<%BANNER%>

Linking River, Floodplain, and Vadose Zone Hydrology in a Coastal Wetland Impacted by Saltwater Intrusion

Permanent Link: http://ufdc.ufl.edu/UFE0041441/00001

Material Information

Title: Linking River, Floodplain, and Vadose Zone Hydrology in a Coastal Wetland Impacted by Saltwater Intrusion the Loxahatchee River (Florida, USA)
Physical Description: 1 online resource (388 p.)
Language: english
Creator: Kaplan, David
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: analysis, bald, coastal, cypress, distichum, domain, dynamic, ecological, factor, frequency, groundwater, intrusion, loxahatchee, management, mangroves, modeling, moisture, porewater, reflectometry, resources, restoration, river, salinity, saltwater, soil, taxodium, vadose, water, wetland, wetlands
Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of impacted ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. However, finding direct relationships between basic hydrological inputs and floodplain hydrology is hindered by complex interactions between surface water, groundwater, and atmospheric fluxes in a variably saturated matrix with heterogeneous soils, vegetation, and topography. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems impacted by saltwater intrusion, but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress (Taxodium distichum L. Rich.) floodplain swamps in southeast Florida (USA) by investigating hydrology in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to inadequate hydroperiod and saltwater intrusion into historically freshwater wetlands. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 minutes were installed along two transects?one in an upstream, freshwater location; the other in a downstream tidal area. Data collected over four years quantified the spatial variability and temporal dynamics of vadose zone hydrology, showed that soil moisture can be closely predicted based on river stage and topographic elevation, and helped to explain observed vegetation patterns. Groundwater elevation and salinity were measured in a network of twelve wells along a gradient from fresh to saline conditions. Dynamic Factor Analysis (DFA), a time series dimension reduction technique, was used to model temporal variation in groundwater and soil moisture datasets as linear combinations of common trends (which represent unexplained common variability) and appropriate explanatory variables. The resulting dynamic factor models (DFMs) were useful for assessing the effects of ecosystem restoration and management scenarios on floodplain hydrology. These relationships were coupled with ecological performance measures to predict floodplain vegetation dynamics using a spatially distributed ecohydrological model. This study offers a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provides relationships for evaluating proposed management scenarios for the Loxahatchee River.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by David Kaplan.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Munoz-Carpena, Rafael.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0041441:00001

Permanent Link: http://ufdc.ufl.edu/UFE0041441/00001

Material Information

Title: Linking River, Floodplain, and Vadose Zone Hydrology in a Coastal Wetland Impacted by Saltwater Intrusion the Loxahatchee River (Florida, USA)
Physical Description: 1 online resource (388 p.)
Language: english
Creator: Kaplan, David
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2010

Subjects

Subjects / Keywords: analysis, bald, coastal, cypress, distichum, domain, dynamic, ecological, factor, frequency, groundwater, intrusion, loxahatchee, management, mangroves, modeling, moisture, porewater, reflectometry, resources, restoration, river, salinity, saltwater, soil, taxodium, vadose, water, wetland, wetlands
Agricultural and Biological Engineering -- Dissertations, Academic -- UF
Genre: Agricultural and Biological Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of impacted ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. However, finding direct relationships between basic hydrological inputs and floodplain hydrology is hindered by complex interactions between surface water, groundwater, and atmospheric fluxes in a variably saturated matrix with heterogeneous soils, vegetation, and topography. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems impacted by saltwater intrusion, but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress (Taxodium distichum L. Rich.) floodplain swamps in southeast Florida (USA) by investigating hydrology in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to inadequate hydroperiod and saltwater intrusion into historically freshwater wetlands. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 minutes were installed along two transects?one in an upstream, freshwater location; the other in a downstream tidal area. Data collected over four years quantified the spatial variability and temporal dynamics of vadose zone hydrology, showed that soil moisture can be closely predicted based on river stage and topographic elevation, and helped to explain observed vegetation patterns. Groundwater elevation and salinity were measured in a network of twelve wells along a gradient from fresh to saline conditions. Dynamic Factor Analysis (DFA), a time series dimension reduction technique, was used to model temporal variation in groundwater and soil moisture datasets as linear combinations of common trends (which represent unexplained common variability) and appropriate explanatory variables. The resulting dynamic factor models (DFMs) were useful for assessing the effects of ecosystem restoration and management scenarios on floodplain hydrology. These relationships were coupled with ecological performance measures to predict floodplain vegetation dynamics using a spatially distributed ecohydrological model. This study offers a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provides relationships for evaluating proposed management scenarios for the Loxahatchee River.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by David Kaplan.
Thesis: Thesis (Ph.D.)--University of Florida, 2010.
Local: Adviser: Munoz-Carpena, Rafael.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2010
System ID: UFE0041441:00001


This item has the following downloads:


Full Text

PAGE 1

1 LINKING RIVER, FLOODPLAIN, AND VADOSE ZONE HYDROLOGY IN A COASTAL WETLAND IMPACTED BY SALTWATER INTRUSION: THE LOXAHATCHEE RIVER (FLORIDA, USA) By DAVID ANDREW KAPLAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010

PAGE 2

2 2010 David Andrew Kaplan

PAGE 3

3 To my father, w hose generosity, sense of humor, and creative spirit were indomitable. A nd t o my grandfather, who quietly championed fairness and moderation; respected education above material success ; and coined the term pixel.

PAGE 4

4 ACKNOWLEDGMENTS For providing intellectual guidance, un wavering support, and so many rewarding o pportunities, I thank my Ph.D. advisor Rafael Mu oz Carpena. As an academic mentor and a personal motivator, Rafa has pushed me to pursue interesting and important research and to be excited about doing so. His enthusiasm for teaching and learning are an inspirati on for everyone with whom he works, and his commitment to the graduate students he mentors is paramount. For their continued support and guidance as members of my Ph.D. committee, I also thank Drs. Gregory Kiker, Yuncong Li, Thomas Crisman, and Yongshan W an. I sincerely appreciate the time and energy they have invested in guiding my research. I owe an enormous debt of gratitude to Paul Lane for his tireless support in the field and laboratory Paul shed blood, sweat, and tears (well, maybe not tears) dur ing our ~75 trips to the swamps of the Loxahatchee River, and the data presented in this document would not exist without his engineering skills and daring field improvisations Pauls spirits remained unsinkable throughout 18hour days of muck, mosquitoe s, brutal heat, and endless driving and I will always appreciate the good conversation and delicious food he supplied on every trip. For providing the foundation for this research, I am also indebted to Amanda Mortl. Additional f ield assistance from M anon Bachelin, R oger Freeman, F aelen Tais Kolln, S tuart Muller, D aniel Preston, A xel Ritter, J onathan Schroeder, K arl VanDerlinden, C ongrong Yu, Z uzanna Zajac, and M arisabel Zamora was greatly appreciated. For providing data, laboratory assistance, and ent husiastic support for this work, I also thank the following individuals and institutions: Guodong Liu and Qingren Wang (U niversity of F lorida Tropical Research and Education Center); Marion Hedgepeth,

PAGE 5

5 Fawen Zheng, Celia Conrad, and Gordon Hu (S F WMD); Dick Roberts and Rob Rossmanith (Florida Park Service); D. Albrey Arrington and D avid Sabine (Loxahatchee R iver D istrict); and C arolyn Price and E velyn Guevara (U nited State G eological S urvey ) This work was funded in part by the South Florida Wat er Management District (SFWMD). A dditional financial support was provided by the University of Florida Graduate Fellowship Program. I am grateful to my family f or providing encouragement for all of my endeavors (academic and otherwise) for as long as I can remember I would not be the person I am today without their love, sacrifice, and support. T o my friends in Gainesville New York, Maryland, and all around the world: thank you for being there in good times and badyou guys (yall) are a beautiful extended family Finally, for being my best friend and biggest supporter, and for making life so fun, I thank my fiance Johanna Freeman.

PAGE 6

6 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES .......................................................................................................... 10 LIST OF FIGURES ........................................................................................................ 12 ABSTRACT ................................................................................................................... 17 CHAPTER 1 INTRODUCTION .................................................................................................... 19 Saltwater Intrusion in Coastal Wetlands ................................................................. 19 Drivers of Saltwater Intrusion ........................................................................... 20 Natural drivers ............................................................................................ 21 Anthropogenic drivers ................................................................................ 23 Synergistic effects ...................................................................................... 2 4 Impacts on Coastal Wetlands: Case Studies .................................................... 25 The Mississippi River delta ........................................................................ 26 Northern Australia ...................................................................................... 29 United Kingdom ......................................................................................... 31 Management and Restoration Potential ........................................................... 31 Bald Cypress Life Cycle Requirements and Environmental Tolerances ........... 33 Seeds ......................................................................................................... 34 Seedlings ................................................................................................... 36 Mature trees ............................................................................................... 39 Study Site: The Loxahatchee River ........................................................................ 41 Historic and Current Hydrology ........................................................................ 45 Historic and Current Vegetation ....................................................................... 47 Surface Water Monitoring and Modeling .......................................................... 50 The Watershed (WaSh) model ................................................................... 50 Hydrodynamic and salinity model .............................................................. 52 Long term salin ity management model ...................................................... 55 SAVELOX model ....................................................................................... 56 Evaluation of Restoration Scenarios ................................................................ 59 Research Objectives ............................................................................................... 64 2 LINKING RIVER, FLOODPLAIN, AND VADOSE ZONE HYDROLOGY TO IMPROVE RESTORATION OF A COASTAL RIVER IMPACTED BY SALTWATER INTRUSION ..................................................................................... 75 Introduction ............................................................................................................. 75 Materials and Methods ............................................................................................ 79 Site Description ................................................................................................ 79

PAGE 7

7 Experimental Setup .......................................................................................... 81 Dielectric Probe Principles and Operation ........................................................ 83 M eteorological, Surface Water, and Groundwater Data ................................... 84 Soil Moisture Surface Water Elevation Relationships .................................... 86 Surface Water Groundwater, and Porewater EC Relationships ...................... 87 Results and Discussion ........................................................................................... 88 Global Descriptive Statistics ............................................................................. 88 Hydrological Time Series .................................................................................. 90 Upstream transect 1 ................................................................................... 90 Downstream transect 7 .............................................................................. 92 Surface Water Soil Moisture Relationships ................................................... 95 Upstream transect 1 ................................................................................... 95 Downstream transect 7 .............................................................................. 98 Surface Water, Groundwater, and Porewater EC Relationships ...................... 99 Summary and Conclusions ................................................................................... 101 3 UNTANGLING COMPLEX SHALLOW GROUNDWATER DYNAMICS IN THE FLOODPLAIN WETLANDS OF A SOUTHEASTERN U.S. COASTAL RIVER ..... 116 Introduction ........................................................................................................... 116 Materials and Methods .......................................................................................... 119 Study Site ....................................................................................................... 119 Experimental Setup ........................................................................................ 121 Dynamic Factor Analysis ................................................................................ 123 Explanatory Variables .................................................................................... 126 Analysis Procedure ........................................................................................ 128 Results and Discussion ......................................................................................... 129 Experimental Time Series .............................................................................. 129 Dynamic Factor Analysis ................................................................................ 132 Baseline DFA (no explanatory variables) ................................................. 132 DFA with explanatory variables ................................................................ 133 Multilinear regression model (DFA with no common trends) .................... 138 Summary and Conclusions ................................................................................... 139 4 SHALLOW GROUNDWATER SALINITY IN A TRANSITIONING COASTAL FLOODPLAIN FOREST IMPACTED BY SALTWATER INTRUSION ................... 155 Introduc tion ........................................................................................................... 155 Materials and Methods .......................................................................................... 159 Study Site and Experimental Setup ................................................................ 159 Dynamic Factor Analysis ................................................................................ 162 Explanatory Variables .................................................................................... 165 Analysis Procedure ........................................................................................ 168 Results and Discussion ......................................................................................... 169 Experimental Time Series .............................................................................. 169 Mean daily time series ............................................................................. 169 Thirty minute time series .......................................................................... 175

PAGE 8

8 Dynamic Factor Analysis ................................................................................ 176 Baseline DFA (no explanatory variables) ................................................. 176 DFA with explanatory variables ................................................................ 180 Multilinear regression model (DFA with no common trends) .................... 182 Conclusions .......................................................................................................... 182 5 EXPLORING ROOT ZONE SOIL MOISTURE DYNAMICS IN A DEGRADED BALD CYPRESS ( TAXODIUM DI STICHUM [L.] RICH.) FLOODPLAIN FOREST ........ 202 Introduction ........................................................................................................... 202 Materials and Methods .......................................................................................... 206 Study Site ....................................................................................................... 206 Experimental Setup ........................................................................................ 208 Dynamic Factor Analysis ................................................................................ 209 Explanatory Variables: Meteorological, Surface Water, and Groundwater Data ............................................................................................................ 211 Analysis Procedure ........................................................................................ 214 Results and discussion ......................................................................................... 215 Experimental Time Series .............................................................................. 215 Dynamic Factor Analysis ................................................................................ 217 Baseline DFA (no explanatory variables) ................................................. 217 DFA with explanatory variables ................................................................ 219 Multilinear regression model (DFA with no common trends) .................... 221 Conclusions .......................................................................................................... 222 6 A SIMPLE ECOHYDROLOGICAL MODEL TO AS SESS THE POTENTIAL FOR RESTORATION SUCCESS IN A DEGRADED BALD CYPRESS ( TAXODIUM DISTICHUM [L.] Rich.) Floodplain swamp ................................................................ 235 Introduction ........................................................................................................... 235 Materials and Methods .......................................................................................... 238 Modeling Concept .......................................................................................... 238 Model Domain ................................................................................................ 243 General Model Structure and Logic ................................................................ 244 Initial subroutines ..................................................................................... 245 Period of record subroutines .................................................................... 246 Summary and reporting subroutines ........................................................ 248 Input Files and Data ....................................................................................... 249 Surface water elevation ........................................................................... 250 Surface water salinity ............................................................................... 252 Vadose Zone Relationships ............................................................................ 253 Model Scenarios ............................................................................................. 2 55 Results and Discussion ......................................................................................... 255 EcoLox results for the BASE case vers us 1995 observed vegetation ...... 255 Restoration scenarios .............................................................................. 257 Germination and recruitment .................................................................... 258 Conclusions .......................................................................................................... 261

PAGE 9

9 7 CONCLUSION ...................................................................................................... 291 APPENDIX A MEAN DAILY SOIL MOISTURE AND POREWATER SALI NITY DATA ............... 297 B ECOLOX SOURCE CODE ................................................................................... 353 LIST OF REFERENCES ............................................................................................. 373 BIOGRAPHICAL SKETCH .......................................................................................... 388

PAGE 10

10 LIST OF TABLES Table page 1 1 Flow contributions to the NW Fork from each subbasin in the watershed ......... 67 1 2 Constant flow restoration scenarios .................................................................... 68 1 3 Summary of the evaluation of restoration flow scenarios on valued ecosystem components ( VECs) of the NW Fork of the Loxahatchee River ........ 68 2 1 Locations and attributes of the five groundwater wells in the study .................. 104 2 2 Characteristics of the three Loxahatchee River floodplain soil categories ........ 104 2 3 Summary of experimental data from the 24 probes .......................................... 105 2 4 Number of days that the 2 ppt (0.3125 S/m) bald cypress tolerance threshold was exceeded in porewater, surface water, and groundwater at Transect 7 .... 106 2 5 Saturated s oil moisture content ( s) used to calculate effective soil moisture ( e) and parameters fit to Equation 24 to model e as a function of surface water elevation on Transect 1 ........................................................................... 106 3 1 Locati ons and attributes of the twelve groundwater wells in the study ............. 142 3 2 Hydrologi cal time series used in the DFA ......................................................... 142 3 3 D ynamic factor models (DFMs) tested in this study .......................................... 143 3 4 Akaikes information criteria (AIC) and NashSutcliffe coefficients of efficiency (Ceff) for dynamic factor models with no explanatory va riables and 1 to 7 common trends ................................................................................................. 143 3 5 Constant level parameters (n), canonical correlation coeficents (m,n), factor loadings (m,n), regression coefficients (k,n), and coefficients of efficiency (Ceff) from Model I I ............................................................................................ 144 3 6 Model parameters, and coefficients of efficiency (Ceff) from Model III .............. 145 4 1 Locations and attributes of the twelve groundwater wells in the study ............. 185 4 2 Hydrological time series used in the DFA ......................................................... 186 4 3 Dynamic factor models (DFMs) tested in this study .......................................... 186 4 4 Nash Sutcliffe coefficients of efficiency (Ceff) and Akaikes information criteria (AIC) and for dynamic factor models with no explanatory var iables and 1 to 6 common trends ................................................................................................. 187

PAGE 11

11 4 5 Constant level parameters (n), canonical correlation coeficents (m, n), factor loadings (m,n), regression coefficients (k,n), and coefficients of efficiency (Ceff) from Model II ............................................................................................ 188 4 6 Model parameters and coeffi cients of efficiency ( Ceff) from Model III ............... 189 5 1 Loxahatchee River floodplain soil characteristics ............................................. 224 5 2 Hydrologi cal time series used in the DFA ......................................................... 224 5 3 Number of parameters, NashSutcliffe coefficients of efficiency (Ceff), Akaikes information criteria (AIC), Bayesian Information Criterion (BIC), and Co nsistent Akaikes Information Criteria (CIAC) for selected dynamic factor models (DFMs) ................................................................................................. 225 5 4 Constant level parameters (n), canonical correlation coeficents (m,n), factor loadings (m, n), regression coefficients (k,n), and coefficients of efficiency from Model II ..................................................................................................... 226 5 5 Constant level parameters ( n), model parameters, and coefficients of efficiency (Ceff) from Model I II ........................................................................... 227 6 1 Global model parameters in the EcoLox model ................................................ 263 6 2 Constant flow restoration scenarios .................................................................. 264 A 1 Mean daily soil moisture ( ) and porewater salinity ( w) for measurement locations on Transect 1. ................................................................................... 297 A 2 Mean daily soil moisture ( ) and porewater salinity ( w) for measurement locations on Transect 7. ................................................................................... 326

PAGE 12

12 LIST OF FIGURES Figure page 1 1 Bald cypress ( Taxodium distichum [L.] Rich.) distribution in the United States .. 69 1 2 The Loxahatchee River and Estuary .................................................................. 70 1 3 Location of the ten floodplain vegetation transects on the Loxahatc hee River ... 71 1 4 Interpretation of aerial photography of vegetation communities in the floodplain of the NW Fork of the Loxahatchee River in (a) 1940 and (b) 1995 ... 72 1 5 Relationship between the three hydrological models used to evaluate restoration scenarios for the NW Fork ................................................................ 73 1 6 Major drainage basins of the Loxahatchee River watershed .............................. 73 1 7 Expected floodplain vegetation under the Preferred Restoration Flow Scenario ............................................................................................................. 74 2 1 The Loxahatchee River watershed and surrounding area ................................ 107 2 2 Interpretation of aerial photography of vegetation communities in the floodplain of the Northwest Fork of the Loxahatchee River in (a) 1940 and (b) 1995 ................................................................................................................. 108 2 3 Topography and instrumentation layout of vadose zone monitoring stations and groundwater wells on (a) Transect 1 (b) and Transect 7 ........................... 108 2 4 Precipitation, surface water elevation (SWE), water table elevation (WTE), soil moisture ( ), surface water and groundwater electrical conductivity (SWEC and GWEC), and soil porewater EC ( w) measured at selected stations on or near upstream Transect 1 .......................................................... 109 2 5 Precipitation, surfac e water elevation (SWE), water table elevation (WTE), surface water and groundwater electrical conductivity (SWEC and GWEC), and soil porewater EC ( w) measured at selected stations on or near downstream Transect 7 .................................................................................... 110 2 6 Observed (symbols) and modeled (lines) effective soil moisture ( e) versus surface water elevation at Lainhart Dam .......................................................... 111 2 7 Nomograph for estimating effective soi l moisture ( e) profiles on Transect 1 based on surface water elevation (SWE) at Lainhart Dam and soil elevation .. 112 2 8 Relationship between soil moisture ( ) and surface water elevation (SWE ) in the highest elevation (i.e., shallowest) probe .................................................... 113

PAGE 13

13 2 9 Surface water elevation (SWE) at Lainhart Dam versus surface water electrical conductivity (SWEC) at Indiantown Rd. (near Transect 1) and RK 14.6 (near Transect 7) ...................................................................................... 114 2 10 Ratio of surface water electrical conductivity (SWEC) peaks reached in porewater w) in (a) high, (b) middle, and (c) low elevation measurement locations on Transect 7 .............................................. 115 3 1 The Loxahatchee River and surrounding area ................................................. 146 3 2 Transect topographic cross sections, detailing well installation locations and elevations and predominant vegetation types .................................................. 147 3 3 Precipitation, re ference evapotranspiration (ET0), calculated net local recharge (Rnet), water table elevation (WTE), surface water elevation (SWE), and regional water table elevation (WTE_R) measured in and around the Loxahatchee River watershed .......................................................................... 148 3 4 Average daily water table elevation (WTE) in the four wells on transect 7 (T7) 149 3 5 Three example trends from Model I (left) and their associat ed canonical correlation coefficients (right) ............................................................................ 150 3 6 Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained from Model II .................................................................. 151 3 7 Regression parameters and factor loadings for Model II .................................. 152 3 8 Common trends (left) and their associated canonical correlation coefficients (right) f or Model II. ............................................................................................ 153 3 9 Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained from Model III ................................................................. 154 4 1 The Loxahatchee River and surrounding area ................................................. 190 4 2 Transect topographic cross sections, detailing well installation locations and elevations and predominant vegetation types. ................................................. 191 4 3 Precipitation, reference evapotranspiration (ET0), net recharge (Rnet), surface water elevation (SWE), normalized local and regional water table elevation, cumulative flow deficit (CFD), and cumulative salinity deviation (CSD) time series ................................................................................................................ 192 4 4 Surface water elevation (SWE), surface water electrical conductivity (SWEC), and groundwater electrical conductivity on riverine transects 1 and 3 (a), upper tidal transects 7 (b) and 8 (c), and lower tidal transect 9 (d) ................... 193

PAGE 14

14 4 5 High resolution (30minute) surface water elevation (SWE), water table elevation (WTE), surface w ater electrical conductivity (SWEC), and groundwater electrical conductivity data on upper tidal transect T8 over 8 days in May 2006 ............................................................................................. 194 4 6 High resolution (30minute) surface water elevation (SWE), water table elevation (WTE), surface water electrical conductivity (SWEC), and groundwater electrical conductivity data on upper tidal transect T8 over 2 weeks in September 2004 ................................................................................ 195 4 7 High resolution (30minute) surface water elevation (SWE), rainfall, water table elevation (WTE), and groundwater electrical conductivity (GWEC) data on upper riverine transect T3 over 3 weeks in February 2006 .......................... 196 4 8 Number of parameters vs. coefficient of efficiency (Ceff) for DFMs with one (1T) to six (6T) common trends. ....................................................................... 197 4 9 Common trends (left) and their associated canoni cal correlation coefficients (right) for Model I. ............................................................................................. 198 4 10 Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained from Model II .................................................................. 199 4 11 Common trends (left) and their associated canonical correlation coefficients (right) for Model II. ............................................................................................ 200 4 12 Observed (gray symbols) and modeled (black lines) normalized WTE for well T7 W2 (left) and well T9 W2 (right) obtained from Model III ............................. 201 5 1 The Loxahatchee River and surrounding area ................................................. 228 5 2 Topographic cross section of experimental transect with layout of vadose zone and groundwater monitoring instrumentation ........................................... 229 5 3 Precipitation, evapotranspiration (ET), surface water elevation (SWE), water table elevation (WTE), and effective soil moisture ( e) measured in and around the experimental site ............................................................................ 230 5 4 The three most important trends from Model I (left) and their associated canonical correlation coefficients (right) ........................................................... 231 5 5 Regression parameters (ac) and factor loadings (d) for Model II ..................... 232 5 6 Common trends from Model II (left) and their associated canonical correlation coefficients (right). ............................................................................................ 233 5 7 Observed (gray symbols) and modeled (black lines) norm alized e for the ten response variables obtained from multilinear Model III ..................................... 234

PAGE 15

15 6 1 The Loxahatchee River and surrounding area ................................................. 265 6 2 Flowchart of the structure and subroutines that make up the EcoLox model ... 266 6 3 Example simulated seedling heights over one year .......................................... 267 6 4 Reduction in germination percentage with salinity ............................................ 268 6 5 Relationships between flow at Lainhart dam and surface water elevation (SWE) ............................................................................................................... 269 6 6 Observed (black lines) and modeled (red lines) surface water elevation (SWE) at (a): RK 10.5 (Boy Scout Dock); (b) RK 13.1 (at the mouth of Kitching Creek); and (c) RK 14.6 (adjacent to transect 7). ............................... 270 6 7 Observed vs. predicted days of inundation from 2004 to 2008 over the tidal portion of the EcoLox model domain ................................................................ 271 6 8 Interpolated parameters for Equation 62 (upper panel) and (b) exponential relationships between total freshwater flow to the NW Fork and salinity applied to the 29 reaches used in the EcoLox model (lower panel). ................. 272 6 9 Observed (black lines) and modeled (red lines) porewater salinity (PWS) and observed surface water salinity (SWS; grey lines) at four locations on transect 7 from 2005 to 2008 ............................................................................ 273 6 10 Modeled porewater salinity (PWS) at 35 (black line), 65 (blue line), and 120 m (red line) from the river based on Equation 63 and modeled surface water salinity (SWS) (grey line) in the floodplain at ~RK 13 (Reach 23, near the outlet of Kitching Creek) from 1 965 to 1975 ..................................................... 274 6 11 (a) Modeled floodplain vegetation results from the EcoLox model using the BASE case (modeled historic data) and (b) Interpretation of aerial photography of vegetation comm unities in the floodplain of the NW Fork of the Loxahatchee River in 1995 ......................................................................... 275 6 12 (a) The characteristic salinity regime (Ds:Db ratio) in (a) surface water and (b) porewater calculated with a critical salinity of 3 ppt ..................................... 276 6 13 Modeled floodplain vegetation results from the EcoLox model under the LD65 restoration scenario ................................................................................ 277 6 14 Modeled floodplain vegetation results from the EcoLox model using the LD65/TB65 restoration scenario ....................................................................... 278 6 15 Modeled floodplain vegetation results from the EcoLox model under the LD90/TB110 restoration scenario ..................................................................... 279

PAGE 16

16 6 16 Modeled floodplain vegetation results from the EcoLox model using the LD200 restoration scenario ............................................................................... 280 6 17 Modeled floodplain vegetation results from the EcoLox model under the LD200/TB200 restoration scenario ................................................................... 281 6 18 Modeled floodplain vegetation results from the EcoLox model under the LV90/TV60 restoration scenario. 282 6 19 Modeled floodplain vegetation results from the EcoLox model under the LV90/TV90 restoration scenario. ...................................................................... 283 6 20 Modeled floodplain vegetation results from the EcoLox model under the LV90/TV120 restoration scenario ..................................................................... 284 6 21 Distribution of habitat types under the BASE case and eight restoration scenarios .......................................................................................................... 285 6 22 Percentage change in each category of floodplain vegetation from the BASE case for the eight restoration scenarios ............................................................ 285 6 23 Distribution of recruitment years (i.e., number of years during the 40 year period of record with successful seedling recruitment) in areas with bald cypress habitat type under the BASE case ...................................................... 286 6 24 Distribution of recruitment years (i.e., number of years during the 40 year period of record with successful seedling recruitment) in areas with bald cypress habitat type under the LD65 restoration scenario c ase. ...................... 287 6 25 Area of bald cypress swamp with one or more germination years (red bars) and recruitment years (blue bars) over the 40 year period of record, expressed as a percentage of the tot al bald cypress habitat area for the BASE case and eight restoration scenarios ..................................................... 288 6 26 Total area of bald cypress swamp with one or more germination years (red bars) and recruitment years (bl ue bars) over the 40year period of record for the BASE case and eight restoration scenarios ................................................ 288 6 27 Spatial distribution of recruitment years for areas of bald cypress area under the (a) BAS E case and (b) LV90/TV60 restoration scenario ............................ 289 6 28 Surface water elevation (SWE) in Reach 20 over the 40year period of record and the average corrected (blue line) and uncorrected (red li ne) floodplain elevation from LiDAR data ................................................................................ 290

PAGE 17

17 Abstract of Dissertation Presented to the Graduate School of the Universi ty of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy LINKING RIVER, FLOODPLAIN, AND VADOSE ZONE HYDROLOGY IN A COASTAL WETLAND IMPACTED BY SALTWATER INTRUSION: THE LOXAHATCHEE RIVER (FLORIDA, USA) By David Andrew Kaplan May 2010 Chair: Rafael Muoz Carpena Major: Agricultural and Biological Engineering Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. R es toration of impacted ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. H owever, f inding direct relationships between basic hydrological inputs and floodplain hydrology is hindered by complex interactions between surface water, groundwater, and atmospheric fluxes in a variably saturated matrix with heterogeneous soils, vegetation, and topography. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems impacted by saltwater intrusion, but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress ( Taxodium distichum [L.] Rich.) floo dplain swamps in southeast Florida (USA) by investigating hydrology in the floodplain of the Loxahatchee River where reduced freshwater flow has led to inadequate hydroperiod and saltwater intrusion into historically freshwater wetlands.

PAGE 18

18 Twenty four dielectric probes measuring soil moisture and porewater salinity every 30 minutes were installed along two transects one in an upstream, freshwater location; the other in a downstream tidal area. Data collected over four years quantified the spatial variabilit y and tempor al dynamics of vadose zone hydrology showed that soil moisture can be closely predicted based on river stage and topographic elevation and helped to explain observed vegetation patterns Groundwater elevation and salinity were measured in a network of twelve wells along a gradient from fresh to saline conditions Dynamic Factor Analysis (DFA), a time series dimension reduction technique, was used to model temporal variation in groundwater and soil moisture datasets as linear combinations of common trends ( which represent unexplained common variability ) and appropriate explanatory variables The resulting dynamic factor models (DFMs) were useful for assessing the effects of ecosystem restoration and management scenarios on floodplain hydrolog y. T hese relationships were coupled with ecological performance measures to predict floodplain vegetation dynamics using a spatially distributed ecohydrological model. T h is study offe r s a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provides relationships for evaluating proposed management scenarios for the Loxahatchee River.

PAGE 19

19 CHAPTER 1 INTRODUCTION Saltwater Intrusion in Coastal Wetlands Coastal wetlands perf orm a unique suite of physical, biological, and chemical functions. They protect coastal areas from storm damage and erosion; filter, transform, and store sediments, nutrients, and other contaminants; and provide habitat s that support huge numbers of comm ercially and ecologically important fish, birds, and other wildlife (e.g. Mitsch and Gosselink, 2000). Coastal zones, including wetlands, estuaries, and bays provide at least half of all global ecological services (Costanza et al. 1997) and generate bil lions of dollars annually from fisheries, recreation, and tourism (Hanson and Stedman, 1995; Niemi et al., 2004). Environmental pressures facing coastal wetlands have both natural and anthropogenic sources, and these stressors often overlap and can have sy nergistic effects (McCarthy et al. 2001). Increasing human population and development in coastal areas has led to increased point source and nonpoint source pollution, habitat destruction, and significant alteration of watershed hydrology (Niemi et al. 2004). Coastal areas are also very dynamic and subject to changing environmental conditions caused by natural, climatic, and oceanographic processes such as flooding, drought, long term wet/dry cycles, storm surges, hurricanes, winds, herbivory, and chan ges in sea level elevation (Winn et al. 2004). Sea level rise, groundwater pumping for coastal cities, and watershed modifications have led to saltwater intrusion in many coastal areas around the world. O perating separately or in tandem, natural and anthropogenic sa ltwater intrusion can have severe adverse impacts on coastal wetlands including the loss of freshwater,

PAGE 20

20 brackish, and estuarine systems; increased erosion; and the expansion of marine or open water systems. While saltwater contamination and resultant abandonment of drinking water wells and aquifers has garnered considerable attention (e.g., Universidad de Granada, 2001), the impacts of conversion or loss of coastal wetland ecosystems as surface and groundwater salinities incr ease are less well documented This review summarize s the drivers of saltwater intrusion generally and discusses the resulting fresh water/ brackish water /saltwater dynamics and ecosystem responses in impacted coastal wetlands. Case studies demonstrate the effects of saltwa ter intrusion in wetlands from selected areas around the world and the potential for restoration of t hese impacted ecosystems. Finally, t he life cycle requirements and flooding and salinity tolerances of bald cypress ( Taxodium distichum [L.] Rich.) a maj or component of coastal floodplain forests in the southeastern United States, are reviewed in depth Drivers of Saltwater Intrusion Saltwater intrusion has been described as the landward and upward displacement of the freshwater saltwater interface in coastal aquifers, and increased saline water penetration in deltaic and estuarine areas (Knighton et al. 1991) and as the invasion of fresh or brackish surface water or groundwater by water with higher salinity ( Barlow, 2003) T he dynamics of saltwater int rusion are controlled by the interactive effects of tidal activity, the timing and volume of f reshwater discharge from rivers wind speed and direction, and density gradient s caused by salinity. With diurnal tidal cycles, stochastic weather processes, and decadal climate cycles, the dynamic behavior of saltwater intrusion is nonlinear and complex (Wang 19 8 8). Natural drivers of saltwater intrusion include storm surges hurricanes climatic fluctuations that alter freshwater outflows, and sea level rise. Anthropogenic drivers of

PAGE 21

21 saltwater intrusion include land drainage; pumping of coastal freshwater aquifers; reduction in freshwater discharge from dam construction, water withdrawals, or other water diversions; and hydrologic/hydraulic structures and land use changes within watersheds. For the purpose of this review, sea level rise will be considered a natural driver of saltwater intrusion with the recognition that anthropogenic climate change exacerbates the effect of sea level rise and may also alter the timing and magnitude of climatic cycles and extreme events such as hurricanes. Natural d rivers Sea level and global cli mate are inextricably coupled. At the end of the most recent glacial period, sea level was between 100 and 125 m below current level s (Larsen, 1998; USGS 2000a ). Sea level s have consistently ris en during the current interglacial period (USGS 2000 a ) and particularly during t he midto lateHolocene era (6 500 years before present [YBP] to the present), though not always at the same rate (Wanless et al. 1989). In Florida, sea level rose quickly (2 to 5 mm yr1) between 3200 and 6500 YBP This rate generally slowed to approximately 0.4 mm yr1 over the next 3 200 years, allowing for the development of broad coastal wetlands around the continents but has increased rapidly in the past decade to between 2 and 4 mm yr1 (Wanless et al. 1994 ). In addition to the direct addition of glacial meltwater to the oceans, rising global temperatures have led to a sea level rise of 10 to 20 c m due t o thermal expansion of the water in the ocean (Lovgren, 2004). Put simply, sea level rise causes inland migration of the marine environment into estuaries and freshwater systems by increasing salinity and/or increasing the frequency, duration, and depth of inundation. However, relative sea level rise is a function of global and local factors (DeLaune, 1987). Temporal and spatial variability in the rates of

PAGE 22

22 relative sea level rise result in highly variable effects on coastal wetlands (Burkett et al. 2001) Many coastal wetlands have developed such that the rate of vertical accretion of deposited sediment and peat formation are sufficient to keep up with sea level rise (Erwin 2003). A ccelerat ed sea level rise, combined with local conditions such as subsu rface subsidence, changing tidal and freshwater flow regime, and reduced sediment availability, has led to local relative sea level rise, submergence, and loss of coastal wetlands (Moorhead and Brinson, 1995; Burkett et al. 2001). E stimated sea level ris e alone has the potential to eliminate as much as 22% of the worlds coastal wetlands by 2100 (Nicholls et al., 1999), though regional impacts would vary (Michener et al. 1997). In addition to sea level rise, other natural drivers of saltwater intrusion i nclude clima tic cycles and weather events. Hurricanes and other large storm events can cause tidal surges much gr eater than average high tides, and s aline storm surges can infiltrate into wetland soils and form areas of ponded saline water ( Gardner, 1992) L ongterm drought can also be a major factor affecting saltwater intrusion. With diminished freshwater outflows of surface and groundwater the tidally driven saltwater wedge encroaches further inland (Thomson et al. 2001). Drought can also lead to acute environmental conditions that lead to plant mortality and subsequent land loss (Thomson et al. 200 1 ). Wind can also drive saltwater inland and can affect salinity profiles by mixing the water column. Eve n short term inundations of seawater from t hese natural drivers can have major impacts on freshwater wetlands, though their recovery ability is variable (Flynn et al. 1995).

PAGE 23

23 Anthropogenic d rivers More than 50% of the worlds population lives within 100 k m of the coast, with increasing populations expected (Niemi et al. 2004). The development of the worlds coastlines has had major impacts on the coastal environment, many of which have resulted in or in tensified saltwater intrusion. Bathymetric modifications to facilitate tra nsport of people an d goods ( Wang, 198 8; Liu et al., 2001) ; land drainage for ag riculture or urban development ( Holman and Hiscock 1998) ; reduction in fresh surface water discharge from dams or water withdrawals ( Johnson 1997); and reduction in groundwater discharge from pu mping of the aquifer ( Sadeg and Karahanogulu, 2001) have led to saltwater intrusion in many coastal cities Often, several of these anthropogenic drivers are at work simultaneously ; however they can be split into two m ajo r causal groups: structural/ morphological modifications and reduced freshwater flows. The development of deepwater ports and oil and natural gas infrastructure has required extensive channel deepening, widening, and maintenance in and around many major cities worldwide. In general, wider deeper, straighter river cross sections result in increased extent of saltwater intrusion. Liu et al. (2001) found that, under similar environmental conditions, saltwater intruded significantly further upstream in large, deep channels, than in smaller, shallow channels. In computer simulations, Wang (1988) found that doubling the dimensions of a navigation channel in New Orleans, LA (USA) would increase the extent of the 5 parts per thousand ( ppt) isohaline from 45 to 80 k m inland. In addition, many ri vers have been straightened to improve transport and provide flood control ( e.g., Bechtol and Laurian, 2005), facilitating the inland intrusion of saline waters. Fast, deep canals confined within the river channel, combined with river

PAGE 24

24 control structures s uch as levees and floodwalls, a lso reduce sediment transport into co a stal wetlands by acting as large local sinks and/or causing sediment laden water to bypass wetlands. This increases local relative sea level rise and can lead to land submergence and wet land loss (DeLaune et al., 1994) River control structures can also reduce or completely eliminate freshwater flows to coastal wetlands, directly increasing salinity (Thomson et al. 2002) Drainage of large wetland areas for agricultural and urban development in some coastal areas has lowered groundwater elevation to below sea level leading to saline intrusion of the aquifer and surface waters, especially in areas with highly conductive aquifers (Holman and Hiscock 1998) Groundwater pumping for drinking water supply has had similar effects (Sadeg and Karahanogulu, 2001) I n both cases, groundwater pumping can cause land subsidence and result in relative sea level rise (USGS 1999 a ). Dam construction and water withdrawals can also cause major reduction or elimination of freshwater, i ncreasing saltwater intrusion. The construction of the Aswan High Dam on the Nile River in Egypt has reduced freshwater outflows to the Mediterranean from 42 to 10 km3 yr1 leading to increased salinities in the delta wetlands and the Mediterranean Sea (Johnson, 1997). Currently, g reater than 90% of the Nile flow is diverted for agricultural use. Synergistic effects In many cases, several natural and/or anthropogenic drivers act simultaneously For example, deepwater canals and structural flood protection measures can increase the inland extent of saltwater inflow and cut of f freshwater wetlands from freshwater flow and sediment loads, preventing accretion. When combined with accelerated sea level rise, hurricanes, or sev ere drought, saltwater intrusion can lead to quick and

PAGE 25

25 catastrophic loss of coastal wetlands (Wanless et al. 1989). For example, in a study on the gulf coast of Florida, DeSantis et al. (2007) found the interactive effects of drought and sealevel rise t o accelerate the loss of coastal forest. Impacts on Coastal Wetlands: Case Studies While sea level has cycled up and down over millennia, the coastal ecosystems currently ringing the continents have developed over a relative stable period of sea level ri se (Wanless et al. 1989). R elatively fast acting natural and anthropogenic drivers are overwhelming coastal wetlands with more frequent, longer, deeper, and more saline inundation in many places (Burkett et al. 2001). The effects of saltwater intrusion on coastal wetlands include plant stress or mortality from prolonged submergence and/or high salinities, erosion of wetland substrate, conversion of freshwater habitats to brackish or saltwater habitats, and the transition of coastal saltwater habitats to open water (DeLaune et al. 1987; DeLaune et al. 1994). Once initiated, these effects can lead to positive feedbacks, with plant mortality leading to peat subsidence and erosion, leading to further i ntrusion of saline floodwaters etc. Globally, lower primary productivity caused by wetland loss also has the potential to further accelerate warming induced sea level rise, as these ecosystems cease sequestering carbon dioxide (Thomson et al. 2002). Flooding changes the chemical, physical, and biological properties of soils, and wetland species have different anatomical, morphological, and biochemical adaptations to flooded conditions (Pezeshki et al. 1990). Effects of flooding and salt stress include decreased stomatal response and reduced photosynthetic rates, though the magnitude of the effect is species specific (Pezeshki et al. 1990). McKee and Mendelssohn (1989) found that the response of plants to saltwater intrusion is variable and depends

PAGE 26

26 on species composition; level, duration and abruptness of exposure to sal ine water; and flooding depth. Lin et al. (2003) found that of all abiotic factors, salinity was the primary determining factor for discriminating habitat types in the wetlands but that different wetland communities differ in their sensi tivity to salinity. After inundation, wetland recovery depends on several factors including post intrusion salinity and flooding level (Flynn et al. 1995). Also vital is the location and connectivity of a source of propagules to re populate the wetland (if significant plant mortality occurred) or the location of a source of more salt tolerant propagules ( if the ecosystem transitions to another wetland type) (McKee and Mendelssohn, 1989). The effects of saltwater intrus ion on selected coastal wetlands ( a nd associated wetland plant species ) from around the world are explored in case studies in the following section. The Mississippi River d elta Exposure to increasingly deep and saline floodwaters has been recognized as a major problem in the forested coastal wetlands of the Mississippi River d elta (USA) since at least the mid1970s (Earles 1975). Both natural and anthropogenic causes are considered to be drivers of saltwater intrusion in the delta (Salinas et al. 1986; DeLaune et al. 1987) and m ajor imp acts, including heavy tree mortality, are apparent in the areas ghost forests (coastal wetlands with standing dead trees, primarily bald cypress) A study by DeLaune et al. (1987) found sedimentation rates to be less than 25% of submergence rates in the Lake Verret swamp forest, as determined by Cesium 137 (137Cs ) dating In a study by Pezeshki et al. (1990), increases in salinity and flooding resulting from inland encroachment of saltwater into Louisianas coastal forests were shown to impact tree morph ology and carbon assimilation rates. Salinities greater than 3 ppt were correlated with leaf burning and reductions in carbon assimilation ra tes

PAGE 27

27 of up to 84% in seedlings. Long term exposure at even these sublethal levels can lead to reduced seedling su rvival, initiating a long term habitat change in these wetl ands (Pezeshki et al., 1990). A study by Thomson et al. (2002) focused on the effects of drought induced saltwater intrusion in the Mississippi River deltaic plain, which increased salinities to re cord levels in the Lake Pontchartrain b asin. Effects included large diebacks of coastal cordgrass ( Spartina spp. ) salt marshes due to hypersaline conditions The authors associate d this decrease in primary productivity with a decrease in coastal stabilit y, reduced accretion, and the conversion of vegetated marshes into unvegetated mudflats a ll leading to increased relative sea level rise. Accretion is achieved through the accumulation of both mineral sediments (necessary to maintain soil bulk density for salt marshes) and peat accumulation (DeLaune et al. 1994). Increased submergence stresses plant communities and reduces primary productivity, which in turn reduces peat accum ulation and sediment baffling In the highly modified Mississippi d elta, many marshes are cut off from historic freshwater and sediment flows, preventing accretion from keeping up with local sea level rise. DeLaune et al. (1994) proposed that marsh elevation decreases rapidly after saltwater intrusioninduced plant mortality because of the collapse of the root structure, suggesting that peat collapse, not erosion, causes local subsidence, w hich then spreads via erosion. After a sufficient amount of time with no vertical accretion, total plant mortality and peat collapse mark the t ransition of an area from coastal marsh to open water.

PAGE 28

28 O ther studies in the Mississippi River Delta have shown the varying effects of saltwater intrusion on coastal wetlands. Holm and Sasser (2001) found differing salinity responses in two neighboring Mis sissippi River subdeltas (Atchafalaya and Wax Lake) based on presence or absence of salinity incursions. Strong winds associated with cold fronts and tropical storms caused salinity incursions into the Atchafalaya Delt a, but not the Wax Lake Delta. The a uthors hypothesized that the presence of a wide and deep navigation channel near the Atchafalaya Delta allow ed for saline intrusion while the proximity of the Wax Lake Delta to the freshwater plume of the Atchafalaya River prevented saltwater intrusion. T hese differences caused a divergence in vegetation communities in the sub deltas w etlands. Whereas the Wax Lake d elta continued to support the freshwater herbaceous marsh species broadleaf arrowhead ( Sagittaria latifolia Willd. ) and delta arrowhead ( S agi ttaria platyphylla [ Engelm. ] J.G. Sm.) the abundance of S. latifolia in the Atchafalaya Delta declined by 90% In greenhouse studies, the authors found that S. latifolia growth was impaired by salinity concentrations of 6 ppt within 13 days, and that flo oding and simulated herbivory further impaired growth. The resultant changes in wetland composition have the potential to affect the Atchafalaya Bay as a wintering ground for approximatel y 150,000 migratory waterfowl. Pezeshki et al (1987) investigated t he effects of salt stress from storm surges, brine surges associated with oil recovery, and general saltwater intrusion on maidencane ( Panicum hemitomon Schult.), another dominant herbaceous species in the Mississippi River d eltas freshwater marshes. The authors found that flooding with 5 to 12 ppt salt water reduced stomatal conductance by 55% to 80% and decreased photosynthesis by 20% to 67%, with higher salinities resulting in pl ant mortality after

PAGE 29

29 four days Flynn et al. (1995) found that flooding freshwater marsh sods with salinities of 14 to 15 ppt resulted in nearly complete dieback of aboveground biomass and that recovery varied by species. P. hemitomon did not recover at all, while S. lancifolia and rice cutgrass ( Leersia oryzoides [L.] Sw.) exhi bited some ability to recover, depending on post intrusi on salinity and flooding level. McKee and Mendelssohn (1989) found that S. lancifolia and L. oryzoides could survive for longer periods than found by Pezeshki et al. (1987) if salinities were increas ed gradually, however neither species survived at salinities greater than 15 ppt. Grace and Ford (1996) also investigated the potential for recovery of S. lancifolia after saltwater intrusion. In field experiments, the authors subjected S. lancifolia to salinity of 15 ppt for a duration of 1 week, with some plants also exposed to flooding of 20 c m and s imulated herbivory, after which p lants were allowed to recover. The authors found no long term effects from any one, or combination of any two treatments, but found reduced growth and plant death when herbivory, saltwater, and flooding were combined This suggests that grazing by both birds and mammals can increase the potential impact of saltwater intrusion on coastal wetlands. This is especially true in the Mississippi River Delta, which is home to a very large population of vertebrate herbivores including nutria ( Myocaster coypus ), which are estimated to affect nearly 100,000 acres of coastal wetlands (USGS 2000b). Northern Australia Two case studies f rom northern Australia illustrate the potential for rapid wetland effects from naturall y induced saltwater intrusion. Knighton et al. (1991) investigated tidal creek extension and saltwater intrusion in northern Australia. Tidal creek extension occurs in areas with large tidal ranges and sm all land elevation differences. In the

PAGE 30

30 co a stal plains of the Mary River, tidal creek systems have extended more than 30 k m over the past 50 years, destroying freshwater wetland vegetation over an area greater than 17,000 ha Salt tolerant mangroves have slowly expanded along the new cr eek systems. Tidal creeks have also rapidly ex panded in the Alligator Rivers r egion in northern Australia, turni ng freshwater wetlands saline. Winn et al. (2004) associated the loss of freshwater vegetation with the destruction of crocodile breeding grounds, magpie geese habitat, and overall decrease in diversity of flora and fauna. Both systems have changed rapidly over the past 50 years. In 1943, the Mary River coastal plain had two m ain creeks, which extended less than 5 k m inland. The tidal networks developed by (natural) extension and widening of the main channels and tributary growth. By 1989, drainage density was as high as 10 km2 km1 and formerly freshwater billabongs had beco me part of the saline creek system (Knighton et al. 1991). Similarly, the Alligator Rivers r egion extended only 1 k m in 1950, with beach ridges, vegetation, and alluvium depos its blocking saltwater inflow. Above average wet seasons in the 1970s increase d flooding, which cut through alluvium barriers and allowed saline water to extend inland. Storm surges from cyclones, coupled with weak wet season flooding led to further intrusion of saline waters into the freshwater basin, a process compounded by rising sea level s. Further synergistic effects include drying and erosion of the denuded Alligator Rivers m udflats during the dry season. Loss of elevation as soil eroded increased the depth of the basin, further ex acerbating saltwater intrusion. In one secti on of the Alligator Rivers coastal plain, in Kakadu National Park, a barrage was constructed across a tidal creek in an attempt to halt the tidal creek extension, but th e creek

PAGE 31

3 1 breached the structure. By 1997, more than half of the freshwater vegetation had died, bare saline mudflats covered more than 10 times their original extent, and the tidal creek had extended 4 km inland (Winn et al. 2004). United Kingdom Holman and Hiscock (1998) found saline intrusion in the coastal marshes of the River Thurne in northeast Norfolk (United Kingdom) to have been caused by historic and current land drainage for agriculture. Land drainage has been occurring in the River Thurne catchment over several centuries, and the salinization of surface waters has been recorded s ince 1911. Increased salinity in several broads (lowland lakes) has led to blooms of the algae Prymnesium parvum which produces a toxin that is fatal to fish and some gilled invertebrates Higher salinities have also caused changes in wetland plant comm unities from freshwater to brackish water, aff ecting nationally rare species. Several of the affected broads are designated under the 1971 Ramsar Convention as internationally important, which has led to efforts to ameliorate the situation The authors c onclude that management of drainage levels (transitioning from arable farming to wet pasture) has the potential to increase fresh groundwater resources, reducing the salinity of water draining into the broads. Management and Restoration Potential Sea leve l rise is a difficult driver to overcome its effects are beyond the scope of local or regional management However, when saltwater intrusion is caused by anthropogenic drivers or a combination of both natural and anthropogenic effects some amount of res toration and m anagement is likely achievable ( Scruton, 1998). Reestablishing hydrological regimes and connections can ameliorate the salinity effects of saltwater intrusion by increasing (well timed) freshwater flows and supplying the

PAGE 32

32 sediment required for accretion. I n other cases, recharging or reducing groundwater withdrawals from coastal aquifers could push back a n encroaching saltwater wedge. One important consideration when considering increasing freshwater flows is the complex temporal and spatial relationship between flooding and its effects on seed delivery via dispersal, germination and seedling recruitment (Middleton 1999) In other words, simply supplying more fresh water, without a robust understanding of the natural hydrological and ecol ogical dynamics of an impacted system, may not achieve restoration goals However, i n places where restoration methods are successful in maintaining or increasing accretion rates ( i.e., more sediment delivery and maintenance or increase in primary product ivity and peat formation) and /or restoring historic hydrological and salinity regimes the effects of saltwater intrusion may be halted or delayed. Where relative sea level rise continues to outpace accretion and in areas where over developed freshwater r esources cannot be redirected, however, restoration and management efforts may be im possible. The Loxahatchee River in southeastern Florida (USA) is an example of a coastal floodplain wetland ecosystem impacted by saltwater intrusion with primarily anthropogenic drivers where restoration methods are being developed and tested. Of primary co ncern in the Loxahatchee River are: 1) the loss of oldgrowth bald cypress and transition to mangrovedominated communities in the tidal floodplain as salinity increased and 2) inadequate hydroperiod in the upstream riverine floodplain, which has shifted the system towards drier pl ant communities. Thus, the specific life cycle requirements and flooding and salinity tolerances of bald cypress are reviewed in the following section.

PAGE 33

33 Bald Cypress Life Cycle Requirements and Environmental Tolerances Bald cypress is a flood tolerant canopy tree species that grows in forested wetlands (Elcan and Pezeshki 2002) and is the most floodtolerant tree species in Florida. Bald cypres s is found in 23 U.S. states (USGS 1999b ; Fig 1 1), and along with water tupelo ( Nyssa aquatic L.) and swamp tupelo ( Nyssa sylvatica M arshall var. biflora [Walter] Sarg. ), is a dominant tree species in the riverine and coastal wetlands of the southeast ( Allen et al. 1994 ; Day et al., 2006). T hough bald cypress is the dominant canopy species in southeastern floodplain forests th e ecosystem as a whole is speciesrich, with as many as 48 to 62 additional woody species found in bald cypressdominated fores ts (Nixon et al., 1977; Robertson et al., 1978). Early European settler s found large tracts of bald cypress/tupelo floodplain forests in the southeastern coastal plain, and the French explorer Bienville is quoted as remarking, It is almost impossible to conceive the abundance of the forestthere are hundreds of miles of cypress treesas thick as hairs on the headand it is wonderful (Mancil, 1980) While small areas of cypress forest were cleared as early as 1722 (Myers et al., 1995), massive logging in the early 19th century greatly reduced the extent and inventory of bald cypress severely Williston et al. (1980) estimated that cypress forests covered between 1.2 and 2 million ha ( at the time of their inventory ), with over half of the population in Lo uisiana and Florida. In the southeastern United States, the combined effects of saltwater intrusion, land subsidence, canal and levee construction, competition and nutria herbivory have stressed many remnant bald cypress populations and prevented natural regeneration of logged areas ( Allen et al., 1994; Souther and Shaffer 2000 ). Th e following sections focus on the bald cypress life cycle and habitat

PAGE 34

34 requirements and examine the literature on the salinity and flooding tolerance of seeds, seedlings, and mature trees. Seeds Bald cypress is a deciduous conifer, which produces a seedbearing female cone Seeds are produced yearly, with larger seed crops occurring at 3to 5 year intervals ( Burns and Honkala, 1990). Bald cypress seeds are resinco ated and attach to cone scales. Seeds drop to the ground or into water ei ther singly or by entire cone. Squirrels feeding on bald cypress seeds may accelerate this drop as they feed ( Burns and Honkala, 1990). Bald cypress seeds are dispersed primarily by water (S chneider and Sharitz 1988; Middleton, 1999), and are relatively short lived. Thus, the maintenance of viable seed banks is dependent on a regular flood pulse for di stribution Seeds settle along drift lines after floodwaters recede and require moist, but not saturated conditions to germinate (Middleton, 2000) Due to this requirement, Middleton (2000) found that the zone of germination is limited to areas that draw down during the growing season. In a study of seed longevity and germination requirements Middleton (2000) found that bald cypress seeds had a short window for germination, with less than 40% of seeds remaining viable after 100 days and less than 5% remaining viable after 1 year Other studies have found that seeds can remain viable for up t o 30 months if they are under water ( Fowells, 1965). Under saturated conditions, seed germination may occur on sphagnum moss or a wet, muck seedbed, but seeds will not germinate under water ( Fowells, 1965). At the other end of the moisture regime, seeds will not germinate on well drained soils due to lack of surface moisture. Thus, a prolonged drawdown (1 to 3 months) of flooded soils to a saturated condition is required for germination ( Burns and Honkala, 1990; Middleton 1999, 2002). In spite of these rather rigid environmental

PAGE 35

35 requirements, bald cypress forests can survive even with infrequent regeneration events as long as mature populations remain healthy and continue to produce seeds. Since seed germination of other swamp species is similarly restr icted by the extent and timing of flooding, bald cypress is not out competed by other long lived tree species (Middleton, 2000). Germination rates under natur al conditions are variable and highly dependent on timing and extent of flooding. Three laborator y studies of bald cypress in freshwater conditions found germination rates of 15.5%, 25 to 7 5%, and 74% (Faulkner 1982; Beilman 1947; Bonner 1974). In contrast, Gunderson (1984) achieved only 2.1% germination in a field experiment in the Corkscr ew Swam p Sanctuary in Florida. A survey of commercial nursery growers found germination rates ranging from 10% to 90%, with an average germination rate of 57% ( University of Florida Institute of Food and Agricultural Sciences [UF IFAS ] 2004). Conner and Inabinette (2004) found variable germination rates ranging from 24% to 58% (average values) for seeds collected from nine southern U.S. coastal sites with saltwater influence, but germinated under freshwater conditions. The authors did not specify the range of salinities in the wetlands from which the seeds were collected. In a study to test methods for improving bald cypress seed germination, Liu et al. (2009), examined methods to overcome dormancy (stratification, fire, and plant hormones); mechanical obstacles (cutting the seed in half), chemical inhibitors (soaking in acidic, alkaline, and alcohol solutions), and hypoxic stress (adding hydrogen peroxide, H2O2). The authors concluded that soaking seeds in 0.5% to 1.0% sodium hydroxide ( NaOH) for five minutes greatly improved germination, while soaking seeds in

PAGE 36

36 1% NaOH also improved growth of bald cypress seedlings. S oaking seeds in hydrochloric acid ( HCl) H2O2, gibberellic acid ( GA3 ) and alcohol did not affect germination rates. While many studies have ex amined the effect of salinity on bald cypress seedlings (see following section), fewer have investigated salinity effects on seed germination Krauss et al. (1998) examined the germination capacity of seeds from both freshwater and brackish water locations in an attempt to identify salt tolerant bald cypress genotypes for use in largescale forest restoration projects in areas af fected by saltwater intrusion. Seed germination decreased with increasing salinities, with mean germination rates of 26.3%, 22.9 %, 15.4%, and 10.2% based on salinity treatments of 0, 2, 4, and 6 ppt respectively. The authors found superior germination in three of the eight fa milies used in the experiment. The more successful families were all from brackish sources. Seedlings B ald cypress seedlings reach heights of 20 to 75 cm their first year of growth (Bull 1949), although their growth and survival is highly dependent on hydroperiod and salinity. Seedlings must grow fast enough to keep their crowns above floodwaters for most of the growing season in order to survive (Conner 1988; Conner et al. 198 6 ; Conner et al. 198 7 ) Growth is reduced when seedlings are submerged and prolonged submergence causes seedling mortality ( Fowells, 1965). This may explain why many cypress sta nds are of the same age, with regeneration commonly occurring during extended periods of low water levels (Matoon, 1915; Putnam et al., 1960). Middleton (2000) found that the seedling establishment zone was much narrower than the

PAGE 37

37 germination zone and was restricted to higher (relative) elevations with prolonged summer drawdown and less overtopping of seedlings with floodwaters. Allen et al. (1996) reviewed the effects of flooding, salinity and the combination of both on bald cypress seedlings and made the following general conclusions: S eedlings can tolerate shallow flooding, but it causes a period of stress and adaptation during the first year. S hallow flooding causes physiological impairment, including inhibited root elongation, reduced net photosynthes is, an d reduced stomatal conductance. S eedlings are moderately salt tolerant. Effects of combined flooding and salinity are greater than either alone, and these effects are more pronounced at higher salinities S eedlings show an intraspecific variation in f lood and salinity tolerance with more tolerant genotypes found in brackish or freshwater areas. Regarding the effects of flooding alone, Shankin and Kozlowski (1985) found flooding bald cypress seedlings with 2 cm of water for 14 weeks reduced height growth by 30%, leaf area by 56%, and total dry weight by 51%. Megonigal and Day (1992) found a twothirds reduction in biomass of continuously flooded versus periodically flooded seedlings. For the continuously flooded seedlings, morphological changes i n the second and third years (including the development of adventitious roots) improved growth, with no significant differences between flooded and nonflooded seedlings by the end of the third year. In a controlled greenhouse experiment, Allen et al. (1994) found the survival, height growth, leaf area, and total biomass of seedlings from five fresh and ten brackish water sources to decline with increasing salinity, but with less dramat ic effects than other studies. Mean s urvival of seedlings from all fif teen sources was 100% at a salinity of 0 ppt, 99% at 2 ppt, 95% at 4 ppt, 83.5% f or 6 ppt, and 72.5% for 8 ppt. The authors also found three of the fifteen families to perform better overall

PAGE 38

38 under high salinities, indicating intraspecif ic variation in sal t tolerance. Pezeshki (1990) found no differences in height growth, stomatal conductance, or net photosynthesis between seedlings watered (but not flooded) wi th 0 ppt and 3 ppt salinities. Connor (1994) found little difference in survival between treatments of 0 and 2 ppt, but 100% mortality after 10 weeks of flooding with water at a salinity of 10 ppt. In a field experiment, Connor and Inabinette (2004 ) investigated the survival of seedlings grown from seeds collected from eight estuarine areas, planted in the field, and observed for two years. Salinity varied during the study period, with severe droughts reducing freshwater flow and causing a salinity spike of 18.5 ppt in the studys second year. Seedling mortality was highly variable, with one study s ite losing 100% of seedlings after two intrusion events raised salinity conc entrations to 7.5 and 12.1 ppt. In the second study site, mortality was also severe, with only seedlings from Alabama, Fl orida, and Louisiana surviving. By the end of the study, overall morality was 27%, 78%, and 85% for seedlings from Louisiana, Alaba ma, and Florida, respectively. The seeds from Louisiana w ere collected from areas of degraded coastal forests where salinities ranged from 3.5 to 12 ppt. Krauss et al. ( 1998 ) also performed field experiments to investigate the growth and health of bald cypress seedlings from different families ( i.e., individuals more closely related to each other than oth er individuals in a population [ Zobel and Talbert 1984 ]) u nder varying salinit y regimes. The authors found seedling growth to be limited by a combination of vegetation, salinity, and hydrologic regime. Despite these interacting factors, seedling height and diameter were far greater where salinity was lowest. The authors also found higher foliar concentrations of sodium ( Na+) and chloride ( Cl-) in

PAGE 39

39 trees from higher salinity sites, indicating a considerable stress, since both ions can cause direct ion t oxicity at high concentrations. Certain genotypes maintained superior growth in this field experiment, agreeing with results from early greenhouse studies ( e.g., Allen et al. 1994), and indicating the potential for selection of salt tolerant genotypes. In a study involving bald cypress seeds and seedling s collected in the Loxahatch ee River floodplain, Liu et al. (2006) measured seedling survival, height, stem diameter, growth rates, biomass, water potential, and Na+, Potassium (K+), and Calcium ( Ca2+) content under four salinities (0, 2, 4, and 8 ppt) and three flooding levels (0%, 50%, and 100% root submergence). The authors found that seedlings tolerated 100% root submergence for 30 days with a salinity of 0 ppt, as well as 50% and 100% flooding with a salinity of 2 ppt However, 25 to 75 % of seedlings died under 100% root submer gence with salinities of 4 and 8 ppt. The authors concluded that a general threshold of 2 ppt is required to maintain seedling health and, in turn, a healthy bald cypress ecosystem. Mature trees Mature bald cypress can grow to be very large and very old. The largest specimens can reach 40 to 45 m and ha ve diameters at breast height (DBH ) of 200 375 cm ( Fowells 1965) In the United States, the champion bald cypress grows in Louisiana, has a DBH of 521 cm, is 25 m tall, and is estimated to be over 3000 years old (American Forestry Association [AFA] 1982). As the dominant canopy tree species, bald cypress is a major component of overall wetland function, controlling light availability, productivity, trophic dynamics, and nutrient cycling (Middleton, 199 9). In the dense shade of a healthy forest, bald cypress trees cease growing taller after about 200

PAGE 40

40 years, but may continue to add diameter ( Burns and Honkala, 1990) M ost bald cypress seedlings that germinate in highly shaded conditions do not reach mat urity. The species grows slowly in partial shade, and does best in full sun (i.e. in a canopy g ap or at the edge of a stand). Thus, the species is classified as having intermediat e shade tolerance ( Burns and Honkala, 1990). B ald cypress is one of the f ew conifer species that can sprout from the stumps of trees up to 60 years old (though younger trees are more likely to sprout). Sprout survival is often poor, however, and those that survive are more subject to wind damage as the stump decays ( Fowells 1 965) H ydroperiod is an important factor determining the survival of seeds and seedlings, but as trees mature, their flooding tolerance increases. Hydroperiods in bald cypress swamp s have been found to range between 280.5 and 365 days, with an aver age of 330 days of inundation ( Wetzel, 2001) Floodwaters also input significant amounts of nutrients, making floodplain bald cypress forests highly productive ecosystems compared to terr estrial forests. Stillwater bald cypress forests do not receive this year ly subsidy, and are thus equally or less productive than terrestrial systems ( Ewel, 1990) Regarding salinity tolerance, Penfound and Hathaway (1938) found a maximum tolerance of 8.9 ppt for mature bald cypress in southern Louisiana, although it is unclear how long these trees were inundated. Chabrek (1972) found that bald cypress stands rarely occur naturally in areas with salinity exceeding 1.98 1.4 0 ppt ( mean std ) Wicker et al. (1981) concluded that bald cypress forests are limited to areas where sa linity does not exceed 2 ppt more than 50% of the time that trees are inundated. In a study of environmental stress to mature bald cypress trees at 21 sites along the

PAGE 41

41 Northwest Fork of the Loxahatchee River between 1979 and 1982, all sampled trees showed signs of stress ( indicated by poor growth rings ) a t some point in their lives h owever the proportion of stressed trees 14.5 km or less from the river mouth increased from 30% in 1940 to 80% in 1982 During the same time period, the proportion of stresse d trees 1 4.5 km or more upstream of the river mouth decreased from 11 % to 3% (South Florida Water Management District [SFWMD], 2006) In summary, although mature trees may be able to withstand high salinity events from acute environmental impacts such as h urricanes, prolonged increases in the duration, depth, and salinity of inundation can kill even mature trees. Consequences are already apparent in many coastal areas, with heavy tree mortality seen from the Mississippi River d elta to the Loxahatchee River in southeast Florida, the location of our field study Study Site: The Loxahatchee River The Loxahatchee River is located on the lower eastern coast of Florida, USA (26 59 N, 80 9 E), and its watershed drains approximately 544 km2 in P alm Beach and Ma rtin counties. The Loxahatchee River has three main tributaries: the North Fork, the Northwest Fork, and the Southwest Fork. These three tributaries join at the Loxahatchee Estuary Central Embayment, which connects to the Atlantic Oce an via Jupiter Inlet ( Fig. 1 2 ). The watershed includes several protected, publicly owned areas including Jonathan Dickinson State Park (JDSP), Loxahatchee Slough Preserve, Jupiter Ridge Natural Area, and J.W. Corbett Wildlife Management Area. The Loxahatchee River is often referred to as the last freeflowing river in southeast Florida ( SFWMD,

PAGE 42

42 2006), and i n 1985, a 15.3km stretch of the Northwest Fork was designated as Floridas first National Wild and Scenic River (NPS, 2004). The Northwest Fork of the Loxahatchee River (NW Fork) and its watershed are unique in that they contain a diverse array of terrestrial and aquatic ecosystems including sandhill, scrub, hydric hammock (a plant community characterized by 30 to 60 days of inundation yearly and mixed, facultative hardw ood species), wet prairie, floodplain swamp, estuarine swamps (primarily red mangrove, Rhizophora mangle L., and white mangrove, Laguncularia racemosa [L.] Gaertn.f.), seagrass beds, tidal flats, oyster beds, and coastal dunes (Roberts et al., 2006; Treasure Coast Regional Planning Council [TCRPC], 1999) in a n increasingly urbanized area Within the river channel itself, there are four distinct aquatic environments: freshwater, oligohalin e, mesohaline, and polyhaline. Since much of the N W Forks watershed is protected, many of these ecosystems remain intact and support a diversity of protected animal and plant species including the endangered West Indian manatee ( Trichechus manatus latirostris ) and four petal pawpaw ( Asimina tetramera Small). Th e upper watershed of the N W Fork is also home to one of the last remnants of bald cypress swamp in southeast Florida. However changing hydrology and salinity regime s in the river and its floodplain over the past century have been linked to undesired vegetative changes in th e floodplain forest (SFMWD, 2006). Of primary concern are: 1) the transition from bald cypress floodplain swamp to mangrovedominated communities in the tidal floodplain as saltwater moves further upriver and into the floodplain and 2) inadequa te hydroperiod in the upstream riverine floodplain, which has shifted the system towards drier plant communities (SFWMD, 2009).

PAGE 43

43 Altered hydroperiods and encroaching salinity in the NW Fork have been linked to four major factors: 1) construction of major a nd minor canals that direct water away from the historic watershed; 2) the permanent opening of Jupiter Inlet ( Fig. 1 2 ) historically an intermittent barrier to saltwater intrusion, in 1947 ; 3) construction of the C 18 canal ( Fig. 1 2 ) in 1958, which transferred a majority of flow from the NW Fork to the Southwest Fork ( Fig. 1 2 ); and 4) lowering of the regional groundwater table by community consumption (SFWMD, 2002). T hese hydrologic changes have, in turn, been linked to changes in the composition of fl oodplain vegetation, where studies have documented the retreat of bald cypress upriver since at least the turn of the twentieth century (General Land Office [GLO], 1855; Alexander and Crook, 1975; McPherson, 1981; Ward and Roberts, 1996, SFWMD, 2002, 2005) The health of the Loxahatchee River and its adjacent ecosystems is a priority for many residents, visitors, ag encies, and political leaders. As such, a number of protection and restoration planning efforts have been initiated over the past twenty years, including the Loxahatchee River National Wild an d Scenic River Management Plan and the North Palm Beach County Comprehensive Everglades Restoration Plan (CERP) Project (among others) (SFWMD, 200 6 ). A s in many other U.S. states (e.g., Johnson, 2008), Flor ida requires its water m anagement agencies to make a priority list of rivers and schedule for their establishment of minimum flows and levels (Chapter 40E 8 of the Florida Administrative Code). In Florida, this task falls to the five Water Management Dist ricts Minimum Flows and Levels (MFLs) are designed to protect the ecology and water resources of a river from temporary loss of water resource functions which result fro m a change in surface or groundwater hydrology that takes more than

PAGE 44

44 two years to rec over (Sec tion 373.042[ 1 ] Florida Statues). Chapter 373 protects water resource functions such as flood control, water quality, water supply and storage, fish and wildlife protection, and navigation and recreation (Mortl, 2006). The proposed minimum flow criteria are linked to the concept of protecting valued ecosystem components (VECs) from significant harm and the MFL for the NW Fork was adopted in 2003 (SFWMD, 2002) Specifically, the MFL mandated that a violation would occur if an exceedance of the MFL criteria was met more than once every six years In this case, an exceedance was defined as a reduction of flow at Lainhart Dam ( Fig. 1 2 ) below ~ 1 m3 s1 (nominally 35 ft3 s1) for more than 20 consecutive days within any given calendar year (SFWMD 2002). Due to reduced freshwater flows in the N W Fork it was recognized that low dry season flows would immediately t rigger exceedances of the MFL. Under the MFL legislation, this mandated the development and implementation of a r ecovery p lan to achieve the MFL. The proposed r ecovery p lan includes structural, operational, and regulatory components that when implemented will provide sufficient additional water to the Northwest Fork to meet the proposed MFL (SFWMD 2002). A draft, Evaluation of Res toration Alternatives for the Northwes t Fork of the Loxahatchee River (SFWMD 2005), was released in March 2005, and the final Restoration Plan for the Northwes t Fork of the Loxahatchee River (Restoration Plan) was released in April 2006 with the goal o f protecting the rivers remaining cypress swamp and hydric hammock communities, as well as estuarine resources including oysters ( Crassostrea virginica), fish larvae, and sea grasses all identified as VECs (SFWMD, 2006). Both MF L targets and restoration scenarios rely primarily on increased freshwater flow over Lainhart Dam,

PAGE 45

45 which was found to be the most important driver of upstream hydroperiod and downstream surface water salinity. In spite of the Loxahatchees freeflowing appel lation, flow over Lai nhart dam is controlled by managing conveyance through the G 92 water control structure ( Fig. 1 2 ). Conclusions and recommendations of the MFL and Restoration Plan, and reviewed in the following sections. Historic and C urrent H ydrology In the N W Fork en croaching salinity has been linked to reduced freshwater flows, increased tidal connection, sea level rise, and lowering of the regional water table (Mortl, 2006) Historically, the N W Fork received flow from the Loxahatchee Marsh ( Slough) and Hungryland Slough. Currently, the slough receives discharges from C 18 Canal ( Fig. 1 2 ) and runoff and groundwater inflow from adjacent uplands The N W Fork also receives input from three major tributaries: Cypress Creek, Hobe Grove Ditch, and Kitching Creek ( Fig. 1 2 ). Beginning in the early 20th century m ajor land conversion for agri cultural and urban development drastically altered drain age patterns in the watershed. Canals, levees, and drainage ditches lowered the water table and increased th e speed of drainage The Masten and Lainhart Dams ( Fig. 1 2 ) were constructed in the 1930s to maintain higher water levels in the N W Fork (SFWMD 2006) Road construction, dredging, and canal construction for irrigation of citrus and sod farms in the 1940s and 1950s furt her reduced flows to the N W Fork via the Federation and Hobe Grove ditches and Kitching Creek. The construction of water conveyance infrastructure has also effectively reduced the size of the watershed from approximately 700 km2, as defined topographicall y, to 544 km2, as defined by topography and hydraulic structures (canals, levees, etc.) that direct water away from the historic watershed (Mortl, 2006). The Masten and Lainhart dams were

PAGE 46

46 reconstructed in the 1980s to help reduce over drainage of the watershed, especially during the dry season (SFWMD, 2006). Most significantly, the C 18 canal was constructed in 19571958 to provide drainage and flood protection to the region. The canal redirects a significant portion of the freshwater flow from the N W For k to the channelized Southwest Fork, where it discharges to the Loxahatchee Estuary Central Embayment though the S 46 control structure ( Fig. 1 2 ). This severely reduced freshwater flows to the N W Fork In 1974, the C 14 canal and the G 92 structure ( Fig 1 2 ) were built to reconnect the C 18 canal and the Loxahatchee Slough with the N W Fork with flows of 1.4 to 2.8 m3 s1 ( nominally 50 to 100 ft3 s1; SFWMD 2006). A consent decree, brought about by a lawsuit filed by the Florida Wildlife Federation (FW F) mandated that the SFWMD provide 1.4 m3 s1 (nominally 50 ft3 s1) of flow to the N W Fork subject to the presence of available water supplies (SFWMD 2002). H ydrology at the mouth of the Loxahatchee Estuary has also been modified. Historically, the J upiter Inlet ( Fig. 1 2 ) opened and closed due to variation in flow from the Loxahatchee River, the Jupiter River, Jupiter Sound, and Lake Worth Creek. During the dry season (November April) silt and debris filled the inlet, preventing saltwater flow into the estuary and river. In the wet season (May October) high freshwater flows opened t he inlet to the Atlantic Ocean, but prevented or minimized the intrusion of saltwater. From the late 1800s through 1912, construction of the Intracoastal Waterway and the St. Lucie and Lake Worth inlets reduced flow to the Jupi ter inlet, causing it to close. In 1947, the US Army Corps of Engineers (USACE) permanently stabilized

PAGE 47

47 Jupiter Inl et for navigation (SFWMD, 2002) and it has remained permanently open since that time. Historic and C urrent V egetation Wetlands are very sensitive to changes in hydrolog y. Modifications of wetland hydrology have a cascading effect on nearly all biogeochemical processes in an ecosystem and can affect oxygen and nutrient availability, pH salinity, and sediment deposition. Wetland hydrology and physiochemical environment are directly related to wetland plant species composition and richness, primary productivity, and organic matter accumulation ( e.g., Mitsch and Gosselink, 2000). As exp ected, wetland communities in the floodplain of the N W Fork have undergone significant changes as hydroperiod and salinity have changed over the past century The earliest documented vegetative survey comes from the 1855 General Land Office (GLO) Townshi p Plats and Field Survey Notes (GLO, 1855). This early report indicated that mangroves were present in the floodplain only up to the confluence of the North, Northwest, and Southwest Forks, about 9.7 km upstream of the river mouth (denoted as river kilome ter 9.7, RK 9.7) Freshwater species, including bald cypress, cabbage palm ( Sabal palmetto [Walter] Lodd. Ex Schult. & Schult. f.) wax myrtle ( Myrica cerifera L. ), pop ash ( Fraxinus caroliniana Mill.) and bay trees ( Persea spp.) were identified as the major tree s in the riverine swamp upstream of RK 9.7. By 1967, a vegetation transect located near RK 12.1 (i.e., upstream of RK 9.7) was found to contain a mix of salt tolerant and nonsalt tolerant species that included healthy, stressed, and dead bald c ypress ( SFWMD, 2002), and in 2003 the Florida Park Service (FPS) and SFWMD resurveyed the transect and found only one liv ing bald cypress remaining (SFWMD, 2005).

PAGE 48

48 Alexander and Crook (1975) used aerial photography from 1940 and groundtruthing to examine changes in the riverine swamp community of the Loxahatchee River and Kitching Creek. The authors concluded that areas of wet prairie and swamp hardwood communities had been converted to pinelands and mangrove communities since 1940 due to lowered groundwater table and saltwater encroachment between RK 9.7 and RK 12.9 Their study also identified logging, fire, hurricanes, and heavy frost as p ossible impacts on plant communities. Based on analysis of peat soils, the authors also concluded that the histori cal reach of bald cypress forest was downstream to approxim ately RK 9.7, which is in agreement with GLO ( 1855) McPherson (1981) studied the transitional area between bald cypress and mangrove forests and found higher surface salinities near dead and stressed bald cypress (20 to 30 ppt) than near intermediately st ressed trees (15 to 20 ppt). McPherson found that salinities decreased with depth below the ground and distance from the river channel, especially where fresh water seepage was observed and conclu ded that the bald cypress forest extended no further downstream from than approximately RK 8.9 In 19831984 six 10m wide vegetation transects were established along the N W Fork as part of the SFWMDs Loxahatchee River Restoration Plan (Fig. 1 3 ). Ward and Roberts (1996) resurveyed the transects between October 1993 and January 1994 and found that bald cypress density (stems ha1) increased from Transect 6 ( denoted as T6; near Kitching Creek at RK 13.5) upstream to T 1 ( RK 23.3), though density was lower on T 3 (RK 19.5), which had large populations of pop ash, red maple ( Acer rubrum L. ), and cabbage palm. These six transects were resurveyed in 2003, and four additional

PAGE 49

49 transects were added, including transects in the lower segments of Kitching and Cypres s Creeks and in the North Fork of the Loxahatchee River (Fig. 1 3 ) The most thorough examination of changes in the floodplain communities of the Northwest Fork is SFWMDs interpretation and analysis of aerial photography from 1940, 1985, and 1995 ( SFWMD 2002; Fig. 1 4 ) In 1940, mangroves were dominant between RK 7.2 and RK 9.7 and extended upstream to RK 12.6 represent ing 23% of the vegetative coverage of the floodplain in the N W Fork (Fig. 1 4a) Freshwater communities were present upstream from RK 10.5 and were dominant above R K 12.9 represent ing 73% of the floodplains vegetative coverage. In 1940, development and disturbance in the watershed was very minor ; the 1940 U.S. Census lists 215 residents in the Town of Jupiter (SFWMD, 2002). By 1985, a large portion of the watershed had been developed with the except ion of Jonathan Dickinson State Park Large areas of mangroves in the N W Fork were destroyed due to urbanization between RK 7.2 and RK 8.9 (Fig. 1 4b) H owever, mangroves had become do minant between RK 8.9 and RK 14.0 and extended as far upstream as R K 16.9. Despite losses from development, mangroves represented 25 % of the N W Forks vegetative coverage in 1985, while the freshwater community coverage had been reduced to 61% The major ity of vegetative changes occurred in the lower and middle segments of the Northwest Fork, with mangroves representing over 75% of the plant community downstream of RK 14.8 by 1985 (SFWMD, 2002). Analysis of aerial photography from 1995 revealed only minor changes in vegetative coverage, likely due to increased freshwater flows resulting from the construction and improved operation of the G 92 structure. Finally, aerial photographs and additional

PAGE 50

50 resources indicate that the majority of mangrove encroachme nt occurred between 1953 and 1979 (SFWMD 2002). Surface W ater M onitoring and M odeling Sever al models have been developed to support the development of the MFL and Restoration Plan for the N W Fork These include a watershedscale model of freshwater inflows (the Watershed or WaSh model), a hydrodynamic/salinity model (RMA 2 and RMA 4), and a Long Term Sal inity Management Model (LSMM) These models were used in combination to evaluate alternative scenarios in the Restoration Plan (Fig. 1 5 ) Zahina (2004) also developed a vegetation model (SAVELOX) that used empirical data to estimate changes in vegetation based on extrapolated changes in salinity The structure, assumptions, and results of these modeling efforts are summarized in the following sections to place into context the conclusions of the MFL and Restoration Plan. Further details are available in SFWMD (2002, 2006). The Watershed (WaSh) m odel Staff from the SFWMD used a restructured version of the Hydrologic Simulation Program Fortran model (H SPF ) (Donigian et al., 1984) to simulate freshwater inflows to the Northwest Fork. The WaSh model uses a cell based system, includes groundwater and dynamic channel routing components (Wan et al., 2003), and is capable of modeling watersheds with shallow water tables and dense drainage networks. The four major components of the WaSh model for the Loxahatchee River were: 1) a cell based representation of the watershed basin land surface; 2) a groundwater component consistent with the basin cell structure; 3) a surface water drainage system; and 4) water management practices (SFWMD 2006 ).

PAGE 51

51 WaSh uses the PWATER and IWATER routines from HSPF to route rainfall in each cell to one of three fates: 1) infiltration into the groundwater; 2) evaporation into the atmosphere; or 3) drainage to surface water. Infiltrated water is transferred to the groundwater model, which exchanges groundwater between cells as well as between groundwater and surface water. Groundwater flow is modeled using a two dimensional ( 2 D ) unconfined groundwater flow model. The surface water drainage component is mad e up of both cells and reaches. Reaches represent river and stream reaches as well as major canals and hydraulic structures. Channel flow is modeled using a 1D fully dynamic shal low wave model (SFWMD, 2006). WaSh uses equally sized grid cells with associated attributes (land use, soil type, elevation, impervious area, and sl ope) to describe the watershed. Routing of precipitation to infiltration, evaporation, and runoff is based on the hydrological parameters associated with grid cell attr ibutes, particularly land use. WaSh uses three types of cells: free cells, canal cells, and reach cells. Free cells contain no canals Reach cells contain a river or stream reach or a primary (large) canal. Canal cells contain tertiary (small) canals that are not included as a reach cell. Each cell has an associated attribute that specifies where runoff from that cell is routed. The HSPF routines run on 1 hr t ime steps, 24 hours at a time. A water balance is calculated for each cell (including rainfall, evaporation, storage in the soil, surface runoff, and infiltration) every day, after which accumulated surface runoff and infiltration are routed to groundwater or surface water, as appropriate. WaSh was implemented on the Northwest Fork by dividing the watershed into four regions: the Jonathan Dickinson State Park region ( which includes the North Fork, K itch

PAGE 52

52 Gauge, Park River, and Loxahatchee Estuary basins ); t he Pal Mar and Grove region (whi ch includes the Pal Mar, Historic Cypress Creek, Grove West, and Grove East basins); the Jupiter Farms region (which includes Jupiter Farms and the Wild and Scenic basins); and the C 18 region (which includes the C 18 and Corbett basins, along with flow di versions from the L8/Grassy Basin (Fig. 1 6 ) Grid cells were populated with hydrography, 2000 land use, soil, and LIDAR elevation data or the 0.30 m (nominally 1 ft contour where LIDAR was unavailable. Rainfall and evapotranspiration (ET) data from 1965 to 2004 were used to calibrate and validate the model. A complete description of the calibration and validation process is found in Chapter 6 of SFWMD (2006). After calibration and validation, the model was used to create a long term simulation of freshw ater flows from 1965 to 2003. S imulated flows were then used as input s to a hydrodynamic/salinity model ( see following section). Daily flows were averaged to estimate the average contribution of freshwater flow delivered to the N W Fork from each individu al basin (Table 1 1 ). Calibrated model results indicated that nearly half (45%) of the flow in the N W Fork flows over Lainhart Dam ( via the C 18/Corbett G 92, and Jupiter Farm basins) Cypress Creek (Pal Mar and Grove West basins) provides the next larg est flow contribut ion ( 33% ) It is important to note that these values describe daily averages over the 39year simulation ; a ctual flow volumes and relative contributions vary widely according to climate, season, and water management practices (SFWMD 200 6 ). Hydrodynamic and s alinity m odel With freshwater inflows from the WaSh model as inputs, staff from the SFWMD developed a hydrodynamic/salinity model to determine the role of freshwater flows from

PAGE 53

53 the N W Fork and S 46 structure on salinities in the Loxa hatchee River and Estuary To calibrate and validate the model, a series of surface water elevation (SWE) and surface water electrical conductivity (SWEC ; used to calculate salinity ) monitoring stations were established from the Coast G uard station, near Jupiter Inlet upstream to RK ( Fig. 1 2 ) The hydrodynamic/ salinity model used the RMA 2 and RMA 4 models ( USACE 1996) RMA 2 is a 2D, depthaveraged hydrodynamic model that c omputes water surface elevations and horizontal velocity components It use s a finite element solution of the Reynolds form of the Navier Stokes equations for turbulent flows. The Manning s or Chezy equations are used to calculate friction and turbulence characteristics are defined usi ng eddy viscosity coefficients. RMA 4 simulates depthaveraged advectiondiffusion processes and is used to determine mixing processes RMA 4 was used to analyze the effects of diff erent restoration scenarios on salinity distributions in the Loxahatchee River using depthaveraged hydrodynamics from the RMA 2 model. The RMA models used a model mesh consisting of approximately 5,000 nodes, resulting that retains the oxbows and meandering channel of the Northwest Fork and extends 4.8 km into the Atlantic Ocean to create a stable boundary condition for salinity Since t he RMA model makes explicit use of basin bathymetry, it had the capability of simulating the geography of the N W Fork before and after implementation of a restoration project that restored several previously bisected oxbow s in the Northwest Fork to reduce the upstream extent of saltwater intrusion (Dent, 1997a ). The RMA model was set up using a bathymetric survey performed by the United States Geological survey ( USGS ) in 2003 and verified using measured f ield data from a series of tide an d salinity monitoring stations installed by the USGS, SFWMD, and the

PAGE 54

54 Lox ahatchee River District (LRD). Three of the five sampling locations record ed salinity and temperature at two depths to detect temperatur e and salinity stratification. The models onl y driving forces were tide and freshwater inflow, and thus the effects of wind, precipitation, evaporation, and exchange with gr oundwater were not considered. The RMA model was verified using field dat a from May through A ugust 2003. According to SFWMD (2005 ), the model was able to predict the tide regimen rather accurately and predict the trend of salinity changes over the 3month simulation period. Since RMA 2 and RMA 4 both output depthaveraged salinities, model output matched measured data better where the system was well mixed (i.e., at the Jupiter Inlet) than in more stratified areas. Field sampling stations measure d salinity at fixed points (while the tide goes up and down), and are thus measured bottom salinities at high tide a nd top salinities at low tide. M easured differences between high and low tide salinities can thus be much greater than the modeled differences SFWMD identified unaccounted for freshwater flows from both surface and groundwater as another possible reason for differences between modeled and measured data. After verification, the RMA model was used to simulate salinities in the NW Fork and Central Embayment of the Loxahatchee River under twelve differ ent freshwater flow scenarios ranging from 1.13 to 198.21 m3 s1 (nominally 40 to 7000 ft3 s1), based on s imulations from the WaSh model. Salinities under each flow scenario were then calculated at fifteen sites where salinity values were required for ecological assessment RMA output was averaged over a complete lunar moth to account for the full tidal cycle. Regression of the freshwater flow versus salinity relationship revealed a strong exponential function of the form:

PAGE 55

55 bxae Y Y 0 (1 1) where Y is salinity in ppt, X is freshwater flow in ft3 s1, and Y0, a and b are regression coefficients. As expected, salinity deceases with increasing flow Although there are deviations between field data and modeled flow versus salinity curves attributable to tide, wind, groundwater flow, precipitation, and evaporati on, the overall trend (SFWMD, 2005) indicate s a strong relationship between freshwater inflow and salinity (t his relationship was tested with four years of field data and results are presented in Chapter 2). Analysis of modeled and field data indicate s trong tidal mixing in the N W Fork, leading the authors to make two important conclusions: 1) restoration flow scenarios can be modeled using cumulative flow to the N W Fork as opposed to individual flows from form all tributaries, simplifying the analysis o f restoration alternatives; and 2) any addition of freshwater flows will help achieve lower salinities in the N W Fork, whether they come from the G 92 structure (and over Lainhart Dam) or from another basin. Longt erm s alinity management m odel The RMA mode l described above uses constant freshwater inflows to estimate salinity conditions in the N W Fork and Central Embayment of the Loxahatchee River Since freshwater flows are rarely consistent enough to be assumed constant, SFWMD developed the Long Term Sal inity Management Model (LSSM). LSSM predicts tidally averaged salinities under different restoration scenarios considering the dynamic nature of the natural system. LSSM uses a simple exponential function to simulate the transition from one quasi equilibrium state to another, simulating the lag time between changes in freshwater flow and salinity The model can also be used to calculate

PAGE 56

56 required freshwater flow volumes required to achieve salinity management goal s (SFWMD 2006). LSSM uses the amount of freshwater inflow to set a target or equilibrium salinity value then transitions the system to the target value on daily time steps according to the relationship: ct EQe SAL SAL SAL SAL ) (1 1 2 ( 1 2) where SAL1 is the salinity at the beginning of the time step, SAL2 is the salinity at the end of the time step, SALEQ is the equilibrium salinity at a specific point under a specific freshwater inflow volume, t is time, and c is a constant that control the speed of transition between states If the freshwater infl ow volume changes before salinity reaches equilibrium, the program calculates a new equilibrium salinity and reinitiates the procedure (SFWMD 2006). Comparison of LSSMs output with field data indicate that the mean salinity estimated by the model is approximately 0.1 to 0.6 ppt greater than measured data. However, the authors concluded that the simulated daily salinity matches well with the observed salinities statistically (SFWMD 2005) and output from LSSM was used to simulate salinity conditions in the Northwest For and Central Embayment of a 39year period of record from 1965 to 2003. This long term simulation was then used to analyze the effectiveness of six proposed restoration flow scenarios, based on estimations of ecosystem responses (i.e., p erformance measures) to modeled salinities. SAVELOX m odel The Sa linity Ve getation model for the Northwest Fork of the Lox ahatchee River (SAVELOX) model (Zahina, 2004) was developed within the Ecological Evaluation

PAGE 57

57 Group of the SFWMDs Water Supply Planning and Development Division. The purpose of the SAVELOX model was to evaluate the potential vegetative impacts of different restoration flow scenarios based on currently observed vegetation and hydrology SAVELOX is an empirical model based on vegetation s urveys conducted from 2000 to 2002 and a 30 year salinity time series, which was simulated based on the model s summarized in the previous sections Using these data and simulations empirical relationships between vegetation parameters (species abundance, canopy diameter, tree height, and tree DBH) and long term salin ity conditions were developed. 30year salinity time series were simulated for seven sites along the N W Fork spanning from RK 12.6 to R K 16.4 and these time series were used to calculate summa ry statistics (daily mean, mode, standard deviation, and maximum salinity concentrations) and to calculate the amount of time t hat a site experienced salinity above certain threshold levels (1, 2, 3, and 4 ppt ). Using these threshold values, salinity eve nts were defined as the number of consecutive days that the site met or exceeded the threshold value, and the mean (average) of these events was defined as Ds (mea n duration of salinity event). The mean number of days between each salinity event was also calculated and defined as Db. Ds and Db were calculated for each threshold value. T he ratio of Ds: Db was then used to describe the salinity characteristics of each site when relating salinity condit ions to measured vegetation parameters. Field vegetation surveys included both quantitative and semi quantitative surveys The semi quantitative survey was used to identify general vegetative trends related t o salinity and to identify key species for further investigation during the

PAGE 58

58 quantitative survey A t otal of 23 sites on the Northwest Fork and ten sites on Kitching Creek were surveyed using the semi quantitative method in 2000 and 2001 Survey sites were intentionally located greater than 30 m (nominally 100 ft ) from river bends oxbows and the floodp lain upland transition to reduce the potential effects of river flow and freshwater seeps on vegetation community response. Abundance of all macrophytes within a 122 x 7.5 m (nominally 400 x 25 ft) area along each riverbank was recorded at each site. Abu ndance was measured using a modified version of the BraunB lanquet cover abundance scale. Results of the semi quantitative survey were used to select key species based on salinity tolerance, physiological characteristics, and ecosystem function and to meet specific criteria including: species that make up a significant component of the riverine swamp community (i.e., no rare species); long lived species (to reflect long term salinity conditions); and species that represent a range of saltwater tolerances. The ten species that met all criteria were bald cypress cabbage palm, laurel oak ( Quercus laurifolia Michx. ), Virginia willow ( Itea virginica L. ), dahoon holly ( Ilex cassine L. ), pop ash, pond apple ( Annona glabra L. ), swamp bay ( Persea palustris [Raf.] S arg. ), red mangrove, and red maple. Nine sites from the semi quantitative surveying effort were the resurveyed in Janu ary 2002. At each site, two 30 x 7.5 m (nominally 100 x 25 ft) belt transects were established and data was collected for adult trees, saplings (juvenile trees taller than breast height but shorter than canopy height), seedlings (juveniles shorter than breast height), an d stump sprouts of key species. For each key species, the number of individuals, canopy diameter, tree height, and trunk circumference (to calculate DBH)

PAGE 59

59 were recorded. Vegetation data and long term salinity conditions were used to create salinity vegetation relationships based on regressions correlating a measured vegetation parameter and the Ds: Db ratio. The model was verified by comparing model output with data from field surveys at locations not used in model development. SAVELOX was used to model three distinct hydrological periods: from 1971 to 1981 (below average rainfall, reduced freshwater flow); from 1981 to 1991 (average rainfall and improvements to the G 92 structure, leading to increased freshwater flow); and from 1991 to 2001 (aboveaverage rainfall operational improvements, leading to further increases in freshwater flow). Study and model results are lengthy and are discussed in detail in Zahina (2004). In general, the study found a high level of correlation between Ds: Db ration and river kilometer (as expected), as well as a trend of decreasing species abundance with increasing Ds: Db ratio (or river kilometer ). T he authors found model output for vegetation parameters to agr ee with measured field data well enough to use the relationships to assess the effects of different restoration scenarios For example, t he model predicted little vegetation change over t he 30 year period at R K 13.2 (where higher salinity dominated throughout the simulation period) and R K 16.4 (where freshwater conditions prevailed). However, at R K 15.6, the freshwater swamp appeared to be reproductively healthy and in a state of recovery ( as noted in SFWMD, 200 6) Evaluation of R estoration S cenarios R esults from the WASH, RMA, LSSM, and SAVELOX models were integrated to develop five constant flow restoration scenarios for comparison with base flow conditions (as simulated by the 39year period of record from 1965 to 2003). The five scenarios include flow augmentation over Lainhart dam, flow augmentation from other

PAGE 60

60 tributaries (Cypress Creek, Hobe Grove Ditch, and Kitching Creek), and a combination of both. Table 12 summarizes the base c ondition and five flow scenarios, with LD scenarios signifying flow over Lainhart Dam and LD/TB scenarios signifying flow from Lainhart Dam and other tributaries to the NW Fork. The LSSM was then used to determine movement of the saltwater front (defi ned as the upstream extent of the 2 ppt isohaline) and to recalculate average daily salinity values at 15 salinity study sites und er each of the flow scenarios. As expected, increased freshwater flows lower salinity throughout the entire river and estuary Evaluation of the ecological impacts of each flow scenario considered impacts to each of the following zones and associated VEC species : riverine floodplain (bald cypress swamp and hydric hammock); tidal floodplain (mangrove swamp); low salinity zone (f ish larvae) ; mesohaline zone (oysters) ; and polyhaline zone ( sea grasses). To evaluate impacts to the riverine floodplain, river flow and SWE relationships and the range and average floodplain elevations for hydric hammock and swamp forest were used to assess the potential impacts of restoration flows at T 1 and T3. Monthly average flow conditions over the 39year POR were used to assess restoration impact s on the floodplain swamp and hydric hammock For the wet season, the total number of days for whi ch the 20day rolling average flows exceeded 3.1 m3 s1 (nominally 110 ft3 s1) was chosen as a metric to assess the i mpact on the floodplain swamp. This measure was used to reflect the fact that after storms, many areas of the floodplain swamp may remain inundated even after flow decreases below 3.1 m3 s1. For the hydric hammock in the wet season, the number of days of inundation was used as a metric ( i.e., the number of days when flow wa s greater than 5.1, 6.8, and 9.6 m3 s1

PAGE 61

61 [nominally 180, 240, and 3 40 ft3 s1], corresponding to the low, median, and high elevation occurrences of hydric hammock at T 1 ). The LD65, LD65TB65, and LD90TB110 scenarios provided higher flows than the base condition, with the most significant flow augmentations occurring in the dry season. Only LD90TB110 provided significantly greater flows in the wet season. The LD65, LD65TB65, and LD90TB110 scenarios did not appear to affect the hydroperiod of the hydric hammock, however, the LD200 and LD200TB200 scenarios would cause signif icant negative impacts on both the floodplain swamp and the hydric hammock due to consistently inundated conditions that would preclude seedling recruitment (SFWMD 2006). In the tidal floodplain, the Ds: Db ratio ( see previous section) for each of the flow scenarios was calculated and corresponding species abundance estimations were made. Using 1 ppt as the critical salinity threshold for freshwater floodplain swamp, restoration flows in the range of 3.7 to 5.7 m3 s1 (nominally 130 to 200 ft3 s1; i.e., b etween the LD65TB65 and LD90TB110 scenarios ) would be required to allow recovery of a healthy freshwater floodplain swamp community downstream to the mouth of Kitching Creek (R K 13.1 ). To re establish freshwater conditions all the way to the boundary of J DSP would require flows in excess of 11.3 m3 s1 (nominally 400 ft3 s1), h owever this would result in constant floodplain inundation upstream, hindering the ability of se eds to germinate. In addition to these analyses, the effect s of restoration flow scen arios on fish larvae, oysters, and sea grasses were evaluated. The results of these analyses are summarized in Table 1 3 but methods are not discussed in detail here (see SFWMD,

PAGE 62

62 2006) Generally, the overall impacts of restoration flows on the VECs of t he Fork were assessed using a semi quantitative plus/minus scoring system, and no single restoration scenario had solely positive impacts on all VECs in the ecosystem. Additionally, s ince many of the VECs in the Northwest Fork require a naturally varying range of flow (and salinity) conditions, constant flow scenarios would likely be insufficient to meet restoration goals To address this issue, a series of preferred restoration flow scenario (PRFS) were developed that incorporated flows that were allowed to vary both seasonally and yearly to maintain healthy, functioning ecosystems Four elements of a variable flow regime were considered when developing the PRFS: base flow, seasonal high flows, monthly and short term flow variations, and frequent and rare flood events during the wet season. Under the PRFS, flow augmentation still occurs at low flows of 3.7, 2.0, and 2.3 m3 s1 ( nominally 30, 70, and 80 ft3 s1) during wet, dry, and transitional seasons respectively however the amount of flow augmentation is calculated using a set of logic based rules and is determ ined using one of two methods. The first method is based on monthly median flows and is calculated by : flow median October flow median monthly flow median monthly 130 flow additional (1 3) where all flows are in ft3 s1. T he ratio of monthly median/ October median flows is used to scale the augmentation by the natural proportionality of median flows The term (130monthly median flow ) is intended to represent the monthly variability of flows. T his method of flow augmentation provides variable trans itions around breakpoint flows and eliminates the tendency to create constant flow conditions. The second method uses a flood pulse intended to simulate flow conditions after a rainfall event. During the

PAGE 63

63 wet season the pulse has a mean daily flow of 3.3 m3 s1 (nominally 115 ft3 s1) and a range of 3.1 to 3.7 m3 s1 (nominally 110 to 130 ft3 s1) During the dry season the pulse is smaller, with a mean daily flow of 1.9 m3 s1 (nominally 68 ft3 s1) and a range of 1.4 to 2.6 m3 s1 (nominally 50 to 90 ft3 s1) Under the variable flow scenario, the amount of flow augmentation required over Lainhart Dam is similar to the constant flow scenario LD90TB110, an d is thus referred to as LV90 (with L signifying Lainhart Dam and V signifying variable flow scenari o) For the portion of flow contributed by Cypress Creek, Hobe Grove Ditch, and Kitching Creek, three possible variable flow situations were considered: augmentation of the average tributary base flow of 0.85 m3 s1 (nominally 30 ft3 s1) with an additional 0.85, 1.70m or 2.55 m3 s1 (nominally 30, 60, or 90 ft3 s1) whenever total flow of the Northwest Fork under LV90 is below 8.50 m3 s1 (nominally 300 ft3 s1) As applied to the constant flow scenarios the three variable flow scenarios (LV90TV60, LV90T V90, and LV90TV120) were evaluated for their effect on daily salinity and correspon ding ecological impact on all VECs Finally, the effects of salinity and tidal amplitude l ed to the choice of the LV90TV60 scenario as the prefer red restoration scenario for re establishment of the freshwater floodplain forest downstream approximately to the mouth of Kitching Creek (RK 13.1) This PRFS is expected to have minimal negative impacts to fish larvae, oysters, and sea grasses, with the exception of the potential l oss of oyster habitat currently located at RK 9.7. The SFWMD aims to mitigate for this potential loss by providing additional oyster substrate for colonization downstream. Additional freshwater flow would not be effective to restore freshwater vegetation below this point due to tidal SWE and low

PAGE 64

64 floodplain elevations (SFWMD 2006) and would be more deleterious to estuarine VECs In summary, the Preferred Restoration Flow Scenario includes both seasonal and short term flow variability, with supplemental f lows added during the wet season to achieve 120 days of inundation in the freshwater rive rine floodplain. Supplemental flows during the dry season aim to maintain average flow of 1.95 m3 s1 (nominally 69 ft3 s1) in the riverine floodplain to discourage saltwater intrusion. When total flow in the N W Fork is less than 8.5 m3 s1 (nominally 300 ft3 s1), 0.85 m3 s1 (nominally 30 ft3 s1) of supplemental flow is added from the tributaries. Fig 1 7 shows the expected vegetation changes in the Northwest F ork under the LV90TV60 Preferred Restoration Flow Scenario. Research Objectives Description and modeling of hydroperiod, surface water salinity, groundwater elevation and salinity, soil moisture, and soil porewater salinity are essential to understanding t he hydrological and ecological functioning of coastal floodplain wetlands (e.g., Benke et al., 2000, Glamore and Indra ratna, 2009; Nyman et al., 2009). Given the specific life cycle requirements of bald cypress, vadose zone hydrology is crucial to the mai ntenance and restoration of the bald cypress dominated floodplain swamp ecosystem Groundwater also plays a vital role in the water balance of many wetlands and is increasingly recognized as an important driver of ecological processes (Hancock et al., 2009) and the development of particular ecological communities in wetlands from Florida, USA (Harvey and McCormick, 2009) to Australia (Hatton et al., 1998). This is particularly true in coastal wetlands, where the effect of groundwater on salinity gradients can largely dictate habitat conditions in the estuary (Jassby et al., 1995).

PAGE 65

65 While the development of the MFL and Restoration Plan for the NW Fork of the Loxahatchee River initiated the intensive monitoring and watershed and hydrodynamic modeling summari zed in previous sections (also see SFWMD, 2002, 2006, 2009), these efforts focused primarily on surface water and did not address the linkage with the vadose (unsaturated) zone. Except for one study of biogeochemical transport and submarine groundwater di scharge ( Swarzenski et al., 2006), the role of groundwater in the Loxahatchee River and its floodplain is also largely uninvestigated. This is consistent with most hydrological monitoring and modeling efforts performed in support of ecological restoration projects, which tend to focus on surface water (e.g., Wang, 1997). Even those studies that explicitly address the role of groundwater in wetland hydrology (e.g., Jung et al., 2004) usually overlook hydrological conditions in the vadose zone, which largel y dictate seed germination and seedling survival of many floodplain wetland species (Middleton, 1999). To fill these gaps in our understanding of the hydrological and ecological functioning of coastal floodplain wetlands and improve restoration planning efforts for the Loxahatchee River, the research objectives of our study were to: E xperimentally characterize soil moisture and porewater salinity dynamics in the floodplain wetlands of the NW Fork of the Loxahatchee River at several depths and distances fr om the river over multiple wet and dry seasons D evelop relationships between surface water, groundwater, and vadose zone hydrology to better predict the effects of proposed restoration and management scenarios on the vadose zone and floodplain vegetation. A pply advanced time series analysis methods to investigate the interactions between shallow groundwater elevation and salinity and other hydrological variables in the watershed to identify important common trends among the series and the external hydrolog ical factors (local and/or regional) that most fully explain their observed variation.

PAGE 66

66 Integrate these physically based and empirical relationships into a management based modeling tool that will be useful for stakeholders. M aterials and methods used to m eet these objectives and the results and conclusions of each are described separ ately in the following chapters. A fin al conclusion chapter summarizes the findings and significance of the overall study.

PAGE 67

67 Table 11. Flow contributions to the N W Fork fro m each sub basin in the watershed ( adapted from SFWMD 2006). Basin Average Daily Flow (m 3 s 1 ) N W Flow Contribution (%) 1. Kitching Gauge 0.49 8.4 2. North Fork 0.57 3. Park River 0.14 2.5 4. Lox Estuarine 0.41 5. C 18/Corbett G 92 1.97 33 .6 5. C 18/Corbett S46 1.45 6. Historic Cypress Creek 0.20 3.4 7. Pal Mar 1.63 27.8 8. Grove West 0.31 5.4 9. Grove East 0.30 5.1 10. Jupiter Farms 0.62 10.6 11. Wild and Scenic 0.20 3.3 Total: 9.15 100 This basin does not drain to the Northwest Fork

PAGE 68

68 Table 12. Constant flow restoration scenarios (adapted from SFWMD, 2006). Flow in m3 s1 (ft3 s1). POR indicates modeled flow over period of record. Source of Flow Base condition LD65 LD65TB65 LD90TB110 LD200 LD200TB200 Lainhart Dam (LD) POR 1.84 (65) 1.84 (65) 2.55 (90) 5.66 (200) 5.66 (200) Other tributaries (TB) POR POR 1.84 (65) 3.11 (110) POR 5.66 (200) Total Flow 1.42 (50) 2.69 (95) 3.68 (130) 5.66 (200) 6.51 (230) 11.33 (400) Approximate saltwater front position (RK ) 15.3 13.7 12.9 12.1 11.3 9.7 Table 13 Summary of the evaluation of restoration flow scenarios on valued ecosystem components ( VECs ) of the N W Fork of the Loxahatchee River ( adapted from SFWMD 2006). Eco Zone VEC Component BASE LD65 LD65TB65 LD90TB1 10 LD200 LD200TB200 Riverine Floodplain Cypress swamp 0 + + ++ ----Hydric hammock 0 0 0 0 ----Tidal Floodplain Swamp upstream of RK 14.5 0 ++ ++ ++ -Swamp upstream of RK 12.9 0 0 ++ ++ ++ -Swamp upstream of RK 9.9 0 0 0 0 + -Swamp upstream of RK 9.5 0 0 0 0 0 -Low Salinity Zone Fish larvae 0 0 0 -Mesohaline Zone Oysters upstream of RK 9.5 0 -------Oysters upstream of RK 8.8 0 0 -----Oysters upstream of RK 7.9 0 0 0 ----Oysters upstr eam of RK 6.6 0 0 0 ---Polyhaline Zone Seagrass upstream of RK 5.2 0 0 0 ----Seagrass upstream of RK 3.9 0 0 0 -Seagrass upstream of RK 2.8 0 0 0 0 0 0 Seagrass upstream of RK 2.4 0 0 0 0 0 0 Seagrass upstream of RK 1.1 0 0 0 0 0 0 0 = No change; +, ++ = Beneficial impact; = Negative impac t +

PAGE 69

69 Figure 11 Bald cypress ( Taxodium distichum [ L. ] Rich.) distribution in the United States (source: USDA, 2002).

PAGE 70

70 Figure 12. The Loxahatchee River and Estuary with me teorological measurement l ocations (S46 and JDWX weather stations) and major hydraulic infrastructure. Transect notation is followed by distance from river mouth (river kilometer, RK).

PAGE 71

71 Figure 13 Location of the ten floodplain vegetation transects on the Loxahatchee River (s ource: SFWMD 2006)

PAGE 72

72 Figure 14. Interpretation of aerial photography of vegetation communities in the floodplain of the N W Fork of the Loxahatchee River in ( a ) 1940 and ( b ) 19 95. River Miles 5 to 10 correspond to River Kilometers (RK) 9.7, 11.3, 12.9, 14.5, 16.1, and 17.7. By 1995, mangroves had displaced large areas of bald cypress in the lower and middle sections of the r iver due to saltwater intrusion, and b ald cypress were present, but declining, in upstream fresh water areas due to reduced hydroperiod (s ource: SFWMD 2006) a. b.

PAGE 73

73 Figure 15 Relationship between the three hydrological models used to evaluate restoration scenarios for the N W Fork (source: SFWMD 2006). Figure 16 Major drainage basins of the L oxahatchee River watershed (source: SFWMD 200 6 ).

PAGE 74

74 Figure 17 Expected floodplain vegetation under the Preferred Restoration Flow Scenario (s ource: SFWMD 2006) River Miles 6 to 11 correspond to River Kilometers (RK) 9.7, 11.3, 12.9, 14.5, 16.1, and 17.7

PAGE 75

75 CHAPTER 2 LINKING RIVER, FLOODPLAIN, AND VADOSE ZONE HYDROLOGY TO IMPROVE RESTORATION OF A COASTAL RIVER IMPACTED BY SALTWATER INTRUSION Introduction Coastal wetlands perform a unique suite of physical, biological, and chemical functions. They protect coastal areas from storm damage; filter, transform, and store sediments, nutrients, and other contaminants; and provide habitat s that support huge numbers of commercially and ecologically important fish, birds, and other wildlife (e.g. Mitsch and G osselink, 2000). Coastal zones also provide at least half of all global ecological services (Costanza et al. 1997) and generate billions of dollars annually from fisheries, recreation, and tourism ( Niemi et al., 2004). Environmental pressures facing coa stal wetlands come from both natural and anthropogenic sources, and these stressors often overlap and have synergistic effects (McCarthy et al. 2001). Saltwater intrusion is an example of such a pressure. Natural drivers of saltwater intrusion include c limatic fluctuations that alter freshwater outflows ( Thomson et al. 2002); storm surges and hurricanes (Flynn et al., 1995); and sea level rise (Moorhead and Brinson, 1995; Burkett et al., 2001). E stimated sea level rise alone has the potential to eliminate as much as 22% of the worlds coastal wetlands by 2100 (Nicholls et al ., 1999) though regional impacts would vary (Michener et al. 1997). Anthropogenic drivers of saltwater intrusion include land drainage (e.g., Holman and Hiscock, 1998); pumping of coastal freshwater aquifers (e.g., Sadeg and Karahanogulu, 2001); reduction in freshwater discharge from dam construction water withdrawals, and other water diversions (e.g., Johnson, 1997) ; and hydraulic structures and land use changes within watersheds (e.g., Wang, 1988; Liu et al., 2001; Bechtol and Laurian,

PAGE 76

76 2005). When anthropogenic and natural drivers act together, saltwater intrusion can lead to rapid and catastrophic loss of coastal wetlands (Wanless et al. 1989). Saltwater intrusion i n coastal w etlands causes plant stress or mortality from prolonged sub mergence and/or high salinities; erosion of wetland substrate; conversion of freshwater habitats to brackish or saltwater habitats; and the transition of coastal saltwater habitats to open water (D eLaune et al. 1994). These effects have been observed in coastal wetlands around the globe, including the floodplain forest s of the Mississippi River d elta ( USA) ( Earles 1975; Salinas et al. 1986) ; the coastal plains of the Mary and Alligator Rivers in northern Australia ( Winn et al. 2004 ; Knighton et al. 1991); and the coastal marshes of the River Thurne in northeast Norfolk (U K ) ( Holman and Hiscock 1998) When saltwater intrusion is caused by anthropogenic drivers or a combination of natural and a nthropogenic drivers, some amount of restoration and management is likely achievable (Scruton, 1998) Re establishing hydrological regimes and connections can ameliorate the effects of sal twater intrusion by increasing well timed freshwater flows (Middlet on, 2002) and where appropriate, supplying the sediment required for accretion ( DeLaune et al. 1994) Hydrological monitoring and modeling efforts in support of these restoration efforts usually focus on surface water (e.g., Wang, 1997) or groundwater ( e.g., Jung et al., 2004), but overlook hydrological conditions in the vadose (unsaturated) zone, which largely dictate seed germination and seedling survival (Middleton, 1999) For example, t he timing and duration of flooding and drawdown in the floodplain play a critical role in the reproduction of bald cypress ( Taxodium distichum [L.] Rich.), a

PAGE 77

77 major component of floodplain swamps in sixteen U.S. states ( Thompson et al., 1999) A long with water tupelo ( Nyssa aquatica L.) and swamp tupelo ( Nyssa biflora W alter ), bald cypress is a dominant tree species in the riverine and coastal floodplains of the southeast (Day et al., 2006; Allen et al. 1994). Cypress seeds settle along drift lines after floodwaters recede and require moist but not flooded conditions to germinate (Middleton, 2000) Under saturated conditions, seeds may germinate on moss or wet muck, but will not germinate under water t hough they can remain viable for up to 30 months if inundated (Fowells, 1965) At the other end of the moisture regime, seeds will not germinate on well drained soils due to lack of surface moisture. Thus, a drawdown of inundated soils to saturated or moist conditions is required for germination ( Burns and Honkala 1990; Middleton 1999, 2002). Seedlings must also grow fast enough to keep their crowns above floodwaters for most of the growing season to survive (Conner, 1988; Conner et al., 1986, 1987). Bald cypress seeds and seedlings also have limited salt tolerance (Allen et al., 1996) T he combined negative effects of flooding and salinity are greater than either alone, and are more pronounced at higher salinities. In general, Chabrek (1972) found that bald cypress stands rarely occur naturally in areas with salinity exceeding 1.98 1.4 0 ppt ( mean std ) and Wicker et al (1981) concluded that bald cypress forests are limited to areas where salinity does not exceed 2 ppt greater than 50% of the time that trees are inundated. This is in agreement with Liu et al. (2006) who established a bald cypress seedling salinity tol erance threshold of 2 parts per thousand (ppt) using seedlings collected from the area studied in this paper. Given its specific lifecycle

PAGE 78

78 requirements, vadose zone hydrology is crucial to the maintenance and restoration of bald cypress floodplain swamp ecosystems Like in many other U.S. states (e.g., Johnson, 2008), Florida law requires its water management agencies to establish Minimum Flows and Levels (MFLs) to protect water resources and valued ecosystem components (VECs) from significant harm (Sect ion 373.042[1], Florida Statutes). B ald cypress swamp has been identified as a VEC in the floodplain of the Loxahatchee River a southeastern (USA) coastal river where restoration efforts to ameliorate saltwater intrusion are being developed and tested. MFL and restoration plan development initiated intensive watershed and hydrodynamic modeling efforts to identify relationships between upstream flow and downstream salinity and suggested target MFL and restoration flows (SFWMD, 2002, 2005, 2006). However, these models focused primarily on the river channel and did not address the linkage with the vadose zone. The objective of this study is to develop relationships between surface water, groundwater, and vadose zone hydrology to better predict the effects of proposed restoration and management scenarios on ecological communities in the floodplain of the Loxahatchee River. This is achieved by long term experimental characterization of soil moisture and porewater salinity dynamics in the floodplain at several depths and distances from the river complemented by surface water and groundwater stage and salinity and meteorological monitoring to identify differences between areas with varying soils, hydrology, and vegetation. It is the first effort of which we ar e aware that extends long term, continuous hydrological monitoring into the vadose zone in support of wetland restoration.

PAGE 79

79 M aterials and Methods Site Description Historically part of the greater Everglades watershed, t he Loxahatchee River is located on the southeastern coast of Florida, USA (26 59 N, 80 9 W ) and is often referred to as the last freeflowing river in southeast Florida (South Florida Water Management District [SFWMD], 2006). The river has three main branches (the North, Southwest, and Northwest Forks) which join in a c entral e mbayment that connects to the Atlantic Ocean via Jupiter Inlet (Fig. 2 1) The watershed drains approximately 550 km2 in Palm Beach and Martin Counties and includes several large, publicly owned areas including J onathan Dickinson State Park (JDSP), the Loxahatchee Slough Preserve, and the J.W. Corbett Wildlife Management Area In 1985 a 15.3 km stretch of the Northwest Fork became Floridas first National Wild and Scenic River ( N ational Park Service [N PS] 2004). The Northwest Fork of the Loxahatchee River (NW Fork) and its watershed contain a diverse array of terrestrial and aquatic ecosystems including sandhill, scrub, hydric hammock (a plant community characterized by 30 to 60 days of inundation yearly and mi xed facultative hardwood species) wet prairie, floodplain swamp, estuarine (mangrove) swamps, seagrass beds, tidal flats, oyster beds, and coastal dunes ( Roberts et al., 2006; Treasure Coast Regional Planning Council [TC R PC], 1999). M any of these ecosys tems remain relatively intact (VanArman et al., 2005) and support a diversity of protected animal and plant species including the endangered Florida manatee ( Trichechus manatus latirostris ) and four petal pawpaw ( Asimina tetramera Small) (SFWMD, 2006) T he upper watershed of the NW Fork is also home to one of the last remnants of bald cypress floodplain s wamp in southeast Florida. However,

PAGE 80

80 changing hydrology and salinity regime s in the river and its floodplain have been linked to vegetative changes in th e floodplain forest ( SFWMD, 2002). Of primary concern are: 1) the transition from bald cypress floodplain swamp to mangrovedominated communities in the tidal floodplain as salinity increase d, and 2) inadequate hydroperiod in the upstream riverine floodpl ain, which has shifted the system towards drier plant communit ies (SFWMD, 2009) Similar changes in the composition of floodplain vegetation as a result of reduced flooding frequency have been observed regionally and globally (e.g., Darst and Light, 2008; Leyer, 2005). A ltered hydroperiods and encroaching salinity in the NW Fork have been linked to four major factors: 1) construction of major and minor canals that direct water away from the historic watershed; 2) the permanent opening of Jupiter Inlet i n 1947 ( Fig. 2 1); 3) construction of the C 18 canal in 1958, which transferred a majority of flow from the NW Fork to the Southwest Fork ( Fig. 2 1) ; and 4) lowering of the regional groundwater table by municipal withdrawals ( SFWMD, 2002). These hydrologi c changes have been linked to changes in the vegetative composition of the floodplain, where studies have documented the upriver retreat of bald cypress since at least the turn of the 20th century (General Land Office [GLO], 1855; Alexander and Crook, 1975; McPherson, 1981; Ward and Roberts, 1996; Roberts et al., 2008) Based on interpretation of aerial photography (SFWMD, 2002), in 1940 mangroves were dominant as far as 9.7 km upstream of the river mouth (indicated as RK 9.7) and extended upstream to RK 12.5 ( Fig. 2 2a). Bald cypress floodplain swamp communities were present upstream of RK 10.5 and were dominant above RK 12.9. By 1995 large areas of mangroves had been destroyed due to urbanization in the lower section of the

PAGE 81

81 river (Fig. 2 2b). However, mangrovedominated communities had replaced bald cypress as far upstream as RK 16.9, and upstream bald cypress dominated swamp had transitioned to shorter hydroperiod freshwater swamp (with bald cypress present, but declining ) Only minor changes in veget ative coverage were observed between 1985 and 1995, likely due to increased flows following a 1982 consent decree between the Florida Wildlife Federation and the SFWMD ( SFWMD, 2006). The MFL for the NW Fork of the Loxahatchee River (SFWMD, 2002) was adopted in 2003 and a restoration plan (SFWMD, 2006) was completed in 2006 with the goal of protect ing the rivers remaining cypress swamp and hydric hammock communit ies, as well as estuarine resources including oysters ( Crassostrea virginica), fish larvae, and sea grasses all identified as VECs. These MFL and restoration scenarios rely primarily on increased freshwater flow over Lainhart Dam ( Fig. 2 1), which was found to be the most important driver of upstream hydroperiod and downstream surface water salinity (SFWMD, 2006). In spite of the Loxahatchees freeflowing appellation, flow over Lainhart dam (calculated from headwater surface water elevation) is controlled by managing conveyance through the G 92 water control structure ( Fig. 2 1 ). Experimental Set up Twenty four frequency domain reflectometry (FDR) dielectric probes ( Hydra Probe, Stevens Water Monitoring Systems, Beaverton, OR, USA) measuring soil moisture, bulk electrical conductivity and temperature were installed at four locations and three dept hs along two previously established vegetation survey transects perpendicular to the river ( Fig. 2 3 ). Probe installation elevations were determined using established survey benchmarks and a rotary self leveling laser (model LM500, CST/Berger, Watseka, IL USA ) Each cluster of three probes was wired to a field data

PAGE 82

82 logger (CR10/CR10X, Campbell Scientific, Logan, Utah, USA), which recorded data every 30 minutes. Every two to four weeks, system batteries were changed and data were downloaded to a laptop. Data collection began in September 2004 at Transect 1 and January 2005 at Transect 7 and continued through September 2008. Transect 1 (T1) is in an upstream, riverine area (RK 23.3; Fig. 2 1 ) not impacted by daily tides and has elevations ranging from 4. 19 m ( elevations are referenced to the National Geodetic Vertical Datum of 1929 [NGVD29]) to 1.66 m in the river channel ( Fig. 2 3 a). Soils on t he higher elevation hydric hammock consist of Winder fine sand transitioning to sandy clay loam at depths of ~ 90 cm (Mortl, 2006). In the lower floodplain, soils are classified as fluvents stratified entisols m ade up of interbedded layers of sand, clay, and organic matter typical of areas with frequent flooding and deposition ( Sumner, 2000) with sand content increasing with depth (Mortl, 2006). T his freshwater transect contains hydric hammock a t higher elevations and mature bald cypress swamp (average diameter at breast height [DBH] = 49 cm) at lower elevations Invasion of less flood tolerant species into the hydric hammock and riverine floodplain in this and other upstream areas has been documented ( SFWMD, 2009) indicating the ecological impact of shortened hydroperiod. T ransect 7 (T7) is in a downstream, transitional area (RK 14.6; Fig. 2 1 ) that receives daily tidal flooding of varying salinity over most or all of its length and has elevations ranging from 3.07 m in the upland to 0.40 m in the floodplain ( Fig. 2 3 b). S oil on T7 is a highly organic muck (Terra Ceia Variant Muck ; Soil Survey Staff, 1981 ) with depths of over 1 m, underlain by sand (Mortl, 2006) Vegetation studies indicate that this transect has been impacted by saltwater intrusion, logging, and invasion by exotic

PAGE 83

83 plants ( SFWMD, 2006). Presently, T7 contains a mix of floodplain swamp comm unities representing a gradient of decreasing salinity tolerance with increasing distance from the river. From the rivers edge to approximately 30 m inland, floodplain vegetation is classified as upper tidal swamp dominated by red mangrove ( Rhizophora mangle L.), which is highly salt tolerant. With increasing distance from the river, this community transitions to mixed tidal swamp dominated by pond apple ( Annona glabra L. ), which is moderately salt tolerant (~30 to 75 m from the river); riverine mixed sw amp, which includes a mix of f lood tolerant hardwoods dominated by bald cypress, pond apple, wax myrtle ( Myrica cerfiera L.), pop ash ( Fraxinus caroliniana Mill.) and sabal palm ( Sabal palmetto [Walter] Lodd. Ex Schult. & Schult. f. ) (~75 to 110 m from th e river); and finally riverine swamp, dominated by bald cypress and pop ash (110 to 140 m from the river) (SFWMD, 2009; Fig. 23b). Dielectric Probe Principles and Operation The Hydra FDR dielectric probe determines soil moisture and electrical conductivit y (EC) by measuring soil dielectric properties. Dielectric permittivity ( ) is related to the dielectric constant (K), and the permittivity of free space ( o) by: 0 K ( 2 1) K r ii ( 2 2) r) and im i) dielectric constants (Campbell, 1990). The Hydra probe generates a 50 MHz electromagnetic wave, most of which is absorbed by the soil. The portion of the wave that reflects creates a standing wave, which characterizes K. The probe measures four analog voltage outputs : three to calculate r i based on K and one to calculate soil

PAGE 84

84 temperature. Temperaturecorrected (25o r is used to calculate volumetric soil temperaturecorrected i is used to calculate bulk soil EC ( b) Finally, b are used to calculate porewater EC w b, and w were based on Hydra probe calibrations developed specifically for the soils of the Loxahatchee River floodplain by Mortl (2006). Unlike synoptic weekly or monthly sample collection, automated, continuous, 30minute monitoring of and w using dielectric probes allowed us to investigate vadose zone hydrodynamics over different time scales (from storm event, to tidal cycle, to seasonal and interannual variation). In contrast to soil sample collection for moisture analysis and extraction of porewater for chemical analysis this method did not require soil disturbance except during initial probe installation (and replacement, when necessary). Finally, unlike field studies of saltwater intrusion into coastal aquifers, which focus on groundwater EC in the saturated zone (e.g., Melloul and Goldenberg, 1997) the use of dielectric probes in this study allowed us to observe changes in root zone EC under inundated, saturated, and unsaturated conditions (while also providing soil moisture data) Meteorological, S urface W ater, and G roundwater D ata Average annual precipitation in the Loxahatchee River watershed is 155 cm yr1, with approximately two thirds falling during the wet season from May to O ctober (Dent, 1997). In southern Florida, average annual evapotranspiration (ET) losses are 114 cm yr1 ( SFWMD, 2002 ). For th is study, rainfall data were recorded at the S46 hydraulic structure on the Southwest Fork and ET data were recorded at the JDWX weather station in JDSP ( Fig. 2 1). These data are publicly available and were downloaded from

PAGE 85

85 the SFWMD online environmental database, DBHYDRO (Stations S46_R and JDWX; accessed at http://my.sfwmd.gov/dbhydroplsql/). Surface water elevation (SWE) and surface water EC (SWEC) were recorded at two stations in the NW Fork close to Transects 1 and 7. A SFWMD monitoring station on the headwater side of Lainhart Dam (0.45 km upstream of T1) measured average daily SWE and is availabl e on DBHYDRO (station LNHRT_H; Fig. 2 1). The Loxahatchee River District (LRD) maintains a water quality monitoring station (datasonde station 69) on the NW Fork at Indiantown Road that measured SWEC hourly ( Fig. 2 1; data acquired from LRD staff). A United States Geological Survey (USGS) monitoring station in the river at RK 14.6 (adjacent to T7) measured SWE and SWEC every 15 minutes (Station ID: 265906080093500; data acquired from USGS staff; station funded by SFWMD ). Finally, the SFWMD and Florida Par k Service (FPS) installed and monitored twelve shallow groundwater wells in the floodplain of the NW Fork, including four on T7 and one on T1 ( Fig. 2 3). In general, the ~500 m shallow aquifer in the area is made up of sand, limestone and shell beds and is separated from the deeper Floridan aquifer by ~100 m of low permeability clay (Toth, 1987) However, t he groundwater data presented in this study were collected in the top 1 to 5 m t o assess possible shallow groundwater effects on floodplain vegetation Wells were constructed of slotted 5.08 cm (nominally 2 in) PVC pipe housed in a 20.32 cm (nominally 8 in) PVC pipe, and were backfilled with 20/30 silica sand filter pack from 15.24 cm (nominally 6 in) below the bottom of the well to 60.96 (nominally 2 ft ) above the top of the well screen. A 15.24 cm layer of 30/65 fine sand and 15.24 cm of bentonite clay were placed above the filter

PAGE 86

86 pack, and the well was finished with Portland Type I neat cement grout to 15.24 cm below the top of well risers, which ro se 91.44 cm (nominally 3 ft) above the ground surface. S creen size was 0.254 mm (nominally 0.01 in). W ater table elevation (WTE) and groundwater EC (GWEC) d ata were measured every 30 minutes using TROLL 9000/9500 multi parameter water quality probes (InSitu Inc., Ft. Collins, CO, USA), and were analyzed in Muoz Carpena et al. (2008). Table 21 summarizes well attributes. Soil Moisture Surface Water Elevation Relationships Soil moisture time series for each probe are presented as actual (measured) soi l moisture using a soil specific calibration. However, Mortl (2006) found the soils in the Loxahatchee River floodplain to fall into three distinct groups with widely varying hydrologic characteristics: sand, found primarily on the higher elevation hydric hammock on T1; fluvent, found in the floodplain on T1 and made up of interbedded layers of sand, clay, and organic matter (Sumner, 2000); and muck, found in the floodplain of T7 (Table 2 2 ). Thus, when comparing across soil categories it was helpful to normalize using effective soil moisture, which scales values from zero to unity and is calculated by: ersr ( 2 3) where e is effective soil moisture content ( ), is the actual (measured) soil moisture content (m3 m3), r is the residual soil moisture content (m3 m3), and s is the saturated soil moisture content (m3 m3). Relationships between e and SWE were then explored at each transect.

PAGE 87

87 For the twelve measurement locations at upstream T1, average daily e in the floodplain versus average daily SWE was fit to a common model (sigmoid, 2 parameters) of the form: e 1 1 e SWE a b ( 2 4) where SWE is measured at Lainhart Dam (m, NGVD29), and a and b are curve parameters. The Nash Sutcliffe Coefficient of Efficiency ( eff Sutcliffe, 1970) was used as a measure of goodness of fit. A general model and nomograph for e on T1 were then developed by investigating trends between the a and b parameters in Eq uation 24 and probe installation elevations, depths, and di stances from the river. This resulting model was used to evaluate e profiles across T1 under different management scenarios. At downstream T7, daily tidal flooding resulted in a limited range of near s for all probes. However, responses to brief peri ods of drawdown in the shallowest (i.e., highest elevation) soils on T7 were evaluated using Fast Fourier Transform (FFT) smoothing (Press et al., 1992) of 15and 30minute and SWE data to investigate correlation between the series. Surface Water, Groun dwater, and Porewater EC Relationships Based on output from a hydrodynamic salinity model (RMA 2 and RMA 4; USACE, 1996), the SFWMD (2006) developed regression equations for downstream surface water salinity at 15 sites in the NW Fork versus freshwater flow of the form: Y Y0 ae bx ( 2 5 )

PAGE 88

88 where x is total freshwater flow (ft3 s1) to the NW Fork from Lainhart Dam and from three tributaries (Kitching Creek, Cypress Creek, and Hobe Grove Ditch; Fig 1), Y is salinity (ppt), and Y0, a and b are parameters. The predictiv e ability of this model was tested at RK 14.6 (adjacent to T7) using flow and SWEC data observed over the four year field study. Freshwater flow requirements to maintain SWEC below the 2 ppt bald cypress salinity threshold ( equivalent to an EC of 0.3125 S iemens/meter [S/m] at 25 C [Richards, 1954] ) were also identified based on measured data. Finally, w values were compared with SWEC and GWEC at each transect and with the 0.3125 S/m threshold to: 1) explore relationships between the series; 2) determine the number of days that this threshold was exceeded in surface water, groundwater, and porewater; and 3) assess the likelihood that MFL and restoration scenarios will adequately control w in the floodplain. R esults and D iscussion Global Descriptive Statistics Despite difficult field conditions ( hurricanes; frequent lightning strikes; inundation in salin e water; equipment damage by insects and other animals; bioturbation of soil by plant roots and burrowing animals), frequent field visits ensured data completeness over the four year study period with few gaps with over 1.5 million measurements collected from the 24 dielectric probes (time serie s completeness ranged from 73% to 99.9%, ( average 85%). Minimum, maximum, and average daily and w for the 24 measurement locations are summarized in Table 23 (Mean daily and w for the period of record are given in Appendix A.) S andy soils on the hydric hammock on T1 ( stations T160 and T1 50) had the lowest and most variable with val ues observed

PAGE 89

89 over a large range of moisture contents. On the other hand, was higher ( at or near s) and less variable i n the floodplain of T 1 ( stations T1 30 and T11 ) and over the entire length of T7 ( stations T7 135, T790, T7 25, and T72) s wa s h ighest in the organic, low b muck and fluvent, but wa s variable within soil groups, especially for the fluvent soil in the floodplain at T1, which had variable and alternating layers of sand, clay, and organic matter. Probe calibrations for w as a func tion of b and d o not hold under low soil moisture conditions (Highest, 2000), so w was not calculated for the highest elevation soils on T1, which often had < 0.10. Average b measured in these soils were the lowest in the study ( 0.001 b 0.003 S/m), however, suggesting that w is not a concern in this area. Maximum daily average w over the four year study (0.220 S/m) was observed at upstream station T11, which is above the influence of daily tides. Maximum 30minute w (0.596 S/m) was recorded at downstream station T725, which receives daily tidal flooding. The hydrological data collected during this study represent a wide range of climatic conditions, including four wet/dry seasonal cycles; two wet years with hurricane induced flooding ( 2004 and 2005); and the driest twoyear period (2006 to 2007) recorded in south Florida since 1932 (Neidrauer, 2009). The dynamics (magnitude, duration, and timing) of and w variation, and how these variables relate to rainfall, surface water, and groundwater, are explored further in Fig s. 2 4 and 2 5 and sections below.

PAGE 90

90 Hydrological Time Series Upstream t ransect 1 Fig. 2 4 shows selected hydrological time series col lected on or near upstream T1 Large rainfall events coincided with peaks in S WE and WTE series, which were closely correlated (r = 0.93) during wet seasons ( Fig. 2 4a). During dry periods SWE at Lainhart Dam remained relatively level close to the dam overflow elevation due to the impoundment, and flow over the dam (~0.5 m3 s1, about one half of the MFL) was insufficient to keep the floodplain at T1 hydrated. WTE at T1 fell below SWE measured at Lainhart Dam in each of the four dry seasons observed, dr iven by ET and low rainfall (most drastically in 2006 and 2007). However, SWE data measured adjacent to the transect from July to December 2008 (SFWMD, unpublished data; not shown) showed that WTE at T1 was always greater than the adjacent SWE during this period, indicating that the NW Fork likely has consistent gaining stream conditions in this location. SWE and WTE dynamics were reflected in time series ( Fig. 2 4bc), especially in the highest elevation soils on T1 For example, large peaks in surface soils in 2005 cor responded to intense rainfall events (and attendant increases in SWE and WTE) associated with three tropical storms that p assed over the experimental area in July, September, and October of that year ( Fig. 2 4b, solid line). Variation in was damped for middle elevation soils, but effects of environmental conditions (rain, SWE, and WTE) were still apparent ( Fig. 2 4b, dashe d line). T he lowest elevation (i.e., deepest) soils experienced long periods of saturation ( Fig. 24b, dotted line). Even at this depth, however, soils dried down to r for long periods during the dry seasons of 2005, 2006, and 2007. This frequently dry soil profile in the hydric hammock root zone helps explain

PAGE 91

91 the invasion of upland plant species such as slash pine ( Pinus elliottii Engelm.) and the exotic Caesar weed ( Urena lobata L.) into the hydric hammock observed in SFWMD ( 2009) In the lower floo dplain was less variable, although surface soils experienced considerable drying during all dry seasons (most markedly in 2006 and 2007; Fig. 2 4c, solid line). While values between 0.5 and 0.7 would not be considered dry in a mineral soil, they corresponded to very dry conditions at the soil surface of the highly organic and clayey soils in the floodplain at T1. Under these moisture conditions, soil shrank away from tree trunks, and facultative wetland plant species like sabal palm Hottentot fern ( Thelyp teris interrupta [Willd.] K. Iwats.), and the exotic wild arrowleaf elephantear ( Xanthosoma sagittifolium [L.] Schott) invaded the floodplain ( SFWMD, 2009), competing with floodplain species for water, light, nutrients, and space. Overly dry surface soils are also unfavorable for bald cypress seed germination (Middleton, 1999). Even when surface soils resaturated by fall (when cypress seeds drop) the area for successful seed germination was reduced by the invasion of facultative and upland species during previous dry downs. Lower elevation soils in the floodplain on T1 remained consistently saturated, though at slightly different values of s due to the heterogeneity of soil layering in the floodplain ( Fig. 2 4c, dashed and dotted lines). This suggests that mature trees with developed root systems experienced little or no water stress. On T1, SWEC and GWEC were low and had similar magnitudes (average of 0.054 and 0.068 S/m, respectively), remaining well below the 0.3125 S/m threshold over the entire study period ( Fig. 2 4d). In the floodplain, w was consistently higher than SWEC

PAGE 92

92 and GWEC (by a factor of 23 times ) ( Fig. 2 4e f), although no consistent relationships between w and other hydrological or meteorological variables were found. Values of w were highest in the surface soils close st t o the river and exceeded the 0.3125 S/m threshold (though slightly) for 59 days in 2007 ( Fig. 2 4 f, solid line). Based on the data recorded in this study, it is unlikely that w reaches high enough levels to cause acute salt stress to bald cypress on T1, even during extended dry periods. It may cause chronic stress for shallow rooted, salt sensitive species however, which could be ameliorated by more frequent, longer duration inundation of the floodplain by the adjacent (low EC) surface water ( Richardson and Hussain, 2006; Abrol et al., 1988) Downstream t ransect 7 Fig. 2 5 shows selected hydrological time series collected on or near downstream T 7. SWE at downstream T7 is influenced primarily by daily and monthly tidal cycles, though high water events may also be associated with storm surges and large rainfall events. For example, high SWE in September 2004 was caused by tidal surge and increased freshwater flow in the NW Fork during Hurricanes Frances and Jeanne which passed over the study site ( Fig. 2 5 a). WTE in the upland well on T7 (T7W4 ; Fig. 2 5b, dark line) showed responses to wet and dry season rainfall patterns similar to those observed in upstream SWE and WTE. During the dry seasons of 2006 to 2007, WTE in this well fell considerably but remained higher than WTE in floodplain wells ( Fig. 2 5b, lower lines), which were lower ( close to mean sea level, NGVD29 ) and more influenced by daily tidal oscillations. This indicates a variable but consistent ly positive flow of fres hwater from the uplands to the river through the floodplain, even under extreme drought conditions.

PAGE 93

93 U pland well T7W4 had the lowest GWEC on T7 ( Fig. 2 5c, lower dashed line) This low GWEC, combined with the maintenance of high WTE in the upland, likely play s a role in regulating w and GWEC in the floodplain mitigating the severity of saltwater intrusion at this transect. GWEC was generally highest closest to the river and decreased with distance towards the upland, though this trend reversed in 2007, when GWEC in well T7 W2 sur passed that of well T7W1 f or the duration of the year before falling in 2008 ( Fig. 2 5c) GWEC approached the 0.3125 S/m threshold only briefly at the end of 2007 in well T7W2, several months after peaks in SWEC and w ( Fig. 2 5df). Based on these dat a, it is unlikely that groundwater directly contributes to increases in the w observed on this transect; instead GWEC shows a damped and delayed response to high EC surface water. Peaks in SWEC at T7 occur red in four distinct periods corresponding to dry seasons with low rainfall and low upstream SWE ( Fig. 2 5d), though the peak was earlier in 2005 (centered around March) than in other years (centered around May). SWE C measured at 15 minute intervals reached maxim a of 1.250 to 2.890 S/m during the dry seasons of 2005 to 2008 (4 to 9 times the 0.3125 S/m threshold). Since SWEC at RK 14.6 var ied over a tidal cycle, daily average SWEC maxima were lower (~1 to 5 times the threshold), but still exceeded the threshold for 6 days in 2005; 18 days in 2006; and 64 days in 2007. P eaks in w corresponding to SWEC were observed across T7 during each dry season ( Fig. 2 5ef). At s t ation T713 5 (f a rthest from the river), peaks in w increased in magnitude from 2005 through 2007, but reached the critical limit only fo r a brief period in 2007, and only in the highest elevation soils ( Fig. 2 5e, solid line). The lowest

PAGE 94

94 elevation soils at this station ( Fig. 2 5e, dotted line) had low w throughout the measurement period, similar in magnitude to GWEC in upland well T7W4 ( Fig. 2 5c). Despite repeated SWEC peaks at RK 14.6, w in the soil profile 135 m from the river remained relatively low. Time series of w from station T7 90 (not shown) were similar to those at station T7135, with w approaching the critical value onl y in the dry season of 2007. Station T7 25 is closer to the river, where vegetation transitions to salt tolerant mangroves ( Fig. 2 3b) Here w was higher ( Fig. 2 5f) exceeding the critical value for a considerable time in 2007: 53, 55, and 34 days in th e surface, middle, and lower probe elevations, respectively (not including days during a gap in data). Linear interpolation of the w trend during this data gap yields an estimate of 83, 85, and 64 days in 2007 when w exceeded the critical threshold at t he three measurement elevations. Data from s tation T72 (not shown) closely mirrored the timing and magnitude of w data from station T7 25, but with slightly lower w and longer lags (up to 90 days) between SWEC and w peaks in the lowest elevation soils Table 24 summarizes the duration of SWEC, GWEC, and w exceedances on T7 from 2005 to 2 008. SWEC exceeds the 0.3125 S/m limit for extended periods of time in three of the four study years, but does not explain the distribution of variably salt tolerant vegetation across the transect, since the entire floodplain is inundated twice daily by tidal flooding. While GWEC generally decreased with increasing distance from the river, it was lower than the critical salinity threshold at all locations on all but three days of the four year study period, and thus also failed to explain observed vegetation patterns. On the other hand, the twelve w data series described EC dynamics at the

PAGE 95

95 interface between surface water and groundwater (i.e., in the vadose zone), and showed that w in the soil profile was above the critical limit 2 m and 25 m from the river (where vegetation is dominated by salt t olerant mangroves), but below the limit 90 m and 135 m from the river (where vegetation consists of riverine and mixed swamps, dominated by bald cypress and pop ash; Fig. 2 3b). This suggests that w dynamics help to explain the distribution of variably s alt tolerant species across the floodplain, which neither SWEC nor GWEC were able to do. Finally, T 7 has very little variation in elevation and received tidal inundation over most or all of its length nearly every day T hus values on this transect were relatively constant at or near s and are not shown. Surface Water Soil Moisture Relationships Upstream t ransect 1 Average daily in the floodplain of T1 was scaled to e, plotted against average daily SWE at Lainhart Dam, and fit to the common sigmoid model given in Eq uation 24 (Fig. 2 6) with good results (overall Ceff = 0.92 for the 12 measurement locations). Values of s for the three soil groups given in Mortl (2006) were based on composite soil samples and did not represent the variability in s observed on T1, especially in the layered soils of the fluvent. Thus, e was calculated using observed maxima during periods when WTE (measured in well T1W1) was above probe installation elevation. Fit parameters, s values used for calculati on of e, and Ceff values for each time series are summarized in Table 2 5 For soils that exhibited a wide range of (high and middle elevation sandy soils on the hydric hammock), the model did a good job of predicting soil moisture based on SWE (0.64 Ceff .82). For deeper sandy soils,

PAGE 96

96 which were below the water table for long periods, and surface soils of the lower floodplain, which only rarely dry out, the sigmoid model performed fairly (0.33 Ceff 0.78). For the lowest elevation soils of the floodplain, which remained saturated for the entire study period, the twoparameter model is simplified to the equation e = 1, independent of SWE (with a corresponding Ceff = 1.0). While consideration of rain, ET, antecedent moisture conditions, and surface topography would improve the models predictive ability, this simplified relationship is useful for evaluating the effects of river management on profiles, since MFL and restoration scenarios are based on flow at Lainhart Dam (calculated from SWE). We also recognize that underlying this eSWE model is the fundamental relationship describing as a function of soil water pressure head ( (e.g., Brooks and Corey, 1964; van Genuchten, 1980). Under relatively hydrostatic conditions (i.e., no inflow, outflow, or redistribution of soil water above the water table), can be estimated as the distance to the water table (Skaggs, 1991). Since SWE and WTE at T1 are tightly coupled (overall r2 = 0.88), directly linking to SWE is consistent with these fundamental r elationships. In general, Eq uation 2 4 yielded increasingly dry soil moisture profiles with increasing elevation. To expand the applicability of this model to the remainder of the floodplain at T1, trends between a and b parameters and probe installation elevations and distances from the river were examined. Plotting a and b versus probe installation elevation and fitting a 3rd order polynomial yielded good results (r2 = 0.96 and 0.78 for a and b respectively), with: a 1.425 x3 13.421x2 42.241 x 41.171 ( 2 6)

PAGE 97

97 b 0.248 x3 2.112 x2 5.873 x 5.249 ( 2 7) where x is topographi cal elevation (m, NGVD29). Overall Ceff for the twelve e time series using the approximations in Eq uations 2 6 and 2 7 was 0.83. Including both elevation and distance from the river as variables for fitting the parameters in Eq uation 2 4 yielded a better fit (3rd order polynomial in elevation and distance; r2 of 0.99 and 0.96 for a and b parameters; overall Ceff = 0.91), as might be expected based on the effects of surface topography, shape of the water table, and soil heterogeneity. To assess the added b enefit of the more complex model based on elevation and distance from the river, both models were used to estimate e at the soil surface, 10 cm below ground surface (bgs), and 50 cm bgs at four distances from the river (60, 50, 30, and 1 m) under three flow scenarios in the MFL and restoration plan. Differences in model results were generally small (average absolute difference of 4.6, 4.3, and 5.4% at the three depths). The largest differences were seen 50 m from the river (Fig. 2 3a), where elevation changes abruptly. Ultimately, t he simpler model was preferred because it had fewer parameters, performed adequately, and is consistent with the underlying soil physics (assuming a relatively flat water table over the length of T1). A nomograph describing e at T1 was developed based on the simpler model (Fig. 2 7), which can be used to estimate moisture profiles across the floodplain under different river management scenarios. For example, the MFL of 1 m3 s1 corresponds to SWE of 3.31 m at Lainhart Dam. This yields a e profile ranging from 0.06 on top of the hydric hammock to 1.00 in the consistently flooded soils of the floodplain, with e = 0.86 at the lower floodplain soil surface (average elevation 2.81 m, black circle in Fig. 2 7). Specific moistu re thresholds for bald cypress seed germination success have not been

PAGE 98

98 identified; however assuming that a value of e soil conditions, ideal bald cypress seedling germination conditions at the soil surface would requir e maintenance of SWE at Lainhart Dam between 3.35 m and 3.52 m (gray shaded area in Fig. 2 7), above which the floodplain is generally inundated (SFWMD, 2006). The restoration plan calls for a variable dry season flow between 1.42 and 3.11 m3 s1, wh ich c orresponds to SWE of 3.36 to 3.52 m at Lainhart Dam. Thus, dry season restoration flows should provide good conditions for bald cypress seedling germination in the floodplain, while the MFL is likely insufficient to maintain the bald cypress ecosystem at T1. Downstream t ransect 7 Due to daily tidal inundation, was relatively consistent over the study period, with very little variation regardless of elevation or distance from the river. H owever inspection of data from the highest elevation (i.e., shal lowest) probe revealed a correlation between and SWE Fig. 2 8 shows a sixday time series of soil moisture for the highest elevation probe on T7 (T7 135, 0.37 m). Fourier s moothing of 30minute data and 15 minute SWE data to 6 hour time series reveals that when mean SWE is above the probe elevation, and SWE are tightly coupled, with coinciding peaks and valleys corresponding to low and high tides. When mean tide drops below probe elevation, this relationship breaks down, and the surface soil conti nues to dry (though slightly). The total range of variation in soil moisture observed at T7 is small (a change of 1.24% between saturation and drawdown moisture contents in Fig. 2 8) and is unlikely to affect seed germination or seedling survival at thi s transect. Instead, germination and

PAGE 99

99 seedling survival here are likely more limited by tidal inundation range and periods of high SWEC and w. Surface Water, Groundwater, and Porewater EC Relationships A basic premise of the r estoration p lan is that supplying additional freshwater flow over Lainhart Dam will reduce SWEC downstream, reducing the extent of saltwater intrusion. Plotting SWE at Lainhart dam against SWEC at RK 14.6 confirms this relationship ( Fig. 2 9) The r egression equation developed for downstream salinity based on total freshwater flow to the NW Fork (Equation 25 ; SFWMD, 2006) did a fair job of representing the observed dat a fro m 2004 to 2008 at this location ( Ceff = 0.42, r2 = 0. 51) Re fitting the parameters in Eq uation 2 5 using four years of observed data yielded only slightly better results ( Ceff = 0.55, r2 = 0. 54). This is because SWEC at RK 14.6 was highly variable when total flow to the NW Fork was less than ~2.7 m3 s1. As noted in SFWMD (2006), freshwater flow was identified as the most important variable affecting downstream SWEC, but daily variations in tide, wind speed and direction, groundwater fluxes, and precipitation and ET also drive downstream SWEC. Accepting this variability, it is useful to identify specific management thresholds required to maintain SWEC below the 0.3125 S/m threshold, again using SWE at Lainhart Dam as the primary controllable variable in the system. Based on the range of measurements observed during this study, SWE at Lainhart dam should be maintained 3.4 0 m to keep SWEC at RK 14.6 below the threshold 100% of the time, while maintaining SWE at 3.31 m would prevent 95% of all sali nity events exceeding 0.3125 S/m (vertical dashed line in Fig. 2 9 ). SWE of 3.31 m at Lainhart Dam corresponds to a freshwater flow of ~1.0 m3 s1, which is the MFL selected for the NW Fork of the

PAGE 100

100 Loxahatchee River. The restoration plan identifies a mean monthly restoration flow of 1.95 m3 s1, which corresponds to a SWE of 3.42 m. Thus, despite only fair agreement between earlier modeling results and observed data, flows identified in the MFL and Restoration Plan wou ld have been sufficient to maintain S WEC at RK 14.6 below 0.3125 S/m 95% and 100% of the time, respectively, during this four year study. Next, w in the floodplain was compared with SWEC in the river channel and GWEC at each transect. At upstream T1, w was consistently 23 times SWEC and GWEC, however no clear relationships between w and SWE, SWEC, WTE, or GWEC series were apparent. At T7, there was a lag between SWEC and w time series. T hese delays ranged between 22 and 90 days and increased with depth and distance from the river. Pe aks in w were also more persistent than those in SWEC, lasting as much as seven months after SWEC had returned to lower levels ( Fig. 2 5ef). These w dynamics suggest that salts move from the river into the floodplain soils as a diffusive wave at T7. D uring wet seasons and on the rising limb of w peaks, w was highest in surface soils and decreased with depth at all locations. This trend was reversed on the falling limb of w peaks, as the deeper soils lagged behind (e.g., Fig. 2 5f). Since soils at T7 are consistently at or near saturation, high EC surface water inundating the floodplain causes little advective flux of salts into the soil. Instead, salts in daily tidal floodwaters diffuse into the porewater of saturated surface soils and then move downward in the soil profile as a diffusive front. This pattern is reversed when SWEC decreases and tidal floodwaters flush salts from the system, reducing w from the top down. This mechanism also explains the lag between SWEC and w series.

PAGE 101

101 Despite this lag and the persistence of high w after SWEC decreases, some trends between the two series at T7 are apparent. Most importantly, SWEC peaks a t RK 14.6 w ere always greater than the corresponding w peaks, indicating that restoration scenarios designed to maintain SWEC in the river channel below the 0.3125 S/m threshold will also prevent w exceedances in the floodplain. The spatial relationship between SW EC and w across the floodplain at T7 is illustrated in Fig. 2 10, which shows the average, minimum, and maximum ratios between SWEC and w peaks for high, middle, and low elevation measurement locations. In general, the w/SWEC ratio was high close to the river and decreased with distance, though the highest ratios were observed slightly away (25 m) from the river. This agrees with observations from other tidal systems (e.g., Adams, 1963; Niering and Warren, 1980), where greater high tide flushing and low tide drainage were hypothesized to cause lower salinities at the channel edge than in the interior. At the extremes, w peaks i n the floodplain reached a maximum of 63% of the SWEC peaks observed at RK 14.6 (in the highest elevation soils at station T725; Fig. 2 10a) and less than 1% of SWEC (in the lowest elevation soils at station T7135; Fig. 2 10c). While wide, these ranges can be used to determine the range of probable w peaks in the floodplain based on measured or modeled SWEC at RK 14.6. S ummary and C onclusions Bald cypress floodplain swamp and hydric hammock have been identified as valued ecosystem components (VECs) in the Northwest Fork of the Loxahatchee River (NW Fork), which has suffered from increased salinity and reduced hydroperiod due to hydrologic modifications in the watershed. The NW Fork has been the focus of

PAGE 102

102 intensive data collection and modeling efforts aimed at developing ecosystem restoration scenarios to benefit VECs, but previous studies had overlooked hydrological conditions in the floodplain vadose zone. To meet the goal of protecting and restoring bald cypress swamp, this four year study investigated soil moisture ( ) and soil porewater electrical conductivity ( w) dynamics in the floodplain of the Loxahatchee River at two transects an upstream, freshwater transect dominated by bald cypress (T1) and a downstream, transitional ly tidal trans ect with a mix of freshwater and salt tolerant species (T7). These data were complemented by collocated surface water and groundwater stage and salinity and meteorological data. The study provides a quantitative validation of our qualitative expectations that complex interactions of rainfall, surface water, and groundwater dominate the dynamics of and w in coastal wetlands, and that hydraulic structure effects in these areas propagate in the floodplain vadose zone some distance from the structure. In p articular, upstream w rarely exceeded tolerance thresholds for bald cypress, but did so more frequently (and for longer duration) in some downstream areas These data provided a better explanation for the observed spatial patterns of floodplain vegetatio n than either surface water or groundwater data, reinforcing the importance of monitoring in the vadose zone. Additionally, m echanistic frameworks using conditional modeling approaches can benefit from an improved understanding of which variables are mos t important within the floodplain. For instance, dynamic conditions in the upstream riverine floodplain were successfully modeled as a function of surface water elevation (SWE), while variation in the downstream tidal floodplain was small (though twice daily tidal

PAGE 103

103 inundation might limit seed germination and seedling survival to isolated microtopographic points). T he and w relationships drawn in the study allow us to assess the likely impact s o f restoration and management scenarios on the ecological communities in the floodplain of the Loxahatchee River. For example, the proposed restoration flow scenario (which was developed based on floodplain inundation and downstream surface water quality performance measures) will provide good conditions for bald cypress seed germination in the riverine floodplain at T1 during the dry season and maintain w in the soil profile below the bald cypress tolerance threshold at T7. The field and analytical methods used here can be successfully appli ed to other locations where restoration of floodplain ecosystems depends on hydrological conditions in the vadose zone. These efforts would be further improved by species specific studies of moisture requirements for seed germination and studies on the ef fects of variable tidal inundation on the seeds and seedlings of important floodplain species C ontinued monitoring of river and floodplain hydrology and vegetation in the Loxahatchee River will be important to determine whether the restoration flow scenario is achieving the goal of protecting and restoring VECs.

PAGE 104

104 Table 2 1 Locations and attributes of the five groundwater wells in the study. Wells are distributed across two transects (T1 and T7). River kilometer indicates distance from the river mouth. Well elevation denotes elevation at the ground surface. Table 2 2. C haracteristics of the three Loxahatchee River floodplain soil categories described by Mortl ( 2006). Soil Category b (g cm 3 ) K s (cm/hr) r s %C Sand 1.36 0.18 # (1.06 1.55) 37.04 7.70 (29.26 48.42) 0.04 0.40 0.45 (0.10 0.48) Fluvent 0.69 0.38 (0.30 1.22) 84.33 83.52 (0.81 166.17) 0.20 0.90 11.0 (1.0 15.0) Muck 0.25 0.15 (0.14 0.54) 3. 05 2.29 (0.23 7.18) 0.20 0.90 20.0 (5 25) Field bulk density Saturated hydraulic conductivity Residual ( r) and saturation ( s) soil moisture Percent carbon # Mean SD (range in parenthesis) Well Transect Type River Kilometer Distance from River (m) Well Elevation (m, NGVD29) Screened elevation (m, NGVD29) T1 W1 Riverine 23.3 50 3.28 1.51 2.12 T7 W1 Transiti onal 14.6 2 0.36 1.49 0.88 T7 W2 30 0.43 1.40 0.79 T7 W3 90 0.56 1.13 0.52 T7 W4 130 2.94 0.73 0.79

PAGE 105

105 Table 2 3 Summary of experimental data from the 24 probes on Transect 1 (T1, upstream) and Transect 7 (T7, downstream). Probe naming convention indicates transect number (T1/T7), distance from the river (m), and probe elevation (m, NGVD29). (m 3 m 3 ) w (S/m) Probe n Transect 1 Hydric Hammock/Riverine Swamp T1 60 (3.90 m) 69169 0.06 0.05 (0.01 0.41) ----T1 60 (3.80 m) 69077 0.13 0.09 (0.02 0.50) ----T1 60 (3.60 m) 69004 0.24 0.11 (0.01 0.40) ----T1 50 (3.71 m) 7276 5 0.11 0.08 (0.02 0.56) ----T1 50 (3.41 m) 72681 0.22 0.13 (0.03 0.45) ----T1 50 (3.06 m) 72739 0.29 0.08 (0.07 0.38) 0.052 0.011 (0.000 0.099) T1 30 (2.76 m) 67061 0.70 0.06 (0.56 0.76) 0.089 0.057 (0.000 0.210) T1 30 (2.51 m) 66970 0.75 0.02 (0.71 0.79) 0.128 0.044 (0.000 0.205) T1 30 (2.21 m) 66917 0.74 0.01 (0.71 0.77) 0.091 0.007 (0.078 0.110) T1 1 (2.71 m) 65446 0.80 0.07 (0.56 0.91) 0.220 0.063 (0.114 0.412) T1 1 (2.46 m) 63948 0.77 0.03 (0.71 0.82) 0.124 0.029 (0.072 0.229) T1 1 (2.24 m) 67057 0.66 0.01 (0.62 0.69) 0.153 0.015 (0.110 0.193) Probe n Transect 7 Mixed Freshwater and Mangrove Swamps T7 135 (0.37 ) 65447 0.8 0 0.05 (0.75 0.90) 0.065 0.069 (0.000 0.379) T7 135 (0.17 ) 65447 0.83 0.05 (0.75 0.88) 0.043 0.054 (0.000 0.285) T7 135 ( 0.10 ) 65448 0.78 0.02 (0.75 0.81) 0.007 0.017 (0.000 0.091) T7 90 (0.27 m) 65565 0.77 0.02 (0.74 0.84) 0.131 0.058 (0.040 0.287) T7 90 (0.10 m) 64998 0.79 0.02 (0.75 0.86) 0.121 0.037 (0.057 0.273) T7 90 ( 0.10 m) 64124 0.77 0.02 (0.75 0.81) 0.120 0.048 (0.042 0.332) T7 25 (0.20 m) 61006 0.80 0.03 (0.75 0.86) 0.094 0. 098 (0.000 0.596) T7 25 ( 0.03 m) 60956 0.82 0.04 (0.75 0.90) 0.109 0.087 (0.024 0.553) T7 25 ( 0.23 m) 61009 0.82 0.03 (0.75 0.91) 0.104 0.087 (0.020 0.501) T7 2 (0.30 m) 60062 0.77 0.03 (0.75 0.83) 0.114 0.101 (0.018 0.556 ) T7 2 (0.14 m) 56569 0.77 0.02 (0.75 0.79) 0.123 0.093 (0.018 0.480) T7 2 ( 0.20 m) 57375 0.75 0.01 (0.75 0.77) 0.103 0.078 (0.021 0.337) Soil moisture Porewater electrical conductivity Mean SD (range in parentheses) Calibraw does not hold at low b) was extremely low in these soils

PAGE 106

106 Table 2 4. Number of days that the 2 ppt (0.3125 S/m) bald cypress tolerance threshold was exceeded in porewater, surface water, and groundwater at Transect 7. Vadose zone monitoring stations and groundwater wells in which EC did not exceed 0.3125 S/m in any year are excluded. Porewater 2005 2006 2007 2008 T7 135 (0.37 m) 0 0 26 0 T7 90 ( 0.10 m) 0 0 6 0 T7 25 (0.20 m) 0 0 83 0 T7 25 ( 0.03 m) 0 0 85 0 T7 25 ( 0.23 m) 0 0 64 0 T7 2 (0.30 m) 0 0 113 0 T7 2 (0.14 m) 0 0 51 0 T7 2 ( 0.2 m) 0 0 9 0 Surface Water RK 14.6 6 18 64 0 Groundwater T7 W2 0 0 3 0 Table 2 5. Saturated soil moisture content ( s) used to calculate effective soil moisture ( e) and parameters fit to Equation 24 to model e as a function of surface water elevation on Transect 1. The NashSutcliffe Coefficient of Efficiency (Ceff) was used to assess model goodness of fit. Prob e s a b C eff T1 60 (3.90 m) 0.40 3.91 0.24 0.64 T1 60 (3.80 m) 0.35 3.63 0.15 0.72 T1 60 (3.60 m) 0.28 3.33 0.06 0.78 T1 50 (3.71 m) 0.34 3.63 0.16 0.77 T1 50 (3.41 m) 0.35 3.41 0.07 0.82 T1 50 (3.06 m) 0.33 3.26 0.06 0.65 T1 30 (2.7 6 m) 0.74 3.01 0.12 0.54 T1 30 (2.51 m) 0.74 2.75 0.12 0.33 T1 30 (2.21 m) 0.71 ----1.00 T1 1 (2.71 m) 0.80 3.13 0.09 0.51 T1 1 (2.46 m) 0.75 2.76 0.12 0.34 T1 1 (2.24 m) 0.63 ----1.00 For permanently flooded soils, the model for e simplifies to e = 1, with Ceff = 1.0

PAGE 107

107 Figure 21 The Loxahatchee River watershed and surrounding area with transect locations (T1/T7), meteorological measurement locations (S46 and JDWX weather stations), and major hydraulic infrastructure. Tra nsect notation is followed by distance from river mouth (river kilometer, RK).

PAGE 108

108 Fig ure 2 2 Interpretation of aerial photography of vegetation communities in the floodplain of the Northwest Fork of the Loxahatchee River in (a) 1940 and (b) 1995. Distance upstream from river mouth denoted by river kilometer (RK). By 1995, mangroves had displaced large areas of bald cypress in the lower and middle sections of the river due to saltwater intrusion. Bald cypress were present, but declining, in upstream freshwater swamp due to reduced hydroperiod. Adapted from SFWMD (2002; data acquired from SFWMD staff). Fig ure 2 3 Topography and instrumentation layout of vadose zone monitoring stations and groundwater wells on (a) Transect 1 (b) and Transect 7. St ation names denote transect number (T1/T7) and distance from the river (m). Probe installation elevations (m, NGVD29) listed below each station.

PAGE 109

109 Fig ure 24 Precipitation, surface water elevation (SWE), water table elevation (WTE), soil moisture ( ), surface water and groundwater electrical conductivity (SWEC and GWEC), and soil porewater EC ( w) measured at selected stations on or near upstream Transect 1. Naming of vadose zone data series ( and w) indicates transect number (T1/T7), distance fr om river (m), and probe installation elevation (m, NGVD29).

PAGE 110

110 Fig ure 25 Precipitation, surface water elevation (SWE), water table elevation (WTE), surface water and groundwater electrical conductivity (SWEC and GWEC), and soil porewater EC ( w) meas ured at selected stations on or near downstream Transect 7. Naming of vadose zone data series ( w) indicates transect number (T1/T7), distance from river (m), and probe installation elevation (m, NGVD29).

PAGE 111

111 Fig ure 2 6 Observed (symbols) and modeled (lines) effective soil moisture ( e) versus surface water elevation at Lainhart Dam for the 12 monitoring locations on Transect 1.

PAGE 112

112 Fig ure 27 Nomograph for estimating effective soil moisture ( e) profiles on Transect 1 based on surface water elevation (SWE) at Lainhart Dam and soil elevation (m, NGVD29; labeled on curves). Filled circle represents e at the average soil surface elevation (2.81 m) in the lower floodplain under the minimum flow level (SWE =3.31 m). Dark shaded area corresponds to dry season flow levels (3.35 floods with 1to 2 year return interval (3.64 restoration plan.

PAGE 113

113 Fig ure 2 8 Relationship between soil moisture ( ) and surfac e water elevation (SWE) in the highest elevation (i.e., shallowest) probe on downstream, tidally influenced Transect 7 over six days in May 2006. Changes in were small (~1%), and tightly coupled with SWE, but only when mean tide was above probe elevation.

PAGE 114

114 Fig ure 29 Surface water elevation (SWE) at Lainhart Dam versus surface water electrical conductivity (SWEC) at Indiantown Rd. (near Transect 1) and RK 14.6 (near Transect 7). Downstream SWEC is variable below SWE of 3.4 m, however 95% of SWEC ex cee dances above the 2 ppt (0.3125 S/m) threshold for maintenance of bald cypress health occur when SWE dashed line).

PAGE 115

115 Fig ure 210. Ratio of surface water electrical conductivity (SWEC) peaks reached in porewater electrical conductivity ( w) in (a) high, (b) middle, and (c) low elevation measurement locations on Transect 7, calculated from daily average data. Ratios are < 100% at all depths and distances, so restoration scenarios that succeed in maintaining SWEC below 0.3125 S/m will also w

PAGE 116

116 CHAPTER 3 UNTANGLING COMPLEX S HALLOW GROUNDWATER DYNAMICS IN THE FLOODPLAIN WETLANDS OF A SOUTHEASTERN U.S. COASTAL RIVER Introduction Description and modeling of hydroperiod, surface water salinity groundwater elevation and salinity, soil moisture, and soil porewater salinity are essential to understanding the hydrological and ecological functioning of coastal floodplain wetlands (e.g., Glamore and Indraratna, 2009; Nyman et al., 2009; Benke et al., 2000). H owever, finding direct relationships between basic hydrological inputs (rainfall, evapotranspiration, surface water elevation and salinity groundwater elevation and salinity, etc.) is often difficult because of complex interactions between s urface water, groundwater, and porewater in a variably saturated matrix with heterogeneous soils, vegetation, and topography For example, depth, duration, frequency, and salinity of floodplain inundation are functions of tidal range, distance from the oc ean, distance from the river channel, local elevation ( microtopography), volume of freshwater flow, and the direction, volume, and salinity of groundwater fluxes (e.g., Wang, 1998; Liu, 2001; Melloul and Goldenberg 1997), as well as soil hydraulic charact eristics and floodplain vegetation properties. In these complex systems, long term monitoring can characterize the ranges and temporal variation of hydrological and water quality variables (e.g., Muoz Carpena et al., 2008) and support the development o f initial relationships between measured vari ables (e.g., Kaplan et al., 2010a) However, investigating relationships between multivariate time series to improve understanding of system dynamics using visual inspection and comparative statistics is diffic ult, subjective, and may not appropriately characterize the system (Ritter et al., 2007) Nevertheless, a better understanding of

PAGE 117

117 hydrological dynamics is vital to the development of management scenarios to protect valued ecosystems, especially in modifie d wetland systems Thus, an alternative method for identifying common trends and causal factors is required This study applies Dynamic Factor Analysis (DFA), a times series dimension reduction technique, to untangle complex groundwater dynamics in the f loodplain wetlands of a m a naged coastal river in the southeastern U.S. DFA is a multivariate application of classic time series analysis originally developed for the interpretation of economic time series (Geweke, 1977) and can be a powerful tool for the modeling of short, incomplete, nonstationary time series in terms of common trends and explanatory variables (Zuur et al., 2003a) With DFA, underlying temporal variation in observed data (response variables) is modeled as linear combinations of common t rends (unexplained variability), a constant level parameter, zero or more explanatory variables (additional observed time series), and noise (Zuur et al., 2003b) Like other time series models, DFA aims to maintain a good fit while minimizing the number o f common trends Using DFA different formulations of dynamic factor models (DFMs) are possible and thus, the best model selection is often made using goodness of fit indicators The Nash and Sutcliffe coefficient of efficiency ( Ceff ; Nash and Sutcliffe, 1970) can be used to judge model performance. Additionally, Akaikes information criterion, AIC (Akaike, 1974) is often used as a decision tool for choosing between competing models (Zuur et al., 2003b). The ability to m odel time series as a combination of common trends and explanatory variables is especially useful for analyzing complex environmental systems, where DFA can help assess what explanatory variables (if any) affect the time series of

PAGE 118

118 interest, and thus may be worthy of closer attention. DFA has been successfully applied in hydrology to identify common trends in groundwater levels (Kovcs et al., 2004; Ritter and Muoz Carpena, 2006), soil moisture dynamics (Ritter et al., 2009), and interactions between hydrological variables and groundwater quality trends (Muoz Carpena et al., 2005; Ritter et al., 2007) Regalado and Ritter (2009a; 2009b) used DFA for identifying common patterns of unexplained variability in soil water repellency measurements It has also been used to identify trends and environmental variables affecting squid populations (Zuur and Pierce, 2004) and commercial fisheries (Erzini, 2005; Tulp et al., 2008). Here, DFA is applied to study the interactions between floodplain groundwater elevations and other hydrological variables in the floodplain wetlands of the Loxahatchee River (Florida, USA), where reduced freshwater flow has led to saltwater intrusion and a transition to salt tolerant, mangrovedominated communities (South Florida Water Manag ement District [SFWMD], 2006) Groundwater plays a vital role in the water balance of many wetlands and is increasingly recognized as an important driver of ecological processes (Hancock et al., 2009) and the development of particular ecological communiti es in wetlands from Florida, USA (Harvey and McCormick, 2009) to Australia (Hatton et al., 1998) This is particularly true in coastal wetlands, where the effect of groundwater on salinity gradients can largely dictate habitat conditions in the estuary (J assby et al., 1995) Except for one study of biogeochemical transport and submarine groundwater discharge (Swarzenski et al., 2006), the role of groundwater in the Loxahatchee River and its floodplain is largely uninvestigated. The specific objectives of this research are to apply DFA to identify (a) important common trends

PAGE 119

119 among the time series (unexplained variability) and (b) the external local and/or regional hydrological factors (explained variability) that drive the observed shallow water table vari ation. Materials and Methods Study Site Historically part of the greater Everglades watershed, the Loxahatchee River is located on the southeastern coast of Florida, USA (26 59 N, 80 9 W; Fig 3 1) and is often referred to as the last freeflowing ri ver in southeast Florida (SFWMD, 2006.) The river has three main branches (the North, Southwest, and Northwest Forks), which join in a central embayment that connects to the Atlantic Ocean via Jupiter Inlet The watershed drains approximately 550 km2 in Palm Beach and Martin Counties and includes several large, publicly owned areas including Jonathan Dickinson State Park (JDSP), the Loxahatchee Slough Preserve, and the J.W. Corbett Wildlife Management Area In 1985 a 15.3km stretch of the Northwest Fork became Floridas first National Wild and Scenic River (National Park Service [NPS], 2004) and intensive data collection and modeling efforts in support of management and restoration planning have been underway for several years (e.g., SFWMD, 2002, 2006, 2009; VanArman et al., 2005; Mortl, 2006; Muoz Carpena et al., 2008, Kaplan et al., 2010a,b). The Northwest Fork of the Loxahatchee River (NW Fork) and its watershed contain a diverse array of terrestrial and aquatic ecosystems including sandhill, scrub, hydric hammock (a plant community characterized by 30 60 days of inundation yearly and mixed, facultative hardwood species) wet prairie, floodplain swamp, estuarine (mangrove) swamps, seagrass beds, tidal flats, oyster beds, and coastal dunes (Roberts et al., 2006; Treasure Coast Regional Planning Council [TCRPC], 1999)

PAGE 120

120 Many of these ecosystems remain relatively intact (VanArman et al., 2005) and support a diversity of protected animal and plant species, including the endangered Florida manatee ( Triche chus manatus latirostris ) and four petal pawpaw (Asimina tetramera Small) (SFWMD, 2006) The upper watershed of the NW Fork is also home to one of the last remnants of bald cypres s ( Taxodium distichum [L.] Rich.) floodplain swamp in southeast Florida. Ho wever, changing hydrology and salinity regimes in the river and its floodplain have been linked to vegetative changes in the floodplain forest (SFWMD, 2002) Of primary concern is the transition from bald cypress floodplain swamp to mangrovedominated com munities in the tidal floodplain as salinity increased and inadequate hydroperiod in the upstream riverine floodplain, which has shifted the system towards drier plant communities (SFWMD, 2009). Altered hydroperiods and encroaching salinity in the NW For k have been linked to four major factors: 1) construction of major and minor canals that direct water away from the historic watershed; 2) the permanent opening of Jupiter Inlet in 1947 ( Fig. 3 1b); 3) construction of the C 18 canal in 1958, which transfer red a majority of flow from the NW Fork to the Southwest Fork ( Fig. 3 1b); and 4) lowering of the regional groundwater table by community consumption (SFWMD, 2002) These hydrologic changes have been linked to changes in the vegetative composition of the floodplain, where studies have documented the upriver retreat of bald cypress since at least the turn of the 20th century (General Land Office [GLO], 1855; Alexander and Crook, 1975; McPherson, 1981; Ward and Roberts, 1996; Roberts et al., 2008). The heal th of the Loxahatchee River and its adjacent ecosystems is a priority for many residents, visitors, agencies, and political leaders As such, a number of planning

PAGE 121

121 efforts have been initiated over the past twenty years, including the North Palm Beach Count y Comprehensive Everglades Restoration Plan (CERP) project (part of the 30year, $8to $15 billion Everglades restoration project) Additionally, as in many other U.S. states (e.g., Johnson, 2008), Florida law requires its water management agencies to es tablish Minimum Flows and Levels (MFLs) to protect water resources (Section 373.042[1], Florida Statutes) MFL criteria are also designed to protect valued ecosystem components (VECs) from significant harm. The MFL for the NW Fork (SFWMD, 2002) was adopted in 2003 and a restoration plan (SFWMD, 2006) was completed in 2006 with the goal of protecting the rivers remaining cypress swamp and hydric hammock communities, as well as estuarine resources including oysters (Crassostrea virginica), fish larvae, a nd sea grasses all identified as VECs These MFL and restoration scenarios rely primarily on increased freshwater flow over Lainhart Dam ( Fig. 3 1b), which was found to be the most important driver of upstream hydroperiod and downstream surface water sali nity In spite of the Loxahatchees freeflowing appellation, flow over Lainhart dam (calculated from headwater surface water elevation) is controlled by managing conveyance through the G 92 water control structure ( Fig. 3 1b). Experimental Setup In coo peration with the Florida Park Service (FPS), the SFWMD developed a network of twelve groundwater wells along five previously established vegetation survey transects perpendicular to the NW Fork (T1, T3, T7, T8, and T9; Fig. 3 1b) Water table elevation ( WTE) data were collected using TROLL 9000/9500 multi parameter water quality probes (InSitu Inc., Ft. Collins, CO, USA) from September 2004 through January 2009. WTE data were measured every 30 minutes and converted to daily

PAGE 122

122 averages for this study Upr iver transects T1 and T3 each had one well, while transitional and tidal transects (T7, T8, and T9) had multiple wells to document differences in WTE across the floodplain ( Fig. 3 2) Table 31 summarizes well attributes A full description of the groundwater dataset and QA/QC procedure is available in Muoz Carpena et al. (2008). Transects 1 and 3 are upriver locations, not directly impacted by daily tides T1 is located 23.3 km upstream of the river mouth (indicated as river kilometer, RK, 23.3) and h as elevations ranging from 4.19 m (referenced to the National Geodetic Vertical Datum of 1929 [NGVD29]) on the top of a hydric hammock to 1.66 m in the river channel ( Fig. 3 2a) This freshwater transect is dominated by upland forest and hydric hammock at higher elevations and mature bald cypress swamp (average diameter at breast height, DBH = 49 cm) in the lower floodplain (SFWMD, 2006) T3, located at RK 19.5, has several shallow braided streams in the floodplain and elevations ranging from 1.69 m in th e floodplain to 3.00 m in the river channel ( Fig. 3 2b) This transect contains freshwater riverine swamp, but is dominated by pop ash ( Fraxinus caroliniana Mill. ) with only four (very large ) bald cypress in the canopy (average DBH = 92 cm) Intrusion o f less flood tolerant species into the riverine floodplain in these and other riverine transects has been documented, indicating the ecological impact of shortened hydroperiod in this area (SFWMD, 2006, 2009). Moving downriver, transects 7, 8, and 9 all r eceive daily tidal flooding of varying salinity over most or all of their length. T7 is in a transitionally tidal area (RK 14.6) and has elevations ranging from 3.07 m in the upland to 0.40 m in the floodplain ( Fig. 3 2c) Vegetation studies indicate that this transect has been impacted by saltwater intrusion,

PAGE 123

123 logging, and invasion by exotic plants (SFWMD, 2006) T7 presently contains upper tidal swamp (dominated by red mangrove, Rhizophora mangle L. ), which transitions to mixed riverine swamp approximat ely 30 m from the river channel Transect 8 is located approximately 150 m upstream of the confluence of the N W Fork and Kitching Creek at RK 13.1. This transect has elevations ranging from 2.76 m in the upland to 0.23 m at the creek edge and transitions from hydric hammock in the uplands to upper tidal swamp in the floodplain ( Fig. 3 2d) The canopy is dominated by pond apple ( Annona glabra L. ), wax myrtle ( Myrica cerifera L. ), and bald cypress though red and white mangrove ( Laguncularia racemosa [L.] C. F. Gaertn.) seedlings and subcanopy are present, especially within a braided channel with direct connection to the creek ( SFWMD, 2009) T 9 is located at R K 10 .5 on a small peninsula in the NW Fork and has elevations ranging from 2.89 m in the upland t o 0.40 m at the rivers edge ( Fig. 3 2e) This transect consists of lower tidal swamp, dominated by red and white mangrove except on an elevated trail, which supports sabal palm ( Sabal palmetto [Walter] Lodd. Ex Schult. & Schult. f .) Roberts et al. (2008) documented intense vegetation changes on this transect, with a transition from freshwater to saltwater swamp species in less than 50 years. Dynamic Factor Analysis DFA is based on structural time series models (Harvey, 1989), and aims to describe a set of N time series (termed response variables ) using a Dynamic Factor Model (DFM) that includes M common trends ( M < N ), K explanatory variables, a level or intercept parameter, and noise (Ltkepohl, 1991; Zuur et al. 2003b): N time series = M common trends + level parameter + ( 3 1 ) K explanatory variables + noise

PAGE 124

124 In contrast to physically based or mechanistic models, DFMs are not built upon the underlying mechanisms of a given system, but upon the common patterns among, and interact ions between, response variables and explanatory factors Thus, it requires no detailed information about the interactions between response and explanatory time series (Ritter et al., 2009) In the case presented here, this means that a complete a priori understanding of how groundwater (i.e., the response time series), surface water, and other hydrological variables interact in the floodplain is not necessary. By performing DFA, one or more common trends in the response time series are identified, which represent latent (unidentified) variation. The goal of DFA is to minimize the number of common trends (keeping M as small as possible) while still achieving a good fit The use of explanatory variables can help improve the model fit and identify which environmental factors most affect the response variables. Eq uation 3 1 may be written in mathematical form as follows: ) ( ) ( ) ( ) (1 1 ,t t t t sn K k k n k n M m m n m n ( 3 2) m( t ) m( t 1 ) m( t ) (3 3 ) where sn( t ) is a vector containing the set of N time series being modeled ( res ponse variables ); m( t ) [same units as the response variables] is a vector containing the mth common trend; m,n [dimensionless] are factor loadings or weighting coefficients which indicate the importance of each of the common trends within the DFM; n [ same units as the response variables] is a constant level parameter ; vk( t ) [units vary] is a vector containing 0 K explanatory variables; and k,n [inverse units to convert explanatory variables to response variable units] are regression parameters, whi ch indicate the

PAGE 125

125 importance of each of the explanatory variables within the DFM In this study, N represents the twelve WTE time series The terms n( t ) and m( t ) [same units as the response variables] are independent Gaussian noise with zero mean and unknown diagonal or symmetric/nondiagonal covariance matrix Using a symmetric, non diagonal matrix can lead to adequate model fits using fewer common trends than with a diagonal matrix, but causes the number of parameters in the DFM to increase considera bly ( Zuur et al., 2003a) Common trends, m(t), are modeled as a random walk (Harvey, 1989) and are predicted using the Kalman filter/smoothing algorithm and the Expectation Maximization (EM) technique (Dempster et al. 1977; Shumway and Stoffer, 1982; Wu et al. 1996) Factor loadings (m,n) and level parameters ( n) are also calculated using the E M technique. R egression parameters (k,n) are modeled using linear regression (Zuur and Pierce, 2004) DFA deals with missing data in the response series by using a design matrix to identify missing observations and modify the factor loading, regression, and error matrices The Kalman filter and smoothing algorithm then skips these missing observations (Zuur et al., 2003b). Factor loadings (m,n) and regress ion parameters (k,n) accompanying the common trends and explanatory variables allow for identification of the most relevant common trends and explanatory variables for each response variable. T he magnitude of the k,n and their associated standard errors were used to assess whether response and explanatory variables were significantly related ( t value > 2) Additionally, cross correlation between response variables and common trends was quantified using canonical correlation coefficients (m n) Values of m n close to unity indicate that the

PAGE 126

126 common trend is highly associated with that response variable. In the following sections, minor correlations will refer to those with |m n| < 0.25; low correlations to 0.25 m n| < 0.50; moderate correlat ions to 0.50 m n| ; and high correlations to |m n| > 0.75. One possible limitation of DFA, which has not previously been identified in the literature is that common trends and explanatory variables are fit simultaneously Thus, the method may identify one or more common trends that closely resemble candidate explanatory variables If a common trend produced by DFA improves the model more than a similar explanatory variable, the resulting DFM will rely on the trend (which will have relatively high factor loadings) while overlooking the effect of the explanatory variable (which will have relatively low regression coefficients), potentially leading to spurious interpretation of results (i.e., deeming that an explanatory variable is unimportant) To ensure against this possibility, we calculated correlations between common trends and explanatory variables in DFMs that include both. High correlations between the series may indicate that an explanatory variable has been inappropriately disregarded in the model. Explanatory Variables A dditional meteorological and hydrological variables were measured across the watershed, and a total of 29 daily time series ( twelve response variables and seventeen candidate explanatory variables, each with 1589 daily values) were investigated for use in this analys is ( Table 32 ) Not all candidate explanatory variables were used in the final DFMs since multicollinearity may exist between explanatory variables measured at nearby locations The severity of multi collinearity wa s quantified using the variance inflation factor (VIF) of each set of explanatory variables (Zuur et al., 2007)

PAGE 127

127 Combinations of explanatory variables that resulted in VIF > 5 were avoided in these analyses (Ritter et al., 2009), and in those c ases where this criterion was exceeded, the single candidate explanatory variable that best minimized AIC and maximized Ceff was selected For example, if using two surface water elevation time series as explanatory variables resulted in VIF > 5, the seri es that yielded the poorer modeling results was discarded. Breakpoint rainfall data w ere recorded at the SFWMD S 46 s tructure on the Southwest Fork of the Loxahatchee River and at the JDWX weather station in Jonat han Dickinson State Park, where daily refe rence evapotranspiration (ET0) values were also measured ( Fig. 3 1b) These data are publicly available and were downloaded from the SFWMDs online database DBHYDRO (Stations S46_R and JDWX; accessed at http://www.sfwmd.gov/org/ema/dbhydro/index.html ) N ote that WTE data are autocorrelated (i.e., WTE at time t is dependent on WTE at t 1), while this is not true for rainf all and ET, which contain no consistent information about previous data In order to make rainfall and ETo data useful to the DFA (Ritter et al., 2009), t he difference between cumulative rainfall and cumulative ETo was used to create two net local recharge ( Rnet) time series R ainfall was measured at the S 46 and JDWX gauging stations ( Fig. 3 1b) but ETo was only computed from measurements at JDWX so cumulative ET from this station was used to calculate both Rnet series ( Rnet,S46 and Rnet, JDWX) Though only 11.2 km apart the two rain stations exhibited large differences in cumulative rainfall over the four year study period. The effe ct of this spatial variability on model results was explored by developing DFMs using each of the Rnet series both series, and their average and compar ing model results.

PAGE 128

128 Surface water elevation ( SWE) data were recorded at five locations in the N W Fork and one station upstream on Kitching Creek ( Fig. 3 1 b ) A SFWMD monitoring station on the headwater side of Lainhart Dam (0.45 km upstream of T1) measured average daily SWE and is available on DBHYDRO (station LNHRT_H; Fig. 3 1 b ) Cooperatively monitored United States Geological Survey (USGS)/SFWMD stations located at R K 14.6 ( adjacent to T7) RK 13.1 (at confluence with Kitching Creek near T 8), RK 9.5 (~0. 8 km downstream of T 9), RK 1.1 (near the Jupiter inlet) and 2.8 km upstream of the confluence of the NW Fork with Kitching Creek each measured SWE every 15 minutes ( Fig. 3 1b) These dat a were acquired from USGS staff and converted to daily averages. D aily average WTE from nine USGS wells ( Fig. 3 1a) in and around the Loxahatchee River watershed (denote d as WTE_R) are publicly available and were downloaded from the USGS National Water Information System (accessed at http://waterdata.usgs.gov/nwis/ ) An initial cross correlation analysis identified possible l ead/lag relationships between WTE and WTE_R series, and candidate WTE_R series were lagged from +3 to 3 days to determine if lagged series improved the final DFM Analysis P rocedure DFA was implemented using the Brodgar v 2. 5 7 statistical package (High land Statistics Ltd., Newburgh, UK), which is based on the statistical software language R version 2.9.1 (R Core Development Team, 2009). Response and explanatory variables were normalized (mean subtracted, divided by standard deviation) in Brodgar Th is allowed us to com par e the relative importance of explanatory variables across the set of response variables (Zuur et al., 2003b; Zuur and Pierce, 2004). The DFA was carried out sequentially and resulted in three models ( Table 33) First, DFMs were bu ilt with

PAGE 129

129 an increasing number of common trends until satisfactory model performance was achieved according to goodness of fit indicators (Zuur et al., 2003a) This DFM is referred to as Model I Once the minimum number of common trends (M) was identified, different combinations of explanatory variables were incorporated until a satisfactory combination of common trends and explanatory variables was identified without exceeding the VIF criterion (Model II ) This reduced the unexplained variability and improved description of WTE in the floodplain. Finally, a reduced model was explored by removing common trends and using only the best subset of explanatory variables identified in the DFA to create a multi linear model (Model III) using a multiple regressio n code run in Matlab (2009b, The MathWorks, Inc., Natick, MA, USA). G oodness of fit was assessed by visual inspection of the observed versus predicted WTE and quantified with the Nash Sutcliffe coefficient of efficiency ( Ceff Nash and Sutcliffe, 1970) and Akaikes information criterion (AIC; Akaike, 1974) Ceff compares the variance about the 1:1 line to variance of the observed data with Ceff = 1 indicating that the plot of predicted vs. observed data matches the 1:1 line The AIC is a statistical criterion that balances goodness of fit with model parsimony by rewarding goodness of fit but including a penalty term based on the number of model parameters For two different DFMs, the DFM with largest Ceff and smallest AIC wa s preferred. Results and Discussion Experimental Time Series The hydrological data collected during this study represent a wide range of climatic conditions, including four wet/dry season cycles; two wet years with hurricaneinduced flooding ( 2004 and 2005); and the driest twoyear period (2006 to 2007) recorded in south Florida since 1932 (Neidrauer, 2009) Daily time series of hydrological variables

PAGE 130

130 are presented in Fig. 33 Rainfall ( Fig. 3 3a) followed a seasonal pattern, with wet season (May to O ctober) rain accounting for 73 to 80% of yearly totals over the four years (mean 77%; Fig. 3 3a) This is in agreement with previous seasonal rainfall observations in the Loxahatchee River Basin, which have shown that approximately two thirds of yearly rain falls in the wet season between May and October (Dent, 1997) Significant spatial variation between rainfall data collected at the S 46 and JDWX stations was also found. Though the rain gauges were only 11.2 km apart, and roughly equidistant from the shore in flat terrain, cumulative rainfall at the JDWX gauge in JDSP was 2151 mm greater than that at the S 46 structure over the four year study period, yielding divergent Rnet series ( Fig. 3 3b) C orrelation between the rainfall time series w as also low (r2 = 0.18), further justifying the use of both series in the DFM developed (see following sections) B oth rainfall series passed QA/QC procedures by the SFWMD and were deemed reliable. WTE was variable across wells and transects, as well as over seasons and years WTE ranged from a maximum of 3.80 m upstream at well T1 W1 to a minimum of 0.88 m in the tidal floodplain of T8 (T8W1 ) and was highest in upriver wells (T1W1, T3 W1) and downriver higher elevation wells (T7 W4 T8 W3) ( Fig. 3 3 c) Visual inspection of WTE in these higher elevation wells suggested common trends associated with wet and dry season rainfall patterns For example, the impact of late season rains in 2004 and 2005 and dry summer s in 2006 and 2007 on the WTE are appar ent across these wells W TE in lower elevation wells closer to the river appeared to be more influenced by daily tidal flooding ( Fig. 3 3d) Some seasonal wet/dry patterns were still apparent, but less so, as the signal wa s damped by daily and monthly ti dal fluctuations Note high water

PAGE 131

131 events in September 2004 during hurricanes Frances and Jeanne. WTE generally decreased from upstream (T1) to downstream (T9) One exception to this is well T7W4, which maintained higher WTE than well T3 W1 (which is fu rther upstream) throughout most of the period of record ( Fig. 3 3c) due to its high elevation ( Table 31). Figures 3ef show temporal variation in the six SWE and nine WTE_R series explored as candidate explanatory variables In the upriver SWE series (RK 23.3 and Kitching Creek), l arge rainfall events coincide d with peaks in S WE and distinct drawdowns during each of the four dry seasons were observed (most drastically in 2006 and 2007) Daily average SWE measured near T7, T8, T9, and the Jupiter Inlet were nearly identical and over lap in the figure (0.94 2 Fig. 3 3e) WTE_R series measured in and around the Loxahatchee River exhibited a large range (from close to sea level to over 10 m), but consistently mirrored the wet and dry season variations observed in the two upriver SWE series ( Fig. 3 3f ) Other WTE trends in the floodplain of the Loxahatchee River bec a me apparent when looking closely at a single transect For example, WTE increased with distance from the river on T7 with the highest elevation well (T7 W4) showing the maintenance of much higher WTE ( Fig. 3 4) During the dry seasons of 2006 to 2007 this freshwater (Muoz Carpena et al., 2008) head fell, approaching, but not reaching WTE in the floodplain This indicates a variable, but consistently positive flow of freshwater from th e upland towards the river even in extremely dry seasons which likely play s a role in mitigating the severity of saltwater intrusion on T7 This highlights the importance of understanding the dynamics of this hydrological flux The same pattern wa s apparent on T8 (not shown) with higher WTE maintained in well T8W3, except for the dry

PAGE 132

132 seasons of 2006 and 2007, when the groundwater levels in T8W2 and T8W3 met during an extreme WTE drawdown. At T9, which is on a peninsula with the river on two sides, these patterns were not as apparent, with higher elevation and lower elevation wells sharing similar WTE (not shown) Dynamic Factor Analysis Baseline DFA (no explanatory variables) The DFA was advanced in three discrete steps First, different DFMs were obtained by increasing the number of common trends until a maximum Ceff and minimum AIC were achieved. With a diagonal matrix, AIC is minimized and Ceff maximized with six trends ( M =6; Table 34 ) The minimized AIC of 4840 and maximized Ceff of 0.9 4 using six common trends (Model I) were then used as targets for subsequent DFMs That six common trends (representing unexplained, but shared, information) were necessary to achieve the best DFM with no ex planatory variables suggests that several latent effects influence the variabi lity of WTE across the watershed. It is instructive to examine these common trends and their associated canonical correlation coefficients ( m,n) since high m,n values indicate high correlation between two latent variables. T hree example trends from Model I with high m,n values are shown in Fig. 3 5 Though only describing latent (unknown) variability at this stage in the DFA these trends and their patterns of correlation are useful for developing ideas about how WTE varies in the Loxahatchee River floodplain and where to look for the most useful explanatory variables Fo r example, the trend in Fig. 3 5 a is highly to moderately correlated (positively) with all five higher elevation wells (T1 W1, T3W1, T7 W4, T8 -

PAGE 133

133 W3, and T9 W3), but relatively unimportant (minor and low correlations) for the seven lower floodplain wells (T7W1, T7 W2, T7 W3, T8 W1, T8 W2, T9 W1, and T9W2) On the other ha nd, the trend in Fig. 3 5 b is negatively correlated with the upland and upriver wells (low to minor correlations), but positively and more strongly correlated with floodplain wells (moderate to low correlations) This geographic and topographic distributi on of m,n values across the twelve wells suggests that the use of explanatory variables that represent distinct parts of the river may help reduce the unexplained variability represented by these trends The trend in Fig. 3 5 c has low to moderate correlation w ith two of the twelve wells, both on T8, and the correlations are in opposite directions the rest of the correlations are minor This indicates a latent effect specific to these wells and could be an indicator of anomalous data or other environmental fact or (or factors) that only affects these wells (i.e., pumping in the area) Model I requires this common trend to achieve the best match of WTE data in the se wells From the remaining three common trends (not shown) no clear spatial or physical interpret ations could be drawn. DFA with explanatory variables Next, explanatory variables were added in an attempt to reduce the number of common trends required to achieve an adequate fit of WTE (and to reduce the canonical correlation coefficients and factor l oadings of remaining trends) C andidate explanatory variables included surface water elevations (SWE) at six locations in the NW Fork, regional groundwater elevations (WTE_R) in nine groundwater wells in and around the Loxahatchee River watershed, and net local recharge ( Rnet) calculated from two rain gauges and one ET monitoring station, for a total of seventeen possible

PAGE 134

134 explanatory time series When two or more candidate explanatory variables were collinear or multi collinear (resulting in VIFs > 5), th e explanatory variable resulting in the best overall model fit (highest Ceff and lowest AIC) was selected. For the SWE time series, upstream river stage at Lainhart Dam (RK 23.3) and tidal river stage at R K 14.6 provided the best benefit to the model and were not collinear That both upriver and tidal SWE series were required for the best DFM follows from Model I, whose trends were split across high and low elevation floodplain wells For WTE_R time series, USGS well M 1001 most improved the model The DFM was not improved by lagging any of the WTE_R series by 3 to +3 days The model was also improved by using both net local recharge series ( Rnet ,S46 and Rnet ,JDWX) compared with either series alone or their average. Recorded rainfall at the S 46 and JDWX gauges were drastically different ( Fig. 3 3b) and thus, when used to calculate Rnet, each series had distinct information that improved the DFM The use of both Rnet series also highlighted the effects of the high spatial variability of rainfall in t he region. The VIFs for this s et of five explanatory variables did not exceed the VIF threshold (1.30 2.51) Correlations between common trends and this set of explanatory variables were low (0.001 2 these explanatory variables was n ot masked by common trends (though we did observe high correlations between trends and explanatory variables in other DFMs, confirming that it is important to check for this correlation before interpreting DFA results) In summary, t he best DFM used five explanatory variables ( K =5) : SWE at RK 23.3 and 14.6 ( SWERK23.3 and SWERK14.6) ; WTE from USGS well M 1001 ( WTE_RM1001) ; and both net local recharge series ( Rnet ,S46 and Rnet ,JDWX) With these explanatory variables

PAGE 135

135 the number of required common trends was reduced from six to three ( M =3), reducing the unexplained variability in the model while achieving performance similar to that of Model I T his model (Model II) yielded an AIC value of 2998 (lower than the 4880 target from Model I) and a Ceff value of 0.91 across the twelve wells (c ompared with the target of 0.94) Model fits are illustrated in 3 6 Model fits are good to excellent (0.78 < Ceff < 1.0 ) Some higher elevation wells lack data from the beginning of the time series, and model results help paint a more complete picture of WTE in these wells during the hurricanes of 2004 ( e.g., panels 1 and 2 in Fig. 3 6) Table 35 summarizes the results obtained from Model II ( M =3, K = 5 ) Significant regression parameters (t value > 2) are shown in bold. WTE in the 12 wells in the Loxahatchee River had variable relationships to the common trends from Model II but canonical correlations were reduced from Model I, indicating a reduced dependence of the DFM on these latent series The trends in Model II had zero high and four moderate correlations with response variables, compared to four high and seven moderate correlations in Model I. The spatially distributed effects of the explanatory variables and common trends on Model II are compared in Fig. 3 7 Regression parameters (k,n; Figs. 3 7ae) represent the relative importance of each explanatory variable to each response time series with black bars indicating significant regression parameters by t test In general, i nclusion of explanatory variables in Model II reduced fac tor loadings ( Fig. 3 7f) over those in Model I ( overall average |n| for the six trends in Model I was 0.130. 16 compared to 0.050.04 in Model II), suggesting that the patterns observed in the

PAGE 136

136 Loxahatchee River floodplain wells may be adequately described using only the selected explanatory variables (see following section). Visualizing the spatial distribution of the importance of each explanatory variable in the floodplain can be useful when assessing river management options For example, Fig. 3 7 a shows that the Lainhar t Dam surface water time series ( SWERK23.3) was most important in describing variability in wells T1W1 and T3 W1, but had reduced impact downriver As the major management tool in the NW Fork, river stage (i.e., flow) at Lainhart Dam had only limited impact in maintaining WTE downstream of T3 Similarly, Fig. 3 7 b demonstrates the strong importance of tidal surface water ( SWERK14.6) in lower elevation wells further downstream This variable was most important for explaining WTE varia bility on downstream transects (T7, T8, and T9) and was strongest for those wells closest to the river decreasing with distance from the river for example, from T7 W1 (strongly significant, with =0.92) to T7 W4 (insignificant, with =0.01) This explanatory variable, and by extension the response variables that it influences most, is most susceptible to sea level rise caused by climate change. Figs 3 7c d show regression parameters for the two net local recharge series ( Rnet ,S46 and Rnet ,JDWX) Though the importance of these two series is distributed across the twelve wells in the floodplain, a geographic pattern is apparent Wells T1 W1 and T3 W1 are closer to the rainfall gauging station at the S 46 structure ( 3. 2 and 3.9 km respectively ) than the JDWX gauging station (9.7 and 7.2 km, respectively) These wells are more strongly affected by Rnet ,S46, (significant, with values of 0.73 and 0.56, respectively) than by Rnet ,JDWX (insignificant values of 0.10 and 0.13) The importance of the two net local recharge series are split fairly equally over the remainder of the

PAGE 137

137 wells (average Rnet, S46: 0.460.34; average Rn et, JDWX: 0.650.35), with Rnet, JDWX being slightly more important in describing the downstream wells The importance of capturing this spatially distributed rainfall is reinforced when building a DFM using just one of the Rnet series or the average of the two which yield ed poorer results (4859 AIC eff Fig. 3 7e shows that highest values for WTE_R were associated with upstream wells (T1 W1, T3 W1) and downstream high elevation wells (T7 W4, T8 W3, and T9 W3) wells whose ti me series closely resembled regional groundwater circulation Though the importance of regional groundwater elevation ( WTE_RM1001) increased with well elevation, it was significant for nine of the twelve wells A lowered regional groundwater table has been identified as a cause of reduced hydroperiod and increased saltwater intrusion in the Loxahatchee River (SFWMD, 2002), and the dependence of floodplain WTE on regional groundwater is substantiated by these results It is interesting to note that, altho ugh the regional groundwater trend and SWE at Lainhart Dam are correlated (r2 = 0.71), including both explanatory variables in Model II allows us to decompose the general effect of the regional groundwater circulation from the more local effect of SWE at L ainhart Dam shown in Fig. 3 7a. The remaining three trends in Model II and their associated m,n values are given in Figure 3 8 These common trends represent the remaining unexplained (latent) var iability among the WTE series Common t rend 1 has a high starting value, likely associated with high water events during the hurricanes of 2004, whic h may not be sufficiently described by explanatory variables especially if measurement errors occurred during these extreme events This trend is most important to wells T1W1 and

PAGE 138

138 T3 W1, which were also most strongly affected by SWE at Lainhart Dam WTE in all wells are generally positively correlated with both common trends 1 and 2, but have low correlations (average 1,n value: 0.250.21; average 2,n value: 0.310.15) Common trend 3 is weaker and less consistent with positive correlations for most floodplain wells and negative correlation for most upland wells all of which were either minor or low Correlatio ns between these remaining trends and the explanatory variables in Model II were also low, confirming that the importance of explanatory variables was not masked by common trends Though not pursued here, in cases where common trends do mask explanatory v ariables, it may be possible to use a twostep process wherein the ignored explanatory variable(s) are fit to the data first using linear regression. DFA could then be run on the residuals of this process as previously described. This method would esse ntially be a time series based partial regression technique (e.g., Zuur et al., 2007). Multilinear regression model (DFA with no common trends) Finally, common trends were removed from the model to assess the validity of a DFM using only explanatory variables In this model ( Model III), the five explanatory variables identified in the DFA were used to create a multi linear model of the response variables As expected, Ceff values for Model III were somewhat reduced from Model II (overall Ceff = 0. 81, 0.59 < Ceff <0.9 4; compared to Ceff = 0.91, 0.78< Ceff <1.0 for Model II), but are still adequate for most wells ( Table 36) Model III accurately predict ed WTE series in higher elevation wells farthest from the river (e.g., Fig. 3 9, well T3 W1) and in lower elevation wells close to the river (e.g., Fig. 3 9, well T7 W1), but performed worse for middle distance and elevation wells (e.g., Fig. 3 9, well T7 W3) Closer to the edges

PAGE 139

139 of the system, explanatory variables act as boundary conditions (e.g., regional WTE at the farthest landward end of transects and SWE acting at the river) and their effects can be seen directly in the WTE series In middle distance and middle elevation wells, the interaction of surface water and groundwater is most complex and nonlinear, which may not be as well captured by a linear combination model Despite these limitations, overall performance of Model III is adequate to describ e variations in WTE in the Loxahatchee River floodplain and may be useful for assessment of Loxahatche e River restoration scenarios (SFWMD, 2006), especially considering the wide range of climatic conditions captured in the study In general, all restoration scenarios rely primarily on increased freshwater flow over Lainhart Dam, which was found to be the most important driver of upstream hydroperiod and downstream surface water salinity. The Restoration Plan for the Northwest Fork of the Loxahatchee River (SFWMD, 2006) identified a single preferred restoration flow scenario (PRFS) that incorporated seaso nally and yearly variable flows to maintain healthy, functioning ecosystems. In addition to estimating water table elevation under the PRFS, the models developed in this study can be applied to any number of possible future scenarios, including increased groundwater withdrawals, sea level rise, and changes in rainfall and ET patterns associated with climate change. Summary and C onclusions Detailed hydrological multivariate time series, obtained in and around the Loxahatchee River watershed in south Florida were studied and modeled using dynamic factor analysis (DFA) The analysis was successfully applied to understand the hydrological processes in this area, which has been affected by reduced hydroperiod and increased saltwater intrusion. The technique proved to be a powerful

PAGE 140

140 tool for the study of interactions among 29 longterm, non stationary hydrological time series (twelve water table elevation [WTE] series and seventeen candidate explanatory variables) Upstream and tidal s urface water elevations (S WE), regional groundwater circulation (WTE_R), and cumulative net local recharge (Rnet) were found to be the most important factors responsible for groundwater variation in the floodplain wetlands of the Loxahatchee River and t he analysis quantified the spatial distribution of the importance of each explanatory variable to WTE in the twelve monitoring wells. Upstream S WE at Lainhart Dam is the primary managed hydrological input in the Loxahatchee River and was important for describing variability in wells T1 W1 and T3 W1 but ha d limited impact on WTE on downstream transects Although SWE at Lainhart Dam has been shown to largely dictate downstream surface water salinity ( SFWMD 2006), its role in explaining WTE variation is limited to the upstream, river ine river reaches Tidal SWE at RK 14.6, which is susceptible to climate changeinduced sea level rise, wa s important for explaining observed WTE variability for downstream lower elevation wells. WTE_R was significant for nine of the twelve wells, corro borat ing the noted dependence of floodplain WTE on regional groundwater (SFWMD, 2002) The best DFM used two Rnet series, with w ells T1 W1 and T3 W1 gaining the most benefit from the Rnet series calculated using rain from the nearby (to these wells) S 46 structure The importance of the Rnet series from the JDWX gauging station were split fairly equally over the remainder of the wells U sing the average of the two series (a common technique in small watersheds) yielded inferior results This highlights the importance of using the best available local rainfall data for hydrological modeling, whether empirical

PAGE 141

141 or mechanistic, and stresses the need to move to more advanced rainfall measurement techniques, including Next Generation Radar (NexRad). The DFM re sulting from the DFA (Model II) had good results ( overall Ceff = 0.91, 0.78 eff .0, visual inspection) and is useful for filling in data gaps during the study period and identifying the relative importance and relationships between hydrological variables of interest The reduced model with no common trends (Model III) did a fair to excellent job ( overall Ceff = 0.81, 0. 59 eff and is likely adequate for describing variations in WTE in the Loxahatchee River floodplain. This empirical model may be deemed useful for assessment of the effects of Loxahatchee River r estoration and management scenarios on WTE dynamics The study also provides a quantitative validation of our qualitative expectations that tidal effects propagate some distance inland (along a river or estuary), river effects propagate some distance inland from the banks (here to swamps/floodplains), hydraulic structure effects propagate some distance from the structure, and net recharge effects are highly localized. Results of the analysis presented here have practical implications, in addition to guidi ng climate change mitigation planning and ecohydrologic analysis of salinity in coastal river wetlands For example, mechanistic modeling efforts that consider spatial variability of land covers and soils w ould likely benefit from knowledge of where tidal effects end and the degree to which local rainfall variability is an important determining factor M echanistic frameworks using conditional modeling approaches can also benefit from knowing which explanatory variables are most important a s a function of the relative location of a study area to the ocean, a tidal river or hydraulic structure s.

PAGE 142

142 Table 3 1. Locations and attributes of the twelve groundwater wells in the study. Wells are distributed across five transects (T1, T3, T7, T8, and T9). River kilometer indicates distance from the river mouth. Well depth is given in depth below ground surface (bgs). Well Transect Type River Kilometer Distance to River (m) Well Elevation (m, NGVD29) Well Depth (m, bgs) T1 W1 Riverine 23.3 50 3.28 1.77 T3 W1 R iverine 19.5 95 1.60 1.76 T7 W1 Transitional 14.6 2 0.36 1.84 T7 W2 30 0.43 1.82 T7 W3 90 0.56 1.69 T7 W4 130 2.94 3.67 T8 W1 Transitional 13.1 5 0.12 1.62 T8 W2 65 0.36 1.60 T8 W3 105 2.28 2.64 T9 W1 Tidal 10.5 70* 0.41 1.86 T9 W2 50* 0.62 1.86 T9 W3 30* 2.94 4.24 *shortest distance from well to river (T9 is on a peninsula) Table 3 2 Hydrological time series used in the DFA. Variable Series Type No. of series Description WTE Response 12 Groundwater table elevation (m, NGVD29) from wells in the Loxahatchee River floodplain SWE Explanatory 6 Surface water elevation (m, NGVD29) from stations in the Loxahatchee River at RK 23.3 (near T1), RK 14.6 (near T7), RK 13.1 (near T8), RK 9.5 (near T9), RK 1.1 (near Jupiter Inlet), and on Kitching Creek R net Explanatory 3 Cumulative net recharge (cumulative rainfall cumulative ETo, mm) calculated from weather stations at the S 46 structure and in Jonathan Dickinson State Park in the Loxahatchee River watershed (JDWX). WTE_R Expl anatory 9 Groundwater table elevation (m, NGVD29) from USGS wells near the Loxahatchee River watershed

PAGE 143

143 Table 3 3 Dynamic factor models (DFMs) tested in this study (see explanation in text). DFM No. of trends Explanatory variables Regression parameters No. of parameters C eff Model I 6 None --81 0.94 Model II 3 SWE RK23.3 SWE RK14.6 WTE_R M1001 R net,S46 R net,JDWX From DFA 117 0.91 Model III 0 SWE RK23.3 SWE RK14.6 WTE_R M1001 R net,S46 R net,JDWX Multiple regression 60 0.81 Table 3 4 Akaikes in formation criteria (AIC) and NashSutcliffe coefficients of efficiency (Ceff) for dynamic factor models with no explanatory variables and 1 to 7 common trends. Best model in bold. M C eff AIC 1 0.44 32 204 2 0.80 19 860 3 0.85 15 390 4 0.89 11 211 5 0.90 7 337 6 0.94 4 880 7 0.93 6 875

PAGE 144

144 Table 3 5 Constant level parameters (n), canonical correlation coeficents (m,n), factor loadings (m,n), regression coefficients (k,n), and coefficients of efficiency ( Ceff) from Model II (3 trends, 5 explanatory variables). Significant regression parameters in bold. Can. Correlations Factor loadings Regression coefficients ( k,n ) sn n 1,n 2,n 3,n 1 ,n 2 ,n 3 ,n SWERK23.3 SWERK14.6 Rnet,S46 Rnet,JDWX WTE_RM1001 Ceff,n T1 W1 0.44 0.61 0.10 0.30 0.08 0.02 0.00 0.53 0.01 0.73 0.10 0.22 1.00 T3 W1 0.26 0.52 0.14 0 .31 0.05 0.02 0.00 0.58 0.01 0.56 0.13 0.19 0.97 T7 W1 0.10 0.19 0.23 0.02 0.00 0.01 0.04 0.07 0.92 0.23 0.05 0.16 0.94 T7 W2 0.58 0.16 0.35 0.26 0.00 0.02 0.18 0.02 0.62 0.71 0.74 0.05 0.90 T7 W3 0.22 0.08 0.09 0.04 0.01 0.02 0. 20 0.12 0.47 1.05 1.00 0.12 0.83 T7 W4 1.20 0.27 0.43 0.38 0.00 0.10 0.01 0.10 0.01 0.09 0.77 0.24 1.00 T8 W1 0.14 0.05 0.30 0.27 0.00 0.01 0.03 0.19 0.74 0.26 0.00 0.12 0.78 T8 W2 0.01 0.45 0.36 0.04 0.03 0.01 0.12 0.08 0.43 0.5 4 0.72 0.19 0.80 T8 W3 0.90 0.35 0.55 0.14 0.02 0.10 0.00 0.21 0.09 0.3 0 0.65 0.2 0.88 T9 W1 0.50 0.16 0.31 0.29 0.00 0.00 0.23 0.12 0.58 0.92 1.03 0.06 0.97 T9 W2 0.09 0.02 0.30 0.24 0.01 0.00 0.16 0.06 0.70 0.49 0.84 0.01 0.98 T9 W 3 1.06 0.35 0.54 0.16 0.01 0.07 0.03 0.12 0.27 0.03 0.70 0.16 0.86 Overall: 0.91

PAGE 145

145 Table 3 6 M odel parameters, and coefficients of efficiency ( Ceff) from Model III (no trends, 5 explanatory variables). Significant model parameters in bold. Model parameters s n SWE RK23.3 SWE RK14.6 WTE_R M1001 R net,S46 R net,JDWX C eff T1 W1 0.69 0.09 0.41 0.07 0.02 0.91 T3 W1 0.70 0.06 0.35 0.08 0.00 0.94 T7 W1 0.07 0.95 0.09 0.08 0.05 0.93 T7 W2 0.07 0.86 0.09 0.05 0.31 0.76 T7 W3 0.13 0.65 0.32 0.42 0.30 0.59 T7 W4 0.18 0.03 0.68 0.07 0.23 0.91 T8 W1 0.18 0.78 0.07 0.38 0.09 0.80 T8 W2 0.06 0.55 0.35 0.12 0.01 0.68 T8 W3 0.34 0.04 0.69 0.05 0.04 0.81 T9 W1 0.12 0.87 0.10 0.06 0.11 0.81 T9 W2 0.1 2 0.87 0.04 0.17 0.15 0.86 T9 W3 0.14 0.38 0.50 0.01 0.05 0.77 Overall : 0.81

PAGE 146

146 Figure 3 1. The Loxahatchee River and surrounding area, showing (a) the location of the nine regional USGS wells (WTE_R) used in this study and (b) transect locations (T1, T3, T7, T8, and T9), surface water elevation (SWE) and meteorological measurement locations, and major hydraulic infrastructure. Transect notation is followed by distance from river mouth (river kilometer, RK).

PAGE 147

147 Figure 3 2 Transect topographic cross sections, detailing well installation locations and elevations and predominant vegetation types.

PAGE 148

148 Figure 3 3 Precipitation, reference evapotranspiration (ET0), calculated net local recharge (Rnet), water table elevation (WTE), surface water elevation (SWE), and regional water table elevation (WTE_R) measured in and around the Loxahatchee River watershed. Gaps in times series in (c) represent missing data.

PAGE 149

149 Figure 34. Average daily water table elevation (WTE) in the four wells on tr ansect 7 (T7). Gaps in time series represent missing data.

PAGE 150

150 Figure 3 5 Three example trends from Model I (left) and their associated canonical correlation coefficients (right). Trend 1 (a) shows high correlation to higher elevation and upstream wells ; trend 2 (b) is most associated with lower elevation lower elevation lower elevation lower elevation lower elevation floodplain wells; trend 3 (c) has low correlations except for wells T8W1 and T8 W3.

PAGE 151

151 Figure 3 6 Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained from Model II using 3 common trends and 5 explanatory variables.

PAGE 152

152 Figure 3 7 Regression parameters and factor loadings for Model II ( M =3, K =5). Regression parameters (ae) are shown with their standard errors, with black bars indicating significance.

PAGE 153

153 Figur e 38. Common trends (left) and their associated canonical correlation coefficients (right) for Model II.

PAGE 154

154 Figure 3 9 Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained from Model III using 5 explanatory variables and no trends.

PAGE 155

155 CHAPTER 4 SHALLOW GROUNDWATER SALINITY IN A TRANSI TIONING COASTAL FLOODPLAIN FOREST IM PACTED BY SALTWATER INTRUSION Introduction Saltwater intrusion is the in vasion of fresh or brackish surface water or groundwater by water with higher salinity (USGS, 2000a) and has been well described by Knighton et al. (1991) as the landward and upward displacement of the freshwater saltwater interface in coastal aquifers, a nd increased saline water penetration in deltaic and estuarine areas. Saltwater intrusion has both natural (e.g., Flynn et al., 1995) and anthropogenic (e.g., Bechtol and Laurian, 2005) drivers and can lead to rapid and catastrophic loss of coastal wetlands (Wanless et al., 1989), especially where several drivers act simultaneously (e.g., deepwater canals, which increase the inland extent of saltwater inflow, combined with accelerated sealevel rise hurricanes, or severe drought, e.g., McCarthy et al., 2001). While sea level has cycled up and down over the millennia, the coastal ecosystems currently ringing the continents have developed over a fairly stable period of sealevel rise (Wanless et al. 1994). Relatively fast acting natural and anthropogeni c drivers are currently overwhelming coastal wetlands with more frequent, longer, deeper, and saltier inundation in many areas (Burkett et al., 2001). Saltwater intrusion in coastal wetlands causes plant stress or mortality from prolonged submergence and/ or high salinities; erosion of wetland substrate; conversion of freshwater habitats to brackish or saltwater habitats; and the transition of coastal saltwater habitats to open water (DeLaune et al., 1994). Barlow (2003) provides a thorough review of the c auses and impacts of saltwater intrusion on the Atlantic Coast of the USA.

PAGE 156

156 In systems where the causes of saltwater intrusion are primarily anthropogenic, the development of watershed and river management and restoration plans may allow ecological impacts to be minimized or reversed ( Scruton 1998 ), and a robust understanding of hydrological dynamics is vital to assess the potential impacts of these planning efforts. However, t he dynamics of saltwater intrusion are controlled by the interactive effects of tidal activity the timing and volume of freshwater discharge, wind speed and direction, and density gradient s caused by salinity W ith diurnal tidal cycles, stochastic annual weather patterns, and decadal climate cycles, the dynamic behavior of saltwate r intrusion is highly complex (Wang, 1988). In teractions between surface water, groundwater and porewater in variably saturated matri ces with heterogeneous soils, vegetation, and topography (e.g., Gardner et al., 2002, Langevin et al., 2005, Kaplan et al 2010a) often make finding direct relationships bet ween basic hydrological inputs vexingly difficult. This complexity is almost certainly heightened in groundwater vis vis surface water ( e.g., Kiro et al., 2008 ). For example, the frequency and durati on of groundwater salinity exceeding a critical ecological threshold (Jassby, 1995) are functions of surface water elevation and salinity, tidal range, distance from the ocean, distance from the river channel, local elevation (microtopography), volume of f resh surface water flow, and the direction, volume, and salinity of groundwater fluxes (e.g., Wang, 1988; Melloul and Goldenberg 1997; Liu, 2001), as well as soil hydraulic characteristics and vegetation properties. F ullscale density dependent, numeric al models of water table elevation and groundwater salinity such as SEAWAT (Guo and Langevin, 2002) and MOCDENS3D (Essink, 2001) can be useful for improving our understanding of physical systems

PAGE 157

157 (Langevin et al., 2005) and for assessing the potential effec ts of proposed management scenarios ( Nassar et al., 2007), but require extensive subsurface stratigraphy and hydrogeology data to populate the model domain and often rely on simplifying assumptions to estimate model boundary conditions (Motz and Sedighi, 2009) and init ial conditions (Lin et al., 2008). These models also focus almost exclusively on deeper groundwater systems, and may not be as useful for describing shallow groundwater, which can be in direct contact with coastal wetlands directly va the root zone (Skalbeck et al., 2008) or through upward or lateral seepage (e.g., Gardner et al., 2002; Moffett et al., 2008) On the other hand, c ollection of long term, high resolution shallow water table elevation and salinity data can describe the dynamics ( i.e., magnitude, range, daily, seasonal and interannual variation, etc.) and spatial variation of these variables (e.g., Lyons et al., 2004, Muoz Carpena et al., 2008, 2009) However, using visual inspection and comparative statistics to develop relationships between multivariate time series can be difficult, subjective, and may not improve our understanding of the hydrological relationships that characterize the system (Ritter et al., 2007). Thus, an alternative method for sifting through complex data sets to identify possible shared trends and relationships is required. In this study, we appl ied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique, to investigate the complex groundwater salinity dynamics observed in the floodplain wetlands of the Loxahatchee River, a managed coastal river in southeastern Florida (USA). DFA is a statistical model, such that dynamic factor models (DFMs) produced by DFA are driven by measured data. Thus, the approach requires no a pri ori information about the physical system being modeled.

PAGE 158

158 The ability to model time series as a combination of common trends (representing unexplained variability) and explanatory variables is especially useful for analyzing complex environmental systems, where DFA can help assess what explanatory variables (if any) affect the time series of interest, and thus may be worthy of closer attention. While DFA was initially developed to analyze economic time series (Geweke, 1977), it has been successfully applied to improve understanding of common trends and explanatory variables that describe variation in groundwater levels ( Kovc s et al., 2004; Ritter and Muoz Carpena, 2006; Kaplan et al., 2010b ), soil moisture dynamics (Ritter et al., 2009), and interactions between hydrological variables and groundwater quality trends (Muoz Carpena et al., 2005; Ritter et al., 2007). DFA has also been successfully applied to model the dynamics of squid (Zuur and Pierce, 2004) Atlantic bluefish (Addis et al., 2008), and oth er commercial fisheries ( e.g., Erzini, 2005; Tulp et al., 2008) In this study, DFA wa s applied to study the interactions between floodplain groundwater salinity and other hydrological variables in the floodplain wetlands of the Loxahatchee River (Florida, USA), where watershed modifications and management over the past century have reduced freshwater flow and led to saltwater intrusion upriver into historically freshwater ecosystems. This changing hydrology has been associated with a transition to salt to lerant, mangrovedominated communities as salt water advanced upstream (South Florida Water Management District [SFWMD], 2006). While intensive data collection and modeling efforts have been directed at developing appropriate surface water management and restoration goals (SFWMD 2002, 2006), groundwater salinity has been largely overlooked. Th us, the specific objectives of this

PAGE 159

159 research are to: 1) investigate shallow groundwater salinity in the floodplain wetlands of the Loxahatchee River along several tr ansects perpendicular to the river (from upriver, freshwater areas through downriver, tidal areas) and 2) apply DFA to investigate the interactions between the groundwater salinity time series a nd other hydrological variables obtained throughout the waters hed to (a) identify important common trends among the series and (b) identify the external hydrological factors (local and/or regional) that most fully explain observed variation in the time series. Materials and Methods Study Site and Experimental Setup T he Loxahatchee River is located on the southeastern coast of Florida, USA (26 59 N, 80 9 W; Fig. 4 1) and was h istorically part of the greater Everglades watershed. The watershed currently drains approximately 550 km2 in Palm Beach and Martin Counties and includes several large, publicly owned areas including Jonathan Dickinson State Park (JDSP), the Loxahatchee Slough Preserve, and the J.W. Corbett Wildlife Management Area. The river s three main branches (the North, Southwest, and Northwest Forks) j oin in a central embayment that connects to the Atlantic Ocean via Jupiter Inlet ( Fig. 4 1) The Loxahatchee River is often referred to as the last freeflowing river in southeast Florida (SFWMD, 2006) and i n 1985 a 15.3km stretch of the Northwest For k (NW Fork) became Floridas first National Wild and Scenic River (Natio nal Park Service [NPS], 2004). Altered hydroperiods and encroaching salinity in the NW Fork have been linked to undesired changes in the vegetative composition of the floodplain, wher e studies have documented the upriver retreat of bald cypress since at least the turn of the 20th century

PAGE 160

160 (General Land Office [GLO], 1855; Alexander and Crook, 1975; McPherson, 1981; Ward and Roberts, 1996; Roberts et al., 2008). Of primary concern are: 1) the transition from bald cypress floodplain swamp to mangrovedominated communities in the tidal floodplain as salinity increased; and 2) inadequate hydroperiod in the upstream riverine floodplain, which has shifted the system towards drier pl ant commun ities (SFWMD, 2009). I ntensive data collection and modeling efforts in support of management and restoration planning have been underway for several years (e.g., SFWMD, 2002, 2006, 2009; VanArman et al., 2005; Mortl, 2006; Muoz Carpena et al., 2008, Kapl an et al., 2010a,b) Further description of the hydrological history and floodplain vegetation of the Northwest Fork of the Loxahatchee River (NW Fork) is found in SFWMD (2006, 2009). To better understand the role of groundwater in river and floodplain hy drology, the SFWMD and Florid Park Service (FPS) developed a network of twelve groundwater wells along five previously established vegetation survey transects perpendicular to the NW Fork (T1, T3, T7, T8, and T9; Fig. 4 1). These five transects encompass a gradient of floodplain conditions that change with distance from the river mouth (indicated as river kilometer, RK). T1 and T3 are located in the upstream, riverine reach at RK 23.3 and RK 19.5, respectively ( Fig. 4 1) The floodplain in the r iverine r each does not receive daily tidal flooding and is therefore generally unaffected by high surface water salinity. F loodplain canopy vegetation in this reach is dominated by freshwater wetland species including bald cypress ( Taxodium distichum [L.] Rich.), p op ash ( Fraxinus caroliniana Mill.), red maple ( Acer rubrum L. ), pond apple ( Annona glabra L. ), and water hickory ( Carya aquatica [Michx. f.] Nutt.) (SFWMD, 2009).

PAGE 161

161 T7 and T8 are located at RK 14.6 and RK 13.1, respectively ( Fig. 4 1) and represent the up per tidal reach of the NW Fork As a transitional area, the floodplain in the upper tidal reach experiences variable tidal inundation over some or all of its extent, and the salinity of surface water is extremely dynamic over wet and dry seasons (Kaplan et al. 2010a). Vegetation in this area is a mix of freshwater and brackish species generally dominated by moderately salt tolerant species (e.g., pond apple and cabbage palm Sabal palmetto [Walter] Lodd. Ex Schult. & Schult. f.) F reshwater species (e.g ., bald cypress) are found near the uplandfloodplain border and salt tolerant species (primarily red and white mangrove, Rhizophora mangle L. and Laguncularia racemosa [ L.] Gaertn. f.) are found closer to the river s edge. T9 is located further downstream at RK 10.5 ( Fig. 41) and represents the lower tidal reach of the NW Fork. The floodplain in this reach is subject to daily tidal flooding with surface water of variable, but consistently high, salinity. The lower tidal floodplain is dominated by salt tolerant white and red mangroves (SFWMD, 2009). Upriver transects T1 and T3 ( Fig. 4 2a b) each have one well, while transitional and tidal transects have multiple wells to document differences in groundwater salinities from the river channel towards the u pland. T7 ( Fig. 4 2c) has four wells and T8 and T9 ( Fig. 4 2de) each have three wells. Water table elevation (WTE) and groundwater electrical conductivity (GWEC, expressed as electrical conductivity at 25 C, S/m) data were collected every 30 minutes using TROLL 9000/9500 multi parameter water quality probes (InSitu Inc., Ft. Collins, CO, USA) from September 2004 through January 2009. To confirm probe readings, depth to the w ater table was measured using an interface meter (Solinst, Ontario, CA) and electrical conductivity (EC) probes were calibrated

PAGE 162

162 using standard solutions during each data download. Data were converted to daily averages to present the full period of record and for use in the DFA, but highresolution (30 minute) data are also presented. Table 4 1 summarizes attributes of the twelve wells. A full description of the groundwater dataset and QA/QC procedure can be found in Muoz Carpena et al. (2008) and an indepth analysis of WTE data is available in Kaplan et al. (2010 b). Dynamic Factor Analysis DFA is a multivariate application of classic time series analysis and models temporal variation in observed data series as linear combinations of one or more common t rends (representing unexplained variability), zero or more external explanatory variables (representing explained variability), a constant intercept parameter, and noise (Zuur et al., 2003b). Unlike other time series methods (e.g., ARIMA models), DFA is c apable of modeling relatively short, incomplete, nonstationary time series (Zuur et al., 2003a). As with other modeling tools, DFA aims to balance goodness of fit and model parsimony by developing different DFMs. We assessed DFM performance using the Nash and Sutcliffe coefficient of efficiency ( Ceff ; Nash and Sutcliffe, 1970) and Akaikes information criterion, AIC (Akaike, 1974). DFA is inherently a structural time series model (Harvey, 1989) that endeavors to model a set of N time series (dubbed response variables) using a DFM made up of M common trends ( M < N ), K explanatory variables, a level or intercept parameter, and noise (Ltkepohl, 1991; Zuur et al. 2003b): N time series = M common trends + level parameter + ( 4 1 ) K explanatory variables + noise

PAGE 163

163 As opp osed to physically based models, which are built upon the mechanisms known to underlie a given system, DFA is a statistical modeling tool. DFMs are built upon the common patterns among, and interactions between, response variables and explanatory factors Thus, no a priori understanding of the interactions between response and explanatory time series is required (Ritter et al., 2009). In the case presented here, this means that we need not know how groundwater salinity time series (i.e., response variabl es) interact with surface water and other hydrological variables (i.e., candidate explanatory variables) to perform the DFA DFA identifies one or more common trends in the response time series that represent unexplained, but shared, variation. The best D FM minimizes the number of common trends required to achieve a good fit as determined by Ceff and/or AIC. Appropriate explanatory variables may help improve the model and point out which environmental factors (if any) affect the response variables (and ho w). Eq uation 4 1 can be written in mathematical form as: sn( t ) m nm( t ) nm 1 Mk nk( t )k 1 Kn( t ) ( 4 2) m( t ) m( t 1) m( t ) ( 4 3) where sn( t ) is a vector containing the set of N response variables; m( t ) is a vector containing the mth common trend; m,n are factor loadings or weighting coefficients which indic ate the importance of each of the common trends within the DFM; n is a constant level parameter; vk( t ) is a vector containing 0 K explanatory variables; and k,n are regression parameters, which indicate the importance of each of the explanatory variabl es in the DFM. In this study, N represents the twelve GWEC time series. n( t )

PAGE 164

164 and m( t ) are independent, Gaussian noise with zero mean and unknown diagonal or symmetric/non diagonal covariance matrix. A symmetric, non diagonal matrix may yield adequate DFMs with fewer common trends than a diagonal matrix, but also increases the number of required parameters ( Zuur et al., 2003a) Common trends are predicted using the Kalman filter/smoothing algorithm and Expectation Maximization (EM) technique (Dempster e t al. 1977; Shumway and Stoffer, 1982; Wu et al. 1996) and are modeled as a random walk (Harvey, 1989). The EM technique is also used to calculate factor loadings (m,n) and level parameters (n). Regression parameters (k,n) are modeled using linear r egression (Zuur and Pierce, 2004). The relative importance of common trends and explanatory variables was quantified using their associated factor loadings (m,n) and regression parameters (k,n). The significance of relationships between response and ex planatory variables was determined using the magnitude of the k,n and their associated standard errors to calculate a t value for each (significant relationships for t values > 2). Canonical correlation coefficients (m n) were used to quantify crosscor relation between response variables and common trends, with v alues of m n close to unity indicating high correlation between a common trend and response variable. In the following sections, minor correlations refer to those with |m n| < 0.25; low correlations to 0.25 m n| < 0.50; moderate correlations to 0.50 m n| m n| > 0.75.

PAGE 165

165 Explanatory Variables Meteorological and hydrological variables have been collected in the NW Fork in support of MFL and restorat ion plan development for several years, and these time series were used as candidate explanatory variables in the DFA. A total of 45 time series (each with 1588 daily average values) were investigated for use as possible explanatory variables in th e DFA ( Table 42). S ince m ulticollinearity may exist between explanatory variables measured at nearby locations n ot all candidate explanatory variables were used in final DFMs The variance inflation factor (VIF) was used to quantify the severity of multi col linearity of each set of explanatory variables (Zuur et al., 2007), and combinations of explanatory variables with VIF s > 5 were not used in these analyses (Ritter et al. 2009) When this criterion was exceeded, the candidate explanatory variable that best minimized AIC and maximized Ceff was selected. Breakpoint rainfall data were acquired from gauging stations at the S 46 structure on the Southwest Fork of the Loxahatchee River ( Fig. 4 1) and in Jonathan Dickinson State Park where daily reference evapotranspiration (ET0) values were also measured (JDWX weather station, Fig. 4 1). These data are available through the SFWMDs online database DBHYDRO (Stations S46_R and JDWX; accessed at http://www.sfwmd.gov/org/ema/dbhydro/index.html ). Since GWEC data are autocorrelated (i.e., GWEC at time t is dependent on GWEC at t 1), while this is not true for rainf all and ET, t he difference between cumulative rainfall and cumulative ETo was used to calculate two net recharge ( Rnet) time series to make this data pot entially useful in the DFA (Ritter et al., 2009). Rainfall collected at the two stations had low correlation (r2 = 0.18) and considerably different cumulative rainfall totals over the four year study period. The effect of this spatial variability on model results was explored by developing

PAGE 166

166 DFMs using each of the Rnet series both series, and their average and compar ing model results. Surface water elevation (SWE) data were recorded at five stations in the NW Fork and one station upstream on Kitching Creek ( Fig. 4 1) A SFWMD monitoring station on the headwater side of Lainhart Dam (0.45 km upstream of T1) measured average daily SWE and is available on DBHYDRO (station LNHRT_H). United States Geological Survey (USGS) monitoring stations located at RK 14.6 (adjacent to T7), RK 13.1 (at confluence with Kitching Creek, near T8), RK 9.5 (~0.8 km downstream of T9), RK 1.1 (near the Jupiter inlet), and 2.8 km upstream of the confluence of the NW Fork with Kitching Creek each measured SWE every 15 minutes (data acquired from USGS staff) S urface water EC (SWEC) data were recorded at five stations in the NW Fork, including three stations with both surface and bottom EC sensors, for a total of eight SWEC series ( Fig. 4 1) The Loxahatchee River District (LRD) main tains a water quality monitoring station (datasonde station 69) on the Northwest Fork at Indiantown Road that measured SWEC hourly (data acquired from LRD staff). USGS monitoring station s measured surface and bottom SWEC in the river at RK 14.6 RK 9.5, a nd RK 1.1 and surface GWEC at RK 13.1 every 30 minutes (data acquired from USGS staff). Daily average WTE from nine USGS wells in and around the Loxahatchee River watershed (denoted as WTE_R) are publicly available and were downloaded from the USGS Nationa l Water Information System (accessed at http://waterdata.usgs.gov/nwis/) for the analysis of WTE in the Loxahatchee River floodpl ain (Kaplan et al., 2010b ). Fitting o ne common trend to these nine series did a good job of representing WTE_R variation (Ceff = 0.83) and was used as a potential explanatory variable in this analysis.

PAGE 167

167 Additionally, WTE data from the five highest elevation wells in this study were fit to a single common trend and explored as a possible explanatory variable. Visual inspection suggested that variation observed in response variable (GWEC) time series might occur in a delayed and extended manner compared with candidate explanatory variables. To identify possible environmental variables that may better represent the dynamics of GWEC in the floodplain of the Loxahatchee River (and thus reduce the reliance of the final DFM on common trends), two additional explanatory variables were explored. The first focused on SWE at Lainhart Dam, which has been identified as the primary managed variable in the system when developing alternate restoration scenarios for the NW Fork (SFWMD, 2006). First, SWE at Lainhart Dam was converted to flow based on the structures rating curve. Next, a cumulative flow deficit (CFD) was calculated by: CFD ( Qcrit .)t QLainhart t t 1 T Qcrit ( 4 4) where CFD(Qcrit.) is the cumulative flow deficit at time t (m3), Qcrit is a critical daily flow rate (m3 day1), QLainhart,t is the average daily flow measured at Lainhart Dam (m3 day1) CFD accumulates daily flow deficits (sometimes positive, sometimes negative) over the period of record, integrating changes in the volume of freshwater flow to the NW Fork over an extended period. Various DFMs were then built using Qcrit. v alues of 1.0 1.5, 1.95, 2.5, 3 .0, 3.7, and 4.0 m3 s1, based in part on flow rates suggested in the MFL ( 1.0 m3 s1; SFWMD, 2002) and Restoration Plan for the N W Fork which identified seasonally variable flow scenarios with mean monthly dry season flow = 1.95 m3 s1 and mean monthly wet season flow = 3.7 m3 s1 (SFWMD, 2006)

PAGE 168

168 Next, since changes in SWEC also appeared to be reflected in a delayed and extended manner in GWEC series, a similar calculation was applied to SWEC data. To do so, several cumulative salinity deviation (CSD) series were calculated by: CSDt SWECt SWECPOR t 1 T ( 4 5) where CSDt is the cumulative salinity deviation at a particular SWEC measurement location at time t (S/m), SWECt is the average daily surface water EC at that location at time t (S/m), and SWECPOR is the average SWEC over the four year period of record (S/m). These salinity deviations ( again, sometimes positive, sometimes negative) were cumulated over the period of record to integrate long term changes in SWEC. The DFA was performed using CDS series calculated from SWEC series at RK 24.0, RK 14.6, RK 9.5, RK 13.1, and RK 1.1. Analysis Procedure DFA was implemented using Brodgar software (v. 2.6.5, Highland Statistics Ltd., Newburgh, UK), which uses the statistical software language R ( v 2.9.1, R Core Development Team 2009). To compare the relative importance of common trends and explanatory variables across the set of response variables (Zuur et al., 2003b; Zuur and Pierce, 2004) response and explanatory variables were normalized in Brodgar (mean subtracted, divided by standard deviation). The DFA was performed in three discreet steps and yielded three models ( Table 43). DFMs were first developed using an increasing number of common trends until satisfactory model performance was achieved according to goodness of fit indicators (Zuur et al., 2003a). This DFM is referred to as Model I. Next, different combinations of explanatory variables were incorporated to reduce unexplained variability and improve description of GWEC in the

PAGE 169

169 floodplain. This DFM (Model II) ai med to achieve similar (or improved) goodness of fit metrics as Model I with fewer trends and without exceeding the VIF criterion. Finally, the best suite of explanatory variables identified in the DFA was used to create a reduced model using no common tr ends. This multi linear model was created create using a multiple regression code run in Matlab (2009b, The MathWorks, Inc., Natick, MA, USA) and is referred to as Model III DFM goodness of fit was quantified using Ceff and AIC. Ceff compares the variance between predicted and observed data about the 1:1 line, with Ceff =1 indicating that the plot of predicted vs. observed data matches the 1:1 line (Nash and Sutcliffe, 1970). The AIC is a statistical criterion that balances goodness of fit with model parsimony by rewarding goodness of fit but including a penalty term based on the number of model parameters (Akaike, 1974). For two different DFMs, the DFM with largest Ceff and smallest AIC was preferred. Results and Discussion Experimental Time Series Me an daily time s eries The Loxahatchee River watershed experienced a wide range of climatic conditions over the four year monitoring period, including four wet/dry season cycles; two very wet years with tropical storm and hurricaneinduced high water events (2004 and 2005); and the driest twoyear period recorded in south Florida since 1932 ( 2006 to 2007; Neidrauer, 2009). Fig. 4 3 shows mean daily time series of selected meteorological and hydrological variables collected in the watershed over this time period. Rainfall ( Fig. 4 3a) followed a seasonal pattern, with w et season (May to October) rain accounting for 73 80% of yearly totals over the four years (mean 77%) This is in agreement with

PAGE 170

170 previous seasonal rainfall observations in the Loxahatchee Ri ver Basin, which have shown that approximately two thirds of yearly r ainfall occurs in the wet season between May and October (Dent, 1997). Significant spatial variation between rainfall data collected at the S 46 and JDWX stations was observed. Though t he rain gauges were only 11.2 km apart, and roughly equidistant from the shore in flat terrain, cumulative rainfall at the JDWX gauge in JDSP was 2151 mm greater than that at the S 46 structure over the four year study period, yielding divergent Rnet seri es ( Fig. 4 3b). Correlation between the rainfall time series was also low (r2 = 0.18), further justifying the exploration of both series in subsequent DFM develop ment. Surface water elevations measured at five stations in the NW Fork are shown in Fig. 4 3c. Upriver SWE series (RK 23.3 and Kitching Creek) showed dynamics associated with l arge rainfall events and distinct dry season drawdowns. Mean daily SWE measured near T7, T8, T9, and the Jupiter Inlet were similar and overlap in Fig. 4 3c (0.94 2 elevations were observed (see Fig. 4 4ad). Common WTE trends fit to the five highest elevation wells in the project and to nine regional groundwater wells in the Loxahatchee River (WTE_R) were similar (r2 = 0.75) and mirrored the wet and dry season variations observed in the two upriver SWE series ( Fig. 4 3d). Calculated CFD for values of Qcrit ranging from 1.0 4.0 m3 s1 are shown in Fig. 4 3e and CSD series calculated from SWEC data at five locations in the NW Fork are shown in Fig. 4 3f. GW EC dynamics were observed over seasonal and yearly time periods as well as over shorter time ranges (i.e., individual tidal cycles and storm events) Fig. 4 4 shows mean dai ly GWEC graphed below minimum, maximum, and mean daily SWE

PAGE 171

171 and 15/60 minute and mean daily SWEC in the adjacent river channel. These data describe the long term surface and groundwater dynamics over a longitudinal range from upstream, riverine reaches dominated by freshwater vegetation (T1 and T3; Fig. 4 4a) to upper and lower tidal reaches with transitional and estuarine swamp (T7, T8, and T9; Fig. 4 4bd) In general, GW EC was low in upstream and high elevation wells and increased with proximity to Jupiter Inlet and decreasing elevation. For example, global a verage GW EC in upstream well s T1 W1 and T3 W1 over the four year period of record were 0.068 and 0.046 S/m, respectively with little variation between wet and dry seasons or over the four year st udy ( Fig. 4 4a) On the other hand, average GW EC at downstream well T9W 1 was 1 55 6 S/m ( ~25 times the average GWEC observed in well T1 W1) and varied considerably over the period of record ( Fig. 4 4d, black line). On upstream transects T1 and T3, GWEC r emained well below the 2 ppt (0.3125 S/m) salinity tolerance threshold identified for the maintenance of a healthy bald cypress ecosystem (Liu et al., 2006) and was not a significant source or store of salts in the floodplain ( Fig. 4 4a, lower panel). A p arallel study of vadose zone hydrology found soil porewater EC on T1 to be higher than the GWEC observed here, likely due to concentration of solutes by evapotranspiration, though it also remained below the 0.3125 S /m threshold (Kaplan et al., 2010a). Thu s, vegetative changes observed in these reaches (SFWMD, 2006, 2009) may be attributed to reduced soil moisture and insufficient hydroperiod alone; it is unlikely that salinity is a contributing factor. While a strong negative correlation (r2 = 0.72, p < 0 .0001) existed between upstream SWE and SWEC (upper panels), correlations between these surface water data and GWEC in wells T1 W1 and T3W1 were low (0.02 2

PAGE 172

172 On downstream transects with multiple wells, GWEC was generally highest close to the river and decreased w ith distance towards the upland. On T 7 this trend reversed in 2007, when GW EC in well T7 W2 surpassed that of well T7 W1 and rem ained higher for the duration of the year before falling in 2008 ( Fig. 4 4b). On T7, the 0.3125 S/m threshold was exceeded for only 3 days in 2008 (in well T7W2) despite higher SWEC values in the adjacent river channel and daily tidal inundation of the f loodplain on this transect (note different y axes on SWEC and GWEC panels). Dashed and dotted lines in upper panels indicate the mean, minimum, and maximum elevations of the lower floodplain ( i.e., excluding the sharp transitional and upland areas on T7, T8, and T9; Fig. 4 2). The distinct SWEC peaks observed at RK 14.6 during dry season, low flow periods were less distinct, delayed, or absent in GWEC series on the adjacent floodplain at T7. As a result, correlations between SWEC and GWEC on T7 were smal l (0.02 2 In wells T7 W1, T7 W2, and T7 W3, GWEC returned to background levels between 0.1 and 0.2 S/m after these SWEC increases, indicating that salts did not accumulate in the shallow groundwater but were flushed from the shallow groundwater during wet seasons. L owest average GWEC among the twelve wells in the study was observed in well T7W4. The fresh nature of this water and maintenance of high water table elevation in this location (Kaplan et al., 2010b ) likely play a large role in mai ntaining the floodplain GWEC below the critical threshold on T7. The presence of salt tolerant mangroves close to the river on this transect in spite of low GWEC values supports the findings of Kaplan et al. (2010a) who proposed that the distribution of

PAGE 173

173 f reshwater and salt tolerant plant species in transitional areas requires an understanding of root zone salinity, which integrates the effects of SWEC and GWEC. On T8, located on Kitching Creek 150 m upstream of RK 13.1 on the NW Fork, GWEC in the well clo sest to the river (T8 W1) was one to two orders of magnitude higher than in other wells ( Fig. 4 4c ) indicating a sharp salinity gradient in the shallow groundwater across the floodplain. This is similar to salinity patterns measured along a forest to mar sh gradient in South Carolina (USA) by Gardner et al. (2002) and consistent with the idealized description of the saltwater wedge in the coastal aquifer (e.g., Miller, 1990). GWEC in well T8 W1 surpassed the 0.3125 S/m threshold for several months in 2006 and most of 2007, but returned to background levels during wet seasons (as on T7). Correspondence between peaks in GWEC in well T8W1 and the adjacent SWEC was clearer than on T7, indicating a more direct communication between surface and groundwater in this location, though correlations between SWE and all GWEC series on T8 were still low (0.05 2 GWEC in wells T8 W2 and T8W3 remained low, except for a small increase in well T8W2 during a tidal surge and high water event associated with Hur ricane Frances which passed over the study site in September 2004 (shown in detail in subsequent section). The maintenance of low GWEC in these wells is likely due both to the maintenance of high WTE in the upland and lower floodplain inundation frequenc y as elevation increases with distance from the river (see Fig. 4 2). While slightly higher elevations towards the upland currently prevent daily tidal inundation over the transects entire length (note min, max, and mean floodplain elevations in upper pa nel of Fig. 4 4c), predicted sea level rise of 18 to 59 cm over the

PAGE 174

174 next century (IPCC, 2007) will eventually inundate the area, and it is likely that a transition towards salt tolerant vegetation will continue on this transect. On lower tidal transect T9, wells T9 W1 and T9 W2 had the highest GWEC of any wells in the study, while GWEC in well T9W3 was two orders of magnitude lower ( Fig. 4 4 d) despite their similar slotted elevations ( Table 41) again indicating a sharp salinity gradient. Whereas GWEC o n T7 and T8 never reached the magnitude of adjacent SWEC at those transects, GWEC maxima in wells T9W1 and T9W2 and SWEC maxima were of similar magnitude at T9 (3 to 4 S/m, more than ten times the 0.3125 S threshold). Accordingly, v egetation on T9 is pr imarily lower tidal swamp, dominated by white and red mangrove. Alt hough aligned along a linear transect, the three wells on T9 are located on a small peninsula in the river and have a minimum distance to the river of 70, 50, and 30 m for wells T9 W1, T9 W2, and T9 W3, respectively. GWEC was usually highest in well T9 W2 ( Fig. 4 4 d), though peak GWEC was observed in well T9W1 in 2007. GWEC in well T9 W1 oscillate d between high and low values over the period of record, indicating some flushing of salts f rom the shallow groundwater, while GWEC in well T9W2 wa s more constant, likely due to prolonged ponding of saline surface water behind elevated trails built on the peninsula in the 1960s (Roberts et al., 2008; Fig. 42). Again, correlation between SWEC a nd GWEC series was low (0.03 2 Like on T7 and T8, the highest elevation well on T9 had low GWEC and high WTE and low EC groundwater seepage into the wetland has been observed off of the upland slope (Dick Roberts, Pers. Comm.).

PAGE 175

175 Thirty m inute time s eries While the dynamics of mean daily GWEC variation discussed above likely provide sufficient information at the management time scale (daily to monthly for the NW Fork of the Loxahatchee River; SFWMD, 2006), the high temporal resolution of the dat aset allows us to observe additional WTE and SWEC dynamics over diurnal/ tidal cycles and during storm events. For example, Fig. 4 5 shows the effect of tidal forcing on upper tidal T8 over a oneweek period of high SWEC in May 2006. WTE peaks in well T8W1 (dotted line) were coincident with tidal SWE (solid gray line), but the signal was damped in wells T8 W2 (dashed line) and T8W3 (solid black line). During this time, the maximum tidal amplitude was 0.84 m in the surface water, and fell off quickly from 0.49 in well T8 W1 to 0.24 and 0.03 m in wells T8W2 and T8 W3, respectively. SWEC and GWEC peaks also varied with SWE, and an extended period of high SWEC during this 8day period resulted in an oscillating, but steadily increasing GWEC trend driven by high SWEC (note different y axes). The total increase in GWEC over this period was about 0.2 S/m, with a maximal diurnal variation of ~0.07 S/m. On the other hand, GWEC in wells T8W2 and T8W3 remained relatively constant at around 0.066 and 0.029 S/m, respectively, varying only within a range of 0.0005 S/m over the same time period, which is likely inconsequential to floodplain vegetation. Thus, the impact of this extended period of high SWEC on GWEC during the dry season was generally limited to the floodplain areas closest to the river on this transect. One exception to this rule was observed during higher than usual SWE and WTE on T8 during the storm surge associated with Hurricane Frances (September 2004), which caused an abrupt spike in GWEC in w ell T8 W2 ( Fig. 4 6). GWEC returned to background levels after about a week.

PAGE 176

176 Upstream, small diurnal fluctuations in WTE and GWEC can be attributed to ET. Figure 7 shows highresolution SWE, WTE, and GWEC data from a threeweek period in Feb/ March 2006. During daylight hours, WTE decreased by about 2 cm before rebounding at night ( Fig. 4 7, solid line in lower panel). Though most noticeable during relatively stable environmental conditions (no rain, relatively constant adjacent SWE) these daily oscillati ons in WTE were as large as 9 cm during periods of high ET. This cycling of WTE was accompanied by a concomitant, but opposite, variation in GWEC, which increases slightly during the day and decreased at night ( Fig. 4 7, dotted line in lower panel). The scale of GWEC oscillation is smaller, with maximum ET driven daily oscillations on the order of 0.0003 S/m (i.e., ~0.002 ppt salinity). At this scale, the sharp rise in WTE and delayed flush of salts after a rain event was also clear ( Fig. 4 7, upper panel). Downstream, combined tidal and diurnal ET signals made it more difficult to discern the effects of ET on WTE and GWEC. Dynamic Factor Analysis Baseline DFA (no explanatory variables) The DFA was advanced in three discrete steps. First, different DF Ms were obtained by increasing the number of common trends with the goal of achieving a maximum Ceff and minimum AIC. For this analysis, both diagonal and nondiagonal error covariance matrices were explored. However, u se of a diagonal matrix resulted in calculation of one or more common trends that exactly fit one or more response variables. As suggested in Zuur et al. (2000), this may occur with highly variable and noisy datasets, and a nondiagonal error matrix was used in subsequent analyses to avoid this occurrence. With a non diagonal matrix, AIC continued to decrease and Ceff to increase with up to ten trends ( M = 10), the maximum number that Brodgar software

PAGE 177

177 can calculate. Th at more than ten trends (representing unexplained information ) were nec essary to achieve the best DFM of twelve response variables suggest ed that multiple latent effects influence the variabi lity of GWEC across the watershed. To gain more insight into possible common trends affecting floodplain GWEC, a second baseline DFA was investigated with a subset of the original twelve series W ells with low and relatively stable GWEC were excluded from this analysis. For example, GWEC in upstream and higher elevation wells T1W1, T3 W1, T7 W4, T8 W3, and T9 W3 was never greater than 0.01 S/m (0.06 ppt). When compared with GWEC variation in the remaining seven wells, these five series may be considered more or less constant as straight lines of very low magnitude (see Fig. 4 4ad). Normalizing small variations in these series to make them useful for DFA scales up small changes, which from a physical point of view may not be relevant. For example, these series all remained well below the 0.3125 S/m (2 ppt) bald cypress salinity tolerance threshold. Results from the exploratory model wi th seven response variables ( Y = 7; Model I) are given in Table 44. Even with the reduced set of response variables, AIC continued to decrease and Ceff to increase with increasing trends, with no inflection point identified. Though this phenomenon compl icates the interpretation of DFA results, it can be explained by examining the definition of the AIC which is computed as: ) ln( 2 2 L k AIC (4 6) where k is the number of DFM parameters and L is the maximized value of the likelihood function for the estimated model (i.e., an estimation of the sum of squared errors between observ ed and predicted values, RSS). When an additional trend is added to the DFM, the model uses a number of additional factor loadings equal to the

PAGE 178

178 number of response variables. Thus, AIC increases linearly, since k is higher. On the other hand, if the inclusion of an extra trend helps to better predict the response time series, than AIC will also be reduced since RSS is lowe r. Due to this balancing act, the AIC is generally a useful indicator of model performance and parsimony, but only if the improvement in predictions is comparable to the penalization due to the extra parameters. In the case of dynamic factor modeling o f GWEC using four years of mean daily data, AIC was more sensitive to reductions in RSS than to increases in k Although adding an extra trend may result in only a small improvement of the model performance (measured with Ceff), it may considerably increase the likelihood function ( thereby decreas ing the RSS). By contrast, the extra parameters imply a penalization with lower order of magnitude. For example, if the change in the likelihood functions is of the order of 1,000 and the change in the number of parameters is of the order of 1 0, than the AIC may be insensitive to the number of parameters. This would yield considerable reductions in AIC with small corresponding changes in Ceff and may be particularly true for long data sets like those analyzed here. Since no inflection point in AIC was identified, we balanced the incremental benefit to Ceff with the number of extra model parameters added with each additional trend. T he added benefit to Ceff of additional trends tapers off after four trends ( Fig 4 8) Thus, f or subsequent analys e s and identification of explanatory variables, the baseline DFA using seven response variables ( Y = 7) and four common trends ( M = 4) w as used. This model is referred to as Model I and had overall Ceff = 0.86 (0.45 e ff and AIC = 3463. The objective of the subsequent DFA using explanatory variables was thus

PAGE 179

179 to reduce the number of common trends required to achieve similar model performance to less than four in order to reduce the amount of unexplained variabi lity in the DFM. It is first instructive to examine the common trends from Model I and their associated canonical correlation coefficients (m,n) since high m,n values indicate high correlation between two latent variables. The four common trends from Mo del I are shown in Fig. 4 9 Though only describing latent (unknown) variability at this stage in the DFA, these trends and their patterns of correlation are useful for developing ideas about how GWEC elevation varies in the Loxahatchee River floodplain a nd where to look for the most useful explanatory variables. For example, common trend 1 ( Fig. 4 9a) was most highly correlated with GWEC in well T7W1, but also had moderate correlation with well T8 W1, indicating some shared information between these t wo series close to the river in the upper tidal reach. Correlations with the other five wells were low or minor. Common trend 2 ( Fig. 4 5b) on the other hand wa s only highly correlated with GWEC in well T7 W2 and captured the extended and delayed ris e in GWEC that was observed only in this location (see Fig. 4 4b, gray line in lower panel). A ll other correlations with this trend were low or minor Common trend 3 contained the most shared information, with high and moderate correlations with four of the seven wells (representing T7, T8, and T9). This trend represents the high GWEC observed in several wells in 2007. N o clear spatial or physical interpretations could be drawn from common trend 4, but all correlations were low or minor for this trend, indicating a lower dependence of the DFM on this trend.

PAGE 180

180 DFA with explanatory variables Next, appropriate explanatory variables were added to reduce the number of common trends required to achieve an adequate fit of GWEC (and to minimize the fac tor loadings of any remaining trends). Approximately 150 combinations of common trends and candidate explanatory variables (summarized in Table 42) were explored in Brodgar. Finally, t he best DFM was achieved using four explanatory variables ( K =4): net recharge calculated with rainfall from the S46 weather station (Rnet,S46), the trend representing regional groundwater circulation (WTE_R), the cumulative flow deficit with a critical flow of 3.0 m3 s1 (CFD3.0), and cumulative salinity deviation calculate d with SWEC data from RK 9.5 (CSSRK9.5). Other CFD and CSS series were collinear and thus could not be included in the DFM Using both Rnet series did not improve the model and Rnet,S46 performed better than Rnet,JDWX or the average of the two series. U sing these explanatory variables, it was possible to reduce the number of required common trends from four to three ( M =3), th us slightly reducing the unexplained variability in the model. This model (Model II) yielded AIC = 1458 and overall Ceff = 0.8 5 ac ross the seven wells, improving upon the target AIC of 3463 and nearly matching the target Ceff of 0.86 from Model I. Model fits are illustrated in Fig. 4 10. Model fits are fair to excellent (0.52 eff 0.99). Some higher elevation wells lack data fr om the beginning of the time series, and model results help paint a more complete picture of GWEC in these wells during the hurricanes of 2004 (e.g., wells T8 W1 and T9W1 in Fig. 4 10). Table 45 summarizes the results obtained from Model II ( M = 3, 4 exp lanatory variables ). Significant regression coefficients (k,n with t value > 2) are shown in bold.

PAGE 181

181 GWEC in the seven wells used in this analysis had variable relationships to the common trends, but factor loadings were reduced slightly over those in Mod el I. Average | n| value for the three remaining trends in Model II = 0. 07 0. 06 compared to average | n| = 0. 10 0. 11 for the four trends in Model I. This small reduction in dependence on common trends indicated that a multilinear model without trends (Model III) might not be sufficient to describe the observed GWEC dynamics (see following section). The k,n represent the importance of a corresponding explanatory variable on each response variable. Though variably significant to the seven GWEC time s eries, k,n for the calculated variables cumulative flow debt (CFD) and cumulative salt surplus (CSS) were more significant than any of the raw explanatory variables explored for use in the DFA ( e.g., SWE SWEC etc .). Incorporating these cumulat ed mem ory variables was important for improving the DFM since GWEC series varied in a delayed and extended manner compared with other hydrological variables. The remaining three trends in Model II and their associated m,n values are given in Figure 11. These trends represent the remaining unexplained (latent) variability among the GWEC series. The reduction in the dependence on common trends from Model I to Model II is evidenced by lower canonical correlations (e.g., no high correlations). Again, the relat ionships to trends were variable across wells. As with Model I, Trend 1 wa s most correlated with G WEC in well T7 W1, and described variation specific to this well. Trend 2 had moderate or low correlations with 6 of the 7 wells and the shape of the tre nd suggests that it captured high GWEC events in f all 2004 (during Hurricanes Frances and Jeanne) and during the dry seasons of 2006 and

PAGE 182

182 2007. Trend 3 was moderately correlated with GWEC in well T7W3, but had only minor correlations with the remaining six wells. Multilinear regression model (DFA with no common trends) Finally, common trends were removed from the model to assess the validity of a DFM using only explanatory variables. In this model (Model III), the four explanatory variables identified i n the DFA were used to create a multi linear model of the response variables. As expected, Ceff values for Model III were reduced from Model II (overall Ceff = 0. 58, 0.38 eff 0. 75; compared to Ceff = 0. 85 0. 52 Ceff 0.99 for Model II). Visual ins pection of the best and worst model fits from Model III indicated that the model without trends may adequately describe the observed GWEC variation in some wells (e.g., well T7 W2, Fig. 4 9a), but not others (e.g., well T9W2, Fig. 4 9b) Where Model III is deemed adequate, it may be useful for assessment of Loxahatchee River restoration scenarios, especially considering the wide range of climatic conditions captured in the study. C onclusions Detailed multivariate hydrological time series obtained in and around the Loxahatchee R iver watershed in south Florida were studied and modeled using dynamic factor analysis (DFA) to improve our understanding of the hydrological processes in this area, which has been affected by reduced hydroperiod and increased saltw ater intrusion. Short and long term shallow groundwater electrical conductivity (GWEC) dynamics were observed in the floodplain wetlands along a gradient from the river s freshwater, riverine reach downstream through the upper and lower tidal reaches. Sh arp GWEC gradients were observed on transects with multiple wells, with high GWEC closer to the river decreasing by several orders of magnitude with increasing

PAGE 183

183 distance from the river. Peaks in surface water electrical conductivity (SWEC) and GWEC were of ten poorly correlated, with GWEC series evolving in a delayed and extended manner relative to SWEC. Thus, surface water reached higher maximum salinities than groundwater in the adjacent floodplain, but average groundwater salinities were often higher over seasonal and yearly time periods. On riverine transects T1 and T3, GWEC was always well below the 0.3125 S/m environmental threshold proposed for ecological restoration of the freshwater floodplain swamp. GWEC also generally remained below this value o n upper tidal transects T7 and T8, with the exception of well T8W1, which had high values of GWEC for much of 2006 and 2007. GWEC in the lower tidal floodplain was above the threshold (in wells T9W1 and T9W2) over the entire four year study. High reso lution GWEC data revealed daily oscillations in GWEC in both tidal ( Fig. 4 5) and riverine reaches ( Fig. 4 7), though they had different driving forces (tidal forcing and ET, respectively). Flushing of salts from the shallow groundwater was also observed in both reaches, whether after hurricaneinduced tidal inundation of saline water in the upper tidal floodplain ( Fig. 4 6), or after a rain event in the riverine floodplain ( Fig. 4 7, upper panel). On lower tidal transect T9, some flushing of accumulated salts likely occurred in well T9W1 ( Fig. 4 4d, black line in lower panel), but not in well T9W2 (gray line in lower panel), likely due to several raised berms built on the peninsula, which increase infiltration of saline surface water into the shallow gr oundwater. In five of the upstream and/or high elevation wells in the study, observed GWEC was very low (i.e., always <0.01 S/m, compared to the 0.3125 S/m threshold). When

PAGE 184

184 normalized for use in the DFA, small variations in these time series were magnifie d, complicating interpretation of resulting Dynamic Factor Models (DFMs). Thus, DFA was performed on the seven remaining wells that had environmentally relevant GWECs. The technique proved to be a useful tool for the study of interactions among these lon g term, non stationary hydrological time series and a DFM consisting of three common trends and four explanatory variables (Model II) simulated observed GWEC data well ( Ceff = 0.85; 0.52 eff The best DFM used cumulative net recharge from the S46 weather station (Rnet,S46), a single trend fit to nine regional USGS wells (WTE_R), cumulative flow deficit at Lainhart Dam calculated with a critical flow of 3.0 m3 s1 (CFD3 .0), and cumulative salinity deviation calculated from surface water electrical conductivity (SWEC) measured at RK 9.5 in the NW Fork (CSDRK9.5). This model is useful for filling data gaps during the study period and identifying the relative importance and relationships between hydrological variables of interest. The reduced model with no common trends (Model III) did a fair to good job (overall Ceff = 0.58, 0.38 eff 0.75), and may be adequate for describing variations in GWEC variation in some areas of the Loxahatchee River floodplain under different management and restoration scenarios.

PAGE 185

185 Table 4 1 Locations and attributes of the twelve groundw ater wells in the study. Wells are distributed across five transects (T1, T3, T7, T8, and T9). River kilometer indicates distance from the river mouth. Well elevation denotes elevation at the ground surface. *shortest distance from well to river (T9 is on a peninsula) Well Transect Type River Kilometer Distance t o River (m) Well Elevation (m, NGVD29) Min s lotted elevation (m, NGVD29 ) Max s lotted elevation (m, NGVD29 ) T1 W1 Riverine 23.3 50 3.28 1.51 2.12 T3 W1 Riverine 19.5 95 1.60 0.16 1.36 T7 W1 Transitional 14.6 2 0.36 1.49 0.88 T7 W2 30 0.43 1.40 0. 79 T7 W3 90 0.56 1.13 0.52 T7 W4 130 2.94 0.73 0.79 T8 W1 Upper tidal 13.1 5 0.12 1.50 0.89 T8 W2 65 0.36 1.24 0.63 T8 W3 105 2.28 0.36 1.16 T9 W1 Lower tidal 10.5 70* 0.41 1.45 0.84 T9 W2 50* 0.62 1.24 0.28 T9 W3 30* 2.94 1 .31 0.22

PAGE 186

186 Table 4 2 Hydrological time series used in the DFA. Variable Series Type No. of series Description GWEC Response 12 Groundwater electrical conductivity (S/m) from wells in the Loxaha tchee River floodplain R net Explanatory 2 Cumulative net recharge (cumulative rainfall cumulative ETo, mm) calculated from the S 46 and JDWX weather stations SWE Explanatory 6 Surface water elevation (m, NGVD29) from stations in the NW Fork at RK 23.3 (near T1), RK 14.6 (near T7), RK 13.1 (near T8), RK 9.5 (near T9), RK 1.1 (near Jupiter Inlet), and on Kitching Creek SWEC Explanatory 8 Surface and/or bottom surface water electrical conductivity (S/m) from stations in the NW Fork at RK 24.0, RK 14.6, RK 13.1, RK 9.5, and RK 1.1 WTE/ WTE_R Explanatory 14 Water Table Elevation (WTE, m, NGVD29) from the twelve wells in this study and two single WTE trends one calculated from the five highest elevation wells in this study and one calculated from nine region al USGS wells in and around the Loxahatchee River watershed (WTE_R) CFD Explanatory 7 Calculated cumulative flow deficit (km 3 ) based on flow at Lainhart Dam (RK 23.3) (see explanation in text) CSS Explanatory 8 Calculated cumulative salinity deviation (S /m) from SWEC stations (see explanation in text) Table 43. Dynamic factor models (DFMs) tested in this study (see explanation in text). DFM No. of trends Explanatory variables Regression parameters No. of parameters C eff Model I 4 None --57 0.86 Mo del II 3 R net,S46 WTE_R, CFD 3.0 CSS RK9.5 From DFA 81 0.85 Model III 0 R net,S46 WTE_R, CFD 3.0 CSS RK9.5 Multiple regression 28 0.58

PAGE 187

187 Table 4 4 Nash Sutcliffe coefficients of efficiency (Ceff) and Akaikes information criteria (AIC) and for dynamic factor models with no explanatory variables and 1 to 6 common trends. M C eff AIC 1 0.38 18 226 2 0.51 13 030 3 0.64 8 489 4 0.86 3 463 5 0.89 1 682 6 0.93 6 960

PAGE 188

188 Table 4 5 Constant level parameters (n), canonical correlation coeficent s (m, n), factor loadings (m, n), regression coefficients (k,n), and coefficients of efficiency ( Ceff) from Model II (3 trends, 4 explanatory variables). Significant regression param e ters in bold. Canon c orrelations Factor loadings Regression coeff icients ( k,n ) s n n 1,n 2,n 3,n 1,n 2,n 3,n R net,S46 WTE_R CFD 3.0 CSS RK9.5 C eff,n T7 W1 0.49 0.73 0.05 0.01 0.19 0.00 0.01 0.53 0.02 0.32 1.49 0.99 T7 W2 0.00 0.04 0.41 0.17 0.02 0.11 0.04 0.35 0.02 1.21 1.39 0.88 T7 W3 0.12 0.05 0.34 0.67 0.01 0.03 0.15 0.21 0.00 0.38 0.43 0.99 T8 W1 0.24 0.26 0.71 0.04 0.05 0.17 0.04 0.08 0.01 1.10 2.14 0.97 T8 W2 0.03 0.05 0.46 0.17 0.01 0.12 0.09 0.38 0.02 0.32 0.21 0.52 T9 W1 0.07 0.27 0.70 0.02 0.00 0.12 0 .03 0.96 0.00 0.93 0.43 0.86 T9 W2 0.17 0.29 0.52 0.02 0.09 0.16 0.01 0.55 0.06 1.00 1.47 0.72 Overall : 0.85

PAGE 189

189 Table 4 6 M odel parameters and coefficients of efficiency ( Ceff) from Model III (no trends, 4 explanatory variables). Significant model param e ters in bold. Model parameters s n R net,S46 WTE_R CFD 3.0 CSS RK9.5 C eff T7 W1 0.28 0.02 0.44 0.43 0.49 T7 W2 0.07 0.02 1.48 1.77 0.75 T7 W3 0.45 0.05 0.05 0.88 0.60 T8 W1 0.46 0.05 0.27 1.13 0.70 T8 W2 0.05 0.03 0.50 0.16 0.43 T9 W1 1.39 0.03 1.68 0.30 0.73 T9 W2 0.15 0.02 0.66 0.99 0.38 Overall : 0.58

PAGE 190

190 Figure 4 1 The Loxahatchee River and surrounding area with transect locations (T1, T3, T7, T8, and T9), meteorological and surface water elevation (SWE) and electrical conductivity (SWEC) measurement locations, and major hydraulic infrastructure. Transect notation is followed by distance from river mouth (river kilometer, RK).

PAGE 191

191 Figure 4 2 Transect topographi c crosssections, detailing well insta llation locations and elevations and predominant vegetation types.

PAGE 192

192 Figure 4 3 Precipitation, reference evapotranspiration (ET0), net recharge (Rnet), surface water elevation ( SWE ), normalized local and regional w ater table elevation, cumulative flow deficit (CFD), and cumulative salinity deviation (CSD) time series measured in and around the Loxahatchee River watershed from 2004 to 2009.

PAGE 193

193 Figure 4 4 Surface water elevation (SWE), surface water electrical conductivity (SWEC), and groundwater electrical conductivity on riverine transects 1 and 3 (a), upper tidal transects 7 (b) and 8 (c), and lower tidal transect 9 (d). For transects 7, 8, and 9, which receive daily tidal flooding, SWE is plotted with mean, mi nimum, and maximum lower floodplain elevations (dashed and dotted horizontal lines) to illustrate floodplain flooding frequency.

PAGE 194

194 Figure 4 5 High resolution (30minute) surface water elevation (SWE), water table elevation (WTE), surface water electric al conductivity (SWEC), and groundwater electrical conductivity data on upper tidal transect T8 over 8 days in May 2006.

PAGE 195

195 Figure 4 6 High resolution (30minute) surface water elevation (SWE), water table elevation (WTE), surface water electrical conductivity (SWEC), and groundwater electrical conductivity data on upper tidal transect T8 over 2 weeks in September 2004 during Hurricane Frances.

PAGE 196

196 Figure 4 7 High resolution (30minute) surface water elevation (SWE), rainfall, water table elevation ( WTE), and groundwater electrical conductivity (GWEC) data on upper riverine transect T3 over 3 weeks in February 2006. Gray bars indicate nighttime hours.

PAGE 197

197 Figure 4 8 Number of parameters vs. coefficient of efficiency (Ceff) for DFMs with one (1T) t o six (6T) common trends.

PAGE 198

198 Figure 4 9 Common trends (left) and their associated canonical correlation coefficients (right ) for Model I.

PAGE 199

199 Figure 4 10. Observed (gray symbols) and modeled (black lines) normalized WTE for the twelve wells obtained f rom Model II using 3 common trends and 5 explanatory variables.

PAGE 200

200 Figure 4 11. Common trends (left) and their associated canonical correlation coefficients (right ) for Model II.

PAGE 201

201 Figure 4 1 2 Observed (gray symbols) and modeled (black lines) normali zed WTE for well T7 W2 (left) and well T9 W2 (right) obtained from Model III using 4 explanatory variables and no trends.

PAGE 202

202 CHAPTER 5 EXPLORING ROOT ZONE SOIL MOIST URE DYNAMICS IN A DE GRADED BALD CYPRESS ( TAXODIUM DISTICHUM [L.] RICH.) FLOODPLAIN FOREST In troduction Ecosystem restoration is often undertaken with the goal of returning a degraded (i.e., impacted, invaded, perturbed, altered, etc.) plant community to an earlier, more natural state (e.g., Pottier et al., 2009). Hydrological regime is often t he primary environmental sieve (i.e., filter or barrier) (Harper, 1977) controlling seed germination, seedling recruitment, and long term maintenance of plant species and communities, particularly in wetlands (van der Valk, 1981). Accordingly, wetland res toration efforts are usually built upon a foundation of hydrological restoration, whereby historical hydrological regimes and connections are reestablished in order to provide well timed freshwater flows (Middleton, 2002), nutrients (Junk et al., 1989), and (where appropriate) the sediment required for accretion (DeLaune et al., 1994). A robust understanding of site hydrology is therefore vital for meeting restoration goals. Hydrological monitoring and modeling efforts in support of wetland restoration usu ally focus o n surface water (e.g., Wang, 1987), and less frequently, groundwater (e.g., Jung et al., 2004), but overwhelmingly overlook hydrological conditions in the vadose (unsaturated) zone, which largely dictate seed germination and seedling survival f or many wetland plant species (Middleton, 1999). In addition to surface water performance measures like hydroperiod, restoration plans that rely on plant recruitment from existing seed banks, extant populations, or reseeding must also ensure that restor ed areas experience the appropriate soil moisture regime to facilitate germination of desired species. For example, the timing and duration of flooding and drawdown in the floodplain play a critical role in the reproduction of bald cypress ( Taxodium

PAGE 203

203 distichum [L.] Rich.), a major component of floodplain swamps in sixteen U.S. states (Thompson et al., 1999). Bald cypress seeds are dispersed primarily by water (Schneider and Sharitz, 1988; Middleton, 1999), and are relatively short lived, with less than 40% of seeds remaining viable after 100 days and less than 5% remaining viable after 1 year (Middleton, 2000). Thus, the maintenance of viable seed banks is dependent on a regular flood pulse for distribution. Seeds settle along drift lines after floodwater s recede and require moist, but not saturated conditions to germinate (Middleton, 2000). Due to this requirement, Middleton (2000) found that the zone of germination is limited to areas that draw down during the growing season. At the other end of the moisture regime, seeds will not germinate on well drained soils due to lack of surface moisture. Thus, a prolonged drawdown (1 to 3 months) of flooded soils to a saturated condition is required for germination (Burns and Honkala, 1990; Middleton 1999, 2002) Seedlings must also grow fast enough to keep their crowns above floodwaters for most of the growing season to survive (Conner, 1988; Conner et al., 1986, 1987). In spite of these rather rigid environmental requirements, bald cypress forests can survive with infrequent regeneration events as long as mature populations remain healthy and continue to produce seeds. Since seed germination of other swamp species is similarly restricted by the extent and timing of flooding, bald cypress is not out competed by other long lived tree species (Middleton, 2000). Given this specific set of lifecycle requirements, the success of bald cypress floodplain swamp restoration efforts relies on an understanding of the relationships between vadose zone, surface water, and groundwater hydrology. However, finding

PAGE 204

204 direct relationships between basic hydrological inputs can be difficult due to interactions between surface water, groundwater, and porewater in variably saturated matrices with heterogeneous soils, vegetation, and topography (e.g., Gardner et al., 2002, Langevin et al., 2005). Collection of long term, high resolution data can describe temporal soil moisture dynamics (i.e., magnitude, range, daily, seasonal and interannual variation, etc.) and spatial variation (e.g ., Kaplan et al., 2010a), h owever the intrinsic stochasticity of hydrological processes complicates the identification of hydrological fluxes that contribute to this observed variation. On the other hand, physically based models of the vadose zone (e.g., reviews in Vachaud et al., 1993 and et al., 2003) are useful exploratory tools to improve our understanding of these complex hydrological processes (Ritter et al., 2009), but require extensive parameterization and often rely on simplifying assumpti ons to estimate model boundary (Kampf and Burges, 2010) and initial conditions (Rocha et al., 2006). Given these limitations, an alternative method for identifying possible shared variation and explanatory relationships is required. In this context, we applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique, to investigate observed soil moisture dynamics in the degraded bald cypress floodplain river swamps of the Loxahatchee River, a managed coastal river in south eastern Florida (USA). DFA is a statistical technique that produces alternative dynamic factor models (DFMs), driven by measured data. Since the DFMs are based on observed data, no a priori information about the physical system being modeled is required. DFA provides the means to analyze complex, nonstationary environmental systems and decomposes observed times series variation into one or more common trends (which represent

PAGE 205

205 unexplained variation) and any number of explanatory variables. DFA is especially useful for assessing which explanatory variables (if any) most affect the time series of interest. DFA was initially developed for economic time series (Geweke, 1977), but has lately been applied to groundwater systems (Kovcs et al., 2004; Ritter and Muoz Carpena, 2006; Kaplan et al., 2010b), groundwater quality trends (Muoz Carpena et al., 2005; Ritter et al., 2007), and soil moisture dynamics (Ritter et al., 2009; Regalado and Ritter 2009a,b). DFA is often applied to improve conceptualization of ecological relationships, and it has been used to identify trends and environmental response variables affecting squid populations (Zuur and Pierce, 2004), Atlantic bluefish (Addis et al., 2008), and commercial fisheries (Erzini, 2005; Tulp et al., 2008). We applied DFA to study the interactions between root zone soil moisture and other hydrological variables in the floodplain wetlands of the Loxahatchee River (Florida, USA), where watershed modifications and management over the past century have led to reduced freshwater flow, inadequate hydroperiod, and a shift towards drier plant communities (South Florida Water Management District [SFWMD], 2009). Data collection and modeling efforts in the Loxahatchee River have been directed at developing surface water management goals to maintain and restore the rivers floodplain swamp (SFWMD 2002, 2006), but have largely overlooked groundwater and vadose zone hydrology in the floodplain. Monitoring in the vadose zone (Kaplan et al., 2010a) has supported the develop ment of initial relationships between surface water management and vadose zone conditions. However, improved soil moisture predictions are required to better assess the effects of restoration implementation and to guide

PAGE 206

206 adaptive management. To meet this goal, we applied DFA to 12 long term soil moisture datasets and other hydrological variables in the watershed to: (a) identify important common trends among the soil moisture series; and (b) identify the external hydrological factors that most fully explai ned observed variation in the data. Materials and M ethods Study Site Historically part of the greater Everglades watershed, the Loxahatchee River is located on the southeastern coast of Florida, USA (26 59 N, 80 9 W; Fig. 5 1) and is often referred to as the last freeflowing river in southeast Florida (SFWMD, 2006). The rivers three main branches (the North, Southwest, and Northwest Forks) join in a central embayment that connects to the Atlantic Ocean via Jupiter Inlet ( Fig. 5 1). Watershed modif ications and hydraulic infrastructure have decreased the effective size of the watershed from 700 km2 to approximately 550 km2, but much of the area is protected in public lands including Jonathan Dickinson State Park (JDSP), the Loxahatchee Slough Preserv e, and the J.W. Corbett Wildlife Management Area. In 1985, the Loxahatchee River became Floridas first National Wild and Scenic River (National Park Service [NPS], 2004). The Northwest Fork of the Loxahatchee River (NW Fork) and its watershed are unique in that they contain a diverse array of terrestrial and aquatic ecosystems in an increasingly urbanized area, including sandhill, scrub, hydric hammock (a plant community characterized by 30 to 60 days of inundation yearly and mixed, facultative hardwood s pecies), wet prairie, floodplain swamp, estuarine swamps, seagrass beds, tidal flats, oyster beds, and coastal dunes (Roberts et al., 2006; Treasure Coast Regional Planning Council [TCRPC], 1999). Within the river channel itself, there are

PAGE 207

207 four distinct aquatic environments: freshwater, oligohaline, mesohaline, and polyhaline. Since much of the NW Forks watershed is protected, many of these ecosystems remain intact and support a diversity of protected animal and plant species including the endangered Wes t Indian manatee (Trichechus manatus latirostris) and four petal pawpaw (Asimina tetramera Small). The upper watershed of the NW Fork is also home to one of the last remnants of bald cypress swamp in southeast Florida, but modified watershed hydrology and management threaten this resource. The construction of the C 18 canal in 1958 transferred a majority of flow from the NW Fork to the channelized Southwest Fork ( Fig. 5 1) to aid in flood protection; major and minor canals direct water away from the hist oric watershed; and increasing municipal withdrawals have lowered the regional groundwater table (SFWMD, 2002). These hydrologic changes have led to inadequate hydroperiod and soil moisture in the upstream riverine floodplain, which has shifted the system towards drier plant communities (SFWMD, 2009). Similar changes in the composition of floodplain vegetation as a result of reduced flooding frequency have been observed regionally and globally (e.g., Darst and Light, 2008; Leyer, 2005). In the Loxahatchee River, data collection and modeling efforts in support of management and restoration planning have been underway for several years (e.g., SFWMD, 2002, 2006, 2009; VanArman et al., 2005; Mortl, 2006; Muoz Carpena et al., 2008, Kaplan et al., 2010a,b). The experimental site is a freshwater, riverine area, 23.3 kilometers upstream of the river mouth (T1 in Fig. 5 1) and is not impacted by daily tides. Elevations range from 4.19 m to 1.66 m ( Fig. 5 2; all elevations are referenced to the National Geodetic

PAGE 208

208 Vertical Datum of 1929, NGVD29). Soils on the higher elevation hydric hammock consist of Winder fine sand (a fineloamy, siliceous, superactive, hyperthermic Typic Glossaqualf; Soil Survey Staff, 1981), transitioning to sandy clay loam at depths of ~90 cm (Mortl, 2006). In the lower floodplain, soils are classified as fluvents stratified entisols made up of interbedded layers of sand, clay, and organic matter, typical of areas with frequent flooding and deposition (Sumner, 2000) with sand content increasing with depth (Mortl, 2006). Vegetation communities in this area consist of hydric hammock a t higher elevations and mature bald cypress swamp (average diameter at breast height, DBH = 49 cm) at lower elevations. Low bald cypress recruitment and the inv asion of less floodtolerant species into the hydric hammock and riverine floodplain in this and other upstream areas have been documented (SFWMD, 2009), indicating the ecological impact of reduced moisture and shortened hydroperiod in the area. Experimen tal Setup Twelve frequency domain reflectometry (FDR) dielectric probes (Hydra Probe, Stevens Water Monitoring Systems, Beaverton, OR, USA) measuring soil moisture, bulk electrical conductivity, and temperature were installed at four locations and three depths along a previously established vegetation survey transect perpendicular to the river ( Fig. 5 2). Each cluster of three probes was wired to a field data logger (CR10/CR10X, Campbell Scientific, Logan, Utah, USA), which recorded data every 30 minutes. Every two to four weeks, system batteries were changed and data were downloaded. Data collection began in September 2004 and continued through September 2008. The Hydra probe determines soil moisture by measuring soil dielectric properties. The probe generates a 50 MHz electromagnetic wave, most of which is absorbed by the

PAGE 209

209 soil. The portion of the wave that reflects creates a standing wave, which characterizes the soil dielectric constant, K. K is a complex number composed of rer) and imaginary i) dielectric constants (Campbell, 1990) such that: i ri K ( 5 1 ) Temperaturecorrected (25o r calibrations developed specifically for the soils of the Loxahatchee River floodplain by Mo rtl (2006). W hen comparing across soil s, we used the effective soil moisture, e [ ], since the Winder fine sand and fluvent soils have substantially different hydraulic characteristics Table 5 1 e scales from zero to unity and is calculated by: ersr ( 5 2 ) [ m3 m3] r is the residual soil moisture content [ m3 m3] s is the saturated soil moisture content [ m3 m3] Dynamic Factor Analysis Soil moisture time series wer e investigated using dynamic factor analysis (DFA) (Zuur et al., 2003b). DFA is a parameter optimization and dimension reduction technique that is useful for identifying interactions between variables of interest and possible explanatory factors. With DF A, temporal variation in a set of N observed time series is modeled as a linear combination of one to M common trends, zero to K explanatory variables, a constant intercept parameter, and noise (Zuur et al., 2003b): N time series = M common trends + level parameter + ( 5 3 ) K explanatory variables + noise In this construction, the M common trends represent unexplained, shared variation among the N measured time series, the level parameter allows for relative shifts up and

PAGE 210

210 down, and the K are additional observed time series that represent explained variation. The goal of DFA is to identify one or more common trends in the set of observed time series that represent latent ( unexplained) variation, minimizing the number of trends requi red to achieving a good fit with measured data. Appropriate explanatory variables may improve the model fit and point out which external factors most affect the response variables (improving conceptualization of the physical system that drives observed va riation). Mathematically, Eq uation 5 3 may be written as: sn( t ) m nm( t )m 1 Mnk nk( t )k 1 Kn( t ) ( 5 4) m( t ) m( t 1 ) m( t ) (5 5 ) where sn( t ) is a vector containing the set of N time series being modeled (dubbed response variables); m( t ) is a vector containing the c ommon trends; m,n are weighting coefficients that represent the relative importance of common trends to each response variable (dubbed factor loadings); n is a constant level parameter that shifts series up or down; vk( t ) is a vector containing the exp lanatory variables; and k,n are weighting coefficients for the explanatory variables that indicate the relative importance of explanatory variables to each response variable (dubbed regression parameters). In this study, the response variables, sn( t ), are the twelve e time series. The terms n( t ) and m( t ) are independent, Gaussian noise with zero mean and unknown diagonal or symmetric/non diagonal covariance matrix. DFMs with diagonal matrices may include a smaller number of model parameters than those with symmetric, non diagonal matrices,

PAGE 211

211 but may also require a larger number of common trends to achieve adequate model fits ( Zuur et al., 2003a) Co mmon trends, m(t), are modeled as a random walk (Harvey, 1989) and predicted with the Kalman filter/smoothing algorithm and Expectation Maximization (EM) techniques (Dempster et al. 1977; Shumway and Stoffer, 1982; Wu et al. 1996). The EM technique is also used to calculate factor loadings (m,n) and level parameters ( n), while r egression parameters (k ,n) are modeled by linear regression (Zuur and Pierce, 2004). The m,n and k,n accompanying common trends and explanatory variables allow us to identify the differential effects of common trends and explanatory variables on the soil moisture response var iable s. The significance of the k,n were assessed using their magnitude and associated standard errors to compute a t value. Relationships between response and explanatory variables were deemed significant for t values > 2 (Ritter et al., 2009). Relati onships between response variables and common trends, on the other hand, were quantified with the canonical correlation coefficient (m n). Values of m n close to unity indicated high association between the common trend and response variable. We classi fied the strength of these correlations into four groups: minor ( |m n| < 0.25); low (0.25 m n| < 0.50); moderate (0.50 m n| < 0.75); and high correlations (| m n| (Ritter, 2009). Explanatory Variables: Meteorological, Surface Water, and Groundwater Data Additional meteorological and hydrological v ariables were measured across the watershed, and a total of 31 daily time series (twelve response variables and nineteen candidate explanatory variables, each with 1589 daily values) were investigated for use in this analysis ( Table 52). Since multi collinearity may exist between explanatory

PAGE 212

212 variables measured at nearby locations, not all candidate explanatory variables could be used simultaneously. To assess the severity of multi collinearity, we used the variance inflation factor (VIF) of each set of e xplanatory variables (Zuur et al., 2007), avoiding combinations of explanatory variables that resulted in VIF > 5 (Ritter et al., 2009). Average annual precipitation in the Loxahatchee River watershed is 155 0 m m yr1, with approximately two thirds falling during the wet season from May to October (Dent, 1997). Average annual evapotranspiration (ET) losses are 114 0 m m yr1 in southern Florida (SFWMD, 2002). For this study, rainfall data were recorded at the S46 hydraulic structure on the Southwest Fork and ET data were recorded at the JDWX weather station in JDSP ( Fig. 5 1). These data are publicly available and were downloaded from the SFWMD online environmental database, DBHYDRO (accessed at http://my.sfwmd.gov/dbhydroplsql/ ; stations S46_R and JDWX) and converted to daily means. Note that soil moisture data are autocorrelated (i.e., e at time t is dependent e at t 1), while this is not true for rainfall and ET. To make these data potentially useful to the DFA, the difference between cumulative rainfall and cumulative ET was used to calculate a net recharge time series such that: Rnet t Pi i 1 t ETi i 1 t (5 6) where Rnet,t is the net recharge at time t [ mm ] P is precipitation [ mm] and ET is evapotranspiration [ mm ] (Ritter et al., 2009). Breakpoint surface water elevation (SWE) was measured at a SFWMD monitoring station on th e headwater side of Lainhart Dam (0.45 km upstream of the study area; Fig. 5 1 ) and converted to mean daily values. These data are also available on

PAGE 213

213 DBHYDRO (station LNHRT_H). Water table elevation (WTE) data were collected on T1 in a groundwater well located 50 m from the river ( Fig. 5 2) using a multi parameter water quality probe (TROLL 9000/9500, In Situ Inc., Ft. Collins, CO, USA). The well was constructed of slotted 5.08 cm (nominally 2 in) PVC pipe housed in a 20.32 cm (nominally 8 in) PVC pipe. The screen size was 0.254 mm (nominally 0.01 in) and the slotted section length was 0.61 m (nominally 2 ft), corresponding to slotted elevations between 1.66 to 2.27 m. WTE was measured every 30 minutes from September 2004 through January 2009 and convert ed to mean daily values. A full description of the groundwater dataset and QA/QC procedure are available in Muoz Carpena et al. (2008). e time series are bound, by definition, between zero and unity (corresponding to 0 and 100% satur ation, respectively ; see E q uation 5 2 ). e reaches unity, after which the response variables lose dependence on these explanatory variables. To account for this mathematically, we calculated an additional set of explanatory variables that capped measured SWE and WTE variables at fixed elevations according to: SWE, t min ( SWEt, ) ( 5 7) WTE, t min ( WTEt, ) ( 5 8) where SWE,t and WTE,t are surface water and water table elevations (m, NGVD29) capped at fixed elevations, [m, NGVD29]. For this analysis we investigated values of ranging from 2. 6 to 4 .0 (in 0.1 m increments), corresponding to soil moisture monitoring elevations in the floodplain ( Fig. 5 2).

PAGE 214

214 Analysis Procedure DFA was implemented using the Brodgar v. 2.6.5 statistical package (Highland Statistics Ltd., Newburgh, UK), which uses the R statistical software language, version 2.9.1 (R Core Development Team, 2009). To compare the relative importance of common tren ds and explanatory variables across response variables (Zuur et al., 2003b; Zuur and Pierce, 2004), all series were normalized (mean subtracted, divided by standard deviation). We carried out the DFA in three distinct steps, resulting in three models. Mo del I was developed by constructing a set of DFMs using an increasing number of common trends until model performance was deemed satisfactory according to goodness of fit indicators (Zuur et al., 2003a). Model II was developed by incorporating explanatory variables into the DFA until a combination of common trends and explanatory variables was identified that met or exceeded the goodness of fit indicators from Model I without exceeding the VIF criterion. The use of explanatory variables in Model II is int ended to reduce the amount of unexplained variability and e in the floodplain. A final reduced model (Model III) was explored by using the explanatory variables identified in Model II to create a multi linear model (Model III) wit hout common trends. Model III was developed using a multiple regression procedure run in Matlab (2009b, The MathWorks, Inc., Natick, MA, USA). DFM goodness of fit was quantified with the NashSutcliffe coefficient of efficiency ( Ceff Nash an d Sutcliffe 1970) and Akaikes information criterion (AIC; Akaike 1974). Ceff compares the variance between predicted and observed data about the 1:1 line, with Ceff =1 indicating that the plot of predicted vs. observed data matches the 1:1 line. The A IC is a statistical criterion that balances goodness of fit with model

PAGE 215

215 parsimony by rewarding goodness of fit but including a penalty term based on the number of model parameters. Generally, the DFM with the largest Ceff and smallest AIC are preferred. Finally, to assess whether model performance had been improved through this analysis DFMs were compared with the sigmoidal model of floodplain soil moisture based solely on SWE developed by Kaplan et al. (20 10a ) of the form: e 1 1 e SWE a b (5 9 ) w here SWE is measured at Lainhart Dam (m, NGVD29), and a and b are local parameters. Underlying Eq uation 5 9 is the fundamental relationship describing as a function of soil water pressure head ( (e.g., Brooks and Corey, 1964; van Genuchten, 1980). Under relatively hydrostatic conditions (i.e., no inflow, outflow, or redistribution of soil water above the water table), can be estimated as the distance to the water table (Skaggs, 1991) Since SWE and WTE at T1 are often coupled (see results section) directly linking to SWE is consistent with these fundamental relationships. Results and discussion Experimental Time Series Fig. 5 3 shows hydrologic al time series collected on and near the experimental transect (T1). Data collected during this four year period represented a wide range of climatic conditions, including four wet/dry seasons; two years with aboveaverage rainfall and hurricaneinduced f looding (2004 and 2005); and the driest twoyear period (2006 to 2007) on record in south Florida in more than 75 years (Neidrauer, 2009). Rainfall and ET ( Fig. 53a) followed a seasonal pattern, with wet season (May to

PAGE 216

216 October) rain accounting for 73 to 80% of yearly totals over the four years (mean 77%). SWE and WTE ( Fig. 5 3b) were closely correlated in wet seasons (r = 0.92 ), but diverged during dry seasons when SWE remained impounded at a relatively constant level behind Lainhart Dam while WTE continued to decline, most notably in the summers of 2006 and 2007. SWE and WTE dynamics were reflected in e time series ( Fig. 5 3c f). On the sandy hydric hammock ( Fig. 5 3c d), highest elevation e series (e.g., T1 60 [3.90 m]) were the most dynamic, responding quickly to rainfall and promptly draining. Middle elevation soils (T1 60 [3.80 m] and T150 [3.7 1 m]) showed a similar, but damped response to hydrological fluxes (rain, SWE, and WTE). Lowest elevation (i.e., deepest) soils (T1 60 [3.60 m] and T1 50 [3.06 m]) remained saturated for several months at a time, but all soils dried considerably during dr y seasons. The lower floodplain was periodically inundated during the study period and e was at or close to saturation (i.e., e = 1) at all depths for long periods, however surface soils (T1 30 [2.76 m] and T11 [2.71 m]) experienced considerable drying during all dry seasons (most markedly in 2006 and 2007; Fig. 5 3ef, dark lines), with very dry conditions at surface of these highly organic and clayey soils. Lowest elevation soils (T1 30 [2.76 m] and T11 [2.71 m]) remained saturated for the entire study period ( Fig. 5 3ef, gray lines). As constant values, these series had zero varianc e and were thus removed from the DFA. Kaplan et al. (2010a) described these e datasets in further detail

PAGE 217

217 Dynamic Factor Analysis Baseline DFA (no explanatory variables) DFA was applied in three steps. First, different DFMs were obtained using M = 1 to 9 common trends and no explanatory variables to model the ten response vari ables (twelve original series minus the two constant series from lowest elevation probes). Initially, both diagonal and nondiagonal error covariance matrices were explored to identify the number of trends required to achieve a maximum Ceff and minimum AI C. However, when using a diagonal error covariance matrix, we found one or more common trends that exactly fit one or more of the response variables. This can occur with highly variable and noisy datasets and is referred to as a Heywood case (Highland St atistics, 200 0) Since the goal of the DFA is to identify shared variation, nondiagonal error matrices were used in subsequent analyses to avoid this occurrence. With a nondiagonal matrix, AIC continued to decrease and Ceff to increase with up to nine t rends ( M =9). As an alternative to the AIC, we also examined the Bayesian Information Criterion (BIC ; Schwarz, 1978) and Consistent Akaikes Information Criteria (CIAC ; Bozdogan, 1987), which penalize additional parameters more strongly than the AIC, but a ll metrics continued to decrease with up to nine trends ( Table 53 ). That more than nine trends (representing unexplained information) were necessary to achieve the best DFM of ten response variables suggested that multiple latent effects influence the va riability of e at different depths across the floodplain. Since no inflection point in AIC, BIC, or CIAC was identified, we used Ceff and visual inspection as a measure of a models goodness of fit. Though choice of a threshold Ceff is necessarily arbitrary, it is common to choose an appropriate model based on the reduction in model improvement with increased parameterization (e.g., Regalado and Ritter, 2009b). This led to the

PAGE 218

218 selection of the DFA with five common trends ( M = 5; Table 53 ) as Model I since addition of an extra trend had minimal impact on model performance. Model I had overall Ceff = 0.90 (0.46 eff and AIC = 1292. Based on this selection, the objective of the subsequent DFA with explanatory variables (Model II) was to reduce the amount of unexplained variability in the DFM by achieving similar model performance using less than five common trends. It is first instructive to examine common trends from Model I and their associated canonical correlation coefficients (m,n), since high m,n values indicate high correlation with response variables The three most important common trends f rom Model I (highest average | m,n| across the ten response variables) are shown in Fig. 5 4. Though only describing latent (unknown) variability at this stage, these trends and their e va ries in the floodplain and where to look for the most useful explanatory variables. For example, common trend 1 ( Fig. 5 4a, left panel ) was highly (| m n| to moderately (0.50 |m n| < 0.75) e series ( Fig. 5 4a, r ight panel) and appears to reflect large variation due to high water events associated with Hurricane Frances and Jeanne ( which passed over the study site in 2004) and extended dry periods in the summers of 2006 and 2007. Correlations with common trend 2 ( Fig. 5 4b) were weaker, e series. On the other hand, common trend 3 ( Fig. 5 e in higher elevation soils. This topographic distribution of m,n sugges ted it would be useful to search for explanatory variables whose relative importance is split across lower and higher elevation response variables

PAGE 219

219 DFA with explanatory variables Next, explanatory variables were added to the model to reduce the number of common trends required while maintaining sim ilar goodness of fit metrics as those from Model I. By adding explained variability in this step, we also aim to reduce canonical correlation coefficients and factor loadings of any remaining trends, indicating reduced dependency on unknown variation. Ca ndidate explanatory variables included surface water elevation at Lainhart Dam (SWE), water table elevation in well T1W1 (WTE), SWE and WTE series calculated with elevations ranging from 2.6 to 4.0 m, and net recharge calculated as the difference betwee n cumulative rainfall and ET series (Rnet), for a total of nineteen possible explanatory time series ( Table 52) When two or more candidate explanatory variables were collinear or multi collinear (resulting in VIFs > 5), the explanatory variable resulting in the best overall model fit (highest Ceff and lowest AIC) was selected. Approximately 50 DFMs were developed with different combinations of common trends and explanatory variables. Finally, the best DFM used three explanatory variables ( K =3): SWE at Lainhart Dam, WTE calculated with m, and net recharge (Rnet) ( Table 53) With these explanatory variables the number of required common trends was reduced from five to three ( M =3), reducing the unexplained variability in the model while achievi ng performance similar to that of Model I. This model (Model II) yielded an AIC value of 331 (lower than the 1292 target from Model I) and an overall Ceff e series (equal to the target of 0.90 from Model I).

PAGE 220

220 Table 54 summa rizes parameters obtained using Model II. Significant regression parameters (t e series had variable relationships to the common trends from Model II, but canonical correlations were reduced from Model I, indicating a reduced dependence of the DFM on these latent series. While the trends in Model I had five high and thirteen moderate correlations with response variables, trends in Model II had only two high and one moderate correlations. Model fits are fair to ex cellent (0.67 Ceff Model II out performed the empirical sigmoidal model of Kaplan et al. (2010a) e series ( Table 55), although at the cost of more parameters (122 for Model II versus 20 for the sigmoidal model). Model performance is e series in the lower floodplain (i.e., stations T1 30 and T11), where bald cypress seed germination will dictate the success of proposed restoration and management scenarios. The spatially distributed effects of the explanator y variables and common trends on Model II are compared in Fig. 5 5. Fig. 5 5a shows that SWE was most important in describing variability in high and middle elevation soils on the hydric hammock, but had a reduced effect in deeper soils, particularly in t he lower floodplain. On the other hand, WTE e in lower elevation soils. This pattern follows from Model I, which identified different common trends grouped around elevation. Regression coefficients for the Rnet series were weaker and spread across response variables, thoug h generally positive and significant ( Table 5 5) Inclusion of explanatory variables in Model II reduced factor loadings ( Fig. 5 5d) slightly over those in Model I (overall average |n| for the five trends in Model I was 0.08 0.08 compared to 0.05 0.05 in Model II). While these trends are important for improving model fits for some response

PAGE 221

221 e patterns observed in the Loxahatchee River floodplain may be adequately described using only the selected explanatory variables (see following section). The remaining three trends in Model II and their associated m,n values are shown in Figure 6. These common trends represent remaining unexplained (latent) variability e. Trend 1 ( Fig. 5 6a) has low or minor correlat ions with all response series; trends 2 and 3 ( Fig. 5 6bc) are each highly associated with just one response variable, improving model fits for these series with little effect on other series. N o additional spatial or physical interpretations were clear from these three remaining trends, suggesting that shared variation is being accounted for with explanatory variables. Multilinear regression model (DFA with no common trends) Finally, common trends were removed from the model to assess model performance model using only explanatory variables. The three explanatory variables identified in Model II were used to create a multi linear model of the response variables, Model III. As expected, Ceff values for Model III were somewhat reduced from Model II ( overall Ceff = 0.79, 0.59 Model II), but are adequate for most measurement locations ( Table 55). The distribution of model parameters in Model III are similar to the regression coefficients from Model II, with SWE most important to high and middle elevation soils and WTE most important in lower elevation soils. Model fits are fair to excellent and are illustrated in Fig. 5 7. Model III out and had only slightly inferior performance for the remaining two series, T160 (3.90 m)

PAGE 222

222 and T150 (3.41 m). Model improvements for response variables in the lower floodplain realized in Model II were retained. Although empirical by nature, these results indicate that Model III may be useful for assessment of restoration scenarios for the floodplain wetlands of the Loxahatchee River, particularly in light of the wide range of climatic conditions captured in the experimental period. Conclusions Long term multivariate hydrological time series, measured in and around the Loxahatchee River watershed in south Florida, were studied in order to model soil moisture variation along a floodplain transect using dynamic factor analysis (DFA). The method proved to be a useful tool for the study of interactions among 29 long term, nonstationary hydrological time series (ten e] series and nineteen candidate explanatory variables). We found a minimum of five common trends (representing unexplained variability) were necessary to adequately describe observed e variation in the ten response variables ( Model I). Dependence on this unexplained variability was reduced by including appropriate explanatory variables selected from hydrological data measured in the area. The resulting model (Model II) required fewer trends, and those that remained were less important to the model (reduced canonical correlations and factor loadings). Model II also identified the most useful explanatory e variation: surface water elevations (SWE), capped water table elevation (WTE), and cumulative net recharge (Rnet). The analysis also quantified the spatial distribution of the importance e in each location, highlighting the differential effects of surface water and groundwater on e series to be adequately

PAGE 223

223 described using just these explanatory variables after removing the trends (overall Ceff = 0.79, 0.59 eff 0.93). The complex variability observed in these multivariate hydrological datasets was simplified using DFA, and the resulting models are useful for assessing the effects of proposed ecologic al restoration and management scenarios on e dynamics in the floodplain. Next, we aim to incorporate these and other hydrological relationships into an ecohydrological model to predict long term effects of restoration scenarios on floodplain vegetation.

PAGE 224

224 Table 5 1. Loxahatchee River floodplain soil characteristics described by Mortl (2006). Soil Category b (g cm 3 ) K s (cm/hr) r s %C Sand 1.36 0.18 # (1.06 1.55) 37.04 7.70 (29.26 48.42) 0.04 0.40 0.45 (0.10 0.48) Fluvent 0.69 0.38 (0.30 1.22) 84.33 83.52 (0.81 166.17) 0.20 0.90 11.0 (1.0 0 15.0) Field bulk density Saturated hydraulic conductivity Residual ( r) and saturation ( s) soil moisture Percent carbon # Mean standard deviation (range in parenthesis) Table 5 2 Hydrological time series used in the DFA. Variable Series Type No. of series Description e Response 12 Effective soil moisture ( ) in the floodplain root zone SWE Explanatory 1 Surface water elevation in the river (m, NGVD29) measured 0.45 km upst ream of the experimental transect WTE Explanatory 1 Water table elevation (m, NGVD29) measured on the experimental transect, 50 m from the river SWE Explanatory 8 Capped SWE (m, NGVD29), see explanation in text WTE Explanatory 8 Capped WTE (m, NGVD29) see explanation in text R net Explanatory 1 Cumulative net recharge (cumulative rainfall cumulative ET, mm) calculated from rain gauge at the S 46 structure and weather station in Jonathan Dickinson State Park (JDWX).

PAGE 225

225 Table 5 3 Number of parameter s, Nash Sutcliffe coefficients of efficiency (Ceff), Akaikes information criteria (AIC), Bayesian Information Criterion (BIC), and Consistent Akaikes Information Criteria (CIAC) for selected dynamic factor models (DFMs). T he best DFM for each model type are highlighted in italics ( i.e., trends and no explanatory variables; trends and explanatory variables; and just explanatory variables). DFM Explanatory variables No. of trends AIC BIC CIAC C eff No. of parameters Model I 0 1 15,585 16,140 16,215 0.61 75 0 2 11,114 11,736 11,820 0.79 84 0 3 7,459 8,140 8,232 0.83 92 0 4 4,172 4,906 5,005 0.85 99 0 5 1,292 2,070 2,175 0.90 105 0 6 1,949 1,135 1,025 0.91 110 0 7 3,625 2,781 2,667 0.93 114 0 8 4,603 3,736 3,619 0.95 117 0 9 6,214 5,333 5,214 0.97 119 Model II 2 (SWE, WTE =3.10) 3 2,587 ----0.86 112 3 (SWE, WTE, Rnet) 3 5,796 ----0.84 122 3 (SWE, WTE =3 .00, Rnet) 3 2,724 ----0.88 122 3 (SWE, WTE=3 .10, Rnet) 3 331 ----0.90 122 Model III 3 (SWE, WTE=3 .10, Rnet) 0 11,188 ----0.79 40 SWE, surface water elevation at Lainhart Dam; WTE, water table elevation; WTE x, water table elevation capped at x; Rnet, net recharge

PAGE 226

226 Table 5 4 Constant level parameters (n), canonical correlation coeficents (m,n), factor loadings (m,n), regression coefficients (k,n), and coefficients of efficiency from Model II ( Ceff,n) and sigmoidal model ( Ceff,sig). Significant regression param e ters in bold. Canon. Corr. Coef. Factor loadings Regression c oefficients s n n 1,n 2,n 3,n 1,n 2,n 3,n SWE,n WTE( =3.1),n Rnet,n C eff,n C eff,sig T1 60 (3.90 m) 0.03 0.38 0.27 0.03 0.08 0.02 0.02 0.81 0.16 0.03 0.67 0.64 T1 60 (3.80 m) 0.06 0.31 0.86 0.01 0.02 0.21 0.03 0.41 0.13 0.18 0.98 0.72 T1 60 (3.60 m) 0.05 0.14 0.16 0.74 0.04 0.02 0.15 0.24 0.50 0.08 0.99 0.78 T1 50 (3.71 m) 0.03 0.30 0.46 0.11 0.03 0.07 0.02 0.71 0.10 0.24 0.87 0.77 T1 50 (3.41 m) 0.09 0.32 0.48 0.17 0.14 0.04 0.03 0.50 0.20 0.29 0.97 0.82 T1 50 (3.06 m) 0.00 0.17 0.18 0.32 0.01 0.03 0.03 0.05 0.93 0.04 0.94 0.65 T1 30 (2.76 m) 0.24 0.11 0.07 0.57 0.01 0.01 0.06 0.10 0.63 0.20 0.93 0.54 T1 30 (2.51 m) 0.04 0.13 0.36 0.34 0.01 0.07 0.03 0.03 0.93 0.03 0. 86 0.33 T1 1 (2.71 m) 0.07 0.48 0.12 0.46 0.06 0.05 0.11 0.02 0.63 0.07 0.89 0.51 T1 1 (2.46 m) 0.09 0.24 0.32 0.32 0.06 0.08 0.02 0.11 0.76 0.11 0.89 0.34 Overall: 0.90 0.68

PAGE 227

227 Table 5 5. Constant leve l parameters ( n), model parameters, and coefficients of efficiency (Ceff) from Model III (no trends, 3 explanatory variables) and empirical sigmoidal model (Ceff,sig). Significant model parameters in bold. Model parameters s n n SWE,n WTE(k=3.1),n Rnet,n C eff,n C eff,sig T1 60 (3.90 m) 0.04 0.80 0.15 0.03 0.59 0.64 T1 60 (3.80 m) 0.11 0.78 0.00 0.20 0.76 0.72 T1 60 (3.60 m) 0.07 0.27 0.72 0.00 0.84 0.78 T1 50 (3.71 m) 0.03 0.86 0.17 0.23 0.79 0.77 T1 50 (3.41 m) 0.09 0.69 0.2 1 0.13 0.77 0.82 T1 50 (3.06 m) 0.00 0.01 0.95 0.02 0.93 0.65 T1 30 (2.76 m) 0.26 0.05 0.72 0.27 0.90 0.54 T1 30 (2.51 m) 0.07 0.22 1.06 0.06 0.82 0.33 T1 1 (2.71 m) 0.05 0.00 0.75 0.05 0.73 0.51 T1 1 (2.46 m) 0.11 0.17 0.83 0. 02 0.78 0.34 Overall: 0.79 0.68

PAGE 228

228 Figure 5 1 The Loxahatchee River and surrounding area with experimental transect (T1), meteorological measurement locations (JDWX and S46) and major hydraulic infrastructure. Distance from river mouth i ndicated by river kilometer, RK.

PAGE 229

229 Figure 5 2 T opographic cross section of e xperimental transect with layout of vadose zone and groundwater monitoring instrumenta t i on. Station names denote transect name (T1) and distance from the river (m). Probe ins tallation elevations (m, NGVD29) listed below each station. Vertical scale exaggerated ~ 10x

PAGE 230

230 Figure 5 3 Precipitation, evapotranspiration (ET), surface water elevation (SWE), water table elevation (WTE), and effective soil moisture ( e) measured in and around the experimental site. e series names indicate experimental transect 1 (T1), distance from river (m) and installation elevation (m, NGVD29)

PAGE 231

231 Figure 5 4 The three most important trends from Model I (left) and their associated canonic al c orrelation coefficients (right) Trend 1 (a) has high or moderate correlations with all response series ; trend 2 (b) is most associated with middle and lower elevation series ; trend 3 (c) is positively correlated with the four highest elevation series and negatively correlated with low er elevation series.

PAGE 232

232 Figure 5 5 Regression parameters (a c) and factor loadings (d) for Model II ( 3 common trends and 3 explanatory variables ). Regression parameters (a c) are shown with their standard errors wit h black bars indicating significance. Note different y axis scale on factor loadings panel (d).

PAGE 233

233 Figure 5 6 Common trends from Model I I (left) and their associated canonical correlation coefficients (right)

PAGE 234

234 Figure 5 7 Observed ( gray symbols) and modeled ( black lines) normalized e for the ten response variables obtained from multilinear Mode l III using 3 explanatory variables and no common trends.

PAGE 235

235 CHAPTER 6 A SIMPLE ECOHYDROLOG ICAL MODEL TO ASSESS THE POTENTIAL FOR RESTORATION SUCCESS IN A DEGRADED BALD CYPRESS ( TAXODIUM DISTICH UM [L.] RICH.) FLOODPLA IN SWAMP Introduction The Loxahatchee River is located on the southeastern coast of Florida, USA (26 59 N, 80 9 W; Fig. 6 1) and is often referred to as the last freeflowing river in southeast Florida (SFWMD, 2006). The river s three main branches (the North, Southwest, and Northwest Forks) join in a central embayment that connects to the Atlantic Ocean via Jupiter Inlet (Fig. 61), and in 1985, a 15.3km stretch of the Northwest Fork (NW Fork) became Floridas first National Wild and Scenic River (National Park Service [NPS], 2004). Over the past century, however, watershed modifications for flood control and agricultural and residential development have reduced the effective size of the watershed from over 700 km2 to approxi mately 550 km2, reduced freshwater flow and wetland hydroperiod, and caused the intrusion of saline water upriver into historically freshwater ecosystems. Altered hydroperiods and encroaching salinity in the NW Fork have been linked to undesired changes i n the vegetative composition of the floodplain, where studies have documented the upriver retreat of bald cypress ( Taxodium distichum [L.] Rich.) since at least the turn of the 20th century (General Land Office [GLO], 1855; Alexander and Crook, 1975; McPherson, 1981; Ward and Roberts, 1996; Roberts et al., 2008). Of primary concern are: 1) the transition from bald cypress floodplain swamp to mangrovedominated communities (primarily Rhizophora mangle L .) in the tidal floodplain as salinity increased; and 2) inadequate hydroperiod in the upstream riverine floodplain, which has shifted the

PAGE 236

236 system towards drier plant communities (SFWMD, 2009). Further descriptions of the rivers hydrological and ecological history are given in SFWMD (2002, 2006, 2009). Despit e these challenges, the Loxahatchee River has a high potential for ecological restoration (SFWMD, 2002, 2006; VanArman, 2005) for several reasons. Firstly, although the Loxahatchee River is located in an increasingly urbanized landscape (SFWMD, 2002; Zwic k and Carr, 2006), its watershed includes several large, publicly owned areas including Jonathan Dickinson State Park (JDSP), the Loxahatchee Slough and Grassy Waters Preserves, and the J.W. Corbett Wildlife Management (among others; Fig. 61). Thus, futu re land use planning for a large portion of the watershed lies with local and state agencies. Secondly, the health of the Loxahatchee River and its adjacent ecosystems is a priority for many residents, visitors, agencies, and political leaders. As such, several protection and restoration planning efforts have been initiated over the past twenty years, including the Loxahatchee River National Wild and Scenic River Management Plan, the North Palm Beach County Comprehensive Everglades Restoration Plan (CERP) Project, and the Minimum Flow and Levels (MFL) Rule, which requires Floridas Water Management Districts to protect ecological and water resources from loss of water resource functions which result from a change in surface or groundwater hydrology that t akes more than two years to recover (Section 373.042[1], Florida Statues). Finally, although halting saltwater intrusion due to climate changeinduced sealevel rise is beyond the scope of local management (i.e., at the global scale), much of the ecologi cal change observed in the Loxahatchee River has been attributed to local, anthropogenic drivers (SFWMD, 2006). Thus, some amount of restoration and management is likely achievable (e.g., Scruton, 1992)

PAGE 237

237 Intensive data collection and modeling efforts in s upport of management and restoration planning for the Loxahatchee River have been underway for several years (SFWMD, 2002, 2006, 2009; VanArman et al., 2005; Mortl, 2006; Muoz Carpena et al., 2008, Kaplan et al., 2010a,b). In 2006, the SFWMD released a R estoration Plan for the Northwest Fork of the Loxahatchee River (Restoration Plan; SFWMD, 2006), which proposed a preferred restoration flow scenario (PRFS) based on evaluations of the anticipated ecological effects of several flow scenarios to each of t he following zones and associated valued ecosystem components (VECs): riverine floodplain (bald cypress swamp and hydric hammock); tidal floodplain (mangrove swamp); low salinity zone (fish larvae); mesohaline zone (oysters); and polyhaline zone (sea grass es). Like most hydrological monitoring and modeling efforts initiated in support of wetland restoration (e.g., Wang, 1987), the Restoration Plan focused on surface water performance measures (PMs) for VECs (i.e., hydroperiod and surface water salinity), but did not explicitly consider hydrological conditions in the vadose (unsaturated) zone, which largely dictate seed germination and seedling survival for many floodplain wetland plant species (Middleton, 1999). For example, the PM identified for bald cyp ress swamp in the Restoration Plan is a hydroperiod of 4 to 8 months. While the Restoration Plan notes that during the dry season, water levelswill drop and allow cypress seed germination and the occasional very dry season will provide good conditions for freshwater tree seedling and sapling production and germination to rebuild the forest (SFWMD, 2006), germination and recruitment are not directly addressed. Additionally, while thorough in its evaluation of impacts to VECs across the rivers four distinct aquatic environments (freshwater, oligohaline, mesohaline, and

PAGE 238

238 polyhaline), analysis of the likely impacts of restoration scenarios on floodplain vegetation was limited in spatial extent. For example, impacts to bald cypress swamp and hydric ham mock were evaluated along a single vegetation transect (Transect 1 [T1]; Fig. 6 1), and changing salinity regimes with distance from the river towards the upland were not considered. The ecohydrological modeling effort described here draws on hydrologi cal and water quality monitoring and modeling results used in the Restoration Plan adding vadose zone relationships and a spatially distributed framework with the goal of assessing the long term impacts of management decisions on vegetative communities. I n this chapter, the concepts and structure used to develop this initial model (EcoLox v1.0) are introduced, and the model is used to compare the effects of restoration scenarios described in the SFWMD Restoration Plan. While still a preliminary tool, the EcoLox model can serve as a platform for future analyses to improve our understanding of how other long term, stochastic scenarios sea level rise, hurricanes, fire, and frost will impact restoration efforts for the NW Fork of the Loxahatchee River. Materi als and Methods Modeling Concept Hydrological regime is often the primary environmental sieve (Harper, 1977) controlling seed germination, seedling recruitment, and long term maintenance of plant species and communities, particularly in wetlands (van der V alk, 1981). Accordingly, ecological restoration efforts in wetlands are usually built upon a foundation of hydrological restoration, whereby historical hydrological regimes and connections are reestablished in order to provide well timed freshwater flows (Middleton, 2002), nutrients (Junk et al., 1989), and (where appropriate) the sediment required for

PAGE 239

239 accretion (DeLaune et al., 1994). Applying the environmental sieve concept to the NW Fork is helpful for assessing the potential for restoration success. The NW Fork of the Loxahatchee River can be broken into three reaches based on hydrology, soils, and vegetation (SFWMD, 2006; modified from USGS 2002): riverine, upper tidal, and lower tidal. In the upstream, riverine reach of the NW Fork, the chief ecol ogical consequence of altered watershed hydrology has been the conversion of bald cypress swamp and hydric hammock to drier vegetation communities due to insufficient hydroperiod and moisture regime (SFWMD, 2006). Bald cypress seeds are dispersed primaril y by water (Schneider and Sharitz, 1988; Middleton, 1999), and are relatively short lived, with less than 40% of seeds remaining viable after 100 days and less than 5% remaining viable after 1 year (Middleton, 2000). Seeds settle along drift lines after f loodwaters recede and require moist, but not saturated conditions to germinate (Middleton, 2000). Due to this requirement, Middleton (2000) found that the zone of germination is limited to areas that draw down during the growing season, a rare and unpredictable event in the Southeast (IFAS, 2004). At the other end of the moisture regime, seeds will not germinate on well drained soils due to lack of surface moisture. Thus, a drawdown of flooded soils to a saturated condition is required for germination (Burns and Honkala, 1990; Middleton 1999, 2002). Seedlings must also grow fast enough to keep their crowns above floodwaters for most of the growing season to survive (Conner, 1988; Conner et al., 1986, 1987). Given these specific lifecycle requirement s, the restoration of bald cypress floodplain swamp in the riverine reach of NW Fork relies on a series of environmental sieves to maintain mature bald cypress floodplain swamps and achieve periodic

PAGE 240

240 recruitment. To facilitate germination from existing seed banks and extant populations, restoration flows must ensure an appropriate soil moisture regime when seeds are available for germination. Restoration flows must also provide the appropriate hydroperiod to allow seedlings to grow tall enough to avoid overtopping by floodwaters for extended periods while young. Finally, restoration flows must provide an overall maintenance hydroperiod to prevent transition to a shorter hydroperiod vegetation community such as bottomland hardwood swamp dominated by red maple ( Acer rubrum L.), buttonbush ( Cephalanthus occidentalis L.), swamp bay ( Persea palustris [Raf.] Sarg.), and other floodtolerant hardwoods over the long term. On the other hand, species that make up the hydric hammock community i.e., cabbage palm (Sabal palametto [Walter] Lodd. ex Schult. & Schult. f.) and swamp laurel oak (Quercus laurifolia Michx.) do not require the same distinct flooded to drawdown hydrology to achieve good recruitment years, but are generally characterized by 30 to 60 days of yearl y inundation (Roberts et al., 2006). In the upper tidal reach of the NW Fork, the primary ecological consequence of altered watershed hydrology has been the conversion of bald cypress swamp to mangrove swamp due to saltwater intrusion caused by reduced freshwater flow. Bald cypress seeds and seedlings have limited salt tolerance (Allen et al., 1996) and the combined negative effects of flooding and salinity are greater than either alone, and are more pronounced at higher salinities. A general bald cypr ess seedling salinity tolerance threshold of 2 parts per thousand (ppt) has been established by Liu et al. (2006) using seedlings collected from the study area. This is in agreement with Chabrek (1972) who found that bald cypress stands rarely occur natur ally in areas with salinity exceeding

PAGE 241

241 1.981.40 (std) ppt and Wicker et al. (1981) who concluded that bald cypress forests are limited to areas where salinity does not exceed 2 ppt greater than 50% of the time that trees are inundated. Building on these findings, Zahina (2004) proposed a characteristic salinity regime (Ds:Db ratio), defined as the ratio of the average length of salinity events (consecutive days above a critical salinity threshold; Ds), divided by the average length of time between these events (Db). Zahina found the surface water Ds:Db ratio calculated with a critical salinity value of 1 ppt correlated well with floodplain vegetation in the NW Fork, with a Ds:Db ratio > ~0.3 indicating a transitional point between freshwater and salt to lerant vegetation. While monitoring and modeling of surface water salinity (SWS) in the Loxahatchee River described the long term salinity dynamics in the river channel, they did not fully explain the observed zonation of vegetation in the upper tidal flo odplain, which changes from salt tolerant mangrove swamp at the rivers edge to bald cypress swamp closer to the floodplainupland border (SFWMD, 2009). Groundwater salinity (GWS) was also a poor indicator of floodplain vegetation (Kaplan et al., 2010b ). On the other hand, porewater salinity (PWS) in the root zone did a better job of explaining the distribution of freshwater and salt tolerant plant species in the upper tidal reach (Kaplan et al. 2010a ). Thus, we used relationships between SWS and PWS developed in the Loxahatchee River floodplain (see Kaplan et al. [2010a ] and vadose zone section, below) to calculate the porewater Ds:Db ratio (after Zahina, 2004) and used this metric to assess the potential for restoration success. We tested different va lues of the porewater Ds:Db ratio porewater and CritSal by comparing spatial distribution of the Ds:Db ratio with observed vegetation on T7 (SFWMD, 2009). We

PAGE 242

242 found the best representation of floodplain vegetation at this location using CritSal = 3 ppt, wi th a Ds:Db ratio of 0.12 indicating a transitional point between freshwater and salt tolerant vegetation. In general, soils in the floodplain in the upper tidal reach of NW Fork do not experience significant drawdown beyond saturated conditions, but are subject to inundation with tidal floodwaters of varying salinity much of the time (Kaplan et al., 2010a). For example, a large number of bald cypress seedlings were observed on T7 (Fig. 6 1) in late 2003 and early 2004, but had died by August 2004 (SFWMD 2006), although it is unclear whether their mortality was caused by extended overtopping, high salinity, or a combination of the two. Thus the restoration of bald cypress floodplain swamp in the upper tidal reach of NW Fork relies on the maintenance of appropriate hydroperiod, and salinity conditions to allow for periodic recruitment events. Finally, vegetation in the lower tidal reach of the NW Fork is dominated by red and white mangroves ( Laguncularia racemosa [L.] Gaertn.f.) due to high salinity and high tidal surface water elevation (SWE) relative to floodplain elevation. In this reach, restoration of historic freshwater communities is likely impossible, even with large increases in freshwater flow, since germination and recruitment would still be l imited due to low elevations and projected sealevel rise. Based on these ecohydrological relationships, the EcoLox model predicts the most likely vegetation communities by keeping track of long term inundation, moisture, and salinity conditions in the fl oodplain and assessing their effects on vegetation (i.e., germination, recruitment, and survival). While the model represents the effects of hydrology and salinity on seeds and seedlings and thus keeps track of seeds and

PAGE 243

243 seedlings it is not a populati on model, but fundamentally a habitat suitability model (e.g., review in Sklar et al., 2001). The Restoration Plan recognizes a total of sixteen floodplain ecological communities across the riverine, upper tidal, and lower tidal reaches of the NW Fork (delineated based on canopy tree species; modified from Darst et al. [2003]), separating areas of red and white mangroves, for example. For simplicity in assessing restoration impacts, EcoLox 1.0 considers five floodplain ecological community types based on hydrological and water quality conditions: upland, hydric hammock, bottomland hardwood forest (BLH forest), bald cypress swamp, and mangrove swamp. Additional community types (i.e., tidal hammock or mixed tidal) can easily be added by refining performance measures in the HABITAT subroutine of the EcoLox model (see subsequent sections). Model Domain The model domain includes the river floodplain and adjacent upland and was created by overlaying classified GIS maps of historic floodplain vegetation (SFWMD 2006) over a recent Light Detection and Ranging (LiDAR) raster (1.524 m [nominally 5 ft] resolution; data acquired from SFWMD staff). A preliminary QA/QC of the LiDAR dataset using fieldsurveyed benchmarks at the landward end of vegetation transects re vealed a consistent bias, with an average overestimation of approximately 20 cm. Accordingly the raw LiDAR data was adjusted by 20 cm. Next, a f loodplain vegetation map drawn from interpretation of 1940 aerial photography (data acquired from SFWMD staff ) w as buffered 50 m on all sides and the LiDAR raster was clipped to this buffered layer, converted from ft to m and resampled at 10 m resolution in ArcInfo (ESRI, Redlands, CA) using the cubic convolution method. Distance to the river from each grid in the model domain was calculated using the straight line distance tool in Spatial

PAGE 244

244 Analyst with the river as the target and an output size of 1.254 m. The centerline of the Loxahatchee River was represented as a line shapefile using publically available sur face water feature layers for Martin and Palm Beach Counties (Florida Geographic Data Library, University of Florida GeoPlan Center; accessed at accessed at www.fgdl.org), modified based on visual inspection of digital orthophoto quarter quadrangle (DOQQ) and LiDAR images. The resulting elevation and distance to river grids were converted to shapefiles and linked using a spatial join In order to apply the results of simulated hydrology and water quality across the EcoLox model domain, the river was classified into 29 sub reaches (including tributaries) of ~200 to 500 m, and each model grid was assigned to a subreach. The riverine and tidal reaches of the NW Fork w ere broken into 1 4 and 15 sub reaches respectively, and tributaries were assigned to near by subreaches of the NW Fork with similar elevations. Finally, where the river width was discernable from DOQQs (downstream of ~RK 17), its footprint was removed from the domain (the river is less than 10 m wide in the upstream, riverine portion of the N W Fork but widens to ~80 m in the downstream, lower tidal reach). The EcoLox model domain contained 46,697 cells, each containing elevation, distance to river, and reach number. General Model Structure and Logic A flowchart of the EcoLox model structure is given in Fig. 6 2 The model was written in the FORTRAN 77 programming language and developed in the XCode programming environment (v. 3.2.1, Apple, Inc., Cupertino, CA). The model runs from the UNIX command line from a project file (*.prj) that defin es the input files to be used in the simulation (input and output files are described in the following section). EcoLox runs on a daily time step over a user defined interval and performs operations in each of

PAGE 245

245 the model cells, which are independent (i.e., cells do not have spatial relationships with other cells). Model subroutines and logic are summarized below. Sourc e code is provided in Appendix B Initial subroutines The FINPUT, INPUTS, INI, and INICALC subroutines are performed once at the initiation of a model run (green boxes in Fig. 62) FINPUT sets up command line operation and defines input and output files. The INPUTS subroutine structures the time series over which the model is run (e.g., calculates leap years, beginning and ending days of each year, etc.), reads the input files specified in the .prj file into model variables, and writes these values to an output file. The INI subroutine sets appropriate variables and arrays to their initial values (usually zero). INICALC performs initial calculations that are used across years and cells throughout the model, including setting seedling growth parameters, seed availability, and calculating porewater salinity time series (see calculation details in vadose zone section). Bald cypress seedling s reach heights of 20 to 75 cm their first year of growth (Bull 1949) and their rate of growth is seasonally dependent (i.e., they grow faster in spring and summer, slower or not at all in fall and winter). To account for variable seasonal and interannual growth rates, we applied seasonal seedling growth rates after Liu et al. (2006), which were randomly set for each simulation year between minimum and maximum values from the literature (Table 61). Examples of minimum and maximum seedling growth over one year (along with field data collected from seedlings in the Loxahatchee River by Liu et al. [2006]) are shown in Fig. 63. While the growth functions applied here are simple, we recognize the importance of a number of other factors on seedling growth (hydroperiod, salinity, nutrients, and shade, for example) and

PAGE 246

246 the modular design of EcoLox allows for simple modifications or substitutions to these algorithms in future versions. The potential for seed germination is limited not just by moisture and hydroperiod, but also by the availability of seeds, which is also variable between years and seasons. In south Florida, bald cypress seeds drop in early fall (Brown, 1984) and are viable for only a short period (Middleton, 2000). Thus, we model seed availabil ity as a function of month, with seed availability probabilities (Table 61) based on an exponential decay in seedling availability after seed drop (modeled after seed viability field data in Middleton [2000]). For example, the likelihood of seed availabi lity is highest in October (95%) and quickly declines (Table 61). Monthly probabilities of seed availability are tested against a random number to determine seed availability each year, and the resulting time series of seed availability is stored in an array. T he NEWCELL and NEWYEAR subroutines reset appropriate model variables and arrays when switching between cells and years, respectively. Period of record subroutines After these initialization subroutines, EcoLox moves into loops for cells, years, and days, and is structured such that it performs calculations over the entire period of record (POR) in each cell before moving to the next cell. Within each year, EcoLox uses input and calculated data to determine inundation (INUND), salinity (SALINITY), germination (GERMINATION), and seedling growth (SEEDLINGGROW) conditions. In the INUND subroutine, SWE in the reach assigned to each cell is used to calculate water depth. If water depth is greater than zero, the cell is inundated and the number of days and consecutive days of inundation in the current year are incremented (if not inundated, days of consecutive inundation is set to zero). Next, the SALINITY subroutine

PAGE 247

247 calculates the number of days/consecutive days that the critical salinity threshold ( Cr itSal; Table 61) is exceeded in porewater and surface water and stores records of all salinity events for calculation of the surface water and porewater Ds:Db ratios at the end of the POR. The number of days and consecutive days of moist soil conditions are calculated in the GERMINATION subroutine based on SWE and the vadose zone relationships developed in Kaplan et al. (2010a) (see vadose zone section). The cell can also be moist if the daily rainfall is greater than the threshold daily rainfall depth r equired for moist surface soil conditions under otherwise low SWE conditions (CritRainDepth). If the number of consecutively moist days is equal to or greater than the number of days of favorable germination conditions required to induce seed g ermination (CritConsecGermDays) and salinity < 1 ppt, th e n the cell has good germination conditions. If salinity is greater than 1 ppt, germination likelihood is reduced according to the seedling germination studies of Krauss et al. (1998) who found germination to d ecrease with increasing salinities, with mean germination rates of 26.3%, 22.9%, 15.4%, and 10.2% based on salinity treatments of 0, 2, 4, and 6 ppt, respectively (Fig. 6 4). Next, if seeds are available and germination conditions are good, a germinati on event occurs and the SEEDLING subroutine initiates seedling growth based on seasonal seedling growth rates calculated at the beginning of the year A germination event does not specify the number of seeds that germinated, but indicates that the hydrol ogical conditions were favorable for seed germination. Similarly the resulting seedling does not represent one (or more) seedlings, but represents a seedling

PAGE 248

248 event, which may be thought of as a cohort of seedlings. As such, a new cohort is initiated for each day with a germination event. For simplicity, hereafter we refer to these seedling events as seedlings. Within each cell, a seedling array keeps track of each seedlings age, height, the number of days it is submerged (i.e., SWE > seedling height), and the number of salt days (i.e., the cumulated magnitude of salinity above CritSal, a metric that allows for dynamic salinity conditions; Table 61) that seedlings accumulate during their first and second years. The subroutine grows the seedlings for two years, and thus there are between zero and 730 seedlings in the array at any one time. If seedlings reach an age two years without having been overtopped longer than the critical thresholds or accumulating too many salt days in both their first and second years, a recruitment event is recorded for the cell in the current simulation year. Splitting accumulated stresses into seedlings first and second years allows for the simulation of the increased sensitivity of younger seedlings to flooding and salinity stresses (e.g., Souther and Shaffer, 2000). Summary and reporting subroutines At the end of the last simulation year, the OUTMAP subroutine writes yearly records of days/consecutive of inundation, salinity, moisture, germination, and r ecruitment conditions to output files. Finally, the HABITAT subroutine sets the likely habitat type for each cell based on the long term records written in OUTMAP. EcoLox uses long term hydroperiod and the porewater Ds:Db ratio as the primary indicators of likely habitat type. For hydroperiod, we use the PMs identified in the Restoration Plan (SFWMD 2006) for bald cypress swamp (180 to 365 days of continuous inundation per year) and hydric hammock (30 to 60 days of inundation per year). Cells inundated less

PAGE 249

249 than 30 days in a year are considered upland, and cells with 61 to 179 days of inundation are considered BLH forest. For salinity, we used a porewater Ds:Db ratio of 0.12 (calculated with CritSal = 3 ppt) as the transitional point between freshwater and salt tolerant vegetation. The HABITAT subroutine begins by reading the number of continuous inundation days in each year and assigning the yearly value to a hydroperiod type (1 for upland; 2 for hydric hammock; 3 for BLH Forest; and 4 for bald cypress swamp) based on the hydroperiod PMs described above. The cell is then assigned a habitat type based on the most common hydroperiod type experienced over the POR (i.e., the mode of the yearly hydroperiod types). Next, the habitat values are modified by long term salinity conditions in the cells. C ells with a Ds:D b ratio > 0.12 and habitat type of bald cypress based on inundation are modified to mangroves. Future versions may include additional categories and combinations of salt and hydroperiod (i.e., mi xed tidal and tidal hammock). Finally, f or cells that are predicted to have bald cypress habitat, the HABITAT subroutine reads yearly germination and recruitment records from the OUTMAP subroutine and calculates the total number of years with at least one germination and recruitment events (i.e., each cell with bald cypress will have from zero to 40 germination years and zero to 40 recruitment years). Input Files and Data The EcoLox model runs on a set of four user input files detailing: 1) global model parameters (.igp file); 2) a rainfall time series (.irn file); 3) surface water elevation (SWE) time series for each river reach (.isw file); and 4) surface water salinity (SWS) time series for each river reach (.iss file). Keeping parameters as user input variables allows us to update the model as new information becomes available and to perform sensitivity

PAGE 250

250 and uncertainty analysis on the model given the known range and uncertainty of input parameters (e.g ., Muoz Carpena et al., 2007). Input file structur e and the specific input data used in this analysis are described below. Parameters required in the .igp file are summarized in Table 6 1 along with default parameter values selected from the literature or expert opinion. These include information about the model domain (i.e., number of cells, number of river reaches); length of the simulation; and parameters describing seed availability, seedling growth, and critical salinity thresholds. The *.irn data file contains daily rainfall data over the POR. Fo r this analysis, h ourly rainfall data used as an input to the WaSh model were collected from a gauging station in Jonathan Dickinson State Park (Fig. 61) and converted to daily sums for this study (data acquired from SFWMD staff). The *.isw and *.iss file s contains daily SWE and SWS data for each river reach. Several hydrological models have been developed to support the development of the MFL and Restoration Plan for the NW Fork including a watershedscale model of freshwater inflows, hydrodynamic and s alinity models of surface water elevation and salinity, and a long term salinity management model that integrated watershed and hydrodynamic model results for use in assessing proposed restoration scenarios. We used selected outputs from these models as i nputs to the EcoLox model as described below Surface water elevation SFWMD staff used a restructured version of the Hydrologic Simulation Program Fortran model (HSPF) (Donigian et al., 1984) to simulate freshwater inflows to the NW Fork from the contrib uting watershed (the WaSh model). WaSh was implemented using hydrography, 2000 land use, soil, and the 0.308m (nominally 1 ft) contour. Rainfall and

PAGE 251

251 evapotranspiration (ET) data from 1965 to 2004 were used to calibrate and validate the model. A complet e description of model structure, calibration, and validation process is given in SFWMD (2006). After calibration and validation, the model was used to create a long term simulation of daily freshwater flows into the NW Fork over a 40year period of recor d from 1965 to 2003 (POR). From these simulations, we used modeled flow at Lainhart Dam (Fig. 61) to calculate SWE at transect locations in the riverine portion of the river (from Lainhart Dam downstream to T4; Fig. 61) using flow stage relationships dev eloped for the dam itself (Fig. 6 5a); in support of the restoration plan (Fig. 65c,d,f); and from subsequent field monitoring (Fig. 65b,e; SFWMD, unpublished data). In the reaches between transect locations, SWE was interpolated linearly based on the r iver distance between reaches. Below T4 (~RK 18), SWE is increasingly influenced by tidal forcing and loses strong dependence on upstream inputs of freshwater flow. SWE in these reaches was not modeled over the long term for restoration planning efforts nor were measured data available prior to 2004. Furthermore, while the effect of upstream flows diminishes with distance towards the river outlet, predicted tides (based on NOAAs long term harmonic tide predictor algorithm) do not incorporate the effec ts of variable upstream flows (which can be important during large storm events, for example) and are not gauged to a local datum. In order to simulate SWE in these reaches over the 39year POR, we developed a multilinear model of daily maximum tidal SWE as a function of upstream flow and the predicted tide of the form: SWE SWENOAA+* LD Flow (6 1)

PAGE 252

252 where SWE is surface water elevation (m, NAVD88); SWENOAA is the predicted tide (meters above mean low water over the 19year tidal epoch); LD Flo w is the modeled flow over Lainhart Dam (m3 s1); and and are fit parameters. Using E quation 61, we estimated SWE at three locations where measured tidal SWE were available after 2004: the downstream limit of the model domain at RK 10.5; at the o utlet of Kitching Creek (RK 13.1); and at RK 14.6 (Fig. 61). We chose to model maximum daily tidal SWE in order to best represent the inundation of the floodplain due to twicedaily tidal flooding. The model simulated the measured data well (Figs. 66ac) and was used to estimate long term tidal SWE series. SWE in reaches between modeled locations was interpolated linearly and the modeled tidal SWE successfully predicted the number of days that each cell was inundated from 2004 to 2008 (Fig. 67). Su rface water salinity With freshwater inflows from the WaSh model as inputs, SFWMD staff used the RMA 2 and RMA 4 models (USACE, 1996) to calculate surface water elevation and salinity conditions. RMA 2 is a 2D, depth averaged hydrodynamic model that comp utes water surface elevations and horizontal velocity components using a finite element solution of the Reynolds form of the Navier Stokes equations for turbulent flows. Solutions from RMA 2 were used as inputs to RMA 4 to calculate salinity distributions After calibration and verification (SFWMD, 2006), RMA 4 was used to simulate salinities in the NW Fork under twelve freshwater flow scenarios ranging from 1.13 to 198.21 m3 s1 (nominally 40 to 7000 ft3 s1), based on simulations from the WaSh model. R egression of the freshwater flow versus salinity relationship revealed a strong

PAGE 253

253 exponential relationship, allowing estimation of depthaveraged surface water salinity as a function of freshwater inflow and location in the river of the form: Y Y0 ae bx ( 6 2 ) where x is total freshwater flow (ft3 s1) to the NW Fork from Lainhart Dam and from three tributaries (Kitching Creek, Cypress Creek, and Hobe Grove Ditch; Fig 6 1), Y is salinity (ppt), and Y0, a and b are parameters. The SFWMD developed these relationships f or 15 locations from ~RK 1.1 to ~RK 14.6. To apply this equation to the river reaches in the EcoLox model domain, we examined relationships between river location (R K) and the model parameters in E quation 62 and interpolated model parameters for each EcoLox river reach (Fig. 68ab). We then used these relationships with modeled flow to calculate surface water salinity (SWS) time series for each reach. Vadose Z one R elationships In a parallel study of vadose zone conditions in the Loxahatchee River flo odplain, Kaplan et al. (2010a) developed a general model for effective soil moisture ( e) in the floodplain as a function of surface water elevation (SWE) at T1 (Fig. 6 1). To extend this relationship to other areas of the floodplain, we calculated the distance between the floodplain ground elevation and adjacent SWE elevation at which modeled effective soil moisture at the surface was equal to a critical moisture threshold (e.g., e = 0.90, equivalent to 90% saturation) for all surveyed elevations on T1. The average of these distances was then used as the critical moisture depth for germi nation. This method assumes a relatively flat water surface profile between groundwater and surface water across the floodplain. While the slope of the groundwater table is variable, changes in the water surface profile are generally small over the width of the floodplain (Kaplan et

PAGE 254

254 al., 2010a). This method also assumes similar soil hydraulic characteristics in the lower floodplain soils of the riverine reach of the NW Fork. A soils survey of the Loxahatchee River by Li et al. (2004) found lower floodpl ain soils in the riverine reach to be primarily fluvaquents, made up of interbedded layers of sand, clay, and organic matter (Sumner, 2000). While soil composition and layering in this type of fluvial system is characteristically heterogeneous, soil descr iptions at T1 and throughout the riverine floodplain reach were similar. Regarding salinity, Kaplan et al. (2010a) observed a time lag between peaks in SWS and PWS and the maintenance of high PWS after SWS had decreased. High levels of PWS were then flushed out of the root zone slowly by lower salinity surface water during the wet season. Notably, SWS peaks were always higher than SWS peaks, and the magnitude of these peaks decreased with increasing distance from the river. To more explicitly simulate PW S in the EcoLox model, we developed a lagged multivariate time series model based on measured SWS and PWS of the form: ) (1 1 t lag t t tPWS SWS PWS PWS ( 6 3 ) where PWSt is the porewater salinity in the current time step (ppt), PWSt 1 is the porewater salinity from t he previous time step (ppt), SWSt lag is the lagged surface water salinity [ppt], and and are parameters (unitless and ppt, respectively). The model was fit to PWS time series collected over four years on T7 at four distances from the river, with excellent results (Fig. 6 9) and was used to calculate long term PWS time series in the floodplain at 10 m intervals, based on modeled SWS in each reach (see example in Fig. 610).

PAGE 255

255 Model Scenarios Based on the modeling efforts described in the previous secti ons, the SFWMD developed five constant flow and three variableflow restoration scenarios for comparison with the base flow conditions simulated over the POR. The eight scenarios include flow augmentation over Lainhart dam, flow augmentation from other tr ibutaries (Cypress Creek, Hobe Grove Ditch, and Kitching Creek), and a combination of both. Table 6 2 summarizes these scenarios, with LD scenarios signifying flow over Lainhart Dam and LD/TB scenarios signifying flow from Lainhart Dam (LD) and o ther tributaries (TB) to the NW Fork. For variable flow scenarios, flow augmentations over Lainhart Dam are calculated using a set of logic based rules (using monthly median flows a flood pulse intended to simulate flow conditions after a rainfall event), but tributary flows are added as a constant when total flow to the NW Fork falls below the appropriate threshold. Results and Discussion EcoLox results for the BASE case versus 1995 observed vegetation Figure 611a shows modeled floodplain vegetation under the BASE case (historic conditions) compared with the interpretation of aerial photography of vegetation communities in 1995. In general, the EcoLox model does a good job of estimating the spatial distribution of habitat types in the floodplain. In particul ar, the model is able to closely match the upstream extent of mangrove encroachment and recreate the observed change in vegetation types with increasing distance to the river in some locations (i.e., in the upper tidal zone and at the outlet of Kitching Cr eek). This effect is limited, however, and a sharp line exists, upstream of which the gradient in floodplain vegetation is no longer observable. Accordingly, the model misses some areas of

PAGE 256

256 mangroves observed in the 1995 aerial survey. This line correspo nds to a sharp gradient in estimated SWS between reaches (Fig. 612a), which limits the extent to which the effect of changing PWS with distance from the river can be correlated with vegetation across reaches (Fig. 612b). Increasing the number of reaches in the model domain may improve the smoothness of these results. Modeled vegetation shows a mix of bald cypress and BLH Forest habitats in the riverine reach. While the interpretation of aerial photography classifies sections of floodplain vegetation large enough to differentiate visually, the EcoLox model results are based on 10 m cells, and the pixilated results represent the spatially variable impacts of reduced hydroperiod as a function of elevation. Despite this difference, the modeled and obser ved vegetation are similarly dominated by BLH Forest in the riverine reach (at least where these data are available for the observed vegetation). Upstream of I 95 (i.e., south of the road that crosses over the river in Fig. 611a), the EcoLox model predic ts an increase in the proportion of bald cypress habitat (relative to BLH habitat), which may or may not be indicative of field conditions. The model predicts small amounts of hydric hammock, mostly in the upper tidal zone. Although not explicitly classif ied as hydric hammock, the interpretation of aerial photography does classify small areas of cabbage palm in the upper tidal reach (though the modeled hydric hammock does not match their exact location). Finally, the model domain is bordered (as expected) by upland. Isolated cells of upland also appear throughout the domain, sometimes in the middle of otherwise long hydroperiod cells. It is unclear whether these cells accurately represent localized microsites of higher

PAGE 257

257 elevation or are artifacts of the LiDAR survey. A complete QA/QC of the LiDAR dataset will help to answer this question. Overall, the simulated vegetation results represented the observed conditions in the floodplain well, and the EcoLox model was used to estimate likely vegetation under the eight restoration scenarios proposed in the Restoration Plan. Restoration scenarios Modeled floodplain vegetation for the five constant flow and three variable flow scenarios described in Table 62 are shown Figs. 613 to 620. These results are bas ed on long term hydroperiod and salinity conditions and do not consider germination and recruitment conditions, which are discussed in subsequent sections. Increasing freshwater flow into the NW Fork pushes mangroves downriver in all scenarios from their current (modeled) upriver extent at RK ~15 to ~RK 12 for the scenario with the smallest amount of added flow (LD65; Fig. 613) and past the edge of the modeling domain (~RK 9.5) for the scenario with the largest amount of added flow (LD200/TB200; Fig. 6 17). As expected, additional flows over Lainhart Dam also increase the area of bald cypress in the riverine reach of the river with the highest flow scenarios showing considerable conversion of BLH Forest to bald cypress in the riverine reachwhile additional tributary flows increase bald cypress area only in tidal reaches, but have no effect on the riverine reach. The total area of modeled floodplain vegetation under each of the nine scenarios is summarized in Fig. 621 and vegetation change from the BASE case are visualized in Fig. 6 22 as the percent change in area of each habitat type for each scenario. This figure shows, for example, that the increase in bald cypress habitat for scenarios LD65 and LD65/TB65 are primarily to a decrease in mangrove habit at area, whereas

PAGE 258

258 increasingly higher flows (LD90/TB100, LD200, and LD200/TB200) increase bald cypress area by reducing both mangrove area in the upper tidal reach and BLH Forest area in the riverine reach. While small, increases in the area of hydric hamm ock occur across all scenarios. Finally, all scenarios decreased the amount of upland, though the changes were also small. Germination and recruitment The predicted floodplain vegetation distributions presented in the previous section were modeled according to long term hydroperiod and salinity conditions in the floodplain. Examining how hydroperiod, moisture, and salinity affect germination and recruitment conditions gives a more nuanced view of the likelihood of achieving these conditions and potenti al barriers to restoration. In this context, we looked at recruitment likelihoods in cells classified as bald cypress in the previous section, as quantified by the number of years over the POR that at least one recruitment event occurred. It is first ins tructive to look at the existing recruitment conditions under the BASE case as a basis for comparing the results of restoration scenarios. Fig. 6 23 is a histogram showing the distribution of the number of recruitment years across all cells in the model domain under the BASE scenario. Of the 65.8 ha of bald cypress swamp predicted by the EcoLox model, nearly half (44%) did not experience a single recruitment event over the 40year POR. The remainder of the bald cypress area had between one and 20 recrui tment events with an exponentially decreasing frequency. Two (or more) interpretations of these results exist. The first is that one or more recruitment years over 40 years is an indication of ecosystem health, since bald cypress forests can survive with infrequent regeneration events as long as mature populations remain healthy and continue to produce seeds. For example,

PAGE 259

259 Duever et al. (1983) suggest that a good bald cypress recruitment season take occur as infrequently as every 30 to 40 years. This int erpretation would indicate that approximately half of the bald cypress forest in the floodplain of the NW Fork is sustainably regenerating under historic flow conditions. The second interpretation is that the likelihood of achieving a recruitment event ov er the POR ranged from zero to 50% depending on location (i.e., zero out of 40 years for the 29.0 ha of bald cypress with no recruitment years and 20 out of 40 years for the 0.28 ha that had 20 recruitment years). It may be expected that adding additional flow to the NW Fork would improve recruitment conditions, however results from the EcoLox model show that outcomes are mixed. For example, Fig. 624 is a histogram showing the distribution of the number of recruitment years under the LD65 scenario. Whi le this scenario shows a large increase in the area of bald cypress swamp (see Fig 622), an overwhelming majority (87%) of this area does not experience a single recruitment year over the POR. Fig. 625 summarizes the percentage of bald cypress area that experiences one or more germination and recruitment events over the POR for all scenarios. The difference between the germination and recruitment bars is an indication of areas where germination conditions were met, but no seedlings survived due to hydroperiod or salinity stresses. Surprisingly, the BASE scenario has the greatest area experiencing one or more germination and recruitment events as a proportion of total bald cypress area, while the highest flow scenarios show the smallest percentage of areas with germination and recruitment.

PAGE 260

260 Examining the total area (as opposed to the percentage of area) experiencing one or more years of germination and recruitment (Fig. 626) provides a partial explanation of these results. While all restoration scenarios increase the area expected to have bald cypress habitat based on hydroperiod and salinity, all five constant flow scenarios dramatically reduce the bald cypress area with good germination and recruitment conditions. On the other hand, the three variable flow scenarios slightly increase the total area with good germination and recruitment conditions, providing a quantitative validation of the qualitative expectation that ecological communities require a range of natural variation or disturbance to maintain viability or resilience (SFWMD, 2006). While this is heartening, model results suggest that the great majority of the potentially restored cypress swamp area do not meet the necessary ecohydrological conditions to sustainably maintain a healthy, reg enerating cypress swamp community. For example, Fig. 627 shows the spatial distribution of modeled recruitment years for the BASE and LV90TV60 scenarios (the LV90TV60 was chosen as the preferred restoration scenario in the Restoration Plan). Under thi s scenario, large areas of potentially restored bald cypress swampparticularly in the upper tidal reachdo not experience recruitment events over the 40year POR. Since restoration flows under this scenario push the saltwater downriver, it is unlikely t hat this lack of recruitment is due to salinity, and Fig. 628 confirms that high tidal surface water relative to floodplain elevation may restrict germination and recruitment to localized, highelevation microsites (blue line indicates average floodplain elevation at T7 [RK 14.6]), which may not be captured at the 10 m resolution. This is supported by vegetation surveys, which have found the presence of hummocks,

PAGE 261

261 stumps, and fallen logs to increase floodplain pl ant diversity, and permit the survival and r ecruitment of drier or less salt tolerant species (SFWMD, 2009). Another possibility is that the LiDAR data does not accurately represent the floodplain elevation. As noted in the Materials and Methods section, a preliminary QA/QC of the LiDAR data revea led a consistent bias of overestimation of ~20 cm, however these points were taken at survey benchmarks (located at the end of survey transects) and a globally applied 20 cm adjustment may not fully correct the elevation. For example, SWE at RK 14.6 is of ten below the unadjusted average elevation at T7 (red line in Fig. 628). While the accuracy of the elevation dataset may be in question, it is clear that restoration of bald cypress habitat in the tidal section of the river may be tenuous in light of predicted climate changeinduced sealevel rise (i.e., 18 to 59 cm by 2100; IPCC, 2007). Conclusions I n spite of its rather rigid environmental requirements, bald cypress forests can survive with infrequent regeneration events as long as mature populations remain healthy and continue to produce seeds. The initial EcoLox model is a useful tool for assessing the likely impacts of restoration and management scenarios on the floodplain vegetation of the Loxahatchee River. The initial model described h ere was used to successfully simulate historic conditions and examine the likely results of proposed restoration. In general, the model predicts the possibility of restoring large areas of bald cypress habitat, but raises concerns about the natural regeneration potential of these areas. Additional work is required to improve the model structure (particularly the selection of the best porewater Ds:Db ratio) and refine model inputs (above all, the LiDAR dataset needs to be thoroughly QA/QCed before making management decisions

PAGE 262

262 based on model results). The next step in the development of the EcoLox model will be to perform a global uncertainty and sensitivity analysis (UA/SA), which will help point out the most important model parameters and variables. With UA/SA results as guidance, future work may include more detailed simulations of surface water elevation and salinity, improved subroutines for seedling growth, and incorporation of the impacts of sea level rise, fire, and frost.

PAGE 263

263 Table 61. Global mo del parameters in the EcoLox model and the source for the value used in this application (where applicable). Parameter Description Value Source(s), if applicable IDayRec Num. of days in simulation 14275 --IYearRec Num. of years in simulation --IRea ch Num. of river reaches 38 --CritRainDepth Min. rainfall depth (mm) for moist conditions 10 D. Kaplan (unpublished data) CritMoistureDepth Maximum depth of water below ground surface for moist conditions (cm) 20 Kaplan et al. (2010a ) CritConsecGermD ays Consec. num. of days with moist soil conditions to initiate germination (if seeds available) 7 G. Liu (pers. comm.) YearZeroSeedlingSubmergedCrit Num. of consec. days of submergence required to kill a seedling < 1 yr old 50 Souther and Shaffer (2000) YearOneSeedlingSubmergedCrit Num. of consec. days of submergence required to kill a seedling > 1 yr old 120 YearZeroSaltDaysCrit Cumulated salt exposure necessary to kill a seedling < 1 yr old 60 Estimated from: Pezeshki (1990); Allen et al. (1994, 1 996); Connor (1994); Connor and Inabinette (2004); Krauss et al. (1998); Liu et al. (2006) YearOneSaltDaysCrit Cumulated salt exposure necessary to kill a seedling > 1 yr old (all in mm day1) 120 YearZeroWinterGrowthMin Min. Jan and Feb growth rates fo r seedlings < 1 yr 0.0423 Bull (1949); Liu et al. (2006) YearZeroWinterGrowthMax Max. Jan and Feb growth rates for seedlings < 1 yr 0.1501 YearZeroSpringGrowthMin Min. Mar, Apr, May, Jun, and Jul growth rates for seedlings < 1 yr 0.1018 YearZeroSpring GrowthMax Max. Mar, Apr, May, Jun, and Jul growth rates for seedlings < 1 yr 0.3637 YearZeroFallGrowthMin Min. Sep, Oct, Nov, and Dec Jul growth rates for seedlings < 1 yr 0.0222 YearZeroFallGrowthMax Max. Sep, Oct, Nov, and Dec Jul growth rates for se edlings < 1 yr 0.1129 YearOneWinterGrowthMin As above, for seedlings > 1 yr 0.0423 YearOneWinterGrowthMax 0.1501 YearOneSpringGrowthMin 0.1018 YearOneSpringGrowthMax 0.3637 YearOneFallGrowthMin 0.0222 YearOneFallGrowthMax 0.1129 CritSal Critical salinity threshold for calculating characteristic salinity regime and salt days 3.0 This study JanSeedIndex Monthly likelihood of seed availability for Jan 0.22 Modified from Middleton (2000) based on Brown (1994)

PAGE 264

264 Table 61. Continued. Table 62. Constant flow restoration scenarios (adapted from SFWMD, 2006). Flow in m3 s1 (ft3 s1). POR indicates modeled flow over period of record. Source of Flow Base co ndition LD65 LD65TB65 LD90TB110 LD200 LD200TB200 Lainhart Dam (LD) POR 1.84 (65) 1.84 (65) 2.55 (90) 5.66 (200) 5.66 (200) Other tributaries (TB) POR POR 1.84 (65) 3.11 (110) POR 5.66 (200) Total Flow 1.42 (50) 2.69 (95) 3.68 (130) 5.66 (200) 6.51 ( 230) 11.33 (400) Approximate saltwater front position (RK) 15.3 13.7 12.9 12.1 11.3 9.7 Paramet er Description Value Source(s), if applicable FebSeedIndex Monthly likelihood of seed availability for Feb 0.14 Modified from Middleton (2000) based on Brown (1994) MarSeedIndex Monthly likelih ood of seed availability for Mar 0.08 AprSeedIndex Monthly likelih ood of seed availability for Apr 0.05 MaySeedIndex Monthly likelih ood of seed availability for May 0.03 JunSeedIndex Monthly likeli hood of seed availability for Ju n 0.02 JulSeedIndex Monthly likelih ood of seed availability for Jul 0.01 AugSe edIndex Monthly likelih ood of seed availability for Aug 0.01 SepSeedIndex Monthly likelih ood of seed availability for Sep 0.25 OctSeedIndex Monthly likelih ood of seed availability for Oct 0.95 NovSeedIndex Monthly likelih ood of seed availability for Nov 0.61 DecSeedIndex Monthly likelih ood of seed availability for Dec 0.37

PAGE 265

265 Figure 6 1 The Loxahatchee River and surrounding area with transect loca tions (T1, T3, T7, T8, and T9). Transect notation is followed by distance from ri ver mouth (river kilometer, RK).

PAGE 266

266 Figure 6 2 Flowchart of the structure and subroutines that make up the EcoLox model.

PAGE 267

267 Figure 6 3 Example simulated seedling heights over one year using low and high values from the literature compared with measured data from seedlings in the floodplain of the Loxahatchee River in 2006 (after Liu et al., 2006).

PAGE 268

268 Figure 6 4 Reduction in germination percentage with salinity reported by Krauss et al. (1998) was used to create a germination index, which modified the likelihood of germination events according to the relative reduction in germination from 0 ppt treatment.

PAGE 269

269 Figure 6 5 Relationships between flow at Lainhart dam and surface water elevation (SWE) at six locations in the riverine reach of the NW Fork of the Loxahatchee River (modified and expanded from SFWMD, 2006).

PAGE 270

270 Figure 6 6 Observed (black lines) and modeled (red lines) surface water elevation (SWE) at (a): RK 10.5 (Boy Scout Dock); (b) RK 13.1 (at the mouth of Kitching Creek); and (c) RK 14.6 (adjacent to transect 7).

PAGE 271

271 Figure 6 7 Observed vs. predicted days of inundation from 2004 to 2008 over the tidal portion of the EcoLox model domain using maximum daily surface water elevation values.

PAGE 272

272 Figure 6 8 Interpolated parameters for E quation 62 (upper panel) and (b) exponential relationships between total freshwater flow to the NW Fork and salinity applied to the 29 reaches used in the EcoLox model (lower panel)

PAGE 273

273 Figure 6 9 Observed (black lines) and modeled (red lines) porewater salinity (PWS) and observed surface water salinity (SWS; grey lines) at four locations on transect 7 from 2005 to 2008: (a) 2 m from river; (b) 25 m from river; (c) 90 m from river; and (d) 135 m from river.

PAGE 274

274 Figure 6 10. Modeled porewater salinity ( PWS) at 35 (black line), 65 (blue line), and 120 m (red line) from the river based on E quation 63 and modeled surface water salinity (SWS) (grey line) in the floodplain at ~RK 13 (Reach 23, near the outlet of Kitching Creek) from 1965 to 1975. Cumulative lines show accumulated days of exceedance of the critical salinity for each series on the secondary axis. Note greatest number of days exceeded for middle distance series (65 m), despite lower peak concentrations (blue lines).

PAGE 275

275 Figure 611. (a) Model ed floodplain vegetation results from the EcoLox model using the BASE case (modeled historic data) and (b) Interpretation of aerial photography of vegetation communities in the floodplain of the NW Fork of the Loxahatchee River in 1995. River Miles 5 to 1 0 in (b) correspond to River Kilometers (RK) 9.7, 11.3, 12.9, 14.5, 16.1, and 17.7

PAGE 276

276 Figure 612. (a) The characteristic salinity regime (Ds:Db ratio) in (a) surface water and (b) porewater calculated with a critical salinity of 3 ppt. The range of values for porewater Ds:Db ratio is considerably larger than for surface water (capped at 600) because PWS in some areas of the floodplain is rarely (if ever) below the threshold.

PAGE 277

277 Figure 613. Modeled floodplain vegetation results from the EcoLox model under the LD65 restoration scenario.

PAGE 278

278 Figure 614. Modeled floodplain vegetation results from the EcoLox model using the LD65/TB65 restoration scenario.

PAGE 279

279 Figure 615. Modeled floodplain vegetation results from the EcoLox model under the LD90/TB110 restoration scenario.

PAGE 280

280 Figure 616. Modeled floodplain vegetation results from the EcoLox model using the LD200 restoration scenario.

PAGE 281

281 Figure 617. Modeled floodplain vegetation results from the EcoLox model under the LD200/TB200 restoration scenario.

PAGE 282

282 Figure 618. Modeled floodplain vegetation results from the EcoLox model under the LV90/TV60 restoration scenario.

PAGE 283

283 Figure 619. Modeled floodplain vegetation results from the EcoLox model under the LV90/TV90 restoration scenario.

PAGE 284

284 Figure 620. Modeled floodplain vegetation results from the EcoLox model under the LV90/TV120 restoration scenario.

PAGE 285

285 Figure 621. Distribution of habitat types under the BASE case and eight restoration scenarios. Figure 622. Percentage change in each categor y of floodplain vegetation from the BASE case for the eight restoration scenarios.

PAGE 286

286 Figure 623. Distribution of recruitment years (i.e., number of years during the 40year period of record with successful seedling recruitment) in areas with bald cypre ss habitat type under the BASE case.

PAGE 287

287 Figure 624. Distribution of recruitment years (i.e., number of years during the 40year period of record with successful seedling recruitment) in areas with bald cypress habitat type under the LD65 restoration sc enario case.

PAGE 288

288 Figure 625. Area of bald cypress swamp with one or more germination years (red bars) and recruitment years (blue bars) over the 40year period of record, expressed as a percentage of the total bald cypress habitat area for the BASE case and eight restoration scenarios. Figure 626. Total area of bald cypress swamp with one or more germination years (red bars) and recruitment years (blue bars) over the 40year period of record for the BASE case and eight restoration scenarios.

PAGE 289

289 Fig ure 6 27. Spatial distribution of recruitment years for areas of bald cypress area under the (a) BASE case and (b) LV90/TV60 restoration scenario.

PAGE 290

290 Fig ure 6 28. Surface water elevation (SWE) in Reach 20 over the 40year period of record and the averag e corrected (blue line) and uncorrected (red line) floodplain elevation from LiDAR data.

PAGE 291

291 CHAPTER 7 CONCLUSION Bald cypress floodplain swamp and hydric hammock have been identified as valued ecosystem components (VECs) in the Northwest Fork of the Loxahatc hee River (NW Fork), which has suffered from increased salinity and reduced hydroperiod due to hydrologic modifications in the watershed. The NW Fork has been the focus of intensive data collection and modeling efforts aimed at developing ecosystem restor ation scenarios to benefit VECs, but previous studies had overlooked hydrological conditions in the floodplain vadose zone. To meet the goal of protecting and restoring bald cypress swamp, this four year study investigated soil moisture ( ) and soil porew ater electrical conductivity ( w) dynamics in the floodplain of the Loxahatchee River at two transects an upstream, freshwater transect dominated by bald cypress (T1) and a downstream, transitional ly tidal transect with a mix of freshwater and salt tolerant species (T7). These data were complemented by collocated surface water and groundwater stage and salinity and meteorological data. The analysis in Chapter 2 showed that complex interactions of rainfall, surface water, and groundwater dominate the dynami cs of and w in coastal wetlands In particular, upstream w rarely exceeded tolerance thresholds for bald cypress, but did so more frequently (and for longer duration) in some downstream areas These data provided a better explanation for the observed spatial patterns of floodplain vegetation than either surface water or groundwater data, reinforcing the importance of monitoring in the vadose zone. T he and w relationships drawn in the study allow us to assess the likely impact s o f restoration and m anagement scenarios on the ecological communities in the floodplain of the Loxahatchee River. For example, the proposed

PAGE 292

292 restoration flow scenario (which was developed based on floodplain inundation and downstream surface water quality performance measures ) will provide good conditions for bald cypress seed germination in the riverine floodplain at T1 during the dry season and maintain w in the soil profile below the bald cypress tolerance threshold at T7. Further analysis of detailed hydrological multivariate time series o btained in and around the Loxahatchee River w as pursued in Chapters 3, 4, and 5 using dynamic factor analysis (DFA) The analysis was successfully applied to understand the hydrological processes in this area, which has been affected by reduced hydroperiod and increased saltwater intrusion. Applied to groundwater level data (Chapter 3), t he technique proved to be a powerful tool for the study of interactions among 29 longterm, nonstationary hydrological time series (twelve water table elevation [WTE] series and seventeen candidate explanatory variables) Upstream and tidal s urface water elevations (SWE), regional groundwater circulation (WTE_R), and cumulative net local recharge (Rnet) were found to be the most important factors responsible for groundwater variation in the floodplain wetlands of the Loxahatchee River and t he analysis quantified the spatial distribution of the importance of each explanatory variable to WTE in the twelve monitoring wells. The DFM resulting from the DFA (Model II) had good results ( overall Ceff = 0.91, 0.78 eff .0, visual inspection) and is useful for filling in data gaps during the study period and identifying the relative importance and relationships between hydrological variables of interest The reduced model wi th no common trends (Model III) did a fair to excellent job ( overall Ceff = 0.81, 0. 59 eff and is likely adequate for describing

PAGE 293

293 variations in WTE in the Loxahatchee River floodplain. This empirical model may be deemed useful for assessment o f the effects of Loxahatchee River restoration and management scenarios on WTE dynamics The study also provides a quantitative validation of our qualitative expectations that tidal effects propagate some distance inland (along a river or estuary), river effects propagate some distance inland from the banks (here to swamps/floodplains), hydraulic structure effects propagate some distance from the structure, and net recharge effects are highly localized. Results of the analysis presented here have practical implications, in addition to guiding climate change mitigation planning and ecohydrologic analysis of salinity in coastal river wetlands For example, mechanistic modeling efforts that consider spatial variability of land covers and soils w ould likely b enefit from knowledge of where tidal effects end and the degree to which local rainfall variability is an important determining factor M echanistic frameworks using conditional modeling approaches can also benefit from knowing which explanatory variables are most important a s a function of the relative location of a study area to the ocean, a tidal river or hydraulic structure s. In Chapter 4, short and long term shallow groundwater electrical conductivity (GWEC) dynamics were observed in the floodplain wetlands along a gradient from the river s freshwater, riverine reach downstream through the upper and lower tidal reaches. Sharp GWEC gradients were observed on transects with multiple wells, with high GWEC closer to the river decreasing by several orders of magnitude with increasing distance from the river. Peaks in surface water electrical conductivity (SWEC) and GWEC were often poorly correlated, with GWEC series evolving in a delayed and

PAGE 294

294 extended manner relative to SWEC. Thus, surface water reached hi gher maximum salinities than groundwater in the adjacent floodplain, but average groundwater salinities were often higher over seasonal and yearly time periods. On riverine transects T1 and T3, GWEC was always well below the 0.3125 S/m environmental thres hold proposed for ecological restoration of the freshwater floodplain swamp. GWEC also generally remained below this value on upper tidal transects T7 and T8, with the exception of well T8W1, which had high values of GWEC for much of 2006 and 2007. GWEC in the lower tidal floodplain was above the threshold (in wells T9W1 and T9W2) over the entire four year study. Highresolution GWEC data revealed daily oscillations in GWEC in both tidal and riverine reaches and flushing of salts from the shallow groundwater was also observed in both reaches DFA was again used to study of interactions among these longterm, nonstationary hydrological time series and a DFM consisting of three common trends and four explanatory variables (Model II) simulated observed GWEC data well ( Ceff = 0.85; 0.52 eff The best DFM used cumulative net recharge from the S 46 weather station (Rnet,S46), a single trend fit to nine regional USGS wells (WTE_R), cumulative flow deficit at Lainhart Dam calculated with a critical flow of 3.0 m3 s1 (CFD3 .0), and cumulative salinity deviation calculated from surface water electrical conductivity (SWEC) measured at RK 9.5 in the NW Fork (CSDRK9.5). In Chapter 5, DFA was applied to improve the model of floodplain soil moisture developed in Chapter 2. The resulting identified the most useful explanatory variables e variation: surface water elevations (SWE), capped water table elevation (WTE), and cumulative net recharge (Rnet). The analysis also quantified the

PAGE 295

295 spatial distribution of the importance e in each location, highlighting the differential effects of surface water and groundwater on floodplain soil moisture. V e series was adequately described using just these explanatory variables after removing the trends (overall Ceff = 0.79, 0.59 eff 0.93). The complex variability observed in these multivariate hydrological datasets was simplified using DFA, and the resulting models are useful for assessing the effects of proposed ecological restoration and m e dynamics in the floodplain. Finally, an initial ecohydrological model (EcoLox) was developed to assess the likely impacts of restoration and management scenarios on the floodplain vegetation of the Loxahatchee River (Chapter 6) EcoLox was used to successfully simulate historic conditions and examine the likely results of proposed restoration. In general, the model predicts the possibility of restoring large areas of bald cypress habitat, but raises concerns about the natural r egeneration potential of these areas. Additional work is required to improve the model structure (particularly the selection of the best porewater Ds:Db ratio) and refine model inputs (above all, the LiDAR dataset needs to be thoroughly QA/QCed before making management decisions based on model results). The next step in the development of the EcoLox model will be to perform a global uncertainty and sensitivity analysis (UA/SA), which will help point out the most important model parameters and variables. With UA/SA results as guidance, future work may include more detailed simulations of surface water elevation and salinity, improved subroutines for seedling growth, and incorporation of the impacts of sealevel rise, fire, and frost.

PAGE 296

296 The field and analyti cal methods used here can be successfully applied to other locations where restoration of floodplain ecosystems depends on hydrological conditions in the vadose zone. These efforts would be further improved by species specific studies of moisture requirem ents for seed germination and studies on the effects of variable tidal inundation on the seeds and seedlings of important floodplain species C ontinued monitoring of river and floodplain hydrology and vegetation in the Loxahatchee River will be important to determine whether the restoration flow scenario is achieving the goal of protecting and restoring VECs.

PAGE 297

297 APPENDIX A MEAN DAILY SOIL MOIS TURE AND POREWATER S ALINITY DATA Table A 1. Mean daily soil moisture ( ) and porewater salinity ( w) for measurement locations on Transect 1 T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 9/17/2004 0.055 0.106 0.184 0.000 0.317 0.000 0.174 0.000 0.281 0.007 0.344 0.045 9/18/2004 0.053 0.101 0.181 0.000 0.317 0.000 0.174 0.000 0.282 0.016 0.343 0.047 9/19/2004 0.052 0.098 0.179 0.000 0.318 0.000 0.174 0.000 0.283 0.021 0.341 0.049 9/20/2004 0.069 0.126 0.193 0.000 0.320 0.000 0.189 0.000 0.310 0.025 0.340 0.049 9/21/2004 0.262 0.000 0.350 0.009 0.325 0.000 0.314 0.005 0.334 0.027 0.344 0.047 9/22/2004 0.308 0.000 0.352 0.004 0.326 0.000 0.321 0.006 0.336 0.018 0.344 0.047 9/23/2004 0.291 0.000 0.353 0.002 0.325 0.000 0.320 0.007 0.335 0.018 0.341 0.047 9/24/2004 0.241 0.000 0.351 0.000 0.324 0.002 0.320 0.006 0.333 0.025 0.338 0.046 9/25/ 2004 0.193 0.000 0.349 0.000 0.324 0.017 0.320 0.020 0.330 0.037 0.336 0.045 9/26/2004 0.314 0.000 0.346 0.001 0.330 0.013 0.331 0.021 0.340 0.031 0.343 0.045 9/27/2004 0.316 0.000 0.352 0.003 0.332 0.012 0.334 0.022 0.342 0.031 0 .344 0.045 9/28/2004 0.316 0.000 0.354 0.004 0.331 0.004 0.337 0.024 0.341 0.032 0.342 0.045 9/29/2004 0.313 0.000 0.354 0.005 0.329 0.000 0.337 0.025 0.340 0.033 0.338 0.046 9/30/2004 0.309 0.000 0.357 0.001 0.330 0. 000 0.338 0.024 0.339 0.031 0.336 0.045 10/1/2004 0.293 0.000 0.357 0.003 0.329 0.004 0.340 0.024 0.339 0.027 0.334 0.045 10/2/2004 0.226 0.000 0.357 0.001 0.328 0.001 0.339 0.019 0.339 0.025 0.333 0.044 10/3/2004 0.1 51 0.000 0.356 0.000 0.328 0.000 0.321 0.020 0.336 0.027 0.332 0.044 10/4/2004 0.119 0.000 0.355 0.000 0.327 0.002 0.252 0.003 0.335 0.025 0.330 0.044 10/5/2004 0.096 1.076 0.354 0.000 0.327 0.011 0.185 0.000 0.335 0.024 0.329 0.0 45 10/6/2004 0.084 0.383 0.284 0.000 0.328 0.015 0.156 0.000 0.334 0.021 0.329 0.045 10/7/2004 0.076 0.212 0.250 0.000 0.328 0.009 0.140 0.000 0.333 0.022 0.328 0.046 10/8/2004 0.072 0.170 0.236 0.000 0.328 0.003 0.12 9 0.000 0.329 0.021 0.327 0.046 10/9/2004 0.070 0.154 0.230 0.000 0.328 0.001 0.142 0.000 0.329 0.017 0.327 0.046 10/10/2004 0.068 0.146 0.227 0.000 0.328 0.000 0.148 0.000 0.329 0.016 0.327 0.047 10/11/2004 0.067 0.1 40 0.225 0.000 0.329 0.002 0.148 0.000 0.330 0.016 0.327 0.047 10/12/2004 0.068 0.142 0.224 0.000 0.329 0.003 0.148 0.000 0.330 0.015 0.326 0.047 10/13/2004 0.067 0.134 0.222 0.000 0.329 0.002 0.146 0.000 0.330 0.015 0.325 0.048 10/14/2004 0.065 0.124 0.219 0.000 0.329 0.000 0.144 0.000 0.331 0.016 0.325 0.048 10/15/2004 0.063 0.120 0.215 0.000 0.329 0.000 0.141 0.000 0.331 0.016 0.324 0.049 10/16/2004 0.061 0.110 0.212 0.000 0.331 0.000 0.138 0.000 0.331 0.016 0.325 0.049 10/17/2004 0.059 0.105 0.208 0.000 0.331 0.000 0.136 0.000 0.332 0.016 0.325 0.049 10/18/2004 0.058 0.101 0.204 0.000 0.331 0.000 0.134 0.000 0.332 0.016 0.325 0.049 10/19/2004 0.057 0.0 99 0.201 0.000 0.331 0.000 0.133 0.000 0.333 0.016 0.325 0.049 10/20/2004 0.058 0.099 0.203 0.000 0.331 0.000 0.152 0.000 0.334 0.016 0.325 0.049 10/21/2004 0.065 0.119 0.208 0.000 0.331 0.000 0.170 0.000 0.336 0.017 0.325 0.049 10/22/2004 0.065 0.122 0.208 0.000 0.331 0.000 0.170 0.000 0.336 0.017 0.325 0.049 10/23/2004 0.074 0.194 0.211 0.000 0.332 0.000 0.178 0.007 0.338 0.018 0.325 0.049 10/24/2004 0.076 0.163 0.215 0.000 0.332 0.000 0.184 0.044 0.339 0.017 0.325 0.050 10/25/2004 0.070 0.127 0.213 0.000 0.332 0.000 0.180 0.045 0.340 0.017 0.325 0.050 10/26/2004 0.067 0.116 0.211 0.000 0.331 0.000 0.178 0.037 0.340 0.017 0.325 0.050 10/27/2004 0.064 0.1 08 0.209 0.000 0.331 0.000 0.176 0.025 0.340 0.017 0.325 0.050 10/28/2004 0.063 0.105 0.208 0.000 0.331 0.000 0.175 0.014 0.340 0.018 0.325 0.050 10/29/2004 0.063 0.103 0.207 0.000 0.331 0.000 0.176 0.006 0.340 0.017 0.324 0.050 10/30/2004 0.062 0.102 0.206 0.000 0.330 0.000 0.175 0.000 0.340 0.018 0.324 0.050 10/31/2004 0.061 0.099 0.205 0.000 0.330 0.000 0.173 0.000 0.341 0.018 0.324 0.050

PAGE 298

298 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 11/1/2004 0.061 0.099 0.204 0.000 0.330 0.000 0.172 0.000 0.340 0.018 0.323 0.051 11/2/2004 0.060 0.098 0.203 0.000 0.329 0.000 0.170 0.000 0.340 0.018 0.323 0.051 11/3/ 2004 0.060 0.097 0.202 0.000 0.329 0.000 0.168 0.000 0.340 0.019 0.323 0.051 11/4/2004 0.058 0.093 0.201 0.000 0.328 0.000 0.163 0.000 0.339 0.018 0.322 0.051 11/5/2004 0.057 0.092 0.197 0.000 0.328 0.000 0.142 0.012 0.338 0.018 0 .321 0.051 11/6/2004 0.055 0.088 0.191 0.000 0.328 0.000 0.126 0.095 0.336 0.018 0.320 0.050 11/7/2004 0.052 0.085 0.184 0.000 0.328 0.000 0.120 0.155 0.335 0.015 0.319 0.051 11/8/2004 0.051 0.084 0.175 0.000 0.328 0. 000 0.115 0.195 0.335 0.013 0.319 0.051 11/9/2004 0.050 0.082 0.165 0.000 0.328 0.000 0.110 0.226 0.335 0.010 0.320 0.051 11/10/2004 0.048 0.079 0.154 0.000 0.328 0.000 0.105 0.276 0.334 0.008 0.320 0.051 11/11/2004 0 .047 0.078 0.145 0.000 0.327 0.000 0.096 0.723 0.331 0.006 0.319 0.051 11/12/2004 0.046 0.077 0.136 0.000 0.327 0.000 0.088 0.000 0.326 0.004 0.318 0.051 11/13/2004 0.044 0.075 0.129 0.000 0.327 0.000 0.082 0.000 0.317 0.002 0.318 0.052 11/14/2004 0.049 0.081 0.127 0.000 0.328 0.000 0.081 0.000 0.304 0.001 0.319 0.052 11/15/2004 0.060 0.096 0.129 0.000 0.328 0.000 0.082 0.010 0.302 0.001 0.319 0.052 11/16/2004 0.055 0.085 0.125 0.000 0.328 0.0 00 0.076 0.060 0.288 0.001 0.319 0.052 11/17/2004 0.051 0.080 0.122 0.000 0.327 0.000 0.073 0.066 0.264 0.000 0.318 0.052 11/18/2004 0.050 0.077 0.122 0.000 0.327 0.000 0.072 0.066 0.257 0.000 0.318 0.052 11/19/2004 0 .049 0.076 0.119 0.000 0.327 0.000 0.072 0.064 0.252 0.000 0.318 0.054 11/20/2004 0.047 0.075 0.115 0.000 0.327 0.000 0.070 0.063 0.246 0.000 0.317 0.055 11/21/2004 0.045 0.072 0.111 0.000 0.327 0.000 0.067 0.064 0.236 0.000 0.317 0.056 11/22/2004 0.045 0.073 0.110 0.000 0.327 0.000 0.066 0.064 0.228 0.000 0.317 0.056 11/23/2004 0.044 0.070 0.107 0.000 0.326 0.000 0.064 0.063 0.221 0.000 0.316 0.057 11/24/2004 0.043 0.069 0.103 0.000 0.326 0.0 00 0.063 0.063 0.212 0.000 0.316 0.057 11/25/2004 0.042 0.070 0.101 0.000 0.325 0.000 0.062 0.063 0.205 0.000 0.315 0.058 11/26/2004 0.041 0.068 0.097 2.518 0.325 0.000 0.060 0.064 0.196 0.000 0.316 0.057 11/27/2004 0 .040 0.068 0.094 4.550 0.325 0.000 0.058 0.062 0.189 0.000 0.315 0.057 11/28/2004 0.041 0.068 0.092 1.686 0.325 0.000 0.059 0.064 0.184 0.000 0.315 0.057 11/29/2004 0.043 0.069 0.089 0.526 0.325 0.000 0.057 0.063 0.178 0.000 0.316 0.056 11/30/2004 0.043 0.068 0.085 0.339 0.325 0.000 0.055 0.061 0.173 0.000 0.316 0.056 12/1/2004 0.042 0.066 0.080 0.217 0.326 0.000 0.056 0.062 0.171 0.000 0.316 0.057 12/2/2004 0.041 0.064 0.076 0.177 0.326 0.000 0.053 0.062 0.161 0.000 0.315 0.056 12/3/2004 0.040 0.063 0.072 0.155 0.326 0.000 0.051 0.061 0.152 0.000 0.315 0.055 12/4/2004 0.039 0.063 0.068 0.135 0.326 0.000 0.049 0.059 0.145 0.000 0.315 0.055 12/5/2004 0.039 0.062 0.065 0.122 0.327 0.000 0.048 0.058 0.139 0.000 0.315 0.054 12/6/2004 0.038 0.061 0.063 0.113 0.328 0.000 0.047 0.058 0.135 0.000 0.315 0.055 12/7/2004 0.037 0.061 0.062 0.112 0.328 0.000 0.046 0.058 0.133 0.000 0.316 0.056 12/8/2004 0.036 0.060 0.060 0.105 0.328 0.000 0.045 0.057 0.128 0.000 0.316 0.056 12/9/2004 0.036 0.060 0.058 0.104 0.328 0.000 0.044 0.057 0.124 0.000 0.316 0.056 12/10/2004 0.035 0.058 0.057 0.098 0.328 0.000 0.044 0.057 0.121 0.000 0.315 0.057 12/11/2004 0.034 0.057 0.055 0.096 0.319 0.000 0.043 0.056 0.118 0.000 0.316 0.057 12/12/2004 0.033 0.056 0.054 0.093 0.269 0.000 0.041 0.056 0.112 0.000 0.317 0.057 12/13/2004 0.032 0.05 6 0.052 0.089 0.250 0.000 0.040 0.055 0.107 0.000 0.318 0.057 12/14/2004 0.031 0.055 0.051 0.086 0.233 0.000 0.040 0.055 0.103 0.000 0.319 0.058 12/15/2004 0.031 0.054 0.050 0.084 0.214 0.000 0.039 0.055 0.099 0.000 0.321 0.058 12/16/2004 0.030 0.054 0.049 0.084 0.195 0.000 0.038 0.054 0.095 3.904 0.322 0.058 12/17/2004 0.030 0.053 0.048 0.082 0.183 0.000 0.037 0.053 0.094 3.993 0.323 0.058 12/18/2004 0.031 0.053 0.048 0.082 0.178 0.000 0.037 0.054 0.094 5.094 0.324 0.060 12/19/2004 0.036 0.055 0.047 0.081 0.173 0.000 0.037 0.053 0.091 0.995 0.325 0.061 12/20/2004 0.039 0.056 0.047 0.080 0.166 0.000 0.036 0.053 0.085 0.356 0.325 0.061

PAGE 299

299 Table A 1. Continued T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 12/21/2004 0.038 0.0 54 0.045 0.078 0.161 0.000 0.035 0.052 0.082 0.260 0.326 0.061 12/22/2004 0.039 0.055 0.045 0.078 0.156 0.000 0.035 0.052 0.082 0.252 0.327 0.061 12/23/2004 0.039 0.055 0.046 0.080 0.153 0.000 0.035 0.052 0.083 0.266 0.328 0.061 12/24/2004 0.041 0.056 0.046 0.079 0.153 0.000 0.035 0.052 0.084 0.287 0.330 0.061 12/25/2004 0.060 0.094 0.046 0.079 0.154 0.000 0.036 0.053 0.086 0.351 0.332 0.061 12/26/2004 0.069 0.141 0.049 0.086 0.155 0.000 0.037 0.053 0.087 0.397 0.333 0.062 12/27/2004 0.061 0.111 0.057 0.097 0.154 0.000 0.037 0.052 0.085 0.320 0.336 0.066 12/28/2004 0.057 0.099 0.056 0.091 0.153 0.000 0.038 0.051 0.083 0.259 0.337 0.067 12/29/2004 0.054 0.0 90 0.054 0.084 0.149 0.000 0.037 0.051 0.080 0.211 0.337 0.067 12/30/2004 0.051 0.086 0.054 0.086 0.144 0.000 0.037 0.049 0.076 0.173 0.337 0.065 12/31/2004 0.049 0.082 0.052 0.081 0.143 0.000 0.037 0.049 0.085 0.294 0.336 0.060 1/1/2005 0.048 0.081 0.050 0.078 0.142 0.000 0.038 0.049 0.083 0.252 0.336 0.065 1/2/2005 0.047 0.079 0.049 0.075 0.139 0.000 0.037 0.047 0.080 0.202 0.337 0.068 1/3/2005 0.045 0.075 0.048 0.075 0.134 0.000 0.036 0.047 0.075 0.157 0.337 0.068 1/4/2005 0.042 0.070 0.047 0.073 0.128 0.000 0.035 0.047 0.070 0.127 0.335 0.066 1/5/2005 0.042 0.070 0.046 0.071 0.123 0.000 0.035 0.047 0.066 0.110 0.333 0.066 1/6/2005 0.041 0.068 0.046 0.0 72 0.119 0.000 0.035 0.047 0.064 0.104 0.332 0.068 1/7/2005 0.039 0.066 0.046 0.071 0.114 0.000 0.034 0.047 0.062 0.096 0.330 0.070 1/8/2005 0.038 0.065 0.045 0.071 0.109 0.000 0.033 0.047 0.060 0.092 0.328 0.071 1/9/ 2005 0.037 0.063 0.045 0.070 0.105 0.000 0.033 0.047 0.058 0.086 0.327 0.073 1/10/2005 0.036 0.061 0.044 0.069 0.101 0.788 0.032 0.047 0.056 0.082 0.325 0.074 1/11/2005 0.034 0.059 0.044 0.068 0.096 3.293 0.031 0.046 0.053 0.078 0 .319 0.073 1/12/2005 0.034 0.060 0.043 0.068 0.091 1.457 0.031 0.047 0.051 0.075 0.309 0.073 1/13/2005 0.034 0.059 0.043 0.068 0.087 0.515 0.031 0.047 0.049 0.072 0.302 0.073 1/14/2005 0.055 0.121 0.046 0.073 0.085 0. 396 0.032 0.046 0.049 0.071 0.296 0.069 0.735 0.074 0.742 0.127 0.760 0.092 0.861 0.171 0.760 0.120 0.669 0.145 1/15/2005 0.079 0.236 0.079 0.208 0.093 1.379 0.065 0.023 0.057 0.080 0.302 0.066 0.741 0.079 0.742 0.130 0.764 0.091 0.865 0.170 0.758 0.123 0 .669 0.149 1/16/2005 0.070 0.158 0.076 0.217 0.109 0.000 0.069 0.037 0.067 0.084 0.310 0.073 0.741 0.083 0.742 0.132 0.763 0.092 0.862 0.174 0.759 0.124 0.666 0.153 1/17/2005 0.058 0.105 0.067 0.152 0.117 0.000 0.060 0.053 0.068 0.075 0.314 0.074 0.741 0 .084 0.742 0.132 0.763 0.092 0.860 0.177 0.761 0.122 0.668 0.154 1/18/2005 0.052 0.089 0.061 0.130 0.117 0.000 0.054 0.053 0.067 0.068 0.315 0.071 0.740 0.087 0.741 0.133 0.762 0.093 0.856 0.180 0.760 0.124 0.672 0.154 1/19/2005 0.048 0.083 0.058 0.118 0 .115 0.000 0.050 0.053 0.065 0.060 0.314 0.071 0.741 0.088 0.740 0.133 0.762 0.093 0.855 0.181 0.759 0.126 0.671 0.154 1/20/2005 0.046 0.080 0.055 0.111 0.112 0.000 0.048 0.052 0.063 0.057 0.313 0.070 0.741 0.090 0.740 0.132 0.764 0.093 0.852 0.183 0.761 0.124 0.666 0.157 1/21/2005 0.044 0.076 0.053 0.105 0.109 0.000 0.045 0.050 0.060 0.054 0.312 0.070 0.742 0.091 0.740 0.132 0.763 0.093 0.852 0.179 0.759 0.127 0.672 0.155 1/22/2005 0.042 0.074 0.051 0.102 0.105 0.000 0.044 0.050 0.058 0.052 0.310 0.069 0.744 0.091 0.740 0.131 0.761 0.094 0.854 0.174 0.759 0.128 0.670 0.157 1/23/2005 0.041 0.073 0.050 0.098 0.102 0.000 0.042 0.049 0.057 0.052 0.308 0.069 0.744 0.094 0.741 0.130 0.763 0.093 0.851 0.178 0.758 0.129 0.673 0.156 1/24/2005 0.039 0.069 0.048 0.094 0.099 0.000 0.040 0.048 0.056 0.052 0.307 0.068 0.746 0.092 0.742 0.129 0.765 0.093 0.852 0.175 0.759 0.131 0.678 0.154 1/25/2005 0.037 0.067 0.047 0.091 0.097 0.805 0.038 0.048 0.054 0.052 0.305 0.068 0.746 0.091 0.741 0.130 0.764 0.093 0.849 0.175 0.760 0.129 0.676 0.155 1/26/2005 0.036 0.066 0.045 0.089 0.094 2.409 0.037 0.048 0.053 0.052 0.303 0.067 0.747 0.090 0.740 0.129 0.765 0.093 0.847 0.177 0.760 0.130 0.673 0.156 1/27/2005 0.035 0.065 0.045 0.088 0.091 0.966 0.036 0.047 0.051 0.051 0.300 0.068 0.745 0.090 0.740 0.128 0.763 0.094 0.830 0.173 0.759 0.131 0.670 0.157 1/28/2005 0.036 0.047 0.050 0.051 0.297 0.069 0.742 0.091 0.741 0.127 0.763 0.094 0.806 0.172 0.759 0.133 0.666 0.160 1/29/2005 0.034 0.047 0.049 0.051 0.293 0.069 0.743 0.090 0.741 0.126 0.763 0.094 0.802 0.169 0.760 0.132 0.665 0.161 1/30/2005 0.034 0.047 0.048 0.051 0.289 0.066 0.743 0.090 0.742 0.126 0.762 0.094 0.802 0.170 0.759 0.134 0.664 0.162 1/31/2005 0.033 0.046 0.047 0.051 0.287 0.064 0.744 0.090 0.742 0.126 0.761 0.095 0.804 0.171 0.759 0.136 0.664 0.162 2/1/2005 0.032 0.046 0.047 0.051 0.285 0.064 0.745 0.089 0.742 0.126 0.762 0.094 0.808 0.167 0.759 0.137 0.664 0.162 2/2/2005 0.031 0.046 0.046 0.051 0.281 0.064 0.744 0.090 0 .741 0.126 0.763 0.094 0.801 0.170 0.759 0.138 0.666 0.161 2/3/2005 0.031 0.046 0.045 0.050 0.277 0.064 0.744 0.090 0.741 0.126 0.763 0.094 0.799 0.168 0.758 0.140 0.665 0.161 2/4/2005 0.031 0.047 0.044 0.050 0.272 0.063 0.745 0.089 0.740 0.1 28 0.766 0.094 0.796 0.170 0.759 0.140 0.668 0.161 2/5/2005 0.030 0.047 0.043 0.050 0.267 0.062 0.745 0.089 0.740 0.127 0.767 0.094 0.788 0.170 0.759 0.141 0.669 0.160 2/6/2005 0.029 0.046 0.042 0.049 0.262 0.061 0.745 0.088 0.740 0.126 0.764 0.095 0.781 0.169 0.758 0.142 0.667 0.161 2/7/2005 0.029 0.046 0.041 0.049 0.254 0.060 0.741 0.088 0.741 0.124 0.762 0.096 0.774 0.172 0.759 0.141 0.664 0.163 2/8/2005 0.028 0.046 0.040 0.050 0.249 0.058 0.737 0.088 0.740 0.125 0.763 0.097 0 .773 0.172 0.759 0.141 0.664 0.163

PAGE 300

300 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 2/9/2005 0.028 0.046 0.039 0.048 0.244 0.057 0.736 0.088 0.740 0.125 0.763 0.097 0.772 0.173 0.759 0.142 0.663 0.164 2/10/2005 0.028 0.046 0.038 0.048 0.240 0.056 0.735 0.087 0.740 0 .124 0.762 0.098 0.770 0.174 0.759 0.143 0.662 0.164 2/11/2005 0.027 0.046 0.037 0.047 0.234 0.056 0.733 0.088 0.742 0.122 0.763 0.098 0.766 0.172 0.760 0.141 0.663 0.164 2/12/2005 0.026 0.046 0.036 0.047 0.228 0.055 0.733 0.085 0.741 0.122 0 .762 0.099 0.757 0.170 0.760 0.141 0.669 0.162 2/13/2005 0.026 0.045 0.035 0.047 0.223 0.055 0.732 0.085 0.741 0.121 0.762 0.099 0.748 0.174 0.759 0.139 0.669 0.163 2/14/2005 0.026 0.045 0.034 0.046 0.218 0.053 0.731 0.083 0.740 0.121 0.762 0 .100 0.745 0.172 0.759 0.137 0.670 0.163 2/15/2005 0.025 0.045 0.033 0.046 0.213 0.051 0.730 0.083 0.741 0.121 0.764 0.100 0.741 0.173 0.760 0.133 0.676 0.161 2/16/2005 0.025 0.046 0.032 0.046 0.208 0.049 0.729 0.083 0.741 0.120 0.763 0.101 0 .738 0.175 0.759 0.132 0.675 0.161 2/17/2005 0.025 0.045 0.032 0.045 0.205 0.048 0.729 0.083 0.741 0.120 0.764 0.101 0.736 0.174 0.759 0.130 0.675 0.162 2/18/2005 0.025 0.045 0.031 0.045 0.201 0.047 0.728 0.084 0.742 0.119 0.761 0.102 0.732 0 .177 0.760 0.126 0.675 0.162 2/19/2005 0.024 0.045 0.030 0.045 0.196 0.046 0.725 0.085 0.742 0.118 0.760 0.102 0.726 0.177 0.761 0.123 0.676 0.161 2/20/2005 0.024 0.045 0.030 0.045 0.192 0.046 0.724 0.083 0.742 0.118 0.759 0.103 0.724 0.173 0 .760 0.122 0.675 0.161 2/21/2005 0.024 0.045 0.029 0.044 0.188 0.047 0.723 0.082 0.742 0.118 0.758 0.104 0.718 0.176 0.759 0.122 0.667 0.164 2/22/2005 0.023 0.044 0.029 0.045 0.184 0.046 0.721 0.082 0.742 0.117 0.758 0.104 0.714 0.179 0.759 0 .119 0.668 0.163 2/23/2005 0.023 0.044 0.028 0.044 0.183 0.046 0.722 0.081 0.743 0.117 0.759 0.104 0.715 0.180 0.759 0.118 0.668 0.163 2/24/2005 0.023 0.044 0.027 0.044 0.183 0.046 0.720 0.084 0.743 0.116 0.760 0.103 0.716 0.179 0.760 0.117 0 .669 0.163 2/25/2005 0.023 0.044 0.027 0.044 0.184 0.045 0.731 0.086 0.744 0.115 0.761 0.103 0.729 0.180 0.760 0.117 0.665 0.165 2/26/2005 0.024 0.044 0.027 0.043 0.189 0.045 0.734 0.090 0.744 0.115 0.760 0.104 0.727 0.184 0.760 0.116 0.661 0 .166 2/27/2005 0.033 0.043 0.029 0.044 0.192 0.046 0.738 0.093 0.744 0.115 0.759 0.105 0.731 0.185 0.761 0.115 0.662 0.165 2/28/2005 0.059 0.036 0.034 0.046 0.197 0.047 0.737 0.099 0.744 0.115 0.756 0.107 0.735 0.185 0.761 0.117 0.664 0.163 3/1/2005 0.055 0.098 0.064 0.140 0.058 0.107 0.055 0.041 0.040 0.048 0.198 0.048 0.736 0.101 0.745 0.114 0.756 0.108 0.734 0.187 0.761 0.117 0.670 0.161 3/2/2005 0.052 0.091 0.062 0.134 0.060 0.113 0.051 0.045 0.041 0.047 0.198 0.048 0.732 0.102 0.744 0.1 15 0.756 0.108 0.733 0.184 0.761 0.119 0.671 0.161 3/3/2005 0.049 0.087 0.059 0.123 0.061 0.113 0.048 0.047 0.040 0.045 0.198 0.048 0.730 0.102 0.743 0.116 0.757 0.108 0.735 0.182 0.760 0.122 0.671 0.160 3/4/2005 0.091 0.547 0.075 0.314 0.085 0.116 0.080 0.196 0.063 0.078 0.223 0.051 0.745 0.104 0.744 0.115 0.759 0.107 0.832 0.184 0.759 0.124 0.672 0.159 3/5/2005 0.063 0.135 0.060 0.134 0.099 0.000 0.063 0.105 0.070 0.111 0.266 0.057 0.748 0.103 0.743 0.114 0.759 0.107 0.839 0.187 0.759 0.123 0.671 0.159 3/6/2005 0.055 0.108 0.055 0.118 0.099 0.000 0.054 0.087 0.066 0.108 0.269 0.058 0.746 0.104 0.743 0.115 0.757 0.108 0.837 0.188 0.759 0.124 0.670 0.159 3/7/2005 0.050 0.095 0.052 0.110 0.095 1.179 0.048 0.078 0.061 0.096 0.267 0.058 0.744 0.105 0.743 0 .115 0.756 0.108 0.823 0.190 0.759 0.124 0.669 0.159 3/8/2005 0.048 0.090 0.050 0.105 0.092 1.698 0.045 0.074 0.058 0.090 0.265 0.058 0.745 0.104 0.743 0.114 0.756 0.109 0.817 0.190 0.759 0.123 0.666 0.161 3/9/2005 0.079 0.165 0.063 1.561 0.101 0.913 0.0 63 0.067 0.067 0.152 0.270 0.059 0.750 0.104 0.743 0.115 0.756 0.109 0.831 0.190 0.760 0.124 0.671 0.158 3/10/2005 0.080 0.419 0.075 0.254 0.203 0.000 0.087 0.840 0.181 0.000 0.308 0.063 0.755 0.100 0.743 0.115 0.756 0.108 0.841 0.194 0.760 0.124 0.673 0. 157 3/11/2005 0.062 0.131 0.073 0.220 0.221 0.000 0.074 0.211 0.177 0.000 0.309 0.061 0.754 0.098 0.743 0.115 0.759 0.105 0.839 0.201 0.760 0.125 0.671 0.158 3/12/2005 0.056 0.109 0.070 0.198 0.222 0.000 0.064 0.144 0.164 0.000 0.311 0.058 0.755 0.097 0. 743 0.114 0.759 0.103 0.837 0.204 0.760 0.125 0.670 0.158 3/13/2005 0.052 0.100 0.068 0.180 0.220 0.000 0.058 0.119 0.155 0.000 0.311 0.055 0.755 0.097 0.743 0.115 0.761 0.100 0.836 0.206 0.760 0.126 0.668 0.159 3/14/2005 0.049 0.092 0.066 0.169 0.217 0. 000 0.054 0.106 0.148 0.000 0.312 0.053 0.754 0.099 0.743 0.115 0.762 0.099 0.833 0.212 0.759 0.127 0.668 0.159 3/15/2005 0.046 0.088 0.065 0.164 0.215 0.000 0.051 0.099 0.143 0.000 0.314 0.052 0.755 0.099 0.743 0.115 0.763 0.097 0.832 0.215 0.760 0.127 0 .667 0.160 3/16/2005 0.045 0.085 0.064 0.157 0.213 0.000 0.050 0.095 0.139 0.000 0.312 0.051 0.754 0.101 0.743 0.116 0.761 0.097 0.831 0.215 0.759 0.130 0.666 0.160 3/17/2005 0.062 0.065 0.067 0.190 0.215 0.000 0.055 0.304 0.145 0.000 0.310 0.052 0.756 0 .099 0.745 0.115 0.760 0.097 0.832 0.214 0.758 0.133 0.669 0.159 3/18/2005 0.078 0.488 0.084 0.432 0.263 0.000 0.083 0.397 0.205 0.000 0.315 0.048 0.756 0.099 0.745 0.115 0.764 0.094 0.832 0.215 0.759 0.133 0.671 0.159 3/19/2005 0.063 0.135 0.082 0.380 0 .264 0.000 0.073 0.201 0.197 0.000 0.317 0.045 0.757 0.097 0.744 0.116 0.764 0.094 0.832 0.216 0.760 0.133 0.671 0.159 3/20/2005 0.057 0.112 0.079 0.300 0.264 0.000 0.066 0.153 0.185 0.000 0.319 0.043 0.756 0.098 0.744 0.116 0.761 0.093 0.830 0.219 0.759 0.134 0.671 0.159 3/21/2005 0.066 0.196 0.078 0.391 0.263 0.000 0.067 0.281 0.182 0.000 0.320 0.044 0.756 0.099 0.744 0.116 0.762 0.092 0.829 0.220 0.759 0.135 0.672 0.158 3/22/2005 0.079 0.524 0.096 2.243 0.265 0.000 0.118 0.379 0.257 0.000 0.323 0.052 0.756 0.099 0.744 0.117 0.759 0.092 0.830 0.223 0.758 0.137 0.671 0.159 3/23/2005 0.068 0.160 0.099 0.000 0.265 0.000 0.156 0.000 0.279 0.000 0.325 0.054 0.757 0.098 0.744 0.118 0.758 0.093 0.835 0.214 0.758 0.137 0.672 0.158 3/24/2005 0.063 0.136 0.099 0.000 0.265 0.000 0.157 0.000 0.279 0.000 0.325 0.054 0.757 0.099 0.744 0.119 0.761 0.092 0.837 0.206 0.759 0.136 0.672 0.158 3/25/2005 0.060 0.123 0.098 0.000 0.265 0.000 0.144 0.000 0.278 0.000 0.325 0.053 0.758 0.099 0.744 0.119 0.759 0.092 0.835 0.203 0.760 0.137 0.667 0.160 3/26/2005 0.062 0.132 0.098 0.000 0.265 0.000 0.150 0.000 0.278 0.000 0.325 0.053 0.757 0.101 0.744 0.119 0.757 0.093 0.836 0.199 0.758 0.139 0.665 0.161 3/27/2005 0.061 0.128 0.098 0.000 0.264 0.000 0.150 0.000 0.278 0.000 0.324 0.055 0.756 0.103 0.744 0.121 0.758 0.093 0.840 0.190 0.760 0.138 0.666 0.161 3/28/2005 0.059 0.118 0.097 1.213 0.264 0.000 0.147 0.000 0.278 0.000 0.323 0.056 0.757 0.102 0.744 0.121 0.759 0.093 0.837 0.189 0.758 0.141 0.668 0.161 3/29/2005 0.056 0.108 0.095 3.663 0.264 0.000 0.143 0.000 0.279 0.000 0.323 0.057 0.757 0.103 0.744 0.122 0.756 0.093 0.840 0.184 0.759 0.140 0.672 0.159 3/30/2005 0.053 0.102 0.093 6.462 0.264 0.000 0.137 0.000 0.279 0.000 0.323 0.058 0.757 0.103 0.744 0.123 0.758 0.093 0.84 6 0.175 0.760 0.138 0.669 0.160

PAGE 301

301 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 3/31/2005 0.051 0.097 0.091 1.577 0.264 0.000 0.130 0.000 0.280 0.000 0.322 0.060 0.757 0.105 0.744 0.124 0.756 0.093 0.847 0.171 0.760 0.138 0.668 0.162 4/1/2005 0.049 0.093 0.089 0.812 0.264 0 .000 0.114 0.000 0.280 0.000 0.321 0.060 0.757 0.105 0.745 0.123 0.756 0.093 0.844 0.173 0.760 0.137 0.668 0.162 4/2/2005 0.050 0.094 0.087 0.654 0.264 0.000 0.096 1.339 0.279 0.000 0.320 0.059 0.757 0.104 0.744 0.124 0.755 0.094 0.840 0.178 0.761 0.136 0 .665 0.163 4/3/2005 0.058 0.114 0.089 0.810 0.265 0.000 0.094 2.462 0.282 0.000 0.321 0.059 0.757 0.104 0.744 0.125 0.755 0.094 0.844 0.178 0.760 0.137 0.664 0.164 4/4/2005 0.054 0.103 0.085 0.496 0.266 0.000 0.088 0.732 0.282 0.000 0.320 0.061 0.757 0.1 04 0.744 0.126 0.757 0.093 0.842 0.181 0.760 0.137 0.661 0.165 4/5/2005 0.051 0.096 0.082 0.374 0.267 0.000 0.083 0.366 0.281 0.000 0.319 0.062 0.758 0.103 0.743 0.126 0.756 0.093 0.841 0.183 0.760 0.136 0.663 0.165 4/6/2005 0.048 0.090 0.080 0.310 0.267 0.000 0.078 0.253 0.279 0.000 0.318 0.062 0.757 0.103 0.743 0.126 0.757 0.093 0.842 0.181 0.760 0.134 0.664 0.164 4/7/2005 0.046 0.086 0.077 0.271 0.267 0.000 0.075 0.210 0.277 0.000 0.316 0.063 0.756 0.105 0.743 0.127 0.758 0.092 0.843 0.177 0.760 0.135 0.662 0.166 4/8/2005 0.073 0.227 0.091 1.963 0.268 0.000 0.093 0.279 0.280 0.000 0.317 0.060 0.756 0.105 0.744 0.127 0.759 0.092 0.844 0.177 0.759 0.136 0.661 0.166 4/9/2005 0.064 0.137 0.094 2.461 0.269 0.000 0.092 4.390 0.281 0.000 0.317 0.055 0.757 0 .105 0.743 0.127 0.758 0.092 0.842 0.180 0.759 0.136 0.662 0.166 4/10/2005 0.057 0.111 0.089 0.948 0.270 0.000 0.086 0.468 0.281 0.000 0.316 0.056 0.757 0.104 0.743 0.128 0.757 0.093 0.841 0.182 0.759 0.136 0.662 0.166 4/11/2005 0.053 0.100 0.085 0.483 0 .270 0.000 0.081 0.308 0.281 0.000 0.314 0.058 0.757 0.105 0.743 0.128 0.758 0.092 0.842 0.182 0.759 0.136 0.661 0.166 4/12/2005 0.049 0.093 0.082 0.360 0.270 0.000 0.078 0.244 0.280 0.000 0.313 0.060 0.757 0.105 0.744 0.128 0.758 0.092 0.840 0.183 0.758 0.138 0.661 0.167 4/13/2005 0.047 0.088 0.080 0.301 0.270 0.000 0.075 0.212 0.278 0.000 0.312 0.061 0.756 0.106 0.744 0.128 0.758 0.092 0.838 0.184 0.757 0.139 0.661 0.167 4/14/2005 0.044 0.083 0.077 0.256 0.270 0.000 0.072 0.181 0.271 0.000 0.312 0.062 0.756 0.107 0.743 0.130 0.758 0.093 0.839 0.183 0.758 0.139 0.661 0.167 4/15/2005 0.042 0.079 0.075 0.230 0.271 0.000 0.068 0.155 0.245 0.000 0.312 0.060 0.756 0.107 0.743 0.130 0.757 0.093 0.840 0.179 0.759 0.138 0.662 0.166 4/16/2005 0.040 0.076 0.073 0.212 0.273 0.000 0.064 0.139 0.231 0.000 0.312 0.059 0.756 0.106 0.742 0.131 0.757 0.093 0.842 0.178 0.759 0.138 0.662 0.167 4/17/2005 0.038 0.072 0.072 0.200 0.273 0.000 0.060 0.121 0.210 0.000 0.312 0.054 0.757 0.105 0.743 0.131 0.758 0.093 0.841 0.180 0.760 0.137 0.661 0.167 4/18/2005 0.036 0.071 0.070 0.186 0.274 0.000 0.055 0.107 0.186 0.000 0.311 0.050 0.756 0.105 0.742 0.131 0.759 0.093 0.841 0.180 0.761 0.135 0.661 0.167 4/19/2005 0.035 0.069 0.068 0.173 0.273 0.000 0.051 0.097 0.165 0.000 0.310 0.047 0.756 0.105 0.742 0.132 0.759 0.093 0.842 0.181 0.760 0.135 0.660 0.167 4/20/2005 0.034 0.067 0.066 0.160 0.273 0.000 0.048 0.090 0.151 0.000 0.309 0.046 0.757 0.105 0.742 0.132 0.759 0.093 0.842 0.181 0.760 0.136 0.660 0.167 4/21/2005 0.033 0.064 0.064 0.152 0.273 0.000 0.045 0.085 0.141 0.000 0.308 0.045 0.756 0.106 0.742 0.132 0.758 0.093 0.841 0.181 0.759 0.136 0.659 0.167 4/22/2005 0.033 0.063 0.062 0.140 0.273 0.000 0.043 0.082 0.132 0.000 0.308 0.045 0.755 0.108 0.742 0.133 0.758 0.093 0.84 2 0.181 0.758 0.136 0.661 0.166 4/23/2005 0.032 0.062 0.059 0.130 0.272 0.000 0.042 0.079 0.123 0.000 0.307 0.044 0.754 0.109 0.742 0.133 0.759 0.093 0.839 0.186 0.760 0.135 0.660 0.166 4/24/2005 0.030 0.060 0.057 0.123 0.273 0.000 0.040 0.077 0.114 0.00 0 0.307 0.044 0.754 0.109 0.743 0.133 0.754 0.094 0.837 0.190 0.762 0.133 0.661 0.165 4/25/2005 0.029 0.059 0.054 0.114 0.273 0.000 0.038 0.074 0.105 0.000 0.307 0.044 0.755 0.106 0.742 0.134 0.756 0.094 0.838 0.193 0.761 0.135 0.662 0.165 4/26/2005 0.02 8 0.058 0.053 0.111 0.262 0.000 0.037 0.073 0.098 2.471 0.307 0.044 0.754 0.104 0.742 0.135 0.755 0.094 0.837 0.196 0.760 0.136 0.663 0.164 4/27/2005 0.028 0.058 0.051 0.104 0.232 0.000 0.036 0.070 0.093 3.413 0.307 0.045 0.754 0.102 0.741 0.135 0.754 0.0 94 0.834 0.202 0.761 0.136 0.662 0.164 4/28/2005 0.027 0.057 0.049 0.099 0.216 0.000 0.035 0.070 0.092 1.708 0.307 0.047 0.756 0.102 0.741 0.136 0.754 0.094 0.836 0.197 0.761 0.137 0.663 0.163 4/29/2005 0.026 0.057 0.048 0.098 0.195 0.000 0.034 0.069 0.0 89 0.779 0.307 0.048 0.756 0.101 0.741 0.137 0.755 0.094 0.834 0.192 0.761 0.138 0.663 0.163 4/30/2005 0.026 0.057 0.047 0.095 0.173 0.000 0.034 0.068 0.082 0.313 0.306 0.047 0.751 0.100 0.741 0.138 0.756 0.094 0.786 0.193 0.761 0.139 0.663 0.164 5/1/200 5 0.026 0.056 0.045 0.092 0.160 0.000 0.033 0.067 0.074 0.187 0.305 0.046 0.746 0.098 0.741 0.138 0.756 0.094 0.773 0.191 0.760 0.140 0.662 0.164 5/2/2005 0.026 0.057 0.045 0.093 0.151 0.000 0.032 0.066 0.068 0.146 0.303 0.045 0.746 0.095 0.741 0.139 0.75 7 0.094 0.775 0.188 0.760 0.141 0.656 0.166 5/3/2005 0.025 0.054 0.045 0.092 0.143 0.000 0.031 0.064 0.064 0.131 0.299 0.044 0.750 0.093 0.740 0.140 0.754 0.095 0.795 0.185 0.760 0.143 0.655 0.166 5/4/2005 0.046 0.333 0.057 0.132 0.143 0.000 0.031 0.065 0.067 0.145 0.299 0.045 0.756 0.091 0.741 0.140 0.752 0.095 0.827 0.180 0.760 0.144 0.655 0.166 5/5/2005 0.077 0.240 0.071 0.197 0.188 0.000 0.047 0.086 0.104 1.269 0.309 0.047 0.759 0.090 0.741 0.139 0.752 0.095 0.849 0.172 0.759 0.146 0.653 0.168 5/6/2 005 0.065 0.135 0.065 0.153 0.214 0.000 0.050 0.092 0.138 0.000 0.317 0.049 0.758 0.091 0.741 0.139 0.753 0.095 0.851 0.170 0.758 0.147 0.655 0.168 5/7/2005 0.059 0.111 0.065 0.154 0.226 0.000 0.069 0.198 0.237 0.000 0.321 0.052 0.852 0.169 0.758 0. 147 0.661 0.167 5/8/2005 0.054 0.097 0.066 0.159 0.235 0.000 0.087 0.764 0.251 0.000 0.325 0.054 0.853 0.164 0.759 0.145 0.660 0.168 5/9/2005 0.050 0.087 0.066 0.160 0.237 0.000 0.068 0.154 0.226 0.000 0.326 0.049 0.851 0.169 0.759 0.143 0.66 0 0.168 5/10/2005 0.047 0.083 0.064 0.148 0.236 0.000 0.058 0.112 0.198 0.000 0.328 0.047 0.849 0.172 0.759 0.142 0.659 0.168 5/11/2005 0.044 0.078 0.061 0.139 0.233 0.000 0.054 0.101 0.179 0.000 0.330 0.047 0.852 0.164 0.759 0.141 0.659 0.16 9 5/12/2005 0.041 0.073 0.059 0.130 0.229 0.000 0.052 0.095 0.170 0.000 0.331 0.049 0.855 0.158 0.760 0.140 0.657 0.170 5/13/2005 0.039 0.070 0.058 0.127 0.225 0.000 0.050 0.092 0.163 0.000 0.331 0.049 0.858 0.151 0.760 0.139 0.656 0.171 5/1 4/2005 0.037 0.068 0.056 0.120 0.220 0.000 0.049 0.090 0.158 0.000 0.330 0.049 0.862 0.145 0.759 0.138 0.657 0.171 5/15/2005 0.035 0.066 0.055 0.116 0.215 0.000 0.049 0.089 0.157 0.000 0.330 0.051 0.863 0.143 0.759 0.137 0.658 0.170 5/16/2005 0.034 0.064 0.054 0.112 0.213 0.000 0.049 0.090 0.156 0.000 0.331 0.052 0.863 0.143 0.759 0.137 0.659 0.170 5/17/2005 0.033 0.064 0.052 0.107 0.208 0.000 0.047 0.087 0.152 0.000 0.331 0.053 0.865 0.141 0.759 0.134 0.660 0.169 5/18/2005 0.031 0.061 0.051 0.105 0.202 0.000 0.046 0.084 0.142 0.000 0.331 0.052 0.866 0.141 0.761 0.131 0.659 0.169 5/19/2005 0.031 0.061 0.050 0.101 0.195 0.000 0.043 0.080 0.130 0.000 0.326 0.049 0.756 0.109 0.741 0.148 0.746 0.099 0.864 0.145 0.761 0.130 0.65 1 0.173

PAGE 302

302 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 5/20/2005 0.030 0.061 0.050 0.098 0.185 0.000 0.041 0.077 0.118 0.000 0.322 0.048 0.755 0.111 0.740 0.148 0.749 0.099 0.849 0.150 0.759 0.131 0.655 0.172 5/21/2005 0.028 0.059 0.048 0.092 0.173 0.000 0.039 0.073 0.100 1.300 0.320 0.045 0.751 0.1 13 0.740 0.149 0.751 0.098 0.822 0.154 0.759 0.128 0.658 0.170 5/22/2005 0.028 0.058 0.047 0.090 0.163 0.000 0.036 0.070 0.088 0.568 0.319 0.045 0.751 0.112 0.740 0.150 0.751 0.098 0.854 0.157 0.759 0.128 0.652 0.172 5/23/2005 0.027 0.057 0.046 0.089 0.1 56 0.000 0.035 0.069 0.084 0.348 0.318 0.047 0.754 0.111 0.739 0.151 0.751 0.098 0.855 0.158 0.759 0.127 0.649 0.171 5/24/2005 0.026 0.057 0.045 0.088 0.148 0.000 0.034 0.068 0.081 0.271 0.318 0.049 0.752 0.112 0.740 0.150 0.748 0.098 0.855 0.158 0.759 0. 126 0.655 0.168 5/25/2005 0.028 0.059 0.044 0.085 0.137 0.000 0.033 0.067 0.075 0.190 0.317 0.050 0.752 0.110 0.740 0.151 0.747 0.099 0.857 0.157 0.759 0.126 0.655 0.168 5/26/2005 0.074 0.166 0.044 0.085 0.133 0.000 0.032 0.065 0.076 0.192 0.319 0.052 0. 755 0.107 0.740 0.151 0.745 0.099 0.856 0.159 0.759 0.126 0.653 0.170 5/27/2005 0.080 0.469 0.056 0.113 0.143 0.000 0.032 0.065 0.082 0.295 0.322 0.053 0.756 0.105 0.740 0.152 0.747 0.099 0.854 0.161 0.760 0.125 0.654 0.171 5/28/2005 0.067 0.142 0.059 0. 118 0.149 0.000 0.035 0.069 0.082 0.282 0.323 0.052 0.754 0.106 0.740 0.151 0.745 0.100 0.855 0.160 0.760 0.123 0.654 0.170 5/29/2005 0.060 0.114 0.056 0.112 0.144 0.000 0.036 0.070 0.078 0.213 0.322 0.050 0.753 0.106 0.741 0.151 0.746 0.100 0.857 0.162 0 .760 0.124 0.654 0.169 5/30/2005 0.055 0.099 0.053 0.106 0.138 0.000 0.036 0.069 0.075 0.185 0.321 0.051 0.753 0.107 0.741 0.151 0.747 0.099 0.852 0.171 0.760 0.125 0.655 0.168 5/31/2005 0.071 0.226 0.057 0.123 0.138 0.000 0.034 0.068 0.079 0.325 0.323 0 .051 0.755 0.107 0.741 0.151 0.747 0.099 0.854 0.167 0.760 0.125 0.656 0.168 6/1/2005 0.089 1.182 0.072 0.208 0.172 0.000 0.038 0.072 0.117 0.363 0.339 0.053 0.757 0.103 0.741 0.151 0.747 0.100 0.859 0.158 0.760 0.124 0.654 0.169 6/2/2005 0.099 0.458 0.0 84 0.203 0.229 0.000 0.090 0.072 0.225 0.000 0.364 0.052 0.757 0.105 0.741 0.151 0.743 0.101 0.860 0.158 0.760 0.124 0.658 0.167 6/3/2005 0.088 0.360 0.102 0.000 0.264 0.000 0.179 0.001 0.276 0.000 0.370 0.055 0.757 0.104 0.740 0.152 0.743 0.101 0.861 0.1 58 0.758 0.127 0.660 0.166 6/4/2005 0.093 4.443 0.128 0.000 0.265 0.000 0.206 0.007 0.278 0.000 0.373 0.055 0.758 0.104 0.740 0.152 0.743 0.102 0.860 0.157 0.758 0.127 0.656 0.168 6/5/2005 0.081 0.306 0.131 0.000 0.264 0.000 0.192 0.000 0.277 0.000 0.374 0.053 0.758 0.105 0.741 0.151 0.743 0.102 0.860 0.157 0.758 0.127 0.657 0.167 6/6/2005 0.094 0.155 0.163 0.000 0.264 0.000 0.201 0.001 0.278 0.000 0.374 0.052 0.757 0.107 0.742 0.151 0.742 0.102 0.861 0.156 0.759 0.126 0.658 0.166 6/7/2005 0.155 0.000 0 .369 0.000 0.267 0.000 0.326 0.000 0.282 0.000 0.376 0.046 0.756 0.110 0.742 0.151 0.744 0.102 0.862 0.155 0.759 0.126 0.658 0.167 6/8/2005 0.110 1.109 0.367 0.000 0.265 0.000 0.322 0.000 0.282 0.000 0.375 0.051 0.754 0.113 0.742 0.152 0.745 0.102 0.864 0 .153 0.759 0.126 0.660 0.165 6/9/2005 0.088 2.071 0.366 0.000 0.264 0.000 0.308 0.000 0.283 0.000 0.375 0.052 0.755 0.114 0.741 0.155 0.745 0.102 0.866 0.151 0.760 0.126 0.652 0.169 6/10/2005 0.078 0.257 0.360 0.000 0.264 0.000 0.300 0.000 0.285 0.000 0. 374 0.053 0.755 0.114 0.741 0.156 0.743 0.102 0.868 0.149 0.760 0.125 0.656 0.166 6/11/2005 0.123 0.095 0.359 0.000 0.266 0.000 0.267 0.000 0.290 0.006 0.375 0.050 0.754 0.117 0.742 0.155 0.740 0.103 0.865 0.152 0.761 0.124 0.653 0.168 6/12/2005 0.117 0. 000 0.361 0.000 0.266 0.000 0.277 0.000 0.293 0.008 0.375 0.048 0.753 0.119 0.741 0.156 0.742 0.102 0.865 0.154 0.761 0.124 0.653 0.168 6/13/2005 0.091 1.907 0.359 0.000 0.265 0.000 0.248 0.000 0.294 0.000 0.373 0.051 0.752 0.121 0.741 0.157 0.740 0.102 0 .865 0.152 0.761 0.125 0.660 0.164 6/14/2005 0.074 0.201 0.344 0.000 0.263 0.000 0.163 0.000 0.296 0.000 0.371 0.047 0.751 0.123 0.740 0.158 0.741 0.101 0.864 0.159 0.760 0.126 0.655 0.167 6/15/2005 0.067 0.147 0.266 0.000 0.263 0.000 0.140 0.000 0.297 0 .000 0.369 0.050 0.750 0.124 0.739 0.159 0.742 0.100 0.859 0.165 0.760 0.127 0.657 0.166 6/16/2005 0.062 0.124 0.238 0.000 0.262 0.000 0.125 0.000 0.296 0.000 0.367 0.052 0.750 0.124 0.739 0.160 0.743 0.099 0.862 0.163 0.760 0.128 0.659 0.165 6/17/2005 0 .059 0.112 0.224 0.000 0.262 0.000 0.133 0.000 0.299 0.000 0.365 0.052 0.751 0.123 0.739 0.161 0.745 0.098 0.862 0.165 0.759 0.131 0.658 0.165 6/18/2005 0.060 0.117 0.224 0.000 0.263 0.000 0.182 0.000 0.304 0.000 0.365 0.051 0.750 0.126 0.739 0.162 0.741 0.099 0.862 0.166 0.760 0.131 0.657 0.166 6/19/2005 0.061 0.120 0.224 0.000 0.263 0.000 0.189 0.000 0.307 0.000 0.364 0.055 0.749 0.129 0.739 0.163 0.740 0.099 0.861 0.167 0.761 0.130 0.659 0.166 6/20/2005 0.060 0.117 0.224 0.000 0.264 0.000 0.189 0.000 0.310 0.000 0.364 0.055 0.750 0.129 0.739 0.165 0.742 0.099 0.862 0.166 0.762 0.129 0.661 0.165 6/21/2005 0.062 0.124 0.226 0.000 0.265 0.000 0.193 0.000 0.312 0.000 0.364 0.054 0.750 0.129 0.740 0.164 0.737 0.100 0.862 0.166 0.761 0.131 0.653 0.169 6/22 /2005 0.065 0.176 0.226 0.000 0.265 0.000 0.198 0.000 0.313 0.000 0.363 0.053 0.740 0.164 0.739 0.099 0.863 0.164 0.760 0.133 0.654 0.169 6/23/2005 0.082 0.373 0.242 0.000 0.267 0.000 0.217 0.000 0.315 0.000 0.362 0.053 0.740 0.164 0.740 0.099 0.866 0 .161 0.758 0.134 0.655 0.168 6/24/2005 0.100 1.460 0.274 0.000 0.268 0.000 0.247 0.000 0.315 0.000 0.362 0.050 0.741 0.163 0.741 0.099 0.863 0.164 0.758 0.134 0.659 0.167 6/25/2005 0.088 0.745 0.281 0.000 0.267 0.000 0.250 0.000 0.315 0.000 0.361 0.050 0.741 0.163 0.741 0.099 0.863 0.166 0.758 0.134 0.661 0.166 6/26/2005 0.080 0.270 0.280 0.000 0.268 0.000 0.242 0.000 0.316 0.000 0.361 0.051 0.740 0.165 0.739 0.100 0.861 0.168 0.758 0.134 0.661 0.166 6/27/2005 0.092 1.619 0.283 0.000 0.269 0.000 0 .252 0.000 0.318 0.000 0.361 0.050 0.741 0.164 0.739 0.100 0.861 0.169 0.758 0.133 0.661 0.166 6/28/2005 0.088 0.804 0.283 0.000 0.269 0.000 0.247 0.000 0.318 0.000 0.361 0.049 0.741 0.164 0.740 0.100 0.863 0.168 0.758 0.133 0.651 0.170 6/29/2005 0.2 06 0.145 0.287 0.000 0.271 0.000 0.271 0.000 0.319 0.000 0.363 0.048 0.741 0.164 0.737 0.101 0.865 0.167 0.758 0.132 0.654 0.169 6/30/2005 0.405 0.000 0.294 0.000 0.274 0.000 0.306 0.000 0.322 0.000 0.364 0.048 0.740 0.165 0.735 0.102 0.866 0.166 0.75 9 0.131 0.652 0.169 7/1/2005 0.405 0.000 0.293 0.000 0.273 0.000 0.306 0.000 0.321 0.000 0.363 0.049 0.741 0.165 0.735 0.102 0.864 0.170 0.758 0.131 0.651 0.170 7/2/2005 0.378 0.000 0.292 0.000 0.272 0.000 0.305 0.000 0.318 0.000 0.363 0.049 0.739 0. 167 0.739 0.101 0.865 0.169 0.758 0.132 0.655 0.168 7/3/2005 0.243 0.000 0.289 0.000 0.270 0.000 0.303 0.000 0.315 0.000 0.361 0.047 0.740 0.166 0.738 0.101 0.868 0.167 0.758 0.132 0.652 0.169 7/4/2005 0.164 0.000 0.288 0.000 0.269 0.000 0.304 0.000 0. 312 0.000 0.361 0.048 0.739 0.168 0.736 0.102 0.870 0.165 0.758 0.132 0.651 0.170 7/5/2005 0.135 0.000 0.288 0.000 0.268 0.000 0.305 0.000 0.310 0.000 0.361 0.049 0.738 0.169 0.736 0.102 0.871 0.164 0.759 0.132 0.651 0.170 7/6/2005 0.113 0.000 0.287 0.000 0.267 0.000 0.297 0.000 0.308 0.000 0.359 0.049 0.739 0.169 0.736 0.102 0.873 0.161 0.760 0.131 0.653 0.169 7/7/2005 0.098 0.554 0.287 0.000 0.266 0.000 0.284 0.000 0.307 0.000 0.356 0.049 0.739 0.169 0.738 0.101 0.875 0.158 0.761 0.130 0.656 0. 169 7/8/2005 0.087 0.662 0.288 0.000 0.266 0.000 0.219 0.000 0.305 0.000 0.349 0.048 0.741 0.168 0.738 0.101 0.877 0.156 0.759 0.132 0.651 0.171

PAGE 303

303 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm ) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 7/9/2005 0.078 0.258 0.263 0.000 0.265 0.000 0.153 0.000 0.304 0.000 0.348 0.046 0.741 0.169 0.737 0.101 0.875 0.159 0.757 0.134 0.650 0.172 7/10/2005 0.094 0.917 0.253 0.000 0.267 0.000 0.193 0.000 0.304 0.000 0.350 0.045 0.741 0.169 0.740 0.101 0.871 0.167 0.759 0.131 0.651 0.171 7/11/2005 0.095 5.635 0.259 0.000 0.268 0.000 0.252 0.000 0.307 0.000 0.351 0.048 0.742 0.168 0.738 0.101 0.872 0.166 0.760 0.130 0.650 0.172 7/12/2005 0.085 0 .585 0.253 0.000 0.268 0.000 0.217 0.000 0.310 0.000 0.350 0.048 0.739 0.171 0.737 0.101 0.873 0.165 0.759 0.129 0.652 0.171 7/13/2005 0.075 0.222 0.242 0.000 0.267 0.000 0.187 0.000 0.308 0.000 0.349 0.048 0.741 0.169 0.738 0.101 0.875 0.162 0.759 0. 129 0.649 0.172 7/14/2005 0.080 0.373 0.236 0.000 0.268 0.000 0.170 0.000 0.309 0.000 0.349 0.048 0.742 0.168 0.740 0.100 0.877 0.159 0.759 0.128 0.649 0.172 7/15/2005 0.087 1.798 0.243 0.000 0.269 0.000 0.191 0.000 0.309 0.000 0.350 0.048 0.741 0.16 9 0.738 0.101 0.877 0.158 0.760 0.127 0.652 0.171 7/16/2005 0.076 0.222 0.235 0.000 0.269 0.000 0.180 0.000 0.309 0.000 0.349 0.049 0.741 0.169 0.740 0.100 0.878 0.157 0.760 0.127 0.652 0.171 7/17/2005 0.070 0.164 0.229 0.000 0.269 0.000 0.181 0.000 0. 309 0.000 0.349 0.049 0.740 0.171 0.740 0.100 0.878 0.156 0.761 0.125 0.649 0.173 7/18/2005 0.066 0.145 0.225 0.000 0.269 0.000 0.183 0.000 0.309 0.000 0.349 0.050 0.739 0.173 0.741 0.100 0.879 0.155 0.762 0.124 0.651 0.172 7/19/2005 0.064 0.135 0.22 1 0.000 0.269 0.000 0.179 0.000 0.309 0.000 0.348 0.050 0.738 0.175 0.741 0.100 0.880 0.155 0.762 0.122 0.652 0.172 7/20/2005 0.062 0.126 0.217 0.000 0.269 0.000 0.178 0.000 0.309 0.000 0.348 0.051 0.738 0.176 0.738 0.101 0.881 0.154 0.763 0.121 0.654 0.172 7/21/2005 0.060 0.122 0.214 0.000 0.269 0.000 0.181 0.000 0.309 0.000 0.348 0.051 0.738 0.176 0.736 0.102 0.882 0.153 0.760 0.124 0.650 0.174 7/22/2005 0.059 0.117 0.211 0.000 0.270 0.000 0.177 0.000 0.309 0.000 0.348 0.051 0.738 0.177 0.736 0 .102 0.882 0.152 0.759 0.124 0.655 0.173 7/23/2005 0.057 0.109 0.207 0.000 0.270 0.000 0.177 0.000 0.309 0.000 0.348 0.051 0.740 0.175 0.735 0.102 0.883 0.152 0.760 0.123 0.652 0.175 7/24/2005 0.077 0.070 0.212 0.000 0.271 0.000 0.194 0.000 0.309 0.000 0.349 0.051 0.742 0.173 0.737 0.102 0.884 0.152 0.761 0.121 0.653 0.175 7/25/2005 0.099 1.637 0.232 0.000 0.273 0.000 0.213 0.000 0.309 0.000 0.349 0.051 0.742 0.173 0.738 0.101 0.882 0.156 0.761 0.119 0.655 0.173 7/26/2005 0.081 0.351 0.224 0.000 0 .272 0.000 0.196 0.000 0.308 0.000 0.349 0.051 0.720 0.171 0.740 0.176 0.739 0.101 0.884 0.155 0.760 0.120 0.654 0.173 7/27/2005 0.070 0.175 0.215 0.000 0.272 0.000 0.181 0.000 0.309 0.000 0.348 0.052 0.719 0.175 0.741 0.176 0.737 0.102 0.888 0.152 0.759 0.119 0.655 0.173 7/28/2005 0.064 0.138 0.208 0.000 0.271 0.000 0.169 0.000 0.310 0.000 0.348 0.053 0.716 0.178 0.741 0.175 0.732 0.104 0.889 0.150 0.758 0.119 0.653 0.174 7/29/2005 0.059 0.117 0.203 0.000 0.272 0.000 0.168 0.000 0.312 0.000 0.348 0.053 0.715 0.178 0.741 0.175 0.738 0.102 0.889 0.150 0.757 0.119 0.654 0.174 7/30/2005 0.056 0.110 0.200 0.000 0.272 0.000 0.173 0.000 0.313 0.000 0.347 0.053 0.714 0.178 0.740 0.177 0.738 0.103 0.888 0.151 0.757 0.117 0.653 0.175 7/31/2005 0.064 1.552 0.203 0.000 0.273 0.000 0.185 0.000 0.315 0.000 0.348 0.053 0.712 0.180 0.741 0.176 0.739 0.103 0.888 0.151 0.757 0.115 0.646 0.178 8/1/2005 0.081 0.368 0.216 0.000 0.274 0.000 0.201 0.000 0.316 0.000 0.348 0.054 0.708 0.184 0.740 0.177 0.738 0.103 0.887 0.152 0.756 0.116 0.652 0.175 8/2/2005 0.074 0.202 0.215 0.000 0.274 0.000 0.207 0.000 0.318 0.000 0.348 0.054 0.708 0.183 0.741 0.176 0.737 0.103 0.886 0.155 0.753 0.116 0.644 0.179 8/3/2005 0.087 0.164 0.222 0.000 0.274 0.000 0.216 0.000 0.318 0.000 0.348 0. 054 0.706 0.184 0.740 0.177 0.738 0.103 0.884 0.157 0.752 0.115 0.650 0.176 8/4/2005 0.134 0.000 0.272 0.000 0.277 0.000 0.281 0.000 0.321 0.000 0.350 0.054 0.704 0.184 0.740 0.178 0.736 0.104 0.883 0.159 0.752 0.113 0.647 0.177 8/5/2005 0.146 0.000 0.28 5 0.000 0.278 0.000 0.327 0.004 0.323 0.000 0.350 0.053 0.703 0.185 0.741 0.176 0.736 0.104 0.881 0.161 0.751 0.113 0.645 0.178 8/6/2005 0.110 0.975 0.282 0.000 0.276 0.000 0.327 0.006 0.321 0.000 0.348 0.056 0.704 0.182 0.740 0.177 0.735 0.105 0.879 0.16 6 0.749 0.113 0.649 0.175 8/7/2005 0.090 1.672 0.281 0.000 0.276 0.000 0.244 0.001 0.320 0.000 0.347 0.057 0.702 0.183 0.740 0.176 0.735 0.105 0.877 0.168 0.747 0.113 0.651 0.174 8/8/2005 0.082 0.341 0.280 0.000 0.275 0.000 0.186 0.000 0.320 0.000 0.346 0.057 0.700 0.184 0.740 0.177 0.734 0.105 0.877 0.169 0.747 0.112 0.652 0.173 8/9/2005 0.074 0.209 0.262 0.000 0.275 0.000 0.169 0.000 0.319 0.000 0.346 0.057 0.700 0.184 0.740 0.177 0.736 0.104 0.878 0.170 0.747 0.111 0.654 0.172 8/10/2005 0.071 0.181 0 .230 0.000 0.275 0.000 0.179 0.000 0.320 0.000 0.347 0.057 0.699 0.185 0.740 0.177 0.736 0.104 0.879 0.170 0.746 0.113 0.645 0.176 8/11/2005 0.069 0.168 0.224 0.000 0.274 0.000 0.183 0.000 0.319 0.000 0.347 0.058 0.698 0.187 0.740 0.177 0.735 0.104 0.877 0.172 0.745 0.114 0.648 0.173 8/12/2005 0.068 0.161 0.221 0.000 0.274 0.000 0.186 0.000 0.319 0.000 0.347 0.058 0.698 0.186 0.740 0.178 0.736 0.104 0.876 0.173 0.744 0.115 0.646 0.173 8/13/2005 0.068 0.157 0.219 0.000 0.274 0.000 0.199 0.000 0.319 0.000 0.347 0.057 0.699 0.185 0.738 0.181 0.735 0.104 0.877 0.172 0.746 0.113 0.643 0.175 8/14/2005 0.067 0.156 0.217 0.000 0.274 0.000 0.194 0.000 0.329 0.000 0.347 0.058 0.699 0.185 0.739 0.181 0.736 0.104 0.875 0.175 0.746 0.113 0.642 0.175 8/15/2005 0.065 0.142 0.213 0.000 0.274 0.000 0.183 0.000 0.331 0.000 0.346 0.058 0.694 0.191 0.737 0.183 0.737 0.103 0.872 0.178 0.746 0.115 0.641 0.176 8/16/2005 0.062 0.130 0.208 0.000 0.274 0.000 0.182 0.000 0.333 0.001 0.346 0.058 0.695 0.190 0.737 0.184 0.736 0.104 0.872 0.178 0.747 0.115 0.640 0.177 8/17/2005 0.060 0.124 0.204 0.000 0.273 0.000 0.184 0.000 0.335 0.001 0.346 0.058 0.695 0.188 0.737 0.184 0.736 0.104 0.873 0.178 0.750 0.115 0.639 0.177 8/18/2005 0.059 0.120 0.202 0.000 0.273 0.000 0.187 0.000 0.334 0.001 0.346 0.059 0.693 0.193 0.738 0.183 0.736 0.104 0.868 0.180 0.750 0.116 0.638 0.178 8/19/2005 0.058 0.116 0.199 0.000 0.273 0.000 0.184 0.000 0.338 0.001 0.346 0.059 0.693 0.191 0.738 0.185 0.736 0.104 0.864 0.182 0.754 0.115 0.640 0.178 8/20/2005 0.056 0.112 0.195 0.000 0.272 0.000 0.181 0.000 0.339 0.001 0.346 0.060 0.694 0.190 0.739 0.183 0.733 0.105 0.854 0.188 0.751 0.115 0.643 0.177 8/21/2005 0.055 0.108 0.192 0.000 0.272 0.000 0.179 0.000 0.339 0.001 0.346 0.059 0.691 0.193 0.739 0.184 0.73 2 0.105 0.856 0.187 0.752 0.116 0.642 0.178 8/22/2005 0.054 0.107 0.190 0.000 0.272 0.000 0.177 0.000 0.338 0.001 0.345 0.060 0.691 0.193 0.739 0.184 0.734 0.105 0.855 0.190 0.752 0.116 0.641 0.179 8/23/2005 0.053 0.106 0.187 0.000 0.271 0.000 0.173 0.00 0 0.339 0.001 0.346 0.060 0.691 0.192 0.738 0.186 0.734 0.105 0.858 0.190 0.752 0.114 0.641 0.179 8/24/2005 0.052 0.102 0.183 0.000 0.270 0.000 0.174 0.000 0.339 0.001 0.346 0.060 0.691 0.195 0.737 0.188 0.735 0.105 0.853 0.193 0.752 0.117 0.640 0.180 8/ 25/2005 0.052 0.099 0.184 0.000 0.270 0.000 0.180 0.000 0.339 0.001 0.346 0.060 0.692 0.193 0.739 0.185 0.736 0.104 0.848 0.199 0.751 0.116 0.642 0.179 8/26/2005 0.090 0.181 0.216 0.000 0.273 0.000 0.227 0.000 0.340 0.001 0.347 0.058 0.691 0.194 0.740 0.1 84 0.736 0.105 0.848 0.200 0.753 0.115 0.641 0.178 8/27/2005 0.090 1.911 0.233 0.000 0.273 0.000 0.211 0.000 0.338 0.001 0.347 0.055 0.691 0.193 0.739 0.185 0.735 0.105 0.852 0.195 0.752 0.114 0.639 0.179

PAGE 304

304 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 8/28/2005 0.081 0.312 0.224 0.000 0.273 0.000 0.205 0.000 0.338 0.001 0.346 0.059 0.690 0.196 0.739 0.184 0.734 0.106 0.852 0.195 0.752 0.116 0.641 0.178 8/29/2005 0.081 0.294 0.226 0.000 0.273 0.000 0.229 0.000 0.338 0.001 0.347 0.060 0.690 0.196 0.739 0.184 0.731 0.107 0.850 0.198 0.752 0.115 0.641 0.177 8/30/2005 0.074 0.201 0.220 0.000 0.273 0.000 0.202 0.000 0.337 0.001 0.346 0.061 0.690 0.196 0.738 0.185 0.732 0.107 0.848 0.202 0.751 0.116 0.644 0.175 8/31/2005 0.075 0.123 0.215 0.000 0.273 0.000 0.183 0.001 0.339 0.001 0.346 0.061 0.691 0.193 0.739 0.185 0.731 0.107 0.848 0.202 0.751 0.115 0.641 0.176 9/1/2005 0.111 0.000 0.274 0.000 0.276 0.000 0.254 0.007 0.340 0.001 0.348 0.060 0.690 0.195 0.739 0.185 0.734 0.107 0.846 0.206 0.751 0.118 0.639 0.176 9/2/2005 0.098 1.166 0.272 0.000 0.276 0.000 0.233 0.001 0.339 0.001 0.347 0.060 0.690 0.196 0.738 0.186 0.732 0.107 0.846 0.206 0.752 0.116 0.643 0.174 9/3/2005 0.122 0.000 0.274 0.000 0. 278 0.000 0.299 0.014 0.342 0.002 0.349 0.061 0.688 0.201 0.738 0.186 0.738 0.105 0.845 0.210 0.754 0.116 0.647 0.173 9/4/2005 0.271 0.000 0.279 0.000 0.281 0.000 0.310 0.020 0.345 0.002 0.351 0.062 0.688 0.201 0.736 0.189 0.740 0.105 0.840 0.212 0.752 0. 117 0.647 0.173 9/5/2005 0.375 0.000 0.282 0.000 0.282 0.000 0.313 0.020 0.344 0.002 0.351 0.062 0.688 0.201 0.735 0.189 0.740 0.105 0.841 0.213 0.752 0.115 0.641 0.175 9/6/2005 0.376 0.000 0.281 0.000 0.281 0.000 0.314 0.022 0.338 0.001 0.349 0.062 0.68 8 0.199 0.736 0.187 0.740 0.104 0.837 0.217 0.752 0.114 0.641 0.174 9/7/2005 0.360 0.000 0.278 0.000 0.279 0.000 0.314 0.018 0.337 0.001 0.348 0.063 0.688 0.197 0.737 0.185 0.738 0.104 9/8/2005 0.243 0.000 0.275 0.000 0.277 0.000 0.314 0.007 0.338 0.001 0.346 0.064 0.689 0.195 0.738 0.183 0.739 0.104 9/9/2005 0.162 0.000 0.273 0.000 0.276 0.000 0.311 0.001 0.337 0.001 0.346 0.062 0.689 0.195 0.737 0.184 0.739 0.103 9/10/2005 0.126 0.000 0.272 0.000 0.276 0.000 0.307 0.000 0.337 0.001 0 .346 0.062 0.688 0.197 0.737 0.184 0.739 0.103 9/11/2005 0.111 0.000 0.273 0.000 0.276 0.000 0.306 0.000 0.339 0.001 0.347 0.062 0.688 0.198 0.737 0.184 0.739 0.102 9/12/2005 0.100 0.662 0.273 0.000 0.276 0.000 0.292 0.000 0.339 0.001 0.347 0 .062 0.688 0.198 0.737 0.185 0.740 0.101 9/13/2005 0.090 1.353 0.274 0.000 0.275 0.000 0.242 0.000 0.338 0.001 0.346 0.061 0.689 0.196 0.736 0.186 0.741 0.101 9/14/2005 0.082 0.366 0.275 0.000 0.275 0.000 0.236 0.000 0.337 0.001 0.346 0.061 0 .687 0.200 0.736 0.188 0.741 0.101 9/15/2005 0.077 0.245 0.272 0.000 0.274 0.000 0.229 0.000 0.336 0.001 0.346 0.061 0.688 0.199 0.735 0.189 0.739 0.101 0.832 0.227 0.753 0.120 0.640 0.170 9/16/2005 0.073 0.194 0.249 0.000 0.275 0.000 0.219 0.000 0 .322 0.000 0.346 0.062 0.688 0.199 0.736 0.189 0.737 0.102 0.832 0.229 0.752 0.122 0.639 0.171 9/17/2005 0.070 0.176 0.238 0.000 0.275 0.000 0.208 0.000 0.317 0.000 0.346 0.061 0.688 0.199 0.737 0.187 0.735 0.102 0.827 0.233 0.751 0.123 0.638 0.172 9/18/ 2005 0.067 0.157 0.223 0.000 0.274 0.000 0.200 0.000 0.320 0.000 0.345 0.061 0.688 0.200 0.736 0.188 0.735 0.102 0.828 0.234 0.752 0.122 0.637 0.172 9/19/2005 0.064 0.137 0.213 0.000 0.274 0.000 0.198 0.000 0.320 0.000 0.345 0.062 0.687 0.201 0.737 0.188 0.735 0.102 0.825 0.237 0.753 0.121 0.639 0.172 9/20/2005 0.063 0.135 0.208 0.000 0.273 0.000 0.175 0.000 0.320 0.000 0.344 0.063 0.687 0.201 0.738 0.187 0.736 0.102 0.827 0.239 0.752 0.120 0.647 0.169 9/21/2005 0.062 0.132 0.206 0.000 0.274 0.000 0.173 0.000 0.320 0.000 0.344 0.063 0.688 0.199 0.737 0.187 0.735 0.102 0.830 0.236 0.753 0.120 0.645 0.169 9/22/2005 0.116 0.050 0.238 0.000 0.277 0.000 0.246 0.000 0.322 0.000 0.347 0.062 0.686 0.202 0.736 0.188 0.735 0.102 0.832 0.236 0.751 0.121 0.642 0.170 9/23/2005 0.140 0.000 0.257 0.000 0.279 0.000 0.289 0.000 0.324 0.000 0.347 0.057 0.686 0.202 0.736 0.188 0.735 0.102 0.826 0.239 0.752 0.120 0.637 0.171 9/24/2005 0.108 0.000 0.255 0.000 0.277 0.000 0.273 0.000 0.322 0.000 0.346 0.061 0.688 0.199 0.735 0.189 0.736 0.102 0.827 0.240 0.753 0.121 0.638 0.169 9/25/2005 0.093 3.765 0.254 0.000 0.277 0.000 0.252 0.000 0.321 0.000 0.346 0.061 0.686 0.203 0.736 0.188 0.737 0.101 0.827 0.241 0.753 0.120 0.641 0.168 9/26/2005 0.087 0.650 0.253 0.000 0.276 0.000 0.247 0.000 0.319 0.000 0.345 0.061 0.686 0.202 0.736 0.188 0.738 0.101 0.827 0.241 0.753 0.122 0.641 0.168 9/27/2005 0.083 0.371 0.254 0.000 0.275 0.000 0.237 0.000 0.318 0.000 0.345 0.061 0.686 0.202 0.735 0.189 0.737 0.101 0.828 0.243 0.751 0.123 0.63 9 0.169 9/28/2005 0.080 0.291 0.255 0.000 0.275 0.000 0.217 0.000 0.319 0.000 0.345 0.062 0.689 0.198 0.735 0.189 0.738 0.100 0.824 0.248 0.751 0.124 0.641 0.167 9/29/2005 0.079 0.271 0.256 0.000 0.276 0.000 0.203 0.000 0.320 0.000 0.345 0.061 0.688 0.20 0 0.736 0.188 0.736 0.101 9/30/2005 0.077 0.240 0.256 0.000 0.275 0.000 0.196 0.000 0.319 0.000 0.345 0.062 0.689 0.198 0.735 0.188 0.737 0.100 10/1/2005 0.106 0.030 0.260 0.000 0.277 0.000 0.233 0.000 0.320 0.000 0.347 0.062 0.686 0.202 0.73 6 0.187 0.742 0.099 10/2/2005 0.093 0.634 0.258 0.000 0.276 0.000 0.218 0.000 0.317 0.000 0.347 0.061 0.685 0.204 0.736 0.186 0.740 0.099 10/3/2005 0.083 0.370 0.258 0.000 0.275 0.000 0.207 0.000 0.318 0.000 0.346 0.061 0.687 0.201 0.736 0.18 7 0.741 0.099 10/4/2005 0.090 0.475 0.260 0.000 0.276 0.000 0.214 0.000 0.317 0.000 0.346 0.061 0.687 0.202 0.737 0.186 0.737 0.100 10/5/2005 0.103 0.000 0.261 0.000 0.276 0.000 0.236 0.000 0.316 0.000 0.346 0.061 0.685 0.203 0.742 0.179 0.74 2 0.098 10/6/2005 0.142 0.000 0.265 0.000 0.278 0.000 0.295 0.000 0.316 0.000 0.348 0.060 0.685 0.205 0.745 0.174 0.743 0.098 10/7/2005 0.150 0.000 0.265 0.000 0.278 0.000 0.298 0.005 0.319 0.000 0.348 0.057 0.688 0.198 0.743 0.177 0.743 0.09 8 10/8/2005 0.124 0.000 0.263 0.000 0.276 0.000 0.298 0.002 0.317 0.000 0.347 0.060 0.685 0.204 0.743 0.175 0.743 0.098 10/9/2005 0.101 0.466 0.262 0.000 0.275 0.000 0.293 0.000 0.319 0.000 0.346 0.060 0.685 0.204 0.739 0.181 0.743 0.097 10/10/2005 0.091 2.076 0.262 0.000 0.274 0.000 0.283 0.000 0.321 0.000 0.346 0.059 0.685 0.203 0.737 0.183 0.743 0.097 10/11/2005 0.086 0.515 0.264 0.000 0.274 0.000 0.275 0.000 0.321 0.000 0.346 0.059 0.685 0.203 0.741 0.179 0.743 0.097 1 0/12/2005 0.081 0.313 0.264 0.000 0.274 0.000 0.246 0.000 0.317 0.000 0.346 0.059 0.685 0.204 0.742 0.178 0.741 0.097 10/13/2005 0.078 0.256 0.265 0.000 0.274 0.000 0.236 0.000 0.317 0.000 0.346 0.059 0.686 0.202 0.741 0.180 0.741 0.097 10/14 /2005 0.075 0.216 0.266 0.000 0.274 0.000 0.230 0.000 0.317 0.000 0.346 0.058 0.687 0.201 0.741 0.180 0.741 0.098 0.814 0.273 0.749 0.136 0.641 0.165 10/15/2005 0.074 0.205 0.266 0.000 0.273 0.000 0.227 0.000 0.317 0.000 0.346 0.058 0.686 0.201 0.738 0.18 2 0.739 0.098 0.815 0.269 0.749 0.136 0.640 0.166 10/16/2005 0.071 0.180 0.257 0.000 0.274 0.000 0.223 0.000 0.318 0.000 0.346 0.058 0.687 0.201 0.738 0.183 0.740 0.098 0.817 0.267 0.749 0.136 0.640 0.167

PAGE 305

305 Table A 1. Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 10/17/2005 0.068 0.157 0.227 0.000 0.274 0.000 0.215 0.000 0.322 0.000 0.346 0.058 0.685 0.203 0.737 0.184 0.741 0.097 0.814 0.272 0.750 0.135 0.642 0.167 10/18/2005 0.065 0.144 0.219 0.000 0.27 4 0.000 0.207 0.000 0.321 0.000 0.346 0.059 0.686 0.203 0.737 0.184 0.741 0.097 0.811 0.277 0.751 0.134 0.641 0.167 10/19/2005 0.083 0.127 0.222 0.000 0.274 0.000 0.215 0.000 0.321 0.000 0.347 0.059 0.686 0.202 0.737 0.183 0.741 0.098 0.809 0.278 0.749 0. 136 0.639 0.168 10/20/2005 0.229 0.000 0.275 0.000 0.280 0.000 0.284 0.000 0.322 0.000 0.349 0.059 0.685 0.204 0.737 0.183 0.742 0.098 0.812 0.276 0.748 0.135 0.643 0.166 10/21/2005 0.187 0.000 0.274 0.000 0.279 0.000 0.284 0.000 0.317 0.000 0.349 0.059 0.685 0.203 0.737 0.183 0.741 0.098 0.811 0.278 0.749 0.134 0.647 0.164 10/22/2005 0.172 0.000 0.272 0.000 0.278 0.000 0.283 0.000 0.313 0.000 0.347 0.058 0.686 0.201 0.738 0.181 0.743 0.097 0.814 0.274 0.749 0.133 0.647 0.164 10/23/2005 0.136 0.000 0.26 9 0.000 0.276 0.000 0.282 0.000 0.311 0.000 0.347 0.057 0.686 0.201 0.738 0.181 0.742 0.097 0.815 0.274 0.748 0.134 0.644 0.165 10/24/2005 0.252 0.000 0.272 0.000 0.278 0.000 0.284 0.001 0.314 0.000 0.349 0.054 0.688 0.201 0.738 0.181 0.741 0.097 0.816 0. 279 0.749 0.135 0.645 0.165 10/25/2005 0.336 0.001 0.279 0.000 0.282 0.000 0.293 0.003 0.320 0.000 0.353 0.053 0.691 0.201 0.738 0.181 0.741 0.097 0.813 0.292 0.751 0.136 0.642 0.167 10/26/2005 0.337 0.001 0.279 0.000 0.280 0.000 0.294 0.002 0.319 0.000 0.352 0.053 0.689 0.202 0.738 0.181 0.741 0.097 0.817 0.286 0.751 0.137 0.643 0.166 10/27/2005 0.337 0.000 0.280 0.000 0.280 0.000 0.295 0.001 0.318 0.000 0.351 0.054 0.688 0.201 0.738 0.179 0.740 0.097 0.820 0.279 0.751 0.135 0.644 0.166 10/28/2005 0.30 1 0.000 0.279 0.000 0.280 0.000 0.294 0.001 0.318 0.000 0.350 0.055 0.688 0.199 0.737 0.180 0.741 0.097 0.814 0.280 0.750 0.137 0.641 0.167 10/29/2005 0.198 0.000 0.278 0.000 0.279 0.000 0.294 0.006 0.317 0.000 0.349 0.055 0.686 0.200 0.738 0.177 0.742 0. 096 0.817 0.276 0.750 0.135 0.641 0.167 10/30/2005 0.133 0.000 0.277 0.000 0.279 0.000 0.281 0.007 0.319 0.000 0.349 0.053 0.688 0.197 0.739 0.174 0.742 0.096 0.817 0.277 0.750 0.135 0.642 0.167 10/31/2005 0.109 0.000 0.276 0.000 0.278 0.000 0.223 0.000 0.318 0.000 0.348 0.054 0.688 0.196 0.739 0.175 0.743 0.096 0.813 0.279 0.749 0.135 0.639 0.168 11/1/2005 0.103 0.000 0.277 0.000 0.277 0.000 0.233 0.000 0.317 0.000 0.348 0.054 0.689 0.194 0.738 0.175 0.744 0.095 0.813 0.277 0.751 0.136 0.635 0.170 11/2 /2005 0.110 0.000 0.278 0.000 0.278 0.000 0.243 0.000 0.318 0.000 0.349 0.054 0.687 0.197 0.738 0.176 0.746 0.095 0.811 0.283 0.751 0.136 0.638 0.169 11/3/2005 0.102 0.000 0.279 0.000 0.278 0.000 0.242 0.000 0.319 0.000 0.349 0.054 0.687 0.195 0.738 0.176 0.745 0.095 0.810 0.284 0.749 0.138 0.639 0.169 11/4/2005 0.100 0.122 0.281 0.000 0.278 0.000 0.240 0.000 0.319 0.000 0.349 0.054 0.688 0.191 0.739 0.173 0.744 0.095 0.815 0.278 0.749 0.139 0.638 0.169 11/5/2005 0.095 2.176 0.282 0.000 0.278 0.000 0.237 0.000 0.318 0.000 0.349 0.054 0.688 0.191 0.740 0.172 0.744 0.095 0.812 0.285 0.751 0.138 0.640 0.169 11/6/2005 0.091 1.115 0.281 0.000 0.277 0.000 0.234 0.000 0.318 0.000 0.349 0.054 0.687 0.193 0.740 0.171 0.744 0.095 0.814 0.284 0.750 0.137 0.642 0.16 8 11/7/2005 0.088 0.568 0.282 0.000 0.277 0.000 0.230 0.000 0.319 0.000 0.349 0.054 0.687 0.192 0.740 0.171 0.744 0.095 0.819 0.285 0.750 0.138 0.644 0.168 11/8/2005 0.085 0.400 0.283 0.000 0.277 0.000 0.233 0.000 0.320 0.000 0.349 0.054 0.689 0.189 0.74 0 0.170 0.744 0.095 0.816 0.284 0.749 0.138 0.646 0.167 11/9/2005 0.083 0.334 0.282 0.000 0.276 0.000 0.229 0.000 0.320 0.000 0.348 0.054 0.687 0.192 0.740 0.170 0.745 0.095 0.812 0.288 0.749 0.139 0.645 0.168 11/10/2005 0.081 0.270 0.283 0.000 0.276 0.0 00 0.227 0.000 0.321 0.000 0.348 0.054 0.688 0.189 0.741 0.169 0.745 0.095 0.813 0.289 0.749 0.138 0.644 0.168 11/11/2005 0.079 0.242 0.283 0.000 0.276 0.000 0.230 0.000 0.321 0.000 0.348 0.054 0.689 0.189 0.740 0.170 0.746 0.095 0.813 0.291 0.747 0.140 0 .643 0.169 11/12/2005 0.078 0.234 0.280 0.000 0.276 0.000 0.230 0.000 0.321 0.000 0.349 0.054 0.688 0.189 0.741 0.170 0.745 0.095 0.811 0.292 0.749 0.139 0.643 0.169 11/13/2005 0.077 0.211 0.266 0.000 0.276 0.000 0.230 0.000 0.322 0.000 0.349 0.055 0.688 0.188 0.741 0.170 0.745 0.095 0.817 0.287 0.751 0.138 0.642 0.170 11/14/2005 0.077 0.212 0.246 0.000 0.276 0.000 0.228 0.000 0.322 0.000 0.348 0.055 0.688 0.189 0.742 0.167 0.744 0.095 0.813 0.291 0.749 0.139 0.638 0.172 11/15/2005 0.076 0.206 0.240 0.0 00 0.276 0.000 0.227 0.000 0.322 0.001 0.348 0.055 0.688 0.187 0.742 0.166 0.743 0.095 0.811 0.292 0.748 0.137 0.640 0.171 11/16/2005 0.075 0.196 0.236 0.000 0.276 0.000 0.226 0.000 0.322 0.000 0.348 0.055 0.687 0.189 0.742 0.166 0.744 0.095 0.812 0.290 0 .749 0.138 0.646 0.168 11/17/2005 0.074 0.196 0.232 0.000 0.276 0.000 0.224 0.000 0.322 0.000 0.348 0.055 0.688 0.188 0.742 0.166 0.744 0.095 0.811 0.293 0.752 0.136 0.645 0.169 11/18/2005 0.074 0.188 0.230 0.000 0.276 0.000 0.223 0.000 0.322 0.000 0.349 0.055 0.688 0.187 0.742 0.166 0.745 0.095 0.808 0.297 0.749 0.137 0.646 0.168 11/19/2005 0.080 0.166 0.231 0.000 0.276 0.000 0.230 0.000 0.323 0.000 0.349 0.055 0.689 0.186 0.742 0.166 0.743 0.095 0.810 0.295 0.747 0.138 0.647 0.168 11/20/2005 0.146 0.0 00 0.270 0.000 0.280 0.000 0.284 0.005 0.324 0.001 0.351 0.053 0.689 0.186 0.742 0.165 0.743 0.096 0.816 0.290 0.746 0.139 0.646 0.169 11/21/2005 0.121 0.000 0.267 0.000 0.278 0.000 0.283 0.018 0.322 0.000 0.349 0.052 0.689 0.185 0.744 0.163 0.744 0.095 0 .813 0.293 0.746 0.137 0.648 0.168 11/22/2005 0.108 0.000 0.268 0.000 0.278 0.000 0.285 0.007 0.319 0.000 0.349 0.052 0.688 0.185 0.742 0.165 0.745 0.095 0.808 0.301 0.751 0.138 0.645 0.169 11/23/2005 0.098 3.037 0.269 0.000 0.278 0.000 0.288 0.004 0.318 0.000 0.349 0.052 0.690 0.183 0.743 0.163 0.747 0.094 0.808 0.299 0.751 0.138 0.645 0.169 11/24/2005 0.093 2.607 0.270 0.000 0.278 0.000 0.290 0.005 0.319 0.001 0.348 0.052 0.689 0.184 0.744 0.162 0.747 0.094 0.806 0.301 0.752 0.137 0.644 0.169 11/25/20 05 0.089 0.721 0.271 0.000 0.278 0.000 0.291 0.005 0.318 0.001 0.349 0.052 0.688 0.184 0.743 0.163 0.745 0.094 0.810 0.294 0.750 0.140 0.644 0.168 11/26/2005 0.087 0.517 0.272 0.000 0.278 0.000 0.291 0.006 0.317 0.000 0.349 0.052 0.687 0.185 0.743 0.161 0 .745 0.094 0.807 0.300 0.751 0.139 0.644 0.168 11/27/2005 0.084 0.361 0.272 0.000 0.278 0.000 0.291 0.006 0.316 0.000 0.349 0.052 0.687 0.185 0.743 0.161 0.747 0.094 0.807 0.300 0.749 0.141 0.642 0.169 11/28/2005 0.083 0.318 0.273 0.000 0.278 0.000 0.291 0.005 0.315 0.000 0.349 0.052 0.687 0.184 0.744 0.159 0.747 0.094 0.811 0.294 0.749 0.140 0.640 0.170 11/29/2005 0.089 0.213 0.274 0.000 0.278 0.000 0.292 0.007 0.319 0.001 0.349 0.052 0.688 0.182 0.743 0.159 0.749 0.093 0.808 0.300 0.749 0.140 0.640 0.1 69 11/30/2005 0.098 2.119 0.275 0.000 0.279 0.000 0.293 0.013 0.322 0.001 0.349 0.052 0.688 0.182 0.743 0.159 0.747 0.093 0.811 0.296 0.748 0.141 0.641 0.169 12/1/2005 0.090 3.186 0.275 0.000 0.278 0.000 0.294 0.014 0.314 0.000 0.349 0.051 0.690 0.179 0. 743 0.159 0.747 0.093 0.807 0.302 0.748 0.141 0.644 0.167 12/2/2005 0.084 0.346 0.275 0.000 0.278 0.000 0.295 0.015 0.315 0.000 0.349 0.051 0.688 0.181 0.743 0.159 0.747 0.093 0.810 0.299 0.748 0.140 0.647 0.166 12/3/2005 0.080 0.262 0.276 0.000 0.278 0. 000 0.297 0.014 0.316 0.001 0.350 0.051 0.689 0.179 0.743 0.159 0.748 0.093 0.809 0.299 0.747 0.141 0.646 0.166 12/4/2005 0.078 0.232 0.274 0.000 0.279 0.000 0.297 0.013 0.316 0.001 0.349 0.051 0.689 0.179 0.743 0.159 0.747 0.093 0.809 0.299 0.750 0.139 0 .648 0.165 12/5/2005 0.078 0.233 0.265 0.000 0.278 0.000 0.297 0.011 0.316 0.001 0.349 0.051 0.689 0.178 0.744 0.156 0.748 0.093 0.811 0.294 0.750 0.140 0.645 0.166

PAGE 306

306 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (5 0 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 12/6/2005 0.079 0.248 0.261 0.000 0.279 0.000 0.297 0.011 0.317 0.001 0.349 0.052 0.689 0.177 0.743 0.157 0.749 0.093 0.808 0.301 0.750 0.139 0.647 0.165 12/7/2005 0.078 0.236 0.259 0.000 0.279 0.000 0.297 0.010 0.317 0.001 0.350 0.052 0.688 0.179 0.743 0.157 0.749 0.093 0.807 0.298 0.747 0.141 0.642 0.167 12/8/2005 0.085 1.421 0.256 0.000 0.280 0.000 0.299 0.014 0.324 0.002 0.350 0.053 0.688 0.178 0.744 0.155 0.751 0.092 0.808 0.298 0.748 0.139 0.645 0.166 12/9/2005 0.095 1.853 0.263 0.000 0.280 0.000 0.299 0.018 0.325 0.002 0.350 0.052 0.690 0.176 0.744 0.154 0.750 0.092 0.812 0.292 0.748 0.138 0.648 0.164 12/10/2005 0.089 0.747 0.259 0.000 0.279 0.000 0.298 0.017 0.325 0.002 0.350 0.051 0.689 0.176 0.745 0.153 0.748 0.093 0.808 0.297 0.750 0.140 0.645 0.165 12/11/2005 0.084 0.376 0.256 0.000 0.279 0.000 0.298 0.017 0.325 0.002 0.349 0.0 51 0.689 0.177 0.745 0.153 0.748 0.093 0.804 0.304 0.750 0.139 0.644 0.165 12/12/2005 0.080 0.267 0.253 0.000 0.278 0.000 0.295 0.016 0.326 0.002 0.349 0.051 0.690 0.175 0.745 0.153 0.749 0.092 0.808 0.304 0.748 0.141 0.644 0.165 12/13/2005 0.077 0.221 0 .249 0.000 0.279 0.000 0.289 0.015 0.327 0.003 0.350 0.050 0.689 0.177 0.745 0.153 0.750 0.092 0.809 0.305 0.748 0.142 0.643 0.165 12/14/2005 0.074 0.192 0.243 0.000 0.279 0.000 0.285 0.014 0.328 0.003 0.350 0.051 0.689 0.176 0.745 0.152 0.751 0.092 0.808 0.302 0.748 0.140 0.644 0.164 12/15/2005 0.074 0.188 0.240 0.000 0.279 0.000 0.280 0.013 0.329 0.004 0.349 0.051 0.689 0.177 0.745 0.152 0.750 0.092 0.806 0.303 0.748 0.143 0.641 0.165 12/16/2005 0.074 0.185 0.238 0.000 0.279 0.000 0.277 0.013 0.330 0.0 04 0.349 0.051 0.691 0.173 0.745 0.151 0.749 0.092 0.806 0.303 0.750 0.141 0.641 0.165 12/17/2005 0.073 0.182 0.236 0.000 0.279 0.000 0.276 0.012 0.331 0.004 0.350 0.052 0.691 0.173 0.744 0.152 0.749 0.092 0.811 0.295 0.749 0.141 0.640 0.166 12/18/2005 0 .072 0.172 0.233 0.000 0.279 0.000 0.243 0.005 0.330 0.003 0.349 0.052 0.689 0.176 0.744 0.152 0.749 0.092 0.809 0.297 0.749 0.141 0.642 0.165 12/19/2005 0.071 0.168 0.230 0.000 0.279 0.000 0.214 0.000 0.334 0.004 0.349 0.052 0.689 0.176 0.744 0.153 0.748 0.093 0.804 0.306 0.750 0.140 0.648 0.162 12/20/2005 0.072 0.171 0.229 0.000 0.279 0.000 0.189 0.000 0.334 0.004 0.348 0.052 0.690 0.174 0.744 0.153 0.750 0.092 0.806 0.303 0.748 0.141 0.645 0.163 12/21/2005 0.069 0.155 0.224 0.000 0.278 0.000 0.179 0.0 00 0.334 0.004 0.349 0.051 0.689 0.175 0.743 0.153 0.748 0.092 0.804 0.307 0.746 0.142 0.646 0.162 12/22/2005 0.066 0.138 0.220 0.000 0.279 0.000 0.179 0.000 0.335 0.004 0.349 0.051 0.689 0.176 0.744 0.153 0.748 0.092 0.807 0.304 0.747 0.144 0.645 0.162 12/23/2005 0.064 0.130 0.216 0.000 0.279 0.000 0.177 0.000 0.335 0.005 0.349 0.051 0.689 0.176 0.743 0.152 0.748 0.092 0.807 0.302 0.748 0.144 0.647 0.162 12/24/2005 0.063 0.126 0.213 0.000 0.278 0.000 0.181 0.000 0.334 0.005 0.349 0.051 0.689 0.176 0.749 0.145 0.749 0.092 0.808 0.301 0.748 0.143 0.645 0.162 12/25/2005 0.062 0.121 0.209 0.000 0.278 0.000 0.172 0.000 0.335 0.005 0.348 0.051 0.690 0.174 0.755 0.137 0.749 0.092 0.808 0.300 0.748 0.143 0.647 0.161 12/26/2005 0.060 0.112 0.204 0.000 0.278 0.0 00 0.159 0.000 0.336 0.005 0.349 0.051 0.690 0.175 0.756 0.136 0.750 0.091 0.809 0.301 0.748 0.142 0.647 0.161 12/27/2005 0.058 0.107 0.198 0.000 0.279 0.000 0.151 0.000 0.337 0.005 0.349 0.052 0.690 0.175 0.759 0.132 0.746 0.092 0.806 0.305 0.748 0.142 0 .648 0.161 12/28/2005 0.056 0.101 0.192 0.000 0.278 0.000 0.146 0.000 0.337 0.006 0.348 0.051 0.691 0.172 0.760 0.130 0.747 0.092 0.807 0.303 0.746 0.143 0.647 0.161 12/29/2005 0.055 0.097 0.187 0.000 0.278 0.000 0.144 0.000 0.338 0.006 0.348 0.051 0.691 0.172 0.761 0.128 0.748 0.092 0.809 0.299 0.748 0.142 0.647 0.160 12/30/2005 0.054 0.095 0.182 0.000 0.278 0.000 0.139 0.000 0.339 0.006 0.348 0.051 0.691 0.170 0.761 0.128 0.749 0.091 0.810 0.300 0.749 0.144 0.648 0.160 12/31/2005 0.052 0.091 0.176 0.0 00 0.279 0.000 0.133 0.000 0.340 0.006 0.348 0.051 0.691 0.170 0.760 0.127 0.750 0.091 0.810 0.297 0.748 0.145 0.648 0.159 1/1/2006 0.051 0.090 0.170 0.000 0.279 0.000 0.128 0.000 0.340 0.006 0.348 0.052 0.692 0.169 0.761 0.126 0.747 0.092 0.811 0.296 0.7 47 0.143 0.645 0.161 1/2/2006 0.050 0.087 0.165 0.000 0.279 0.000 0.122 0.000 0.339 0.006 0.348 0.052 0.691 0.169 0.760 0.127 0.751 0.091 0.813 0.294 0.747 0.143 0.645 0.160 1/3/2006 0.048 0.084 0.159 0.000 0.278 0.000 0.107 0.000 0.336 0.005 0.348 0.052 0.690 0.169 0.760 0.126 0.750 0.091 0.807 0.300 0.747 0.143 0.645 0.160 1/4/2006 0.046 0.080 0.151 0.000 0.279 0.000 0.096 1.277 0.344 0.006 0.348 0.049 0.690 0.169 0.761 0.125 0.749 0.091 0.807 0.302 0.749 0.145 0.646 0.160 1/5/2006 0.045 0.078 0.143 0 .000 0.278 0.000 0.089 0.563 0.343 0.006 0.348 0.048 0.690 0.168 0.762 0.125 0.750 0.091 0.809 0.300 0.748 0.143 0.646 0.160 1/6/2006 0.041 0.073 0.135 0.000 0.278 0.000 0.083 0.289 0.320 0.002 0.348 0.053 0.690 0.169 0.758 0.130 0.750 0.091 0.809 0.300 0 .746 0.144 0.644 0.161 1/7/2006 0.039 0.070 0.126 0.000 0.279 0.000 0.078 0.205 0.297 0.000 0.349 0.058 0.691 0.168 0.756 0.130 0.750 0.091 0.813 0.293 0.747 0.143 0.648 0.159 1/8/2006 0.036 0.066 0.119 0.000 0.279 0.000 0.075 0.171 0.278 0.000 0.350 0.0 61 0.692 0.167 0.756 0.130 0.750 0.091 0.815 0.289 0.747 0.141 0.647 0.160 1/9/2006 0.035 0.064 0.112 0.000 0.280 0.000 0.073 0.155 0.267 0.000 0.350 0.062 0.692 0.166 0.754 0.131 0.751 0.091 0.816 0.286 0.747 0.140 0.647 0.160 1/10/2006 0.034 0.064 0.10 6 0.000 0.280 0.000 0.071 0.146 0.255 0.000 0.349 0.063 0.693 0.164 0.754 0.130 0.749 0.091 0.817 0.285 0.748 0.137 0.646 0.161 1/11/2006 0.032 0.063 0.099 0.827 0.280 0.000 0.069 0.136 0.249 0.000 0.348 0.063 0.693 0.163 0.754 0.130 0.751 0.090 0.818 0.2 84 0.747 0.137 0.649 0.160 1/12/2006 0.031 0.062 0.094 2.987 0.280 0.000 0.067 0.127 0.244 0.000 0.348 0.062 0.694 0.161 0.756 0.128 0.750 0.091 0.818 0.284 0.746 0.136 0.647 0.161 1/13/2006 0.029 0.059 0.089 0.723 0.280 0.000 0.066 0.121 0.238 0.000 0.3 46 0.062 0.692 0.164 0.756 0.128 0.817 0.284 0.746 0.135 0.648 0.161 1/14/2006 0.028 0.059 0.086 0.439 0.280 0.000 0.065 0.117 0.235 0.000 0.345 0.062 0.693 0.161 0.756 0.129 0.814 0.288 0.749 0.135 0.647 0.163 1/15/2006 0.026 0.057 0.081 0.276 0.281 0.000 0.062 0.110 0.228 0.000 0.344 0.061 0.695 0.160 0.756 0.128 0.814 0.287 0.750 0.133 0.649 0.162 1/16/2006 0.025 0.056 0.077 0.215 0.282 0.000 0.061 0.104 0.224 0.000 0.342 0.060 0.694 0.161 0.755 0.127 0.817 0.281 0.750 0.131 0.649 0.163 1/17/ 2006 0.025 0.056 0.074 0.175 0.282 0.000 0.059 0.099 0.220 0.000 0.341 0.059 0.694 0.161 0.755 0.127 0.817 0.279 0.749 0.130 0.650 0.163 1/18/2006 0.023 0.055 0.070 0.149 0.284 0.000 0.058 0.096 0.210 0.000 0.340 0.055 0.695 0.160 0.755 0.127 0.810 0. 282 0.749 0.128 0.650 0.164 1/19/2006 0.022 0.053 0.068 0.136 0.285 0.000 0.055 0.090 0.199 0.000 0.339 0.048 0.696 0.159 0.755 0.127 0.806 0.281 0.749 0.127 0.651 0.164 1/20/2006 0.022 0.054 0.065 0.122 0.286 0.000 0.053 0.085 0.189 0.000 0.338 0.044 0.695 0.159 0.756 0.126 0.805 0.277 0.747 0.128 0.648 0.165 1/21/2006 0.022 0.054 0.063 0.113 0.287 0.000 0.051 0.081 0.187 0.000 0.337 0.043 0.695 0.160 0.757 0.125 0.805 0.280 0.748 0.128 0.645 0.166 1/22/2006 0.021 0.053 0.062 0.107 0.288 0.000 0. 050 0.080 0.190 0.000 0.337 0.045 0.695 0.160 0.757 0.126 0.802 0.286 0.747 0.128 0.647 0.165 1/23/2006 0.021 0.054 0.059 0.088 0.288 0.000 0.050 0.080 0.190 0.000 0.336 0.048 0.695 0.161 0.757 0.125 0.801 0.288 0.748 0.127 0.647 0.165 1/24/2006 0.02 0 0.052 0.058 0.083 0.288 0.000 0.050 0.079 0.189 0.000 0.336 0.050 0.694 0.162 0.758 0.125 0.800 0.288 0.748 0.127 0.646 0.165

PAGE 307

307 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 1/25/2006 0.019 0.052 0.056 0.074 0.282 0.000 0.049 0.078 0.183 0.000 0.337 0.050 0.695 0.161 0.757 0.125 0.801 0.287 0.74 6 0.128 0.646 0.164 1/26/2006 0.018 0.050 0.054 0.065 0.239 0.000 0.046 0.074 0.178 0.000 0.337 0.048 0.695 0.162 0.758 0.124 0.801 0.287 0.747 0.127 0.647 0.163 1/27/2006 0.017 0.050 0.052 0.057 0.218 0.000 0.045 0.072 0.178 0.000 0.337 0.049 0.696 0. 160 0.757 0.123 0.801 0.286 0.746 0.127 0.650 0.161 1/28/2006 0.017 0.050 0.049 0.054 0.198 0.000 0.044 0.070 0.178 0.000 0.338 0.050 0.695 0.161 0.757 0.123 0.800 0.287 0.746 0.127 0.649 0.161 1/29/2006 0.015 0.048 0.048 0.052 0.188 0.000 0.043 0.07 0 0.178 0.000 0.338 0.050 0.695 0.161 0.757 0.123 0.802 0.284 0.746 0.127 0.648 0.161 1/30/2006 0.042 0.068 0.179 0.000 0.338 0.050 0.695 0.160 0.758 0.123 0.803 0.282 0.746 0.127 0.645 0.162 1/31/2006 0.042 0.068 0.179 0.000 0.339 0.050 0.696 0.160 0.757 0.124 0.802 0.284 0.746 0.128 0.645 0.161 2/1/2006 0.042 0.067 0.176 0.000 0.339 0.051 0.696 0.161 0.756 0.124 0.799 0.286 0.746 0.128 0.645 0.161 2/2/2006 0.041 0.066 0.172 0.000 0.339 0.051 0.695 0.162 0.754 0.126 0. 802 0.281 0.746 0.127 0.647 0.159 2/3/2006 0.041 0.067 0.173 0.000 0.339 0.051 0.695 0.161 0.751 0.131 0.806 0.278 0.746 0.127 0.645 0.160 2/4/2006 0.098 0.020 0.220 0.000 0.359 0.050 0.698 0.159 0.751 0.131 0.809 0.277 0.749 0.125 0.647 0.154 2/5/2006 0.091 1.053 0.264 0.000 0.377 0.044 0.698 0.160 0.751 0.130 0.809 0.278 0.749 0.127 0.647 0.154 2/6/2006 0.081 0.223 0.257 0.000 0.379 0.042 0.698 0.161 0.752 0.128 0.812 0.274 0.748 0.128 0.647 0.153 2/7/2006 0.075 0.163 0.251 0.000 0.379 0.044 0.698 0.160 0.752 0.128 0.814 0.270 0.748 0.127 0.648 0.153 2/8/2006 0.072 0.142 0.245 0.000 0.379 0.046 0.699 0.158 0.752 0.128 0.814 0.272 0.747 0.129 0.646 0.154 2/9/2006 0.069 0.128 0.241 0.000 0.378 0.04 7 0.699 0.157 0.752 0.127 0.817 0.268 0.748 0.126 0.649 0.153 2/10/2006 0.066 0.119 0.238 0.000 0.378 0.048 0.699 0.157 0.752 0.126 0.816 0.268 0.748 0.126 0.649 0.153 2/11/2006 0.065 0.113 0.235 0.000 0.377 0.048 0.699 0.155 0.752 0.126 0.816 0.268 0.750 0.126 0.649 0.152 2/12/2006 0.063 0.109 0.234 0.000 0.376 0.048 0.700 0.155 0.752 0.126 0.817 0.267 0.751 0.125 0.650 0.152 2/13/2006 0.061 0.104 0.231 0.000 0.364 0.045 0.700 0.154 0.751 0.126 0.819 0.263 0.750 0.126 0.650 0.152 2/14/2006 0.060 0.101 0.228 0.000 0.361 0.044 0.701 0.153 0.751 0.124 0.821 0.259 0.750 0.126 0.652 0.151 2/15/2006 0.031 0.062 0.073 0.054 0.250 0.009 0.058 0.097 0.227 0.000 0.357 0.044 0.701 0.152 0.751 0.124 0.820 0.259 0.749 0. 126 0.649 0.152 2/16/2006 0.030 0.060 0.072 0.036 0.250 0.011 0.057 0.095 0.226 0.000 0.355 0.045 0.702 0.150 0.751 0.123 0.819 0.260 0.750 0.123 0.650 0.152 2/17/2006 0.028 0.058 0.072 0.023 0.251 0.010 0.056 0.093 0.223 0.000 0.353 0.045 0.701 0.152 0.752 0.123 0.816 0.262 0.750 0.124 0.652 0.151 2/18/2006 0.028 0.059 0.071 0.011 0.251 0.009 0.055 0.090 0.221 0.000 0.352 0.045 0.702 0.150 0.752 0.124 0.816 0.262 0.750 0.123 0.652 0.151 2/19/2006 0.026 0.057 0.069 0.006 0.252 0.007 0.054 0.088 0. 218 0.000 0.352 0.045 0.701 0.152 0.752 0.124 0.814 0.265 0.750 0.122 0.651 0.152 2/20/2006 0.026 0.058 0.067 0.003 0.252 0.006 0.053 0.086 0.216 0.000 0.351 0.045 0.702 0.151 0.812 0.266 0.750 0.120 0.651 0.152 2/21/2006 0.248 0.002 0.051 0.08 3 0.213 0.000 0.351 0.046 0.701 0.152 0.813 0.263 0.750 0.121 0.650 0.153 2/22/2006 0.247 0.001 0.050 0.081 0.209 0.000 0.350 0.046 0.702 0.151 0.816 0.258 0.750 0.120 0.653 0.152 2/23/2006 0.024 0.057 0.060 0.020 0.240 0.000 0.049 0.080 0.20 7 0.000 0.349 0.046 0.701 0.151 0.813 0.259 0.749 0.121 0.653 0.152 2/24/2006 0.022 0.053 0.059 0.023 0.222 0.000 0.048 0.077 0.203 0.000 0.348 0.046 0.701 0.151 0.812 0.262 0.749 0.122 0.654 0.153 2/25/2006 0.022 0.054 0.058 0.033 0.211 0.000 0. 047 0.077 0.203 0.000 0.348 0.045 0.701 0.151 0.812 0.260 0.749 0.122 0.652 0.153 2/26/2006 0.021 0.054 0.057 0.035 0.203 0.000 0.047 0.077 0.204 0.000 0.347 0.046 0.702 0.150 0.810 0.263 0.749 0.120 0.651 0.154 2/27/2006 0.020 0.053 0.056 0.041 0.196 0.000 0.046 0.075 0.202 0.000 0.348 0.046 0.701 0.151 0.814 0.257 0.748 0.121 0.652 0.154 2/28/2006 0.019 0.052 0.052 0.041 0.188 0.000 0.045 0.072 0.200 0.000 0.348 0.046 0.702 0.149 0.813 0.258 0.749 0.120 0.653 0.154 3/1/2006 0.018 0.051 0.050 0.041 0.181 0.000 0.043 0.070 0.199 0.000 0.348 0.046 0.701 0.149 0.814 0.253 0.748 0.119 0.651 0.154 3/2/2006 0.018 0.051 0.048 0.044 0.173 0.000 0.042 0.068 0.197 0.000 0.347 0.046 0.702 0.148 0.817 0.247 0.748 0.121 0.652 0.153 3/3/2006 0.017 0.051 0.046 0.045 0.166 0.000 0.041 0.067 0.194 0.000 0.347 0.046 0.701 0.148 0.817 0.248 0.748 0.120 0.656 0.151 3/4/2006 0.017 0.050 0.044 0.044 0.159 0.000 0.040 0.066 0.192 0.000 0.347 0.046 0.701 0.148 0.816 0.251 0.749 0.119 0.656 0.1 52 3/5/2006 0.016 0.050 0.042 0.043 0.153 0.000 0.039 0.065 0.191 0.000 0.348 0.046 0.701 0.148 0.815 0.253 0.748 0.119 0.654 0.153 3/6/2006 0.016 0.050 0.041 0.043 0.147 0.000 0.039 0.065 0.190 0.000 0.348 0.046 0.701 0.147 0.817 0.247 0.747 0.1 20 0.654 0.154 3/7/2006 0.015 0.049 0.039 0.041 0.141 0.000 0.038 0.063 0.189 0.000 0.347 0.047 0.701 0.147 0.815 0.250 0.747 0.120 0.654 0.154 3/8/2006 0.014 0.049 0.037 0.040 0.134 0.000 0.037 0.063 0.187 0.000 0.346 0.048 0.701 0.147 0.812 0.2 50 0.746 0.121 0.651 0.155 3/9/2006 0.013 0.048 0.036 0.039 0.126 0.000 0.036 0.061 0.189 0.000 0.344 0.047 0.701 0.146 0.763 0.254 0.745 0.120 0.651 0.155 3/10/2006 0.013 0.048 0.035 0.038 0.118 0.000 0.035 0.061 0.000 0.333 0.045 0.701 0.144 0 .753 0.251 0.743 0.120 0.644 0.157 3/11/2006 0.013 0.048 0.034 0.036 0.110 0.000 0.034 0.060 0.000 0.314 0.045 0.702 0.141 0.745 0.259 0.743 0.121 0.642 0.159 3/12/2006 0.013 0.048 0.033 0.036 0.102 0.000 0.034 0.060 0.000 0.292 0.041 0.702 0.137 0.740 0.262 0.742 0.122 0.644 0.159 3/13/2006 0.013 0.048 0.032 0.035 0.096 1.152 0.033 0.058 0.000 0.275 0.038 0.700 0.134 0.760 0.116 0.738 0.263 0.742 0.122 0.644 0.159 3/14/2006 0.012 0.047 0.031 0.034 0.092 1.045 0.032 0.059 0.000 0.268 0.038 0.702 0.129 0.760 0.116 0.749 0.266 0.742 0.124 0.646 0.159 3/15/2006 0.032 0.058 0.000 0.267 0.037 0.705 0.124 0.760 0.117 0.753 0.272 0.743 0.125 0.648 0.160

PAGE 308

308 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T 1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 3/16/2006 0.030 0.056 0.000 0.265 0.038 0.706 0.119 0.760 0.116 0.755 0.268 0.743 0.124 0.648 0.160 3/17/2006 0.029 0.056 0.000 0.262 0.039 0.707 0.115 0.760 0.115 0.754 0.265 0.743 0.124 0.647 0.161 3/18/2006 0.029 0.055 0.000 0.259 0.039 0.708 0.112 0.760 0.114 0.755 0.261 0.742 0.125 0.647 0.160 3/19/2006 0.010 0.046 0.027 0.033 0.073 0.133 0.028 0.055 0.000 0.254 0.039 0.710 0.110 0.760 0.114 0.753 0.259 0.741 0.126 0.647 0.160 3/20/2006 0.010 0.046 0.028 0.034 0.072 0.128 0.027 0.054 0.000 0.249 0.039 0.711 0.108 0.761 0.113 0.754 0.247 0.740 0.126 0.647 0.160 3/21/2006 0.010 0.046 0.026 0.032 0.069 0.113 0.027 0.054 0.000 0.237 0.040 0.711 0.106 0.761 0. 112 0.750 0.236 0.740 0.125 0.645 0.161 3/22/2006 0.010 0.046 0.027 0.034 0.065 0.101 0.026 0.053 0.000 0.224 0.038 0.712 0.102 0.762 0.111 0.753 0.214 0.739 0.124 0.647 0.161 3/23/2006 0.009 0.046 0.026 0.033 0.063 0.095 0.026 0.053 0.000 0.215 0. 036 0.712 0.100 0.762 0.111 0.758 0.185 0.740 0.122 0.643 0.163 3/24/2006 0.009 0.046 0.026 0.034 0.062 0.091 0.025 0.052 0.000 0.213 0.034 0.715 0.097 0.764 0.109 0.763 0.173 0.740 0.122 0.643 0.163 3/25/2006 0.008 0.045 0.025 0.033 0.060 0.086 0.0 24 0.051 0.000 0.208 0.035 0.716 0.095 0.763 0.108 0.765 0.162 0.740 0.120 0.646 0.163 3/26/2006 0.007 0.044 0.024 0.032 0.057 0.081 0.022 0.049 0.000 0.202 0.036 0.717 0.092 0.763 0.107 0.763 0.159 0.742 0.115 0.647 0.165 3/27/2006 0.007 0.045 0.0 24 0.033 0.056 0.080 0.022 0.049 0.000 0.197 0.035 0.716 0.091 0.762 0.105 0.765 0.151 0.743 0.111 0.647 0.165 3/28/2006 0.021 0.049 0.000 0.192 0.034 0.715 0.089 0.762 0.104 0.765 0.148 0.743 0.109 0.648 0.165 3/29/2006 0.021 0.049 0. 000 0.188 0.033 0.716 0.087 0.763 0.103 0.766 0.145 0.744 0.106 0.648 0.165 3/30/2006 0.020 0.049 0.000 0.184 0.032 0.714 0.088 0.764 0.100 0.768 0.142 0.744 0.105 0.649 0.165 3/31/2006 0.020 0.049 0.000 0.180 0.028 0.714 0.087 0.766 0. 098 0.767 0.141 0.745 0.103 0.647 0.165 4/1/2006 0.020 0.049 0.000 0.176 0.026 0.713 0.085 0.767 0.095 0.767 0.141 0.745 0.101 0.646 0.166 4/2/2006 0.020 0.049 0.000 0.172 0.026 0.712 0.083 0.768 0.093 0.767 0.139 0.745 0.100 0.644 0. 167 4/3/2006 0.019 0.048 0.000 0.168 0.025 0.712 0.080 0.770 0.091 0.768 0.137 0.745 0.099 0.644 0.166 4/4/2006 0.019 0.048 0.000 0.164 0.023 0.703 0.076 0.772 0.088 0.768 0.136 0.745 0.098 0.642 0.166 4/5/2006 0.019 0.048 0.000 0.160 0.021 0.688 0.065 0.774 0.085 0.770 0.133 0.746 0.098 0.646 0.164 4/6/2006 0.018 0.048 0.000 0.156 0.019 0.681 0.062 0.770 0.132 0.747 0.096 0.645 0.163 4/7/2006 0.018 0.048 0.000 0.151 0.018 0.672 0.056 0.769 0.131 0.748 0 .095 0.645 0.161 4/8/2006 0.018 0.047 0.000 0.144 0.014 0.666 0.052 0.768 0.131 0.748 0.094 0.646 0.159 4/9/2006 0.018 0.047 0.000 0.140 0.009 0.688 0.062 0.775 0.135 0.749 0.094 0.647 0.158 4/10/2006 0.018 0.047 0.000 0.139 0.009 0.691 0.068 0.774 0.140 0.752 0.093 0.650 0.159 4/11/2006 0.018 0.047 0.000 0.138 0.008 0.687 0.069 0.773 0.145 0.752 0.093 0.648 0.161 4/12/2006 0.019 0.048 0.000 0.136 0.006 0.673 0.064 0.768 0.144 0.752 0.092 0.647 0.1 61 4/13/2006 0.024 0.051 0.000 0.134 0.003 0.665 0.063 0.766 0.144 0.753 0.092 0.648 0.159 4/14/2006 0.029 0.055 0.000 0.131 0.001 0.660 0.062 0.763 0.144 0.753 0.091 0.648 0.157 4/15/2006 0.031 0.056 0.000 0.128 0.001 0.656 0.061 0.764 0.142 0.752 0.092 0.647 0.156 4/16/2006 0.032 0.057 0.000 0.125 0.000 0.652 0.059 0.761 0.143 0.752 0.092 0.646 0.154 4/17/2006 0.033 0.057 0.000 0.121 0.000 0.647 0.057 0.759 0.144 0.752 0.092 0.646 0.151 4/18/200 6 0.033 0.058 0.000 0.117 0.000 0.645 0.055 0.758 0.143 0.753 0.093 0.647 0.146 4/19/2006 0.033 0.057 0.000 0.114 0.000 0.643 0.055 0.758 0.144 0.753 0.093 0.647 0.144 4/20/2006 0.033 0.057 0.000 0.111 0.000 0.640 0.054 0 .752 0.145 0.753 0.094 0.648 0.141 4/21/2006 0.033 0.057 0.000 0.108 0.000 0.636 0.052 0.740 0.143 0.752 0.095 0.645 0.140 4/22/2006 0.032 0.057 0.000 0.105 0.000 0.632 0.050 0.729 0.143 0.753 0.095 0.647 0.138 4/23/2006 0.03 2 0.057 0.000 0.102 0.629 0.048 0.717 0.144 0.752 0.096 0.643 0.139 4/24/2006 0.031 0.056 0.000 0.099 0.625 0.045 0.705 0.145 0.752 0.096 0.645 0.136 4/25/2006 0.031 0.056 0.000 0.096 0.619 0.043 0.695 0.142 0.752 0.096 0.64 7 0.134 4/26/2006 0.031 0.056 0.000 0.093 0.630 0.047 0.701 0.148 0.752 0.097 0.646 0.134 4/27/2006 0.021 0.053 0.024 0.033 0.020 0.038 0.045 0.073 0.000 0.092 0.637 0.054 0.711 0.161 0.752 0.096 0.647 0.136 4/28/2006 0.020 0.053 0.023 0.033 0.020 0.038 0.059 0.095 0.000 0.091 0.620 0.046 0.685 0.154 0.753 0.095 0.646 0.136 4/29/2006 0.019 0.052 0.023 0.033 0.020 0.038 0.057 0.091 0.000 0.090 0.613 0.040 0.670 0.152 0.750 0.094 0.645 0.136 4/30/2006 0.019 0.051 0.023 0.033 0.020 0.039 0.054 0.086 0.000 0.088 0.609 0.036 0.655 0.150 0.738 0.092 0.644 0.135 5/1/2006 0.018 0.051 0.023 0.034 0.019 0.038 0.052 0.082 0.000 0.087 0.605 0.034 0.645 0.150 0.736 0.091 0.644 0.134 5/2/2006 0.018 0.050 0.022 0.034 0.018 0 .038 0.049 0.078 0.000 0.085 0.602 0.031 0.637 0.149 0.736 0.090 0.643 0.134 5/3/2006 0.017 0.050 0.022 0.034 0.018 0.038 0.047 0.074 0.000 0.084 0.599 0.027 0.631 0.148 0.735 0.090 0.644 0.132 5/4/2006 0.017 0.050 0.022 0.033 0.016 0.036 0.0 45 0.072 0.000 0.082 0.594 0.023 0.625 0.147 0.734 0.091 0.643 0.131

PAGE 309

309 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 5/5/2006 0.017 0.050 0.022 0.034 0.016 0.037 0.043 0.070 0.000 0.080 0.589 0.015 0.618 0.147 0.734 0.092 0.645 0.129 5/6/2006 0.016 0.049 0.022 0.034 0.016 0.037 0.042 0.06 8 0.000 0.078 0.585 0.009 0.613 0.145 0.733 0.093 0.644 0.129 5/7/2006 0.016 0.049 0.022 0.034 0.016 0.037 0.040 0.066 0.000 0.076 0.582 0.004 0.608 0.144 0.733 0.095 0.644 0.129 5/8/2006 0.016 0.049 0.022 0.034 0.016 0.037 0.039 0.065 0.000 0.075 0.579 0.001 0.603 0.142 0.733 0.094 0.644 0.129 5/9/2006 0.015 0.048 0.021 0.034 0.015 0.035 0.038 0.064 0.000 0.074 0.578 0.000 0.599 0.141 0.733 0.095 0.645 0.129 5/10/2006 0.014 0.047 0.021 0.034 0.014 0.035 0.036 0.062 0.000 0.073 0.577 0.000 0.597 0.141 0.733 0.095 0.645 0.129 5/11/2006 0.014 0.047 0.022 0.035 0.014 0.036 0.036 0.062 0.000 0.072 0.575 0.000 0.593 0.140 0.732 0.095 0.645 0.129 5/12/2006 0.014 0.047 0.021 0.034 0.015 0.037 0.035 0.061 0.000 0.071 0.575 0.000 0.588 0.136 0.731 0.097 0.642 0.131 5/13/2006 0.013 0.047 0.021 0.034 0.015 0.038 0.033 0.059 0.000 0.071 0.573 0.000 0.584 0.134 0.731 0.095 0.644 0.130 5/14/2006 0.012 0.047 0.020 0.034 0.015 0.038 0.032 0.058 0.000 0.070 0.571 0.000 0.581 0.132 0.731 0.094 0.644 0.130 5/15/2006 0.012 0.046 0.021 0.035 0.015 0.038 0.031 0.057 0.000 0.069 0.569 0.000 0.578 0.130 0.731 0.093 0.643 0.130 5/16/2006 0.011 0.045 0.021 0.035 0.014 0.037 0.031 0.057 0.000 0.069 0.037 0.594 0.027 0.609 0.201 0.732 0.093 0.648 0.129 5/17/2006 0.010 0.045 0.020 0.035 0.013 0.036 0.032 0.058 0.000 0.071 0.036 0.590 0.021 0.599 0.194 0.732 0.091 0.648 0.130 5/18/2006 0.011 0.046 0.020 0.035 0.016 0.040 0.044 0.072 0.000 0.070 0.037 0.580 0. 007 0.585 0.168 0.731 0.093 0.643 0.132 5/19/2006 0.011 0.046 0.021 0.036 0.016 0.041 0.049 0.078 0.000 0.069 0.036 0.574 0.001 0.579 0.155 0.731 0.092 0.642 0.132 5/20/2006 0.011 0.046 0.021 0.036 0.015 0.041 0.049 0.078 0.000 0.069 0.036 0.57 1 0.000 0.575 0.152 0.730 0.094 0.642 0.131 5/21/2006 0.011 0.046 0.020 0.036 0.015 0.041 0.048 0.077 0.000 0.069 0.036 0.569 0.000 0.572 0.150 0.729 0.096 0.642 0.131 5/22/2006 0.012 0.047 0.021 0.037 0.015 0.040 0.046 0.074 0.000 0.068 0.035 0.567 0.000 0.570 0.148 0.728 0.099 0.644 0.129 5/23/2006 0.012 0.047 0.020 0.036 0.015 0.040 0.044 0.072 0.000 0.068 0.035 0.567 0.000 0.569 0.146 0.727 0.100 0.645 0.129 5/24/2006 0.012 0.046 0.021 0.037 0.015 0.040 0.043 0.070 0.000 0.068 0. 035 0.566 0.000 0.568 0.147 0.728 0.099 0.645 0.129 5/25/2006 0.012 0.047 0.020 0.036 0.015 0.040 0.041 0.069 0.000 0.068 0.034 0.565 0.000 0.567 0.147 0.727 0.099 0.645 0.129 5/26/2006 0.011 0.046 0.021 0.037 0.014 0.039 0.040 0.067 0.000 0.06 8 0.034 0.568 0.002 0.570 0.156 0.728 0.100 0.641 0.130 5/27/2006 0.012 0.046 0.021 0.036 0.013 0.038 0.039 0.065 0.000 0.069 0.034 0.572 0.003 0.573 0.171 0.726 0.105 0.642 0.130 5/28/2006 0.012 0.047 0.021 0.036 0.013 0.039 0.037 0.063 0.000 0.068 0.035 0.567 0.000 0.567 0.158 0.726 0.104 0.641 0.130 5/29/2006 0.012 0.047 0.021 0.036 0.014 0.040 0.037 0.064 0.000 0.067 0.035 0.565 0.000 0.565 0.154 0.725 0.104 0.642 0.130 5/30/2006 0.012 0.047 0.021 0.037 0.014 0.040 0.035 0.061 0. 000 0.067 0.035 0.564 0.000 0.564 0.153 0.725 0.104 0.643 0.130 5/31/2006 0.011 0.046 0.021 0.036 0.014 0.040 0.034 0.061 0.000 0.066 0.033 0.563 0.000 0.563 0.151 0.723 0.106 0.644 0.129 6/1/2006 0.066 1.194 0.000 0.067 0.035 0.600 0.027 0.596 0.219 0.734 0.105 0.646 0.127 6/2/2006 0.048 0.085 0.019 0.034 0.013 0.038 0.081 0.284 0.000 0.067 0.033 0.579 0.006 0.582 0.199 0.726 0.108 0.645 0.128 6/3/2006 0.046 0.083 0.021 0.036 0.013 0.039 0.072 0.165 0.000 0.067 0.032 0.570 0.0 00 0.570 0.161 0.725 0.108 0.646 0.127 6/4/2006 0.043 0.078 0.021 0.036 0.013 0.039 0.066 0.130 0.000 0.067 0.030 0.566 0.000 0.566 0.147 0.724 0.109 0.646 0.128 6/5/2006 0.040 0.074 0.021 0.035 0.013 0.039 0.061 0.110 0.000 0.067 0.030 0.565 0 .000 0.564 0.144 0.722 0.111 0.645 0.129 6/6/2006 0.039 0.072 0.022 0.035 0.013 0.039 0.057 0.099 0.000 0.067 0.030 0.566 0.000 0.563 0.144 0.723 0.112 0.644 0.130 6/7/2006 0.037 0.069 0.022 0.036 0.013 0.039 0.054 0.092 0.000 0.067 0.030 0.563 0.000 0.562 0.142 0.722 0.115 0.643 0.131 6/8/2006 0.035 0.066 0.022 0.036 0.013 0.039 0.051 0.085 0.000 0.067 0.031 0.562 0.000 0.560 0.141 0.721 0.119 0.643 0.131 6/9/2006 0.034 0.066 0.023 0.036 0.012 0.039 0.048 0.080 0.000 0.066 0.031 0.5 65 0.002 0.562 0.154 0.722 0.121 0.645 0.130 6/10/2006 0.033 0.064 0.023 0.036 0.012 0.038 0.046 0.077 0.000 0.067 0.031 0.566 0.000 0.563 0.156 0.723 0.121 0.648 0.129 6/11/2006 0.051 0.366 0.028 0.038 0.011 0.036 0.061 0.261 0.000 0.068 0.031 0.591 0.020 0.596 0.196 0.734 0.124 0.647 0.130 6/12/2006 0.065 0.136 0.052 0.052 0.009 0.032 0.082 0.347 0.000 0.069 0.030 0.586 0.010 0.588 0.224 0.742 0.125 0.652 0.128 6/13/2006 0.057 0.104 0.052 0.048 0.015 0.033 0.072 0.165 0.000 0.070 0 .031 0.577 0.002 0.576 0.191 0.729 0.126 0.653 0.127 6/14/2006 0.059 0.109 0.051 0.046 0.023 0.035 0.068 0.140 0.000 0.070 0.030 0.575 0.002 0.572 0.173 0.730 0.127 0.653 0.127 6/15/2006 0.053 0.093 0.051 0.046 0.029 0.038 0.063 0.119 0.000 0.0 70 0.031 0.569 0.000 0.565 0.149 0.729 0.132 0.653 0.127 6/16/2006 0.047 0.082 0.050 0.046 0.031 0.040 0.059 0.105 0.000 0.070 0.030 0.567 0.000 0.564 0.145 0.728 0.135 0.650 0.129 6/17/2006 0.044 0.077 0.049 0.044 0.032 0.040 0.055 0.095 0.000 0.070 0.029 0.566 0.000 0.562 0.139 0.724 0.137 0.651 0.130 6/18/2006 0.071 0.221 0.063 0.073 0.097 0.025 0.085 0.043 0.225 0.000 0.162 0.041 0.651 0.039 0.711 0.201 0.741 0.136 0.653 0.131 6/19/2006 0.059 0.112 0.072 0.097 0.192 0.011 0.087 1.0 77 0.227 0.000 0.308 0.042 0.721 0.072 0.835 0.241 0.754 0.139 0.654 0.130 6/20/2006 0.049 0.086 0.068 0.085 0.194 0.000 0.071 0.164 0.209 0.000 0.309 0.031 0.719 0.074 0.675 0.246 0.754 0.142 0.653 0.130 6/21/2006 0.045 0.078 0.066 0.082 0.190 0 .000 0.061 0.115 0.188 0.000 0.303 0.028 0.698 0.073 0.655 0.254 0.753 0.148 0.651 0.131 6/22/2006 0.041 0.073 0.062 0.074 0.186 0.000 0.055 0.098 0.168 0.000 0.297 0.026 0.638 0.048 0.620 0.245 0.756 0.149 0.652 0.131 6/23/2006 0.038 0.069 0.059 0.070 0.180 0.000 0.051 0.088 0.152 0.000 0.296 0.027 0.604 0.022

PAGE 310

3 10 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T 1 1 (72 cm) Date w w w w w w w w w w w w 6/24/2006 0.035 0.064 0.058 0.070 0.173 0.000 0.049 0.083 0.138 0.000 0.294 0.028 0.601 0.023 6/25/2006 0.034 0.063 0.056 0.065 0.167 0.000 0.046 0.079 0.129 0.000 0.292 0.029 0.597 0. 023 6/26/2006 0.037 0.070 0.055 0.061 0.162 0.000 0.045 0.077 0.121 0.000 0.291 0.030 0.642 0.037 6/27/2006 0.061 0.115 0.062 0.091 0.174 0.000 0.045 0.077 0.131 0.000 0.293 0.034 0.732 0.066 6/28/2006 0.063 0.126 0.064 0.1 13 0.183 0.000 0.062 0.121 0.127 0.000 0.296 0.036 0.732 0.071 6/29/2006 0.063 0.121 0.066 0.125 0.194 0.000 0.076 0.203 0.143 0.000 0.305 0.039 0.733 0.077 6/30/2006 0.057 0.103 0.066 0.120 0.200 0.000 0.071 0.159 0.151 0.000 0.313 0 .039 0.733 0.082 7/1/2006 0.052 0.090 0.065 0.113 0.201 0.000 0.066 0.134 0.143 0.000 0.313 0.037 0.733 0.077 7/2/2006 0.048 0.084 0.063 0.105 0.200 0.000 0.062 0.115 0.139 0.000 0.313 0.036 0.734 0.077 7/3/2006 0.046 0.080 0.063 0.098 0.199 0.000 0.060 0.110 0.144 0.000 0.314 0.036 0.735 0.074 7/4/2006 0.047 0.081 0.062 0.092 0.198 0.000 0.057 0.102 0.140 0.000 0.314 0.037 0.735 0.075 7/5/2006 0.045 0.079 0.061 0.088 0.196 0.000 0.056 0.097 0.137 0.000 0.312 0.036 0.735 0.072 7/6/2006 0.042 0.073 0.061 0.087 0.193 0.000 0.054 0.092 0.129 0.000 0.312 0.035 0.736 0.071 7/7/2006 0.052 0.098 0.061 0.084 0.194 0.000 0.066 0.067 0.139 0.000 0.314 0.037 0.737 0.070 7/8/2006 0.0 64 0.125 0.067 0.120 0.208 0.000 0.092 0.936 0.167 0.000 0.327 0.041 0.738 0.069 7/9/2006 0.057 0.103 0.068 0.119 0.217 0.000 0.082 0.300 0.187 0.000 0.334 0.039 0.739 0.071 7/10/2006 0.054 0.095 0.068 0.114 0.219 0.000 0.078 0.220 0. 202 0.000 0.336 0.041 0.738 0.080 7/11/2006 0.050 0.086 0.067 0.108 0.219 0.000 0.076 0.216 0.209 0.000 0.338 0.041 0.738 0.086 7/12/2006 0.073 0.247 0.077 0.220 0.252 0.000 0.102 0.244 0.267 0.000 0.341 0.045 0.738 0.086 7 /13/2006 0.068 0.144 0.087 0.371 0.280 0.000 0.108 0.000 0.336 0.002 0.344 0.042 0.739 0.088 7/14/2006 0.064 0.125 0.087 0.338 0.281 0.000 0.103 0.000 0.338 0.002 0.346 0.039 0.737 0.093 7/15/2006 0.056 0.100 0.084 0.228 0.282 0.000 0 .093 4.478 0.330 0.001 0.346 0.039 0.738 0.093 7/16/2006 0.051 0.089 0.081 0.172 0.283 0.000 0.086 0.461 0.322 0.000 0.346 0.040 0.738 0.093 7/17/2006 0.048 0.085 0.078 0.152 0.284 0.000 0.082 0.254 0.253 0.000 0.346 0.041 0.738 0.090 0.755 0.147 0.742 0.087 7/18/2006 0.047 0.087 0.077 0.150 0.286 0.000 0.086 0.224 0.131 0.000 0.345 0.042 0.739 0.085 0.754 0.150 0.742 0.087 7/19/2006 0.046 0.085 0.076 0.137 0.287 0.000 0.085 0.205 0.127 0.000 0.345 0.039 0.740 0.083 0.754 0.152 0.743 0.087 7/20/2006 0.044 0.081 0.075 0.126 0.288 0.000 0.084 0.190 0.124 0.000 0.345 0.039 0.738 0.086 0.753 0.155 0.745 0.087 7/21/2006 0.042 0.078 0.073 0.113 0.289 0.000 0.083 0.165 0.123 0.000 0.344 0.041 0.739 0.086 0.753 0.156 0.742 0.088 7/22/2006 0.046 0.090 0.076 0.148 0.290 0.000 0.113 0.101 0.133 0.000 0.343 0.042 0.738 0.090 0.752 0.158 0.743 0.088 7/23/2006 0.061 0.122 0.087 0.395 0.294 0.000 0.131 0.009 0.168 0.000 0.343 0.042 0.738 0.090 0.752 0.160 0.745 0.088 7/24/2006 0.055 0.101 0.085 0.281 0.296 0.000 0.113 0.000 0.158 0.000 0.342 0.038 0.738 0.091 0.752 0.159 0.743 0.088 7/25/2006 0.051 0.093 0.080 0.193 0.297 0.000 0.103 0.000 0.141 0.000 0.341 0.035 0.740 0.083 0.751 0.161 0.742 0.088 7/26/2006 0.048 0.087 0.077 0.148 0.297 0.000 0.095 0.427 0.132 0.000 0.341 0.036 0.740 0.084 0.752 0.162 0.741 0.089 7/27/2006 0.045 0.082 0.075 0.127 0.298 0.000 0.090 0.307 0.128 0.000 0.340 0.038 0.738 0.087 0.751 0.164 0.745 0.088 7/28/2006 0.043 0.079 0.074 0.115 0.298 0.000 0.086 0.157 0.123 0.000 0.336 0.037 0.741 0.080 0.751 0.164 0.743 0.088 7/29/2006 0.040 0.074 0.072 0.103 0.299 0.000 0.083 0.129 0.115 0.000 0.329 0.035 0.740 0.080 0.751 0.165 0.740 0.089 7/30 /2006 0.038 0.072 0.071 0.093 0.298 0.000 0.079 0.102 0.109 0.000 0.326 0.034 0.740 0.081 0.751 0.166 0.743 0.088 7/31/2006 0.036 0.069 0.069 0.085 0.298 0.000 0.076 0.089 0.102 0.000 0.324 0.034 0.733 0.077 0.751 0.166 0.740 0.089 8/1/2006 0 .034 0.067 0.067 0.078 0.299 0.000 0.072 0.077 0.096 0.750 0.324 0.034 0.721 0.070 0.751 0.166 0.743 0.088 8/2/2006 0.033 0.066 0.066 0.075 0.299 0.000 0.070 0.071 0.091 1.329 0.323 0.035 0.702 0.060 0.751 0.167 0.739 0.089 8/3/2006 0.030 0.0 63 0.064 0.070 0.299 0.000 0.067 0.066 0.085 0.392 0.322 0.034 0.675 0.046 0.752 0.166 0.742 0.088 8/4/2006 0.029 0.062 0.062 0.066 0.299 0.000 0.064 0.063 0.082 0.295 0.322 0.036 0.687 0.049 0.751 0.167 0.738 0.089 8/5/2006 0.027 0.060 0.059 0.062 0.289 0.000 0.062 0.059 0.079 0.235 0.321 0.038 0.675 0.044 0.751 0.167 0.740 0.088 8/6/2006 0.026 0.059 0.058 0.061 0.245 0.000 0.059 0.056 0.075 0.185 0.321 0.039 0.668 0.041 0.749 0.170 0.739 0.088 8/7/2006 0.026 0.058 0.056 0.060 0 .214 0.000 0.056 0.053 0.072 0.159 0.318 0.039 0.654 0.037 0.749 0.170 0.734 0.089 8/8/2006 0.025 0.057 0.054 0.059 0.178 0.000 0.054 0.051 0.069 0.136 0.311 0.039 0.641 0.032 0.749 0.171 0.738 0.088 8/9/2006 0.024 0.056 0.051 0.057 0.158 0.0 00 0.051 0.049 0.065 0.119 0.290 0.038 0.632 0.027 0.750 0.170 0.737 0.089 8/10/2006 0.023 0.056 0.049 0.056 0.147 0.000 0.048 0.049 0.063 0.110 0.277 0.038 0.623 0.023 0.749 0.171 0.736 0.089 0.670 0.187 0.758 0.188 0.658 0.146 8/11/2006 0.023 0.0 56 0.046 0.054 0.125 0.000 0.044 0.053 0.059 0.098 0.258 0.037 0.617 0.020 0.750 0.170 0.734 0.089 0.669 0.192 0.758 0.187 0.661 0.144 8/12/2006 0.023 0.057 0.045 0.056 0.115 0.000 0.041 0.044 0.057 0.093 0.244 0.036 0.611 0.016 0.750 0.169 0.733 0.089 0. 663 0.197 0.759 0.185 0.657 0.144

PAGE 311

311 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 8/13/2006 0.022 0.056 0.043 0.055 0.104 0.000 0.038 0.042 0.055 0.089 0.232 0.035 0.607 0.015 0.751 0.168 0.733 0.089 0.658 0.201 0.758 0.184 0.654 0.144 8/14/2006 0.021 0.055 0.042 0.054 0.095 2.464 0.035 0.041 0.054 0 .087 0.223 0.035 0.606 0.015 0.751 0.167 0.731 0.089 0.653 0.204 0.756 0.181 0.660 0.141 8/15/2006 0.021 0.054 0.041 0.054 0.088 0.619 0.034 0.041 0.052 0.084 0.216 0.036 0.603 0.014 0.751 0.167 0.728 0.090 0.644 0.208 0.749 0.175 0.660 0.140 8/16/2006 0 .020 0.054 0.041 0.054 0.082 0.298 0.032 0.039 0.051 0.083 0.210 0.038 0.602 0.015 0.750 0.168 0.730 0.089 0.636 0.209 0.750 0.167 0.661 0.140 8/17/2006 0.018 0.052 0.040 0.053 0.078 0.220 0.031 0.040 0.050 0.081 0.208 0.043 0.601 0.016 0.751 0.167 0.731 0.089 0.634 0.213 0.757 0.162 0.659 0.140 8/18/2006 0.018 0.052 0.039 0.053 0.074 0.176 0.030 0.039 0.050 0.081 0.208 0.050 0.607 0.025 0.751 0.166 0.732 0.089 0.792 0.228 0.759 0.163 0.661 0.137 8/19/2006 0.018 0.052 0.039 0.053 0.072 0.161 0.028 0.039 0.049 0.080 0.210 0.046 0.627 0.044 0.751 0.166 0.732 0.089 0.849 0.208 0.760 0.165 0.661 0.137 8/20/2006 0.017 0.052 0.038 0.053 0.072 0.155 0.072 0.061 0.050 0.079 0.213 0.044 0.713 0.068 0.750 0.167 0.733 0.089 0.855 0.204 0.758 0.170 0.659 0.138 8/21 /2006 0.017 0.051 0.038 0.052 0.073 0.166 0.113 0.106 0.051 0.082 0.217 0.044 0.729 0.072 0.751 0.165 0.735 0.088 0.853 0.210 0.757 0.171 0.656 0.140 8/22/2006 0.017 0.052 0.038 0.053 0.074 0.165 0.124 0.114 0.052 0.083 0.221 0.048 0.731 0.070 0.751 0.166 0.735 0.089 0.852 0.214 0.758 0.170 0.660 0.139 8/23/2006 0.018 0.052 0.040 0.054 0.086 2.259 0.126 0.113 0.065 0.117 0.245 0.044 0.733 0.072 0.750 0.168 0.740 0.089 0.855 0.207 0.760 0.168 0.660 0.140 8/24/2006 0.036 0.068 0.064 0.096 0.150 0.000 0.125 0.030 0.147 0.254 0.305 0.045 0.735 0.074 0.752 0.169 0.750 0.089 0.870 0.175 0.760 0.167 0.657 0.144 8/25/2006 0.041 0.075 0.063 0.097 0.205 0.000 0.126 0.035 0.212 0.002 0.318 0.046 0.736 0.077 0.753 0.168 0.748 0.090 0.876 0.163 0.762 0.166 0.658 0.14 6 8/26/2006 0.055 0.093 0.069 0.126 0.253 0.000 0.129 0.004 0.338 0.010 0.325 0.047 0.735 0.082 0.752 0.168 0.750 0.090 0.880 0.154 0.761 0.167 0.662 0.145 8/27/2006 0.050 0.087 0.070 0.119 0.265 0.000 0.116 0.000 0.323 0.008 0.330 0.049 0.735 0.087 0.75 2 0.169 0.748 0.090 0.882 0.153 0.761 0.166 0.660 0.147 8/28/2006 0.048 0.083 0.071 0.111 0.266 0.000 0.112 0.000 0.316 0.006 0.334 0.051 0.735 0.093 0.751 0.171 0.744 0.091 0.886 0.147 0.760 0.167 0.659 0.149 8/29/2006 0.046 0.081 0.071 0.104 0.266 0.00 0 0.102 0.107 0.255 0.003 0.335 0.047 0.736 0.088 0.751 0.168 0.739 0.091 0.886 0.148 0.760 0.166 0.658 0.150 8/30/2006 0.051 0.091 0.076 0.147 0.267 0.000 0.124 0.262 0.284 0.004 0.340 0.047 0.737 0.086 0.750 0.171 0.742 0.090 0.888 0.146 0.762 0.162 0.6 58 0.150 8/31/2006 0.059 0.109 0.089 1.223 0.271 0.000 0.132 0.000 0.377 0.007 0.346 0.049 0.738 0.089 0.752 0.169 0.745 0.090 0.889 0.142 0.761 0.160 0.663 0.149 9/1/2006 0.061 0.123 0.100 1.375 0.274 0.000 0.138 0.000 0.389 0.008 0.347 0.054 0.738 0.09 2 0.751 0.171 0.745 0.090 0.891 0.138 0.759 0.159 0.662 0.149 9/2/2006 0.066 0.141 0.124 0.000 0.276 0.000 0.135 0.000 0.398 0.009 0.345 0.055 0.737 0.097 0.749 0.172 0.744 0.090 0.892 0.138 0.762 0.153 0.664 0.149 9/3/2006 0.059 0.115 0.117 0.000 0.278 0.000 0.123 0.000 0.406 0.012 0.344 0.062 0.736 0.102 0.749 0.173 0.743 0.090 0.894 0.134 0.763 0.149 0.664 0.149 9/4/2006 0.056 0.108 0.112 0.000 0.279 0.000 0.118 0.000 0.411 0.013 0.343 0.063 0.735 0.107 0.749 0.173 0.745 0.089 0.897 0.131 0.763 0.148 0.665 0.148 9/5/2006 0.061 0.124 0.117 0.000 0.282 0.000 0.125 0.000 0.414 0.015 0.343 0.059 0.736 0.110 0.749 0.174 0.744 0.089 0.896 0.131 0.762 0.146 0.661 0.150 9/6/2006 0.065 0.140 0.128 0.000 0.285 0.000 0.134 0.001 0.416 0.016 0.343 0.055 0.738 0. 110 0.749 0.173 0.742 0.089 0.897 0.128 0.762 0.144 0.658 0.151 9/7/2006 0.064 0.137 0.128 0.000 0.286 0.000 0.128 0.000 0.417 0.009 0.342 0.052 0.737 0.113 0.749 0.173 0.741 0.089 0.895 0.130 0.762 0.143 0.657 0.150 9/8/2006 0.058 0.114 0.119 0.000 0.28 7 0.000 0.121 0.000 0.417 0.002 0.341 0.052 0.737 0.116 0.748 0.174 0.742 0.089 0.896 0.130 0.762 0.142 0.659 0.150 9/9/2006 0.055 0.104 0.113 0.000 0.289 0.000 0.116 0.000 0.416 0.001 0.341 0.052 0.736 0.120 0.749 0.174 0.744 0.088 0.898 0.128 0.762 0.14 1 0.660 0.150 9/10/2006 0.052 0.096 0.109 0.000 0.290 0.000 0.113 0.000 0.416 0.001 0.341 0.051 0.736 0.123 0.748 0.174 0.743 0.088 0.898 0.129 0.763 0.140 0.663 0.149 9/11/2006 0.054 0.102 0.109 0.000 0.291 0.000 0.114 0.000 0.415 0.001 0.341 0.052 0.73 5 0.126 0.748 0.175 0.742 0.088 0.898 0.129 0.766 0.136 0.660 0.151 9/12/2006 0.056 0.107 0.108 0.000 0.293 0.000 0.112 0.000 0.414 0.002 0.340 0.050 0.735 0.128 0.748 0.176 0.743 0.088 0.898 0.128 0.764 0.137 0.664 0.149 9/13/2006 0.053 0.099 0.107 0.00 0 0.294 0.000 0.113 0.000 0.415 0.004 0.341 0.048 0.735 0.130 0.749 0.174 0.739 0.088 0.901 0.124 0.763 0.137 0.662 0.151 9/14/2006 0.051 0.093 0.105 0.000 0.295 0.000 0.113 0.000 0.415 0.004 0.341 0.047 0.735 0.131 0.748 0.175 0.740 0.088 0.901 0.124 0.7 63 0.134 0.660 0.152 9/15/2006 0.049 0.090 0.104 0.000 0.296 0.000 0.114 0.000 0.415 0.004 0.341 0.046 0.734 0.133 0.748 0.176 0.742 0.088 0.902 0.122 0.765 0.130 0.657 0.154 9/16/2006 0.048 0.087 0.105 0.000 0.298 0.000 0.116 0.000 0.415 0.004 0.342 0.0 46 0.734 0.134 0.747 0.177 0.743 0.087 0.904 0.120 0.766 0.126 0.656 0.156 9/17/2006 0.047 0.085 0.105 0.000 0.300 0.000 0.116 0.000 0.416 0.005 0.342 0.046 0.735 0.134 0.747 0.177 0.740 0.088 0.903 0.120 0.764 0.126 0.657 0.156 9/18/2006 0.045 0.082 0.1 02 0.049 0.301 0.000 0.116 0.000 0.416 0.007 0.341 0.046 0.735 0.135 0.748 0.177 0.740 0.088 0.904 0.119 0.764 0.125 0.658 0.157 9/19/2006 0.043 0.079 0.103 0.000 0.303 0.000 0.117 0.000 0.416 0.011 0.341 0.046 0.735 0.135 0.747 0.178 0.737 0.089 0.903 0. 120 0.765 0.122 0.658 0.158 9/20/2006 0.066 0.139 0.155 0.000 0.307 0.000 0.158 0.017 0.416 0.006 0.341 0.046 0.734 0.138 0.747 0.180 0.740 0.088 0.902 0.119 0.766 0.118 0.662 0.157 9/21/2006 0.062 0.123 0.152 0.000 0.308 0.000 0.140 0.004 0.413 0.004 0. 339 0.047 0.734 0.142 0.747 0.179 0.735 0.089 0.901 0.121 0.766 0.115 0.660 0.157 9/22/2006 0.057 0.105 0.135 0.000 0.310 0.000 0.126 0.000 0.412 0.005 0.338 0.049 0.733 0.146 0.747 0.180 0.734 0.089 0.899 0.124 0.767 0.113 0.659 0.158 9/23/2006 0.052 0. 095 0.124 0.000 0.311 0.000 0.120 0.000 0.412 0.004 0.338 0.049 0.732 0.149 0.746 0.181 0.731 0.089 0.900 0.125 0.766 0.113 0.660 0.158 9/24/2006 0.050 0.090 0.119 0.000 0.311 0.000 0.119 0.000 0.412 0.005 0.337 0.049 0.731 0.150 0.746 0.181 0.732 0.089 0 .899 0.124 0.763 0.115 0.663 0.157 9/25/2006 0.047 0.085 0.115 0.000 0.312 0.000 0.116 0.000 0.411 0.004 0.337 0.050 0.731 0.152 0.746 0.182 0.734 0.088 0.900 0.123 0.764 0.113 0.663 0.158 9/26/2006 0.046 0.082 0.111 0.000 0.312 0.000 0.113 0.000 0.411 0 .005 0.338 0.050 0.730 0.154 0.746 0.183 0.733 0.088 0.899 0.124 0.765 0.110 0.661 0.159 9/27/2006 0.044 0.079 0.109 0.000 0.312 0.000 0.112 0.000 0.411 0.005 0.338 0.050 0.730 0.156 0.746 0.184 0.728 0.089 0.898 0.124 0.766 0.107 0.660 0.160 9/28/2006 0 .042 0.076 0.108 0.000 0.312 0.000 0.111 0.000 0.411 0.006 0.338 0.049 0.729 0.159 0.746 0.184 0.729 0.089 0.899 0.124 0.767 0.105 0.659 0.160 9/29/2006 0.041 0.073 0.105 0.000 0.312 0.000 0.109 0.000 0.411 0.006 0.337 0.049 0.731 0.158 0.745 0.186 0.733 0.088 0.900 0.123 0.767 0.103 0.657 0.162 9/30/2006 0.038 0.069 0.103 0.000 0.312 0.000 0.108 0.000 0.411 0.007 0.337 0.049 0.731 0.160 0.745 0.187 0.727 0.089 0.900 0.123 0.767 0.101 0.656 0.163 10/1/2006 0.103 0.000 0.311 0.000 0.110 0.000 0.412 0.00 7 0.337 0.049 0.731 0.162 0.744 0.188 0.727 0.089 0.902 0.119 0.767 0.099 0.655 0.163

PAGE 312

312 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 10/2/2006 0.102 0.000 0.311 0.000 0.110 0.000 0.411 0.008 0.338 0.049 0.731 0.161 0.744 0.189 0.727 0.089 0.900 0.121 0.767 0.097 0.655 0.163 10/3/2006 0.102 0.000 0.311 0.000 0.109 0.000 0.411 0.008 0.337 0.050 0.731 0.164 0.744 0.189 0.727 0.089 0.901 0.120 0.769 0.094 0.655 0.164 10/4/2006 0.101 0.000 0.310 0.000 0.108 0.000 0.410 0.008 0.337 0.050 0.729 0.167 0.742 0.192 0.725 0.090 0.900 0.121 0.769 0.093 0. 655 0.164 10/5/2006 0.101 0.000 0.310 0.000 0.108 0.000 0.409 0.008 0.337 0.049 0.729 0.170 0.742 0.193 0.725 0.090 0.899 0.120 0.768 0.092 0.655 0.164 10/6/2006 0.101 0.000 0.310 0.000 0.108 0.000 0.410 0.009 0.337 0.050 0.729 0.172 0.741 0.193 0.72 4 0.090 0.899 0.119 0.769 0.090 0.654 0.164 10/7/2006 0.100 0.000 0.310 0.000 0.107 0.000 0.410 0.010 0.338 0.049 0.727 0.176 0.742 0.193 0.727 0.090 0.900 0.118 0.768 0.089 0.656 0.163 10/8/2006 0.098 0.644 0.310 0.000 0.106 0.000 0.410 0.010 0.337 0.050 0.728 0.176 0.742 0.193 0.736 0.088 0.900 0.117 0.768 0.088 0.654 0.164 10/9/2006 0.097 0.771 0.310 0.000 0.105 0.000 0.410 0.011 0.337 0.050 0.728 0.179 0.742 0.194 0.732 0.089 0.900 0.118 0.768 0.086 0.655 0.163 10/10/2006 0.096 3.602 0.310 0 .000 0.103 0.000 0.409 0.012 0.336 0.050 0.729 0.175 0.741 0.195 0.729 0.089 0.898 0.120 0.768 0.085 0.655 0.162 10/11/2006 0.093 2.948 0.309 0.000 0.098 0.297 0.387 0.008 0.335 0.048 0.732 0.155 0.741 0.193 0.723 0.089 0.896 0.125 0.768 0.084 0.658 0.1 61 10/12/2006 0.089 0.678 0.309 0.000 0.093 1.109 0.291 0.000 0.334 0.047 0.736 0.131 0.741 0.193 0.720 0.089 0.893 0.129 0.768 0.083 0.662 0.159 10/13/2006 0.086 0.376 0.309 0.000 0.089 0.181 0.229 0.000 0.333 0.049 0.738 0.121 0.740 0.195 0.722 0.0 89 0.892 0.128 0.769 0.081 0.663 0.158 10/14/2006 0.084 0.320 0.309 0.000 0.087 0.161 0.211 0.000 0.333 0.056 0.736 0.130 0.740 0.195 0.730 0.087 0.895 0.123 0.769 0.081 0.664 0.158 10/15/2006 0.082 0.273 0.309 0.000 0.085 0.121 0.202 0.000 0.333 0.0 58 0.735 0.138 0.739 0.197 0.728 0.088 0.895 0.121 0.769 0.080 0.665 0.157 10/16/2006 0.079 0.233 0.308 0.000 0.082 0.095 0.192 0.000 0.332 0.058 0.733 0.144 0.739 0.197 0.726 0.088 0.894 0.119 0.767 0.080 0.665 0.156 10/17/2006 0.076 0.200 0.308 0.0 00 0.080 0.085 0.183 0.000 0.331 0.056 0.733 0.143 0.739 0.197 0.728 0.087 0.895 0.118 0.769 0.077 0.661 0.157 10/18/2006 0.074 0.182 0.309 0.000 0.079 0.085 0.175 0.000 0.330 0.054 0.735 0.133 0.738 0.198 0.725 0.088 0.895 0.118 0.770 0.075 0.658 0.159 10/19/2006 0.072 0.167 0.309 0.000 0.077 0.073 0.168 0.000 0.327 0.052 0.736 0.123 0.738 0.199 0.726 0.087 0.892 0.122 0.769 0.075 0.658 0.158 10/20/2006 0.070 0.150 0.309 0.000 0.076 0.065 0.161 0.000 0.321 0.048 0.738 0.113 0.738 0.199 0.726 0.087 0.894 0.123 0.770 0.074 0.661 0.157 10/21/2006 0.068 0.142 0.309 0.000 0.075 0.066 0.154 0.000 0.319 0.047 0.739 0.108 0.738 0.199 0.726 0.087 0.891 0.129 0.771 0.073 0.661 0.156 10/22/2006 0.065 0.129 0.310 0.000 0.075 0.066 0.146 0.000 0.318 0.046 0.739 0.104 0.738 0.200 0.727 0.087 0.887 0.137 0.770 0.074 0.662 0.156 10/23/2006 0.063 0.117 0.311 0.000 0.073 0.059 0.141 0.000 0.318 0.046 0.740 0.101 0.738 0.199 0.728 0.087 0.882 0.149 0.770 0.074 0.662 0.156 10/24/2006 0.061 0.106 0.312 0.000 0.071 0.053 0.133 0.000 0.317 0.044 0.740 0.099 0.738 0.200 0.731 0.086 0.878 0.158 0.771 0.074 0.659 0.157 10/25/2006 0.059 0.095 0.304 0.000 0.070 0.052 0.122 0.000 0.316 0.043 0.739 0.098 0.737 0.200 0.731 0.086 0.874 0.157 0.770 0.076 0.658 0.157 10/26/2006 0.056 0.087 0.259 0.000 0.069 0.050 0.114 0.000 0.316 0.043 0.732 0.097 0.736 0.201 0.727 0.087 0.869 0.150 0.768 0.077 0.658 0.156 10/27/2006 0.054 0.081 0.230 0.000 0.068 0.047 0.107 0.000 0.315 0.043 0.723 0.089 0.737 0.198 0.726 0.087 0 .856 0.143 0.767 0.078 0.657 0.156 10/28/2006 0.052 0.079 0.201 0.000 0.068 0.046 0.103 0.000 0.315 0.045 0.728 0.087 0.736 0.199 0.725 0.087 0.862 0.140 0.767 0.078 0.659 0.155 10/29/2006 0.052 0.078 0.185 0.000 0.069 0.046 0.101 0.000 0.317 0.046 0 .731 0.088 0.737 0.199 0.731 0.086 0.858 0.147 0.768 0.078 0.659 0.155 10/30/2006 0.050 0.075 0.173 0.000 0.070 0.043 0.097 3.626 0.317 0.045 0.721 0.089 0.737 0.198 0.732 0.086 0.843 0.140 0.767 0.079 0.659 0.155 10/31/2006 0.048 0.073 0.164 0.000 0 .071 0.039 0.093 3.142 0.317 0.045 0.716 0.081 0.736 0.198 0.729 0.086 0.840 0.133 0.766 0.081 0.659 0.155 11/1/2006 0.048 0.073 0.163 0.000 0.101 0.178 0.097 0.453 0.319 0.052 0.732 0.078 0.737 0.198 0.730 0.086 0.875 0.143 0.767 0.080 0.660 0.153 11/ 2/2006 0.048 0.074 0.168 0.000 0.094 0.171 0.099 0.000 0.322 0.052 0.733 0.081 0.737 0.198 0.731 0.087 0.872 0.149 0.767 0.081 0.661 0.152 11/3/2006 0.049 0.075 0.168 0.000 0.090 0.001 0.098 0.000 0.324 0.050 0.732 0.083 0.737 0.199 0.732 0.086 0.866 0.157 0.768 0.082 0.661 0.152 11/4/2006 0.060 0.103 0.168 0.000 0.101 0.106 0.099 0.000 0.326 0.053 0.733 0.085 0.737 0.198 0.733 0.087 0.868 0.156 0.767 0.083 0.661 0.152 11/5/2006 0.062 0.112 0.173 0.000 0.097 0.150 0.100 0.000 0.328 0.050 0.732 0. 086 0.737 0.198 0.732 0.087 0.870 0.153 0.767 0.084 0.655 0.155 11/6/2006 0.059 0.102 0.173 0.000 0.092 0.047 0.097 0.000 0.329 0.048 0.733 0.086 0.737 0.198 0.732 0.087 0.869 0.154 0.767 0.085 0.654 0.155 11/7/2006 0.057 0.096 0.171 0.000 0.088 0.04 1 0.095 3.300 0.330 0.049 0.733 0.081 0.737 0.198 0.733 0.086 0.867 0.160 0.766 0.085 0.656 0.154 11/8/2006 0.055 0.092 0.170 0.000 0.086 0.047 0.094 10.244 0.331 0.050 0.734 0.080 0.738 0.196 0.733 0.086 0.866 0.163 0.767 0.086 0.657 0.153 11/9/2006 0.053 0.087 0.165 0.000 0.082 0.043 0.092 1.420 0.332 0.049 0.729 0.079 0.739 0.194 0.733 0.086 0.852 0.161 0.766 0.088 0.657 0.153 11/10/2006 0.051 0.082 0.159 0.000 0.080 0.042 0.089 0.656 0.333 0.048 0.716 0.074 0.739 0.193 0.733 0.086 0.817 0.149 0 .766 0.088 0.657 0.154 11/11/2006 0.049 0.078 0.153 0.000 0.078 0.039 0.086 0.435 0.333 0.048 0.710 0.066 0.738 0.192 0.732 0.086 0.798 0.144 0.767 0.088 0.657 0.154 11/12/2006 0.048 0.076 0.146 0.000 0.077 0.043 0.084 0.329 0.331 0.048 0.704 0.059 0 .737 0.193 0.732 0.085 0.788 0.141 0.767 0.088 0.657 0.154 11/13/2006 0.028 0.054 0.047 0.075 0.140 0.000 0.075 0.041 0.082 0.274 0.322 0.048 0.693 0.050 0.738 0.192 0.732 0.085 0.768 0.140 0.767 0.089 0.657 0.153 11/14/2006 0.027 0.055 0.047 0.073 0.132 0.000 0.073 0.041 0.078 0.212 0.307 0.044 0.664 0.037 0.736 0.194 0.732 0.085 0.725 0.135 0.765 0.090 0.656 0.154 11/15/2006 0.028 0.055 0.047 0.072 0.123 0.000 0.072 0.037 0.074 0.173 0.289 0.040 0.649 0.027 0.737 0.191 0.728 0.086 0.715 0.134 0.757 0.0 91 0.659 0.156 11/16/2006 0.028 0.055 0.046 0.072 0.115 0.000 0.071 0.037 0.071 0.146 0.274 0.036 0.643 0.022 0.736 0.192 0.730 0.086 0.711 0.133 0.757 0.090 0.660 0.159 11/17/2006 0.027 0.054 0.046 0.071 0.109 0.000 0.070 0.036 0.069 0.133 0.266 0.036 0 .643 0.023 0.735 0.194 0.731 0.086 0.713 0.130 0.767 0.086 0.663 0.158 11/18/2006 0.026 0.054 0.045 0.067 0.102 0.000 0.068 0.036 0.067 0.124 0.258 0.035 0.640 0.022 0.735 0.193 0.732 0.086 0.710 0.127 0.767 0.087 0.656 0.161 11/19/2006 0.025 0.052 0.044 0.066 0.095 1.914 0.066 0.036 0.065 0.114 0.248 0.033 0.636 0.020 0.737 0.190 0.731 0.086 0.703 0.129 0.766 0.087 0.657 0.160 11/20/2006 0.024 0.051 0.044 0.065 0.090 0.736 0.064 0.034 0.064 0.111 0.241 0.032 0.633 0.020 0.736 0.189 0.732 0.086 0.700 0.1 28 0.767 0.085 0.658 0.158

PAGE 313

313 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 11/21/2006 0.023 0.051 0.042 0.063 0.085 0.349 0.063 0.033 0.062 0.103 0.235 0.032 0.632 0.020 0.735 0.190 0.734 0.086 0.696 0.131 0.766 0.086 0.661 0.156 11/22/2006 0.022 0.050 0.041 0.061 0.081 0.252 0.062 0.034 0.061 0.099 0.229 0.032 0.631 0.020 0.734 0.191 0.734 0.086 0.693 0.133 0.768 0.084 0.664 0.154 11/23/2006 0.022 0.049 0.041 0.060 0.077 0.194 0.062 0.035 0.059 0.092 0.224 0.033 0.630 0.020 0.735 0.189 0.735 0.087 0.690 0.136 0.766 0.085 0.665 0.153 11/24/2006 0.02 2 0.050 0.040 0.059 0.074 0.163 0.061 0.033 0.058 0.092 0.220 0.033 0.629 0.019 0.735 0.186 0.738 0.087 0.688 0.139 0.765 0.085 0.666 0.152 11/25/2006 0.022 0.050 0.040 0.059 0.072 0.143 0.061 0.033 0.057 0.088 0.217 0.035 0.628 0.020 0.734 0.187 0.741 0. 086 0.687 0.143 0.765 0.086 0.665 0.151 11/26/2006 0.022 0.050 0.041 0.060 0.070 0.132 0.061 0.034 0.057 0.086 0.215 0.037 0.631 0.022 0.736 0.184 0.745 0.086 0.693 0.146 0.765 0.087 0.662 0.152 11/27/2006 0.023 0.051 0.040 0.060 0.070 0.128 0.060 0.033 0.057 0.086 0.216 0.040 0.634 0.026 0.736 0.183 0.745 0.087 0.702 0.151 0.765 0.088 0.662 0.150 11/28/2006 0.023 0.051 0.041 0.060 0.068 0.117 0.060 0.032 0.056 0.085 0.215 0.041 0.631 0.028 0.736 0.184 0.744 0.087 0.695 0.154 0.766 0.088 0.665 0.148 11/ 29/2006 0.023 0.051 0.040 0.059 0.067 0.111 0.060 0.033 0.056 0.084 0.214 0.042 0.631 0.030 0.737 0.182 0.744 0.087 0.694 0.155 0.765 0.089 0.666 0.148 11/30/2006 0.044 0.060 0.040 0.058 0.067 0.109 0.060 0.032 0.056 0.083 0.217 0.044 0.680 0.054 0.738 0. 181 0.745 0.087 0.720 0.159 0.767 0.089 0.663 0.148 12/1/2006 0.051 0.071 0.040 0.058 0.068 0.113 0.060 0.030 0.057 0.087 0.219 0.044 0.657 0.049 0.738 0.180 0.746 0.087 0.711 0.160 0.766 0.091 0.662 0.148 12/2/2006 0.050 0.072 0.040 0.059 0.068 0.117 0. 060 0.030 0.057 0.087 0.219 0.045 0.651 0.050 0.739 0.178 0.740 0.089 0.711 0.159 0.766 0.091 0.663 0.148 12/3/2006 0.049 0.071 0.041 0.059 0.069 0.119 0.060 0.029 0.058 0.088 0.219 0.044 0.648 0.050 0.740 0.177 0.741 0.088 0.711 0.158 0.766 0.092 0.661 0 .148 12/4/2006 0.048 0.071 0.042 0.059 0.069 0.120 0.060 0.029 0.058 0.089 0.219 0.046 0.648 0.052 0.741 0.174 0.745 0.087 0.712 0.157 0.766 0.093 0.662 0.149 12/5/2006 0.047 0.070 0.044 0.059 0.069 0.122 0.059 0.028 0.058 0.090 0.219 0.045 0.647 0.052 0 .741 0.174 0.745 0.088 0.709 0.159 0.766 0.094 0.661 0.149 12/6/2006 0.046 0.069 0.045 0.059 0.069 0.121 0.059 0.028 0.058 0.089 0.218 0.044 0.643 0.051 0.740 0.174 0.740 0.089 0.705 0.161 0.766 0.095 0.659 0.150 12/7/2006 0.044 0.067 0.046 0.058 0.067 0 .114 0.058 0.028 0.057 0.089 0.216 0.043 0.639 0.049 0.740 0.174 0.738 0.089 0.698 0.165 0.766 0.096 0.661 0.149 12/8/2006 0.042 0.066 0.047 0.059 0.067 0.111 0.058 0.028 0.057 0.086 0.215 0.042 0.635 0.049 0.740 0.173 0.737 0.089 0.694 0.166 0.767 0.096 0.661 0.150 12/9/2006 0.040 0.063 0.047 0.058 0.066 0.109 0.057 0.028 0.056 0.086 0.214 0.041 0.633 0.047 0.740 0.173 0.738 0.089 0.691 0.167 0.766 0.099 0.661 0.150 12/10/2006 0.039 0.063 0.047 0.058 0.064 0.103 0.057 0.027 0.055 0.083 0.211 0.040 0.630 0.045 0.738 0.173 0.740 0.089 0.688 0.168 0.765 0.102 0.662 0.149 12/11/2006 0.039 0.062 0.047 0.058 0.063 0.097 0.056 0.027 0.054 0.082 0.208 0.039 0.628 0.044 0.739 0.172 0.742 0.088 0.683 0.173 0.765 0.099 0.661 0.149 12/12/2006 0.040 0.063 0.047 0.0 58 0.061 0.093 0.056 0.028 0.054 0.081 0.206 0.036 0.628 0.045 0.737 0.173 0.739 0.088 0.683 0.173 0.765 0.099 0.661 0.149 12/13/2006 0.041 0.065 0.046 0.057 0.060 0.091 0.056 0.028 0.054 0.080 0.204 0.035 0.627 0.046 0.738 0.171 0.738 0.089 0.683 0.174 0 .763 0.099 0.662 0.149 12/14/2006 0.088 0.169 0.058 0.073 0.068 0.082 0.096 0.057 0.058 0.129 0.220 0.036 0.699 0.063 0.742 0.166 0.744 0.088 0.794 0.175 0.765 0.098 0.662 0.148 12/15/2006 0.075 0.209 0.067 0.086 0.189 0.000 0.119 0.003 0.117 0.055 0.305 0.051 0.739 0.062 0.743 0.164 0.748 0.089 0.850 0.185 0.765 0.098 0.665 0.143 12/16/2006 0.062 0.110 0.065 0.076 0.208 0.000 0.104 0.000 0.122 0.000 0.313 0.050 0.741 0.061 0.743 0.166 0.753 0.089 0.851 0.185 0.767 0.095 0.665 0.143 12/17/2006 0.061 0.1 05 0.066 0.070 0.215 0.000 0.099 0.250 0.126 0.000 0.318 0.050 0.741 0.063 0.743 0.166 0.755 0.088 0.855 0.180 0.767 0.096 0.666 0.143 12/18/2006 0.056 0.095 0.066 0.063 0.218 0.000 0.094 1.326 0.124 0.000 0.321 0.049 0.741 0.063 0.743 0.164 0.754 0.088 0 .854 0.182 0.767 0.096 0.665 0.144 12/19/2006 0.053 0.087 0.066 0.058 0.219 0.000 0.090 0.326 0.121 0.000 0.323 0.047 0.743 0.061 0.744 0.163 0.755 0.088 0.853 0.186 0.768 0.096 0.663 0.145 12/20/2006 0.050 0.081 0.066 0.052 0.219 0.000 0.086 0.178 0.120 0.000 0.325 0.045 0.743 0.063 0.743 0.163 0.755 0.088 0.853 0.183 0.767 0.097 0.662 0.146 12/21/2006 0.048 0.077 0.065 0.046 0.218 0.000 0.083 0.130 0.118 0.000 0.327 0.046 0.742 0.064 0.740 0.166 0.755 0.088 0.851 0.189 0.766 0.098 0.662 0.147 12/22/20 06 0.046 0.074 0.064 0.041 0.217 0.000 0.082 0.120 0.115 0.000 0.326 0.045 0.743 0.066 0.739 0.167 0.755 0.088 0.846 0.197 0.766 0.100 0.662 0.146 12/23/2006 0.045 0.072 0.064 0.034 0.216 0.000 0.080 0.106 0.113 0.000 0.324 0.044 0.744 0.068 0.740 0.165 0 .750 0.089 0.847 0.195 0.766 0.101 0.663 0.146 12/24/2006 0.049 0.076 0.065 0.028 0.216 0.000 0.079 0.097 0.114 0.000 0.316 0.043 0.743 0.071 0.740 0.165 0.753 0.089 0.852 0.185 0.766 0.102 0.663 0.146 12/25/2006 0.051 0.082 0.065 0.025 0.215 0.000 0.078 0.092 0.113 0.000 0.317 0.044 0.745 0.067 0.741 0.162 0.748 0.089 0.852 0.181 0.765 0.105 0.665 0.144 12/26/2006 0.073 0.158 0.066 0.022 0.216 0.000 0.078 0.091 0.117 0.000 0.320 0.046 0.745 0.067 0.742 0.162 0.750 0.089 0.858 0.175 0.768 0.103 0.666 0.1 43 12/27/2006 0.064 0.116 0.067 0.021 0.218 0.000 0.081 0.099 0.118 0.000 0.322 0.046 0.745 0.065 0.742 0.161 0.751 0.089 0.861 0.171 0.768 0.103 0.664 0.143 12/28/2006 0.058 0.099 0.067 0.017 0.218 0.000 0.082 0.106 0.116 0.000 0.323 0.046 0.745 0.064 0 .742 0.161 0.750 0.089 0.862 0.166 0.767 0.104 0.665 0.142 12/29/2006 0.055 0.092 0.066 0.012 0.217 0.000 0.082 0.096 0.113 0.000 0.324 0.046 0.745 0.063 0.740 0.162 0.749 0.089 0.858 0.171 0.765 0.105 0.665 0.141 12/30/2006 0.053 0.088 0.066 0.011 0.216 0.000 0.081 0.090 0.111 0.000 0.322 0.046 0.744 0.065 0.739 0.163 0.749 0.089 0.857 0.172 0.765 0.105 0.666 0.140 12/31/2006 0.051 0.085 0.065 0.010 0.215 0.000 0.081 0.087 0.111 0.000 0.322 0.047 0.744 0.067 0.740 0.161 0.750 0.088 0.861 0.163 0.765 0.1 04 0.667 0.139 1/1/2007 0.050 0.083 0.065 0.007 0.213 0.000 0.080 0.081 0.108 0.000 0.322 0.045 0.745 0.067 0.741 0.159 0.747 0.089 0.856 0.166 0.766 0.103 0.669 0.138 1/2/2007 0.048 0.080 0.065 0.004 0.211 0.000 0.079 0.076 0.105 0.000 0.322 0.045 0.745 0.070 0.741 0.159 0.745 0.090 0.828 0.167 0.766 0.103 0.667 0.138 1/3/2007 0.047 0.078 0.065 0.001 0.210 0.000 0.078 0.071 0.103 0.000 0.322 0.045 0.745 0.071 0.741 0.160 0.744 0.090 0.816 0.167 0.766 0.101 0.666 0.138 1/4/2007 0.045 0.076 0.065 0.001 0 .208 0.000 0.077 0.066 0.102 0.000 0.322 0.045 0.746 0.071 0.740 0.160 0.743 0.090 0.830 0.167 0.767 0.102 0.667 0.137 1/5/2007 0.043 0.074 0.064 0.000 0.205 0.000 0.076 0.067 0.100 0.000 0.322 0.045 0.746 0.071 0.740 0.159 0.743 0.090 0.822 0.168 0.767 0 .102 0.668 0.136 1/6/2007 0.042 0.073 0.064 0.000 0.203 0.000 0.075 0.061 0.099 0.000 0.322 0.045 0.747 0.073 0.740 0.159 0.744 0.090 0.823 0.169 0.767 0.103 0.668 0.136 1/7/2007 0.041 0.071 0.063 0.000 0.200 0.000 0.074 0.060 0.096 8.364 0.322 0.046 0.7 48 0.072 0.740 0.161 0.743 0.090 0.768 0.104 0.668 0.136 1/8/2007 0.040 0.070 0.062 0.000 0.196 0.000 0.073 0.056 0.094 7.776 0.322 0.047 0.748 0.073 0.739 0.161 0.744 0.089 0.768 0.105 0.670 0.135 1/9/2007 0.039 0.068 0.062 0.000 0.193 0.000 0.072 0 .054 0.092 1.432 0.322 0.047 0.748 0.073 0.740 0.161 0.745 0.089 0.767 0.107 0.664 0.137

PAGE 314

314 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 1/10/2007 0.037 0.066 0.060 0.000 0.188 0.000 0.070 0.052 0.091 0.872 0.322 0.047 0.749 0.071 0.740 0.160 0.744 0.090 0.767 0.109 0.665 0.137 1/11/2007 0.037 0. 065 0.059 0.000 0.180 0.000 0.069 0.047 0.088 0.542 0.321 0.047 0.748 0.072 0.741 0.157 0.742 0.090 0.765 0.111 0.664 0.137 1/12/2007 0.036 0.065 0.058 0.000 0.171 0.000 0.068 0.049 0.086 0.397 0.320 0.047 0.723 0.069 0.740 0.158 0.744 0.090 0.767 0.1 09 0.666 0.136 1/13/2007 0.035 0.064 0.057 0.000 0.162 0.000 0.068 0.049 0.083 0.298 0.314 0.047 0.689 0.063 0.740 0.157 0.744 0.089 0.767 0.109 0.667 0.135 1/14/2007 0.034 0.063 0.055 0.000 0.153 0.000 0.067 0.046 0.081 0.243 0.310 0.047 0.675 0.056 0 .740 0.157 0.739 0.090 0.767 0.110 0.666 0.135 1/15/2007 0.033 0.062 0.056 0.000 0.145 0.000 0.066 0.046 0.078 0.202 0.303 0.047 0.669 0.053 0.741 0.155 0.738 0.090 0.767 0.112 0.666 0.135 1/16/2007 0.033 0.062 0.056 0.000 0.138 0.000 0.065 0.044 0.0 76 0.177 0.296 0.046 0.667 0.052 0.740 0.156 0.738 0.090 0.768 0.111 0.667 0.134 1/17/2007 0.032 0.062 0.056 0.000 0.132 0.000 0.065 0.044 0.073 0.154 0.288 0.047 0.664 0.052 0.739 0.158 0.739 0.090 0.767 0.113 0.668 0.133 1/18/2007 0.032 0.061 0.055 0.000 0.127 0.000 0.064 0.044 0.072 0.145 0.280 0.046 0.660 0.050 0.741 0.155 0.740 0.090 0.767 0.114 0.669 0.132 1/19/2007 0.032 0.061 0.054 0.000 0.122 0.000 0.064 0.044 0.071 0.138 0.273 0.046 0.657 0.046 0.740 0.156 0.738 0.090 0.766 0.116 0.668 0.133 1/20/2007 0.031 0.060 0.053 0.001 0.117 0.000 0.063 0.041 0.070 0.132 0.269 0.047 0.657 0.046 0.742 0.154 0.739 0.090 0.766 0.116 0.667 0.133 1/21/2007 0.030 0.060 0.052 0.003 0.111 0.000 0.062 0.042 0.069 0.124 0.264 0.048 0.657 0.046 0.741 0.15 4 0.741 0.090 0.766 0.117 0.664 0.134 1/22/2007 0.030 0.059 0.052 0.004 0.105 0.000 0.062 0.042 0.068 0.119 0.260 0.049 0.656 0.046 0.740 0.155 0.739 0.090 0.766 0.117 0.666 0.133 1/23/2007 0.030 0.059 0.051 0.005 0.101 0.000 0.062 0.042 0.067 0.113 0.256 0.048 0.655 0.047 0.741 0.155 0.739 0.090 0.766 0.117 0.668 0.133 1/24/2007 0.029 0.059 0.050 0.006 0.097 0.173 0.061 0.041 0.066 0.110 0.252 0.047 0.652 0.046 0.742 0.153 0.739 0.090 0.766 0.118 0.669 0.133 1/25/2007 0.029 0.059 0.049 0.007 0. 096 0.346 0.060 0.039 0.065 0.108 0.250 0.047 0.653 0.045 0.743 0.153 0.740 0.090 0.766 0.117 0.668 0.134 1/26/2007 0.027 0.056 0.049 0.008 0.094 2.830 0.059 0.040 0.065 0.106 0.248 0.046 0.652 0.047 0.743 0.153 0.739 0.091 0.767 0.116 0.667 0.135 1/ 27/2007 0.026 0.057 0.048 0.009 0.090 0.756 0.059 0.039 0.064 0.103 0.245 0.045 0.648 0.044 0.744 0.153 0.740 0.090 0.767 0.116 0.665 0.136 1/28/2007 0.027 0.058 0.047 0.011 0.086 0.322 0.059 0.039 0.063 0.099 0.240 0.045 0.644 0.043 0.744 0.152 0.738 0 .091 0.766 0.117 0.667 0.136 1/29/2007 0.026 0.056 0.046 0.013 0.083 0.229 0.058 0.038 0.062 0.096 0.236 0.045 0.641 0.045 0.746 0.150 0.740 0.091 0.767 0.116 0.669 0.136 1/30/2007 0.025 0.055 0.045 0.013 0.079 0.181 0.057 0.038 0.061 0.092 0.233 0.0 45 0.640 0.044 0.746 0.148 0.743 0.090 0.767 0.116 0.669 0.136 1/31/2007 0.025 0.055 0.044 0.013 0.078 0.167 0.056 0.037 0.060 0.090 0.228 0.047 0.639 0.043 0.743 0.147 0.740 0.091 2/1/2007 0.025 0.055 0.043 0.014 0.075 0.138 0.056 0.037 0.059 0. 087 0.225 0.048 0.637 0.041 0.736 0.142 0.738 0.092 2/2/2007 0.026 0.057 0.043 0.017 0.073 0.124 0.057 0.037 0.059 0.085 0.223 0.048 0.636 0.039 0.732 0.134 0.738 0.091 2/3/2007 0.026 0.056 0.043 0.017 0.071 0.119 0.057 0.037 0.058 0.084 0.22 0 0.047 0.635 0.040 0.732 0.128 0.739 0.091 2/4/2007 0.025 0.057 0.043 0.018 0.071 0.117 0.056 0.037 0.058 0.084 0.220 0.048 0.637 0.042 0.736 0.129 0.741 0.091 2/5/2007 0.068 0.167 0.042 0.018 0.072 0.122 0.056 0.036 0.058 0.082 0.223 0.047 0.662 0.055 0.738 0.129 0.745 0.091 2/6/2007 0.071 0.153 0.042 0.018 0.072 0.123 0.056 0.036 0.059 0.085 0.225 0.046 0.659 0.055 0.737 0.131 0.742 0.092 2/7/2007 0.066 0.129 0.041 0.019 0.072 0.122 0.057 0.035 0.060 0.087 0.225 0.047 0.657 0. 055 0.737 0.133 0.743 0.092 2/8/2007 0.062 0.114 0.041 0.019 0.071 0.118 0.057 0.033 0.060 0.085 0.224 0.048 0.652 0.052 0.739 0.131 0.744 0.091 2/9/2007 0.059 0.104 0.041 0.019 0.070 0.111 0.057 0.032 0.059 0.086 0.222 0.049 0.645 0.050 0.73 8 0.132 0.743 0.091 2/10/2007 0.057 0.099 0.041 0.016 0.068 0.106 0.057 0.032 0.059 0.083 0.220 0.049 0.641 0.048 0.738 0.132 0.742 0.092 2/11/2007 0.054 0.095 0.042 0.015 0.066 0.099 0.057 0.031 0.058 0.081 0.219 0.049 0.637 0.047 0.743 0.13 2 0.741 0.092 2/12/2007 0.053 0.089 0.043 0.012 0.066 0.099 0.057 0.030 0.057 0.078 0.219 0.050 0.638 0.047 0.744 0.133 0.743 0.092 2/13/2007 0.054 0.093 0.044 0.012 0.067 0.102 0.057 0.030 0.058 0.079 0.219 0.048 0.637 0.047 0.736 0.131 0.73 9 0.093 2/14/2007 0.054 0.093 0.044 0.012 0.065 0.096 0.057 0.030 0.058 0.079 0.213 0.044 0.628 0.042 0.714 0.115 0.739 0.092 2/15/2007 0.052 0.089 0.044 0.012 0.064 0.093 0.057 0.030 0.057 0.078 0.205 0.039 0.623 0.040 0.714 0.106 0.739 0.09 2 2/16/2007 0.061 0.112 0.044 0.012 0.063 0.092 0.056 0.029 0.056 0.076 0.204 0.042 0.624 0.041 0.715 0.103 0.739 0.093 2/17/2007 0.065 0.124 0.043 0.012 0.062 0.089 0.055 0.030 0.055 0.073 0.201 0.042 0.622 0.042 0.716 0.099 0.738 0.093 2/18/2007 0.063 0.116 0.043 0.011 0.059 0.081 0.054 0.029 0.054 0.070 0.197 0.042 0.620 0.039 0.716 0.097 0.739 0.093 2/19/2007 0.061 0.110 0.043 0.011 0.058 0.078 0.054 0.029 0.054 0.065 0.194 0.044 0.618 0.039 0.717 0.094 0.739 0.093 2/2 0/2007 0.059 0.104 0.043 0.011 0.055 0.074 0.054 0.028 0.053 0.064 0.191 0.046 0.617 0.036 0.716 0.094 0.741 0.092 2/21/2007 0.056 0.098 0.044 0.012 0.054 0.070 0.055 0.029 0.052 0.062 0.190 0.049 0.616 0.035 0.718 0.091 0.739 0.093 2/22/2007 0.054 0.093 0.044 0.012 0.052 0.068 0.055 0.029 0.052 0.061 0.190 0.050 0.615 0.035 0.718 0.092 0.742 0.092 2/23/2007 0.052 0.090 0.044 0.013 0.051 0.066 0.055 0.028 0.051 0.061 0.189 0.050 0.614 0.036 0.718 0.092 0.741 0.092 0.759 0.076 0.668 0. 140 2/24/2007 0.050 0.086 0.044 0.014 0.050 0.065 0.055 0.028 0.051 0.061 0.188 0.051 0.613 0.036 0.718 0.092 0.740 0.093 0.761 0.076 0.667 0.141 2/25/2007 0.049 0.083 0.044 0.014 0.049 0.064 0.055 0.028 0.051 0.062 0.186 0.051 0.612 0.036 0.719 0.090 0.738 0.093 0.761 0.078 0.668 0.141 2/26/2007 0.048 0.083 0.044 0.015 0.048 0.063 0.056 0.027 0.051 0.060 0.186 0.048 0.620 0.041 0.728 0.090 0.737 0.093 0.763 0.079 0.669 0.141 2/27/2007 0.047 0.082 0.044 0.017 0.048 0.064 0.072 0.004 0.051 0.060 0. 187 0.045 0.619 0.042 0.722 0.089 0.737 0.094 0.764 0.080 0.671 0.140 2/28/2007 0.048 0.083 0.044 0.017 0.047 0.061 0.073 0.001 0.051 0.062 0.186 0.047 0.614 0.041 0.721 0.088 0.737 0.093 0.763 0.082 0.672 0.139

PAGE 315

315 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 3/1/2007 0.048 0.083 0.044 0.018 0.04 6 0.061 0.071 0.004 0.051 0.062 0.183 0.047 0.610 0.038 0.719 0.089 0.734 0.094 0.743 0.082 0.668 0.141 3/2/2007 0.048 0.083 0.043 0.019 0.046 0.061 0.069 0.007 0.051 0.062 0.178 0.043 0.605 0.034 0.719 0.088 0.734 0.093 0.736 0.082 0.665 0.142 3/3/2 007 0.046 0.079 0.043 0.021 0.045 0.061 0.067 0.011 0.050 0.061 0.174 0.041 0.601 0.031 0.718 0.089 0.731 0.094 0.735 0.080 0.665 0.143 3/4/2007 0.045 0.078 0.043 0.020 0.045 0.061 0.065 0.015 0.051 0.062 0.172 0.039 0.599 0.030 0.719 0.088 0.734 0.094 0.734 0.080 0.665 0.143 3/5/2007 0.042 0.074 0.038 0.018 0.044 0.060 0.063 0.016 0.050 0.062 0.168 0.039 0.596 0.028 0.719 0.087 0.732 0.094 0.733 0.078 0.665 0.144 3/6/2007 0.039 0.069 0.042 0.057 0.062 0.019 0.049 0.060 0.164 0.042 0.593 0.023 0. 718 0.087 0.729 0.094 0.731 0.078 0.665 0.144 3/7/2007 0.038 0.068 0.041 0.057 0.060 0.019 0.049 0.060 0.161 0.044 0.589 0.019 0.717 0.086 0.727 0.093 0.730 0.078 0.671 0.143 3/8/2007 0.037 0.067 0.040 0.055 0.059 0.020 0.049 0.060 0.157 0.046 0. 587 0.014 0.717 0.086 0.724 0.092 0.729 0.079 0.667 0.145 3/9/2007 0.037 0.067 0.038 0.054 0.058 0.020 0.049 0.060 0.154 0.047 0.584 0.010 0.717 0.086 0.721 0.092 0.728 0.080 0.663 0.146 3/10/2007 0.035 0.065 0.037 0.054 0.058 0.022 0.048 0.059 0 .150 0.048 0.581 0.006 0.717 0.085 0.721 0.091 0.727 0.081 0.662 0.146 3/11/2007 0.034 0.064 0.036 0.053 0.057 0.023 0.048 0.059 0.147 0.049 0.579 0.003 0.717 0.083 0.715 0.090 0.726 0.083 0.663 0.145 3/12/2007 0.033 0.063 0.036 0.053 0.056 0.023 0.047 0.059 0.144 0.050 0.577 0.001 0.716 0.082 0.714 0.089 0.726 0.084 0.665 0.143 3/13/2007 0.032 0.062 0.035 0.052 0.055 0.023 0.047 0.059 0.141 0.051 0.575 0.000 0.714 0.084 0.715 0.088 0.725 0.086 0.664 0.142 3/14/2007 0.032 0.062 0.034 0.0 52 0.054 0.023 0.047 0.059 0.138 0.051 0.573 0.000 0.714 0.084 0.714 0.087 0.724 0.089 0.665 0.140 3/15/2007 0.031 0.061 0.033 0.051 0.053 0.023 0.047 0.059 0.135 0.053 0.572 0.000 0.714 0.083 0.713 0.087 0.724 0.091 0.666 0.138 3/16/2007 0.049 0.3 48 0.032 0.051 0.093 0.021 0.046 0.057 0.133 0.055 0.579 0.010 0.715 0.083 0.722 0.086 0.724 0.092 0.667 0.136 3/17/2007 0.078 0.252 0.032 0.050 0.126 0.002 0.046 0.057 0.131 0.053 0.584 0.018 0.717 0.082 0.730 0.085 0.726 0.092 0.663 0.136 3/18/ 2007 0.066 0.134 0.031 0.050 0.105 0.000 0.046 0.057 0.129 0.053 0.579 0.010 0.717 0.082 0.723 0.086 0.726 0.092 0.665 0.135 3/19/2007 0.060 0.112 0.031 0.049 0.094 0.366 0.045 0.057 0.126 0.055 0.576 0.005 0.716 0.083 0.723 0.086 0.725 0.093 0.66 6 0.133 3/20/2007 0.057 0.103 0.030 0.049 0.086 0.147 0.045 0.056 0.125 0.059 0.574 0.001 0.716 0.083 0.724 0.086 0.725 0.094 0.665 0.132 3/21/2007 0.054 0.096 0.030 0.049 0.080 0.094 0.045 0.057 0.123 0.064 0.573 0.000 0.715 0.083 0.725 0.086 3/22/2007 0.051 0.090 0.029 0.049 0.076 0.079 0.045 0.057 0.121 0.066 0.572 0.000 0.715 0.083 0.725 0.086 3/23/2007 0.048 0.085 0.028 0.048 0.073 0.070 0.044 0.056 0.119 0.067 0.571 0.000 0.715 0.084 0.734 0.085 3/24/2007 0.045 0.080 0.028 0.048 0.070 0.064 0.044 0.056 0.118 0.073 0.570 0.000 0.715 0.084 0.725 0.085 3/25/2007 0.043 0.076 0.027 0.048 0.067 0.058 0.044 0.056 0.117 0.076 0.570 0.000 0.715 0.084 0.728 0.084 3/26/2007 0.041 0.074 0.027 0.048 0.065 0.055 0 .044 0.056 0.115 0.569 0.000 0.715 0.084 0.727 0.085 3/27/2007 0.040 0.073 0.027 0.048 0.062 0.052 0.043 0.055 0.114 0.568 0.000 0.715 0.083 0.725 0.085 3/28/2007 0.038 0.070 0.026 0.048 0.059 0.048 0.043 0.056 0.113 0.568 0.000 0.715 0.083 0.726 0.085 0.712 0.327 0.722 0.114 0.667 0.120 3/29/2007 0.037 0.069 0.026 0.048 0.057 0.046 0.043 0.056 0.111 0.567 0.000 0.715 0.083 0.730 0.084 0.710 0.330 0.723 0.114 0.668 0.119 3/30/2007 0.035 0.066 0.025 0.047 0.055 0.045 0.043 0.056 0 .110 0.566 0.000 0.715 0.082 0.727 0.085 0.711 0.328 0.722 0.117 0.668 0.118 3/31/2007 0.034 0.065 0.025 0.047 0.052 0.043 0.043 0.057 0.109 0.566 0.000 0.715 0.082 0.726 0.085 0.710 0.330 0.721 0.120 0.668 0.117 4/1/2007 0.033 0.064 0.025 0.047 0. 050 0.042 0.043 0.057 0.108 0.565 0.000 0.715 0.083 0.729 0.085 0.710 0.331 0.722 0.121 0.667 0.117 4/2/2007 0.032 0.063 0.024 0.047 0.048 0.041 0.043 0.057 0.107 0.564 0.000 0.715 0.083 0.731 0.084 0.709 0.332 0.721 0.123 0.669 0.115 4/3/2007 0.031 0.062 0.024 0.047 0.047 0.040 0.042 0.057 0.106 0.564 0.000 0.715 0.083 0.728 0.085 0.708 0.336 0.721 0.125 0.666 0.115 4/4/2007 0.030 0.061 0.023 0.046 0.045 0.038 0.042 0.057 0.105 0.563 0.000 0.714 0.084 0.728 0.086 0.707 0.339 0.721 0.127 0.665 0.114 4/5/2007 0.028 0.059 0.023 0.046 0.043 0.038 0.042 0.056 0.103 0.562 0.000 0.714 0.083 0.728 0.086 0.706 0.343 0.720 0.128 0.665 0.113 4/6/2007 0.027 0.058 0.022 0.046 0.042 0.037 0.042 0.056 0.103 0.563 0.000 0.714 0.082 0.730 0.085 0.705 0. 345 0.720 0.128 0.667 0.113 4/7/2007 0.026 0.057 0.023 0.046 0.040 0.036 0.042 0.057 0.103 0.562 0.000 0.714 0.082 0.729 0.086 0.707 0.338 0.719 0.128 0.669 0.112 4/8/2007 0.024 0.056 0.022 0.046 0.038 0.036 0.041 0.056 0.101 0.562 0.000 0.713 0.08 2 0.733 0.085 0.708 0.333 0.719 0.126 0.668 0.112 4/9/2007 0.024 0.056 0.021 0.046 0.036 0.035 0.040 0.055 0.100 0.561 0.000 0.713 0.083 0.731 0.085 0.706 0.337 0.719 0.127 0.665 0.113 4/10/2007 0.050 0.042 0.021 0.045 0.081 0.032 0.040 0.055 0.100 0.598 0.021 0.726 0.084 0.737 0.085 0.720 0.331 0.734 0.123 0.666 0.113 4/11/2007 0.087 1.956 0.053 0.111 0.140 0.006 0.071 0.121 0.100 0.615 0.051 0.740 0.085 0.756 0.083 0.753 0.299 0.761 0.111 0.668 0.114 4/12/2007 0.063 0.120 0.079 0.203 0.103 0.576 0.070 0.102 0.100 0.586 0.027 0.718 0.083 0.751 0.085 0.749 0.303 0.735 0.126 0.668 0.115 4/13/2007 0.056 0.099 0.075 0.170 0.090 0.520 0.066 0.085 0.101 0.577 0.014 0.715 0.086 0.747 0.086 0.746 0.305 0.724 0.139 0.668 0.116 4/14/2007 0.051 0. 089 0.072 0.148 0.081 0.124 0.062 0.074 0.102 0.573 0.008 0.715 0.086 0.742 0.087 0.738 0.315 0.723 0.141 0.668 0.117 4/15/2007 0.049 0.086 0.069 0.130 0.073 0.080 0.060 0.069 0.104 0.578 0.019 0.715 0.087 0.737 0.088 0.737 0.317 0.722 0.142 0.667 0 .118 4/16/2007 0.059 0.107 0.066 0.120 0.069 0.070 0.059 0.066 0.107 0.581 0.031 0.716 0.087 0.739 0.088 0.750 0.297 0.722 0.141 0.670 0.119 4/17/2007 0.054 0.094 0.063 0.106 0.063 0.060 0.057 0.062 0.107 0.574 0.016 0.716 0.088 0.733 0.089 0.742 0 .299 0.722 0.141 0.669 0.120 4/18/2007 0.050 0.087 0.061 0.099 0.058 0.053 0.055 0.060 0.107 0.570 0.011 0.715 0.089 0.729 0.090 0.740 0.297 0.720 0.144 0.671 0.120 4/19/2007 0.047 0.081 0.059 0.093 0.053 0.049 0.054 0.058 0.108 0.569 0.007 0.715 0 .089 0.728 0.090 0.739 0.300 0.721 0.144 0.669 0.121

PAGE 316

316 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 4/20/2007 0.044 0.077 0.057 0.089 0.050 0.046 0.053 0.058 0.108 0.567 0.005 0.714 0.090 0.728 0.089 0.736 0.303 0.720 0.147 0.668 0.122 4/21/2007 0.042 0.074 0.056 0.085 0.047 0.044 0.053 0.056 0 .108 0.567 0.005 0.715 0.090 0.722 0.090 0.743 0.300 0.720 0.151 0.667 0.123 4/22/2007 0.041 0.073 0.055 0.084 0.045 0.043 0.052 0.055 0.108 0.566 0.004 0.714 0.091 0.720 0.091 0.740 0.303 0.719 0.153 0.668 0.122 4/23/2007 0.041 0.072 0.052 0.079 0 .043 0.042 0.051 0.055 0.107 0.565 0.004 0.714 0.092 0.722 0.090 0.739 0.301 0.718 0.157 0.669 0.121 4/24/2007 0.040 0.071 0.051 0.076 0.041 0.040 0.051 0.054 0.107 0.564 0.005 0.714 0.092 0.723 0.090 0.731 0.314 0.718 0.158 0.671 0.120 4/25/2007 0.0 38 0.069 0.049 0.072 0.040 0.040 0.050 0.054 0.106 0.564 0.004 0.714 0.092 0.722 0.090 0.729 0.317 0.717 0.163 0.669 0.120 4/26/2007 0.037 0.068 0.047 0.068 0.038 0.039 0.050 0.053 0.106 0.563 0.005 0.713 0.093 0.721 0.090 0.729 0.319 0.716 0.166 0. 667 0.119 4/27/2007 0.035 0.065 0.045 0.067 0.037 0.040 0.049 0.053 0.105 0.562 0.005 0.713 0.094 0.720 0.090 0.728 0.319 0.716 0.170 0.667 0.118 4/28/2007 0.035 0.065 0.044 0.064 0.036 0.039 0.049 0.053 0.105 0.562 0.005 0.713 0.094 0.716 0.090 0. 726 0.324 0.715 0.173 0.667 0.117 4/29/2007 0.033 0.064 0.042 0.063 0.035 0.039 0.048 0.052 0.105 0.561 0.006 0.712 0.095 0.712 0.090 0.724 0.329 0.715 0.177 0.665 0.117 4/30/2007 0.032 0.062 0.041 0.062 0.033 0.038 0.048 0.052 0.104 0.560 0.005 0. 711 0.098 0.714 0.090 0.721 0.334 0.714 0.182 0.665 0.116 5/1/2007 0.030 0.061 0.039 0.060 0.032 0.037 0.047 0.052 0.103 0.560 0.006 0.711 0.098 0.716 0.089 0.720 0.336 0.713 0.187 0.666 0.114 5/2/2007 0.029 0.059 0.038 0.058 0.030 0.037 0.047 0.052 0.103 0.560 0.009 0.711 0.099 0.716 0.089 0.717 0.341 0.714 0.190 0.663 0.114 5/3/2007 0.028 0.058 0.037 0.058 0.030 0.037 0.047 0.052 0.103 0.560 0.010 0.711 0.099 0.715 0.089 0.720 0.337 0.713 0.192 0.664 0.114 5/4/2007 0.027 0.058 0.037 0.058 0 .029 0.037 0.047 0.052 0.103 0.560 0.010 0.711 0.100 0.716 0.089 0.716 0.345 0.713 0.196 0.663 0.113 5/5/2007 0.026 0.057 0.036 0.057 0.029 0.037 0.046 0.052 0.102 0.559 0.010 0.711 0.100 0.714 0.089 0.713 0.354 0.711 0.203 0.661 0.114 5/6/2007 0.025 0.056 0.035 0.056 0.028 0.037 0.046 0.052 0.101 0.559 0.011 0.711 0.102 0.713 0.090 0.711 0.357 0.710 0.207 0.662 0.114 5/7/2007 0.024 0.055 0.033 0.055 0.027 0.036 0.045 0.052 0.100 0.562 0.021 0.711 0.102 0.714 0.089 0.716 0.350 0.714 0.203 0.663 0.114 5/8/2007 0.023 0.054 0.033 0.055 0.026 0.036 0.045 0.052 0.100 0.559 0.011 0.710 0.105 0.714 0.089 0.716 0.345 0.712 0.205 0.662 0.115 5/9/2007 0.024 0.055 0.032 0.054 0.026 0.036 0.045 0.052 0.099 0.558 0.009 0.710 0.106 0.713 0.089 0.717 0 .341 0.712 0.206 0.662 0.115 5/10/2007 0.026 0.057 0.031 0.052 0.025 0.036 0.044 0.051 0.099 0.558 0.008 0.709 0.108 0.713 0.089 0.713 0.351 0.711 0.208 0.661 0.115 5/11/2007 0.026 0.056 0.030 0.053 0.026 0.037 0.044 0.051 0.098 0.558 0.009 0.708 0 .110 0.712 0.089 0.709 0.361 0.711 0.210 0.663 0.115 5/12/2007 0.026 0.057 0.030 0.052 0.025 0.036 0.044 0.051 0.098 0.557 0.010 0.707 0.111 0.712 0.089 0.709 0.363 0.710 0.212 0.664 0.115 5/13/2007 0.026 0.057 0.030 0.052 0.025 0.036 0.043 0.051 0. 098 0.557 0.012 0.707 0.111 0.713 0.089 0.711 0.360 0.710 0.214 0.666 0.115 5/14/2007 0.026 0.057 0.029 0.052 0.026 0.037 0.043 0.051 0.098 0.558 0.016 0.707 0.112 0.714 0.089 0.709 0.365 0.709 0.215 0.665 0.116 5/15/2007 0.026 0.057 0.028 0.051 0. 025 0.036 0.043 0.051 0.098 0.560 0.016 0.707 0.114 0.715 0.089 0.714 0.356 0.711 0.213 0.666 0.116 5/16/2007 0.025 0.056 0.028 0.051 0.024 0.036 0.043 0.051 0.097 0.558 0.008 0.708 0.115 0.715 0.089 0.709 0.368 0.709 0.215 0.665 0.117 5/17/2007 0.02 5 0.056 0.039 0.042 0.027 0.050 0.025 0.037 0.043 0.052 0.097 0.558 0.009 0.707 0.116 0.712 0.089 0.702 0.382 0.708 0.218 0.665 0.117 5/18/2007 0.028 0.055 0.040 0.043 0.026 0.050 0.032 0.035 0.043 0.053 0.096 0.563 0.015 0.708 0.118 0.711 0.090 0.707 0 .375 0.710 0.218 0.664 0.119 5/19/2007 0.084 0.332 0.063 0.067 0.097 0.415 0.134 0.002 0.081 0.637 0.096 0.728 0.088 0.758 0.119 0.730 0.087 0.805 0.278 0.802 0.145 0.667 0.116 5/20/2007 0.059 0.107 0.058 0.055 0.084 0.330 0.091 0.715 0.069 0.099 0.105 0.643 0.075 0.757 0.122 0.731 0.090 0.785 0.295 0.772 0.188 0.667 0.118 5/21/2007 0.053 0.090 0.055 0.051 0.076 0.188 0.082 0.156 0.065 0.085 0.135 0.067 0.603 0.060 0.751 0.122 0.730 0.092 0.764 0.311 0.770 0.190 0.666 0.119 5/22/2007 0.049 0.083 0.054 0.050 0.072 0.153 0.076 0.110 0.062 0.077 0.144 0.063 0.595 0.059 0.742 0.120 0.730 0.093 0.760 0.320 0.770 0.187 0.665 0.120 5/23/2007 0.045 0.077 0.054 0.048 0.069 0.133 0.071 0.093 0.060 0.073 0.144 0.062 0.588 0.055 0.726 0.120 0.729 0.093 0.767 0.30 8 0.769 0.188 0.665 0.122 5/24/2007 0.043 0.073 0.053 0.046 0.065 0.118 0.068 0.085 0.058 0.068 0.143 0.062 0.583 0.049 0.718 0.121 0.729 0.093 0.771 0.304 0.769 0.190 0.663 0.123 5/25/2007 0.041 0.071 0.052 0.044 0.063 0.110 0.065 0.077 0.057 0.066 0.14 2 0.062 0.581 0.048 0.717 0.121 0.729 0.094 0.767 0.310 0.765 0.189 0.666 0.123 5/26/2007 0.039 0.068 0.052 0.043 0.061 0.101 0.063 0.071 0.055 0.063 0.140 0.060 0.577 0.044 0.713 0.123 0.730 0.094 0.759 0.317 0.734 0.204 0.669 0.122 5/27/2007 0.037 0.06 7 0.051 0.042 0.059 0.096 0.061 0.068 0.054 0.061 0.137 0.061 0.573 0.039 0.712 0.124 0.731 0.094 0.755 0.319 0.734 0.199 0.667 0.124 5/28/2007 0.035 0.064 0.051 0.043 0.056 0.089 0.059 0.065 0.053 0.060 0.135 0.061 0.571 0.036 0.712 0.124 0.730 0.094 0.7 46 0.331 0.745 0.183 0.665 0.126 5/29/2007 0.034 0.064 0.050 0.042 0.054 0.085 0.057 0.062 0.052 0.058 0.133 0.064 0.570 0.033 0.710 0.125 0.729 0.094 0.745 0.332 0.743 0.187 0.669 0.126 5/30/2007 0.034 0.064 0.050 0.042 0.052 0.081 0.055 0.059 0.051 0.0 57 0.131 0.065 0.568 0.030 0.709 0.127 0.727 0.094 0.739 0.340 0.722 0.219 0.667 0.128 5/31/2007 0.032 0.062 0.050 0.042 0.050 0.077 0.053 0.057 0.050 0.056 0.128 0.068 0.566 0.028 0.709 0.128 0.724 0.094 0.735 0.344 0.722 0.219 0.672 0.128 6/1/2007 0.03 6 0.070 0.049 0.041 0.049 0.074 0.054 0.055 0.050 0.056 0.128 0.068 0.587 0.039 0.715 0.126 0.727 0.093 0.741 0.339 0.728 0.217 0.673 0.128 6/2/2007 0.103 0.499 0.088 0.260 0.241 0.013 0.170 0.001 0.286 0.055 0.274 0.064 0.737 0.067 0.766 0.116 0.733 0.09 3 0.808 0.282 0.777 0.186 0.672 0.136 6/3/2007 0.071 0.179 0.088 0.204 0.280 0.000 0.125 0.000 0.328 0.000 0.305 0.052 0.734 0.086 0.767 0.116 0.737 0.092 0.810 0.281 0.778 0.188 0.675 0.135 6/4/2007 0.063 0.127 0.084 0.099 0.282 0.000 0.112 0.000 0.318 0.000 0.307 0.052 0.732 0.100 0.766 0.118 0.740 0.092 0.803 0.292 0.778 0.191 0.674 0.136 6/5/2007 0.057 0.109 0.082 0.060 0.283 0.000 0.103 0.000 0.306 0.000 0.310 0.058 0.732 0.103 0.767 0.118 0.742 0.092 0.799 0.299 0.780 0.191 0.673 0.138 6/6/2007 0. 054 0.101 0.080 0.037 0.285 0.000 0.096 1.610 0.282 0.000 0.312 0.062 0.733 0.095 0.766 0.116 0.743 0.092 0.801 0.293 0.781 0.190 0.674 0.138 6/7/2007 0.052 0.096 0.079 0.025 0.286 0.000 0.091 1.398 0.263 0.000 0.316 0.068 0.734 0.100 0.766 0.114 0.746 0. 091 0.802 0.291 0.782 0.186 0.674 0.138 6/8/2007 0.056 0.110 0.079 0.021 0.288 0.000 0.088 0.339 0.230 0.000 0.320 0.073 0.734 0.096 0.767 0.113 0.747 0.091 0.801 0.292 0.779 0.190 0.675 0.137

PAGE 317

317 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (5 5 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 6/9/2007 0.064 0.131 0.081 0.007 0.290 0.000 0.091 0.890 0.2 29 0.003 0.325 0.079 0.734 0.099 0.767 0.112 0.747 0.091 0.792 0.305 0.779 0.189 0.675 0.137 6/10/2007 0.058 0.111 0.080 0.004 0.291 0.000 0.088 0.317 0.216 0.001 0.328 0.082 0.735 0.092 0.767 0.112 0.746 0.092 0.796 0.300 0.782 0.187 0.674 0.138 6/11/20 07 0.054 0.099 0.079 0.003 0.292 0.000 0.083 0.180 0.190 0.000 0.331 0.074 0.738 0.077 0.767 0.111 0.745 0.093 0.803 0.288 0.783 0.188 0.675 0.138 6/12/2007 0.051 0.092 0.077 0.004 0.294 0.000 0.080 0.145 0.174 0.000 0.333 0.070 0.738 0.073 0.767 0.110 0. 743 0.093 0.799 0.294 0.782 0.190 0.674 0.137 6/13/2007 0.052 0.096 0.077 0.001 0.295 0.000 0.079 0.129 0.169 0.000 0.334 0.072 0.738 0.070 0.768 0.108 0.744 0.093 0.799 0.292 0.783 0.185 0.674 0.136 6/14/2007 0.056 0.104 0.077 0.000 0.296 0.000 0.077 0. 115 0.165 0.000 0.334 0.068 0.738 0.068 0.768 0.108 0.745 0.093 0.801 0.288 0.784 0.184 0.674 0.135 6/15/2007 0.055 0.102 0.076 0.000 0.298 0.000 0.075 0.103 0.160 0.000 0.334 0.062 0.738 0.068 0.768 0.109 0.745 0.093 0.802 0.286 0.784 0.186 0.673 0.136 6/16/2007 0.052 0.095 0.075 0.001 0.299 0.000 0.072 0.095 0.155 0.000 0.334 0.058 0.738 0.068 0.768 0.109 0.745 0.093 0.803 0.283 0.785 0.185 0.675 0.135 6/17/2007 0.050 0.089 0.074 0.001 0.300 0.000 0.070 0.086 0.149 0.000 0.332 0.053 0.739 0.066 0.768 0 .109 0.746 0.093 0.804 0.282 0.787 0.182 0.674 0.138 6/18/2007 0.047 0.085 0.075 0.000 0.302 0.000 0.068 0.082 0.146 0.000 0.332 0.051 0.738 0.066 0.769 0.109 0.747 0.092 0.806 0.276 0.787 0.178 0.675 0.139 6/19/2007 0.046 0.082 0.074 0.000 0.302 0.000 0 .066 0.077 0.142 0.000 0.332 0.050 0.737 0.067 0.769 0.109 0.747 0.092 0.806 0.276 0.787 0.177 0.673 0.141 6/20/2007 0.044 0.080 0.073 0.000 0.303 0.000 0.064 0.072 0.137 0.000 0.331 0.049 0.737 0.068 0.769 0.110 0.747 0.092 0.806 0.277 0.787 0.177 0.673 0.144 6/21/2007 0.042 0.077 0.072 0.000 0.303 0.000 0.062 0.068 0.131 0.000 0.325 0.046 0.737 0.069 0.769 0.110 0.747 0.092 0.806 0.279 0.788 0.176 0.672 0.147 6/22/2007 0.040 0.074 0.072 0.000 0.304 0.000 0.060 0.067 0.125 0.000 0.312 0.045 0.717 0.070 0.769 0.110 0.748 0.092 0.806 0.279 0.790 0.174 0.673 0.146 6/23/2007 0.039 0.072 0.071 0.000 0.305 0.000 0.058 0.063 0.119 0.000 0.311 0.045 0.693 0.062 0.769 0.109 0.748 0.091 0.806 0.280 0.793 0.171 0.675 0.145 6/24/2007 0.038 0.070 0.070 0.000 0.305 0.000 0.056 0.060 0.113 0.000 0.310 0.046 0.676 0.052 0.769 0.109 0.746 0.091 0.807 0.278 0.794 0.170 0.671 0.146 6/25/2007 0.036 0.069 0.069 0.000 0.307 0.000 0.055 0.058 0.107 0.000 0.310 0.047 0.668 0.046 0.768 0.110 0.744 0.092 0.807 0.279 0.795 0.170 0.672 0.145 6/26/2007 0.035 0.067 0.068 0.000 0.307 0.000 0.052 0.055 0.102 0.000 0.309 0.049 0.658 0.041 0.768 0.110 0.744 0.092 0.800 0.283 0.798 0.167 0.675 0.143 6/27/2007 0.034 0.066 0.067 0.000 0.305 0.000 0.051 0.054 0.098 0.000 0.309 0.051 0.662 0.042 0.768 0.110 0.747 0.091 0.794 0.284 0.799 0.167 0.677 0.142 6/28/2007 0.036 0.071 0.066 0.000 0.283 0.000 0.085 0.114 0.098 0.244 0.310 0.058 0.714 0.057 0.769 0.108 0.748 0.091 0.800 0.277 0.791 0.177 0.676 0.144 6/29/2007 0.095 0.367 0.113 0.036 0.294 0.000 0.163 0.000 0.282 0.002 0.333 0.063 0.747 0.056 0.771 0.107 0.751 0.090 0.803 0.272 0.789 0.175 0.675 0.152 6/30/2007 0.087 0.764 0.152 0.033 0.300 0.000 0.133 0.000 0.365 0.000 0.343 0.055 0.746 0.070 0.771 0.106 0.751 0.089 0.800 0.278 0.79 0 0.174 0.677 0.148 7/1/2007 0.076 0.219 0.133 0.046 0.301 0.000 0.119 0.000 0.374 0.005 0.346 0.067 0.744 0.076 0.772 0.106 0.751 0.088 0.795 0.289 0.792 0.172 0.675 0.148 7/2/2007 0.086 0.158 0.158 0.041 0.304 0.000 0.131 0.000 0.386 0.002 0.350 0.079 0.744 0.079 0.771 0.107 0.750 0.088 0.791 0.296 0.794 0.171 0.673 0.148 7/3/2007 0.115 0.000 0.359 0.000 0.309 0.000 0.169 0.000 0.398 0.000 0.353 0.082 0.745 0.081 0.771 0.109 0.749 0.088 0.786 0.308 0.797 0.170 0.675 0.146 7/4/2007 0.098 2.004 0.358 0. 000 0.310 0.000 0.163 0.000 0.405 0.000 0.354 0.082 0.746 0.081 0.773 0.107 0.749 0.088 0.787 0.310 0.796 0.171 0.677 0.146 7/5/2007 0.120 0.000 0.358 0.000 0.313 0.000 0.211 0.001 0.414 0.001 0.356 0.072 0.747 0.080 0.773 0.109 0.750 0.088 0.786 0.310 0. 797 0.169 0.677 0.146 7/6/2007 0.131 0.000 0.360 0.000 0.315 0.000 0.233 0.003 0.418 0.005 0.355 0.072 0.748 0.080 0.773 0.110 0.749 0.088 0.790 0.299 0.797 0.169 0.673 0.147 7/7/2007 0.111 0.000 0.359 0.000 0.314 0.000 0.189 0.000 0.422 0.001 0.353 0.07 1 0.747 0.083 0.773 0.111 0.747 0.089 0.794 0.292 0.796 0.168 0.674 0.144 7/8/2007 0.103 0.000 0.360 0.000 0.315 0.000 0.187 0.000 0.428 0.001 0.353 0.070 0.748 0.083 0.773 0.112 0.748 0.089 0.799 0.284 0.796 0.168 0.676 0.142 7/9/2007 0.091 3.301 0.360 0.000 0.315 0.000 0.163 0.000 0.431 0.001 0.351 0.070 0.747 0.088 0.773 0.113 0.748 0.089 0.800 0.281 0.796 0.171 0.673 0.142 7/10/2007 0.080 0.290 0.346 0.000 0.315 0.000 0.145 0.000 0.434 0.003 0.350 0.070 0.747 0.093 0.773 0.113 0.750 0.088 0.796 0.288 0.795 0.175 0.673 0.142 7/11/2007 0.074 0.202 0.294 0.000 0.315 0.000 0.134 0.000 0.437 0.003 0.348 0.066 0.745 0.099 0.773 0.113 0.751 0.088 0.789 0.299 0.796 0.177 0.675 0.142 7/12/2007 0.070 0.171 0.252 0.000 0.316 0.000 0.131 0.000 0.439 0.003 0.348 0.063 0.745 0.100 0.774 0.114 0.753 0.087 0.792 0.295 0.799 0.175 0.673 0.144 7/13/2007 0.067 0.150 0.237 0.000 0.317 0.000 0.128 0.000 0.441 0.002 0.347 0.061 0.746 0.101 0.774 0.115 0.754 0.087 0.794 0.293 0.797 0.178 0.676 0.146 7/14/2007 0.064 0.139 0.227 0.000 0.318 0.000 0.127 0.000 0.441 0.003 0.347 0.059 0.747 0.101 0.774 0.116 0.751 0.088 0.789 0.300 0.799 0.173 0.674 0.150 7/15/2007 0.063 0.132 0.220 0.000 0.319 0.000 0.124 0.000 0.441 0.002 0.346 0.059 0.746 0.104 0.775 0.116 0.752 0.088 0.79 0 0.298 0.798 0.171 0.674 0.153 7/16/2007 0.066 0.152 0.220 0.000 0.322 0.000 0.132 0.000 0.443 0.002 0.347 0.058 0.745 0.106 0.776 0.115 0.750 0.089 0.791 0.296 0.799 0.167 0.675 0.155 7/17/2007 0.073 0.199 0.226 0.000 0.325 0.000 0.133 0.000 0.443 0.00 1 0.346 0.058 0.745 0.108 0.776 0.115 0.752 0.088 0.794 0.291 0.798 0.164 0.673 0.156 7/18/2007 0.067 0.150 0.219 0.000 0.326 0.000 0.122 0.000 0.443 0.001 0.345 0.056 0.744 0.112 0.776 0.115 0.751 0.088 0.796 0.287 0.798 0.164 0.672 0.156 7/19/2007 0.06 5 0.141 0.216 0.000 0.327 0.000 0.126 0.000 0.443 0.001 0.346 0.057 0.744 0.112 0.775 0.116 0.752 0.088 0.788 0.299 0.796 0.162 0.672 0.159 7/20/2007 0.067 0.149 0.215 0.000 0.328 0.000 0.127 0.000 0.443 0.001 0.345 0.057 0.745 0.113 0.776 0.117 0.753 0.0 88 0.786 0.302 0.797 0.159 0.672 0.160 7/21/2007 0.092 0.091 0.233 0.000 0.331 0.000 0.187 0.003 0.443 0.001 0.346 0.057 0.744 0.114 0.776 0.118 0.754 0.088 0.788 0.299 0.796 0.157 0.675 0.161 7/22/2007 0.127 0.000 0.269 0.000 0.334 0.000 0.260 0.006 0.4 44 0.001 0.347 0.056 0.745 0.114 0.775 0.118 0.755 0.087 0.793 0.288 0.792 0.159 0.675 0.160 7/23/2007 0.116 0.000 0.269 0.000 0.334 0.000 0.240 0.003 0.442 0.001 0.346 0.056 0.745 0.114 0.776 0.116 0.756 0.086 0.797 0.280 0.790 0.160 0.672 0.158 7/24/20 07 0.109 0.651 0.269 0.000 0.335 0.000 0.211 0.002 0.441 0.001 0.346 0.056 0.745 0.114 0.775 0.116 0.755 0.086 0.798 0.278 0.790 0.161 0.673 0.155 7/25/2007 0.128 0.000 0.271 0.000 0.337 0.000 0.224 0.002 0.441 0.000 0.340 0.056 0.745 0.113 0.776 0.116 0. 755 0.085 0.799 0.275 0.789 0.163 0.675 0.150 7/26/2007 0.105 0.000 0.270 0.000 0.336 0.000 0.188 0.000 0.440 0.000 0.332 0.055 0.747 0.108 0.775 0.115 0.755 0.085 0.798 0.276 0.787 0.166 0.675 0.146 7/27/2007 0.103 3.280 0.271 0.000 0.337 0.000 0.177 0. 000 0.440 0.000 0.331 0.056 0.747 0.104 0.775 0.115 0.754 0.084 0.800 0.274 0.791 0.162 0.673 0.143 7/28/2007 0.101 0.566 0.271 0.000 0.338 0.000 0.177 0.000 0.439 0.000 0.331 0.057 0.747 0.105 0.775 0.115 0.754 0.084 0.795 0.281 0.790 0.165 0.671 0.140

PAGE 318

318 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 7/29/2007 0.090 0.448 0.271 0.000 0.338 0.000 0.168 0.000 0.438 0.000 0.330 0.056 0.746 0.108 0.775 0.116 0.753 0.084 0.790 0.290 0.791 0.166 0.669 0.140 7/30/2007 0.093 1.699 0.273 0.000 0.339 0.000 0.167 0.000 0.438 0.000 0.329 0.056 0.745 0.110 0.775 0.116 0.754 0.084 0.783 0.301 0.793 0.165 0.675 0.136 7/31/2007 0.081 0.303 0.264 0.000 0.339 0.000 0.146 0.000 0.436 0.000 0.328 0.056 0.746 0.108 0.775 0.116 0.754 0.084 0.780 0.306 0.794 0.167 0.669 0.137 8/1/2007 0.092 0.178 0.263 0.000 0.341 0.000 0 .159 0.000 0.437 0.000 0.329 0.056 0.745 0.108 0.774 0.116 0.754 0.084 0.782 0.305 0.794 0.168 0.671 0.136 8/2/2007 0.100 0.507 0.267 0.000 0.343 0.000 0.168 0.000 0.437 0.000 0.329 0.054 0.746 0.109 0.775 0.115 0.754 0.084 0.783 0.306 0.794 0.167 0.669 0 .135 8/3/2007 0.084 0.426 0.268 0.000 0.343 0.000 0.153 0.000 0.435 0.000 0.328 0.057 0.745 0.112 0.774 0.116 0.754 0.084 0.782 0.308 0.794 0.169 0.670 0.134 8/4/2007 0.080 0.297 0.269 0.000 0.343 0.000 0.155 0.000 0.435 0.000 0.328 0.058 0.746 0.113 0.7 74 0.116 0.754 0.084 0.780 0.311 0.792 0.171 0.671 0.134 8/5/2007 0.077 0.233 0.267 0.000 0.344 0.000 0.153 0.000 0.434 0.000 0.328 0.058 0.745 0.113 0.775 0.117 0.754 0.084 0.776 0.316 0.795 0.168 0.669 0.135 8/6/2007 0.074 0.199 0.260 0.000 0.345 0.000 0.147 0.000 0.434 0.000 0.328 0.059 0.745 0.113 0.775 0.117 0.755 0.084 0.775 0.320 0.795 0.168 0.669 0.137 8/7/2007 0.071 0.176 0.256 0.000 0.345 0.000 0.144 0.000 0.433 0.000 0.327 0.059 0.745 0.113 0.775 0.118 0.756 0.084 0.774 0.322 0.795 0.169 0.669 0.139 8/8/2007 0.068 0.158 0.252 0.000 0.346 0.000 0.144 0.000 0.433 0.000 0.327 0.059 0.747 0.111 0.776 0.120 0.756 0.084 0.774 0.322 0.795 0.168 0.669 0.143 8/9/2007 0.067 0.150 0.206 0.000 0.347 0.000 0.142 0.000 0.432 0.000 0.327 0.059 0.747 0.110 0 .776 0.121 0.754 0.086 0.776 0.319 0.796 0.164 0.672 0.145 8/10/2007 0.083 0.343 0.182 0.000 0.349 0.000 0.154 0.000 0.433 0.000 0.328 0.059 0.748 0.109 0.776 0.121 0.754 0.086 0.773 0.324 0.798 0.159 0.671 0.148 8/11/2007 0.089 0.739 0.206 0.000 0.350 0 .000 0.159 0.000 0.433 0.000 0.327 0.057 0.747 0.110 0.777 0.120 0.755 0.085 0.778 0.315 0.798 0.157 0.677 0.145 8/12/2007 0.081 0.320 0.190 0.000 0.350 0.000 0.152 0.000 0.432 0.000 0.327 0.058 0.745 0.113 0.777 0.121 0.755 0.085 0.771 0.325 0.798 0.157 0.671 0.146 8/13/2007 0.074 0.205 0.175 0.000 0.349 0.000 0.147 0.000 0.431 0.000 0.327 0.059 0.745 0.114 0.777 0.122 0.757 0.084 0.770 0.326 0.800 0.154 0.673 0.146 8/14/2007 0.084 0.136 0.188 0.000 0.350 0.000 0.157 0.002 0.432 0.000 0.327 0.059 0.745 0.113 0.777 0.122 0.758 0.084 0.771 0.325 0.802 0.149 0.674 0.147 8/15/2007 0.118 0.000 0.343 0.000 0.353 0.000 0.340 0.020 0.434 0.000 0.331 0.061 0.748 0.099 0.776 0.124 0.758 0.085 0.780 0.310 0.802 0.146 0.675 0.148 8/16/2007 0.106 0.533 0.314 0.000 0.353 0.000 0.270 0.015 0.433 0.000 0.330 0.060 0.750 0.097 0.775 0.127 0.758 0.085 0.789 0.292 0.803 0.142 0.676 0.149 8/17/2007 0.085 0.521 0.267 0.000 0.351 0.000 0.192 0.004 0.431 0.000 0.329 0.060 0.746 0.106 0.775 0.128 0.758 0.085 0.795 0.282 0.804 0.140 0.672 0.150 8/18/2007 0.076 0.225 0.218 0.000 0.350 0.000 0.167 0.000 0.430 0.000 0.328 0.060 0.745 0.112 0.774 0.129 0.758 0.085 0.790 0.290 0.804 0.138 0.673 0.150 8/19/2007 0.072 0.185 0.185 0.000 0.351 0.000 0.155 0.003 0.430 0.000 0.328 0.061 0.744 0.115 0.774 0.129 0.757 0.085 0.796 0.281 0.804 0.137 0.672 0.151 8/20/2007 0.069 0.163 0.169 0.000 0.350 0.000 0.429 0.000 0.328 0.061 0.744 0.117 0.773 0.130 0.757 0.085 0.795 0.283 0.805 0.136 0.674 0.152 8/21/2007 0.066 0.147 0.158 0.000 0.3 50 0.000 0.428 0.000 0.327 0.062 0.744 0.119 0.773 0.131 0.758 0.085 0.795 0.283 0.807 0.132 0.673 0.154 8/22/2007 0.064 0.139 0.153 0.000 0.349 0.000 0.428 0.001 0.328 0.062 0.744 0.120 0.774 0.131 0.757 0.085 0.795 0.283 0.808 0.128 0.673 0.156 8/2 3/2007 0.065 0.140 0.150 0.000 0.349 0.000 0.428 0.001 0.327 0.062 0.744 0.120 0.774 0.133 0.759 0.085 0.795 0.283 0.804 0.130 0.672 0.159 8/24/2007 0.064 0.138 0.146 0.000 0.348 0.000 0.427 0.001 0.326 0.062 0.744 0.120 0.774 0.134 0.758 0.086 0.796 0.281 0.808 0.123 0.674 0.161 8/25/2007 0.063 0.133 0.144 0.000 0.347 0.000 0.428 0.001 0.326 0.062 0.744 0.122 0.775 0.133 0.760 0.085 0.794 0.285 0.805 0.124 0.674 0.163 8/26/2007 0.080 0.535 0.168 0.000 0.349 0.000 0.429 0.001 0.327 0.060 0.744 0. 123 0.776 0.132 0.760 0.085 0.796 0.282 0.806 0.119 0.674 0.163 8/27/2007 0.080 0.301 0.175 0.000 0.349 0.000 0.428 0.001 0.326 0.059 0.743 0.124 0.776 0.131 0.759 0.085 0.797 0.280 0.806 0.119 0.675 0.161 8/28/2007 0.072 0.187 0.159 0.000 0.348 0.000 0.427 0.000 0.326 0.060 0.743 0.125 0.777 0.130 0.759 0.085 0.795 0.281 0.809 0.115 0.675 0.162 8/29/2007 0.068 0.159 0.150 0.000 0.347 0.000 0.426 0.001 0.325 0.061 0.744 0.125 0.777 0.131 0.759 0.085 0.788 0.291 0.806 0.117 0.675 0.163 8/30/2007 0. 065 0.142 0.144 0.000 0.346 0.000 0.425 0.001 0.325 0.062 0.744 0.124 0.777 0.133 0.759 0.085 0.788 0.292 0.803 0.118 0.677 0.164 8/31/2007 0.064 0.139 0.143 0.000 0.347 0.000 0.426 0.001 0.325 0.062 0.744 0.124 0.777 0.134 0.758 0.086 0.789 0.291 0.8 05 0.113 0.676 0.166 9/1/2007 0.071 0.176 0.148 0.000 0.347 0.000 0.426 0.001 0.325 0.062 0.744 0.125 0.777 0.134 0.758 0.086 0.790 0.289 0.805 0.110 0.673 0.168 9/2/2007 0.067 0.149 0.141 0.000 0.347 0.000 0.425 0.001 0.325 0.062 0.744 0.126 0.776 0 .136 0.757 0.086 0.791 0.287 0.804 0.109 0.673 0.169 9/3/2007 0.064 0.137 0.138 0.000 0.347 0.000 0.425 0.001 0.325 0.062 0.743 0.127 0.776 0.138 0.755 0.087 0.792 0.286 0.802 0.109 0.676 0.170 9/4/2007 0.066 0.144 0.139 0.000 0.347 0.000 0.425 0.001 0.325 0.062 0.742 0.127 0.775 0.140 0.757 0.087 0.792 0.285 0.804 0.105 0.675 0.171 9/5/2007 0.065 0.142 0.138 0.000 0.346 0.000 0.424 0.001 0.324 0.062 0.743 0.127 0.774 0.142 0.754 0.087 0.793 0.284 0.801 0.104 0.675 0.172 9/6/2007 0.062 0.129 0.132 0.000 0.346 0.000 0.424 0.001 0.325 0.061 0.743 0.127 0.774 0.144 0.759 0.087 0.792 0.286 0.800 0.104 0.677 0.173 9/7/2007 0.061 0.125 0.131 0.000 0.346 0.000 0.424 0.001 0.324 0.062 0.743 0.130 0.774 0.146 0.763 0.086 0.789 0.291 0.799 0.105 0.677 0 .173 9/8/2007 0.061 0.124 0.143 0.000 0.346 0.000 0.424 0.002 0.324 0.061 0.741 0.134 0.773 0.148 0.762 0.087 0.788 0.295 0.798 0.107 0.676 0.174 9/9/2007 0.070 0.173 0.170 0.000 0.347 0.000 0.425 0.002 0.325 0.061 0.742 0.134 0.773 0.147 0.762 0.087 0.788 0.295 0.798 0.106 0.675 0.174 9/10/2007 0.069 0.163 0.167 0.000 0.346 0.000 0.424 0.002 0.324 0.061 0.742 0.135 0.774 0.146 0.761 0.087 0.789 0.296 0.799 0.105 0.675 0.174 9/11/2007 0.072 0.179 0.170 0.000 0.347 0.000 0.424 0.002 0.324 0.061 0 .741 0.137 0.774 0.145 0.761 0.087 0.788 0.298 0.799 0.105 0.675 0.174 9/12/2007 0.068 0.157 0.164 0.000 0.346 0.000 0.423 0.001 0.323 0.060 0.739 0.139 0.776 0.142 0.761 0.086 0.786 0.301 0.802 0.102 0.675 0.172 9/13/2007 0.064 0.137 0.158 0.000 0.346 0.000 0.422 0.000 0.323 0.060 0.741 0.131 0.777 0.142 0.756 0.086 0.787 0.293 0.802 0.102 0.670 0.174 9/14/2007 0.061 0.123 0.153 0.000 0.345 0.000 0.422 0.000 0.322 0.060 0.744 0.119 0.777 0.141 0.760 0.085 0.791 0.280 0.802 0.101 0.674 0.172 9/15/ 2007 0.060 0.118 0.151 0.000 0.345 0.000 0.422 0.000 0.322 0.060 0.744 0.114 0.776 0.141 0.759 0.085 0.791 0.277 0.801 0.101 0.673 0.172 9/16/2007 0.064 0.140 0.151 0.000 0.345 0.000 0.421 0.001 0.322 0.061 0.747 0.107 0.776 0.142 0.760 0.085 0.794 0. 269 0.801 0.102 0.674 0.171

PAGE 319

319 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 9/17/2007 0.070 0.169 0.156 0.000 0.345 0.000 0.421 0.000 0.323 0.060 0.747 0.107 0.775 0.143 0.756 0.085 0.794 0.269 0.800 0.103 0.670 0.173 9/18/2007 0.103 0.079 0.284 0.006 0.347 0.000 0. 423 0.001 0.324 0.061 0.746 0.110 0.776 0.142 0.756 0.085 0.793 0.272 0.801 0.102 0.671 0.172 9/19/2007 0.099 0.543 0.358 0.002 0.347 0.000 0.421 0.001 0.325 0.060 0.747 0.110 0.777 0.138 0.755 0.085 0.794 0.272 0.802 0.098 0.670 0.173 9/20/2007 0.084 0.425 0.309 0.000 0.346 0.000 0.419 0.001 0.324 0.061 0.746 0.113 0.778 0.135 0.754 0.086 0.792 0.275 0.803 0.096 0.668 0.173 9/21/2007 0.087 0.183 0.271 0.000 0.347 0.000 0.420 0.000 0.324 0.061 0.744 0.118 0.779 0.133 0.754 0.086 0.791 0.280 0.804 0 .094 0.669 0.173 9/22/2007 0.106 0.000 0.315 0.000 0.349 0.000 0.422 0.000 0.325 0.057 0.744 0.115 0.777 0.134 0.755 0.085 0.791 0.277 0.802 0.095 0.670 0.172 9/23/2007 0.100 0.108 0.307 0.000 0.349 0.000 0.422 0.000 0.325 0.059 0.745 0.109 0.776 0.1 32 0.753 0.085 0.792 0.271 0.802 0.093 0.668 0.172 9/24/2007 0.103 0.000 0.312 0.000 0.349 0.000 0.422 0.000 0.325 0.059 0.746 0.106 0.775 0.132 0.753 0.085 0.793 0.269 0.801 0.093 0.668 0.172 9/25/2007 0.121 0.000 0.344 0.000 0.350 0.000 0.423 0.000 0.326 0.060 0.749 0.101 0.776 0.131 0.754 0.084 0.796 0.263 0.801 0.092 0.669 0.172 9/26/2007 0.160 0.000 0.357 0.000 0.351 0.000 0.423 0.000 0.326 0.061 0.749 0.099 0.776 0.129 0.755 0.084 0.796 0.261 0.801 0.090 0.670 0.171 9/27/2007 0.165 0.000 0.3 64 0.000 0.350 0.000 0.422 0.000 0.326 0.060 0.748 0.097 0.777 0.127 0.757 0.083 0.795 0.260 0.803 0.088 0.672 0.170 9/28/2007 0.114 0.000 0.365 0.000 0.347 0.000 0.420 0.000 0.324 0.059 0.748 0.097 0.779 0.124 0.757 0.083 0.795 0.260 0.804 0.086 0.67 1 0.170 9/29/2007 0.098 2.710 0.325 0.000 0.346 0.000 0.420 0.000 0.324 0.058 0.747 0.099 0.779 0.124 0.760 0.082 0.794 0.262 0.805 0.085 0.674 0.169 9/30/2007 0.120 0.000 0.358 0.000 0.347 0.000 0.420 0.000 0.325 0.058 0.748 0.102 0.780 0.124 0.759 0.082 0.795 0.264 0.805 0.085 0.673 0.169 10/1/2007 0.103 0.541 0.326 0.000 0.346 0.000 0.419 0.000 0.324 0.058 0.748 0.101 0.780 0.123 0.759 0.082 0.795 0.263 0.805 0.085 0.673 0.169 10/2/2007 0.124 0.000 0.366 0.000 0.347 0.000 0.419 0.000 0.325 0. 058 0.748 0.099 0.780 0.123 0.759 0.082 0.795 0.262 0.805 0.084 0.673 0.169 10/3/2007 0.104 0.000 0.331 0.000 0.345 0.000 0.418 0.000 0.323 0.058 0.747 0.099 0.779 0.122 0.758 0.082 0.794 0.262 0.805 0.084 0.673 0.168 10/4/2007 0.092 2.849 0.324 0.000 0.344 0.000 0.417 0.000 0.323 0.057 0.748 0.098 0.778 0.122 0.757 0.082 0.794 0.264 0.805 0.083 0.672 0.162 10/5/2007 0.088 0.587 0.310 0.000 0.344 0.000 0.416 0.000 0.323 0.056 0.748 0.097 0.775 0.125 0.758 0.082 0.792 0.276 0.678 0.144 10/6/2007 0.083 0.373 0.290 0.000 0.343 0.000 0.415 0.000 0.323 0.056 0.747 0.099 0.775 0.125 0.758 0.082 0.793 0.276 0.683 0.142 10/7/2007 0.079 0.270 0.266 0.000 0.342 0.000 0.415 0.000 0.322 0.055 0.746 0.101 0.775 0.125 0.758 0.082 0.792 0.278 0.682 0.1 42 10/8/2007 0.077 0.234 0.249 0.000 0.342 0.000 0.414 0.000 0.323 0.055 0.746 0.104 0.776 0.124 0.758 0.082 0.791 0.281 0.679 0.143 10/9/2007 0.074 0.202 0.227 0.000 0.341 0.000 0.414 0.000 0.322 0.055 0.745 0.109 0.776 0.125 0.758 0.082 0.791 0.2 81 0.684 0.141 10/10/2007 0.072 0.184 0.206 0.000 0.340 0.000 0.413 0.000 0.322 0.055 0.745 0.111 0.776 0.124 0.758 0.082 0.790 0.282 0.681 0.142 10/11/2007 0.069 0.169 0.195 0.000 0.340 0.000 0.412 0.000 0.322 0.055 0.744 0.114 0.776 0.124 0.757 0.082 0.791 0.281 0.677 0.144 10/12/2007 0.067 0.157 0.186 0.000 0.339 0.000 0.412 0.000 0.322 0.054 0.744 0.116 0.776 0.125 0.758 0.082 0.791 0.280 0.675 0.146 10/13/2007 0.065 0.142 0.179 0.000 0.339 0.000 0.412 0.000 0.322 0.054 0.744 0.117 0 .775 0.126 0.758 0.082 0.792 0.278 0.677 0.146 10/14/2007 0.063 0.136 0.173 0.000 0.339 0.000 0.412 0.000 0.322 0.055 0.743 0.120 0.775 0.127 0.758 0.082 0.793 0.275 0.675 0.147 10/15/2007 0.062 0.131 0.168 0.000 0.339 0.000 0.412 0.000 0.322 0.0 55 0.743 0.122 0.775 0.128 0.758 0.082 0.795 0.271 0.683 0.146 10/16/2007 0.061 0.129 0.166 0.000 0.339 0.000 0.412 0.000 0.322 0.055 0.742 0.124 0.774 0.128 0.758 0.082 0.794 0.271 0.680 0.148 10/17/2007 0.066 0.147 0.175 0.000 0.340 0.000 0.413 0.000 0.322 0.056 0.743 0.123 0.775 0.127 0.756 0.082 0.794 0.270 0.679 0.148 10/18/2007 0.067 0.157 0.175 0.000 0.339 0.000 0.120 0.000 0.412 0.000 0.322 0.056 0.743 0.122 0.777 0.124 0.755 0.083 0.796 0.266 0.679 0.148 10/19/2007 0.070 0.168 0.181 0.000 0.339 0.000 0.132 0.002 0.412 0.000 0.323 0.055 0.744 0.119 0.781 0.122 0.753 0.083 10/20/2007 0.095 3.197 0.259 0.000 0.341 0.000 0.181 0.009 0.413 0.000 0.325 0.052 0.745 0.113 0.782 0.120 0.754 0.083 10/21/2007 0.084 0.390 0.239 0.0 00 0.341 0.000 0.163 0.001 0.412 0.000 0.324 0.053 0.746 0.110 0.781 0.120 0.753 0.083 10/22/2007 0.079 0.254 0.228 0.000 0.340 0.000 0.154 0.000 0.411 0.000 0.324 0.054 0.745 0.112 0.782 0.119 0.752 0.083 10/23/2007 0.074 0.196 0.209 0.000 0 .339 0.000 0.144 0.000 0.410 0.000 0.323 0.055 0.744 0.114 0.782 0.120 0.752 0.083 10/24/2007 0.072 0.180 0.199 0.000 0.338 0.000 0.148 0.000 0.410 0.000 0.323 0.055 0.745 0.115 0.782 0.119 0.754 0.083 10/25/2007 0.072 0.184 0.199 0.000 0.339 0.000 0.152 0.000 0.410 0.000 0.323 0.055 0.744 0.118 0.782 0.120 0.756 0.082 10/26/2007 0.087 0.959 0.215 0.000 0.340 0.000 0.166 0.000 0.411 0.000 0.324 0.055 0.744 0.118 0.782 0.119 0.756 0.082 10/27/2007 0.086 0.470 0.221 0.000 0.340 0.0 00 0.159 0.000 0.411 0.000 0.324 0.054 0.744 0.114 0.783 0.117 0.754 0.083 10/28/2007 0.077 0.232 0.205 0.000 0.339 0.000 0.146 0.000 0.409 0.000 0.323 0.054 0.745 0.108 0.782 0.117 0.754 0.082 10/29/2007 0.077 0.239 0.201 0.000 0.339 0.000 0 .145 0.000 0.410 0.000 0.323 0.055 0.747 0.105 0.782 0.117 0.753 0.083 10/30/2007 0.077 0.230 0.200 0.000 0.339 0.000 0.145 0.000 0.409 0.000 0.323 0.055 0.748 0.103 0.782 0.117 0.752 0.083 10/31/2007 0.080 0.365 0.203 0.000 0.338 0.000 0.149 0.000 0.409 0.000 0.323 0.055 0.747 0.104 0.781 0.117 0.751 0.083 11/1/2007 0.088 0.632 0.221 0.000 0.339 0.000 0.166 0.000 0.409 0.000 0.323 0.055 0.747 0.107 0.781 0.116 0.751 0.083 11/2/2007 0.081 0.312 0.213 0.000 0.338 0.000 0.160 0.000 0.408 0.000 0.324 0.055 0.746 0.110 0.782 0.115 0.752 0.083 0.806 0.244 0.676 0.141 11/3/2007 0.076 0.219 0.201 0.000 0.337 0.000 0.149 0.000 0.408 0.000 0.324 0.055 0.746 0.109 0.783 0.114 0.754 0.082 0.807 0.242 0.676 0.141 11/4/2007 0.071 0.172 0 .190 0.000 0.337 0.000 0.140 0.000 0.408 0.000 0.324 0.055 0.746 0.107 0.783 0.114 0.754 0.082 0.807 0.241 0.679 0.139 11/5/2007 0.068 0.155 0.183 0.000 0.337 0.000 0.136 0.000 0.408 0.000 0.323 0.056 0.745 0.109 0.782 0.115 0.755 0.082 0.807 0.241 0. 678 0.140

PAGE 320

320 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 11/6/2007 0.066 0.144 0.178 0.000 0.336 0.000 0.134 0.000 0.408 0.000 0.323 0.055 0.745 0.109 0.781 0.116 0.757 0.081 0.807 0.239 0.679 0.139 11/7/2007 0.064 0.137 0.174 0.000 0.336 0.000 0.131 0.000 0.408 0.000 0.324 0.055 0.745 0.108 0.781 0.116 0.756 0.081 0.808 0.238 0.682 0.138 11/8/2007 0.068 0.133 0.171 0.000 0.336 0.000 0.130 0.000 0.408 0.000 0.323 0.055 0.745 0.108 0.781 0.116 0.754 0.082 0.814 0.229 0.682 0.138 11/9/2007 0.071 0.132 0.169 0.000 0.336 0.000 0.130 0.000 0.408 0 .000 0.324 0.055 0.746 0.108 0.780 0.116 0.753 0.082 0.818 0.220 0.681 0.139 11/10/2007 0.068 0.152 0.166 0.000 0.336 0.000 0.128 0.000 0.408 0.000 0.323 0.055 0.746 0.109 0.781 0.116 0.752 0.082 0.819 0.218 0.680 0.140 11/11/2007 0.067 0.143 0.164 0 .000 0.336 0.000 0.127 0.000 0.408 0.000 0.323 0.056 0.745 0.112 0.782 0.113 0.752 0.082 0.818 0.218 0.677 0.141 11/12/2007 0.066 0.139 0.163 0.000 0.336 0.000 0.127 0.000 0.409 0.000 0.324 0.056 0.744 0.114 0.782 0.113 0.753 0.082 0.818 0.216 0.676 0 .142 11/13/2007 0.078 0.816 0.180 0.000 0.338 0.000 0.142 0.000 0.410 0.000 0.324 0.056 0.743 0.115 0.782 0.113 0.754 0.082 0.817 0.217 0.675 0.142 11/14/2007 0.085 0.410 0.196 0.000 0.338 0.000 0.148 0.000 0.409 0.000 0.324 0.057 0.744 0.112 0.782 0.1 11 0.756 0.081 0.817 0.217 0.680 0.139 11/15/2007 0.079 0.252 0.186 0.000 0.336 0.000 0.143 0.000 0.409 0.000 0.324 0.058 0.744 0.112 0.781 0.112 0.754 0.081 0.818 0.215 0.683 0.137 11/16/2007 0.075 0.199 0.179 0.000 0.336 0.000 0.138 0.000 0.408 0.0 00 0.324 0.058 0.744 0.113 0.782 0.112 0.754 0.081 0.817 0.217 0.682 0.138 11/17/2007 0.072 0.173 0.173 0.000 0.336 0.000 0.135 0.000 0.408 0.000 0.324 0.059 0.745 0.110 0.781 0.112 0.752 0.082 0.818 0.214 0.682 0.138 11/18/2007 0.070 0.161 0.168 0.0 00 0.336 0.000 0.131 0.000 0.409 0.000 0.324 0.059 0.745 0.108 0.781 0.112 0.750 0.082 0.821 0.209 0.682 0.138 11/19/2007 0.069 0.154 0.166 0.000 0.336 0.000 0.130 0.000 0.409 0.000 0.324 0.059 0.745 0.108 0.780 0.113 0.748 0.083 0.822 0.207 0.681 0.1 38 11/20/2007 0.068 0.152 0.165 0.000 0.336 0.000 0.129 0.000 0.409 0.000 0.324 0.059 0.745 0.106 0.779 0.114 0.750 0.082 0.821 0.207 0.680 0.138 11/21/2007 0.066 0.142 0.162 0.000 0.335 0.000 0.127 0.000 0.408 0.000 0.324 0.060 0.746 0.105 0.779 0.114 0.754 0.081 0.821 0.207 0.679 0.139 11/22/2007 0.066 0.143 0.161 0.000 0.335 0.000 0.126 0.000 0.408 0.000 0.324 0.060 0.746 0.106 0.779 0.114 0.754 0.081 0.821 0.207 0.678 0.140 11/23/2007 0.066 0.138 0.160 0.000 0.335 0.000 0.126 0.000 0.408 0.000 0.323 0.060 0.746 0.106 0.779 0.113 0.754 0.081 0.822 0.207 0.677 0.140 11/24/2007 0.065 0.137 0.159 0.000 0.335 0.000 0.124 0.000 0.408 0.000 0.324 0.060 0.746 0.103 0.779 0.113 0.753 0.081 0.822 0.207 0.677 0.140 11/25/2007 0.065 0.134 0.155 0.000 0.335 0.000 0.116 0.000 0.407 0.000 0.323 0.060 0.750 0.080 0.779 0.111 0.751 0.081 0.816 0.214 0.682 0.137 11/26/2007 0.064 0.133 0.150 0.000 0.334 0.000 0.109 0.000 0.405 0.000 0.323 0.056 0.753 0.068 0.780 0.109 0.750 0.081 0.815 0.218 0.678 0.137 11/27/2007 0.066 0.151 0.159 0.000 0.334 0.000 0.111 0.000 0.403 0.000 0.324 0.051 0.754 0.064 0.780 0.108 0.749 0.081 0.815 0.218 0.680 0.136 11/28/2007 0.076 0.220 0.177 0.000 0.335 0.000 0.117 0.000 0.408 0.000 0.326 0.047 0.753 0.068 0.781 0.107 0 .749 0.081 0.812 0.224 0.680 0.134 11/29/2007 0.078 0.236 0.178 0.000 0.336 0.000 0.117 0.000 0.411 0.000 0.326 0.051 0.753 0.067 0.781 0.105 0.749 0.081 0.809 0.230 0.678 0.133 11/30/2007 0.075 0.201 0.172 0.000 0.335 0.000 0.117 0.000 0.412 0.000 0 .326 0.061 0.753 0.064 0.781 0.106 0.754 0.080 0.806 0.237 0.676 0.133 12/1/2007 0.072 0.174 0.166 0.000 0.334 0.000 0.117 0.000 0.413 0.000 0.326 0.071 0.753 0.064 0.781 0.106 0.754 0.080 0.800 0.248 0.678 0.132 12/2/2007 0.070 0.159 0.161 0.000 0.3 34 0.000 0.114 0.000 0.414 0.000 0.326 0.078 0.753 0.064 0.781 0.106 0.754 0.080 0.799 0.251 0.680 0.131 12/3/2007 0.068 0.147 0.158 0.000 0.333 0.000 0.112 0.000 0.414 0.000 0.325 0.080 0.753 0.066 0.781 0.104 0.751 0.080 0.799 0.252 0.678 0.131 12/ 4/2007 0.066 0.138 0.154 0.000 0.332 0.000 0.106 0.000 0.412 0.000 0.325 0.074 0.755 0.060 0.782 0.102 0.750 0.081 0.797 0.255 0.676 0.131 12/5/2007 0.063 0.129 0.149 0.000 0.332 0.000 0.102 0.000 0.377 0.000 0.324 0.074 0.755 0.057 0.781 0.102 0.753 0. 080 12/6/2007 0.062 0.122 0.145 0.000 0.332 0.000 0.100 0.000 0.301 0.000 0.325 0.072 0.755 0.057 0.780 0.103 0.753 0.080 12/7/2007 0.061 0.119 0.142 0.000 0.332 0.000 0.097 0.000 0.259 0.000 0.325 0.071 0.756 0.055 0.780 0.103 0.750 0.081 12/8/2007 0.060 0.116 0.139 0.000 0.332 0.000 0.096 0.568 0.235 0.000 0.325 0.071 0.755 0.055 0.780 0.103 0.748 0.081 12/9/2007 0.059 0.111 0.137 0.000 0.332 0.000 0.094 5.344 0.218 0.000 0.324 0.071 0.754 0.058 0.780 0.103 0.748 0.082 1 2/10/2007 0.058 0.109 0.134 0.000 0.332 0.000 0.093 1.567 0.205 0.000 0.324 0.071 0.755 0.057 0.780 0.103 0.747 0.082 12/11/2007 0.057 0.105 0.131 0.000 0.332 0.000 0.092 0.777 0.194 0.000 0.324 0.070 0.755 0.056 0.780 0.103 0.747 0.082 12/12 /2007 0.056 0.102 0.129 0.000 0.332 0.000 0.091 0.596 0.187 0.000 0.324 0.070 0.756 0.055 0.780 0.103 0.747 0.082 12/13/2007 0.063 1.152 0.131 0.000 0.333 0.000 0.093 0.425 0.191 0.000 0.324 0.071 0.756 0.055 0.780 0.103 0.747 0.082 12/14/200 7 0.087 0.532 0.163 0.000 0.336 0.000 0.115 0.000 0.305 0.000 0.328 0.088 0.755 0.054 0.780 0.102 0.750 0.081 12/15/2007 0.081 0.294 0.168 0.000 0.335 0.000 0.127 0.000 0.340 0.000 0.327 0.082 0.754 0.057 0.781 0.102 0.749 0.081 12/16/2007 0. 081 0.323 0.169 0.000 0.335 0.000 0.128 0.000 0.354 0.000 0.327 0.078 0.755 0.057 0.781 0.102 0.748 0.082 12/17/2007 0.080 0.273 0.171 0.000 0.335 0.000 0.132 0.000 0.370 0.000 0.328 0.084 0.754 0.059 0.780 0.104 0.750 0.081 12/18/2007 0.075 0.202 0.165 0.000 0.335 0.000 0.128 0.000 0.382 0.001 0.328 0.088 0.754 0.059 0.780 0.104 0.750 0.081 12/19/2007 0.072 0.176 0.160 0.000 0.335 0.000 0.126 0.000 0.390 0.001 0.327 0.091 0.754 0.059 0.780 0.103 0.750 0.081 12/20/2007 0.070 0.16 5 0.159 0.000 0.335 0.000 0.130 0.000 0.395 0.002 0.326 0.096 0.753 0.061 0.781 0.101 0.751 0.081 12/21/2007 0.070 0.162 0.160 0.000 0.334 0.000 0.128 0.000 0.396 0.001 0.325 0.086 0.752 0.062 0.781 0.101 0.753 0.080 12/22/2007 0.069 0.155 0. 157 0.000 0.334 0.000 0.124 0.000 0.398 0.001 0.324 0.082 0.752 0.061 0.782 0.100 0.752 0.080 12/23/2007 0.068 0.150 0.155 0.000 0.334 0.000 0.122 0.000 0.401 0.000 0.324 0.080 0.753 0.060 0.781 0.101 0.749 0.081 12/24/2007 0.066 0.141 0.153 0.000 0.334 0.000 0.121 0.000 0.402 0.000 0.324 0.078 0.753 0.060 0.781 0.101 0.749 0.081 12/25/2007 0.073 0.202 0.156 0.000 0.334 0.000 0.123 0.000 0.404 0.000 0.323 0.073 0.753 0.059 0.781 0.100 0.748 0.081

PAGE 321

321 Table A 1 Continued. T1 60 (2 5 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 12/26/2007 0.075 0.209 0.158 0.0 00 0.334 0.000 0.123 0.000 0.406 0.000 0.323 0.070 0.753 0.060 0.781 0.100 0.748 0.081 12/27/2007 0.072 0.175 0.155 0.000 0.334 0.000 0.120 0.000 0.407 0.001 0.323 0.070 0.753 0.059 0.781 0.099 0.749 0.081 12/28/2007 0.070 0.161 0.153 0.000 0 .334 0.000 0.117 0.000 0.407 0.002 0.323 0.067 0.753 0.060 0.781 0.099 0.749 0.081 12/29/2007 0.068 0.154 0.150 0.000 0.334 0.000 0.110 0.000 0.408 0.001 0.322 0.060 0.755 0.059 0.782 0.097 0.749 0.080 12/30/2007 0.067 0.146 0.146 0.000 0.333 0.000 0.105 0.000 0.407 0.001 0.322 0.056 0.755 0.058 0.782 0.096 0.749 0.080 12/31/2007 0.065 0.136 0.143 0.000 0.333 0.000 0.103 0.000 0.379 0.000 0.323 0.064 0.755 0.056 0.782 0.096 0.749 0.080 1/1/2008 0.064 0.133 0.143 0.000 0.333 0.000 0.105 0.000 0.382 0.000 0.324 0.081 0.755 0.055 0.782 0.096 0.750 0.080 1/2/2008 0.062 0.124 0.142 0.000 0.333 0.000 0.105 0.000 0.385 0.001 0.324 0.081 0.754 0.057 0.783 0.096 0.753 0.080 1/3/2008 0.060 0.116 0.140 0.000 0.334 0.000 0.103 0 .000 0.384 0.001 0.325 0.078 0.754 0.055 0.782 0.096 0.752 0.080 1/4/2008 0.059 0.115 0.139 0.000 0.335 0.000 0.100 0.000 0.373 0.000 0.324 0.074 0.755 0.054 0.780 0.096 0.749 0.080 1/5/2008 0.059 0.116 0.138 0.000 0.335 0.000 0.099 0.000 0.3 32 0.000 0.324 0.071 0.755 0.051 0.781 0.093 0.748 0.080 1/6/2008 0.059 0.113 0.137 0.000 0.334 0.000 0.097 0.434 0.290 0.000 0.324 0.069 0.756 0.048 0.781 0.093 0.749 0.080 1/7/2008 0.059 0.112 0.135 0.000 0.334 0.000 0.096 0.509 0.266 0.000 0.324 0.072 0.756 0.048 0.780 0.093 0.747 0.081 1/8/2008 0.058 0.109 0.133 0.000 0.334 0.000 0.095 3.359 0.250 0.000 0.324 0.073 0.755 0.049 0.780 0.092 0.746 0.081 1/9/2008 0.057 0.109 0.132 0.000 0.333 0.000 0.094 7.297 0.240 0.000 0.323 0 .075 0.756 0.049 0.781 0.092 0.745 0.081 1/10/2008 0.056 0.105 0.131 0.000 0.333 0.000 0.094 5.918 0.232 0.000 0.323 0.076 0.756 0.049 0.780 0.092 0.746 0.081 1/11/2008 0.055 0.104 0.129 0.000 0.333 0.000 0.094 2.206 0.225 0.000 0.322 0.076 0 .755 0.049 0.779 0.093 0.745 0.081 1/12/2008 0.055 0.103 0.128 0.000 0.333 0.000 0.093 1.167 0.218 0.000 0.322 0.074 0.755 0.050 0.778 0.094 0.745 0.081 1/13/2008 0.054 0.101 0.127 0.000 0.333 0.000 0.093 1.059 0.212 0.000 0.322 0.074 0.756 0 .049 0.779 0.094 0.747 0.081 1/14/2008 0.054 0.098 0.127 0.000 0.334 0.000 0.093 1.255 0.212 0.000 0.323 0.074 0.756 0.049 0.779 0.094 0.749 0.080 1/15/2008 0.052 0.096 0.126 0.000 0.334 0.000 0.093 0.906 0.209 0.000 0.322 0.073 0.755 0.050 0 .779 0.094 0.750 0.080 1/16/2008 0.052 0.094 0.124 0.000 0.334 0.000 0.092 0.637 0.204 0.000 0.322 0.072 0.755 0.050 0.779 0.093 0.749 0.080 1/17/2008 0.052 0.095 0.123 0.000 0.334 0.000 0.091 0.582 0.200 0.000 0.322 0.071 0.755 0.049 0.780 0 .090 0.746 0.081 1/18/2008 1/19/2008 0.052 0.094 0.121 0.000 0.333 0.000 0.090 0.448 0.191 0.000 0.322 0.069 0.755 0.049 0.779 0.091 0.744 0.081 1/20/2008 0.052 0.094 0.122 0.000 0.334 0.000 0.090 0.465 0.189 0.000 0. 322 0.069 0.756 0.048 0.779 0.093 0.746 0.081 1/21/2008 0.052 0.093 0.122 0.000 0.335 0.000 0.090 0.427 0.189 0.000 0.323 0.068 0.756 0.049 0.778 0.093 0.748 0.081 1/22/2008 0.054 0.101 0.121 0.000 0.334 0.000 0.090 0.400 0.188 0.000 0.322 0. 067 0.755 0.049 0.779 0.091 0.745 0.081 1/23/2008 0.055 0.103 0.120 0.000 0.334 0.000 0.090 0.408 0.182 0.000 0.322 0.064 0.755 0.049 0.779 0.092 0.744 0.082 1/24/2008 0.056 0.104 0.119 0.000 0.334 0.000 0.089 0.369 0.174 0.000 0.321 0.061 0. 756 0.047 0.778 0.093 0.745 0.082 1/25/2008 0.055 0.101 0.117 0.000 0.334 0.000 0.088 0.307 0.166 0.000 0.321 0.059 0.756 0.047 0.778 0.093 0.746 0.082 1/26/2008 0.054 0.099 0.115 0.000 0.334 0.000 0.087 0.278 0.160 0.000 0.321 0.059 0.756 0. 048 0.778 0.093 0.747 0.082 1/27/2008 0.054 0.099 0.114 0.000 0.334 0.000 0.086 0.254 0.155 0.000 0.320 0.058 0.755 0.048 0.778 0.094 0.747 0.082 1/28/2008 0.052 0.095 0.112 0.000 0.334 0.000 0.085 0.214 0.150 0.000 0.320 0.057 0.755 0.048 0. 778 0.094 0.746 0.082 1/29/2008 0.051 0.092 0.110 0.000 0.334 0.000 0.084 0.207 0.146 0.000 0.319 0.056 0.755 0.047 0.779 0.091 0.744 0.083 1/30/2008 0.050 0.090 0.108 0.000 0.334 0.000 0.083 0.189 0.142 0.000 0.319 0.054 0.755 0.047 0.779 0. 090 0.745 0.082 1/31/2008 0.051 0.091 0.106 0.000 0.334 0.000 0.082 0.182 0.137 0.000 0.319 0.053 0.755 0.047 0.779 0.090 0.746 0.082 2/1/2008 0.049 0.089 0.103 0.000 0.334 0.000 0.082 0.177 0.134 0.000 0.319 0.053 0.755 0.047 0.779 0.089 0.7 45 0.082 2/2/2008 0.048 0.087 0.101 0.000 0.334 0.000 0.081 0.167 0.130 0.000 0.319 0.053 0.754 0.050 0.779 0.090 0.746 0.082 2/3/2008 0.047 0.085 0.100 0.000 0.335 0.000 0.081 0.161 0.128 0.000 0.319 0.053 0.755 0.049 0.779 0.090 0.746 0.082 2/4/2008 0.047 0.084 0.098 0.000 0.335 0.000 0.080 0.156 0.125 0.000 0.319 0.053 0.755 0.049 0.778 0.091 0.744 0.083 2/5/2008 0.046 0.082 0.096 4.751 0.335 0.000 0.079 0.146 0.121 0.000 0.319 0.053 0.754 0.050 0.777 0.090 0.743 0.084 2/6/2008 0.045 0.081 0.094 6.010 0.335 0.000 0.079 0.146 0.118 0.000 0.319 0.053 0.754 0.050 0.778 0.088 0.743 0.084 2/7/2008 0.044 0.079 0.092 1.207 0.335 0.000 0.078 0.136 0.115 0.000 0.319 0.054 0.750 0.048 0.777 0.089 0.744 0.084 2/8/2008 0.042 0.076 0.090 0.645 0.333 0.000 0.076 0.130 0.112 0.000 0.319 0.055 0.725 0.043 0.777 0.090 0.745 0.083 2/9/2008 0.041 0.075 0.089 0.477 0.306 0.000 0.076 0.124 0.110 0.000 0.319 0.057 0.710 0.037 0.777 0.090 0.745 0.083 2/10/2008 0.041 0.074 0.087 0.387 0.282 0.000 0.077 0.129 0.110 0.000 0.320 0.059 0.729 0.036 0.776 0.090 0.746 0.084 2/11/2008 0.039 0.071 0.086 0.318 0.250 0.000 0.077 0.129 0.108 0.000 0.320 0.059 0.708 0.036 0.777 0.091 0.747 0.084 2/12/2008 0.039 0.071 0.084 0.284 0.235 0.000 0.076 0.119 0.106 0.000 0.320 0.061 0.709 0.032 0.775 0.091 0.745 0.084 2/13/2008 0.059 0.126 0.090 1.362 0.258 0.000 0.100 0.015 0.138 0.000 0.339 0.062 0.727 0.036 0.775 0.090 0.744 0.084

PAGE 322

322 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 2/14/2008 0.071 0.167 0.103 0.000 0.274 0.000 0.095 2.612 0.160 0.000 0.357 0.052 0.727 0.040 0.776 0.091 0.747 0.083 2/15/2008 0.067 0.142 0.105 0.000 0.277 0.000 0.093 1.211 0.172 0.000 0.358 0.055 0.725 0.042 0.777 0.087 0.750 0.081 2/16/2008 0.064 0.130 0.105 0.000 0.279 0.000 0.093 1.585 0.178 0.000 0.357 0.055 0.725 0.044 0.776 0.087 0.748 0.081 2/17/2008 0.062 0.121 0.105 0.000 0.280 0.000 0.093 0.995 0.177 0.000 0.356 0.056 0.725 0.044 0.776 0.086 0.747 0.081 2/18/2008 0.060 0.114 0.104 0.000 0.281 0.000 0.093 1.030 0.176 0.000 0.355 0.056 0.725 0.044 0.776 0.084 0.747 0.081 2/19/2008 0.058 0.109 0.104 0.000 0.283 0.000 0.092 0.747 0.171 0.000 0.355 0.055 0.725 0.045 0.777 0.085 0.749 0.081 2/20/2008 0.057 0.105 0.103 0.000 0.284 0.000 0.090 0.455 0.167 0.000 0.355 0.054 0.725 0.046 0.777 0.087 0.749 0.080 2/21/2008 0.056 0.101 0.102 0.000 0.284 0.000 0.089 0.360 0.159 0.000 0.355 0.051 0.725 0.046 0.776 0.086 0.749 0.080 2/22/2008 0.055 0.101 0.102 0.000 0.285 0.000 0.089 0.344 0.158 0.000 0.355 0.052 0.725 0.045 0.775 0.084 0.747 0.081 2/23/2008 0.055 0.104 0.103 0.000 0.285 0.000 0.090 0.478 0.176 0.000 0.355 0.054 0.723 0.046 0.778 0.083 0.746 0.082 2/24/2008 0.056 0.109 0.103 0.000 0.285 0.000 0.092 0.850 0.184 0.000 0.355 0.054 0.724 0.047 0.777 0.085 0.739 0.083 2/25/2008 0.058 0.108 0.104 0.000 0.285 0.000 0.092 0.766 0.180 0.000 0.354 0.054 0.725 0.048 0.774 0.089 0.739 0.083 2/26/2008 0.055 0.101 0.104 0.000 0.285 0.000 0.092 0.927 0.178 0.000 0.353 0.054 0.725 0.048 0.765 0.098 0.742 0.083 2/27/2008 0.067 0.148 0.109 0.000 0.287 0.000 0.095 4.440 0.185 0.000 0.353 0.055 0.726 0.048 0.762 0.105 0.744 0.082 2/28/2008 0.069 0.153 0.109 0.000 0.289 0.000 0.093 1.747 0.181 0.000 0.354 0.053 0.727 0.048 0.764 0.106 0.745 0.082 2/29/2008 0.069 0.154 0.107 0.000 0.290 0.000 0.091 0.607 0.175 0.000 0.354 0.053 0.727 0.046 0.754 0.115 0.744 0.082 3/1/2008 0.066 0.141 0.106 0.000 0.290 0.000 0.090 0.433 0.171 0.000 0.353 0.055 0.726 0.048 0.750 0.117 0.746 0.082 3/2/2008 0.065 0.139 0.105 0.000 0.290 0.000 0.089 0.366 0.166 0.000 0.352 0.055 0.726 0.047 0.755 0.113 0.741 0.083 3/3/2008 0.064 0.137 0.103 0.000 0.290 0.000 0.088 0.304 0.161 0.000 0.352 0.055 0. 727 0.046 0.764 0.109 0.741 0.083 3/4/2008 0.064 0.136 0.102 0.000 0.290 0.000 0.087 0.268 0.155 0.000 0.351 0.053 0.727 0.045 0.773 0.110 0.739 0.084 3/5/2008 0.077 0.322 0.104 0.000 0.291 0.000 0.088 0.363 0.155 0.000 0.351 0.052 0.729 0.04 3 0.776 0.111 0.737 0.085 3/6/2008 0.082 0.321 0.108 0.000 0.293 0.000 0.092 0.996 0.162 0.000 0.353 0.050 0.729 0.043 0.777 0.112 0.739 0.084 3/7/2008 0.085 0.436 0.113 0.000 0.293 0.000 0.097 0.338 0.178 0.000 0.353 0.049 0.730 0.043 0.773 0.111 0.741 0.084 3/8/2008 0.084 0.378 0.114 0.000 0.294 0.000 0.096 0.661 0.183 0.000 0.353 0.051 0.731 0.045 0.772 0.114 0.739 0.084 3/9/2008 0.079 0.253 0.114 0.000 0.295 0.000 0.097 0.000 0.209 0.000 0.353 0.058 0.731 0.047 0.773 0.114 0. 744 0.083 3/10/2008 0.076 0.222 0.114 0.000 0.296 0.000 0.098 0.000 0.224 0.000 0.352 0.058 0.730 0.049 0.771 0.113 0.741 0.084 3/11/2008 0.074 0.198 0.114 0.000 0.296 0.000 0.099 0.000 0.226 0.000 0.351 0.058 0.731 0.049 0.770 0.115 0.742 0. 084 3/12/2008 0.074 0.199 0.115 0.000 0.296 0.000 0.101 0.000 0.233 0.000 0.351 0.061 0.730 0.050 0.768 0.114 0.738 0.085 3/13/2008 0.071 0.170 0.115 0.000 0.297 0.000 0.102 0.000 0.242 0.000 0.350 0.062 0.731 0.051 0.769 0.113 0.739 0.085 3/14/2008 0.069 0.157 0.114 0.000 0.297 0.000 0.099 0.000 0.230 0.000 0.348 0.059 0.731 0.050 0.768 0.112 0.739 0.085 3/15/2008 0.067 0.144 0.112 0.000 0.297 0.000 0.098 3.076 0.222 0.000 0.348 0.059 0.732 0.048 0.763 0.112 0.737 0.085 3 /16/2008 0.066 0.141 0.110 0.000 0.298 0.000 0.097 0.996 0.219 0.000 0.348 0.063 0.725 0.056 0.760 0.116 0.739 0.085 3/17/2008 0.063 0.132 0.108 0.000 0.299 0.000 0.094 3.173 0.198 0.000 0.347 0.057 0.716 0.067 0.762 0.113 0.739 0.085 3/18/20 08 0.062 0.126 0.106 0.000 0.299 0.000 0.091 0.620 0.187 0.000 0.347 0.058 0.719 0.067 0.763 0.111 0.740 0.084 3/19/2008 0.059 0.113 0.104 0.000 0.299 0.000 0.090 0.451 0.175 0.000 0.345 0.058 0.720 0.064 0.763 0.106 0.738 0.085 3/20/2008 0.0 57 0.106 0.103 0.000 0.300 0.000 0.089 0.404 0.172 0.000 0.344 0.059 0.719 0.067 0.763 0.102 0.740 0.085 0.849 0.207 0.807 0.116 0.668 0.160 3/21/2008 0.055 0.101 0.101 0.000 0.300 0.000 0.087 0.311 0.159 0.000 0.345 0.055 0.850 0.205 0.808 0.115 0. 670 0.160 3/22/2008 0.054 0.097 0.099 0.000 0.300 0.000 0.085 0.249 0.148 0.000 0.339 0.052 0.852 0.202 0.808 0.113 0.670 0.160 3/23/2008 0.075 2.567 0.113 0.000 0.302 0.000 0.100 0.084 0.207 0.000 0.341 0.057 0.855 0.197 0.809 0.111 0.673 0. 158 3/24/2008 0.078 0.240 0.124 0.000 0.303 0.000 0.103 0.000 0.236 0.000 0.343 0.053 0.854 0.198 0.809 0.110 0.674 0.157 3/25/2008 0.071 0.163 0.121 0.000 0.303 0.000 0.099 0.000 0.224 0.000 0.343 0.053 0.853 0.199 0.808 0.110 0.669 0.158 3 /26/2008 0.066 0.141 0.117 0.000 0.304 0.000 0.097 0.000 0.217 0.000 0.343 0.057 0.854 0.198 0.810 0.108 0.668 0.158 3/27/2008 0.068 0.143 0.114 0.000 0.304 0.000 0.095 2.600 0.205 0.000 0.342 0.058 0.856 0.194 0.810 0.106 0.669 0.157 3/28/20 08 0.064 0.128 0.113 0.000 0.304 0.000 0.097 1.840 0.216 0.000 0.343 0.066 0.856 0.194 0.810 0.105 0.669 0.157 3/29/2008 0.062 0.119 0.114 0.000 0.305 0.000 0.102 0.000 0.233 0.000 0.343 0.068 0.855 0.196 0.810 0.105 0.669 0.156 3/30/2008 0.0 60 0.114 0.114 0.000 0.305 0.000 0.104 0.000 0.240 0.000 0.343 0.067 0.853 0.199 0.810 0.104 0.665 0.158 3/31/2008 0.063 0.125 0.117 0.000 0.307 0.000 0.105 0.000 0.242 0.000 0.343 0.064 0.852 0.201 0.811 0.101 0.661 0.159 4/1/2008 0.069 0.16 0 0.121 0.000 0.307 0.000 0.107 0.000 0.248 0.000 0.343 0.066 0.855 0.199 0.812 0.100 0.665 0.157 4/2/2008 0.075 0.198 0.125 0.000 0.307 0.000 0.109 0.000 0.258 0.000 0.343 0.065 0.857 0.197 0.812 0.098 0.669 0.155 4/3/2008 0.072 0.178 0.123 0.000 0.308 0.000 0.109 0.000 0.258 0.000 0.343 0.067 0.853 0.202 0.811 0.099 0.672 0.153

PAGE 323

323 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 4/4/2008 0.069 0.158 0.120 0.000 0.308 0.000 0.104 0.000 0.244 0.000 0.341 0.063 0.850 0.205 0.810 0.100 0.672 0.152 4/5/2008 0.066 0.139 0.117 0.000 0.307 0.000 0.100 0.000 0.229 0.000 0. 340 0.063 0.850 0.205 0.809 0.101 0.671 0.152 4/6/2008 0.070 0.173 0.117 0.000 0.101 0.000 0.230 0.000 0.340 0.067 0.846 0.210 0.809 0.100 0.669 0.153 4/7/2008 0.096 0.511 0.136 0.000 0.112 0.000 0.269 0.000 0.341 0.063 0.843 0.214 0.808 0.100 0.666 0.154 4/8/2008 0.083 0.342 0.138 0.000 0.115 0.000 0.302 0.000 0.342 0.069 0.845 0.211 0.808 0.099 0.666 0.154 4/9/2008 0.077 0.219 0.134 0.000 0.114 0.000 0.304 0.000 0.342 0.071 0.844 0.213 0.809 0.098 0.670 0.152 4/1 0/2008 0.072 0.174 0.130 0.000 0.113 0.000 0.300 0.000 0.342 0.074 0.843 0.213 0.810 0.096 0.674 0.150 4/11/2008 0.069 0.153 0.127 0.000 0.111 0.000 0.293 0.000 0.341 0.074 0.839 0.218 0.811 0.094 0.675 0.149 4/12/2008 0.066 0.139 0.123 0 .000 0.107 0.000 0.276 0.000 0.340 0.070 0.836 0.219 0.810 0.095 0.671 0.150 4/13/2008 0.064 0.127 0.120 0.000 0.102 0.000 0.258 0.000 0.339 0.065 0.841 0.211 0.810 0.094 0.669 0.151 4/14/2008 0.061 0.115 0.117 0.000 0.100 0.000 0.248 0 .000 0.339 0.069 0.832 0.221 0.810 0.094 0.670 0.150 4/15/2008 0.057 0.104 0.113 0.000 0.097 1.387 0.236 0.000 0.339 0.068 0.826 0.223 0.808 0.095 0.671 0.150 4/16/2008 0.055 0.099 0.110 0.000 0.093 3.332 0.205 0.000 0.339 0.062 0.8 28 0.213 0.809 0.093 0.670 0.153 4/17/2008 0.053 0.094 0.108 0.000 0.091 0.718 0.185 0.000 0.339 0.062 0.748 0.049 0.781 0.090 0.742 0.085 0.832 0.205 0.810 0.092 0.666 0.154 4/18/2008 0.050 0.088 0.106 0.000 0.089 0.498 0.176 0.000 0.339 0.063 0.749 0.051 0.781 0.092 0.746 0.084 0.835 0.200 0.809 0.092 0.671 0.151 4/19/2008 0.049 0.086 0.104 0.000 0.088 0.394 0.168 0.000 0.338 0.062 0.750 0.050 0.780 0.090 0.744 0.085 0.832 0.202 0.812 0.088 0.669 0.152 4/20/2008 0.048 0.084 0.102 0.000 0.087 0 .332 0.159 0.000 0.338 0.060 0.751 0.049 0.780 0.087 0.741 0.086 0.831 0.202 0.811 0.087 0.668 0.152 4/21/2008 0.048 0.083 0.100 0.000 0.085 0.282 0.152 0.000 0.337 0.059 0.751 0.048 0.780 0.085 0.740 0.086 0.826 0.208 0.811 0.087 0.668 0.151 4/22/2008 0.046 0.080 0.098 0.000 0.083 0.232 0.143 0.000 0.335 0.058 0.752 0.049 0.780 0.085 0.740 0.086 0.830 0.203 0.811 0.086 0.666 0.151 4/23/2008 0.044 0.077 0.095 3.618 0.081 0.199 0.135 0.000 0.330 0.057 0.752 0.049 0.780 0.084 0.741 0.086 0.831 0.201 0.811 0.085 0.668 0.150 4/24/2008 0.042 0.075 0.093 2.291 0.078 0.173 0.128 0.000 0.329 0.058 0.728 0.046 0.776 0.081 0.739 0.087 0.832 0.199 0.811 0.084 0.669 0.148 4/25/2008 0.041 0.074 0.090 0.665 0.075 0.146 0.122 0.000 0.328 0.058 0.695 0.037 0. 777 0.076 0.739 0.087 0.827 0.206 0.812 0.082 0.666 0.148 4/26/2008 0.041 0.072 0.088 0.380 0.071 0.125 0.117 0.000 0.327 0.059 0.690 0.033 0.777 0.078 0.741 0.087 0.824 0.210 0.812 0.081 0.664 0.148 4/27/2008 0.040 0.072 0.096 2.939 0.067 0.108 0.11 2 0.000 0.326 0.059 0.688 0.030 0.777 0.073 0.740 0.087 0.822 0.212 0.812 0.081 0.666 0.147 4/28/2008 0.039 0.070 0.093 1.393 0.064 0.098 0.107 0.000 0.325 0.060 0.680 0.026 0.777 0.074 0.741 0.087 0.822 0.211 0.812 0.080 0.663 0.147 4/29/2008 0.038 0. 070 0.090 0.571 0.062 0.094 0.103 0.000 0.324 0.062 0.680 0.024 0.776 0.072 0.741 0.087 0.823 0.211 0.812 0.079 0.660 0.147 4/30/2008 0.037 0.067 0.088 0.404 0.060 0.090 0.100 0.000 0.323 0.062 0.678 0.023 0.776 0.076 0.743 0.086 0.823 0.210 0.812 0.0 79 0.662 0.146 5/1/2008 0.036 0.066 0.086 0.273 0.057 0.084 0.095 1.239 0.315 0.061 0.825 0.206 0.812 0.079 0.665 0.145 5/2/2008 0.035 0.066 0.083 0.216 0.053 0.077 0.091 0.908 0.300 0.060 0.820 0.209 0.813 0.079 0.669 0.142 5/3/2008 0.0 35 0.066 0.080 0.179 0.050 0.073 0.087 0.427 0.287 0.056 0.813 0.216 0.813 0.080 0.665 0.143 5/4/2008 0.034 0.065 0.077 0.149 0.048 0.070 0.084 0.301 0.276 0.055 0.810 0.220 0.812 0.081 0.660 0.145 5/5/2008 0.033 0.064 0.074 0.126 0.046 0.068 0.081 0.235 0.264 0.053 0.810 0.219 0.811 0.082 0.662 0.145 5/6/2008 0.033 0.064 0.071 0.110 0.045 0.067 0.077 0.189 0.249 0.050 0.809 0.220 0.811 0.083 0.660 0.148 5/7/2008 0.031 0.062 0.067 0.098 0.043 0.064 0.074 0.160 0.237 0.0 51 0.809 0.220 0.811 0.085 0.658 0.148 5/8/2008 0.031 0.062 0.063 0.086 0.042 0.064 0.072 0.140 0.226 0.048 0.815 0.213 0.811 0.085 0.658 0.148 5/9/2008 0.030 0.061 0.060 0.081 0.041 0.063 0.069 0.126 0.218 0.049 0.816 0.213 0.811 0 .086 0.658 0.149 5/10/2008 0.030 0.060 0.058 0.076 0.042 0.064 0.068 0.116 0.215 0.052 0.827 0.203 0.810 0.088 0.656 0.152 5/11/2008 0.030 0.059 0.055 0.072 0.043 0.065 0.067 0.113 0.208 0.046 0.826 0.204 0.810 0.089 0.655 0.152 5/12/200 8 0.030 0.060 0.051 0.067 0.043 0.064 0.065 0.107 0.202 0.042 0.822 0.201 0.809 0.091 0.652 0.153 5/13/2008 0.029 0.059 0.047 0.063 0.041 0.063 0.064 0.103 0.196 0.041 0.823 0.199 0.809 0.093 0.657 0.150 5/14/2008 0.028 0.058 0.045 0.061 0.040 0.062 0.062 0.097 0.191 0.040 0.827 0.193 0.809 0.095 0.652 0.152 5/15/2008 0.028 0.059 0.042 0.058 0.039 0.060 0.061 0.092 0.187 0.043 0.825 0.195 0.809 0.096 0.655 0.151 5/16/2008 0.028 0.057 0.039 0.054 0.037 0.059 0.059 0.088 0.183 0.046 0.832 0.188 0.809 0.098 0.657 0.149 5/17/2008 0.027 0.056 0.036 0.051 0.036 0.058 0.058 0.086 0.180 0.049 0.833 0.189 0.809 0.102 0.655 0.149 5/18/2008 0.027 0.057 0.034 0.050 0.034 0.057 0.057 0.083 0.177 0.053 0.830 0. 194 0.809 0.103 0.650 0.150 5/19/2008 0.027 0.056 0.033 0.049 0.033 0.056 0.056 0.080 0.174 0.056 0.828 0.199 0.808 0.104 0.649 0.149 5/20/2008 0.042 0.134 0.060 0.035 0.037 0.062 0.055 0.077 0.172 0.066 0.829 0.200 0.807 0.106 0.647 0.15 1 5/21/2008 0.068 0.137 0.096 0.471 0.066 0.098 0.076 0.176 0.179 0.051 0.828 0.205 0.809 0.103 0.652 0.151 5/22/2008 0.068 0.163 0.112 0.242 0.078 0.228 0.101 0.147 0.210 0.048 0.829 0.208 0.808 0.103 0.655 0.152 5/23/2008 0.068 0.139 0 .113 0.000 0.085 0.248 0.143 0.000 0.289 0.048 0.840 0.202 0.809 0.100 0.654 0.155

PAGE 324

324 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 5/24/2008 0.070 0.150 0.108 0.000 0.083 0.212 0.138 0.000 0.291 0.047 0.843 0.200 0.811 0.094 0.652 0.156 5/25/2008 0.069 0.146 0.111 0.000 0.082 0.201 0.136 0.000 0.295 0.045 0.839 0.209 0.811 0.093 0.655 0.155 5/26/2008 0.062 0.114 0.107 0.000 0.079 0.167 0.131 0.000 0.298 0.042 0.837 0.211 0.810 0.095 0.653 0.155 5/27/2008 0.058 0.101 0.102 0.000 0.076 0.148 0.125 0.000 0.295 0.041 0.837 0.214 0.810 0.096 0.649 0.156 5/28/2008 0.055 0.094 0.098 0.000 0.074 0.136 0.120 0.000 0.292 0.040 0.835 0.217 0.810 0.098 0.649 0.156 5/29/2008 0.052 0.087 0.095 1.583 0.072 0.124 0.115 0.000 0.292 0.041 0.669 0.026 0.777 0.072 0.75 2 0.084 0.840 0.213 0.810 0.101 0.649 0.156 5/30/2008 0.049 0.082 0.092 1.151 0.070 0.117 0.109 0.000 0.293 0.041 0.658 0.023 0.776 0.068 0.751 0.084 5/31/2008 0.047 0.078 0.089 0.571 0.068 0.105 0.104 0.000 0.293 0.041 0.641 0.016 0.776 0.067 0.750 0.085 6/1/2008 0.045 0.075 0.086 0.316 0.064 0.094 0.098 0.898 0.291 0.041 0.633 0.012 0.775 0.066 0.750 0.085 6/2/2008 0.044 0.073 0.084 0.245 0.062 0.088 0.093 3.863 0.288 0.040 0.629 0.012 0.773 0.067 0.749 0.086 6/3/2008 0.042 0.071 0.082 0.212 0.061 0.086 0.091 0.951 0.286 0.046 0.646 0.021 0.778 0.062 0.748 0.086 6/4/2008 0.044 0.074 0.082 0.200 0.060 0.083 0.092 1.329 0.286 0.049 0.657 0.026 0.778 0.056 0.746 0.087 6/5/2008 0.044 0.074 0.080 0.179 0. 058 0.082 0.091 0.893 0.285 0.048 0.641 0.020 0.777 0.050 0.747 0.087 6/6/2008 0.044 0.075 0.078 0.156 0.056 0.077 0.089 0.564 0.282 0.047 0.631 0.015 0.772 0.050 0.746 0.088 6/7/2008 0.043 0.074 0.076 0.131 0.053 0.073 0.085 0.361 0.273 0.044 0.624 0.013 0.762 0.054 0.747 0.088 6/8/2008 0.043 0.073 0.072 0.111 0.050 0.070 0.082 0.272 0.263 0.042 0.620 0.011 0.756 0.052 0.747 0.088 6/9/2008 0.042 0.072 0.069 0.094 0.048 0.067 0.080 0.221 0.253 0.041 0.616 0.009 0.747 0.04 9 0.746 0.088 6/10/2008 0.041 0.071 0.066 0.082 0.047 0.066 0.077 0.186 0.245 0.041 0.615 0.009 0.745 0.048 0.747 0.089 6/11/2008 0.040 0.069 0.064 0.079 0.047 0.065 0.075 0.166 0.241 0.044 0.621 0.016 0.776 0.044 0.746 0.089 6/12/ 2008 0.040 0.068 0.064 0.078 0.048 0.066 0.075 0.163 0.240 0.045 0.623 0.017 0.776 0.038 0.745 0.089 6/13/2008 0.044 0.075 0.063 0.074 0.048 0.067 0.076 0.173 0.241 0.046 0.665 0.027 0.777 0.038 0.745 0.089 6/14/2008 0.071 0.194 0.094 0.0 29 0.060 0.092 0.101 0.168 0.270 0.046 0.713 0.031 0.777 0.036 0.744 0.090 6/15/2008 0.066 0.135 0.102 0.000 0.077 0.142 0.131 0.000 0.295 0.043 0.731 0.027 0.777 0.029 0.744 0.091 6/16/2008 0.062 0.116 0.098 0.000 0.076 0.129 0.126 0.0 00 0.298 0.039 0.731 0.026 0.778 0.028 0.743 0.091 6/17/2008 0.066 0.132 0.098 0.000 0.077 0.130 0.124 0.000 0.301 0.038 0.731 0.027 0.776 0.027 0.742 0.092 6/18/2008 0.064 0.121 0.097 0.000 0.076 0.129 0.122 0.000 0.303 0.040 0.730 0.029 0.778 0.031 0.744 0.091 6/19/2008 0.066 0.130 0.097 0.000 0.076 0.124 0.123 0.000 0.305 0.041 0.730 0.030 0.777 0.023 0.743 0.092 6/20/2008 0.064 0.122 0.096 1.726 0.076 0.122 0.121 0.000 0.307 0.040 0.731 0.032 0.777 0.025 0.744 0.092 6/21/2008 0.072 0.239 0.103 0.000 0.077 0.139 0.127 0.000 0.310 0.042 0.731 0.035 0.777 0.025 0.745 0.092 6/22/2008 0.075 0.196 0.120 0.000 0.087 0.243 0.175 0.000 0.315 0.042 0.731 0.036 0.777 0.026 0.744 0.092 6/23/2008 0.068 0.14 4 0.115 0.000 0.085 0.192 0.182 0.000 0.319 0.043 0.730 0.037 0.778 0.027 0.746 0.092 6/24/2008 0.068 0.141 0.112 0.000 0.083 0.174 0.176 0.000 0.322 0.043 0.732 0.033 0.776 0.021 0.744 0.092 6/25/2008 0.066 0.132 0.109 0.000 0.082 0.16 2 0.173 0.000 0.325 0.044 0.731 0.031 0.774 0.010 0.741 0.092 6/26/2008 0.068 0.202 0.109 0.000 0.082 0.162 0.173 0.000 0.328 0.045 0.732 0.031 0.776 0.016 0.742 0.091 6/27/2008 0.077 0.227 0.124 0.000 0.089 0.317 0.218 0.000 0.331 0.046 0.731 0.033 0.775 0.010 0.742 0.092 6/28/2008 0.070 0.158 0.120 0.000 0.090 0.365 0.231 0.000 0.332 0.047 0.730 0.035 0.774 0.008 0.745 0.091 6/29/2008 0.067 0.139 0.116 0.000 0.089 0.345 0.225 0.000 0.332 0.048 0.730 0.036 0.775 0.008 0. 743 0.092 6/30/2008 0.064 0.126 0.112 0.000 0.086 0.232 0.206 0.000 0.332 0.046 0.732 0.037 0.776 0.010 0.741 0.092 7/1/2008 0.064 0.132 0.101 0.313 0.281 0.010 0.086 0.240 0.206 0.000 0.332 0.046 0.731 0.042 0.778 0.022 0.745 0.091 0.832 0 .268 0.807 0.135 0.658 0.159 7/2/2008 0.077 0.217 0.101 0.000 0.363 0.010 0.094 1.282 0.251 0.000 0.333 0.047 0.731 0.038 0.778 0.017 0.743 0.091 0.828 0.273 0.806 0.138 0.653 0.162 7/3/2008 0.084 0.109 0.140 0.000 0.371 0.008 0.111 0.000 0.318 0.000 0.3 34 0.048 0.732 0.039 0.778 0.017 0.742 0.091 0.826 0.277 0.806 0.140 0.653 0.161 7/4/2008 0.090 1.705 0.201 0.000 0.374 0.009 0.135 0.000 0.369 0.000 0.334 0.047 0.732 0.037 0.778 0.014 0.742 0.091 0.829 0.273 0.807 0.138 0.658 0.159 7/5/2008 0.081 0.281 0.175 0.000 0.374 0.008 0.126 0.000 0.373 0.000 0.333 0.048 0.733 0.035 0.777 0.007 0.742 0.091 0.829 0.272 0.807 0.137 0.662 0.157 7/6/2008 0.076 0.199 0.159 0.000 0.374 0.007 0.124 0.000 0.376 0.000 0.332 0.048 0.732 0.037 0.777 0.007 0.741 0.092 0.829 0.272 0.808 0.138 0.662 0.157 7/7/2008 0.072 0.168 0.149 0.000 0.373 0.007 0.120 0.000 0.380 0.000 0.331 0.049 0.733 0.038 0.777 0.005 0.742 0.092 0.832 0.268 0.808 0.137 0.662 0.157 7/8/2008 0.070 0.152 0.138 0.000 0.372 0.006 0.113 0.000 0.383 0.000 0 .330 0.051 0.733 0.038 0.775 0.004 0.742 0.092 0.834 0.267 0.809 0.137 0.654 0.160 7/9/2008 0.067 0.138 0.131 0.000 0.371 0.005 0.111 0.000 0.386 0.000 0.330 0.051 0.733 0.041 0.775 0.003 0.738 0.093 0.835 0.264 0.809 0.136 0.651 0.161 7/10/2008 0.065 0. 126 0.126 0.000 0.370 0.005 0.110 0.000 0.390 0.000 0.329 0.052 0.733 0.046 0.775 0.003 0.739 0.093 0.838 0.262 0.808 0.137 0.651 0.161 7/11/2008 0.063 0.119 0.123 0.000 0.368 0.005 0.109 0.000 0.395 0.000 0.330 0.057 0.734 0.050 0.777 0.005 0.743 0.092 0 .838 0.262 0.808 0.137 0.653 0.160 7/12/2008 0.062 0.115 0.117 0.000 0.367 0.006 0.100 0.000 0.387 0.000 0.329 0.061 0.736 0.046 0.780 0.014 0.743 0.092 0.828 0.271 0.809 0.131 0.654 0.163

PAGE 325

325 Table A 1 Continued. T1 60 (25 cm) T1 60 (35 cm) T1 60 (55 cm ) T1 50 (30 cm) T1 50 (50 cm) T1 50 (95 cm) T1 30 (25 cm) T1 30 (50 cm) T1 30 (80 cm) T1 1 (25 cm) T1 1 (50 cm) T1 1 (72 cm) Date w w w w w w w w w w w w 7/13/2008 0.061 0.111 0.113 0.000 0.365 0.005 0.094 2.893 0.318 0.000 0.328 0.061 0.737 0.045 0.783 0.023 0.743 0.092 0.837 0.256 0.810 0.119 0.656 0.163 7/14/2008 0.066 0.134 0.115 0.000 0.364 0.004 0.093 1.252 0.283 0.000 0.328 0.063 0.736 0.041 0.780 0.014 0.742 0.093 0.849 0.237 0.810 0.117 0.656 0.163 7/15/2008 0.066 0.130 0.110 0.000 0.364 0.005 0.090 0.524 0.247 0.000 0.327 0.062 0.736 0.040 0.780 0.014 0.739 0.093 0.851 0.233 0.809 0.118 0.651 0.166 7/16/2008 0.065 0.127 0.107 0.000 0.363 0.005 0.088 0.355 0.215 0.000 0.327 0.060 0.737 0.041 0.779 0.016 0.740 0.093 0.851 0.231 0.808 0.115 0.651 0.166 7/17/2008 0.063 0.120 0.105 0.000 0.361 0.006 0.087 0.285 0.198 0.000 0.326 0.058 0.739 0.043 0.779 0.016 0.744 0.093 0.854 0.225 0.809 0.114 0.661 0.162 7/18/2008 0.065 0.127 0.105 0.000 0.360 0.006 0.087 0.297 0.199 0.000 0.327 0.062 0.739 0.040 0.778 0.011 0.744 0.093 0.856 0.222 0.809 0.112 0.651 0.165 7/19/2008 0.066 0.133 0.103 0.000 0.359 0.006 0.086 0.251 0.191 0.000 0.326 0.062 0.739 0.042 0.778 0.011 0.745 0.092 0.857 0.221 0.810 0.114 0.649 0.166 7/2 0/2008 0.064 0.123 0.100 0.000 0.359 0.002 0.084 0.218 0.177 0.000 0.326 0.060 0.740 0.041 0.778 0.011 0.744 0.093 0.858 0.220 0.810 0.114 0.647 0.167 7/21/2008 0.061 0.114 0.097 0.110 0.357 0.002 0.082 0.183 0.162 0.000 0.325 0.058 0.736 0.044 0.779 0.01 4 0.746 0.093 0.855 0.223 0.810 0.113 0.650 0.166 7/22/2008 0.059 0.106 0.095 2.436 0.357 0.002 0.080 0.162 0.150 0.000 0.325 0.056 0.713 0.044 0.780 0.014 0.746 0.095 0.851 0.224 0.810 0.112 0.652 0.164 7/23/2008 0.058 0.102 0.093 1.949 0.346 0.004 0.07 8 0.154 0.142 0.000 0.325 0.056 0.699 0.043 0.782 0.020 0.747 0.094 0.852 0.217 0.810 0.113 0.653 0.164 7/24/2008 0.057 0.100 0.094 5.428 0.299 0.003 0.078 0.154 0.162 0.000 0.324 0.049 0.727 0.043 0.780 0.017 0.749 0.094 0.857 0.209 0.811 0.112 0.661 0.1 62 7/25/2008 0.056 0.097 0.095 5.965 0.298 0.002 0.083 0.193 0.185 0.000 0.327 0.049 0.727 0.044 0.779 0.010 0.748 0.094 0.854 0.216 0.811 0.113 0.658 0.162 7/26/2008 0.055 0.094 0.094 3.525 0.295 0.001 0.082 0.188 0.176 0.000 0.326 0.051 0.729 0.042 0.7 77 0.007 0.749 0.093 0.854 0.218 0.814 0.112 0.655 0.163 7/27/2008 0.053 0.091 0.093 4.132 0.290 0.001 0.081 0.178 0.170 0.000 0.326 0.051 0.728 0.048 0.779 0.019 0.748 0.092 0.852 0.222 0.814 0.112 0.657 0.162 7/28/2008 0.055 0.095 0.095 2.772 0.291 0.0 01 0.082 0.189 0.177 0.000 0.325 0.051 0.727 0.057 0.785 0.053 0.750 0.092 0.854 0.222 0.812 0.115 0.655 0.162 7/29/2008 0.058 0.103 0.095 2.555 0.292 0.001 0.083 0.207 0.183 0.000 0.326 0.051 0.728 0.057 0.784 0.054 0.751 0.091 0.856 0.220 0.811 0.116 0. 655 0.162 7/30/2008 0.058 0.102 0.094 2.115 0.289 0.002 0.082 0.190 0.171 0.000 0.325 0.052 0.728 0.057 0.784 0.055 0.750 0.091 0.854 0.222 0.812 0.114 0.656 0.162 7/31/2008 0.057 0.099 0.092 1.418 0.283 0.003 0.080 0.168 0.163 0.000 0.324 0.050 0.729 0. 055 0.784 0.057 0.751 0.090 0.852 0.225 0.811 0.116 0.659 0.161 8/1/2008 0.056 0.096 0.091 0.816 0.279 0.003 0.079 0.158 0.158 0.000 0.324 0.050 0.729 0.053 0.784 0.052 0.749 0.091 0.850 0.227 0.810 0.117 0.662 0.159 8/2/2008 0.057 0.098 0.090 0.618 0.27 3 0.005 0.079 0.153 0.154 0.000 0.324 0.050 0.729 0.051 0.783 0.048 0.750 0.090 0.849 0.227 0.811 0.116 0.657 0.161 8/3/2008 0.056 0.096 0.089 0.502 0.267 0.009 0.078 0.146 0.153 0.000 0.323 0.049 0.729 0.053 0.784 0.051 0.750 0.090 0.848 0.230 0.813 0.11 3 0.659 0.159 8/4/2008 0.056 0.096 0.088 0.490 0.264 0.011 0.078 0.147 0.161 0.000 0.324 0.048 0.729 0.054 0.784 0.050 0.750 0.090 0.848 0.232 0.812 0.114 0.658 0.159 8/5/2008 0.074 0.175 0.092 1.319 0.268 0.009 0.081 0.176 0.178 0.000 0.325 0.048 0.729 0.055 0.784 0.043 0.750 0.090 0.849 0.231 0.813 0.112 0.655 0.161 8/6/2008 0.071 0.154 0.093 3.067 0.269 0.006 0.083 0.192 0.177 0.000 0.325 0.050 0.729 0.055 0.783 0.038 0.751 0.090 0.848 0.235 0.812 0.113 0.651 0.162 8/7/2008 0.068 0.133 0.092 1.725 0. 268 0.004 0.082 0.186 0.174 0.000 0.324 0.051 0.728 0.057 0.782 0.032 0.748 0.090 0.845 0.240 0.811 0.114 0.652 0.161 8/8/2008 0.065 0.121 0.090 0.732 0.264 0.004 0.081 0.177 0.168 0.000 0.324 0.051 0.729 0.059 0.783 0.038 0.749 0.090 0.845 0.242 0.811 0. 113 0.654 0.160 8/9/2008 0.062 0.110 0.089 0.554 0.260 0.003 0.081 0.174 0.163 0.000 0.323 0.051 0.729 0.053 0.782 0.034 0.747 0.090 0.846 0.241 0.812 0.110 0.656 0.159 8/10/2008 0.060 0.103 0.088 0.442 0.256 0.002 0.081 0.173 0.169 0.000 0.324 0.053 0.7 30 0.053 0.782 0.032 0.749 0.090 0.854 0.230 0.813 0.109 0.657 0.158 8/11/2008 0.059 0.102 0.087 0.416 0.252 0.002 0.080 0.165 0.158 0.000 0.323 0.054 0.731 0.050 0.782 0.032 0.750 0.090 0.853 0.229 0.812 0.107 0.654 0.161 8/12/2008 0.059 0.101 0.085 0.3 15 0.245 0.001 0.079 0.153 0.147 0.000 0.320 0.051 0.731 0.051 0.782 0.036 0.750 0.090 0.856 0.224 0.811 0.104 0.655 0.160 8/13/2008 0.060 0.103 0.084 0.280 0.240 0.000 0.077 0.141 0.146 0.000 0.320 0.051 0.732 0.048 0.781 0.031 0.751 0.090 0.858 0.219 0. 812 0.103 0.657 0.158 8/14/2008 0.061 0.105 0.082 0.238 0.233 0.000 0.076 0.132 0.141 0.000 0.319 0.051 0.732 0.049 0.781 0.027 0.748 0.090 0.859 0.218 0.813 0.101 0.655 0.158 8/15/2008 0.059 0.100 0.081 0.214 0.226 0.000 0.074 0.125 0.140 0.000 0.318 0. 051 0.732 0.049 0.781 0.029 0.751 0.089 0.859 0.219 0.813 0.100 0.655 0.157 8/16/2008 0.057 0.095 0.079 0.190 0.219 0.000 0.073 0.120 0.138 0.000 0.319 0.052 0.732 0.049 0.781 0.029 0.751 0.089 0.858 0.220 0.813 0.099 0.658 0.154 8/17/2008 0.055 0.090 0. 078 0.178 0.213 0.000 0.073 0.117 0.144 0.000 0.321 0.053 0.733 0.049 0.781 0.024 0.751 0.089 0.857 0.222 0.812 0.098 0.659 0.154 8/18/2008 0.059 0.108 0.078 0.177 0.206 0.000 0.074 0.123 0.143 0.000 0.321 0.055 0.734 0.046 0.783 0.031 0.749 0.089 0.853 0 .226 0.811 0.099 0.657 0.154 8/19/2008 0.127 0.000 0.303 0.047 0.306 0.005 0.278 0.060 0.283 0.000 0.337 0.053 0.733 0.045 0.781 0.026 0.750 0.088 0.857 0.222 0.812 0.096 0.659 0.154 8/20/2008 0.129 0.000 0.482 0.000 0.374 0.010 0.540 0.003 0.358 0.003 0 .341 0.051 0.735 0.046 0.781 0.024 0.751 0.088 0.861 0.219 0.813 0.094 0.656 0.155 8/21/2008 0.122 0.000 0.490 0.000 0.382 0.011 0.557 0.003 0.365 0.002 0.340 0.050 0.737 0.044 0.780 0.016 0.752 0.087 0.859 0.222 0.815 0.092 0.663 0.151 8/22/2008 0.100 2 .022 0.496 0.000 0.386 0.013 0.397 0.001 0.370 0.001 0.338 0.052 0.737 0.046 0.779 0.016 0.754 0.087 0.856 0.228 0.814 0.093 0.657 0.152 8/23/2008 0.088 0.657 0.364 0.000 0.391 0.011 0.231 0.000 0.374 0.001 0.336 0.048 0.738 0.047 0.779 0.014 0.755 0.086 0.862 0.223 0.812 0.093 0.656 0.152 8/24/2008 0.082 0.290 0.278 0.000 0.395 0.011 0.190 0.000 0.378 0.000 0.335 0.048 0.738 0.047 0.778 0.014 0.755 0.086 0.861 0.228 0.812 0.093 0.651 0.153 8/25/2008 0.078 0.221 0.240 0.000 0.398 0.010 0.161 0.000 0.382 0.002 0.335 0.048 0.739 0.045 0.778 0.011 0.751 0.086 0.853 0.240 0.811 0.094 0.647 0.154 8/26/2008 0.075 0.194 0.219 0.000 0.400 0.007 0.157 0.000 0.388 0.004 0.334 0.048 0.739 0.045 0.774 0.007 0.750 0.086 0.859 0.235 0.811 0.093 0.648 0.153 8/27/2008 0.080 1.622 0.219 0.000 0.400 0.006 0.174 0.000 0.394 0.004 0.335 0.050 0.739 0.047 0.776 0.007 0.752 0.086 0.863 0.233 0.811 0.093 0.649 0.152 8/28/2008 0.087 0.479 0.234 0.000 0.401 0.006 0.183 0.000 0.397 0.003 0.335 0.048 0.741 0.044 0.775 0.006 0.752 0.086 0.861 0.238 0.812 0.091 0.657 0.148

PAGE 326

326 Table A 2. Mean daily soil moisture ( ) and porewater salinity ( w) for mea surement locations on Transect 7 T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm ) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 1/27/2005 0.902 0.030 0.882 0.007 0.796 0.000 0.812 0.094 0.916 0.126 0.805 0.116 1/28/2005 0.902 0.031 0.8 82 0.008 0.797 0.000 0.812 0.094 0.912 0.126 0.807 0.115 1/29/2005 0.901 0.031 0.881 0.007 0.797 0.000 0.811 0.094 0.904 0.125 0.806 0.115 1/30/2005 0.898 0.032 0.881 0.007 0.797 0.000 0.810 0.094 0.896 0.124 0.806 0.114 1/31/2005 0.900 0.032 0.882 0.007 0.797 0.000 0.808 0.094 0.891 0.122 0.806 0.114 2/1/2005 0.900 0.032 0.882 0.007 0.797 0.000 0.808 0.093 0.884 0.121 0.806 0.114 2/2/2005 0.900 0.032 0.881 0.007 0.797 0.000 0.808 0.092 0.881 0.120 0.806 0.113 2/3/2005 0.896 0.033 0.881 0.007 0.797 0.000 0.807 0.092 0.878 0.118 0.806 0.113 2/4/2005 0.898 0.033 0.881 0.006 0.797 0.000 0.805 0.093 0.871 0.118 0.805 0.113 2/5/2005 0.897 0.033 0.879 0.006 0.79 6 0.000 0.805 0.092 0.867 0.117 0.806 0.113 2/6/2005 0.896 0.033 0.879 0.005 0.796 0.000 0.806 0.091 0.867 0.116 0.805 0.113 2/7/2005 0.895 0.034 0.878 0.005 0.796 0.000 0.803 0.091 0.865 0.116 0.805 0.113 2/8/2005 0. 892 0.038 0.878 0.005 0.796 0.000 0.804 0.090 0.867 0.116 0.806 0.113 2/9/2005 0.887 0.043 0.877 0.004 0.796 0.000 0.803 0.090 0.868 0.115 0.806 0.113 2/10/2005 0.883 0.049 0.875 0.005 0.796 0.000 0.802 0.090 0.867 0.114 0.806 0.1 13 2/11/2005 0.882 0.055 0.875 0.006 0.796 0.000 0.802 0.089 0.865 0.114 0.805 0.113 2/12/2005 0.883 0.057 0.875 0.007 0.796 0.000 0.802 0.089 0.865 0.114 0.806 0.112 2/13/2005 0.884 0.059 0.877 0.007 0.796 0.000 0.80 3 0.089 0.867 0.113 0.805 0.112 2/14/2005 0.886 0.059 0.876 0.008 0.796 0.000 0.804 0.089 0.868 0.112 0.806 0.112 2/15/2005 0.881 0.061 0.876 0.009 0.797 0.000 0.803 0.090 0.867 0.112 0.806 0.112 2/16/2005 0.880 0.060 0.875 0.010 0.797 0.000 0.800 0.092 0.866 0.111 0.805 0.112 2/17/2005 0.877 0.058 0.874 0.009 0.797 0.000 0.799 0.092 0.866 0.111 0.805 0.111 2/18/2005 0.874 0.059 0.873 0.009 0.797 0.000 0.799 0.094 0.868 0.111 0.806 0.111 2/19/2005 0.875 0.059 0.872 0.009 0.797 0.000 0.798 0.095 0.865 0.111 0.806 0.111 2/20/2005 0.874 0.063 0.871 0.010 0.797 0.000 0.798 0.096 0.866 0.111 0.806 0.112 2/21/2005 0.873 0.063 0.870 0.010 0.797 0.000 0.797 0.097 0.865 0.111 0.805 0.112 2/22/2005 0.872 0.062 0.869 0.010 0.797 0.000 0.797 0.097 0.866 0.110 0.805 0.112 2/23/2005 0.872 0.061 0.868 0.011 0.797 0.000 0.795 0.098 0.866 0.110 0.804 0.112 2/24/2005 0.871 0.059 0.868 0 .010 0.797 0.000 0.795 0.099 0.864 0.111 0.805 0.112 2/25/2005 0.871 0.059 0.867 0.010 0.797 0.000 0.794 0.100 0.865 0.111 0.806 0.112 2/26/2005 0.870 0.064 0.865 0.011 0.797 0.000 0.795 0.101 0.864 0.110 0.806 0.112 2/27/2005 0.869 0.065 0.866 0.011 0.796 0.000 0.793 0.102 0.865 0.110 0.807 0.112 2/28/2005 0.868 0.065 0.865 0.012 0.796 0.000 0.791 0.104 0.863 0.110 0.806 0.112 3/1/2005 0.867 0.063 0.864 0.013 0.797 0.000 0.793 0.104 0.864 0.1 10 0.804 0.113 3/2/2005 0.872 0.061 0.864 0.014 0.797 0.000 0.792 0.105 0.864 0.110 0.805 0.114 3/3/2005 0.878 0.061 0.865 0.015 0.796 0.000 0.793 0.105 0.864 0.109 0.804 0.114 3/4/2005 0.882 0.061 0.866 0.016 0.796 0 .000 0.794 0.106 0.865 0.109 0.805 0.114 3/5/2005 0.882 0.060 0.867 0.017 0.796 0.000 0.794 0.106 0.867 0.109 0.804 0.114 3/6/2005 0.883 0.060 0.866 0.017 0.797 0.000 0.795 0.107 0.865 0.108 0.805 0.114 3/7/2005 0.884 0.060 0.867 0.018 0.797 0.000 0.795 0.108 0.864 0.109 0.806 0.113 3/8/2005 0.884 0.059 0.866 0.018 0.796 0.000 0.794 0.110 0.865 0.108 0.806 0.113 3/9/2005 0.887 0.057 0.867 0.019 0.796 0.000 0.796 0.111 0.866 0.108 0.805 0.113 3/10/2005 0.890 0.055 0.866 0.019 0.796 0.000 0.796 0.111 0.866 0.108 0.805 0.113 3/11/2005 0.892 0.050 0.866 0.020 0.797 0.000 0.796 0.112 0.865 0.108 0.805 0.113 3/12/2005 0.891 0.045 0.867 0.021 0.797 0.000 0.797 0. 113 0.867 0.107 0.804 0.113 3/13/2005 0.892 0.047 0.867 0.021 0.797 0.000 0.797 0.114 0.863 0.108 0.806 0.111 3/14/2005 0.889 0.049 0.867 0.022 0.797 0.000 0.797 0.114 0.867 0.107 0.806 0.111 3/15/2005 0.889 0.048 0.8 66 0.023 0.797 0.000 0.797 0.115 0.865 0.107 0.805 0.111 3/16/2005 0.886 0.046 0.864 0.023 0.797 0.000 0.795 0.116 0.863 0.107 0.804 0.112 3/17/2005 0.886 0.045 0.864 0.023 0.796 0.000 0.796 0.118 0.863 0.109 0.805 0.112

PAGE 327

327 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 3/18/2005 0.890 0.043 0.864 0.024 0.796 0.000 0.797 0.118 0.863 0.109 0.806 0.111 3/19/2005 0.892 0.040 0.864 0.023 0.796 0.000 0.798 0.118 0.861 0.109 0.805 0.112 3/20/2005 0.894 0.038 0.864 0.023 0.796 0.000 0.799 0.117 0 .861 0.108 0.805 0.111 3/21/2005 0.894 0.038 0.865 0.023 0.796 0.000 0.799 0.119 0.864 0.109 0.805 0.111 3/22/2005 0.893 0.037 0.865 0.023 0.796 0.000 0.800 0.118 0.863 0.109 0.806 0.110 3/23/2005 0.891 0.034 0.864 0. 023 0.796 0.000 0.799 0.119 0.861 0.108 0.805 0.110 3/24/2005 0.890 0.033 0.863 0.022 0.796 0.000 0.797 0.120 0.863 0.109 0.805 0.110 3/25/2005 0.891 0.033 0.863 0.021 0.796 0.000 0.798 0.120 0.861 0.109 0.805 0.110 3 /26/2005 0.891 0.031 0.863 0.021 0.796 0.000 0.799 0.120 0.862 0.109 0.805 0.109 3/27/2005 0.889 0.030 0.861 0.020 0.796 0.000 0.800 0.120 0.861 0.110 0.802 0.110 3/28/2005 0.888 0.029 0.861 0.020 0.796 0.000 0.798 0.121 0.859 0.1 10 0.803 0.110 3/29/2005 0.891 0.028 0.861 0.019 0.795 0.000 0.799 0.121 0.859 0.111 0.804 0.110 3/30/2005 0.893 0.028 0.861 0.019 0.795 0.000 0.799 0.121 0.857 0.111 0.803 0.110 3/31/2005 0.893 0.028 0.862 0.018 0.79 6 0.000 0.801 0.120 0.859 0.111 0.804 0.109 4/1/2005 0.891 0.027 0.862 0.017 0.796 0.000 0.802 0.120 0.858 0.111 0.803 0.108 4/2/2005 0.892 0.027 0.861 0.017 0.796 0.000 0.802 0.120 0.860 0.111 0.804 0.108 4/3/2005 0. 894 0.027 0.861 0.016 0.796 0.000 0.803 0.120 0.860 0.111 0.803 0.109 4/4/2005 0.897 0.027 0.863 0.015 0.796 0.000 0.804 0.119 0.858 0.111 0.803 0.109 4/5/2005 0.897 0.027 0.864 0.015 0.796 0.000 0.805 0.119 0.859 0.110 0.804 0.10 8 4/6/2005 0.895 0.027 0.864 0.014 0.795 0.000 0.806 0.118 0.858 0.110 0.804 0.108 4/7/2005 0.894 0.027 0.864 0.014 0.795 0.000 0.805 0.119 0.859 0.110 0.804 0.107 4/8/2005 0.895 0.028 0.865 0.013 0.795 0.000 0.804 0. 119 0.859 0.111 0.804 0.107 4/9/2005 0.894 0.027 0.863 0.012 0.796 0.000 0.804 0.119 0.860 0.111 0.804 0.107 4/10/2005 0.895 0.027 0.864 0.012 0.796 0.000 0.804 0.118 0.860 0.110 0.804 0.106 4/11/2005 0.895 0.027 0.86 3 0.011 0.795 0.000 0.805 0.117 0.860 0.110 0.804 0.106 4/12/2005 0.895 0.027 0.863 0.011 0.795 0.000 0.804 0.117 0.858 0.110 0.804 0.106 4/13/2005 0.893 0.027 0.863 0.011 0.795 0.000 0.804 0.117 0.857 0.110 0.804 0.105 4/14/2005 0.895 0.027 0.863 0.010 0.796 0.000 0.805 0.116 0.858 0.110 0.804 0.105 4/15/2005 0.895 0.028 0.864 0.010 0.795 0.000 0.804 0.116 0.860 0.110 0.805 0.104 4/16/2005 0.896 0.028 0.865 0.009 0.795 0.000 0.805 0.115 0.861 0.110 0.804 0.104 4/17/2005 0.897 0.029 0.865 0.009 0.795 0.000 0.807 0.114 0.860 0.110 0.805 0.104 4/18/2005 0.897 0.029 0.866 0.008 0.795 0.000 0.806 0.113 0.859 0.110 0.804 0.104 4/19/2005 0.897 0.029 0.867 0.008 0.796 0.000 0.806 0.112 0.858 0.109 0.804 0.105 4/20/2005 0.897 0.030 0.866 0.008 0.796 0.000 0.806 0.112 0.858 0.109 0.804 0.104 4/21/2005 0.897 0.031 0.867 0.009 0.796 0.000 0.806 0.111 0.858 0.109 0.805 0.104 4/22/ 2005 0.898 0.032 0.867 0.009 0.796 0.000 0.806 0.111 0.858 0.109 0.806 0.103 4/23/2005 0.896 0.033 0.867 0.009 0.795 0.000 0.807 0.110 0.861 0.108 0.806 0.102 4/24/2005 0.895 0.033 0.868 0.009 0.795 0.000 0.807 0.109 0.860 0.109 0 .806 0.102 4/25/2005 0.899 0.033 0.868 0.009 0.796 0.000 0.807 0.109 0.860 0.108 0.806 0.102 4/26/2005 0.898 0.034 0.868 0.010 0.795 0.000 0.807 0.108 0.859 0.108 0.806 0.101 4/27/2005 0.897 0.034 0.868 0.010 0.796 0. 000 0.808 0.108 0.860 0.107 0.806 0.101 4/28/2005 0.895 0.034 0.869 0.010 0.796 0.000 0.806 0.108 0.858 0.107 0.806 0.100 4/29/2005 0.896 0.034 0.868 0.010 0.796 0.000 0.806 0.107 0.859 0.106 0.806 0.099 4/30/2005 0.8 95 0.035 0.868 0.010 0.795 0.000 0.806 0.106 0.858 0.106 0.806 0.099 5/1/2005 0.893 0.036 0.868 0.010 0.796 0.000 0.805 0.106 0.859 0.106 0.804 0.099 5/2/2005 0.892 0.036 0.868 0.010 0.795 0.000 0.805 0.106 0.857 0.106 0.804 0.100 5/3/2005 0.893 0.038 0.867 0.010 0.795 0.000 0.805 0.106 0.857 0.106 0.804 0.100 5/4/2005 0.893 0.038 0.867 0.010 0.795 0.000 0.804 0.105 0.860 0.105 0.804 0.099 5/5/2005 0.894 0.037 0.867 0.010 0.794 0.000 0.806 0.1 04 0.856 0.106 0.805 0.099 5/6/2005 0.894 0.035 0.866 0.010 0.795 0.000 0.807 0.103 0.857 0.106 0.805 0.099 0.759 0.107 0.796 0.115 0.806 0.088 0.758 0.118 0.755 0.095 0.751 0.126

PAGE 328

328 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 ( 67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 5/7/2005 0.894 0.034 0.867 0.010 0.795 0.000 0.806 0.103 0. 861 0.105 0.805 0.098 0.759 0.107 0.795 0.115 0.807 0.087 0.758 0.118 0.755 0.095 0.751 0.126 5/8/2005 0.896 0.034 0.868 0.010 0.795 0.000 0.808 0.102 0.861 0.105 0.805 0.098 0.759 0.107 0.795 0.115 0.807 0.087 0.757 0.118 0.755 0.096 0.751 0.125 5/9/200 5 0.896 0.034 0.869 0.011 0.795 0.000 0.807 0.102 0.860 0.104 0.805 0.098 0.758 0.107 0.796 0.114 0.806 0.087 0.757 0.117 0.754 0.096 0.751 0.125 5/10/2005 0.896 0.034 0.869 0.011 0.795 0.000 0.806 0.102 0.860 0.103 0.805 0.098 0.758 0.108 0.795 0.114 0.8 06 0.087 0.757 0.117 0.754 0.096 0.751 0.124 5/11/2005 0.896 0.035 0.869 0.011 0.795 0.000 0.806 0.102 0.859 0.103 0.805 0.098 0.758 0.108 0.795 0.113 0.806 0.086 0.757 0.116 0.754 0.095 0.751 0.124 5/12/2005 0.896 0.035 0.869 0.011 0.795 0.000 0.806 0.1 01 0.860 0.103 0.805 0.097 0.758 0.108 0.794 0.112 0.808 0.084 0.757 0.117 0.754 0.094 0.751 0.124 5/13/2005 0.895 0.035 0.870 0.011 0.795 0.000 0.807 0.101 0.861 0.102 0.805 0.097 0.758 0.107 0.794 0.112 0.808 0.083 0.757 0.116 0.754 0.094 0.751 0.123 5 /14/2005 0.895 0.036 0.869 0.012 0.795 0.000 0.807 0.101 0.860 0.102 0.805 0.097 0.758 0.107 0.793 0.111 0.808 0.083 0.757 0.116 0.755 0.093 0.751 0.123 5/15/2005 0.894 0.037 0.870 0.012 0.795 0.000 0.805 0.102 0.859 0.102 0.805 0.097 0.758 0.107 0.793 0. 110 0.808 0.082 0.757 0.116 0.755 0.093 0.751 0.122 5/16/2005 0.894 0.037 0.870 0.012 0.795 0.000 0.805 0.101 0.861 0.102 0.806 0.097 0.758 0.106 0.794 0.109 0.808 0.081 0.757 0.116 0.755 0.093 0.751 0.121 5/17/2005 0.891 0.038 0.870 0.011 0.795 0.000 0. 806 0.101 0.860 0.101 0.805 0.097 0.758 0.106 0.794 0.108 0.808 0.080 0.757 0.115 0.755 0.093 0.751 0.121 5/18/2005 0.891 0.038 0.870 0.010 0.795 0.000 0.805 0.101 0.858 0.102 0.804 0.098 0.758 0.105 0.794 0.108 0.807 0.079 0.757 0.115 0.755 0.093 0.751 0 .120 5/19/2005 0.890 0.038 0.870 0.009 0.795 0.000 0.806 0.100 0.861 0.102 0.803 0.099 0.758 0.105 0.795 0.107 0.807 0.078 0.757 0.115 0.755 0.093 0.751 0.120 5/20/2005 0.892 0.039 0.869 0.010 0.794 0.000 0.807 0.100 0.859 0.102 0.803 0.100 0.759 0.104 0 .795 0.107 0.807 0.078 0.757 0.115 0.755 0.093 0.751 0.119 5/21/2005 0.893 0.040 0.870 0.010 0.794 0.000 0.805 0.101 0.859 0.102 0.804 0.099 0.759 0.103 0.796 0.106 0.807 0.077 0.757 0.114 0.751 0.118 5/22/2005 0.893 0.040 0.870 0.011 0.794 0.000 0.804 0.101 0.859 0.101 0.804 0.098 0.759 0.103 0.797 0.105 0.806 0.077 0.757 0.114 0.751 0.117 5/23/2005 0.891 0.040 0.869 0.012 0.794 0.000 0.804 0.100 0.859 0.101 0.803 0.098 0.759 0.102 0.797 0.104 0.806 0.076 0.757 0.114 0.751 0.117 5/24/2005 0.891 0 .039 0.870 0.012 0.794 0.000 0.803 0.099 0.856 0.101 0.803 0.098 0.759 0.102 0.798 0.103 0.807 0.077 0.757 0.114 0.751 0.116 5/25/2005 0.890 0.039 0.870 0.012 0.794 0.000 0.803 0.099 0.857 0.101 0.803 0.097 0.759 0.102 0.799 0.102 0.807 0.076 0.757 0.11 4 0.751 0.116 5/26/2005 0.890 0.039 0.870 0.013 0.794 0.000 0.805 0.098 0.857 0.101 0.802 0.097 0.759 0.102 0.796 0.103 0.806 0.076 0.757 0.114 0.751 0.116 5/27/2005 0.892 0.037 0.870 0.013 0.794 0.000 0.804 0.097 0.859 0.101 0.802 0.097 0.759 0.101 0.797 0.102 0.806 0.076 0.757 0.114 0.751 0.115 5/28/2005 0.890 0.036 0.869 0.013 0.793 0.000 0.802 0.097 0.856 0.101 0.802 0.096 0.759 0.101 0.797 0.101 0.806 0.076 0.757 0.113 0.751 0.115 5/29/2005 0.890 0.037 0.870 0.013 0.793 0.000 0.801 0.097 0. 855 0.100 0.802 0.096 0.758 0.101 0.797 0.100 0.806 0.076 0.757 0.113 0.751 0.115 5/30/2005 0.889 0.038 0.869 0.014 0.793 0.000 0.799 0.097 0.855 0.100 0.803 0.095 0.758 0.102 0.797 0.100 0.806 0.076 0.757 0.113 0.751 0.115 5/31/2005 0.890 0.039 0.86 8 0.013 0.793 0.000 0.799 0.095 0.856 0.100 0.802 0.095 0.758 0.101 0.796 0.100 0.803 0.077 0.757 0.113 0.751 0.114 6/1/2005 0.889 0.039 0.868 0.013 0.793 0.000 0.798 0.095 0.857 0.100 0.802 0.095 0.758 0.101 0.796 0.100 0.805 0.076 0.757 0.113 0.751 0.114 6/2/2005 0.891 0.040 0.867 0.013 0.793 0.000 0.798 0.093 0.857 0.099 0.803 0.094 0.758 0.100 0.796 0.099 0.806 0.076 0.757 0.113 0.751 0.113 6/3/2005 0.892 0.039 0.867 0.013 0.792 0.000 0.798 0.092 0.860 0.099 0.802 0.093 0.758 0.099 0.797 0.099 0.806 0.075 0.757 0.113 0.751 0.113 6/4/2005 0.893 0.038 0.868 0.013 0.793 0.000 0.798 0.091 0.859 0.099 0.802 0.093 0.758 0.099 0.796 0.098 0.806 0.075 0.756 0.113 0.751 0.113 6/5/2005 0.892 0.037 0.868 0.013 0.793 0.000 0.795 0.090 0.856 0.098 0.80 3 0.092 0.758 0.098 0.796 0.097 0.807 0.075 0.757 0.112 0.751 0.114 6/6/2005 0.891 0.036 0.868 0.013 0.793 0.000 0.795 0.089 0.857 0.098 0.803 0.092 0.758 0.097 0.796 0.097 0.806 0.075 0.757 0.111 0.751 0.113 6/7/2005 0.893 0.036 0.867 0.013 0.793 0. 000 0.792 0.089 0.857 0.098 0.803 0.092 0.758 0.097 0.797 0.096 0.807 0.074 0.757 0.111 0.751 0.112 6/8/2005 0.891 0.035 0.867 0.012 0.793 0.000 0.791 0.088 0.855 0.098 0.802 0.092 0.758 0.096 0.796 0.096 0.806 0.074 0.757 0.111 0.751 0.112 6/9/2005 0.889 0.033 0.867 0.012 0.793 0.000 0.788 0.087 0.857 0.098 0.802 0.092 0.759 0.096 0.795 0.096 0.806 0.074 0.757 0.111 0.751 0.111 6/10/2005 0.888 0.033 0.867 0.012 0.793 0.000 0.788 0.086 0.857 0.098 0.800 0.093 0.759 0.095 0.795 0.095 0.804 0.074 0.7 57 0.110 0.751 0.111 6/11/2005 0.888 0.032 0.868 0.011 0.793 0.000 0.787 0.085 0.857 0.097 0.801 0.094 0.759 0.094 0.796 0.095 0.805 0.073 0.757 0.110 0.751 0.110 6/12/2005 0.889 0.032 0.867 0.011 0.793 0.000 0.787 0.085 0.856 0.097 0.802 0.094 0.759 0.094 0.796 0.094 0.806 0.073 0.756 0.110 0.751 0.110 6/13/2005 0.888 0.029 0.867 0.012 0.793 0.000 0.788 0.084 0.857 0.097 0.802 0.094 0.759 0.093 0.797 0.094 0.805 0.073 0.756 0.110 0.751 0.109 6/14/2005 0.886 0.027 0.867 0.012 0.793 0.000 0.787 0 .084 0.856 0.097 0.803 0.094 0.759 0.093 0.796 0.094 0.805 0.073 0.756 0.110 0.751 0.109 6/15/2005 0.886 0.026 0.867 0.011 0.793 0.000 0.785 0.084 0.854 0.098 0.801 0.096 0.759 0.093 0.796 0.093 0.805 0.073 0.756 0.109 0.751 0.108 6/16/2005 0.886 0.0 25 0.867 0.011 0.792 0.000 0.785 0.084 0.855 0.098 0.801 0.098 0.758 0.094 0.796 0.093 0.805 0.073 0.756 0.109 0.751 0.108 6/17/2005 0.886 0.025 0.868 0.010 0.792 0.000 0.784 0.084 0.855 0.098 0.801 0.099 0.758 0.093 0.796 0.093 0.805 0.072 0.756 0.109 0.751 0.107 6/18/2005 0.885 0.025 0.868 0.009 0.792 0.000 0.783 0.084 0.855 0.098 0.800 0.099 0.759 0.093 0.795 0.093 0.805 0.071 0.756 0.109 0.751 0.106 6/19/2005 0.884 0.025 0.868 0.009 0.792 0.000 0.783 0.084 0.857 0.098 0.798 0.100 0.759 0.093 0. 796 0.093 0.805 0.070 0.756 0.109 0.751 0.105 6/20/2005 0.885 0.025 0.868 0.009 0.793 0.000 0.783 0.083 0.859 0.098 0.798 0.099 0.759 0.092 0.796 0.092 0.805 0.069 0.756 0.109 0.751 0.105 6/21/2005 0.886 0.025 0.868 0.008 0.793 0.000 0.783 0.083 0.85 5 0.098 0.799 0.099 0.759 0.092 0.796 0.092 0.806 0.068 0.756 0.109 0.751 0.104 6/22/2005 0.885 0.025 0.869 0.008 0.793 0.000 0.783 0.083 0.857 0.098 0.796 0.098 0.759 0.091 0.796 0.092 0.807 0.068 0.756 0.109 0.751 0.103 6/23/2005 0.885 0.025 0.869 0.007 0.792 0.000 0.784 0.082 0.857 0.098 0.796 0.098 0.759 0.091 0.796 0.091 0.808 0.067 0.756 0.108 0.751 0.102 6/24/2005 0.886 0.025 0.869 0.007 0.792 0.000 0.782 0.083 0.856 0.098 0.796 0.098 0.759 0.091 0.797 0.090 0.809 0.066 0.757 0.108 0.751 0 .101 6/25/2005 0.884 0.025 0.869 0.006 0.792 0.000 0.781 0.083 0.855 0.098 0.795 0.098 0.759 0.090 0.796 0.090 0.808 0.066 0.757 0.107 0.751 0.101

PAGE 329

329 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (6 6 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 6/26/2005 0.882 0.025 0.869 0.006 0.792 0.000 0.781 0.082 0.857 0.098 0.794 0.099 0.759 0.090 0.796 0.090 0.807 0.066 0.757 0.107 0.751 0.100 6/27/2005 0.883 0.025 0.870 0.006 0.792 0.000 0.78 0 0.083 0.857 0.098 0.793 0.100 0.759 0.089 0.796 0.090 0.807 0.066 0.757 0.107 0.751 0.099 6/28/2005 0.881 0.025 0.870 0.006 0.791 0.000 0.779 0.083 0.854 0.098 0.796 0.100 0.759 0.089 0.796 0.090 0.805 0.066 0.757 0.107 0.751 0.099 6/29/2005 0.881 0.025 0.870 0.006 0.792 0.000 0.780 0.082 0.859 0.098 0.796 0.101 0.759 0.089 0.796 0.089 0.806 0.065 0.757 0.107 0.751 0.098 6/30/2005 0.882 0.025 0.870 0.005 0.792 0.000 0.779 0.082 0.857 0.099 0.794 0.101 0.759 0.088 0.797 0.089 0.808 0.064 0.757 0.1 06 0.751 0.098 7/1/2005 0.880 0.025 0.870 0.005 0.792 0.000 0.780 0.081 0.856 0.099 0.794 0.102 0.759 0.088 0.797 0.089 0.808 0.064 0.757 0.106 0.751 0.097 7/2/2005 0.879 0.024 0.870 0.005 0.792 0.000 0.778 0.082 0.852 0.099 0.794 0.102 0.759 0.088 0 .796 0.089 0.807 0.064 0.756 0.107 0.751 0.096 7/3/2005 0.877 0.023 0.870 0.005 0.792 0.000 0.779 0.081 0.854 0.099 0.794 0.102 0.759 0.087 0.796 0.089 0.806 0.064 0.756 0.106 0.751 0.095 7/4/2005 0.877 0.022 0.869 0.006 0.792 0.000 0.779 0.081 0.855 0.099 0.791 0.103 0.759 0.087 0.797 0.088 0.806 0.063 0.756 0.106 0.751 0.095 7/5/2005 0.877 0.021 0.868 0.006 0.792 0.000 0.776 0.082 0.853 0.099 0.791 0.102 0.759 0.087 0.797 0.087 0.807 0.063 0.756 0.105 0.751 0.095 7/6/2005 0.876 0.019 0.868 0.0 05 0.792 0.000 0.776 0.082 0.856 0.099 0.791 0.102 0.759 0.087 0.797 0.087 0.807 0.062 0.756 0.105 0.751 0.094 7/7/2005 0.874 0.017 0.868 0.005 0.792 0.000 0.775 0.081 0.853 0.099 0.791 0.101 0.759 0.087 0.798 0.087 0.806 0.061 0.757 0.105 0.751 0.093 7/8/2005 0.874 0.016 0.868 0.004 0.792 0.000 0.774 0.081 0.850 0.099 0.791 0.101 0.759 0.087 0.798 0.086 0.806 0.061 0.757 0.105 0.751 0.093 7/9/2005 0.875 0.016 0.868 0.004 0.792 0.000 0.774 0.081 0.851 0.100 0.791 0.100 0.759 0.087 0.798 0.086 0.807 0.060 0.757 0.104 0.751 0.092 7/10/2005 0.875 0.016 0.868 0.004 0.792 0.000 0.774 0.080 0.852 0.100 0.789 0.101 0.759 0.086 0.797 0.086 0.808 0.060 0.756 0.105 0.751 0.092 7/11/2005 0.873 0.014 0.868 0.003 0.791 0.000 0.773 0.080 0.852 0.099 0.790 0 .100 0.759 0.086 0.796 0.086 0.807 0.059 0.756 0.105 0.751 0.091 7/12/2005 0.874 0.013 0.869 0.002 0.791 0.000 0.772 0.081 0.852 0.099 0.789 0.100 0.759 0.085 0.796 0.085 0.806 0.059 0.756 0.105 0.751 0.091 7/13/2005 0.874 0.012 0.867 0.002 0.791 0.0 00 0.772 0.080 0.853 0.099 0.787 0.100 0.759 0.085 0.796 0.085 0.807 0.059 0.756 0.104 0.751 0.090 7/14/2005 0.875 0.012 0.868 0.001 0.792 0.000 0.771 0.081 0.853 0.100 0.787 0.101 0.759 0.085 0.797 0.085 0.808 0.059 0.756 0.104 0.751 0.089 7/15/2005 0.877 0.012 0.868 0.001 0.791 0.000 0.772 0.079 0.853 0.099 0.786 0.101 0.759 0.085 0.797 0.085 0.809 0.059 0.756 0.104 0.751 0.089 7/16/2005 0.878 0.012 0.868 0.000 0.792 0.000 0.770 0.080 0.851 0.100 0.784 0.101 0.759 0.085 0.797 0.084 0.808 0.058 0. 756 0.104 0.751 0.088 7/17/2005 0.878 0.012 0.868 0.000 0.792 0.000 0.769 0.080 0.853 0.100 0.784 0.101 0.759 0.084 0.797 0.084 0.808 0.058 0.756 0.103 0.751 0.087 7/18/2005 0.878 0.012 0.868 0.000 0.792 0.000 0.769 0.080 0.851 0.100 0.783 0.101 0.75 9 0.084 0.798 0.083 0.808 0.057 0.756 0.103 0.751 0.087 7/19/2005 0.877 0.013 0.868 0.000 0.792 0.000 0.769 0.079 0.850 0.100 0.782 0.100 0.759 0.084 0.798 0.083 0.808 0.056 0.756 0.103 0.751 0.086 7/20/2005 0.877 0.013 0.868 0.000 0.792 0.000 0.768 0.080 0.853 0.100 0.781 0.099 0.759 0.083 0.798 0.082 0.807 0.056 0.756 0.103 0.751 0.086 7/21/2005 0.877 0.014 0.868 0.000 0.792 0.000 0.768 0.080 0.852 0.100 0.781 0.098 0.759 0.083 0.798 0.082 0.807 0.055 0.756 0.103 0.751 0.085 7/22/2005 0.876 0. 014 0.868 0.000 0.791 0.000 0.768 0.079 0.850 0.100 0.779 0.097 0.759 0.082 0.798 0.082 0.808 0.055 0.756 0.102 0.751 0.085 7/23/2005 0.876 0.015 0.869 0.000 0.791 0.000 0.767 0.079 0.851 0.099 0.779 0.096 0.760 0.081 0.797 0.081 0.808 0.054 0.756 0.102 0.751 0.084 7/24/2005 0.877 0.015 0.868 0.000 0.791 0.000 0.767 0.080 0.850 0.100 0.779 0.096 0.759 0.082 0.798 0.081 0.808 0.054 0.756 0.102 0.751 0.084 7/25/2005 0.877 0.015 0.868 0.000 0.791 0.000 0.768 0.079 0.852 0.100 0.779 0.095 0.759 0.081 0 .798 0.080 0.809 0.053 0.756 0.102 0.751 0.083 7/26/2005 0.877 0.016 0.868 0.000 0.791 0.000 0.769 0.079 0.850 0.099 0.779 0.095 0.759 0.081 0.798 0.080 0.810 0.053 0.757 0.102 0.751 0.083 7/27/2005 0.877 0.016 0.868 0.000 0.791 0.000 0.769 0.079 0.8 51 0.100 0.777 0.095 0.759 0.080 0.798 0.080 0.810 0.052 0.756 0.101 0.751 0.081 7/28/2005 0.876 0.017 0.868 0.000 0.791 0.000 0.769 0.079 0.853 0.099 0.777 0.094 0.759 0.080 0.797 0.079 0.809 0.052 0.757 0.100 0.751 0.081 7/29/2005 0.876 0.017 0.868 0.000 0.791 0.000 0.769 0.078 0.850 0.099 0.777 0.093 0.759 0.080 0.797 0.079 0.809 0.051 0.756 0.100 0.751 0.080 7/30/2005 0.876 0.017 0.868 0.000 0.791 0.000 0.769 0.078 0.852 0.099 0.776 0.093 0.759 0.080 0.797 0.078 0.809 0.052 0.756 0.100 0.751 0.079 7/31/2005 0.877 0.017 0.868 0.000 0.791 0.000 0.768 0.079 0.854 0.099 0.776 0.094 0.759 0.079 0.798 0.078 0.809 0.052 0.756 0.100 0.751 0.079 8/1/2005 0.878 0.018 0.868 0.000 0.791 0.000 0.769 0.079 0.853 0.099 0.776 0.093 0.759 0.078 0.799 0.078 0.810 0.051 0.756 0.100 0.751 0.078 8/2/2005 0.879 0.018 0.869 0.000 0.791 0.000 0.768 0.079 0.851 0.099 0.777 0.093 0.760 0.077 0.800 0.077 0.810 0.051 0.756 0.100 0.751 0.078 8/3/2005 0.880 0.017 0.869 0.000 0.791 0.000 0.768 0.079 0.855 0.098 0.7 76 0.093 0.760 0.077 0.799 0.077 0.811 0.050 0.756 0.099 0.751 0.077 8/4/2005 0.880 0.016 0.869 0.000 0.791 0.000 0.768 0.079 0.855 0.098 0.776 0.092 0.760 0.077 0.798 0.077 0.811 0.050 0.756 0.099 0.751 0.077 8/5/2005 0.882 0.017 0.869 0.000 0.791 0 .000 0.769 0.078 0.855 0.098 0.776 0.092 0.759 0.077 0.798 0.077 0.813 0.049 0.756 0.099 0.751 0.077 8/6/2005 0.882 0.016 0.869 0.000 0.791 0.000 0.769 0.078 0.854 0.098 0.775 0.092 0.760 0.076 0.798 0.076 0.811 0.049 0.756 0.098 0.751 0.076 8/7/2005 0.882 0.015 0.870 0.000 0.791 0.000 0.769 0.078 0.853 0.099 0.774 0.091 0.760 0.075 0.799 0.076 0.811 0.049 0.756 0.098 0.751 0.076 8/8/2005 0.882 0.016 0.870 0.000 0.791 0.000 0.769 0.078 0.853 0.098 0.774 0.091 0.760 0.075 0.799 0.076 0.811 0.049 0.7 56 0.098 0.751 0.075 8/9/2005 0.879 0.016 0.870 0.000 0.791 0.000 0.769 0.078 0.852 0.099 0.774 0.092 0.760 0.075 0.799 0.075 0.812 0.048 0.757 0.098 0.751 0.075 8/10/2005 0.879 0.016 0.869 0.000 0.791 0.000 0.769 0.077 0.855 0.097 0.774 0.091 0.760 0.075 0.799 0.075 0.812 0.048 0.757 0.097 0.751 0.075 8/11/2005 0.881 0.016 0.868 0.000 0.791 0.000 0.768 0.074 0.858 0.096 0.776 0.090 0.760 0.074 0.778 0.064 0.813 0.047 0.757 0.097 0.751 0.074 8/12/2005 0.880 0.015 0.869 0.000 0.791 0.000 0.766 0. 074 0.859 0.096 0.775 0.090 0.760 0.074 0.765 0.057 0.813 0.047 0.757 0.097 0.751 0.074 8/13/2005 0.880 0.014 0.869 0.000 0.791 0.000 0.766 0.074 0.859 0.096 0.775 0.090 0.760 0.074 0.767 0.058 0.813 0.047 0.756 0.097 0.751 0.073 8/14/2005 0.880 0.01 4 0.869 0.000 0.791 0.000 0.768 0.075 0.859 0.096 0.776 0.089 0.760 0.074 0.769 0.058 0.812 0.047 0.756 0.096 0.751 0.073

PAGE 330

330 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 8/15/2005 0.880 0.014 0.869 0.000 0.791 0.000 0.768 0.075 0.857 0.096 0.774 0.089 0.760 0.073 0.771 0.059 0.813 0.047 0.756 0.09 6 0.751 0.073 8/16/2005 0.768 0.075 0.856 0.096 0.774 0.088 0.760 0.073 0.772 0.060 0.813 0.047 0.756 0.096 0.751 0.072 8/17/2005 0.769 0.076 0.857 0.096 0.775 0.088 0.760 0.072 0.774 0.060 0.812 0.047 0.757 0.095 0.751 0.071 8/18/2005 0.769 0.077 0.857 0.096 0.774 0.088 0.760 0.072 0.775 0.061 0.813 0.047 0.756 0.095 0.751 0.072 8/19/2005 0.769 0.077 0.858 0.096 0.776 0.088 0.760 0.072 0.778 0.063 0.813 0.047 0.757 0.095 0.751 0.071 8/20/2005 0.769 0.077 0.857 0 .096 0.779 0.089 0.761 0.071 0.780 0.064 0.812 0.047 0.757 0.095 0.751 0.070 8/21/2005 0.769 0.077 0.856 0.096 0.777 0.089 0.761 0.071 0.783 0.064 0.812 0.047 0.757 0.094 0.751 0.070 8/22/2005 0.770 0.077 0.856 0.096 0.779 0.089 0.760 0.0 71 0.784 0.065 0.812 0.047 0.757 0.094 0.751 0.070 8/23/2005 0.769 0.077 0.855 0.096 0.778 0.088 0.760 0.071 0.786 0.065 0.812 0.047 0.757 0.094 0.751 0.070 8/24/2005 0.769 0.077 0.856 0.096 0.776 0.088 0.760 0.070 0.787 0.065 0.811 0.047 0.757 0.094 0.751 0.069 8/25/2005 0.770 0.077 0.858 0.096 0.775 0.087 0.760 0.070 0.788 0.066 0.811 0.047 0.757 0.093 0.751 0.069 8/26/2005 0.771 0.077 0.855 0.096 0.775 0.087 0.761 0.069 0.789 0.066 0.813 0.047 0.757 0.093 0.751 0.069 8/27/2005 0.770 0.077 0.855 0.097 0.773 0.089 0.761 0.069 0.790 0.066 0.813 0.048 0.757 0.093 0.751 0.068 8/28/2005 0.770 0.079 0.852 0.097 0.773 0.091 0.761 0.068 0.789 0.067 0.812 0.048 0.756 0.093 0.751 0.068 8/29/2005 0.770 0. 078 0.853 0.096 0.774 0.090 0.761 0.068 0.791 0.067 0.811 0.048 0.757 0.092 0.751 0.067 8/30/2005 0.770 0.078 0.853 0.097 0.774 0.091 0.760 0.068 0.792 0.067 0.812 0.048 0.757 0.092 0.751 0.067 8/31/2005 0.769 0.079 0.853 0.098 0.775 0.09 2 0.760 0.068 0.793 0.067 0.811 0.049 0.757 0.092 0.751 0.067 9/1/2005 0.769 0.079 0.852 0.097 0.778 0.093 0.760 0.068 0.793 0.068 0.811 0.049 0.757 0.091 0.751 0.067 9/2/2005 0.769 0.079 0.854 0.098 0.778 0.092 0.760 0.068 0.796 0.067 0. 812 0.049 0.757 0.091 0.751 0.067 9/3/2005 0.769 0.079 0.853 0.098 0.778 0.092 0.760 0.068 0.797 0.067 0.812 0.049 0.757 0.091 0.751 0.067 9/4/2005 0.770 0.079 0.851 0.098 0.777 0.093 0.761 0.067 0.797 0.067 0.812 0.049 0.757 0.091 0.75 1 0.067 9/5/2005 0.770 0.079 0.854 0.098 0.778 0.094 0.761 0.067 0.798 0.067 0.812 0.050 0.757 0.091 0.751 0.066 9/6/2005 0.770 0.079 0.856 0.098 0.778 0.097 0.761 0.067 0.798 0.068 0.813 0.050 0.757 0.091 0.752 0.066 9/7/2005 0.77 0 0.078 0.855 0.098 0.777 0.099 0.761 0.067 0.799 0.068 0.814 0.050 0.757 0.091 0.752 0.066 9/8/2005 0.771 0.079 0.854 0.099 0.777 0.101 0.761 0.067 0.798 0.068 0.813 0.051 0.757 0.091 0.752 0.066 9/9/2005 0.771 0.079 0.853 0.099 0.778 0. 104 0.761 0.067 0.800 0.068 0.813 0.051 0.757 0.091 0.752 0.066 9/10/2005 0.770 0.080 0.854 0.099 0.778 0.105 0.761 0.066 0.800 0.068 0.812 0.052 0.757 0.091 0.752 0.066 9/11/2005 0.770 0.079 0.853 0.100 0.778 0.105 0.761 0.066 0.799 0.06 8 0.812 0.052 0.757 0.090 0.752 0.066 9/12/2005 0.770 0.080 0.852 0.100 0.778 0.106 0.761 0.067 0.799 0.068 0.811 0.053 0.757 0.090 0.752 0.066 9/13/2005 0.900 0.019 0.882 0.000 0.793 0.000 0.770 0.080 0.853 0.101 0.779 0.107 0.761 0.066 0.798 0.068 0.811 0.054 0.757 0.089 0.751 0.065 9/14/2005 0.899 0.019 0.882 0.000 0.790 0.000 0.770 0.081 0.853 0.102 0.780 0.107 0.761 0.066 0.799 0.068 0.811 0.054 0.757 0.089 0.752 0.065 9/15/2005 0.770 0.081 0.851 0.102 0.779 0.108 0.761 0.066 0. 799 0.068 0.810 0.055 0.757 0.089 0.752 0.065 9/16/2005 0.770 0.082 0.852 0.102 0.779 0.108 0.761 0.066 0.800 0.068 0.810 0.055 0.757 0.089 0.752 0.065 9/17/2005 0.769 0.082 0.852 0.103 0.778 0.108 0.761 0.066 0.800 0.068 0.810 0.056 0.75 7 0.089 0.752 0.065 9/18/2005 0.770 0.082 0.852 0.103 0.778 0.108 0.761 0.066 0.799 0.068 0.809 0.057 0.757 0.089 0.752 0.065 9/19/2005 0.770 0.083 0.853 0.103 0.778 0.108 0.761 0.066 0.800 0.068 0.809 0.057 0.757 0.089 0.752 0.065 9/2 0/2005 0.770 0.083 0.852 0.103 0.778 0.108 0.761 0.066 0.799 0.068 0.809 0.058 0.757 0.088 0.752 0.065 9/21/2005 0.769 0.084 0.853 0.103 0.778 0.108 0.761 0.066 0.799 0.067 0.809 0.058 0.758 0.088 0.752 0.065 9/22/2005 0.769 0.084 0 .851 0.105 0.779 0.108 0.761 0.066 0.799 0.067 0.809 0.059 0.757 0.088 0.752 0.065 9/23/2005 0.769 0.084 0.851 0.104 0.777 0.108 0.761 0.066 0.799 0.067 0.809 0.059 0.757 0.088 0.752 0.065 9/24/2005 0.769 0.084 0.851 0.104 0.777 0.108 0.7 61 0.066 0.798 0.067 0.809 0.060 0.758 0.087 0.752 0.065 9/25/2005 0.769 0.085 0.851 0.105 0.776 0.108 0.761 0.066 0.798 0.067 0.809 0.060 0.757 0.087 0.752 0.064 9/26/2005 0.769 0.085 0.850 0.105 0.776 0.108 0.760 0.066 0.798 0.067 0.809 0.059 0.757 0.087 0.752 0.064 9/27/2005 0.769 0.085 0.850 0.105 0.776 0.108 0.760 0.066 0.799 0.067 0.809 0.060 0.757 0.087 0.752 0.064 9/28/2005 0.770 0.086 0.854 0.106 0.777 0.108 0.761 0.065 0.799 0.068 0.810 0.060 0.757 0.087 0.752 0.064 9/29/2005 0.770 0.086 0.854 0.106 0.776 0.108 0.761 0.065 0.799 0.067 0.809 0.060 0.757 0.087 0.752 0.064 9/30/2005 0.770 0.086 0.850 0.106 0.777 0.108 0.761 0.065 0.800 0.068 0.809 0.060 0.757 0.087 0.752 0.064 10/1/2005 0. 770 0.087 0.850 0.106 0.776 0.108 0.761 0.065 0.801 0.068 0.810 0.060 0.757 0.087 0.752 0.064 10/2/2005 0.770 0.087 0.849 0.106 0.776 0.108 0.761 0.065 0.801 0.068 0.808 0.061 0.757 0.086 0.752 0.064 10/3/2005 0.770 0.088 0.850 0.107 0.77 6 0.108 0.761 0.065 0.801 0.068 0.809 0.061 0.757 0.086 0.752 0.064

PAGE 331

331 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 ( 48 cm) Date w w w w w w w w w w w w 10/4/2005 0.893 0.021 0.770 0.088 0.850 0.107 0.777 0.108 0.761 0.065 0.802 0.068 0.808 0.061 0.758 0.086 0.752 0.064 10/5/2005 0.902 0.024 0.770 0.088 0.851 0.107 0.777 0.107 0.761 0. 064 0.801 0.068 0.809 0.061 0.758 0.086 0.752 0.064 10/6/2005 0.761 0.037 0.800 0.065 0.805 0.056 10/7/2005 0.762 0.040 0.800 0.067 0.809 0.061 10/8/2005 0.762 0.042 0.802 0.067 0.810 0.063 10/9/2 005 0.762 0.045 0.806 0.066 0.810 0.064 10/10/2005 0.762 0.048 0.803 0.068 0.809 0.065 10/11/2005 0.762 0.049 0.800 0.069 0.809 0.066 10/12/2005 0.763 0.051 0.801 0.069 0.809 0.067 10/13/2005 0.763 0.053 0.801 0.069 0.809 0.066 10/14/2005 0.764 0.055 0.803 0.069 0.809 0.066 10/15/2005 0.764 0.056 0.805 0.069 0.810 0.067 10/16/2005 0.764 0.056 0.805 0.069 0.810 0.06 7 10/17/2005 0.764 0.057 0.804 0.070 0.809 0.066 10/18/2005 0.765 0.058 0.804 0.070 0.809 0.067 10/19/2005 0.765 0.059 0.804 0.070 0.808 0.066 10/20/2005 0.765 0.059 0.803 0.070 0. 808 0.066 10/21/2005 0.765 0.060 0.803 0.070 0.807 0.066 10/22/2005 0.765 0.061 0.803 0.070 0.807 0.067 10/23/2005 0.765 0.061 0.803 0.069 0.807 0.068 10/24/2005 0.765 0.061 0.803 0.070 0.808 0.068 10/25/2005 0.765 0.061 0.803 0.070 0.808 0.066 10/26/2005 0.765 0.062 0.803 0.069 0.806 0.064 10/27/2005 0.765 0.063 0.802 0.069 0.804 0.062 10/28/2005 0.764 0.06 3 0.801 0.069 0.803 0.062 10/29/2005 0.764 0.063 0.801 0.068 0.803 0.061 10/30/2005 0.764 0.063 0.799 0.068 0.803 0.061 10/31/2005 0.763 0.063 0.798 0.068 0.803 0.061 11/1/2005 0.7 63 0.063 0.798 0.068 0.803 0.061 11/2/2005 0.763 0.063 0.798 0.068 0.802 0.060 11/3/2005 0.763 0.063 0.798 0.067 0.802 0.061 11/4/2005 0.763 0.063 0.798 0.067 0.802 0.060 11/5/2005 0.762 0.063 0.798 0.068 0.802 0.060 11/6/2005 0.762 0.062 0.797 0.068 0.801 0.060 11/7/2005 0.762 0.063 0.798 0.067 0.800 0.059 11/8/2005 0.762 0.062 0.798 0.067 0.801 0.060 11/9/2005 0.762 0.062 0.798 0.067 0.800 0.060 11/10/2005 0.762 0.062 0.799 0.067 0.800 0.060 11/11/2005 0.762 0.062 0.799 0.067 0.799 0.059 11/12/2005 0.762 0.063 0.799 0.067 0.799 0.060 11/13/2005 0.762 0.063 0.799 0.067 0.799 0.059 11/14/2005 0.762 0.063 0.799 0.067 0.798 0.059 11/15/2005 0.762 0.063 0.799 0.066 0.798 0.059 11/16/2005 0.761 0.063 0.798 0.066 0.797 0.059 11 /17/2005 0.761 0.063 0.798 0.066 0.797 0.059 11/18/2005 0.761 0.063 0.798 0.066 0.796 0.059 11/19/2005 0.761 0.063 0.798 0.066 0.796 0.058 11/20/2005 0.761 0.063 0.798 0.066 0.795 0.057 11/21/2005 0.761 0.063 0.798 0.066 0.795 0.057 11/22/2005 0.761 0.063 0.798 0.066 0.795 0.057

PAGE 332

332 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 ( 23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 11/23/2005 0.761 0.063 0.798 0.066 0.794 0.056 11/24/2005 0.760 0.063 0.799 0.065 0.791 0.053 11/25/2005 0.760 0.063 0.797 0.065 0.789 0.049 11/26/2005 0.760 0.062 0.796 0.064 0.786 0.046 11/27/2005 0.759 0.062 0.795 0.063 0.785 0.045 11/28/2005 0.759 0.062 0.794 0.063 0.785 0.045 11/29/2005 0.759 0.061 0.793 0.063 0.785 0. 046 11/30/2005 0.758 0.061 0.793 0.063 0.785 0.047 12/1/2005 0.819 0.100 0.758 0.060 0.794 0.062 0.785 0.048 0.809 0.061 12/2/2005 0.817 0.102 0.758 0.060 0.794 0.062 0.784 0.047 0.805 0.064 12/3/2005 0.817 0.102 0.798 0.063 12/4/2005 0.815 0.101 0.791 0.061 12/5/2005 0.812 0.100 0.786 0.059 12/6/2005 0.808 0.099 0.781 0.056 12/7/2005 0.804 0.098 0.778 0 .054 12/8/2005 0.801 0.097 0.776 0.052 12/9/2005 0.796 0.096 0.773 0.051 12/10/2005 0.792 0.095 0.772 0.050 12/11/2005 0.789 0.094 0.770 0.048 12/12/2005 0.787 0 .093 0.769 0.046 12/13/2005 0.886 0.007 0.862 0.000 0.787 0.093 0.895 0.114 0.811 0.087 0.756 0.061 0.794 0.039 0.779 0.060 0.807 0.050 0.751 0.054 12/14/2005 0.884 0.006 0.862 0.000 0.787 0.095 0.893 0.114 0.810 0.088 0.756 0.061 0.7 94 0.041 0.779 0.061 0.885 0.059 0.751 0.055 12/15/2005 0.878 0.005 0.863 0.000 0.786 0.095 0.889 0.114 0.808 0.088 0.756 0.061 0.792 0.042 0.778 0.062 0.877 0.060 0.751 0.055 12/16/2005 0.873 0.004 0.864 0.000 0.783 0.095 0.884 0.114 0.806 0.089 0.756 0.063 0.791 0.042 0.776 0.062 0.871 0.060 0.750 0.054 12/17/2005 0.867 0.002 0.862 0.000 0.780 0.093 0.884 0.113 0.805 0.088 0.756 0.065 0.788 0.042 0.775 0.062 0.869 0.059 0.750 0.053 12/18/2005 0.860 0.001 0.861 0.000 0.775 0.091 0.876 0 .112 0.803 0.087 0.755 0.068 0.787 0.041 0.773 0.063 0.863 0.058 0.750 0.052 12/19/2005 0.851 0.000 0.861 0.000 0.768 0.087 0.874 0.111 0.802 0.087 0.755 0.070 0.783 0.040 0.771 0.065 0.859 0.057 0.749 0.051 12/20/2005 0.843 0.000 0.859 0.000 0.7 61 0.082 0.869 0.111 0.801 0.087 0.754 0.071 0.779 0.038 0.771 0.066 0.856 0.056 0.749 0.050 12/21/2005 0.837 0.000 0.857 0.000 0.756 0.076 0.865 0.109 0.799 0.086 0.753 0.072 0.777 0.037 0.770 0.066 0.851 0.056 0.749 0.049 12/22/2005 0.834 0.000 0 .857 0.000 0.753 0.072 0.858 0.109 0.797 0.085 0.753 0.071 0.775 0.036 0.770 0.066 0.846 0.054 0.749 0.048 12/23/2005 0.832 0.000 0.858 0.000 0.752 0.069 0.853 0.107 0.795 0.086 0.752 0.071 0.773 0.035 0.769 0.066 0.844 0.054 0.749 0.048 12/24/20 05 0.830 0.000 0.857 0.000 0.750 0.066 0.849 0.106 0.792 0.085 0.752 0.071 0.774 0.036 0.769 0.065 0.840 0.053 0.749 0.046 12/25/2005 0.827 0.000 0.859 0.000 0.750 0.063 0.847 0.105 0.790 0.084 0.751 0.073 0.774 0.036 0.768 0.064 0.836 0.052 0.749 0.046 12/26/2005 0.826 0.000 0.859 0.000 0.749 0.061 0.845 0.104 0.789 0.083 0.751 0.074 0.773 0.036 0.768 0.064 0.833 0.052 0.749 0.045 12/27/2005 0.827 0.000 0.860 0.000 0.749 0.061 0.843 0.103 0.788 0.083 0.751 0.072 0.774 0.035 0.768 0.063 0.8 31 0.051 0.749 0.044 12/28/2005 0.827 0.000 0.862 0.000 0.750 0.061 0.839 0.103 0.786 0.083 0.751 0.069 0.774 0.035 0.768 0.063 0.828 0.051 0.749 0.044 12/29/2005 0.825 0.000 0.864 0.000 0.750 0.061 0.836 0.102 0.785 0.083 0.751 0.068 0.774 0.034 0.768 0.062 0.827 0.050 0.749 0.043 12/30/2005 0.825 0.000 0.865 0.000 0.750 0.062 0.838 0.101 0.783 0.082 0.751 0.069 0.774 0.034 0.767 0.061 0.826 0.050 0.749 0.042 12/31/2005 0.823 0.000 0.865 0.000 0.750 0.061 0.835 0.100 0.782 0.082 0.751 0 .068 0.774 0.034 0.767 0.061 0.825 0.050 0.749 0.042 1/1/2006 0.821 0.000 0.866 0.000 0.797 0.000 0.750 0.061 0.829 0.099 0.781 0.082 0.751 0.069 0.774 0.034 0.766 0.059 0.824 0.050 0.749 0.041 1/2/2006 0.819 0.000 0.866 0.000 0.797 0.000 0.750 0.060 0.829 0.099 0.780 0.081 0.751 0.072 0.775 0.033 0.766 0.059 0.821 0.049 0.749 0.041 1/3/2006 0.814 0.000 0.867 0.000 0.797 0.000 0.750 0.059 0.827 0.098 0.780 0.080 0.751 0.075 0.775 0.033 0.766 0.059 0.818 0.049 0.749 0.040 1/4/2006 0.813 0.000 0.8 66 0.000 0.796 0.000 0.750 0.059 0.827 0.098 0.779 0.081 0.751 0.075 0.775 0.033 0.766 0.059 0.818 0.049 0.749 0.040 1/5/2006 0.811 0.000 0.866 0.000 0.796 0.000 0.750 0.058 0.826 0.098 0.779 0.081 0.751 0.075 0.775 0.033 0.766 0.059 0.815 0.049 0.749 0.039 1/6/2006 0.808 0.000 0.867 0.000 0.797 0.000 0.750 0.058 0.822 0.097 0.779 0.080 0.751 0.074 0.775 0.034 0.766 0.059 0.813 0.049 0.749 0.038 1/7/2006 0.810 0.000 0.866 0.000 0.797 0.000 0.750 0.057 0.821 0.096 0.779 0.080 0.751 0.071 0.775 0.033 0.766 0.058 0.813 0.049 0.749 0.038 1/8/2006 0.811 0.000 0.866 0.000 0.797 0.000 0.750 0.055 0.821 0.095 0.778 0.080 0.750 0.067 0.775 0.034 0.766 0.058 0.813 0.049 0.749 0.038 1/9/2006 0.811 0.000 0.868 0.000 0.798 0.000 0.750 0.055 0.821 0.095 0.7 77 0.080 0.750 0.064 0.775 0.034 0.766 0.058 0.812 0.049 0.749 0.038 1/10/2006 0.810 0.000 0.871 0.000 0.799 0.000 0.750 0.054 0.822 0.094 0.777 0.079 0.750 0.065 0.775 0.033 0.766 0.056 0.810 0.049 0.749 0.037 1/11/2006 0.808 0.000 0.869 0.000 0.799 0.000 0.750 0.054 0.821 0.094 0.776 0.079 0.751 0.068 0.775 0.033 0.765 0.056 0.807 0.049 0.749 0.037

PAGE 333

333 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 c m) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 1/12/2006 0.806 0.000 0.868 0.000 0.799 0.000 0.750 0.054 0.817 0.094 0.776 0.079 0.751 0.070 0.775 0.033 0.765 0.056 0.805 0.049 0.751 0.020 0.749 0.036 1/13/2006 0.803 0.000 0.868 0.000 0.800 0.000 0.750 0.055 0.817 0.093 0.776 0.079 0.751 0.072 0.775 0.033 0.765 0.056 0.801 0.047 0.751 0.021 0.749 0.036 1/14/2006 0.800 0.000 0.867 0.000 0.798 0.000 0.750 0.055 0.816 0.093 0.777 0.079 0.751 0.074 0.775 0.033 0.765 0.055 0.792 0.046 0.750 0.020 0.749 0.036 1/15/2006 0.801 0.000 0.867 0.000 0.798 0.000 0.750 0.054 0.817 0.093 0.777 0.079 0.751 0.070 0.776 0.033 0.766 0.055 0.793 0.046 0.751 0.020 0.749 0.035 1/16/2006 0.802 0.000 0.867 0.000 0.798 0.000 0.750 0.053 0.819 0.093 0.777 0.078 0.751 0.066 0.776 0.034 0.766 0.055 0.793 0.046 0.751 0.020 0.749 0.035 1/17/2006 0.802 0.000 0.869 0.000 0.799 0.000 0.750 0.052 0.819 0.093 0.776 0.078 0.751 0.066 0.776 0.033 0.766 0.054 0.784 0.042 0.751 0.020 0.749 0.035 1/18/2006 0.802 0.000 0.870 0.000 0.800 0.000 0.750 0.053 0.821 0.092 0.777 0.078 0.751 0.068 0.776 0.034 0.766 0.053 0.782 0.041 0.750 0.019 0.749 0.034 1/19/2006 0.801 0.000 0.869 0.000 0.799 0.000 0.751 0.054 0.821 0.092 0.777 0.078 0.751 0.068 0.776 0.034 0.765 0.053 0.780 0.041 0.75 0 0.020 0.749 0.034 1/20/2006 0.799 0.000 0.869 0.000 0.800 0.000 0.751 0.052 0.820 0.092 0.776 0.078 0.751 0.069 0.776 0.034 0.765 0.053 0.781 0.041 0.750 0.019 0.749 0.034 1/21/2006 0.795 0.000 0.869 0.000 0.800 0.000 0.750 0.052 0.820 0.092 0.775 0.07 8 0.751 0.073 0.776 0.034 0.765 0.053 0.779 0.041 0.750 0.020 0.749 0.034 1/22/2006 0.793 0.000 0.868 0.000 0.801 0.000 0.750 0.051 0.819 0.091 0.776 0.078 0.751 0.076 0.776 0.034 0.766 0.053 0.777 0.041 0.750 0.020 0.749 0.034 1/23/2006 0.791 0.000 0.86 8 0.000 0.801 0.000 0.750 0.052 0.817 0.092 0.776 0.078 0.751 0.077 0.776 0.034 0.766 0.054 0.776 0.040 0.750 0.020 0.749 0.033 1/24/2006 0.789 0.000 0.865 0.000 0.800 0.000 0.750 0.052 0.817 0.091 0.776 0.078 0.752 0.078 0.776 0.035 0.766 0.054 0.775 0.0 40 0.750 0.021 0.749 0.034 1/25/2006 0.789 0.000 0.866 0.000 0.801 0.000 0.750 0.051 0.815 0.092 0.777 0.077 0.752 0.077 0.776 0.035 0.766 0.056 0.775 0.040 0.751 0.021 0.749 0.033 1/26/2006 0.790 0.000 0.865 0.000 0.800 0.000 0.750 0.050 0.817 0.092 0.7 76 0.078 0.751 0.075 0.776 0.035 0.767 0.056 0.775 0.041 0.751 0.021 0.749 0.033 1/27/2006 0.790 0.000 0.867 0.000 0.802 0.000 0.751 0.050 0.818 0.091 0.775 0.078 0.751 0.073 0.777 0.036 0.767 0.055 0.777 0.040 0.751 0.021 0.749 0.033 1/28/2006 0.792 0.0 00 0.867 0.000 0.802 0.000 0.750 0.049 0.818 0.091 0.775 0.078 0.751 0.073 0.777 0.036 0.767 0.055 0.777 0.040 0.751 0.021 0.749 0.033 1/29/2006 0.792 0.000 0.867 0.000 0.801 0.000 0.751 0.049 0.816 0.091 0.775 0.077 0.751 0.073 0.777 0.037 0.767 0.055 0. 776 0.039 0.751 0.021 0.749 0.033 1/30/2006 0.791 0.000 0.867 0.000 0.802 0.000 0.751 0.049 0.816 0.091 0.775 0.077 0.751 0.075 0.778 0.037 0.767 0.055 0.775 0.038 0.751 0.021 0.749 0.033 1/31/2006 0.790 0.000 0.867 0.000 0.800 0.000 0.751 0.049 0.817 0. 091 0.775 0.076 0.752 0.078 0.778 0.037 0.767 0.054 0.775 0.038 0.751 0.021 0.749 0.032 2/1/2006 0.791 0.000 0.867 0.000 0.799 0.000 0.751 0.048 0.818 0.091 0.775 0.076 0.752 0.077 0.778 0.038 0.767 0.055 0.774 0.037 0.751 0.021 0.749 0.032 2/2/2006 0.79 0 0.000 0.868 0.000 0.802 0.000 0.751 0.047 0.820 0.090 0.775 0.075 0.752 0.076 0.779 0.038 0.767 0.055 0.774 0.037 0.751 0.021 0.749 0.032 2/3/2006 0.789 0.000 0.868 0.000 0.802 0.000 0.751 0.047 0.819 0.089 0.776 0.074 0.752 0.077 0.779 0.038 0.768 0.05 5 0.773 0.036 0.751 0.021 0.749 0.032 2/4/2006 0.787 0.000 0.868 0.000 0.803 0.000 0.751 0.046 0.819 0.089 0.776 0.075 0.752 0.079 0.779 0.039 0.768 0.055 0.772 0.036 0.751 0.021 0.749 0.031 2/5/2006 0.789 0.000 0.866 0.000 0.799 0.000 0.751 0.045 0.820 0.089 0.776 0.075 0.752 0.077 0.779 0.040 0.768 0.055 0.770 0.035 0.751 0.021 0.749 0.031 2/6/2006 0.791 0.000 0.867 0.000 0.799 0.000 0.751 0.044 0.821 0.089 0.776 0.074 0.752 0.073 0.779 0.040 0.768 0.055 0.769 0.035 0.751 0.021 0.749 0.031 2/7/2006 0. 792 0.000 0.867 0.000 0.800 0.000 0.751 0.043 0.821 0.088 0.776 0.074 0.752 0.070 0.779 0.040 0.768 0.054 0.768 0.035 0.751 0.021 0.749 0.031 2/8/2006 0.792 0.000 0.868 0.000 0.800 0.000 0.751 0.043 0.822 0.088 0.776 0.074 0.752 0.070 0.779 0.041 0.768 0. 054 0.767 0.035 0.751 0.022 0.749 0.031 2/9/2006 0.794 0.000 0.868 0.000 0.798 0.000 0.751 0.042 0.823 0.088 0.777 0.074 0.752 0.069 0.780 0.041 0.767 0.054 0.768 0.035 0.752 0.022 0.749 0.030 2/10/2006 0.795 0.000 0.869 0.000 0.798 0.000 0.751 0.042 0.8 23 0.089 0.777 0.074 0.752 0.066 0.781 0.041 0.768 0.053 0.768 0.035 0.752 0.022 0.749 0.030 2/11/2006 0.795 0.000 0.870 0.000 0.799 0.000 0.751 0.042 0.824 0.088 0.776 0.074 0.752 0.066 0.782 0.041 0.768 0.053 0.768 0.035 0.752 0.022 0.749 0.030 2/12/20 06 0.796 0.000 0.871 0.000 0.800 0.000 0.751 0.042 0.828 0.088 0.777 0.075 0.752 0.067 0.783 0.041 0.768 0.051 0.768 0.034 0.752 0.022 0.749 0.030 2/13/2006 0.797 0.000 0.870 0.000 0.798 0.000 0.751 0.041 0.828 0.088 0.778 0.074 0.752 0.064 0.784 0.041 0. 769 0.051 0.768 0.034 0.752 0.022 0.749 0.030 2/14/2006 0.799 0.000 0.871 0.000 0.797 0.000 0.751 0.041 0.830 0.088 0.778 0.074 0.752 0.059 0.784 0.042 0.768 0.050 0.768 0.034 0.752 0.022 0.749 0.030 2/15/2006 0.799 0.000 0.873 0.000 0.799 0.000 0.751 0. 041 0.832 0.088 0.778 0.075 0.752 0.058 0.785 0.042 0.768 0.049 0.768 0.035 0.752 0.022 0.749 0.029 2/16/2006 0.798 0.000 0.873 0.000 0.799 0.000 0.751 0.041 0.831 0.089 0.778 0.074 0.752 0.061 0.786 0.042 0.768 0.049 0.768 0.034 0.752 0.022 0.749 0.029 2/17/2006 0.798 0.000 0.872 0.000 0.798 0.000 0.751 0.042 0.832 0.089 0.778 0.075 0.752 0.064 0.786 0.043 0.769 0.049 0.766 0.034 0.752 0.021 0.749 0.029 2/18/2006 0.797 0.000 0.871 0.000 0.797 0.000 0.751 0.042 0.833 0.089 0.779 0.074 0.752 0.066 0.787 0 .043 0.769 0.049 0.765 0.033 0.752 0.022 0.749 0.029 2/19/2006 0.796 0.000 0.870 0.000 0.797 0.000 0.751 0.042 0.834 0.089 0.779 0.075 0.752 0.066 0.787 0.043 0.769 0.048 0.763 0.033 0.752 0.022 0.749 0.028 2/20/2006 0.795 0.000 0.870 0.000 0.799 0.000 0 .751 0.041 0.835 0.089 0.778 0.075 0.752 0.068 0.788 0.043 0.769 0.049 0.764 0.034 0.752 0.022 0.749 0.028 2/21/2006 0.794 0.000 0.869 0.000 0.798 0.000 0.751 0.043 0.834 0.089 0.778 0.075 0.753 0.070 0.788 0.043 0.769 0.049 0.763 0.033 0.752 0.022 0.749 0.029 2/22/2006 0.793 0.000 0.868 0.000 0.799 0.000 0.751 0.043 0.836 0.089 0.778 0.075 0.753 0.072 0.788 0.043 0.769 0.049 0.761 0.033 0.752 0.022 0.749 0.028 2/23/2006 0.792 0.000 0.868 0.000 0.798 0.000 0.751 0.043 0.833 0.091 0.778 0.075 0.753 0.074 0.789 0.043 0.769 0.050 0.761 0.034 0.752 0.023 0.749 0.028 2/24/2006 0.791 0.000 0.868 0.000 0.801 0.000 0.751 0.043 0.836 0.090 0.777 0.074 0.752 0.076 0.789 0.044 0.770 0.051 0.762 0.034 0.753 0.024 0.749 0.028 2/25/2006 0.790 0.000 0.868 0.000 0.802 0.000 0.751 0.044 0.838 0.091 0.777 0.074 0.752 0.078 0.790 0.043 0.770 0.051 0.762 0.033 0.753 0.024 0.749 0.029 2/26/2006 0.790 0.000 0.868 0.000 0.802 0.000 0.751 0.044 0.841 0.091 0.776 0.074 0.752 0.078 0.790 0.044 0.771 0.051 0.762 0.033 0.754 0.025 0.749 0.028 2/27/2006 0.791 0.000 0.868 0.000 0.800 0.000 0.751 0.044 0.842 0.091 0.777 0.074 0.753 0.076 0.791 0.045 0.771 0.051 0.763 0.033 0.755 0.025 0.749 0.029 2/28/2006 0.792 0.000 0.868 0.000 0.798 0.000 0.752 0.043 0.841 0.091 0.777 0.073 0.753 0.075 0.791 0.046 0.772 0.052 0.763 0.033 0.755 0.025 0.749 0.029 3/1/2006 0.792 0.000 0.868 0.000 0.799 0.000 0.752 0.043 0.840 0.091 0.777 0.073 0.753 0.074 0.792 0.046 0.772 0.053 0.762 0.032 0.754 0.026 0.749 0.029 3/2/2006 0.792 0.000 0.867 0.000 0 .799 0.000 0.752 0.043 0.842 0.091 0.776 0.073 0.753 0.074 0.793 0.046 0.773 0.052 0.762 0.032 0.754 0.025 0.749 0.028

PAGE 334

334 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 c m) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 3/3/2006 0.792 0.000 0.868 0.000 0.799 0.000 0.752 0.043 0.842 0.091 0.776 0.072 0.754 0.076 0.793 0.047 0.773 0.052 0.761 0.031 0.75 4 0.025 0.749 0.028 3/4/2006 0.791 0.000 0.869 0.000 0.800 0.000 0.752 0.043 0.842 0.091 0.776 0.072 0.754 0.077 0.794 0.047 0.774 0.053 0.761 0.031 0.754 0.025 0.749 0.028 3/5/2006 0.791 0.000 0.868 0.000 0.799 0.000 0.752 0.043 0.843 0.091 0.776 0.072 0.755 0.078 0.793 0.047 0.774 0.052 0.761 0.031 0.754 0.025 0.749 0.028 3/6/2006 0.793 0.000 0.868 0.000 0.799 0.000 0.752 0.043 0.843 0.091 0.776 0.072 0.755 0.077 0.794 0.048 0.774 0.053 0.760 0.030 0.754 0.025 0.749 0.027 3/7/2006 0.793 0.000 0.869 0. 000 0.799 0.000 0.752 0.042 0.844 0.091 0.776 0.072 0.755 0.077 0.794 0.049 0.775 0.052 0.759 0.029 0.754 0.025 0.749 0.027 3/8/2006 0.794 0.000 0.868 0.000 0.798 0.000 0.752 0.043 0.847 0.090 0.776 0.072 0.755 0.076 0.795 0.049 0.775 0.052 0.759 0.030 0. 754 0.025 0.749 0.027 3/9/2006 0.795 0.000 0.869 0.000 0.800 0.000 0.752 0.042 0.846 0.091 0.776 0.072 0.755 0.075 0.796 0.049 0.775 0.052 0.760 0.030 0.754 0.025 0.749 0.027 3/10/2006 0.795 0.000 0.870 0.000 0.800 0.000 0.752 0.043 0.847 0.090 0.777 0.0 72 0.755 0.076 0.795 0.049 0.775 0.052 0.759 0.030 0.754 0.025 0.749 0.027 3/11/2006 0.794 0.000 0.869 0.000 0.799 0.000 0.752 0.042 0.847 0.090 0.777 0.071 0.755 0.077 0.795 0.050 0.775 0.053 0.759 0.030 0.754 0.025 0.749 0.027 3/12/2006 0.793 0.000 0.8 68 0.000 0.800 0.000 0.752 0.043 0.845 0.090 0.777 0.071 0.755 0.078 0.796 0.050 0.776 0.053 0.758 0.030 0.754 0.024 0.750 0.027 3/13/2006 0.792 0.000 0.868 0.000 0.800 0.000 0.752 0.042 0.847 0.090 0.778 0.071 0.755 0.079 0.795 0.051 0.776 0.053 0.758 0. 030 0.754 0.025 0.750 0.027 3/14/2006 0.791 0.000 0.868 0.000 0.800 0.000 0.752 0.043 0.845 0.091 0.777 0.072 0.756 0.080 0.796 0.051 0.776 0.054 0.758 0.030 0.754 0.025 0.750 0.027 3/15/2006 0.791 0.000 0.867 0.000 0.800 0.000 0.752 0.043 0.847 0.091 0. 778 0.072 0.755 0.080 0.796 0.051 0.777 0.054 0.758 0.030 0.755 0.026 0.750 0.027 3/16/2006 0.792 0.000 0.866 0.000 0.799 0.000 0.752 0.043 0.849 0.091 0.777 0.073 0.755 0.080 0.796 0.051 0.777 0.054 0.758 0.030 0.755 0.026 0.749 0.027 3/17/2006 0.792 0. 000 0.867 0.000 0.800 0.000 0.752 0.043 0.849 0.091 0.777 0.073 0.755 0.079 0.795 0.052 0.778 0.054 0.757 0.029 0.754 0.026 0.750 0.027 3/18/2006 0.792 0.000 0.867 0.000 0.800 0.000 0.752 0.043 0.849 0.092 0.778 0.073 0.755 0.078 0.795 0.052 0.778 0.054 0 .757 0.029 0.755 0.026 0.750 0.027 3/19/2006 0.793 0.000 0.867 0.000 0.801 0.000 0.752 0.044 0.850 0.093 0.778 0.073 0.755 0.079 0.795 0.052 0.778 0.055 0.757 0.029 0.755 0.026 0.750 0.027 3/20/2006 0.792 0.000 0.869 0.000 0.801 0.000 0.753 0.044 0.851 0 .093 0.778 0.072 0.755 0.080 0.795 0.052 0.779 0.055 0.757 0.029 0.755 0.026 0.750 0.026 3/21/2006 0.792 0.000 0.869 0.000 0.800 0.000 0.753 0.045 0.852 0.092 0.777 0.072 0.755 0.081 0.796 0.052 0.779 0.056 0.756 0.028 0.755 0.026 0.750 0.026 3/22/2006 0 .791 0.000 0.868 0.001 0.801 0.000 0.753 0.045 0.850 0.093 0.777 0.072 0.756 0.083 0.795 0.053 0.779 0.056 0.755 0.028 0.754 0.026 0.750 0.026 3/23/2006 0.791 0.000 0.868 0.000 0.803 0.000 0.753 0.045 0.852 0.094 0.778 0.072 0.756 0.083 0.795 0.053 0.780 0.056 0.756 0.028 0.755 0.026 0.750 0.026 3/24/2006 0.791 0.000 0.868 0.001 0.801 0.000 0.753 0.046 0.855 0.094 0.778 0.072 0.756 0.082 0.795 0.053 0.781 0.056 0.756 0.028 0.754 0.026 0.750 0.026 3/25/2006 0.793 0.000 0.867 0.001 0.799 0.000 0.754 0.047 0.859 0.094 0.778 0.072 0.755 0.081 0.795 0.054 0.781 0.056 0.756 0.028 0.755 0.026 0.749 0.026 3/26/2006 0.794 0.000 0.868 0.002 0.799 0.000 0.754 0.047 0.862 0.095 0.779 0.072 0.755 0.078 0.796 0.053 0.781 0.056 0.756 0.029 0.755 0.026 0.749 0.026 3/27 /2006 0.795 0.000 0.869 0.002 0.799 0.000 0.755 0.047 0.865 0.095 0.779 0.072 0.755 0.076 0.796 0.053 0.781 0.056 0.757 0.029 0.755 0.026 0.749 0.026 3/28/2006 0.797 0.000 0.869 0.003 0.799 0.000 0.756 0.048 0.867 0.095 0.780 0.071 0.755 0.076 0.795 0.054 0.781 0.056 0.757 0.029 0.755 0.026 0.749 0.026 3/29/2006 0.797 0.000 0.870 0.004 0.799 0.000 0.756 0.048 0.870 0.095 0.780 0.071 0.755 0.076 0.795 0.054 0.781 0.056 0.756 0.029 0.755 0.026 0.749 0.026 3/30/2006 0.797 0.000 0.870 0.005 0.800 0.000 0.757 0.048 0.872 0.095 0.780 0.071 0.755 0.077 0.795 0.055 0.781 0.056 0.756 0.029 0.755 0.026 0.749 0.026 3/31/2006 0.796 0.000 0.870 0.005 0.800 0.000 0.757 0.049 0.875 0.095 0.780 0.071 0.756 0.079 0.795 0.055 0.781 0.056 0.756 0.028 0.755 0.026 0.749 0.02 6 4/1/2006 0.796 0.000 0.869 0.007 0.799 0.000 0.757 0.049 0.878 0.096 0.782 0.071 0.757 0.080 0.795 0.056 0.781 0.056 0.755 0.028 0.754 0.026 0.750 0.026 4/2/2006 0.795 0.000 0.869 0.008 0.799 0.000 0.757 0.049 0.880 0.096 0.782 0.070 0.757 0.082 0.794 0.057 0.781 0.055 0.754 0.028 0.754 0.026 0.750 0.026 4/3/2006 0.795 0.000 0.869 0.009 0.799 0.000 0.757 0.050 0.881 0.097 0.782 0.070 0.758 0.084 0.794 0.059 0.782 0.056 0.754 0.028 0.754 0.026 0.750 0.026 4/4/2006 0.795 0.000 0.869 0.008 0.800 0.000 0. 757 0.049 0.883 0.097 0.783 0.070 0.759 0.086 0.793 0.060 0.782 0.057 0.753 0.028 0.754 0.027 0.750 0.025 4/5/2006 0.794 0.000 0.868 0.007 0.800 0.000 0.757 0.049 0.885 0.097 0.784 0.070 0.761 0.087 0.792 0.062 0.782 0.057 0.753 0.028 0.754 0.027 0.750 0. 026 4/6/2006 0.794 0.001 0.867 0.006 0.800 0.000 0.757 0.050 0.886 0.097 0.784 0.071 0.762 0.087 0.792 0.063 0.783 0.057 0.754 0.029 0.754 0.028 0.750 0.025 4/7/2006 0.794 0.002 0.867 0.006 0.801 0.000 0.757 0.050 0.887 0.097 0.783 0.071 0.763 0.088 0.79 2 0.063 0.784 0.059 0.754 0.029 0.754 0.029 0.750 0.026 4/8/2006 0.793 0.003 0.868 0.005 0.801 0.000 0.757 0.050 0.887 0.097 0.783 0.072 0.764 0.090 0.791 0.065 0.784 0.059 0.753 0.030 0.754 0.029 0.750 0.026 4/9/2006 0.793 0.003 0.868 0.005 0.802 0.000 0.757 0.051 0.886 0.099 0.783 0.072 0.766 0.091 0.791 0.066 0.785 0.059 0.753 0.030 0.754 0.029 0.750 0.026 4/10/2006 0.793 0.004 0.868 0.007 0.803 0.000 0.758 0.052 0.887 0.099 0.784 0.072 0.768 0.092 0.791 0.068 0.785 0.060 0.754 0.031 0.754 0.030 0.750 0.026 4/11/2006 0.794 0.005 0.868 0.008 0.803 0.000 0.758 0.052 0.888 0.100 0.785 0.072 0.769 0.093 0.790 0.069 0.786 0.060 0.754 0.032 0.754 0.031 0.750 0.026 4/12/2006 0.794 0.006 0.867 0.009 0.803 0.000 0.758 0.053 0.887 0.100 0.786 0.072 0.771 0.093 0.791 0.070 0.786 0.061 0.754 0.032 0.754 0.031 0.750 0.026 4/13/2006 0.794 0.007 0.868 0.010 0.803 0.000 0.758 0.054 0.887 0.100 0.787 0.071 0.772 0.093 0.790 0.072 0.787 0.061 0.753 0.032 0.754 0.031 0.750 0.026 4/14/2006 0.795 0.008 0.867 0.012 0.803 0.000 0.759 0.054 0.887 0.100 0.786 0.071 0.773 0.093 0.790 0.073 0.788 0.061 0.753 0.033 0.754 0.031 0.750 0.025 4/15/2006 0.794 0.010 0.867 0.014 0.801 0.000 0.759 0.054 0.888 0.099 0.786 0.070 0.775 0.093 0.789 0.075 0.789 0.062 0.753 0.033 0.754 0.03 1 0.750 0.025 4/16/2006 0.794 0.011 0.867 0.016 0.802 0.000 0.759 0.054 0.884 0.099 0.786 0.070 0.776 0.094 0.790 0.076 0.790 0.062 0.754 0.035 0.754 0.031 0.750 0.025 4/17/2006 0.795 0.013 0.868 0.018 0.802 0.000 0.759 0.055 0.882 0.099 0.786 0.069 0.77 7 0.095 0.789 0.078 0.791 0.063 0.753 0.036 0.754 0.032 0.750 0.025 4/18/2006 0.794 0.015 0.869 0.020 0.803 0.000 0.758 0.055 0.878 0.099 0.786 0.068 0.779 0.096 0.788 0.080 0.792 0.063 0.754 0.037 0.754 0.032 0.750 0.024 4/19/2006 0.794 0.017 0.869 0.02 2 0.803 0.000 0.758 0.056 0.876 0.098 0.786 0.067 0.780 0.097 0.788 0.082 0.793 0.064 0.754 0.039 0.754 0.033 0.750 0.024 4/20/2006 0.794 0.019 0.867 0.023 0.802 0.000 0.758 0.057 0.874 0.098 0.786 0.067 0.782 0.098 0.788 0.084 0.794 0.065 0.754 0.040 0.7 54 0.034 0.750 0.024 4/21/2006 0.793 0.021 0.867 0.024 0.803 0.000 0.757 0.057 0.869 0.098 0.786 0.067 0.786 0.100 0.787 0.085 0.796 0.065 0.754 0.040 0.754 0.035 0.750 0.025

PAGE 335

335 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 4/22/2006 0.818 0.029 0.867 0.021 0.807 0.000 0.757 0.058 0.868 0.098 0.786 0.067 0.806 0.123 0.787 0.087 0.791 0.065 0.753 0.041 0.754 0.036 0.750 0.025 4/23/2006 0.857 0.040 0.870 0.017 0.805 0.000 0.757 0.058 0.868 0.098 0.787 0.067 0.827 0.156 0.786 0.090 0.782 0.065 0.753 0.041 0.754 0.037 0.750 0.025 4/24/2006 0.854 0.040 0.871 0.012 0.796 0.000 0.757 0.058 0.863 0.099 0.787 0.067 0.814 0.161 0.786 0.093 0.780 0.064 0.752 0.042 0.754 0.038 0.750 0.025 4/25/2006 0.853 0.041 0.871 0.014 0.786 0.000 0.758 0.068 0.858 0.099 0.788 0.068 0.801 0.164 0.785 0.096 0.779 0.065 0.752 0.043 0.754 0.038 0.750 0.025 4/26/2006 0.844 0.045 0.871 0.018 0.779 0.000 0.785 0.070 0.792 0.163 0.785 0.097 0.781 0.075 0.752 0.045 0.754 0.038 0.750 0.024 4/27/2006 0.828 0.056 0.872 0.021 0.771 0.000 0.786 0.157 0.783 0.095 0.789 0.105 0 .751 0.046 0.755 0.035 0.750 0.024 4/28/2006 0.827 0.058 0.871 0.024 0.765 0.000 0.780 0.157 0.784 0.097 0.787 0.105 0.751 0.046 0.755 0.036 0.750 0.024 4/29/2006 0.827 0.059 0.872 0.026 0.763 0.000 0.778 0.155 0.784 0.098 0.786 0.105 0.751 0 .047 0.755 0.037 0.750 0.024 4/30/2006 0.828 0.060 0.873 0.028 0.762 0.000 0.776 0.154 0.784 0.100 0.785 0.105 0.751 0.049 0.755 0.038 0.750 0.024 5/1/2006 0.828 0.061 0.874 0.029 0.761 0.000 0.775 0.154 0.783 0.103 0.784 0.105 0.751 0.050 0. 755 0.039 0.750 0.025 5/2/2006 0.828 0.062 0.874 0.030 0.760 0.000 0.773 0.153 0.783 0.106 0.783 0.105 0.751 0.051 0.755 0.040 0.750 0.025 5/3/2006 0.827 0.062 0.874 0.031 0.760 0.000 0.772 0.152 0.782 0.109 0.781 0.105 0.750 0.051 0.755 0.04 0 0.750 0.024 5/4/2006 0.825 0.064 0.873 0.033 0.759 0.000 0.770 0.151 0.782 0.113 0.781 0.105 0.750 0.052 0.755 0.041 0.750 0.025 5/5/2006 0.823 0.066 0.873 0.035 0.759 0.000 0.769 0.151 0.780 0.117 0.779 0.105 0.750 0.053 0.755 0.041 0.750 0.025 5/6/2006 0.823 0.068 0.873 0.037 0.759 0.000 0.767 0.153 0.782 0.119 0.779 0.105 0.750 0.054 0.755 0.042 0.750 0.025 5/7/2006 0.820 0.070 0.872 0.039 0.758 0.000 0.767 0.154 0.781 0.123 0.778 0.106 0.750 0.054 0.756 0.043 0.750 0.025 5 /8/2006 0.819 0.072 0.872 0.041 0.759 0.000 0.765 0.159 0.780 0.125 0.778 0.106 0.751 0.055 0.756 0.044 0.750 0.024 5/9/2006 0.817 0.073 0.871 0.042 0.758 0.000 0.765 0.163 0.779 0.129 0.777 0.107 0.750 0.056 0.756 0.045 0.750 0.023 5/10/2006 0.814 0.074 0.874 0.044 0.759 0.000 0.764 0.168 0.780 0.131 0.776 0.108 0.752 0.062 0.756 0.046 0.750 0.024 5/11/2006 0.812 0.076 0.873 0.046 0.758 0.000 0.763 0.173 0.778 0.136 0.775 0.109 0.752 0.063 0.755 0.047 0.750 0.024 5/12/2006 0.809 0.078 0.872 0.048 0.758 0.000 0.766 0.177 0.779 0.139 0.775 0.109 0.752 0.064 0.755 0.048 0.750 0.023 5/13/2006 0.808 0.080 0.872 0.051 0.758 0.000 0.765 0.182 0.778 0.145 0.774 0.110 0.753 0.067 0.755 0.049 0.750 0.024 5/14/2006 0.807 0.083 0.872 0.054 0.758 0.000 0.764 0.187 0.777 0.151 0.772 0.111 0.753 0.068 0.755 0.050 0.750 0.023 5/15/2006 0.806 0.086 0.872 0.057 0.758 0.000 0.762 0.192 0.775 0.158 0.771 0.113 0.753 0.068 0.755 0.052 0.750 0.023 5/16/2006 0.804 0.088 0.872 0.059 0.757 0.000 0.762 0.198 0.776 0.164 0.770 0.114 0.753 0.070 0.755 0.053 0.750 0.023 5/17/2006 0.802 0.092 0.871 0.060 0.757 0.000 0.762 0.204 0.778 0.168 0.770 0.115 0.753 0.071 0.755 0.055 0.750 0.023 5/18/2006 0.803 0.095 0.872 0.063 0.758 0.000 0.762 0.211 0.776 0.174 0.769 0.116 0.753 0.073 0.755 0.056 0.750 0.024 5/19/2006 0.803 0.099 0.873 0.066 0.758 0.000 0.762 0.219 0.775 0.181 0.769 0.118 0.752 0.075 0.755 0.058 0.750 0.023 5/20/2006 0.800 0.104 0.873 0.070 0.758 0.000 0.760 0.229 0.777 0.185 0.769 0.119 0.752 0.075 0.755 0.059 0.750 0.024 5/21/2006 0.798 0.110 0.873 0.075 0.758 0.000 0.759 0.241 0.775 0.189 0.769 0.120 0.751 0.078 0.755 0.061 0.750 0.023 5/22/2006 0.796 0.117 0.873 0.079 0.757 0.000 0.758 0.252 0.774 0.193 0.768 0.122 0.750 0.084 0.755 0.064 0.750 0.023 5/23/2006 0.793 0.123 0.873 0.083 0.757 0.000 0.757 0.263 0.774 0.197 0.768 0.123 0.750 0.088 0.755 0.066 0.750 0.024 5/24/2006 0.794 0.128 0.873 0.087 0.757 0.000 0.756 0.271 0.777 0.198 0.767 0.126 0.750 0.087 0.755 0.067 0.750 0.024 5/25/2006 0.795 0.135 0.872 0.090 0.758 0.000 0.755 0.277 0.776 0.202 0.766 0.128 0.750 0.089 0.755 0.069 0.750 0.023 5/26/2006 0.793 0.139 0.873 0.093 0.757 0.000 0.813 0 .085 0.756 0.279 0.775 0.208 0.765 0.131 0.750 0.091 0.755 0.071 0.750 0.024 5/27/2006 0.794 0.145 0.872 0.097 0.757 0.000 0.808 0.085 0.756 0.280 0.775 0.212 0.764 0.133 0.750 0.092 0.754 0.074 0.750 0.023 5/28/2006 0.791 0.149 0.872 0.100 0.757 0.0 00 0.807 0.088 0.756 0.283 0.776 0.217 0.764 0.135 0.750 0.094 0.754 0.076 0.750 0.024 5/29/2006 0.791 0.151 0.873 0.102 0.757 0.000 0.811 0.091 0.754 0.287 0.775 0.222 0.762 0.139 0.750 0.100 0.754 0.079 0.750 0.025 5/30/2006 0.787 0.154 0.872 0 .104 0.757 0.000 0.815 0.092 0.756 0.287 0.777 0.224 0.761 0.141 0.750 0.108 0.754 0.081 0.750 0.025 5/31/2006 0.786 0.157 0.870 0.106 0.758 0.000 0.844 0.197 0.834 0.133 0.816 0.090 0.757 0.285 0.776 0.227 0.760 0.144 0.750 0.111 0.754 0.083 0.750 0. 024 6/1/2006 0.786 0.158 0.871 0.106 0.758 0.000 0.843 0.201 0.836 0.134 0.820 0.094 0.755 0.287 0.778 0.228 0.759 0.147 0.750 0.115 0.754 0.086 0.750 0.024 6/2/2006 0.784 0.160 0.869 0.110 0.757 0.000 0.844 0.204 0.837 0.135 0.821 0.098 0.755 0.284 0.78 0 0.229 0.759 0.151 0.750 0.116 0.754 0.088 0.750 0.023 6/3/2006 0.782 0.161 0.867 0.107 0.756 0.000 0.844 0.204 0.837 0.135 0.824 0.099 0.760 0.273 0.779 0.232 0.758 0.154 0.750 0.116 0.754 0.089 0.750 0.024 6/4/2006 0.779 0.162 0.868 0.104 0.757 0.000 0.844 0.206 0.838 0.135 0.828 0.099 0.760 0.266 0.780 0.231 0.757 0.157 0.750 0.117 0.753 0.091 0.750 0.024 6/5/2006 0.779 0.161 0.866 0.098 0.757 0.000 0.843 0.208 0.837 0.136 0.830 0.098 0.761 0.267 0.779 0.233 0.757 0.159 0.750 0.119 0.753 0.092 0.750 0.023 6/6/2006 0.776 0.162 0.867 0.087 0.757 0.000 0.844 0.209 0.836 0.137 0.831 0.098 0.764 0.265 0.778 0.235 0.756 0.162 0.750 0.124 0.753 0.094 0.750 0.024 6/7/2006 0.777 0.161 0.867 0.074 0.756 0.000 0.844 0.210 0.836 0.137 0.831 0.098 0.764 0.265 0. 780 0.233 0.755 0.166 0.749 0.131 0.753 0.097 0.750 0.024 6/8/2006 0.776 0.162 0.869 0.082 0.757 0.000 0.844 0.211 0.837 0.137 0.830 0.099 0.767 0.257 0.781 0.233 0.754 0.170 0.749 0.152 0.753 0.098 0.750 0.024 6/9/2006 0.779 0.162 0.869 0.094 0.757 0.00 0 0.843 0.217 0.838 0.137 0.831 0.100 0.766 0.251 0.779 0.234 0.754 0.174 0.749 0.167 0.753 0.100 0.750 0.024 6/10/2006 0.780 0.163 0.866 0.093 0.756 0.000 0.844 0.222 0.837 0.138 0.832 0.100 0.767 0.242 0.779 0.234 0.753 0.179 0.749 0.186 0.754 0.103 0.7 50 0.024

PAGE 336

336 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 6/11/2006 0.781 0.161 0.868 0.089 0.756 0.000 0.844 0.222 0.839 0.138 0.833 0.100 0.770 0.232 0.780 0.232 0.752 0.184 0.749 0.200 0.754 0.105 0.750 0.025 6/12/2006 0.779 0.160 0.867 0.100 0.756 0.000 0.844 0.222 0.839 0.139 0.836 0.099 0.772 0.226 0.782 0.227 0.752 0.188 0.749 0.206 0.753 0.107 0.750 0.025 6/13/2006 0.778 0.158 0.867 0.103 0.756 0.000 0.844 0.224 0.838 0.139 0.836 0.101 0.773 0.220 0.780 0.227 0.751 0.193 0.749 0.210 0.753 0.110 0.749 0.026 6/14/2006 0.775 0.160 0.866 0.102 0.756 0.000 0.844 0.224 0.838 0.139 0.838 0.102 0.776 0.210 0.778 0.226 0.750 0.198 0.749 0.235 0.753 0.112 0.749 0.026 6/15/2006 0.774 0.158 0.864 0.097 0.756 0.000 0.844 0.226 0.837 0.140 0.840 0.102 0.773 0.208 0.779 0.225 0.750 0.201 0.749 0.253 0.753 0.113 0.749 0.026 6/16/2006 0.772 0.157 0.864 0.083 0.755 0.000 0.843 0.227 0.838 0.140 0.842 0.103 0.770 0.209 0.778 0.224 0.750 0.203 0.753 0.115 0.749 0.028 6/17/2006 0.771 0.158 0.863 0.072 0.755 0.000 0.844 0.227 0.839 0.140 0.843 0.103 0.776 0.2 03 0.778 0.220 0.750 0.204 0.753 0.117 0.749 0.029 6/18/2006 0.767 0.162 0.866 0.071 0.756 0.000 0.844 0.225 0.837 0.142 0.842 0.103 0.779 0.197 0.780 0.218 0.749 0.211 0.753 0.120 0.749 0.028 6/19/2006 0.765 0.164 0.866 0.086 0.755 0.000 0.843 0.222 0.834 0.144 0.844 0.104 0.783 0.187 0.778 0.214 0.749 0.214 0.752 0.122 0.749 0.030 6/20/2006 0.763 0.164 0.866 0.089 0.756 0.000 0.842 0.222 0.834 0.144 0.846 0.105 0.786 0.179 0.777 0.213 0.749 0.217 0.753 0.123 0.749 0.031 6/21/2006 0.761 0.165 0 .864 0.078 0.756 0.000 0.845 0.221 0.834 0.144 0.845 0.106 0.789 0.167 0.780 0.208 0.749 0.223 0.753 0.124 0.749 0.032 6/22/2006 0.761 0.164 0.865 0.074 0.755 0.000 0.848 0.221 0.835 0.144 0.843 0.107 0.795 0.151 0.778 0.206 0.749 0.227 0.791 0.197 0.75 3 0.124 0.749 0.033 6/23/2006 0.762 0.165 0.867 0.084 0.753 0.000 0.848 0.221 0.835 0.144 0.842 0.108 0.799 0.137 0.780 0.200 0.749 0.231 0.790 0.201 0.752 0.126 0.749 0.034 6/24/2006 0.764 0.165 0.870 0.092 0.753 0.000 0.846 0.222 0.836 0.145 0.843 0.10 8 0.802 0.129 0.779 0.197 0.750 0.235 0.784 0.201 0.752 0.127 0.749 0.035 6/25/2006 0.763 0.165 0.869 0.098 0.752 0.000 0.847 0.221 0.837 0.144 0.844 0.108 0.804 0.124 0.779 0.193 0.750 0.237 0.776 0.197 0.751 0.128 0.749 0.036 6/26/2006 0.763 0.166 0.86 9 0.102 0.752 0.000 0.843 0.220 0.836 0.145 0.842 0.109 0.805 0.122 0.781 0.188 0.750 0.240 0.771 0.191 0.751 0.130 0.749 0.037 6/27/2006 0.763 0.166 0.866 0.106 0.751 0.000 0.841 0.217 0.836 0.145 0.840 0.111 0.808 0.120 0.781 0.183 0.750 0.243 0.765 0.1 85 0.751 0.130 0.749 0.039 6/28/2006 0.763 0.165 0.867 0.110 0.752 0.000 0.841 0.216 0.836 0.146 0.842 0.111 0.809 0.119 0.778 0.180 0.750 0.247 0.759 0.173 0.750 0.131 0.749 0.040 6/29/2006 0.762 0.166 0.868 0.114 0.751 0.000 0.842 0.215 0.836 0.146 0.8 46 0.112 0.810 0.116 0.778 0.175 0.750 0.249 0.757 0.165 0.750 0.132 0.749 0.041 6/30/2006 0.763 0.164 0.866 0.109 0.751 0.000 0.843 0.214 0.836 0.146 0.849 0.112 0.811 0.114 0.779 0.170 0.750 0.251 0.757 0.158 0.750 0.133 0.749 0.042 7/1/2006 0.763 0.16 4 0.868 0.113 0.751 0.000 0.844 0.212 0.836 0.146 0.849 0.112 0.812 0.110 0.778 0.166 0.751 0.254 0.759 0.154 0.750 0.133 0.749 0.043 7/2/2006 0.762 0.163 0.867 0.117 0.751 0.000 0.846 0.211 0.836 0.146 0.848 0.112 0.811 0.107 0.777 0.162 0.750 0.254 0.75 9 0.150 0.750 0.133 0.749 0.044 7/3/2006 0.762 0.163 0.868 0.121 0.751 0.000 0.846 0.210 0.838 0.146 0.850 0.112 0.812 0.106 0.779 0.157 0.751 0.256 0.758 0.145 0.750 0.134 0.749 0.045 7/4/2006 0.762 0.162 0.868 0.120 0.751 0.000 0.842 0.210 0.838 0.146 0.853 0.113 0.812 0.106 0.779 0.155 0.751 0.256 0.758 0.140 0.750 0.134 0.749 0.047 7/5/2006 0.766 0.161 0.865 0.105 0.751 0.000 0.840 0.210 0.838 0.146 0.854 0.114 0.811 0.108 0.779 0.154 0.751 0.255 0.758 0.136 0.750 0.134 0.749 0.049 7/6/2006 0.767 0. 159 0.865 0.095 0.751 0.000 0.847 0.208 0.838 0.147 0.855 0.114 0.821 0.105 0.779 0.150 0.751 0.258 0.757 0.133 0.750 0.133 0.749 0.049 7/7/2006 0.767 0.158 0.866 0.109 0.751 0.000 0.846 0.208 0.839 0.147 0.856 0.114 0.822 0.105 0.779 0.146 0.751 0.258 0. 757 0.130 0.749 0.133 0.749 0.051 7/8/2006 0.769 0.155 0.869 0.115 0.751 0.000 0.846 0.207 0.839 0.147 0.859 0.115 0.826 0.103 0.781 0.141 0.751 0.259 0.758 0.127 0.750 0.133 0.749 0.052 7/9/2006 0.771 0.152 0.870 0.116 0.751 0.000 0.843 0.207 0.838 0.14 7 0.860 0.115 0.828 0.101 0.779 0.138 0.751 0.259 0.758 0.124 0.750 0.132 0.749 0.054 7/10/2006 0.771 0.150 0.870 0.116 0.751 0.000 0.844 0.205 0.838 0.147 0.861 0.116 0.825 0.093 0.779 0.136 0.751 0.259 0.758 0.122 0.750 0.132 0.749 0.055 7/11/2006 0.77 1 0.149 0.869 0.115 0.751 0.000 0.846 0.204 0.838 0.147 0.862 0.116 0.826 0.089 0.779 0.132 0.751 0.257 0.758 0.120 0.750 0.132 0.749 0.056 7/12/2006 0.771 0.146 0.871 0.113 0.750 0.000 0.844 0.204 0.837 0.147 0.863 0.117 0.825 0.083 0.780 0.128 0.751 0.2 56 0.757 0.118 0.750 0.132 0.749 0.057 7/13/2006 0.773 0.143 0.870 0.114 0.750 0.000 0.844 0.202 0.838 0.147 0.868 0.117 0.819 0.071 0.777 0.126 0.751 0.256 0.757 0.115 0.749 0.131 0.749 0.058 7/14/2006 0.772 0.142 0.868 0.113 0.751 0.000 0.842 0.201 0.8 39 0.147 0.868 0.116 0.805 0.055 0.777 0.122 0.751 0.255 0.757 0.113 0.750 0.132 0.749 0.059 7/15/2006 0.772 0.139 0.869 0.111 0.751 0.000 0.843 0.199 0.839 0.147 0.868 0.117 0.818 0.063 0.784 0.115 0.750 0.254 0.757 0.111 0.750 0.131 0.749 0.061 7/16/20 06 0.773 0.136 0.866 0.108 0.751 0.000 0.842 0.197 0.839 0.147 0.868 0.117 0.814 0.053 0.786 0.111 0.750 0.251 0.756 0.108 0.750 0.131 0.749 0.062 7/17/2006 0.774 0.134 0.867 0.103 0.751 0.000 0.841 0.195 0.839 0.147 0.867 0.118 0.817 0.055 0.789 0.107 0. 750 0.249 0.756 0.107 0.750 0.132 0.749 0.063 7/18/2006 0.778 0.128 0.874 0.106 0.750 0.000 0.839 0.194 0.840 0.147 0.868 0.118 0.810 0.046 0.792 0.101 0.750 0.246 0.756 0.105 0.749 0.133 0.749 0.064 7/19/2006 0.777 0.122 0.869 0.105 0.751 0.000 0.838 0. 193 0.840 0.147 0.868 0.118 0.807 0.044 0.796 0.097 0.750 0.244 0.756 0.104 0.750 0.130 0.749 0.064 7/20/2006 0.778 0.117 0.868 0.103 0.751 0.000 0.841 0.190 0.840 0.147 0.868 0.118 0.811 0.046 0.797 0.094 0.750 0.242 0.756 0.103 0.750 0.128 0.749 0.065 7/21/2006 0.779 0.112 0.866 0.101 0.750 0.000 0.836 0.190 0.839 0.147 0.868 0.118 0.810 0.045 0.801 0.090 0.750 0.240 0.756 0.102 0.749 0.127 0.749 0.066 7/22/2006 0.781 0.106 0.867 0.098 0.750 0.000 0.835 0.189 0.838 0.147 0.868 0.118 0.802 0.041 0.809 0 .084 0.750 0.236 0.756 0.101 0.749 0.126 0.749 0.067 7/23/2006 0.782 0.101 0.868 0.097 0.751 0.000 0.835 0.188 0.838 0.147 0.868 0.118 0.791 0.030 0.810 0.080 0.749 0.233 0.755 0.101 0.749 0.124 0.749 0.067 7/24/2006 0.783 0.096 0.866 0.097 0.751 0.000 0 .831 0.188 0.837 0.147 0.869 0.118 0.785 0.024 0.813 0.077 0.749 0.228 0.755 0.100 0.749 0.124 0.749 0.067 7/25/2006 0.784 0.092 0.866 0.094 0.750 0.000 0.830 0.186 0.837 0.147 0.868 0.118 0.790 0.032 0.810 0.078 0.749 0.226 0.754 0.099 0.749 0.123 0.749 0.068 7/26/2006 0.785 0.090 0.867 0.092 0.750 0.000 0.830 0.185 0.836 0.147 0.868 0.118 0.792 0.040 0.811 0.077 0.749 0.224 0.754 0.098 0.749 0.122 0.749 0.068 7/27/2006 0.783 0.088 0.866 0.090 0.750 0.000 0.833 0.183 0.836 0.147 0.869 0.118 0.786 0.038 0.814 0.076 0.749 0.221 0.755 0.097 0.749 0.122 0.749 0.069 7/28/2006 0.783 0.088 0.864 0.076 0.750 0.000 0.829 0.184 0.835 0.148 0.868 0.119 0.781 0.035 0.813 0.076 0.749 0.219 0.755 0.096 0.749 0.121 0.749 0.069 7/29/2006 0.782 0.087 0.864 0.061 0.750 0.000 0.826 0.183 0.835 0.147 0.869 0.118 0.782 0.040 0.813 0.077 0.749 0.219 0.754 0.094 0.749 0.120 0.749 0.070 7/30/2006 0.780 0.088 0.864 0.054 0.750 0.000 0.827 0.183 0.836 0.147 0.869 0.119 0.779 0.041 0.812 0.077 0.749 0.219 0.754 0.093 0.749 0.120 0.749 0.070

PAGE 337

337 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 7/31/2006 0.779 0.088 0.864 0.046 0.750 0.000 0.829 0.183 0.836 0.147 0.869 0.119 0.775 0.043 0.815 0.077 0.749 0.218 0.754 0.091 0.749 0.120 0.749 0.071 8/1/2006 0.778 0.088 0.864 0.040 0.750 0 .000 0.827 0.183 0.836 0.147 0.870 0.119 0.773 0.047 0.813 0.078 0.749 0.218 0.754 0.088 0.749 0.119 0.750 0.071 8/2/2006 0.777 0.089 0.864 0.037 0.750 0.000 0.827 0.183 0.837 0.147 0.871 0.119 0.765 0.048 0.809 0.081 0.749 0.214 0.754 0.084 0.749 0.118 0 .750 0.071 8/3/2006 0.775 0.089 0.864 0.037 0.750 0.000 0.822 0.181 0.836 0.148 0.877 0.118 0.759 0.051 0.804 0.083 0.749 0.216 0.754 0.082 0.749 0.118 0.750 0.072 8/4/2006 0.775 0.090 0.862 0.035 0.750 0.000 0.813 0.183 0.830 0.152 0.880 0.120 0.757 0.0 54 0.802 0.084 0.749 0.214 0.754 0.081 0.749 0.118 0.750 0.075 8/5/2006 0.775 0.091 0.862 0.032 0.751 0.000 0.815 0.183 0.826 0.152 0.877 0.122 0.771 0.061 0.801 0.085 0.749 0.215 0.754 0.078 0.749 0.117 0.750 0.075 8/6/2006 0.776 0.090 0.863 0.039 0.751 0.000 0.826 0.182 0.823 0.153 0.869 0.123 0.799 0.061 0.806 0.082 0.749 0.217 0.754 0.076 0.749 0.116 0.750 0.075 8/7/2006 0.776 0.089 0.863 0.049 0.751 0.000 0.826 0.184 0.823 0.153 0.866 0.125 0.801 0.060 0.808 0.081 0.749 0.214 0.754 0.074 0.749 0.116 0.750 0.076 8/8/2006 0.776 0.089 0.863 0.057 0.751 0.000 0.824 0.185 0.824 0.153 0.868 0.125 0.802 0.058 0.809 0.081 0.749 0.211 0.754 0.073 0.749 0.115 0.750 0.076 8/9/2006 0.776 0.088 0.863 0.062 0.751 0.000 0.822 0.185 0.824 0.153 0.869 0.126 0.810 0 .064 0.807 0.081 0.749 0.210 0.755 0.071 0.749 0.115 0.750 0.076 8/10/2006 0.777 0.088 0.863 0.065 0.751 0.000 0.821 0.185 0.822 0.154 0.869 0.129 0.813 0.063 0.806 0.081 0.749 0.207 0.754 0.071 0.749 0.114 0.750 0.076 8/11/2006 0.777 0.088 0.864 0.067 0 .751 0.000 0.820 0.186 0.823 0.153 0.870 0.130 0.789 0.029 0.820 0.076 0.749 0.205 0.754 0.070 0.749 0.113 0.750 0.076 8/12/2006 0.778 0.088 0.864 0.069 0.751 0.000 0.782 0.017 0.825 0.073 0.749 0.202 0.755 0.070 0.749 0.112 0.750 0.076 8/13/2006 0 .778 0.088 0.864 0.070 0.751 0.000 0.801 0.039 0.817 0.076 0.749 0.200 0.754 0.070 0.749 0.112 0.750 0.076 8/14/2006 0.778 0.088 0.865 0.072 0.751 0.000 0.818 0.055 0.811 0.077 0.750 0.198 0.754 0.070 0.749 0.111 0.750 0.076 8/15/2006 0.778 0 .088 0.865 0.072 0.751 0.000 0.823 0.059 0.809 0.078 0.750 0.195 0.754 0.070 0.749 0.110 0.750 0.077 8/16/2006 0.778 0.088 0.864 0.073 0.751 0.000 0.827 0.062 0.809 0.078 0.750 0.192 0.754 0.069 0.749 0.109 0.750 0.077 8/17/2006 0.779 0.087 0 .863 0.073 0.751 0.000 0.818 0.054 0.811 0.076 0.750 0.192 0.754 0.069 0.749 0.108 0.750 0.076 8/18/2006 0.778 0.087 0.863 0.073 0.751 0.000 0.823 0.058 0.810 0.076 0.750 0.189 0.754 0.070 0.749 0.108 0.750 0.076 8/19/2006 0.779 0.086 0.865 0 .072 0.751 0.000 0.826 0.059 0.810 0.076 0.750 0.186 0.754 0.070 0.749 0.108 0.750 0.076 8/20/2006 0.779 0.085 0.866 0.072 0.751 0.000 0.818 0.051 0.813 0.074 0.750 0.184 0.753 0.070 0.749 0.107 0.750 0.076 8/21/2006 0.781 0.084 0.869 0.073 0 .751 0.000 0.807 0.041 0.814 0.072 0.750 0.181 0.753 0.070 0.749 0.105 0.750 0.075 8/22/2006 0.781 0.084 0.869 0.072 0.751 0.000 0.808 0.041 0.815 0.071 0.751 0.178 0.753 0.069 0.749 0.104 0.750 0.075 8/23/2006 0.783 0.083 0.870 0.072 0.751 0 .000 0.798 0.028 0.821 0.068 0.751 0.174 0.752 0.069 0.749 0.103 0.750 0.075 8/24/2006 0.781 0.081 0.868 0.070 0.751 0.000 0.796 0.026 0.823 0.066 0.752 0.171 0.753 0.070 0.749 0.099 0.750 0.074 8/25/2006 0.780 0.079 0.862 0.069 0.751 0.000 0.792 0.021 0.827 0.065 0.752 0.170 0.753 0.070 0.749 0.097 0.750 0.073 8/26/2006 0.780 0.078 0.864 0.068 0.751 0.000 0.784 0.014 0.830 0.062 0.752 0.168 0.753 0.070 0.749 0.096 0.750 0.073 8/27/2006 0.781 0.076 0.866 0.068 0.751 0.000 0 .784 0.012 0.827 0.062 0.752 0.166 0.753 0.070 0.749 0.096 0.750 0.073 8/28/2006 0.782 0.076 0.866 0.068 0.751 0.000 0.784 0.013 0.827 0.060 0.753 0.162 0.753 0.070 0.749 0.095 0.750 0.073 8/29/2006 0.782 0.076 0.864 0.067 0.751 0.000 0.782 0 .011 0.826 0.059 0.753 0.160 0.753 0.070 0.749 0.095 0.750 0.072 8/30/2006 0.781 0.074 0.864 0.065 0.751 0.000 0.777 0.005 0.825 0.058 0.754 0.157 0.753 0.069 0.749 0.096 0.750 0.072 8/31/2006 0.781 0.074 0.865 0.067 0.751 0.000 0.777 0.004 0 .823 0.058 0.753 0.158 0.753 0.069 0.749 0.096 0.750 0.071 9/1/2006 0.780 0.073 0.866 0.067 0.750 0.000 0.820 0.154 0.811 0.152 0.848 0.129 0.784 0.000 0.806 0.062 0.754 0.156 0.752 0.070 0.749 0.094 0.750 0.072 9/2/2006 0.779 0.070 0.865 0.065 0.751 0.0 00 0.820 0.153 0.809 0.153 0.846 0.128 0.788 0.000 0.817 0.057 0.754 0.156 9/3/2006 0.779 0.069 0.866 0.063 0.751 0.000 0.819 0.151 0.809 0.153 0.845 0.128 0.784 0.000 0.821 0.054 0.754 0.153 9/4/2006 0.779 0.067 0.867 0.061 0.751 0.000 0.820 0.149 0.809 0.152 0.844 0.128 0.783 0.001 0.821 0.053 0.754 0.152 9/5/2006 0.779 0.065 0.866 0.057 0.751 0.000 0.819 0.147 0.808 0.152 0.841 0.128 0.782 0.000 0.821 0.053 0.754 0.151 9/6/2006 0.778 0.064 0.866 0.051 0.751 0.000 0.821 0.145 0 .808 0.152 0.842 0.128 0.766 0.000 0.821 0.051 0.754 0.149 9/7/2006 0.777 0.063 0.867 0.049 0.751 0.000 0.821 0.144 0.808 0.151 0.842 0.128 0.766 0.000 0.822 0.048 0.755 0.147 9/8/2006 0.775 0.062 0.868 0.048 0.751 0.000 0.822 0.142 0.808 0.1 51 0.842 0.129 0.771 0.000 0.821 0.048 0.755 0.146 0.786 0.068 0.787 0.101 0.750 0.072 9/9/2006 0.776 0.063 0.868 0.045 0.751 0.000 0.823 0.141 0.808 0.152 0.846 0.129 0.801 0.071 0.811 0.102 0.750 0.072 9/10/2006 0.776 0.063 0.868 0.040 0.751 0.00 0 0.823 0.140 0.808 0.151 0.845 0.129 0.798 0.070 0.801 0.101 0.750 0.072 9/11/2006 0.775 0.064 0.868 0.035 0.751 0.000 0.821 0.140 0.808 0.151 0.845 0.129 0.793 0.069 0.789 0.099 0.750 0.071 9/12/2006 0.775 0.064 0.868 0.032 0.751 0.000 0.82 0 0.138 0.808 0.151 0.847 0.130 0.791 0.067 0.780 0.097 0.750 0.071 9/13/2006 0.774 0.064 0.868 0.030 0.751 0.000 0.819 0.138 0.808 0.151 0.847 0.130 0.788 0.065 0.773 0.094 0.750 0.070 9/14/2006 0.772 0.064 0.868 0.027 0.751 0.000 0.816 0.13 7 0.808 0.151 0.849 0.130 0.786 0.063 0.765 0.090 0.750 0.070 9/15/2006 0.771 0.066 0.867 0.027 0.753 0.000 0.817 0.137 0.807 0.153 0.839 0.130 0.779 0.000 0.818 0.039 0.757 0.138 0.784 0.061 0.761 0.087 0.750 0.069 9/16/2006 0.767 0.066 0.862 0.02 7 0.753 0.000 0.823 0.139 0.805 0.156 0.833 0.129 0.779 0.000 0.817 0.041 0.756 0.138 0.782 0.059 0.760 0.086 0.750 0.069 9/17/2006 0.764 0.065 0.856 0.027 0.753 0.000 0.822 0.140 0.803 0.156 0.834 0.129 0.779 0.000 0.816 0.039 0.757 0.136 0.780 0.058 0.7 60 0.087 0.750 0.068 9/18/2006 0.762 0.065 0.854 0.027 0.753 0.000 0.821 0.140 0.803 0.154 0.831 0.129 0.779 0.000 0.814 0.042 0.757 0.135 0.778 0.057 0.760 0.087 0.750 0.068

PAGE 338

338 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 9/19/2006 0.760 0.064 0.852 0.031 0.753 0.000 0.819 0.140 0.803 0.153 0.828 0.129 0.779 0.000 0.823 0.043 0.757 0.134 0.777 0.055 0.759 0.087 0.751 0.068 9/20/2006 0.758 0.062 0.853 0.040 0.751 0.000 0.818 0.140 0.801 0.151 0.828 0.128 0.779 0.000 0.863 0.046 0.756 0.133 0.769 0.057 0.756 0.090 0.751 0.065 9/21/2006 0.757 0.062 0.854 0.042 0.750 0.000 0.817 0.139 0.799 0.151 0.829 0.127 0.779 0.000 0.861 0.046 0.757 0.131 0.765 0.058 0.757 0.090 0.751 0.063 9/22/2006 0.757 0.062 0.854 0.043 0.750 0.000 0.817 0.139 0.797 0.150 0.825 0.128 0.779 0.000 0.854 0.047 0.757 0.130 0.763 0.060 0.756 0.090 0.751 0.063 9/23/2006 0.756 0.062 0.853 0.045 0.750 0.000 0.815 0.138 0.796 0.149 0.823 0.127 0.779 0.000 0.851 0.048 0.758 0.128 0.762 0.060 0.756 0.088 0.751 0.063 9/24/2006 0.756 0.061 0.853 0.046 0.750 0.000 0.816 0.137 0.794 0.148 0.823 0.126 0.779 0.000 0.855 0.045 0.758 0.127 0.761 0.059 0.756 0.086 0.751 0.062 9/25/2006 0.756 0.060 0.851 0.047 0.750 0.000 0.815 0.137 0.792 0.147 0.818 0.125 0.779 0.000 0.851 0.046 0.758 0.126 0.760 0.059 0.756 0.085 0.751 0.062 9/26/2006 0.756 0.059 0.852 0.048 0.750 0.000 0.814 0.137 0.793 0.145 0.813 0.125 0.779 0.000 0.842 0.051 0.760 0.123 0.760 0.059 0.756 0.083 0.751 0.061 9/27/2006 0.756 0.057 0.852 0.048 0.750 0.000 0.815 0.135 0.791 0.145 0.810 0.123 0.779 0.000 0.841 0.058 0.760 0.12 3 0.759 0.059 0.756 0.082 0.751 0.061 9/28/2006 0.756 0.056 0.851 0.047 0.750 0.000 0.812 0.136 0.791 0.143 0.808 0.122 0.779 0.000 0.822 0.059 0.759 0.059 0.756 0.080 0.751 0.062 9/29/2006 0.756 0.054 0.848 0.047 0.750 0.000 0.811 0.136 0.789 0.142 0. 807 0.122 0.779 0.000 0.809 0.070 0.758 0.060 0.756 0.079 0.751 0.061 9/30/2006 0.757 0.052 0.850 0.047 0.750 0.000 0.812 0.134 0.789 0.141 0.807 0.122 0.779 0.000 0.807 0.073 0.756 0.062 0.756 0.077 0.751 0.062 10/1/2006 0.757 0.051 0.851 0.047 0.75 0 0.000 0.812 0.134 0.788 0.141 0.805 0.122 0.779 0.000 0.811 0.070 0.756 0.062 0.756 0.076 0.751 0.062 10/2/2006 0.757 0.049 0.853 0.046 0.750 0.000 0.810 0.134 0.789 0.140 0.805 0.122 0.779 0.000 0.796 0.077 0.753 0.092 0.756 0.062 0.755 0.751 0.062 10/3/2006 0.757 0.047 0.855 0.047 0.750 0.000 0.810 0.133 0.789 0.139 0.806 0.121 0.779 0.000 0.780 0.084 0.753 0.089 0.755 0.061 0.755 0.751 0.062 10/4/2006 0.757 0.046 0.855 0.046 0.750 0.000 0.809 0.133 0.789 0.139 0.805 0.122 0.779 0.000 0.779 0.084 0.753 0.090 0.755 0.061 0.755 0.751 0.062 10/5/2006 0.758 0.045 0.855 0.044 0.750 0.000 0.809 0.133 0.789 0.138 0.806 0.121 0.779 0.000 0.785 0.080 0.753 0.090 0.755 0.061 0.755 0.751 0.062 10/6/2006 0.758 0.045 0.856 0.042 0.750 0.000 0.810 0.132 0.7 89 0.138 0.806 0.121 0.779 0.000 0.781 0.082 0.753 0.087 0.755 0.062 0.754 0.751 0.062 10/7/2006 0.758 0.045 0.857 0.041 0.751 0.000 0.809 0.132 0.788 0.138 0.804 0.121 0.779 0.000 0.781 0.082 0.753 0.087 0.755 0.062 0.754 0.751 0.062 10/8/2006 0.758 0 .044 0.856 0.041 0.751 0.000 0.809 0.132 0.789 0.137 0.804 0.120 0.779 0.000 0.785 0.079 0.753 0.086 0.755 0.062 0.754 0.751 0.061 10/9/2006 0.758 0.044 0.858 0.041 0.751 0.000 0.810 0.131 0.790 0.137 0.804 0.120 0.779 0.000 0.786 0.078 0.753 0.084 0.754 0.063 0.754 0.751 0.062 10/10/2006 0.759 0.045 0.860 0.039 0.751 0.000 0.810 0.131 0.791 0.137 0.805 0.120 0.779 0.000 0.786 0.078 0.753 0.085 0.754 0.063 0.754 0.751 0.062 10/11/2006 0.761 0.047 0.859 0.037 0.751 0.000 0.810 0.131 0.792 0.136 0.805 0 .119 0.779 0.000 0.786 0.077 0.753 0.082 0.754 0.064 0.754 0.751 0.062 10/12/2006 0.761 0.048 0.857 0.036 0.751 0.000 0.808 0.131 0.792 0.136 0.805 0.119 0.779 0.002 0.788 0.076 0.753 0.083 0.754 0.064 0.753 0.751 0.061 10/13/2006 0.761 0.047 0.857 0.0 38 0.751 0.000 0.811 0.129 0.794 0.136 0.806 0.118 0.779 0.005 0.792 0.074 0.752 0.084 0.754 0.064 0.753 0.751 0.061 10/14/2006 0.761 0.047 0.855 0.039 0.751 0.000 0.812 0.129 0.794 0.136 0.805 0.118 0.779 0.006 0.784 0.077 0.753 0.084 0.753 0.064 0.753 0.751 0.061 10/15/2006 0.761 0.047 0.857 0.039 0.751 0.000 0.809 0.129 0.794 0.137 0.804 0.118 0.779 0.002 0.784 0.077 0.753 0.084 0.753 0.064 0.754 0.751 0.062 10/16/2006 0.761 0.046 0.859 0.041 0.751 0.000 0.809 0.129 0.797 0.136 0.805 0.118 0.779 0. 003 0.787 0.074 0.754 0.082 0.753 0.065 0.754 0.751 0.061 10/17/2006 0.760 0.047 0.859 0.043 0.751 0.000 0.811 0.128 0.799 0.136 0.804 0.118 0.779 0.005 0.785 0.074 0.753 0.082 0.752 0.065 0.753 0.751 0.061 10/18/2006 0.761 0.047 0.858 0.043 0.751 0.00 0 0.810 0.128 0.799 0.136 0.805 0.118 0.779 0.008 0.789 0.073 0.754 0.081 0.752 0.065 0.753 0.751 0.061 10/19/2006 0.763 0.048 0.857 0.044 0.751 0.000 0.810 0.127 0.799 0.136 0.806 0.117 0.779 0.015 0.794 0.070 0.754 0.080 0.752 0.065 0.753 0.751 0.061 10/20/2006 0.763 0.047 0.858 0.045 0.751 0.000 0.810 0.126 0.800 0.135 0.806 0.117 0.779 0.023 0.793 0.070 0.754 0.079 0.752 0.064 0.753 0.751 0.060 10/21/2006 0.763 0.046 0.858 0.046 0.752 0.000 0.810 0.126 0.802 0.134 0.807 0.117 0.779 0.030 0.794 0.0 71 0.754 0.078 0.752 0.065 0.753 0.751 0.061 10/22/2006 0.763 0.045 0.859 0.046 0.752 0.000 0.811 0.125 0.803 0.134 0.808 0.117 0.779 0.027 0.796 0.069 0.755 0.077 0.752 0.065 0.753 0.751 0.060 10/23/2006 0.763 0.045 0.859 0.046 0.752 0.000 0.811 0.124 0.802 0.133 0.807 0.116 0.779 0.020 0.794 0.069 0.754 0.072 0.752 0.065 0.753 0.751 0.060 10/24/2006 0.764 0.045 0.859 0.046 0.752 0.000 0.810 0.124 0.805 0.132 0.808 0.116 0.779 0.022 0.784 0.074 0.755 0.058 0.751 0.066 0.753 0.751 0.060 10/25/2006 0 .768 0.046 0.859 0.046 0.752 0.000 0.811 0.124 0.806 0.132 0.809 0.116 0.779 0.027 0.788 0.072 0.756 0.066 0.751 0.069 0.753 0.751 0.061 10/26/2006 0.770 0.047 0.860 0.046 0.752 0.000 0.811 0.123 0.808 0.131 0.811 0.115 0.779 0.037 0.794 0.069 0.756 0.06 8 0.751 0.070 0.753 0.751 0.060 10/27/2006 0.771 0.046 0.860 0.046 0.752 0.000 0.812 0.122 0.810 0.129 0.810 0.115 0.779 0.049 0.807 0.063 0.756 0.070 0.751 0.070 0.753 0.751 0.060 10/28/2006 0.771 0.046 0.861 0.046 0.752 0.000 0.812 0.121 0.810 0.128 0.810 0.114 0.779 0.046 0.802 0.063 0.756 0.070 0.751 0.070 0.753 0.751 0.060 10/29/2006 0.771 0.046 0.861 0.046 0.753 0.000 0.814 0.120 0.811 0.128 0.812 0.114 0.779 0.042 0.793 0.067 0.757 0.069 0.751 0.070 0.753 0.751 0.060 10/30/2006 0.772 0.046 0. 862 0.045 0.753 0.000 0.813 0.120 0.811 0.126 0.812 0.113 0.779 0.041 0.801 0.063 0.757 0.068 0.751 0.070 0.753 0.751 0.061 10/31/2006 0.774 0.044 0.862 0.044 0.754 0.000 0.813 0.119 0.813 0.125 0.812 0.112 0.779 0.038 0.806 0.060 0.757 0.066 0.751 0.070 0.753 0.751 0.061 11/1/2006 0.774 0.044 0.862 0.045 0.755 0.000 0.814 0.118 0.813 0.124 0.813 0.112 0.779 0.048 0.804 0.060 0.757 0.065 0.751 0.070 0.753 0.751 0.061 11/2/2006 0.774 0.043 0.861 0.045 0.755 0.000 0.813 0.118 0.814 0.123 0.813 0.112 0.7 79 0.057 0.801 0.063 0.757 0.063 0.751 0.070 0.753 0.751 0.061 11/3/2006 0.773 0.043 0.861 0.045 0.755 0.000 0.814 0.117 0.814 0.123 0.814 0.111 0.779 0.055 0.798 0.065 0.758 0.059 0.751 0.070 0.752 0.751 0.061 11/4/2006 0.771 0.043 0.861 0.044 0.755 0 .000 0.814 0.116 0.815 0.122 0.816 0.111 0.779 0.055 0.797 0.065 0.759 0.059 0.751 0.071 0.752 0.751 0.061 11/5/2006 0.771 0.043 0.860 0.044 0.756 0.000 0.814 0.116 0.815 0.121 0.817 0.110 0.779 0.055 0.795 0.066 0.758 0.059 0.751 0.071 0.751 0.751 0.06 2 11/6/2006 0.772 0.043 0.861 0.045 0.756 0.000 0.814 0.115 0.815 0.120 0.816 0.110 0.779 0.055 0.798 0.065 0.759 0.062 0.751 0.071 0.751 0.751 0.061 11/7/2006 0.771 0.043 0.861 0.045 0.756 0.000 0.813 0.114 0.815 0.119 0.817 0.109 0.779 0.051 0.802 0.0 63 0.759 0.062 0.751 0.071 0.751 0.751 0.058

PAGE 339

339 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 11/8/2006 0.771 0.044 0.862 0.045 0.756 0.000 0.813 0.114 0.814 0.119 0.817 0.109 0.779 0.041 0.803 0.063 0.759 0.061 0.751 0.071 0.751 0.751 0.056 11/9/2006 0.772 0.044 0.862 0.045 0.756 0.000 0.815 0.113 0.815 0.118 0.816 0.109 0.779 0.038 0.793 0.068 0.759 0.061 0.751 0.071 0.751 0.751 0.056 11/10/2006 0.773 0.044 0.862 0.045 0.756 0.000 0.814 0.113 0.817 0.117 0.816 0.109 0.779 0.045 0.796 0.067 0.759 0.059 0.751 0.071 0.751 0.751 0.055 11/11/2006 0.774 0.044 0.862 0.045 0.756 0.000 0.815 0.112 0.817 0.116 0.815 0.109 0.779 0.049 0.801 0.064 0.760 0.061 0.751 0.072 0.751 0.751 0.056 11/12/2006 0.774 0.044 0.863 0.045 0.756 0.000 0.816 0.111 0.816 0.115 0.817 0.108 0.779 0.050 0.804 0.06 3 0.760 0.060 0.750 0.073 0.751 0.751 0.055 11/13/2006 0.775 0.045 0.864 0.044 0.757 0.000 0.816 0.111 0.817 0.115 0.817 0.108 0.794 0.055 0.807 0.063 0.760 0.060 0.825 0.075 0.774 0.093 0.751 0.055 11/14/2006 0.775 0.045 0.864 0.044 0.757 0.000 0.816 0 .110 0.819 0.113 0.816 0.108 0.813 0.061 0.812 0.059 0.761 0.059 0.920 0.080 0.802 0.093 11/15/2006 0.777 0.044 0.869 0.043 0.758 0.000 0.818 0.109 0.819 0.113 0.817 0.107 0.805 0.058 0.801 0.056 0.761 0.059 0.900 0.080 0.798 0.091 11/16/2006 0.777 0 .044 0.869 0.042 0.758 0.000 0.817 0.108 0.819 0.112 0.818 0.105 0.796 0.056 0.789 0.051 0.760 0.059 0.878 0.080 0.792 0.089 11/17/2006 0.776 0.044 0.866 0.041 0.757 0.000 0.816 0.108 0.819 0.111 0.819 0.104 0.787 0.053 0.780 0.047 0.759 0.058 0.860 0.0 78 0.788 0.087 11/18/2006 0.776 0.044 0.866 0.041 0.758 0.000 0.817 0.107 0.821 0.110 0.819 0.104 0.781 0.049 0.775 0.043 0.758 0.056 0.843 0.077 0.783 0.087 11/19/2006 0.778 0.044 0.866 0.041 0.758 0.000 0.818 0.106 0.820 0.110 0.819 0.104 0.776 0.0 47 0.772 0.041 0.757 0.054 0.837 0.075 0.781 0.085 11/20/2006 0.780 0.043 0.866 0.041 0.758 0.000 0.819 0.106 0.822 0.108 0.820 0.104 0.774 0.045 0.771 0.040 0.756 0.054 0.835 0.076 0.777 0.084 11/21/2006 0.782 0.044 0.869 0.041 0.759 0.000 0.820 0.1 04 0.823 0.107 0.822 0.103 0.773 0.043 0.770 0.039 0.756 0.052 0.837 0.075 0.777 0.084 11/22/2006 0.785 0.044 0.871 0.042 0.760 0.000 0.823 0.103 0.825 0.107 0.823 0.102 0.772 0.042 0.770 0.038 0.755 0.052 0.838 0.074 0.776 0.084 11/23/2006 0.786 0.0 44 0.872 0.042 0.760 0.000 0.825 0.102 0.828 0.106 0.824 0.102 0.773 0.042 0.770 0.037 0.756 0.050 0.838 0.074 0.777 0.084 11/24/2006 0.786 0.044 0.873 0.041 0.762 0.000 0.827 0.101 0.830 0.105 0.827 0.102 0.773 0.041 0.770 0.036 0.755 0.049 0.836 0.075 0.776 0.084 11/25/2006 0.787 0.044 0.873 0.042 0.761 0.000 0.827 0.100 0.833 0.104 0.827 0.101 0.772 0.041 0.769 0.035 0.755 0.049 0.836 0.075 0.777 0.083 11/26/2006 0.786 0.044 0.872 0.041 0.767 0.000 0.830 0.100 0.836 0.105 0.829 0.101 0.773 0.041 0.769 0.035 0.756 0.048 0.835 0.076 0.777 0.083 11/27/2006 0.786 0.044 0.872 0.042 0.766 0.000 0.831 0.100 0.837 0.104 0.831 0.101 0.771 0.041 0.768 0.035 0.755 0.048 0.833 0.077 0.777 0.083 11/28/2006 0.786 0.044 0.871 0.043 0.761 0.000 0.827 0.099 0.835 0.103 0.828 0.100 0.771 0.041 0.766 0.034 0.755 0.047 0.832 0.078 0.775 0.083 11/29/2006 0.785 0.044 0.869 0.042 0.762 0.000 0.826 0.099 0.835 0.102 0.828 0.100 0.770 0.041 0.765 0.033 0.755 0.047 0.830 0.080 0.775 0.082 11/30/2006 0.785 0.044 0.868 0.042 0.762 0.000 0.826 0.099 0.834 0.102 0.830 0.099 0.769 0.040 0.764 0.033 0.755 0.046 0.829 0.082 0.775 0.082 12/1/2006 0.785 0.044 0.867 0.043 0.762 0.000 0.825 0.098 0.832 0.101 0.829 0.099 0.768 0.040 0.763 0.032 0.755 0.046 0.825 0.087 0. 775 0.082 12/2/2006 0.784 0.044 0.867 0.043 0.762 0.000 0.825 0.098 0.831 0.101 0.830 0.098 0.767 0.041 0.762 0.032 0.755 0.046 0.823 0.092 0.775 0.082 12/3/2006 0.784 0.044 0.865 0.042 0.762 0.000 0.826 0.097 0.831 0.100 0.831 0.098 0.766 0.041 0.76 1 0.032 0.755 0.044 0.822 0.095 0.775 0.082 12/4/2006 0.785 0.044 0.863 0.042 0.762 0.000 0.826 0.097 0.830 0.099 0.832 0.097 0.766 0.042 0.761 0.032 0.754 0.045 0.821 0.098 0.774 0.083 12/5/2006 0.784 0.046 0.863 0.042 0.763 0.000 0.829 0.095 0.832 0.098 0.832 0.097 0.766 0.042 0.760 0.033 0.754 0.045 0.822 0.101 0.773 0.083 12/6/2006 0.786 0.046 0.865 0.042 0.763 0.000 0.828 0.095 0.832 0.097 0.833 0.097 0.766 0.043 0.760 0.033 0.755 0.044 0.822 0.102 0.773 0.084 12/7/2006 0.786 0.047 0.866 0. 042 0.763 0.000 0.829 0.094 0.832 0.096 0.834 0.096 0.765 0.043 0.759 0.033 0.754 0.043 0.821 0.104 0.774 0.085 12/8/2006 0.787 0.048 0.864 0.041 0.764 0.000 0.832 0.093 0.833 0.096 0.836 0.096 0.766 0.044 0.759 0.033 0.755 0.043 0.820 0.106 0.774 0.086 12/9/2006 0.789 0.049 0.866 0.042 0.764 0.000 0.831 0.093 0.832 0.095 0.836 0.095 0.766 0.044 0.759 0.033 0.755 0.042 0.821 0.106 0.774 0.085 12/10/2006 0.789 0.049 0.867 0.042 0.764 0.000 0.831 0.092 0.833 0.094 0.835 0.095 0.766 0.045 0.758 0.033 0.754 0.042 0.820 0.107 0.773 0.085 12/11/2006 0.790 0.050 0.867 0.042 0.765 0.000 0.835 0.091 0.832 0.093 0.836 0.095 0.766 0.046 0.757 0.033 0.755 0.042 0.821 0.107 0.772 0.085 12/12/2006 0.790 0.051 0.867 0.041 0.764 0.000 0.835 0.091 0.832 0.093 0.838 0.094 0.766 0.046 0.757 0.032 0.754 0.042 0.820 0.107 0.772 0.086 12/13/2006 0.789 0.052 0.865 0.041 0.765 0.000 0.835 0.091 0.832 0.092 0.838 0.093 0.766 0.046 0.756 0.032 0.754 0.041 0.818 0.108 0.772 0.087 12/14/2006 0.789 0.052 0.862 0.041 0.765 0.000 0.833 0.090 0.833 0.092 0.838 0.093 0.765 0.046 0.757 0.032 0.754 0.041 0.817 0.108 0.773 0.089 12/15/2006 0.791 0.052 0.866 0.042 0.766 0.000 0.834 0.090 0.833 0.091 0.838 0.093 0.765 0.047 0.756 0.032 0.755 0.042 0.818 0.108 0.772 0.089 0. 749 0.086 12/16/2006 0.792 0.053 0.868 0.042 0.767 0.000 0.834 0.090 0.833 0.090 0.839 0.093 0.765 0.048 0.756 0.033 0.755 0.042 0.817 0.107 0.773 0.089 0.749 0.086 12/17/2006 0.792 0.053 0.870 0.043 0.767 0.000 0.835 0.089 0.832 0.091 0.839 0.093 0.765 0.048 0.756 0.033 0.754 0.042 0.818 0.106 0.773 0.089 0.749 0.087 12/18/2006 0.793 0.053 0.869 0.043 0.767 0.000 0.836 0.089 0.832 0.091 0.839 0.093 0.765 0.047 0.756 0.032 0.754 0.042 0.818 0.105 0.772 0.090 0.749 0.086 12/19/2006 0.800 0.055 0.877 0.04 3 0.776 0.000 0.838 0.089 0.834 0.091 0.842 0.092 0.765 0.047 0.755 0.032 0.754 0.042 0.818 0.105 0.772 0.091 0.749 0.086 12/20/2006 0.795 0.054 0.878 0.044 0.775 0.000 0.838 0.089 0.833 0.091 0.841 0.092 0.765 0.047 0.755 0.032 0.754 0.041 0.819 0.105 0. 772 0.091 0.749 0.086 12/21/2006 0.796 0.055 0.878 0.043 0.775 0.000 0.838 0.090 0.834 0.090 0.841 0.092 0.765 0.047 0.755 0.032 0.754 0.041 0.818 0.104 0.772 0.091 0.749 0.086 12/22/2006 0.792 0.054 0.878 0.043 0.773 0.000 0.839 0.089 0.832 0.090 0.841 0.091 0.765 0.046 0.755 0.031 0.754 0.041 0.818 0.103 0.772 0.091 0.749 0.086 12/23/2006 0.793 0.055 0.878 0.043 0.773 0.000 0.839 0.090 0.832 0.090 0.841 0.091 0.765 0.046 0.754 0.031 0.754 0.041 0.818 0.102 0.772 0.091 0.749 0.085 12/24/2006 0.796 0.05 4 0.878 0.043 0.773 0.000 0.841 0.090 0.833 0.090 0.843 0.091 0.765 0.047 0.754 0.031 0.754 0.041 0.818 0.101 0.771 0.092 0.749 0.085 12/25/2006 0.796 0.054 0.867 0.042 0.767 0.000 0.840 0.089 0.832 0.089 0.841 0.091 0.765 0.047 0.757 0.033 0.754 0.041 0. 816 0.101 0.770 0.093 0.749 0.085 12/26/2006 0.798 0.055 0.867 0.041 0.768 0.000 0.843 0.089 0.830 0.090 0.843 0.091 0.765 0.048 0.757 0.034 0.755 0.043 0.817 0.100 0.771 0.092 0.749 0.084 12/27/2006 0.801 0.056 0.870 0.042 0.768 0.000 0.843 0.090 0.830 0.090 0.842 0.091 0.766 0.048 0.757 0.035 0.755 0.043 0.821 0.098 0.772 0.092 0.749 0.084

PAGE 340

340 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 12/28/2006 0.820 0.059 0.877 0.043 0.773 0.000 0.845 0.090 0.832 0.090 0.844 0.091 0.766 0.047 0.757 0.033 0.755 0.042 0.822 0.095 0.773 0.092 0.749 0.084 12/29/2006 0.822 0.059 0.878 0.043 0.77 3 0.000 0.848 0.089 0.834 0.090 0.846 0.090 0.766 0.046 0.757 0.032 0.754 0.042 0.821 0.092 0.773 0.091 0.749 0.084 12/30/2006 0.824 0.059 0.878 0.043 0.773 0.000 0.848 0.089 0.834 0.090 0.846 0.090 0.767 0.045 0.756 0.031 0.754 0.041 0.820 0.092 0.773 0. 091 0.749 0.083 12/31/2006 0.824 0.059 0.878 0.042 0.773 0.000 0.850 0.089 0.835 0.090 0.847 0.090 0.767 0.045 0.756 0.031 0.754 0.041 0.819 0.091 0.773 0.091 0.749 0.083 1/1/2007 0.826 0.060 0.878 0.042 0.773 0.000 0.852 0.089 0.836 0.090 0.851 0.090 0. 766 0.045 0.756 0.031 0.755 0.041 0.818 0.090 0.773 0.091 0.749 0.082 1/2/2007 0.825 0.059 0.878 0.042 0.773 0.000 0.851 0.088 0.834 0.090 0.849 0.089 0.766 0.044 0.756 0.030 0.755 0.041 0.819 0.090 0.773 0.090 0.749 0.082 1/3/2007 0.825 0.059 0.878 0.04 3 0.773 0.000 0.853 0.089 0.835 0.090 0.850 0.090 0.767 0.044 0.756 0.030 0.755 0.041 0.819 0.089 0.774 0.090 0.749 0.082 1/4/2007 0.823 0.059 0.878 0.042 0.772 0.000 0.855 0.089 0.836 0.090 0.853 0.090 0.766 0.044 0.756 0.031 0.755 0.041 0.820 0.089 0.77 3 0.090 0.749 0.082 1/5/2007 0.826 0.059 0.878 0.043 0.773 0.000 0.850 0.088 0.834 0.090 0.853 0.089 0.766 0.044 0.755 0.030 0.755 0.041 0.819 0.089 0.772 0.089 0.749 0.082 1/6/2007 0.827 0.059 0.873 0.041 0.770 0.000 0.842 0.086 0.828 0.088 0.840 0.087 0.766 0.044 0.755 0.031 0.755 0.042 0.818 0.089 0.772 0.089 0.749 0.081 1/7/2007 0.826 0.058 0.869 0.040 0.767 0.000 0.845 0.087 0.830 0.089 0.843 0.088 0.766 0.043 0.755 0.030 0.755 0.042 0.818 0.088 0.772 0.089 0.749 0.081 1/8/2007 0.828 0.057 0.871 0. 039 0.768 0.000 0.845 0.086 0.830 0.088 0.842 0.087 0.767 0.043 0.754 0.030 0.755 0.042 0.819 0.088 0.771 0.089 0.749 0.081 1/9/2007 0.829 0.057 0.874 0.040 0.769 0.000 0.846 0.086 0.831 0.088 0.843 0.087 0.767 0.043 0.754 0.030 0.755 0.044 0.820 0.088 0. 771 0.090 0.749 0.081 1/10/2007 0.829 0.057 0.874 0.039 0.769 0.000 0.845 0.086 0.830 0.088 0.843 0.087 0.768 0.042 0.754 0.028 0.755 0.044 0.822 0.087 0.772 0.090 0.749 0.081 1/11/2007 0.829 0.056 0.875 0.036 0.769 0.000 0.846 0.086 0.831 0.088 0.843 0. 086 0.768 0.042 0.753 0.028 0.755 0.042 0.824 0.086 0.773 0.089 0.749 0.080 1/12/2007 0.827 0.056 0.878 0.036 0.771 0.000 0.847 0.085 0.831 0.087 0.842 0.086 0.768 0.041 0.753 0.028 0.755 0.042 0.826 0.085 0.772 0.088 0.749 0.080 1/13/2007 0.829 0.057 0. 878 0.035 0.771 0.000 0.847 0.085 0.833 0.087 0.844 0.086 0.768 0.041 0.753 0.028 0.755 0.042 0.823 0.086 0.772 0.087 0.749 0.080 1/14/2007 0.831 0.057 0.878 0.034 0.772 0.000 0.848 0.086 0.833 0.087 0.844 0.086 0.768 0.041 0.753 0.028 0.755 0.043 0.825 0 .085 0.773 0.086 0.749 0.080 1/15/2007 0.835 0.057 0.878 0.032 0.773 0.000 0.849 0.086 0.833 0.088 0.845 0.086 0.769 0.042 0.754 0.028 0.756 0.042 0.825 0.085 0.773 0.085 0.749 0.080 1/16/2007 0.836 0.057 0.878 0.032 0.773 0.000 0.849 0.086 0.833 0.088 0 .845 0.086 0.768 0.043 0.753 0.028 0.756 0.043 0.826 0.084 0.772 0.086 0.749 0.080 1/17/2007 0.832 0.056 0.878 0.033 0.772 0.000 0.847 0.087 0.833 0.088 0.845 0.086 0.769 0.043 0.754 0.027 0.756 0.043 0.826 0.083 0.773 0.086 0.749 0.080 1/18/2007 0.836 0 .056 0.878 0.034 0.773 0.000 0.849 0.086 0.834 0.088 0.846 0.087 0.770 0.043 0.754 0.027 0.756 0.044 0.826 0.082 0.773 0.086 0.749 0.080 1/19/2007 0.836 0.056 0.878 0.036 0.774 0.000 0.849 0.087 0.834 0.088 0.847 0.086 0.770 0.042 0.754 0.027 0.756 0.043 0.827 0.082 0.773 0.085 0.749 0.080 1/20/2007 0.837 0.056 0.878 0.037 0.774 0.000 0.849 0.086 0.834 0.088 0.847 0.087 0.770 0.042 0.754 0.028 0.756 0.043 0.827 0.081 0.773 0.085 0.749 0.080 1/21/2007 0.838 0.056 0.878 0.037 0.774 0.000 0.850 0.086 0.836 0.088 0.848 0.086 0.770 0.041 0.754 0.027 0.756 0.043 0.825 0.081 0.773 0.084 0.749 0.080 1/22/2007 0.840 0.056 0.878 0.038 0.774 0.000 0.853 0.086 0.836 0.088 0.851 0.087 0.770 0.041 0.754 0.026 0.756 0.042 0.824 0.080 0.772 0.084 0.749 0.079 1/23/2007 0.840 0.056 0.878 0.039 0.774 0.000 0.849 0.086 0.833 0.088 0.849 0.086 0.770 0.041 0.754 0.027 0.756 0.043 0.825 0.080 0.772 0.083 0.749 0.080 1/24/2007 0.842 0.057 0.878 0.039 0.775 0.000 0.841 0.084 0.829 0.087 0.840 0.085 0.770 0.042 0.754 0.027 0.757 0.043 0.826 0.080 0.773 0.082 0.749 0.079 1/25/2007 0.843 0.057 0.874 0.038 0.773 0.000 0.843 0.085 0.829 0.087 0.842 0.085 0.770 0.043 0.754 0.028 0.757 0.045 0.826 0.079 0.772 0.082 0.749 0.079 1/26/2007 0.845 0.058 0.874 0.038 0.772 0.000 0.843 0.085 0.830 0.087 0.842 0.085 0.771 0.042 0.754 0.028 0.757 0.044 0.828 0.080 0.772 0.082 0.749 0.078 1/27/2007 0.846 0.058 0.875 0.039 0.771 0.000 0.845 0.084 0.831 0.087 0.841 0.085 0.771 0.041 0.754 0.027 0.757 0.044 0.826 0.079 0.772 0.082 0.749 0.078 1/2 8/2007 0.845 0.058 0.874 0.039 0.771 0.000 0.845 0.084 0.832 0.087 0.840 0.085 0.771 0.041 0.754 0.027 0.757 0.042 0.825 0.079 0.772 0.081 0.749 0.078 1/29/2007 0.847 0.059 0.878 0.039 0.774 0.000 0.843 0.084 0.829 0.086 0.839 0.084 0.772 0.043 0.755 0.02 9 0.757 0.044 0.827 0.079 0.773 0.081 0.749 0.077 1/30/2007 0.844 0.059 0.877 0.039 0.774 0.000 0.844 0.083 0.831 0.086 0.839 0.084 0.773 0.042 0.755 0.029 0.757 0.043 0.829 0.079 0.773 0.082 0.749 0.077 1/31/2007 0.836 0.058 0.874 0.038 0.771 0.000 0.84 6 0.083 0.835 0.086 0.842 0.084 0.773 0.042 0.755 0.029 0.757 0.043 0.829 0.079 0.773 0.082 0.749 0.077 2/1/2007 0.836 0.057 0.876 0.039 0.771 0.000 0.846 0.082 0.836 0.086 0.843 0.084 0.773 0.041 0.755 0.028 0.757 0.042 0.829 0.079 0.773 0.083 0.749 0.07 7 2/2/2007 0.834 0.058 0.875 0.040 0.771 0.000 0.847 0.082 0.836 0.086 0.843 0.083 0.773 0.041 0.756 0.028 0.757 0.041 0.826 0.079 0.773 0.082 0.749 0.077 2/3/2007 0.833 0.059 0.874 0.040 0.772 0.000 0.847 0.082 0.837 0.086 0.841 0.084 0.773 0.042 0.757 0.029 0.758 0.043 0.824 0.079 0.772 0.083 0.749 0.076 2/4/2007 0.832 0.059 0.869 0.038 0.773 0.000 0.847 0.081 0.837 0.085 0.843 0.083 0.773 0.043 0.757 0.031 0.758 0.044 0.824 0.079 0.773 0.083 0.749 0.076 2/5/2007 0.834 0.059 0.871 0.038 0.774 0.000 0. 847 0.081 0.837 0.085 0.845 0.083 0.774 0.043 0.757 0.031 0.758 0.044 0.826 0.079 0.773 0.083 0.749 0.076 2/6/2007 0.833 0.060 0.872 0.039 0.773 0.000 0.847 0.082 0.836 0.085 0.843 0.083 0.773 0.044 0.757 0.032 0.759 0.043 0.825 0.079 0.772 0.083 0.749 0. 075 2/7/2007 0.834 0.060 0.875 0.040 0.773 0.000 0.848 0.081 0.836 0.085 0.843 0.082 0.773 0.044 0.757 0.032 0.759 0.043 0.825 0.080 0.772 0.083 0.749 0.075 2/8/2007 0.834 0.060 0.875 0.040 0.772 0.000 0.847 0.081 0.836 0.084 0.843 0.082 0.772 0.045 0.75 7 0.031 0.758 0.043 0.827 0.080 0.771 0.083 0.749 0.075 2/9/2007 0.833 0.061 0.875 0.040 0.772 0.000 0.849 0.081 0.836 0.084 0.843 0.082 0.773 0.045 0.757 0.031 0.758 0.043 0.827 0.081 0.772 0.083 0.749 0.075 2/10/2007 0.833 0.061 0.874 0.041 0.773 0.000 0.849 0.081 0.837 0.084 0.843 0.082 0.773 0.045 0.757 0.031 0.758 0.043 0.828 0.081 0.772 0.082 0.749 0.074 2/11/2007 0.832 0.061 0.874 0.040 0.773 0.000 0.849 0.081 0.837 0.084 0.844 0.081 0.773 0.046 0.757 0.031 0.758 0.043 0.830 0.081 0.773 0.082 0.74 9 0.074 2/12/2007 0.832 0.061 0.874 0.039 0.773 0.000 0.848 0.081 0.837 0.084 0.842 0.080 0.774 0.046 0.757 0.032 0.758 0.042 0.827 0.082 0.773 0.082 0.749 0.074 2/13/2007 0.831 0.061 0.873 0.040 0.773 0.000 0.848 0.081 0.837 0.084 0.843 0.081 0.774 0.04 6 0.758 0.031 0.759 0.043 0.827 0.082 0.773 0.082 0.749 0.074 2/14/2007 0.830 0.061 0.872 0.040 0.773 0.000 0.848 0.081 0.837 0.084 0.845 0.081 0.773 0.046 0.757 0.031 0.759 0.042 0.827 0.083 0.772 0.083 0.749 0.074 2/15/2007 0.830 0.062 0.873 0.038 0.77 4 0.000 0.849 0.081 0.837 0.084 0.844 0.080 0.774 0.048 0.759 0.033 0.759 0.044 0.827 0.084 0.772 0.084 0.749 0.074

PAGE 341

341 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 2/16/2007 0.831 0.063 0.874 0.038 0.775 0.000 0.847 0.081 0.837 0.084 0.844 0.081 0.775 0.048 0.760 0.034 0.760 0.044 0.829 0.084 0.773 0.084 0.749 0.074 2/17/2007 0.835 0.064 0.875 0.040 0.776 0.000 0.848 0.081 0.837 0.084 0.844 0.080 0.776 0.048 0.760 0.035 0.760 0.044 0.831 0.084 0.774 0.084 0.749 0.073 2/18/2007 0.836 0.065 0.875 0.041 0.776 0.000 0.848 0.081 0.837 0.084 0.844 0.081 0.777 0.048 0.761 0.035 0.760 0.044 0.833 0.084 0.774 0.084 0.749 0.073 2/19/2007 0.837 0.067 0.876 0.042 0.776 0.000 0.849 0.081 0.839 0.083 0.843 0.080 0.779 0.049 0.762 0.036 0.760 0.044 0.835 0.084 0.775 0.084 0.749 0.073 2/20/2007 0.837 0.068 0.877 0.043 0.776 0.000 0.849 0.080 0.839 0.083 0.846 0.081 0.780 0.049 0.763 0.036 0.760 0.044 0.835 0.084 0.775 0.085 0.749 0.073 2/21/2007 0.835 0.069 0.878 0.044 0.776 0.000 0.851 0.080 0.840 0.083 0.845 0.080 0.779 0.049 0.763 0.037 0.760 0.044 0.833 0.084 0.774 0.085 0.749 0.073 2/22/2007 0.834 0.070 0.878 0.044 0.777 0.000 0.851 0.080 0.841 0.083 0.846 0.080 0.779 0.050 0.763 0.037 0.760 0.044 0.833 0.084 0.774 0.085 0.749 0.073 2/23/2007 0.832 0.071 0.877 0.044 0.778 0.000 0.850 0.080 0.839 0.083 0.846 0.080 0.779 0.052 0.763 0.038 0.761 0.044 0.831 0.086 0.774 0.085 0.749 0.073 2/24/2007 0.831 0.072 0.875 0.045 0.778 0.000 0.852 0.080 0.839 0.083 0.846 0.080 0.779 0.053 0.764 0.040 0.761 0.045 0.831 0.086 0.775 0.084 0.749 0.073 2/25/2007 0.829 0.074 0.875 0.046 0.778 0.000 0.851 0.081 0.839 0.083 0.845 0.080 0.779 0.054 0.764 0.041 0.761 0.045 0.830 0.088 0.774 0.085 0.749 0.072 2/26/2007 0.828 0.074 0.872 0.045 0.778 0.000 0.851 0.080 0.839 0.083 0.846 0.079 0.778 0.056 0.764 0.043 0.761 0.045 0.82 8 0.090 0.774 0.085 0.749 0.072 2/27/2007 0.825 0.075 0.871 0.045 0.779 0.000 0.851 0.080 0.839 0.083 0.846 0.080 0.777 0.058 0.764 0.044 0.761 0.045 0.827 0.093 0.773 0.085 0.749 0.072 2/28/2007 0.824 0.074 0.871 0.043 0.779 0.000 0.849 0.081 0.839 0.08 4 0.846 0.079 0.776 0.061 0.764 0.047 0.761 0.046 0.826 0.096 0.773 0.085 0.749 0.072 3/1/2007 0.821 0.075 0.871 0.044 0.780 0.000 0.849 0.081 0.837 0.084 0.846 0.080 0.776 0.063 0.764 0.049 0.761 0.046 0.827 0.098 0.772 0.086 0.749 0.072 3/2/2007 0.820 0.077 0.869 0.045 0.781 0.000 0.849 0.081 0.837 0.084 0.845 0.080 0.776 0.064 0.764 0.050 0.761 0.046 0.825 0.100 0.772 0.086 0.749 0.072 3/3/2007 0.819 0.078 0.869 0.046 0.781 0.000 0.848 0.081 0.837 0.084 0.845 0.080 0.775 0.066 0.765 0.051 0.762 0.047 0.824 0.102 0.772 0.086 0.749 0.072 3/4/2007 0.819 0.079 0.870 0.046 0.782 0.000 0.848 0.082 0.836 0.084 0.845 0.080 0.775 0.069 0.765 0.053 0.762 0.048 0.824 0.104 0.772 0.087 0.749 0.072 3/5/2007 0.821 0.080 0.869 0.046 0.783 0.000 0.848 0.082 0.836 0. 084 0.845 0.080 0.775 0.070 0.765 0.055 0.762 0.048 0.826 0.106 0.772 0.087 0.749 0.072 3/6/2007 0.823 0.080 0.870 0.043 0.783 0.000 0.849 0.082 0.836 0.085 0.845 0.080 0.775 0.073 0.765 0.056 0.762 0.049 0.829 0.108 0.772 0.088 0.749 0.072 3/7/2007 0.82 2 0.082 0.870 0.044 0.784 0.000 0.849 0.082 0.838 0.085 0.846 0.081 0.777 0.074 0.766 0.057 0.762 0.049 0.829 0.110 0.772 0.089 0.749 0.072 3/8/2007 0.822 0.084 0.870 0.046 0.784 0.000 0.850 0.082 0.837 0.085 0.845 0.080 0.776 0.076 0.766 0.058 0.762 0.05 0 0.831 0.111 0.772 0.090 0.749 0.072 3/9/2007 0.819 0.088 0.870 0.049 0.785 0.000 0.851 0.082 0.840 0.085 0.845 0.081 0.777 0.077 0.766 0.059 0.762 0.051 0.830 0.114 0.771 0.091 0.749 0.072 3/10/2007 0.819 0.090 0.869 0.049 0.785 0.000 0.849 0.083 0.839 0.085 0.845 0.081 0.776 0.079 0.766 0.060 0.762 0.051 0.828 0.117 0.772 0.091 0.749 0.072 3/11/2007 0.818 0.090 0.869 0.046 0.785 0.000 0.850 0.082 0.838 0.085 0.846 0.080 0.775 0.082 0.766 0.062 0.762 0.052 0.826 0.122 0.772 0.092 0.749 0.072 3/12/2007 0.817 0.089 0.869 0.043 0.786 0.000 0.851 0.082 0.839 0.085 0.846 0.080 0.775 0.087 0.767 0.065 0.762 0.053 0.827 0.126 0.773 0.092 0.749 0.072 3/13/2007 0.816 0.090 0.868 0.040 0.787 0.000 0.849 0.083 0.837 0.086 0.846 0.080 0.774 0.091 0.766 0.069 0.76 2 0.054 0.826 0.130 0.772 0.094 0.749 0.072 3/14/2007 0.816 0.090 0.870 0.039 0.787 0.000 0.849 0.083 0.837 0.086 0.845 0.080 0.772 0.099 0.766 0.076 0.762 0.055 0.826 0.135 0.771 0.096 0.749 0.072 3/15/2007 0.816 0.091 0.870 0.037 0.787 0.000 0.847 0.08 4 0.837 0.086 0.844 0.080 0.770 0.113 0.765 0.084 0.762 0.056 0.824 0.142 0.770 0.098 0.749 0.072 3/16/2007 0.814 0.093 0.871 0.038 0.789 0.000 0.847 0.083 0.835 0.087 0.843 0.080 0.768 0.125 0.765 0.094 0.762 0.057 0.824 0.148 0.771 0.099 0.749 0.072 3/ 17/2007 0.813 0.098 0.873 0.044 0.790 0.001 0.846 0.084 0.836 0.087 0.844 0.080 0.769 0.126 0.764 0.100 0.762 0.059 0.822 0.157 0.770 0.104 0.749 0.072 3/18/2007 0.814 0.101 0.873 0.049 0.791 0.001 0.846 0.084 0.836 0.087 0.847 0.083 0.769 0.128 0.765 0.1 04 0.762 0.060 0.823 0.164 0.771 0.108 0.749 0.072 3/19/2007 0.813 0.104 0.873 0.054 0.792 0.002 0.847 0.084 0.836 0.087 0.850 0.085 0.770 0.129 0.765 0.106 0.761 0.062 0.825 0.171 0.770 0.112 0.749 0.073 3/20/2007 0.811 0.109 0.872 0.058 0.792 0.002 0.8 48 0.084 0.836 0.088 0.847 0.083 0.771 0.131 0.766 0.107 0.761 0.064 0.821 0.181 0.770 0.116 0.749 0.072 3/21/2007 0.806 0.116 0.869 0.063 0.791 0.002 0.849 0.085 0.837 0.087 0.846 0.082 0.769 0.136 0.765 0.109 0.761 0.065 0.823 0.194 0.769 0.120 0.749 0. 073 3/22/2007 0.801 0.123 0.865 0.067 0.791 0.002 0.848 0.085 0.835 0.088 0.845 0.081 0.769 0.141 0.765 0.113 0.761 0.067 0.813 0.214 0.769 0.125 0.749 0.073 3/23/2007 0.796 0.130 0.865 0.071 0.791 0.002 0.848 0.086 0.836 0.088 0.844 0.082 0.768 0.147 0. 763 0.119 0.761 0.069 0.809 0.236 0.769 0.129 0.749 0.073 3/24/2007 0.791 0.138 0.864 0.078 0.791 0.002 0.847 0.087 0.836 0.088 0.843 0.082 0.765 0.157 0.762 0.128 0.761 0.072 0.806 0.261 0.769 0.136 0.749 0.072 3/25/2007 0.787 0.146 0.861 0.080 0.791 0. 002 0.848 0.088 0.835 0.089 0.843 0.082 0.763 0.170 0.760 0.141 0.760 0.074 0.803 0.289 0.768 0.148 0.749 0.073 3/26/2007 0.785 0.150 0.860 0.078 0.791 0.003 0.847 0.089 0.834 0.090 0.841 0.083 0.761 0.184 0.760 0.151 0.760 0.077 0.803 0.313 0.767 0.164 0 .749 0.073 3/27/2007 0.782 0.153 0.860 0.072 0.791 0.003 0.846 0.090 0.833 0.090 0.842 0.083 0.758 0.198 0.759 0.159 0.760 0.080 0.799 0.335 0.767 0.164 0.749 0.073 3/28/2007 0.782 0.153 0.861 0.068 0.791 0.002 0.844 0.090 0.830 0.089 0.838 0.082 0.756 0 .201 0.758 0.157 0.759 0.082 0.793 0.346 0.767 0.169 0.749 0.071 3/29/2007 0.846 0.090 0.835 0.090 0.843 0.083 0.757 0.208 0.759 0.159 0.760 0.086 0.794 0.352 0.767 0.188 0.749 0.073 3/30/2007 0.847 0.092 0.833 0.092 0.841 0.084 0.755 0.227 0 .758 0.175 0.759 0.091 0.791 0.362 0.767 0.211 0.749 0.074 3/31/2007 0.845 0.093 0.834 0.093 0.842 0.085 0.755 0.238 0.757 0.188 0.759 0.094 0.791 0.369 0.767 0.235 0.749 0.075 4/1/2007 0.846 0.094 0.834 0.093 0.843 0.086 0.755 0.248 0.756 0. 196 0.759 0.098 0.794 0.373 0.767 0.253 0.749 0.077 4/2/2007 0.846 0.095 0.834 0.094 0.843 0.086 0.754 0.258 0.757 0.202 0.759 0.100 0.795 0.376 0.767 0.266 0.749 0.077 4/3/2007 0.845 0.097 0.832 0.095 0.843 0.087 0.753 0.268 0.755 0.210 0.75 9 0.104 0.797 0.374 0.767 0.268 0.749 0.078 4/4/2007 0.844 0.098 0.832 0.095 0.844 0.087 0.752 0.279 0.755 0.218 0.759 0.108 0.789 0.379 0.767 0.269 0.749 0.078 4/5/2007 0.845 0.100 0.833 0.096 0.841 0.088 0.751 0.289 0.754 0.227 0.759 0.111 0.790 0.381 0.767 0.273 0.749 0.079 4/6/2007 0.842 0.101 0.832 0.096 0.840 0.088 0.751 0.301 0.754 0.235 0.758 0.116 0.791 0.379 0.767 0.275 0.749 0.079

PAGE 342

342 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm ) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 4/7/2007 0.843 0.102 0.831 0.098 0.841 0.088 0.750 0.310 0.754 0.239 0.758 0.120 0.790 0.381 0.767 0.277 0.749 0.080 4/8/2007 0.843 0.103 0.831 0.099 0.840 0.088 0.750 0.316 0.753 0. 246 0.758 0.124 0.798 0.374 0.767 0.289 0.749 0.081 4/9/2007 0.844 0.104 0.831 0.101 0.841 0.090 0.750 0.324 0.754 0.251 0.758 0.128 0.799 0.372 0.767 0.289 0.749 0.082 4/10/2007 0.837 0.104 0.825 0.101 0.832 0.087 0.750 0.324 0.752 0.254 0.7 56 0.131 0.782 0.369 0.767 0.291 0.749 0.082 4/11/2007 0.791 0.090 0.792 0.091 0.787 0.070 0.750 0.282 0.749 0.227 0.750 0.106 0.750 0.321 0.767 0.244 0.752 0.069 4/12/2007 0.777 0.084 0.772 0.082 0.765 0.063 0.751 0.257 0.750 0.222 0.750 0.0 95 0.750 0.318 0.767 0.228 0.752 0.078 4/13/2007 0.767 0.075 0.757 0.069 0.758 0.057 0.751 0.235 0.750 0.216 0.751 0.091 0.750 0.314 0.767 0.215 0.752 0.081 4/14/2007 0.762 0.066 0.752 0.060 0.754 0.046 0.751 0.228 0.750 0.218 0.751 0.088 0.7 50 0.319 0.767 0.201 0.752 0.079 4/15/2007 0.763 0.072 0.754 0.069 0.756 0.051 0.752 0.253 0.750 0.240 0.750 0.100 0.751 0.335 0.767 0.211 0.752 0.087 4/16/2007 0.762 0.077 0.754 0.073 0.758 0.055 0.752 0.266 0.751 0.253 0.751 0.107 0.751 0.3 48 0.767 0.218 0.752 0.090 4/17/2007 0.761 0.077 0.754 0.073 0.762 0.054 0.752 0.272 0.751 0.262 0.751 0.113 0.753 0.349 0.767 0.222 0.752 0.092 4/18/2007 0.761 0.076 0.755 0.074 0.762 0.053 0.752 0.278 0.751 0.268 0.751 0.117 0.753 0.347 0.7 67 0.223 0.752 0.092 4/19/2007 0.761 0.073 0.754 0.071 0.761 0.050 0.752 0.273 0.751 0.269 0.751 0.118 0.752 0.345 0.767 0.209 0.752 0.093 4/20/2007 0.759 0.072 0.752 0.066 0.759 0.048 0.752 0.263 0.751 0.266 0.751 0.119 0.752 0.343 0.767 0.2 09 0.752 0.094 4/21/2007 0.758 0.074 0.750 0.062 0.758 0.048 0.752 0.267 0.751 0.268 0.751 0.117 0.752 0.339 0.767 0.206 0.752 0.097 4/22/2007 0.758 0.078 0.749 0.060 0.754 0.046 0.752 0.266 0.751 0.272 0.751 0.123 0.752 0.340 0.767 0.200 0.7 52 0.101 4/23/2007 0.758 0.083 0.749 0.065 0.753 0.048 0.752 0.263 0.751 0.273 0.751 0.129 0.752 0.341 0.767 0.199 0.752 0.104 4/24/2007 0.757 0.087 0.749 0.069 0.751 0.051 0.752 0.258 0.751 0.274 0.751 0.135 0.752 0.344 0.767 0.200 0.752 0.1 08 4/25/2007 0.761 0.096 0.751 0.081 0.755 0.058 0.752 0.259 0.750 0.278 0.751 0.145 4/26/2007 0.765 0.119 0.752 0.113 0.763 0.078 0.752 0.297 0.750 0.316 0.750 0.173 4/27/2007 0.765 0.132 0.753 0.129 0.764 0.089 0.752 0.30 9 0.750 0.328 0.750 0.191 4/28/2007 0.767 0.139 0.753 0.137 0.764 0.096 0.752 0.311 0.750 0.338 0.749 0.207 4/29/2007 0.770 0.145 0.753 0.141 0.766 0.103 0.752 0.320 0.750 0.347 0.749 0.219 4/30/2007 0.771 0.151 0.754 0.145 0.767 0.109 0.752 0.323 0.750 0.355 0.749 0.229 5/1/2007 0.774 0.153 0.758 0.151 0.769 0.116 0.752 0.329 0.750 0.365 0.749 0.239 5/2/2007 0.775 0.157 0.760 0.155 0.771 0.120 0.752 0.331 0.750 0.369 0.749 0.247 5/3/20 07 0.762 0.157 0.752 0.320 0.751 0.335 0.749 0.229 5/4/2007 0.752 0.308 0.750 0.334 0.750 0.212 5/5/2007 0.752 0.309 0.750 0.340 0.750 0.213 5/6/2007 0.751 0.318 0.750 0.348 0.750 0.221 5/7/2007 0.751 0.323 0.751 0.351 0.750 0.225 5/8/2007 0.787 0.269 0.754 0.163 0.757 0.018 0.750 0.327 0.751 0.349 0.751 0.225 5/9/2007 0.787 0.212 0.752 0.129 0.749 0.000 0.750 0.327 0.751 0.348 0.751 0.227 5/10/2007 0.787 0.217 0.752 0.138 0.749 0.000 0.750 0.332 0.751 0.350 0.751 0.230 5/11/2007 0.787 0.242 0.751 0.151 0.749 0.000 0.750 0.336 0.751 0.352 0.751 0.236 5/12/2007 0.787 0.252 0.751 0.161 0.749 0.000 0.750 0.341 0. 751 0.353 0.751 0.241 5/13/2007 0.787 0.253 0.752 0.152 0.749 0.000 0.750 0.348 0.750 0.359 0.751 0.248 5/14/2007 0.787 0.250 0.752 0.146 0.749 0.000 0.750 0.359 0.750 0.367 0.750 0.265 5/15/2007 0.787 0.257 0.750 0.156 0.7 49 0.000 0.751 0.364 0.750 0.367 0.750 0.280 5/16/2007 0.787 0.277 0.749 0.169 0.750 0.004 0.749 0.368 0.750 0.368 0.750 0.289 5/17/2007 0.787 0.306 0.751 0.192 0.751 0.008 0.759 0.412 0.767 0.359 0.751 0.142 5/18/200 7 0.787 0.321 0.756 0.213 0.752 0.011 0.760 0.418 0.767 0.383 0.751 0.144 5/19/2007 0.787 0.341 0.757 0.241 0.752 0.012 0.759 0.425 0.767 0.396 0.751 0.148 5/20/2007 0.787 0.345 0.757 0.258 0.752 0.013 0.761 0.426 0.76 7 0.391 0.751 0.151 5/21/2007 0.787 0.349 0.757 0.271 0.751 0.012 0.760 0.434 0.767 0.392 0.751 0.154 5/22/2007 0.761 0.438 0.767 0.394 0.751 0.157 5/23/2007 0.758 0.451 0.767 0.396 0.751 0.160 5/24/2007 0.740 0.435 0.750 0.405 0.749 0.338 0.760 0.452 0.767 0.400 0.751 0.162 5/25/2007 0.784 0.215 0.891 0.144 0.788 0.238 0.740 0.456 0.750 0.418 0.749 0.343 0.760 0.464 0.767 0.403 0.750 0.165 5/26/2007 0.785 0.213 0.891 0.146 0.787 0.242 0.740 0.475 0.750 0.421 0.749 0.350 0.762 0.469 0.767 0.409 0.750 0.168

PAGE 343

343 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm ) T7 2 (48 cm) Date w w w w w w w w w w w w 5/27/2007 0.786 0.214 0.895 0.147 0.787 0.245 0.741 0.483 0.749 0.424 0.749 0.353 0.762 0.478 0.767 0.418 0.750 0.170 5/28/2007 0.786 0.215 0.895 0.149 0.789 0.2 48 0.745 0.498 0.749 0.430 0.749 0.361 0.761 0.488 0.767 0.428 0.750 0.173 5/29/2007 0.787 0.216 0.893 0.152 0.790 0.251 0.750 0.499 0.749 0.434 0.749 0.364 0.762 0.493 0.767 0.428 0.750 0.175 5/30/2007 0.787 0.219 0.892 0.155 0.790 0.255 0.7 52 0.509 0.750 0.440 0.749 0.368 0.762 0.505 0.767 0.428 0.750 0.178 5/31/2007 0.787 0.222 0.894 0.159 0.794 0.256 0.752 0.512 0.753 0.441 0.749 0.375 0.762 0.514 0.767 0.429 0.750 0.180 6/1/2007 0.787 0.225 0.896 0.163 0.792 0.264 0.751 0.52 7 0.758 0.451 0.749 0.379 0.762 0.521 0.767 0.435 0.750 0.185 6/2/2007 0.789 0.226 0.891 0.167 0.794 0.266 0.750 0.514 0.760 0.418 0.750 0.373 0.762 0.515 0.767 0.444 0.750 0.186 6/3/2007 0.791 0.227 0.892 0.170 0.798 0.265 0.749 0.531 0.761 0.429 0.750 0.380 0.762 0.529 0.767 0.445 0.750 0.188 6/4/2007 0.789 0.231 0.883 0.176 0.798 0.268 0.749 0.532 0.766 0.435 0.749 0.386 0.762 0.525 0.767 0.451 0.750 0.189 6/5/2007 0.790 0.233 0.883 0.182 0.797 0.271 0.749 0.533 0.780 0.436 0. 749 0.393 0.762 0.528 0.767 0.449 0.750 0.193 6/6/2007 0.790 0.237 0.878 0.188 0.798 0.278 0.749 0.547 0.786 0.430 0.749 0.401 0.762 0.535 0.767 0.439 0.750 0.196 6/7/2007 0.794 0.238 0.865 0.195 0.800 0.279 0.750 0.552 0.786 0.419 0.750 0.40 2 0.762 0.526 0.767 0.434 0.750 0.200 6/8/2007 0.792 0.242 0.868 0.199 0.799 0.285 0.753 0.554 0.785 0.426 0.750 0.403 0.762 0.525 0.767 0.427 0.750 0.204 6/9/2007 0.787 0.247 0.866 0.204 0.799 0.287 0.764 0.542 0.790 0.431 0.749 0.413 0.762 0.524 0.767 0.426 0.750 0.205 6/10/2007 0.794 0.245 0.855 0.211 0.804 0.287 0.773 0.533 0.800 0.423 0.750 0.420 0.762 0.524 0.767 0.424 0.750 0.208 6/11/2007 0.791 0.251 0.852 0.216 0.802 0.292 0.777 0.521 0.805 0.418 0.750 0.418 0.762 0.524 0.767 0.419 0.750 0.210 6/12/2007 0.793 0.252 0.847 0.222 0.801 0.298 0.773 0.528 0.814 0.419 0.750 0.422 0.762 0.521 0.767 0.407 0.750 0.213 6/13/2007 0.794 0.253 0.844 0.226 0.805 0.297 0.773 0.532 0.826 0.411 0.750 0.427 0.762 0.515 0.767 0.396 0.750 0.216 6/14/2007 0.792 0.256 0.840 0.230 0.806 0.299 0.781 0.535 0.842 0.404 0.751 0.431 0.762 0.515 0.767 0.395 0.750 0.217 6/15/2007 0.793 0.256 0.841 0.232 0.811 0.297 0.789 0.519 0.848 0.392 0.751 0.431 0.762 0.517 0.767 0.395 0.750 0.222 6/16/2007 0.794 0.257 0.841 0.235 0.807 0.303 0.800 0.509 0.852 0.389 0.752 0.436 0.762 0.512 0.767 0.389 0.750 0.223 6/17/2007 0.795 0.257 0.838 0.237 0.810 0.304 0.808 0.505 0.847 0.392 0.754 0.436 0.762 0.509 0.767 0.382 0.750 0.224 6/18/2007 0.793 0.259 0.842 0.238 0.812 0.305 0.806 0.493 0.841 0.393 0.756 0.434 0.762 0.508 0.767 0.376 0.750 0.227 6/19/2007 0.794 0.260 0.832 0.244 0.814 0.305 0.782 0.503 0.794 0.412 0.753 0.438 0.762 0.494 0.767 0.371 0.750 0.228 6/20/2007 0.793 0.262 0.832 0.246 0.816 0.306 0.762 0.526 0.760 0.435 0.752 0.447 0.762 0.489 0.767 0.371 0.750 0.232 6/21/2007 0.794 0.263 0.828 0.249 0.814 0.310 0.755 0.537 0.750 0.453 0.751 0.454 0.762 0.488 0.767 0.367 0.750 0.234 6/22/ 2007 0.797 0.262 0.823 0.252 0.823 0.306 0.758 0.553 0.750 0.514 0.752 0.457 0.762 0.477 0.767 0.362 0.750 0.236 6/23/2007 0.796 0.262 0.820 0.255 0.820 0.308 0.761 0.550 0.750 0.518 0.750 0.463 0.762 0.469 0.767 0.358 0.750 0.240 6/24/2007 0.794 0.265 0.817 0.257 0.816 0.314 0.756 0.543 0.750 0.525 0.751 0.472 0.762 0.466 0.767 0.354 0.750 0.242 6/25/2007 0.796 0.265 0.806 0.264 0.827 0.308 0.751 0.544 0.750 0.520 0.750 0.470 0.762 0.463 0.767 0.344 0.750 0.246 6/26/2007 0 .799 0.264 0.813 0.262 0.806 0.324 0.751 0.547 0.751 0.525 0.750 0.479 0.762 0.452 0.767 0.342 0.750 0.246 6/27/2007 0.910 0.321 0.920 0.272 0.786 0.089 0.799 0.279 0.827 0.258 0.809 0.325 6/28/2007 0.955 0.306 0.906 0.276 0.786 0.083 0.804 0 .273 0.853 0.253 0.834 0.316 6/29/2007 0.920 0.314 0.878 0.278 0.782 0.079 0.797 0.276 0.851 0.254 0.829 0.315 6/30/2007 0.887 0.317 0.855 0.276 0.782 0.076 0.797 0.275 0.850 0.255 0.836 0.310 7/1/2007 0.862 0.313 0.8 30 0.275 0.779 0.076 0.798 0.274 0.853 0.255 0.830 0.311 7/2/2007 0.838 0.307 0.810 0.275 0.778 0.075 0.795 0.276 0.852 0.256 0.827 0.312 7/3/2007 0.816 0.301 0.793 0.271 0.777 0.075 0.804 0.273 0.853 0.258 0.837 0.310 7/4/2007 0.797 0.299 0.781 0.263 0.776 0.075 0.805 0.272 0.862 0.257 0.843 0.306 7/5/2007 0.788 0.295 0.773 0.251 0.775 0.074 0.808 0.270 0.865 0.256 0.840 0.305 7/6/2007 0.780 0.294 0.766 0.239 0.774 0.074 0.799 0.272 0.852 0.2 56 0.839 0.296 0.761 0.383 0.767 0.278 0.750 0.273 7/7/2007 0.775 0.291 0.764 0.234 0.773 0.073 0.800 0.272 0.854 0.254 0.826 0.297 0.760 0.380 0.767 0.273 0.750 0.276 7/8/2007 0.769 0.290 0.762 0.228 0.772 0.073 0.799 0.272 0.855 0.253 0.832 0.292 0.760 0.373 0.767 0.268 0.750 0.278 7/9/2007 0.768 0.285 0.764 0.225 0.772 0.072 0.798 0.273 0.853 0.252 0.831 0.289 0.761 0.365 0.767 0.259 0.750 0.279 7/10/2007 0.766 0.282 0.763 0.227 0.770 0.073 0.799 0.273 0.855 0.249 0.832 0.286 0.760 0.359 0.767 0.251 0.750 0.278 7/11/2007 0.764 0.276 0.761 0.232 0.770 0.073 0.799 0.273 0.851 0.250 0.837 0.283 0.761 0.347 0.767 0.244 0.751 0.284 7/12/2007 0.762 0.269 0.761 0.235 0.770 0.072 0.800 0.273 0.849 0.251 0.835 0.285 0.761 0.340 0.767 0.239 0.750 0.287 7/13/2007 0.759 0.265 0.760 0.240 0.769 0.073 0.801 0.273 0.852 0.249 0.834 0.286 0.761 0.333 0.767 0.230 0.750 0.287 7/14/2007 0.758 0.258 0.761 0.241 0.769 0.073 0.799 0.274 0.852 0.249 0.830 0.290 0.761 0.327 0.767 0.223 0.751 0.293 7/15/2007 0.756 0.253 0.759 0.244 0.767 0.073 0.797 0.277 0.853 0.249 0.829 0.293 0.762 0.321 0.767 0.223 0.751 0.296

PAGE 344

344 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 7/16/2007 0.755 0.248 0.758 0.245 0.767 0.073 0.796 0.278 0.854 0.249 0.832 0.292 0.762 0.314 0.767 0.221 0.750 0.296 7/17/2007 0.754 0.244 0.757 0.244 0.767 0.074 0.796 0.278 0.847 0.252 0.833 0.292 0.762 0.305 0.767 0.212 0.750 0.298 7/18/2007 0.754 0.230 0.757 0.241 0.767 0.074 0.797 0.277 0.851 0.251 0.833 0.292 0.761 0.299 0.767 0.208 0.750 0.298 7/19/2007 0.753 0.215 0.756 0.243 0.767 0.074 0.795 0.279 0.850 0.251 0.836 0.291 0.761 0.291 0.767 0.195 0.751 0.303 7/20/2007 0.753 0.202 0.756 0.242 0.765 0.075 0.795 0.280 0.851 0.252 0.830 0.296 0.760 0.285 0.767 0.191 0.751 0.307 7/21/2007 0.753 0.186 0.755 0.243 0.765 0.076 0.795 0.279 0.851 0.252 0.834 0.294 0.762 0.271 0.767 0.187 0.751 0.307 7/22/2007 7/23/2007 7/24/2007 7/25/2007 7/26/2007 7/27/2007 7/2 8/2007 7/29/2007 7/30/2007 7/31/2007 8/1/2007 8/2/2007 8/3/2007 8/4/2007 8/5/2007 8/6/2007 8/7/2007 8/8/2007 8/9/2007 8/10/2007 8/11/2007 8/12/2007 8/13/2007 8/14/2007 8/15/2007 8/16/2007 8/17/2007 8/18/2007 8/19/2007 8/20/2007 8/21/2007 8/22/2007 8/23/2007 0.785 0.154 0.781 0.247 0.783 0.286 0.848 0.247 0.871 0.259 0.874 0.313 8/24/2007 0.778 0.1 60 0.779 0.249 0.791 0.289 0.836 0.241 0.848 0.260 0.870 0.318 8/25/2007 0.766 0.152 0.777 0.247 0.785 0.291 0.811 0.231 0.826 0.262 0.858 0.323 8/26/2007 0.757 0.139 0.774 0.242 0.779 0.288 0.790 0.223 0.806 0.262 0.845 0.322 8/ 27/2007 0.754 0.129 0.770 0.237 0.772 0.286 0.784 0.217 0.804 0.261 0.827 0.323 8/28/2007 0.752 0.122 0.767 0.233 0.773 0.281 0.780 0.212 0.805 0.260 0.816 0.321 8/29/2007 0.751 0.118 0.766 0.226 0.772 0.278 0.779 0.20 6 0.809 0.257 0.807 0.318 8/30/2007 0.751 0.115 0.763 0.222 0.774 0.277 0.774 0.202 0.804 0.258 0.794 0.318 8/31/2007 0.751 0.113 0.762 0.218 0.773 0.276 0.772 0.197 0.799 0.259 0.789 0.315 9/1/2007 0.751 0.111 0.761 0.214 0.777 0.270 0.769 0.193 0.799 0.258 0.786 0.312 9/2/2007 0.751 0.109 0.761 0.211 0.773 0.271 0.767 0.189 0.796 0.258 0.783 0.311 9/3/2007 0.751 0.108 0.760 0.210 0.774 0.271 0.766 0.186 0.796 0.257 0.779 0.309

PAGE 345

345 Table A 2. C ontinued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 9/4/2007 0.751 0.106 0.761 0.206 0.774 0.267 0.765 0.185 0.796 0.256 0.777 0.306 9/5/2007 0.751 0.105 0.763 0.202 0.774 0.263 0.766 0.183 0.797 0.254 0.775 0.305 9/6/200 7 0.810 0.219 0.815 0.231 0.930 0.199 0.750 0.104 0.761 0.199 0.769 0.263 0.766 0.182 0.795 0.254 0.772 0.302 9/7/2007 0.815 0.215 0.810 0.222 0.917 0.197 0.750 0.105 0.760 0.197 0.764 0.261 0.765 0.184 0.790 0.253 0.767 0.299 9/8/2007 0.813 0.218 0.804 0.214 0.918 0.196 0.750 0.104 0.757 0.196 0.761 0.259 0.764 0.183 0.786 0.253 0.764 0.297 9/9/2007 0.823 0.218 0.800 0.207 0.909 0.194 0.749 0.106 0.756 0.193 0.756 0.253 0.762 0.185 0.781 0.250 0.761 0.292 9/10/2007 0.825 0 .217 0.797 0.205 0.902 0.195 0.749 0.109 0.758 0.195 0.758 0.252 0.763 0.188 0.782 0.251 0.761 0.291 9/11/2007 0.823 0.217 0.791 0.207 0.913 0.195 0.749 0.107 0.763 0.197 0.766 0.257 0.764 0.189 0.782 0.255 0.762 0.294 9/12/2007 0.820 0.215 0 .790 0.207 0.909 0.196 0.749 0.103 0.762 0.195 0.765 0.258 0.764 0.187 0.782 0.252 0.763 0.291 9/13/2007 0.813 0.215 0.786 0.209 0.902 0.197 0.749 0.099 0.763 0.191 0.767 0.254 0.764 0.185 0.787 0.247 0.762 0.290 9/14/2007 0.756 0.257 0.777 0.163 0 .779 0.059 0.816 0.214 0.787 0.208 0.907 0.196 0.749 0.095 0.764 0.188 0.766 0.252 0.765 0.182 0.786 0.245 0.763 0.288 9/15/2007 0.754 0.253 0.776 0.164 0.780 0.061 0.812 0.216 0.785 0.209 0.902 0.197 0.749 0.093 0.763 0.187 0.765 0.251 0.764 0.181 0.785 0.243 0.761 0.288 9/16/2007 0.752 0.246 0.770 0.161 0.780 0.060 0.810 0.216 0.786 0.208 0.902 0.196 0.749 0.091 0.764 0.184 0.763 0.251 0.764 0.179 0.782 0.242 0.761 0.286 9/17/2007 0.750 0.237 0.765 0.155 0.779 0.059 0.809 0.215 0.786 0.208 0.896 0.197 0.749 0.089 0.764 0.182 0.765 0.247 0.765 0.177 0.781 0.242 0.761 0.285 9/18/2007 0.749 0.227 0.759 0.149 0.779 0.057 0.811 0.214 0.783 0.209 0.892 0.195 0.749 0.088 0.763 0.180 0.762 0.248 0.765 0.176 0.781 0.241 0.760 0.286 9/19/2007 0.749 0.219 0.756 0.143 0.778 0.057 0.816 0.214 0.783 0.207 0.884 0.195 0.750 0.087 0.764 0.178 0.761 0.247 0.766 0.174 0.781 0.241 0.760 0.284 9/20/2007 0.749 0.213 0.753 0.140 0.777 0.059 0.813 0.214 0.784 0.205 0.879 0.194 0.749 0.087 0.764 0.176 0.762 0.244 0.765 0.174 0.782 0.238 0.760 0.284 9/21/2007 0.749 0.209 0.753 0.138 0.776 0.058 0.812 0.214 0.780 0.204 0.875 0.193 0.749 0.086 0.765 0.175 0.760 0.245 0.764 0.172 0.784 0.235 0.762 0.280 9/22/2007 0.749 0.206 0.753 0.137 0.776 0.058 0.812 0.215 0.783 0.201 0.864 0.193 0.750 0.085 0.765 0.172 0.760 0.242 0.764 0.173 0.779 0.238 0.762 0.279 9/23/2007 0.749 0.203 0.753 0.136 0.776 0.058 0.815 0.215 0.781 0.199 0.853 0.192 0.750 0.084 0.766 0.170 0.762 0.237 0.764 0.172 0.777 0.238 0.760 0.280 9/24/2007 0.750 0.200 0.753 0.136 0.776 0.055 0.814 0.215 0.778 0.198 0.838 0.189 0.750 0.084 0.766 0.170 0.760 0.238 0.765 0.172 0.780 0.236 0.760 0.280 9/25/2007 0.750 0.199 0.753 0.136 0.776 0.056 0.814 0.215 0.780 0.196 0.829 0.188 0.750 0.083 0.767 0.168 0.761 0.235 0.76 6 0.171 0.780 0.235 0.761 0.280 9/26/2007 0.750 0.196 0.753 0.137 0.775 0.056 0.813 0.214 0.777 0.195 0.820 0.186 0.750 0.083 0.767 0.167 0.759 0.236 0.765 0.171 0.781 0.235 0.760 0.280 9/27/2007 0.750 0.195 0.753 0.136 0.775 0.056 0.816 0.213 0.781 0.19 1 0.818 0.185 0.750 0.083 0.767 0.166 0.760 0.233 0.765 0.171 0.781 0.234 0.761 0.279 9/28/2007 0.750 0.193 0.753 0.136 0.774 0.056 0.815 0.211 0.782 0.188 0.822 0.182 0.750 0.082 0.768 0.164 0.758 0.232 0.764 0.171 0.782 0.232 0.761 0.278 9/29/2007 0.75 0 0.192 0.753 0.136 0.774 0.055 0.816 0.210 0.783 0.185 0.819 0.181 0.750 0.082 0.768 0.163 0.758 0.230 0.765 0.170 0.781 0.232 0.761 0.277 9/30/2007 0.750 0.192 0.753 0.136 0.774 0.056 0.815 0.209 0.785 0.181 0.816 0.179 0.750 0.082 0.769 0.161 0.760 0.2 27 0.764 0.170 0.781 0.232 0.762 0.278 10/1/2007 0.750 0.190 0.753 0.136 0.774 0.055 0.815 0.209 0.784 0.178 0.815 0.176 0.750 0.082 0.769 0.160 0.760 0.225 0.764 0.170 0.780 0.233 0.761 0.278 10/2/2007 0.750 0.192 0.754 0.137 0.775 0.055 0.820 0.208 0.7 84 0.175 0.812 0.173 0.750 0.082 0.769 0.160 0.758 0.226 0.764 0.170 0.781 0.232 0.762 0.278 10/3/2007 0.750 0.189 0.752 0.139 0.775 0.055 0.817 0.207 0.784 0.172 0.807 0.172 0.750 0.081 0.769 0.159 0.758 0.225 0.763 0.169 0.780 0.231 0.761 0.276 10/4/20 07 0.750 0.188 0.750 0.142 0.775 0.053 0.813 0.205 0.786 0.170 0.807 0.171 0.750 0.081 0.769 0.159 0.757 0.227 0.764 0.169 0.779 0.230 0.762 0.274 10/5/2007 0.750 0.187 0.751 0.142 0.775 0.053 0.814 0.203 0.786 0.168 0.808 0.170 0.750 0.081 0.769 0.159 0. 756 0.228 0.764 0.168 0.781 0.228 0.762 0.273 10/6/2007 0.750 0.187 0.751 0.141 0.775 0.053 0.814 0.201 0.787 0.164 0.810 0.168 0.750 0.081 0.769 0.159 0.756 0.227 0.764 0.168 0.780 0.229 0.761 0.272 10/7/2007 0.750 0.186 0.751 0.140 0.775 0.052 0.814 0. 200 0.786 0.163 0.809 0.166 0.750 0.081 0.767 0.159 0.757 0.223 0.764 0.168 0.781 0.228 0.760 0.273 10/8/2007 0.750 0.186 0.751 0.139 0.775 0.051 0.813 0.200 0.787 0.161 0.809 0.166 0.750 0.080 0.767 0.159 0.757 0.223 0.764 0.168 0.782 0.228 0.759 0.273 10/9/2007 0.750 0.186 0.751 0.138 0.774 0.051 0.813 0.200 0.787 0.160 0.809 0.165 0.750 0.080 0.767 0.158 0.756 0.223 0.764 0.168 0.782 0.227 0.760 0.272 10/10/2007 0.750 0.185 0.751 0.137 0.774 0.050 0.814 0.200 0.787 0.158 0.809 0.164 0.750 0.079 0.767 0.158 0.756 0.222 0.764 0.168 0.782 0.227 0.759 0.273 10/11/2007 0.750 0.184 0.751 0.137 0.774 0.049 0.817 0.199 0.787 0.157 0.810 0.164 0.750 0.079 0.767 0.158 0.757 0.220 0.765 0.167 0.782 0.226 0.759 0.273 10/12/2007 0.750 0.183 0.751 0.136 0.774 0.04 9 0.817 0.198 0.788 0.156 0.811 0.163 0.750 0.079 0.767 0.157 0.757 0.220 0.764 0.167 0.783 0.225 0.758 0.272 10/13/2007 0.750 0.183 0.751 0.135 0.774 0.049 0.820 0.196 0.788 0.155 0.813 0.163 0.750 0.078 0.767 0.157 0.757 0.218 0.764 0.166 0.781 0.227 0. 759 0.271 10/14/2007 0.750 0.184 0.751 0.134 0.774 0.048 0.817 0.195 0.790 0.152 0.817 0.160 0.750 0.078 0.767 0.157 0.757 0.217 0.764 0.166 0.780 0.227 0.760 0.270 10/15/2007 0.750 0.182 0.751 0.134 0.774 0.048 0.812 0.194 0.792 0.148 0.820 0.158 0.750 0.077 0.767 0.156 0.757 0.214 0.764 0.166 0.781 0.225 0.760 0.269 10/16/2007 0.750 0.180 0.750 0.138 0.775 0.047 0.810 0.193 0.793 0.147 0.820 0.157 0.750 0.076 0.768 0.155 0.757 0.214 0.764 0.165 0.779 0.226 0.758 0.268 10/17/2007 0.750 0.180 0.750 0.13 7 0.774 0.047 0.808 0.193 0.790 0.147 0.820 0.156 0.750 0.076 0.768 0.154 0.756 0.214 0.765 0.164 0.778 0.226 0.759 0.268 10/18/2007 0.750 0.184 0.751 0.137 0.774 0.046 0.803 0.194 0.793 0.147 0.819 0.157 0.750 0.076 0.770 0.153 0.756 0.214 0.764 0.164 0. 778 0.226 0.759 0.267 10/19/2007 0.749 0.190 0.752 0.137 0.774 0.046 0.795 0.193 0.794 0.147 0.821 0.156 0.750 0.075 0.771 0.152 0.756 0.213 0.764 0.164 0.779 0.224 0.759 0.265 10/20/2007 0.749 0.186 0.751 0.138 0.774 0.046 0.797 0.190 0.791 0.146 0.817 0.156 0.750 0.075 0.771 0.151 0.755 0.212 0.764 0.164 0.778 0.225 0.758 0.266 10/21/2007 0.749 0.184 0.751 0.136 0.774 0.046 0.796 0.189 0.789 0.146 0.814 0.157 0.750 0.074 0.771 0.150 0.755 0.210 0.765 0.163 0.778 0.223 0.760 0.264 10/22/2007 0.749 0.18 1 0.751 0.135 0.775 0.045 0.794 0.189 0.791 0.146 0.816 0.157 0.750 0.074 0.771 0.149 0.754 0.209 0.764 0.164 0.779 0.222 0.761 0.262 10/23/2007 0.749 0.179 0.751 0.134 0.775 0.045 0.792 0.190 0.790 0.146 0.818 0.157 0.750 0.072 0.771 0.148 0.755 0.206 0. 764 0.163 0.780 0.221 0.759 0.263

PAGE 346

346 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 10/24/2007 0.749 0.176 0.751 0.132 0.774 0.043 0.794 0.188 0.792 0.146 0.818 0.157 0.750 0.072 0.772 0.147 0.754 0.205 0.764 0.163 0.779 0.222 0.758 0.265 10/25/2007 0.749 0.174 0.751 0.131 0.774 0.043 0.794 0.188 0.7 92 0.146 0.818 0.156 0.750 0.072 0.772 0.146 0.754 0.203 0.764 0.162 0.779 0.221 0.758 0.265 10/26/2007 0.749 0.173 0.751 0.131 0.774 0.043 0.795 0.187 0.791 0.147 0.819 0.155 0.751 0.072 0.773 0.145 0.754 0.202 0.764 0.162 0.780 0.220 0.758 0.263 10/27/ 2007 0.749 0.170 0.751 0.129 0.774 0.043 0.795 0.187 0.792 0.146 0.818 0.155 0.751 0.071 0.774 0.143 0.754 0.198 0.765 0.161 0.780 0.220 0.759 0.261 10/28/2007 0.749 0.168 0.751 0.128 0.775 0.042 0.795 0.187 0.792 0.146 0.819 0.155 0.751 0.071 0.773 0.143 0.754 0.197 0.765 0.160 0.782 0.218 0.758 0.261 10/29/2007 0.749 0.168 0.751 0.127 0.775 0.042 0.793 0.186 0.791 0.147 0.819 0.154 0.751 0.070 0.773 0.142 0.754 0.194 0.765 0.159 0.781 0.218 0.758 0.260 10/30/2007 0.749 0.167 0.751 0.127 0.776 0.041 0.7 95 0.185 0.791 0.145 0.818 0.152 0.751 0.071 0.773 0.142 0.755 0.193 0.766 0.159 0.781 0.218 0.759 0.261 10/31/2007 0.749 0.166 0.752 0.127 0.776 0.040 0.794 0.186 0.789 0.144 0.813 0.150 0.752 0.071 0.774 0.141 0.754 0.191 0.766 0.159 0.780 0.219 0.759 0 .261 11/1/2007 0.749 0.165 0.752 0.125 0.776 0.040 0.789 0.187 0.792 0.142 0.812 0.147 0.752 0.071 0.773 0.140 0.754 0.191 0.765 0.158 0.780 0.218 0.758 0.260 11/2/2007 0.749 0.164 0.752 0.124 0.775 0.040 0.789 0.186 0.792 0.141 0.812 0.146 0.752 0.071 0 .774 0.140 0.753 0.192 0.766 0.158 0.779 0.219 0.758 0.260 11/3/2007 0.749 0.163 0.751 0.126 0.775 0.039 0.792 0.183 0.795 0.138 0.812 0.145 0.752 0.072 0.774 0.141 0.754 0.192 0.766 0.158 0.779 0.219 0.757 0.261 11/4/2007 0.749 0.161 0.750 0.126 0.776 0 .037 0.790 0.183 0.796 0.135 0.813 0.143 0.752 0.072 0.775 0.140 0.754 0.192 0.766 0.158 0.780 0.218 0.757 0.261 11/5/2007 0.749 0.160 0.750 0.125 0.776 0.036 0.791 0.181 0.796 0.134 0.815 0.141 0.752 0.071 0.776 0.139 0.754 0.190 0.766 0.158 0.779 0.218 0.758 0.260 11/6/2007 0.749 0.158 0.750 0.126 0.776 0.035 0.792 0.178 0.797 0.132 0.815 0.140 0.752 0.071 0.775 0.139 0.755 0.189 0.766 0.158 0.780 0.217 0.757 0.259 11/7/2007 0.749 0.156 0.750 0.124 0.776 0.034 0.793 0.177 0.796 0.131 0.815 0.139 0.752 0.071 0.776 0.139 0.754 0.190 0.766 0.158 0.779 0.216 0.757 0.259 11/8/2007 0.749 0.157 0.750 0.124 0.776 0.033 0.794 0.175 0.798 0.129 0.816 0.138 0.752 0.071 0.776 0.139 0.754 0.189 0.766 0.157 0.779 0.216 0.757 0.260 11/9/2007 0.749 0.155 0.750 0.122 0.776 0.032 0.793 0.174 0.797 0.129 0.815 0.138 0.752 0.070 0.776 0.138 0.754 0.188 0.767 0.156 0.779 0.216 0.757 0.259 11/10/2007 0.749 0.154 0.750 0.121 0.776 0.032 0.795 0.172 0.796 0.128 0.818 0.137 0.752 0.070 0.777 0.138 0.754 0.187 0.766 0.156 0.77 8 0.216 0.757 0.258 11/11/2007 0.749 0.152 0.750 0.120 0.776 0.032 0.797 0.170 0.798 0.126 0.818 0.137 0.753 0.070 0.778 0.137 0.755 0.185 0.767 0.155 0.778 0.214 0.757 0.257 11/12/2007 0.749 0.151 0.750 0.120 0.776 0.031 0.798 0.170 0.797 0.126 0.817 0. 137 0.753 0.069 0.777 0.137 0.754 0.185 0.767 0.155 0.779 0.213 0.757 0.256 11/13/2007 0.749 0.150 0.750 0.119 0.777 0.030 0.798 0.169 0.797 0.124 0.816 0.137 0.753 0.069 0.779 0.136 0.754 0.184 0.766 0.154 0.780 0.212 0.757 0.255 11/14/2007 0.749 0.149 0.750 0.119 0.777 0.030 0.798 0.168 0.796 0.125 0.815 0.137 0.753 0.068 0.778 0.135 0.754 0.182 0.766 0.153 0.780 0.211 0.757 0.252 11/15/2007 0.749 0.148 0.750 0.117 0.777 0.030 0.799 0.167 0.797 0.125 0.816 0.137 0.753 0.068 0.778 0.136 0.754 0.181 0.76 6 0.152 0.779 0.210 0.756 0.254 11/16/2007 0.749 0.147 0.751 0.116 0.777 0.028 0.799 0.167 0.797 0.125 0.819 0.138 0.754 0.067 0.780 0.134 0.754 0.180 0.766 0.152 0.777 0.211 0.757 0.252 11/17/2007 0.749 0.145 0.751 0.115 0.777 0.029 0.799 0.167 0.797 0. 125 0.818 0.140 0.755 0.067 0.781 0.134 0.754 0.179 0.767 0.151 0.777 0.210 0.757 0.253 11/18/2007 0.749 0.146 0.750 0.117 0.777 0.028 0.800 0.166 0.799 0.125 0.821 0.140 0.755 0.066 0.783 0.131 0.754 0.177 0.767 0.150 0.780 0.207 0.756 0.254 11/19/2007 0.749 0.144 0.751 0.114 0.778 0.028 0.802 0.165 0.799 0.125 0.821 0.140 0.756 0.066 0.782 0.131 0.754 0.176 0.767 0.149 0.781 0.205 0.756 0.252 11/20/2007 0.749 0.143 0.751 0.113 0.778 0.028 0.802 0.165 0.798 0.126 0.821 0.141 0.757 0.065 0.784 0.130 0.75 4 0.174 0.767 0.149 0.781 0.203 0.756 0.250 11/21/2007 0.749 0.144 0.751 0.112 0.779 0.028 0.802 0.165 0.799 0.126 0.824 0.141 0.757 0.065 0.784 0.130 0.754 0.173 0.767 0.148 0.779 0.204 0.757 0.249 11/22/2007 0.749 0.145 0.751 0.110 0.779 0.028 0.803 0. 165 0.799 0.126 0.824 0.142 0.757 0.064 0.784 0.129 0.754 0.170 0.767 0.147 0.778 0.204 0.757 0.246 11/23/2007 0.749 0.145 0.752 0.109 0.779 0.028 0.803 0.164 0.799 0.127 0.824 0.143 0.758 0.063 0.784 0.129 0.754 0.169 0.767 0.146 0.780 0.201 0.756 0.247 11/24/2007 0.749 0.145 0.752 0.108 0.780 0.027 0.803 0.164 0.798 0.127 0.822 0.144 0.758 0.063 0.785 0.128 0.754 0.169 0.767 0.144 0.782 0.199 0.756 0.246 11/25/2007 0.749 0.144 0.752 0.107 0.780 0.028 0.803 0.164 0.798 0.127 0.822 0.144 0.758 0.063 0.78 7 0.126 0.754 0.167 0.767 0.144 0.779 0.200 0.756 0.244 11/26/2007 0.749 0.143 0.752 0.107 0.780 0.028 0.803 0.164 0.798 0.128 0.827 0.143 0.759 0.061 0.788 0.125 0.754 0.165 0.766 0.143 0.778 0.199 0.757 0.242 11/27/2007 0.750 0.142 0.752 0.105 0.781 0. 027 0.803 0.164 0.798 0.128 0.829 0.143 0.759 0.060 0.788 0.125 0.754 0.162 0.766 0.141 0.779 0.197 0.756 0.241 11/28/2007 0.750 0.141 0.752 0.104 0.781 0.027 0.802 0.164 0.796 0.128 0.827 0.143 0.759 0.059 0.788 0.124 0.755 0.159 0.767 0.140 0.781 0.193 0.756 0.239 11/29/2007 0.749 0.140 0.753 0.101 0.782 0.027 0.800 0.165 0.795 0.130 0.826 0.144 0.759 0.058 0.789 0.123 0.754 0.158 0.768 0.138 0.780 0.193 0.756 0.239 11/30/2007 0.749 0.139 0.753 0.099 0.782 0.027 0.800 0.165 0.798 0.130 0.830 0.144 0.76 0 0.058 0.789 0.122 0.754 0.157 0.768 0.136 0.779 0.192 0.756 0.238 12/1/2007 0.749 0.137 0.753 0.097 0.781 0.026 0.800 0.165 0.795 0.132 0.830 0.144 0.760 0.057 0.789 0.121 0.754 0.154 0.768 0.135 0.779 0.190 0.756 0.237 12/2/2007 0.749 0.135 0.753 0.09 2 0.781 0.026 0.800 0.165 0.797 0.132 0.831 0.145 0.761 0.056 0.790 0.120 0.755 0.152 0.768 0.134 0.779 0.189 0.757 0.235 12/3/2007 0.749 0.133 0.754 0.087 0.781 0.026 0.800 0.165 0.798 0.132 0.831 0.145 0.761 0.054 0.790 0.119 0.754 0.151 0.767 0.133 0.7 76 0.190 0.755 0.235 12/4/2007 0.749 0.128 0.756 0.080 0.781 0.025 0.800 0.165 0.798 0.133 0.832 0.145 0.760 0.053 0.791 0.119 0.754 0.150 0.768 0.131 0.777 0.187 0.756 0.231 12/5/2007 0.750 0.124 0.757 0.071 0.783 0.024 0.801 0.164 0.799 0.134 0.832 0.1 45 0.762 0.053 0.794 0.118 0.756 0.148 0.768 0.130 0.779 0.185 0.756 0.231 12/6/2007 0.750 0.120 0.757 0.067 0.782 0.024 0.804 0.163 0.797 0.135 0.834 0.144 0.762 0.052 0.793 0.116 0.755 0.145 0.768 0.129 0.779 0.183 0.755 0.232 12/7/2007 0.750 0.114 0.7 58 0.060 0.782 0.025 0.804 0.163 0.797 0.135 0.836 0.143 0.763 0.050 0.793 0.115 0.755 0.143 0.768 0.127 0.778 0.181 0.755 0.230 12/8/2007 0.750 0.106 0.759 0.053 0.782 0.025 0.803 0.163 0.796 0.137 0.835 0.143 0.763 0.049 0.793 0.114 0.754 0.143 0.768 0. 126 0.778 0.179 0.756 0.227 12/9/2007 0.751 0.102 0.760 0.048 0.782 0.024 0.806 0.162 0.797 0.137 0.836 0.143 0.764 0.049 0.795 0.113 0.754 0.141 0.769 0.125 0.778 0.178 0.756 0.227 12/10/2007 0.751 0.098 0.760 0.044 0.783 0.024 0.805 0.162 0.795 0.137 0 .835 0.144 0.765 0.048 0.796 0.112 0.755 0.139 0.769 0.123 0.780 0.175 0.757 0.224 12/11/2007 0.751 0.091 0.760 0.040 0.783 0.023 0.803 0.163 0.795 0.138 0.835 0.143 0.765 0.048 0.797 0.111 0.755 0.137 0.769 0.122 0.782 0.172 0.756 0.223 12/12/2007 0.751 0.085 0.761 0.034 0.783 0.023 0.803 0.163 0.795 0.138 0.835 0.143 0.766 0.048 0.798 0.110 0.754 0.135 0.769 0.121 0.779 0.172 0.756 0.221

PAGE 347

347 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 12/13/2007 0.751 0.078 0.761 0.030 0.783 0.023 0.803 0.163 0.795 0.139 0.834 0.143 0.766 0.047 0.799 0.108 0.755 0.132 0.769 0.121 0.779 0.170 0.756 0.219 12/14/2007 0.751 0.077 0.762 0.028 0.783 0.023 0.801 0.163 0.796 0.139 0.830 0.143 0.767 0.045 0.800 0.107 0.755 0.131 0.770 0.120 0.779 0.169 0.755 0.219 12/15/2007 0.751 0.077 0.761 0.029 0.783 0.023 0.801 0.16 3 0.795 0.139 0.828 0.144 0.767 0.045 0.800 0.107 0.755 0.129 0.769 0.119 0.779 0.167 0.755 0.217 12/16/2007 0.751 0.073 0.761 0.026 0.782 0.022 0.802 0.163 0.794 0.140 0.825 0.144 0.767 0.044 0.800 0.106 0.755 0.128 0.769 0.118 0.778 0.166 0.755 0.215 1 2/17/2007 0.752 0.067 0.763 0.020 0.783 0.021 0.802 0.164 0.796 0.141 0.823 0.144 0.767 0.043 0.800 0.106 0.755 0.126 0.769 0.119 0.778 0.165 0.755 0.215 12/18/2007 0.752 0.060 0.763 0.018 0.782 0.021 0.802 0.167 0.793 0.144 0.812 0.146 0.769 0.041 0.801 0.105 0.756 0.125 0.771 0.118 0.779 0.164 0.755 0.216 12/19/2007 0.753 0.055 0.764 0.016 0.780 0.019 0.806 0.165 0.787 0.146 0.803 0.143 0.771 0.041 0.804 0.104 0.756 0.125 0.772 0.118 0.780 0.163 0.755 0.214 12/20/2007 0.753 0.052 0.764 0.014 0.780 0.01 7 0.810 0.162 0.784 0.144 0.794 0.138 0.772 0.040 0.805 0.102 0.757 0.124 0.772 0.117 0.780 0.161 0.756 0.210 12/21/2007 0.753 0.051 0.765 0.013 0.781 0.016 0.809 0.162 0.783 0.143 0.789 0.133 0.773 0.039 0.805 0.101 0.757 0.122 0.772 0.116 0.780 0.160 0. 757 0.209 12/22/2007 0.753 0.051 0.765 0.013 0.781 0.015 0.800 0.161 0.776 0.143 0.781 0.130 0.774 0.038 0.807 0.100 0.757 0.119 0.772 0.115 0.782 0.159 0.757 0.208 12/23/2007 0.753 0.053 0.764 0.014 0.780 0.014 0.802 0.162 0.774 0.142 0.779 0.130 0.775 0.038 0.807 0.099 0.757 0.117 0.773 0.114 0.782 0.158 0.757 0.207 12/24/2007 0.753 0.055 0.764 0.015 0.778 0.012 0.804 0.161 0.776 0.140 0.780 0.129 0.775 0.037 0.810 0.098 0.758 0.115 0.772 0.113 0.783 0.157 0.758 0.206 12/25/2007 0.753 0.056 0.762 0.01 7 0.774 0.007 0.800 0.161 0.775 0.141 0.779 0.131 0.775 0.037 0.811 0.097 0.758 0.113 0.773 0.112 0.782 0.156 0.758 0.204 12/26/2007 0.752 0.059 0.760 0.018 0.769 0.005 0.793 0.161 0.772 0.142 0.779 0.131 0.776 0.037 0.811 0.097 0.758 0.111 0.773 0.111 0. 782 0.156 0.758 0.204 12/27/2007 0.751 0.063 0.757 0.020 0.766 0.006 0.779 0.158 0.765 0.140 0.778 0.132 0.776 0.036 0.811 0.096 0.758 0.109 0.773 0.111 0.784 0.155 0.758 0.202 12/28/2007 0.750 0.069 0.752 0.024 0.763 0.007 0.758 0.144 0.755 0.129 0.772 0.130 0.777 0.036 0.814 0.095 0.758 0.107 0.773 0.110 0.784 0.154 0.758 0.202 12/29/2007 0.750 0.076 0.752 0.029 0.767 0.013 0.760 0.145 0.758 0.122 0.774 0.132 0.776 0.034 0.811 0.095 0.758 0.104 0.772 0.109 0.784 0.152 0.758 0.198 12/30/2007 0.750 0.07 6 0.753 0.031 0.769 0.014 0.772 0.163 0.763 0.138 0.786 0.140 0.775 0.033 0.807 0.095 0.758 0.101 0.771 0.108 0.781 0.151 0.758 0.198 12/31/2007 0.750 0.072 0.754 0.031 0.769 0.016 0.775 0.166 0.764 0.141 0.789 0.143 0.775 0.033 0.809 0.093 0.758 0.099 0. 771 0.107 0.780 0.151 0.756 0.197 1/1/2008 0.750 0.068 0.754 0.031 0.768 0.015 0.776 0.167 0.766 0.141 0.789 0.144 0.775 0.034 0.808 0.093 0.754 0.097 0.771 0.107 0.780 0.150 0.754 0.196 1/2/2008 0.751 0.063 0.757 0.025 0.770 0.016 0.780 0.168 0.768 0.14 2 0.794 0.145 0.776 0.035 0.811 0.094 0.752 0.095 0.771 0.108 0.781 0.149 0.754 0.195 1/3/2008 0.751 0.058 0.759 0.023 0.771 0.016 0.783 0.168 0.771 0.143 0.797 0.144 0.777 0.035 0.810 0.094 0.751 0.092 0.773 0.107 0.780 0.149 0.754 0.194 1/4/2008 0.752 0.056 0.759 0.024 0.770 0.015 0.787 0.167 0.773 0.143 0.796 0.144 0.778 0.033 0.811 0.093 0.751 0.090 0.774 0.106 0.782 0.148 0.754 0.193 1/5/2008 0.752 0.055 0.760 0.024 0.771 0.014 0.791 0.168 0.775 0.143 0.796 0.143 0.778 0.032 0.811 0.090 0.751 0.088 0.773 0.105 0.781 0.147 0.753 0.191 1/6/2008 0.752 0.053 0.760 0.024 0.770 0.014 0.795 0.168 0.777 0.142 0.797 0.142 0.778 0.032 0.813 0.090 0.750 0.086 0.773 0.104 0.782 0.145 0.754 0.190 1/7/2008 0.753 0.050 0.760 0.025 0.770 0.013 0.797 0.167 0.779 0. 143 0.796 0.142 0.778 0.032 0.813 0.088 0.750 0.084 0.773 0.104 0.782 0.144 0.754 0.189 1/8/2008 0.753 0.048 0.761 0.024 0.770 0.012 0.798 0.168 0.781 0.144 0.797 0.142 0.779 0.031 0.813 0.088 0.750 0.081 0.772 0.103 0.782 0.142 0.754 0.188 1/9/2008 0.75 3 0.043 0.762 0.022 0.771 0.013 0.800 0.168 0.782 0.145 0.797 0.142 0.779 0.031 0.815 0.087 0.751 0.079 0.772 0.103 0.781 0.142 0.753 0.187 1/10/2008 0.753 0.040 0.762 0.020 0.771 0.012 0.803 0.167 0.783 0.145 0.798 0.141 0.778 0.030 0.815 0.087 0.750 0.0 77 0.772 0.102 0.781 0.140 0.754 0.183 1/11/2008 0.753 0.037 0.763 0.019 0.772 0.013 0.803 0.167 0.785 0.145 0.799 0.140 0.779 0.030 0.815 0.086 0.751 0.074 0.772 0.101 0.781 0.139 0.754 0.180 1/12/2008 0.754 0.035 0.763 0.018 0.771 0.013 0.804 0.167 0.7 86 0.146 0.798 0.140 0.779 0.029 0.814 0.085 0.751 0.071 0.772 0.100 0.781 0.138 0.753 0.180 1/13/2008 0.754 0.032 0.763 0.017 0.771 0.013 0.804 0.168 0.787 0.146 0.798 0.141 0.779 0.029 0.815 0.085 0.751 0.070 0.772 0.098 0.779 0.138 0.753 0.179 1/14/20 08 0.754 0.029 0.764 0.014 0.772 0.013 0.804 0.169 0.789 0.147 0.800 0.140 0.779 0.029 0.816 0.086 0.751 0.070 0.772 0.098 0.779 0.137 0.753 0.178 1/15/2008 0.754 0.026 0.765 0.010 0.774 0.015 0.806 0.167 0.789 0.147 0.799 0.140 0.779 0.029 0.817 0.086 0. 751 0.070 0.773 0.097 0.780 0.136 0.754 0.177 1/16/2008 0.756 0.024 0.765 0.010 0.774 0.014 0.807 0.168 0.789 0.148 0.801 0.139 0.780 0.028 0.818 0.085 0.751 0.068 0.774 0.096 0.782 0.134 0.754 0.175 1/17/2008 0.757 0.023 0.765 0.011 0.773 0.013 0.809 0. 167 0.792 0.147 0.801 0.139 0.780 0.027 0.818 0.083 0.751 0.067 0.774 0.095 0.782 0.134 0.754 0.173 1/18/2008 0.757 0.021 0.766 0.008 0.774 0.015 1/19/2008 0.757 0.019 0.766 0.007 0.774 0.014 0.805 0.171 0.790 0.152 0.796 0.141 0.781 0. 027 0.817 0.081 0.751 0.064 0.773 0.093 0.782 0.129 0.754 0.170 1/20/2008 0.758 0.018 0.767 0.006 0.773 0.013 0.806 0.172 0.792 0.152 0.798 0.141 0.781 0.027 0.818 0.083 0.751 0.065 0.774 0.093 0.781 0.130 0.754 0.171 1/21/2008 0.758 0.019 0.767 0.007 0. 775 0.013 0.809 0.171 0.793 0.152 0.800 0.140 0.782 0.027 0.817 0.082 0.751 0.063 0.775 0.093 0.783 0.129 0.754 0.171 1/22/2008 0.758 0.020 0.767 0.009 0.775 0.013 0.808 0.170 0.794 0.151 0.802 0.139 0.781 0.026 0.817 0.080 0.752 0.062 0.774 0.092 0.782 0 .128 0.754 0.169 1/23/2008 0.758 0.020 0.767 0.009 0.775 0.014 0.812 0.166 0.796 0.149 0.804 0.137 0.781 0.025 0.816 0.079 0.751 0.061 0.774 0.091 0.781 0.128 0.754 0.167 1/24/2008 0.758 0.019 0.767 0.009 0.774 0.013 0.811 0.167 0.796 0.149 0.804 0.137 0 .781 0.025 0.817 0.079 0.751 0.061 0.774 0.090 0.780 0.128 0.754 0.167 1/25/2008 0.758 0.020 0.767 0.009 0.774 0.013 0.813 0.167 0.795 0.150 0.806 0.137 0.781 0.025 0.818 0.080 0.752 0.061 0.774 0.090 0.781 0.127 0.754 0.166 1/26/2008 0.758 0.020 0.767 0 .008 0.775 0.014 0.813 0.168 0.796 0.149 0.806 0.137 0.781 0.025 0.818 0.079 0.752 0.060 0.774 0.090 0.781 0.126 0.754 0.166 1/27/2008 0.759 0.020 0.767 0.009 0.774 0.012 0.814 0.167 0.796 0.149 0.807 0.137 0.781 0.025 0.818 0.079 0.752 0.060 0.775 0.089 0.781 0.125 0.754 0.165 1/28/2008 0.759 0.021 0.768 0.007 0.777 0.014 0.813 0.168 0.796 0.149 0.809 0.135 0.782 0.025 0.818 0.080 0.752 0.060 0.775 0.089 0.782 0.123 0.754 0.165 1/29/2008 0.760 0.021 0.768 0.009 0.775 0.013 0.813 0.168 0.796 0.150 0.807 0.137 0.781 0.024 0.816 0.078 0.752 0.059 0.775 0.088 0.782 0.123 0.754 0.164 1/30/2008 0.760 0.020 0.768 0.008 0.777 0.015 0.814 0.167 0.798 0.148 0.809 0.136 0.781 0.023 0.817 0.077 0.752 0.058 0.775 0.087 0.783 0.121 0.754 0.162 1/31/2008 0.762 0.017 0.768 0.008 0.775 0.013 0.815 0.169 0.798 0.150 0.807 0.137 0.781 0.023 0.815 0.076 0.752 0.057 0.774 0.087 0.782 0.120 0.754 0.160

PAGE 348

348 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm ) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 2/1/2008 0.762 0.015 0.768 0.007 0.776 0.014 0.816 0.168 0.798 0.148 0.808 0.136 0.781 0.023 0.815 0.076 0.752 0.057 0.7 74 0.086 0.782 0.119 0.753 0.160 2/2/2008 0.762 0.013 0.768 0.006 0.776 0.014 0.816 0.169 0.797 0.149 0.808 0.136 0.781 0.024 0.817 0.077 0.752 0.057 0.773 0.087 0.781 0.118 0.753 0.159 2/3/2008 0.762 0.011 0.769 0.005 0.775 0.014 0.816 0.169 0.798 0.148 0.809 0.135 0.781 0.025 0.817 0.077 0.753 0.057 0.774 0.088 0.781 0.118 0.754 0.159 2/4/2008 0.762 0.010 0.769 0.004 0.777 0.014 0.814 0.171 0.796 0.151 0.806 0.137 0.782 0.025 0.819 0.077 0.753 0.056 0.773 0.090 0.782 0.117 0.754 0.158 2/5/2008 0.763 0 .009 0.769 0.004 0.776 0.013 0.815 0.172 0.796 0.152 0.807 0.137 0.781 0.025 0.819 0.076 0.753 0.056 0.773 0.090 0.782 0.117 0.753 0.157 2/6/2008 0.764 0.008 0.769 0.004 0.776 0.013 0.816 0.172 0.795 0.152 0.808 0.137 0.782 0.024 0.817 0.075 0.753 0.056 0 .774 0.090 0.782 0.116 0.753 0.155 2/7/2008 0.764 0.008 0.769 0.002 0.778 0.014 0.815 0.172 0.794 0.152 0.808 0.137 0.782 0.025 0.817 0.075 0.753 0.055 0.773 0.090 0.781 0.116 0.753 0.154 2/8/2008 0.765 0.008 0.769 0.002 0.778 0.014 0.815 0.173 0.795 0.1 52 0.809 0.137 0.782 0.026 0.818 0.076 0.753 0.056 0.773 0.089 0.781 0.116 0.753 0.154 2/9/2008 0.765 0.007 0.769 0.002 0.777 0.014 0.814 0.173 0.795 0.152 0.809 0.137 0.783 0.027 0.818 0.075 0.753 0.055 0.773 0.088 0.781 0.115 0.753 0.152 2/10/2008 0.76 5 0.007 0.770 0.001 0.777 0.013 0.817 0.169 0.801 0.148 0.814 0.134 0.784 0.027 0.819 0.075 0.753 0.055 0.774 0.086 0.781 0.114 0.754 0.151 2/11/2008 0.765 0.006 0.771 0.000 0.779 0.014 0.817 0.169 0.815 0.134 0.784 0.026 0.820 0.076 0.754 0.055 0.774 0 .086 0.781 0.113 0.753 0.151 2/12/2008 0.768 0.006 0.769 0.002 0.775 0.010 0.820 0.168 0.817 0.133 0.784 0.025 0.818 0.074 0.754 0.053 0.775 0.084 0.784 0.111 0.753 0.149 2/13/2008 0.767 0.006 0.770 0.001 0.776 0.011 0.821 0.168 0.818 0.133 0.784 0.0 26 0.817 0.074 0.754 0.052 0.774 0.084 0.783 0.110 0.753 0.147 2/14/2008 0.767 0.007 0.771 0.000 0.779 0.013 0.816 0.168 0.814 0.133 0.786 0.027 0.819 0.076 0.754 0.053 0.774 0.083 0.783 0.109 0.753 0.146 2/15/2008 0.768 0.005 0.771 0.000 0.778 0.013 0 .816 0.168 0.814 0.133 0.784 0.026 0.819 0.074 0.754 0.052 0.775 0.081 0.783 0.107 0.753 0.145 2/16/2008 0.768 0.005 0.772 0.000 0.778 0.013 0.816 0.169 0.816 0.132 0.784 0.025 0.818 0.074 0.754 0.051 0.776 0.081 0.782 0.107 0.753 0.143 2/17/2008 0.7 70 0.005 0.772 0.000 0.778 0.012 0.817 0.168 0.816 0.132 0.784 0.025 0.818 0.073 0.754 0.051 0.776 0.082 0.784 0.105 0.753 0.142 2/18/2008 0.770 0.005 0.772 0.000 0.777 0.012 0.818 0.168 0.817 0.132 0.784 0.025 0.817 0.072 0.754 0.050 0.775 0.082 0.78 3 0.105 0.753 0.140 2/19/2008 0.770 0.004 0.772 0.000 0.777 0.011 0.820 0.168 0.819 0.131 0.786 0.027 0.818 0.074 0.754 0.050 0.775 0.081 0.784 0.103 0.753 0.140 2/20/2008 0.769 0.003 0.773 0.000 0.778 0.012 0.818 0.168 0.818 0.132 0.787 0.027 0.820 0.074 0.754 0.049 0.775 0.081 0.784 0.103 0.754 0.139 2/21/2008 0.770 0.002 0.772 0.000 0.775 0.009 0.819 0.168 0.820 0.131 0.787 0.027 0.819 0.073 0.754 0.048 0.776 0.079 0.785 0.102 0.753 0.138 2/22/2008 0.770 0.002 0.773 0.000 0.777 0.010 0.819 0.16 8 0.820 0.131 0.786 0.027 0.818 0.072 0.754 0.047 2/23/2008 0.770 0.001 0.773 0.000 0.776 0.010 0.818 0.168 0.819 0.132 0.785 0.027 0.818 0.071 0.754 0.047 2/24/2008 0.770 0.001 0.773 0.000 0.776 0.010 0.815 0.170 0.820 0.131 0.785 0.02 8 0.818 0.071 0.754 0.046 2/25/2008 0.770 0.000 0.773 0.000 0.776 0.010 0.816 0.169 0.821 0.131 0.785 0.028 0.819 0.071 0.754 0.046 2/26/2008 0.769 0.000 0.773 0.000 0.777 0.010 0.820 0.169 0.824 0.132 0.787 0.030 0.818 0.072 0.754 0.046 2/27/2008 0.769 0.000 0.773 0.000 0.774 0.006 0.818 0.169 0.824 0.131 0.789 0.033 0.819 0.073 0.754 0.046 2/28/2008 0.769 0.000 0.776 0.000 0.779 0.010 0.817 0.170 0.823 0.131 0.790 0.034 0.819 0.075 0.754 0.046 2/29/2008 0.770 0.0 00 0.775 0.000 0.777 0.009 0.818 0.169 0.823 0.131 0.789 0.032 0.819 0.073 0.754 0.045 3/1/2008 0.771 0.000 0.775 0.000 0.776 0.008 0.819 0.168 0.825 0.130 0.790 0.032 0.819 0.073 0.754 0.045 3/2/2008 0.771 0.000 0.776 0.000 0.775 0.007 0 .821 0.168 0.823 0.130 0.789 0.031 0.819 0.072 0.754 0.045 3/3/2008 0.772 0.000 0.775 0.000 0.772 0.004 0.819 0.169 0.823 0.129 0.788 0.031 0.818 0.071 0.754 0.045 3/4/2008 0.771 0.000 0.775 0.000 0.773 0.006 0.821 0.167 0.823 0.129 0.7 88 0.032 0.818 0.071 0.754 0.045 3/5/2008 0.772 0.000 0.776 0.000 0.774 0.006 0.818 0.168 0.824 0.129 0.789 0.033 0.818 0.072 0.754 0.045 3/6/2008 0.772 0.000 0.777 0.000 0.776 0.007 0.819 0.168 0.824 0.129 0.790 0.034 0.819 0.072 0.754 0 .045 0.776 0.073 0.782 0.090 0.754 0.120 3/7/2008 0.773 0.000 0.777 0.000 0.775 0.006 0.815 0.170 0.824 0.129 0.790 0.035 0.818 0.072 0.754 0.045 0.774 0.070 0.780 0.087 0.753 0.114 3/8/2008 0.773 0.000 0.777 0.000 0.774 0.005 0.818 0.168 0.824 0.129 0.791 0.037 0.820 0.073 0.754 0.045 0.774 0.070 0.781 0.087 0.753 0.113 3/9/2008 0.773 0.000 0.780 0.000 0.779 0.009 0.819 0.169 0.825 0.129 0.792 0.038 0.820 0.074 0.754 0.045 0.774 0.070 0.781 0.087 0.753 0.111 3/10/2008 0.775 0.000 0.777 0.000 0.77 3 0.002 0.820 0.168 0.825 0.128 0.791 0.037 0.818 0.073 0.754 0.044 0.774 0.067 0.780 0.086 0.753 0.108 3/11/2008 0.776 0.000 0.777 0.000 0.772 0.002 0.819 0.168 0.823 0.128 0.792 0.038 0.818 0.073 0.754 0.043 0.775 0.067 0.780 0.085 0.754 0.109 3/12 /2008 0.776 0.000 0.778 0.000 0.773 0.003 0.820 0.167 0.823 0.128 0.791 0.038 0.819 0.073 0.754 0.044 0.774 0.066 0.781 0.084 0.753 0.107 3/13/2008 0.775 0.000 0.781 0.000 0.778 0.007 0.818 0.168 0.826 0.128 0.791 0.039 0.818 0.074 0.754 0.044 0.775 0 .067 0.781 0.083 0.753 0.109 3/14/2008 0.775 0.000 0.780 0.000 0.776 0.006 0.819 0.169 0.826 0.128 0.791 0.039 0.817 0.073 0.754 0.044 0.775 0.065 0.781 0.082 0.753 0.104 3/15/2008 0.776 0.000 0.780 0.000 0.775 0.005 0.819 0.168 0.826 0.128 0.791 0.0 40 0.816 0.072 0.754 0.043 0.774 0.062 0.780 0.081 0.753 0.100 3/16/2008 0.777 0.000 0.779 0.000 0.772 0.003 0.818 0.168 0.827 0.128 0.791 0.042 0.817 0.071 0.754 0.043 0.772 0.060 0.780 0.079 0.754 0.100 3/17/2008 0.777 0.000 0.779 0.000 0.772 0.002 0 .815 0.170 0.827 0.128 0.791 0.043 0.817 0.072 0.754 0.043 0.773 0.060 0.781 0.079 0.754 0.100 3/18/2008 0.776 0.000 0.778 0.000 0.771 0.000 0.817 0.169 0.827 0.128 0.792 0.043 0.817 0.072 0.754 0.043 0.774 0.061 0.782 0.080 0.754 0.102 3/19/2008 0.7 74 0.000 0.779 0.000 0.774 0.003 0.816 0.169 0.829 0.128 0.793 0.045 0.818 0.074 0.754 0.044 0.774 0.061 0.782 0.080 0.754 0.101 3/20/2008 0.773 0.000 0.778 0.000 0.772 0.002 0.819 0.168 0.769 0.142 0.829 0.128 0.793 0.047 0.818 0.075 0.754 0.044 0.775 0.062 0.781 0.080 0.754 0.101 3/21/2008 0.774 0.000 0.780 0.000 0.776 0.004 0.819 0.169 0.767 0.142 0.829 0.128 0.794 0.048 0.818 0.075 0.754 0.044 0.775 0.060 0.782 0.080 0.754 0.099

PAGE 349

349 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T 7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 3/22/2008 0.774 0.000 0.779 0.000 0.774 0.001 0.820 0.167 0.766 0.141 0.830 0.128 0.795 0.048 0.819 0.076 0.754 0.044 0.776 0.061 0.783 0.079 0.754 0.100 3/23/2008 0.776 0.000 0.777 0.000 0.770 0.000 0.819 0.167 0.764 0.141 0.832 0.127 0.795 0.049 0.818 0.076 0.754 0.044 0.775 0.059 0.783 0.078 0.754 0.098 3/24/2008 0.775 0.000 0.777 0.000 0.771 0.000 0.819 0.167 0.763 0.139 0.833 0.128 0.795 0.050 0.819 0.077 0.754 0.044 0.775 0.057 0.782 0.077 0.754 0.097 3/25/2008 0.775 0.000 0.781 0.000 0.776 0.002 0.819 0.167 0.763 0.137 0.833 0.128 0.797 0.051 0.820 0.076 0.754 0.044 0.777 0.058 0.784 0.077 0.754 0.097 3/26/2008 0.776 0.000 0.778 0.001 0.771 0.000 0.821 0.166 0.761 0.136 0.835 0.127 0.796 0.051 0.818 0.075 0.754 0.042 0.775 0.055 0.782 0.075 0.754 0.093 3/27/2008 0.775 0.000 0.778 0.001 0.770 0.000 0.821 0.166 0.760 0.134 0.835 0.127 0.795 0.050 0.817 0.074 0.754 0.041 0.774 0.053 0.782 0.074 0.754 0.091 3/28/2008 0.775 0.000 0.778 0.001 0.769 0.000 0.821 0.166 0.758 0.133 0.834 0.128 0.795 0.051 0.817 0.074 0.754 0.041 0.774 0.054 0.782 0.074 0.754 0.091 3/29/2008 0.774 0.000 0.779 0.001 0.772 0.001 0.820 0.166 0.758 0.131 0.838 0.127 0.795 0.052 0.817 0.075 0.754 0.041 0.774 0.054 0.78 1 0.073 0.754 0.090 3/30/2008 0.774 0.000 0.779 0.001 0.771 0.000 0.822 0.165 0.756 0.129 0.837 0.127 0.795 0.052 0.817 0.075 0.754 0.041 0.773 0.055 0.781 0.072 0.754 0.088 3/31/2008 0.774 0.000 0.777 0.002 0.768 0.000 0.821 0.165 0.756 0.127 0.839 0.12 6 0.794 0.051 0.817 0.074 0.754 0.040 0.772 0.051 0.780 0.070 0.753 0.085 4/1/2008 0.774 0.000 0.777 0.002 0.768 0.000 0.818 0.165 0.755 0.126 0.839 0.126 0.794 0.052 0.816 0.074 0.754 0.040 0.773 0.052 0.781 0.072 0.754 0.087 4/2/2008 0.774 0.000 0.777 0.002 0.768 0.000 0.819 0.165 0.754 0.125 0.841 0.127 0.794 0.053 0.816 0.074 0.754 0.040 0.772 0.050 0.780 0.071 0.754 0.085 4/3/2008 0.773 0.000 0.776 0.003 0.767 0.000 0.819 0.165 0.754 0.124 0.842 0.127 0.794 0.054 0.815 0.075 0.754 0.040 0.772 0.048 0.781 0.071 0.754 0.085 4/4/2008 0.773 0.000 0.776 0.003 0.768 0.000 0.819 0.165 0.753 0.122 0.842 0.128 0.795 0.055 0.815 0.075 0.754 0.040 0.772 0.047 0.781 0.070 0.754 0.084 4/5/2008 0.773 0.000 0.775 0.003 0.768 0.000 0.816 0.166 0.753 0.122 0.844 0. 128 0.795 0.055 0.815 0.075 0.754 0.040 0.773 0.049 0.781 0.071 0.754 0.085 4/6/2008 0.772 0.000 0.775 0.004 0.767 0.000 0.817 0.165 0.752 0.121 0.845 0.127 0.795 0.057 0.815 0.077 0.754 0.040 0.774 0.050 0.782 0.071 0.754 0.085 4/7/2008 0.772 0.000 0.77 3 0.005 0.765 0.000 0.817 0.165 0.752 0.120 0.845 0.127 0.796 0.057 0.816 0.077 0.754 0.041 0.773 0.048 0.782 0.070 0.754 0.084 4/8/2008 0.771 0.000 0.772 0.005 0.765 0.000 0.817 0.165 0.752 0.119 0.846 0.127 0.796 0.057 0.813 0.077 0.754 0.040 0.771 0.04 3 0.781 0.068 0.754 0.080 4/9/2008 0.771 0.000 0.773 0.005 0.766 0.000 0.816 0.165 0.751 0.119 0.847 0.127 0.796 0.056 0.813 0.077 0.754 0.040 0.770 0.040 0.780 0.067 0.754 0.078 4/10/2008 0.770 0.000 0.774 0.006 0.767 0.000 0.817 0.165 0.751 0.118 0.848 0.127 0.796 0.056 0.814 0.077 0.754 0.039 0.770 0.040 0.780 0.067 0.754 0.075 4/11/2008 0.770 0.000 0.774 0.006 0.768 0.000 0.817 0.165 0.751 0.117 0.849 0.127 0.796 0.057 0.814 0.077 0.754 0.039 0.769 0.039 0.780 0.066 0.754 0.074 4/12/2008 0.770 0.000 0.772 0.007 0.765 0.000 0.817 0.165 0.751 0.116 0.849 0.127 0.795 0.056 0.813 0.076 0.754 0.039 0.769 0.038 0.779 0.065 0.754 0.073 4/13/2008 0.769 0.000 0.772 0.007 0.767 0.000 0.815 0.166 0.750 0.115 0.850 0.127 0.796 0.057 0.813 0.078 0.754 0.040 0.77 0 0.042 0.780 0.067 0.754 0.077 4/14/2008 0.769 0.000 0.774 0.005 0.770 0.000 0.816 0.166 0.750 0.114 0.850 0.127 0.798 0.059 0.815 0.080 0.754 0.041 0.772 0.045 0.781 0.066 0.754 0.078 4/15/2008 0.768 0.000 0.774 0.005 0.770 0.000 0.818 0.165 0.750 0.11 4 0.852 0.127 0.798 0.059 0.815 0.082 0.754 0.041 0.774 0.048 0.782 0.067 0.754 0.079 4/16/2008 0.769 0.000 0.774 0.006 0.770 0.000 0.818 0.165 0.750 0.114 0.851 0.127 0.798 0.059 0.816 0.082 0.754 0.041 0.774 0.046 0.783 0.067 0.755 0.078 4/17/2008 0.77 0 0.000 0.773 0.007 0.769 0.000 0.820 0.164 0.750 0.114 0.852 0.127 0.800 0.058 0.816 0.082 0.754 0.041 0.775 0.047 0.784 0.067 0.755 0.080 4/18/2008 0.769 0.000 0.773 0.008 0.769 0.000 0.822 0.163 0.750 0.113 0.852 0.127 0.801 0.058 0.818 0.082 0.754 0.0 41 0.775 0.047 0.784 0.067 0.755 0.081 4/19/2008 0.769 0.000 0.774 0.008 0.771 0.000 0.820 0.165 0.750 0.113 0.850 0.128 0.801 0.058 0.818 0.083 0.755 0.041 0.775 0.049 0.785 0.067 0.755 0.080 4/20/2008 0.769 0.000 0.773 0.008 0.770 0.000 0.819 0.166 0.7 50 0.112 0.847 0.127 0.802 0.058 0.820 0.083 0.755 0.041 0.774 0.047 0.784 0.066 0.755 0.078 4/21/2008 0.771 0.000 0.773 0.008 0.770 0.000 0.820 0.163 0.750 0.109 0.852 0.125 0.802 0.058 0.820 0.083 0.755 0.041 0.774 0.046 0.784 0.065 0.755 0.077 4/22/20 08 0.770 0.000 0.773 0.009 0.771 0.000 0.820 0.163 0.750 0.110 0.851 0.124 0.801 0.059 0.820 0.084 0.755 0.041 0.775 0.047 0.784 0.066 0.755 0.077 4/23/2008 0.769 0.000 0.772 0.009 0.770 0.000 0.819 0.164 0.750 0.109 0.847 0.124 0.802 0.058 0.821 0.085 0. 755 0.041 0.775 0.048 0.785 0.066 0.755 0.077 4/24/2008 0.769 0.001 0.771 0.010 0.768 0.000 0.819 0.164 0.750 0.109 0.842 0.123 0.802 0.058 0.820 0.085 0.756 0.041 0.775 0.046 0.786 0.065 0.757 0.078 4/25/2008 0.767 0.003 0.768 0.010 0.765 0.000 0.807 0. 163 0.749 0.107 0.826 0.119 0.803 0.057 0.823 0.084 0.774 0.044 0.787 0.065 0.758 0.077 4/26/2008 0.764 0.120 0.751 0.089 0.778 0.095 0.805 0.057 0.777 0.046 0.795 0.070 0.758 0.076 4/27/2008 0.750 0.080 0.752 0.064 0.749 0.067 0.802 0. 054 0.775 0.043 0.758 0.075 4/28/2008 0.750 0.093 0.752 0.072 0.750 0.069 0.802 0.058 0.778 0.046 0.758 0.074 4/29/2008 0.750 0.109 0.752 0.080 0.751 0.078 0.803 0.060 0.777 0.047 0.758 0.073 4/30/2008 0.751 0.121 0.7 50 0.086 0.752 0.093 0.802 0.056 0.758 0.072 5/1/2008 0.754 0.168 0.751 0.114 0.769 0.136 0.800 0.058 0.758 0.071 5/2/2008 0.832 0.210 0.751 0.143 0.895 0.154 0.798 0.066 0.758 0.070 5/3/2008 0.851 0.222 0.751 0 .159 0.944 0.167 0.797 0.062 0.758 0.069 5/4/2008 0.840 0.226 0.750 0.169 0.952 0.173 0.796 0.057 0.758 0.068 5/5/2008 0.839 0.223 0.750 0.172 0.956 0.174 0.795 0.051 0.758 0.067 5/6/2008 0.834 0.221 0.749 0.176 0.942 0.174 0.788 0.047 0.752 0.065 5/7/2008 0.824 0.222 0.749 0.173 0.918 0.172 0.793 0.047 0.772 0.059 0.752 0.064 5/8/2008 0.818 0.216 0.750 0.170 0.904 0.166 0.794 0.046 0.772 0.057 0.752 0.063 5/9/2008 0.814 0 .209 0.750 0.165 0.895 0.160 0.794 0.045 0.773 0.055 0.751 0.062 5/10/2008 0.812 0.203 0.750 0.158 0.885 0.156 0.793 0.044 0.773 0.052 0.751 0.061

PAGE 350

350 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 5/11/2008 0.750 0.025 0.811 0.199 0.750 0.152 0.879 0.153 0.794 0.043 0.784 0.088 0.750 0.039 0.765 0.040 0.774 0.051 0.751 0.060 5/12/2008 0.750 0.023 0.806 0.198 0.750 0.147 0.874 0.149 0.793 0.043 0.784 0.086 0.750 0.037 0.764 0.038 0.774 0.050 0.751 0.059 5/13/2008 0.750 0.020 0.800 0.199 0.750 0.141 0.873 0.148 0.794 0.04 3 0.786 0.085 0.750 0.035 0.766 0.042 0.775 0.050 0.751 0.058 5/14/2008 0.750 0.021 0.800 0.199 0.750 0.140 0.869 0.148 0.794 0.042 0.786 0.083 0.750 0.033 0.765 0.038 0.775 0.050 0.751 0.054 5/15/2008 0.750 0.020 0.796 0.203 0.750 0.135 0.866 0. 149 0.794 0.043 0.788 0.082 0.750 0.032 0.765 0.039 0.776 0.050 0.751 0.053 5/16/2008 0.751 0.019 0.791 0.205 0.751 0.128 0.868 0.149 0.793 0.043 0.789 0.082 0.750 0.030 0.766 0.041 0.776 0.050 0.751 0.052 5/17/2008 0.751 0.020 0.790 0.207 0.751 0.124 0.869 0.149 0.793 0.042 0.789 0.081 0.750 0.029 0.765 0.039 0.776 0.049 0.751 0.049 5/18/2008 0.751 0.019 0.790 0.207 0.751 0.120 0.870 0.149 0.793 0.043 0.789 0.080 0.750 0.028 0.766 0.040 0.776 0.049 0.751 0.049 5/19/2008 0.751 0.018 0.78 9 0.209 0.751 0.118 0.869 0.149 0.793 0.044 0.790 0.080 0.750 0.027 0.766 0.041 0.777 0.049 0.752 0.052 5/20/2008 0.751 0.017 0.788 0.209 0.751 0.115 0.873 0.147 0.792 0.045 0.791 0.080 0.750 0.027 0.766 0.043 0.777 0.050 0.752 0.054 5/21/2008 0.75 0 0.021 0.785 0.211 0.752 0.113 0.870 0.147 0.791 0.047 0.791 0.079 0.750 0.026 0.765 0.040 0.776 0.049 0.751 0.048 5/22/2008 0.750 0.023 0.785 0.210 0.752 0.112 0.869 0.147 0.792 0.050 0.792 0.079 0.750 0.026 0.767 0.044 0.777 0.050 0.752 0.054 5/ 23/2008 0.751 0.020 0.784 0.208 0.752 0.110 0.871 0.144 0.790 0.052 0.794 0.079 0.750 0.025 0.765 0.041 0.777 0.049 0.752 0.050 5/24/2008 0.749 0.008 0.751 0.020 0.785 0.208 0.752 0.110 0.865 0.144 0.790 0.055 0.793 0.078 0.750 0.025 0.766 0.042 0.7 77 0.049 0.752 0.050 5/25/2008 0.749 0.007 0.751 0.019 0.784 0.207 0.752 0.108 0.870 0.142 0.792 0.058 0.794 0.078 0.751 0.026 0.765 0.041 0.777 0.049 0.752 0.048 5/26/2008 0.789 0.202 0.752 0.108 0.873 0.142 0.792 0.060 0.794 0.079 0.751 0.026 0 .764 0.040 0.778 0.049 0.752 0.047 5/27/2008 0.788 0.200 0.752 0.106 0.871 0.140 0.790 0.062 0.794 0.079 0.751 0.026 0.765 0.043 0.778 0.050 0.752 0.049 5/28/2008 0.787 0.201 0.752 0.105 0.873 0.139 0.788 0.063 0.794 0.079 0.751 0.026 0.765 0 .043 0.778 0.050 0.752 0.048 5/29/2008 0.749 0.007 0.752 0.018 0.789 0.200 0.752 0.104 0.875 0.138 0.788 0.066 0.795 0.079 0.751 0.026 0.767 0.049 0.779 0.051 0.752 0.051 5/30/2008 0.749 0.007 0.752 0.019 0.789 0.198 0.752 0.103 0.878 0.138 0.789 0.0 69 0.796 0.080 0.751 0.027 0.767 0.049 0.779 0.052 0.752 0.049 5/31/2008 0.750 0.009 0.752 0.020 0.789 0.196 0.752 0.103 0.879 0.137 0.788 0.072 0.797 0.080 0.751 0.027 0.766 0.049 0.779 0.052 0.752 0.049 6/1/2008 0.750 0.010 0.752 0.019 0.788 0.196 0.752 0.102 0.880 0.136 0.788 0.076 0.798 0.081 0.751 0.028 0.767 0.052 0.780 0.052 0.752 0.049 6/2/2008 0.749 0.010 0.752 0.019 0.788 0.196 0.752 0.102 0.877 0.135 0.788 0.079 0.799 0.083 0.751 0.030 0.767 0.053 0.780 0.053 0.752 0.051 6/3/2008 0.749 0.012 0.751 0.019 0.787 0.196 0.752 0.103 0.872 0.135 0.788 0.081 0.798 0.084 0.751 0.029 0.767 0.053 0.781 0.054 0.752 0.049 6/4/2008 0.771 0.178 0.752 0.098 0.840 0.124 0.788 0.083 0.800 0.085 0.751 0.029 0.767 0.054 0.783 0.060 0.752 0.048 6/5 /2008 0.749 0.103 0.752 0.085 0.777 0.084 0.788 0.086 0.752 0.030 0.768 0.061 0.753 0.049 6/6/2008 0.749 0.087 0.752 0.088 0.760 0.070 0.789 0.091 0.772 0.084 0.753 0.056 6/7/2008 0.749 0.086 0.752 0.098 0.756 0.074 0.789 0.09 7 0.777 0.103 0.754 0.062 6/8/2008 0.749 0.091 0.752 0.104 0.755 0.087 0.789 0.101 0.779 0.117 0.755 0.066 6/9/2008 0.750 0.101 0.752 0.112 0.756 0.102 0.788 0.104 0.779 0.122 0.755 0.070 6/10/2008 0.750 0.112 0.752 0 .117 0.758 0.119 0.788 0.103 0.779 0.141 0.756 0.077 6/11/2008 0.750 0.122 0.752 0.120 0.759 0.134 0.787 0.104 0.779 0.144 0.756 0.080 6/12/2008 0.749 0.130 0.752 0.126 0.784 0.137 0.786 0.106 0.779 0.144 0.755 0.080 6/13/2 008 0.750 0.130 0.752 0.126 0.764 0.138 0.786 0.101 0.779 0.132 0.755 0.072 6/14/2008 0.751 0.145 0.752 0.133 0.798 0.151 0.784 0.101 0.779 0.136 0.754 0.074 6/15/2008 0.759 0.172 0.751 0.142 0.831 0.149 0.780 0.096 0.77 9 0.132 0.753 0.067 6/16/2008 0.761 0.178 0.751 0.145 0.834 0.148 0.780 0.091 0.775 0.120 0.752 0.062 6/17/2008 0.760 0.180 0.751 0.137 0.833 0.148 0.779 0.087 0.767 0.099 0.752 0.055 6/18/2008 0.758 0.180 0.752 0.127 0.8 29 0.147 0.779 0.084 0.764 0.095 0.752 0.055 6/19/2008 0.757 0.177 0.752 0.119 0.823 0.146 0.779 0.080 0.762 0.083 0.770 0.065 0.752 0.051 6/20/2008 0.755 0.175 0.752 0.116 0.822 0.143 0.780 0.079 0.762 0.080 0.770 0.063 0.752 0 .052 6/21/2008 0.755 0.171 0.752 0.113 0.822 0.140 0.780 0.077 0.762 0.074 0.770 0.060 0.752 0.052 6/22/2008 0.754 0.168 0.752 0.111 0.823 0.138 0.780 0.076 0.763 0.068 0.771 0.058 0.752 0.051 6/23/2008 0.754 0.164 0.752 0.108 0.821 0.136 0.781 0.074 0.761 0.059 0.775 0.055 0.752 0.052 6/24/2008 0.754 0.162 0.752 0.106 0.817 0.134 0.782 0.073 0.759 0.049 0.789 0.050 0.753 0.056 6/25/2008 0.754 0.159 0.752 0.104 0.815 0.132 0.783 0.072 0.758 0.048 0.790 0.050 0.753 0.055 6/26/2008 0.751 0.142 0.752 0.097 0.791 0.121 0.783 0.071 0.759 0.049 0.792 0.053 0.753 0.056 6/27/2008 0.749 0.132 0.752 0.098 0.779 0.111 0.784 0.069 0.759 0.050 0.753 0.057 6/28/2008 0.749 0.135 0.752 0.0 99 0.779 0.113 0.784 0.069 0.759 0.050 0.753 0.059 6/29/2008 0.751 0.112 0.752 0.094 0.755 0.093 0.784 0.067 0.759 0.050 0.753 0.059

PAGE 351

351 Table A 2. Continued. T7 145 (20 cm) T7 145 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 6/30/2008 0.752 0.097 0.752 0.093 0.752 0.094 0.785 0.066 0.761 0.055 0.753 0.062 7/1/2008 0.751 0.096 0.752 0.095 0.760 0.108 0.783 0.065 0.763 0.061 0.753 0.070 7/2/20 08 0.755 0.141 0.752 0.118 0.779 0.116 0.777 0.062 0.760 0.063 0.752 0.067 7/3/2008 0.759 0.156 0.752 0.118 0.781 0.123 0.779 0.062 0.759 0.059 0.752 0.064 7/4/2008 0.758 0.158 0.752 0.112 0.784 0.124 0.779 0.060 0.757 0 .060 0.752 0.061 7/5/2008 0.759 0.157 0.752 0.107 0.786 0.126 0.779 0.059 0.756 0.055 0.752 0.061 7/6/2008 0.760 0.156 0.752 0.103 0.789 0.126 0.778 0.058 0.755 0.050 0.785 0.062 0.752 0.061 7/7/2008 0.759 0.155 0.752 0.100 0.793 0.127 0.778 0.058 0.755 0.047 0.783 0.055 0.752 0.058 7/8/2008 0.760 0.154 0.752 0.099 0.794 0.131 0.777 0.058 0.774 0.157 0.749 0.052 0.754 0.045 0.781 0.051 0.752 0.059 7/9/2008 0.759 0.155 0.752 0.097 0.795 0.134 0.776 0.059 0.7 74 0.157 0.749 0.047 0.754 0.044 0.780 0.049 0.752 0.060 7/10/2008 0.759 0.156 0.752 0.098 0.796 0.137 0.776 0.060 0.773 0.157 0.749 0.042 0.754 0.043 0.780 0.047 0.752 0.062 7/11/2008 0.760 0.156 0.752 0.097 0.798 0.140 0.776 0.062 0.773 0.1 57 0.749 0.038 0.754 0.043 0.780 0.047 0.752 0.063 7/12/2008 0.760 0.158 0.752 0.099 0.802 0.143 0.777 0.063 0.773 0.157 0.749 0.035 0.754 0.044 0.780 0.049 0.752 0.066 7/13/2008 0.760 0.163 0.752 0.101 0.805 0.148 0.777 0.064 0.775 0.157 0.7 49 0.034 0.755 0.045 0.782 0.050 0.752 0.068 7/14/2008 0.761 0.165 0.752 0.103 0.809 0.148 0.777 0.065 0.775 0.157 0.749 0.033 0.755 0.044 0.782 0.049 0.752 0.065 7/15/2008 0.761 0.168 0.752 0.103 0.811 0.149 0.777 0.064 0.777 0.157 0.749 0.0 33 0.755 0.045 0.784 0.050 0.752 0.067 7/16/2008 0.763 0.171 0.752 0.103 0.815 0.147 0.777 0.064 0.778 0.157 0.749 0.033 0.755 0.045 0.784 0.051 0.752 0.066 7/17/2008 0.763 0.175 0.752 0.103 0.818 0.145 0.777 0.064 0.778 0.157 0.749 0.033 0.7 55 0.045 0.785 0.052 0.752 0.066 7/18/2008 0.764 0.175 0.752 0.103 0.818 0.143 0.777 0.062 0.778 0.157 0.749 0.033 0.754 0.041 0.786 0.051 0.752 0.065 7/19/2008 0.765 0.178 0.752 0.103 0.819 0.140 0.778 0.062 0.780 0.157 0.749 0.033 0.754 0.0 37 0.787 0.053 0.752 0.066 7/20/2008 0.766 0.179 0.752 0.103 0.818 0.139 0.779 0.060 0.780 0.157 0.749 0.033 0.754 0.036 0.788 0.054 0.752 0.067 7/21/2008 0.767 0.178 0.752 0.102 0.818 0.137 0.778 0.059 0.781 0.157 0.749 0.033 0.754 0.036 0.7 88 0.054 0.752 0.067 7/22/2008 0.769 0.179 0.752 0.102 0.820 0.136 0.777 0.057 0.781 0.157 0.749 0.033 0.755 0.033 0.790 0.054 0.752 0.068 7/23/2008 0.770 0.180 0.752 0.101 0.826 0.135 0.778 0.056 0.782 0.157 0.749 0.033 0.756 0.031 0.793 0.0 55 0.752 0.072 7/24/2008 0.773 0.179 0.752 0.100 0.828 0.134 0.778 0.055 0.782 0.157 0.749 0.032 0.757 0.030 0.794 0.055 0.752 0.071 7/25/2008 0.773 0.181 0.752 0.100 0.829 0.132 0.778 0.053 0.783 0.157 0.749 0.032 0.756 0.030 0.794 0.053 0.7 52 0.068 7/26/2008 0.774 0.181 0.752 0.099 0.828 0.132 0.779 0.053 0.783 0.157 0.750 0.031 0.756 0.029 0.794 0.053 0.752 0.067 7/27/2008 0.776 0.182 0.752 0.100 0.830 0.131 0.776 0.052 0.778 0.157 0.749 0.030 0.755 0.028 0.788 0.052 0.751 0.0 71 7/28/2008 0.772 0.183 0.752 0.117 0.836 0.135 0.768 0.056 0.767 0.157 0.749 0.025 0.753 0.029 0.775 0.048 0.750 0.071 7/29/2008 0.771 0.183 0.752 0.130 0.859 0.152 0.764 0.063 0.765 0.157 0.749 0.022 0.753 0.031 0.774 0.050 0.750 0.073 7/ 30/2008 0.771 0.184 0.752 0.145 0.836 0.157 0.762 0.068 0.762 0.157 0.749 0.022 0.753 0.035 0.774 0.054 0.750 0.078 7/31/2008 0.771 0.184 0.752 0.157 0.837 0.161 0.760 0.072 0.763 0.157 0.749 0.025 0.753 0.039 0.779 0.061 0.750 0.081 8/1/2008 0.774 0.034 0.756 0.022 0.761 0.000 0.772 0.182 0.752 0.153 0.831 0.154 0.764 0.073 0.769 0.157 0.749 0.031 0.754 0.041 0.789 0.066 0.751 0.081 8/2/2008 0.772 0.032 0.757 0.021 0.761 0.000 0.774 0.180 0.752 0.135 0.831 0.141 0.763 0.068 0.770 0.157 0.749 0.034 0.756 0.040 0.791 0.065 0.751 0.080 8/3/2008 0.770 0.031 0.756 0.021 0.760 0.000 0.774 0.180 0.752 0.122 0.831 0.134 0.764 0.063 0.772 0.157 0.749 0.034 0.756 0.039 0.793 0.067 0.751 0.083 8/4/2008 0.768 0.030 0.757 0.020 0.759 0.000 0.777 0.177 0 .752 0.114 0.831 0.130 0.763 0.058 0.773 0.157 0.749 0.033 0.756 0.037 0.793 0.064 0.751 0.079 8/5/2008 0.767 0.029 0.757 0.019 0.759 0.000 0.777 0.177 0.752 0.108 0.830 0.127 0.763 0.055 0.774 0.157 0.749 0.033 0.756 0.036 0.794 0.063 0.751 0.077 8/6/20 08 0.765 0.028 0.757 0.018 0.758 0.000 0.778 0.177 0.752 0.105 0.829 0.125 0.763 0.052 0.775 0.157 0.749 0.032 0.756 0.034 0.794 0.062 0.751 0.076 8/7/2008 0.763 0.026 0.758 0.017 0.758 0.000 0.778 0.178 0.752 0.101 0.828 0.124 0.763 0.050 0.776 0.157 0.7 49 0.031 0.756 0.033 0.794 0.061 0.751 0.073 8/8/2008 0.762 0.025 0.759 0.015 0.759 0.000 0.779 0.178 0.752 0.101 0.828 0.123 0.763 0.049 0.778 0.157 0.749 0.032 0.756 0.033 0.795 0.062 0.752 0.077 8/9/2008 0.761 0.024 0.758 0.015 0.758 0.000 0.778 0.178 0.751 0.100 0.830 0.122 0.763 0.047 0.778 0.157 0.749 0.031 0.757 0.032 0.794 0.060 0.751 0.075 8/10/2008 0.760 0.022 0.758 0.014 0.758 0.000 0.778 0.179 0.752 0.099 0.832 0.121 0.763 0.046 0.779 0.157 0.749 0.030 0.757 0.032 0.794 0.060 0.751 0.074 8/1 1/2008 0.759 0.022 0.760 0.013 0.758 0.000 0.782 0.178 0.752 0.098 0.832 0.121 0.764 0.045 0.780 0.157 0.749 0.030 0.757 0.031 0.796 0.059 0.752 0.072 8/12/2008 0.758 0.021 0.759 0.013 0.758 0.000 0.782 0.178 0.752 0.096 0.832 0.121 0.764 0.044 0.780 0.15 7 0.749 0.031 0.757 0.030 0.796 0.059 0.752 0.075 8/13/2008 0.757 0.019 0.759 0.015 0.757 0.000 0.781 0.178 0.752 0.096 0.832 0.120 0.765 0.043 0.782 0.157 0.749 0.030 0.757 0.030 0.795 0.057 0.752 0.071 8/14/2008 0.756 0.018 0.759 0.014 0.756 0.000 0.78 3 0.178 0.752 0.095 0.834 0.120 0.764 0.042 0.781 0.157 0.749 0.030 0.757 0.029 0.795 0.056 0.751 0.067 8/15/2008 0.756 0.017 0.759 0.014 0.756 0.000 0.784 0.179 0.752 0.095 0.835 0.120 0.764 0.042 0.782 0.157 0.749 0.029 0.757 0.028 0.796 0.057 0.752 0.0 70 8/16/2008 0.755 0.017 0.759 0.013 0.756 0.000 0.786 0.178 0.752 0.094 0.836 0.120 0.764 0.041 0.783 0.157 0.750 0.029 0.757 0.028 0.796 0.056 0.752 0.070 8/17/2008 0.755 0.017 0.760 0.013 0.756 0.001 0.786 0.178 0.752 0.093 0.836 0.120 0.764 0.040 0.7 83 0.157 0.750 0.028 0.757 0.028 0.795 0.054 0.752 0.070 8/18/2008 0.755 0.016 0.759 0.013 0.755 0.000 0.787 0.178 0.752 0.093 0.836 0.120 0.764 0.039 0.783 0.157 0.750 0.028 0.757 0.028 0.797 0.056 0.752 0.073

PAGE 352

352 Table A 2. Continued. T7 145 (20 cm) T7 1 45 (40 cm) T7 145 (67 cm) T7 90 (23 cm) T7 90 (40 cm) T7 90 (66 cm) T7 25 (23 cm) T7 25 (46 cm) T7 25 (66 cm) T7 2 (16 cm) T7 2 (32 cm) T7 2 (48 cm) Date w w w w w w w w w w w w 8/19/2008 0.754 0.016 0.759 0.015 0.755 0.000 0.786 0.179 0.751 0.094 0.837 0.121 0.765 0.039 0.784 0.157 0.750 0.028 0.757 0.027 0.798 0.056 0.752 0.069 8/20/2008 0.754 0.015 0.759 0.015 0.754 0.000 0.786 0.179 0.752 0.094 0.838 0.122 0.764 0.039 0.785 0.157 0.750 0.027 0.757 0.027 0.798 0.056 0.752 0.071 8/21/2008 0.753 0.014 0.759 0.015 0.754 0.002 0.787 0.179 0.752 0.092 0.840 0.124 0.763 0.038 0.784 0.157 0.750 0.027 0.757 0.026 0.797 0.055 0.752 0.068 8/22/2008 0.752 0.015 0.759 0.015 0.754 0.004 0.786 0.179 0.752 0.091 0.840 0.126 0.763 0.038 0.786 0.157 0.750 0.027 0.757 0.026 0.798 0.055 0.751 0.053 8/23/2008 0.752 0.014 0.760 0.015 0.754 0.005 0.787 0.179 0.752 0.091 0.844 0.127 0.763 0.038 0.786 0.157 0.750 0.027 0.757 0.026 0.796 0.053 0.751 0.061 8/24/2008 0.752 0.014 0.760 0.015 0.754 0.005 0.789 0.177 0.752 0.092 0.844 0.127 0.763 0.037 0.786 0.157 0.750 0.027 0.757 0.025 0.796 0.052 0.751 0.062 8/25/2008 0.752 0.013 0.759 0.015 0.754 0.005 0.789 0.178 0.752 0.091 0.846 0.127 0.763 0.037 0.787 0.157 0.750 0.027 0.757 0.025 0.796 0.051 0.752 0.064 8/26/2008 0.751 0.013 0.759 0.015 0.753 0.006 0.789 0.178 0.752 0.091 0.847 0.127 0.763 0.037 0.787 0.157 0.750 0.026 0.757 0.025 0.79 5 0.050 0.752 0.062 8/27/2008 0.751 0.013 0.760 0.015 0.753 0.006 0.788 0.177 0.752 0.090 0.844 0.127 0.763 0.036 0.788 0.157 0.750 0.026 0.757 0.025 0.796 0.050 0.751 0.066 8/28/2008 0.751 0.013 0.759 0.016 0.753 0.006 0.785 0.177 0.752 0.090 0.841 0.12 7 0.763 0.036 0.787 0.157 0.750 0.026 0.758 0.024 0.796 0.049 0.751 0.066

PAGE 353

353 APPENDIX B ECOLOX SOURCE CODE PROGRAM ECOLOX CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C WRITTEN FOR: Ph.D.dissertation and later modified for distribution C C Last Updated: 1 April 2010 v 0.37 C C Written by: David Kaplan, R. Munoz Carpena C C ABE University of Florida C C Gainesville, FL 32611 C C e mail: dkaplan@ufl.edu, carpena@ufl.edu C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C PROGRAM CALCULATES LONG TERM FLOODING, MOISTURE, AND C C SALINITY CONDITIONS IN THE FLOODPLAIN WETLANDS OF THE C C LOXAHATCHEE RIVER (FL USA) TO ASSESS THE E FFECTS OF C C RESTORATION SCENARIOS ON VEGETATIVE COMMUNITIES C C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) CHARACTER* 75 LISFIL( 20) COMMON /CELL/CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /FLOOD/SWE(MAXDREC,MAXREACH),WaterDepth COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /GERM/RAIN(MAXDREC) COMMON /G ERM 1 /CritRainDepth,CritMoistureDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGermCount COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBR EAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),I RecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsRecord(MAXDREC),IPWSDbCount, & IPWSDbRecord(MAXDREC), IPWSalBDay,IConPWSalBDay COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC),YearOneGrowthRate(MAXDREC) COMMON /SEEDLING 1 /YearZeroWinterGrowthMin, & YearZeroWinterGrowthMax, & Ye arZeroSpringGrowthMin,YearZeroSpringGrowthMax, & YearZeroFallGrowthMin, YearZeroFallGrowthMax, & YearOneWinterGrowthMin,YearOneWinterGrowthMax, & YearOneSpringGrowthMin, YearOneSpringGrowthMax, & YearOneFallGrowthMin,YearOneFallGrowthMa x COMMON /SEEDLING 2 /vJanSeedIndex,vFebSeedIndex,vMarSeedIndex, & vAprSeedIndex,vMaySeedIndex,vJunSeedIndex,vJulSeedIndex, & vAugSeedIndex,vSepSeedIndex,vOctSeedIndex,vNovSeedIndex, & vDecSeedIndex COMMON /ISEEDLING/ISeedlingsSubm ergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,I YearZeroSaltDaysCrit COMMON /IDAYS/IDAYEND,IDOY,IDAYBEG,INIDAY C -----Print banner, get I/O filenames and open them --------------------------CALL FINPUT(LISFIL,INARGS,ISCR) C -----Get inputs and parameters from input files ------------------------------CALL INPUTS(INARGS,LISFIL,INIYEAR) C -----Initialize variables ----------------------------------------------------CALL INI C -----Perform initial calculations and data processing------------------------C ALL INICALC C -----Loop for CELLS, set IDAYBEG to 1 to start time loop for each cell -------c DO 100 KCell=27279,27279

PAGE 354

354 DO 100 KCell= 1 ICELLCOUNT PRINT *, 'calculating cell' ,KCELL IDAYBEG= 1 C -----Loop through YEARS------------------------------------------------------c DO 80 I=1,2 DO 80 I= 1 ,IYEARREC+ 1 CALL NEWYEAR(I,IDAY) C -----Time loop for days within year ------------------------------------------DO 40 J=IDAYBEG,IDAYEND IDAY=J CALL INUND(I,KCell,IDAY) CALL SALINITY(I,KCell,IDAY) CALL GERMINATION(I,KCell,IDAY) CALL SEEDLINGGROW(I,KCell,IDAY) IDOY=IDOY+ 1 40 CONTINUE C -----Set beginning day and move to next simulation year ----------------------IDAYBEG=IBREAK(I) 80 CONTINUE C -----Output maps of results after all simulation years -----------------------CALL OUTMAP(KCELL) C -----Assigns most likely habitat type based on hydrology during period of ----C -----record ------------------------------------------------------------------CALL HABITAT(KCELL) C -----Reset variables and move to next cell -----------------------------------CALL NEWCELL 100 CONTINUE C -----End of EcoLox -----------------------------------------------------------CLOSE ( 1 ) CLOSE ( 2 ) CLOSE ( 3 ) CLOSE ( 7 ) CLOSE ( 10) CLOSE ( 11) CLOSE ( 12) CLOSE ( 13) CLOSE ( 14) CLOSE ( 15) CLOSE ( 16) CLOSE ( 17) CLOSE ( 18) CLOSE ( 19) CLOSE ( 20) CLOSE ( 21) CLOSE ( 22) CLOSE ( 23) STOP END ______________________________________________________________________________ SUBROUTINE FINPUT(LISFIL,INARGS,ISCR) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Create input and output file names from a command line input string C C C C NOTE: Maximum length of command line string = 25 characters C C C C DESCRIPTION OF FILES: C C C C igp: global parameters C C isw: surface water elevation for each river reach C C iss : surface water salinity for each river reach C C icl: cell characteristics C C irn: daily rainfall (mm) C C osm: Output summary of inputs use in the run C C om1: Map, total inundation C C om2: Map, continuous inundation C C om 3 : Map, moisture conditions C C om4 : Map, continuous moisture conditions C C om5 : Map, germination conditions C C om6 : Map, germination events C C om7: Map, recruitment conditions C C om8: Map, surface water salinity C C om9 : Map, continuous surface water salinity C C om10: Map, Ds:Db ratios C C om11: Map, porewater salinity C C om12 : Map, continuous porewater salinity C C om 13: Map, habitat C C om2: Map, continuous inundati on C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (NumFiles= 19)

PAGE 355

355 CHARACTER* 120 FILENM 1 CHARACTER* 75 LISFIL( 20) charac ter 200 linein CHARACTER* 3 ,SCOD(NumFiles) CHARACTER* 1 ,DUMMY 1 character 1 slash DATA (SCOD(I),I= 1 ,NumFiles)/ 'igp' 'isw' 'iss' 'icl' 'irn' 'osm', 'om1', & 'om2' 'om3' 'om4', 'om5' 'om6' 'om7' 'om8' 'om9', 'oma' 'omb' & 'omc', 'omd' / c*** Command l ine option to input filename c*** Comment out the following depending for which system you complile CDOS slash=' \ CDOS INARGS=NARGS() 1 CDOS IF (INARGS.EQ.1) THEN CDOS CALL GETARG(1,FILENM1,FSTATUS) CUNIX slash= '/' CUNIX INARGS=IARGC() CUNIX IF (INA RGS .EQ. 1 ) THEN CUNIX CALL GETARG( 1 ,FILENM 1 ) c***End of UNIX/DOS selection*********** ISCR= 0 c ----Write welcome message --------------------------------------WRITE (*, 160) WRITE (*,*) ECOLOX 02/2010 v0.0.0' WRITE (*, 160) WRITE (*,*) D. Kaplan and R.Munoz Carpena' WRITE (*,*) University of Florida USA' WRITE (*,*) dkaplan@ufl.edu, carpena@ufl.edu' WRITE (*, 160) WRITE (*,*) 'Program calculates longterm flooding, moisture' & 'and salinity conditions in the floodplain wetlands of' & 'the Loxahatchee River (FL, USA) to assess the effects' & 'of restoration scenarios on vegetative communities' WRITE (*, 160) WRITE (*,*) E LSEIF (INARGS .EQ. 2 ) THEN CDOS CALL GETARG(1,FILENM1,FSTATUS) CUNIX CALL GETARG( 1 ,FILENM 1 ) ISCR= 1 ELSE WRITE (*,*) WRITE (*, 105) WRITE (*, 110) WRITE (*, 120) WRITE (*, 130) WRITE (*, 140) WRITE (*, 150) WRITE (*,*) STOP ENDIF c C -----create I/O filenames from input string ------------------------c -----or read filenames from project file ------------------------ilstr=index(FILENM 1 '.') if (ilstr .g t. 0 ) then c *** using project file (.prj) to read filenames c *** mods made 10/24/99, jep push version to 1.04 c *** check for .prj or .lis to make sure this is our file ilstr 1 =index(FILENM 1 '.prj' ) ilstr 2 =index(FILENM 1 '.lis' ) if ((ilstr1. gt .0 ) .or. (ilstr 2. gt .0 )) then c *** fill filename array with safe names do 11 i= 1 ,NumFiles DUMMY 1 =SCOD(I) if (dummy 1. eq. 'i' ) then WRITE (LISFIL(I), '(5A)' ) 1 'inputs' ,slash, 'dummy', '.' ,SCOD(I) else WRITE (LISFIL(I), '(5A)' ) 1 'output' ,slash, 'dummy', '.' ,SCOD(I) endif 11 continue c open (unit= 99 ,file=FILENM 1 ,status= 'old' ) 12 read( 99, '(a)' end= 18) linein lpos = index(linein, '=' ) lstr = len(l inein) if ((lpos .gt. 0 ) .and. (lstr .gt.0 )) then do 14 jj= 1 ,NumFiles lpp=index(linein( 1 :lpos 1 ),scod(jj)) if (lpp .gt. 0 ) lisfil(jj)=linein(lpos+ 1 :) 14 continue endif go to 12 c **** done 18 co ntinue else WRITE (*,*) WRITE (*, 105) WRITE (*, 110) WRITE (*, 120) WRITE (*, 130) WRITE (*, 140)

PAGE 356

356 WRITE (*, 150) WRITE (*,*) STOP endif else c *** rafa's i/o scheme for fi lenames ILSTR=INDEX(FILENM 1 ') 1 IF (ILSTR .LT. 1 )ILSTR=NumFiles DO 101 I= 1 ,NumFiles DUMMY 1 =SCOD(I) IF (DUMMY 1. EQ. 'i' ) THEN WRITE (LISFIL(I), '(5A)' ) 1 'inputs' ,slash,FILENM 1 (:ILSTR), '.' ,SCOD(I) ELSE WRITE (LISFIL(I), '(5A)' ) 1 'output' ,slash,FILENM 1 (:ILSTR), '.' ,SCOD(I) ENDIF 101 CONTINUE endif C ---------Open I/O files ------------------------------OPEN ( 1 ,FILE=LISFIL( 1 ),ERR= 1500,STATUS= 'OLD' ) OPEN ( 2 ,FILE=LISFIL( 2 ),ERR= 1500,STATUS= 'OLD' ) OPEN ( 3 ,FILE=LISFIL( 3 ),ERR= 1500,STATUS= 'OLD' ) OPEN ( 7 ,FILE=LISFIL( 4 ),ERR= 1500,STATUS= 'OLD' ) OPEN ( 8 ,FILE=LISFIL( 5 ),ERR= 1500,STATUS= 'OLD' ) OPEN ( 10,FILE=LISFIL( 6 ),STATUS= 'UNKNOWN' ) OPEN ( 11,FILE=LISFIL( 7 ),STATUS= 'UNKNOWN' ) OPEN ( 12,FILE=LISFIL( 8 ),STATUS= 'UNKNOWN' ) OPEN ( 13,FILE=LISFIL( 9 ),STATUS= 'UNKNOWN' ) OPEN ( 14,FILE=LISFIL( 10),STATUS= 'UNKNOWN' ) OPEN ( 15,FILE=LISFIL( 11),STATUS= 'UNKNOWN' ) OPEN ( 16,FILE=LISFIL( 12),STATUS= 'UNKNOWN' ) OPEN ( 17,FILE=LISFIL( 13) ,STATUS= 'UNKNOWN' ) OPEN ( 18,FILE=LISFIL( 14),STATUS= 'UNKNOWN' ) OPEN ( 19,FILE=LISFIL( 15),STATUS= 'UNKNOWN' ) OPEN ( 20,FILE=LISFIL( 16),STATUS= 'UNKNOWN' ) OPEN ( 21,FILE=LISFIL( 17),STATUS= 'UNKNOWN' ) OPEN ( 22,FILE=LISFIL( 18),STATUS= 'UNKNOWN' ) OPEN ( 23,FILE=LISFIL( 19),STATUS= 'UNKNOWN' ) WRITE ( 10, 220)LISFIL( 6 ) WRITE ( 10,*) c*** in summary file, put the list of files for this run write ( 10,*) 'Files for this simulation' write ( 10, 225) (i,scod(i),lisfil(i),i= 1 ,NumFiles) 105 FORMAT ( 'Name: ecolox' ) 110 FORMAT ( 9 x, '(ECOLOX model to calculate longterm flooding and' ) 120 FORMAT ( 10x, 'salinity conditions in a floodplain wetland)' ) 130 FORMAT ( 'Usage: ecolox filename (max 25 characters)' ) Cunix 140 FORMAT ( 'Version: 0.0.0 for Unix 02/2010' ) C DOS 140 FORMAT('Version: 0.0.0 for Win32 02/2010') 150 FORMAT ( 'Authors: D.Kaplan & R.Munoz Carpena (U. of Florida)' ) 160 FORMAT ( 72( )) 220 FORMAT ( 'File: ,A 40 8 x, 'ECOLOX v0.0.0 02/2010' ) 225 format ( 3 x, 'File #=' ,i 3 code:' ,a 3 '=' ,a) RETURN 1500 WRI TE (*, 1600) 'ERROR: Input file(s) missing (check project)' 1600 FORMAT (/,A 50,/) END ____________________________________________________________________________ SUBROUTINE INPUTS(INARGS,LISFIL,INIYEAR) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCC C C C Read s data from input files and writes to .osm file C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAX CELL= 50000, & NumPWSClass= 14) CHARACTER* 75 LISFIL( 20) COMMON /CELL/CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /FLOOD/SWE(MAXDREC,MAXREACH),WaterDepth COMMON /IFLOOD/InunRecord (MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /GERM/RAIN(MAXDREC) COMMON /GERM 1 /CritRainDepth,CritMoistureDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGerm Cond,IGoodGermCount COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),I MoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR),

PAGE 357

357 & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) CO MMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsRecord(MAXDREC),IPWSDbCount, & IPWSDbRecord(MAXDREC),IPWSalBDay,IConPWSalBDay COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC) ,YearOneGrowthRate(MAXDREC) COMMON /SEEDLING 1 /YearZeroWinterGrowthMin, & YearZeroWinterGrowthMax, & YearZeroSpringGrowthMin,YearZeroSpringGrowthMax, & YearZeroFallGrowthMin, YearZeroFallGrowthMax, & YearOneWinterGrowthMin,YearOneWinterGrowthMax, & YearOneSpringGrowthMin, YearOneSpringGrowthMax, & YearOneFallGrowthMin,YearOneFallGrowthMax COMMON /SEEDLING 2 /vJanSeedIndex,vFebSeedIndex,vMarSeedIndex, & vAprSeedIndex,vMaySeedIndex,vJunSeedIndex,vJulSeedIndex, & vAugSeedIndex,vSepSeedIndex,vOctSeedIndex,vNovSeedIndex, & vDecSeedIndex COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSub mergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDaysCrit COMMON /IDAYS/IDAYEND,IDOY,IDAYBEG,INIDAY C -------Read in global parameters of the program (.igp file) -------IF (INARGS .EQ. 1 ) THEN WRITE (*, '(" ... Reading inputs from: ",A45)' )LISFIL( 1 ) ENDIF READ ( 1 ,*)IdayRec, Ireach,IyearRec READ ( 1 ,*)CritRainDepth,CritMoistureDepth,ICritConsecGermDays, & VinitialSeedli ngHeight READ ( 1 ,*)IYearZeroSeedlingSubmergedCrit, & IYearOneSeedlingSubmergedCrit READ ( 1 ,*)IYearZeroSeedlingSaltCrit,IYearOneSeedlingSaltCrit READ ( 1 ,*)IYearZeroSaltDaysCrit,IYearOneSaltDaysCrit READ ( 1 ,*)YearZeroWinterGrow thMin,YearZeroWinterGrowthMax READ ( 1 ,*)YearZeroSpringGrowthMin,YearZeroSpringGrowthMax READ ( 1 ,*)YearZeroFallGrowthMin,YearZeroFallGrowthMax READ ( 1 ,*)YearOneWinterGrowthMin,YearOneWinterGrowthMax READ ( 1 ,*)YearOneSpringGrowthMin,Y earOneSpringGrowthMax READ ( 1 ,*)YearOneFallGrowthMin,YearOneFallGrowthMax READ ( 1 ,*)CritSal READ ( 1 ,*)vJanSeedIndex READ ( 1 ,*)vFebSeedIndex READ ( 1 ,*)vMarSeedIndex READ ( 1 ,*)vAprSeedIndex READ ( 1 ,*)vMaySeedIndex READ ( 1 ,*)vJunSeedIndex READ ( 1 ,*)vJulSeedIndex READ ( 1 ,*)vAugSeedIndex READ ( 1 ,*)vSepSeedIndex READ ( 1 ,*)vOctSeedIndex READ ( 1 ,*)vNovSeedIndex READ ( 1 ,*)vDecSeedIndex C -------Read in surface water elevation time series (.isw file) -------IF (INARGS .EQ. 1 ) THEN WRITE (*, '(" ... Reading inputs from: ",A45)' )LISFIL( 2 ) ENDIF DO 10 I= 1 ,IDAYREC READ ( 2 ,*, END= 15)DUMMY 0 DUMMY 1 ,(SWE(I,J),J= 1 ,Ireach) IF (I .EQ. 1 ) THEN INIYEAR= DUMMY 0 INIDAY=DUMMY 1 endif 10 CONTINUE C -------Read in surface water salinity time series (.iss file) -------15 IF (INARGS .EQ. 1 ) THEN WRITE (*, '(" ... Reading inputs from: ",A45)' )LISFIL( 3 ) ENDIF DO 20 I= 1 ,IDAYREC READ ( 3 ,*, END= 25)DUMMY 0 DUMMY 1 ,(SWS(I,J),J= 1 ,Ireach) 20 CONTINUE C -------Read in cell parameters (.icl file) -------25 IF (INARGS .EQ. 1 ) THEN WRITE (*, '(" ... Reading inputs from: ",A45)' )LISFIL( 4 ) ENDIF DO 30 I= 1 ,MAXCELL READ ( 7 ,*, END= 35)DUMMY 1 ,(CellChar(I,J),J= 1 2 ), & ICellReach(I) 30 CONTINUE 35 ICELLCOUNT=I 1 C -------Read in rain time series (.irn file) -------IF (INARGS .EQ. 1 ) THEN

PAGE 358

358 WRITE (*, '(" ... Reading inputs from: ",A45)' )LISFIL( 5 ) ENDIF DO 40 I= 1 ,IDAYREC READ ( 8 ,*, END= 45)DUMMY 0 ,DUMMY 1 ,RAIN(I) 40 CONTINUE 45 IRAINCOUNT=I 1 C -------Find break point (January 1) between years -------IYEAR=INIYEAR DO 50 I= 1 ,MAXYEAR IADD= 365 IF (ILEAP(IYEAR) .EQ. 1 ) IADD= 366 IF (I .EQ. 1 ) THE N IBREAK(I)=IADD INIDAY+ 2 ELSE IBREAK(I)=IBREAK(I 1 )+IADD ENDIF IYEAR=INIYEAR+I 50 CONTINUE C -------Print inputs in the output summary file (.osm) -------WRITE ( 10, '(/,"INPUTS:",A45)') WRITE ( 10, 1605) WRITE ( 10, '("Global inputs from file: ",A45,/)' )LISFIL( 1 ) WRITE ( 10, 1608)IdayRec, Ireach,IyearRec WRITE ( 10, 1610)CritRainDepth,CritMoistureDepth,ICritConsecGermDays, & VinitialSeedlingHeight WRITE ( 10, 1615)IYearZeroSeedlingSubmergedCrit, & IYearOneSeedlingSubmergedCrit WRITE ( 10, 1615)IYearZeroSeedlingSaltCrit,IYearOneSeedlingSaltCrit WRITE ( 10, 1615)IYearZeroSaltDaysCrit,IYearOneSaltDaysCrit WRITE ( 10, 1620)YearZeroWinterGrowthMin,YearZeroWinterGrowthMax WRITE ( 10, 1620)YearZeroSpringG rowthMin,YearZeroSpringGrowthMax WRITE ( 10, 1620)YearZeroFallGrowthMin,YearZeroFallGrowthMax WRITE ( 10, 1620)YearOneWinterGrowthMin,YearOneWinterGrowthMax WRITE ( 10, 1620)YearOneSpringGrowthMin,YearOneSpringGrowthMax WRITE ( 10, 1620)YearOneFallGrowthMin,YearOneFallGrowthMax WRITE ( 10, 1620)CritSal WRITE ( 10, 1620)vJanSeedIndex WRITE ( 10, 1620)vFebSeedIndex WRITE ( 10, 1620)vMarSeedIndex WRITE ( 10, 1620)vAprSeedIndex WRITE ( 10, 1620)vMaySeedIndex WRITE ( 10, 1620)vJu nSeedIndex WRITE ( 10, 1620)vJulSeedIndex WRITE ( 10, 1620)vAugSeedIndex WRITE ( 10, 1620)vSepSeedIndex WRITE ( 10, 1620)vOctSeedIndex WRITE ( 10, 1620)vNovSeedIndex WRITE ( 10, 1620)vDecSeedIndex WRITE ( 10, 1605) WRITE ( 10, '("S urface water level from file: ",A45,/)' )LISFIL( 2 ) DO 100 I= 1 ,IDAYREC WRITE ( 10, 1630)I,(SWE(I,J),J= 1 ,Ireach) 100 CONTINUE WRITE ( 10, 1605) WRITE ( 10, '("Surface water salinity from: ",A45,/)' )LISFIL( 3 ) DO 110 I= 1 ,IDAYREC WRITE ( 10, 1630)I,(SWS(I,J),J= 1 ,Ireach) 110 CONTINUE WRITE ( 10, 1605) WRITE ( 10, '("Cell characteristics from: ",A45,/)' )LISFIL( 4 ) DO 120 I= 1 ,ICELLCOUNT WRITE ( 10, 1640)I,(CellChar(I,J),J= 1 2 ),ICellReach(I) 120 CONTINUE WRITE ( 1 0 1605) WRITE ( 10, '("Rain time series from: ",A45,/)' )LISFIL( 5 ) DO 130 I= 1 ,IRAINCOUNT WRITE ( 10, 1630)I,RAIN(I) 130 CONTINUE RETURN 1500 WRITE (*, 1600) 'ERROR: Input file missing (check project)' 1600 FORMAT (/,A 50,/) 1605 FORMAT ( 10( )) 1608 FORMAT ( 4 i 12) 1610 FORMAT ( 2f12.4,i 12,f 12.4 ) 1615 FORMAT ( 2 i 12) 1620 FORMAT ( 5f12.4) 1630 FORMAT (I 12, 40f12.4) 1640 FORMAT (I 12, 2f12.4,i 12) END FUNCTION ILEAP(IYEAR) IA=MOD(IYEAR, 4 ) IB=MOD(IYEAR, 100) IC=MOD(IYEAR, 400) IF ((IA .EQ. 0. AND.IB .GT. 0 ) .OR. (IA .EQ. 0. AND.IB .EQ. 0. AND.IC .EQ. 0 )) THEN ILEAP= 1 ELSE

PAGE 359

359 ILEAP= 0 ENDIF RETURN END ______________________________________________________________________________ SUBROUTINE INI CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Sets initial variable and parameter values C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /CELL /CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalX Mag COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsRe cord(MAXDREC),IPWSDbCount, & IPWSDbRecord(MAXDREC),IPWSalBDay,IConPWSalBDay COMMON /GERM 1 /CritRainDepth,CritMoistureDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodG ermCount COMMON /SEEDLING 1 /YearZeroWinterGrowthMin, & YearZeroWinterGrowthMax, & YearZeroSpringGrowthMin,YearZeroSpringGrowthMax, & YearZeroFallGrowthMin, YearZeroFallGrowthMax, & YearOneWinterGrowthMin,YearOneWinterGrowthM ax, & YearOneSpringGrowthMin, YearOneSpringGrowthMax, & YearOneFallGrowthMin,YearOneFallGrowthMax COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmerge dCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDaysCrit C ------Set appropriate variables to their initial values (usually 0) ----------InunDay= 0 IConInunDay= 0 IMoistDay= 0 IConMoistDay= 0 IDAY= 1 ISeedlingCount= 0 IGoodGermCon= 0 IGoodGermCount= 0 IDaysSeedsAvailable= 0 IGermEvents= 0 IRecruitmentEv ents= 0 SWSalXMag= 0 ISWSalXDay= 0 IConSWSalXDay= 0 ISWSalBDay= 0 IConSWSalBDay= 0 ISWSaltyYesterday= 0 ISWSDsCount= 0 ISWSDbCount= 0 PWSalXMag= 0 IPWSalXDay= 0 IConPWSalXDay= 0 IPWSalBDay= 0 IConPWSalBDay= 0 IPWSaltyYesterday= 0 IPWSDsCount= 0 IPWSDbCount= 0 C -------Return to main program ------------------------------------------------RETURN END ___________________________ ___________________________________________________ SUBROUTINE INICALC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Perf orms initial calculations and data processing C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z)

PAGE 360

360 PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /CELL/CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGermCount COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PW SalXMag COMMON /POREWATER/PWS(MAXDREC,MAXREACH*NumPWSClass) COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC),YearOneGrowthRate(MAXDREC) COMMON /SEEDLING 1 /YearZeroWinterGrowthM in, & YearZeroWinterGrowthMax, & YearZeroSpringGrowthMin,YearZeroSpringGrowthMax, & YearZeroFallGrowthMin, YearZeroFallGrowthMax, & YearOneWinterGrowthMin,YearOneWinterGrowthMax, & YearOneSpringGrowthMin, YearOneSpringGrowthMax, & YearOneFallGrowthMin,YearOneFallGrowthMax COMMON /SEEDLING 2 /vJanSeedIndex,vFebSeedIndex,vMarSeedIndex, & vAprSeedIndex,vMaySeedIndex,vJunSeedIndex,vJulSeedIndex, & vAugSeedIndex,vSepSeedIndex,vOctSeedIndex,vNovSeedIndex, & vDecSe edIndex COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDaysCrit COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /IDAYS/IDAYEND,IDOY,IDAYBEG,INIDAY C ------Set seedling growth parameters -----------------------------------------IDAYBEG= 1 DO 75 I= 1 ,IYEARREC+ 1 IDAYEND=IBREAK(I) 1 IF (I .EQ.IYEARREC+ 1 ) IDAYEND=IDAYREC IF (I .EQ. 1 ) THEN IDOY=INIDAY ELSE IDOY= 1 END IF a=YearZeroWinterGrowthMin b=YearZeroWinterGrowthMax YearZeroWinterGrowthRate=(rand( 0 )*(b a))+a a=YearZeroSpringGrowthMin b=YearZeroSpringGrowthMax YearZeroSpringGrowthRate=(rand( 0 )*(b a))+a a=YearZeroFallGrowthMin b=YearZeroFallGrowthMax YearZeroFallGrowthRate=(rand( 0 )*(b a))+a a=YearOneWinterGrowthMin b=YearOneWinterGrowthMax YearOneWinterGrowthRate=(rand( 0 )*(b a))+a a=YearOneSpringGrowthMin b=YearOneSpringGrowthMax YearOneSpringGrowthRate=(rand( 0 )*(b a))+a a=YearOneFallGrowthMin b=YearOneFallGrowthMax YearOneFallGrowthRate=(rand( 0 )*(b a))+a DO 50 J=IDAYBEG,IDAYEND IF (IDOY .LT. 60) THEN YearZeroGrowthRate(J)=YearZeroWinterGrowthRate YearOneGrowthRate(J)=YearOneWinterGrowthRate ELSE IF (IDOY .LT. 182) THEN YearZeroGrowthRate(J)=YearZeroSpringGrowthRate YearOneGrowthRate(J)=YearOneSpringGrowthRate ELSE YearZeroGrowthRate(J)=YearZeroFallGrowthRate YearOneGrowthRate(J)=YearOneFallGrowthRate END IF IDOY=IDOY+ 1 50 CONTINUE IDAYBEG=IBREAK(I) c PRINT*,I,YearZeroWinterGrowthRate,YearZeroSpringGrowthRate 75 CONTINUE C ------Set seed avail ability based on month------------------------------------IDAYBEG= 1 DO 150 I= 1 ,IYEARREC+ 1 IDAYEND=IBREAK(I) 1 IF (I .EQ.IYEARREC+ 1 ) IDAYEND=IDAYREC

PAGE 361

361 IF (I .EQ. 1 ) THEN IDOY=INIDAY ELSE IDOY= 1 END IF DiceRoll=rand( 0 ) IF (vJanSeedIndex .GT. DiceRoll) THEN vJanAvail= 1 ELSE vJanAvail= 0 END IF IF (vFebSeedIndex .GT. DiceRoll) THEN vFebAvail= 1 ELSE vFebAvail= 0 END IF IF (vMarSeedIndex .GT. DiceRoll) THEN vMarAvail= 1 ELSE vMarAvail= 0 END IF IF (vAprSeedIndex .GT. DiceRoll) THEN vAprAvail= 1 ELSE vAprAvail= 0 END IF IF (vMaySeedIndex .GT. DiceRoll) THEN vMayAvail= 1 ELSE vMayAvail= 0 END IF IF (vJunSeedIndex .GT. DiceRoll) THEN vJunAvail= 1 ELSE vJunAvail= 0 END IF IF (vJulSeedIndex .GT. DiceRoll) THEN vJulAvail= 1 ELSE vJulAvail= 0 END IF IF (vAugSeedIndex .GT. DiceRoll) THEN vAugAvail= 1 ELSE vAugAvail= 0 END IF IF (vSepSeedIndex .GT. DiceRoll) THEN vSepAvail= 1 ELSE vSepAvail= 0 END IF IF (vOctSeedIndex .GT. DiceRoll) THEN vOctAvail= 1 ELSE vOctAvail= 0 END IF IF (vNovSeedIndex .GT. DiceRoll) THEN vNovAvail= 1 ELSE vNovAvail= 0 END IF IF (vDecSeedIndex .GT. DiceRoll) THEN vDecAvail= 1 ELSE vDecAvail= 0 END IF DO 100 J=IDAYBEG,IDAYEND IF (IDOY .LT. 32) THEN ISeedsAvailable(J)=vJanAvail ELSE IF (IDOY .LT. 60) THEN ISeedsAvailable(J)=vFebAvail ELSE IF (IDOY .LT. 91) THEN ISeedsAvailable(J)=vMarAvail ELSE IF (IDOY .LT. 121) THEN ISeedsAvailable(J)=vAprAvail ELSE IF (IDOY .LT. 152) THEN ISeedsAvai lable(J)=vMayAvail ELSE IF (IDOY .LT. 182) THEN ISeedsAvailable(J)=vJunAvail ELSE IF (IDOY .LT. 213) THEN ISeedsAvailable(J)=vJulAvail ELSE IF (IDOY .LT. 244) THEN ISeedsAvailabl e(J)=vAugAvail ELSE IF (IDOY .LT. 274) THEN ISeedsAvailable(J)=vSepAvail ELSE IF (IDOY .LT. 305) THEN ISeedsAvailable(J)=vOctAvail ELSE IF (IDOY .LT. 335) THEN ISeedsAvailable(J) =vNovAvail ELSE ISeedsAvailable(J)=vDecAvail END IF IDOY=IDOY+ 1 c PRINT*,I,J,ISeedsAvailable(J) 100 CONTINUE IDAYBEG=IBREAK(I) 150 CONTINUE

PAGE 362

362 C -----Calculates porewater salinity (PWS) time series ------------------------C ------Loop for reaches -------------------------------------------------------DO 300 I= 1 ,IReach C ------Loop for classes of distance from river. Sets a and b parameters for ---C -----relationship between SWS and PWS. Sets L=second PWS matrix index -------DO 250 J= 1 ,NumPWSClass IF (J .EQ. 1 ) THEN a= 0.006685043 b= 0.000263779 lag= 12 ELS E IF (J .EQ. 2 ) THEN a= 0.008780662 b= 0.000305542 lag= 13 ELSE IF (J .EQ. 3 ) THEN a= 0.010876281 b= 0.000347305 lag= 13 ELSE IF (J .EQ. 4 ) THEN a= 0.009763568 b= 0.000253685 lag= 16 ELSE IF (J .EQ. 5 ) THEN a= 0.008650854 b= 0.000160064 lag= 18 ELS E IF (J .EQ. 6 ) THEN a= 0.007538141 b= 6.64436E 05 lag= 21 ELSE IF (J .EQ. 7 ) THEN a= 0.006425427 b= 2.71769E 05 lag= 23 ELSE IF (J .EQ. 8 ) THEN a= 0.005312714 b= 0.000120797 lag= 26 ELSE IF (J .EQ. 9 ) THEN a= 0.0042 b= 0.000214418 lag= 28 ELSE IF (J .EQ. 10) TH EN a= 0.00463139 b= 0.000466456 lag= 25 ELSE IF (J .EQ. 11) THEN a= 0.00506278 b= 0.001147329 lag= 21 ELSE IF (J .EQ. 12) THEN a= 0.00549417 b= 0.001828202 lag= 18 ELSE IF (J .EQ. 13) THEN a= 0.00592556 b= 0.002509076 lag= 14 ELSE a= 0.00635695 b= 0.003189949 lag= 11 END IF L=(I 1 )*NumPWSClass+J C ------Loop for days ----------------------------------------------------------DO 200 K= 1 ,IDAYREC C ------Initial PWS values set 0.1 ppt for first 30 days then calculates -------C -----remaining values based on lagged surface water time series and classed-C ------distance from the river (each 10 m) for each reach. If calculated PWS --C ------is negative, sets value to 0-------------------------------------------IF (K .LE. 30) THEN PWS(K,L)= 0.1 ELSE IF ((PWS(K 1 ,L)+a*(SWS(K lag,I) PWS(K 1 ,L))+b) & .LT. 0 ) THEN PWS(K,L)= 0 ELSE PWS(K,L)=PWS(K 1 ,L)+a*(SWS(K lag,I) PWS(K 1 ,L))+b END IF 200 CONTINUE C ----Move to next class of distance from river -------------------------------250 CONTINUE C ----Move to next reach------------------------------------------------------300 CONTINUE C -------Return to main program ------------------------------------------------

PAGE 363

363 RETURN END ______________________________________________________________________________ SUBROUTINE NEWYEAR(I,IDAY) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Resets appropriate variables and arrays at beginning of a new year C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /IFLOOD/InunRecord(MAX YEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /GERM 1 /CritRainDepth,CritMoistureDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGermCount COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC),YearOneGrowthRate(MAXDREC) COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDaysCrit COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMa g COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsReco rd(MAXDREC),IPWSDbCount, & IPWSDbRecord(MAXDREC),IPWSalBDay,IConPWSalBDay COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 / InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & I PWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) COMMON /IDAYS/IDAYEND,IDOY,IDAYBEG,INIDAY C ------Sets IDAYEND to next years limit, calculates day of year (IDOY) --------IDAYEND=IBREAK(I) 1 IF (I .EQ. IYEARREC+ 1 ) IDAYEND= IDAYREC IF (I .EQ. 1 ) THEN IDAY= 1 IDOY=IDAY+INIDAY 1 ELSE IDOY= 1 END IF C -----Resets variables between simulation years -----------------------------InunDay= 0 c IConInunDay=0 IMoistDay= 0 IConMoistDay= 0 IConMoistMap(I)= 0 IGoodGermCount= 0 IGoodGermCon= 0 IDaysSeedsAvailable= 0 IGermEvents= 0 IRecruitmentEvents= 0 IRecruitmentMap(I)= 0 ISWSalXDay= 0 c IConSWSalXDay=0 ISWSalBDay= 0 c IConSWSalBDay=0 IConSWSalXMap(I)= 0 SWSalXMag= 0 IPWSalXDay= 0 c IConPWSalXDay=0 IPWSalBDay= 0 c IConPWSalBDay=0 IConPWSalXMap(I)= 0 PWSalXMag= 0 C -----Return to main program -------------------------------------------------RETURN END ______________________________________________________________________________

PAGE 364

364 SUBROUTINE INUND(I,KCELL,IDAY) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Read data from input file *.isw and calculate the following for each C C model cell: C C C C 1. Whether cell is inuated or not (0=FALSE, 1=TRUE) C C 2. Number of inundated days in the current year (InunDay) C C 3. Number of consecutive inundated days (ConInunDay) C C C C If cell goes from inundated to noninundated state, and current C C value of ConInunDay is longest in current simulation year, writes C C ConInunDay to IConInundat ionMap() C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /CELL/ CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /FLOOD/SWE(MAXDREC,MAXREACH),WaterDepth COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /REPORT/YearlyRe cord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) C -------Calculates water depth------------------------------------------------WaterDepth=SWE(IDAY,ICellReach(KCELL)) CellChar(KCELL, 1 ) C -------Set cell to inundated (1) or noninundated (0) ------------------------IF (WaterDepth .GT. 0 ) THEN InundatedToday= 1 ELSE InundatedToday = 0 ENDIF C -------If inundated, increments count of inundated and consecutively ---------C -------inundated days. If not, sets count of consecutively inundated---------C -------days to zero----------------------------------------------------------IF (InundatedToday .EQ. 1 ) THEN InunDay=InunDay+ 1 IConInunDay=IConInunDay+ 1 ELSE IConInunDay= 0 END IF C -------Stores current value of InunDay to InundationMap for current year -----C -------If number of consecutivley inundated days is longest in current -------C -------simulation year, writes IConInunDay to IConInundationMap--------------InundationMap(I)=InunDay IF (IConInunDay .GT. IConInundationMap(I)) THEN IConInundat ionMap(I)=IConInunDay END IF C -------Return to main program ------------------------------------------------RETURN END ______________________________________________________________________________ SUBROUTINE SALINITY(I,KCe ll,IDAY) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Reads current value of surface water salinity data from input file C C *.iss and calcualtes porewater salinity. Calculates the following: C C C C 1. Number of days/consecutive days that surface water and porewater C C salinities are above the critical salinity threshold C C 2. The cumulative magnitude of surface water and porewater salinity C C exceedances in the current simulation year C C 3. The cumulative number of days when surface water and porewater C C s alinities are below the critical salinity threshold C C C C Stores consecutive days above (Ds) and below (Db) the critical C C salinity threshold for calculation of the characteristic salinity C C ratio (Ds/Db) in the Report subroutine. If number of consecutive C C days above or below the critical salinity threshoold is the greatest C C i n the current simulation year, writes record to YearlyRecord() C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600 ,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14)

PAGE 365

365 COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsRecord(MAXD REC),IPWSDbCount, & IPWSDbRecord(MAXDREC),IPWSalBDay,IConPWSalBDay COMMON /POREWATER/PWS(MAXDREC,MAXREACH*NumPWSClass) COMMON /CELL/CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMO N /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCC..........SURFACE WATER............CCCCCCCCCCCC C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C -------Sets SURFACE water to salty (1) or not salty (0) ----------------------IF (SWS(IDAY,ICellReach(KCe ll)) .GT. CritSal) THEN ISWSaltyToday= 1 ELSE ISWSaltyToday= 0 END IF C -------If salty, increments count of salty and consecutively salty days and---C -------cumulates surface water exceedance magnitude. If not, increments count -C -------of consecutive days with SURFACE water salinity below CritSal ----------IF (ISWSaltyToday .EQ. 1 ) THEN ISWSalXDay=ISWSalXDay+ 1 IConSWSalXDay=IConSWSalXDay+ 1 SWSalXMag=SWSalXMag+(SWS(IDAY,ICellReach(KCell)) CritSal) ELSE ISWSalBDay=ISWSalBDay+ 1 IConSWSalBDay=IConSWSalBDay+ 1 END IF C ------Stores current value of ISWSalXDays to ISWSalXDaysMap for current year -C ------If number of consecutivley salty days is longest in current ------------C ------simulation year, writes IConSWSalXDay to IConSWSSalXMap ----------------ISWSalXMap(I)=ISWSalXDay IF (IConSWSalXDay .GT. IConSWSalXMap(I)) THEN IConSWSalXMap(I)=IConSWSalXDay END IF C ------If cell goes from SALT Y TO NOT SALTY increments count of SURFACE -------C -----water salinity exceedance events and writes duration of event to-------C ------ISWSDsRecord. Resets IConSWSalXDays to 0-------------------------------IF (((ISWSaltyToday .EQ. 0 ) .AND. (ISWSalt yYesterday .EQ. 1 ))) THEN ISWSDsCount=ISWSDsCount+ 1 ISWSDsRecord(ISWSDsCount)=IConSWSalXDay IConSWSalXDay= 0 END IF C ------If cell goes from NOT SALTY TO SALTY increments count of days between--C ------SURFACE water sali nity exceedance events and writes duration to--------C ------ISWSDbRecord. IF (((ISWSaltyToday .EQ. 1 ) .AND. (ISWSaltyYesterday .EQ. 0 ))) THEN ISWSDbCount=ISWSDbCount+ 1 ISWSDbRecord(ISWSDbCount)=IConSWSalBDay IConSWSalBDay= 0 END IF C -----If last day of simulation, calculates the SURFACE water Ds/Db ratio----IF (IDAY .EQ. IDAYREC) THEN IF (ISWSDsCount .EQ. 0 ) THEN SWSDsDbRatio= 0 ELSE IF (ISWSDbCount .EQ.0 ) THEN SWSDsDbRa tio= 999 ELSE SWSDsSum= 0 SWSDbSum= 0 DO 50 N= 1 ,ISWSDsCount SWSDsSum=SWSDsSum+ISWSDsRecord(N) 50 CONTINUE DO 100 N= 1 ,ISWSDbCount SWSDbSum=SW SDbSum+ISWSDbRecord(N) 100 CONTINUE a=SWSDsSum/ISWSDsCount

PAGE 366

366 b=SWSDbSum/ISWSDbCount SWSDsDbRatio=a/b END IF END IF CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCC...........POREWATER...............CCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C -------Determines which class of PWS to read from PWS matrix as a function---C -------of cell's distance from river (i.e., 010, 1120, etc.) and sets ------C -------value to PWSToday. Sets PWS to salty or not based on CritSal ----------IPWSClass=MIN(INT(CellChar(KCell, 2 )/ 10)+ 1 ,NumPWSClass) PWSToday=PWS(IDAY,NumPWSClass*(ICellReach(KCell) 1 )+IPWSClass) IF (PWSToday .GT. CritSa l) THEN IPWSaltyToday= 1 ELSE IPWSaltyToday= 0 END IF C -------If salty, increments count of salty and consecutively salty days and---C -------cumulates surface water exceedance magnitude. If not, increments count -C -------o f consecutive days with PORE water salinity below CritSal ----------IF (IPWSaltyToday .EQ. 1 ) THEN IPWSalXDay=IPWSalXDay+ 1 IConPWSalXDay=IConPWSalXDay+ 1 PWSalXMag=PWSalXMag+(PWSToday CritSal) ELSE IPWSa lBDay=IPWSalBDay+ 1 IConPWSalBDay=IConPWSalBDay+ 1 IPWSalXDay=IPWSalXDay END IF C ------Stores current value of IPWSalXDays to IPWSalXDaysMap for current year -C ------If number of consecutivley salty days is longest in current ------------C ------simulation year, writes IConPWSalXDay to IConPWSSalXMap ----------------IPWSalXMap(I)=IPWSalXDay IF (IConPWSalXDay .GT. IConPWSalXMap(I)) THEN IConPWSalXMap(I)=IConPWSalXDay END IF C ------If cell goes f rom SALTY TO NOT SALTY increments count of PORE -------C -----water salinity exceedance events and writes duration of event to-------C ------ISWSDsRecord. Resets IConSWSalXDays to 0-------------------------------IF (((IPWSaltyToday .EQ. 0 ) .AND. (IP WSaltyYesterday .EQ. 1 ))) THEN IPWSDsCount=IPWSDsCount+ 1 IPWSDsRecord(IPWSDsCount)=IConPWSalXDay IConPWSalXDay= 0 END IF C ------If cell goes from NOT SALTY TO SALTY increments count of days between--C ------PORE water salinity exceedance events and writes duration to--------C ------ISWSDbRecord. IF (((IPWSaltyToday .EQ. 1 ) .AND. (IPWSaltyYesterday .EQ. 0 ))) THEN IPWSDbCount=IPWSDbCount+ 1 IPWSDbRecord(IPWSDbCount)=IConPWSalBDay IConPWSalBDay= 0 END IF C -----If last day of simulation, calculates the PORE water Ds/Db ratio-------C ----Writes record of SURFACE and POREWATER Ds:Db ratio to file 20----------IF (IDAY .EQ. IDAYREC) THEN IF (IPWSDsCount .EQ. 0 ) THEN IF (IPWSDbCount .EQ. 1 ) THEN PWSDsDbRatio= 600 ELSE PWSDsDbRatio= 0 END IF ELSE PWSDsSum= 0 PWSDbSum= 0 DO 150 M= 1 ,IPWSDsCount PWS DsSum=PWSDsSum+IPWSDsRecord(M) 150 CONTINUE DO 200 M= 1 ,IPWSDbCount PWSDbSum=PWSDbSum+IPWSDbRecord(M) 200 CONTINUE a=PWSDsSum/IPWSDsCount b=PWSDbSum/IPWSDbCount PWSDsDbRatio=a/b END IF write ( 20, 1000)KCELL,SWSDsDbRatio,PWSDsDbRatio END IF C -------Sets today's SURFACE and POREWATER salinity statuses to Yesterday's --C -------for next day's calculations ------------------------------------------ISWSaltyYesterday=ISWSaltyToday IPWSaltyYesterday=IPWSaltyToday C -------Return to main program ------------------------------------------------RETURN

PAGE 367

367 1000 FORMAT (i 6 2f12.4) END ______________________________________________________________________________ SUBROUTINE GERMINATION(I,KCell,IDAY) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Receives data from subroutine inund and input file *.isw and C C calculates the following: C C C C 1. Whether cell has appropriate moisture conditions for germination C C and sets MoistToday to TRUE( 1) or FALSE (0) C C 2. Number of germination days in the current year (GermDay) C C 3. Number of consecutive germination days (ConGermDay) C C C C If cell goes fr om moist to non moist state, and current value of C C ConGermDay is longest in current simulation year, writes ConInunDay C C to YearlyRecord(). If ConGermDay is equal to or greater than C C critical number of days required for germination (CritConsecGermDays) C C GoodGermCon is set to TRUE (1), otherwise it is set to FALSE (0). C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /FLOOD/SW E(MAXDREC,MAXREACH),WaterDepth COMMON /GERM/RAIN(MAXDREC) COMMON /GERM 1 /CritRainDepth,CritMoistureDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGermCount COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap (MAXYEAR),IConPWSalXMap(MAXYEAR) C -----Determines soil moisture conditions ------------------------------------IMoistToday= 0 IF (Rain(IDAY) .GE. CritRainDepth) IMoistToday= 1 IF (WaterDepth .GE. ( 1 *CritMoistureDepth)) IMoistToday= 1 IF (WaterDepth .GT. 0 ) IMoistToday= 0 C ------If moist today, increments count of moist and consecutively moist -----C ------days -------------------------------------------------------------------IF (IMoistToday .EQ. 1 ) THEN IMoistDay= IMoistDay+ 1 IConMoistDay=IConMoistDay+ 1 ELSE IConMoistDay= 0 END IF C ------Stores current value of IMoistDay to IMoistMap for current year ---------C ------If number of consecutivley moist days is longest in current -------------C ------simulation year, writes IConMoistDay to IConMoistMap--------------------IMoistMap(I)=IMoistDay IF (IConMoistDay .GT. IConMoistMap(I)) THEN IConMoistMap(I)=IConMoistDay END IF C -----Checks surface watrer salinity and sets likelihood of germination based-C ------on salinity conditions against a random dice roll ------------------------IF (SWS(IDAY,ICellReach(KCell)).LE. 1 ) THEN SalGermMod= 1 ELSE IF (SWS(IDAY,ICellReach(KCell)).LE. 3 ) THEN SalGermMod= 0.87 ELSE IF (SWS(IDAY,ICellReach(KCell)).LE. 5 ) THEN SalGermMod= 0.59 ELSE IF (SWS(IDAY,ICellReach(KCell)).LE. 7 ) THEN SalGermMod= 0.39 ELSE IF (SWS(IDAY,ICellReach(KCell)).LE. 8 ) THEN SalGermMod= 0.20 ELSE SalGermMod= 0 END IF DiceRoll=rand( 0 ) IF (SalGermMod.GT. DiceRoll) THEN ISalGermStaus= 1 ELSE ISalGermStaus= 0 END IF

PAGE 368

368 C ------If soil has been moist for a number of days equal to or greater than---C ------then critical number of days for germination, and germination is not ---C ------prevented by high salinity, sets germination condition to good (1) and-C ------increments count of days with good germination conditions. Writes ------C ------IGoodGermCount to IGoodGermCountMap for cell/year ----------------------If((IConMoistDay .GE. ICritConsecGermDays) .AND. & (ISalGermStaus .EQ. 1 )) THEN IGoodGermCond= 1 IGoodGermCount=IGoodGermCount+ 1 ELSE IGoodGermCond= 0 END IF IGoodGermCondMap(I)=IGoodGermCount C -------Return to main program ------------------------------------------------RETURN END ______________________________________________________________________________ SUBROUTINE SEEDLINGGROW(I,KCell,IDAY) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Takes germination conditions from germination subroutine and seed C C availability(IDAY) to determine if seedling growth is initiated. C C Performs the following: C C C C 1. Updates current number of days seeds have been avaialble in C C current SimYear C C 2. Adds age and height to all seedlings C C 3. Checks whether seedlings are submerged and increments submerged C C days in year zero/one C C 4. If any seedlings reach 2 years (730 days) without having been C C overtopped longer than the critical limits in EITHER year (i.e., C C a recruitment event), increments number of recruitment events. C C Writes this value to IR ecruitmentMap f or the current year/cell C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC C IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /FLOOD/SWE(MAXDREC,MAXREACH),WaterDepth COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermDays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGer mCount COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC),YearOneGrowthRate(MAXDREC) COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXDREC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDaysCrit COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYE AR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) COMMON /POREWATER/PWS(MAXDREC,MAXREACH*NumPWSClass) COMMON /SALT/SWS( MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /CELL/CellChar(MAXCELL, 2 ) COMMON /ICELL/ICellReach(MAXCELL),ICELLCOUNT,IReach COMMON /IDAYS/IDAYEND,IDOY,IDAYBEG,INIDAY C -------Resets IFirstSeedling to 1 for cur rent day ----------------------------IFirstSeedling= 1 C -------If seeds are available, increments counter of days seeds available----C -------need to actual set this at some point ---------------------------------IF ( ISeedsAvailable(IDAY) .EQ.1 ) THEN IDaysSeedsAvailable=IDaysSeedsAvailable+ 1 END IF C -------If seeds are available and germination conditions are met, initiates --C -------seedling growth (age starts at 0, increments to 1 below), increments --C -------seedling counter, and writes to IGerminationEventMap for current year -IF ((ISeedsAvailable(IDAY) .EQ. 1 ) .AND. (IGoodGermCond.EQ. 1 )) THEN ISeedlingCount=ISeedlingCount+ 1 IGermEvents=IGermEvents+ 1 Seedlings(ISeedlingCount, 1 )= 0 Seedlings(ISeedlingCount, 2 )=VinitialSeedlingHeight END IF IGerminationEventMap(I)=IGermEvents

PAGE 369

369 C -------Checks to see how far back in Seedlings matrix the subroutine must go-C -------Does not perform any calculations on seedlings older than 730 days ----DO 30 L= 1 ,ISeedlingCount IF (Seedlings(L, 1 ) .GE. 730) IFirstSeedling=IFirstSeedling+ 1 30 CONTINUE C ------Internal loop runs for for all seedlings less than 2 years old---------DO 5 0 N=IFirstSeedling,ISeedlingCount C ------Increments seedlings age and grows all seedlings according to seasonal -C ------growth rate for current year -------------------------------------------Seedlings(N, 1 )=Seedlings(N, 1 )+ 1 IF (Seedlings(N, 1 ) .LE. 365) THEN Seedlings(N, 2 )=Seedlings(N, 2 )+YearZeroGrowthRate(IDAY) ELSE Seedlings(N, 2 )=Seedlings(N, 2 )+YearOneGrowthRate(IDAY) END IF C -----Checks whether seedlings are submerged ( water depth converted from cm --C ------to m). If so, increments number of consecutive days submerged in year --C -----zero/one (columns 3 and 5). Stores max number of days submerged in year C -----zero/one in columns 4/6. Resets consecutive days submerged to 0--------IF (WaterDepth* 100. GT.Seedlings(N, 2 )) THEN IF (Seedlings(N, 1 ) .LE. 365) THEN Seedlings(N, 3 )=Seedlings(N, 3 )+ 1 ELSE Seedlings(N, 5 )=Seedlings(N, 5 )+ 1 END IF IF (Seedlings(N, 3 ) .GT. Seedlings(N, 4 )) THEN Seedlings(N, 4 )=Seedlings(N, 3 ) END IF IF (Seedlings(N, 5 ) .GT. Seedlings(N, 6 )) THEN Seedlings(N, 6 )=Seedlings(N, 5 ) END IF EL SE Seedlings(N, 3 )= 0 Seedlings(N, 5 )= 0 END IF C -----Checks whether PWS is greater than CritSal. If so, increments number ---C ------of consecutive days seedling is subject to high salinity conditions ----C ------in year zero/one (columns 7 and 9). Stores max number of days above----C ------threshold in year zero/one in columns 8/10. Resets counters to zero if -C -----Not above threshold. Calculates the cumulative salt.days seedling is --C ------exposed to in year zero/one and stores in columns 11 and 12. Does not --C -----reset SaltDays (until next cell) ---------------------------------------IPWSClass=MIN(INT(CellChar(KCell, 2 )/ 10)+ 1 ,NumPWSClass) PWSToday=PWS(IDAY,NumPWSClass*(ICellReac h(KCell) 1 )+IPWSClass) IF (PWSToday .GT. CritSal) THEN IF (Seedlings(N, 1 ) .LE. 365) THEN Seedlings(N, 7 )=Seedlings(N, 7 )+ 1 Seedlings(N, 11)=Seedlings(N, 11)+PWSToday CritSal ELSE Seedlings(N, 9 )=Seedlings(N, 9 )+ 1 Seedlings(N, 12)=Seedlings(N, 12)+PWSToday CritSal END IF IF (Seedlings(N, 7 ) .GT. Seedlings(N, 8 )) THEN Seedlings(N, 8 )=Seedlings(N, 7 ) END IF IF (Seedl ings(N, 9 ) .GT. Seedlings(N, 10)) THEN Seedlings(N, 10)=Seedlings(N, 9 ) END IF ELSE Seedlings(N, 7 )= 0 Seedlings(N, 9 )= 0 END IF C ------If less than 2 years from model start, sets IRecruitmentMap to 0-------C ------Otherewise, if any seedling survives 2 years (730 days) without being--C ------overtopped longer than the critical submergence values and without -----C ------being subject to high salinity longer than the critical threshold, sets C ------IRecruitmentMap to 1 for current cell/year -----------------------------IF (IDAY .LT. 730) THEN IRecruitmentMap(I)= 0 ELSE IF (Seedlings(N, 1 ) .EQ. 730) THEN IF (Seedlings(N, 4 ) .LT. I YearZeroSeedlingSubmergedCrit) THEN IF (Seedlings(N, 6 ) .LT. IYearOneSeedlingSubmergedCrit) THEN c IF(Seedlings(N,8).LT.IYearZeroSeedlingSaltCrit) THEN c IF(Seedlings(N,10).LT.IYearOneSeedlingSaltCrit) THEN c IF (Seedlings(N,11).LT.IYearZeroSaltDaysCrit) THEN c IF(Seedlings(N,12).LT.IYearOneSaltDaysCrit) THEN IRecruitmentEvents=IRecruitmentEvents+ 1 IRecruitmentMap(I)=IRecruitmentEvents END IF c E ND IF c END IF c END IF c END IF END IF END IF C ------End of internal seedling loop ------------------------------------------50 CONTINUE

PAGE 370

370 1000 FORMAT (i 8 12f12.4) C -------Return to m ain program ------------------------------------------------RETU RN END ______________________________________________________________________________ SUBROUTINE NEWCELL CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Resets variables between cells C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /SALT/SWS(MAXDREC,MAXREACH),CritSal,SWSalXMag, & PWSalXMag COMMON /ISALT/ISWSalXDay,IConSWSalXDay,ISWSaltyYesterday, & ISWSDsCount,ISWSDsRecord(MAXDREC),ISWSDbCount, & ISWSDbRecord(MAXDREC),ISWSalBDay,IConSWSalBDay, & IPWSalXDay,IConPWSalXDay,IPWSaltyYesterday, & IPWSDsCount,IPWSDsRecord(MAXDREC),IPWSDbCount, & IPWSDbRecord(MAXDREC),IPWSalBDay,IConPWSalBDay COMMON /IGERM/ISeedsAvailable(MAXDREC),ICritConsecGermD ays, & IMoistDay,IConMoistDay,IGoodGermCond,IGoodGermCount COMMON /SEEDLING/Seedlings(MAXDREC, 12),VinitialSeedlingHeight, & YearZeroGrowthRate(MAXDREC),YearOneGrowthRate(MAXDREC) COMMON /ISEEDLING/ISeedlingsSubmergedDays( 4 ,MAXD REC), & IDaysSeedsAvailable,ISeedlingCount, IGermEvents, & IYearZeroSeedlingSubmergedCrit, IYearOneSeedlingSubmergedCrit, & IYearZeroSeedlingSaltCrit, IYearOneSeedlingSaltCrit, & IRecruitmentEvents,IYearOneSaltDaysCrit,IYearZeroSaltDays Crit C -----Resets seedling matrix --------------------------------------------------DO 100 J= 1 ,ISeedlingCount DO 50 K= 1 12 Seedlings(J,K)= 0 50 CONTINUE 100 CONTINUE C -----Resets surface water salinity exceedance records ------------------------DO 150 J= 1 ,ISWSDsCount+ 1 ISWSDsRecord(J)= 0 ISWSDbRecord(J)= 0 150 CONTINUE C -----Resets porewater water salinity exceedance records ----------------------DO 200 J= 1 ,PSWSDsCount+ 1 IPWSDsRecord(J)= 0 IPWSDbRecord(J)= 0 200 CONTINUE C -----Resets appropriate variables to their initial values (usually 0) --------InunDay= 0 IConInunDay= 0 MoistDay= 0 IC onMoistDay= 0 IGoodGermCount= 0 IGoodGermCon= 0 IGoodGermCount= 0 ISeedlingCount= 0 IDaysSeedsAvailable= 0 IGermEvents= 0 IRecruitmentEvents= 0 IDAY= 1 SWSalXMag= 0 ISWSalXDay= 0 IConSWSalXDay= 0 ISWSaltyYesterday= 0 ISWSDsCount= 0 ISWSDbCount= 0 PWSalXMag= 0 IPWSalXDay= 0 IConPWSalXDay= 0 IPWSaltyYesterday= 0 IPWSDsCount= 0 IPWSDbCount= 0 C -------Return to main program ------------------------------------------------RETURN END ______________________________________________________________________________

PAGE 371

371 SUBROUTINE OUTMAP(KCELL) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C C C C Writes yearly output for each cell to map with Cell ID (post processed in ArcGIS) C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IC onInunDay COMMON /REPORT/YearlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEA R), & IConMoistMap(MAXYEAR),IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) C -----Writes model output to files ------------------------------------------write ( 11, 100)KCELL,(InundationMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 12, 100)KCELL,(IConInundationMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 13, 100)KCELL,(IMoistMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 14, 100)KCELL,(IConMoistMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 15, 100)KCELL,(IGoodGermCondMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 16, 100)KCELL,(IGerminationEventMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 17, 100)KCELL,(IRecruitmentMap(INU),INU= 1 ,IYEARREC + 1 ) write ( 18, 100)KCELL,(ISWSalXMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 19, 100)KCELL,(IConSWSalXMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 21, 100)KCELL,(IPWSalXMap(INU),INU= 1 ,IYEARREC+ 1 ) write ( 22, 100)KCELL,(IConPWSalXMap(INU),INU= 1 ,IYEARREC+ 1 ) C -----Return to main program -------------------------------------------------RETURN 100 FORMAT (i 6 40i 8 ) END ______________________________________________________________________________ SUBROUTINE HABITAT(KCELL) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C Determines the most likely habitat type in each cell C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C IMPLICIT REAL (A H,O Z) PARAMETER (MAXDREC= 14600,MAXYEAR= 40,MAXREACH= 40,MAXCELL= 50000, & NumPWSClass= 14) COMMON /IFLOOD/InunRecord(MAXYEAR, 366),IDAYREC,IYEARREC, & InunDay,IConInunDay COMMON /REPORT/Y earlyRecord(MAXYEAR, 16), & HabitatSuitability(MAXYEAR, 8 ),IBREAK(MAXYEAR) COMMON /REPORT 1 /SWSDsDbRatio,PWSDsDbRatio COMMON /IREPORT 1 /InundationMap(MAXYEAR), & IConInundationMap(MAXYEAR),IMoistMap(MAXYEAR), & IConMoistMap(MAXYEAR), IGoodGermCondMap(MAXYEAR), & IGerminationEventMap(MAXYEAR),IRecruitmentMap(MAXYEAR), & ISWSalXMap(MAXYEAR),IConSWSalXMap(MAXYEAR), & IPWSalXMap(MAXYEAR),IConPWSalXMap(MAXYEAR) DIMENSION ICellHabitat(IYEARREC+ 1 ),ICellHab(MAXCELL) & IYearlyCellHabitat(MAXCELL) C ------Sets likely habitat type for each year based on yearly inundation------C ------using the following codes: 1=upland; 2=freshwater hydric hammock; ------C ------3=freshwater bottomland hardwood forest (low and hi gh); 4=bald cypress -C ------swamp. These are modified by recruitment and salinity information in---C ------subsequent steps (below). Determines most common habitat type (mode) ---C ------over period of record and stores in TempCellHab(I) ---------------------IUpland= 0 IHydHam= 0 IBLHFor= 0 IBldCyp= 0 DO 50 I= 1 ,IYEARREC+ 1 IF (InundationMap(I) .LT. 30) THEN IYearlyCellHabitat(I)= 1 IUpland=IUpland+ 1 ELSE IF (InundationMap(I) LE. 60) THEN IYearlyCellHabitat(I)= 2 IHydHam=IHydHam+ 1 ELSE IF (InundationMap(I) .LE. 180) THEN IYearlyCellHabitat(I)= 3 IBLHFor=IBLHFor+ 1 ELSE IYearlyCellHabitat(I)= 4

PAGE 372

372 IBldCyp=IBldCyp+ 1 END IF 50 CONTINUE IF (MAX(IBldCyp,IBLHFor,IHydHam,IUpland) .EQ.IUpland) THEN ICellHab(KCELL)= 1 ELSE IF (MAX(IBldCyp,IBLHFor,IHydHam,IUpland) .EQ.IHydHam) THEN ICellHab(KC ELL)= 2 ELSE IF (MAX(IBldCyp,IBLHFor,IHydHam,IUpland) .EQ.IBLHFor) THEN ICellHab(KCELL)= 3 ELSE IF (MAX(IBldCyp,IBLHFor,IHydHam,IUpland) .EQ.IBldCyp) THEN ICellHab(KCELL)= 4 END IF C ------THE CHARACTERISTIC SALINIT Y REGIME PATH --------------------------------C -----Modifies above by PWS Ds:Db ratio such that for salty cells, bald------C ------cypress are modified to mangroves (5) ----------------------------------IF ((ICellHab(KCELL) .EQ 4 ) .AND. (PWSDsDbRatio .GT. 0.12 )) THEN ICellHab(KCELL)= 5 END IF C ------For cells that are predicted to have bald cypress habitat, checks ------C ------IRecruitmentMap(I) to see how many germination and recruitment events --C ------took plac e in the cell over the period of record. Writes results of ----C ------this and previous step to file 23. For noncypress cells, writes 699--C ------germination and recruitment columns ------------------------------------IGerminationYears = 699 IRecruitmentYears= 699 IF (ICellHab(KCELL) .EQ. 4 ) THEN IGerminationYears= 0 IRecruitmentYears= 0 DO 100 I= 1 ,IYEARREC+ 1 IF (IRecruitmentMap(I) .GT. 0 ) THEN IRecruitmentYears=IRecruitmen tYears+ 1 END IF IF (IGerminationEventMap(I) .GT. 0 ) THEN IGerminationYears=IGerminationYears+ 1 END IF 100 CONTINUE END IF write ( 23, 1000) KCELL,ICellHab(KCELL),IGerminationYears, & IRecruitmentYears C -----Return to main program -------------------------------------------------RETURN 1000 FORMAT ( 4 i 8 ) END

PAGE 373

373 LIST OF REFERENCES Adams, D.A. 1963. Factors influencing vascular plant zonation in North Carolina s alt marshes. Ecology 44:445456. Addis, P., J.M. Dean, P. Pesci, I. Locci, R. Cannas, S. Corrias, and A. Cau. 2008. Effects of local scale perturbations in the Atlantic bluefin tuna (Thunnus thynnus L.) trap fishery of Sardinia (W. Mediterranean). Fish. R es. 92:242254. Akaike, H. 1974. A new look at the Statistical Model Identification. IEEE Trans. Automat. Control 19:716723. Alexander, T.R., and A.G. Crook. 1975. Recent and long term vegetation changes and patterns. In Appendix G, Part I, South Florida Ecological Study. Univ. of Miami, Coral Gables, FL. Allen, J.A., J.L. Chambers, and D. McKiney. 1994. Intraspecific variation in the response of Taxodium distichum seedlings to salinity. Forest Ecol. Manag. 70: 203 214. Allen, J.A., S.R. Pezeshki, and J.L. Chambers. 1996. Interaction of flooding and salinity on baldcypress (Taxodium distichum). Tree Physiol. 16:307313. AFA. 1982. National register of big trees. American Forests 88:1831. ASCE. 1993. Criteria for Evaluation of Watershed Models. J. Irrig. Drain. E ASCE. 119: 429442. Avogadro, A. and Ragaini, R.C. (eds.) Technologies for environmental clean up: soil and groundwater. Kluwer Academic Publishers, London. Barlow, P.M. 2003. Ground w ater in freshwater saltwater environments of the Atlantic coast. USGS Circular 1262. U.S. Geol. Surv., Washington, DC. Bechtol, V. and L. Laurian. 2005. Restoring straightened rivers for sustainable flood mitigation. Disaster Prev. Manage. 14:619. Beilman A.P. 1947. What happens when all kinds of southern cypress are grown in the north? South Lumberman 174:48. Benke, A.C., I. Chaubey, G.M. Ward, and E.L. Dunn. 2000. Flood pulse dynamics of an unregulated river floodplain in the southeastern U.S. coastal plain. Ecology 81: 27302741. Bonner, F.T. 1974. Taxodium distichum (L.) Rich. Baldcypress. p. 796798. In C.S. Schopmeyer (ed.) Seeds of Woody Plants in the United States. USDA Forest Serv. Ag. Handb. 450, U.S. Dept. of Agric., Washington, DC.

PAGE 374

374 Bozdogan, H 1987. Model selection and Akaikes information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345370. Brodgar 2.5.7. 2000. Software Package for Multivariate Analysis and Multivariate Time Series Analysis. Highland St atistics Ltd., Aberdeen, UK. Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrology Paper No. 3. Colorado State Univ., Ft. Collins. Brown, Clair A. 1984. Morphology and biology of cypress trees. In: Ewel, Katherine Carter; Odum, Howard T. (eds.) Cypress swamps. Gainesville, FL: University of Florida Press:1624. Bull, H. 1949. Cypress planting in southern Louisiana. Southern Lumberman 179:227230. Burkett, V., J.O. Codignotto, D.L. Forbes, N. Mimura, R.J. Beamish, and V. Ittekkot. 2001. Coastal Zones and Marine Ecosystems. In McCarthy, J., O. Canziani, N. Leary, D. Dokken, and K. White (eds.), Climate Change 2001: Impacts, Adaptation & Vulnerability Contribution of W orking Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, New York. Burns, R. M., and B.H. Honkala. 1990. Silvics of North America. USDA Forest Serv. Agric. Handb. 654, U.S. Dept. of Agric., Washington, DC. Campbell, J.E. 1990. Dielectric properties and influence of conductivity in soils at one to fifty Megahertz. Soil Sci. Soc. Am. J. 54:332341. Chabrek, R.H. 1972. Vegetation, water and soil characteristics of the Louisiana coastal region. Bull 614. Louisiana State Univ., Baton Rouge. Conner, W. H. 1988. Natural and artificial regeneration of baldcypress (Taxodium distichum [L.] Rich.) in the Barataria and Lake Verret basins of Louisiana. Ph.D. diss. Louisiana State Univ., Baton Rouge. Conner W.H., 1994. The effect of salinity and waterlogging on growth and survival of baldcypress and Chinese tallow seedlings. J. Coastal Res. 10:10451049. Conner, W.H., and Inabinet te, L.W., 2004. Identification of salt tolerant baldcypress (Taxodium distichum [L.] Rich) for planting in coastal areas. New Forest 29:305312. Conner, W.H, J.R. Toliver, and F.H. Sklar. 1986. Natural regeneration of baldcypress (Taxodium distichum [L.] R ich.) in a Louisiana swamp. Forest Ecol. Manag. 14:305317.

PAGE 375

375 Conner, W.H. and J.R. Toliver. 1987. Vexar seedling protectors did not reduce nutria damage to planted baldcypress seedlings. USDA Forest Serv., Tree Planter's Notes 38:2629, U.S. Dept. of Agric., Washington, DC. Costanza, R., D.R. Arge, R. De Groot, S. Ferber, M. Grasso, B. Hannon, K. Limberg, S. Naeem, R.V. ON, and J. Paruello. The value of the world's ecosystems services and natural capital. Nature 387:253260. Darst, M.R. and H.M. Light. 200 8. Drier Forest Composition Associated With Hydrologic Change in the Apalachicola River Floodplain, Florida. USGS Scientific Investigations Report 20085062. Day, R.H., T.W. Doyle, and R.O. Draugelis Dale. 2006. Interactive effects of substrate, hydroperiod, and nutrients on seedling growth of Salix nigra and Taxodium distichum. Environ. Exp. Bot. 55:163174. DeLaune, R.D, J.A. Nyman, and W.H. Patrick Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. J. Coastal Res. 10:10211030. DeLaune, R.D., S.R. Pezeshki, and W.H. Patrick Jr. 1987. Response of coastal plants to increase in submergence and salinity. J. Coast. Res. 3:535546. Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via the EM Algorithm. J. R. Stat. Soc. Ser. B 39:1 38. Dent, R.C. 1997. Rainfall observations in the Loxahatchee River Watershed. Loxahatchee River District, Jupiter, FL. DeSantis L.R., S. Bhotika, K. Williams, and F.E Putz. 2007. Sealevel rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Change Biol. 13 : 234960. Donigian, A.S., J.C. Imhoff, B.R. Bicknell, and J.L. Kittle. 1984. Application guide for Hydrological Simulation Program --Fortran (HSPF), EPA 600/38 4 065. U.S. Environ. Protect. Agency, Environmental Research Laboratory, Athens, Ga., Earles, J.M. 1975. Forest Statistics for Louisiana Parishes. USDA For. Sci. Res. Bul., SO 52. U.S. Dept. of Agric., Washington, DC. Elcan, J. M. and S.R. Pezeshki. 2002. Effects of flooding on susceptibility of Taxodium distichum seedlings to drought. Photosynthetica 40:177182. Erwin, R. 2003. Relative Sealevel Rise, Marsh Island Dynamics, and Potential Impacts on Atlantic Coast Migratory Bird Species and their Habitats Available at http://biology.usgs.gov/ecosystems/global_change/sea_level.html (verified 14 Feb 2010). U.S. Geol. Surv., Washington, DC.

PAGE 376

376 Erzini, K. 2005. Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variables. Fish. Oceanogr. 14:195209. Essink, G.H.P.O. 2001. Saltwater intrusion in 3D Large Scale aquifers: A Dutch case. Phys. Chem. Earth 26:337344. Ewel, K.C. 1990. Swamps. p. 281323. In R.L. Myers and J.J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando. Faulkner, S.P. 1982. Genetic variation of cones, seeds, and nursery grown seedlings of baldcypress (Taxodium distichum [L.] Rich.) provenances. M.S. Thesis. Louisiana State Univ., Baton Rouge. Flynn, K.M., K.L. McKee, and I.A. Mendelssohn. 1995. Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103:6372. Fowells, H. A. 1965. Silvics of forest trees of the United States. USDA Forest Serv. Agric. Handbook 271. U.S. Dept. of Agric., Washington, DC. Gardner, L.R., W.K. Michener, T.M. Williams, E.R. Blood, Kjerfve, B., L.A. Smock, D.J. Lipscomb, and C. Gresham. 1992. Disturbance effects of Hurricane Hugo and a pristine coastal landscape: North Inlet, South Carolina, USA. N eth. J. Sea. Res. 30:249263. Gardner, L.R., Reeves, H.W., Thibodeau, P.M., 2002. Groundwater dynamics along forest marsh transects in a southeastern salt marsh, USA: description, interpretation and challenges for numerical modeling. Wet. Ecol. Manag. 10:145 159. Geweke, J.F. 1977. The dynamic factor analysis of economic time series models. p. 365382. In D.J. Aigner and A.S. Goldberger (eds.) Latent variables in socioeconomic models, NorthHolland, Amsterdam. Glamore, W.C. and B. Indraratna. 2009. Tidal forcing groundwater dynamics in a restored coastal wetland: implications of saline intrusion. Aust. J. Earth Sci. 56:3140. GLO. 1855. Surveyor field notes from 1855 survey of the Jupiter/Loxahatchee River area. Available at http://www.labins.org (verified 20 Aug. 2009). Labins, Tallahassee, FL. Grace J.B. and M.A. Ford. 1996. The potential impact of herbivores on the susceptibility of the marsh plant Sagi ttaria lancifolia to saltwater intrusion in coastal wetlands. Estuaries 19:1320

PAGE 377

377 Gunderson, L.H. 1984. Regeneration of cypress in logged and burned strands at Corkscrew Swamp Sanctuary, Florida. p.349 357. In K.C. Ewel and H.T. Odum (eds.) Cypress Swamps. The Univ. of Florida Press, Gainesville. Guo, W. and C.D. Langevin. 2002. Users guide to SEAWAT: a computer program for simulation of threedimensional variable density groundwater flow: USGS Open File Report 01434. U.S. Geol. Surv., Washington, DC. Han cock P.J., R.J. Hunt, and A.J. Boulton. 2009. Preface: hydrogeoecology, the interdisciplinary study of groundwater dependent ecosystems. Hydrogeol. J. 17:14. Hanson, J. and S. Stedman. 1995. Habitat Connections: Wetlands, Fisheries and Economics. Availabl e at www.nmfs.noaa (verified 14 Feb 2010). Nat. Ocean. and Atm. Assoc., Washington, DC. Harper J. L. 1977. Population biology of plants. Academic Press, New York. Harvey, A.C. 1989. Forecasting, structural time series m odels and the Kalman filter. Cambridge Univ. Press, New York. Harvey, J.W and P.V. McCormick. 2008. Groundwaters significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hy drogeol. J. 17:185201. Hatton T. and R. Evans. 1998. Dependence of ecosystems on groundwater and its significance to Australia. Land Water Resour. Res. Develop. Corp. Occ. Paper. LWRRDC, Canberra, Australia. Highland Statistics. 2000. Software package f or Multivariate Analysis and Multivariate Time Series Analysis, Version 2. Highland Statistics, Ltd., Newburgh, UK. Hilhorst, M. 2000. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 64:19221925. Holm, Jr., G. O. and C. E. Sasser. 2001. Differenti al salinity response between two Mississippi River subdeltas: Implications for changes in plant composition. Estuaries 24:7889. Holman, I.P and K.M. Hiscock. 1998. Land drainage and saline intrusion in the coastal marshes of northeast Norfolk. Q. J. Eng. Geol. Hydroge. 31:4762. Hu G. 2002. The effects of freshwater inflow, inlet conveyance and sea level rise on the salinity regime in the Loxahatchee Estuary. In Proc. Environ. Eng. Conf. 2124 July 2002. Am. So. Civil Eng./Ca. Soc. Civil Eng. Niagara Fall s, Ontario, Canada.

PAGE 378

378 IFAS. 2004. Circular 1458. School of Forest Resources and Conservation, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, Univ. of Florida. Jassby, A.D., W.J. Kimmerer, S.G. Monismith, C. Armor, J.E. C loern, T. M. Powell, J.R. Schubel, and T.J. Vendlinski. 1995. Isohaline position as a habitat indicator for estuarine populations Ecol. App. 5:272289. Johansen, N.B., J.C. Imhoff, J.C. Kittle, and A.S. Donigian, 1984, Hydrological Simulation Program FORTRAN (HSPF): Users Manual Release 8, EPA 600/384066, USEPA, Athens, GA. Johnson, J.W. United States Water Law: An Introducti on. Taylor and Francis Inc., New York. Johnson, R.G., 1997. Climate control requires a dam at the Strait of Gibraltar. EOS 78:280281. Jung, M., T.P. Burt, and P.D. Bates. 2004. Toward a conceptual model of floodplain water table response. Water Resour. R es. 40: W12409. Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river floodplain systems. p 110127. In D. P. Dodge (ed.) Proc. of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic S ciences. Kampf, S. and S.J. Burges. 2010. Quantifying the water balance in a planar hillslope plot: Effects of measurement errors on flow prediction. J. Hydrol. 380:191202. Kaplan, D., R. Muoz Carpena, Y. Wan, M. Hedgepeth, F. Zheng, R. Roberts, and R. R ossmanith. 2010a. In press Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river impacted by saltwater intrusion. J. Env. Qual. Kaplan, D., R. Mu oz Carpena, and A. Ritter. 2010b. In press Untangling complex groundwater dynamics in the floodplain wetlands of a southeastern U.S. coastal river. Water Resour. Res. Kiro, Y., Y. Yechieli, V. Lyakhovsky, E. Shalev, and A. Starinsky. 2008. Time response of the water table and saltwater transition zone to a base level drop. Water Resour. Res. 44:W12442. Knighton, A.D., K. Mills, and C.D. Woodroffe. 1991. Tidal creek extension and salt water intrusion in northern Australia. Geology 19: 831 834. Kovcs, J., L. Mrkus, and G. Halupka. 2004. Dynamic factor analysis for quant ifying aquifer vulnerability. Acta Geologica Hungarica 47:117.

PAGE 379

379 Krause, S., A.L. Heathwaite, F. Miller, P. Hulme, and A. Crowe. 2007. Groundwater dependent wetlands in the UK and Ireland: controls, functioning and assessing the likelihood of damage from human activities. Water Resour. Manag. 12: 20152025. Krauss, K., J.L. Chambers, and J.A. Allen. 1998. Salinity effects and differential germination of several half sib families of baldcypress from different seed sources New Forests 15: 53 68. Krauss, K.W., J.L. Chambers, J.A. Allen, D.M. Soileau Jr., and A.S. DeBosier. 2000. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. J. Coast. Res. 16:153163. Langevin, C., E. Swain, and M. Wolfert. 2005. Simulation of integrated surfacewater/groundwater flow and salinity for a coastal wetland and adjacent estuary. J. Hydrol. 314: 212 234. Larsen, C., 1998. The Chesapeake Bay: Geologic Product of Rising Sealevel. USGS Fact Sheet 10298. Available at http://pubs.usgs.gov/fs/fs102 98 (verif ied 14 F eb 2010). U.S. Geol. Surv., Washington, DC. Leyer, I. 2005. Predicting plant species responses to river regulation: the role of water level fluctuations. J. Appl. Ecol. 42:239 250. Lin, H.J., K.T. Shao, W.L. Chow, C.J.W. Maa, H.L. Hsieh, W.L. Wu, L.L. Severinghaus, and W.T. Wang. 2003. Biotic communities of freshwater marshes and mangroves in relation to saltwater incursions: implications for wetland regulation. Biodiversit y Conserv. 12:647665. Lin, J., J.B. Snodsmith, C. Zheng, and J. Wu. 2008. A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environ. Geol. 57:119130. Liu, G., Y. Li, M. Hedgepeth, Y. Wan, and R. Roberts. Seed germination enhancement for bald cypress. Journal of Horticulture and Forestry 1:2226. Liu, G., Y. Li, R. Muoz Carpena, M. Hedgepeth, and Y. Wan. 2006. Effects of salinity and flooding on growth of Bald Cypress (Taxodium distichum [L.] Rich.). In Abstracts, Intl. Ann. Joint Meet., Am. Soc. Agron., Crop Sci. Soc Am., and Soil Sci. Soc. Am. 1216 Nov. 2006. Indianapolis, IN. Liu, W., M. Hsu, A.Y. Kuo, and M. Li. 2001. Influence of bathymetric changes on hydrodynamics and salt intrusion in estuarine system. J. Am. Water Resour. 37: 14 051419. Lovgen, S., 2004. Warming to Cause Catastrophic Rise in Sealevel? Available at http://news.nationalgeographic.com/news 2004/04/0420_040420_earthday.html (ve rified 14 Feb 2010). National Geographic News, National Geographic society, Washington, DC.

PAGE 380

380 Ltkepohl, H. 1991. Introduction to multiple time series analysis. Springer Verlag, Berlin. Lyons M.N., S.A. Halse, N. Gibson, D.J. Cale, J.A.K. Lane, C.D. Walker, D.A. Mickle, and R.H. Froend. 2007. Monitoring wetlands in a salinizing landscape: case studies from the wheatbelt region of Western Australia. Hydrobiologia 591:147164 Mancil, E. 1980. Pullboat Logging. J. Forest Hist. 24:135141. Mattoon, W.R., 1915. T he southern cypress. USDA Agricultural Bulletin 272. U.S. Dept. of Agriculture, Washington, DC. McCarthy, J.J., O.F. Canziani, N.A. Neary, D.J. Dokken, and K.S. White (eds.) 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of working group II to the third assessment of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York. McKee, K. and I. Mendelssohn. 1989. Response of a freshwater marsh plant community to increased salinity and increased water level. Aquat. Bot. 34:301316. McPherson, B.F. 1981. The cypress forest community in the tidal Loxahatchee River Estuary: distribution, tree stress, and salinity. U.S. Geol. Surv., Ft. Lauderdale, FL. McPherson, B.F. and R. Halley. 1996. The South Florida Envi ronment: A Region under Stress. U. S. Geological Survey Circular 1134. U.S. Geol. Surv., Ft. Lauderdale, FL. Megonigal, J.P. and Day, F.P. 1992. Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology 73:1 1821193. Melloul, A., and L. Goldenberg. 1997. Monitoring of seawater intrusion in coastal aquifers: basics and local concerns. J. Environ. Manage. 51:7386. Michener, W.K., E.R. Blood, K.L. Bildstein, M.M. Brinson, and L.R. Gardner. 1997. Climate change, hurricanes and tropical storms and rising sealevel in coastal wetlands. Ecol. Appl. 7:770801. Middleton, B.A., 1999. Wetland restoration, flood pulsing and disturbance dynamics. John Wiley and Sons, New York. Middleton, B.A. 2000. Hydrochory, seed banks and regeneration dynamics across landscape boundaries in a forested wetland. Plant Ecol. 146:169184. Middleton, B.A. 2002. Flood pulsing in wetlands: restoring the natural hydrological balance. John Wiley and Sons, New York. Miller, J.A. 1990. Ground water atlas of the United States Alabama, Florida, Georgia, and South Carolina. USGS Hydrologic Atlas 730G. U.S. Geological Survey, Washington, DC.

PAGE 381

381 Mitsch, W. J., and J.G. Gosselink. 2000. Wetlands. John Wiley and Sons, Inc., New York. Moffett, K.B., S.W. Tyler, T.Torgersen, M. Menon, J.S. Selker, and S.M. Gorelick. 2008. Processes controlling the thermal regime of saltmarsh channel beds. Environ. Sci. Technol., 42:671676. Moorhead, K.K., and M.M. Brinson. 1995. Response of wetlands to rising sea level i n the lower coastal plain of North Carolina. Ecol. Appl. 5: 261. Mortl, A. 2006. Monitoring soil moisture and soil water salinity in the Loxahatchee floodplain, M.S. thesis, Univ. of Florida, Gainesville. Motz., L.H. and A. Sedighi 2009. Representing the coastal boundary condition in regional groundwater flow models. J. Hydrologic Eng. 14:821831. Muoz Carpena, R., D. Kaplan, and F.J. Gonzalez. 2008. Groundwater Data Processing and Analysis for the Loxahatchee River Basin. Final Project Report to the South Florida Water Management District. Univ. of Florida, Gainesville. Muoz Carpena, R., D. Kaplan, and F.J. Gonzalez. 2009. Advanced Data Analysis of Shallow Groundwater Dynamics in the Loxahatchee River Floodplain. Final Project Report to the South Florida Water Management District. Univ. of Florida, Gainesville. Muoz Carpena, R., A. Ritter, and Y.C. Li. 2005. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. J. Contam. Hydrol. 80:49 70. Muoz Carpena, R., Z. Zajac and Yi Ming Kuo. 2007. Evaluation of Water Quality Models Throug h Global Sensitivity and Uncertainty Analyses Techniques: Application to the Vegetative Filter Strip Model VFSMOD W. Trans. of the ASABE 50(5):17191732. Myers, R.S., G.P. Shaffer, and D.W. Lewellyn. 1995. Baldcypress (Taxodium distichum [L.] Rich.) restor ation in southeast Louisiana: the relative effects of herbivory, flooding, competition, and macronutrients. Wetlands 1:141148. Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models, Part 1 A discussion of Principles. J. Hy drol. 10:282290. Nassar, M.K.K., R.M. El Damak, and A.H.M. Ghanem. 2007. Impact of desalination plants brine injection wells on coastal aquifers. Environ. G eol. 54:445454.

PAGE 382

382 Neidrauer, C. 2009. Water Conditions Summary. Available at http://www.sfwmd.gov/ portal/ page/portal/pg_grp_sfwmd_governingboard/portlet_gb_subtab_presentation s_page/tab20092120/3%20%20water%20con ditions.pdf (verified 21 September 09). South Florida Water Management District, Operations Control Dept., West Palm Beach, FL. Nicholls, R.J., F.M.J. Hoozemans, and M. Marchand. 1999. Increasing flood risk and wetland losses due to sealevel rise: regional and global analyses. Global Environ. Chang. 9:S69S87. Niemi, G., D. Wardrop, R. Brooks, S. Anderson, V. Brady, H. Paerl, C. Rakocinski, M. Brouwer, B. Levinson, and M. McDonald. 2004. Rationale for a new generation of indicators for coastal waters. Env iron. Health Perspect. 112:979986. Niering, W. A., and R.S. Warren. 1980. Vegetation patterns and processes in New England salt marshes. BioScience 30:301307. Nixon, E.S., R.L. Willett, and P.W. Cox. 1977. Woody vegetation of an oldgrowth forest in an eastern Texas river bottom. Castanea 42:227236. NPS. 2004. The National Wild and Scenic Rivers Program. Available at www.rivers.gov/wsr loxahatchee.html (verified 20 Aug. 2009). Nat. Park Serv., Burbank, WA. Nyman, J.A., M.K. La Peyre, A. Caldwell, S. Piaz za, C. Thom, and C. Winslow. 2009. Defining restoration targets for water depth and salinity in winddominated Spartina patens (Ait.) Muhl. coastal marshes. J. Hydrol. 376 : 327 336. Penfound, W. T., and E.S. Hathaway. 1938. Plant communities in the marshla nds of southeastern Louisiana. Ecol. Monog. 8:156. Pezeshki, S.R. 1990. A comparative study of the response of Taxodium distichum and Nyssa aquatica seedlings to soil anaerobiosis and salinity. Forest Ecol. Manag. 33: 531 541. Pezeshki, S.R., R.D. DeLaune, and W.H. Patrick, Jr. 1987. Response of the freshwater marsh species, Panicum hemitomon Schult., to increased salinity. Freshwater Biol. 17:195200. Pottier, J., A. Bdcarrats, and R.H. Marrs. 2009. Analysing the spatial heterogeneity of emergent groups to assess ecological restoration. J. Appl. Ecol. 46:12481257. Putnam, J.A., G.M. Furnival, and J.S. McKnight. 1960. Management and inventory of southern hardwoods. Agric. Handb. No. 181. U.S. Dep. of Agric., Washington, DC. R Development Core Team. 2009. R: A language and environment for statistical computing. Statistical Computing, Vienna, Austria.

PAGE 383

383 Regalado, C.M. and A. Ritter. 2009a. A bimodal four parameter lognormal linear model of soil water repellency persistence. Hydrol. Process. 23:881892. Regal ado, C.M. and A. Ritter. 2009b. A soil water repellency empirical model. Vadose Zone J. 8:136141. Ritter, A. and R. Muoz Carpena. 2006. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Par k. J. Hydrol. 317:340354. Ritter, A., R. Muoz Carpena, D.D. Bosch, B. Schaffer, and T.L. Potter. 2007. Agricultural land use and hydrology affect variability of shallow groundwater nitrate concentration in South Florida, Hydrol. Process., 21:24642473. Ritter, A., C.M. Regalado, and R. Muoz Carpena. 2009. Temporal common trends of topsoil water dynamics in a humid subtropical forest watershed. Vadose Zone J., 8:437449. Roberts, R.E., M.Y. Hedgepeth, and T.R. Alexander. 2008. Vegetational responses to saltwater intrusion along the Northwest Fork of the Loxahatchee River within Jonathan Dickinson State Park. Florida Scientist 71:383397. Roberts, R. E., R.O. Woodbury, and J. Popenoe. 2006. Vascular plants of Jonathan Dickinson State Park. Florida Scienti st 69:288 327. Robertson, P.A., G.T. Weaver, and J.A. Cavanaugh. 1978. Vegetation and tree species patterns near the northern terminus of the southern floodplain forest. Ecol Monog. 48:249267. Rocha, D., F. Abbasi, and J. Feyen. 2006. Sensitivity analysis of soil hydraulic properties on subsurface water flow in furrows. J. Irrig. Drain E ASCE 132:418 424. Sadeg, S.A. and N. Karahanogulu. 2001. Numerical assessment of sweater intrusion in the Tripoli region. Environ. Geol. 40:11511168. Salinas, L.M., R.D. DeLaune, and W.H. Patrick Jr. 1986. Changes occurring along a rapidly submerging coastal area; Louisiana, USA. J. Coastal Res. 2:269284. Sbarra, David A, and Emilio Ferrer. 2006. The structure and process of emotional experience following nonmarital relat ionship dissolution: dynamic factor analyses of love, anger, and sadness. Emotion (Washington, D.C.) 6(2): 224238. Schneider, R.L. and R.R. Sharitz. 1988. Hydrochory and regeneration in a bald cypress water tupelo swamp forest. Ecology 69:10551063.

PAGE 384

384 Scrut on, D.A., Anderson, T.C. and King, L.W. 1998. Pamehac Brook: a case study of the restoration of a Newfoundland, Canada, river impacted by flow diversion for pulpwood transportation. Aquatic Conserv. Mar. Freshw. Ecosyst. 8:145157. SFWMD. 2002. Technical C riteria to Support Development of Minimum Flow and Levels for the Loxahatchee River and Estuary. Water Supply Department, Water Resources Management, South Florida Water Management District, West Palm Beach, FL. SFWMD. 2005. Draft Evaluation of Restorati on Alternatives for the Northwest Fork of the Loxahatchee River. Coastal Ecosystems Division, South Florida Water Management District, West Palm Beach, Florida, March 2005, draft. SFWMD. 2006. Restoration Plan for the Northwest Fork of the Loxahatchee River. Coastal Ecosystems Division, South Florida Water Management District, West Palm Beach, FL. SFWMD. 2009. Riverine and Tidal Floodplain Vegetation of the Loxahatchee River and its Major Tributaries. South Florida Water Management District (Coastal Ecosy stems Division) and Florida Park Service (5th District), West Palm Beach, FL. Shankin, J. and Kozlowski, T.T. 1985. Effect of flooding of soil on growth and subsequent responses of Taxodium distichum seedlings to SO2. Environ. Pollu t. 38: 199 212. Shumway, R.H., and D.S. Stoffer. 1982. An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3: 253 264. comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 272:14 35. na. 2008. Development and applications of the HYDRUS and STANMOD software packages, and related codes. Vadose Zone J. 7:587600. Skaags, W. 1991. Theory of Drainage Saturated flow. BAE 671 course notes. North Carolina State University, Raleigh Skalbeck, J.D., D.M. Reed, R.J. Hunt, and J.D. Lambert. 2008. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA. Hydrogeol J. 17:215228. Soil Survey Staff. 1981. Soil survey of Martin County area, Florida. USDA Soil Conserv. Serv., Washingto n, D.C. Souther, R. F., and G. P. Shaffer. 2000. The effects of submergence and light on two age classes of baldcypress (Taxodium distichum [L.] Richard) seedlings. Wetlands 20:697706.

PAGE 385

385 Swarzenski, P.W., W.H. Orem, B.F. McPherson, M. Baskaran, and Y. Wan. 2006. Biogeochemical transport in the Loxahatchee River estuary, Florida: The role of submarine groundwater discharge. Mar. Chem. 101:248265. TCRPC. 1995. Strategic Regional Policy Plan for the Treasure Coast Region, Rule 29K 5.002, Florida Administrat ive Code, Treasure Coast Regional Planning Council, Stuart, FL. Thompson, R.S., K.H. Anderson, and P.J. Partlein. 1999. Atlas of Relations between Climatic Parameters and Distributions of Important Trees and Shrubs in North America. USGS Professional Paper s 1650A, B, C. U.S Geol. Surv., Reston, VA. Thomson, D.M., G.P. Shaffer, and J.A. McCorquodale. 2001. A potential interaction between sealevel rise and global warming: implications for coastal stability on the Mississippi River Deltaic Plain. Global Plan et. Change 32: 49 59. Toth, D.J. 1987. Saltwater Intrusion Study, Phase II. St. Johns River Water Management District, Paltka, FL. Tulp, I., L.J. Bolle, and A.D. Rijnsdorp. 2008. Signals from the shallows: In search of common patterns in long term trends i n Dutch estuarine and coastal fish. J. Sea Res. 60:5473. Universidad de Granada. 2007. Seawater Intrusion Is the first cause of contamination of coastal aquifers. ScienceDaily. Available at http://www.sciencedaily.com/releases /2007 /07/070727091903.htm (verified 09 September 09). Universidad de Granada, Granada, Spain. USACE. 1996. Users Guide to RMA2, Version 4.3. Waterways Experiment Station Hydraulic Laboratory, U.S. Army Corps of Eng., Vicksburg, MS. USDA. 2002. Bald Cypress (Taxodium distichum [L.] Rich.) Fact Sheet. Available at http://npdc.usda.gov (verified 14 Feb 2010). NRCS Plant Materials Program, National Plant Data Center, U.S. Dep. of Agric. Washington, DC. US GS. 1999a. Land Subsidence in the United States. U.S. Geological Survey Circular 1182. U.S. Geol. Surv., Washington, DC. USGS. 1999b. Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America. USGS Prof essional Paper 1650 A&B. U.S. Geol. Surv., Washington, DC. USGS. 2000a. Sealevel and Climate. USGS Fact Sheet 00200. Available at http://pubs.usgs.gov/fs/ fs2 00 (verified 14 Feb 2010). U.S. Geol. Surv., Washington, DC. USGS. 2000b. Nutria, Eating Louisianas Coast. USGS Fact Sheet 02000. http://www nwrc.usgs.gov/factshts/02000.pdf (verified 14 Feb 2010).

PAGE 386

386 van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62:688696. van Genuchten, M. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci. Soc. Am. J. 44:892898. VanArman, J., G.A. Graves, and D.L. Fike. 2005. Loxahatchee watershed conceptual ecological model. W etlands 25:926942. Wang, F.C. 1987. Dynamics of intertidal marshes near shallow estuaries in Louisiana. Wet. Ecol. Manag. 5:31143 Wang, F.C. 1988. Dynamics of saltwater intrusion in coastal channels. J. Geophys. Res. 93: 69376946. Wanless, H. R. 1989. T he inundation of our coastlines. Sea Frontiers 35:264271. Wanless, H.R., R.W. Parkinson, and L.P. Tedesco. 1994. Sea level control on stability of Everglades wetlands. p. 199224. In S.M. Davis and J.C. Ogden (eds.) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, FL. Ward, T.H. and R.E. Roberts. 1996. Vegetation analysis of the Loxahatchee River corridor. Florida Park Service (5th District), Hobe Sound, FL. Wetzel, P. R. 2001. Plant Community Parameter Estimates and Documentat ion for the Across Trophic Level System Simulation (ATLSS). Accessed at www.tiem.utk. edu/~sylv/HTML/Everglades/VSModHTML/index.html (verified 14 Feb 2010). Wicker, K.M., D. Davis, M. DeRouen and D. Roberts. 1981. Assessment of extent and impact of saltw ater intrusion into the wetlands of Tangipahoa Parish, Louisiana. Coastal Environ. Inc., Baton Rouge, LA. Williston, H.L., F.W. Shropshire, and W.E. Balmer. 1980. Cypress management : a forgotten opportunity. USDA report SA FR 8. U.S. Dep. of Agric., Atlanta, GA. Winn, K., J. Rovis Hermann, and M. Saynor. 2004. Saltwater Intrusiona natural process. Supervising Scientist, October 2004. Wu, L.S. Y., J.S. Pai, and J.R.M. Hosking. 1996. An algorithm for estimating parameters of state space models. Stat. Prob. L etters 28:99106. Zahina, J.G. 2004. Vegetation community characteristics along the northwest fork of the Loxahatchee River and development of a salinity vegetation model. South Florida Water Management District, Technical Publication WS 19, 2004. Zobel, B and J. Talbert. 1984. Applied forest tree improvement. John Wiley and Sons. New York, NY.

PAGE 387

387 Zuur, A.F., R.J. Fryer, I.T. Jolliffe, R. Dekker, and J.J. Beukema. 2003b. Estimating common trends in multivariate time series using dynamic factor analysis. Envi ronmetrics 14:665 685. Zuur, A.F., E.N. Ieno, and G.M. Smith. 2007. Analysing Ecological Data. Springer, New York. Zuur, A.F., and G.J. Pierce. 2004. Common trends in Northeast Atlantic squid time series. J. Sea Res. 52:5772. Zuur, A.F., I.D. Tuck, and N Bailey. 2003a. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60:542 552. Zwick, PD and MH Carr. 2006. Florida 2060: a population distribution scenario for the state of Florida. A research project pr epared for the 1000 Friends of Florida. Gainesville, FL University of Florida.

PAGE 388

388 BIOGRAPHICAL SKETCH David Kaplan was born in Baltimore, MD and received a B.S. in agricultural and biological e ngineering from Cornell University in 2000. He worked on grant funded ecological research and restoration projects for the New York City Department of Parks and Recreation Natural Resources Group f rom 2001 to 2005 before pursuing his Ph.D. in agricultural and biological engineering at the University of Florida. He is a founding member of the Gainesville band Tanks in Series.