
0.0759


0.00044
0.00032
0.00038
0.00042
0.00029


0.0800 0.00031


0.0744
0.0710
0.0609
0.0730
0.0752
0.0696
0.0645
0.0751
0.0726
0.0604
0.0753
0.0719
0.0721
0.0758
0.0890
0.0586


0.00036
0.00027
0.00052
0.00035
0.00036
0.00032
0.00028
0.00032
0.00197
0.00027
0.00042
0.00030
0.00028
0.00029
0.00220
0.00025


5.668
1.874
0.868
2.927
1.900


0.099
0.033
0.017
0.055
0.034


0.348
0.178
0.101
0.229
0.182


0.0059
0.0030
0.0019
0.0042
0.0031


1929 13
1100 17
689 26
1484 17
1092 15


1926 30
1072 23
634 18
1389 28
1081 23


1925 57
1059 33
620 22
1329 44
1077 34


0.19
3.66
10.05
10.45
1.36


1.958 0.033 0.177 0.0029 1198 15 1101 22 1054 32 12.02


1.623
1.560
0.722
1.547
1.762
1.352
1.064
1.777
1.157
0.824
1.817
1.578
1.623
1.901
1.822
0.690


0.1787 0.00069 12.301
0.0663 0.00128 0.634


0.0816
0.0587
0.0599
0.0783


0.00437
0.00023
0.00025
0.00040


1.059
0.722
0.737
1.941


0.029
0.027
0.015
0.026
0.034
0.025
0.019
0.038
0.038
0.015
0.033
0.027
0.030
0.035
0.063
0.012


0.158
0.159
0.086
0.154
0.170
0.141
0.120
0.172
0.116
0.099
0.175
0.159
0.163
0.182
0.148
0.085


0.0028
0.0027
0.0016
0.0024
0.0032
0.0025
0.0021
0.0036
0.0022
0.0017
0.0031
0.0027
0.0029
0.0033
0.0035
0.0015


1051 20
959 15
636 36
101319
1075 19
916 19
758 18
1072 17
1002 110
618 19
1076 23
982 17
990 16
1089 15
1405 95
552 19


979 23
954 21
552 17
949 20
1031 25
868 21
736 18
1037 27
780 36
610 16
1051 24
961 22
979 23
1081 25
1053 45
533 15


948 31
953 30
532 19
923 27
1012 35
850 28
729 24
1021 39
706 26
609 20
1041 34
954 30
975 32
1079 36
893 40
529 17


0.249 0.499 0.0099 2641 13 2627 38 2613 85


0.026 0.069 0.0026 816 81


0.060
0.013
0.015
0.039


0.094
0.089
0.089
0.180


0.0017
0.0015
0.0018
0.0035


1235 210
554 17
598 18
1155 20


9.81
0.55
16.24
8.87
5.79
7.10
3.76
4.69
29.53
1.40
3.24
2.84
1.43
0.91
36.43
4.19
1.04


499 33 433 31 46.94


733 58
552 15
561 18
1095 26


581 21
552 18
552 21
1066 38


52.96
0.37
7.73
7.70


0.98
0.97
0.95
0.97
0.98
0.97
0.96
0.98
0.91
0.96
0.97
0.97
0.97
0.98
0.58
0.97
0.95
0.97
0.98
0.98
0.69
0.97
0.98
0.88
0.33
0.97
0.98
0.97










Table 4-19. Continued.
DF06-44 41R 0.0766 0.00042 1.414 0.026 0.134 0.0023 1111 22 895 22 810 26 27.05 0.95
DF06-44 42 0.0695 0.00031 1.113 0.020 0.116 0.0021 912 18 759 19 709 24 22.24 0.97
DF06-44 43R 0.0696 0.00049 0.976 0.016 0.102 0.0016 916 29 692 17 625 18 31.71 0.91
DF06-44 44R 0.0607 0.00025 0.712 0.012 0.085 0.0014 628 18 546 14 527 16 16.02 0.97
DF06-44 45 0.0745 0.00029 1.802 0.030 0.176 0.0028 1054 16 1046 22 1043 31 1.02 0.97
DF06-44 46 0.0744 0.00029 1.762 0.031 0.172 0.0029 1052 16 1031 23 1023 32 2.74 0.98
DF06-44 47 0.0651 0.00027 1.088 0.017 0.121 0.0019 776 17 748 17 739 22 4.79 0.97
DF06-44 48 0.0648 0.00092 0.899 0.020 0.101 0.0017 767 60 651 21 619 20 19.24 0.76
DF06-44 49R 0.1084 0.00045 4.664 0.084 0.312 0.0055 1773 15 1761 30 1752 54 1.13 0.97
DF06-44 50 0.0586 0.00027 0.699 0.013 0.086 0.0016 552 20 538 15 535 18 2.96 0.97
DF06-44 51 0.0632 0.00036 0.950 0.017 0.109 0.0018 716 24 678 17 667 21 6.71 0.94
DF06-44 52 0.0611 0.00026 0.840 0.016 0.100 0.0018 644 18 619 17 613 21 4.86 0.97
DF06-44 53 0.0752 0.00033 1.807 0.029 0.174 0.0027 1074 18 1048 21 1036 30 3.52 0.96
DF06-44 54 0.0746 0.00043 1.714 0.032 0.167 0.0030 1058 23 1014 24 994 33 6.04 0.95
DF06-44 55R 0.0790 0.00075 1.942 0.038 0.178 0.0030 1172 38 1096 26 1059 33 9.68 0.87
DF06-44 56 0.0616 0.00024 0.920 0.016 0.108 0.0019 661 17 662 17 663 22 -0.31 0.97
DF06-44 57 0.0737 0.00029 1.730 0.032 0.170 0.0031 1035 16 1019 24 1013 34 2.04 0.98
DF06-44 58 0.0659 0.00027 0.939 0.015 0.103 0.0016 803 17 672 16 635 19 20.93 0.97
DF06-44 59 0.0737 0.00036 1.745 0.031 0.172 0.0029 1033 20 1025 23 1023 32 0.97 0.96
DF06-44 60R 0.0780 0.00074 1.768 0.037 0.164 0.0031 1147 38 1034 27 982 34 14.33 0.89
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U










Table 4-20. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-43 from the Southern Foreland Zone, Kalahari Craton.


Sample 'u'Pb/ lo error u/'Pb/ 1o U2bPb/ 1 error
206Pb 235U* error* 238U


DF06-43 01
DF06-43 02R
DF06-43 03R
DF06-43 04R
DF06-43 05
DF06-43 06R
DF06-43 07R
DF06-43 08
DF06-43 09
DF06-43 10
DF06-43 11
DF06-43 12R
DF06-43 13R
DF06-43 14
DF06-43 15
DF06-43 16R
DF06-43 17
DF06-43 18
DF06-43 19
DF06-43 20
DF06-43 21R
DF06-43 22
DF06-43 23R
DF06-43 24
DF06-43 25R
DF06-43 26


0.0702
0.2443
0.2925
0.0773
0.0715
0.0802
0.0917
0.1185
0.0690
0.0602
0.0669
0.1142
0.0790
0.0760
0.0698
0.1174
0.0749
0.0772
0.0746
0.0623
0.1506
0.0746
0.0837
0.0699
0.0783
0.1146


0.00040
0.02635
0.03665
0.00079
0.00044
0.00117
0.00121
0.00058
0.00039
0.00039
0.00037
0.00327
0.00117
0.00039
0.00053
0.00174
0.00039
0.00040
0.00039
0.00035
0.00806
0.00041
0.00060
0.00044
0.00045
0.00057


1.350
7.566
5.218
1.777
1.382
1.575
1.604
5.649
1.334
0.822
0.892
2.158
1.794
1.931
1.027
1.774
1.804
1.984
1.770
0.870
3.117
1.785
1.546
1.332
1.911
5.311


0.025
0.895
0.800
0.035
0.026
0.037
0.033
0.105
0.025
0.015
0.016
0.085
0.040
0.036
0.028
0.042
0.033
0.041
0.034
0.016
0.181
0.034
0.028
0.028
0.035
0.107


0.140
0.225
0.129
0.167
0.140
0.142
0.127
0.346
0.140
0.099
0.097
0.137
0.165
0.184
0.107
0.110
0.175
0.186
0.172
0.101
0.150
0.174
0.134
0.138
0.177
0.336


0.0025
0.0109
0.0114
0.0028
0.0025
0.0027
0.0020
0.0062
0.0025
0.0017
0.0017
0.0037
0.0028
0.0033
0.0028
0.0021
0.0031
0.0037
0.0031
0.0018
0.0034
0.0032
0.0022
0.0028
0.0031
0.0066


zu'Pb/luUPb zUfPb/ 2DU* ZubPb/ZbU percent rho


Age (Ma)
933 23
3148 342
3431 389
1129 41
971 25
1201 57
1462 50
1933 18
900 23
611 28
833 23
1867 103
1172 59
1094 21
924 31
1917 53
1065 21
1125 21
1058 21
683 24
2352 183
1058 22
1285 28
925 26
1154 23
1873 18


Age (Ma)
868 21
2181 202
1855 246
1037 26
881 22
960 29
972 25
1923 32
861 22
609 17
647 18
1167 54
1043 29
1092 25
717 28
1036 31
1047 24
1110 28
1034 24
635 17
1437 87
1040 25
949 22
860 24
1085 24
1870 34


Age (Ma)
843 28
1307 115
785 130
995 31
847 28
859 30
770 23
1916 60
846 28
609 20
596 20
829 42
984 30
1092 36
654 32
671 24
1039 34
1103 41
1024 34
623 21
902 38
1033 35
811 25
835 32
1052 34
1870 63


discord.
9.58
58.47
77.12
11.87
12.76
28.44
47.29
0.87
5.90
0.17
28.49
55.60
16.03
0.20
29.20
64.98
2.38
1.94
3.16
8.75
61.63
2.36
36.86
9.64
8.87
0.18


factor
0.95
0.41
0.58
0.86
0.94
0.79
0.76
0.96
0.96
0.94
0.95
0.69
0.75
0.96
0.96
0.79
0.96
0.97
0.96
0.95
0.39
0.96
0.92
0.95
0.95
0.97










Table 4-20. Continued.
DF06-43 27 0.0732 0.00084 1.342 0.032 0.133 0.0028 1020 47 864 28 805 32 21.00 0.88
DF06-43 28 0.0752 0.00067 1.580 0.031 0.152 0.0027 1073 36 962 25 915 30 14.71 0.90
DF06-43 29 0.0685 0.00036 1.337 0.026 0.142 0.0026 884 22 862 22 854 30 3.34 0.96
DF06-43 30R 0.0673 0.00107 0.989 0.023 0.107 0.0018 847 66 698 24 654 21 22.76 0.73
DF06-43 31R 0.0751 0.00042 1.735 0.034 0.167 0.0032 1072 23 1021 25 999 35 6.78 0.96
DF06-43 32 0.0608 0.00034 0.759 0.014 0.090 0.0016 633 24 573 16 559 19 11.74 0.95
DF06-43 33 0.0764 0.00042 1.958 0.042 0.186 0.0038 1107 22 1101 28 1099 42 0.63 0.97
DF06-43 34 0.0718 0.00064 1.400 0.026 0.141 0.0023 980 36 889 22 853 26 12.94 0.88
DF06-43 35R 0.0871 0.00179 1.929 0.052 0.161 0.0028 1363 79 1091 36 961 31 29.50 0.65
DF06-43 36 0.0682 0.00036 1.338 0.024 0.142 0.0025 876 22 862 21 858 28 2.08 0.96
DF06-43 37R 0.0753 0.00155 0.981 0.026 0.095 0.0015 1076 82 694 26 583 18 45.85 0.61
DF06-43 38 0.0744 0.00036 1.893 0.036 0.184 0.0034 1054 20 1079 25 1092 37 -3.66 0.97
DF06-43 39R 0.1735 0.00218 2.843 0.065 0.119 0.0023 2592 42 1367 34 724 26 72.05 0.84
DF06-43 40 0.0700 0.00051 1.338 0.027 0.139 0.0026 929 30 862 23 837 30 9.87 0.93
DF06-43 41 0.0759 0.00038 1.896 0.035 0.181 0.0033 1093 20 1079 25 1074 36 1.70 0.96
DF06-43 42R 0.1825 0.00425 10.921 0.320 0.434 0.0077 2676 77 2516 54 2326 69 13.08 0.61
DF06-43 43R 0.0790 0.00060 1.907 0.034 0.175 0.0028 1171 30 1083 24 1041 31 11.04 0.90
DF06-43 44R 0.0743 0.00041 1.725 0.032 0.168 0.0030 1049 22 1018 24 1005 33 4.18 0.95
DF06-43 45R 0.0733 0.00038 1.601 0.028 0.158 0.0027 1021 21 970 22 949 30 7.04 0.96
DF06-43 46 0.0783 0.00054 1.977 0.037 0.183 0.0032 1154 27 1107 25 1085 35 5.92 0.93
DF06-43 47R 0.0819 0.00052 1.763 0.038 0.156 0.0032 1242 25 10312 28 936 36 24.60 0.96
DF06-43 48 0.0684 0.00175 0.925 0.029 0.098 0.0017 881 106 665 30 604 20 31.49 0.56
DF06-43 49 0.0751 0.00037 1.791 0.031 0.173 0.0029 1071 20 1042 22 1029 31 3.88 0.96
DF06-43 50R 0.0807 0.00103 2.008 0.043 0.180 0.0031 1215 50 1118 29 1070 34 11.92 0.80
DF06-43 51 0.0758 0.00041 1.852 0.032 0.177 0.0029 1091 22 1064 22 1052 31 3.52 0.95
DF06-43 52R 0.0742 0.00073 1.659 0.033 0.162 0.0028 1047 40 993 25 970 31 7.35 0.87
DF06-43 53 0.0743 0.00037 1.807 0.032 0.176 0.0030 1049 20 1048 23 1049 33 -0.02 0.96










Table 4-20. Continued.
DF06-43 54 0.0717 0.00054 1.150 0.020 0.116 0.0019 978 31 777 19 710 21 27.39 0.91
DF06-43 55R 0.0847 0.00090 2.060 0.041 0.176 0.0029 1309 41 1135 27 1048 32 19.91 0.84
DF06-43 56 0.0752 0.00039 1.801 0.040 0.174 0.0038 1073 21 1046 29 1033 42 3.70 0.97
DF06-43 57 0.0588 0.00032 0.721 0.012 0.089 0.0015 560 24 551 15 549 17 1.88 0.95
DF06-43 58 0.0708 0.00055 1.338 0.026 0.137 0.0025 950 32 862 23 829 28 12.70 0.92
DF06-43 59 0.0757 0.00039 1.866 0.032 0.179 0.0029 1086 21 1069 23 1062 32 2.24 0.95
DF06-43 60 0.0762 0.00038 1.929 0.035 0.184 0.0032 1099 20 1091 24 1088 34 1.00 0.96
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-21. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-18 from the Kaoko Belt.
Sample 2u'Pb/ lo error zu'Pb/ lo 2ubPb/ 1o error 2u'Pb/UbPb 2u'Pb/2U* 2UbPb/2U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor

DF06-18 1R 0.1130 0.00032 5.278 0.093 0.339 0.0059 1849 10 1865 30 1882 57 -1.81 0.99
DF06-18 2R 0.2695 0.00963 4.598 0.216 0.124 0.0038 3303 112 1749 77 753 43 77.21 0.65
DF06-18 3R 0.5244 0.00644 18.126 0.743 0.251 0.0098 4311 36 2996 77 1443 101 66.52 0.95
DF06-18 4R 0.3884 0.00262 9.748 0.235 0.182 0.0042 3865 20 2411 44 1079 46 72.08 0.96
DF06-18 5R 0.3743 0.01137 10.214 0.386 0.198 0.0044 3809 92 2454 69 1165 48 69.42 0.59
DF06-18 6R 0.4256 0.00549 10.576 0.283 0.180 0.0042 4002 39 2486 49 1069 46 73.28 0.88
DF06-18 7R 0.2662 0.00497 4.593 0.157 0.125 0.0036 3284 59 1748 56 761 41 76.83 0.84
DF06-18 8R 0.4258 0.00449 11.618 0.332 0.198 0.0053 4003 31 2574 53 1165 56 70.90 0.93
DF06-18 9R 0.0807 0.00044 1.703 0.040 0.153 0.0035 1214 21 1010 30 919 39 24.26 0.97
DF06-18 10R 0.6132 0.00272 29.065 0.726 0.344 0.0084 4540 13 3455 48 1906 81 58.01 0.98
DF06-18 11R 0.2079 0.00064 15.106 0.292 0.527 0.0101 2889 10 2822 36 2731 85 5.44 0.99
DF06-18 12R 0.1834 0.00301 2.960 0.082 0.117 0.0026 2684 54 1397 42 714 30 73.40 0.80
DF06-18 13 0.1263 0.00040 6.421 0.121 0.369 0.0069 2048 11 2035 33 2025 65 1.12 0.99
DF06-18 14 0.0811 0.00029 2.299 0.049 0.206 0.0043 1224 14 1212 30 1206 46 1.45 0.99
DF06-18 15R 0.4438 0.00741 12.041 0.361 0.197 0.0049 4065 50 2607 55 1159 53 71.49 0.83


100










Table 4-21. Continued.
DF6-18 16R 0.1361 0.00120 4.629 0.115 0.247 0.0057 2178 31 1754 41 1423 59 34.67 0.93
DF06-18 17 0.1157 0.00066 4.763 0.108 0.299 0.0066 1891 21 1778 38 1686 65 10.84 0.97
DF06-18 18R 0.5063 0.00327 11.864 0.367 0.170 0.0051 4260 19 2593 57 1013 57 76.23 0.98
DF06-18 19R 0.0796 0.00196 1.082 0.036 0.099 0.0023 1186 97 744 35 607 26 48.83 0.68
DF06-18 20R 0.3798 0.00626 8.911 0.280 0.170 0.0046 3831 50 2329 57 1014 50 73.54 0.85
DF06-18 21R 0.1219 0.00093 4.185 0.105 0.249 0.0059 1985 27 1671 41 1434 61 27.75 0.95
DF06-18 22 0.0770 0.00029 1.797 0.032 0.169 0.0030 1121 15 1044 23 1009 33 10.01 0.98
DF06-18 23 0.1269 0.00038 6.279 0.121 0.359 0.0068 2055 10 2015 34 1979 65 3.68 0.99
DF06-18 24 0.1771 0.00050 11.923 0.208 0.488 0.0084 2626 9 2598 32 2566 73 2.28 0.99
DF06-18 25R 0.1242 0.00041 5.917 0.104 0.345 0.0060 2018 12 1963 30 1914 57 5.11 0.98
DF06-18 26R 0.1327 0.00277 5.227 0.168 0.286 0.0070 2134 73 1857 54 1621 70 24.03 0.76
DF06-18 27 0.0745 0.00025 1.782 0.033 0.173 0.0032 1056 14 1039 24 1032 35 2.29 0.98
DF06-18 28R 0.1317 0.00061 5.715 0.151 0.315 0.0082 2121 16 1933 45 1765 80 16.75 0.98
DF06-18 29R 0.1223 0.00175 4.243 0.133 0.252 0.0071 1990 51 1682 51 1448 73 27.25 0.89
DF06-18 30 0.0691 0.00055 1.275 0.027 0.134 0.0027 901 33 834 24 811 30 9.98 0.93
DF06-18 31R 0.1223 0.00040 5.553 0.126 0.329 0.0074 1990 12 1909 39 1837 72 7.67 0.99
DF06-18 32 0.0752 0.00025 1.702 0.034 0.164 0.0032 1073 14 1009 25 981 36 8.60 0.99
DF06-18 33R 0.2760 0.00577 5.048 0.184 0.133 0.0040 3340 65 1827 61 804 45 75.94 0.82
DF06-18 34R 0.1333 0.00584 5.283 0.276 0.288 0.0082 2141 153 1866 87 1630 82 23.85 0.55
DF06-18 35R 0.1246 0.00119 4.673 0.135 0.272 0.0074 2023 34 1762 48 1552 75 23.27 0.94
DF06-18 36R 0.1294 0.00102 4.948 0.117 0.277 0.0062 2090 28 1810 40 1579 62 24.42 0.94
DF06-18 37R 0.1346 0.00153 5.442 0.138 0.293 0.0067 2159 40 1891 43 1659 66 23.13 0.89
DF06-18 38R 0.2422 0.00249 4.219 0.110 0.126 0.0030 3134 33 1678 42 768 35 75.51 0.92
DF06-18 39 0.1265 0.00076 5.694 0.133 0.326 0.0074 2050 21 1930 40 1823 71 11.10 0.97
DF06-18 40 0.1268 0.00039 6.143 0.125 0.351 0.0071 2054 11 1996 35 1942 67 5.44 0.99
DF06-18 41 0.1135 0.00037 5.003 0.104 0.320 0.0066 1856 12 1820 35 1790 64 3.57 0.99
DF06-18 42R 0.0882 0.00044 1.894 0.037 0.156 0.0029 1388 19 1079 26 933 33 32.73 0.97


101










Table 4-21. Continued.
DF06-18 43R 0.1192 0.00152 4.833 0.115 0.294 0.0059 1944 46 1790 40 1663 59 14.45 0.85
DF06-18 44R 0.1651 0.00088 6.565 0.151 0.288 0.0064 2509 18 2054 40 1634 64 34.86 0.97
DF06-18 45 0.0734 0.00024 1.681 0.033 0.166 0.0032 1026 13 1001 25 991 35 3.44 0.99
DF06-18 46 0.1264 0.00036 6.165 0.128 0.354 0.0073 2049 10 1999 36 1954 69 4.64 0.99
DF06-18 47R 0.0781 0.00104 1.690 0.044 0.157 0.0035 1149 53 1005 33 941 39 18.07 0.86
DF06-18 48R 0.1972 0.00147 5.278 0.153 0.194 0.0054 2803 24 1865 49 1145 59 59.16 0.97
DF06-18 49 0.1148 0.00033 4.965 0.107 0.314 0.0067 1876 10 1813 36 1761 65 6.15 0.99
DF06-18 50R 0.1196 0.00141 5.436 0.121 0.330 0.0062 1950 42 1890 38 1839 60 5.69 0.85
DF06-18 51 0.1269 0.00041 5.870 0.113 0.336 0.0064 2055 11 1957 33 1867 61 9.13 0.99
DF06-18 52 0.1157 0.00041 4.651 0.087 0.292 0.0054 1890 13 1758 31 1651 53 12.65 0.98
DF06-18 53 0.1161 0.00037 4.913 0.097 0.307 0.0060 1897 11 1804 33 1727 59 8.98 0.99
DF06-18 54 0.1292 0.00038 6.517 0.137 0.366 0.0076 2087 10 2048 37 2011 72 3.63 0.99
DF06-18 55 0.1265 0.00036 6.222 0.118 0.357 0.0067 2050 10 2007 33 1968 64 3.97 0.99
DF06-18 56 0.1148 0.00036 4.997 0.100 0.316 0.0062 1877 11 1819 33 1770 61 5.71 0.99
DF06-18 57R 0.1239 0.00040 5.444 0.100 0.319 0.0058 2013 11 1892 31 1785 57 11.34 0.98
DF06-18 58 0.0758 0.00025 1.871 0.037 0.179 0.0035 1091 13 1071 26 1062 39 2.59 0.99
DF06-18 59R 0.1440 0.00107 4.853 0.114 0.244 0.0055 2276 25 1794 39 1411 57 38.03 0.95
DF06-18 60R 0.1143 0.00036 4.638 0.093 0.294 0.0058 1869 11 1756 33 1664 58 10.92 0.99
DF06-18 61 0.1133 0.00033 4.796 0.092 0.307 0.0058 1853 11 1784 32 1727 57 6.75 0.99
DF06-18 62R 0.1139 0.00036 4.601 0.099 0.293 0.0062 1863 11 1749 36 1657 62 11.06 0.99
DF06-18 63R 0.1031 0.00242 2.309 0.071 0.162 0.0032 1681 87 1215 43 971 35 42.20 0.64
DF06-18 64R 0.0850 0.00196 1.533 0.046 0.131 0.0025 1316 89 944 36 793 28 39.71 0.63
DF06-18 65 0.1147 0.00033 5.089 0.096 0.322 0.0060 1876 10 1834 32 1799 58 4.06 0.99
DF06-18 66R 0.1271 0.00164 4.588 0.130 0.262 0.0066 2059 45 1747 47 1500 68 27.14 0.89
DF06-18 67 0.1139 0.00037 4.809 0.107 0.306 0.0067 1863 12 1786 37 1723 66 7.52 0.99
DF06-18 68R 0.1490 0.00154 6.376 0.168 0.310 0.0075 2334 35 2029 46 1744 74 25.27 0.92
DF06-18 69 0.1131 0.00038 4.930 0.108 0.316 0.0068 1850 12 1807 37 1772 67 4.18 0.99


102










Table 4-21. Continued.


DF06-18 70R
DF06-18 71
DF06-18 72R
DF06-18 73
DF06-18 74
DF06-18 75
DF06-18 76
DF06-18 77
DF06-18 78
DF06-18 79R
DF06-18 80R


0.1179
0.0771
0.1435
0.0738
0.0806
0.1135
0.1133
0.1144
0.0799
0.1389
0.1391


0.00039
0.00029
0.00142
0.00028
0.00030
0.00036
0.00033
0.00033
0.00044
0.00164
0.00221


5.293
1.766
3.918
1.718
1.944
5.037
4.998
5.132
2.153
4.676
6.055


0.105
0.033
0.158
0.037
0.039
0.096
0.089
0.100
0.051
0.124
0.142


0.326
0.166
0.198
0.169
0.175
0.322
0.320
0.325
0.196
0.244
0.316


0.0063
0.0031
0.0077
0.0036
0.0034
0.0060
0.0056
0.0063
0.0045
0.0058
0.0054


1924 12
1125 15
2270 34
1035 15
1212 15
1856 11
1853 10
1871 10
1194 22
2214 41
2216 55


1868 33
1033 24
1617 64
1015 27
1096 26
1825 32
1819 30
1841 33
1166 32
1763 44
1984 40


1819 62
991 34
1166 83
1007 39
1040 37
1801 59
1791 55
1817 61
1152 48
1409 60
1770 53


5.46
11.88
48.65
2.74
14.16
2.96
3.37
2.91
3.46
36.33
20.12


0.99
0.98
0.97
0.98
0.98
0.99
0.99
0.99
0.97
0.90
0.73


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U



Table 4-22. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF09-38 from the Kaoko Belt.
Sample 2u'Pb/ lo error zu'Pb/ lo a "uPb/ 1o error zu'Pb/u'Pb zu'Pb/"tU* 2u'Pb/z""U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor
DF09-38 1 0.1078 0.00044 3.763 0.071 0.253 0.0047 1763 15 1585 30 1456 48 17.43 0.98
DF09-38 2 0.1119 0.00045 5.144 0.071 0.333 0.0044 1831 14 1843 23 1856 43 -1.35 0.96
DF09-38 3 0.1109 0.00046 4.291 0.036 0.280 0.0020 1815 15 1691 14 1595 20 12.09 0.87
DF09-38 4 0.1136 0.00054 5.329 0.059 0.340 0.0034 1858 17 1873 19 1890 33 -1.73 0.90
DF09-38 5R 0.1099 0.00131 3.516 0.086 0.232 0.0049 1798 43 1531 38 1346 52 25.14 0.87
DF09-38 6 0.1141 0.00050 5.385 0.060 0.342 0.0035 1865 16 1882 19 1900 34 -1.86 0.92
DF09-38 7 0.1122 0.00048 5.153 0.062 0.333 0.0038 1836 15 1845 20 1854 36 -0.99 0.94
DF09-38 8 0.1140 0.00047 5.447 0.069 0.346 0.0041 1865 15 1892 22 1919 40 -2.92 0.95
DF09-38 9 0.1130 0.00052 5.201 0.076 0.334 0.0047 1849 17 1853 25 1858 45 -0.50 0.95
DF09-38 10 0.1127 0.00047 5.223 0.067 0.336 0.0041 1844 15 1856 22 1869 40 -1.39 0.95
DF09-38 11 0.1128 0.00048 5.084 0.080 0.327 0.0050 1845 15 1833 27 1824 48 1.12 0.96
DF09-38 12 0.1138 0.00047 5.365 0.073 0.342 0.0045 1861 15 1879 23 1897 43 -1.93 0.95


103










Table 4-22. Continued.


DFO9-38 13R
DF09-38 14
DF09-38 15
DF09-38 16
DF09-38 17
DF09-38 18
DF09-38 19
DF09-38 20R
DF09-38 21R
DF09-38 22
DF09-38 23
DF09-38 24
DF09-38 25R
DF09-38 26R
DF09-38 27
DF09-38 28
DF09-38 29
DF09-38 30
DF09-38 31R
DF09-38 32
DF09-38 33
DF09-38 34
DF09-38 35
DF09-38 36
DF09-38 37
DF09-38 38R
DF09-38 39
DF09-38 40


0.1109
0.1151
0.1092
0.1122
0.1143
0.1140
0.1139
0.1085
0.1123
0.1149
0.1140
0.1125


0.00047
0.00067
0.00045
0.00045
0.00046
0.00053
0.00047
0.00059
0.00047
0.00047
0.00056
0.00047


5.266
5.171
4.770
5.217
5.283
5.264
5.291
4.221
4.501
5.273
5.122
5.101


0.073
0.070
0.064
0.065
0.059
0.064
0.075
0.068
0.078
0.065
0.066
0.062


0.344
0.326
0.317
0.337
0.335
0.335
0.337
0.282
0.291
0.333
0.326
0.329


0.0046
0.0040
0.0040
0.0040
0.0035
0.0038
0.0046
0.0043
0.0049
0.0039
0.0039
0.0038


1815 15
1881 21
1785 15
1836 14
1868 15
1864 17
1863 15
1775 20
1837 15
1878 15
1864 18
1840 + 15


1863 24
1848 23
1779 22
1855 21
1866 19
1863 21
1867 24
1678 26
1731 29
1864 21
1839 22
1836 21


1909 44
1820 38
1776 40
1875 39
1866 33
1863 36
1873 44
1603 43
1646 49
1854 37
1820 37
1834 36


-5.20
3.24
0.51
-2.13
0.13
0.03
-0.55
9.65
10.35
1.30
2.38
0.28


0.95
0.90
0.95
0.95
0.93
0.93
0.96
0.94
0.97
0.94
0.92
0.94


0.1160 0.00141 5.185 0.086 0.324 0.0037 1895 44 1850 +28 1812 36 4.39 0.68


0.1120 0.00161 1.872 0.035 0.121 0.0015 1833 52 1071 25 738 17
0.1135 0.00051 5.099 0.066 0.326 0.0040 1856 16 1836 22 1819 38


0.1115
0.1153
0.1147
0.1092
0.1134
0.1134
0.1107
0.1149
0.1144
0.0907
0.1026
0.1131
0.1132


0.00047
0.00050
0.00055
0.00060
0.00050
0.00047
0.00044
0.00050
0.00046
0.00105
0.00124
0.00046
0.00048


4.719
5.450
5.324
4.550
5.174
5.030
4.409
5.097
5.453
3.082
1.843
5.352
5.088


0.055
0.071
0.075
0.070
0.054
0.067
0.053
0.050
0.061
0.078
0.028
0.068
0.059


0.307
0.343
0.337
0.302
0.331
0.322
0.289
0.322
0.346
0.246
0.130
0.343
0.326


0.0034
0.0042
0.0044
0.0043
0.0032
0.0041
0.0033
0.0028
0.0036
0.0055
0.0012
0.0041
0.0035


1824 15
1885 15
1875 17
1787 20
1854 16
1855 15
1811 14
1879 16
1871 15
1440 44
1672 45
1851 15
1852 15


1770 20
1893 22
1872 24
1740 25
1848 18
1824 22
1714 20
1835 17
1893 19
1428 38
1061 20
1877 22
1834 20


1727 33
1902 41
1872 43
1703 43
1844 31
1799 40
1637 33
1799 28
1915 35
1421 57
790 13
1903 40
1820 34


59.72 0.64
1.98 0.94


5.27
-0.91
0.16
4.67
0.52
2.97
9.57
4.22
-2.39
1.30
52.76
-2.83
1.75


0.93
0.94
0.94
0.93
0.91
0.95
0.95
0.90
0.93
0.89
0.60
0.95
0.93


104










Table 4-22. Continued.


DF09-38 41
DF09-38 42
DF09-38 43
DF09-38 44
DF09-38 45R
DF09-38 46
DF09-38 47
DF09-38 48
DFO9-38 49R
DF09-38 50
DF09-38 51
DF09-38 52
DF09-38 53
DF09-38 54
DF09-38 55
DF09-38 56R
DF09-38 57
DF09-38 58
DFO9-38 59


0.1115
0.1114
0.1145
0.1134
0.1092
0.1136
0.1098
0.1134
0.1187
0.1150
0.1147
0.1160
0.1154
0.1141


0.00051
0.00047
0.00049
0.00049
0.00150
0.00050
0.00064
0.00045
0.00147
0.00066
0.00047
0.00059
0.00051
0.00048


4.672
4.690
5.423
5.364
3.396
5.192
4.128
5.239
5.516
5.420
5.521
5.363
5.427
5.331


0.053
0.043
0.079
0.053
0.109
0.059
0.054
0.081
0.095
0.077
0.068
0.068
0.085
0.064


0.304
0.305
0.344
0.343
0.226
0.332
0.273
0.335
0.337
0.342
0.349
0.335
0.341
0.339


0.0031 1825 16 1762 19
0.0025 1822 15 1765 15
0.0048 1872 15 1888 25
0.0030 1855 16 1879 17
0.0065 1786 50 1503 50
0.0035 1858 16 1851 19
0.0032 1797 21 1660 21
0.0050 1855 14 1859 26


0.0040
0.0045
0.0040
0.0039
0.0051
0.0038


1936 44
1881 21
1875 15
1896 18
1887 16
1866 + 15


1903 29
1888 24
1904 21
1879 22
1889 27
1874 + 20


0.1125 0.00058 4.817 0.097 0.311 0.0060 1839 +19 1788 +33 1745 +59 5.09 0.97


0.1114
0.1119
0.1144
0.1141


0.00059
0.00052
0.00057
0.00048


4.211
5.119
5.196
5.274


0.050
0.074
0.073
0.070


0.274
0.332
0.329
0.335


0.0029
0.0045
0.0043
0.0042


1822 +
1830 +
1870 +
1866 +


1676 19
1839 24
1852 24
1864 22


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


105


1712 31
1720 25
1905 46
1902 29
1312 69
1847 33
1555 33
1864 48
1874 39
1896 43
1932 39
1865 37
1893 49
1883 + 36


6.19
5.62
-1.77
-2.56
26.52
0.55
13.45
-0.48
3.20
-0.84
-3.07
1.59
-0.33
-0.93


0.92
0.89
0.96
0.90
0.90
0.92
0.90
0.97
0.70
0.92
0.94
0.92
0.96
0.94


1564 30
1849 44
1837 42
1865 41


14.15
-1.03
1.76
0.00


0.90
0.95
0.93
0.95










Table 4-23. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DFO
Sample 2uPb/ lo error u'Pb/ lo UbPb/ 1o error
206Pb 235U* error* 238U


DF09-39 1R
DF09-39 2R
DF09-39 3
DF09-39 4
DF09-39 5R
DF09-39 6
DF09-39 7
DF09-39 8
DF09-39 9R
DF09-39 10
DF09-39 11R
DF09-39 12
DF09-39 13
DF09-39 14
DF09-39 15R
DF09-39 16R
DF09-39 17
DF09-39 18
DF09-39 19R
DF09-39 20
DF09-39 21R
DF09-39 22R
DF09-39 23R
DF09-39 24R
DF09-39 25R


0.1730
0.1677
0.1687
0.1703
0.1745
0.1723
0.1723
0.1723
0.1727
0.1723
0.1619
0.1711
0.1673
0.1742
0.1654
0.1643
0.1751
0.1726
0.1643
0.1696
0.1702
0.1628
0.1714
0.1713
0.1698


0.00162
0.00067
0.00067
0.00067
0.00163
0.00068
0.00069
0.00069
0.00166
0.00071
0.00068
0.00070
0.00069
0.00068
0.00066
0.00153
0.00069
0.00069
0.00156
0.00069
0.00159
0.00152
0.00072
0.00070
0.00068


9.856
9.712
9.491
10.464
8.112
10.383
10.635
10.635
5.767
10.634
7.871
9.603
8.867
11.340
9.187
5.826
11.731
10.675
7.281
9.457
9.589
7.003
9.054
9.728
10.777


0.196
0.155
0.153
0.190
0.206
0.162
0.184
0.184
0.156
0.185
0.223
0.144
0.143
0.196
0.171
0.147
0.180
0.172
0.135
0.226
0.203
0.166
0.275
0.160
0.165


0.413
0.420
0.408
0.446
0.337
0.437
0.448
0.448
0.242
0.448
0.353
0.407
0.384
0.472
0.403
0.257
0.486
0.449
0.321
0.405
0.409
0.312
0.383
0.412
0.460


0.0072
0.0065
0.0064
0.0079
0.0079
0.0066
0.0076
0.0076
0.0061
0.0076
0.0099
0.0059
0.0060
0.0080
0.0073
0.0060
0.0072
0.0070
0.0051
0.0095
0.0078
0.0068
0.0115
0.0066
0.0068


9-39 from the Kaoko Belt.
zu'Pb/l'bPb 2u'Pb/2DU*


Age (Ma)
2587 31
2535 13
2545 13
2561 13
2602 31
2580 13
2580 13
2580 13
2584 32
2580 14
2476 14
2568 14
2531 14
2598 13
2511 13
2500 31
2607 13
2583 13
2501 32
2553 14
2560 31
2485 31
2571 14
2571 14
2556 13


106


percent rho


Age (Ma)
2421 36
2407 29
2386 29
2476 33
2243 45
2469 29
2491 32
2491 32
1941 46
2491 32
2216 50
2397 27
2324 29
2551 32
2356 34
1950 43
2583 28
2495 30
2146 33
2383 43
2396 39
2111 42
2343 55
2409 30
2504 28


zuopb/2zU
Age (Ma)
2232 66
2262 59
2208 58
2377 70
1874 76
2340 59
2387 67
2387 67
1399 64
2387 67
1949 94
2204 54
2099 56
2496 70
2184 67
1477 62
2555 62
2391 62
1798 50
2192 87
2210 71
1752 67
2093 107
2225 60
2443 60


percent
discord.
13.72
10.74
13.24
7.15
27.95
9.29
7.49
7.49
45.86
7.46
21.29
14.19
17.07
3.93
13.02
40.93
1.97
7.41
28.11
14.16
13.65
29.49
18.61
13.43
4.42


rho
factor
0.88
0.97
0.97
0.98
0.93
0.97
0.97
0.97
0.94
0.97
0.99
0.96
0.97
0.97
0.98
0.93
0.97
0.97
0.86
0.99
0.90
0.92
0.99
0.97
0.96










Table 4-23. Continued.


DF09-39 26
DF09-39 27
DF09-39 28
DF09-39 29R
DF09-39 30
DF09-39 31R
DF09-39 32
DFO9-39 33R
DF09-39 34
DF09-39 35
DF09-39 36
DF09-39 37
DF09-39 38
DF09-39 39R
DF09-39 40
DF09-39 41R


0.1740 0.00069
0.1713 0.00067
0.1732 0.00071
0.1683 0.00067
0.1724 0.00069
0.1679 0.00157
0.1742 0.00069
0.1568 0.00094
0.1723 0.00068
0.1721 0.00068
0.1716 0.00068
0.1724 0.00068
0.1705 0.00067
0.1650 0.00066
0.1704 0.00068
0.1679 0.00067


11.608 0.203
10.327 0.168
11.239 0.184
10.148 0.156
10.889 0.189
7.786 0.161
11.195 0.189
3.848 0.120
11.022 0.167
10.732 0.183
10.401 0.194
11.082 0.185
10.535 0.165
9.787 0.149
11.207 0.250
10.529 0.193


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


107


0.484
0.437
0.471
0.437
0.458
0.336
0.466
0.178
0.464
0.452
0.440
0.466
0.448
0.430
0.477
0.455


0.0082
0.0069
0.0075
0.0065
0.0077
0.0062
0.0076
0.0055
0.0068
0.0075
0.0080
0.0076
0.0068
0.0063
0.0105
0.0081


2597 13
2570 13
2589 14
2541 13
2581 13
2537 31
2599 13
2422 20
2580 13
2578 13
2573 13
2581 13
2563 13
2508 14
2562 13
2536 13


2573 32
2464 30
2543 30
2448 28
2513 32
2206 37
2539 31
1603 50
2525 28
2500 31
2471 34
2530 31
2483 29
2415 28
2540 41
2482 34


2546 71
2340 62
2488 65
2340 58
2433 68
1870 60
2468 67
1057 60
2459 59
2407 67
2351 72
2469 66
2389 60
2308 57
2516 91
2419 72


1.96
8.94
3.88
7.91
5.75
26.26
5.03
56.37
4.69
6.62
8.64
4.31
6.79
7.94
1.78
4.62


0.97
0.97
0.97
0.97
0.97
0.89
0.97
0.98
0.96
0.97
0.98
0.97
0.97
0.96
0.98
0.98










Table 4-24. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-11 from the Kaoko Belt.
Sample 2u'Pb/ lo error zu'Pb/ lo "UbPb/ lo error 'u'Pb/'ubPb 'uPb/ U* W 2bPb/2"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DF06-11 1R
DF06-11 2
DF06-11 3
DF06-11 4
DF06-11 5
DF06-11 6
DF06-11 7
DF06-11 8
DF06-11 8bR
DF06-11 9R
DF06-11 10R
DF06-11 11R
DF06-11 12
DF06-11 13R
DF06-11 14R
DF06-11 15
DF06-11 16R
DF06-11 17R
DF06-11 18R
DF06-11 19
DF06-11 20
DF06-11 21R
DF06-11 22R
DF06-11 23R
DF06-11 24
DF06-11 25


0.0676
0.0659
0.0655
0.0662
0.0655
0.0691
0.0680
0.0652
0.0722
0.1011
0.0714
0.0904
0.0664
0.3231
0.0699
0.0671
0.0812
0.0648
0.0880
0.0665
0.0618


0.00032
0.00023
0.00023
0.00024
0.00025
0.00053
0.00033
0.00025
0.00045
0.00320
0.00050
0.00064
0.00022
0.00187
0.00033
0.00024
0.00058
0.00037
0.00161
0.00034
0.00042


0.950
1.192
1.200
1.043
1.184
1.253
1.165
1.134
1.215
1.629
0.741
1.375
1.227
1.641
1.223
1.180
0.945
0.904
1.183
1.104
0.930


0.013
0.013
0.012
0.031
0.012
0.018
0.014
0.012
0.016
0.054
0.008
0.020
0.012
0.026
0.012
0.011
0.011
0.013
0.031
0.024
0.016


0.102
0.131
0.133
0.114
0.131
0.131
0.124
0.126
0.122
0.117
0.075
0.110
0.134
0.037
0.127
0.128
0.084
0.101
0.098
0.120
0.109


0.0014
0.0013
0.0013
0.0034
0.0012
0.0015
0.0014
0.0013
0.0014
0.0011
0.0006
0.0014
0.0013
0.0005
0.0011
0.0011
0.0008
0.0014
0.0018
0.0026
0.0017


856 20
805 15
790 14
814 15
789 16
903 32
868 20
781 16
992 25
1645 117
970 29
1434 27
820 14
3585 18
925 20
840 15
1226 28
769 24
1382 70
823 21
668 29


678 14
797 12
801 11
725 31
793 11
825 16
784 14
770 12
808 14
981 41
563 9
878 17
813 11
986 20
811 11
791 10
675 11
654 14
793 29
755 23
667 17


626 16
795 15
805 15
697 39
795 14
797 18
756 16
766 15
743 16
713 13
468 8
675 16
811 14
233 7
771 12
775 12
523 9
622 16
600 21
733 30
668 20


26.85
1.23
-1.93
14.28
-0.84
11.72
12.90
1.86
25.10
56.65
51.78
52.90
1.14
93.49
16.63
7.69
57.36
19.09
56.56
10.90
-0.08


0.94
0.95
0.94
0.99
0.92
0.84
0.92
0.93
0.88
0.28
0.77
0.87
0.95
0.93
0.87
0.92
0.78
0.92
0.71
0.97
0.92


0.0857 0.00088 1.144 0.021 0.097 0.0015 1332 40 774 20 596 17 55.26 0.83
0.1107 0.00269 1.354 0.040 0.089 0.0015 1810 88 869 34 548 17 69.70 0.56


0.0675
0.0640
0.0656


0.00047
0.00043
0.00053


0.917
0.890
1.063


0.014
0.019
0.020


0.099
0.101
0.118


0.0014
0.0020
0.0020


853 29
742 28
793 34


661 15
646 20
735 19


607 16
620 23
717 23


28.89
16.48
9.60


0.90
0.95
0.90


108










Table 4-24. Continued.


DF06-11 26R
DF06-11 27
DF06-11 28
DF06-11 29
DF06-11 30
DF06-11 31
DF06-11 32
DF06-11 33
DF06-11 34R
DF06-11 35
DF06-11 36
DF06-11 37R
DF06-11 38
DF06-11 39
DF06-11 40R
DF06-11 41R
DF06-11 42R
DF06-11 43R
DF06-11 44
DF06-11 45
DF06-11 46
DF06-11 47R
DF06-11 48
DF06-11 49R
DF06-11 50
DF06-11 51R
DF06-11 52
DF06-11 53


0.0717
0.0649
0.0663
0.0688
0.0647
0.0627
0.0654
0.0639
0.1223
0.0658
0.0686
0.0743
0.0664
0.0682


0.00073
0.00054
0.00045
0.00056
0.00047
0.00046
0.00044
0.00059
0.00118
0.00047
0.00065
0.00071
0.00048
0.00049


1.118
0.974
1.121
1.124
1.060
1.006
1.140
0.967
1.038
1.091
1.124
1.017
1.262
1.149


0.022
0.017
0.024
0.020
0.018
0.023
0.022
0.017
0.041
0.019
0.022
0.019
0.023
0.019


0.113
0.109
0.123
0.119
0.119
0.116
0.126
0.110
0.062
0.120
0.119
0.099
0.138
0.122


0.0019
0.0017
0.0025
0.0019
0.0018
0.0025
0.0022
0.0016
0.0024
0.0019
0.0021
0.0016
0.0024
0.0018


978 41
772 35
815 28
892 33
766 31
699 31
787 28
737 39
1990 34
802 30
888 39
1050 39
820 30
874 + 30


762 21
691 18
763 23
765 19
734 18
707 23
773 20
687 17
723 41
749 19
765 21
712 19
829 21
777 + 18


691 22
666 20
746 28
723 22
724 21
710 29
768 26
672 19
386 29
732 22
724 24
610 19
833 27
744 + 21


29.32
13.68
8.42
18.91
5.39
-1.61
2.36
8.75
80.62
8.64
18.40
41.86
-1.67
14.91


0.86
0.88
0.95
0.89
0.90
0.95
0.93
0.85
0.97
0.91
0.88
0.86
0.92
0.90


0.0715 0.00063 1.126 0.019 0.114 0.0016 973 36 766 18 697 19 28.28 0.85
0.0658 0.00061 0.805 0.017 0.089 0.0017 801 + 39 600 + 19 548 + 20 31.48 0.90


0.0705 0.00054 1.081 0.020 0.111 0.0019 942 +31 744 +20 681 +22 27.71


0.0671 0.00126 0.945 0.022 0.102 0.0015 840 78 675 23 628 17
0.0676 0.00047 1.210 0.020 0.130 0.0020 855 29 805 19 788 23


0.0685
0.0652
0.0701
0.0659
0.0893
0.0660
0.0772
0.0669
0.0620


0.00049
0.00048
0.00051
0.00045
0.00172
0.00033
0.00277
0.00044
0.00020


1.077
1.080
1.167
1.147
1.498
1.093
1.085
1.184
0.956


0.020
0.022
0.021
0.022
0.039
0.034
0.050
0.036
0.032


0.114
0.120
0.121
0.126
0.122
0.120
0.102
0.128
0.112


0.0019
0.0023
0.0020
0.0023
0.0021
0.0037
0.0029
0.0039
0.0038


885 30
779 31
931 30
804 29
1411 74
808 21
1127 143
834 27
675 14


742 19
744 21
785 20
776 21
929 32
750 32
746 48
793 34
681 33


696 22
732 26
736 23
767 26
741 25
731 42
626 34
779 44
683 44


0.91


25.24 0.61
7.84 0.91


21.28
5.98
20.93
4.63
47.49
9.44
44.39
6.56
-1.25


0.92
0.93
0.92
0.94
0.68
0.99
0.63
0.98
1.00


109










Table 4-24. Continued.


DF06-11 54
DF06-11 55
DF06-11 56R
DF06-11 57
DF06-11 58
DF06-11 59
DF06-11 60
DF06-11 61R
DF06-11 62
DF06-11 63R
DF06-11 64R
DF06-11 65R
DF06-11 66
DF06-11 67
DF06-11 68
DF06-11 69
DF06-11 70
DF06-11 71
DF06-11 72R
DF06-11 73
DF06-11 74
DF06-11 75
DF06-11 76
DF06-11 77
DF06-11 78
DF06-11 79
DF06-11 80R
DF06-11 81


0.0705
0.0627
0.0639
0.0623
0.0655
0.0677
0.0637


0.00068
0.00030
0.00022
0.00029
0.00045
0.00031
0.00026


0.916
0.923
0.881
0.970
1.134
1.195
0.960


0.033
0.027
0.030
0.029
0.036
0.039
0.028


0.094
0.107
0.100
0.113
0.126
0.128
0.109


0.0033
0.0031
0.0034
0.0034
0.0039
0.0041
0.0032


942 39
699 20
740 14
684 20
791 29
860 19
733 17


660 35
664 28
641 32
689 30
769 34
798 35
683 29


582 39
654 36
614 40
691 39
763 45
777 47
669 37


38.23
6.35
16.92
-1.05
3.49
9.62
8.70


0.96
0.99
0.99
0.99
0.98
0.99
0.99
0.82
0.98


0.0866 0.00197 1.367 0.054 0.114 0.0037 1353 88 875 46 699 43 48.31
0.0684 0.00043 1.100 0.033 0.117 0.0034 880 26 753 32 712 39 19.01


0.0985 0.00240 0.940 0.044 0.069 0.0027 1597 91 673 45 432 33 72.96 0.85
0.0728 0.00077 1.071 0.036 0.107 0.0034 1008 43 739 35 655 39 35.03 0.95


0.0799
0.0675
0.0649
0.0623
0.0701
0.0655
0.0625
0.0851
0.0628
0.0620
0.0614
0.0621
0.0652
0.0661
0.0686
0.0752
0.0669


0.00188
0.00031
0.00032
0.00020
0.00077
0.00036
0.00026
0.00398
0.00024
0.00021
0.00023
0.00022
0.00038
0.00036
0.00063
0.00096
0.00026


1.213
1.144
1.170
0.931
0.938
1.223
0.913
1.131
0.926
0.952
0.947
0.945
1.213
1.256
1.195
1.269
1.235


0.047
0.035
0.036
0.027
0.030
0.038
0.027
0.064
0.027
0.027
0.028
0.029
0.037
0.037
0.037
0.043
0.037


0.110
0.123
0.131
0.108
0.097
0.135
0.106
0.096
0.107
0.111
0.112
0.110
0.135
0.138
0.126
0.122
0.134


0.0034
0.0037
0.0040
0.0031
0.0029
0.0042
0.0031
0.0030
0.0030
0.0032
0.0033
0.0034
0.0040
0.0040
0.0038
0.0038
0.0040


1193 93
853 19
772 21
685 14
933 45
791 23
693 18
1317 181
700 16
675 15
654 16
677 15
782 24
810 23
888 38
1074 51
833 16


806 43
774 33
786 33
668 28
672 31
811 35
659 28
768 60
665 28
679 28
676 29
676 30
806 34
826 33
798 34
832 38
816 33


674 40
748 43
792 45
663 36
597 34
819 47
649 36
594 36
656 35
681 37
684 39
676 39
816 46
833 45
767 43
745 44
811 45


43.48
12.24
-2.60
3.07
35.95
-3.58
6.25
54.91
6.36
-0.94
-4.65
0.17
-4.33
-2.87
13.61
30.60
2.66


0.80
0.99
0.99
0.99
0.94
0.98
0.99
0.56
0.99
0.99
0.99
0.99
0.98
0.98
0.96
0.93
0.99


110










Table 4-24. Continued.


DF06-11 82
DF06-11 83
DF06-11 84R
DF06-11 85
DF06-11 86R
DF06-11 87
DF06-11 88R
DF06-11 89R
DF06-11 90R
DF06-11 91
DF06-11 92
DF06-11 93
DF06-11 94
DF06-11 95R
DF06-11 96R
DF06-11 97
DF06-11 98
DF06-11 99R
DF06-11 100
DF06-11 101
DF06-11 102
DF06-11 103
DF06-11 104
DF06-11 105R
DF06-11 106
DF06-11 107R
DF06-11 108R
DF06-11 109


0.0659
0.0653
0.0655
0.0675
0.0755
0.0659
0.0710
0.0663
0.0666
0.0626
0.0619
0.0666
0.0619
0.0616
0.0634
0.0621
0.0633
0.0696
0.0616
0.0620
0.0655
0.0625
0.0647
0.0731
0.0628


0.00031
0.00046
0.00050
0.00039
0.00197
0.00046
0.00243
0.00047
0.00037
0.00025
0.00029
0.00031
0.00020
0.00021
0.00068
0.00023
0.00037
0.00243
0.00021
0.00022
0.00049
0.00033
0.00038
0.00057
0.00024


1.179
1.104
1.320
1.101
1.025
1.193
0.896
0.860
0.861
0.906
0.935
1.201
0.933
0.875
0.815
0.894
0.973
0.974
0.893
0.914
1.135
0.950
1.129
0.748
0.917


0.034
0.036
0.040
0.033
0.040
0.036
0.042
0.026
0.027
0.027
0.028
0.037
0.027
0.028
0.034
0.026
0.033
0.045
0.026
0.027
0.035
0.028
0.033
0.023
0.026


0.130
0.123
0.146
0.118
0.098
0.131
0.092
0.094
0.094
0.105
0.109
0.131
0.109
0.103
0.093
0.104
0.111
0.102
0.105
0.107
0.126
0.110
0.127
0.074
0.106


0.0037
0.0039
0.0043
0.0035
0.0028
0.0038
0.0029
0.0027
0.0029
0.0031
0.0032
0.0040
0.0032
0.0032
0.0037
0.0030
0.0038
0.0031
0.0030
0.0031
0.0038
0.0032
0.0036
0.0022
0.0030


803 20
783 29
790 32
854 24
1083 105
804 29
956 140
815 30
825 23
695 17
672 20
824 20
669 14
660 15
722 46
676 16
718 25
916 143
660 15
673 15
790 31
692 23
765 25
1016 32
703 16


791 31
755 34
855 35
754 32
716 40
797 33
649 44
630 28
631 29
655 29
670 29
801 34
669 28
638 30
605 37
648 28
690 34
691 46
648 28
659 28
770 33
678 29
767 31
567 26
661 28


787 42
747 45
880 49
721 40
606 33
796 44
565 34
580 32
578 34
644 37
670 37
794 46
670 37
633 38
575 44
641 35
682 44
624 36
645 35
656 36
764 43
675 37
769 41
462 26
649 35


1.90
4.62
-11.43
15.47
44.05
1.02
40.90
28.78
29.84
7.29
0.26
3.61
-0.14
4.17
20.34
5.17
5.07
31.87
2.19
2.55
3.22
2.53
-0.47
54.53
7.57


0.99
0.98
0.97
0.98
0.74
0.97
0.68
0.97
0.98
0.99
0.99
0.99
0.99
0.99
0.97
0.99
0.99
0.66
0.99
0.99
0.97
0.98
0.98
0.97
0.99


0.1197 0.00143 1.064 0.041 0.064 0.0024 1952 43 736 40 403 29 79.35 0.95
0.0627 0.00021 0.947 0.029 0.110 0.0033 697 14 677 30 671 39 3.63 0.99
0.0665 0.00032 1.163 0.034 0.127 0.0037 823 20 783 32 770 42 6.32 0.99


111










Table 4-25. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-17 from the Kaoko Belt.
Sample 2u'Pb/ lo error zu'Pb/ lo "UbPb/ lo error 'u'Pb/'ubPb 'uPb/ U* W 2bPb/2"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DF06-17 50R 0.0936 0.00054 2.201 0.038 0.171 0.0028
DF06-17 51R 0.1116 0.00397 1.899 0.076 0.123 0.0022
DF06-17 52 0.1061 0.00032 3.169 0.054 0.217 0.0036
DF06-17 53 0.1067 0.00038 3.098 0.060 0.211 0.0040
DF06-17 54 0.1126 0.00029 3.579 0.066 0.231 0.0042
DF06-17 55 0.1043 0.00036 3.008 0.064 0.209 0.0044
DF06-17 56R 0.1130 0.00031 3.535 0.063 0.227 0.0040
DF06-17 57R 0.0919 0.00031 2.152 0.045 0.170 0.0035
DF06-17 58R 0.1175 0.00029 3.947 0.089 0.244 0.0054
DF06-17 59 0.1122 0.00031 3.638 0.073 0.235 0.0047
DF06-17 60 0.0999 0.00035 3.643 0.068 0.265 0.0049
DF06-17 61 0.1073 0.00027 4.481 0.074 0.303 0.0049
DF06-17 62R 0.0860 0.00022 2.494 0.042 0.210 0.0035
DF06-17 63 0.1046 0.00034 3.944 0.073 0.273 0.0050
DF06-17 64 0.0808 0.00019 2.272 0.039 0.204 0.0034
DF06-17 65 0.1062 0.00024 4.375 0.076 0.299 0.0052
DF06-17 66 0.1075 0.00025 4.534 0.079 0.306 0.0053
DF06-17 67 0.1001 0.00058 3.530 0.060 0.256 0.0041
DF06-17 68R 0.0870 0.00027 2.535 0.040 0.211 0.0033
DF06-17 69 0.1067 0.00025 4.436 0.073 0.301 0.0049
DF06-17 70 0.1061 0.00026 4.103 0.063 0.280 0.0042
DF06-17 71 0.1120 0.00025 4.728 0.080 0.306 0.0052
DF06-17 72 0.1025 0.00025 3.942 0.069 0.279 0.0049
DF06-17 73 0.1127 0.00026 4.885 0.091 0.314 0.0058
DF06-17 74R 0.1262 0.00029 6.100 0.107 0.350 0.0061
DF06-17 75 0.1068 0.00026 4.383 0.076 0.298 0.0051


1501 22
1825 129
1733 11
1743 13
1841 9
1702 13
1848 10
1466 13
19199
1836 10
1622 13
1754 9
1339 10
1708 12
12179
1735 8
1758 9
1626 12
1361 12
1744 8
1734 9
1831 8
1669 9
1843 8
2046 8
1746 9


112


1181 24
1081 52
1449 26
1432 29
1545 29
1409 32
1535 28
1165 29
1623 36
1558 32
1559 30
1727 27
1270 24
1623 30
1204 24
1707 29
1737 29
1534 27
1282 23
1719 27
1655 25
1772 28
1622 28
1799 31
1990 31
1709 29


1016 31
751 25
1265 39
1233 43
1338 44
1225 47
1320 42
1012 39
1406 56
1362 49
1514 50
1707 49
1231 37
1559 50
1197 37
1687 51
1721 52
1469 42
1237 35
1700 49
1595 43
1724 51
1588 49
1764 57
1938 58
1680 51


32.31
58.85
27.01
29.25
27.30
27.99
28.57
30.97
26.73
25.78
6.62
2.69
8.00
8.68
1.57
2.78
2.09
9.66
9.14
2.53
7.99
5.86
4.87
4.25
5.27
3.76


0.94
0.45
0.98
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.99
0.99
0.98
0.99
0.99
0.99
0.94
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.99










Table 4-25. Continued.


DF06-17 76
DF06-17 77R
DF06-17 78
DF06-17 79
DF06-17 80
DF06-17 81
DF06-17 82

DF06-17 83R

DF06-17 84R
DF06-17 85
DF06-17 86R
DF06-17 87R
DF06-17 88
DF06-17 89
DF06-17 90R
DF06-17 91

DF06-17 92R
DF06-17 93
DF06-17 94
DF06-17 95R
DF06-17 96
DF06-17 97R
DF06-17 98
DF06-17 99


0.1114 0.00028
0.0888 0.00022
0.1073 0.00024
0.1074 0.00025
0.1043 0.00027
0.1047 0.00024
0.1057 0.00029


4.826
2.616
4.505
4.270
4.207
4.277
4.072


0.088
0.046
0.078
0.078
0.077
0.084
0.068


0.314
0.214
0.304
0.288
0.293
0.296
0.279


0.0057
0.0037
0.0052
0.0052
0.0053
0.0057
0.0046


1823 9
1400 9
1754 8
1757 8
1702 10
1708 8
1727 10


0.1024 0.00049 4.457 0.499 0.316 0.0353 1669 18


0.0980
0.1036
0.1223
0.0857
0.1044
0.1090
0.1135
0.1058

0.1031
0.1060
0.0964
0.0825
0.0815
0.1133
0.1108
0.1051


0.00101
0.00024
0.00029
0.00020
0.00058
0.00027
0.00034
0.00029

0.00060
0.00025
0.00028
0.00021
0.00019
0.00026
0.00032
0.00043


2.452
3.907
5.677
2.595
3.112
4.446
4.764
4.133


0.277
0.073
0.098
0.044
0.091
0.077
0.080
0.068


4.121 0.459
4.270 0.072
3.231 0.056
2.121 0.037
2.234 0.039
4.668 0.086
4.644 0.078
3.962 0.067


0.181
0.273
0.337
0.220
0.216
0.296
0.304
0.283

0.290
0.292
0.243
0.186
0.199
0.299
0.304
0.273


0.0204
0.0051
0.0058
0.0037
0.0062
0.0051
0.0051
0.0046

0.0323
0.0049
0.0042
0.0032
0.0034
0.0055
0.0050
0.0045


1587 39
1690 9
1991 8
1332 9
1703 20
1783 9
1856 11
1728 10

1680 22
1731 9
1555 11
1258 10
1233 9
1852 8
1813 11
1716 15


R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


113


1789 30
1305 25
1732 29
1687 30
1675 30
1689 32
1648 27
1723
178
1258
157
1615 30
1928 30
1299 25
1435 44
1721 29
1778 28
1661 27
1658
174
1687 28
1464 27
1155 24
1192 24
1761 31
1757 28
1626 27


1762 55
1249 39
1715 52
1634 52
1656 53
1675 57
1589 47

1769 342

1075 221
1560 51
1872 55
1280 39
1263 65
1672 51
1715 50
1609 46

1643 319
1654 49
1404 43
1103 35
1170 37
1687 54
1712 49
1559 46


3.35
10.78
2.24
6.98
2.70
1.95
7.95

-6.04

32.23
7.69
5.97
3.87
25.84
6.20
7.61
6.87

2.22
4.44
9.72
12.29
5.05
8.90
5.54
9.13


0.99
0.99
0.99
0.99
0.99
0.99
0.99

1.00

1.00
0.99
0.99
0.99
0.98
0.99
0.98
0.99

1.00
0.99
0.99
0.99
0.99
0.99
0.98
0.97










Table 4-26. U-Pb (MC-ICP-MS) analysis common Pb corrected results for sample DF06-08 from the Kaoko Belt.
Sample 2u'Pb/ lo error zu'Pb/ lo 2ubPb/ lo error 'u'Pb/'ubPb 'uPb/ .U* 2UbPb/2"U percent rho
206Pb 235U* error* 238U Age (Ma) Age (Ma) Age (Ma) discord. factor


DF06-08 13 0.0777 0.00018 2.070 0.024 0.193 0.0022 1140 9 1139 16 1139 24 0.08 0.98
DF06-08 13b 0.0768 0.00017 1.998 0.023 0.189 0.0022 1116 9 1115 16 1115 23 0.02 0.98
DF06-08 14R 0.0651 0.00018 0.913 0.008 0.102 0.0009 778 11 659 9 625 10 19.63 0.95
DF06-08 15R 0.0737 0.00016 1.841 0.020 0.181 0.0019 1033 9 1060 14 1075 21 -4.10 0.98
DF06-08 16R 0.0695 0.00021 0.884 0.012 0.092 0.0012 913 12 643 13 569 15 37.62 0.98
DF06-08 17 0.0725 0.00015 1.696 0.019 0.170 0.0019 999 9 1007 14 1011 21 -1.30 0.98
DF06-08 18 0.0608 0.00016 0.865 0.011 0.103 0.0012 631 11 633 12 634 15 -0.60 0.98
DF06-08 19R 0.0782 0.00019 1.589 0.027 0.147 0.0024 1153 10 966 21 886 27 23.10 0.99
DF06-08 20 0.0691 0.00015 1.445 0.017 0.152 0.0017 901 9 908 14 911 19 -1.11 0.98
DF06-08 21 0.0733 0.00024 1.447 0.012 0.143 0.0011 1022 13 908 10 863 13 15.56 0.92
DF06-08 22R 0.0735 0.00016 1.342 0.017 0.133 0.0016 1027 9 864 15 803 19 21.79 0.99
DF06-08 23 0.0728 0.00024 1.659 0.017 0.165 0.0016 1007 13 993 13 987 18 1.96 0.95
DF06-08 24R 0.0752 0.00081 1.440 0.027 0.139 0.0022 1074 43 906 23 839 25 21.82 0.83
DF06-08 25 0.0597 0.00015 0.808 0.010 0.098 0.0012 591 11 601 11 605 14 -2.30 0.98
DF06-08 26 0.0603 0.00015 0.851 0.010 0.102 0.0011 616 11 625 11 628 13 -2.06 0.98
DF06-08 27 0.0616 0.00016 0.886 0.014 0.104 0.0016 662 11 644 15 640 19 3.31 0.99
DF06-08 28 0.0738 0.00017 1.722 0.026 0.169 0.0025 1036 9 1017 19 1009 28 2.55 0.99
DF06-08 29R 0.0641 0.00017 0.844 0.014 0.096 0.0015 744 11 621 15 589 18 20.87 0.99
DF06-08 30 0.0737 0.00027 1.726 0.020 0.170 0.0019 1033 15 1018 15 1012 21 2.04 0.95
DF06-08 31 0.0697 0.00029 1.395 0.016 0.145 0.0016 920 17 887 14 874 17 4.96 0.93
DF06-08 32 0.0664 0.00022 1.267 0.014 0.138 0.0015 820 14 831 13 836 17 -2.02 0.95
DF06-08 33 0.0730 0.00016 1.701 0.018 0.169 0.0018 1015 9 1009 14 1007 20 0.79 0.98
DF06-08 34 0.0601 0.00014 0.845 0.009 0.102 0.0011 607 10 622 10 626 13 -3.19 0.98
DF06-08 35R 0.0733 0.00015 1.789 0.016 0.177 0.0015 1023 8 1041 12 1051 17 -2.83 0.97
DF06-08 36 0.0621 0.00016 0.896 0.010 0.105 0.0012 678 11 650 11 642 13 5.32 0.98
DF06-08 37 0.0613 0.00023 0.861 0.010 0.102 0.0012 650 16 630 11 625 14 3.77 0.95
DF06-08 38 0.0616 0.00013 0.914 0.013 0.108 0.0015 659 9 659 14 660 18 -0.21 0.99


114










Table 4-26. Continued.


DFO6-08 39R
DF06-08 40
DF06-08 41
DF06-08 42R
DF06-08 43R
DF06-08 44
DF06-08 45R
DF06-08 46
DF06-08 47
DF06-08 48
DF06-08 49
DF06-08 50
DF06-08 51
DF06-08 52
DF06-08 53
DF06-08 54
DF06-08 55
DF06-08 56
DF06-08 57
DF06-08 58
DFO6-08 59R
DF06-08 60R
DF06-08 61
DF06-08 62
DF06-08 63R
DF06-08 64
DF06-08 65
DF06-08 66


0.0640
0.0622
0.0600
0.0600
0.0893
0.0754
0.0744
0.0647
0.0640
0.0606
0.0593
0.0602
0.0652
0.0725
0.0662
0.0730
0.0719
0.0608
0.0660
0.0614
0.0703
0.0733
0.0669
0.0674


0.00038
0.00017
0.00015
0.00015
0.00019
0.00016
0.00018
0.00014
0.00014
0.00022
0.00015
0.00020
0.00014
0.00025
0.00023
0.00028
0.00026
0.00028
0.00019
0.00021
0.00025
0.00052
0.00021
0.00020


0.794
0.906
0.839
0.841
1.339
1.931
1.490
1.105
1.111
0.839
0.811
0.839
1.156
1.516
1.099
1.586
1.459
0.794
1.078
0.784
1.374
1.509
1.185
1.180


0.025
0.014
0.008
0.011
0.014
0.021
0.012
0.011
0.012
0.009
0.010
0.009
0.016
0.042
0.029
0.042
0.039
0.022
0.030
0.024
0.038
0.041
0.031
0.032


0.090
0.106
0.101
0.102
0.109
0.186
0.145
0.124
0.126
0.101
0.099
0.101
0.129
0.152
0.120
0.158
0.147
0.095
0.119
0.093
0.142
0.149
0.129
0.127


0.0028
0.0016
0.0010
0.0013
0.0011
0.0020
0.0012
0.0012
0.0013
0.0010
0.0011
0.0011
0.0017
0.0042
0.0031
0.0041
0.0039
0.0026
0.0032
0.0028
0.0039
0.0039
0.0034
0.0035


742 25
682 12
602 11
604 11
14108
1078 8
1051 10
764 9
741 9
624 15
580 11
610 14
779 9
999 14
814 14
1015 16
984 15
632 20
806 12
655 15
937 14
1023 29
834 13
849 12


594 28
655 15
619 9
620 12
863 12
1092 14
926 10
756 11
759 11
619 10
603 11
619 10
780 15
937 34
753 28
965 32
913 32
593 25
743 29
588 27
878 32
934 33
794 29
791 30


556 33
648 19
624 12
625 15
666 13
1100 21
875 13
754 14
765 15
618 12
61013
621 13
781 20
912 47
733 36
944 46
885 44
584 30
723 37
571 33
855 44
897 44
780 38
772 40


25.07
4.97
-3.60
-3.40
52.75
-2.00
16.73
1.28
-3.25
0.88
-5.20
-1.88
-0.24
8.76
9.89
6.97
9.98
7.55
10.26
12.70
8.76
12.24
6.45
9.09


0.1123 0.00033 4.182 0.112 0.270 0.0072 1837 11 1670 43 1542 73 16.04


0.0718
0.0639
0.0645


0.00024
0.00019
0.00022


1.469
0.990
0.976


0.038
0.028
0.026


0.148
0.112
0.110


0.0038
0.0032
0.0029


982 13
738 13
757 14


918 31
699 29
691 27


892 42
687 37
672 34


9.11
6.84
11.14


115


0.98
0.98
0.97
0.98
0.98
0.98
0.96
0.98
0.98
0.94
0.98
0.96
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.97
0.99
0.99
0.99
0.99
0.99
0.99










Table 4-26. Continued.


DF06-08 67
DF06-08 68
DF06-08 69
DF06-08 70
DF06-08 71
DF06-08 72
DF06-08 73
DF06-08 74
DF06-08 75
DF06-08 76
DF06-08 77
DF06-08 78
DF06-08 79
DF06-08 80
DF06-08 81R
DF06-08 82R
DF06-08 83
DF06-08 84
DF06-08 85R
DF06-08 86R
DF06-08 87
DF06-08 88
DF06-08 89R
DF06-08 90
DF06-08 91
DF06-08 92R
DF06-08 93R
DF06-08 94R


0.0632 0.00018
0.0661 0.00022
0.0608 0.00022
0.0774 0.00025
0.0653 0.00020
0.0616 0.00034
0.0631 0.00018
0.0756 0.00029
0.0606 0.00020
0.0647 0.00019
0.0924 0.00030
0.0726 0.00023
0.0607 0.00022
0.0757 0.00025
0.0694 0.00031
0.0712 0.00038
0.0600 0.000339
0.0728 0.000276
0.0697 0.000296
0.0646 0.000355
0.0739 0.000304
0.0732 0.000329
0.0631 0.000201
0.0715 0.000345
0.0614 0.000434
0.0742 0.000279
0.0634 0.001034
0.0667 0.0003


0.943
1.035
0.817
1.908
1.096
0.800
0.934
1.717
0.752
1.012
2.986
1.504
0.775
1.739
1.194
1.353
0.754
1.542
1.288
0.805
1.519
1.428
0.816
1.464
0.795
0.607
0.831
0.929


0.026
0.028
0.023
0.058
0.029
0.022
0.025
0.045
0.019
0.027
0.079
0.040
0.022
0.050
0.034
0.036
0.020
0.043
0.034
0.026
0.041
0.038
0.032
0.041
0.022
0.019
0.026
0.028


0.108
0.114
0.097
0.179
0.122
0.094
0.107
0.165
0.090
0.113
0.234
0.150
0.093
0.167
0.125
0.138
0.091
0.154
0.134
0.090
0.149
0.141
0.094
0.149
0.094
0.059
0.095
0.101


0.0029
0.0030
0.0027
0.0054
0.0032
0.0025
0.0029
0.0043
0.0023
0.0030
0.0062
0.0039
0.0026
0.0048
0.0035
0.0036
0.0024
0.0042
0.0035
0.0029
0.0039
0.0037
0.0037
0.0041
0.0025
0.0019
0.0025
0.0030


716 12
810 14
634 16
1131 13
783 13
660 24
71212
1086 15
627 14
765 13
1475 12
1003 13
628 16
1087 13
911 19
964 22
603 24
1007 15
918 17
761 23
1039 17
1019 18
710 14
971 20
654 30
1047 15
720 69
829 19


674 27
721 27
606 25
1084 40
751 28
597 25
670 26
1015 34
570 22
710 27
1404 40
932 32
583 25
1023 37
798 31
869 31
571 24
947 34
840 30
600 30
938 33
900 31
606 36
916 33
594 25
481 24
614 29
667 29


662 34
694 35
599 32
1062 59
741 37
581 30
658 33
983 47
556 27
693 34
1359 64
903 44
572 30
994 53
759 40
833 41
563 29
922 47
812 39
558 35
896 44
854 42
579 44
894 45
579 30
372 23
586 30
620 35


7.42
14.34
5.39
6.09
5.27
11.90
7.52
9.43
11.27
9.33
7.82
9.97
8.99
8.52
16.69
13.61
6.51
8.40
11.57
26.59
13.69
16.21
18.46
7.90
11.50
64.49
18.56
25.16


0.99
0.99
0.99
0.99
0.99
0.98
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98
0.98
0.99
0.99
0.99
0.99
0.99
1.00
0.98
0.97
0.99
0.85
0.99


116










Table 4-26. Continued.
DF06-08 95 0.0645 0.000221 1.057 0.028 0.119 0.0031 758 14 732 27 725 36 4.34 0.99
DF06-08 96 0.0721 0.000337 1.568 0.044 0.158 0.0044 988 19 957 35 945 49 4.28 0.99
DF06-08 97R 0.0805 0.005046 1.283 0.088 0.116 0.0032 1209 247 838 77 706 37 41.58 0.40
DF06-08 98 0.0612 0.000412 0.826 0.024 0.098 0.0027 646 29 611 26 603 32 6.70 0.97
DF06-08 99 0.0631 0.000267 0.956 0.026 0.110 0.0030 712 18 681 27 672 34 5.58 0.99
DF06-08 100 0.0774 0.000263 1.926 0.052 0.181 0.0048 1131 14 1090 36 1071 53 5.32 0.99
DF06-08 101 0.0641 0.000228 1.036 0.029 0.117 0.0032 746 15 722 28 715 37 4.21 0.99
DF06-08 102 0.0651 0.000199 1.133 0.032 0.126 0.0035 776 13 769 30 767 40 1.15 0.99
DF06-08 103R 0.1196 0.000371 5.067 0.133 0.307 0.0080 1950 11 1830 44 1729 79 11.34 0.99
DF06-08 104 0.0611 0.00032 0.803 0.024 0.095 0.0028 643 23 599 27 588 33 8.63 0.98
DF06-08 105 0.0611 0.000264 0.840 0.023 0.100 0.0027 643 19 619 26 613 32 4.61 0.99
DF06-08 106 0.0653 0.000326 1.104 0.030 0.123 0.0033 784 21 755 29 746 38 4.86 0.98
DF06-08 107R 0.0663 0.000273 0.799 0.021 0.088 0.0023 815 17 596 24 541 27 33.56 0.99
DF06-08 108 0.0655 0.000194 1.093 0.028 0.121 0.0031 790 12 750 27 737 35 6.60 0.99
DF06-08 109 0.0637 0.000426 1.006 0.028 0.114 0.0031 732 28 707 28 699 36 4.46 0.97
DF06-08 110 0.0914 0.000352 2.966 0.083 0.235 0.0066 1454 15 1399 42 1364 68 6.13 0.99
DF06-08 111 0.0740 0.000256 1.715 0.046 0.168 0.0045 1042 14 1014 34 1002 49 3.79 0.99
R denotes samples removed due to high error and/or discordance.
*235U values calculated from measured 238U


117










Table 4-27. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-26 from the Northern Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) T (int)
(Ga) (Ga) T (U-Pb Age) (int)
Age)


DF09-26 5
DF09-26 10
DF09-26 12
DF09-26 13
DF09-26 17R
DF09-26 22
DF09-26 23
DF09-26 24
DF09-26 36
DF09-26 39R
DF09-26 42
DF09-26 43R
DF09-26 44
DF09-26 45R
DF09-26 50
DF09-26 53
DF09-26 54R
DF09-26 61
DF09-26 64
DF09-26 65
DF09-26 71R
DF09-26 72R
DF09-26 74
DF09-26 75


0.28243
0.28256
0.28235
0.28237
0.28243
0.28262
0.28247
0.28235
0.28257
0.28221
0.28244
0.28224
0.28246
0.28260
0.28225
0.28181
0.28242
0.28231
0.28152
0.28231
0.28141
0.28254
0.28234
0.28244


9.8E-06
8.7E-06
1.1E-05
9.0E-06
1.0E-05
7.8E-06
1.2E-05
9.7E-06
1.2E-05
1.1E-05
1.0E-05
7.7E-06
1.0E-05
7.7E-06
1.0E-05
8.1E-06
8.7E-06
6.6E-06
8.7E-06
6.7E-06
8.3E-06
8.4E-06
9.9E-06
1.1E-05


0.00072
0.00145
0.00090
0.00073
0.00091
0.00102
0.00128
0.00150
0.00088
0.00215
0.00061
0.00138
0.00097
0.00094
0.00170
0.00129
0.00112
0.00145
0.00080
0.00094
0.00179
0.00091
0.00066
0.00112


0.57
0.36
0.70
0.66
0.56
0.25
0.50
0.72
0.34
0.95
0.54
0.90
0.52
0.29
0.88
1.59
0.59
0.77
2.03
0.76
2.27
0.39
0.71
0.55


1.13
0.97
1.24
1.21
1.13
0.86
1.08
1.27
0.93
1.48
1.11
1.42
1.09
0.89
1.41
2.01
1.15
1.31
2.38
1.30
2.60
0.98
1.25
1.12


1114.0 0.282074
771.5 0.282290
1082.5 0.282094
971.9 0.282164
0.282772
641.9 0.282372
1114.0 0.282074
1140.0 0.282058
680.9 0.282347
0.282772
610.7 0.282391
0.282772
910.4 0.282203
0.282772
898.2 0.282211
1755.5 0.281666
0.282772
938.1 0.282185
1874.5 0.281590
1008.0 0.282141
0.282772
0.282772
1092.5 0.282088
692.9 0.282340


118


11.9
8.6
8.3
6.7
-12.1
8.4
13.1
9.0
7.5
-19.7
1.4
-19.0
8.5
-6.2
0.3
3.6
-12.6
3.5
-3.6
5.3
-48.1
-8.3
8.3
3.1


1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
n/a
1100
1100
1100


0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
0.282083
n/a
0.282083
0.282083
0.282083


11.6
16.0
8.7
9.6
12.3
18.6
12.8
8.1
16.8
4.6
12.4
5.4
12.7
18.2
4.8
-11.2
11.8
7.1
-21.0
7.4
n/a
16.1
8.4
12.2


12.9
24.0
15.7
11.9
15.0
16.7
20.7
23.9
14.3
31.7
11.4
22.2
16.6
16.1
22.9
21.1
19.3
23.4
12.6
15.4
21.9
15.1
12.2
19.8










Table 4-28. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-30 from the Northern Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) T (int)
(Ga) (Ga) T (U-Pb Age) (int)
Age)
DF09-30 1 0.28171 1.2E-05 0.00180 1.78 2.18 1823.5 0.281622 1.0 1820 0.281624 0.9 25.8
DFO9-30 3R 0.28203 1.0E-05 0.00205 1.25 1.73 0.282772 -26.1 1480 0.281842 6.8 31.0
DF09-30 4 0.28135 8.1E-06 0.00095 2.31 2.62 1994.0 0.281513 -7.1 2070 0.281464 -5.4 16.6
DF09-30 6 0.28204 1.2E-05 0.00079 1.20 1.67 1381.0 0.281905 4.0 1400 0.281893 4.4 11.9
DF09-30 12R 0.28168 9.1E-06 0.00100 1.78 2.17 0.282772 -38.5 1740 0.281676 0.3 16.6
DF09-30 13R 0.28186 9.2E-06 0.00067 1.48 1.91 0.282772 -32.3 1480 0.281842 0.6 12.1
DF09-30 14R 0.28130 5.6E-06 0.00074 2.38 2.68 0.282772 -52.2 2070 0.281464 -6.0 12.9
DF09-30 15 0.28131 8.2E-06 0.00090 2.37 2.67 1994.0 0.281513 -8.3 2070 0.281464 -6.6 15.4
DF09-30 18R 0.28160 7.7E-06 0.00106 1.91 2.28 0.282772 -41.3 2070 0.281464 5.0 18.2
DF09-30 20 0.28129 9.0E-06 0.00080 2.40 2.70 1994.0 0.281513 -9.0 2070 0.281464 -7.3 14.6
DF09-30 22R 0.28157 1.7E-05 0.00132 1.98 2.35 0.282772 -42.5 2070 0.281464 3.8 22.6
DF09-30 23 0.28135 1.2E-05 0.00108 2.33 2.64 1994.0 0.281513 -7.4 2070 0.281464 -5.7 18.2
DF09-30 24R 0.28163 7.9E-06 0.00106 1.88 2.25 0.282772 -40.5 1480 0.281842 -7.7 18.0
DF09-30 26R 0.28133 8.7E-06 0.00078 2.33 2.64 0.282772 -51.0 2070 0.281464 -4.7 14.0
DF09-30 27R 0.28130 4.7E-06 0.00118 2.41 2.71 0.282772 -52.2 2070 0.281464 -6.0 20.3
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


119










Table 4-29. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-43 from the Central Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF09-43 3 0.28166 1.9E-05 0.00084 1.80 2.19 1031.5 0.282126 -17.0 1045 0.282118 -16.7 8.8
DF09-43 4 0.28170 1.5E-05 0.00070 1.73 2.12 1028.5 0.282128 -15.5 1045 0.282118 -15.2 6.2
DF09-43 8R 0.28162 1.9E-05 0.00082 1.88 2.25 0.282772 -40.9 1045 0.282118 -17.8 8.9
DF09-43 10 0.28160 2.0E-05 0.00124 1.93 2.30 1036.0 0.282124 -19.5 1045 0.282118 -19.3 12.7
DF09-43 21 0.28150 3.6E-05 0.00129 2.09 2.44 1055.5 0.282111 -22.5 1045 0.282118 -22.7 12.8
DF09-43 27 0.28164 1.6E-05 0.00134 1.87 2.24 1036.0 0.282124 -18.0 1045 0.282118 -17.8 13.5
DF09-43 28 0.28176 1.9E-05 0.00154 1.69 2.10 1041.0 0.282120 -14.0 1045 0.282118 -13.9 14.8
DF09-43 29 0.28167 1.6E-05 0.00096 1.80 2.18 1043.5 0.282119 -16.5 1045 0.282118 -16.5 10.0
DF09-43 30 0.28170 1.7E-05 0.00102 1.76 2.15 1036.5 0.282123 -15.8 1045 0.282118 -15.6 10.8
DF09-43 37 0.28172 1.7E-05 0.00102 1.73 2.13 1043.5 0.282119 -15.0 1045 0.282118 -15.0 9.9
DF09-43 39 0.28177 2.6E-05 0.00117 1.65 2.06 1033.5 0.282125 -13.5 1045 0.282118 -13.2 11.9
DF09-43 41 0.28162 1.4E-05 0.00133 1.90 2.27 1036.0 0.282124 -18.7 1045 0.282118 -18.5 13.8
DF09-43 47R 0.28171 1.0E-05 0.00062 1.72 2.11 0.282772 -37.6 n/a n/a n/a 6.9
DF09-43 48 0.28173 1.5E-05 0.00091 1.70 2.10 513.6 0.282452 -25.9 515 0.282451 -25.9 9.7
DF09-43 49 0.28169 1.4E-05 0.00091 1.76 2.15 1036.0 0.282124 -15.9 1045 0.282118 -15.7 8.6
DF09-43 50 0.28171 1.2E-05 0.00104 1.75 2.14 1028.0 0.282129 -15.7 1045 0.282118 -15.3 10.9
DF09-43 52 0.28169 2.0E-05 0.00073 1.76 2.15 1024.5 0.282131 -16.3 1045 0.282118 -15.8 8.2
DF09-43 57 0.28183 2.6E-05 0.00137 1.56 1.98 1036.0 0.282124 -11.3 1045 0.282118 -11.1 14.0
DF09-43 60 0.28171 1.3E-05 0.00078 1.72 2.12 1016.0 0.282136 -15.6 1045 0.282118 -14.9 8.6
DF09-43 66 0.28151 2.5E-05 0.00064 2.04 2.39 1022.5 0.282132 -22.5 1045 0.282118 -22.0 7.1
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


120










Table 4-30. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-44 from the Central Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF09-44 2 0.28150 1.6E-05 0.00049 2.04 2.39 1057.0 0.282110 -21.9 1060 0.282108 -21.9 5.9
DF09-44 3 0.28157 3.0E-05 0.00050 1.94 2.30 1022.5 0.282132 -20.4 1045 0.282118 -19.9 5.6
DF09-44 4 0.28158 2.0E-05 0.00038 1.90 2.27 1036.5 0.282123 -19.4 1045 0.282118 -19.2 4.2
DF09-44 10 0.28165 2.0E-05 0.00063 1.82 2.20 1057.0 0.282110 -16.9 1060 0.282108 -16.8 7.4
DF09-44 15 0.28161 2.1E-05 0.00075 1.88 2.25 1024.0 0.282131 -18.9 1045 0.282118 -18.5 6.7
DF09-44 21 0.28157 1.8E-05 0.00051 1.94 2.30 1027.5 0.282129 -20.2 1045 0.282118 -19.8 5.6
DF09-44 26 0.28159 1.9E-05 0.00143 1.96 2.32 1057.0 0.282110 -19.5 1045 0.282118 -19.7 11.0
DF09-44 27 0.28153 2.0E-05 0.00101 2.03 2.39 1057.0 0.282110 -21.4 1060 0.282108 -21.4 7.8
DF09-44 31 0.28155 1.8E-05 0.00036 1.96 2.32 1007.0 0.282142 -21.4 1045 0.282118 -20.6 3.9
DF09-44 33 0.28160 2.1E-05 0.00072 1.90 2.27 1033.5 0.282125 -19.1 1045 0.282118 -18.9 8.0
DF09-44 35 0.28163 1.8E-05 0.00071 1.85 2.23 1040.0 0.282121 -18.0 1045 0.282118 -17.9 6.8
DF09-44 40 0.28157 2.3E-05 0.00086 1.96 2.32 1057.0 0.282110 -19.9 1060 0.282108 -19.8 7.5
DF09-44 48 0.28149 2.5E-05 0.00040 2.06 2.40 1065.0 0.282105 -22.2 1045 0.282118 -22.6 4.4
DF09-44 49 0.28150 1.9E-05 0.00051 2.04 2.39 1059.5 0.282109 -21.9 1045 0.282118 -22.2 5.9
DF09-44 50 0.28165 2.2E-05 0.00057 1.81 2.19 1057.0 0.282110 -16.8 1060 0.282108 -16.7 6.1
DF09-44 51 0.28160 2.1E-05 0.00110 1.92 2.29 1016.5 0.282136 -19.8 1045 0.282118 -19.2 11.3
DF09-44 53 0.28150 2.0E-05 0.00062 2.05 2.40 2078.0 0.281459 0.5 2080 0.281457 0.6 5.9
DF09-44 56 0.28158 2.3E-05 0.00070 1.93 2.29 1022.5 0.282132 -20.0 1045 0.282118 -19.5 8.1
DF09-44 57 0.28142 2.7E-05 0.00074 2.19 2.52 2046.0 0.281479 -3.2 2080 0.281457 -2.4 8.3
DF09-44 60 0.28162 1.4E-05 0.00061 1.86 2.23 1016.0 0.282136 -18.6 1045 0.282118 -18.0 6.5
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


121










Table 4-31. Lu-Hf (MC-ICP-MS) analysis corrected results for sample CZ29 from the Central Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
CZ29 1 0.28173 1.2E-05 0.00056 1.69 2.09 1026.0 0.282130 -14.7 1030 0.282127 -14.6 6.9
CZ29 2 0.28164 1.7E-05 0.00029 1.82 2.19 1010.0 0.282140 -18.1 1005 0.282143 -18.2 4.1
CZ29 3 0.28142 1.6E-05 0.00042 2.17 2.50 2031.0 0.281489 -3.1 2020 0.281496 -3.3 6.7
CZ29 6 0.28179 1.2E-05 0.00096 1.60 2.02 1024.0 0.282131 -12.6 1005 0.282143 -13.1 13.3
CZ29 8R 0.28153 2.2E-05 0.00198 2.09 2.44 0.282772 -43.9 n/a n/a n/a 26.0
CZ29 9R 0.28172 1.5E-05 0.00105 1.72 2.12 0.282772 -37.1 1030 0.282127 -14.3 16.1
CZ29 10R 0.28169 1.1E-05 0.00070 1.75 2.14 0.282772 -38.3 1030 0.282127 -15.5 9.0
CZ29 12 0.28143 1.8E-05 0.00079 2.17 2.50 2030.0 0.281490 -3.1 2020 0.281496 -3.3 12.0
CZ29 13R 0.28141 1.7E-05 0.00063 2.20 2.53 0.282772 -48.3 2020 0.281496 -3.2 9.6
CZ2914R 0.28193 3.5E-05 0.00037 1.35 1.80 0.282772 -29.7 n/a n/a n/a 5.5
CZ29 15R 0.28177 1.3E-05 0.00126 1.65 2.06 0.282772 -35.4 1030 0.282127 -12.7 17.3
CZ29 16 0.28170 1.5E-05 0.00100 1.75 2.14 1026.0 0.282130 -15.8 1030 0.282127 -15.7 14.7
CZ29 17 0.28173 1.6E-05 0.00071 1.69 2.09 1026.0 0.282130 -14.7 1030 0.282127 -14.6 10.9
CZ29 18R 0.28173 1.8E-05 0.00046 1.68 2.08 0.282772 -37.0 1030 0.282127 -14.2 6.1
CZ29 19R 0.28174 1.7E-05 0.00063 1.68 2.08 0.282772 -36.7 1005 0.282143 -14.5 10.2
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


122










Table 4-32. Lu-Hf (MC-ICP-MS) analysis corrected results for sample CZ53b from the Central Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


0.28230 1.2E-05 0.00137
0.28244 1.3E-05 0.00189
0.28239 1.1E-05 0.00092
0.28236 1.4E-05 0.00101
0.28206 1.8E-05 0.00084


CZ53b 1R
CZ53b 2R
CZ53b 3R
CZ53b 4R
CZ53b 6R
CZ53b 9R
CZ53b 11
CZ53b 14R
CZ53b 15R
CZ53b 18
CZ53b 19R
CZ53b 21
CZ53b 23
CZ53b 24
CZ53b 25
CZ53b 27
CZ53b 28R
CZ53b 30R
CZ53b 32
CZ53b 33R
CZ53b 35
CZ53b 36R
CZ53b 37
CZ53b 39


1.8E-05
1.9E-05
1.3E-05
1.4E-05
9.8E-06
9.6E-06
1.3E-05
1.7E-05
1.3E-05
1.1E-05
1.1E-05
1.2E-05
1.3E-05
1.5E-05
1.0E-05
2.1E-05
2.1E-05
1.7E-05
1.4E-05


0.00073
0.00176
0.00131
0.00295
0.00169
0.00275
0.00077
0.00113
0.00214
0.00138
0.00103
0.00189
0.00097
0.00314
0.00181
0.00258
0.00065
0.00071
0.00164


0.78 1.32
0.56 1.14
0.64 1.19
0.68 1.23
1.16 1.64
1.85 2.23
0.59 1.16
0.42 1.01
1.06 1.58
0.52 1.10
0.61 1.20
0.53 1.10
0.36 0.96
0.88 1.42
0.33 0.93
0.64 1.20
0.73 1.28
0.57 1.13
1.00 1.53
0.70 1.25
0.45 1.05
0.59 1.14
0.57 1.13
0.47 1.05


0.282772 -16.6 n/a
0.282772 -11.6 n/a
0.282772 -13.7 n/a
0.282772 -14.6 n/a
0.282772 -25.1 n/a


0.282772
644.1 0.282370
0.282772
0.282772
636.2 0.282375
0.282772
1003.0 0.282144
672.0 0.282353
1126.5 0.282066
690.4 0.282341
813.3 0.282264
0.282772
0.282772
1037.5 0.282123
0.282772
759.5 0.282298
0.282772
702.6 0.282334
647.8 0.282368


-40.4
1.1
-8.9
-21.3
2.5
-12.4
10.3
6.6
5.1
7.7
3.7
-15.2
-12.1
0.8
-14.5
6.4
-12.7
2.8
3.8


n/a
830
n/a
1060
830
n/a
1170
830
1170
830
830
n/a
830
1170
n/a
830
830
830
830


n/a n/a 19.9
n/a n/a 25.9
n/a n/a 13.7
n/a n/a 15.4
n/a n/a 13.4


n/a
0.282254
n/a
0.282108
0.282254
n/a
0.282039
0.282254
0.282039
0.282254
0.282254
n/a
0.282254
0.282039
n/a
0.282254
0.282254
0.282254
0.282254


n/a
5.2
n/a
2.2
6.8
n/a
14.0
10.1
6.1
10.8
4.0
n/a
6.2
3.8
n/a
8.0
5.6
5.6
7.9


11.1
26.4
19.1
31.3
25.6
37.0
13.4
17.1
20.7
17.4
15.9
21.2
17.0
29.7
25.9
28.1
10.1
12.0
25.6


123


0.28163
0.28242
0.28252
0.28217
0.28247
0.28242
0.28245
0.28255
0.28226
0.28258
0.28238
0.28234
0.28243
0.28221
0.28236
0.28252
0.28241
0.28242
0.28250










Table 4-32. Continued.
CZ53b 40 0.28251 1.4E-05 0.00269 0.46 1.07 632.4 0.282378 3.5 830 0.282254 7.9 36.2
CZ53b 42R 0.28260 1.4E-05 0.00151 0.29 0.90 0.282772 -6.1 830 0.282254 12.2 21.7
CZ53b 43 0.28238 1.7E-05 0.00145 0.66 1.21 1105.0 0.282080 9.6 1170 0.282039 11.1 21.2
CZ53b 44 0.28252 1.2E-05 0.00183 0.43 1.02 653.4 0.282365 4.8 830 0.282254 8.7 28.0
CZ53b 47 0.28234 9.6E-06 0.00066 0.71 1.25 900.8 0.282209 4.2 1170 0.282039 10.2 10.6
CZ53b 48 0.28254 9.6E-06 0.00091 0.39 0.98 726.5 0.282319 7.2 830 0.282254 9.5 15.3
CZ53b 50 0.28242 1.6E-05 0.00154 0.60 1.17 772.4 0.282290 3.7 830 0.282254 5.0 22.6
CZ53b 51 0.28240 1.6E-05 0.00090 0.61 1.16 799.0 0.282273 4.2 830 0.282254 4.9 14.0
CZ53b 52R 0.28233 1.8E-05 0.00210 0.75 1.31 0.282772 -15.6 1060 0.282108 7.9 26.8
CZ53b 53 0.28254 2.1E-05 0.00077 0.39 0.98 656.4 0.282363 5.8 830 0.282254 9.6 11.2
CZ53b 56 0.28246 1.3E-05 0.00117 0.52 1.10 710.8 0.282328 4.0 830 0.282254 6.7 17.6
CZ53b 57 0.28236 1.7E-05 0.00106 0.68 1.23 1055.0 0.282112 8.1 1170 0.282039 10.7 16.0
CZ53b 59 0.28237 9.8E-06 0.00165 0.68 1.24 985.7 0.282155 6.4 1170 0.282039 10.6 21.6
CZ53b 60 0.28236 1.4E-05 0.00119 0.69 1.24 1083.5 0.282094 8.5 1170 0.282039 10.5 18.1
CZ53b 61 0.28236 1.8E-05 0.00339 0.73 1.31 772.8 0.282289 0.8 830 0.282254 2.1 41.4
CZ53b 62 0.28250 1.2E-05 0.00109 0.45 1.04 781.0 0.282284 7.0 830 0.282254 8.1 14.0
CZ53b 63 0.28171 1.4E-05 0.00095 1.74 2.13 1050.0 0.282115 -15.1 1170 0.282039 -12.4 14.8
CZ53b 66 0.28254 1.7E-05 0.00108 0.39 0.98 685.3 0.282345 6.3 830 0.282254 9.5 16.0
CZ53b 67 0.28213 1.9E-05 0.00054 1.04 1.53 1145.0 0.282055 2.4 1170 0.282039 2.9 9.6
CZ53b 68R 0.28244 1.1E-05 0.00179 0.56 1.14 0.282772 -11.7 n/a n/a n/a 24.1
CZ53b 72 0.28219 1.3E-05 0.00106 0.96 1.47 1049.0 0.282115 1.8 1170 0.282039 4.5 15.5
CZ53b 73R 0.28229 1.3E-05 0.00130 0.81 1.34 0.282772 -17.1 n/a n/a n/a 18.8
CZ53b 77 0.28250 1.1E-05 0.00316 0.49 1.10 1106.0 0.282079 12.4 1060 0.282108 11.4 31.4
CZ53b 78 0.28178 1.5E-05 0.00082 1.61 2.03 982.2 0.282158 -13.9 1170 0.282039 -9.7 12.9
CZ53b 79 0.28227 1.2E-05 0.00118 0.84 1.36 1090.0 0.282089 5.4 1170 0.282039 7.2 17.3
CZ53b 80 0.28229 8.9E-06 0.00229 0.84 1.38 1090.0 0.282089 5.3 1170 0.282039 7.1 30.5
CZ53b 83 0.28228 8.9E-06 0.00213 0.84 1.38 1038.5 0.282122 4.1 1170 0.282039 7.1 28.4
CZ53b 85 0.28174 1.9E-05 0.00019 1.65 2.05 1052.5 0.282113 -13.4 1170 0.282039 -10.8 3.7
CZ53b 86 0.28243 1.6E-05 0.00117 0.57 1.13 723.5 0.282320 3.4 830 0.282254 5.7 17.4


124










Table 4-32. Continued.
CZ53b 87 0.28217 1.7E-05 0.00072 0.99 1.48 1055.0 0.282112 1.5 1170 0.282039 4.1 11.8
CZ53b 88 0.28212 1.7E-05 0.00098 1.08 1.57 1144.5 0.282055 1.4 1170 0.282039 2.0 15.2
CZ53b 94 0.28230 1.2E-05 0.00107 0.78 1.31 825.9 0.282256 1.1 830 0.282254 1.2 17.1
CZ53b 95 0.28256 1.3E-05 0.00096 0.35 0.95 697.7 0.282337 7.4 830 0.282254 10.4 14.9
CZ53b 96 0.28234 1.4E-05 0.00094 0.71 1.25 759.7 0.282298 1.1 830 0.282254 2.7 14.5
CZ53b 101R 0.28256 1.7E-05 0.00137 0.36 0.96 0.282772 -7.5 n/a n/a n/a 21.8
CZ53b 102 0.28243 1.4E-05 0.00063 0.56 1.12 746.3 0.282306 4.0 830 0.282254 5.8 10.5
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


Table 4-33. Lu-Hf (MC-ICP-MS) analysis corrected results for sample CZ35 from the Central Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
CZ35 1 0.28159 1.2E-05 0.00104 1.93 2.29 1339.0 0.281932 -12.9 1370 0.281912 -12.2 15.9
CZ35 3 0.28200 2.1E-05 0.00086 1.27 1.73 975.9 0.282162 -6.3 1090 0.282089 -3.8 12.0
CZ35 4 0.28228 1.2E-05 0.00089 0.81 1.34 986.4 0.282155 3.8 1090 0.282089 6.1 14.5
CZ35 8 0.28240 1.6E-05 0.00125 0.62 1.18 788.8 0.282279 3.7 825 0.282257 4.5 19.1
CZ35 10 0.28232 1.1E-05 0.00152 0.76 1.30 2023.5 0.281494 27.2 1370 0.281912 12.4 22.4
CZ35 11 0.28233 1.3E-05 0.00100 0.73 1.27 982.4 0.282157 5.5 1090 0.282089 7.9 15.0
CZ35 12 0.28173 1.3E-05 0.00142 1.72 2.13 1115.0 0.282074 -13.2 1090 0.282089 -13.7 20.9
CZ35 13 0.28255 1.7E-05 0.00464 0.41 1.06 728.6 0.282317 6.1 825 0.282257 8.2 49.9
CZ35 16 0.28235 9.2E-06 0.00146 0.71 1.26 775.3 0.282288 1.4 825 0.282257 2.5 22.1
CZ35 17R 0.28246 1.6E-05 0.00104 0.51 1.08 0.282772 -10.9 n/a n/a n/a 15.7
CZ35 19 0.28223 1.2E-05 0.00105 0.89 1.41 1085.0 0.282093 4.2 1090 0.282089 4.3 16.4
CZ35 21 0.28197 1.1E-05 0.00085 1.31 1.76 1093.0 0.282088 -4.7 1090 0.282089 -4.8 13.0
CZ35 22 0.28240 1.1E-05 0.00099 0.62 1.18 774.6 0.282288 3.3 825 0.282257 4.4 14.7
CZ35 25 0.28246 1.4E-05 0.00093 0.51 1.08 908.1 0.282204 8.6 1090 0.282089 12.7 12.2
CZ35 27 0.28240 2.2E-05 0.00043 0.61 1.16 1090.5 0.282089 10.6 1090 0.282089 10.6 6.3


125










Table 4-33. Continued.
CZ35 28 0.28244 9.1E-06 0.00160 0.57 1.14 670.3 0.282354 2.2 825 0.282257 5.6 23.6
CZ35 29R 0.28243 1.0E-05 0.00225 0.58 1.16 0.282772 -12.0 825 0.282257 6.3 29.1
CZ35 31 0.28206 1.4E-05 0.00051 1.16 1.63 700.4 0.282335 -10.1 825 0.282257 -7.3 8.2
CZ35 32 0.28230 1.4E-05 0.00073 0.78 1.31 1091.5 0.282088 6.9 1090 0.282089 6.9 11.8
CZ35 34 0.28232 1.2E-05 0.00121 0.75 1.29 736.5 0.282312 -0.3 825 0.282257 1.7 18.1
CZ35 39 0.28244 1.1E-05 0.00166 0.57 1.14 696.5 0.282337 2.7 825 0.282257 5.6 23.9
CZ35 40R 0.28141 1.4E-05 0.00101 2.23 2.55 0.282772 -48.3 n/a n/a n/a 14.7
CZ35 43 0.28230 1.1E-05 0.00134 0.79 1.33 1055.5 0.282111 5.6 1090 0.282089 6.4 18.8
CZ35 44 0.28246 1.5E-05 0.00120 0.52 1.09 756.8 0.282300 5.1 825 0.282257 6.7 18.3
CZ35 46 0.28206 1.8E-05 0.00093 1.17 1.64 1063.0 0.282107 -2.2 1090 0.282089 -1.6 14.0
CZ35 48 0.28240 1.4E-05 0.00154 0.62 1.19 1069.5 0.282102 9.5 1090 0.282089 9.9 20.2
CZ35 49 0.28250 1.1E-05 0.00195 0.47 1.06 733.4 0.282314 5.5 825 0.282257 7.5 28.4
CZ35 51 0.28251 1.3E-05 0.00085 0.43 1.01 828.3 0.282255 8.6 825 0.282257 8.6 12.3
CZ35 52 0.28242 1.3E-05 0.00088 0.58 1.14 628.5 0.282380 1.1 825 0.282257 5.5 14.2
CZ35 53 0.28224 2.1E-05 0.00074 0.87 1.39 1096.0 0.282086 4.9 1090 0.282089 4.8 12.1
CZ35 55 0.28217 1.8E-05 0.00167 1.01 1.52 1122.0 0.282069 2.4 1090 0.282089 1.6 26.0
CZ35 56 0.28255 1.7E-05 0.00090 0.38 0.97 670.4 0.282354 6.4 825 0.282257 9.8 13.1
CZ35 57 0.28242 1.7E-05 0.00139 0.59 1.16 798.9 0.282273 4.4 825 0.282257 4.9 18.2
CZ35 61 0.28233 9.0E-06 0.00122 0.74 1.28 1007.5 0.282142 5.8 1090 0.282089 7.6 18.1
CZ35 62 0.28259 1.6E-05 0.00156 0.31 0.92 638.9 0.282374 6.9 825 0.282257 11.0 22.2
CZ35 64 0.28246 1.4E-05 0.00102 0.52 1.09 1018.0 0.282135 10.8 1090 0.282089 12.4 13.4
CZ35 65 0.28260 2.0E-05 0.00185 0.29 0.91 0.282772 -6.0 825 0.282257 12.2 25.7
CZ35 68 0.28238 1.5E-05 0.00231 0.68 1.25 756.5 0.282300 1.5 825 0.282257 3.0 29.9
CZ35 70 0.28246 1.5E-05 0.00107 0.51 1.09 831.2 0.282253 6.8 825 0.282257 6.7 15.0
CZ35 72 0.28234 1.8E-05 0.00067 0.71 1.25 691.2 0.282341 -0.4 825 0.282257 2.5 10.8
CZ35 75 0.28249 9.3E-06 0.00099 0.46 1.04 665.3 0.282357 4.4 825 0.282257 7.9 14.3
CZ35 79 0.28236 1.5E-05 0.00084 0.68 1.23 1046.0 0.282117 7.9 1090 0.282089 8.9 10.8
CZ35 82 0.28236 1.8E-05 0.00100 0.68 1.23 1054.0 0.282112 8.0 1090 0.282089 8.8 17.2
CZ35 85 0.28243 1.7E-05 0.00333 0.61 1.21 1014.5 0.282137 8.1 1090 0.282089 9.8 36.2


126










Table 4-33. Continued.
CZ35 86 0.28247 1.6E-05 0.00144 0.50 1.08 728.4
CZ35 89 0.28230 1.6E-05 0.00127 0.78 1.32 744.2
CZ35 93 0.28237 1.5E-05 0.00266 0.70 1.27 750.4
CZ35 94 0.28210 1.4E-05 0.00087 1.11 1.59 1092.0
CZ35 95 0.28248 1.6E-05 0.00188 0.50 1.09 1014.0
CZ35 102 0.28245 2.5E-05 0.00287 0.56 1.16 821.4


0.282317
0.282308
0.282304
0.282088
0.282137
0.282259


4.8
-0.8
1.1
-0.3
10.7
5.3


825
825
825
1090
1090
825


0.282257
0.282257
0.282257
0.282089
0.282089
0.282257


7.0
1.0
2.8
-0.4
12.4
5.4


22.0
18.7
27.9
13.8
23.9
23.6


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


Table 4-34. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-22 from the Southern Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T (Int)* 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T 177Hf Hf at T corr
corrected measure (CHUR) (DM) (CHUR) (U-Pb (CHUR) T (int)
ed (Ga) (Ga) T (U-Pb Age) (int)
Age)
DF06-22 2 0.28156 1.7E-05 0.00033 1.94 2.30 2001.5 0.281508 1.3 1970 0.281528 0.6 4.5
DF06-22 3 0.28133 1.5E-05 0.00039 2.30 2.61 1967.5 0.281530 -7.5 1970 0.281528 -7.5 5.5
DF06-22 4 0.28249 3.1E-05 0.00068 0.46 1.03 731.3 0.282316 5.9 730 0.282316 5.9 9.4
DF06-22 5 0.28183 9.6E-05 0.00147 1.57 2.00 972.9 0.282163 -12.9 970 0.282165 -12.9 12.3
DF06-22 8R 0.28932 6.6E-03 0.01231 -20.14 -14.31 0.282772 231.5 n/a n/a n/a 63.6
DF06-22 9 0.28162 3.0E-05 0.00134 1.90 2.28 1986.0 0.281518 1.9 1970 0.281528 1.5 16.7
DF06-22 10R 0.27869 2.0E-03 0.00122 6.44 6.18 0.282772 -144.5 n/a n/a n/a 15.0
DF06-22 12 0.27958 1.4E-03 0.00092 5.05 4.99 2539.0 0.281160 -57.9 2540 0.281160 -57.8 9.7
DF06-22 16 0.28155 2.8E-05 0.00194 2.06 2.42 1981.0 0.281521 -1.7 2060 0.281470 0.1 23.1
DF06-22 17R 0.28162 1.8E-05 0.00099 1.88 2.25 0.282772 -40.6 2060 0.281470 5.5 12.9
DF06-22 18 0.28160 2.4E-04 0.00109 1.93 2.30 1981.0 0.281521 1.2 2060 0.281470 3.0 14.9
DF06-22 19R 0.28155 9.5E-06 0.00095 1.99 2.35 0.282772 -43.1 2060 0.281470 2.9 11.2
DF06-22 20 0.28281 1.1E-05 0.00554 -0.07 0.68 517.9 0.282449 10.8 520 0.282448 10.9 30.5
DF06-22 21 0.28193 1.9E-05 0.00137 1.41 1.85 1981.0 0.281521 12.5 2060 0.281470 14.3 16.7
DF06-22 22R 0.28111 1.8E-05 0.00156 2.75 3.00 0.282772 -58.9 2700 0.281056 1.8 14.8


127










Table 4-34. Continued.


DF06-22 23
DF06-22 24R
DF06-22 25R
DF06-22 26R
DF06-22 27R
DF06-22 28R
DF06-22 29
DF06-22 30R
DF06-22 31
DF06-22 32R
DF06-22 33R
DF06-22 34R
DF06-22 35
DF06-22 38R
DF06-22 39


0.28151
0.28105
0.28207
0.28221
0.28175
0.28177
0.28103
0.28168
0.28246
0.28238
0.28179
0.28128
0.28160
0.28121
0.28149


1.9E-05
3.1E-05
1.6E-03
2.4E-05
1.7E-05
3.5E-05
1.3E-05
1.3E-05
1.3E-05
1.2E-05
3.5E-05
1.7E-05
1.7E-05
3.0E-05
3.8E-04


0.00075
0.00083
0.00145
0.00237
0.00372
0.00117
0.00194
0.00070
0.00073
0.00200
0.00101
0.00092
0.00113
0.00215
0.00248


2.05
2.78
1.17
0.97
1.83
1.65
2.91
1.77
0.51
0.67
1.61
2.43
1.92
2.62
2.19


2.39
3.03
1.65
1.49
2.24
2.06
3.14
2.16
1.07
1.23
2.02
2.72
2.29
2.90
2.53


1981.0 0.281521
0.282772
0.282772
0.282772
0.282772
0.282772
2979.5 0.280873
0.282772
637.5 0.282375
0.282772
0.282772
0.282772
1981.0 0.281521
0.282772
2130.0 0.281425


-1.4
-61.0
-24.8
-19.8
-36.1
-35.5
1.6
-38.7
2.9
-13.8
-34.7
-52.9
1.3
-55.1
-1.2


2060
2700
2700
1350
2700
2060
2980
2060
640
1350
2060
2060
2060
2700
2130


0.281470
0.281056
0.281056
0.281925
0.281056
0.281470
0.280873
0.281470
0.282373
0.281925
0.281470
0.281470
0.281470
0.281056
0.281425


0.4
-0.3
36.1
10.2
24.7
10.6
1.6
7.3
2.9
16.2
11.4
-6.9
3.1
5.6
-1.2


9.6
8.1
14.5
21.7
38.0
16.1
18.3
9.0
10.6
25.3
12.5
13.4
14.5
20.7
23.4


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


Table 4-35. Lu-Hf (MC-ICP-MS) analysis corrected results for sample SZ13 from the Southern Zone, Congo Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T (Int)* 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T 177Hf Hf at T corr
corrected measure (CHUR) (DM) (CHUR) (U-Pb (CHUR) T (int)
ed (Ga) (Ga) T (U-Pb Age) (int)
Age)
SZ13 1R 0.28250 1.5E-05 0.00093 0.45 1.03 0.282772 -9.6 n/a n/a n/a 12.8
SZ13 2 0.28207 1.4E-05 0.00125 1.17 1.65 985.5 0.282155 -4.0 1120 0.282070 -1.0 16.2
SZ13 3 0.28208 1.6E-05 0.00087 1.14 1.62 1061.5 0.282107 -1.8 1120 0.282070 -0.5 12.0
SZ13 4 0.28255 2.0E-05 0.00107 0.37 0.97 799.8 0.282273 9.2 770 0.282291 8.5 13.7
SZ13 5 0.28257 3.5E-05 0.00115 0.34 0.94 1411.0 0.281886 23.0 1010 0.282140 14.0 15.1


128










Table 4-35. Continued.


0.28237
0.28250
0.28221
0.28144
0.28256
0.28255
0.28247
0.28258


2.1E-05
1.8E-05
1.0E-05
1.1E-05
1.2E-05
4.8E-05
1.2E-05
2.6E-05


0.00110
0.00179
0.00072
0.00066
0.00060
0.00142
0.00152
0.00155


SZ13 6
SZ13 7R
SZ13 8
SZ13 9R
SZ13 10aR
SZ13 12R
SZ13 13
SZ13 14
SZ13 16R
SZ13 17R
SZ13 18R
SZ13 19R
SZ13 20R
SZ13 21
SZ13 22
SZ13 23R
SZ13 24
SZ13 25
SZ13 26
SZ13 27
SZ13 28
SZ13 29
SZ13 30
SZ13 31
SZ13 34
SZ13 35R
SZ13 36
SZ13 42


0.28160
0.28238
0.28250
0.28258
0.28253
0.28219
0.28223
0.28230
0.28199
0.28256
0.28238
0.28227
0.28142
0.28221
0.28246
0.28249


3.2E-05
1.5E-05
1.4E-05
1.3E-05
1.3E-05
2.5E-05
1.5E-05
1.8E-05
2.5E-05
1.2E-05
1.1E-05
1.1E-05
1.2E-05
1.5E-05
1.6E-05
2.2E-05


0.00205
0.00166
0.00116
0.00099
0.00113
0.00049
0.00076
0.00148
0.00105
0.00119
0.00138
0.00143
0.00089
0.00049
0.00117
0.00223


0.67
0.47
0.93
2.15
0.34
0.37
0.51
0.33


1.22
1.06
1.43
2.49
0.93
0.97
1.09
0.93


0.46 1.04
0.70 1.24
0.33 0.94
1.88 2.26


1.97
0.67
0.45
0.32
0.40
0.94
0.90
0.79
1.28
0.36
0.66
0.84
2.20
0.92
0.52
0.49


2.34
1.23
1.04
0.92
0.99
1.44
1.41
1.33
1.74
0.96
1.21
1.37
2.52
1.43
1.10
1.08


819.5 0.282260
0.282772
681.9 0.282347
0.282772
0.282772
0.282772
751.2 0.282303
757.9 0.282299
0.282772


3.1
-9.8
-5.3
-47.2
-7.4
-7.8
5.2
9.1
-9.9


0.282291
n/a
0.282291
n/a
n/a
n/a
0.282291
0.282291


14.1
20.6
9.3
8.5
7.7
21.1
16.5
16.3


n/a n/a 11.0


0.282772 -14.8 1010 0.282140


0.282772


0.282772 -40.0


0.282772
1092.5 0.282088
713.1 0.282327
0.282772
670.8 0.282354
1411.0 0.281886
677.9 0.282349
1411.0 0.281886
997.0 0.282148
681.0 0.282347
963.4 0.282169
1411.0 0.281886
1883.0 0.281584
0.282772
780.8 0.282284
656.8 0.282362


-41.3
9.0
5.6
-6.8
5.8
10.4
-4.7
13.3
-6.2
6.9
6.5
12.3
-7.0
-20.1
5.5
3.5


n/a
n/a
n/a
1120
770
1010
770
1335
770
1335
1120
770
1120
1335
1880
n/a
770
770


7.5 14.9


n/a n/a 23.1
n/a n/a 18.0


n/a
0.282070
0.282291
0.282140
0.282291
0.281934
0.282291
0.281934
0.282070
0.282291
0.282070
0.281934
0.281586
n/a
0.282291
0.282291


n/a
9.6
6.8
15.6
8.0
8.7
-2.7
11.5
-3.5
8.8
10.1
10.6
-7.0
n/a
5.3
6.0


18.6
21.4
15.6
13.6
15.0
5.7
9.1
14.8
12.4
14.5
17.7
18.0
11.6
7.3
15.3
22.1


129


0.28249 3.2E-05 0.00080
0.28235 1.4E-05 0.00116
0.28258 2.2E-05 0.00183
0.28164 2.5E-05 0.00154










Table 4-35. Continued.
SZ13 44 0.28260 1.9E-05 0.00183 0.30 0.92 750.8 0.282303 9.5 770 0.282291 9.9 21.5
SZ13 46R 0.28252 1.5E-05 0.00127 0.42 1.01 0.282772 -8.9 1010 0.282140 13.5 15.9
SZ13 48 0.28259 2.1E-05 0.00152 0.31 0.92 684.6 0.282345 7.9 770 0.282291 9.8 18.3
SZ13 49R 0.28263 3.1E-05 0.00073 0.23 0.84 0.282772 -5.0 1010 0.282140 17.4 10.9
SZ13 51 0.28256 5.3E-05 0.00022 0.34 0.92 591.0 0.282404 5.5 770 0.282291 9.5 3.1
SZ13 52R 0.28098 2.2E-05 0.00045 2.86 3.09 0.282772 -63.4 n/a n/a n/a 5.9
SZ13 53 0.28239 1.7E-05 0.00175 0.65 1.21 898.9 0.282210 5.3 1120 0.282070 10.3 21.3
SZ13 54 0.28251 2.2E-05 0.00096 0.43 1.01 607.2 0.282393 3.8 770 0.282291 7.4 13.3
SZ13 56R 0.28229 2.2E-05 0.00088 0.79 1.32 0.282772 -17.0 n/a n/a n/a 12.1
SZ13 57 0.28256 1.4E-05 0.00154 0.36 0.96 1034.5 0.282125 14.3 1120 0.282070 16.2 19.6
SZ13 58 0.28249 1.5E-05 0.00114 0.48 1.06 634.3 0.282377 3.4 770 0.282291 6.4 15.6
SZ13 59R 0.28236 2.0E-05 0.00092 0.67 1.22 0.282772 -14.5 1335 0.281934 15.2 12.9
SZ13 62R 0.28250 1.1E-05 0.00175 0.46 1.05 0.282772 -9.5 n/a n/a n/a 23.0
SZ13 63 0.28240 2.8E-05 0.00092 0.62 1.18 953.5 0.282176 7.2 1120 0.282070 10.9 11.6
SZ13 64R 0.28202 1.1E-05 0.00056 1.22 1.68 0.282772 -26.6 1010 0.282140 -4.3 8.0
SZ13 66R 0.28187 2.4E-05 0.00200 1.53 1.97 0.282772 -32.0 n/a n/a n/a 18.3
SZ13 68R 0.28228 1.3E-05 0.00110 0.81 1.34 0.282772 -17.3 1335 0.281934 12.3 15.4
SZ13 69R 0.28201 1.5E-05 0.00045 1.24 1.70 0.282772 -27.1 n/a n/a n/a 7.9
SZ13 70R 0.28239 1.3E-05 0.00076 0.63 1.18 0.282772 -13.6 1010 0.282140 8.8 10.1
SZ13 71R 0.28249 1.8E-05 0.00161 0.47 1.06 0.282772 -9.9 n/a n/a n/a 21.8
SZ13 72R 0.28221 1.8E-05 0.00139 0.93 1.45 0.282772 -19.7 1335 0.281934 9.9 18.1
SZ13 73 0.28164 4.1E-05 0.00144 1.87 2.25 2043.0 0.281481 3.8 2045 0.281480 3.8 14.4
SZ13 74 0.28258 2.2E-05 0.00285 0.33 0.96 664.8 0.282357 6.8 770 0.282291 9.1 25.1
SZ13 76R 0.28233 3.5E-05 0.00170 0.75 1.30 0.282772 -15.8 n/a n/a n/a 18.7
SZ13 77 0.28229 1.9E-05 0.00007 0.77 1.29 693.0 0.282340 -1.8 770 0.282291 0.0 1.3
SZ13 78R 0.28093 1.9E-05 0.00111 2.98 3.20 0.282772 -65.0 n/a n/a n/a 14.0
SZ13 79R 0.28211 4.7E-05 0.00260 1.15 1.65 0.282772 -23.6 n/a n/a n/a 23.4


130










Table 4-35. Continued.


SZ13 80
SZ13 82R
SZ13 87R
SZ13 89
SZ13 91R
SZ13 94
SZ13 96
SZ13 97
SZ13 98R
SZ13 99
SZ13 100
SZ13 101R
SZ13 102R
SZ13 103R
SZ13 105
SZ13 106
SZ13 107
SZ13 108


0.28228


1.8E-05 0.00168


0.28104 2.7E-05 0.00068
0.28247 1.8E-05 0.00042
0.28240 2.6E-05 0.00163
0.28100 1.6E-05 0.00090
0.28233 2.6E-05 0.00158
0.28242 9.4E-06 0.00150
0.28229 1.9E-05 0.00080
0.28248 1.6E-05 0.00095
0.28207 1.6E-05 0.00129
0.28227 2.4E-05 0.00061
0.28227 2.5E-05 0.00154
0.28240 2.1E-05 0.00132
0.28252 3.0E-05 0.00066
0.28253 4.6E-05 0.00049
0.28238 2.2E-05 0.00106
0.28238 2.6E-05 0.00243
0.28292 1.8E-05 0.00123


0.83 1.36 1411.0 0.281886 12.4 1335 0.281934 10.7 21.4


2.78
0.49
0.63
2.86
0.74
0.59
0.79
0.48
1.17
0.82
0.84
0.62
0.42
0.40
0.65
0.68
-0.25


3.03
1.05
1.20
3.10
1.29
1.16
1.32
1.06
1.65
1.34
1.38
1.18
1.00
0.98
1.20
1.25
0.44


0.282772
0.282772
1411.0 0.281886
0.282772
1411.0 0.281886
757.0 0.282299
1078.5 0.282097
0.282772
941.6 0.282183
690.3 0.282341
0.282772
0.282772
0.282772
623.5 0.282383
768.4 0.282292
1411.0 0.281886
955.7 0.282174


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


131


-61.4
-10.6
16.6
-62.7
14.4
3.5
6.2
-10.4
-4.8
-2.9
-17.8
-13.2
-9.1
5.0
2.5
15.1
25.6


n/a
1010
1335
n/a
1335
770
1120
1010
1120
770
n/a
n/a
1010
770
770
1010
1120


n/a
0.282140
0.281934
n/a
0.281934
0.282291
0.282070
0.282140
0.282070
0.282291
n/a
n/a
0.282140
0.282291
0.282291
0.282140
0.282070


n/a
11.8
14.8
n/a
12.6
3.8
7.2
12.0
-0.8
-1.1
n/a
n/a
13.3
8.2
2.5
6.1
29.3


7.2
6.1
20.6
12.9
17.1
19.4
11.4
11.9
15.2
9.7
19.0
18.7
9.4
5.3
11.4
24.2
16.9










Table 4-36. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-12a from the Southern Margin Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) T (U-Pb (CHUR) (int)
(Ga) (Ga) (U-Pb Age) T (i nt)
Age)
DF09-12a 1 0.28214 7.9E-06 0.00078 1.04 1.53 1265.0 0.281979 4.9 1375 0.281909 7.4 13.6
DF09-12a 4 0.28224 1.0E-05 0.00055 0.87 1.39 1120.0 0.282070 5.5 1375 0.281909 11.2 10.3
DF09-12a 8 0.28212 7.8E-06 0.00070 1.07 1.56 1255.5 0.281985 4.0 1375 0.281909 6.7 12.6
DF09-12a 9 0.28199 8.2E-06 0.00092 1.29 1.74 1491.5 0.281835 4.5 1900 0.281573 13.8 15.0
DF09-12a 11 0.28183 9.1E-06 0.00123 1.55 1.98 1572.0 0.281783 0.4 1900 0.281573 7.9 17.9
DF09-12a 12 0.28156 7.2E-06 0.00106 1.99 2.35 1895.5 0.281576 -2.0 1900 0.281573 -1.9 17.2
DF09-12a 13R 0.28199 9.1E-06 0.00128 1.30 1.76 0.282772 -27.7 1750 0.281669 11.3 20.3
DF09-12a 14 0.28200 7.1E-06 0.00083 1.26 1.72 1341.5 0.281930 1.7 1375 0.281909 2.5 13.7
DF09-12a 16 0.28207 6.2E-06 0.00095 1.15 1.63 1239.5 0.281995 1.9 1375 0.281909 4.9 15.8
DF09-12a 18R 0.28130 8.9E-06 0.00092 2.39 2.69 0.282772 -52.0 2060 0.281470 -6.0 14.1
DF09-12a 21 0.28212 1.0E-05 0.00081 1.06 1.55 1211.0 0.282013 3.3 1375 0.281909 6.9 14.3
DF09-12a 22 0.28216 8.1E-06 0.00120 1.02 1.52 1192.5 0.282025 3.7 1375 0.281909 7.8 20.3
DF09-12a 23 0.28212 6.6E-06 0.00128 1.08 1.57 1233.0 0.281999 3.3 1375 0.281909 6.5 22.0
DF09-12a 25R 0.28181 1.1E-05 0.00073 1.56 1.98 0.282772 -34.0 1750 0.281669 5.0 10.6
DF09-12a 26 0.28197 8.4E-06 0.00121 1.32 1.78 1342.0 0.281930 0.4 1375 0.281909 1.1 18.8
DF09-12a 28 0.28171 1.1E-05 0.00072 1.73 2.12 1901.0 0.281573 3.8 1750 0.281669 0.3 11.1
DF09-12a 29 0.28184 6.2E-06 0.00054 1.51 1.93 1477.0 0.281844 -0.6 1900 0.281573 9.0 10.6
DF09-12a 30 0.28153 6.5E-06 0.00151 2.07 2.42 1936.0 0.281550 -2.8 1935 0.281551 -2.9 22.3
DF09-12a 34 0.28220 7.8E-06 0.00058 0.93 1.43 1044.2 0.282118 2.6 1375 0.281909 10.0 10.8
DF09-12a 35R 0.28226 1.3E-05 0.00067 0.83 1.35 0.282772 -18.1 1750 0.281669 21.0 12.7
DF09-12a 38 0.28219 8.9E-06 0.00139 0.98 1.49 1183.5 0.282030 4.4 1375 0.281909 8.7 19.9
DF09-12a 39 0.28190 9.0E-06 0.00061 1.41 1.85 1199.5 0.282020 -4.7 1375 0.281909 -0.8 10.5
DF09-12a 40 0.28191 7.5E-06 0.00135 1.44 1.88 1354.0 0.281922 -1.8 1375 0.281909 -1.3 21.0
DF09-12a 46 0.28199 9.4E-06 0.00096 1.28 1.74 1526.0 0.281813 5.5 1900 0.281573 14.0 13.5
DF09-12a 47 0.28217 8.1E-06 0.00126 1.00 1.50 1243.5 0.281992 5.4 1375 0.281909 8.3 21.2


132










Table 4-36. Continued.
DF09-12a 52 0.28197 7.6E-06 0.00116 1.32 1.78 1207.5 0.282015 -2.4 1375 0.281909 1.3 19.0
DF09-12a 58R 0.28155 5.8E-06 0.00073 1.98 2.34 0.282772 -43.4 2060 0.281470 2.7 12.1
DF09-12a 62R 0.28183 1.3E-05 0.00117 1.56 1.98 0.282772 -33.5 1750 0.281669 5.6 19.6
DF09-12a 66 0.28204 1.6E-05 0.00147 1.21 1.69 1024.8 0.282131 -4.1 1375 0.281909 3.8 23.6
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


Table 4-37. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-04 from the Southern Margin Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
correct measure (CHUR) (DM) (CHUR) T (U-Pb (CHUR) (int)
d d (Ga) (Ga) (U-Pb Age) T (i nt)
Age)
DF09-04 9 0.28190 2.7E-05 0.00061 1.41 1.85 1336.5 0.281933 -1.7 1400 0.281893 -0.3 6.8
DF09-04 15 0.28202 2.4E-05 0.00080 1.23 1.70 1298.5 0.281957 1.5 1400 0.281893 3.8 9.1
DF09-04 16 0.28212 2.9E-05 0.00096 1.08 1.57 1114.5 0.282074 0.8 1400 0.281893 7.2 9.1
DF09-04 19 0.28215 1.7E-05 0.00058 1.01 1.51 1117.0 0.282072 2.2 1400 0.281893 8.6 6.6
DF09-04 20 0.28214 3.6E-05 0.00223 1.09 1.59 1154.0 0.282049 1.4 1400 0.281893 6.9 22.1
DF09-04 21 0.28206 2.3E-05 0.00148 1.19 1.67 1226.5 0.282003 0.7 1400 0.281893 4.6 16.2
DF09-04 29 0.28215 1.8E-05 0.00123 1.04 1.54 1061.5 0.282107 0.5 1400 0.281893 8.1 12.7
DF09-04 30 0.28185 3.0E-05 0.00170 1.55 1.98 1262.0 0.281980 -6.2 1400 0.281893 -3.1 16.9
DF09-04 31 0.28184 2.4E-05 0.00059 1.51 1.93 1808.0 0.281632 6.7 1820 0.281624 6.9 6.5
DF09-04 35 0.28209 2.7E-05 0.00094 1.13 1.61 1221.0 0.282006 2.0 1400 0.281893 6.1 10.5
DF09-04 36 0.28192 1.7E-05 0.00077 1.39 1.83 1355.5 0.281921 -0.7 1400 0.281893 0.3 8.6
DF09-04 39 0.28162 2.7E-05 0.00090 1.88 2.25 1989.5 0.281516 2.5 1960 0.281535 1.8 9.1
DF09-04 44 0.28206 2.5E-05 0.00044 1.16 1.63 1168.5 0.282040 0.3 1400 0.281893 5.5 5.1
DF09-04 46 0.28190 2.1E-05 0.00066 1.42 1.86 1524.5 0.281813 2.3 1400 0.281893 -0.5 7.4
DF09-04 48R 0.28211 2.6E-05 0.00060 1.08 1.56 0.282772 -23.5 1820 0.281624 17.2 7.4
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


133










Table 4-38. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-40 from the Southern Foreland Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF06 40 3 0.28113 2.6E-05 0.00032 2.61 2.88 2166.0 0.281402 -10.1 2175 0.281396 -9.9 6.3
DF06 40 8R 0.28108 1.7E-05 0.00090 2.74 2.99 0.282772 -59.8 3050 0.280827 9.0 14.7
DF06 40 9R 0.28146 1.4E-05 0.00081 2.13 2.47 0.282772 -46.5 2175 0.281396 2.2 11.8
DF06 40 10 0.28212 1.6E-05 0.00064 1.06 1.55 1392.0 0.281898 7.3 1425 0.281877 8.1 10.4
DF06 40 11 0.28215 1.4E-05 0.00053 1.02 1.51 1084.5 0.282093 1.5 1085 0.282093 1.5 8.9
DF06 40 13 0.28144 2.3E-05 0.00028 2.12 2.45 2017.5 0.281498 -2.3 2020 0.281496 -2.3 4.6
DF06 40 17R 0.28132 1.0E-05 0.00118 2.38 2.68 0.282772 -51.3 3050 0.280827 17.6 16.9
DF06 40 25 0.28187 1.4E-05 0.00082 1.47 1.90 1358.0 0.281919 -2.4 1360 0.281918 -2.4 12.0
DF06 40 27 0.28118 2.2E-05 0.00133 2.62 2.89 2706.0 0.281052 1.9 2700 0.281056 1.8 19.0
DF06 40 33 0.28161 1.4E-05 0.00089 1.89 2.26 2166.0 0.281402 6.1 2175 0.281396 6.3 12.9
DF06 40 36 0.28216 1.5E-05 0.00059 0.99 1.49 1092.3 0.282088 2.3 1090 0.282089 2.2 9.3
DF06 40 38 0.28219 1.6E-05 0.00105 0.96 1.47 1392.0 0.281898 9.3 1425 0.281877 10.1 15.6
DF06 40 41 0.28211 1.8E-05 0.00050 1.07 1.55 1392.0 0.281898 7.1 1425 0.281877 7.9 8.0
DF06 40 42 0.28128 2.0E-05 0.00064 2.40 2.70 2112.5 0.281436 -6.5 2110 0.281438 -6.6 10.4
DF06 40 44 0.28137 1.5E-05 0.00031 2.23 2.55 2166.0 0.281402 -1.6 2175 0.281396 -1.4 5.1
DF06 40 45R 0.28112 1.6E-05 0.00114 2.70 2.96 0.282772 -58.5 3050 0.280827 10.3 16.9
DF06 40 46 0.28141 2.4E-05 0.00044 2.18 2.50 2118.5 0.281433 -1.3 2120 0.281432 -1.3 7.0
DF06 40 55 0.28136 2.0E-05 0.00069 2.28 2.59 1899.5 0.281573 -8.5 1900 0.281573 -8.5 10.2
DF06 40 56 0.28106 1.6E-05 0.00059 2.75 3.00 2690.0 0.281062 -1.3 2690 0.281062 -1.3 8.6
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


134










Table 4-39. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-41 from the Southern Foreland Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF06-41 04R 0.28117 1.4E-05 0.00045 2.56 2.84 0.282772 -56.8 2865 0.280948 7.8 5.5
DF06-41 18 0.28159 1.8E-05 0.00093 1.93 2.30 2024.0 0.281493 2.1 2230 0.281361 6.8 10.7
DF06-41 20 0.28183 3.1E-05 0.00151 1.57 1.99 900.7 0.282209 -14.3 1120 0.282070 -9.4 18.2
DF06-41 21 0.28145 1.7E-05 0.00082 2.14 2.48 2030.0 0.281490 -2.5 2230 0.281361 2.1 9.4
DF06-41 22 0.28232 1.1E-05 0.00090 0.74 1.28 1040.5 0.282121 6.5 1120 0.282070 8.3 11.8
DF06-41 23 0.28251 1.6E-05 0.00047 0.43 1.01 896.0 0.282184 10.2 890 0.282216 10.1 5.0
DF06-41 25 0.28247 1.4E-05 0.00096 0.50 1.07 896.0 0.282184 8.5 890 0.282216 8.4 11.5
DF06-41 27 0.28230 1.9E-05 0.00067 0.77 1.30 1044.5 0.282118 6.1 1120 0.282070 7.8 7.9
DF06-41 32R 0.28247 1.5E-05 0.00137 0.50 1.08 0.282772 -10.5 1180 0.282032 15.7 14.9
DF06-41 35 0.28133 1.9E-05 0.00113 2.36 2.67 2117.5 0.281433 -5.4 2230 0.281361 -2.8 13.1
DF06-41 37 0.28254 1.5E-05 0.00025 0.37 0.95 896.0 0.282184 11.6 890 0.282216 11.4 2.6
DF06-41 39R 0.28226 1.8E-05 0.00121 0.85 1.37 0.282772 -18.1 1180 0.282032 8.1 13.4
DF06-41 42R 0.28131 1.8E-05 0.00034 2.33 2.64 0.282772 -51.7 2865 0.280948 12.9 4.3
DF06-41 44 0.28210 1.5E-05 0.00073 1.09 1.57 896.0 0.282184 -4.3 890 0.282216 -4.4 9.1
DF06-41 46 0.28225 1.6E-05 0.00062 0.86 1.38 1021.0 0.282133 3.5 1120 0.282070 5.8 7.0
DF06-41 50 0.28131 2.1E-05 0.00046 2.35 2.65 2123.0 0.281430 -5.1 2230 0.281361 -2.6 5.5
DF06-41 52 0.28108 1.3E-05 0.00076 2.72 2.97 2843.0 0.280962 2.8 2845 0.280961 2.8 8.9
DF06-41 53 0.28215 1.7E-05 0.00178 1.05 1.56 834.0 0.282251 -4.6 1120 0.282070 1.8 20.0
DF06-41 54R 0.28223 1.8E-05 0.00112 0.89 1.41 0.282772 -19.1 1180 0.282032 7.1 13.1
DF06-41 56 0.28216 1.3E-05 0.00074 1.01 1.50 1108.5 0.282078 2.2 1120 0.282070 2.4 8.2
DF06-41 57 0.28120 1.8E-05 0.00067 2.53 2.81 2125.5 0.281428 -9.2 2230 0.281361 -6.8 8.2
DF06-41 59 0.28051 1.4E-05 0.00028 3.55 3.69 3336.0 0.280638 -5.1 3335 0.280639 -5.1 3.6
DF06-41 60 0.28224 1.6E-05 0.00051 0.86 1.38 1022.5 0.282132 3.5 1120 0.282070 5.7 6.3
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


135










Table 4-40. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-45 from the Southern Foreland Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


DF06-45 06R
DF06-45 07
DF06-45 08
DF06-45 09
DF06-45 10
DF06-45 13
DF06-45 15
DF06-45 16
DF06-45 19
DF06-45 25
DF06-45 29R
DF06-45 31
DF06-45 38
DF06-45 39R
DF06-45 42
DF06-45 43
DF06-45 46
DF06-45 51
DF06-45 55R
DF06-45 56R
DF06-45 58
DF06-45 59


0.28146
0.28236
0.28205
0.28234
0.28254
0.28220
0.28235
0.28236
0.28230
0.28251
0.28239
0.28232
0.28233
0.28240
0.28225
0.28235
0.28222
0.28231
0.28225
0.28244
0.28231
0.28145


2.1E-05
2.9E-05
4.2E-05
1.7E-05
5.5E-05
2.9E-05
1.8E-05
2.3E-05
2.1E-05
2.1E-05
2.6E-05
2.0E-05
2.3E-05
1.4E-05
2.5E-05
3.4E-05
2.4E-05
1.5E-05
3.7E-05
3.2E-05
3.0E-05
3.0E-05


0.00135
0.00066
0.00165
0.00085
0.00116
0.00112
0.00119
0.00160
0.00064
0.00092
0.00133
0.00060
0.00101
0.00066
0.00116
0.00217
0.00128
0.00093
0.00100
0.00142
0.00115
0.00139


2.16
0.67
1.21
0.72
0.39
0.95
0.70
0.70
0.78
0.43
0.64
0.74
0.74
0.61
0.86
0.72
0.92
0.75
0.86
0.56
0.77
2.18


2.50
1.22
1.69
1.26
0.98
1.46
1.25
1.25
1.31
1.01
1.20
1.27
1.28
1.16
1.38
1.28
1.44
1.29
1.38
1.13
1.31
2.52


0.282772
555.5 0.282426
1058.0 0.282110
1064.0 0.282106
553.6 0.282427
878.5 0.282223
529.2 0.282442
541.0 0.282435
539.0 0.282436
535.5 0.282438
0.282772
649.1 0.282367
533.6 0.282440
0.282772
539.5 0.282436
532.8 0.282440
553.1 0.282427
565.8 0.282419
0.282772
0.282772
542.3 0.282434
2223.0 0.281365


-46.4
-2.5
-3.2
7.6
3.5
-1.5
-3.7
-3.3
-5.2
2.3
-13.6
-2.0
-4.4
-13.2
-6.9
-3.9
-7.8
-4.1
-18.5
-11.8
-4.9
0.9


n/a
780
1250
1075
780
1075
780
780
780
780
780
780
780
1250
780
780
780
780
1250
1250
780
2225


n/a
0.282285
0.281988
0.282099
0.282285
0.282099
0.282285
0.282285
0.282285
0.282285
0.282285
0.282285
0.282285
0.281988
0.282285
0.282285
0.282285
0.282285
0.281988
0.281988
0.282285
0.281364


15.6
8.5
19.5
10.9
15.1
13.1
11.1
14.7
8.2
11.2
16.6
7.8
12.1
8.2
14.1
19.0
13.2
11.3
9.8
15.9
13.1
15.8


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


136










Table 4-41. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-44 from the Southern Foreland Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


DF06-44 01
DF06-44 02R
DF06-44 03R
DF06-44 05
DF06-44 08
DF06-44 09R
DF06-44 12
DF06-44 16
DF06-44 20
DF06-44 21R
DF06-44 22
DF06-44 24R
DF06-44 25
DF06-44 30
DF06-44 35R
DF06-44 39
DF06-44 44R
DF06-44 46
DF06-44 48
DF06-44 52
DF06-44 54
DF06-44 59


0.28252 2.2E-05 0.00002
0.28120 2.0E-05 0.00002


0.28095
0.28225
0.28201
0.28236
0.28246
0.28192
0.28194


2.3E-05
2.2E-05
1.3E-05
1.4E-05
2.0E-05
2.0E-05
1.6E-05


0.00002
0.00003
0.00003
0.00002
0.00014
0.00002
0.00000


0.28248 2.3E-05 0.00001
0.28221 1.7E-05 0.00003


0.28217
0.28240
0.28152
0.28090
0.28218
0.28244
0.28233
0.28256
0.28230
0.28200
0.28184


2.8E-05
1.3E-05
1.7E-05
1.6E-05
2.8E-05
2.4E-05
1.6E-05
3.5E-05
2.7E-05
2.4E-05
2.0E-05


0.00001
0.00005
0.00006
0.00002
0.00008
0.00001
0.00001
0.00003
0.00009
0.00002
0.00001


0.40 0.98 1095.0 0.282086 15.4 1185 0.282029 17.4 10.7


2.48 2.76


2.87
0.84
1.22
0.66
0.50
1.35
1.33


3.10
1.35
1.68
1.19
1.06
1.79
1.77


0.282772 -55.6


1019.5
1043.5


1095.0
1484.0
953.2


0.47 1.03


0.282772
0.282134
0.282119
0.282772
0.282086
0.281839
0.282176


-64.6
3.9
-4.0
-14.5
13.2
2.9
-8.4


0.282772 -55.6 12.0


1320
1320
770
1185
1485
1320


0.282772
0.281944
0.281944
0.282291
0.282029
0.281839
0.281944


0.282772 -10.3 770 0.282291


0.89 1.40 1095.0 0.282086


0.96
0.59
1.98
2.93
0.94
0.54
0.71
0.35
0.76
1.23
1.49


1.45
1.14
2.33
3.15
1.44
1.09
1.24
0.93
1.28
1.68
1.91


0.282772
729.0 0.282317
953.6 0.282176
0.282772
551.8 0.282428
0.282772
1051.5 0.282114
1095.0 0.282086
612.7 0.282390
1058.0 0.282110
1032.5 0.282126


4.5 1185 0.282029


-21.1
3.0
-23.2
-66.1
-8.7
-11.8
7.7
16.7
-3.2
-3.8
-10.2


1185
770
1320


770
770
1320
1185
770
1320
1320


0.282029
0.282291
0.281944
0.282772
0.282291
0.282291
0.281944
0.282029
0.282291
0.281944
0.281944


-64.6
10.7
2.3
2.5
15.2
3.0
-0.2


7.4
15.7
12.5
13.2
19.8
18.1
5.5


6.7 11.6
6.5 7.8


5.1
3.9
-15.0
-66.1
-3.8
5.2
13.7
18.7
0.3
2.1
-3.8


7.6
12.6
10.6
8.9
18.0
10.1
8.5
11.5
19.3
15.0
10.3


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


137










Table 4-42. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-43 from the Southern Foreland Zone, Kalahari Craton.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


DF06-43 01
DF06-43 04R
DF06-43 05
DF06-43 08
DF06-43 09
DF06-43 10
DF06-43 11
DF06-43 14
DF06-43 18
DF06-43 22
DF06-43 26
DF06-43 27
DF06-43 28
DF06-43 29
DF06-43 32
DF06-43 33
DF06-43 36
DF06-43 41
DF06-43 42R
DF06-43 46
DF06-43 48
DF06-43 58
DF06-43 60


0.28231
0.28212
0.28213
0.28144
0.28217
0.28244
0.28244
0.28191
0.28218
0.28229
0.28155
0.28236
0.28227
0.28225
0.28249
0.28227
0.28226
0.28240
0.28106
0.28204
0.28247
0.28222
0.28218


1.6E-05
1.9E-05
3.3E-05
2.5E-05
2.9E-05
1.7E-05
1.8E-05
2.0E-05
3.8E-05
1.9E-05
1.8E-05
2.2E-05
1.9E-05
1.9E-05
1.8E-05
2.1E-05
1.7E-05
2.6E-05
1.9E-05
1.9E-05
1.8E-05
2.2E-05
1.2E-05


0.00061
0.00081
0.00060
0.00095
0.00108
0.00059
0.00058
0.00068
0.00134
0.00067
0.00113
0.00025
0.00097
0.00059
0.00080
0.00051
0.00131
0.00121
0.00100
0.00049
0.00152
0.00058
0.00188


0.76
1.08
1.05
2.17
0.99
0.55
0.54
1.41
0.99
0.79
2.01
0.67
0.83
0.86
0.46
0.81
0.86
0.62
2.77
1.18
0.51
0.91
1.00


1.29
1.56
1.54
2.51
1.49
1.11
1.10
1.85
1.50
1.32
2.36
1.20
1.35
1.37
1.04
1.33
1.39
1.18
3.02
1.65
1.09
1.42
1.51


843.2 0.282245
0.282772
846.7 0.282243
1933.0 0.281552
846.5 0.282243
609.5 0.282392
1987.0 0.282091
1094.0 0.282087
1125.0 0.282067
1057.5 0.282110
1873.0 0.281590
1087.0 0.282091
1087.0 0.282091
854.0 0.282238
558.7 0.282424
1106.5 0.282079
857.8 0.282236
1092.5 0.282088
0.282772
1153.5 0.282049


1087.0
829.3
1099.0


0.282091
0.282254
0.282084


1.9
-23.2
-4.5
-5.4
-3.1
1.4
12.0
-6.9
2.8
5.8
-3.0
9.3
5.6
0.0
2.2
6.5
0.0
10.1
-60.4
-0.6
12.2
-1.7
2.1


850
1230
850
1930
850
770
1230
1400
1400
1400
1875
1230
1230
850
770
1400
850
1400
n/a
1400
1230
850
1400


0.282241
0.282001
0.282241
0.281554
0.282241
0.282291
0.282001
0.281893
0.281893
0.281893
0.281589
0.282001
0.282001
0.282241
0.282291
0.281893
0.282241
0.281893
n/a
0.281893
0.282001
0.282241
0.281893


15.2
-0.1
9.0
13.5
-2.9
12.6
8.8
-0.1
6.8
13.1
-0.2
17.1
n/a
4.9
15.4
-1.2
8.9


7.1
9.5
5.2
10.6
10.7
6.9
6.7
6.0
11.5
7.7
11.1
3.0
10.6
7.0
9.2
5.4
14.6
12.6
10.1
4.8
13.1
6.1
18.8


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


138










Table 4-43. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-18 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


DF06-18 1R
DF06-18 3R
DF06-18 5R
DF06-18 9R
DF06-18 11R
DF06-18 13
DF06-18 14
DF06-18 15R
DF06-18 17
DF06-18 18R
DF06-18 20R
DF06-18 22
DF06-18 23
DF06-18 27
DF06-18 30
DF06-18 31R
DF06-18 32
DF06-18 34R
DF06-18 36R
DF06-18 37R
DF06-18 41
DF06-18 42R
DF06-18 45
DF06-18 49


0.28166 1.2E-05 0.00387


1.99 2.38


0.24773 2.4E-02 0.02994 131.97 88.78


0.28158 1.7E-05 0.00423
0.28179 1.3E-05 0.00118


0.28092
0.28146
0.28191
0.28065
0.28172
0.28152
0.28203
0.28191
0.28141
0.28161
0.28156
0.28142
0.28176
0.28165
0.28142
0.28142
0.28141
0.28173
0.28173
0.28167


1.3E-05
1.9E-05
1.8E-05
3.7E-04
2.0E-05
1.9E-05
1.8E-05
1.4E-05
1.2E-05
1.0E-05
1.4E-05
2.6E-05
1.7E-05
4.0E-05
1.6E-05
1.6E-05
1.4E-05
2.7E-05
2.4E-05
1.1E-05


0.00062
0.00094
0.00085
0.00092
0.00143
0.00249
0.00605
0.00202
0.00115
0.00091
0.00125
0.00107
0.00118
0.00071
0.00094
0.00084
0.00062
0.00093
0.00035
0.00093


2.17 2.53
1.62 2.03


2.95
2.14
1.41
3.41
1.74
2.14
1.44
1.47
2.23
1.89
1.99
2.21
1.67
1.83
2.20
2.19
2.19
1.70
1.67
1.80


3.17
2.47
1.85
3.57
2.14
2.49
1.94
1.91
2.55
2.26
2.35
2.54
2.07
2.21
2.53
2.52
2.51
2.10
2.07
2.18


0.282772 -39.2 2030 0.281490
0.282772 -1239.1 n/a n/a
0.282772 -42.3 n/a n/a
0.282772 -34.7 1200 0.282020


0.282772
2047.5 0.281478
1224.0 0.282005
0.282772
1858.0 0.281600
0.282772
0.282772
1121.0 0.282070
2054.5 0.281474
1056.0 0.282111
810.6 0.282266
0.282772
980.8 0.282158
0.282772
0.282772
0.282772
1856.0 0.281601
0.282772
990.7 0.282152
1876.0 0.281589


-65.4
-2.0
-4.2
-75.0
2.5
-44.3
-26.1
-7.3
-3.8
-18.3
-25.5
-47.8
-14.9
-39.9
-47.8
-47.7
-7.4
-36.8
-15.1
1.7


n/a
2250
1220
n/a
2030
n/a
n/a
1220
2250
1220
1220
2030
1220
n/a
2030
n/a
2250
1200
1220
2250


n/a
0.281348
0.282007
n/a
0.281490
n/a
n/a
0.282007
0.281348
0.282007
0.282007
0.281490
0.282007
n/a
0.281490
n/a
0.281348
0.282020
0.282007
0.281348


6.2 38.4


n/a 85.2
n/a 43.3
-8.1 15.3


n/a
2.7
-4.2
n/a
6.5
n/a
n/a
-5.1
0.7
-14.6
-16.4
-2.5
-9.6
n/a
-2.5
n/a
1.6
-10.2
-10.0
10.3


9.3
13.9
13.2
15.2
18.7
28.1
51.1
24.1
16.0
12.9
17.7
16.1
16.5
10.9
13.8
12.4
9.1
13.2
4.8
13.3


139










Table 4-43. Continued.


DF06-18 53
DF06-18 55
DF06-18 58
DF06-18 59R
DF06-18 61
DF06-18 63R
DF06-18 64R
DF06-18 65
DF06-18 66R
DF06-18 68R
DF06-18 70R
DF06-18 71
DF06-18 73
DF06-18 74
DF06-18 78
DF06-18 80R


0.28150
0.28143
0.28220
0.28145
0.28163
0.28185
0.28187
0.28167
0.28168
0.28169
0.28143
0.28188
0.28174
0.28183
0.28193
0.28144


9.7E-06
1.1E-05
1.3E-05
1.6E-05
2.4E-05
1.5E-05
2.1E-05
1.7E-05
2.7E-05
1.5E-05
2.4E-05
1.4E-05
2.0E-05
1.7E-05
1.5E-05
1.4E-05


0.00141
0.00087
0.00101
0.00032
0.00137
0.00095
0.00125
0.00045
0.00109
0.00193
0.00096
0.00073
0.00069
0.00051
0.00061
0.00122


2.11
2.17
0.95
2.11
1.89
1.51
1.50
1.77
1.79
1.83
2.18
1.45
1.68
1.53
1.37
2.19


2.46
2.50
1.46
2.45
2.26
1.93
1.93
2.16
2.18
2.22
2.51
1.88
2.08
1.94
1.81
2.52


1858.0 0.281600
2049.5 0.281477
1090.5 0.282089
0.282772
1858.0 0.281600
0.282772
0.282772
1875.5 0.281589
0.282772


990.9
1035.0
1211.5
1193.5


0.282772
0.282772
0.282152
0.282124
0.282013
0.282024
0.282772


-5.5
-2.7
3.1
-46.8
-0.7
-32.5
-32.0
2.3
-38.6
-38.4
-47.3
-10.0
-14.2
-7.0
-3.9
-47.2


2030
2250
1220
n/a
2030
2350
2350
2250
n/a
n/a
2250
1220
1220
1200
1220
2030


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


140


0.281490
0.281348
0.282007
n/a
0.281490
0.281283
0.281283
0.281348
n/a
n/a
0.281348
0.282007
0.282007
0.282020
0.282007
0.281490


-1.6
1.9
6.0
n/a
3.3
20.2
20.8
10.9
n/a
n/a
3.1
-4.9
-10.0
-7.2
-3.3
-1.9


20.0
12.5
15.1
4.3
18.6
14.1
17.5
6.5
16.4
24.3
14.3
11.0
10.5
6.4
9.2
14.3










Table 4-44. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-38 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF09-38 2 0.28151 2.4E-05 0.00045 2.03 2.38 1831.0 0.281617 -4.4 1860 0.281599 -3.8 3.9
DF09-38 3 0.28149 2.5E-05 0.00072 2.07 2.42 1861.8 0.281598 -4.7 1830 0.281618 -5.4 7.2
DF09-38 8 0.28148 3.0E-05 0.00070 2.08 2.43 1864.5 0.281596 -4.9 1860 0.281599 -5.0 7.4
DF09-38 9 0.28145 3.3E-05 0.00050 2.12 2.45 1848.5 0.281606 -6.1 1860 0.281599 -5.8 4.6
DF09-38 19 0.28149 2.7E-05 0.00063 2.07 2.41 1862.5 0.281597 -4.7 1860 0.281599 -4.7 6.7
DF09-38 22 0.28141 1.7E-05 0.00079 2.20 2.53 1878.0 0.281587 -7.2 1860 0.281599 -7.6 8.1
DF09-38 24 0.28152 2.6E-05 0.00056 2.01 2.36 1839.5 0.281612 -3.9 1860 0.281599 -3.4 5.1
DF09-38 31R 0.28144 1.2E-05 0.00060 2.15 2.48 0.282772 -47.2 1830 0.281618 -6.4 5.9
DF09-38 32 0.28142 2.6E-05 0.00085 2.20 2.52 1854.0 0.281603 -7.6 1860 0.281599 -7.5 7.8
DF09-38 37 0.28172 2.4E-05 0.00048 1.69 2.08 1440.0 0.281867 -5.5 1860 0.281599 4.0 4.1
DF09-38 40 0.28146 1.9E-05 0.00067 2.13 2.46 1852.0 0.281604 -6.1 1860 0.281599 -5.9 5.9
DF09-38 44 0.28149 2.1E-05 0.00065 2.07 2.41 1855.0 0.281602 -4.8 1860 0.281599 -4.7 6.5
DF09-38 48 0.28148 1.3E-05 0.00093 2.10 2.45 1855.0 0.281602 -5.5 1860 0.281599 -5.4 9.7
DF09-38 50 0.28148 1.7E-05 0.00056 2.08 2.42 1880.5 0.281586 -4.6 1860 0.281599 -5.0 6.0
DF09-38 51 0.28157 2.4E-05 0.00126 1.99 2.35 1874.5 0.281590 -2.4 1860 0.281599 -2.8 12.1
DF09-38 54 0.28151 2.1E-05 0.00069 2.03 2.38 1865.5 0.281595 -3.8 1860 0.281599 -3.9 6.9
DF09-38 55 0.28145 2.0E-05 0.00147 2.18 2.52 1861.8 0.281598 -7.1 1830 0.281618 -7.8 14.7
DF09-38 56R 0.28156 2.0E-05 0.00057 1.95 2.31 0.282772 -42.8 1830 0.281618 -2.0 5.5
DF09-38 57 0.28148 1.5E-05 0.00097 2.11 2.45 1830.0 0.281618 -6.2 1860 0.281599 -5.5 10.0
DF09-38 58 0.28146 2.2E-05 0.00068 2.12 2.46 1870.0 0.281592 -5.6 1860 0.281599 -5.8 6.6
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


141










Table 4-45. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF09-39 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
correct measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
d (Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF09-39 2R 0.28112 2.3E-05 0.00052 2.64 2.90 0.282772 -58.4 2575 0.281137 -0.6 5.2
DF09-39 3 0.28113 1.5E-05 0.00061 2.63 2.89 2606.3 0.281117 -0.5 2575 0.281137 -1.3 6.1
DF09-39 4 0.28118 1.6E-05 0.00074 2.57 2.84 2606.3 0.281117 0.8 2575 0.281137 0.1 7.0
DF09-39 6 0.28108 1.7E-05 0.00060 2.72 2.97 2606.3 0.281117 -2.5 2575 0.281137 -3.3 5.9
DF09-39 7 0.28114 2.9E-05 0.00094 2.64 2.91 2606.3 0.281117 -0.8 2575 0.281137 -1.5 9.7
DF09-39 10 0.28117 2.4E-05 0.00082 2.59 2.87 2606.3 0.281117 0.3 2575 0.281137 -0.5 8.3
DF09-39 26 0.28111 1.7E-05 0.00032 2.64 2.90 2596.5 0.281123 -1.0 2690 0.281062 1.1 3.0
DF09-39 29R 0.28118 3.5E-05 0.00065 2.56 2.83 0.282772 -56.3 2575 0.281137 1.5 5.7
DF09-39 30aR 0.28110 2.5E-05 0.00065 2.68 2.94 0.282772 -59.0 n/a n/a n/a 7.0
DF09-39 30 0.28140 3.1E-05 0.00045 2.20 2.52 2606.3 0.281117 9.2 2575 0.281137 8.5 4.1
DF09-39 37 0.28114 1.9E-05 0.00048 2.60 2.87 2580.5 0.281133 -0.5 2690 0.281062 2.1 5.1
DF09-39 40 0.28113 2.0E-05 0.00072 2.64 2.90 2561.5 0.281146 -1.7 2690 0.281062 1.3 7.2
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


142










Table 4-46. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-11 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)


DF06-11 1R
DF06-11 2
DF06-11 4
DF06-11 12
DF06-11 13R
DF06-11 15
DF06-11 18R
DF06-11 20
DF06-11 23R
DF06-11 24
DF06-11 25
DF06-11 27
DF06-11 33
DF06-11 38
DF06-11 42R
DF06-11 44
DF06-11 50
DF06-11 52
DF06-11 57
DF06-11 59
DF06-11 60
DF06-11 62
DF06-11 66
DF06-11 67
DF06-11 70


0.28244
0.28247
0.28251
0.28250
0.28254
0.28251


1.9E-05
1.9E-05
1.3E-05
1.7E-05
1.2E-05
1.4E-05


0.00097
0.00105
0.00104
0.00269
0.00082
0.00188


0.28254 1.5E-05 0.00087
0.28254 1.8E-05 0.00065


0.28247
0.28247
0.28248
0.28250
0.28250
0.28251
0.28245
0.28250
0.28244
0.28244
0.28258
0.28246
0.28247
0.28248
0.28248
0.28243
0.28255


1.8E-05
3.1E-05
1.3E-05
1.0E-05
1.3E-05
1.1E-05
1.3E-05
2.2E-05
2.7E-05
2.4E-05
2.9E-05
2.7E-05
2.9E-05
2.9E-05
4.3E-05
3.2E-05
3.1E-05


0.00126
0.00204
0.00089
0.00059
0.00076
0.00073
0.00194
0.00132
0.00085
0.00112
0.00222
0.00132
0.00070
0.00115
0.00152
0.00091
0.00079


0.56
0.50
0.44
0.48
0.39
0.45


1.12
1.07
1.02
1.08
0.98
1.05


0.38 0.97
0.39 0.97


0.50
0.51
0.48
0.44
0.45
0.44
0.54
0.45
0.55
0.56
0.33
0.53
0.49
0.49
0.49
0.56
0.36


1.08
1.10
1.05
1.02
1.03
1.02
1.12
1.04
1.12
1.12
0.94
1.10
1.06
1.07
1.08
1.13
0.95


0.282772
794.6 0.282276
697.4 0.282337
810.6 0.282266
0.282772
774.9 0.282288
0.282772
668.0 0.282355


619.7
716.8
666.4
672.1
833.2


788.0
731.3
779.3
690.7
777.2
668.8
816.9
748.2
792.1
819.3


0.282772
0.282386
0.282325
0.282356
0.282353
0.282252
0.282772
0.282280
0.282316
0.282285
0.282341
0.282287
0.282355
0.282262
0.282305
0.282277
0.282260


-11.9
6.4
5.6
6.8
-8.4
6.7


0.282263
0.282225
0.282225
0.282225
n/a
0.282225


-8.1 1445 0.281864 24.1
6.1 875 0.282225 10.7


-10.6
2.3
5.1
4.9
4.8
8.6
-11.2
7.2
3.9
4.8
7.5
5.3
3.8
6.9
5.4
4.9
9.9


815
875
875
875
875
875
1445
875
875
875
875
875
875
1445
875
875
875


0.282263
0.282225
0.282225
0.282225
0.282225
0.282225
0.281864
0.282225
0.282225
0.282225
0.282225
0.282225
0.282225
0.281864
0.282225
0.282225
0.282225


7.4
7.9
8.7
9.6
9.3
9.5
20.9
9.1
7.1
6.9
11.7
7.5
8.4
21.0
8.2
6.8
11.2


143


10.3
11.3
11.2
26.2
8.8
19.9
9.4
7.0
12.9
21.2
10.1
6.1
7.9
8.3
19.4
14.0
12.2
15.1
25.2
16.9
9.3
15.1
18.8
12.1
11.1










Table 4-46. Continued.


DF06-11 74
DF06-11 78
DF06-11 79
DF06-11 82
DF06-11 83
DF06-11 84R
DF06-11 87
DF06-11 91
DF06-11 93
DF06-11 102
DF06-11 104


0.28255 2.4E-05 0.00063


0.28243
0.28251
0.28242
0.28258
0.28257
0.28245
0.28259
0.28236
0.28250


3.5E-05
2.6E-05
3.0E-05
2.7E-05
3.6E-05
3.4E-05
2.7E-05
4.2E-05
2.5E-05


0.00104
0.00087
0.00082
0.00096
0.00065
0.00122
0.00085
0.00114
0.00095


0.28241 2.8E-05 0.00090


0.36 0.95 680.9 0.282347
0.57 1.14 832.7 0.282252
0.43 1.01 767.1 0.282293
0.58 1.14 787.3 0.282280
0.32 0.92 746.8 0.282306
0.33 0.93 0.282772
0.53 1.11 795.8 0.282275
0.29 0.90 643.9 0.282370
0.68 1.23 793.8 0.282276
0.46 1.04 764.1 0.282295
0.60 1.16 768.6 0.282292


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


7.0 875 0.282225 11.3


0.282225
0.282225
0.282225
0.282225
n/a
0.282225
0.282225
0.282225
0.282225
0.282225


6.5
9.8
6.5
12.0
n/a
7.4
12.7
4.3
9.1
6.0


Table 4-47. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-17 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
corrected measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
(Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF06-17 2R 0.28184 1.9E-05 0.00071 1.51 1.94 0.282772 -32.9 n/a n/a n/a 8.9
DF06-17 3R 0.28183 1.1E-05 0.00064 1.52 1.94 0.282772 -33.2 n/a n/a n/a 7.7
DF06-17 5R 0.28182 1.0E-05 0.00062 1.54 1.96 0.282772 -33.7 n/a n/a n/a 7.7
DF06-17 6R 0.28170 1.9E-05 0.00154 1.78 2.18 0.282772 -37.9 n/a n/a n/a 16.2
DF06-177 R 0.28192 1.2E-05 0.00033 1.38 1.82 0.282772 -30.3 n/a n/a n/a 3.9
DF06-17 10R 0.28173 1.5E-05 0.00103 1.70 2.10 0.282772 -36.8 n/a n/a n/a 11.5
DF06-17 12R 0.28182 2.7E-05 0.00079 1.55 1.97 0.282772 -33.6 n/a n/a n/a 9.0
DF06-17 13R 0.28161 1.2E-05 0.00091 1.89 2.26 0.282772 -41.1 n/a n/a n/a 10.1
DF06-17 14R 0.28168 3.1E-05 0.00111 1.80 2.18 0.282772 -38.7 n/a n/a n/a 12.3


144


8.0
13.8
10.6
11.3
12.8
8.9
11.6
11.6
14.9
13.1
11.9










Table 4-47. Continued.


DF06-17 15R
DF06-17 18R
DF06-17 19R
DF06-17 21R
DF06-17 23R
DF06-17 28R
DF06-17 29R
DF06-17 30R
DF06-17 31R
DF06-17 34R
DF06-17 40R
DF06-17 44R
DF06-17 50R
DF06-17 53
DF06-17 54
DF06-17 57R
DF06-17 58R
DF06-17 60
DF06-17 62R
DF06-17 66
DF06-17 69
DF06-17 71
DF06-17 72
DF06-17 74R
DF06-17 76
DF06-17 77R
DF06-17 79


0.28162
0.28184
0.28177
0.28187
0.28184
0.28173
0.28183
0.28184
0.28181
0.28072
0.28195
0.28083
0.28174
0.28167
0.28161
0.28176
0.28140
0.28177
0.28183
0.28164
0.28169
0.28165
0.28179
0.28141
0.28159
0.28202
0.28167


1.0E-05
9.2E-06
9.7E-06
1.1E-05
9.4E-06
2.9E-05
2.2E-05
1.2E-05
1.3E-05
9.7E-06
2.5E-05
1.7E-05
5.5E-05
2.8E-05
3.1E-05
3.1E-05
2.8E-05
2.3E-05
3.1E-05
3.6E-05
3.1E-05
2.9E-05
2.4E-05
2.9E-05
2.7E-05
2.3E-05
2.2E-05


0.00089
0.00062
0.00172
0.00071
0.00058
0.00101
0.00088
0.00104
0.00076
0.00057
0.00116
0.00138
0.00135
0.00095
0.00087
0.00084
0.00031
0.00065
0.00045
0.00131
0.00126
0.00114
0.00106
0.00064
0.00133
0.00090
0.00104


1.88
1.51
1.68
1.47
1.52
1.71
1.54
1.53
1.57
3.27
1.35
3.17
1.72
1.80
1.90
1.66
2.20
1.62
1.52
1.87
1.79
1.84
1.61
2.20
1.95
1.24
1.80


2.25
1.93
2.09
1.90
1.94
2.11
1.96
1.95
1.99
3.44
1.80
3.37
2.12
2.19
2.27
2.06
2.52
2.03
1.94
2.25
2.18
2.22
2.02
2.52
2.32
1.70
2.19


0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
0.282772
2085.0 0.281454
2085.0 0.281454
0.282772
0.282772
1621.5 0.2821549
0.282772
1758.0 0.281664
1744.0 0.281673
1831.0 0.281617
1669.0 0.281549
0.282772
1823.0 0.281623
0.282772
1756.5 0.281665


145


-40.8
-33.0
-35.6
-32.0
-33.1
-36.8
-33.3
-32.9
-34.1
-72.6
-28.9
-68.7
-36.7
6.2
4.2
-36.0
-48.7
0.1
-33.3
-2.5
-1.0
-0.3
1.3
-48.2
-2.9
-26.7
-1.0


n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
2075
2075
2075
2075
2075
1910
1910
2360
2360
2360
1910
2075
2360
1910
2360


n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
0.281461
0.281461
0.281461
0.281461
0.281461
0.281567
0.281567
0.281276
0.281276
0.281276
0.281567
0.281461
0.281276
0.281567
0.281276


n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
9.7
6.0
3.9
10.5
-2.3
10.0
9.3
11.3
13.1
11.9
6.6
-1.9
9.4
16.0
12.8


9.2
6.9
16.3
8.0
6.7
11.3
9.8
11.4
8.8
6.4
11.1
14.5
15.5
13.9
13.6
12.9
5.3
10.0
7.2
18.9
19.1
15.9
16.7
9.1
19.2
13.4
16.4










Table 4-47. Continued.
DF06-17 84R 0.28185 2.1E-05 0.00089 1.50 1.93 0.282772 -32.5 n/a n/a n/a 13.2
DF06-17 85 0.28186 2.0E-05 0.00074 1.49 1.91 1689.5 0.281549 4.5 1910 0.281567 9.4 13.1
DF06-17 86R 0.28160 2.6E-05 0.00119 1.92 2.29 0.282772 -41.4 2075 0.281461 5.0 16.5
DF06-17 90R 0.28159 2.5E-05 0.00063 1.91 2.27 0.282772 -41.7 1910 0.281567 0.9 9.4
DF06-17 94 0.28191 3.1E-05 0.00059 1.40 1.83 1555.0 0.281549 3.5 1910 0.281567 11.5 9.3
DF06-17 96 0.28210 3.2E-05 0.00189 1.14 1.63 1232.5 0.281999 2.0 1230 0.282001 1.9 26.9
R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


Table 4-48. Lu-Hf (MC-ICP-MS) analysis corrected results for sample DF06-08 from the Kaoko Belt.
Sample 176 Lu/ error 176 Lu/ Model Model U-Pb 176 Lu/ Epsilon T 176 Lu/ Epsilon percent
177 Hf (+/-) 177 Hf Age Age Age 177 Hf Hf at T (Int)* 177 Hf Hf at T corr
correct measured (CHUR) (DM) (CHUR) (U-Pb (CHUR) (int)
d (Ga) (Ga) T (U-Pb Age) T (i nt)
Age)
DF06-08 3R 0.28249 1.3E-05 0.00132 0.48 1.06 0.282772 -10.1 n/a n/a n/a 12.4
DF06-08 4R 0.28229 1.5E-05 0.00156 0.81 1.35 0.282772 -17.2 n/a n/a n/a 15.7
DF06-08 7R 0.28231 1.8E-05 0.00111 0.76 1.30 0.282772 -16.3 n/a n/a n/a 16.6
DF06-08 9R 0.28213 1.9E-05 0.00035 1.04 1.52 0.282772 -22.7 n/a n/a n/a 13.3
DF06-08 12R 0.28239 2.5E-05 0.00042 0.63 1.17 0.282772 -13.7 n/a n/a n/a 5.0
DF06-08 14R 0.28250 1.4E-05 0.00049 0.45 1.02 0.282772 -9.7 870 0.282228 9.6 5.2
DF06-08 15 0.28231 1.9E-05 0.00112 0.76 1.30 1032.5 0.282126 5.9 1130 0.282064 8.1 6.0
DF06-08 18 0.28250 1.7E-05 0.00213 0.47 1.07 634.3 0.282377 3.4 870 0.282228 8.6 13.4
DF06-08 21 0.28249 1.6E-05 0.00130 0.47 1.06 1017.0 0.282136 11.6 1100 0.282083 13.5 23.8
DF06-08 23 0.28227 2.4E-05 0.00019 0.80 1.32 1007.0 0.282142 4.5 1130 0.282064 7.3 14.9
DF06-08 25 0.28212 2.9E-05 0.00071 1.07 1.56 604.6 0.282395 -10.1 870 0.282228 -4.2 2.3
DF06-08 31 0.28244 1.7E-05 0.00070 0.55 1.11 874.4 0.282226 7.2 1130 0.282064 12.9 7.2
DF06-08 37 0.28258 2.5E-05 0.00226 0.33 0.95 625.5 0.282382 6.2 870 0.282228 11.6 8.4
DF06-08 38 0.28253 1.6E-05 0.00235 0.42 1.03 659.9 0.282360 4.9 870 0.282228 9.6 24.9


146










Table 4-48. Continued.


DF06-08 40
DF06-08 42R
DF06-08 52
DF06-08 57
DF06-08 61
DFO6-08 63R
DF06-08 65
DF06-08 70
DF06-08 71
DF06-08 74
DF06-08 76
DF06-08 77
DF06-08 80
DF06-08 81R
DF06-08 84
DF06-08 87
DF06-08 88
DF06-08 90
DF06-08 100
DF06-08 103R
DF06-08 106
DF06-08 110
DF06-08 111


0.28257
0.28246
0.28211
0.28244
0.28261
0.28162
0.28239
0.28165
0.28247
0.28225
0.28249
0.28174
0.28247


1.2E-05
1.6E-05
2.4E-05
1.4E-05
4.2E-05
1.8E-05
1.9E-05
2.5E-05
2.1E-05
1.9E-05
2.5E-05
2.2E-05
2.2E-05


0.00065
0.00126
0.00098
0.00158
0.00581
0.00090
0.00083
0.00095
0.00080
0.00057
0.00114
0.00112
0.00161


0.28222 2.6E-05 0.00143
0.28237 3.4E-05 0.00132
0.28204 3.6E-05 0.00135
0.28232 2.5E-05 0.00169


0.28210
0.28192
0.28147
0.28245
0.28189
0.28232


2.1E-05
2.2E-05
2.5E-05
2.5E-05
2.3E-05
2.6E-05


0.00093
0.00059
0.00057
0.00095
0.00052
0.00104


0.34
0.52
1.09
0.55
0.33
1.88
0.63
1.83
0.51
0.85
0.47
1.70
0.51


0.93
1.09
1.57
1.13
1.01
2.26
1.19
2.21
1.07
1.37
1.05
2.10
1.09


0.92 1.44


647.6 0.282368
0.282772
1044.0 0.282119
722.8 0.282321
780.2 0.282285
0.282772
687.0 0.282343
1130.5 0.282064
741.3 0.282309
1085.5 0.282092
693.2 0.282340
1474.5 0.281845
1087.0 0.282091


6.7
-10.9
-0.9
3.6
8.3
-40.9
1.1
-15.4
5.1
5.2
4.8
-4.9
12.2


870
870
1100
870
870
2100
870
1130
870
1130
870
1380
1130


0.282228
0.282228
0.282083
0.282228
0.282228
0.281444
0.282228
0.282064
0.282228
0.282064
0.282228
0.281906
0.282064


0.282772 -19.5 870 0.282228


0.68 1.23 1044.0 0.282119
1.21 1.69 1043.0 0.282119
0.76 1.31 1017.0 0.282136


1.10
1.38
2.09
0.53
1.43
0.75


1.59
1.82
2.43
1.10
1.87
1.29


988.0 0.282154
1131.0 0.282064
0.282772
745.9 0.282306
1453.5 0.281859
1041.5 0.282120


7.8 1100 0.282083
-3.6 1100 0.282083
5.4 1100 0.282083


-2.5
-5.6
-45.9
4.7
0.4
6.2


1100
1130
2100
870
1380
1130


11.7
8.3
0.3
6.9
10.3
6.1
5.2
-15.4
8.0
6.2
8.7
-7.0
13.2


28.3
8.2
13.8
22.6
53.1
13.0
12.9
13.7
9.7
9.7
18.0
17.2
21.7


-0.3 20.5
9.1 19.9
-2.4 22.0
7.3 23.2


0.282083
0.282064
0.281444
0.282228
0.281906
0.282064


12.9
8.2
9.1
12.5
8.3
15.8


R denotes samples removed due to high error and/or discordance in U-Pb analysis.
*T Int reflects upper U-Pb concordia intercept


147










Table 4-49. Sm/Nd corrected results for the Northern Zone of the Congo craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)

DF06-21 7.55 32.42 0.1408 0.512292 -6.6 0.93 1.99 1.56 -2.2
DF09-36 0.30 0.68 0.2675 0.512241 -7.6 -0.83 -2.57 -21.66 -13.3
*T equals 625 Ma


Table 4-50. Sm/Nd corrected results for the Central Zone of the Congo craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
CZ49 0.73 5.37 0.0822 0.511545 -21.2 1.45 1.97 1.73 -12.1
CZ29 13.18 97.87 0.0814 0.511199 -27.9 1.90 2.36 2.13 -18.8
CZ40 4.37 22.89 0.1155 0.511553 -21.0 2.03 2.64 2.32 -14.6
CZ38b 5.66 29.57 0.1158 0.511729 -17.6 1.71 2.37 2.04 -11.2
CZ53b 7.49 36.36 0.1246 0.512214 -8.1 0.89 1.75 1.41 -2.4
CZ35 5.22 25.43 0.1241 0.512272 -7.0 0.76 1.64 1.30 -1.2
*T equals 625 Ma


Table 4-51. Sm/Nd corrected results for the Southern Zone of the Congo craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
SZ47b 6.99 33.94 0.1246 0.512211 -8.2 0.89 1.76 1.41 -2.5
SZ90 3.97 16.79 0.1430 0.512260 -7.2 1.06 2.13 1.68 -3.0
SZ80 5.24 20.76 0.1527 0.512209 -8.2 1.48 2.62 2.08 -4.8
SZ78 9.75 47.18 0.1250 0.512150 -9.4 1.03 1.88 1.53 -3.7
SZ77 6.38 31.40 0.1229 0.512117 -10.0 1.07 1.89 1.55 -4.2
SZ65a 5.14 24.51 0.1268 0.512133 -9.7 1.09 1.95 1.59 -4.2
IE4 9.44 44.12 0.1294 0.512209 -8.2 0.96 1.87 1.50 -2.9
IEla 7.75 36.91 0.1270 0.512145 -9.5 1.07 1.93 1.57 -4.0
DF09-14 5.71 18.20 0.1896 0.512907 5.4 -6.77 2.18 0.86 5.9
DF06-22 7.10 33.53 0.1281 0.512187 -8.6 0.99 1.88 1.51 -3.2
DF09-02 6.56 28.99 0.1369 0.512134 -9.7 1.28 2.21 1.80 -5.0
SZ13 7.25 37.45 0.1171 0.512168 -9.0 0.89 1.69 1.37 -2.7
*T equals 625 Ma


148










Table 4-52. Sm/Nd corrected results for the Southern Margin Zone of the Kalahari craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
DF09-10 5.87 22.95 0.1548 0.512231 -7.8 1.47 2.66 2.10 -4.5
DF09-11 4.34 23.27 0.1127 0.511831 -15.6 1.46 2.14 1.82 -8.9
DF09-07 8.58 40.83 0.1271 0.511903 -14.2 1.61 2.37 2.00 -8.7
DF09-09 3.92 15.54 0.1526 0.512648 0.4 -0.06 1.46 0.98 3.8
SZ99b 7.27 35.51 0.1238 0.511956 -13.1 1.42 2.19 1.84 -7.4
SZ87b 7.21 35.02 0.1245 0.511969 -12.9 1.41 2.19 1.83 -7.2
*T equals 625 Ma


Table 4-53. Sm/Nd corrected results for the Naukluft Nappes of the Kalahari craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
DF06-48 7.08 36.04 0.1188 0.511975 -12.8 1.29 2.04 1.71 -6.6
DF09-16 3.14 5.71 0.3332 0.512104 -10.3 -0.59 -1.37 -56.95 -21.3
*T equals 625 Ma


Table 4-54. Sm/Nd corrected results for the Southern Foreland Zone of the Kalahari craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
DF06-49 7.25 35.82 0.1224 0.512164 -9.1 0.97 1.80 1.46 -3.2
*T equals 625 Ma


Table 4-55. Sm/Nd corrected results for the Kaoko belt of the Congo craton.
Sample Sm Nd 147Sm 143Sm E(0) TCHUR TDM TDM (-) E(t)*
(ppm) (ppm) /144Nd /144Nd (Lin)
DF06-08 5.89 27.37 0.1302 0.512255 -7.3 0.87 1.80 1.43 -2.1
*T equals 625 Ma


Table 4-56. Pb/Pb analysis data for the Northern Zone of the Congo craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207Pb/204Pb error 208Pb/204Pb error
DF06-21 19.538 0.00150 15.712 0.00130 39.032 0.0032
DF09-36 18.216 0.00110 15.644 0.00097 37.955 0.0023


149










Table 4-57. Pb/Pb analysis data for the Central Zone of the Congo craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207Pb/204Pb error 208Pb/204Pb error
CZ49 17.674 0.00120 15.662 0.00120 37.876 0.0025
CZ29 30.658 0.00300 16.485 0.00180 56.113 0.0062
CZ40 18.315 0.00110 15.767 0.00110 39.074 0.0032
CZ38b 19.276 0.00110 15.792 0.00094 39.763 0.0026
CZ53b 19.365 0.00110 15.715 0.00093 38.976 0.0027
CZ35 19.132 0.00085 15.670 0.00073 38.591 0.0024


Table 4-58. Pb/Pb analysis data for the Southern Zone of the Congo craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207Pb/204Pb error 208Pb/204Pb error
SZ47b 19.144 0.00093 15.695 0.00082 38.700 0.0023
SZ90 18.825 0.00072 15.688 0.00067 38.504 0.0018
SZ80 19.318 0.00074 15.726 0.00071 38.930 0.0021
SZ78 19.071 0.00054 15.716 0.00049 38.781 0.0016
SZ77 19.703 0.00094 15.728 0.00073 39.000 0.0018
SZ65a 18.424 0.00070 15.673 0.00060 38.203 0.0017
IE4 20.092 0.00110 15.764 0.00099 39.934 0.0025
IEla 18.413 0.00057 15.669 0.00054 38.072 0.0017
DF09-14 18.956 0.00110 15.619 0.00096 38.623 0.0023
DF06-22 20.238 0.00130 15.776 0.00110 40.078 0.0034
DF09-02 19.324 0.00090 15.729 0.00074 38.985 0.0020
SZ13 19.209 0.00190 15.707 0.00170 39.122 0.0050


Table 4-59. Pb/Pb analysis data for the Southern Margin Zone of the Kalahari craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207Pb/204Pb error 208Pb/204Pb error
DF09-10 19.276 0.00100 15.702 0.00077 39.314 0.0019
DF09-11 18.813 0.00075 15.689 0.00062 39.476 0.0017
DF09-07 18.675 0.00052 15.691 0.00050 39.114 0.0014
DF09-09 18.057 0.00055 15.644 0.00061 37.872 0.0017
SZ99b 19.650 0.00072 15.763 0.00077 39.928 0.0020
SZ87b 19.188 0.00075 15.732 0.00062 39.302 0.0018
DF09-03 19.385 0.00072 15.740 0.00057 39.709 0.0014


150










Table 4-60. Pb/Pb analysis data for the Naukluft Nappes of the Kalahari craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207 b/204Pb error 208Pb/204Pb error
DF06-48 21.398 0.00180 15.859 0.00130 43.655 0.0039
DF09-16 18.619 0.00130 15.692 0.00110 38.599 0.0029


Table 4-61. Pb/Pb analysis data for the Southern Foreland Zone of the Kalahari craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207 b/204Pb error 208Pb/204Pb error
DF06-49 19.426 0.00100 15.709 0.00089 39.131 0.0023


Table 4-62. Pb/Pb analysis data for the Kaoko belt of the Congo craton.
Corrected isotope ratios and errors
Sample 206Pb/204Pb error 207 b/204Pb error 208Pb/204Pb error
DF06-08 18.909 0.00110 15.675 0.00110 38.439 0.0032


151










Table 4-63. Major oxide element analysis data for the Damara Orogen.
NZ Central Zone Southern Zone
Sample DF06-21 CZ49 CZ29 CZ40 CZ38b CZ53b CZ35 SZ47b SZ90 SZ80 SZ78 SZ77
wt%
A1203 7.41 2.65 7.37 8.96 17.15 11.47 9.59 15.14 18.08 13.12 19.11 18.78
CaO 14.04 0.05 0.22 1.99 0.94 2.22 2.25 0.76 1.15 2.40 2.13 6.37
Fe203 3.07 0.58 3.18 3.33 9.46 5.86 3.81 7.47 8.97 6.53 10.27 7.83
K20 1.05 2.22 1.04 4.38 3.01 1.97 2.39 4.07 5.62 2.07 4.13 4.35
MgO 1.71 0.05 0.14 1.49 3.86 2.24 1.32 3.52 4.34 2.58 4.41 5.45
MnO 0.26 0.01 0.01 0.06 0.13 0.09 0.05 0.07 0.08 0.14 0.20 0.06
Na20 2.12 0.01 3.90 0.76 1.29 2.72 2.25 1.39 1.17 2.70 2.70 1.52
P205 0.16 0.01 0.06 0.10 0.07 0.22 0.11 0.20 0.29 0.24 0.27 0.17
SiO2 57.31 95.09 83.74 77.25 61.10 71.57 75.90 64.17 55.59 69.15 54.42 50.63
T102 0.66 0.02 0.48 0.37 0.83 0.97 0.49 0.91 1.08 0.86 1.20 0.91
LOI 12.42 0.17 0.20 1.23 2.43 0.61 2.59 1.72 3.35 0.53 1.78 3.44
Total 100.20 100.78 100.32 99.92 100.25 99.92 100.75 99.43 99.72 100.31 100.62 99.51


152










Table 4-63. Continued.
Southern Margin Naukluft Kaoko
Southern Zone Zone Nappes SFZ Belt
Sample SZ65a IE4 IEla DF06-22 SZ13 SZ99b SZ87b DF06-48 DF06-49 DF06-08
wt%
A1203 19.15 14.44 19.74 14.02 10.38 19.12 17.99 17.12 11.56 11.36
CaO 0.50 1.29 2.35 2.18 1.03 3.28 1.65 0.82 2.07 1.77
Fe203 8.36 7.15 10.42 7.33 4.64 9.64 9.74 8.38 3.80 5.11
K20 5.26 3.52 4.04 3.12 2.51 3.88 2.86 3.63 3.67 1.97
MgO 4.00 2.76 5.18 2.87 1.59 4.05 4.23 4.43 1.32 2.29
MnO 0.12 0.10 0.14 0.12 0.06 0.20 0.27 0.04 0.06 0.09
Na20 1.09 2.54 3.06 2.43 2.63 2.13 2.26 1.25 1.39 2.62
P205 0.22 0.44 0.23 0.21 0.18 0.13 0.14 0.12 0.15 0.14
SiO2 57.27 63.91 50.86 65.93 75.81 55.94 58.63 58.97 73.23 72.43
T102 0.97 1.21 1.15 0.89 0.71 0.91 0.94 0.77 0.61 0.64
LOI 2.34 1.68 2.09 0.77 1.12 1.32 2.10 5.22 2.87 1.03
Total 99.28 99.05 99.26 99.88 100.66 100.59 100.80 100.76 100.72 99.45


153










Table 4-64. Trace element analysis data for the Damara Orogen.
Northern Zone Central Zone Southern Zone
Sample DF06-21 DF09-36 CZ49 CZ29 CZ40 CZ38b CZ53b CZ35 SZ47b SZ90 SZ80 SZ78


mg/kg
Rb
Ba
Th
U
Nb
Ta
La
Ce
Pb
Pr
Sr
Nd
Zr
Hf
Sm
Eu
Dy
Y
Ho
Yb
Lu


39.90
192.80
9.46
2.86
11.98
0.87
35.53
74.92
16.29
8.99
560.47
35.09
190.80
5.56
8.44
1.57
7.14
41.50
1.39
3.91
0.57


13.92
30.94
0.50
0.21
1.84
0.12
1.10
2.07
4.36
0.31
14.32
1.36
13.41
0.38
0.30
0.13
0.18
0.54
0.04
-0.06
-0.01


80.29
321.44
2.72
0.46
0.92
0.10
9.34
12.67
9.95
1.62
16.36
5.30
30.69
0.99
0.77
0.18
0.44
1.60
0.08
0.26
0.05


123.69
163.93
182.33
21.34
116.37
12.21
754.25
1501.20
32.28
149.35
83.70
462.41
197.00
7.12
63.72
7.00
24.03
114.72
4.09
8.61
1.09


725.90
4734.25
61.88
3.51
55.40
4.78
140.27
289.30
135.16
31.85
581.09
113.88
331.00
9.95
22.56
3.65
16.81
96.51
3.28
8.78
1.25


234.13
677.49
14.62
3.17
15.16
1.44
36.83
72.72
25.66
8.46
81.04
31.24
66.26
1.91
6.29
1.57
4.23
21.94
0.80
2.27
0.34


91.42
495.81
11.69
2.43
16.21
1.17
39.70
68.70
16.65
9.86
190.51
37.97
198.50
5.82
8.12
1.48
6.17
32.64
1.16
3.13
0.47


366.22
4361.14
38.41
10.08
43.07
3.39
124.69
286.77
77.65
31.29
696.47
119.53
698.16
20.36
25.35
4.74
16.74
93.36
3.16
8.84
1.37


151.53
664.02
12.03
2.95
15.31
1.22
36.26
75.61
21.85
9.05
80.41
34.39
156.41
4.44
7.56
1.32
4.94
26.57
0.95
2.80
0.42


224.77
1078.70
14.97
2.53
18.88
1.41
17.19
28.90
21.12
4.74
68.59
18.58
130.65
3.69
4.54
0.91
4.63
25.31
0.89
2.09
0.33


96.54
389.12
8.72
2.27
13.04
1.00
17.10
81.33
14.18
5.50
128.46
20.53
82.82
2.40
5.50
1.14
4.86
22.59
0.90
2.18
0.32


163.96
740.39
12.58
4.57
22.39
1.69
49.67
88.69
22.79
12.00
117.90
44.82
124.09
3.35
9.79
1.86
8.54
52.01
1.75
6.90
1.05


154










Table 4-64. Continued.

Southern Zone Southern Margin Zone
Sample SZ77 SZ65a IE4 IEla DF09-14 DF06-22 DFO9-02 SZ13 DF09-10 DF09-11 DF09-07 DF09-09
mg/kg
Rb 180.75 200.68 136.55 200.57 1.00 127.53 60.95 106.31 64.30 158.56 212.14 11.98
Ba 743.84 1224.41 733.58 672.08 19.01 934.06 215.59 799.33 740.11 980.60 1035.21 83.43
Th 13.28 16.27 16.84 13.89 1.02 10.55 10.17 10.31 2.80 11.65 15.86 0.92
U 4.75 2.98 3.84 3.56 0.29 2.69 2.51 1.97 0.73 2.75 1.34 0.26
Nb 14.48 15.80 20.14 20.72 14.15 15.47 12.14 13.08 8.66 11.06 15.93 14.38
Ta 1.14 1.00 1.54 1.54 0.83 1.19 0.98 0.95 0.60 1.11 1.43 0.91
La 35.64 25.84 45.86 40.63 9.85 34.80 29.20 41.45 16.88 27.02 43.77 9.96
Ce 75.34 55.89 97.69 81.36 25.24 73.33 67.89 88.75 39.58 60.52 93.58 24.11
Pb 19.06 74.67 14.88 50.61 1.85 9.35 16.54 15.61 3.12 17.69 22.37 13.94
Pr 8.86 6.60 11.63 10.27 3.75 8.82 7.68 9.93 5.18 6.48 10.92 3.34
Sr 254.13 70.74 121.11 150.12 422.54 100.30 77.43 256.41 55.66 75.12 132.93 359.41
Nd 33.21 25.27 43.96 38.19 18.20 33.66 28.99 37.33 22.95 23.27 40.83 14.92
Zr 62.51 166.51 185.79 155.40 12.11 135.47 130.69 137.66 30.95 90.56 118.36 16.22
Hf 1.78 4.64 5.36 4.29 0.51 3.81 3.80 3.87 0.95 3.02 3.48 0.58
Sm 7.01 5.54 9.90 8.54 5.71 7.49 6.56 7.61 5.87 4.34 8.58 3.92
Eu 1.40 1.09 1.80 1.65 1.86 1.50 1.32 1.52 1.61 0.80 1.72 1.40
Dy 5.37 3.34 8.17 6.77 8.10 5.02 6.54 6.15 6.74 2.90 6.71 3.90
Y 29.87 15.45 43.98 37.94 49.06 25.82 38.00 34.30 37.88 17.09 36.24 20.21
Ho 1.06 0.57 1.56 1.31 1.70 0.92 1.33 1.20 1.36 0.59 1.26 0.73
Yb 2.72 1.71 3.83 3.74 4.41 2.34 4.24 3.13 3.03 1.79 2.73 1.41
Lu 0.39 0.30 0.55 0.53 0.61 0.37 0.67 0.43 0.42 0.28 0.37 0.19


155










Table 4-64. Continued.
Southem Margin Zone Naukluft Nappes SFZ Kaoko Belt
Sample SZ99b SZ87b DF09-03 DF06-48 DF09-16 DF06-49 DF06-08


mg/kg
Rb
Ba
Th
U
Nb
Ta
La
Ce
Pb
Pr
Sr
Nd
Zr
Hf
Sm
Eu
Dy
Y
Ho
Yb
Lu


180.27
557.36
14.19
3.04
14.43
1.11
41.51
80.52
13.55
9.66
284.81
35.76
89.17
2.51
7.63
1.47
6.33
38.73
1.25
3.24
0.47


143.09
498.82
14.79
2.42
16.79
1.31
42.33
83.85
21.41
10.07
145.05
37.09
111.17
3.11
8.07
1.55
6.63
41.00
1.31
3.51
0.50


57.89
302.51
9.52
1.49
8.51
0.66
10.42
42.11
9.74
2.70
28.98
10.41
65.74
1.94
2.36
0.51
2.46
14.63
0.53
1.61
0.24


161.91
501.62
15.54
2.68
14.85
1.06
47.10
97.01
5.38
11.08
19.04
41.70
142.41
4.30
8.46
1.50
6.14
34.13
1.20
3.50
0.52


70.90
274.58
5.46
1.21
5.56
0.42
17.21
35.21
14.64
4.08
425.98
15.19
61.90
1.78
3.14
0.86
2.54
14.19
0.51
1.59
0.27


137.90
851.11
9.56
2.55
9.81
0.83
42.87
68.49
17.32
10.22
66.47
38.78
189.24
5.37
8.07
1.45
6.65
38.81
1.33
3.57
0.53


90.40
467.98
8.30
2.63
11.85
0.87
29.59
64.78
22.15
7.52
130.22
29.53
142.68
4.09
6.65
1.19
5.34
29.03
1.03
2.84
0.41


156



















03 2400


02
0 041 h ,1 1 1,
i i -50011 111 II
%5 039 / :': I
A B
00 037
0 2 4 6 8 10 12 14 85 95 105 115 125
207pb/235U 207Pb/235U


N:=17












C
400 800 1200 1600 2000 2400 2800 3200
Age (Ma)


Figure 4-1. Zircon geochronology analysis for sample BDG06-91 from the Mulden
Formation in the Northern Foreland Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram showing discordia line. C) U-Pb probability density plot of concordant
grains. 206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for
grains >1 Ga.


157


































4
207pb/236U


500 700 900 1100 1300 1500 1700 1900 2100
Age (Ma)
6

N=17
5


4


3


2



1 | E

0 .. i I i i. .I.. .I.i, .. .l .


06 08 10 12 14 16 18
TDM Model Age (Ga)


8 06 10 14 18 22
207pb/236u

14
12

10 500 1000




b A


0
-21

-4
-6 1
0 500 1000 1500 2000
U-PbAge(Ma)


20 22 24 26


Figure 4-2. Zircon geochronology analysis for sample DF09-26 from the Kuiseb Schist
in the Northern Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram showing

discordia line. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 2 Pb/206Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of
individual grains. E) Lu-HfDM model age histogram of concordant grains.


158













data-point error ellipses are 2o


04

0 36

03
034
S1850

02 1000 /
032


1 0 0- l l, I II.JI II,
200


00 I 028
0 2 4 6 8 46 50 54 58 62 66
2o07Pb235U 207 b/235

60
N:10 40 -

20


S. -20-
00

-60

-80--

A 1 J 1 C -100- ,, ,i D
AC 0 500 1000 1500 2000 2500
500 700 900 1100 1300 1500 1700 1900 2100 2300 U-PbAge (Ma)
Age (Ma)
5 _---------------------------------------------

N=:6




3

E
z







14 16 18 20 22 24 26 28
TDM Model Age (Ga)

Figure 4-3. Zircon geochronology analysis for sample DF09-30 from the Kuiseb Schist
in the Northern Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram showing
discordia line. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 2Pb/206 Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of
individual grains. E) Lu-HfDM model age histogram of concordant grains.




159
































06 08 10 12 14 16 18 20
207Pb/236U


1100 1300 1500 1700 1900 2100
Age (Ma)


034



030



026



022


5.0

0.0

-5.0

S-10.0

-15.0

-20.0

-25.0


35 45 55 65 7
2o7pb/235U














D


0 500 1000 1500
U-Pb Age (Ma)


2000 2500


210 215 220 225 230 235 240 245 250 255 260
TDM Model Age (Ga)

Figure 4-4. Zircon geochronology analysis for sample DF09-44 from the Nosib Group in
the Central Zone. A) U-Pb concordia diagram with discordia line. B) U-Pb
concordia diagram showing discordia line. Gray ovals indicate discordant
grains which were removed. C) U-Pb probability density plot of concordant
grains. 206Pb/238U ages used for grains <1 Ga, 7Pb/2 Pb ages used for
grains >1 Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb
ages of individual grains. E) Lu-HfDM model age histogram of concordant
grains.


160


N=53













S .


900



















035




025
0.



015




005









.1
n



C.


0 185


0 175


0 165


S0155


0 145


0 135


0 125
1



0.0
-2.0
-4.0
-6.0
: -8.0
-10.0
S -12.0
-14.0
-16.0
-18.0
-20.0


900 1100 1300 1500 1700 1900 2100 2300
Age (Ma)


2
25


1 35 1 45 1 55
2o7pb235U


1 65 1 75 1 85


D

S 500 1000 1500 2000 2500

U-Pb Age (Ma)


E
z






0 -E ----
19 20 21 22 23 24 25 26
TDM Model Age (Ga)

Figure 4-5. Zircon geochronology analysis for sample CZ29 from the Khan Formation in
the Central Zone. A) U-Pb concordia diagram. Gray ovals indicate discordant
grains which were removed. B) U-Pb concordia diagram showing discordia
line. C) U-Pb probability density plot of concordant grains. 206Pb/238U ages
used for grains <1 Ga, Pb/ Pb ages used for grains >1 Ga. D) Epsilon Hf
values of concordant grains plotted against U-Pb ages of individual grains. E)
Lu-HfDM model age histogram of concordant grains.


161


2 4 6
207pb/35U



N=7














C


















06

2500

04

1500
02

50
A B
0 0 .
0 4 8 12 16 20 24 600 1000 1400 1800 2200 2600 3000
2o7PbP35U Age(Ma)


Figure 4-6. Zircon geochronology analysis for sample CZ40 from the Rossing Formation
in the Central Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb probability density plot of
concordant grains. 206b238U ages used for grains <1 Ga, Pb/2 Pb ages
used for grains >1 Ga.


162













data-point error ellipses are 20


022



018


900
014



010

500

006
04 08 12 16
207Pb/235U


S017


016


015


A
014
20 24 28 135


500 600 700 800 900 1000 1100 1200 1300 1400
Age (Ma)


3 N=42









3




E
07 09 11 13 15 17 19 21 23
TDM Model Age (Ga)


145 155 165 175 185
2o7pb235U


D


1000 1200 14


600 80(
U Pb Age (Ma)


Figure 4-7. Zircon geochronology analysis for sample CZ53b from the Tinkas Formation
in the Central Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram showing
discordia line. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of
individual grains. E) Lu-HfDM model age histogram of concordant grains.


163

































4 6 8 04 08 12 16 20 24 28 32
207pb235U 207Pb/235U
30 0
25 0
20 0
15 0

10 0


g oo



0 00

1__5 0 D


500 700 900 1100 1300 1500 1700 1900 2100 2300
Age (Ma)


500 1000 1500 2000 25C
U-PbAge (Ma)


07 09 11 13 15 17 19 21 23 25
TDM modelage (Ga)

Figure 4-8. Zircon geochronology analysis for sample CZ35 from the Karibib Formation
in the Central Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram from 1300
to 500 Ma. C) U-Pb probability density plot of concordant grains. 206Pb/238U
ages used for grains <1 Ga, Pb/l26Pb ages used for grains >1 Ga. D)
Epsilon Hf values of concordant grains plotted against U-Pb ages of individual
grains. E) Lu-HfDM model age histogram of concordant grains.


164

































0 4 8 12 16 20
207Pb/235U


N==16















400 800 1200 1600 2000 2400 2800 3200 360
Age (Ma)


N==15













E


-05 05 15 25 35
TDM Model Age (Ga)


036

1800
032


S028

1400
024


020 .l I 'tl I' B

B
0 16
25 35 45 55 65
207pb/2356
20 0 I-----------------------------
0 0
100 2


200




300

400

500
-400 --------


00 0 500 1000 1500 2000 2500 3000 3500
U-Pb Ag (Ma)


45 55


Figure 4-9. Zircon geochronology analysis for sample DF06-22 (SZ40) from the Kuiseb
Schist in the Matchless Amphibolite Belt of the Southern Zone. A) U-Pb
concordia diagram. Gray ovals indicate discordant grains which were
removed. B) U-Pb concordia diagram showing discordia line. C) U-Pb
probability density plot of concordant grains. Pb/238U ages used for grains
<1 Ga, 207Pb/206Pb ages used for grains >1 Ga. D) Epsilon Hf values of
concordant grains plotted against U-Pb ages of individual grains. E) Lu-HfDM
model age histogram of concordant grains.


165

















0 18
1800

03 016
900
014

0 2 000 0 12

10 10
01
0 1 500
0 08
A B
00 '/ 006
0 2 4 6 8 04 08 12 16 20 24










207pb2365 20 pb23
0 20 207 b23U data-point error ellipses are 2 207Pb23U
N= 45

0 18

016 950

0- 16

0 14

750 A
0 = I J


304' i--------------ii------------ ---- --i- ---- --- ---- ---- --- -
0 10
09 1 1 1 3 1 5 1 7 1 9 2 1 400 800 1200 1600 2000 2400
207Pb/236U Age (Ma)
300
250 10 N=43
SN=43

,* 8



















discordant grains which were removed. B) U-Pb concordia diagram from 1200
to 500 Ma. Gray ovals indicate discordant grai









Pb concordia diagram showing discordia line. D) U-Pb probability density plot
00
9 44
-5 0
-10 0-------


1-200 0 F","". .
0 500 1000 1500 2000 2500 00 04 08 1 1 ,6 20 24 28
TDM Model Age (Ga)
U-Pb Age (Ma)
Figure 4-10. Zircon geochronology analysis for sample SZ13 from the Kuiseb Schist in
the Southern Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram from 1200
to 500 Ma. Gray ovals indicate discordant grains which were removed. C) U-
Pb concordia diagram showing discordia line. D) U-Pb probability density plot
of concordant grains. 206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages

used for grains >1 Ga. E) Epsilon Hf values of concordant grains plotted
against U-Pb ages of individual grains. F) Lu-HfDM model age histogram of
concordant grains.


166















026 1400 0

022 032 1700

018 1000 028

014 024
0 600 / 1300
010 600024 I/ Int --r -rt- -t
0 20
006 I -
20) A B
002 0 16
0 1 2 3 4 5 2 3 4 5 6
207pb/235U 2o7Pb 235U

N= 47



S20










Age (Ma) U-Pb Age (a)
40 .
> 00











N2023










E
44

C D
900 1100 1300 1500 1700 1900 2100 500 1000 1500 2000 2500








AeT Model Age (Ga)









Figure 4-11. Zircon geochronology analysis for sample DFO9-12a from the Hakos
Formation in the Southern Margin Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram showing discordia line. C) U-Pb probability density plot of concordant
N==23











1 13 15 17 19 21 23 25 27







grains. 206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for
grains >1 Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb
ages of individual grains. E) Lu-HfDM model age histogram of concordant
grains.


167



























8 1000 1200 1400


B


1600 1800 2000 2200
Age (Ma)


C


S500 1000 1500 2000 2500 0
14 15 16 17 18 19 20 21 22 23 24
U-PbAge(Ma) TDM Model Age (Ga)
Figure 4-12. Zircon geochronology analysis for sample DF09-04 from the Naos
Diamictite in the Southern Margin Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb probability
density plot of concordant grains. 206Pb/238U ages used for grains <1 Ga,
207Pb/206Pb ages used for grains >1 Ga. C) Epsilon Hf values of concordant
grains plotted against U-Pb ages of individual grains. D) Lu-HfDM model age
histogram of concordant grains.


168


N=41


4
207pb/235U


N=13




2





D

















055


045


_ 035
0.

025


015
50'
005



054

050

046

S042
0.
038

034

030

026


100


50


00


F -50


(


025


023


021


019


017


015
15



r


>
IQ
p

_ro


11 13 15 1000


2000 2500 3000


data-Dolnt error elhioses are 20


1000
x I .


17 19 21 23 25 27 29 31
207Pbl235U


1800 2200
Age (Ma)


3 20 22 24 26 28
TDM Model Age (Ga)


Figure 4-13. Zircon geochronology analysis for sample DF06-40 from the Kuibis
Formation in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray

ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram showing discordia line. C) U-Pb concordia diagram showing
discordia lines. D) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for grains >1

Ga. E) Epsilon Hf values of concordant grains plotted against U-Pb ages of

individual grains. F) Lu-HfDM model age histogram of concordant grains.


169


4 8 12 16


N:=36














A A A D


0 500 1000 1500
U-Pb Age (Ma)


E


9
207pb/236u
















0 115


S075
10 20 30 06 07 08 09 10
207Pb/235U 207pb/23u


11 13 15
207pb/236u


E


0 500 1000 1500 2000 2500 3000 3500 04


17 600 1000 1400 1800 2200 2600 3000 3400 3800
Age (Ma)


08 12 16 20 24 28


32 36 40


U-Pb Age (Ma) TDM Model Age (Ga)

Figure 4-14. Zircon geochronology analysis for sample DF06-41 from the Schwarzrand
Subgroup in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray

ovals indicate discordant grains which were removed. B) U-Pb concordia

diagram showing discordia line. C) U-Pb concordia diagram showing
discordia line. D) U-Pb probability density plot of concordant grains.
206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for grains >1

Ga. E) Epsilon Hf values of concordant grains plotted against U-Pb ages of

individual grains. F) Lu-HfDM model age histogram of concordant grains.


170


06



04



02

500

00


060



056



052



048



044


0 40


I 0.0
>
I" -5.0


-10.0


-15.0


I













data-point error ellipses are 2,


06 10 14 18 22
2o7pb/235U


008



004
0











B
55









55


017
950

015


013
750


0 11 I ,


009
09 11 13 15
2o07pb235U


Figure 4-15. Zircon geochronology analysis for sample DF06-46 from the Schwarzrand
Subgroup in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram showing discordia line. C) U-Pb probability density plot of concordant
grains. 206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for
grains >1 Ga.


171


2


650 750 850
Age (Ma)


17 19


N=16















1


0i














data point error ellipses are 2o


020



016

800





008
400


004
10 02 06 10 14 18 22
207pb/235U


02



01 0



00
0

022 -




018




. 014
0.



010




006
04


dU-

60

40

20-

00

-20
*
-40

-60
E
-80 ,


2000 2400 2800


8

6

4


2


0 500 1000 1500 2000 2500 004 08 1 2 1 6 2 2 2
04 08 12 16 20 24 28
U-Pb Age (Ma) TDM Model Age (Ga)

Figure 4-16. Zircon geochronology analysis for sample DF06-45 from the Fish River

Formation in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray

ovals indicate discordant grains which were removed. B) U-Pb concordia

diagram from 1200 to 400 Ma. Gray ovals indicate discordant grains which

were removed. C) U-Pb concordia diagram showing discordia line. D) U-Pb

probability density plot of concordant grains. 206Pb/238U ages used for grains

<1 Ga, 20 Pb/206Pb ages used for grains >1 Ga. E) Epsilon Hf values of

concordant grains plotted against U-Pb ages of individual grains. F) Lu-HfDM

model age histogram of concordant grains.


172


900//
00










08 12 16 20 24 400 800 1200 1600
207pb/236 Age (Ma)


data point error ellipses are 2c












data-point error ellipses are 2, 0 22 data-point error ellipses are 2n

04 1100
0 18
1800
03



1000 010


01
S006

A B
00 002


0 2 4 6
0
207pbi235U
021 data-point error ellipses are 20

019 1100

017

S015 9

S013
700
011

009 i i: ,
500
0 C
007


12 06 10 14 18 22
2o7pb1235


N=40













D
/

... ..A. .. .. ^...- ^


04 08 1 2 1 6 20 24 500 700 900 1100 1300 1500 1700 1900 2100
207pb/235U Age (Ma)
200 -
DM
150 N 15
100 -4
50 -
0 0 .





-200 -
150 F
0 200 400 600 800 1000 1200 1400 1600 07 09 1 1 3 1 5 1 7 1 9 21 23 25
U-Pb Age (Ma) TDM Model Age (Ga)
Figure 4-17. Zircon geochronology analysis for sample DF06-44 from the Fish River
Formation in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram from 1200 to 300 Ma. Gray ovals indicate discordant grains which
were removed. C) U-Pb concordia diagram showing discordia line. D) U-Pb
probability density plot of concordant grains. 206Pb/238U ages used for grains
<1 Ga, 207Pb/206Pb ages used for grains >1 Ga. E) Epsilon Hf values of
concordant grains plotted against U-Pb ages of individual grains. F) Lu-HfDM
model age histogram of concordant grains.


173













04

1800 018
03
P 900
S0 14
0 1000

0 1 0 10
500
A B
00 006
0 2 4 6 04 08 12 16 20 24

0 21 datapoint error ellpses are 2. P

019 1100 N= 36

017

015 900

013

S011 I --
". '_ rJ. .I.,. -_ lJ Iri Ic
009 I

007 C D
06 1 0 1 4 1 8 22 500 700 900 1100 1300 1500 1700 1900 2100
207 Pb235U Age (Ma)
l lnn 6
N=:21
5





2
-50

-1000 0080011 1 16 ..... F
0 500 1000 1500 2000 2500 08 1 0 1 2 1 4 1 6 1 8 20 22 24 26 28
U-Pb Age (Ma) TOM Model Age (Ga)
Figure 4-18. Zircon geochronology analysis for sample DF06-43 from the Fish River
Formation in the Southern Foreland Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram from 1200 to 300 Ma. Gray ovals indicate discordant grains which
were removed. C) U-Pb concordia diagram showing discordia line. D) U-Pb
probability density plot of concordant grains. 206Pb/238U ages used for grains
<1 Ga, 207Pb/206Pb ages used for grains >1 Ga. E) Epsilon Hf values of
concordant grains plotted against U-Pb ages of individual grains. F) Lu-HfDM
model age histogram of concordant grains.


174













0095


0 16
0 085
500
0 12 700 0075

S0 075

0 08

300 0065
004 0

A B
000 0055 .
02 06 10 14 18 22 048 052 056 060 064 068 072 076
207pb235U 27pb/235U

0092 data-point error elpses are 2o box heights re 2,
540 Mean = 511 36 6 [1 3%] 95% conf
0 088 Wtd by data-pt errs only, 0 of 6 rej
MSWD = 0 82, probability = 0 53
520 530 (error bars are 2a)
0 084

520
0080

0 076 510






C D
0 064 / 480
052 056 060 064 068 072 076
207pb/235U

Figure 4-19. Zircon geochronology analysis for sample DF09-37 from a granitic pluton in
the Northern Zone. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram from 1200
to 300 Ma. Green ovals represent grains displaying crystallization ages. Blue
ovals represent grains displaying lead loss. Gray ovals indicate discordant
grains which were removed. C) U-Pb concordia diagram showing discordia
line. D) Mean age of crystallization diagram.


175
















020 10

0 17 -
0 16
960
0 800 016
S012 -/' s

0880

008 I-
400 014 I .. i ..: 1

A B
004 I----- 013
0 1 2 3 13 14 15 16 17 18 19
2o7pb/235U 2oz7pb235U
box heights are 20

1070 Wtd by data-pt errs only, 0 of 38 rej
MSWD = 1 19, probability = 0 20
(error bars are 2o) 5.0


1050.0

103-1.0




1010 -25.0
DI
103 -30.0= *==== ----i-------------------i-I



400 500 600 700 800 900 1000 1100
990
6 -U-Pb Age (Ma)

N=18
5 --95 205 215 225 235 245 255


4


E3
Z

2




E

185 195 205 215 225 235 245 255
TDM Model Age (Ga)

Figure 4-20. Zircon geochronology analysis for sample DF09-43 from the grainitic
gneissic basement of the Central Zone. A) U-Pb concordia diagram. Gray
ovals indicate discordant grains which were removed. B) U-Pb concordia
diagram from 1100 to 750 Ma with discordia. Gray ovals indicate discordant
grains which were removed. C) Mean age of crystallization diagram. D)
Epsilon Hf values of concordant grains plotted against U-Pb ages of individual
grains. D) Lu-HfDM model age histogram of concordant grains.


176






























0 4 8 12 16 20
207Pb/23U


N=:33












AC


600


1000 1400 1800
Age (Ma)


2200


12 14 16 18 20 22
TDM Model Age (Ga)


4 5 6 7
2o7pb/ U235

't












D
0 500 1000 U 1500 2000 25
U PbAg.l Mal


24 26 28


Figure 4-21. Zircon geochronology analysis for sample DF06-18 from the Hoanib River
Group in the Kaoko Belt. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram showing
discordia lines. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of
individual grains. E) Lu-HfDM model age histogram of concordant grains.


177












data-point error ellipses are 2,


0 36
0 34






026 1550


0 1300 026 .r 1,.

0 20.0
A 0 30


2 3 4 5 6 32 36 40 44 48 52 56 60
2Pb/l3U 207Pbl235U


N=48 -1.0
-2.0

3-3.0
S2-4 .0 L

.2 -5.0



2M deAge (Ma)
\ *-6.0-

-7.0

-8.0


1350 1450 1550 1650 1750 1850 1950 2050 1400 1500 1600 1700 1800 1900 2000
ins Age i(Ma) __di___ da grains U-PbAge(Ma)

6 N:18





E
Z3






0 3 -L-
195 205 215 225 235 245 255 265
TDM Model Age (Ga)

Figure 4-22. Zircon geochronology analysis for sample DF09-38 from the Ogden
Mylonite in the Kaoko Belt. A) U-Pb concordia diagram showing discordia
line. Gray ovals indicate discordant grains which were removed. B) U-Pb
concordia diagram showing discordia line. C) U-Pb probability density plot of
concordant grains. 206Pb/28U ages used for grains <1 Ga, 207 Pb/26Pb ages
used for grains >1 Ga. D) Epsilon Hf values of concordant grains plotted
against U-Pb ages of individual grains. E) Lu-HfDM model age histogram of
concordant grains.


178


































5 7 9 11 13
207Pb/236


2540 2560 2580 2600 2620 2640
Age (Ma)
4
4 _1------------------------------------

N==9

3



2







E
0o l l ,l l ..--- -- i l


24 25 26 27 28
TDM Model Age (Ga)


054



0 50


75 85 95 105
207pb/235


115 125


D

2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610
U-Pb Age (Ma)


29 30 31


Figure 4-23. Zircon geochronology analysis for sample DF09-39 from the Ogden
Mylonite in the Kaoko Belt. A) U-Pb concordia diagram. Gray ovals indicate

discordant grains which were removed. B) U-Pb concordia diagram showing
discordia line. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 2Pb/206 Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of
individual grains. E) Lu-HfDM model age histogram of concordant grains.


179


04


03



01
0ic


01




































07 09 1 1
2o7pb/235U


a.
011 650







A "' B
007
13 15 17 07 09 11 13 1
2o7pb/235U
120


100 --


80
*



6 *

.
40.



20


.: :0


550 600 650 700 750 800 850 900 950 1000
Age (Ma)


UPb Age (Ma)


080 085 090 095 100 105 110 115 120 125 130
TDM Model Age (Ga)

Figure 4-24. Zircon geochronology analysis for sample DF06-11 from the Coastal

Terrane in the Kaoko Belt. A) U-Pb concordia diagram. Gray ovals indicate

discordant grains which were removed. B) U-Pb concordia diagram showing

discordia line. C) U-Pb probability density plot of concordant grains.
206pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for grains >1

Ga. D) Epsilon Hf values of concordant grains plotted against U-Pb ages of

individual grains. E) Lu-HfDM model age histogram of concordant grains.


180


008


006


004
05




















I 02 900
9.1000 014


01 010 Intercepts at
9 0r- 579128 & 1097133 [34] Ma
200
00A 006 B
0 0006
0 2 4 6 04 08 12 16 20 24
207pb/235U 207pbP235U
data-point error ellipses are 2o
Intercepts at N=74
0 18 l



S016 950



0 14


.C D

1 2 1 4 1 6 1 8 500 700 900 1100 1300 1500 1700
207pb/236 Age (Ma)
15.0 10-
o 9 N=27
10.0 N-2
5.0 7

0.0
E E5
S -5.0 t
W 4
-10.0 3

-15.0 2

E 4
-20.0 -- i ------ F
0 200 400 600 800 1000 1200 1400 1600 07 09 11 13 15 17 19 21 23 25
U-Pb Age (Ma) TDM Model Age (Ga)
Figure 4-25. Zircon geochronology analysis for sample DF06-08 from the Khumib
Terrane in the Kaoko Belt. A) U-Pb concordia diagram. Gray ovals indicate
discordant grains which were removed. B) U-Pb concordia diagram from 1200
to 500 Ma. Gray ovals indicate discordant grains which were removed. C) U-
Pb concordia diagram showing discordia lines. D) U-Pb probability density
plot of concordant grains. 206Pb/238U ages used for grains <1 Ga, 7Pb/20 Pb
ages used for grains >1 Ga. E) Epsilon Hf values of concordant grains plotted
against U-Pb ages of individual grains. F) Lu-HfDM model age histogram of
concordant grains.


181




















035



P
S025




0 15




005


040


036


032

P
. 028
0.

024


020


016


2 3 4 5 6 7
207pb/236u








Pb/U








F


033


031


S029



025
027


025 1400


023


021
26 30


1200 1400


34 38 42 46 50 54
207pb/236u


1800


2000 2200 2400


Age (Ma)
5

N:12




3


2





F
0 .


140 5 16 17 18 19 20 21 22 23 24 25
0 500 1000 1500 2000 2500
u-PbAg. TDM Model Age (Ga)

Figure 4-26. Zircon geochronology analysis for sample DF06-17 from the Hoanib River

Formation in the Kaoko Belt. A) U-Pb concordia diagram showing discordia

line. B) U-Pb concordia diagram showing discordia line. C) U-Pb concordia

diagram showing discordia line. D) U-Pb probability density plot of concordant

grains. 206Pb/238U ages used for grains <1 Ga, 207Pb/206Pb ages used for

grains >1 Ga. E) Epsilon Hf values of concordant grains plotted against U-Pb

ages of individual grains. F) Lu-HfDM model age histogram of concordant

grains.


182


045


4
207Pb/236


N= 33
















D





















* Congo
* Kalahari
A Nama Group


400 900 1400 1900 2400 2900 3400


U-Pb age (Ma)

Figure 4-27. Comprehensive plot of all epsilon Hf data for the Congo and Kalahari
cratonic margins. Nama Group metasediments are plotted separately
because they may incorporate Congo source terrains. Kaoko Belt samples
are included in Congo data.


IU













U


* Kalahari
* Congo


Distance from SZ-SMZ (km)


Figure 4-28. Comprehensive plot of all Sm-NdDm model ages against relative distance to
the SZ-SMZ boundary, the suture between the Congo and Kalahari cratons.


183



























U
pI
U_
^I


* Congo

* Kalahari

SKaoko


500 550 600 650 700 750 800 850

Time of Deposition (Ma)




Figure 4-29. Comprehensive plot of all epsilon Nd data for the Congo and Kalahari

cratonic margins.


data-point error ellipses are 20


1595


1585




1575




1565


15 55
17 18 19 20
20o6pb204pb


21 22

A


1555


data-point error ellipses are 20


17 18 19 20
200Pb/204pb


21 22 23
B


Figure 4-30. Pb/Pb plot. A) Kalahari cratonic margin Pb/Pb data. B) Congo cratonic

margin Pb/Pb data.


184


1595


1585 6


.0

. 1575
O.
0Q
Q_


1565


0,Z



II I- i.''














20 20
18 18-
16 16 -
14 14 -
12 12 -
10 A a 10
S8 A 8
0
6 6-
4 4 4
2 2-
0 0
40 50 60 70 80 40
Si02 (wt %)


50 60 70
SiO2 (wt %)


*A1203
*CaO
AFe203
xK20
XMgO
MnO
+Na20
-P205
-T0O2


80 90 100


Figure 4-31. A) Bivariate oxide plot of major element oxide percentages from the

Kalahari cratonic margin. B) Bivariate oxide plot of major element oxide

percentages from the Congo cratonic margin.
nn __ 1000 .


5SZ65a
--SZ77
&5Z78
- SZ90 E
-M-IEla


La Ce Pr Nd Sm Eu Gd Th Dv Ho Er Tm Yb


La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu


SCZ29
- CZ35
CZ40
- CZ49
" CZ53b
* DF06 08
-- DF06 21
SDF06-49
SZ13


1' C
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu


Figure 4-32. A) Rare earth element (REE) diagram of all pelitic samples from the Congo

and Kalahari cratonic margins, inclusive of the Kaoko Belt. B) REE diagram of

all semi-pelitic samples from the Congo and Kalahari cratonic margins,

inclusive of the Kaoko Belt. C) REE diagram of all psammitic samples from

the Congo and Kalahari cratonic margins, inclusive of the Kaoko Belt.


185


--SZ8O
- SZ87b
-*-SZ99b
-N SZ47b
- I- E4
--CZ38b
- DF06 22
-DF06 48



B










CHAPTER S
DISCUSSION

Detrital Zircon Analyses

Stratigraphic Comparison

Formations deposited between ca. 700 and 600 Ma on the Congo cratonic margin

(the Karibib Formation, Gauss Formation, Tinkas Formation and Kuiseb Schist) show

similar detrital zircon age populations. The four samples collected in the Central Zone

(CZ) from strata in the Rossing Formation, Khan Formation and Etusis Formation, which

were all deposited prior to ca. 700 Ma, as well as the local granitic gneiss basement,

display major populations of zircons at 980-1100 Ma (Figure 5-1). Samples from strata

deposited at 740, 750 and 770 Ma, in the Rossing, Khan and Etusis Formations in the

Central Zone, as well as a sample from the Kuiseb Schist in the Matchless Amphibolite

Belt deposited at 635 Ma in the Southern Zone and samples from the Mulden and

Kuiseb Fms. in the Northern Zone, display another major zircon age population at 2100-

1900 Ma. All samples deposited after ca. 700 Ma along the Congo cratonic margin also

contain zircons with ages of ca. 800-550 Ma, regardless of zone (Figure 5-2; Figure 5-

3). This is consistent with widespread dispersal of detritus across the Congo margin

platform and shelf after ca. 700 Ma. The sedimentary rocks deposited between 700 and

580 Ma along the margin of the Kalahari Craton lack the 600-800 Ma zircon population,

suggesting different sedimentary source terranes at ca. 600 Ma. The Southern Margin

Zone (SMZ) samples that were deposited prior to 600 Ma (Naos Diamictite and Kudis

Formation) do not contain the ca. 600-800 Ma population seen in the younger

stratigraphy (Figure 5-4). The younger Nama Group strata in the Southern Foreland

Zone (SFZ) samples, however, exhibit a population of zircons at 700-550 Ma (Figure 5-


186










5), although it is not as prominent as those of the Congo margin samples. These zircons

may have been derived from the Congo margin sediments that were uplifted within the

Damara Orogen and deposited in the Nama foreland basins.

The Hf-isotope data from zircons from the Northern Zone (NZ; Figure 5-6),

Central Zone (CZ; Figure 5-7) and Southern Zone (SZ; Figure 5-8) are very similar.

These zircons typically give EHf values between -5 and +10, although zircons from the

SZsamples also give values as low as -10. Formations deposited prior to ca. 700 Ma in

the CZof the Damara belt (the Rossing Formation, Khan Formation, Etusis Formation,

and gneissic basement) have similar, highly negative EHf values ranging from -23 to -13

for grains with U-Pb ages of ca. 1050-1000 Ma and display Lu-HfDM model ages

between 2600 and 2000 Ma (Figure 5-13c). The gneissic basement has a major

component of grains with Lu-HfDM model ages of ca. 2100 Ma, the sample from the

Etusis Formation has a model age population at ca. 2300 Ma, and the sample from the

upper-most member of the Nosib Group has major model age populations at ca. 2500,

2200 and 2100-2000 Ma for grains with U-Pb ages of ca. 1050-1000 Ma. This is in

contrast to the low negative to high positive EHf values, ranging primarily from -10 to

+11, and mid-Mesoproterozoic to Neoproterozoic Lu-HfDM model ages displayed by

formations deposited after 700 Ma across the Congo cratonic margin in the Karibib

Formation, Gauss Formation, Tinkas Formation and Kuiseb Schist (Figure 5-6 through

Figure 5-8). This indicates that zircons of similar age derived from sources with a more

evolved Hf-isotope composition were deposited into the formations deposited prior to

ca. 700 Ma than those deposited after ca. 700 Ma. Four of the five samples deposited

after ca. 700 Ma in the NZ, CZ and SZ display similar major Lu-HfDM model age


187










populations at ca. 900-1400 Ma (Figure 5-13c), indicating derivation from mainly Meso-

and Neo-Proterozoic provinces. Sample DF06-22 from the Kuiseb Schist in the

Matchless Amphibolite Belt displays major Lu-HfDM model age populations at ca. 2300,

1100-1000 and 650 Ma and minor populations at ca. 3100, 2650-2500 and 2000 Ma,

which indicate addition from source terranes of Paleoproterozoic and Archean age.

The zircon Hf-isotope data from samples of similar stratigraphic age from the SMZ

vary significantly from those of the Congo margin strata (NZ, CZ, and SZ). The

stratigraphically older sample, DF09-12a, displays EHf values of -5 to +6 for grains

giving U-Pb ages primarily between 1500 and 1000 Ma, whereas the stratigraphically

younger sample, DF09-04, gives EHf values mainly between -2 and +3 for grains with U-

Pb ages of 1500-1000 Ma (Figure 5-9). Both SMZ samples display populations of Lu-

HfDM model ages at ca. 1750-1500 Ma and at ca. 1900-1850 Ma, that are distinct from

those of the Congo margin strata for similar aged grains. The EHf values of the SFZ

samples are similar to those found in the younger strata of the Congo marginal samples

(Figure 5-10a), whereas the Lu-HfDM model ages for grains collected in all formations in

the SFZ are dissimilar to each other and to other zones (Figure 5-1 Ob; Figure 5-14). The

EHf values of SFZ samples typically range from -10 to +4 for grains with U-Pb ages of

ca. 730-550 Ma and primarily from -8 to +10 for g rains with U-Pb ages of ca. 1485-840

Ma, excepting two grains with EHf values of -14 and -23 and U-Pb ages of 900 and 954

Ma, respectively. The remainder of the grains display U-Pb ages between ca. 3335 and

1875 Ma and EHf values of -9 to +6. The upper-most Fish River Group sample, DF06-

43, has major Lu-HfDM model age populations at ca. 1500, 1350-1400 and 1100 Ma

from grains with U-Pb ages between 1150 and 800 Ma (Figure 5-14c). The underlying


188










Fish River Group sample, DF06-44, has major Lu-HfDM model age populations at ca.

1900-1700 and 1500-1100 Ma for U-Pb ages between ca. 1050 and 400 Ma. The

dissimilarity between both EHf values and Lu-HfDM model ages of samples collected in

the SFZ and those displayed by zircons of the Congo marginal strata and the difference

of Hf data from zircons collected in the SMZ likely indicates a difference in source

material.

Nama Group

The Neoproterozoic Nama Group overlies the Kalahari basin. Paleocurrent

analyses suggest that the basal member of the Nama Group (Kuibis Formation) was

derived from Kalahari basement and the overlying Schwarzrand Group was derived

from the Damara Belt (Blanco et al., 2009). The detrital zircons in the sample from the

Kuibis Formation, DF06-40, are all Late Archean to Mesoproterozoic in age and do not

display the Neoproterozoic signature found in younger strata, consistent with a

basement source (Figure 5-5). The two Schwarzrand Group samples display similar

Paleo- to Mesoproterozoic age signatures, but the younger sequence also contains a

Neoproterozoic population. The lower Schwarzrand Group sample, DF06-41, was

deposited at ca. 580 Ma and has no Neoproterozoic signature. In contrast, the upper

Schwarzrand Group sample, DF06-46, was deposited at ca. 560 Ma and displays a

major population at ca. 1000-1100 Ma and a minor population at ca. 600 Ma. The shift

in populations between the 580 Ma strata and the 560 Ma strata are consistent with the

addition of recycled zircons from the sedimentary rocks eroded from the orogenic belts.

Paleocurrent data suggest that the lower members of the overlying Fish River Group

are derived from the Gariep Belt, which lies to the west of the Kalahari craton, while the


189










upper members are derived from the Matchless Amphibolite Belt and the Kuiseb Schist

(Blanco et al., 2009). The sample from the lower Fish River Formation, DF06-45,

demonstrates only one major age population at ca. 560-530 Ma, which is consistent

with the timing of formation of the Gariep Belt. The samples from the upper Fish River

Formation, DF06-44 and DF06-43, display very similar Neoproterozoic age populations

to those from the sample collected in the Kuiseb Schist, DF06-22. The shifts in age

populations with changing depositional periods reflect changes in source terranes and

tectonic events reflected by new populations on the cratonic margins. The major shift in

age populations between the ca. 600 Ma strata and the ca. 545 Ma strata most probably

reflects the growth of the Damara orogen during the amalgamation of the Congo and

Kalahari cratons.

The EHf values of the Nama Group samples are all relatively similar, Lu-HfDM

model ages, however, vary significantly for the various age populations due to their

changing source terrains (Figure 5-1 Ob). EHf values range from -15 to +10 for grains

with U-Pb ages between ca. 1400 and 550 Ma and range from -10 to +3 for grains with

U-Pb ages of ca. 2850-1850 Ma (Figure 5-10a; EHf values described in more detail

above). The sample collected in the basal Kuibis Formation, DF06-40, gives model

ages greater than ca. 1500 Ma for zircons displaying U-Pb ages ranging from ca. 2700

to 1080 Ma, consistent with a Kalahari basement source. The sample collected in the

overlying Schwarzrand Formation, DF06-41, was derived from the Damara Belt and

displays major Lu-HfDM model age populations at ca. 1600-1500, 1250-1400 and 1100-

900 Ma as well as minor populations at ca. 3700, 2950, 2800, 2650, 2500, 2300 and

2000 Ma with U-Pb ages ranging from ca. 3330 to 800 Ma (Figure 5-14c). The addition


190










of Meso- and Neoproterozoic model ages to the Paleoproterozoic and Archean ages of

the basement terrain indicates a younger source, consistent with the collisional Damara

Belt. The sample collected in the basal portion of the Fish River Formation, DF06-45,

displays a major Lu-HfDM model age population at ca. 1200-1400 Ma, similar to that of

the Schwarzrand Formation sample, and has U-Pb ages primarily between ca. 650 and

530 Ma. This similarity indicates comparable Hf ratios being incorporated into the

Mesoproterozoic source terrains for both formations, consistent with the collisional

Gariep Belt contributing to the Fish River Formation sediments. As described above, the

two samples collected from the upper Fish River Formation, DF06-44 and DF06-43,

display model age populations similar to each other and to the sample collected in the

Kuiseb Schist of the CZ. DF06-44 has major Lu-HfDM model age populations at ca.

2000-1600 and 1500-1100 Ma and a minor population at ca. 2300 Ma for grains with U-

Pb ages primarily between ca. 1060 and 520 Ma. DF06-43 has major Lu-HfDM model

age populations at ca. 1500, 1400-1300 and 1100 Ma and minor populations at ca.

2600-2300 and 1950-1650 Ma for grains with U-Pb ages primarily between ca. 1150

and 550 Ma. These data are consistent with a Matchless Amphibolite Belt source for the

uppermost Fish River Formation samples. The differences in all Lu-HfDM model age

populations throughout the depositional history of both cratons and the slight variation in

EHf values for grains with different U-Pb ages are consistent with discrete source

terrains for the Congo and Kalahari sedimentary rocks prior to ca. 545 Ma.

Granitic Rocks

A Cambrian granitic pluton (sample DF09-37) contains one population of

magmatic grains, which display a weighted mean age of crystallization using 206Pb/238U


191










of 511.3 6.6 Ma with 95% confidence, and another population of inherited grains

(Figure 4-19d). The inherited grains underwent partial lead loss during magma genesis

and show a lower concordia intercept of 41 99 and an upper intercept of 604 22 Ma

(Figure 4-19b-c).

Cambrian magmatic zircons are probably typical of the age populations of grains

that were eroded from Pan-African plutons within the Damara Orogen. This reflects the

zircon populations that would be expected to be present in fore land basins. For

instance, Cambrian granitic plutons like this one may represent sources for Damara

aged grains in the younger Nama Group. The granitic basement of the CZ, however, as

described above, reflects one of the basement inliers of the region and their probable

contributions.

Comparison by Structural Zone

U-Pb age populations of detrital zircons from samples collected in the NZ, CZ and

SZare all similar (Figure 5-11). The samples collected in the SZand NZdisplay

prominent populations at ca. 2050-1950 Ma and samples from the NZ, CZ, and SZall

have major populations at ca. 1100-1000 Ma and at 850-600 Ma. This is consistent with

similar sedimentary sources and dispersal systems along the same margin. The age

populations of samples collected in the SMZ and SFZ are dissimilar to those collected

from the NZ, CZ, and SZ and to each other (Figure 5-12). The SMZ samples display

populations at ca. 1900, 1350, 1300-1250, 1200-1100 and 1050 Ma. The youngest

population is similar to a population displayed by the samples from the SZ, CZ, and NZ,

the other populations, however, are not observed in any other strata in the orogen. The

samples collected in the SFZ display age populations at ca.1150-1050, 925, 850 and


192










600-540 Ma. The 1150-1050 Ma population is roughly similar to those from the SMZ,

SZ, CZ and NZ. The lack of an 800-600 Ma population in the SMZ is distinct. The

disparity between the SMZ sediments and those of the SZ, CZ and NZ, which were part

of the Congo margin, imply that the amalgamation of the Congo and Kalahari cratons

occurred after the deposition of the SMZ sediments at approximately 590 Ma. The SFZ

sediments, however, are of the Nama Group and were deposited at ca. 550-530 Ma

(Blanco et al., 2009). The younger sediments found there may record recycling of zircon

grains through the Damara Belt.

Zircon Hf-isotopic data is similar for all NZ, CZ and SZ samples. The NZ, CZ, and

SZdisplay EHf values primarily between -10 and +14 for all U-Pb ages (Figure 5-13a).

Samples with U-Pb ages of ca. 800-500 Ma typically display EHf values of -10 to +10,

with a much higher proportion of positive values than negative, except one grain from

the CZ with a U-Pb age of 514 Ma and an EHf value of -26. Grains with U-Pb ages of ca.

900-800 Ma display EHf values primarily between 0 and +10, except one grain from the

Kaoko Belt with an EHf value of -26 and a U-Pb age of 811 Ma. EHf values for grains

displaying U-Pb ages of 1225-975 Ma range from -23 to -10 and from -5 to +12. A

majority of the highly negative values are displayed by grains collected in the CZ and

the Kaoko Belt, implying that the source of the Mesoproterozoic zircons in the CZ and

Kaoko strata includes a higher proportion of ancient, recycled, continental crust.

Samples with U-Pb ages of ca. 1475-1340, 2130-1750, 2600 and 2980 Ma typically

display EHf values of -8 to +10. Outliers include several grains with U-Pb ages of 1411

and EHf values of +10 to +16, a grain with an EHf value of +23 and a U-Pb age of 1411

Ma, one grain with an EHf value of -13 and a U-Pb age of 1340 Ma and another grain


193










with an EHf value of +27 and a U-Pb age of 2024 Ma. Other than in the Mesoproterozoic

grains, each of the zones appears to have experienced similar degrees of mixing of

broadly similar crustal sources in the sedimentary environment. Lu-HfDM model ages in

the NZ, CZ, and SZdetrital zircons are dominated byca. 1450-900 Ma populations,

though the population displayed in the NZ samples is less pervasive than those in the

CZand SZ samples (Figure 5-13b-c). EHf values and Lu-HfDM model ages for the SMZ

and SFZ, however, are not similar to each other or to those of the Congo cratonic

margin (Figure 5-14a). The EHf values of SFZ samples range between -10 and +5 for

grains with U-Pb ages of ca. 900-500 Ma and with values ranging from -23 to +10 for

grains with U-Pb ages of 1100-1000 Ma. Three grains with U-Pb ages of ca. 1480-1100

Ma display EHf values of-2.4 to +3 and two grains at ca. 1400 have EHf values between

+7 and +10. Grains with U-Pb ages between ca. 2225 and 1900 Ma display EHf values

of-7 to +2, and three grains with U-Pb ages of ca. 2700, 2845 and 3335 Ma display EHf

values of +2, +3 and -5, respectively. The metasediments of the Congo margin display

a higher proportion of more positive EHf values for grains with U-Pb ages between 1150

and 1000 Ma. This implies different, more primitive material was being incorporated into

the Congo margin than into the Kalahari margin at that time. The SFZ zircons are

dominated by grains with model ages of ca. 1200-1600 Ma, which overlaps the age

populations seen in the Congo craton. The SMZ samples display EHf values between -6

and +6 for grains with U-Pb ages from 1575 to 1000 Ma and EHf values of -3, -2 and

+2.5 for the three grains with U-Pb ages of ca. 2000 to 1900 Ma. The SMZ has a major

Lu-HfDM model age population at ca. 2000-1500 Ma, slightly overlapping the SFZ

population, but dissimilar to all of the Congo marginal strata populations (Figure 5-14b-


194










c). The disparities in Hf-isotope data between the zones of the Congo and Kalahari

cratonic margins imply differing sedimentary histories. The sources incorporated into the

two cratonic margins contain different Hf signatures, implying that the Congo and

Kalahari margins were not connected prior to ca. 550-600 Ma.

Kaoko Belt

Zircons from samples collected in the Kaoko Belt, which is the northern branch of

the Damara Orogen along the present western edge of the Congo craton, tend to

display U-Pb age populations and isotopic values similar to those of the CZ of the

Congo cratonic margin. A probability density plot of detrital zircon U-Pb age populations

of samples collected in the Kaoko Belt (Figure 5-15) shows that samples collected in the

Coastal Terrane and the Khumib Fm display a major population at ca. 550-850 Ma.

Samples collected in the lower Ogden Mylonite sequence and in the Hoanib Fm. display

a major population at 1850-1900 Ma. The upper Ogden Mylonite samples display only

one major population at 2550-2600 Ma. The Paleoproterozoic population is consistent

with the plutonic and metamorphic rocks of the Kamanjab Inlier, and is unique to the

Kaoko Belt. The Meso- and Neoproterozoic age populations are consistent with those of

the other Congo marginal strata. Hf-isotopic data for the Kaoko detrital zircons are

indistinguishable from those of samples collected along the Congo cratonic margin. The

EHf values of the Kaoko Belt samples mainly range from 0 to +10 at ca. 500-1000 Ma,

from -18 to +6 at ca. 1000-1150 Ma, and -10 to 0 at ca. 1150-2600 Ma (Figure 5-16a).

Outlying grains display EHf values of -10, -26, +12 and +2 with U-Pb ages of ca. 600,

810, 1090 and 1875 Ma, respectively. These are consistent with EHf values of the

Congo marginal strata. Sample DF06-11 from the Coastal Terrane Group is the


195










exception; it displays EHf values of +1 to +10 and is consistent with an arc source. The

belt displays major Lu-HfDM model age populations at ca. 950 and 1000-1150 Ma and

minor populations at ca. 1800-1950 and 2050-2550 Ma (Figure 5-16b). The similarity of

the EHf values and Lu-HfDM model ages displayed in the Congo margin strata and the

Kaoko Belt implies common source terrains for the two regions. The U-Pb age

populations and associated Hf-isotope data of Kaoko Belt detrital zircons are dissimilar

to those of the Kalahari marginal strata (SMZ and SFZ).

Comparison by Craton

A comprehensive probability density plot of all Congo and Kalahari cratonic margin

samples (Figure 5-17) reveals disparate age populations present on the margins of the

cratons. Detrital zircons from both cratons display U-Pb age populations at ca. 1100-

1000 Ma, though the population displayed in the samples collected in the Congo

marginal strata is proportionally larger, and minor populations at ca. 2050-1900 Ma. The

Congo marginal strata, however, have a major age population at ca. 800-600 Ma, which

the Kalahari marginal strata lack. The samples collected in the Nama Group of the

Kalahari margin display a minor U-Pb age population at ca. 700-600 Ma and a major

population at ca. 540 Ma. The Congo strata, however, give only a minor population at

ca. 500 Ma, which are likely metamorphic zircons from the Damara Orogen. The

Kalahari marginal strata display major populations at 1200-1300 and 1900 Ma, whereas

the Congo has only minor populations at these ages. The Nama Group samples,

however, display a major population at 1300 Ma, probably indicating a common source.

Overall U-Pb age populations prior to ca. 800 Ma have similarities in the Congo and


196










Kalahari margins with differing proportions of similar age populations. More recent

populations, however, display minor similarities but are characteristically quite distinct.

A composite EHf plot of all samples displays differences in zircon age populations

for the Congo and Kalahari margin strata (Figure 4-27). Mid-Paleoproterozoic to

Archean aged zircons display similar, predominantly negative EHf values on both

cratonic margins. The Congo marginal strata display major Lu-HfDM model age

populations at 1300-1100 and 900-1000 Ma and minor populations at ca. 2400-2000

and 1600-1400 Ma (Figure 5-18). The Mesoproterozoic to early Neoproterozoic aged

zircons display widespread EHf values ranging from -23 to +14. Samples collected on

the margin of the Kalahari craton have major Lu-HfDM age populations at ca. 2000-1500

Ma and minor populations at ca. 3000-2300 Ma (Figure 5-18). The major Kalahari

populations do not overlap those of the Congo margin strata. Mesoproterozoic to early

Neoproterozoic aged zircons collected on the Kalahari margin display clustered,

predominantly positive EHf values ranging primarily between -10 and +10. Mid- to late

Neoproterozoic aged zircons with major Lu-HfDM model age populations at ca. 1350-900

Ma and minor populations at ca. 650 and 450 Ma collected on the Congo cratonic

margin display predominantly positive EHf values with most samples displaying values

between 0 and +10. Mid- to late Neoproterozoic zircons collected in the Kalahari

marginal strata, however, are less abundant than those collected on the Congo margin

and display predominantly negative EHf values ranging from -10 to +2.5. Despite minor

similarities, the Congo and Kalahari craton margin strata display dissimilar Hf-isotope

data for zircons within each age population younger than ca. 1600 Ma. The


197










discrepancies in the zircon U-Pb and Hf populations argue that the Congo and Kalahari

cratons were separated during deposition of the 600-800 Ma sedimentary sequences.

Source Terrains

Congo Craton

The detrital zircon age populations displayed by samples collected in Congo

marginal strata (NFZ, NZ, CZ, SZ, KZ) are consistent with source terrains found within

the Congo craton (Figure 5-19). Erosion of the Archean and Proterozoic basement and

magmatic terrains followed by sedimentary transport and deposition of the grains into

sedimentary rocks would account for all of the zircon age populations seen in the

marginal strata (a summary of Congo Precambrian provinces is given in the Appendix).

The major U-Pb age population at ca. 1100-1000 Ma in the Karibib Fm. and Mulden Fm.

in the NZ, in the Khan Fm., Etusis Fm. and granitic basement in the CZ, and in the

Kuiseb Schist in the SZ is consistent with contributions from intracratonic basement

inliers and possibly input from granitic plutons of the Irumide Belt. The Neoproterozoic

zircons (ca. 800-600 Ma) in the Kuiseb and Karibib Fms. of the NZ and Mulden Fm. in

the NFZ, in the Gauss and Tinkas Fms. in the CZand in the Kuiseb Schist in the SZ are

probably derived from widespread volcanic provinces along the southern margin of the

Congo craton including those in the Lufilian arc and locally the Naauwpoort rhyolite.

The Congo margin detrital zircons in the Kuiseb Fm. of the NZ, the Khan and

Etusis Fms. of the CZ and the Kuiseb Schist of the SZ display U-Pb age populations at

2050 Ma and the Mulden Fm. of the NFZ and the Kuiseb Schist of the SZ display minor

U-Pb age populations at ca. 2600 Ma and 2500 Ma, respectively, all of which are

consistent with sources from the Angola basement. The Matchless Amphibolite Belt in


198










the Kuiseb Schist also displays a minor population at ca. 2150 Ma, which could have

been derived from sources within the Ubendian belt, and one at ca. 2950 Ma, consistent

with xenocrystic cores seen in the Angola-Kasai craton. Detrital zircons from the

Matchless Amphibolite Belt in the Kuiseb Schist of the SZ, the Rossing Fm. in the CZ

and the Mulden Fm. of the NFZ display a U-Pb age population at ca. 2000-1950 Ma,

potentially representing contributions from one or a combination of: granitoids from the

Angola basement, the Kibaran basement, and granites and gneisses from the Irumide

belt. Samples collected in the Karibib Fm., Kuiseb Fm., the Mulden Fm., the Rossing

Fm. and the Kuiseb Schist display minor age populations at ca. 1900-1800 Ma, the

Matchless Amphibolite Belt in the Kuiseb Schist displays one at ca. 1800-1700 Ma and

the Kuiseb Schist displays a population at ca. 1400-1450; these populations are

consistent with sediments derived from the Epupa basement and metamorphic

complex. The sample from the Kuiseb Fm. displays a minor age population at ca. 1400-

1350 Ma, revealing possible contributions from one or more terrains including the

Kuene intrusive complex (anorthosite), the Orue metamorphic terrane and/or the Kibara

magmatic belt. Detrital zircons from the Gauss, Tinkas and Rossing Formations in the

CZdisplay minor age populations at ca. 1100-950 Ma while zircons collected in the

Rossing Fm. in the CZ display minor populations at ca. 875 and 825 Ma, these

populations are consistent with contributions from local basement inliers and/or the

Zambezi belt.

Kalahari Craton

The detrital zircon age populations from Kalahari marginal strata (SMZ and SFZ)

are consistent with source terrains found within the Kalahari craton (Figure 5-19;


199










summary of Kalahari Precambrian terrains is given in the Appendix). Samples collected

in the Naos Diamictite and the Kudis Fm. in the SMZboth display major U-Pb age

population at ca. 1300-1200 Ma, consistent with a contribution from the felsic volcanics

of the Rehoboth Inlier and possibly from the Natal province. The samples collected in

the Nama Group all display a zircon age population at ca. 1150-1050 Ma, consistent

with the timing of pluton emplacement in the Namaqua and Natal provinces as well as in

the Choma-Kaloma block. The samples collected in the upper Schwarzrand and all Fish

River Formations within the SFZ display an age population at ca. 600-540 Ma. This age

population is not found anywhere else in the Kalahari craton, but is consistent with the

timing of deposition of the Damara Sequence on the Congo margin, the formation of the

Naauwpoort rhyolite and the timing of formation of the Gariep belt. This suggests that

most of the Nama Group zircons were derived from the uplifted Damara orogen. The

lack of a 600-500 Ma population in the Kuibis Fm. and the lower Schwarzrand Fm., the

oldest sequences of the Nama Group, implies that the Damara Sequence sediments

were not spread across both sides of the Damara orogen prior to the deposition of the

Schwarzrand Fm. at ca. 580 Ma. This implies that the Congo cratonic margin was not

joined to the Kalahari cratonic margin by the Damara belt prior to ca. 580 Ma.

Samples collected from the Kuibis Fm. in the SFZ display a major U-Pb age

population at ca. 2700 Ma, consistent with contributions from the Zimbabwe and/or

Kaapvaal cratons. Detrital zircons collected in the Kuibis and Schwarzrand Fms. display

minor U-Pb age populations at ca. 2150-2000 Ma, consistent with a period of

magmatism and metamorphism in the Limpopo belt. The Kudis Fm. and Naos

Diamictite display U-Pb age populations at ca. 1950-1850 Ma, consistent with derivation


200










from the volcano-sedimentary Magondi belt and/or the Rehoboth inlier. The Naos

Diamictite also displays a major population at ca. 1800-1750 Ma, consistent with

plutonic emplacement ages of the Rehoboth Inlier. Detrital zircon U-Pb analyses on

samples collected in the Kudis Fm. and Naos Diamictite display minor age populations

at ca. 1550-1450, 1350, 1350-1200 and 1150-1050 Ma. The 1550-1450 Ma population

is consistent with a period of magmatism in the AAB and the 1150-1050 Ma population

is consistent with granitic pluton emplacement in the Namaqua and Natal provinces.

The 1350 Ma population is also present in the sample collected in the Kuibis Fm. and is

consistent with derivation from either granitoids of the Sinclair group or those of the

Choma-Kaloma block. The U-Pb age population at 1350-1200 Ma is consistent with a

contribution from either the Rehoboth Inlier or the Natal province. The two samples from

the lower Fish River Fm. in the NFZ display minor U-Pb age populations at ca. 1000-

950 Ma and the upper and lower Fish River Fm. samples as well as the lower

Schwarzrand Fm. sample display a minor population at ca. 900-850 Ma. The population

at ca. 1000-950 Ma is consistent with the timing of low-T metamorphics in the Natal

province, whereas the population at ca. 900-850 Ma is consistent with sediments

derived from the Zambezi belt. Marginal sediments from the Congo and Kalahari are

both consistent with entirely intracratonic sources but the possibility of other, external

sources cannot be discarded.

Proportions of Crustal Recycling

EHf values calculated from Hf isotope ratios varied significantly between the Congo

and Kalahari cratonic margins (Figure 4-27). Late Paleoproterozoic zircons from both

margins display predominantly negative EHf values, implying that the Paleoproterozoic


201










orogenic belts incorporated higher proportions of recycled crust than juvenile crust.

From ca. 1825-1500 Ma in the Congo margin strata and 1875-1600 Ma in the Kalahari

cratonic margin strata the U-Pb age data set displays a gap, indicating a relatively

inactive period with little or no crust formation along the margin of either craton. After ca.

1600-1500 Ma the EHf values differ significantly between the Congo and Kalahari

marginal strata. From 1500-1150 Ma tectonomagmatic processes along the margin of

the Congo craton incorporated predominantly recycled crust, implying the incorporation

of older, reworked crust. At ca. 1150-950 Ma magmatism in a source terrain of the

Congo margin incorporated roughly equal amounts of juvenile and recycled crust, most

likely indicating a high degree of mixing during the orogenic events culminating with the

amalgamation of Rodinia. Magmatism in a source terrain of the Kalahari margin, on the

other hand, incorporated predominantly juvenile crust from ca. 1600-1100 Ma and

roughly equal proportions of recycled and juvenile crust at ca. 1100-950 Ma. This is

consistent with either a rifting or accretionary environment and with the timing of the

amalgamation of Rodinia. During Neoproterozoic magmatism at ca. 900-600 Ma the

Congo craton incorporated primarily juvenile crust whereas the Kalahari craton

incorporated primarily recycled crust during this time. This implies different conditions in

the source terrains of the two cratonic margins during the time of Rodinia, its rifting and

the early stages of the amalgamation of Gondwana. Differing crustal generation

conditions in the sources of the cratonic margins imply that the cratons were not joined

at the time of the Rodinia supercontinent.


202










Sedimentary Mixing

The similarity in Sm/Nd values (Figure 4-29) and of common Pb values (Figure 4-

30) along the margins of the Congo and Kalahari cratons implies mixing of sedimentary

sources of various ages along the margins of both continents. Trace and major element

signatures across the cratons are consistent with the rift-drift sedimentary history

common to both cratons (Figure 4-31 and Figure 4-32; e.g. Keppie et al., 2008; Vijaya

Kumar et al., 2008). The similarity in isotopic and elemental ratios in the meta-

sedimentary sequences is probably the result of stream processes and sediment

transport over widespread areas. Paleocurrent data suggest many across craton river

channels, allowing for younger sedimentary sequences to incorporate sediment from

intracratonic sources on both the Congo and the Kalahari cratonic margins (Blanco et

al., 2009). Weathering of the older metasedimentary sequences and subsequent

transport through stream processes would also cause sedimentary mixing and

homogenize isotopic ratios. Elemental and isotopic components held in the clay fraction

of the sediments would break down during metamorphism, unlike the refractory

elements in the detrital zircon population. The exchange of the elements in the clay

fraction during metamorphism would cause the elemental and isotopic mixing seen

along both cratonic margins. The U-Pb and Lu-Hf isotope populations would be

preserved during this process because they are contained within the more durable

zircon population. Both cratons display such a variable array of sources that

distinguishing between the isotopic and elemental ratios of the two cratons is

impossible. Unfortunately the trace and major element data describe only the similarity


203










in original depositional processes and later metamorphic sedimentary breakdown and

are not a viable means of determining the timing of amalgamation.


204




























Age (Ma)
Figure 5-1. Detrital zircon U-Pb age populations from the Central Zone on the Congo
cratonic margin. Populations include concordant grains and upper intercept
ages of discordant grains that plotted along discordia. 206Pb/ U ages used
for concordant grains <1 Ga, 207Pb/206Pb ages used for concordant grains >1
Ga.


Figure 5-2. Detrital zircon U-Pb age populations from the Northern Zone and Northern
Foreland Zone on the Congo cratonic margin. Populations include concordant
grains and upper intercept ages of discordant grains that plotted along
discordia. 206Pb/238U ages used for concordant grains <1 Ga, 207Pb/206Pb
ages used for concordant grains >1 Ga.


205


Age (Ma)






























400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
Age (Ma)
Figure 5-3. Detrital zircon U-Pb age populations from the Southern Zone on the Congo
cratonic margin. Populations include concordant grains and upper intercept
ages of discordant grains that plotted along discordia. 206Pb/238U ages used
for concordant grains <1 Ga, 2Pb/206b ages used for concordant grains >1
Ga.


Age (Ma)
Figure 5-4. Detrital zircon U-Pb age populations from the Southern Margin Zone on the
Kalahari cratonic margin. Populations include concordant grains and upper
intercept ages of discordant grains that plotted along discordia. 206Pb/ U
ages used for concordant grains <1 Ga, 207Pb/206Pb ages used for concordant
grains >1 Ga.


206

































Age (Ma)
Figure 5-5. Detrital zircon U-Pb age populations from the Nama Group of the Southern
Foreland Zone on the Kalahari cratonic margin. Populations include
concordant grains and upper intercept ages of discordant grains that plotted
along discordia. 206Pb/2 U ages used for concordant grains <1 Ga,
207Pb/206Pb ages used for concordant grains >1 Ga.


X O X


S


0 500 1000 1500 2000
U-Pb Age (Ma)


* DF09-
X DF09-


2500 3000
A


Age (Ma)
Figure 5-6. Hf isotope data for the Northern Zone on the Congo margin. A) Epsilon Hf
values plotted against concordant U-Pb ages. B) Probability density plot of
Lu-HfDM model ages.


207



















20.0
15.0
10.0
5.0
0.0
S-s
S-5.0
-10.0
-15.0
-20.0
-25.0
-30.0


SCZ35

ACZ53b

*CZ29

X DF09-44

X DF09-43


0 500 1000 1500 2000 2500 basement

U-PbAge (Ma) A

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
Age (Ma)


Figure 5-7. Hf isotope data for the Central Zone on the Congo Margin. A) Epsilon Hf
values plotted against U-Pb ages. B) Probability density plot of Lu-HfDM model
ages.


30.0
20.0
10.0
0.0
-10.0
I -20.0
w
-30.0
-40.0
-50.0
-60.0
-70.0


SZ13

* DF06-22


0 500 1000 1500 2000 2500

U-PbAge (Ma)


3000

A


Age(Ma)


Figure 5-8. Hf isotope data for the Southern Zone on the Congo Margin. A) Epsilon Hf
values plotted against U-Pb ages. B) Probability density plot of Lu-HfDM model
ages.


208


111 I 111 1









I 11 111
111111 ~11111111L1 1.11
1 111 I 111 1



















6.0

4.0

2.0

X 0.0
w
-2.0

-4.0

-6.0

-8.0


dr
-----_ *---












A
0 500 1000 1500 2000 2500

U-PbAge (Ma)


* DF09-04

* DF09-12a


Age (Ma)

Figure 5-9. Hf isotope data for the Southern Margin Zone on the Kalahari Margin. A)
Epsilon Hf values plotted against U-Pb ages. B) Probability density plot of Lu-
HfDM model ages.


20.0
15.0
10.0
5.0
0.0
a -5.0

-10.0
-15.0
-20.0
-25.0


x X


1000


2000


U-Pb Age (Ma)


3000

A


Age (Ma)


Figure 5-10. Hf isotope data for the Nama Group in the Southern Foreland Zone on the
Kalahari Margin. A) Epsilon Hf values plotted against U-Pb ages. B)
Probability density plot of Lu-HfDM model ages.


209





























Age (Ma)
Figure 5-11. Probability density plot of U-Pb age populations in all zones in the Congo
cratonic margin. Populations include concordant grains and upper intercept
ages of discordant grains that plotted along discordia. 206Pb/238U ages used
for concordant grains <1 Ga, 2Pb/206b ages used for concordant grains >1
Ga.


Age (M)


Figure 5-12. Probability density plot of U-Pb age populations in all zones in the Kalahari
cratonic margin. Populations include concordant grains and upper intercept
ages of discordant grains that plotted along discordia. 206Pb/23U ages used
for concordant grains <1 Ga, 2Pb/206b ages used for concordant grains >1
Ga.


210
















40.0


30.0


20.0


10.0


0 500 1000 1500 2000 2500 3000

U-Pb Age (Ma) A


a, 2.5
m2.0
E


X 1
-ej. x
__ ^ ^-____-


Msz
*cz
XNZ
Kaoko


F- f


0 500 1000 1500 2000
U-Pb Age (Ma)


2500 3000 3500

C


Figure 5-13. Hf isotope data for the zones of the Congo cratonic margin. A) Epsilon Hf
values plotted against U-Pb ages. B) Probability density plot of Lu-HfDM model
ages. C) Lu-HfDM model ages plotted against U-Pb ages.


211


. SZ

* cz

X NZ

SKaoko


-10.0


-20.0


-30.0


Age (Ma)


I




































0 500 1000 1500 2000 2500 3000

U-Pb Age (Ma)


S2.5

S2.0
E
1.5


Age (Ma)


Figure 5-14. Hf isotope data for the zones of the Kalahari cratonic margin. A) Epsilon Hf
values plotted against U-Pb ages. B) Probability density plot of Lu-HfDM model
ages. C) Lu-HfDM model ages plotted against U-Pb ages.


212


20.0

15.0

10.0

5.0

0.0

-5.0

-10.0

-15.0

-20.0

-25.0


*SF

SSMZ


3500


* SFZ
*SMZ


0 500 1000 1500 2000 2500 3000 3500 4000
U-PbAge (Ma)







































Age (Ma)

Figure 5-15. Probability density plot of U-Pb age populations in the Kaoko belt of the
Congo cratonic margin. Populations include concordant grains and upper
intercept ages of discordant grains that plotted along discordia. 206Pb/238U
ages used for concordant grains <1 Ga, 207Pb/206Pb ages used for concordant
grains >1 Ga.


20.0
15.0
10.0
5.0
0.0
T -5.0
w
-10.0
-15.0
-20.0
-25.0
-30.0


$


x
-- ------


0 500 1000 1500 2000

U-Pb Age (Ma)


2500 3000
A


Figure 5-16. Hf isotope data for the Kaoko belt on the Congo cratonic margin. A)
Epsilon Hf values plotted against U-Pb ages. B) Probability density plot of Lu-
HfDM model ages.


213


Age (Ma)





























Age (Ma)
Figure 5-17. Probability density plot of U-Pb age populations in all zones of the Congo
and Kalahari cratonic margins, the Neoproterozoic Nama Group and the
Kaoko belt of the Congo cratonic margin. Populations include concordant
grains and upper intercept ages of discordant grains that plotted along
discordia. 206Pb/238U ages used for concordant grains <1 Ga, 207Pb/206Pb
ages used for concordant grains >1 Ga.


Age (Ma)
Figure 5-18. Probability density plot of Lu-HfDM model age populations in all zones of the
Congo and Kalahari cratonic margins, the Neoproterozoic Nama Group and
the Kaoko belt of the Congo cratonic margin.


214


















































Phanerozoic sediments


Archean cratons


,* Pan-African
orogenic belts


2.0-1.8 Ga terrains

1.4 1.0 Ga terrains

Neoproterozoic-early
Paleozoic basins


Figure 5-19. Geologic map of southern Africa. Displays locations of source terrains for
the Congo and Kalahari cratons. Modified from Kroner and Cordani, 2003.


215


Kaoko
Belt









CHAPTER
CONCLUSION

The results of this study reveal that the provenance was different for the Congo

and Kalahari cratonic margins during most of the Proterozoic. Only in strata deposited in

the latest Neoproterozoic-Cambrian, during the amalgamation of Gondwana, were the

detrital zircon signatures of the Congo and Kalahari cratonic margins similar. These

findings suggest that the Congo and Kalahari cratons were independent of one another

prior to the Damara Orogeny in the latest Neoproterozoic-Cambrian times.

Detrital zircons were obtained from metasedimentary rocks deposited during the

Neoproterozoic-early Cambrian along the margins of the Congo and Kalahari cratons.

U-Pb and Hf isotopic analyses revealed distinct zircon age populations, Lu-HfDM model

ages and extents of crustal recycling throughout deposition across the cratonic margin.

Younger sediments deposited on the Kalahari margin (the Nama Group) display

evidence of sedimentary contributions and zircon deposition consistent with

syndepositional strata on the Congo margin. The Neoproterozoic Nama Group

metasediments have zircon age populations consistent with those of the Damara

Sequence of the Congo margin strata and were likely derived from the uplifted Damara

Orogen. Both cratonic margins reflect contributions from Archean to late Proterozoic

strata intermingled across sedimentary sequences, all of which are consistent with

intracratonic terranes present on the individual craton. Pb-Pb, Sm-Nd and trace element

data are indistinguishable across the sampled Damara Belt transect due to breakdown

and mixing of the clay fraction during metamorphism and weathering.

This study therefore confirms that the Congo and Kalahari cratons were most likely

separated from one another at the time of Rodinia. Their incongruent detrital zircon U-


216









Pb and Hf isotope compositions describe separate evolutionary paths and make it

unlikely that the Congo and Kalahari were joined before the Pan-African Damara

Orogeny. Additional work will need to be done to determine the cratons' individual roles

and amount of participation in the Rodinia supercontinent.


217









APPENDIX: GEOCHRONOLOGIC PROVINCES

Kalahari Craton

Interior Provinces

Namaqua-Natal Province. The western Namaqua belt is separated from the

eastern Natal belt by a terrane boundary overlain by Phanerozoic sediments. The

Namaqua sector of the province consists of five predominantly Paleoproterozoic aged

terranes bound by late Mesoproterozoic shear zones (Jacobs et al., 2008). The

Paleoproterozoic terranes are intruded by granitic to charnockitic plutons with ages

ranging from ca. 1200-1030 Ma (Jacobs et al., 2008). The peak UHT regional

metamorphic event in the Namaqua belt and an accompanying pulse of magmatism is

thought to have occurred at ca. 1060-1030 Ma (Robb et al., 1999), though some Central

Namaqua metamorphics were dated at ca. 1015 Ma (Meert and Torsvik, 2003). In

Eastern Namaqua the Namaqua belt is unconformably overlain by the bimodal

volcanics and immature sediments of the Koras Group. The largely undeformed Koras

Group was zircon dated at 1171 7 Ma (Jacobs et al., 2008).

The Natal sector of the province consists of three juvenile Mesoproterozoic

terranes that were probably formed as individual island arcs at ca. 1250-1100 Ma

(Jacobs et al., 2008). The Natal belt is characterized by thin skin tectonics, contains

remnants of ophiolites and was thrust NE over the Kaapvaal craton at ca. 1135 Ma

(Kroner and Cordani, 2003; Jacobs et al., 2008). The deformation was accompanied by

the intrusion of granitoids and charnockites with peak granulite-grade metamorphism

between ca. 1070 and 1030 Ma (Jacobs et al., 2008 and references therein).

Microgranite dykes continued to be emplaced through ca. 1020 Ma and some low-

temperature thermal perturbations have been dated at ca. 900 Ma (Jacobs et al., 2008).


218









Rehoboth Inlier. The poorly exposed Rehoboth Subprovince forms the basement

of the metamorphosed volcano-sedimentary Rehoboth Group. The basement consists

of ca. 2600 Ma rocks of variable composition and is intruded by 1800-2000 Ma calc-

alkaline granitoids (Kroner and Cordani, 2003). A migmatitic orthogneiss dated at ca.

1784 Ma (Jacobs et al., 2008) from the Rehoboth area of central Namibia is overlain by

a volcanic member of the Rehoboth Group with a U-Pb crystallization age of ca. 1782

Ma (Jacobs et al., 2008 and references therein). Large scale plutonism, with

compositions ranging from ultramafic to granitic, accompanied and followed the

deposition of the Rehoboth Group at ca. 1780-1765 Ma (Jacobs et al., 2008).

Emplacement of the layered mafic Alberta Complex, the most prominent member of the

Rehoboth Inlier, is estimated at ca. 1759 Ma based on a seven point Sm/Nd isochron

(Becker and Brandenburg, 2002). Becker and Brandenburg (2002) and Jacobs et al.

(2008) argue that the geology of the Rehoboth Group is demonstrative of the transition

from a volcanic arc to an arc/back arc environment.

Felsic volcanic rocks overlie interbedded volcanic and sedimentary sequences and

unconformably overlie the Paleoproterozoic basement in the north. The felsic volcanics

yield U-Pb zircon crystallization ages of 1225 10 Ma and 1226 11 Ma (Becker et al.,

2006). The volcanics are overlain by a distal sedimentary sequence and a younger

interbedded quartzite and metapelite layer. These sequences are overlain by another

igneous layer zircon dated at ca. 1100 Ma (Becker et al., 2006).

Sinclair Group. The volcanic and intrusive rocks of the Sinclair Group are

exposed along the western margin of the Kalahari craton. The Sinclair Group is

underlain by isolated occurrences of metamorphosed igneous and sedimentary rocks


219









thought to correspond to the Kairab Complex in the west. The Kairab Complex is

intruded by the arc related, post-kinematic Aunis tonalite that gives a U-Pb zircon age of

1376.5 +1.7/-1.6 Ma (Becker et al., 2006). The calc-alkaline magmatic rocks of the

Sinclair Group are of low metamorphic grade and are interpreted as being ca. 1100 Ma,

broadly coeval to the Namaqua tectonic period though genetically unrelated (Kroner and

Cordani, 2003). The Sinclair Group is intruded by three separate cycles of granitoids

emplaced from ca. 1360-1247 Ma (Becker et al., 2006).

Zimbabwe-Kaapvaal Craton. The Zimbabwe craton is comprised of three

generations of granite-greenstone terrains emplaced at ca. 3500, 2900 and 2700 Ma

and a granitic suite emplaced at ca. 2600-2500 Ma (Zeh et al., 2009). Local Early

Archean remnants have been zircon dated at ca. 3800 Ma (Zeh et al., 2009).

The Limpopo Belt forms the suture between the Archean Zimbabwe and Kaapvaal

cratons, which were connected by ca. 2000 Ma to form the Zimbabwe-Kaapvaal craton

(ZKC; Jacobs et al., 2008; Zeh et al., 2009). The predominantly gneissic Limpopo Belt

experienced magmatism and metamorphism between ca. 2750 and 2600 Ma and again

at ca. 2060 to 2020 Ma (Zeh et al., 2009).

The Kaapvaal craton is comprised of three large tonalite-trondhjemite-

granodiorites (TTG) terrains formed from ca. 3700 to 2800 Ma (Zeh et al., 2009). The

terrains amalgamated at approximately 3230 and 2900 Ma (Zeh et al., 2009), forming

the Archean nucleus of the Kaapvaal craton. A younger generation of plutons was

emplaced across the craton at ca. 2800-2650 Ma (Zeh et al., 2009).

Umkondo Igneous Province. The Umkondo Igneous Province is an extensive

network of dolerite sills thought to be the result of the up-welling of a large mantle plume


220









at ca. 1100 Ma (Gose et al., 2006; Jacobs et al., 2008). The Umkondo dolerites have U-

Pb zircon crystallization ages of 1112 0.5 to 1108 0.9 Ma, implying emplacement

within a relatively short time period (Gose et al., 2006). The Umkondo province is

genetically related to dolerites in the Grunehogna province in East Antarctica. The

dolerites in both locations are overlain by the remnants of flood basalts genetically

similar to the dolerites (Gose et al., 2006).

Paleoproterozoic belts. A Paleoproterozoic volcano-sedimentary belt, termed the

Magondi Belt, lies adjacent to the Zimbabwe craton. The Magondi Belt displays

medium-grade metamorphism and interbedded syntectonic granitoids that give U-Pb

zircon crystallization ages of ca. 1950 Ma (Jacobs et al., 2008). Jacobs et al. (2008)

suggest that the Magondi belt may represent an island arc/back arc complex that

collided with the ZKC. Southwest of the ZKC lies the Paleoproterozoic Kheis Belt, a

volcano-sedimentary sequence of poorly constrained age that represents a fold and

thrust belt onto the Archean craton (Jacobs et al., 2008). Between the Magondi and

Kheis Belts, to the west of the ZKC, lies the fault-bounded Okwa Block. The poorly

exposed Okwa Block is composed of orthogneisses and metarhyolites of undetermined

age (Jacobs et al., 2008).

Marginal Provinces

Choma-Kaloma Block. The Choma-Kalomo Block represents a Mesoproterozoic

orogenic belt along the Kalahari cratonic margin. The Choma-Kalomo Block is

composed of a metasedimentary sequence intruded by at least two separate granitic

generations, one U-Pb zircon dated at 1370-1340 Ma (Jacobs et al., 2008) and 1352

14 and 1343 6 Ma (De Waele et al., 2003) and another with SHRIMP U-Pb zircon

ages of ca. 1108 Ma (Batumike et al., 2007). In the late Mesoproterozoic the Choma-


221









Kalomo Block underwent rifting during which amphibolite faces gneisses were intruded

by granitoids zircon dated at ca. 1108 Ma (Jacobs et al., 2008). Some workers have

proposed that this block is an extension of the Irumide Belt of the Congo craton due to a

similarity in structural trends and isotope geochronology (De Waele et al., 2003), more

recent work, however, has questioned this correlation because of significant differences

in the timing of deformation and lithology (e.g. Batumike et al., 2007).

Arequipa-Antofalla Basement. Lowey et al. (2003) suggest that the similarities in

the tectonic histories of the Amazonian Arequipa-Antofalla Basement (AAB) and the

Kalahari craton imply that the Kalahari was the parent craton of the AAB. The AAB and

Kalahari craton both display magmatic and metamorphic events at ca. 2000-1800 Ma

followed by ca. 1300-1000 Ma magmatism and metamorphism (Lowey et al., 2003). The

only differences in their tectonic histories during the early to mid Proterozoic are a

period of magmatism in the Kalahari craton at ca. 1650 Ma and evidence of magmatism

in the AAB at ca. 1500-1400 Ma (Lowey et al ., 2003).

Congo Craton

Interior Provinces

Basement inliers. A number of genetically distinct basement inliers occur with

little surface exposure within the Damara Orogen. The gneissic Ekuja-Otjihangwe

Nappe Complex lies within the Southern Zone in the Congo craton. The complex give

U-Pb zircon crystallization ages of 1063 9 and 1115 13 Ma and is intruded by pre-

Damaran granites (Becker et al., 2006). The metamorphic Abbabis Inlier lies within the

Central Zone of the Damara Orogen. Augen gneisses from the metamorphic complex

contain zircons with igneous crystallization ages of 2038 5 Ma, constraining a

minimum age for the supracrustal rocks of the region (Becker et al., 2006). Zoning and


222









complex internal structures within the zircon grains suggest a multistage formation

history for the Abbabis region. Granitoid gneisses with ages of ca. 1038 Ma and 1102

Ma from the Khan Gorge near the Rossing mine contained xenocrystic zircons with

ages of 2014 39 Ma and 2093 51 Ma, respectively (Rainaud et al., 2005).

Kamanjab Inlier. The Kamanjab Inlier is a Paleoproterozoic magmatic arc terrain

imprecisely constrained at ca. 1987 and 1662 Ma (Rainaud et al., 2005). A rhyolitic

quartz porphyry of the Khoabendus Group has been dated at 1862 6 Ma (Rainaud et

al., 2005). The Kamanjab Inlier along with the Bangweulu block form a regionally

extensive Paleoproterozoic magmatic terrane ranging from northern Namibia to

northern Zambia and the Democratic Republic of Congo that collided with the Tanzania

craton at ca. 2000-1900 Ma (Rainaud et al., 2005).

Damara Sequence. The Neoproterozoic Damara Sequence is composed of three

distinct units. The basal siliciclastic Nosib Group has an upper age limit of ca. 750 Ma

(Prave, 1996). The Nosib Group also contains approximately 6600 m of the alkaline

Naauwpoort rhyolite, which has been zircon dated at 746 2 in an ash-flow tuff and at

747 2 in rhyolitic lava (Clifford, 2008). The middle carbonate Otavi Group is thought to

have been deposited during the Neoproterozoic based on field relationships and

glaciogenic deposits. The upper siliciclastic Mulden Group displayed Ar-Ar and Rb-Sr

ages of ca. 560-450 Ma (Prave, 1996).

Kasai-Angola craton. The Neoarchean and Paleoproterozoic Kasai-Angola block

is comprised of abundant granitoids that yield whole rock Rb-Sr ages of 3490-3330 Ma

(De Waele et al., 2008). The granitoids underwent granulite faces metamorphism,

forming gneisses that have been dated at ca. 2800-2400 Ma (Rainaud et al., 2005).


223









Several 2540 Ma granites from the Kasai-Angola craton display xenocrystic cores with

ages up to 3154 Ma (Rainaud et al., 2005). The only reliable U-Pb age dating done in

the Kasai-Angola craton is from granitic gneisses which yielded crystallization ages of

2538 10 and 2561 10 Ma and were collected in northwestern Zambia (De Waele et

al., 2008). An intrusive porphyritic granite in the gneiss sequence yielded a U-Pb age of

2058 7 Ma (De Waele et al., 2008).

Angola basement. The Archean Angola basement is composed of a magmatic

orthogneiss complex and a metasedimentary quartzite and schist complex displaying

evidence of ca. 2800-2700 Ma metamorphism (De Waele et al., 2008). In the southern

region of the complex the basement comprises 2645-2464 Ma protoliths that show

evidence of migmatisation at ca. 2290-1850 Ma (De Waele et al., 2008). The basement

was intruded by granitoids U-Pb zircon dated at ca. 2040-1960 Ma in southern Angola

and at ca. 1985-1960 in northern Namibia (De Waele et al., 2008). The sedimentary

Chela group overlies the basement sequences in which an ignimbrite was U-Pb zircon

dated at 1790 17 Ma (De Waele et al., 2008).

Kuene Intrusive Complex. The Kunene Intrusive Complex (KIC) intrudes the

Paleoproterozoic rocks that span the Angola-Namibia boundary. The layered

anorthosite, leucotroctolite and troctolite KIC shows no evidence of deformation in

Angola but was affected by Pan-African metamorphism in Namibia (Becker et al., 2006).

A U-Pb zircon age from a mangerite vein in Angola constrains the emplacement of the

KIC at 1370 4 Ma (Becker et al., 2006). Zircons from the Zebra Mountains in Namibia

gave a U-Pb age of 1385 25 Ma (Seth et al., 2003).


224









Epupa Metamorphic Complex. The Paleoproterozoic to Mesoproterozoic Epupa

Metamorphic Complex is considered the southwest margin of the Congo craton and

extends from northwest Namibia into southern Angola. The Paleoproterozoic basal

Epupa Complex is a high grade metamorphic basement inlier. The Epupa basement

contains gneisses dated using whole rock Rb-Sr techniques at ca. 1884 Ma and

migmatites dated at ca. 1826 Ma (Seth et al., 2003). The Epupa metamorphics were

intruded by several granitic bodies, two of which were dated at ca. 1795 Ma and 1686

Ma (Seth et al., 2003). The upper units of the complex show evidence of two orogenic

events, an early event recorded in the Epembe granulites at ca. 1500 Ma and a

Kibaran-aged event at ca. 1300 Ma recorded in the Orue terrane (Rainaud et al.,

2005).The granulitic and paragneissic Epembe terrane has U-Pb zircon ages between

1520 and 1510 Ma, representing igneous crystallization of the protolith (Seth et al.,

2003; Becker et al., 2006). Pb-Pb stepwise leaching on peak-metamorphic garnet and

retrograde sapphirine defined the timing of granulite faces conditions at ca. 1490-1447

Ma (Seth et al., 2003). The Orue terrane is composed primarily of migmatitic ortho- and

paragneisses and is dated at 1334 21 Ma (Rainaud et al., 2005; Becker et al., 2006).

Pb-Pb stepwise leaching and Sm-Nd-Lu-Hf leaching on garnets in conjunction with U-

Pb dating constrained Orue metamorphism between 1367 38 Ma and 1307 15 Ma,

consistent with the timing of KIC emplacement (Brandt and Klemd, 2008).

Marginal Provinces

Kibara belt. The NE-trending Mesoproterozoic Kibara belt is defined by Tack et al.

(2010) as the portion of the orogenic belt occurring SWof the Ubendian belt. They

argue that the NE portion of the orogeny was a separate Mesoproterozoic event and

term it the Karagwe-Ankole belt (KAB). The intra-plate KAB basement has a U-Pb


225









zircon age of 1982 6 Ma, it is intruded by a widespread magmatic event at ca. 1370-

1380 Ma (Tack et al., 2010). Smaller scale A-type granitic intrusions also occurred at

ca. 1200 and 990 Ma and mafic sills intruded at ca. 1380, 1355-1360 and 1340 Ma

(Tack et al., 2010). The Kibaran belt, formerly a continental margin arc environment,

experienced a coeval widespread magmatic event at ca. 1375 Ma (Tack et al., 2010).

Three distinct generations of smaller scale S-type granitic intrusions occurred at ca.

1330, 1260 and 1180 Ma in the Kibara belt (Tack et al., 2010).

Ubende belt. The NW-trending Paleoproterozoic Ubende belt cross cuts the

Kibaran belt near Lake Tanganyika. The Ubende belt is composed of a 2100-2025 Ma

protolith that was exhumed between ca. 1950 and 1850 Ma under amphibolite faces

conditions (Tack et al., 2010). The Ubendian belt was likely the result of the collision of

the Kamanjab-Bangweulu terrane with the Tanzania craton at ca. 2000-1900 Ma

(Rainaud et al., 2005). The gneissic and metasedimentary rocks of the Ubende belt are

intruded by post tectonic granitoids dated at ca. 1870-1820 Ma (Rainaud et al., 2005;

De Waele et al., 2008).

Irumide belt. The Proterozoic Irumide belt represents a thrust system developed

along the margin of a cratonic nucleus. The Archean to Paleoproterozoic Bangweulu

block was assembled as a coherent body by ca. 1800 Ma and forms the basement of

the Irumide belt. It is composed primarily of Paleoproterozoic granites and gneisses

zircon dated at ca. 2050-1930 Ma with minor Neoarchean components dated at ca.

2730 Ma (De Waele et al., 2009). The Bangweulu block was intruded by biotite-bearing

granitoids from ca. 1660 to 1550 Ma (De Waele et al., 2009). The basement is

unconformably overlain by the Paleoproterozoic Muva Supergroup. The Muva


226









Supergroup is composed of mainly of metasedimentary successions of quartzite and

metapelite deposited from 1940 to 1660 Ma with interbedded volcanic units dated at

1880-1850 Ma (Rainaud et al., 2005; De Waele et al., 2009). Widespread granitoid

magmatism occurred at 1665-1630 Ma in the southwest and 1590-1530 Ma in the

northeast, with two highly deformed samples giving ages of 1980-1950 Ma (De Waele

et al., 2009). The Irumide Orogeny was characterized by the emplacement of

voluminous granitoid plutons between ca. 1050 and 940 Ma (Rainaud et al., 2005; De

Waele et al., 2009).

Lufilian arc. The Central African Copperbelt is composed primarily of the

Neoproterozoic metasediments of the Katanga Supergroup. The Katanga Supergroup

was deformed during the Neoproterozoic to early Paleozoic era to form a fold-thrust belt

known as the Lufilian arc (Rainaud et al., 2005). The arc unconformably overlies a

copper-rich basement composed of roughly equal proportions of schists and intrusive

granitoids. The schist was SHRIMP U-Pb zircon dated at ca. 1980-1870 Ma while the

granitoids were U-Pb zircon dated at ca. 2050-1975 Ma (Rainaud et al., 2005).

Zambezi belt. The Neoproterozoic Zambezi Belt rests unconformably atop a

gneissic basement dated at ca. 1106 Ma (De Waele et al., 2008). The belt contains

voluminous deposits of felsic volcanics and volcaniclastics SHRIMP U-Pb dated at ca.

880 Ma (De Waele et al., 2008). Geochemical evidence suggests a continental

thinning/extensional environment during the timing of volcanic deposition (De Waele et

al., 2008). Rift to drift sedimentary sequences unconformably overlie the volcanic

sequences in the Zambezi belt. The sedimentary sequences are intruded by various

granitoid plutons, two of which have been dated at ca. 820 Ma (De Waele et al.,


227









2008).The top layer of the sediments contains mafic inclusions interpreted to be

remnants of oceanic crust either tectonically emplaced during the Pan-African collision

or as an ophiolitic melange during the original formation (De Waele et al., 2008). The

Kalahari craton is separated from the Zambezi belt by a laterally extensive suite of

granitic gneisses and metarhyolites that were emplaced at ca. 880-800 Ma (Jacobs et

al., 2008).


228









LIST OF REFERENCES


Abouchami, W., Galer, S.J.G., and Hofmann, A.W., 2000, High precision lead isotope
systematics of lavas from the Hawaiian Scientific Drilling Project; Isotope tracers
in geochemistry and cosmochemistry [modified]: Chemical Geology, v. 169, p.
187-209.

Batumike, J.M., O'Reilly, S.Y., Griffin, W.L., and Belousova, E.A., 2007, U-Pb and Hf-
isotope analyses of zircon from the Kundelungu kimberlites, D.R. Congo;
implications for crustal evolution: Precambrian Research, v. 156, p. 195-225.

Becker, T., and Brandenburg, A., 2002, The petrogenesis of the Alberta Complex within
the Rehoboth Basement Inlier of Namibia: South African Journal of Geology,
v.105, p. 147-62.

Becker, T., Schreiber, U., Kampunzu, A.B., and Armstrong, R., 2006, Mesoproterozoic
rocks of Namibia and their plate tectonic setting: Journal of African Earth
Sciences, v. 46, p. 112-140.

Blanco, G., Rajesh, H.M., Germs, G.J.B., and Zimmermann, U., 2009, Chemical
composition and tectonic setting of chromian spinels from the Ediacaran-early
Paleozoic Nama Group, Namibia: Journal of Geology, v. 117, p. 325-341.

Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu-Hf and Sm-Nd isotopic
composition of CHUR; constraints from unequilibrated chondrites and
implications for the bulk composition of terrestrial planets: Earth and Planetary
Science Letters, v. 273, p. 48-57.

Brandt, S., and Klemd, R., 2008, Upper-amphibolite faces partial melting of
paragneisses from the Epupa Complex, NW Namibia, and relations to
Mesoproterozoic anorthosite magmatism: Journal of Metamorphic Geology, v.
26, p. 871-893.

Burke, K., Ashwal, L.D., and Webb, S.J., 2003, New way to map old sutures using
deformed alkaline rocks and carbonatites: Geology (Boulder), v. 31, p. 391-394.

Clifford, T.N., 2008, The geology of the Neoproterozoic Swakop-Otavi transition zone in
the Outjo District, northern Damara Orogen, Namibia: South African Journal of
Geology, v. 111, p. 117-140.

DeWaele, B., Fitzsimons, I.C.W., Wingate, M.T.D., Tembo, F., Mapani, B., and
Belousova, E.A., 2009, The geochronological framework of the Irumide Belt; a
prolonged crustal history along the margin of the Bangweulu Craton: American
Journal of Science, v. 309, p. 132-187.


229









De Waele, B., Johnson, S.P., and Pisaresvky, S.A., 2008, Palaeoproterozoic to
Neoproterozoic growth and evolution of the eastern Congo Craton; its role in the
Rodinia puzzle; Testing the Rodinia hypothesis; records in its building blocks:
Precambrian Research, v. 160, p. 127-141.

De Waele, B., Wingate, M.T.D., Fitzsimons, I.C.W., and Mapani, B.S.E., 2003, Untying
the Kibaran knot; a reassessment of Mesoproterozoic correlations in Southern
Africa based on SHRIMP U-Pb data from the Irumide Belt: Geology (Boulder), v.
31, p. 509-512.

DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Range and crust-
mantle evolution in the Proterozoic: Nature, v. 291, p. 193-196.

Durr, S.B., and Dingeldey, D.P., 1996, The Kaoko Belt (Namibia); part of a late
Neoproterozoic continental-scale strike-slip system: Geology (Boulder), v. 24, p.
503-506.

Frimmel, H.E., 1995, Metamorphic evolution of the Gariep Belt; Special issue to
celebrate the centenary of the Department of Geology/Geological Sciences,
University of Cape Town: South African Journal of Geology, v. 98, p. 176-190.

Frimmel, H.E., 2000, The stratigraphy of the Chameis Sub-terrane in the Gariep Belt in
southwestern Namibia; Henno Martin commemorative volume: Communications
of the Geological Survey of South West Africa/Namibia, v. 12, p. 179-186.

Frimmel, H.E., 2000, New U-Pb zircon ages for the Kuboos Pluton in the Pan-African
Gariep Belt, South Africa; Cambrian mantle plume or far field collision effect?
South African Journal of Geology, v. 103, p. 207-214.

Goscombe, B., Gray, D., Armstrong, R., Foster, D.A., and Vogl, J., 2005, Event
geochronology of the Pan-African Kaoko Belt, Namibia: Precambrian Research,
v. 140, p. 103-131.

Goscombe, B.D., and Gray, D.R., 2008, Structure and strain variation at mid-crustal
levels in a transpressional orogen; a review of Kaoko Belt structure and the
character of west Gondwana amalgamation and dispersal: Gondwana Research,
v. 13, p. 45-85.

Gose, W.A., Hanson, R.E., Dalziel, I.W.D., Pancake, J.A., and Seidel, E.K., 2006,
Paleomagnetism of the 1.1 Ga Umkondo large igneous province in southern
Africa: Journal of Geophysical Research, v. 111, p. @B09101.

Gray, D.R., Foster, D. A., Goscombe, B., Passchier, C.W., and Trouw, A.J., 2006,
40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia, with
implications for tectonothermal and geodynamic evolution: Precambrian
Research, v. 150, p. 49-72.


230









Hanson, R.E., Crowley, J.L., Bowring, S.A., Ramezani, J., Cose, W.A., Dalziel, I.W.D.,
Pancake, J.A., Seidel, E.K., Blenkinsop, T.G., and Mukwakwami, J., 2004,
Coeval Large-Scale Magmatism in the Kalahari and LaurentianCratons During
Rodinia Assembly: Science, v. 304, p. 1126-1129.

Hoffmann, K.H., Condon, D.J., Bowring, S.A., and Crowley, J.L., 2004, U-Pb zircon date
from the Neoproterozoic Ghaub Formation, Namibia; constraints on Marinoan
glaciation: Geology (Boulder), v. 32, p. 817-820.

Jacobs, J., Pisaresvky, S.A., Thomas, R.J., and Becker, T., 2008, The Kalahari Craton
during the assembly and dispersal of Rodinia; Testing the Rodinia hypothesis;
records in its building blocks: Precambrian Research, v. 160, p. 142-158.

John, T., Schenk, V., Haase, K., Scherer, E., and Tembo, F., 2003, Evidence for a
Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge-type
geochemical signatures and pressure-temperature estimates of Zambian
eclogites: Geology, v. 31, p. 243-246.

Johnson, S.D., Poujol, M., and Kisters, A.F.M., 2006, Constraining the timing and
migration of collisional tectonics in the Damara Belt, Namibia; U-Pb zircon ages
for the syntectonic Salem-type Stinkbank Granite: South African Journal of
Geology, v. 109, p. 611-624.

Kamenov, G., Mueller, P., and Perfit, M., 2004, Insights into mass-dependant
fractionation during desolvation of analyte solutions and its importance for
accurate isotope ratio measurements by MC-ICP-MS; AGU 2004 fall meeting:
EOS, Transactions, American Geophysical Union, v. 85, p. @Abstract V51A-
0509.

Kroner, A., and Cordani, U., 2003, African, southern Indian and South American cratons
were not part of the Rodinia supercontinent: evidence from field relationships and
geochronology: Tectonophysics, v. 375, p. 325-352.

Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E.,
Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E.,
Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky,
V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis:
Precambrian Research, v. 160, p. 179-210.

Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., and Gower, C.F., 2003, Eastern Laurentia
in Rodinia; constraints from whole-rock Pb and U/Pb geochronology; Orogenic
belts, regional and global tectonics; a memorial volume to Chris McAulay Powell:
Tectonophysics, v. 375, p. 169-197.

Ludwig, K.R., 1995, Isoplot, version 2.82: a plotting and regression program for
Radiogenic isotope data. 45 p. U.S. Geological Survey, Open-file report 91-445.


231









Meert, J.G., 2003, A synopsis of events related to the assembly of eastern Gondwana;
Paleomagnetism applied to tectonics; a tribute to Rob Van der Voo:
Tectonophysics, v. 362, p. 1-40.

Meert, J.G., and Torsvik, T.H., 2003, The making and unmaking of a supercontinent;
Rodinia revisited; Orogenic belts, regional and global tectonics; a memorial
volume to Chris McAulay Powell: Tectonophysics, v. 375, p. 261-288.

Miller, R. McG. (Ed.), 2008, Geology of Namibia, Special Publication: Geological Survey
of Namibia, v.1-3.

Mueller, P., Kamenov. G., Heatherington, A., and Richards, J., 2008, Crustal evolution
in the southern Appalachian orogen: Evidence from Hf isotopes in detrital
zircons. Journal of Geology, v. 116, p. 414-422.

Paces, J.B., and Miller, J.D.,Jr, 1993, Precise U-Pb ages of Duluth Complex and related
mafic intrusions, northeastern Minnesota; geochronological insights to physical,
petrogenetic, paleomagnetic, and tectonomagnetic processes associated with
the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p.
13,997-14,013.

Powell, C.McA., and Pisarevsky, S.A., 2002, Late Neoproterozoic assembly of East
Gondwana: Geology, v. 30, p. 3-6.

Prave, A.R., 1996, Tale of three cratons; Tectonostratigraphic anatomy of the Damara
orogen in northwestern Namibia and the assembly of Gondwana: Geology, v. 24,
p. 1115-1118.

Rainaud, C., Master, S., Armstrong, R.A., and Robb, L.J., 2005, Geochronology and
nature of the Palaeoproterozoic basement in the Central African Copperbelt
(Zambia and the Democratic Republic of Congo), with regional implications;
Recent advances in the geology and mineralization of the Central African
Copperbelt dedicated to the memory and work of Henri Ali Basira Kampunzu:
Journal of African Earth Sciences, v. 42, p. 1-31.

Robb, L.J., Armstrong, R.A., and Waters, D.J., 1999, The history of granulite-facies
metamorphism and crustal growth from single zircon U-Pb geochronology;
Namaqualand, South Africa: Journal of Petrology, v. 40, p. 1747-1770.

Seth, B., Armstrong, R.A., Brandt, S., Villa, I.M., and Kramers, J.D., 2003,
Mesoproterozoic U-Pb and Pb-Pb ages of granulites in NW Namibia;
reconstructing a complete orogenic cycle: Precambrian Research, v. 126, p. 147-
168.

Stanistreet, I.G., and Charlesworth, E.G., 2001, Damaran basement-cored fold nappes
incorporating pre-collisional basins, Kaoko Belt, Namibia, and controls on


232









Mesozoic supercontinental break-up: South African Journal of Geology, v. 104, p.
1-12.

Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic
basalts; implications for mantle composition and processes; Magmatism in the
ocean basins: Geological Society Special Publications, v. 42, p. 313-345.

Tack, L., Wingate, M.T.D., De Waele, B., Meert, J., Belousova, E., Griffin, B., Tahon, A.,
and Fernandez-Alonso, M., 2010, The 1375 Ma "Kibaran event" in Central Africa;
Prominent emplacement of bimodal magmatism under extensional regime:
Precambrian Research, v. 180, p. 63-84.

Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T.,
Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K.,
Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and
Dragusanu, C., 2000, JNdi-1: a neodymium isotopic reference in consistency
with LaJolla neodymium: Chemical Geology, v. 168, p. 279-281.

Tohver, E., D'Agrella-Filho, M.S., and Trindade, R.I.F., 2006, Paleomagnetic record of
Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia
and Gondwana assemblies: Precambrian Research, v. 147, p. 193-222.

Torsvik, T.H., 2003, The Rodinia jigsaw puzzle: Science, v. 300, p. 1379-1381.

Veevers, J.J., 2003, Pan-African is Pan-Gondwanaland; oblique convergence drives
rotation during 650-500 Ma assembly: Geology (Boulder), v. 31, p. 501-504.

Zeh, A., Gerdes, A., and Barton, J.M., 2009, Archean accretion and crustal evolution of
the Kalahari craton the zircon age and Hf isotope record of granitic rocks from
Barberton/Swaziland to the Francistown Arc: Journal of Petrology, v. 50, p. 933-
966.


233









BIOGRAPHICAL SKETCH

Brittany's love of science and learning was sparked when she was a child. She

has always been infinitely curious about everything and began exploring the world in the

woods down the street from her house. Ever since then, she has wanted to see and

understand the world around her.

When Brittany graduated high school she was still adrift, not having found a

passion. She did not discover geology until her third year of college. Having abandoned

her original architecture major she knew only that she wanted to study science.

Hesitantly exploring the possibility of geology, undergraduate advisor Joe Meert

enthusiastically described a life full of exploration and discovery, of learning all there is

to know about the natural world. Brittany immediately enrolled and by the end of her first

semester as a geologist she knew she would do this for the rest of her life.

During her undergraduate studies at the University of Florida Brittany developed

an interest in geophysics and geochemistry. She excitedly developed and honed these

interests in pursuit of her master's degree while investigating the past locations of

Archean cratons. The geological sciences have taken her to places she never dared

dream of, from the deserts of Namibia to the coral reefs of the Bahamas, and she

cannot wait to see where they take her next.


234





PAGE 1

1 THE CONGO KALAHARI CRATONIC RELATIONSHIP: FROM RODINIA TO GONDWANA By BRITTANY LYNN NEWSTEAD A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2010

PAGE 2

2 2010 Brittany Lynn Newstead

PAGE 3

3 To my parents, who have always believed in me

PAGE 4

4 ACKNOWLEDGMENTS First and foremost I would like to thank my advisor, Dave Foster, for all of his help and wisdom throughout this process and for all he has taught me in the last two years. I would also like to thank my other committee members, Paul Mueller and Joe Meert, for their insightful comments and help along the way. Thanks to Ben Goscombe and Ben Mpani for al l of their help in the field. And a special thanks to George Kamenov, without whom I would have no data. I thank all of my teachers over the years, without their lesson s I would not be here. I thank my parents, brother and other family members for all of t heir support over the years. They taught me to think for myself and encouraged my endless curiosity. I also want to thank all of the friends near and far who have been with me throughout, especially Alex and Kelly, who kept me sane through the worst of it. I also thank everyone in the geology department, for all of the help and laughter.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ .............. 4 LIST OF TABLES ................................ ................................ ................................ ......................... 7 LIST OF FIGURES ................................ ................................ ................................ ..................... 11 LIST OF ABBREVIATIONS ................................ ................................ ................................ ...... 14 ABSTRACT ................................ ................................ ................................ ................................ 15 CHAPT ER 1 INTRODUCTION ................................ ................................ ................................ ................. 17 2 BACKGROUND ................................ ................................ ................................ ................... 20 Kalahari Craton ................................ ................................ ................................ .................... 20 Congo Craton ................................ ................................ ................................ ...................... 21 Damara Orogeny ................................ ................................ ................................ ................. 22 3 METHODS ................................ ................................ ................................ ........................... 27 Detrital Zirc on Analysis ................................ ................................ ................................ ...... 27 Whole Rock Analysis ................................ ................................ ................................ .......... 29 4 RESULTS ................................ ................................ ................................ ............................. 32 Detrital Zircon Geochr onology ................................ ................................ .......................... 32 Northern Foreland Zone ................................ ................................ ............................. 32 Northern Zone ................................ ................................ ................................ .............. 32 Central Zone ................................ ................................ ................................ ................. 34 Southern Zone ................................ ................................ ................................ .............. 37 Southern Margin Zone ................................ ................................ ................................ 38 Southern Foreland Zone ................................ ................................ ............................. 39 Granitic Rocks ................................ ................................ ................................ .............. 44 Kaoko Belt ................................ ................................ ................................ ..................... 45 Initial Hf Isotope Data ................................ ................................ ................................ ......... 49 Sm/Nd Analysis ................................ ................................ ................................ ................... 51 Common Pb ................................ ................................ ................................ ......................... 52 Trace and Major Element Analysis ................................ ................................ .................. 52 5 DISCUSSION ................................ ................................ ................................ .................... 186 Detrital Zircon Analyses ................................ ................................ ................................ ... 186

PAGE 6

6 Stratigraphic Comparison ................................ ................................ ......................... 186 Nama Group ................................ ................................ ................................ ............... 189 Granitic Rocks ................................ ................................ ................................ ............ 191 Comparison by Structural Zone ................................ ................................ ............... 192 Kaoko Belt ................................ ................................ ................................ ................... 195 Comparison by Craton ................................ ................................ .............................. 196 Source Terrains ................................ ................................ ................................ ................. 198 Congo Craton ................................ ................................ ................................ ............. 198 Kalahari Craton ................................ ................................ ................................ .......... 199 Proportions of Crustal Recycling ................................ ................................ .................... 201 Sedimentary Mixing ................................ ................................ ................................ .......... 203 6 CONCLUSION ................................ ................................ ................................ ................... 216 APPENDIX: GEOCHRONOLOGIC PROVINCES ................................ .............................. 218 Kalahari Craton ................................ ................................ ................................ .................. 218 Interior Provinces ................................ ................................ ................................ ....... 218 Marginal Provinces ................................ ................................ ................................ .... 221 Congo Craton ................................ ................................ ................................ .................... 222 Interior Provinces ................................ ................................ ................................ ....... 222 Marginal Provinces ................................ ................................ ................................ .... 225 LIST OF REFERENCES ................................ ................................ ................................ ......... 229 BIOGRAPHICAL SKETCH ................................ ................................ ................................ ..... 234

PAGE 7

7 LIST OF TABLES Table page 4 1 U Pb an alysis common Pb corrected results for sample BDG06 91 from the Northern Foreland Zone, Congo Craton. ................................ ................................ .... 54 4 2 U Pb analysis common Pb corrected results for sample DF09 26 from the Northern Zone, C ongo Craton. ................................ ................................ ..................... 56 4 3 U Pb analysis common Pb corrected results for sample DF09 30 from the Northern Zone, Congo Craton. ................................ ................................ ..................... 5 9 4 4 U Pb ana lysis common Pb corrected results for sample DF09 37 from the Northern Zone, Congo Craton. ................................ ................................ ..................... 60 4 5 U Pb analysis common Pb corrected results for sample DF09 43 from the Central Zone, Congo Craton. ................................ ................................ ....................... 61 4 6 U Pb analysis common Pb corrected results for sample DF09 44 from the Central Zone, Congo Craton. ................................ ................................ ....................... 64 4 7 U Pb analysis common Pb corrected results for sample CZ29 from the Central Zone, Congo Craton. ................................ ................................ ....................... 66 4 8 U Pb analysis common Pb corrected results for sample CZ40 from the Central Zone, Congo Craton. ................................ ................................ ....................... 67 4 9 U Pb analysis common Pb corrected results for sample CZ53b from the Central Zone, Congo Craton. ................................ ................................ ....................... 68 4 10 U Pb analysis common Pb corrected results for sample CZ35 from the Central Zone, Congo Craton. ................................ ................................ ....................... 71 4 11 U Pb analysis common Pb corrected results for sample DF06 22 from the Southern Zone, Congo Craton. ................................ ................................ .................... 76 4 12 U Pb analysis common Pb corrected results for sample SZ13 from the Southern Zone, Congo Craton. ................................ ................................ .................... 77 4 13 U Pb analysis common Pb corrected results for sample DF09 12a from the Southern Margin Zone, Kalahari Craton. ................................ ................................ .... 82 4 14 U Pb analysis common Pb corrected results for sample DF09 04 from the Southern Margin Zone, Kalahari Craton. ................................ ................................ .... 84 4 15 U Pb analysis common Pb corrected results for sample DF06 40 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ 87

PAGE 8

8 4 16 U Pb analysis common Pb correcte d results for sample DF06 41 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ 89 4 17 U Pb analysis common Pb corrected results for sample DF06 46 from the Southern Foreland Zone, Kalahari Crato n. ................................ ................................ 91 4 18 U Pb analysis common Pb corrected results for sample DF06 45 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ 93 4 19 U Pb analysis common Pb corrected results for sample DF06 44 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ 95 4 20 U Pb analysis common Pb corrected results for sample DF06 43 from the Southern F oreland Zone, Kalahari Craton. ................................ ................................ 98 4 21 U Pb analysis common Pb corrected results for sample DF06 18 from the Kaoko Belt. ................................ ................................ ................................ .................... 100 4 22 U Pb analysis common Pb corrected results for sample DF09 38 from the Kaoko Belt. ................................ ................................ ................................ .................... 103 4 23 U Pb analysis common Pb corrected results for sample DF09 39 from the Kaoko Belt. ................................ ................................ ................................ .................... 106 4 24 U Pb analysis common Pb corrected results for sample DF06 11 from the Kaoko Belt. ................................ ................................ ................................ .................... 108 4 25 U Pb analysis common Pb corrected results for sample DF06 17 from the Kaoko Belt. ................................ ................................ ................................ .................... 112 4 26 U Pb analysis common Pb corrected results for sample DF06 08 from the Kaoko Belt. ................................ ................................ ................................ .................... 114 4 27 Lu Hf analys is corrected results for sample DF09 26 from the Northern Zone, Congo Craton. ................................ ................................ ................................ ............... 118 4 28 Lu Hf analysis corrected results for sample DF09 30 from the Northern Zone, Congo Craton. ................................ ................................ ................................ ............... 119 4 29 Lu Hf analysis corrected results for sample DF09 43 from the Central Zone, Congo Craton. ................................ ................................ ................................ ............... 120 4 30 Lu Hf analysis corrected results for sample D F09 44 from the Central Zone, Congo Craton. ................................ ................................ ................................ ............... 121 4 31 Lu Hf analysis corrected results for sample CZ29 from the Central Zone, Congo Craton. ................................ ................................ ................................ ............... 122

PAGE 9

9 4 32 Lu Hf analysis corrected results for sample CZ53b from the Central Zone, Congo Craton. ................................ ................................ ................................ ............... 123 4 33 Lu Hf analysis corrected results for sample CZ35 from the Central Zone, Congo Craton. ................................ ................................ ................................ ............... 125 4 34 Lu Hf analysis corrected results for sample DF06 22 from the Southern Zone, Congo Craton. ................................ ................................ ................................ ... 127 4 35 Lu Hf analysis corrected results for sample SZ13 from the Southern Zone, Congo Craton. ................................ ................................ ................................ ............... 128 4 36 Lu Hf analysis corrected results for sample DF09 12a from the Southern Margin Zone, Kalahari Craton. ................................ ................................ ................... 132 4 37 Lu Hf analysis corrected results for sample DF09 04 from the Southern Margin Zone, Kalahari Craton. ................................ ................................ ................... 133 4 38 Lu Hf analysis corrected results for sa mple DF06 40 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ ............... 134 4 39 Lu Hf analysis corrected results for sample DF06 41 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ ............... 135 4 40 Lu Hf analysis corrected results for sample DF06 45 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ ............... 136 4 41 Lu Hf analysis corrected results fo r sample DF06 44 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ ............... 137 4 42 Lu Hf analysis corrected results for sample DF06 43 from the Southern Foreland Zone, Kalahari Craton. ................................ ................................ ............... 138 4 43 Lu Hf analysis corrected results for sample DF06 18 from the Kaoko Belt. ....... 139 4 44 Lu Hf analysis corrected results for sample DF09 38 from the Kaoko Belt. ....... 141 4 45 Lu Hf analysis corrected results for sample DF09 39 from the Kaoko Belt. ....... 142 4 46 Lu Hf analysis corrected resul ts for sample DF06 11 from the Kaoko Belt. ....... 143 4 47 Lu Hf analysis corrected results for sample DF06 17 from the Kaoko Belt. ....... 144 4 48 Lu Hf analysis corrected results for sample DF06 08 from the Kaoko Belt. ....... 146 4 49 Sm/Nd corrected results for the Northern Zone of the Congo craton. ................. 148 4 50 Sm/Nd corrected results for the Central Zone of the Congo craton. .................... 148

PAGE 10

10 4 51 Sm/Nd corrected results for the Southern Zone of the Congo craton. ................ 148 4 52 Sm/Nd corrected results for the Southern Margin Zone of the Kalahari craton. 149 4 53 Sm/Nd corrected results for the Naukluft Nappes of the Kalahari crat on. .......... 149 4 54 Sm/Nd corrected results for the Southern Foreland Zone of the Kalahari craton. ................................ ................................ ................................ ............................ 149 4 55 Sm/Nd corrected results for the K aoko belt of the Congo craton. ........................ 149 4 56 Pb/Pb analysis data for the Northern Zone of the Congo craton. ......................... 149 4 57 Pb/Pb analysis data fo r the Central Zone of the Congo craton. ........................... 150 4 58 Pb/Pb analysis data for the Southern Zone of the Congo craton. ........................ 150 4 59 Pb/Pb analysi s data for the Southern Margin Zone of the Kalahari craton. ........ 150 4 60 Pb/Pb analysis data for the Naukluft Nappes of the Kalahari craton. .................. 151 4 61 Pb/Pb analysis data for the Southern Foreland Zone of the Kalahari craton. .... 151 4 62 Pb/Pb analysis data for the Kaoko belt of the Congo craton. ............................... 151 4 63 Major oxide element analysis data for the Damara Orogen. ................................ 152 4 64 Trace element analysis data for the Damara Orogen. ................................ ........... 154

PAGE 11

11 LIST OF FI GURES Figure page 1 1 Differing m odels of Rodinia. ................................ ................................ ......................... 19 2 1 Geologic map of the Damara Orogen in central Namibia. ................................ ....... 24 2 2 Structural cross section of the Damara Orogen.. ................................ ...................... 25 2 3 Stratigraphic column of the Damara Orogen with collected samples labeled.. .... 26 3 1 Geologic maps of the Damara Orogen with the location of collection for all analyzed samples marked. ................................ ................................ ........................... 31 4 1 Zircon geochronology analysis for sample BDG06 91 from the Mulden Formation. ................................ ................................ ................................ ..................... 157 4 2 Zircon geochronology analysis for sample DF09 26 from the Kuiseb Schist.. ... 158 4 3 Zircon geochronology analysis for sample DF09 30 from the Kuiseb Schist. .... 159 4 4 Zircon geochronology analysis for sample DF09 44 from the Nosib Group ....... 160 4 5 Zircon geochronology analysis for sample CZ29 from the Khan Formation ....... 161 4 6 Zircon geochronology analysis for sample CZ40 from the Rossing Formation. 162 4 7 Zircon geochronology analysis for sample CZ53b from the Tinkas Formation .. 163 4 8 Zircon geochronology analysis for sample CZ35 from the Kari bib Formation ... 164 4 9 Zircon geochronology analysis for sample DF06 22 (SZ40) from the Kuiseb Schist in the Matchless Amphibolite Belt ................................ ................................ .. 165 4 10 Zircon geochronology analysis for sample SZ13 from the Kuiseb Schist ........... 166 4 11 Zircon geochronology analysis for sample DF09 12a from the Hakos Formation ................................ ................................ ................................ ....................... 167 4 12 Zircon geochronology analysis for sample DF09 04 from the Naos Diamictite. 168 4 13 Zircon geochronology analysis for sample DF06 40 from the Kuibis Formatio n. ................................ ................................ ................................ ..................... 169 4 14 Zircon geochronology analysis for sample DF06 41 from the Schwarzrand Subgroup. ................................ ................................ ................................ ...................... 170

PAGE 12

12 4 15 Zircon geochronology analysis for sample DF06 46 from the Schwarzrand Subgroup. ................................ ................................ ................................ ...................... 171 4 16 Zircon geochronology analysis for sample DF06 45 from the Fish River Formation ................................ ................................ ................................ ....................... 172 4 17 Zircon geochronology analysis for sample DF06 44 from the Fish River Formation ................................ ................................ ................................ ....................... 173 4 18 Zircon geochronology analysis for sample DF06 43 from the Fish River Formation ................................ ................................ ................................ ....................... 174 4 19 Zircon geochronology analysis for sample DF09 37 from a granitic pluton in the Northern Zone. ................................ ................................ ................................ ....... 175 4 20 Zircon geochronology analysis for sample DF09 43 from the grainitic gneissic basement of the Central Zone. ................................ ................................ ................... 176 4 21 Zircon geochronology analysis for sample DF06 18 from the Hoanib River Group ................................ ................................ ................................ .............................. 177 4 22 Zircon geochronology analysis for sample DF09 38 from the Ogden Mylonite 178 4 23 Zircon geochronology analysis for sample DF09 39 from the Ogden Mylonite. 179 4 24 Zircon geochronology analysis for sample DF06 11 from the Coastal Terrane 180 4 25 Zircon geochronology analysis for sample DF06 08 from the Khumib Terrane. ................................ ................................ ................................ .......................... 181 4 26 Zircon geochronology analysis for sample DF06 17 from the Hoanib River Formation ................................ ................................ ................................ ....................... 182 4 27 Comprehensive plot of all epsilon Hf data for the Congo and Kalahari cratonic margins. ................................ ................................ ................................ .......... 1 83 4 28 Comprehensive plot of all Sm Nd Dm model ages against relative distance to the SZ SMZ boundary ................................ ................................ ................................ 183 4 29 Comprehensive plot of all epsilon Nd data for the Congo and Kalahari cratonic margins. ................................ ................................ ................................ .......... 184 4 30 Plots of Pb/Pb data .. ................................ ................................ ................................ .... 184 4 31 Bivariate oxide plots of major element data ................................ ............................. 185 4 32 Spider diagrams of rare earth element data ................................ ............................ 185 5 1 Detrital zircon U Pb age populations from the Central Zone. ............................... 205

PAGE 13

13 5 2 Detrital zircon U Pb age populations from the Northern Zone and Northern Foreland Zone. ................................ ................................ ................................ ............. 205 5 3 Detrital zircon U Pb age populations from the Southern Zone ............................. 206 5 4 Detrital zircon U Pb age populations from the Southern Margin Zone ................ 206 5 5 Detrital zircon U Pb age populations from the Nama Group of the Southern Foreland Zone. ................................ ................................ ................................ ............. 207 5 6 Hf isotope data for the Northern Zone on the Congo margin. ............................... 207 5 7 Hf isotope data for the Central Zone on the Congo Margin. ................................ 208 5 8 Hf isotope data for the Southern Zone on the C ongo Margin. .............................. 208 5 9 Hf isotope data for the Southern Margin Zone on the Kalahari Margin. .............. 209 5 10 Hf isotope data for the Nama Group in the Southern Foreland Zone on the Kalahari Margin. ................................ ................................ ................................ ........... 209 5 11 Probability density plot of U Pb age populations in all zones in the Congo cratonic margin. ................................ ................................ ................................ ............ 210 5 12 Probability density plot of U Pb age populations in all zones in the Kalahari cratonic margin. ................................ ................................ ................................ ............ 210 5 13 Hf isotope data for the zones of the Congo cratonic margin. ................................ 211 5 14 Hf isotope data for the zones of the Kalahari cratonic margin. ............................. 212 5 15 Probability density plot of U Pb age populations in th e Kaoko belt ...................... 213 5 16 Hf isotope data for the Kaoko belt on the Congo cratonic margin. ....................... 213 5 17 P robability density plot of U Pb age p opulations in all zones ............................... 214 5 18 Probability density plot of Lu Hf DM model age populations in all zones. ............. 214 5 19 Geologic map of sout hern Africa. Displays locations of source terrains ............. 215

PAGE 14

14 LIST OF ABBREVIATIONS APWP Apparent Polar Wander Paths CHUR Chondritic Uniform Reservoir CZ Central Zone of the Damara Orogen, located on the Congo cratonic margin DM Depleted Mantle KZ Kaoko Belt, located on the Congo cratonic margin LA MC ICP MS Laser Ablation Multi Collector Inductively Coupled Plasma Mass Spectrometry MSWD Mean Square Weighted Deviation NFZ Northern Foreland Zone of the Damara Orogen, located on the Congo cratonic margin NZ Northern Zone of the Damara Orogen, located on the Congo cratonic margin REE Rare Earth Elements SFZ Southern Foreland Zone of the Damara Orogen, located on the Kalahari cratonic margin SMZ Southern Margin Zone of the Damara Oroge n, located on the Congo cratonic margin SZ Southern Zone of the Damara Orogen, located on the Kalahari cratonic margin TRA Time Resolved Analysis XRF X Ray Fluorescence

PAGE 15

15 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science THE CONGO KALAHARI CRATONIC RELATIONSHIP: FROM RODINIA TO GONDWANA By Brittany Lynn Newstead August 2010 Chair: David Foster Major: Geology Identification of Pre cambrian suture zones is difficult, in part, because Precambrian mobile belts typically lack Phanerozoic indicators of ocean closure such as ultra high pressure (UHP) rocks and ophiolites. Knowledge of the evolutionary paths of ancient cratons provides val uable insight into the progression of supercontinent cycles. Utilizing U Pb and Hf analyses of detrital zircons from the Neoproterozoic Damara Belt, the orogenic belt between the Congo and Kalahari cratons in southern Africa, we compared the probable sourc es of detritus deposited on the margins of these continents and estimated the proportions of crustal recycling for past orogenic events. The sedimentary rocks of the Congo and Kalahari margin give distinctive zircon U Pb age populations consistent with sou rce terrains within the respective cratons. Detrital zircons from both cratons display U Pb age populations at ca. 1000 1100 Ma, though the population contained in the samples collected along the Congo margin is proportionally larger, and minor populations are ca. 1800 2200 Ma. The Congo marginal strata also have a major age population at ca. 600 800 Ma, which the Kalahari marginal strata lack. The samples collected in the Damara foreland basin in the Nama Group on the Kalahari craton display a minor U Pb a ge population at ca. 600 700 Ma and a major population

PAGE 16

16 at ca. 500 Ma. The populations displayed by the Congo marginal strata are consistent with a variety of intracratonic sources including exposed basement inliers: the Angola basement, the Kuene intrusiv e complex (anorthosite), the Orue metamorphic terrane and the Kibara magmatic belt. The populations displayed by zircons collected on the Kalahari margin are consistent with contributions from a variety of Kalahari sources including: the Rehoboth Inlier, t he Namaqua and Natal provinces, and the Zimbabwe and Kaapvaal cratons. The provenance and source terrains were different for the Congo and Kalahari cratonic margins during most of the Neoproterozoic. Only in strata deposited in the latest Neoproterozoic Ca mbrian, during the amalgamation of Gondwana, were the detrital zircon signatures of the Congo and Kalahari margins similar. These findings suggest that the Congo and Kalahari cratons were independent of one another prior to the Damara Orogeny and assembly of Gondwana.

PAGE 17

17 CHAPTER 1 INTRODUCTION The cycle of accretion and breakup of supercontinents is a consequence of the ongoing geodynamic processes of plate te ctonics and mantle convection. Defining the supercontinent cycle through geologic time is, therefor e, critical for understanding the geodynamic processes of the Earth. The interactions between many continents and microcontinents in the Precambrian, however, are poorly resolved due, in part, to difficulties in distinguishing reactivated mobile belts or i ntracratonic basin inversion from sutures caused by the closure of oceanic basins. Sutures marking closure of typical Phanerozoic oceans display ophiolites, ultra high pressure rocks, and other indicators that have been largely removed in Precambrian rocks due to orogeny, erosion and reactivation. Careful study and innovative interpretati ve methods, however, have allowed for the identification of ocean basin closure sutures that do not display these classic features (e.g. Burke et al., 2003). Knowledge of t hese ancient suture zones, including their juxtapositions to one another and their petrologic nature (oceanic or otherwise), is increasingly critical to our understanding of supercontinent evolution and the individual histories and evolutionary paths of an cient cratons. The Congo and Kalahari cratons, currently comprising much of southwestern Africa, once formed the core of the Gondwana supercontinent, yet much of their evolution prior to that remains unclear. Two conflicting hypotheses have been put forth concerning their Precambrian relationship. One model postulates that Congo and Kalahari were connected during and participated in Rodinia (Figure 1 1 a ) were separated by a small inland sea during rifting, and reconnected during the amalgamation of Gondwa na (e.g., Krner and Cordani 2003 ; Hanson et al., 200 4). T his

PAGE 18

18 model is based on the similarities in the tectonic and rift drift sedimentary histories of the cratons. An alternate model suggests that the cratons existed independently at the time of Rodinia with no contact before the Damara orogen and the formation of Gondwana (Figure 1 1b ) and one or both may not have been a component Rodinia at all (e.g., John et al., 2003; Tohver et al., 2006). D ifferences in paleomagnetic histories and similarities in th e Neoproterozoic sequences from most continents discount the similar sedim entary and tectonic histories In this study, we analyzed individual detrital zircon grains extracted from Neoproterozoic continent derived clastic metasedimentary rocks that wer e originally deposited along the margins of the Congo and Kalahari cratons during and following continental rifting (or supercontinental breakup if the cratons were involved in Rodinia). Geochronologic and Hf isotopic analysis of detrital zircon grains fro m samples collected within the Damara orogenic b elt were used to define the provenance of the metasedimentary rocks currently on the cratonic margins. Distinct U Pb age populations a nd Hf isotope data reveal different source s and proportions of juvenile an d recycled crust, suggest ing contrasting evolutionary histories for the Congo and Kalahari cratons prior to the amalgamation of Gondwana in latest Neoproterozoic Cambrian times.

PAGE 19

19 Figure 1 1. Models of Rodinia. A) Inclusive model of Rodinia includes Ar chean cores of the Congo and Kalahari cratons. Figure modified from Torsvik, 2003. B) Exclusive model of Rodinia does not contain the Congo and or Kalahari cratons. Figure modified from Meert and Torsvik, 2003 A B

PAGE 20

20 CHAPTER 2 BACKGROUND The Gondwana supercont inent formed through a series of orogenic events including ocean basin closure, continental collision, and accretion. Many of the continental fragments that comprised Gondwana were previously part of the Rodinia supercontinent and/or related to Laurentia ( e.g., Krner and Cordani, 2003; Tohver et al., 2006). The relationship of the Congo and Kalahari cratons during this time, to each other and to Rodinia as a whole, is uncertain. Robust paleomagnetic data and clear stratigraphic and structural relationships indicate that Congo and Kalahari were connected when Gondwana was amalgamated at 550 510 Ma (e.g., Meert, 2003; Gray et al., 2006; Johnson et al., 2006). Late Neoproterozoic paleomagnetic data is nonexistent for Kalahari and extremely limited for Congo, r estricting our knowledge of the Congo Kalahari relationship at that time. Kalahari Craton The Kalahari craton is composed of an Archaean nucleus partially encircled by accreted Paleoproterozoic and Mesoproterozoic age belts (Jacobs et al., 2008). The locat ion of Kalahari within Rodinia remains unresolved. Powell and Pisarevsky (2002) proposed a model that placed Kalahari adjacent to Western Australia, where the timing of rifting is consistent with that observed in Kalahari. Their model, however, would requi re major rifting along the eastern, rather than the observed western, margin (Jacobs et al., 2008). Alternatively, Kalahari may have been attached to south west Laurentia, along the Namaqua Natal Maud Belt (e.g., Krner and Cordani, 2003; Jacobs et al., 20 08; Li et al., 2008). The apparent polar wander paths (APWP) of Kalahari and Laurentia merge by ca. 1000 Ma, which is consistent with the timing of

PAGE 21

21 metamorphism alon g the Namaqua Natal Belt in Kalahari and that of the Grenville Belt in southern Laurentia ( Li et al., 2008). Congo Craton The Congo craton is composed of various Archaean blocks, including the Angola Kasai block and the Tanzania craton, which were amalgamated and stabilized by the end of the Paleoproterozoic (De Waele et al., 2008). The Congo cr Rodinia is still a matter of debate. Rocks along the southern margin of the Congo craton, then attached to the So Francisco craton of Brazil, record tectono magmatic events concurrent with the amalgamation of Rodinia (De Waele et a l., 2008; Li et al., 2008). This magmatism may indicate that the Congo So Francisco craton collided with, and became an integral part of, the Rodinia supercontinent. Paleomagnetic data are compatible with two different positions for the Congo So Francisc o craton within Rodinia (De Waele et al., 2008); it may have been adjacent to the Kalahari craton as part of Laurentia or sutured to the Amazonia Rio de la Plata craton (Li et al., 2008). Both configurations, however, display either overlap with other (bet ter constrained) cratons, or are incompatible with other geologic evidence in the area, possibly indicating that the Congo craton was not involved in Rodinia. Krner and Cordani (2003) and De Waele et al. (2008) argue, based on paleomagnetic and stratigrap hic data, that the Congo So Francisco craton was an independent body of land. De Waele et al. (2009) show that the Irumide belt and Paleoproterozoic Bangweulu Block were attached to the southern margin of the Congo craton by the Mesoproterozoic. The timin g of the Irumide orogeny and that of other Mesoproterozoic orogenic terrains, such as the Choma Kaloma along the Kalahari cratonic margin and the Kibaran orogen along the Congo

PAGE 22

22 margin, is consistent with the Congo and Kalahari cratons not having been juxta posed in the Mesoproterozoic (De Waele et al., 2009). Damara Orogeny Rift magmatism at ca. 800 750 Ma on the margins of both the Congo So Francisco and the Kalahari craton s coupled with rift drift sedimentation shortly thereafter, indicate that the Congo and Kalahari cratons were not connected following the rifting of Rodinia (Jacobs et al., 2008; Li et al., 2008). It is yet unresolved whether the Adamastor Ocean, floored by true ocean crust, separated them, or if a small rift caused the formation of an i nland sea, the Khomas Sea, floored by continental or transitional crust (e.g., Prave, 1996; Drr and Dingeldey, 1996; Krner and Cordani, 2003). The cratons ultimately collided during the widespread Pan African/Brasiliano orogenic event at 5 7 0 500 Ma, form ing the Damara Lufilian Zambezi Belt (Meert, 2003; Veevers, 2003). The formation of the Damara belt was contemporaneous with the final suturing of all major cratonic components in the amalgamation of Gondwana in the Cambrian The Damara Orogen, the inlan d branch of which is termed the Damara Belt (Fig. 2 1 ) is a classic divergent orogen. It is dominated by its south vergent zone, comprised of the schist fabrics of the Southern Zone and the thrust system of the Southern Margin Zone. There also exists a hi gh temperature/low pressure metamorphic Cent ral Zone dominated by granitic plutons and associated metamorphic rocks The magmatism and structural asymmetry of the orogen suggest an Andean/Cordilleran style subduction zone existed prior to collision between 560 and 500 Ma (Gray et al., 2006 ; Figure 2 2 ). The major lithologic elements of the Damara Orogen are Archean and Proterozoic basement inliers, Neoproterozoic passive margin carbonates (Otavi facies),

PAGE 23

23 Neoproterozoic deep water turbidites (Swakop facies) and Neoproterozoic Cambrian foreland basin deposits (molasses) of northern and southern Namibia (Mulden and upper Nama groups, respectively ; Figure 2 3 ). The several kilometers thick Neoproterozoic Damara Sequence is one of the most widespread units in t he orogen. These Neoproterozoic and Cambrian sequences are intruded by Pan African aged granitic plutons throughout the orogen. Deposition of the Damara Sequence occurred between ca. 770 and 600 Ma, effectively spanning the Neoproterozoic (Prave, 1996). I t is composed of two major groups: 1) the basal Nosib group, dominated by rift related siliciclastics such as quartzites, conglomerates and arenites, with a U Pb and Pb Pb age constraint at ca. 750 Ma (Prave, 1996) and 2) the overlying Otavi Group, compos ed of turbiditic greywacke, pelitic schists, psammites, and occasional mafic schists (Johnson et al., 2006). The Otavi Group contains two turbiditic carbonate formations, parts of which have been correlated with other formations interpreted to be ca. 750 7 35 Ma and ca. 700 Ma (Frimmel, 1995). The uppermost Otavi also contains the extensive Kuiseb Formation, dominated by turbiditic greywacke and pelitic schists.

PAGE 24

24 Figure 2 1. Geologic map of the Damara Orogen in central Namibia Modified from Gray et al., 20 06.

PAGE 25

25 Figure 2 2. Structural cross section of the Damara Orogen. Modified from Gray et al., 2006. A

PAGE 26

26 Figure 2 3. Stratigraphic column of the Damara Orogen with collected samples labeled in appropriate strata. A) Stratigraphic column of the Kaoko Bel t of the Damara Orogeny. B) Stratigraphic column of the Damara Belt of the Damara Orogeny. C) Stratigraphic column of the Gariep Belt of the Damara Orogeny. B C

PAGE 27

27 CHAPTER 3 METHODS We collected samples of metasedimentary and igneous rocks from the Damara Belt a nd surrounding regions in 2006 and 2009. Approximately 35 samples were collected in 2006 and 50 samples were collected in 2009. Representative samples were chosen from all major stratigraphic groups along the former Neoproterozoic Cambrian margins of the C ongo and Kalahari cratons (Figure 3 1) A majority of the samples collected were metamorphosed sandstones (psammites) that were likely to have detrital zircon populations. A few pelitic samples were also collected for 40 Ar/ 39 Ar and Sm/ Nd isotopic analysis. Samples were chosen for freshness and apparent mineralogical composition. Detrital Zircon Analysis U Pb geochronology was conducted on detrital zircons from 15 samples of metasedimentary rock collected from strata deposited along the margin of the Congo c raton and on 8 samples collected from strata deposited along the margin of the Kalahari craton. Samples were collected from a variety of structural/metamorphic zones across the Damara orogen between the cratons (Figure 2 3 ). Samples were collected from the following structural zones: the Northern Foreland Zone the Northern Zone the Central Zone the Southern Zone the Southern Margin Zone the Southern Foreland Zone and the Kaoko Belt Analyses were also conducted on a granitic pluton from the Northern Z one and granitic gneissic basement from the Central Zone to investigate the zircon populations in potential source rocks for detrital zircons. U Pb analyses of zircons were performed by LA MC ICP MS following methods described herein 206 Pb/ 238 U ages were used for grains displaying ages <1 Ga and

PAGE 28

28 207 Pb/ 206 Pb ages were used for grains displaying ages >1 Ga. The analyses were plotted on conventional concordia diagrams and cumulative density diagrams using ISOPLOT (Ludwig, 199 5 ) to assess discordance due to mu ltistage Pb loss, metamorphism or mixing of growth zones and to determine source terrains Discordant grains that plotted along reliable discordia were assumed to be of the upper intercept age and are included in probability plots as such. Discordant analy ses that did not intersect the concordia curve or plot along discordia were generally removed from consideration and are not included in age populations plotted on histograms and cumulative probability plots because of the possibility of multiple stages of Pb loss and metamorphism and/or recrystallization Lu Hf isotope analysis was conducted on detrital zircons from 15 metasedimentary samples and two granitic samples collected from the Congo margin strata and on seven samples collected from the Kalahari c raton margin strata using the respective U Pb ages of the adjacent laser ablation pits (DM and CHUR values as summarized by Mueller et al., 2008). The Hf isotope data along with the U Pb ages were used to determine proportions of juvenile and recyc led crust during orogenic and magmatic events on the cratons, and potentially discriminate between populations of zircons with similar U Pb ages. S amples were purified by standard density separation methods to attain zircon concentrates and handpicked for mineral purity before being mounted in an epoxy block and polished to expose the central regions of the grains. U Pb and Hf isotopic analyses were conducted at the University of Florida, Department of Geological Sciences, on a Nu Plasma multicollector ind uctively coupled plasma source mass spectrometer (MC

PAGE 29

29 ICP MS) equipped with three ion counters and 12 Faraday detectors. Data calibration and drift corrections were based on multiple ablations of the reference zircons from the Duluth Gabbro (Paces and Mille r, 1993) collected from the Fores t Center location (FC 1). Whole Rock Analysis Representative samples from throughout the region were also analyzed for trace element compositions on an Element2 HR ICP MS at the University of Florida, Department of Geologi cal Sciences. Samples were powdered using agate coated cylinders to eliminate contamination. Quantification of the results was done by external calibration using a combination of appropriate United States Geological Survey (USGS) rock standards including a ndesite (AGV 1) and basalts (BCR 2 and BIR 1; as described in USGS reference material). Splits of the samples were sent for XRF whole rock major element analysis to the Ontario Geological Survey in the Geoscience Laboratories Radiogenic isotopic analyses were performed at the University of Florida, Department of Geological Sciences. Splits of approximately half of the sample powders used for Nd analysis were spiked with the 149 Sm/ 150 Nd Menlo Park isotopic spike. Nd and Pb were separated using standard chro matographic methods in a clean laboratory. Nd isotope measurements were conducted with the Nu Resolved sampling of the JNdi 1 standard (described in Tanaka et al, 2000). Pb isotopic analyses were also conducted on the Nu Plasma MC ICP MS using the Tl analy z ation technique described in Kamenov et al. (2004).

PAGE 30

30 B A

PAGE 31

31 Figure 3 1. Geologic map s of the Damara Orogen with the location of collection for all anal yzed samples marked. A) Samples collected in northern Namibia in the Northern Foreland Zone and Northern Zone. B) Samples collected in central Namibia from the Central Zone, Southern Zone and Southern Margin Zone. C) Samples collected in southern Namibia f rom the Southern Fore land Zone. Map modified from Gray et al., 2006. A C

PAGE 32

32 CHAPTER 4 RESULTS Detrital Zircon Geochronology Northern Foreland Zone Sample BDG06 91 from the Mulden Formation (Table 4 1) which has an approximate stratigraphic age of 560 Ma (Hof fmann et al., 2004), contains four distinct clusters of concordant grains (Figure 4 1 a ). The concordant clusters occur at ca. 550 700 Ma, 950 Ma, 1850 2000 Ma and 2600 Ma. Two grains plot along a discordia with a lower intercept of 220 200 Ma and an uppe r intercept of 2 568 11 Ma (Figure 4 1b ) Of the 40 grains sampled 15, or 38%, were concordant and 2, or 5%, plotted along a discordia Probability density plots of concordant grains and the upper intercept ages of grains plotted along a discordia from BD G06 91 display age populations in descending order of relative abundance, at ca. 256 6, 2600 26 1 5 1975 1980, 1875 5 80 6 4 0, 1010 and 91 0 Ma (Figure 4 1 c ). Northern Zone Sample DF09 26, from the basal member of the Kuiseb Schist in the Northern Zone (Table 4 2) has an approximate stratigraphic age of 615 Ma (Hoffmann et al., 2004). The U Pb concordia plot displays two distinct clusters of concordant grains at ca. 600 800 Ma and 875 1150 Ma and individual concordant grains at ca. 1700 and 1850 Ma (Figure 4 2 a ). Four of the discordant grains plot along a discordia with a lower intercept of 165 110 Ma and an upper intercept of 1114 24 Ma (Figure 4 2b) Of the 78 grains sampled 48, or 62%, were concordant and 4, or 5 %, plotted along a discordia line Probab ility density plots of concordant grains and the upper intercept ages of grains plotted along the discordia from sample DF09 26 display age populations in

PAGE 33

33 descending order of relative abundance, at ca. 1115 1030, 620, 920, 690, 780, 745, 1880, 1760 and 8 40 Ma (Figure 4 2 c primarily between 0 and +10 with U Pb ages mainly between 1140 and 600 Ma, except for a single outlying grain with a value of 3.6 and a U Pb age of 1875 Ma ( Table 4 27; Figure 4 2 d ). Lu Hf DM model ages calcu lated from Hf ratios measured in sample DF09 26 range from ca. 800 1400 Ma for most of the grains with a minor age range of ca. 2000 to 2300 Ma (Figure 4 2 e ). Sample DF09 30 is from an upper section of the Kuiseb Schist in the Northern Zone (Table 4 3) and has a stratigraphic age of approximately 590 Ma (Hoffmann et al., 2004). The U Pb concordia plot displays four discrete concordant points which occur at ca. 625 Ma, 1375 Ma, 1800 Ma and 2000 Ma (Figure 4 3 a ). The discordant grains are quite scattered but many plot along a discordia with an apparent lower intercept of 206 2 10 Ma and an upper intercept of 1994 13 Ma (Figure 4 3b) Of the 28 grains sampled 4, or 14%, were concordant and 10, or 36%, plotted along a discordia line Probability density plots of concordant grains and the upper intercept ages of grains plotted along a discordia from sample DF09 30 display an age population at ca. 202 1 Ma and individual grain age s of ca. 625, 1380 and 1825 Ma (Figure 4 3 c select concordant grains range primarily between 6 and 9 with U Pb ages of ca. 2000 Ma, except for two outlying grains with Hf values of +4 and +1 with U Pb ages of 1381 and 1824 Ma, respectively ( Table 4 28; Figure 4 3 d ). Lu Hf DM model ages calculated from Hf ratios measured in concordant grains from sample DF09 30 display a major population at 2625 2700 Ma and a minor age range at 1700 to 2200 Ma (Figure 4 3 e ).

PAGE 34

34 Central Zone Sample DF09 44, from the Etusis Formation of the Nosib Group i n the Central Zone (Table 4 6) has an approximate stratigraphic age of 780 Ma (Hoffmann et al., 2004). This formation is in stratigraphic contact with the basement. The concordia diagram displays a single cluster of concordant grains at ca. 950 1050 Ma a nd one concordant grain at ca. 2050 Ma (Figure 4 4 a ). A majority of the discordant grains plot along a discordia with a lower intercept of 451 45 Ma and an upper intercept of 1057 11 Ma (Figure 4 4a) or along one with a lower intercept of 8 33 250 Ma and an upper intercept of 20 78 39 Ma (Figure 4 4b) Of the 60 grains sampled 29, or 48%, were concordant and 2 4 or 4 0 %, plotted along the discordia lines A probability density plot of concordant grains and the upper intercept ages of grains plotted alo ng the discordia from DF09 44 displays age population s, in descending order of relative abundance, at ca. 1050, 1020 2030 2070 and 945 Ma (Figure 4 4 c ). The population at 1050 Ma is more than twice as abundant as the one at 1020 Ma. oncordant grains range primarily between 2 2 and 1 7 for grains with U Pb ages of ca. 1000 1060 Ma, excepting two outlying grain s with value s of 3.2 and +0.5 and U Pb age s of 20 46 and 2078 Ma respectively ( Table 4 30; Figure 4 4 d ). Lu Hf DM model ages cal culated from Hf ratios measured in sample DF09 44 in descending order of abundance, display age range s at ca. 22 5 0 2300 2220 2240, 2320 2350, 2380 2420 and 2500 Ma (Figure 4 4 e ). Sample CZ29 is from the Khan Formation of the Upper Nosib Group in the nort hern Central Zone (Table 4 7) and has an approximate stratigraphic age of 750 Ma (Hoffmann et al., 2004). The concordia plot displays two distinct clusters of concordant grains at ca. 1000 1050 Ma and 1950 2050 Ma (Figure 4 5 a ). A majority of discordant

PAGE 35

35 gr ains plot along a discordia line with a lower intercept of 212 2 50 and an upper intercept of 10 26 26 Ma (Figure 4 5b). Of the 19 grains sampled 4 or 2 1 %, were concordant and 3 or 16 %, plotted along the discordia line Probability density plots of th e concordant grains and the upper intercept ages of grains plotted along the discordia from CZ29 display age populations in descending order of relative abundance, at ca. 1 025, 2030 and 1010 Ma (Figure 4 5 c four concordant grains with U Pb ages of 1000 1050 Ma range between 18 and 12 ( Table 4 31; Figure 4 5 d ). Another concordant grain with a U Pb age of 2030 3.1. Lu Hf DM model ages calculated from Hf ratios measure d in sample CZ29 display populations at ca. 2050 and 2450 Ma with a less abundant age range of 2000 to 2200 Ma (Figure 4 5 e ). Sample CZ40 is from the Rossing Formation in the Central Zone (Table 4 8) and has an approximate stratigraphic age of 740 Ma (Hoff mann et al., 2004). The concordia plot displays two distinct clusters of concordant grains at ca. 1000 750 Ma and 2000 1800 Ma and an individual concordant grain at ca. 2650 Ma (Figure 4 6 a). The only discordant grain plots slightly above the concordia at ca. 2900 Ma. Of the 14 grains sampled 1 3 or 93 %, were concordant. Probability density plots of the concordant grains from CZ40 display age populations in descending order of relative abundance, at ca. 1800 1850 900 1000 1900 1950 800 and 2650 Ma (Fig ure 4 6 b). Sample CZ53b, from the Tinkas Formation in the Upper Otavi Group in the southern Central Zone (Table 4 9) has an approximate stratigraphic age of 700 Ma (Hoffmann et al., 2004). The concordia plot of these data shows two clusters of concordant grains at ca. 550 850 and 850 1150 Ma (Figure 4 7 a ). One discordant grain plot s along a discord ia with a lower intercept of 833 1 7 0 M a and an upper intercept of

PAGE 36

36 1 106 93 Ma (Figure 4 7b) Of the 110 grains sampled 63, or 57%, were concordant and 1 or 1 %, plotted along the discordia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from CZ53b display age populations in descending order of relative abundance, at ca. 640, 1050, 700, 1090, 760, 1145, 1000 and 890 Ma (Figure 4 7 c grains range primarily between 0 and +1 3 with U Pb ages ranging from ca. 1145 to 630 15 and 13 and U Pb a ges between ca. 1050 and 980 Ma ( Table 4 32; Figure 4 7 d ). Lu Hf DM model ages calculated from Hf ratios measured in sample CZ53b display populations, in decreasing order of relative abundance, at ca. 1100 1150, 1175 1280, 1050 1100, 1400, 900 950, 1350, 14 50 1525 and 2050 with a less abundant age range of 1600 to 2100 Ma (Figure 4 7 e ). Sample CZ35 is from the Karibib Formation of the Mulden Group in the northern Central Zone (Table 4 10) and has an approximate stratigraphic age of 600 Ma (Hoffmann et al., 2 004). The concordia plot displays two distinct clusters of concordant grains at ca. 600 850 Ma and 900 1200 Ma and an individual concordant grain at ca. 2025 Ma (Figure 4 8 a ). Of the 110 grains sampled 75, or 68%, were concordant. Probability density plots of concordant grains from CZ35 display age populations in descending order of relative abundance, at ca. 745, 680 1090, 1050, 1010, 975, 820, 2020, 1340 and 900 Ma (Figure 4 8 c ). Gra ins with U Pb ages between ca. 1130 and ly between 6 and +1 1 except three outlying grains with values ranging between 1 3 and 10 and U Pb ages between ca. 1340 and 700 Ma and one with a value of +27 and a U Pb age of ca.

PAGE 37

37 2025 Ma ( Table 4 33; Figure 4 8 d ). Lu Hf DM model ages calculated from Hf ratios measured in sample CZ35 display populations, in descending order of relative abundance, at ca. 1075 1100, 1275 1300, 1150, 1200, 1350, 950 10 50 and 1650 with less abundant age ranges from 1400 to 1800 and 2100 to 2 30 0 Ma (Figure 4 8 e ). Southern Zone Sample DF06 22 (SZ40), with an approximate stratigraphic age of 635 Ma (Hoffmann, 1997), is from the Kuiseb Schist within the Matchless Amphibolite Belt in the Southern Zone (Table 4 11) The U Pb concordia plot displays a wide spread of concordant grains with no distinct clustering (Figure 4 9 a) A majority of the discordant grains plot along a discordia line with a lower intercept of 34 9 1 1 0 Ma a nd an upper intercept of 19 81 2 6 Ma (Figure 4 9b) Of the 38 grains sampled 11, or 29%, were concordant and 5 or 13 %, plotted along the discordia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted alo ng the discordia from DF06 22 display age populations in descending order of relative abundance, at ca. 1980 2975 515, 2125, 630, 725, 2530, 965 and 1775 Ma (Figure 4 9 c of select concordant grains range primarily between + 3 and +11 with U Pb ages from ca. 975 to 520 Ma and between 8 and +2 for grains with U Pb ages between ca. 2130 and 1960 Ma, excepting outlying grain s with value s of 13, 58 and +1.5 and U Pb age s of 973, 2540 and 2980 Ma respectively ( Table 4 34; Figure 4 9 d ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 22 range from ca. 2275 2425, 2530 2610, 1850 2000, 680 1400 and 3100 4600 Ma (Figure 4 9 e ). Sample SZ13 is from the Kuiseb Formation of the Khomas Group in the northern Southern Zone (Table 4 12) and has an approximate stratigraphic age of 600 Ma (Hoffmann, 1997). The U Pb concordia plot displays two distinct clusters of concordant

PAGE 38

38 grains at ca. 600 800 Ma and 900 1100 Ma and two individual concordant grains at ca. 1875 and 2025 Ma (Figure 4 10 a b ). Several of the discordant grains plot along a discordia with a lower intercept of 650 40 Ma and an upper intercept of 1411 74 Ma (Figure 4 10c) Of the 108 grains sampled 37, or 34%, were concordant and 8 or 7 %, plotted along the discordia line Pr obability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from SZ13 display age populations, in descending order of relative abundance, at ca. 675, 750 780 1400 950, 1060, 620, 1880 and 2040 Ma (F igure 4 10 d range primarily between 6 and + 9 for grains with U Pb mainly between 1100 and 590 Ma and between +10 and +17 for grains with U Pb ages of ca. 1410 Ma (Table 4 35; Figure 4 10e). Outlying grains display Hf values of +26, +14, +23, 7 and +4 with U Pb ages of 956, 1035, 1411, 1883 and 2043 Ma, respectively Lu Hf DM model ages calculated from Hf ratios measured in sample SZ13 display populations, in descending order of relative abundance, at ca. 1000, 1200 1250, 1350 1400, 440 9 00, 1100, 1450 1500, 1600 1650 and 1750 2500 Ma (Figure 4 10 f ). Southern Margin Zone Sample DF09 12a is from the Hakos Formation of the Kudis Subgroup in the Southern Margin Zone (Table 4 13) and has an approximate stratigraphic age of 680 Ma (Hoffmann, 1997). The U Pb concordia diagram displays a single cluster of concordant grains at ca. 1000 1550 Ma and two concordant grains at ca. 1900 Ma (Figure 4 1 1 a ). Many of the discordant grains plot along a discordia with a lower intercept of 388 71 Ma and an upper intercept of 1901 18 Ma (Figure 4 11b ). Of the 68 grains sampled 42, or 62%, were concordant and 5, or 7 %, plotted along the discordia line Probability density plots of concordant grains and the upper intercept

PAGE 39

39 ages of grains plotted al ong the discordia from DF09 12a display age populations, in descending order of relative abundance, at ca. 1900, 1235, 1200, 1345, 1040, 1120, 1485, 1280, 1570 and 1930 Ma (Figure 4 1 1 c from sample DF09 12a range be tween 5 and +6 with U Pb ages between ca. 1940 and 1020 Ma ( Table 4 36; Figure 4 1 1 d ). Lu Hf DM model ages calculated from Hf ratios range in order of relative abundance, from ca. 1350 15 3 0, 1630 1780, 1600 1850 19 0 0 2000 and 2 05 0 2420 Ma (Figure 4 1 1 e ) Sample DF09 04, with an approximate stratigraphic age of 625 Ma (Hoffmann, 1997), is from the Naos Diamictite in the Southern Margin Zone (Table 4 14) The sample set contains two distinct clusters of concordant grains at ca. 1000 1350 Ma and 1700 2000 M a (Figure 4 1 2 a ). A majority of the discordant grains follow the curve of the concordia line but are slightly offset from it with no discordia line formed Of the 60 grains sampled 41, or 68%, were concordant. Probability density plots of concordant grains and the upper intercept ages of grains plotted along the discordia from DF09 04 display age populations, in descending order of relative abundance, at ca. 1225, 115 5 1115, 1785, 1330 1350, 1880, 1260, 1300, 1020 1050, 1400, 1990, 1850, 1520 and 1915 Ma ( Figure 4 1 2 b 2 and + 3 with U Pb ages primarily at ca. 1525 1060 Ma and one grain with an age of 1990 Ma, and one outlying grain with a value of 6.2 and a U Pb age of 1262 Ma ( Table 4 37; Fi gure 4 1 2 d ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF09 04 range between ca. 1500 1750 1825 1900 and 1975 2300 Ma (Figure 4 1 2 e ). Southern Foreland Zone Sample DF06 40 is from the Kuibis Formation of the Nama Group in the Souther n Foreland Zone (Table 4 15) and has a stratigraphic age of approximately 600 Ma

PAGE 40

40 (Hoffmann, 1997). The U Pb concordia plot displays four distinct clusters of concordant grains at ca. 1050 Ma, 1350 Ma, 2000 2100 Ma, and 2600 Ma (Figure 4 1 3 a ). A majority of the discordant grains plot along three distinct discordia with lower intercepts of 643 55 795 70 and 894 99 Ma and upper intercepts of 2695 12 1392 65 and 2166 20 Ma, respectively (Figure 4 13b c) Of the 60 grains sampled 17, or 28%, were c oncordant and 19 or 32 %, plotted along the discordia lines. Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 40 display age populations, in descending order of relative abundan ce, at ca. 2165, 2700, 2030 2045, 1085, 1355 1375, 2110, 2555 and 1895 Ma (Figure 4 1 3 d 40 range between 10 and + 9 with U Pb age ranging from ca. 2700 to 1085 Ma ( Table 4 38; Figure 4 1 3 e ). Lu Hf DM model ages calculated from Hf ratios range in order of relative abundance, from ca. 1400 1 550 2850 3000 2400 2850 and 1900 2350 Ma (Figure 4 1 3 f ). Sample DF06 41 is from the Schwarzrand Subgroup of the Nama Group in the Southern Foreland Zone (Table 4 16) and has a stratigraphic age of approximately 580 Ma (Hoffmann, 1997). The U Pb concordia plot displays three distinct clusters of concordant grains at 800 1100 Ma, 2300 2600 Ma and 3300 Ma (Fi gure 4 1 4 a ). There is also an individual concordant grain at ca. 2800 Ma. A majority of the discordant grains plot along two distinct discordia with lower intercepts of 496 39 and 1806 240 Ma and upper intercepts of 896 99 and 2879 88 Ma, respectively (Figure 4 14b c). Of the 60 grains sampled 36 or 60 %, w ere concordant and 1 1 or 18 %, plotted along the discordia lines Probability density plots of the concordant grains and the upper intercept

PAGE 41

41 ages of grains plotted along the discordia from DF06 41 display age populations, in descending order of relative ab undance, at ca. 2055, 20 6 0 2120, 1015 1045, 2025, 1980, 1110, 835 925, 2840, 3400, 3335, 2565, 2475 2480, 2440, 2310 and 825 Ma (Figure 4 1 4 d primarily between 9 and + 12 for grains displaying U Pb ages ranging fr om 3336 to 833 Ma, excepting one outlying grain with a value of 14 and a U Pb age of 900 Ma ( Table 4 39; Figure 4 1 4 e ). Lu Hf DM model ages calculated from Hf ratios measu red in sample DF06 41 range in descending order of relative abundance, from ca. 1 1 80 1 3 00, 1500 1 62 0, 950 1000, 2700 2800 1650 2600 and 2900 3800 Ma (Figure 4 1 4 f ). Sample DF06 46, from the Schwarzrand Subgroup of the Nama Group in the Southern Foreland Zone (Table 4 17) has an approximate stratigraphic age of 560 Ma (Hoffmann, 1997). T he U Pb concordia plot displays two clusters of concordant grains at ca. 600 Ma and 1000 Ma (Figure 4 1 5 a ). A majority of the discordant grains plot along a discordia with a lower intercept of 153 52 Ma and an upper intercept of 1058 11 Ma (Figure 4 15 b) Of the 40 grains sampled 6, or 15%, were concordant and 10 or 25 %, plotted along the discordia line Probability density plots of concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 46 display age populations in descending order of relative abundance, at ca. 1060, 585 and 1025 Ma (Figure 4 1 5 c ). The population at ca. 1060 Ma is more than twice as abundant as the one at ca. 585 Ma. Sample DF06 45, from the Fish River Formation in the Nama Group of the Southern Foreland Zone (Table 4 18) has an approximate stratigraphic age of 535 Ma (Hoffmann, 1997). The U Pb concordia plot displays three distinct clusters of

PAGE 42

42 concordant grains at ca. 550 700 Ma, 850 1100 Ma, and 2100 2250 Ma (Figure 4 1 6 a b ). A majority of the discordant grains plot along a discordia with a lower intercept of 120 49 Ma and an upper intercept of 1058 14 Ma (Figure 4 16c) Of the 60 grains sampled 39, or 65%, were concordant and 6 or 1 0 %, plotted along the discordia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 45 display age populations, in descending order of relative abundance, at ca. 540, 1055, 645, 2090, 2215, 865 and 940 Ma (Figure 4 1 6 d ). The popula tion at ca. 540 Ma is approximately twice as abundant as the one at ca. 1055 Ma. 8 and 2 for grains with U Pb ages between ca. 650 and 105 0 Ma excepting four outlying grains with Hf values o f +2, +4, +8 and +1 with U Pb ages of 535, 553, 1064 and 2223 Ma ( Table 4 40; Figure 4 1 6 e ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 45 range in descending order of relative abundance, from ca. 1220 1460 14 6 0 1550 980 1010 a nd 1600 2520 Ma (Figure 4 1 6 f ). Sample DF06 44, from the Fish River Formation in the Nama Group of the Southern Foreland Zone (Table 4 19) has a stratigraphic age of approximately 530 Ma (Hoffmann, 1997). The U Pb concordia plot displays two distinct clus ters of concordant grains at ca. 500 750 Ma and 950 1100 Ma and two individual concordant grains at ca. 1850 and 1950 Ma (Figure 4 1 7 a b ). A majority of the discordant grains plot along a discordia with a lower intercept of 444 20 Ma and an upper interce pt of 1095 10 Ma (Figure 4 17c). Of the 60 grains sampled 3 3 or 5 5 %, were concordant and 7 or 12 %, plotted along the discordia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia f rom DF06 44 display age

PAGE 43

43 populations, in descending order of relative abundance, at ca. 1100, 1045, 615, 525 530, 660, 730, 945, 1925 and 1480 Ma (Figure 4 1 7 d ). The population at ca. 1100 Ma is approximately twice as abundant as the one at ca. 1045 Ma. values of select concordant grains range primarily between 10 and +1 6 for grains with U Pb ages that range from ca. 1485 to 520 Ma, excepting one outlying grain with a value of 23 and a U Pb age of 954 Ma ( Table 4 41; Figure 4 1 7 e ). Lu Hf DM model ages c alculated from Hf ratios measured in sample DF06 44 range in descending order of relative abundance, from ca. 1650 1800, 1350 1500 925 1300 and 1850 2350 Ma (Figure 4 1 7 f ). Sample DF06 43, from the Fish River Formation in the Nama Group of the Southern F oreland Zone (Table 4 20) has an approximate stratigraphic age of 525 Ma (Hoffmann, 1997). The data plotted on a conventional concordia plot show four distinct clusters of concordant grains at ca. 550 650 Ma, 830 900 Ma, 1000 1150 Ma, and 1850 1950 Ma (Fi gure 4 1 8 a b ). A majority of discordant grains plot along a discordia with a lower intercept of 302 49 Ma and an upper intercept of 1087 14 Ma (Figure 4 18c) Of the 60 grains sampled 30, or 50%, were concordant and 6 or 10 %, plotted along the discord ia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 43 display age populations, in descending order of relative abundance, at ca. 1085, 840, 1055, 550, 610, 1870 and 1930 Ma (Figure 4 1 8 d primarily between 7 and + 12 for grains with U Pb age r anging from ca. 1935 to 560 Ma ( Table 4 42; Figure 4 1 8 e ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 43 range in descending order of relative abundance, from ca. 1300 1450, 1000 1180 1290 1325 1500 1620 1700 2000 and 2300 2600 Ma (Figure 4 1 8 f ).

PAGE 44

44 Granitic Rocks Sample DF09 37, from a granitic pluton in the Northern Zone (Table 4 4) contains a single population of concordant grains at ca. 525 Ma on a U Pb concordia diagram (Figure 4 1 9 a ). Several of the discordant grains plot along a discordia with a lower intercept of 41 99 and an upper intercept of 604 22 (Figure 4 19b c) Of the 26 grains sampled 6, or 23 %, were concordant and 6 or 23 %, plotted along the discordia line The weighted mean age of crystallization using 206 Pb/238 U for concorda nt grains from DF09 37 is 51 1 .3 6.6 Ma with 95% confidence and an MSWD of 0.8 2 (N= 6 ; Figure 4 1 9 d ). Sample DF09 4 3 is from the granitic gneiss basement rock of the Central Zone (Table 4 5) below the Nosib Group sample, DF09 44. The U Pb concordia diagram displays a single cluster of concordant grains at ca. 950 1050 Ma and one discrete concordant grain ca. 520 Ma (F igure 4 20 a ). A majority of the discordant grains plot along a discordia with a lower intercept of 277 140 Ma, an upper intercept of 1036 11 Ma and an MSWD of 2.8 (Figure 4 20b) Of the 70 grains sampled 48, or 69%, were concordant and 1 4 or 2 0 %, plot ted along the discordia line The concordant grains from DF09 43 display a weighted mean age of crystallization of 1027.9 2. 2 Ma with 95% confidence and an MSWD of 1.2 using 207 Pb/206 Pb ages for grains with ages >1.0 Ga and 206 Pb/238 U for grains with ages <1.0 Ga (N= 38 ; Figure 4 20 c select concordant grains range primarily between 20 and 1 1 with U Pb ages between ca. 1045 and 1030 Ma, excepting three outlying grains with values of 22.5, 22.5 and 26 with U Pb ages of ca. 1023, 1055 and 514 Ma, respectively ( Table 4 29; Figure 4 20 d ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 43

PAGE 45

45 range in descending order of relative abundance, from ca. 2 100 2200 2200 2450 and 1950 2100 Ma (Figure 4 20 e ). Kaoko Belt Sampl e DF06 18, from the Hoanib River Formation of the Nosib Group in the central Kaoko Belt (Table 4 21) has an approximate stratigraphic age of 770 Ma (Stanistreet and Charlesworth, 2001). The U Pb concordia diagram displays three distinct clusters of concor dant grains at ca. 800 1200 Ma, 1850 2050 Ma and 2600 Ma (Figure 4 2 1 a ). A majority of discordant grains plot along two discordia with lower intercept s of 403 680 and 96 290 Ma and upper intercept s of 1858 18 and 2049 8.5 Ma respectively (Figure 4 21b) Of the 80 grains sampled 27, or 34%, were concordant and 7 or 9 %, plotted along the discordia line Probability density plots of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 18 display age pop ulations, in descending order of relative abundance, at ca. 2050, 1850 18 6 5, 2625, 20 85 1210, 980, 10 2 0 10 4 0, 1090, 1115 and 800 Ma (Figure 4 2 1 c 18 and + 4 for grains with U Pb ages of 980 to 1225 Ma and between 7 and +3 for grains with U Pb ages of 1855 to 2055 Ma ( Table 4 43; Figure 4 2 1 d ). Outlying grains display Hf values of 26 and +3 with U Pb ages of 811 and 1090 Ma, respectively. Lu Hf DM model ages calculated from Hf ratios measure d in sample DF06 18 range from ca. 1460 1950 20 7 0 2160, 2250 2260, 2350 and 2470 2550 Ma (Figure 4 2 1 e ). Sample DF09 38 from the Ogden Mylonite in the Coastal Terrain (Table 4 22) has an approximate stratigraphic age of 760 Ma (Goscombe and Gray, 2008). The U Pb concordia diagram displays a single cluster of concordant grains at ca. 1850 Ma and one concordant grain at ca. 1400 Ma (Figure 4 2 2 a ). A majority of the discordant grains

PAGE 46

46 plot along a discordia with a lower intercept of 518 89 Ma and an upper intercept of 1861 .8 5.4 Ma (Figure 4 22a) Of the 59 grains sampled 40, or 68%, were concordant and 8 or 14 %, plotted along the discordia line Probability density plots of concordant grains and the upper intercept ages of grains plotted along the disco rdia from DF09 38 display age populations, in descending order of relative abundance, at ca. 1850 1875 17 8 0 and 14 35 Ma (Figure 4 2 2 b ). The population at 1850 1875 Ma is more than 10 times more abundant than the 17 8 0 Ma population. grains from sample DF09 38 range between 8 and 2 with U Pb ages primarily between ca. 1880 and 1830 Ma, excepting one grain with a U Pb age of 1440 Ma ( Table 4 44; Figure 4 2 2 c ). Lu Hf DM model ages calculated from Hf rati os display populations, in decreasing relative abundance, at ca. 2400 2450, 2500, 2400, 2525 and 2050 2300 Ma (Figure 4 2 2 d ). Sample DF09 39, from the Ogden Mylonite in the Coastal Terrain (Table 4 23) has an approximate stratigraphic age of 750 Ma (Gosco mbe and Gray, 2008). The U Pb concordia diagram displays a single cluster of concordant grains at ca. 2560 Ma (Figure 4 2 3 a ). A majority of the discordant grains plot along a discordia with a lower intercept of 562 98 Ma and an upper intercept of 2606.3 7.7 Ma (Figure 4 23a) Of the 41 grains sampled 8, or 20%, were concordant and 15 or 37 %, plotted along the discordia line A probability density plot of concordant grains and the upper intercept ages of grains plotted along the discordia from DF09 39 d isplays one age population at ca. 2600 2625 Ma (Figure 4 2 3 b 39 range between 3 and +1 for grains with U Pb ages between ca. 2580 and 2610 Ma excepting one outlying grain with an Hf value of +9 and a U Pb age of 2606 Ma ( Table

PAGE 47

47 4 45; Figure 4 2 3 c ). Lu Hf DM model ages calculated from Hf ratios range in descending order of relative abundance, from ca. 28 5 0 3000 and 2525 2825 Ma (Figure 4 2 3 d ). Sample DF06 11, from the eastern Coastal Terrane of the Kaoko Belt (Table 4 24) has an approximate stratigraphic age of 6 60 Ma (Goscombe and Gray, 2008). The U Pb concordia diagram displays one cluster of concordant grains between ca. 600 and 900 Ma (Figure 4 2 4 a ). A majority of the discordant grains plot along a discordia with a lower intercept of 544 180 Ma and an upper intercept of 816.9 8.1 Ma (Figure 4 24b) Of the 110 grains sampled 62, or 56%, were concordant and 8 or 7 %, plotted along the discordia line A probability density plot of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 11 display age populations, in descending order of relative abundance, at ca. 815, 665, 765 and 790 Ma (Figure 4 2 4 c 11 range between +2 and +10 with U Pb ages of ca. 835 620 Ma ( Table 4 46; Figure 4 2 4 d ). Lu Hf DM model ages calculated from Hf ratios range in order of decreasing relative abundance, from ca. 1025 1075, 1100, 925 1000 and 1150 1250 Ma (Figure 4 2 4 e ). Sample DF06 08, from the Khumib Terrane of the Swakop Group in the central Orogen Core (Table 4 26) has an approximate stratigraphic age of 600 Ma (Stanistreet and Charlesworth, 2001). The U Pb conco rdia diagram displays three clusters of concordant grains at ca. 550 825 Ma, 825 1150 Ma and 1400 Ma (Figure 4 2 5 a b ). A majority of the discordant grains plot along four separate discordia with l ower intercept s of 579 28, 344 150, 34 230, 374 330 and 324 130 Ma and upper intercept s of 1097 33, 1044 17, 1043 20, 998 19 and 1017 13 Ma respectively (Figure 4 25c) Of the 98 grains sampled 6 5 or 6 6 %, were concordant and 9 or 9 %, plotted along

PAGE 48

48 the discordia line Probability density plot s of the concordant grains and the upper intercept ages of grains plotted along the discordia from DF06 08 display age populations, in descending order of relative abundance, at ca. 620, 1035, 1015, 575, 750, 1000, 1080, 1130, 1470, 1450, 910, 870 and 830 Ma (Fig. 4 2 5 d select concordant grains range primarily between 6 and +12 with U Pb ages ranging from ca. 1455 to 625 Ma, excepting two 10 and 15.4 and U Pb ages of 60 5 and 113 1 Ma, respectively ( Table 4 4 8; Figure 4 2 5 e ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 08 range in order of decreasing relative abundance, from ca. 1100, 1250, 1000, 1525, 1400, 1600 1850 and 2000 2250 Ma (Figure 4 2 5 f ). Sample DF06 17, from the Hoanib R iver Formation of the Swakop Group in the western Kaoko Belt (Table 4 25) has an approximate stratigraphic age of 600 Ma (Stanistreet and Charlesworth, 2001). The U Pb concordia diagram displays two clusters of concordant grains at ca. 1200 Ma and 1700 18 50 Ma (Figure 4 2 6 a ). A majority of discordant grains plot along two distinct discordia with lower intercepts of 1184 78 and 693 83 Ma and upper intercepts of 1937 49 and 20 85 53 Ma, respectively (Figure 4 26b c) Of the 49 grains sampled 14, or 29 %, were concordant and 1 9, or 3 9%, plotted along the discordia line Probability density plots of the concordant grains and of grains plotted along the discordia lines from DF06 17 display age populations, in descending order of relative abundance, at ca. 17 30 1755, 1705, 1825, 1835, 2075, 1620, 1670, 1780, 1230 1215 and 1555 Ma (Figure 4 2 6 d ). I n the probability density plots 207 Pb/ 206 Pb ages were used for grains plotted along the discordia with an upper intercept of 1937 49 Ma whereas the upper intercept age was

PAGE 49

49 used for grains that plotted along the discordia line with an upper intercept of 2085 53 Ma. 3 and 0 with U Pb ages of ca. 1830 1745 Ma and range between +4 and +12 for grains with U Pb ages of ca. 1935 2085 Ma, excepting one outlying grain with a value of +2 and a U Pb age of 1232 Ma ( Table 4 47; Figure 4 2 6 e ). Lu Hf DM model ages calculated from Hf ratios measured in sample DF06 17 range in decreasing order of relative abundance, from ca. 2150 225 0 1600 2050 and 2275 2350 Ma (Figure 4 2 6 f ). Initial Hf Isotope Data between 0 and +10 for grains with U Pb ages of ca. 550 900 Ma, except fewer than 10 grains that plot between 10 and 0 and two grains with values of 26 (Figure 4 2 7 ) In cont rast, samples collected on the margin of the Kalahari craton in the Southern Foreland Zone, 10 and +3 from ca. 525 900 Ma. There is a gap in the Kalahari data set at ca. 650 850 Ma with only two grains in tha t age range ; whereas the Congo craton data set is continuous. Both cratons display a lack of grains with U Pb ages between ca. 9 1 0 and 9 4 0 Ma and only a few data points are available. The grains with U Pb ages between ca. 900 and 970 Ma collected on the Co 5 to +9, Pb age of 955 Ma. Grains collected in the Congo margin displaying U Pb ages of ca. 970 between 15 to +7. The six gra ins collected in the Kalahari margin displaying U Pb ages of ca. 900 +11, +11, 3, 8, 14 and 23 The zircons from 22.5 to 12 and from 0 to +1 4 with a highe r proportion of samples in the former range, for grains with U Pb

PAGE 50

50 values primarily between 4 and +8 for grains with U Pb ages between ca. 1000 and 1100 Ma, except one grai 10 and a U Pb age of 1033 Ma and one 7 and a U Pb age of 1094 Ma. Grains with U Pb ages from ca. from 15 to 5 and from 0 to +1 2 with a higher grains with U Pb ages from 1150 to 1500 Ma collected in the Congo margin is sparse. Four grains with U Pb ages of ca. 1230 7 to +1, a grain with a U Pb age of 1339 Ma di 13, another grain with a U Pb age of six grains with U Pb ages of 1411 Ma display Hf values of +10 to +15, one grain with a U Pb age of 1411 Ma displays an Hf value of +23 and three grains with U Pb ages of ca. 1475 5.5 to +0.5. The Kalahari margin strata display a more complete data set for grains with U Pb collected on the Kalahari margin with U Pb ages from 11 00 to 1170 Ma range between 1 and +7. Grains with U Pb ages of ca. 1200 6 to +5, with a higher proportion of positive values than negative. Six grains have U Pb ages between ca. 1575 and 1475 1 to +6. The Congo cratonic margin strata contain no grains with U Pb ages between ca. 1500 and 1825 Ma except for three grains at ca. 1745 between margin stra ta display a similar lack of U values for the Congo cratonic margin with U Pb ages between ca. 1800 and 1970 Ma

PAGE 51

51 primarily fall between 8 and 3, except for 0.5 to +1 and U Pb ages of ca. 1825 Pb ages of ca. 1875 Ma. Samples collected in the Kalahari cratonic margin with U Pb ages 9 and 2 while those displaying U Pb ages of ca. 2030 3 to +3. The Kalahari 9 to 1 for U Pb ages of 2125 2110 Ma and there is a single grain with a U cratons are sparse for the Archean aged zircon grains, and most of the Archean grains analyzed were highly discordant with elevated common Pb. The Congo cratonic margin 1 at ca. 2600 2560 Ma. The Kalahar i cratonic margin contains two grains with U Pb ages of ca. 2710 2690 Pb age of 2843 Ma. Sm/Nd Analysis Whole rock Sm/Nd isotope data for 30 meta pelitic and meta semipelitic rocks from the Congo and Kalahari cratonic margins (Table 4 49 t hrough Table 4 55 ) gave depleted mantle Sm Nd DM model ages (DM value s as summarized by Depaolo, 1981 ; CHUR values as summarized by Bouvier et al., 2008) between 1.4 and 2.8 Ga regardless of cratonic heritage (Figure 4 2 8 ). No significant variation could be discerned on either side of the boundary between the strata deposited along the Congo and Kalahari cratonic margins at the Southern Zone Southern Margin Zone (SZ SMZ) boundary or due to the dista nce from the boundary; the pelitic and semipelitic strata deposited along the margins of these two craton cratons yield indistinguishable Nd 4 2 9 ), a period of significant glaciation and

PAGE 52

52 approximately when the st rata were deposited, were statistically indistinguishable for 21 to +6 on both the Congo and Kalahari margins. At the SZ between 5 and 0 with only a between 10 and 5. deposited at ca. 600 values that range primarily between 5 and 1. Syndepositional samples on the cratonic 9 and 6. Samples collected from formations deposited prior to ca. 650 Ma or subsequent to ca. 600 Ma displa of deposition in any way. Common Pb Whole rock Pb/Pb isotopic data was collected for 30 samples of metapelitic rock from the Congo and Kalahari cratonic margins (Table 4 56 to Tab le 4 62 ). Regressions of the common Pb data using 207 Pb/ 204 Pb versus 206 Pb/ 204 Pb (normalized to Abouchami et al., 2000 values) gave reference ages of 777 +350/ 890 Ma for the Kalahari Craton strata (Figure 4 30 a) and 154 +670/ 1400 Ma for the Congo craton strata (Figure 4 30 b ). Therefore, the whole rock common lead values for strata deposited along both cratons are statistically indistinguishable. Trace and Major Element Analysis Major element analysis on 22 whole rock separates (Table 4 63 ) was typical of meta pelites and meta psammites, consistent with the rock types analyzed. As the same basic rock types were collected on both cratons, the similarity in major elements

PAGE 53

53 was expected. Most major oxides ratios from strata derived from the cratons decrease lin early with increasing silica content (Figure 3 1 ). Ca, Na, and to a lesser extent P, K and Mn, show considerable scatter between 60 and 80% SiO 2 but still an overall decreasing trend with increasing silica. Trace element analyses on 3 1 whole rock powders ( Table 4 64 ) show no significant variation in rare earth element (REE) compositions across cratons (normalized to Sun and McDonough, 1989 values). One quartzite sample displayed relative depletion overall, otherwise relative abundances were consistent. Such similarity was anticipated due to the rift drift sedimentary histories common to both cratons. All samples display REE signatures typical of weathered metasedimentary rocks including relative abundance in the light REE with decreasing abundance in the hea vy REE (Figure 4 3 2 ). All samples display a negative Eu anomaly, probably indicative of plagioclase fraction in the sources of most of the continental detritus. One sample (SZ80) also displays a positive Ce anomaly, possibly indicative of a ferromanganese nodule derived from chemical sediment.

PAGE 54

54 Table 4 1. U Pb (MC ICP MS) analysis common Pb corrected results for sample BDG06 91 from the Northern Foreland Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor BDG06 91_1 0.0696 0.00027 1.438 0.054 0.1498 0.0056 918 16 905 44 901 63 1.83 0.99 BDG06 91_2 R 0.2957 0.0 0651 6.667 0.296 0.1635 0.0063 3448 68 2068 77 977 70 71.66 0.87 BDG06 91_3 R 0.2985 0.00491 6.660 0.271 0.1618 0.0060 3463 51 2067 70 968 67 72.05 0.91 BDG06 91_4 0.1749 0.00063 11.447 0.439 0.4747 0.0181 2605 12 2560 70 2506 158 3.80 1 .00 BDG06 91_5 0.1694 0.00075 9.496 0.358 0.4065 0.0152 2552 15 2387 68 2200 139 13.77 0.99 BDG06 91_6 0.0628 0.00040 0.885 0.034 0.1022 0.0038 703 27 644 36 628 45 10.67 0.99 BDG06 91_7 0.1761 0.00062 11.371 0.430 0.4683 0.0176 2616 12 25 54 69 2478 154 5.27 1.00 BDG06 91_8 0.0600 0.00022 0.763 0.029 0.0922 0.0035 603 16 576 33 569 41 5.61 1.00 BDG06 91_9 R 0.1259 0.00048 5.469 0.208 0.3150 0.0119 2042 13 1895 64 1767 116 13.47 0.99 BDG06 91_10 R 0.1437 0.00125 2.002 0.077 0.1010 0.0038 2273 30 1116 52 621 44 72.68 0.97 BDG06 91_11 R 0.2563 0.00858 3.700 0.196 0.1047 0.0043 3224 106 1571 83 642 50 80.07 0.78 BDG06 91_12 R 0.1143 0.00668 2.077 0.147 0.1318 0.0053 1869 210 1141 95 799 60 57.27 0.57 BDG06 91_ 13 R 0.0850 0.00155 1.239 0.053 0.1057 0.0041 1316 71 818 47 648 47 50.75 0.90 BDG06 91_14 R 0.3932 0.00612 13.313 0.636 0.2456 0.0111 3883 47 2702 88 1417 114 63.52 0.95 BDG06 91_15 0.0619 0.00023 0.837 0.032 0.0980 0.0037 672 16 617 35 60 3 43 10.29 1.00 BDG06 91_16 R 0.1001 0.00434 1.490 0.088 0.1079 0.0043 1627 161 926 70 661 50 59.35 0.68 BDG06 91_17 0.1216 0.00044 5.728 0.219 0.3417 0.0130 1979 13 1935 65 1897 125 4.17 1.00 BDG06 91_18 R 0.1385 0.00680 5.805 0.366 0.3041 0.0120 2208 170 1947 106 1713 118 22.43 0.63 BDG06 91_19 0.0730 0.00027 1.617 0.062 0.1606 0.0061 1014 15 977 47 961 68 5.22 1.00 BDG06 91_20 R 0.2013 0.00335 11.883 0.489 0.4281 0.0161 2837 54 2595 76 2299 145 18.95 0.91 BDG06 91_21 R 0 .0643 0.00023 0.882 0.034 0.0994 0.0038 753 15 642 36 611 44 18.78 1.00

PAGE 55

55 Table 4 1. Continued BDG06 91_22 R 0.4073 0.00704 7.928 0.341 0.1412 0.0056 3936 52 2222 76 852 63 78.36 0.92 BDG06 91_23 0.0612 0.00023 0.809 0.031 0.0958 0.0036 648 16 602 34 590 42 8.86 0.99 BDG06 91_24 R 0.1961 0.00093 12.140 0.470 0.4491 0.0173 2794 16 2615 71 2393 153 14.34 0.99 BDG06 91_25 0.1702 0.00070 10.065 0.386 0.4289 0.0163 2559 14 2440 70 2303 147 10.01 0.99 BDG06 91_26 R 0.2904 0.00354 19. 544 0.798 0.4882 0.0190 3420 38 3069 77 2565 164 24.99 0.95 BDG06 91_27 R 0.0737 0.00027 1.494 0.057 0.1471 0.0056 1032 15 928 46 885 63 14.20 1.00 BDG06 91_28 R 0.1791 0.00065 11.370 0.438 0.4604 0.0177 2645 12 2554 71 2443 155 7.61 1.00 BDG06 91_29 R 0.1550 0.00320 3.541 0.152 0.1656 0.0062 2402 70 1536 67 989 69 58.83 0.88 BDG06 91_30 R 0.0805 0.00317 1.215 0.066 0.1094 0.0041 1210 155 808 60 670 48 44.62 0.69 BDG06 91_31 0.1709 0.00064 10.971 0.415 0.4657 0.0175 2566 12 2520 69 2467 153 3.88 1.00 BDG06 91_32 0.0631 0.00027 0.904 0.035 0.1039 0.0040 713 18 654 37 638 46 10.50 0.99 BDG06 91_33 R 0.1756 0.01989 2.534 0.315 0.1046 0.0053 2612 377 1282 173 642 62 75.41 0.41 BDG06 91_34 R 0.0704 0.00064 0.949 0 .037 0.0977 0.0038 941 37 677 39 601 44 36.10 0.97 BDG06 91_35 R 0.0850 0.00155 1.955 0.084 0.1667 0.0064 1316 71 1100 57 995 71 24.42 0.90 BDG06 91_36 R 0.1139 0.00041 4.722 0.182 0.3007 0.0115 1862 13 1771 63 1696 114 8.90 1.00 BDG06 9 1_37 0.1771 0.00063 11.573 0.445 0.4740 0.0182 2626 12 2570 71 2503 158 4.66 1.00 BDG06 91_38 0.1148 0.00043 5.044 0.193 0.3185 0.0121 1877 14 1826 64 1784 118 4.96 1.00 BDG06 91_39 0.1236 0.00078 5.800 0.224 0.3403 0.0130 2009 22 1946 66 1890 124 5.94 0.99 BDG06 91_40 0.0631 0.00047 0.913 0.035 0.1050 0.0040 711 32 658 37 644 46 9.36 0.98 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 56

56 Table 4 2. U Pb (MC ICP MS) analys is common Pb corrected results for sample DF09 26 from the Northern Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 26_02 0.0734 0.00052 0.999 0.022 0.099 0.0020 1024 29 703 22 608 24 40.64 0.95 DF09 26_03 0.0739 0.0 0045 1.657 0.036 0.163 0.0034 1039 25 992 27 972 38 6.45 0.96 DF09 26_04 0.0709 0.00049 1.161 0.025 0.119 0.0024 956 28 782 23 724 28 24.24 0.95 DF09 26_05 0.0736 0.00062 1.156 0.026 0.114 0.0024 1032 34 780 25 695 28 32.59 0.93 DF09 2 6_06 0.0766 0.00048 1.853 0.041 0.175 0.0037 1111 25 1064 29 1042 40 6.18 0.96 DF09 26_07 0.0704 0.00066 0.971 0.024 0.100 0.0023 940 38 689 25 615 27 34.54 0.93 DF09 26_08 0.0683 0.00043 1.304 0.028 0.138 0.0029 879 26 847 25 836 33 4. 83 0.96 DF09 26_09 0.0702 0.00043 1.444 0.031 0.149 0.0031 934 25 907 26 897 35 3.90 0.96 DF09 26_10 0.0650 0.00040 1.138 0.024 0.127 0.0025 773 26 771 23 772 29 0.19 0.96 DF09 26_11 0.0659 0.00041 1.186 0.027 0.131 0.0028 804 26 794 25 791 32 1.50 0.96 DF09 26_12 0.0755 0.00047 1.810 0.039 0.174 0.0035 1083 25 1049 28 1034 39 4.49 0.96 DF09 26_13 0.0722 0.00044 1.618 0.036 0.163 0.0035 991 25 977 28 972 39 1.88 0.96 DF09 26_14 0.0725 0.00048 1.558 0.034 0.156 0.0033 1001 27 954 27 934 36 6.69 0.95 DF09 26_15 0.0737 0.00045 1.732 0.037 0.170 0.0035 1033 25 1020 28 1015 39 1.66 0.96 DF09 26_16 R 0.0797 0.00073 0.910 0.031 0.083 0.0027 1190 36 657 32 513 32 56.89 0.96 DF09 26_17 R 0.0677 0.00047 1.107 0.02 4 0.119 0.0024 858 29 756 23 723 28 15.65 0.95 DF09 26_18 R 0.0800 0.00104 1.039 0.026 0.094 0.0020 1198 51 723 26 580 24 51.53 0.85 DF09 26_19 0.0682 0.00121 0.828 0.031 0.088 0.0029 873 73 612 34 545 34 37.60 0.88 DF09 26_20 0.0656 0. 00044 1.085 0.024 0.120 0.0026 794 28 746 24 731 30 7.96 0.95 DF09 26_21 R 0.0940 0.00083 1.237 0.029 0.096 0.0020 1507 33 818 26 589 24 60.94 0.92 DF09 26_22 0.0627 0.00044 0.904 0.021 0.105 0.0023 696 30 654 22 642 26 7.77 0.95 DF09 2 6_23 0.0738 0.00075 1.341 0.031 0.132 0.0027 1037 41 863 26 798 31 22.98 0.89 DF09 26_24 0.0777 0.00048 1.739 0.037 0.162 0.0033 1140 25 1023 27 970 37 14.90 0.96 DF09 26_25 0.0772 0.00076 1.770 0.042 0.166 0.0036 1125 39 1034 31 993 4 0 11.72 0.91 DF09 26_26 0.0622 0.00040 0.565 0.012 0.066 0.0013 679 28 455 16 412 16 39.32 0.95 DF09 26_27 0.0761 0.00050 1.680 0.043 0.160 0.0040 1099 26 1001 32 958 44 12.80 0.97

PAGE 57

57 Table 4 2. Continued DF09 26_28 R 0.1146 0.00271 0.818 0.030 0.052 0.0014 1874 85 607 33 326 17 82.63 0.76 DF09 26_29 R 0.0697 0.00046 1.223 0.028 0.127 0.0028 919 27 811 26 773 32 15.89 0.96 DF09 26_30 0.0737 0.00062 1.629 0.042 0.160 0.0039 1034 34 981 32 959 43 7.29 0.94 DF09 26_31 0.0685 0.0 0058 1.020 0.023 0.108 0.0023 885 35 714 23 661 27 25.23 0.93 DF09 26_32 0.0738 0.00064 1.087 0.024 0.107 0.0022 1035 35 747 23 655 26 36.65 0.92 DF09 26_33 R 0.1057 0.00141 1.993 0.064 0.137 0.0040 1727 49 1113 43 827 45 52.14 0.91 DF0 9 26_34 0.0618 0.00039 0.875 0.020 0.103 0.0023 667 27 638 22 631 26 5.47 0.96 DF09 26_35 R 0.1047 0.00106 2.002 0.048 0.139 0.0030 1709 37 1116 32 838 34 50.97 0.91 DF09 26_36 0.0622 0.00039 0.955 0.021 0.111 0.0024 682 27 681 22 681 27 0.16 0.96 DF09 26_37 0.0612 0.00038 0.845 0.018 0.100 0.0021 645 27 622 20 616 25 4.45 0.96 DF09 26_38 0.0731 0.00045 1.655 0.037 0.164 0.0036 1016 25 991 28 981 39 3.41 0.96 DF09 26_39 0.0789 0.00073 1.624 0.048 0.149 0.0042 1169 37 980 37 898 47 23.17 0.95 DF09 26_40 R 0.0640 0.00046 0.848 0.020 0.096 0.0021 742 30 624 22 592 25 20.13 0.95 DF09 26_41 0.0648 0.00040 1.083 0.024 0.121 0.0026 769 26 745 23 738 30 3.97 0.96 DF09 26_42 0.0605 0.00038 0.828 0.019 0.099 0.0022 622 27 613 21 611 25 1.81 0.96 DF09 26_43 R 0.0644 0.00041 0.905 0.020 0.102 0.0021 755 27 654 21 626 25 17.09 0.96 DF09 26_44 0.0724 0.00045 1.514 0.033 0.152 0.0032 998 25 936 27 910 36 8.78 0.96 DF09 26_45 0.0696 0.00077 1.042 0.025 0.109 0.0023 918 46 725 24 665 26 27.54 0.88 DF09 26_46 0.0611 0.00041 0.829 0.018 0.098 0.0020 641 29 613 20 606 24 5.49 0.95 DF09 26_47 0.0608 0.00038 0.830 0.018 0.099 0.0021 631 27 614 20 610 24 3.32 0.96 DF09 26_48 0.0717 0.00044 1.539 0.035 0.156 0.0034 976 25 946 28 934 40 4.29 0.96 DF09 26_49 0.0749 0.00048 1.716 0.038 0.166 0.0035 1065 26 1014 28 992 39 6.87 0.96 DF09 26_50 0.0718 0.00047 1.478 0.034 0.149 0.0033 979 27 921 28 898 37 8.25 0.96 DF09 26_51 0 .0767 0.00049 1.890 0.044 0.179 0.0041 1113 25 1078 31 1061 44 4.59 0.96 DF09 26_52 0.0751 0.00071 1.176 0.027 0.114 0.0023 1071 38 789 25 694 27 35.15 0.91 DF09 26_53 0.1074 0.00066 4.423 0.100 0.299 0.0065 1756 23 1716 37 1686 65 3.96 0.96 DF09 26_54 R 0.0661 0.00070 0.878 0.023 0.096 0.0023 808 44 640 24 594 27 26.51 0.91 DF09 26_55 R 0.0618 0.00041 0.829 0.019 0.097 0.0021 667 28 613 20 599 24 10.12 0.95

PAGE 58

58 Table 4 2. Continued. DF09 26_56 0.0716 0.00044 1.514 0.033 0.153 0 .0032 976 25 936 26 920 36 5.69 0.96 DF09 26_57 0.0714 0.00044 1.484 0.032 0.151 0.0031 970 25 924 26 906 35 6.58 0.96 DF09 26_58 0.0732 0.00045 1.626 0.036 0.161 0.0034 1021 25 980 28 963 38 5.64 0.96 DF09 26_59 0.0778 0.00047 1.976 0 .042 0.184 0.0038 1142 24 1107 28 1091 41 4.44 0.96 DF09 26_60 0.0635 0.00040 0.950 0.020 0.108 0.0022 726 27 678 21 664 26 8.54 0.96 DF09 26_61 0.0721 0.00045 1.556 0.034 0.157 0.0033 989 25 953 27 938 36 5.15 0.96 DF09 26_62 R 0.1219 0.00074 5.672 0.122 0.338 0.0069 1984 22 1927 37 1876 67 5.41 0.96 DF09 26_63 0.0756 0.00046 1.821 0.039 0.175 0.0036 1084 25 1053 28 1039 40 4.19 0.96 DF09 26_64 0.1147 0.00070 5.150 0.111 0.326 0.0067 1875 22 1844 36 1819 65 2.96 0.96 DF09 26_65 0.0728 0.00045 1.511 0.033 0.151 0.0032 1008 25 935 27 905 35 10.22 0.96 DF09 26_66 R 0.0653 0.00043 0.872 0.021 0.097 0.0022 784 28 636 22 596 26 23.88 0.96 DF09 26_67 0.0657 0.00041 1.151 0.025 0.127 0.0026 797 26 778 23 772 30 3.09 0.96 DF09 26_68 R 0.0829 0.00124 1.561 0.044 0.137 0.0033 1266 59 955 35 826 37 34.73 0.85 DF09 26_69 0.0651 0.00043 1.018 0.022 0.113 0.0023 778 28 713 22 693 27 10.96 0.95 DF09 26_70 0.0768 0.00054 1.496 0.034 0.141 0.0030 1116 28 929 27 853 34 23.55 0.95 DF09 26_71 R 0.1252 0.00076 5.998 0.131 0.347 0.0073 2032 21 1975 38 1924 70 5.30 0.96 DF09 26_72 0.0673 0.00043 0.892 0.020 0.096 0.0021 847 27 647 21 592 24 30.11 0.96 DF09 26_73 0.0740 0.00046 1.662 0.037 0 .163 0.0034 1041 25 994 28 974 38 6.44 0.96 DF09 26_74 0.0759 0.00047 1.826 0.040 0.174 0.0036 1093 25 1055 28 1038 40 5.03 0.96 DF09 26_75 0.0644 0.00056 1.006 0.025 0.113 0.0026 753 37 707 25 693 30 7.98 0.94 DF09 26_76 0.0734 0.0004 8 1.568 0.033 0.155 0.0031 1025 26 958 26 929 35 9.32 0.95 DF09 26_77 0.0659 0.00042 1.023 0.023 0.113 0.0024 803 27 715 23 688 28 14.28 0.96 DF09 26_78 0.0615 0.00039 0.857 0.019 0.101 0.0021 658 27 628 20 621 25 5.67 0.96 DF09 26_79 0.0715 0.00044 1.505 0.032 0.153 0.0031 971 25 932 26 917 35 5.54 0.96 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 59

59 Table 4 3. U Pb (MC ICP MS) analysis common Pb corrected results for s ample DF09 30 from the Northern Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 30_1 0.1115 0.00045 4.919 0.070 0.3 20 0.0044 1824 15 1805 24 1791 43 1.76 0.96 DF09 30_2 0.1232 0.00068 6.023 0.102 0.355 0.0057 2003 20 1979 29 1958 54 2.22 0.95 DF09 30_3 R 0.0749 0.00116 0.882 0.021 0.085 0.0015 1066 62 642 22 529 18 50.38 0.76 DF09 30_4 0.1221 0.0005 0 5.832 0.086 0.346 0.0049 1987 15 1951 25 1919 47 3.39 0.96 DF09 30_5 R 0.1195 0.00049 4.593 0.067 0.279 0.0039 1949 15 1748 24 1586 39 18.58 0.96 DF09 30_6 0.0879 0.00037 2.842 0.041 0.234 0.0033 1381 16 1367 22 1359 34 1.62 0.96 DF09 30_7 0.0627 0.00033 0.870 0.012 0.101 0.0013 697 22 635 13 619 16 11.23 0.93 DF09 30_8 R 0.1236 0.00070 5.321 0.088 0.312 0.0048 2009 20 1872 28 1753 47 12.72 0.94 DF09 30_9 R 0.0785 0.00042 1.917 0.027 0.177 0.0023 1160 21 1087 19 1052 25 9.34 0.93 DF09 30_10 R 0.1077 0.00043 4.287 0.064 0.289 0.0042 1761 15 1691 25 1636 42 7.10 0.96 DF09 30_11 R 0.1293 0.00070 3.034 0.063 0.170 0.0034 2088 19 1416 32 1014 38 51.43 0.97 DF09 30_12 R 0.1102 0.00045 3.976 0.051 0.262 0.0032 180 3 15 1629 21 1499 32 16.81 0.95 DF09 30_13 R 0.0944 0.00039 3.269 0.046 0.251 0.0033 1516 15 1473 22 1446 34 4.60 0.96 DF09 30_14 0.1248 0.00067 5.899 0.089 0.343 0.0048 2026 19 1961 26 1902 46 6.12 0.93 DF09 30_15 0.1216 0.00049 5.679 0.081 0.339 0.0046 1980 14 1928 25 1882 45 4.96 0.96 DF09 30_16 0.1214 0.00049 5.219 0.069 0.312 0.0039 1978 14 1855 22 1750 38 11.49 0.95 DF09 30_17 R 0.0941 0.00038 2.892 0.043 0.223 0.0032 1511 15 1380 22 1298 33 14.09 0.96 DF09 30_1 8 0.1125 0.00050 4.197 0.085 0.271 0.0054 1840 16 1673 33 1545 54 16.01 0.98 DF09 30_19 R 0.1227 0.00051 3.597 0.125 0.213 0.0073 1996 15 1549 54 1244 78 37.68 0.99 DF09 30_20 0.1216 0.00056 5.670 0.078 0.338 0.0044 1980 16 1926 23 1879 42 5.11 0.94 DF09 30_21 0.1223 0.00049 5.729 0.075 0.340 0.0042 1990 14 1935 22 1887 40 5.20 0.95 DF09 30_22 R 0.1288 0.00052 6.354 0.087 0.358 0.0047 2081 14 2026 24 1974 45 5.15 0.96 DF09 30_23 0.1216 0.00049 5.217 0.092 0.311 0.0053 1980 14 1855 30 1748 52 11.70 0.97 DF09 30_24 R 0.0882 0.00039 2.681 0.044 0.221 0.0035 1386 17 1323 24 1286 37 7.20 0.96 DF09 30_25 0.1204 0.00048 5.565 0.081 0.335 0.0047 1963 14 1910 25 1865 45 4.98 0.96

PAGE 60

60 Table 4 3. Continued. DF09 30_26 0. 1201 0.00050 5.578 0.072 0.337 0.0041 1958 15 1912 22 1873 39 4.36 0.95 DF09 30_27 R 0.1378 0.00238 4.532 0.103 0.239 0.0036 2200 60 1737 38 1380 37 37.25 0.65 DF09 30_28 R 0.1182 0.00048 3.728 0.054 0.229 0.0032 1930 15 1577 23 1329 34 3 1.13 0.96 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 4 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 37 from the Northern Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 37_1 0.0583 0.00019 0.678 0.012 0.084 0.0015 542 14 525 15 522 17 3.60 0.98 DF09 37_2 R 0.0607 0.0002 7 0.700 0.013 0.084 0.0015 628 19 539 15 519 18 17.35 0.97 DF09 37_3 R 0.0674 0.00190 0.778 0.027 0.084 0.0018 851 117 584 31 519 21 39.02 0.60 DF09 37_5 0.0599 0.00025 0.675 0.011 0.082 0.0013 599 18 524 14 507 16 15.35 0.97 DF09 37_6 0.0597 0.00019 0.697 0.012 0.085 0.0014 594 14 537 14 524 17 11.83 0.98 DF09 37_7 R 0.0623 0.00030 0.691 0.012 0.081 0.0013 683 20 534 14 500 16 26.82 0.96 DF09 37_8 R 0.0850 0.00043 1.926 0.036 0.164 0.0030 1315 20 1090 25 982 33 25.30 0.96 DF09 37_9 R 0.0808 0.00063 1.149 0.022 0.103 0.0018 1217 30 776 20 633 21 47.99 0.91 DF09 37_10 R 0.0588 0.00017 0.632 0.011 0.078 0.0013 561 12 497 14 484 16 13.59 0.99 DF09 37_11 R 0.0707 0.00076 0.906 0.017 0.093 0.0015 948 44 655 18 574 17 39.49 0.83 DF09 37_12 R 0.0604 0.00023 0.652 0.011 0.078 0.0013 617 16 510 13 486 15 21.10 0.97 DF09 37_13 0.0589 0.00018 0.672 0.012 0.083 0.0014 562 13 522 14 513 17 8.57 0.98 DF09 37_14 R 0.0623 0.00032 0.609 0.011 0.071 0.0012 684 22 483 13 442 14 35.33 0.96 DF09 37_15 R 0.0615 0.00049 0.551 0.011 0.065 0.0012 655 34 445 14 406 14 37.97 0.91 DF09 37_16 0.0584 0.00022 0.675 0.011 0.084 0.0014 546 17 523 14 519 17 4.87 0.97 DF09 37_17 R 0.0587 0.00021 0.579 0.01 0 0.072 0.0012 554 15 464 13 446 15 19.48 0.98 DF09 37_18 R 0.0629 0.00039 0.691 0.013 0.080 0.0015 704 26 534 16 495 17 29.70 0.95 DF09 37_19 0.0592 0.00023 0.663 0.012 0.081 0.0014 575 17 516 14 504 17 12.29 0.97

PAGE 61

61 Table 4 4. Continued DF09 37_20 0.0597 0.00018 0.655 0.011 0.080 0.0013 591 13 511 13 494 16 16.40 0.98 DF09 37_21 0.0597 0.00019 0.587 0.011 0.071 0.0013 593 13 469 14 445 15 24.93 0.99 DF09 37_22 R 0.0589 0.00018 0.657 0.012 0.081 0.0014 563 13 513 14 502 17 10.71 0.99 DF09 37_23 0.0597 0.00018 0.653 0.011 0.079 0.0013 591 13 510 14 493 16 16.59 0.98 DF09 37_24 0.0591 0.00020 0.665 0.011 0.082 0.0013 571 15 518 13 506 15 11.26 0.98 DF09 37_25 0.0584 0.00017 0.657 0.011 0.082 0.0014 546 13 513 14 506 16 7.39 0.99 DF09 37_26 0.0603 0.00020 0.674 0.011 0.081 0.0013 613 14 523 13 504 15 17.78 0.98 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 5 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 43 from the Central Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 43_1 R 0.0702 0.00071 1.209 0.031 0.125 0.0029 933 41 805 28 760 34 18.57 0.92 DF09 43_2 R 0.0711 0.00 069 1.269 0.032 0.129 0.0030 960 39 832 28 785 34 18.19 0.92 DF09 43_3 0.0745 0.00073 1.640 0.043 0.160 0.0039 1055 39 985 33 956 43 9.38 0.93 DF09 43_4 0.0744 0.00072 1.653 0.045 0.161 0.0041 1051 39 990 34 964 46 8.27 0.93 DF09 43_5 0.0745 0.00072 1.675 0.044 0.163 0.0039 1054 39 999 33 975 44 7.43 0.93 DF09 43_6 0.0745 0.00072 1.656 0.043 0.161 0.0039 1055 39 992 32 964 43 8.54 0.93 DF09 43_7 0.0737 0.00071 1.561 0.042 0.154 0.0039 1033 39 955 33 922 43 10.68 0.93 DF09 43_8 R 0.0705 0.00068 1.317 0.034 0.135 0.0033 943 40 853 30 820 37 13.04 0.93 DF09 43_9 0.0742 0.00072 1.642 0.044 0.160 0.0040 1047 39 986 33 960 44 8.29 0.93 DF09 43_10 0.0734 0.00074 1.566 0.045 0.155 0.0042 1025 41 957 36 928 47 9.48 0.94 DF09 43_11 0.0736 0.00072 1.631 0.043 0.161 0.0039 1032 39 982 33 961 43 6.83 0.93 DF09 43_12 0.0735 0.00071 1.575 0.042 0.155 0.0038 1029 39 960 33 931 43 9.50 0.93 DF09 43_13 0.0742 0.00072 1.661 0.044 0.162 0.0040 1046 39 994 33 971 44 7.11 0.93 DF09 43_14 0.0741 0.00072 1.688 0.043 0.165 0.0039 1043 39 1004 33 987 44 5.38 0.93 DF09 43_15 0.0741 0.00073 1.623 0.044 0.159 0.0040 1043 40 979 33 951 44 8.73 0.93

PAGE 62

62 Table 4 5. Continued. DF09 43_16 R 0.0690 0.000 71 1.218 0.043 0.128 0.0044 899 43 809 39 777 50 13.53 0.96 DF09 43_17 0.0738 0.00071 1.605 0.041 0.158 0.0038 1036 39 972 32 945 42 8.78 0.93 DF09 43_18 0.0736 0.00071 1.700 0.045 0.167 0.0041 1031 39 1008 33 999 45 3.10 0.93 DF09 43_ 19 0.0734 0.00071 1.625 0.043 0.161 0.0040 1026 39 980 33 960 44 6.34 0.93 DF09 43_20 0.0730 0.00071 1.586 0.042 0.158 0.0039 1015 39 965 33 944 44 6.97 0.93 DF09 43_21 0.0740 0.00071 1.669 0.045 0.163 0.0041 1042 39 997 34 977 45 6.25 0.93 DF09 43_22 0.0736 0.00071 1.672 0.043 0.165 0.0040 1030 39 998 33 984 44 4.39 0.93 DF09 43_23 0.0737 0.00072 1.632 0.043 0.161 0.0039 1034 40 983 33 961 43 7.08 0.93 DF09 43_24 0.0735 0.00071 1.683 0.045 0.166 0.0042 1028 39 1002 34 991 46 3.63 0.93 DF09 43_25 0.0730 0.00071 1.572 0.049 0.156 0.0046 1014 39 959 38 936 51 7.62 0.95 DF09 43_26 0.0733 0.00071 1.600 0.043 0.158 0.0040 1023 39 970 34 948 45 7.37 0.93 DF09 43_27 0.0732 0.00071 1.599 0.042 0.158 0.0038 1020 39 970 32 948 43 7.03 0.93 DF09 43_28 0.0735 0.00071 1.696 0.044 0.167 0.0040 1028 39 1007 33 999 44 2.82 0.93 DF09 43_29 0.0736 0.00071 1.705 0.045 0.168 0.0041 1030 39 1010 34 1002 46 2.71 0.93 DF09 43_30 0.0733 0.00071 1.718 0.046 0.170 0.0042 1023 39 1015 34 1012 47 1.03 0.93 DF09 43_31 0.0730 0.00071 1.652 0.043 0.164 0.0040 1014 39 990 33 981 44 3.23 0.93 DF09 43_32 0.0733 0.00071 1.716 0.047 0.170 0.0044 1021 39 1014 35 1012 48 0.87 0.94 DF09 43_33 R 0.1024 0 .00177 2.843 0.101 0.201 0.0062 1669 64 1367 53 1183 67 29.10 0.87 DF09 43_34 0.0723 0.00070 1.593 0.043 0.160 0.0040 994 39 967 33 957 45 3.76 0.93 DF09 43_35 R 0.0730 0.00071 1.417 0.044 0.141 0.0042 1013 40 896 37 850 47 16.06 0.95 D F09 43_36 0.0724 0.00070 1.591 0.044 0.159 0.0042 997 39 967 34 954 46 4.30 0.94 DF09 43_37 0.0736 0.00071 1.614 0.040 0.159 0.0036 1030 39 976 31 952 40 7.53 0.92 DF09 43_38 0.0729 0.00071 1.678 0.043 0.167 0.0040 1012 39 1000 32 995 4 4 1.65 0.93 DF09 43_39 0.0732 0.00071 1.731 0.046 0.171 0.0042 1020 39 1020 34 1021 46 0.09 0.93 DF09 43_40 0.0730 0.00071 1.648 0.042 0.164 0.0039 1014 39 989 32 978 43 3.48 0.92 DF09 43_41 0.0733 0.00072 1.676 0.044 0.166 0.0040 1022 40 999 33 990 45 3.13 0.93 DF09 43_42 0.0726 0.00070 1.702 0.047 0.170 0.0044 1003 39 1009 35 1013 49 1.07 0.94 DF09 43_43 0.0730 0.00071 1.719 0.045 0.171 0.0041 1015 39 1015 33 1017 46 0.20 0.93 DF09 43_44 0.0718 0.00070 1.544 0.040 0. 156 0.0037 981 40 948 32 935 42 4.73 0.93

PAGE 63

63 Table 4 5. Continued. DF09 43_45 0.0730 0.00072 1.720 0.047 0.171 0.0044 1015 40 1016 35 1017 48 0.20 0.93 DF09 43_46 0.0732 0.00071 1.706 0.045 0.169 0.0042 1020 39 1011 34 1007 46 1.26 0.93 DF09 43_47 R 0.0605 0.00060 0.774 0.020 0.093 0.0022 620 43 582 23 573 26 7.59 0.92 DF09 43_48 0.0576 0.00056 0.667 0.018 0.084 0.0021 515 43 519 21 520 25 1.02 0.93 DF09 43_49 0.0721 0.00070 1.528 0.041 0.154 0.0039 987 39 942 33 923 4 3 6.48 0.93 DF09 43_50 0.0730 0.00071 1.726 0.048 0.171 0.0045 1014 39 1018 36 1021 50 0.67 0.94 DF09 43_51 0.0729 0.00070 1.700 0.044 0.169 0.0040 1011 39 1008 33 1008 44 0.22 0.93 DF09 43_52 0.0729 0.00071 1.738 0.046 0.173 0.0042 1011 39 1023 34 1029 47 1.85 0.93 DF09 43_53 0.0717 0.00070 1.647 0.043 0.167 0.0040 977 40 988 33 994 44 1.78 0.93 DF09 43_54 0.0727 0.00070 1.716 0.044 0.171 0.0040 1005 39 1014 32 1019 44 1.42 0.92 DF09 43_55 0.0708 0.00073 1.514 0.056 0.155 0.0055 952 42 936 45 930 62 2.23 0.96 DF09 43_56 0.0714 0.00084 1.464 0.045 0.149 0.0042 970 48 916 37 894 48 7.82 0.92 DF09 43_57 0.0724 0.00070 1.575 0.042 0.158 0.0039 997 39 960 33 945 43 5.21 0.93 DF09 43_59 0.0729 0.00071 1 .721 0.046 0.171 0.0043 1011 39 1016 34 1020 47 0.89 0.93 DF09 43_60 0.0726 0.00070 1.776 0.048 0.177 0.0044 1002 39 1037 35 1054 49 5.19 0.93 DF09 43_61 0.0728 0.00070 1.726 0.046 0.172 0.0042 1008 39 1018 34 1024 46 1.64 0.93 DF09 43_62 0.0720 0.00070 1.609 0.047 0.162 0.0045 987 40 973 36 969 50 1.82 0.94 DF09 43_63 0.0721 0.00070 1.702 0.044 0.171 0.0042 989 39 1009 33 1020 46 3.17 0.93 DF09 43_64 0.0740 0.00072 1.736 0.045 0.170 0.0041 1042 39 1022 33 1013 4 5 2.71 0.93 DF09 43_65 0.0727 0.00070 1.731 0.046 0.173 0.0043 1007 39 1020 34 1027 47 2.05 0.93 DF09 43_66 0.0728 0.00070 1.755 0.046 0.175 0.0043 1009 39 1029 34 1039 47 3.04 0.93 DF09 43_67 0.0729 0.00071 1.714 0.048 0.171 0.0044 1010 40 1014 35 1016 49 0.60 0.94 DF09 43_68 0.0731 0.00071 1.737 0.046 0.172 0.0043 1015 39 1022 34 1026 47 1.11 0.93 DF09 43_69 0.0729 0.00070 1.761 0.049 0.175 0.0045 1011 39 1031 35 1042 50 3.07 0.94 DF09 43_70 0.0728 0.00070 1.758 0. 045 0.175 0.0042 1009 39 1030 33 1041 46 3.20 0.93 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 64

64 Table 4 6 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 44 from the Central Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 44_1 R 0.0839 0.00101 2.065 0.053 0.178 0.0040 1291 47 1137 35 1059 44 17.91 0.88 DF09 44_2 0.0730 0. 00039 1.546 0.025 0.154 0.0024 1013 22 949 20 922 27 8.96 0.95 DF09 44_3 0.0733 0.00039 1.633 0.025 0.162 0.0023 1023 22 983 19 966 25 5.54 0.94 DF09 44_4 0.0738 0.00041 1.652 0.026 0.162 0.0024 1037 22 990 20 970 26 6.39 0.94 DF09 44_5 0.0731 0.00040 1.551 0.026 0.154 0.0025 1018 22 951 21 923 27 9.29 0.95 DF09 44_6 0.0702 0.00040 1.250 0.020 0.129 0.0019 934 23 823 18 784 21 16.07 0.93 DF09 44_7 0.0727 0.00042 1.613 0.023 0.161 0.0021 1007 24 975 18 962 23 4.38 0.91 DF09 44_8 0.0744 0.00043 1.568 0.025 0.153 0.0023 1052 23 957 20 918 26 12.71 0.93 DF09 44_9 R 0.0970 0.00063 2.655 0.055 0.198 0.0039 1568 24 1316 31 1168 42 25.51 0.95 DF09 44_10 0.0731 0.00039 1.579 0.025 0.157 0.0023 1017 21 962 19 9 38 26 7.73 0.94 DF09 44_11 0.0726 0.00045 1.582 0.021 0.158 0.0019 1002 25 963 17 947 21 5.49 0.89 DF09 44_12 0.0736 0.00041 1.682 0.026 0.166 0.0024 1031 22 1002 20 989 27 4.04 0.93 DF09 44_13 0.0737 0.00040 1.662 0.027 0.164 0.0025 1034 22 994 20 977 27 5.46 0.94 DF09 44_14 0.0737 0.00042 1.690 0.026 0.166 0.0024 1032 23 1004 20 993 27 3.80 0.93 DF09 44_15 0.0734 0.00040 1.741 0.029 0.172 0.0027 1024 22 1024 21 1025 30 0.05 0.95 DF09 44_16 0.0734 0.00040 1.658 0.025 0.164 0.0023 1026 22 993 19 978 26 4.64 0.93 DF09 44_17 0.0640 0.00051 0.879 0.024 0.100 0.0026 741 34 640 26 613 31 17.26 0.96 DF09 44_18 R 0.0878 0.00105 1.086 0.021 0.090 0.0014 1378 46 747 21 554 17 59.77 0.80 DF09 44_19 0.1155 0.00 111 4.427 0.151 0.278 0.0091 1887 34 1717 56 1583 92 16.11 0.96 DF09 44_20 0.0682 0.00046 1.127 0.032 0.120 0.0033 874 28 766 30 730 38 16.39 0.97 DF09 44_21 0.0735 0.00041 1.666 0.028 0.164 0.0026 1028 23 995 21 982 29 4.44 0.94 DF09 44_22 R 0.0582 0.00038 0.704 0.014 0.088 0.0016 537 28 541 16 542 19 0.99 0.94 DF09 44_23 0.0713 0.00046 1.392 0.024 0.142 0.0023 965 26 885 20 855 26 11.35 0.93 DF09 44_24 0.0730 0.00042 1.602 0.024 0.159 0.0022 1015 23 971 19 952 24 6 .17 0.92 DF09 44_25 0.0737 0.00042 1.615 0.027 0.159 0.0025 1034 23 976 21 951 28 7.95 0.94 DF09 44_26 0.0731 0.00039 1.598 0.031 0.159 0.0030 1017 21 969 24 949 33 6.62 0.96

PAGE 65

65 Table 4 6. Continued. DF09 44_27 0.0725 0.00042 1.500 0.021 0.150 0.0019 999 23 930 17 903 21 9.66 0.91 DF09 44_28 0.0735 0.00040 1.573 0.026 0.155 0.0024 1027 22 960 20 931 27 9.32 0.94 DF09 44_29 0.0690 0.00038 1.189 0.016 0.125 0.0016 900 23 795 15 760 18 15.56 0.91 DF09 44_30 0.0743 0.00042 1.665 0.026 0.163 0.0024 1049 23 995 20 972 26 7.37 0.93 DF09 44_31 0.0728 0.00038 1.654 0.026 0.165 0.0025 1007 21 991 20 985 27 2.21 0.94 DF09 44_32 0.0735 0.00041 1.717 0.027 0.169 0.0025 1028 22 1015 20 1009 28 1.82 0.94 DF09 44_33 0.07 37 0.00041 1.679 0.032 0.165 0.0030 1034 22 1001 24 987 33 4.54 0.96 DF09 44_34 0.0744 0.00041 1.739 0.028 0.169 0.0026 1053 22 1023 21 1010 29 4.05 0.94 DF09 44_35 0.0740 0.00042 1.688 0.029 0.166 0.0027 1040 23 1004 22 989 30 4.95 0.9 5 DF09 44_36 0.0730 0.00040 1.653 0.027 0.164 0.0025 1015 22 991 21 981 28 3.39 0.94 DF09 44_37 0.0735 0.00042 1.667 0.024 0.164 0.0022 1029 23 996 18 982 24 4.51 0.92 DF09 44_38 0.0729 0.00040 1.701 0.026 0.169 0.0024 1010 22 1009 20 10 09 27 0.10 0.93 DF09 44_39 0.0722 0.00039 1.596 0.030 0.160 0.0029 993 22 968 23 959 32 3.40 0.96 DF09 44_40 0.0706 0.00041 1.360 0.029 0.140 0.0028 945 24 872 25 844 32 10.65 0.96 DF09 44_41 0.0720 0.00038 1.521 0.024 0.153 0.0023 987 2 2 939 19 919 26 6.80 0.94 DF09 44_42 0.0735 0.00041 1.698 0.028 0.168 0.0026 1027 22 1008 21 1000 28 2.64 0.94 DF09 44_43 R 0.1103 0.00060 3.139 0.067 0.206 0.0043 1804 20 1442 33 1211 46 32.85 0.97 DF09 44_44 0.0732 0.00042 1.665 0.028 0 .165 0.0026 1018 23 995 21 986 29 3.19 0.94 DF09 44_45 0.0730 0.00046 1.594 0.033 0.158 0.0032 1013 25 968 26 949 35 6.35 0.95 DF09 44_46 0.0721 0.00046 1.507 0.026 0.152 0.0024 989 26 933 21 910 27 7.95 0.93 DF09 44_47 R 0.1000 0.00066 2.769 0.043 0.201 0.0028 1623 24 1347 23 1181 30 27.22 0.90 DF09 44_48 0.0749 0.00121 1.761 0.042 0.171 0.0030 1065 65 1031 30 1016 33 4.58 0.73 DF09 44_49 0.0747 0.00056 1.720 0.047 0.167 0.0044 1060 30 1016 35 997 49 5.92 0.96 DF09 44_50 0.0700 0.00062 1.396 0.033 0.145 0.0032 927 37 887 28 872 36 5.94 0.93 DF09 44_51 0.0731 0.00043 1.652 0.033 0.164 0.0031 1017 24 990 25 979 34 3.67 0.96 DF09 44_52 R 0.0938 0.00101 2.530 0.074 0.196 0.0053 1504 41 1280 42 1153 57 23.37 0.93 DF09 44_53 0.1252 0.00070 5.936 0.115 0.344 0.0064 2032 20 1966 34 1907 61 6.14 0.96 DF09 44_54 0.0722 0.00038 1.497 0.028 0.150 0.0027 991 22 929 23 904 30 8.76 0.96

PAGE 66

66 Table 4 6. Continued. DF09 44_55 0.0732 0.00040 1.638 0.034 0.1 62 0.0033 1020 22 985 26 970 36 4.86 0.97 DF09 44_56 0.0733 0.00040 1.635 0.025 0.162 0.0023 1023 22 984 19 967 25 5.43 0.93 DF09 44_57 0.1262 0.00068 6.271 0.135 0.360 0.0075 2046 19 2014 37 1985 71 2.97 0.97 DF09 44_58 0.0675 0.00048 1.036 0.024 0.111 0.0025 854 30 722 24 680 28 20.32 0.95 DF09 44_59 0.0721 0.00043 1.442 0.023 0.145 0.0021 989 24 906 19 874 24 11.67 0.93 DF09 44_60 0.0731 0.00039 1.713 0.029 0.170 0.0028 1016 22 1013 22 1013 30 0.29 0.95 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 7. U Pb (MC ICP MS) analysis common Pb corrected results for sample CZ29 from the Central Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor CZ29_1 0.0728 0.00011 1.529 0.026 0.152 0.0025 1009 6 942 20 915 28 9.29 1.00 CZ29_2 0.0729 0.00012 1.669 0.035 0.166 0.0035 1010 6 997 26 992 38 1.82 1.00 CZ29_3 0.1251 0.00030 6.153 0.117 0.357 0.0067 2031 9 1997 33 1968 64 3.09 0.99 CZ29_4 R 0.1188 0.00267 0.721 0.022 0.044 0.0009 1938 80 551 25 278 11 85.65 0.66 CZ29_5 R 0.1130 0.00061 2.416 0.040 0.155 0.0024 1849 19 1247 23 930 27 49.70 0.94 CZ29_6 0.0734 0.00010 1.686 0.027 0.167 0.0027 1024 6 1003 21 994 30 2.91 1.00 CZ29_7 R 0.0702 0.00030 0.794 0.017 0.082 0.0017 934 18 593 19 509 20 45.49 0.98 CZ29_8 R 0.1181 0. 00034 3.418 0.061 0.210 0.0037 1928 10 1508 28 1229 39 36.26 0.99 CZ29_9 R 0.0739 0.00011 1.585 0.027 0.155 0.0027 1040 6 964 21 932 30 10.31 1.00 CZ29_10 R 0.0738 0.00013 1.456 0.023 0.143 0.0022 1037 7 912 19 862 25 16.86 0.99 CZ29_11 R 0.0634 0.00061 0.697 0.012 0.080 0.0012 723 40 537 14 495 14 31.55 0.83 CZ29_12 0.1251 0.00024 6.095 0.094 0.353 0.0054 2030 7 1989 27 1952 51 3.83 0.99 CZ29_13 R 0.1262 0.00022 5.904 0.105 0.339 0.0060 2046 6 1961 31 1884 58 7.90 1.00 CZ29_14 R 0.0731 0.00018 1.103 0.021 0.109 0.0021 1017 10 755 20 670 24 34.10 0.99 CZ29_15 R 0.0742 0.00011 1.614 0.029 0.158 0.0028 1046 6 975 22 945 31 9.64 1.00 CZ29_16 0.0733 0.00010 1.602 0.026 0.159 0.0026 1021 6 971 21 950 29 7.00 1.00 CZ29_17 0.0721 0.00022 1.418 0.028 0.143 0.0028 989 12 896 24 860 32 13.06 0.99

PAGE 67

67 Table 4 7. Continued. CZ29_18 R 0.0739 0.00016 1.606 0.025 0.158 0.0024 1039 9 972 19 944 27 9.12 0.99 CZ29_19 R 0.0738 0.00014 1.645 0.026 0.162 0.0026 1037 8 987 20 966 28 6.84 0.99 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 8. U Pb (MC ICP MS) analysis common Pb corrected results for sample CZ40 from the Central Zone, Congo Cra ton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor CZ40_1 0.0684 0.00123 1.273 0.085 0.135 0.0087 881 74 833 75 817 99 7.24 0.96 CZ40_2 0.0721 0.00134 1.704 0.118 0.171 0.0115 989 75 1010 87 1021 126 3.25 0.96 CZ40_3 R 0.2094 0.00379 18.650 1.247 0.646 0.0416 2901 59 3023 125 3215 322 10.81 0.96 CZ40_4 0.1116 0.00200 5.460 0.365 0.355 0.0229 1826 65 1894 112 1959 216 7.32 0.96 CZ40_5 0. 1217 0.00218 6.189 0.413 0.369 0.0237 1981 64 2003 113 2026 222 2.26 0.96 CZ40_6 0.1116 0.00200 5.304 0.355 0.345 0.0222 1826 65 1869 111 1911 212 4.67 0.96 CZ40_7 0.1193 0.00215 6.078 0.406 0.369 0.0238 1946 64 1987 113 2029 222 4.2 7 0.96 CZ40_8 0.1111 0.00199 5.118 0.342 0.334 0.0215 1817 65 1839 110 1860 206 2.37 0.96 CZ40_9 0.0713 0.00128 1.613 0.108 0.164 0.0106 966 73 975 82 980 117 1.52 0.96 CZ40_10 0.1164 0.00208 5.950 0.399 0.371 0.0240 1901 64 1968 113 2 035 224 7.04 0.96 CZ40_11 0.0717 0.00128 1.819 0.122 0.184 0.0118 976 73 1052 86 1090 128 11.72 0.96 CZ40_12 0.0692 0.00135 1.385 0.097 0.145 0.0097 905 80 882 81 874 109 3.33 0.96 CZ40_13 0.1797 0.00324 12.930 0.872 0.522 0.0339 2650 60 2674 123 2709 284 2.23 0.96 CZ40_14 0.1126 0.00202 5.021 0.339 0.323 0.0210 1842 65 1823 111 1808 203 1.82 0.96 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 68

68 Table 4 9. U Pb (MC ICP MS) analysis common Pb corrected results for sample CZ53b from the Central Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor CZ53b_10 R 0.0654 0.00030 0.897 0.020 0.099 0.0022 788 19 650 21 612 26 22.32 0.98 CZ53b_11 0.0605 0.00021 0.875 0.017 0.105 0.0020 620 15 638 19 644 24 3.89 0.98 CZ53b_12 R 0.0636 0.00033 0.886 0.017 0.101 0.0018 729 22 644 18 621 21 14.75 0.96 CZ53b_13 0.0625 0.00060 0.923 0.020 0.107 0.0021 691 41 664 21 656 24 5.04 0.90 CZ53b_14RIM R 0. 0655 0.00031 0.849 0.016 0.094 0.0017 789 20 624 17 580 20 26.46 0.97 CZ53b_14CORE R 0.0646 0.00031 0.868 0.020 0.097 0.0022 761 20 634 21 600 25 21.12 0.98 CZ53b_15 R 0.0734 0.00028 1.536 0.043 0.152 0.0042 1026 15 945 34 911 47 11.18 0. 99 CZ53b_16 R 0.0708 0.00083 0.922 0.025 0.094 0.0023 952 48 663 26 582 27 38.87 0.90 CZ53b_17 R 0.0639 0.00033 0.693 0.048 0.079 0.0054 739 22 534 57 488 65 33.87 1.00 CZ53b_18 0.0605 0.00021 0.865 0.017 0.104 0.0020 622 15 632 19 636 2 4 2.36 0.98 CZ53b_19 R 0.0665 0.00024 1.054 0.023 0.115 0.0024 824 15 731 22 702 28 14.77 0.99 CZ53b_20 R 0.0909 0.00079 1.005 0.023 0.080 0.0017 1445 33 706 23 498 20 65.56 0.93 CZ53b_21 0.0726 0.00025 1.717 0.041 0.171 0.0040 1003 14 1015 30 1021 44 1.80 0.99 CZ53b_22 R 0.0631 0.00044 0.868 0.025 0.100 0.0028 711 29 634 27 614 33 13.68 0.97 CZ53b_23 0.0622 0.00022 0.941 0.017 0.110 0.0019 680 15 673 17 672 22 1.18 0.98 CZ53b_24 0.0772 0.00081 1.838 0.041 0.173 0.0034 112 7 42 1059 29 1027 38 8.79 0.88 CZ53b_25 0.0657 0.00026 1.023 0.021 0.113 0.0023 797 16 715 21 690 27 13.37 0.98 CZ53b_26 0.0605 0.00021 0.897 0.016 0.108 0.0019 621 15 650 18 659 23 6.19 0.98 CZ53b_27 0.0648 0.00022 1.201 0.022 0.134 0.0024 769 14 801 20 813 27 5.82 0.98 CZ53b_28 R 0.0730 0.00035 1.187 0.038 0.118 0.0037 1015 20 795 35 719 43 29.11 0.99 CZ53b_29 R 0.0891 0.00138 0.812 0.030 0.066 0.0022 1407 59 604 33 413 26 70.65 0.90 CZ53b_30 R 0.0644 0.00024 0.860 0.017 0.097 0.0018 755 16 630 18 597 22 20.98 0.98 CZ53b_31 R 0.0617 0.00114 0.335 0.009 0.039 0.0008 665 79 293 14 249 10 62.60 0.73 CZ53b_32 0.0739 0.00025 1.804 0.038 0.177 0.0036 1038 14 1047 27 1052 40 1.40 0.99 CZ53b_33 R 0.0731 0.00091 1.228 0.028 0.122 0.0023 1016 50 813 25 742 27 26.95 0.84 CZ53b_34 R 0.0669 0.00028 0.668 0.012 0.072 0.0013 836 17 520 14 451 15 46.01 0.97

PAGE 69

69 Table 4 9. Continued. CZ53b_35 0.0652 0.00043 1.122 0.028 0.125 0.0030 780 28 764 27 759 35 2.57 0.96 CZ53b_36 R 0.0661 0.00103 1.287 0.030 0.141 0.0024 811 65 840 26 852 27 5.09 0.74 CZ53b_36 R 0.0707 0.00111 1.212 0.032 0.124 0.0026 948 64 806 29 757 30 20.14 0.80 CZ53b_37 0.0618 0.00022 0.980 0.021 0.115 0.0024 666 15 693 21 703 28 5.58 0.99 CZ53b_38 0.0624 0.00040 0.828 0.020 0.096 0.0022 688 27 612 22 593 26 13.84 0.96 CZ53b_39 0.0607 0.00021 0.884 0.017 0.106 0.0020 628 15 643 19 648 24 3.15 0.98 CZ53b_40 0.0611 0.00021 0.867 0.019 0.103 0.0022 641 15 634 20 632 26 1.34 0.99 CZ53b_41 R 0.0654 0.00047 0.780 0.023 0.086 0.0024 787 30 585 26 535 29 32.02 0.97 CZ53b_42 R 0.0699 0.00226 1.221 0.050 0.127 0.0032 926 133 810 45 770 36 16.83 0.61 CZ53b_43 0.0764 0.00055 1.836 0.041 0.174 0.0 037 1105 29 1058 29 1036 40 6.20 0.95 CZ53b_44 0.0611 0.00022 0.898 0.019 0.107 0.0022 642 15 650 20 653 26 1.86 0.99 CZ53b_45 R 0.0769 0.00057 1.158 0.022 0.109 0.0019 1118 29 781 21 669 22 40.15 0.92 CZ53b_46 0.0615 0.00029 0.884 0.0 18 0.104 0.0020 658 20 643 19 639 24 2.76 0.97 CZ53b_47 0.0685 0.00026 1.415 0.028 0.150 0.0029 883 16 895 23 901 32 2.01 0.98 CZ53b_48 0.0634 0.00021 1.042 0.019 0.119 0.0021 723 14 725 19 726 25 0.55 0.98 CZ53b_49 R 0.0774 0.00598 1 .136 0.093 0.106 0.0029 1131 307 770 87 653 34 42.30 0.33 CZ53b_50 0.0649 0.00022 1.139 0.021 0.127 0.0023 772 14 772 19 772 26 0.05 0.98 CZ53b_51 0.0651 0.00022 1.183 0.023 0.132 0.0025 777 14 793 21 799 28 2.83 0.98 CZ53b_52 R 0.085 5 0.00045 2.236 0.051 0.190 0.0042 1327 20 1192 32 1120 45 15.57 0.97 CZ53b_53 0.0624 0.00027 0.921 0.021 0.107 0.0024 687 19 663 23 656 28 4.45 0.98 CZ53b_54 R 0.0642 0.00046 0.283 0.006 0.032 0.0006 749 30 253 9 203 8 72.87 0.94 CZ53b _55 R 0.0649 0.00049 0.708 0.020 0.079 0.0022 771 32 544 24 492 26 36.24 0.96 CZ53b_56 0.0657 0.00025 1.055 0.019 0.116 0.0021 797 16 731 19 711 24 10.76 0.98 CZ53b_57 0.0745 0.00028 1.740 0.039 0.169 0.0038 1055 15 1023 29 1010 42 4.31 0.99 CZ53b_58 R 0.0731 0.00035 0.967 0.017 0.096 0.0016 1016 20 687 18 591 19 41.83 0.96 CZ53b_59 0.0720 0.00024 1.638 0.033 0.165 0.0033 985 14 985 26 986 37 0.12 0.99 CZ53b_60 0.0756 0.00036 1.779 0.032 0.171 0.0030 1084 19 1038 23 1017 33 6.14 0.96 CZ53b_61 0.0669 0.00056 1.173 0.027 0.127 0.0027 834 35 788 25 773 31 7.28 0.93

PAGE 70

70 Table 4 9. Continued. CZ53b_62 0.0647 0.00024 1.148 0.021 0.129 0.0023 765 15 776 19 781 26 2.16 0.98 CZ53b_63 0.0743 0.00029 1.730 0.037 0.169 0.0036 1050 16 1020 28 1006 40 4.15 0.98 CZ53b_64 R 0.0688 0.00028 1.007 0.020 0.106 0.0021 892 17 707 20 651 24 26.99 0.98 CZ53b_65 0.0610 0.00021 0.908 0.019 0.108 0.0022 639 15 656 20 661 25 3.50 0.99 CZ53b_66 0.0609 0.00022 0.941 0 .019 0.112 0.0022 636 16 673 19 685 25 7.75 0.98 CZ53b_67 0.0779 0.00027 2.078 0.036 0.193 0.0033 1145 14 1141 23 1140 35 0.41 0.98 CZ53b_68 R 0.0720 0.00058 1.321 0.032 0.133 0.0030 986 33 855 28 806 35 18.23 0.94 CZ53b_69 R 0.0591 0.0 0035 0.478 0.030 0.059 0.0037 569 26 396 41 368 45 35.36 1.00 CZ53b_70 R 0.0649 0.00068 0.329 0.009 0.037 0.0009 770 44 288 14 233 12 69.74 0.92 CZ53b_71 R 0.0661 0.00059 0.961 0.022 0.105 0.0022 811 38 684 22 646 26 20.34 0.92 CZ53b_72 0.0743 0.00025 1.763 0.034 0.172 0.0032 1049 14 1032 25 1024 36 2.35 0.98 CZ53b_73 R 0.0785 0.00034 1.272 0.024 0.118 0.0022 1159 17 833 21 717 25 38.10 0.97 CZ53b_74 R 0.0695 0.00040 0.854 0.019 0.089 0.0019 913 24 627 21 551 23 39.65 0. 97 CZ53b_75 0.0615 0.00022 0.883 0.019 0.104 0.0022 656 15 643 21 640 26 2.42 0.99 CZ53b_76 0.0607 0.00021 0.860 0.016 0.103 0.0019 629 15 630 18 631 22 0.34 0.98 CZ53b_77 0.0723 0.00041 1.535 0.029 0.154 0.0028 995 23 944 23 924 31 7 .16 0.96 CZ53b_78 0.0723 0.00025 1.640 0.029 0.164 0.0029 995 14 985 22 982 32 1.23 0.98 CZ53b_79 0.0758 0.00029 1.958 0.037 0.187 0.0035 1090 15 1101 25 1108 38 1.63 0.98 CZ53b_80 0.0758 0.00029 1.958 0.037 0.187 0.0035 1090 15 1101 25 1108 38 1.63 0.98 CZ53b_81 0.0654 0.00024 1.188 0.022 0.132 0.0024 789 15 795 20 798 27 1.23 0.98 CZ53b_80CORE 0.0764 0.00028 1.829 0.034 0.174 0.0032 1106 14 1056 25 1033 35 6.57 0.98 CZ53b_82 0.0615 0.00023 0.801 0.018 0.094 0.0021 65 7 16 597 20 582 25 11.39 0.99 CZ53b_83 0.0739 0.00027 1.718 0.042 0.169 0.0041 1039 15 1015 31 1006 45 3.17 0.99 CZ53b_84 0.0636 0.00024 1.003 0.020 0.114 0.0023 727 16 705 20 699 26 3.87 0.98 CZ53b_85 0.0744 0.00026 1.784 0.036 0.174 0.0034 1053 14 1040 26 1034 38 1.73 0.98 CZ53b_86 0.0646 0.00024 1.056 0.019 0.119 0.0020 760 16 732 18 724 23 4.73 0.98 CZ53b_87 0.0745 0.00026 1.823 0.033 0.177 0.0032 1055 14 1054 24 1054 35 0.12 0.98 CZ53b_88 0.0779 0.00027 2.033 0 .039 0.189 0.0036 1145 14 1126 26 1118 39 2.30 0.98 CZ53b_89 0.0744 0.00026 1.793 0.034 0.175 0.0032 1051 14 1043 24 1040 35 1.06 0.98

PAGE 71

71 Table 4 9. Continued. CZ53b_90 R 0.0611 0.00026 0.516 0.010 0.061 0.0011 642 19 422 13 383 14 40.27 0. 97 CZ53b_91 R 0.0691 0.00034 0.935 0.025 0.098 0.0025 901 20 670 26 604 30 32.94 0.98 CZ53b_92 R 0.0675 0.00027 0.723 0.016 0.078 0.0017 853 16 552 19 483 20 43.38 0.98 CZ53b_93 0.0624 0.00024 0.923 0.017 0.107 0.0020 687 16 664 18 658 2 3 4.19 0.98 CZ53b_94 0.0661 0.00024 1.244 0.026 0.137 0.0029 808 15 821 24 826 32 2.22 0.99 CZ53b_95 0.0635 0.00024 1.000 0.018 0.114 0.0020 725 16 704 18 698 23 3.77 0.98 CZ53b_96 0.0686 0.00037 1.182 0.023 0.125 0.0024 887 22 792 21 76 0 27 14.30 0.96 CZ53b_97 R 0.0790 0.00077 0.335 0.010 0.031 0.0008 1173 38 294 15 196 10 83.32 0.94 CZ53b_98 0.0608 0.00022 0.842 0.016 0.100 0.0019 632 16 620 18 617 22 2.31 0.98 CZ53b_99 R 0.0689 0.00050 0.868 0.021 0.091 0.0021 896 30 6 34 23 564 25 37.04 0.96 CZ53b_100 R 0.0634 0.00023 0.806 0.020 0.092 0.0023 721 15 600 23 569 27 21.02 0.99 CZ53b_101 R 0.2918 0.00694 8.515 0.283 0.212 0.0049 3427 74 2287 60 1239 52 63.86 0.70 CZ53b_102 0.0626 0.00023 1.059 0.019 0.123 0 .0021 695 16 733 18 746 24 7.38 0.98 CZ53b_103 R 0.0766 0.00126 0.821 0.033 0.078 0.0029 1112 66 608 37 483 34 56.59 0.91 CZ53b_104 0.0663 0.00038 1.128 0.022 0.123 0.0023 815 24 767 21 751 27 7.84 0.96 CZ53b_105 R 0.0725 0.00271 0.938 0.040 0.094 0.0018 1001 152 672 41 578 22 42.20 0.46 CZ53b_106 0.0613 0.00021 0.853 0.018 0.101 0.0021 651 14 626 20 620 25 4.73 0.99 CZ53b_107 0.0610 0.00021 0.879 0.016 0.104 0.0019 640 15 640 17 641 22 0.25 0.98 CZ53b_108 0.0731 0. 00025 1.692 0.033 0.168 0.0033 1016 14 1005 25 1002 36 1.37 0.98 CZ53b_109 R 0.0656 0.00052 0.563 0.019 0.062 0.0020 795 33 454 24 390 24 50.96 0.97 CZ53b_110 0.0736 0.00026 1.684 0.038 0.166 0.0037 1030 14 1002 28 991 41 3.73 0.99 CZ53 b_111 R 0.0642 0.00025 0.467 0.010 0.053 0.0011 749 16 389 14 332 14 55.65 0.98 CZ53b_112 0.0608 0.00021 0.850 0.018 0.101 0.0021 633 15 624 20 623 25 1.64 0.99 CZ53b_113 0.0638 0.00026 0.912 0.018 0.104 0.0020 736 17 658 19 636 23 13.54 0.98 CZ53b_114 0.0639 0.00022 1.032 0.019 0.117 0.0022 740 15 720 19 714 25 3.45 0.98 CZ53b_115 R 0.1120 0.00542 1.067 0.064 0.069 0.0024 1833 175 737 62 431 29 76.49 0.59 CZ53b_116 R 0.0663 0.00029 0.369 0.007 0.040 0.0007 815 18 319 10 255 9 68.67 0.97 R denotes samples removed due to high error and/or discordance.

PAGE 72

72 Table 4 10. U Pb (MC ICP MS) analysis common Pb corrected results for sample CZ35 from the Central Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 2 06 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor CZ35_1 0.0860 0.00028 2.565 0.038 0.216 0.0031 1339 13 1291 22 1263 33 5.68 0.98 CZ35_2 0.0636 0.00020 0.934 0.014 0.107 0.0015 728 13 6 70 14 653 18 10.19 0.98 CZ35_3 0.0714 0.00024 1.608 0.030 0.163 0.0030 969 14 973 23 976 34 0.71 0.98 CZ35_4 0.0720 0.00024 1.639 0.023 0.165 0.0022 985 14 985 17 986 24 0.14 0.97 CZ35_5 R 0.0814 0.00181 0.577 0.034 0.051 0.0028 1230 87 463 43 324 34 73.66 0.93 CZ35_6 0.0645 0.00031 0.977 0.016 0.110 0.0018 758 20 692 17 672 20 11.24 0.96 CZ35_7 R 0.0736 0.00236 0.523 0.020 0.052 0.0010 1030 129 427 26 325 12 68.49 0.52 CZ35_8 0.0640 0.00021 1.147 0.023 0.130 0.0025 7 41 14 776 21 789 29 6.44 0.99 CZ35_9 R 0.0619 0.00020 0.883 0.015 0.103 0.0017 672 14 643 16 635 20 5.54 0.98 CZ35_10 R 0.0693 0.00032 1.204 0.019 0.126 0.0019 907 19 802 17 766 22 15.58 0.96 CZ35_11 0.0723 0.00023 1.641 0.029 0.164 0.0 028 995 13 986 22 982 31 1.26 0.98 CZ35_12 0.0768 0.00029 1.886 0.028 0.178 0.0025 1115 15 1076 19 1058 28 5.11 0.97 CZ35_13 0.0638 0.00021 1.052 0.016 0.120 0.0018 736 14 730 16 729 21 0.93 0.98 CZ35_14 0.0765 0.00039 1.985 0.029 0.18 8 0.0026 1108 20 1110 20 1112 28 0.40 0.94 CZ35_15 R 0.0741 0.00147 0.525 0.026 0.051 0.0023 1044 80 429 34 323 28 69.02 0.91 CZ35_16 0.0661 0.00027 1.164 0.022 0.128 0.0024 810 17 784 21 775 27 4.23 0.98 CZ35_17 R 0.0643 0.00050 0.946 0.016 0.107 0.0016 751 33 676 16 654 18 12.83 0.88 CZ35_18 R 0.0684 0.00048 0.869 0.022 0.092 0.0022 879 29 635 23 569 26 35.26 0.96 CZ35_19 0.0756 0.00024 1.913 0.029 0.183 0.0027 1085 13 1086 20 1087 29 0.16 0.98 CZ35_20 0.0744 0.000 25 1.731 0.032 0.169 0.0031 1051 13 1020 24 1006 34 4.25 0.98 CZ35_21 0.0759 0.00028 1.941 0.033 0.185 0.0031 1093 15 1095 23 1097 34 0.41 0.98 CZ35_22 0.0660 0.00029 1.160 0.018 0.128 0.0019 805 18 782 16 775 21 3.78 0.96 CZ35_23 0.0 642 0.00020 1.100 0.019 0.124 0.0021 749 13 753 18 756 24 0.97 0.98 CZ35_24 R 0.0651 0.00065 0.652 0.014 0.073 0.0014 779 42 509 17 452 17 41.95 0.89 CZ35_25 0.0685 0.00023 1.427 0.019 0.151 0.0019 882 14 900 16 908 21 2.96 0.97 CZ35_ 26 0.0646 0.00021 1.124 0.017 0.126 0.0019 760 13 765 16 767 22 0.93 0.98 CZ35_27 0.0758 0.00024 1.918 0.028 0.183 0.0026 1091 13 1087 20 1087 29 0.35 0.98

PAGE 73

73 Table 4 10. Continued. CZ35_28 0.0645 0.00025 0.974 0.017 0.109 0.0018 759 17 691 17 670 21 11.68 0.97 CZ35_29 R 0.0664 0.00029 0.976 0.024 0.107 0.0026 819 18 691 25 653 30 20.16 0.98 CZ35_30 R 0.0667 0.00041 1.039 0.022 0.113 0.0023 829 26 723 22 690 26 16.72 0.96 CZ35_31 0.0625 0.00020 0.988 0.017 0.115 0.0020 690 1 4 697 18 700 23 1.50 0.98 CZ35_32 0.0759 0.00025 1.925 0.033 0.184 0.0031 1092 13 1090 22 1090 33 0.16 0.98 CZ35_33 R 0.0718 0.00147 1.266 0.030 0.128 0.0016 980 83 830 27 777 18 20.71 0.52 CZ35_34 0.0660 0.00024 1.100 0.020 0.121 0.0022 805 16 753 19 737 25 8.50 0.98 CZ35_35 R 0.0672 0.00037 0.738 0.016 0.080 0.0017 845 23 561 19 495 20 41.44 0.97 CZ35_36 0.0621 0.00022 0.948 0.014 0.111 0.0016 678 15 677 15 678 19 0.01 0.97 CZ35_37 R 0.0820 0.00075 0.764 0.028 0.068 0.0024 1245 36 576 32 422 29 66.13 0.97 CZ35_38 0.0654 0.00025 1.064 0.016 0.118 0.0018 786 16 735 16 720 20 8.44 0.97 CZ35_39 0.0627 0.00020 0.986 0.015 0.114 0.0017 699 14 697 15 697 19 0.35 0.98 CZ35_40 0.1247 0.00040 6.242 0.103 0. 363 0.0059 2024 11 2010 29 1999 55 1.23 0.98 CZ35_41 0.0707 0.00024 1.587 0.024 0.163 0.0024 948 14 965 19 974 27 2.76 0.98 CZ35_42 0.0624 0.00020 0.817 0.021 0.095 0.0024 688 14 606 23 585 28 14.91 0.99 CZ35_43 0.0745 0.00026 1.628 0 .022 0.158 0.0021 1056 14 981 17 949 23 10.08 0.97 CZ35_44 0.0646 0.00021 1.109 0.016 0.124 0.0018 762 13 758 16 757 20 0.61 0.98 CZ35_45 R 0.0699 0.00096 1.155 0.021 0.120 0.0014 926 57 779 20 730 17 21.19 0.66 CZ35_46 0.0748 0.00029 1 .804 0.032 0.175 0.0030 1063 16 1047 23 1040 33 2.19 0.97 CZ35_47 0.0631 0.00020 1.024 0.015 0.118 0.0017 712 13 716 15 718 19 0.80 0.98 CZ35_48 0.0750 0.00026 1.780 0.032 0.172 0.0030 1070 14 1038 23 1024 33 4.22 0.98 CZ35_49 0.0659 0.00024 1.093 0.020 0.120 0.0021 802 16 750 19 733 24 8.50 0.98 CZ35_50 0.0651 0.00022 1.134 0.017 0.126 0.0018 778 14 769 16 767 21 1.32 0.97 CZ35_51 0.0664 0.00023 1.254 0.020 0.137 0.0022 819 15 825 18 828 25 1.20 0.98 CZ35_52 0.06 16 0.00021 0.869 0.015 0.102 0.0018 659 15 635 17 629 21 4.55 0.98 CZ35_53 0.0760 0.00025 2.049 0.043 0.195 0.0040 1096 13 1132 28 1152 43 5.09 0.99 CZ35_54 0.0645 0.00021 1.109 0.015 0.125 0.0017 759 13 757 15 757 19 0.21 0.97 CZ35_5 5 0.0770 0.00025 1.991 0.031 0.187 0.0029 1122 13 1112 21 1108 31 1.21 0.98 CZ35_56 0.0629 0.00021 0.951 0.014 0.110 0.0016 707 14 678 15 670 18 5.10 0.97

PAGE 74

74 Table 4 10. Continued. CZ35_57 0.0652 0.00022 1.185 0.021 0.132 0.0023 780 14 793 1 9 799 26 2.49 0.98 CZ35_58 R 0.0637 0.00068 0.453 0.014 0.052 0.0015 732 45 380 19 325 18 55.66 0.94 CZ35_59 R 0.0666 0.00042 0.904 0.018 0.098 0.0018 826 26 654 19 606 21 26.65 0.95 CZ35_60 0.0646 0.00022 1.074 0.016 0.121 0.0018 760 14 741 16 735 21 3.31 0.97 CZ35_61 0.0728 0.00026 1.580 0.033 0.158 0.0032 1008 14 962 26 944 36 6.33 0.99 CZ35_62 0.0627 0.00033 0.900 0.015 0.104 0.0017 697 22 651 16 639 19 8.34 0.95 CZ35_63 0.0637 0.00025 0.977 0.018 0.111 0.0020 731 16 692 19 681 24 6.83 0.98 CZ35_64 0.0732 0.00041 1.797 0.026 0.178 0.0024 1018 23 1044 19 1058 26 3.90 0.92 CZ35_65 R 0.0652 0.00023 0.947 0.015 0.105 0.0016 781 15 677 15 646 19 17.17 0.97 CZ35_66 R 0.0626 0.00023 0.663 0.019 0.077 0.00 21 696 16 516 23 477 26 31.42 0.99 CZ35_67 0.0626 0.00024 0.912 0.013 0.106 0.0014 693 17 658 13 649 16 6.40 0.96 CZ35_68 0.0655 0.00021 1.123 0.017 0.124 0.0018 789 13 764 16 756 21 4.12 0.98 CZ35_69 R 0.0688 0.00033 0.890 0.019 0.094 0.0020 893 20 646 21 578 23 35.18 0.97 CZ35_70 0.0681 0.00028 1.291 0.021 0.138 0.0022 872 17 842 19 831 25 4.67 0.97 CZ35_71 0.0745 0.00023 1.792 0.026 0.174 0.0025 1056 13 1043 19 1037 27 1.79 0.98 CZ35_72 0.0630 0.00022 0.982 0.015 0.113 0.0017 708 15 695 15 691 19 2.30 0.97 CZ35_73 R 0.0639 0.00025 0.896 0.015 0.102 0.0017 739 16 649 16 625 20 15.48 0.97 CZ35_74 R 0.0662 0.00038 0.612 0.040 0.067 0.0044 812 24 485 50 419 53 48.42 1.00 CZ35_75 0.0619 0.00020 0.927 0.014 0.109 0.0016 671 14 666 14 665 18 0.77 0.98 CZ35_76 0.0629 0.00022 0.912 0.018 0.105 0.0021 706 15 658 19 645 24 8.66 0.98 CZ35_77 0.0628 0.00020 0.986 0.016 0.114 0.0018 703 14 696 16 695 21 1.05 0.98 CZ35_78 R 0.0678 0.00051 0.9 70 0.023 0.104 0.0024 861 31 688 24 637 27 25.97 0.95 CZ35_79 0.0742 0.00035 1.569 0.023 0.153 0.0021 1046 19 958 18 921 23 11.95 0.94 CZ35_80 0.0661 0.00034 1.115 0.017 0.122 0.0017 809 21 761 16 745 20 7.83 0.94 CZ35_81 0.0632 0.0002 1 0.978 0.014 0.112 0.0016 717 14 692 15 686 19 4.32 0.97 CZ35_82 0.0745 0.00024 1.732 0.026 0.169 0.0024 1054 13 1020 19 1006 27 4.58 0.98 CZ35_83 0.0639 0.00023 1.003 0.015 0.114 0.0017 739 15 705 15 696 19 5.78 0.97 CZ35_84 0.0612 0 .00021 0.899 0.012 0.106 0.0014 647 14 651 13 653 16 0.97 0.97 CZ35_85 0.0730 0.00023 1.610 0.028 0.160 0.0027 1015 13 974 22 957 30 5.67 0.98

PAGE 75

75 Table 4 10. Continued. CZ35_86 0.0656 0.00023 1.082 0.016 0.120 0.0017 795 14 744 16 728 20 8.38 0.97 CZ35_87 0.0644 0.00022 1.071 0.017 0.121 0.0019 755 14 739 16 735 21 2.67 0.98 CZ35_88 R 0.0807 0.00125 0.700 0.016 0.063 0.0011 1214 61 539 19 394 13 67.58 0.74 CZ35_89 0.0641 0.00041 1.081 0.017 0.122 0.0018 746 27 744 16 744 20 0.25 0.91 CZ35_90 0.0627 0.00028 0.858 0.014 0.099 0.0016 699 19 629 15 610 18 12.69 0.96 CZ35_91 R 0.0734 0.00102 0.373 0.008 0.037 0.0006 1026 56 322 12 233 8 77.26 0.79 CZ35_92 R 0.0701 0.00028 0.997 0.022 0.103 0.0022 931 16 702 2 2 633 26 31.98 0.98 CZ35_93 0.0658 0.00021 1.119 0.018 0.123 0.0020 799 14 762 18 750 23 6.08 0.98 CZ35_94 0.0759 0.00027 1.788 0.028 0.171 0.0026 1092 14 1041 20 1017 29 6.83 0.98 CZ35_95 0.0730 0.00024 1.626 0.024 0.161 0.0023 1014 13 980 18 966 25 4.75 0.97 CZ35_96 R 0.0736 0.00180 0.989 0.032 0.097 0.0020 1030 99 698 32 600 24 41.72 0.65 CZ35_97 R 0.0676 0.00075 0.716 0.015 0.077 0.0014 855 46 548 18 478 16 44.12 0.85 CZ35_98 R 0.0681 0.00080 0.623 0.014 0.066 0.0013 8 71 49 491 18 414 16 52.44 0.86 CZ35_99 R 0.0855 0.00225 1.141 0.061 0.097 0.0045 1326 102 773 57 596 52 55.02 0.87 CZ35_100 0.0633 0.00022 0.974 0.016 0.112 0.0018 719 15 690 17 682 21 5.03 0.98 CZ35_101 0.0658 0.00021 1.155 0.019 0.127 0.0021 801 13 780 18 773 24 3.42 0.98 CZ35_102 0.0670 0.00022 1.255 0.017 0.136 0.0018 839 14 826 16 821 21 2.04 0.97 CZ35_103 0.0656 0.00022 1.114 0.016 0.123 0.0018 794 14 760 16 749 20 5.57 0.97 CZ35_104 0.0739 0.00026 1.859 0.028 0.182 0.0027 1040 14 1066 20 1080 29 3.88 0.97 CZ35_105 0.0636 0.00021 0.997 0.017 0.114 0.0019 727 14 702 17 695 22 4.40 0.98 CZ35_106 R 0.0682 0.00202 0.998 0.035 0.106 0.0019 873 123 703 35 651 23 25.38 0.52 CZ35_107 R 0.0676 0.00031 0.705 0.016 0.076 0.0017 856 19 542 20 471 21 44.98 0.98 CZ35_108 R 0.0780 0.00214 1.294 0.042 0.120 0.0020 1146 109 843 37 733 23 35.98 0.53 CZ35_109 0.0646 0.00022 1.058 0.017 0.119 0.0019 761 14 733 17 724 22 4.83 0.98 CZ35_110 R 0.0 735 0.00052 0.931 0.046 0.092 0.0045 1029 29 668 47 567 53 44.91 0.99 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 76

76 Table 4 11 U Pb (MC ICP MS) analysis common Pb corrected results for s ample DF06 22 from the Southern Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 22_1 R 0.1228 0.00102 5.407 0.108 0. 319 0.0058 1997 30 1886 34 1788 56 10.47 0.91 DF06 22_2 0.1229 0.00080 5.752 0.093 0.340 0.0050 1998 23 1939 28 1886 48 5.60 0.91 DF06 22_3 0.1205 0.00090 5.814 0.100 0.350 0.0054 1964 27 1948 30 1936 52 1.42 0.90 DF06 22_4 0.0643 0.00 042 1.062 0.019 0.120 0.0020 751 28 735 19 730 23 2.80 0.93 DF06 22_5 0.0706 0.00046 1.582 0.029 0.162 0.0027 946 27 963 22 971 30 2.65 0.93 DF0 6 22_6 0.1075 0.00146 4.777 0.096 0.322 0.0048 1757 50 1781 34 1803 47 2.61 0.74 DF0 6 22_ 7 R 0.0713 0.00047 1.330 0.029 0.135 0.0029 967 27 859 26 818 32 15.32 0.95 DF0 6 22_8 R 0.5718 0.00445 18.609 0.408 0.236 0.0048 4438 23 3021 42 1367 50 69.20 0.93 DF0 6 22_9 0.1218 0.00079 5.755 0.104 0.343 0.0058 1982 23 1939 31 1902 56 4.06 0.93 DF0 6 22_11 R 0.3802 0.02581 6.254 0.441 0.119 0.0023 3833 205 2012 120 727 27 81.03 0.27 DF0 6 22_12 0.1678 0.00168 10.108 0.762 0.437 0.0327 2536 34 2444 135 2339 290 7.76 0.99 DF0 6 22_13 R 0.1214 0.00079 4.071 0.085 0.243 0.0048 197 7 23 1648 34 1405 50 28.92 0.95 DF0 6 22_14 R 0.1317 0.00116 4.626 0.135 0.255 0.0071 2121 31 1754 48 1464 73 30.95 0.95 DF0 6 22_15 R 0.0749 0.00050 1.195 0.023 0.116 0.0020 1066 27 798 21 707 24 33.72 0.94 DF06 22_16 0.1160 0.00077 3.872 0.145 0.242 0.0089 1895 24 1608 60 1399 92 26.19 0.98 DF06 22_17 R 0.1157 0.00075 2.990 0.050 0.187 0.0029 1890 23 1405 25 1109 31 41.34 0.92 DF06 22_18 0.1137 0.00074 3.293 0.104 0.210 0.0065 1859 23 1479 49 1231 69 33.79 0.98 DF06 22 _19 R 0.1268 0.00084 3.905 0.069 0.223 0.0037 2054 23 1615 28 1301 39 36.65 0.93 DF06 22_20 0.0601 0.00040 0.692 0.012 0.083 0.0013 609 28 534 14 517 15 15.05 0.92 DF06 22_21 0.1148 0.00075 3.996 0.069 0.253 0.0040 1876 23 1633 28 1453 42 22.56 0.93 DF06 22_22 R 0.1703 0.00112 5.895 0.166 0.251 0.0069 2561 22 1960 48 1445 71 43.59 0.97 DF06 22_23 0.1160 0.00077 4.233 0.121 0.265 0.0073 1895 24 1680 46 1515 75 20.02 0.97 DF06 22_24 R 0.1768 0.00117 7.131 0.229 0.293 0.0092 2623 22 2128 56 1656 91 36.86 0.98 DF06 22_25 R 0.1747 0.00114 10.037 0.171 0.417 0.0065 2603 22 2438 31 2248 60 13.64 0.92

PAGE 77

77 Table 4 11. Continued. DF06 22_26 R 0.0771 0.00052 1.218 0.022 0.115 0.0020 1124 27 809 20 700 23 37.69 0.93 DF06 22 _27 R 0.1133 0.00075 1.813 0.045 0.116 0.0028 1853 24 1050 32 708 32 61.78 0.96 DF06 22_28 R 0.1145 0.00076 3.174 0.068 0.201 0.0041 1872 24 1451 33 1182 44 36.87 0.95 DF06 22_29 0.2194 0.00144 17.508 0.362 0.579 0.0114 2976 21 2963 39 2946 93 1.00 0.95 DF06 22_30 R 0.1172 0.00076 3.117 0.063 0.193 0.0037 1915 23 1437 31 1138 40 40.58 0.95 DF06 22_31 0.0616 0.00044 0.881 0.015 0.104 0.0016 661 30 641 16 636 19 3.67 0.91 DF06 22_32 R 0.0825 0.00126 1.925 0.042 0.169 0.0026 1257 60 1090 29 1009 28 19.69 0.70 DF06 22_33 R 0.1142 0.00080 2.992 0.058 0.190 0.0034 1867 25 1405 29 1122 37 39.89 0.93 DF06 22_34 R 0.1354 0.00098 5.740 0.117 0.307 0.0059 2169 25 1937 35 1730 58 20.26 0.94 DF06 22_35 0.1178 0.00078 4.43 8 0.110 0.273 0.0065 1924 24 1719 41 1558 66 18.99 0.96 DF06 22_36 R 0.1228 0.00612 1.966 0.124 0.116 0.0045 1997 177 1104 83 709 52 64.50 0.61 DF06 22_37 R 0.1152 0.00076 4.571 0.093 0.288 0.0055 1884 24 1744 34 1631 55 13.39 0.95 DF06 22_38 R 0.1156 0.00084 2.901 0.049 0.182 0.0028 1889 26 1382 25 1079 30 42.85 0.90 DF06 22_39 0.1321 0.00087 6.715 0.168 0.369 0.0089 2127 23 2074 44 2024 84 4.81 0.96 R denotes samples removed due to high error and/or discordance. 235 U value s calculated from measured 238 U Table 4 12. U Pb (MC ICP MS) analysis common Pb corrected results for sample SZ13 from the Southern Zone, Congo Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U error 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 23 5 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor SZ13_1 R 0.0785 0.00168 1.044 0.027 0.096 0.0014 1160 85 726 26 594 16 48.78 0.55 SZ13_2 0.0717 0.00066 1.630 0.031 0.165 0.0027 976 37 982 24 985 30 0.95 0.87 SZ13_3 0.0745 0.0006 8 1.852 0.036 0.180 0.0031 1056 37 1064 26 1069 34 1.20 0.88 SZ13_4 0.0644 0.00059 1.172 0.022 0.132 0.0021 755 39 787 20 800 24 5.91 0.87 SZ13_5 0.0683 0.00077 1.170 0.022 0.124 0.0019 879 46 787 21 755 22 14.03 0.81 SZ13_6 0.0653 0 .00060 1.219 0.023 0.135 0.0023 784 38 809 21 819 26 4.56 0.88 SZ13_7 R 0.0785 0.00082 1.290 0.033 0.119 0.0027 1159 41 841 29 726 32 37.33 0.91 SZ13_8 0.0613 0.00056 0.942 0.018 0.111 0.0019 650 39 674 19 682 22 4.88 0.88

PAGE 78

78 Table 4 12. Continued. SZ13_9 R 0.1151 0.00105 5.436 0.106 0.343 0.0059 1881 33 1890 33 1901 56 1.04 0.88 SZ13_10 R 0.0643 0.00067 0.928 0.016 0.105 0.0015 753 44 667 17 642 18 14.67 0.81 SZ13_11 R 0.0916 0.00119 1.382 0.032 0.109 0.0021 1459 49 881 2 7 670 24 54.07 0.83 SZ13_12 R 0.0798 0.00179 1.147 0.035 0.104 0.0021 1192 88 776 33 640 25 46.31 0.67 SZ13_13 0.0635 0.00059 1.080 0.020 0.123 0.0020 724 39 744 20 751 23 3.80 0.87 SZ13_14 0.0648 0.00062 1.113 0.021 0.125 0.0020 767 40 759 20 758 23 1.15 0.86 SZ13_15 R 0.1528 0.00399 3.219 0.165 0.153 0.0068 2377 89 1462 78 918 75 61.40 0.86 SZ13_16 R 0.0761 0.00157 1.110 0.035 0.106 0.0025 1099 82 758 33 649 29 40.95 0.75 SZ13_17 R 0.0679 0.00087 1.213 0.026 0.129 0.0023 866 53 806 24 786 26 9.23 0.81 SZ13_18 R 0.0724 0.00254 1.106 0.042 0.111 0.0017 996 143 756 40 679 19 31.84 0.39 SZ13_19 R 0.0911 0.00248 2.064 0.072 0.164 0.0035 1449 104 1137 47 981 39 32.27 0.62 SZ13_20 R 0.1358 0.00461 5.109 0.193 0 .273 0.0045 2174 118 1837 63 1557 45 28.40 0.44 SZ13_21 0.0757 0.00072 1.803 0.034 0.173 0.0028 1087 38 1046 24 1028 31 5.42 0.86 SZ13_22 0.0626 0.00057 1.008 0.019 0.117 0.0019 694 39 708 19 713 22 2.80 0.87 SZ13_23 R 0.0683 0.00073 1 .075 0.019 0.114 0.0017 877 44 741 19 698 19 20.38 0.81 SZ13_24 0.0621 0.00057 0.938 0.017 0.110 0.0017 679 39 672 17 671 19 1.15 0.86 SZ13_25 0.0800 0.00109 1.925 0.045 0.175 0.0034 1196 54 1090 31 1038 37 13.17 0.82 SZ13_26 0.0620 0. 00058 0.947 0.017 0.111 0.0018 674 40 676 18 678 20 0.55 0.86 SZ13_27 0.0807 0.00116 1.811 0.038 0.163 0.0024 1214 57 1049 27 973 27 19.81 0.72 SZ13_28 0.0722 0.00068 1.678 0.031 0.169 0.0027 992 38 1000 23 1005 30 1.35 0.86 SZ13_29 0.0625 0.00057 0.959 0.017 0.111 0.0017 692 39 683 18 681 20 1.55 0.86 SZ13_30 0.0710 0.00065 1.576 0.030 0.161 0.0027 958 37 961 24 963 30 0.59 0.88 SZ13_31 0.0798 0.00110 1.870 0.038 0.170 0.0026 1191 55 1070 27 1013 28 14.96 0.74 S Z13_32 R 0.0906 0.00122 1.188 0.030 0.095 0.0020 1439 51 795 28 586 24 59.28 0.85 SZ13_33 0.0745 0.00075 1.771 0.032 0.173 0.0026 1054 40 1035 23 1027 28 2.54 0.83 SZ13_34 0.1149 0.00105 5.291 0.101 0.334 0.0056 1878 33 1867 32 1859 54 1 .00 0.88 SZ13_35 R 0.0731 0.00085 1.182 0.023 0.117 0.0018 1017 47 792 21 715 20 29.68 0.79

PAGE 79

79 Table 4 12. Continued. SZ13_36 0.0653 0.00060 1.158 0.020 0.129 0.0019 784 38 781 19 781 22 0.43 0.85 SZ13_37 R 0.0770 0.00082 1.781 0.035 0.168 0.002 7 1120 43 1039 25 1001 30 10.61 0.84 SZ13_38 R 0.1207 0.00458 1.850 0.077 0.111 0.0020 1966 135 1063 54 680 23 65.40 0.42 SZ13_39 R 0.1006 0.00188 1.513 0.036 0.109 0.0016 1635 69 936 29 668 18 59.11 0.61 SZ13_40 R 0.1211 0.00207 1.414 0. 034 0.085 0.0015 1972 61 895 29 525 17 73.40 0.71 SZ13_41 R 0.2337 0.00503 13.345 0.364 0.414 0.0069 3077 69 2704 51 2236 63 27.34 0.61 SZ13_42 0.0622 0.00058 0.918 0.017 0.107 0.0018 680 40 661 18 657 21 3.37 0.87 SZ13_43 R 0.0699 0.000 66 1.385 0.025 0.144 0.0022 927 39 883 21 866 25 6.54 0.86 SZ13_44 0.0644 0.00059 1.095 0.020 0.123 0.0019 754 39 751 19 751 22 0.45 0.86 SZ13_45 R 0.1073 0.01115 1.543 0.165 0.104 0.0026 1754 380 948 128 640 31 63.49 0.24 SZ13_46 R 0.06 76 0.00112 0.920 0.022 0.099 0.0017 855 69 662 23 608 19 28.87 0.71 SZ13_47 0.0659 0.00061 1.199 0.023 0.132 0.0022 802 39 800 21 800 25 0.23 0.87 SZ13_48 0.0616 0.00057 0.951 0.017 0.112 0.0017 662 39 679 18 684 20 3.46 0.86 SZ13_49 R 0.0691 0.00084 1.096 0.022 0.115 0.0019 903 50 751 21 702 21 22.20 0.80 SZ13_50 R 0.3720 0.00951 8.530 0.261 0.166 0.0028 3799 77 2289 55 993 31 73.87 0.55 SZ13_51 0.0603 0.00058 0.797 0.016 0.096 0.0016 614 42 595 18 591 19 3.69 0.87 SZ13_52 R 0.1831 0.00194 11.440 0.232 0.453 0.0078 2681 35 2559 37 2411 69 10.08 0.85 SZ13_53 0.0694 0.00064 1.430 0.027 0.149 0.0025 911 38 902 23 899 28 1.36 0.87 SZ13_54 0.0601 0.00056 0.818 0.018 0.099 0.0019 609 40 607 20 607 22 0.2 4 0.90 SZ13_55 R 0.1037 0.00220 1.625 0.049 0.114 0.0024 1691 78 980 38 694 28 58.94 0.71 SZ13_56 R 0.0735 0.00068 1.767 0.034 0.174 0.0029 1029 37 1033 25 1036 32 0.69 0.88 SZ13_57 0.0735 0.00068 1.767 0.034 0.174 0.0029 1029 37 1033 25 1036 32 0.69 0.88 SZ13_58 0.0609 0.00056 0.868 0.017 0.103 0.0018 637 39 634 19 634 21 0.37 0.89 SZ13_59 R 0.0807 0.00158 1.400 0.041 0.126 0.0027 1214 77 889 34 765 31 37.00 0.74 SZ13_60 R 0.2595 0.01654 4.492 0.329 0.126 0.0045 3243 201 1729 118 763 52 76.47 0.49 SZ13_61 R 0.0781 0.00200 0.957 0.030 0.089 0.0017 1149 102 682 31 550 20 52.15 0.59 SZ13_62 R 0.0680 0.00069 0.969 0.018 0.103 0.0015 868 42 688 18 635 18 26.80 0.83

PAGE 80

80 Table 4 12. Continued. SZ13_63 0.0718 0.00066 1.577 0.033 0.159 0.0030 981 37 961 26 953 33 2.78 0.90 SZ13_64 R 0.0748 0.00114 1.140 0.025 0.110 0.0018 1064 61 772 24 676 20 36.42 0.72 SZ13_65 R 0.2825 0.00682 5.498 0.154 0.141 0.0020 3377 75 1900 48 852 23 74.78 0.51 SZ13_66 R 0.09 10 0.00418 2.165 0.109 0.173 0.0036 1446 175 1170 69 1027 40 28.92 0.41 SZ13_67 R 0.1266 0.01292 2.017 0.212 0.116 0.0030 2052 360 1121 138 705 35 65.62 0.25 SZ13_68 R 0.0848 0.00171 2.031 0.052 0.174 0.0027 1310 78 1126 34 1034 30 21.05 0.62 SZ13_69 R 0.0916 0.00117 2.069 0.042 0.164 0.0026 1458 48 1139 27 979 28 32.83 0.78 SZ13_70 R 0.0757 0.00085 1.287 0.026 0.123 0.0021 1087 45 840 23 751 24 30.92 0.83 SZ13_71 R 0.0708 0.00078 0.961 0.017 0.099 0.0014 950 45 684 18 606 17 36.19 0.79 SZ13_72 R 0.0760 0.00072 1.773 0.035 0.169 0.0029 1096 38 1035 25 1008 32 8.04 0.87 SZ13_73 0.1257 0.00115 6.326 0.128 0.365 0.0066 2038 32 2022 35 2008 62 1.48 0.89 SZ13_74 0.0628 0.00059 0.939 0.017 0.109 0.0017 701 40 672 18 665 20 5.19 0.86 SZ13_75 R 0.0644 0.00061 0.881 0.017 0.099 0.0016 755 40 642 18 610 19 19.14 0.86 SZ13_76 R 0.0740 0.00300 1.120 0.049 0.110 0.0019 1040 164 763 47 672 22 35.37 0.39 SZ13_77 0.0634 0.00058 0.992 0.018 0.113 0.0018 723 39 699 19 693 21 4.18 0.87 SZ13_78 R 0.1962 0.00235 13.836 0.271 0.512 0.0079 2795 39 2738 37 2665 68 4.63 0.79 SZ13_79 R 0.0762 0.00146 0.915 0.025 0.087 0.0016 1101 77 659 26 538 20 51.11 0.70 SZ13_80 0.0749 0.00072 1.584 0.029 0.153 0 .0023 1067 39 964 22 920 26 13.73 0.85 SZ13_81 R 0.0917 0.00395 1.561 0.071 0.123 0.0018 1462 163 955 56 751 21 48.63 0.33 SZ13_82 R 0.1813 0.00166 11.337 0.236 0.454 0.0085 2665 30 2551 38 2413 75 9.43 0.90 SZ13_83 R 0.1043 0.00285 1.655 0.052 0.115 0.0018 1703 101 991 40 703 21 58.73 0.50 SZ13_85 R 0.1226 0.01291 2.126 0.229 0.126 0.0029 1995 374 1157 144 764 33 61.69 0.21 SZ13_86 R 0.1120 0.00223 1.566 0.042 0.101 0.0019 1832 72 957 33 623 22 65.99 0.68 SZ13_87 R 0.063 9 0.00063 0.893 0.015 0.101 0.0014 738 42 648 16 623 16 15.60 0.81 SZ13_88 R 0.6165 0.01091 21.695 0.983 0.255 0.0106 4547 51 3170 86 1466 109 67.75 0.92 SZ13_89 0.0792 0.00115 1.825 0.038 0.167 0.0025 1178 57 1054 27 997 28 15.35 0.73

PAGE 81

81 Table 4 12. Continued. SZ13_90 R 0.1198 0.00258 1.447 0.037 0.088 0.0012 1953 77 909 31 542 14 72.24 0.54 SZ13_91 R 0.1835 0.00169 12.062 0.210 0.477 0.0071 2685 30 2609 32 2515 61 6.30 0.85 SZ13_92 R 0.0693 0.00064 1.237 0.022 0.129 0.0020 909 38 817 20 785 23 13.62 0.86 SZ13_93 R 0.1024 0.00220 2.114 0.060 0.150 0.0028 1669 79 1153 39 900 31 46.07 0.65 SZ13_94 0.0717 0.00104 1.325 0.029 0.134 0.0022 977 59 856 25 811 25 16.97 0.75 SZ13_95 R 0.1039 0.00375 1.491 0.058 0.104 0. 0016 1694 133 927 47 639 18 62.28 0.38 SZ13_96 0.0654 0.00060 1.123 0.020 0.124 0.0018 788 38 764 19 757 21 3.96 0.85 SZ13_97 0.0752 0.00074 1.794 0.034 0.173 0.0029 1073 40 1043 25 1030 31 3.95 0.86 SZ13_98 R 0.0677 0.00094 0.942 0.020 0.101 0.0016 861 58 674 21 620 18 27.96 0.75 SZ13_99 0.0722 0.00067 1.564 0.028 0.157 0.0024 992 38 956 22 941 27 5.06 0.85 SZ13_100 0.0631 0.00062 0.982 0.019 0.113 0.0018 712 41 695 19 690 21 3.00 0.86 SZ13_101 R 0.0762 0.00076 1.660 0.031 0.158 0.0024 1100 40 993 23 946 27 13.92 0.84 SZ13_102 R 0.0899 0.00204 2.006 0.054 0.162 0.0023 1424 87 1117 36 968 25 32.02 0.53 SZ13_103 R 0.0633 0.00060 0.895 0.017 0.103 0.0017 719 40 649 18 630 19 12.42 0.86 SZ13_104 R 0.3323 0.00983 10.081 0.440 0.220 0.0071 3628 91 2442 79 1283 75 64.63 0.74 SZ13_105 0.0609 0.00056 0.852 0.017 0.101 0.0018 636 39 626 18 623 21 1.99 0.89 SZ13_106 0.0651 0.00060 1.135 0.021 0.126 0.0020 777 39 770 20 768 23 1.13 0.87 SZ13_ 107 0.0686 0.00076 1.170 0.021 0.124 0.0018 887 46 787 20 753 21 15.09 0.80 SZ13_108 0.0719 0.00066 1.582 0.028 0.160 0.0025 983 37 963 22 955 27 2.75 0.86 R denotes samples re moved due to high error and/or discordance. 235 U values calculate d from measured 238 U

PAGE 82

82 Table 4 13 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 12a from the Southern Margin Zone, Kalahari Craton Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 12a_1 0.0828 0.00053 2.279 0.046 0.200 0.0038 1265 25 1206 28 1174 41 7.20 0.95 DF09 12a_2 0.0769 0.00047 1.880 0.037 0.177 0.0033 1119 24 1074 26 1053 36 5.88 0.95 DF09 12a _3 R 0.0943 0.00117 2.634 0.058 0.203 0.0037 1514 47 1310 32 1190 39 21.40 0.82 DF09 12a_4 0.0770 0.00050 1.928 0.039 0.182 0.0035 1120 26 1091 27 1077 38 3.84 0.95 DF09 12a_5 R 0.0997 0.00096 2.094 0.053 0.152 0.0036 1618 36 1147 35 915 40 43.42 0.93 DF09 12a_6 R 0.0816 0.00058 1.327 0.054 0.118 0.0047 1236 28 857 46 719 54 41.79 0.98 DF09 12a_7 R 0.1000 0.00139 1.923 0.069 0.140 0.0046 1623 52 1089 47 843 52 48.07 0.92 DF09 12a_8 0.0824 0.00050 2.341 0.044 0.206 0.0037 1256 24 1225 27 1208 40 3.75 0.95 DF09 12a_9 0.0932 0.00056 3.191 0.059 0.248 0.0043 1492 23 1455 28 1431 45 4.03 0.94 DF09 12a_10 0.0772 0.00047 1.941 0.037 0.182 0.0033 1126 24 1095 25 1081 36 3.96 0.95 DF09 12a_11 0.0973 0.00060 3.512 0. 068 0.262 0.0048 1572 23 1530 30 1501 49 4.52 0.95 DF09 12a_12 0.1160 0.00070 5.330 0.107 0.333 0.0064 1896 22 1873 34 1855 62 2.11 0.95 DF09 12a_13 R 0.0861 0.00054 2.124 0.063 0.179 0.0052 1339 24 1156 40 1062 56 20.67 0.98 DF09 12a_1 4 0.0862 0.00054 2.777 0.051 0.234 0.0040 1342 24 1349 27 1356 42 1.04 0.94 DF09 12a_15 0.0817 0.00052 2.270 0.043 0.201 0.0036 1239 25 1203 26 1184 38 4.41 0.94 DF09 12a_16 0.0818 0.00050 2.344 0.046 0.208 0.0039 1240 24 1226 28 1219 41 1.66 0.95 DF09 12a_17 0.0867 0.00053 2.635 0.048 0.220 0.0038 1354 23 1310 27 1285 40 5.07 0.94 DF09 12a_18 R 0.1240 0.00075 5.361 0.122 0.313 0.0069 2015 21 1878 39 1759 68 12.70 0.96 DF09 12a_19 0.0766 0.00123 1.822 0.046 0.172 0.0034 11 11 64 1053 33 1027 37 7.59 0.77 DF09 12a_20 R 0.0829 0.00052 1.915 0.046 0.167 0.0039 1268 25 1086 32 999 43 21.20 0.96 DF09 12a_21 0.0806 0.00049 2.219 0.042 0.200 0.0036 1211 24 1187 26 1175 38 3.00 0.95 DF09 12a_22 0.0798 0.00052 2.1 48 0.040 0.195 0.0034 1193 26 1164 26 1150 37 3.55 0.94 DF09 12a_23 0.0815 0.00049 2.229 0.043 0.198 0.0037 1233 24 1190 27 1167 39 5.32 0.95 DF09 12a_24 R 0.0942 0.00060 2.584 0.079 0.199 0.0059 1512 24 1296 44 1171 63 22.58 0.98 DF09 12a_25 R 0.1027 0.00063 3.741 0.075 0.264 0.0051 1674 23 1580 32 1512 52 9.63 0.95 DF09 12a_26 0.0862 0.00053 2.637 0.049 0.222 0.0039 1342 24 1311 27 1293 41 3.66 0.94

PAGE 83

83 Table 4 13. Continued. DF09 12a_27 0.0934 0.00057 3.196 0.060 0.248 0.0044 1495 23 1456 29 1431 46 4.30 0.95 DF09 12a_28 0.1104 0.00067 3.941 0.075 0.259 0.0047 1806 22 1622 31 1485 48 17.75 0.95 DF09 12a_29 0.0925 0.00056 3.150 0.059 0.247 0.0044 1477 23 1445 29 1424 46 3.56 0.95 DF09 12a_30 0.1187 0.00072 5.465 0.102 0.334 0.0059 1936 22 1895 32 1859 57 3.97 0.95 DF09 12a_31 0.0838 0.00051 2.433 0.048 0.211 0.0040 1287 24 1252 28 1233 42 4.18 0.95 DF09 12a_32 R 0.0848 0.00059 0.834 0.038 0.071 0.0032 1311 27 616 42 445 39 66.07 0.99 DF09 12a_33 0.0874 0.00053 2.662 0.063 0.221 0.0051 1369 23 1318 35 1288 53 5.86 0.97 DF09 12a_34 0.0760 0.00047 1.797 0.032 0.172 0.0029 1095 25 1044 23 1021 32 6.69 0.94 DF09 12a_35 R 0.0717 0.00047 1.466 0.027 0.148 0.0025 978 27 916 22 891 28 8.85 0.93 DF09 12a_36 0.0781 0.00049 1.968 0.038 0.183 0.0034 1148 25 1104 26 1083 37 5.65 0.95 DF09 12a_37 R 0.1149 0.00070 3.780 0.081 0.239 0.0049 1879 22 1588 34 1380 51 26.51 0.96 DF09 12a_38 0.0795 0.00055 2.052 0.046 0.187 0.0040 1184 27 1133 30 1108 43 6.42 0.95 DF09 12a_39 0.0801 0.00049 2.103 0.040 0.190 0.0034 1200 24 1150 26 1124 37 6.28 0.95 DF09 12a_40 0.0867 0.00054 2.581 0.048 0.216 0.0038 1354 24 1295 27 1261 40 6.87 0.94 DF09 12a_41 R 0.0864 0.00053 2.296 0.040 0.193 0.0032 1348 24 1211 25 1136 34 15.66 0.94 DF09 12a_42 0.0799 0.00050 2.138 0.041 0.194 0.0035 1194 25 1161 26 1145 38 4.09 0.95 DF09 12a_43 0.0780 0.00048 1.943 0.034 0.181 0.0030 1146 24 1096 23 1072 32 6.43 0.94 DF0 9 12a_44 0.0823 0.00050 2.295 0.043 0.202 0.0036 1252 24 1210 26 1188 38 5.09 0.95 DF09 12a_45 0.0842 0.00052 2.457 0.046 0.211 0.0038 1298 24 1259 27 1238 40 4.64 0.95 DF09 12a_46 0.0949 0.00059 3.291 0.059 0.252 0.0043 1526 23 1479 28 1 447 44 5.15 0.94 DF09 12a_47 0.0819 0.00050 2.267 0.042 0.201 0.0035 1244 24 1202 26 1180 38 5.12 0.94 DF09 12a_48 0.0818 0.00050 2.275 0.041 0.202 0.0035 1241 24 1204 26 1185 37 4.50 0.94 DF09 12a_49 R 0.0877 0.00124 1.639 0.036 0.136 0.00 23 1375 54 985 28 820 26 40.34 0.77 DF09 12a_50 0.1153 0.00075 4.715 0.101 0.297 0.0061 1884 23 1770 36 1676 60 11.05 0.95 DF09 12a_51 0.1134 0.00068 4.332 0.081 0.277 0.0049 1855 22 1699 31 1577 50 14.97 0.95 DF09 12a_52 0.0804 0.0005 0 2.183 0.041 0.197 0.0035 1208 24 1176 26 1159 38 3.99 0.94 DF09 12a_53 0.0764 0.00047 1.784 0.032 0.169 0.0029 1107 24 1039 23 1009 32 8.83 0.94 DF09 12a_54 R 0.0828 0.00053 1.865 0.034 0.163 0.0028 1263 25 1069 24 977 31 22.66 0.94

PAGE 84

84 Table 4 13. Continued. DF09 12a_55 R 0.0832 0.00053 0.871 0.017 0.076 0.0014 1274 25 636 19 472 17 62.92 0.95 DF09 12a_56 0.1134 0.00069 4.497 0.082 0.288 0.0050 1854 22 1730 30 1631 50 12.01 0.94 DF09 12a_57 0.1074 0.00067 2.996 0.054 0.202 0 .0034 1756 23 1406 27 1189 37 32.31 0.94 DF09 12a_58 R 0.1138 0.00069 4.968 0.091 0.317 0.0055 1861 22 1814 31 1775 54 4.60 0.94 DF09 12a_59 R 0.0799 0.00061 1.181 0.031 0.107 0.0027 1196 30 792 29 657 31 45.06 0.96 DF09 12a_60 0.0813 0. 00050 2.270 0.042 0.202 0.0035 1230 24 1203 26 1189 38 3.30 0.94 DF09 12a_61 0.0813 0.00050 2.075 0.040 0.185 0.0034 1228 24 1140 26 1096 37 10.71 0.95 DF09 12a_62 R 0.0913 0.00057 2.745 0.056 0.218 0.0042 1452 24 1341 30 1273 45 12.32 0 .95 DF09 12a_63 0.0780 0.00048 1.837 0.032 0.171 0.0028 1148 24 1059 23 1017 31 11.43 0.94 DF09 12a_64 0.0803 0.00049 1.917 0.036 0.173 0.0031 1204 24 1087 25 1031 34 14.36 0.95 DF09 12a_65 0.0802 0.00052 1.928 0.037 0.174 0.0032 1203 25 1 091 26 1036 35 13.83 0.94 DF09 12a_66 0.0746 0.00046 1.744 0.032 0.169 0.0030 1058 25 1025 24 1010 33 4.53 0.94 DF09 12a_67 R 0.0988 0.00064 2.528 0.064 0.186 0.0046 1602 24 1280 37 1098 50 31.42 0.97 DF09 12a_68 R 0.0735 0.00047 1.660 0.0 30 0.164 0.0028 1027 26 993 23 979 31 4.64 0.94 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 1 4 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 04 from th e Southern Margin Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 04_1 0.0883 0.00039 2.828 0.045 0.232 0.0035 1 390 17 1363 23 1347 37 3.06 0.96 DF09 04_2 0.1093 0.00037 4.796 0.079 0.318 0.0051 1787 12 1784 27 1783 50 0.22 0.98 DF09 04_3 0.1090 0.00037 4.623 0.074 0.308 0.0048 1783 12 1753 26 1730 47 2.93 0.98 DF09 04_4 R 0.1365 0.00046 7.109 0. 099 0.378 0.0051 2184 12 2125 25 2067 48 5.34 0.97 DF09 04_5 0.1155 0.00041 5.285 0.083 0.332 0.0051 1888 13 1866 27 1848 49 2.11 0.97 DF09 04_6 R 0.0892 0.00041 2.264 0.047 0.184 0.0038 1408 18 1201 29 1090 41 22.53 0.97 DF09 04_7 0.07 37 0.00025 1.713 0.026 0.169 0.0025 1032 14 1013 19 1006 28 2.55 0.97 DF09 04_8 0.0743 0.00026 1.781 0.025 0.174 0.0023 1051 14 1038 18 1033 26 1.63 0.97 DF09 04_9 0.0859 0.00031 2.641 0.040 0.223 0.0033 1337 14 1312 22 1298 35 2.88 0.9 7

PAGE 85

85 Table 4 14. Continued. DF09 04_10 0.0785 0.00027 2.134 0.033 0.197 0.0029 1160 14 1160 21 1161 32 0.05 0.97 DF09 04_11 0.0834 0.00028 2.584 0.042 0.225 0.0036 1280 13 1296 24 1307 38 2.15 0.98 DF09 04_12 0.1175 0.00051 5.675 0.084 0.350 0.0050 1919 15 1927 25 1937 47 0.94 0.96 DF09 04_13 0.0807 0.00030 2.161 0.043 0.194 0.0038 1215 14 1169 28 1145 41 5.73 0.98 DF09 04_14 0.0772 0.00026 1.997 0.032 0.188 0.0029 1127 14 1114 21 1109 32 1.61 0.98 DF09 04_15 0.0843 0.000 36 2.460 0.039 0.212 0.0032 1299 17 1260 23 1239 34 4.59 0.96 DF09 04_16 0.0767 0.00027 1.936 0.028 0.183 0.0026 1115 14 1094 19 1084 28 2.72 0.97 DF09 04_17 0.0813 0.00029 2.373 0.039 0.212 0.0034 1229 14 1234 23 1239 36 0.84 0.98 DF 09 04_18 0.0974 0.00036 3.447 0.059 0.257 0.0043 1574 14 1515 27 1475 44 6.32 0.98 DF09 04_19 0.0768 0.00027 1.984 0.030 0.187 0.0028 1117 14 1110 20 1107 30 0.87 0.97 DF09 04_20 0.0783 0.00027 2.090 0.030 0.194 0.0027 1154 13 1145 19 114 2 29 1.07 0.97 DF09 04_21 0.0812 0.00028 2.345 0.032 0.209 0.0028 1227 14 1226 19 1226 29 0.01 0.97 DF09 04_22 0.1151 0.00039 5.402 0.091 0.340 0.0056 1882 12 1885 29 1890 54 0.44 0.98 DF09 04_23 R 0.1179 0.00063 4.929 0.118 0.303 0.0071 1 924 19 1807 40 1709 70 11.18 0.97 DF09 04_24 0.0828 0.00029 2.438 0.038 0.214 0.0032 1264 14 1254 22 1249 35 1.19 0.97 DF09 04_25 0.0869 0.00031 2.723 0.041 0.227 0.0033 1359 14 1335 22 1321 35 2.82 0.97 DF09 04_26 R 0.0856 0.00036 2.39 0 0.059 0.203 0.0049 1328 16 1239 35 1190 53 10.37 0.99 DF09 04_27 0.0814 0.00028 2.260 0.034 0.201 0.0030 1232 13 1200 21 1183 32 3.99 0.97 DF09 04_28 R 0.0975 0.00047 2.616 0.089 0.195 0.0065 1577 18 1305 49 1147 70 27.29 0.99 DF09 04 _29 0.0747 0.00026 1.757 0.032 0.170 0.0031 1062 14 1029 24 1015 34 4.34 0.98 DF09 04_30 0.0827 0.00038 2.310 0.031 0.203 0.0025 1262 18 1215 19 1190 27 5.70 0.94 DF09 04_31 0.0905 0.00032 2.868 0.045 0.230 0.0035 1435 13 1373 23 1335 3 7 6.94 0.97 DF09 04_32 R 0.1137 0.00038 4.920 0.068 0.314 0.0042 1859 12 1805 23 1761 42 5.27 0.97 DF09 04_33 R 0.0905 0.00047 1.818 0.045 0.146 0.0035 1435 20 1052 32 878 40 38.82 0.98 DF09 04_34 R not sampled DF09 04_35 0.0810 0.000 28 2.333 0.037 0.209 0.0032 1221 13 1222 22 1224 34 0.28 0.98 DF09 04_36 0.0868 0.00029 2.658 0.038 0.222 0.0031 1356 13 1317 21 1294 33 4.53 0.97 DF09 04_37 0.0808 0.00027 2.263 0.034 0.203 0.0029 1216 13 1201 21 1193 31 1.82 0.97 DF 09 04_38 0.0783 0.00026 1.965 0.027 0.182 0.0025 1156 13 1103 19 1078 27 6.70 0.97

PAGE 86

86 Table 4 14. Continued. DF09 04_39 0.1223 0.00041 6.078 0.095 0.361 0.0055 1990 12 1987 27 1986 52 0.15 0.98 DF09 04_40 R 0.0787 0.00042 1.584 0.026 0.146 0.0023 1165 21 964 20 879 26 24.58 0.95 DF09 04_41 0.0784 0.00027 2.098 0.032 0.194 0.0029 1158 14 1148 21 1144 31 1.18 0.97 DF09 04_42 0.0817 0.00028 2.381 0.039 0.211 0.0034 1238 13 1237 23 1237 36 0.07 0.98 DF09 04_43 R 0.0875 0.00033 2.29 6 0.050 0.190 0.0041 1372 15 1211 31 1124 44 18.06 0.98 DF09 04_44 0.0789 0.00032 2.152 0.031 0.198 0.0028 1169 16 1166 20 1165 30 0.29 0.96 DF09 04_45 0.0844 0.00030 2.602 0.043 0.224 0.0036 1302 14 1301 24 1302 38 0.03 0.98 DF09 04_ 46 0.0948 0.00034 3.472 0.055 0.265 0.0041 1525 13 1521 25 1519 42 0.36 0.97 DF09 04_47 0.0798 0.00028 2.139 0.031 0.195 0.0027 1191 14 1161 20 1147 29 3.67 0.97 DF09 04_48 R 0.0840 0.00032 2.291 0.042 0.198 0.0036 1293 15 1209 26 1164 3 9 9.99 0.98 DF09 04_49 R 0.0904 0.00052 2.372 0.049 0.190 0.0038 1434 22 1234 29 1124 41 21.59 0.96 DF09 04_50 0.0766 0.00029 1.975 0.033 0.187 0.0031 1112 15 1107 23 1105 33 0.55 0.97 DF09 04_51 R 0.1269 0.00042 6.204 0.107 0.355 0.0060 2055 12 2005 30 1958 57 4.70 0.98 DF09 04_52 R 0.0823 0.00047 1.796 0.051 0.158 0.0044 1252 23 1044 36 948 49 24.27 0.98 DF09 04_53 0.1007 0.00039 3.666 0.061 0.264 0.0043 1637 14 1564 26 1512 44 7.66 0.97 DF09 04_54 R 0.0776 0.00061 1.751 0. 028 0.164 0.0023 1136 31 1027 21 978 25 13.90 0.87 DF09 04_55 R 0.1114 0.00038 3.844 0.058 0.250 0.0037 1822 12 1602 24 1441 38 20.92 0.97 DF09 04_56 0.0861 0.00030 2.711 0.047 0.228 0.0039 1341 14 1331 25 1327 40 1.02 0.98 DF09 04_57 0 .1137 0.00038 5.178 0.087 0.330 0.0055 1859 12 1849 29 1841 53 0.94 0.98 DF09 04_58 0.1076 0.00037 4.623 0.069 0.312 0.0045 1759 12 1753 25 1750 45 0.51 0.97 DF09 04_59 0.0856 0.00029 2.739 0.040 0.232 0.0033 1328 13 1339 22 1347 35 1. 44 0.97 DF09 04_60 0.0891 0.00030 3.040 0.045 0.248 0.0035 1406 13 1417 22 1427 37 1.51 0.97 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 87

87 Table 4 15 U Pb (MC ICP MS) analysis common P b corrected results for sample DF06 40 from the Southern Foreland Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF0 6 40_1 0.0796 0.00021 2.025 0.029 0.185 0.0026 1187 10 1124 20 1092 29 7.93 0.98 DF06 40_2 0.1774 0.00040 10.430 0.110 0.426 0.0044 2629 7 2473 19 2291 40 12.86 0.98 DF06 40_3 0.1271 0.00028 5.978 0.085 0.341 0.0048 2058 8 1972 25 1894 46 7.99 0.99 DF06 40_4 0.0795 0.00065 1.952 0.028 0.178 0.0021 1186 32 1099 19 1057 23 10.84 0.82 DF06 40_5 0.1324 0.00029 6.643 0.086 0.364 0.0046 2130 8 2065 23 2002 44 6.02 0.99 DF06 40_6 R 0.0911 0.00020 1.881 0.030 0.150 0.0024 1449 8 1074 21 900 26 37.88 0.99 DF06 40_7 R 0.1887 0.00039 12.398 0.158 0.477 0.0060 2730 7 2635 24 2515 52 7.89 0.99 DF06 40_8 R 0.1861 0.00040 11.544 0.155 0.450 0.0060 2708 7 2568 25 2397 53 11.48 0.99 DF06 40_9 R 0.1256 0.00027 5.063 0.078 0. 292 0.0045 2038 8 1830 26 1654 45 18.80 0.99 DF06 40_10 0.0775 0.00022 1.847 0.019 0.173 0.0017 1133 12 1062 13 1029 18 9.18 0.96 DF06 40_11 0.0756 0.00047 1.874 0.035 0.180 0.0032 1085 25 1072 25 1066 34 1.68 0.94 DF06 40_12 R 0.0923 0 .00104 2.151 0.055 0.169 0.0038 1474 43 1165 35 1007 42 31.63 0.90 DF06 40_13 0.1242 0.00075 6.211 0.113 0.363 0.0063 2018 21 2006 32 1996 59 1.07 0.94 DF06 40_14 R 0.1567 0.00154 3.852 0.152 0.178 0.0068 2421 33 1603 63 1058 74 56.28 0. 97 DF06 40_15 R 0.0882 0.00104 2.087 0.039 0.172 0.0025 1387 45 1144 25 1022 27 26.34 0.77 DF06 40_16 R 0.0835 0.00079 1.480 0.047 0.128 0.0039 1282 37 922 38 780 45 39.14 0.95 DF06 40_17 R 0.1459 0.00088 7.815 0.114 0.388 0.0052 2299 21 2210 26 2117 48 7.90 0.91 DF06 40_19 0.1257 0.00076 6.432 0.107 0.371 0.0058 2039 21 2036 29 2036 54 0.15 0.93 DF06 40_20 0.1588 0.00095 6.201 0.112 0.283 0.0048 2442 20 2004 31 1609 48 34.10 0.94 DF06 40_21 0.1703 0.00120 11.334 0.182 0.483 0.0070 2561 24 2551 30 2541 60 0.76 0.90 DF06 40_22 R 0.0883 0.00110 2.084 0.043 0.171 0.0028 1389 48 1143 28 1019 31 26.61 0.80 DF06 40_23 R 0.0787 0.00056 1.779 0.040 0.164 0.0035 1165 28 1038 29 979 39 15.93 0.95 DF06 40_24 0.1250 0. 00075 5.479 0.102 0.318 0.0056 2029 21 1897 32 1781 55 12.22 0.95 DF06 40_25 0.0869 0.00052 2.762 0.053 0.230 0.0042 1358 23 1345 28 1338 44 1.46 0.95 DF06 40_26 0.1544 0.00112 5.987 0.316 0.281 0.0147 2395 25 1974 90 1599 147 33.24 0.9 9 DF06 40_27 0.1859 0.00111 13.438 0.248 0.524 0.0092 2706 20 2711 35 2719 77 0.49 0.95 DF06 40_28 0.1256 0.00076 6.389 0.095 0.369 0.0050 2037 21 2030 26 2026 47 0.54 0.91

PAGE 88

88 Table 4 15. Continued. DF06 40_29 R 0.1327 0.00126 3.167 0.079 0.173 0.0040 2134 33 1449 38 1030 44 51.72 0.92 DF06 40_30 0.1873 0.00112 12.988 0.216 0.503 0.0078 2718 20 2678 31 2629 67 3.28 0.93 DF06 40_31 R 0.1509 0.00174 3.428 0.081 0.165 0.0034 2356 39 1511 37 984 38 58.22 0.87 DF06 40_32 R 0.1319 0 .00081 5.802 0.109 0.319 0.0057 2123 22 1946 32 1786 55 15.86 0.94 DF06 40_33 0.1179 0.00070 4.386 0.120 0.270 0.0072 1924 21 1709 45 1541 73 19.89 0.98 DF06 40_34 0.1659 0.00100 6.970 0.243 0.305 0.0104 2517 20 2107 61 1716 103 31.80 0 .98 DF06 40_35 R 0.8330 0.00857 137.257 4.987 1.195 0.0416 4600 39 5004 72 5072 242 10.26 0.96 DF06 40_36 0.0778 0.00057 1.933 0.039 0.180 0.0033 1141 29 1092 27 1069 37 6.32 0.93 DF06 40_37 0.1270 0.00078 5.921 0.150 0.338 0.0083 2057 22 1964 43 1879 80 8.66 0.97 DF06 40_38 0.0809 0.00050 2.063 0.036 0.185 0.0030 1218 24 1137 24 1095 33 10.07 0.94 DF06 40_39 0.1277 0.00078 6.324 0.116 0.359 0.0062 2066 21 2022 32 1980 59 4.16 0.94 DF06 40_40 R 0.1581 0.00095 9.373 0.169 0 .430 0.0073 2436 20 2375 33 2307 66 5.28 0.94 DF06 40_41 0.0805 0.00077 1.983 0.041 0.179 0.0032 1208 38 1110 28 1061 35 12.15 0.88 DF06 40_42 0.1311 0.00079 6.829 0.116 0.378 0.0060 2113 21 2089 30 2068 56 2.12 0.93 DF06 40_43 0.0794 0.00054 1.924 0.031 0.176 0.0026 1181 27 1089 21 1045 28 11.50 0.91 DF06 40_44 0.1318 0.00079 6.442 0.134 0.354 0.0070 2122 21 2038 36 1957 67 7.76 0.96 DF06 40_45 R 0.1760 0.00105 11.248 0.263 0.463 0.0105 2616 20 2544 43 2457 92 6.06 0 .97 DF06 40_46 0.1316 0.00079 6.790 0.114 0.374 0.0059 2119 21 2084 30 2051 55 3.17 0.93 DF06 40_47 0.1274 0.00078 6.421 0.109 0.365 0.0058 2063 22 2035 30 2010 55 2.56 0.93 DF06 40_48 0.1281 0.00077 5.844 0.135 0.331 0.0074 2072 21 1953 40 1844 71 10.96 0.97 DF06 40_49 R 0.1523 0.00158 3.621 0.332 0.172 0.0157 2372 35 1554 141 1026 172 56.74 0.99 DF06 40_50 R 0.1736 0.00104 7.526 0.153 0.314 0.0061 2593 20 2176 36 1764 60 31.97 0.96 DF06 40_51 R 0.0779 0.00050 1.766 0.026 0 .164 0.0022 1144 25 1033 19 982 25 14.10 0.90 DF06 40_52 R 0.1370 0.00085 6.387 0.116 0.338 0.0058 2189 21 2030 32 1880 55 14.14 0.94 DF06 40_53 R 0.1258 0.00075 5.996 0.094 0.346 0.0050 2040 21 1975 27 1916 48 6.05 0.92 DF06 40_54 0.124 9 0.00075 6.388 0.118 0.371 0.0065 2028 21 2030 32 2035 61 0.38 0.95 DF06 40_55 0.1163 0.00073 5.383 0.095 0.336 0.0056 1900 22 1882 30 1868 54 1.68 0.94 DF06 40_56 0.1841 0.00110 12.916 0.225 0.509 0.0083 2690 20 2673 33 2654 71 1.36 0.94 DF06 40_57 0.1305 0.00078 6.498 0.120 0.361 0.0063 2105 21 2045 32 1989 60 5.53 0.95

PAGE 89

89 Table 4 15. Continued. DF06 40_58 R 0.3262 0.00197 26.491 0.423 0.589 0.0087 3599 19 3364 31 2988 70 16.98 0.93 DF06 40_59 0.1209 0.00075 4.864 0.096 0. 292 0.0054 1970 22 1796 33 1651 54 16.17 0.95 DF06 40_60 0.0778 0.00055 1.913 0.052 0.178 0.0047 1143 28 1085 36 1058 52 7.40 0.97 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Ta ble 4 16. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 41 from the Southern Foreland Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 23 8 U Age (Ma) percent discord. rho factor DF06 41_1 0.0627 0.00038 0.832 0.015 0.096 0.0017 698 26 614 17 593 20 15.11 0.94 DF06 41_2 R 0.0773 0.00037 1.747 0.032 0.164 0.0029 1130 19 1026 24 979 32 13.34 0.97 DF06 41_3 R 0.1213 0.00051 4.925 0. 376 0.294 0.0224 1976 15 1806 125 1665 222 15.73 1.00 DF06 41_4.1 0.1587 0.00065 9.679 0.184 0.442 0.0082 2442 14 2404 35 2363 73 3.20 0.98 DF06 41_4 R 0.1253 0.00051 5.883 0.128 0.340 0.0073 2033 14 1958 37 1891 70 7.01 0.98 DF06 41_6 0.1297 0.00054 6.698 0.124 0.375 0.0067 2094 15 2072 32 2052 63 1.99 0.97 DF06 41_7 0.1708 0.00070 11.309 0.212 0.480 0.0088 2566 14 2549 35 2530 76 1.37 0.98 DF06 41_8 0.1268 0.00052 6.113 0.121 0.350 0.0068 2054 14 1992 34 1934 64 5.8 3 0.98 DF06 41_9 0.1300 0.00058 6.619 0.123 0.369 0.0067 2098 16 2062 32 2028 63 3.31 0.97 DF06 41_10 0.1301 0.00057 6.658 0.122 0.371 0.0066 2099 15 2067 32 2037 62 2.96 0.97 DF06 41_11 0.1267 0.00054 6.280 0.117 0.360 0.0065 2052 15 2015 32 1982 62 3.42 0.97 DF06 41_12 0.1737 0.00071 10.794 0.214 0.451 0.0087 2594 14 2505 36 2400 77 7.46 0.98 DF06 41_13 R 0.0708 0.00063 0.741 0.029 0.076 0.0029 951 37 563 34 472 35 50.31 0.97 DF06 41_14 0.2874 0.00117 26.609 0.512 0.672 0.0126 3403 13 3369 37 3315 97 2.59 0.98 DF06 41_15 0.1280 0.00052 6.550 0.125 0.371 0.0069 2070 14 2052 33 2037 65 1.61 0.98 DF06 41_16 0.0766 0.00032 1.926 0.036 0.182 0.0033 1110 17 1090 25 1081 36 2.58 0.97 DF06 41_17 R 0.1343 0.001 38 6.700 0.135 0.362 0.0063 2155 36 2072 35 1992 59 7.55 0.86 DF06 41_18 0.1247 0.00053 6.179 0.116 0.359 0.0066 2024 15 2001 33 1981 62 2.13 0.97 DF06 41_19 0.0730 0.00031 1.678 0.031 0.167 0.0030 1014 17 1000 23 995 33 1.82 0.97 DF06 41_20 0.0695 0.00029 1.436 0.028 0.150 0.0028 914 17 904 23 901 31 1.45 0.98

PAGE 90

90 Table 4 16. Continued. DF06 41_21 0.1251 0.00052 6.242 0.121 0.362 0.0068 2030 15 2010 34 1993 65 1.84 0.98 DF06 41_22 0.0740 0.00031 1.751 0.034 0.172 0.0032 1041 17 1027 25 1022 35 1.79 0.98 DF06 41_23 0.0596 0.00028 0.724 0.014 0.088 0.0016 589 20 553 16 545 20 7.48 0.97 DF06 41_24 0.1217 0.00052 5.818 0.108 0.347 0.0063 1981 15 1949 32 1921 60 3.04 0.97 DF06 41_25 0.0605 0.00028 0.772 0.015 0 .093 0.0017 620 20 581 17 571 20 7.78 0.97 DF06 41_26 R 0.0732 0.00052 1.285 0.036 0.127 0.0035 1020 29 839 32 773 40 24.18 0.97 DF06 41_27 0.0741 0.00031 1.760 0.033 0.172 0.0032 1045 17 1031 24 1025 35 1.85 0.97 DF06 41_28 0.1214 0.00 053 5.812 0.110 0.347 0.0064 1977 16 1948 33 1922 61 2.77 0.97 DF06 41_29 0.0616 0.00037 0.825 0.016 0.097 0.0018 659 26 611 18 598 21 9.25 0.95 DF06 41_30 0.1771 0.00072 11.165 0.211 0.457 0.0084 2626 14 2537 35 2430 74 7.46 0.98 DF06 41_31 R 0.0752 0.00035 1.560 0.038 0.150 0.0036 1075 19 954 30 904 41 15.87 0.98 DF06 41_32 R 0.0653 0.00041 0.911 0.017 0.101 0.0018 785 26 658 18 622 21 20.76 0.94 DF06 41_33 0.0743 0.00032 1.760 0.033 0.172 0.0031 1051 17 1031 24 1022 34 2.72 0.97 DF06 41_34 0.0616 0.00035 0.831 0.016 0.098 0.0018 661 25 614 18 602 21 8.98 0.96 DF06 41_35 0.1315 0.00054 6.886 0.129 0.380 0.0069 2118 14 2096 33 2077 65 1.91 0.98 DF06 41_36 0.0755 0.00038 1.771 0.032 0.170 0.0029 1082 20 1035 23 1014 32 6.30 0.96 DF06 41_37 0.0591 0.00026 0.717 0.013 0.088 0.0016 570 19 549 16 544 19 4.41 0.97 DF06 41_38 0.1622 0.00067 10.216 0.198 0.457 0.0087 2479 14 2454 36 2427 76 2.07 0.98 DF06 41_39 R 0.0604 0.00035 0.701 0.013 0.0 84 0.0015 618 25 539 16 521 18 15.65 0.95 DF06 41_40 0.1243 0.00052 6.171 0.117 0.360 0.0067 2019 15 2000 33 1984 63 1.74 0.98 DF06 41_41 0.0630 0.00029 0.934 0.017 0.108 0.0019 709 19 670 18 659 22 6.98 0.97 DF06 41_42 R 0.1259 0.00051 5.604 0.100 0.323 0.0056 2042 14 1916 30 1805 54 11.63 0.97 DF06 41_43 R 0.1852 0.00077 10.250 0.222 0.401 0.0085 2700 14 2457 40 2178 78 19.33 0.98 DF06 41_44 0.0632 0.00030 0.923 0.017 0.106 0.0019 717 20 664 18 649 23 9.40 0.97 DF06 41_45 R 0.3195 0.00136 20.410 0.425 0.463 0.0094 3568 13 3110 40 2456 83 31.16 0.98 DF06 41_46 0.0733 0.00031 1.666 0.031 0.165 0.0030 1021 17 995 24 985 34 3.55 0.97 DF06 41_47 0.1273 0.00053 6.575 0.124 0.374 0.0069 2061 15 2056 33 2052 64 0.43 0.98 DF06 41_48 0.1647 0.00067 10.666 0.205 0.470 0.0088 2504 14 2494 35 2485 77 0.74 0.98 DF06 41_49 0.0626 0.00037 0.873 0.017 0.101 0.0018 694 25 637 18 622 21 10.38 0.95

PAGE 91

91 Table 4 16. Continued. DF06 41_50 0.1319 0.00054 6.982 0 .136 0.384 0.0073 2123 14 2109 34 2097 68 1.25 0.98 DF06 41_51 0.1467 0.00061 8.306 0.154 0.411 0.0074 2308 14 2265 33 2219 68 3.85 0.97 DF06 41_52 0.2021 0.00083 15.173 0.300 0.545 0.0105 2843 13 2826 37 2805 88 1.35 0.98 DF06 41_53 0 .0690 0.00033 1.312 0.029 0.138 0.0029 897 19 851 25 834 33 7.03 0.98 DF06 41_54 R 0.0722 0.00032 1.494 0.029 0.150 0.0029 991 18 928 24 902 32 8.94 0.97 DF06 41_55 0.0748 0.00033 1.760 0.031 0.171 0.0029 1063 18 1031 23 1017 32 4.29 0.9 7 DF06 41_56 0.0765 0.00032 1.995 0.039 0.189 0.0036 1109 17 1114 26 1117 39 0.77 0.98 DF06 41_57 0.1321 0.00055 6.986 0.135 0.384 0.0072 2126 15 2109 34 2095 67 1.43 0.98 DF06 41_58 0.1266 0.00052 6.649 0.131 0.381 0.0073 2051 15 2066 35 2082 69 1.51 0.98 DF06 41_59 0.2753 0.00130 25.248 0.465 0.665 0.0118 3336 15 3317 36 3290 91 1.38 0.97 DF06 41_60 0.0733 0.00034 1.652 0.031 0.163 0.0030 1023 19 990 24 977 33 4.49 0.97 R denotes samples removed due to high error and/ or discordance. 235 U values calculated from measured 238 U Table 4 1 7 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 4 6 from the Southern Foreland Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 2 38 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 46_1 R 0.4882 0.00451 22.234 0.430 0.330 0.0056 4206 27 3194 37 1841 54 56.22 0.88 DF06 46_2 R 0.0771 0.00034 1.455 0.025 0.137 0.0023 1123 17 912 21 828 26 26.25 0.97 DF06 46_3 R 0.5809 0.00590 38.084 1.084 0.475 0.0126 4461 30 3722 56 2510 110 43.74 0.93 DF06 46_4 0.0747 0.00033 1.757 0.030 0.171 0.0028 1061 18 1030 22 1016 31 4.25 0.97 DF06 46_5 R 0.0758 0.00038 1.636 0.028 0.157 0.0026 1089 20 984 22 939 29 13.75 0.96 DF06 46_6 0.0750 0.00033 1.712 0.031 0.166 0.0029 1067 17 1013 23 989 32 7.29 0.97 DF06 46_7 R 0.0754 0.00034 1.642 0.030 0.158 0.0028 1078 18 987 23 947 31 12.12 0.97 DF06 46_8 R 0.0738 0.0 0065 0.864 0.018 0.085 0.0016 1035 36 632 20 526 19 49.17 0.91 DF06 46_9 0.0739 0.00035 1.593 0.028 0.156 0.0026 1038 19 967 21 937 29 9.64 0.96 DF06 46_10 R 0.0751 0.00171 1.115 0.032 0.108 0.0019 1070 92 761 30 660 22 38.30 0.60 DF06 46_11 0.0731 0.00037 1.173 0.035 0.116 0.0035 1016 21 788 33 711 40 30.05 0.99

PAGE 92

92 Table 4 17. Continued. DF06 46_12 R 0.0764 0.00031 1.802 0.039 0.171 0.0037 1106 16 1046 28 1019 40 7.84 0.98 DF06 46_13 R 0.0713 0.00031 1.353 0.022 0.138 0.0022 9 65 18 869 19 832 25 13.75 0.96 DF06 46_14 R 0.0823 0.00096 1.896 0.045 0.167 0.0034 1253 46 1079 31 997 38 20.46 0.87 DF06 46_15 0.0736 0.00032 1.680 0.031 0.165 0.0030 1031 18 1001 24 988 33 4.19 0.97 DF06 46_16 R 0.0758 0.00041 1.788 0 .033 0.171 0.0030 1090 22 1041 24 1018 33 6.57 0.96 DF06 46_17 R 0.0747 0.00032 1.277 0.036 0.124 0.0034 1062 17 836 31 754 39 28.98 0.99 DF06 46_1 8 R 0.0768 0.00032 1.850 0.040 0.175 0.0037 1115 17 1063 28 1039 41 6.78 0.98 DF06 46_19 R 0.0758 0.00045 1.226 0.027 0.117 0.0025 1090 24 813 25 716 29 34.29 0.96 DF06 46_20 0.0741 0.00034 1.642 0.027 0.161 0.0025 1044 18 986 21 962 28 7.82 0.96 DF06 46_21 0.0729 0.00030 1.355 0.035 0.135 0.0034 1012 17 870 30 816 39 19.34 0 .99 DF06 46_22 0.0600 0.00026 0.786 0.014 0.095 0.0017 604 19 589 16 585 20 3.01 0.97 DF06 46_23 R 0.0617 0.00047 0.638 0.013 0.075 0.0014 665 32 501 16 467 17 29.78 0.93 DF06 46_24 0.0732 0.00031 1.284 0.022 0.127 0.0021 1018 17 838 19 7 73 24 24.08 0.97 DF06 46_25 0.0732 0.00032 1.357 0.026 0.134 0.0026 1020 18 870 23 814 29 20.18 0.97 DF06 46_26 0.0733 0.00032 1.564 0.031 0.155 0.0030 1023 18 956 24 928 33 9.25 0.97 DF06 46_27 0.0741 0.00032 1.642 0.030 0.161 0.0028 1044 17 986 23 962 31 7.84 0.97 DF06 46_28 0.0609 0.00027 0.823 0.014 0.098 0.0017 636 19 610 16 603 19 5.18 0.97 DF06 46_29 0.0612 0.00033 0.809 0.015 0.096 0.0017 647 23 602 17 591 20 8.73 0.96 DF06 46_30 R 0.0774 0.00065 1.679 0.038 0.15 7 0.0033 1132 34 1000 29 942 37 16.75 0.93 DF06 46_31 R 0.0712 0.00039 1.356 0.027 0.138 0.0027 964 23 870 23 835 30 13.38 0.96 DF06 46_32 R 0.0799 0.00054 1.914 0.053 0.174 0.0047 1195 26 1086 37 1033 51 13.54 0.97 DF06 46_33 0.0618 0.0 0031 0.814 0.014 0.096 0.0016 666 21 605 16 589 19 11.51 0.96 DF06 46_34 R 0.0607 0.00027 0.655 0.012 0.078 0.0014 628 19 511 14 486 16 22.55 0.97 DF06 46_35 R 0.0751 0.00045 1.637 0.032 0.158 0.0029 1070 24 984 24 947 32 11.41 0.95 DF06 46_36 R 0.0677 0.00108 0.711 0.024 0.076 0.0023 859 66 545 28 474 27 44.84 0.88 DF06 46_37 R 0.0767 0.00038 1.604 0.043 0.152 0.0040 1112 20 972 33 912 44 18.01 0.98 DF06 46_38 0.0736 0.00035 1.446 0.034 0.143 0.0033 1030 19 908 28 860 3 7 16.47 0.98

PAGE 93

93 Table 4 17. Continued. DF06 46_39 R 0.0680 0.00042 1.063 0.018 0.113 0.0018 867 25 735 17 693 20 20.06 0.93 DF06 46_40 R 0.0734 0.00035 1.098 0.044 0.109 0.0043 1025 19 752 42 665 50 35.12 0.99 R denotes samples removed due to hig h error and/or discordance. 235 U values calculated from measured 238 U Table 4 1 8 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 45 from the Southern Foreland Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* err or* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 45_01 0.0603 0.00048 0.739 0.013 0.089 0.0014 613 34 562 15 550 17 10.24 0.89 DF06 45_02 0.0589 0.00023 0.728 0.012 0.090 0.0014 563 17 555 14 554 17 1.53 0.97 DF06 45_03 0.0586 0.00034 0.707 0.012 0.087 0.0014 553 25 543 14 541 16 2.12 0.94 DF06 45_04 0.0681 0.00230 0.802 0.030 0.085 0.0013 871 140 598 33 529 15 39.23 0.40 DF06 45_05 0.0587 0.00027 0.715 0.011 0.088 0.0013 557 20 548 13 546 15 1.98 0.96 DF06 45_06 R 0.1261 0.00048 6.331 0.094 0.364 0.0053 2044 14 2023 26 2004 50 1.93 0.97 DF06 45_07 0.0592 0.00035 0.734 0.011 0.090 0.0013 576 26 559 13 555 15 3.48 0.92 DF06 45_08 0.0706 0.00 129 0.973 0.022 0.100 0.0014 947 74 690 23 614 16 35.16 0.60 DF06 45_09 0.0748 0.00037 1.783 0.029 0.173 0.0027 1064 20 1039 21 1028 30 3.34 0.95 DF06 45_10 0.0595 0.00044 0.735 0.012 0.090 0.0013 585 32 559 14 554 15 5.29 0.89 DF06 45 _11 0.0609 0.00088 0.741 0.015 0.088 0.0013 635 62 563 18 546 16 14.08 0.73 DF06 45_12 0.0588 0.00027 0.705 0.011 0.087 0.0013 559 20 542 13 538 15 3.64 0.95 DF06 45_13 0.0685 0.00028 1.377 0.022 0.146 0.0022 883 17 879 19 879 25 0.45 0 .97 DF06 45_14 R 0.0827 0.00131 0.960 0.053 0.084 0.0045 1262 62 683 54 522 53 58.65 0.96 DF06 45_15 0.0587 0.00030 0.692 0.011 0.085 0.0013 556 22 534 13 529 15 4.74 0.95 DF06 45_16 0.0597 0.00034 0.720 0.013 0.087 0.0015 592 25 550 16 54 1 18 8.62 0.95 DF06 45_17 0.0601 0.00030 0.723 0.011 0.087 0.0013 607 21 552 13 540 16 11.10 0.95 DF06 45_18 0.0690 0.00276 0.822 0.035 0.086 0.0013 898 165 609 39 535 16 40.47 0.36 DF06 45_19 0.0592 0.00054 0.711 0.012 0.087 0.0012 573 39 545 14 539 15 5.93 0.84 DF06 45_20 R 0.1002 0.00243 1.158 0.067 0.084 0.0044 1628 90 781 62 519 53 68.12 0.91 DF06 45_21 0.0603 0.00028 0.750 0.015 0.090 0.0018 614 20 568 17 558 21 9.10 0.97

PAGE 94

94 Table 4 18. Continued. DF06 45_22 0.0748 0. 00119 1.371 0.043 0.133 0.0036 1063 64 876 36 805 40 24.27 0.86 DF06 45_23 0.0590 0.00029 0.690 0.014 0.085 0.0016 568 21 533 16 525 19 7.52 0.97 DF06 45_24 0.0589 0.00028 0.699 0.014 0.086 0.0017 563 21 538 17 533 20 5.23 0.97 DF06 45 _25 0.0606 0.00032 0.724 0.015 0.087 0.0017 627 23 553 17 535 20 14.53 0.97 DF06 45_26 R 0.1214 0.00254 4.185 0.244 0.250 0.0136 1978 74 1671 93 1439 140 27.22 0.93 DF06 45_27 0.0592 0.00028 0.704 0.014 0.086 0.0017 573 21 541 17 534 20 6.83 0.97 DF06 45_28 0.0734 0.00234 0.904 0.034 0.089 0.0018 1025 129 654 36 552 21 46.16 0.53 DF06 45_29 R 0.0608 0.00034 0.702 0.014 0.084 0.0016 631 24 540 17 519 19 17.68 0.96 DF06 45_30 R 0.0658 0.00038 0.742 0.015 0.082 0.0016 800 24 5 64 17 507 19 36.60 0.96 DF06 45_31 0.0634 0.00040 0.926 0.020 0.106 0.0022 723 27 665 21 649 26 10.22 0.96 DF06 45_32 R 0.0867 0.00369 1.023 0.071 0.086 0.0047 1355 164 715 70 530 56 60.89 0.79 DF06 45_33 0.0744 0.00034 1.894 0.040 0.185 0.0038 1053 18 1079 28 1093 42 3.83 0.98 DF06 45_34 R 0.0809 0.00477 0.994 0.062 0.089 0.0018 1219 232 700 62 550 21 54.85 0.32 DF06 45_35 R 0.0752 0.00616 0.898 0.077 0.087 0.0022 1075 328 650 81 535 26 50.20 0.29 DF06 45_36 0.0625 0.0 0030 0.922 0.019 0.107 0.0021 690 21 663 20 656 25 4.89 0.97 DF06 45_37 0.0592 0.00028 0.711 0.016 0.087 0.0019 573 21 545 18 539 22 5.94 0.98 DF06 45_38 0.0595 0.00033 0.707 0.015 0.086 0.0018 585 24 543 18 534 21 8.71 0.97 DF06 45_39 R 0.0628 0.00033 0.765 0.016 0.088 0.0018 700 22 577 18 547 21 21.89 0.97 DF06 45_40 0.0587 0.00027 0.726 0.015 0.090 0.0018 554 20 554 18 555 22 0.11 0.98 DF06 45_41 0.0599 0.00036 0.710 0.014 0.086 0.0017 601 26 544 17 532 20 11.47 0 .95 DF06 45_42 0.0592 0.00029 0.712 0.015 0.087 0.0017 575 21 546 17 540 20 6.17 0.97 DF06 45_43 0.0595 0.00034 0.706 0.014 0.086 0.0017 584 25 542 17 533 20 8.69 0.96 DF06 45_44 0.0618 0.00028 0.920 0.019 0.108 0.0022 666 20 663 20 662 26 0.59 0.98 DF06 45_45 0.0605 0.00033 0.757 0.016 0.091 0.0018 622 24 572 18 561 22 9.81 0.97 DF06 45_46 0.0600 0.00030 0.740 0.017 0.090 0.0020 603 21 563 19 553 23 8.28 0.98 DF06 45_47 0.0722 0.00033 1.595 0.035 0.160 0.0034 991 19 96 8 27 959 38 3.13 0.98 DF06 45_48 0.0721 0.00081 0.872 0.020 0.088 0.0017 987 46 637 21 543 20 44.98 0.87 DF06 45_49 R 0.0645 0.00120 0.802 0.023 0.090 0.0020 757 78 598 26 557 24 26.39 0.77

PAGE 95

95 Table 4 18. Continued. DF06 45_50 0.0599 0.00033 0.728 0.015 0.088 0.0017 598 24 555 17 545 20 8.80 0.96 DF06 45_51 0.0593 0.00028 0.750 0.016 0.092 0.0019 580 20 568 18 566 22 2.36 0.98 DF06 45_52 0.1298 0.00058 6.914 0.144 0.386 0.0079 2095 16 2100 37 2107 73 0.58 0.98 DF06 45_53 R 0.0729 0.00651 0.872 0.081 0.087 0.0022 1010 362 637 86 537 26 46.81 0.27 DF06 45_54 0.0611 0.00036 0.781 0.018 0.093 0.0020 643 25 586 20 572 24 11.11 0.97 DF06 45_55 R 0.0790 0.00078 1.731 0.042 0.159 0.0036 1173 39 1020 31 951 40 18 .88 0.92 DF06 45_56 R 0.0617 0.00032 0.641 0.014 0.075 0.0016 665 23 503 17 468 19 29.60 0.97 DF06 45_57 0.0616 0.00029 0.893 0.019 0.105 0.0022 659 20 648 21 645 26 2.02 0.98 DF06 45_58 0.0592 0.00029 0.716 0.015 0.088 0.0017 576 21 548 17 542 21 5.76 0.97 DF06 45_59 0.1397 0.00064 7.801 0.180 0.405 0.0092 2223 16 2208 41 2194 84 1.29 0.98 DF06 45_60 R 0.0803 0.00289 0.960 0.061 0.087 0.0046 1204 142 683 62 536 54 55.46 0.83 R denotes samples removed due to high error and/ or discordance. 235 U values calculated from measured 238 U Table 4 19. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 4 4 from the Southern Foreland Zone, Kalahari Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 44_01 0.0640 0.00040 0.821 0.015 0.093 0.0016 741 26 609 16 574 19 22.43 0.94 DF06 44_02 R 0.1785 0.0 0086 10.499 0.216 0.426 0.0085 2639 16 2479 38 2292 77 13.16 0.97 DF06 44_03 R 0.1763 0.00067 11.416 0.219 0.470 0.0088 2619 13 2557 35 2484 77 5.15 0.98 DF06 44_04 R 0.0691 0.00033 0.960 0.016 0.101 0.0016 901 19 683 17 619 19 31.22 0.96 DF06 44_05 0.0732 0.00030 1.686 0.028 0.167 0.0027 1020 16 1003 21 997 30 2.23 0.97 DF06 44_06 R 0.0593 0.00026 0.687 0.013 0.084 0.0016 580 19 531 16 520 19 10.21 0.97 DF06 44_07 0.0762 0.00037 1.762 0.033 0.168 0.0030 1100 19 1032 24 1 001 34 9.03 0.97 DF06 44_08 0.0741 0.00028 1.764 0.030 0.173 0.0029 1044 15 1032 22 1028 32 1.52 0.97 DF06 44_09 R 0.0591 0.00040 0.681 0.012 0.084 0.0014 572 30 527 14 518 16 9.49 0.92 DF06 44_10 0.0619 0.00032 0.860 0.015 0.101 0.0017 672 22 630 16 619 20 7.94 0.95 DF06 44_11 0.0613 0.00025 0.862 0.015 0.102 0.0017 648 18 631 16 627 19 3.21 0.97 DF06 44_12 0.0647 0.00032 0.902 0.015 0.101 0.0017 766 21 653 16 621 19 18.84 0.96

PAGE 96

96 Table 4 19. Continued. DF06 44_13 0.1182 0 .00044 5.668 0.099 0.348 0.0059 1929 13 1926 30 1925 57 0.19 0.98 DF06 44_14 0.0762 0.00032 1.874 0.033 0.178 0.0030 1100 17 1072 23 1059 33 3.66 0.97 DF06 44_15 0.0624 0.00038 0.868 0.017 0.101 0.0019 689 26 634 18 620 22 10.05 0.95 D F06 44_16 0.0928 0.00042 2.927 0.055 0.229 0.0042 1484 17 1389 28 1329 44 10.45 0.97 DF06 44_17 0.0759 0.00029 1.900 0.034 0.182 0.0031 1092 15 1081 23 1077 34 1.36 0.98 DF06 44_18 R 0.0800 0.00031 1.958 0.033 0.177 0.0029 1198 15 1101 22 1054 32 12.02 0.97 DF06 44_19 0.0744 0.00036 1.623 0.029 0.158 0.0028 1051 20 979 23 948 31 9.81 0.96 DF06 44_20 0.0710 0.00027 1.560 0.027 0.159 0.0027 959 15 954 21 953 30 0.55 0.98 DF06 44_21 R 0.0609 0.00052 0.722 0.015 0.086 0.0016 636 36 552 17 532 19 16.24 0.91 DF06 44_22 0.0730 0.00035 1.547 0.026 0.154 0.0024 1013 19 949 20 923 27 8.87 0.96 DF06 44_23 0.0752 0.00036 1.762 0.034 0.170 0.0032 1075 19 1031 25 1012 35 5.79 0.97 DF06 44_24 R 0.0696 0.00032 1.352 0.025 0.141 0.0025 916 19 868 21 850 28 7.10 0.97 DF06 44_25 0.0645 0.00028 1.064 0.019 0.120 0.0021 758 18 736 18 729 24 3.76 0.97 DF06 44_26 0.0751 0.00032 1.777 0.038 0.172 0.0036 1072 17 1037 27 1021 39 4.69 0.98 DF06 44_27 R 0.0726 0.00 197 1.157 0.038 0.116 0.0022 1002 110 780 36 706 26 29.53 0.58 DF06 44_28 0.0604 0.00027 0.824 0.015 0.099 0.0017 618 19 610 16 609 20 1.40 0.97 DF06 44_29 0.0753 0.00042 1.817 0.033 0.175 0.0031 1076 23 1051 24 1041 34 3.24 0.95 DF06 44_30 0.0719 0.00030 1.578 0.027 0.159 0.0027 982 17 961 22 954 30 2.84 0.97 DF06 44_31 0.0721 0.00028 1.623 0.030 0.163 0.0029 990 16 979 23 975 32 1.43 0.98 DF06 44_32 0.0758 0.00029 1.901 0.035 0.182 0.0033 1089 15 1081 25 1079 36 0. 91 0.98 DF06 44_33 R 0.0890 0.00220 1.822 0.063 0.148 0.0035 1405 95 1053 45 893 40 36.43 0.69 DF06 44_34 0.0586 0.00025 0.690 0.012 0.085 0.0015 552 19 533 15 529 17 4.19 0.97 DF06 44_35 R 0.1787 0.00069 12.301 0.249 0.499 0.0099 2641 13 26 27 38 2613 85 1.04 0.98 DF06 44_36 R 0.0663 0.00128 0.634 0.026 0.069 0.0026 816 81 499 33 433 31 46.94 0.88 DF06 44_37 R 0.0816 0.00437 1.059 0.060 0.094 0.0017 1235 210 733 58 581 21 52.96 0.33 DF06 44_38 0.0587 0.00023 0.722 0.013 0.089 0.0015 554 17 552 15 552 18 0.37 0.97 DF06 44_39 0.0599 0.00025 0.737 0.015 0.089 0.0018 598 18 561 18 552 21 7.73 0.98 DF06 44_40 R 0.0783 0.00040 1.941 0.039 0.180 0.0035 1155 20 1095 26 1066 38 7.70 0.97

PAGE 97

97 Table 4 19. Continued. DF06 44_41 R 0.0766 0.00042 1.414 0.026 0.134 0.0023 1111 22 895 22 810 26 27.05 0.95 DF06 44_42 0.0695 0.00031 1.113 0.020 0.116 0.0021 912 18 759 19 709 24 22.24 0.97 DF06 44_43 R 0.0696 0.00049 0.976 0.016 0.102 0.0016 916 29 692 17 625 18 31.71 0.91 DF06 44_44 R 0.0607 0.00025 0.712 0.012 0.085 0.0014 628 18 546 14 527 16 16.02 0.97 DF06 44_45 0.0745 0.00029 1.802 0.030 0.176 0.0028 1054 16 1046 22 1043 31 1.02 0.97 DF06 44_46 0.0744 0.00029 1.762 0.031 0.172 0.0029 1052 16 1031 23 1023 32 2.74 0.98 DF06 44_47 0.0651 0.00027 1.088 0.017 0.121 0.0019 776 17 748 17 739 22 4.79 0.97 DF06 44_48 0.0648 0.00092 0.899 0.020 0.101 0.0017 767 60 651 21 619 20 19.24 0.76 DF06 44_49 R 0.1084 0.00045 4.664 0.084 0.312 0 .0055 1773 15 1761 30 1752 54 1.13 0.97 DF06 44_50 0.0586 0.00027 0.699 0.013 0.086 0.0016 552 20 538 15 535 18 2.96 0.97 DF06 44_51 0.0632 0.00036 0.950 0.017 0.109 0.0018 716 24 678 17 667 21 6.71 0.94 DF06 44_52 0.0611 0.00026 0.840 0.016 0.100 0.0018 644 18 619 17 613 21 4.86 0.97 DF06 44_53 0.0752 0.00033 1.807 0.029 0.174 0.0027 1074 18 1048 21 1036 30 3.52 0.96 DF06 44_54 0.0746 0.00043 1.714 0.032 0.167 0.0030 1058 23 1014 24 994 33 6.04 0.95 DF06 44_55 R 0.0 790 0.00075 1.942 0.038 0.178 0.0030 1172 38 1096 26 1059 33 9.68 0.87 DF06 44_56 0.0616 0.00024 0.920 0.016 0.108 0.0019 661 17 662 17 663 22 0.31 0.97 DF06 44_57 0.0737 0.00029 1.730 0.032 0.170 0.0031 1035 16 1019 24 1013 34 2.04 0. 98 DF06 44_58 0.0659 0.00027 0.939 0.015 0.103 0.0016 803 17 672 16 635 19 20.93 0.97 DF06 44_59 0.0737 0.00036 1.745 0.031 0.172 0.0029 1033 20 1025 23 1023 32 0.97 0.96 DF06 44_60 R 0.0780 0.00074 1.768 0.037 0.164 0.0031 1147 38 1034 2 7 982 34 14.33 0.89 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 98

98 Table 4 20. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 43 from the Southern Foreland Zone, Kalaha ri Craton. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 43_01 0.0702 0.00040 1.350 0.025 0.140 0.0025 933 23 868 21 843 28 9.5 8 0.95 DF06 43_02 R 0.2443 0.02635 7.566 0.895 0.225 0.0109 3148 342 2181 202 1307 115 58.47 0.41 DF06 43_03 R 0.2925 0.03665 5.218 0.800 0.129 0.0114 3431 389 1855 246 785 130 77.12 0.58 DF06 43_04 R 0.0773 0.00079 1.777 0.035 0.167 0.0028 112 9 41 1037 26 995 31 11.87 0.86 DF06 43_05 0.0715 0.00044 1.382 0.026 0.140 0.0025 971 25 881 22 847 28 12.76 0.94 DF06 43_06 R 0.0802 0.00117 1.575 0.037 0.142 0.0027 1201 57 960 29 859 30 28.44 0.79 DF06 43_07 R 0.0917 0.00121 1.604 0.0 33 0.127 0.0020 1462 50 972 25 770 23 47.29 0.76 DF06 43_08 0.1185 0.00058 5.649 0.105 0.346 0.0062 1933 18 1923 32 1916 60 0.87 0.96 DF06 43_09 0.0690 0.00039 1.334 0.025 0.140 0.0025 900 23 861 22 846 28 5.90 0.96 DF06 43_10 0.0602 0 .00039 0.822 0.015 0.099 0.0017 611 28 609 17 609 20 0.17 0.94 DF06 43_11 0.0669 0.00037 0.892 0.016 0.097 0.0017 833 23 647 18 596 20 28.49 0.95 DF06 43_12 R 0.1142 0.00327 2.158 0.085 0.137 0.0037 1867 103 1167 54 829 42 55.60 0.69 DF 06 43_13 R 0.0790 0.00117 1.794 0.040 0.165 0.0028 1172 59 1043 29 984 30 16.03 0.75 DF06 43_14 0.0760 0.00039 1.931 0.036 0.184 0.0033 1094 21 1092 25 1092 36 0.20 0.96 DF06 43_15 0.0698 0.00053 1.027 0.028 0.107 0.0028 924 31 717 28 654 32 29.20 0.96 DF06 43_16 R 0.1174 0.00174 1.774 0.042 0.110 0.0021 1917 53 1036 31 671 24 64.98 0.79 DF06 43_17 0.0749 0.00039 1.804 0.033 0.175 0.0031 1065 21 1047 24 1039 34 2.38 0.96 DF06 43_18 0.0772 0.00040 1.984 0.041 0.186 0.0037 112 5 21 1110 28 1103 41 1.94 0.97 DF06 43_19 0.0746 0.00039 1.770 0.034 0.172 0.0031 1058 21 1034 24 1024 34 3.16 0.96 DF06 43_20 0.0623 0.00035 0.870 0.016 0.101 0.0018 683 24 635 17 623 21 8.75 0.95 DF06 43_21 R 0.1506 0.00806 3.117 0.18 1 0.150 0.0034 2352 183 1437 87 902 38 61.63 0.39 DF06 43_22 0.0746 0.00041 1.785 0.034 0.174 0.0032 1058 22 1040 25 1033 35 2.36 0.96 DF06 43_23 R 0.0837 0.00060 1.546 0.028 0.134 0.0022 1285 28 949 22 811 25 36.86 0.92 DF06 43_24 0.06 99 0.00044 1.332 0.028 0.138 0.0028 925 26 860 24 835 32 9.64 0.95 DF06 43_25 R 0.0783 0.00045 1.911 0.035 0.177 0.0031 1154 23 1085 24 1052 34 8.87 0.95 DF06 43_26 0.1146 0.00057 5.311 0.107 0.336 0.0066 1873 18 1870 34 1870 63 0.18 0.9 7

PAGE 99

99 Table 4 20. Continued. DF06 43_27 0.0732 0.00084 1.342 0.032 0.133 0.0028 1020 47 864 28 805 32 21.00 0.88 DF06 43_28 0.0752 0.00067 1.580 0.031 0.152 0.0027 1073 36 962 25 915 30 14.71 0.90 DF06 43_29 0.0685 0.00036 1.337 0.026 0.142 0.0 026 884 22 862 22 854 30 3.34 0.96 DF06 43_3 0 R 0.0673 0.00107 0.989 0.023 0.107 0.0018 847 66 698 24 654 21 22.76 0.73 DF06 43_31 R 0.0751 0.00042 1.735 0.034 0.167 0.0032 1072 23 1021 25 999 35 6.78 0.96 DF06 43_32 0.0608 0.00034 0.759 0.014 0.090 0.0016 633 24 573 16 559 19 11.74 0.95 DF06 43_33 0.0764 0.00042 1.958 0.042 0.186 0.0038 1107 22 1101 28 1099 42 0.63 0.97 DF06 43_34 0.0718 0.00064 1.400 0.026 0.141 0.0023 980 36 889 22 853 26 12.94 0.88 DF06 43_35 R 0.0 871 0.00179 1.929 0.052 0.161 0.0028 1363 79 1091 36 961 31 29.50 0.65 DF06 43_36 0.0682 0.00036 1.338 0.024 0.142 0.0025 876 22 862 21 858 28 2.08 0.96 DF06 43_37 R 0.0753 0.00155 0.981 0.026 0.095 0.0015 1076 82 694 26 583 18 45.85 0.6 1 DF06 43_38 0.0744 0.00036 1.893 0.036 0.184 0.0034 1054 20 1079 25 1092 37 3.66 0.97 DF06 43_39 R 0.1735 0.00218 2.843 0.065 0.119 0.0023 2592 42 1367 34 724 26 72.05 0.84 DF06 43_40 0.0700 0.00051 1.338 0.027 0.139 0.0026 929 30 862 2 3 837 30 9.87 0.93 DF06 43_41 0.0759 0.00038 1.896 0.035 0.181 0.0033 1093 20 1079 25 1074 36 1.70 0.96 DF06 43_42 R 0.1825 0.00425 10.921 0.320 0.434 0.0077 2676 77 2516 54 2326 69 13.08 0.61 DF06 43_43 R 0.0790 0.00060 1.907 0.034 0.175 0. 0028 1171 30 1083 24 1041 31 11.04 0.90 DF06 43_44 R 0.0743 0.00041 1.725 0.032 0.168 0.0030 1049 22 1018 24 1005 33 4.18 0.95 DF06 43_45 R 0.0733 0.00038 1.601 0.028 0.158 0.0027 1021 21 970 22 949 30 7.04 0.96 DF06 43_46 0.0783 0.00054 1.977 0.037 0.183 0.0032 1154 27 1107 25 1085 35 5.92 0.93 DF06 43_47 R 0.0819 0.00052 1.763 0.038 0.156 0.0032 1242 25 10312 28 936 36 24.60 0.96 DF06 43_48 0.0684 0.00175 0.925 0.029 0.098 0.0017 881 106 665 30 604 20 31.49 0.56 DF06 43_49 0.0751 0.00037 1.791 0.031 0.173 0.0029 1071 20 1042 22 1029 31 3.88 0.96 DF06 43_50 R 0.0807 0.00103 2.008 0.043 0.180 0.0031 1215 50 1118 29 1070 34 11.92 0.80 DF06 43_51 0.0758 0.00041 1.852 0.032 0.177 0.0029 1091 22 1064 22 105 2 31 3.52 0.95 DF06 43_52 R 0.0742 0.00073 1.659 0.033 0.162 0.0028 1047 40 993 25 970 31 7.35 0.87 DF06 43_53 0.0743 0.00037 1.807 0.032 0.176 0.0030 1049 20 1048 23 1049 33 0.02 0.96

PAGE 100

100 Table 4 20. Continued. DF06 43_54 0.0717 0.00054 1.15 0 0.020 0.116 0.0019 978 31 777 19 710 21 27.39 0.91 DF06 43_55 R 0.0847 0.00090 2.060 0.041 0.176 0.0029 1309 41 1135 27 1048 32 19.91 0.84 DF06 43_56 0.0752 0.00039 1.801 0.040 0.174 0.0038 1073 21 1046 29 1033 42 3.70 0.97 DF06 43_57 0.0588 0.00032 0.721 0.012 0.089 0.0015 560 24 551 15 549 17 1.88 0.95 DF06 43_58 0.0708 0.00055 1.338 0.026 0.137 0.0025 950 32 862 23 829 28 12.70 0.92 DF06 43_59 0.0757 0.00039 1.866 0.032 0.179 0.0029 1086 21 1069 23 1062 32 2.24 0 .95 DF06 43_60 0.0762 0.00038 1.929 0.035 0.184 0.0032 1099 20 1091 24 1088 34 1.00 0.96 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 21 U Pb (MC ICP MS) analysis common Pb co rrected results for sample DF06 18 from the Kaoko Belt. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 18_1 R 0.1130 0.00032 5.278 0.09 3 0.339 0.0059 1849 10 1865 30 1882 57 1.81 0.99 DF06 18_2 R 0.2695 0.00963 4.598 0.216 0.124 0.0038 3303 112 1749 77 753 43 77.21 0.65 DF06 18_3 R 0.5244 0.00644 18.126 0.743 0.251 0.0098 4311 36 2996 77 1443 101 66.52 0.95 DF06 18_4 R 0.3884 0.00262 9.748 0.235 0.182 0.0042 3865 20 2411 44 1079 46 72.08 0.96 DF06 18_5 R 0.3743 0.01137 10.214 0.386 0.198 0.0044 3809 92 2454 69 1165 48 69.42 0.59 DF06 18_6 R 0.4256 0.00549 10.576 0.283 0.180 0.0042 4002 39 2486 49 1069 4 6 73.28 0.88 DF06 18_7 R 0.2662 0.00497 4.593 0.157 0.125 0.0036 3284 59 1748 56 761 41 76.83 0.84 DF06 18_8 R 0.4258 0.00449 11.618 0.332 0.198 0.0053 4003 31 2574 53 1165 56 70.90 0.93 DF06 18_9 R 0.0807 0.00044 1.703 0.040 0.153 0.0035 1214 21 1010 30 919 39 24.26 0.97 DF06 18_10 R 0.6132 0.00272 29.065 0.726 0.344 0.0084 4540 13 3455 48 1906 81 58.01 0.98 DF06 18_11 R 0.2079 0.00064 15.106 0.292 0.527 0.0101 2889 10 2822 36 2731 85 5.44 0.99 DF06 18_12 R 0.1834 0.00301 2.96 0 0.082 0.117 0.0026 2684 54 1397 42 714 30 73.40 0.80 DF06 18_13 0.1263 0.00040 6.421 0.121 0.369 0.0069 2048 11 2035 33 2025 65 1.12 0.99 DF06 18_14 0.0811 0.00029 2.299 0.049 0.206 0.0043 1224 14 1212 30 1206 46 1.45 0.99 DF06 18_15 R 0.4438 0.00741 12.041 0.361 0.197 0.0049 4065 50 2607 55 1159 53 71.49 0.83

PAGE 101

101 Table 4 21. Continued. DF06 18_16 R 0.1361 0.00120 4.629 0.115 0.247 0.0057 2178 31 1754 41 1423 59 34.67 0.93 DF06 18_17 0.1157 0.00066 4.763 0.108 0.299 0.0066 189 1 21 1778 38 1686 65 10.84 0.97 DF06 18_18 R 0.5063 0.00327 11.864 0.367 0.170 0.0051 4260 19 2593 57 1013 57 76.23 0.98 DF06 18_19 R 0.0796 0.00196 1.082 0.036 0.099 0.0023 1186 97 744 35 607 26 48.83 0.68 DF06 18_20 R 0.3798 0.00626 8.9 11 0.280 0.170 0.0046 3831 50 2329 57 1014 50 73.54 0.85 DF06 18_21 R 0.1219 0.00093 4.185 0.105 0.249 0.0059 1985 27 1671 41 1434 61 27.75 0.95 DF06 18_22 0.0770 0.00029 1.797 0.032 0.169 0.0030 1121 15 1044 23 1009 33 10.01 0.98 DF06 18_23 0.1269 0.00038 6.279 0.121 0.359 0.0068 2055 10 2015 34 1979 65 3.68 0.99 DF06 18_24 0.1771 0.00050 11.923 0.208 0.488 0.0084 2626 9 2598 32 2566 73 2.28 0.99 DF06 18_25 R 0.1242 0.00041 5.917 0.104 0.345 0.0060 2018 12 1963 30 1914 57 5.11 0.98 DF06 18_26 R 0.1327 0.00277 5.227 0.168 0.286 0.0070 2134 73 1857 54 1621 70 24.03 0.76 DF06 18_27 0.0745 0.00025 1.782 0.033 0.173 0.0032 1056 14 1039 24 1032 35 2.29 0.98 DF06 18_28 R 0.1317 0.00061 5.715 0.151 0.315 0.0082 21 21 16 1933 45 1765 80 16.75 0.98 DF06 18_29 R 0.1223 0.00175 4.243 0.133 0.252 0.0071 1990 51 1682 51 1448 73 27.25 0.89 DF06 18_30 0.0691 0.00055 1.275 0.027 0.134 0.0027 901 33 834 24 811 30 9.98 0.93 DF06 18_31 R 0.1223 0.00040 5.553 0.126 0.329 0.0074 1990 12 1909 39 1837 72 7.67 0.99 DF06 18_32 0.0752 0.00025 1.702 0.034 0.164 0.0032 1073 14 1009 25 981 36 8.60 0.99 DF06 18_33 R 0.2760 0.00577 5.048 0.184 0.133 0.0040 3340 65 1827 61 804 45 75.94 0.82 DF06 18_34 R 0.1333 0.00584 5.283 0.276 0.288 0.0082 2141 153 1866 87 1630 82 23.85 0.55 DF06 18_35 R 0.1246 0.00119 4.673 0.135 0.272 0.0074 2023 34 1762 48 1552 75 23.27 0.94 DF06 18_36 R 0.1294 0.00102 4.948 0.117 0.277 0.0062 2090 28 1810 40 1579 62 24.42 0.94 DF06 18_37 R 0.1346 0.00153 5.442 0.138 0.293 0.0067 2159 40 1891 43 1659 66 23.13 0.89 DF06 18_38 R 0.2422 0.00249 4.219 0.110 0.126 0.0030 3134 33 1678 42 768 35 75.51 0.92 DF06 18_39 0.1265 0.00076 5.694 0.133 0.326 0.0074 205 0 21 1930 40 1823 71 11.10 0.97 DF06 18_40 0.1268 0.00039 6.143 0.125 0.351 0.0071 2054 11 1996 35 1942 67 5.44 0.99 DF06 18_41 0.1135 0.00037 5.003 0.104 0.320 0.0066 1856 12 1820 35 1790 64 3.57 0.99 DF06 18_42 R 0.0882 0.00044 1.894 0.037 0.156 0.0029 1388 19 1079 26 933 33 32.73 0.97

PAGE 102

102 Table 4 21. Continued. DF06 18_43 R 0.1192 0.00152 4.833 0.115 0.294 0.0059 1944 46 1790 40 1663 59 14.45 0.85 DF06 18_44 R 0.1651 0.00088 6.565 0.151 0.288 0.0064 2509 18 2054 40 1634 64 34.86 0.97 DF06 18_45 0.0734 0.00024 1.681 0.033 0.166 0.0032 1026 13 1001 25 991 35 3.44 0.99 DF06 18_46 0.1264 0.00036 6.165 0.128 0.354 0.0073 2049 10 1999 36 1954 69 4.64 0.99 DF06 18_47 R 0.0781 0.00104 1.690 0.044 0.157 0.0035 1149 53 1005 33 941 39 18.07 0.86 DF06 18_48 R 0.1972 0.00147 5.278 0.153 0.194 0.0054 2803 24 1865 49 1145 59 59.16 0.97 DF06 18_49 0.1148 0.00033 4.965 0.107 0.314 0.0067 1876 10 1813 36 1761 65 6.15 0.99 DF06 18_50 R 0.1196 0.00141 5.436 0. 121 0.330 0.0062 1950 42 1890 38 1839 60 5.69 0.85 DF06 18_51 0.1269 0.00041 5.870 0.113 0.336 0.0064 2055 11 1957 33 1867 61 9.13 0.99 DF06 18_52 0.1157 0.00041 4.651 0.087 0.292 0.0054 1890 13 1758 31 1651 53 12.65 0.98 DF06 18_53 0. 1161 0.00037 4.913 0.097 0.307 0.0060 1897 11 1804 33 1727 59 8.98 0.99 DF06 18_54 0.1292 0.00038 6.517 0.137 0.366 0.0076 2087 10 2048 37 2011 72 3.63 0.99 DF06 18_55 0.1265 0.00036 6.222 0.118 0.357 0.0067 2050 10 2007 33 1968 64 3.97 0.99 DF06 18_56 0.1148 0.00036 4.997 0.100 0.316 0.0062 1877 11 1819 33 1770 61 5.71 0.99 DF06 18_57 R 0.1239 0.00040 5.444 0.100 0.319 0.0058 2013 11 1892 31 1785 57 11.34 0.98 DF06 18_58 0.0758 0.00025 1.871 0.037 0.179 0.0035 1091 13 10 71 26 1062 39 2.59 0.99 DF06 18_59 R 0.1440 0.00107 4.853 0.114 0.244 0.0055 2276 25 1794 39 1411 57 38.03 0.95 DF06 18_60 R 0.1143 0.00036 4.638 0.093 0.294 0.0058 1869 11 1756 33 1664 58 10.92 0.99 DF06 18_61 0.1133 0.00033 4.796 0.092 0 .307 0.0058 1853 11 1784 32 1727 57 6.75 0.99 DF06 18_62 R 0.1139 0.00036 4.601 0.099 0.293 0.0062 1863 11 1749 36 1657 62 11.06 0.99 DF06 18_63 R 0.1031 0.00242 2.309 0.071 0.162 0.0032 1681 87 1215 43 971 35 42.20 0.64 DF06 18_64 R 0.08 50 0.00196 1.533 0.046 0.131 0.0025 1316 89 944 36 793 28 39.71 0.63 DF06 18_65 0.1147 0.00033 5.089 0.096 0.322 0.0060 1876 10 1834 32 1799 58 4.06 0.99 DF06 18_66 R 0.1271 0.00164 4.588 0.130 0.262 0.0066 2059 45 1747 47 1500 68 27.14 0.89 DF06 18_67 0.1139 0.00037 4.809 0.107 0.306 0.0067 1863 12 1786 37 1723 66 7.52 0.99 DF06 18_68 R 0.1490 0.00154 6.376 0.168 0.310 0.0075 2334 35 2029 46 1744 74 25.27 0.92 DF06 18_69 0.1131 0.00038 4.930 0.108 0.316 0.0068 1850 12 180 7 37 1772 67 4.18 0.99

PAGE 103

103 Table 4 21. Continued. DF06 18_70 R 0.1179 0.00039 5.293 0.105 0.326 0.0063 1924 12 1868 33 1819 62 5.46 0.99 DF06 18_71 0.0771 0.00029 1.766 0.033 0.166 0.0031 1125 15 1033 24 991 34 11.88 0.98 DF06 18_72 R 0.1435 0 .00142 3.918 0.158 0.198 0.0077 2270 34 1617 64 1166 83 48.65 0.97 DF06 18_73 0.0738 0.00028 1.718 0.037 0.169 0.0036 1035 15 1015 27 1007 39 2.74 0.98 DF06 18_74 0.0806 0.00030 1.944 0.039 0.175 0.0034 1212 15 1096 26 1040 37 14.16 0.9 8 DF06 18_75 0.1135 0.00036 5.037 0.096 0.322 0.0060 1856 11 1825 32 1801 59 2.96 0.99 DF06 18_76 0.1133 0.00033 4.998 0.089 0.320 0.0056 1853 10 1819 30 1791 55 3.37 0.99 DF06 18_77 0.1144 0.00033 5.132 0.100 0.325 0.0063 1871 10 1841 3 3 1817 61 2.91 0.99 DF06 18_78 0.0799 0.00044 2.153 0.051 0.196 0.0045 1194 22 1166 32 1152 48 3.46 0.97 DF06 18_79 R 0.1389 0.00164 4.676 0.124 0.244 0.0058 2214 41 1763 44 1409 60 36.33 0.90 DF06 18_80 R 0.1391 0.00221 6.055 0.142 0.316 0. 0054 2216 55 1984 40 1770 53 20.12 0.73 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U Table 4 2 2 U Pb (MC ICP MS) analysis common Pb corrected results for sample DF0 9 38 from the Kaoko Belt. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 38_1 0.1078 0.00044 3.763 0.071 0.253 0.0047 1763 15 1585 30 1456 48 17.43 0.98 DF09 38_2 0.1119 0.00045 5.144 0.071 0.333 0.0044 1831 14 1843 23 1856 43 1.35 0.96 DF09 38_3 0.1109 0.00046 4.291 0.036 0.280 0.0020 1815 15 1691 14 1595 20 12.09 0.87 DF09 38_4 0.1136 0.00054 5.329 0.059 0.340 0.0034 1858 17 1873 19 1890 33 1.73 0.90 DF09 38_5 R 0.1099 0.00131 3.516 0.086 0.232 0.0049 1798 43 1531 38 1346 52 25.14 0.87 DF09 38_6 0.1141 0.00050 5.385 0.060 0.342 0.0035 1865 16 1882 19 1900 34 1.86 0.92 DF09 38_7 0.1122 0.00048 5.153 0.062 0.333 0. 0038 1836 15 1845 20 1854 36 0.99 0.94 DF09 38_8 0.1140 0.00047 5.447 0.069 0.346 0.0041 1865 15 1892 22 1919 40 2.92 0.95 DF09 38_9 0.1130 0.00052 5.201 0.076 0.334 0.0047 1849 17 1853 25 1858 45 0.50 0.95 DF09 38_10 0.1127 0.00047 5.223 0.067 0.336 0.0041 1844 15 1856 22 1869 40 1.39 0.95 DF09 38_11 0.1128 0.00048 5.084 0.080 0.327 0.0050 1845 15 1833 27 1824 48 1.12 0.96 DF09 38_12 0.1138 0.00047 5.365 0.073 0.342 0.0045 1861 15 1879 23 1897 43 1.93 0.95

PAGE 104

104 Tabl e 4 22. Continued. DF09 38_13 R 0.1109 0.00047 5.266 0.073 0.344 0.0046 1815 15 1863 24 1909 44 5.20 0.95 DF09 38_14 0.1151 0.00067 5.171 0.070 0.326 0.0040 1881 21 1848 23 1820 38 3.24 0.90 DF09 38_15 0.1092 0.00045 4.770 0.064 0.317 0.0040 1785 15 1779 22 1776 40 0.51 0.95 DF09 38_16 0.1122 0.00045 5.217 0.065 0.337 0.0040 1836 14 1855 21 1875 39 2.13 0.95 DF09 38_17 0.1143 0.00046 5.283 0.059 0.335 0.0035 1868 15 1866 19 1866 33 0.13 0.93 DF09 38_18 0.1140 0.00053 5.26 4 0.064 0.335 0.0038 1864 17 1863 21 1863 36 0.03 0.93 DF09 38_19 0.1139 0.00047 5.291 0.075 0.337 0.0046 1863 15 1867 24 1873 44 0.55 0.96 DF09 38_20 R 0.1085 0.00059 4.221 0.068 0.282 0.0043 1775 20 1678 26 1603 43 9.65 0.94 DF09 38_ 21 R 0.1123 0.00047 4.501 0.078 0.291 0.0049 1837 15 1731 29 1646 49 10.35 0.97 DF09 38_22 0.1149 0.00047 5.273 0.065 0.333 0.0039 1878 15 1864 21 1854 37 1.30 0.94 DF09 38_23 0.1140 0.00056 5.122 0.066 0.326 0.0039 1864 18 1839 22 1820 37 2.38 0.92 DF09 38_24 0.1125 0.00047 5.101 0.062 0.329 0.0038 1840 15 1836 21 1834 36 0.28 0.94 DF09 38_25 R 0.1160 0.00141 5.185 0.086 0.324 0.0037 1895 44 1850 28 1812 36 4.39 0.68 DF09 38_26 R 0.1120 0.00161 1.872 0.035 0.121 0.0015 1833 52 1071 25 738 17 59.72 0.64 DF09 38_27 0.1135 0.00051 5.099 0.066 0.326 0.0040 1856 16 1836 22 1819 38 1.98 0.94 DF09 38_28 0.1115 0.00047 4.719 0.055 0.307 0.0034 1824 15 1770 20 1727 33 5.27 0.93 DF09 38_29 0.1153 0.00050 5.450 0.07 1 0.343 0.0042 1885 15 1893 22 1902 41 0.91 0.94 DF09 38_30 0.1147 0.00055 5.324 0.075 0.337 0.0044 1875 17 1872 24 1872 43 0.16 0.94 DF09 38_31 R 0.1092 0.00060 4.550 0.070 0.302 0.0043 1787 20 1740 25 1703 43 4.67 0.93 DF09 38_32 0.1 134 0.00050 5.174 0.054 0.331 0.0032 1854 16 1848 18 1844 31 0.52 0.91 DF09 38_33 0.1134 0.00047 5.030 0.067 0.322 0.0041 1855 15 1824 22 1799 40 2.97 0.95 DF09 38_34 0.1107 0.00044 4.409 0.053 0.289 0.0033 1811 14 1714 20 1637 33 9.57 0.95 DF09 38_35 0.1149 0.00050 5.097 0.050 0.322 0.0028 1879 16 1835 17 1799 28 4.22 0.90 DF09 38_36 0.1144 0.00046 5.453 0.061 0.346 0.0036 1871 15 1893 19 1915 35 2.39 0.93 DF09 38_37 0.0907 0.00105 3.082 0.078 0.246 0.0055 1440 44 1428 38 1421 57 1.30 0.89 DF09 38_38 R 0.1026 0.00124 1.843 0.028 0.130 0.0012 1672 45 1061 20 790 13 52.76 0.60 DF09 38_39 0.1131 0.00046 5.352 0.068 0.343 0.0041 1851 15 1877 22 1903 40 2.83 0.95 DF09 38_40 0.1132 0.00048 5.088 0.059 0.326 0.0035 1852 15 1834 20 1820 34 1.75 0.93

PAGE 105

105 Table 4 22. Continued. DF09 38_41 0.1115 0.00051 4.672 0.053 0.304 0.0031 1825 16 1762 19 1712 31 6.19 0.92 DF09 38_42 0.1114 0.00047 4.690 0.043 0.305 0.0025 1822 15 1765 15 1720 25 5.62 0.89 DF09 38_43 0.1145 0.00049 5.423 0.079 0.344 0.0048 1872 15 1888 25 1905 46 1.77 0.96 DF09 38_44 0.1134 0.00049 5.364 0.053 0.343 0.0030 1855 16 1879 17 1902 29 2.56 0.90 DF09 38_45 R 0.1092 0.00150 3.396 0.109 0.226 0.0065 1786 50 1503 50 1312 69 26.52 0.90 DF09 38_46 0.1136 0.00050 5.192 0.059 0.332 0.0035 1858 16 1851 19 1847 33 0.55 0.92 DF09 38_47 0.1098 0.00064 4.128 0.054 0.273 0.0032 1797 21 1660 21 1555 33 13.45 0.90 DF09 38_48 0.1134 0.00045 5.239 0.081 0.335 0. 0050 1855 14 1859 26 1864 48 0.48 0.97 DF09 38_49 R 0.1187 0.00147 5.516 0.095 0.337 0.0040 1936 44 1903 29 1874 39 3.20 0.70 DF09 38_50 0.1150 0.00066 5.420 0.077 0.342 0.0045 1881 21 1888 24 1896 43 0.84 0.92 DF09 38_51 0.1147 0.000 47 5.521 0.068 0.349 0.0040 1875 15 1904 21 1932 39 3.07 0.94 DF09 38_52 0.1160 0.00059 5.363 0.068 0.335 0.0039 1896 18 1879 22 1865 37 1.59 0.92 DF09 38_53 0.1154 0.00051 5.427 0.085 0.341 0.0051 1887 16 1889 27 1893 49 0.33 0.96 D F09 38_54 0.1141 0.00048 5.331 0.064 0.339 0.0038 1866 15 1874 20 1883 36 0.93 0.94 DF09 38_55 0.1125 0.00058 4.817 0.097 0.311 0.0060 1839 19 1788 33 1745 59 5.09 0.97 DF09 38_56 R 0.1114 0.00059 4.211 0.050 0.274 0.0029 1822 19 1676 19 1564 30 14.15 0.90 DF09 38_57 0.1119 0.00052 5.119 0.074 0.332 0.0045 1830 17 1839 24 1849 44 1.03 0.95 DF09 38_58 0.1144 0.00057 5.196 0.073 0.329 0.0043 1870 18 1852 24 1837 42 1.76 0.93 DF09 38_59 0.1141 0.00048 5.274 0.070 0.335 0.004 2 1866 15 1864 22 1865 41 0.00 0.95 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 106

106 Table 4 23. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF09 39 from the Kaoko Belt Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF09 39_1 R 0.1730 0.00162 9.856 0.196 0.413 0.0072 2587 31 2421 36 2232 66 13.72 0.8 8 DF09 39_2 R 0.1677 0.00067 9.712 0.155 0.420 0.0065 2535 13 2407 29 2262 59 10.74 0.97 DF09 39_3 0.1687 0.00067 9.491 0.153 0.408 0.0064 2545 13 2386 29 2208 58 13.24 0.97 DF09 39_4 0.1703 0.00067 10.464 0.190 0.446 0.0079 2561 13 2476 33 2377 70 7.15 0.98 DF09 39_5 R 0.1745 0.00163 8.112 0.206 0.337 0.0079 2602 31 2243 45 1874 76 27.95 0.93 DF09 39_6 0.1723 0.00068 10.383 0.162 0.437 0.0066 2580 13 2469 29 2340 59 9.29 0.97 DF09 39_7 0.1723 0.00069 10.635 0.184 0.448 0.0 076 2580 13 2491 32 2387 67 7.49 0.97 DF09 39_8 0.1723 0.00069 10.635 0.184 0.448 0.0076 2580 13 2491 32 2387 67 7.49 0.97 DF09 39_9 R 0.1727 0.00166 5.767 0.156 0.242 0.0061 2584 32 1941 46 1399 64 45.86 0.94 DF09 39_10 0.1723 0.00071 10.634 0.185 0.448 0.0076 2580 14 2491 32 2387 67 7.46 0.97 DF09 39_11 R 0.1619 0.00068 7.871 0.223 0.353 0.0099 2476 14 2216 50 1949 94 21.29 0.99 DF09 39_12 0.1711 0.00070 9.603 0.144 0.407 0.0059 2568 14 2397 27 2204 54 14.19 0.96 DF 09 39_13 0.1673 0.00069 8.867 0.143 0.384 0.0060 2531 14 2324 29 2099 56 17.07 0.97 DF09 39_14 0.1742 0.00068 11.340 0.196 0.472 0.0080 2598 13 2551 32 2496 70 3.93 0.97 DF09 39_15 R 0.1654 0.00066 9.187 0.171 0.403 0.0073 2511 13 2356 34 2184 67 13.02 0.98 DF09 39_16 R 0.1643 0.00153 5.826 0.147 0.257 0.0060 2500 31 1950 43 1477 62 40.93 0.93 DF09 39_17 0.1751 0.00069 11.731 0.180 0.486 0.0072 2607 13 2583 28 2555 62 1.97 0.97 DF09 39_18 0.1726 0.00069 10.675 0.172 0.449 0. 0070 2583 13 2495 30 2391 62 7.41 0.97 DF09 39_19 R 0.1643 0.00156 7.281 0.135 0.321 0.0051 2501 32 2146 33 1798 50 28.11 0.86 DF09 39_20 0.1696 0.00069 9.457 0.226 0.405 0.0095 2553 14 2383 43 2192 87 14.16 0.99 DF09 39_21 R 0.1702 0.00 159 9.589 0.203 0.409 0.0078 2560 31 2396 39 2210 71 13.65 0.90 DF09 39_22 R 0.1628 0.00152 7.003 0.166 0.312 0.0068 2485 31 2111 42 1752 67 29.49 0.92 DF09 39_23 R 0.1714 0.00072 9.054 0.275 0.383 0.0115 2571 14 2343 55 2093 107 18.61 0. 99 DF09 39_24 R 0.1713 0.00070 9.728 0.160 0.412 0.0066 2571 14 2409 30 2225 60 13.43 0.97 DF09 39_25 R 0.1698 0.00068 10.777 0.165 0.460 0.0068 2556 13 2504 28 2443 60 4.42 0.96

PAGE 107

107 Table 4 23. Continued. DF09 39_26 0.1740 0.00069 11.608 0.203 0. 484 0.0082 2597 13 2573 32 2546 71 1.96 0.97 DF09 39_27 0.1713 0.00067 10.327 0.168 0.437 0.0069 2570 13 2464 30 2340 62 8.94 0.97 DF09 39_28 0.1732 0.00071 11.239 0.184 0.471 0.0075 2589 14 2543 30 2488 65 3.88 0.97 DF09 39_29 R 0.1683 0.00067 10.148 0.156 0.437 0.0065 2541 13 2448 28 2340 58 7.91 0.97 DF09 39_30 0.1724 0.00069 10.889 0.189 0.458 0.0077 2581 13 2513 32 2433 68 5.75 0.97 DF09 39_31 R 0.1679 0.00157 7.786 0.161 0.336 0.0062 2537 31 2206 37 1870 60 26.26 0.89 DF09 39_32 0.1742 0.00069 11.195 0.189 0.466 0.0076 2599 13 2539 31 2468 67 5.03 0.97 DF09 39_33 R 0.1568 0.00094 3.848 0.120 0.178 0.0055 2422 20 1603 50 1057 60 56.37 0.98 DF09 39_34 0.1723 0.00068 11.022 0.167 0.464 0.0068 2580 13 2525 28 2459 59 4.69 0.96 DF09 39_35 0.1721 0.00068 10.732 0.183 0.452 0.0075 2578 13 2500 31 2407 67 6.62 0.97 DF09 39_36 0.1716 0.00068 10.401 0.194 0.440 0.0080 2573 13 2471 34 2351 72 8.64 0.98 DF09 39_37 0.1724 0.00068 11.082 0.185 0.466 0.0076 2581 13 2530 31 2469 66 4.31 0.97 DF09 39_38 0.1705 0.00067 10.535 0.165 0.448 0.0068 2563 13 2483 29 2389 60 6.79 0.97 DF09 39_39 R 0.1650 0.00066 9.787 0.149 0.430 0.0063 2508 14 2415 28 2308 57 7.94 0.96 DF09 39_40 0.170 4 0.00068 11.207 0.250 0.477 0.0105 2562 13 2540 41 2516 91 1.78 0.98 DF09 39_41 R 0.1679 0.00067 10.529 0.193 0.455 0.0081 2536 13 2482 34 2419 72 4.62 0.98 R denotes samples removed due to high error and/or discordance. 235 U values calculat ed from measured 238 U

PAGE 108

108 Table 4 24. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 11 from the Kaoko Belt. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 11_1 R 0.0676 0.00032 0.950 0.013 0.102 0.0014 856 20 678 14 626 16 26.85 0.94 DF06 11_2 0.0659 0.000 23 1.192 0.013 0.131 0.0013 805 15 797 12 795 15 1.23 0.95 DF06 11_3 0.0655 0.00023 1.200 0.012 0.133 0.0013 790 14 801 11 805 15 1.93 0.94 DF06 11_4 0.0662 0.00024 1.043 0.031 0.114 0.0034 814 15 725 31 697 39 14.28 0.99 DF06 11_5 0. 0655 0.00025 1.184 0.012 0.131 0.0012 789 16 793 11 795 14 0.84 0.92 DF06 11_6 0.0691 0.00053 1.253 0.018 0.131 0.0015 903 32 825 16 797 18 11.72 0.84 DF06 11_7 0.0680 0.00033 1.165 0.014 0.124 0.0014 868 20 784 14 756 16 12.90 0.92 D F06 11_8 0.0652 0.00025 1.134 0.012 0.126 0.0013 781 16 770 12 766 15 1.86 0.93 DF06 11_8b R 0.0722 0.00045 1.215 0.016 0.122 0.0014 992 25 808 14 743 16 25.10 0.88 DF06 11_9 R 0.1011 0.00320 1.629 0.054 0.117 0.0011 1645 117 981 41 713 1 3 56.65 0.28 DF06 11_10 R 0.0714 0.00050 0.741 0.008 0.075 0.0006 970 29 563 9 468 8 51.78 0.77 DF06 11_11 R 0.0904 0.00064 1.375 0.020 0.110 0.0014 1434 27 878 17 675 16 52.90 0.87 DF06 11_12 0.0664 0.00022 1.227 0.012 0.134 0.0013 820 14 8 13 11 811 14 1.14 0.95 DF06 11_13 R 0.3231 0.00187 1.641 0.026 0.037 0.0005 3585 18 986 20 233 7 93.49 0.93 DF06 11_14 R 0.0699 0.00033 1.223 0.012 0.127 0.0011 925 20 811 11 771 12 16.63 0.87 DF06 11_15 0.0671 0.00024 1.180 0.011 0.128 0. 0011 840 15 791 10 775 12 7.69 0.92 DF06 11_16 R 0.0812 0.00058 0.945 0.011 0.084 0.0008 1226 28 675 11 523 9 57.36 0.78 DF06 11_17 R 0.0648 0.00037 0.904 0.013 0.101 0.0014 769 24 654 14 622 16 19.09 0.92 DF06 11_18 R 0.0880 0.00161 1.18 3 0.031 0.098 0.0018 1382 70 793 29 600 21 56.56 0.71 DF06 11_19 0.0665 0.00034 1.104 0.024 0.120 0.0026 823 21 755 23 733 30 10.90 0.97 DF06 11_20 0.0618 0.00042 0.930 0.016 0.109 0.0017 668 29 667 17 668 20 0.08 0.92 DF06 11_21 R 0.0 857 0.00088 1.144 0.021 0.097 0.0015 1332 40 774 20 596 17 55.26 0.83 DF06 11_22 R 0.1107 0.00269 1.354 0.040 0.089 0.0015 1810 88 869 34 548 17 69.70 0.56 DF06 11_23 R 0.0675 0.00047 0.917 0.014 0.099 0.0014 853 29 661 15 607 16 28.89 0. 90 DF06 11_24 0.0640 0.00043 0.890 0.019 0.101 0.0020 742 28 646 20 620 23 16.48 0.95 DF06 11_25 0.0656 0.00053 1.063 0.020 0.118 0.0020 793 34 735 19 717 23 9.60 0.90

PAGE 109

109 Table 4 24. Continued. DF06 11_26 R 0.0717 0.00073 1.118 0.022 0.113 0.00 19 978 41 762 21 691 22 29.32 0.86 DF06 11_27 0.0649 0.00054 0.974 0.017 0.109 0.0017 772 35 691 18 666 20 13.68 0.88 DF06 11_28 0.0663 0.00045 1.121 0.024 0.123 0.0025 815 28 763 23 746 28 8.42 0.95 DF06 11_29 0.0688 0.00056 1.124 0.0 20 0.119 0.0019 892 33 765 19 723 22 18.91 0.89 DF06 11_30 0.0647 0.00047 1.060 0.018 0.119 0.0018 766 31 734 18 724 21 5.39 0.90 DF06 11_31 0.0627 0.00046 1.006 0.023 0.116 0.0025 699 31 707 23 710 29 1.61 0.95 DF06 11_32 0.0654 0.00 044 1.140 0.022 0.126 0.0022 787 28 773 20 768 26 2.36 0.93 DF06 11_33 0.0639 0.00059 0.967 0.017 0.110 0.0016 737 39 687 17 672 19 8.75 0.85 DF06 11_34 R 0.1223 0.00118 1.038 0.041 0.062 0.0024 1990 34 723 41 386 29 80.62 0.97 DF06 11_ 35 0.0658 0.00047 1.091 0.019 0.120 0.0019 802 30 749 19 732 22 8.64 0.91 DF06 11_36 0.0686 0.00065 1.124 0.022 0.119 0.0021 888 39 765 21 724 24 18.40 0.88 DF06 11_37 R 0.0743 0.00071 1.017 0.019 0.099 0.0016 1050 39 712 19 610 19 41.86 0.86 DF06 11_38 0.0664 0.00048 1.262 0.023 0.138 0.0024 820 30 829 21 833 27 1.67 0.92 DF06 11_39 0.0682 0.00049 1.149 0.019 0.122 0.0018 874 30 777 18 744 21 14.91 0.90 DF06 11_40 R 0.0715 0.00063 1.126 0.019 0.114 0.0016 973 36 766 18 697 19 28.28 0.85 DF06 11_41 R 0.0658 0.00061 0.805 0.017 0.089 0.0017 801 39 600 19 548 20 31.48 0.90 DF06 11_42 R 0.0705 0.00054 1.081 0.020 0.111 0.0019 942 31 744 20 681 22 27.71 0.91 DF06 11_43 R 0.0671 0.00126 0.945 0.022 0.102 0.0015 840 78 675 23 628 17 25.24 0.61 DF06 11_44 0.0676 0.00047 1.210 0.020 0.130 0.0020 855 29 805 19 788 23 7.84 0.91 DF06 11_45 0.0685 0.00049 1.077 0.020 0.114 0.0019 885 30 742 19 696 22 21.28 0.92 DF06 11_46 0.0652 0.00048 1.080 0.022 0.120 0.0023 779 31 744 21 732 26 5.98 0.93 DF06 11_47 R 0.0701 0.00051 1.167 0.021 0.121 0.0020 931 30 785 20 736 23 20.93 0.92 DF06 11_48 0.0659 0.00045 1.147 0.022 0.126 0.0023 804 29 776 21 767 26 4.63 0.94 DF06 11_49 R 0.0893 0.0017 2 1.498 0.039 0.122 0.0021 1411 74 929 32 741 25 47.49 0.68 DF06 11_50 0.0660 0.00033 1.093 0.034 0.120 0.0037 808 21 750 32 731 42 9.44 0.99 DF06 11_51 R 0.0772 0.00277 1.085 0.050 0.102 0.0029 1127 143 746 48 626 34 44.39 0.63 DF06 11 _52 0.0669 0.00044 1.184 0.036 0.128 0.0039 834 27 793 34 779 44 6.56 0.98 DF06 11_53 0.0620 0.00020 0.956 0.032 0.112 0.0038 675 14 681 33 683 44 1.25 1.00

PAGE 110

110 Table 4 24. Continued. DF06 11_54 0.0705 0.00068 0.916 0.033 0.094 0.0033 942 39 6 60 35 582 39 38.23 0.96 DF06 11_55 0.0627 0.00030 0.923 0.027 0.107 0.0031 699 20 664 28 654 36 6.35 0.99 DF06 11_56 R 0.0639 0.00022 0.881 0.030 0.100 0.0034 740 14 641 32 614 40 16.92 0.99 DF06 11_57 0.0623 0.00029 0.970 0.029 0.113 0.0 034 684 20 689 30 691 39 1.05 0.99 DF06 11_58 0.0655 0.00045 1.134 0.036 0.126 0.0039 791 29 769 34 763 45 3.49 0.98 DF06 11_59 0.0677 0.00031 1.195 0.039 0.128 0.0041 860 19 798 35 777 47 9.62 0.99 DF06 11_60 0.0637 0.00026 0.960 0.0 28 0.109 0.0032 733 17 683 29 669 37 8.70 0.99 DF06 11_61 R 0.0866 0.00197 1.367 0.054 0.114 0.0037 1353 88 875 46 699 43 48.31 0.82 DF06 11_62 0.0684 0.00043 1.100 0.033 0.117 0.0034 880 26 753 32 712 39 19.01 0.98 DF06 11_63 R 0.0985 0 .00240 0.940 0.044 0.069 0.0027 1597 91 673 45 432 33 72.96 0.85 DF06 11_64 R 0.0728 0.00077 1.071 0.036 0.107 0.0034 1008 43 739 35 655 39 35.03 0.95 DF06 11_65 R 0.0799 0.00188 1.213 0.047 0.110 0.0034 1193 93 806 43 674 40 43.48 0.80 DF06 11_66 0.0675 0.00031 1.144 0.035 0.123 0.0037 853 19 774 33 748 43 12.24 0.99 DF06 11_67 0.0649 0.00032 1.170 0.036 0.131 0.0040 772 21 786 33 792 45 2.60 0.99 DF06 11_68 0.0623 0.00020 0.931 0.027 0.108 0.0031 685 14 668 28 663 3 6 3.07 0.99 DF06 11_69 0.0701 0.00077 0.938 0.030 0.097 0.0029 933 45 672 31 597 34 35.95 0.94 DF06 11_70 0.0655 0.00036 1.223 0.038 0.135 0.0042 791 23 811 35 819 47 3.58 0.98 DF06 11_71 0.0625 0.00026 0.913 0.027 0.106 0.0031 693 18 659 28 649 36 6.25 0.99 DF06 11_72 R 0.0851 0.00398 1.131 0.064 0.096 0.0030 1317 181 768 60 594 36 54.91 0.56 DF06 11_73 0.0628 0.00024 0.926 0.027 0.107 0.0030 700 16 665 28 656 35 6.36 0.99 DF06 11_74 0.0620 0.00021 0.952 0.027 0.111 0.00 32 675 15 679 28 681 37 0.94 0.99 DF06 11_75 0.0614 0.00023 0.947 0.028 0.112 0.0033 654 16 676 29 684 39 4.65 0.99 DF06 11_76 0.0621 0.00022 0.945 0.029 0.110 0.0034 677 15 676 30 676 39 0.17 0.99 DF06 11_77 0.0652 0.00038 1.213 0.0 37 0.135 0.0040 782 24 806 34 816 46 4.33 0.98 DF06 11_78 0.0661 0.00036 1.256 0.037 0.138 0.0040 810 23 826 33 833 45 2.87 0.98 DF06 11_79 0.0686 0.00063 1.195 0.037 0.126 0.0038 888 38 798 34 767 43 13.61 0.96 DF06 11_80 R 0.0752 0. 00096 1.269 0.043 0.122 0.0038 1074 51 832 38 745 44 30.60 0.93 DF06 11_81 0.0669 0.00026 1.235 0.037 0.134 0.0040 833 16 816 33 811 45 2.66 0.99

PAGE 111

111 Table 4 24. Continued. DF06 11_82 0.0659 0.00031 1.179 0.034 0.130 0.0037 803 20 791 31 787 42 1.90 0.99 DF06 11_83 0.0653 0.00046 1.104 0.036 0.123 0.0039 783 29 755 34 747 45 4.62 0.98 DF06 11_84 R 0.0655 0.00050 1.320 0.040 0.146 0.0043 790 32 855 35 880 49 11.43 0.97 DF06 11_85 0.0675 0.00039 1.101 0.033 0.118 0.0035 854 2 4 754 32 721 40 15.47 0.98 DF06 11_86 R 0.0755 0.00197 1.025 0.040 0.098 0.0028 1083 105 716 40 606 33 44.05 0.74 DF06 11_87 0.0659 0.00046 1.193 0.036 0.131 0.0038 804 29 797 33 796 44 1.02 0.97 DF06 11_88 R 0.0710 0.00243 0.896 0.042 0.0 92 0.0029 956 140 649 44 565 34 40.90 0.68 DF06 11_89 R 0.0663 0.00047 0.860 0.026 0.094 0.0027 815 30 630 28 580 32 28.78 0.97 DF06 11_90 R 0.0666 0.00037 0.861 0.027 0.094 0.0029 825 23 631 29 578 34 29.84 0.98 DF06 11_91 0.0626 0.0002 5 0.906 0.027 0.105 0.0031 695 17 655 29 644 37 7.29 0.99 DF06 11_92 0.0619 0.00029 0.935 0.028 0.109 0.0032 672 20 670 29 670 37 0.26 0.99 DF06 11_93 0.0666 0.00031 1.201 0.037 0.131 0.0040 824 20 801 34 794 46 3.61 0.99 DF06 11_94 0. 0619 0.00020 0.933 0.027 0.109 0.0032 669 14 669 28 670 37 0.14 0.99 DF06 11_95 R 0.0616 0.00021 0.875 0.028 0.103 0.0032 660 15 638 30 633 38 4.17 0.99 DF06 11_96 R 0.0634 0.00068 0.815 0.034 0.093 0.0037 722 46 605 37 575 44 20.34 0.97 DF06 11_97 0.0621 0.00023 0.894 0.026 0.104 0.0030 676 16 648 28 641 35 5.17 0.99 DF06 11_98 0.0633 0.00037 0.973 0.033 0.111 0.0038 718 25 690 34 682 44 5.07 0.99 DF06 11_99 R 0.0696 0.00243 0.974 0.045 0.102 0.0031 916 143 691 46 624 36 31.87 0.66 DF06 11_100 0.0616 0.00021 0.893 0.026 0.105 0.0030 660 15 648 28 645 35 2.19 0.99 DF06 11_101 0.0620 0.00022 0.914 0.027 0.107 0.0031 673 15 659 28 656 36 2.55 0.99 DF06 11_102 0.0655 0.00049 1.135 0.035 0.126 0.0038 790 31 770 33 764 43 3.22 0.97 DF06 11_103 0.0625 0.00033 0.950 0.028 0.110 0.0032 692 23 678 29 675 37 2.53 0.98 DF06 11_104 0.0647 0.00038 1.129 0.033 0.127 0.0036 765 25 767 31 769 41 0.47 0.98 DF06 11_105 R 0.0731 0.00057 0.748 0.023 0.074 0.0022 1016 32 567 26 462 26 54.53 0.97 DF06 11_106 0.0628 0.00024 0.917 0.026 0.106 0.0030 703 16 661 28 649 35 7.57 0.99 DF06 11_107 R 0.1197 0.00143 1.064 0.041 0.064 0.0024 1952 43 736 40 403 29 79.35 0.95 DF06 11_108 R 0.0627 0.000 21 0.947 0.029 0.110 0.0033 697 14 677 30 671 39 3.63 0.99 DF06 11_109 0.0665 0.00032 1.163 0.034 0.127 0.0037 823 20 783 32 770 42 6.32 0.99

PAGE 112

112 Table 4 25. U Pb (MC ICP MS) analysis common Pb corrected results for sample DF06 1 7 from the Kaoko Belt. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 17_50 R 0.0936 0.00054 2.201 0.038 0.171 0.0028 1501 22 1181 24 1016 31 32.31 0.94 DF06 17_51 R 0.1116 0.00397 1.899 0.076 0.123 0.0022 1825 129 1081 52 751 25 58.85 0.45 DF06 17_52 0.1061 0.00032 3.169 0.054 0.217 0.0036 1733 11 1449 26 1265 39 27.01 0.98 DF06 17_53 0.1067 0.00038 3.098 0.060 0.211 0.0040 1743 13 1432 29 1233 43 29.25 0.98 DF06 17_54 0.1126 0.00029 3.579 0.066 0.231 0.0042 1841 9 1545 29 1338 44 27.30 0.99 DF06 17_5 5 0.1043 0.00036 3.008 0.064 0.209 0.0044 1702 13 1409 32 1225 47 27.99 0.99 DF06 17_56 R 0.1130 0.00031 3.535 0.063 0.227 0.0040 1848 10 153 5 28 1320 42 28.57 0.99 DF06 17_57 R 0.0919 0.00031 2.152 0.045 0.170 0.0035 1466 13 1165 29 1012 39 30.97 0.99 DF06 17_58 R 0.1175 0.00029 3.947 0.089 0.244 0.0054 1919 9 1623 36 1406 56 26.73 0.99 DF06 17_59 0.1122 0.00031 3.638 0.073 0. 235 0.0047 1836 10 1558 32 1362 49 25.78 0.99 DF06 17_60 0.0999 0.00035 3.643 0.068 0.265 0.0049 1622 13 1559 30 1514 50 6.62 0.98 DF06 17_61 0.1073 0.00027 4.481 0.074 0.303 0.0049 1754 9 1727 27 1707 49 2.69 0.99 DF06 17_62 R 0.0860 0 .00022 2.494 0.042 0.210 0.0035 1339 10 1270 24 1231 37 8.00 0.99 DF06 17_63 0.1046 0.00034 3.944 0.073 0.273 0.0050 1708 12 1623 30 1559 50 8.68 0.98 DF06 17_64 0.0808 0.00019 2.272 0.039 0.204 0.0034 1217 9 1204 24 1197 37 1.57 0.99 DF06 17_65 0.1062 0.00024 4.375 0.076 0.299 0.0052 1735 8 1707 29 1687 51 2.78 0.99 DF06 17_66 0.1075 0.00025 4.534 0.079 0.306 0.0053 1758 9 1737 29 1721 52 2.09 0.99 DF06 17_67 0.1001 0.00058 3.530 0.060 0.256 0.0041 1626 12 1534 27 146 9 42 9.66 0.94 DF06 17_68 R 0.0870 0.00027 2.535 0.040 0.211 0.0033 1361 12 1282 23 1237 35 9.14 0.98 DF06 17_69 0.1067 0.00025 4.436 0.073 0.301 0.0049 1744 8 1719 27 1700 49 2.53 0.99 DF06 17_70 0.1061 0.00026 4.103 0.063 0.280 0.0042 173 4 9 1655 25 1595 43 7.99 0.99 DF06 17_71 0.1120 0.00025 4.728 0.080 0.306 0.0052 1831 8 1772 28 1724 51 5.86 0.99 DF06 17_72 0.1025 0.00025 3.942 0.069 0.279 0.0049 1669 9 1622 28 1588 49 4.87 0.99 DF06 17_73 0.1127 0.00026 4.885 0.091 0.314 0.0058 1843 8 1799 31 1764 57 4.25 0.99 DF06 17_74 R 0.1262 0.00029 6.100 0.107 0.350 0.0061 2046 8 1990 31 1938 58 5.27 0.99 DF06 17_75 0.1068 0.00026 4.383 0.076 0.298 0.0051 1746 9 1709 29 1680 51 3.76 0.99

PAGE 113

113 Table 4 25. Continu ed. DF06 17_76 0.1114 0.00028 4.826 0.088 0.314 0.0057 1823 9 1789 30 1762 55 3.35 0.99 DF06 17_77 R 0.0888 0.00022 2.616 0.046 0.214 0.0037 1400 9 1305 25 1249 39 10.78 0.99 DF06 17_78 0.1073 0.00024 4.505 0.078 0.304 0.0052 1754 8 1732 2 9 1715 52 2.24 0.99 DF06 17_79 0.1074 0.00025 4.270 0.078 0.288 0.0052 1757 8 1687 30 1634 52 6.98 0.99 DF06 17_80 0.1043 0.00027 4.207 0.077 0.293 0.0053 1702 10 1675 30 1656 53 2.70 0.99 DF06 17_81 0.1047 0.00024 4.277 0.084 0.296 0.0057 1708 8 1689 32 1675 57 1.95 0.99 DF06 17_82 0.1057 0.00029 4.072 0.068 0.279 0.0046 1727 10 1648 27 1589 47 7.95 0.99 DF06 17_83 R 0.1024 0.00049 4.457 0.499 0.316 0.0353 1669 18 1723 178 1769 342 6.04 1.00 DF06 17_84 R 0.0980 0.00101 2.452 0.277 0.181 0.0204 1587 39 1258 157 1075 221 32.23 1.00 DF06 17_85 0.1036 0.00024 3.907 0.073 0.273 0.0051 1690 9 1615 30 1560 51 7.69 0.99 DF06 17_86 R 0.1223 0.00029 5.677 0.098 0.337 0.0058 1991 8 1928 30 1872 55 5.97 0.99 DF06 17_87 R 0.0857 0.00020 2.595 0.044 0.220 0.0037 1332 9 1299 25 1280 39 3.87 0.99 DF06 17_88 0.1044 0.00058 3.112 0.091 0.216 0.0062 1703 20 1435 44 1263 65 25.84 0.98 DF06 17_89 0.1090 0.00027 4.446 0.077 0.296 0.0051 1783 9 1721 29 1672 51 6.20 0.99 DF06 17_90 R 0.1135 0.00034 4.764 0.080 0.304 0.0051 1856 11 1778 28 1715 50 7.61 0.98 DF06 17_91 0.1058 0.00029 4.133 0.068 0.283 0.0046 1728 10 1661 27 1609 46 6.87 0.99 DF06 17_92 R 0.1031 0.00060 4.121 0.459 0.290 0.0323 168 0 22 1658 174 1643 319 2.22 1.00 DF06 17_93 0.1060 0.00025 4.270 0.072 0.292 0.0049 1731 9 1687 28 1654 49 4.44 0.99 DF06 17_94 0.0964 0.00028 3.231 0.056 0.243 0.0042 1555 11 1464 27 1404 43 9.72 0.99 DF06 17_95 R 0.0825 0.00021 2.121 0.037 0.186 0.0032 1258 10 1155 24 1103 35 12.29 0.99 DF06 17_96 0.0815 0.00019 2.234 0.039 0.199 0.0034 1233 9 1192 24 1170 37 5.05 0.99 DF06 17_97 R 0.1133 0.00026 4.668 0.086 0.299 0.0055 1852 8 1761 31 1687 54 8.90 0.99 DF06 17_98 0 .1108 0.00032 4.644 0.078 0.304 0.0050 1813 11 1757 28 1712 49 5.54 0.98 DF06 17_99 0.1051 0.00043 3.962 0.067 0.273 0.0045 1716 15 1626 27 1559 46 9.13 0.97 R denotes samples removed due to high error and/or discordance. 235 U values calcula ted from measured 238 U

PAGE 114

114 Table 4 2 6 U Pb (MC ICP MS) analysis common Pb corr ected results for sample DF06 08 from the Kaoko Belt. Sample 207 Pb/ 206 Pb 207 Pb/ 235 U* error* 206 Pb/ 238 U 207 Pb/ 206 Pb Age (Ma) 207 Pb/ 235 U* Age (Ma) 206 Pb/ 238 U Age (Ma) percent discord. rho factor DF06 08_13 0.0777 0.00018 2.070 0.024 0.193 0.0022 1140 9 1139 16 1139 24 0.08 0.98 DF06 08_13b 0.0768 0.00017 1.998 0.023 0.189 0.0022 1116 9 1115 16 1115 23 0.02 0.98 DF06 08_14 R 0.0651 0.00018 0.913 0. 008 0.102 0.0009 778 11 659 9 625 10 19.63 0.95 DF06 08_15 R 0.0737 0.00016 1.841 0.020 0.181 0.0019 1033 9 1060 14 1075 21 4.10 0.98 DF06 08_16 R 0.0695 0.00021 0.884 0.012 0.092 0.0012 913 12 643 13 569 15 37.62 0.98 DF06 08_17 0.0725 0.00015 1.696 0.019 0.170 0.0019 999 9 1007 14 1011 21 1.30 0.98 DF06 08_18 0.0608 0.00016 0.865 0.011 0.103 0.0012 631 11 633 12 634 15 0.60 0.98 DF06 08_19 R 0.0782 0.00019 1.589 0.027 0.147 0.0024 1153 10 966 21 886 27 23.10 0.99 DF06 08_20 0.0691 0.00015 1.445 0.017 0.152 0.0017 901 9 908 14 911 19 1.11 0.98 DF06 08_21 0.0733 0.00024 1.447 0.012 0.143 0.0011 1022 13 908 10 863 13 15.56 0.92 DF06 08_22 R 0.0735 0.00016 1.342 0.017 0.133 0.0016 1027 9 864 15 803 19 21.79 0.99 DF06 08_23 0.0728 0.00024 1.659 0.017 0.165 0.0016 1007 13 993 13 987 18 1.96 0.95 DF06 08_24 R 0.0752 0.00081 1.440 0.027 0.139 0.0022 1074 43 906 23 839 25 21.82 0.83 DF06 08_25 0.0597 0.00015 0.808 0.010 0.098 0.0012 591 11 601 11 605 14 2.30 0.98 DF06 08_26 0.0603 0.00015 0.851 0.010 0.102 0.0011 616 11 625 11 628 13 2.06 0.98 DF06 08_27 0.0616 0.00016 0.886 0.014 0.104 0.0016 662 11 644 15 640 19 3.31 0.99 DF06 08_28 0.0738 0.00017 1.722 0.026 0.169 0. 0025 1036 9 1017 19 1009 28 2.55 0.99 DF06 08_29 R 0.0641 0.00017 0.844 0.014 0.096 0.0015 744 11 621 15 589 18 20.87 0.99 DF06 08_30 0.0737 0.00027 1.726 0.020 0.170 0.0019 1033 15 1018 15 1012 21 2.04 0.95 DF06 08_31 0.0697 0.00029 1. 395 0.016 0.145 0.0016 920 17 887 14 874 17 4.96 0.93 DF06 08_32 0.0664 0.00022 1.267 0.014 0.138 0.0015 820 14 831 13 836 17 2.02 0.95 DF06 08_33 0.0730 0.00016 1.701 0.018 0.169 0.0018 1015 9 1009 14 1007 20 0.79 0.98 DF06 08_34 0.0 601 0.00014 0.845 0.009 0.102 0.0011 607 10 622 10 626 13 3.19 0.98 DF06 08_35 R 0.0733 0.00015 1.789 0.016 0.177 0.0015 1023 8 1041 12 1051 17 2.83 0.97 DF06 08_36 0.0621 0.00016 0.896 0.010 0.105 0.0012 678 11 650 11 642 13 5.32 0.98 DF06 08_37 0.0613 0.00023 0.861 0.010 0.102 0.0012 650 16 630 11 625 14 3.77 0.95 DF06 08_38 0.0616 0.00013 0.914 0.013 0.108 0.0015 659 9 659 14 660 18 0.21 0.99

PAGE 115

115 Table 4 26. Continued. DF06 08_39 R 0.0640 0.00038 0.794 0.025 0.090 0.0028 7 42 25 594 28 556 33 25.07 0.98 DF06 08_40 0.0622 0.00017 0.906 0.014 0.106 0.0016 682 12 655 15 648 19 4.97 0.98 DF06 08_41 0.0600 0.00015 0.839 0.008 0.101 0.0010 602 11 619 9 624 12 3.60 0.97 DF06 08_42 R 0.0600 0.00015 0.841 0.011 0 .102 0.0013 604 11 620 12 625 15 3.40 0.98 DF06 08_43 R 0.0893 0.00019 1.339 0.014 0.109 0.0011 1410 8 863 12 666 13 52.75 0.98 DF06 08_44 0.0754 0.00016 1.931 0.021 0.186 0.0020 1078 8 1092 14 1100 21 2.00 0.98 DF06 08_45 R 0.0744 0.0 0018 1.490 0.012 0.145 0.0012 1051 10 926 10 875 13 16.73 0.96 DF06 08_46 0.0647 0.00014 1.105 0.011 0.124 0.0012 764 9 756 11 754 14 1.28 0.98 DF06 08_47 0.0640 0.00014 1.111 0.012 0.126 0.0013 741 9 759 11 765 15 3.25 0.98 DF06 08_4 8 0.0606 0.00022 0.839 0.009 0.101 0.0010 624 15 619 10 618 12 0.88 0.94 DF06 08_49 0.0593 0.00015 0.811 0.010 0.099 0.0011 580 11 603 11 610 13 5.20 0.98 DF06 08_50 0.0602 0.00020 0.839 0.009 0.101 0.0011 610 14 619 10 621 13 1.88 0. 96 DF06 08_51 0.0652 0.00014 1.156 0.016 0.129 0.0017 779 9 780 15 781 20 0.24 0.99 DF06 08_52 0.0725 0.00025 1.516 0.042 0.152 0.0042 999 14 937 34 912 47 8.76 0.99 DF06 08_53 0.0662 0.00023 1.099 0.029 0.120 0.0031 814 14 753 28 733 36 9.89 0.99 DF06 08_54 0.0730 0.00028 1.586 0.042 0.158 0.0041 1015 16 965 32 944 46 6.97 0.99 DF06 08_55 0.0719 0.00026 1.459 0.039 0.147 0.0039 984 15 913 32 885 44 9.98 0.99 DF06 08_56 0.0608 0.00028 0.794 0.022 0.095 0.0026 632 20 59 3 25 584 30 7.55 0.99 DF06 08_57 0.0660 0.00019 1.078 0.030 0.119 0.0032 806 12 743 29 723 37 10.26 0.99 DF06 08_58 0.0614 0.00021 0.784 0.024 0.093 0.0028 655 15 588 27 571 33 12.70 0.99 DF06 08_59 R 0.0703 0.00025 1.374 0.038 0.142 0.00 39 937 14 878 32 855 44 8.76 0.99 DF06 08_60 R 0.0733 0.00052 1.509 0.041 0.149 0.0039 1023 29 934 33 897 44 12.24 0.97 DF06 08_61 0.0669 0.00021 1.185 0.031 0.129 0.0034 834 13 794 29 780 38 6.45 0.99 DF06 08_62 0.0674 0.00020 1.180 0. 032 0.127 0.0035 849 12 791 30 772 40 9.09 0.99 DF06 08_63 R 0.1123 0.00033 4.182 0.112 0.270 0.0072 1837 11 1670 43 1542 73 16.04 0.99 DF06 08_64 0.0718 0.00024 1.469 0.038 0.148 0.0038 982 13 918 31 892 42 9.11 0.99 DF06 08_65 0.0639 0.00019 0.990 0.028 0.112 0.0032 738 13 699 29 687 37 6.84 0.99 DF06 08_66 0.0645 0.00022 0.976 0.026 0.110 0.0029 757 14 691 27 672 34 11.14 0.99

PAGE 116

116 Table 4 26. Continued. DF06 08_67 0.0632 0.00018 0.943 0.026 0.108 0.0029 716 12 674 27 66 2 34 7.42 0.99 DF06 08_68 0.0661 0.00022 1.035 0.028 0.114 0.0030 810 14 721 27 694 35 14.34 0.99 DF06 08_69 0.0608 0.00022 0.817 0.023 0.097 0.0027 634 16 606 25 599 32 5.39 0.99 DF06 08_70 0.0774 0.00025 1.908 0.058 0.179 0.0054 1131 1 3 1084 40 1062 59 6.09 0.99 DF06 08_71 0.0653 0.00020 1.096 0.029 0.122 0.0032 783 13 751 28 741 37 5.27 0.99 DF06 08_72 0.0616 0.00034 0.800 0.022 0.094 0.0025 660 24 597 25 581 30 11.90 0.98 DF06 08_73 0.0631 0.00018 0.934 0.025 0.107 0.0029 712 12 670 26 658 33 7.52 0.99 DF06 08_74 0.0756 0.00029 1.717 0.045 0.165 0.0043 1086 15 1015 34 983 47 9.43 0.99 DF06 08_75 0.0606 0.00020 0.752 0.019 0.090 0.0023 627 14 570 22 556 27 11.27 0.99 DF06 08_76 0.0647 0.00019 1.01 2 0.027 0.113 0.0030 765 13 710 27 693 34 9.33 0.99 DF06 08_77 0.0924 0.00030 2.986 0.079 0.234 0.0062 1475 12 1404 40 1359 64 7.82 0.99 DF06 08_78 0.0726 0.00023 1.504 0.040 0.150 0.0039 1003 13 932 32 903 44 9.97 0.99 DF06 08_79 0.06 07 0.00022 0.775 0.022 0.093 0.0026 628 16 583 25 572 30 8.99 0.99 DF06 08_80 0.0757 0.00025 1.739 0.050 0.167 0.0048 1087 13 1023 37 994 53 8.52 0.99 DF06 08_81 R 0.0694 0.00031 1.194 0.034 0.125 0.0035 911 19 798 31 759 40 16.69 0.99 DF06 08_82 R 0.0712 0.00038 1.353 0.036 0.138 0.0036 964 22 869 31 833 41 13.61 0.98 DF06 08_83 0.0600 0.000339 0.754 0.020 0.091 0.0024 603 24 571 24 563 29 6.51 0.98 DF06 08_84 0.0728 0.000276 1.542 0.043 0.154 0.0042 1007 15 947 34 922 47 8.40 0.99 DF06 08_85 R 0.0697 0.000296 1.288 0.034 0.134 0.0035 918 17 840 30 812 39 11.57 0.99 DF06 08_86 R 0.0646 0.000355 0.805 0.026 0.090 0.0029 761 23 600 30 558 35 26.59 0.99 DF06 08_87 0.0739 0.000304 1.519 0.041 0.149 0.0039 1039 17 938 33 896 44 13.69 0.99 DF06 08_88 0.0732 0.000329 1.428 0.038 0.141 0.0037 1019 18 900 31 854 42 16.21 0.99 DF06 08_89 R 0.0631 0.000201 0.816 0.032 0.094 0.0037 710 14 606 36 579 44 18.46 1.00 DF06 08_90 0.0715 0.000345 1.464 0.0 41 0.149 0.0041 971 20 916 33 894 45 7.90 0.98 DF06 08_91 0.0614 0.000434 0.795 0.022 0.094 0.0025 654 30 594 25 579 30 11.50 0.97 DF06 08_92 R 0.0742 0.000279 0.607 0.019 0.059 0.0019 1047 15 481 24 372 23 64.49 0.99 DF06 08_93 R 0.0634 0.001034 0.831 0.026 0.095 0.0025 720 69 614 29 586 30 18.56 0.85 DF06 08_94 R 0.0667 0.0003 0.929 0.028 0.101 0.0030 829 19 667 29 620 35 25.16 0.99

PAGE 117

117 Table 4 26. Continued. DF06 08_95 0.0645 0.000221 1.057 0.028 0.119 0.0031 758 14 732 27 725 36 4.34 0.99 DF06 08_96 0.0721 0.000337 1.568 0.044 0.158 0.0044 988 19 957 35 945 49 4.28 0.99 DF06 08_97 R 0.0805 0.005046 1.283 0.088 0.116 0.0032 1209 247 838 77 706 37 41.58 0.40 DF06 08_98 0.0612 0.000412 0.826 0.024 0.098 0.0027 646 29 611 26 603 32 6.70 0.97 DF06 08_99 0.0631 0.000267 0.956 0.026 0.110 0.0030 712 18 681 27 672 34 5.58 0.99 DF06 08_100 0.0774 0.000263 1.926 0.052 0.181 0.0048 1131 14 1090 36 1071 53 5.32 0.99 DF06 08_101 0.0641 0.000228 1.036 0.029 0.117 0.0032 746 15 722 28 715 37 4.21 0.99 DF06 08_102 0.0651 0.000199 1.133 0.032 0.126 0.0035 776 13 769 30 767 40 1.15 0.99 DF06 08_103 R 0.1196 0.000371 5.067 0.133 0.307 0.0080 1950 11 1830 44 1729 79 11.34 0.99 DF06 08_104 0.0611 0.00032 0.803 0.024 0.095 0.0028 643 23 599 27 588 33 8.63 0.98 DF06 08_105 0.0611 0.000264 0.840 0.023 0.100 0.0027 643 19 619 26 613 32 4.61 0.99 DF06 08_106 0.0653 0.000326 1.104 0.030 0.123 0.0033 784 21 755 29 746 38 4.86 0 .98 DF06 08_107 R 0.0663 0.000273 0.799 0.021 0.088 0.0023 815 17 596 24 541 27 33.56 0.99 DF06 08_108 0.0655 0.000194 1.093 0.028 0.121 0.0031 790 12 750 27 737 35 6.60 0.99 DF06 08_109 0.0637 0.000426 1.006 0.028 0.114 0.0031 732 28 707 28 699 36 4.46 0.97 DF06 08_110 0.0914 0.000352 2.966 0.083 0.235 0.0066 1454 15 1399 42 1364 68 6.13 0.99 DF06 08_111 0.0740 0.000256 1.715 0.046 0.168 0.0045 1042 14 1014 34 1002 49 3.79 0.99 R denotes samples removed due to high error and/or discordance. 235 U values calculated from measured 238 U

PAGE 118

118 Table 4 27 Lu Hf (MC ICP MS) analysis corrected results for sample DF09 26 from the Northern Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 26_5 0.28243 9.8E 06 0.00072 0.57 1.13 1114 .0 0.282074 11.9 1100 0.28208 3 1 1.6 12.9 DF09 26_10 0.28256 8.7E 06 0.00145 0.36 0.97 771.5 0.282290 8.6 1100 0.282083 16.0 24.0 DF09 26_12 0.28235 1.1E 05 0.00090 0.70 1.24 1082.5 0.282094 8.3 1100 0.282083 8.7 15.7 DF09 26_13 0.28237 9.0E 06 0.00073 0.66 1.21 971.9 0.282164 6.7 1 100 0.282083 9.6 11.9 DF09 26_17 R 0.28243 1.0E 05 0.00091 0.56 1.13 0.282772 12.1 1100 0.282083 12.3 15.0 DF09 26_22 0.28262 7.8E 06 0.00102 0.25 0.86 641.9 0.282372 8.4 1100 0.282083 18.6 16.7 DF09 26_23 0.28247 1.2E 05 0.00128 0.50 1.08 1114 .0 0.282 074 13.1 1100 0.282083 12.8 20.7 DF09 26_24 0.28235 9.7E 06 0.00150 0.72 1.27 1140.0 0.282058 9.0 1100 0.282083 8.1 23.9 DF09 26_36 0.28257 1.2E 05 0.00088 0.34 0.93 680.9 0.282347 7.5 1100 0.282083 16.8 14.3 DF09 26_39 R 0.28221 1.1E 05 0.00215 0.95 1.4 8 0.282772 19.7 1100 0.282083 4.6 31.7 DF09 26_42 0.28244 1.0E 05 0.00061 0.54 1.11 610.7 0.282391 1.4 1100 0.282083 12.4 11.4 DF09 26_43 R 0.28224 7.7E 06 0.00138 0.90 1.42 0.282772 19.0 1100 0.282083 5.4 22.2 DF09 26_44 0.28246 1.0E 05 0.00097 0.52 1.09 910.4 0.282203 8.5 1100 0.282083 12.7 16.6 DF09 26_45 R 0.28260 7.7E 06 0.00094 0.29 0.89 0.282772 6.2 1100 0.282083 18.2 16.1 DF09 26_50 0.28225 1.0E 05 0.00170 0.88 1.41 898.2 0.282211 0.3 1100 0.282083 4.8 22.9 DF09 26_53 0.28181 8.1E 06 0.001 29 1.59 2.01 1755.5 0.281666 3.6 1100 0.282083 11.2 21.1 DF09 26_54 R 0.28242 8.7E 06 0.00112 0.59 1.15 0.282772 12.6 1100 0.282083 11.8 19.3 DF09 26_61 0.28231 6.6E 06 0.00145 0.77 1.31 938.1 0.282185 3.5 1100 0.282083 7.1 23.4 DF09 26_64 0.28152 8.7 E 06 0.00080 2.03 2.38 1874.5 0.281590 3.6 1100 0.282083 21.0 12.6 DF09 26_65 0.28231 6.7E 06 0.00094 0.76 1.30 1008.0 0.282141 5.3 1100 0.282083 7.4 15.4 DF09 26_71 R 0.28141 8.3E 06 0.00179 2.27 2.60 0.282772 48.1 n/a n/a n/a 21.9 DF09 26_72 R 0.282 54 8.4E 06 0.00091 0.39 0.98 0.282772 8.3 1100 0.282083 16.1 15.1 DF09 26_74 0.28234 9.9E 06 0.00066 0.71 1.25 1092.5 0.282088 8.3 1100 0.282083 8.4 12.2 DF09 26_75 0.28244 1.1E 05 0.00112 0.55 1.12 692.9 0.282340 3.1 1100 0.282083 12.2 19.8

PAGE 119

119 Table 4 28. Lu Hf (MC ICP MS) analysis corrected results for sample DF09 30 from the Northern Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb A ge) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 30_1 0.28171 1.2E 05 0.00180 1.78 2.18 1823.5 0.281622 1.0 1820 0.281624 0.9 25.8 DF09 30_3 R 0.28203 1.0E 05 0.00205 1.25 1.73 0.282772 26.1 1 480 0.281842 6.8 31.0 DF09 30_4 0.28135 8.1E 06 0.00095 2.31 2.62 1994.0 0.28 1513 7.1 2070 0.281464 5.4 16.6 DF09 30_6 0.28204 1.2E 05 0.00079 1.20 1.67 1381.0 0.281905 4.0 1400 0.281893 4.4 11.9 DF09 30_12 R 0.28168 9.1E 06 0.00100 1.78 2.17 0.282772 38.5 1740 0.281676 0.3 16.6 DF09 30_13 R 0.28186 9.2E 06 0.00067 1.48 1.91 0.282772 32.3 1480 0.281842 0.6 12.1 DF09 30_14 R 0.28130 5.6E 06 0.00074 2.38 2.68 0.282772 52.2 2070 0.281464 6.0 12.9 DF09 30_15 0.28131 8.2E 06 0.00090 2.37 2.67 1994.0 0.28 1513 8.3 2070 0.281464 6.6 15.4 DF09 30_18 R 0.28160 7.7E 06 0.00106 1.91 2.28 0.282772 41.3 2070 0.281464 5.0 18.2 DF09 30_20 0.28129 9.0E 06 0.00080 2.40 2.70 1994.0 0.28 1513 9.0 2070 0.281464 7.3 14.6 DF09 30_22 R 0.28157 1.7E 05 0.00132 1.98 2.35 0.282772 42.5 2070 0.281464 3.8 22.6 DF09 30_23 0.28135 1.2E 05 0.00108 2.33 2.64 1994.0 0.28 1513 7.4 2070 0.281464 5.7 18.2 DF09 30_24 R 0.28163 7.9E 06 0.00106 1.88 2.25 0.282772 40.5 1480 0.281842 7.7 18.0 DF09 30_26 R 0.28133 8.7E 06 0.00 078 2.33 2.64 0.282772 51.0 2070 0.281464 4.7 14.0 DF09 30_27 R 0.28130 4.7E 06 0.00118 2.41 2.71 0.282772 52.2 2070 0.281464 6.0 20.3 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concor dia intercept

PAGE 120

120 Table 4 2 9. Lu Hf (MC ICP MS) analysis corrected results for sample DF09 43 from the Central Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 43_3 0.28166 1.9E 05 0.00084 1.80 2.19 1031.5 0.282126 17.0 1045 0.282118 16.7 8.8 DF09 43_4 0.28170 1.5E 05 0.00070 1. 73 2.12 1028.5 0.282128 15.5 1045 0.282118 15.2 6.2 DF09 43_8 R 0.28162 1.9E 05 0.00082 1.88 2.25 0.282772 40.9 1045 0.282118 17.8 8.9 DF09 43_10 0.28160 2.0E 05 0.00124 1.93 2.30 1036.0 0.282 124 19 .5 1045 0.282118 19.3 12.7 DF09 43_21 0.28150 3.6 E 05 0.00129 2.09 2.44 1055.5 0.282111 22.5 1045 0.282118 22.7 12.8 DF09 43_27 0.28164 1.6E 05 0.00134 1.87 2.24 1036.0 0.282 124 18.0 1045 0.282118 1 7 .8 13.5 DF09 43_28 0.28176 1.9E 05 0.00154 1.69 2.10 1041.0 0.282120 14.0 1045 0.282118 13.9 14.8 DF09 43_29 0.28167 1.6E 05 0.00096 1.80 2.18 1043.5 0.282119 16.5 1045 0.282118 16.5 10.0 DF09 43_30 0.28170 1.7E 05 0.00102 1.76 2.15 1036.5 0.282123 15.8 1045 0.282118 15.6 10.8 DF09 43_37 0.28172 1.7E 05 0.00102 1.73 2.13 1043.5 0.282119 15.0 10 45 0.282118 15.0 9.9 DF09 43_39 0.28177 2.6E 05 0.00117 1.65 2.06 1033.5 0.282125 13.5 1045 0.282118 13.2 11.9 DF09 43_41 0.28162 1.4E 05 0.00133 1.90 2.27 1036.0 0.282124 18.7 1045 0.282118 18.5 13.8 DF09 43_47 R 0.28171 1.0E 05 0.00062 1.72 2.11 0.282772 37.6 n/a n/a n/a 6.9 DF09 43_48 0.28173 1.5E 05 0.00091 1.70 2.10 513.6 0.282452 25.9 515 0.282451 25.9 9.7 DF09 43_49 0.28169 1.4E 05 0.00091 1.76 2.15 1036.0 0.282 124 15.9 1045 0.282118 15. 7 8.6 DF09 43_50 0.28171 1.2E 05 0.00104 1.75 2. 14 1028.0 0.282129 15.7 1045 0.282118 15.3 10.9 DF09 43_52 0.28169 2.0E 05 0.00073 1.76 2.15 1024.5 0.282131 16.3 1045 0.282118 15.8 8.2 DF09 43_57 0.28183 2.6E 05 0.00137 1.56 1.98 1036.0 0.282 124 11.3 1045 0.282118 1 1 .1 14.0 DF09 43_60 0.28171 1 .3E 05 0.00078 1.72 2.12 1016.0 0.282136 15.6 1045 0.282118 14.9 8.6 DF09 43_66 0.28151 2.5E 05 0.00064 2.04 2.39 1022.5 0.282132 22.5 1045 0.282118 22.0 7.1 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int refl ects upper U Pb concordia intercept

PAGE 121

121 Table 4 30. Lu Hf (MC ICP MS) analysis corrected results for sample DF09 4 4 from the Central Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 44_2 0.28150 1.6E 05 0.00049 2.04 2.39 1057.0 0.282 110 21 .9 1060 0.282108 21. 9 5.9 DF09 44_3 0.28 157 3.0E 05 0.00050 1.94 2.30 1022.5 0.282132 20.4 1045 0.282118 19.9 5.6 DF09 44_4 0.28158 2.0E 05 0.00038 1.90 2.27 1036.5 0.282123 19.4 1045 0.282118 19.2 4.2 DF09 44_10 0.28165 2.0E 05 0.00063 1.82 2.20 1057.0 0.282 110 16.9 1060 0.282108 16. 8 7 .4 DF09 44_15 0.28161 2.1E 05 0.00075 1.88 2.25 1024.0 0.282131 18.9 1045 0.282118 18.5 6.7 DF09 44_21 0.28157 1.8E 05 0.00051 1.94 2.30 1027.5 0.282129 20.2 1045 0.282118 19.8 5.6 DF09 44_26 0.28159 1.9E 05 0.00143 1.96 2.32 1057.0 0.282 110 19.5 1 045 0.282118 1 9 .7 11.0 DF09 44_27 0.28153 2.0E 05 0.00101 2.03 2.39 1057.0 0.282 110 21.4 1060 0.282108 21.4 7.8 DF09 44_31 0.28155 1.8E 05 0.00036 1.96 2.32 1007.0 0.282142 21.4 1045 0.282118 20.6 3.9 DF09 44_33 0.28160 2.1E 05 0.00072 1.90 2.27 10 33.5 0.282125 19.1 1045 0.282118 18.9 8.0 DF09 44_35 0.28163 1.8E 05 0.00071 1.85 2.23 1040.0 0.282121 18.0 1045 0.282118 17.9 6.8 DF09 44_40 0.28157 2.3E 05 0.00086 1.96 2.32 1057.0 0.282 110 19.9 1060 0.282108 19. 8 7.5 DF09 44_48 0.28149 2.5E 05 0.00040 2.06 2.40 1065.0 0.282105 22.2 1045 0.282118 22.6 4.4 DF09 44_49 0.28150 1.9E 05 0.00051 2.04 2.39 1059.5 0.282109 21.9 1045 0.282118 22.2 5.9 DF09 44_50 0.28165 2.2E 05 0.00057 1.81 2.19 1057.0 0.282 110 16.8 1060 0.282108 16. 7 6.1 DF09 44 _51 0.28160 2.1E 05 0.00110 1.92 2.29 1016.5 0.282136 19.8 1045 0.282118 19.2 11.3 DF09 44_53 0.28150 2.0E 05 0.00062 2.05 2.40 2078.0 0.28 1459 0.5 2080 0.281457 0.6 5.9 DF09 44_56 0.28158 2.3E 05 0.00070 1.93 2.29 1022.5 0.282132 20.0 1045 0.282118 19.5 8.1 DF09 44_57 0.28142 2.7E 05 0.00074 2.19 2.52 2046.0 0.281479 3.2 2080 0.281457 2.4 8.3 DF09 44_60 0.28162 1.4E 05 0.00061 1.86 2.23 1016.0 0.282136 18.6 1045 0.282118 18.0 6.5 R denotes samples removed due to high error and/or discordance i n U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 122

122 Table 4 3 1 Lu Hf (MC ICP MS) analysis corrected results for sample CZ29 from the Central Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (C HUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr CZ29_1 0.28173 1.2E 05 0.00056 1.69 2.09 1026.0 0.282 130 14.7 1030 0.282127 14 6 6.9 CZ29_2 0.28164 1.7E 05 0.00029 1.82 2.19 1010.0 0.282140 18.1 1005 0.282143 18.2 4.1 CZ29_3 0.28142 1.6E 05 0.00042 2.17 2.50 2031.0 0.281489 3.1 2020 0.281496 3.3 6.7 CZ29_6 0.28179 1.2E 05 0.00096 1.60 2.02 1024.0 0.282131 12.6 1005 0.2821 43 13.1 13.3 CZ29_8 R 0.28153 2.2E 05 0.00198 2.09 2.44 0.282772 43.9 n/a n/a n/a 26.0 CZ29_9 R 0.28172 1.5E 05 0.00105 1.72 2.12 0.282772 37.1 1030 0.282127 14.3 16.1 CZ29_10 R 0.28169 1.1E 05 0.00070 1.75 2.14 0.282772 38.3 1030 0.282127 15.5 9. 0 CZ29_12 0.28143 1.8E 05 0.00079 2.17 2.50 2030.0 0.281490 3.1 2020 0.281496 3.3 12.0 CZ29_13 R 0.28141 1.7E 05 0.00063 2.20 2.53 0.282772 48.3 2020 0.281496 3.2 9.6 CZ29_14 R 0.28193 3.5E 05 0.00037 1.35 1.80 0.282772 29.7 n/a n/a n/a 5.5 CZ29_1 5 R 0.28177 1.3E 05 0.00126 1.65 2.06 0.282772 35.4 1030 0.282127 12.7 17.3 CZ29_16 0.28170 1.5E 05 0.00100 1.75 2.14 1026.0 0.282 130 15 .8 1030 0.282127 15. 7 14.7 CZ29_17 0.28173 1.6E 05 0.00071 1.69 2.09 1026.0 0.282 130 14.7 1030 0.282127 14. 6 10. 9 CZ29_18 R 0.28173 1.8E 05 0.00046 1.68 2.08 0.282772 37.0 1030 0.282127 14.2 6.1 CZ29_19 R 0.28174 1.7E 05 0.00063 1.68 2.08 0.282 772 36.7 1005 0.282143 14. 5 10.2 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 123

123 Table 4 3 2 Lu Hf (MC ICP MS) analysis corrected results for sample CZ53b from the Central Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr CZ53b_1 R 0.28230 1.2E 05 0.00137 0.78 1.32 0.282772 16.6 n/a n/a n/a 19.9 CZ53b_2 R 0.28244 1.3E 05 0.00189 0.56 1.14 0.282772 11.6 n/a n/a n/a 25.9 CZ53b_3 R 0.28239 1.1E 05 0.00092 0.64 1.19 0.282772 13.7 n/a n/a n/a 13.7 CZ53b_4 R 0.28236 1.4E 05 0.00101 0.68 1.23 0.282772 14.6 n/a n/a n/a 15.4 CZ53b_6 R 0.28206 1.8E 05 0.00084 1.16 1.64 0.2 82772 25.1 n/a n/a n/a 13.4 CZ53b_9 R 0.28163 1.8E 05 0.00073 1.85 2.23 0.282772 40.4 n/a n/a n/a 11.1 CZ53b_11 0.28242 1.9E 05 0.00176 0.59 1.16 644.1 0.282370 1.1 830 0.282254 5.2 26.4 CZ53b_14 R 0.28252 1.3E 05 0.00131 0.42 1.01 0.282772 8.9 n/a n /a n/a 19.1 CZ53b_15 R 0.28217 1.4E 05 0.00295 1.06 1.58 0.282772 21.3 1060 0.282108 2.2 31.3 CZ53b_18 0.28247 9.8E 06 0.00169 0.52 1.10 636.2 0.282375 2.5 830 0.282254 6.8 25.6 CZ53b_19 R 0.28242 9.6E 06 0.00275 0.61 1.20 0.282772 12.4 n/a n/a n/a 37 .0 CZ53b_21 0.28245 1.3E 05 0.00077 0.53 1.10 1003.0 0.282144 10.3 1170 0.282039 14.0 13.4 CZ53b_23 0.28255 1.7E 05 0.00113 0.36 0.96 672.0 0.282353 6.6 830 0.282254 10.1 17.1 CZ53b_24 0.28226 1.3E 05 0.00214 0.88 1.42 1126.5 0.282066 5.1 1170 0.282039 6.1 20.7 CZ53b_25 0.28258 1.1E 05 0.00138 0.33 0.93 690.4 0.282341 7.7 830 0.282254 10.8 17.4 CZ53b_27 0.28238 1.1E 05 0.00103 0.64 1.20 813.3 0.282264 3.7 830 0.282254 4.0 15.9 CZ53b_28 R 0.28234 1.2E 05 0.00189 0.73 1.28 0.282772 15.2 n/a n/a n/a 21. 2 CZ53b_30 R 0.28243 1.3E 05 0.00097 0.57 1.13 0.282772 12.1 830 0.282254 6.2 17.0 CZ53b_32 0.28221 1.5E 05 0.00314 1.00 1.53 1037.5 0.282123 0.8 1170 0.282039 3.8 29.7 CZ53b_33 R 0.28236 1.0E 05 0.00181 0.70 1.25 0.282772 14.5 n/a n/a n/a 25.9 CZ53b _35 0.28252 2.1E 05 0.00258 0.45 1.05 759.5 0.282298 6.4 830 0.282254 8.0 28.1 CZ53b_36 R 0.28241 2.1E 05 0.00065 0.59 1.14 0.282772 12.7 830 0.282254 5.6 10.1 CZ53b_37 0.28242 1.7E 05 0.00071 0.57 1.13 702.6 0.282334 2.8 830 0.282254 5.6 12.0 CZ53b_39 0.28250 1.4E 05 0.00164 0.47 1.05 647.8 0.282368 3.8 830 0.282254 7.9 25.6

PAGE 124

124 Table 4 32. Continued. CZ53b_40 0.28251 1.4E 05 0.00269 0.46 1.07 632.4 0.282378 3.5 830 0.282254 7.9 36.2 CZ53b_42 R 0.28260 1.4E 05 0.00151 0.29 0.90 0.282772 6.1 830 0.282254 12.2 21.7 CZ53b_43 0.28238 1.7E 05 0.00145 0.66 1.21 1105.0 0.282080 9.6 1170 0.282039 11.1 21.2 CZ53b_44 0.28252 1.2E 05 0.00183 0.43 1.02 653.4 0.282365 4.8 830 0.282254 8.7 28.0 CZ53b_47 0.28234 9.6E 06 0.00066 0.71 1.25 900.8 0.282209 4.2 1170 0.28 2039 10.2 10.6 CZ53b_48 0.28254 9.6E 06 0.00091 0.39 0.98 726.5 0.282319 7.2 830 0.282254 9.5 15.3 CZ53b_50 0.28242 1.6E 05 0.00154 0.60 1.17 772.4 0.282290 3.7 830 0.282254 5.0 22.6 CZ53b_51 0.28240 1.6E 05 0.00090 0.61 1.16 799.0 0.282273 4.2 830 0.28 2254 4.9 14.0 CZ53b_52 R 0.28233 1.8E 05 0.00210 0.75 1.31 0.282772 15.6 1060 0.282108 7.9 26.8 CZ53b_53 0.28254 2.1E 05 0.00077 0.39 0.98 656.4 0.282363 5.8 830 0.282254 9.6 11.2 CZ53b_56 0.28246 1.3E 05 0.00117 0.52 1.10 710.8 0.282328 4.0 830 0.2822 54 6.7 17.6 CZ53b_57 0.28236 1.7E 05 0.00106 0.68 1.23 1055.0 0.282112 8.1 1170 0.282039 10.7 16.0 CZ53b_59 0.28237 9.8E 06 0.00165 0.68 1.24 985.7 0.282155 6.4 1170 0.282039 10.6 21.6 CZ53b_60 0.28236 1.4E 05 0.00119 0.69 1.24 1083.5 0.282094 8.5 1170 0.282039 10.5 18.1 CZ53b_61 0.28236 1.8E 05 0.00339 0.73 1.31 772.8 0.282289 0.8 830 0.282254 2.1 41.4 CZ53b_62 0.28250 1.2E 05 0.00109 0.45 1.04 781.0 0.282284 7.0 830 0.282254 8.1 14.0 CZ53b_63 0.28171 1.4E 05 0.00095 1.74 2.13 1050.0 0.282115 15.1 1 170 0.282039 12.4 14.8 CZ53b_66 0.28254 1.7E 05 0.00108 0.39 0.98 685.3 0.282345 6.3 830 0.282254 9.5 16.0 CZ53b_67 0.28213 1.9E 05 0.00054 1.04 1.53 1145.0 0.282055 2.4 1170 0.282039 2.9 9.6 CZ53b_68 R 0.28244 1.1E 05 0.00179 0.56 1.14 0.282772 11.7 n/a n/a n/a 24.1 CZ53b_72 0.28219 1.3E 05 0.00106 0.96 1.47 1049.0 0.282115 1.8 1170 0.282039 4.5 15.5 CZ53b_73 R 0.28229 1.3E 05 0.00130 0.81 1.34 0.282772 17.1 n/a n/a n/a 18.8 CZ53b_77 0.28250 1.1E 05 0.00316 0.49 1.10 1106.0 0.282 079 12.4 1060 0.28 2108 11.4 31.4 CZ53b_78 0.28178 1.5E 05 0.00082 1.61 2.03 982.2 0.282158 13.9 1170 0.282039 9.7 12.9 CZ53b_79 0.28227 1.2E 05 0.00118 0.84 1.36 1090.0 0.282089 5.4 1170 0.282039 7.2 17.3 CZ53b_80 0.28229 8.9E 06 0.00229 0.84 1.38 1090.0 0.282089 5.3 1 170 0.282039 7.1 30.5 CZ53b_83 0.28228 8.9E 06 0.00213 0.84 1.38 1038.5 0.282122 4.1 1170 0.282039 7.1 28.4 CZ53b_85 0.28174 1.9E 05 0.00019 1.65 2.05 1052.5 0.282113 13.4 1170 0.282039 10.8 3.7 CZ53b_86 0.28243 1.6E 05 0.00117 0.57 1.13 723.5 0.28232 0 3.4 830 0.282254 5.7 17.4

PAGE 125

125 Table 4 32. Continued. CZ53b_87 0.28217 1.7E 05 0.00072 0.99 1.48 1055.0 0.282112 1.5 1170 0.282039 4.1 11.8 CZ53b_88 0.28212 1.7E 05 0.00098 1.08 1.57 1144.5 0.282055 1.4 1170 0.282039 2.0 15.2 CZ53b_94 0.28230 1.2E 05 0.001 07 0.78 1.31 825.9 0.282256 1.1 830 0.282254 1.2 17.1 CZ53b_95 0.28256 1.3E 05 0.00096 0.35 0.95 697.7 0.282337 7.4 830 0.282254 10.4 14.9 CZ53b_96 0.28234 1.4E 05 0.00094 0.71 1.25 759.7 0.282298 1.1 830 0.282254 2.7 14.5 CZ53b_101 R 0.28256 1.7E 05 0.0 0137 0.36 0.96 0.282772 7.5 n/a n/a n/a 21.8 CZ53b_102 0.28243 1.4E 05 0.00063 0.56 1.12 746.3 0.282306 4.0 830 0.282254 5.8 10.5 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia inte rcept Table 4 3 3 Lu Hf (MC ICP MS) analysis corrected results for sample CZ 35 from the Central Zone, Congo Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHU R) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr CZ35_1 0.28159 1.2E 05 0.00104 1.93 2.29 1339.0 0.281932 12.9 1370 0.281912 12.2 15.9 CZ35_3 0.28200 2.1E 05 0.00086 1.27 1.73 975.9 0. 282162 6.3 1090 0.282089 3.8 12.0 CZ35_4 0.28228 1.2E 05 0.00089 0.81 1.34 986.4 0.282155 3.8 1090 0.282089 6.1 14.5 CZ35_8 0.28240 1.6E 05 0.00125 0.62 1.18 788.8 0.282279 3.7 825 0.282257 4.5 19.1 CZ35_10 0.28232 1.1E 05 0.00152 0.76 1.30 2023.5 0.2 81494 27.2 1370 0.281912 12.4 22.4 CZ35_11 0.28233 1.3E 05 0.00100 0.73 1.27 982.4 0.282157 5.5 1090 0.282089 7.9 15.0 CZ35_12 0.28173 1.3E 05 0.00142 1.72 2.13 1115.0 0.282074 13.2 1090 0.282089 13.7 20.9 CZ35_13 0.28255 1.7E 05 0.00464 0.41 1.06 728 .6 0.282317 6.1 825 0.282257 8.2 49.9 CZ35_16 0.28235 9.2E 06 0.00146 0.71 1.26 775.3 0.282288 1.4 825 0.282257 2.5 22.1 CZ35_17 R 0.28246 1.6E 05 0.00104 0.51 1.08 0.282772 10.9 n/a n/a n/a 15.7 CZ35_19 0.28223 1.2E 05 0.00105 0.89 1.41 1085.0 0.28209 3 4.2 1090 0.282089 4.3 16.4 CZ35_21 0.28197 1.1E 05 0.00085 1.31 1.76 1093.0 0.282088 4.7 1090 0.282089 4.8 13.0 CZ35_22 0.28240 1.1E 05 0.00099 0.62 1.18 774.6 0.282288 3.3 825 0.282257 4.4 14.7 CZ35_25 0.28246 1.4E 05 0.00093 0.51 1.08 908.1 0.2822 04 8.6 1090 0.282089 12.7 12.2 CZ35_27 0.28240 2.2E 05 0.00043 0.61 1.16 1090.5 0.282089 10.6 1090 0.282089 10.6 6.3

PAGE 126

126 Table 4 33. Continued. CZ35_28 0.28244 9.1E 06 0.00160 0.57 1.14 670.3 0.282354 2.2 825 0.282257 5.6 23.6 CZ35_29 R 0.28243 1.0E 05 0.002 25 0.58 1.16 0.282772 12.0 825 0.282257 6.3 29.1 CZ35_31 0.28206 1.4E 05 0.00051 1.16 1.63 700.4 0.282335 10.1 825 0.282257 7.3 8.2 CZ35_32 0.28230 1.4E 05 0.00073 0.78 1.31 1091.5 0.282088 6.9 1090 0.282089 6.9 11.8 CZ35_34 0.28232 1.2E 05 0.00121 0.75 1.29 736.5 0.282312 0.3 825 0.282257 1.7 18.1 CZ35_39 0.28244 1.1E 05 0.00166 0.57 1.14 696.5 0.282337 2.7 825 0.282257 5.6 23.9 CZ35_40 R 0.28141 1.4E 05 0.00101 2.23 2.55 0.282772 48.3 n/a n/a n/a 14.7 CZ35_43 0.28230 1.1E 05 0.00134 0.79 1.33 1055.5 0.282111 5.6 1090 0.282089 6.4 18.8 CZ35_44 0.28246 1.5E 05 0.00120 0.52 1.09 756.8 0.282300 5.1 825 0.282257 6.7 18.3 CZ35_46 0.28206 1.8E 05 0.00093 1.17 1.64 1063.0 0.282107 2.2 1090 0.282089 1.6 14.0 CZ35_48 0.28240 1.4E 05 0.00154 0.62 1.1 9 1069.5 0.282102 9.5 1090 0.282089 9.9 20.2 CZ35_49 0.28250 1.1E 05 0.00195 0.47 1.06 733.4 0.282314 5.5 825 0.282257 7.5 28.4 CZ35_51 0.28251 1.3E 05 0.00085 0.43 1.01 828.3 0.282255 8.6 825 0.282257 8.6 12.3 CZ35_52 0.28242 1.3E 05 0.00088 0.58 1.14 628.5 0.282380 1.1 825 0.282257 5.5 14.2 CZ35_53 0.28224 2.1E 05 0.00074 0.87 1.39 1096.0 0.282086 4.9 1090 0.282089 4.8 12.1 CZ35_55 0.28217 1.8E 05 0.00167 1.01 1.52 1122.0 0.282069 2.4 1090 0.282089 1.6 26.0 CZ35_56 0.28255 1.7E 05 0.00090 0.38 0.97 670.4 0.282354 6.4 825 0.282257 9.8 13.1 CZ35_57 0.28242 1.7E 05 0.00139 0.59 1.16 798.9 0.282273 4.4 825 0.282257 4.9 18.2 CZ35_61 0.28233 9.0E 06 0.00122 0.74 1.28 1007.5 0.282142 5.8 1090 0.282089 7.6 18.1 CZ35_62 0.28259 1.6E 05 0.00156 0.31 0.92 63 8.9 0.282374 6.9 825 0.282257 11.0 22.2 CZ35_64 0.28246 1.4E 05 0.00102 0.52 1.09 1018.0 0.282135 10.8 1090 0.282089 12.4 13.4 CZ35_65 R 0.28260 2.0E 05 0.00185 0.29 0.91 0.282772 6.0 825 0.282257 12.2 25.7 CZ35_68 0.28238 1.5E 05 0.00231 0.68 1.25 756 .5 0.282300 1.5 825 0.282257 3.0 29.9 CZ35_70 0.28246 1.5E 05 0.00107 0.51 1.09 831.2 0.282253 6.8 825 0.282257 6.7 15.0 CZ35_72 0.28234 1.8E 05 0.00067 0.71 1.25 691.2 0.282341 0.4 825 0.282257 2.5 10.8 CZ35_75 0.28249 9.3E 06 0.00099 0.46 1.04 665.3 0.282357 4.4 825 0.282257 7.9 14.3 CZ35_79 0.28236 1.5E 05 0.00084 0.68 1.23 1046.0 0.282117 7.9 1090 0.282089 8.9 10.8 CZ35_82 0.28236 1.8E 05 0.00100 0.68 1.23 1054.0 0.282112 8.0 1090 0.282089 8.8 17.2 CZ35_85 0.28243 1.7E 05 0.00333 0.61 1.21 1014.5 0.282137 8.1 1090 0.282089 9.8 36.2

PAGE 127

127 Table 4 33. Continued. CZ35_86 0.28247 1.6E 05 0.00144 0.50 1.08 728.4 0.282317 4.8 825 0.282257 7.0 22.0 CZ35_89 0.28230 1.6E 05 0.00127 0.78 1.32 744.2 0.282308 0.8 825 0.282257 1.0 18.7 CZ35_93 0.28237 1.5E 05 0 .00266 0.70 1.27 750.4 0.282304 1.1 825 0.282257 2.8 27.9 CZ35_94 0.28210 1.4E 05 0.00087 1.11 1.59 1092.0 0.282088 0.3 1090 0.282089 0.4 13.8 CZ35_95 0.28248 1.6E 05 0.00188 0.50 1.09 1014.0 0.282137 10.7 1090 0.282089 12.4 23.9 CZ35_102 0.28245 2.5E 05 0.00287 0.56 1.16 821.4 0.282259 5.3 825 0.282257 5.4 23.6 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept Table 4 34 Lu Hf (MC ICP MS) analysis corrected results for s ample DF06 22 from the Southern Zone, Congo Craton. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measur ed Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 22_2 0.28156 1.7E 05 0.00033 1.94 2.30 2001.5 0.281508 1.3 1970 0.281528 0.6 4.5 DF06 22_3 0.28133 1.5E 05 0.00039 2.30 2.61 1967.5 0.281530 7.5 1970 0.281528 7.5 5.5 DF06 22_4 0.28249 3.1E 05 0.0 0068 0.46 1.03 731.3 0.282316 5.9 730 0.282316 5.9 9.4 DF06 22_5 0.28183 9.6E 05 0.00147 1.57 2.00 972.9 0.282163 12.9 970 0.282165 12.9 12.3 DF06 22_8 R 0.28932 6.6E 03 0.01231 20.14 14.31 0.282772 231.5 n/a n/a n/a 63.6 DF06 22_9 0.28162 3.0E 05 0 .00134 1.90 2.28 1986.0 0.281518 1.9 1970 0.281528 1.5 16.7 DF06 22_10 R 0.27869 2.0E 03 0.00122 6.44 6.18 0.282772 144.5 n/a n/a n/a 15.0 DF06 22_12 0.27958 1.4E 03 0.00092 5.05 4.99 2539.0 0.281160 57.9 2540 0.281160 57.8 9.7 DF06 22_16 0.28155 2.8 E 05 0.00194 2.06 2.42 1981.0 0.28 1521 1.7 2060 0.281470 0.1 23.1 DF06 22_17 R 0.28162 1.8E 05 0.00099 1.88 2.25 0.282772 40.6 2060 0.281470 5.5 12.9 DF06 22_18 0.28160 2.4E 04 0.00109 1.93 2.30 1981.0 0.28 1521 1.2 2060 0.281470 3.0 14.9 DF06 22_19 R 0 .28155 9.5E 06 0.00095 1.99 2.35 0.282772 43.1 2060 0.281470 2.9 11.2 DF06 22_20 0.28281 1.1E 05 0.00554 0.07 0.68 517.9 0.282449 10.8 520 0.282448 10.9 30.5 DF06 22_21 0.28193 1.9E 05 0.00137 1.41 1.85 1981.0 0.28 1521 12.5 2060 0.281470 14.3 16.7 DF 06 22_22 R 0.28111 1.8E 05 0.00156 2.75 3.00 0.282772 58.9 2700 0.281056 1.8 14.8

PAGE 128

128 Table 4 34. Continued. DF06 22_23 0.28151 1.9E 05 0.00075 2.05 2.39 1981.0 0.28 1521 1.4 2060 0.281470 0 .4 9.6 DF06 22_24 R 0.28105 3.1E 05 0.00083 2.78 3.03 0.282772 61. 0 2700 0.281056 0.3 8.1 DF06 22_25 R 0.28207 1.6E 03 0.00145 1.17 1.65 0.282772 24.8 2700 0.281056 36.1 14.5 DF06 22_26 R 0.28221 2.4E 05 0.00237 0.97 1.49 0.282772 19.8 1350 0.281925 10.2 21.7 DF06 22_27 R 0.28175 1.7E 05 0.00372 1.83 2.24 0.282772 36.1 2700 0.281056 24.7 38.0 DF06 22_28 R 0.28177 3.5E 05 0.00117 1.65 2.06 0.282772 35.5 2060 0.281470 10.6 16.1 DF06 22_29 0.28103 1.3E 05 0.00194 2.91 3.14 2979.5 0.280873 1.6 2980 0.280873 1.6 18.3 DF06 22_30 R 0.28168 1.3E 05 0.00070 1.77 2.16 0. 282772 38.7 2060 0.281470 7.3 9.0 DF06 22_31 0.28246 1.3E 05 0.00073 0.51 1.07 637.5 0.282375 2.9 640 0.282373 2.9 10.6 DF06 22_32 R 0.28238 1.2E 05 0.00200 0.67 1.23 0.282772 13.8 1350 0.281925 16.2 25.3 DF06 22_33 R 0.28179 3.5E 05 0.00101 1.61 2.02 0.282772 34.7 2060 0.281470 11.4 12.5 DF06 22_34 R 0.28128 1.7E 05 0.00092 2.43 2.72 0.282772 52.9 2060 0.281470 6.9 13.4 DF06 22_35 0.28160 1.7E 05 0.00113 1.92 2.29 1981.0 0.28 1521 1.3 2060 0.281470 3.1 14.5 DF06 22_38 R 0.28121 3.0E 05 0.00215 2.6 2 2.90 0.282772 55.1 2700 0.281056 5.6 20.7 DF06 22_39 0.28149 3.8E 04 0.00248 2.19 2.53 2130.0 0.281425 1.2 2130 0.281425 1.2 23.4 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept Table 4 35. Lu Hf (MC ICP MS) analysis corrected results for sample SZ13 from the Southern Zone, Congo Craton. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measur ed Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr SZ13_1 R 0.28250 1.5E 05 0.00093 0.45 1.03 0.282772 9.6 n/a n/a n/a 12.8 SZ13_2 0.28207 1.4E 05 0.00125 1.17 1.65 985.5 0.282155 4. 0 1120 0.282070 1.0 16.2 SZ13_3 0.28208 1.6E 05 0.00087 1.14 1.62 1061.5 0.282107 1.8 1120 0.282070 0.5 12.0 SZ13_4 0.28255 2.0E 05 0.00107 0.37 0.97 799.8 0.282273 9.2 770 0.282291 8.5 13.7 SZ13_5 0.28257 3.5E 05 0.00115 0.34 0.94 1411.0 0.28 1886 23 .0 1010 0.282140 14.0 15.1

PAGE 129

129 Table 4 35. Continued. SZ13_6 0.28237 2.1E 05 0.00110 0.67 1.22 819.5 0.282260 3.1 770 0.282291 2.0 14.1 SZ13_7 R 0.28250 1.8E 05 0.00179 0.47 1.06 0.282772 9.8 n/a n/a n/a 20.6 SZ13_8 0.28221 1.0E 05 0.00072 0.93 1.43 681.9 0.282347 5.3 770 0.282291 3.4 9.3 SZ13_9 R 0.28144 1.1E 05 0.00066 2.15 2.49 0.282772 47.2 n/a n/a n/a 8.5 SZ13_10a R 0.28256 1.2E 05 0.00060 0.34 0.93 0.282772 7.4 n/a n/a n/a 7.7 SZ13_12 R 0.28255 4.8E 05 0.00142 0.37 0.97 0.282772 7.8 n/a n/a n/ a 21.1 SZ13_13 0.28247 1.2E 05 0.00152 0.51 1.09 751.2 0.282303 5.2 770 0.282291 5.6 16.5 SZ13_14 0.28258 2.6E 05 0.00155 0.33 0.93 757.9 0.282299 9.1 770 0.282291 9.4 16.3 SZ13_16 R 0.28249 3.2E 05 0.00080 0.46 1.04 0.282772 9.9 n/a n/a n/a 11.0 SZ13 _17 R 0.28235 1.4E 05 0.00116 0.70 1.24 0.282772 14.8 1010 0.282140 7.5 14.9 SZ13_18 R 0.28258 2.2E 05 0.00183 0.33 0.94 0.282772 6.8 n/a n/a n/a 23.1 SZ13_19 R 0.28164 2.5E 05 0.00154 1.88 2.26 0.282772 40.0 n/a n/a n/a 18.0 SZ13_20 R 0.28160 3.2E 05 0.00205 1.97 2.34 0.282772 41.3 n/a n/a n/a 18.6 SZ13_21 0.28238 1.5E 05 0.00166 0.67 1.23 1092.5 0.282088 9.0 1120 0.282070 9.6 21.4 SZ13_22 0.28250 1.4E 05 0.00116 0.45 1.04 713.1 0.282327 5.6 770 0.282291 6.8 15.6 SZ13_23 R 0.28258 1.3E 05 0.00099 0.32 0.92 0.282772 6.8 1010 0.282140 15.6 13.6 SZ13_24 0.28253 1.3E 05 0.00113 0.40 0.99 670.8 0.282354 5.8 770 0.282291 8.0 15.0 SZ13_25 0.28219 2.5E 05 0.00049 0.94 1.44 1411.0 0.28 1886 10.4 1335 0.281934 8.7 5.7 SZ13_26 0.28223 1.5E 05 0.00076 0.90 1.41 677.9 0.282349 4.7 770 0.282291 2.7 9.1 SZ13_27 0.28230 1.8E 05 0.00148 0.79 1.33 1411.0 0.28 1886 13.3 1335 0.281934 11.5 14.8 SZ13_28 0.28199 2.5E 05 0.00105 1.28 1.74 997.0 0.282148 6.2 1120 0.282070 3.5 12.4 SZ13_29 0.28256 1.2E 05 0.00119 0.36 0.96 681.0 0.282347 6.9 770 0.282291 8.8 14.5 SZ13_30 0.28238 1.1E 05 0.00138 0.66 1.21 963.4 0.282169 6.5 1120 0.282070 10.1 17.7 SZ13_31 0.28227 1.1E 05 0.00143 0.84 1.37 1411.0 0.28 1886 12.3 1335 0.281934 10.6 18.0 SZ13_34 0.28142 1.2E 05 0.0008 9 2.20 2.52 1883.0 0.281584 7.0 1880 0.281586 7.0 11.6 SZ13_35 R 0.28221 1.5E 05 0.00049 0.92 1.43 0.282772 20.1 n/a n/a n/a 7.3 SZ13_36 0.28246 1.6E 05 0.00117 0.52 1.10 780.8 0.282284 5.5 770 0.282291 5.3 15.3 SZ13_42 0.28249 2.2E 05 0.00223 0.49 1 .08 656.8 0.282362 3.5 770 0.282291 6.0 22.1

PAGE 130

130 Table 4 35. Continued. SZ13_44 0.28260 1.9E 05 0.00183 0.30 0.92 750.8 0.282303 9.5 770 0.282291 9.9 21.5 SZ13_46 R 0.28252 1.5E 05 0.00127 0.42 1.01 0.282772 8.9 1010 0.282140 13.5 15.9 SZ13_48 0.28259 2.1E 05 0.00152 0.31 0.92 684.6 0.282345 7.9 770 0.282291 9.8 18.3 SZ13_49 R 0.28263 3.1E 05 0.00073 0.23 0.84 0.282772 5.0 1010 0.282140 17.4 10.9 SZ13_51 0.28256 5.3E 05 0.00022 0.34 0.92 591.0 0.282404 5.5 770 0.282291 9.5 3.1 SZ13_52 R 0.28098 2.2E 05 0 .00045 2.86 3.09 0.282772 63.4 n/a n/a n/a 5.9 SZ13_53 0.28239 1.7E 05 0.00175 0.65 1.21 898.9 0.282210 5.3 1120 0.282070 10.3 21.3 SZ13_54 0.28251 2.2E 05 0.00096 0.43 1.01 607.2 0.282393 3.8 770 0.282291 7.4 13.3 SZ13_56 R 0.28229 2.2E 05 0.00088 0.7 9 1.32 0.282772 17.0 n/a n/a n/a 12.1 SZ13_57 0.28256 1.4E 05 0.00154 0.36 0.96 1034.5 0.282125 14.3 1120 0.282070 16.2 19.6 SZ13_58 0.28249 1.5E 05 0.00114 0.48 1.06 634.3 0.282377 3.4 770 0.282291 6.4 15.6 SZ13_59 R 0.28236 2.0E 05 0.00092 0.67 1.22 0.282772 14.5 1335 0.281934 15.2 12.9 SZ13_62 R 0.28250 1.1E 05 0.00175 0.46 1.05 0.282772 9.5 n/a n/a n/a 23.0 SZ13_63 0.28240 2.8E 05 0.00092 0.62 1.18 953.5 0.282176 7.2 1120 0.282070 10.9 11.6 SZ13_64 R 0.28202 1.1E 05 0.00056 1.22 1.68 0.282772 26.6 1010 0.282140 4.3 8.0 SZ13_66 R 0.28187 2.4E 05 0.00200 1.53 1.97 0.282772 32.0 n/a n/a n/a 18.3 SZ13_68 R 0.28228 1.3E 05 0.00110 0.81 1.34 0.282772 17.3 1335 0.281934 12.3 15.4 SZ13_69 R 0.28201 1.5E 05 0.00045 1.24 1.70 0.282772 27.1 n/a n/ a n/a 7.9 SZ13_70 R 0.28239 1.3E 05 0.00076 0.63 1.18 0.282772 13.6 1010 0.282140 8.8 10.1 SZ13_71 R 0.28249 1.8E 05 0.00161 0.47 1.06 0.282772 9.9 n/a n/a n/a 21.8 SZ13_72 R 0.28221 1.8E 05 0.00139 0.93 1.45 0.282772 19.7 1335 0.281934 9.9 18.1 SZ1 3_73 0.28164 4.1E 05 0.00144 1.87 2.25 2043.0 0.281481 3.8 2045 0.281480 3.8 14.4 SZ13_74 0.28258 2.2E 05 0.00285 0.33 0.96 664.8 0.282357 6.8 770 0.282291 9.1 25.1 SZ13_76 R 0.28233 3.5E 05 0.00170 0.75 1.30 0.282772 15.8 n/a n/a n/a 18.7 SZ13_77 0.28 229 1.9E 05 0.00007 0.77 1.29 693.0 0.282340 1.8 770 0.282291 0.0 1.3 SZ13_78 R 0.28093 1.9E 05 0.00111 2.98 3.20 0.282772 65.0 n/a n/a n/a 14.0 SZ13_79 R 0.28211 4.7E 05 0.00260 1.15 1.65 0.282772 23.6 n/a n/a n/a 23.4

PAGE 131

131 Table 4 35. Continued. SZ13_8 0 0.28228 1.8E 05 0.00168 0.83 1.36 1411.0 0.28 1886 12 .4 1335 0.281934 10.7 21.4 SZ13_82 R 0.28104 2.7E 05 0.00068 2.78 3.03 0.282772 61.4 n/a n/a n/a 7.2 SZ13_87 R 0.28247 1.8E 05 0.00042 0.49 1.05 0.282772 10.6 1010 0.282140 11.8 6.1 SZ13_89 0.28240 2.6E 05 0.00163 0.63 1.20 1411.0 0.28 1886 16.6 1335 0.281934 14.8 20.6 SZ13_91 R 0.28100 1.6E 05 0.00090 2.86 3.10 0.282772 62.7 n/a n/a n/a 12.9 SZ13_94 0.28233 2.6E 05 0.00158 0.74 1.29 1411.0 0.28 1886 14.4 1335 0.281934 12.6 17.1 SZ13_96 0.28242 9. 4E 06 0.00150 0.59 1.16 757.0 0.282299 3.5 770 0.282291 3.8 19.4 SZ13_97 0.28229 1.9E 05 0.00080 0.79 1.32 1078.5 0.282097 6.2 1120 0.282070 7.2 11.4 SZ13_98 R 0.28248 1.6E 05 0.00095 0.48 1.06 0.282772 10.4 1010 0.282140 12.0 11.9 SZ13_99 0.28207 1.6E 05 0.00129 1.17 1.65 941.6 0.282183 4.8 1120 0.282070 0.8 15.2 SZ13_100 0.28227 2.4E 05 0.00061 0.82 1.34 690.3 0.282341 2.9 770 0.282291 1.1 9.7 SZ13_101 R 0.28227 2.5E 05 0.00154 0.84 1.38 0.282772 17.8 n/a n/a n/a 19.0 SZ13_102 R 0.28240 2.1E 05 0.00132 0.62 1.18 0.282772 13.2 n/a n/a n/a 18.7 SZ13_103 R 0.28252 3.0E 05 0.00066 0.42 1.00 0.282772 9.1 1010 0.282140 13.3 9.4 SZ13_105 0.28253 4.6E 05 0.00049 0.40 0.98 623.5 0.282383 5.0 770 0.282291 8.2 5.3 SZ13_106 0.28238 2.2E 05 0.00106 0.6 5 1.20 768.4 0.282292 2.5 770 0.282291 2.5 11.4 SZ13_107 0.28238 2.6E 05 0.00243 0.68 1.25 1411.0 0.28 1886 15.1 1010 0.282140 6.1 24.2 SZ13_108 0.28292 1.8E 05 0.00123 0.25 0.44 955.7 0.282174 25.6 1120 0.282070 29.3 16.9 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 132

132 Table 4 36 Lu Hf (MC ICP MS) analysis corrected results for sample DF09 12a from the Southern Margin Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 12a_1 0.28214 7.9E 06 0.00 078 1.04 1.53 1265.0 0.281979 4.9 1375 0.281909 7.4 13.6 DF09 12a_4 0.28224 1.0E 05 0.00055 0.87 1.39 1120.0 0.282070 5.5 1375 0.281909 11.2 10.3 DF09 12a_8 0.28212 7.8E 06 0.00070 1.07 1.56 1255.5 0.281985 4.0 1375 0.281909 6.7 12.6 DF09 12a_9 0.28199 8.2E 06 0.00092 1.29 1.74 1491.5 0.281835 4.5 1900 0.281573 13.8 15.0 DF09 12a_11 0.28183 9.1E 06 0.00123 1.55 1.98 1572.0 0.281783 0.4 1900 0.281573 7.9 17.9 DF09 12a_12 0.28156 7.2E 06 0.00106 1.99 2.35 1895.5 0.281576 2.0 1900 0.281573 1.9 17.2 DF0 9 12a_13 R 0.28199 9.1E 06 0.00128 1.30 1.76 0.282772 27.7 1750 0.281669 11.3 20.3 DF09 12a_14 0.28200 7.1E 06 0.00083 1.26 1.72 1341.5 0.281930 1.7 1375 0.281909 2.5 13.7 DF09 12a_16 0.28207 6.2E 06 0.00095 1.15 1.63 1239.5 0.281995 1.9 1375 0.281909 4 .9 15.8 DF09 12a_18 R 0.28130 8.9E 06 0.00092 2.39 2.69 0.282772 52.0 2060 0.281470 6.0 14.1 DF09 12a_21 0.28212 1.0E 05 0.00081 1.06 1.55 1211.0 0.282013 3.3 1375 0.281909 6.9 14.3 DF09 12a_22 0.28216 8.1E 06 0.00120 1.02 1.52 1192.5 0.282025 3.7 137 5 0.281909 7.8 20.3 DF09 12a_23 0.28212 6.6E 06 0.00128 1.08 1.57 1233.0 0.281999 3.3 1375 0.281909 6.5 22.0 DF09 12a_25 R 0.28181 1.1E 05 0.00073 1.56 1.98 0.282772 34.0 1750 0.281669 5.0 10.6 DF09 12a_26 0.28197 8.4E 06 0.00121 1.32 1.78 1342.0 0.281 930 0.4 1375 0.281909 1.1 18.8 DF09 12a_28 0.28171 1.1E 05 0.00072 1.73 2.12 1901.0 0.28 1573 3.8 1750 0.281669 0 .3 11.1 DF09 12a_29 0.28184 6.2E 06 0.00054 1.51 1.93 1477.0 0.281844 0.6 1900 0.281573 9.0 10.6 DF09 12a_30 0.28153 6.5E 06 0.00151 2.07 2. 42 1936.0 0.281550 2.8 1935 0.281551 2.9 22.3 DF09 12a_34 0.28220 7.8E 06 0.00058 0.93 1.43 1044.2 0.282118 2.6 1375 0.281909 10.0 10.8 DF09 12a_35 R 0.28226 1.3E 05 0.00067 0.83 1.35 0.282772 18.1 1750 0.281669 21.0 12.7 DF09 12a_38 0.28219 8.9E 06 0.00139 0.98 1.49 1183.5 0.282030 4.4 1375 0.281909 8.7 19.9 DF09 12a_39 0.28190 9.0E 06 0.00061 1.41 1.85 1199.5 0.282020 4.7 1375 0.281909 0.8 10.5 DF09 12a_40 0.28191 7.5E 06 0.00135 1.44 1.88 1354.0 0.281922 1.8 1375 0.281909 1.3 21.0 DF09 12a_4 6 0.28199 9.4E 06 0.00096 1.28 1.74 1526.0 0.281813 5.5 1900 0.281573 14.0 13.5 DF09 12a_47 0.28217 8.1E 06 0.00126 1.00 1.50 1243.5 0.281992 5.4 1375 0.281909 8.3 21.2

PAGE 133

133 Table 4 36. Continued. DF09 12a_52 0.28197 7.6E 06 0.00116 1.32 1.78 1207.5 0.282015 2.4 1375 0.281909 1.3 19.0 DF09 12a_58 R 0.28155 5.8E 06 0.00073 1.98 2.34 0.282772 43.4 2060 0.281470 2.7 12.1 DF09 12a_62 R 0.28183 1.3E 05 0.00117 1.56 1.98 0.282772 33.5 1750 0.281669 5.6 19.6 DF09 12a_66 0.28204 1.6E 05 0.00147 1.21 1.69 1024.8 0.282131 4.1 1375 0.281909 3.8 23.6 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept Table 4 37. Lu Hf (MC ICP MS) analysis corrected results for sample DF09 04 from the Sou thern Margin Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf correcte d error (+/ ) 176 Lu/ 177 Hf measure d Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 04_9 0.28190 2.7E 05 0.00061 1.41 1.85 1336.5 0.281933 1.7 1400 0.281893 0.3 6.8 DF09 04_15 0.28202 2.4E 05 0.00080 1.23 1.70 1298.5 0.281957 1.5 1400 0.281893 3.8 9.1 DF09 04_16 0.28212 2.9E 05 0.00096 1.08 1.5 7 1114.5 0.282074 0.8 1400 0.281893 7.2 9.1 DF09 04_19 0.28215 1.7E 05 0.00058 1.01 1.51 1117.0 0.282072 2.2 1400 0.281893 8.6 6.6 DF09 04_20 0.28214 3.6E 05 0.00223 1.09 1.59 1154.0 0.282049 1.4 1400 0.281893 6.9 22.1 DF09 04_21 0.28206 2.3E 05 0.00148 1.19 1.67 1226.5 0.282003 0.7 1400 0.281893 4.6 16.2 DF09 04_29 0.28215 1.8E 05 0.00123 1.04 1.54 1061.5 0.282107 0.5 1400 0.281893 8.1 12.7 DF09 04_30 0.28185 3.0E 05 0.00170 1.55 1.98 1262.0 0.281980 6.2 1400 0.281893 3.1 16.9 DF09 04_31 0.28184 2. 4E 05 0.00059 1.51 1.93 1808.0 0.28 1632 6.7 1820 0.281624 6.9 6.5 DF09 04_35 0.28209 2.7E 05 0.00094 1.13 1.61 1221.0 0.282006 2.0 1400 0.281893 6.1 10.5 DF09 04_36 0.28192 1.7E 05 0.00077 1.39 1.83 1355.5 0.281921 0.7 1400 0.281893 0.3 8.6 DF09 04_39 0.28162 2.7E 05 0.00090 1.88 2.25 1989.5 0.281516 2.5 1960 0.281535 1.8 9.1 DF09 04_44 0.28206 2.5E 05 0.00044 1.16 1.63 1168.5 0.282040 0.3 1400 0.281893 5.5 5.1 DF09 04_46 0.28190 2.1E 05 0.00066 1.42 1.86 1524.5 0.281813 2.3 1400 0.281893 0.5 7.4 DF 09 04_48 R 0.28211 2.6E 05 0.00060 1.08 1.56 0.282772 23.5 1820 0.281624 17.2 7.4 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 134

134 Table 4 38 Lu Hf (MC ICP MS) analysis corr ected results for sample DF06 40 from the Southern Foreland Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06_40_3 0.28113 2.6E 05 0.00032 2.61 2.88 2166.0 0.28 1402 10 .1 2175 0.281396 9. 9 6.3 DF06_40_8 R 0.28108 1.7E 05 0.00090 2.74 2.99 0.282772 59.8 3050 0.280827 9.0 14.7 DF06_40_9 R 0.28146 1.4E 05 0.00081 2.13 2.47 0.282772 46.5 2175 0.281396 2.2 11.8 DF06_40_10 0.28212 1.6E 05 0.00064 1.06 1.55 1392.0 0.28 1898 7.3 1425 0.281877 8. 1 10.4 DF06_40_11 0.28215 1.4E 05 0.00053 1.02 1.51 1084.5 0.282093 1.5 1085 0.282093 1 .5 8.9 DF06_40_13 0.28144 2.3E 05 0.00028 2.12 2.45 2017.5 0.281498 2.3 2020 0.281496 2.3 4.6 DF06_40_17 R 0.28132 1.0E 05 0.00118 2.38 2.68 0.282772 51.3 3050 0.280827 17.6 16.9 DF06_40_25 0.28187 1.4E 05 0.00082 1.47 1.90 1358.0 0.281919 2.4 1360 0.281918 2.4 12.0 DF06_40_27 0.28118 2.2E 05 0.00133 2.62 2.89 2706.0 0.281052 1.9 2700 0.281056 1.8 19.0 DF06_40_33 0.28161 1.4E 05 0.00089 1.89 2.26 2166.0 0.28 1402 6 .1 2175 0.281396 6.3 12.9 DF06_40_36 0.28216 1.5E 05 0.00059 0.99 1.49 1092.3 0.2820 88 2.3 1090 0.282089 2.2 9.3 DF06_40_38 0.28219 1.6E 05 0.00105 0.96 1.47 1392.0 0.28 1898 9.3 1425 0.281877 1 0 .1 15.6 DF06_40_41 0.28211 1.8E 05 0.00050 1.07 1.55 1392.0 0.28 1898 7.1 1425 0.281877 7.9 8.0 DF06_40_42 0.28128 2.0E 05 0.00064 2.40 2.70 211 2.5 0.281436 6.5 2110 0.281438 6.6 10.4 DF06_40_44 0.28137 1.5E 05 0.00031 2.23 2.55 2166.0 0.28 1402 1.6 2175 0.281396 1.4 5.1 DF06_40_45 R 0.28112 1.6E 05 0.00114 2.70 2.96 0.282772 58.5 3050 0.280827 10.3 16.9 DF06_40_46 0.28141 2.4E 05 0.00044 2 .18 2.50 2118.5 0.281433 1.3 2120 0.281432 1.3 7.0 DF06_40_55 0.28136 2.0E 05 0.00069 2.28 2.59 1899.5 0.281573 8.5 1900 0.281573 8.5 10.2 DF06_40_56 0.28106 1.6E 05 0.00059 2.75 3.00 2690.0 0.281062 1.3 2690 0.281062 1.3 8.6 R denotes samples rem oved due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 135

135 Table 4 39 Lu Hf (MC ICP MS) analysis corrected results for sample DF06 4 1 from the Southern Foreland Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 41_04 R 0.28117 1 .4E 05 0.00045 2.56 2.84 0.282772 56.8 2865 0.280948 7.8 5.5 DF06 41_18 0.28159 1.8E 05 0.00093 1.93 2.30 2024.0 0.281493 2.1 2230 0.281361 6.8 10.7 DF06 41_20 0.28183 3.1E 05 0.00151 1.57 1.99 900.7 0.282209 14.3 1120 0.282070 9.4 18.2 DF06 41_21 0 .28145 1.7E 05 0.00082 2.14 2.48 2030.0 0.281490 2.5 2230 0.281361 2.1 9.4 DF06 41_22 0.28232 1.1E 05 0.00090 0.74 1.28 1040.5 0.282121 6.5 1120 0.282070 8.3 11.8 DF06 41_23 0.28251 1.6E 05 0.00047 0.43 1.01 896 .0 0.282 184 10 .2 890 0.282216 10. 1 5.0 DF 06 41_25 0.28247 1.4E 05 0.00096 0.50 1.07 896.0 0.282 184 8 .5 890 0.282216 8. 4 11.5 DF06 41_27 0.28230 1.9E 05 0.00067 0.77 1.30 1044.5 0.282118 6.1 1120 0.282070 7.8 7.9 DF06 41_32 R 0.28247 1.5E 05 0.00137 0.50 1.08 0.282772 10.5 1180 0.282032 15.7 14 .9 DF06 41_35 0.28133 1.9E 05 0.00113 2.36 2.67 2117.5 0.281433 5.4 2230 0.281361 2.8 13.1 DF06 41_37 0.28254 1.5E 05 0.00025 0.37 0.95 896 .0 0.282 184 1 1 .6 890 0.282216 11. 4 2.6 DF06 41_39 R 0.28226 1.8E 05 0.00121 0.85 1.37 0.282772 18.1 1180 0.2820 32 8.1 13.4 DF06 41_42 R 0.28131 1.8E 05 0.00034 2.33 2.64 0.282772 51.7 2865 0.280948 12.9 4.3 DF06 41_44 0.28210 1.5E 05 0.00073 1.09 1.57 896 .0 0.282 184 4 .3 890 0.282216 4. 4 9.1 DF06 41_46 0.28225 1.6E 05 0.00062 0.86 1.38 1021.0 0.282133 3.5 1120 0.282070 5.8 7.0 DF06 41_50 0.28131 2.1E 05 0.00046 2.35 2.65 2123.0 0.281430 5.1 2230 0.281361 2.6 5.5 DF06 41_52 0.28108 1.3E 05 0.00076 2.72 2.97 2843.0 0.280962 2.8 2845 0.280961 2.8 8.9 DF06 41_53 0.28215 1.7E 05 0.00178 1.05 1.56 834.0 0.282251 4.6 1120 0.282070 1.8 20.0 DF06 41_54 R 0.28223 1.8E 05 0.00112 0.89 1.41 0.282772 19.1 1180 0.282032 7.1 13.1 DF06 41_56 0.28216 1.3E 05 0.00074 1.01 1.50 1108.5 0.282078 2.2 1120 0.282070 2.4 8.2 DF06 41_57 0.28120 1.8E 05 0.00067 2.53 2.81 2125.5 0.281428 9.2 2230 0.281361 6.8 8.2 DF06 41_59 0.28051 1.4E 05 0.00028 3.55 3.69 3336.0 0.280638 5.1 3335 0.280639 5.1 3.6 DF06 41_60 0.28224 1.6E 05 0.00051 0.86 1.38 1022.5 0.282132 3.5 1120 0.282070 5.7 6.3 R denotes samples removed due to high er ror and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 136

136 Table 4 40. Lu Hf (MC ICP MS) analysis corrected results for sample DF06 45 from the Southern Foreland Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 45_06 R 0.28146 2.1E 05 0.00135 2.16 2.50 0.282772 46.4 n/a n/a n/a 15.6 DF06 45_07 0.28236 2.9E 05 0.00066 0.67 1.22 555.5 0.282426 2.5 780 0.282285 2.4 8.5 DF06 45_08 0.28205 4.2E 05 0.00165 1.21 1.69 1058.0 0.282 110 3.2 1250 0.281988 1.1 19.5 DF06 45_09 0.28234 1.7E 05 0.00085 0.72 1.26 1064.0 0.282106 7.6 1075 0.282099 7.8 10.9 DF06 45_10 0.28254 5.5E 05 0.00116 0.39 0.98 553.6 0.282427 3.5 780 0.282285 8.5 15.1 DF06 45_13 0.28220 2.9E 05 0.00112 0.95 1.46 878.5 0.282223 1.5 1075 0.282099 2.9 13.1 DF06 45_15 0.28235 1.8E 05 0.00 119 0.70 1.25 529.2 0.282442 3.7 780 0.282285 1.9 11.1 DF06 45_16 0.28236 2.3E 05 0.00160 0.70 1.25 541.0 0.282435 3.3 780 0.282285 2.0 14.7 DF06 45_19 0.28230 2.1E 05 0.00064 0.78 1.31 539.0 0.282436 5.2 780 0.282285 0.1 8.2 DF06 45_25 0.28251 2.1E 05 0.00092 0.43 1.01 535.5 0.282438 2.3 780 0.282285 7.7 11.2 DF06 45_29 R 0.28239 2.6E 05 0.00133 0.64 1.20 0.282772 13.6 780 0.282285 3.6 16.6 DF06 45_31 0.28232 2.0E 05 0.00060 0.74 1.27 649.1 0.282367 2.0 780 0.282285 0.9 7.8 DF06 45_38 0.28233 2. 3E 05 0.00101 0.74 1.28 533.6 0.282440 4.4 780 0.282285 1.1 12.1 DF06 45_39 R 0.28240 1.4E 05 0.00066 0.61 1.16 0.282772 13.2 1250 0.281988 14.6 8.2 DF06 45_42 0.28225 2.5E 05 0.00116 0.86 1.38 539.5 0.282436 6.9 780 0.282285 1.5 14.1 DF06 45_43 0.2 8235 3.4E 05 0.00217 0.72 1.28 532.8 0.282440 3.9 780 0.282285 1.6 19.0 DF06 45_46 0.28222 2.4E 05 0.00128 0.92 1.44 553.1 0.282427 7.8 780 0.282285 2.8 13.2 DF06 45_51 0.28231 1.5E 05 0.00093 0.75 1.29 565.8 0.282419 4.1 780 0.282285 0.7 11.3 DF06 45_55 R 0.28225 3.7E 05 0.00100 0.86 1.38 0.282772 18.5 1250 0.281988 9.3 9.8 DF06 45_56 R 0.28244 3.2E 05 0.00142 0.56 1.13 0.282772 11.8 1250 0.281988 15.9 15.9 DF06 45_58 0.28231 3.0E 05 0.00115 0.77 1.31 542.3 0.282434 4.9 780 0.282285 0.4 13.1 D F06 45_59 0.28145 3.0E 05 0.00139 2.18 2.52 2223.0 0.281365 0.9 2225 0.281364 0.9 15.8 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 137

137 Table 4 41 Lu Hf (MC ICP MS) analysis corrected results for sample DF06 4 4 from the Southern Foreland Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corrected error (+/ ) 176 Lu / 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 44_01 0.28252 2.2E 05 0.00002 0.40 0.98 1095.0 0.282 086 15.4 1185 0.282029 17.4 10.7 DF06 44_02 R 0.28120 2.0E 05 0.00002 2.48 2.76 0.282772 55.6 0.282772 55.6 12.0 DF06 44_03 R 0.28095 2.3E 05 0.00002 2.87 3.10 0.282772 64.6 0.282772 64.6 7.4 DF06 44_05 0.28225 2.2E 05 0.00003 0.84 1.35 1019.5 0.282134 3.9 1320 0.281944 10.7 15.7 DF06 44_08 0.28201 1.3E 05 0.00003 1.22 1.68 1043.5 0.282119 4.0 1320 0.2819 44 2.3 12.5 DF06 44_09 R 0.28236 1.4E 05 0.00002 0.66 1.19 0.282 772 14.5 770 0.282291 2.5 13.2 DF06 44_12 0.28246 2.0E 05 0.00014 0.50 1.06 1095.0 0.282 086 13.2 1185 0.282029 15. 2 19.8 DF06 44_16 0.28192 2.0E 05 0.00002 1.35 1.79 1484.0 0.281839 2.9 14 85 0.281839 3.0 18.1 DF06 44_20 0.28194 1.6E 05 0.00000 1.33 1.77 953.2 0.282176 8.4 1320 0.281944 0.2 5.5 DF06 44_21 R 0.28248 2.3E 05 0.00001 0.47 1.03 0.282772 10.3 770 0.282291 6.7 11.6 DF06 44_22 0.28221 1.7E 05 0.00003 0.89 1.40 1095.0 0.282 086 4.5 1185 0.282029 6.5 7.8 DF06 44_24 R 0.28217 2.8E 05 0.00001 0.96 1.45 0.282772 21.1 1185 0.282029 5.1 7.6 DF06 44_25 0.28240 1.3E 05 0.00005 0.59 1.14 729.0 0.282317 3.0 770 0.282291 3.9 12.6 DF06 44_30 0.28152 1.7E 05 0.00006 1.98 2.33 953.6 0.282 176 23.2 1320 0.281944 15.0 10.6 DF06 44_35 R 0.28090 1.6E 05 0.00002 2.93 3.15 0.282772 66.1 0.282772 66.1 8.9 DF06 44_39 0.28218 2.8E 05 0.00008 0.94 1.44 551.8 0.282428 8.7 770 0.282291 3.8 18.0 DF06 44_44 R 0.28244 2.4E 05 0.00001 0.54 1.09 0 .282772 11.8 770 0.282291 5.2 10.1 DF06 44_46 0.28233 1.6E 05 0.00001 0.71 1.24 1051.5 0.282114 7.7 1320 0.281944 13.7 8.5 DF06 44_48 0.28256 3.5E 05 0.00003 0.35 0.93 1095.0 0.282 086 16.7 1185 0.282029 18.7 11.5 DF06 44_52 0.28230 2.7E 05 0.00009 0.76 1.28 612.7 0.282390 3.2 770 0.282291 0.3 19.3 DF06 44_54 0.28200 2.4E 05 0.00002 1.23 1.68 1058.0 0.282110 3.8 1320 0.281944 2.1 15.0 DF06 44_59 0.28184 2.0E 05 0.00001 1.49 1.91 1032.5 0.282126 10.2 1320 0.281944 3.8 10.3 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 138

138 Table 4 42 Lu Hf (MC ICP MS) analysis corrected results for sample DF06 43 from the Southern Foreland Zone, Kalahari Craton. Sample 176 Lu/ 177 Hf corr ected error (+/ ) 176 Lu / 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 43_01 0.28231 1.6E 05 0.00061 0.76 1.29 843.2 0.282245 1.9 850 0.282241 2.1 7.1 DF06 43_04 R 0.28212 1.9E 05 0.00081 1.08 1.56 0.282772 23.2 1230 0.282001 4.1 9.5 DF06 43_05 0.28213 3.3E 05 0.00060 1.05 1.54 846.7 0.282243 4.5 850 0.282241 4.4 5.2 DF06 43_08 0.28144 2.5E 05 0.00095 2.17 2.51 1933.0 0.281552 5.4 1930 0.281554 5.4 10.6 DF06 43_09 0.28217 2.9E 05 0.00108 0.99 1.49 846.5 0.282243 3.1 850 0.282241 3.1 10.7 DF06 43_10 0.28244 1.7E 05 0.00059 0.55 1.11 609.5 0.282392 1.4 770 0.282291 4.9 6.9 DF06 43_11 0. 28244 1.8E 05 0.00058 0.54 1.10 1987.0 0.282 091 12.0 1230 0.282001 15. 2 6.7 DF06 43_14 0.28191 2.0E 05 0.00068 1.41 1.85 1094.0 0.282087 6.9 1400 0.281893 0.1 6.0 DF06 43_18 0.28218 3.8E 05 0.00134 0.99 1.50 1125.0 0.282067 2.8 1400 0.281893 9.0 11.5 DF06 43_22 0.28229 1.9E 05 0.00067 0.79 1.32 1057.5 0.282110 5.8 1400 0.281893 13.5 7.7 DF06 43_26 0.28155 1.8E 05 0.00113 2.01 2.36 1873.0 0.281590 3.0 1875 0.281589 2.9 11.1 DF06 43_27 0.28236 2.2E 05 0.00025 0.67 1.20 1087.0 0.282 091 9.3 1230 0.2820 01 12. 6 3.0 DF06 43_28 0.28227 1.9E 05 0.00097 0.83 1.35 1087.0 0.282 091 5.6 1230 0.282001 8.8 10.6 DF06 43_29 0.28225 1.9E 05 0.00059 0.86 1.37 854.0 0.282238 0.0 850 0.282241 0.1 7.0 DF06 43_32 0.28249 1.8E 05 0.00080 0.46 1.04 558.7 0.282424 2.2 770 0.282291 6.8 9.2 DF06 43_33 0.28227 2.1E 05 0.00051 0.81 1.33 1106.5 0.282079 6.5 1400 0.281893 13.1 5.4 DF06 43_36 0.28226 1.7E 05 0.00131 0.86 1.39 857.8 0.282236 0.0 850 0.282241 0.2 14.6 DF06 43_41 0.28240 2.6E 05 0.00121 0.62 1.18 1092.5 0.282088 10.1 1400 0.281893 17.1 12.6 DF06 43_42 R 0.28106 1.9E 05 0.00100 2.77 3.02 0.282772 60.4 n/a n/a n/a 10.1 DF06 43_46 0.28204 1.9E 05 0.00049 1.18 1.65 1153.5 0.282049 0.6 1400 0.281893 4.9 4.8 DF06 43_48 0.28247 1.8E 05 0.00152 0.51 1.09 1087.0 0.28 2 091 12.2 1230 0.282001 15.4 13.1 DF06 43_58 0.28222 2.2E 05 0.00058 0.91 1.42 829.3 0.282254 1.7 850 0.282241 1.2 6.1 DF06 43_60 0.28218 1.2E 05 0.00188 1.00 1.51 1099.0 0.282084 2.1 1400 0.281893 8.9 18.8 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 139

139 Table 4 4 3. Lu Hf (MC ICP MS) analysis corrected results for sample DF06 18 from the Kaoko Belt. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 18_1 R 0.28166 1.2E 05 0.00387 1.99 2.38 0.282772 39.2 2030 0.281490 6.2 38.4 DF06 18_3 R 0.24773 2.4E 02 0.02994 131.97 88.78 0.282772 1239.1 n/a n/a n/a 85.2 DF06 18_5 R 0.28158 1.7E 05 0.00423 2.17 2.53 0.282772 42.3 n/a n/a n/a 43.3 DF06 18_9 R 0.28179 1.3E 05 0.00118 1.62 2.03 0.282772 34.7 1200 0.282020 8.1 15 .3 DF06 18_11 R 0.28092 1.3E 05 0.00062 2.95 3.17 0.282772 65.4 n/a n/a n/a 9.3 DF06 18_13 0.28146 1.9E 05 0.00094 2.14 2.47 2047.5 0.281478 2.0 2250 0.281348 2.7 13.9 DF06 18_14 0.28191 1.8E 05 0.00085 1.41 1.85 1224.0 0.282005 4.2 1220 0.282007 4. 2 13.2 DF06 18_15 R 0.28065 3.7E 04 0.00092 3.41 3.57 0.282772 75.0 n/a n/a n/a 15.2 DF06 18_17 0.28172 2.0E 05 0.00143 1.74 2.14 1858.0 0.28 1600 2.5 2030 0.281490 6.5 18.7 DF06 18_18 R 0.28152 1.9E 05 0.00249 2.14 2.49 0.282772 44.3 n/a n/a n/a 28.1 DF06 18_20 R 0.28203 1.8E 05 0.00605 1.44 1.94 0.282772 26.1 n/a n/a n/a 51.1 DF06 18_22 0.28191 1.4E 05 0.00202 1.47 1.91 1121.0 0.282070 7.3 1220 0.282007 5.1 24.1 DF06 18_23 0.28141 1.2E 05 0.00115 2.23 2.55 2054.5 0.281474 3.8 2250 0.281348 0.7 16.0 DF06 18_27 0.28161 1.0E 05 0.00091 1.89 2.26 1056.0 0.282111 18.3 1220 0.282007 14.6 12.9 DF06 18_30 0.28156 1.4E 05 0.00125 1.99 2.35 810.6 0.282266 25.5 1220 0.282007 16.4 17.7 DF06 18_31 R 0.28142 2.6E 05 0.00107 2.21 2.54 0.282772 47.8 203 0 0.281490 2.5 16.1 DF06 18_32 0.28176 1.7E 05 0.00118 1.67 2.07 980.8 0.282158 14.9 1220 0.282007 9.6 16.5 DF06 18_34 R 0.28165 4.0E 05 0.00071 1.83 2.21 0.282772 39.9 n/a n/a n/a 10.9 DF06 18_36 R 0.28142 1.6E 05 0.00094 2.20 2.53 0.282772 47.8 2 030 0.281490 2.5 13.8 DF06 18_37 R 0.28142 1.6E 05 0.00084 2.19 2.52 0.282772 47.7 n/a n/a n/a 12.4 DF06 18_41 0.28141 1.4E 05 0.00062 2.19 2.51 1856.0 0.281601 7.4 2250 0.281348 1.6 9.1 DF06 18_42 R 0.28173 2.7E 05 0.00093 1.70 2.10 0.282772 36.8 1 200 0.282020 10.2 13.2 DF06 18_45 0.28173 2.4E 05 0.00035 1.67 2.07 990.7 0.282152 15.1 1220 0.282007 10.0 4.8 DF06 18_49 0.28167 1.1E 05 0.00093 1.80 2.18 1876.0 0.281589 1.7 2250 0.281348 10.3 13.3

PAGE 140

140 Table 4 43. Continued. DF06 18_53 0.28150 9.7E 06 0.00141 2.11 2.46 1858.0 0.28 1600 5.5 2030 0.281490 1.6 20.0 DF06 18_55 0.28143 1.1E 05 0.00087 2.17 2.50 2049.5 0.281477 2.7 2250 0.281348 1.9 12.5 DF06 18_58 0.28220 1.3E 05 0.00101 0.95 1.46 1090.5 0.282089 3.1 1220 0.282007 6.0 15.1 DF06 18_59 R 0 .28145 1.6E 05 0.00032 2.11 2.45 0.282772 46.8 n/a n/a n/a 4.3 DF06 18_61 0.28163 2.4E 05 0.00137 1.89 2.26 1858.0 0.28 1600 0.7 2030 0.281490 3.3 18.6 DF06 18_63 R 0.28185 1.5E 05 0.00095 1.51 1.93 0.282772 32.5 2350 0.281283 20.2 14.1 DF06 18_64 R 0 .28187 2.1E 05 0.00125 1.50 1.93 0.282772 32.0 2350 0.281283 20.8 17.5 DF06 18_65 0.28167 1.7E 05 0.00045 1.77 2.16 1875.5 0.281589 2.3 2250 0.281348 10.9 6.5 DF06 18_66 R 0.28168 2.7E 05 0.00109 1.79 2.18 0.282772 38.6 n/a n/a n/a 16.4 DF06 18_68 R 0 .28169 1.5E 05 0.00193 1.83 2.22 0.282772 38.4 n/a n/a n/a 24.3 DF06 18_70 R 0.28143 2.4E 05 0.00096 2.18 2.51 0.28 2772 47.3 2250 0.281348 3.1 14.3 DF06 18_71 0.28188 1.4E 05 0.00073 1.45 1.88 990.9 0.282152 10.0 1220 0.282007 4.9 11.0 DF06 18_73 0 .28174 2.0E 05 0.00069 1.68 2.08 1035.0 0.282124 14.2 1220 0.282007 10.0 10.5 DF06 18_74 0.28183 1.7E 05 0.00051 1.53 1.94 1211.5 0.282013 7.0 1200 0.282020 7.2 6.4 DF06 18_78 0.28193 1.5E 05 0.00061 1.37 1.81 1193.5 0.282024 3.9 1220 0.282007 3.3 9.2 DF06 18_80 R 0.28144 1.4E 05 0.00122 2.19 2.52 0.282772 47.2 2030 0.281490 1.9 14.3 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 141

141 Table 4 44. Lu Hf (MC ICP MS) anal ysis corrected results for sample DF09 38 from the Kaoko Belt. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF09 38_2 0.28151 2.4E 05 0.00045 2.03 2.38 1831.0 0.281617 4.4 1860 0.281599 3.8 3.9 DF09 38_3 0.28149 2.5E 05 0.00072 2.07 2.42 1861.8 0.28 1598 4.7 1830 0.281618 5.4 7.2 DF09 38_8 0.281 48 3.0E 05 0.00070 2.08 2.43 1864.5 0.281596 4.9 1860 0.281599 5.0 7.4 DF09 38_9 0.28145 3.3E 05 0.00050 2.12 2.45 1848.5 0.281606 6.1 1860 0.281599 5.8 4.6 DF09 38_19 0.28149 2.7E 05 0.00063 2.07 2.41 1862.5 0.281597 4.7 1860 0.281599 4.7 6.7 DF0 9 38_22 0.28141 1.7E 05 0.00079 2.20 2.53 1878.0 0.281587 7.2 1860 0.281599 7.6 8.1 DF09 38_24 0.28152 2.6E 05 0.00056 2.01 2.36 1839.5 0.281612 3.9 1860 0.281599 3.4 5.1 DF09 38_31 R 0.28144 1.2E 05 0.00060 2.15 2.48 0.282772 47.2 1830 0.281618 6. 4 5.9 DF09 38_32 0.28142 2.6E 05 0.00085 2.20 2.52 1854.0 0.281603 7.6 1860 0.281599 7.5 7.8 DF09 38_37 0.28172 2.4E 05 0.00048 1.69 2.08 1440.0 0.281867 5.5 1860 0.281599 4.0 4.1 DF09 38_40 0.28146 1.9E 05 0.00067 2.13 2.46 1852.0 0.281604 6.1 1860 0.281599 5.9 5.9 DF09 38_44 0.28149 2.1E 05 0.00065 2.07 2.41 1855.0 0.281602 4.8 1860 0.281599 4.7 6.5 DF09 38_48 0.28148 1.3E 05 0.00093 2.10 2.45 1855.0 0.281602 5.5 1860 0.281599 5.4 9.7 DF09 38_50 0.28148 1.7E 05 0.00056 2.08 2.42 1880.5 0.28 1586 4.6 1860 0.281599 5.0 6.0 DF09 38_51 0.28157 2.4E 05 0.00126 1.99 2.35 1874.5 0.281590 2.4 1860 0.281599 2.8 12.1 DF09 38_54 0.28151 2.1E 05 0.00069 2.03 2.38 1865.5 0.281595 3.8 1860 0.281599 3.9 6.9 DF09 38_55 0.28145 2.0E 05 0.00147 2.18 2 .52 1861.8 0.28 1598 7.1 1830 0.281618 7.8 14.7 DF09 38_56 R 0.28156 2.0E 05 0.00057 1.95 2.31 0.282772 42.8 1830 0.281618 2.0 5.5 DF09 38_57 0.28148 1.5E 05 0.00097 2.11 2.45 1830.0 0.281618 6.2 1860 0.281599 5.5 10.0 DF09 38_58 0.28146 2.2E 05 0. 00068 2.12 2.46 1870.0 0.281592 5.6 1860 0.281599 5.8 6.6 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 142

142 Table 4 4 5 Lu Hf (MC ICP MS) analysis corrected results for samp le DF09 3 9 from the Kaoko Belt. Sample 176 Lu / 177 Hf correcte d error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsi lon Hf at T (int) percent corr DF09 39_2 R 0.28112 2.3E 05 0.00052 2.64 2.90 0.282772 58.4 2575 0.281137 0.6 5.2 DF09 39_3 0.28113 1.5E 05 0.00061 2.63 2.89 2606.3 0.28 1117 0.5 2575 0.281137 1.3 6.1 DF09 39_4 0.28118 1.6E 05 0.00074 2.57 2.84 2606.3 0.28 1117 0.8 2575 0.281137 0.1 7.0 DF09 39_6 0.28108 1.7E 05 0.00060 2.72 2.97 2606.3 0.28 1117 2.5 2575 0.281137 3.3 5.9 DF09 39_7 0.28114 2.9E 05 0.00094 2.64 2.91 2606.3 0.28 1117 0.8 2575 0.281137 1.5 9.7 DF09 39_10 0.28117 2.4E 05 0.00082 2.59 2 .87 2606.3 0.28 1117 0.3 2575 0.281137 0.5 8.3 DF09 39_26 0.28111 1.7E 05 0.00032 2.64 2.90 2596.5 0.281123 1.0 2690 0.281062 1.1 3.0 DF09 39_29 R 0.28118 3.5E 05 0.00065 2.56 2.83 0.282772 56.3 2575 0.281137 1.5 5.7 DF09 39_30a R 0.28110 2.5E 05 0.000 65 2.68 2.94 0.282772 59.0 n/a n/a n/a 7.0 DF09 39_30 0.28140 3.1E 05 0.00045 2.20 2.52 2606.3 0.28 1117 9.2 2575 0.281137 8.5 4.1 DF09 39_37 0.28114 1.9E 05 0.00048 2.60 2.87 2580.5 0.281133 0.5 2690 0.281062 2.1 5.1 DF09 39_40 0.28113 2.0E 05 0.0007 2 2.64 2.90 2561.5 0.281146 1.7 2690 0.281062 1.3 7.2 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept

PAGE 143

143 Table 4 4 6 Lu Hf (MC ICP MS) analysis corrected results for sample D F0 6 11 from the Kaoko Belt. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 11_1 R 0.28244 1.9E 05 0.00097 0.56 1.12 0.282772 11.9 815 0.282263 6.1 10.3 DF06 11_2 0.28247 1.9E 05 0.00105 0.50 1.07 794.6 0.282276 6.4 875 0.282225 8.2 11.3 DF06 11_4 0.28251 1.3E 05 0.00104 0.44 1.02 697.4 0.282337 5.6 875 0.282225 9.6 11.2 DF06 11_12 0.28250 1.7E 05 0.00269 0.48 1.08 810.6 0.282266 6.8 875 0.282225 8.3 26.2 DF06 11_13 R 0.28254 1.2E 05 0.00082 0.39 0.98 0.282772 8.4 n/a n/a n/a 8.8 DF06 11_15 0.28251 1.4E 05 0.00188 0.45 1.05 774.9 0.282288 6.7 875 0.282225 9.0 19.9 DF06 11_18 R 0.28254 1.5E 05 0.00087 0.38 0.97 0.282772 8.1 1445 0.281864 24.1 9.4 DF06 11_20 0.28254 1.8E 05 0.00065 0.39 0.97 668.0 0.282355 6.1 875 0.282225 10.7 7.0 DF06 11_23 R 0.28247 1.8E 05 0.00126 0.50 1.08 0.282772 10. 6 815 0.282263 7.4 12.9 DF06 11_24 0.28247 3.1E 05 0.00204 0.51 1.10 619.7 0.282386 2.3 875 0.282225 7.9 21.2 DF06 11_25 0.28248 1.3E 05 0.00089 0.48 1.05 716.8 0.282325 5.1 875 0.282225 8.7 10.1 DF06 11_27 0.28250 1.0E 05 0.00059 0.44 1.02 666.4 0.2823 56 4.9 875 0.282225 9.6 6.1 DF06 11_33 0.28250 1.3E 05 0.00076 0.45 1.03 672.1 0.282353 4.8 875 0.282225 9.3 7.9 DF06 11_38 0.28251 1.1E 05 0.00073 0.44 1.02 833.2 0.282252 8.6 875 0.282225 9.5 8.3 DF06 11_42 R 0.28245 1.3E 05 0.00194 0.54 1.12 0.282772 11.2 1445 0.281864 20.9 19.4 DF06 11_44 0.28250 2.2E 05 0.00132 0.45 1.04 788.0 0.282280 7.2 875 0.282225 9.1 14.0 DF06 11_50 0.28244 2.7E 05 0.00085 0.55 1.12 731.3 0.282316 3.9 875 0.282225 7.1 12.2 DF06 11_52 0.28244 2.4E 05 0.00112 0.56 1.12 779.3 0.282285 4.8 875 0.282225 6.9 15.1 DF06 11_57 0.28258 2.9E 05 0.00222 0.33 0.94 690.7 0.282341 7.5 875 0.282225 11.7 25.2 DF06 11_59 0.28246 2.7E 05 0.00132 0.53 1.10 777.2 0.282287 5.3 875 0.282225 7.5 16.9 DF06 11_60 0.28247 2.9E 05 0.00070 0.49 1.06 668.8 0.282355 3.8 875 0.282225 8.4 9.3 DF06 11_62 0.28248 2.9E 05 0.00115 0.49 1.07 816.9 0.282 262 6.9 1445 0.281864 21. 0 15.1 DF06 11_66 0.28248 4.3E 05 0.00152 0.49 1.08 748.2 0.282305 5.4 875 0.282225 8.2 18.8 DF06 11_67 0.28243 3.2E 05 0.00091 0.5 6 1.13 792.1 0.282277 4.9 875 0.282225 6.8 12.1 DF06 11_70 0.28255 3.1E 05 0.00079 0.36 0.95 819.3 0.282260 9.9 875 0.282225 11.2 11.1

PAGE 144

144 Table 4 46. Continued. DF06 11_74 0.28255 2.4E 05 0.00063 0.36 0.95 680.9 0.282347 7.0 875 0.282225 11.3 8.0 DF06 11_7 8 0.28243 3.5E 05 0.00104 0.57 1.14 832.7 0.282252 5.6 875 0.282225 6.5 13.8 DF06 11_79 0.28251 2.6E 05 0.00087 0.43 1.01 767.1 0.282293 7.4 875 0.282225 9.8 10.6 DF06 11_82 0.28242 3.0E 05 0.00082 0.58 1.14 787.3 0.282280 4.6 875 0.282225 6.5 11.3 DF06 11_83 0.28258 2.7E 05 0.00096 0.32 0.92 746.8 0.282306 9.1 875 0.282225 12.0 12.8 DF06 11_84 R 0.28257 3.6E 05 0.00065 0.33 0.93 0.282772 7.2 n/a n/a n/a 8.9 DF06 11_87 0.28245 3.4E 05 0.00122 0.53 1.11 795.8 0.282275 5.6 875 0.282225 7.4 11.6 DF06 11 _91 0.28259 2.7E 05 0.00085 0.29 0.90 643.9 0.282370 7.5 875 0.282225 12.7 11.6 DF06 11_93 0.28236 4.2E 05 0.00114 0.68 1.23 793.8 0.282276 2.5 875 0.282225 4.3 14.9 DF06 11_102 0.28250 2.5E 05 0.00095 0.46 1.04 764.1 0.282295 6.6 875 0.282225 9.1 13.1 DF06 11_104 0.28241 2.8E 05 0.00090 0.60 1.16 768.6 0.282292 3.6 875 0.282225 6.0 11.9 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept Table 4 4 7 Lu Hf (MC ICP MS) analysis corrected results for sample DF06 1 7 from the Kaoko Belt. Sample 176 Lu / 177 Hf corrected error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent corr DF06 17_2 R 0.28184 1.9E 05 0.00071 1.51 1.94 0.282772 32.9 n/a n/a n/a 8.9 DF06 17_3 R 0.28183 1.1E 05 0.00064 1.52 1.94 0.282772 33.2 n/a n/a n/a 7.7 DF06 17_5 R 0.28182 1.0E 05 0.00062 1.54 1 .96 0.282772 33.7 n/a n/a n/a 7.7 DF06 17_6 R 0.28170 1.9E 05 0.00154 1.78 2.18 0.282772 37.9 n/a n/a n/a 16.2 DF06 17_7 R 0.28192 1.2E 05 0.00033 1.38 1.82 0.282772 30.3 n/a n/a n/a 3.9 DF06 17_10 R 0.28173 1.5E 05 0.00103 1.70 2.10 0.282772 36.8 n/a n/a n/a 11.5 DF06 17_12 R 0.28182 2.7E 05 0.00079 1.55 1.97 0.282772 33.6 n/a n/a n/a 9.0 DF06 17_13 R 0.28161 1.2E 05 0.00091 1.89 2.26 0.282772 41.1 n/a n/a n/a 10.1 DF06 17_14 R 0.28168 3.1E 05 0.00111 1.80 2.18 0.282772 38.7 n/a n/a n/a 12.3

PAGE 145

145 Table 4 47. Continued. DF06 17_15 R 0.28162 1.0E 05 0.00089 1.88 2.25 0.282772 40.8 n/a n/a n/a 9.2 DF06 17_18 R 0.28184 9.2E 06 0.00062 1.51 1.93 0.282772 33.0 n/a n/a n/a 6.9 DF06 17_19 R 0.28177 9.7E 06 0.00172 1.68 2.09 0.282772 35.6 n/a n/a n/a 16.3 DF06 17_21 R 0.28187 1.1E 05 0.00071 1.47 1.90 0.282772 32.0 n/a n/a n/a 8.0 DF06 17_23 R 0.28184 9.4E 06 0.00058 1.52 1.94 0.282772 33.1 n/a n/a n/a 6.7 DF06 17_28 R 0.28173 2.9E 05 0.00101 1.71 2.11 0.282772 36.8 n/a n/a n/a 11.3 DF06 17_29 R 0.28183 2.2E 05 0.00088 1.54 1.96 0.282772 33.3 n/a n/a n/a 9.8 DF06 17_30 R 0.28184 1.2E 05 0.00104 1.53 1.95 0.282772 32.9 n/a n/a n/a 11.4 DF06 17_31 R 0.28181 1.3E 05 0.00076 1.57 1.99 0.282772 34.1 n/a n/a n/a 8.8 DF06 17_34 R 0.28072 9.7E 06 0 .00057 3.27 3.44 0.282772 72.6 n/a n/a n/a 6.4 DF06 17_40 R 0.28195 2.5E 05 0.00116 1.35 1.80 0.282772 28.9 n/a n/a n/a 11.1 DF06 17_44 R 0.28083 1.7E 05 0.00138 3.17 3.37 0.282772 68.7 n/a n/a n/a 14.5 DF06 17_50 R 0.28174 5.5E 05 0.00135 1.72 2.12 0.282772 36.7 2075 0.281461 9.7 15.5 DF06 17_53 0.28167 2.8E 05 0.00095 1.80 2.19 2085.0 0.28 1454 6.2 2075 0.281461 6.0 13.9 DF06 17_54 0.28161 3.1E 05 0.00087 1.90 2.27 2085.0 0.28 1454 4.2 2075 0.281461 3.9 13.6 DF06 17_57 R 0.28176 3.1E 05 0.00084 1. 66 2.06 0.282772 36.0 2075 0.281461 10.5 12.9 DF06 17_58 R 0.28140 2.8E 05 0.00031 2.20 2.52 0.282772 48.7 2075 0.281461 2.3 5.3 DF06 17_60 0.28177 2.3E 05 0.00065 1.62 2.03 1621.5 0.282 1549 0.1 1910 0.281567 10.0 10.0 DF06 17_62 R 0.28183 3.1E 05 0.0 0045 1.52 1.94 0.282772 33.3 1910 0.281567 9.3 7.2 DF06 17_66 0.28164 3.6E 05 0.00131 1.87 2.25 1758.0 0.281664 2.5 2360 0.281276 11.3 18.9 DF06 17_69 0.28169 3.1E 05 0.00126 1.79 2.18 1744.0 0.281673 1.0 2360 0.281276 13.1 19.1 DF06 17_71 0.28165 2 .9E 05 0.00114 1.84 2.22 1831.0 0.281617 0.3 2360 0.281276 11.9 15.9 DF06 17_72 0.28179 2.4E 05 0.00106 1.61 2.02 1669 .0 0.28 1549 1.3 1910 0.281567 6.6 16.7 DF06 17_74 R 0.28141 2.9E 05 0.00064 2.20 2.52 0.282772 48.2 2075 0.281461 1.9 9.1 DF06 17_76 0.28159 2.7E 05 0.00133 1.95 2.32 1823.0 0.281623 2.9 2360 0.281276 9.4 19.2 DF06 17_77 R 0.28202 2.3E 05 0.00090 1.24 1.70 0.282772 26.7 1910 0.281567 16.0 13.4 DF06 17_79 0.28167 2.2E 05 0.00104 1.80 2.19 1756.5 0.281665 1.0 2360 0.281276 12.8 16.4

PAGE 146

146 Table 4 47. Continued. DF06 17_84 R 0.28185 2.1E 05 0.00089 1.50 1.93 0.282772 32.5 n/a n/a n/a 13.2 DF06 17_85 0.28186 2.0E 05 0.00074 1.49 1.91 1689.5 0.28 1549 4.5 1910 0.281567 9.4 13.1 DF06 17_86 R 0.28160 2.6E 05 0.00119 1.92 2.29 0.282772 41.4 2075 0.281461 5.0 16.5 DF06 17_90 R 0.28159 2.5E 05 0.00063 1.91 2.27 0.282772 41.7 1910 0.281567 0.9 9.4 DF06 17_94 0.28191 3.1E 05 0.00059 1.40 1.83 1555 .0 0.28 1549 3.5 1910 0.281567 11.5 9.3 DF06 17_96 0.28210 3.2E 05 0.00189 1.14 1.63 1232.5 0.28 1999 2.0 1230 0.282001 1.9 26.9 R denotes samples removed due to high error and/or discordance in U Pb analysis. *T Int reflects upper U Pb concordia intercept Table 4 4 8 Lu Hf (MC ICP MS) analysis cor rected results for sample DF06 08 from the Kaoko Be lt. Sample 176 Lu / 177 Hf correcte d error (+/ ) 176 Lu/ 177 Hf measured Model Age (CHUR) (Ga) Model Age (DM) (Ga) U Pb Age 176 Lu / 177 Hf (CHUR) T (U Pb Age) Epsilon Hf at T (U Pb Age) T (Int)* 176 Lu / 177 Hf (CHUR) T (int) Epsilon Hf at T (int) percent co rr DF06 08_3 R 0.28249 1.3E 05 0.00132 0.48 1.06 0.282772 10.1 n/a n/a n/a 12.4 DF06 08_4 R 0.28229 1.5E 05 0.00156 0.81 1.35 0.282772 17.2 n/a n/a n/a 15.7 DF06 08_7 R 0.28231 1.8E 05 0.00111 0.76 1.30 0.282772 16.3 n/a n/a n/a 16.6 DF06 08_9 R 0.28 213 1.9E 05 0.00035 1.04 1.52 0.282772 22.7 n/a n/a n/a 13.3 DF06 08_12 R 0.28239 2.5E 05 0.00042 0.63 1.17 0.282772 13.7 n/a n/a n/a 5.0 DF06 08_14 R 0.28250 1.4E 05 0.00049 0.45 1.02 0.282772 9.7 870 0.282228 9.6 5.2 DF06 08_15 0.28231 1.9E 05 0.0 0112 0.76 1.30 1032.5 0.282126 5.9 1130 0.282064 8.1 6.0 DF06 08_18 0.28250 1.7E 05 0.00213 0.47 1.07 634.3 0.282377 3.4 870 0.282228 8.6 13.4 DF06 08_21 0.28249 1.6E 05 0.00130 0.47 1.06 1017.0 0.282 136 11.6 1100 0.282083 13.5 23.8 DF06 08_23 0.28227 2 .4E 05 0.00019 0.80 1.32 1007.0 0.282142 4.5 1130 0.282064 7.3 14.9 DF06 08_25 0.28212 2.9E 05 0.00071 1.07 1.56 604.6 0.282395 10.1 870 0.282228 4.2 2.3 DF06 08_31 0.28244 1.7E 05 0.00070 0.55 1.11 874.4 0.282226 7.2 1130 0.282064 12.9 7.2 DF06 08_37 0.28258 2.5E 05 0.00226 0.33 0.95 625.5 0.282382 6.2 870 0.282228 11.6 8.4 DF06 08_38 0.28253 1.6E 05 0.00235 0.42 1.03 659.9 0.282360 4.9 870 0.282228 9.6 24.9

PAGE 147

147 Table 4 48. Continued. DF06 08_40 0.28257 1.2E 05 0.00065 0.34 0.93 647.6 0.282368 6.7 870 0 .282228 11.7 28.3 DF06 08_42 R 0.28246 1.6E 05 0.00126 0.52 1.09 0.282772 10.9 870 0.282228 8.3 8.2 DF06 08_52 0.28211 2.4E 05 0.00098 1.09 1.57 1044.0 0.282 119 0.9 1100 0.282083 0.3 13.8 DF06 08_57 0.28244 1.4E 05 0.00158 0.55 1.13 722.8 0.282321 3.6 870 0.282228 6.9 22.6 DF06 08_61 0.28261 4.2E 05 0.00581 0.33 1.01 780.2 0.282285 8.3 870 0.282228 10.3 53.1 DF06 08_63 R 0.28162 1.8E 05 0.00090 1.88 2.26 0.282772 40.9 2100 0.281444 6.1 13.0 DF06 08_65 0.28239 1.9E 05 0.00083 0.63 1.19 687.0 0.28234 3 1.1 870 0.282228 5.2 12.9 DF06 08_70 0.28165 2.5E 05 0.00095 1.83 2.21 1130.5 0.282064 15.4 1130 0.282064 15.4 13.7 DF06 08_71 0.28247 2.1E 05 0.00080 0.51 1.07 741.3 0.282309 5.1 870 0.282228 8.0 9.7 DF06 08_74 0.28225 1.9E 05 0.00057 0.85 1.37 108 5.5 0.282092 5.2 1130 0.282064 6.2 9.7 DF06 08_76 0.28249 2.5E 05 0.00114 0.47 1.05 693.2 0.282340 4.8 870 0.282228 8.7 18.0 DF06 08_77 0.28174 2.2E 05 0.00112 1.70 2.10 1474.5 0.281845 4.9 1380 0.281906 7.0 17.2 DF06 08_80 0.28247 2.2E 05 0.00161 0.5 1 1.09 1087.0 0.282091 12.2 1130 0.282064 13.2 21.7 DF06 08_81 R 0.28222 2.6E 05 0.00143 0.92 1.44 0.282772 19.5 870 0.282228 0.3 20.5 DF06 08_84 0.28237 3.4E 05 0.00132 0.68 1.23 1044.0 0.282 119 7.8 1100 0.282083 9.1 19.9 DF06 08_87 0.28204 3.6E 05 0 .00135 1.21 1.69 1043.0 0.282 119 3.6 1100 0.282083 2 .4 22.0 DF06 08_88 0.28232 2.5E 05 0.00169 0.76 1.31 1017.0 0.282 136 5.4 1100 0.282083 7.3 23.2 DF06 08_90 0.28210 2.1E 05 0.00093 1.10 1.59 988.0 0.282 154 2.5 1100 0.282083 0. 0 12.9 DF06 08_100 0.2 8192 2.2E 05 0.00059 1.38 1.82 1131.0 0.282064 5.6 1130 0.282064 5.6 8.2 DF06 08_103 R 0.28147 2.5E 05 0.00057 2.09 2.43 0.282772 45.9 2100 0.281444 1.0 9.1 DF06 08_106 0.28245 2.5E 05 0.00095 0.53 1.10 745.9 0.282306 4.7 870 0.282228 7.5 12.5 DF06 0 8_110 0.28189 2.3E 05 0.00052 1.43 1.87 1453.5 0.281859 0.4 1380 0.281906 1.2 8.3 DF06 08_111 0.28232 2.6E 05 0.00104 0.75 1.29 1041.5 0.282120 6.2 1130 0.282064 8.2 15.8 R denotes samples removed due to high error and/or discordance in U Pb analysis. T Int reflects upper U Pb concordia intercept

PAGE 148

148 Table 4 49 Sm/Nd corrected results for the Northern Zone of the Congo craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* DF06 21 7.55 32.42 0.1408 0.512292 6.6 0. 93 1.99 1.56 2.2 DF09 36 0.30 0.68 0.2675 0.512241 7.6 0.83 2.57 21.66 13.3 *T equals 625 Ma Table 4 50 Sm/Nd corrected results for the Central Zone of the Congo craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* CZ49 0.73 5.37 0.0822 0.511545 21.2 1.45 1.97 1.73 12.1 CZ29 13.18 97.87 0.0814 0.511199 27.9 1.90 2.36 2.13 18.8 CZ40 4.37 22.89 0.1155 0.511553 21.0 2.03 2.64 2.32 14.6 CZ38b 5.66 29.57 0.1158 0.511729 17.6 1.71 2.37 2.04 11.2 CZ5 3b 7.49 36.36 0.1246 0.512214 8.1 0.89 1.75 1.41 2.4 CZ35 5.22 25.43 0.1241 0.512272 7.0 0.76 1.64 1.30 1.2 *T equals 625 Ma Table 4 51 Sm/Nd corrected results for the Southern Zone of the Congo craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* SZ47b 6.99 33.94 0.1246 0.512211 8.2 0.89 1.76 1.41 2.5 SZ90 3.97 16.79 0.1430 0.512260 7.2 1.06 2.13 1.68 3.0 SZ80 5.24 20.76 0.1527 0.512209 8.2 1.48 2.62 2.08 4.8 SZ78 9.75 47.18 0.1250 0.512150 9.4 1 .03 1.88 1.53 3.7 SZ77 6.38 31.40 0.1229 0.512117 10.0 1.07 1.89 1.55 4.2 SZ65a 5.14 24.51 0.1268 0.512133 9.7 1.09 1.95 1.59 4.2 IE4 9.44 44.12 0.1294 0.512209 8.2 0.96 1.87 1.50 2.9 IE1a 7.75 36.91 0.1270 0.512145 9.5 1.07 1.93 1.57 4.0 DF0 9 14 5.71 18.20 0.1896 0.512907 5.4 6.77 2.18 0.86 5.9 DF06 22 7.10 33.53 0.1281 0.512187 8.6 0.99 1.88 1.51 3.2 DF09 02 6.56 28.99 0.1369 0.512134 9.7 1.28 2.21 1.80 5.0 SZ13 7.25 37.45 0.1171 0.512168 9.0 0.89 1.69 1.37 2.7 *T equals 625 Ma

PAGE 149

149 Table 4 5 2 Sm/Nd corrected results for the Southern Margin Zone of the Kalahari craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* DF09 10 5.87 22.95 0.1548 0.512231 7.8 1.47 2.66 2.10 4.5 DF09 11 4.34 23.27 0.1127 0.511831 15.6 1.46 2.14 1.82 8.9 DF09 07 8.58 40.83 0.1271 0.511903 14.2 1.61 2.37 2.00 8.7 DF09 09 3.92 15.54 0.1526 0.512648 0.4 0.06 1.46 0.98 3.8 SZ99b 7.27 35.51 0.1238 0.511956 13.1 1.42 2.19 1.84 7.4 SZ87b 7.21 35.02 0.1245 0.51196 9 12.9 1.41 2.19 1.83 7.2 *T equals 625 Ma Table 4 5 3 Sm/Nd corrected results for the Naukluft Nappes of the Kalahari craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* DF06 48 7.08 36.04 0.1188 0.511975 1 2.8 1.29 2.04 1.71 6.6 DF09 16 3.14 5.71 0.3332 0.512104 10.3 0.59 1.37 56.95 21.3 *T equals 625 Ma Table 4 5 4 Sm/Nd corrected results for the Southern Foreland Zone of the Kalahari craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (Lin) T DM ( ) E(t)* DF06 49 7.25 35.82 0.1224 0.512164 9.1 0.97 1.80 1.46 3.2 *T equals 625 Ma Table 4 5 5 Sm/Nd corrected results for the Kaoko belt of the Congo craton. Sample Sm (ppm) Nd (ppm) 147Sm /144Nd 143Sm /144Nd E(0) T CHUR T DM (L in) T DM ( ) E(t)* DF06 08 5.89 27.37 0.1302 0.512255 7.3 0.87 1.80 1.43 2.1 *T equals 625 Ma Table 4 56 Pb/Pb analysis data for the Northern Zone of the Congo craton Corrected isotope ratios and errors Sample 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error DF06 21 19.538 0.00150 15.712 0.00130 39.032 0.0032 DF09 36 18.216 0.00110 15.644 0.00097 37.955 0.0023

PAGE 150

150 Table 4 57. Pb/Pb analysis data for the Central Zone of the Congo craton. Corrected isotope ratios and errors Sampl e 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error CZ49 17.674 0.00120 15.662 0.00120 37.876 0.0025 CZ29 30.658 0.00300 16.485 0.00180 56.113 0.0062 CZ40 18.315 0.00110 15.767 0.00110 39.074 0.0032 CZ38b 19.276 0.00110 15.792 0.00094 39.763 0.0 026 CZ53b 19.365 0.00110 15.715 0.00093 38.976 0.0027 CZ35 19.132 0.00085 15.670 0.00073 38.591 0.0024 Table 4 5 8 Pb/Pb analysis data for the Southern Zone of the Congo craton. Corrected isotope ratios and errors Sample 206 Pb/ 204 Pb error 207 P b/ 204 Pb error 208 Pb/ 204 Pb error SZ47b 19.144 0.00093 15.695 0.00082 38.700 0.0023 SZ90 18.825 0.00072 15.688 0.00067 38.504 0.0018 SZ80 19.318 0.00074 15.726 0.00071 38.930 0.0021 SZ78 19.071 0.00054 15.716 0.00049 38.781 0.0016 SZ77 19.703 0.00094 15.728 0.00073 39.000 0.0018 SZ65a 18.424 0.00070 15.673 0.00060 38.203 0.0017 IE4 20.092 0.00110 15.764 0.00099 39.934 0.0025 IE1a 18.413 0.00057 15.669 0.00054 38.072 0.0017 DF09 14 18.956 0.00110 15.619 0.00096 38.623 0.0023 DF06 22 20.238 0.00130 15.776 0.00110 40.078 0.0034 DF09 02 19.324 0.00090 15.729 0.00074 38.985 0.0020 SZ13 19.209 0.00190 15.707 0.00170 39.122 0.0050 Table 4 5 9 Pb/Pb analysis data for the Southern Margin Zone of the Kalahari craton. Corrected isotope ratios and err ors Sample 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error DF09 10 19.276 0.00100 15.702 0.00077 39.314 0.0019 DF09 11 18.813 0.00075 15.689 0.00062 39.476 0.0017 DF09 07 18.675 0.00052 15.691 0.00050 39.114 0.0014 DF09 09 18.057 0.00055 15 .644 0.00061 37.872 0.0017 SZ99b 19.650 0.00072 15.763 0.00077 39.928 0.0020 SZ87b 19.188 0.00075 15.732 0.00062 39.302 0.0018 DF09 03 19.385 0.00072 15.740 0.00057 39.709 0.0014

PAGE 151

151 Table 4 60 Pb/Pb analysis data for the Naukluft Nappes of the Kalahari craton. Corrected isotope ratios and errors Sample 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error DF06 48 21.398 0.00180 15.859 0.00130 43.655 0.0039 DF09 16 18.619 0.00130 15.692 0.00110 38.599 0.0029 Table 4 61 Pb/Pb analysis data for the Southern Foreland Zone of the Kalahari craton. Corrected isotope ratios and errors Sample 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error DF06 49 19.426 0.00100 15.709 0.00089 39.131 0.0023 Table 4 62 Pb/Pb analysis data for t he Kaoko belt of the Congo craton. Corrected isotope ratios and errors Sample 206 Pb/ 204 Pb error 207 Pb/ 204 Pb error 208 Pb/ 204 Pb error DF06 08 18.909 0.00110 15.675 0.00110 38.439 0.0032

PAGE 152

152 Table 4 6 3 Major oxide element analysis data for the Dama ra Orogen. NZ Central Zone Southern Zone Sample DF06 21 CZ49 CZ29 CZ40 CZ38b CZ53b CZ35 SZ47b SZ90 SZ80 SZ78 SZ77 wt% Al 2 O 3 7.41 2.65 7.37 8.96 17.15 11.47 9.59 15.14 18.08 13.12 19.11 18.78 CaO 14.04 0.05 0.22 1.99 0.94 2.22 2.25 0. 76 1.15 2.40 2.13 6.37 Fe 2 O 3 3.07 0.58 3.18 3.33 9.46 5.86 3.81 7.47 8.97 6.53 10.27 7.83 K 2 O 1.05 2.22 1.04 4.38 3.01 1.97 2.39 4.07 5.62 2.07 4.13 4.35 MgO 1.71 0.05 0.14 1.49 3.86 2.24 1.32 3.52 4.34 2.58 4.41 5.45 MnO 0.26 0.01 0.01 0.06 0.13 0.09 0.05 0.07 0.08 0.14 0.20 0.06 Na 2 O 2.12 0.01 3.90 0.76 1.29 2.72 2.25 1.39 1.17 2.70 2.70 1.52 P 2 O 5 0.16 0.01 0.06 0.10 0.07 0.22 0.11 0.20 0.29 0.24 0.27 0.17 SiO 2 57.31 95.09 83.74 77.25 61.10 71.57 75.90 64.17 55.59 69.15 54.42 50.63 TiO 2 0.66 0.02 0.48 0.37 0.83 0.97 0.49 0.91 1.08 0.86 1.20 0.91 LOI 12.42 0.17 0.20 1.23 2.43 0.61 2.59 1.72 3.35 0.53 1.78 3.44 Total 100.20 100.78 100.32 99.92 100.25 99.92 100.75 99.43 99.72 100.31 100.62 99.51

PAGE 153

153 Table 4 6 3 C ontinued Southern Zone Southern Margin Zone Naukluft Nappes SFZ Kaoko Belt Sample SZ65a IE4 IE1a DF06 22 SZ13 SZ99b SZ87b DF06 48 DF06 49 DF06 08 wt% Al 2 O 3 19.15 14.44 19.74 14.02 10.38 19.12 17.99 17.12 11.56 11.36 CaO 0.50 1.29 2.35 2.18 1.03 3.28 1.65 0.82 2.07 1.77 Fe 2 O 3 8.36 7.15 10.42 7.33 4.64 9.64 9.74 8.38 3.80 5.11 K 2 O 5.26 3.52 4.04 3.12 2.51 3.88 2.86 3.63 3.67 1.97 MgO 4.00 2.76 5.18 2.87 1.59 4.05 4.23 4.43 1.32 2.29 MnO 0.12 0.10 0.14 0.12 0.06 0.20 0.27 0.04 0.06 0.09 Na 2 O 1.09 2.54 3.06 2.43 2.63 2.13 2 .26 1.25 1.39 2.62 P 2 O 5 0.22 0.44 0.23 0.21 0.18 0.13 0.14 0.12 0.15 0.14 SiO 2 57.27 63.91 50.86 65.93 75.81 55.94 58.63 58.97 73.23 72.43 TiO 2 0.97 1.21 1.15 0.89 0.71 0.91 0.94 0.77 0.61 0.64 LOI 2.34 1.68 2.09 0.77 1.12 1.32 2.10 5.22 2.87 1.03 Tot al 99.28 99.05 99.26 99.88 100.66 100.59 100.80 100.76 100.72 99.45

PAGE 154

15 4 Table 4 64 Trace element analysis data for the Damara Orogen. Northern Zone Central Zone Southern Zone Sample DF06 21 DF09 36 CZ49 CZ29 CZ40 CZ38b CZ53b CZ35 SZ47b SZ90 SZ80 SZ 78 mg/kg Rb 39.90 13.92 80.29 123.69 725.90 234.13 91.42 366.22 151.53 224.77 96.54 163.96 Ba 192.80 30.94 321.44 163.93 4734.25 677.49 495.81 4361.14 664.02 1078.70 389.12 740.39 Th 9.46 0.50 2.72 182.33 61.88 14.62 11.69 38.41 12.03 14.97 8.72 12.58 U 2.86 0.21 0.46 21.34 3.51 3.17 2.43 10.08 2.95 2.53 2.27 4.57 Nb 11.98 1.84 0.92 116.37 55.40 15.16 16.21 43.07 15.31 18.88 13.04 22.39 Ta 0.87 0.12 0.10 12.21 4.78 1.44 1.17 3.39 1.22 1.41 1.00 1.69 La 35.53 1.10 9.34 754.25 140.27 36.83 39.70 124.69 36.26 17.19 17.10 49.67 Ce 74.92 2.07 12.67 1501.20 289.30 72.72 68.70 286.77 75.61 28.90 81.33 88.69 Pb 16.29 4.36 9.95 32.28 135.16 25.66 16.65 77.65 21.85 21.12 14.18 22.79 Pr 8.99 0.31 1.62 149.35 31.85 8.46 9.86 31.29 9.05 4.74 5.50 1 2.00 Sr 560.47 14.32 16.36 83.70 581.09 81.04 190.51 696.47 80.41 68.59 128.46 117.90 Nd 35.09 1.36 5.30 462.41 113.88 31.24 37.97 119.53 34.39 18.58 20.53 44.82 Zr 190.80 13.41 30.69 197.00 331.00 66.26 198.50 698.16 156.41 130.65 82.82 124.09 Hf 5.56 0.38 0.99 7.12 9.95 1.91 5.82 20.36 4.44 3.69 2.40 3.35 Sm 8.44 0.30 0.77 63.72 22.56 6.29 8.12 25.35 7.56 4.54 5.50 9.79 Eu 1.57 0.13 0.18 7.00 3.65 1.57 1.48 4.74 1.32 0.91 1.14 1.86 Dy 7.14 0.18 0.44 24.03 16.81 4.23 6.17 16.74 4.94 4.63 4.86 8.54 Y 41.50 0.54 1.60 114.72 96.51 21.94 32.64 93.36 26.57 25.31 22.59 52.01 Ho 1.39 0.04 0.08 4.09 3.28 0.80 1.16 3.16 0.95 0.89 0.90 1.75 Yb 3.91 0.06 0.26 8.61 8.78 2.27 3.13 8.84 2.80 2.09 2.18 6.90 Lu 0.57 0.01 0.05 1.09 1.25 0.34 0.47 1.37 0.42 0.33 0.32 1.05

PAGE 155

155 Table 4 64. C ontinued Southern Zone Southern Margin Zone Sample SZ77 SZ65a IE4 IE1a DF09 14 DF06 22 DF09 02 SZ13 DF09 10 DF09 11 DF09 07 DF09 09 mg/kg Rb 180.75 200.68 136.55 200.57 1.00 127.53 60.95 106.31 64.30 15 8.56 212.14 11.98 Ba 743.84 1224.41 733.58 672.08 19.01 934.06 215.59 799.33 740.11 980.60 1035.21 83.43 Th 13.28 16.27 16.84 13.89 1.02 10.55 10.17 10.31 2.80 11.65 15.86 0.92 U 4.75 2.98 3.84 3.56 0.29 2.69 2.51 1.97 0.73 2.75 1.34 0.26 Nb 14.48 15.8 0 20.14 20.72 14.15 15.47 12.14 13.08 8.66 11.06 15.93 14.38 Ta 1.14 1.00 1.54 1.54 0.83 1.19 0.98 0.95 0.60 1.11 1.43 0.91 La 35.64 25.84 45.86 40.63 9.85 34.80 29.20 41.45 16.88 27.02 43.77 9.96 Ce 75.34 55.89 97.69 81.36 25.24 73.33 67.89 88.75 39.58 60.52 93.58 24.11 Pb 19.06 74.67 14.88 50.61 1.85 9.35 16.54 15.61 3.12 17.69 22.37 13.94 Pr 8.86 6.60 11.63 10.27 3.75 8.82 7.68 9.93 5.18 6.48 10.92 3.34 Sr 254.13 70.74 121.11 150.12 422.54 100.30 77.43 256.41 55.66 75.12 132.93 359.41 Nd 33.21 25. 27 43.96 38.19 18.20 33.66 28.99 37.33 22.95 23.27 40.83 14.92 Zr 62.51 166.51 185.79 155.40 12.11 135.47 130.69 137.66 30.95 90.56 118.36 16.22 Hf 1.78 4.64 5.36 4.29 0.51 3.81 3.80 3.87 0.95 3.02 3.48 0.58 Sm 7.01 5.54 9.90 8.54 5.71 7.49 6.56 7.61 5. 87 4.34 8.58 3.92 Eu 1.40 1.09 1.80 1.65 1.86 1.50 1.32 1.52 1.61 0.80 1.72 1.40 Dy 5.37 3.34 8.17 6.77 8.10 5.02 6.54 6.15 6.74 2.90 6.71 3.90 Y 29.87 15.45 43.98 37.94 49.06 25.82 38.00 34.30 37.88 17.09 36.24 20.21 Ho 1.06 0.57 1.56 1.31 1.70 0.92 1 .33 1.20 1.36 0.59 1.26 0.73 Yb 2.72 1.71 3.83 3.74 4.41 2.34 4.24 3.13 3.03 1.79 2.73 1.41 Lu 0.39 0.30 0.55 0.53 0.61 0.37 0.67 0.43 0.42 0.28 0.37 0.19

PAGE 156

156 Table 4 64. C ontinued Southern Margin Zone Naukluft Nappes SFZ Kaoko Belt Sample SZ99b SZ87 b DF09 03 DF06 48 DF09 16 DF06 49 DF06 08 mg/kg Rb 180.27 143.09 57.89 161.91 70.90 137.90 90.40 Ba 557.36 498.82 302.51 501.62 274.58 851.11 467.98 Th 14.19 14.79 9.52 15.54 5.46 9.56 8.30 U 3.04 2.42 1.49 2.68 1.21 2.55 2.63 Nb 14.43 16.79 8 .51 14.85 5.56 9.81 11.85 Ta 1.11 1.31 0.66 1.06 0.42 0.83 0.87 La 41.51 42.33 10.42 47.10 17.21 42.87 29.59 Ce 80.52 83.85 42.11 97.01 35.21 68.49 64.78 Pb 13.55 21.41 9.74 5.38 14.64 17.32 22.15 Pr 9.66 10.07 2.70 11.08 4.08 10.22 7.52 Sr 284.81 14 5.05 28.98 19.04 425.98 66.47 130.22 Nd 35.76 37.09 10.41 41.70 15.19 38.78 29.53 Zr 89.17 111.17 65.74 142.41 61.90 189.24 142.68 Hf 2.51 3.11 1.94 4.30 1.78 5.37 4.09 Sm 7.63 8.07 2.36 8.46 3.14 8.07 6.65 Eu 1.47 1.55 0.51 1.50 0.86 1.45 1.19 Dy 6. 33 6.63 2.46 6.14 2.54 6.65 5.34 Y 38.73 41.00 14.63 34.13 14.19 38.81 29.03 Ho 1.25 1.31 0.53 1.20 0.51 1.33 1.03 Yb 3.24 3.51 1.61 3.50 1.59 3.57 2.84 Lu 0.47 0.50 0.24 0.52 0.27 0.53 0.41

PAGE 157

157 Figure 4 1 Zircon geochronology analysis for sample BDG06 91 from the Mulden Formation in the Northern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. A B C N=17

PAGE 158

158 Figure 4 2 Zircon geochronology analysis for sample DF09 26 from the Kuiseb Schist in the Northern Zone. A) U Pb con cordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B D C N=52 DM E N=17

PAGE 159

159 Figure 4 3 Zircon geochronology analysis for sample DF09 30 from the Kuis eb Schist in the Northern Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. C D A B N=10 E N=6

PAGE 160

160 Figure 4 4 Zircon geochronology an alysis for sample DF09 44 from the Nosib Group in the Central Zone. A) U Pb concordia diagram with discordia line B) U Pb concordia diagram showing discordia line. Gray ovals indicate discordant grains which were removed. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. D C A B N=53 N=20 E

PAGE 161

161 Figure 4 5 Zircon geochronology analysis for sample CZ29 from the Khan Formation in the Central Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia li ne. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogr am of concordant grains. C D A B N=7 E N=7

PAGE 162

162 Figure 4 6. Zircon geochronology analysis for sample CZ40 from the Rossing Formation in the Central Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb probability dens ity plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. A B N=13

PAGE 163

163 Figure 4 7 Zircon geochronology analysis for sample CZ53b from the Tinkas Formation in the Central Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for g rains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D E N=64 N=42 DM

PAGE 164

164 Figure 4 8 Zircon geochronology analysis for sample CZ35 from the Karibib Formation in the Central Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram from 1300 to 500 Ma. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D E N=77 N=46 DM

PAGE 165

165 Figure 4 9 Zircon geoch ronology analysis for sample DF06 22 (SZ40) from the Kuiseb Schist in the Matchless Amphibolite Belt of the Southern Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line C ) U Pb probability dens ity plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D E N=16 N=15 DM

PAGE 166

166 Figure 4 10 Zircon geochronology analysis for sample SZ13 from the Kuiseb Schist in the Southern Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram from 1200 to 500 Ma. Gray ovals indicate discordant grains which were removed. C) U Pb concordia diagram showing discordia line. D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb a ges used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D E F N=45 N=43 DM

PAGE 167

167 Figure 4 11 Zircon geochronology analysis for samp le DF09 12a from the Hakos Formation in the Southern Margin Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D E N=47 N=23 DM

PAGE 168

168 Figure 4 1 2 Zircon geochronology analysis for sample DF09 04 from the Naos Diamictite in the Southern Margin Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B ) U Pb probability density plot of concordant grains. 206 Pb/ 23 8 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. C ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. D ) Lu Hf DM model age histogram of concordant grains. A B C D N=41 N=13

PAGE 169

169 Figur e 4 1 3 Zircon geochronology analysis for sample DF06 40 from the Kuibis Formation in the Southern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C) U Pb concordia diagram showing discordia lines. D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individ ual grains. F ) Lu Hf DM model age histogram of concordant grains. C A B E F N=36 N=15 DM D

PAGE 170

170 Figure 4 14 Zircon geochronology analysis for sample DF06 41 from the Schwarzrand Subgroup in the Southern Foreland Zone. A) U Pb concordia diagram. Gr ay ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C) U Pb concordia diagram showing discordia line. D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D N=47 E F N=18 DM

PAGE 171

171 Figure 4 1 5 Zircon geochronology analysis for sample DF0 6 46 from the Schwarzrand Subgroup in the Southern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. A B C N=16

PAGE 172

172 Figure 4 1 6 Zircon geochronology analysis for sample DF06 45 from the Fish River Formation in the Southern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram from 1200 to 400 Ma. Gray ovals indicate discordant grains which were removed. C) U Pb concordia diagram showing discordia line. D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D E F N=45 N=17

PAGE 173

173 Figure 4 1 7 Zircon geochronology analysis for sample DF06 44 from the Fish River Formation in the Southern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia dia gram from 1200 to 300 Ma. Gray ovals indicate discordant grains which were removed. C) U Pb concordia diagram showing discordia line. D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for gr ains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D N=40 E F N=15 DM

PAGE 174

174 Figure 4 18 Zircon geochronology analysis for sample DF06 43 fr om the Fish River Formation in the Southern Foreland Zone. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram from 1200 to 300 Ma. Gray ovals indicate discordant grains which were removed. C) U Pb concordia diagram showing discordia line. D) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E) Epsilon Hf values of concordant grains plotted against U Pb ages of individu al grains. F) Lu Hf DM model age histogram of concordant grains. A B C D N=36 E F N=21 DM

PAGE 175

175 Figure 4 1 9 Zircon geochronology analysis for sample DF09 37 from a granitic pluton in the Northern Zone. A) U Pb concordia diagram. Gray ovals indicate discordant gr ains which were removed. B) U Pb concordia diagram from 1200 to 300 Ma. Green ovals represent grains displaying crystallization ages. Blue ovals represent grains displaying lead loss. Gray ovals indicate discordant grains which were removed. C) U Pb concor dia diagram showing discordia line. D ) Mean age of crystallization diagram. A B C D

PAGE 176

176 Fi gure 4 20 Zircon geochronology analysis for sample DF09 43 from the grainitic gneissic basement of the Central Zone. A) U Pb concordia diagram Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram from 1100 to 750 Ma with discordia. Gray ovals indicate discordant grains which were removed. C ) Mean age of crystallization diagram. D ) Epsilon Hf values of concordant g rains plotted against U Pb ages of individual grains. D) Lu Hf DM model age histogram of concordant grains. A B C D E N=18

PAGE 177

177 Figure 4 2 1 Zircon geochronology analysis for sample DF06 18 from the Hoanib River Group in the Kaoko Belt. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line s C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grai ns >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D E N=33 N=20

PAGE 178

178 Figure 4 2 2 Zircon geochronology analysis for sample DF09 38 from the Ogden Mylonite in the Kaoko Belt. A) U Pb concordia diagram showing discordia line. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 23 8 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D N=48 N=18 E

PAGE 179

179 Figure 4 2 3 Zircon geochronology analysis for sample DF09 3 9 from the Ogden Mylonite in the Kaoko Belt. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability densi ty plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM model age histogram of concordant grains. A B C D N=23 N=9 E

PAGE 180

180 Figure 4 2 4 Zircon geochronology analysis for sa mple DF06 11 from the Coastal Terrane in the Kaoko Belt. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed. B) U Pb concordia diagram showing discordia line. C ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. D ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. E ) Lu Hf DM mode l age histogram of concordant grains. A B C D E N=69 N=30

PAGE 181

181 Figure 4 2 5 Zircon geochronology analysis for sample DF 06 08 from the Khumib Terrane in the Kaoko Belt. A) U Pb concordia diagram. Gray ovals indicate discordant grains which were removed B) U Pb concordia diagram from 1200 to 500 Ma. Gray ovals indicate discordant grains which were removed. C) U Pb concordia diagram showing discordia line s D ) U Pb probability density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D N=74 E F N=27 DM

PAGE 182

182 Figure 4 2 6 Zircon geochronology analysis for sample DF 06 17 from the Hoanib River Formation in the Kaoko Belt. A) U Pb concordia diagram showing discordia line. B) U Pb concordia diagram showing discordia line. C) U Pb concordia diagram showing discordia line. D ) U Pb proba bility density plot of concordant grains. 206 Pb/ 238 U ages used for grains <1 Ga, 207 Pb/ 206 Pb ages used for grains >1 Ga. E ) Epsilon Hf values of concordant grains plotted against U Pb ages of individual grains. F ) Lu Hf DM model age histogram of concordant grains. A B C D N=33 N=12 E F

PAGE 183

183 Figure 4 2 7 Comprehensive plot of all epsilon Hf data fo r the Congo and Kalahari cratonic margins Nama Group metasediments are plotted separately because they may incorporate Congo source terrains. Kaoko Belt samples are included i n Congo data. Figure 4 2 8 Comprehensive plot of all Sm Nd Dm model ages against relative distance to the SZ SMZ boundary, the suture between the Congo and Kalahari cratons. DM

PAGE 184

184 Figure 4 2 9 Comprehensive plot of all epsilon Nd data for the Congo and Kalahari cratonic margins. Figure 4 30 Pb/Pb plot. A) Kalahari cratonic margin Pb/Pb data. B) Congo cratonic margin Pb/Pb data. A B

PAGE 185

185 Figure 4 3 1 A) Bivariate oxide plot of major element oxide percentages from the Kalaha ri cratonic margin. B) Bivariate oxide plot of major element oxide percentages from the Congo cratonic margin Figure 4 3 2 A) Rare earth element (REE) diagram of all pelitic samples from the Congo and Kalahari cratonic margins, inclusiv e of the Kaoko Belt. B) REE diagram of all semi pelitic samples from the Congo and Kalahari cratonic margins, inclusive of the Kaoko Belt. C) REE diagram of all psammitic samples from the Congo and Kalahari cratonic margins, inclusive of the Kaoko Belt A B A B C

PAGE 186

186 C HAPTER 5 DISCUSSION Detrital Zircon Analyses Stratigraphic Comparison Fo rmations deposited between ca. 7 00 and 6 00 Ma on the Congo cratonic margin (the Karibib Formation, Gauss Formation, Tinkas Formation and Kuiseb Schist) show similar detrital zircon ag e populations. The four samples collected in the Central Zone (CZ) from strata in the Ro ssing Formation, Khan Formation and Etusis Formation, which were all deposited prior to ca. 700 Ma, as well as the local granitic gneiss basement, display major populat ions of zircons at 980 1100 Ma (Figure 5 1 ) S amples from strata deposited at 740 750 and 770 Ma in the Rossing Khan and Etusis Formations in the Central Zone as well as a sample from the Kuiseb Schist in the Matchless Amphibolite Belt deposited at 635 Ma in the Southern Zone and samples from the Mulden and Kuiseb Fms. in the Northern Zone display another major zircon age population at 2100 1900 Ma. All samples deposited after ca. 700 Ma along the Congo cratonic margin also co ntain zircons with ages of ca. 8 00 550 Ma, regardless of zone (Figure 5 2 ; Figure 5 3 ) This is consistent with widespread dispersal of detritus across the Congo margin platform and shelf after ca. 700 Ma. The sedimentary rocks deposited between 700 and 580 Ma along the margin of t he Kalahari Craton lack the 600 800 Ma zircon population, suggesting different sedimentary source terran e s at ca. 600 Ma. The Southern Margin Zone (SMZ) samples that were deposited prior to 600 Ma (Naos Diamictite and Kudis Formation) do not contain the ca 600 800 Ma population seen in the younger stratigraphy (Figure 5 4 ) The younger Nama Group strata in the Southern Foreland Zone (SFZ) samples, however, exhibit a population of zircons at 700 550 Ma (Figure 5

PAGE 187

187 5 ) although it is not as prominent as those of the Cong o margin samples. These zircons may have been derived from the Congo margin sediments that were uplifted within the Damara Orogen and deposited in the Nama foreland basins. The Hf isotope data from zircons from the Northern Zone (NZ ; Figure 5 6 ) Central Zone (CZ ; Figure 5 7 ) and Southern Zone (SZ ; Figure 5 8 ) are very similar. These zircons typically 5 and +10, although zircons from the SZ samples also give values as low as 10. Formations deposited prior to ca. 700 Ma in the CZ of the Damara belt (the Rossing Formation, Khan Formation, Etusis Formation, and gneissic basement) 23 to 13 for grains with U Pb ages of ca. 1050 1000 Ma and display Lu Hf DM model ages between 2600 and 2000 Ma (Figure 5 13c) The gneissic basement has a major component of grains with Lu Hf DM model ages of ca. 2100 Ma, the sample from the Etusis Formation has a model age population at ca. 2300 Ma and the sample from the upper most member of the Nosib Group has major model age populations at ca. 2500, 2200 and 2100 2000 Ma for grains with U Pb ages o f ca. 1050 1000 Ma. This is in 10 to +11, and mid Mesoproterozoic to Neoproterozoic Lu Hf DM model ages displayed by formations deposited after 700 Ma across the Congo cratoni c margin in the Karibib Formation, Gauss Formation, Tin kas Formation and Kuiseb Schist (Figure 5 6 through Figure 5 8 ) This indicates that zircons of similar age derived from sources with a more evolved Hf isotope composition were deposited into the forma tions deposited prior to ca. 700 Ma than those deposited after ca. 700 Ma. Four of the five samples deposited after ca. 700 Ma in the NZ, CZ and SZ display similar major Lu Hf DM model age

PAGE 188

188 populations at ca. 900 1400 Ma (Figure 5 13c) indicating derivation from mainly Meso and Neo Proterozoic provinces. Sample DF06 22 from the Kuiseb Schist in the Matchless Amphibolite Belt displays major Lu Hf DM model age populations at ca. 2300, 1100 1000 and 650 Ma and minor populations at ca. 3100, 2650 2500 and 2000 M a, which indicate addition from source terranes of Paleoproterozoic and Archean age. The zircon Hf isotope data from samples of similar stratigraphic age from the SMZ vary significantly from those of the Congo margin strata (NZ, CZ, and SZ). The stratigra phically older sample, DF09 5 to +6 for grains giving U Pb ages primarily between 1500 and 1000 Ma, whereas the stratigraphically younger sample, DF09 2 and + 3 for grains with U Pb ages of 1 500 1000 Ma (Figure 5 9 ). Both SMZ samples display populations of Lu Hf DM model ages at ca. 1750 1500 Ma and at ca. 1900 1850 Ma, that are distinct from samples are similar to those found in the younger strata of the Congo marginal samples ( Figure 5 10a ) whereas the Lu Hf DM model ages for grains collected in all formations in the SFZ are dissimilar to each other and to other zones (Figure 5 10 b ; Figure 5 14 ) The of SFZ samples typically range from 10 to +4 for grains with U Pb ages of ca. 730 550 Ma and primarily from 8 to +10 for grains with U Pb ages of ca. 1485 840 14 and 23 and U Pb ages of 900 and 954 Ma, respe ctively. The remainder of the grains display U Pb ages between ca. 3335 and 9 to + 6 The upper most Fish River Group sample, DF06 43, has major Lu Hf DM model age populations at ca. 1500, 1350 1400 and 1 1 00 Ma from grains with U P b ages between 1150 and 800 Ma (Figure 5 14c) The underlying

PAGE 189

189 Fish River Group sample, DF06 44, has major Lu Hf DM model age populations at ca. 1900 1700 and 1500 1100 Ma for U Pb ages between ca. 1050 and 400 Ma. The dis similarity between both nd Lu Hf DM model ages of samples collected in the SFZ and those displayed by zircons of the Congo marginal strata and the di fference of Hf data from zircons collected in the SMZ likely indicates a difference in source material. Nama Group The Neoproterozoi c Nama Group overlies the Kalahari ba sin. Paleocurrent analyses suggest that the basal member of the Nama Group (Kuibis Formation) was derived from Kalahari basement and the overlying Schwarzrand Group was derived from the Damara Belt (Blanco et al., 2009) The detrital zircons in the sample from the Kuibis Formation, DF06 40, are all Late Archean to Mesoproterozoic in age and do not display the Neoproterozoic signature found in younger strata, consistent with a basement source (Figure 5 5 ). The two Schwarz rand Group samples display similar Paleo to Mesoproterozoic age signatures, but the younger sequence also contain s a Neoproterozoic population. The lower Schwarzrand Group sample, DF06 41, was deposited at ca. 580 Ma and has no Neoproterozoic signature I n contrast, the upper Schwarzrand Group sample, DF06 46, was deposited at ca. 560 Ma and displays a major population at ca. 1000 1100 Ma and a minor population at ca. 600 Ma. The shift in populations between the 580 Ma strata and the 560 Ma strata are cons istent with the addition of recycled zircons from the sedimentary rocks eroded from the orogenic belts. Paleocurrent data suggest that the lower members of the overlying Fish River Group are derived from the Gariep Belt, which lies to the west of the Kalah ari craton, while the

PAGE 190

190 upper members are derived from the Matchless Amphibolite Belt and the Kuiseb Schist (Blanco et al., 2009). The sample from the lower Fish River Formation, DF06 45, demonstrates only one major age pop ulation at ca. 560 53 0 Ma, which is consistent with the timing of formation of the Gariep Belt. The samples from the upper Fish River Formation, DF06 44 and DF06 43, display very similar Neoproterozoic age populations to those from the sample collected in the Kuiseb Schist, DF06 22. The shi fts in age populations with changing depositional periods reflect changes in source terranes and tectonic events reflected by new populations on the cratonic margins. The major shift in age populations between the ca. 600 Ma strata and the ca. 545 Ma strat a most probably reflects the growth of the Damara orogen during the amalgamation of the Congo and Kalahari cratons. The Hf values of the Nama Group samp les are all relatively similar Lu Hf DM model ages, however, vary significantly for the various age populations due to their changing source terrains (Figure 5 10b 15 to +10 for grains with U Pb age s between ca. 1400 and 550 Ma and range from 10 to +3 for grains with U Pb ages of ca. 2850 1850 Ma ( Figure 5 10a ; above). The sample collected in the basal Kuibis Formation, DF06 40, gives model ages greater than ca. 1 500 Ma for zircons displaying U Pb ages ranging from ca. 2700 to 1080 Ma, consistent with a Kalahari basement source. The sample collected in the overlying Schwarzrand Formation, DF06 41, was derived from the Damara Belt and displays major Lu Hf DM model ag e populations at ca. 1600 1 5 00 1 2 50 1400 and 1100 900 Ma as well as minor populations at ca. 3700, 2950, 2800, 2650, 2500, 2300 and 2000 Ma with U Pb ages ranging from ca. 3330 to 800 Ma (Figure 5 14c) The addition

PAGE 191

191 of Meso and N eoproterozoic model ages to the Paleoproterozoic and Archean ages of the basement terrain indicates a younger source, consistent with the collisional Damara Belt. The sample collected in the basal portion of the Fish River Formation, DF06 45, displays a major Lu Hf DM model age pop ulation at ca. 1200 1400 Ma, similar to that of the Schwarzrand Formation sample, and has U Pb ages primarily between ca. 650 and 530 Ma. This similarity indicates comparable Hf ratios being incorporated into the Mesoproterozoic source terrains for both fo rmations, consistent with the collisional Gariep Belt contributing to the Fish River Formation sediments. As described above, the two samples collected from the upper Fish River Formation, DF06 44 and DF06 43, display model age populations similar to each other and to the sample collected in the Kuiseb Schist of the CZ. DF06 44 has major Lu Hf DM model age populations at ca. 2000 1600 and 1500 1100 Ma and a minor population at ca. 2300 Ma for grains with U Pb ages primarily between ca. 1060 and 520 Ma. DF06 43 has major Lu Hf DM model age populations at ca. 15 00 1400 1300 and 1 1 00 Ma and minor populations at ca. 2600 2300 and 1950 1650 Ma for grains with U Pb ages primarily between ca. 1150 and 550 Ma. These data are consistent with a Matchless Amphibolite Be lt source for the uppermost Fish River Formation samples. The differences in all Lu Hf DM model age populations throughout the depositional history of both cratons and the slight variation in Pb ages are consistent wit h discrete source terrains for the Congo and Kalahari sedimentary rocks prior to ca. 545 Ma. Granitic Rocks A Cambrian granitic pluton (sample DF09 37) contains one population of magmatic grains, which display a weighted mean age of crystallization using 206 Pb/ 238 U

PAGE 192

192 of 511.3 6.6 Ma with 95% confidence, and another population of inherited grains (Figure 4 19d) The inherited grains underwent partial lead loss during magma genesis and show a lower concordia intercept of 41 99 and an upper intercept of 604 22 Ma (Figure 4 19b c) Cambrian magmatic zircons are probably typical of the age populations of grains that were eroded from Pan African plutons within the Damara Orogen. This reflects the zircon populations that would be expected to be present in for eland basins. For instance, Cambrian granitic plutons like this one may represent sources for Damara aged grains in the younger Nama Group. The granitic basement of the CZ, however, as described above, reflects one of the basement inliers of the region and their probable contributions. Comparis on b y Structural Zone U Pb age populations of detrital zircons from samples collected in the NZ, CZ and SZ are all similar (Figure 5 11 ) The samples collected in the SZ and NZ display prominent populations at ca. 205 0 1950 Ma and samples from the NZ, CZ, and SZ all have major population s at ca. 1100 1000 Ma and at 850 600 Ma. This is consistent with similar sedimentary sources and dispersal systems along the same margin. The age populations of samples collected in the SMZ and SFZ are dissimilar to those collected from the NZ, CZ, and SZ and to each other (Figure 5 12 ). The SMZ samples display populations at ca. 1 9 00, 1350 1300 1250, 1200 110 0 and 10 5 0 Ma. The youngest population is similar to a population displayed by the samples from the SZ, CZ, and NZ, the other populations, however, are not observed in any other strata in the orogen. The samples collected in the SFZ display age populations at ca.1150 1050, 925, 850 and

PAGE 193

193 6 00 54 0 Ma. The 1150 1050 Ma population is roug hly similar to th ose from the SMZ, SZ, CZ and NZ. The lack of an 800 600 Ma population in the SMZ is distinct. The disparity between the SMZ sediments and those of the SZ, CZ and NZ, which were part of the Congo margin, imply that the amalgamation of the C ongo and Kalahari cratons occurred after the deposition of the SMZ sediments at approximately 590 Ma. The SFZ sediments, however, are of the Nama Group and were deposited at ca. 550 530 Ma (Blanco et al., 2009). The younger sediments found there may record recycling of zircon grains through the Damara Belt. Zircon Hf isotopic data is similar for all NZ, CZ and SZ samples. The NZ, CZ, and 10 and +14 for all U Pb ages (Figure 5 13a ). Samples with U Pb ages of ca. 800 10 to +10, with a much higher proportion of positive val ues than negative, ex cept one grain from the CZ with a U Pb age of 514 Ma and 26 Grains with U Pb ages of ca. 900 arily between 0 and +10, except one grain from the 26 and a U displaying U Pb ages of 1225 975 Ma range from 23 to 10 and from 5 to +12. A majority of the highly negative values are displayed by grains collected in the CZ and the Kaoko Belt, implying that the source of the Mesoproterozoic zircons in the CZ and Kaoko strata includes a higher proportion of ancient recycled continental crust. Samples with U Pb ages of ca. 1475 1340 2130 1750, 2600 and 2980 Ma typically 8 to + 10. Outliers include severa l grains with U Pb ages of 1411 and Hf values of +10 to +16, a grain with an Hf value of +23 and a U Pb age of 1411 Ma, one gr a 13 and a U Pb age of 1340 Ma and another grain

PAGE 194

194 Pb age of 2024 Ma. Oth er than in the Mesoproterozoic grains, each of the zones appears to have experienced similar degrees of mixing of broadly similar crustal sources in the sedimentary environment. Lu Hf DM model ages in the NZ, CZ, and SZ detrital zircons are dominated by ca. 1450 900 Ma populations though the population displayed in the NZ samples is less pervasive than those in the CZ and SZ samples (Figure 5 13b c Lu Hf DM model ages for the SMZ and SFZ, however, are not similar to each other or to those of the Congo cratonic margin ( Figure 5 14a ) 10 and +5 for grains with U Pb ages of ca. 900 500 Ma and with values ranging from 23 to +10 for grains with U Pb ages of 1100 1000 Ma. Three grains with U Pb ages of ca. 1480 1100 2.4 to +3 and two grains at ca. 1400 have Hf values between +7 and +10 Grains with U of 7 to +2, and three grains with U Pb ages of ca. 2700, 2845 and 3335 M values of +2, +3 and 5, respectively. The metasediments of the Congo margin display Pb ages between 1150 and 1000 Ma. This implies different, more primitive material was bein g incorporated into the Congo margin than into the Kalahari margin at that time. The SFZ zircons are dominated by grains with model ages of ca. 1200 1600 Ma, which overlaps the age tween 6 and +6 for grains with U 3, 2 and +2.5 for the three grains with U Pb ages of ca. 2000 to 1900 Ma. The SMZ has a major Lu Hf DM model age population at ca. 2000 1500 Ma, slightly overlapping the SFZ population but dissimilar to all of the Congo marginal strata populations (Figure 5 14b

PAGE 195

195 c ) The disparities in Hf isotope data between the zones of the Congo and Kalahari cratonic margins imply differing sedimentary histories. The sources incorporated int o the two cratonic margins contain different Hf signatures, implying that the Congo and Kalahari margins were not connected prior to ca. 550 600 Ma. Kaoko Belt Zircons from samples collected in the Kaoko Belt, which is the northern branch of the Damara Oro gen along the present western edge of the Congo craton, tend to display U Pb age populations and isotopic values similar to those of the CZ of the Congo cratonic margin. A probability density plot of detrital zircon U Pb age populations of samples collecte d in the Kaoko Belt ( Figure 5 15 ) shows that samples collected in the Coastal Terrane and the Khumib Fm display a major population at ca. 550 850 Ma Samples collected in the lower Ogden Mylonite sequence and in the Hoanib Fm. display a major population at 1850 1900 Ma The upper Ogden Mylonite samples display only one major population at 2550 2600 Ma The Paleoproterozoic population is consistent with the plutonic and metamorphic rocks of the Kamanjab Inlier, and is unique to the Kaoko Belt. The Meso and Neoproterozoic age populations are consistent with those of the other C ongo marginal strata. Hf isotopic data for the Kaoko detrital zircons are indistinguishable from those of samples collected al ong the Congo cratonic margin The 1000 Ma, from 18 to +6 at ca. 1000 1150 Ma, and 10 to 0 at ca. 1150 2600 Ma (Figure 5 16a ) 10, 26, +12 and +2 with U Pb ages of ca. 600, 810, 1090 and 1875 Ma, respectively. Congo marginal strata. Sample DF06 11 from the Coastal Terrane Group is the

PAGE 196

196 exception; it displays of +1 to +10 and is consistent with an arc source. The belt displays major Lu Hf DM model age populations at ca. 950 and 1000 1150 Ma and minor populations at ca. 1800 1950 and 2050 2550 Ma (Figure 5 16b ) The similarity of Lu Hf DM model ages displayed in the Congo margin strata and the Kaoko Belt implies common source terrains for the two regions. The U Pb age populations and associated Hf isotope data of Kaoko Belt detrital zircons are dissimilar to those of the Kalahari marginal strata (SMZ and SFZ). Comparison b y Craton A comprehensive probabil ity density plot of all Congo and Kalahari cratonic margin samples (Figure 5 17 ) reveals disparate age populations present on the margins of the cratons. Detrital zircons from both cratons display U Pb age populations at ca. 1100 1000 Ma, though the popula tion displayed in the samples collected in the Congo marginal strata is proportionally larger, and minor populations at ca. 2 05 0 1 9 00 Ma. The Congo marginal strata, however, have a major age population at ca. 800 600 Ma, which the Kalahari marginal strata lack. The samples collected in the Nama Group of the Kalahari margin display a minor U Pb age population at ca. 700 600 Ma and a major population at ca. 54 0 Ma. The Congo strata, however, give only a minor population at ca. 500 Ma, which are likely metamor phic zircons from the Damara Orogen. The Kalahari marginal strata display major populations at 1200 1300 and 1 9 00 Ma, whereas the Congo has only minor populations at these ages. The Nama Group samples, however, display a major population at 1300 Ma, probab ly indicating a common source. Overall U Pb age populations prior to ca. 800 Ma have similarities in the Congo and

PAGE 197

197 Kalahari margins with differing proportions of similar age populations More recent populations, however, display minor similarities but are characteristically quite distinct. for the Congo and Kalahari margin strata ( Figure 4 27 ) Mid Paleoproterozoic to Archean aged zircons display similar, predominantly nega cratonic margins. The Congo marginal strata display major Lu Hf DM model age populations at 1300 1100 and 900 1000 Ma and minor population s at ca. 2400 2000 and 1 6 00 1400 Ma ( Figure 5 18 ) The Mesoproterozoic to early Neoproterozoic aged 23 to +14. Samples collected on the margin of the Kalahari craton have major Lu Hf DM age population s at ca. 2000 1 5 00 Ma and minor populations at ca. 3000 2300 Ma (Figure 5 18 ) The major Kalahari po pulations do not overlap th ose of the Congo margin strata. Mesoproterozoic to early Neoproterozoic aged zircons collected on the Kalahari margin display clustered, 10 and +10. Mid to late Neopro terozoic aged zircons with major Lu Hf DM model age populations at ca. 1350 900 Ma and minor populations at ca. 650 and 450 Ma collected on the Congo cratonic between 0 and +10. Mid to late Neoproterozoic zircons collected in the Kalahari marginal strata, however, are less abundant than those collected on the Congo margin 10 to +2.5. Despite minor similarities, the Congo and Kalahari craton margin strata display dissimilar Hf isotope data for zircons within each age population younger than ca. 1600 Ma. The

PAGE 198

198 discrepancies in the zircon U Pb and Hf populations argue that the Congo and Kalahari cratons were separated du ring deposition of the 600 800 Ma sedimentary sequences. Source Terrains Congo Craton The detrital zircon age populations displayed by samples collected in Congo marginal strata (NFZ, NZ, CZ, SZ, KZ) are consistent with source terrains found within the Con go craton (Figure 5 19 ). Erosion of the Archean and Proterozoic basement and magmatic terrains followed by sedimentary transport and deposition of the grains into sedimentary rocks would account for all of the zircon age populations seen in the marginal st rata (a summary of Congo Precambrian provinces is given in the Appendix). The major U Pb age population at ca. 1100 1000 Ma in the Karibib Fm. and Mulden Fm. in the NZ, in the Khan Fm., Etusis Fm. and granitic basement in the CZ, and in the Ku iseb Schist in the SZ is consistent with contributions from intracratonic basement inliers and possibly input from granitic plutons of the Irumide Belt. The Neoproterozoic zircons (ca. 800 600 Ma) in the Kuiseb and Karibib Fm s of the NZ and Mulden Fm. in the NFZ, in the Gauss and Tinkas Fms. in the CZ and in the Kuiseb Schist in the SZ are probably derived from widespread volcanic provinces along the southern margin of the Congo craton including those in the Lufilian a rc and locally the Naauwpoort rhyolite The Congo margin detrital zircons in the Kuiseb Fm. of the NZ the Khan and Etusis Fms. of the CZ and the Kuiseb Schist of the SZ display U Pb age populations at 2050 Ma and the Mulden Fm. of the NFZ and the Kuiseb Schist of the SZ display minor U Pb ag e populations at ca. 2600 Ma and 2500 Ma respectively, all of which are consistent with sources from the Angola basement. The Matchless Amphibolite Belt in

PAGE 199

199 the Kuiseb Schist also displays a minor population at ca. 2150 Ma, which could have been derived from sources within the Ubendian bel t and one at ca. 2950 Ma, consistent with xenocrystic cores seen in the Angola Kasai craton Detrital zircons from the Matchless Amphibolite Belt in the Kuiseb Schist of th e SZ, the Rossing Fm. in the CZ and the Mulden Fm. of the NFZ display a U Pb age population at ca. 20 0 0 1950 Ma, pote ntially representing contributions from one or a combination of: granitoids from the Angola basement, the Kibaran basement, and granites and gneisses from the Irumide belt. Samples collected in the Karibib Fm., Kuiseb Fm., the Mulden Fm. the Rossing Fm. an d the Kuiseb Schist display min or age populations at ca. 1900 1800 Ma the Matchless Amphibolite Belt in the Kuiseb Schist displays one at ca. 1800 1700 Ma and the Kuiseb Schist displays a population at ca. 1400 1450 ; these populations are consistent with sediments derived from the Epupa basement and metamorphic complex The sample from the Kuiseb Fm. displays a minor age population at ca. 1400 1 3 50 Ma, revealing possible contributions from one or more terrains including the Kuene intrusive complex (anorthosite), the Orue metamorphic terrane and/or the Kibara magmatic belt Detrital zircons from the Gauss Tinkas and Rossing Formations in the CZ display minor age populations at ca. 1100 950 Ma while zircons collected in the Rossing Fm. in the CZ display minor populations at ca. 875 and 825 Ma, these populations are consistent with contributions from local basement inliers and/or the Zambezi belt. Kalahari Crato n The detrital zircon age populations from Kalahari marginal strata (SMZ and SFZ) are consistent with source terrains found within the Kalahari craton (Figure 5 19 ;

PAGE 200

200 summary of Kalahari Precambrian terrains is given in the Appendix). Samples collected in th e Naos Diamictite and the Kudis Fm. in the SMZ both display a major U Pb age population at ca. 1300 1200 Ma, consistent with a contribution from the felsic volcanics of the Rehoboth Inlier and possibly from the Natal province. The samples collected in the Nama Group all display a zircon age population at ca. 1150 1050 Ma, consistent with the timing of pluton emplacement in the Namaqua and Natal provinces as well as in the Choma Kaloma block. The samples collected in the upper Schwarzrand and all Fish River Formations within the SFZ display a n age population at ca. 600 5 4 0 Ma. This age population is not found anywhere else in the Kalahari craton but is consistent with the timing of deposition of the Damara Sequence on the Congo margin, the formation of the Naauwpoort rhyolite and the timing of formation of the Gariep belt. This suggests that most of the Nama Group zircons were derived from the uplifted Damara orogen. The lack of a 600 500 Ma population in the Kuibis Fm. and the lower Schwarzrand Fm. the oldest sequenc e s of the Nama Group, implies that the Damara Sequence sediments were not spread across both sides of the Damara orogen prior to the deposition of the Schwarzrand Fm. at ca. 580 Ma. This implies that the Congo cratonic margin was not joined to the Kalahari cratonic margin by the Damara belt prior to ca. 580 Ma. Samples collected from the Kuibis Fm. in the SFZ display a major U Pb age population at ca. 2700 Ma, consistent with contributions from the Zimbabwe and/or Kaapvaal cratons. Detrital zircons collec ted in the Kuibis and Schwarzrand Fms. display minor U Pb age populations at ca. 2150 2000 Ma, consistent with a period of magmatism and metamorphism in the Limpopo belt. The Kudis Fm. and Naos Diamictite display U Pb age populations at c a. 1950 1850 Ma, consistent with derivation

PAGE 201

201 from the volcano sedimentary Magondi belt and/or the Rehoboth inlier. The Naos Diamictite also display s a major population at ca. 1800 1750 Ma, consistent with plutonic emplacement ages of the Reho both Inlier. Detrital zircon U Pb analyses on samples collected in the Kudis Fm. and Naos Diamictite display minor age populations at ca. 1550 1450, 1350, 1350 1200 and 1 15 0 1 050 Ma. The 1550 1450 Ma population is consistent with a period of magmatism in t he AAB and the 1 15 0 1 05 0 Ma population is consistent with granitic pluton emplacement in the Namaqua and Natal province s The 1350 Ma population is also present in the sample collected in the Kuibis Fm. and is consistent with derivation from either granito ids of the Sinclair group or those of the Choma Kaloma block. The U Pb age population at 1350 1200 Ma is consistent with a contribution from either the Rehoboth Inlier or the Natal province. The two samples from the lower Fish River Fm. in the NFZ display minor U Pb age populations at ca. 1000 950 Ma and the upper and lower Fish River Fm. samples as well as the lower Schwarzrand F m. sample display a minor population at ca. 900 850 Ma. The population at ca. 1000 950 Ma is consistent with the timing of low T metamorphics in the Natal province, whereas the population at ca. 900 850 Ma is consistent with sediments derived from the Zambezi belt. Marginal sediments from the Congo and Kalahari are both consistent with entirely intracratonic sources but the possibility of other, external sources cannot be dis carded. Proportions of Crustal Recycling ratios varied significantly between the Congo and Kalahari cratonic margins (Figure 4 27 ). Late Paleoproterozoic zircons from both ues, implying that the Paleoproterozoic

PAGE 202

202 orogenic belts incorporat ed higher proportions of recycled crust than juvenile crust. From ca. 1825 1500 Ma in the Congo margin strata and 1875 1600 Ma in the Kalahari cratonic margin strata the U Pb age data set dis plays a gap, indicating a relatively inactive period with little or no crust formation along the margin of either craton. After ca. 1600 marginal strata. From 1500 1150 Ma tectonoma gmatic processes along the margin of the Congo craton incorporated predominantly recycled crust, implying the incorporation of older, reworked crust. At ca. 1150 950 Ma magmatism in a source terrain of the Congo margin incorporated roughly equal amounts of juvenile and recycled crust, most likely indicating a high degree of mixing during the orogenic events culminating with the amalgamation of Rodinia. Magmatism in a source terrain of the Kalahari margin, on the other hand, incorporated predominantly juveni le crust from ca. 1600 1100 Ma and roughly equal proportions of recycled and juvenile crust at ca. 1100 950 Ma. This is consistent with either a rifting or accretionary environment and with the timing of the amalgamation of Rodinia. During Neoproterozoic m agmatism at ca. 900 600 Ma the Congo craton incorporated primarily juvenile crust whereas the Kalahari craton incorporated primarily recycled crust during this time. This implies different conditions in the source terrains of the two cratonic margins durin g the time of Rodinia, its rifting and the early stages of the amalgamation of Gondwana. Differing crustal generation conditions in the sources of the cratonic margins imply that the cratons were not joined at the time of the Rodinia supercontinent.

PAGE 203

203 Sedime ntary Mixing The similarity in Sm/Nd values ( Figure 4 29 ) and of common Pb values (Figure 4 30) along the margins of the Congo and Kalahari cratons implies mixing of sedimentary sources of various ages along the margins of both continents. Trace and major element signatures across the cratons are consistent with the rift drift sedimentary history common to both cratons ( Figure 4 31 and Figure 4 32; e.g. Keppie et al., 2008; Vijaya Kumar et al., 2008). The similarity in isotopic and elemental ratios in the m eta sedimentary sequences is probably the result of stream processes and sediment transport over widespread areas. Paleocurrent data suggest many across craton river channels, allowing for younger sedimentary sequences to incorporate sediment from intracra tonic sources on both the Congo and the Kalahari cratonic margins (Blanco et al., 2009). Weathering of the older metasedimentary sequences and subsequent transport through stream processes would also cause sedimentary mixing and homogenize isotopic ratios Elemental and isotopic components held in the clay fraction of the sediments would break down during metamorphism, unlike the refractory elements in the detrital zircon population. The exchange of the elements in the clay fraction during metamorphism woul d cause the elemental and isotopic mixing seen along both cratonic margins. The U Pb and Lu Hf isotope populations would be preserved during this process because they are contained within the more durable zircon population. Both cratons display such a vari able array of sources that distinguishing between the isotopic and elemental ratios of the two cratons is impossible. Unfortunately the trace and major element data describe only the similarity

PAGE 204

204 in original depositional processes and later metamorphic sedim entary breakdown and are not a viable means of determining the timing of amalgamation.

PAGE 205

205 Figure 5 1. Detrital zircon U Pb age populations from the Central Zone on the Congo cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga. Figure 5 2. Detrital zircon U Pb age populations from the Northern Zone and Northern Fore land Zone on the Congo cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga.

PAGE 206

206 Figure 5 3 Detrital zircon U Pb age populations from the Southern Zone on the Congo cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for conc ordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga. Figure 5 4. Detrital zircon U Pb age populations from the Southern Margin Zone on the Kalahari cratonic margin. Populations include concordant grains and upper intercept ages o f discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga.

PAGE 207

207 Figure 5 5. Detrital zircon U Pb age populations from the Nama Group of the Southern Forelan d Zone on the Kalahari cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga. Figure 5 6. Hf isotope data for the Northern Zone on the Congo margin A) Epsilon Hf values plotted against concordant U Pb ages. B) Probability density plot of Lu Hf DM model ages. A B DM

PAGE 208

208 F igure 5 7. Hf isotope data for the Central Zone on the Congo Margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. Figure 5 8. Hf isotope data for the Southern Zone on the Congo Margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. A B A B DM DM

PAGE 209

209 Figure 5 9. Hf isotope data for the Southern Margin Zone on the Kalahari Margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. Figure 5 10 Hf isotope data for the Nama Group in the Southern Foreland Zone on the Kalahari Margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. A B A B DM DM

PAGE 210

210 Figure 5 11. Probability d ensity plot of U Pb age populations in all zones in the Congo cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb a ges used for concordant grains >1 Ga. Figure 5 12. Probability density plot of U Pb age populations in all zones in the Kalahari cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plo tted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga.

PAGE 211

211 Figure 5 13. Hf isotope data for the zones of the Congo cratonic margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. C) Lu Hf DM model ages plotted against U Pb ages. A B DM C

PAGE 212

212 Figure 5 14. Hf isotope data for the zones of the Kalahari cratonic margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. C) Lu Hf DM model ages plotted against U Pb ages. A B DM C

PAGE 213

213 Figure 5 15. Probability density plot of U Pb age populations in the Kaoko belt of the Congo cratonic margin. Populations in clude concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 207 Pb/ 206 Pb ages used for concordant grains >1 Ga. Figure 5 16. Hf isotope data for the Kaok o belt on the Congo cratonic margin. A) Epsilon Hf values plotted against U Pb ages. B) Probability density plot of Lu Hf DM model ages. A B DM

PAGE 214

214 Figure 5 17. Probability density plot of U Pb age populations in all zones of the Congo and Kalahari cratoni c margins the Neoproterozoic Nama Group and the Kaoko belt of the Congo cratonic margin. Populations include concordant grains and upper intercept ages of discordant grains that plotted along discordia. 206 Pb/ 238 U ages used for concordant grains <1 Ga, 20 7 Pb/ 206 Pb ages used for concordant grains >1 Ga. Figure 5 18. Probability density plot of Lu Hf DM model age populations in all zones of the Congo and Kalahari cratonic margins the Neoproterozoic Nama Group and the Kaoko belt of the Congo cratonic margin.

PAGE 215

215 Figure 5 19. Geologic map of southern Africa. Displays locations of source terrains for the Congo and Kalahari cratons. Modified from Kr ner and Cordani, 2003.

PAGE 216

216 CHAPTER 6 CONCLUSION The results of this study reveal that the provenance was diff erent for the Congo and Kalahari cratonic margins during most of the Proterozoic. Only in strata deposited in the latest Neoproterozoic Cambrian, during the amalgamation of Gondwana, were the detrital zircon signatures of the Congo and Kalahari cratonic ma rgins similar. These findings suggest that the Congo and Kalahari cratons were independent of one another prior to the Damara Orogeny in the latest Neoproterozoic Cambrian times. Detrital zircons were obtained from metasedimentary rocks deposited during t he Neoproterozoic early Cambrian along the margins of the Congo and Kalahari cratons. U Pb and Hf isotopic analyses revealed distinct zircon age populations, Lu Hf DM model ages and extents of crustal recycling throughout deposition across the cratonic margin. Younger sediments deposited on the Kalahari margin (the Nama Group) display evidence of sedimentary contributions and zircon deposition consistent with syndepositional strata on the Co ngo margin. The Neoproterozoic Nama Group metasediments have zircon age populations consistent with those of the Damara Sequence of the Congo margin strata and were likely derived from the uplifted Damara Orogen. Both cratonic margins reflect contributions from Archean to late Proterozoic strata intermingled across sedimentary sequences, all of which are consistent with intracratonic terra nes present on the individual craton. Pb Pb, Sm Nd and trace element data are indistinguishable across the sampled Damar a Belt transect due to breakdown and mixing of the clay fraction during metamorphism and weathering This study therefore confirms that the Congo and Kalahari cratons were most likely separated from one another at the time of Rodinia. Their incongruent det rital zircon U

PAGE 217

217 Pb and Hf isotope compositions describe separate evolutionary paths and make it unlikely that the Congo and Kalahari were joined before the Pan African Damara roles and amount of participation in the Rodinia supercontinent.

PAGE 218

218 APPENDIX: G EOCHRONOLOGIC PROVIN CES Kalahari Craton Interior Provinces Namaqua Natal Province The western Namaqua belt is separated from the eastern Natal belt by a terrane boundary overlai n by Phanerozoic sediments. The Namaqua sector of the province consists of five predominantly Paleoproterozoic aged terranes bound by late Mesoproterozoic shear zones (Jacobs et al., 2008). The Paleoproterozoic terranes are intruded by granitic to charnock itic plutons with ages ranging from ca. 1200 1030 Ma (Jacobs et al., 2008). The peak UHT regional metamorphic event in the Namaqua belt and an accompanying pulse of magmatism is thought to have occurred at ca. 1060 1030 Ma (Robb et al., 1999), though some Central Namaqua metamorphics were dated at ca. 1015 Ma (Meert and Torsvik, 2003). In Eastern Namaqua the Namaqua belt is unconformably overlain by the bimodal volcanics and immature sediments of the Koras Group. The largely undeformed Koras Group was zirco n dated at 1171 7 Ma (Jacobs et al., 2008). The Natal sector of the province consists of three juvenile Mesoproterozoic terranes that were probably formed as individual island arcs at ca. 1250 1100 Ma (Jacobs et al., 2008). The Natal belt is characterize d by thin skin tectonics, contains remnants of ophiolites and was thrust NE over the Kaapvaal craton at ca. 1135 Ma (Krner and Cordani, 2003; Jacobs et al., 2008). The deformation was accompanied by the intrusion of granitoids and charnockites with peak g ranulite grade metamorphism between ca. 1070 and 1030 Ma (Jacobs et al., 2008 and references therein). Microgranite dykes continued to be emplaced through ca. 1020 Ma and some low temperature thermal perturbations have been dated at ca. 900 Ma (Jacobs et a l., 2008).

PAGE 219

219 Rehoboth Inlier The poorly exposed Rehoboth Subprovince forms the basement of the metamorphosed volcano sedimentary Rehoboth Group. The basement consists of ca. 2600 Ma rocks of variable composition and is intruded by 1800 2000 Ma calc alkaline granitoids (Krner and Cordani, 2003). A migmatitic orthogneiss dated at ca. 1784 Ma (Jacobs et al., 2008) from the Rehoboth area of central Namibia is overlain by a volcanic member of the Rehoboth Group with a U Pb crystallization age of ca. 1782 Ma (Jac obs et al., 2008 and references therein). Large scale plutonism, with compositions ranging from ultramafic to granitic, accompanied and followed the deposition of the Rehoboth Group at ca. 1780 1765 Ma (Jacobs et al., 2008). Emplacement of the layered mafi c Alberta Complex, the most prominent member of the Rehoboth Inlier, is estimated at ca. 1759 Ma based on a seven point Sm/Nd isochron (Becker and Brandenburg, 2002). Becker and Brandenburg (2002) and Jacobs et al. (2008) argue that the geology of the Reho both Group is demonstrative of the transition from a volcanic arc to an arc/back arc environment. Felsic volcanic rocks overlie interbedded volcanic and sedimentary sequences and unconformably overlie the Paleoproterozoic basement in the north. The felsic volcanics yield U Pb zircon crystallization ages of 1225 10 Ma and 1226 11 Ma (Becker et al., 2006). The volcanics are overlain by a distal sedimentary sequence and a younger interbedded quartzite and metapelite layer. These sequences are overlain by a nother igneous layer zircon dated at ca. 1100 Ma (Becker et al., 2006). Sinclair Group The volcanic and intrusive rocks of the Sinclair Group are exposed along the western margin of the Kalahari craton. The Sinclair Group is underlain by isolated occurren ces of metamorphosed igneous and sedimentary rocks

PAGE 220

220 thought to correspond to the Kairab Complex in the west. The Kairab Complex is intruded by the arc related, post kinematic Aunis tonalite that gives a U Pb zircon age of 1376.5 +1.7/ 1.6 Ma (Becker et al., 2006). The calc alkaline magmatic rocks of the Sinclair Group are of low metamorphic grade and are interpreted as being ca. 1100 Ma, broadly coeval to the Namaqua tectonic period though genetically unrelated (Krner and Cordani, 2003). The Sinclair Group is intruded by three separate cycles of granitoids emplaced from ca. 1360 1247 Ma (Becker et al., 2006). Zimbabwe Kaapvaal Craton The Zimbabwe craton is comprised of three generations of granite greenstone terrains emplaced at ca. 3500, 2900 and 2700 Ma a nd a granitic suite emplaced at ca. 2600 2500 Ma (Zeh et al., 2009). Local Early Archean remnants have been zircon dated at ca. 3800 Ma (Zeh et al., 2009). The Limpopo Belt forms the suture between the Archean Zimbabwe and Kaapvaal cratons, which were con nected by ca. 2000 Ma to form the Zimbabwe Kaapvaal craton (ZKC; Jacobs et al., 2008; Zeh et al., 2009). The predominantly gneissic Limpopo Belt experienced magmatism and metamorphism between ca. 2750 and 2600 Ma and again at ca. 2060 to 2020 Ma (Zeh et al ., 2009). The Kaapvaal craton is comprised of three large tonalite trondhjemite granodiorites (TTG) terrains formed from ca. 3700 to 2800 Ma (Zeh et al., 2009). The terrains amalgamated at approximately 3230 and 2900 Ma (Zeh et al., 2009), forming the Arc hean nucleus of the Kaapvaal craton. A younger generation of plutons was emplaced across the craton at ca. 2800 2650 Ma (Zeh et al., 2009). Umkondo Igneous Province. The Umkondo Igneous Province is an extensive network of dolerite sills thought to be the r esult of the up welling of a large mantle plume

PAGE 221

221 at ca. 1100 Ma (Gose et al., 2006; Jacobs et al., 2008). The Umkondo dolerites have U Pb zircon crystallization ages of 1112 0.5 to 1108 0.9 Ma, implying emplacement within a relatively short time period (Gose et al., 2006). The Umkondo province is genetically related to dolerites in the Grunehogna province in East Antarctica. The dolerites in both locations are overlain by the remnants of flood basalts genetically similar to the dolerites (Gose et al., 20 06). Paleoproterozoic belts. A Paleoproterozoic volcano sedimentary belt, termed the Magondi Belt, lies adjacent to the Zimbabwe craton. The Magondi Belt displays medium grade metamorphism and interbedded syntectonic granitoids that give U Pb zircon crysta llization ages of ca. 1950 Ma (Jacobs et al., 2008). Jacobs et al. (2008) suggest that the Magondi belt may represent an island arc/back arc complex that collided with the ZKC. Southwest of the ZKC lies the Paleoproterozoic Kheis Belt, a volcano sedimentar y sequence of poorly constrained age that represents a fold and thrust belt onto the Archean craton (Jacobs et al., 2008). Between the Magondi and Kheis Belts, to the west of the ZKC, lies the fault bounded Okwa Block. The poorly exposed Okwa Block is comp osed of orthogneisses and metarhyolites of undetermined age (Jacobs et al., 2008). Marginal Provinces Choma Kaloma Block. The Choma Kalomo Block represents a Mesoproterozoic orogenic belt along the Kalahari cratonic margin. The Choma Kalomo Block is compos ed of a metasedimentary sequence intruded by at least two separate granitic generations, one U Pb zircon dated at 1370 1340 Ma (Jacobs et al., 2008) and 1352 14 and 1343 6 Ma (De Waele et al., 2003) and another with SHRIMP U Pb zircon ages of ca. 1108 Ma (Batumike et al., 2007). In the late Mesoproterozoic the Choma

PAGE 222

222 Kalomo Block underwent rifting during which amphibolite facies gneisses were intruded by granitoids zircon dated at ca. 1108 Ma (Jacobs et al., 2008). Some workers have proposed that this bl ock is an extension of the Irumide Belt of the Congo craton due to a similarity in structural trends and isotope geochronology (De Waele et al., 2003), more recent work, however, has questioned this correlation because of significant differences in the tim ing of deformation and lithology (e.g. Batumike et al., 2007) Arequipa Antofalla Basement. Lowey et al. (2003) suggest that the similarities in the tectonic histories of the Amazonian Arequipa Antofalla Basement (AAB) and the Kalahari craton imply that th e Kalahari was the parent craton of the AAB. The AAB and Kalahari craton both display magmatic and metamorphic events at ca. 2000 1800 Ma followed by ca. 1300 1000 Ma magmatism and metamorphism (Lowey et al., 2003). The only differences in their tectonic h istories during the early to mid Proterozoic are a period of magmatism in the Kalahari craton at ca. 1650 Ma and evidence of magmatism in the AAB at ca. 1500 1400 Ma (Lowey et al ., 2003). Congo Craton Interior Provinces Basement inliers. A number of genet ically distinct basement inliers occur with little surface exposure within the Damara Orogen. The gneissic Ekuja Otjihangwe Nappe Complex lies within the Southern Zone in the Congo craton. The complex give U Pb zircon crystallization ages of 1063 9 and 1 115 13 Ma and is intruded by pre Damaran granites (Becker et al., 2006). The metamorphic Abbabis Inlier lies within the Central Zone of the Damara Orogen. Augen gneisses from the metamorphic complex contain zircons with igneous crystallization ages of 20 38 5 Ma, constraining a minimum age for the supracrustal rocks of the region (Becker et al., 2006). Zoning and

PAGE 223

223 complex internal structures within the zircon grains suggest a multistage formation history for the Abbabis region. Granitoid gneisses with age s of ca. 1038 Ma and 1102 Ma from the Khan Gorge near the Rssing mine contained xenocrystic zircons with ages of 2014 39 Ma and 2093 51 Ma, respectively (Rainaud et al., 2005). Kamanjab Inlier. The Kamanjab Inlier is a Paleoproterozoic magmatic arc te rrain imprecisely constrained at ca. 1987 and 1662 Ma (Rainaud et al., 2005). A rhyolitic quartz porphyry of the Khoabendus Group has been dated at 1862 6 Ma (Rainaud et al., 2005). The Kamanjab Inlier along with the Bangweulu block form a regionally ext ensive Paleoproterozoic magmatic terrane ranging from northern Namibia to northern Zambia and the Democratic Republic of Congo that collided with the Tanzania craton at ca. 2000 1900 Ma (Rainaud et al., 2005). Damara Sequence. The Neoproterozoic Damara Seq uence is composed of three distinct units. The basal siliciclastic Nosib Group has an upper age limit of ca. 750 Ma (Prave, 1996). The Nosib Group also contains approximately 6600 m of the alkaline Naauwpoort rhyolite, which has been zircon dated at 746 2 in an ash flow tuff and at 747 2 in rhyolitic lava (Clifford, 2008). The middle carbonate Otavi Group is thought to have been deposited during the Neoproterozoic based on field relationships and glaciogenic deposits. The upper siliciclastic Mulden Grou p displayed Ar Ar and Rb Sr ages of ca. 560 450 Ma (Prave, 1996). Kasai Angola craton. The Neoarchean and Paleoproterozoic Kasai Angola block is comprised of abundant granitoids that yield whole rock Rb Sr ages of 3490 3330 Ma (De Waele et al., 2008). The granitoids underwent granulite facies metamorphism, forming gneisses that have been dated at ca. 2800 2400 Ma (Rainaud et al., 2005).

PAGE 224

224 Several 2540 Ma granites from the Kasai Angola craton display xenocrystic cores with ages up to 3154 Ma (Rainaud et al., 2 005). The only reliable U Pb age dating done in the Kasai Angola craton is from granitic gneisses which yielded crystallization ages of 2538 10 and 2561 10 Ma and were collected in northwestern Zambia (De Waele et al., 2008). An intrusive porphyritic g ranite in the gneiss sequence yielded a U Pb age of 2058 7 Ma (De Waele et al., 2008). Angola basement. The Archean Angola basement is composed of a magmatic orthogneiss complex and a metasedimentary quartzite and schist complex displaying evidence of ca 2800 2700 Ma metamorphism (De Waele et al., 2008). In the southern region of the complex the basement comprises 2645 2464 Ma protoliths that show evidence of migmatisation at ca. 2290 1850 Ma (De Waele et al., 2008). The basement was intruded by granitoi ds U Pb zircon dated at ca. 2040 1960 Ma in southern Angola and at ca. 1985 1960 in northern Namibia (De Waele et al., 2008). The sedimentary Chela group overlies the basement sequences in which an ignimbrite was U Pb zircon dated at 1790 17 Ma (De Waele et al., 2008). Kuene Intrusive Complex. The Kunene Intrusive Complex (KIC) intrudes the Paleoproterozoic rocks that span the Angola Namibia boundary. The layered anorthosite, leucotroctolite and troctolite KIC shows no evidence of deformation in Angola bu t was affected by Pan African metamorphism in Namibia (Becker et al., 2006). A U Pb zircon age from a mangerite vein in Angola constrains the emplacement of the KIC at 1370 4 Ma (Becker et al., 2006). Zircons from the Zebra Mountains in Namibia gave a U Pb age of 1385 25 Ma (Seth et al., 2003).

PAGE 225

225 Epupa Metamorphic Complex. The Paleoproterozoic to Mesoproterozoic Epupa Metamorphic Complex is considered the southwest margin of the Congo craton and extends from northwest Namibia into southern Angola. The Pal eoproterozoic basal Epupa Complex is a high grade metamorphic basement inlier. The Epupa basement contains gneisses dated using whole rock Rb Sr techniques at ca. 1884 Ma and migmatites dated at ca. 1826 Ma (Seth et al., 2003). The Epupa metamorphics were intruded by several granitic bodies, two of which were dated at ca. 1795 Ma and 1686 Ma (Seth et al., 2003). The upper units of the complex show evidence of two orogenic events, an early event recorded in the Epembe granulites at ca. 1500 Ma and a Kibaran aged event at ca. 1300 Ma recorded in the Orue terrane (Rainaud et al., 2005).The granulitic and paragneissic Epembe terrane has U Pb zircon ages between 1520 and 1510 Ma, representing igneous crystallization of the protolith (Seth et al., 2003; Becker et al., 2006). Pb Pb stepwise leaching on peak metamorphic garnet and retrograde sapphirine defined the timing of granulite facies conditions at ca. 1490 1447 Ma (Seth et al., 2003). The Orue terrane is composed primarily of migmatitic ortho and paragneisses and is dated at 1334 21 Ma (Rainaud et al., 2005; Becker et al., 2006). Pb Pb stepwise leaching and Sm Nd Lu Hf leaching on garnets in conjunction with U Pb dating constrained Orue metamorphism between 1367 38 Ma and 1307 15 Ma, consistent with the timing of KIC emplacement (Brandt and Klemd, 2008). Marginal Provinces Kibara belt. The NE trending Mesoproterozoic Kibara belt is defined by Tack et al. (2010) as the portion of the orogenic belt occurring SW of the Ubendian belt. They argue that the NE p ortion of the orogeny was a separate Mesoproterozoic event and term it the Karagwe Ankole belt (KAB). The intra plate KAB basement has a U Pb

PAGE 226

226 zircon age of 1982 6 Ma, it is intruded by a widespread magmatic event at ca. 1370 1380 Ma (Tack et al., 2010). Smaller scale A type granitic intrusions also occurred at ca. 1200 and 990 Ma and mafic sills intruded at ca. 1380, 1355 1360 and 1340 Ma (Tack et al., 2010). The Kibaran belt, formerly a continental margin arc environment, experienced a coeval widespread magmatic event at ca. 1375 Ma (Tack et al., 2010). Three distinct generations of smaller scale S type granitic intrusions occurred at ca. 1330, 1260 and 1180 Ma in the Kibara belt (Tack et al., 2010). Ubende belt. The NW trending Paleoproterozoic Ubende be lt cross cuts the Kibaran belt near Lake Tanganyika. The Ubende belt is composed of a 2100 2025 Ma protolith that was exhumed between ca. 1950 and 1850 Ma under amphibolite facies conditions (Tack et al., 2010). The Ubendian belt was likely the result of t he collision of the Kamanjab Bangweulu terrane with the Tanzania craton at ca. 2000 1900 Ma (Rainaud et al., 2005). The gneissic and metasedimentary rocks of the Ubende belt are intruded by post tectonic granitoids dated at ca. 1870 1820 Ma (Rainaud et al. 2005; De Waele et al., 2008). Irumide belt. The Proterozoic Irumide belt represents a thrust system developed along the margin of a cratonic nucleus. The Archean to Paleoproterozoic Bangweulu block was assembled as a coherent body by ca. 1800 Ma and form s the basement of the Irumide belt. It is composed primarily of Paleoproterozoic granites and gneisses zircon dated at ca. 2050 1930 Ma with minor Neoarchean components dated at ca. 2730 Ma (De Waele et al., 2009). The Bangweulu block was intruded by bioti te bearing granitoids from ca. 1660 to 1550 Ma (De Waele et al., 2009). The basement is unconformably overlain by the Paleoproterozoic Muva Supergroup. The Muva

PAGE 227

227 Supergroup is composed of mainly of metasedimentary successions of quartzite and metapelite dep osited from 1940 to 1660 Ma with interbedded volcanic units dated at 1880 1850 Ma (Rainaud et al., 2005; De Waele et al., 2009). Widespread granitoid magmatism occurred at 1665 1630 Ma in the southwest and 1590 1530 Ma in the northeast, with two highly def ormed samples giving ages of 1980 1950 Ma (De Waele et al., 2009). The Irumide Orogeny was characterized by the emplacement of voluminous granitoid plutons between ca. 1050 and 940 Ma (Rainaud et al., 2005; De Waele et al., 2009). Lufilian arc. The Central African Copperbelt is composed primarily of the Neoproterozoic metasediments of the Katanga Supergroup. The Katanga Supergroup was deformed during the Neoproterozoic to early Paleozoic era to form a fold thrust belt known as the Lufilian arc (Rainaud et a l., 2005). The arc unconformably overlies a copper rich basement composed of roughly equal proportions of schists and intrusive granitoids. The schist was SHRIMP U Pb zircon dated at ca. 1980 1870 Ma while the granitoids were U Pb zircon dated at ca. 2050 1975 Ma (Rainaud et al., 2005). Zambezi belt. The Neoproterozoic Zambezi Belt rests unconformably atop a gneissic basement dated at ca. 1106 Ma (De Waele et al., 2008). The belt contains voluminous deposits of felsic volcanics and volcaniclastics SHRIMP U Pb dated at ca. 880 Ma (De Waele et al., 2008). Geochemical evidence suggests a continental thinning/extensional environment during the timing of volcanic deposition (De Waele et al., 2008). Rift to drift sedimentary sequences unconformably overlie the vol canic sequences in the Zambezi belt. The sedimentary sequences are intruded by various granitoid plutons, two of which have been dated at ca. 820 Ma (De Waele et al.,

PAGE 228

228 2008).The top layer of the sediments contains mafic inclusions interpreted to be remnants of oceanic crust either tectonically emplaced during the Pan African collision or as an ophiolitic mlange during the original formation (De Waele et al., 2008). The Kalahari craton is separated from the Zambezi belt by a laterally extensive suite of gran itic gneisses and metarhyolites that were emplaced at ca. 880 800 Ma (Jacobs et al., 2008).

PAGE 229

229 LIST OF REFERENCES Abouchami, W., Galer, S.J.G., and Hofmann, A.W., 2000, High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Pro ject; Isotope tracers in geochemistry and cosmochemistry [modified]: Chemical Geology, v. 169, p. 187 209. Batumike, J.M., O'Reilly, S.Y., Griffin, W.L., and Belousova, E.A., 2007, U Pb and Hf isotope analyses of zircon from the Kundelungu kimberlites, D.R Congo; implications for crustal evolution: Precambrian Research, v. 156, p. 195 225 B ecker, T., and B randenburg, A., 2002, The petrogenesis of the Alberta Complex within the Reho both Basement Inlier of Namibia: South African Journal of Geology v. 105, p 147 62. Becker, T., Schreiber, U., Kampunzu, A.B., and Armstrong, R., 2006, Mesoproterozoic rocks of Namibia and their plate tectonic setting: Journal of African Earth Sciences, v. 46, p. 112 140. Blanco, G., Rajesh, H.M., Germs, G.J.B., and Zimmermann, U., 2009, Chemical composition and tectonic setting of chromian spinels from the Ediacaran early Paleozoic Nama Group, Namibia: Journal of Geology, v. 117, p. 325 341 Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu Hf and Sm Nd isotopic com position of CHUR; constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, p. 48 57. Brandt, S., and Klemd, R., 2008, Upper amphibolite facies partial melting of paragneisses from the Epupa Complex, NW Namibia, and relations to Mesoproterozoic anorthosite magmatism: Journal of Metamorphic Geology, v. 26, p. 871 893 Burke, K., Ashwal, L.D., and Webb, S.J., 2003, New way to map old sutures using deformed alkalin e rocks and carbonatites: Geology (Boulder), v. 31, p. 391 394. Clifford, T.N., 2008, The geology of the Neoproterozoic Swakop Otavi transition zone in the Outjo District, northern Damara Orogen, Namibia: South African Journal of Geology, v. 111, p. 117 14 0 De Waele, B., Fitzsimons, I.C.W., Wingate, M.T.D., Tembo, F., Mapani, B., and Belousova, E.A., 2009, The geochronological framework of the Irumide Belt; a prolonged crustal history along the margin of the Bangweulu Craton: American Journal of Science, v. 309, p. 132 187

PAGE 230

230 De Waele, B., Johnson, S.P., and Pisaresvky, S.A., 2008, Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton; its role in the Rodinia puzzle; Testing the Rodinia hypothesis; records in its building bloc ks: Precambrian Research, v. 160, p. 127 141. De Waele, B., Wingate, M.T.D., Fitzsimons, I.C.W., and Mapani, B.S.E., 2003, Untying the Kibaran knot; a reassessment of Mesoproterozoic correlations in Southern Africa based on SHRIMP U Pb data from the Irumid e Belt: Geolog y (Boulder), v. 31, p. 509 512. DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Range and crust mantle evolution in the Proterozoic: Nature, v. 291, p. 193 196. Drr, S.B., and Dingeldey, D.P., 1996, The Kaoko Belt (Namibia); pa rt of a late Neoproterozoic continental scale strike slip system: Geology (Boulder), v. 24, p. 503 506. Frimmel, H.E., 1995, Metamorphic evolution of the Gariep Belt; Special issue to celebrate the centenary of the Department of Geology/Geological Science s, University of Cape Town: South African Journal of Geology, v. 98, p. 176 190. Frimmel, H.E., 2000, The stratigraphy of the Chameis Sub terrane in the Gariep Belt in southwestern Namibia; Henno Martin commemorative volume: Communications of the Geologic al Survey of South West Africa/Namibia, v. 12, p. 179 186. Frimmel, H.E., 2000, New U Pb zircon ages for the Kuboos Pluton in the Pan African Gariep Belt, South Africa; Cambrian mantle plume or far field collision effect? South African Journal of Geology, v. 103, p. 207 214. Goscombe, B., Gray, D., Armstrong, R., Foster, D.A., and Vogl, J., 2005, Event geochronology of the Pan African Kaoko Belt, Namibia: Precambrian Research, v. 140, p. 103 131 Goscombe, B.D., and Gray, D.R., 2008, Structure and strain variation at mid crustal levels in a transpressional orogen; a review of Kaoko Belt structure and the character of west Gondwana amalgamation and dispersal: Gondwana Research, v. 13, p. 45 85. Gose, W.A., Hanson, R.E., Dalziel, I.W.D., Pancake, J.A., and Seidel, E.K., 2006, Paleomagnetism of the 1.1 Ga Umkondo large igneous province in southern Africa: Journal of Geophysical Research, v. 111, p. @B09101. Gray, D.R., Foster, D. A., Goscombe, B., Passchier, C.W., and Trouw, A.J., 2006, 40 Ar/ 39 Ar thermochrono logy of the Pan African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution: Precambrian Research, v. 150, p. 49 72.

PAGE 231

231 Hanson, R.E., Crowley, J.L., Bowring, S.A., Ramezani, J., Cose, W.A., Dalziel, I.W.D., Pancake, J.A., Sei del, E.K., Blenkinsop, T.G., and Mukwakwami, J., 2004, Coeval Large Scale Magmatism in the Kalahari and LaurentianCratons During Rodinia Assembly: Science, v. 304, p. 1126 1129. Hoffmann, K.H., Condon, D.J., Bowring, S.A., and Crowley, J.L., 2004, U Pb zi rcon date from the Neoproterozoic Ghaub Formation, Namibia; constraints on Marinoan glaciation: Geology (Boulder), v. 32, p. 817 820. Jacobs, J., Pisaresvky, S.A., Thomas, R.J., and Becker, T., 2008, The Kalahari Craton during the assembly and dispersal of Rodinia; Testing the Rodinia hypothesis; records in its building blocks: Precambrian Research, v. 160, p. 142 158. John, T., Schenk, V., Haase, K., Scherer, E., and Tembo, F., 2003, Evidence for a Neoproterozoic ocean in south central Africa from mid oce anic ridge type geochemical signatures and pressure temperature estimates of Zambian eclogites: Geology, v. 31, p. 243 246. Johnson, S.D., Poujol, M., and Kisters, A.F.M., 2006, Constraining the timing and migration of collisional tectonics in the Damara B elt, Namibia; U Pb zircon ages for the syntectonic Salem type Stinkbank Granite: South African Journal of Geology, v. 109, p. 611 624. Kamenov, G., Mueller, P., and Perfit, M., 2004, Insights into mass dependant fractionation during desolvation of analyte solutions and its importance for accurate isotope ratio measurements by MC ICP MS; AGU 2004 fall meeting: EOS, Transactions, American Geophysical Union, v. 85, p. @Abstract V51A 0509. Krner, A., and Cordani, U., 2003, African, southern Indian and South A merican cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology: Tectonophysics, v. 375, p. 325 352. Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuc k, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179 2 10. Loewy, S.L., Connelly, J.N., Dalziel, I.W.D., and Gower, C.F., 2003, Eastern Laurentia in Rodinia; constraints from whole rock Pb and U/Pb geochronology; Orogenic belts, regional and global tectonics; a memorial volume to Chris McAulay Powell: Tectono physics, v. 375, p. 169 197 Ludwig, K.R., 1995, Isoplot, version 2.82: a plotting and regression program for Radiogenic isotope data. 45 p. U.S. Geological Survey, Open file report 91 445.

PAGE 232

232 Meert, J.G., 2003, A synopsis of events related to the assembly o f eastern Gondwana; Paleomagnetism applied to tectonics; a tribute to Rob Van der Voo: Tectonophysics, v. 362, p. 1 40. Meert, J.G., and Torsvik, T.H., 2003, The making and unmaking of a supercontinent; Rodinia revisited; Orogenic belts, regional and glob al tectonics; a memorial volume to Chris McAulay Powell: Tectonophysics, v. 375, p. 261 288. Miller, R. McG. (Ed.) 2008, Geology of Namibia, Special Publication: Geologic al Survey of Namibia, v.1 3 Mueller, P., Kamenov. G., Heatherington, A., and Richards, J., 2008, Crustal evolution in the southern Appalachian orog en: Evidence from Hf isotopes in detrital zircons. Journal of Geology, v. 116, p. 414 422. Paces, J.B., and Miller, J.D.,Jr, 1993, Precise U Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota; geochronological insights to physic al, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, v. 98, p. 13,997 14,013. Powell, C.McA., and Pisarevsky, S.A., 2002, Late Neoproterozoic assembly of East G ondwana: Geology, v. 30, p. 3 6. Prave, A.R., 1996, Tale of three cratons; Tectonostratigraphic anatomy of the Damara orogen in northwestern Namibia and the assembly of Gondwana: Geology, v. 24, p. 1115 1118. Rainaud, C., Master, S., Armstrong, R.A., and R obb, L.J., 2005, Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications; Recent advances in the geology and mineralization of the Central Africa n Copperbelt dedicated to the memory and work of Henri Ali Basira Kampunzu: Journal of African Earth Sciences, v. 42, p. 1 31 Robb, L.J., Armstrong, R.A., and Waters, D.J., 1999, The history of granulite facies metamorphism and crustal growth from single zircon U Pb geochronology; Namaqualand, South Africa: Journal of Petrology, v. 40, p. 1747 1770. Seth, B., Armstrong, R.A., Brandt, S., Villa, I.M., and Kramers, J.D., 2003, Mesoproterozoic U Pb and Pb Pb ages of granulites in NW Namibia; reconstructing a complete orogenic cycle: Precambrian Research, v. 126, p. 147 168 Stanistreet, I.G., and Charlesworth, E.G., 2001, Damaran basement cored fold nappes incorporating pre collisional basins, Kaoko Belt, Namibia, and controls on

PAGE 233

233 Mesozoic supercontinental br eak up: South African Journal of Geology, v. 104, p. 1 12. Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes; Magmatism in the ocean basins: Geological Society Spe cial Publications, v. 42, p. 313 345. Tack, L., Wingate, M.T.D., De Waele, B., Meert, J., Belousova, E., Griffin, B., Tahon, A., and Fernandez Prominent emplacement of bimodal magmatism under extensional regime: Precambrian Research, v. 180, p. 63 84. Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., and Dragusanu, C., 2000, JNdi 1: a neodymium isotopic reference in consistency with LaJolla neodymium: Chemical Geology, v. 168, p. 279 281. Filho, M.S., and Trindade, R.I.F., 2006, Paleomagneti c record of Africa and South America for the 1200 500 Ma interval, and evaluation of Rodinia and Gondwana assemblies: Precambrian Research, v. 147, p. 193 222. Torsvik, T.H., 2003, The Rodinia jigsaw puzzle: Science, v. 300, p. 1379 1381. Veevers, J.J., 20 03, Pan African is Pan Gondwanaland; oblique convergence drives rotation during 650 500 Ma assembly: Geology (Boulder), v. 31, p. 501 504. Zeh, A., Gerdes, A., and Barton, J.M., 2009, Archean accretion and crustal evolution of the Kalahari craton the zir con age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc: Journal of Petrology, v. 50, p. 933 966.

PAGE 234

234 BIOGRAPHICAL SKETCH love of science and learning was sparked when she was a child. She ha s always been infinitely curious about everything and began exploring the world in the woods down the street from her house. Ever since then she has wanted to see and understand the world around her When Brittany graduated high school she was still adrift, not having found a passion. She did not discover geology until her third year of college. Having abandoned her original architecture major she knew only that she wanted to study science. Hesitantly exploring the possibility of geology, undergraduate advisor Joe Meer t enthusiastically described a life full of exploration and discovery, of learning all there is to know about the natural world. Brittany immediately enrolled and by the end of her first semester as a geologist she knew she would do this for the rest of he r life. During her undergraduate studies at the University of Florida Brittany developed an interest in geophysics and geochemistry She excitedly developed and honed th ese interests in pursuit of her m aster s degree while investigating the past locations of Archean cratons. The geological sciences have taken her to places she never dared dream of, from the deserts of Namibia to the coral reefs of the Bahamas, and she cannot wait to see where they take her next.