<%BANNER%>

History of Vitaceae Inferred from Morphology-Based Phylogeny and the Fossil Record of Seeds

Permanent Link: http://ufdc.ufl.edu/UFE0041067/00001

Material Information

Title: History of Vitaceae Inferred from Morphology-Based Phylogeny and the Fossil Record of Seeds
Physical Description: 1 online resource (326 p.)
Language: english
Creator: Chen, Iju
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: acareosperma, ampelocissus, ampelopsis, analysis, biogeography, cayratia, chalaza, cissus, cladistic, clematicissus, component, continuous, cyphostemma, exotegmen, fossil, fossils, gap, inflorescences, leaves, leea, lianas, morphology, morphometric, nothocissus, parthenocissus, pca, phyllotaxis, phyllotaxy, phylogenetic, phylogeny, pollen, principle, pterisanthes, rhoicissus, sarcotesta, seeds, stipules, tendrils, tetrastigma, tracheidal, ventral, vitaceae, vitaceous, vitis, weighting, yua
Botany -- Dissertations, Academic -- UF
Genre: Botany thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The Vitaceae, or grape family, contains around 900 species and 15 genera mainly having the liana growth form. Extant members of the family exhibit interesting geographical distribution patterns. Some genera are strictly regional; others display North America-Asia disjunction pattern. The family have a rich fossil record, particularly of seeds, in the Tertiary. Seeds of Vitaceae can be readily recognized by unique characters such as a dorsal chalaza and a pair of ventral infolds, and fossil seeds frequently have been identified to extant genera. The fossil seeds are potentially useful for inferring the past geographical distribution patterns of Vitaceae. To test whether seeds of Vitaceae can be identified to the generic level and used to properly identify/assess fossil seeds, 252 seeds, representing all 15 extant genera including the closest relatives Leea, were sampled for morphometric analyses. Seeds of genera mostly can be distinguished by a set of characters, nevertheless, some genera have very similar seeds. Such similar seeds may indicate closer phylogenetic relationships among these genera. Besides similarity comparison, a phylogeny of the family is also needed to interpret fossil affinities. Although intrafamilial relationships have been inferred previously from molecular work, none of these studies sampled all of the genera. Phylogenetic analyses based on morphological data have not been done previously. The morphological phylogeny presented here includes all genera of the family using 80 non-seed characters, plus 57 seed characters from the morphometric analyses. To test different theories of homology, the continuous characters are treated using two different coding methods. The morphological phylogeny resolves the 4-petaled genera as earlier branching lineages, sister to a clade containing primarily 5-petaled genera. Most fossil seeds from the Tertiary are indistinguishable from the extant seeds externally, however, some show combinations of characters not present in the sampled modern seeds. The affinities of six selected better preserved fossils were additionally tested by morphometric analyses and cladistic methods. Fossil seeds with oval chalazas are much more abundant than the ones with linear chalazas or perichalazas. The distribution of the fossils suggests that the lineages bearing perichalazal seeds have been restricted to the tropical regions since the Eocene.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Iju Chen.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Manchester, Steven R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0041067:00001

Permanent Link: http://ufdc.ufl.edu/UFE0041067/00001

Material Information

Title: History of Vitaceae Inferred from Morphology-Based Phylogeny and the Fossil Record of Seeds
Physical Description: 1 online resource (326 p.)
Language: english
Creator: Chen, Iju
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: acareosperma, ampelocissus, ampelopsis, analysis, biogeography, cayratia, chalaza, cissus, cladistic, clematicissus, component, continuous, cyphostemma, exotegmen, fossil, fossils, gap, inflorescences, leaves, leea, lianas, morphology, morphometric, nothocissus, parthenocissus, pca, phyllotaxis, phyllotaxy, phylogenetic, phylogeny, pollen, principle, pterisanthes, rhoicissus, sarcotesta, seeds, stipules, tendrils, tetrastigma, tracheidal, ventral, vitaceae, vitaceous, vitis, weighting, yua
Botany -- Dissertations, Academic -- UF
Genre: Botany thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: The Vitaceae, or grape family, contains around 900 species and 15 genera mainly having the liana growth form. Extant members of the family exhibit interesting geographical distribution patterns. Some genera are strictly regional; others display North America-Asia disjunction pattern. The family have a rich fossil record, particularly of seeds, in the Tertiary. Seeds of Vitaceae can be readily recognized by unique characters such as a dorsal chalaza and a pair of ventral infolds, and fossil seeds frequently have been identified to extant genera. The fossil seeds are potentially useful for inferring the past geographical distribution patterns of Vitaceae. To test whether seeds of Vitaceae can be identified to the generic level and used to properly identify/assess fossil seeds, 252 seeds, representing all 15 extant genera including the closest relatives Leea, were sampled for morphometric analyses. Seeds of genera mostly can be distinguished by a set of characters, nevertheless, some genera have very similar seeds. Such similar seeds may indicate closer phylogenetic relationships among these genera. Besides similarity comparison, a phylogeny of the family is also needed to interpret fossil affinities. Although intrafamilial relationships have been inferred previously from molecular work, none of these studies sampled all of the genera. Phylogenetic analyses based on morphological data have not been done previously. The morphological phylogeny presented here includes all genera of the family using 80 non-seed characters, plus 57 seed characters from the morphometric analyses. To test different theories of homology, the continuous characters are treated using two different coding methods. The morphological phylogeny resolves the 4-petaled genera as earlier branching lineages, sister to a clade containing primarily 5-petaled genera. Most fossil seeds from the Tertiary are indistinguishable from the extant seeds externally, however, some show combinations of characters not present in the sampled modern seeds. The affinities of six selected better preserved fossils were additionally tested by morphometric analyses and cladistic methods. Fossil seeds with oval chalazas are much more abundant than the ones with linear chalazas or perichalazas. The distribution of the fossils suggests that the lineages bearing perichalazal seeds have been restricted to the tropical regions since the Eocene.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Iju Chen.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Manchester, Steven R.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0041067:00001


This item has the following downloads:


Full Text

PAGE 1

1 HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009

PAGE 2

2 2009 Iju Chen

PAGE 3

3 To my parents and my sisters, 2-, 3-, 4-ju

PAGE 4

4 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fo ssil information, sharing the beautiful images of the fossils and reviewing the dissertatio n. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Da rio de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the pa leobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending exta nt Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by Na tional Science Foundation Doctoral Dissertation Improveme nt Grants award number 0608342.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........9 LIST OF FIGURES.......................................................................................................................11 ABSTRACT...................................................................................................................................14 CHAPTER 1 SEED MORPHOLOGY OF VITACEAE..............................................................................16 Introduction................................................................................................................... ..........16 Materials and Methods...........................................................................................................17 Results.....................................................................................................................................18 Leea Cissus and Cyphostemma .....................................................................................20 Tetrastigma and Rhoicissus .............................................................................................22 Acareosperma and Cayratia ............................................................................................24 Ampelocissus, Nothocissus, and Pterisanthes .................................................................26 Vitis, Ampelopsis, Clematicissus, Parthenocissus, and Yua ............................................26 Discussion...............................................................................................................................28 2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT TREATMENTS FOR CODING CONTINUOUS CHARACTERS................75 Introduction................................................................................................................... ..........75 Materials and Methods...........................................................................................................80 Taxon Sampling...............................................................................................................80 Terminology of Morphological Characters.....................................................................80 Character Measurement...................................................................................................82 Character Coding.............................................................................................................82 Phylogenetic Analyses.....................................................................................................84 Results.....................................................................................................................................85 Discussion...............................................................................................................................91 The Influences of Coding Methods.................................................................................91 Relationships Within the Family, Co mparisons with the Molecular Data......................92 Morphology of Vitaceae and Character Evolution..........................................................99 Growth habit.............................................................................................................99 Phyllotaxy...............................................................................................................101 Tendrils...................................................................................................................103 Stipules...................................................................................................................105 Leaves.....................................................................................................................106 Hairs.......................................................................................................................111 Sexuality.................................................................................................................112

PAGE 6

6 Inflorescence-branch architecture..........................................................................113 Inflorescences architecture.....................................................................................118 Floral morphology..................................................................................................121 Pollen morphology.................................................................................................125 Fruits.......................................................................................................................12 5 Seeds.......................................................................................................................126 Concluding Remarks............................................................................................................1 27 3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS..................................................................................................................................159 Introduction................................................................................................................... ........159 Materials and Methods.........................................................................................................162 Results and Discussion......................................................................................................... 165 Classification of Fossil Vitaceaous Seeds.....................................................................165 1) stAmpelocissus -wide infolds.............................................................................165 2) stAmpelocissus -rugose......................................................................................165 3) stAmpelopsis -smooth........................................................................................166 4) stAmpelopsis -rugose.........................................................................................167 5) stAmpelopsis -xs................................................................................................167 6) stVitis ................................................................................................................168 7) stVitis-Ampelopsis ............................................................................................168 8) stVitis rotundifolia ............................................................................................169 9) stParthenocissus ...............................................................................................169 10) stParthenocissus clarnensis ............................................................................170 11) stCayratia .......................................................................................................171 12) stTetrastigma ..................................................................................................171 13) st-perichalaza...................................................................................................171 14) uncertain specimens with affinity to Vitaceae.................................................172 Summary of seed t ype classification......................................................................173 Geographic Distribution of Fossil and Extant Vitaceous Seeds....................................175 Europe....................................................................................................................176 Siberia.....................................................................................................................177 Asia.........................................................................................................................177 North America........................................................................................................178 Central and South America....................................................................................180 Africa ......................................................................................................................180 Australia.................................................................................................................181 Summary of seed type distribution.........................................................................181 Phylogeny of Vitaceae...................................................................................................182 Phylogenetic Signals of the Seed Types........................................................................183 Biogeographical History................................................................................................187 Vitis, Ampelocissus, Ampelopsis, and Parthenocissus ...........................................187 Clematicissus, "Austrocissus", and Rhoicissus ......................................................189 Perichalazal seeds: Cissus Cyphostemma and Leea .............................................189 Tetrastigma and Cayratia .......................................................................................190

PAGE 7

7 Origin of the family: Timing? North? South?.......................................................191 Adaptation, ecology, and biogeography.................................................................193 Conclusion............................................................................................................................195 4 FOSSIL SEEDS OF THE GRAPE FA MILY AND THEIR PHYLOGENETIC POSITIONS...................................................................................................................... ....224 Introduction................................................................................................................... ........224 Materials and Methods.........................................................................................................224 Results...................................................................................................................................226 Discussion.............................................................................................................................231 Effects of Missing Data in the Phylogenetic Analyses.................................................231 Fossil Affinities.............................................................................................................2 32 APPENDIX A SPECIMENS INFORMATION OF THE VI TACEOUS SEEDS SAMPLED IN THIS STUDY.................................................................................................................................261 B SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES.......................265 C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE CLADISTIC ANALYSES OF VITACEAE........................................................................268 D DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WI TH DISCRETE CODING.................................................281 E DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH GW CODING.............................................................284 F DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE CONTINUOUS CHARACTERS TREATED WITH GW CODING..............287 G DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI CONTINUOUS CHARACTERS TR EATED WITH GW CODING..................................290 H DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS PARADOXA CONTINUOUS CHARACTERS TREATED WITH GW CODING............293 I DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI CONTINUOUS CHARACTERS TR EATED WITH GW CODING..................296 J DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS CLARNENSIS CONTINUOUS CHARACTERS TREATED WITH GW CODING............................................................................................................299

PAGE 8

8 K DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA CONTINUOUS CHARACTERS TR EATED WITH GW CODING....302 L DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TR EATED WITH GW CODING..................................305 M DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREA TED WITH DISCRETE CODING......................308 LIST OF REFERENCES.............................................................................................................311 BIOGRAPHICAL SKETCH.......................................................................................................326

PAGE 9

9 LIST OF TABLES Table page 1-1 Number of seeds sampled in the survey of vitaceous seeds..............................................32 1-2 Description and the variati on pattern of seed characters...................................................33 1-3 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 A.......................................................................................39 1-4 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 B.......................................................................................40 1-5 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 C.......................................................................................41 1-6 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 D.......................................................................................42 1-7 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 E.......................................................................................43 1-8 The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 F.......................................................................................44 3-1 Fossils classified as seed type st-Ampelocissus -wide infolds..........................................199 3-2 Fossils classified as seed type st-Ampelocissus -rugose...................................................200 3-3 Fossils classified as seed type st-Ampelopsis -smooth.....................................................201 3-4 Fossils classified as seed type st-Ampelopsis -rugose.......................................................203 3-5 Fossils classified as seed type st-Ampelopsis -xs..............................................................203 3-6 Fossils classified as seed type st-Vitis ..............................................................................204 3-7 Fossils classified as seed type st-Vitis-Ampelopsis ..........................................................206 3-8 Fossils classified as seed type st-Vitis rotundifolia ..........................................................207 3-9 Fossils classified as seed type st-Parthenocissus .............................................................207 3-10 Fossils classified as seed type st-Parthenocissus clarnensis ...........................................208 3-11 Fossils classified as seed type st-Cayratia .......................................................................209 3-12 Fossils classified as seed type st-Tetrastigma ..................................................................209

PAGE 10

10 3-13 Fossils classified as seed type st-perichalaza...................................................................209 3-14 Fossil vitaceous seeds not classified in this study...........................................................210 3-15 Groups of taxa sharing the same combinations of characters as the fossils listed in Tables 3-1 to 3-13............................................................................................................2 13 3-16 The stratigraphic distribution of the fossil vitaceous seed types from Europe................215 3-17 The stratigraphic distributi on of the fossil vitaceous s eed types from Siberia and Japan................................................................................................................................216 3-18 The stratigraphic distribution of the fossil vitaceous seed types from North America...217 3-19 The stratigraphic distribu tion of the fossil vitaceous seed types from Central America, South America, Africa, and Australia..............................................................218 3-20 Geographical distribution of extant genera of Vitaceae..................................................219 4-1 Numbers from the phylogenetic analyses........................................................................237 4-2 Fossil affinities to extant species inferred from the analyses presented in this study......238

PAGE 11

11 LIST OF FIGURES Figure page 1-1. The surface features of a vitaceous seed after removing the sarcotesta................................45 1-2. The measurements of the seed morphometric characters......................................................46 1-3. The seed coat anatomy of vitaceous seeds............................................................................47 1-4. Some examples showing the variation of endotestal sclereids in vitaceous seeds................48 1-5. Graphs showing individual values of se lected seed morphometric characters grouped by genera...................................................................................................................... ......49 1-6. The score plot of the first two com ponents from PCAs for 57 seed characters....................54 1-7. Seeds of Leea .........................................................................................................................58 1-8. Seeds of Cissus ......................................................................................................................60 1-9. Seeds of Cyphostemma ..........................................................................................................62 1-10. Seeds of Tetrastigma.................................................................................................... .......63 1-11. Seeds of Rhoicissus .............................................................................................................65 1-12. Seeds of Austrocissus" indistinguishable from Tetrastigma by PCAs..............................66 1-13. Seeds of Acareosperma spireanum .....................................................................................68 1-14. Seeds of Cayratia ................................................................................................................69 115. Seeds of Cissus antarctica ..................................................................................................70 1-16. Seeds of Vitis .......................................................................................................................70 1-17. Seeds of Ampelopsis ............................................................................................................71 1-18. Seeds of Austrocissus" undifferentiable from Ampelopsis by PCA...................................72 1-19. Seeds of Clematicissus ........................................................................................................73 1-20. Seeds of Parthenocissus ......................................................................................................74 1-21. Seeds of Yua ........................................................................................................................74 2-1. Strict consensus of 516 shortest trees from the morphological dataset in which the continuous characters were tr eated with discrete coding.................................................129

PAGE 12

12 2-2 The shortest tree from the morphological dataset in which the continuous characters were treated with GW coding..........................................................................................130 2-3 Character changes over selected branches on one of the shortest trees obtained from the morphological dataset in which the con tinuous characters were treated with discrete coding.................................................................................................................131 2-4 Character changes over selected branches (labeled 1-4) on the s hortest tree obtained from the morphological dataset in which th e continuous characters were treated with GW coding...................................................................................................................... .133 2-5 The shoot apex of Nothocissus spicifera .........................................................................135 2-6 The optimization of the char acter phyllotaxy (character 5).............................................136 2-7 The optimization of the charac ter leaf form (character 14).............................................138 2-8 The optimization of the character leaf teeth density (character 19).................................140 2-9 The inflorescence-branch of Cayratia japonica ..............................................................142 2-10 Inflorescences and tendrils...............................................................................................143 2-11 The optimization of the character inflor escence-tendril organi zation (character 43)......145 2-12 The optimization of the character floral merosity (character 54)....................................147 2-13 The optimization of the ch aracter lenticel density on fr uit surface (character 78)..........149 2-14 The optimization of the ch aracter endotesta sclereid width/length ratio (character 126)..................................................................................................................................151 2-15 The optimization of the character st omata on sarcotesta (character 130)........................153 2-16 The optimization of the character trac heidal cell diameter (character 131)....................155 2-17 The optimization of the characte r chalaza circularity (character 98)..............................157 3-1 The morphological phylogeny used for inferring the biogeography of Vitaceae............220 3-2 Geographic distribution of fossil and extant Vitaceae.....................................................222 4-1 The score plots of the first two principl e components from the PCAs including extant and fossil vitaceous seeds................................................................................................239 4-2 The affinities of fossil vitaceous seed s inferred from the morphological phylogenetic analyses in which the continuous char acters were coded with GW method, and backbone constraint applied.............................................................................................242

PAGE 13

13 4-3 The affinities of fossil vitaceous seed s inferred from the morphological phylogenetic analyses in which the continuous char acters were coded with GW method...................243 4-4 The affinities of fossil vitaceous seed s inferred from the morphological phylogenetic analyses in which the continuous character s were coded with discrete method, and backbone constraint applied.............................................................................................252 4-5 The affinities of fossil vitaceous seed s inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method..............254

PAGE 14

14 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy HISTORY OF VITACEAE INFERRED FROM MORPHOLOY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By Iju Chen December 2009 Chair: Steven R. Manchester Major: Botany The Vitaceae, or grape family, contains around 900 species and 15 genera mainly having the liana growth form. Extant members of the family exhibit interesting geographical distribution patterns. Some gene ra are strictly regional; othe rs display North America-Asia disjunction pattern. The family have a rich fossil r ecord, particularly of se eds, in the Tertiary. Seeds of Vitaceae can be readily recognized by uni que characters such as a dorsal chalaza and a pair of ventral infolds, and fossil seeds frequently have been identified to extant genera. The fossil seeds are potentially usef ul for inferring the past geographical distribution patterns of Vitaceae. To test whether seeds of V itaceae can be identified to th e generic level and used to properly identify/assess fossil seeds, 252 seeds, representing all 15 extant genera including the closest relatives Leea were sampled for morphometric analyses. Seeds of genera mostly can be distinguished by a set of characte rs, nevertheless, some genera ha ve very similar seeds. Such similar seeds may indicate closer phylogeneti c relationships among these genera. Besides similarity comparison, a phylogeny of the family is also needed to interpret fossil affinities. Although intrafamilial relationships have been inferred previously from molecular work, none of these studies sampled a ll of the genera. Phylogenetic analyses based on morphological

PAGE 15

15 data have not been done previously. The mo rphological phylogeny presented here includes all genera of the family using 80 non-seed char acters, plus 57 seed characters from the morphometric analyses. To test different theories of homolog y, the continuous characters are treated using two different coding methods. The morphological phylogeny resolves the 4petaled genera as earlier branching lineages, si ster to a clade containing primarily 5-petaled genera. Most fossil seeds from the Tertiary are indis tinguishable from the ex tant seeds externally, however, some show combinations of characters not present in the sampled modern seeds. The affinities of six selected bette r preserved fossils were addi tionally tested by morphometric analyses and cladistic methods. Fossil seeds wi th oval chalazas are much more abundant than the ones with linear chalazas or perichalazas. Th e distribution of the fossils suggests that the lineages bearing perichalazal seeds have been rest ricted to the tropical regions since the Eocene.

PAGE 16

16 CHAPTER 1 SEED MORPHOLOGY OF VITACEAE Introduction The seeds of Vitaceae are characterized by a pair of ventral infolds and a dorsal chalaza (Figure 1-1). The combination of these two characters is not found in seeds of other plant families, hence the identification of vitaceous seed s is relatively reliable. Fossil vitaceous seeds were abundant throughout the Tertia ry, and they have frequently been identified to the genericlevel (for example, Tiffney and Barghoorn, 1976). However, those id entifications were either 1) based on comparisons to limited samples of extant seeds; or 2) the sample sources and herbarium vouchers were not clearly indicated and the seed characters were not systematically documented and compared (for example, Latiff, 1994). The potential systematic value of seed char acters in this family has been recognized previously, although based on relatively limited sa mpling of extant species. Sssenguth (1953) mentioned that the configuration of the seed, as viewed in cross section, varies among genera. Corner (1976) emphasized the evolution of the perichalazal condition am ong vitaceous seeds. Periasamy (1962) discovered the va riation of the chalaza growth and the numbe r of layers in the seed coat mechanical tissues among some genera. A seed survey with more comprehensive sampling can help us understand the variation of seed characters w ithin the family and therefore provide a better interpretation for the fossil vi taceous seeds; and only through comparison to a broad sampling of extant seeds can one properly identify the extinct characters of the fossil seeds. A broad investigation of all observ able seed characters not only improves fossil identification but also provides information for interpreting the intrafamilial phylogenetic relationships.

PAGE 17

17 A potential pitfall of trying to identify s eeds to the generic level is that the traditionally/currently defined genera may not be monophyletic. In this study all seeds were sampled from the herbarium sheets with identif ications verified according to floral and vegetative morphology. Taxa considered to be paraphyletic based on molecular data, for example the compound-leaved/multiple-seeded Australian or South American endemic Cissus (Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007), were especially scrutinized. Leea the closest relative of Vitaceae (Ridsdale, 1974; Ingrouille et al., 2002), were also sampled for the seed survey. Leea was sometimes separated as a family (Ridsdale, 1974); th e growth forms of Leea are small trees or shrubs without tendrils. Shape characters can be more objectively compared if measured mathematically; therefore, in this study, morphometric methods were used to record the seed characters. This study presents a broad, well documented survey of extant vitaceous seeds; seed characters were compared, and principle component analysis (P CA) was applied to visualize th e morphological variability of seeds within the family. Materials and Methods The terminology of seed morphology used he re largely follows that of Tiffney and Barghoorn (1976) with slight modifi cation (Figure 1-1). Here, the chalaza is defined as the part of the vascular strand of the funicle buried under lignified tissues. The part of the vascular strand not covered by lignified ti ssues, which is lying on top of th e endotesta at the raphe region and continuing to the dorsal side, could be easily remove d with the soft tissues of sarcotesta. Rugae are defined as the unevenness or infolds of th e seed surface excluding those in chalaza and ventral infolds (vi). The Ruga apex refers to the raised part of the ruga; ruga sinus refers to the indentation. Terminology of test a anatomy follows that of Peri asamy (1962) and Corner (1976).

PAGE 18

18 Seeds were sampled from herbarium sheets an d processed as in Chen and Manchester (2007). Sources of sampled seeds, including those with pict ures shown in this paper, are listed in Appendix A. Cross sections of seeds were made by cutting through the cente r of chalaza at right angles to the seed surface. Anatomical feat ures of the testa were observed with a compound light microscope (LM) under 200x or 400x magnifi cation. Testa sclereids were examined by transmitted light microscopy from thin median cr oss sections of seeds prepared by hand with a razor blade. The cutting angle was adjusted to be parallel to the anticlinal sclereids in order to get an accurate counting of sclereid layer numbers. Sarcotestal and tracheidal cells were peeled or scratched off from the seeds. All slides were prepared with water. The measurements of all numerical characters were obt ained from pictures by using program Image J (Rasband, 19972006). Anatomical characters usually vary within the same seed ; the most frequently observed condition was recorded. PCAs we re performed with the software Minitab15 (Minitab Inc., US). Results A total of 252 seeds, representing 238 species, and 15 genera, or about one fourth of the species of the family worldwide, were sampled (Tab le 1-1). At least one f ourth of all species of each genus were sampled except for the large genera Cissus and Cyphostemma All species of the smaller genera were sampled, when possible. The seed charac ters are described in Table 1-2 and illustrated in Figures1-2 and 1-3. The outer integument of the vitaceous seed is composed of the soft outer sarcotesta and the lignified e ndotesta, i.e., the inner epidermis of the outer integument (Periasamy, 1962; Corner, 1976). The su rface features of the li gnified part of the seeds, including the pair of ventral infolds, th e dorsal chalaza, and rug ae (Figures 1-1 and 1-2; Table 1-2), were revealed by removing the sarcot esta. Cross sections of the seeds show the configuration of the ventral info ld cavities, angle of chalaza depr ession, and the thickness of the endotesta in various regions (Figur e 1-2; Table 1-2). The sarcotes ta contains several layers of

PAGE 19

19 parenchyma cells; raphides, druses, and mucilage are typical cell contents in the parenchyma, sometimes slightly lignified cells are present in th e sarcotesta. In contrast with the condition in vitaceous seeds, the sarcotesta of Leea is very thin, with little parenchyma tissue, and is devoid of crystals (Ridsdale, 1974). The cells in th e outer epidermis of the outer integuments are polygonal. Although it has not been reported previously, stomat a are present in the outer epidermis of the outer integument in certain specie s (Figure 1-3 A). The lignified endotesta is 1 to several cells thick; the cell shape of the e ndotesta sclereids and the thickness of the cell wall varies (Figure 1-3 B, Figure 1-4). The surface of the endotestal sclereids is pitted in all sampled seeds, and sometimes a prismatic crystal is pres ent in the cell lumen (Figure 1-4). The inner integuments (tegmen) are usually 3or 4-layere d (Figure 1-3 C). The outer epidermis of the inner integument is composed of tangentially elongate tracheidal cells with spiral to reticulate thickenings (Figure 1-3 D, E) (C orner, 1976). The exotegmic trache idal cells are usually one cell thick; however, in some seeds th e tracheidal cells are two cell thick, the outer layer has cells of small diameter (Figure 1-3 D) and the inner layer has cells of much larger diameter (Figure 1-3 E). The mesophyll cells of the inner integuments are thin-walled without thickening patterns and are usually crushed (Figure 1-3 C). Cells of th e inner epidermis of th e inner integuments are usually polygonal and contain mucilage (Figure 1-3 F). Among the 57 seed characters, seven are discre te, and the others are continuous. When arranging all measured values of a continuous character to a scaled attribute axis, it is usually not possible to define gaps that w ould objectively allow the differentia tion of the character into a few character states; only occasionally in certain characters extreme conditions present a large gap, separating one to a few taxa from all others. Nevertheless, patterns do exist, allowing generic differentiation. Those patterns are summarized in Table 1-2, and exemplified in Figure 1-5. Ten

PAGE 20

20 seeds of sampled species of Cissus have a different morphology from other species of this genus; they are labeled as "Austrocissus" (a term borrowed from Dr. Besty Jackes; personal communication) thoughout this article. These seeds belong to species of Cissus that are endemic in South America or Australia. The inflorescence and/or floral morphology of these species also differ from those of other Cissus (Chapter 2). Some of these Cissus species have been shown to be phylogenetically distinct from other Cissus (Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007). These ten seed s can be easily distinguished from other Cissus by chalaza length (C21) (Figure 1-5 F). They were excluded from the character variation pattern seeking process presented in Table 1-2 and Fi gure 1-5 because of the potential paraphyly of Cissus PCAs were employed to test how well the gene ra can be distinguished by seed characters (Figure 1-6, Tables 1-3 to 1-8). Since the seeds of all 15 genera cannot be well differentiated by a single PCA, PCAs were performed several tim es, each time with different divergent genera excluded. The variance explained in the first tw o principle components is low in all PCAs. Frequently the characters with high loading va lue in PCAs correspond to the observed variation patterns among genera (Table 1-2). Seeds of eac h genus were described according to the results of the PCAs. The characters with high loading va lues in the first two co mponents (Tablse 1-3 to 1-8) were assumed to be the diagnostic character s for distinguishing seeds of different genera. The similarity of "Austrocissus" to other vitaceous seeds was in terpreted according to the results of the PCAs. Leea Cissus and Cyphostemma The score plot of a PCA with all 57 seed char acters and all 252 sampled seeds is shown in Figure 1-6 A, and the loading values from the analysis are shown in Table 1-3. Seeds of Leea Cissus and Cyphostemma can be distinguished clearly from the rest of the family in the analysis

PAGE 21

21 (Figure 1-6 A). They all have seeds with long (C21, Figure 1-5 F) and linear chalaza (C18, Figure 1-5 E) visible from the vent ral side and terminated very near to the beak at the dorsal side (C23), a condition termed perichalaza by Corner ( 1976). In addition, these seeds are mostly not compressed or laterally compressed (C30), with short ventral infolds (C9, Figure 1-5 C), and linear or irregular shaped ventral infold cavities (C33) (the high loading value in Table 1-3). Leea usually has six-seeded fruits, and the s eeds are laterally comp ressed (C30) (Figure 17). Their ventral infolds (C53) and rugae are covered by sclere ids on the surface, with faint markings on the seed surface showing the outlines of the infolds and rugae (lateral views, Figure 1-7). The Y-shaped dorsal infold (cross sections Figure 1-7) underneath the perichalaza (Figure 1-7 F), and a pair of longitudina lly arranged rugae (C39) (lateral views, Figure 1-7) are unique features of the genus. The longitudinal rugae of Leea can be unbranched (Figure 1-7 A, B), branched (Figure 1-7 C), or highl y branched (Figure 1-7 D, E, F) and the endotesta in the rugae is not well developed (C44) (cross sections, Figure 1-7). Cissus (Figure 1-8) and Cyphostemma (Figure 1-9) are usually one-seeded, and laterally compressed seeds (C30) occur in some species of Cissus (Figure 1-8 B, E, F). Seeds of both genera can be smooth or rugose (C24). When rugose the rugae usually form protruding ridges on the seed surface and do not fold d eep into the endosperm (C26) in Cissus (Figure 1-8 C, D, E) and Cyphostemma (Figure 1-9); extremely rugose seeds (Fig ure 1-8 F) are rare in both genera. The opening of the ventral infolds on the seed surface is usually linear in Cissus ; but, wide ventral infolds do exist in at least one species of Cissus (Figure 1-8 D). The endotesta sometimes is extremely thickened along the chalaza (C43) and forms a sharp ridge (Figure 1-8 E) in some species of Cissus

PAGE 22

22 Seeds of Cyphostemma and Cissus are not distinguished from each other in the PCA (Figure 1-6 A); however, all seeds of Cyphostemma have extra layers of sclereids covering on the surface of ventral infolds (C53), and the vascul ar strand on the raphe region is also wrapped inside the endotesta (cross sections, Figure 19). The feature of ve ntral infolds covered by endotesta (C53) is present in all Leea and Cyphostemma but absent in all other vitaceous seeds examined. The ventral infold cavities of Cyphostemma are linear to irregularly shaped in cross section (Figure 1-9); the longitudinal section shows the unique ruminating pattern of the ventral infolds (Figure 1-9 C). The ten "Austrocissus" seeds do not possess a perichalaza and therefore were not grouped with other Cissus in the PCA (Figure 1-6 A). These seeds are subsequently compared to other vitaceous seeds. Tetrastigma and Rhoicissus A PCA was performed with non-perichalaza l seeds, i.e., with all seeds except Leea Cissus and Cyphostemma (Figure 1-6 B; Table 1-4). Tetrastigma and Rhoicissus can roughly be separated from other non-perichalazal seeds by th eir linear chalaza (C18), wh ich is located near the apical notch (C22) and exte nds toward the beak (C23), long, narrow, sometimes divergent ventral infolds (C8, 9, 11, 15), and rugose surface (C24, 26) (high loading value in Table 1-4). Five species of "Austrocissus" belong to the group of Tetrastigma and Rhoicissus. Another PCA including Tetrastigma, Rhoicissus, and the five "Austrocissus" shows that the five "Austrocissus" are more similar to Tetrastigma, and that Rhoicissus still cannot be well separated from some species of Tetrastigma (Figure 1-6 C). The seed morphology of Tetrastigma is diverse (Figure 1-10). Many seeds have long (C9) and divergent (C15) ventral infolds (Figure 1-10 A, B, C, G) and linear chalaza (C18) (Figure 110 A, B, G). However, not all species of Tetrastigma have linear chalazas; oval chalazas (C18 >

PAGE 23

23 0.5, Figure 1-5 E) occur in some species (Figure 1-10 C, D, E, F). Neither is long ventral infolds (C9, Figure 1-5 C) a cons istent character in Tetrastigma (notice the short ventral infolds Figure 1-10 E, F). These are the main reasons that seeds of some Tetrastigma were not well separated from those of other genera in the anal ysis (Figure 1-6 B). Many species of Tetrastigma have oblong seeds; the rugae dissect into the endosperm with sharp angle and the endotesta at the ruga sinus is not well lignified and is similarly thin to that inside th e ventral infold cavities (C26, 44, Table 1-4; cross and longitudinal sections in Fi gure 1-10 A). On the seed surface, the rugae appear as horizontal furrows flanking the elongat e chalaza (Figure 1-10 A). Nevertheless, not all Tetrastigma have this kind of rugae; the more typical rugae observed in other vitaceous seeds shallow ruga sinus angle and well developed endotesta at ruga si nus also occur in Tetrastigma (Figure 1-10 B, E, F). Most species of Tetrastigma do not have apical grooves (C28) and the chalaza is not sunken (C36, 37; Table 1-5); nevert heless, a few species have the chalaza sunken deep into the endosperm (Figure 1-10 G). Endot esta thickness ( C42, 43; Ta ble 1-5) also varies greatly among species of this ge nus. Some species, for example, T. hainanense T. henryi T. erubescens, T. caudataum do not possess well developed endotesta; the endotesta is one-cell thick and not lignified. The lack of a lignifi ed endotesta is a character observed only in Tetrastigma. A unique character observed only in Tetrastigma and Acareosperma is the Vshaped ventral infold cavities (C 56); the endotesta at the notch part of the V-shaped ventral infold cavity is thickened and ligni fied (Figure 1-10 F). The four Tetrastigma seeds near Rhoicissus in the PCA score plot in Figure 1-4 C have the distinct V-shaped ventral infold cavities; however, this discrete character wa s not well explained by the first two principle components.

PAGE 24

24 Seeds of Rhoicissus are rugose (C24), with a linear chalaza (C18), and divergent infolds (C15) (Figure 1-11). The long (C21) and sunken chalaza (C36, 37) of R. rhomboidea is very similar to those in some species of Tetrastigma (Figure 1-10 G). The ventral infolds of most Rhoicissus are not as long as most Tetrastigma (C9, Figure 1-5 C). However, this character, and most other characters of the two genera have overlapping ranges of variation. Diagnostic characters that separated these two genera could not be unambiguously identified. Among the five "Austrocissus" seeds that grouped with Tetrastigma in the PCA (Figure 16 B, C; Figure 1-12), Cissus penninervis C. hypoglauca and C. sterculiifolia (Figure 1-12 A-C) are Australian endemics. They have linear chal aza (C18), long ventral in folds (C9), and rugose surface (C24); they are indisti nguishable from the seeds of Tetrastigma. Cissus trianae and C. granulosa (Figure 1-12 D, E) are South American e ndemics. Their chalazas are not as linear (C18) as the Australian "Austrocissus" and the near apex-positioned pyriform chalaza of C. gradulosa (Figure 1-12 E) is a featur e present in some seeds of Ampelopsis (see description of Ampelopsis ). Nevertheless, rugae of these two species have undeveloped e ndotesta at the ruga sinus (C44; Figure 1-12 D, E), a character present in seeds of Leea some Tetrastigma, and some Rhoicissus. Acareosperma and Cayratia Another PCA was conducted with all seeds except Leea Cissus Cyphostemma Tetrastigma, Rhoicissus, and the Tetrastigma -like "Austrocissus" (Figure 1-6 D, Table 1-6). The resulting score plot s hows the distinctness of Acareosperma and Cayratia is well separated from the rest (Figure 1-6 D). Seeds of Acareosperma and Cayratia usually have a narrow chalaza (C19), polygonal endotestal sclereid s (C46) (Figure 1-5 J), multiple layers of endotestal sclereids (C48), sarcotestal stomata (C50), and two layers of different sized tegm ic tracheidal cells (C52) (high loading value in Table 1-6); these characters distinguish the s eeds of these two genera from

PAGE 25

25 those of Ampelocissus Nothocissus, Pterisanthes, Vitis Ampelopsis Clematicissus Parthenocissus, and Yua (Figure 1-6 D). Seeds of Acareosperma are relatively large (C1) and highly compressed dorsiventrally (C30) (Table 1-6). The whorled spiny rugae (C54) are a distinct feature present in only this monotypic genus (Figure 1-13). The seeds have V-shaped ventral infold cavities (C56) (cross section, Figure 1-13) sim ilar to those of some Tetrastigma (Figure 1-10 F). This species is endemic to Laos; it has only been collected on ce and the flowering materials have never been collected. The establishment of the genus is largely based on its vi sually distinct seeds (Gagnepain, 1919). Seeds of Cayratia have linear (Figure 1-14 A, B, D, E) to oval chalaza (Figure 1-14 C) (C18, Figure 1-5 E) sometimes extending to the ap ical notch (Figure 1-14 A-D) (C22; Figure 1-5 G); their ventral infolds are either narrow (Figur e 1-14 A, C, E) or wide (Figure 1-14 B, D) (C35, Figure 1-5 H), usually not dive rgent (C15, Figure 1-5 D), and the surface is usually rugose (C24), sometimes with very shar p ruga ridges (C27) (Figure 1-14 A, B). Nevertheless, smooth seeds also exist in Cayratia (Figure 1-14 C). Some seeds of Cayratia have the lateral margin folded inward forming a constricted rim (pore) on the ventral side (C57) (Figure 1-14 D, E), a character not present in other genera. The endosperm is e ither present in the region of the constricted rim (Figure 1-14 D) or absent (Figure 1-14 E). This is a visually distinct character; however, it was not explained well in the PCA (Figure 1-6 D). Among the five seeds of "Austrocissus" involved in this level of comparison, Cissus antarctica is not grouped with the other four (Figure 1-6 D). Cissus antarctica has a linear chalaza (C18) and shallow ventral infolds (C34) (F igure 1-15); its endotesta at ventral infold cavities (C42) and the ruga sinus region (C44) is thickened (Figure 1-15). All other sampled

PAGE 26

26 vitaceous seeds have less well developed endotes ta at ventral infold cavities and ruga sinus; hence, the condition present in C. antarctica is unique. Cissus oblonga, a species endemic to Australia with overall morphology similar to C. antarctica, has same kind of seeds as C. antarctica (observed but not measured). Ampelocissus, Nothocissus, and Pterisanthes A PCA was performed excluding all of the above-mentioned genera, but including seeds of Ampelocissus Nothocissus Pterisanthes Vitis, Ampelopsis Clematicissus, Parthenocissus Yua and four "Austrocissus" taxa (Figure 1-6 E, Table 1-7). Seeds of Ampelocissus, Nothocissus and Pterisanthes can more or less be separated from the rest by their larger size (C1), widest part of the seeds mostly near center (C3), long ventral in folds (C9, Figure 1-5 C), relatively narrow chalaza (C19) which is mostly center-positio ned (C22, Figure 1-5 G), and greater degree of dorsiventral compression (C30) (characters in the first component, Table 1-7). The two Ampelocissus species are inseparable from Vitis (Figure 1-6 E); they are A. erdvendbergiana and A. robinsonii both endemic in Central America. The two species have smaller (C1) heartshaped seeds (C3) and resemble those of Vitis Seeds of Nothocissus are similar to the extremely rugose seeds of some species of Ampelocissus ; Pterisanthes and A. pauciflora can be differentiated from the rest of Ampelocissus by their round seeds and ro und ventral infolds (Chen and Manchester, 2007). Detailed description and figures of seed of Ampelocissus, Nothocissus and Pterisanthes were published previously (Chen and Manchester, 2007) and not repeated here. None of the four "Austrocissus" taxa has seeds similar to Ampelocissus (Figure 1-6 E). Vitis, Ampelopsis, Clematicissus, Parthenocissus, and Yua A PCA was conducted with Vitis Ampelopsis, Clematicissus, Parthenocissus, Yua and the four remaining "Austrocissus" taxa (Figure 1-6 F, Table 1-8). Seeds of Vitis Ampelopsis and Parthenocissus are well separated in the PCA by many ch aracters (characters with high loading

PAGE 27

27 values in Table 1-8); Clematicissus and the four "Austrocissus" have seeds more similar to those of Ampelopsis ; seeds of Yua are closer to Ampelopsis or Vitis (Figure 1-6 F). The seeds of these five genera are typically small (3-7mm) (C1, Figure 1-5 A), and with an oval chalaza (C18, Figure 1-5 E). Seeds of Vitis (Figure 1-16) usually have short ventral infolds (C9, Figure 1-5 C) and an oval chalaza not touching the chalaza notch (C2 2, Figure 1-5 G). Their apical and/or basal grooves are sometimes prominent (Figure 1-16 B, C). The endotesta is relatively thick (C40, Figure 1-5 I), and well developed inside the vent ral infold cavities (C42) (cross section, Figure 116 A, B). The seeds are usually smooth, however species with rugose seeds (C24) also exist (Figure 1-16 B). Vitis rotundifolia has larger seeds with faintly rugose surface; its ventral infolds are longer compared to other species of Vitis and the endotesta is thinner and less developed in the ventral infolds than other Vitis (Figure 1-16 C). Seeds of Ampelopsis (Figure 1-17) have short ventral infolds (C9, Figure 1-5 C) that are sometimes divergent (C15, Figure 1-5 D). Th e ventral infolds (C35, Figure 1-5 H) can be narrow (Figure 1-17 A, B) or wi de (Figure 1-17 C), sometimes w ith the widest part near the apices (C10) (Figure 1-17 A). Their apical notches are usually not prominent (C4), and the chalaza is positioned close to the notch (C22, Figure 1-5 G; Figure 1-17). The chalaza is sometimes more linear (C18, Figure 1-5 E; Figure 1-17 A), or pyriform (C 20) (Figure 1-17 B). The endotesta is well developed near the ventral infold opening but is much thinner inside the ventral infold cavities (C32), and the ventral infold cavities are rounded (C33) (cross section, Figure 1-17). The seed surface (C24) is either smooth (Figure 1-17 A, B) or rugose (Figure 1-17 C, D). The four seeds of "Austrocissus" including C. simsiana, C. tweedieana and the two subspecies of C. striata, have seeds with the features of Ampelopsis (Figure 1-18).

PAGE 28

28 Clematicissus was originally monotypic, containing only C. angustissima (Jackes, 1989b). The seeds of C. angustissima possess only one ventral infold (C 55) (Figure 1-19 A), a feature not observed in any other vitaceous seeds. Clematicissus opaca was later transferred from Cissus to this genus (Jackes and Rossetto, 2006). Both specie s have an oval chalaza, and the ventral infold cavities are similar to those of Ampelopsis in cross section (Figure 1-19 ); nevertheless, in ventral view, their ventral infolds are longer than those of Ampelopsis (C9, Figure 1-5 C). Parthenocissus seeds typically have l ong (C9, Figure 1-5 C) and divergent (C14, Figure 15 D; C15) ventral infolds, a deep and sharp ap ical notch (C4; C5, Fi gure 1-5 B), and an oval chalaza located immediately below the notch (C22, Figure 1-5 G). The endotesta is usually thin (C40, Figure 1-5 I), with only one layer of sclereids (C48) (Figure 1-20 A). Parthenocissus heptaphylla is the only sampled Parthenocissus seed with endotesta of regular thickness (Figure 1-20 B). The seeds of the two sampled Yua species are not similar to each other (Figure 1-21). Yua austro-orientalis has rugose seeds (C24) with narrow ventral infolds (C35) and center-positioned chalaza (C22) (Figure 1-21 A). The seeds of Y. austro-orientalis resemble some Ampelocissus externally (Chen and Manchester, 2007), however, the endotesta of Y. austro-orientalis is thicker (C40) than that of Ampelocissus, and the thickness is comparable to that of Vitis (Figure 1-5 I). Yua chinenses has smooth seeds (C24) with narrow ventra l infolds (C35), a shallow apical notch (C5), and an oval chalaza positi oned near the apical notch (C22) (Figure 1-21 B). The seed resembles Ampelopsis both externally, and in the configuration of the ventral infold cavities as seen in cross section (C32, C33) (Figure 1-21 B). Discussion The intrageneric variation range of the seed morphometric characte rs frequently overlaps among genera. Nevertheless, patterns of variati on among genera can still be perceived (Figure 1-

PAGE 29

29 5). By relative comparison of selected sets of characters, some of the vitaceous seeds can be distinguished to the generic leve l, as demonstrated by the results of the PCAs (Figure 1-6); however, similar seeds belonging to different genera do exist. The discrete characters were not always depicted by the algorithm of PCA and have to be examined separately; seeds of Cyphostemma in fact can be easily separated from Cissus by a single discrete character (C53). Seeds of Pterisanthes and Nothocissus are similar to some Ampelocissus (Figure 1-6 E) (Chen and Manchester, 2007). Two species of Ampelocissus have seeds that are not well separated from those of Vitis (Figure 1-6 E). The molecula r phylogeny suggested the monophyly of Ampelocissus Pterisanthes and Nothocissus with Vitis being sister to this clade (Soejima and Wen, 2006; Wen et al., 2007). The similarity among seeds of certain Ampelocissus Pterisanthes Nothocissus and Vitis can be explained by the close phylogenetic relationships of these genera. Seeds of Rhoicissus cannot be well distinguished from those of Tetrastigma (Figure 1-6 B, C); however, current molecular data do not support a clos e relationship between these two genera (Soejima and Wen, 2006; Wen et al., 2007). Nine species of "Austrocissus" included in this seed survey have seeds either similar to Tetrastigma or Ampelopsis and one of them, C. antarctica has unique features in its endotesta. Cissus striata and C. simsiana were grouped with Rhoicissus and Ampelopsis was sister to this monophyletic clade in the GAI1 phylogeny (Wen et al., 2007). Cissus striata and C. tweedieana were grouped with Clematicissus based on trnL-trnF data (Rossetto, 2007). Cissus striata, C. simsiana, C. tweedieana and Clematicissus all have Ampelopsis -like seeds; hence, the seed morphology seems to support their close relationship. Cissus antarctica C. oblonga, and C. hypoglauca for med a strongly supported clade se parated from other non-Australian Cissus but their relationships within the family are uncertain (R ossetto, 2007). None of the published molecular

PAGE 30

30 phylogenies has a complete sampling that includes every genus of the fam ily. The within-family relationship, especially the placement of Rhoicissus Clematicissus and "Austrocissus" remains uncertain. Morphological phylogen etic analyses including all ge nera and eight species of "Austrocissus" with 80 non-seed character s and the 57 seed characters presented in this study, have been completed (Chapter 2) independently of molecular work to provide hypotheses of relationships. Some issues related to the identification of fossil vitaceous seeds can already be foreseen. If fossil seeds possess a morphology identical to more than one extant genera, the affinities of the fossils would be problematic, unless those genera with overlapping seed morphology are monophyletic, as in the example of Ampelocissus, Nothocissus and Pterisanthes The hypotheses of the within-family rela tionships certainly affect how th e affinities of the fossils can be interpreted. In addi tion, fossil identification unavoidably depends on the availability/preservation of the characters. Some Tetrastigma may not be well separated from seeds of other genera with rugose surface, oval chalaza and/or short ventral infolds (Figure 1-6 B; Figure 1-10 D, E, F) although detailed comp arisons on additional characters may separate them; and some seeds of Cayratia may have external morphology similar to oval chalazal seeds from other genera (for example, Figure 1-14 C) although testa anatomy can distinguish them (Figure 1-6 D; Table 1-6). Fossils often do not have every se ed character well preserved; without all seed characters, some foss ils may not be unequivocally identified. Based on the PCAs performed in this study, shape and position of ventral infolds and chalaza, shape of ventral infold cavities, and te sta anatomy are characters that can generically differentiate vitaceous seeds. These characters are potentially informative for intrafamilial relationships. Among these characters, the features of testal anatomy were generally not applied

PAGE 31

31 prior to this study. In addition, prior studies employed subjective, qualitative comparisons, rather than rigorous mo rphometric comparisons. The association of oval chalaza (C18), column ar endotesta sclereids (C46), and smaller diameter tegmic tracheidal cells (C51) to th e taxa primarily possessing 5-merous flowers Ampelocissus Vitis Ampelopsis Parthenocissus, and Yua (Table 1-2; Figure 1-5) can be observed from this seed survey. The monophyly of the taxa with 5-merous flowers had been suggested from the GAI1 sequence data (Wen et al., 2007); these seed characters can be interpreted as synapomorphies of this clade. Seed characters are not only valuable in dertermining intrafamilial relationships, they may also be used for the assessment of interfamilial relationships. The paired ventral infolds, constantly present in all vitaceous seeds except Clematicissus angustissima are a unique feature for this family. Ruminate seeds occur in a few plant families (Corner, 1976), however, their ruminations do not have a fixed pattern like the ve ntral infolds of Vitaceae. Perichalazal seeds occur in other plant families such as Annon aceae and Monimiaceae (Corner, 1976). Stomatal exotesta is known in 19 other plant families (C orner, 1976). Tracheidal exotegmen also occurs in at least Rutaceae, Dilleniaceae (Corner, 1976), Myristic aceae, Trochodendraceae, Oxalidales, Peraceae (Stevens, 2001 onwards). Whether simila r seed characters can improve/provide the interpretation of the within-family relationship in these plant families, or at higher levels of phylogeny, is worthy of further investigation. An affinity between Vitaceae and Dilleniaceae has been suggested by some molecular data, and test al anatomy was considered one of the likely synapomorphies (Nandi, Chase, and Endress, 1998; Hilu et al., 2003). The detailed documentation of seed characters from this study provides a foundation for further comparison.

PAGE 32

Genus number of seeds sampled number of species sampled estimated total species number Acareosperma 111 Ampelocissus 35 32 94 Ampelopsis 12 12 25 Cayratia 17 15 63 Cissus 69 66 350 Clematicissus 222 Cyphostemma 22 22 250 Nothocissus 111 Parthenocissus 881 5 Pterisanthes 542 0 Rhoicissus 651 2 Tetrastigma 43 38 95 Vitis 15 15 60 Yua 223 Leea 14 13 32 total 252 236 1023Table 1-1. Number of seeds sampled in the survey of vitaceous seeds.

PAGE 33

Character Description Variation patterns among genera C1seed max lengthlateral view; Frete's diameter (calculated by Image J) of seed lateral perimeter (P1). 3-27 mm; Vitis Ampelopsis Parthenocissus and Clematicissus have small seeds (< 7 mm); species with largest seeds belongs to Cissus C2seed width/length ratioventral view; seed width (L1) divided by seed length (L2). most seeds have values > 0.6; some species of Cissus and Tetrastigma have more elongate seeds (< 0.6). C3seed apex to widest partventral view; distance from seed apex to seed widest part (L3) divided by seed length (L2). most seeds have their widest part above the center (< 0.5). C4apical notch depthventral view; distance from seed apex to lowest point of apical notch (L4) divided by seed max length. deep in Parthenocissus (> 0.05); all sampled Cissus and Leea have no apical notch (= 0). C5apical notch angleventral view; angle of apical notch (A1). all Parthenocissus have a sharp angle less than 60. C6beak length ventral view; length of beak (L5) divided by seed max length; for Leea and Cissus if raphe curved strongly measure from lateral view all Parthenocissus Cyphostemma and Leea have values less than 0.1. C7beak angle ventral view; angle of beak (A2); for Leea and Cissus if raphe curved strongly measure from top view all Parthenocissus Pterisanthes Cyphostemma and most Ampelopsis Rhoicissus and Leea have beak angle more than 80. C8vi circularity ventral view; circularity (calculated by Image J) of the perimeter of one ventral infold (P2); for Leea and Cyphostemma measure the outline of the marking of the extra testa. < 0.4 in all Clematicissus Parthenocissus Yua Nothocissus Acareosperma Tetrastigma Rhoicissus Cyphostemma and Leea C9vi length ventral view; Frete's diameter (calculated by Image J) of the ventral infold perimeter (P2) divided by seed max length. Clematicissus, Parthenocissus, Ampelocissus P terisanthes Nothocissus and Tetrastigma mostly have long ventral infolds (> 0.6); other genera mostly have values less than 0.6.Table 1-2. Description and the variation pattern of seed characters. Refer to Figure 1-2 for the measurements of length (L), angle (A), and perimeter (P). Characters measured under LM are shown in Figure 1-3. Images of the discrete characters can be found in other figures in this article.

PAGE 34

C10vi apex to widest partventral view; distance from the apex of the ventral infold to the widest part of the ventral infold (L6) divided by the Frete's diameter of P2; ventral infold with equal width whole length has widest part at the middle. Clematicissus and most Ampelopsis have widest part near apex (< 0.4). C11vi space at the apexventral view; distance between the apexes of the two ventral infolds (L7) divided by seed width (L1). Clematicissus angustissima have only one vi therefore characters related to vi space were measured as 0. most Parthenocissus Rhoicissus and Tetrastigma have values more than 0.5. C12vi space at the middleventral view; distance between the middle points of the two ventral infolds (L8) divided by seed width (L1). Rhoicissus and Parthenocissus have vi widely spaced at the middle (> 0.35); in most Tetrastigma the ventral infolds are closely spaced at the middle. C13vi space at the baseventral view; distance between the bases of the two ventral infolds (L9) divided by seed width (L1). more than 0.15 in all Ampelopsis and most Vitis. C14vi space base to middle ratio ventral view; vi space at the base divided by vi space at the middle. in most Leea the ventral infolds are divergent toward the base (> 1). C15vi divergence angleventral view; the angle made from the two straight lines along the inner side of the two ventral infolds from apex to middle (A3) large (> 25) in most Rhoicissus Parthenocissus Tetrastigma and some Ampelopsis C16vi curve angle ventral view; curve angle along the inner side of the ventral infold (A4); smaller than 180 means the convex side facing the center of the seed. many Tetrastigma have curve angle less than 180. Most seeds have straight ventral infolds, or the ventral infolds are curve in the opposite direction. C17vi base to beak distanceventral view; distance from the base of one ventral infold to the tip of the beak (L10) divided by seed max length. all Ampelopsis and Vitis have values more than 0.2; most Leea, Clematicissus, Parthenocissus, Ampelocissus, Nothocissus and Pterisanthes have values less than 0.2. C18chalaza circularitydorsal view; circularity of the perimeter of the chalaza (P3). most Clematicissus Ampelopsis Parthenocissus Yua Vitis Ampelocissus Nothocissus and Pterisanthes have an oval chalaza (> 0.5). C19chalaza width dorsal view; chalaza width at widest part (L11) to seed width (L1) ratio. most oval chalazal seeds (C18 > 0.5) have values more than 0.25 except some Vitis Ampelocissus, and Pterisanthes. Character Description Variation pattern among generaTable 1-2. Continued.

PAGE 35

C20chalaza apex to widest part dorsal view; distance from chalaza apex to chalaza widest part (L12) divided by chalaza length in dorsal view (L13); linear chalaza have widest part in the middle some Ampelopsis has pyriform chalaza (> 0.6). C21chalaza length lateral view; length of chalaza (L14) divided by seed max length. distinctly long in Leea Cissus and Cyphostemma (> 1.4). C22chalaza to notch distancedorsal view; distance from chalaza apex to the lowest point of apical notch (L15) divided by the length from apical notch to beak (L16). > 0.1 in Vitis most Ampelocissus Nothocissus and Acareosperma ; mostly < 0.1 in other genera. C23chalaza to beak distancelateral view; distance between chalaza base and the tip of beak (L17) divided by seed max length. clear gap between Leea and others (< 0.1), all Cyphostemma and most Cissus have values between 0.1-0.4, oval chalazal seeds usually have values more than 0.4. C24external rugositylateral view; the difference of the seed lateral perimeter (P1) and the perimeter of the fit ellipse of P1 (claculated by Image J) divided by the perimeter of the fit ellipse of P1. < 0.2 corresponding to a visually smooth seed. The rugae of Leea are covered by lignified endotesta and the seeds have smooth surface. All sampled Leea, Clematicissus, Parthenocissus and Pterisanthes have smooth seeds; all sampled Rhoicissus and Tetrastigma have rogose seeds. C25raphe curve anglelateral view; curve angle along the longitudinal raphe/ventral surface (A5). Many species of Cissus have concave raphe (< 180). C26ruga sinus anglelateral view; angle of ruga sinus (A6). A smooth seed is measured as 180. less than 50 in all Leea Rhoicissus and most Tetrastigma. C27ruga ridge anglelateral view; angle of ruga ridge (A7). some Cayratia have very sharp ridges (< 85); rugose Ampelocissus have ruga ridge angle between 85-155; most Tetrastigma do not have a sharp ruga ridge (> 155). C28apical groove angletop view; angle of apical groove (A8). < 150 corresponding to the obvious presence of the groove. Presen t in most Parthenocissus Ampelocissus and Vitis. C29basal groove anglebottom view; angle of basal groove (A9). present in all Vitis (< 150). Character Description Variation pattern among generaTable 1-2. Continued.

PAGE 36

C30cs high/width ratiocross section; cross section high (L18) divided by width (L19). most seeds have values < 0.9; > 0.9 in most Leea Cyphostemma and Cissus. C31vi rugosity cross section; difference of the perimeter of the ventral infold cavity (P4) and the perimeter of the fit ellipse of P4 (calculated by Image J) divided by the perimeter of the fit ellipse of P4. < 0.26 in most Cayratia Ampelopsis and Vitis ; > 0.26 in all Rhoicissus Parthenocissus and Yua. C32vi thin part ratiocross section; ratio of length of ventral infold cavity with adruptively thinner testa (L20) to the whole length (L21); equal to one if the endotesta lining the cavity has consistant thickness. present in all Rhoicissus most Ampelopsis and some species from other genera (< 0.85). C33vi thin part circularitycross section; circularity of the perimeter of the ventral infold cavity with adruptively thinner testa (P5); if vi thin to thick part ratio = 1 measure circularity of P4. a circular vi cavity lining with thin endotesta is a distinct feature for Ampelopsis (> 0.72). C34vi depth cross section; depth of ventral infold (L22) divided by the high of seed cross section (L18). > 0.5 in all Cyphostemma most Cissus and most Parthenocissus ; < 0.5 in most Ampelocissus Pterisanthes Vitis and Austrocissus. C35vi width cross section; the width of the ventral infold opening (L23) divided by the width of seed cross section (L19). > 0.2 corresponding to wide vi. Wide vi are present in some species of Ampelopsis Vitis Ampelocissus Cayratia Cissus and all Pterisanthes vi of Leea and Cyphostemma do not have opening at surface (= 0). C36chalaza surface anglecross section; sunken angle of chalaza at seed surface (A10). < 150 corresponding to an obvious dentati on. Chalaza sunken at the surface occurs frequently in Ampelocissus. C37chalaza sunken anglecross section; sunken angle of chalaza at endosperm surface (A11). < 150 corresponding to obvious dentation. In all Leea seeds the chalaza folds deep into endosperm (< 30) and with a Y-shaped configuration. C38chalaza thicknesscross section; thickness of chalaza from seed surface to endosperm (L24) divided by seed max length. > 0.15 in most Leea. C39ruga depth/width ratiocross section;ratio of the depth of the ruga (L25) to the width at widest part of the ruga (L26). < 1 corresponding to transversely arranged rugae; most seeds have this type of rugae. Branched or longitudinually arranged rugae (> 1) are less common in Vitaceae but present in all Leea. Character Description Variation pattern among generaTable 1-2. Continued.

PAGE 37

C40endotesta thicknesscross section; endotesta thickness (L27) divided by seed max length. Thickness measured from the dorsal region between chalaza and the lateral edge. all Vitis have relatively thick endotesta (> 0.03); other genera mostly have values < 0.03. C41endotesta max thicknesscross section; endotesta maximum thickness (L28) divided by seed max length.endotesta maximun thickness usually occurs in lateral edge, raphe, or near ventral infolds. Acareosperma and some Cayratia have extremely thickened endotesta in certain parts of the seeds (> 0.15). C42endotesta thickness at vicross section; endotesta minimun thickness in ventral infold cavity (L29) divided by seed max length. usually endotesta is thin and not well lignified inside vi. However, endotesta is well lignified and thick in most Vitis (> 0.015); very thick in Cissus antarctica and Cayratia corniculata (> 0.03). C43endotesta thickness at chalaza cross section; endotesta thickness at chalaza (L30) to endotesta thickness (L27) ratio. mostly < 2.5. Some seeds, many Cissus and Tetrastigma have thick endotesta at chalaza region (> 2.5). C44endotesta thickness at ruga sinus cross section; ratio of endo testa thickness at ruga sinus (L31) to endotesta thickness (L27); in smooth seeds equal to 1. endotesta at ruga sinus is usually thinner comparing to the endotesta in other region in rugose seeds (0.45-1). Cissus anarctica seeds have thicker endotesta in ruga sinus (> 1); < 0.45 in Leea some Tetrastigma and some Rhoicissus C45endotesta thickness at ruga apex cross section; ratio of endotesta thickness at ruga ridge (L32) to endotesta thickness (L27); equal to 1 for smooth seeds. endotesta at ruga ridge is usually thicker (1-2), Acareosperma some Cyphostemma Cissus Cayratia and Ampelocissus have extremely thickened endotesta at ruga ridge (> 2). C46endotesta sclereid width/length ratio LM, transverse section; endotesta sclereids width to length ratio. in oval chalazal seeds (C18 > 0.5) and Rhoicissus endotesta sclereids are mostly elongate (< 0.4); Cayratia Cyphostemma and Leea all have values > 0.4. C47endotesta sclereid wall thickness LM, transverse section; endotesta sclereids wall thickness. in most seeds > 6 m; some Tetrastigma do not possess well lignified endotesta. C48number of endotesta sclereid layers LM, transverse section; number of endotesta sclereids layers. 1-4 layers in oval chalazal seeds; most Cyphostemma and Cayratia have more than 4 layers of endotesta sclereids. C49endotesta sclereid crystalsLM, transverse section; discrete character, 0=absent, 1=present. mostly present, usually one in ea ch cell.Table 1-2. Continued.Character Description Variation pattern among genera

PAGE 38

C50stomata in sarcotestaLM, tangential view; discrete character, 0=absent, 1=present. present in some Cayratia Cyphostemma and Tetrastigma. C51tracheidal cell diameterLM, tangential view; the maximun diameter of the tagmetic tracheidal cells. < 10 m in most oval chalazal (C18 > 0.5) seeds; > 10 m in most Leea Cyphostemma and Cayratia. C52number of tracheidal cell layers LM, tangential view; discrete character, 0 = tracheidal exotagmen 1 cell thick, 1 = 2 cells thick, the 2 layers of cells have different diameters. C52 = 1 in Acareosperma some Cyphostemma Tetrastigma Cayratia Rhoicissus and Clematicissus C53vi covered by endotestaventral view; discrete character, 0=absent, 1=present. Ventral infolds are covered by endotesta sclereids on the seed surface. present in all Leea and Cyphostemma. C54rugae whorled ventral view; discrete character, 0=absent, 1=present. Rugae are spine like and arranged as two whorls on the lateral margin. present only in Acareosperma. C55one vi ventral view; discrete character, 0=absent, 1=present. Instead of the typcial pair of ventral infolds, the seed has only one ventral infold. present only in Clematicissus angustissima. C56vi cavity V-shapedcross section; discrete character, 0=absent, 1=present. Ventral infold cavities V-shaped, and the endotesta at the notch of the V shape are lignified and thick. present in three species of Tetrastigma and Acareosperma. C57constricted rim on ventral side ventral view; discrete character, 0=absent, 1=present. The lateral margin of the seed is folded up and forming a constricted rim on the ventral surface of the seed. present in some Cayratia.Table 1-2. Continued.Character Description Variation pattern among genera

PAGE 39

Variable PC1PC2 C1seed max length -0.113-0.054 C2seed width/length ratio 0.1630.004 C3seed apex to widest part -0.123-0.112 C4apical notch depth 0.163-0.083 C5apical notch angle -0.1860.139 C6beak length 0.1270.138 C7beak angle -0.028-0.100 C8vi circularity 0.1460.192 C9vi length 0.148-0.261 C10vi apex to widest part -0.111-0.096 C11vi space at the apex 0.065-0.171 C12vi space at the middle -0.0030.044 C13vi space at the base -0.1230.155 C14vi space base to middle ratio -0.109-0.028 C15vi divergence angle 0.089-0.188 C16vi curve angle -0.0560.237 C17vi base to beak distance 0.0850.231 C18chalaza circularity 0.2740.022 C19chalaza width 0.1800.045 C20chalaza apex to widest part 0.1010.012 C21chalaza length -0.2870.088 C22chalaza to notch distance 0.167-0.052 C23chalaza to beak distance 0.2640.083 C24external rugosity -0.016-0.228 C25raphe curve angle 0.124-0.155 C26ruga sinus angle 0.0500.321 C27ruga ridge angle 0.043-0.112 C28apical groove angle -0.1880.096 C29basal groove angle -0.1880.072 C30cs high/width ratio -0.2400.101 C31vi rugosity -0.095-0.176 C32vi thin part ratio 0.031-0.070 C33vi thin part circularity 0.2410.052 C34vi depth -0.1770.023 C35vi width 0.1900.085 C36chalaza surface angle -0.0840.143 C37chalaza sunken angle 0.0330.230 C38chalaza thickness -0.083-0.035 C39ruga depth/width ratio -0.100-0.210 C40endotesta thickness 0.0380.205 C41endotesta max thickness 0.0290.149 C42endotesta thickness at vi 0.1730.089 C43endotesta thickness at chalaza -0.100-0.085 C44endotesta thickness at ruga sinus 0.0900.260 C45endotesta thickness at ruga apex -0.0240.019 C46endotesta sclereid width/length ratio-0.1820.035 C47endotesta sclereid wall thickness 0.026-0.009 C48number of endotesta sclereid layers-0.1740.155 C49endotesta sclereid crystals -0.0770.022 C50stomata in sarcotesta -0.029-0.075 C51tracheidal cell diameter -0.058-0.124 C52number of tracheidal cell layers 0.023-0.121 C53vi covered by endotesta -0.170-0.032 C54rugae whorled 0.001-0.012 C55one vi 0.015-0.002 C56vi cavity V-shaped 0.029-0.040 C57constricted rim on ventral side 0.0130.032 Cumulative variance explained 0.1770.286 Table 1-3. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 A.

PAGE 40

Variable PC1PC2 C1seed max length 0.122-0.236 C2seed width/length ratio -0.0940.187 C3seed apex to widest part 0.131-0.218 C4apical notch depth -0.028-0.008 C5apical notch angle -0.0080.053 C6beak length -0.1480.121 C7beak angle 0.050-0.026 C8vi circularity -0.243-0.080 C9vi length 0.157-0.254 C10vi apex to widest part 0.080-0.182 C11vi space at the apex 0.1700.247 C12vi space at the middle 0.0300.206 C13vi space at the base -0.0500.195 C14vi space base to middle ratio 0.006-0.083 C15vi divergence angle 0.1590.258 C16vi curve angle -0.172-0.053 C17vi base to beak distance -0.1780.215 C18chalaza circularity -0.2390.007 C19chalaza width -0.1440.128 C20chalaza apex to widest part -0.0370.186 C21chalaza length 0.1930.173 C22chalaza to notch distance -0.087-0.232 C23chalaza to beak distance -0.2300.057 C24external rugosity 0.2410.000 C25raphe curve angle 0.0550.009 C26ruga sinus angle -0.2560.021 C27ruga ridge angle 0.0510.030 C28apical groove angle 0.0530.063 C29basal groove angle 0.060-0.016 C30cs high/width ratio 0.0910.212 C31vi rugosity 0.2220.055 C32vi thin part ratio -0.036-0.227 C33vi thin part circularity -0.2010.094 C34vi depth 0.1520.125 C35vi width -0.181-0.217 C36chalaza surface angle -0.0510.095 C37chalaza sunken angle -0.1210.061 C38chalaza thickness -0.0340.233 C39ruga depth/width ratio 0.1620.024 C40endotesta thickness -0.1870.206 C41endotesta max thickness -0.0970.012 C42endotesta thickness at vi -0.187-0.075 C43endotesta thickness at chalaza 0.1680.081 C44endotesta thickness at ruga sinus -0.224-0.003 C45endotesta thickness at ruga apex 0.007-0.031 C46endotesta sclereid width/length ratio0.1040.061 C47endotesta sclereid wall thickness 0.0310.085 C48number of endotesta sclereid layers-0.0510.101 C49endotesta sclereid crystals 0.0300.089 C50stomata in sarcotesta 0.095-0.010 C51tracheidal cell diameter 0.1320.028 C52number of tracheidal cell layers 0.1100.044 C53vi covered by endotesta* C54rugae whorled 0.010-0.026 C55one vi -0.0050.002 C56vi cavity V-shaped 0.0200.044 C57constricted rim on ventral side -0.017-0.052 Cumulative variance explained 0.1730.278 Table 1-4. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 B. Characters excluded in some of the PCAs due to lack of variation are indicated by "*".

PAGE 41

Variable PC1PC2 C1seed max length -0.113-0.121 C2seed width/length ratio 0.1730.056 C3seed apex to widest part -0.168-0.075 C4apical notch depth 0.137-0.114 C5apical notch angle -0.0450.168 C6beak length 0.173-0.017 C7beak angle -0.0270.106 C8vi circularity 0.2250.080 C9vi length -0.261-0.016 C10vi apex to widest part -0.1320.104 C11vi space at the apex 0.109-0.151 C12vi space at the middle 0.149-0.085 C13vi space at the base 0.0250.042 C14vi space base to middle ratio -0.1390.031 C15vi divergence angle 0.191-0.113 C16vi curve angle 0.0740.070 C17vi base to beak distance 0.2390.064 C18chalaza circularity 0.1230.232 C19chalaza width -0.0070.133 C20chalaza apex to widest part -0.0280.032 C21chalaza length -0.023-0.236 C22chalaza to notch distance -0.0410.167 C23chalaza to beak distance 0.1270.215 C24external rugosity -0.086-0.242 C25raphe curve angle -0.0950.020 C26ruga sinus angle 0.2180.115 C27ruga ridge angle -0.175-0.083 C28apical groove angle -0.1020.262 C29basal groove angle -0.1490.177 C30cs high/width ratio -0.069-0.176 C31vi rugosity -0.042-0.194 C32vi thin part ratio -0.103-0.044 C33vi thin part circularity 0.1110.142 C34vi depth -0.167-0.071 C35vi width 0.167-0.024 C36chalaza surface angle -0.0070.266 C37chalaza sunken angle 0.0070.268 C38chalaza thickness 0.157-0.185 C39ruga depth/width ratio -0.017-0.184 C40endotesta thickness 0.2450.009 C41endotesta max thickness 0.2490.001 C42endotesta thickness at vi 0.180-0.070 C43endotesta thickness at chalaza -0.040-0.222 C44endotesta thickness at ruga sinus 0.1990.061 C45endotesta thickness at ruga apex 0.155-0.080 C46endotesta sclereid width/length ratio0.004-0.083 C47endotesta sclereid wall thickness 0.087-0.162 C48number of endotesta sclereid layers0.206-0.122 C49endotesta sclereid crystals 0.017-0.150 C50stomata in sarcotesta -0.1470.117 C51tracheidal cell diameter 0.031-0.067 C52number of tracheidal cell layers 0.044-0.096 C53vi covered by endotesta* C54rugae whorled* C55one vi* C56vi cavity V-shaped 0.1470.031 C57constricted rim on ventral side* Cumulative variance explained 0.2020.335 Table 1-5. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 C. Characters excluded in some of the PCAs due to lack of variation are indicated by "*".

PAGE 42

Variable PC1PC2 C1seed max length -0.2220.102 C2seed width/length ratio 0.129-0.126 C3seed apex to widest part -0.1970.131 C4apical notch depth -0.039-0.025 C5apical notch angle 0.012-0.108 C6beak length 0.091-0.112 C7beak angle 0.0360.141 C8vi circularity -0.028-0.131 C9vi length -0.1530.233 C10vi apex to widest part -0.1460.150 C11vi space at the apex 0.2010.079 C12vi space at the middle 0.1340.092 C13vi space at the base 0.149-0.079 C14vi space base to middle ratio -0.043-0.179 C15vi divergence angle 0.2240.026 C16vi curve angle -0.0610.026 C17vi base to beak distance 0.128-0.214 C18chalaza circularity 0.1190.149 C19chalaza width 0.2460.128 C20chalaza apex to widest part 0.193-0.037 C21chalaza length 0.132-0.129 C22chalaza to notch distance -0.1780.163 C23chalaza to beak distance 0.194-0.012 C24external rugosity -0.181-0.018 C25raphe curve angle 0.0520.184 C26ruga sinus angle 0.2000.015 C27ruga ridge angle 0.1680.159 C28apical groove angle 0.080-0.165 C29basal groove angle 0.024-0.125 C30cs high/width ratio 0.217-0.079 C31vi rugosity -0.051-0.020 C32vi thin part ratio -0.1710.033 C33vi thin part circularity 0.159-0.015 C34vi depth 0.2070.102 C35vi width -0.1250.009 C36chalaza surface angle 0.156-0.134 C37chalaza sunken angle 0.163-0.119 C38chalaza thickness 0.149-0.039 C39ruga depth/width ratio -0.1440.086 C40endotesta thickness 0.158-0.124 C41endotesta max thickness -0.079-0.216 C42endotesta thickness at vi -0.052-0.078 C43endotesta thickness at chalaza 0.0220.021 C44endotesta thickness at ruga sinus 0.039-0.031 C45endotesta thickness at ruga apex -0.126-0.147 C46endotesta sclereid width/length ratio-0.087-0.253 C47endotesta sclereid wall thickness 0.0450.068 C48number of endotesta sclereid layers-0.085-0.295 C49endotesta sclereid crystals 0.026-0.073 C50stomata in sarcotesta -0.073-0.261 C51tracheidal cell diameter -0.101-0.214 C52number of tracheidal cell layers -0.085-0.239 C53vi covered by endotesta* C54rugae whorled -0.105-0.121 C55one vi 0.008-0.015 C56vi cavity V-shaped -0.105-0.121 C57constricted rim on ventral side -0.082-0.141 Cumulative variance explained 0.1620.289 Table 1-6. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 D. Characters excluded in some of the PCAs due to lack of variation are indicated by "*".

PAGE 43

Variable PC1PC2 C1seed max length -0.2190.129 C2seed width/length ratio 0.169-0.026 C3seed apex to widest part -0.212-0.041 C4apical notch depth -0.003-0.074 C5apical notch angle 0.0450.070 C6beak length 0.0930.064 C7beak angle -0.011-0.014 C8vi circularity 0.0030.309 C9vi length -0.212-0.001 C10vi apex to widest part -0.174-0.033 C11vi space at the apex 0.146-0.270 C12vi space at the middle 0.078-0.318 C13vi space at the base 0.136-0.163 C14vi space base to middle ratio 0.0220.207 C15vi divergence angle 0.199-0.209 C16vi curve angle -0.061-0.011 C17vi base to beak distance 0.167-0.052 C18chalaza circularity 0.069-0.046 C19chalaza width 0.220-0.102 C20chalaza apex to widest part 0.183-0.045 C21chalaza length 0.176-0.004 C22chalaza to notch distance -0.232-0.025 C23chalaza to beak distance 0.1730.126 C24external rugosity -0.194-0.179 C25raphe curve angle -0.058-0.141 C26ruga sinus angle 0.2000.158 C27ruga ridge angle 0.1550.082 C28apical groove angle 0.1430.188 C29basal groove angle 0.0800.204 C30cs high/width ratio 0.222-0.106 C31vi rugosity -0.002-0.189 C32vi thin part ratio -0.1820.097 C33vi thin part circularity 0.1440.061 C34vi depth 0.175-0.120 C35vi width -0.1270.308 C36chalaza surface angle 0.1920.178 C37chalaza sunken angle 0.1880.169 C38chalaza thickness 0.139-0.064 C39ruga depth/width ratio -0.169-0.205 C40endotesta thickness 0.1600.009 C41endotesta max thickness 0.1010.193 C42endotesta thickness at vi -0.0470.188 C43endotesta thickness at chalaza 0.054-0.082 C44endotesta thickness at ruga sinus 0.1250.083 C45endotesta thickness at ruga apex -0.1010.002 C46endotesta sclereid width/length ratio0.017-0.071 C47endotesta sclereid wall thickness -0.0030.021 C48number of endotesta sclereid layers0.0430.051 C49endotesta sclereid crystals 0.045-0.115 C50stomata in sarcotesta* C51tracheidal cell diameter 0.0230.058 C52number of tracheidal cell layers 0.0140.034 C53vi covered by endotesta* C54rugae whorled* C55one vi 0.0140.034 C56vi cavity V-shaped* C57constricted rim on ventral side* Cumulative variance explained 0.2030.332 Table 1-7. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 E. Characters excluded in some of the PCAs due to lack of variation are indicated by "*".

PAGE 44

Variable PC1PC2 C1seed max length 0.012-0.158 C2seed width/length ratio 0.0790.076 C3seed apex to widest part 0.092-0.079 C4apical notch depth 0.213-0.146 C5apical notch angle -0.1960.162 C6beak length -0.188-0.058 C7beak angle 0.1760.061 C8vi circularity -0.2130.071 C9vi length 0.253-0.099 C10vi apex to widest part -0.028-0.274 C11vi space at the apex 0.199-0.118 C12vi space at the middle 0.130-0.124 C13vi space at the base -0.164-0.038 C14vi space base to middle ratio -0.231-0.015 C15vi divergence angle 0.2040.011 C16vi curve angle -0.0530.037 C17vi base to beak distance -0.2550.040 C18chalaza circularity -0.027-0.283 C19chalaza width 0.1760.130 C20chalaza apex to widest part 0.0650.285 C21chalaza length 0.0610.252 C22chalaza to notch distance -0.180-0.183 C23chalaza to beak distance 0.0010.095 C24external rugosity -0.1010.128 C25raphe curve angle 0.030-0.080 C26ruga sinus angle 0.054-0.123 C27ruga ridge angle 0.098-0.106 C28apical groove angle 0.0170.279 C29basal groove angle 0.0860.062 C30cs high/width ratio -0.0200.132 C31vi rugosity 0.137-0.055 C32vi thin part ratio -0.053-0.223 C33vi thin part circularity -0.0700.258 C34vi depth 0.188-0.105 C35vi width -0.1210.000 C36chalaza surface angle 0.1210.120 C37chalaza sunken angle 0.1370.149 C38chalaza thickness -0.0510.030 C39ruga depth/width ratio -0.0900.120 C40endotesta thickness -0.240-0.046 C41endotesta max thickness -0.1970.104 C42endotesta thickness at vi -0.202-0.181 C43endotesta thickness at chalaza 0.2170.026 C44endotesta thickness at ruga sinus 0.034-0.204 C45endotesta thickness at ruga apex -0.0380.096 C46endotesta sclereid width/length ratio0.1550.020 C47endotesta sclereid wall thickness -0.0070.054 C48number of endotesta sclereid layers-0.178-0.032 C49endotesta sclereid crystals 0.0770.060 C50stomata in sarcotesta* C51tracheidal cell diameter 0.0580.163 C52number of tracheidal cell layers 0.0390.139 C53vi covered by endotesta* C54rugae whorled* C55one vi 0.0390.139 C56vi cavity V-shaped* C57constricted rim on ventral side* Cumulative variance explained 0.2090.362 Table 1-8. The loading values of the first two components of the PCA corresponding to the score plot shown in Figure 1-6 F. Characters excluded in some of the PCAs due to lack of variation are indicated by "*".

PAGE 49

L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s30 25 20 15 10 5 0 C1, seed max length (mm)7C5, apical notch angle () L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s200 150 100 50 0 60Figure 1-5. Graphs showing individual values of selected seed morphometric characters grouped by genera. "Austrocissus" referred to the 10 taxa of Cissus which are potentially paraphyletic to other Cissus. The line in each graph indicates the pattern described in Table 1-2. A) C1, seed max length; B) C5, apical notch angle; C) C9, vi length; D) C15, vi divergence angle; E) C18, chalaza circularity; F) C21, chalaza length; G) C22, chalaza to notch distance; H) C35, vi width; I) C40, endotesta thickness; J) C46, endotesta sclereid width/length ratio.A B" A u s t r o c i s s u s" A u s t r o c i s s u s"

PAGE 50

L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 C9, vi length0.6C15, vi divergence angle () L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s100 75 50 25 0 25Figure 1-5. Continued.C D" A u s t r o c i s s u s" A u s t r o c i s s u s"

PAGE 51

C18, chalaza circularity L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s2.5 2.0 1.5 1.0 0.5 0.0 C21, Chalaza length1.4 L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s1.0 0.8 0.6 0.4 0.2 0.0 0.5" A u s t r o c i s s u s" A u s t r o c i s s u s"Figure 1-5. Continued.E F

PAGE 52

C35, vi width C22, Chalaza to notch distance L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s0.4 0.3 0.2 0.1 0.0 0.1 L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.2Figure 1-5. Continued.G H" A u s t r o c i s s u s" A u s t r o c i s s u s"

PAGE 53

L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s A u s t r o c i s s u s"0.06 0.05 0.04 0.03 0.02 0.01 0.00 C40, endosta thickness0.03 L e e a C y p h o s t e m m a C i s s u s R h o i c i s s u s T e t r a s t i g m a A c a r e o s p e r m a C a y r a t i a P t e r i s a n t h e s N o t h o c i s s u s A m p e l o c i s s u s V i t i s Y u a P a r t h e n o c i s s u s A m p e l o p s i s C l e m a t i c i s s u s2.0 1.5 1.0 0.5 0.0 C46, endotesta sclereid width/length ratio0.4I JFigure 1-5. Continued." A u s t r o c i s s u s"

PAGE 54

5.0 2.5 0.0 -2.5 -5.0 -7 .5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -1 0.0 First ComponentSecond Component Cayratia Acareosperma Tetrastigma Rhoicissus Cissus Cyphostemma Leea Austrocissus" Clematicissus Ampelopsis Parthenocissus Yua Vitis Ampelocissus Nothocissus PterithansesFigure 1-6. The score plot of the first two components from PCAs for 57 seed characters of: A) all 252 sampled seeds; B) all seeds excluding Leea, Cissus, and Cyphostemma; C) all sampled Tetrastigma, Rhoicissus and Tetrastigma-like Austrocissus"; D) all seeds excluding Leea, Cissus, Cyphostemma, Tetrastigma, Rhoicissus and Tetrastigmalike Austrocissus"; E) all seeds excluding those excluded in D, Acareosperma, Cayratia, and Cissus antarctica; F) all seeds excluding those excluded in E, Ampelocissus Nothocissus, and Pterisanthes D, the arrow indicates Cissus antarctica; Cayratia with absence (C57 = 0) or presence (C57 = 1) of constricted rim on ventral side are labeled differently.A

PAGE 55

7.5 5.0 2.5 0.0 -2.5 -5.0 5.0 2.5 0.0 -2.5 -5.0 -7.5 -1 0.0 First ComponentSecond Component 10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 5.0 2.5 0.0 -2.5 -5 .0 First ComponentSecond Component Cayratia Acareosperma Tetrastigma Rhoicissus Austrocissus" Clematicissus Ampelopsis Parthenocissus Yua Vitis Ampelocissus Nothocissus Pterithanses Tetrastigma Rhoicissus Austrocissus "B CFigure 1-6. Continued.

PAGE 56

5.0 2.5 0.0 -2.5 -5.0 -7.5 -10. 0 5.0 2.5 0.0 -2.5 -5.0 -7.5 -1 0.0 First ComponentSecond Componen t7.5 5.0 2.5 0.0 -2.5 -5.0 5.0 2.5 0.0 -2.5 -5.0 -7 .5 First ComponentSecond Component Cayratia C57 = 0Cayratia C57 = 1Acareosperma Austrocissus" Clematicissus Ampelopsis Parthenocissus Yua Vitis Ampelocissus Nothocissus Pterithanses Austrocissus Clematicissus Ampelopsis Parthenocissus Yua Vitis Ampelocissus Nothocissus PterithansesD EFigure 1-6. Continued.

PAGE 57

7.5 5.0 2.5 0.0 -2.5 -5. 0 7.5 5.0 2.5 0.0 -2.5 -5 .0 First ComponentSecond Component Austrocissus Clematicissus Ampelopsis Parthenocissus Yua VitisFigure 1-6. Continued.F

PAGE 75

75 CHAPTER 2 MORPHOLOGY-BASED PHYLOGENY OF VITACEAE: COMPARING TWO DIFFERENT TREATMENTS FOR CODING CO NTINUOUS CHARACTERS Introduction Vitaceae, the grape family, contain 700-900 sp ecies, distributed worldwide in tropical, subtropical, and temperate regions. The members of this family are easily recognized as lianas with leaf-opposed tendrils. Leea a genus of 34 species of shrubs or small trees (Ridsdale, 1974), is the closest relative of Vitaceae. This sister relationship has been suggested by the comparable vegetative and seed morphology (Ridsdale, 1974) a nd also by molecular data (Ingrouille et al., 2002). Leea was often treated as a family (e.g., Ridsdale, 1974; Wen, 2007a), although APG III (2009) placed it within Vitaceae. Vitaceae have b een placed in a position sister to all rosids (Soltis et al., 2000; So ltis et al., 2003; Jansen et al., 2006) with uncertainty (Stevens, 2001 onwards; Kubitzki, 2007). The recent sequence data of Wang et al. (2009) reinforced this sisterto-rosids position, however, one of the previously suggested close relativ es, Dilleniaceae (Nandi, Chase, and Endress, 1998; Hilu et al., 2003), was not included in their study. Genera of Vitaceae exhibit a complex pattern of geographical distribu tion; some genera are strictly regional, some distributed worldwide, and some display disjunctions between diffe rent continents, such as North America-eastern Asia. This family has an ample fossil occurring throughout the Tertiary. Fossils previously assigned to this family incl ude leaves, wood, pollen, and seeds. The majority of the fossil records are seeds, and this is part ially due to the high confidence level of identifying fossil seeds to this family the seeds of this family are unique. In contrast with seeds, unequivocal features for identifying other plan t parts to Vitaceae have not been found (although see Wheeler and LaPasha, 1994 regarding stem anatom y). Not only can they be safely identified to family, the seeds of Vitaceae also exhibit morphological variabil ity. An extensive seed survey of this family has demonstrated that extant s eeds may be identified to the genus (Chapter 1).

PAGE 76

76 Historical biogeography within the family can be inferred from a well supported phylogeny; and for Vitaceae, it can also be inferred from the abundant seed fossils, which may be properly identified. Early monographic treatments of Vitaceae include the works of Planchon (1887), Gilg (1896), and Sssenguth (1953). Vari ous important taxonomic studies of Vitaceae have been produced, emphasizing the taxa of particular regions. These include the treatments of Gagnepain (1911a; 1911b; 1919), Latiff (1981; 1982b; 1982a; 1982c; 1982d; 1982e; 1983; 1984; 1991; 1999; 2001b; 2001a), Backer and Bakhuizen van Den Brink (1965), and Mabberley (1995) on species in southeast As ia/Malaysia; Jackess studies on Australian species (1984; 1987b; 1987a; 1988a; 1988b; 1989b; 1989a; Jackes and Rosse tto, 2006); Wang's (1979), and Li's (1998) treatments of Vitaceae in China; Shetty a nd Singh's (2000) study of Indian species; Vassilczenko's (1970) treatment of Vitaceae in Iran; Gilg and Brandt's (1911), Dewit and Willems's (1960), Wild and Drummond's (1966), Descoings's (1967; 1972), and Verdcourt's (1993) treatments of species in Africa and Mada gascar; Lombardi's (2000) of South American species; Brizicky's (1965), Galet's (1967), and Moor e's (1990) of the species of temperate North America regions. Currently there are 14 commonly accepted genera: Acareosperma Gagnepain, Ampelocissus Planch., Ampelopsis Michx., Cayratia Juss., Cissus L., Clematicissus Planch., Cyphostemma (Planch.) Alston, Nothocissus (Miq.) Latiff, Parthenocissus Planch., Pterisanthes Blume, Rhoicissus Planch., Tetrastigma (Miq.) Planch., Vitis L., and Yua C. L. Li. Among these, Acareosperma and Nothocissus, are monotypic. The Australian endemic Clematicissus was monotypic until the recent transfer of the Australian species, Cissus opaca to this genus (Jackes and Rossetto, 2006). Pterocissus mirabilis was transferred to Cissus (Lombardi, 1997) and this genus is now considered within Cissus In these taxonomic treatments, genera are mainly

PAGE 77

77 differentiated by floral structures (for example, petal number is almost always used in keys to the genera; Vitis has a calyptra; Tetrastigma has lobed styles; the flor al nectariferous disc of Cyphostemma is shaped like 4 free glands ), inflorescence structures (Ampelocissus has tendrilbearing inflorescence; Nothocissus has whip-like bifurcated spikes; Pterisanthes has an unusual laminar inflorescence axis; inflorescences of Cayratia have an axillary or pseudo-axillary position), and sometimes vegetative ( Parthenocissus has suction pads on the tips of the tendrils), fruit (berries of Cissus are mostly one-seeded), and seed morphology (Acareosperma has spiny seeds; Clematicissus endosperm U-shaped in transverse sec tion). Species are often distinguished by variations in vegetative structures, mostly by different leaf forms and/or indument conditions. Extensive works on comparative developmental mo rphology of floral and vegetative structures of Vitaceae have been carried out by Gerrath and colleagues (Gerrath and Posluszny, 1986; Posluszny and Gerrath, 1986; Gerrath and Posluszny, 1988a, 1988b, 1989a, 1989b, 1989c; Lacroix and Posluszny, 1989b, 1989a; Gerrath, Lacr oix, and Posluszny, 1990; Lacroix, Gerrath, and Posluszny, 1990; Gerrath and Posluszny, 1994; Gerrath and Lacroix, 1997; Gerrath, Lacroix, and Posluszny, 1998; Gerrath, Posluszny, a nd Dengler, 2001; Wilson and Posluszny, 2003a, 2003b; Gerrath, Wilson, and Posluszny, 2004; W ilson, Gerrath, and Posluszny, 2006; Gerrath and Posluszny, 2007; Timmons, Posluszny, and Ge rrath, 2007a, 2007b). The results sometimes have been used as evidence to support or disa gree with phylogenies hypothesized from sequence data. Although genera are seemingly well defined by morphology, and there is growing information from comparative developmental st udies, morphological cladistic analysis has not previously been used to hypothesi ze relationships within this family. Intergeneric relationships were sometimes proposed in the above-mentioned taxonomic treatments; however, the only

PAGE 78

78 known work that applied a consistent methodology to infer taxonomic relationships based on morphology was a phenetic study of 36 Malaysian species (Latiff, 1983). The phylogeny of Vitaceae has been recons tructed based on DNA sequences (Ingrouille et al., 2002; Rossetto et al., 2002; Soejima a nd Wen, 2006; Rossetto, 2007; Wen et al., 2007). The molecular studies have indicated that Cissus is not monophyletic. The majority of the sampled species of Cissus were grouped together; however, the South American species, C. simsiana and C. striata, together with the African genus Rhoicissus, were nested within Ampelopsis (Soejima and Wen, 2006; Wen et al., 2007). Another study showed the five Australian species of Cissus i.e., C. antarctica C. oblonga, C. hypoglauca, C. penninervis and C. sterculiifolia did not form a clade with other Cissus and the two species of Australian Clematicissus formed a well supported clade with two South American Cissus i.e., C. striata and C. tweedieana (Rossetto, 2007). Results from the seed survey of Vitaceae (Chapter 1) show that these species of Cissus from South America and Australia have seeds that are distinctly different from other Cissus Molecular evidence also sugge sted a close relationships among genera with 5-petaled flower s, a clade that includes the four temperate genera, Vitis Ampelopsis Parthenocissus, and Yua (Wen et al., 2007). It was observed that certain seed characters were associated with taxa having 5-merous flowers (Cha pter 1). Seed characters seem to support the sequences-based phylogenies. Th e morphological cladistic analyses presented here provide an assessment of phylogeny independent of the molecular data, and can provide a way to determine fossil placements other than direct similarity comparison. The seed survey (Chapter 1) recognized 57 seed characters, most of them morphometric characters relating to shape. When coding fo r cladistic analysis, shape characters were frequently treated as discrete, regardless of the continuous tr ansformation between shapes.

PAGE 79

79 Mathematical measurement transforms shape into numbers so the transition between shapes can be objectively evaluated. Nevert heless, a precise numeral descrip tion does not help to alleviate the uncertainty of character state delimitation. Assumption of homology has to be made when coding morphological characters. This assumption is relatively straight forward when coding discrete characters, especially the classic absence/presence characters. On the contrary, theories of primary homology (de Pinna, 1991) cannot be so confidently established when coding continuous characters (Stevens, 1991; Scotland, Ol mstead, and Bennett, 2003). The general idea shared by taxonomists is that similar measured va lues should be assigned to the same character state. Disagreements have arisen regarding the c oncepts and methods used to define similarity. Various coding methods had been proposed for c oding continuous characters, with the aim of achieving an objective set of char acter state delimitations Most of the coding methods involved the arrangement of all measured values of a character on a scaled attribute axis. Either the discontinuities were sought out and used as the state delimitation (Mickevich and Johnson, 1976; Almeida and Bisby, 1984); or, the range of the ch aracter was divided into segments and taxa were coded according to the segments they occupied (Colless, 1980; Thorpe, 1984; Chappill, 1989); or, the ranges were compared by their size and overlapping boundaries, then similar ranges were assigned with same character st ate (Baum, 1988). In some coding methods, statistical tests were applied to determine the sim ilarity or dissimilarity of the measured values, and coding was based on the resu lts of the tests (generalized gap-coding in Archie, 1985; Guerrero, De Luna, and Sanchez-Hernandez, 20 03). Among the coding methods, gap-weighting (Thiele, 1993) and step-matrix gap-weighti ng (Wiens, 2001) do not involve the typical precoding homology-searching procedure. Instead, c oding strategy is set in a way that measured values are compared during the trees searching process. In gap-weighting coding, the mean

PAGE 80

80 value of each taxon is range-stand ardized into one state, and characters are Wagner optimized (ordered and undirected). This is equivalent to applying differential weighting according to the size of the gap between any two measured values The variation of a character is preserved precisely and objectively when coding with ga p-weighting. Therefore, the gap-weighting method was chosen to treat continuous characte rs in this study. The hypothesis of primary homology embedded in gap-weighting coding is that the degree of homology is equivalent to the relative distance between two measured values. The discrete coding approach for continuous characters was also employed on the same data matrix so that the effect of coding method on tree topology coul d be demonstrated. Delimitation of the character states for the di screte coding was given based on the overall variation pattern of the characte r in the family. This is to assume a lax boundary of primary homology; the variation within the near terminal taxa is ignored. The resulting phylogenies are compared to the published molecular phyloge nies, and the morphology of Vitaceae and evolution of selected char acters are discussed. Materials and Methods Taxon Sampling Eighty-two taxa were sampled from all gene ra of Vitaceae. Sampling was aimed at representing morphological diversity within each genus. Two species of Leea were sampled as outgroups. Observed herbarium speci mens are listed in Appendix B. Terminology of Morphological Characters Terms used to describe the nature of a mo rphological character, such as discrete or continuous, are well defined in Wiens (2001). Terminology for leaf arch itecture follows LAWG (Leaf Architecture Working group, 1999). Nodes on a branch were labeled with sequential numbers; the node closest to the main branch was labeled as node 1. In this study, an

PAGE 81

81 inflorescence refers to the w hole structure developing from on e node, which is opposite to the leaf in Vitaceae, with flowers on the terminal axes. A "inflorescence-branch" was used to infer the branch bearing inflor escences at its nodes. A "vegetative-branch" infers a branch that does not have inflorescences at any of its nodes, re gardless whether the branch es developed from its axillary buds bear inflorescences or not. Inflor escences were considered homologous to tendrils in Vitaceae (see discussions in this chapter); the basal part of the inflorescence sometimes retains the architecture of the tendrils from the same plant. The term "inf lorescence-tendril-axis" indicates this part of inflorescence. If the inflorescence-tendril-axes do not have the same branching pattern as that of the tendrils from the same plant, it is viewed as having a simple (not branched) organization. "Inflorescence-axes" refer to the ax es attached to the inflorescencetendril-axis. Inflorescence-axes are usually bran ched, each order of branching was labeled with a sequential number; the inflorescence-axes n earest to the inflorescence-tendril-axes were labeled with the smallest sequential number, 1. Terminology related to inflorescence-axis architecture follows Weberling ( 1989). Raceme refers to an arrangement in a main continuous elongate axis, contrary to cymoid, which does not have an elongate axis Mono-/Di-/tri-/tetrachasium is 1/2/3/4 axes attached to the top of the lower axis, and a flower with floral pedicel is located at the junction point of these axes. Axes attached to an end but lacking a terminal flower were viewed as umbels. The double cincinus has a basic dichasial plan, but the secondary flower is replaced by two or more flowers in a cincinus (zigzag pattern not in one plane). The last order/terminal inflorescence-axes are floral pedicels. The floral pedicels are arranged in umbels, dichasia, or double cincina. In the umbel arrangem ent, the pedicels attached to the same lower axis do not vary in length. In the dichasiu m and double cincinus, the pedicels are unequal in length. Primary flowers have the longest pedicels and open first, secondary flowers have shorter

PAGE 82

82 pedicels and mature later. The secondary flower s of a double cincinus also show differences in the timing of development. Character Measurement The external morphological char acters of all plant parts ex cept roots and seedlings were included in the matrix. The anatomical features of seeds were also examined. All characters (Appendix C) were scored from firsthand obs ervation of living plan ts or the herbarium specimens (cited in Appendix B), supplemented by data from the literature only when not observable directly from the specimens examined (indicated in Appendix C). Characters such as presence of pearl glands and glaucescence on fruit surface were not included because they do not preserve well on dr y specimens. Presence of raphids and druses was not included since all observed taxa possess these two types of crystals in the parenchyma of most tissues. Leaf size and shape were considered to be correlated to leaf type and not included. Flower size does not show variation among genera (2-3 mm) and therefore was not included; although the outgroup, Leea has much larger flowers (1-2 cm) than species of Vitaceae. Some characters exhibit variation within terminal ta xa; this was indicated for each character in Appendix C, along with the conditions scored. For Acareosperma spireanum the characters related to inflorescence architect ure were inferred from infructe scences because floral materials are not available. The 57 seed characte rs are described in detail in Chapter 1. Character Coding Two coding methods were applied to the c ontinuous characters : discrete, and gapweighting. These are disc ussed, in turn, below: 1) Discrete coding. Patterns of variation for each continuous character were observed by grouping individual data values by genera. Typicall y, the measured values of a character show a range variation among genera. In certain genera particular charac ters are less variable; that is,

PAGE 83

83 the values have smaller ranges for these genera. For other ge nera, the same characters could have a wider range in measured values, and us ually the wider ranges more or less overlap the smaller ranges. The state delimitation was set to distinguish the less variab le status (the smaller ranges) in certain genera from others. The im ages were also compared to check the visual distinctness of the character states. Some exam ples of character delimitation are shown in Figure 1-5, Chapter 1. Figure 1-5 E presents the circular ity of chalaza, which was measured to indicate the chalaza shape. The values of circularity are continuous with no obvious gap when arranged by magnitude. However, when the values were grouped by genera, it is clearly shown that some genera have large values in chalaza circularity, and others have wider distribution ranges. The boundary to distinguish an oval chalaza from a lin ear chalaza was then set at the lower limit of the range that contains the large values. Sometimes the range s show a non-overlapping pattern; for example, the chalaza length (Figure 1-5 F). Some characters were designed to measure features specifically present in a genus; the m easured values would have a small range for that genus. In such case the character state delimitati on was set to distinguish this generic feature from others. For example, style width to length (68) distinguishes the very short and conical style of Ampelocissus from that of other genera. Delimitation producing autapomorphy was avoided except for one character, endotesta thickness at ruga sinus (124), in which Cissus antarctica represents a distinct, unu sual condition (C44, Table 12, Chapter 1). For seed characters the patterns were sought from 252 samp led seeds. The varia tion patterns of seed characters described in Table 1-2 of Chapter 1 were used as the crite ria of character state delimitation. For other continuous characters, th e criteria of character state delimitation are described in Appendix C. All character s were weighted equally and unordered.

PAGE 84

84 2) Gap-weighting (GW) (Thiele, 1993). For characters describing shape, the raw value of the ratio was directly range-standardized without natural logarithm tr ansformation. Nine characters (labeled in Appendix C) were measurements of length; these numbers were natural logarithm transformed before range-standardizati on as originally proposed (Thiele, 1993). The continuous characters were transformed into 26 states. In this st udy, only five meristic characters were treated with th e GW method, and they all have a large range (9-55). It was proposed that meristic characters with a large range are better treated with between-character scaling (Wiens and Etheridge, 2003). Therefore, all continuous characte rs were treated with between-character scalingthe maximum weight of a morphomet ric character was treated as equivalent to the maximum weight of a qualitative ch aracter. That is, continuous characters were weighted 1 and ordered, all other char acters were weighted 25 and unordered. Phylogenetic Analyses Parsimony analyses were conducted using th e computer package PAUP* version 4.0b10 (Swofford, 2002). Inapplicable characters were treated as missing data. Searches for the most parsimonious trees (MPTs) were conducted by tree-bisection-reconnection (TBR) over 1000 random-taxon-addition replicates. The starting tree was obtained via stepwise addition, holding 10 trees, with MulTree in effect. For the gapweighting coding method, in itial searches were conducted via the same settings. Further search es were performed with KEEP in effect in addition to the previous settings, retaining all trees 10 steps longer than the shortest steps obtained from the previous run for swapping. C oding with GW usually found very few MPTs in a short time; sometimes different starting seeds resulted in MPTs with different scores. Therefore KEEP was used to ensure the finding of the shortest trees. Support was estimated with 500 bootstrap replicates. For the matrix with discrete coding method, searches for bootstrap values were reduced to 10 random addition replicates with TBR, holding one tree, with no more

PAGE 85

85 than 1000 MPTs saved in each replicate. For the matrix with GW coding method, searches for bootstrap values were set the same as the sear ches for MPTs but KEEP was not in effect. Characters were optimized onto one of the MP Ts using MacClade 4.0 (Maddison and Maddison, 2001) or Mesquite 2.6 (Maddison and Maddison, 2009) with the homoplasy resolving option set to show all most parsimonious reconstructions. Results The morphological data matrix incl udes 137 characters (Appendix D and E); 68 characters are qualitative, merist ic with distinct patterns, or continuous but could be easily distinguished to discrete states visually; 69 characters are trea ted as continuous (6 meristic, 63 morphometric); 49 of the 57 seed characters are continuous. Two ch aracters are parsimonyuninformative: seed ruga whor led (134) is present only in Acareosperma spireanum ; seed with one ventral infold (vi) (135) occurs only in Clematicissus angustissima. Acareosperma spireanum contains 20.4% missing data because the flor al materials have not been collected. The discrete coding method yielded 516 MPTs (1186 steps, consistency index (CI) = 0.142, retention index (RI) = 0.611) ; the strict consensus tree of the 5 16 MPTs with the bootstrap values is shown in Figure 2-1. The grouping of the two Yua species, and the grouping of Cayratia cardiophylla and C. genitulata have bootstrap supports but the strict consensus tree does not retain these groupings. The gap-weighting codi ng method retrieved 1 MPT (24094 steps, CI = 0.166, RI = 0.587). The tree with bootstrap values is shown in Figure 2-2. Ch aracters in general have low CI indices regardless of which of the two coding methods was applied (data not shown). The MPTs recovered from the two character coding methods have tree topologies similar in some parts but different in others (Figur e 2-1, Figure 2-2). Both coding methods place Cyphostemma junceum an African tendril-less erect herb producing terminal inflorescences, at a

PAGE 86

86 position sister to all othe r Vitaceae. The genera with 4-merous flowers, Cyphostemma Cayratia Tetrastigma, and Cissus are sister to the rest of the famil y, which are taxa mostly with 5-merous flowers. Nothocissus and Pterisanthes are nested within Ampelocissus ; this clade forms a monophyletic group with Vitis Cissus simsiana and Ampelopsis are basal to the clade that contains Vitis and Ampelocissus. The monophyly of Pterisanthes Vitis Parthenocissus, Clematicissus, and Tetrastigma, respectively, is recovered, but Ampelocissus Ampelopsis Cissus Yua Rhoicissus, Cayratia and Cyphostemma are paraphyletic. The major differences in the tree topology come from the positions of Rhoicissus Clematicissus, and the 4-petaled genera (Figure 2-1, Figure 2-2). The MPT obtained from the GW method resolves Cissus hypoglauca as sister to the Parthenocissus-Yua clade, and C. antarctica C. sterculiifolia and Rhoicissus are grouped together. These two clades, together with C. trianae C. granulosa, C. penninervis and C. striata form a monophyletic group sister to the clade containing taxa primarily with 5-me rous flowers (Figure 22). When continuous characters were treated with discrete coding, the Parthenocissus-Yua clade is sister to the clade containing Ampelopsis Vitis and Ampelocissus ; Clematicissus is sister to th e 5-petaled taxa except Rhoicissus ; Cissus stria ta, C. granulosa, C. penninervis C. sterculiifolia C. hypoglauca, Rhoicissus digitata C. trianae R. tridentata and C. antarctica are in a sequentia l sister position to the 5-petaled taxa (Fig ure 2-1). The rest of Cissus is monophyletic in the MPT of GW (Figure 2-2), but paraphyletic in the MPTs w ith discrete coding (Figure 2-1). Cayratia Tetrastigma, and most species of Cyphostemma form a clade when discrete coding was applied (Figure 2-1); however, this group is not monophyl etic in GW (Figure 2-2). Cyphostemma is not monophyletic in either analysis; C. laza is sister to all taxa with 5-merous flowers and Cissus when discrete

PAGE 87

87 coding was applied (Figure 2-1), bu t this position is not recovered when GW was used (Figure 22). Characters were optimized to one of the MPTs with discrete coding (Figure 2-3). Unambiguous changes subtending the major cl ades are listed belo w. The monophyly of Ampelocissus Pterisanthes and Nothocissus is supported by leaf teet h density two or more between two secondary veins (19), floral disc margin with extra grooves (62), style width to length ratio 0.8 (68), style to carpel le ngth ratio < 0.43 (69), and seed apical notch depth 0.05 (84). The monophyly of Vitis is supported by plant dioeci ous (31), tendril present in inflorescence-branch (32), inflorescence-branch fi rst internode usually shor ter (36), petals united, forming a calyptra (59), fruit without dense lenticels (78), seed ventra l infold thin part circularity < 0.72 (113), thick endotesta (120), and thic k endotesta at ventral infold (122). Vitis, Ampelocissus Pterisanthes and Nothocissus are united by presence of arachnoid hairs (28), inflorescence-first and-second -axes racem ose (46 and 48), inflorescence-terminal-axis umbellate (49), inflorescence with only one order of cymoid organization (51), floral pedicel less than 2 mm long (53), style base width to disc diameter ratio 0.3 (70), pollen less than 30 m (71), and seed chalaza apex to widest part < 0.6 (100). The Ampelopsis Cissus simsiana VitisAmpelocissus clade is supported by pinnate ly compound leaves (14), leaf secondary veins ending in teeth (17), presence of pocket-shape domatia (25), and seed ventral infold cavity rugosity < 0.26 (111). The monophyly of Parthenocissus and Yua is supported by in florescence-branch first internode usually shorter (36), 2 to 4 inflorescences in one inflorescence-branch (40), inflorescence-second -axis an umbe l (48), inflorescence-terminal-ax is an umbel (49), anther to petal length ratio 0.4 (61), disc height to diameter ratio 0.5 (67), style ba se width to disc diameter ratio 0.3 (70), seed ventral infold space at the apex 0.5 (91), and chalaza apex to

PAGE 88

88 widest part < 0.6 (100) The monophyly of Parthenocissus Ampelopsis Vitis and Ampelocissus is supported by seed ventral infolds space at the base 0.15 (93), ventral infold base to beak distance 0.2 (97), and thick endotesta (120). The monophyly of Clematicissus is supported by inflorescence-first-axis di -, tri-, or tetra-chasial (46), ventral infold length 0.6 (89), and ventral infold apex to widest part < 0.4 (90). Clematicissus is grouped with Parthenocissus Ampelopsis Vitis and Ampelocissus by tendril interrupted (5), leaf sec ondary vein 6 pairs or less (16), developing shoot apex remaining on inflorescence-branch at anthes is (33), inflorescence-branch terminal node without two inflorescences and one leaf (41), and flower 5-merous (54). Cissus striata C. granulose C. penninervis C. sterculiifolia C. hypoglauca R. digitata R. tridentata C. trianae and C. antarctica are grouped with genera with 5-merous flowers by stipule apex angular (11), inflorescen ce-tendril monochasial with 2-3 arms (43), fruit 1-4-seeded (75), fruit globose (76), seed ventral infold length 0.6 (89), chalaza length < 1.4 (101), ruga sinus angle < 50 (106), seed cross section high to width ra tio < 0.9 (110), and chalaza sunken angle 30-150 (117). The unambiguous changes along the bran ch that contains all species of Cissus and the genera that produce 5-merous flow ers include stipule apex round ( 11), leaf tooth shape straight (20), inflorescences produced from any basal no de (39), more than 4 inflorescences in one inflorescence-branch (40), flower bud apex not lobed (56), petal not re d (57), pollen maximum lumen diameter < 0.7 m (73), sarcotesta withou t stomata (130), and ventral infolds not covered by endotesta on the surface (133). Within the rest of the family, the monophyly of Tetrastigma is supported by leaf tertiary veins random reticulate (18), plan t dioecious (31), inflorescencebranch second internode not comp ressed (37), inflorescence-terminal-axis umbellate (49), stigma 4-lobed (65), floral disc to carpel high ra tio < 0.25 (66), style width to length ratio 0.8 (68),

PAGE 89

89 style to carpel leng th ratio < 0.43 (69), pollen size < 30 m (71), pollen maximum lumen diameter < 0.7 m (73), and endotesta sc lereid width to length ratio < 0.4 (126). Cayratia geniculata and C. cardiophylla are united by stipule length < 2.2 mm (13), inflorescence-tendril monochasial with 2-armed (43), seed raphe curv e angle < 180 (105), ventral infold thin part ratio 0.85 (112), and presence of a constr icted rim on ventral side (137). Tetrastigma, C. geniculata and C. cardiophylla are united by stipules persistent when flowering (10), internodes of inflorescence-branches short (35), and leaf frequently missi ng in the inflorescence-branch (38). The rest of the Cayratia is characterized by more than 3 nodes produced in one inflorescence-branch (34), seed beak length 0.1 (86), ventral infold circularity 0.4 (88), chalaza to beak distance 0.4 (103), apical groove angle < 150 (108), ventral infold thin part ratio 0.85 (112), and ventral infold width 0.2 (115). Acareosperma and the 5 species of Cayratia are united by seed apical notch depth 0.05 (84), ruga ridge angle < 85 (107), and chalaza sunken angle 30-150 (117). The monophyly of Tetrastigma Cayratia and Acareosperma is supported by petal not red (57), seed beak angle < 80 (87), chalaza length < 1.4 (101), seed cross section height to width ra tio < 0.9 (110), seed coat tracheidal cells two layered (132), and ventral infolds not cove red by endotesta (133). Eight species of Cyphostemma excluding C. junceum and C. laza are united by the stipule persisting when fruiting (10), multiseriate hair presen t (30), and ventral infold rugosity 0.26 (111). The eight species of Cyphostemma Acareosperma Cayratia and Tetrastigma are united by 2 or 3 nodes produced in one inflorescence-branch (34), and inflorescence-branch second internode compressed (37). Characters were also mapped onto the MPT w ith GW coding (Figure 2-4). Unambiguous changes along some of the branches with t opology different from the MPTs obtained from

PAGE 90

90 discrete coding are list ed below: grouping of Cissus hypoglauca with Yua and Parthenocissus (branch 1, Figure 2-4) is supported by tendril interr upted (5), stipule length increased (13), leaf glaucous (24), 2 to 4 inflorescences in one br anch (40), inflorescence-terminal-axis umbellate (49), anther to petal length ratio increased (61), style base width to disc diameter ratio increased (70), pollen maximum lumen diameter increased (73), seed ventral infold apex to widest part decreased (90), endotesta sclereid width to lengt h ratio decreased (126), and seed coat tracheidal cell diameter decreased (131). The grouping of the seven species of Cissus with anomalous seeds to Rhoicissus, Yua and Parthenocissus (branch 2, Figure 2-4) is supported by tendril not interrupted (5), secondary veins not ending in the teeth (17), style base to disc diameter ratio increased (70), seed ventral infold apex to widest part ratio increased (90), ventral infold space at apex ratio increased (91), ventral infold space base to middle ratio decreased (94), ventral infold divergence angle increased (95), a nd ventral infold cross section rugosity increased (111). The grouping of Cissus with anomalous seeds with genera w ith 5-merous flowers (branch 3, Figure 2-4) is supported by inflorescen ce-tendril monochasial with 2-3 ar med (43), floral pedicel length decreased (53), fruit lenticel density increased (78), seed chalaza width increased (99), chalaza apex to widest part increased (100), chalaza to beak distance increased (103), ruga ridge angle increased (107), ventral infold thin part circularity increased (113), chalaza thickness increased (118), and seed coat tracheidal cel l diameter decreased (131). Th e monophyly of the majority of Cissus species (branch 4, Figure 2-4) is supported by leaf tooth straight (2 0), leaf tooth sinus angle decreased (23), anther to petal length ra tio increased (61), styl e to carpel length ratio increased (69), pollen size increased (71), a nd 15 continuous seed characters (82, 89, 93, 95, 98, 99, 101, 103, 105, 106, 110, 113, 114, 120, 128).

PAGE 91

91 Discussion The Influences of Coding Methods In Vitaceae, species of differe nt genera frequently have sim ilar vegetative structures; if reproductive structures are unavaila ble, the specimens usually ca nnot be correctly identified. Nevertheless, genera of Vitaceae have relatively consistent infl orescence-branch, inflorescence, and floral structures; recognizing genera though flowering or fruiting materials is seldom a problem. The discrete coding strategy employe d in this study assumes each genus (except Cissus ) is a natural group and looks for the variation pattern among ge nera. Setting the character state delimitation is inevitably subject to the obs erver's point of view. Contrary to discrete coding, GW coding method preserves the pattern s of variation objectively and precisely. However, taxon-sampling, including the choice of the outgroup taxa can have an effect on tree topology when continuous characters are coded with the GW method. The results showed the two different ch aracter-state-delimitation methods of the continuous characters resulted in the generati on of MPTs with different tree topology. The differences are expected because the unit of chan ge is different in the two coding methods. The effect of the coding methods can be demonstrated by the characters with one extreme value. The presence of the extreme value will decrease the differentiability of the similar values and hence down-weight the possible phylogenetic signals that are otherwise discerned in the discrete coding. Extreme value occurs in several characters, e.g., the stipule length of Leea tetramera disc to carpel he ight ratio of L. tetramera disc height to diameter ratio of L. tetramera pollen E/P ratio of L. guineensis pollen pit diameter of L. tetramera endotesta thickness at ruga sinus of C. antarctica and endotesta thickne ss at ruga ridge of Acareosperma The discrete coding in this study does not differentiate the extreme value as a character state and emphasizes the variation pattern of the major ity; compared to GW coding, the chosen variation pattern for

PAGE 92

92 character delimitation is weighted more heavil y. Log transformation on the length characters decreases the size of the gap if the extreme value is at the large end and hence reduces the effect of extreme value in GW coding; however, log transformation may not be reasonable for the ratio morphometric characters. Different coding strategies for qualitative morphological characters also can effect the tree topology (Hawkins, Hughes, and Scotland, 1997; Scotland, Olmstead, and Bennett, 2003). The two coding methods represent different interpretations of the change of continuous characters. Comparative study showed that both discrete coding and GW coding methods recover strong statistically signi ficant phylogenetic signal (GarciaCruz and Sosa, 2006). In this study, clades seldom received a strong bootstrap s upport for either coding method; therefore, all MPTs were viewed as equally possible evolution scenarios. Relationships Within the Family, Co mparisons with the Molecular Data A molecular phylogeny including a ll extant genera is not yet available. Recent molecular studies with broader taxa sampling were either missing Clematicissus and the species of Cissus endemic to Australia (Soejima and Wen, 2006; Wen et al., 2007) or Cyphostemma and Yua (Rossetto, 2007). DNA data for Acareosperma is not available because the species has been collected only once since 1903. The morphological phylogenies pres ented in this study (Figure 2-1, Figure 2-2) have a backbone st ructure similar to that of the GAI1 tree (Wen et al., 2007) and the tree based on combined trnL-F atpB-rbcL spacer, rps16 intron sequences data (Soejima and Wen, 2006), albeit only some of the sampled taxa are the same as those in present study. In these two molecular phylogenies, Cayratia Tetrastigma and Cyphostemma formed a clade sister to other Vitaceae; genera with 5-merous flowers, i.e., Vitis, Ampelocissus, Ampelopsis Rhoicissus, and Parthenocissus formed a clade; Nothocissus and Pterisanthes were nested

PAGE 93

93 within Ampelocissus; the majority of the species of Cissus formed a clade sister to the clade that contains genera with 5-merous flowers. The monophyly of a clade containing Cayratia Cyphostemma and Tetrastigma was strongly supported by sequence data (Soejima and Wen, 2006; Wen et al., 2007). This clade is not recovered by morphology-based phylogenetic analysis with GW coding (Figure 2-2), but the topology is present in the morphology trees with discrete coding (Figure 2-1), excluding the paraphyletic C. junceum and C. laza Stomata on seed sarcotesta and large-sized tracheidal cells in the seed coat occur in most taxa of thes e three genera. Most of them can produce highly reduced inflorescence-branches, and their floral buds have a lobed apex due to the strongly hooked petals. Some characters are pr esent in two of the three genera: Cayratia and Cyphostemma have a compressed inflorescence-branch s econd internode so two pairs of stipules are present at the posit ion of the first node; Tetrastigma and Cyphostemma frequently have persistent large stipules. Mo rphological data indicated that Cayratia is not monophyletic, and this is congruent with most molecular data (Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007). The species fit to the delimitation of the section Koilosperma Sssenguth (sectional name violates the international code), Cayratia geniculata and C. cardiophylla, do not form a clade with the other species of Cayratia (Figure 2-1, Figure 2-2). These two species have a special seed feature a constricted rim on ventral side (Chapter 1), a nd their inflorescences have a monochasial structure on the ba sal parts. Seeds of other Cayratia do not have the constricted rim, and the basal parts of the inflorescences do not have monochasial structures. Tetrastigma was resolved as monophyletic in both molecu lar and morphological phy logenies; dioecy and presence of 4-lobed stigmas are the syna pomorphies of this genus. The monophyly of Cyphostemma is not recovered in the present study, despite the constant floral and seed

PAGE 94

94 morphology of this genus. Flowers of Cyphostemma are easily recognized by the 4 large glandlike nectary discs; the scars of the discs can be easily obs erved in fruits. Seeds of Cyphostemma have ventral infolds covered by extra layers of sc lereids and a perichalaza. These seed features are also present in seeds of Leea and they likely represent retained plesiomorphies. Cyphostemma junceum has some characters not found in ot her sampled Vitaceae: the plant is erect, tendril-less, and produces in florescences only at the terminal node of a branch. This is the growth pattern shared by all species of Leea therefore the present analyses placed C. junceum sister to all other Vitaceae. Cyphostemma laza a succulent tendril-beari ng tree 1 to 4 m tall, was placed sister to Cissus and all 5-merous genera in the trees resulting from the analysis employing discrete coding mainly because the character state of compressed inflorescence-branch second internode (37) was coded unknown. When the character was coded as present for C. laza it grouped with the majority of Cyphostemma (data not shown). Cyphostemma laza and C. microdiptera together with C. junceum are placed in a position sister to the rest of the family when GW coding was applied (Figure 2-2) alth ough they have tendrils and inflorescences opposite to the leaves like other Vitaceae. These two species of Cyphostemma have pinnately compound leaves, a character shared with Leea Cyphostemma junceum was not included in the molecular phylogeny. Cyphostemma bainesii and C. mappia species with similar tendril-less erect growth and terminal inflorescences, we re shown to group with other tendr il-bearing Cyphostemma in trnL-F sequence data (Soejima and Wen, 2006). The monophyly of Cyphostemma must await further testing. The unique seed shape of Acareosperma spireanum has been used to support recognition of this species as a monotypic genus (Gagnepain, 1919). Available vegetative, infructescence, fruit, and seed characters indicate its close relationship to Cayratia or Cyphostemma (Figure 2-1,

PAGE 95

95 Figure 2-2). The architecture of th e infructescence-bearing branch of Acareosperma is similar to that of Cayratia and Cyphostemma in agreement with the observation of the author who established the genus (Gagne pain, 1919). Fruits of Acareosperma are 1-seeded; the surface of the fruit is covered with short 2to 3-celled uniseriate hairs. One seeded-fruits with hair are prevalent in Cyphostemma Large diameter tracheidal cells in the seed coat are shared with Cayratia and the same kind of V-shaped ventral infold configuration (136) is observed in at least 3 species of Tetrastigma (Chapter 1). The majority of the species of Cissus formed a well supported clade in the molecular phylogenies (Rossetto et al., 2002; Soejima and Wen, 2006; Rosse tto, 2007; Wen et al., 2007); Cissus simsiana, C. striata, C. tweedieana C. antarctica, C. oblonga, C. hypoglauca, and C. sterculiifolia were not included in this clade of Cissus species (Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007). The m onophyly of the majority of the species of Cissus is recovered by morphological data with GW coding, and the eight species of Cissus i.e., C. simsiana, C. hypoglauca, C. antarctica, C. sterculiifolia C. trianae C. granulosa, C. penninervis and C. striata, are not included in this clade (Figure 2-2). Among those eight species of Cissus C. trianae and C. granulosa were not included in analyses based on sequence data. The synapomorphies of the monophyletic gr oup comprising the majority of the speceis of Cissus include leaf with straight teeth (20), leaf teeth w ith small sinus angle (23), and seeds with perichalaza (101). The majo rity of the species of Cissus does not form a clade, however, when discrete coding was applied to the matrix (Figure 2-1). The sister position of Cissus to the clade containing genera with 5-merous flowers was pr esent in m olecular phylogenies of Soejima and Wen (2006) and Wen et al. (2007), and also the present morphological study. The morphological changes along the branch leading to Cissus and the 5-merous genera are mostly

PAGE 96

96 the loss of the characters generally present in Cyphostemma Cayratia and Tetrastigma, such as the absence of highly reduced in florescence-branch (34), absence of lobed flower bud (56), and absence of stomata on sarcotesta (130). The eight species of Cissus excluded from the clade containing the majority of species of Cissus in the morphology-based phylogeny with GW coding are either Australian or South American endemics. They do not possess the perichalazal seeds like those of the members of the clade containing most species of Cissus Those from Australia, C. antarctica, C. hypoglauca C. penninervis and C. sterculiifolia have rugose seeds with long di vergent ventral infolds and an elongate chalaza, similar to the seeds of Tetrastigma or Rhoicissus; those from South America, C. granulose and C. trianae, have seeds that share features of Tetrastigma, and those of C. simsiana and C. striata are very similar to the seeds of Ampelopsis (Chapter 1). Seeds provide the most obvious characters distinguis hing these species from the rest of Cissus but the inflorescence structure also distinguishes th ese species from the remaining species of Cissus A bifurcate structure is present in the basal pa rt of inflorescence in these eight species of Cissus but this structure is absent in all other Cissus A bract is present unde r one of the two arms, therefore the structure is interpre ted as monochasium with two arms (character 43). The genera which produce 5-merous flowers mostly have this monochasial structure in the basal part of their inflorescences. Floral stru cture can distinguish some of these eight species of Cissus from the rest of Cissus: C. granulosa, C. trianae, and C. penninervis have larger disc height to diameter ratio (67), C. hypoglauca and C. trianae have smaller style to car pel length ratio (69), and C. hypoglauca has a larger style to disc diameter ratio (70). The re maining members of this group cannot be distinguished from other Cissus by floral characters.

PAGE 97

97 Rhoicissus and some species of Cissus without perichalazal seeds have inflorescencetendril structures (character 43) shared with the taxa with 5-merous flowers, however, their seeds possess features of Tetrastigma. The mixture characters charact erizing 5-petaled and 4-petaled genera in these species place them in a position sister to the primarily 5-petaled clade when discrete coding was applied (Figure 2-1). Hair type also supports the close relationship of these species; 2-armed hairs, a feature characteristic of Cissus is present in C. antarctica, C. trianae C. hypoglauca, C. sterculiifolia and Rhoicissus. Cissus simsiana not only has the monochasial structure in the basal part of its inflorescences, but also its overall morphology is very similar to that of Ampelopsis Therefore it is placed close to Ampelopsis by morphological data (Figure 21, Figure 2-2). Rhoicissus and the seven species of Cissus with anomalous seeds are grouped with Parthenocissus-Yua in the morphological phylogeny em ploying GW coding (Figure 2-2). Seeds with long and divergent ventral infolds ar e one of the synapomorphies of this clade. Palmate leaves with very few teeth on the leaf margin are present in R. digitata C. hypoglauca, C. penninervis and C. sterculiifolia supporting their close relati onship. The glaucous leaves contribute to th e grouping of C. hypoglauca and Yua The placement of Rhoicissus and the species of Cissus without perichalaza was different from that in the molecular phylogenies. Cissus striata and C. simsiana formed a well supported clade with Rhoicissus, which is nested within Ampelopsis in trees based on GAI1 sequences (Wen et al., 2007). The grouping of Rhoicissus with Ampelopsis is not present in the present study, however, C. simsiana is placed close to Ampelopsis based on morphological data (Figure 2-1, Figure 2-2). In the analyses emphasizing Australian species, C. antarctica C. oblonga C. hypoglauca and C. ster culiifolia formed a clade; nevertheless, the position of this clade within the family is uncertain (Rossetto et al., 2002; Rossetto, 2007). The position of Rhoicissus and the species of Cissus lacking

PAGE 98

98 perichalazal seeds cannot be confirmed with current data; their placement based on morphological data does not have bootstrap support, and the mo lecular phylogenies have an incomplete taxon sampling. A large clade comprised of genera mostly with 5-merous flowers, including Clematicissus, is seen in the morphology-based trees. The two species of Clematicissus form a clade, although C. angustissima has unusual one-infolded seeds not seen in any other vitaceous seed (Chapter 1). They are pl aced in the clade that contains Ampelocissus Vitis and Ampelopsis (Figure 2-2), or the clade that contains Ampelocissus Vitis, Ampelopsis and Parthenocissus (Figure 2-1). GAI1 sequence data strongly support a clad e containing species with 5-merous flowers (Wen et al., 2007); however, Clematicissus was not included in this molecular analysis. In the trnL-F phylogeny, which included Australian endemic species, C. striata grouped with C. tweedieana a South American species morphologically similar to C. simsiana, and these two species of Cissus formed a well supported clade with Clematicissus (Rossetto, 2007). Seeds of Clematicissus, C. striata, and C. tweedieana are similar to those of Ampelopsis (Chapter 1); floral and inflorescence structures also support the close phylogenetic placement of Clematicissus and Ampelopsis The precise placement of Clematicissus within the family awaits further testing. Parthenocissus and Yua form a clade in both molecular (Wen et al., 2007) and morphological phylogenies. The monophyly of Yua is not recovered in this study. The genus Yua from China and Parthenocissus vitacea from North America have floral morphology characteristic of Parthenocissus carpel wine-bottle-shaped and disc inconspicuous, but their tendrils are 2or 3-armed without suction pa ds, and thus differing from the suction-padded, multiple-armed tendrils of other species of Parthenocissus. The seed morphology of Yua is also

PAGE 99

99 different from that of Parthenocissus (Chapter 1). In spite of these differences, the present morphology-based cladistic analyses indicate a clade containing Yua and Parthenocissus. Floral structures are the major synapomorphies of this clade. Parthenocissus and Yua were placed within the clade containing Ampelocissus Vitis, and Ampelopsis in the molecular phylogenies of Soejima and Wen (2006) and Wen et al. (2007). A similar grouping is present in the phylogeny with discrete coding (Figure 2-1), with Ampelopsis paraphyletic. In these molecular phylogenies, Vitis formed a clade with Ampelocissus with Nothocissus and Pterisanthes nesting within Ampelocissus. This clade received fair support in the analyses based on three chloroplast seque nces (Soejima and Wen, 2006) and received a moderate Bootstrap support in the morphol ogy-based phylogeny (Figure 2-1, Figure 2-2). Racemose inflorescences and arachnoid hairs are the shared characters for this clade. In the present study, Ampelopsis is paraphyletic and phyloge netically adjacent to the AmpelocissusVitis clade. This relationship of Ampelopsis to the Ampelocissus-Vitis clade was not supported in the molecular phylogenies of Soejima and Wen (2006) or Wen et al. (2007). The molecular data indicated a paraphyletic Ampelopsis with a pinnately-compound leav ed species forming a clade, and the simple and palmately compound-leav ed species grouped together, with the Rhoicissus" C. striata complex" positioned as sister to either of the two clades (Soejima and Wen, 2006; Wen et al., 2007). The separation of Ampelopsis species by leaf form agrees with the morphological data treated with GW coding (F igure 2-2) but not w ith the phylogeny employing discrete coding (Figure 2-1). Morphology of Vitaceae and Character Evolution Growth habit Most Vitaceae are climbing to procumbent lia nas or vines. Tuberous rootstocks are frequently observed in Australian and Afri can taxa (Jackes, 1988b; Verdcourt, 1993). Old

PAGE 100

100 branches are usually terete; however, flattened woody stems are frequently observed in Tetrastigma. Four to six-angular stems occur in some succulent Cissus and the young woody stems of some species of Ampelopsis and Parthenocissus are squarish. Erect growth occurs in a few species of Cissus Cyphostemma and Rhoicissus from Africa and Madagascar. Species distributed outside the African region with erect growth include the Australian endemic Ampelocissus frutescens which grows in the coastal de ciduous forests (Jackes, 1984), and Ampelopsis vitifolia subsp. hazarganjiensis Nazim & Qaiser from Pakistan (Nazimuddin and Qaiser, 1982). Those species with the erect grow th habit are distributed in xerophytic habitat, and they may be herbs, shrubs, or caudiform trees, with or without tendrils. Species of Leea do not show the viny habit, and mostly occur in rive rine forests but some grow in dry savannas. The erect growth habit is possibly the ancestral condition of Vitaceae, since C. junceum a perennial herb with terminal inflorescences, wa s placed in a position sister to other Vitaceae by the morphological data (Figure 21, Figure 2-2). An erect hab it is often associated with succulence; at least 20 species of Cyphostemma are caudiform trees (Hardy and Retief, 1981; Verdcourt, 1993; Descoings, 2004). Succulent growth also occu rs in a few viny species of Cyphostemma Cissus and Tetrastigma. Although all succulent specie s belong to the genera with 4-merous flowers, the present phylogeny does no t indicate their common origin; the character state reconstruction suggests succulence evolved independently several times (data not shown). Crassulacean acid metabolism (CAM) has been reported in some species of Cissus and Cyphostemma and it was shown that succu lence level is not causally related to CAM activity (De Santo et al., 1983). CAM is possibly more common in Vitaceae than what would be expected based on the frequency of succulence.

PAGE 101

101 Considering that the stem anatomy of lianas is usually specialized a nd different from that of trees or shrubs (Carlquist, 1991), and the non-liana habit seems to be restricted to certain genera of Vitaceae, the wood anat omy of Vitaceae is po tentially phylogenetically informative. A preliminary survey indicated that Rhoicissus and Leea have similar wood anatomy; the wood of Cayratia resembles that of Tetrastigma and both share some characters of wood of Cissus ; the wood of Vitis appears more similar to that of Parthenocissus and Ampelopsis than that of Ampelocissus (Wheeler and Lapasha, 1994). Wood an atomy seems to support the separation of 4-petaled and 5-petaled taxa, as indicated by th e current morphological and molecular data. An extensive survey of wood anatomy of Vitaceae should provide insight into the intrafamilial relationships, especially the placement of Rhoicissus The evolution of stem anatomy of liana then can be inferred from mapping th e characters to a phylogenetic tree. Both deciduous and evergreen growth occur in Vitaceae. In the present study, Parthenocissus quinquefolia Vitis aestivalis and V. vinifera were observed in the field to be deciduous; Ampelocissus acapulcensis and Cyphostemma laza probably flower before new leaves expand because mature leaves are abse nt and only young leaves are found on developing shoots of flowering specimens. Prev ious investigations reported that Ampelopsis Parthenocissus, and Vitis are deciduous, or rarely evergreen (Brizicky, 1965). The Australian species Cissus cardiophylla C. reniformis Clematicissus angustissima C. opaca are deciduous. Cissus cornifolia is "usually flowering before new leaves grow" (Verdcourt, 1993). Other sampled species are either evergreen or lacking in formation on leaf persistence; therefore, this character was not included in the cladistic analyses. Phyllotaxy The feature characteristic of Vitaceae, i.e., tendrils opposite the leaves, is quite unusual in vascular plants. Besides leaf primodia, a uncommitted primodium (sometimes called a lateral

PAGE 102

102 meristem) is regularly generated in the shoot ap ex, producing either tendri ls or inflorescences that opposed the leaves at a la ter stage of development (Gerra th, Lacroix, and Posluszny, 1998). The homologous origin of inflores cences and tendrils has long been considered, based on their occupying the same position on a branch, frequen tly observed intermediate forms, and the experiments that show that the application of growth regulators can transform one to the other (Srinivasan and Mullins, 1978, 1979, 1980). R ecent molecular genetics studies provided additional evidence. A defect in signal tr ansduction of gibberellin causes young plants to produce inflorescences instead of normal tendril s (Boss and Thomas, 2002); and the finding that 2 MADS-box genes are expressed in both in florescences and tendrils of very young nonflowering plants but not other vegetative organs (Calonje et al., 2004) implied a partially shared morphogenetic pathway of inflorescences and tendrils. Leaves are alternate and spirally arranged when plants are young and tendril-less, but after the first tendril is initiated, the leaves are usually alternate and 2-ranke dly arranged at every node. Tendr ils and axillary buds are not always present at every node. Shoot architectures of Vitaceae have been cl assified into five patterns, related to the presence or absence of axillary buds and tendrils /inflorescences at the adjacent nodes (Gerrath, Lacroix, and Posluszny, 1998; Gerrath and Poslusz ny, 2007). Pattern 1 has a leaf and axillary buds at every node, tendrils absent, and the inflor escence is terminal or axillary. Pattern 5 has a leaf, an inflorescence/tendril, and axillary buds at every node. Patterns 2, 3, and 4 represent the condition described as "tendril interrupted" in the literature. In th ese three patterns, tendrils/inflorescences are absent in a 3-node modularity, and the axillary buds are present in either one, two, or all three of the nodes in the 3-node modularity. The character survey in this study shows that a terminal inflorescence is not restricted to phyllotaxis pattern 1, and in some

PAGE 103

103 taxa the inflorescence-branch architecture is not the same as that of the vegetative-branch. Therefore, the characters regarding to the inflorescence-branch architecture were treated separately; the general phyllotaxy was inferred from the pattern of the tendril position on a vegetative-branch in this study. Due to the diffi culty in confirming the absence of axillary buds in dried and pressed materials, onl y patterns of tendrils were scored (character 5). A new pattern not belonging to the five pattern s described above was also observ e, i.e., the tendril is present and interrupted, with two nodes as a repeat, and axillary buds are present at every node (Figure 2-5). This pattern occurs only in Nothocissus spicifera. Leea do not possess tendrils. Erect growth is not related to lack of tendrils; some caudiform Cyphostemma produce young shoots with tendrils near the top of th e trunk during the growing season, and C. hereroense is procumbent and tendril-less. In terrupted tendrils can occur in any genus. Character optimization resolved tendril-less as the ances tral condition for Vitaceae, and the tendril interrupted condition evolved from the tendril-less condi tion. The tendril not interrupted condition is derived several times independently (Figur e 2-6). Interestingly, Rhoicissus and most species of Cissus including those without perich alazal seeds, have uninterr upted tendrils (Figure 2-6). Tendrils The tendrils of Vitaceae are always opposite the leaves, usually with a monochasial organization; a bract is present opposite to each tendril arm. Tendril arm number varies from one to nine. When the tendrils have only one arm, i.e., are unbr anched, usually there is a bractlike structure in the middle of the tendril (F igure 2-5); only the unbranched tendrils of Cissus fuliginea and Tetrastigma bioritsense do not have any surface protru sion. A bract-like structure was also observed in the middle of the outer tendril arm in some 2or 3-armed-tendriled species, such as Ampelopsis arborea and A. cordata. In these two species of Ampelopsis the bract-like scar is sometimes associated with a short reduced inflorescence-like stru cture. Therefore, a

PAGE 104

104 bract-like structure on an unbran ched tendril was viewed as a vestigial organ of a reduced multiple-armed tendril with monochasial organization, and only the tendrils of C. fuliginea and T. bioritsense were considered as having simple organization. Tendrils with umbellate organization are present in Tetrastigma triphyllum (Gagnep.) W. T. Wang, T. yunnanense Gagnep., and T. obtectum (sampled). Under character optimi zation, the relatively rare umbellate tendril is a derived state. The umbel stru cture of the tendril can be hypothesized as a modification of the monochasial structure, with axis length reduced so the tendril arms are condensed to form an umbellate architecture. Te ndrils with more than f our arms and the tendril tips specialized to suction pads are the characte rs frequently used to distinguish the genus Parthenocissus from others. Observations on th e organogenesis of the tendrils of Parthenocissus revealed differences between 2-armed tendrils and multiple armed tendrils, with the deviance mainly coming from the relative size differences of the tendril apex and tendril arm initials in the early developmental stages. In later tendril bifurcation the multiple-armed tendril behaved similar to the bifurcation in the 2-armed tendril; and this was speculated to be due to the reduced meristematic activities of the tendril apex in the later stag e (Wilson and Posluszny, 2003b). There is possibly a gradient of variation of meri stematic activities displayed in the tendril apex, and the outcome of this variation is the diversity in the tendril ar m number. Fouror more-armed tendrils are not restricted to Parthenocissus ; at least four species of Ampelocissus, Cayratia trifolia and the 3 species of Tetrastigma with umbellate tendrils also have tendrils with more than four arms. The young tendril tips are swollen in a few sp ecies. This enlargement is spherical in Parthenocissus dalzielii asymmetrical with an acute apex in P. laetevirens or peg-shaped in Cayratia trifolia and some species of Cissus and different from th e reduced floral-bud-like

PAGE 105

105 structures that sometimes ar e present on the tendrils of Ampelopsis The presence of an enlargement in a young tendril tip is not associated with the formation of suction pads. This swollen structure in young tendr il tips has an unknown function, nevertheless, it was used to distinguish species of Parthenocissus (Li, 1998). The formation of the suction pad starts when the tendril tips contact solid substances; without this contac t the young tendrils soon abscise. The mature tendrils have a relatively shorter axis compared to the tendrils without suction pads. Suction pads frequently occur in species of Parthenocissus, nevertheless, not all species of Parthenocissus have them. Suction pads also occur in Cayratia trifolia Cissus obovata, and the three species of Tetrastigma with umbellate tendrils. Base d on the phylogeny presented in this study, the presence of suction pads on the tendri l tips is a derived condi tion, and has evolved several times. Stipules All observed species have a pair of intra-petiolar stipules at each node. The margin of the stipules frequently have short uniseriate hairs. The stipules us ually cover the shoot apex when young, and typically fall off soon afte r the leaves expand. Sometimes, however, the stipules are not deciduous; many species of Cyphostemma and Tetrastigma have persistent stipules, which enlarge as the stem grows and remain on the nodes that produce inflorescences or infructescences. Stipules of Vit aceae are round, oval, triangular, or linear in shape. Most species of Vitis Ampelopsis and Cissus have round stipules; Cayratia and Parthenocissus have linear triangular stipules; Cyphostemma frequently has large falcate stipules; and Tetrastigma tends to have oval stipules with a pointed apex. The stipule base is us ually straight, but a swollen and cordate stipule base was occasionally observed in species of Cissus The three Australian species of Cissus C. hypoglauca C. antarctica, and C. oblonga, have large stipules, and a unusual feature was observed for the stipules of C. hypoglauca and C. oblongathe pair of

PAGE 106

106 stipules are connected by a partition along the median longitudinal plane so the transverse section of the stipules is H-shaped. This partition was not pr esent in the other investigated species (Lacroix and Posluszny, 1989b). In another study, C. antarctica was reported to have interconnected stipules, and a more s ubtle form of connection was found in C. quadrangularis (Timmons, Posluszny, and Gerrath, 2007b). Molecular data, albeit with incomplete sampling, indicated the monophyly of C. hypoglauca, C. oblonga, and C. antarctica ; the presence of the Hshaped connected stipules could be a synapomor phy for these species (Rossetto et al., 2002; Rossetto, 2007). A survey of this character in Vitaceae may provide more data to infer the phylogenetic position of the species of Cissus endemic to Australia. Leaves Leaves of Vitaceae are simple or compound; the later condition may be palmate, pedate, or pinnate (Figure 2-7). Th e simple leaf is common in Vitis Ampelocissus Ampelopsis Rhoicissus, and Cissus ; it seldom occurs in Tetrastigma Cayratia and Cyphostemma The palmately compound leaf, with either three or five leaflets, occurs in all genera of Vitaceae, and is common in Parthenocissus, Tetrastigma Cayratia and Cyphostemma Nevertheless, the palmately compound leaf with five leaflets is curiously missing in species of Cayratia The pedately compound leaf is common in Cayratia Tetrastigma, Ampelocissus and Pterisanthes. Interestingly, the pedate-leaved species are most ly distributed in southeastern Asia, although the African Cyphostemma adenocaule is an exception. The pe dately compound leaves of Acareosperma are different from other pedately compound leaves due to the monochasial organization of the multiple la teral leaflets. Pinnately co mpound leaves are relatively uncommon in Vitaceae; they are pres ent in at least eight species of Ampelopsis i.e., one North American species and seven Asian species (L i, 1998), seven species of South American Cissus (Lombardi, 2000), one Cayratia from Madagascar (Descoings 1961) and seven species of

PAGE 107

107 caudiform Cyphostemma from Madagascar (Descoings, 2004). Leaf form is variable in some taxa; within the sampled taxa, leaves of Parthenocissus dalzielii are simple when small in size, and large leaves are mostly trifoliate; sometimes two leaflets are partially fused. Leaves of Rhoicissus tridentata also vary from simple to trifoliate, along with intermediate form. Leaflet number varies in the same individual in some taxa. Leea mainly have pinnately compound leaves. One-foliate or 3-foliate leaves are present in at least six species of Leea As in Vitaceae, the leaflet number is highly variable in some sp ecies but is consistent in others (Ridsdale, 1974, 1976). Mapping the leaf form onto the MPTs in this study resolved the pinnately or palmately compound leaf form as the ancestral condition of Vitaceae (Figure 2-7). There is a trend of reduction in leaf-blade division, and simple leaves are derived i ndependently in the VitisAmpelocissus clade and the major Cissus clade. Based on the character optimization and the observation of the transition forms between simple and compound leaves, a hypothesis is suggested: the simple leaf form is derived from the compound leaf form by the loss of leaf blade division ability. Leaf reduction was also suggested for Leea leaves of L. crispa can vary from simple, trifoliate, to unior bi-pinnate; in L. magnifolia, a pair of foliar-like outgrowths was positioned below the simple leaf; rarely these outgrowths were developed into highly reduced leaflets (Ridsdale, 1974). The palmate leaf form of Vitaceae possibly originated from the reduction of the pinnate leaf form of the common ancestor of Vit aceae and Leeaceae, and reduction of a palmate leaf may have resulted in a simple leaf. The presence of the pinnate leaf form in some taxa of Vitaceae represents the regained ability for leaf division. The shape of a simple leaf is typically broadl y ovate, with an acute to acuminate apex and a cuneate, convex, truncate, or lobate base. The lamina is unlobed, shallow to deeply 3-,5-, or 7-

PAGE 108

108 palmately lobed. Within the 82 sampled ingroup ta xa, the leaf blade shape varies from unlobed to deeply lobed in Cissus campestris and C. reniformis within the same indi vidual; this variation also occurs among individuals in Ampelocissus abyssinica and A. robinsonii. Outside the taxa sampled in this study, variation in le af shape was reported at least in Cissus fuliginea and C. verticillata (Lombardi, 2000). The leaflets of a compound leaf are typically elliptic to ovate. The terminal leaflets of a compound leaf are usually larger then the lateral leaflets, and the la teral leaflets frequently have an oblique leaf base The leaflets of Cissus mirabilis are deeply dissected along the secondary veins, and the leaflets can be 20 cm long. Similar highly dissected palmate leaves were observed in Ampelopsis japonica (Thunb.) Makino (not sampled); ne vertheless, the leaf size of A. japonica is much smaller. The distinct leaf shape of C. mirabilis contributed to the establishment of the genus Pterocissus ; however, the overall morphology of C. mirabilis is not much different from that of Cissus, and it was transferred to Cissus (Lombardi, 2000). The phylogeny in this study places C. mirabilis among Cissus with perichalazal seeds (Figure 2-2), supporting the sinking of Pterocissus within the clade of Cissus with perichalazal seeds. A typical simple leaf of Vitaceae has palmate venation with five primary veins; occasionally three or seven primary veins were observed. The secondary veins attached to the mid-primary veins are pinnately arranged. The sec ondary veins attached to lateral primary veins are agrophic (have a ladder or comb-like patter n). The number of secondary veins branching from the primary veins of the same leaf is roughly the same, typically three to six pairs. Each secondary vein usually ends at a tooth apex. The tertiary veins attached to the basal-most outer lateral primary vein are agrophic. Other tertiary veins usually show an alternate percurrent or mixed opposite/alternate percurrent pattern, with tertiary veins roughly 90 to secondary veins.

PAGE 109

109 In a lobed leaf, the lobe sinus is typically developed between a la teral primary vein and the basalmost secondary vein, and the overa ll leaf architecture remains the same. The counterpart of the agrophic veins could be observed when leaf is deeply lobed. The deeper the lobe the more strongly developed is the counterpart of the agrophic veins, and the secondary ve ins in the lobes appear to be pinnately arranged. In Parthenocissus dalzielii and Rhoicissus tridentata in which the intermediate forms of simple, lobed, to palmate leaves were observed, the venation pattern of the leaflets resembles that of a simple leaf, and the mid lower part of the leaflet margin is entire; teeth are located on the outer margin of the lateral leaflets. Leaves of Vitis piasezkii and Ampelocissus elegens Gagnep. (not sampled, field observation) are com pound in outline, nevertheless, they retain the venation pattern of a simple leaf, as if a simp le leaf has became deeply dissected forming a compound leaf. The resemblance of the venation pattern between a lobed simple leaf and a compound leaf strengthens the hypothesis that the simple leaf of Vitaceae has originated from the loss of the leaf blade division ability. Ho wever, the venation patterns of other compound leaves of Vitaceae do not show the strong resemblance to that of a simple leaf, due to the relatively weak veins in the leaf lets. Typically, the leaflets of a compound leaf have pinnate venation, and the tertiary vein pattern can be alternate percurrent to a random polygonal. The leaf margin is usually serrate; entire-margined leaves are rare in Vitaceae. Tooth shape is convex, flexuous, or straight, and the to oth sinus is angular or rounded. The tooth apex is usually pointed and swollen. The primary and secondary veins usually end in the tooth apex, with a pair of weak marginal veins joining the secondary vein in the tooth apex. Rarely the secondary vein loops and joins other secondary ve ins and does not directly end in the tooth. The tooth size usually does not vary gr eatly in the same leaf, nevertheless, the teeth terminating the

PAGE 110

110 primary veins tend to be larger, and the teeth lo cated between the secondar y veins are smaller. The present data indica te that leaves of Ampelocissus are frequently densely serrate, and the three palmate-leafed Australian species of Cissus Yua austro-orientalis and Rhoicissus digitata have leaf margins almost without teeth (Figure 28). Another noticeable consistency is that the simple leaves of Cissus mostly have small, straight teeth w ith a sharp sinus angle. The densely serrate leaf margin of species of Ampelocissus was also noticed in another leaf survey of Vitaceae (Patil, 2006). Yua and the Australian Cissus hypoglauca have strongly glaucous leaf abaxial surface. The similarity in the leaf characters, i.e., palmate, almost entire leaf margin, is one of the reasons that Parthenocissus-Yua clade was grouped with Rhoicissus and the species of Cissus with anomalous seeds in the analysis with GW-codi ng (Figure 2-2). Another feature sometimes observed on grape leaves is domatia. The Australian species Cissus antarctica C. oblonga and C. sterculiifolia have prominent pocket-shaped domatia. The vein tissues extend and connect at the junction of major veins, forming a pocketshape structure. Those on the leaves of C. antarctica and C. oblonga can protrude prominently. The pocket-shaped domatia are also present in some Ampelopsis Rhoicissus and the South American C. simsiana, although not as prominent as those in the th ree Australian species of Cissus The presence of the pocket-shaped domatia seems to indicate a close relationship among some species of Cissus with anomalous seeds, Ampelopsis and Rhoicissus, a relationship supported by mo lecular phylogenies (Wen et al., 2007). Instead of being overgrown with tissue, sometimes a tuft of uniseriate hairs is present in the junction of major veins in leav es of other species. In species of Vitis, these tufts of hairs are acarodomatia, which are frequently inhabite d by predatory and mycophagous mites that bring beneficial effects to the host plants (English-Loeb, Norton, and Walker, 2002).

PAGE 111

111 Features of leaf epidermal cells and stomata pattern (Z ubkova, 1966; Ren et al., 2003), and petiole anatomy (Zubkova, 1975) may contain phylogenetic information, but were not surveyed in this study. Hairs Trichomes of Vitaceae are uniseriate, arachno id, unicellular 2-armed, multiseriate, or multiseriate with a glandular head. Uniseriate hairs are most common; usually uniseriate hairs and one other type of hairs are present on the sa me plant. Hairs can occur on any plant surface except the stamens and the floral disc; those pr esent on the petal outer surface are uniseriate, multiseriate with glandular head, or 2-armed; those present on the carpel surface are always uniseriate; those on the fruit surface are uniseriat e, multiseriate, or multiseriate with glandular heads. The length of the unise riate haisr varies from 0.1 mm to 1mm; the length and the cell numbers of the uniseriate hairs fr equently varies within the same individual. The 2-armed hairs are usually sessile with the arms more or less equal in length. The length of the arms ranges from 0.1-1mm long. However, 2-armed hairs with a stalk of 0.1-0.2mm are present in Cissus antarctica C. hypoglauca, and Rhoicissus tridentata ; and in C. antarctica some of the 2-armed hairs have one arm much longer (1.5-2mm) than the other. Arachnoid ha irs are usually longer than 0.8mm. Size of the multiser iate hair varies greatly; in Ampelocissus barbata the multiseriate hairs can be more than 1 cm long. Hair density can be highly variable on the same plant, or, more commonly, varies greatly among individuals of the same species. However, the occurrence of the hair types ot her than uniseriate seems to be phylogenetically informative. Arachnoid hairs appear exclusivel y in all sampled species of Ampelocissus Pterisanthes Nothocissus, and Vitis; such hairs are one of the synapomor phies for this clade. Glandular multiseriate hairs frequently occur in Cyphostemma Two-armed hairs are present in Cissus, Rhoicissus, Ampelopsis glandulosa and A. delavayana ; such hairs are likely another

PAGE 112

112 synapomorphy for the RhoicissusAmpelopsis clade supported by the molecular data (Soejima and Wen, 2006). Sexuality Sampled species of Tetrastigma and Vitis are all dioecious except V. vinifera which has a long history of cultivation and has hermaphroditic flowers. The unisexual flowers have all floral organs developed, but the stamens or carpels ar e reduced. Developmental study has shown that the staminate flowers of V. riparia have ovules that develop to at least the one integument stage, and later development is aborted; and the pollen grains of pis tillate flowers of V. riparia are inaperturate (Gerrath and Posluszny, 1988a). The pistillate and staminate inflorescences have the same structures, however in most observed Vitis the pistillate inflorescences are slightly less branched than the staminate inflorescences. Ampelocissus and Pterisanthes were described as polygamo-monoecious (Wen, 2007b); Ampelocissus was described as hermaphroditic or polygamo-dioecious (Li, 1998); A. erdvendbergiana was described as andro-monoecious (Lombardi, 2000); Cayratia was described as dioecious, poly gamo-dioecious, or hermaphrodites (Descoings, 1972). Distinct floral dimorphism was not observed in sampled Ampelocissus Pterisanthes and Cayratia ; field observation is needed to co nfirm the reported conditions. The factors determing the sexuality of vitaceous fl owers are largely unknown. It was reported that cytokinins can convert the male plant of native Vitis vinifera to produce hermaphroditic flowers (Negi and Olmo, 1972). The same authors proposed a model of a single locu s with three alleles controlling the production of ma le, hermaphrodite, and female flowers (Negi and Olmo, 1971). In recent studies, a single locus resp onsible for the sex determination in a Vitis cultivar was identified (Dalbo et al., 2000; Riaz et al., 2006; Margue rit et al., 2009), suppor ting the previously proposed single locus model for sex determination.

PAGE 113

113 Inflorescence-branch architecture Characters related to inflorescence-branch architecture are useful in distinguishing genera. As previously stated, inflorescences are homologous to tendrils, and the phyllotaxis of inflorescence-branches is the same as that in vegetative-branch in all observed taxa with tendrils, except for Nothocissus and species with highly reduced inflorescence-branches. Usually new shoots develop from the axillary buds of the old branches duri ng the growing season, and the same shoot may produce only inflorescences, only tendrils, or both. The axillary buds that develop into an inflorescence-br anch may or may not be spatially specific. Deciduous species of temperate regions, such as Vitis vinifera (Posluszny and Gerrath, 1986; Boss et al., 2003), have latent buds that overwinter. More than one bud ca n be generated in a leaf axil; the latent buds are the second order buds that form at the axil of first or der axillary buds. Inside the latent buds, the inflorescences have been initiated but rema in immature and dormant during the winter. The latent buds will develop into inflorescence-branches in next spring, and the first order axillary buds, instead of overwintering, develop into syllep tic shoots that usually produce only tendrils. The phenomena of sylleptic shoots producing only tendrils is also observed in other species of Vitis such as V. vulpina V. kelungensis (field observations). The deciduous species, Parthenocissus inserta has latent buds bearing immature in florescences; however, it differs from Vitis in that its first orde r axillary buds can eith er become latent buds or develop into branches (Gerrath and Posluszny, 1989c). Seri al accessory buds are present in Ampelopsis brevipedunculata as the overwintering buds, the regular ax illary buds normally abscise at the end of the growing season (Gerrath and Posluszny, 1 989a). The serial accessory buds are hidden in the petiole base and not externally visible; they have been seldom reported in Vitaceae, possibly because of the difficulty in perceiving th em. Supernumerary buds were reported in Cissus quadrangularis which differ from the serial accessory buds of A. brevipedunculata in the spatial

PAGE 114

114 direction of their seque ntial development in the same l eaf axil (Timmons, Posluszny, and Gerrath, 2007b). It is unknown whether those bu ds specifically devel op to vegetativeor inflorescence-branches. The growth patterns of the above-mentioned deciduous species of Vitis Parthenocissus occuring in North temperate regions exhibit different strategies to synchronize reproduction with the favored environmental cond ition. The development of axillary buds of other taxa is not well known; typically, the fate of an axillary bud is not as predictable as that of Vitis The inflorescence-branches of Vitis typically have two to four inflorescences born at the basal nodes; the shoot apices remain when flow ering and produce tendri ls in the upper nodes. The inflorescence-branches in most sampled Ampelocissus, Pterisanthes Nothocissus Ampelopsis and Cissus in contrast to those of Vitis, produce only inflorescences but not tendrils, although the shoot apices of inflorescence-bran ches usually remain at anthesis and the inflorescence-branches can get very long. In Parthenocissus, tendrils are not present on the inflorescence-branches; the shoot apices of inflorescence-branc hes usually stop developing when flowering, and the inflorescence-branches have shorter internodes comparing to vegetativebranches. Some species of Parthenocissus have inflorescence-branches possessing only three to four nodes. The inflorescence-branches of Tetrastigma are usually highly reduced; in most species they process only two nodes with one inflorescence at the upper node. Leav es are usually lost on the inflorescence-branches of Tetrastigma, leaving only conspicuous and persistent stipules. The inflorescence-branches of Cayratia and Cyphostemma have a distinct feature makes them very easy to recognize. The second internodes are no t elongate so that the second node overlaps the first node (compressed inflorescence-branch seco nd internode, Character 37). In species with

PAGE 115

115 persistent stipules, two pairs of stipules are pres ent at the first node. Leaves are usually present on the inflorescence-branches, therefore the first node appears to have a pair of opposite leaves. Sometimes, on the same plant, the second internode is uncompressed or incompletelycompressed; in such inflorescence-branches, the inflorescence is present at the second node and is opposite the leaf. The developing shoot is eith er persistent or abscis ed/aborted at the second node. When a shoot is persistent, the infloresce nce-branch appears to po ssess a pair of leaves, with one inflorescence, and one developing shoot at the first node (Figure 2-9); if the shoot lost, the whole inflorescence-branch appears to have on e node with a pair of opposite leaves and one inflorescence in the center. In either case, usually only one inflorescence is produced on one inflorescence-branch, the shoot apex produces only tendrils at the rest of the nodes. In Vitaceae, usually the inflorescence-bra nches start producing inflorescences at any basal first to fourth nodes, fo llowing the three nodes per unit, interrupted or not interrupted pattern. However, in most observed Cayratia Cyphostemma and Tetrastigma, inflorescences start developing strictly from the second node. Some specimens show that species of these three genera can produce vegetative-branches with only tendrils, and the highly reduced inflorescencebranches were developed from the axillary buds of the vegetative-branches. Highly reduced inflorescence-branches of Tetrastigma Cayratia or Cyphostemma have been frequently interpreted as single inflorescen ces, hence in the literature th ey have been described as "inflorescences axillary". So metimes "terminal", "pseudo-axilla ry" or "pseudo-terminal" have been used to describe the inflorescence of Cayratia or Cyphostemma Besides Cayratia Cyphostemma and Tetrastigma several unsampled African species of Cissus e.g., C. producta C. trothae C. welwitschii C. petiolata C. ruspolii, were described as having axillary inflorescences or terminal cymes (Verdcourt, 1993).

PAGE 116

116 All observed species of Leea have terminal inflorescen ces and no inflorescence is produced at any other node of the same branc h. The leaves are spirally arranged along the branch, a conspicuous axillary bud is present at ev ery node, enclosed within the petiole base. The terminal node usually has two inflorescences arra nged in various angle to each other, and one leaf without a visible axilla ry bud. A previous study on Leea reported the same growing pattern; when two inflorescences are present at the shoot terminal, one of the inflorescences was interpreted as terminal and the other as axillary (Gerrath, Lacr oix, and Posluszny, 1990). What may commonly happened is that shoot apical me ristem (SAM) activity can be terminated by some unknown regulatory process, and whatever organ nearest SAM will overgrown SAM and become terminal. The condition frequently observed in Tetrastigma Cayratia and Cyphostemma i.e., that the terminal node of the re duced inflorescence-branch containing a single inflorescence, is more likely due to the lo ss of the shoot apex, because frequently in the same plant some inflorescence-branches still po ssess young developing shoots. The presence of two inflorescences and a leaf at the terminal node of a shoot repr esents a condition different from that observed in Tetrastigma, Cayratia and Cyphostemma The condition of having twoinflorescences and one leaf at the terminal node was also observed in some Vitaceae, including the tendril-bearing species such as Cissus granulosa, C. striata, C. penninervis C. sterculiifolia, and Nothocissus, and the tendril-less erect herbs Cyphostemma junceum Unlike Leea in these four species of Cissus with anomalous seeds, the leaf-oppos ed inflorescences are still produced in the non-terminal nodes. In Nothocissus typically the node below the terminal node also produces a leaf-opposed inflorescen ce, but no inflorescence is present in other lower nodes. In C. junceum the inflorescence occurs strictly in the terminal position; the terminal node of the plant has a reduced leaf and one or two inflorescences. The growing pattern of C. junceum is

PAGE 117

117 very similar to that of Leea and this similarity contributed to C. junceum 's basal position in the present morphology-based cladistic analyses. Cyphostemma juttae and C. mappia, erect succulent shrubs without tendrils, were also ob served to have terminal inflorescences (Wilson, Gerrath, and Posluszny, 2006). Observation with epi-illumination light microscopy showed that the SAM bifurcates and then develops into an inflorescence in these two species. The authors concluded that the genera l shoot development of C. juttae and C. mappia is similar to that of Leea (Lacroix, Gerrath, and Posluszny, 1990), except that in th e shoot apex of Leea the SAM is much less prominent than the de veloping leaf base. The shoot apex of the inflorescencebranches producing terminal inflorescences possibly all share the follo wing features: a leaf primodia is initiated first, then the SAM bifurcat es and both parts of the bifurcation develop into inflorescences. Whether the ax illary bud of the uppermost leaf is initiated is unknown because the later development of the leaf axil was not fo llowed in the microscopic investigations. The bifurcate inflorescence-first-axis was frequently observed in C. junceum The conditions observed in the terminal node of a branch of C. junceum included: one inflorescence with bifurcate first-axis; one inflorescence with multi-ch asial first-axis; two inflorescences both with bifurcate first-axis, two inflorescences both with multi-chasial first-axis. All observed specimens have a reduced leaf at terminal node. It was spec ulated that after the in itial SAM bifurcation, the internode between the le af primodia and the bifurcation poin t elongates, resulting in a bifurcate inflorescence. This elongation may or may not occur, or further bifurcation may occur, before the formation of the multi-chasial organiza tion. Although only obviously present in a few sampled species, the presence of the two terminal inflorescences is possibly more common in the tendril-bearing species than the survey conducted as part of this study indicated. Many species retain a developing shoot when flowering, and th e fate of the terminal node was not caught on

PAGE 118

118 the herbarial materials. Whether the presence of two inflorescences at the terminal node results from a distinct developmental process and is phylogenetically significant is unknown. Based on the microscopic studies conduc ted by Gerrath and colleagues (cited in Introduction), the formation of the phyllotaxis of Vitaceae can be summarized as: in tendril-less plants producing only terminal inflorescences, th e SAM bifurcation occurs only once in the same shoot, at the terminal node, and both parts of the bifurcation develop into inflorescences. In other members of Vitaceae, the SAM bifurcation is not restricted in the terminal node. The bifurcation can occur right afte r a leaf initiation, with the cent er portion remaining as SAM and the outer part developing into an inflorescence or tendril. A new l eaf is initiated in the alternate position, and the elongation of inte rnodes between leaves places the inflorescence or tendril in a leaf-opposed position. The SAM bifurcation can occur at every leaf initiation, producing one tendril/inflorescence at every node. Alternatively, the SAM bifur cation may be missing every 2 or 3 leaf initiations, so the infl orescence/tendril is absent in ev ery 2 or 3 nodes. An axillary bud can be initiated at every leaf axil, or missing every 2 or 3 leaf axils, matching Patterns 2 to 4 (Gerrath and Posluszny, 2007). The continued SA M activity after its bi furcation is the key innovation in Vitaceae; this condition is absent in Leea It is possibly associ ated with viny habit, a key familial adaptation. Many leaf-opposed in florescences can be generated in one plant, hence increasing the chance of propagation, and th e modification of inflorescences into twining tendrils provides a means for climbing toward the light source. Inflorescences architecture As mentioned earlier, inflorescences and tendrils are thought to have a homologous origin; intermediate forms of tendrils and inflor escences were frequently observed. The present study shows that the formation of the intermedia te forms is phylogenetically informative. The basal part of the inflorescence us ually retains the monochasial or ganization like the tendrils from

PAGE 119

119 the same plants in genera with 5-me rous flowers (Figure 2-10 A-D). In Ampelocissus and Pterisanthes the inflorescences keep branching in the first tendril arm only, the other inflorescence-tendril arms do not have further branching. Those inflorescence-tendril arms with free ends are usually twining, lik e the tendril arms. Inflorescenc e-tendril arms with free ends were sometimes observed in some species of Vitis Cissus simsiana, Clematicissus angustissima Rhicissus tridentata and Cissus trianae Occasionally, the inflorescence-tendrils are twining even though no free end is present, as observed in some Ampelopsis Clematicissus Rhoicissus, and Cissus antarctica On the contrary, the inflorescence-tendril of Cissus species with perichalazal seeds, and in Tetrastigma, Cayratia and Cyphostemma usually does not have a monochasial organization like thei r tendrils (Figure 2-10 E-F), and twining inflorescences do not occur in those taxa. The properties of te ndrils and inflorescences are more strongly differentiated in these genera. The inflorescence-axes of Vitaceae are either racemose or cymose. The racemose or cymose organization repeats several times, and th e terminal part of the inflorescence usually consists of clustered flowers with either an umbellate, dichasial, or double cincinus organization. Racemose inflorescence structure unites the Ampelocissus PterisanthesNothocissusVitis clade; racemose inflorescences do not occur in other taxa. In Vitis, the racemose organization has one or two orders; whereas Ampelocissus usually has more than four orders of racemose branching. Racemose inflorescences are usually elongate ; nevertheless, the inflorescences of Ampelocissus can be compact or lax and not el ongate, depending on the length of the inflorescence-axes. The shape of the inflorescences sometimes ha s been used to recognize species of Ampelocissus. The inflorescences of Ampelocissus robinsonii are elongate and have only one to two orders of racemose organization, as in Vitis. The similarities of inflorescence and seed morphology with

PAGE 120

120 Vitis resulted in the placement of A. robinsonii sister to all species of Ampelocissus (Figures 2-1 and 2-2). The Malesian endemic Ampelocissus, Pterisanthes and Nothocissus have distinct inflorescence structures. The inflorescences of Ampelocissus sect. Kalocissus (Miq.) Planch. are racemes of spikes; there are 23 orders of racemose organizati on, the flowers are sessile and spirally arranged on the last inflores cence-axes. The inflorescence-axes of Pterisanthes are flattened, with sessile flowers scattered on both side of the lamina. In a ddition to the pedicel-less flowers, some species of Pterisanthes have flowers with long pedicels on the margin of the lamina. Nothocissus has long bifurcate whip-like inflorescenc es. The first inflorescence-axes of Nothocissus are racemose, and the second order axes produce an umbellate cluster of three flowers; the basic architecture is similar to that of Vitis What makes the inflorescence of Nothocissus unusual is that both inflorescence-tendr il arms are equally developed so two racemes are present in a single inflorescence. Among the inflorescences without racemose orga nization, the infloresce nce-first-axes of Cayratia and Cyphostemma clearly have a trior tetra-chas ial organization. The higher order inflorescence-axes are dichasial. The side ax es of the dichasium can have equal or unequal length, and the two paraclades can have equal or unequal branching order numbers. In some species the extremely unequal deve lopment of the two paraclades occurs in continuous seven to eight branching orders, making th e inflorescence appear lax with several long arms. All other genera ( Cissus Tetrastigma, Ampelopsis Rhoicissus Parthenocissus and Yua ) have an umbel with three to five arms organization in the infl orescence-first-axes. Dichasia and double cincina are common types of inflorescence-axes organization above the first-axes in Cissus Ampelopsis Clematicissus, and Rhoicissus. Inflorescence-axes of Tetrastigma, Parthenocissus and Yua usually can only be discerned as umbellate organization at all orde r levels. The umbellate units

PAGE 121

121 of the mature inflorescence may have a dichasial origin: in the Vitis species that have been observed (Posluszny and Gerrath, 1986), dist al inflorescence-axes have a dichasial developmental pattern. The umbellate organizati on is possibly the result of the fast developing rate of the lateral flowers, or the short time interval between the generation of terminal and lateral flowers. The phylogeny of this study indi cates a transition from distin ct tendril and inflorescence structures to tendril and inflores cence sharing the same basal monoc hasial structure in the same plant (Figure 2-11). Cymoid inflorescences are prevalent in this family, possibly an ancestral state, with racemose inflorescences derived la ter. Understanding the mechanism of the formation of inflorescence and tendril archit ectures is undoubtedly th e key to understand the intrafamilial relationships of Vitaceae. A GAI1 mutant grape cultivar produced inflorescences instead of tendrils at the nodes of the main shoot and the s hoot from latent bud (Boss and Thomas, 2002), a phenotype resembling Ampelopsis instead of Vitis Gibberellins are very likely involved in the formation of te ndril/inflorescence structures. Interestingly, the morphologybased phylogeny of this study shares the basic frame work of the GAI1 phylogeny (Wen et al., 2007). Knowledge of the functional genetics of the development of tendrils/inflorescences will provide an independent line of evidence on the evolution of Vitaceae. Floral morphology The flowers of Vitaceae have cup-shaped calyces and 4-6 petals; the number of stamens is equal to the number of petals, and the stam ens are opposite the petals The calyx margin is entire, irregularly lobed, to symmetrically lobed with lobe number equal to petal numbers; this variation is frequently observed in flowers from the same individual. The margin of the petals has a fold-up overgrowth on the adaxial side; th e anthers are introrse and tucked in the

PAGE 122

122 compartment formed by the overgro wth of the petal when flowers are in buds. At anthesis the petals flare outward, showing the boat-shaped apex on the adaxial surface. In most species of Cayratia Cyphostemma and Tetrastigma, the apices of the petals are convex to hood-shaped; when flowers open, the flared petals are spoonlike at the apices. In some species of Cayratia and Tetrastigma the hood-shaped petals are pointed at th e hooded apex so the flower buds appear to have four horns. Petals of Vitis are connected to form a calypt ra by interdigitation of the epidermal cells (Gerrath and Posluszny, 1988a). Ca lyptras fall off at anthesis and the petals are separated only at the base. The color of the petals range from greenish-white, yellowish-white, to red. Red color in petals is frequently present in species of Ampelocissus and Cyphostemma Papillae were observed on the outer surface of most petals. Hairs on the abax ial surface of petals mostly occurs in species of Cyphostemma Shape of nectary discs and car pels clearly distinguishes some genera of Vitaceae. Most genera ( Ampelopsis Cayratia Cissus Rhoicissus ) have a dish shaped ne ctary disc in which the ovary is embedded; the linear styl e protrudes from the center of th e disc. In some species the edge of the disc is folded upward forming a rim to hold ample nectar. The outer margin of the disc is always grooved and the filaments are pr essed against the grooves; sometimes the grooves are deep so the disc appears lobed. In Cyphostemma the discs are prominent and deeply dissected so they look like four large gl ands sitting between the filaments. Vitis and Tetrastigma are dioecious with func tionally pistillate/staminate flowers; carpels are missing in staminate flowers, but the disc remains. The stamens are pr esent in the pistillate flowers and their size is usually much smaller compared to those of staminate flowers. Their carpels are wine-bottleshaped; the disk is a ring of tissu es at the base of the carpels. Parthenocissus has bottle-shaped carpels, however, the nectar y tissues are usually inconspicuous. In species with more prominent

PAGE 123

123 nectaries the tissues are cup-shaped and c over most of the ovary. The carpels of Ampelocissus are urn-shaped with a short coni cal style, and the disk is co nspicuous, tall, and cup-shaped, wrapping around the ovary. On the la teral surface of the disk an extra groove is present between the grooves against the filaments, therefore the disc appears 10-folded when the stamens are shed. The 10 folds are extended to th e surface of the style. Flowers of Nothocissus are similar to those of Ampelocissus with extremely tall di sk-ovary structures. Pterisanthes on the other hand has a shallow disk which, along with the ovary, is embedded in the fleshy laminar inflorescenceaxes. Hairs are frequently present on the ovary surface of Cyphostemma The stigma is usually truncate or discoid in the family, however a deeply four-lobed stigma is present in all species of Tetrastigma. Leea has larger flowers, distinct from thos e of Vitaceae. A prominent staminodial tube is present in the position of the disk of a flower of Vitaceae; th e staminodial tube is comparable to the disk of Vitaceae in early development (Gerrath, Lacroix, and Posluszny, 1990), hence was treated as homologous to the disk in this study. In observed mature flowers, the disk of Leea is adnate to the petals, the stamens app ear adnate to the middle of the disk, and anthers are hooked over the top margin of the disk. Anthers are connected to each other laterally, and are usually s till connected when filament s abscised from the disk. The ontogenesis of the floral organs has b een observed microscopically in some species of Vitis Parthenocissus, Ampelopsis Cissus and Cyphostemma (see cited works of Gerrath, Posluszny, Timmons, and Wilson). Typically, the floral organs ar e initiated first in the outer whorl. Sepals are either devel oped individually, or in a calyx ri ng preceeding the sepal primodia. Petals and stamens may or may not share the initia l primordia. The carpel s are initiated from a ring-shaped primodium; in some taxa five bumps were observed before the formation of the ringshaped primodium. Two septa divide the gynoeci um to two compartments; septa are either

PAGE 124

124 touching or not touching in la ter developmental stages. Usually two anatropous ovules are formed in each locule, with the funiculus positione d at the junction of the septa and the base of the carpel wall, with the micropyl e initially facing the lateral ca rpel wall. The disk sometimes can be discerned as separate bumps fla nking the developing carpe l ring. The outgroup Leea guineensis develops six septa in the gynoecium instead of two. A set of three septa develop first, carrying two ovules on the base of each septum ; the other set of thr ee septa develop later between two ovules that are not se parated by the first set of septa. Changes occured so septal number and ovule number were reduced in Vita ceae, and spatial differentiation in cell poliferation resulted in the shape differences in the floral organs. Floral morphology is usually consistent within genera of Vitaceae, and is phylogenetically informative: the floral disk morphology supports the monophyly of the Ampelocissus Nothocissus Pterisanthes clade, the monophyly of Parthenocissus and the monophyly of Cyphostemma The monopyly of Tetrastigma is supported by their four-lobed stigma; and the monophyly of Vitis is supported by the presence of cal yptras. Floral merosity is resolved as important in the high-level rela tionships within Vitaceae by the morphology-based phylogenetic analyses conducted as pa rt of this study. The outgroup, Leea have mostly 5 or 6petaled flowers; a few species produce 4-peta led flowers (Ridsdale, 1974). The 4-petaled condition is primitive in Vitaceae, and the 5-petaled condition was derived three or four times (Figure 2-12). Reversal to the 4-petaled condition occurs in the clade containing Ampelocissus, and likely also in Ampelopsis : Cissus simsiana, a species that closely resembles Ampelopsis has 4-merous flowers; Ampelopsis orientale (Lam.) Planchon (not sampled) from Turkey was reported to have 4-merous flowers (Davis, 1967).

PAGE 125

125 Pollen morphology Pollen grains of Leea and Vitaceae are tricolporate with a pitted to reticulate surface; when reticulate the brochi usually decrease in size and disappear toward the colpi. Variations among taxa mainly come from pollen size, rati o between the polar axis and the equatorial diameter (oblate to prolate in shape), and the ma xium lumen (of pit or reticulum) diameter. The two species of Leea included in the analyses here have relatively large and oblate pollen grains, which can be easily distinguished from those of Vitaceae. A study of pollen of 31 taxa of Leea (Tarnavschi and Petria, 1 968) also concluded that Leea can be separated from Vitaceae based on pollen morphology. Within Vitaceae, Cissus and Parthenocissus mostly have large, prolate pollen grains. Pollen grains of Cissus are usually pitted, and those of Parthenocissus are reticulate. Ampelocissus, Nothocissus Pterisanthes, Vitis and Tetrastigma have relatively small and pitted pollen grains. The variation of pollen morphology among genera has been noticed in previous palynological studies of Vitaceae (Reille, 1967; Patil, 1998), although these studies are limited by their less than compre hensive sampling of genera. Fruits Fruits of Leea and Vitaceae are berries. The fruit pedicels become w oody with lenticels in some, when fruits mature. Fruits of Leea are either usually with four seeds or six to nine seeds (Ridsdale, 1976). Fruits of Vit aceae are usually 1-4-seeded. In some taxa, 1-2-seeded fruits are prevalent. Plants producing strictly 1-seed ed fruits occur in all observed species of Cyphostemma Acareosperma Tetrastigma obtectum and most species of Cissus The eight species of Cissus with anomalous seeds have 1-4seeded or 1-2-seeded fruits. Cissus palmata is the only species in the major monophyletic Cissus clade with 1-4-seeded berries. Fruit shapes are either ova l/fusiform or globose/compressed globose. The disk scars are usually present in fruits as a thin ring near pedicels; in Cyphostemma the four gland-like disk

PAGE 126

126 scars are very prominent in fruits. Fruit colors were described as dark black purple, bronze, maroom, red, fuschia red, brown yellow, pink, pi nkish white, translucent white, to green. Some species of Ampelopsis have distinct iridescent hue of bl ue and purple fruits. Lenticels on the fruit surface are prominent and dense in some taxa but not others. The character survey in the present study showed that dens e lenticels on the fruit occur in most taxa producing 5-merous flowers except Vitis, and the species of Cissus with anomalous seeds (Figure 2-13). Fruits without dense lenticels are resolved as the ancestral condition of Vitaceae. The outer epidermis of the fruits are usually smooth, although fruits with hairs are common in the genus Cyphostemma The hairs on the fruit surface are uniseriate with two to ten cells; hair length and density va ries among taxa. Sometimes large multiseriate glandular hairs are also present, in addition to the uniseriate hairs. Acareosperma is the only taxon with hairy fruits other then Cyphostemma in this study, although some un-sampled African Cissus also have hairy fruits (Verdcourt, 1993). The hairs on fruit surface of Acareosperma are moderately dense, mostly 2-celled, around 100 m long, and shorter then that on fruits of most Cyphostemma (0.2-0.7 mm). Similar short uniseriate hairs are present in the fruits of Cyphostemma laza at a much lower density. Stomata are present on the fruit outer epidermis of some species of Cayratia Cyphostemma and Tetrastigma The mesocarp of grapes contains several layers of parenchyma; mucilages, drus es, raphids and sometimes granular prismatic crystals are common cell contents. Inner laye rs of parenchyma are usually compressed; sometimes fibers or elongate sclereids with reticulate thickening were observed in the inner layers of the fruit wall. Seeds Seed characters were described in Chapter 1. Although seeds from certain genera can be distinguished by combined diagnostic characters, most seed characters exhibit multiple parallel

PAGE 127

127 or reversal evolution when optimized onto th e morphological phylogenies presented in this study. Compared to other seed characters, testa anatomical features are more informative regarding high-level re lationships within the family. Endotes ta sclereid shape is rectangular or polygonal in the basal 4-merous flowered groups and columnar in genera producing 5-merous flowers (Figure 2-14). The presen ce of stomata on the outer epidermi s of the seed is a character restricted to the 4-merous flowered genera Cyphostemma Cayratia and Tetrastigma (Figure 215). Large diameter tracheidal cells are present mainly in genera with 4-merous flowers (Figure 2-16). Among the characters of external seed morphological characters, chalaza shape is more or less correlated to floral merosit y. In general, 4-petaled genera have linear chalazal seeds, although oval chalazal seeds can occur in Acareosperma Cayratia and Tetrastigma; 5-petaled genera generally have oval chalazal seeds nevertheless Rhoicissus has seeds with a linear chalaza (Figure 2-17). The perichala zal condition is present strictly in Cissus Cyphostemma and Leea (Chapter 1), and there is a trend of chalaza length reduction within the 5-petal clade. The basal position of Cyphostemma in Vitaceae is supported by the seed character ventral infolds covered by endotesta (133), a feature also present in Leea Concluding Remarks The morphology-based phylogeny of Vitaceae c onducted as part of this study indicates that the 4-petaled genera Cyphostemma Tetrastigma, Cayratia and Cissus are basal lineages within the family, and the primarily 5-petaled genera Ampelocissus Vitis Ampelopsis Parthenocissus, and Yua form a clade. Inflorescence-branch, inflorescence, and seed morphology support the intrafamilia l division by petal number. Rhoicissus and some species of Cissus without perichalazal seeds have inflorescences similar to those of the 5-petaled genera, nevertheless they have seeds like those of Tetrastigma. The combination of characters from 4petaled and 5-petaled genera places them as succe ssively sister to the 5-merous clade (Figure 2-

PAGE 128

128 1) or to Parthenocissus (Figure 2-2). Nevert heless, most branches of the morphology-based phylogeny do not have statistical support. A recent molecular phylogeny with detailed taxon sampling (Wen et al., 2007) shared the basic structure as the morphology-based phylogeny 4petaled genera are earlier divergent lineages and are sister to the 5-petaled genera. An analysis of multiple sequences with extensive taxon sa mpling will better resolve the intrafamilial relationships of Vitaceae. The leaf-opposed tendrils or inflorescences ar e unique to Vitaceae. The inflorescences of the 5-petaled genera retain the st ructure of tendrils, a nd those of the 4-petaled genera mostly do not have a tendril-like structure. It is of interest to know the factors controling the fate of an uncommitted primodium, and the mechanisum of the formation of the tendril/inflorescence structure. GAI1 has been shown to be involved in determining the fate of the uncommitted primodium (Boss and Thomas, 2002); and some fl oral and inflorescence morphological traits were located in the same linkage group as the sex determination locus Sex (Marguerit et al., 2009). Molecular genetic study of Vitis vinifera an economical important crop, is accumulating (Carmona et al., 2007; Carmona et al., 2008), and the draft genome sequence of V. vinifera is available (Jaillon et al., 2007) which may provide new genome-derived tools for molecular genetic study. New knowledge on the molecular genetics of the development of inflorescences and tendrils may lead to new phylogenetic hypotheses relating to ge neric relationships.

PAGE 129

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 100 62 92 66 60 86 79 79 95 85 67 81 100 petal number: 5 4Figure 2-1. Strict consensus of 516 shortest trees from the morphological dataset in which the continuous characters were treated with discrete coding. Numbers above the branches are bootstrap values > 50%. Character floral merosity (54) is mapped onto the tree.

PAGE 130

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 68 100 80 51 50 95 54 66 51 88 62 58 74 52 81 99 90 53 71 66 100 petal number: 5 4Figure 2-2. The shortest tree from the morphological dataset in which the continuous characters were treated with GW coding. Numbers above the branches are bootstrap values > 50%. Character floral merosity (54) is mapped onto the tree.

PAGE 131

11: 0->1 25: 0->0/1 33: 0/1->1 43: 0->1 47: 1->0/1 57: 0/1->0 75: 0->2 76: 1->0 89: 0->1 101: 1->0 106: 1->0 109: 1->0/1 110: 1->0 117: 2->1 5: 1->0 16: 1->0 33: 0->1 41: 1->0 45: 0->0/1 54: 0->1 86: 0->0/1 114: 0->0/1 45: 0/1->1 46: 0->1 89: 0->1 90: 1->0 109: 0/1->1 114: 0/1->1 22: 1->0/1 74: 0->0/1 86: 0/1->1 93: 0->1 97: 0->1 109: 0/1->0 120: 0->1 11: 0->0/1 13: 0->0/1 24: 0->0/1 36: 0->1 40: 0->2 45: 0/1->0 48: 1->0 49: 2->0 61: 0->1 67: 0->1 70: 0->1 74: 0/1->1 91: 0->1 100: 1->0 113: 0/1->0 114: 0/1->1 14: 1->3 17: 1->0 22: 0/1->0 25: 0->1 45: 0/1->0/1 111: 1->0 113: 0/1->1 114: 0/1->0 14: 0/1/3->0 25: 0/1->0 28: 0->1 46: 0->2 48: 1->2 49: 2->0 51: 2->1 53: 2->1 60: 0->0/1 66: 1->0/1/2 70: 0->1 71: 1->0 74: 0/1->1 100: 1->0 102: 0->0/1 31: 0->1 32: 0->1 36: 0->1 40: 0/2->2 44: 0/1->0/1 45: 0/1->0 59: 0->1 60: 0/1->1 66: 0/1/2->0 78: 1->0 102: 0/1->1 113: 1->0 120: 0->1 122: 0->1 19: 1->2 40: 0/2->0 44: 0/1->1 45: 0/1->1 62: 0->2 66: 0/1/2->2 68: 0->1 69: 1->0 84: 0->1Pterisanthes polita Pterisanthes cissioides Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus africana Ampelocissus abyssinica Nothocissus spicifera Ampelocissus latifolia Ampelocissus acetosa Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis piasezkii Vitis flexuosa Vitis rotundifolia Vitis aestivalis Vitis vinifera Vitis betulifolia Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cordata Ampelopsis arborea Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro orientalis Clematicissus opaca Clematicissus angustissima Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Rhoicissus tridentata Cissus trianae Cissus antarctica unique, uniform above unique, with change above homoplasy above homoplasy outside homoplasy above and outside ambigous changeFigure 2-3. Character changes over selected branches on one of the shortest trees obtained from the morphological dataset in which the continuous characters were treated with discrete coding. The tree is extended to the next page via the broken line.

PAGE 132

11: 0/1->0 14: 1/3->3 18: 0/1->0 46: 0/1/3->0 48: 0/1->0 55: 0/1->1 56: 0/1->0 72: 0/1->1 74: 0/1->1 75: 0/3->3 76: 0/1->0 77: 0/1->1 80: 0/1->0 94: 0/1->1 103: 0/1->0 104: 0/1->0 106: 0/1->0 112: 0/1->1 117: 0/2->0 118: 0/1->1 119: 0/1->1 124: 0/1->0 130: 0/1->0 11: 0/1->1 14: 1/3->1/3 18: 0/1->1 46: 0/1/3->0/1/3 48: 0/1->1 55: 0/1->0 56: 0/1->1 72: 0/1->0 74: 0/1->0 75: 0/3->0 76: 0/1->1 77: 0/1->0 80: 0/1->0/1 94: 0/1->0 103: 0/1->1 104: 0/1->1 106: 0/1->1 112: 0/1->0 117: 0/2->2 118: 0/1->0 119: 0/1->0 124: 0/1->1 130: 0/1->1 1: 1->0/1 5: 2->0 16: 1->0 39: 2->1 40: 2->1 41: 1->0 42: 1->0 46: 0/1/3->0/1 66: 2->1 67: 1->0 1: 0/1->0 14: 1/3->1/3 34: 0->1 37: 0->1 46: 0/1->0/1 81: 1->0/1 10: 0->2 30: 0->1 46: 0/1->1 80: 0/1->0/1 81: 0/1->0 111: 0->1 14: 1/3->1/2/3 57: 1->0 75: 0->0/2 76: 1->0/1 80: 0/1->0 87: 1->0 93: 1->0/1 97: 0->0/1 101: 1->0 110: 1->0 114: 1->0/1 132: 0->1 133: 1->0 14: 1/2/3->2 32: 0->0/1 33: 0->0/1 84: 0->1 93: 0/1->0 107: 2->0 114: 0/1->0 117: 2->1 32: 0/1->1 33: 0/1->1 34: 1->0 46: 0/1->1 75: 0/2->2 76: 0/1->0 81: 0/1->0/1 86: 0->1 88: 0->1 97: 0/1->0/1 103: 1->2 108: 1->0 112: 0->1 115: 0->1 10: 0->1 14: 1/2/3->1/2 16: 0->0/1 35: 0->1 38: 1->0 75: 0/2->2 76: 0/1->0 77: 0->0/1 97: 0/1->0/1 128: 1->0/1 13: 1->0 14: 1/2->1 43: 0->1 46: 0/1->1 77: 0/1->1 97: 0/1->1 105: 1->0 112: 0->1 114: 0/1->0 137: 0->1 16: 0/1->0/1 18: 1->2 31: 0->1 37: 1->0 46: 0/1->0 48: 1->0/1 49: 1->0 63: 2->1/2 65: 0->1 66: 1->0 68: 0->1 69: 1->0 70: 0->0/1 71: 1->0 73: 1->0 95: 0->0/1 114: 0/1->0/1 126: 1->0 128: 0/1->0 129: 1->0/1 1: 0/1->0 5: 0->0/1 11: 1->0 14: 0/1/3->0 20: 0->1 39: 1->0 40: 1->0 46: 0/1->0 56: 1->0 57: 1->0 73: 1->0 80: 0/1->0 130: 1->0 133: 1->0Cissus biformifolia Cissus paullinifolia Cissus palmata Cissus alata Cissus assamica Cissus cornifolia Cissus fuliginea Cissus descoingsii Cissus obovata Cissus mirabilis Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Tetrastigma planicaule Tetrastigma bioritsense Cayratia geniculata Cayratia cardiophylla Cayratia trifolia Cayratia japonica Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma lageniflorum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea tetramera Leea guineensisFigure 2-3. Continued.

PAGE 133

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera Figure 2-4. Character changes over selected branches (labeled 1-4) on the shortest tree obtained from the morphological dataset in which the continuous characters were treated with GW coding.1 2 3 4

PAGE 134

5: 1->0 13: 6->9/a 24: 0->1 40: 0->2 48: 0/1->0 49: 2->0 61: 7/8/9->d 68: 2/3->3 69: b/c/d/e/f/g->b/c 70: 7->a 71: f->f/g 73: 4->6/7 78: j/k/l/m/n->j 81: a/b->a/b 82: b/c->b 90: f->e 91: d/e/f/g/h->g/h 95: a/b->a/b 109: j/k/l/m/n/p/q/r->j 117: d/e/f/g/h/j/k/l->j/k/l 118: 7/8/9->7/8/9 119: 2/3->2 120: 7/8->8 122: 1/2->1/2 126: 2/3->1 127: g/h/j->g/h/j 131: 5/6->2 5: 0->1 7: 3/4/5/6->3/4/5/6 17: 0->1 22: 3/4/5->2/3/4/5 42: 8/9->8 67: 4->4/5 70: 6->7 72: 7->7/8/9 78: d/e->d/e/f/g/h/j 86: 5->2/3/4/5 87: d->d/e 88: 4/5/6/7->2/3/4/5/6 89: b/c/d->b/c/d 90: e->f 91: 9->a 93: b/c/d/e->b/c/d/e 94: 5/6->4 95: 7->a/b 97: a/b/c/d/e->a/b/c/d 101: 5/6->5/6 104: 2/3/4/5/6/7/8/9->2/3/4/5/6/7/8/9 106: e/f/g/h/j/k/l/m/n/p-> 4/5/6/7/8/9/a/b/c/d/e/f/g/h/j/k/l/m/n/p 111: 2/3->4/5/6 112: d/e->a/b/c/d 114: b/c->b 117: q/r->q/r 118: 8->8/9 119: 0/1/2->0/1/2/3 121: 2/3->2 122: 1/2->1/2 124: a->7/8/9/a 127: g/h/j->g/h/j 7: 3->3/4/5/6 10: 0/2->0 13: 5/6->4/5/6 42: 8/9/a->8/9 43: 0->1 53: j->h 66: 4/5->5 67: 3/4->4 68: 1/2->1/2 70: 5/6->6 73: 3/4->4 78: 4/5/6/7->d/e 82: g/h->g/h 89: b/c/d->b/c/d 92: c/d->b/c/d 93: c/d/e->b/c/d/e 94: 5/6/7->5/6 95: 6/7->7 97: d/e->a/b/c/d/e 98: b/c->b/c/d/e/f/g/h 99: 5/6->d/e/f/g/h 100: 4/5->g 103: b/c->d/e/f/g/h/j 107: f/g/h/j/k/l->r 112: e->d/e 113: d->j 114: b/c->b/c 117: q/r->q/r 118: 5/6/7->8 121: 2/3/4->2/3 126: 3/4/5->2/3 128: 3/4/5/6/7/8->3 131: 7/8/9/a->6 10: 0/2->0/2 13: 5/6->5/6/7 20: 0->1 22: 3/4/5->3 23: c/d/e->5/6/7/8/9/a 61: 8/9->d 66: 4/5->4 67: 3/4->3/4 68: 1/2->1 69: g->l 70: 5/6->5 71: f->h/j 73: 3/4->3/4 81: 9->9/a/b 82: g/h->6/7/8/9/a/b/c/d 88: 4/5/6/7->7 89: b/c/d->8 91: 9->7/8/9 92: c/d->c/d 93: c/d/e->f/g/h/j 94: 5/6/7->7 95: 6/7->4 96: c->c/d/e/f 97: d/e->d/e 98: b/c->3/4 99: 5/6->3 101: 5/6->g 103: b/c->9 104: 2/3/4/5/6/7/8/9->2 105: l->h 106: e/f/g/h/j/k/l/m/n/p->r 110: 7->e 113: d->6 114: b/c->g/h 117: q/r->r 119: 0/1/2->0 120: 7/8->a 121: 2/3/4->4 122: 1/2->1 126: 3/4/5->5 127: g/h/j->j 128: 3/4/5/6/7/8->e 1 2 3 4 unique, with change above homoplasy above homoplasy outside homoplasy above and outside ambigous change Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25Figure 2-4. Continued.

PAGE 136

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera tendril interrupted in three-node modularity tendril not interrupted no tendril tendril interrupted in two-node modularity Equivocal Figure 2-6. The optimization of the character phyllotaxy (character 5) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.A

PAGE 137

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera tendril interrupted in three-node modularity tendril not interrupted no tendril tendril interrupted in two-node modularity EquivocalFigure 2-6. Continued.B

PAGE 138

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera simple palmate pedate pinnate Equivocal AFigure 2-7. The optimization of the character leaf form (character 14) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 139

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera simple palmate pedate pinnate BFigure 2-7. Continued. Equivocal

PAGE 140

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera absent or rarely 1 or 2 teeth present in the whole leaf 0-2 tooth between two secondary veins 2 or more between two secondary veins Equivocal AFigure 2-8. The optimization of the character leaf teeth density (character 19) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 141

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 0 1 2 3 4 6 7 8 9 10 12 13 16 18 21 25 EquivocalBFigure 2-8. Continued.

PAGE 145

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera different from tendril organization monochasial with 2-3 arms monochasial with 4 or more arms umbel EquivocalAFigure 2-11. The optimization of the character inflorescence-tendril organization (character 43) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 146

Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera different from tendril organization monochasial with 2-3 arms monochasial with 4 or more arms umbel Equivocal BFigure 2-11. Continued.

PAGE 147

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera mostly four mostly five, six or seven Equivocal Figure 2-12. The optimization of the character floral merosity (character 54) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.A

PAGE 148

Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera mostly four mostly five, six or seven EquivocalFigure 2-12. Continued.B

PAGE 149

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera not dense (< 25) dense (> 25) Equivocal Figure 2-13. The optimization of the character lenticel density on fruit surface (character 78) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.A

PAGE 150

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 0 1 2 3 4 7 8 9 11 12 13 14 15 16 17 18 20 21 22 24 25 EquivocalBFigure 2-13. Continued.

PAGE 151

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera < 0.4 > 0.4 Equivocal AFigure 2-14. The optimization of the character endotesta sclereid width/length ratio (character 126) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 152

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 2 3 4 5 6 7 8 9 10 11 12 25 0 1 EquivocalBFigure 2-14. Continued.

PAGE 153

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera absent present Equivocal AFigure 2-15. The optimization of the character stomata on sarcotesta (character 130) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 154

Pterisanthes polita Pterisanthes cissioides Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Nothocissus spicifera Ampelocissus africana Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis tsoi Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis arborea Ampelopsis cantoniensis Ampelopsis grossedentata Clematicissus angustissima Clematicissus opaca Parthenocissus laetevirens Parthenocissus dalzielii Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Rhoicissus tridentata Cissus antarctica Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus paullinifolia Cissus biformifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus reniformis Cissus quadrangularis Cissus obovata Cissus mirabilis Cissus fuliginea Cissus verticillata Cissus campestris Cissus alata Cissus palmata Tetrastigma planicaule Tetrastigma bioritsense Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia oligocarpa Cayratia maritima Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma odontadenium Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera absent present Equivocal BFigure 2-15. Continued.

PAGE 155

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera < 10 m > 10 m Equivocal AFigure 2-16. The optimization of the character tracheidal cell diameter (character 131) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 156

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 19 21 22 24 25 0 1 EquivocalBFigure 2-16. Continued.

PAGE 157

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia oligocarpa Cayratia maritima Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera < 0.5 > 0.5 Equivocal AFigure 2-17. The optimization of the character chalaza circularity (character 98) on: A) one of the MPTs from the morphological dataset with continuous characters treated with discrete coding; B) the MPT obtained from the morphological dataset with continuous characters treated with GW coding.

PAGE 158

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 BFigure 2-17. Continued. Equivocal

PAGE 159

159 CHAPTER 3 THE BIOGEOGRAPHICAL HISTORY OF VITACEAE INFERRED FROM FOSSIL SEEDS Introduction Vitaceae (the grape family) are mostly lia nas with leaf-opposed tendrils and contain around 900 species, 15 genera, with a worldwide distribution. Their fr uits are berries, principally dispersed by fruit-eating birds, bats, or mammals (Tiffney and Barghoorn, 1976; Moran, Catterall, and Kanowski, 2009). Some seeds can float and have the potential to be waterdispersed (Tiffney and Barghoorn, 1976). Vitaceae are sister to Leeaceae, which contains only Leea a genus of 34 species (Ridsdale, 1974). Species of Leea are shrubs or small trees, contrasting with the viny habita t of Vitaceae. In some treatments, for example, APG III (2009), Leea was placed in Vitaceae. The monophyly of Leea and its close relatio nship to Vitaceae is well supported by molecular data (Ingrouille et al., 2002) and morphology (Ridsdale, 1974). The currently accepted placement of th ese two families is sister to the other rosids (Wang et al., 2009). Several DNA-based phylogenies of Vitaceae have been published (Ingrouille et al., 2002; Rossetto et al., 2002; Soejima and Wen, 2006; Rossetto, 2007; Wen et al., 2007); however, a molecular phylogeny including all genera is not yet available. Morphology-based phylogenies including all genera of Vitaceae have been provided (Chapter 2). The taxon sampling was designed to covered the distribut ional range of each genus; the resulting phylogeny has a basic framework similar to those of the phylogenies compiled from three chloroplast sequences (Soejima and Wen, 2006) and GAI1 sequences (Wen et al., 2007). In this chapter, this phylogenetic framework is applied in order to in fer biogeographic history of the extant genera. Vitaceae exhibit an intrigui ng pattern of geographic distribution. The family includes both tropical and temperate elements, and some of the temperate elements show the famous Asian-North American disjunction pattern. This geographic disjunction is shared by many

PAGE 160

160 temperate plant species, and has long been a s ubject of interest (Wen, 1999; Donoghue, Bell, and Li, 2001; Wen, 2001; Xiang and Soltis, 2001; Do noghue and Smith, 2004). Vitaceae are special because the majority of the fam ily are lianas, contrasting with most studied families with an Asian-North American disjunction pattern deciduous trees or perennial herbs (Wen, 1999). A biogeographic theory of Vitaceae will contribute to our understanding of this shared temperate disjunct pattern. Biogeographic history can be inferred from a well supported phylogeny. In addition, fossils provide direct evidence of the past distributional area of lineages. Vitaceae have an extensive fossil record from the Tertiary. The majority of the fossils re ported to belong to this family are seeds. Seeds of extant Vitaceae can be recognized to generic level (Chapter 1), and some seed characters are important in interpreting infrafamilial relationships (Chapter 2). Fossil vitaceous seeds therefore are potentially reliable for inferring the past intra-family geographical distributions. Hence, Vitaceae provide a rare opp ortunity to infer the biogeography of a major clade from both phylogeny and fossil records. Proper identifications are essential for maki ng inference of the ancestral distribution of lineages from fossils. Seeds of Vitaceae have distinct characters, includ ing a pair of ventral infolds and a dorsal chalaza, which distinguish them from seeds of other plant families (Chapter 1). Fossil vitaceous seeds were usually assigned to extant genera, indicating their similarity (e. g., Reid and Chandler, 1933; Kirchheimer, 1938; Dorofeev, 1963; Manchester, 1994). Occasionally an extinct genus was established for fossils with unusual characters not observed in extant seeds; for example, Palaeovitis (Reid and Chandler, 1933) and Palaeocayratia (Gregor, 1977). The number of extant seeds observed by the workers influenced greatly how the fossils were interpreted. A fossil might be assigned to one modern genus when identical seeds might occur in other genera; features thought to be unique and defining an extinct genus might be

PAGE 161

161 present among extant species no t studied by the inves tigators. The gene ric-delimitation of vitaceous seeds may vary among different work ers, depending on which extant seeds were sampled, how the seed characters were perceive d, and what characters were thought to be diagnostic by the observers. Identifications in previous works were mostly based on comparisons to a limited number of extant seeds, therefore the affinities of some fossil seeds may not be properly assigned. In order to better identifying fossil seeds, an extensive survey of extant seeds of Vitaceae, covering a quarter of species in the family, was completed (Chapter 1). Fifty seven characters were recorded from seeds sampled from properly identified herbarium specimens. The continuous characters were measured and analyzed for objective comparisons; characters for distinguishing each genus were re cognized. The fossil vitaceous seeds were reevaluated and classified into several seed types based on the results of the extant seed survey. Missing data in the fossils sometimes can be an impediment for an unequivocal assignment of fossil affinity. The proper way to id entify fossils is to carefully investigate all available characters of the fossils and compare them to those of the modern close relatives. Nevertheless, the diagnostic characters needed for an accurate identification are not always available in every fossil. A great number of fossil vitaceous seeds do not have well preserved internal structures, and the identification can only rely on the external characters. The affinities of these fossils may still be estimated properly, because some external characters are diagnostic at the generic level (Chapter 1). To accommodate the condition of most fossil vitaceous seeds, for which internal structure is not available, the classification of the fossil vitaceous seeds in this study was heavily based on the external characters. In this study, past history within Vitaceae is inferred based on the affinities, geographic distribution, and age of the fossil seeds, with reference to the morphology-based phylogeny of

PAGE 162

162 the family. Other fossil organs of Vitacea e frequently exhibit interand intrafamilial convergence (pollen and leaves) and therefore are not used he re for inferring biogeography. Wood anatomy of Vitaceae is potentially phylogenetically informative, and a few fossil woods with Leeaceae or Vitaceae affinitie s have been reported (Wheeler and Lapasha, 1994). However, a broader survey is needed to identify the characters shared by closely related groups. Materials and Methods Fossil vitaceous seeds from the Tertiary worldw ide were compared to the extant seeds of Vitaceae. Diagnostic characters that distinguis h vitaceous seeds to gene ric-level were observed from published images showing both ventral and dorsal sides of the fossils. Some specimens were observed physically in the museum (Florida museum of Natural History, Natural History Museum, London, Smithsonian, Paris Museum) or though specimen loans (Smithsonian, fossils from Belen, Peru; Senckenberg Museum, fossils from Messel, Germany). Based on the observation of the 252 extant seeds (Chapter 1), available diagnostic characters from ventral and dorsal view of the seeds included chalaza length (C21), chalaza circularity (C18), chalaza to notch distance (C22), apical notch a ngle (C5), ventral infold width (C35), ventral infold length (C9), ventral infold divergence angle (C15), external rugosity (C24), and constricted rim on ventral side (C57). Ventral infolds covered by endotesta (C53) was additionally used for differentiati on within one of the seed types. These characters are defined as in Chapter 1. Ventral infold width (C35) was orig inally measured from cross sections of extent seeds (Chapter 1). In this study, ventral infold width (C35) of fossils was measured from the ventral view instead of in cross section; the value measured from the two views should be the same. External rugosity (C24) was estimated by co mparing images of fossils to those of extant seeds. Fossils preserved as internal casts of the seed coat were assessed as intact seeds, assuming an even thickness of the seed coat thoughout th e external surface. Fossils known only from

PAGE 163

163 transverse sections (e.g., Cevallos-Ferriz and Stockey, 1990) were evaluated with diagnostic characters such as ventral infold thin part ratio (C32), ventral infold thin part circularity (C33), and number of endotesta sclereid layers (C48). Constricted rim on the ventral side (C57) is a presence/absence character; other diagnostic characters are continuous. The continuous characters of the fossil seeds were compared to the critical values that dis tinguish extant seeds to groups of genera (Table 1-2, Chapter 1), except endotesta sclereid layers (C48), for which the critical value was changed to accommodate the fossil conditions. Continuous characters were scored as three conditions: larger than (>), smaller than (<) or si milar to (ambiguous) the critical values; when similar to the critical value, the ch aracter was treated as either larger, equal, or smaller than the critical value. The extant seeds from the seed survey (Chapter 1) sharing the same combination of character c onditions as those of the fossils were selected; six fossil seeds with the measurement of all available characters, Parthenocissus clarnensis (UF 6539, UF 6540, UF 9583), Vitis magnisperma (v. 30257), Palaeovitis paradoxa (v. 62712), Ampelopsis rooseae (UF 6536, UF 9575), Vitis tiffneyi (UF 6533, UF 9573), Ampelocissus wildei (Me 5730, Me 8786), were also included in the selection of shared combination of character conditions, to accommodate the possibility that the fossils may possess combinations of characters observed only in other fossils but not in the extant seeds. Acareosperma spireanum and Clematicissus angustissima were excluded from the comparison because they possess unique characters not seen in observed fossils, i.e., rugae whorled (C 54), and one ventral in fold (C55), respectively (Chapter 1). Fossils resulted the selection with the same composition of extant taxa were placed in the same "Seed Group"; seed groups contai ning similar composition of extant taxa were placed in the same "Seed Type" (st) (see Tables 3-1 to 3-15 for clarification).

PAGE 164

164 The seed type classification in this st udy was based on limited characters, therefore taxonomic revision was not performed; the original name attached to th e published fossil images is retained. Each named and described specimen was treated as one "Seed Form", the smallest unit of this classification. Similar seed form s were grouped under the same "Seed Group"(equal to the column Group in Tables 3-1 to 3-13, and 315), and similar seed groups were placed in the same "Seed Type"(see Table 3-15). However, if variation of diagnostic ch aracters was discerned among seeds from the same locality published under the same name, they were evaluated as different seed forms. Age of the localities fo llows that from recent data (age of the Brandon Lignite followed Tiffney, 1994; for localities in England, see Collinson and Cleal, 2001a; 2001b; for localities in Siberia, see Nikitin, 2006; ot hers see Materials and Methods in Chen and Manchester, 2007); if no age revision was known, the original published assignment for age was followed. Five species of Cissus from South America, C. granulosa, C. simsiana, C. striata, C. trianae C. tweedieana and five species of Cissus from Australia, C. antarctica C. oblonga, C. hypoglauca C. penninervis C. sterculiifolia have seeds dramatically different from other Cissus ; some of them are not closely related to other Cissus in the morphology-based phylogeny (Chapter 2). These ten species of Cissus are referred informally as "Austrocissus" (a name borrowed from Dr. Jackes; personal communicati on) in the text to avoid confusion when discussing seed types. The original literature to which the followi ng text refers is cited in the accompanying tables.

PAGE 165

165 Results and Discussion Classification of Fossil Vitaceaous Seeds Vitaceous seeds from more than 62 Tertiary localities worldwide were evaluated. Fossil seeds are categorized into 13 seed types, named with the prefix "st", listed in Tables 3-1 to 3-13 and described in the following paragraphs. Fo ssil seeds lacking enough of information to be classified into the 13 defined seed types are listed in Table 3-14. Taxa sharing the same combination of characters with fossils are presented in Table 3-15. 1) stAmpelocissus -wide infolds This seed type has wide ventral infolds in the form of prominen t concavities occupying most of the ventral surfa ce; the dorsal side has an oval to roun d chalaza located in the center or near the apical notch. This combination of characters is present in extant species of Ampelocissus and Pterisanthes (Table 3-1; Groups 1-4, Table 3-15). This seed type is present in four localities from the Paleocen e and Eocene of North America, the Eocene of South America, and the Early Eocene of southe rn England (Table 3-1). Ampelocissus bravoi from Belen, Peru (Chen and Manchester, 2007) and Vitis excavata from England (Chandler, 1962) are represented by single specimens; however, Ampelocissus parvisemina and Ampelocissus auriforma are common fossil seeds in Clarno Forma tion (Chen and Manchester, 2007). 2) stAmpelocissus -rugose The seed surface is rugose, with narrow, m oderate to long ventral infolds and an oval chalaza positioned in the center of the dorsal side. This combinati on of characters is present in extant species of Ampelocissus, Nothocissus spicifera Cayratia triternata Tetrastigma Yua austro-orientalis ; Groups 5 and 8 also correspond to extant Vitis seeds because fossils are less rugose (Table 3-2; Groups 5-10, Table 3-15). The specimens identified as Paleovitis paradoxa from Paris Basin (Blanc-Louvel, 1986) are preserved as the internal casts of the seed coat. The

PAGE 166

166 type material of Palaeovitis paradoxa from the London Clay (Reid and Chandler, 1933) has a very thick endotesta and smooth seed surface; some specimens have part of the endotesta abraded away, showing the slightly rugose surface of the internal cast. Aside from the distinct thick endotesta, the fossil seed casts resemble rugose Ampelocissus seeds. Some fossil seeds classified here have an api cal notch around 60 (see Comment in Table 3-2); however, apical notches of sampled extant rugose Ampelocissus or Tetrastigma usually do not have sharp angles. Ampelocissus wildei from Messel belongs to this seed t ype; however, the cross section showed that the endotesta of this fossil is unusually thick. Seed type stAmpelocissus -rugose is present in at least 13 localities in Europe and Asia, some of them Eocene and others Miocene or Pliocen e (Table 3-2). Most fossils with this seed type were named Tetrastigma by Chandler (see Table 3-2). I examined specimens from the London Clay; most of these pyritic fossils had decay ed, so the seed surfa ce characters are not as clear as the images from th e original publication. Theref ore the characters of the Tetrastigma from London Clay were scored from the original photos. 3) stAmpelopsis -smooth Seeds of this category have smooth surface, linear ventral infolds, and an oval chalaza near the shallow apical notch. This seed type includes the extant Ampelopsis "Austrocissus" striata Cayratia sp. ( Peng 6346 ), Clematicissus opaca and Yua chinensis (Table 3-3; Groups 11-15, Table 3-15). Groups 12 and 15 contain Cayratia sp. ( Peng 6346) and Clematicissus opaca which have long ventral infolds compared to others. Fossil seeds belonging to these two groups have longer ventral infolds. The fossil seed s classified here greatly resemble the extant representatives, with the exception of Ampelopsis macrosperma (see Comment in Table 3-3) from the Miocene of Siberia (Dorofeev, 1963), which possesses features unusual in extant Ampelopsis : large seed size (5.3-7.2 mm vs. 3.2-5.7 mm), and large chalaza (chalaza width to

PAGE 167

167 seed width ratio 0.5 vs. 0.26-0.4). Fossils of stAmpelopsis -smooth occur in more than 24 Tertiary beds in Europe, Siberia, Japan, and North America, in cluding the oldest known occurrence of a vitaceous seed in Europe from the Paleocene of Germany (Table 3-3). 4) stAmpelopsis -rugose This seed type is characterized by a rugose surface, narrow ventral infolds, and an oval chalaza near the shallow apical notch. Extant seeds meeting these crite ria include species of Ampelocissus Ampelopsis "Austrocissus" Cayratia Rhoicissus and Tetrastigma (Table 3-4; Groups 16-23, Table 3-15). Fossil seeds belong ing to Group 19 have wider ventral infolds and hence also resemble extant Ampelocissus robinsonii When seeds are less rugose, smooth-seeded Ampelopsis and Yua chinensis would also be included amon g the corresponding extant seeds (Table 3-4; Groups 18, 21-23, Tabl e 3-15). Cross section configur ation and seed coat anatomy can distinguish extant Ampelopsis seeds from other genera de spite their similar external appearance (Chapter 1); however, fossil seeds are not always we ll enough preserved to provide informative cross sections. This fossil seed type was found in at least 12 localities of Eocene, Miocene, or Pliocene age in Eu rope and Japan (Table 3-4). 5) stAmpelopsis -xs Fossils from the Princeton Chert of British Columbia were permineralized with cellular details but not free from the matrix (CevallosFerriz and Stockey, 1990). The transverse section of two of the described seed forms have the typical configuration of extant Ampelopsis the ventral infold cavity is lined with thick endotesta near the ventral infold openings, but inside the ventral infold cavities, the endotesta is less we ll developed. The part of ventral infold cavities lined with thinner endote sta is round in outline. Ampelocissus similkameenensis shows well preserved, 12 layered elongate endotesta sclereids (Fig. 5, Cevallos-Ferriz and Stockey, 1990); the endotesta sclereids of type 1 seed were not well preserved but can be discerned as more than

PAGE 168

168 two layers (Fig. 16, Cevallos-Fe rriz and Stockey, 1990). The combination of these three characters is present in some species of extant Ampelopsis and "Austrocissus" (Table 3-5; Group 24, Table 3-15). 6) stVitis This seed type has an oval chalaza positioned at the center of the dorsal side and moderate to short ventral infolds, the seed surf ace is smooth to slightly rugose. Most extant Vitis species have seeds belonging to this seed type (Table 3-6; Groups 25-29, Table 3-15). Extant seeds of Cayratia triternata and Yua austro-orientalis also correspond to Seed Group 25, which represents the seeds with general features of Vitis but with a sligh tly rugose surface. Ampelocissus scottii (Manchester, 1994) of the Clarno Form ation is placed in this seed type; however, it has a dorsiventrally co mpressed lens-like seed shape, which has not been observed in any sampled extant seed (see Comment in Table 3-6). The Vitis seed type occurs in at least 25 localities thoughout the Tertiary of Eur ope, North America, and Siberia. 7) stVitis-Ampelopsis This seed type has a smooth surface; the vent ral infolds are short to moderate in length, and the oval chalaza is located at the upper part of the dorsal side. Among the sampled extant seeds, Ampelopsis and Vitis correspond in these characters (Table 3-7; Groups 30-34, Table 315). Group 30 includes fossils with longer ventral infolds hen ce also resemble Cayratia sp. ( Peng 6346) and Clematicissus opaca Most Ampelopsis have the chalaza positioned near the notch, whereas Vitis typically has a centered chalaza. Th e ambiguous position of the chalaza on the fossil seeds make them appear similar to both Vitis and Ampelopsis The extant seeds of Vitis and Ampelopsis can be easily distinguished by severa l characters in the cross section view (Chapter 1); however, the cross s ection of fossils were not observed. This seed type has been identified from 14 localities of the Tertiary in North Hemisphere. Palaeovitis paradoxa from

PAGE 169

169 London Clay, fossil seeds with an unusually thic k endotesta, is also classified here (see Comment in Table 3-7). 8) stVitis rotundifolia This seed type includes seeds with a smoot h to faintly rugose surface, a shallow apical notch, ventral infolds that are long, narrow and para llel, and a centrally positioned oval chalaza. This seed type differs from stAmpelocissus -rugose by the less well developed rugosity, and it differs from st-Vitis by having longer ventral infolds. Extant Vitis rotundifolia has this type of seed (Table 3-8; Group 35, Table 3-15). This seed type occurs in the Eocene and the Miocene of Europe and the Miocene of North America. Extant V. rotundifolia belongs to Vitis subgenus Muscadinia which differs from subgenus Vitis in the simple tendrils, short infructescences, and rugose oblong seeds (Brizicky, 1965). Seeds of the native species V. rotundifolia do not have a strongly rugose surface; however, cultivars such as Scuppernong have a relatively rugose surface and long, parallel ventral infolds, thus being very similar in overall morphology to a rugose Ampelocissus seed (observed but not sampled in databa se). The concept of a Muscadine seed type used by some paleobotanists (for example, Mai, 2000) may differ from the concept of stVitis rotundifolia as delimited in this study by degree of rugosity. 9) stParthenocissus This seed type is characterized by a sharp ap ical notch, an oval chalaza near the notch, and long, divergent linear ventral infolds. The sampled extant Parthenocissus seeds all belongs to this seed type (Table 3-9; Group 36, Table 3-15). The fossils Tetrastigma sheppeyensis (Chandler, 1978) and Vitis ludwigi (Czeczott and Skirgie o, 1959) are classified as this seed type, however, the surface of the seeds is mo re rugose compared to the sampled extant Parthenocissus seeds (see Comment in Table 3-9). Ampelocissus parachandleri (Chen and Manchester, 2007) seeds are preserved as the inte rnal cast of the seed coat. The long and

PAGE 170

170 divergent ventral infolds and deep apical notch resemble those of Parthenocissus seeds; however, the deeply sunken chalaza of the fo ssil seeds are not present in sampled extant Parthenocissus seeds. The previous assignment of this fossil to Ampelocissus (Chen and Manchester, 2007) based partly on the deeply su nken chalaza is now considered questionable because the combination of linear long divergent in folds and deep apical notch is not present in sampled extant Ampelocissus seeds. This fossil seed type occu rs in four European Tertiary beds and in the Clarno Formation of North America (Table 3-9). 10) stParthenocissus clarnensis This seed type is smooth, with a shallow ap ical notch, an oval chalaza centered or near apical notch, and long, linear vent ral infolds, which are more or less divergent (Table 3-10; Groups 37-39, Table 3-15). The seed type is distinguished from stVitis rotundifolia by its more divergent infolds, and from stParthenocissus because it lacks a sharp apical notch. When the ventral infolds are strongly diverg ent, the combination of the charac ters are not present in extant seeds but they do occur in fossil seeds, such as Parthenocissus clarnensis of the Clarno Formation (Group 38). When the divergence angle of the ventral infolds is not strong, the fossil seeds also resemble extant Cayratia sp. ( Peng 6346 ), Clematicissus opaca and Vitis rotundifolia (Groups 37, 39). Cayratia sp. ( Peng 6346) and Clematicissus opaca have the chalaza positioned near the apical notch, whereas Vitis rotundifolia seeds have a centered chalaza. Many fossil seeds named Parthenocissus have long and divergent ventra l infolds without a sharp apical notch; those fossils ar e classified here. Vitis magnisperma from London Clay and Clarno Formation (see Comment in Table 3-10) is categor ized here although it is larger than sampled extant smooth seeds (7-10.3 mm vs. 6.3 mm), a nd the long narrow ventral infolds are unusually closely spaced, a feature found in Clematicissus opaca and Tetrastigma (vi space mid <0.15, vi

PAGE 171

171 w<0.2, vi l >0.6). Fossil seeds of this type were found in 14 localities in the Tertiary of Europe, Siberia, and North America. 11) stCayratia The seed type is concave on the ventral side; the lateral edge of the seed is constricted and forms a continuous rim so the seed appears to have a hole, small to large, occupying the central part of the ve ntral surface. This character is present in some species of Cayratia which Sussenguth (1953) recognized as Section Koilosperma based on this distinctive seed character. Fossil seeds with this character have wide ve ntral infolds, resembling extant species of Cayratia from Malesia and Australia (Table 3-11; Group 40, Table 3-15). The fossils were found in two Miocene localities in Europe and in the Late Oligo cene/ Early Miocene of Siberia (Table 3-11). 12) stTetrastigma Seeds of this category are rugose, with a linear chalaza near the shallow apical notch, and long narrow ventral infolds. Extant species of Tetrastigma and the Australian "Austrocissus" have this type of seed (Table 3-12; Group 41, Table 3-15). Fossil seeds of this type occur in Oligocene of Australia. Similar seeds were coll ected from Early Eocene of Australia (Carpenter et al., 2004); however, the ventral side of the sp ecimens was not exposed (classified in Table 314). 13) st-perichalaza This seed type is characterized by havi ng a long, narrow chalaza extending from the dorsal to the ventral side; in lateral view length of the chalaza is 1.4 time longer than the maximum length of the seed (character defined in Chapter 1) (Table 3-13; Groups 42-43, Table 3-15). The perichalazal c ondition is present exclusivel y in all sampled seeds of Leea Cyphostemma and Cissus (except "Austrocissus" ). Extant Leea and Cyphostemma can be distinguished from Cissus by the presence of extra sclereid layers covering the opening of the

PAGE 172

172 ventral infolds on the seed surface (C53, Table 313). Fossil seeds with perichalaza were found in the Eocene of Belen, Peru and the Miocene of Panama. Carpolithus olssoni (Berry, 1927; image from Manchester) from Belen was preserved as an internal cast, th erefore the condition of its testa is unknown. A pair of elongat e grooves is present on each lateral side of Carpolithus olssoni The lateral scars can be in terpreted as the unbranched late ral infolds present in some species of Leea Cissus willardi (Berry, 1929) from Belen does not have lateral infolds; its round seeds conform closely to some extant species of Cissus (specimens observed). Cissus sp. from Miocene of Panama (Carvalho et al., unpublished) resembles extant Cissus seeds in many aspects. Fossil vitaceous seeds with perichalaza were also present in the Miocene Rusinga flora of Lake Victoria, Kenya (Collinson, unpublishe d data; specimens not observed therefore classified in Table 3-14). ? Vitis excavata (Chandler, 1978), a single seed from London Clay, shows a long and narrow chalaza resembling the peri chalazal condition. However, the surface of the fossil seed is badly abraded and its affinity is uncertain (Table 3-14). 14) uncertain specimens with affinity to Vitaceae This category accommodates incomplete ly known specimens, those with surface obscured by abrasion, those with only one side of the seed exposed, or those for which identifications were published without images (Table 3-14). These fossil seeds may be recognized as Vitaceae; however, more characters are needed for seed type classification. A special seed form was rec ognized in this category. Vitis platysperma from the Dorset Pipe Clays of England is laterally compressed, with a stra ight and sharp raphe ridge. The seed form resembles that of Leea with 12-seeded fruits, such as Leea papuana The chalaza of the fossils is elongate oval, sunken in the medium of the dor sal side, differing from the perichalaza of Leea The lateral facets of the fossils have an obscure linear mark, which Chandler interpreted as the ventral infolds. The position of the mark on the fo ssil seed conforms to that of lateral infolds on

PAGE 173

173 a Leea seed. The ventral infolds of the Leea seeds are linear and clos ely spaced in the region of the sharp raphe, the surface of the infolds is c overed up by sclereids and sometimes may not be easily discerned externally. A close examination is needed to confirm the affinity of this fossil seed; it is also possible that the seed does not even belong to Vitaceae. Summary of seed type classification The object of this study is to infer the past distribution of genera with fossils, and provide a seed type classification accommodating most fossil seeds. The internal characters are not well preserved for most of the fossils; therefore only ex ternal characters were ev aluated (except for stAmpelopsis -xs) in this survey. Seed types such as stAmpelopsis -rugose and stVitis Ampelopsis showed that without the charac ters from the cross section, the external morphology of a fossil seed can resemble seeds from more than one extant genus. The preservational condition of the fossil seed s can also affect the interpretation of the available characters. The compressed fossil seeds may have ventral infolds that appear shorter then the actual length, or a misplaced/distorted ch alaza. For fossils preserved as an internal cast of the seed coat (indicated in the tables), the real extent of surface rugosity is unknown, so the estimates of rugosity in these instances may not be accurate. The cross section of an extant rugose vitaceous seed shows that ty pically the endotesta is thicker at the ruga apex and thinner at the ruga sinus; very rarely the endotesta may be thicker at the ruga si nus (C44 and C45, Chapter 1). A rugose seed presumably would have a rugose seed coat internal cas t although the degree of rugosity may not be the same. Palaeovitis paradoxa represents a case where the seed surface is smooth but the seed cast surface is rugose, a cond ition not noticed in the extant vitaceous seed survey (Chapter 1). A cross section does not sh ow the surface rugosity we ll if the degree of the rugosity is low, and the best way to observe the surf ace rugosity of a seed coat internal cast is to

PAGE 174

174 remove the seed coat, which has not been done in the investigation of extant vitaceous seeds (Chapter 1). In addition to the limitations due to preser vational condition of the fossils, classification of vitaceous seeds is complicated by the continuo us nature of most di agnostic characters. Because most characters show continuous variat ion, the boundary between seed types is not always distinct. One of the more obvious examples from this seed type classification is degree of rugosity. Some seed forms are pos itioned in the transition between stAmpelocissus -rugose and stVitis; others are ambiguous between stAmpelopsis -smooth and stAmpelopsis -rugose. With the method applied here for seed type cl assification, these slightly rugose fossil seeds would match extant seeds from multiple genera. The diagnostic criteria were based on the meas ured extant seeds, in order to identifying fossil seeds to extant genera. Sample size of the extant seeds is therefore a factor effecting the criteria for grouping. stParthenocissus is an example showing the effect of sampling on the delimitation of a seed type. In the extant seed survey (Chapter 1), all sampled Parthenocissus seeds have a pair of long, divergent infolds a nd an oval chalaza near a sharp apical notch. Chalaza positioned near a sharp apical notch was not considered when paleobotanists identified fossils as Parthenocissus ; hence their concept of a Parthenocissus seed includes only long and divergent infolds and oval chalaza (see the references cited for the fossils named Parthenocissus in Table 3-10). Fossil seeds with long divergent infolds but without a sharp apical notch are here classified under seed type stParthenocissus clarnensis (Table 3-10) in th is study. The sharp apical notch was overlooked as a diagnostic char acter possibly because the sarcotesta usually obscures this character in extant seeds. Ei ght species of the tota l 16 extant species of Parthenocissus were sampled in the seed survey. It remains possible that the un-sampled

PAGE 175

175 Parthenocissus may include seeds that do not have a shar p apical notch. Further study including all extant species of Parthenocissus to the seed comparison can better delimit stParthenocissus and stParthenocissus clarnensis Some examined fossil seed forms have special features not found in the extant representatives of the same seed types (see Comm ent in Tables 3-1 to 3-14). Since only one fourth of the species of extant Vitaceae was samp led, the possibility of non-sampled extant seeds with characters found in these fossi ls still exists. Increased sa mpling, with proper assessment of within taxon variation, and carefu lly examination of all characters of the fossil seeds, may help determine whether those fossil seeds with special features actually conform to extant forms. Geographic Distribution of Foss il and Extant Vitaceous Seeds The distribution of the fossil and extant vitaceo us seed types is listed in Tables 3-16 to 319. Detailed fossil information under each seed type can be found in Tables 3-1 to 3-14. Fossil species (seed forms) may not be well delim ited because the delimitation of seed forms may varies greatly among the observers. Some authors, like Chandler (1925-1926; 1957; 1961a; 1961b; 1962, 1963, 1964; 1978), defined seed form stric tly, so that seeds with minor variation were set apart as different species. This is among the reasons why the num ber of fossil vitaceous seed forms from the London Clay is unusually high (Table 3-16) compared to other fossil floras. Extant species can be defined by other plant parts and the intra-specific variation of the seeds can be examined. On the contrary, there is no objecti ve way to relate fossil seed forms to a single extinct species. After all, the organ itself is the only reference for species delimitation. One should bear in mind that the number of seed form s in each seed type (number in each cell of Tables 3-16 to 3-19) from the same locality can be interpreted differently by different observers and may not represent the real species diversity.

PAGE 176

176 Europe Abundant vitaceous seeds were reported in the Tertiary of Europe; records from 33 localities were reviewed in this study (Table 3-16). The earliest recognizable seed type is stAmpelopsis -smooth from the Paleocene of Gonna, Germany ( Vitis venablesi Chandler, Mai, 1987). By Early Eocene, they were more diverse; the localities from so uthern England (Dorset Pipe Clays, London Clay, Oldhaven Beds) have yielded nine identi fiable seed types with oval chalaza, and smooth or rugose surfaces. The same nine seed types persist to the Miocene of Europe, with a different seed type, stCayratia occurring in two Miocen e localities in Central Europe (Kflach-Voitsberg, Austria and Hauptzwis chenmittel, Germany). The majority of the fossil seeds have an oval chalaza; the fossil seeds with an unambiguous linear chalaza, stCayratia are relatively rare in the Tertia ry of Europe. Seed types stVitis stAmpelopsis smooth, stAmpelocissus -rugose, and stParthenocissus clarnensis are common in the Tertiary of Europe, and they frequently co-occurred in the same localities. Most fossil seeds from Europe resemble extant seeds without discernable differences, nevertheless, some of the examined fossil seeds have features not present in the extant seeds of the same seed types. Some fossils classified as stAmpelocissus -rugose have a sharp apical notch, uncommon in extant representatives (Table 3-2); Ampelocissus wildei from the Middle Eocene of Messel, Germany (Table 3-2) and Palaeovitis paradoxa from the Early Eocene of the London Clay (Table 3-7) have unusually thick endotesta; some stParthenocissus type fossil seeds have a rugose surface (Table 3-9); Vitis magnisperma from the Early Eocene of the London Clay is large and with closely spaced ventral infolds (Tab le 3-10); the dubious specimen of Vitis platysperma from the Early Eocene of Dorset Pipe Clay is laterally co mpressed as seeds from 9-10-seeded fruits (Table 3-14). Such a diversity of Vit aceae clearly does not exist in the present day flora of Europe. Vitis vinifera is widely cultivated. The species collected from the wild environment in Europe

PAGE 177

177 was identified as V. vinifera (Webb, 1968), or V. sylvestris Gmelin, which often was treated as a variety or subspecies of V. vinifera (Davis, 1967). It is uncerta in whether the present wild species has originated from cultivation escape. Siberia Fossil vitaceous seeds from 12 localities in Si beria were reviewed (Table 3-17). Five identifiable seed types occur from the Early Eo cene to Miocene in Siberia. The earliest occurrences are stAmpelopsis -smooth and stVitisAmpelopsis in the Early and Middle Eocene of West Siberia (Nikitin, 2006). In a ddition to these two seed types, stVitis and stParthenocissus clarnensis are also present in several Ol igocene and Miocene sites. stCayratia occurred in only one locality in Late Oligocene/ Early Miocene (Nikitin, 2 006). All of the fossil seeds from Siberia have an oval chalaza except stCayratia stAmpelopsis -smooth, stVitis, and st-Vitis Ampelopsis are prevalent in Tertiary Siberia, but the strongly rugose seed type is not present. Most of the fossil seeds do not differ fr om the extant vitaceous seeds externally, except for A. macrosperma which has a very large round chalaz a (Table 3-3). A few species of Vitis Ampelopsis and Parthenocissus occurs in the fore sts of the border region of Russia and northeastern China today (Kozhevnik ov and Nedoluzhko, 2006; Denisov, 2007). Most of fossil seeds are from western Siberia, outside the range of most extant Vitaceae. Asia Fossil vitaceous seeds with an age earlie r than the Pliocene are not known from eastern Asia. Seed types stAmpelocissus -rugose, stAmpelopsis -smooth, stAmpelopsis -rugose, stVitis and stParthenocissus clarnensis are present in the Pliocene of Japan (Table 3-17). In the present day of Japan, several species of Vitis Ampelopsis Parthenocissus and Cayratia japonica grow in the temperate to sub-tropical fore sts. These extant taxa produce seed types resembling the Pliocene fossil seeds; however, stAmpelocissus -rugose is not linked to the extant

PAGE 178

178 species in Japan. Present day Asia has highly diversified members of Vitaceae in temperate to tropical regions. With the excep tion of the Australian endemic Clematicissus and African endemic Rhoicissus every extant genus has representatives distributed in Asia and Malesia. North America Fossil vitaceous seeds from 13 localities in No rth America were reviewed (Table 3-18). In North America, fossil vitaceous seeds were uncovered from the Paleocene of western North America (Bullion Creek Formation, Fort Union Fo rmation), Eocene of western (Princeton chert, Clarno Formation, Blue Rim, Green River Fo rmation, Wilcox, Chalk bluffs) and eastern (Fisher/Sullivan site) North America, Miocene of northeastern North Am erica (Brandon Lignite), and Miocene of western North America (Rem ington Hill, Yakima Canyon). The oldest specimens are Ampelocissus parvisemina from the Paleocene of Bullion Creek Formation, North Dakota, belonging to stAmpelocissus -wide infolds, and the specimen from the Paleocene of Fort Union Formation, Montana (Robinson and Honey, 1987; locality information only), belonging to st-Vitis Seeds from the Early Eocene of Fisher/Sullivan site, Virginia and Wilcox, Texas are similar to extant Vitis Several different vitaceous seed forms occur in the early Middle Eocene of the Clarno Formation, including seed types stVitis stParthenocissus, stAmpelopsis -smooth, and stAmpelocissus-wide infolds. Seeds with noticeabl e deviation from the observed modern seed forms were also present, such as the lens-shaped Ampelocissus scottii (Table 3-6), Ampelocissus parachandleri with deeply sunken chalaza (Table 3-9), the unusually large Vitis magnisperma with closely spaced infolds (Table 3-10) Permineralized vitaceous seeds were reported from the Middle Eocene of Princeton chert; two of the seeds showed the features of Ampelopsis in transverse section (Table 3-5). Othe r Tertiary sites in North America have stVitis stVitis-Ampelopsis stVitis rotundifolia seed types. The specimens from Miocene Yakima Canyon, Washington (Tcherepova and Pigg, 2005) and Remington Hill, California (Condit,

PAGE 179

179 1944), reported to have Vitis and/or Ampelopsis affinity, were not obser ved for this study. Three seed forms similar to Vitis were reported from the Latest Mi ocene/Early Pliocene of the Gray Fossil Site, Tennessee, US (Gong, Karsai, and Li u, 2009; specimens not observed). All fossil vitaceous seeds from North Amer ica have oval or round chalaza, and none of them are strongly rugose. Three temperate genera of Vit aceae occur today in North America: Vitis subgenus Vitis (several species thougho ut North America, V. tiliifolia HBK. extending to northern South America), Ampelopsis (three species, two in central-south ern North America, 1 restricted in Mexico to Guatemala), and Parthenocissus (three species, two with wi de distribution north from Quebec, south to Texas; 1 strictly in Texas) (Brizicky, 1965). Vitis and Parthenocissus produce st-Vitis and stParthenocissus seed types respectively. Interestingly, species of Ampelopsis producing rugose seeds are all from Asia; all the species in North America produce smooth seeds, and A. denudata, the one that occurs in Mexico and Guatemala, has wide ventral infolds (Fig. 7f, Chen and Manchester, 2007). Other occurrences of extant Vitaceae in North America are in the southern region, including Vitis subgenus Muscadinia Cissus and Ampelocissus Vitis subgenus Muscadinia has a single species (Vitis rotundifolia ) endemic in southeastern North America, and possibly another in Mexico and Gu atemala (Brizicky, 1965). Two to three species of Cissus mainly occur in southeastern No rth America. Four species of Ampelocissus occur in Central America; A. acapulcensis and A. erdvendbergiana extend north to Mexico. These two species of Ampelocissus produce rugose, wide or narrow vent ral infolded seeds. Fossil seed types from North America mostly can be found in present day of North America not far from the fossil localities, except the st-Ampelocissus -wide infolds and st-Vitis rotundifolia which were

PAGE 180

180 uncovered from fossil localities (Bullion Creek Formation, Clarno Formation, Brandon Lignite) further north than the nearest current dist ribution area in southern North America. Central and South America Seeds of stAmpelocissus -wide infolds and st-perichal aza are found in the Eocene of Belen, Peru (Table 3-19). One of the st-perichalaza seeds, Carpolithus olssoni has characters of Leea ; the other, Cissus willardi resembles extant Cissus The seeds collected recently from Miocene of Panama (Carvalho et al., unpublished) are similar to extant Cissus seeds. In present day Central and South America, Cissus (ca. 80 spp. described) is the major representative of Vitaceae. At least five species of South America-endemic Cissus do not have the typical perichalazal seeds ("Austrocissus" ); they produce stAmpelopsis -smooth, stAmpelopsis -rugose, or stTetrastigma seed types (see Chapter 1 for details). Four species of Ampelocissus and one species of Ampelopsis ( A. denudata ) occur in Central America; their seeds belong to stAmpelocissus -wide infolds and stAmpelocissus -rugose seed types. Leea is not native in North, Central or South America today. If the fossil from Peru is correctly identified then it indicates the presence of this genus in Eocene time. Africa The fossil vitaceous seeds from the Miocene of Lake Victoria, Ke nya, Africa are similar to extant Cissus seeds (Collinson, unpublished) (Table 3-19). In present day Africa and Madagascar region, Cissus (ca. 200 spp.) and Cyphostemma (250 spp.) are widespread and highly diversified. Rhoicissus is a genus with 12 species, all endemic to this region. Ampelocissus (30 spp.), Cayratia (7 spp.) and Leea (2 spp.) also occur in this area (Descoings, 1972). Habitats of these African Vitaceae include riverine forest evergreen forest, dry forest, bushland, or grassland. Cissus Cyphostemma and Leea produce st-perichalaza type of seeds. Some species of Rhoicissus produce seeds that can be classified as stAmpelopsis -rugose.

PAGE 181

181 Ampelocissus in Africa produce seeds that are more or less rugose, with long ventral infolds range from narrow to wide. Seeds of African Cayratia fit to the st-Ampelopsis -rugose seed type defined in this study; species of Cayratia in Africa do not produce the stCayratia seed type (Table 3-19). Australia Vitaceous seeds from two fossil localities in Australia were evaluated (Table 3-19). Cissocarpus jackesiae from Oligocene of Capella, central Queensland, Australia (Rozefelds, 1988) belongs to seed type stTetrastigma (Table 3-12). A seed from Early Eocene of Hotham heights, Victoria, Australia was identified as aff. Cissocarpus jackesii (Carpenter et al., 2004) (Table 3-14). Five species of Tetrastigma and the Australian endemic species of Cissus ( "Austrocissus" ), C. antarctica C. oblonga, C. hypoglauca, C. penninervis and C. sterculiifolia are distributed in eastern Australia (Jackes, 1988b, 1989a), not far away from the Oligocene locality in Capella where fossils with similar s eed type were found. Ot her extant members of Vitaceae in Australia incl ude the eight species of Cissus with perichalazal seeds, Cayratia (8 spp.) with stAmpelopsis -rugose or stCayratia type of seeds, Ampelocissus (3 spp.) with stAmpelocissus -rugose type of seeds, and the endemic Clematicissus (2 spp.) with stAmpelopsis smooth type of seeds (Jackes, 1984, 1987b, 1988b, 1989b, 1989a; Jackes and Rossetto, 2006) (Table 3-19). Summary of seed type distribution The majority of the fossil vitaceous seeds ar e from Europe, North America, and Siberia. The earliest occurrences are from the Paleocene, a stAmpelopsis -smooth seed from Europe, a stAmpelocissus -wide infolds seed and a stVitis seed from North America. Fossils from the northern continents have more or less similar composition, with slight variation. Fossils of stAmpelopsis -smooth seed type are relatively abundant (o ccurred in more localities) in Europe and

PAGE 182

182 Siberia, but less frequent in No rth America. Rugose seeds with an oval chalaza are common in the Tertiary Europe but not other regions. The stParthenocissus seed type is missing in Siberia. Fossil seed type composition from the southern c ontinents are very different from those from Europe, North America, and Asia. Most of them have a linear chalaza; only Ampelocissus bravoi of Belen, Peru has an oval chalaza. The divers ity of seed types in Early Eocene of Europe is comparable to that of Asia now but lacks s eeds with a linear chalaza or perichalaza. This richness in vitaceous seed types diminished in the Late Miocene to Pliocene period. By seed type comparison, one can relate the reduced divers ity to glacial activities in the later Pliocene and Pleistocene. Climatic cooling had a severe effect on the flora of Vitaceae in Europe. Seed types formerly widespread in Sibe ria are now distributed in the s outheastern border of Siberia. In North America, seed type diversity has not strongly changed, but two of the fossil seed types are now confined to the southern area. Phylogeny of Vitaceae Two coding strategies were applied to th e continuous characters in the morphological cladistic analyses (Chapter 2). The morphologi cal phylogeny with discrete coding (Figure 3-1) is used for hypothesizing biogeography because it s topology resembles those of recent molecular phylogenies (Soejima and Wen, 2006; Wen et al ., 2007) more than the phylogeny with GW coding (Chapter 2). The mo rphological phylogeny indicate s a close relationship of Ampelocissus Vitis Ampelopsis Parthenocissus, Yua and Clematicissus. Nothocissus and Pterisanthes are nested within Ampelocissus; this clade is closely related to Vitis. Yua is grouped with Parthenocissus ; Ampelopsis and the Parthenocissus Yua clade are sequentially sister to the Ampelocissus Vitis clade. These genera mostly bear 5-merous flowers, inflorescences with tendril-like structure, seeds with an oval chalaza, and an endotesta with elongate sclereids and small diameter tracheidal cells. Rhoicissus and Cissus are sister to the oval chalazal clade. Both

PAGE 183

183 Rhoicissus and Cissus are paraphyletic, although Cissus with perichalaza is monophyletic when the GW coding method was applied (Chapter 2). Cayratia Tetrastigma, Acareosperma and the majority of Cyphostemma form a clade sister to rest of the family; they are united by unique characters in inflorescence-bearing branch, frequently stomated sarcotesta, short endotesta sclereids, and large-diameter tr acheidal cells in the seed coat This phylogeny has the basic framework of the phylogenies estimated by chloroplast and GAI1 sequences (Soejima and Wen, 2006; Wen et al., 2007), except for the placements of Rhoicissus and Cissus. These two DNAbased phylogenies indicate a close relationship of Rhoicissus, Ampelopsis and C. striata; the monophyly of Cissus with perichalazal seeds is well s upported by the molecular data, and the clade occupied a position sister to the oval chalazal clade. Ho wever, the Australian endemic Cissus and Clematicissus were not included in th ese molecular phylogenies. Phylogenetic Signals of the Seed Types Chalaza shape and seed coat anatomy are a ssociated with higher level groupings within Vitaceae. In the oval chalazal clade, there is a trend that the later divergent groups, Vitis and Ampelocissus, have a centrally-positioned chalaza wh ereas the earlier divergent groups, Parthenocissus and Ampelopsis, have the chalaza near the ape x. Other seed shape characters, such as those used to classify fossil seeds in this study, also contribute to the grouping of Ampelocissus Vitis Ampelopsis and Parthenocissus. Within the clade that contains Cyphostemma Cayratia and Tetrastigma Cayratia and Tetrastigma do not have a perichalaza but the chalaza is still linear and long in most sa mpled extant seeds (Chapter 1). Most genera have diverse seed types, such as Ampelocissus Vitis, Ampelopsis Cayratia and Tetrastigma. Seed type is not stri ctly correlated with the intragen eric relationships or geographical distribution, except for Cayratia where the species with stCayratia seeds ( C. cardiophylla and C. geniculata ) are phylogenetically di stant from others (F igure 3-1). Within Ampelocissus seed

PAGE 184

184 types are somewhat related to the infrageneric groups (C hen and Manchester, 2007); for example, those Ampelocissus with inflorescences that are racemes of spike from Malesian rainforests all have flat seed s with wide ventral infolds. To link extant species to the fossil seeds, s eeds of the terminal taxa in the morphological phylogeny are classified into seed types the same way as the fossil seeds in this study. The extant seeds that did not fit in to the seed type s defined for fossils are gi ven different seed type names (Figure 3-1). A great number of the fossil vitaceous seeds are indi stinguishable from the extant representatives externa lly, such as seed types stAmpelopsis -smooth, stVitis stParthenocissus, and st-perichalaza. Some well-preserved fossil seeds show remarkable resemblance to the extant representatives in all available characters incl uding transverse section, such as Ampelopsis rooseae of the Clarno Formation (Chapter 4). These fossils imply that the extinct taxa may have an overall morphology very similar to that of the extant taxa bearing the same seed types. Although other plant parts of the fossil taxa are unknown, one can tentatively use seed types to infer fossil affinity. Nevert heless, some seed type s delimited here contain species from multiple genera (Table 3-15). Some genera with the same seed types have a close relationship as indicated by morphologi cal and molecular data, such as Pterisanthes and Ampelocissus (stAmpelocissus -wide infolds seed type), Nothocissus and Ampelocissus (stAmpelocissus -rugose seed type) (Figure 3-1). Since thes e three genera form a clade, their seed types can infer the past dist ribution of this clade. Vitis and Ampelopsis are closely related, hence the stVitisAmpelopsis seed type was used to indicate the presence of either Vitis or Ampelopsis Other genera with the same seed t ypes are not immediately related, such as Ampelocissus and Cayratia / Tetrastigma (stAmpelocissus -rugose seed type), or Ampelopsis and Cayratia / Tetrastigma (stAmpelopsis -rugose seed type) (Table 3-15; Figure 3-1). Cayratia and

PAGE 185

185 Tetrastigma mostly have linear chalaza seeds (Chapter 1), however, some species have shorter chalaza and therefore are not distinguishable from st-Ampelopsis -rugose or stAmpelocissus rugose defined here. Their external seed characters exhibit inte resting convergence, nevertheless, the testa anatomy usually can distinguish extant Cayratia and Tetrastigma from Ampelocissus Since the anatomical char acters are lacking, fossil stAmpelocissus -rugose seed types are equally likely to be associated with Ampelocissus Tetrastigma or Cayratia and stAmpelopsis -rugose can be associated with Ampelopsis Tetrastigma, or Cayratia All probabilities were considered in the discussion of biogeography. The two sampled Yua species have diffe rent seed types: Y. chinensis has the stAmpelopsis -smooth seed type, and Y. austro-orientalis has the stAmpelocissus -rugose seed type (Table 3-15; Figure 3-1). When compar ing all seed characters, the seeds of Y. chinensis are not differentiated from those of Ampelopsis and seeds of Y. austro-orientalis share numerous features of those of Ampelocissus (Chapter 1). The monophyly of Yua and Parthenocissus is supported by both morphological (Figure 3-1; Chapter 2) and molecular data (Wen et al., 2007). The seeds of Yua indicates that sometimes the seed mor phology can be different from that of the other members within the monophyletic group and re semble that of other genera. It may be hypothesized that seeds of Yua preserved the ancestral charac ters of this clade, and the Parthenocissus seed type was derived later. Fossil records of Yua are not formally recognized here, but the fossils with seed types stAmpelopsis -smooth and stAmpelocissus -rugose may be related to Yua Some fossil seeds are not fully comparable to the extant seeds, such as seed type stParthenocissus clarnensis and those indicated in column "C omment" in Tables 3-1 to 3-14. Those fossil seeds all have oval chalaza, possibl y indicating the greater diversity of the oval

PAGE 186

186 chalaza clade in the past. More discussion about the possible extinct seed forms can be found in Chapter 4. Tentatively, these possi ble extinct forms are hypothesized to be related to extant taxa with the same assigned seed types, and stParthenocissus clarnensis seed type is viewed as stem group Parthenocissus Clematicissus, "Austrocissus", and Rhoicissus still do not have a firm placement in the phylogeny. There are two species of Clematicissus endemic to Australia. Clematicissus angustissima has only one ventral infold, unusually diffe rent from other seeds in the family (Chapter 1). No fossil seeds with th is morphology are known. Another species, C. opaca, has st-Ampelopsis -smooth seed type. Inflorescen ce and floral structures of Clematicissus are also similar to those of Ampelopsis and the cladistic analysis sugg ested a position sister to other genera with oval chalaza seeds (Figure 3-1). Among "Austrocissus" those from Australia all have stTetrastigma seed type, and those from South America have stAmpelopsis -smooth, stAmpelopsis -rugose, or stTetrastigma seed types (Figure 3-1; Chapter 1). One of the "Austrocissus" from South America, C. simsiana, is morphologically very similar to Ampelopsis its seeds belong to st-Ampelopsis -rugose seed type. This species is probably directly related to Ampelopsis and not closely related to other "Austrocissus" Rhoicissus tridentata has slightly shorter chalaza therefore can be classified as stAmpelopsis -rugose seed type; other Rhoicissus have seeds similar to Tetrastigma with divergent infolds (Chapter 1). "Austrocissus" and Rhoicissus have inflorescences similar to those in the oval chalazal clade, however, they have 4merous flowers, and some have seeds resembling Tetrastigma. Because of the uncertainty of their phylogenetic placement, the fossil seeds associ ated with these species are not considered in this study.

PAGE 187

187 Biogeographical History Extant species are linked to fossils by seed types, and the estimated past distribution is shown in Figure 3-2. The distribution of exta nt species is summari zed in Table 3-20. Vitis, Ampelocissus, Ampelopsis, and Parthenocissus The three temperate genera Vitis Ampelopsis and Parthenocissus present an Asian-North American disjunct pattern. These genera share a common ancestor (Figure 3-2). Vitis is monophyletic, with the North American species forming a clade nesting within the Asian species. Ampelopsis is paraphyletic. Both Ampelopsis and Parthenocissus-Yua clade have species from the two regions intermingled withou t an area related pattern (Figure 3-2). In the trnL-F phylogeny, the Asian species of Vitis formed a weakly supported clade nested within North and Central American species of Vitis (Soejima and Wen, 2006); in the GAI1 phylogeny the differentiation of Vitis by geographical area is not evident (Wen et al., 2007). Hence, the geographical pattern within Vitis shown in the morphology-based phylogeny (Figure 3-2) is not considered. No molecular phylogeny indicate d the infra-generic geographical pattern of Ampelopsis and Parthenocissus Interestingly, within Ampelocissus, the four species from Central America are sister to the species from As ia, Malesia, and Africa (Figure 3-2). The sister position of Central American A. javalensis to other Ampelocissus is well-supported by the chloroplast sequence data (Soejima and Wen, 20 06). The fossils indicate the presence of Ampelocissus Vitis Ampelopsis and Parthenocissus in the Early Eocene of Europe (Table 3-16) and the early Middle Eocene of North Am erica (Table 3-18) (Figure 3-2). Vitis and Ampelopsis are also present in the Early Eocene of Siberia (Table 3-17) (Figure 3-2). These fossil species may have favored the warm Eocene climate and co-e xisted in the same forests, as their remains are frequently recovered together in the same fossil localities. Vitis Ampelopsis and Parthenocissus later adapted to the cooling in la te Tertiary (Zachos et al., 2001). Ampelocissus

PAGE 188

188 possibly did not evolve the tolera nce to cold, as implied from the disappearance of its fossils in Europe since Late Miocene, when temperatures became cooler (Table 3-16). The more distant relationship of extant Central American/Mexican Ampelocissus to other Ampelocissus from Asia and Africa may be explained by this scenario: the South American Eocene Ampelocissus fossil may be more closely related to the North American Paleocene and Early Eocene Ampelocissus indicating a wider di stribution range of Ampelocissus in the New World in the Early Tertiary. These Ampelocissus species failed to pers ist or diversify in America, but might have been ancestral to the four species surviving in Central American today. Ancient European Ampelocissus spread to Africa and southern Asia and diversified. A higher speciation rate is associated w ith warm temperatures (Francis and Currie, 2003; Currie et al., 2004), plus other biotic a nd abiotic variations in the environmnets, the differences between the American and African/Asian Ampelocissus gradually accumulated to a level that is more readily detected in modern species. Vitis Ampelopsis and Parthenocissus probably experienced similar climate variation though time in the North Hemisphere in the Tertiar y, and it is likely that a certain degree of intercontinental exchange remained, since 1) th e small sized berries/seeds can be dispersed by traveling animals such as birds; 2) Beringia c onnected Asia and North Am erica through much of the Tertiary, the North Atlantic Land Bridge did not separate till the Late Eocene, and the retreat of Turgai sea in the Early Oli gocene removed the barrier between Asia and Europe (Tiffney and Manchester, 2001). This may explain why little infr ageneric variation can be detected from the taxa distributed in separate continents today. The later glacial activities destroyed the wild grapes in Europe and hence left a Nort h American-Asian disjunction pattern for Vitis, Ampelopsis and Parthenocissus Alternatively, the glacial activ ities could have brought a total

PAGE 189

189 extirpations of Vitaceae in th e northern regions, and the cu rrent North American-Asian disjunction pattern would then be due to the post glacial inte rcontinental re-dispersals from southern refugia. The past di versity in Europe, however, has not recovered since the ice age. Clematicissus, "Austrocissus", and Rhoicissus These species are possibly sequentially sist er to the monophyletic oval chalazal lineage (Figure 3-1) but this relationshi p is not well supported. Neverthe less, the suggested pattern that the species immediately sister to the oval chalazal clade are all distributed in the south (Figure 32) is intriguing. Their mixed morphology may repres ent the characters of the stem lineage of the oval chalaza clade. Fossil seeds were not linked to these taxa, nevertheless, a twig from the Early Eocene of London Clay was reported to have similar wood anatomy to that of Rhoicissus (Poole and Wilkinson, 2000). The oldest known fo ssils of the oval chalaza clade are from the Paleocene, suggesting a divergence time in or earlier than Paleocene for these southern species. One scenario is that once there was a worldwid e distributed oval chalaza clade, which later became more adapted to the temperate environments except Ampelocissus. Parthenocissus, Ampelopsis and Vitis diversified in the northern continents Representatives in the southern continents also adapted the temperate climate in the southern regions in the Tertiary, and evolved to become Clematicissus Austrocissus ", or Rhoicissus. Perichalazal seeds: Cissus Cyphostemma and Leea Among the rest of the family, the tw o genera with perichalazal seeds, Cissus and Cyphostemma are large genera containing more than half of the species in the family. Cissus currently is widespread pantropically; it is hi ghly diverse in South America and Africa. Cyphostemma is mostly restricted in tropical and s ubtropical Africa, only one or two species occur in southern Asia. No fossil seeds were assigned to Cyphostemma A seed internal cast from the Eocene of Peru was recognized as Leea (Table 3-13). Seeds of Cissus were found in

PAGE 190

190 the Eocene of South America, Miocene of Ce ntral America (Table 3-13; Figure 3-2), and Miocene of Africa (Table 3-14). The perichal azal seeds were never found in the Tertiary localities in the Northern Hemisphere, where exte nsive paleontological in vestigation have been conducted since the past century. The evidence from the fossil seeds strongly suggest that Cissus Cyphostemma and Leea were confined to the southern continents thoughout the Tertiary and have not spread to the northern temperate zone s. However, the lack of the typical diagnostic characters on the seed surface of Cyphostemma and Leea could be the reason that no fossil has been identified to these genera. The confinement of fossil pe richalazal seeds in the southern continents and Central America is in sharp contrast to the northern distribution of the majority of the fossil seeds. It implies that the fossil taxa with perichalazal s eeds have long been stric tly thermophilic and had very little tolerance to the cooling of the late Tertia ry (Zachos et al., 2001), which was presumably more severe in the high altitudes. Alternatively, the northward spreading of the taxa with perichalazal seeds may be extremely unfavored by the factors related to seed dispersal. Tetrastigma and Cayratia Tetrastigma, Cayratia and Acareosperma form a clade with Cyphostemma based on morphological data (Figure 31, 3-2). The monophyly of a Tetrastigma Cayratia Cyphostemma clade is well supported by molecular data (S oejima and Wen, 2006; Wen et al., 2007). Fossil seed types stAmpelocissus -rugose and st-Ampelopsis -rugose may be interpreted as Tetrastigma and Cayratia Assuming those fossils are Tetrastigma and Cayratia then the divergence of these two genera in the Early Eocene a nd their distribution in Europe is implicated (Table 3-16; Figure 3-2). Tetrastigma may have also been distributed in Aust ralia in the Tertiary, if the fossil stTetrastigma from Australia is considered as Tetrastigma instead of "Austrocissus" Unequivocal Cayratia fossils with stCayratia seed type appeared in the Mi ocene of Europe and the Late

PAGE 191

191 Oligocene/Early Miocene of Siberi a, indicating that the genus form erly existed in the far north, outside its current range (Table 3-20). The genus is usually f ound in tropical and subtropical forests, however, C. japonica has a wide range of habitat and also is commonly found in temperate region in Asia. It is possible that the fossil species of Cayratia can survive in the temperate climate in the mid Tertiary of Siberia. The appearance of stCayratia fossil seeds coincide with the Late Oligocene/Early Miocene warm phase (Zachos et al., 2001); this may also explain the existence of extant tr opical elements in the more norther n regions in the mid Tertiary. The large ventral hole of stCayratia holds air if the sarcotesta is intact, so the seeds usually float. Dispersal across the Turgai sea, even before its drying out in the Early Oligocene, therefore is possible. Extant Tetrastigma shares a similar distribution as that of Cayratia but is not present in Africa. These two genera are not native in North, Central, and South America at this time, and there are no fossil seeds indicating their former presence in these regions (Figure 3-2). Assuming the taxa with perichalazal seeds, including Cyphostemma have not spread to the northern continents in the Tertiary since th eir divergence from the common ancestor, the monophyly of Cyphostemma Cayratia and Tetrastigma would implicate an origin of the equatorial/southern continents for Cayratia and Tetrastigma. The Tertiary appearance of Cayratia and possibly Tetrastigma, in Europe/Siberia then is likely the results of dispersal. Cayratia and Tetrastigma are not native in North America, but they survive in Africa, Asia, Malesia, and Australia today. Origin of the family: Timing? North? South? The oldest fossil seeds of Vitaceae are from the Paleocene, a stAmpelopsis -smooth seed from Germany (Mai, 1987), a stAmpelocissus -wide infold seed from North Dakota, North America (Chen and Manchester, 2007), and a stVitis seed from Montana, North America (Manchester, unpublished). Judging from th e structure of the phylogeny (Figure 3-2),

PAGE 192

192 Ampelocissus and Vitis are relatively recently divergent gr oups, hence the appearance of their fossils in the Paleocene implies that most gene ra in the family, and the common ancestor of Cyphostemma Cayratia Tetrastigma, and Acareosperma had diverged by the Paleocene. The splitting of Vitaceae from Leea possibly occurred prior to the Paleocene. Th e divergence time of Cayratia and Tetrastigma could be as early as Early Eocen e, based on the fossils in the London Clay. Early Eocene Vitaceae representatives in Europe have a composition similar to the extant representatives in southern Asia, but lack taxa with perichalaza. The Early Eocene high diversity in Europe curiously coincides approximately with the Paleocene-Eocene thermal maxium. The divergence of most genera may have occurred in the Paleocene, and the intrageneric diversification may have peak ed in the Early Eocene. The currently held view that Vitaceae are sist er to Rosids suggests that they diverged long prior to the earliest known Vitaceae fossils (Wang et al., 2009). Given the readily preserved nature of seeds of Vitaceae and Leeaceae and easily recognized diagnostic characters, the absence of Cretaceous Vitaceae is perplexing. Perhaps the early hi story of the lineage occurred in areas less likely to be preserved (e.g., arid climate) or in areas where Cretaceous age sediments are not available or not yet studied. Leea have relatively few fossil records compared to Vitaceae. Only one seed from the Eocene of Peru may be assigned to Leea Fossil woods with affinity to Leea have been reported from Deccan Intertrappean Beds, India, with uncerta in age of Late Cretaceous or Early Tertiary (Prakash and Dayal, 1964), Miocene of Japan (W atari, 1951), and Neogene of Java (Kramer, 1974). However, woods of extant Rhoicissus and Leea are similar (Wheeler and Lapasha, 1994), casting doubt on the generic identity of these fossil woods. Lacking fossils of Leea Cyphostemma and Cissus the earlier divergent groups of the family, in the northern continents

PAGE 193

193 may appear to favor the theory th at Vitaceae originated from the tropical equatorial or southern lands. The taxa with perichalazal seeds persisted in the tropics, while others spread in the warm Early Eocene of Europe, North America, and Nort h Siberia; later only cold-tolerant species survived in the now temperate regions. Howeve r, the earliest unequivocal presence of fossil perichalazal seeds is in the Eocene, some 10 milli on years after the divergence of most genera in the Paleocene. This leaves room for the theory that the family diversified in the warm Paleocene of northern landmasses, likely southern Europe/Asia, since the diversity of seed types is high in the Early Eocene of Europe. Some species spr ead across the Tethys s eaway, including those with perichalazal seeds, Rhoicissus, "Austrocissus" and possibly also Ampelocissus (as evidenced by the fossil in Eocene of Peru). Sp ecies of perichalazal s eeds became rare in the northern continents but remained in the southern continents in the Tertia ry. Fossil seeds do not strongly hint at the area of origi n, nevertheless, they strongly s uggest the earlier divergent groups occurred in tropical environments. Genetic properties, and dispersal-/climate-related factors have restricted the taxa with perichalazal seed s to tropical and southern regions since Eocene untill today. Adaptation, ecology, and biogeography The most obvious novel attribute of Vitaceae is the climbing habit. The divergence of Vitaceae involved the transition to a viny habit, possibly initiated by the competition for light in thick forests. Some species of Cyphostemma have an erect habit and the same kind of terminal inflorescences as those of Leea showing that the extant members of Vitaceae can possess some of the defining characters of Leea Very likely the viny habit did not become dominant in Vitaceae right after the divergen ce of the family. The rapid rise of angiosperm-dominated forests (Wang et al., 2009) may have placed hea vy selection for the clim bing growth form. The evolution of climbing in Vitaceae is associated with the formation of multiple leaf-opposed

PAGE 194

194 inflorescences at one branch, a nd the modification of inflorescen ces to tendrils (Chapter 2). Forming multiple inflorescences in one branch provides additional benefit that many flowers can be produced in a short time, favoring pollination, and an ample supply of berries enhances the chance of biotic dispersal. Presumably, lig nified tissue and pere nnial growth provided mechanical support while plants spreading a nd reaching the tree top. Although extant lianous species had already evolved a suite of stem anatom ical characters that st rictly associate them with forest habitat, at their initial diverg ence the climbing species may have retained the plasticity of surviving in a wi de ranges of environments. This may explain the relatively widespread distribution and dive rsity of Vitaceae compared to Leea Berry/Seed shapes and size may effect their dispersal. Presumably, frugivorous birds, bats, or mammals may eat the berries of wild gr apes. Nevertheless, the frugivores may select against some properties of the be rries/seeds. The abundance, hab it, spatial scale of forage and the gut passage rate of the frugivores also de termines the success of the dispersals (Moran, Catterall, and Kanowski, 2009). Some seeds may be better dispersed though water than others, such as stCayratia These factors possibly contributed to the biogeography of Vitaceae. However, little is known about which factors ar e pivotal and how they are related to the phylogeny. The seed-related synapomorphies of major groups, such as chalaza shape, endotesta sclereids shape and exotegmic tracheidal cell di ameter, are not obviously associated with a particular function. Seed coat anatomy may be correlated with its mechanical properties and therefore effect the func tion of seed storage or germination, wh ich is related to the establishment in the new environment after a successful di spersal (Moran, Catterall, and Kanowski, 2009). These hypotheses should be tested experimentally.

PAGE 195

195 The plants' interaction with pollinators may be one of the restrictive factors for the distribution range of a species. Variation in nectarous disc morphology exists in Vitaceae, however, its correlation to pollination syndromes is not known. Flowers of Vitis with small floral disk which produce very lit tle nectar, were visited by insect s such as beetles, Halyctids, honeybees, and Syrphids (Brantie s, 1978). Some species of Vitis were reported to be pollinated by wind (Kevan, Longair, and Ga dawski, 1985). Flowers of Ampelopsis which produce large amount of nectar held by a dish-shaped floral disk, are frequently visited by small flies and wasps (field observation). Leea with an elongate floral disc shaped like long tube, was reported to be pollinated by bees, wasps, syrphid flies (Molina, Green, and Struwe, 2006). There is no obvious correlation between floral morphology and pollination. Floral disc and carpel morphology more or less s upport the monophyly of genus Ampelocissus, Parthenocissus, and Cyphostemma but not to the higher level groupings within the family. Succulence occurs in some Cyphostemma Cayratia Tetrastigma, and Cissus This physical property is usually linke d to crassulacean acid metabolis m, which occurs in many plant families including a wide range of growth forms for adaptation to drought (Dodd et al., 2002). The morphology-based phylogeny does not suggest a common origin of succulence in this family (Chapter 2). Hairs usually are associated with defense against he rbivory, or retaining the microclimate of leaf surface. Arachnoid hairs are usually present in Vitis and Ampelocissus and malpighian hairs are common in hairy Cissus "Austrocissus" and Rhoicissus. Whether different hair types are specialized fo r different functions is unknown. Conclusion Based on the fossil records and the mor phological phylogeny, the biogeographic history of Vitaceae can be hypothesized. The earlier divergent groups, Cyphostemma Tetrastigma Cayratia and Cissus are now diverse in warm climate regi ons. The fossil records imply that the

PAGE 196

196 stem lineages of Cissus favored a warm environment. Cyphostemma diversified in and is mainly confined to Africa nowadays, while Cayratia and Tetrastigma are now mostly confined to southern Asia and Malesia. Some stem group Cayratia were less constrained by temperature and spread as far north as Siberia in the Late Oligocene or the Early Miocene. Cissus likely attained its pantropical distribution during the Tertiary, since its fossils are found in th e Tertiary of South America, Central America, and Africa. The phylogenetic positions of Rhoicissus "Austrocissus" and Clematicissus are still uncertain; nevertheless, the suggested sister positions of these southern species to other members of the oval chalaza clade implies a worldwide spread of the stem lineage of the oval chalazal clade in ancient time. Members of the oval chalazal clade were highly diversified in the Early Eocene of Europe and the Eocene of North America, as indicated by fossil seeds. Fossil seeds also indicate the presence of Vitis and Ampelopsis in the Early Eocene of Siberia. Very likely Parthenocissus Ampelopsis, Vitis and Ampelocissus occupied Europe, Asia, and North America throu ghout the Tertiary, until la ter the climate change extinguished a great num ber of them, leaving Parthenocissus, Ampelopsis and Vitis with a North American-Asian disjunction pattern. Ampelocissus had a different fate; this lineage retained the thermophilic nature and became widespread in Af rica, southern Asia, and Malesia. However, the ancient species in North and South America di d not persist or divers ify and now just four species remain in Central America. Since ther e are scanty vitaceous fossils from the warmer regions, the details of the establishment of Cayratia Tetrastigma and Ampelocissus in Africa, Madagascar, Asia, Australia are largely unknown. Nevertheless, th ese genera can be linked to the Tertiary fossil seeds in Europe and Asia, s uggesting an Eurasian origin for these extant species.

PAGE 197

197 Assigning fossil seeds to extant genera implies the morphology of a lineage remained unchanged though many generations un till present time. This seeming morphological stasis may not be true. Seeds of fossil taxa may be comparab le to those of extant taxa, nevertheless there is chance that the other morphological characters of the fossil taxa we re different from those of the corresponding extant taxa. Seeds of Yua are either similar to Ampelocissus or Ampelopsis (Chapter 1), nevertheless, flowers of Yua are same as those of Parthenocissus (Chapter 2), and the monophyly of Yua and Parthenocissus is supported by both mor phological (Chapter 2) and molecular data (Soejima and Wen, 2006; Wen et al., 2007). This incongruence of organ morphology in a monophyletic group leads to the sp eculation that species with mixed characters of extant genera may have existed in the past The genera in the ova l chalazal clade may not have been well differentiated from each other in early Tertiary. The fossil seeds suggests that Parthenocissus, Ampelopsis and Vitis have co-occurred in the same forests in North Hemisphere since the Eocene. Is it possible that Parthenocissus, Ampelopsis and Vitis were not as well separated in the Tertiary as they ar e today? Or is it more likely that they were as distinct as they are now, and they co-existed in the same fore sts remaining unchanged for 55 million years? If the former case is true, then what made them b ecome morphologically distin ct through time? Is it possible that the stem lineages of these three genera simultaneous ly evolved to the same three morphologically distinct groups ( Parthenocissus, Ampelopsis and Vitis) in different regions (Europe, Asia, and North America)? This case here only represents one of many unresolved enigmas about evolution and biogeography of Vit aceae. Missing data of the fossils cannot be ignored; multiple lines of evidence have to be considered when discussing biogeography. The phylogeny can greatly influence both the assignment of fossil affinities and the interpretation of the biogeographical history. However, the infrafamilial relationships of

PAGE 198

198 Vitaceae are not full resolved (Chapter 2), especially the positions of Rhoicissus, Clematicissus, and Austrocissus ". Biogeography of Vitaceae should be reviewed again as more evidences of the relationships within the family become available.

PAGE 199

Table 3-1. Fossils classified as seed type stAmpelocissus-wide infolds. Column "Group" refers to the groups indicated in Table 3-15.C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous. Fossil AgeRegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57Group Ampelocissus parvisemina Chen & Manchester PaleoceneNorth AmericaBullion Creek Formation, ND, US Chen and Manchester, 2007 Fig. 8aapex embedded in rock < 1.4> 0.5ambig> 60> 0.2> 0.6< 25< 0.2a4 Vitis excavata ChandlerEarly EoceneEuropeDorset Pipe Clays, England Chandler, 1962Plate 15, Fig. 29-30 one side broken< 1.4> 0.5< 0.1ambig> 0.2ambig< 25< 0.2a1 Ampelocissus auriforma Manchester Early Middle Eocene North AmericaClarno Formation, OR, US Chen and Manchester, 2007 Fig. 8e < 1.4> 0.5> 0.1> 60> 0.2> 0.6< 25< 0.2a3 Ampelocissus parvisemina Chen & Manchester Early Middle Eocene North AmericaClarno Formation, OR, US Chen and Manchester, 2007 Fig. 8b < 1.4> 0.5< 0.1> 60> 0.2> 0.6< 25< 0.2a1 Ampelocissus bravoi BerryEoceneSouth AmericaBelen, PeruChen and Manchester, 2007 Fig. 8hinternal cast< 1.4> 0.5> 0.1> 60> 0.2> 0.6< 25ambiga2

PAGE 200

Fossil AgeRegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57GroupComment ? Tetrastigma lobata ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962 Plate 15, Fig. 35-38s< 1.4> 0.5> 0.1> 60< 0.2ambig< 25> 0.2a6 Tetrastigma ? elliotti ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961b Plate 25, Fig. 28-29s< 1.4> 0.5> 0.1> 60< 0.2ambigambigambiga8 Tetrastigma corrugata ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961b Plate 25, Fig. 24-25sinternal cast < 1.4> 0.5> 0.1ambig< 0.2ambigambig> 0.2a7sharp apical notch Tetrastigma davisi ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961b Plate 25, Fig. 22-23s< 1.4> 0.5> 0.1ambig< 0.2ambig< 25> 0.2a6sharp apical notch Tetrastigma globosa Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chander, 1933 Plate 19, Fig. 6-8sinternal cast < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig> 0.2a10 Tetrastigma sheppeyensis ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961b Plate 25, Fig. 26-27sinternal cast < 1.4> 0.5> 0.1ambig< 0.2ambigambig> 0.2a7sharp apical notch Paleovitis paradoxa Reid & Chandler Early EoceneEuropeParis Basin, FranceBlanc-Louvel, 1986 Plate 1, Fig. 2-7; Plate 2, Fi g 1-9sinternal cast < 1.4> 0.5> 0.1> 60< 0.2ambig< 25ambiga5 Ampelocissus cf. lobatum (Chandler) Chen & Manchester* Middle Eocene EuropeMessel, GermanyChen and Manchester, 2007 Fig. 8ms< 1.4> 0.5> 0.1> 60< 0.2ambig< 25> 0.2a6 Ampelocissus wildei Chen & Manchester Middle Eocene EuropeMessel, GermanyChen and Manchester, 2007 Fig. 8n-ps< 1.4> 0.5> 0.1> 60< 0.2ambig< 25> 0.2a6thick testa Tetrastigma lobata ChandlerLate EoceneEuropeHordle Headon Hill, England Chandler, 19251926 Plate 5, Fig. 3a-c < 1.4> 0.5> 0.1ambig< 0.2ambig< 25> 0.2a6sharp apical notch Tetrastigma lobata ChandlerLate EoceneEuropeHordle Headon Hill, England Chandler, 1961aPlate 28, Fig. 96-97 < 1.4> 0.5> 0.1> 60< 0.2ambigambig> 0.2a7 Vitis uncinata Chandler Late EoceneEuropeHordle Headon Hill, England Chandler, 19251926 Plate 5, Fig. 4a-b; text-fig. 14 < 1.4> 0.5> 0.1ambig< 0.2ambig< 25> 0.2a6sharp apical notch Tetrastigma cf. lobata ChandlerEarly Miocene EuropeKflach-Voitsberg, Austria Meller, 1998Plate 20, Fig. 4 < 1.4> 0.5> 0.1ambig< 0.2> 0.6< 25> 0.2a9sharp apical notch Tetrastigma chandleri KirchheimerEarly Miocene EuropeTurw, Poland Czeczott and Skirgiello, 1959 Plate 18, Fig. 2-4 < 1.4> 0.5> 0.1ambig< 0.2> 0.6< 25> 0.2a9sharp apical notch Ampelocissus chandleri (Kirchheimer) Chen & Manchester* Early Miocene EuropeWiesa, GermanyChen and Manchester, 2007 Fig. 8ls< 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25> 0.2a9 Tetrastigma chandleri KirchheimerEarly Miocene EuropeWiesa, GermanyKirchheimer, 1938Fig. 17-18 < 1.4> 0.5> 0.1ambig< 0.2> 0.6< 25> 0.2a9sharp apical notch Tetrastigma chandleri KirchheimerEarly/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003Plate 13, Fig. 1 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25> 0.2a9 Tetrastigma lobatum ChandlerMiddle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001Plate 29, Fig. 7-8 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25> 0.2a6 Tetrastigma lobata ChandlerMiddle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 7-8 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25> 0.2a6 Tetrastigma japonica MikiPlioceneAsiaSika, Japan Miki, 1956Fig. 6 A-D, Plate IK < 1.4> 0.5> 0.1> 60< 0.2ambigambig> 0.2a7 Tetrastigma tazimiensis MikiPlioceneAsiaSimoiguta, JapanMiki, 1956Fig. 6E, Plate I < 1.4> 0.5> 0.1> 60< 0.2ambigambig> 0.2a7*Ampelocissus cf. lobatum (Chandler) Chen & Manchester basionym = Tetrastigma lobata Chandler; Ampelocissus chandleri (Kirchheimer) Chen & Manchester basionym = Tetrastigma chandleri Kirchheimer; sspecimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.Table 3-2. Fossils classified as seed type stAmpelocissus -rugose. Column "Group" refers to the groups indicated in Table 3-15.

PAGE 201

Fossil Age RegionLocality ReferencesFigures C21C18C22C5C35C9C15C24C57GroupComment Vitis venablesi ChandlerPaleoceneEuropeGonna, GermanyMai, 1987Plate 17, Fig< 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Vitis ambigua ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 27-28< 1.4> 0.5< 0.1> 60< 0.2ambigambig< 0.2a15 Vitis poolensis ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 16-19< 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Vitis pygmaea ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 14, Fig. 5-31< 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Ampelopsis monasteriensis Kirchheimer* Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig 31s< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis rotundata Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig. 1117s< 1.4> 0.5< 0.1> 60< 0.2ambig> 25< 0.2a13 Vitis subglobosa Reid & Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 24, Fig. 14-17< 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Vitis venablesi ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 24, Fig. 31-32< 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Ampelopsis sp. 3 Early EoceneSiberiaBartonskih sediment o n Tym river, Russia Nikitin, 2006Plate 11, Fig. 36-39< 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Ampelopsis rooseae ManchesterEarly Middle Eocene North America Clarno Formation, OR,US Manchester, 1994 Plate 44, Fig. 8-9s< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis rotundata ChandlerLate EoceneEuropeHordle Headon Hill, England Chandler, 1925-6Plate 5, Fig. 5a-c< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Parthenocissus boveyana Chandler OligoceneEuropeThe Bovey Tracey lignite, England Chandler, 1957Plate 15, Fig 125 < 1.4> 0.5< 0.1> 60< 0.2ambig> 25< 0.2a13 Vitis hookeri Heer OligoceneEuropeThe Bovey Tracey lignite, England Chandler, 1957Plate 15, Fig 127 < 1.4> 0.5< 0.1> 60< 0.2ambig> 25< 0.2a13 Ampelopsis pedunculata Dorofeev OligoceneSiberiaTougan, Russia Dorofeev, 1963Plate 37, Fig. 6-8< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis rotundata ChandlerOligocene Miocene Siberia10 sites in West Siberia Russia Nikitin, 2006Plate 11, Fig. 21-26< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis cf. rotundata Chandler Early Miocene EuropeKflach-Voitsberg, Austria Meller, 1998Plate 20, Fig. 3< 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Ampelopsis rotundata ChandlerEarly Miocene EuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 7, Fig.3-7< 1.4> 0.5< 0.1> 60< 0.2ambigambig< 0.2a15 Vitis globosa Mai Early Miocene EuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 8, Fig. 1< 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Ampelopsis sp. Early Miocene EuropeTurw, Poland Czeczott and Skirgiello, 1959 Plate 19, Fig. 1-3< 1.4> 0.5< 0.1> 60< 0.2ambig< 25< 0.2a12 Ampelopsis rotundata ChandlerEarly Miocene EuropeZittau Basin, CzechTeodoridis, 2003Plate 7, Fig. 5-6< 1.4> 0.5< 0.1> 60< 0.2ambig> 25< 0.2a13 Ampelopsis cf. aegirophylla (Bge.) Planch. Early Miocene SiberiaYekaterininskoye, RussiaDorofeev, 1963Plate 37, Fig. 1-2< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis tertiaria P. Dorof. ex V. P. Nikitin Early Miocene SiberiaYekaterininskoye, RussiaNikitin, 2006Plate 11, Fig. 27-29< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13Table 3-3. Fossils classified as seed type stAmpelopsis-smooth. Column "Group" refers to the groups indicated in Table 3-15.

PAGE 202

Ampelopsis rotundatoides Dorofeev Early Miocene? SiberiaKozyulino, RussiaDorofeev, 1963Plate 37, Fig. 9-12< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis rotundata ChandlerEarly/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003Plate 12, Fig. 12< 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Ampelopsis rotundata ChandlerEarly/Middle Miocene EuropeLettengraben, GermanyMai, 2006Plate 5, Fig. 2-4< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Ampelopsis malvaeformis (Schlotheim) Mai Middle Miocene EuropeSalzhausen, Vogelsberg, Germany Mai and Gregor, 1982 Plate 21, Fig. 2-3< 1.4> 0.5< 0.1> 60< 0.2ambig> 25< 0.2a13 Ampelopsis tertiaria DorofeevMiddle Miocene EuropeSalzhausen, Vogelsberg, Germany Mai and Gregor, 1982 Plate 21, Fig. 4-8< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Vitis teutonica A. BraunMiddle Miocene EuropeSalzhausen, Vogelsberg, Germany Kirchheimer, 1938 Fig. 1 < 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Ampelopsis macrosperma Dorofeev Middle Miocene? SiberiaIrtysh, Russia Dorofeev, 1963Plate 37, Fig. 16-21< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13large seed, big chalaza Vitis teutonica A. BraunMioceneEuropeMarkvartice and Veseliko, Czech Bek, Holy, and Kvacek, 1976 Plate 7, Fig. text-Fig. 6 < 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Ampelopsis brevipedunculata Trautn. PlioceneAsiaSimosibutani, JapanMiki, 1956Fig. 2B-L, Plate H< 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25< 0.2a13 Vitis cf. silverstris GmelinPlioceneEuropeReuver, NetherlandsKirchheimer, 1938 Fig. 11 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14 Vitis cf. silverstris GmelinPlioceneEuropeSwalmen, NetherlandsKirchheimer, 1938 Fig. 12 < 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2a11 Vitis cf. silverstris GmelinPlioceneEuropeTegelen, NetherlandsKirchheimer, 1938 Fig. 14 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig< 0.2a14*Basionym = Ampelopsis rotundata Reid & Chandler; s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absen t; ambig = ambigous.Fossil Age RegionLocality ReferencesFigures C21C18C22C5C35C9C15C24C57GroupCommentTable 3-3. Continued.

PAGE 203

Fossil AgeRegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57Group Vitis goodharti ChandlerEarly EoceneEuropeDorset Pipe Clays, England Chandler, 1962Plate 14, Fig. 32-44 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambigambiga18 Ampelopsis crenulata Reid & Chandler Early EoceneEuropeLondon Clay, England Chandler, 1978Plate 6, Fig. 13-16 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig> 0.2a19 Ampelopsis crenulata Reid & Chandler Early EoceneEuropeLondon Clay, England Reid and Chandler, 1933 Plate 19, Fig. 11-12sinternal cast < 1.4> 0.5< 0.1> 60< 0.2ambig< 25> 0.2a16 Ampelopsis turneri Reid & Chandler Early EoceneEuropeLondon Clay, England Chandler, 1961bPlate 25, Fig. 32-33 < 1.4> 0.5< 0.1> 60< 0.2< 0.6> 25ambiga22 Tetrastigma sheppeyensis Chandler Early EoceneEuropeLondon Clay, England Chandler, 1978 Plate 6, Fig. 19-20s< 1.4> 0.5ambig> 60< 0.2< 0.6ambig> 0.2a20 Ampelopsis cf. malvaeformis (Schlotheim) Mai Early Miocene EuropeKflach-Voitsberg, Austria Meller, 1998Plate 20, Fig. 8-10; Plate 21, Fig. 2-3 < 1.4> 0.5< 0.1> 60< 0.2< 0.6< 25ambiga21 Ampelopsis ludwigii (A. Braun) Dorofeev Early Miocene EuropeZittau Basin, CzechTeodoridis, 2003Plate 6, Fig. 13, Plate 7, Fig. 1-2 < 1.4> 0.5< 0.1> 60< 0.2ambig> 25ambiga23 Ampelopsis ludwigii (A. Braun) Dorofeev Early/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003Plate 12, Fig. 10-11 < 1.4> 0.5< 0.1> 60ambig< 0.6< 25> 0.2a17 Ampelopsis malvaeformis (Schlotheim) Mai Early/Middle Miocene EuropeLettengraben, Germany Mai, 2006Plate 5, Fig. 1; Plate 6. Fig. 11-13 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambigambiga18 Ampelopsis cf. ludwigii (A. Braun) Dorofeev MioceneEuropeMarkvartice and Veseliko, Czech Bek, Holy, and Kvacek, 1976 Plate 8, Fig. 6-8, textFig. 7 < 1.4> 0.5< 0.1> 60< 0.2ambig> 25ambiga23 Cayratia orbitalis MikiPlioceneAsiaItinohora, JapanMiki, 1956Fig. 3F-H, Plate E < 1.4> 0.5< 0.1> 60ambig< 0.6< 25> 0.2a17 Ampelopsis leeoides Planch.PlioceneAsiaSimosibutani, JapanMiki, 1956Fig. 3B-E, Fig. 7B < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig> 0.2a19 Cayratia japonica (Thunb.) Gagn. PlioceneAsiaYono, JapanMiki, 1956Fig. 3L-M, Plate D < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig> 0.2a19 Vitis ludwigii A. BraunPlioceneEuropeKrocienko, PolandKirchheimer, 1938 Fig. 16 < 1.4> 0.5ambig> 60< 0.2< 0.6ambig> 0.2a20 Vitis ludwigii A. BraunPlioceneEuropeWetterau, GermanyKirchheimer, 1938 Fig. 15 < 1.4> 0.5< 0.1> 60< 0.2< 0.6ambig> 0.2a19Table 3-4. Fossils classified as stAmpelopsis-rugose. Column "Group" refers to the groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.Fossil AgeRegionLocalityCountryReferencesFigures Condition C32C33C48Group Ampelocissus similkameenensis Cevallos-Ferriz & Stockey Middle Eocene North America Princeton chert CanadaCevallos-Ferriz and Stockey, 1990 Fig.1-9transverse section < 0.8> 0.72> 124 type 1 seed Middle Eocene North America Princeton chert CanadaCevallos-Ferriz and Stockey, 1990 Fig. 14-17transverse section < 0.8> 0.72> 124Table 3-5. Fossils classified as seed type stAmpelopsis-xs. Column "Group" refers to the groups indicated in Table 3-15.C32 = ventral infold thin part ratio; C33 = ventral infold thin part circularity; C48 = number of endotesta sclereid layers.

PAGE 204

Fossil Age RegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57GroupComment Vitis glabra Chandler Early EoceneEuropeDorset Pipe Clay, EnglandChandler, 1962Plate 14, Fi g 49-53 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis bilobata ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 24, Fig. 22-24 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis obovoidea ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 24, Fig. 25-26 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis platyformis ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 24, Fig. 33-34 < 1.4> 0.5> 0.1ambig< 0.2< 0.6ambig< 0.2a28 Vitis rectisulcata ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1978Plate 6, Fig. 9-10 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis subglobosa Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 18, Fi g 34-37s< 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 ? Vitis rectisulcata ChandlerEarly EoceneEuropeOldhaven Beds, EnglandChandler, 1964Plate 2, Fig. 7-8 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Parthenocissus monasteriensis (Reid & Chandler) Scott Early EoceneEuropeParis Basin, FranceBlanc-Louvel, 1986 Plate 3, Fig. 5-6sinternal cast < 1.4> 0.5> 0.1ambig< 0.2ambig< 25< 0.2a28 Vitis obovoidea ChandlerEarly EoceneEuropeParis Basin, FranceBlanc-Louvel, 1986 Plate 3, Fig. 1-4sinternal cast < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis pygmaea ChandlerEarly EoceneEuropeParis Basin, FranceBlanc-Louvel, 1986 Plate 3, Fig. 7-11s internal cast < 1.4> 0.5> 0.1> 60< 0.2ambigambig< 0.2a26 Vitis aff. rectisulcata ChandlerEarly EoceneEuropeTienen Formation, Belgium Fairon-Demaret and Smith, 2002 Plate 1, Fig. 6-7 internal cast < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis sp. 1 Early EoceneNorth America Fisher/Sullivan site, VA, US Tiffney, 1999Plate 2, Fig. 9-10 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis sp. 2 Early EoceneNorth America Fisher/Sullivan site, VA, US Tiffney, 1999Plate 2, Fig. 11-12 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Ampelocissites lytlensis BerryEarly EoceneNorth America Wilcox, TX, US Chen and Manchester, 2007 Fig. 10s< 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Ampelocissus scottii ManchesterEarly Middle Eocene North America Clarno Formation, OR, US Manchester, 1994Plate 44, Fi g 11-12s< 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25ambiga25dorsiventrally compressed Ampelocissus scottii ManchesterEarly Middle Eocene North America Clarno Formation, OR, US Manchester, 1994Plate 44, Fi g 13-15sinternal cast < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis tiffneyi ManchesterEarly Middle Eocene North America Clarno Formation, OR, US Manchester, 1994Plate 44, Fi g 3s< 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis sp. Middle EoceneEuropeMessel, Germany Manchester, unpublished Me 4025s< 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis sp. Early OligoceneEuropeQuercy, FranceDe Franceschi et al., 2006 Fig. 4as< 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Parthenocissus eoquinquefolia Tiffney & Barghoorn MioceneNorth America The Brandon Lignite, VT, US Tiffney and Barghoorn, 1976 Plate 2, Fig. K < 1.4> 0.5> 0.1> 60< 0.2< 0.6> 25< 0.2a29 Vitis eolabrusca Tiffney & Barghoorn MioceneNorth America The Brandon Lignite, VT, US Tiffney and Barghoorn, 1976 Plate 2, Fig. A, C < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis rostrata Tiffney & Barghoorn MioceneNorth America The Brandon Lignite, VT, US Tiffney and Barghoorn, 1976 Plate 2, Fig. I < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis cf. cordifolia Michx.Late Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 38, Fig. 19-20 < 1.4> 0.5> 0.1> 60< 0.2< 0.6ambig< 0.2a28Table 3-6. Fossils classified as seed type stVitis Column "Group" refers to the groups indicated in Table 3-15.scf. Vitis PaleoceneNorth America Union Fort Formation, MT, US Manchester, unpublished partially broken < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27

PAGE 205

Vitis sp. 1 Late Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 38, Fig. 23-26 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis sp. 2 Late Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 39, Fig. 3-6 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis sp. 3 Late Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 39, Fig. 1-2 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis lusatica Czeczott & Skirgiello Early MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 7, Fig. 8-9 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis teutonica A. BraunEarly MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 7, Fig. 15-18 < 1.4> 0.5> 0.1> 60< 0.2ambigambig< 0.2a26 Vitis lusatica Czeczott & Skirgiello Early MioceneEuropeTurw, Poland Czeczott and Skirgiello, 1959 Plate 17, Fig. 4-12 < 1.4> 0.5> 0.1ambig< 0.2< 0.6< 25ambiga25 Vitis cf. teutonica A. BraunEarly MioceneEuropeZittau Basin, CzechTeodoridis, 2003Plate 5, Fig. 22 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis tomskiana P. Dorof. ex V. P. Nikitin Early Miocene?SiberiaKozyulino, Russia Nikitin, 2006Plate 13, Fig. 11-12 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis lusatica Czeczott & Skirgiello Early/Middle Miocene EuropeLettengraben, GermanyMai, 2006Plate 5, fig. 9-11 < 1.4> 0.5> 0.1ambig< 0.2< 0.6< 25< 0.2a27 Vitis teutonica A. BraunEarly/Middle Miocene EuropeLettengraben, GermanyMai, 2006Plate 5, Fig. 12-15 < 1.4> 0.5> 0.1> 60< 0.2ambigambig< 0.2a26 Vitis lusatica Czeczott & Skirgiello Middle/Late Miocene EuropeMeuroer/Rauno sequences, Lusatia, Germany Mai, 2001Plate 27, Fig. 9 < 1.4> 0.5> 0.1> 60< 0.2< 0.6> 25< 0.2a29 Vitis palaeomuscadinia MaiMiddle/Late Miocene EuropeMeuroer/Rauno sequences, Lusatia, Germany Mai, 2001Plate 27, Fig. 10 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis parasilvestris KirchheimerMiddle/Late Miocene EuropeMeuroer/Rauno sequences, Lusatia, Germany Mai, 2001Plate 27, Fig. 11-12 < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Vitis silvestris Gmel. foss.Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 15-17 < 1.4> 0.5> 0.1ambig< 0.2< 0.6< 25< 0.2a27 Vitis teutonica A. BraunMiddle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, F ig. 21-22 < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis cf. silvestris GmelinMioceneEuropeKlettwitz, Senftenberg, Germany Kirchheimer, 1938 Fig. 6< 1.4> 0.5> 0.1> 60< 0.2ambigambig< 0.2a26 Vitis rotundata MikiPlioceneAsiaHanataka, JapanMiki, 1956Fig. 13A-J, Plate B < 1.4> 0.5> 0.1> 60< 0.2ambig< 25< 0.2a28 Cayratia megasperma (Miki) Miki PlioceneAsiaOsusawa, Japan Miki, 1956Fig. 4, Plate F-G < 1.4> 0.5> 0.1> 60< 0.2< 0.6ambig< 0.2a28 Vitis labruscoidea MikiPlioceneAsiaOsusawa, Japan Miki, 1956Fig. 12A-D, Plate A < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis thunbergii S. et Z.PlioceneAsiaSimosibutani, JapanMiki, 1956Fig. 15E-Q, Plate M < 1.4> 0.5> 0.1> 60< 0.2< 0.6< 25< 0.2a27 Vitis cf. silverstris GmelinPlioceneEuropeBrunssum, NetherlandsKirchheimer, 1938 Fig. 10 < 1.4> 0.5> 0.1ambig< 0.2< 0.6< 25< 0.2a27 Vitis cf. silverstris GmelinPlioceneEuropeKrocienko, Poland Kirchheimer, 1938 Fig. 9 < 1.4> 0.5> 0.1> 60< 0.2< 0.6> 25< 0.2a29 Fossil Age RegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57GroupCommentTable 3-6. Continued.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

PAGE 206

Fossil AgeRegionLocality ReferencesFigures/ specimens Condition C21C18C22C5C35C9C15C24C57GroupComment Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig. 20-27 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31thick endotesta Vitis minuta Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig. 3-4 < 1.4> 0.5ambig> 60< 0.2ambig< 25< 0.2a30 Ampelopsis sp. 1 Early EoceneSiberiaBartonskih sediment on Tym river, Russia Nikitin, 2006Plate 13, Fig. 30-33 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Ampelopsis sp. 2 Early EoceneSiberiaBartonskih sediment on Tym river, Russia Nikitin, 2006Plate 13, Fig. 34-35 < 1.4> 0.5ambig> 60< 0.2< 0.6ambig< 0.2a33 Vitis/Ampelopsis sp. Middle Eocene EuropeMessel, GermanyManchester, unpublished Me 4025s< 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Parthenocissus sp. 1 Middle Eocene SiberiaSCR. 1 on Tym river, Russia Nikitin, 2006Plate 13, Fig. 17-20 < 1.4> 0.5ambig> 60< 0.2ambig< 25< 0.2a30 Vitis sp. Late EoceneNorth America Blue Rim, WY, USManchester, unpublished UF30946simpression< 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Vitis br andoniana Tiffney & Barghoorn MioceneNorth America The Brandon Lignite, VT, US Tiffney and Barghoorn, 1976 Plate 2, Fig. E, G <1..4> 0.5ambig> 60< 0.2ambig< 25< 0.2a30 Vitis sp.1 MioceneSiberiaKuznetsovka, RussiaDorofeev, 1988Plate 25, Fig. 7-10 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Vitis cf. globosa MaiEarly Miocene EuropeKflach-Voitsberg, Austria Meller, 1998Plate 20, Fig. 5-7 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Ampelopsis tertiaria Dorofeev Early Miocene SiberiaYekaterininskoye, Russia Dorofeev, 1963Plate 37, Fig. 3-5 < 1.4> 0.5ambig> 60< 0.2< 0.6>25< 0.2a32 Vitis tomskiana Dorofeev Early Miocene? SiberiaKozyulino, RussiaDorofeev, 1963Plate 38, Fig. 2-12 < 1.4> 0.5ambig> 60< 0.2< 0.6ambig< 0.2a33 Vitis lusatica Czeczott & Skirgieo Early/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003Plate 13, Fig. 2 < 1.4> 0.5ambigambig< 0.2< 0.6< 25< 0.2a34 Vitis teutonica A. Braun Middle Miocene EuropeSalzhausen, Vogelsberg, Germany Kirchheimer, 1938 Fig. 2 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Vitis lusatica Czeczott & Skirgieo Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 11-13, 18, 19 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Vitis parasilvestris Kirchheimer Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 14, 20 < 1.4> 0.5ambig> 60< 0.2< 0.6< 25< 0.2a31 Vitis cf. silverstris Gmelin PlioceneEuropeWetterau, GermanyKirchheimer, 1938 Fig. 8 < 1.4> 0.5ambigambig< 0.2< 0.6< 25< 0.2a34Table 3-7. Fossils classified as seed type stVitis -Ampelopsis. Column "Group" refers to the groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous. Palaeovitis paradoxa

PAGE 207

Fossil AgeRegionLocality References Figures Condition C21C18C22C5C35C9C15C24C57Group Vitis arnensis ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 20-26 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis lakensis ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 14, Fig. 47-48 flattened dorsiventrally < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 ? Vitis arnensis ChandlerEarly EoceneEuropeLondon Clay, England Chandler, 1978Plate 6, Fig. 12 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Tetrastigma ? longisulcata Reid & Chandler Early EoceneEuropeLondon Clay, England Reid and Chandler, 1933 Plate 19, Fig. 9-10 internal cast< 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis rectisulcata ChandlerEarly EoceneEuropeLondon Clay, England Chandler, 1961bPlate 25, Fig. 16-21s< 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis semenlabruscoides Reid & Chandler Early EoceneEuropeLondon Clay, England Chandler, 1961bPlate 24, Fig. 18-21 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis macrochalaza TiffneyMioceneNorth America The Brandon Lignite, VT, US Tiffney, 1977Fig. 6 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis pseudo-rotundifolia Berry MioceneNorth America The Brandon Lignite, VT, US Tiffney, 1976Plate 1, Fig. A, C, D, F, H < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35 Vitis palaeomuscadinia MaiEarly/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003Plate 13, Fig. 3 < 1.4> 0.5> 0.1> 60< 0.2> 0.6< 25< 0.2a35Table 3-8. Fossils classified as seed type stVitis rotundifolia Column "Group" refers to groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.Fossil AgeRegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57GroupComment Vitis cuneata ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 14, Fig. 45-46 < 1.4> 0.5< 0.1< 60< 0.2> 0.6ambig< 0.2a36 Tetrastigma sheppeyensis Chandler Early EoceneEuropeLondon Clay, England Chandler, 1978Plate 6, Fig. 17-18s< 1.4> 0.5< 0.1< 60< 0.2> 0.6ambigambiga36more rugose than extant Parthenocissus Vitis elegans ChandlerEarly EoceneEuropeLondon Clay, England Chandler, 1961bPlate 24, Fig. 35-36 < 1.4> 0.5< 0.1ambig< 0.2> 0.6> 25< 0.2a36 Ampelocissus parachandleri Chen & Manchester Parthenocissus Early Middle Eocene North America Clarno Formation, OR, US Chen and Manchester, 2007 Fig. 8ksinternal cast < 1.4> 0.5ambig< 60< 0.2> 0.6> 25ambiga36chalaza deeply sunken like some Ampelocissus angustisulcata Scott Early Middle Eocene North America Clarno Formation, OR, US Manchester, 1994Plate 45, Fig. 6-7sinternal cast < 1.4> 0.5ambig< 60< 0.2> 0.6> 25ambiga36more rugose than extant Parthenocissus Vitis ludwigi A. BraunEarly Miocene EuropeTurw, PolandCzeczott and Skirgiello, 1959 Plate 17, Fig. 1-3 < 1.4> 0.5< 0.1< 60< 0.2ambigambigambiga36more rugose than extant Parthenocissus Vitis teutonica A. BraunLate MioceneEuropeNaumburg, Bober, Germany Kirchheimer, 1938Fig. 4 < 1.4> 0.5< 0.1ambig< 0.2> 0.6> 25< 0.2a36Table 3-9. Fossils classified as seed type stParthenocissus. Column "Group" refers to groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

PAGE 208

Fossil Age RegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57GroupComment Vitis symmetrica ChandlerEarly EoceneEuropeDorset Pipe Clay, EnglandChandler, 1962 Plate 15, Fig. 6-7 < 1.4> 0.5> 0.1> 60< 0.2> 0.6> 25< 0.2a38 Vitis tr iangularis ChandlerEarly EoceneEuropeDorset Pipe Clay, EnglandChandler, 1962Plate 15, Fig. 8-13 < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Cayratia ? monasteriensis Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig. 18-19 internal cast < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Parthenocissus jenkinsi Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 38-39 < 1.4> 0.5> 0.1> 60< 0.2> 0.6> 25< 0.2a38 Parthenocissus monasteriensis (Reid & Chandler) Scott Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 34-37 < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39 Vitis bilobata ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1978Plate 6, Fi g 3-4s< 1.4> 0.5ambig> 60< 0.2> 0.6ambig< 0.2a37 Vitis bracknellensis Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 1-5 testa polished < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Vitis longi sulcata (Reid & Chandler) Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 8-15 < 1.4> 0.5ambig> 60< 0.2> 0.6ambig< 0.2a37 Vitis magnisperma Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1978Plate 6, Fi g 5-6s< 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39large seed, ventral infolds closely spaced Vitis aff. longisulcata Chandler Early EoceneEuropeTienen Formation, BelgiumFairon-Demaret and Smith, 2002 Plate 1, Fig. 2-4 internal cast < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39 Parthenocissus clarnensis Manchester Early Middle Eocene North America Clarno Formation, OR, USManchester, 1994Plate 45, Fi g 3-4s< 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Vitis magnisperma Chandler Early Middle Eocene North America Clarno Formation, OR, USManchester, 1994Plate 45, Fi g 12-13s< 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39large seed, ventral infolds closely spaced Parthenocissus hordwellensis Chandler Late EoceneEuropeHordle Headon Hill, EnglandChandler, 1961aPlate 28, Fig. 90-95 < 1.4> 0.5> 0.1> 60< 0.2> 0.6> 25< 0.2a38 Parthenocissus sp. Late EoceneEuropeHordle Headon Hill, EnglandChandler, 1925-6Plate 6, Fig. 1a-c < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39 Parthenocissus britannica (Heer) Chandler Oligocene EuropeThe Bovey Tracey lignite, England Chandler, 1957Plate 15, Fig. 119-122 < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Parthenocissus obovata V. P. Nikitin Late Oligocene/Earl y Miocene SiberiaDunayevsky Yar outcrop, Russia Nikitin, 2006Plate 13, Fig. 13-16 < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39 Vitis cf. teutonica A. BraunEarly MioceneEuropeZittau Basin, CzechTeodoridis, 2003Plate 6, Fig. 12 < 1.4> 0.5ambig> 60< 0.2> 0.6ambig< 0.2a37 Parthenocissus elongata Dorofeev Early Miocene?SiberiaKozyulino, Russia Dorofeev, 1963Plate 39, Fig. 7-11 < 1.4> 0.5ambig> 60< 0.2> 0.6ambig< 0.2a37 Parthenocissus britannica (Heer) Chandler Early/Middle Miocene EuropeLettengraben, GermanyMai, 2006Plate 5, Fig. 5-8 < 1.4> 0.5> 0.1ambig< 0.2> 0.6ambig< 0.2a39 Parthenocissus langsdorfii Mai Middle MioceneEuropeSalzhausen, Vogelsberg, Germany Mai and Gregor, 1982 Plate 21, Fig. 9-13 < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39 Parthenocissus britannica (Heer) Chandler Middle/Late Miocene EuropeMeuroer/Rauno sequences, Lusatia, Germany Mai, 2001Plate 29, Fig. 4 < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Parthenocissus langsdorfii Mai Middle/Late Miocene EuropeMeuroer/Rauno sequences, Lusatia, Germany Mai, 2001Plate 29, Fig. 5-6 < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Vitis sp.2 Miocene SiberiaVolnaya summit, RussiaDorofeev, 1988Plate 25, Fig. 11-12 < 1.4> 0.5ambig> 60< 0.2> 0.6> 25< 0.2a38 Vitis brachypoda MikiPliocene AsiaTamodaira, Japan Miki, 1956Fig. 12H-I, Plate C < 1.4> 0.5> 0.1> 60< 0.2> 0.6ambig< 0.2a39Table 3-10. Fossils classified as seed type stParthenocissus clarnensis. Column "Group" refers to the groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

PAGE 209

Table 3-11. Fossils classified as seed type stCayratia. Column "Group" refers to groups indicated in Table 3-15.*Basionym = Paleocayratia jungii Gregor; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventr al infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; ambig = ambigous ; p = present.Fossil Age RegionLocality ReferencesFiguresC21C18C22C5C35C9C15C24C57Group Ampelospermum pulchellum V. P. Nikitin Late Oligocene/Early SiberiaDunayevsky Yar outcrop, Russia Nikitin, 2006 Plate 13, Fig. 40-44 < 1.4< 0.5< 0.1> 60> 0.2ambig< 25> 0.2p40 Ampelocissus jungii (Gregor) Gregor* Early MioceneEuropeKflach-Voitsberg, Austria Meller, 1998 Plate 20, Fig. 2< 1.4< 0.5< 0.1> 60> 0.2ambig< 25> 0.2p40 Paleocayratia jungii Gregor Middle MioceneEuropeHauptzwischenmittel, Germany Gregor, 1977 Plate 20, Fig. 14; text-Fig. 8 < 1.4< 0.5< 0.1ambig> 0.2ambig< 25> 0.2p40Fossil AgeRegionLocalityReferencesFiguresC21C18C22C5C35C9C15C24C57Group Cissocarpus jackesiae Rozefelds OligoceneAustraliaCapella, Queensland Rozefelds, 1988 Fig. 7A-G, Ls< 1.4< 0.5< 0.1> 60< 0.2> 0.6< 25> 0.2a41Table 3-12. Fossils classified as seed type stTetrastigma. Column "Group" refers to the groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent.Fossil AgeRegionLocality ReferencesFigures Condition C21C18C22C5C35C9C15C24C57C53Group Carpolithus olssoni BerryEoceneSouth America Belen, PeruBerry, 1929Manchester, unpublishedsinternal cast > 1.4< 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2aambig43 Cissus willardi BerryEoceneSouth America Belen, PeruBerry, 1929Manchester, unpublisheds> 1.4< 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2aa42 Cissus sp. MioceneCentral America Cucaracha Formation, Panama Carvalho et al., unpublished > 1.4< 0.5< 0.1> 60< 0.2< 0.6< 25< 0.2aa42Table 3-13. Fossils classified as seed type st-perichalaza. Column "Group" refers the groups indicated in Table 3-15.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; C53 = ventral infolds covered by edote sta; a = absent; ambig = ambigous.

PAGE 210

Fossil Age RegionLocality ReferencesFiguresCondition C21C18C22C5C35C9C15C24C57Comment Ampelopsis cf. monasteriensis Kirchheimer PaleoceneEuropeWamannsdorf, Germany Mai, 1987Plate 17, Fig. 9incomplete specimens aff. Cissocarpus jackesii Rozefelds Early EoceneAustraliaHotham heights, Australia Carpenter, 2004Fig. 77dorsal side only< 1.4< 0.5ambig> 60 Tetrastigma acuminata Chandler Early EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 39-40 surface obscure Vitis sp. Early EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 31-32 surface obscure Vitis triangularis ? ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 14-15 ventral side obscure< 1.4> 0.5< 0.1 a Vitis sp. Early EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 33-34 surface obscure Vitis platysperma ChandlerEarly EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 15, Fig. 1 5 surface obscure laterally compressed Vitis sp. Early EoceneEuropeDorset Pipe Clay, England Chandler, 1962Plate 26, Fig. 23-24 surface obscure Vitis semenlabruscoides Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig. 1 2 ventral side obscure< 1.4> 0.5> 0.1 a Vitis sp. Early EoceneEuropeLondon Clay, EnglandChandler, 1978Plate 6, Fig. 11 12 dorsal side obscure< 0.2< 0.6< 25< 0.2a Paleovitis paradoxa Reid & Chandler Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 40-44 surface obscure Vitis sp. Early EoceneEuropeLondon Clay, EnglandChandler, 1961bPlate 25, Fig. 6 7 incomplete specimens ? Vitis excavata ChandlerEarly EoceneEuropeLondon Clay, EnglandChandler, 1978Plate 6, Fig. 78 incomplete specimens > 1.4 ?< 0.5 Vitis bognorensis Reid & Chandler Early EoceneEuropeLondon Clay, EnglandReid and Chandler, 1933 Plate 19, Fig.5internal cast; dorsal side only < 1.4> 0.5> 0.1 Cf. Parthenocissus sp. Early EoceneEuropeTienen Formation, Belgium Fairon-Demaret and Smith, 2002 Plate 1, Fig. 1internal cast; dorsal side only < 1.4> 0.5> 0.1 < 0.2 Ampelocissus auriforma Manchester Middle EoceneNorth America Green River Formation, Douglas Pass, CO, US Chen and Manchester, 2007 Fig. 8jmold of ventral side > 0.2 Carpolithus vitaceus BrownMiddle EoceneNorth America Green River Formation, Kimball Creek, CO, US Brown, 1934Plate 15, Fig.10 embedded in rock; ventral side only > 0.6> 25 a type 2 seed Middle EoceneNorth America Princeton chert, CanadaCevallos-Ferriz and Stockey, 1990 Fig. 18transverse section; incomplete Vitis sp. Late EoceneEuropeHighcliffe, EnglandChandler, 1963Plate 16, Fig. 24-27 incomplete specimens Vitis sp. Late EoceneEuropeHighcliffe, EnglandChandler, 1963Plate 16, Fig. 18-19 ventral side obscure Vitis sp. Late EoceneEuropeHighcliffe, EnglandChandler, 1963Plate 16, Fig. 22-23 incomplete specimens Vitis sp. Late EoceneEuropeHighcliffe, EnglandChandler, 1963Plate 16, Fig. 20-21 surface obscure Vitis pygmaea ChandlerLate EoceneEuropeHighcliffe, EnglandChandler, 1963no imageTable 3-14. Fossil vitaceous seeds not classified in this study.

PAGE 211

Vitis sp. Late EoceneEuropeHighcliffe, EnglandChandler, 1963Plate 16, Fig. 16-17 surface obscure Ampelopsis rotundata Chandler Late EoceneEuropeHordle Headon Hill, England Chandler, 1961ano image Cissus pyriformis MacGinitieEoceneNorth America Chalk Bluffs, CA, US Manchester, unpublished embedded in rock; ventral side only < 0.2 Parthenocissus sp. Late Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 39, Fig. 12-13 ventral side obscure< 1.4> 0.5< 0.1 < 0.2a Vitis cf. silvestris GmelinLate Oligocene/ Early Miocene SiberiaKireevskoe, RussiaDorofeev, 1963Plate 38, Fig. 21-22 dorsal side obscure < 0.2< 0.6< 25< 0.2a Parthenocissus sp. Early MioceneEuropeKflach-Voitsberg, Austria Meller, 1998Plate 20, Fig. 1dorsal side obscure < 0.2> 0.6ambig< 0.2a Vitis cf. teutonica A. BraunEarly MioceneEuropeKflach-Voitsberg, Austria Meller, 1998Plate 21, Fig. 1dorsal side only< 1.4> 0.5< 0.1 Tetrastigma chandleri Kirchheimer Early MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 8, Fig. 2ventral side obscure< 1.4> 0.5> 0.1 > 0.2 Ampelopsis malvaeformis (Schlotheim) Mai Early MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 7, Fig. 12 ventral side obscure< 1.4> 0.5ambig Vitis palaeomuscadinia MaiEarly MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000Plate 7, Fig. 10 14 dorsal side only< 1.4> 0.5> 0.1ambig ambig Tetrastigma lobatum ChandlerEarly MioceneEuropeSpremberger sequence, Lusatia, Germany Mai, 2000no image Vitis teutonica A. BraunEarly MioceneEuropeTurw, PolandCzeczott and Skirgiello, 1959 Plate 16, Fig. 3 7 image obscure Vitis cf. thunbergii Sieb. & Zucc. Early MioceneEuropeTurw, PolandCzeczott and Skirgiello, 1959 Plate 16, Fig. 8; text Fig. 6d image obscure Vitis cf. silvestris GmelinEarly MioceneEuropeTurw, PolandCzeczott and Skirgiello, 1959 Plate 16, Fig. 1 2 image obscure Tetrastigma sp. Early MioceneEuropeZittau Basin, CzechTeodoridis, 2003Plate 5, Fig. 27incomplete specimens Vitis parasylvestris Kirchheimer Early/Middle Miocene EuropeBerzdorf, Upper Lusatia, Germany Czaja, 2003no image Vitis globosa Mai Middle MioceneEuropeSalzhausen, Vogelsberg, Germany Mai and Gregor, 1982 Plate 20, Fig. 3surface obscure Vitis teutonica A. BraunMiddle MioceneEuropeSalzhausen, Vogelsberg, Germany Mai and Gregor, 1982 Plate 20, Fig. 4 8 dorsal side obscure Ampelopsis/Vitis Middle MioceneNorth America Yakima Canyon, WA, US Tcherepova and Pigg, 2005 no image Vitis teutonica A. BraunMiddle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001Plate 29, Fig. 13-14 dorsal side only< 1.4> 0.5ambig Ampelopsis tertiaria DorofeevMiddle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001Plate 29, Fig. 1 3 ventral side obscure< 1.4> 0.5< 0.1 Ampelopsis rotundata Chandler Middle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001no image Ampelopsis malvaeformis (Schlotheim) Mai Middle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001no image Tetrastigma chandleri Kirchheimer Middle/Late Miocene EuropeMeuroer/Rauno sequences, Germany Mai, 2001no image Fossil Age RegionLocality ReferencesFiguresCondition C21C18C22C5C35C9C15C24C57CommentTable 3-14. Continued.

PAGE 212

Ampelopsis sp.Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 46 ventral side obscure< 1.4> 0.5< 0.1a Ampelopsis ludwigii (A. Braun) Dorofeev Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 1 3 surface obscure Vitis globosa Mai Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980Plate 13, Fig. 9 10 ventral side obscure< 1.4> 0.5 a Ampelopsis rotundatoides Dorofeev Middle/Late Miocene EuropeOberpflzer, GermanyGregor, 1980no image Cissus sp. MioceneAfricaLake Victoria, KenyaCollinson, unpublished no image Vitis teutonica A. BraunMioceneEuropeNiederpleis, Lower Rhine, Germany Kirchheimer, 1938Fig. 3ventral side obscure< 1.4> 0.5> 0.1 Vitis bonseri Condit MioceneNorth America Remington Hill, CA, US Condit, 1944no image Vitis sp. 3 MioceneSiberiaBerezivka, RussiaDorofeev, 1988Plate 25, Fig. 4incomplete specimens Ampelopsis sp. MioceneSiberiaVolnaya summit, RussiaDorofeev, 1988Plate 25, Fig. 5 6 ventral side obscure< 1.4> 0.5< 0.1< 0.2 Vitis sp. 1 Late Miocene/ Early Pliocene North America Gray Fossil Site, TN, US Gong, Karsai, and Liu, 2009 no image Vitis sp. 2 Late Miocene/ Early Pliocene North America Gray Fossil Site, TN, US Gong, Karsai, and Liu, 2009 no image Vitis sp. 3 Late Miocene/ Early Pliocene North America Gray Fossil Site, TN, US Gong, Karsai, and Liu, 2009 no image FossilAgeRegionLocalityReferencesFiguresConditionC21C18C22C5C35C9C15C24C57CommentTable 3-14. Continued.s specimens observed; C21 = chalaza length; C18 = chalaza circularity; C22 = chalaza to notch distance; C5 = apical notch angle; C35 = ventral infold width; C9 = ventral infold length; C15 = ventral infold divergence angle; C24 = external rugosity; C57 = constricted rim on ventral side; a = absent; ambig = ambigous.

PAGE 213

GroupTaxa sharing the same combinatin of characters Seed type 1 Ampelocissus botryostachys Pterisanthes (5) stAmpelocissus -wide infolds 2 Ampelocissus (19) stAmpelocissus -wide infolds 3 Ampelocissus (7) stAmpelocissus -wide infolds 4 Ampelocissus (8), Pterisanthes (5) stAmpelocissus -wide infolds 5 Ampelocissus (10) Cayratia triternata Nothocissus spicifera Tetrastigma triphyllum Vitis (13), Yua austro-orientalis [ P. paradoxa V. tiffneyi A. wildei ] stAmpelocissus -rugose 6 Ampelocissus (10), Cayratia triternata Nothocissus spicifera Tetrastigma triphyllum Yua austroorientalis [ A. wildei ] stAmpelocissus -rugose 7 Ampelocissus (10), Cayratia triternata Nothocissus spicifera Tetrastigma (5), Yua austroorientalis [ A. wildei ] stAmpelocissus -rugose 8 Ampelocissus (10), Cayratia triternata Nothocissus spicifera Tetrastigma (5), Vitis (14), Yua austro-orientalis [ P. clarnensis V. magnisperma P. paradoxa V tiffneyi A. wildei ] stAmpelocissus -rugose 9 Ampelocissus (10), Nothocissus spicifera Tetrastigma triphyllum stAmpelocissus -rugose 10 Ampelocissus (10), Nothocissus spicifera Tetrastigma (4) stAmpelocissus -rugose 11 Ampelopsis (2) stAmpelopsis -smooth 12 Ampelopsis (2) Cayratia sp. (Peng 6346), Clematicissus opaca stAmpelopsis -smooth 13 Ampelopsis (6), "Austrocissus" striata Yua chinensis [ A. rooseae ]s t Ampelopsis -smooth 14 Ampelopsis (8), "Austrocissus" striata Yua chinensis [ A. rooseae ]s t Ampelopsis -smooth 15 Ampelopsis (8), Cayratia sp. (Peng 6346), "Austrocissus" striata Clematicissus opaca Yua chinensis [ A. rooseae ] stAmpelopsis -smooth 16 Ampelocissus latifolia Ampelopsis cantoniensis Cayratia (2), "Austrocissus" granulosa stAmpelopsis -rugose 17 Ampelocissus robinsonii, Ampelopsis (2), Cayratia (3), "Austrocissus" granulosa stAmpelopsis -rugose 18 A mpelopsis (10), Cayratia (3), "Austrocissus" (4), Rhoicissus tridentata Tetrastigma (5), Yua chinensis [ A. rooseae ] stAmpelopsis -rugose 19 Ampelopsis (2), Cayratia (3), "Austrocissus" (3), Rhoicissus tridentata Tetrastigma (5) stAmpelopsis -rugose 20 Ampelopsis (2), Cayratia (4), "Austrocissus" (3), Rhoicissus tridentata Tetrastigma (6), Yua austro-orientalis [ A. wildei ] stAmpelopsis -rugose 21 Ampelopsis (3), Cayratia (2), "Austrocissus" granulosa stAmpelopsis -rugose 22 Ampelopsis (7), Cayratia ciliifera "Austrocissus" (3), Rhoicissus tridentata Tetrastigma (5), Yua chinensis [ A. rooseae ] stAmpelopsis -rugose 23 Ampelopsis (7), Cayratia ciliifera "Austrocissus" (3), Rhoicissus tridentata Tetrastigma (9), Yua chinensis [ A. rooseae ] stAmpelopsis -rugose 24 Ampelopsis (9), "Austrocissus" (2), [ P. paradoxa ]stAmpelopsis -xs 25 Cayratia triternata Vitis (12), Yua austro-orientalis [ P. paradoxa, V. tiffneyi, A. wildei ]stVitis 26 Vitis (14), [ P. clarnensis V. magnisperma P. paradoxa V. tiffneyi ]stVitisTable 3-15. Groups of taxa sharing the same combinations of characters as the fossils listed in Tables 3-1 to 3-13. Column "Group" refers to groups indicated in Tables 3-1 to 313. When more than 1, the number of collections examined and found to possess characters of each seed group is indicated in the parentheses. Fossil taxa are placed in square brackets.

PAGE 214

27 Vitis (12), [ P. paradoxa V. tiffneyi ]stVitis 28 Vitis (13), [ P. paradoxa V. tiffneyi ] stVitis 29 Vitis lanceolatifolia stVitis 30 Ampelopsis (2), Cayratia sp. (Peng 6346), Clematicissus opaca V. tiffneyi Vitis (13), [ P. paradoxa ] stVitis Ampelopsis 31 Ampelopsis (2), Vitis (12), [ P. paradoxa V. tiffneyi ]stVitis Ampelopsis 32 Ampelopsis (6), "Austrocissus" striata Vitis lanceolatifolia Yua chinensis [ A. rooseae ]s t Vitis Ampelopsis 33 Ampelopsis (8), "Austrocissus" striata Vitis (13), Yua chinensis [ P. paradoxa A. rooseae V. tiffneyi ] stVitis Ampelopsis 34 Ampelosis (2), Vitis (12), [ P. paradoxa V. tiffneyi ] stVitis Ampelopsis 35 Vitis rot undifolia stVitis rotundifolia 36 P arthenocissus (8) stParthenocissus 37 Cayratia sp. (Peng 6346), Clematicissus opaca Vitis rotundifolia [ P. clarnensis V. magnisperma ] stParthenocissus clarnensis 38[ P. clarnensis ] stParthenocissus clarnensis 39 Vitis rot undifolia [ P. clarnensis, V. magnisperma ]s t Parthenocissus clarnensis 40 Cayratia (3) stCayratia 41 "Austrocissus" (3), Tetrastigma (2) stTetrastigma 42 Cissus (29) st-perichalaza 43 Cissus (29), Cyphostemma (7), Leea (13) st-perichalaza GroupTaxa sharing the same combinatin of characters Seed typeTable 3-15. Continued.

PAGE 215

Paleocene Early Eocene Middle Eocene Late Eocene Early Oligocene Oligocene Early Miocene Early/Middle Miocene Middle Miocene Middle/Late Miocene Late Miocene Miocene Plioceneseed typeGonna Wamannsdorf Dorset Pipe Clay London Clay Oldhaven Beds Paris Basin Tienen Formation Messel Highcliffe Hordle Headon Hill Quercy The Bovey Tracey lignite Kflach-Voitsberg Spremberger sequence, Lusatia Turw Wiesa Zittau Basin Berzdorf, Upper Lusatia Lettengraben Hauptzwischenmittel Salzhausen, Vogelsberg Meuroer/Rauno sequences, Lusatia Oberpflzer Naumburg, Bober Klettwitz, Senftenberg Markvartice and Veseliko Niederpleis, Lower Rhine Brunssum Krocienko Reuver Swalmen Tegelen Wetterau Total Present day Europe1 stAm p elocissus -wide infolds 1 1 2 stAm p elocissus -rugose 1512311211119 3 stAm p elo p sis -smooth 134 121211113 1 11125 4 stAm p elo p sis -rugose 14 1 111 11 112 5 stAm p elo p sis -xs 6 stVitis 151311121123211127 p* 7 stVitis-Am p elo p sis 21111219 8 stVitis rotundi f olia 2417 9 stParthenocissus 12115 10 stParthenocissus clarnensis 27121111218 11 stCa y ratia 11 2 12 stTetrasti g ma 13 st-perichalaza 14 not classified 16616124311254 1 44 Total 111839143467137872565171191121121112169 Table 3-16. The stratigraphic distribution of the fossil vitaceous seed types from Europe. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in present day Europe is indicated in the green column. See text for details.*Vitis vinifera

PAGE 216

Table 3-17. The stratigraphic distribution of the fossil vitaceous seed types from Siberia and Japan. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in present day Siberia and Japan is indicated in the green columns. See text for details.*southeastern Siberia Early Eocene Middle Eocene Oligocene Oligocene/Miocene Late Oligocene/Early Miocene Early Miocene Early Miocene? Middle Miocene? Miocene Plioceneseed typeBartonskih sediment on Tym river SCR. 1 on Tym river Tougan 10 sites in West Siberia Dunayevsky Yar outcrop Kireevskoe Yekaterininskoye Kozyulino Irtysh Berezivka Kuznetsovka, Red Bush Volnaya summit Total Present day Siberia Japan Present day Japan1 stAmpelocissus -wide infolds 2 stAmpelocissus -rugose 2 3 stAmpelopsis -smooth 1112117 p* 1 p 4 stAmpelopsis -rugose 3 p 5 stAmpelopsis xs 6 stVitis 41 5 p* 4 p 7 stVitis-Ampelopsis 21 1116 8 stVitis rotundifolia 9 stParthenocissus p* p 10 stParthenocissus clarnensis 11131 11 stCayratia 11 12 stTetrastigma 13 st-perichalaza 14 not classified 211 4 Total 3111263411122611

PAGE 217

Paleocene Early Eocene Early Middle Eocene Middle Eocene Late Eocene Eocene Miocene Middle Miocene Late Miocene/Early Plioceneseed typeFort Union Formation, MT Bullion Creek Formation, ND Fisher/Sullivan site, VA Wilcox, TA Clarno Formation, OR Green River Formation, CO Princeton chert, BC Blue Rim, WY Chalk Bluffs, CA The Brandon Lignite, VT Remington Hill, CA Yakima Canyon, WA Gray Fossil Site, TN Total present day North America1 stAmpelocissus -wide infolds 12 3 p* 2 stAmpelocissus -rugose p* 3 stAmpelopsis -smooth 11 p 4 stAmpelopsis -rugose 5 stAmpelopsis -xs 22 6 stVitis 213 3 10 p 7 stVitis-Ampelopsis 112 8 stVitis rotundifolia 22 p* 9 stParthenocissus 22 p 10 stParthenocissus clarnensis 22 11 stCayratia 12 stTetrastigma 13 st-perichalaza p* 14 not classified 1 2111139 Total 1121102311611333 Table 3-18. The stratigraphic distribution of the fossil vitaceous seed types from North America. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in present day North America is indicated in the green column. See text for details. *southern North America

PAGE 218

Central America South America Africa Australia Miocene Eocene Miocene Early Eocene OligoceneSeed typePanama Belen Present day Central and South America Lake Victoria Present day Africa Hotham heights Capella Present day Australia1 stAmpelocissus -wide infolds 1 pp 2 stAmpelocissus -rugose ppp 3 stAmpelopsis -smooth p a p c4 stAmpelopsis -rugose papbpb5 stAmpelopsis -xs 6 stVitis 7 stVitis-Ampelopsis 8 stVitis rotundifolia 9 stParthenocissus 10 stParthenocissus clarnensis 11 stCayratia p 12 stTetrastigma 1 p 13 st-perichalaza 12 ppp 14 not classified 11 Total 13111 Table 3-19. The stratigraphic distribution of the fossil vitaceous seed types from Central America, South America, Africa, and Australia. Number of seed forms examined (detailed in Tables 3-1 to 3-14) is indicated in each cell. The presence of seed types in corresponding present day continents is indicated in the green columns. See text for details.a"Austrocissus" spp.; bCayratia spp.; cClematicissus opaca pa

PAGE 219

Genus no. of species Distribution Ampelocissus 94tropical Africa and Malesia, also in subtropical to temperate Nepal and India. 3 speceis in Australia, 4 speceis in Central America. Nothocissus 1tropical rainforest in Malesia. Pterisanthes 20tropical rainforest in Malesia. Vitis 60mainly in temperate and subtropical Asia, around 10 species in temperate North America, 1species extending to Central America and nothern South America. Ampelopsis 25mainly in temperate and subtropical regions. Asia has 19 species, 3 species in North America, 1 species in Central America. Parthenocissus 15mainly in temperate and subtropical regions. 12 speices in Asia, 3 species in North America. Yua 3warm temperate region of southern China and India. Clematicissus 21 species endemic in western Australia, the other in eastern Australia. Austrocissus 10South America, Australia. Rhoicissus 12mainly in southern Africa, extending to Madagascar and Arabia. Cissus 350tropical and subtropical region world wide. Cayratia 63tropical to subtropical Africa, Madagascar, Asia, Malesia, and Australia. Acareosperma 1Laos. Tetrastigma 95tropical to subtropical Asia, Malesia, and Australia. Cyphostemma 250tropical Africa and Madagascar, 1-2 species in India, Sri Lanka, and Thailand. Leea 32tropical southern Aisa and Malesia, 2 species in Africa and Madagascar.Table 3-20. Geographical distribution of extant genera of Vitaceae.

PAGE 220

Figure 3-1. The morphological phylogeny used for inferring the biogeography of Vitaceae in this study. The tree is the strict consensus tree of all shortest trees from the morphological data set with continuous characters treated by discrete coding (Chapter 2). Numbers above the branches are bootstrap values > 50%. Selected characters are mapped onto the tree. Character 1 = character 43, 2 = 54, 3 = 101, 4 = 98, 5 = 126, 6 = 130, 7 = 131 from the matrix presented in Chapter 2. Seeds of the terminal taxa are evaluated the same way as the fossil seeds are evaluated in this study and classified into seed types; seeds not matching the 14 seed type categories are given new seed type names in parentheses.

PAGE 221

100 62 92 66 60 86 79 79 95 85 67 81 100Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis arborea Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramerast-Ampelocissus -wide infolds st-Ampelocissus -rugose st-Ampelocissus -rugose st-Ampelocissus -rugose st-Ampelocissus -rugose st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Ampelocissus -rugose st-Ampelocissus -wide infolds st-Ampelocissus -wide infolds st-Vitis st-Vitis rotundifolia st-Vitis st-Vitis st-Vitis st-Vitis st-Vitis st-Ampelopsis -rugose st-Ampelopsis -rugose st-Ampelopsis -rugose st-Ampelopsis -smooth st-Ampelopsis -smooth st-Ampelopsis -smooth st-Ampelopsis -smooth st-Parthenocissus st-Parthenocissus st-Parthenocissus st-Parthenocissus st-Ampelopsis -smooth st-Ampelocissus -rugose (st-one infold) st-Ampelopsis -smooth st-Ampelopsis -smooth st-Ampelopsis -rugose stTetrastigma st-T etrastigma st-Tetrastigma (st-Tetrastigma-divergent infolds) st-Tetrastigma st-Ampelopsis -rugose st-Tetrastigma (st-perichalaza-rugose) (st-perichalaza-rugose) st-perichalaza st-perichalaza st-perichalaza (st-perichalaza-rugose) (st-perichalaza-rugose) (st-perichalaza-rugose) (st-perichalaza-rugose) st-perichalaza st-perichalaza st-perichalaza st-perichalaza st-perichalaza (st-perichalaza-rugose) st-Ampelopsis -rugose st-Ampelopsis -rugose st-Ampelocissus -rugose (st-linear chalaza wide infolds) (st-linear chalaza wide infolds) st-Ampelopsis -rugose st-Tetrastigma st-Ampelocissus -rugose st-Ampelopsis -rugose st-Tetrastigma (st-Acareosperma) st-Cayratia st-Cayratia (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) (st-Cyphostemma ) st-perichalaza st-perichalaza 1. inflorescence : 123 2. petal number: 3. perichalaza: 4. chalaza shape: 5. testa sclereids shape: 6. stomata in sarcotesta : 7. exotegmic tracheidal cell: 4567 with tendril structure without tendril structure 5 4 absent present oval linear columnar cuboidal absent present narrow wide characters seed types

PAGE 222

Figure 3-2. Geographic distribution of fossil and extant Vitaceae. The same tree from Figure 31 is presented. The past distribution is inferred from the fossil seed types presented in Tables 3-16 to 3-19. P = Paleocene, E = Eocene, O = Oligocene, M = Miocene, Pl = Pliocene, Eu = Europe, As = Asia, NA = North America, CS = Central America (Panama), South America, Australia, or Africa. Black boxes indicate the presence of corresponding fossil seed types.

PAGE 223

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis arborea Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraAfrica Africa SE Asia Australia Asia SE Asia SE Asia SE Asia SE Asia SE Asia Central America Mexico Mexico Central America North America North America Asia Asia Asia Asia Asia South America Asia Asia North America Asia Asia North America Asia Asia North America North America Asia Asia Australia Australia South America South America Australia Australia Australia Africa South America Africa Australia Central America South America Central America South America SE Asia Africa Central America Central America Central America Central America Asia Australia South America South America Madagascar Asia Asia Madagascar Australia Asia Asia Asia Asia Asia Asia SE Asia Australia SE Asia Africa Africa Africa Asia Africa Africa Africa Madagascar Africa Asia Solomon Island Eu As NA CS PEOM Pl Eu As NA CS PEOM Pl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Eu As NA CS PEOMPl Extant taxaFossil seeds 100 62 92 66 60 86 79 79 95 85 67 81 100

PAGE 224

224 CHAPTER 4 FOSSIL SEEDS OF THE GRAPE FAMILY AND THEIR PHYLOGENETIC POSITIONS Introduction Fossil vitaceous seeds are commonly found in many Tertiary beds in the Northern Hemisphere. These fossil seeds usually have been identified to extant genera, indicating their close resemblance to extant seeds. Fossil grap e seeds hence have grea t potential to provide correct past geographical distri butions of the genera of Vitaceae. To better recognize the variation in seed form within this family, a larg e scale seed survey has been performed (Chapter 1). Fossil vitaceous seeds from throughout the wo rld were re-evaluated based on the results of the seed survey (Chapter 3). The seed type cl assification revealed that most fossil vitaceous seeds are externally indistinguish able from the extant seeds. However, some fossil seeds have combinations of characters not seen in the extant species. The affinities of these fossils have provoked great curiosity. In this study, the affinities of six of the better preserved fossil seeds were tested by similarity co mparison and cladistic methods. Materials and Methods Fossils from the Clarno Formation are housed at the Florida Museum of Natural History and Smithsonian Institute. Fossils from the London Clays are housed at the British Museum. Fossils from Messel, Germany were obtained vi a museum loan from the Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt, Germany. The definition of "Austrocissus can be found in Chapter 1. All seed characters mentioned in the study are defined in Chapter 1, and fossil characters were measured the same way as described there. Seed s were sectioned using a paper-t hin diamond saw blade mounted on a Microslice II annular saw (Malve rn, England). Seed coat anatom y of the fossils were either observed from the cross section under a high power stereo microscope ( Palaeovitis paradoxa

PAGE 225

225 and Ampelocissus wildei ) or from previously prepared thin sections under a light microscope ( Ampelopsis rooseae Vitis tiffneyi and Parthenocissus clarnensis ; Manchester, 1994). Images of fossils has been published previously (Reid and Chandler, 1933; Manchester, 1994; Chen and Manchester, 2007), and additional unpublished images were kindly provided by Dr. Manchester. Similarity comparison. Seeds grossly similar to the foss il were selected from the extant seed database (Chapter 1), and a principal co mponent analysis (PCA) was performed with the fossil included. PCA was carried out by the computer software Minitab 15 (Minitab Inc., US). The same characters defined in Chapter 1 were used in the PCAs. Since fossils have varying amounts of missing characters, each PCA was perf ormed with only one fossil included so all fossil characters were used in the analyses Extant seeds possessing one ventral infold ( Clematicissus angustissima ), whorled rugae ( Acareosperma spireanum ), or a constricted rim on ventral side (some species of Cayratia ) were excluded from the comparison because none of the six fossils have these characters. For Ampelocissus wildei extant seeds with chalaza circularity > 0.5, ventral infolds width < 0.2, seed rugosity > 0.2 were selected for inclusion in the PCA. The other five fossils have oval chalaza, linear ventral infolds, and smooth surface, therefore extant seeds with chalaza circ ularity > 0.5, ventral infolds widt h < 0.2, seed rugosity < 0.2 were selected for inclusion in the PCAs. Cladistic methods. The same characters used for constructing the morphological phylogeny (Chapter 2) were used for the analyses including fossils. Of the total 137 characters, 69 continuous characters were coded by either the gap-weighting (GW) method or discrete coding (Chapter 2). The availabl e characters of fossils were coded by the same two methods. The same 84 extant species of V itaceae (Chapter 2) were included in the analyses with fossils. Only a single fossil was included in each analysis and in addition, a final analysis was conducted

PAGE 226

226 including all 6 fossils. The heuristic search and the bootstrap analyses were performed as described in Chapter 2. The matrixes used for the analyses with GW coding methods are presented in Appendixes F to L. The matrix used for the analysis including the six fossil seeds with discrete coding is presented in Appendix M. Another set of analyses was performed appl ying a backbone constraint In the analyses in which the continuous characters were treated with discrete c oding, the strict consensus tree of the most parsimonious trees (MPTs) from the an alysis with discrete coding without fossils (presented in Figure 2-1) was used as the bac kbone constraint tree. When GW coding was applied to the matrix, the MPT from the analys is with GW coding incl uding only extant species (presented in Figure 2-2) was used as the backbone constraint tree. Each analysis with backbone constraint included only one foss il. Heuristic searches were performed by computer package PAUP* 4.0b (Swofford, 2002), with 1000 random-a ddition-sequence, holding 10 trees on each step, with the starting tree obt ained by step-wise addition, ap plying backbone constraint, and excluding missing or ambiguous characters. Results The score plots of PCAs are shown in Fi gure 4-1. Although Figure 4-1 A-C, E, and F involved the same extant seeds, their relative posi tion is not exactly the same in the score plots because characters used varied depending on availabl e fossil characters. The shortest tree, or the strict consensus of the shortest trees from the parsimony analyses including fossils are shown in Figure 4-2 to Figure 4-5. Numb ers of available characters fr om fossils, numbers of MPTs, consistency index (CI), retention index (RI), and tree length from each analysis are presented in Table 4-1. Fossil affinities in dicated from the analyses are summarized in Table 4-2. Most branches do not have strong bootst rap support; in the anal yses with discrete coding including one fossil, the grouping of the two Yua species, and the grouping of Cayratia cardiophylla and C.

PAGE 227

227 genitulata have bootstrap support but the strict consensus trees do not retain these groupings (Figure 4-5 A-E). 1) Ampelopsis rooseae Manchester 1994 early Middle Eocene, Clarno Formation, US (UF 6536, UF 9575) This fossil seed conforms closely to extant seeds of Ampelopsis in every aspect. The PCA shows the similarity of A. rooseae to Ampelopsis (Figure 4-1 A). In the analyses with GW coding, with or without constraint, A. rooseae is grouped with Ampelopsis glandulosa (Figure 42 A, Figure 4-3 A, H, I). In the analysis w ith discrete coding and backbone constraint, A. rooseae is sister to Ampelopsis delavayana and Ampelopsis glandulosa (Figure 4-4 A). The analysis with discrete coding without constraint places A. rooseae within the clade that contains Ampelocissus Vitis and Ampelopsis and the strict consensus tr ee did not resolve the major groupings as in the analysis wit hout fossils (Figure 4-5 A; comp ared to Figure 2-1). In the analysis with discrete coding including all six fossils, A. rooseae is grouped with Ampelopsis cordata (Figure 4-5 G). 2) Vitis tiffneyi Manchester 1994 early Middle Eocene, Clarno Formation, US, UF 6533, UF 9573 The external characters of V. tiffneyi are similar to those of Vitis The cross section of V. tiffneyi reveals its thin endotesta, whic h is thinner than all sampled Vitis (endotesta thickness 0.02 vs. 0.03-0.058). PCA shows the similarity of V. tiffneyi to extant Vitis (Figure 4-1 B). In the analyses with GW coding, V. tiffneyi is in a position sister to all Vitis (Figure 4-2 B, Figure 43 B, I) or within Vitis (Figure 4-3 H). In the analysis with discrete coding and backbone constraint, V. tiffneyi has three different positions (data not shown) within Vitis in the 16 MPTs (Table 4-1), therefore Vitis forms a polytomy in the strict consensus tree (Figure 4-4 B). In the

PAGE 228

228 analysis with discrete coding and no constraint, V. tiffneyi is sister to all Vitis (Figure 4-5 B). In the analysis including six fo ssils with discrete coding, V. tiffneyi is within the clade containing Vitis and Ampelocissus (Figure 4-5 G). 3) Palaeovitis paradoxa Reid and Chandler, 1933 Early Eocene, London Clays, England (v. 62712) This fossil seed has a very thick endotesta, much thicker than all sampled extant seeds (endotesta thickness 0.1 vs. 0.01-0.058). The exte rnal characters are si milar to those of Vitis and Ampelopsis In the PCA it is closest to Vitis (Figure 4-1 C). The anal yses with GW coding place it with Vitis aestivalis (Figure 4-2 C, Figure 4-3 C). In the analyses with GW coding including all six fossil seeds, P. paradoxa is grouped with Ampelocissus wildei and both were grouped with Acareosperma spireanum (Figure 4-3 H) or Vitis aestivalis (Figure 4-3 I) (this result is discussed with Ampelocissus wildei below). In the analyses with discrete coding with or without backbone constraint, this fo ssil seed is grouped with Vitis rotundifolia (Figure 4-4 C, Figure 4-5 C). In the analysis including six fossils with discrete coding, P. paradoxa is placed within the clade containing Vitis and Ampelocissus (Figure 4-5 G). 4) Ampelocissus wildei Chen & Manchester 2007 Middle Eocene, Messel, Germany (Me 5729, Me 5730, Me 8786) This rugose, large seed is similar to Ampelocissus externally; the cross section of the seed revealed its unusually thick endotesta (endot esta thickness 0.08 vs. 0.01-0.058). PCA does not group it to a particular genus (Fi gure 4-1 D). In the analyses with discrete coding with or without constraint, it is nested within Ampelocissus (Figure 4-4 D, Figure 4-5 D). In the analysis including six fossils with discrete coding, A. wildei is placed within the clade contained Vitis and Ampelocissus (Figure 4-5 G). Unexpectedly, the analyses with GW coding all resulted in its

PAGE 229

229 grouping with Acareosperma spireanum (Figure 4-2 D, Figure 4-3 D, H). Acareosperma spireanum has long spine-like outgrowth of endotesta which are arranged in two whorls along the lateral edge of the seed (C hapter 1). This distinct feat ure is not observed in any other vitaceous seeds. Comparing each character of A. wildei and A. spireanum did not reveal any obvious reason for this placement. It can only be explained that by coincidence, under most parsimonious calculation, A. wildei was grouped with A. spireanum It may be speculated that the scaling between discrete and continuous charac ters in the GW method has some effect. All six fossil seeds have the same five available discre te seed characters, and they all have the same character states for these di screte characters. Only A. wildei has an additional two discrete characters, fruit shape and number of seed per fruit. Therefore, the two fruit characters were coded as unknown for A. wildei and the analyses were re -run. The results have A. wildei grouped with Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E). In th e analysis including six fossils with GW coding and excluding fruit characters of A. wildei A. wildei is grouped with Palaeovitis paradoxa, and both were grouped with Vitis aestivalis (Figure 4-3 I). 5) Parthenocissus clarnensis Manchester 1994 early Middle Eocene, Clarno Form ation, US (UF 6539, UF 6540, UF 9583) This fossil seed has long and divergen t ventral infolds similar to those of Parthenocissus, however, it does not have a sharp apical not ch like this genus. The PCA shows that P. clarnensis is closest to Cayratia sp. ( Peng 6346) and Yua chinensis, and these seeds are not well differentiated from those of Cissus striata (labeled "Austrocissus"), Clematicissus opaca and Ampelopsis (Figure 4-1 E). The analys es including one fossil with GW coding with or without constraint place P. clarnensis sister to all Parthenocissus (Figure 4-2 F, Figure 4-3 F). In the analyses with GW coding including all six fossils, P. clarnensis is grouped with Vitis

PAGE 230

230 magnisperma and both are grouped with Vitis rotundifolia (Figure 4-3 H, I). In the analyses with discrete coding with or without constraint, it is grouped with Vitis rotundifolia (Figure 4-4 E, Figure 4-5 E). The analysis includi ng six fossils with discrete coding place P. clarnensis with Vitis magnisperma and they are sister to Parthenocissus and Yua (Figure 4-5 G). 6) Vitis magnisperma Chandler, 1961 Early Eocene, London Clay Formation, England (v. 30257) early Middle Eocene, Clarno Formation, US (USNM 434985, UF 9879; cited in Manchester, 1994) This fossil seed, like Parthenocissus clarnensis is smooth, has long, divergent infolds and a shallow apical notch. It is much larger (9.4 mm vs. 3.2 6.7 mm) than all other seeds with a smooth surface, narrow infolds, and an oval chal azal. Its narrow infolds are closely spaced (ventral infolds space at the middl e ca. 0.1), a feature found only in Clematicissus opaca and some species of Tetrastigma. Its chalaza appears large (cha laza width = 0.43), an uncommon condition, but comparable to those of Parthenocissus dalzielii (0.44) and Ampelopsis cordata (0.4). PCA does not clearly show the similarity of V. magnisperma to an extant genus (Figure 41 F). All the analyses with GW coding place V. magnisperma with Vitis rotundifolia (Figure 4-2 G, Figure 4-3 G, H, I). The analysis including V. magnisperma with discrete coding and backbone constraint resulted 18 MPTs (Tab le 4-1). In six of the 18 MPTs, V. magnisperma is grouped with Ampelocissus in the other 12 MPTs, it is grouped with Parthenocissus (Figure 4-4 F, G). This fossil changes the placement of Tetrastigma in the analyses with discrete coding without topology constraint (Figure 4-5 F, G). In th e analysis included only V. magnisperma it is sister to a clade that contains Parthenocissus, Yua and Tetrastigma (Figure 4-5 F). In the analysis including six fo ssils, it is sister to Parthenocissus and Yua (Figure 4-5 G).

PAGE 231

231 Discussion Effects of Missing Data in the Phylogenetic Analyses The effect of missing data has been st udied previously (Wiens, 2003; Wiens, 2005; Wiens, 2006). In the present study, missing data of fossils have very different effects on the analyses with the two coding methods. Adding fossils did not cause major differences in the topology of the MPTs when the GW coding met hod was applied; and the analyses with or without backbone constraint inferred the same placements for the fossils (Figure 4-2; Figure 4-3; Table 4-2). The multiple segmentation of the con tinuous characters in GW coding has the nature of giving very few MPTs because there are many steps involved, and thus the condition of being most parsimonious is very fine tuned. A dding fossils usually did not disrupt the most parsimonious calculation. Nevertheless, GW coding sometimes gives suspect results, as shown in the case of Ampelocissus wildei The weight-scaling between continuous and discrete characters obviously effects the placement of A. wildei demonstrated by changing the ratio of continuous and discrete characters of the fossil in the matrix. Th e effect of weighting is also shown in the two analyses including all six foss ils using GW coding (Figure 4-3 H, I). In both analyses A. wildei is grouped with Palaeovitis paradoxa These two fossil seeds have thick endotesta far outside the range of that of the exta nt seeds. In GW coding the endotesta thickness of these two fossils are weighted heavily, therefore contributi ng greatly to their grouping under parsimony criteria. When cladistic analyses with GW coding are used to assess fossil affinities, the issue regarding to the weight-scaling has to be taken into consideration. Unlike GW coding, including fossils to the an alyses with discrete coding has various effects, depending on the characters of the fossils. Including in the analysis with discrete coding a fossil with features not much different from some extant seeds, such as Ampelopsis rooseae (Figure 4-1 A), resulted in more MPTs with different tree topologyies (Table 4-1; Figure 4-5 A).

PAGE 232

232 Inclusion of Vitis tiffneyi similar to Vitis but with a thin endotesta, also resulted more MPTs (Table 4-1). In contrast to the analyses including Ampelopsis rooseae the topological variation of the MPTs from the analysis with discrete coding including Vitis tiffneyi is mostly resulting from the variation within the VitisAmpelocissus clade (Figure 4-5 B). Including Palaeovitis paradoxa, Ampelocissus wildei, and Parthenocissus clarnensis does not have a great effect on the analyses with discrete coding. Including these fossils in the an alyses even slightly reduce the number of MPTs (Table 4-1). These three fossil seeds did not show strong similarity to seeds of any particular extant genus (Figure 4-1 C, D, E). Vitis magnisperma reduces the number of MPTs (Table 4-1) and changes the topology of th e MPTs when included in the analyses with discrete coding (Figure 4-5 F, G). Vitis magnisperma is not similar to a particular genus (Figure 4-1 F); in addition, the fossil has characters similar to those of Parthenocissus (long divergent ventral infolds, oval chalaza) and those of Tetrastigma (closely spaced ventral infolds). From the results of the cladistic analyses with discrete coding, it was obse rved that the missing data of fossils causes an increase in the number of MPTs wh en the fossils are very similar to one of the extant groups, whereas the number of shortest tree s is decreased when the fossils are not similar to a particular extant lineage. Fossil Affinities Comparing the results from all the methods applied (Table 4-2), the fossil seeds of Ampelopsis rooseae is no doubt almost the same as extant seeds of Ampelopsis Vitis tiffneyi and Palaeovitis paradoxa have affinity to Vitis although one has much th inner endotesta and the other has much thicker one compared to the extant species of this genus. These two fossil seeds, interestingly, imply that the stem lineages of Vitis had a wider range of endotesta thickness compared to extant Vitis. Vitis tiffneyi occurred in only one local ity. The better preserved P. paradoxa was found only in London Clay; the reported Paleovitis paradoxa from the Paris Basin

PAGE 233

233 does not have the endotesta preser ved (Blanc-Louvel, 1986) therefor e its identity is difficult to verify. The variation of the endotesta thickness among the fossil Vitis -like seeds is largely unknown; further accumulation of foss il data may give a better understanding. Measured extant Parthenocissus seeds mostly have a very th in endotesta, whereas seeds of Vitis have a much thicker endotesta (Figure 1-5 I). The association of endotesta thickness to seeds of specific extant genera is intriguing. It is of interest to know when and how this association occurred. The functions of the endotesta thickness is unkn own although it can be speculated to be related to seed storage and germination. Whether select ion or random variation shaped the evolution of endotesta thickness is in need of further study. Unlike the three fossils discussed above, Ampelocissus wildei was grouped with different extant genera in different analysis (Table 4-2). The affinity of A. wildei to Acareosperma spireanum (Figure 4-2 D, Figure 4-3 D, H) was cons idered an artifact of weighting in GW method. Nevertheless, the hypothesis that A. wildei is closely related to Palaeovitis paradoxa and both are related to the extant species Vitis aestivalis may be reasonable (Figure 4-3 I). Ampelocissus wildei is also grouped with Ampelocissus (Figure 4-4 C, Figure 4-5 C). Seeds of Ampelocissus and Vitis sometimes differ only in the degr ee of rugosity, and the two extant genera are closely related. There is a possibi lity that the extremely thick endotesta was a synapomorphy of an extinct lineage, which contained A. wildei and V. paradoxa, and this lineage shares a common ancestor with the extant species of Ampelocissus and Vitis Another likely affinity for A. wildei is Yua austro-orientalis (Figure 4-2 E, Figure 4-3 E). Some seeds of Ampelocissus are similar to Y. austro-orientalis in many aspects (Chen and Manchester, 2007). The results bring up the issu e that convergence could have occurred in extant species, therefore fossil organs cannot be linked to only one extant group. A hypothesis

PAGE 234

234 that does not conflict with the various suggested positions for A. wildei (Table 4-2) is that the fossil belongs to the stem lineage of the clade containing Yua austro-orientalis and Ampelocissus which also includes Vitis and Ampelopsis The indistinguishable seeds from these two extant genera cast uncertainty on the iden tification of fossils by s eed characters. Although extant genera have evolved in a way that diagno stic seed characters are mostly associated with diagnostic characters from other plant organs; whet her this still holds true for fossil taxa in the Tertiary is unknown, because the fossil seeds ha ve been found only in isolation, without other organs of the parent plants. It can be hypothesized that the stem lineages have all sorts of combinations between morphology of seeds and other plant organs, t hough evolution, only the species with the combinations seen from the extant taxa have survived till today. Parthenocissus clarnensis represents a seed morphology that does not conform to a specific extant group. In the PCA it was close to Yua chinensis and Cayratia sp. ( Peng 6346 ). Seeds of Y. chinensis do not have a sharp api cal notch like those of Parthenocissus however, its ventral infolds are not as long as those of P. clarnensis and the cross secti on configuration of Y. chinensis is more similar to that of Ampelopsis than to P. clarnensis Cayratia sp. ( Peng 6346 ) has cross section configurat ion similar to that of P. clarnensis ; however, its ventral infolds are parallel, not divergent as P. clarnensis Parthenocissus clarnensis was placed with Parthenocissus or Vitis rotundifolia by cladistic analyses (Table 4-2). The seeds of V. rotundifolia can be distinguished from Parthenocissus by their parallel ventral infolds and lack of a sharp apical notch. This fo ssil has a mix of characters from Parthenocissus (long, divergent infolds) and V. rotundifolia (shallow apical notch). A great number of fossil seeds share the external features of P. clarnensis ; they have been found in Tertiary beds from the Early Eocene to Pliocene in the North Hemisphere. Fossil seeds comparable to extant Parthenocissus are

PAGE 235

235 relatively rare (Chapter 3). Suppose P. clarnensis represents the stem lineage sharing the same common ancestor with the extant genus Parthenocissus Could it be that the taxa with seeds similar to P. clarnensis all became extinct in the late Cenozoic, and only single lineage with seeds similar to extant Parthenocissus survived untill today? Befo re answering this question, it is necessary to confirm whether P. clarnensis truly represents an extin ct seed form; this would require sampling seeds of all extant species of Parthenocissus and Vitis. Seed types stParthenocissus clarnensis stVitis rotundifolia and stParthenocissus usually co-occurred in localities with abundant fossil seeds in southern England (Table 3-16, Chapter 3). Since the characters used to distinguish th ese seed types are con tinuous, it is possible to imagine an extinct species with a range of variation including all these seed types. Nevertheless, this speculation is difficult to prove because no fossil vitaceous seed was attached to other plant organs. Vitis magnisperma was also classified to the seed type st-Parthenocissus clarnensis (Chapter 3). Vitis magnisperma and P. clarnensis were grouped together in analyses including six fossils with either coding method (Figure 43 H, I; Figure 4-5 G), suggesting their close relationship. This fossil seed has a distinct combination of characters not seen in the sampled extant seeds; its affinity to extant spec ies is difficult to confirm. Affinity to Vitis rotundifolia Parthenocissus, or Ampelocissus were inferred from various analyses (Table 4-2). The fossil seed has the closely spaced ve ntral infolds present in most Tetrastigma which explained its effect on the placement of Tetrastigma in the analyses with discrete coding (Figure 4-5 F, G). The missing data of V. magnisperma weaken the plausibility of its effect on the change of tree topology. The monophyly of the Tetrastigma Cayratia Cyphostemma clade is well supported by molecular data (Soejima and Wen, 2006; Wen et al ., 2007), reinforcing the view that the change in tree topology brought about by including V. magnisperma in the analyses is mainly due to the

PAGE 236

236 lack of strong supports for the morphology-based phylogeny. Vitis magnisperma has been identified from two Eocene localities in wester n North America and England; it was not as prevalent as the smaller P. clarnensis -like seeds. This unique fossil seed may belong to an extinct lineage not directly related to any extant group. Alternatively, V. magnisperma may be viewed as an extinct species belonging to the clade containing Ampelocissus Vitis, Ampelopsis Parthenocissus, and Yua Since the Paleocene vitaceous seeds with external characters resembling those of extant seeds of the family have existed (Chapter 3). Close examination of the six fossils from the Eocene reveals that some display a set of preser ved characters that are the same as those of extant species (Ampelopsis rooseae ); other fossils resemble exta nt seeds externally, however certain internal characters exhi bit variation outside the range of the corre sponding extant taxa ( Vitis tiffneyi and Palaeovitis paradoxa ); still others cannot be pl aced unequivocally with an extant group ( Ampelocissus wildei Parthenocissus clarnensis and Vitis magnisperma ). It was demonstrated that the fossil vitaceous seeds from the Eocene are not all exactly the same as the examined extant vitaceous seeds. Other fossil vitaceous seeds with features not exactly fitting with seeds of extant genera included the stAmpelocissus -rugose seed type with a sharp apical notch, the stAmpelopsis smooth seed type with large chalaza, the stVitis seed type that is dorsiventrally compressed and with a sharp margin, the stParthenocissus seed type with a sunke n chalaza, and the stParthenocissus seed type with a rugose surface (Chapter 3). These fossil seeds made up a small portion of the fossil records from the Early Eocene to the Miocene in Europe, Siberia, and North America (Tables 3-1 to 3-13, Chapter 3). Affinities of these fossils have not been fully assessed, so additional investig ations are needed.

PAGE 237

Analyses with GW or discrete coding methods, topology constraint applied or not applied fossil total characters fossil GW characters GW, constraintGW discrete, constraintdiscrete 84 extant species 1, 0.166, 0.587, 24094 516, 0.142, 0.611, 1186 84 extant species & A. rooseae 50451, 0.143, 0.476, 87371, 0.166, 0.588, 241402, 0.119, 0.572, 4631514, 0.142, 0.612, 1189 84 extant species & V. tiffneyi 52471, 0.142, 0.477, 91291, 0.166, 0.587, 2414216, 0.118, 0.584, 4821417, 0.142, 0.612, 1189 84 extant species & P. paradoxa 53481, 0.145, 0.473, 91451, 0.167, 0.588, 239984, 0.118, 0.580, 491439, 0.142, 0.611, 1192 84 extant species & A. wildei 52451, 0.150, 0.498, 90021, 0.166, 0.588, 240462, 0.122, 0.592, 476347, 0.142, 0.611, 1193 84 extant species & A. wildei* 50451, 0.145, 0.466, 85973, 0.166, 0.587, 24041 84 extant species & P. clarnensis 53481, 0.142, 0.471, 93361, 0.165, 0.587,241894, 0.118, 0.580, 492354, 0.142, 0.611, 1193 84 extant species & V. magnisperma 42371, 0.145, 0.482, 72561, 0.166, 0.587, 2415118, 0.117, 0.573, 39278, 0.142, 0.611, 1192 84 extant species & 6 fossils 2, 0.165, 0.588, 24295 569, 0.139, 0.613, 1215 84 extant species & 6 fossils* 1, 0.165, 0.588, 24270 *two fruit characters of A. wildei were coded as missing.Table 4-1. Numbers from the phylogenetic analyses. The numbers in the four columns indicating analyses are number of MPTs, CI, RI, tree length.

PAGE 238

AnalysesResults presented in Ampelopsis rooseaeVitis tiffneyiPalae ovitis paradoxa Ampelocissus wildei Parthenocissus clarnensisVitis magnisperma PCA Fig. 4-1 a-f Ampelopsis Vitis near Vitis ambiguous ambiguous ambiguous GW coding, constraint Fig. 4-2 a-gwith Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ; with Yua austro-orientalis* sister to Parthenocissus with Vitis rotundifolia GW coding, 1 fossil Fig. 4-3 a-gwith Ampelopsis glandulosa sister to Vitis with Vitis aestivalis with Acareosperma spireanum ; with Yua austro-orientalis* sister to Parthenocissus with Vitis rotundifolia GW coding, 6 fossils Fig. 4-3 h, iwith Ampelopsis glandulosa ; with Ampelopsis glandulosa* within Vitis ; sister to Vitis* with Acareosperma spireanum ; with Vitis aestivalis* with Acareosperma spireanum ; with Vitis aestivalis* with Vitis rotundifolia ; with Vitis rotundifolia* with Vitis rotundifolia ; with Vitis rotundifolia* discrete coding, constraint Fig. 4-4 a-fsister to Ampelopsis delavayana and Ampelopsis glandulosa within/sister to Vitis with Vitis rotundifolia within Ampelocissus with Vitis rotundifoliaParthenocissus Ampelocissus discrete coding, 1 fossil Fig. 4-5 a-famong Ampelopsis sister to Vitis with Vitis rotundifolia within A mpelocissus with Vitis rotundifolia sister to ParthenocissusTetrastigm discrete coding, 6 fossils Fig. 4-5 g Ampelopsis cordata Ampelocissus/VitisAmpelocissus/Vitis Ampelocissus/Vitis sister to ParthenocissusYua sister to ParthenocissusYuaTable 4-2. Fossil affinities to extant species inferred from the analyses presented in this study.*two fruit characters of A. wildei were coded as missing.

PAGE 239

5.0 2.5 0.0 -2.5 -5.0 -7.5 7.5 5.0 2.5 0.0 -2.5 -5 .0 First ComponentSecond ComponentAmpelopsis rooseaeTotal variance explained by PCI & II = 0.454 5.0 2.5 0.0 -2.5 -5.0 -7.5 5.0 2.5 0.0 -2.5 -5.0 -7 .5 First ComponentSecond ComponentVitis tiffneyiTotal variance explained by PCI & II = 0.434Figure 4-1. The score plots of the first two principle components from the PCAs including extant and fossil vitaceous seeds. A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F) V. magnisperma. See Materials and Methods for details. "Austrocissus" Cayratia Clematicissus Ampelopsis Parthenocissus Yua Vitis Fossil "Austrocissus" Cayratia Clematicissus Ampelopsis Parthenocissus Yua Vitis FossilA B

PAGE 240

"Austrocissus" Tetrastigma Rhoicissus Ampelopsis Yua Ampelocissus Nothocissus Fossil Cayratia 5.0 2.5 0.0 -2.5 -5.0 -7.5 5.0 2.5 0.0 -2.5 -5.0 -7 .5 First ComponentSecond ComponentPalaeovitis paradoxaTotal variance explained by PCI & II = 0.420 Total variance explained by PCI & II = 0.369 5.0 2.5 0.0 -2.5 -5. 0 5.0 2.5 0.0 -2.5 -5 .0 First ComponentSecond ComponentAmpelocissus wildei "Austrocissus" Cayratia Clematicissus Ampelopsis Parthenocissus Yua Vitis FossilC DFigure 4-1. Continued.

PAGE 241

"Austrocissus" Cayratia Clematicissus Ampelopsis Parthenocissus Yua Vitis FossilFigure 4-1. Continued.E F 5.0 2.5 0.0 -2.5 -5.0 -7.5 5.0 2.5 0.0 -2.5 -5.0 -7 .5 First ComponentSecond ComponentTotal variance explained by PCI & II = 0.431 Parthenocissus clarnensis 7.5 5.0 2.5 0.0 -2.5 -5.0 2.5 0.0 -2.5 -5 .0 First ComponentSecond ComponentVitis magnisperma Total variance explained by PCI & II = 0.427 "Austrocissus" Cayratia Clematicissus Ampelopsis Parthenocissus Yua Vitis Fossil

PAGE 242

1 2 3 Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Vitis rotundifolia Vitis tiffineyi Cissus simsiana Vitis aestivalis Palaeovitis paradoxa Vitis rotundifolia Yua austro-orientalis Ampelocissus wildei Cissus hypoglauca Parthenocissus vitacea Parthenocissus clarnensis Yua chinensis Vitis rotundifolia Vitis magnisperma Vitis aestivalis Cayratia japonica Acareosperma spireanum Ampelocissus wildei 1 1 1 1 3 2 2A B C D E F GFigure 4-2. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method, and backbone constraint applied. The structure of the constraint tree is shown (same as in Figure 2-2); the node 1 (circle), 2 (diamond), or 3 (square) is enlarged to show the positions of fossils: A) A. rooseae; B) V. tiffneyi ; C) P. paradoxa; D) A. wildei; E) A. wildei, excluding fruit characters; F) P. clarnensis ; G) V. magnisperma Fossils are highlighted by red branches, the names of the adjacent extant taxa are indicated.

PAGE 243

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus trianae Cissus sterculiifolia Cissus penninervis Cissus granulosa Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 68 100 80 54 95 50 51 50 50 89 62 57 74 52 82 99 90 54 67 70 100Figure 4-3. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with GW method. Strict consensus trees of MPTs are shown, numbers above the branches indicate bootstrap support values > 50%. Red branches indicate fossils, blue branches indicate position changed compared to the MPT in analysis without fossils (Figure 2-2). A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) A. wildei, fruit characters excluded; F) P. clarnensis ; G) V. magnisperma; H) all 6 fossils included; I) all 6 fossils included, fruit characters excluded.A

PAGE 244

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Vitis tiffneyi Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 100 80 68 53 79 67 50 88 62 57 75 52 82 99 89 55 67 69 100Figure 4-3. Continued.B

PAGE 245

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Palaeovitis paradoxa Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 100 80 67 50 66 89 64 57 75 52 82 99 90 53 67 70 100Figure 4-3. Continued.C

PAGE 246

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus trianae Cissus sterculiifolia Cissus penninervis Cissus granulosa Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus fuliginea Cissus cornifolia Cissus palmata Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cissus alata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Ampelocissus wildei Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 69 100 80 51 66 53 89 63 58 75 52 82 99 90 67 71 51 92 100Figure 4-3. Continued.D

PAGE 247

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Ampelocissus wildei Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus quadrangularis Cissus reniformis Cissus alata Cissus campestris Cissus cornifolia Cissus fuliginea Cissus mirabilis Cissus obovata Cissus palmata Cissus verticillata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 100 80 69 65 51 50 88 63 58 74 51 82 99 90 66 69 51 89 100Figure 4-3. Continued.E

PAGE 248

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis aestivalis Vitis rotundifolia Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Parthenocissus clarnensis Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 51 72 100 80 69 65 51 88 62 58 74 82 98 89 68 70 100Figure 4-3. Continued.F

PAGE 249

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis rotundifolia Vitis magnisperma Vitis aestivalis Cissus simsiana Ampelopsis cordata Ampelopsis glandulosa Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 99 72 68 65 88 63 58 74 50 81 96 87 51 67 71 51 61 100Figure 4-3. Continued.G

PAGE 250

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Parthenocissus clarnensis Vitis magnisperma Vitis rotundifolia Vitis aestivalis Vitis tiffneyi Cissus simsiana Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Palaeovitis paradoxa Ampelocissus wildei Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera68 100 76 51 54 89 65 57 74 82 96 88 65 71 52100Figure 4-3. Continued.H

PAGE 251

Pterisanthes cissioides Pterisanthes polita Ampelocissus botryostachys Ampelocissus ochracea Ampelocissus barbata Ampelocissus africana Nothocissus spicifera Ampelocissus abyssinica Ampelocissus acetosa Ampelocissus latifolia Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Palaeovitis paradoxa Ampelocissus wildei Vitis aestivalis Parthenocissus clarnensis Vitis magnisperma Vitis rotundifolia Vitis flexuosa Vitis tsoi Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tiffneyi Cissus simsiana Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Ampelopsis delavayana Ampelopsis cantoniensis Ampelopsis grossedentata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Cissus hypoglauca Cissus antarctica Rhoicissus tridentata Rhoicissus digitata Cissus sterculiifolia Cissus trianae Cissus granulosa Cissus penninervis Cissus striata ssp. argentina Cissus biformifolia Cissus paullinifolia Cissus descoingsii Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus fuliginea Cissus campestris Cissus verticillata Cissus alata Cissus palmata Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma rumicispermum Tetrastigma obtectum Tetrastigma serrulatum Cayratia cardiophylla Cayratia geniculata Cayratia maritima Cayratia oligocarpa Cayratia triternata Cayratia trifolia Cayratia japonica Acareosperma spireanum Cyphostemma hereroense Cyphostemma odontadenium Cyphostemma lageniflorum Cyphostemma setosum Cyphostemma paucidentatum Cyphostemma buchananii Cyphostemma adenocaule Cyphostemma laza Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 100 76 68 51 55 88 64 57 75 65 70 83 96 86 51Figure 4-3. Continued.100I

PAGE 252

Ampelopsis glandulosa Ampelopsis rooseae Ampelopsis cordata Vitis piasezkii Vitis tsoi Vitis tiffneyi Vitis rotundifolia Palaeovitis paradoxa Vitis aestivalis AB CFigure 4-4. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method, and backbone constraint applied. The structure of the constraint tree is shown (same as in Figure 2-1); the node indicated by the arrow is enlarged to show the positions of fossils: A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis ; F-G) V. magnisperma. Fossils are highlighted by red branches, the names of the adjacent extant taxa are indicated. The topology represent the strict consensus trees of all MPTs, except for V. magnisperma: F shows the structure of the strict consensus tree of 6, out of the 18 total MPTs, G shows that of the rest 12 MPTs.

PAGE 253

Ampelocissus latifolia Ampelocissus wildei Pterisanthes cissioides Vitis rotundifolia Parthenocissus clarnensis Vitis aestivalis Ampelocissus latifolia Vitis magnisperma Pterisanthes cissioides Parthenocissus vitacea Vitis magnisperma Yua chinensis D E F GFigure 4-4. Continued.

PAGE 254

Ampelopsis rooseae 100 63 92 64 60 86 78 77 94 85 65 81 100 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis rotundifolia Vitis aestivalis Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraFigure 4-5. The affinities of fossil vitaceous seeds inferred from the morphological phylogenetic analyses in which the continuous characters were coded with discrete method. Strict consensus trees of all MPTs are shown, numbers above the branches indicate bootstrap support values > 50%. Red branches indicate fossils, blue branches indicate position changed compared to the strict consensus trees of the MPTs from analysis without fossils (Figure 2-1). A) A. rooseae; B) V. tiffneyi; C) P. paradoxa; D) A. wildei; E) P. clarnensis; F) V. magnisperma; G) all 6 fossils included.A

PAGE 255

100 62 92 66 59 63 100 82 66 84 95 78 74 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis betulifolia Vitis vinifera Vitis flexuosa Vitis piasezkii Vitis tsoi Vitis aestivalis Vitis rotundifolia Vitis tiffneyi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraFigure 4-5. Continued.B

PAGE 256

82 100 77 95 85 66 71 74 100 62 92 59 54 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis rotundifolia Palaeovitis paradoxa Vitis aestivalis Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraFigure 4-5. Continued.C

PAGE 257

Figure 4-5. Continued.100 62 91 59 68 78 94 85 66 78 100 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Ampelocissus wildei Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraD

PAGE 258

100 62 91 57 57 78 92 80 56 73 100 Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus javalensis Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus robinsonii Vitis rotundifolia Parthenocissus clarnensis Vitis aestivalis Vitis flexuosa Vitis piasezkii Vitis betulifolia Vitis vinifera Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensis Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua chinensis Yua austro-orientalis Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Acareosperma spireanum Cayratia cardiophylla Cayratia geniculata Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetrameraFigure 4-5. Continued.E

PAGE 259

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis betulifolia Vitis vinifera Vitis flexuosa Vitis piasezkii Vitis tsoi Cissus simsiana Ampelopsis grossedentata Ampelopsis cantoniensisaa Ampelopsis delavayana Ampelopsis glandulosa Ampelopsis cordata Ampelopsis arborea Clematicissus angustissima Clematicissus opaca Cissus striata ssp. argentina Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Yua austro-orientalis Yua chinensis Parthenocissus vitacea Tetrastigma bioritsense Tetrastigma planicaule Tetrastigma serrulatum Tetrastigma obtectum Tetrastigma rumicispermum Vitis magnisperma Cissus granulosa Cissus penninervis Cissus sterculiifolia Cissus hypoglauca Rhoicissus digitata Cissus trianae Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus assamica Cissus cornifolia Cissus descoingsii Cissus fuliginea Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Cayratia cardiophylla Cayratia geniculata Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 97 62 88 85 75 79 93 57 55 100 61Figure 4-5. Continued.F

PAGE 260

Ampelocissus abyssinica Ampelocissus africana Nothocissus spicifera Ampelocissus acetosa Ampelocissus latifolia Pterisanthes cissioides Pterisanthes polita Ampelocissus ochracea Ampelocissus botryostachys Ampelocissus barbata Vitis betulifolia Vitis vinifera Vitis flexuosa Vitis piasezkii Ampelocissus acapulcensis Ampelocissus erdvendbergiana Ampelocissus javalensis Ampelocissus robinsonii Vitis aestivalis Vitis rotundifolia Vitis tsoi Palaeovitis paradoxa Vitis tiffneyi Ampelocissus wildei Ampelopsis grossedentata Ampelopsis cantoniensis Cissus simsiana Ampelopsis delavayana Ampelopsis cordata Ampelopsis rooseae Ampelopsis glandulosa Ampelopsis arborea Clematicissus opaca Clematicissus angustissima Cissus striata ssp. argentina Parthenocissus dalzielii Parthenocissus laetevirens Parthenocissus quinquefolia Parthenocissus vitacea Yua austro-orientalis Yua chinensis Parthenocissus clarnensis Vitis magnisperma Cissus granulosa Cissus penninervis Tetrastigma obtectum Tetrastigma rumicispermum Tetrastigma serrulatum Tetrastigma planicaule Tetrastigma bioritsense Cissus hypoglauca Cissus sterculiifolia Cissus trianae Rhoicissus digitata Rhoicissus tridentata Cissus antarctica Cissus biformifolia Cissus paullinifolia Cissus alata Cissus palmata Cissus descoingsii Cissus fuliginea Cissus assamica Cissus cornifolia Cissus mirabilis Cissus obovata Cissus quadrangularis Cissus reniformis Cissus verticillata Cissus campestris Cyphostemma laza Cayratia japonica Cayratia trifolia Cayratia triternata Cayratia maritima Cayratia oligocarpa Cayratia cardiophylla Cayratia geniculata Acareosperma spireanum Cyphostemma adenocaule Cyphostemma buchananii Cyphostemma paucidentatum Cyphostemma setosum Cyphostemma hereroense Cyphostemma lageniflorum Cyphostemma odontadenium Cyphostemma microdiptera Cyphostemma junceum Leea guineensis Leea tetramera 98 62 90 59 77 86 68 68 55 Figure 4-5. Continued.G100

PAGE 261

APPENDIX A SPECIMENS INFORMATION OF THE VITACEOUS SEEDS SAMPLED IN THIS STUDY Taxa are listed in alphabetic order. The information is listed as follows: taxon, collector and collector's number (herbarium deposited), locality. Abbreviations for herbaria follow Thiers (continuously updated). The seeds that are not sampled for the character measurement but with images shown in the article are marked with "*".Acareosperma spireanum Gagnep., Spire 140 & 357 (P), Loas; Ampelocissus abyssinica Planch., A. J. M. Leeuwenberg 8070 (MO), Ivory Coast; Ampelocissus acapulcensis (Kunth) Planch., C. G. Pringle 8503 (A), Mexico; Ampelocissus acapulcensis (Kunth) Planch., Rafael Torres C. 5476 (GH), Mexico; Ampelocissus acetosa (F. Muell.) Planch., N. Duke s. n. (A), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229 (MO), Tanzania; Ampelocissus arachnoidea Planch., M. Eug. Poilane 14309 (A), Cambodia; Ampelocissus barbata Planch., D. J. Middleton, S. Suddee & C. Hemrat 1325 (A), Thailand; Ampelocissus bombycina Planch., A. A. Euti 38455 (MO), Ghana; Ampelocissus borneensis Merr., M. Ramos & G. Edano 44369 (NY), Philippines; Ampelocissus botryostachys Planch., M. Ramos 48106 (NY), Philippines; Ampelocissus cavicaulis Planch., A. J. M. Leeuwenberg 5183 (MO), Cameroon; Ampelocissus divaricata Planch., M. Suzuki et al. 9193023 (A), Nepal; Ampelocissus elegans Gagnep., S. Riswan et al. B-14 (MO), Borneo; Ampelocissus elephantina Planch., D. K. Harder et al. 1743 (MO), Madagascar; Ampelocissus erdvendbergiana Planch., E. Matuda 3201 (A), Mexico; Ampelocissus gracilis Planch., R. S. Toroes 1479 (NY), Sumatra; Ampelocissus grantii (Baker) Planch., J.G. Adam 15369 (MO), Mali; Ampelocissus imperialis Planch., M. Ramos 1430 (A), Borneo; Ampelocissus javalensis (Seem.) W. D. Stevens & A. Pool, M. H. Grayum & G. Schatz 5282 (MO), Costa Rica; Ampelocissus latifolia (Roxb.) Planch., R. R. Stewart 11143 (NY), India; Ampelocissus leonensis Planch., A. Jacques-Georges 8757 (MO), Senegal; Ampelocissus macrocirrha Gilg & Brandt, J G. Adam 25752 (MO), Liberia; Ampelocissus martini Planch., M. Ramos 1879 (MO), Philippines; Ampelocissus muelleriana Planch., R. Kaneheira & S. Hatusima 12055 (A), New Guinea; Ampelocissus muelleriana Planch., Shomer & Katik 75140 (A), New Guinea; Ampelocissus multistriata Planch., E. M. C. Groenendijk et al. 1163 (MO), Mozambique; Ampelocissus obtusata (Welw. ex Baker) Planch., N. A. Mwangulango 607 (MO), Tanzania; Ampelocissus obtusata subsp. kirkiana (Planch.) Wild & R.B. Drumm., D. K. Harder & M. G. Bingham 2581 (MO), Zambia; Ampelocissus ochracea Merr., J. H. Beaman 10316 (GH), Malaysia; Ampelocissus pauciflora Merr., R. B. Fox 474 (A), Philippines; Ampelocissus polystachya Planch., R. S. Toroes 1736 (NY), Sumatra; Ampelocissus racemifera Planch., W. Takeuchi, Z. Efendi, & D. Junaidi 18748 (A), Indonesia; Ampelocissus robinsonii Planch., J. G. Jack 5441 (A), Cuba; Ampelocissus rugosa Planch., M. Suzuki et al. 9470131 (A), Nepal; Ampelocissus tomentosa (Roth) Planch., C. J. Seldanha & P. Prakash 3664 (MO), India; Ampelopsis aconitifolia Bunge, Ki-Mon Liou 7997 (IBSC), China; Ampelopsis arborea (L.) Koehne, I. Chen 59 (FLAS), US; Ampelopsis cantoniensis (Hook. & Arn.) Planch., Wang Xue Wen & Zhang Gui Cai 8073 (IBSC), China; Ampelopsis cordata Michx., A. Gholson Jr. 6431 (FLAS), US; Ampelopsis delavayana Planch. ex Franch., Wang Wen Hua 3510 (CDBI), China; Ampelopsis denudata Planch., Silvia Salas M. et al. 2035 (NY), Mexico; Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 48 (TAIF), Taiwan; Ampelopsis grossedentata (Hand.Mazz.) W. T. Wang, Cao Ya Ling & He Yong Hua 87-18 (CD BI), China; Ampelopsis humulifolia Bunge, Fu Kun Jun 17754 (IBY), China; Ampelopsis japonica (Thunb.) Makino, Zhong Ji Xin 808247 (IBY), China; Ampelopsis megalophylla Diels & Gilg, s. n. 13316 (CDBI), China; Ampelopsis rubifolia (Wall.) Planch., Chun Z. C. 51757 (IBY), China; Cayratia acris (F. Muell.) Domin, B. R. Jackes s. n. (JCT), Australia; Cayratia cardiophylla Jackes, H. Hopkins s. n. (JCT), Papua New Guinea; Cayratia ciliifera (Merr.) Chun, S. K. Lau 4906 (IBSC), China; Cayratia ciliifera (Merr.) Chun, S.K. Lau 178 (US), China; Cayratia corniculata (Benth.) Gagnep., Liu Gin Kuoa s. n. (TAIF), Taiwan; Cayratia formosana Hsu & Kuoh, I. Chen 53 (TAIF), Taiwan; Cayratia geniculata Gagnep., M. Ramos 1115 (US), Philippines; Cayratia japonica (Thunb.) Gagnep., I. Chen 45 (TAIF), Taiwan; Cayratia maritima Jackes, I. Chen 531 (FLAS), Australia; Cayratia mollissima Gagnep., D. J. Middleton et al. 409 (IBSC), Thailand; Cayratia oligocarpa Gagnep., Zhou Hong Fu 26434 (IBSC), China; Cayratia pedata (Lam.) Juss. ex Gagnep., P.L. Comanor 1043 (US), Ceylon; Cayratia saponaria (Benth.) Domin, B. R. Jackes s. n. (JCT), Australia; Cayratia sp. Peng Yu Lan 6346 (CDBI), China; Cayratia trifolia (L.) Domin, I. Chen 119 (FLAS), China; Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; Cayratia triternata (Baker) Desc., J. M. Hildebrandt 2962 (P), Madagascar; Cissus adnata Roxb., C. R. Dunlop 4776 (JCT), Australia; Cissus alata

PAGE 262

Jacq., S. Mori & J. Kallunki 1786 (US), Panama; Cissus antarctica Vent., B. R. Jackes s. n. (JCT), Australia; Cissus assamica (M.A. Lawson) Craib, Huang Zhi 40054 (IBY), China; Cissus assamica (M.A. Lawson) Craib, J. F. Rock 777 (US), Myanmar; Cissus biformifolia Standl., R. W. Lent 2326 (US), Costa Rica; Cissus cacuminis Standl., Antonio Molina R. 1350 (US), Honduras; Cissus campestris (Baker) Planch., F. C. A. Oliverira et al. 271 (US), Brazil; Cissus cardiophylla (F.Muell.) Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus caustica Tussac, E. C. Leonard 8435 (US), Haiti; Cissus cornifolia Planch., E. A. Mearns 3007 (US), Uganda; Cissus cucurbitina Standl., s. n. 1131 (US), Mexico; Cissus decidua Lombardi, A. Chase 7823 (US), Brazil; Cissus descoingsii Lombardi, W. Burger & G. Matta U. 4712 (US), Costa Rica; Cissus diffusiflora Planch., G. Zenker 507 (US), Cameroon; Cissus dinklagei Gilg & Brandt, A. Hladik 2040 (US), Gabon; Cissus duarteana Cambess., G. Eiten & L. T. Eiten 9700 (US), Brazil; Cissus elongata Roxb., Wang et al. 4107 (IBY), China; Cissus erosa Rich., H. Pittier 3995 (US), Panama; Cissus farinosa (Welwitsch ex Baker) Planch., R. Dummer 262 (US), Uganda; Cissus flavifolia Lombardi, D. S. Pennys & M. A. Blanco Coto 1671 (FLAS), Panama; Cissus fuliginea Kunth, P. H. Allen 5450 (US), Costa Rica; Cissus fusifolia Lombardi, Jose Schunke V. 2589 (US), Peru; Cissus gardneri Thwaites, S. H. Sohmer et al. 8557 (U S), Ceylon; Cissus gongylodes (Burch. ex Baker) Planch., J. J. Strudwick & G. L. Sobel 3940 (US), Brazil; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726 (US), Peru; Cissus hastata Miq., B. R. Jackes s. n. (JCT), Australia; Cissus hexangularis Thorel ex Planch., Zhoung Ji Xin 808815 (IBY), China; Cissus heyneana Steud., G. Davidse & D. B. Sumithraarachchi 8864 (US), Ceylon; Cissus hypoglauca A. Gray, B. R. Jackes s. n. (JCT), Australia; Cissus intermedia A. Rich., s. n. s. n. (US), Cuba; Cissus javana DC., J. F. Rock 1016 (US), Thailand; Cissus lonchiphylla Thwaites, S. Waas 1904 (US), Ceylon; Cissus mexicana DC., H. S. Gentry 14279 (US), Mexico; Cissus microcarpa Vahl, P. C. Standley 52861 (US), Honduras; Cissus mirabilis (Urb. & Ekman) Lombardi, E.L. Ekman 4809 (US), Haiti; Cissus obovata Vahl, E. C. Leonard 4263 (US), Haiti; Cissus obovata Vahl, P. Acevedo-Rdgz 11708 (US), Puerto Rico; Cissus oliveri Gilg ex Engl., R. B. Faden et al. 800 (US), Kenya; Cissus palmata Poir., T. M. Pedersen 3721 (US), Argentina; Cissus paullinifolia Vell., R. Klein 1770 (US), Brazil; Cissus penninervis (F. Muell.) Planch., B. R. Jackes s. n. (JCT), Australia; Cissus picardae Urb., P. Acevedo-Rdgz et al. 8470 (US), Republica Dominicana; Cissus planchoniana Gilg, A. Hlandik 2051 (US), Africa; Cissus pteroclada Hayata, s. n. 84569 (IBY), China; Cissus quadrangularis L., Herb. Wight. propr. 423 (US), India; Cissus reniformis Domin, I. Chen 517 (TAIF), Australia; Cissus repens Lam., B. R. Jackes s. n. (JCT), Australia; Cissus rotundifolia (Forssk.) Vahl, P. Acevedo-Rdgz 11003 (US), Caribbean; Cissus rubiginosa Planch., Flamiqui 120 (US), Africa; Cissus simsiana Schult. & Schult. f., G. Hatschbach & J. M. Silva 49092 (US), Brazil; Cissus sp., A. Macedo 3197 (US), Brasil; Cissus sp., C. J. Saldanha 13311 (US), India; Cissus sp., G. E. Schatz 1606 (US), Madagascar; Cissus sp., P. H. & D. Allen 5249 (US), Costa Rica; Cissus sterculiifolia (Benth.) Planch., B. R. Jackes s. n. (JCT), Australia; Cissus stipulata Vell., P. R. Reiz 3060 (US), Brazil; Cissus striata Ruiz & Pav., O. Kuntze s. n. (US), Chile; Cissus striata subsp. argentina (Suess.) Lombardi, O. S. Ribas & V. Nicolack 303 (US), Brazil; Cissus subhastata Gagnep., J. F. Rock 222 (US), Thailand; Cissus tiliacea Kunth, R. M. King & T. R. Soderstrom 4987 (US), Mexico; Cissus trianae Planch., J. Cuatrecasas 8711 (US), Colombia; Cissus trigona Willd. ex Roem. & Schult., D. Bell & S. Wiser 88-146 (US), Peru; Cissus trilobata Lam., L. Bernardi 15759 (US), Ceylon; Cissus tuberosa DC., J. N. Rose & R. Hay 5896a (US), Mexico; Cissus tweedieana (Baker) Planch., S. Venturi 142115 (US), Argentina; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 38 (TAIF), Taiwan; Cissus vinosa Jackes, B. R. Jackes s. n. (JCT), Australia; Cissus vitiginea L., G. Davidse 7341 (US), Ceylon; C lematicissus angustissima (F. Muell.) Planch., E. M. Jackes s. n. (BRI), Australia; Clematicissus opaca (F. Muell.) Jackes & Rossetto, B. R. Jackes s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B. Drumm., I. Friis et al. 7987 (US), Ethiopia; Cyphostemma braunii (Gilg & Brandt) Desc., H. J. Beentje et al. 1081 (US), Kenya; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden et al. 521 (US), Kenya; Cyphostemma cirrhosum (Thunb.) Desc. ex Wild & R. B. Drumm., G. Davidse 6804 (US), South Afirca; Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R. B. Drumm., R.L. Piemeisel & L.W. Kephart 22 (US), Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 4215a (US), Namibia; Cyphostemma hildebrandtii (Gilg) Desc. ex Wild & R. B. Drumm., Luke 2905 (US), Kenya; Cyphostemma hypoleuca (Harv.) Desc., J. Medly Wood 448 (US), South Africa; Cyphostemma jiguu Verdc., Luke 3855 (US), Kenya; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A. Meurillon 861 (P), Cameroon; Cyphostemma lageniflorum (Gilg & Brandt) Desc., C. H. S. Kabuye et al. 635 (US), Kenya; Cyphostemma lanigerum (Harv.) Desc. ex Wild & R. B. Drumm., P. Herman 171 (US), South Africa; Cyphostemma laza Desc., P. B. Philipson 2476 (P), Madagascar; Cyphostemma marlothii (Dinter & Gilg) Desc., R. Seydel 3111 (US), southwestern Africa; Cyphostemma microdiptera (Baker) Desc., R. Decary 17158 (P), Madagascar; Cyphostemma odontadenium (Gilg) Desc., S. A. Rovertson 6710 (US), Kenya; Cyphostemma paucidentatum (Klotzsch) Desc. ex

PAGE 263

Wild & R. B. Drumm., J. Frazier 1139 (US), Tanzania; Cyphostemma schimperi (Hochst. ex A. Rich.) Desc., Schimper 644 (US), Afirca; Cyphostemma serpens (Hochst. ex A. Rich.) Desc., Schimper 154 (US), Africa; Cyphostemma setosum (Roxb.) Alston, Bernardi 14299 (US), Ceylon; Cyphostemma simulans (C. A. Sm.) Wild & R. B. Drumm., J. Medly Wood 8249 (US), South Africa; Cyphostemma ukerewense (Gilg) Desc., P. K. Rwavurindore 1796 (US), Uganda; Leea aculeata Blume, H. P. Fuchs 21234 (A), Malayisa; Leea aequata L., Kessler et al. P. K. 1340 (A), Indonesia; Leea aequata L., M. Shah & Lee Wai Chin 2693 (US), Malaysia; Leea angulata Korth. ex Miq., W. N. & C. M. Bangham 656 (A), Indonisia; Leea asiatica (L.) Ridsdale, M. Suzuki et al. 9455064 (A), Nepal; Leea compactiflora Kurz, T. T. Yu 17683 (A), China; Leea congesta Elmer, R. B. Fox 5259-1 (A), Philippine; Leea coryphantha Lauterb., H. Streimann & A. Kairo 39230 (A), New Guinea; Leea guineensis G. Don, I. Chen 44 (TAIF), Taiwan; Leea heterodoxa K. Schum. & Lauterb., D. Foreman et al. 45917 (A), New Guinea; Leea macropus Lauterb. & K. Schum., W. Takeuchi 9048B (A), Papua New Guinea; Leea papuana Merr. & L. M. Perry, L. J. Brass 23959 (A), New Guinea; *Leea philippinensis Merr., C. Frake 56725 (A), Philippines; Leea quadrifida Merr., D. Mendoza & P. Convocar 253 (A), Phillippines; Leea robusta Roxb., Father Anglade s. n. (A), India; Leea tetramera B. L. Burtt, T. C. Whitmore 6226 (A), Solomon Island; Nothocissus spicifera (Griff.) Latiff, H. O. Forbes 2831 (US), Sumatra; Parthenocissus dalzielii G agnep., Nan Ling Dui 1572 (IBSC), China; Parthenocissus feddei (H. Lv.) C.L. Li, Cao Ya Ling et al. 13 (CDBI), China; Parthenocissus henryana (Hemsl.) Graebn. ex Diels & Gilg, Hu Zhi Xin 3575 (IBSC), China; Parthenocissus heptaphylla (Buckley) Britton ex Small, M. Hopkins s. n. (US), US; Parthenocissus laetevirens Rehder, Ma Xi Peng 53495 (IBSC), China; Parthenocissus quinquefolia (L.) Planch., I. Chen 204 (FLAS), US; Parthenocissus semicordata (Wall.) Planch., Li Xi Wen 157 (IBSC), China; Parthenocissus vitacea (Knerr) Hitchc., J. C. Blumer 1289 (US), US; Pterisanthes cissioides Blume, J. Agama 1117 (US), Borneo; Pterisanthes eriopoda Planch., W. de Wilde 21340 (SYS), Sumatra; Pterisanthes eriopoda Planch., W. J. J. O. de Wilde & B. E. E. de Wilde-Duyfjes 20589 (US), Sumatra; Pterisanthes polita (Miq.) M. A. Lawson, J. Sinclair 10380 (US), Sarawak; Pterisanthes quinquefoliolata Merr., S. Kokawa & M. Hotta 475 (L), Sabah; Rhoicissus digitata (L. f.) Gilg & Brandt, R.D.A. Bayliss 1615 (US), South Africa; Rhoicissus revoilii Planch., E. A. Mearns 1041 (US), Kenya; Rhoicissus rhomboidea (E. Mey. ex Harv.) Planch., O.A Leistner et al. 3307 (US), South Africa; Rhoicissus schlechteri Gilg & Brandt, R. J. Rodin 4680 (US), South Africa; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor A116 (US), Tanzania; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., M. E. Mathias & D. Taylor 142 (US), Tanzania; Tetrastigma bioritsense (Hayata) Hsu & Kuoh, A. Henry 104 (US), Taiwan; Tetrastigma brunneum Merr., M. Ramos 20542 (US), Philippines; Tetrastigma caudatum Merr. & Chun, Liu Xin Qi 26617 (IBSC), China; Tetrastigma cauliflorum Merr., H. Y. Liang 66618 (IB Y), China; Tetrastigma crenatum Jackes, B. Gray 07372 (BRI), Australia; Tetrastigma cruciatum Craib & Gagnep., J. F. Rock 1118 (US), Thailand; Tetrastigma cruciatum Craib & Gagnep., Menglian survey 010060 (SYS), China; Tetrastigma delavayi Gagnep., Chang C. C. 10928 (IBY), China; Tetrastigma erubescens Planch., Hainan 00135 (IBY), China; Tetrastigma formosanum (Hemsl.) Gagnep., E. H. Wilson 10994 (US), Taiwan; Tetrastigma hainanense Chun & F. C. How, S. H. Chun 11723 (IBY), China; Tetrastigma harmandii Planch., J. & M. S. Clemens 3992 (US), Vietnam; Tetrastigma hemsleyanum Diels & Gilg, Peng 7 (CDBI), China; Tetrastigma henryi Gagnep., Mao Pin 455 (IBY), China; *Tetrastigma hypoglaucum Planch., B. Bartholomew et al. 507 (US), China; Tetrastigma kwangsiense C. L. Li, Nonggan Survey 10957 (IBY), China; Tetrastigma lanceolarium (Roxb.) Planch., H. B. Morse 681 (US), China; Tetrastigma loheri Gagnep., A. Loher 5843 (US), Philippines; Tetrastigma megalocarpum W. T. Wang, Zhu Hua 936 (SYS), China; Tetrastigma nilagiricum (Miq.) B. V. Shetty, G. Davidse & A. H. Jayasuriya 8390 (US), Ceylon; Tetrastigma nitens (F. Muell.) Planch., V. K. Moriarty 782 (BRI), Australia; Tetrastigma obtectum Planch. ex Franch., Sichuan survey 51995 (SYS), China; Tetrastigma pachyphyllum (Hemsl.) Chun, Tsang Wai-Tak 152 (SYS), China; Tetrastigma papillosum Planch., M. Ramos 30348 (US), Philippines; Tetrastigma pedunculare Planch., Meijer 134578 (US), Malaysia; Tetrastigma petraeum Jackes, B. R. Jackes s. n. (BRI), Australia; T etrastigma pingpienense C. Y. Wu, C. C. Chang 12559 (IBY), China; Tetrastigma pisicarpum (Miq.) Planch., M. Ramos & S. Fdano 14751 (US), Philippines; Tetrastigma pisicarpum (Miq.) Planch., R. Schodde 2575 (BRI), New Guinea; Tetrastigma planicaule Gagnep., P. Tsang 120694 (SYS), China; Tetrastigma pubinerve Merr. & Chun, Huang Zhi 34529 (IBSC), China; Tetrastigma retinervium Planch., Nonggang survey 10964 (SYS), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., H. T. Tsai 60421 (IBSC), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., Liao Guo Sheng 1802 (SYS), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2939 (US), Nepal; Tetrastigma serrulatum Planch., Xu Guo Hong 25804 (CDBI), China; Tetrastigma serrulatum Planch., Yue Qing Sheng & Mou Ke Hua 5734 (CDBI), China; Tetrastigma sulcatum Gamble, C. J. Saldanha 13351 (US), India; Tetrastigma thorsborneorum Jackes, R. J. Cumming 10178 (JCT), Australia; Tetrastigma triphyllum (Gagnep.) W. T. Wang, Gao Xin Fen et al.

PAGE 264

3998 (IBSC), China; Tetrastigma umbellatum Nakai, E. H. Wilson 9694 (US), Taiwan; Tetrastigma vitiense (A. Gray) A. C. Sm., A. C. Smith 720 (US), Fiji; Tetrastigma xishuangbannaense C. L. Li, Li Yan Hui 004817 (IBY), China; Tetrastigma yunnanense Gagnep., A. Henry 11647 (US), China; Vitis aestivalis Michx., I. Chen 60 (FLAS), US; Vitis amurensis Rupr., Zhang Yu Liang et al. 1924 (SYS), China; Vitis balansana Planch., S. K. Lau 102 (SYS), China; Vitis betulifolia Diels & Gilg, Sichuan survey 51693 (SYS), China; Vitis chunganensis Hu, He Xian Yu 29370 (IBSC), China; Vitis flexuosa Thunb., An Ming Tai 5199 (TAIF), China; Vitis jacquemontii R. Parker, H. Takayama et al. 9239082 (A), Nepal; Vitis lanceolatifoliosa C. L. Li, Wang De Zhen 1662 (IBSC), China; Vitis piasezkii Maxim., s. n. 0929 (CDBI), China; Vitis rotundifolia Michx., I. Chen 577 (FLAS), US; Vitis sp. S. R. Manchester s. n. (FLAS), US; Vitis tsoi Merr., Zhang Gui Cai 306 (IBSC), China; Vitis vinifera L., s. n. 84-1333 (IBSC), China; Vitis vulpina L., I. Chen 58 (FLAS), US; Vitis wilsoniae H. J. Veitch, Chen Ke & Li Han Zhang 3169 (IBY), China; Yua austro-orientalis (F. P. Metcalf) C. L. Li, S. P. Ko 50800 (IBSC), China; Yua chinensis C. L. Li, Peng Ding Yi 46098 (IBSC), China.

PAGE 265

APPENDIX B SPECIMENS EXAMINED FOR THE MORPHOLOGICAL ANALYSES Specimen information is arranged as: taxa, collector(s) collector's number (herbarium deposited), locality. Taxa are listed in alphabetical order, "" indicates that the identification is the same as the preceding taxon. p = specimen examined for pollen morphology, s = specimen examined for seed morphology.Acareosperma spireanum Gagnep., Spire 140 & 357s (P), Loas; Ampelocissus abyssinica Planch., A. J. M. Leeuwenberg 8070s (MO), Ivory Coast; C. J. Kayombo et al. 1212p (MO), Tanzania; Fay, J. M. 5523 (MO), Central African Republic; John M. Fay 7015 (MO), Central African Republic; R. E. Gereau et al. 5837 (MO), Tanzania; Ampelocissus acapulcensis (Kunth) Planch., C. A. Purpus 9056p (GH), Mexico; C. G. Pringle 8503 (A), Mexico; Edward Palmer 364 (GH), Mexico; Paul C. Standley 21982 (NY), El Salvador; Rafael Torres C. et al. 5476s (GH), Mexico; Ampelocissus acetosa (F. Muell.) Planch., L. J. Brass 900 (A), Papua New Guinea; L. J. Brass 8647p (A), Papua New Guinea; N. Duke s. n.s (A), Australia; P. Martensz AE732 (MO), Australia; Ampelocissus africana (Lour.) Merr., C. J. Kayombo 2229s (MO), Tanzania; I. H. Patel & J. L. Balaka 4338 (NY), Malawi; I. H. Patel & K. Kaunda 4237 (NY), Malawi; M. Reekmans 2931p (MO), Burundi; Ampelocissus barbata Planch., D. J. Middleton et al. 1325s (A), Thailand; R. W. Squires 912p (A, MO), Vietnam; Ampelocissus botryostachys Planch., M. Ramos 48106s (NY), Philippines; M. Ramos & G. Edano 75175p (NY), Philippinnes; Ampelocissus erdvendbergiana Planch., C. A. Purpus 8418 (NY), Mexico; E. Matuda 3201s (A, NY), Mexico; Edward Palmer 331 (MO), Mexico; O. Tellez 2362 (MO), Mexico; W. E. Harmon 2292p (MO), Guatemala; Ampelocissus javalensis (Seem.) W. D. Stevens & A. Pool, G. Gallardo 207 (MO), Costa Rica; M. H. Grayum & G. Schatz 5282ps (MO), Costa Rica; Michael Grayum et al. 4377 (MO), Costa Rica; Ampelocissus latifolia (Roxb.) Planch., Allam s. n.p (GH), s. n.; H. Kanai & G. Murata 2970 (A), Eastern India; R. R. Stewart 11143s (NY), India; R. R. Stewart 15046 (NY), Northwestern Himalaya; Ampelocissus ochracea Merr., Arsat 1061 (NY), Borneo; G. E. Edano 1686p (A), Philippines; J. H. Beaman 10316s (GH, MO), Malaysia; Ampelocissus robinsonii Planch., Bro. Alain H. Liogier 11457 (NY), Dominican Republic; J. G. Jack 5441s (A), Cuba; N. L. Britton & A. Hollick 2767 (NY), Jamaica; R. A. & E. S. Howard 8159p (GH), Dominican Republic; R. A. & E. S. Howard 8430 (GH), Dominican Republic; T. Zanoni et al. 37775 (NY), Republica Dominicana; Ampelopsis arborea (L.) Koehne, I. Chen 7 (FLAS), US; I. Chen 9 (FLAS), US; I. Chen 19p (FLAS), US; I. Chen 59s (FLAS), US; Ampelopsis cantoniensis (Hook. & Arn.) Planch., Chen Shao Qing 16697 (IBY), China; I. Chen 28p (TAIF), Taiwan; Shi Guo Liang 15365 (IBSC), China; T. Y. A. Yang et al. 15109 (HAST), Taiwan; Wang Xue Wen & Zhang Gui Cai 8073s (IBSC), China; Wei Zhao Fen 127705 (IBSC), China; Wen-Pen Leu et al. 1992 (HAST), Taiwan; Ampelopsis cordata Michx., A. Gholson Jr. 6431s (FLAS), US; I. Chen 11 (FLAS), US; R. Dale Thomas 18870p (FLAS), US; Ampelopsis delavayana Planch. ex Franch., Jin 9048 (CDBI), China; Tang & Liu 9884 (CDBI), China; Tang & Lui 9886p (CDBI), China; Wang Wen Hua 3510s (CDBI), China; Ampelopsis glandulosa (Wall.) Momiyama, I. Chen 25 (TAIF), Taiwan; I. Chen 32 (TAIF), Taiwan; I. Chen 46 (TAIF), Taiwan; I. Chen 48ps (TAIF), Taiwan; Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, Cao Ya Ling & He Yong Hua 87-18s (CDBI), China; Huang Wen Cai & Xie Chong Yuan 3729 (IBSC), Guangxi; I. Chen 89p (TAIF), China; Li Chao Luan 003 (CDBI), China; Wang Gong Fan 1-0222 (TAIF), China; Cayratia cardiophylla Jackes, B. Hyland 21109V (JCT), Australia; E. M. Jackes s. n.s (JCT), Australia; H. Hopkins s. n. (JCT), Papua New Guinea; J. R. Clarkson 3951 (JCT), Australia; N. Duke s. n.p (JCT), Australia; Cayratia geniculata Gagnep., I. Chen 541 (SING), Singapore; I. Chen 551 (TAIF), Malaysia; M. Ramos 1115s (US), Philippines; M. Ramos & G. Edano 40597p (US), Philippines; Cayratia japonica (Thunb.) Gagnep., I. Chen 26 (TAIF), Taiwan; I. Chen 45ps (TAIF), Taiwan; I. Chen 123 (TAIF), China; I. Chen 523 (TAIF), Australia; Cayratia maritima Jackes, B. R. Jackes s. n. (JCT), Australia; I. Chen 531s (TAIF), Australia; I. Chen 538p (TAIF), Singapore; Cayratia oligocarpa Gagnep., H. F. Chin 70534 (IBY), China; S. S. Sin 21509p (IBSC), China; Wang De Zhen 789 (IBSC), China; Zhou Hong Fu 26434s (IBSC), China; Cayratia trifolia (L.) Domin, B. R. Jackes s. n. (JCT), Australia; I. Chen 110 (TAIF), China; I. Chen 116p (TAIF), China; I. Chen 119s (TAIF), China; M. O. Rankin 1746 (JCT), Australia; Cayratia triternata (Baker) Desc., H. Jacquemin H343J (P), Madagascar; J. Bosser 19036p (P), Madagascar;

PAGE 266

, J. M. Hildebrandt 2962s (P), Madagascar; M. Boivin 2110 (P), Madagascar; Marion Nicoll 375 (P), Madagascar; Cissus alata Jacq., S. Mori & J. Kallunki 1786s (US), Panama; W. H. Lewis et al. 1544p (US), Panama; Cissus antarctica Vent., B. R. Jackes s. n.ps (JCT), Australia; F. McKenzie s. n. (JCT), Australia; I. Chen 533 (TAIF), Australia; J. B. Williams s. n. (JCT), Australia; Cissus assamica (M.A. Lawson) Craib, C. J. Saldanha 15415p (US), India; Huang Zhi 40054 (IBY), China; J. F. Rock 777s (US), Myanmar; T. Y. A. Yang 08749 (TAIF), Taiwan; Cissus biformifolia Standl., Alexander F. Skutch 2812p (US), Costa Rica; Paul C. Standley 55108 (US), Honduras; R. W. Lent 2326s (US), Costa Rica; Cissus campestris (Baker) Planch., F. C. A. Oliverira et al. 271s (US), Brazil; G. T. Prance et al. 24775 (US), Brazil; T. S. Filgueiras & D. Alvarenga 1586p (US), Brazil; Cissus cornifolia Planch., Dr. Edgar A. Mearns 3068p (US), Africa; E. A. Mearns 3007s (US), Uganda; H. J. Schlieben 7370 (US), South Africa; Cissus descoingsii Lombardi, S. Mori & J. Kallunki 5172p (US), Panama; W. Burger & Guillermo Matta U. 4712s (US), Costa Rica; Cissus fuliginea Kunth, Mr. & Mrs. J. N. Rose 21782 (US), Venezuela; Nee 7647p (US), Panama; P. H. Allen 5450s (US), Costa Rica; Cissus granulosa Ruiz & Pav., J. Francis Macbride 3726s (US), Peru; Octavio Vedarde Nunez 3439p (US), Peru; Ruiz s. n. (US), Peru; Cissus hypoglauca A. Gray, B. R. Jackes s. n.s (JCT), Australia; F. M. Bailey s. n. (US), Australia; F. Mueller s. n. (US), Australia; G. Crowley s. n.p (JCT), Australia; I. Chen 524 (TAIF), Australia; Cissus mirabilis (Urb. & Ekman) Lombardi, E. L. Ekman 4809ps (US), Haiti; E. L. Ekman 14412 (US), Dominican Republic; Cissus obovata Vahl, A. H. Curtiss 193 (US), Bahamas; David Fairchild 2558 (US), Bahamas; E. C. Leonard 4263s (US), Haiti; E. L. Ekman 1035p (US), Haiti; P. Acevedo-Rdgz. 10861 (US), Puerto Rico; P. Acevedo-Rdgz. 11708 (US), Puerto Rico; P. Acevedo-Rdgz. 13463 (US), Puerto Rico; Cissus palmata Poir., A. Charpin & U. Esleuche AC 20375p (US), Argentina; T. M. Pedersen 3721s (US), Argentina; Cissus paullinifolia Vell., G. Hatschbach 13384p (US), Brazil; G. Hatschbach 28612 (US), Brazil; P. Dusen 12045 (US), Brazil; R. Klein 1770s (US), Brazil; Cissus penninervis (F. Muell.) Planch., B. Jackes 8613 (JCT), Australia; B. R. Jackes s. n.ps (JCT), Australia; I. Chen 526 (TAIF), Australia; Cissus quadrangularis L., B. C. Kundu & N. Balakrishnan 367p (US), Ceylon; F. G. Meyer 7589 (US), Ethiopia; Herb. Wight. propr. 423s (US), India; Cissus reniformis Domin, C. Dunlop & D. Jones s. n. (JCT), Australia; C. R. Dunlop 4627 (JCT), Australia; I. Chen 517s (TAIF), Australia; M. O. Rankin 1270p (JCT), Australia; Cissus simsiana Schult. & Schult. f., Doris Cochran s. n. (US), Brazil; G. Hatschbach & J. M. Silva 49092s (US), Brazil; R. M. Harley 16365p (US), Brazil; Cissus sterculiifolia (Benth.) Planch., B. R. Jackes s. n.ps (JCT), Australia; I. Chen 525 (TAIF), Australia; L. J. Brass 33746 (BRI), Australia; P. Grimshaw G330 (BRI), Australia; R. W. Lockyer s. n. (BRI), Australia; S. P. Phillips 781 (BRI), Australia; Cissus striata spp. argentina (Suess.) Lombardi, A. Kegler 493 (US), Brazil; G. Eatschbach 15491 (US), Brazil; M. Nee & I. Vargas C. 38275p (US), Bolivia; O. S. Ribas & V. Nicolack 303s (US), Brazil; R. Wasum & N. Bastos 8029 (US), Brazil; S. Venturi s. n. (US), Brazil; Cissus trianae Planch., Alexander F. Skutch 3252p (US), Costa Rica; J. Cuatrecasas 8711s (US), Colombia; M. E. Davidson 248 (US), Panama; Paul C. Standley 42791 (US), Costa Rica; Paul C. Standley & Juvenal Valerio 50170 (US), Costa Rica; Plantae mexicanae Liebmann 1231 (US), Mexico; Cissus verticillata (L.) Nicolson & C. E. Jarvis, I. Chen 18 (FLAS), US; I. Chen 38ps (TAIF), Taiwan-not native; Clematicissus angustissima (F. Muell.) Planch., E. M. Jackes s. n.ps (BRI), Australia; Clematicissus opaca (F. Muell.) Jackes & Rossetto, B. R. Jackes s. n.s (JCT), Australia; E. M. Jackes s. n. (JCT), Australia; Fell, D. G. DF0856 (JCT), Australia; I. Chen 518 (TAIF), Australia; J. Wieneke s. n. (JCT), Australia; Cyphostemma adenocaule (Steud. ex A. Rich.) Desc. ex Wild & R. B. Drumm., I. Friis et al. 7987ps (US), Ethiopia; Cyphostemma buchananii (Planch.) Desc. ex Wild & R. B. Drumm., R. B. Faden et al. 521ps (US), Kenya; Cyphostemma hereroense (Schinz) Desc. ex Wild & R. B. Drumm., R. Seydel 2623p (US), Africa; R. Seydel 4215as (US), Namibia; Cyphostemma junceum (Webb) Desc. ex Wild & R. B. Drumm., A. Meurillon 861s (P), Cameroon; A. Raynal 13315p (P), Cameroon; Dr. G. Scweinfurth 1268 (P), Sudan; H. Jacques-Felix 3986 (P), Cameroon; H. Jacques-Felix 4323 (P), Africa; Cyphostemma lageniflorum (Gilg & Brandt) Desc., C. H. S. Kabuye et al. 635s (US), Kenya; F. J. Breteler 7041p (US), Africa; Cyphostemma laza Desc., B. Descoings 2225 (P), Madagascar; J. Bosser 10463 (P), Madagascar; J. Leandri & Ratoto Jean De Dieu 3771p (P), Madagascar; P. B. Philipson 2476s (P), Madagascar; Cyphostemma microdiptera (Baker) Desc., Don de M. Baillon s. n. (P), Madagascar; P. J. Rakotomalaza et al. 1186p (P), Madagascar; R. Decary 17158s (P), Madagascar; Cyphostemma odontadenium (Gilg) Desc., S. A. Rovertson 6710ps (US), Kenya; Cyphostemma paucidentatum (Klotzsch) Desc. ex Wild & R. B. Drumm., J. Frazier 942 (US), Africa; J. Frazier 1139s (US), Tanzania; Jack Frazier 1025p (US), Africa; Cyphostemma setosum (Roxb.) Alston, Bernardi 14299s (US), Ceylon; M. Jayasuriya et al. 608p (US), Ceylon; R. G. Cooray 70032517R (US), Ceylon; Leea guineensis G. Don, I. Chen 44ps (TAIF), Taiwan; Leea tetramera B. L. Burtt, R. Schodde and L.

PAGE 267

Craven 4114p (A), Papua New Guinea; T. C. Whitmore 6226s (A), Solomon Island; Nothocissus spicifera (Griff.) Latiff, Communicat. Ex Herbario Lugduno-Batavo s. n. (NY), s. n.; H. N. Ridley s. n.p (SING), Singapore; H. O. Forbes 2831s (US), Sumatra; I. Chen 544 (SING), Singapore; I. Chen 554 (TAIF), Malaysia; J. F. Maxwell 81-162 (SING), Singapore; M. Shah et al. MS4128 (SING), Singapore; Mohd Kasim 1108 (UKMB), Malaysia; Parthenocissus dalzielii Gagnep., Ching-I Peng 11002 (HAST), Taiwan; I. Chen 33p (TAIF), Taiwan; I. Chen 47 (TAIF), Taiwan; I. Chen 99 (TAIF), China; Nan Ling Dui 1572s (IBSC), China; Parthenocissus laetevirens Rehder, I. Chen 82 (TAIF), China; I. Chen 100 (TAIF), China; Ma Xi Peng 53495s (IBSC), China; Z. Y. Yang 308p (IBSC), China; Parthenocissus quinquefolia (L.) Planch., I. Chen 1 (FLAS), US; I. Chen 8 (FLAS), US; I. Chen 16p (FLAS), US; I. Chen 20 (FLAS), US; I. Chen 204s (FLAS), US; Parthenocissus vitacea (Knerr) Hitchc., H. Walton Clark 1898 (US), US; J. C. Blumer 1289s (US), US; Robert F. Thorne 17406p (US), US; Virginius H. Chase 9672 (US), US; Pterisanthes cissioides Blume, J. Agama 1117ps (US), Borneo; Pterisanthes polita (Miq.) M. A. Lawson, A..R 3001 (SING), Malaysia; I. Chen 552p (TAIF), Malaysia; J. F. Maxwell 82-283 (IBSC), Singapore; J. Sinclair 10380s (US), Sarawak; Rhoicissus digitata (L. f.) Gilg & Brandt, H. Rudatis 1498p (US), South Africa; H. S. Gentry & A. S. Barclay 19134 (US), South Africa; R.D.A. Bayliss 1615s (US), South Africa; Rhoicissus tridentata (L.f.) Wild & R. B. Drumm., H. J. Schlieben 7804 (US), South Africa; M. E. Mathias & D. Taylor 142s (US), Tanzania; M. E. Mathias & D. Taylor A116 (US), Tanzania; R. L. Piemeisel, L. W. Kephart 26 (US), Kenya; William Burger 3117p (US), Ethiopia; Tetrastigma bioritsense (Hayata) Hsu & Kuoh, A. Henry 104s (US), Taiwan; Ching-I Peng 5379p (HAST), Taiwan; I. Chen 22 (TAIF), Taiwan; I. Chen 40 (TAIF), Taiwan; Pi-Fong Lu 6011 (TAIF), Taiwan; Tetrastigma obtectum Planch. ex Franch., Gao 4616 (CDBI), China; Liao Guo Sheng C0460p (SYS), China; S. W. Teng 90378 (HAST), China; Sichuan survey 51995s (SYS), China; Tetrastigma planicaule Gagnep., Chen Huan Yong 6465 (IBSC), China; I. Chen 103 (TAIF), China; I. Chen 105 (TAIF), China; Li Qi Yi 0202 (SYS), China; P. Tsang 120694s (SYS), China; S. H. Chun 12089 (IBSC), China; Zuo 26070p (IBY), China; Tetrastigma rumicispermum (M. A. Lawson) Planch., H. T. Tsai 60421s (IBSC), China; Liao Guo Sheng 1802 (SYS), China; Mao Pin Yi 02442 (IBSC), China; Mao Pin Yi 4161p (IBSC), China; Wang Xin Nian 745 (IBY), China; Zhang Hong Da 1622 (IBSC), China; Tetrastigma serrulatum Planch., D. H. Nicolson 2387 (US), Nepal; D. H. Nicolson 2939 (US), Nepal; F. Ducloux 165p (IBSC), China; Gao et al. 4287 (CDBI), China; J. F. Rock 16618 (US), China; Xu Guo Hong 25804 (CDBI), China; Yue Qing Sheng & Mou Ke Hua 5734s (CDBI), China; Zhao & Liu 7802 (CDBI), China; Vitis aestivalis Michx., I. Chen 10p (FLAS), US; I. Chen 12 (FLAS), US; I. Chen 21 (FLAS), US; I. Chen 60s (FLAS), US; S. R. Manchester s. n. (FLAS), US; Vitis betulifolia Diels & Gilg, Qiu Bing Yun 51665 (IBSC), China; s. n. 002634 (CDBI), China; Sichuan survey 51693s (SYS), China; Wu Ling 21 (IBSC), China; Zhang Ze Rong 25246p (IBSC), China; Vitis flexuosa Thunb., An Ming Tai 5199s (TAIF), China; Chun-Chi Wu et al. 673p (HAST), Taiwan; Tsai Guo Dong 91 (IBSC), China; Vitis piasezkii Maxim., Kuang Li Hui 28 (IBSC), China; Li & Kuang 896p (TAIF), China; s. n. 0929s (CDBI), China; Z. Y. Yang 514 (IBSC), China; Vitis rotundifolia Michx., I. Chen 2 (FLAS), US; I. Chen 3p (FLAS), US; I. Chen 56 (FLAS), US; I. Chen 61 (FLAS), US; I. Chen 577s (FLAS), US; Vitis tsoi Merr., Dunn 2499p (IBSC), China; Yue Qi Si 4598 (IBSC), China; Zhang Gui Cai 306s (IBSC), China; Zuo Jing Lie 20347 (IBSC), China; Vitis vinifera L., Park Bo-youn s. n. (HAST), Korea; s. n. 156 (IBSC), China; s. n. 84-1333s (IBSC), China; Yang Xiang Xue 11272p (IBSC), China; Yua austro-orientalis (F. P. Metcalf) C. L. Li, C. Wang 31203 (IBSC), China; Lu Qing Hua 3236p (IBSC), China; S. K. Lau 2487 (SYS), China; S. P. Ko 50800s (IBSC), China; Yua chinensis C. L. Li, Chen 2424p (CDBI), China; Hsiung et al. 31564 (IBSC), China; Peng Ding Yi 46098s (IBSC), China; Qu Qui Ling 2686 (IBSC), China.

PAGE 268

268 APPENDIX C MORPHOLOGICAL CHARACTERS AND CHARACTER STATES USED IN THE CLADISTIC ANALYSES OF VITACEAE All absence/presence characters were sc ored as present if observed, regardless of frequency. Consulted from specimens labels or literature when characters poorly preserved on herbarial sheets. Continuous char acters. #Meristic character. Size characters, natural logarithm transformed in GW method. General growth (Characters 1-4) 1. Growth habit: (0) lianas or vi nes (1) erect herbs or shrubs or caudiform trees. Taxa with rigorous seasonal growth produce many unlignified branches and old branches were not always observed. Therefore, for character coding, vines are not distinguished from lianas. 2. Old branches flattened: (0) absent; (1) present. 3. Stem shape in transverse section tetra-, penta, or hexagonal: (0) absen t; (1) present. When angular stems present in succulent species, the shape persists when the stem becomes woody, and the character is uniform in the same speci es. Angular stems can occur in non-succulent species, and this feature was used for species identification within Ampelopsis and Parthenocissus (Li, 1998). When angular stems occur in Ampelopsis or Parthenocissus, the shape does not persist in enla rged woody stems, and variati on within individuals exists. 4. Stem succulent: (0) absent; (1) present. Phyllotaxy (Character 5) 5. Phyllotaxy: (0) tendril interr upted in three-node m odularity; (1) tendril not interrupted; (2) no tendril; (3) tendril interrupt ed in two-node modularity. Tendril morphology (Characters 6-9)

PAGE 269

269 6. Tendril organization: (0) monochasium; (1) umbe l; (2) simple. An unbranched tendril with a bract-like structure in the middle is considered as having a monochasi al organization. See Discussion of Chapter 2 (p.103). 7. Tendril maximum arm number#: (0) one, two, or three; (1) four or more. Tendril arm number sometimes varies in the same individua l. Tendril arm number was observed from all available specimens of the same terminal taxon and the most common number was scored. State (1) is common in Parthenocissus. 8. Young tendril tip swollen or discoi d: (0) absent; (1) present. 9. Mature tendril tip with suction pad: (0) absent; (1) present. Stipule morphology (Characters 10-13) Characters regarding stipule shape and size (c haracter 11-13) were scored from the fully exposed stipules in the devel oping shoot apices, which are usually at least 3-5 nodes below the shoot apcies. 10. Stipule deciduousness: (0) caducous; (1) pers isting until flowering; (2) persisting until fruiting. The character was scored as state (1)/ (2) if stipules are pres ent in the nodes producing inflorescences with open flowers/infru ctescences with mature fruits. 11. Stipule apex shape: (0) rounded; (1) triangular or pointed. Ob served from stipules at the shoot apex. 12. Stipule base shape: (0) not cordate or lobate; (1 ) cordate or lobate. Observed from stipules at the shoot apex. Cordate or lobate stipul es were observed in some species of Cissus 13. Stipule length : (0) < 2.2 mm; (1) 2.2 mm. Scored from the average of three stipules from the same or different shoot. Most Vitis and Ampelopsis have state (0). Leaf morphology (Characters 14-26)

PAGE 270

270 14. Leaf form: (0) simple; (1) palmately com pound; (2) pedately compound; (3) pinnately compound. Most common condition of mature leaves was scored. 15. Petiole to blade length ratio: (0) less than 1; (1) equal or more than 1; (2) leaf sessile. Most species of Parthenocissus have long petioles. Sess ile leaves occur in some Cyphostemma 16. Secondary vein number#: (0) 6 pairs or less; (1) 7 pairs or more. Usually less than 6 regardless leaf type. 17. Secondary veins to the teeth: (0) straight or bent ending in the teeth; (1) looped, branched and joining other secondary ve ins, not ending in the teeth. 18. Tertiary vein type: (0) oppos ite or mixed opposite/alternate percurrent; (1) alternate percurrent; (2) random or regular polygonal reticulate. Te rtiary veins are more closely spaced in state (0) than in state (1). 19. Teeth density#: (0) absent or rarely 1 or 2 teeth present in the whol e leaf (raw value < 2); (1) 0-2 tooth between two secondary veins (raw va lue 2-8); (2) 2 or more between two secondary veins (raw value 8). A typical grape leaf has every s econdary vein ending in a tooth. When scoring raw data for GW coding, the teeth numbe r was counted between two secondary veins, including the two teeth in which the two secondary veins end. A leaf without teeth was counted as zero. Two sets of such counting were made from the same leaf, and the two numbers were sumed as the raw data. Counting was made from three leaves and averaged. In palmate or pedate leaves I counted from the outer margin of the lateral leaflets. State (1) is prevalent in sampled taxa. Leaves with entire margin s are very rare. The simple leaf of Ampelocissus tends to have a densely serrate margin, i.e., state (2). 20. Tooth shape: (0) convex or concave; (1) straight. 21. Tooth sinus shape: (0) angular; (1 ) round. Typical condition is angular.

PAGE 271

271 22. Tooth length : (0) < 1 mm; (1) 1 mm. The distance from toot h apex to the sinus on the apical side was measured. T eeth from five randonly chosen matu re leaves were averaged. Leaves of Cissus mostly have state (0). 23. Tooth sinus angl e: (0) < 65; (1) 65. If leaf teeth sinus is round I measured the angle formed between the 2 tooth apic es and the lowest point of si nus; teeth from five randomly chosen leaves were averaged. Most Cissus have state (0). 24. Leaf glaucous: (0) absent; (1) present. On ly leaves with obvious whitish surface preserved on dry specimens were scored as present. 25. Pocket-shaped domatia on leaf abaxial su rface: (0) absent; (1) present. In Ampelopsis the pocket-shaped domatia are not as prominent as those of Australian Cissus and the condition varies among individuals. 26. Tuft of dense uniseriate hair on the joints of major veins on l eaf abaxial surfac e: (0) absent; (1) present. Hair (Characters 27-30) Hair characters were scored from any part of the whole plant; as long as observed, scored as present. 27. Uniseriate hair: (0) absent; (1) present. 28. Arachnoid hair: (0) absent; (1) pres ent. If present then always also present in shoot apex, can be lost or denser when organs are old. 29. 2-armed hair: (0) ab sent; (1) present. 30. Multiseriate hair: (0) absent; (1) present. Sexuality (Character 31) 31. Plant dioecious: (0) ab sent; (1) present.

PAGE 272

272 Inflorescence-branch morphology (Characters 32-41) Characters 32-41 were scored from br anches that bore open flowers. For Vitis and Tetrastigma, characters were scored fr om staminate inflorescences. 32. Tendril in inflorescence-branch: (0) absent; (1) presen t. Species of Ampelocissus and Ampelopsis sometimes have the upper part of the inflorescence a borted but the inflorescencetendril is well developed and resembles a tendri l; or the inflorescence -axes are reduced and resemble an intermediate form of inflores cence and tendril. These conditions were not considered as state (1). 33. Developing shoot apex remained on inflorescencebranch at anthesis: (0) absent; (1) present. In Cayratia and Cyphostemma some species have both states on the same specimens or in the same species. They were coded as present. 34. Number of nodes produced in one inflorescenc e-branch: (0) more than three; (1) two or three. When more than three nodes, node number varies greatly; however, state (0) and state (1) can be distinguished easily. 35. Inflorescence-branch internode length at anthesis: (0 ) not shorter; (1) s horter; compared to the vegetative-branch. 36. Inflorescence-branch first internode usually shor ter than other internodes in the same branch: (0) absent; (1) present. More commonly observed in Vitis and Parthenocissus Species with large leaves or inflorescence like Ampelocissus frequently do not have th is character available on the herbarial sheet. 37. Compressed inflorescence-branch second inter node: (0) absent; (1) pres ent. When present the first node appears to have a pa ir of opposite leaves, stipules, or stipule scars. In observed C.

PAGE 273

273 laza the inflorescences are either at the first or the second node. The preserved condition did not show the character clearly hence coded "?". 38. Leaves in inflorescence-branch: (0) frequently missing; (1) present. 39. The lowest node with an inflorescence in an inflorescence-branch: (0) any unspecific basal node; (1) strictly from second node; (2) higher than 5th node. 40. Number of inflorescences produced in one br anch: (0) more than 4; (1) 1; (2) 2 to 4. 41. Inflorescence-branch terminal node with tw o inflorescences and one leaf: (0) absent; (1) present. Inflorescence morphology (Characters 42-53) Inflorescence morphology was measured from the mature inflorescences at anthesis stage. 42. Inflorescence length : (0) 10 cm; (1) > 10 cm. Length of the whole inflorescence was measured starting from the node, excluding free e nd inflorescence-tendril arm. Two to three inflorescences were averaged for eac h terminal taxa. Most species of Ampelocissus have large inflorescences. 43. Inflorescence-tendril organization: (0) differe nt from tendril organization; (1) monochasial with two to three arms; (2) monochasial with f our or more arms; (3) umbellate. See terminology in Chapter 2 (p. 81) for the explanation of this character. 44. Inflorescence-tendrils with a free end(s): (0) absent; (1) present. When present in Ampelocissus this character is not variable among/with in individuals. When observed in other taxa, the condition is variable a nd the common condition is absent. 45. Inflorescence-tendrils twining: (0) absent; (1) present.

PAGE 274

274 46. Inflorescence-first-axis branching organization: (0) umbel; (1) di -, tri-, or tetra-chasium; (2) racemose; (3) bifurcate or multi-chasium. St ate (3) refers to the uncertain condition of C. junceum (see Discussion of Chapter 2, p. 117). 47. Inflorescence-first-axis length: (0) very short (0-2 mm); (1) not short ( > 4mm). 48. Inflorescence-second-axis bran ching organization: (0) umbel; (1) dior tri-chasium; (2) racemose. Acareosperma was scored as an umbel for char acter 48 and 50 because the central flower was not present but both an umbel and di or tri-chasium could be the true condition. 49. Inflorescence-terminal-axis branching pattern: (0) umbel; (1) dichasium; (2) double cincinus; (3) spiral. 50. Inflorescence-axis branching order number#: (0 ) one or not branched; (1) two to three; (2) four or more. Cayratia and Cyphostemma have state (2). 51. Inflorescence-axis cymoid branching order number: (0) absent; (1) one; (2) equal to inflorescence-axis branching order number. 52. Inflorescence-axis shape: (0) terete; (1) laminar. 53. Floral pedicel length : (0) sessile ( = 0); (1) 2 mm; (2) > 2 mm. Measured from herbarial sheet. Average of 5 pedicels for each terminal taxa. Ampelocissus mostly has state (1). The floral pedicels of Acareosperma were not preserved, however, the fruit pedicels are 1 cm long. It was assumed that the floral pedi cels are more than 2mm long a nd coded state (2) in discrete coding, and coded "?" in GW method. Floral morphology (Characters 54-70) Continuous floral characters were measured from 2-3 boiled open and intact flowers, scoring the average of three organs. Staminate/ca rpellate floral characters were measured from staminate/pistillate flowers if the plant is dioecious. Filaments are usually shorter and sometimes

PAGE 275

275 bent in bud, and longer when flower opened. St yles usually become longer after the flowers have lost petals and stamens. 54. Floral merosity: (0) mostly four; (1) mostly five, six or seven. V. rotundifolia frequently have 6or 7-merous flowers. 55. Petal adnate to disc: (0 ) absent; (1) present. 56. Flower bud apex lobed: (0) absent; (1) present. 57. Petal red color: (0) absent; (1 ) present. State (0) is equal to petal greenish or yellowish white. Bright pink, fuchsia, crimson, maroon were c onsidered as red. Red color in a petal varies from the entire petal to only red at apex or marg in; as long as the red colo r is present at any part of petal, it was coded as state (1). 58. Hair on petal outer surface: (0) absent; (1) present. 59. Petals united to calyptra: (0) absent; (1) present. 60. Filament to petal length ratio: (0) < 0.9; (1) 0.9. Filaments of male Vitis flower are usually longer than peta l at anthesis ( > 0.9). 61. Anther to petal length ratio: (0) < 0.4; (1) 0.4. Parthenocissus have large anthers ( > 0.4). 62. Disk margin: (0) grooved at f ilament; (1) dissected deeply to ovary at filament; (2) with one extra groove between filaments. State (0) is typical in vitaceous flowers. State (1) was mostly observed in Cyphostemma ; the dissected disk resembles four separate glands. State (2) is common in Ampelocissus 63. Disk rim: (0) unseparable from the ovary; (1) angular or pressed tightly against the ovary; (2) disc rim higher than the inner part of disc (> 0.1 mm) and not touching th e ovary. State (0) is common in Parthenocissus. Most sampled taxa have state (1).

PAGE 276

276 64. Ovary hair: (0) absent; (1) present. Uniseriate hairs ar e the only hair type observed on the outer surface of the ovary. Common in Cyphostemma 65. Stigma shape: (0) truncate or capitate; (1) lobed. 66. Disk to carpel high ratio: (0) < 0.25; (1) 0.25-0.4; (2) > 0.4. Stat e (0) occurs in most Vitis and Tetrastigma State (2) is common in Ampelocissus. Very large value in Leea tetramera. 67. disc height to diamet er ratio: (0) < 0.5; (1) 0.5. State (1) occurs in Yua and most Parthenocissus. The value is very large in Leea tetramera 68. Style width to length ratio: (0) < 0.8; (1) 0.8. Ampelocissus, Nothocissus Pterisanthes and some species of Tetrastigma have state (1). 69. Style to carpel length ratio: (0) < 0.43; (1) 0.43. Ampelocissus and most species of Tetrastigma have state (0). 70. Style base width to disk di ameter ratio: (0) < 0.3; (1) 0.3. Ampelocissus and Vitis have state (0). Pollen morphology (Characters 71-73) Pollen characters were measured from the average of 10 random pollen grains of two to three boiled open flowers. 71. Pollen size : (0) < 30 m; (1) 30 m. Pollen size is measured as either the equatorial diameter or the polar axis whichever is larger. Vitis Ampelocissus Pterisanthes and Tetrastigma have state (0). Other genera mostly have state (1). 72. Pollen E/P ratio: (0) < 1; (1) 1. Equatorial diameter to polar axis ratio. Ampelopsis and most Cissus have state (0). Ampelocissus mostly have state (1). 73. Maximum lumen diameter : (0) < 0.7 m; (1) 0.7 m. Measure the diameter of largest lumen of pit or reticulum on the pollen surface. Rhoicissus, Tetrastigma, Vitis Pterisanthes and

PAGE 277

277 most species of Ampelocissus have state (0). Parthenocissus have state (1). Leea tetramera has very large lumen (5.05 m). Fruit morphology (Characters 74-80) 74. Lenticels on fruit pedicel: (0) absent; (1) present. 75. Seed number per fruit: (0) 1; (1) 1 or 2; (2) 1 to 4; (3) 6 to 9. The character was observed from 1-3 boiled fruits, the dry fruits on the herb arium sheets, and also consulted literatures. Cissus sterculiifolia was reported to have 1-2(-3)-seeded fruits (Jackes, 1988b). In this study only 1-2-seeded fruits were observed so C. sterculiifolia was scored state (1). 76. Fruit shape: (0) globose or compressed globose; (1) ellipsoid or fusiform. Observed from 1-3 boiled fruits. The fruit shape does not change a lot when dry. 77. Fruit skin color: (0) dark purple; (1) yellow, orange, red, or green; (2) iridescent blue. State (2) was only observed in some Ampelopsis species. 78. Lenticel density on fruit surface#: (0) not dense (< 25); (1) dense ( 25). Number of lenticels was counted from half surface of one berry; value was counted from 1-3 boiled fruits and averaged. All species of Ampelopsis have state (1). 79. Hair on fruit surface: (0)absent; (1) present. 80. Stomata on fruit surface: (0) absent; (1) present. Present in some Cayratia Cyphostemma and Tetrastigma Seed morphology (Characters 81-137) Definition and the delimitation of all seed characters were described in Chapter 1. 81. Seed max length : (0) < 7 mm; (1) 7 mm. 82. Seed width/length ratio: (0) < 0.6; (1) 0.6. 83. Seed apex to widest part: (0) < 0.5; (1) 0.5.

PAGE 278

278 84. Apical notch depth: (0) < 0.05; (1) 0.05. 85. Apical notch angle: (0) < 60; (1) 60. 86. Beak length: (0) < 0.1; (1) 0.1. 87. Beak angle: (0) < 80; (1) 80. 88. vi circularity: (0) < 0.4; (1) 0.4. 89. vi length: (0) < 0.6; (1) 0.6. 90. vi apex to widest part: (0) < 0.4; (1) 0.4. 91. vi space at the apex: (0) < 0.5; (1) 0.5. 92. vi space at the middle: (0) < 0.35; (1) 0.35. 93. vi space at the base: (0) < 0.15; (1) 0.15. 94. vi space base to middle ratio: (0) < 1; (1) 1. 95. vi divergence angl e: (0) < 25; (1) 25. 96. vi curve angle: (0) < 180; (1) 180. 97. vi base to beak distance: (0) < 0.2; (1) 0.2. 98. Chalaza circularity: (0) < 0.5; (1) 0.5. 99. Chalaza width: (0) < 0.25; (1) 0.25. 100. Chalaza apex to widest part: (0) < 0.6; (1) 0.6. 101. Chalaza length: (0) < 1.4; (1) 1.4. 102. Chalaza to notch distance: (0) < 0.1; (1) 0.1. 103. Chalaza to beak distance : (0) < 0.1; (1) 0.1-0.4; (2) 0.4. 104. External rugosity: (0) < 0.2; (1) 0.2. 105. Raphe curve angle: (0) < 180; (1) 180. 106. Ruga sinus angl e: (0) < 50; (1) 50.

PAGE 279

279 107. Ruga ridge angle: (0) < 85; (1) 85-155; (2) 155. 108. Apical groove angle: (0) < 150; (1) 150. 109. Base groove angle: (0) < 150; (1) 150. 110. cs high/width ra tio: (0) < 0.9; (1) 0.9. 111. vi rugosity: (0) < 0.26; (1) 0.26. 112. vi thin part ratio: (0) < 0.85; (1) 0.85. 113. vi thin part circularity: (0) < 0.72; (1) 0.72. 114. vi depth: (0) < 0.5; (1) 0.5. 115. vi width: (0) < 0.2; (1) 0.2. 116. Chalaza surface angl e: (0) < 150; (1) 150. 117. Chalaza sunken angle: (0 ) < 30; (1) 30-150; (2) 150. 118. Chalaza thickness : (0) < 0.15; (1) 0.15. 119. Ruga depth/width ra tio: (0) < 1; (1) 1. 120. Endotesta thickness: (0) < 0.03; (1) 0.03. 121. Endotesta max thickness: (0) < 0.15; (1) 0.15. 122. Endotesta thickness at vi: (0) < 0.015; (1) 0.015-0.03; (2) 0.03. 123. Endotesta thickness at chalaza: (0) < 2.5; (1) 2.5. 124. Endotesta thickness at ruga sinu s: (0) < 0.45; (1) 0.45-1; (2) > 1. 125. Endotesta thickness at r uga apex: (0) < 2; (1) 2. 126. Endotesta sclereid width/ length ratio: (0) < 0.4; (1) 0.4. 127. Endotesta sclereid wall thickness : (0) < 6 m; (1) 6 m. 128. Number of endotesta sclere id layers#: (0) < 4; (1) 4. 129. Endotesta sclereid crystals : (0) absent; (1) present.

PAGE 280

280 130. Stomata on sarcotesta: (0) absent; (1) present. 131. Tracheidal cell diameter : (0) < 10 m; (1) 10 m. 132. Number of tracheidal cell layers: (0) tracheidal exotegmen 1 cell thick; (1) 2 cells thick, the 2 layer of cells have different diameter, the difference is more than twice. 133. vi covered by endotesta: (0) absent; (1) present. 134. Ruga whorled: (0) absent; (1) present. 135. One vi: (0) absent; (1) present. 136. vi cavity V-shaped: (0 ) absent; (1) present. 137. Constricted rim on ventral si de: (0) absent; (1) present.

PAGE 281

APPENDIX D DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING

PAGE 282

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010 Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000 Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000 Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000 Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000 Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000 Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000 Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000 Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000 Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000 Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000 Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000 Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000 Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000 Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000 Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000 Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000 Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000 Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001 Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001 Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000 Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000 Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000 Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000 Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000 Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000 Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000 Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000 Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000 Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000 Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000 Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000 Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000 Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000 Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000 Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000 Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000 Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000 Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000 Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000 Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110 100001010012111100101200000010110100000000 Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000 Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000 Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000 100000011101011010001001000000010100000000 Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000 Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000 Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100 100001010111111000101200000010111101000000 Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100 Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000 101100020112110011101200000010010100000000 Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100 1000010101111110001012000000101 01111010000 Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000 Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000 Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000 Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000 Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000 Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000 Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000 Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000 Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000 Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000 Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000 Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000 Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000 Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

PAGE 283

Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000 Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000 Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000 Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000 Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000 Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000 Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000 Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000 Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000 Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010 Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000 Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000 Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000 Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000 Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000 Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000 Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000 Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000 Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000 Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000

PAGE 284

APPENDIX E DATA MATRIX OF THE MORPHOLOGICAL CHARACTERS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 285

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0 c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848 c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66 ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667 c3ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57 r9524r061lrerrd3k1j0rr807416a07 98119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

PAGE 286

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 287

APPENDIX F DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOPSIS ROOSEAE CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 288

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3 ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

PAGE 289

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmf40h1lrrrk82fne4rra0k453a0???????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 290

APPENDIX G DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS TIFFNEYI, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 291

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata spp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3 ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

PAGE 292

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg42pj0lrreg70rhh8rk50617?a02j0????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 293

APPENDIX H DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PALAEOVITIS PARADOXA, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 294

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj232l05ar45g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk232362621m2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc53fd5lca8h71rk8acg815474a01p2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc44f8ck2ghh52rhc5ql533246611b2101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e743lbaldh0012rk540a131110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e6a2le4lffmp12ra4lnl302292911h2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka527j1mrrnl51rf7rrm202263a04r2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmb062e6a02e2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11j2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0192003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn301255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crk903162a03h2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkq54j1lrrmh826qb5rm606215a01g2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjda37l8hgfmd71dn86rm81a722700g2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpk80g1lrpqk77akf3rp406213a01h2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbkeg60n0lrrre72drc4rn504322a04g2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rr804515a03l2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrr815662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl321142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07h711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rl82b7f4818fb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh614552a16jb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58g511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm538562a15pb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk6162f3a09gb116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce234m082cr9rrr2h6g2rr90541aa05jg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740460bfl2d5554rg17fb8335rfr04gb105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr42431561637107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rr94220c724gb104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja544l080lrrrrc2c7h2rr506524a08mb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr403417a07j710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145175b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr502316715b7106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rh9n211f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355460d9l2rr994dm83rl524224701g2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc864h0a3fp7r7f9r3c6rp70232ca04p5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07m2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr405413a18pb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rra24303914jg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a4707gl1rrr568hf2rq432113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq605324a05p2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr302223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6eceher35e4lpgd860rn5alj613214812g2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203j2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr705213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadp60d9l4prr77aj71rdb5210r005p2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915eb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emp38k1lfrrra4lfd8rr302234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3 ml443k1lrrrr60rpe8rr802737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9524r061lrerrd3k1j0rr503416a0797119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr41531480a5b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4774p08dl5rrrf4f5f0rq80a415404jg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rp80851571cml11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca654l0c5lrahrc3r6e0rr204213a1cgb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894654r0a9nerrre3f5h0rl70841571cpl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b4n058pgrrrdak6k0rr301116a0rgb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5634q0a1lplrrder3k0rr609323a08db11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc744n086lmhnre3r5e0rr306322a199b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bbl95rrchr3f0rr705416a26jg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2jg432e01585108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4595n00190rrrm9r0e0r1cr3106005gb10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1543c0024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rra02125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh720k0lrrcr38r9g3rr201024a03g0104000000

PAGE 295

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr302115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lja40j1lrrdh66hdj5rm403127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm502687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm660r1grrlp72rk8hrq4022a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rc835536a03g510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04p7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9g54ael0rrr5mr2j1rk521017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la83hfal6rrr50rf82rr060011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm260116413p201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115117200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgb0a3a4a01g2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm406292a01j5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rka07273a02k2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb41lm1hrrek71rec6hm306290a01g2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg42mb2ler8e76fbc3rl706221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee6ljg5f72rfaalk5162b3800j2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0367003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj628312900m2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr406322a00g2102000000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank55ea0lrrfda2clb7rer0rad3a02gr????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 296

APPENDIX I DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL AMPELOCISSUS WILDEI, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 297

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj332l05ar44g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk233362621h2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb17474a01k2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql63424661192101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a232110a03h0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl403292911e2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm302263a04m2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf082e6a02c2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl5075e1a11f2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj718582a0182003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0180001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd04162a03e2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm809215a01d2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1e722700d2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp608213a01e2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn706322a04d2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb05515a03g2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra17662a01d0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl422142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn403r63a07e711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2f7f4818cb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh815552a16fb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk300643a58d511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73b562a15kb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk9192f3a09db116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0741aa05fg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc335rfr04db105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62631561627107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4320c724db104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr708524a08hb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr604417a07f710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b22145174b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr70331671597106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn311f101d0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl725224701d2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90332ca04k5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq507223a07h2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr506413a18kb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd25303914fg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq533113102h0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq807324a05k2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr503223a03h0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj814214812d2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr907213a01f0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5310r005k2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb07417915cb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr402234502d010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3 ml443k0lrrrr60rpe8rra03737a02h0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr804416a0787119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51731480a4b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0e415404fg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0b51571chl11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr305213a1cdb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90a41571ckl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr301116a0rdb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80c323a08bb11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr408322a198b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr906416a26fg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg632e01575108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr5106005db10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501d0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd03125a03c0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03d0104000000

PAGE 298

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr503115a01d0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm604127a01f0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm703687a03f0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6032a7a01f0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb37536a03d510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4e526a04k7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk721017104h0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr0610113079001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413k201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk3486115116200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr524123901f001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0d3a4a01d2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm608292a01f5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0a273a02g2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm409290a01d2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl908221a00f0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk7182b3800f2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50d4a3a0357003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92a312900h2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr508322a00d2102000000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2k2befef6a8bd733jb5lhkkj12??a6rfe2r8?1a02rr????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 299

APPENDIX J DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL PARTHENOCISSUS CLARNENSIS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 300

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q470n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j551rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc53fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc44f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e743lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e6a2le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka527j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh52ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k891fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe628h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkq54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjda37l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpk80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbkeg60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejlr70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphd30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch734707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6650gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81440f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga440gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk672cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce234m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740460bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb205j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha214j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja544l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa324h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6414g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpn60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355460d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc864h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe335g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9365k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a4707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4204q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1224q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6eceher35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamlg43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadp60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emp38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3 ml443k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9524r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb785m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4774p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6554n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflora 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca654l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894654r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b4n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5634q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc744n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3775m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484454q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4595n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np73kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr530j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh720k0lrrcr38r9g3rr301024a03g0104000000

PAGE 301

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97njb33l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lja40j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc480l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm660r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6c70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9g54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la83hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4675905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj41ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd41ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg52ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb41lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg42mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna52ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc42ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj947g1lrrmr877jf4rr50d322a00g3102000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnm4bf0lrrjjc5r5g4rhb0j452a01j3????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 302

APPENDIX K DATA MATRIX USED IN THE ANALYSIS INCLUDING FOSSIL VITIS MAGNISPERMA, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 303

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj334l05ar45k10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk235362621m3104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7bdkdfaa5ac6kc43fd5lca8h71rk8acgb1b474a01p3104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3h8me9bb56c5fc34f8ck2ghh52rhc5ql636246611b3101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1j2kfbe936f7e733lbaldh0012rk540a233110a03m0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4gekg47864c6e682le3lffmp12ra4lnl405292911h3002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0hgp843585c1ka427j0mrrnl51rf7rrm304263a04r3105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmf0d2e6a02e3101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl50c5e1a11j3002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj71d582a0193003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn401255a0190001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crkd06162a03h3104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qeb7df9ge57mdhkl54j1lrrmh826qb5rm80e215a01g3102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1naer0a8ae8acrjd837l8hgfmd71dn86rmb1p722700g3104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7j76ebdd6fdfjpf80g1lrpqk77akf3rp60d213a01h3003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8fb95fgf5fcbked60n0lrrre72drc4rn70a322a04g3104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rrb09515a03l3105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrra1c662a01g0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl423142a1806105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1e0gf5fc45fdb5449b3crrrr71r300rn405r63a07h811f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rla2r7f4818fe116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh818552a16je11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b8akee44784ca41450e4j73kl21rh7grk301643a58g611f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm73j562a15pe11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk91e2f3a09ge116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1j73e9dl84ce233m082cr9rrr2h6g2rrc0b41aa05jk107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0m9hf66878c740360bfl2d5554rg17fbc365rfr04ge105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr62931561638107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rrc4520c724ge104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3j45d6cf74ja543l080lrrrrc2c7h2rr70d524a08me107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr607417a07j810d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7a57dab638c3214k07r39arrjar3f6rr8b42145175e108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr705316715b8106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rhcn511f101g0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0f1gehjb3ac355360d9l2rr994dm83rl728224701g3002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra59796ef66mc863h0a3fp7r7f9r3c6rp90532ca04p6105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq50b223a07m3106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr50a413a18pe10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rrd29303914jk003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2j1nfg985d719a3707gl1rrr568hf2rq534113102m0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq80b324a05p3106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr504223a03m0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gcada6dab6ecehem35e4lpgd860rn5alj817214812g3108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2c0mfda848c001450cll0jjrd1rda3n01q0013203j3106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr90b213a01j0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1e1fflnh4bcdadk60d9l4prr77aj71rdg5510r005p3005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rrb0c417915ee109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4e3f300004c7emk38k1lfrrra4lfd8rr404234502g010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r9a7k686667c3 ml343k0lrrrr60rpe8rra05737a02m0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6l18e9jg57r9523r061lrerrd3k1j0rr807416a0798119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr51b31480a5e109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0r09fbjf47m4773p08dl5rrrf4f5f0rqb0n415404jk11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rpb0k51571cmr11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4g09f68c84ca653l0c5lrahrc3r6e0rr308213a1cge10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5l0eee9b7894653r0a9nerrre3f5h0rl90h41571cpr11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4f1deahe46g69b3n058pgrrrdak6k0rr302116a0rge019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0p1ce7ca56j5633q0a1lplrrder3k0rr80k323a08de11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0p36f8af84cc743n086lmhnre3r5e0rr40d322a199e119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bal95rrchr3f0rr90a416a26jk11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2rg932e01586108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5h17f47a84c4594n00190rrrm9r0e0r1hr7106005ge10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1544c1024501g0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rrd05125a03e0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22m4legjd4cc4qh620k0lrrcr38r9g3rr301024a03g0104000000

PAGE 304

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr504115a01g0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916c4gelba5m78lj840j1lrrdh66hdj5rm607127a01j0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm705687a03j0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1pmge44684c2mm560r1grrlp72rk8hrq6052a7a01j0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rcb3c536a03g610n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rfl4p526a04p8002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r590led479j55d9d54ael0rrr5mr2j1rk722017104m0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1l1ldjdb4d22la63hfal6rrr50rf82rr061011307a001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm360116413p301q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk34e6115117300k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p6a4demlj5fcj96360cale6rr63jdg2rr527123901j001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgf0n3a4a01g3102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm60e292a01j6102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rke0g273a02k3104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb8a8ea9a68cdnb31lm1hrrek71rec6hm40e290a01g3103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5f4eebcg868bpg32mb2ler8e76fbc3rl90d221a00j0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee5ljg5f72rfaalk71c2b3800j3001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm50m4a3a0368003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj92h312900m3102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr50d322a00g3102000000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?08???a0???????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 305

APPENDIX L DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH GW CODING

PAGE 306

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000006000???20b016008e0001000???1001111?d000010?e20?????????????????????0010210mhlrp5043e67a86c8q460n6al20rr0ra651mj232l05ar44g10q101010 Ampelocissus abyssinica 0000?0300010900701d01bk000110000100?01000q1112120e10d100100ea2100aaj2r9d51111400caj3h5afle57755c6j541rdak5jcg23ra6jgk232362621h2104000000 Ampelocissus acapulcensis 000000d00010a00b01r005h000110000100001000f2112120e10d100100fd210064e6paa21200j00gfh9b7adkdfaa5ac6kc43fd5lca8h71rk8acg815474a01k2104000000 Ampelocissus acetosa 0000106000003209026013g100110000100001000h1112120b10d100100a82100daa6jbe40210j009bj3k3g8me9bb56c5fc34f8ck2ghh52rhc5ql53324661192101000000 Ampelocissus africana 000000600000300901j00gh000010000100001000b1112120b10610010039210095e8m6d21110r00cbk2m1h2kfbe936f7e733lbaldh0012rk540a131110a03h0104000000 Ampelocissus barbata 000000300000100901m00bn000110100100?01000n2112120b10510010086210086e5n4a41211e00aap1m4fekg47864c6e682le4lffmp12ra4lnl302292911e2002000000 Ampelocissus botryostachys 0000000000???109016005c000110000?00?01000q111212360050001006h21009a85l3b21211m00hbc6h0ggp843585c1ka427j1mrrnl51rf7rrm202263a04m2105000000 Ampelocissus erdvendbergiana 000000d00000600701m00gk000110000100001000j2112120h10d100100df211095c4edd11200e007rf9f9agfce995aacrh42ce5lhbjf60rm7crmb062e6a02c2101000000 Ampelocissus javalensis 000000900000100901g005g000110000100001000q2112120h10d100100782100c9f3jde71201900jgf9dc2ljg76765can441gh3jlfhf21rkbhpl4055e1a11f2002000000 Ampelocissus latifolia 000010900100200701g00dl000110000100101000g2112120e106100100442100b7b7j8c41210l008ej2f7b7mj5b735c5ge053b8l4lgf41rlbakj516582a0182003000000 Ampelocissus ochracea 000000300210d00900d01ar000110000100101000r11121236000000000bj210085c9p5d10211700gaf6bb3glf45445c9k871fh1lrrnr10rb4krn301255a0180001000000 Ampelocissus robinsonii 000000600000200701d007c000110000100001000d11121006109100000532100a4r1b99b1200n006ea7ge4fa57ab66ffqe528h6ldkhk61rn8crk903162a03e2104000000 Ampelopsis arborea 000000600000430702600nc01010000010000100091010112820e100000640100431c2k861200d005eb1qea7df9ge57mdhkl54j1lrrmh826qb5rm606215a01d2102000000 Ampelopsis cantoniensis 000000300000230b01600ee01010000010000100081000112820j100000650100542g6d920200d003jb1nadr0a8ae8acrjd837l8hgfmd71dn86rm81a722700d2104000000 Ampelopsis cordata 000000600000200901700qf01010000010000100091010112820j1000008c0200661p6m550202j007jd0r7h76ebdd6fdfjpf80g1lrpqk77akf3rp406213a01e2003000000 Ampelopsis delavayana 000000600000010b017008e01010100010000100051010112620e1000002b0200652k9g440200b002pd2m8eb95fgf5fcbked60n0lrrre72drc4rn504322a04d2104000000 Ampelopsis glandulosa 000000600000300501700je01010100010000100081010112620e1000008d0200541k4h770202g000jc0raca80dee5dfejll70h1lrrrr91glc4rr804515a03g2105000000 Ampelopsis grossedentata 001000300000230702610le00010000010000100071000112820f1000004c0100643b6d431201b003l95f8dqad7bh95cmphb30l6lnfmc61rpadrr815662a01d0003000000 Cayratia cardiophylla 000010300110110b00a00ek000100000011010110c1001111h20j001000430200650f0h4502012016hg3l19nbg45ab4ch733707b6ffge32rd3ekl321142a1805105000001 Cayratia geniculata 000000300110410d01a00ek000100000011010110a1001111k20l0010005f0200550h2ee80201300eaq2l1d0gf5fc45fdb5449b3crrrr71r300rn302r63a07e711f100001 Cayratia japonica 000000600010420b01600ee000100001100011110d0001111k20j0010009a0200550l1bc402002005kfaccce73acg74chc6550gdle5fq42rff7rl82b7f4818cb116000000 Cayratia maritima 000000600010420b02700ek000100001100011110d0001111k20g001000890200632d3d9c02001008j87b97kc646664cd81340f9ld5eh62rh6emh614552a16fb11g100000 Cayratia oligocarpa 000000600010520g01700cf000100001100011110d0001111n20j001000460200641d2g360201801ddh9b89kee44784ca41450e4j73kl21rh7grk200643a58d511f100000 Cayratia trifolia 000000k11010611d01700ef000100001100011110b0001111e20j001000a70200523h5bc202002017d63kh8k5bdeh76crga340gbkgcmn62rgc9rm538562a15kb11d100000 Cayratia triternata 000000600010630b01700ef00010000110001111080001111k2080010106b0200c46e4f8202001014gc8hf5n9d88c86bhk662cj3lggfg62rd3jrk6162f3a09db116100000 Cissus alata 000010600200810b01g102a00010010000000100060000112820j0000006d0100431l4ha40000400b4a0r1h73e9dl84ce233m082cr9rrr2h6g2rr90541aa05fg107000000 Cissus antarctica 000000300010e00d017102g01000100010000100071010012620e000010470100542f6cb41200g00blc1l0l9hf66878c740360bfl2d5554rg17fb8335rfr04db105000000 Cissus assamica 0000003001007007007102400000100010000100090000112820g0000109d0100431h2l25001030098g0r4924eglh4cjb204j0775karrlem2h3rr42431561627107000000 Cissus biformifolia 0000103000005009006105500000100000000100080000112820d0001107d1200340j4k661010h00fbj0r1k7a66c944ha213j09qle5rrcgh1b6rr94220c724db104000000 Cissus campestris 000010300000102701g105200010000000000100080000112820h0000003g0200441k5f6200000006hh0r3h45d6cf74ja543l080lrrrrc2c7h2rr506524a08hb107000000 Cissus cornifolia 10002????10090090261002000001000100001020c0000102e20e000000a70200541h4p420010200f4g0r1f66r3ce60fa323h064grgrrg7l2l2rr403417a07f710d000000 Cissus descoingsii 00001000000050090161058000101000000001000a0000112e20d000110490100440k2g620011900jem0r7957dab638c3214k07r39arrjar3f6rr6b22145174b108000000 Cissus fuliginea 0000120001004007019105d00010100010100100050000112b20j000000bd0200540l0k6300004007lk0rr3k9c68b75c6413g0j58q8rr9825kerr50231671597106000000 Cissus granulosa 000010600200510d126000400010000000000102181000100b20g000000590100671j8e9402007009jf0r2e2dfag93ak9hpj60kbl3rrr6f0ja1rh9n211f101d0004000000 Cissus hypoglauca 000000300010g10e121102f10000100010100002081000100b2090000003d02005458agad1200j00b6e0r0e1gehjb3ac355360d9l2rr994dm83rl524224701d2002000000 Cissus mirabilis 0001006001004107026102e00000100010110100070000112620j0001004b0200831q1j550010400bad0ra49796ef66mc863h0a3fp7r7f9r3c6rp70232ca04k5105000000 Cissus obovata 0001103111000107026000400000100010000100070000112820j0001004e0200733j4j5200004003de0rb647ebpn54kha93h081lrrrre1k6h3rq305223a07h2106000000 Cissus palmata 000000310200710b0261035000101001100101020a0000112820j0001006k0100321m5p730210700e6e0r5d78n7dj73fe334g091hrlrre3e2l3rr405413a18kb10a000000 Cissus paullinifolia 000010600000530b0170030000001000000001000c0000112b20k0001006a0100330q3p441010j00m6l0r4da3e7eg64f9364k07e9fcrrh375b5rra24303914fg003000000 Cissus penninervis 000010300000210r120????000100000000001021c1000102b20j000000410100661d5f551200900d6j0r2h1nfg985d719a3707gl1rrr568hf2rq432113102h0106000000 Cissus quadrangularis 0011100000004007016101600000000110000102080000112820l0001005c0200551l9j8300001005fn0r2852e25dd0c4203q090frrrrj5j2n2rq605324a05k2106000000 Cissus reniformis 0001000000019009017101400000000000100100050000112820j0001007a0200642h5n0600000009ap0r64d1f57b84c1223q0c10rrrrjbn1r3rr302223a03h0104000000 Cissus simsiana 000000300000410d01a0078010100000100001020c1110112b20g0000107g0100532d4f650200n006jc4gc9da6dab6ecehem35e4lpgd860rn5alj613214812d2108000000 Cissus sterculiifolia 000010000010610d121100f01010100000100000181000102b20d000000300100531n3ab41110q00r0r0r2b0mfda848c001450cll0jjrd1rda3n01q0013203f2106000000 Cissus striata ssp. argentina 000010600100410j126005e00010000000010100171000112820h000100ba2100551m8b960200j005he0r5969fab84bcamld43n1lrrpe648mb4rr705213a01f0106000000 Cissus trianae 0000106000006109126002800000100010100100061100112820h00000097200096477f530201n009ce0r1d1fflnh4bcdadk60d9l4prr77aj71rdb5210r005k2005000000 Cissus verticillata 0001003000018007017102400010000010000100070000112820l000000300200431n7j7400002006dn0r7c95e8df66ja844k082lqcrre0baf5rr805417915cb109000000 Clematicissus angustissima 0000003001003100120????000000000100001000b1111112820h100000580100652g9f680210d0087d0r4d3f300004c7emk38k1lfrrra4lfd8rr302234502d010m100100 Clematicissus opaca 000000000000110b023005c00010000010000100071011112620h1001004d0200623g4h420200g008mb0r997k686667c3 ml343k1lrrrr60rpe8rr802737a02h0106000000 Cyphostemma adenocaule 000000300210a20d016007f00010010110001111050001112h20j001110b21210240e2gb600102107ej0r6k18e9jg57r9523r061lrerrd3k1j0rr503416a0787119010000 Cyphostemma buchananii 000000300210e10d01700jk00010000110001111090001111k20j001110451200670f3ac30011410a9l0r1l2bf9bg84cb784m066ljgrrc1k6l0rr41531480a4b109010000 Cyphostemma hereroense 00012????210912e12601hf000100100010011110g0000112e20m0011106b1210660l1fc3001?011h9l0r0q09fbjf47m4773p08dl5rrrf4f5f0rq80a415404fg11g010000 Cyphostemma junceum 10002????110l12g116007f000100000000101221j0003111n20e0011009c1200881c5g950010101bae0r1n1afbee58d6553n077le8rrf2e5e0rp80851571chl11b010000 Cyphostemma lageniflorum 000100300210810b01a00ek000100100010011110c0001111r20e001110931210680h3db30011110a8h2m4f09f68c84ca653l0c5lrahrc3r6e0rr204213a1cdb10r110000 Cyphostemma laza 100100300010630702600540001000011000?111080001112e20l001100681200641g1n9b0010111eep0r5k0eee9b7894653r0a9nerrre3f5h0rl70841571ckl11b010000 Cyphostemma microdiptera 0000006002109307027007h000100100010011110c0001111n20l001100740200641g2g9c001010187k0r4e1deahe46g69b3n058pgrrrdak6k0rr301116a0rdb019010000 Cyphostemma odontadenium 000100300210910b017007k00010010001001111080001111h20g001?10781210450k4g66001?2116jm0r0n1ce7ca56j5633q0a1lplrrder3k0rr609323a08bb11a010000 Cyphostemma paucidentatum 000000300211h10b11a00ej000100101100011110b0001111k20f001110b41200230k2g74001?0119cf2m0n36f8af84cc743n086lmhnre3r5e0rr306322a198b119010000 Cyphostemma setosum 000100600210912901d00em000000101100010110d0001111n20l001100a41200540r1d960011210cak3j1j19e8ed54j3774m0bbl95rrchr3f0rr705416a26fg11g110000 Leea guineensis 10002????000k30m00c00b8001100000000001221h0000102h20j1101000c0200gc1e3rrc13010004ek0r2g5cf55rr484453q030l1rrre2r8c0r2jg432e01575108010000 Leea tetramera 10002????000r30l00601eq000100000000001221m0000101e20g0100102f0200rr0m2ndr1301100p2m0r5g17f47a84c4594n00190rrrm9r0e0r1cr3106005db10e010000 Nothocissus spicifera 00003000000030090061058000110000000001221p1002000610e000?00662100cf90a9c41111000e6l2g6b0nfcjd45c6np53kbpl2qa773r5a1543c0024501d0000000000 Parthenocissus dalzielii 000000r11010511d02600ee000100000001101000420000?0320d100000880100792bbf7612004005ngr05j2rfll72jc5rr430j1lrrej76mfg4rra02125a03c0104000000 Parthenocissus laetevirens 000000r11010511e016009c00010000000110100082000102820e1000006j00007d3alk3b1200g007nhq22l4legjd4cc4qh620k0lrrcr38r9g3rr201024a03d0104000000

PAGE 307

Parthenocissus quinquefolia 000000r01010c11b02600nc000100000001101000a2000000620k1001008m00008c3cnf351200f006dd536b3kfmcc5d97nj933l1lrrah95gcd4rr302115a01d0102000000 Parthenocissus vitacea 000000600010a11e02600mc000100000000101020e1000102b20j1000006n00004449hg8a02007006ge916b4gelba5m78lj840j1lrrdh66hdj5rm403127a01f0106000000 Pterisanthes cissioides 000000000100210d0261059000010000100101000p11120?33010000100ap0000005r62d20101700blh1l1qnjb44684c2dc380l0lrrrr72rkbkrm502687a03f0004000000 Pterisanthes polita 0000000000004007016105f000010000100101000p11120?33010000100am0000007r72910101400cjj6d1nmge44684c2mm560r1grrlp72rk8hrq4022a7a01f0106000000 Rhoicissus digitata 000010000010310b120????0100010001010010200100001262051000106b0100322p9d631200n006nk4m6g3kerr92pc8a6a70adl1rfh6hbbb2rc835536a03d510n100000 Rhoicissus tridentata 000010300010810701601dp010001000100001000b1110012620f100100a60200220l3hd41200n00apf4n8l57fcjh5gmeb73c07ff5rrr7bgcb5rff4a526a04k7002000000 Tetrastigma bioritsense 010112010110910902600bm00010001001100012050000110820g001000af02013368d3f01201700bje0r580led479j55d9d54ael0rrr5mr2j1rk521017104h0115000000 Tetrastigma obtectum 000011n01210411d02600ee0001000100110001108300?0?0020r001100b5010122639b5400000005jd0r1k1ldjdb4d22la63hfal6rrr50rf82rr0600113079001h100000 Tetrastigma planicaule 010010300110f10r027005e000100010011000110d0000100b20l0010007d0101336162931201401n4j575a0pccbc68c4674905al0rrp5cd9h2rm260116413k201q100000 Tetrastigma rumicispermum 000000300110521e02600a600010001001100011080000100k20b001000650101333742711201100aj08f4e3bdja84r0cd4232falbcfg5fe892rk2466115116200k100010 Tetrastigma serrulatum 000000300210820e0260084000100011101001110a0000100620l00100072010122e2ja2302001009d81p694demlj5fcj96360cale6rr63jdg2rr323123901f001k100000 Vitis aestivalis 000000600000200701a00gp000110011100101020g1112120810e100001ka0100223be6b412001005ce0q7c8bdbce68dcqj31ph0rrrnh82ra96rgb0a3a4a01d2102000000 Vitis betulifolia 000000600000400901901ep000110011100101020d1002120810e100001dc010044559b2512003009a85eg5e5d88c96cjnd31ch1lrr9k72rgd8pm406292a01f5102000000 Vitis flexuosa 0000003000004009016019l001110011100101020c00021208109100001hf0100335aj1e212002003gf7de8g8fcee59cdpg42ee1krr9h71rl88rka07273a02g2104000000 Vitis piasezkii 000000300000210b01601bp000110011100101020f0002120b10a100001l90100443a93b112001008ae1nb7a8ea9a68cdnb31lm1hrrek71rec6hm306290a01d2103000000 Vitis rotundifolia 000000000000300501600rf001110011100101020b11121208105100001rr0100232cj4b112001009dl3g5e4eebcg868bpg32mb2ler8e76fbc3rl706221a00f0001000000 Vitis tsoi 0000000000003009017009e00011001110010102050002020810a100001gh0100234ae09012002004hb4gabf7f7ag85chna42ee6ljg5f72rfaalk5162b3800f2001000000 Vitis vinifera 000000600100300b01900gp000010001100101020b1102120810l100001gh0100342a96331200300aba3jj68aeacc58efpb31jg0qrrcl72rfe7dm3094a3a0357003000000 Yua austro-orientalis 0000003000???107124100e100000000?0010102091000100820k100?00cj01006a3cpj871200c00cb81m8c1eeghg59ccmc32ff8ldcnj4edce1rj628312900h2102000000 Yua chinensis 000000300010910b12600bc10010000010010102041000100620e100000aj0000692bgf031200h006b51me63cemgd4e1egj847g1lrrmr877jf4rr406322a00d2102000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????4db2l5h5jeb775d95lnh4bf1lrrjjc5r5g4rh808452a01f2????00000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????edh5g1l6gf9567a72qrr3lb0lrrch6????5rm?04???a0???????00000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????alm0r1rg8ebee58fank45ea0lrrfda2clb7rer0rad3a02dr????00000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????3hb0r8aab3egg5ekdmmd40h1lrrrk82fne4rr708453a0???????00000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????3fh2m8ad8e9ac77cfqg32pj0lrreg70rhh8rk40317?a02f0????00000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????k992p2j2befef6a8bd733jb5lhkkj12??a6rfa2j8?1a02rr????00000 Character state: a = 10, b = 11, c = 12, d = 13, e = 14, f = 15, g = 16, h = 17, j = 18, k = 19, l = 20, m = 21, n = 22, p = 23, q = 24, r = 25

PAGE 308

APPENDIX M DATA MATRIX USED IN THE ANALYSIS INCLUDING SIX FOSSILS, CONTINUOUS CHARACTERS TREATED WITH DISCRETE CODING

PAGE 309

10 20 30 40 50 60 70 80 90 100 110 120 130 . . . Acareosperma spireanum 0000000000???20001100000001000???1001111?0000010?2202????????????????????0010010110110000100000101000111100110100001100010011101101101010 Ampelocissus abyssinica 0000?000001010000120100000110000100?01000111121202101100100102100211010111111000110010011100000101000111001000010010100000011010100000000 Ampelocissus acapulcensis 00000010001010000120010000110000100001000121121202101100100102100201010101200100110111111110000101000111111000011010100000010010100000000 Ampelocissus acetosa 00001000000002000210110100110000100001000111121202101100100002100211010100210100010010101100100101000111001000010001100000010000100000000 Ampelocissus africana 00000000000000000120000000010000100001000011121202101100100002100201010101110100110010101100000101000111111000010000100000010010100000000 Ampelocissus barbata 00000000000000000120000000110100100?01000121121202101100100002100211010001211100111010111100000101000121111110010011100001010010000000000 Ampelocissus botryostachys 0000000000???1000110010000110000?00?01000111121231001000100012100211010101211100110110111000000101000020112110010011200000010010100000000 Ampelocissus erdvendbergiana 00000010000010000120000000110000100001000121121202101100100102110201011101200100010111011100000011100121111000011011200101010010100000000 Ampelocissus javalensis 00000010000000000120010000110000100001000121121202101100100002100211011111201000110111011100000101000121011000010011100101010010000000000 Ampelocissus latifolia 00001010010000000120000000110000100101000121121202101100100002100211010101210100010010101100000101100011101000011001100100010000000000000 Ampelocissus ochracea 00000000021010000020100000110000100101000111121231000000000012100201010100211000110111011100000101000120112110010011200000010000000000000 Ampelocissus robinsonii 00000000000000000120000000110000100001000011121001101100000002100201010011200100010111010000100111100021111000011011100000010010100000000 Ampelopsis arborea 00000000000003000210000010100000100001000010101121202100000000100100101011200100010011100100100111110020112100001001200100010010100000000 Ampelopsis cantoniensis 00000000000003000110000010100000100001000010001121202100000000100100101000200100010011110000100111100021011100001001200100010010100000000 Ampelopsis cordata 00000000000000000110000010100000100001000010101121202100000000200100101010202100010011100100101111110020112100101101200100010010000000000 Ampelopsis delavayana 00000000000001000110000010101000100001000010101121202100000000200100101000200100010011110010101111110020112100001001200000010010100000000 Ampelopsis glandulosa 00000000000000000110000010101000100001000010101121202100000000200100101010202100010011100000101111110020112110001001200000010010100000000 Ampelopsis grossedentata 00100000000003000211000000100000100001000010001121202100000000100100101001201100010011110100110111110021111100011011200000010010000000000 Cayratia cardiophylla 00001000011001000010000000100000011010110010011112202001000000200100101010201001010010010100010110000011011000010011100000010100100000001 Cayratia geniculata 00000000011001010110000000100000011010110010011112202001000000200100101110201000111010101100100110000111012110010001200010010111111100001 Cayratia japonica 00000000001002000110000000100001100011110000011112202001000000200100100100200000010111110000100111000021110010010101100101010111110000000 Cayratia maritima 00000000001002000210000000100001100011110000011112202001000000200100101010200000010111010000000110000021110000010011100000010111111100000 Cayratia oligocarpa 00000000001012010110000000100001100011110000011112202001000000200100101010201001110111011100010100000021010010010011100000011110111100000 Cayratia trifolia 00000011101011110110000000100001100011110000011112202001000000200100100100200001010011010100100111000021011110010001200100010111111100000 Cayratia triternata 00000000001013000110000000100001100011110000011112201001010000200201101000200001010111010100100011000121011000010011100101010111110100000 Cissus alata 00001000020011000121010000100100000001000000001121202000000000100000101000000000100010100100100110001010010111000101200000110111100000000 Cissus antarctica 00000000001010010111011010001000100001000010100121202000010000100100100101200100110010101100000100000011101000110000100002120111100000000 Cissus assamica 00000000010010000011011000001000100001000000001121202000010000100100101000010000000010000111101110001011011111110101200000010101100000000 Cissus biformifolia 00001000000010000011011000001000000001000000001121202000110001200000101011010100110010100000000100001011110111100001200000111111100000000 Cissus campestris 00001000000000200121011000100000000001000000001121202000000010200100101000000000010010100100100100001010112111000101200100010111101000000 Cissus cornifolia 10002????10010000211011000001000100001020000001022202000000000200100101000010000100010100100100100001011011111100101200000010111101000000 Cissus descoingsii 00001000000010000111010000101000000001000000001122201000110000100100101000011000111011000100000100001011011111110101201000010101101000000 Cissus fuliginea 00001200010000000111010000101000101001000000001122202000000000200100101000000000010011010100000100001021010110100111200000010101100000000 Cissus granulosa 00001000020011011210011000100000000001021010001002202000000000100110101000200000010010100101000101110021102110100001101000100010000000000 Cissus hypoglauca 00000000001011011201010100001000101000020010001002201000000000200100011011200100100010101111100100000011102100101001100000010010000000000 Cissus mirabilis 00010000010001000211010000001000101101000000001121202000100000200200101010010000110011000000100110001011010101110001200000110010100000000 Cissus obovata 00011001110001000210011000001000100001000000001121202000100000200200101000000000010011000101100110001010112111000101200000010110100000000 Cissus palmata 00000001020011000211011000101001100101020000001121202000100010100000101000210000100010100100100110001010011111000101200000010111101000000 Cissus paullinifolia 00001000000013000110011000001000000001000000001122202000100000100000101001010100100010100100100100001011011111000001200000010111000000000 Cissus penninervis 0000100000000101120????000100000000001021010001022202000000000100110101011200000100010101110001000000011102110100101200000000010100000000 Cissus quadrangularis 00111000000000000111011000000001100001020000001121202000100000200100101000000000011010000100110 100001010012111100101200000010110100000000 Cissus reniformis 00010000000110000111011000000000001001000000001121202000100000200100101010000000011010010100000100001010012111110101200000010010100000000 Cissus simsiana 00000000000001010110000010100000100001020011101122202000010010100100101000200100010011010000101111110021111000011011100000010010101000000 Cissus sterculiifolia 00001000001011011201010010101000001000001010001022201000000000100100100101110100101010101100000 100000011101011010001001000000010100000000 Cissus striata ssp. argentina 00001000010001011210010000100000000101001010001121202000100002100100100010200100010010000100001101110020112100101001200000010010100000000 Cissus trianae 00001000000011001210010000001000101001000011001121202000000002000210001000201100010010101111101110110011002110100001100000100110000000000 Cissus verticillata 00010000000110000111011000100000100001000000001121202000000000200000101000000000011010100100100 100001010111111000101200000010111101000000 Clematicissus angustissima 0000000001000100120????000000000100001000011111121202100000000100100101010210100000010101000000101110020112110100101200000010010101100100 Clematicissus opaca 00000000000001000210010000100000100001000010111121202100100000200100101000200100010011001000000 101100020112110011101200000010010100000000 Cyphostemma adenocaule 00000000021012010110000000100101100011110000011122202001110001210000101110010010010010100101100 1000010101111110001012000000101 01111010000 Cyphostemma buchananii 00000000021011010110000000100001100011110000011112202001110001200110100100011010110010100100100110001011111111000101200000010101101010000 Cyphostemma hereroense 00012????2101121121010000010010001001111010000112220200111000121011010110001?011110010100101100100001011102111100101200100010111111010000 Cyphostemma junceum 10002????11011211110000000100000000101221100031112202001100001200210101010010001110010100100100100001011110111000101200100010111111010000 Cyphostemma lageniflorum 00010000021011000110000000100100010011110000011112202001110001210110101100011010010010100100100100001011111011110101200000010111101110000 Cyphostemma laza 100100000010130002100110001000011000?1110000011122202001100001200100101010010011111010100100100000001011112111000101100100010111111010000 Cyphostemma microdiptera 00000000021013000210000000100100010011110000011112202001100000200100101010010001000010100101100100001011112111100101200000010111011010000 Cyphostemma odontadenium 00010000021011000110000000100100010011110000011112202001?1000121000010101001?011011010100100000100001010111111110101200100010111111010000 Cyphostemma paucidentatum 0000000002111100111000000010010110001111000001111220200111000120000010100001?011010010100100100110001011111111010101200100010101111010000 Cyphostemma setosum 00010000021011200110000000000101100010110000011112202001100001200100101010011010110010100100100100001011110111110101200000011111111110000 Leea guineensis 10002????00013010010000001100000000001221100001022202110100000200210101111301000010010100100110000001000102111010001011000100100101010000 Leea tetramera 10002????00013010010100000100000000001221100001012202010010000200210101111301000100010100100010100001000002111110101011000000111101010000 Nothocissus spicifera 00003000000000000011010000110000000001221110020001102000?00002100211010101111000100010101101100101100111102000010000101000010010000000000 Parthenocissus dalzielii 00000011101011110210000000100000001101000020000?00201100000000100210111011200000010100101111001101100020112000110101200000010010100000000 Parthenocissus laetevirens 00000011101011110110000000100000001101000020001021202100000010000210111011200100010100101111101101100020112010110101200000010010100000000

PAGE 310

Parthenocissus quinquefolia 00000010101011100210000000100000001101000020000001202100100010000210111011200100010100101110101001100020112000100001200000010010100000000 Parthenocissus vitacea 00000000001011110210000000100000000101020110001022202100000010000100011010200000010100101110001001100020112000100101200000010010100000000 Pterisanthes cissioides 00000000010001010211010000010000100101000111120?30010000100010000001100100101000110010111000010101000020112110011011200000010010000000000 Pterisanthes polita 00000000000000000111010000010000100101000111120?30010000100010000001100000101000110110111100010101100020012010010011200001010010100000000 Rhoicissus digitata 0000100000100100120????010001000101001020010000121201100010000100000101001200100010010101111001100000011102000100001100100010010101100000 Rhoicissus tridentata 00001000001011000110100010001000100001000011100121202100100000200000101101200100010011100101101110000011002110100001110100010011000000000 Tetrastigma bioritsense 01011201011011000210000000100010011000120000001101202001000000201001010101201000110010001100011001010011102110110101100000000010110000000 Tetrastigma obtectum 000011101210011102100000001000100110001100300?0?00202001100000101001010000000000010010101110001001000121112110010001200000000100011100000 Tetrastigma planicaule 01001000011011010210010000100010011000110000001002202001000000101001000001201001100010001100100100000011102110100101200000010010011100000 Tetrastigma rumicispermum 00000000011012110210001000100010011000110000001002201001000000101000000001201000010110100110001011000021111000100001100100010000001100010 Tetrastigma serrulatum 00000000021012010210001000100011101001110000001001202001000000101001010000200000010010000111101110000011110110000101200000010010011100000 Vitis aestivalis 00000000000000000110000000110011100101020111121201102100001100100000110101200000010010100100100111100120112100010001100101010010100000000 Vitis betulifolia 00000000000000000110100000110011100101020010021201102100001100100000000001200000010111010100110111100120112000010101200101010010100000000 Vitis flexuosa 00000000000000000110100001110011100101020000021201101100001100100000110101200000010111010100100111100120012000011001100100010010100000000 Vitis piasezkii 00000000000001000110100000110011100101020100021202101100001100100100110101200000010011000100000111000120012000010001200101010010100000000 Vitis rotundifolia 00000000000000000110000001110011100101020011121201101100001110100000110101200000010010101100100011100110112000100001100100010010000000000 Vitis tsoi 00000000000000000110000000110011100101020000020201101100001110100000110001200000010011110100100111000121111000010011100101010010000000000 Vitis vinifera 00000000010000000110000000010001100101020011021201102100001110100000100001200000010011000100100111000120112010010100200101010001000000000 Yua austro-orientalis 0000000000???1001211010100000000?00101020010001001202100?00010100110111011200100110011100111100111100121111100100101100100010010100000000 Yua chinensis 00000000001011001210000100100000100101020010001001202100000010000110111001200100010011000110101011100020112110100101200100010010100000000 Parthenocissus clarnensis ????????????????????????????????????????????????????????????????????????????????010010101100001001110120112001110111100100010010????00000 Vitis magnisperma ????????????????????????????????????????????????????????????????????????????????110110101100001001110110112000????112?00???10???????00000 Palaeovitis paradoxa ????????????????????????????????????????????????????????????????????????????????010010110100100101100110112000001011110101010011????00000 Ampelopsis rooseae ????????????????????????????????????????????????????????????????????????????????010011000000101111110020112100001111200100010???????00000 Vitis tiffneyi ????????????????????????????????????????????????????????????????????????????????010011110100100111100120112000010111100000?10010????00000 Ampelocissus wildei ??????????????????????????????????????????????????????????????????????????01????1100101001001000110001111110000??01110010?010011????00000

PAGE 311

311 LIST OF REFERENCES ALMEIDA, M. T., AND F. A. BISBY. 1984. A Simple method for establishing taxonomic characters from measurement data. Taxon 33: 405-409. ANGIOSPERM PHYLOGENY GROUP (APG III). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121. ARCHIE, J. W. 1985. Methods for coding variable mo rphological features for numerical taxonomic analysis. Systematic Zoology 34: 326-345. BACKER, C. A., AND R. C. BAKHUIZEN VAN DEN BRINK. 1965. Vitaceae, Flora of Java (Spermatophytes only), Volume II, Angiospermae, Families111-160. 641 pp., 3 Volumes; 1963-1968. P. N oordhoff, Groningen. BAUM, B. R. 1988. A Simple procedure for establishing discrete characters from measurement data, applicable to cladistics. Taxon 37: 63-70. BERRY, E. W. 1927. Petrified fruits and seed s from the Oligocene of Peru. Pan-American Geology 47: 121-132. ______. 1929. Early Tertiary fruits and seeds from Belen, Peru. Johns Hopkins University Studies in Geology 10: 137-180. BLANC-LOUVEL, C. 1986. Paleoflore du gisement Eocene de Premontre dans l'Aisne; Vitaceae. Paleoflora from the Eocene deposit in Premontre in Aisne; Vitaceae. 111e Congres national des societes savantes, Poitiers, Fr ance, 1986, France (FRA), sciences, fasc. II: 37-48. BOSS, P. K., AND M. R. THOMAS. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416: 847-850. BOSS, P. K., E. J. BUCKERIDGE, A. POOLE, AND M. R. THOMAS. 2003. New insights into grapevine flowering. Functional plant biology 30: 593-606. BRANTIES, N. B. M. 1978. Pollinator attraction of Vitis vinifera subsp. silvestris Vitis 17: 229233. BRIZICKY, G. K. 1965. The genera of Vitaceae in the southeastern United States. Journal of the Arnold Arboretum 46: 48-67. BROWN, R. W. 1934. U. S. Geological Survey Profe ssional Paper 185-C. The recognizable species of the Green River flora, U. S. Geological Survey Professional Paper 185-C, pages 45-77. United States Goverment Printing Office, Washington, D. C.

PAGE 312

312 B EK, ., F. HOLY, AND Z. KVACEK. 1976. Tertiary flora from th e Volcanogenic Series at Markvartice and Veseli ko near Ceska Kamenice (Ceske stredohori Mts.). Palaeontology 18: 69-132. CALONJE, M., P. CUBAS, J. M. MARTINEZ-ZAPATER, AND M. J. CARMONA. 2004. Floral meristem identity genes are expressed dur ing tendril development in grapevine. Plant Physiology 135: 1491-1501. CARLQUIST, S. 1991. Anatomy of vine and liana stems: a review and synthesis. In F. E. Putz and H. A. Mooney [eds.], The Biology of Vines., pp. 53-71. Cambridge University Press, Cambridge. CARMONA, M. J., P. CUBAS, M. CALONJE, AND J. M. MARTINEZ-ZAPATER. 2007. Flowering transition in grapevine (Vitis vinifera L.). Canadian Journal of Botany 85: 701-711. CARMONA, M. J., J. CHIEB, J. M. MARTINEZ-ZAPATER, AND M. R. THOMAS. 2008. A molecular genetic perspective of reproductive development in grapevine. Journal of experimental botany 59: 2579-2596. CARPENTER, R. J., R. S. HILL, D. R. GREENWOOD, A. D. PARTRIDGE, AND M. A. BANKS. 2004. No snow in the mountains: Early Eocene plan t fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685-718. CEVALLOS-FERRIZ, S. R. S., AND R. A. STOCKEY. 1990. Permineralized fruits and seeds from The Princeton Chert (Middle Eocene) of British Columb ia Vitaceae. Canadian Journal of Botany 68: 288-295. CHANDLER, M. E. J. 1925-1926. The Upper Eocene flora of Hordle, Hants, 52 pp. Printed for the Paleontographical Society, London. ______. 1957. The Oligocene flora of the Bovey Tracey Lake Basin, Devonshire. Bulletin of the British Museum (Natural History) 3: 103-106. ______. 1961a. Flora of the Lower Headon Beds of Hampshire and the Isle of Wight. Bulletin of the British Museum (Natural History) 5: 133-135. ______. 1961b. The lower Tertiary floras of southern England. I Paleocene Floras. London Clay flora (Supplement). Text and atlas., 354 pp., 334 pl. The British Museum (Natural History), London. ______. 1962. The Lower Tertiary floras of southern England. II Flora of the Pipe-clay series of Dorset (Lower Bagshot), 176 pp. The Br itish Museum (Natural History), London. ______. 1963. The Lower Tertiary flora of southern England. III Flora of the Bournemouth Beds; the Boscombe, and the Highcliff Sa nds., 169 pp. The British Museum (Natural History), London.

PAGE 313

313 ______. 1964. The Lower Tertiary floras of southern England. IV A summary and survey of findings in the light of recent botanical observations., p.102, London. ______. 1978. Supplement to the Lower Tertiary flor as of southern England, Part 5, 47 pp. The Tertiary Research Group, London. CHAPPILL, J. A. 1989. Quantitative characte rs in phylogenetic analysis. Cladistics 5: 217-234. CHEN, I., AND S. R. MANCHESTER. 2007. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. American Journal of Botany 94: 15341553. COLLESS, D. H. 1980. Congruence between morphometric and allozyme data for Menidia species a reappraisal. Systematic Zoology 29: 289-299. COLLINSON, M. E., AND C. J. CLEAL. 2001a. Late Middle Eocene-ear ly Oligocene (BartonianRupelian) and Miocene pal eaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Pa laeobotany of Great Britain, Geological Conservation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK. ______. 2001b. Early and early Middle Eocene (Ypr esian-Lutetian) paleaeobotany of Great Britain. In C. J. Cleal, B. A. Thomas, D. J. Batten, and M. E. Collinson [eds.], Mesozoic and Tertiary Palaeobotany of Great Britain, Geological Cons ervation Review Series, No. 22., 335 pp. Joint Nature Conservation Committee, Peterborough, UK. CONDIT, C. 1944. The Remington Hill flora [Calif.], Chap ter 2 of Chaney, R. W., ed., Pliocene floras of California and Oregon. Carnegie Institution of Washington Publications 553: 21-55. CORNER, E. J. H. 1976. The seeds of Dicotyledons, 2 volumes, 311 pp. and 552 pp. Cambridge University Press, Cambridge, UK. CURRIE, D. J., G. G. MITTELBACH, H. V. CORNELL, R. FIELD, J. F. GUEGAN, B. A. HAWKINS, D. M. KAUFMAN, J. T. KERR, T. OBERDORFF, E. O'BRIEN, AND J. R. G. TURNER. 2004. Predictions and tests of climate-based hypothe ses of broad-scale va riation in taxonomic richness. Ecology Letters 7: 1121-1134. CZAJA, A. 2003. Paleocarpological inves tigations of the taphocoenos es of the Lowerand Middle Miocene from the opencast mine Berzdorf/Upper Lusatica (Saxony). Palaeontographica Abteilung B 265: 1-148. CZECZOTT, H., AND A. SKIRGIE O. 1959. Flora Kopalna Turowa Kolo Bogatyni II (1), Docotyledones, Hamamelidaceae, Nymphaeacea e, Sabiaceae, Vitacea e, Nyssaceae, Prace Museum Ziemi-Zeszyt No. 3, Odbitka Autorska, p.93-121. Wydawnictwa Geologicze, Warsaw, Poland.

PAGE 314

314 DALBO, M. A., G. N. YE, N. F. WEEDEN, H. STEINKELLNER, K. M. SEFC, AND B. I. REISCH. 2000. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43: 333-340. DAVIS, P. H. 1967. Flora of Turkey. Univ ersity press, Edinburgh. DE FRANCESCHI, D., C. LE GALL, G. ESCARGUEL, M. HUGUENEY, S. LEGENDRE, R. SIMONCOINCON, T. PELISSIE, AND B. SIGE. 2006. Une Paleoflore des phosphatieres Karstiques du Quercy (sud-quest France): premiere d ecouverte, resultats et perspectives. Strata 13: 97-101. DE PINNA, M., C. C. 1991. Concepts and tests of homo logy in the cladistic paradigm. Cladistics 7: 367-394. DE SANTO, A. V., A. ALFANI, G. RUSSO, AND A. FIORETTO. 1983. Relationship between CAM and succulence in some species of Vitaceae and Piperaceae. Botanical Gazette 144: 342346. DENISOV, N. I. 2007. The taxonomical analysis of ligne ous lianas in the Russian Far East. Bulletin of the Botanical Garden-Institu te of the Russian Academy of Sciences 1: 44-50. DESCOINGS, B. 1961. Le genre Cayratia Juss. (Vitaces) Madagascar. Bulletin du Jardin botanique de l'tat a Bruxelles 31: 419-428. ______. 1967. Vitaces. In H. Humbert and J. F. Leroy [eds .], Flore de Madagascar et des Comores: plantes vasculaires / publie sous les auspices du gouvernement gnral de Madagascar et sous la dir ection de H. Humbert., 1-156. Ta nanarive: Impr. officielle, 1936-. ______. 1972. Vitaces, Flore du Cameroun, 3-132. Muse um national d'histoire natur, Paris. ______. 2004. Les grandes Vitacees pachycaules. Succulentes Special 2004: 32-49. DEWIT, J., AND L. WILLEMS. 1960. Vitaceae, Flore du Congo belge et du Ruanda-Urundi. Spermatophytes. Vo. 9., 453-597. Institut national pour l'tude agronomique du Congo belge, 1948-1960., Brussel. DODD, A. N., A. M. BORLAND, R. P. HASLAM, H. GRIFFITHS, AND K. MAXWELL. 2002. Crassulacean acid metabolism: plastic, fantastic. Journal of Experimental Botany 53: 569-580. DONOGHUE, M. J., AND S. A. SMITH. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359: 1633-1644. DONOGHUE, M. J., C. D. BELL, AND J. H. LI. 2001. Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences 162: S41-S52.

PAGE 315

315 DOROFEEV, P. I. 1963. Tertiary floras of western Siberi a. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., Moscow. ______. 1988. Miocene Floras of the Tambov Region (i n Russian). Academy of Sciences of the USSR, Komorov Botanical Institute, Leningrad. ENGLISH-LOEB, G., A. P. NORTON, AND M. A. WALKER. 2002. Behavioral and population consequences of acarodomatia in grapes on phytoseiid mites (Mesostigmata) and implications for plant breeding. Entomologia Experimentalis et Applicata 104: 307-319. FAIRON-DEMARET, M., AND T. SMITH. 2002. Fruits and seeds from the Tienen Formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology 122: 47-62. FRANCIS, A. P., AND D. J. CURRIE. 2003. A globally consistent ri chness-climate relationship for angiosperms. American Naturalist 161: 523-536. GAGNEPAIN, F. 1911a. Classification des Cissus et Cayratia Notulae Systematicae 1: 339-343. ______. 1911b. Revision des Ampelidacees asiatiques et Malaises. Societe d'Histoire Naturelle d'Autun, Bulletin. 24: 1-41. ______. 1919. Acareosperma un genre nouveau dAmplidaces. Bulletin du Musum dHistoire Naturelle 25: 131-132. GALET, P. 1967. Recherches sur les mt hodes d'identification et de classification des Vitaces des zones tempres. Doctoral thesis. 526 pp., Un iversit de Montpel lier, Montpellier, France. GARCIA-CRUZ, J., AND V. SOSA. 2006. Coding quantitative char acter data for phylogenetic analysis: a comparison of five methods. Systematic Botany 31: 302-309. GERRATH, J. M., AND U. POSLUSZNY. 1986. Formation of serial accessory buds in Ampelopsis brevipedunculata (Maxim) Koehne (Vitaceae). American Journal of Botany 73: 627-628. ______. 1988a. Morphological and anatomical deve lopment in the Vitaceae. 2. Floral development in Vitis riparia Canadian Journal of Botany 66: 1334-1351. ______. 1988b. Morphological and anatomical devel opment in the Vitaceae. 1. Vegetative development in Vitis riparia Canadian Journal of Botany 66: 209-224. ______. 1989a. Morphological and anatomical development in the Vitaceae. 5. Vegetative and floral development in Ampelopsis brevipedunculata Canadian Journal of Botany 67: 2371-2386. ______. 1989b. Morphological and anatomical deve lopment in the Vitaceae. 4. Floral development in Parthenocissus inserta. Canadian Journal of Botany 67: 1356-1365.

PAGE 316

316 ______. 1989c. Morphological and anatomical deve lopment in the Vitaceae. 3. Vegetative development in Parthenocissus inserta. Canadian Journal of Botany 67: 803-816. ______. 1994. Morphological and anatomical development in the Vitaceae.6. Cissus antarctica Canadian Journal of Botany 72: 635-643. GERRATH, J. M., AND C. R. LACROIX. 1997. Heteroblastic sequence and leaf development in Leea guineensis. International Journa l of Plant Sciences 158: 747-756. GERRATH, J. M., AND U. POSLUSZNY. 2007. Shoot architectur e in the Vitaceae. Canadian Journal of Botany 85: 691-700. GERRATH, J. M., C. R. LACROIX, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.2. Floral development. Botanical Gazette 151: 210-220. ______. 1998. Phyllotaxis in the Vitaceae. In R. V. Jean and D. Barab [eds.], Symmetry in plants, page 89-107. World Scie ntific Publishing, Singapore. GERRATH, J. M., U. POSLUSZNY, AND N. G. DENGLER. 2001. Primary vascular patterns in the Vitaceae. International Journal of Plant Sciences 162: 729-745. GERRATH, J. M., T. WILSON, AND U. POSLUSZNY. 2004. Morphological and anatomical development in the Vitaceae. VII. Floral development in Rhoicissus digitata with respect to other genera in the family. Canadian Journal of Botany 82: 198-206. GILG, E. 1896. Vitaceae. In A. Engler and K. Prantl [eds.], Die Naturlichen Pflanzenfamilien, 427-456. Engelmann, Leipzig. GILG, E., AND M. BRANDT. 1911. Vitaceae Africanae. Botanische Jahrbcher fr Systematik, Pflanzengeschichte und Pflanzengeographie 46: 415-557. GONG, F., I. KARSAI, AND Y. LIU. 2009. Grape seeds ( Vitis ) from the late Neogene Gray Fossil Site, northeast Tennessee. Boatny 2009, Snowbird. GREGOR, H. J. 1977. Subtropische Elemente im europis chen Tertir II (Fr uktifikationen) Die Gattungen Quercus (Fagaceae), Myristicacarpum (Myristicaceae), Brueckelholzia und Cyclea (Menispermaceae), Disanthus und Fortunearia (Hamamelidaceae), Frangula (Rhamnaceae), Palaeocayratia (Vitaceae) und Acantbopanax (Araliaceae). Palontologische Zeitschrift 51: 199-226. ______. 1980. The Miocene fruit and seed floras of the Oberpflzer brown coal II. Findings in the coal and clayed inter beds. Palaeontographica Abteilung B Palaeophytologie 174: 794. GUERRERO, J. A., E. DE LUNA, AND C. SANCHEZ-HERNANDEZ. 2003. Morphometrics in the quantification of character st ate identity for the assessm ent of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera: Phyllostomidae). Biological Journal of the Linnean Society 80: 45-55.

PAGE 317

317 HARDY, D., AND E. RETIEF. 1981. The Caudiciform Cyphostemma species from southern Africa. Cactus and Succulent Journal (U.S.) 53: 163-166. HAWKINS, J. A., C. E. HUGHES, AND R. W. SCOTLAND. 1997. Primary homology assessment, characters and character states. Cladistics 13: 275-283. HILU, K. W., T. BORSCH, K. MULLER, D. E. SOLTIS, P. S. SOLTIS, V. SAVOLAINEN, M. W. CHASE, M. P. POWELL, L. A. ALICE, R. EVANS, H. SAUQUET, C. NEINHUIS, T. A. B. SLOTTA, J. G. ROHWER, C. S. CAMPBELL, AND L. W. CHATROU. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758-1776. INGROUILLE, M. J., M. W. CHASE, M. F. FAY, D. BOWMAN, M. VAN DER BANK, AND A. D. E. BRUIJN. 2002. Systematics of Vitaceae fr om the viewpoint of plastid rbcL DNA sequence data. Botanical Journal of the Linnean Society 138: 421-432. JACKES, B. R. 1984. Revision of the Australian Vitaceae: 1. Ampelocissus Planchon. Austrobaileya 2: 81-86. ______. 1987a. A Study of the trichomes of seve ral frequently confused species of Cissus L. (Vitaceae). Blumea 32: 143-147. ______. 1987b. Revision of the Australian Vitaceae: 2. Cayratia Juss. Austrobaileya 2: 365-379. ______. 1988a. A key to the genera of Australian Vitaceae. In R. Kitching [ed.], The ecology of Australia's wet tropics. Surrey Bea tty and Sons, Chipping Norton, N.S.W. ______. 1988b. Revision of the Australian Vitaceae: 3. Cissus L. Austrobaileya 2: 481-505. ______. 1989a. Revision of the Australian Vitaceae, 5. Tetrastigma (Miq.) Planchon. Austrobaileya 3: 149-158. ______. 1989b. Revision of the Australian Vitaceae, 4. Clematicissus Planchon. Austrobaileya 3: 101-102. JACKES, B. R., AND M. ROSSETTO. 2006. A new combination in Clematicissus Planch. (Vitaceae). Telopea 11: 390-391. JAILLON, O., J. M. AURY, B. NOEL, A. POLICRITI, C. CLEPET, A. CASAGRANDE, N. CHOISNE, S. AUBOURG, N. VITULO, C. JUBIN, A. VEZZI, F. LEGEAI, P. HUGUENEY, C. DASILVA, D. HORNER, E. MICA, D. JUBLOT, J. POULAIN, C. BRUYERE, A. BILLAULT, B. SEGURENS, M. GOUYVENOUX, E. UGARTE, F. CATTONARO, V. ANTHOUARD, V. VICO, C. DEL FABBRO, M. ALAUX, G. DI GASPERO, V. DUMAS, N. FELICE, S. PAILLARD, I. JUMAN, M. MOROLDO, S. SCALABRIN, A. CANAGUIER, I. LE CLAINCHE, G. MALACRIDA, E. DURAND, G. PESOLE, V. LAUCOU, P. CHATELET, D. MERDINOGLU, M. DELLEDONNE, M. PEZZOTTI, A. LECHARNY, C. SCARPELLI, F. ARTIGUENAVE, M. E. PE, G. VALLE, M. MORGANTE, M. CABOCHE, A. F. ADAM-BLONDON, J. WEISSENBACH, F. QUETIER, AND P. WINCKER. 2007. The grapevine genome sequence suggest s ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-U465.

PAGE 318

318 JANSEN, R. K., C. KAITTANIS, C. SASKI, S.-B. LEE, J. TOMKINS, A. J. ALVERSON, AND H. DANIELL. 2006. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampli ng and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology 6: 32-46. KEVAN, P. G., R. W. LONGAIR, AND R. M. GADAWSKI. 1985. Dioecy and pollen dimorphism in Vitis riparia (Vitaceae). Canadian Journal of Botany 63: 2263-2267. KIRCHHEIMER, F. 1938. Beitrge zur nheren Kenntnis von Vitaceen-Samenformen tertiren Alters. Planta 28: 582-598. KOZHEVNIKOV, A. E., AND V. A. NEDOLUZHKO. 2006. Vitaceae, Flora of Russian Far East: Additions and changes to the publication "Vascu lar Plants of the Soviet Far East, Vol 1-8 (1985-1996)", 200-201. Dalnauka, Vladivostok. KRAMER, K. 1974. Die Tertiren Hlzer Sdost-Asiens (unter Ausschlu de r Dipterocarpaceae) 2. Teil. [The tertiary woods of Southeast-Asia (Dipterocarpaceae excluded) Part 2]. Palaeontographica.Abteilung B: Palaeophytologie 145, Part 1-4: 150. KUBITZKI, K. 2007. Introduction to Vitales. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer. LACROIX, C. R., AND U. POSLUSZNY. 1989a. Phyllotactic patterns in some members of the Vitaceae. Botanical Gazette 150: 303-313. ______. 1989b. Stipules in some members of the Vit aceae relating processes of development to the mature structure. American Journal of Botany 76: 1203-1215. LACROIX, C. R., J. M. GERRATH, AND U. POSLUSZNY. 1990. The developmental morphology of Leea guineensis.1. Vegetative Development. Botanical Gazette 151: 204-209. LATIFF, A. 1981. Studies in Malesian Vitaceae: 5. The genus Cayratia in the Malay Peninsula. Sains Malaysiana 10: 129-139. ______. 1982a. Studies in Malesian Vitaceae: 2. Nothocissus : a new Malesian genus. Federation Museums Journal 27: 70-75. ______. 1982b. Studies in Malesian Vitaceae: 1. A revision of Pterisanthes Bl. Federation Museums Journal 27: 42-69. ______. 1982c. Studies in Malesian Vitaceae: 3. Ampelocissus complanata a new species from Borneo. Federation Museums Journal 27: 75-77. ______. 1982d. Studies in Malesian Vitaceae: 4. The genera Ampelocissus Ampelopsis and Parthenocissus in the Malay Peninsula. Federation Museums Journal 27: 78-93. ______. 1982e. Studies in Malesian Vitaceae: 6. The Malay Peninsula species of Cissus L. Malayan Nature Journal 35: 197-207.

PAGE 319

319 ______. 1983. Numerical analysis and classi fication of Malesian Vitaceae. Malays 12: 7-13. ______. 1984. Studies in Malesian Vitaceae: 7. The genus Tetrastigma in the Malay Peninsula. The Gardens' Bulletin Singapore 36: 213-228. ______. 1991. Towards an improved infrageneric classification of Ampelocissus. 2nd International Flora Malesiana Sympos ium, Jogjakarta, Indonesia (mimeo). ______. 1994. On the seeds of fossil a nd modern taxa of Vitaceae. Malaysian Applied Biology 22: 87-99. ______. 2001a. Studies in Malesian V itaceae: 12. Taxonomic notes on Cissus Ampelocissus Nothocissus and Tetrastigma and other genera. Folia Malaysiana 2: 179-189. ______. 2001b. Diversity of the Vitaceae in the Malay Archipelago. Malayan Nature Journal 55: 29-42. LATIFF, A., AND K. MAT SALLEH. 1999. Studies in Malesian Vitaceae: 11. Pterisanthes in Borneo, with additional notes on P. grandis and P. hirtiflora Sandakania 13: 67-78. LEAF ARCHITECTURE WORKING GROUP. 1999. Manual of Leaf Architecture morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. private, Washington, D. C. LI, C. 1998. Vitaceae, Flora Reipublicae Popularis Sinica, volume 48, 208 pp. Science Press, Beijing. LOMBARDI, J. A. 1997. Types of names in Ampelocissus and Cissus (Vitaceae) referring to taxa in the Caribbean, Central and North America. Taxon 46: 423-432. ______. 2000. Vitaceae Gneros Ampelocissus, Ampelopsis e Cissus ., Flora Neotropica Monograph, pp. 251. The New York Botanical Garden, Bronx, New York. MABBERLEY, D. J. 1995. Vitaceae. In M. D. Dassanayake [ed.], A revised handbook to the Flora of Ceylon, 446-482. Smithsonian Institution, Washington, D. C. MADDISON, W. P., AND D. R. MADDISON. 2001. MacClade 4: analysis of phylogeny and character evolution. Sinauer Associat es, Sunderland, Massachusetts, USA. ______. 2009. Mesquite: a modular system for ev olutionary analysis. Version 2.6 http://mesquiteproject.org. MAI, D. H. 1987. Neue Frchte und Samen aus palo znen Ablagerungen Mitteleuropas. Feddes Repertorium 98: 197-229. ______. 2000. The Lower Miocene floras of the Sp remberger sequence and the second brown coal horizon in the Lusatica region. Pa rt III: Dialypetalae and Sympetalae. Palaeontographica Abteilung B 253: 1-106.

PAGE 320

320 ______. 2001. The Middle and Upper Miocene floras of the Meuro and Rauno sequences in the Lusatica region. Part II: Dicotyledones. Palaeontographica Abteilung B 257: 35-174. ______. 2006. Neue Pflanzenfunde aus den Tertiar der Rhon; Die miozane Flora vom Lettengraben. Beitrage zur Naturkunde in Osthessen 42: 3-46. MAI, D. H., AND H.-J. GREGOR. 1982. Neue und interessante Arten aus dem Miozan von Salzhausen im Vogelsberg. Feddes Repertorium 93: 405-435. MANCHESTER, S. R. 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana 58: 1-114. MARGUERIT, E., C. BOURY, A. MANICKI, M. DONNART, G. BUTTERLIN, A. NEMORIN, S. WIEDEMANN-MERDINOGLU, D. MERDINOGLU, N. OLLAT, AND S. DECROOCQ. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics 118: 1261-1278. MELLER, B. 1998. Systematic-taxonomic and palaeoecological investigations of the CarpoTaphocoenoses from the Kflach-Voitsberg li gnite mining area (Styria, Austria; Early Miocene). Jahrbuch der Geologischen Bundesanstalt 140: 497-655. MICKEVICH, M. F., AND M. S. JOHNSON. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Systematic Zoology 25: 260-270. MIKI, S. 1956. Seed remains of Vitaceae in Japan. Journal of the Institute of Polytechnics, Osaka City University 7: 247-271. MOLINA, J., E. GREEN, AND L. STRUWE. 2006. Phenology and pollination of the ancestral grape relative Leea (Leeaceae/Vitaceae). Boatny 2006, Chico. MOORE, M. O. 1990. A systematic study of eastern North American Vitis (Vitaceae) north of Mexico, University of Georgia, Athens, United States. MORAN, C., C. P. CATTERALL, AND J. KANOWSKI. 2009. Reduced dispersal of native plant species as a consequence of the reduced a bundance of frugivore species in fragmented rainforest. Biological Conservation 142: 541. NANDI, O. I., M. W. CHASE, AND P. K. ENDRESS. 1998. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. Annals of the Mi ssouri Botanical Garden 85: 137-212. NAZIMUDDIN, S., AND M. QAISER. 1982. Vitaceae. In S. I. Ali and M. Qaiser [eds.], Flora of Pakistan. University of Karachi & Missouri Botanical Garden, St. Louis. NEGI, S. S., AND H. P. OLMO. 1971. Conversion and determination of sex in Vitis vinifera L. ( sylvestris ). Vitis 9: 265-279.

PAGE 321

321 ______. 1972. Certain embryological and biochemi cal aspects of Cytokinin Sd-8339 in converting sex of a male Vitis vinifera ( Sylvestris ). American Journal of Botany 59: 851857. NIKITIN, V. P. 2006. Paleocarpology and stratigraphy of the Paleogene and Neogene strata in Asian Russia. Academic Publishing House, Novosibirsk. PATIL, S. G. 1998. Inter-generic variations in pollen gr ains of the family Vitaceae and their taxonomic significance. Journal of Indian Botanical Society 77: 99-102. ______. 2006. Inter-generic variations in the leaf characters of family Vitaceae and their taxonomic significance. Journal of Economic and Taxonomic Botany 30: 699-704. PERIASAMY, K. 1962. Studies on seeds with ruminate endosperm: 2. Development of rumination in the Vitaceae. Proceedings of India Academy of Sciences B 56: 13-26. PLANCHON, J. E. 1887. Monographie des Amplides vraies. In A. L. P. P. de Candolle and C. de Candolle [eds.], Monographiae Phanerogama rum, Volume V, p. 306-654. Sumptibus G. Mason, Paris. POOLE, I., AND H. P. WILKINSON. 2000. Two early Eocene vine s from south-east England. Botanical Journal of the Linnean Society 133: 1-26. POSLUSZNY, U., AND J. M. GERRATH. 1986. The vegetative and floral development of the hybrid grape cultivar Ventura. Canadian Journal of Botany 64: 1620-1631. PRAKASH, U., AND R. DAYAL. 1964. Fossil wood resembling Elaeocarpus and Leea from Deccan Intertrappean Beds of Mahurzari near Nagpur. Palaeobotanist 12: 121-127. RASBAND, W. S. 1997-2006. Image J. U. S. National Institutes of Health, http://rsb.info.nih.gov/ij/, Bethesda, Maryland, USA. REID, E. M., AND M. E. J. CHANDLER. 1933. The London Clay Flora, 561 pp. The British Museum (Natural History), London. REILLE, M. 1967. Contribution a letude palynolog ique de la famille des Vitacees. Pollen et Spores 9: 279-303. REN, H., K.-Y. PAN, Z.-D. CHEN, AND R.-Q. WANG. 2003. Structural char acters of leaf epidermis and their systema tic significance in Vitaceae. Acta Phytotaxonomica Sinica 41: 531-544. RIAZ, S., A. F. KRIVANEK, K. XU, AND M. A. WALKER. 2006. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris x V. arizonica Theoretical and Applied Genetics 113: 1317-1329. RIDSDALE, C. E. 1974. A revision of the family Leeaceae. Blumea 22: 57-100.

PAGE 322

322 ______. 1976. Leeaceae. In C. G. C. J. v. Steenis [ed.], Flora Malesiana, 755-782. ROBINSON, L., AND J. G. HONEY. 1987. Geologic setting of a new Pa leocene mammal locality in the northern Powder River Basin, Montana. Palaios 2: 87-90. ROSSETTO, M. 2007. An updated estimate of intergen eric phylogenetic relationships in the Australian Vitaceae. Canadian Journal of Botany 85: 722-730. ROSSETTO, M., B. R. JACKES, K. D. SCOTT, AND R. J. HENRY. 2002. Is the genus Cissus (Vitaceae) monophyletic? Evidence from plastid and nuclear ribosomal DNA. Systematic Botany 27: 522-533. ROZEFELDS, A. C. 1988. A Mid Tertiary rainforest fl ora from Capella, Central Queensland. Proceedings of the 3rd IOP Conference, Melbourne: 123-136. SCOTLAND, R. W., R. G. OLMSTEAD, AND J. R. BENNETT. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52: 539-548. SHETTY, B. V., AND P. SINGH. 2000. Vitaceae. In N. P. Singh, J. N. Vohra, P. K. Hajra, and D. K. Singh [eds.], Flora of India, volume 5, Olacaceae Connaraceae, 246-342. Botanical survey of India, Calcutta. SOEJIMA, A., AND J. WEN. 2006. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. American Journal of Botany 93: 278-287. SOLTIS, D. E., A. E. SENTERS, M. J. ZANIS, S. KIM, J. D. THOMPSON, P. S. SOLTIS, L. P. RONSE DE CRAENE, P. K. ENDRESS, AND J. S. FARRIS. 2003. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. American Journal of Botany 90: 461-470. SOLTIS, D. E., P. S. SOLTIS, M. W. CHASE, M. E. MORT, D. C. ALBACH, M. ZANIS, V. SAVOLAINEN, W. H. HAHN, S. B. HOOT, M. F. FAY, M. AXTELL, S. M. SWENSEN, L. M. PRINCE, W. J. KRESS, K. C. NIXON, AND J. S. FARRIS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461. SRINIVASAN, C., AND M. G. MULLINS. 1978. Control of flowering in grapevine ( Vitis-Vinifera L) Formation of inflorescences in vitro by isolated tendrils. Plant Physiology 61: 127130. ______. 1979. Flowering in Vitis Conversion of tendrils into inflorescences and bunches of grapes. Planta 145: 187-192. ______. 1980. Effects of temperature and growth-re gulators on formation of anlagen, tendrils and inflorescences in Vitis vinifera L. Annals of botany 45: 439-446. STEVENS, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: a review. Systematic Biology 16: 553-583.

PAGE 323

323 ______. 2001 onwards. Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. SSSENGUTH, K. 1953. Vitaceae. In A. Engler and K. Prantl [eds.], Die Natrlichen Pflanzenfamlien 20. d., p. 174-333. Duncker & Humblot, Berlin. SWOFFORD, D. L. 2002. PAUP: Phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates., Inc., Sunderland, MA. TARNAVSCHI, I. T., AND E. PETRIA. 1968. Contribution to the knowledge of the microsporal structure in the family Leeaceae. Pollen et Spores 10: 221-249. TCHEREPOVA, M., AND K. B. PIGG. 2005. Vitaceae: fossil seeds and wood from the Middle Miocene of Yakima Canyon, Washingt on, USA. Botany 2005, Austin, Texas. TEODORIDIS, V. 2003. Early Miocene carpological material from the Czech part of the Zittau Basin. Acta Palaeobotanica 43: 9-49. THIELE, K. 1993. The holy grail of the perfect character: the cladisti c treatment of morphometric data. Cladistics 9: 275-304. THIERS, B. continuously updated. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botani cal Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/. THORPE, R. S. 1984. Coding Morphometric Character s For Constructing Distance Wagner Networks. Evolution 38: 244-255. TIFFNEY, B. H. 1977. Fossil Angiosperm fruits and seeds. Journal of Seed Technology 2: 54-71. ______. 1994. Reevaluation of the age of the Bra ndon Lignite (Vermont, USA) based on plant megafossils. Review of Palaeobotany and Palynology 82: 299-315. ______. 1999. Part 8. Fossil fruit and seed flora fro m the Early Eocene Fisher/Sullivan site. In R. E. Weems and G. J. Grimsley [eds.], Earl y Eocene vertebrates and plants from the Fisher/Sullivan site (Nanjemoy Formation) Stafford county, Virginia, 139-159. Virginia division of mineral resources Charlottesville, Virginia. TIFFNEY, B. H., AND E. S. BARGHOORN. 1976. Fruits and seeds of Brandon lignite.1. Vitaceae. Review of Palaeobotany and Palynology 22: 169-191. TIFFNEY, B. H., AND S. R. MANCHESTER. 2001. The use of geological and paleontological evidence in evaluating plant phylogeographi c hypotheses in the northern hemisphere tertiary. International Journal of Plant Sciences 162: S3-S17. TIMMONS, S. A., U. POSLUSZNY, AND J. M. GERRATH. 2007a. Morphological and anatomical development in the Vitaceae. IX. Comparative ontogeny and phylogenetic implications of Vitis rotundifolia Michx. Canadian Journal of Botany 85: 850-859.

PAGE 324

324 ______. 2007b. Morphological and anatomical developm ent in the Vitaceae. X. Comparative ontogeny and phylogenetic implications of Cissus quadrangularis L. Canadian Journal of Botany 85: 860-872. VASSILCZENKO, I. T. 1970. Vitaceae. In K. H. Rechinger [ed.], Flora Iranica, 1-5, 4pl. Akacemische Druck-U. Verlagsanstalt, Austria. VERDCOURT, B. 1993. Flora of tropical East Africa : Vitaceae. A.A. Balkema, Rotterdam. WANG, H. C., M. J. MOORE, P. S. SOLTIS, C. D. BELL, S. F. BROCKINGTON, R. ALEXANDRE, C. C. DAVIS, M. LATVIS, S. R. MANCHESTER, AND D. E. SOLTIS. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America 106: 3853-3858. WANG, W. T. 1979. Vitacearum novitates. Acta Phytotaxonomica Sinica 17: 73-96; plate V, VI. WATARI, S. 1951. Studies on the fossil woods fr om the Tertiary of Japan. (VII): Leea (Vitaceae) from the Miocene of Simane. The Botanical Magazine, Tokyo 64: 1-7. WEBB, D. A. 1968. Vitaceae. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb [eds.], Flora Europaea, 2, Rosaceae to Umbelliferae, 246-247. Cambridge University Press, Cambridge. WEBERLING, F. 1989. Morphology of flowers and inflores cences. Cambridge University Press, Cambridge. WEN, J. 1999. Evolution of eastern Asian and easter n North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421-455. ______. 2001. Evolution of eastern Asian-Eastern North American bioge ographic disjunctions: A few additional issues. International Journal of Plant Sciences 162: S117-S122. ______. 2007a. Leeaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer. ______. 2007b. Vitaceae. In K. Kubitzki [ed.], The families and genera of vascular plants. Springer. WEN, J., Z.-L. NIE, A. SOEJIMA, AND Y. MENG. 2007. Phylogeny of Vitaceae based on the nuclear GAI1 gene sequences. Canadian Journal of Botany 85: 731-745. WHEELER, E. A., AND C. A. LAPASHA. 1994. Woods of the Vitaceae fossil and modern. Review of Palaeobotany and Palynology 80: 175-207. WIENS, J. J. 2001. Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology 50: 689-699.

PAGE 325

325 ______. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52: 528-538. ______. 2005. Can incomplete taxa rescue phylogeneti c analyses from long-branch attraction? Systematic Biology 54: 731-742. ______. 2006. Missing data and the desi gn of phylogenetic analyses. Journal of Biomedical Informatics 39: 34-42. WIENS, J. J., AND R. E. ETHERIDGE. 2003. Phylogenetic relationships of Hoplocerid lizards: coding and combining meristic, morphometric, and polymorphic data using step matrices. Herpetologica 59: 375-398. WILD, H., AND R. B. DRUMMOND. 1966. Vitaceae. In A. W. Exell, A. Fernandes, and H. Wild [eds.], Flora Zambesiaca, 439-492. WILSON, T., AND U. POSLUSZNY. 2003a. Novel variation in th e floral development of two species of Parthenocissus Canadian Journal of Botany 81: 738-748. ______. 2003b. Complex tendril branching in two species of Parthenocissus: implications for the vitaceous shoot architecture. Canadian Journal of Botany 81: 587-597. WILSON, T. C., J. M. GERRATH, AND U. POSLUSZNY. 2006. Morphological and anatomical development in the Vitaceae. VIII. Comparative development of three Cyphostemma (Vitaceae) species reveals important vegeta tive and reproductive differences among the species. Canadian Journal of Botany 84: 702-716. XIANG, Q. Y. J., AND D. E. SOLTIS. 2001. Dispersal-vicariance an alyses of intercontinental disjuncts: Historical biogeogr aphical implications for angiosperms in the Northern Hemisphere. International Journal of Plant Sciences 162: S29-S39. ZACHOS, J., M. PAGANI, L. SLOAN, E. THOMAS, AND K. BILLUPS. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686-693. ZUBKOVA, I. G. 1966. Epiderma lista Vitaceae i ee systematicheskkoe znachenie. Botanicheskiy Zhurnal 51: 278-283. ______. 1975. Comparative morphological/anatomical st udy of petiole and epidermis of leaves in the representatives of fa mily Vitaceae Juss., to the history of the study of family Vitaceae in connection w ith its systematics [translated from Russia]. In L. Budantsev [ed.], Voprosy sravnitel'noj morfolog ii semennyh rastenij. Izdatelbstvo Nauka, Leningradskoe otdelenie, Leningrad.

PAGE 326

326 BIOGRAPHICAL SKETCH Iju Chen was born in Taiwan. She received a bachelor's degree from National Taiwan University, with a major in plant pathology. For her master's degree she studied plant bacteriology at the University of California at Berkeley. She worked in Dr. Na-Sheng Lin's lab in Academia Sinica, Taipei, doing research related to Bamboo Mo saic Virus. Before entering the doctoral program, she worked for Dr. Roge r Beachy in Donald Danforth Plant Science Center, assisting the research of Tobacco Mosaic Virus. During the early years of the doctoral program, Iju Chen collected plant fossils in northeastern China with Dr. Steven Manchester She worked on the pollen flora of Huadian, Jilin, described seeds of Nuphar (Nympheaceae) from Wutu, Sha ngdong province, and prepared electronic microscopic photographs of fossil Tetracentron (Trochodendraceae). For her dissertation research, the mo rphology-based phylogeny of Vitaceae, she visited Australia, Malaysia, Singapore, and China to collect plant materials and work in the herbaria. She worked as a teaching assistant for the courses such as plant anatomy, plant dive rsity, and biology at the University of Florida. She received her Ph. D. from the University of Florida in the fall of 2009.