PATHDEPENDENT OPTION PRICING:
EFFICIENT METHODS FOR LEVY MODELS
By
GUDBJORT GYLFADOTTIR
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
2010
2010 Gudbjort Gylfadottir
To my three favorite guys: My husband, Arni; my dad, Gylfi; and my brother, Thr6stur
ACKNOWLEDGMENTS
None of this would have been possible without my advisor and friend Farid. His
enthusiasm and ambition inspired me and I am thankful for all the knowledge he shared
with me during countless hours. Murali, of my committee, taught me a great deal of
math, yet I am most appreciative for getting to know him as a friend. I would like to
thank both Murali and Farid for all our inspirational conversations. Also, I would like
to thank my committee members, Dr. Pardalos and Dr. Nimalendran for their support.
Thanks go out to my family for their love, all the phone calls and for their lovely visits:
My dad Gylfi, my brother Thr6stur, my sisterinlaw Una, my nephews Thorri and Fr6di
and my parentsinlaw Erna and J6n. Also, thanks go out to my friends: Alex, Mireia,
Ehsan, Kelly, Vera, Altannar, Ashwin, Shantih, Emily, May, Soheil, Behnam, Renee, Clay,
Filip, Unnur, Helga Bj6rk, Helga Bj6rk, Svanhvit, Elin, Anna Gyda, Ragnheidur, Lara
and Jacki. Florida's nature with all its magical wonders made being here an amazing
experience. And lastly, my deepest gratitude goes to Arni, who is the most loving
husband I could wish for and has been here for me all of this time. I am really grateful
that we got to share this experience.
TABLE OF CONTENTS
page
ACKNOWLEDGMENTS ... ............. ................. 4
LIST OFTABLES ... ............... ..................... 7
LIST OF FIGURES .................. ...... ............ 8
ABSTRACT. ......................................... 9
CHAPTER
1 PATHDEPENDENT OPTIONS ..... .... ........ ....... ... 10
1.1 Introduction ................... ................ 10
1.2 Asian Options ... .......... ... .... ............ 12
1.3 Lookback Options ................... ........... 16
1.4 Overview ................... ................. 19
2 LEVY PROCESSES ................... ............ 20
2.1 Motivation for Levy Pricing Models ................ ...... 20
2.2 Using Levy Pricing Models .......................... 21
2.3 The Fast Hilbert Transform .......................... 25
3 QUANTILE APPROXIMATIONS FOR ASIAN OPTIONS .... 29
3.1 Introduction ..... ..... 29
3.2 Q uantile O options . .. 29
3.3 Distributions for Discrete Quantile Processes ..... 32
3.4 Quantile Approximations for Fixed Strike Asian Options ... 33
3.5 Pricing in the BlackScholes Model .. .. 36
3.6 Hedging Parameters .............................. 39
3.7 Num erical Evaluation .. .. .. .. .. .. .. .. 41
3.8 C conclusion . .. 41
4 PRICING OF LOOKBACK OPTIONS USING LEVY PROCESSES ....... .43
4.1 Lookback Options ..................... ...... .... 43
4.2 Duality and Extrema of Random Walks ... 44
4.3 FixedStrike Lookback Options ... 48
4.4 FloatingStrike Lookback Options ... 49
4.5 Extensions ................. ............. .. 51
4.6 Sum m ary .. ... .. .. .. .. .. ... .. 52
5 CO NC LUSIO N . . 53
R EFER EN C ES . . 56
BIOGRAPHICAL SKETCH .................... ........... 61
LIST OF TABLES
Table page
31 Fixed Strike Asian call option with parameters So = 100, r = 0.1, n = 50, and
T = 1. Benchmark values result from Monte Carlo simulations with 100,000
paths (standard error in parentheses). Prices using quantile approximations
(with 3 = 3) are given in the last column. ... 42
32 Fixed Strike Asian call option with parameters So = 100, r = 0.1, n = 50, and
T = 1. Approximation of option's delta with 3 = 3. Benchmark values result
from Monte Carlo simulations with 100,000 paths (standard error in parentheses).
. . 4 2
41 Loookback option prices at time to = 0 . ... .. 43
LIST OF FIGURES
Figure page
41 Sample path of a logprice process for a lookback option .. 44
Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
PATHDEPENDENT OPTION PRICING:
EFFICIENT METHODS FOR LEVY MODELS
By
Gudbjort Gylfadottir
August 2010
Chair: Farid AitSahlia
Cochair: Murali Rao
Major: Industrial and Systems Engineering
This dissertation is concerned with the pricing of pathdependent options where
the underlying asset is modeled as a continuoustime exponential Levy process and is
monitored at discrete dates. These options enable their users to tailor random payoff
outcomes to their particular risk profiles and are widely used by hedgers such as
large multinational corporations and speculators alike. The use of continuoustime
models since the breakthrough paper of Black and Scholes has been greatly facilitated
by advances in stochastic calculus and the mathematical elegance it provides. The
recent financial crisis started in 2008 has highlighted the importance of models that
incorporate the possibility of sudden, large jumps as well as the higher likelihood of
adverse outcomes as compared with the classical BlackScholes model. Increasingly,
exponential Levy processes have become preferred alternatives, thanks in particular to
the explicit LevyKhinchin representation of their characteristic functions. On the other
hand, the restriction of monitoring dates to a discrete set increases the mathematical
and computational complexity for the pricing of pathdependent options even in the
classical BlackScholes model. This dissertation develops new techniques based on
recent advances in the fast evaluation and inversion of Fourier and Hilbert transforms
as well as classical results in fluctuation theory, particularly those involving random walk
duality and ladder epochs.
CHAPTER 1
PATHDEPENDENT OPTIONS
1.1 Introduction
Options are contracts in which the buyer of the option gets the right, but not the
obligation, to buy or sell the underlying asset of the contract at some date in the
future, for a predetermined strike price. If the date is prespecified (labeled maturity
or expiration date) then the option is of European exercisestyle. Otherwise, it is of
American exercisestyle and can be exercised any time up to maturity. A call option
is a contract that gives the right to buy the underlying asset, and a put option is a
contract that gives the right to sell the underlying asset. The seller of the option collects
a fee upfront in order to give this right to the option holder. The determination of the
fair price of this fee for different kinds of options has been of interest for academics
and practitioners alike. It has become an area of major intellectual and commercial
development since 1973, when Black and Scholes published a breakthrough article that
allowed for the pricing of socalled standard (or vanilla) options (Black & Scholes,
1973), by only using readily available parameters, namely the prevailing riskless
rate in the market and the volatility (standard deviation of returns) of the underlying
asset upon which the option is written. Vanilla options depend only on the price of
the underlying security on the exercise date, whereas pathdependent options have
an exercise payoff that depends on the price path of the underlying security from the
beginning of the contract until the exercise date. An Asian option is an example of a
path dependent option. The payoff of a European exercisestyle Asian call option is
max(AT K, 0) = (AT K) where K is the strike price of the Asian option and AT
is the average of the security over the life of the contract. In contrast, the corresponding
payoff of a standard (vanilla) call option is max(ST K, 0) = (ST K)+, where ST is the
price of the underlying security at maturity.
The use of derivatives has become popular in recent years because investment
banks have been able to hold them without having to put them on their balance sheets.
Since options allow for leveraged transactions, this has allowed banks and investors
to make highly leveraged transactions without them ever showing up on their balance
sheets. (In simple terms, leverage refers to borrowing.) An argument made in support
of this state of affair is described in the J.P. Morgan guide to credit derivatives (Morgan,
1999). After the crash of financial markets in late 2008, many became worried that
unregulated use of derivatives was dangerous to financial markets. Pathdependent
options are also called exotic options and are mostly traded between private parties,
in socalled overthecountertrade (OTC), not in open markets. They have therefore
been hard for the legislator to oversee. The U.S. House of Representatives and the
U.S. Senate drafted a bill that was to limit OTC trading of exotic derivatives to respond
to concerns that their opacity can be a source of instability (Gibson, 2010). In addition,
the bill proposed that some uncovered (or 'naked') derivatives trading be banned.
However, the bill came across hard opposition from a group of investors, politicians and
academics and has had some alleviating amendments added to it, including the drop of
the proposal to ban naked derivatives trading and the drop of most limits to OTC trading
of options. Many suggested that even if the use of exotic options would be limited in the
U.S. this would only spur life into foreign OTC trading since it would not be likely that
people would stop using these investment vehicles since they have become so common.
At the end of the last decade, (Boyle & Boyle, 2001) noted that growth in option
trading had increased significantly for the past 30 years and that in the first quarter
of 2000 the estimated value underlying option contracts around the world was $102
trillion. In fact, this was only the estimated value underlying exchange traded contracts,
the estimated value underlying over the counter (OTC) option contracts was estimated
to be $88 trillion (BIS, 2000) so the total value underlying option contracts was $190
trillion in the beginning of 2000. For the last quarter of 2009, the estimated value
underlying exchange traded options around the world was $444 trillion (BIS, 2010),
or roughly fourfold the value from 10 years earlier, even when it was down from $690
trillion in the beginning of 2008. However, OTC seems to have become the preferred
method of trading options, with $605 trillion in underlying value for OTC contracts in
June 2009.(BIS, 2009) In comparison, the GDP of the USA was $10 trillion in 2000
and $14 trillion in 2009 (BEA, 2010), so at the beginning of the decade, the total value
underlying option contracts in the world was roughly 19 times the GDP, and at the end of
the decade it was 75 times the GDP.
1.2 Asian Options
The first paper written on Asian options, by Boyle and Emanuel in 1980, was
rejected by the Journal of Finance, since this kind of option was not traded at that
time(Georgios Foufas and Mats G. Larson, 2008). The paper is still a working paper
(Boyle & Emanuel, 1980). Boyle and Emanuel called this new option type, averaging
options, but they were dubbed Asian options by Bankers Trust because the firms
that bought the options from Bankers Trust, were Japanese. These firms' annual
reports were based on average exchange rates over the year, so average rate options
were appropriate for them to hedge their risk(Vorst, 1996). In practice today, Asian
options are mostly traded on oil products, agricultural commodities such as corn and
soybeans and on currencies. As far back as in 1998, Microsoft was already taking
advantage of the elimination of downside risk that Asian options offer, along with the
potential of an upside gain by hedging their foreign currency exposure by using Asian
put options(William Falloon, 1998). Microsoft's treasurer at that time, Mr. Heitz, said in
an interview with Risk magazine that Microsoft had 1012 counterparties from which
it could buy the put options. Today, Asian options are still most commonly traded over
the counter. Asian options are particularly useful in thinly traded markets or to protect
against large price variations. Investors who have an obligation due on a certain date
will want an insurance against the counterpart being able to move prices against them.
Since it will be much harder to move the average price than the price on a specific date,
Asian options have become common use in thinly traded stocks/currencies.
Nowadays, on the Chicago Mercantile Exchange (CME), average options are
constructed in the following way: The option has a swap (i.e.; a contract to exchange
an interest or currency rate for another) as the underlying security, and a fixed strike
price. The final price on the swap is used to calculate the payoff of the average option.
The final price on the swap is calculated by taking the arithmetic average of daily prices
from each day for which a price for the underlying security for the swap is determined
for the previous month. The daily price is found by taking the average of the high and
low quotations on each day for the underlying security for the swap. The payoff for an
average call option will be the final price on the swap minus the strike price, and the
payoff for an average put option will be the strike price minus the final price on the swap.
Even though this structure is intricate, the average price option payoff is simply the
difference between the arithmetic average price of the security itself over the previous
month minus a fixed strike price, so our pricing model for Asian options given in this
paper is applicable to the average price options traded on the CME. On the CME, all the
19 average options available in early 2010, had an oil product as the underlying security,
and they were all traded on CME's over the counter clearing service. The oil products
included e.g. gasoline, jet kerosene, fuel oil, propane, butane, heating oil, gasoil, ethane
and crude oil (CMEGroup, 2010). Through these examples, it is clear that Asian options
are widely used.
Asian options are less likely than vanilla options to be manipulated because it is
not possible to manipulate the price over such a long time as opposed to vanilla (or
regular) options. A recent example from the drop in the Dow Jones by almost 10% within
a few minutes (Mattich, 2010) shows that whether it is by mistake or manipulation, it
is possible for the market to be affected severely from other factors than efficiency in
just a matter of minutes. In the case of a vanilla call option, had the closing price of
the underlying asset been 10% lower than on the previous day, the option might have
expired worthless on that day, but would have expired in the money on the previous day.
In the case of an Asian option, this 10% lower price only affects the average by moving 1
out of n prices that are part of the average and therefore cannot affect the Asian option
price as much. As a result, Asian options are perceived to be cheaper and therefore
reduce the risk management costs of their bona fide users.
In the first published paper on Asian options, (Kemna & Vorst, 1990) used Monte
Carlo methods to determine the price of the arithmetic Asian option. By using the
geometric Asian option as a control variate, where the geometric average is given by
AT (i= 1
they were able to price the Asian option faster than with plain Monte Carlo. Monte Carlo
simulation works well but can be computationally expensive without the enhancement
of variance reduction techniques. One must account for the inherent discretization
bias resulting from the approximation of continuoustime processes through discrete
sampling as shown by (Broadie et al., 1999). As previously noted, the arithmetic Asian
option, where the arithmetic average is given by
I n
n
i= 1
is the one that is used in practice. However, it is not possible to find the exact analytical
price for the arithmetic Asian option. The geometric Asian option on the other hand
is lognormally distributed when the underlying price process is assumed to follow
a geometric Brownian motion. So with that assumption it is possible to derive the
exact analytical price for the geometric Asian option. (Turnbull & Wakeman, 1991)
proposed using an approximation of the density function of the arithmetic Asian option
by using an Edgeworth expansion. Among the first to derive analytic results,(Geman
& Yor, 1993) computed the Laplace transform of the price of a continuously sampled
Asian option computed as fT Stdt. Its numerical inversion remains problematic for
low volatility and/or short maturity as shown by (Fu et al., 1998). On the other hand,
in practice, sampling is performed over a discrete set of dates (daily, weekly, etc.)
In this case, no analytic results are available even in the BlackScholes framework,
where the main source of the problem stems from the lack of an explicit distribution
for the sum of correlated lognormal random variables. As a result, a significant
number of approximations that produce closedform expressions have appeared.
For example,(Thompson, 1998) provides tight analytical bounds and (Linetsky,
2004) derived a new integral formula for the price of a continuously sampled Asian
option, which is again slowly convergent for low volatility cases. In general, the price
of an Asian option can be found by solving a partial differential equation (PDE) in
twodimensional spaces (see (Ingersoll, 1987) ), which is prone to oscillatory solutions.
Ingersoll also observed that the twodimensional PDE for a floating strike Asian option
can be reduced to a onedimensional PDE. (Rogers & Shi, 1995) simpler formulated
a onedimensional PDE that can model both floating and fixed strike Asian options.
However this onedimensional PDE is difficult to solve numerically since the diffusion
term is very small for values of interest on the finite difference grid. Several articles
contain attempts to improve the numerical performance of this PDE. (Andreasen,
1998) applies the reduction of Rogers and Shi to discretely sampled Asian option.
Independent efforts in recent years have attempted to unify pricing techniques for
different types of options and relate these methods to pricing Asian option. Using again
Rogers and Shi's reduction, (Lipton, 1999) noticed similarities in pricing equations
for the passport, lookback, and Asian options (Shreve & Ve6ef, 2000) developed
techniques for pricing options on a traded account, which include all options that could
be replicated by selffinancing trading in the underlying asset. They include European,
passport, vacation, as well as Asian options. Numerical techniques for pricing contracts
of this type are described in (Vecer, 2001). (Hoogland & Neumann, 2001) developed
an alternative framework for pricing various types of options using scale invariance
methods and derived more general semianalytic solutions for prices of continuously
sampled Asian options. A major shortcoming of these approaches is their inability to
help determine hedging parameters, which are crucial to the option writer. (Fusai &
Meucci, 2008) derive pricing methods for both arithmetic and geometric Asian options
under discrete monitoring and for a general Levy process. They work on the Fourier
space with a recursive pricing formula like we do. However, for their recentering
technique they require finite moments, which we don't. In addition, it is unclear how their
method can lead to computing hedge parameters, while ours will be shown to produce
them with minimal additional computations.
1.3 Lookback Options
The payoff for lookback options depends on the extremum price observed over the
contract period. For floating lookback options, the holder of a call option gets the right
to buy at the lowest price over the contract period and sell at the price on the expiration
date, T and the holder of a put option gets the right to sell at the highest price over the
contract period and buy at the price on the expiration date. For fixed lookback options,
the holder of a call option gets the right to buy the security at a fixed strike price K, but
the selling price is the highest price over the contract period. The holder of a fixed put
lookback option gets the right to sell at the lowest price over the contract period and buy
at a fixed strike price K. There are also other variations, where for example the holder of
the option gets the right to buy or sell for a percentage of the extremum price observed.
Compared to other options, lookback options provide the biggest payoff potential
because the investor can choose the exercise date in retrospect, that is by looking
back over the life of the option. The reported uses for lookback options are mainly
speculative. It is obvious that lookback options will be more expensive than vanilla or
Asian options because the holder is getting the biggest potential payoff over the whole
life of the option.
Some analytical solutions have been proposed when the monitoring of the price
process is continuous and/or when the underlying price process follows geometric
Brownian motion, see e.g. (Heynen & Kat, 1995), (Conze & Viswanathan, 1991)
and (Goldman et al., 1979). In practice, monitoring occurs at discrete dates and
the monitoring dates t, ..., tN = T are predetermined. (Kou, 2008a) says that it
is practical that monitoring is discrete, and that if monitoring were continuous, there
would be arbitrage opportunities for barrier options, e.g. if a barrier is reached. Those
could represent themselves while markets are open in only some parts of the world.
Similarly, if the highest/lowest price for a lookback option during its contract period
so far is reached at a time when not all exchanges are open simultaneously, it would
be unfair to the traders in parts of the world where the markets are closed since they
are unable to trade upon that information immediately while others in open markets
would reap the profits. All traded lookback options have discrete monitoring, so even
if a higher/lower price is observed outside of the monitoring dates, it is not taken
into account for determining the extrema of prices over the contract period. As a
consequence of the discrete monitoring, pricing is mathematically and computationally
challenging. Substantial mispricing occurs when a discretely monitored contract is
priced approximately by a continuousmonitoring formula (cf. (Broadie et al., 1999),
(Heynen & Kat, 1995).) (Broadie et al., 1999) introduce correction terms so that the
continuousmonitoring formulas can be used as approximations for the discretely
monitored options. Their method also improves convergence by means of lattice
methods.(Babbs, 2000) uses a binomial model to price continuously monitored
floatingstrike lookback options. Using discrete monitoring and pricing for both fixed
strikes and floating strikes, (Cheuk & Vorst, 1997) also use a binomial model to price
lookback options, improving upon Babbs. (Boyle & Tian, 1999) used a trinomial method
to value the nonGaussian CEV process and found the price for lookback and barrier
options when the price follows the CEV process. Later they found that it was inaccurate
for lookback options and proposed a correction using Monte Carlo methods (Boyle
et al., 1999). (Davydov & Linetsky, 2001) also found pricing formulas for the lookback
option when the underlying follows the CEV process. Using Laplace transforms, their
method is faster than that of Boyle and Tian. (AitSahlia & Lai, 1998) use the duality
property of random walks to derive recursively the distribution of conditioned extrema of
the geometric Brownian motion price process and use numerical integration methods
to price lookback options. (Tse et al., 2001) use a tridiagonal procedure that takes
advantage of the properties of the geometric Brownian motion price process and
price the lookback options numerically and achieve more efficiency than previous
methods. (Andricopoulos et al., 2003) develop a quadrature method that can be used
to numerically price a wide range of options, including lookback options.(Broadie &
Yamamoto, 2003) develop a fast Gauss transform for nonpathdependent option
valuation under geometric Brownian motion and the Merton model.(Broadie &
Yamamoto, 2005) extend their previous results and derive a doubleexponential
Gaussian model that can be applied to lookback options and other pathdependent
options. (Petrella & Kou, 2004) find Laplace transforms of discrete lookback options
using a recursion formula. These involve Spitzer's formula. They invert the Laplace
transforms numerically to get the lookback option price and hedging parameters for
several Levy price models. For the geometric Brownian motion price process and
discrete monitoring, (Atkinson & Fusai, 2007) find the distribution of the extrema of
prices in closed form and are thus able to find the lookback price for fixed and floating
options. The latest work on lookback options is by (Feng & Linetsky, 2009). They do
a forward recursion on the prices of the lookback option, utilizing Hilbert transforms
and Fourier transforms. Their method is efficient and accurate but is restricted by some
conditions making it inapplicable to the important purejump processes. In contrast,
our method, to be described in detail later, is more generally applicable and has the
same computational complexity as it also uses their fast algorithm for the evaluation and
inversion of Hilbert and Fourier transforms.
1.4 Overview
Briefly, this dissertation is broadly organized as follows: Chapter 2 reviews Levy
processes and their use in finance as well as recent advances in Fourierbased
techniques. In particular, we review those making use of Hilbert transforms due to (Feng
& Linetsky, 2008) and (Feng & Linetsky, 2009), which enable us to make additional
contributions to efficiently and accurately price lookback options as described in detail
in Chapter 4. Chapter 3 deals with the pricing of Asian options and provides a detailed
description of our approximation approach based on yet another type of pathdependent
options, namely quantile options, that are not traded but which provide mathematical
expediency. The contributions of this thesis consist of new techniques to price discretely
monitored Asian and lookback options. Their distinguishing feature lies in working on the
characteristic function of the option price distribution rather than on the characteristic
function of the price itself, as is done in (Feng & Linetsky, 2008) and (Feng & Linetsky,
2009), the most competitive approach uptodate. Ours has the significant advantage
of enabling a direct computation of hedging parameters, the "Greeks", in contrast to the
unstable numerical derivatives and the computationally complex Malliavian calculus
required by all the other alternatives. In addition, the (Feng & Linetsky, 2009) pricing
method for lookback options is slower than ours and excludes an important class of Levy
models in finance, the popular variance gamma specification (Madan & Seneta, 1990).
CHAPTER 2
LEVY PROCESSES
2.1 Motivation for Levy Pricing Models
Up until recently, most pricing models have assumed that the underlying process for
any security follows a geometric Brownian motion a la Black Scholes, that is
dSt = Stpdt + StdW
where St is the price of the security at time t, p is the drift rate of the security, a is
the volatility rate and W is a Wiener process. By modeling the price in this way, the
assumption is that In(St) follows a Brownian motion, that is In(St) is continuous and has
independent and normally distributed increments. There are several issues regarding
modeling the underlying price process like this. First,(Merton, 1976) noted that far too
many random jumps occur in the price process in practice to be justified by constant
volatility or a continuous path of prices. He therefore suggested an addition of a jump
term to the price process, so that
dSt = St dt + StadW + dq
where q is a Poisson process with normally distributed jumps, where both are independent
of W. These random jumps lead to an empirical distribution that has fatter tails than the
normal distribution. Other issues include the empirical observation of (log) price returns
that are not symmetric, and with peaks higher than suggested by the normal distribution
(a leptokurtotic curve). These issues are addressed in e.g. (Kou, 2002) and in (Carr
et al., 2002). Kou and Carr et al. suggest models to remedy those issues, respectively,
the Kou model which has both a diffusion component and a jump component and the
CGMY model, which only has a jump component. All of the aforementioned models,
including the Black and Scholes model, are specific cases of a general class of
processes called Levy processes. Levy processes are fairly general and allow for a
wide range of models, including the Poisson process, Brownian motion, or the pure jump
process of Carr et al.
2.2 Using Levy Pricing Models
A process (Xt)t>o is called a Levy process if it has
a) Independent increments: That is for all to, t, ..... t,, the random variables
Xto, Xt Xto,...., X Xt,_ are independent
b) Stationary increments: That is Xt X, has the same distribution as Xt_s+ X,
and
c) Continuous paths a.e: That is limh,0 P(IXt+h Xt > c) = 0 for any e > 0.
Every Levy process can be fully described by three parameters. The first two
parameters, a and a2, describe the continuous component of the Levy process, and the
third parameter is a function v(x), called the Levy density, which identifies the discrete
component of the Levy process. Furthermore, a is the constant drift of the continuous
component and a2 is the constant variance of the continuous component.
Using only those three parameters, the LevyKhinchin formula:
InE[ei'x] = aitO a tO2 t (eix iOxIxl<1),)v(x)dx
where aeR, o > 0 and fRo min{l, x2}v(x)dx < oo, allows for an easy retrieval of the
characteristic function, (O) = E[eio0x], of many Levy processes, which makes them
feasible for practical use.
Levy processes can have either finite activity, which means that over any interval,
there will be a finite amount of jumps, or they can have infinite activity, which means that
any interval will have infinite amount of jumps (Wu et al., 2008). Pure jump processes
with infinite activity, are often not distinguishable from pure diffusion processes, and
when there is infinite activity it is not necessary to have a Brownian motion component
as well. When a is 0, we have a pure jump process and when v(x) is zero we have a
pure diffusion process. The arrival rate for jumps is determined by fR/ v(x)dx = A.
If A < oo, then the mean arrival rate of jumps is finite, and when A = oo the
number of jumps over any interval will be infinite. The simplest Levy process as
previously mentioned is the Black Scholes model, for which v(x) = 0 and therefore
the characteristic function is simply
E[eex] e:.' 
and it is easy to derive the probability distribution function (pdf), which is simply the
normal density with mean a o2t and variance o2 t. The Merton model has Levy
density:
A (Xt)2
e 262
which describes in mathematical terms that the process will have jumps that are
normally distributed with mean p and variance 62, and that the jumps come with
frequency A. For the Merton model the characteristic function can be simplified to
E[eiox]= e:"z , '+At{e '1}
see (Cont & Tankov, 2004), however the probability density can only be represented as
an infinite series, and is thus not available in closed form. This provides an additional
computational complexity in deriving an option value which has this price process as the
underlying asset. On one hand, this is a better model for the price process, because it
is more realistic that the price exhibit some jumps, just as it might when new information
arrives to the market that immediately changes market participants' opinion on what
the price should be, so that the price immediately adjusts. It is worth noting that a more
realistic model (than the Black Scholes model) would only be useful in practice, if it
enables us to price the derivatives of the price process. For the base case, a vanilla call
option, the price of the option at initiation using the Merton model would be:
CT(K) = etE[Soex K] = (Soex K)dF(XT)
J/n(K)
(XT, tk,)2
(SeX K)e (tke 2(2tk62) dX
= I(0K) k= k! 2F ( 2t+ k2)
This integral can not directly be evaluated, except in a few cases (Merton, 1976)
where the infinite sum within the integral can be simplified.(Carr & Madan, 1999) derive
a method in which it is not necessary to know the pdf of the price process to calculate
the option price. Rather than working with the direct integral above, they work with its
Fourier transform which they obtain in an explicit form, albeit not trivially because in
order for the integral to be nonsingular, they have to multiply the Fourier transform with
a specific remedial function. The explicit formula involves the characteristic function
of the price process, which as mentioned above, can always be retrieved from the
LevyKhinchin formula for all Levy processes. Once they have an explicit formula for
the Fourier transform, they take the inverse Fourier transform, then multiply again with
the inverse of the remedial function to retrieve the option price. When calculating the
inverse Fourier transform, they use the discrete Fourier transform (DFT) on the integral,
which means that they have to discretize the integral. To speed up the calculations they
then transform the integral to conform to the setup for the Fast Fourier Transform (FFT)
which is faster than calculating the DFT directly, O(Nlog(N)) vs O(N2) respectively. The
FFT will give prices of several different strikes for each calculation of the FFT. When
performing these calculations, there is a choice to be made for the FFT, if the grid for the
DFT is chosen to be wide, the strike prices will be relatively close to each other, and if
the grid for the DFT is chosen to be fine, the strike prices will be far apart. So the choice
of the grid has to be made according to what strike price range is needed. Also, the
choice of the remedial function has to be made carefully so that it ensures integrability.
(Lee, 2004) discusses these choices of parameters in more detail, and shows how the
FFT method of pricing utilizing the characteristic function of the price process can be
extended to other option classes.
(Kou, 2002) proposes a model that has jumps in addition to a diffusion process,
but the jumps have double exponential distribution instead of normal distribution, like
in the Merton model. Also, the distribution of jumps is different depending on whether
it is an upward movement or a downward movement, reflecting the trend that stock
price changes seem generally to be of different magnitude for good news and bad news
(Chen et al., 2003). For the Kou model the Levy density is:
pA+eXx if x > 0 and
(1 p)_ex if x < 0
and although the probability density is not available in closed form, the characteristic
function can be derived from the LevyKhinchin formula and the corresponding pricing
of vanilla options can then be done by using the methods in Carr et al. and Lee. The
Kou model achieves the high peak and the fat tails that are typical of stock returns and
eliminates the phenomenon that is called volatility smile. A volatility smile or skewness
is seen when options are priced using the Black and Scholes model (Hull, 2006). The
standard deviation, or volatility as it is called in the finance literature, is assumed to
be fixed in the Black and Scholes model. Yet, when vanilla option market prices are
observed for different strike prices, and the Black Scholes model is solved to return the
volatility, it is different for different strike prices, typically higher the further away from at
the money the strike price is. It can also be skewed, referring to that the implied volatility
is higher for strike prices under the at the money price, and lower for strike prices that
are out of the money. Because of the jumps that the Kou model incorporates, this smile
disappears and the implied volatility becomes constant.
There are two more prominent Levy models that we will mention. First is the
Variance Gamma model (Madan et al., 1998), that also makes implied volatility constant
for vanilla options, so that no volatility smile is observed. This is done in a very different
way from the Kou model; in the Variance Gamma model, there is no diffusion part, but
instead the number of jumps over any given interval is infinite, that is, it has infinite
activity. There are three parameters in the Variance Gamma model that need to be
calibrated. The CGMY model (Carr et al., 2002) is a generalization of both the Kou
model and the Variance Gamma, and it has five parameters that need to be specified.
The Levy density of the CGMY model is
C if x > 0 and
x
C _+x if x < 0
When Y is equal to 1, the CGMY model becomes the Kou model, and when Y equals
zero, it is the same as the Variance Gamma model. The CGMY model exhibits infinite
activity for Y between 0 and 2, and finite activity for Y less than 0. Y has to be less
than 2 in all cases, so that the characteristic function may exist. It is not obvious how
to specify the parameters of the CGMY model, so practitioners have found reasonable
parameters for it by calibration with real world data, which is typically done by seeing
which models fit historical data the best. For example, (Carr et al., 2002) specify
the 5 parameters (in addition to the four parameters in the Levy density, o needs to
be specified) that make the CGMY model fit the S&P 500 index the best, and also
display how drastically the distribution function changes by just twisting even one of the
parameters at a time, thereby showing how sensitive the model is to parameter changes.
It should also be noted that even though Levy pricing models solve a lot of the empirical
issues that using the BlackScholes model entails, model selection of a Levy process is
hard, mainly because there are so many parameters to estimate. The data needed to
estimate the exact parameters and models would have to be enormous to justify using
one good model rather than another.(Heyde & Kou, 2004)
2.3 The Fast Hilbert Transform
The Fouriertransform method of (Carr & Madan, 1999) can be utilized to price
vanilla options for any Levy process. (Feng & Linetsky, 2008) and (Feng & Linetsky,
2009) develop a Hilberttransform based method to price barrier and lookback options
when the underlying asset follows an exponential Levy process. Their recourse to
Hilbert transforms in the Fourier space stems from the presence of an indicator function
multiplying the function of interest; the price. This indicator function captures the
pathdependency of the option payoff such as the barrier crossing event prior to the
option expiration, for example. Succinctly, they use the following property relating Fourier
and Hilbert transforms for a given 4 defined on R:
1 i
F (1(0, o) o ) (0 = +2(2)(
where the Fourier transform for f c L'(R) is
(0) F(f)() = Rei'x f (x)dx.
and the Hilbert transform for f LP(R), 1 < p < oo, is
1 f(y)
H(f)(x) = P. V. ()dy.
S j_ xy
The fast Fourier transform algorithm was available long before Carr et al's
paper and enables us to find the discretization of the Fourier transform (DFT) with
a computational complexity of O (N log, N), where N is the number of points in the
discretization. This is an advantage over computing the DFT in the naive way, which
results in a complexity of O (N2). Feng and Linetsky proceed to make their own fast
Hilbert transform algorithm since none existed. They use Whittaker cardinal series (Sinc
expansion) to approximate R( with
Sf(= m f (mh) 1 cos[7( mh)/h]
(f )(0() Hh, Mf () = f (mh)
mM ( mh)/h
m M
where h is the discretization step size and M > 0 is the truncating integer for the
integral approximation. After this discretization step, they then use the FFT and Toeplitz
matrixvector multiplication to compute Hh,Mf( ). The overall computational complexity
to find the Hilbert transform is O (M log2 M), or the same complexity as the FFT for the
Fourier transform. Furthermore, the error in the approximation decays exponentially as h
is taken smaller. The price of a downandout barrier option at time zero is given by
V(S) = eTEs [(Sr K) (L,,)(SA) .. 1(L,,)(SNA)] ,
where St is the price of the underlying at time t, A is the monitoring interval, NA = T
and L is the barrier. All the indicator functions are within the expectation because if
the price of the underlying drops below L on any monitoring date, the option becomes
worthless. Feng and Linetsky do a backward recursion on the prices of the barrier option
to find the time zero value of the option where St = Kex, for any Levy process Xt, with
Xo = In(So/K). They define the timezero price of the option as
V(So) = erTO (In(So/K))
with vo obtained recursively through:
v"(x) = K(ex 1)+l(l,o)(x),
v1 (x) = l(i,) (x) PAv (x),j = N, N 1,..., 2,
v(x) = PA v(x),
where Paf(x) := E[f(Xt+A)IXt = x] and / := In(L/K). Then for j=N,N1,...,2, they
perform the recursion in Fourier space:
) K(1 eit) K(1 e(1i))
i( 1 i+
() = 2(_ ^( eil 2 (eill(TI)/j(0)) (a,
where j is the characteristic function of XA and for each recursion step they utilize
the fast Hilbert transform to obtain the Fourier transform on the left. Then, finally they
retrieve vo through a final Fourier transform
vO(x) M e0((()d
Z7T/
and accomplish an aggregate computational complexity of O (NM log, M) to find the
barrier option price. In their extension to lookback options, (Feng & Linetsky, 2009)
utilize the Fast Hilbert transform, by working forward in their recursive scheme, rather
than backward. In our approach, based on evaluating the option price distribution
instead, we still maintain the use of the fast Hilbert transform discretization algorithm of
(Feng & Linetsky, 2008) in a backward recursive fashion. As mentioned in Chapter 1,
the main advantage of our approach is its ability to generate hedge parameters much
more seamlessly than any other alternative.
CHAPTER 3
QUANTILE APPROXIMATIONS FOR ASIAN OPTIONS
3.1 Introduction
Chapter 3 develops a new approximation approach to price and hedge discretely
monitored Asian options when the underlying asset price follows a Levy process. The
option price is shown to be accurately approximated by a weighted sum of related
quantile options. The latter are options on quantile values of the underlying asset
process. Though they are currently not traded, our work in Chapter 3 shows how
they can be used for efficient computation of Asian option prices. Furthermore, our
method offers a way to directly approximate hedge parameters with practically negligible
additional computational effort.
Chapter 3 is organized as follows. The first section summarizes the concept of
a quantile option in both the original continuoustime setting and our discrete setup
for discrete monitoring of pathdependent options. The second section contains our
quantilebased approximation in a general Levy process framework. The last section
presents a numerical illustration on the particular case of the BlackScholes (Brownian)
model.
3.2 Quantile Options
First introduced by (Miura, 1992), these options are pathdependent and are
meant to generalize the concept of options on extrema (minimum or maximum). For
a (p, o)Brownian motion {Xt, t > 0} and a e (0, 1), define the aquantile process
{M(a, t), t > 0} by:
M(a, t) = inf x : l(x at .
Then the aquantile option payoff is defined as
(SoeM(T) K),
where So is initial price of underlying asset (stock, currency, ...) and K is the strike price.
The corresponding option price has been extensively studied by (Akahori, 1995) and
(Dassios, 1995) who in the process generalize the arcsine law for Brownian motion.
More precisely, they obtain
Pr {M(a, t) e dx} = g(x; a, t)dx,
(31)
where
g(x; a, t)= gz(x y; at)2(y;(1 a)t) dy,
D O
(32)
and gl and g2 are the probability density functions associated with supo
info
Pr( sup Xs dx
\O
Pr ( inf Xs c dx
\(
These functions are explicitly derived as
1 ) )12 exp ( 2 2 exp
gl(x;r)= 
{0,
S; 1) 2 exp (2T I + 2p
The quantile option price at time 0 is then
The quantile option price at time 0 is then
= gl(x; at)dx,
g2(x; (1 a)t)dx.
(2)f1 P x+) for x > 0,
2(T2 V/ \ 7 0 J
for x < 0,
for x > 0,
xp ( (1) for x < 0.
2(T2 ( (T0
E [eT (SoeM(aT) K)+ ,
which can be evaluated through numerical integration as the associated probability
density function g is determined through Eq. 31 through Eq. 36.
The key to the derivation of the above results begins with the equivalence between
the events {M(a, t) > x} and {fat 6(Xs < x)ds < at}, where 6(A) is the indicator of
(33)
(34)
(35)
(36)
(37)
whether event A has occurred, thus relating the quantile process to the occupation time.
As a consequence, one can then show the following identity (cf. (Dassios, 1995)):
M(a, t)i sup X(1)(s)+ inf X(2)(s), (38)
O
where X(')(t) and X(2)(t) are independent copies of the process X(t) = pt + ,B(t),
with B(t) denoting a standard Brownian motion. Furthermore, (Dassios, 1995) also
derives the joint distribution of M(a, t) and X(t):
M(ca, t) i ( supos< X1)(s) + info
X(t) X(1) (at) X(2)((1 a)t)
In fact, both Eq. 38 and Eq. 39 hold when the reference X is a Levy process as
(Dassios, 1996) shows. While the derivation of the results for the Brownian case
is based, respectively for Eq. 38 and Eq. 39, on the FeynmanKac formula and
the Girsanov theorem, the method of proof for the Levy process relies in fact on an
asymptotic discretization. The latter will turn out to be exactly what we need for the
Asian option pricing with discrete monitoring. Specifically, (Dassios, 1996) develops the
following:
Proposition. Let _1, _,..., be i.i.d. random variables. Consider the random walk
(n = C k, 0 < n, where g( = 0 w.p. 1, and let C(1) and b(2) be two independent copies
of C. Then
Mjn(() a MJaj ((1)) Mo.nj(((2)), (310)
where, for integers 0 < j < n and a discrete process X = (Xo, X1, X2, ...), MJn(X) is the
(j, n)th quantile of X defined as
Mj,n(X) =inf : 6 (X, < ) >j
i .
We should note that in fact the joint distribution
Mn( A/UC+) ^) l J(j(+) MOj ((2)) 1)
) (31(1)
has been known since (Wendel, 1960).
3.3 Distributions for Discrete Quantile Processes
Whereas the use of an order statistic to consistently estimate a single quantile
implies its convergence in probability, our approach here via Eq. 310 deals with
quantile processes. Thus we make use of corresponding collections of order statistics
with the associated mode of weak convergence. For this purpose, we shall show that we
can rely on either convergence of characteristic functions in the general Levy case, or on
random walk approximation in the case of Brownian motion. For the latter, we will show
through a numerical illustration how Bernoulli random walks results due to (Takacs,
1996) can be exploited. For the former, we exploit the LevyKhinchine characterization
theorem for the increment of a Levy process and make use of results due to (Pollaczek,
1975) on order statistics as we show next.
Let Xi, X2, ... be a collection of i.i.d random variables. We are interested in
determining the characteristic functions of the order statistics of the random walk
samples Xi, X + X2,..., X,. Thus, we define for n > 1 and 1 < v < n,
Xn, = max() X, X + X, ... Xi (312)
(i 1=1
where, for real numbers a,, a2,..., an, max(")(ai, a,,..., an) represents the Vth number
taken in descending order in the collection. With this convention, we have
max(l)(ai, a2,..., an) = max(al, a2,,..., an). In other words, Xn,,, 1 < v < n represent
(an) order statistics (process) for the random walks values (X1, X + X2,... 1X).
We now adopt the approach followed by (Pollaczek, 1975) in order to determine the
moment generating functions of the characteristic functions for Xn,,. More specifically,
with q a complex number and 0 the characteristic function of a Levy increment with cdf
F, namely,
(q) = Eexp(qX) = eqdF(s), (313)
let
oo n
G(q,x, y) = xn lyl'Eexp(qXn,),
n=l v=l 1
where x < 1, Ixyl < ~ (q)'n1. (Pollaczek, 1975) then shows
G(ix,y) =) exp xl(1 ) e it+dFn(t) (314)
( xy)(I xy ( i)) n
for Ix < 1, Ixy < 1, where Fn is the nfold convolution of F with itself, so that
on(q) = qtdFn(t)
and
1 / eql
exp(qa+) = 2 (
27r c (q 0
for a real, q such that Re(q) > 0, and where C is a parallel to the right of the imaginary
axis such that Re(q ) > 0 for e C.
For a Levy process, 0(q) is explicitly given and thus Fn can be obtained via Fast
Fourier Transform. The characteristic function of any X(n,) is then trivially retrievable
through derivatives with respect to x and y evaluated at x = 0 and y = 0.
3.4 Quantile Approximations for Fixed Strike Asian Options
Under the riskneutral measure, the time0 price is
erTE (AT K)+, (315)
which can be evaluated in closedform with geometric averaging in the standard
BlackScholes model. In practice, averaging is arithmetic over discretely sampled
prices of the underlying. In this case, there are no known closedform expressions
for the distribution of a sum of correlated lognormal random variables. As a result,
pricing approximations for fixed strike options (arithmetic average) have involved mostly
Monte Carlo simulation, moment matching approaches, density perturbation, PDE, and
convolution (FFT) techniques (cf. references in (Benhamou, 2002) and (Linetsky, 2004).)
In Chapter 3, we propose using quantile options, for which analytic expressions are
readily available, to approximate the price of a discretely sampled Asian option with a
fixed strike.
In this section we detail our quantile approximation. It is based on three elements:
(i) the payoff of an Asian option is a monotone transformation of the average price, (ii)
the arithmetic average of a random sample is the same as that of the associated order
statistics, and (iii) the latter are generally consistent estimators of quantiles. Ultimately,
our task is to evaluate expectations of the form E[Z], where Z = (SoeM(aT) K) and
M(a, T) is the aquantile of the underlying process over the interval [0, T]. Note that for
now we refer to a generic quantile. However, we will later define such processes using
notation referring directly to the discrete sampling of the underlying.
With discrete monitoring, AT in Eq. 315 is the arithmetic average taken over a set
of prices monitored at times tl, t,,..., t := T :
n
AT=n zSt
i1=
We now define discretetime quantile and occupationtime processes, respectively
M(a, T, n) and r(x, T, n):
M(a, T, n) = inf : 6 (Xt < x)a
1 6(Xt x)
T(x, T, n) =)
n
where X, is the titime value of the Levy process X such that X0o 0 and 6(A) = 1 if A
occurs and 6(A) = 0 otherwise. Here, St, = Soexi is the underlying asset price at time ti.
Theorem 3.1. For any positive integer 3, there exist A1, A2,... AX and cd, a, ..., c,3
(0, 1) such that 1, i = 1, and
AiE (SoeM(a'n) K)  E(AT K)+,
i=1
as /3 oo.
Proof. Let (S(1) < S(2) < 2 < S(n)) be the order statistic of the sample (St,, St, .. St).
Then for any positive integer 3, there trivially exist 0 < ca < a2 < ... < aos such that
, ai = 1. Furthermore, we have
n n
St, S(,)
i=1 i= 1
[nal] 11 [na+ll n
= S(i) S()
i 1 j 1 [nj+ 1 [na3]
Note that the sequence S(), S(2),..., S(n) is monotone, nondecreasing with
probability 1. As such, it may be considered as deterministic and thus the sum Y ( S,)
may be viewed as a Riemann sum (with probability 1) to the extent that one can write
b
5(,) (S(b) 5(a)) (b a)
i=a
almost surely. The quantities
[naj +
[na+ 1
have the same properties and thus one can also write
831 Fn"j++i /31
SSW Yo (S([nai) S([na,])) ([naj+, [na])
j=1 Fna]+l j 1
almost surely. As a result, we can now write the following approximation
n 131
St (2 [nal] [na, 1) S(nal) + (2 [na]1 [na \]) S(Faj1)
i=1 j 2
+ (2 [nai] n) S([na3) + (n [no ]) S(n) ([nal] 1) (1).
Note that by choosing cr such that [nal] = 1 (e.g. a 1/n) and a3, such that
[na8 ,] n (e.g. a 3 > 0.95) we see that the extreme statistics S(i) = min{St} and
S(n) = max{S, } can be omitted from the approximation. Recall that S([na]) is an
estimator of the oth quantile of the price process {S}. Thus, with the monotonicity of the
functions x ex and x (x K) we can write
AiE (Soe(aM(an) K) E(A K)
i= 1
as/3 oo. O
With this approximation and given the determination of the distributions of the
variables M(a,, T, n) as described in the previous section, we now have all the
ingredients to proceed with the pricing of a discretely monitored Asian option.
3.5 Pricing in the BlackScholes Model
In an earlier discussion we mentioned that the distributions of the discrete quantile
process can also be determined through the random walk approximation route. We
proceed to do so in this section, where we focus on the BlackScholes model, with its
underlying Brownian motion as a special Levy process. As shown above, the core of our
approximate pricing of an Asian option is now the determination of a set of expectations,
namely E (SoeM(am,"',Tn) K) for various values of aj, where m = r a2/2 is the
drift of the Brownian motion followed by the natural logarithm of the underlying asset
price, the volatility of which is a in a market where the riskless rate of return is r. With
this notation, M(oa, m, o, T, n) represents the ajh quantile of n equally spaced segments
of this Brownian motion on the interval [0, T]. Correspondingly, we also use the notation
r(x, m, a, T, n) for the occupation time as we soon shall exploit the spacetime scaling
property of Brownian motion, thus justifying the explicit reference to the drift m and
volatility a. Using a basic property of expectation for nonnegative random variables, we
have
E (SoeM(a'"'"Tn) K) = So P{M(a, m, a, T, n) > x}ex dx.
In(K/So)
Observe that
P{M(a, m, a, T, n) > x} = P{r(x, m, a, T, n) < a}.
Furthermore, by the spacetime scaling property of Brownian motion, we can write
P{r(x, m, a, T, n)
where T(x', m', 1, 1, n), for x' = and m' = "T, is defined over the process
Xt, = m'ti + (ti) with t = 1 and standard Brownian motion ((t). Assume that the
number of monitoring dates n of the underlying asset process satisfies n > m'2. This
is generally easy to fulfill given that m' = (r/o /2) /T, where 0 < r/o < 1, with a
typically in the range of 0.2 to 0.60, and T < 1. Consider now a random walk (,, r > 0)
with increments ( such that P{( = 1} = p and P{( = 1} = q, where
1 m' 1 m'
p = and q =2 2 
2 2Vn 2 Vn
for n > m'2. Forj c {0, 1, 2, ... n}, define An(j) = y: 16(( > j), which counts the number
of times the random walk is above in the time interval {0, 1..., n}. From (Takacs, 1996)
we have for x > 0 the approximation
P m 1, 1,n n j
I ( x m
where j = [na], k = [ ], k > 0, and 0 < a < 1. Furthermore, for n> T2
1 mVTa 1 m/T
p = 2 + and q =
2 2ca1n 2 2ca1n
Note that we can extend the definition of An(/) to I < 0 by observing that An(/) has the
same the distribution as n A~(/ 1), where A((k), k > 0, is defined in the same
manner as An(k) with the roles of p and q interchanged. Thus, for x < 0,
i n
where j = [na], k = [x k < 0 and 0 < a < 1. Furthermore, for n >
1 m a
p = and q
2 2 v/n
Our expectation formula then becomes
1 m/T
2 2u f
E (SoeM(a',m.a, Tn)
K) + so
In(K/So)
P{An(k) > n j}e dx,
{ i n P{A,(k) = i}
0
forj > k > 0,
forj < k,
P{A(k) > n j} =
0
nk+ P{An(k 1) i} for0 > k >jn,
fork
Forl < i < n k,
P{A,(k) = i} = P{Ai
 i} [P{p(k + 1) > n i} P{p(k) > n i}],
where
p(k)= inf{r : = k, r > 0},
P{A = i} = p qPp(1) < i},
P{p(1) < i} =1 (P{(1 = 1}
P{(1 < 1}
+ P{(_1 = 0} + (1 P/q)P{(i1 < 1})
2
= E P{(1 = a}
a 1i
where
P{An(k) > n j}
and
and
Pf ( ( = 1 P (il a)/2 q(i+la)/2
{1 [(i 1 + a)/2])
and
P{p(k + 1) > n i} P{p(k) > n i} = P{,i = k/ + (q/p)P{i = k +1}
and
(1 P) P ,(ni < k 1}
and
k2
P{n < k 1} = P{(n = a}
a in
There are clearly several choices available for the weights and percentile levels for the
approximation in Theorem 1. In fact, one may refer to a simple choice inspired from
Tukey's trimean as a starting point. Through some numerical evidence, we show that
this is amply adequate for practical purposes. In this case, we use the approximation
3
(A K) Ai (SoeeM(aT) K)
i= 1
where a = A1 = 0.25, a2 = A2 = 0.50, a3 = 1 A3 = 0.75.
3.6 Hedging Parameters
To obtain the Greeks, one needs the version below of the Leibniz integral formula
d r" 9 d
d J g(x, )dx = g(x, ) dx g(a(), d) a(0).
< a(0) a(0 ) <
Therefore, letting g(x) = P{M(a, m, o, T, n) > x}ex, we have
Delta = dSo g(x)dx
dSO I n(K/So)
g(x)dx+So dg (x) dx
In(K/So) dSO JIn(K/So)
Now, by the Leibnitz rule, we therefore have
Delta = g(x)dx + g (In(K/So))
In(K/So)
Another crucial hedging parameter, namely Gamma, can be computed as easily:
Gamma = Delta
dSo
d d
Sg(x)dx g (In(K/So))
dSO n(K/So) So dSO
1 1 d
g (In(K/So)) g (In(K/So))
So So dx
Recalling that g(x) = P{M(a, m, a, T, n) > x}ex and letting
fM(x) = dP{M(a, m, a, T, n) < x}, we have
d gx)= (P{M(a,m,, T,n) > x}+ d P{M(a, m,, T, n)>x}" ex
dx dx
and
1 1
Gamma = g (In(K/So)) [g (In(K/So))]
So So
Then we may use the following:
odp d "
Delta =dp = So P{M(a,m, o, T,n) > x}ex dx
dSo dSO JIn(K/So)
= P{M(a, m, a, T, n) > x}ex dx
In(K/So)
So ( ) P{M(a, m,u T, n) > x}exx /n(K/So)
= P{M(a, m, a, T, n) > x}ex dx + KP{M(a, m, a, T, n) > In(K/So)}
In(K/So) so
Gamma = d (d d[P{M(a, m, a, T, n) > In(K/So)}]
dSo dSo So dSo
Kd 1
= [P{M(a, m, 7, T, n) < x}]
So dx So
= M(In(K/So)
2
where fM(x) is the probability distribution of M(a, m, o, T, n) which can be approximated
as
fM(In(K/So) P{An(k) = j}
[ In( K/So) n~
where = n [na] and k = [ n(K /S)
Additional hedging parameters, such as rho, vega and theta, can be approximated
similarly.
3.7 Numerical Evaluation
In this section we compare the accuracy of our approximation against benchmark
values computed via significantly muchslower MonteCarlo simulation. Though our
main theorem requires that 3 p oc, our results as displayed in Tables 31 and 32
indicate that the approximation is in fact very well behaved even when 3 is as small as
3. From Table 31, observe that the accuracy of the approximation deteriorates only in a
small number of cases that have no practical interest. They are deep outofthe money
(thus unlikely to be exercised) options with negligible prices. In all the other cases,
the deviations from the benchmark values are in fact well within the bidask spread for
overthecounter option contracts. Similar observations can be made regarding the
results displayed in Table 32. In this case, we are able to obtain hedging parameters
that are as important for the option writer, typically a bank as counterpart to a hedge
fund, a manufacturer, or airline company. These hedging parameters have traditionally
been omitted from the option pricing literature or relegated to numerical derivation via
finitedifferences, which are numerically unstable, or Monte Carlo simulation, which is
very timeconsuming.
3.8 Conclusion
Chapter 3 develops an approximation technique for Asian option pricing and
hedging based on analytic expressions for quantile options when the underlying
asset follows an exponential Levy process. Our numerical results indicate that this
Table 31. Fixed Strike Asian call option with parameters So = 100, r = 0.1, n = 50, and
T = 1. Benchmark values result from Monte Carlo simulations with 100,000
paths (standard error in parentheses). Prices using quantile approximations
(with 3 = 3) are given in the last column.
Volatility K From Benhamou's Paper Benchmark Price (Expected
(Monte Carlo Price and Value and SE)
SE)
0.1 80 22.78 (0.00) 22.78 (0.00)
0.1 90 13.73 (0.00) 13.73 (0.00)
0.1 100 5.24 (0.00) 5.25 (0.00)
0.1 110 0.72 (0.00) 0.73 (0.00)
0.1 120 0.03 (0.00) 0.03 (0.00)
0.3 80 23.07 (0.01) 23.09 (0.01)
0.3 90 15.22 (0.01) 15.20 (0.02)
0.3 100 9.01 (0.01) 9.00 (0.02)
0.3 110 4.83 (0.01) 4.86 (0.02)
0.3 120 2.35 (0.01) 2.39 (0.01)
0.5 80 24.83 (0.03) 24.86 (0.03)
0.5 90 18.32 (0.03) 18.29 (0.04)
0.5 100 13.18 (0.03) 13.13 (0.04)
0.5 110 9.23 (0.03) 9.24 (0.04)
0.5 120 6.36 (0.03) 6.32 (0.03)
Option Price Using
Quantile Options
22.71
13.68
5.29
1.07
0.13
22.94
15.23
9.07
5.15
2.83
24.56
18.13
12.99
9.33
6.69
Table 32. Fixed Strike Asian call option with parameters So = 100, r = 0.1, n = 50, and
T = 1. Approximation of option's delta with 3 = 3. Benchmark values result
from Monte Carlo simulations with 100,000 paths (standard error in
parentheses).
Sigma K
0.1 80
0.1 90
0.1 100
0.1 110
0.1 120
0.3 80
0.3 90
0.3 100
0.3 110
0.3 120
0.5 80
0.5 90
0.5 100
0.5 110
0.5 120
Benchmark
0.95 (0.000)
0.95 (0.000)
0.78 (0.001)
0.22 (0.001)
0.01 (0.000)
0.91 (0.000)
0.79 (0.001)
0.61 (0.001)
0.41 (0.001)
0.24 (0.001)
0.82 (0.000)
0.71 (0.001)
0.58 (0.000)
0.46 (0.001)
0.35 (0.001)
Delta
0.95
0.94
0.72
0.20
0.03
0.86
0.72
0.55
0.38
0.23
0.75
0.61
0.52
0.43
0.28
approximation is very competitive with alternatives that are computationally more
expensive.
CHAPTER 4
PRICING OF LOOKBACK OPTIONS USING LEVY PROCESSES
4.1 Lookback Options
Chapter 4 presents an efficient method to price lookback options in the Levy
process context by extending the random walk duality results of (AitSahlia & Lai,
1998) originally developed in the BlackScholes setup and by exploiting the very fast
numerical scheme recently developed by (Feng & Linetsky, 2008) and (Feng & Linetsky,
2009) to compute and invert Hilbert transforms. Though (Feng & Linetsky, 2009) also
apply the Hilbert transform technology to price lookback options, their approach is
significantly more complex than ours and is about twice as long. In addition, they need
to determine the transition probability density of the Levy process and impose conditions
that exclude pure jumps processes, such as the popular Variance Gamma model (cf.
(Madan & Seneta, 1990), (Milne & Madan, 1991), and (Madan et al., 1998).) In contrast,
our approach is much simpler and makes use of only the characteristic function of
the logincrement, which is central to Levy processes. Furthermore, by focusing our
approach on determining the distribution function of the maximum of the Levy process
we can also determine hedging parameters with minimal additional computational effort.
For ease of comparison we adopt the notation in (AitSahlia & Lai, 1998) originally
developed for Brownian motion but now assume that the underlying price process {St}
follows an exponential Levy process (i.e.; that which is followed by log St.) Given N
discrete monitoring dates t1, t2,... tN, the maximum price MN = max {St,... S } and
minimum price AN = min {St, ..., 5} of the underlying asset lead to inception (time
to = 0) prices for both fixed strike and floating strike lookback options summarized in
Table 41.
Table 41. Loookback option prices at time to = 0
Fixed strike Floating strike
erTE(M K) erTE(M St,
e rTE (K AN) erTE (S AN)
The difficulty in pricing these options is essentially due to the fact that the
distributions of MN and AN are not known in analytical form even for the standard
geometric Brownian motion of the BlackScholes model.
4.2 Duality and Extrema of Random Walks
Under the assumption that the underlying price {St} follows an exponential Levy
process and given the discrete monitoring of the maximum and minimum at dates
tl, t2, ..., tN, we can write St = Soeu, where {Un : n > 1, U0 = 0} is a random walk with
i.i.d. increments X, such that their common characteristic function "v is explicitly known
thanks to the LevyKhinchine formula.
Define now = inf {n : Un < 0} to be the first passage of the logprice process
below zero, observed on a monitoring date, and T+ = inf {n : Un > 0} the corresponding
first passage of the logprice process above zero. r_ or 7+ are called 'ladder epochs'.
The duality property of this random walk will enable us, through _ and 7+, to derive
recursive expressions leading to the distributions of the extrema MN and AN.
Fixed strike lookback option example
0 1
0 2
02)
S 01
Monitoring dates
Figure 41. Sample path of a logprice process for a lookback option
Looking at Figure 41 we see that = 2 even though the logprice has dropped
below zero before time 1. Since we observe the prices only on the discrete monitoring
dates, this does not affect T_ as the price is back above zero at time 1. Also, + = 1 and
MN is equal to the price on the 10th monitoring date, even though the continuous price
process has a higher price since this higher price is not observed on a monitoring date.
From (AitSahlia & Lai, 1998) we know that the distribution of the maximum logprice can
be written as
P{MN E dx}
P {U1 dx} PX2 < 0, X2+ X3 < 0,..., X2 + ''XN <_ 0}
N
+ P {U, > U, i < v; U, c dx} x
v=2
P {X 1< 0, X+ + X,2 < 0,... X,+ + XN 0}]
for x > 0. Furthermore, the duality of random walks (Feller, 1971), lets us rewrite one of
the above probabilities in terms of one of the ladder epochs
P {U,> U,, i < v; U, E dx}
= P{U, U,_ > 0 ..., U, U1 > 0; U, e dx}
= P{U, > 0,..., U,_1 > 0; U, e dx}
= P{_ > v; U, E dx}
And another of the above probabilities can also be written in terms of one of the ladder
epochs
P {X,,+ < 0, X+,, + X.+2 < 0, ... X,+I + + XN < 0}
= P{Ul <0, U2 < 0, ..., UNV < 0}
= P { > N v}
Putting the simplified probabilities into the original equation yields, for x > 0,
P {MN E dx} = P {U1 dx} P {+ > N 1} (41)
N
+ P {T_ > v; U, e dx} P {+ > N v}
v=2
and for x = 0, it is clear that P {MN = 0} = P {r+ > N}. The advantage of writing
the above probabilities in terms of the ladder epochs 7_ and 7+ is that they can be
determined recursively.
Define now the Fourier transform or characteristic function of a distribution function
F of a real random variable X as (cf. (Chung, 1974)) as:
F(F)() = E (ei'x) = JR e'xdF(x).
Alternatively, the notation F will also be used. Furthermore, we define the Hilbert
transform for such F by the Cauchy principal value integral
R(F)() = p.v. d(x)
7T JR X,
which reduces to the earlier definition of a Hilbert transform when F is absolutely
continuous (with respect to the Lebesgue measure) with a density f e LP (R). We can
now state the following generalization to Proposition 1 in (AitSahlia & Lai, 1998).
Proposition 1. Let J be either (0, oo) or (oc, 0] and 7 = inf{n : Un i J}. For x e J,
let dFn(x) = P {7_ > n; Un e dx} and let V(x) be the cumulative distribution function
(cdf) of a logincrement X, and "V its characteristic function. Then the characteristic
functions Fi, 2, ..., FN can be determined recursively through the following relations:
Fi = 4 (42)
Fn = RFni",i i_ ) for 2
2 2
Proof. A straightforward generalization of the recursion on density functions in
(AitSahlia & Lai, 1998), pg. 230, Eq. 10, can be expressed as
Fi(x) = v(x)
Fn(x) = 1j(x) (F_1 Wf) (x), for 2 < n < N
We now recall the following property that relates Fourier and Hilbert transforms for a
function 0 on R (cf. (Stenger, 1993) and (Feng & Linetsky, 2008)):
F2(1(,) 2 =(H (H ,
which together with the independence of the Levy increments leads, for 2 < n < N, to:
.'(F, ) = (1j(Fn_I* ))
I /
2 2
Remarks. First, note that the preceding applies to the distribution of the minimum of
the random walk as well. Simply replace U, by U,. Then
AN = min{U : 0 < n < max{U : 0 < n < N}
and for x < 0,
P {AN E dx} = P {U e dx} P {_ > N 1}
N
+ P {T > v; U, e dx} P { > N v}
v=2
Second, note that the recursions in Eq. 42 and Eq. 43 fit perfectly the setup
of (Feng & Linetsky, 2008) to apply their highly efficient algorithm to compute all
the Fourier and Hilbert transforms and invert the last (FN)for pricing purposes at a
computational cost of 0 (NM log(M)), where M is the number of quadrature points
in the integrals and N is the number of discrete observation dates, with a resulting
error O (M'/(l ) exp(cM" (+ ")), c > 0, which decays exponentially. The ultimate
determination of FN (via its Fourier inversion) is at the root of the computation of the
option price as we show next.
4.3 FixedStrike Lookback Options
We are now ready to apply the main result of the last section to price a fixed strike
(a.k.a. hindsight) lookback option, which, upon exercise, grants the right to purchase
the underlying asset at the minimum price and resell it at the strike K, for a put, or to
buy it at the strike K and resell it at the maximum for a call. To enable comparisons with
earlier results involving only Brownian motion, we shall focus on the call, whose payoff is
(SoeM K) .
Proposition 2. The value of a hindsight (or fixedstrike) lookback call at inception is
N /o
erTE (SoeM K) =erTaN(So K) e rT (Soe K) dF,(x), (44)
vi~
where F,(x) are obtained through the application of the numerical scheme of (Feng &
Linetsky, 2008) to the recursions in Eq. 42 and Eq. 43 for x > 0, with J = (o, 0],
and ao, al, ..., aN defined by
ao = 1, an = G,(0) lim Gn(x) for n > 1,
XO0
where G, defined for x < 0 by replacing Fn by Gn in Eq. 42 and Eq. 43 and using
J =(o, 0].
Proof. By definition, we have
E (SoeMN K) = (Soex K) P{MN c dx},
the right hand side of which can be reexpressed as
(SoK) PMN =0}+ (SoexK) P{MNedx}.
o+
Recall that 7+ = inf{n : U, > 0} and dG,(x) = P{r+ > n; Un, dx} for x < 0 and n > 1.
Therefore
an= dG,(x)= P{r+ > n} P{U < 0,...,Un <0}. (45)
The latter, together with (41) and the decomposition above, yields
N
P{MN C dx} = aNP{U1 e dx} aN,dF,(x) for x > 0,
v=2
which in turn concludes the proof by virtue of P{MN = 0} = P{r+ > N}.
4.4 FloatingStrike Lookback Options
We show in this section that the pricing via the recursions in Eq. 42 and Eq. 43
extends to floatingstrike lookback options. These are contrasted to the fixedstrike
by making the strike set to the price of the underlying upon exercise. Thus with a
floatingstrike put, its holder can purchase the underlying at its trading price upon
exercise and sell it at the maximum it has achieved over the life of the contract, resulting
in a payoff (SoeMN SM) On the other hand, a floatingstrike call allows its holder
to purchase the asset at the minimum it achieved during its life and sell it at the price
it trades upon exercise. Again, to allow for comparison with the classical Brownian
process in the BlackScholes model we illustrate the application of the approach on the
put. Incidentally, floatingstrike options are sometimes labeled standard.
Proposition 3. The value at inception of floatingstrike lookback put is given by
N1
e E (SoeM SN) = e"TSo /3N i/,
v=0
where
Nv = \ (1 e) dGN_,(x) for 0 < v < N,
1, = jC exdF(x) for v> 1,
Io = 1, l, = exdF,(x) for _> 1,
JO/
with F, and G, obtained through the recursions in Eq. 42 and Eq. 43 as in Proposition
Proof. Since SN = SoeUN, we have (SoeMp
E (eMN eUN) =
SN) = So (eM eUN) from which
where each of the above cases corresponds to the maximum being achieved at,
respectively, to = 0, tl, or t,, 2 < v < N 1. Observe that P{U, = Uj}=0 for i / j. By
definition, + = inf{n : Un > 0} and = inf{n : Un < 0}, but since P{Un = 0} = 0 for all
n > 0, we have 7+ = inf{n : Un > 0} almost surely. Therefore
E (1 eU ) l{u,
E (1 eU) l{>o}
0 e)dG(x)
Furthermore, we have
E (eul eUN) l{u1>o.u>u2,... U>U}
N XN
E (eU' eUl 2X) l{Ii>oUi2uli<....UNUI
xP Ul e dx, X2 <0, X2... X X2 X3  XN <0 Xi e dx
i 2
j exP {U e dx}
x (1 e)P X2 <0, X2 X3 < 0,..., X2 X3 ... XN < 0, ei dx
id 2
SexW(x) /1 (I e)dG1(y) ,
/o 0Jo
E (1 eu ) {u1
+E (eu' euN) {u1>o.ui>u2,...,UI>UN}
N1
SE (eu eu ) l{ou+, ... u,>u},
v 2
where we make use of the independence between U, and (X2, ..., XN) in the next to last
step above.
Finally,
3E 2 E (eU eu") l{ouu, >u..., U
N1 oo
= I (ex ex y)P{U < U... U < U,,; U dx}
2 x=0 J y=oo
xP{X,+i < 0,..., X,+i + + XN < 0;X,+ + + XN E dy}
= exdFj(x) 0 (1 e)dGN _,(y) 0.
v2 0 LJ
4.5 Extensions
Further applications of the technique presented above can be made with straightforward
modifications to situations where the payoff depends on the minimum. In addition, all
these options can be valued at other times than their inceptions by conditioning on the
supreme up to the valuation time prior to expiration. Other variations on the pricing of
these lookback include the situation, for example, where the supreme are observed
over a predefined window within the life of the contract. In all these cases, the general
relations provided by (AitSahlia & Lai, 1998) also apply here, with obvious modifications
and will therefore not be repeated here.
Additionally, our approach is particularly wellsuited for the computation of hedging
parameters, which are especially crucial to the option writer's risk management practice.
For example, the fixedstrike lookback price at time 0 of Proposition 2, Eq. 44, can be
rewritten as
N oo
e E (Soe" K) = ea (S K)+ + er (Soe K) dF,,(x)
J e rrZ1 Jlog(K/So) (Soex K))d(x) if o < K
erTaN (So K) e rT N Jo (Soex K) dF,(x) if So > K
from which the delta and gamma parameters (first and second derivatives with respect
to So, respectively) can easily be computed.
4.6 Summary
In Chapter 4 we extended a recursive algorithm that was originally developed for
lookback option pricing when the underlying asset follows a geometric Brownian motion
and is monitored at discrete dates within the life of the contract. Our extension to the
geometric Levy processes exploited the duality property of random walks through the
use of ladder epochs resulting in recursion expressions for characteristic functions of the
extrema that are perfectly tailored for a powerful algorithm for Hilbert transform akin to
the Fast Fourier Transform. In addition, our approach yields hedging parameters with
little additional computational effort. The ability to develop such results is inherently
linked to the characterization of Levy processes as consisting of continuoustime
processes with independent and identically distributed increments. Thus their discrete
monitoring is in fact very helpful as it enables us to use readily available results from
fluctuation theory.
CHAPTER 5
CONCLUSION
Derivatives such as options are essential to the functioning of a modern economy.
They provide opportunities for hedgers seeking to reduce their financial risks as well
as speculators, whose hits and misses in the marketplace can provide additional
liquidity. The pricing and hedging of these financial instruments has become increasingly
challenging as ever more complex models have emerged to account for practical
features that cannot be ignored. Over the past few years, continuoustime asset pricing
models that rely on Levy processes have gained significant prominence. Their widening
adoption is due to their ability to capture salient features such as jumps and fat tails in
asset return distributions that cannot be ignored. For example, if one were to maintain
using the classical BlackScholesMerton model that gave mathematical finance its
impetus in the early 1970's and which relies on the normality assumption of asset
returns, one would seriously underestimate the actual probability of significant and
unusual drops. For example, (Kou, 2008b) shows that over the period Jan 2, 1980 to
December 31, 2005, the standardized (demeaned and scaled by standard deviation)
daily return of the critically watched S&P 500 index ranged from a minimum of 21.1550,
to a maximum of 7.9967, which both occurred during the market crash year of 1987. Yet
the probability of a standard normal distribution falling 21 units below its zero mean is
approximately 1 x 10107. For comparison, it is estimated that the universe is about 15
billion years (or 5 x 1017 seconds) old. There is therefore clearly a need for alternative
models, and those based on Levy processes have many favorable features, including
independence of increments and their infinitedivisibility, a variety of ways to capture
large deviations, the possibility to incorporate jumps, particularly the popular purejump
and jumpdiffusion models. Finally, from a mathematical and computational tractability
perspective, there is the remarkable LevyKhinchin representation which makes explicit
the characteristic function of the process in terms of three parameters. In addition,
recent developments in the inversion of Fourier (otherwise known as characteristic
functions in stochastic modeling) and related Hilbert transforms have spurred great
interest in Levy models.
The focus of this dissertation is on pathdependent options in the particular context
of Levy models. With payoffs depending on the entire path followed by the asset price
of the underlying up until exercise, these options are especially useful when their
holders wish to address a specific risk issue in a fashion that cannot be achieved by
standard (or vanilla) options alone. For example, they could be concerned only if the
underlying asset moves outside a certain range of values, say of interest or currency
exchange rates, in which case they would be interested in barrier options, which come
in the knockin and knockout flavors. The former entitle their holder the acquisition of a
standard option only if the underlying asset price crosses a barrier. They however have
to pay for the privilege upfront, with the possibility of never acquiring the option if the
underlying does not cross the barrier before expiration. On the other hand, a knockout
option yields the same payoff as a standard option as long as the underlying asset price
does not cross a barrier prior to expiration. Though barrier options were not explicitly
addressed in this thesis, they are in fact intimately linked with lookback options, where
the statistical distribution of the maximum (or minimum) is paramount as it is clear that
a barrier above the initial asset price can only be breached if the maximum is above
while, correspondingly, a barrier below would only be breached when the minimum is
below it. Lookback options (or options on extrema) have the most flexible payoffs, and
are thus the most expensive. They are used by either speculators or by very riskaverse
operators. The other type of pathdependent options addressed in the present work
concerns Asian (also known as average) options, which are widely used by multinational
corporations to smooth their costs as well as their revenues in the face of highly variable
raw material prices and large fluctuations in currency exchange rates.
Since the successful use of continuoustime modeling based on stochastic
calculus to derive the celebrated BlackScholes model, mathematical finance has
developed mainly in this realm and has accomplished much. However, the monitoring
of asset prices for pathdependent options is effected on a discrete set of dates. The
resulting mathematical problem is significantly more complex than the operational use
of stochastic calculus as it involves a mix of discrete and continuous methods. This
dissertation contains new results regarding the efficient pricing of lookback options
that exploit judiciously the random walk duality inherent to discretely observed Levy
processes together with recent algorithmic advances on Hilbert transforms that afford
computational complexity comparable to the Fast Fourier Transform. The other topic in
this dissertation concerns discretely monitored Asian options, the pricing and hedging of
which we address through the use of conceptual quantile options. Though they may not
be yet traded, history has proved that options initially started as concepts, such as Asian
and lookback options, do eventually enjoy acceptance in practice. In our case, they
enable a mathematical approach which when coupled with yet another set of results
from fluctuation theory based on characteristic functions leads to efficient pricing and
hedging computational advances.
REFERENCES
AitSahlia, F, & Lai, T. (1998). Random walk duality and the valuation of discrete
lookback options. Applied Mathematical Finance, 5(3), 227240.
Akahori, J. (1995). Some formulae for a new type of pathdependent option. Ann. Appl.
Prob., 5, 383388.
Andreasen, J. (1998). The pricing of discretely sampled asian and lookback options: a
change of numeraire approach. The Journal of Computational Finance, 2(1), 530.
Andricopoulos, A., Widdicks, M., Duck, P., & Newton, D. (2003). Universal option
valuation using quadrature methods. Journal of Financial Economics, 67(3), 447471.
Atkinson, C., & Fusai, G. (2007). Discrete extrema of Brownian motion and pricing of
exotic options. Journal of Computational Finance, 10(3), 1.
Babbs, S. (2000). Binomial valuation of lookback options. Journal of Economic
Dynamics and Control, 24(1112), 14991525.
BEA (2010). National Income and Product Accounts Table, table 1.1.5. Gross Domestic
Product, Bureau of Economic Analysis, U.S. Department of Commerce. http:
//www.bea.gov/national/nipaweb/SelectTable.asp?Popular=Y.
Benhamou, E. (2002). Fast fourier transform for discrete asian options. The Journal of
Computational Finance, 6, 4968.
BIS (2000). International banking and financial market developments. Bank for
international settlements,Basel, Switzerland, Quarterly review, June, 2328.
BIS (2009). International banking and financial market developments. Bank for
international settlements,Basel, Switzerland, Quarterly review, December, 2228.
BIS (2010). International banking and financial market developments. Bank for
international settlements,Basel, Switzerland, Quarterly review, March, 2324.
Black, F, & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal
of political economy, 81(3).
Boyle, P., & Emanuel, D. (1980). Options on the general mean. Tech. rep.
Boyle, P., & Tian, Y. (1999). Pricing lookback and barrier options under the CEV
process. Journal of Financial and Quantitative Analysis, 34(02), 241264.
Boyle, P., Tian, Y., & Imai, J. (1999). Lookback options under the CEV process: a
correction. Journal of Financial and Quantitative Analysis Unpublished Appendixes,
Notes, Comments, and Corrections http: //depts. washington. edu/jfqa/hold/
342BoyleCrxl. pdf.
Boyle, P. P., & Boyle, F (2001). Derivatives: The Tools That Changed Finance. Risk
Books.
Broadie, M., Glasserman, & P., S., Kou (1999). Connecting discrete and continuous
pathdependent options. Connecting discrete and continuous pathdependent options,
3, 5582.
Broadie, M., & Yamamoto, Y. (2003). Application of the fast Gauss transform to option
pricing. Management Science, (pp. 10711088).
Broadie, M., & Yamamoto, Y (2005). A doubleexponential fast Gauss transform
algorithm for pricing discrete pathdependent options. Operations Research, 53(5),
764779.
Carr, P., Geman, H., Madan, D., & Yor, M. (2002). The Fine Structure of Asset Returns:
An Empirical Investigation*. The Journal of Business, 75(2).
Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal
of Computational Finance, 2(4), 6173.
Chen, C., Chiang, T., & So, M. (2003). Asymmetrical reaction to US stockreturn news:
evidence from major stock markets based on a doublethreshold model. Journal of
Economics and Business, 55(56), 487502.
Cheuk, T, & Vorst, T. (1997). Currency lookback options and observation frequency: a
binomial approach. Journal of International Money and Finance, 16(2), 173187.
Chung, K. (1974). A Course in Probability. Assoc. Press. New York.
CMEGroup, T. (2010). Cme clearport products. http://www. cmegroup. com/trading/
otc/index.html.
Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. CRC Pr I LIc.
Conze, A., & Viswanathan (1991). Path dependent options: the case of lookback
options. Journal of Finance, 46(5), 18931907.
Dassios, A. (1995). The distribution of the quantiles of a brownian motion with drift and
the pricing of related pathdependent options. Ann. Appl. Prob., 5, 389398.
Dassios, A. (1996). Sample quantiles of stochastic processes with stationary and
independent increments. The Annals of Applied Probability, 6(3), 10411043.
Davydov, D., & Linetsky, V. (2001). Pricing and hedging pathdependent options under
the CEV process. Management Science, (pp. 949965).
Feller, W. (1971). Probability Theory and its Applications, vol. II.
Feng, L., & Linetsky, V. (2008). Pricing discretely monitored barrier options and
defaultable bonds in Levy process models: a fast Hilbert transform approach. Mathe
matical Finance, 18(3), 337384.
Feng, L., & Linetsky, V. (2009). Computing exponential moments of the discrete
maximum of a Levy process and lookback options. Finance and Stochastics, 13(4),
501529.
Fu, M., Madan, D., & Wang, T. (1998). Pricing continuous asian options: a comparison
of monte carlo and laplace transform inversion methods. The Journal of Computa
tional Finance, 2(2).
Fusai, G., & Meucci, A. (2008). Pricing discretely monitored Asian options under Levy
processes. Journal of Banking & Finance, 32(10), 20762088.
Geman, H., & Yor, M. (1993). Bessel processes, asian option, and perpetuities.
Mathematical Finance, 3, 349375.
Georgios Foufas and Mats G. Larson (2008). Valuing asian options using the finite
element method and duality techniques. Journal of computational and applied
mathematics, 222(1), 144158.
Gibson, W. (2010). OTC Derivatives Trading Under the Financial Reform Bill: Is It Tough
Enough?
Goldman, M., Sosin, H., & Gatto, M. (1979). Path Dependent Options:" Buy at the Low,
Sell at the High". Journal of finance, 34(5), 11111127.
Heyde, C., & Kou, S. (2004). On the controversy over tailweight of distributions.
Operations Research Letters, 32(5), 399408.
Heynen, R., & Kat, H. (1995). Lookback options with discrete and partial monitoring of
the underlying price. Applied Mathematical Finance, 2(4), 273284.
Hoogland, J., & Neumann, D. (2001). Local scale invariance and contingent claim
pricing. International Journal of Theoretical and Applied Finance, 4(1), 121.
Hull, J. (2006). Options, futures, and other derivatives. Pearson Education New Jersey.
Ingersoll, J. (1987). Theory of Financial Decision Making. Oxford: Oxford University
Press.
Kemna, A., & Vorst, A. (1990). A pricing method for options based on average asset
values. Journal of Banking & Finance, 14(1), 113129.
Kou, S. (2002). A JumpDiffusion Model for Option Pricing. Management Science, 48(8),
10861101.
Kou, S. (2008a). Discrete barrier and lookback options. Handbooks in Operations
Research and Management Science, (pp. 343373).
Kou, S. G. (2008b). L6vy Processes in Asset Pricing. In Encyclopedia of Quantitative
Risk Analysis and Assessment, edited by B. S. Everitt and E. L. Melnick. John Wiley
& Sons, New York.
Lee, R. (2004). Option pricing by transform methods: extensions, unification and error
control. Journal of Computational Finance, 7(3), 5186.
Linetsky, V. (2004). Spectral expansions for asian (average price) options. Operations
Research, 52, 856867.
Lipton, A. (1999). Similarities via selfsimilarities. Risk, 12, 101105.
Madan, D., Carr, P., & Chang, E. (1998). The variance gamma process and option
pricing. Review of Finance, 2(1), 79.
Madan, D., & Seneta, E. (1990). The variance gamma (VG) model for share market
returns. Journal of Business, 63(4), 511524.
Mattich, A. (2010). Beware Wall Street Sinkholes. The Wall Street Journal, June(3).
Merton, R. (1976). Option pricing when underlying stock returns are discontinuous* 1.
Journal of Financial Economics, 3(12), 125144.
Milne, F, & Madan, D. (1991). Option Pricing With VG Martingale Components.
Mathematical Finance, 1(4), 3956.
Miura, R. (1992). A note on a lookback option based on order statistics. Hitosubashi
Journal of Commerce and Management, 27, 1528.
Morgan, J. (1999). The JP Morgan guide to credit derivatives. Risk.
Petrella, G., & Kou, S. (2004). Numerical pricing of discrete barrier and lookback options
via Laplace transforms. Journal of Computational Finance, 8, 138.
Pollaczek, F. (1975). Order statistics of partial sums of mutually independent random
variables. Journal of Applied Probability, (pp. 390395).
Rogers, L., & Shi, Z. (1995). The value of an Asian option. Journal of Applied Probabil
ity, 32(4), 10771088.
Shreve, S., & Ve6ef, J. (2000). Options on a traded account: Vacation calls, vacation
puts and passport options. Finance and Stochastics, 4(3), 255274.
Stenger, F. (1993). Numerical methods based on Sinc and analytic functions. Springer
Verlag.
Takacs, L. (1996). On a generalization of the arcsine law. Ann. Appl. Prob., 6,
10351039.
Thompson, G. (1998). Fast narrow bounds on the value of Asian options. preprint,
Centre for Financial Research.
Tse, W., Li, L., & Ng, K. (2001). Pricing discrete barrier and hindsight options with the
tridiagonal probability algorithm. Management science, 47(3), 383393.
Turnbull, S., & Wakeman, L. (1991). A quick algorithm for pricing European average
options. Journal of Financial and Quantitative Analysis, 26(3), 377389.
Vecer, J. (2001). A new PDE approach for pricing arithmetic average Asian options.
Journal of Computational Finance, 4(4), 105113.
Vorst, T. (1996). Averaging options. The Handbook of Exotic Options: Instruments,
Analysis, and Applications by I. Nielken, Honeywood, II, Irwin, (pp. 175199).
Wendel, J. (1960). Order statistics of partial sums. The Annals of Mathematical
Statistics, (pp. 10341044).
William Falloon (1998). Windows on risk. Risk, June, 4245.
Wu, Editors:, Birge, J., & Linetsky, V. (2008). Modeling Financial Security Returns Using
Levy Processes. Handbooks in Operations Research and Management Science, (pp.
117174).
BIOGRAPHICAL SKETCH
Gudbjort Gylfadottir was born in Sweden, to Icelandic parents Gylfi Haraldsson and
Halla Arnlj6tsd6ttir. She grew up in Laugaras, Biskupstungur, a village in Iceland with a
population around 100 people; before moving to the capital, Reykjavik, where she went
to Verzlunarsk6linn high school. After that, she received her B.S. in mathematics from
the University of Iceland in 2006. In the fall of 2006, she moved to Gainesville, FL, to
pursue her doctoral studies in the department of Industrial and Systems Engineering at
The University of Florida, with concentration in quantitative finance. She received her
M.S. in finance from the Warrington College of Business at the University of Florida
in 2008 and her Ph.D. in industrial and systems engineering from the College of
Engineering in 2010.
PAGE 2
2
PAGE 3
3
PAGE 4
NoneofthiswouldhavebeenpossiblewithoutmyadvisorandfriendFarid.HisenthusiasmandambitioninspiredmeandIamthankfulforalltheknowledgehesharedwithmeduringcountlesshours.Murali,ofmycommittee,taughtmeagreatdealofmath,yetIammostappreciativeforgettingtoknowhimasafriend.IwouldliketothankbothMuraliandFaridforallourinspirationalconversations.Also,Iwouldliketothankmycommitteemembers,Dr.PardalosandDr.Nimalendranfortheirsupport.Thanksgoouttomyfamilyfortheirlove,allthephonecallsandfortheirlovelyvisits:MydadGyl,mybrotherThrostur,mysisterinlawUna,mynephewsThorriandFrodiandmyparentsinlawErnaandJon.Also,thanksgoouttomyfriends:Alex,Mireia,Ehsan,Kelly,Vera,Altannar,Ashwin,Shantih,Emily,May,Soheil,Behnam,Renee,Clay,Filip,Unnur,HelgaBjork,HelgaBjork,Svanhvt,Eln,AnnaGyda,Ragnheidur,LaraandJacki.Florida'snaturewithallitsmagicalwondersmadebeinghereanamazingexperience.Andlastly,mydeepestgratitudegoestoArni,whoisthemostlovinghusbandIcouldwishforandhasbeenhereformeallofthistime.Iamreallygratefulthatwegottosharethisexperience. 4
PAGE 5
page ACKNOWLEDGMENTS .................................. 4 LISTOFTABLES ...................................... 7 LISTOFFIGURES ..................................... 8 ABSTRACT ......................................... 9 CHAPTER 1PATHDEPENDENTOPTIONS ........................... 10 1.1Introduction ................................... 10 1.2AsianOptions .................................. 12 1.3LookbackOptions ............................... 16 1.4Overview .................................... 19 2LEVYPROCESSES ................................. 20 2.1MotivationforLevyPricingModels ...................... 20 2.2UsingLevyPricingModels .......................... 21 2.3TheFastHilbertTransform .......................... 25 3QUANTILEAPPROXIMATIONSFORASIANOPTIONS ............. 29 3.1Introduction ................................... 29 3.2QuantileOptions ................................ 29 3.3DistributionsforDiscreteQuantileProcesses ................ 32 3.4QuantileApproximationsforFixedStrikeAsianOptions .......... 33 3.5PricingintheBlackScholesModel ...................... 36 3.6HedgingParameters .............................. 39 3.7NumericalEvaluation ............................. 41 3.8Conclusion ................................... 41 4PRICINGOFLOOKBACKOPTIONSUSINGLEVYPROCESSES ....... 43 4.1LookbackOptions ............................... 43 4.2DualityandExtremaofRandomWalks ................... 44 4.3FixedStrikeLookbackOptions ........................ 48 4.4FloatingStrikeLookbackOptions ....................... 49 4.5Extensions ................................... 51 4.6Summary .................................... 52 5CONCLUSION .................................... 53 REFERENCES ....................................... 56 5
PAGE 6
................................ 61 6
PAGE 7
Table page 31FixedStrikeAsiancalloptionwithparametersS0=100,r=0.1,n=50,andT=1.BenchmarkvaluesresultfromMonteCarlosimulationswith100,000paths(standarderrorinparentheses).Pricesusingquantileapproximations(with=3)aregiveninthelastcolumn. ..................... 42 32FixedStrikeAsiancalloptionwithparametersS0=100,r=0.1,n=50,andT=1.Approximationofoption'sdeltawith=3.BenchmarkvaluesresultfromMonteCarlosimulationswith100,000paths(standarderrorinparentheses). ............................................. 42 41Loookbackoptionpricesattimet0=0 43 7
PAGE 8
Figure page 41Samplepathofalogpriceprocessforalookbackoption ............. 44 8
PAGE 9
ThisdissertationisconcernedwiththepricingofpathdependentoptionswheretheunderlyingassetismodeledasacontinuoustimeexponentialLevyprocessandismonitoredatdiscretedates.Theseoptionsenabletheiruserstotailorrandompayoffoutcomestotheirparticularriskprolesandarewidelyusedbyhedgerssuchaslargemultinationalcorporationsandspeculatorsalike.TheuseofcontinuoustimemodelssincethebreakthroughpaperofBlackandScholeshasbeengreatlyfacilitatedbyadvancesinstochasticcalculusandthemathematicaleleganceitprovides.Therecentnancialcrisisstartedin2008hashighlightedtheimportanceofmodelsthatincorporatethepossibilityofsudden,largejumpsaswellasthehigherlikelihoodofadverseoutcomesascomparedwiththeclassicalBlackScholesmodel.Increasingly,exponentialLevyprocesseshavebecomepreferredalternatives,thanksinparticulartotheexplicitLevyKhinchinrepresentationoftheircharacteristicfunctions.Ontheotherhand,therestrictionofmonitoringdatestoadiscretesetincreasesthemathematicalandcomputationalcomplexityforthepricingofpathdependentoptionsevenintheclassicalBlackScholesmodel.ThisdissertationdevelopsnewtechniquesbasedonrecentadvancesinthefastevaluationandinversionofFourierandHilberttransformsaswellasclassicalresultsinuctuationtheory,particularlythoseinvolvingrandomwalkdualityandladderepochs. 9
PAGE 10
Black&Scholes 1973 ),byonlyusingreadilyavailableparameters,namelytheprevailingrisklessrateinthemarketandthevolatility(standarddeviationofreturns)oftheunderlyingassetuponwhichtheoptioniswritten.Vanillaoptionsdependonlyonthepriceoftheunderlyingsecurityontheexercisedate,whereaspathdependentoptionshaveanexercisepayoffthatdependsonthepricepathoftheunderlyingsecurityfromthebeginningofthecontractuntiltheexercisedate.AnAsianoptionisanexampleofapathdependentoption.ThepayoffofaEuropeanexercisestyleAsiancalloptionismax(ATK,0)=(ATK)+,whereKisthestrikepriceoftheAsianoptionandATistheaverageofthesecurityoverthelifeofthecontract.Incontrast,thecorrespondingpayoffofastandard(vanilla)calloptionismax(STK,0)=(STK)+,whereSTisthepriceoftheunderlyingsecurityatmaturity. 10
PAGE 11
Morgan 1999 ).Afterthecrashofnancialmarketsinlate2008,manybecameworriedthatunregulateduseofderivativeswasdangeroustonancialmarkets.Pathdependentoptionsarealsocalledexoticoptionsandaremostlytradedbetweenprivateparties,insocalledoverthecountertrade(OTC),notinopenmarkets.Theyhavethereforebeenhardforthelegislatortooversee.TheU.S.HouseofRepresentativesandtheU.S.SenatedraftedabillthatwastolimitOTCtradingofexoticderivativestorespondtoconcernsthattheiropacitycanbeasourceofinstability( Gibson 2010 ).Inaddition,thebillproposedthatsomeuncovered(or`naked')derivativestradingbebanned.However,thebillcameacrosshardoppositionfromagroupofinvestors,politiciansandacademicsandhashadsomealleviatingamendmentsaddedtoit,includingthedropoftheproposaltobannakedderivativestradingandthedropofmostlimitstoOTCtradingofoptions.ManysuggestedthateveniftheuseofexoticoptionswouldbelimitedintheU.S.thiswouldonlyspurlifeintoforeignOTCtradingsinceitwouldnotbelikelythatpeoplewouldstopusingtheseinvestmentvehiclessincetheyhavebecomesocommon. Attheendofthelastdecade,( Boyle&Boyle 2001 )notedthatgrowthinoptiontradinghadincreasedsignicantlyforthepast30yearsandthatintherstquarterof2000theestimatedvalueunderlyingoptioncontractsaroundtheworldwas$102trillion.Infact,thiswasonlytheestimatedvalueunderlyingexchangetradedcontracts,theestimatedvalueunderlyingoverthecounter(OTC)optioncontractswasestimatedtobe$88trillion( BIS 2000 )sothetotalvalueunderlyingoptioncontractswas$190trillioninthebeginningof2000.Forthelastquarterof2009,theestimatedvalue 11
PAGE 12
BIS 2010 ),orroughlyfourfoldthevaluefrom10yearsearlier,evenwhenitwasdownfrom$690trillioninthebeginningof2008.However,OTCseemstohavebecomethepreferredmethodoftradingoptions,with$605trillioninunderlyingvalueforOTCcontractsinJune2009.( BIS 2009 )Incomparison,theGDPoftheUSAwas$10trillionin2000and$14trillionin2009( BEA 2010 ),soatthebeginningofthedecade,thetotalvalueunderlyingoptioncontractsintheworldwasroughly19timestheGDP,andattheendofthedecadeitwas75timestheGDP. GeorgiosFoufasandMatsG.Larson 2008 ).Thepaperisstillaworkingpaper( Boyle&Emanuel 1980 ).BoyleandEmanuelcalledthisnewoptiontype,averagingoptions,buttheyweredubbedAsianoptionsbyBankersTrustbecausethermsthatboughttheoptionsfromBankersTrust,wereJapanese.Theserms'annualreportswerebasedonaverageexchangeratesovertheyear,soaveragerateoptionswereappropriateforthemtohedgetheirrisk( Vorst 1996 ).Inpracticetoday,Asianoptionsaremostlytradedonoilproducts,agriculturalcommoditiessuchascornandsoybeansandoncurrencies.Asfarbackasin1998,MicrosoftwasalreadytakingadvantageoftheeliminationofdownsideriskthatAsianoptionsoffer,alongwiththepotentialofanupsidegainbyhedgingtheirforeigncurrencyexposurebyusingAsianputoptions( WilliamFalloon 1998 ).Microsoft'streasureratthattime,Mr.Heitz,saidinaninterviewwithRiskmagazinethatMicrosofthad1012counterpartiesfromwhichitcouldbuytheputoptions.Today,Asianoptionsarestillmostcommonlytradedoverthecounter.Asianoptionsareparticularlyusefulinthinlytradedmarketsortoprotectagainstlargepricevariations.Investorswhohaveanobligationdueonacertaindatewillwantaninsuranceagainstthecounterpartybeingabletomovepricesagainstthem. 12
PAGE 13
Nowadays,ontheChicagoMercantileExchange(CME),averageoptionsareconstructedinthefollowingway:Theoptionhasaswap(i.e.;acontracttoexchangeaninterestorcurrencyrateforanother)astheunderlyingsecurity,andaxedstrikeprice.Thenalpriceontheswapisusedtocalculatethepayoffoftheaverageoption.Thenalpriceontheswapiscalculatedbytakingthearithmeticaverageofdailypricesfromeachdayforwhichapricefortheunderlyingsecurityfortheswapisdeterminedforthepreviousmonth.Thedailypriceisfoundbytakingtheaverageofthehighandlowquotationsoneachdayfortheunderlyingsecurityfortheswap.Thepayoffforanaveragecalloptionwillbethenalpriceontheswapminusthestrikeprice,andthepayoffforanaverageputoptionwillbethestrikepriceminusthenalpriceontheswap.Eventhoughthisstructureisintricate,theaveragepriceoptionpayoffissimplythedifferencebetweenthearithmeticaveragepriceofthesecurityitselfoverthepreviousmonthminusaxedstrikeprice,soourpricingmodelforAsianoptionsgiveninthispaperisapplicabletotheaveragepriceoptionstradedontheCME.OntheCME,allthe19averageoptionsavailableinearly2010,hadanoilproductastheunderlyingsecurity,andtheywerealltradedonCME'soverthecounterclearingservice.Theoilproductsincludede.g.gasoline,jetkerosene,fueloil,propane,butane,heatingoil,gasoil,ethaneandcrudeoil( CMEGroup 2010 ).Throughtheseexamples,itisclearthatAsianoptionsarewidelyused. Asianoptionsarelesslikelythanvanillaoptionstobemanipulatedbecauseitisnotpossibletomanipulatethepriceoversuchalongtimeasopposedtovanilla(orregular)options.ArecentexamplefromthedropintheDowJonesbyalmost10%withinafewminutes( Mattich 2010 )showsthatwhetheritisbymistakeormanipulation,itispossibleforthemarkettobeaffectedseverelyfromotherfactorsthanefciencyinjustamatterofminutes.Inthecaseofavanillacalloption,hadtheclosingpriceof 13
PAGE 14
IntherstpublishedpaperonAsianoptions,( Kemna&Vorst 1990 )usedMonteCarlomethodstodeterminethepriceofthearithmeticAsianoption.ByusingthegeometricAsianoptionasacontrolvariate,wherethegeometricaverageisgivenbyAT=nYi=1Sti!1=n Broadieetal. 1999 ).Aspreviouslynoted,thearithmeticAsianoption,wherethearithmeticaverageisgivenbyAT=1 Turnbull&Wakeman 1991 )proposedusinganapproximationofthedensityfunctionofthearithmeticAsianoptionbyusinganEdgeworthexpansion.Amongthersttoderiveanalyticresults,( Geman&Yor 1993 )computedtheLaplacetransformofthepriceofacontinuouslysampled 14
PAGE 15
Fuetal. 1998 ).Ontheotherhand,inpractice,samplingisperformedoveradiscretesetofdates(daily,weekly,etc.)Inthiscase,noanalyticresultsareavailableevenintheBlackScholesframework,wherethemainsourceoftheproblemstemsfromthelackofanexplicitdistributionforthesumofcorrelatedlognormalrandomvariables.Asaresult,asignicantnumberofapproximationsthatproduceclosedformexpressionshaveappeared.Forexample,( Thompson 1998 )providestightanalyticalboundsand( Linetsky 2004 )derivedanewintegralformulaforthepriceofacontinuouslysampledAsianoption,whichisagainslowlyconvergentforlowvolatilitycases.Ingeneral,thepriceofanAsianoptioncanbefoundbysolvingapartialdifferentialequation(PDE)intwodimensionalspaces(see( Ingersoll 1987 )),whichispronetooscillatorysolutions.IngersollalsoobservedthatthetwodimensionalPDEforaoatingstrikeAsianoptioncanbereducedtoaonedimensionalPDE.( Rogers&Shi 1995 )simplerformulatedaonedimensionalPDEthatcanmodelbothoatingandxedstrikeAsianoptions.HoweverthisonedimensionalPDEisdifculttosolvenumericallysincethediffusiontermisverysmallforvaluesofinterestonthenitedifferencegrid.SeveralarticlescontainattemptstoimprovethenumericalperformanceofthisPDE.( Andreasen 1998 )appliesthereductionofRogersandShitodiscretelysampledAsianoption.IndependenteffortsinrecentyearshaveattemptedtounifypricingtechniquesfordifferenttypesofoptionsandrelatethesemethodstopricingAsianoption.UsingagainRogersandShi'sreduction,( Lipton 1999 )noticedsimilaritiesinpricingequationsforthepassport,lookback,andAsianoptions.( Shreve&Vecer 2000 )developedtechniquesforpricingoptionsonatradedaccount,whichincludealloptionsthatcouldbereplicatedbyselfnancingtradingintheunderlyingasset.TheyincludeEuropean,passport,vacation,aswellasAsianoptions.Numericaltechniquesforpricingcontractsofthistypearedescribedin( Vecer 2001 ).( Hoogland&Neumann 2001 )developed 15
PAGE 16
Fusai&Meucci 2008 )derivepricingmethodsforbotharithmeticandgeometricAsianoptionsunderdiscretemonitoringandforageneralLevyprocess.TheyworkontheFourierspacewitharecursivepricingformulalikewedo.However,fortheirrecenteringtechniquetheyrequirenitemoments,whichwedon't.Inaddition,itisunclearhowtheirmethodcanleadtocomputinghedgeparameters,whileourswillbeshowntoproducethemwithminimaladditionalcomputations. Comparedtootheroptions,lookbackoptionsprovidethebiggestpayoffpotentialbecausetheinvestorcanchoosetheexercisedateinretrospect,thatisbylookingbackoverthelifeoftheoption.Thereportedusesforlookbackoptionsaremainlyspeculative.ItisobviousthatlookbackoptionswillbemoreexpensivethanvanillaorAsianoptionsbecausetheholderisgettingthebiggestpotentialpayoffoverthewholelifeoftheoption. 16
PAGE 17
Heynen&Kat 1995 ),( Conze&Viswanathan 1991 )and( Goldmanetal. 1979 ).Inpractice,monitoringoccursatdiscretedatesandthemonitoringdatest1,...,tN=Tarepredetermined.( Kou 2008a )saysthatitispracticalthatmonitoringisdiscrete,andthatifmonitoringwerecontinuous,therewouldbearbitrageopportunitiesforbarrieroptions,e.g.ifabarrierisreached.Thosecouldrepresentthemselveswhilemarketsareopeninonlysomepartsoftheworld.Similarly,ifthehighest/lowestpriceforalookbackoptionduringitscontractperiodsofarisreachedatatimewhennotallexchangesareopensimultaneously,itwouldbeunfairtothetradersinpartsoftheworldwherethemarketsareclosedsincetheyareunabletotradeuponthatinformationimmediatelywhileothersinopenmarketswouldreaptheprots.Alltradedlookbackoptionshavediscretemonitoring,soevenifahigher/lowerpriceisobservedoutsideofthemonitoringdates,itisnottakenintoaccountfordeterminingtheextremaofpricesoverthecontractperiod.Asaconsequenceofthediscretemonitoring,pricingismathematicallyandcomputationallychallenging.Substantialmispricingoccurswhenadiscretelymonitoredcontractispricedapproximatelybyacontinuousmonitoringformula(cf.( Broadieetal. 1999 ),( Heynen&Kat 1995 ).)( Broadieetal. 1999 )introducecorrectiontermssothatthecontinuousmonitoringformulascanbeusedasapproximationsforthediscretelymonitoredoptions.Theirmethodalsoimprovesconvergencebymeansoflatticemethods.( Babbs 2000 )usesabinomialmodeltopricecontinuouslymonitoredoatingstrikelookbackoptions.Usingdiscretemonitoringandpricingforbothxedstrikesandoatingstrikes,( Cheuk&Vorst 1997 )alsouseabinomialmodeltopricelookbackoptions,improvinguponBabbs.( Boyle&Tian 1999 )usedatrinomialmethodtovaluethenonGaussianCEVprocessandfoundthepriceforlookbackandbarrieroptionswhenthepricefollowstheCEVprocess.Latertheyfoundthatitwasinaccurate 17
PAGE 18
Boyleetal. 1999 ).( Davydov&Linetsky 2001 )alsofoundpricingformulasforthelookbackoptionwhentheunderlyingfollowstheCEVprocess.UsingLaplacetransforms,theirmethodisfasterthanthatofBoyleandTian.( AitSahlia&Lai 1998 )usethedualitypropertyofrandomwalkstoderiverecursivelythedistributionofconditionedextremaofthegeometricBrownianmotionpriceprocessandusenumericalintegrationmethodstopricelookbackoptions.( Tseetal. 2001 )useatridiagonalprocedurethattakesadvantageofthepropertiesofthegeometricBrownianmotionpriceprocessandpricethelookbackoptionsnumericallyandachievemoreefciencythanpreviousmethods.( Andricopoulosetal. 2003 )developaquadraturemethodthatcanbeusedtonumericallypriceawiderangeofoptions,includinglookbackoptions.( Broadie&Yamamoto 2003 )developafastGausstransformfornonpathdependentoptionvaluationundergeometricBrownianmotionandtheMertonmodel.( Broadie&Yamamoto 2005 )extendtheirpreviousresultsandderiveadoubleexponentialGaussianmodelthatcanbeappliedtolookbackoptionsandotherpathdependentoptions.( Petrella&Kou 2004 )ndLaplacetransformsofdiscretelookbackoptionsusingarecursionformula.TheseinvolveSpitzer'sformula.TheyinverttheLaplacetransformsnumericallytogetthelookbackoptionpriceandhedgingparametersforseveralLevypricemodels.ForthegeometricBrownianmotionpriceprocessanddiscretemonitoring,( Atkinson&Fusai 2007 )ndthedistributionoftheextremaofpricesinclosedformandarethusabletondthelookbackpriceforxedandoatingoptions.Thelatestworkonlookbackoptionsisby( Feng&Linetsky 2009 ).Theydoaforwardrecursiononthepricesofthelookbackoption,utilizingHilberttransformsandFouriertransforms.Theirmethodisefcientandaccuratebutisrestrictedbysomeconditionsmakingitinapplicabletotheimportantpurejumpprocesses.Incontrast,ourmethod,tobedescribedindetaillater,ismoregenerallyapplicableandhasthe 18
PAGE 19
Feng&Linetsky 2008 )and( Feng&Linetsky 2009 ),whichenableustomakeadditionalcontributionstoefcientlyandaccuratelypricelookbackoptionsasdescribedindetailinChapter4.Chapter3dealswiththepricingofAsianoptionsandprovidesadetaileddescriptionofourapproximationapproachbasedonyetanothertypeofpathdependentoptions,namelyquantileoptions,thatarenottradedbutwhichprovidemathematicalexpediency.ThecontributionsofthisthesisconsistofnewtechniquestopricediscretelymonitoredAsianandlookbackoptions.Theirdistinguishingfeatureliesinworkingonthecharacteristicfunctionoftheoptionpricedistributionratherthanonthecharacteristicfunctionofthepriceitself,asisdonein( Feng&Linetsky 2008 )and( Feng&Linetsky 2009 ),themostcompetitiveapproachuptodate.Ourshasthesignicantadvantageofenablingadirectcomputationofhedgingparameters,theGreeks,incontrasttotheunstablenumericalderivativesandthecomputationallycomplexMalliaviancalculusrequiredbyalltheotheralternatives.Inaddition,the( Feng&Linetsky 2009 )pricingmethodforlookbackoptionsisslowerthanoursandexcludesanimportantclassofLevymodelsinnance,thepopularvariancegammaspecication( Madan&Seneta 1990 ). 19
PAGE 20
Merton 1976 )notedthatfartoomanyrandomjumpsoccurinthepriceprocessinpracticetobejustiedbyconstantvolatilityoracontinuouspathofprices.Hethereforesuggestedanadditionofajumptermtothepriceprocess,sothatdSt=Stdt+StdW+dq Kou 2002 )andin( Carretal. 2002 ).KouandCarretal.suggestmodelstoremedythoseissues,respectively,theKoumodelwhichhasbothadiffusioncomponentandajumpcomponentandtheCGMYmodel,whichonlyhasajumpcomponent.Alloftheaforementionedmodels,includingtheBlackandScholesmodel,arespeciccasesofageneralclassofprocessescalledLevyprocesses.Levyprocessesarefairlygeneralandallowfora 20
PAGE 21
a)Independentincrements:Thatisforallt0,t1,....,tn,therandomvariablesXt0,Xt1Xt0,....,XtnXtn1areindependent b)Stationaryincrements:ThatisXtXshasthesamedistributionasXts+uXuand c)Continuouspathsa.e:Thatislimh!0P(jXt+hXtj)=0forany>0. EveryLevyprocesscanbefullydescribedbythreeparameters.Thersttwoparameters,aand2,describethecontinuouscomponentoftheLevyprocess,andthethirdparameterisafunction(x),calledtheLevydensity,whichidentiesthediscretecomponentoftheLevyprocess.Furthermore,aistheconstantdriftofthecontinuouscomponentand2istheconstantvarianceofthecontinuouscomponent. Usingonlythosethreeparameters,theLevyKhinchinformula:lnE[eiXt]=ait1 22t2+tZ(eix1ixIjxj<1)(x)dx Levyprocessescanhaveeitherniteactivity,whichmeansthatoveranyinterval,therewillbeaniteamountofjumps,ortheycanhaveinniteactivity,whichmeansthatanyintervalwillhaveinniteamountofjumps( Wuetal. 2008 ).Purejumpprocesseswithinniteactivity,areoftennotdistinguishablefrompurediffusionprocesses,andwhenthereisinniteactivityitisnotnecessarytohaveaBrownianmotioncomponentaswell.Whenis0,wehaveapurejumpprocessandwhen(x)iszerowehaveapurediffusionprocess.ThearrivalrateforjumpsisdeterminedbyRR=0(x)dx=. 21
PAGE 22
22t2 22tandvariance2t.TheMertonmodelhasLevydensity: 22 22t2+tfe22 2+i1g, Cont&Tankov 2004 ),howevertheprobabilitydensitycanonlyberepresentedasaninniteseries,andisthusnotavailableinclosedform.Thisprovidesanadditionalcomputationalcomplexityinderivinganoptionvaluewhichhasthispriceprocessastheunderlyingasset.Ononehand,thisisabettermodelforthepriceprocess,becauseitismorerealisticthatthepriceexhibitsomejumps,justasitmightwhennewinformationarrivestothemarketthatimmediatelychangesmarketparticipants'opiniononwhatthepriceshouldbe,sothatthepriceimmediatelyadjusts.Itisworthnotingthatamorerealisticmodel(thantheBlackScholesmodel)wouldonlybeusefulinpractice,ifitenablesustopricethederivativesofthepriceprocess.Forthebasecase,avanillacalloption,thepriceoftheoptionatinitiationusingtheMertonmodelwouldbe: 22
PAGE 23
2(2t+k2) Merton 1976 )wheretheinnitesumwithintheintegralcanbesimplied.( Carr&Madan 1999 )deriveamethodinwhichitisnotnecessarytoknowthepdfofthepriceprocesstocalculatetheoptionprice.Ratherthanworkingwiththedirectintegralabove,theyworkwithitsFouriertransformwhichtheyobtaininanexplicitform,albeitnottriviallybecauseinorderfortheintegraltobenonsingular,theyhavetomultiplytheFouriertransformwithaspecicremedialfunction.Theexplicitformulainvolvesthecharacteristicfunctionofthepriceprocess,whichasmentionedabove,canalwaysberetrievedfromtheLevyKhinchinformulaforallLevyprocesses.OncetheyhaveanexplicitformulafortheFouriertransform,theytaketheinverseFouriertransform,thenmultiplyagainwiththeinverseoftheremedialfunctiontoretrievetheoptionprice.WhencalculatingtheinverseFouriertransform,theyusethediscreteFouriertransform(DFT)ontheintegral,whichmeansthattheyhavetodiscretizetheintegral.TospeedupthecalculationstheythentransformtheintegraltoconformtothesetupfortheFastFourierTransform(FFT)whichisfasterthancalculatingtheDFTdirectly,O(Nlog(N))vsO(N2)respectively.TheFFTwillgivepricesofseveraldifferentstrikesforeachcalculationoftheFFT.Whenperformingthesecalculations,thereisachoicetobemadefortheFFT,ifthegridfortheDFTischosentobewide,thestrikepriceswillberelativelyclosetoeachother,andifthegridfortheDFTischosentobene,thestrikepriceswillbefarapart.Sothechoiceofthegridhastobemadeaccordingtowhatstrikepricerangeisneeded.Also,thechoiceoftheremedialfunctionhastobemadecarefullysothatitensuresintegrability.( Lee 2004 )discussesthesechoicesofparametersinmoredetail,andshowshowthe 23
PAGE 24
( Kou 2002 )proposesamodelthathasjumpsinadditiontoadiffusionprocess,butthejumpshavedoubleexponentialdistributioninsteadofnormaldistribution,likeintheMertonmodel.Also,thedistributionofjumpsisdifferentdependingonwhetheritisanupwardmovementoradownwardmovement,reectingthetrendthatstockpricechangesseemgenerallytobeofdifferentmagnitudeforgoodnewsandbadnews( Chenetal. 2003 ).FortheKoumodeltheLevydensityis: Hull 2006 ).Thestandarddeviation,orvolatilityasitiscalledinthenanceliterature,isassumedtobexedintheBlackandScholesmodel.Yet,whenvanillaoptionmarketpricesareobservedfordifferentstrikeprices,andtheBlackScholesmodelissolvedtoreturnthevolatility,itisdifferentfordifferentstrikeprices,typicallyhigherthefurtherawayfromatthemoneythestrikepriceis.Itcanalsobeskewed,referringtothattheimpliedvolatilityishigherforstrikepricesundertheatthemoneyprice,andlowerforstrikepricesthatareoutofthemoney.BecauseofthejumpsthattheKoumodelincorporates,thissmiledisappearsandtheimpliedvolatilitybecomesconstant. TherearetwomoreprominentLevymodelsthatwewillmention.FirstistheVarianceGammamodel( Madanetal. 1998 ),thatalsomakesimpliedvolatilityconstantforvanillaoptions,sothatnovolatilitysmileisobserved.Thisisdoneinaverydifferent 24
PAGE 25
Carretal. 2002 )isageneralizationofboththeKoumodelandtheVarianceGamma,andithasveparametersthatneedtobespecied.TheLevydensityoftheCGMYmodelis Carretal. 2002 )specifythe5parameters(inadditiontothefourparametersintheLevydensity,needstobespecied)thatmaketheCGMYmodelttheS&P500indexthebest,andalsodisplayhowdrasticallythedistributionfunctionchangesbyjusttwistingevenoneoftheparametersatatime,therebyshowinghowsensitivethemodelistoparameterchanges.ItshouldalsobenotedthateventhoughLevypricingmodelssolvealotoftheempiricalissuesthatusingtheBlackScholesmodelentails,modelselectionofaLevyprocessishard,mainlybecausetherearesomanyparameterstoestimate.Thedataneededtoestimatetheexactparametersandmodelswouldhavetobeenormoustojustifyusingonegoodmodelratherthananother.( Heyde&Kou 2004 ) Carr&Madan 1999 )canbeutilizedtopricevanillaoptionsforanyLevyprocess.( Feng&Linetsky 2008 )and( Feng&Linetsky 25
PAGE 26
)developaHilberttransformbasedmethodtopricebarrierandlookbackoptionswhentheunderlyingassetfollowsanexponentialLevyprocess.TheirrecoursetoHilberttransformsintheFourierspacestemsfromthepresenceofanindicatorfunctionmultiplyingthefunctionofinterest;theprice.Thisindicatorfunctioncapturesthepathdependencyoftheoptionpayoffsuchasthebarriercrossingeventpriortotheoptionexpiration,forexample.Succinctly,theyusethefollowingpropertyrelatingFourierandHilberttransformsforagivendenedon<:F1(0,1)()=1 2^+i 26
PAGE 27
1+i^vj1()=1 2^()^vj()+i 2Z1eix^()^v1()d
PAGE 28
Feng&Linetsky 2009 )utilizetheFastHilberttransform,byworkingforwardintheirrecursivescheme,ratherthanbackward.Inourapproach,basedonevaluatingtheoptionpricedistributioninstead,westillmaintaintheuseofthefastHilberttransformdiscretizationalgorithmof( Feng&Linetsky 2008 )inabackwardrecursivefashion.AsmentionedinChapter1,themainadvantageofourapproachisitsabilitytogeneratehedgeparametersmuchmoreseamlesslythananyotheralternative. 28
PAGE 29
Chapter3isorganizedasfollows.Therstsectionsummarizestheconceptofaquantileoptioninboththeoriginalcontinuoustimesettingandourdiscretesetupfordiscretemonitoringofpathdependentoptions.ThesecondsectioncontainsourquantilebasedapproximationinageneralLevyprocessframework.ThelastsectionpresentsanumericalillustrationontheparticularcaseoftheBlackScholes(Brownian)model. Miura 1992 ),theseoptionsarepathdependentandaremeanttogeneralizetheconceptofoptionsonextrema(minimumormaximum).Fora(,)BrownianmotionfXt,t0gand2(0,1),denethequantileprocessfM(,t),t0gby:M(,t)=infx:Zt01(Xsx)ds>t.
PAGE 30
Akahori 1995 )and( Dassios 1995 )whointheprocessgeneralizethearcsinelawforBrownianmotion.Moreprecisely,theyobtain where andg1andg2aretheprobabilitydensityfunctionsassociatedwithsup0stXsandinf0s(1)tXs,respectively,i.e: Thesefunctionsareexplicitlyderivedas 2exp2x p 2exp2x p Thequantileoptionpriceattime0isthen whichcanbeevaluatedthroughnumericalintegrationastheassociatedprobabilitydensityfunctiongisdeterminedthroughEq. 3 throughEq. 3 ThekeytothederivationoftheaboveresultsbeginswiththeequivalencebetweentheeventsfM(,t)>xgandfRt0(Xsx)ds
PAGE 31
Dassios 1995 )): whereX(1)(t)andX(2)(t)areindependentcopiesoftheprocessX(t)=t+B(t),withB(t)denotingastandardBrownianmotion.Furthermore,( Dassios 1995 )alsoderivesthejointdistributionofM(,t)andX(t): Infact,bothEq. 3 andEq. 3 holdwhenthereferenceXisaLevyprocessas( Dassios 1996 )shows.WhilethederivationoftheresultsfortheBrowniancaseisbased,respectivelyforEq. 3 andEq. 3 ,ontheFeynmanKacformulaandtheGirsanovtheorem,themethodofprooffortheLevyprocessreliesinfactonanasymptoticdiscretization.ThelatterwillturnouttobeexactlywhatweneedfortheAsianoptionpricingwithdiscretemonitoring.Specically,( Dassios 1996 )developsthefollowing: where,forintegers0jnandadiscreteprocessX=(X0,X1,X2,...),Mj,n(X)isthe(j,n)thquantileofXdenedasMj,n(X)=inf(x:nXi=0(Xix)>j).
PAGE 32
hasbeenknownsince( Wendel 1960 ). 3 dealswithquantileprocesses.Thuswemakeuseofcorrespondingcollectionsoforderstatisticswiththeassociatedmodeofweakconvergence.Forthispurpose,weshallshowthatwecanrelyoneitherconvergenceofcharacteristicfunctionsinthegeneralLevycase,oronrandomwalkapproximationinthecaseofBrownianmotion.Forthelatter,wewillshowthroughanumericalillustrationhowBernoullirandomwalksresultsdueto( Takacs 1996 )canbeexploited.Fortheformer,weexploittheLevyKhinchinecharacterizationtheoremfortheincrementofaLevyprocessandmakeuseofresultsdueto( Pollaczek 1975 )onorderstatisticsasweshownext. LetX1,X2,...beacollectionofi.i.drandomvariables.WeareinterestedindeterminingthecharacteristicfunctionsoftheorderstatisticsoftherandomwalksamplesX1,X1+X2,...,Pn1Xi.Thus,wedeneforn1and1n, where,forrealnumbersa1,a2,...,an,max()(a1,a2,...,an)representsthethnumbertakenindescendingorderinthecollection.Withthisconvention,wehavemax(1)(a1,a2,...,an)max(a1,a2,...,an).Inotherwords,Xn,,1nrepresent(an)orderstatistics(process)fortherandomwalksvaluesX1,X1+X2,...,Pni=1Xi.Wenowadopttheapproachfollowedby( Pollaczek 1975 )inordertodeterminethemomentgeneratingfunctionsofthecharacteristicfunctionsforXn,.Morespecically, 32
PAGE 33
letG(q,x,y)=1Xn=1nX=1xn1y1Eexp(qXn,), Pollaczek 1975 )thenshowsG(i,x,y)=(i) (1xy)(1xy(i))exp"1Xn=1xn forjxj<1,jxyj<1,whereFnisthenfoldconvolutionofFwithitself,sothatn(q)=Z1eqtdFn(t) 2ZCeaq ForaLevyprocess,(q)isexplicitlygivenandthusFncanbeobtainedviaFastFourierTransform.ThecharacteristicfunctionofanyX(n,)isthentriviallyretrievablethroughderivativeswithrespecttoxandyevaluatedatx=0andy=0. whichcanbeevaluatedinclosedformwithgeometricaveraginginthestandardBlackScholesmodel.Inpractice,averagingisarithmeticoverdiscretelysampledpricesoftheunderlying.Inthiscase,therearenoknownclosedformexpressionsforthedistributionofasumofcorrelatedlognormalrandomvariables.Asaresult, 33
PAGE 34
Benhamou 2002 )and( Linetsky 2004 ).)InChapter3,weproposeusingquantileoptions,forwhichanalyticexpressionsarereadilyavailable,toapproximatethepriceofadiscretelysampledAsianoptionwithaxedstrike. Inthissectionwedetailourquantileapproximation.Itisbasedonthreeelements:(i)thepayoffofanAsianoptionisamonotonetransformationoftheaverageprice,(ii)thearithmeticaverageofarandomsampleisthesameasthatoftheassociatedorderstatistics,and(iii)thelatteraregenerallyconsistentestimatorsofquantiles.Ultimately,ourtaskistoevaluateexpectationsoftheformE[Z],whereZ=S0eM(,T)K+andM(,T)isthequantileoftheunderlyingprocessovertheinterval[0,T].Notethatfornowwerefertoagenericquantile.However,wewilllaterdenesuchprocessesusingnotationreferringdirectlytothediscretesamplingoftheunderlying. Withdiscretemonitoring,ATinEq. 3 isthearithmeticaveragetakenoverasetofpricesmonitoredattimest1,t2,...,tn:=T:AT=1 34
PAGE 35
Proof. 35
PAGE 36
WiththisapproximationandgiventhedeterminationofthedistributionsofthevariablesM(i,T,n)asdescribedintheprevioussection,wenowhavealltheingredientstoproceedwiththepricingofadiscretelymonitoredAsianoption. 36
PAGE 37
2+m0 2m0 Takacs 1996 )wehaveforx>0theapproximationP(x 2+mp 2mp
PAGE 38
2mp 2+mp andPfn(k)njg=8><>:1Pn+k+1i=j+1Pfn(k1)=igfor0>kjn,0fork
PAGE 39
q)p qkPfni
PAGE 40
dS0Delta=d dS0Z1ln(K=S0)g(x)dx1 dS0g(ln(K=S0))=1 dxg(ln(K=S0)) dxPfM(,m,,T,n)xg+d dxPfM(,m,,T,n)>xgex dS0=d dS0S0Z1ln(K=S0)PfM(,m,,T,n)>xgexdx=Z1ln(K=S0)PfM(,m,,T,n)>xgexdxS0S0 S20PfM(,m,,T,n)>xgexjx=ln(K=S0)=Z1ln(K=S0)PfM(,m,,T,n)>xgexdx+K S0PfM(,m,,T,n)>ln(K=S0)gGamma=d dS0dp dS0=K S0d dS0[PfM(,m,,T,n)>ln(K=S0)g]=K S0d dx[PfM(,m,,T,n)
PAGE 41
31 and 32 indicatethattheapproximationisinfactverywellbehavedevenwhenisassmallas3.FromTable 31 ,observethattheaccuracyoftheapproximationdeterioratesonlyinasmallnumberofcasesthathavenopracticalinterest.Theyaredeepoutofthemoney(thusunlikelytobeexercised)optionswithnegligibleprices.Inalltheothercases,thedeviationsfromthebenchmarkvaluesareinfactwellwithinthebidaskspreadforoverthecounteroptioncontracts.SimilarobservationscanbemaderegardingtheresultsdisplayedinTable 32 .Inthiscase,weareabletoobtainhedgingparametersthatareasimportantfortheoptionwriter,typicallyabankascounterpartytoahedgefund,amanufacturer,orairlinecompany.Thesehedgingparametershavetraditionallybeenomittedfromtheoptionpricingliteratureorrelegatedtonumericalderivationvianitedifferences,whicharenumericallyunstable,orMonteCarlosimulation,whichisverytimeconsuming. 41
PAGE 42
FixedStrikeAsiancalloptionwithparametersS0=100,r=0.1,n=50,andT=1.BenchmarkvaluesresultfromMonteCarlosimulationswith100,000paths(standarderrorinparentheses).Pricesusingquantileapproximations(with=3)aregiveninthelastcolumn. FromBenhamou'sPaper(MonteCarloPriceandSE)BenchmarkPrice(ExpectedValueandSE)OptionPriceUsingQuantileOptions 0.18022.78(0.00)22.78(0.00)22.710.19013.73(0.00)13.73(0.00)13.680.11005.24(0.00)5.25(0.00)5.290.11100.72(0.00)0.73(0.00)1.070.11200.03(0.00)0.03(0.00)0.130.38023.07(0.01)23.09(0.01)22.940.39015.22(0.01)15.20(0.02)15.230.31009.01(0.01)9.00(0.02)9.070.31104.83(0.01)4.86(0.02)5.150.31202.35(0.01)2.39(0.01)2.830.58024.83(0.03)24.86(0.03)24.560.59018.32(0.03)18.29(0.04)18.130.510013.18(0.03)13.13(0.04)12.990.51109.23(0.03)9.24(0.04)9.330.51206.36(0.03)6.32(0.03)6.69 FixedStrikeAsiancalloptionwithparametersS0=100,r=0.1,n=50,andT=1.Approximationofoption'sdeltawith=3.BenchmarkvaluesresultfromMonteCarlosimulationswith100,000paths(standarderrorinparentheses). 0.1800.95(0.000)0.950.1900.95(0.000)0.940.11000.78(0.001)0.720.11100.22(0.001)0.200.11200.01(0.000)0.030.3800.91(0.000)0.860.3900.79(0.001)0.720.31000.61(0.001)0.550.31100.41(0.001)0.380.31200.24(0.001)0.230.5800.82(0.000)0.750.5900.71(0.001)0.610.51000.58(0.000)0.520.51100.46(0.001)0.430.51200.35(0.001)0.28 42
PAGE 43
AitSahlia&Lai 1998 )originallydevelopedintheBlackScholessetupandbyexploitingtheveryfastnumericalschemerecentlydevelopedby( Feng&Linetsky 2008 )and( Feng&Linetsky 2009 )tocomputeandinvertHilberttransforms.Though( Feng&Linetsky 2009 )alsoapplytheHilberttransformtechnologytopricelookbackoptions,theirapproachissignicantlymorecomplexthanoursandisabouttwiceaslong.Inaddition,theyneedtodeterminethetransitionprobabilitydensityoftheLevyprocessandimposeconditionsthatexcludepurejumpsprocesses,suchasthepopularVarianceGammamodel(cf.( Madan&Seneta 1990 ),( Milne&Madan 1991 ),and( Madanetal. 1998 ).)Incontrast,ourapproachismuchsimplerandmakesuseofonlythecharacteristicfunctionofthelogincrement,whichiscentraltoLevyprocesses.Furthermore,byfocusingourapproachondeterminingthedistributionfunctionofthemaximumoftheLevyprocesswecanalsodeterminehedgingparameterswithminimaladditionalcomputationaleffort. Foreaseofcomparisonweadoptthenotationin( AitSahlia&Lai 1998 )originallydevelopedforBrownianmotionbutnowassumethattheunderlyingpriceprocessfStgfollowsanexponentialLevyprocess(i.e.;thatwhichisfollowedbylogSt.)GivenNdiscretemonitoringdatest1,t2,...,tN,themaximumprice~MN=maxfSt1,...,StNgandminimumprice~N=minfSt1,...,StNgoftheunderlyingassetleadtoinception(timet0=0)pricesforbothxedstrikeandoatingstrikelookbackoptionssummarizedinTable 41 Table41. Loookbackoptionpricesattimet0=0
PAGE 44
Denenow=inffn:Un0gtobetherstpassageofthelogpriceprocessbelowzero,observedonamonitoringdate,and+=inffn:Un>0gthecorrespondingrstpassageofthelogpriceprocessabovezero.or+arecalled'ladderepochs'.Thedualitypropertyofthisrandomwalkwillenableus,throughand+,toderiverecursiveexpressionsleadingtothedistributionsoftheextrema~MNand~N. Figure41. Samplepathofalogpriceprocessforalookbackoption 44
PAGE 45
41 weseethat=2eventhoughthelogpricehasdroppedbelowzerobeforetime1.Sinceweobservethepricesonlyonthediscretemonitoringdates,thisdoesnotaffectasthepriceisbackabovezeroattime1.Also,+=1andMNisequaltothepriceonthe10thmonitoringdate,eventhoughthecontinuouspriceprocesshasahigherpricesincethishigherpriceisnotobservedonamonitoringdate.From( AitSahlia&Lai 1998 )weknowthatthedistributionofthemaximumlogpricecanbewrittenasPfMN2dxg=PfU12dxgPfX20,X2+X30,...,X2+XN0g+NX=2hPfU>Ui,i<;U2dxgPfX+10,X+1+X+20,...,X+1++XN0gi Feller 1971 ),letsusrewriteoneoftheaboveprobabilitiesintermsofoneoftheladderepochsPfU>Ui,i<;U2dxg=PfUU1>0,...,UU1>0;U2dxg=PfU1>0,...,U1>0;U2dxg=Pf>;U2dxg
PAGE 46
DenenowtheFouriertransformorcharacteristicfunctionofadistributionfunctionFofarealrandomvariableXas(cf.( Chung 1974 ))as:F(F)()=EeiX=ZReixdF(x). AitSahlia&Lai 1998 ). 2bFn1b+i 46
PAGE 47
AitSahlia&Lai 1998 ),pg.230,Eq.10,canbeexpressedasF1(x)=(x)Fn(x)=1J(x)(Fn1)(x),for2nN Stenger 1993 )and( Feng&Linetsky 2008 )):F1(0,1)()=1 2^+i 2F(Fn1)+i 2bFn1b+i 4 andEq. 4 tperfectlythesetupof( Feng&Linetsky 2008 )toapplytheirhighlyefcientalgorithmtocomputealltheFourierandHilberttransformsandinvertthelast(bFN)forpricingpurposesatacomputationalcostofO(NMlog(M)),whereMisthenumberofquadraturepoints 47
PAGE 48
whereF(x)areobtainedthroughtheapplicationofthenumericalschemeof( Feng&Linetsky 2008 )totherecursionsinEq. 4 andEq. 4 forx>0,withJ=(,0],and0,1,...,Ndenedby0=1,n=Gn(0)limx!Gn(x)forn1, 4 andEq. 4 andusingJ=(,0].
PAGE 49
Thelatter,togetherwith( 4 )andthedecompositionabove,yieldsPfMN2dxg=N1PfU12dxg+NX=2NdF(x)forx>0, 4 andEq. 4 extendstooatingstrikelookbackoptions.Thesearecontrastedtothexedstrikebymakingthestrikesettothepriceoftheunderlyinguponexercise.Thuswithaoatingstrikeput,itsholdercanpurchasetheunderlyingatitstradingpriceuponexerciseandsellitatthemaximumithasachievedoverthelifeofthecontract,resultinginapayoffS0eMNSM+.Ontheotherhand,aoatingstrikecallallowsitsholdertopurchasetheassetattheminimumitachievedduringitslifeandsellitatthepriceittradesuponexercise.Again,toallowforcomparisonwiththeclassicalBrownianprocessintheBlackScholesmodelweillustratetheapplicationoftheapproachontheput.Incidentally,oatingstrikeoptionsaresometimeslabeledstandard.
PAGE 50
4 andEq. 4 asinProposition2.
PAGE 51
Finally, AitSahlia&Lai 1998 )alsoapplyhere,withobviousmodicationsandwillthereforenotberepeatedhere. Additionally,ourapproachisparticularlywellsuitedforthecomputationofhedgingparameters,whichareespeciallycrucialtotheoptionwriter'sriskmanagementpractice.Forexample,thexedstrikelookbackpriceattime0ofProposition2,Eq. 4 ,canberewrittenaserTES0eMNK+=erTN(S0K)++erTNX=1Z10(S0exK)+dF(x)=8><>:erTPN=1R1log(K=S0)(S0exK))dF(x)ifS0KerTN(S0K)+erTPN=1R10(S0exK)dF(x)ifS0>K
PAGE 52
52
PAGE 53
Derivativessuchasoptionsareessentialtothefunctioningofamoderneconomy.Theyprovideopportunitiesforhedgersseekingtoreducetheirnancialrisksaswellasspeculators,whosehitsandmissesinthemarketplacecanprovideadditionalliquidity.Thepricingandhedgingofthesenancialinstrumentshasbecomeincreasinglychallengingasevermorecomplexmodelshaveemergedtoaccountforpracticalfeaturesthatcannotbeignored.Overthepastfewyears,continuoustimeassetpricingmodelsthatrelyonLevyprocesseshavegainedsignicantprominence.Theirwideningadoptionisduetotheirabilitytocapturesalientfeaturessuchasjumpsandfattailsinassetreturndistributionsthatcannotbeignored.Forexample,ifoneweretomaintainusingtheclassicalBlackScholesMertonmodelthatgavemathematicalnanceitsimpetusintheearly1970'sandwhichreliesonthenormalityassumptionofassetreturns,onewouldseriouslyunderestimatetheactualprobabilityofsignicantandunusualdrops.Forexample,( Kou 2008b )showsthatovertheperiodJan2,1980toDecember31,2005,thestandardized(demeanedandscaledbystandarddeviation)dailyreturnofthecriticallywatchedS&P500indexrangedfromaminimumof21.1550,toamaximumof7.9967,whichbothoccurredduringthemarketcrashyearof1987.Yettheprobabilityofastandardnormaldistributionfalling21unitsbelowitszeromeanisapproximately110107.Forcomparison,itisestimatedthattheuniverseisabout15billionyears(or51017seconds)old.Thereisthereforeclearlyaneedforalternativemodels,andthosebasedonLevyprocesseshavemanyfavorablefeatures,includingindependenceofincrementsandtheirinnitedivisibility,avarietyofwaystocapturelargedeviations,thepossibilitytoincorporatejumps,particularlythepopularpurejumpandjumpdiffusionmodels.Finally,fromamathematicalandcomputationaltractabilityperspective,thereistheremarkableLevyKhinchinrepresentationwhichmakesexplicitthecharacteristicfunctionoftheprocessintermsofthreeparameters.Inaddition, 53
PAGE 54
ThefocusofthisdissertationisonpathdependentoptionsintheparticularcontextofLevymodels.Withpayoffsdependingontheentirepathfollowedbytheassetpriceoftheunderlyingupuntilexercise,theseoptionsareespeciallyusefulwhentheirholderswishtoaddressaspecicriskissueinafashionthatcannotbeachievedbystandard(orvanilla)optionsalone.Forexample,theycouldbeconcernedonlyiftheunderlyingassetmovesoutsideacertainrangeofvalues,sayofinterestorcurrencyexchangerates,inwhichcasetheywouldbeinterestedinbarrieroptions,whichcomeintheknockinandknockoutavors.Theformerentitletheirholdertheacquisitionofastandardoptiononlyiftheunderlyingassetpricecrossesabarrier.Theyhoweverhavetopayfortheprivilegeupfront,withthepossibilityofneveracquiringtheoptioniftheunderlyingdoesnotcrossthebarrierbeforeexpiration.Ontheotherhand,aknockoutoptionyieldsthesamepayoffasastandardoptionaslongastheunderlyingassetpricedoesnotcrossabarrierpriortoexpiration.Thoughbarrieroptionswerenotexplicitlyaddressedinthisthesis,theyareinfactintimatelylinkedwithlookbackoptions,wherethestatisticaldistributionofthemaximum(orminimum)isparamountasitisclearthatabarrierabovetheinitialassetpricecanonlybebreachedifthemaximumisabovewhile,correspondingly,abarrierbelowwouldonlybebreachedwhentheminimumisbelowit.Lookbackoptions(oroptionsonextrema)havethemostexiblepayoffs,andarethusthemostexpensive.Theyareusedbyeitherspeculatorsorbyveryriskaverseoperators.TheothertypeofpathdependentoptionsaddressedinthepresentworkconcernsAsian(alsoknownasaverage)options,whicharewidelyusedbymultinationalcorporationstosmooththeircostsaswellastheirrevenuesinthefaceofhighlyvariablerawmaterialpricesandlargeuctuationsincurrencyexchangerates. 54
PAGE 55
55
PAGE 56
AitSahlia,F.,&Lai,T.(1998).Randomwalkdualityandthevaluationofdiscretelookbackoptions.AppliedMathematicalFinance,5(3),227. Akahori,J.(1995).Someformulaeforanewtypeofpathdependentoption.Ann.Appl.Prob.,5,383. Andreasen,J.(1998).Thepricingofdiscretelysampledasianandlookbackoptions:achangeofnumeraireapproach.TheJournalofComputationalFinance,2(1),5. Andricopoulos,A.,Widdicks,M.,Duck,P.,&Newton,D.(2003).Universaloptionvaluationusingquadraturemethods.JournalofFinancialEconomics,67(3),447. Atkinson,C.,&Fusai,G.(2007).DiscreteextremaofBrownianmotionandpricingofexoticoptions.JournalofComputationalFinance,10(3),1. Babbs,S.(2000).Binomialvaluationoflookbackoptions.JournalofEconomicDynamicsandControl,24(1112),1499. BEA(2010).NationalIncomeandProductAccountsTable,table1.1.5.GrossDomesticProduct,BureauofEconomicAnalysis,U.S.DepartmentofCommerce. Benhamou,E.(2002).Fastfouriertransformfordiscreteasianoptions.TheJournalofComputationalFinance,6,49. BIS(2000).Internationalbankingandnancialmarketdevelopments.Bankforinternationalsettlements,Basel,Switzerland,Quarterlyreview,June,23. BIS(2009).Internationalbankingandnancialmarketdevelopments.Bankforinternationalsettlements,Basel,Switzerland,Quarterlyreview,December,22. BIS(2010).Internationalbankingandnancialmarketdevelopments.Bankforinternationalsettlements,Basel,Switzerland,Quarterlyreview,March,23. Black,F.,&Scholes,M.(1973).Thepricingofoptionsandcorporateliabilities.Journalofpoliticaleconomy,81(3). Boyle,P.,&Emanuel,D.(1980).Optionsonthegeneralmean.Tech.rep. Boyle,P.,&Tian,Y.(1999).PricinglookbackandbarrieroptionsundertheCEVprocess.JournalofFinancialandQuantitativeAnalysis,34(02),241. Boyle,P.,Tian,Y.,&Imai,J.(1999).LookbackoptionsundertheCEVprocess:acorrection.JournalofFinancialandQuantitativeAnalysisUnpublishedAppendixes,Notes,Comments,andCorrections 56
PAGE 57
Broadie,M.,Glasserman,&P.,S.,Kou(1999).Connectingdiscreteandcontinuouspathdependentoptions.Connectingdiscreteandcontinuouspathdependentoptions,3,55. Broadie,M.,&Yamamoto,Y.(2003).ApplicationofthefastGausstransformtooptionpricing.ManagementScience,(pp.1071). Broadie,M.,&Yamamoto,Y.(2005).AdoubleexponentialfastGausstransformalgorithmforpricingdiscretepathdependentoptions.OperationsResearch,53(5),764. Carr,P.,Geman,H.,Madan,D.,&Yor,M.(2002).TheFineStructureofAssetReturns:AnEmpiricalInvestigation*.TheJournalofBusiness,75(2). Carr,P.,&Madan,D.(1999).OptionvaluationusingthefastFouriertransform.JournalofComputationalFinance,2(4),61. Chen,C.,Chiang,T.,&So,M.(2003).AsymmetricalreactiontoUSstockreturnnews:evidencefrommajorstockmarketsbasedonadoublethresholdmodel.JournalofEconomicsandBusiness,55(56),487. Cheuk,T.,&Vorst,T.(1997).Currencylookbackoptionsandobservationfrequency:abinomialapproach.JournalofInternationalMoneyandFinance,16(2),173. Chung,K.(1974).ACourseinProbability.Assoc.Press.NewYork. CMEGroup,T.(2010).Cmeclearportproducts. Cont,R.,&Tankov,P.(2004).Financialmodellingwithjumpprocesses.CRCPrILlc. Conze,A.,&Viswanathan(1991).Pathdependentoptions:thecaseoflookbackoptions.JournalofFinance,46(5),1893. Dassios,A.(1995).Thedistributionofthequantilesofabrownianmotionwithdriftandthepricingofrelatedpathdependentoptions.Ann.Appl.Prob.,5,389. Dassios,A.(1996).Samplequantilesofstochasticprocesseswithstationaryandindependentincrements.TheAnnalsofAppliedProbability,6(3),1041. Davydov,D.,&Linetsky,V.(2001).PricingandhedgingpathdependentoptionsundertheCEVprocess.ManagementScience,(pp.949). Feller,W.(1971).ProbabilityTheoryanditsApplications,vol.II. 57
PAGE 58
Feng,L.,&Linetsky,V.(2009).ComputingexponentialmomentsofthediscretemaximumofaLevyprocessandlookbackoptions.FinanceandStochastics,13(4),501. Fu,M.,Madan,D.,&Wang,T.(1998).Pricingcontinuousasianoptions:acomparisonofmontecarloandlaplacetransforminversionmethods.TheJournalofComputationalFinance,2(2). Fusai,G.,&Meucci,A.(2008).PricingdiscretelymonitoredAsianoptionsunderLevyprocesses.JournalofBanking&Finance,32(10),2076. Geman,H.,&Yor,M.(1993).Besselprocesses,asianoption,andperpetuities.MathematicalFinance,3,349. GeorgiosFoufasandMatsG.Larson(2008).Valuingasianoptionsusingtheniteelementmethodanddualitytechniques.Journalofcomputationalandappliedmathematics,222(1),144. Gibson,W.(2010).OTCDerivativesTradingUndertheFinancialReformBill:IsItToughEnough? Goldman,M.,Sosin,H.,&Gatto,M.(1979).PathDependentOptions:BuyattheLow,SellattheHigh.Journalofnance,34(5),1111. Heyde,C.,&Kou,S.(2004).Onthecontroversyovertailweightofdistributions.OperationsResearchLetters,32(5),399. Heynen,R.,&Kat,H.(1995).Lookbackoptionswithdiscreteandpartialmonitoringoftheunderlyingprice.AppliedMathematicalFinance,2(4),273. Hoogland,J.,&Neumann,D.(2001).Localscaleinvarianceandcontingentclaimpricing.InternationalJournalofTheoreticalandAppliedFinance,4(1),1. Hull,J.(2006).Options,futures,andotherderivatives.PearsonEducationNewJersey. Ingersoll,J.(1987).TheoryofFinancialDecisionMaking.Oxford:OxfordUniversityPress. Kemna,A.,&Vorst,A.(1990).Apricingmethodforoptionsbasedonaverageassetvalues.JournalofBanking&Finance,14(1),113. Kou,S.(2002).AJumpDiffusionModelforOptionPricing.ManagementScience,48(8),1086. Kou,S.(2008a).Discretebarrierandlookbackoptions.HandbooksinOperationsResearchandManagementScience,(pp.343). 58
PAGE 59
Lee,R.(2004).Optionpricingbytransformmethods:extensions,unicationanderrorcontrol.JournalofComputationalFinance,7(3),51. Linetsky,V.(2004).Spectralexpansionsforasian(averageprice)options.OperationsResearch,52,856. Lipton,A.(1999).Similaritiesviaselfsimilarities.Risk,12,101. Madan,D.,Carr,P.,&Chang,E.(1998).Thevariancegammaprocessandoptionpricing.ReviewofFinance,2(1),79. Madan,D.,&Seneta,E.(1990).Thevariancegamma(VG)modelforsharemarketreturns.JournalofBusiness,63(4),511. Mattich,A.(2010).BewareWallStreetSinkholes.TheWallStreetJournal,June(3). Merton,R.(1976).Optionpricingwhenunderlyingstockreturnsarediscontinuous*1.JournalofFinancialEconomics,3(12),125. Milne,F.,&Madan,D.(1991).OptionPricingWithVGMartingaleComponents.MathematicalFinance,1(4),39. Miura,R.(1992).Anoteonalookbackoptionbasedonorderstatistics.HitosubashiJournalofCommerceandManagement,27,15. Morgan,J.(1999).TheJPMorganguidetocreditderivatives.Risk. Petrella,G.,&Kou,S.(2004).NumericalpricingofdiscretebarrierandlookbackoptionsviaLaplacetransforms.JournalofComputationalFinance,8,1. Pollaczek,F.(1975).Orderstatisticsofpartialsumsofmutuallyindependentrandomvariables.JournalofAppliedProbability,(pp.390). Rogers,L.,&Shi,Z.(1995).ThevalueofanAsianoption.JournalofAppliedProbability,32(4),1077. Shreve,S.,&Vecer,J.(2000).Optionsonatradedaccount:Vacationcalls,vacationputsandpassportoptions.FinanceandStochastics,4(3),255. Stenger,F.(1993).NumericalmethodsbasedonSincandanalyticfunctions.SpringerVerlag. Takacs,L.(1996).Onageneralizationofthearcsinelaw.Ann.Appl.Prob.,6,1035. 59
PAGE 60
Tse,W.,Li,L.,&Ng,K.(2001).Pricingdiscretebarrierandhindsightoptionswiththetridiagonalprobabilityalgorithm.Managementscience,47(3),383. Turnbull,S.,&Wakeman,L.(1991).AquickalgorithmforpricingEuropeanaverageoptions.JournalofFinancialandQuantitativeAnalysis,26(3),377. Vecer,J.(2001).AnewPDEapproachforpricingarithmeticaverageAsianoptions.JournalofComputationalFinance,4(4),105. Vorst,T.(1996).Averagingoptions.TheHandbookofExoticOptions:Instruments,Analysis,andApplicationsbyI.Nielken,Honeywood,Il,Irwin,(pp.175). Wendel,J.(1960).Orderstatisticsofpartialsums.TheAnnalsofMathematicalStatistics,(pp.1034). WilliamFalloon(1998).Windowsonrisk.Risk,June,42. Wu,Editors:,Birge,J.,&Linetsky,V.(2008).ModelingFinancialSecurityReturnsUsingLevyProcesses.HandbooksinOperationsResearchandManagementScience,(pp.117). 60
PAGE 61
GudbjortGylfadottirwasborninSweden,toIcelandicparentsGylHaraldssonandHallaArnljotsdottir.ShegrewupinLaugaras,Biskupstungur,avillageinIcelandwithapopulationaround100people;beforemovingtothecapital,Reykjavk,whereshewenttoVerzlunarskolinnhighschool.Afterthat,shereceivedherB.S.inmathematicsfromtheUniversityofIcelandin2006.Inthefallof2006,shemovedtoGainesville,FL,topursueherdoctoralstudiesinthedepartmentofIndustrialandSystemsEngineeringatTheUniversityofFlorida,withconcentrationinquantitativenance.ShereceivedherM.S.innancefromtheWarringtonCollegeofBusinessattheUniversityofFloridain2008andherPh.D.inindustrialandsystemsengineeringfromtheCollegeofEngineeringin2010. 61
