<%BANNER%>

High Redshift Quasar Abundances and Environments

Permanent Link: http://ufdc.ufl.edu/UFE0042145/00001

Material Information

Title: High Redshift Quasar Abundances and Environments Connecting Black Hole and Host Galaxy Evolution
Physical Description: 1 online resource (195 p.)
Language: english
Creator: SIMON,LEAH E
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: ABSORPTION -- ABUNDANCES -- EMISSION -- OUTFLOWS -- QUASARS
Astronomy -- Dissertations, Academic -- UF
Genre: Astronomy thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: I examine the evolutionary relationship between quasar host galaxies and supermassive black holes (SMBHs). Current models predict an evolutionary sequence where SMBHs become active as quasars some time after major star formation episodes in their host galaxies . The quasars may in turn produce outflows that quench the host galaxy star formation. However, concrete mechanisms that explain the interactions between the host galaxy and the SMBH remain poorly understood. I constrain this host galaxy-SMBH relationship through the examination of host galaxy star formation and quasar outflow phenomena. Specifically, I measure the quasar gas-phase metallicity, which indicates the past level of star formation in the host galaxies, using emission and absorption lines in quasar spectra. I examine, in particular, the nature and origin of narrow absorption lines (NALs), which sometimes form in quasar outflows, and which provide valuable information on the gas kinematics, column densities and ionizations in a variety of quasar environments. Current quasar host galaxy - SMBH evolution scenarios suggest that host galaxy star formation rates should typically decrease across quasar lifetimes. I examine the relationship between past and ongoing star formation in quasar hosts by, for the first time, comparing emission line metallicity in redshift 2-4 quasars to far-infrared luminosity, which indicates the ongoing star formation rate in the host galaxy. I measure super-solar metallicities, regardless of the ongoing star formation rates. I measure covering fractions and profile widths to determine the origins of every individual NAL in a comprehensive NAL survey, the first of its kind, covering the full range of quasar environments for 24 quasars at redshifts 2-4.7. I estimate that 20% of all these NALs are intrinsic to the quasar environment, and up to 77% of these likely formed in quasar outflows. I measure metallicities for the NALs that I find to be intrinsic, and find a surprising range of metallicities of 0.03Z_solar < Z < 20Z_solar. The high metallicities are similar to those derived for other quasars at similar redshifts and luminosities and are consistent with current evolution scenarios. The wide range in metallicities suggests that the data provide the first ever compilation of gas phase metallicities across the full range of near-quasar environments.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by LEAH E SIMON.
Thesis: Thesis (Ph.D.)--University of Florida, 2011.
Local: Adviser: Hamann, Fredrick.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2012-04-30

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0042145:00001

Permanent Link: http://ufdc.ufl.edu/UFE0042145/00001

Material Information

Title: High Redshift Quasar Abundances and Environments Connecting Black Hole and Host Galaxy Evolution
Physical Description: 1 online resource (195 p.)
Language: english
Creator: SIMON,LEAH E
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2011

Subjects

Subjects / Keywords: ABSORPTION -- ABUNDANCES -- EMISSION -- OUTFLOWS -- QUASARS
Astronomy -- Dissertations, Academic -- UF
Genre: Astronomy thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: I examine the evolutionary relationship between quasar host galaxies and supermassive black holes (SMBHs). Current models predict an evolutionary sequence where SMBHs become active as quasars some time after major star formation episodes in their host galaxies . The quasars may in turn produce outflows that quench the host galaxy star formation. However, concrete mechanisms that explain the interactions between the host galaxy and the SMBH remain poorly understood. I constrain this host galaxy-SMBH relationship through the examination of host galaxy star formation and quasar outflow phenomena. Specifically, I measure the quasar gas-phase metallicity, which indicates the past level of star formation in the host galaxies, using emission and absorption lines in quasar spectra. I examine, in particular, the nature and origin of narrow absorption lines (NALs), which sometimes form in quasar outflows, and which provide valuable information on the gas kinematics, column densities and ionizations in a variety of quasar environments. Current quasar host galaxy - SMBH evolution scenarios suggest that host galaxy star formation rates should typically decrease across quasar lifetimes. I examine the relationship between past and ongoing star formation in quasar hosts by, for the first time, comparing emission line metallicity in redshift 2-4 quasars to far-infrared luminosity, which indicates the ongoing star formation rate in the host galaxy. I measure super-solar metallicities, regardless of the ongoing star formation rates. I measure covering fractions and profile widths to determine the origins of every individual NAL in a comprehensive NAL survey, the first of its kind, covering the full range of quasar environments for 24 quasars at redshifts 2-4.7. I estimate that 20% of all these NALs are intrinsic to the quasar environment, and up to 77% of these likely formed in quasar outflows. I measure metallicities for the NALs that I find to be intrinsic, and find a surprising range of metallicities of 0.03Z_solar < Z < 20Z_solar. The high metallicities are similar to those derived for other quasars at similar redshifts and luminosities and are consistent with current evolution scenarios. The wide range in metallicities suggests that the data provide the first ever compilation of gas phase metallicities across the full range of near-quasar environments.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by LEAH E SIMON.
Thesis: Thesis (Ph.D.)--University of Florida, 2011.
Local: Adviser: Hamann, Fredrick.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2012-04-30

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2011
System ID: UFE0042145:00001


This item has the following downloads:


Full Text

PAGE 2

2

PAGE 3

3

PAGE 4

Iwouldliketothankmyfellowgraduatestudentsfortheircontinuedsupportandcommiseration,especiallymyofcematesAudraHernandezandJustinSchafer.Thefriendshipsweforgedwilllastalifetime.MyfriendsDr.JoannaLevineandDr.PaolaRodrguezHidalgoremindmetotakethingsonestepatatime.Iamthankfultomyfamilyandfriendsforbelievinginme.IwouldespeciallyliketoacknowledgeDr.KimVennforchallengingmetopursuethisdegreeandmyadvisor,Dr.FredHamann,forseeminglyendlesscommentsthatkeepmethinkingcritically.MymostsinceregratitudeandthanksgoouttoJose,whokeepsmehonestandwhosehelpandsupporthavebeeninvaluable. 4

PAGE 5

page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 ABSTRACT ......................................... 11 CHAPTER 1INTRODUCTION ................................... 13 2METALLICITYANDFAR-INFRAREDLUMINOSITYOFHIGHREDSHIFTQUASARS ...................................... 19 2.1Data ....................................... 23 2.2Analysis ..................................... 26 2.2.1CompositeSpectra ........................... 26 2.2.2EmissionLineFluxRatios ....................... 27 2.2.3Metallicity ................................ 29 2.2.4AbsorptionLines ............................ 31 2.3Discussion ................................... 31 2.4Summary .................................... 34 3THEORIGINSOFARICHABSORPTIONLINECOMPLEXINAQUASARATREDSHIFT3.45 ................................. 39 3.1ObservationsandDataReduction ...................... 43 3.2Analysis ..................................... 44 3.2.1Identication ............................... 44 3.2.2LineFitting ............................... 46 3.2.3IonizationandAbundances ...................... 52 3.3NotesonIndividualSystems ......................... 54 3.4Discussion ................................... 58 3.4.1LocationoftheGas ........................... 59 3.4.2OutowProperties ........................... 63 3.4.3Metallicity ................................ 66 3.5Summary .................................... 67 4ACENSUSOFNARROWCIVABSORPTIONLINESIN24QUASARSATREDSHIFTS1.9
PAGE 6

......................... 91 4.2.1Identication ............................... 91 4.2.2CoveringFractionandGaussianLineFitting ............. 93 4.3Analysis ..................................... 97 4.3.1AbsorptionLineClasses ........................ 98 4.3.2NALsperQuasar ............................ 101 4.3.3BasicParameterDistributions ..................... 102 4.3.4IntrinsicFractions ............................ 103 4.3.4.1VersusREWandlogN .................... 103 4.3.4.2Versusbvalue ........................ 104 4.3.4.3Versusvelocityshift ..................... 105 4.4NotesonIndividualSystems ......................... 105 4.4.1RichNALComplexes .......................... 105 4.4.2High-VelocityOutowNALs ...................... 108 4.4.3BroadOutowFeatures ........................ 109 4.5Discussion ................................... 110 4.5.1SummaryofResults .......................... 110 4.5.2SelectionEffectsandComparisonstoOtherWork ......... 112 4.5.3Implications ............................... 118 5METALLICITYOFNARROWABSORPTIONLINESIN19QUASARSATREDSHIFTS2.7
PAGE 7

Table page 2-1Quasarsample. ................................... 36 2-2Metallicityfromemissionlineuxratios. ...................... 37 3-1Individualabsorptionlines. ............................. 70 3-2MetalabundanceandtotalHcolumndensity. ................... 72 4-1NALquasarsample. ................................. 123 4-2PercentageofquasarsandnumbersofNALs. ................... 130 4-3Averagevaluesbyclass. ............................... 131 4-4Averagecomponentb-valuesbyCfclass. ..................... 132 4-5PercentagesandnumbersofNALspervelocityrange. .............. 133 A-1CIVNALs ....................................... 175 7

PAGE 8

Figure page 2-1QuasarFIRluminosities,absoluteBmagnitudeandbolometricluminosities. 35 2-2Normalizedcompositespectra. ........................... 37 2-3GaussiantsforLy,NVandCIVforeachnormalizedcompositespectrum. 38 3-1RegionofthespectrumofJ1023+5142withCIVabsorption. .......... 69 3-2RegionofLyforestspectrumwiththecontinuumtover-plotted. ....... 69 3-3LineprolesinthenormalizedspectrumJ1023+5142forsystem1. ....... 73 3-4LineprolesinthenormalizedspectrumJ1023+5142forsystem2. ....... 74 3-5LineprolesinthenormalizedspectrumJ1023+5142forsystems3and4. .. 75 3-6LineprolesinthenormalizedspectrumJ1023+5142forsystems5and6. .. 76 3-7LineprolesinthenormalizedspectrumJ1023+5142forsystem7. ....... 77 3-8LineprolesinthenormalizedspectrumJ1023+5142forsystem8. ....... 78 3-9LineprolesinthenormalizedspectrumJ1023+5142forsystem9. ....... 79 3-10-predictedlineprolesforsystems5and6. ................... 80 3-11Point-by-pointcoveringfractionsforCIVandNVinsystem6andthecenterofsystem5withstepsizeofthreeresolutionelements. ............. 81 3-12Point-by-pointcoveringfractionsforNVinsystem8withstepsizeoffourresolutionelements. ....................................... 82 4-1TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1008+3623andMagellan+MIKEspectrumJ1307+1230. ................... 121 4-2TheregionofCIVabsorptionintheMagellan-MIKEspectraofJ1020+1039andJ1326+0743. ................................... 122 4-3TheregionofCIVabsorptionintheVLT-UVESandMagellan-MIKEspectraofBR1202-0725andJ1430+0149. ........................ 125 4-4TheregionofCIVabsorptionintheKeck-HIRESandMagellan-MIKEspectraofJ1633+1411andJ1326+0743. .......................... 126 4-5TheregionofCIVabsorptionintheKeck-HIRESspectraofJ0933+733,J0351-1034,J0351-1034andJ1008+3623. ........................... 127 4-6NALsperquasar. ................................... 128 8

PAGE 9

...... 129 4-8Measuredparametersversusvelocityshiftforcomponentsandsystems. ... 131 4-9IntrinsicfractionversusREW. ............................ 132 4-10IntrinsicfractionversuscomponentN. ....................... 133 4-11IntrinsicfractionbasedonCfonlyversusb-value. ................ 134 4-12Intrinsicfractionversusvelocityforcomponents. ................. 135 4-13Intrinsicfractionversusvelocityforsystems. .................... 135 4-14TheregionofCIVabsorptionintheVLT+UVESspectrumofQ0249-222. ... 136 4-15TheregionofCIVabsorptionintheVLT+UVESspectrumofPKS2044-168. 137 4-16Point-by-pointanalysisofcoveringfractionforPKS2044-168systemnear1800kms1. ..................................... 138 4-17TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1008+3623. .. 139 4-18Point-by-pointanalysisofcoveringfractionforJ1008+3623systemsinaregionofrichCIVabsorption. ................................ 140 4-19TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1633+1411. .. 141 4-20Point-by-pointanalysisofcoveringfractionforJ1633+1411componentsat-441,-6650,-7007and-8335kms1. ....................... 142 4-21Point-by-pointanalysisofcoveringfractionforBR0714-6455,J1633+1411andJ1225+4831highvelocitysystems. ...................... 143 4-22Point-by-pointanalysisofcoveringfractionforJ1307+1230,Q0401-1711andQ0249-222highvelocitysystems. ......................... 144 4-23BroadabsorptioninCIVfortwoquasarsinthesample. ............. 145 5-1ContinuumtsforthequasarJ0714-6455,emissionredshiftzem=4.46. .... 161 5-2ContinuumtsforthequasarJ0749+4152emissionredshiftzem=3.11. .... 162 5-3GaussiantsforthequasarJ0714-6455emissionredshiftzem=4.46. ..... 163 5-4GaussiantsforthequasarJ0749+4152emissionredshiftzem=3.11. ..... 164 5-5GaussiantsforthequasarJ1341-0115emissionredshiftzem=2.70. ..... 165 5-6NALmetallicityversusvelocityshift. ........................ 166 5-7NALmetallicityversusvelocityshiftfordifferentredshifts. ............ 167 9

PAGE 10

.............. 168 5-9HIversusCIV/HIcolumndensityratiosforclassAandBNALs. ........ 169 10

PAGE 11

11

PAGE 12

12

PAGE 13

Turnshek 1988 ).Narrowabsorptionlines(NALs)arealsopresentinatleast30%ofquasarspectra,andmaybeubiquitous( Weymannetal. 1979 ; Steidel 1990 ).QuasarsarenotfoundinthelocalUniverse,withtheclosestknownlocatedatredshiftsz0.1andareknowntobelocatedasfarawayasredshiftz7orhigher.Thespectrumofeveryquasarisunique,withemissionlinescharacteristicofseveralelements,includingCIV(1548,1551)andHI(1215,1025),shiftedinwavelengthbythehighredshiftofthequasar.Inparticular,ultraviolet(UV)wavelengthsareshiftedtotheoptical(visible)regionofthespectrum.Thequasarsweobservewithlargeground-basedopticaltelescopesexistedwhentheUniversewasafractionofitscurrentage.TheyprovidealaboratorytostudytheformationofthemassivegalaxiesandblackholesthatpopulatetheUniversetoday.Redshiftsz2representaparticularlyinterestingerainthehistoryoftheUniverse,whenmassivehostgalaxiesarethoughttohavegrownrapidlyandformedmostoftheirstars,possiblythroughmergerevents( Perez-Gonzalezetal. 2008 ; Hopkinsetal. 2008 ). 13

PAGE 14

Gebhardtetal. 2000 ; Merritt&Ferrarese 2001 ; Tremaineetal. 2002 ).Thiscorrelationimpliesthatthereisanevolutionaryrelationshipbetweentheblackholeandthehostgalaxy( Marconi&Hunt 2003 ; Haring&Rix 2004 ; Shieldsetal. 2006 ).Quasarsrepresentepisodesofrapidsupermassiveblackhole(SMBH)growthandprobablyauniqueperiodintheearlyevolutionofgalaxies.Theymaydirectlyfollowamajorgalaxymerger( Perez-Gonzalezetal. 2008 ; Hopkinsetal. 2008 )orabigblowoutofgasanddust.Feedbackfromquasaroutowsmayplayanimportantroleinthewayhostgalaxiesevolve.Themechanismsforthisevolutionaryrelationshiphavebeenexamined,butremainpoorlyunderstood.Theemissionandabsorptionspectraofquasarsareimportanttoolsforunderstandingtheinteractionsbetweenhostgalaxiesandquasars.TheBELsformveryclosetothequasarcentralengine(d<0.1pc),andthereforeprovideadirectconnectiontothequasarproperties.Thetemperatures,kinematicsandespeciallychemicalcompositionsofthegasprovidevaluableinformationabouttheenvironmentveryclosetothequasar.Theabsorptionlines,bothBALsandNALsprovidedifferentinformationaboutthequasarenvironment,astheytendtoformfurtherfromthecentralsource.AlthoughBALsareknowntoforminoutows,theyprovideonlylimitedinformation,duetotheirbroadnature.NALs,ontheotherhand,canforminavarietyofenvironments.Somearedirectlyrelatedtoquasarsandforminquasaroutows.Theseareparticularlyinterestingforunderstandingtheinteractionsbetweenthequasaranditssurroundingsbecausetheyprovideameanstoobtaininformationaboutkinematics,chemicalabundancesandotherphysicalcharacteristicsofthegasinthenear-quasarenvironment.Furthermore,outowscouldbepartiallyresponsiblefortheinuenceofblackholesontheirhostgalaxies( Springeletal. 2005b a ).Thelocation,massandkinematicsoftheoutowsisneededtodeterminetheextentofthisinuence. 14

PAGE 15

Hamann&Ferland 1999 ; Dietrichetal. 2003 ; Warneretal. 2004 ; Nagaoetal. 2006 ).Chapters2,3and4ofthisthesisareself-containedjournalarticles.Chapters2and3arepublishedintheMonthlyNoticesoftheRoyalAstronomicalSocietyrefereed 15

PAGE 16

Simon&Hamann 2010a b ).Chapter4hasbeenpreparedincollaborationwithM.Pettini,andhasnotyetbeensubmittedforpublication.TheChaptersarechronological.Chapter 2 presentsastand-alonestudyofquasarBELabundancescomparedtoon-goingstarformationratesinthehostgalaxies.Theon-goingstarformationrateisascertainedfromthefar-infrared(FIR)luminositiesofthegalaxies.Wecombine34mediumresolutionrest-frameUVspectraintothreeFIRluminositybinsandmeasureabundanceratiosofNV/CIVandSiIV+OIV]/CIVfortheresultingthreecompositespectra.Oneevolutionaryscenarioforhostgalaxiesandquasarspostulatesthatthequasarepochfollowsanepochofglobalstarformationinthehostgalaxy,andpossiblycausestheendofthestarformation( Hopkinsetal. 2008 ).Thus,systemsinanearlierstageofevolutionmightexhibithigheron-goingstarformationrates,andlowerabundances(iftheglobalstarformationperiodisthemainenricherofthenear-quasargas)( Sandersetal. 1988 ; Kauffmann&Haehnelt 2000 ; Granatoetal. 2004 ).Themainbodyofthisthesis,Chapters 3 through 5 ,iscenteredaroundanobservingcampaignof24highresolutionquasarspectrawithredshiftsof1.9
PAGE 17

3 wemeasurethekinematicsandchemicalabundancesoftheNALswithin10,000kms1ofthequasarsystemicvelocityinanindividualquasarfromthissample.QuasarJ1023+5142hasarichcomplexofnarrowCIVabsorption.WedeterminetheoriginandabundancesofeachindividualNALandconcludethatallormostofthegasisinarelatedcomplex,likelyinaquasaroutow.InChapter 4 wepresenttheresultsofasurveyofalltheCIVabsorptionlinesinourfullsampleof24quasars.Weexaminetheincidenceofintrinsicgas,specicallythatwhichislikelyformedinquasaroutows,aswellasthephysicalcharacteristicsofthegas.Wemeasurecoveringfractions,columndensities,andlinewidths,whichweusetodeterminetheoriginofeachabsorptionline.OurresultsareconsistentwithrecentsurveysofCIVNALabsorptionlines,e.g. Vestergaard ( 2003 ); Misawaetal. ( 2007 ); Nestoretal. ( 2008 ); Wildetal. ( 2008 ).WendseveralexamplesofCIVNALsforminginrichcomplexes,suchasthatdiscussedinChapter 3 .Furthermore,wendthatalthoughNALoutowstendtobewithin12,000kms1ofthequasarredshift,theycanbefoundatmuchhighervelocitiesaswell.TheintrinsicNALstendtobebroaderandstrongerthantheinterveningNALs.Finally,inChapter 5 ,wemeasure[C/H]abundancesforthoseintrinsicNALswithionizationconstraintsandhydrogencolumndensitiesinthefullquasarsamplestudiedinChapter 4 .Wecreateacrudemapofchemicalabundanceversusvelocityshiftfromthequasarsystemicvelocity.ThissampleofintrinsicNALscontainsstrongerNALsthansimilarstudiesofinterveninggas,butweakerNALsthanmoststudiesofintrinsicgas( Petitjeanetal. 1994 ; Simcoe 2004 ; Aravetal. 2007 ; Schayeetal. 2007 ).WendthatNALswithnearlysolartosuper-solarabundancesarelocatedatallvelocityshifts,regardlessoftheredshiftofthequasar.WealsondapopulationofintrinsicNALswith 17

PAGE 18

Aguirreetal. 2004 ; D'Odoricoetal. 2004 ; Simcoe 2004 ; Gangulyetal. 2006 ; Aravetal. 2007 ; Schayeetal. 2007 ).Chapter 6 summarizesourresultsandconclusions. 18

PAGE 19

Gebhardtetal. 2000 ; Merritt&Ferrarese 2001 ; Tremaineetal. 2002 ; Marconi&Hunt 2003 ; Haring&Rix 2004 ; Shieldsetal. 2006 ).Luminousquasarsathighredshifts,whichrepresentthemostmassiveSMBHs,areexperiencingvigorousaccretionofasignicantportionofthenalSMBHmass.Thisaccretionactivityisbelievedtobetriggeredbyglobalprocesses(galaxymergers,interactionsorperhapssecularevolution)thatalsotriggermajorepisodesofstarformationinthemassivehostgalaxies,whicharealsorapidlybeingassembledathighredshifts.Therefore,theprocessesofSMBHformationandgrowthresultinginthequasarphenomenonaredirectlylinkedtothebirthofmassivegalaxies( Haehneltetal. 1998 ; Richstoneetal. 1998 ; Omontetal. 2001 2003 ; Beelenetal. 2006 ; Coxetal. 2006 ).However,thenatureoftherelationshipbetweenquasarsandgalaxyformationisnotwellunderstood.Itiswidelybelievedthatstronginteractionsbetweengasrichgalaxiescanresultinultra-luminousinfraredgalaxies(ULIRGs),denedbyLIR>1012L,whichhavestarformationrates(SFRs)of>100Myr1( Houcketal. 1985 ; Omontetal. 2001 2003 ; Floresetal. 2004 ; Coxetal. 2005 ; Beelenetal. 2006 ; Daddietal. 2007 ; Caoetal. 2008 ).AfractionofULIRGshavebeenfoundtocontaindust-enshroudedquasars( Sanders&Mirabel 1996 ; Lonsdaleetal. 2006 ).Thereisevidenceatbothlowandhighredshiftthattheseembeddedquasarsareprecursorstoopticallyluminousquasars.Forexample, Caoetal. ( 2008 )ndthatlowredshiftquasarswithIRluminositiesinthe ReprintedwithpermissionfromSimonL.E.,HamannF.,2010a,MNRAS,407,1826. 19

PAGE 20

Sandersetal. ( 1988 )).Atlowredshifts,numerousstarformationindicatorsinquasarhostgalaxiesareseen,e.g.highIRluminosities,PAHemission,strong(sub)-mmemissionandstrongCOemission( Haoetal. 2005 ; Schweitzeretal. 2006 ; Farrahetal. 2007a b ; Netzeretal. 2007 ).Athighredshifts(z2),observationsatsub-mmandmmwavelengths(rest-framefar-infrared(FIR)tosub-mm,dependingonwavelengthandredshiftrange)ofopticallyluminousquasarssuggestthatupto30%ofquasarsalsofallwithintheULIRGrange,similartotheIRquasarsstudiedby Caoetal. ( 2008 )( Carillietal. 2001 ; Omontetal. 2001 2003 ; Coxetal. 2005 ; Beelenetal. 2006 ; Haoetal. 2008 ). Coppinetal. ( 2008 )comparedynamical,gasandSMBHmassesoftenz2sub-mmdetectedquasarsandz2sub-mmgalaxies(SMGs),whicharehighredshiftcounterpartstoULIRGs,thoughlessextremewithmoreevenlydistributedstarformationinsteadofalocalizedstarburst( Menendez-Delmestreetal. 2009 ).Theyndthatthefainterhalfoftheirquasarsamplecouldlikelybe`transitionobjects'betweenSMGsandluminousquasars,basedontheirSMG-likesurfacedensitiesandtheirproximitytothelocalMBH/Msphrelation,sinceluminousquasarstendtolieabovethisrelationandtypicalSMGstendtoliebelow.Thehighestredshiftsub-mmselectedsourcecurrentlyknownhasalsobeenobservedtopossessimilarstellarandgasmassestothisz2sampleoftransitionobjects,aswellasasmallAGNcontribution( Coppinetal. 2009 ).Thesequasarseventuallymay 20

PAGE 21

Wyithe&Loeb 2003 ; DiMatteoetal. 2005 ; Hopkinsetal. 2008 ).ThisregulationofstarformationbytheaccretingSMBHcouldnaturallyproducetheobservedblackholegalaxymasscorrelation,anddifferentstagesoftheprocessshouldpresentdifferentSFRs,withinitiallyhighSFRsdecliningastheAGNbecomesmoredominant,culminatinginaphaseofstrongSMBHaccretionandlittleornoongoingstarformation( Kauffmann&Haehnelt 2000 ; Granatoetal. 2004 ).FIRluminositiescanbeusedtodeterminethestarformationratesinquasarhostgalaxies.TheFIRemissionisduetodustheatedeitherbystarformationorquasaremission(see Haasetal. ( 2003 )fordiscussion). Lutzetal. ( 2007 2008 )ndevidencethatFIRemissioninquasarhostgalaxiesatallredshiftsiscausedbydustheatedbystarformationandnotthequasar.ThestrengthofPAHemission,whichisfoundalmostexclusivelyinstarformingregions,tightlycorrespondstothestrengthofFIRemissioninthesamehosts( Daleetal. 2001 ; Calzettietal. 2007 ; Lutzetal. 2008 ). Beelenetal. ( 2006 )measureFIRemissionfromsixhighredshiftquasarsandderiveFIRtoradiospectralindexesconsistentwithlocalstarforminggalaxieswithoutAGN.TheFIRemissionisseeminglyuncontaminatedbyhotterdustpotentiallyheatedbytheAGN.Theseresultsalongwithothers(seeforexample, Efstathiou&Rowan-Robinson ( 1995 ); Serjeant&Hatziminaoglou ( 2009 ))furthersubstantiatetheclaimthattheFIRluminosityinquasarsisdominatedbystarformationandnotbytheAGN.FIRluminositytracesongoingstarformation,butpaststarformationalsocanbeobservedindirectlybymeasuringchemicalabundances.Severalstudieshavefoundthathigh-redshiftquasarstypicallyhavemetallicitiesgreaterthanorequaltosolarmetallicityinthebroademissionlineregion(BLR),whichrequiressignicantpreviousstarformationinthehost( Hamann&Ferland 1999 ; Dietrichetal. 2003 ; Warneretal. 2004 ; Nagaoetal. 2006 ).TheseBLRstudiesrelyonemissionlineratios 21

PAGE 22

Grovesetal. 2006 ; Nagaoetal. 2006 )andnarrowabsorptionlines( Hamann&Ferland 1999 ; D'Odoricoetal. 2004 ; Gabeletal. 2006 ; Simon&Hamann 2010b )inquasarspectra.Themetal-richBLRresultistrueevenforthehighestredshiftsstudied,e.g. Pentericcietal. ( 2002 ); Jiangetal. ( 2007 ); Juarezetal. ( 2009 ),withredshiftsouttoz=6.4.Thereisnoknownchangeinmetallicitywithredshift( Matsuokaetal. ( 2009 )andreferencesabove).Simplechemicalevolutionmodelsforquasarsandellipticalgalaxiesndthatgalacticcenterstendtobemoremetal-richthantheirhalos,andacentralizedstarburstcanenrichthegalacticcentertosupersolarabundancesinashorttime(108yr)( Friaca&Terlevich 1998 ; Hamann&Ferland 1999 ; Granatoetal. 2001 ; Hamannetal. 2002 ; Granatoetal. 2004 ; Hamannetal. 2007 ; Juarezetal. 2009 ).Thesemodels,combinedwiththeconsistentlysuper-solargasabundancesobservedinquasarenvironments,implythatquasarstendtoemergeafterorneartheendof(potentially)shortcentralizedstarformationepochs.Ifthequasarphaseemergeswhenstarformationisonthedecline,lessadvancedenvironmentsmighthavehigherSFRsandlowerabundances( Georgakakisetal. 2009 ).Theabsorptionlinesinquasarspectraprovideadditionalinformationaboutoutowsthatmightberelatedtotheblowoutofgasfromthehostgalaxies,andperhaps,aboutthegaseousremnantsofrecentgalaxymergers.TheseabsorptionlinesmaybemorecommoninquasarswithhigherSFRsifmergersandinteractionstriggerthestarformationasinULIRGs( Weymannetal. 1991 ; Beckeretal. 2000 ; Richards 2001 ; Rupkeetal. 2005a ; Georgakakisetal. 2009 ).Quasar`associated'CIVabsorptionlines(AALs),neartheemissionredshiftswithvelocitywidthslessthan500kms1

PAGE 23

Gangulyetal. 2001 ; Vestergaard 2003 ; Misawaetal. 2003 ; Trumpetal. 2006 ; Nestoretal. 2008 ; Wildetal. 2008 ; Gibsonetal. 2008 ; RodrguezHidalgoetal. 2010a ).AhigherincidenceofAALsorBALsmayoccurinthequasarswithhigherSFRsifthesequasarshavemorerecentlyexperiencedaninteractionand/orthereisaprogressioninquasaroutowcharacteristicswithtime.Inthischapter,wepresentanexploratoryobservationalstudyexaminingwhetherSFRinthehostgalaxiescorrelateswithmetallicityinthenear-quasarenvironment.WemeasuremetallicityinthequasarBLRfromtherestframeultraviolet(UV)spectrumandestimategalacticSFRsfromtheFIRluminosities.Thedataandanalysisaredescribedinx andx .Theresultsanddiscussionarepresentedinx ,withabriefsummaryinx .WeadoptcosmologicalparametersH0=70kms1Mpc1,m=0.3,and=0.7throughoutthiswork. Carillietal. ( 2001 )and Omontetal. ( 2001 2003 )andSCUBAatJCMTat850mby Isaaketal. ( 2002 ), McMahonetal. ( 1999 )and Priddeyetal. ( 2003 )andallcompiledby Haoetal. ( 2008 ).ThequasarsallwereselectedtobeopticallybrightwithabsoluteB-bandMagnitudeMB<-26.1fortheCarillietal.objects,MB<-27.0fortheOmontetal.objectsandMB<-27.5 McMahonetal. ( 1999 ); Isaaketal. ( 2002 )and Priddeyetal. ( 2003 )objects. Carillietal. ( 2001 )observedarepresentative 23

PAGE 24

Omontetal. ( 2001 2003 )observedarandomselectionof97radioquiet,opticallyluminoussourcesfromthemulticolorPalomarDigitalSkySurveyavailablefromG.Djorgovski'swebpage Veron-Cetty&Veron ( 2000 )catalogwith1.84radioquietquasarsfromtheAPMsurvey( Storrie-Lombardietal. 1996 ). Isaaketal. ( 2002 )selectedalargersampleofthe76mostUVluminousz4radioquietquasarsknownatthetimeofobservation,and Priddeyetal. ( 2003 )selectedacomplimentarysampleof57z2quasarsfromvariouslargesurveys.Wecross-referencethissamplewiththeopticalquasarspectraintheSDSSdata-release6,nding116objectswithavailablespectra.TheSDSSspectrafromdatarelease6haveresolutionR==2000andwavelengthcoverage=3800A( Adelman-McCarthyetal. 2008 ).Weconsideronlythoseobjectswithredshiftsbetween2.17and4.75,compatiblewithSDSSspectralcoverageofthefull1200Arest-framewavelengthrange.Spectramissingregionswithinthespeciedwavelengthrangearefurtherexcludedfromtheanalysis.Fivespectrawithverylowsignaltonoiseratios(S/N)alsoarerejected.Thenalsampleconsistsof34opticalSDSSspectrawitharangeofsub-mmbrightnessesandaredshiftrangeof2.2
PAGE 25

Priddey&McMahon ( 2001 ).Wendagreementwith Haoetal. ( 2008 )towithin10%.TheL60,absoluteB-bandmagnitude(MB)andbolometricluminosity(Lbol)foreachobjectareshowninFigure 2-1 ,andlistedinTable 2-1 .TheFIRluminosity,log(L60=L),rangesfrom12.1to13.4,isdominatedbystarformationandfallsroughlywithintheULIRGrange.WeestimatethestarformationrateofeachquasarhostfromL60,correctedtoexcludethesmallquasarcontributionbyassumingthehostsfollowthesameregressionlineastypicalquasarsforLbolvs.L60asshowninFigure1of Haoetal. ( 2008 ).ThiscorrectedL60isthenusedinHaoetal.'sequation2,whichisderivedfromtheKennicuttstarformationratelaw( Kennicutt 1998 ),andtheestimatedstarformationratesforeachobjectarealsolistedinTable 2-1 .WeconverttheMBfromtheobservationpaperstoouradoptedcosmology,andobtainMBspanningtherangeof-26.7to-29.4,whichcorrespondstolog(Lbol)of47.2to48.3log(ergs1).Lbolmeasuresthequasarblackholeaccretionluminosity,andisestimatedusingabolometriccorrectionfactorof9.74appliedtothemonochromaticcontinuumluminosityL(4400A)(MB)following Vestergaard ( 2004 ).WeseparatethesampleintothreebinsbasedonL60suchthateachbincontainsasimilarnumberofobjects:FIRbrightquasarswithlog(L60/L)13.17,FIRintermediatequasarswith12.8
PAGE 26

2.2.3 and 2.3 2.2.1CompositeSpectraTomakecomparisonsbetweendifferentL60,wecreateonecompositespectrumfromtheSDSSspectracomprisingeachofthethreeFIRbinsinthesampledescribedinx .Tocreatethecomposites,webeginbyshiftingeachspectrumtoitsrestwavelengthusingtheredshiftsprovidedbySDSS( SubbaRaoetal. 2002 ).Wemanuallyinspecteachindividualspectrumandremoveabsorptionfeaturesbyinterpolatingacrosstheaffectedregions.ThepresenceofnarrowabsorptionlinesandtheirrelationshiptoL60isdiscussedinx below.Thenweaveragetogetherthespectraineachbintocreatethenalcomposites.Toensurethatnosinglespectrumisdominatingthecompositewealsocomputethemedianspectraforeachbin,comparethemtotheaveragespectrausedthroughouttherestoftheanalysis,andconrmthatthetwocompositetypesarewell-matched.OuranalysisislimitedtothespectralregionbetweenLy1216AandCIV1550A.TheselimitsareimposedbytheincompletespectralcoverageatlongerwavelengthsandbysuppressionintheLyforeststartinginthebluewingoftheLyemissionlineandextendingtoshorterwavelengths.Beforenormalizingthecompositespectra,wevisuallycomparethecontinuumslopesofthethreecomposites.WendnosignicanttrendforreddeningwithFIRluminosityinthecontinuumslopesofthecompositespectra.Differencesbetweenthecompositeslopesarenegligiblecomparedtothedispersionofslopesamongtheindividualquasarsmakingupeachcomposite.Wetapower-lawcontinuumtotheFIR-intermediatecompositespectrumusingwavelengthregionsdevoidofabsorptionoremission,25Awideandcenteredat1460,and1770,following Warneretal. ( 2003 ).Unfortunately,theFIR-faintandFIR-brightcompositeshaveincompletespectralcoveragepast1700A,sowet 26

PAGE 27

Juarezetal. ( 2009 ),andwhichwedeterminebyvisualinspectiontobedevoidofabsorptionoranydetectableemission.ThenormalizedaveragecompositespectraareshowninFigure 2-2 Hamannetal. ( 2002 ); Juarezetal. ( 2009 ),togivegoodabundanceestimateswithinthelimitedwavelengthrangefrom1216Ato1600A:NV1240/CIV1549andSiIV1397+OIV]1402/CIV1549.TheseemissionlinesarelabeledinFigure 2-2 .OtherratiossuchasNIII]1750/OIII]1664,NV1240/HeII1640orNIII991/CIII977aretooweakgiventheS/Ninthespectrumand/ortheyfallinapoorlycharacterizedregionofthespectrum.Themeasuredlineuxratiosarelistedincolumns5and7ofTable 2-2 .BecausetheNVemissionisstronglyblendedwiththeLyemission,whichisitselfsignicantlydegradedbyabsorptionintheLyforest,CIVistheonlystrong,non-blendedemissionlineinthespectra.Thus,theCIVemissionlinesaretwithGaussiansandusedastemplatesfortheotheremissionlines.ThetstoCIVandthescaledtstoLyandNVareshownforthethreecompositesinFigure 2-3 .ThetsareperformedusingGATORPLOT,anIDLprogramwrittenbyC.Warner 27

PAGE 28

Tytler&Fan 1992 ),thelocationsoftheNVandLycentroidsareshiftedfromtheirlaboratoryvaluesbythisamountrelativetoCIV.ToaccuratelydeterminetheNVux,theredLywingbeneaththeNVemissionmustbecharacterized.Todothisprecisely,wescaletheCIVttoalignwiththenon-absorbedregionofLy,whichinsomecasesisquitesmall(20A).ThescaledtmayevenriseabovethedatawhereheavyLyforestabsorptionhaseatenintotheemission,asisthecaseforallofthethreecomposites,ormissthepeakofLyasisthecaseintheFIRfaintcomposite;bothcasesareclearlyshowninFigure 2-3 .InordertobettermatchtheLyemissionpeakintheFIRfaintcomposite,weallowtheLyGaussiantobe15%narrowerthantheCIVGaussian.NarrowingtheGaussianfortheLyemissionlinedoesnothaveanoticeableeffectontheresultingNVstrength.Regardless,aprecisematchtotheLyemissionlineisnotrequiredforthisanalysis,anddoesnoteffectthenalNVemissionresults(seee.g. Baldwinetal. ( 2003 )forfurtherdiscussion).TheCIVandNVdoubletsaretattheirrespectivexedseparationsandwitha3:2intensityratio(halfwaybetweentheallowed2:1and1:1intensityratios)fortheshorterandlongerwavelengthrespectively,asin Baldwinetal. ( 2003 ).PossiblebroadeninginNVispredictediftheNVemissionformsatalargerdistancefromthequasarthantheCIVemission. Petersonetal. ( 2004 )and Peterson ( 2008 )ndthatNVformstwiceasclosetothequasarasCIV,soifthelinewidthsarecontrolledbyvirialmotions,NVcouldbeuptop Petersonetal. 2004 ; Peterson 2008 ).Therefore,theNVprolesweadopt,whichhavethesameFWHM'sasCIV,maybenarrowerthantheactualNVFWHM's,whiletheLyFWHMcouldbeslightlybroader.Weestimatetheuncertainties 28

PAGE 29

2-2 .ToestimateuncertaintiesintheSiIV+OIV]linestrengths,wevarytheequivalentwidthmeasurementsbyusingarangeofcontinuumheightsandwavelengthcutoffsfortheedgeoftheemissionlines.TheoveralluncertaintiesintheSiIV+OIV]linestrengthsarelessthanafactorof1.2,sothatthemeasurementerrorsintheSiIV+OIV]/CIVratiosarealsolessthanafactorof1.2. Shields 1976 ; Hamann&Ferland 1993 1999 ).Thecorrelationischaracterizedby Hamannetal. ( 2002 )withrecentupdatesto 29

PAGE 30

Dhandaetal. ( 2007 ).Wendsupersolarmetallicitiesforallthreecompositespectra,aslistedincolumn6ofTable 2-2 .SimilarcharacterizationsfortheSiIV+OIV]/CIVuxratio-metallicitycorrelationareperformedby Nagaoetal. ( 2006 ),usingtheoldersolarabundancesalsousedby Hamannetal. ( 2002 ).Weapplythelatestcorrectionsforthesolarabundanceratiosforthischaracterizationanddeterminethatthemetallicitiesarealsosupersolaraccordingtothisratio,asshownincolumn8ofTable 2-2 .Thereisnosignicanttrendamongthethreecompositesinthelineratios,basedbothonourmeasurementsoftheseratiosandonavisualinspectionofthestackedcompositesinFigure 2-2 ,andcorrespondinglythereisnosignicanttrendinmetallicity.TheaveragemetallicitiesacrossthethreecompositesareZ9.5ZfortheNV/CIVratioand4.2ZfortheSiIV+OIV]/CIVratio.Wenotethatthemetallicitiesinferredfromthetwolineratioscandifferbyasmuchasafactorof2inthesamespectrum.Thisistypicalofthedispersionfoundbetweendifferentlineratiosinotherstudies,anditmightbeagoodindicationofthetheoreticaluncertainties( Dietrichetal. 2003 ; Nagaoetal. 2006 ; Hamann&Simon 2010 ).WecompareourmetallicitiestothemetallicitiesintheLbolrange1047to1048ergs1sampledbyalargeemissionlinestudyby Warneretal. ( 2004 ),whondmetallicitiesofZ3Z,broadlyconsistentwiththemetallicitiesfoundinthissample.WealsonotethattheresultsbasedonNV/CIV(andNV/HeII)tendtobehigherthanotherlineratios,andthusourbestguessatthemetallicityinthecurrentsampleoverallwouldbenearthelowerendoftherange4Z( Hamannetal. 2002 ; Baldwinetal. 2003 ; Nagaoetal. 2006 ).Therelativemetallicitiesbetweenthethreecomposites,whichsmoothoverobject-to-objectscatter,arerobustfordifferencesgreaterthanafactorof2,basedontheuncertaintiesinthelineratiomeasurementsplusthetheoreticaluncertainties,andarethereforeusefulforspottingstrongmetallicitytrendsamongthedifferentL60bins. 30

PAGE 31

Bahcalletal. 1967 ; Youngetal. 1982 ).Thesestatisticsarebroadlyconsistentwithpreviouswork,giventhesmallnumbersinvolvedinthisstudy( Vestergaard 2003 ; Trumpetal. 2006 ; Nestoretal. 2008 ; Wildetal. 2008 ; Gibsonetal. 2008 ; RodrguezHidalgoetal. 2010a ).AALsandoutowlinesappearineachofthethreeL60bins,withnosignicantdifferencesintheiroccurrencefractionsamongthebinsthatwouldindicateatrendwithL60,particularlygiventhesmallnumberofobjectsineachbin. 2-2 ,correspondtoaveragemetallicitiesofZ9.5and4.2Zrespectively,shownincolumns6and8ofTable 2-2 .ThereisnosignicanttrendinmetallicitywithL60inthissample.WenotethattheFIRbrightbinhasthemostluminousaverageLbol,whiletheFIRfaintandintermediatebinshaveroughlyequal,andlessluminousaverageLbol.ThisdifferenceinLbolcouldappearintherelativemetallicitiesamongthebinsbecausemoreluminousquasarstendtobemoremetal-richthanlessluminousquasars( Hamann&Ferland 1999 ; Warneretal. 2004 ; Shemmeretal. 2004 ).However,theabsenceofacorrespondinggradientinthemetallicityisnotsurprisinggiventherelativelyhighaverageofthetotalLbol,therangeinaverageLbolamongthecompositesoflessthan0.4dex(Table 2-2 ),whichcorrespondstoarangeinmetallicityofnomorethan0.2dexin Warneretal. ( 2004 ), 31

PAGE 32

Beckeretal. 2000 ; Richards 2001 ; D'Odoricoetal. 2004 ; Georgakakisetal. 2009 ).Althoughtheseareopticallyselectedquasarschosentobebrightintherest-frameUVandstronglyreddenedsourceswouldbeexcluded,therecouldstillbeamoresubtletrendinsub-samplesbyL60.WedonotndatrendinthenumberofAALsperquasarorinthecontinuumslopeperL60bin.EachbinappearstohaveroughlythesamepercentageofquasarswithAALs.Theabsenceofatrendcouldbeduesimplytothesmallnumbersinoursample.Or,iftheconsistencyacrossbinsisreal,itcouldindicatethatthereisnoprogressioninquasaroutowcharacteristicswithchangingSFRs.Alargersamplesizeisneededtoresolvethisquestion.Theoverallconclusionfromthisandotherstudiesisthatquasarsappeartobemetal-richatallredshifts,withonlysmallvariationsduetoSMBHmassandluminositydependencies( Warneretal. 2004 ; Shemmeretal. 2004 ; Nagaoetal. 2006 ; Jiangetal. 2007 ; Juarezetal. 2009 ).TheconsistentlyhighmetallicitiessuggestthatthestarformationproducingtheseFIR-brightquasarsisnotthestarformationthatdeterminesthemetallicityoftheBLR.Instead,theBLRgasmusthavebeenenrichedpriortotheseFIR-producingstarformationepisodes,possiblyshortlyafteramergerorsomeotherstarformationtriggerwhenthestarburstrstbegan.TherearenosignicantdifferencesamongtheL60binsintheoutowfractionorintheamountofdebrisleftover 32

PAGE 33

DiMatteoetal. 2005 ; Hopkinsetal. 2008 ; Lietal. 2008 ).TheFIR-brightquasarsmaybeinsomesenselessmaturethantheFIR-faintquasars,however,thisisnotmanifestinsignicantmetallicityevolutionoverthetimescalesprobedbythissample,whichareshorterthanaquasarlifetime.Therealityofquasar-hostgalaxyformationcouldalsobemorecomplicatedthananysimplemonotonicsequenceinwhichhighSFRscorrelatecleanlywithlowermetallicitiesandanearlierstageofevolution. Veilleuxetal. ( 2009 )suggesta`softer'ULIRG-quasarevolutionparadigmwithmorescatterinthepathofanindividualgalaxy'sevolutionfromULIRGtoquasar.TheymeasureneonabundancesofZ2.9ZinthenuclearregionsofULIRGs.IfthesehighmetallicitiesareubiquitousinULIRGs,wewillneverobservemetal-poorquasars,regardlessoftheirstageofevolution.OtherplausiblescenariossuggestthatAGNandstarformationactivityingalaxiesmaybeepisodicinnature( DiMatteoetal. 2008 ).Thus,asaquasaremergesatthetailendofastar-formingphase,thereisnoguaranteethatitsBLRmetallicityislinkedtothisrecentand/orongoingstarformationphase,becauseseveralpreviousepisodesofstarformationandAGNactivitycouldalreadyhaveoccurredandenrichedtheBLRgastosupersolarvalues.Analternativeinterpretationisprovidedbytheworksof Dave&Oppenheimer ( 2007 )and Finlator&Dave ( 2008 ).Theypostulateascenariowhereastar-forminggalaxycouldquicklyreachanequilibriummetallicityearlyinitsformationhistory.Highermassgalaxieswouldhavehigherabundances,butforagivengalaxy,theabundancewouldnotchangesignicantlyafteraninitialbalanceofin-owingmetal-poorand 33

PAGE 34

34

PAGE 35

QuasarFIRluminosities,absoluteBmagnitudeandbolometricluminosities.HorizontaldashedlinesrepresentthedivisionbetweenthethreeFIRluminositybins,crossesareFIR-detectedquasarsandarrowsareupperlimits.FilledtrianglesareaverageluminositiesforeachFIRluminositybin. 35

PAGE 36

Quasarsample. zlogLbolMBlogL60mSFRNamelog(ergs1)logLMyr1ref.a Omontetal. ( 2001 ),O03 Omontetal. ( 2003 ),I02 Isaaketal. ( 2002 ),C01 Carillietal. ( 2001 ),P03 Priddeyetal. ( 2003 ),M99 McMahonetal. ( 1999 ) 36

PAGE 37

Metallicityfromemissionlineuxratios. Normalizedcompositespectra.TheFIR-faint(solidline),FIR-intermediate(dashedline)andFIR-bright(dottedline)spectraforthe(rest)wavelengthrangefromLytoCIVareshown.Prominentemissionfeaturesarelabeled.Thecontinuumhasbeennormalizedto1,asdescribedinthetext. 37

PAGE 38

GaussiantsforLy,NVandCIVforeachnormalizedcompositespectrum.TheLyandNVemissionlinesareshownintheleftpanels,whiletheCIVemissionlinesareshownintherightpanels.Theverticalscaleisnormalizedintensity.ThetoppanelsshowstheFIRfaintspectrum,themiddlepanelsshowstheFIRintermediatespectrumandtheFIRbrightspectrumisshowninthebottompanels.ThesolidcurvesarethedataandtotalGaussiants,thedashedcurvesshowtheindividualGaussiantsforeachemissionline.TheNVandCIVfeatureseachhavetwoGaussians,oneforeachdoubletmember,whichareeachcomposedofanarrowandawideGaussian(notshown).Theerrorspectraforeachregionareshownasdot-dashedlines. 38

PAGE 39

Perez-Gonzalezetal. 2008 ; Hopkinsetal. 2008 )orabigblowoutofgasanddust.However,thenatureoftherelationshipbetweenSMBHgrowthandgalaxyformationisnotwellunderstood.ThetightrelationshipobservedbetweenSMBHmassandhostgalaxybulgemasssuggeststhattheSMBHandhostgalaxyareinteractingduringthegrowthphasesofoneorboth( Gebhardtetal. 2000 ; Merritt&Ferrarese 2001 ; Tremaineetal. 2002 ; Marconi&Hunt 2003 ; Haring&Rix 2004 ; Shieldsetal. 2006 ).Feedbackfromquasaroutowsmaybeonemechanismforinteractionandmayinuencetheevolutionofthisrelationship.Weareusingnarrowabsorptionlines(NALs)inquasarspectratostudyquasaroutowsandenvironmentsacrossarangeofscales.NALshavefullwidthsathalfminimum(FWHMs)lessthanseveralhundredkms1,andtheyappearinavarietyofultraviolet(UV)resonancetransitions,includingCIV1548and1551,NV1239and1243,CIII977,SiIV1394and1402andLy1216,Ly1026,Ly973,Ly950,andLy938( Foltzetal. 1986 ; Andersonetal. 1987 ; Hamann&Sabra 2004 ).Therststepinusingtheseabsorptionlinestostudythequasarenvironmentistodeterminesimplywherethelinesform.Thereareseveralpossibilities,includingunrelated(intervening)cloudsandgalaxieswhichhappentolieintheline-of-sight,nearbyclustergalaxiesandintrinsiccloudswithinthequasarhostgalaxyanditsextendedenvironment( Gangulyetal. 2001 ; Vestergaard 2003 ; Trumpetal. 2006 ; Nestoretal. 2008 ; Wildetal. 2008 ; Gibsonetal. 2008 ). ReprintedwithpermissionfromSimonL.E.,HamannF.,2010b,MNRAS,409,269. 39

PAGE 40

Weymannetal. 1979 ; Nestoretal. 2008 ; Wildetal. 2008 ).Theexcessislargestatv-1000kms1,whereroughly80%ofCIVsystemswithrestequivalentwidthREW(1548)0.3Ahaveaquasar-relatedorigin( Nestoretal. 2008 ).Thisintrinsicgascanforminquasar-drivenoutows,starburst-drivenoutows,mergerremnantsorambientgasinthehosthalos,orinothergalaxyhalosinthesamegalaxyclusterasthequasar.Athighervelocities,theexcesscanbeattributeddirectlytoquasar-drivenoutows.Inthevelocityrange-1000to-12,000kms1, Nestoretal. ( 2008 )estimatethat43%ofCIVNALswithREW(1548)0.3Aoriginateinaquasaroutow.NALsencompassawealthofinformationaboutthebasicpropertiesofquasaroutows,whichweusetogaininsightsintotheoutowphysics,accelerationmechanismsandgeometryofthenearquasarenvironment.NALsrepresentaverydifferenttypeofquasaroutowcomparedtothewell-studiedmuchbroaderandhighervelocitybroadabsorptionlines(BALs),buttheymightsimplybedifferentmanifestationsofasingleoutowphenomenonviewedatdifferentangles( Gangulyetal. 1999 2001 ; Elvis 2000 ).TheNALsthatdonotforminoutowsprobethegaseousenvironmentsofquasarsmoregenerally,andcanbeusedtoexamineconditionsindifferenthostgalaxiesenvironmentssuchasstarburst-drivenoutowsorlarger-scalegasdistributionsproducedbymessymergers.Weareinvolvedinaprogramtostudythelocation,originandabundanceinformationforabsorbersinasampleofhighredshiftquasars.Weareparticularlyinterestedinhighredshiftquasarsbecausez2isthecosmicerawhenhostgalaxiesarethoughttogrowrapidlyandformmostoftheirstars,possiblythroughmergerevents( Perez-Gonzalezetal. 2008 ; Hopkinsetal. 2008 ).Choosingredshiftsabovez2.7alsoallowsustomeasurelinesatshorterrest-framewavelengthswith 40

PAGE 41

Hamann&Ferland 1999 ; Hamannetal. 2002 ; Dietrichetal. 2003 ; Warneretal. 2004 ; Nagaoetal. 2006 ; Simon&Hamann 2010a ).Themetal-richBELresultistrueevenforthehighestredshiftsstudied,e.g. Pentericcietal. ( 2002 ); Jiangetal. ( 2007 ); Juarezetal. ( 2009 ),withredshiftsoutto6.4.ThemostreliableresultsbasedonBALcolumndensitiessuggestmetallicityrangesbetweensolarandtentimessolar( Aravetal. 2001 ).PreviousstudiesofNALsinlowredshiftsampleshavefoundsuper-solarmetallicitiesandhighlyionizedgas,andhavesuccessfullyprobedseveralotherNALoutowcharacteristics( Hamann&Ferland 1999 ; Gangulyetal. 2003 ; D'Odoricoetal. 2004 ; Hutsemekersetal. 2004 ; Gangulyetal. 2006 ; Gabeletal. 2006 ).Theselowerredshiftsamplescoverawiderangeofluminosities,observedintheUVspectralrange,wheremanyusefulmetalandHydrogenlinesoccur.NALsoffercertainadvantagesinthestudyofmetallicitiesandothergascharacteristicsinthenear-quasarenvironment.TheirnarrowwidthsmeantheCIVdoublets,separatedby500kms1,areresolved.Weuseresolvedabsorptionlinedoubletstodisentanglesaturationeffects,andtoobtainaccuratelineopticaldepthandcolumndensitymeasurements.NALsalsoforminarangeofphysicallocations,providingamorecompletepictureoftheregionsnearquasars.BecausetheNALmethodsarecompletely 41

PAGE 42

Hamannetal. 1997 ; Barlowetal. 1997 ).Inparticular,1)variabilitystudieshavefoundintrinsicabsorbersvaryingonrelativelyshorttimescalesofmonthstoyears,providingstrongevidencefortheseabsorbersbelongingtooutowseithercrossingthelineofsighttothequasarorexperiencingchangingionizationwiththevariationsinthecontinuumemission( Hamannetal. 1997 ; Barlowetal. 1997 ; Aldcroftetal. 1997 ; Narayananetal. 2004 ; Misawaetal. 2007 ).2)Detectionofpartialcoverageofthebackgroundlightsourcealongthelineofsightstronglyimpliesgasformingverynearthesource.Thisphenomenonoccurswhentheabsorbing'clouds'aresmallerthanthebackgroundsource,allowingpartofthelightfromthesourcetoreachtheobserverunabsorbed.ThispartialcoveringiseasilydetectedinmultipletsliketheCIVdoubletwheretheopticaldepthratiobetweenthetwolinesisxedbytheoscillatorstrengths.Whenthesourceispartiallycovered,somelightllsinthebottomoftheabsorptionline,andmakestheapparentopticaldepthratioappeardifferentthantherealopticaldepthratio.3)Outowlinestendtohaveprolesthatarebroadandsmoothcomparedtothermalwidths( Hamann&Ferland 1999 ; Srianand&Petitjean 2000 ; Gangulyetal. 2006 ; Schayeetal. 2007 ).InwellstudiedNALs,thesethreeindicators(variability, 42

PAGE 43

Prochaskaetal. 2006 ; Schayeetal. 2007 ).Wedescribethedataacquisitionandreductioninx ,theidenticationandttingoftheabsorptionlinesinx and 3.2.2 andtheabundanceandionizationanalysisinx .Webrieydescribeindividualabsorptionlinesystemsinx .Wediscusstheargumentsforthelocations,probableintrinsicoriginsandquasar-drivenoutowpropertiesofthegasinx andconcludewithasummaryinx 3-1 ),andtwolargergapsat4980Aand6575Awherethespectrumfallsintoaphysicalgapbetweendetectors. 43

PAGE 44

3-2 .Thecontinuumplacementhasanuncertaintyof10%intheforestand2%atotherwavelengths. 3.2.1IdenticationThebroad,atshapeoftheemissionfeaturesinthespectrumofJ1023+5142makeanaccurateemissionredshiftdifculttodetermine.TheredshiftprovidedbytheSDSSspectrumiszem=3.447.WeestimatethereliabilityofthisvaluebymeasuringtheredshiftsoftheCIV1549,CIII]1909andSiIV+OIV]1398emissionlinesusingmeasurementsoftheircentroids.Weshifteachcentroidrespectivelyby-824,-730and+36kms1tocorrectforknownoffsetsfromthenominalquasarredshift([OIII]5007emission),basedonmeasurementsby Tytler&Fan ( 1992 )and Shenetal. ( 2007 )foraveragequasars,wherenegativevaluesareblueshifts.Theaverageredshiftobtained 44

PAGE 45

3-1 andTable 3-1 below.OtherCIVsystemsarepresentat-16,800and-33,800kms1inthespectrum,buttheyhavenarrowwidths,completecovering,andblendingproblemsintheLyforest,which,alongwiththeirhighvelocities,makethemlikelycandidatesforinterveninggasandexcludethemfromfurtheranalysisinthiswork.AfteridentifyingtheCIVdoublets,wesearchthespectrumforothercommonNALssuchasSiIV,NV,CIII,OVI,andHILymanserieslinesatthesameredshift.Wealsosearchforlowerionizationspecies,suchasCIIandSiII,butndnone.Allofthesystems,exceptpossiblysystem1,appeartohaverelativelyhighionizationsbasedonthepresenceandabsenceofhighandlowionizationspeciesrespectively.Eachsetofabsorptionlinesatoneredshiftisconsideredasystem,aslabeledinFigure 3-1 .Severalofthesesystemsareblendsoftwoorthreecomponents,whicharenotindividuallylabeledinthegure.Systems1and2(Figures 3-3 and 3-4 )appeartobeline-lockedinCIV.Thevelocityoffsetbetweenthe1548lineinsystem1andthe1551lineinsystem2isremarkablysmall(<2kms1)comparedtotheFWHMsoftheselines(30kms1)andthevelocityshiftsfromthequasarsystemic,-1440and-1940kms1.IfthisoverlapbetweentheCIVlinesinsystems1and2representsaphysicalline-lock,wherethevelocitiesofthetwosystemsareactuallyseparatedbyexactlytheirdoubletseparation,andnotachancealignmentinthespectrum(see Gangulyetal. ( 2003 )and Braun&Milgrom ( 1989 )forfulldiscussionsofthepossiblephysicalnatureofline-locking), 45

PAGE 46

below). Hamann&Sabra ( 2004 )and Aravetal. ( 2005 ).Weassumethatalllinesinagivenmultiplethavethe 46

PAGE 47

Gangulyetal. ( 1999 ).However,weestimatefromtheSDSSspectrumthattheCIVBELpeaks20%abovethecontinuum,whichimpliesthattheBELcanonlyaccountforpartialcoveringof0.8orhigher.WeattempttoteachsystemwiththesmallestpossiblenumberofGaussiancomponents.Thisminimizesthenumberoffreeparametersandprovidesamorerobustcharacterizationofcolumndensities,ionizationsandabundancesinabsorbingregionswhoseinternalvelocitiesmightbemorecomplexthansimpleGaussians(e.g.,inoutows).WeteachabsorptionlinewithasingleGaussianunless1)thesystemclearlyhasmultiplecomponentsdistinguishedbyinectionpointsthatstandoutsignicantlyabovethenoiseuctuationsinthespectrum(e.g.system7),or2)asingleGaussianwouldmissasignicantfraction,25%,oftheabsorptionlinestrength(e.g.system4).The25%thresholdissomewhatarbitrary,butitensuresthatweachieveagoodttotheobservedlineandthatsignicantportionsofabsorption(i.e.,largeenoughtochangethecolumndensitymeasurements)arenotmissed.FortheseexceptionalcasesweusetheminimumnumberofGaussianspossibletoachieveanaccuratettothedata.IfasystemistwithtwoormoreGaussians,eachGaussianislabeledasacomponent.Weassumethatthecoveringfractionisthesameforallcomponentsinagivensystem,suchthattheopticaldepthsinEquation 3 simplyaddtogetherinregionsofcomponentoverlap(seeHamannetal.(inpreparation)forfurtherdiscussion).Thissimplifyingassumptioniswelljustiedbytheexcellenttstoallthesystems,withthepossibleexceptionofsystem6,whichwediscussinmoredetailinx .AllionswithGaussiantsareshownalongwiththeirGaussianopticaldepthprolesinFigures 3-3 through 3-9 .Badlyblendedmembersof,e.g.,theLyman-serieslinesarenotusedtoconstrainionizationorabundanceinx andarenotshown.WechecktheGaussianresultsusingdirectintegrationandpoint-by-pointmeasurementsof 47

PAGE 48

)becauseitensuresthatthederivedHIcolumndensitiesdonotincludegaswithdramaticallydifferentkinematicsthanCIV.WechoosetocaptheHIb-valuesat140%oftheCIVb-valuesinsteadofthemuchhigherpercentageexpectedforpurelythermalbroadeningbecausethewidthsoftheCIVlinesexceedthethermalwidthsexpectedforagasphotoionizedbyeitherthequasarortheinter-galacticUVspectrum.Therefore,weassumetheb-valuesaredominatedbynon-thermalbroadeningeffects.Ontheotherhand,settingthecapat140%insteadofsomethingsmaller,suchas100%,allowsforsomecontributionofthermalbroadeningtobinthenarrowersystems(whichwouldaffectHImorethanCIV).Overall,ourtstotheLymanlinesshouldleadtoreasonablebutgenerouslylargeestimatesoftheamountofHIgasthatcoexistswithCIV,andtherefore,toconservativelylowestimatesoftheC/Habundance.Asstatedabove,thecoveringfractionisafreeparameterintheGaussianopticaldepthtsofeachdoublet.IncaseswherethebesttprolehasCf<1,werepeatthetwithCf=1totesttherobustnessoftheCf<1result.WethencomparehowwelleachofthetwotswithdifferentvaluesofCfmatchthedata.Incaseswherethetsarecomparable,weassumeCf=1,otherwise,thebesttischosen.Forexample,we 48

PAGE 49

3-6 ,whereastheCf=1tdoesnotmatchtheobserveddoubletratiosinCIVandNV.WeassumeCf=1forallsingletlines.ThecoveringfractionfortheLymanlinesisxedattheCIVdoubletcoveringfraction.ThisisnecessarybecausetheobservedlineratioswithintheLymanseriesaretooseverelyaffectedbyblendingintheLyforesttoyieldtheirownindependentmeasuresofCf.Table 3-1 liststparametersforalloftheabsorptionlinesthatyieldusefulconstraintsfortheionizationandabundanceanalysisdescribedinx .Absorptionlinesthatarebadlyblendedarenotusedinsubsequentanalysis,andarenotlistedinthetable.Eachsystemislistedseparatelybyredshiftandvelocityshift,wherenegativevelocitiesdenotegasmovingtowardstheobserver.OnlythestrongermemberoftheOVIdoubletislisted,asOVIisneverusedintheabundanceanalysisbecauseofeitherlinesaturationorstrongblendingintheselinesinallsystems.However,thestrengthofOVIisstillusefulasanindicatoroftheionizationofthegas.InsystemswhereNVisnotpresent,welistupperlimitsforthestrongermemberoftheNVdoubletforcompleteness.Table 3-1 liststhecentralwavelength()andDopplerbparametervaluesalongwithcolumndensitiesandrestequivalentwidths(REW)derivedfromtheGaussianopticaldepthprolets.Systems4and7eachhavetwoblendedcomponents.Thevaluesof,b,andlogNarelistedseparatelyforthesecomponentsinTable 3-1 ,buttheREWs,listedonlywiththerstcomponentdata,applytotheentireblend.WemeasureupperlimitsonHIcolumndensitiesinallcaseswherealltheLymanseriesabsorptionlinesareblendedwithinterveningabsorptionlinesintheLyforest.Thesameistrueforsingletionswithupperlimitsonthecolumndensities.Weestimateuncertaintiesforthecolumndensitiesbyplacingthecontinuumatthetopandbottomofthenoisearoundthettedcontinuum,correspondingtothereasonablemaximum/minimumvalues(3uncertainties)forcontinuumplacement.Wemeasure3uncertaintiesfortheHIcolumndensitiesof0.18dexonaverage. 49

PAGE 50

3-1 ,e.g.systems5and6.WeestimatetheuncertaintyinthecoveringfractionderivedfromtheGaussianproletsbothformallyandinformally.TheformaluncertaintiesareestimatedbypropagatingtheerrorspectrumthroughthecalculationofCf.However,theseuncertaintiesaremuchsmallerthantheinformaluncertainties,whicharedominatedbyuncertaintyincontinuumplacement.Weestimatecoveringfractionuncertaintiesduetocontinuumplacementuncertaintiesbyrstshiftingthecontinuumneareachreddoubletmemberupanddownbythe3continuumuncertainty,andthenttingthedoubletswiththisnewcontinuum.Theactualuncertaintiesareprobablysmallerthantheuncertaintieswederiveinthisway,becauseasimilarshiftinthecontinuumaroundbothdoubletmembers(amorelikelyoccurrence)producessmallerchangesinCf.WendCf=0.70.15forsystem5andCf=0.70.20forsystem6.Ifwexthecoveringfractioninsystems5and6atCf=1insteadofatthemeasuredvalues,thecolumndensitiesinallionsdecreasebyanaverageof0.25dex.WeperformasimpletesttodeterminethereliabilityoftheCf<1resultfromtheGaussianproletsforsystems5and6.WepredicttheshapeofthelongerwavelengthCIVandNVdoubletmembersbasedontheintensityoftheshorterwavelengthmember,combinedwiththe2:1-ratioderivedfromtheoscillatorstrengthsofeachline.ThepredictedshorterwavelengthmemberwillonlymatchthedataifCf=1.ThesepredictionsareshowninFigure 3-10 .Theobserveddatafortheshorterandlongerwavelengthdoubletmembersareplottedwithboldandthinsolidcurvesrespectivelyandthepredictedlongerwavelengthdoubletmemberisplottedwithadot-dashedcurve.ThepredictedshapeofthelongerwavelengthmemberofCIVandespeciallyofNVismuchweakerthantheobservedshapeforsystem5.Insystem6,thelinecentersofCIV,andmoreclearlyNV,arestrongerintheobserveddataforthelongerwavelengthmembers 50

PAGE 51

3 tomeasureCfandvateachstep.Thepoint-by-pointtsareshowninFigures 3-11 and 3-12 .Thesolidcurveshowstheshorterwavelengthdoubletmember,whilethedot-dashedcurveshowsthelongerwavelengthdoubletmember.Thecoveringfractionateachpointisrepresentedbythelledcircles.Thestepsusedforsystem6arethreeresolutionelementswide,whichiswideenoughtosmoothoverthenoisebutnarrowenoughtoavoidblendingthewingsandcoreoftheline.However,system5isnarrowenoughthatusingbinsthreeresolutionelementswide,orwider,acrossthewingsofthelinewouldblendtoomuchinformationfromthecoreandthecontinuum.Furthermore,thespectrographresolutioncouldbeblendingthecoveringfractioninthewingsofthelinewiththecontinuum.Thus,forthenarrowsystem5,wemeasureonlythe3resolutionelementbinatthelinecore.Thestepsizeforsystem8isfourresolutionelements.Thislargerstepsizefurthersmoothsovernoise,andcanbeusedbecausethelineismuchbroaderthantheothersystems,lesseningtheimpactofblendingofthecoreandwingsoftheline.Wederiveformalcoveringfractionuncertainties(Cf),representedaserrorbarsateachpointinFigures 3-11 and 3-12 .TheaverageCIVand 51

PAGE 52

H=logN(CIV) C(3)wherefistheionizationfractionofagivenion,Nisthecolumndensityandthenaltermontheright-handsideisthelogarithmicsolarabundanceratioofhydrogentocarbonlistedin Grevesseetal. ( 2007 ).Thesecondtermontherightistheionizationcorrection(IC).ThesecorrectionfactorscanbelargewhencomparingahighlyionizedmetallikeCIVtoHI.Theexactvaluesdependontheionizationmechanism.Photoionizationbythequasarspectrumisbyfarthemostlikelyscenariobasedontheargumentsinx thatallofthesystemsarelikelytobeintrinsictothequasarenvironment. 52

PAGE 53

Hamannetal. ( 2011 ).Theircalculationsadoptanominalquasarspectrumconsistentwithrecentobservationalestimatesatthecriticalionizing(far-UV)photonenergies 3-1 ).Ideally,wewouldconstraintheabsorberionizationsbycomparingtheratiosofobservedcolumndensitiesindifferentionsofthesameelement,suchasN(CIII)=N(CIV)orN(NIII)=N(NV),tothetheoreticalresultsin Hamannetal. ( 2011 ).However,theseconstraintsareonlymarginallyusableinourdatabecauseN(CIII)andN(NIII)arealwaysblendedintheLyforestandarethereforeonlyeverconstrainedasupperlimits.ThereforeweestimatetheICfromratiossuchasN(NV)=N(CIV)orN(SiIV)=N(CIV),withtheadditionalassumptionthattherelativemetalabundancesareapproximatelysolar.Thespecicionizationconstraintsusedforeachsystemsometimesleadtoupperlimits,lowerlimitsorspecicvaluesfortheabundanceratios,andaredescribedinmoredetailforindividualsystemsinx below.OurbestestimatesfortheC/Habundancesbasedontheseconstraintsareallsuper-solar,exceptinsystem1.Table 3-2 ,whichcontainsseveraldifferentabundanceindicatorsforeachNALsystem,liststheseestimated'best'abundancesincolumn3,titled[C/H]best,fortheninesystems. Hamannetal. ( 2011 )applytogasthatisphotoionizedbyatypicalquasarspectrum.WeperformadditionalCLOUDY( Ferlandetal. 1998 )calculationsusingtheinter-galacticbackgroundspectruminCLOUDY,whichisbasedonHaardt&Madau(2005,privatecommunication).Wendthattheionizationfractionsofinterestinthepresentworkhaveonlynegligibledifferencesbetweenthetwocalculations,e.g.,comparedtouncertaintiesinthemeasuredquantitiesorderivedionizationconstraints.Therefore,ouranalysisoftheionizationandabundancesinJ1023+5142shouldapplywhethertheabsorbersarelocatednearthequasaroroutsidethequasar'sradiativesphereofinuence. 53

PAGE 54

Hamannetal. ( 1997 ))tothemeasuredCIV,SiIVandNVcolumndensities,whenavailable.EachmetalionhasauniqueglobalICminthatoccursnearthepeakofitsownionizationfraction.Forexample,f(HI)=f(CIV)peaksapproximatelywheref(CIV)islargest.WeusethevaluesofICminlistedin Hamannetal. ( 2011 ).Applyingtheseminimumcorrectionfactorstotheobservedcolumndensityratios(Equation 3 )leadstothermlowerlimitslistedfor[C/H]min,[Si/H]minand[N/H]minabundancesincolumns4ofTable 3-2 .Theminimumionizationcorrectionsprovidermlowerlimitsontheabundancesthatdonotdependontheionizationuncertaintiesorthepossibilityofamulti-phasegas.Inparticular,anygascomponentsnotatanionizationcorrespondingtoICminwouldhavetheeffectofraisingtheactualvalueofICandthusalsotheactualabundance.WederivetotalHcolumndensitiesforeachNALsystemfromtheHIcolumndensitieslistedincolumn7ofTable 3-1 andthebestionizationcorrectiondescribedabove.Weuse 3-2 .TheuncertaintiesintheseresultsaredominatedbyuncertaintiesintheIC.Inadditiontothelimitedconstraintsprovidedbythedata,afewwell-studiedcaseshaveshownthatindividualabsorberscanspanarangeofionizationsandhavearangeofICvalues(e.g. Hamannetal. ( 1997 )).Weassumeasingleionizationstateforeachabsorptionlinesystem.Wediscusstheindividualsystemsbrieyinx .OVIisnotpresent,orisveryweak, 54

PAGE 55

3-3 .OurbestionizationconstraintcomesfromanupperlimitonCIII,whichmeansthebestC/Habundanceisanupperlimitaswell.Thisgasisalikelycandidateforhostgalaxyhalogasbasedontheweaknessofthemetallinesandthelowabundances.System2,v=-1938kms1:TheCIVinsystem2appearstobeline-lockedwithsystem1,asmentionedaboveanddiscussedfurtherinx .TheHIcouldbeshiftedtoalowervelocitybyasmuchas30kms1fromthemetallinesinthissystem,indicatingamulti-phasegas,butheavyblendingobscuresthepreciseshiftofthelinesascanbeseeninFigure 3-4 .TheLyabsorptionlineispoorlyconstrained.TheresultingHIopticaldepthandDopplerbparameterareupperlimits,resultinginlowerlimitsforthebestestimateofC/Habundance.WeconstraintheionizationbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios.System3,v=-2120kms1:TheHIlinesinsystem3areblendedwiththosefromsystem4,butappearconsistentwiththemetallines,showninFigure 3-5 .BecauseoftherelativelypoorconstraintsontheHIabsorptionlines,theHIopticaldepthandDopplerbparameterareupperlimits,resultinginlowerlimitsforthebestestimateofC/Habundance.WeconstraintheionizationbytherelativestrengthsofCIVandSiIV,assumingsolarabundanceratios.System4,v=-2182,-2200kms1:TheCIVandSiIVdoubletsinsystem4aretwithtwoblendedGaussiancomponentstoaccommodatetheasymmetricprole.Weusethecentralvelocityofeachcomponenttoidentifythesystem.TheHIabsorptionlinesarepoorlyconstrainedduetoblendingwithsystem3.TheresultingHIopticaldepthandDopplerbparameterareupperlimits,resultinginlowerlimitsforthebestestimateofC/Habundance.WeconstraintheionizationbytherelativestrengthsofCIVandSiIV,assumingsolarabundanceratios.Thissystemisbroadandasymmetric,whichisindicativeofawindoroutowfeature(x ). 55

PAGE 56

3-6 .Thecoveringfractioninthedoubletis0.7.TheCf=0.7GaussiantsareshownassolidcurvesinFigure 3-6 .System5appearstohave2components;anarrow,opticallythickcomponentsittingdirectlyontopofabroader,opticallythinone.ThisismostclearlyseeninFigure 3-6 inthelongerwavelengthmembersoftheCIVandNVdoublets,whichhaveamuchsharpercentralfeaturethantheirshorterwavelengthcounterparts.WeconstraintheionizationbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios.Thepartialcoverageinthissystemindicatesthatitisintrinsictothequasar.Thepartialcoverageinthissystemandinsystem6areexaminedqualitativelywiththe-ratiopredicteddoublets,showninFigure 3-10 ,andfurtherwiththepoint-by-pointanalysis,illustratedinFigure 3-11 .Bothanalysis'sconrmsimilarCf<1resultsinbothsystems(Seex fordetails).System6,v=-3254kms1:HIiswell-constrainedinsystem6,withthreemostlyblend-freeLymanlines.ThecoveringfractioninthedoubletsisCf0.7,similartosystem5.ThesolidcurvesinFigure 3-6 representtheCf<1Gaussiants,asforsystem5.TheOVIlinesareblendedwiththeOVIlinesinsystem5.ThecoveringfractioninHIappearstobeCf=1becauseLyreacheszerointensity.WeconstraintheionizationbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios.Thebroadsmoothshape,alongwiththepartialcoverageindicatethatthissystemispartofanoutow.Thissystemappearssomewhatasymmetricandthe-ratioanalysisinFigure 3-10 suggestsfurtherthattheremaybetwocomponents,onewithpartialcoveringneartheline-center,andasecondbroadercomponentwithcompletecoveringinthebluewing.Althoughonecomponentdoesnotprovidethebestpossiblettoallthelinesinsystem6,itisnotclearthataddingaseconddistinctcomponentwouldprovideabettercharacterizationoftheactualconditionsintheabsorber.Wetestthisby 56

PAGE 57

3-7 ,resultinginlowerlimitsforthebestestimateofC/Habundance.WetthisbroadsystemwithtwoGaussiancomponentstobettermatchtheabsorbershapes,andidentifythesystembythecentralvelocitiesofthetwocomponents.TheionizationisconstrainedbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios.System8,v=-4763kms1:ThelongerwavelengthmemberoftheCIVdoubletinsystem8fallsonagapbetweenordersofthespectrographbetween6785and6795A,buttheNVdoubletispresentinthespectrum,asistheshorterwavelengthmemberoftheCIVdoublet.TheNVdoubletisusedtodeterminetheCfandtheDopplerbparameterforbothdoublets.Thissystemisalmostbroadenoughtobeamini-BAL,andislikelyanoutowsystembasedontheshapeandstrengthofthelineprole,showninFigure 3-8 .TheHIappearstoberelativelyweakinthissystemcomparedtothemetallines,althoughthereissevereblendingintheLyforest.ThisblendingmeanstheHIabsorptionispoorlyconstrainedwithanupperlimit,andthereforethebestestimateforC/Habundanceisalowerlimit.WeconstraintheionizationbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios.WeusetheGaussianttocomparesystem8toothersystems,buttheproleofsystem8isdistinctlynon-Gaussian.Thereforewealsotthecentraltroughofthe 57

PAGE 58

3-12 .TheC/HabundancefoundbytheGaussiantisconsistentwithin10%oftheC/Habundancefoundusingthepoint-by-pointmethod.System9,v=-6083,-6186,-6298kms1:System9hasthreecomponents,butwechosetoanalyzeonlythecentralcomponentforabundances,asthetwooutercomponentsareverypoorlyconstrained,asshowninFigure 3-9 .Thissystemhasthehighestvelocityshiftoutofthegroupofnarrowabsorptionlines,andliesjustnominallyoutsideofthevelocityshiftregionforassociatedlines(v-5000kms1),at-6200kms1.TheLymanlinescouldbeshiftedupto20kms1fromthemetallines,indicatingapossiblemultiphasegas,butthelinearetooweaktodeterminetheirprecisecentroids.TheweaknessoftheLymanlines,alongwithblendingintheLyforestmeantheHIcolumndensitiesareupperlimits,sothebestestimateoftheC/Habundanceisalowerlimit.WeconstraintheionizationbytherelativestrengthsofCIVandNV,assumingsolarabundanceratios. ).ThesesystemsaregenerallymuchweakerthanthosestudiedinlargerstatisticalsurveysofNALs,suchas Vestergaard ( 2003 ),whichuselowerresolutiondata,andmeasureCIVREWintegratedacrossthedoublet,withcompletenesslimitsof0.3.5A.TheNALsystemsallappeartobehighlyionized;noneofthesystemsexhibitlowionizationspeciessuchasSiII,CIIorSiIII,whereasallcontainCIVandsomecontainhigherionizationspeciessuchasOVIandNV.Systems5,6,8and9exhibithighionization(OVI)absorption,andothersmayalsohaveabsorptionatthese 58

PAGE 59

forfurtherdiscussion)forallbutone(systems2)ofthenineCIVabsorptionlinesystemsinJ1023+5142suggestapossiblephysicalconnectionbetweentheabsorbers.TheproximityofthisNALcomplextothequasarredshiftsuggestsfurtherthatthephysicalrelationshipincludesthequasaritself.Thevelocityspanacrossthegroupistoolargetobeexplainedbyasinglegalaxyorevenalargeclusterofgalaxies.Itmightbeconsistentwithsomelargercosmicstructureconnectedtothequasar,butthenwewouldexpectthevelocitydistributiontoincludetheredsideofthequasarsystemic.AmorelikelyexplanationisthattheNALcomplexformedinamulti-componentoutowfromthequasar.ThereareseveralindirectargumentsforanintrinsicoriginforthegasinthisNALcomplex.i)8ofthe9systemshavesuper-solarmetallicities,discussedindetailinx below.ii)SomeauthorshavearguedthatstrongOVIabsorptionmayindicateintrinsicgasnearthequasar. Foxetal. ( 2008 )carryoutadetailedstudyofOVIabsorptionin2
PAGE 60

Heckmanetal. 2000 ),andinSeyfertgalaxieshavemaximumoutowspeedsof600kms1,andmoretypicalspeedsof100kms1( Rupkeetal. 2005b ),ii)othergalactic/halogasshouldhavevelocitiesnearthetypicalvelocitydispersionforsuchgalaxies(300kms1),iii)gasinthenarrowlineregionofthequasarhastypicalvelocitiesofv1000kms1,andmaximumvelocitiesofv2000kms1( Ruizetal. 2001 2005 ; Veilleuxetal. 2005 ),andiv)intra-clustergalaxymotionsareshownby Popesso&Biviano ( 2006 )togenerallyhavevelocitydispersionsv<1000kms1orlessforclusterswithhighernumbersofactivegalacticnuclei( Richardsetal. 1999 ; Heckmanetal. 2000 ; Vestergaard 2003 ; Nestoretal. 2008 ).Statisticalstudies, Nestoretal. ( 2008 )(seealso Wildetal. ( 2008 )),haveshownthat>43%ofNALsat-750v-12000kms1withREW(1548A)>0.3Aforminhigh-velocityquasaroutows.Thispercentageincreasesto57%forthenarrowerrangeof-1250v-6750kms1,spannedbytheNALsinJ1023+5142.Thepercentagereaches72%forthenarrowrangeof-1250v-3000kms1,whichencompassessystems1through4inJ1023+5142.Thesepercentagesareprobablylowerforweakerlines( Nestoretal. ( 2008 )andprivatecommunication). Misawaetal. ( 2007 )alsondthatforCIVNALswithREW(1548A)>0.056Aatvelocitiesv<5000kms1,theintrinsic(outow)fractionis33%andathighervelocities,5000
PAGE 61

Hamannetal. ( 2011 )andHamann&Simon(inpreparation)andreferencesthereinformorediscussion).1)Wehaveonlyverypoorconstraintsonthevariability.WecompareCIVandNVREWresultsmeasuredfromtheGaussiantstotheSDSSandKeckspectra(trest11months)insearchofvariabilityintheabsorptionlines.System8istheonlyindividualCIVandNVsystemresolvedintheSDSSspectrum,whiletheweakerlinesarenotdetectedintheSDSSspectrum.System8isthestrongestoftheninesystems,anddidnotvaryinREWbymorethan15%inCIVandNVbetweentheSDSSandKeckobservations.Fortheeightweakersystems,weconcludeonlythatvariabilitygreaterthanafactorof2to3didnotoccur.2)Thereispartialcoveringintwo(systems5and6,Figures 3-6 and 3-11 )outoftheninesystems.Absorptionlineswithpartialcoveringoftheluminositysourceareattributedtogasnearthequasarbecausepartialcoveringisnotexpectedtooccurininterveningcloudsorgalaxies( Hamannetal. 2011 ).Thepresenceofpartialcoveringintheselinesstronglysuggeststhatthegasisintrinsicandlocatedinthenearquasarenvironment.3)Theprolesofsystems4,6,7,8,and9showninFigures 3-5 3-6 3-7 3-8 and 3-9 haveCIVandNVbvaluesbetween33and155kms1andOVIbvaluesbetween42and150kms1.ThesebvaluesarebroadandsmoothcomparedtothethermalwidthsforgasatthehighestexpectedtemperaturenearT=105K( Arnaud&Rothenug 1985 ; Hamannetal. 1995 )foraphotoionizedgasnearaquasar(33kms1forHandlessthan10kms1forCandN).Theyarealsobroaderthantypicalnon-dampedLyinterveningCIV,NVandOVIabsorptionlines,whichhaveonaverageb<12kms1forOVI,andb<10kms1forCIVandNV( Tzanavaris&Carswell 2003 ; Bergeron&Herbert-Fort 2005 ; Schayeetal. 2007 ; Foxetal. 2008 ).Theseproles,therefore,exhibitmorphologiesconsistentwithformationinanoutow. 61

PAGE 62

Hamannetal. 2011 )isaprimeexampleofallthree,exhibitingvariability,partialcovering,andbroadprolesthatstillhaveFWHMsthatareasnarrowornarrowerthanmanyofthesystemsinJ1023+5142.Thereismoretentativeevidenceforaquasaroutoworiginintheapparentline-lockbetweentheCIVdoubletsinsystems1and2.Line-locking,wherethedifferenceinoutowvelocitiesoftwosystemsisexactlythevelocityseparationofthedoublet,meansthatthelinesarebeingradiativelyaccelerateddirectlytowardstheobserver.Therealityoftheline-lockinginthiscaseisunclear,duetothedifferenceinderivedmetallicitiesbetweenthetwosystems.Nevertheless,theincrediblysmallvelocityoffset(x ),alongwiththeverysmallprobabilityforchancealignments( Gangulyetal. 2003 )suggestthatthephenomenonmaybereal.Thepossibleline-lockinCIVinsystems1and2suggeststhattheyarebothpartofanoutowandthattheseweakCIVlinesplayasignicantroleinradiativelydrivingtheow.Ifthisisreallythecasehere,thegasprobablyoriginatednearthesourceofradiativeacceleration,i.e.thequasar.Finally,wenoteatrendinlinewidthwithvelocityshiftawayfromthequasar.Thenarrowestlines,withFWHM20kms1areclosesttothequasarredshift.Thelinesappearprogressivelybroaderasthevelocityshiftincreases,withthebroadestsystemdescribedasa(narrow)mini-BALwithFWHM=270kms1,showninFigure 3-1 .AsimilarphenomenonhasbeenobservedbeforeinotherquasarswithmultipleCIVabsorptionlinesclearlyforminginoutows( Hamannetal. 1997 ; Steidel 1990 ; Hamannetal. 2011 ).Althoughitprovidesnodirectinformationontheabsorberlocations,theappearanceofthispatterninJ1023+5142supportstheideathatatleastsomeofthesystemsforminaquasaroutow.Thetightgroupingofallnineofthesystemsalsosuggestsarelationshipbetweenthem. Gangulyetal. ( 2003 )determine 62

PAGE 63

,theevidencesuggeststhatthemajorityofabsorptionlinesinthisgroupingarepartofacomplexquasaroutow.Thisowmustbehighlystructured,withatleast6andasmanyas9distinctabsorbingstructuresalongthelineofsight.Thevelocitiesinthe6mostsecureoutowsystemsrangefrom-2120to-4760kms1.Severalofthesesystems(4,6,7and8)alsohavesuper-thermalline 63

PAGE 64

Vestergaard&Peterson ( 2006 ),deriveablackholemassoflogMBH=9.8M.Basedonthesevalues,wecalculateanEddingtonluminosityfractionof0.8.TheblackholemassandEddingtonluminosityfractionarethenusedinthescalingrelationsinHamann&Simon,inpreparation,tocalculatethesizeofthecontinuumandbroadlineemissionregions. 64

PAGE 65

Koristaetal. 1993 ),buttheydooverlap.TheNALshavetotalHcolumndensities(N(H)1017.2to1019.1cm2,individualvalueslistedinTable 3-2 ),morethan1000timeslowerthantypicalBALHcolumndensities(N(H)1020-1022cm2,andprobablyhigher).Bydenition,theseNALsalsohaveFWHMsaround1000timesnarrowerthantypicalBALs,andmuchsmallerREWsaswell.Nonetheless,NALslikethismightbepartofthesamegeneraloutowphenomenonasBALs,viewedatdifferentangles( Elvis 2000 ; Gangulyetal. 2001 ).ThiscomplexofweakNALoutowsappearstobedramaticallydifferentfromtypicalBALoutows,andconstitutesanearlyunexploredpartofthequasaroutowphenomenon,witharangeofphysicalparametersandkinematicsmorecomplexandvariedthanpreviouslythought.Itiswell-knownthatNALsareacommonfeatureofquasarspectra.Previoussurveyshavefoundthat40%ofquasarshaveCIVNALs,inparticular25%havestrongCIVNALswithinv>-5000kms1( Vestergaard 2003 ),60%havequasar-drivenoutowsinsomeform,eitherBALs,NALs,orsomethingin-between( Ganguly&Brotherton 2008 ; RodrguezHidalgoetal. 2010a ),andincludinghigh-velocityoutowsraisesthepercentageto70%( Misawaetal. 2007 ).Ifthecoveragefractionoftheseoutowsislessthan100%,whichislikely,theycouldbeubiquitousinthenearquasarenvironment,andcouldpotentiallyplayaninuentialroleinthephysicalprocessesoccurringtherein.Finally,wewouldliketounderstandwhatroletheNALoutowinJ1023+5142mighthaveinfeedbacktogalaxyevolution.Thelowspeedsandsmallcolumndensities,e.g., 65

PAGE 66

Hamannetal. ( 2011 )estimatethatthekineticenergyyieldisseveralordersofmagnitudesmallerthanthatnecessarytoinuencefeedback.Attheoppositeextreme, Moeetal. ( 2009 )arguethatthefeedbackcontributionissignicantforanotherNALoutowataderiveddistanceof2kpc.ThelocationoftheNALoutowinJ1023+5142isnotknownwellenoughtomaketheseestimates.AmoresensitivesearchforvariabilityintheseNALscouldbeveryhelpfulforreningboththelocationandthetotalenergyyield( Hamannetal. ( 2011 )andreferencestherein). Petitjean&Srianand 1999 ; Hamannetal. 2001 ; D'Odoricoetal. 2004 ; Gabeletal. 2006 ).Thesehighmetallicitiesareconsistentwiththeresultsofotherstudiesofintrinsicgasaswell,includingBELgas( Hamannetal. 2002 )andthereforeconsistentwithourinterpretationthatthegasisintrinsictothequasar.Interveningabsorbersgenerallyhaveverylowmetallicities,withZnomorethanafewhundredthssolar,althoughtherearecaseswherehighmetallicityinterveninggashasbeenobserved( Prochaskaetal. 2006 ; Schayeetal. 2007 ).Wearguethatthehighmetallicitiesfoundin8ofthe9systemsinthisquasarareconsistentwithlocationsnearthequasar,however,wedonotrelysolelyonthisargumenttodeterminethegaslocation.Instead,weconsiderthathighmetallicitiescouldbeageneralphenomenonfoundinallgasinthequasarhostenvironment( Prochaska&Hennawi 2009 ).ThehighmetallicitiesoftheNALsystemsinJ1023+5142requirethatitshostgalaxyhadvigorousstarformationintheepochbeforethequasarwasobservable, 66

PAGE 67

Falomoetal. 2008 ).Thisevidence,alongwithpreviousstudiesofBELsleadustoconcludethatthegenerallyacceptedparadigmofquasar-hostgalaxyevolutioniscorrect,whereamajormergerleadstoavigorousburstofstarformation,whichthenfunnelsgastothecenterofthegalaxyandignitesaquasarthateventuallyblowsoutobscuringgasanddusttobecomevisiblyluminous( Perez-Gonzalezetal. 2008 ; Hopkinsetal. 2008 ; RamosAlmeidaetal. 2009 ).However,largersamplesareneededtoexaminethefullrangeofNALpropertiesandstudytheirrelationshipstoquasaroutowsandhostgalaxyenvironments.Measurementsathighredshiftsareparticularlyvaluablebecausethisisthemainepochofhost/massivegalaxyformationwhentheNALgasmighthaveacloserelationshiptoongoingorrecentstarformationinthehosts. 67

PAGE 68

68

PAGE 69

RegionofthespectrumofJ1023+5142withCIVabsorption.IndividualCIVdoubletsarelabeledbynumber.Thelowerx-axisisobservedwavelengthinangstroms,whiletheupperx-axisisvelocityshiftoftheshorterwavelengthdoubletlineat1548.20Afromthequasarrestframeinkilometerspersecond.Theuxunitsarenormalizedsothatthecontinuumhasavalueofone.Thegapbetween6788and6797AisagapbetweenEchelleordersinthespectrograph.Thelongerwavelengthlineofsystem8fallsinthisgap.Stronglyblendedlinesareconsideredcomponentsofasinglesystem,e.g.systems7and9. Figure3-2. RegionofLyforestspectrumwiththecontinuumtover-plotted.TheregionsspanningtheLyandOVINALsarelabeledabovethespectrum. 69

PAGE 70

Individualabsorptionlines. 70

PAGE 71

3-1 .Continued 5a3.40391CIII9774302.710.05919.713.05-3121OVI10324544.530.27525.314.99Ly12165353.700.17632.213.91NV12395455.650.09813.014.30NV12435473.180.07513.014.30CIV15486818.130.14115.014.12CIV15516829.450.10515.014.126b3.40196Ly9734281.070.05531.714.41-3254Ly10264515.180.13731.714.41OVI10324542.510.73963.515.54Ly12165351.330.38231.714.41NV12395453.240.28450.014.57NV12435470.760.18850.014.57CIV15486815.110.22045.014.02CIV15516826.420.12845.014.0273.39936Ly9504178.260.00827.313.19-3430CIII9774298.260.10219.812.36NIII9904354.490.02319.813.04Ly12165348.170.29527.313.19NV12395450.020.31018.013.50NV12435467.530.18018.013.50CIV15486811.090.18719.913.09CIV15516822.400.10119.913.093.39835Ly9504177.31*60.013.74-3496CIII9774297.28*43.713.19NIII9904353.49*43.713.04Ly10264511.48*60.013.74Ly12165346.95*60.013.74NV12395448.77*52.414.22NV12435466.27*52.414.22CIV15486809.53*43.713.62CIV15516820.83*43.713.6183.37983Ly10264492.480.135149.014.29-4763OVI10324519.681.705149.815.86Ly12165324.430.766149.014.29NV12395425.821.045155.514.88NV12435443.260.643155.514.88CIV15486780.850.807155.514.41 71

PAGE 72

3-1 .Continued 93.35922Ly9734239.500.03958.414.02-6186CIII9774258.940.15850.013.35Ly10264471.340.11258.414.02OVI10324498.410.41342.214.51Ly12165299.370.51358.414.02NV12395400.290.21240.013.84NV12435417.640.11540.013.84CIV15486748.940.15640.413.35CIV15516760.140.08340.413.35 Table3-2. MetalabundanceandtotalHcolumndensity. #zabs[C/H]best[C/H]min[N/H]min[Si/H]minlogN(H)cm2 72

PAGE 73

LineprolesinthenormalizedspectrumJ1023+5142forsystem1.ThecentralvelocityfortheGaussianproletisv=-1441kms1.Thevelocityscaleiswithrespecttotherestframeofthequasarbasedonzem=3.45,wherenegativevelocitiesdenotemotiontowardstheobserverandawayfromthequasar.Thevelocityrangeis400kms1forthisandgures 3-4 through 3-7 and 3-9 .ThesolidcurveineachpanelistheGaussianopticaldepthttoindividuallines.Thedashedverticallineisthecentralvelocityofthesystem.AllofthelinesusedtoderiveorconstraincolumndensitieswithGaussiantsareshowninthegure. 73

PAGE 74

LineprolesinthenormalizedspectrumJ1023+5142forsystem2.ThecentralvelocityfortheGaussianproletisv=-1938kms1.ThesymbolsandrangesarethesameasinFigure 3-3 74

PAGE 75

LineprolesinthenormalizedspectrumJ1023+5142forsystems3and4.ThecentralvelocitiesoftheGaussianproletsarev=-2120kms1forsystem3andv=-2200kms1forsystem4.ThesymbolsandrangesarethesameasinFigure 3-3 75

PAGE 76

LineprolesinthenormalizedspectrumJ1023+5142forsystems5and6.ThecentralvelocitiesoftheGaussianproletsarev=-3121kms1forsystem5andv=-3254kms1forsystem6.ThesolidcurveistheCf<1GaussiantfortheCIV,NVandHIabsorptionlines.System5isthenarrowersystem.TherangesarethesameasinFigure 3-3 76

PAGE 77

LineprolesinthenormalizedspectrumJ1023+5142forsystem7.Thissystemhastwoblendedcomponentswithcentralvelocitiesofv=-3430and-3496kms1.ThesymbolsandrangesarethesameasinFigure 3-3 77

PAGE 78

LineprolesinthenormalizedspectrumJ1023+5142forsystem8.TheGaussianprolethasacentralvelocityofv=-4763kms1.Thevelocityrangeis1100kms1.ThesymbolsandrangesarethesameasinFigure 3-3 78

PAGE 79

LineprolesinthenormalizedspectrumJ1023+5142forsystem9.Thissystemisablendofthreecomponentswithcentralvelocities,v=-6083,-6186and-6298kms1.AlthoughallthreecomponentsaretwithGaussianproles,onlythecentralcomponentisconsideredintheabundanceanalysis.ThesymbolsandrangesarethesameasinFigure 3-3 79

PAGE 80

80

PAGE 81

Point-by-pointcoveringfractionsforCIVandNVinsystem6andthecenterofsystem5withstepsizeofthreeresolutionelements.System5isthenarrowersystem.Thesolidcurveisthesmoothedshorterwavelengthline,thedashedcurveisthesmoothedlongerwavelengthline,withtheirrespectiveerrorspectrabelow.Thecirclesrepresent1Cfateachstepsothatapointatzerouxhascompletecoverage,andapointatthecontinuumuxofonehasnocoverage.Thecirclesarelocatedatthecenteroftheaveragevelocitysteps. 81

PAGE 82

Point-by-pointcoveringfractionsforNVinsystem8withstepsizeoffourresolutionelements.ThesymbolsarethesameasinFigure 3-11 82

PAGE 83

Weymannetal. 1979 ; Steidel 1990 ).Theycanhaveavarietyoforigins,includingquasarorstarburstoutows,mergerremnantsinthehostgalaxyhaloandinterveninggalaxiesalongthelineofsighttothequasar.ThestatisticalexcessofNALsnearthequasaremissionlineredshiftindicatesthatasignicantfractionoftheseabsorptionlineshavesomephysicalrelationshiptothequasars.Theclassofnarrowassociatedabsorptionlines(AALs),withvelocityshiftsv<5000kms1fromthequasarsystematic,wasdenedtoencompassmostofthisexcess( Weymannetal. 1979 ; Foltzetal. 1986 ; Andersonetal. 1987 ; Vestergaard 2003 ).However,morerecentstudieshaveshownthattheexcessinCIVextendsouttov12000kms1( Nestoretal. 2008 ; Wildetal. 2008 ).Wewillusethetermintrinsictodescribelinesthatarephysicallyrelatedtothequasarsortheirhostgalaxies,irrespectiveoftheirvelocityshifts.Intrinsiclinescanhavearangeoforigins,asnotedabove,andarangeoflocations,fromverynearthecentralblackholetotheouterhaloofthehostgalaxies.Thesefeaturesareoverlookedinthemajorityofquasarabsorptionlinestudiesthatfocusoninterveningand/orintergalacticmaterial.However,intrinsiclinesofallvarietiesareextremelyvaluableasprobesofthegaseousenvironmentsofquasarsduringanimportantstageofquasar-galaxyevolution.Theperiodwhenaquasarisactiveinamassivegalaxyisatimeofrapidgrowthoftheblackholeandprobablythehostgalaxyaswell.IntrinsicNALsprovideinformationonthekinematics,columndensities,andionizationstateofthegas,thatis,thephysicalnatureofthegas,aswellasonthechemicalabundances,whichyieldconstraintsonthestarformationhistoriesandchemical'maturity'ofthehostenvironments.Thechemicalabundanceofagasindicatesthehistoricallevelofstarformationinthatenvironment,whichcanconstraingalaxyformationmodels.Itisalsoimportanttoquantifythenature 83

PAGE 84

Richardsetal. 1999 ).Quasarsathighredshifts,abovez2,areimportantobjectsforstudiesofintrinsicgasbecausethisistheepochofmajormergersandgalaxyassemblyforthemassivegalaxiesthatarehosttoquasars.Thequasaristhoughttoinuencethehostgalaxyevolution,butconcretemechanismsforthisinteractionarenotwellunderstood( DiMatteoetal. 2005 2008 ; Hopkinsetal. 2008 ).Quasaroutowsareonepossiblemediumofinteraction,possiblyinuencingthestarformationinthesurroundinghostastheyareejectedfromthecentralquasarengine.Theincidenceofquasaroutows,aswellastheirphysicalcharacteristicsdeterminesthedegreetowhichtheyinuencethecourseofhostgalaxyevolution.Inthischapter,wedescriberesultsfromaspectroscopicsurveyofCIVNALsin24quasarsknownfrompreviousobservationstocontainNALs.OurmaingoalsaretodeterminethefractionofintrinsicNALs,specicallyquasaroutows,inthisquasarsampleandtodeterminethephysicalcharacteristicsoftheintrinsicgas.InChapter 5 ,wewillincludemeasurementsoflinesofvariouselementsandionsotherthanCIVtoplaceconstraintsontheionization,totalcolumndensitiesandmetalabundancesoftheintrinsicgas.IntrinsicNALsystemscanbeidentiedthroughseveraltechniques:1)variability,wherechangesinthelocationorionizationofthegasnearthequasarmaycausevariabilityofthelinestrength,2)partialcovering,wheretheabsorbinggasregionisphysicallysmallandprobablyneartheemissionsourceandthereforeonlypartiallycoverstheemissionsource,allowingpartofthelightfromthesourcetoreachtheobserverunabsorbed,and3)broad,smoothprolescomparedtothermalwidths,presumablycausedbyoutowmotionsinthegasratherthanthermalbroadening( Hamannetal. 1997 ; Barlowetal. 1997 ; Aldcroftetal. 1997 ; Hamann&Ferland 84

PAGE 85

; Srianand&Petitjean 2000 ; Narayananetal. 2004 ; Gangulyetal. 2006 ; Misawaetal. 2007 ; Schayeetal. 2007 ; Hamannetal. 2011 ).Allofthesepropertiesaremostreadilyattributedtothedenseanddynamicenvironmentsnearquasars.Furthermore,thesethreepropertiestendtoappeartogetherinmanywell-studiedNALs,suggestingthateachindividualpropertymaybeagoodindicatorofintrinsicgas,evenwhenitappearsonitsown.Variabilityrequiresmultipleepochsofcomparabledata,whichwedonotcurrentlyhaveforthequasarsinthesurveydiscussedinthischapter.PartialcoveringiseasilydetectedinmultipletsliketheCIVdoubletwheretheopticaldepthratiobetweenthetwolinesisxedbytheoscillatorstrengths( Verneretal. 1994 ).Whenthesourceispartiallycovered,someunabsorbedlightarticiallydecreasesthedepthoftheabsorptionlinesothattheapparentopticaldepthratioappearsdifferentthantheactualopticaldepthratio.Themostlikelyoriginofgasexhibitingpartialcoveringisinaquasar-drivenoutow,e.g.verynearthequasarsource,howeverthereareseveralcasesoflow-densityAALregionsthatexhibitpartialcoveringatkpcdistancesfromthequasars( Hamannetal. 2001 ),seealsoHamann&Simon(inpreparation).Weinterpretpartialcoveringasanindicatorofintrinsicorigin,i.e.,lineformationsomewhereinthequasarenvironment,keepinginmindthatintrinsiclinesatlargevelocityshiftscanonlybeduetoquasar-drivenoutows.Otherpossibleintrinsicoriginscanbediscountedbecausetheyhavelowervelocities,suchas:i)starburst-drivenoutows,whichgenerallyarefoundwithvelocities100
PAGE 86

Misawaetal. ( 2007 )examinehighresolutionspectraof37quasarsathighredshifts.TheyconductastatisticalanalysisofthefractionofNALsthatexhibitpartialcovering.TheirsurveydiffersfromthesurveypresentedinthisworkprimarilyinthatthequasarsampleisnotselectedtocontainquasarswithNALs,anddoesnothaveuniformvelocitycoverageofallthequasarspectra,withmanyspectramissingthe`associated'regionnearthequasarsystemicredshift. Nestoretal. ( 2008 )examinetheincidenceofCIVNALsinmediumresolutionSloanDigitalSkySurvey(SDSS)spectraofalargesampleofquasarsalsonotspecicallyselectedtocontainNALs.TheirstudyfocusesonthestatisticalexcessofCIVNALsatvelocityshiftsfromthequasarredshiftof0,000kms1. Wildetal. ( 2008 )produceaCIVNALstudywithSDSSspectrasimilarto Nestoretal. ( 2008 ),andalsoconsiderMgIINALs,whichexhibitastatisticalexcessthatextendstolowervelocitiesthantheCIVexcess.TheyndcomparableexcessesinNALoccurrencebothinCIVandinMgIIatlowervelocities. Vestergaard ( 2003 )alsostudiesNALsinlower-resolutionspectra,comparingNALpropertieswiththeradiopropertiesoftheobservedquasarsandndingnosignicantcorrelationsbetweenradiopropertiesandCIVNALoccurrence.Finally, Richardsetal. ( 1999 )investigatethecorrelationsbetweenCIVNALoccurrenceatlargevelocityshiftsandradiopropertiesofthehostgalaxy,ndinganapparentconnectionbetweenthetwo,whichsuggeststhatuptoonethirdofthesehighvelocityNALsareactuallyintrinsictothehostgalaxy.Theselow-resolutionsurveysmustrelyonsecondaryindicatorsto 86

PAGE 87

Misawaetal. ( 2007 )alongwithbroadvelocitycoverage(includinglowvelocitiesnearthequasarsystematicvelocity)like Nestoretal. ( 2008 )and Wildetal. ( 2008 )tocreateacomprehensivestudyofhighredshiftquasarNALs.WepresentauniquequasarsamplecontaininghighredshiftquasarspreviouslyknowntocontainNALsnearthequasarsystematicredshift.Thissampleiswell-suitedtoastudyofCIVAALsinparticular,asweobtaincoveragedownto,andevenredwardofthequasarsystematicredshift.Inthepreviouschapter(Chapter 3 ),weprovidedanin-depthstudyofaninterestingindividualquasarinthissample.Inthischapter,weexpandthestudytopresentourfullsampleof24quasarswithhighresolutionspectraoftherest-frameultra-violet(UV)absorptionlineregionfromtheVeryLargeTelescopewiththeUltra-VioletEchelleSpectrograph(VLT+UVES),theMagellanClaytelescopewiththeMagellanInamoriKyoceraEchelle(Mag.+MIKE)andtheKeckItelescopewiththeHighResolutionEchelleSpectrograph(Keck+HIRES).WestudythissampleofNALstolearnmoreaboutthequasarenvironmentduringtheepochofmassivegalaxyformation,fromtheincidenceofoutowstotheaveragestrengthoftheabsorptionlinesinbothinterveningandintrinsicgas.InthesubsequentchapterwewillpresentchemicalabundancesfortheintrinsicNALsinthissample.InthepresentworkwemeasureCIVNALsoutto40000kms1inoursampleof24quasars.Wemeasurecoveringfractions,linewidthsandcolumndensities,whichweusetodeterminetheoriginofeachabsorptionline. 87

PAGE 88

4.1.1SampleSelectionWeconstructauniquesampleofmostlyhighredshiftquasarswithCIVNALs.ThisobservingcampaignwasdesignedtodeterminemetalabundancesforasmanyAALsandNALsaspossibleinquasarsatthepeakofthemassivegalaxyformationepochintheUniverse(z2).Wechoseobjectswithredshiftsz2.7(with5lowerredshiftexceptionsobservedwhennohigherredshifttargetswereavailable),whichprovidesspectralcoveragebythedetectorsintheobservedwavelengthrangeofatleasttwomembersoftheHILymanseries.ThisminimumcoveragerequirementiscrucialtothemeasurementofhydrogencolumndensitiesinthecommoncaseswhereLyabsorptionlinesaresaturated.Wemeasurehydrogencolumndensitiesforionizationandmetallicityconstraints,presentedinChapter 5 .WechoseobjectswithknownNALswithinjvj<8000kms1inlowerresolutiondata,e.g.SDSSspectra.Inordertobedetectedinthelowerresolutionspectra,theseNALsalwayshaverest-equivalentwidths(REWS)REW(CIV1548A)0.1A.FortheMagellanandKeckobservations,weparticularlyselectedNALswithapparentCIVdoubletREWratios1.5,inordertoexcludestronglysaturatedsystems,forwhichaccurateopticaldepthsandabundancesaredifcultorimpossibletodetermine.FortheVLTobservations,wechoseobjectsmoreloosely,selectingquasarswithknownstrongAALsbyinspectingpublishedspectra( Storrie-Lombardietal. 1996 ; Veron-Cetty&Veron 2000 ; Perouxetal. 2001 ),whichresultedinseveralsaturatedCIVsystems.Inallcases,theindividualdoubletmembersareidentiableinthelowerresolutionspectra(i.e.velocitywidths<700kms1).Finally,welimittheapparentMagnitude(Rorr,whereavailable),whichgenerallyencompassestheregionofthespectrumwithCIVemissionandabsorption,tor<18.8(exceptforquasarJ1633+1411,zem>4,whichhasr=19.25),inordertoachieveacceptablesignaltonoiseratios(S/N)forreasonableobservingtimesoftobs3hrs. 88

PAGE 89

89

PAGE 90

4-1 alongwiththeiremissionlineredshifts(zem),magnitudes(Mag.)andsomeobservingdetails,includingobservationdates,(rest)wavelengthcoverage(),spectralresolution(R),andinstrumentsusedintheobservations.ThemagnitudesaretakenfromtheSDSSwhereavailable.OthersarefromtheNEDdatabaseorthe Veron-Cetty&Veron ( 2006 )catalog.Themagnitudelter(r,RorV)isindicatedwitheachentryinthetable.ThelasttwocolumnsofTable 4-1 listthenumberofNALcomponents(column9)andsystems(column10)thatareintrinsictothequasarenvironment,outofthetotalnumberofcomponentsandsystemsfoundineachquasar(x below).TheemissionredshiftsaretakenfromtheSDSSwhenavailable,orfromrecentliteraturewhereredshiftsaremeasuredfromLy,CIV,andpossiblyotherlowerionizationlines( Perouxetal. 2001 ; Veron-Cetty&Veron 2006 ; Hewett&Wild 2010 ).TheSDSSredshiftsarecorrectedforshiftsinvariousemissionlineswithrespecttothequasarredshift.ThereliabilityoftheredshiftslistedinTable 4-1 dependsonthequasar,butaregenerallyaccuratetowithin1000kms1ofthequasarsystemicvelocity.TheuncertaintyinredshiftmainlyaffectsthevelocityshiftsofAALsnearthequasarredshift.Thus,NALswithpositivevelocities(possiblyindicatingquasarinfall)areconsideredhighlymarginalcandidatesforinfall,andlikewise,onlyintrinsicNALswithvelocitiesabove2500kms1fromthequasarredshiftareconsideredtobequasaroutowcandidates.Above6000A,eightofthequasarspectraobservedwithHIRESandUVESareaffectedbysmallgaps,generally20A,betweenEchelleordersorlargergaps,100A,wherethespectrumfallsintoaphysicalgapbetweendetectors.Thesegapsaffectabout6.5%ofthetotalspectralregioninthevelocityrange+5000
PAGE 91

4.2.1IdenticationWeidentifyCIVabsorptionlinesbytheappearanceofdoubletfeaturesinthe24quasarspectrainoursamplebyvisualinspection.Wemarkallabsorptionfeaturesbetween+5000and-40,000kms1oftheCIVemissionlineasdenedbythequasaremissionredshift.WeidentifyCIVdoubletsbythe498kms1velocityseparationbetweenthestronger(1548)andweaker(1551)members.TheequivalentwidthismeasuredbyintegratingacrosstheGaussianproleofeachabsorptionlineorblendofabsorptionlines(x ).Foranunblendedline,wearecompletedowntorestequivalentwidth,REW(1548)min=0.02AforthestrongerCIVdoubletmember,exceptforfourspectra,BR0351-1034,PSS0134+3307,J1341-0115andJ1020-0020,whichhavepoorsignaltonoiseandarecompletetoREW(1548)min=0.03A.EachCIVabsorptionlineismadeupofindividualcomponentsandispartofasystemof(probablyrelated)absorptionlines.Columndensitiesandb-valuesareevaluatedindividuallyforeachcomponent.Componentsmayappearas:a)isolatedabsorptionlines,b)absorptionfeaturesblendedtogethertoformanasymmetriclineprole,c)distinctabsorptionlinespartiallyblendedtogetherbutseparatedenoughtodisplayarisebetweentwoormoreminima.Inthelastcase,acomponentisonlycountedifitcontainsatleast25%ofthetotalREWoftheabsorber.The25%thresholdwaschosentolimitthenumberofindividualcomponentstothefewestpossiblerequiredtoadequatelydescribethedata(SeeChapter 3 ).Thisconservativeapproachensureswearenotover-interpretingthecomplexityofeachabsorptionfeature.Asystemiscomprisedofagroupofcomponents,whereeachcomponenthasavelocityseparationof200kms1fromthenextcomponent.Bycombiningabsorptionlinesintosystems,weassumethatlinesinclustersarephysicallyrelated( Sargentetal. 1988 ).Theseparationvelocityweusewaschosenbasedonourobservanceofmorecommonoccurrencesofclusteringinourdataatseparations 91

PAGE 92

Misawaetal. ( 2007 ),whoalsousethisseparationvelocitytodene'Poissonsystems'.Intotal,weidentify136CIVsystems,comprisedof271individualcomponents.57ofthosesystems,and120componentsarewithinthenominalassociatedvelocityshiftofv<5000kms1.Throughoutthischapterweusetheterms`lines'and`NALs'moregenerally,forconvenience,referingtocomponents,systemsorbothdependingonthecontext.ThecomparisonsinFigure 4-1 illustratetheclearadvantagesofhigherresolutionspectrafordetectingweaklinesandresolvingmulti-componentblends.ThegureshowsKeck+HIRESandMagellan+MIKEspectraoftwoquasarsinoursampleinblack,withtheSDSSspectraofthesamequasarsover-plottedinred.CIVdoubletsarelabeledabovethespectra.Consider,forexample,thecaseofJ1008+3625,whoseSDSSspectrumwasincludedinthequasarabsorptionlinesurveysby Nestoretal. ( 2008 ); RodrguezHidalgoetal. ( 2010b ).ThesestudiesdidnotdetectmostofthediscreteNALsshowninFigure 4-1 ,includingthedoubletsatv=-5686kms1and-989kms1thatweidentifyasintrinsiclinesbasedonthebroadproles(v=-5686kms1lineonly)andevidenceforpartialcovering(x andx below).Theyalsoobtainagoodttothecomplexblendat-2450kms1usingjustoneCIVabsorptiondoubletwithvelocityv=-2451kms1,fullwidthathalfminimumFWHM=474kms1anda1:1doubletratio(indicatingsaturation).TheirderivedFWHMisbelowtheconservativethresholdtheyadoptforlikelyoutowsystems(FWHM>700kms1).ItisthereforeidentiedasasingleNAL,withanambiguousorigin.However,Figure 4-1 showsthatthisfeatureismuchmorecomplexandouranalysis(x below)indicatesthatitisalsopartofaquasaroutow.ThesecondquasarinthebottompanelofFigure 4-1 ,J1307+1230,showssimilarexamplesofseveralnarrowNALsinthehighresolutionspectrumthatappearassinglebroadNALsintheSDSSspectrum.Furthermore, 92

PAGE 93

3 Hamannetal. ( 2011 )).Thesesimplifyingassumptions,implicitinequation 4 ,donotimpactthedeterminationoftheoriginofthegas.Forexample,iftheabsorberisactuallyinhomogeneous,thecoveringfractionswederiveindicatetheamountofcoveragebyabsorbingmaterialwith1( Hamann&Sabra 2004 ; Aravetal. 2005 ).Thisstillrequiressmallnon-uniformitiesonascalecomparabletotheemissionsource,andsoourconclusionaboutthelocationoftheabsorberisthesame.WealsoassumethatbothmembersoftheCIVdoublethavethesameCfatagivenvelocity,anecessityofourGaussianttingtechnique. 93

PAGE 94

5 )andiii)providingmorereliableresultsthanthepoint-by-pointor-ratioanalysisinnoisydatabyttingtheensembleprole(below)( Simon&Hamann 2010b ; Hamannetal. 2011 ).FreeparametersintheGaussiantsareline-centeropticaldepth(0),redshift,Dopplerwidth(b-value),andcoveringfraction(Cf).Theredshift,b-value,coveringfractionandthe2:1ratioexpectedfromtheoscillatorstrengthratiosfortheCIVdoubletarelockedandttogetherforeachdoubletintheGaussiants.Weusetheseparameterstocalculatethecolumndensityofioni(Ni)asfollows, 5 .OurGaussianlineproletsmeasurethecoveringfractionofeachcomponent.Thecoveringfractionisxedforallcomponentsinablend.EveninsimpleblendsitisnotpossibletosetupaformalismthatappliestoCf<1inblendswithoutmakingarbitraryassumptionsabouthowtheabsorbingregionsoverlap.Furthermore,incomplexblends,where,forexample,CIV(1548)inonecomponentblendswithCIV(1551)ofanother,itisnotpossibletoderiveCfandthewholeregionmustbettogether.

PAGE 95

forspecicexamples).Forallcomplexblendswithsignsofpartialcoveringinindividualcomponents,aswellasforallothercomponentswithbest-tGaussianswithCf<1,weperformasimpletestusingthe2:1-ratioderivedfromtheoscillatorstrengthsofeachdoubletmember.Weusethisratioalongwiththeshapeofthebluedoubletmembertopredicttheshapeofthereddoubletmember.ThepredictionshouldmatchthedataifCf=1,butshouldbeweakerthanthedataifCf<1.Finally,asisevidentfromtheabove-ratioanalysis,thecoveringfractionisnotnecessarilyconstantacrossanentireabsorptionlineorblendedsystem.Tomeasurethiseffect,andasafurthercheckforNALsthatappeartohavepartialcovering,weuseapoint-by-pointmethodtomeasurevandCfacrosseachprolesuspectedtohavepartialcoveringbasedontheGaussiants.Westepacrosstheabsorptionline,calculatingaverageintensityineachsmall(afewtimestheresolution)regularlyspacedsectionsofthespectrum,usingtheratiooftheintensitiesinthedoublettomeasureCfandvateachstep.Allthreeofthesemethodsfordeterminingcoveringfraction(Gaussiants,-ratioanalysisandpoint-bypointanalysis)arenecessarytoobtainreliableresults,alongwithsometrialanderrorusingdifferenttsandourpersonaljudgment.TheactualuncertaintiesintheCfofanindividualabsorptionlinearenotwellcharacterizedbythephotonstatistics,whicharemeasuredinformalerrorsderivedfromthepoint-by-pointmethod.Furthermore,asin Hamannetal. ( 2011 )andChapter 3 ,theestimatesforCf

PAGE 96

4-2 .FortherightmostabsorptionlineinJ1326+0743intherightpanelsofthisgure,we 96

PAGE 97

4-3 .ThecoveringfractionintheseexamplesisgenerallyCf=1acrossthefullvelocityrange,althoughoneortwo`dips'incoveringfractionappearwherethecomponentsareverynarrowandunresolved,asintherightmostabsorptionfeatureintherightpanelofFigure 4-3 .WeshowinFigure 4-4 ,twoexamplesofabsorptionslineswithuncertaincoveringfractionsbecausetheyareunresolved(leftpanels)orhavelargeuncertaintiesincontinuumplacement(rightpanels).Forthepossiblyunresolvedabsorptionline(leftpanel),whichhasFWHM3timesthespectralresolution,weadopttheCf<1resultandlistthecoveringfractionasprobablyCf<1.Thereareonlytwocaseswherepartialcoveringissuspectedforanunresolvedormarginallyresolvedline.OnecaseisshowninFigure 4-4 andasecondhigh-velocityabsorptionlinehasaresolvedcompanionnearbywithpartialcovering,andisdiscussedbelowinx .Fortheabsorptionlinewithuncertaincontinuumplacement(rightpanelinFigure 4-4 ),welabeltheCf<1resultsuspect,andincludethisabsorptionlineinthesamplewithCf=1.Weincludefurtherexamplesofthe-ratioanalysisandpoint-by-pointprocedureinthediscussionofindividualNALsinx 97

PAGE 98

).However,theuncertaintyinemissionredshiftforthesequasarsincreasesthevelocitythresholdforquasaroutowsuptov>2500kms1.Partialcoveringoftheemissionsourceimpliesthattheabsorbinggasissmallandprobablyneartheemissionsource,sothattheareaoftheabsorbinggasissmallerthantheareaoftheemittingsource.Although,seeHamann&Simon(inpreparation)forpossibleexceptionsandfurtherdiscussionofthistopic.Weassumethatabsorbinggasexhibitingpartialcoveringisintrinsictothequasarenvironment,specicallyinquasar 98

PAGE 99

)forpartialcovering(Cf<1),possiblyresultinginsomeintrinsicNALsbeingclassiedasclassC.Weuseb-valuestodetermineifcertainNALsareformedinoutowsbasedontheb-valuesforinterveningCIVNALsfoundinrecentliterature.OneunambiguousinterveningabsorptionlineistheDampedLymanAlphaabsorption(DLA),whichformsfromgasingalaxiesalongthelineofsighttothequasar.OnestudyofProximateDLAs,likeDLAsbutinthesame`over-density'asthequasar,thighionizationspecieswithVoigtproleshaving540kms1( Lehneretal. 2008 ; Perouxetal. 2002 ; Foxetal. 2007 ).Sub-DLAsaresimilartoDLAs,withsmallerHIcolumndensities.ThemedianCIVb-valueforasampleofbothDLAsandsub-DLAsstudiedby Foxetal. ( 2009 )isb16kms1.High-ionizationgasinLymanLimitSystems,anothertypeofinterveninggas,aremeasuredbyseveralauthorstohaveCIVb-valuesconsistentwithDLAstudies( Prochteretal. 2010 ; Foxetal. 2008 ; Schayeetal. 2007 ). Tzanavaris&Carswell ( 2003 )tnon-DLACIVabsorptioninhigherredshiftquasarsandndb<16.2kms1,exceptfortwocaseswithb=32kms1.FromthisbriefreviewweconcludethattheDopplerb-valuesforCIVNALsingasknowntoformininterveningsystemsrarelyrisesaboveb=30kms1.Furthermore,CIVabsorptionlinegasforminginDLAandsub-DLAsystemsisgenerallycomprisedofnumerousnarrowcomponents.Oneprecautionwhencomparingtheanalysisofthiscurrentworkwithotherstudiesintheliterature,isthattherequirementsfordistinguishingablendedcomponentinthisworkaremorestrictthanwhatisgenerallyrequiredinDLAliterature.Consequently,thisworkwouldmorelikelyusefewer,broadercomponentstotthesameCIVabsorptionpresentedintheliterature. 99

PAGE 100

Hamannetal. ( 2011 ).Nonetheless,thereareasmallnumberofabsorptionlinesthatmeetthesecriteriainoursample.However,wedonotrelyonb-valuesalonetodeterminetheclassofthesebroadlines.Wealsoconsidertheproleshape.ToillustratewhichoftheseabsorptionlinesfallintoourclassAorBoutowlines,wedepictseveralexamplesinFigure 4-5 .ThetopleftpanelshowsaCIVNALwithb=62kms1inthequasarJ0933+733.ThisNALhasaverysquareprole,consistentwithDLAorotherinterveninggasandisdesignatedasclassC.ThetoprightpanelshowsaCIVNALwithb=196kms1inthequasarJ0351-1034.ThisNALisalsoverysquare,andnotwell-tbyourGaussianopticaldepthts,andisalsodesignatedasclassC.FurtherevidencethatthisNALmaybepartofaDLAsystem,andnotanoutowisthatthisNALdoubletappearstobeablendofseveralcomponentswithsmallerb-values,evidencedbythesquaresidesandspikesinthebottomofthefeature,whicharenottakenintoaccountbyourttingalgorithmthatlimitsthenumberofcomponentstothefewestpossible.ThebottomleftpanelshowstwoNALswithb115kms1,alsointhequasarJ0351-1034.TheseNALsarewell-tbytheGaussiantsandshowbroadandsmoothprolesandstrongevidenceofpartialcovering,andsoaredesignatedasclassA.ThebottomrightpanelshowsaNALwithb=96kms1inthequasarJ1008+3623.Itiswell-tbytheGaussiant,andlikelyhasCf<1.ItisalsoinclassA. 100

PAGE 101

4-1 listthenumberofcomponentsandsystemsineachindividualquasarfoundinclassA,inclassA+BandthetotalnumberofNALSfoundineachquasar.Figure 4-6 showsthenumberofcomponentsandsystemsperquasarfortheassociatedregion(v<5000kms1)andforthefullrangeofvelocitycoverageouttov<40,000kms1.BlackhistogramsshowclassesA+B+C(allNALs),graylledhistogramsshowclassANALsandbluehashedhistogramsshowclassesA+BNALs.OurselectionofquasarswithatleastoneNALformingwithin8000kms1isevident,inthatnoneofourquasarshavelessthanoneNALwithin5000kms1.OursampleisnotbiasedinthenumberofintrinsicNALsatv<5000kms1.WendpercentagesofintrinsicNALsroughlyconsistentwithotherrecentNALsurveysinthat29+89%ofourquasarshaveunambiguous(classA)intrinsicgaswithin5000kms1,and4610%haveunambiguousintrinsicabsorptionwithinthefullvelocityrangeoutto40,000kms1.Intrinsicabsorptionoccursmorefrequentlyatlowervelocities,withthemajority(64%)ofclassAabsorptionlinesoccuringwithin5000kms1ofthequasarsystemic.Errorsonfractionsandpercentages,hereandelsewhereinthischapter,arecalculatedusingtheWilsonscoreinterval( Wilson 1927 ; Agresti&Coull 1998 ),whichtakesintoaccounterrorsfromcountingstatistics,especiallywithsmallnumbers.Weusea66%condenceinterval.Table 4-2 listspercentagesandaveragenumbers(hni)ofNALsforeachclassofNALsperquasarfordifferentvelocityranges.Thelisteduncertaintiesforthepercentagesandaveragesaredenedbytheabovementionedcountingstatisticuncertainties.ThepercentageofquasarswithoneormoreNALsinclassAorBisbetween20and33%inthevelocityrangesv<5000,0
PAGE 102

3 ).Wediscusstheseindividualsystemsinsomedetailinx 4-7 showsthetotalnumberofNALcomponents(top)andsystems(bottom)versusvelocityshiftfromthequasar.ThereisaclearexcessofNALs(componentsandsystems)below8000kms1.Thisexcessisverysimilartotheexcessfoundby Nestoretal. ( 2008 ),eventhoughwemeasuremostlymuchweakerlinesinthissample(below,alsox )andourquasarsamplewasselectedtohaveatleastoneCIVNALofmoderatestrengthatvelocities<8000kms1(x ).Evidently,therequirementinoursampleselectionforatleastonelineatv<8000kms1doesnotintroduceastrongbiastowardanexcessoflinesatthesevelocities.Moreover,thereisnobiaswhatsoeverregardingtheintrinsicversusinterveningnatureoftheselines,i.e.,thefractionsthatfallinclassesA,BandC.Wealsoseeaslightexcessatvelocitiesupto+2500kms1towardsthequasarinthecomponents,butnotthesystems.Thisexcesscouldbeevidenceforquasarinfall,althoughquasaremissionredshiftuncertaintiesrenderthesevelocityshiftsuncertainbyupto1000kms1(x ).Figure 4-8 presentsvariousparametersforeachNALfeature(componentorsystem)versusvelocityshift.ThelargemajorityofintrinsicNALsappearbelow8000kms1.Thesystemswithlargeb-valuestendtobeintrinsic.Intrinsic(classA) 102

PAGE 103

4-3 ,whichlistsmeanandmedianlogN(CIV)foreachclassofcomponents.Theerrorsonthemeanshereandelsewhereinthischapteraredispersionerrors.Manynarrowcomponents,andsomesystems,withsmallREWforminintrinsicgas.Table 4-3 alsolistsmeanandmedianREWsforeachclassofcomponentsandsystems.ItisinterestingtonotethatmostoftheNALshaveREWsbelowthethresholdsofpreviousmedium-resolutionNALsurveys.Forexample,92+12%ofallcomponentsand68%ofallsystemshaveREW<0.3A. 4.3.4.1VersusREWandlogNFigure 4-9 showsnumbers(top)andfractions(bottom)ofsystems(left)andcomponents(right)versusREW(CIV1548A).ThereareveryfewNALswithREW>0.6A,andabovethislimit,60%forminintrinsicgas.ThegureshowsageneralriseinintrinsicfractiontowardincreasingREW.Also,asnotedinTable 4-3 ,theintrinsicNALstendtobestrongerandmoreoftenabovethethresholdofREW=0.3Aofpreviousmedium-resolutionNALsurveys.Forexample,18+56%ofcomponentsinClassAcomparedtoonly51%inClassChaveREW>0.3A,while57+1110%ofsystemsinClassAcomparedto27+34%inClassClieabovethisthreshold.Generally,thestrongercomponentsaremorelikelytobeintrinsic.Insystemsthetrendisthesame,with35%ofNALsat0.51.2A)areallinclassA. 103

PAGE 104

4-10 showsnumberandpercentagesofCIVNALcomponentsversuscolumndensity.TheNALswiththehighestcolumndensitiesaremorelikelytobeinclassAorBthaninclassC.ThistrendispresentinthethemeanandmediancolumndensitiesinTable 4-3 ,aswellasinFigure 4-10 .ThemeancolumndensityforcomponentsinclassAislogN=13.920.43cm2andthemedianis13.92cm2andthesevaluesareroughlythesameforclassesA+B,whileforclassC,themeanislogN=13.420.49cm2andthemedianis13.39cm2.ThissuggeststhatthetendencyseeninFigure 4-9 forintrinsiclinestohavelargerREWsisnotsimplyduetotheselineshavinglargerb-values.Instead,intrinsiclinesreallydohavelargercolumndensities.Wecannotdistinguishbetweenwhetherthisiscausedbylargertotalcolumns,N(H),orhigherionizationandthusmoreCIVintheintrinsicsystems.Itcouldbeacombinationofboth,andwewilladdressthisquestionbycomparingN(HI)/N(CIV)inthesedifferentclassesinChapter 5 4-11 showsnumbers(top)andfractions(bottom)ofcomponentswithpartialandcompletecoveringversusb-value.TheleftsideshowsonlycaseA0,whiletherightsideshowscasesA0+B0inthecoloredhistograms.Thecomponentsinthissamplearegenerallynarrow.ThereareveryfewNALswithb-valuesabove60kms1,andthemajorityhave10
PAGE 105

4-12 and 4-13 shownumbersandpercentagesofcomponentsandsystemsversusvelocityshiftfromthequasarrestframe.Overall,roughly20%ofbothcomponentsandsystemsareprobableintrinsic(classesA+B).TheintrinsiccomponentsandsystemshavelowervelocitiesonaveragethantheclassCcomponentsandsystems,withameanvelocityshiftof-54967715kms1andmedianof-3254kms1fortheclassAcomponentsandameanof-75889613kms1andmedianof-4683kms1forclassAsystems,asopposedtotheclassCcomponents,whichhaveameanof-2321720428kms1,andmedianof-19121kms1andthesystems,whichhaveameanof-2344320239kms1,andamedianof-22702kms1.Thereareroughly5timesmoreintrinsicsystemsinthevelocityrangeofAALs,v<5000kms1,comparedtohighvelocities,v>8000kms1.Thepercentagesofoutowsincomponentsandsystemsishighest,upto55%,atvelocitiesbelow10,000kms1.WelistthekeypercentagesinTable 4-5 .TheexcessinclassCatlowvelocities,below8000kms1,comparedtohighervelocitiesisduetounidentiedintrinsicsystems.Thisisdirectevidencethatourcountingalgorithmismissingasignicantnumberofintrinsiclines.Therefore,thereisapopulationofintrinsicNALswithCf=1andsmallb-value.Abovev=2500kms1,theseintrinsicNALsareformedinoutows,whileatlowervelocitiestheycouldalsobeenvironmentallines. 4.4.1RichNALComplexesInthissectionwedescribefourrichabsorptionlinecomplexes,similarinappearancetothecomplexwediscussinChapter 3 .Theserichcomplexeshavemorethan5componentsspreadoverasmallvelocityrange,generally1000kms1wide.Theyarenotfoundatvelocitiesabove8000kms1.Thisfactsuggeststhatmostifnot 105

PAGE 106

Simon&Hamann ( 2010b )(J1023+5142)and Misawaetal. ( 2007 )(Hs1603+3802),thesecondofwhichalsoshowsvariability.Afollowupstudylookingforvariabilityinthecomplexcasesinthisstudymayproduceinterestingresults.Q0249-222:Thiscomplexiscomprisedofeightcomponents,allinonesystem,around6800kms1fromthequasaremissionvelocity,andisshowninFigure 4-14 .Therearetwootherabsorptionfeatures,notshowninthegure,closertotheemissionvelocityandseveralfurtherout,allofwhichareinclassC.ThissystemandallofitscomponentshaveCf=1,andb-valuesbelowthecutoffforintrinsiccomponents,thereforetheyareinclassC.ThiscomplexcouldbepartofaDLAcomplex,orotherinterveninggas.However,theb40kms1featureatv6855kms1,alongwiththerelativelylargevelocityspreadofthiscomplex(v590kms1)couldbeindicationsthatthesystemisactuallypartofaquasaroutow,eventhoughitisnotcountedassuchinthisstudy.PKS2044-168:Thiscomplexhas10components,allin1system,near1500kms1fromthequasaremissionvelocity.Theemissionredshiftismeasuredfromthepeakofstrongemissionlines(probablyCIV,possiblySiIVorLy)( Osmeretal. 1994 ).ThecomplexisshowninFigure 4-15 .ThereareseveralNALsathighervelocitiesinthisquasarinclassC.Thecomponentb-valuesareallsmall,lessthan20kms1.TheREWforthesystemisgreaterthan0.3A,buttheindividualcomponentsallhaveREW<0.2A.Thiscomplexhaspartialcoveringinthecomponentsnear1700kms1, 106

PAGE 107

4-16 .Basedonthepartialcoveringinthecomponentsat1700kms1,thissystemisinclassA.Thevelocityshiftnearv2000kms1isnear(butbelow)thethresholdforintrinsicgasdenitelyforminginanoutow.J1008+3623:ThisquasarhasarichabsorptionspectruminCIV,withatotalof19componentsmakingup5systems,around1000kms1fromthequasaremissionvelocity.TheemissionredshiftforJ1008+3623comesfromtheSDSSspectrum,andisuncertainupto1200kms1(zem=3.1255).TheCIVregionisshowninFigure 4-17 .Theb-valuesinthiscomplexrangefrom5kms1.TheREWis1.573Aforthesystemnear2500kms1.Thecomponentsnear600,0,990and2500kms1inparticularexhibitpartialcovering(Figure 4-18 ).Thepartialcoveringoccursnotonlyinthecomplexblendaround2500kms1,butinterestingly,alsointherelativelyisolatedsystemsatlowervelocities.Basedonthepartialcovering,thesesystemsareallinclassA.Thehighvelocitiesofe.g.thesystemnear2500kms1indicateaquasaroutow,buttwooftheCf<1systemsappeartohavev0kms1.Theseintrinsiclinesnearorabovev=0kms1couldbeinfall,althoughtheemissionlineredshiftuncertaintycouldeasilyprecludethispossibility.Thisquasaralsohasanotherbroadintrinsiclineatv=5686kms1(Figures 4-1 and 4-5 )thatappearstohaveCf<1andmostlikelyformsinaquasaroutow,basedonthecoveringfraction,itslargeb-valueanditshigh(>2000kms1)velocity.J1633+1411:ThisquasarhasarichCIVabsorptionlinecomplexcomprisedof16componentsin7systemsbetween0and8000kms1,showninFigure 4-19 Hewett&Wild ( 2010 )recalculateemissionredshiftsforSDSSspectraandmeasurezem=4.375forthisquasar.Weadoptthisredshift,butnotethattheoriginalredshiftfromSDSSis4.3340.001,andwouldshiftallvelocitiestowardtheredby2290kms1.Thebvaluesinthiscomplexrangefrom10to100kms1.Thiscomplexhaspartialcoveringinseveralcomponents,includingthecomponent/systemnear400kms1,whichis 107

PAGE 108

4-20 ).ThisparticularNALisnominallyunresolved,withFWHM3.5timestheresolution.BasedonitsproximitytootherNALswithpartialcoveringandbecauseitcouldbeconsideredresolvedunderlessconservativeresolutionlimits,thissystemisinclassB.Thesystemnear5100kms1isalsoinclassB,becauseithasb=74kms1andasmoothprole.Thesystemsnear1540and5300kms1areinclassC,whiletheremainderofthesystemsinthiscomplexareinclassA,duetopartialcoveringinthecomponents.Thisquasaralsohasahighvelocitynarrowoutowsystem,near19,840kms1(discussedinx ). 4-21 and 4-22 .Thereareveryfewcurrentlyknowncasesofpartialcoveringathighvelocities,andthesecouldsubstantiallyincreasetheirnumbers( Misawaetal. 2007 ; RodrguezHidalgoetal. 2010b ; Hamannetal. 2011 ).ThesystemsinFigure 4-21 haverobustpartialcoveringresults.ThelineinBR0714-6455isnarrow,butresolved,thelineinJ1633+1411isresolvedandhasagoodsolidcontinuum,andbothareinclassA.J1225+4831hasonestrong,resolvedNAL,plusasecondNALwithamorequestionablecoveringfractionat39,100kms1thatisunresolved.ThismarginallyunresolvedNALgainscredibilitynexttoitscompanionNALthatclearlyexhibitspartialcoveringbecausetheproximityofthetwolinessuggeststhattheyarerelated.ThemarginallyunresolvedNALisinclassBwhileitscompanionisinclassA.Theb-valuesforthesefourlinesare17,23,6and15kms1.ThehighestvelocitylineinthisgroupisinthequasarJ1225+4831,atv=39,315kms1.ThesystemsshowninFigure 4-22 allhavelargeuncertaintiesassociatedwiththecoveringfractionresult;thelineinJ1307+1230isinanoisyregionofthespectrum,andthesecondcomponentofthesystemat27,500kms1appearstohaveCf=1,thelineinQ0401-1711isalsoinaverynoisypartofthespectrum,andthelineinQ0249-222isunresolvedinthequasarspectrum,andfurthermoreisnexttoacomponentat 108

PAGE 109

4-19 and 4-20 )describedaboveinx .Toconrmthattheselinesareinoutows,theyshouldbecheckedforvariability.WewillpresentmetallicitymeasurementsforthesubsetoftheselineswithsufcientionizationdatainChapter 5 4-23 comparesourmeasurementsofthesefeaturestotheirappearanceinSDSS.Ourobservationsshowclearlythatthebroadprolesaresmoothevenat6kms1resolution,andtheyarenotcomposedofmanyblendedNALs.ThefeatureinJ1341-0115isaBALwithFWHM4545kms1andREW9.9A.ThefeatureinJ1020+1039hasFHWM1495kms1andREW1.4A.Itisbetterdescribedasamini-BALbecauseitisslightlytooweakandnarrowtobeaBAL 109

PAGE 110

Weymannetal. ( 1991 )).ItisinterestingtonotethatthereareseveralCIVNALsnearthismini-BALintheJ1020+1039spectrum,includingonepairwithb72kms1(v=12,450kms1)thatweconservativelyclassifyasapossibleoutowsystem(classB).Variabilityiscommoninbroadoutowlines( RodrguezHidalgoetal. 2010b ; Capellupoetal. 2010 ; Gibsonetal. 2008 2010 ),andthereisevidenceforvariabilityinbothofthesecases(Figure 4-23 ). 4.5.1SummaryofResultsWestudyasampleof24quasarswith136NALsystemscomprisedof271componentstoexaminethenatureofintrinsicgas,specicallyinquasaroutows.WeselectquasarswithatleastonerelativelystrongNALatvelocities<8000kms1withintheredshiftrange1.94v>-40,000kms1.WedividetheNALsintothreeclassesbasedonthepresenceofpartialcoveringorbroadprolestoseparateintrinsiclinesfromtheothers,withsecureintrinsiclinesinclassA,probableintrinsiclinesinclassBandallotherlinesinclassC.Ourmainresultsfollow.1)ThefractionofquasarsinoursamplewithatleastoneintrinsicNALinthefullmeasuredvelocityrange,v<40,000kms1,is46%forbothintrinsicclassesAandA+B.Thefractionissmallerifweconsideronlylimitedvelocityintervals.Forexample,29%ofthequasarshaveatleastoneintrinsicNALatvelocitiesv<5000kms1,whilethesamepercentage,29%,haveatleastoneintrinsicNALat5000
PAGE 111

4-12 and 4-13 .ThehighestclassAandA+Bfractionsoccuraround250014.5cm2,ourresultssuggestthatroughlyhalfoftheseNALsareintrinsic.Incontrast,theintrinsicfractionatcolumndensities12.5
PAGE 112

3 andx below).7)WeidentifythreeNALsatv>10,000kms1thatarestrongcandidatesforquasaroutowlinesbasedondenitepartialcovering(ClassA).Theirvelocityshiftsrangefrom14,900to39,300kms1withbvaluesofonly15to23kms1(Figure 4-21 ).Threeotherhigh-velocityNALsatv22,750to55,600kms1presentweakbutinconclusive(ClassC)evidenceforpartialcovering(Figures 4-22 ).8)WendtwoincidencesofBALormini-BALspectrawithprolesthatremainbroadandsmoothevenatthehighresolutionofourstudy(Figure 4-23 ).Theselinesalsoappeartobevariablebasedoncomparisonstopreviouslowerresolutiondata. Weymannetal. ( 1979 ); Nestoretal. ( 2008 ); Wildetal. ( 2008 )andreferencestherein).TheexcessatlowvelocitiesimpliesthatalargefractionoflowvelocityNALshavesomephysicalrelationshiptoquasarenvironments. Nestoretal. ( 2008 )and Weymannetal. ( 1979 )decomposethisexcessintoahighvelocityquasaroutowcomponentandalowvelocity`environmental'componentthatcouldhaveeitheraquasaroutoworgalacticorigin.ThesecondapproachexaminestheNALsindividuallyforsignaturesofanintrinsicorigin,suchaslinevariability,partialcoveringofthebackgroundlinesource,andbroadsmoothabsorptionproles( Hamannetal. 1997 ; Barlow&Sargent 1997 ).Inthepresentstudy,wehavereliedonpartialcoveringand(secondarily)broadsmoothprolestoidentifyindividualintrinsicNALs. 112

PAGE 113

Misawaetal. ( 2007 ); Richardsetal. ( 1999 ); Richards ( 2001 ),thiswork)haveshownthatsignicantfractions(10%to20%)ofhigh-velocityNALsareintrinsic,andthereforetheintrinsicfractionsinferredfromtheexcessatlowvelocitiesareunderestimated.Similarly,studiesthatrelyonmeasurementofsomeparticularpropertyofintrinsicabsorptionwillobviouslymissintrinsicNALsthatdonothavethisproperty.Oneexampleofthisisthevariabilitystudiesby Narayananetal. ( 2004 )and Wiseetal. ( 2004 ),whichbothfoundthat25%ofstrongAALs(v<5000kms1)intheirsamplesvariedbetweenjusttwoobservations,andthereforeatleast25%oftheAALsintheirsamplesareintrinsic.OurstudyreliesonCf<1andlargeb,butitisnotknownwhatfractionsofintrinsiclineshaveneitheroftheseproperties.Itisalsoworthnotingthatalloftheseproperties,variability,Cf<1andlargeb,areprobablymuchbettersuitedtodetectingquasaroutowlinesthantheyareatndingNALsthatformintheextendedregionsofquasarenvironments.Moreover,wehaveappliedconservative,strictthresholdsonbothCfandbtoavoidcontaminatingourintrinsicNALsamplewithfalsepositives,suchasunusuallybroadinterveninglines.Moreworkisneededtoestimatetheextenttowhichourstudyandotherslikeitunder-countintrinsicNALs.WenotethatthereareknowncasesofintrinsicNALsthatdonotsatisfyourCforbcriteria.Forexample, Hamannetal. ( 2011 )measuredb30kms1inseveralCIVNALsthatclearlyhaveanintrinsicoriginbasedontheirvariability,partialcoveringand(secondarily)smoothroundedproles.Thesefeatures 113

PAGE 114

Hamannetal. ( 2001 )foundCf0.96inverywell-measuredbox-shapedCIVproles.Thepartialcoveringismoreobviousinotherlines,seealso Misawaetal. ( 2007 ).LowdensitiesderivedfortheseparticularNALsindicatethattheyformroughly25kpcfromthequasar,seealsoHamann&Simon(inpreparation).NALslikethesewouldnotbeidentiedasintrinsicinourcurrentstudy.AnotherimportantbiasaffectingallofthesestudiesistheREWdetectionthreshold.WehaveshownherethatNALswithlargerREWs,aswellaslargercolumndensitiesandlargerbvalues,aresignicantlymorelikelytobeintrinsic.Thisconclusionissupportedbythestatisticalstudyby Nestoretal. ( 2008 ),whoshowedthattheexcessofNALsatlowvelocitiesislargerwhenconsideringonlystronglineswithlargeREWs.Thistrendwillaffectanycomparisonsbetweenthelowresolutionsurveys(e.g., Nestoretal. ( 2008 ); Wildetal. ( 2008 ); Vestergaard ( 2003 )),whichhaveREWthresholdsaround0.3to0.5A,andhigh-resolutionsurveyslikeourownthatareroughlytentimesmoresensitive(also Misawaetal. ( 2007 )).Roughly70%oftheNALsystemsinoursurveyhaveREWsbelowthemediumresolutionsurvey0.3Athreshold.Withthesecaveatsinmind,wenowdiscussbrieytheresultsfrompreviouswork.ThequasarsampleinthisstudywasselectedtocontainquasarsknowntohaveNALswithinv<8000kms1ofthequasaremissionvelocity,ensuringthatarelativelylargenumberofNALsarepresentinthesample.WestudyindividualNALsforsignsofintrinsicorigins(partialcoveringandlargeb).Thequasarsareobservedwithhighresolution,resultinginasensitivitytoweakerNALsthanaretypicallyobservableinmediumresolutionsurveys( Nestoretal. 2008 ; Wildetal. 2008 ; Weymannetal. 1979 ).Wealsohavecompletevelocitycoveragefromatleast0to40,000kms1inourentiresampleandourselectionrequirementforatleastoneNALatv<8000kms1ensuresthattheseimportantvelocitiesnearthequasarredshiftarewellrepresented 114

PAGE 115

Gangulyetal. ( 2001 )useastatisticalapproach,assumingtheexcessbelowv<10000kms1iscomposedofintrinsicsystemsintheirstudyofz<1quasars.Thisapproachsuggeststhat66%ofNALsareintrinsicatv<10,000kms1. Wildetal. ( 2008 ),inalargestudyofNALquasars,ndthat45%ofstrong(REW>0.3A)NALsatvelocities30000.3A)at5000
PAGE 116

Vestergaard ( 2003 )alsosees`highvelocityenhancements'ofstrongNALs(REW>0.5A)neartheBALterminationvelocityof20,000kms1,whichareconsideredtobelikelycandidatesforquasaroutows.Thisenhancementisnotpresentinoursurvey.Forthesmallvelocityrangefrom18002500kms1inquasaroutows.Inastudyof37quasarswithhighresolutionspectraatz2, Misawaetal. ( 2007 )nd150NALs,including124CIVand18AALs.TheyusethedetectionofpartialcoveringtoidentifyintrinsicandoutowNALsandhavesimilardetectionlimits(REW0.03.05A)toourstudy. Misawaetal. ( 2007 )ndthat19%ofallNALsarereliablyclassiedasintrinsic,whilewhenthelessreliablecasesareincluded,thisfractionraisesto26%fortheirfullsampleofNALs.Theseintrinsicfractionsareroughlyconsistentwithoursample.Wend,forourfullvelocityrange,v<40,000kms1,that172%ofcomponentsand153%ofsystemsarereliablyintrinsic(classA),andwhenthelessreliablecases(classB)areincluded,thepercentagesincreaseto20%forbothcomponentsandsystems. Misawaetal. ( 2007 )ndthat10%ofNALswithvelocityshiftsabove5000kms1couldbeintrinsicbasedonpartialcovering.ForourNALswith5000
PAGE 117

).Thehighvelocityoutowsystemsinthissamplearemuchweakerthane.g.thehighvelocitymini-BALsfoundby RodrguezHidalgoetal. ( 2010b ).Theyarealsomostlymuchnarrowerthanthevariableoutowlinesin Hamannetal. ( 2011 ),anddonotappearingroupslikethoselines. Misawaetal. ( 2007 )alsondthat32%ofquasarscontainatleastoneintrinsicCIVNAL.WhentheyalsoincludeNVandSiIVNALs,upto50%ofquasarscontainatleastoneintrinsicNAL,eventhoughtheselinesarelesscommonthanCIVandaremeasureableintheirdataacrossmorelimitedvelocityrangesthanCIV.Wendthatupto5010%ofourquasarscontainatleastoneintrinsicNAL.Forthelowvelocityrange0
PAGE 118

Foxetal. ( 2008 )arguethattheNALswiththelargestOVIcolumndensities,logN(OVI)>15.0,probablyforminnear-quasarenvironments.Someofthesesystemsalsoexhibitpartialcovering.OuranalysisbasedonCIVdoesnotindicateaclearthresholdinN(CIV),abovewhichallNALsareintrinsicbasedonpartialcovering.However,wedondacleartrendforagreaterincidenceofintrinsicCIVlines(basedonCf<1)incomponentswithlargerN(CIV)(Figures 4-8 and 4-10 ).ThistrendissomewhatweakerbutstillalsoevidentintheREWs(Figure 4-9 ). ).IthasbecomeincreasinglyclearthatsignicantfractionsoftheNALsinquasarspectraareintrinsictoquasarenvironments.Theselinesmightforminblowoutsofgasdrivenbystarburstsorthequasar,whichmaycontributetofeedbackbetweentheblackholeandhostgalaxy,ambientinterstellargasorhalomaterial,oringasleftoverfrommessymergers.Thissurveytakesanimportantsteptoidentifyandcharacterizesomeofthebasicphysicalpropertiesoftheseintrinsiclines.Approximately20%ofallNALswithvelocitiesv<40000kms1measuredinthisquasarsampleareintrinsic(classAandB),roughlyconsistentwithsimilarstudies(Seex ).Interestingly,themajorityofthisintrinsicgas(60%ofcomponentsand77%ofsystems)isfoundabovev>2500kms1.Starburstwindstypicallyproduceoutowswithlowervelocities( Heckmanetal. 2000 ),suggestingthatthemajorityofthisintrinsicgasformsinquasaroutows.Inthefullmeasuredvelocityrange,v<40,000kms1,ofthisquasarsample,46%ofthequasarscontainatleastoneintrinsicclassAorBNAL.Insmallervelocityranges,forexamplev<5000kms1,thefractionofquasarswithclassAorBintrinsicNALsis29%.Ofallthequasarsinthesample,37%haveatleastonequasaroutowbased 118

PAGE 119

Wildetal. ( 2008 ); Nestoretal. ( 2008 )andinothersurveys(x )furthersupportthisinterpretation.Additionaly,thisimpliesthatintrinsicgasoftenformsnarrowlines,whichdonotexhibitpartialcovering.Theaboveoutowfractionswederivearethereforelowerlimits.Othermethodsofdetectingintrinsicgas,suchasvariabilityandabundancesshouldbeemployedtoreducethenumberofintrinsicNALspresentlyexcludedfromthisandothersimilarstudies.Inasubsequentpaper,wewillconsidermetallicity,ionizationandtotalcolumndensity,whichconstrainthepriorstarformation,evolutionarystageandphysicalconditionsofthegas,andmaythereforeprovideusefulmethodstodetectthepreviouslyundetectedintrinsicNALs.ThemostextremevelocityNALsareinterestingbecausetheypresentauniquechallengetoourtheoreticalunderstandingofthestructureandaccelerationofquasaroutows( RodrguezHidalgoetal. 2010b ; Hamannetal. 2011 ).WendthreedeniteandthreeadditionalpossibleCf<1NALsatvelocitiesv>10,000kms1.Thehighestvelocitycasehasv55,600kms1,butinconclusiveevidenceforanoutoworigin.CareshouldbetakeninfuturestudiesofNALoutowstoconsiderthehigh-velocityregime,soasnottomissthispotentiallyintriguingpopulationofhigh-velocitynarrowquasaroutows.AstheyarenotcommonlyconsideredinNALstudies,theiroccurrencerateiscurrentlyunknown.TheycouldmakeupasignicantfractionofNALsathighvelocities. 119

PAGE 120

3 ).Someofthevelocityextentsfortherichcomplexesaresubstantiallylargerthanexpectedforgasinindividualgalaxiesorgalaxyclusters( Richardsetal. 1999 ; Ruizetal. 2001 2005 ; Popesso&Biviano 2006 ).Therefore,alikelyoriginforthesecomplexesisaquasar-drivenoutow.Fouroutofsixofthesecomplexesexhibitpartialcovering,andonehasatleastonebroadcomponentwithb>80kms1,indicatingmoredirectlythattheyareintrinsictothequasarenvironments(ClassA).Thisevidenceforanintrinsicorigincombinedwiththelargevelocityshiftsagainpointtowardabsorptioninquasaroutows.Afthcomplex(Figure 4-14 )withvmax7270kms1andv690kms1doesnotexhibitpartialcoveringandweclassifyitasClassC.Nonetheless,ithasatleastonefairlybroadcomponentwithb40kms1(atv6855kms1)anditssimilarappearancetotheotherrichcomplexessuggeststhatitisalsoanoutowcandidate.Iftheoutowinterpretationiscorrect,thesehighlystructured,multi-componentNALcomplexesareindicativeofhighlystructured,multi-componentquasaroutows. 120

PAGE 121

TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1008+3623andMagellan+MIKEspectrumJ1307+1230.ThespectraofJ1008+3623(top)andJ1307+1230(bottom)areshowninblack.TheSDSSspectraareshowninred.CIVdoubletsarelabeled.ThehorizontalaxisisvelocitywithrespecttothequasaremissionvelocityinkilometerspersecondandtheverticalaxisisuxasobservedbySDSS. 121

PAGE 122

TheregionofCIVabsorptionintheMagellan-MIKEspectraofJ1020+1039andJ1326+0743.ThespectraofJ1020+1039(left)andJ1326+0743(right)areshowninblack.Theseareclearcasesofpartialcovering,exceptfortheindividualabsorptionlinecomponentinJ1326+0743at-6115kms1,whichhasCf=1.Thetoppanelsshowpointbypointanalysis,whilethebottompanelsshowthe-ratioanalysis.Thehorizontalaxisisvelocityshiftandtheverticalaxisisnormalizedux.Intheupperpanels,thesolidcurveisthebluememberoftheCIVdoublet,whilethedot-dashedcurveistheredmemberoftheCIVdoublet.Thesolidcirclesrepresent1-Cffortheregioncenteredoneachcircle.Inthelowerpanels,thesolidcurveistheblue(stronger)componentandthedot-dashedcurveisthered(weaker)componentoftheCIVdoublet.Thedottedcurverepresentsthepredictedshapeofthered(weaker)memberofthedoubletbasedontheopticaldepthofthebluememberandthexedopticaldepthratioofthedoublet.Theactualredmemberisstrongerthantheprediction,whichcanonlyoccurifthepairexhibitpartialcovering. 122

PAGE 123

NALquasarsample.

PAGE 124

4-1 .Continued J1225+48313.0917.67(r)27/3/073680-8100900-198045000HIRES1-0/301-0/16J1307+12303.217.69(r)20/3/073340-5140795-122557600MIKE0-0/110-0/64840-94201150-224045150MIKE1326+07434.1717.74(r)13/2/083350-5140650-99557600MIKE2-0/62-0/44840-9420935-182045150MIKEJ1341-01152.76618.18(r)21/3/073340-5140885-136557600MIKE1-2/61-1/54840-94201285-250045150MIKEJ1430+01492.1117.73(r)20/3/073340-51401075-165057600MIKE0-0/110-0/44840-94201555-303045150MIKEJ1633+14114.375yy19.25(r)27/6/084722-8780880-164045000HIRES11-4/204-2/10PKS2044-1681.93717.36(V)y21-22/9/036000-100002040-3405110000UVES7-0/101-0/19/22/033510-47201195-161080000UVESQ2204-4083.15517.57(V)y21-22/9/034760-68401145-1645110000UVES0-0/160-0/89/22/033260-4450785-107080000UVESTotal.....................46-54/27120-27/136 NOTES.Cols.(2)and(3):Redshiftsandr-magnitudesfromSDSSobservations,unlessotherwisenoted,Col.(4):Observationdate(dd/mm/yr),Cols.(5)and(6):Observedandrestwavelengthranges,Cols.(7)and(8):Resolutionandinstrumentusedinobservations,Cols.(9)and(10):Fractionofcomponentsandsystemsinclass(A)-(B)/(All)inthequasar.ymagnitudeandredshiftfromNEDdatabase.zmagnitudeandredshiftfrom Veron-Cetty&Veron ( 2006 ).yyredshiftfrom Hewett&Wild ( 2010 )

PAGE 125

TheregionofCIVabsorptionintheVLT-UVESandMagellan-MIKEspectraofBR1202-0725andJ1430+0149.ThespectraofBR1202-0725(left)andJ1430+0149(right)areshowninblack.Theseareclearcasesofcompletecovering.Thetoppanelsshowpointbypointanalysis,whilethebottompanelsshowthe-ratios.Thesymbolsandline-stylesarethesameasinFigure 4-2 125

PAGE 126

TheregionofCIVabsorptionintheKeck-HIRESandMagellan-MIKEspectraofJ1633+1411andJ1326+0743.ThespectraofJ1633+1411(left)andJ1326+0743(right)areshowninblack.Thesearemarginalcasesofpartialcovering.ThecaseshownontheleftiscategorizedasprobablyCf<1inthesample,whilethecaseshownontherightiscategorizedasCf=1inthesample.Thetoppanelsshowpointbypointanalysis,whilethebottompanelsshowthe-ratioanalysis.Thesymbolsandline-stylesarethesameasinFigure 4-2 126

PAGE 127

TheregionofCIVabsorptionintheKeck-HIRESspectraofJ0933+733,J0351-1034,J0351-1034andJ1008+3623.ThespectraofJ0933+733(left)andJ0351-1034(right)inthetoppanelsandJ0351-1034(left)andJ1008+3623(right)inthebottompanelsareshowninblack.ThetoptwopanelsshowexamplesofCIVdoubletsthathaveb-values62and196kms1,butarenotconsideredoutowcandidates(classC),becauseoftheirsquareproles.ThebottomtwopanelsshowCIVdoubletsthathaveb-values120,109and96kms1andareconsideredoutowcandidates(classA),becauseoftheirroundedproles,largebandpartialcovering.Gaussiantsareshowninblue,illustratingthepoorttothetoptwopanels,andthegoodttothebottomtwopanels.Theupperhorizontalaxisisvelocitywithrespecttothequasaremissionvelocityinkilometerspersecond,thelowerhorizontalaxisisobservedwavelengthinangstromsandtheverticalaxisisnormalizedux. 127

PAGE 128

NALsperquasar.BlackhashedhistogramsshowallNALs(A+B+C),graylledhistogramsshowonlyclassANALsandbluehashedhistogramsshowclassesA+BNALs.Thetoppanelsshowsystems(left)andcomponents(right)forassociatedabsorptionlineswithinv<5000kms1.Thebottompanelsshowsystems(left)andcomponents(right)forallNALswithinv<40,000kms1. 128

PAGE 129

TotalnumberofNALsversusvelocityshiftfromthequasarsystemic.Componentsareshowninthetoppanelandsystemsinthebottompanel.Thevelocityshiftsareshowninbinsof2500kms1atv<-10,000kms1and5000kms1atv>-10,000kms1. 129

PAGE 130

PercentageofquasarsandnumbersofNALs.

PAGE 131

Measuredparametersversusvelocityshiftforcomponentsandsystems.ThelledsquaresshowclassANALcomponentsorsystems.TheopendiamondsshowclassB+Ccomponentsorsystems.Thehorizontaldot-dashedlineinthetopleftpanelshowstheb-valuecutoffforinclusioninclassBbasedonwidth.Thehorizontaldashedlineshowstheb-valuecutoffforinclusioninclassAbasedonwidth,iftheabsorptionshowssignsofoutowsignatures(Seex ).Thehorizontaldashedlinesintherightpanelsmarkthecompletenesslimitfor Nestoretal. ( 2008 )andothersimilarNALstudiesofREW(1548)>0.3A. Table4-3. Averagevaluesbyclass. ClassREWAlogNcm2MeanMedianMeanMedian Components:A0.200.180.1413.920.4313.92A+B0.210.190.14113.920.4413.92C0.120.220.0813.420.4913.39All0.140.220.0913.490.5213.44Systems:A0.500.410.36A+B0.470.380.37C0.260.500.14All0.300.490.15 131

PAGE 132

IntrinsicfractionversusREW.ThegraylledhistogramsshowclassAcomponents(rightpanels)andsystems(leftpanels),thebluehashedhistogramsshowclassA+Bcomponents(rightpanels)andsystems(leftpanels),andtheblackhistogramsshowclassCcomponents(rightpanels)andsystems(leftpanels). Table4-4. Averagecomponentb-valuesbyCfclass. ClassMeanbkms1Medianbkms1 132

PAGE 133

IntrinsicfractionversuscomponentN.ThegraylledhistogramsshowclassAcomponents,thebluehashedhistogramsshowclassA+Boutowcomponents,andtheblackhistogramsshowclassCcomponents. Table4-5. PercentagesandnumbersofNALspervelocityrange. Velocity(kms1)%ClassA%ClassesA+BTotalAllClasses(A+B+C) Components:v<5000284334120v<75002532931600
PAGE 134

IntrinsicfractionbasedonCfonlyversusb-value.Thelledhistogramsshowthesure(classA0)andsure+probable(classesA0+B0)partialcoveringcases(greenandblue),theredhashedhistogramsshowthecompletecoveringcases(classC0),andtheblackhistogramsshowallcomponents(classesA+B+C).Thetoppanelsshownumbers,thebottompanelsshowpercentages. 134

PAGE 135

Intrinsicfractionversusvelocityforcomponents.ThegraylledhistogramsshowclassAcomponents,thebluehashedhistogramsshowclassA+Bcomponents,andtheblackhistogramsshowclassCcomponents.Thenumbersandpercentagesareper2500kms1,andthebinsare2500kms1wideupto10000kms1,and5000kms1widefrom10000to40000kms1. Figure4-13. Intrinsicfractionversusvelocityforsystems.ThegraylledhistogramsshowclassAsystems,thebluehashedhistogramsshowclassA+Bsystems,andtheblackhistogramsshowclassCsystems.Thenumbersandpercentagesareper2500kms1,andthebinsare2500kms1wideupto10000kms1,and5000kms1widefrom10000to40000kms1. 135

PAGE 136

TheregionofCIVabsorptionintheVLT+UVESspectrumofQ0249-222.Thespectrumisshowninblack.TheGaussiantisshowninblueandCIVdoubletsarelabeled.Thelowerhorizontalaxisisobservedwavelengthinangstroms,theupperhorizontalaxisisvelocitywithrespecttothequasaremissionvelocityinkilometerspersecondandtheverticalaxisisnormalizedux. 136

PAGE 137

TheregionofCIVabsorptionintheVLT+UVESspectrumofPKS2044-168.Thespectrumisshowninblack.SeeFigure 4-14 fordescriptionsofotherlines,symbolsandaxes. 137

PAGE 138

Point-by-pointanalysisofcoveringfractionforPKS2044-168systemnear1800kms1.Intheupperpanel,thesolidcurveisthebluememberoftheCIVdoublet,whilethedot-dashedcurveistheredmemberoftheCIVdoublet.Thesolidcirclesrepresent1-Cffortheregioncenteredoneachcircle.Inthelowerpanel,thesolidcurveistheblue(stronger)componentandthedot-dashedcurveisthered(weaker)componentoftheCIVdoublet.Thedottedcurverepresentsthepredictedshapeofthered(weaker)memberofthedoubletbasedontheopticaldepthofthebluememberandthexedopticaldepthratioofthedoublet.Theactualredmemberisstrongerthantheprediction,whichcanonlyoccurifthepairexhibitpartialcovering. 138

PAGE 139

TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1008+3623.Thespectrumisshowninblack.SeeFigure 4-14 fordescriptionsofotherlines,symbolsandaxes.Wenotethattheredshiftofthequasarisuncertainbyupto1200kms1duetoblueshiftsintheBELsrelativetothesystematicredshiftofthequasar( Espey 1993 ),andthusv>0kms1velocitiesdoesnotnecessarilyimplyinfalltowardsthequasar. 139

PAGE 140

Point-by-pointanalysisofcoveringfractionforJ1008+3623systemsinaregionofrichCIVabsorption.Thesymbols,linestylesandaxesarethesameasinFigure 4-16 140

PAGE 141

TheregionofCIVabsorptionintheKeck-HIRESspectrumofJ1633+1411.Thespectrumisshowninblack.SeeFigure 4-14 fordescriptionsofotherlines,symbolsandaxes.ThesameredshiftuncertaintiesapplytothisquasarastoJ1008+3623,asdescribedinFigure 4-17 141

PAGE 142

Point-by-pointanalysisofcoveringfractionforJ1633+1411componentsat-441,-6650,-7007and-8335kms1.Thesymbols,linestylesandaxesarethesameasinFigure 4-16 142

PAGE 143

Point-by-pointanalysisofcoveringfractionforBR0714-6455,J1633+1411andJ1225+4831highvelocitysystems.ThesethreesystemshaverobustpartialcoveringresultsandaregroupedinclassA.Thesymbols,linestylesandaxesarethesameasinFigure 4-16 143

PAGE 144

Point-by-pointanalysisofcoveringfractionforJ1307+1230,Q0401-1711andQ0249-222highvelocitysystems.Thesethreesystemsallhavelargeuncertainties,andaregroupedinclassC.Thesymbols,linestylesandaxesarethesameasinFigure 4-16 144

PAGE 145

BroadabsorptioninCIVfortwoquasarsinthesample.RegionscontainingBALormini-BALCIVabsorptioninthespectraofJ1341-0115andJ1020+1039inthetopandbottompanelsareshowninblack.Theupperhorizontalaxisisvelocitywithrespecttothequasaremissionvelocityinkilometerspersecond,thelowerhorizontalaxisisobservedwavelengthinangstromsandtheverticalaxisisnormalizedux.TheSDSSspectraareshowninred. 145

PAGE 146

Richardsetal. ( 1999 ); Vestergaard ( 2003 ); Nestoretal. ( 2008 ); Wildetal. ( 2008 ),havediscoveredthatalargefractionofNALsatallvelocityshiftsmayactuallybephysicallyrelatedtothequasarenvironment.TheseNALs,calledintrinsicNALs,canforminthehostgalaxyhalo,instarburstoutowsorinquasaroutows.TheintrinsicNALsmaybelocatednearthecentralblackholeorfaroutinthehaloofthehostgalaxyandarethereforeextremelyvaluabletoolsforunderstandingthegaseousenvironmentsnearthequasar.InterveningNALsformoutsideoftheimmediateenvironmentofthequasar,mostoftenininterveninggalaxiesalongourlineofsighttothequasar.Quasargaseousenvironmentsareregionsthatcanpotentiallyinuencetheevolutionofthequasar-hostgalaxysystem.Theseenvironmentsareformedaspartofanevolutionaryprocessinvolvinginteractionbetweenquasarsandtheirhostgalaxies,andprovidecluesastohowthisprocessdevelopsandprogresses.Highredshiftquasarsareparticularlyinterestinginthisregard,inthattheyoccurduringthepeakofmassivegalaxyformation,betweenredshifts2to4.Theappearanceofaquasarinoneofthesemassivehostgalaxiessigniestherapidgrowthofthecentralblackhole,andprobablyalsothehostgalaxy.StudyingthegaseousenvironmentusingintrinsicNALsproducesinformationaboutgaskinematics,columndensities,ionizationsandabundances.Theionizationsandabundancesinparticularconstrainthestarformationhistoriesandchemical`maturity'ofthegasinthenear-quasarenvironmentofthehostgalaxy.Mostmodelsofquasar-hostgalaxyevolutionpredictthatthehostgalaxyexperiencesamassiveburstofstarformationbeforethequasarbecomesactive( DiMatteoetal. 2005 2008 ; Hopkinsetal. 2008 ).Thequasarmayevenservetoquench 146

PAGE 147

Hamannetal. 1997 ; Gangulyetal. 2006 ; Aravetal. 2007 ).AbundancemeasurementsofintrinsicNALsgenerallyrevealmetal-richgas,fromsolartoafewtimessolarmetallicity( Hamannetal. 1997 ; D'Odoricoetal. 2004 ; Gangulyetal. 2006 ; Aravetal. 2007 ).Theseresultsareconsistentwithotherstudiesusingdifferentmethodstodetermineabundancesinquasarenvironments,e.g.studiesthatmeasureemissionlineabundanceratios( Dietrichetal. 2003 ; Warneretal. 2003 ; Nagaoetal. 2006 ; Matsuokaetal. 2009 ; Simon&Hamann 2010a )Inthisstudy,wemeasurecolumndensities,ionizationsandmetalabundancesforthesampleofintrinsicCIVNALsinhighredshiftquasarsanalyzedinChapter 4 .WebuildontheanalysisandresultsofChapter 4 byincludingtheNALsofionsotherthanCIV,derivingadditionalconstraintsontheionizationsandmetalabundancesoftheintrinsicgas.TheNALsinthisstudyareonaveragemuchweakerthanthosemeasuredinpreviousabundancestudies,andhavearangeofvelocityshifts,whichprobablyindicatesarangeoforigins,fromquasaroutowstomergerremnantsinthehostgalaxyhalo.Wepresentresultsoftherstlarge-scaleabundancesurveyoftheseweak,intrinsicNALs.ThenumerouspossibleoriginsoftheseNALsallowustoprobethemetallicitiesofawiderangeofhighredshiftquasarenvironmentsforthersttime.Thesemetallicitiesconstrainthestarformationhistoriesinthedifferentnear-quasarenvironments,whichinturnwillleadtobetterconstraintsontheevolutionofthehostgalaxy,inparticularwithrespecttothenatureofhostgalaxy-quasarinteractions. 147

PAGE 148

4 5.2.1ContinuumFittingBeforeweproceedwithouranalysisofindividualNALs,wecarefullynormalizeeachquasarspectrumtounity.Weapplyapseudo-continuumtoeachspectrum,whichincludesthequasarcontinuumaswellastheemissionlines.Forrelativelysmoothregionsofthespectrum,e.g.neartheCIVemissionline,thepseudo-continuumisdenedbyapolynomialttothelocalcontinuumusingIRAF 148

PAGE 149

)fortwoNALsystemsintwoquasarsareshowninFigures 5-1 and 5-2 .Thespectraareshowninblack,withthepolynomialcontinuumtsoverplottedinred.Eachpanelshowstheregionaroundadifferention.Theverticaldashedlinesindicatethelocationoftheabsorptionlineineachregion.Thecontinuumplacementisuncertainbyonly2%,exceptinregionsofheavyabsorption,e.g.theLyforest,wheretheuncertaintyincreasesto10%. 4 .InChapter 4 ,wedeterminetheoriginsof271CIVNAL`components'usingmeasurementsofcoveringfraction(Cf)andDopplerwidth(b).WedeneaNALcomponentinoneofthreeways:1)isolatedabsorptionlines,2)absorptionfeaturesblendedtogethertoformanasymmetriclineprole,3)distinctabsorptionlinespartiallyblendedtogetherbutseparatedenoughtodisplayarisebetweentwoormoreminima.FurtherdetailsregardingthesedistinctionsmaybefoundinChapter 4 .InthischapterwerefertoNALcomponentssimplyasNALs.WedividetheNALsintothreeclassesbasedonorigin:classANALsaresecurelyintrinsic,classBNALsareprobablyintrinsic,andclassCNALsaretheremainderoftheNALsofundeterminedorigin.Fortheionizationandabundanceanalysispresentedhere,weconsideronlythe54classAandBintrinsicNALs.Wesearchthequasarspectramanually,rstforLyandotherLyman-seriesNALsatthesameredshiftsastheCIVNALs.WerefertoeachsetofNALsatagivenredshiftasasystem(nottobeconfusedwiththesystemsofrelatedCIVNALcomponentsdenedinChapter 4 ).IncaseswhereaCIVNALispartofacomplexblendofmanyNALs,weselectoneortwocomponentsoftheblendwiththemostseparationfrom 149

PAGE 150

4 ,measuresthefractionoftheemissionsourcethatiscoveredbytheabsorbinggasalongthelineofsight.Thecoveringfractionisconstantacrosseachlineprole,andalllinesinmultipletssuchastheLymanseries,SiIVandNV,havethesamecoveringfraction. 150

PAGE 151

4.2 .Formultipletlines,theopticaldepthsarelockedtotheirappropriateratiosasdictatedbytheiroscillatorstrengthratios.ThecentroidsarexedtotheredshiftofCIVtoensureweconsideronlythephysicallyrelatedgasineachsystem.Asafurtherprecaution,theb-valuesforHIarelimitedto1.4timestheb-valuesofCIVforNALswithCIVb-valuesabove30kms1.ThislimitismuchlowerthantheexpectedHIb-valuesassumingpurelythermalbroadeningbecausetheseCIVb-valuesgreatlyexceedthethermalwidthsexpectedforagasphotoionizedbyaquasarortheinter-galacticultravioletspectrum(b<15kms1).Thisindicatesthatthewidthsaredominatedbynon-thermalbroadeningeffects.However,weallowtheHIb-valuestobeupto1.4timestheCIVb-valuesforthebroaderCIVNALs,andupto3.6timestheCIVb-valueforthenarrowestCIVNALsinsteadofforcingtheHIb-valuestobeequaltothoseofCIV.Thisallowsforsomecontributionofthermalbroadeningtobinthenarrowersystems,whichwouldaffectHImorethanCIV.Overall,ourtstotheLymanlinesshouldleadtoreasonablebutgenerouslylargeestimatesoftheamountofHIgasthatcoexistswithCIV,andtherefore,toconservativelylowestimatesoftheC/Habundance.Theb-valuesforlineswithlowerionizationthanCIVarexedtotheCIVb-values.Higherionizationlinesareallowedtobebroader.ThesinglelinesarealsotwithCf=1only,regardlessofthecoveringfractioninCIV,becausethecoveringfractionforsinglelinesgenerallycannotbeuniquelydetermined,anddoesnotnecessarilycorrespondtothecoveringfractionofCIVorotherdoubletsatthesameredshift.ExamplesofGaussiantsforthreesystemsinthreequasarsareshowninFigures 5-3 5-4 and 5-5 .WemeasureionizationsandabundancesforthehighervelocityNALsystemshowninFigure 5-3 ,whichhasbetterHIconstraintsthanthelowervelocitysystem,andforbothsystemsshowninFigure 5-4 ,whichhavesaturatedLylines,butwemeasureupperlimitsfortheHIcolumndensityfromtheLylines.We 151

PAGE 152

5-5 ,whichhavegoodHIconstraintsbutarenotwell-tinHIbythesingleGaussiansusedtottheCIV.TheGaussiantstoHIshowninthegurearethebesttstothedatausingtheparametersoftheCIVts.Theionsusedintheionizationandabundanceanalysis(x )areshowninthegures.MoreexamplesofGaussiantstoCIVareshowninChapter 4 ,andfurtherexamplesofGaussiantstointrinsicNALsinthequasarJ1023+5142areshowninChapter 3 inFigures 3-6 and 3-8 3 andN(CIV)/N(HI)columndensityratios.WeuselinesofotherionssuchasSiIVandNVonlyforionizationcorrections,usingCIV,whichispresentineveryNALsysteminthestudy,andthereforeaconsistentmeasurementforthewholestudy,tomeasureabundances.WecalculatecolumndensitiesforalltheNALswithGaussianttedopticaldepthsusingEquation 4 .Theionizationcorrection(IC)isthendeterminedbycomparingtheratiosofcolumndensitiesofdifferentions,preferablyofthesameelement,e.g.N(CIII)/N(CIV),tothetheoreticalresultsofphotoionizationcalculationspresentedin Hamannetal. ( 2011 ).ThesecorrectionfactorscanbelargewhencomparingahighlyionizedmetallikeCIVtoHI.Theexactvaluesdependontheionizationmechanism.Fortheircalculations, Hamannetal. ( 2011 )adoptanominalquasarspectrumconsistentwithrecentobservationalestimatesatthecriticalionizing(far-UV)photonenergies.WeperformadditionalCLOUDY( Ferlandetal. 1998 )calculationsusingtheinter-galacticbackgroundspectruminCLOUDY,whichisbasedonHaardt&Madau(2005,privatecommunication).Wendthattheionizationfractionsofinterestinthepresentworkhaveonlynegligibledifferencesbetweenthetwocalculations,e.g.,comparedtouncertaintiesinthemeasuredquantitiesorderivedionizationconstraints.Therefore,ourionizationandabundanceanalysisshouldprovideaccurateresults,regardlessofthe 152

PAGE 153

4 ).Weprefertoderiveionizationconstraintsfromthecolumndensityratiosoftwoionsofthesameelement.However,lowerionizationionssuchasCIIIandSiIIIareoftenblendedintheLyforestandarenotformedindoublets,andsocanonlybetreatedasupperlimits.Therefore,wealsoestimatetheICfromratiossuchasN(NV)/N(CIV)orN(SiIV)/N(CIV),withtheadditionalassumptionthattherelativemetalabundancesareapproximatelysolar( Asplundetal. 2009 ).Wealsocalculaterobustlowerlimitsonthemetaltohydrogenabundanceratiosbyapplyingminimumvaluesoftheionizationcorrection(ICmin, Hamannetal. ( 1997 ))tothemeasuredCIV.EachmetalionhasauniqueglobalICminthatoccursnearthepeakofitsownionizationfraction.Forexample,f(HI)=f(CIV)peaksapproximatelywheref(CIV)islargest.WeusethevaluesofICmingivenin Hamannetal. ( 2011 ).Applyingtheseminimumcorrectionfactorstotheobservedcolumndensityratios(Equation 3 )leadstormlowerlimitsfor[C/H]min.Theminimumionizationcorrectionsprovidermlowerlimitsontheabundancesthatdonotdependontheionizationuncertaintiesorthepossibilityofamulti-phasegas.Inparticular,anygascomponentsnotatanionizationcorrespondingtoICminwouldhavetheeffectofincreasingtheICandthusalsothemeasuredabundance.See Hamannetal. ( 2002 )forfurtherdiscussion.Thelogarithmic[C/H]abundanceratiorelativetothesolarratiocanthenbederivedfromtheratioofmeasuredcolumndensitiescorrectedforthedegreeofionizationinthegasusingEquation 3 .Thereareseveralsourcesofuncertaintyfoldedintotheseabundancecalculations.Thesesourcesincludeerrorsinthecontinuumts,intheGaussianopticaldepthlineprolets,uncertaintiesintheionizationcorrectionsandtheassumptionofsolarmetal/metalratios.TheformalstatisticalerrorsderivedfromtheGaussiantsarenotrepresentativeoftheactualuncertainties,whicharedominatedbyuncertaintyinthe 153

PAGE 154

5-5 ,theLymanlinesarenotwell-tbythesingleGaussianusedtotCIV.ThecontinuumtsfortheLymanlinesyield8%uncertaintyintheHIcolumndensity,butthecolumndensitychangesbyafurther50%betweenthebest-tGaussianandtheGaussianthatmatchestheCIVproleshape.Inthisparticularsystemoflines,aswellasinthemajorityofothersystems,theN(HI)hasahigheruncertaintythantheN(CIV).ThecontinuumisalmostalwaysbetterdenedneartheCIVNALandweusetheCIVproleshapetodenetheproleshapeusedtotallotherNALsinthesystem.Inmostsystems,CIVismoreoftenisolatedthanHI,whichalsoproduceslargeruncertaintiesintheHItsthanintheCIV.Whenpropagatingcolumndensityuncertaintiesthroughto[C/H]abundances,theN(HI)uncertantiesdominateN(CIV)uncertainties.ThehighervelocitysystemshowninFigure 5-3 isanexampleofasystemthathastswithaverageuncertainties.Thissystemalsohasthehighestmeasuredmetallicity,[C/H]=+1.3,ofallthesystemsshowninFigure 5-6 ,whilethesystemshowninFigure 5-4 haslargerthanaverageuncertainties,especiallyintheHIts,becausetheHINALsappearsaturated,andthelowestmeasuredmetallicity,[C/H]=-1.8,ofallthesystems.InsystemswheretheLymanlinesarecontaminatedbyblends,we 154

PAGE 155

Aguirreetal. ( 2004 )makeastrongcaseforanon-solar[Si/C]ratioof[Si/C]=0.770.05.Adoptingthisabundanceratiowouldlowerourmetallicitiesbyonaverage0.15dex.Therearefurtheruncertaintiesrelatedtotheionizingbackgroundusedtodetermineionizationfractions.Weusethegasionizationparameterscalculatedby Hamannetal. ( 2011 )assumingatypicalquasarspectrum.Thisspectrumissimilartothe Haardt&Madau ( 2001 )spectrum,which,accordingto Aguirreetal. ( 2008 ),mayproduceinaccurateresultsforgaslocatedintheintergalacticmedium(IGM).However,we 155

PAGE 156

5-6 showsthe[C/H]abundanceversusvelocityshiftforallclassAandB(intrinsic)NALsystemswithgoodionizationconstraints.ThegreensymbolsareabundancesbasedontheminimumionizationcorrectionforCIV,andarealllowerlimits.TheNALswithlowerlimitsonabundancesfromassumingICminalsohavegoodionizationconstraintsinmanycases.TheNALswithgoodionizationconstraintshaveionizationsmeasuredfromN(CII),N(CIII),N(NV),orN(SiIV)versusN(CIV),orfromN(SiIII)/N(SiIV)columndensityratios.Abundancesbasedonthesemeasuredionizationcorrectionsareshowninthegureinblack,connectedtothecorrespondinglowerlimitsbasedonICmin(greensymbols)withverticallines.TheclassANALsymbolsarediamonds,whiletheclassBNALsymbolsaretriangles.ThesizesofthesymbolscorrespondtothebvaluesoftheCIVNALs.Thesmallesthaveb<27kms1,thelargesthaveb>80kms1,andthemediumsizedsymbolshavebvaluesin-between.Themetallicitieswendaregenerallyaroundsolar,orslightlybelowsolar.Themedianmetallicitylowerlimitwedetectis[C/H]-0.46(averageis-0.63),whileforthedetectionswithgoodionizationconstraintsthemedianmetallicityis[C/H]=-0.08(averageis-0.2).ThereisnocleartrendinmetallicitywithvelocityshiftforeitherNAL 156

PAGE 157

Petitjeanetal. ( 1994 )createasimilarguretoourFigure 5-6 ,andndatrendoflowermetallicitywithlargervelocityshifts.ThistrendappearstobeingoodagreementwiththendingsofintrinsicNALstudies,aswellaswiththoseofinterveninggasstudies,assuminginterveninggasispredominantlyfoundatlargervelocityshifts.Intrinsicgasisgenerallyfoundtobemetal-rich,withabundancesequaltoorabovesolar,whileinterveningstudiesndmuchlowermetallicities,oftenlessthanonehundredthsolar( Aguirreetal. 2004 ; D'Odoricoetal. 2004 ; Simcoe 2004 ; Gangulyetal. 2006 ; Aravetal. 2007 ; Schayeetal. 2007 ).Ourdatadonotclearlyshowthistrendfordecreasingmetallicitywithincreasingvelocityshifts,althoughwehaveveryfewpointsatthelargervelocityshifts.Furthermore,alloftheNALsinthisstudyareintrinsicbasedonpartialcoveringintheCIVNALsorverybroadCIVNALs(SeeChapter 4 ).ThecommonintrinsicoriginofalltheNALsinthisstudylikelycontributestothelackofanyobvioustrendinmetallicitywithvelocity.Wedo,however,seeawiderangeofmetallicitiesatlowvelocities.Thisisasurprisingresult,suggestingthatnotallthegasinthenearquasarenvironmentismetal-rich,asisgenerallyassumed.Themetal-poorNALsinoursamplecouldbeexamplesofgasinthehostgalaxyhalo,farfromthecenterofthegalaxyandtheblackhole.OneoftheoriginalgoalsofthisstudywastodetermineiftheabundancesorphysicalpropertiesoftheNALgasdependonredshift.Forexample,theNALsathigherredshiftsmighthavelowermetallicitiesifthehostgalaxiesaretypicallyyoungerand/orhaveexperiencedlesspriorstarformation.Wespecicallytargetedasampleofz>4quasarstoexaminethisrelativelyunknownregionofredshiftspace.Figure 5-7 separatestheNALabundancesbyabsorptionlineredshift.Thebluediamondsarethez>4NALs,theredtrianglesarethe3
PAGE 158

Dietrichetal. 2003 ; Nagaoetal. 2006 ; Matsuokaetal. 2009 ),whichalsondnotrendswithredshift.However,ourresultscontrastwiththeemissionlinestudies,andwithmostpriorworkonintrinsicNALs,inthatweseeawiderangeinmetallicitiesatallredshifts.Mostoftheearlierworkindicatesthatthemetallicitiesinquasarenvironmentsarenearsolarorseveraltimeshigher( Hamann&Ferland 1999 ; D'Odoricoetal. 2004 ; Gangulyetal. 2006 ; Aravetal. 2007 ).Forexample, Aravetal. ( 2007 )measureacarbonabundanceoftwicethesolarabundanceinMrk279and D'Odoricoetal. ( 2004 )measure[C/H]forsixz>2NALsystemsbetween+0.0<[C/H]<+1.4andtwootherswithnearlysolarabundances([C/H]=-0.04,-0.8).Ourmeasuredvaluesrangefrom[C/H]>-1.8to+1.3.Thereareseveralfactorsthatmightcontributetothesemetallicitydifferences.First,thebroademissionlinesformwithinaparsecofthecentralblackholeandare,therefore,likelytosamplethemostmetal-richgasinthegalaxycores.Second,otherstudiesofintrinsicNALshavetendedtofocusonsystemsthatarestrongerthanours( D'Odoricoetal. ( 2004 )isanexception)andthatoftenhaveotherindicationsofformationverynearthequasarssuchasvariabilityand/orbroadsmoothprolesindicativeofquasar-drivenoutows.Figure 5-8 showsN(HI)versusN(CIV)forourclassAandBNALs.OurN(CIV)aresimilartoorlowerthanmostintrinsicstudies,buthigherthanstudiesofinterveninggas( D'Odoricoetal. 2004 ; Aravetal. 2007 ; Simcoe 2004 ; Schayeetal. 2007 ).InChapter 4 wearguedthatstrongNALsaremorelikelytobeintrinsicand,atleastathighvelocities,morelikelytoforminaquasaroutow.Thus,NALswithlargeN(CIV)arealsomorelikelytobemetal-rich.However,inoursamplewendthattheNALswithstrongerN(HI)generallydonothavecorrespondinglystrongN(CIV).Figure 5-9 showsN(HI)versusN(CIV)/N(HI)fortheclassAandBNALsinthisstudy,andexhibitsatrendforweakerN(CIV)comparedtoN(HI)asN(HI)increases. 158

PAGE 159

4 inourmetallicityanalysistoimprovethestatisticsandcompareresultsbetweenNALsthatappeartohaveacommonoriginbasedontheirrelationshipinthespectra,ii)lookingformetallicitytrendswithlinestrengthandN(CIV)toseeifweakerNALsreallydotendtosamplelowermetallicitygas,iii)observingmorequasars(andaccessingarchivedata)toincreasethesamplesize,andiv)obtainingrepeatobservationsofsomequasarstocheckforNALvariability 159

PAGE 160

4 .WemeasureCIV,HI,SiIV,NV,andothercolumndensities,whichweusetodeterminetheionizationoftheintrinsicgas.Wendarangeofmetallicities,from[C/H]>-1.8to[C/H]=+1.3.ThereisnoappreciabletrendinmetallicitywithvelocityshiftfortheintrinsicNALsstudied,andsimilarlynotrendinmetallicitywithredshift.ThebroaderNALstendtohaveslightlyhighermetallicitythanthenarrowerNALs.Wearelikelysamplingmetallicitiesforabroadrangeofquasarenvironments,frommetal-richoutowstoambienthalogasinthehostgalaxy. 160

PAGE 161

ContinuumtsforthequasarJ0714-6455,emissionredshiftzem=4.46.EachpanelshowsaregionofthespectrumaroundadifferentNAL.TheNALsarelabeledinthepanels.Thehorizontalaxisisvelocityshiftrelativetothequasarsystemic.Theverticalaxisisuxinarbitraryunits.Thespectrumisshowninblack,whilethecontinuumtisoverplottedinred.TheverticaldashedlinesdelineatethecentralvelocityoftheNALbeingmeasured. 161

PAGE 162

ContinuumtsforthequasarJ0749+4152,emissionredshiftzem=3.11.TheaxesandsymbolsarethesameasinFigure 5-1 162

PAGE 163

GaussiantsforthequasarJ0714-6455,emissionredshiftzem=4.46.ThehorizontalaxisisvelocityshiftofeachNALrelativetothequasarandtheverticalaxisisuxinnormalizedunits.EachpanelshowsthequasarspectrumaroundaNAL.Theionsandrestwavelengthsinangstromsarelabeledinthepanels.TheGaussiantsareoverplottedontopofthequasarspectruminblack.TheverticaldashedlinesshowthecentralvelocityofeachNAL. 163

PAGE 164

GaussiantsforthequasarJ0749+4152,emissionredshiftzem=3.11.TheaxesandsymbolsarethesameasinFigure 5-3 164

PAGE 165

GaussiantsforthequasarJ1341-0115,emissionredshiftzem=2.70.TheaxesandsymbolsarethesameasinFigure 5-3 165

PAGE 166

NALmetallicityversusvelocityshift.ThediamondsymbolsareclassANALs,thetrianglesymbolsareclassBNALs.GreensymbolsarelowerlimitsformetallicitiesdeterminedusingtheminimumionizationcorrectionforCIV,whileblacksymbolsaremetallicitiesforNALswithgoodionizationconstraintsbasedontherelativestrengthsofatleasttwoions.VerticallinesconnectmetallicitiesofthesameNALsmeasuredusingminimumionizationcorrectionsandusingotherionizationconstraints.SmallsymbolsrepresentNALswithbvaluesb<27kms1,mediumsymbolsrepresentNALswithbvalues2780kms1. 166

PAGE 167

NALmetallicityversusvelocityshiftfordifferentredshifts.SymbolsrepresentmetallicitiesofNALswithgoodionizationconstraints.BluediamondsarehigherredshiftNALswithzabs>4,redtrianglesaremediumredshiftNALswith3
PAGE 168

CIVandHIcolumndensitiesforclassAandBNALs.Columndensitiesaremeasuredinunitsofcm2. 168

PAGE 169

HIversusCIV/HIcolumndensityratiosforclassAandBNALs.Columndensitiesaremeasuredinunitsofcm2. 169

PAGE 170

2 ,wepresenttheresultsofanexploratorystudyofbroadlineregion(BLR)metallicityin34quasarswithredshiftsbetween2.2z4.6andfar-infrared(FIR)luminosities(LFIR)from1013.4to1012.1L.LFIRappearstobeagoodindicatorofthestarformationrate(SFR)inthehostgalaxy,andthereforeoursampleofquasarswitharangeofLFIR'smightrepresentanevolutionarysequenceiftheSFRsinquasarhostsgenerallydiminishacrossquasarlifetimes.WeconstructthreecompositespectrasortedbyLFIR,correspondingtoaverageSFRsof4980,2130and340Myr1aftercorrectingforanominalquasarFIRcontribution,usingrest-frameultravioletspectrafromtheSloanDigitalSkySurvey.ThemeasuredNV1240/CIV1550andSiIV1397+OIV]1402/CIV1550emissionlineratiosindicatesuper-solarBLRmetallicitiesinallthreecomposites,withnoevidenceforatrendwiththestarformationrate.Theformalderivedmetallicities,Z5Z,aresimilartothosederivedfortheBLRsofotherquasarsatsimilarredshiftsandluminosities.TheseresultssuggestthattheongoingstarformationinthehostisnotresponsibleforthemetalenrichmentoftheBLRgas.Instead,theBLRgasmusthavebeenenrichedbeforethevisiblequasarphase.Theseresultsforhighquasarmetallicities,regardlessofLFIR,areconsistentwithevolutionscenarioswhereinvisiblybrightquasarsappearafterthemainepisode(s)ofstarformationandmetalenrichmentinthehostgalaxies.Finally,youngquasars,thosemorecloselyassociatedwitharecentmergerorablowoutofgasanddust,mayexhibittracersoftheseevents,suchasreddercontinuumslopesandhigherincidenceofnarrowabsorptionlines.Withthecaveatofsmallsamplesizes,WendnorelationbetweenLFIRandthereddeningortheincidenceofabsorptionlines.InChapter 3 ,weexaminethenatureandoriginofarichcomplexofnarrowabsorptionlinesinthequasarJ1023+5142atredshift3.447.WemeasurenineCIV1548,1551absorptionlinesystemswithvelocitiesfrom-1400to-6200kms1, 170

PAGE 171

4 ,wepresenttheresultsofacomprehensivesurveyof271CIVnarrowabsorptionline(NAL)componentsin136CIVNALsystemsin24quasarsat 171

PAGE 172

5 ,wepresentabundancesfor25intrinsicNALcomponentsinthequasarsample.Wendarangeoflogarithmic[C/H]abundancesrelativetosolarabundancefrom-1.8to+1.3.ThisisamuchbroaderrangeofmetallicitiesthanwhathaspreviouslybeenfoundforintrinsicNALsinsimilarquasars.Wendarangeofmetallicitiesatallvelocityshifts,from0to30,000kms1.Themetallicitiesdonotcorrelatewithredshift.ThissampleofintrinsicNALsmaybethersttocontainasamplingofmetallicitiesfromalltypesofgasinthenearquasarenvironment,fromquasaroutowstoambienthostgalaxyhalogas. 172

PAGE 173

173

PAGE 174

Thisappendixcontainsthetableofmeasuredparametersforall271CIVNALcomponentsinthequasarsampleintroducedinChapter 4 .Column1liststheCIVabsorptionlineredshift,column2liststhecorrespondingvelocityshiftrelativetothequasarsystemic,column3liststheCIVb-value,column4liststheCIV1548FWHM,column5liststhecoveringfraction,column6listtheCIV1548systemREW,wheredashesindicatethelistedcomponentispartofthelastsystemlistedabovewithanumericvalue,column7liststheCIV1548componentREW,andcolumn8liststheNALcomponentclass.SystemswithoneormoreclassAcomponentarecountedasclassAsystems.SystemsarecountedinclassBiftheycontainoneormoreclassBcomponents. 174

PAGE 175

CIVNALs zvbFWHMCfREWsREWcClassc(kms1)(kms1)(kms1)AA Q0105+0601:1.93186-286330.070.71.00.4730.473C1.93529-251335.082.41.00.6250.572C1.93453-25917.016.51.0-0.012C1.67336-3043010.023.51.00.0860.086C1.66446-3141917.942.21.00.0540.055CPSSJ0134+3307:4.51811-75438.791.10.980.5690.569B4.23554-1649668.0160.31.00.5990.600B3.77590-4374510.224.01.00.4020.037C3.77603-437375.312.51.0-0.050C3.77640-4371411.126.11.0-0.105C3.77694-436819.021.21.0-0.075C3.68745-4921442.299.41.00.5120.286C3.68845-491528.820.71.0-0.059C3.68971-4907411.928.11.0-0.078C3.69036-490339.622.71.0-0.064CBR0245-0608:4.22995-46130.070.61.00.0510.051C3.65313-3533042.5100.01.00.4380.443C3.57724-4018219.947.01.00.5960.173C3.57848-4010230.672.01.0-0.310C3.57949-4003715.937.51.0-0.132C3.22280-6360723.856.01.00.0550.058C3.15871-6797110.023.51.00.4540.052C3.15752-6805211.827.71.0-0.088C3.15530-6820430.772.21.0-0.338CQ0249-2223.17589-172617.541.11.00.1820.169C3.17667-16706.515.31.0-0.012C3.12897-511321.250.01.00.1220.104C3.12949-50756.715.81.0-0.019C3.09943-726418.343.01.01.0350.059C3.10123-713330.271.01.0-0.200C3.10221-706116.438.61.0-0.113C3.10294-700829.669.81.0-0.234C3.10501-685739.793.51.0-0.129C3.10614-677424.758.21.0-0.138C 175

PAGE 176

A-1 .Continued 3.10710-670411.126.21.0-0.038C3.10752-667410.123.81.0-0.021C2.89313-227027.417.30.910.0920.026C2.89161-2281814.033.01.0-0.034C2.89200-2278910.023.51.0-0.032C2.86084-2518328.567.11.00.0850.086C2.77360-3197214.935.11.00.1480.064C2.77484-3187510.624.91.0-0.085C2.70360-3751021.249.81.00.0360.036C2.67289-3996510.023.51.00.1040.052C2.67323-3993720.047.11.0-0.057C2.54830-5007617.942.21.00.0570.037C2.54919-5000318.543.61.0-0.021C2.48031-5569610.023.51.00.1420.025C2.48098-5564010.023.51.0-0.071C2.48144-5560215.035.31.0-0.013C2.48244-5551815.035.31.0-0.037CQ0334-2043.09014-305210.023.61.00.4190.114C3.09066-301430.070.71.0-0.297C3.09149-295415.035.31.0-0.048C3.09241-288610.424.41.00.0610.061C3.04508-637311.226.51.00.5760.069C3.04347-649217.441.01.0-0.198C3.04108-666919.445.71.0-0.116C3.04167-662513.932.71.0-0.077C3.03975-676815.737.11.0-0.085C3.03943-67928.820.71.0-0.036C2.89184-1793014.133.11.00.0700.070CBR0351-1034:4.35404170196.8463.51.05.543.33C4.27095-4518119.9282.30.700.7380.733A4.28197-3992108.7256.00.701.0390.785A4.15404-1123819.345.41.00.1530.153C3.51500-5044415.636.81.00.8150.097C3.51544-5041620.849.11.0-0.217C3.51597-5038111.326.61.0-0.080C3.51673-5033227.163.81.0-0.318C3.51724-502999.121.41.0-0.081C3.51880-5019928.466.81.0-0.136C 176

PAGE 177

A-1 .Continued BR0401-1711:4.22940-37829.970.31.00.5510.552C3.81395-2513520.047.11.00.0770.077C3.64130-3597039.292.31.00.2420.245C3.33990-5562129.168.50.60.0710.073C3.20568-6466013.030.61.00.3380.069C3.20652-6460223.455.11.0-0.229C3.20398-6477510.625.01.0-0.043CBR0714-6455:4.45919-15441.697.91.00.0930.093C4.42365-211218.844.31.00.0480.048C4.19685-1490617.040.00.90.2770.205A4.19753-1486710.925.70.9-0.055B4.19804-148389.021.20.9-0.021C3.96996-2821811.928.01.00.6680.110C3.97049-2818643.8103.21.0-0.257C3.96939-2825223.856.01.0-0.112C3.80085-3846723.254.61.00.0420.043C3.75033-4158220.949.21.00.2320.095C3.75134-4151920.849.01.0-0.142C3.74516-4190220.047.11.00.1510.089C3.74652-4181720.047.21.0-0.064C3.42246-6236827.765.21.00.1840.192CBR0749+4152:3.09726-93115.636.81.00.0090.009C3.01603-693317.040.11.00.3140.032C3.01686-687115.837.11.0-0.032C3.01772-680724.557.71.0-0.165C3.01851-674817.942.21.0-0.087C2.91809-1432512.028.31.00.0190.019C2.91894-1426010.624.91.00.0180.018C2.76480-2623312.228.00.640.1500.078A2.76567-2616415.436.30.39-0.062A2.75447-2705015.035.31.00.1300.096C2.70614-30898628.31479.61.01.790.89-2.64509-3581620.147.31.00.140.11C2.61424-3832515.135.71.00.100.07C2.58426-4077817.040.01.00.110.06C2.58471-4074210.925.71.0-0.02C 177

PAGE 178

A-1 .Continued BR0933+733:2.52690-9313.531.81.00.1070.073C2.52786-1213.632.11.0-0.034C2.51105-14448.119.01.00.0270.027C2.44944-67508.119.11.00.0430.022C2.45017-66868.018.81.0-0.021C2.33228-1709262.7147.71.01.1461.097C2.33429-169126.314.91.0-0.052C2.21444-278249.522.51.00.0320.032C2.11075-3753630.471.71.00.7010.145C2.11195-3742227.564.71.0-0.302C2.11313-3731031.674.41.0-0.323CJ1008+3623:3.1366080010.825.41.00.6450.031C3.137268488.018.81.0-0.042C3.137738825.112.01.0-0.031C3.135997566.314.91.0-0.051C3.1352270032.376.11.0-0.078C3.1338360035.083.30.88-0.287A3.1344664520.143.90.88-0.153A3.1276315019.952.80.880.5070.151A3.12557-014.033.00.88-0.195A3.126083715.035.30.88-0.192A3.11198-98917.641.50.630.1410.141A3.10820-126532.075.41.00.0640.064C3.08616-287733.578.80.731.5730.094A3.08821-272756.5133.20.73-0.154A3.08968-261928.266.40.73-0.139A3.09043-256430.571.80.73-0.302A3.09168-247344.3104.20.73-0.283A3.09277-239338.891.40.73-0.180A3.09443-227147.9112.80.73-0.439A3.07141-396118.443.21.00.0360.036C3.04805-568697.6229.90.300.1310.139A2.94786-1319217.340.91.00.2920.082C2.94865-1313217.340.81.0-0.067C2.94917-1309217.641.51.0-0.128C2.87032-1912119.746.51.00.1270.127C 178

PAGE 179

A-1 .Continued J1020+1039:3.11159-408521.650.91.00.4500.262C3.11249-401915.837.11.0-0.188C3.10823-433038.490.31.00.2380.144C3.10955-423427.264.01.0-0.096C3.11643-373220.949.11.00.0910.043C3.09162-554410.524.61.00.0310.031C3.07901-646932.175.70.850.1370.137A3.00977-1159715.937.41.00.1350.135C2.99835-1245172.5170.71.00.1260.126B2.96938-14626634.81494.81.01.3721.374-2.94012-1683816.238.21.00.0810.043C2.94074-1679121.550.71.0-0.039C2.56497-4647418.042.51.00.4000.120C2.56562-4642115.837.21.0-0.136CJ1020-0020:2.6030028310.624.91.00.2810.102C2.6034231814.935.21.0-0.185CJ1023+5142:3.42865-144210.424.41.00.0340.034C3.42133-19389.622.51.0.3280.017C3.41864-21209.021.21.-0.095C3.41775-218210.624.91.-0.094C3.41747-220033.478.71.-0.154C3.40391-312115.035.30.70.5480.141A3.40196-325445.0106.00.7-0.212A3.39936-343019.846.61.-0.045C3.39835-349643.7102.91.-0.144C3.37983-4763155.5366.21.0.8070.808A3.35752-629545.0105.91.0.1740.057C3.35922-617840.495.11.-0.083C3.36057-608555.3130.11.-0.054C3.20955-1663623.856.11.0.2770.215C3.20785-1675611.928.11.0-0.043C3.10282-2429821.650.91.00.1410.056C3.10456-2417219.345.51.0-0.030C3.10537-2411319.044.81.0-0.030C2.97752-335099.923.41.00.1760.079C2.97522-3368118.744.01.0-0.099C2.87560-411708.820.61.00.0650.026C 179

PAGE 180

A-1 .Continued 2.87748-4102814.734.71.0-0.041C2.64367-5914611.427.01.00.3930.107C2.64425-5910018.643.71.0-0.222C2.64572-5898412.028.31.0-0.082C1201+0116:3.18379-350526.361.91.00.0470.047C3.15998-52168.921.01.00.0250.025C3.13294-717050.0117.71.00.1420.142C3.07892-1111111.025.91.00.1690.073C3.08013-110229.722.81.0-0.096C2.79010-3299820.047.11.00.1130.089C2.79188-328599.722.81.0-0.025CBR1202-0725:4.68468-28018.343.11.00.4700.230C4.68594-21414.834.81.0-0.088C4.68658-18013.732.21.0-0.159C4.67025-104216.939.81.00.1480.148C4.62414-349021.851.31.00.0670.067C4.47720-1142127.364.31.00.5050.128C4.47808-1137311.527.01.0-0.082C4.47853-113499.321.91.0-0.042C4.47879-1133416.338.31.0-0.053C4.47998-1127015.235.81.0-0.090C4.48104-1121221.650.91.0-0.066C4.48195-1116225.058.81.0-0.060C4.19044-2747125.058.91.00.1260.126C4.07164-3433922.252.31.00.2880.291C4.04695-3578218.643.91.00.1050.074C4.04629-3582018.944.41.0-0.036C3.82499-4899335.683.91.00.1530.157C3.81151-4980919.345.61.00.0820.023C3.81214-4977124.557.61.0-0.062C3.75307-5336419.445.71.00.1200.124CJ1225+4831:3.095554079.422.21.01.1440.073C3.0959243416.739.31.0-0.156C3.0941430348.0113.01.0-0.836C3.08262-54120.147.41.00.1650.165C3.08948-3839.192.01.00.3000.256C3.08476-38416.939.71.00.0120.012C 180

PAGE 181

A-1 .Continued 3.08011-72612.529.31.00.1760.024C3.08066-68546.7110.11.0-0.091C3.08174-60641.798.31.0-0.066C3.02519-478810.725.21.00.0720.033C3.02362-49057.317.11.0-0.009C3.02405-487313.932.81.0-0.031C2.99753-685522.051.91.00.1100.077C2.99798-682112.429.11.0-0.036C2.98960-745015.135.41.00.0520.052C2.91821-1285616.137.91.00.0410.041C2.91726-1292919.545.91.00.0690.069C2.77843-2370520.748.71.00.0360.036C2.76121-2506511.928.01.00.2640.112C2.76187-2501312.930.51.0-0.154C2.68719-3097239.693.31.00.3380.278C2.68790-3091517.541.31.0-0.072C2.68332-3128315.536.41.00.1490.065C2.68368-312548.921.01.0-0.034C2.68396-3123215.736.91.0-0.055C2.62642-357979.321.81.00.0320.033C2.60129-3794515.235.71.00.1820.057C2.60057-3800431.674.41.0-0.130C2.58622-391846.415.00.710.1850.048C2.58463-3931415.035.30.90-0.141A2.55415-4182514.935.11.00.0570.058C2.35594-5854127.564.71.00.2180.089C2.35689-5846027.364.41.0-0.083C2.35089-5897517.140.31.00.1390.144CJ1307+1230:3.2029821314.834.91.00.5540.095C3.2039528214.935.21.0-0.139C3.2048934930.271.11.0-0.324C3.17970-145330.371.31.00.1730.095C3.18070-138118.042.41.0-0.078C3.17714-163616.238.21.00.0470.047C2.98124-1602114.935.21.00.1190.067C2.98170-1598610.725.21.0-0.053C2.83020-2755319.445.70.50.2040.103C2.83086-2750234.080.11.0-0.123C2.73064-3536135.383.11.00.090.09C 181

PAGE 182

A-1 .Continued J1326+0743:4.10215-396037.989.10.820.3580.355A4.06218-631737.688.60.850.4570.452A4.06561-611423.755.71.00.0890.089C4.06040-642312.328.91.00.0170.017C4.04001-763245.2106.51.00.1810.151C4.04045-760610.324.11.0-0.039C3.47744-4282224.557.71.0.6580.276C3.47805-427829.722.81.-0.045C3.47874-4273633.879.71.-0.297CJ1341-0115:2.74482-169136.084.70.950.5420.453B2.74581-161236.686.20.95-0.104B2.74280-185316.839.60.680.0930.093A2.70762-468349.9117.41.00.1210.121C2.53184-192191930.54546.11.09.914199.933-2.41809-2896920.247.51.00.1120.113C2.40417-3018613.531.81.00.0580.058CJ1430+0149:2.08930-200212.228.71.00.5940.154C2.08967-196613.130.81.0-0.113C2.09008-192611.126.21.0-0.145C2.08379-253715.035.31.00.3420.209C2.08461-245713.231.21.0-0.133C2.06972-389616.739.31.00.9240.242C2.07084-379251.6121.51.0-0.556C2.07153-372213.030.61.0-0.102C2.06939-39407.617.91.0-0.082C1.78906-3252416.338.41.00.5340.239C1.78940-3248819.846.61.0-0.247CJ1633+1411:4.36743-44010.424.60.850.0890.085B4.34777-154165.3153.81.00.0610.061C4.28081-5317106.4250.51.00.1310.131C4.28469-509874.0174.21.00.3720.372B4.25113-700726.061.30.731.2040.214A4.25486-679414.233.40.73-0.009A4.25555-675524.357.30.73-0.039A4.25672-668821.250.00.73-0.059A4.25724-66589.522.30.73-0.041B 182

PAGE 183

A-1 .Continued 4.25795-661819.746.40.73-0.170B4.26194-639194.0221.40.73-0.346A4.26303-632945.6107.30.73-0.115A4.22645-841841.898.30.720.2120.076A4.22790-833531.373.70.72-0.140A4.23461-795149.8117.30.720.3380.170A4.23817-774735.683.90.72-0.063A4.15138-1275025.560.11.00.1360.059C4.15268-1267530.471.61.0-0.078C4.03067-1983723.455.00.310.0720.072A3.78144-3494011.426.71.00.0250.026C3.60119-4624712.228.81.00.0190.019C3.58094-4753710.123.81.00.1060.024C3.58193-4747418.643.81.0-0.085C3.50387-5248219.044.61.00.5570.234C3.50493-5241414.534.11.0-0.126C3.50528-5239113.130.81.0-0.128C3.50577-5235913.531.81.0-0.121C3.34716-6270610.224.01.00.1060.020C3.34655-627469.522.51.0-0.051C3.34445-6288413.732.31.0-0.024C3.34307-6297613.231.11.0-0.016CPKS2044+168:1.92221-15137.718.11.00.8170.008C1.92153-158310.123.91.0-0.018C1.92199-15369.422.01.0-0.036C1.92059-168012.128.40.78-0.101A1.92035-17046.715.70.78-0.031A1.92009-173113.732.30.78-0.130A1.91831-191418.142.70.78-0.187A1.91898-184516.338.30.78-0.184A1.91796-195018.142.70.78-0.089A1.91977-176413.030.60.78-0.063A1.55753-4121328.466.91.00.4590.395C1.55874-4107415.035.31.0-0.075C1.34410-6647615.035.31.00.0950.099C1.34202-6673010.023.51.00.1050.079C1.34222-6670510.023.61.0-0.032C1.32811-6842535.182.71.00.3500.368C 183

PAGE 184

A-1 .Continued Q2204-408:3.1572516212.629.71.00.0550.055C3.02823-928629.068.31.00.1570.157C3.17492143424.758.11.00.0260.026C2.86389-2173811.827.71.00.2910.133C2.86459-2168422.753.61.0-0.069C2.86548-2161524.056.61.0-0.053C2.86708-2149226.161.51.0-0.039C2.87264-2106316.639.01.00.1610.065C2.87304-2103314.233.41.0-0.082C2.84864-2291728.467.01.00.3130.053C2.84920-2287412.529.31.0-0.049C2.85017-2279921.450.51.0-0.163C2.85059-227667.317.11.0-0.056C2.83671-2384213.030.71.00.2980.144C2.83730-2379618.042.41.0-0.159C2.66578-3736011.727.51.00.0220.022C2.62870-4035724.958.61.00.3170.102C2.62724-4047520.047.11.0-0.204C2.62551-4061610.023.61.0-0.017C2.59359-4321513.130.91.00.0210.022C 184

PAGE 185

Adelman-McCarthyJ.K.,AguerosM.A.,AllamS.S.,AllendePrietoC.,etal.2008,ApJS,175,297 AgrestiA.,CoullB.A.,1998,TheAmericanStatistician,52,119 AguirreA.,Dow-HygelundC.,SchayeJ.,TheunsT.,2008,ApJ,689,851 AguirreA.,SchayeJ.,KimT.,TheunsT.,RauchM.,SargentW.L.W.,2004,ApJ,602,38 AldcroftT.,BechtoldJ.,FoltzC.,1997,inAravN.,ShlosmanI.,WeymannR.J.,eds,MassEjectionfromActiveGalacticNucleiVol.128ofAstronomicalSocietyofthePacicConferenceSeries,VariabilityinRadio-LoudQuasarAssociatedAbsorptionLines.pp25+ AndersonS.F.,WeymannR.J.,FoltzC.B.,ChaffeeJr.F.H.,1987,AJ,94,278 AravN.,deKoolM.,KoristaK.T.,CrenshawD.M.,vanBreugelW.,BrothertonM.,GreenR.F.,PettiniM.,etal.2001,ApJ,561,118 AravN.,GabelJ.R.,KoristaK.T.,KaastraJ.S.,KrissG.A.,BeharE.,CostantiniE.,GaskellC.M.,LaorA.,KodituwakkuC.N.,ProgaD.,SakoM.,ScottJ.E.,SteenbruggeK.C.,2007,ApJ,658,829 AravN.,KaastraJ.,KrissG.A.,KoristaK.T.,GabelJ.,ProgaD.,2005,ApJ,620,665 ArnaudM.,RothenugR.,1985,A&AS,60,425 AsplundM.,GrevesseN.,SauvalA.J.,ScottP.,2009,ARA&A,47,481 BahcallJ.N.,SargentW.L.W.,SchmidtM.,1967,ApJ,149,L11+ BaldwinJ.A.,HamannF.,KoristaK.T.,FerlandG.J.,DietrichM.,WarnerC.,2003,ApJ,583,649 BarlowT.A.,HamannF.,SargentW.L.W.,1997,inAravN.,ShlosmanI.,WeymannR.J.,eds,MassEjectionfromActiveGalacticNucleiVol.128ofAstronomicalSocietyofthePacicConferenceSeries,PartialCoverageandTimeVariabilityofNarrow-LineIntrinsicQSOAbsorptionSystems.pp13+ BarlowT.A.,SargentW.L.W.,1997,AJ,113,136 BeckerR.H.,WhiteR.L.,GreggM.D.,BrothertonM.S.,Laurent-MuehleisenS.A.,AravN.,2000,ApJ,538,72 BeelenA.,CoxP.,BenfordD.J.,DowellC.D.,KovacsA.,BertoldiF.,OmontA.,CarilliC.L.,2006,ApJ,642,694 185

PAGE 186

BraunE.,MilgromM.,1989,ApJ,342,100 CalzettiD.,KennicuttR.C.,EngelbrachtC.W.,LeithererC.,DraineB.T.,KewleyL.,MoustakasJ.,SoseyM.,DaleD.A.,GordonK.D.,HelouG.X.,HollenbachD.J.,ArmusL.,BendoG.,BotC.,BuckalewB.,etal.2007,ApJ,666,870 CaoC.,XiaX.Y.,WuH.,MaoS.,HaoC.N.,DengZ.G.,2008,MNRAS,390,336 CapellupoD.,HamannF.RodrguezHidalgoP.,ShieldsJ.,2010,inprep. CarilliC.L.,BertoldiF.,RupenM.P.,FanX.,StraussM.A.,MentenK.M.,KreysaE.,SchneiderD.P.,BertariniA.,YunM.S.,ZylkaR.,2001,ApJ,555,625 CoppinK.E.K.,SmailI.,AlexanderD.M.,WeissA.,WalterF.,SwinbankA.M.,GreveT.R.,KovacsA.,DeBreuckC.,DickinsonM.,IbarE.,IvisonR.J.,ReddyN.,SpinradH.,SternD.,BrandtW.N.,ChapmanS.C.e.a.,2009,MNRAS,395,1905 CoppinK.E.K.,SwinbankA.M.,NeriR.,CoxP.,AlexanderD.M.,SmailI.,PageM.J.,StevensJ.A.,KnudsenK.K.,IvisonR.J.,BeelenA.,BertoldiF.,OmontA.,2008,MNRAS,389,45 CoxP.,BeelenA.,BertoldiF.,OmontA.,CarilliC.L.,WalterF.,2005,inWilsonA.,ed.,ESASpecialPublicationVol.577ofESASpecialPublication,Gasanddustinhighredshiftquasars.pp115 CoxT.J.,JonssonP.,PrimackJ.R.,SomervilleR.S.,2006,MNRAS,373,1013 DaddiE.,DickinsonM.,MorrisonG.,CharyR.,CimattiA.,ElbazD.,FrayerD.,RenziniA.,PopeA.,AlexanderD.M.,BauerF.E.,GiavaliscoM.,HuynhM.,KurkJ.,MignoliM.,2007,ApJ,670,156 DaleD.A.,HelouG.,ContursiA.,SilbermannN.A.,KolhatkarS.,2001,ApJ,549,215 DaveR.,OppenheimerB.D.,2007,MNRAS,374,427 DhandaN.,BaldwinJ.A.,BentzM.C.,OsmerP.S.,2007,ApJ,658,804 DiMatteoT.,ColbergJ.,SpringelV.,HernquistL.,SijackiD.,2008,ApJ,676,33 DiMatteoT.,SpringelV.,HernquistL.,2005,Nature,433,604 DietrichM.,HamannF.,ShieldsJ.C.,ConstantinA.,HeidtJ.,JagerK.,VestergaardM.,WagnerS.J.,2003,ApJ,589,722 D'OdoricoV.,CristianiS.,RomanoD.,GranatoG.L.,DaneseL.,2004,MNRAS,351,976 186

PAGE 187

EllisonS.L.,ProchaskaJ.X.,HennawiJ.,LopezS.,UsherC.,WolfeA.M.,RussellD.M.,BennC.R.,2010,MNRAS,pp814+ ElvisM.,2000,ApJ,545,63 EspeyB.R.,1993,ApJ,411,L59 FalomoR.,TrevesA.,KotilainenJ.K.,ScarpaR.,UslenghiM.,2008,ApJ,673,694 FarrahD.,Bernard-SalasJ.,SpoonH.W.W.,SoiferB.T.,ArmusL.,BrandlB.,CharmandarisV.,DesaiV.,HigdonS.,DevostD.,HouckJ.,2207a,ApJ,667,149 FarrahD.,LacyM.,PriddeyR.,BorysC.,AfonsoJ.,2007b,ApJ,662,L59 FerlandG.J.,KoristaK.T.,VernerD.A.,FergusonJ.W.,KingdonJ.B.,VernerE.M.,1998,PASP,110,761 FinlatorK.,DaveR.,2008,MNRAS,385,2181 FloresH.,HammerF.,ElbazD.,CesarskyC.J.,LiangY.C.,FaddaD.,GruelN.,2004,A&A,415,885 FoltzC.B.,WeymannR.J.,PetersonB.M.,SunL.,MalkanM.A.,ChaffeeJr.F.H.,1986,ApJ,307,504 FoxA.J.,BergeronJ.,PetitjeanP.,2008,MNRAS,388,1557 FoxA.J.,PetitjeanP.,LedouxC.,SrianandR.,2007,A&A,465,171 FoxA.J.,ProchaskaJ.X.,LedouxC.,PetitjeanP.,WolfeA.M.,SrianandR.,2009,A&A,503,731 FriacaA.C.S.,TerlevichR.J.,1998,MNRAS,298,399 GabelJ.R.,AravN.,KimT.-S.,2006,ApJ,646,742 GangulyR.,BondN.A.,CharltonJ.C.,EracleousM.,BrandtW.N.,ChurchillC.W.,2001,ApJ,549,133 GangulyR.,BrothertonM.S.,2008,ApJ,672,102 GangulyR.,EracleousM.,CharltonJ.C.,ChurchillC.W.,1999,AJ,117,2594 GangulyR.,MasieroJ.,CharltonJ.C.,SembachK.R.,2003,ApJ,598,922 GangulyR.,SembachK.R.,TrippT.M.,SavageB.D.,WakkerB.P.,2006,ApJ,645,868 187

PAGE 188

GeorgakakisA.,ClementsD.L.,BendoG.,Rowan-RobinsonM.,NandraK.,BrothertonM.S.,2009,MNRAS,394,533 GibsonR.R.,BrandtW.N.,GallagherS.C.,HewettP.C.,SchneiderD.P.,2010,ApJ,713,220 GibsonR.R.,BrandtW.N.,SchneiderD.P.,GallagherS.C.,2008,ApJ,675,985 GranatoG.L.,DeZottiG.,SilvaL.,BressanA.,DaneseL.,2004,ApJ,600,580 GranatoG.L.,SilvaL.,MonacoP.,PanuzzoP.,SalucciP.,DeZottiG.,DaneseL.,2001,MNRAS,324,757 GrevesseN.,AsplundM.,SauvalA.J.,2007,SpaceScienceReviews,130,105 GrovesB.A.,HeckmanT.M.,KauffmannG.,2006,MNRAS,371,1559 HaardtF.,MadauP.,2001,inD.M.Neumann&J.T.V.Traned.,ClustersofGalaxiesandtheHighRedshiftUniverseObservedinX-raysModellingtheUV/X-raycosmicbackgroundwithCUBA HaasM.,KlaasU.,MullerS.A.H.,BertoldiF.,CamenzindM.,ChiniR.,KrauseO.,LemkeD.,MeisenheimerK.,RichardsP.J.,WilkesB.J.,2003,A&A,402,87 HaehneltM.G.,NatarajanP.,ReesM.J.,1998,MNRAS,300,817 HamannF.,BarlowT.A.,BeaverE.A.,BurbidgeE.M.,CohenR.D.,JunkkarinenV.,LyonsR.,1995,ApJ,443,606 HamannF.,BarlowT.A.,JunkkarinenV.,BurbidgeE.M.,1997,ApJ,478,80 HamannF.,BeaverE.A.,CohenR.D.,JunkkarinenV.,LyonsR.W.,BurbidgeE.M.,1997,ApJ,488,155 HamannF.,FerlandG.,1993,ApJ,418,11 HamannF.,FerlandG.,1999,ARA&A,37,487 HamannF.,KanekarN.,ProchaskaJ.X.,MurphyM.T.,EllisonS.,MalecA.L.,MilutinovicN.,UbachsW.,2011,MNRAS,410,1957 HamannF.,KoristaK.T.,FerlandG.J.,WarnerC.,BaldwinJ.,2002,ApJ,564,592 HamannF.,SabraB.,2004,inRichardsG.T.,HallP.B.,eds,AGNPhysicswiththeSloanDigitalSkySurveyVol.311ofAstronomicalSocietyofthePacicConferenceSeries,TheDiverseNatureofIntrinsicAbsorbersinAGNs.pp203+ 188

PAGE 189

HamannF.,WarnerC.,DietrichM.,FerlandG.,2007,inHoL.C.,WangJ.-W.,eds,TheCentralEngineofActiveGalacticNucleiVol.373ofAstronomicalSocietyofthePacicConferenceSeries,QuasarMetalAbundancesandHostGalaxyEvolution.pp653+ HamannF.W.,BarlowT.A.,ChaffeeF.C.,FoltzC.B.,WeymannR.J.,2001,ApJ,550,142 HaoC.N.,XiaX.Y.,MaoS.,WuH.,DengZ.G.,2005,ApJ,625,78 HaoC.-N.,XiaX.-Y.,Shu-DeMaoDengZ.-G.,WuH.,2008,ChineseJournalofAstronomyandAstrophysics,8,12 HaringN.,RixH.-W.,2004,ApJ,604,L89 HartquistT.W.,SnijdersM.A.J.,1982,Nature,299,783 HeckmanT.M.,LehnertM.D.,StricklandD.K.,ArmusL.,2000,ApJS,129,493 HewettP.C.,WildV.,2010,MNRAS,405,2302 HopkinsP.F.,HernquistL.,CoxT.J.,KeresD.,2008,ApJS,175,356 HouckJ.R.,SchneiderD.P.,DanielsonG.E.,NeugebauerG.,SoiferB.T.,BeichmanC.A.,LonsdaleC.J.,1985,ApJ,290,L5 HutsemekersD.,HallP.B.,BrinkmannJ.,2004,A&A,415,77 IsaakK.G.,PriddeyR.S.,McMahonR.G.,OmontA.,PerouxC.,SharpR.G.,WithingtonS.,2002,MNRAS,329,149 JiangL.,FanX.,VestergaardM.,KurkJ.D.,WalterF.,KellyB.C.,StraussM.A.,2007,AJ,134,1150 JuarezY.,MaiolinoR.,MujicaR.,PedaniM.,MarinoniS.,NagaoT.,MarconiA.,OlivaE.,2009,A&A,494,L25 KauffmannG.,HaehneltM.,2000,MNRAS,311,576 KennicuttJr.R.C.,1998,ARA&A,36,189 KoristaK.T.,VoitG.M.,MorrisS.L.,WeymannR.J.,1993,ApJS,88,357 KuraszkiewiczJ.K.,GreenP.J.,2002,ApJ,581,L77 LehnerN.,HowkJ.C.,ProchaskaJ.X.,WolfeA.M.,2008,MNRAS,390,2 189

PAGE 190

LonsdaleC.J.,FarrahD.,SmithH.E.,2006,UltraluminousInfraredGalaxies.SpringerVerlag,pp285+ LutzD.,SturmE.,TacconiL.J.,ValianteE.,SchweitzerM.,NetzerH.,MaiolinoR.,AndreaniP.,ShemmerO.,VeilleuxS.,2007,ApJ,661,L25 LutzD.,SturmE.,TacconiL.J.,ValianteE.,SchweitzerM.,NetzerH.,MaiolinoR.,AndreaniP.,ShemmerO.,VeilleuxS.,2008,ApJ,684,853 MarconiA.,HuntL.K.,2003,ApJ,589,L21 MatsuokaK.,NagaoT.,MaiolinoR.,MarconiA.,TaniguchiY.,2009,A&A,503,721 McMahonR.G.,PriddeyR.S.,OmontA.,SnellenI.,WithingtonS.,1999,MNRAS,309,L1 Menendez-DelmestreK.,BlainA.W.,SmailI.,AlexanderD.M.,ChapmanS.C.,ArmusL.,FrayerD.,IvisonR.J.,TeplitzH.,2009,ApJ,699,667 MerrittD.,FerrareseL.,2001,ApJ,547,140 MisawaT.,CharltonJ.C.,EracleousM.,GangulyR.,TytlerD.,KirkmanD.,SuzukiN.,LubinD.,2007,ApJS,171,1 MisawaT.,EracleousM.,CharltonJ.,GangulyR.,TytlerD.,KirkmanD.,O'MearaJ.,SuzukiN.,LubinD.,2003,inBulletinoftheAmericanAstronomicalSocietyVol.35ofBulletinoftheAmericanAstronomicalSociety,ACensusofIntrinsicNarrowAbsorptionLinesatz3.0.pp1329+ MisawaT.,EracleousM.,CharltonJ.C.,KashikawaN.,2007,ApJ,660,152 MoeM.,AravN.,BautistaM.A.,KoristaK.T.,2009,ApJ,706,525 NagaoT.,MaiolinoR.,MarconiA.,2006,A&A,447,863 NagaoT.,MarconiA.,MaiolinoR.,2006,A&A,447,157 NarayananD.,HamannF.,BarlowT.,BurbidgeE.M.,CohenR.D.,JunkkarinenV.,LyonsR.,2004,ApJ,601,715 NestorD.,HamannF.,RodriguezHidalgoP.,2008,MNRAS,386,2055 NetzerH.,LutzD.,SchweitzerM.,ContursiA.,SturmE.,TacconiL.J.,VeilleuxS.,KimD.-C.,RupkeD.,BakerA.J.,DasyraK.,MazzarellaJ.,LordS.,2007,ApJ,666,806 OmontA.,BeelenA.,BertoldiF.,CoxP.,CarilliC.L.,PriddeyR.S.,McMahonR.G.,IsaakK.G.,2003,A&A,398,857 190

PAGE 191

OsmerP.S.,PorterA.C.,GreenR.F.,1994,ApJ,436,678 PentericciL.,FanX.,RixH.-W.,StraussM.A.,NarayananV.K.,RichardsG.T.,SchneiderD.P.,KrolikJ.,HeckmanT.,BrinkmannJ.,LambD.Q.,SzokolyG.P.,2002,AJ,123,2151 Perez-GonzalezP.G.,RiekeG.H.,VillarV.,BarroG.,BlaylockM.,EgamiE.,GallegoJ.,GildePazA.,PascualS.,ZamoranoJ.,DonleyJ.L.,2008,ApJ,675,234 PerouxC.,PetitjeanP.,AracilB.,SrianandR.,2002,NewAstronomy,7,577 PerouxC.,Storrie-LombardiL.J.,McMahonR.G.,IrwinM.,HookI.M.,2001,AJ,121,1799 PetersonB.M.,2008,NewAstronomyReview,52,240 PetersonB.M.,FerrareseL.,GilbertK.M.,KaspiS.,MalkanM.A.,MaozD.,MerrittD.,NetzerH.,OnkenC.A.,PoggeR.W.,VestergaardM.,WandelA.,2004,ApJ,613,682 PetitjeanP.,RauchM.,CarswellR.F.,1994,A&A,291,29 PetitjeanP.,SrianandR.,1999,A&A,345,73 PopessoP.,BivianoA.,2006,A&A,460,L23 PriddeyR.S.,IsaakK.G.,McMahonR.G.,OmontA.,2003,MNRAS,339,1183 PriddeyR.S.,McMahonR.G.,2001,MNRAS,324,L17 ProchaskaJ.X.,HennawiJ.F.,2009,ApJ,690,1558 ProchaskaJ.X.,O'MearaJ.M.,Herbert-FortS.,BurlesS.,ProchterG.E.,BernsteinR.A.,2006,ApJ,648,L97 ProchterG.E.,ProchaskaJ.X.,O'MearaJ.M.,BurlesS.,BernsteinR.A.,2010,ApJ,708,1221 RamosAlmeidaC.,RodrguezEspinosaJ.M.,BarroG.,GallegoJ.,Perez-GonzalezP.G.,2009,AJ,137,179 RichardsG.T.,2001,ApJS,133,53 RichardsG.T.,YorkD.G.,YannyB.,KollgaardR.I.,Laurent-MuehleisenS.A.,vandenBerkD.E.,1999,ApJ,513,576 191

PAGE 192

RodrguezHidalgoP.,HamannF.,NestorD.B.,ShieldsJ.,2010a,inprep. RodrguezHidalgoP.,HamannF.,NestorD.B.,ShieldsJ.,2010b,inprep. RuizJ.R.,CrenshawD.M.,KraemerS.B.,BowerG.A.,GullT.R.,HutchingsJ.B.,KaiserM.E.,WeistropD.,2001,AJ,122,2961 RuizJ.R.,CrenshawD.M.,KraemerS.B.,BowerG.A.,GullT.R.,HutchingsJ.B.,KaiserM.E.,WeistropD.,2005,AJ,129,73 RupkeD.S.,VeilleuxS.,SandersD.B.,2005a,ApJ,632,751 RupkeD.S.,VeilleuxS.,SandersD.B.,2005b,ApJS,160,115 SandersD.B.,MirabelI.F.,1996,ARA&A,34,749 SandersD.B.,SoiferB.T.,EliasJ.H.,NeugebauerG.,MatthewsK.,1988,ApJ,328,L35 SargentW.L.W.,BoksenbergA.,SteidelC.C.,1988,ApJS,68,539 SchayeJ.,CarswellR.F.,KimT.-S.,2007,MNRAS,379,1169 SchweitzerM.,LutzD.,SturmE.,ContursiA.,TacconiL.J.,LehnertM.D.,DasyraK.M.,GenzelR.,VeilleuxS.,RupkeD.,KimD.-C.,BakerA.J.,NetzerH.,SternbergA.,MazzarellaJ.,LordS.,2006,ApJ,649,79 SerjeantS.,HatziminaoglouE.,2009,MNRAS,397,265 ShemmerO.,NetzerH.,MaiolinoR.,OlivaE.,CroomS.,CorbettE.,diFabrizioL.,2004,ApJ,614,547 ShenY.,StraussM.A.,OguriM.,HennawiJ.F.,FanX.,RichardsG.T.,HallP.B.,GunnJ.E.,SchneiderD.P.,SzalayA.S.,ThakarA.R.,VandenBerkD.E.,AndersonS.F.,BahcallN.A.,ConnollyA.J.,KnappG.R.,2007,AJ,133,2222 ShieldsG.A.,1976,ApJ,204,330 ShieldsG.A.,SalvianderS.,BonningE.W.,2006,NewAstronomyReview,50,809 SimcoeR.A.,2004,inBulletinoftheAmericanAstronomicalSocietyVol.36ofBulletinoftheAmericanAstronomicalSociety,MeasuringtheMetallicityoftheHighRedshiftIGM:TracesofEarlyStellarFeedback.pp704+ SimonL.E.,HamannF.,2010a,MNRAS,407,1826 SimonL.E.,HamannF.,2010b,MNRAS,409,269 192

PAGE 193

SpringelV.,DiMatteoT.,HernquistL.,2005b,MNRAS,361,776 SrianandR.,PetitjeanP.,2000,A&A,357,414 SteidelC.C.,1990,ApJS,72,1 Storrie-LombardiL.J.,McMahonR.G.,IrwinM.J.,HazardC.,1996,ApJ,468,121 SubbaRaoM.,FriemanJ.,BernardiM.,LovedayJ.,NicholB.,CastanderF.,MeiksinA.,2002,inStarckJ.-L.,MurtaghF.D.,eds,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeriesVol.4847ofSocietyofPhoto-OpticalInstrumentationEngineers(SPIE)ConferenceSeries,TheSloanDigitalSkySurvey1-DimensionalSpectroscopicPipeline.pp452 TremaineS.,GebhardtK.,BenderR.,BowerG.,DresslerA.,FaberS.M.,FilippenkoA.V.,GreenR.,GrillmairC.,HoL.C.,KormendyJ.,LauerT.R.,MagorrianJ.,PinkneyJ.,RichstoneD.,2002,ApJ,574,740 TrippT.M.,SembachK.R.,BowenD.V.,SavageB.D.,JenkinsE.B.,LehnerN.,RichterP.,2008,ApJS,177,39 TrumpJ.R.,HallP.B.,ReichardT.A.,RichardsG.T.,SchneiderD.P.,VandenBerkD.E.,KnappG.R.,AndersonS.F.,FanX.,BrinkmanJ.,KleinmanS.J.,NittaA.,2006,ApJS,165,1 TurnshekD.A.,1988,inBladesJ.C.,TurnshekD.A.,NormanC.A.,eds,ProceedingsoftheQSOAbsorptionLineMeetingBALQSOs-Observations,modelsandimplicationsfornarrowabsorptionlinesystems.pp17 TytlerD.,FanX.-M.,1992,ApJS,79,1 TzanavarisP.,CarswellR.F.,2003,MNRAS,340,937 VeilleuxS.,CecilG.,Bland-HawthornJ.,2005,ARA&A,43,769 VeilleuxS.,RupkeD.S.N.,KimD.,GenzelR.,SturmE.,LutzD.,ContursiA.,SchweitzerM.,TacconiL.J.,NetzerH.,SternbergA.,MihosJ.C.,BakerA.J.,MazzarellaJ.M.,LordS.,SandersD.B.,StocktonA.,JosephR.D.,BarnesJ.E.,2009,ApJS,182,628 VernerD.A.,BarthelP.D.,TytlerD.,1994,A&AS,108,287 Veron-CettyM.,VeronP.,2006,A&A,455,773 Veron-CettyM.P.,VeronP.,2000,VizieROnlineDataCatalog,7215,0 VestergaardM.,2003,ApJ,599,116 VestergaardM.,2004,ApJ,601,676 193

PAGE 194

WarnerC.,HamannF.,DietrichM.,2003,ApJ,596,72 WarnerC.,HamannF.,DietrichM.,2004,ApJ,608,136 WeymannR.J.,CarswellR.F.,SmithM.G.,1981,ARA&A,19,41 WeymannR.J.,MorrisS.L.,FoltzC.B.,HewettP.C.,1991,ApJ,373,23 WeymannR.J.,WilliamsR.E.,PetersonB.M.,TurnshekD.A.,1979,ApJ,234,33 WildV.,KauffmannG.,WhiteS.,YorkD.,LehnertM.,HeckmanT.,HallP.B.,KhareP.,LundgrenB.,SchneiderD.P.,vandenBerkD.,2008,MNRAS,388,227 WilsonE.B.,1927,JournaloftheAmericanStatisticalAssociation,22,209 WiseJ.H.,EracleousM.,CharltonJ.C.,GangulyR.,2004,ApJ,613,129 WyitheJ.S.B.,LoebA.,2003,ApJ,595,614 YoungP.,SargentW.L.W.,BoksenbergA.,1982,ApJS,48,455 194

PAGE 195

LeahSimonwasborninOlympia,WA,USA.SheattendedCapitalHighSchoolinOlympiaandwasenrolledintheinauguralyearoftheInternationalBaccalaureate(IB)program.SheattendedMacalesterCollegeinSt.Paul,MN,USAandgraduatedMagnacumLaudewithaBachelorofArtsinphysicswithanEmphasisinastronomy,andinGermanstudiesinMay2000.ShereceivedherPh.D.inastronomyinthespringof2011,andwentontoteachastronomyandphysicsatAustinPeayStateUniversityinClarksville,TN,USA. 195