<%BANNER%>

Interstitial Component Characterization to Evaluate Asphalt Mixture Performance

Permanent Link: http://ufdc.ufl.edu/UFE0024951/00001

Material Information

Title: Interstitial Component Characterization to Evaluate Asphalt Mixture Performance
Physical Description: 1 online resource (171 p.)
Language: english
Creator: Guarin, Alvaro
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: aggregate, asphalt, dasr, disruption, gradation, interstitial, mixture, performance
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: INTERSTITIAL COMPONENT CHARACTERIZATION TO EVALUATE ASPHALT MIXTURE PERFORMANCE The importance of having an adequate aggregate particle distribution for asphalt mixture rutting and cracking performance has been well established on the basis of experience and is well documented in the literature. Typically, aggregate gradation is selected to meet Superior Performing Asphalt Pavements (Superpave) mix design specification; however, many mixtures that meet Superpave criteria have not exhibited good field performance. Recently a conceptual and theoretical approach to evaluate coarse aggregate structure based on packing theory and particle size distribution was developed. The range of particle sizes determined to form an interactive network was referred to as the Dominant Aggregate Size Range (DASR) and its porosity must be no more than 50% for the particles to be in contact with each other. The material (asphalt, aggregate and air voids) that exists within the interstices of the DASR was referred to as the Interstitial Component (IC). The main purpose of this study was to enhance understanding of how asphalt mixture performance is affected by changes in IC. Two known good mixtures (according to DASR criterion) were selected as a reference and then modified to assess a broad range of IC gradations from very coarse IC to very fine IC. Laboratory results from Superpave Indirect Tension Test (IDT) and Asphalt Pavement Analyzer (APA) tests clearly showed that IC characteristics have a very significant effect on rutting and cracking performance of HMA even when both DASR porosity and the percentage passing #200 sieve are constant. Particle packing theory and volumetric properties of aggregates were used as the basis to define Disruption Factor (DF), which is the ratio between the volume of potentially disruptive IC particles and the volume of DASR voids. DF was conceived to evaluate the potential of IC aggregates to disrupt the DASR structure. DF was calculated for an extensive range of asphalt mixtures including laboratory mixtures and field sections from Superpave projects in Florida, National Center for Asphalt Technology NCAT, and Westrack. DF satisfactorily distinguished poor performing mixtures; therefore, it may eventually be used as a design parameter for rutting and cracking resistant asphalt mixtures.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Alvaro Guarin.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Roque, Reynaldo.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024951:00001

Permanent Link: http://ufdc.ufl.edu/UFE0024951/00001

Material Information

Title: Interstitial Component Characterization to Evaluate Asphalt Mixture Performance
Physical Description: 1 online resource (171 p.)
Language: english
Creator: Guarin, Alvaro
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: aggregate, asphalt, dasr, disruption, gradation, interstitial, mixture, performance
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: INTERSTITIAL COMPONENT CHARACTERIZATION TO EVALUATE ASPHALT MIXTURE PERFORMANCE The importance of having an adequate aggregate particle distribution for asphalt mixture rutting and cracking performance has been well established on the basis of experience and is well documented in the literature. Typically, aggregate gradation is selected to meet Superior Performing Asphalt Pavements (Superpave) mix design specification; however, many mixtures that meet Superpave criteria have not exhibited good field performance. Recently a conceptual and theoretical approach to evaluate coarse aggregate structure based on packing theory and particle size distribution was developed. The range of particle sizes determined to form an interactive network was referred to as the Dominant Aggregate Size Range (DASR) and its porosity must be no more than 50% for the particles to be in contact with each other. The material (asphalt, aggregate and air voids) that exists within the interstices of the DASR was referred to as the Interstitial Component (IC). The main purpose of this study was to enhance understanding of how asphalt mixture performance is affected by changes in IC. Two known good mixtures (according to DASR criterion) were selected as a reference and then modified to assess a broad range of IC gradations from very coarse IC to very fine IC. Laboratory results from Superpave Indirect Tension Test (IDT) and Asphalt Pavement Analyzer (APA) tests clearly showed that IC characteristics have a very significant effect on rutting and cracking performance of HMA even when both DASR porosity and the percentage passing #200 sieve are constant. Particle packing theory and volumetric properties of aggregates were used as the basis to define Disruption Factor (DF), which is the ratio between the volume of potentially disruptive IC particles and the volume of DASR voids. DF was conceived to evaluate the potential of IC aggregates to disrupt the DASR structure. DF was calculated for an extensive range of asphalt mixtures including laboratory mixtures and field sections from Superpave projects in Florida, National Center for Asphalt Technology NCAT, and Westrack. DF satisfactorily distinguished poor performing mixtures; therefore, it may eventually be used as a design parameter for rutting and cracking resistant asphalt mixtures.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Alvaro Guarin.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Roque, Reynaldo.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024951:00001


This item has the following downloads:


Full Text

PAGE 14

14 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy INTERSTITIAL COMPONE NT CHARACTERIZATION TO EVALUATE ASPHALT MIXTURE PERFORMANCE By Alvaro Guarin A ugust 2009 Chair: Reynaldo Roque Major: Civil Engineering The import ance of having an adequate aggregate particle distribution for asphalt mixture rutting and cracking performance has been well established on the basis of experience and is well documented in the literature. Typically, aggregate gradation is selected to mee t Superior Performing Asphalt Pavements (Superpave) mix design specification; however, many mixtures that meet Superpave criteria have not exhibited good field performance. Recently a conceptual and theoretical approach to evaluate coarse aggregate structu re based on packing theory and particle size distribution was developed. The range of particle sizes determined to form an interactive network was referred to as the Dominant Aggregate Size Range (DASR) and its porosity must be no more than 50% for the particles to be in contact with each other. The material (asphalt, aggregate and air voids) that exists within the interstices of the DASR was referred to as the Interstitial Component (IC). The main purpose of this study was to enhance understanding of how a sphalt mixture performance is affected by changes in IC. Two known good mixtures (according to DASR criterion) were selected as a reference and then modified to assess a broad range of IC gradations from very coarse IC to very fine IC.

PAGE 16

1.1 Background

PAGE 17

1.2 Hypothesis 1.3 Objectives 1. 4 Scope

PAGE 19

2 .1 Gradation

PAGE 23

2.2 Film Thickness FT

PAGE 26

3.1 D ominant Aggregate Size Range (DASR) DASR IC

PAGE 27

3.2 Interstitial Component (IC)

PAGE 28

3 .3 Single Particle Size DASR

PAGE 30

3.3.1 Voids S tructure 3.3.1.1 Voids in dense packing

PAGE 31

void l tetrahedra aaround spheres ofNumber sphere aaround voidsl tetrahedra ofNumber void octahedral anaround spheres ofNumber sphere aaround voids octahedral ofNumber

PAGE 32

3.3.1.2 Voids in loose packing

PAGE 33

void cubicaaround spheres ofNumber sphere aaround voidscubicofNumber 3.3. 2 Porosity 3.3. 2.1 DASR p orosity

PAGE 34

VMA = V VAGG DASR Agg TM DASR TVVV DASR Air void s Aspha lt IC aggregates Aggregates > DASR Interstitial V olume DASR V VMA V TM

PAGE 35

VMA VVICagg DASR V DASR agg TM ICagg TDASR VDASR DASRVV VMA V V V 3.3.2. 2 Spheres s ystem p orosity

PAGE 38

Gsb W VDASR DASR sphere DASR particlesV V DASR 3.3.3 DASR Disruption 3.3.3.1 Loca l DASR disruption

PAGE 39

3.3.3.2 Global DASR disruption

PAGE 41

3.3.3. 3 Potentially d isruptive IC r ange

PAGE 44

3.3. 3.2 Disruption Factor (DF ) voids DASR ofVolume particles IC disruptive ypotentiall ofVolume DF Gsb particles IC disr potofWeight particles IC disruptive ypotentiall ofVol Gsb particle DASR average weightedofVolume particles DASR ofWeight particles DASR ofNumber volumevoidDASR voids DASR ofNumber voids DASR ofVolume

PAGE 47

3.4 Multiple Particle Size DASR n ii n iii AVEN ND D

PAGE 48

3.5 Excessively Low DASR Porosity

PAGE 50

0 5 10 15 20 0 102030405060 Interstitial Volume, % stress zz

PAGE 51

4.1 Introduction Dominant Aggregate Size Range 4.2 Materials 4.3 Gradations

PAGE 52

4.3.1 Georgia Granite #16 1.18

PAGE 54

4.3.2 Florida Limestone

PAGE 56

4.4 Mixture Design

PAGE 57

Gradation AC (%) Gmm Gsb VMA (%) VFA (%) FLICc 6.6 2.303 2.432 15.0 74.2 FL Good 6.6 2.311 2.400 13.6 70.8 FLICf 5.2 2.351 2.436 12.0 67.9 GAICc 6.0 2.522 2.724 16.4 75.9 GA Good 4.8 2.579 2.770 14.9 73.2 GAICf 3.9 2.598 2.712 11.7 65.3

PAGE 58

4.4.1 Mixing and A ging 4.4 .2 Compaction 4.5 Performance Tests 4.5.1 Asphalt Pavement Analyzer

PAGE 60

4.5.2 Servo P ac kNkGS

PAGE 62

Optimal mixtures Low shear resistance Brittle mixtures Plastic mixtures 4.5.3 Superpave IDT

PAGE 64

DCSE DCSE ERf A Dm DCSE tS A 4.6 Laboratory Test Results 4. 6 .1 Asphalt Pavement Analyzer APA

PAGE 65

0 2 4 6 8 10 12

PAGE 66

4. 6.2 ServoPac Optimal mixtures Low shear resistance Brittle mixtures Plastic mixtures 4. 6 .3 Superpave IDT

PAGE 71

4.7 Additional Laboratory Test

PAGE 72

4.7.1 Loose Unit Weight of IC 4.7.2 Rodded Unit Weight of IC

PAGE 73

Gradation Loose (%) Rodded (%) FLICc 38.9 31.0 FLICf 41.4 31.5 GAICc 42.7 33.6 GAICf 43.9 34.2

PAGE 77

5 .1 Introduction Dominant Aggregate Size Range

PAGE 78

5.2 Laboratory Evaluation 5.2.1 New Mixtures

PAGE 81

5.2.2 Existing Mixtures

PAGE 83

5.3 Superpave Monitoring Projects

PAGE 86

5. 4 WesTrack Test Sections

PAGE 88

represent the randomized paving sequence of each section. In June 1997 an additional eight sections were built to replicate the coarse aggregate experiment with a dif ferent aggregate source.

PAGE 89

A new mixture design was developed for eight of the replacement sections. This mixture design duplicated the coarse graded mixture experiment in the original construction, but changed to a more angular aggregate. A quarried andesite replaced the crushed gravel used in the original construction. The change in aggregate resulted in changes in the volumetric properties from those obtained with the original coarse graded mixes. The other two replacement sections (Sections 43 and 51) uti lized conventional Nevada Department of Transportation (DOT) mixtures containing polymer -modified binders. The replacement sections were placed in June 1997 and loading began in mid July. Most of the new sections exhibited significant deformation in the fi rst 5 days of trafficking. As a result of this early rutting and a concern that Superpave mixture design or construction procedures might be missing a critical step or steps, FHWA assembled a team of academicians, asphalt industry representatives, and State highway agency engineers to investigate the performance at WesTrack.

PAGE 90

The main conclusions from di fferent reports about WesTrack we re:

PAGE 95

5. 5 National Center for Asphalt Technology ( NCAT ) Test Sections

PAGE 96

four groups based on their gradations; coarse, fine, dense coarse and SMA. 5. 5 .1 Coarse Mixtures

PAGE 99

5. 5 .2 Fine Mixtures

PAGE 102

5.5.3 Dense M ixtures

PAGE 104

5.5. 4 SMA Mixtures

PAGE 108

6. 1 Summary of Findings Dominant Aggregate Size Range ( Interstitial Component (

PAGE 110

6 .2 Conclusions 6 .3 Recommendations

PAGE 117

APA Worksheet Sample ID: GAICc Measurement location: Rut depth measurement at: Specimen #: 25 Cycles: 8025 Cycles: Final Rut Depth: 3 Avera ge rut depth: 9.8 4 Average rut depth: 9.4 Avg. rut depth of two specimens: 9.6 Sample ID: GAICf Measurement location: Rut depth measurement at: Specimen #: 25 Cycles: 8025 Cycles: Final Rut Depth: 1 Average rut depth: 5.3 3 Average rut depth: 7.0 Avg. rut depth of two specimens: 6.1

PAGE 118

APA Worksheet Sample ID: FLICc Measurement location: Rut depth measurement at: Specimen #: 25 Cycles: 8025 Cycles: Final Rut Depth: 1 Average rut depth: 7.5 4 Average rut depth: 8.0 Avg. rut depth of two specimens: 7.7 Sample ID: FLICf Measurement location: Rut de pth measurement at: Specimen #: 25 Cycles: 8025 Cycles: Final Rut Depth: 2 Average rut depth: 4.9 3 Average rut depth: 4.8 Avg rut depth of two specimens: 4.8

PAGE 120

INSTANTANEOUS RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 9.97 9.97 9.97 9.89 9.89 9.89 9.99 9.99 9.99 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 TOTAL RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 9.26 9.26 9.26 9.2 9.2 9.2 9.16 9.16 9.16 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.29 0.29 0.29 0.29 0.29 0.29 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 RESILIENT MODULUS TEST DATA FILE NAMES AND SPECIMEN DIMENSIONS 10.0C 10.0C 10.0C FLICc 1.55 5.9 2T.txm 1.55 5.9 FLICc 1.55 5.9 FLICc 1.48 5.9 2B.txm 1.4 8 5.9 FLICc 1.48 5.9 FLICc 1.52 5.9 4T.txm 1.52 5.9 FLICc 1.52 5.9

PAGE 121

INDIRECT TENSILE STRENGTH (MPa) 10.0C 10.0C 10.0C 2 2 2 1.96 1.96 1.96 2.04 2.04 2.04 AVERAGE STRENGTHS (MPa) 2 2 2 POISSONS RATIO: FROM STRENGTH DATA 10.0C 10.0C 10.0C 0.34 0.34 0.34 0.34 0.34 0.34 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10. 0C 10.0C 6 571 5 1067 6 571 5 1067 6 571 5 1067 *2 582 *1 1088 *2 582 *1 1088 *2 582 *1 1088 *3 661 *3 1152 *3 661 *3 1152 *3 661 *3 1152 *5 679 *4 1206 *5 679 *4 1206 *5 679 *4 1206 *1 692 *6 1264 *1 692 *6 1264 *1 692 *6 1264 4 794 2 1289 4 794 2 1289 4 794 2 1289 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.55 5.9 1.55 5.9 1.55 5.9 1.48 5.9 1.48 5.9 1.48 5.9 1.52 5.9 1.52 5.9 1.52 5.9 STRENGTH TEST DATA FILE NAMES 10.0C 10.0C 10.0C FLICc 2T.txs FLICc FLICc 2B.txs FLICc FLICc 4T.txs FLICc

PAGE 122

TRIMMED MEAN VALUES 10.0C 10.0C 10.0C 2.8 2.8 2.8 2529.8 2529.8 2529.8 3.8 3.8 3.8 0.34 0.34 0.34 INDIVIDUAL VALUES USED TO CALCULATE TRIMMED MEAN VALUES INITIAL TANGENT MODULUS (GPa) 10.0C 10.0C 10.0C 4 2.4 4 2.4 4 2.4 *1 2.7 *1 2.7 *1 2.7 *5 2.8 *5 2.8 *5 2.8 *3 2.9 *3 2.9 *3 2.9 *2 3 *2 3 *2 3 6 3.1 6 3.1 6 3.1 FAILURE STRAIN (Microstrain) 10.0C 10.0C 10.0C 1 2309.14 1 2309.14 1 2309.14 *5 2310.84 *5 2310.84 *5 2310.84 *3 2488.9 *3 2488.9 *3 2488.9 *2 2658.74 *2 2658.74 *2 2658.74 *6 2660.7 *6 2660.7 *6 2660.7 4 2891.08 4 2891.08 4 2891.08 FRACTURE ENERGY (kJ/m3) 10.0C 10.0C 10.0C 1 3.3 1 3.3 1 3.3 *5 3.4 *5 3.4 *5 3.4 *3 3.6 *3 3.6 *3 3.6 *2 4.1 *2 4.1 *2 4.1 *6 4.1 *6 4.1 *6 4.1 4 4.2 4 4.2 4 4.2

PAGE 123

CREEP COMPLIANCE (1/Gpa) 10.0C 10.0C 10.0C 0.236 0.236 0.236 0.312 0.312 0.312 0.438 0.438 0.438 0.589 0.589 0.589 0.794 0.794 0.794 1.283 1.283 1.283 1.804 1.804 1.804 2.727 2.727 2.727 4.652 4.652 4.652 7.065 7.065 7.065 POISSONS RATIO: FROM CREEP DATA 10.0C 10.0C 10.0C 0. 28 0.28 0.28 0.29 0.29 0.29 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 6 218 6 326 6 218 6 326 6 218 6 326 *2 250 *1 493 *2 250 *1 493 *2 250 *1 493 *5 273 *2 540 *5 273 *2 540 *5 273 *2 540 *3 343 *3 579 *3 343 *3 579 *3 343 *3 579 *1 363 *5 616 *1 363 *5 616 *1 363 *5 616 4 571 4 849 4 571 4 849 4 571 4 849 CREEP TEST DATA FILE NAMES AN D AVERAGE CREEP LOADS (LBS) 10.0C 10.0C 10.0C FLICc 51.2 2T.txc 51.2 FLICc 51.2 FLICc 50.2 2B.txc 50.2 FLICc 50.2 FLICc 50.9 4T.txc 50.9 FLICc 50.9 SPE CIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.55 5.9 1.55 5.9 1.55 5.9 1.48 5.9 1.48 5.9 1.48 5.9 1.52 5.9 1.52 5.9 1.52 5.9

PAGE 124

INSTANTANEO US RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 13.01 13.01 13.01 13.03 13.03 13.03 12.83 12.83 12.83 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.32 0.32 0.32 0.32 0.32 0.32 0.3 0.3 0.3 0.3 0.3 0.3 0.34 0.34 0.34 0.34 0.34 0.34 TOTAL RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 12.11 12.11 12.11 11.99 11.99 11.99 11.83 11.83 11.83 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.29 0.29 0.29 0.29 0.29 0.29 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 RESILIENT MODULUS TEST DATA FILE NAMES AND SPECIMEN DIMENSIONS 10.0C 10.0C 10.0C FLICf 1.46 5.89 2B.txm 1.46 5.89 FLICf 1.46 5.89 FLICf 1.48 5.89 3T.txm 1.48 5.89 FLICf 1.48 5.89 F LICf 1.51 5.89 3B.txm 1.51 5.89 FLICf 1.51 5.89

PAGE 125

INDIRECT TENSILE STRENGTH (MPa) 10.0C 10.0C 10.0C 2.23 2.23 2.23 2.22 2.22 2.22 2.33 2.33 2.33 AVERAGE STRENGTHS (MPa) 2.26 2.26 2.26 POISSONS RATIO: FROM STRENGTH DATA 10.0C 10.0C 10.0C 0.34 0.34 0.34 0.34 0.34 0.34 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 6 448 1 671 6 448 1 671 6 448 1 671 *1 459 *3 760 *1 459 *3 760 *1 459 *3 760 *3 497 *5 853 *3 497 *5 853 *3 497 *5 853 *5 515 *6 1001 *5 515 *6 1001 *5 515 *6 1001 *4 570 *4 1070 *4 570 *4 1070 *4 570 *4 1070 2 645 2 1148 2 645 2 1148 2 645 2 1148 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.46 5.89 1.46 5.89 1 .46 5.89 1.48 5.89 1.48 5.89 1.48 5.89 1.51 5.89 1.51 5.89 1.51 5.89 STRENGTH TEST DATA FILE NAMES 10.0C 10.0C 10.0C FLICf 2B.txs FLICf FLICf 3T.txs FLICf FLICf 3B.txs FLICf

PAGE 126

T RIMMED MEAN VALUES 10.0C 10.0C 10.0C 4.2 4.2 4.2 1810.59 1810.59 1810.59 3 3 3 0.34 0.34 0.34 INDIVIDUAL VALUES USED TO CALCULATE TRIMMED MEAN VALUES INITIAL TANGENT MODULUS (GPa) 10.0C 10.0C 10.0C 2 3.3 2 3.3 2 3.3 *4 3.7 *4 3.7 *4 3.7 *5 4.1 *5 4.1 *5 4.1 *3 4.4 *3 4.4 *3 4.4 *6 4.5 *6 4.5 *6 4.5 1 4.8 1 4.8 1 4.8 FAILURE STRAIN (Microstrain) 10.0C 10.0C 10.0C 3 1226.42 3 1226.42 3 1226.42 *1 1444.77 *1 1444.77 *1 1444.77 *5 1722.93 *5 1722.93 *5 1722.93 *6 1906.67 *6 1906.67 *6 1906.67 *4 2167.98 *4 2167.98 *4 2167.98 2 2182.4 2 2182.4 2 2182.4 FRACTURE ENERGY (kJ/m 3 ) 10.0C 10.0C 10.0C 3 1.8 3 1.8 3 1.8 *1 2.3 *1 2.3 *1 2.3 *5 2.8 *5 2.8 *5 2.8 *6 3.3 *6 3.3 *6 3.3 *2 3.5 *2 3.5 *2 3.5 4 3.6 4 3.6 4 3.6

PAGE 127

CREEP COMPLIANCE (1/Gpa) 10.0C 10.0C 10.0C 0.183 0.183 0.183 0.224 0.224 0.224 0.301 0.301 0.301 0.383 0.383 0.383 0.514 0.514 0.514 0.749 0.749 0.749 1.033 1.033 1.033 1.413 1.413 1.413 2.116 2.116 2.116 2.977 2.977 2.977 POISSONS RATIO: FROM CREEP DATA 10.0C 10.0C 10.0C 0.38 0.38 0.38 0.39 0.39 0.39 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 6 177 6 279 6 177 6 279 6 177 6 279 *1 206 *1 341 *1 206 *1 341 *1 206 *1 341 *3 237 *3 382 *3 237 *3 382 *3 237 *3 382 *4 300 *5 506 *4 300 *5 506 *4 300 *5 506 *5 302 *4 534 *5 302 *4 534 *5 302 *4 534 2 321 2 575 2 321 2 575 2 321 2 575 CREEP TEST DATA FILE NAMES AND AVERAGE CREEP LOADS (LBS) 10.0C 10.0C 10.0C FLICf 75.4 2B.txc 75.4 FLICf 75.4 FLICf 81.1 3T.txc 81.1 FLICf 81.1 FLICf 79.6 3B. txc 79.6 FLICf 79.6 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.46 5.89 1.46 5.89 1.46 5.89 1.48 5.89 1.48 5.89 1.48 5.89 1.51 5.89 1.51 5.89 1.51 5.89

PAGE 128

INSTANTANEOUS RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 8.41 8.41 8.41 8.43 8.43 8.43 8.28 8.28 8.28 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 TOTAL RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 7.47 7.47 7.47 7.48 7.48 7.48 7.53 7.53 7.53 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.23 RESILIENT MODULUS TEST DATA F ILE NAMES AND SPECIMEN DIMENSIONS 10.0C 10.0C 10.0C GAICc 1.5 5.89 1T.txm 1.5 5.89 GAICc 1.5 5.89 GAICc 1.57 5.89 1B.txm 1.57 5.89 GAICc 1.57 5.89 GAICc 1.47 5.89 2T.txm 1.47 5.89 GAICc 1.47 5.89

PAGE 129

INDIRECT TENSILE STRENGTH (MPa) 10.0C 10.0C 10.0C 2.02 2.02 2.02 1.9 1.9 1.9 1.93 1.93 1.93 AVERAGE STRENGT HS (MPa) 1.95 1.95 1.95 POISSONS RATIO: FROM STRENGTH DATA 10.0C 10.0C 10.0C 0.35 0.35 0.35 0.35 0.35 0.35 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 1 647 5 1233 1 647 5 1233 1 647 5 1233 *4 702 *1 1326 *4 702 *1 1326 *4 702 *1 1326 *5 901 *4 1440 *5 901 *4 1440 *5 901 *4 1440 *2 947 *2 1765 *2 947 *2 1765 *2 947 *2 1765 *6 1033 *3 1820 *6 1033 *3 1820 *6 1033 *3 1820 3 1192 6 2181 3 1192 6 2181 3 1192 6 2181 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.5 5.89 1.5 5.89 1.5 5.89 1.57 5.89 1.57 5.89 1.57 5.89 1.47 5.89 1.47 5.89 1.47 5.89 STRENGTH TEST DATA FILE NAMES 10.0C 10.0C 10.0C GAICc 1T.txs G AICc GAICc 1B.txs GAICc GAICc 2T.txs GAICc

PAGE 130

TRIMMED MEAN VALUES 10.0C 10.0C 10.0C 1.7 1.7 1.7 6161.23 6161.23 6161.23 9.7 9.7 9.7 0.35 0.35 0.35 INDIVIDUAL VALUES USED TO CALCULATE TRIMMED MEAN VALUES INITIAL TANGENT MODULUS (GPa) 10.0C 10.0C 10.0C 3 1.3 3 1.3 3 1.3 *6 1.4 *6 1.4 *6 1.4 *2 1.6 *2 1.6 *2 1.6 *5 1.8 *5 1.8 *5 1.8 *4 2.1 *4 2.1 *4 2.1 1 2.5 1 2.5 1 2.5 FAILURE STRAIN (Microstrain) 10.0C 10.0C 10.0C 1 3778.29 1 3778.29 1 3778.29 *4 4889.58 *4 4889.58 *4 4889.58 *5 5439.49 *5 5439.49 *5 5439.49 *2 6435.97 *2 6435.97 *2 6435.97 *6 7879.88 *6 7879.88 *6 7879.88 3 8066.36 3 8066.36 3 8066.36 FRACTURE ENERGY (kJ/m 3 ) 10.0C 10.0C 10.0C 1 6 1 6 1 6 *4 7.5 *4 7.5 *4 7.5 *5 8.5 *5 8.5 *5 8.5 2 10.4 *2 10.4 *2 10.4 *3 12.4 *3 12.4 *3 12.4 6 12.5 6 12.5 6 12.5

PAGE 131

CREEP COMPLIANCE (1/Gpa) 10.0C 10.0C 10.0C 0.222 0.222 0.222 0.308 0.308 0.308 0.482 0.482 0.482 0.71 0.71 0.71 0.99 0.99 0.99 1.753 1.753 1.753 2.752 2.752 2.752 4.323 4.323 4.323 7.905 7.905 7.905 12.721 12.721 12.721 POISSONS RATIO: FROM CREEP DATA 10.0C 10.0C 10.0C 0.45 0.45 0.45 0.45 0.45 0.45 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 4 214 5 326 4 214 5 326 4 214 5 326 *1 250 *1 366 *1 250 *1 366 *1 250 *1 366 *5 306 *4 425 *5 306 *4 425 *5 306 *4 425 *2 411 *3 5 60 *2 411 *3 560 *2 411 *3 560 *3 425 *2 586 *3 425 *2 586 *3 425 *2 586 6 442 6 778 6 442 6 778 6 442 6 778 CREEP TEST DATA FILE NAMES AND AVERAGE CREEP LOADS (LBS) 10.0C 10.0C 10.0C GAICc 29 1T.txc 29 GAICc 29 GAICc 25.4 1B.txc 25.4 GAICc 25.4 GAICc 25 2T.txc 25 GAICc 25 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.5 5.89 1.5 5.89 1.5 5.89 1.57 5.89 1.57 5.89 1.57 5.89 1.47 5.89 1.47 5.89 1.47 5.89

PAGE 132

INSTANTANEOUS RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 14.2 14.2 14.2 14.27 14.27 14.27 13.93 13.93 13.93 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.28 0.28 0.28 0.28 0.28 0.28 TOTAL RESILIENT MODULUS (GPa) 10.0C 10.0C 10.0C 13.59 13.59 13.59 13.53 13.53 13.53 13.48 13.48 13.48 POISSONS RATIO: FROM RESILIENT MODULUS DATA 10.0C 10.0C 10.0C 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 RESILIENT MODULUS TEST DATA FILE NAMES AND SPECIMEN DIMENSIONS 10.0C 10.0C 10.0C GAICf 1.51 5.89 1T.txm 1.51 5.89 GAICf 1.51 5.89 GAICf 1.5 5.89 1B.txm 1.5 5.89 GAICf 1.5 5.89 GAICf 1.55 5.89 4T.txm 1.55 5.89 GAICf 1.55 5.89

PAGE 133

INDIRECT TENSILE STRENGTH (MPa) 10.0C 10.0C 10.0C 2.34 2.34 2.34 2.47 2.47 2.47 2.5 2.5 2.5 AVERAGE STRENGTHS (MPa) 2.43 2.43 2.43 POISSONS RATIO: FROM STRENGTH DATA 10.0C 10.0C 10.0C 0.38 0.38 0.38 0.38 0.38 0.38 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 1 386 1 678 1 386 1 678 1 386 1 678 *5 474 *5 852 *5 474 *5 852 *5 474 *5 852 *3 490 *3 886 *3 490 *3 886 *3 490 *3 886 *4 564 *4 931 *4 564 *4 931 *4 564 *4 931 *6 581 *6 953 *6 581 *6 953 *6 581 *6 953 2 589 2 1330 2 589 2 1330 2 589 2 1330 SPECIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.51 5.89 1.51 5.89 1.51 5.89 1.5 5.89 1.5 5.89 1.5 5.89 1.55 5.89 1.55 5.89 1.55 5.89 STRENGTH TEST DATA F ILE NAMES 10.0C 10.0C 10.0C GAICf 1T.txs GAICf GAICf 1B.txs GAICf GAICf 4T.txs GAICf

PAGE 134

TRIMMED MEAN VALUES 10.0C 10.0C 10.0C 4.3 4.3 4.3 2099.92 2099.92 2099.92 3.8 3.8 3.8 0.38 0.38 0.38 INDIVIDUAL VALUES USED TO CALCULATE TRIMMED MEAN VALUES INITIAL TANGENT MODULUS (GPa) 10.0C 10.0C 10.0C 6 3.8 6 3.8 6 3.8 *2 3.8 *2 3.8 *2 3.8 *4 4 *4 4 *4 4 *5 4.6 *5 4.6 *5 4.6 *3 4.7 *3 4.7 *3 4.7 1 6.3 1 6.3 1 6.3 FAILURE STRAIN (Microstrain) 10.0C 10.0C 10.0C 1 1039.64 1 1039.64 1 1039.64 *3 1734.67 *3 1734.67 *3 1734.67 *4 2102.86 *4 2102.86 *4 2102.86 *5 2131.84 *5 2131.84 *5 2131.84 *6 2430.33 *6 2430.33 *6 2430.33 2 2466.93 2 2466.93 2 2466.93 FRACTURE ENERGY (kJ/m 3 ) 10 .0C 10.0C 10.0C 1 1.7 1 1.7 1 1.7 *3 3.1 *3 3.1 *3 3.1 *4 3.8 *4 3.8 *4 3.8 *5 4 *5 4 *5 4 *2 4.4 *2 4.4 *2 4.4 6 4.5 6 4.5 6 4.5

PAGE 135

CREEP COMPLIANCE (1/Gpa) 10.0C 10.0C 10.0C 0.174 0.174 0.174 0.233 0.233 0.233 0.324 0.324 0.324 0.435 0.435 0.435 0.591 0.591 0.591 0.869 0.869 0.869 1.184 1.184 1.184 1.693 1.693 1.693 2.674 2.674 2.674 3.823 3.823 3.823 POISSONS RATIO: FROM CREEP DATA 10.0C 10.0C 10.0C 0.32 0.32 0.32 0.32 0.32 0.32 NORMALIZED DEFORMATIONS AT 500 SECONDS (MICROINCHES) 10.0C 10.0C 10.0C 1 227 1 399 1 227 1 399 1 227 1 399 *2 282 *4 529 *2 282 *4 529 *2 282 *4 529 *3 328 *3 529 *3 328 *3 529 *3 328 *3 529 *4 331 *5 599 *4 331 *5 599 *4 331 *5 599 *5 336 *6 621 *5 336 *6 621 *5 336 *6 621 6 479 2 627 6 479 2 627 6 479 2 627 CREEP TEST DATA FILE NAMES AND A VERAGE CREEP LOADS (LBS) 10.0C 10.0C 10.0C GAICf 99.2 1T.txc 99.2 GAICf 99.2 GAICf 79.9 1B.txc 79.9 GAICf 79.9 GAICf 80.5 4T.txc 80.5 GAICf 80.5 SPE CIMEN THICKNESSES AND DIAMETERS (INCHES) 10.0C 10.0C 10.0C 1.51 5.89 1.51 5.89 1.51 5.89 1.5 5.89 1.5 5.89 1.5 5.89 1.55 5.89 1.55 5.89 1.55 5.89

PAGE 136

Mixture FLICf Cubical Voids DF cubical voids 0.48

PAGE 137

Mixture FLICGood Cubical Voids DF cubical voids 0.75

PAGE 138

Mixture FLICc Cubical Voids DF cubical voids 1.21

PAGE 139

Mixture FL48 Cubical Voids DF cubical voids 0.76

PAGE 140

Mixture GAICf Cubical Voids DF cubical voids 0.49

PAGE 141

Mixture GAICGood Cubical Voids DF cubical voids 0.77

PAGE 142

Mixture GAICc Cubical Voids DF cubical voids 1.41

PAGE 143

Mixture GA48 Cubical Voids DF cubi cal voids 0.68

PAGE 144

Westrack Section 35 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.19 DF tetrahedral voids 5.12

PAGE 145

Westrack Section 38 Octahedral Voids Tetrahedral Voids DF octahedral voids 3.14 DF tetrahedral voids 3.26

PAGE 146

Westrack Section 39 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.66 DF tetrahedral voids 4.97

PAGE 147

Westrack Section 54 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.15 DF tetrahedral voids 5.03

PAGE 148

Westrack Section 36 Octahedral Voids Tetrahedral Voids DF octah edral voids 2.71 DF tetrahedral voids 5.07

PAGE 149

Westrack Section 37 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.74 DF tetrahedral voids 5.12

PAGE 150

Westrack Section 55 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.11 DF tetrahedral voids 5.00

PAGE 151

Westrack Section 56 Octahedral Vo ids Tetrahedral Voids DF octahedral voids 2.66 DF tetrahedral voids 4.97

PAGE 152

NCAT Section E2 Cubical Voids DF cubical voids 0.62

PAGE 153

NCAT Section E2 Octahedral Voids Tetrahedral Voids DF octahedral voids 2. 33 DF tetrahedral voids 10.90

PAGE 154

NCAT Section E3 Cubical Voids DF cubical voids 0.64

PAGE 155

NCAT Section E3 Octahedral Voids Tetrahedral Voids DF octahedral voids 3.01 DF tetrahedral voids 11.27

PAGE 156

NCAT Section E4 Cubical Voids DF cubical voids 0.69

PAGE 157

NCAT Section E4 Octahedral Voids Tetrahedral Voids DF octahedral voids 2.90 DF tetrahedral voids 9.02

PAGE 158

NCAT Section E8 Cubical Voids DF cubical voids 0.97

PAGE 159

NCAT Section E9 Cubical Voids DF cubical voids 0.97

PAGE 160

N CAT Section N5 Cubical Voids DF cubical voids 0.78

PAGE 161

NCAT Section N6 Cubical Voids DF cubical voids 0.73

PAGE 162

NCAT Section N7 Cubical Voids DF cubical voids 0.65

PAGE 163

NCAT Section N8 Cubical Voids DF cubical voids 0.61

PAGE 164

Mixture W3 lower Cubical Voids DF cubical vo ids 0.61

PAGE 165

NCAT Section W3 upper Octahedral Voids Tetrahedral Voids DF octahedral voids 1.18 DF tetrahedral voids 1.23

PAGE 166

NCAT Section W 4 lower Octahedral Voids Tetrahedral Voids DF octahedral voids 1.28 DF tetrahedral voids 2.00

PAGE 167

NCAT Section W4 u pper Octahedral Voids Tetrahedral Voids DF octahedral voids 1.96 DF tetrahedral voids 0.68

PAGE 168

_