<%BANNER%>

Rhodium and Iridium Complexes Supported by Chelating Bis-N-Heterocyclic Carbene Ligands

Permanent Link: http://ufdc.ufl.edu/UFE0024897/00001

Material Information

Title: Rhodium and Iridium Complexes Supported by Chelating Bis-N-Heterocyclic Carbene Ligands Design, Synthesis, and Catalytic Investigation
Physical Description: 1 online resource (187 p.)
Language: english
Creator: Lowry, Roxy
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: carbene, conjugate, heterocyclic, rhodium
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS-N-HETEROCYCLIC CARBENE LIGANDS:DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION Eighty-five percent of all industrial chemical processes occur catalytically. The world?s expanding appetite for mass production of exotic chemicals necessitates the design and application of enhanced catalysts. To optimize catalytic materials, the detailed relationships between catalyst architecture and reactivity must be determined. Although for many ligand families these relationships are well understood, novel catalysts require in depth empirical investigation to determine these connections. The design of a novel di-N-heterocyclic carbene family of ligands in reported herein. These C2 symmetric ligands are based on the rigid 9,10-dihydro-9,10-ethanoanthracene backbone and designed for utilization in chiral catalysis. Thorough investigation into the relationships between the ligand?s structure and the architecture of the resulting rhodium and iridium catalysts directed the design of three generations of our novel ligand family. The first generation, trans?1,1'? 9,10?dihydro?9,10?ethanoanthracene?11,12?diyldimethanediylbis(benzylimidazole) bis(triflouromethansulfonate) DEAM?BI(OTf)2 (2-1), is too flexible to enforce a rigid chiral pocket about a metal center under catalytic conditions. The constrained second generation ligands, trans-1,1'-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-imidazol-3-ium) diiodide DEA-MI(I)2 (3-3) and trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-benzimidazol-3-ium) diiodide DEA-MBI(I)2 (3-4), produce complexes with rigid chiral pockets. However, the small variation between the two ligands produces a large alteration in the catalytic activity of the resulting complexes. In an attempt to further increase the enantiocontrol displayed by these compounds small alterations were made to produce the third generation of ligands, trans-1,1'-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-imidazol-3-ium) diiodide DEA-iPrI(I)2 (4-1), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-benzimidazol-3-ium) diiodide DEA-iPrBI(I)2 (4-2), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-tolylimidazol-3-ium) diiodide DEA-MTI(I)2 (4-6), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-tolylimidazol-3-ium) diiodide DEA-iPrTI(I)2 (4-7). Catalytic investigation of the asymmetric 1,4-addition of aryl boronic acids to cyclic enones is accomplished for the constrained catalysts 3-8 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?methylbenzimidazolidine?2?ylidene) cyclooctadiene iodide, 3-9 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?methylimidazolidine?2?ylidene) cyclooctadiene iodide, and 4-8 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?isopropylimidazolidine?2?ylidene) cyclooctadiene iodide.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Roxy Lowry.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024897:00001

Permanent Link: http://ufdc.ufl.edu/UFE0024897/00001

Material Information

Title: Rhodium and Iridium Complexes Supported by Chelating Bis-N-Heterocyclic Carbene Ligands Design, Synthesis, and Catalytic Investigation
Physical Description: 1 online resource (187 p.)
Language: english
Creator: Lowry, Roxy
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: carbene, conjugate, heterocyclic, rhodium
Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS-N-HETEROCYCLIC CARBENE LIGANDS:DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION Eighty-five percent of all industrial chemical processes occur catalytically. The world?s expanding appetite for mass production of exotic chemicals necessitates the design and application of enhanced catalysts. To optimize catalytic materials, the detailed relationships between catalyst architecture and reactivity must be determined. Although for many ligand families these relationships are well understood, novel catalysts require in depth empirical investigation to determine these connections. The design of a novel di-N-heterocyclic carbene family of ligands in reported herein. These C2 symmetric ligands are based on the rigid 9,10-dihydro-9,10-ethanoanthracene backbone and designed for utilization in chiral catalysis. Thorough investigation into the relationships between the ligand?s structure and the architecture of the resulting rhodium and iridium catalysts directed the design of three generations of our novel ligand family. The first generation, trans?1,1'? 9,10?dihydro?9,10?ethanoanthracene?11,12?diyldimethanediylbis(benzylimidazole) bis(triflouromethansulfonate) DEAM?BI(OTf)2 (2-1), is too flexible to enforce a rigid chiral pocket about a metal center under catalytic conditions. The constrained second generation ligands, trans-1,1'-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-imidazol-3-ium) diiodide DEA-MI(I)2 (3-3) and trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-benzimidazol-3-ium) diiodide DEA-MBI(I)2 (3-4), produce complexes with rigid chiral pockets. However, the small variation between the two ligands produces a large alteration in the catalytic activity of the resulting complexes. In an attempt to further increase the enantiocontrol displayed by these compounds small alterations were made to produce the third generation of ligands, trans-1,1'-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-imidazol-3-ium) diiodide DEA-iPrI(I)2 (4-1), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-benzimidazol-3-ium) diiodide DEA-iPrBI(I)2 (4-2), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-tolylimidazol-3-ium) diiodide DEA-MTI(I)2 (4-6), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-tolylimidazol-3-ium) diiodide DEA-iPrTI(I)2 (4-7). Catalytic investigation of the asymmetric 1,4-addition of aryl boronic acids to cyclic enones is accomplished for the constrained catalysts 3-8 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?methylbenzimidazolidine?2?ylidene) cyclooctadiene iodide, 3-9 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?methylimidazolidine?2?ylidene) cyclooctadiene iodide, and 4-8 rhodium(I) trans?9,10?dihydro?9,10?ethanoanthracene?9,10?bis(1?isopropylimidazolidine?2?ylidene) cyclooctadiene iodide.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Roxy Lowry.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024897:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20110216_AAAAHY INGEST_TIME 2011-02-16T23:21:51Z PACKAGE UFE0024897_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 987 DFID F20110216_AABOTF ORIGIN DEPOSITOR PATH lowry_r_Page_062.txt GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
2b8c25901366ff6130e89cc2812f4e99
SHA-1
b0c216786901ba67fba0f1549b1ce1b408ea6628
1232 F20110216_AABOTG lowry_r_Page_063.txt
c43de289bee68751554289fe863fc8db
3cd0b30810be195289085f1c7fd87e1cd3f20188
2138 F20110216_AABOSR lowry_r_Page_044.txt
9c4c941600984b161239be276a2912f9
09e66fee75a9cdacf0e50d97eb618db201aed71c
2095 F20110216_AABOTH lowry_r_Page_064.txt
9fcb60dc2510b8b7c3b5ba669ed23046
a6717d630c0b81ccdeda5a691cd6f5a909d8f9af
2091 F20110216_AABOSS lowry_r_Page_045.txt
f7fa95a1b65dcc31091010b647bbc00c
f57ddf3c14c3aa0a76c2522ff44b01263774382d
2094 F20110216_AABOTI lowry_r_Page_065.txt
e2606d5e0b81a2ce4c22bc9a295ea3c0
bcad1ec8f5020a8d16f37fffb303e3e785f09d11
2036 F20110216_AABOST lowry_r_Page_046.txt
15a01731d652c9cc36983c4e96b11ff7
a2b8183874131fb091151abda34c8a435c0eb75a
2137 F20110216_AABOTJ lowry_r_Page_066.txt
e65a0f10a756d5c3aad69843f528d430
5af12d17823a4e5eed7a2f84f8758cf4c3878fd8
2131 F20110216_AABOSU lowry_r_Page_047.txt
697d1c2fadfcb550e5189b5452ae0fb7
51c6aec44ed283bf0f7254e16bfffa59b7567961
2135 F20110216_AABOTK lowry_r_Page_068.txt
80faada57ec62e085fd996f4aedf4198
5bffa5f1b7d2522bbb8404c7ad3b0fec5be2ea1f
2223 F20110216_AABOSV lowry_r_Page_048.txt
2355499b755a28116da493fd5244a32c
609c6fd6454ba04b4d019509cd4b31ebda528c34
2063 F20110216_AABOTL lowry_r_Page_069.txt
dec1d241fdabb69dd6d835e0d40e7c1d
9e3806ba0c787414c3eea75ab67f9675276ade06
2250 F20110216_AABOSW lowry_r_Page_049.txt
e4aabb64388e17a7e39fc74afd6eecef
c729dfcbc380f0054c7341b7ca108211dcb0ef7f
2215 F20110216_AABOUA lowry_r_Page_093.txt
227434bb82b3282f36142d7e40959369
242e6a7e9fa9e8cb169d67c58ee7ccb805d76346
2255 F20110216_AABOTM lowry_r_Page_072.txt
5565289ed849d6cd9c74dab5df125744
04103b20b9aed30c5580679d9a9c1009fe0e7631
2056 F20110216_AABOSX lowry_r_Page_050.txt
28b4fb6cf41bdbbbe603d933365aee72
9aedfec4829ce8c4c73512edd87dfde3412cfc1d
F20110216_AABOUB lowry_r_Page_094.txt
4be3cd5d4150a4af00e44f3207208702
4ad59a57273e2c38352d237ed9421020677322cb
2233 F20110216_AABOTN lowry_r_Page_073.txt
84687fc8f14d3859ae31b801474c1ab4
42201d850987f7495225c6d1c9cc378d51d8d0db
2116 F20110216_AABOSY lowry_r_Page_051.txt
9a9078bc15dffdd2adc01d6225465d52
1f1286b5af49cc622e92b5ff93080d45153dd5dd
2160 F20110216_AABOUC lowry_r_Page_095.txt
fbc9e4db28122c962dc3510c86bcee4f
937c5d0ae07a0507477dbbfdec70d41b25ce84e1
2254 F20110216_AABOTO lowry_r_Page_075.txt
201a743e8620dca7717981b01a83593f
3dcec6b80e1b9156ac882530ecb749a4cd9f5a67
1949 F20110216_AABOSZ lowry_r_Page_053.txt
46487322ff808fa5510c5b672e2c036d
fbee893256dbecc408df8cc255e06eac558d4abe
2067 F20110216_AABOUD lowry_r_Page_096.txt
18756cb37ca596085d50b3a14f1a59d5
1d6a9180d11fb09d17b8434a80e5b4bb2303f83b
2194 F20110216_AABOTP lowry_r_Page_076.txt
36f7495ea06f55882181c685dae41bcf
c601d24ddf56e5486ce3d572db8f4562097a8ba8
F20110216_AABOUE lowry_r_Page_099.txt
ee66533c1d20d0b3d38e1a64600b5f57
54a7d048d9ace31783c072818d0402ee57903641
2052 F20110216_AABOTQ lowry_r_Page_077.txt
53ced9916f91cc3d9ed8b89faf6f34a6
374bb88f20c1ffc92c8ca9872426bbf026d89943
2219 F20110216_AABOUF lowry_r_Page_101.txt
c0d6528d9f1eadf06d97ba962b3a17ce
a5489b966c494492644c5ec3bdd0fd078226475b
2022 F20110216_AABOTR lowry_r_Page_078.txt
eef269ae78a5ae74b54e174b3a63a008
e29f97f0f60ae471c0a3fddac0bf9ab6b5556a7f
8847 F20110216_AABPAA lowry_r_Page_164.pro
302037391512fa7a05dcf1a6a8c4528f
8d573bffbafbc798927765719896756ccf102404
F20110216_AABOUG lowry_r_Page_102.txt
c7066d2b062482892a911fdb8b409864
918b3d3aaa139fc8ca679d09239b31de3cc81c4d
21494 F20110216_AABPAB lowry_r_Page_165.pro
6555686093cb8334595b201e4a2aed13
6f3e5fcb0deb10953930ec7a0c9aa3b1cf32b69a
2148 F20110216_AABOUH lowry_r_Page_103.txt
59b5358f3d193a53534bee5113c82c26
059673298d136f47053f31e94a730606b5d4ad69
2264 F20110216_AABOTS lowry_r_Page_080.txt
78a5d08d8bebbaae29540b948c5f9666
53f0e22c91434cd9df1a373f872260ba4b1d9b49
36431 F20110216_AABPAC lowry_r_Page_166.pro
ca486559c1d2b3ceb564bca7e5887526
5916361a39faabb02a3cf50d25059979dd57d6c3
542 F20110216_AABOUI lowry_r_Page_104.txt
186724712dc3c2592d028dd8e5ed4c49
3c5baa7d6ad2bda2ff18766d9e84dac96df4a1df
2177 F20110216_AABOTT lowry_r_Page_081.txt
4f7103eda0f15ef973c9ab45ebc52124
0b51128f799c50dd8f3b0eb6e170d4b850705006
35979 F20110216_AABPAD lowry_r_Page_168.pro
d8f730c99fdf3433c51be6114cfed681
6fb58b2ab3759f2f850c8fea9950a88c5bd1346a
2045 F20110216_AABOUJ lowry_r_Page_108.txt
eb3b9404fd1f9668efb68f73adc0c1fe
0e59a584c476d00a90dcce9d93786e75674dad43
860 F20110216_AABOTU lowry_r_Page_083.txt
b7ad7d7e4edde987eb0b86aeb4f18c6e
3eb666bf9bb607160f6d39e9f2bcde9d6786a648
41535 F20110216_AABPAE lowry_r_Page_169.pro
5fe305d2ffc382ee0aca31edbfce8bf1
c1e3e040f063b8404cdd81f96222a7fca1cae395
2132 F20110216_AABOUK lowry_r_Page_109.txt
439ecf8b073808eec478b672713246d4
9820dbf0f262ca859505b2d859845f69da5b65c0
799 F20110216_AABOTV lowry_r_Page_084.txt
5db905c6b21ca38f14a68dcd64f343a1
34d57f942284a0e3d2744d6170ad875d3212a090
41011 F20110216_AABPAF lowry_r_Page_170.pro
3a6b247b0b2463f38f1a881b5dd937fc
3b5a3f2df1a1262a8b77a817ed451b7c301a6ced
1898 F20110216_AABOUL lowry_r_Page_110.txt
35333132a6c2904b0592b7bbcabce145
28f7ae4b44375c338c61b55b0a12aa1fdd5224e9
391 F20110216_AABOTW lowry_r_Page_087.txt
9948cf0c510d8a7b4c8cdf053f52be7c
6906b67aa93dda67b837803c147cedb9ba017dc6
35577 F20110216_AABPAG lowry_r_Page_172.pro
50b4eaa4c9df6cb2b91902561fcca7d8
c227b26f9c143e52b3c84cb66a6642be10f31014
2106 F20110216_AABOUM lowry_r_Page_111.txt
ed54b26867640b5f35188b9a13ee3681
c5d29f95850b15bce1616cb19ef7aad83cad6d76
949 F20110216_AABOTX lowry_r_Page_089.txt
f4705fef2843ce6b556ec2f20bca6451
86dc02ef509aa5eeeecbf9c46398dfe72941f54f
575 F20110216_AABOVA lowry_r_Page_135.txt
7a9a3a8c606e2f94087eccfc49d8a706
2b00b979bb5b81cfa6e9ebaca76bda34c05b58a0
36010 F20110216_AABPAH lowry_r_Page_173.pro
d1058561c08a89cd5585368021694b05
dda65adb2ce8ade6d6c9e8b064d6050e18144cd8
1849 F20110216_AABOUN lowry_r_Page_113.txt
42329ad37483fcbf1f86f6648c4fb15a
018e00f795431e0035d4058dd75b5566156b0483
1826 F20110216_AABOTY lowry_r_Page_090.txt
e6ea01ddaa2a748fdbcc00257fccc69c
086e5d24939011b21fa80f524a40cc365368a5d0
458 F20110216_AABOVB lowry_r_Page_136.txt
ea6db1748b1485a898ebe6208827225f
28076948bce472b92bbc0d3edea476e1ec510074
35877 F20110216_AABPAI lowry_r_Page_174.pro
5572c2d3fba5df8e96bc6783fb8c71c8
ceed4f50f00b874da1fd30688570fa7b0d9ed43c
2060 F20110216_AABOUO lowry_r_Page_115.txt
5302a8563933740be3a3464fc2e628ff
0a0832091e46bc98839630014cf839e3f4555145
2171 F20110216_AABOTZ lowry_r_Page_091.txt
75f6d640bef38a26b6c6fc5ea7641b6a
695a2ee5289d897dd4981917c75431cab492371c
712 F20110216_AABOVC lowry_r_Page_137.txt
843aff0bb221242f8014e7ca86866742
0501151c8fe46b6bb1c0db3477fd1b1097a8da56
40912 F20110216_AABPAJ lowry_r_Page_175.pro
1cc6899176e2bafe2fb6decafa1ba965
358071488f0bb9d5ea9632637a74bd7c1411f5b7
1712 F20110216_AABOUP lowry_r_Page_117.txt
93421c527a53afe71288cc8d8a07b98b
354b4aa7f4a1f554b2ffabad5af925518296a36f
529 F20110216_AABOVD lowry_r_Page_138.txt
fac8c285f076d128ea982288e60e1f2f
a063b058bd1bc9e9a44f1dbd755709e3b9a02e3b
44647 F20110216_AABPAK lowry_r_Page_176.pro
3ffada1a8058f8bd051cd1aed491be1b
8c5f283d2d757eba4e9780c595e506118c8151e4
2432 F20110216_AABOUQ lowry_r_Page_119.txt
611d76c9f122c92b61ce676ce2edd15c
118b94b4f4a08a38cbfb1596bb429919004c8517
405 F20110216_AABOVE lowry_r_Page_141.txt
4c05dec1613d118b710031be8c9af937
12423c674d3373f0ea0b42bc1c1a8033555dec1f
49881 F20110216_AABPAL lowry_r_Page_179.pro
ffee294b3dff0fcb53754146517b5270
cb168513d15ea331aaf7c9ed0ecec8c3ad1c6665
2136 F20110216_AABOUR lowry_r_Page_121.txt
9cf30e7faff493f4f722bad12751f023
4cdf716e164a9ef26bd77fa2d0fa982802c349a0
F20110216_AABOVF lowry_r_Page_142.txt
2422db6c898f15a120d10195ed5e83cf
425f8cc5c13cd6a1733604f38b731e75c4543531
147086 F20110216_AABPBA lowry_r_Page_014.jpg
4da5bbf743af1621d7f8032297679c90
6703a63ba85ad40c4170efc1cd8e9b2b94852abe
50085 F20110216_AABPAM lowry_r_Page_180.pro
735ae9f48c44406f7e340ecf95743e66
40b74735df58c53e5acc7e3fdcbe21f795c286eb
570 F20110216_AABOVG lowry_r_Page_143.txt
94d7dfd6746941da4b8f7b13f406fee9
b569419eaf27aa35ead0f20c486be4250837493d
2179 F20110216_AABOUS lowry_r_Page_122.txt
b6af69fdff5be3305c37e8f4af9c3d52
6c6a7da17cac75c000d968d81914940cc336084a
49373 F20110216_AABPBB lowry_r_Page_015.jpg
f3c5aa140d525201083f77c62e3fbc0a
38eb393b23a7b164b07da03dd8c1545c7f02d32e
47651 F20110216_AABPAN lowry_r_Page_181.pro
33a76fcdb43f999fc7f5431f8a76ed67
b9a9585c820d044f8c07a7bcb4de5cd4a30c8c39
564 F20110216_AABOVH lowry_r_Page_145.txt
599145c61ddfd67c45428a022e75cc44
5b13eb3503e261d41bd45fac6b8e2c1b26714842
97048 F20110216_AABPBC lowry_r_Page_017.jpg
0b7e63aab66405471bc328b84ebaf088
e41834513ff018aab2f8387657c6b4f82bcf6fed
47363 F20110216_AABPAO lowry_r_Page_185.pro
1fdf80a70823808fca541a3373651c84
46a427199fc7adcc82c51937bcbbe46180d83f6a
496 F20110216_AABOVI lowry_r_Page_150.txt
932d8918f49ecde648f0113ce410e415
4b427344b9c1e8c493a17f95e19f0cdd410eefcb
102 F20110216_AABOUT lowry_r_Page_123.txt
ba10359852614180b407936a06a4d9f7
4e468ba22a4d2c3ef58f61c1e7fa403f590f285f
87053 F20110216_AABPBD lowry_r_Page_018.jpg
3a306895e4fb41dd46867695b85c5fbd
21b9a3c3657aeff6530dd85190747275171100fc
46757 F20110216_AABPAP lowry_r_Page_186.pro
eb4cb2b51c3dd42aec01886b277403da
458404889b28fda36fcf1061b271e5c0cfefc39a
422 F20110216_AABOVJ lowry_r_Page_153.txt
0e84946f9c78c9589365dbb0afa4709c
a91834da2b004621badb4b4ae209f5fb51799d2c
488 F20110216_AABOUU lowry_r_Page_126.txt
f085d4a584c4c487a2a6a5284128ec91
f039925414f8d02c897fae36fa2b2116c10de5b6
106885 F20110216_AABPBE lowry_r_Page_019.jpg
6d9fbc0496433fdf06be2b889403fb48
8e55efb3901378627292055d1cf39f71e9914327
34193 F20110216_AABPAQ lowry_r_Page_187.pro
589558c17039ccd586c84a7acadcebb4
21195f2cd67ed1245bb18a6e09c57b294ec50e0f
F20110216_AABOVK lowry_r_Page_155.txt
a1dc69933f8d4fde9f3f5a40affa6c1d
43d279a807f10231d99f318ca7db905c64851aec
383 F20110216_AABOUV lowry_r_Page_127.txt
18beb7d44ac568ae6012c5607799595c
fc4962747a38b25323f32b29b969f7fa9da7281d
106466 F20110216_AABPBF lowry_r_Page_020.jpg
9bef36819cde60e89dbdd6c7126314dc
1a4bd24dd437a9739b4985ec67dbd9f4cec4e741
31941 F20110216_AABPAR lowry_r_Page_001.jpg
2162406a9a3b1aca0277a92d9594f488
e9cf6ae6b01f3c25d29a30b9805a5edfe739944b
886 F20110216_AABOVL lowry_r_Page_156.txt
b97a664cf0e7a514c1122947dfa835ea
c1dd52e6c5379c17ea7d4752d5f114f024211a05
551 F20110216_AABOUW lowry_r_Page_128.txt
b18d9c498a3202217b949392431a7903
42a362529a9f8c17667ac44bbff3ac66b6da7206
112331 F20110216_AABPBG lowry_r_Page_021.jpg
f06ff7e80aad07e17dddb3441bea4e72
6c188bafe57600fe12faea752ec46b27ce5b34d7
4164 F20110216_AABPAS lowry_r_Page_002.jpg
4f13c01a95a49865de536f954c6a4e8b
fcd7ee6ca94c9537de70baf2ffba4546d6bcb9dd
1998 F20110216_AABOWA lowry_r_Page_179.txt
35c8e7bea332f357bbfe2d7aaf575e35
1536e29148320143a999cd71e9084c2eed1f22fd
342 F20110216_AABOVM lowry_r_Page_157.txt
3a7016fba502ebb98169ebc11995b2fa
fe7e3ac52f216d351bfb680a27eafec18d2a97e2
384 F20110216_AABOUX lowry_r_Page_129.txt
3b4b582ac497fcc70bd05f322782ec41
2a51a32e38fcee76349189ee012716a841fb07b5
107876 F20110216_AABPBH lowry_r_Page_024.jpg
757ac81da505e2ee27f307a455350c71
7d2e4cf2cdbf45957dda686625536ae6bf2052ef
56098 F20110216_AABPAT lowry_r_Page_004.jpg
ebeaec63a7d9782820c190b76f50adb2
75a89d25aac2bdf3fe503ab05fafaacf60b44a4a
1989 F20110216_AABOWB lowry_r_Page_180.txt
54c8cbffae8f5a5f31a5d49fd8c0c166
4bff43fed7bf570ce1b9058532b4abfdac113f87
459 F20110216_AABOVN lowry_r_Page_159.txt
02e53d80b931b749d27478363cb952cc
26095b5d56c5a145827643f3cc5669b64847b791
377 F20110216_AABOUY lowry_r_Page_131.txt
4053e17d4014edaf5ef2012595d443e7
57fffabf87631b232de907df69e6e49b0ae63e8a
112981 F20110216_AABPBI lowry_r_Page_026.jpg
d2537593d3dd40ea64e517d1af8e1e9a
469ed30948e1dfe309e434152392c5e0e6c17bce
170689 F20110216_AABPAU lowry_r_Page_007.jpg
8fcddf591d2c4f845f0796952e48b3bd
c4cec868751859b726bddd7fa6b56395375feac5
2087 F20110216_AABOWC lowry_r_Page_184.txt
3fa0587f51b9c6ade6fb4cf00bb256e6
6ac5d72588cc97849945994f9d0517fdc3e14ff4
495 F20110216_AABOVO lowry_r_Page_160.txt
88c151ae553e375295b2903c528cf3a0
3a3c5cfd8263043435963664952d90b20fc147eb
445 F20110216_AABOUZ lowry_r_Page_133.txt
670c41cc88090881d7105535b2f3d5fc
6227860f6e2cefdf5891841255bf06232adad964
101615 F20110216_AABPBJ lowry_r_Page_028.jpg
a4a1cce605efdb3a19e063d180df6ff9
92b521c0b5f31e0dea6c177554f9113b8933c0f5
72508 F20110216_AABPAV lowry_r_Page_008.jpg
5b1ed6f506fd910ad35cd9389064ccea
6c78455feffe830ee4f8f4296f6932d88e295d43
1880 F20110216_AABOWD lowry_r_Page_186.txt
d70b6de4fcd7b7cc9b2462a69b4bd903
e4f6df5638dc906bda4b0214849dc3be44afe5de
1047 F20110216_AABOVP lowry_r_Page_161.txt
0c86d9fb86255af87033f22b926c27fb
5de3116bb826ee0f1a3f012cca2603293cd9df50
105549 F20110216_AABPBK lowry_r_Page_029.jpg
2e5f459ede1517bd74937228909f0786
4b1e6ccf2dfbb0a562c8ca9706fb2ab07893855d
118861 F20110216_AABPAW lowry_r_Page_009.jpg
7c5e9c2727c72d2ce34be65c89e3510d
fd1a8062e28c98f9a3aed54e90df97e3d0b677f3
1392 F20110216_AABOWE lowry_r_Page_187.txt
62076e8740b06c2463527a311459356c
9b49d342d7d04d0046d0fd23767bec2299d48d8f
579 F20110216_AABOVQ lowry_r_Page_162.txt
cd5777c98c3f26619bc85766395e958c
d06d65b45bbb98b0a64fe9eb75a997456dcd6ab3
109262 F20110216_AABPBL lowry_r_Page_030.jpg
e5d1a3bcc327c2fbcde4c51d37af0a91
00573034cd77377b7426a2aca018d7d4ad2d5920
54951 F20110216_AABPAX lowry_r_Page_010.jpg
9a02a982db5b562d4aaed55c7c2c3a00
3f75489a2770af3992802d60fa7f93ec372d66fa
25724 F20110216_AABOWF lowry_r_Page_004.pro
5e06aeac32619b072381bcc257170c19
d548d89a2eec9d4088323d1564707014ed7d0586
592 F20110216_AABOVR lowry_r_Page_163.txt
f8360fac937c8600be33be921bdcc748
eb3410020e6e5b7a090c3e5696269bbbeb4399a4
47351 F20110216_AABPCA lowry_r_Page_057.jpg
0b4f73edfa77958a41e52fff181eb67b
e7abdd28824d00a074f4456c76f8074fa60589dc
43577 F20110216_AABPBM lowry_r_Page_032.jpg
91a4b608dc6259d3f785d3143bf94a6c
df00953f2a873c99393606f71cccd48f6c753820
115725 F20110216_AABPAY lowry_r_Page_011.jpg
ecef8375a53a9340e28434b530b88b76
dadc267237563592c3afb90aef48f60f78700ca8
100581 F20110216_AABOWG lowry_r_Page_007.pro
f8c8695877ae537328fcad38c8e7f7b1
07fde52d96c072ceb297d781437fc0c3715bde4e
2034 F20110216_AABOVS lowry_r_Page_169.txt
c6b9c7e4ad937e1e13a9af6052542de1
3107166ba1e779793a3a4dbbe948fe9e6c07eae3
57333 F20110216_AABPCB lowry_r_Page_058.jpg
61ce6b921fe755e7911a5b542ee25741
09df410c04840893a112deb510b4105d483eddbe
37259 F20110216_AABPBN lowry_r_Page_034.jpg
694720805df32ff9015496b1ebb6472b
390a8bfccfeb1a2b6aba44f765cceb940e5e629b
128435 F20110216_AABPAZ lowry_r_Page_012.jpg
f7cf49707fd633981018c90c7773b6b2
c82ca54f32d3dab789a15e8362cec95677cd7ee3
50012 F20110216_AABOWH lowry_r_Page_008.pro
2a6948e10f983168ef991da0a6801320
2a1a22272948bd4b001206dab17d8223438d455a
2029 F20110216_AABOVT lowry_r_Page_170.txt
40a40144fa463be3690788c88a551297
cdc8745a37e35ef5dd93aa7b4dd1804efee51b12
76180 F20110216_AABPCC lowry_r_Page_059.jpg
61fa77ffd2bd9670761facab88285af9
dcaa6ba46ff7710d6c6a1d2c220f46538fe8ed29
103221 F20110216_AABPBO lowry_r_Page_036.jpg
42456c4af0b5213525a55b96b4312e40
9a42ecff5b4ee3b515e754074dd1966a78dcf664
68783 F20110216_AABOWI lowry_r_Page_009.pro
74d6eb29fa430b18b2e67610395d77ff
00877ff30446d5660f7aa0b19f7f4a941cafd3ea
44870 F20110216_AABPCD lowry_r_Page_061.jpg
a64571c0aaf85408769ae02f4f121419
e75700cf86a8a601a88911c1e4fef962fc129454
110101 F20110216_AABPBP lowry_r_Page_037.jpg
d2a79e02626bc3392342266ac6d70de7
257cfce365de494f16a0d337c3777788a13ab691
74671 F20110216_AABOWJ lowry_r_Page_011.pro
a77d8451f442a5e4fa090c5055927ee8
3701ea7d5bc87bb2ebebe7f8602a77d5b7f481bf
2073 F20110216_AABOVU lowry_r_Page_171.txt
8c24f9872a808d32cdedc7253f9d81a9
60265b9ea649f5e1175cdff578d32bd4ab25e0a3
49514 F20110216_AABPCE lowry_r_Page_062.jpg
9b15272486b235b41b06e05d9d616c5e
a7a4ce18aa0d39b5ba4ca57b1d3a06dc4ded064a
113224 F20110216_AABPBQ lowry_r_Page_038.jpg
168378f99215f0c13f483f756e6c2ff9
70bec78a252f4e72272fc5ac469b8f25eda4cd15
76803 F20110216_AABOWK lowry_r_Page_012.pro
7e9758efe1d7deb87a4dab40215a36ea
bc5fa362aa3d71b24b090f6034516d4a4ff1b41a
1608 F20110216_AABOVV lowry_r_Page_172.txt
da338b604c93177b831978e261357283
aa670685c581b50993d1c3d16ebeda26b35b5d52
50303 F20110216_AABPCF lowry_r_Page_063.jpg
75e7e1c309887cb8975709a874b04f1e
c9deb3e5b584a3c96d7aa7d875f3ccf62d6024aa
106716 F20110216_AABPBR lowry_r_Page_039.jpg
aa270e74e91c599d708aee780da42078
4937dbf1a3c54af1fa3623b667a9ea8765858a47
72182 F20110216_AABOWL lowry_r_Page_013.pro
44a48b40ca92aba3797315f0e1634d1a
5d319893f76dcd61c18370fba9061f674d0f308f
2031 F20110216_AABOVW lowry_r_Page_175.txt
aeddd29f66f0498c07adf1dd899c479a
9cce8d1d8b376634a91bbbf74bf004e473833dab
101964 F20110216_AABPCG lowry_r_Page_065.jpg
377dd2da194e2508aec2646e9030bb83
3a90ec5ec22a3bd2518dd14a3209bca6a2a792bc
100346 F20110216_AABPBS lowry_r_Page_040.jpg
912e393586c48fad9f970835e5b4bd72
be471460a7e20032ec82751524e67a30aae9374a
20092 F20110216_AABOWM lowry_r_Page_015.pro
c03aad41725170c831d23becc4087c21
15991b9ea92ab47a41811953c8f4a1cb92bfb647
1837 F20110216_AABOVX lowry_r_Page_176.txt
afe7ceba912508d26f5d15f637efe695
8af46a45cbaed4e21275e7b6b3da427dd4c14e61
18595 F20110216_AABOXA lowry_r_Page_032.pro
6383de904153452ae20349b967163dbf
ca2c8b5ba43e2f5a76566b17ba05ba9a56d4173f
109983 F20110216_AABPCH lowry_r_Page_066.jpg
d03da5c162a18b032a8893f5177b0427
d2e063146ad4a7d26851441f330e13ed9b1d1ce9
122262 F20110216_AABPBT lowry_r_Page_044.jpg
d38fd98885db5f624bbe9871f6345ad0
776244cc8da51eb9b5b3677fbc09e68afd1c2a5a
45015 F20110216_AABOWN lowry_r_Page_017.pro
189da54d7b142a8b48dee7afda8d64da
457f2ab4c5aa00f132a0ab8e0c91c66f7ec53272
1816 F20110216_AABOVY lowry_r_Page_177.txt
7ee83e05effbb3dd7192e66da1c61add
3b979ad7b6119a23079010c88ef3f64c7b70671f
9860 F20110216_AABOXB lowry_r_Page_033.pro
f2032fe22264cca33459c1e190fd3d75
581c5d37ff84a7711065d2e6d74b0e1c03e1e72e
106843 F20110216_AABPCI lowry_r_Page_067.jpg
a85ee16e6c5d8cbfdb018157a2ed9e2f
0162bd04dd2378285f1c6399a7df6d0a9ecbbca1
108195 F20110216_AABPBU lowry_r_Page_046.jpg
5ad1860e8a6c82d52851ab66ee6d0121
bcc45d7c80b63d2cbed2e1604f3e234e75d06aa9
40764 F20110216_AABOWO lowry_r_Page_018.pro
1f7ad6746cc93a1a65be99433f678778
ef88338c485240f24c2652314bcaf24d1c94030f
1844 F20110216_AABOVZ lowry_r_Page_178.txt
de7aceebcc949dc2cb7f0e859acb44f7
30fd5552a7908ad18bab860e1e795bdb48041fef
55481 F20110216_AABOXC lowry_r_Page_038.pro
e70b9e8f5b800841776d8bb798fd3bc7
63b4eee4595a293a201215d2bdf1e6ee60cd32fe
117814 F20110216_AABPCJ lowry_r_Page_068.jpg
1461dc21bac8c652f7ff50660365d2fb
81c13600653c4b6157aca6c239691e575a4e7f2a
107124 F20110216_AABPBV lowry_r_Page_047.jpg
339a5efb67d1685978bdf921ece723c2
90ee294728c4a2826cff83199aaf480116464d1f
52591 F20110216_AABOWP lowry_r_Page_019.pro
854875bb99fa6612f15aa1c6b165ebbd
10c2fbe8ee13e45141f6e109adf0dc3cadcd1c1c
8114 F20110216_AABNUB lowry_r_Page_177thm.jpg
fc31fe9f711f4cc0d963316c91e034ff
34673417d384e4e13deb8e306d84022ae113679d
45736 F20110216_AABOXD lowry_r_Page_040.pro
4750451091a6c6707c39562aa0185f3d
5a3b1cd490b2ffa3d7d26f88453998beed3a3b46
114786 F20110216_AABPCK lowry_r_Page_069.jpg
fd85e5d4578c0c5dee13a73d60381c82
99021e03f8e816f8ddafbfbacf5e45e00824b1b6
117209 F20110216_AABPBW lowry_r_Page_049.jpg
d8acc1491f0298a42d93ed169734fc4c
5bfe3b4384b35ab17b0bf08aef9281028cf10be4
53512 F20110216_AABOWQ lowry_r_Page_020.pro
7c65533d7c3bd2408cf2b8effffe5950
80a67865ae1b88fe5e87ffa3b2b61ed47dd472d3
6394 F20110216_AABNUC lowry_r_Page_084thm.jpg
f0cb80d8530d64774cb2a0e21bb9596a
e5030b084d6cfe9ce229f91392de109a8778eccb
54098 F20110216_AABOXE lowry_r_Page_041.pro
f72337727e75ad05b7326be7e215278d
b0b54c4b9e93b6025b88550074cf5df6bc9f0489
117612 F20110216_AABPDA lowry_r_Page_096.jpg
45c2501bfbfdd4edd50cde7dd512aad8
a0b3f8b9d2f42b4cf4225be90efb6e59c8365003
116044 F20110216_AABPCL lowry_r_Page_070.jpg
bb415495392f72285fe277d6108115bb
32167ecfe94668e004550f7a1deb10c9337f40dd
103027 F20110216_AABPBX lowry_r_Page_052.jpg
76b094013688431f7884dbfba94e6b21
1cf2dc0dd608318d628af76b9fe1a2e2ddfd1a12
56811 F20110216_AABOWR lowry_r_Page_021.pro
426995ad0da69e451e16e7b51ac2f96f
3efd8c442f45d961c1bfe44889ff502209e27f4a
8436 F20110216_AABNUD lowry_r_Page_182thm.jpg
bfb4f919412fe1ebb6b533d3d6afed26
23b890c9983aa6afea3fbe9c3dbf18f5ffac0de8
53852 F20110216_AABOXF lowry_r_Page_042.pro
4754b1fc4b4039f41c1ac9fa8becfeed
02a95c6b280b72fb8a505cbe6deaf751256d744e
114310 F20110216_AABPCM lowry_r_Page_075.jpg
7f251faab2a5e9d9496e471731d8550a
a43c81ad0271257bb1850eb22ceed07c0327272a
103364 F20110216_AABPBY lowry_r_Page_053.jpg
cf7159729244193ca048064ddf53d1ca
6251b3a0b791d28e604cee7a4d0e3cc8a915bbf9
55029 F20110216_AABOWS lowry_r_Page_022.pro
e488f4bd645ecc76fc70c76c523b5203
bf6b3c65936c8279cff27830a30382d6d62e6682
8125 F20110216_AABNUE lowry_r_Page_181thm.jpg
30bdfa1de7f785ec418c9a91786b5484
4a952bf3e121f32a031fc05c0098b19c33dec09b
52457 F20110216_AABOXG lowry_r_Page_043.pro
a55026a514ff0df88647e0d8fd2eabea
f55f930b315e3328ef9b5b27a23d4b561c8a37b4
115228 F20110216_AABPDB lowry_r_Page_097.jpg
74cb5866d077fac39514f87cac26eae7
999d4eb4282a74d7d41f61193c92aa9ac53fde3f
114902 F20110216_AABPCN lowry_r_Page_076.jpg
966bb3f70c3f6128217ca53281508ce3
929eca83e3daec34e4d19798654b2ae09afa6d81
106771 F20110216_AABPBZ lowry_r_Page_054.jpg
df2671fabdfcf8fc302ef082d31357e9
d005083409d48e27c2d9a36b2ef02bba56b3fe24
55891 F20110216_AABOWT lowry_r_Page_023.pro
90285f9cc44b7a2a68dfc8425ceabd94
dcd44459042e66dff256e78a7f3f2c1b5b736d7d
51097 F20110216_AABNUF lowry_r_Page_182.pro
54cd57f28fc42ae15bf1d8bfb639fd37
df5bdadb72ccc9eeb92f2792691cf7df58d8b454
53293 F20110216_AABOXH lowry_r_Page_045.pro
2cbe846f044a8a314f1053864beae82d
be6984b7e7616fe40bc28fafeba44620e67b90fc
120564 F20110216_AABPDC lowry_r_Page_098.jpg
5df0f9f21beefe9f5892650bbcb10121
691b71c666e520bcd8f1256f9e3f0f11cb48ff78
111021 F20110216_AABPCO lowry_r_Page_077.jpg
cc20275e75b6d14229c9506d4c73fd08
bd3acf904499cb0cf3789b8c44b74b8e336eb428
55586 F20110216_AABOWU lowry_r_Page_024.pro
295aa7825ff9b3869bfc846860ac078a
96ec538559c9d620363f2625542414e7f90ba17c
1614 F20110216_AABOAA lowry_r_Page_167.txt
1d7e4432435b166ec06e88cbe27cdec5
07ee63ec0cb5417a824255f07ee36faf3b2f0ccb
57748 F20110216_AABNUG lowry_r_Page_120.pro
b038aa4a41d39eb1ebb905c5584e51ca
fb49d8926bc134fb1a32538cd178f3fd2d119c88
51845 F20110216_AABOXI lowry_r_Page_046.pro
d37d6b7dc1a181ba2bb861432a967534
b49a5865d156d90955ab18fe2ee7601514d75f21
100946 F20110216_AABPDD lowry_r_Page_099.jpg
6113b48c2cc49a90758609ae8586669c
9e2fe521190ad92e944e593e0da07d102f233fa3
114880 F20110216_AABPCP lowry_r_Page_079.jpg
7fc7813fce315c1dd97a5146b0c2ecc3
7576c2ce8624a8c7f2d072e5e04918af685befb5
54706 F20110216_AABOAB lowry_r_Page_044.pro
fb117a46c2a2a3f06b65f324309a83fc
fb2253840a224f3166413a01450dc2f6bac14657
36358 F20110216_AABNUH lowry_r_Page_066.QC.jpg
98f088bcdd1db35228a74a98496e819c
490bea5bc2be85cd03e0d657502cbb99d6196d5f
51992 F20110216_AABOXJ lowry_r_Page_047.pro
2db7c63a07c2026bed61037dffd95882
3f21bdc930422555d82dba3f3a3993d580ce46c1
117904 F20110216_AABPDE lowry_r_Page_100.jpg
e17fcf1477f484a5346388ca687d43e0
3be18d5e933eba432218a7d4220231452059417a
116713 F20110216_AABPCQ lowry_r_Page_080.jpg
3deebc6ff9429dd000ff7a20a0390fc0
99e5fc0c900711a601ccfc04ac90459b7758bb56
54686 F20110216_AABOWV lowry_r_Page_025.pro
896675633c20c6cad0cdb3223ce269dd
ba9b2d9a870fd7ee433c831546620d1fb9f374ac
8663 F20110216_AABOAC lowry_r_Page_185thm.jpg
c0280372ebd3c8f7f42053087d23d2f0
6a842f67edec0a8dd1efc12ee55bbd1d2fff5ead
14862 F20110216_AABNUI lowry_r_Page_088.QC.jpg
59052fcb0205f3ee440544279c4aa11e
c92cd0d80785a909db2846de0092ff85a78d28c0
56294 F20110216_AABOXK lowry_r_Page_049.pro
ab7f324060ad08349ca85ab18ccd2154
70b02c5f0d2bdea06357d9b81f778fbc722ba0a9
116516 F20110216_AABPDF lowry_r_Page_101.jpg
fb6b33454bc2ac1b105a74425063979f
8fbaeecdad95354f52bfe2339536df9a02a5bae3
112522 F20110216_AABPCR lowry_r_Page_081.jpg
a954879eb95b4a92add96fec24a76173
efc7b00b46fe6d8335f11a3adb7c1fd35b6ef780
56425 F20110216_AABOWW lowry_r_Page_026.pro
f4a834ad1a1632a6cce12588ad8377c3
a61169ea33c9e37ee0d126f2d7fc370971da87f0
7350 F20110216_AABOAD lowry_r_Page_134.QC.jpg
e10f72db028605215897e3d29d9f86cf
f7013173a261c6cec45144f06674406df12e50a1
1917 F20110216_AABNUJ lowry_r_Page_136thm.jpg
5ef346d0c64d36c30c073b679503c998
f9a297b152fbd87069691c6871c2b90b208518b0
50125 F20110216_AABOXL lowry_r_Page_052.pro
9cb33fab4f46d92492d3f5093bb313dd
54ee62d02870a0d30fe2ef0e67e88133e797660e
106353 F20110216_AABPDG lowry_r_Page_102.jpg
7ef80f5d322c119675875cd6d16b34fb
10d5b496430563a805db8b32e7786b9f8f841f9c
67469 F20110216_AABPCS lowry_r_Page_082.jpg
da3ea0d56082e1cb53f5cd5e25c9147d
87d85cc3a9c8b0631ff0007623ca5dd8a85655ff
53531 F20110216_AABOWX lowry_r_Page_027.pro
f5c512e04e04501b434c42bf67da15bc
05fbe4bac37f256a219b1b25495388b7049105bc
1054428 F20110216_AABOAE lowry_r_Page_152.tif
c3fa8c0fea69b1def0341165a9b42747
66894dacc308e4fb0bbf557d2dcef394e4159656
28300 F20110216_AABOYA lowry_r_Page_082.pro
2e6fdb20462ad49f641638b14fc1e5f0
fe53db04b6e2d6c0606a49799fdcc8df104cb7db
48500 F20110216_AABNUK lowry_r_Page_089.jpg
ca912e2f7008170173d7f1abfa072b3d
d2e51ec4797f0ecfe3bd8825921850cd6f97d35d
49056 F20110216_AABOXM lowry_r_Page_053.pro
e7483bd268aa2e6011761b8880ae7334
2590c2330fee27799857f19aaa8e145764857ec4
109489 F20110216_AABPDH lowry_r_Page_103.jpg
8c3174ca71b47a22df39a479eb44bba3
ec44e65efb6be1aacd3f1af324df5d75ff01eba5
53911 F20110216_AABPCT lowry_r_Page_083.jpg
1e2a20885fa8867c6075a74b4f9d8f8a
4e74df32540e57e1db68eb7d63030ef4bb68af00
51408 F20110216_AABOWY lowry_r_Page_028.pro
807f2ebe554194e2e466651a8c07cc88
e58237c06da31720384dcedbb756a0705dd7c2e3
1053954 F20110216_AABOAF lowry_r_Page_077.tif
3158f39172883412d51d6c3c578c3ae4
b5da0c8c365b198efbd378430fb62a1d65bdf472
14746 F20110216_AABOYB lowry_r_Page_083.pro
73b32fd209e6ab93883c4e11001bbd3e
714ad80d6ab20b63730d80dcb58148fdcefe2442
39305 F20110216_AABNUL lowry_r_Page_072.QC.jpg
16ade69c1359e62ec275de7815eee6a1
5fcd2fc15a9f7cec77668982618892fb4ae4d39f
51063 F20110216_AABOXN lowry_r_Page_054.pro
cdc1d784c9dcd92f188152db5355087f
0cb1592d8b10f4491642b96d7cb72616f65b946b
47342 F20110216_AABPDI lowry_r_Page_104.jpg
19c27c5f283d8e82951a799e52ad2470
516972df61646d6255f377197ebd8cc915a5694e
65232 F20110216_AABPCU lowry_r_Page_086.jpg
005f85698173319166451ddf1c3570e6
dbbca17c514ac541b94f5f0ea019f8d762b4356e
52996 F20110216_AABOWZ lowry_r_Page_031.pro
d443a7c6b17df9a4ad846881841b362c
48a7d26af84ac19368ecb683b90a594b7a1c3600
9017 F20110216_AABOAG lowry_r_Page_097thm.jpg
22ae6b1dc3d741a04b078026050451ed
9d9d2bb6b72b0918bee6086636810cc712570a24
1051945 F20110216_AABNVA lowry_r_Page_007.jp2
3a6dc001acb6e5d05e766cd6595fb1ea
2559dc3eb1ffd2db953beb2c47a5bc088f2c657b
15347 F20110216_AABOYC lowry_r_Page_084.pro
435febecc32fca77a7f80929425204bb
b345d1e08790be55a861c564bfdec513a170554e
8619 F20110216_AABNUM lowry_r_Page_115thm.jpg
a062e80123f9deb40d3771853f45bd37
2a8c570d8a5d61071574a6f65eb2abb37e766f80
18030 F20110216_AABOXO lowry_r_Page_056.pro
6ed85a6fb5675e775ad95df6291224de
0ed77245393db43e36b78e6b919d9c3f68efa6eb
97243 F20110216_AABPDJ lowry_r_Page_112.jpg
4de545f1e0a52f7224230d610a9d6ef9
8757ec522f8cfc15a361d28603696b1b4e579095
76513 F20110216_AABPCV lowry_r_Page_087.jpg
cbc1c403a5ae7b42d8fc557deefda33f
ad72c9b7ad7f8eacb75b50df2c62fffd6c99081a
115235 F20110216_AABOAH lowry_r_Page_069.jp2
0410b6f703222b5d0e9e0ff581e6023c
3a856281fb5fac2cfc854a957b8fd56f7010ac13
2209 F20110216_AABNVB lowry_r_Page_026.txt
5bad3fc82abdb0163df2b4d8b24f82c4
0f2a00f3581c4e058b092e7dabdc1008a4c26744
8621 F20110216_AABOYD lowry_r_Page_085.pro
d0b6860b32914b8eae5da23ff189d47c
9015b2422f2398eee4ee403c1e99b3108d4a02ee
54527 F20110216_AABNUN lowry_r_Page_070.pro
e3be13e0078f7ca24628d144a2058752
38b3ecdd593a10057e1aa05b1c7ac7e1a27d919b
10005 F20110216_AABOXP lowry_r_Page_057.pro
63980e3968caa3a3915a7599b84cd84e
b1b1f8f6a1e5272dd4b8f680a8548c19288e837d
98926 F20110216_AABPDK lowry_r_Page_113.jpg
19ced8b4dfc1dd29cebf542928f9e8e5
1e6ba054762042f35770f7d87b594b3129cfc025
86289 F20110216_AABPCW lowry_r_Page_090.jpg
8daddbdb480b36c108162e1d982d000b
99a5deb52cd5bcec4b0b1a55e91d3037cf900691
111995 F20110216_AABOAI lowry_r_Page_116.jpg
6492e4210c474ebcfbcbff8aa9bbeedf
d61b8c48d179473eb151f9da1228d508ec5c324b
18682 F20110216_AABNVC lowry_r_Page_153.jp2
7ede4254f9cf154ea797d5168e27a5b0
8927b9a67c144e698d8f8b4bb379586272c9bc9a
8448 F20110216_AABOYE lowry_r_Page_086.pro
56b10e45efa79cd4d6213645014732d9
6837743250b5c8f7fdc4876137ffc4cf5d8b1ddb
108612 F20110216_AABNUO lowry_r_Page_022.jpg
54ca390565a242c687cc1066bb61b2ef
5b6cac4ffc3d45c8fb2c1d962c6a029c4c13dff9
24044 F20110216_AABOXQ lowry_r_Page_060.pro
83b1fdbf2ffa4ee9f755ee9cedbc2736
4cf8a48180c40de2202dbef9267400429890722c
18696 F20110216_AABPEA lowry_r_Page_143.jpg
2460f3e51211d7f18aec4db5b07487eb
351f247d40369bc5fc9dab18eac36e4515f7a7bc
100824 F20110216_AABPDL lowry_r_Page_114.jpg
c8c1a8f1b7fc45c1dd195c38ebd5018a
b011976f445fb668d703057f16f77d6ba196fdcb
106632 F20110216_AABPCX lowry_r_Page_091.jpg
0df4ca8f1dd8c495f3e134416dd8e4ec
caf0b5b6c0f1a21a11c1700705ceaec9524e7e44
2153 F20110216_AABOAJ lowry_r_Page_025.txt
57533350ca74dd7e8becdb109a97eeb7
e0e3db829e6a199e2dce2126209914d5561e0b97
5217 F20110216_AABNVD lowry_r_Page_132.QC.jpg
b5ba23acd41682fafc75487e7bace0c8
be664613fa3d5cc19782c7a55e3ae0b23b96c48a
8964 F20110216_AABOYF lowry_r_Page_087.pro
063796beecd707c10a3c59dcac323ad7
07ef0086a573e70db9f6362ff859d8859672bd93
25599 F20110216_AABNUP lowry_r_Page_059.QC.jpg
691a7cf6bb461a4227458be35f5e7947
74cdd7b0982bb841d5b41de4a6d1e9ba37be14b0
20628 F20110216_AABOXR lowry_r_Page_061.pro
31ccc535f588c2a9f4dfca5a9cb80963
1a9415ee38de80aec70bef0c31b1e2963e5693ff
26798 F20110216_AABPEB lowry_r_Page_144.jpg
242d1817a6e1675a6971fba9558d2781
33a7a730af91cb44ecabeacb91fb5aeb46b565ee
81249 F20110216_AABPDM lowry_r_Page_117.jpg
6e3d570bcceb47b1da734ee06275d963
30dca4e507b10896ef4b4e9afe4b0fab3906a5da
116787 F20110216_AABPCY lowry_r_Page_093.jpg
0fcb10d84e00d4a66ad80ae22d5eb5e2
ebd0385f261f0511b1d700acdf5fe2ad6a32014f
65856 F20110216_AABOAK lowry_r_Page_175.jpg
007434c9d05798d3c9b87f9473a2ba28
b1538704fd860118d3568163b05c9d0a386c681e
6434 F20110216_AABNVE lowry_r_Page_133.QC.jpg
a7a67b3d855b39740f17443f2b170cf0
433cc4c255b554e8fc444efae11040d0fe43ee16
19001 F20110216_AABOYG lowry_r_Page_088.pro
38f5a1ff9eab69f1d46135f63062b874
aa38442e5067d5a69b436c26d5005f66b24a2b72
447203 F20110216_AABNUQ lowry_r_Page_104.jp2
710a083eb8bb556956ae739c24d853e1
ddd8cdc936ea19f726a8a884a2c86af37a377746
20594 F20110216_AABOXS lowry_r_Page_062.pro
0cae7e8beffa52373d573521282add8f
1bcb6309ed8546bf488f7d5a6bc7214e2aca567e
104693 F20110216_AABPDN lowry_r_Page_119.jpg
f46cb766b2542a7cb186d949c7a25357
f943cc43e0eea4af0267957d7e5ac713e7a418ca
115364 F20110216_AABPCZ lowry_r_Page_094.jpg
25fe2a70ec38eb1ddb4c477c13bd6645
6edf5b95cb33ab6ffa9c68da7d72727b07061119
37559 F20110216_AABOYH lowry_r_Page_090.pro
c7fda004ceed9d06d31900f66bbe88d7
eb52dc16f24d0bb830edf2aaff637ec6ed4a2efd
38721 F20110216_AABOAL lowry_r_Page_100.QC.jpg
5a77e2b0cfc83e469a1a60e57145272a
360388a7e0032f8a749b9cc2c8a4745155c99b72
113539 F20110216_AABNVF lowry_r_Page_041.jp2
957982547b966874b7feb4beb60752b9
6398777ca8853edff9ab11b21b010d727a76d083
5336 F20110216_AABNUR lowry_r_Page_129.pro
30d54bcb42c99850bf086c6b5bdbf3ae
d3051708a5836d872aac7bd138f21457643d146f
54218 F20110216_AABOXT lowry_r_Page_068.pro
f014b8a0f5bd00db311a3e1450bb79b3
c7446951cdc050fc179ea1eff370dc98e8c1961f
19326 F20110216_AABPEC lowry_r_Page_145.jpg
92b1a798d78e9472ec356442d00752ab
00c7f1addd87fcda383fd8fe5b13a11456050c8d
112271 F20110216_AABPDO lowry_r_Page_120.jpg
5f3852eba8ea4de44b575a8b3b6f8ea0
f451e331991b263ad1959230457e6e03a7ed7561
52948 F20110216_AABOYI lowry_r_Page_092.pro
29ca564691a66d5f4113d6912f526c18
77a43165ee35e1240cc44c8ccf844f14e94d4577
2141 F20110216_AABOAM lowry_r_Page_070.txt
ea705986a49f75a322c1b5aeacc42f0e
2c36f6ce57c55d8c867a3bc6291357cd984e4f38
4322 F20110216_AABNVG lowry_r_Page_157.QC.jpg
4da75cbcddd25120a0006fdbefe88723
d1b13e72719f9de159e851f4a3371578415ae02a
934 F20110216_AABNUS lowry_r_Page_088.txt
9efb1d5d733711ed76dee3ff304999d3
9f3b6d227e1d460c81a35254afa2043c54bfb891
52529 F20110216_AABOXU lowry_r_Page_069.pro
e7a2cce933582436ea546b8e47ae42a0
2c13996c1f24b32950096dac75c352dfe3c1f74c
38396 F20110216_AABOBA lowry_r_Page_075.QC.jpg
22a50993eacbb615bf32af28eca9b340
2129e82911060751f8c8d8a0570570de6732b27b
25585 F20110216_AABPED lowry_r_Page_146.jpg
f0840b04e6d4d44063167d3a4f009fd4
7ea02aa8538f4e14a9b1228156bd2b167f9a68e3
111175 F20110216_AABPDP lowry_r_Page_122.jpg
702bfd36d7b838694e1477002e30ca66
8963a1a94ceaaccfe284c32cd956d07f6c6e19ca
54253 F20110216_AABOYJ lowry_r_Page_094.pro
e1fd2a018568b309f1ef206b1e87f127
90e9077ddcc40913dce6fed7c333951e0771429f
F20110216_AABOAN lowry_r_Page_153.tif
e974567c820625fe6d999c43b2a7e0a9
a8091c47175359a5510c734b724bc4ccaa92bd3f
35361 F20110216_AABNVH lowry_r_Page_121.QC.jpg
b98c22367147c720ececcbf026b43c54
99cee8845d0ff9b4c1c2bae649bc523b00dbb356
9116 F20110216_AABNUT lowry_r_Page_023thm.jpg
18b0fcc8eabc054601ea8bdd42aa9b40
10c8b791399ed9fa7577e5113fcaa00680168342
54617 F20110216_AABOXV lowry_r_Page_071.pro
752e1f869a4787d5083ea603655e6fcb
34061fc263842b384e0d1e316abc9c70d5ddab51
74802 F20110216_AABOBB lowry_r_Page_014.pro
3a896f63a4a09cdabe0aeadc2df105b6
e72b8ed9fd87837c2f34d10b3fcb1bfdf2c4f360
14515 F20110216_AABPEE lowry_r_Page_147.jpg
9933e64d70b3d0aef20bf6e765a8fbdc
866fa8e9fd78a605dbd0d5107aca9991d7be37c2
18400 F20110216_AABPDQ lowry_r_Page_123.jpg
4a334b1b4ccfcab5aa34d8c8501267cc
164b9f08d1888f0ae76d8c5007e453b14cebfeeb
52560 F20110216_AABOYK lowry_r_Page_096.pro
dec81a1e61dee7f4a9e86cecb6887d07
f24c217260f6c5ab75ef36c8dfe975cd5b408f79
32133 F20110216_AABOAO lowry_r_Page_114.QC.jpg
f4ff08596958349878a3cea5c79096fd
bcd2848c82a2705a6a826fbf4114f8affc2b7db2
F20110216_AABNVI lowry_r_Page_154.tif
d1d7ec68611d2c6d9a5399f39b71da74
eedbb2e1eefbc061a4dd5f1280abc1d8c4de2d82
F20110216_AABOBC lowry_r_Page_098.tif
3048926ef4e919fe49f5ed18f4a9c7f5
196f596684b32ffc75e7f2435030a7e42f9965a8
16691 F20110216_AABPEF lowry_r_Page_149.jpg
080eafcbd9f2b6649f0d866f567f75c5
56d88046df111d263f3f032bb9d2918829a9ea71
6211 F20110216_AABPDR lowry_r_Page_124.jpg
6bb0ab1e9bbbeefe0f4b6473216a6642
4e70654ff3f494aaa906de28c350c04e78b5545c
53822 F20110216_AABOYL lowry_r_Page_097.pro
718b85c6063e82dac7b22adcae075a26
167f92d2c81a608d1b310e47835d07e433bec5d5
122184 F20110216_AABOAP lowry_r_Page_072.jpg
b6a39557f117435b858fc93d64b3c23c
14850d84d4d04357e451a2efba71eec1d323f092
632 F20110216_AABNVJ lowry_r_Page_086.txt
eb6a27b24676c4577fb813a2e04ca3e0
8895bf5325a7f67cac57cb22a5f46f1fc9cde3ad
15891 F20110216_AABNUU lowry_r_Page_104.QC.jpg
4e1857704ce7688210dcd742685e2741
515a27d1095ffa60c68d1e45b779ed4bd41840e2
57590 F20110216_AABOXW lowry_r_Page_072.pro
87c6d9a4e06f8d5d3726b3c7743a9354
bce611fcc15a66e2a43ee9887f1df77a65ccad71
F20110216_AABOBD lowry_r_Page_065.tif
1f7e715b2842d6e3c649deacb3c0994e
8d55c1cf407ac28b7d5cc02fc8fdeaee2fd8af49
12027 F20110216_AABPEG lowry_r_Page_151.jpg
2cfebb1c7304f4ebd61c02449e448b72
9bd472b48094fc80c52163ef557a5f8c2341e32b
17225 F20110216_AABPDS lowry_r_Page_128.jpg
38313d188c08a9601fc006830e1ba811
5da29be743b1b83e459205df1b466d9dce27d4c4
6662 F20110216_AABOZA lowry_r_Page_128.pro
126326137d003f0956424b6362ea8dbe
9daf6f655dcc3975f80379fb981cfbbfcaeee27b
54925 F20110216_AABOYM lowry_r_Page_098.pro
c0d611cb68aa6f3143a55bde7fced808
418b2829a4bc55e75be79d6c1111505bfe05ce7a
F20110216_AABOAQ lowry_r_Page_068.tif
75f9530d7d8968437cbb879f065a436e
2cb2a26dc230dd711b491bdd77fb20f9b59f3d08
F20110216_AABNVK lowry_r_Page_151.txt
fc5dabdcde0252c64e027572aca25f52
fd14af047d27b3223e9220f40eea02d8e57f9bc6
105942 F20110216_AABNUV lowry_r_Page_051.jpg
61eb3fad206f42b9a173ecfa92c7a5f7
f5af9215af769b7cd31b5a2742bc2d0dd776c993
54879 F20110216_AABOXX lowry_r_Page_074.pro
ceed838484b4ae956080d2be4a623930
d65e70c9e714120102593254afd619d53e915d6a
1871 F20110216_AABOBE lowry_r_Page_112.txt
db1cc1a6b3611bb9099f0b460c98e1ab
fad8249340890833075b5e0eeddccad773325f31
25233 F20110216_AABPEH lowry_r_Page_152.jpg
e33ea1bb8a239dc2aadc4a7e4db3aa85
175cc1151799b02230fbd3de8fe6cfc716e9ed67
20198 F20110216_AABPDT lowry_r_Page_129.jpg
7700562b99443207959b178be2439cb4
140ac6c8558115a820135bcc6953e56a5d2150dd
8008 F20110216_AABOZB lowry_r_Page_130.pro
fc4c8b257e1539c7bda725ffc4cd9cd7
6604d432cd9bf4dde49d7796dda67ef716bcf073
56706 F20110216_AABOYN lowry_r_Page_101.pro
5f7dc667bb0fe2b9c6d6d46cd49376ec
d99a7704deecfb0f1e57ac19f98994f1f85e0c7c
114197 F20110216_AABOAR lowry_r_Page_092.jpg
e04af9bb37cb187fab2c4c839f2fb44f
a36251e0a4374800f70866d02feff50d3018d919
5576 F20110216_AABNVL lowry_r_Page_143.QC.jpg
6ca3f6de141348823d7058840a9a0021
04a591272d7922edb4713eea64b24ec1deb39f55
1650 F20110216_AABNUW lowry_r_Page_128thm.jpg
e9550f83edccd1416f8983e2d101049a
390be24d9adca8f300b90ee04667e97254e644b2
56391 F20110216_AABOXY lowry_r_Page_080.pro
869a9a7a33a11da66ba5f53aa201578b
fced131ef4536da82681a3cd76c157e807891d96
49308 F20110216_AABOBF lowry_r_Page_036.pro
b5a6d2cf67db729bd55be793bee5a41f
e2b4b86038d36c7c3c293c3fa00822b1135559da
14080 F20110216_AABPEI lowry_r_Page_153.jpg
f9a3f84859ce6a051003c43f063102da
47316c569841fe068b1cbb7d04dbc2fdc077f7c6
24453 F20110216_AABPDU lowry_r_Page_130.jpg
bb58bb9ff2fd8b0a97964e5513e82c9d
cc17f5db7b642107ab88f3afd787bd20091b148a
5745 F20110216_AABOZC lowry_r_Page_131.pro
940b1f2eaf7ab543d9fc9f3cfead97b3
f1fcaad38aa30ae97aafa419e74a7cf97ba18806
10036 F20110216_AABOYO lowry_r_Page_104.pro
a890b2c3e9e25f70d87b73f789c43eec
de61da942a0dc9eb5e547d122c71c96f3259383f
34333 F20110216_AABNWA lowry_r_Page_184.QC.jpg
61c82f9012e6c374896cdf5be0dd7765
50e62707bb0f0f5a95b82c41722dd8c557563920
22226 F20110216_AABOAS lowry_r_Page_140.jpg
910181f5f65fb4b18d2ff92b3eb378e7
861f6896f7e3ef0c8fd7a9967e57c67ae9c5b71f
8995 F20110216_AABNVM lowry_r_Page_022thm.jpg
9fcd17c4329331e0b921bdef6d3c22b8
c77eb15d9d2132288602b64237a5b7240b8f47da
33835 F20110216_AABNUX lowry_r_Page_009.QC.jpg
63bce375420040bde8c5a6432f1a3239
869d6385e4c98b5cd8cea58e24cf5c6c1d2036f8
55646 F20110216_AABOXZ lowry_r_Page_081.pro
c8e45b89c89f4c4a3a1a17bbac2449db
e7e4905d1264ccb5d7d71b5d97cd5567cc7f4c87
F20110216_AABOBG lowry_r_Page_121.tif
524f63888a18327a82c0a0abc1f8702d
b1f099ae509e3942acb28be6620f34cb307ba110
12658 F20110216_AABPEJ lowry_r_Page_155.jpg
5949c9cd3e8036b9898f6e25d6ed4594
4ac18327767499cc4d6fe92ad8de4d3c667ee66a
15091 F20110216_AABPDV lowry_r_Page_132.jpg
d72c04a4b9f86e6cd254f9aa7a616416
f0413c336d7607fe47dfd3151b7294d7ac71ac32
6307 F20110216_AABOZD lowry_r_Page_132.pro
30fb8b49c3004ff32cab7ea7bed2c763
ddcd470d71598a17a638a5cebe968ce300c63534
10769 F20110216_AABOYP lowry_r_Page_106.pro
9d3a2174e822b6b22292f42f4f3c106e
2571b9db8884e436c065dce807928607d84bf433
25271604 F20110216_AABNWB lowry_r_Page_106.tif
69e9c6d96bf641051f4289bc82b0b871
903b98d086d6787258438c5bb34a3f425bbb1b96
103179 F20110216_AABOAT lowry_r_Page_064.jpg
3d9ae89e9ce96a303c538f554b5d5c74
e5ae8e8e5183fb0756d9a6dd66d58ff906e7a516
20745 F20110216_AABNVN lowry_r_Page_159.jp2
f8361c6b8ff3c0ee94aeb610aba305ee
daa0eb6ae792d9bb278233624a8498b318941c35
20600 F20110216_AABNUY lowry_r_Page_171.QC.jpg
d0809fb702bce0ac9e94dcfaf5e30816
5d0f56c6333a26f95c9154b261fb595f5279050c
6509 F20110216_AABOBH lowry_r_Page_161.QC.jpg
3a8269fadae9814b04965b04d85010d1
1186612c219644a0f98429070522f6500cc88193
24867 F20110216_AABPEK lowry_r_Page_158.jpg
86a98f594304ae39d498a08cc7cd16ba
2cbf788865943ff6352230bf7c926704c24e145f
18556 F20110216_AABPDW lowry_r_Page_133.jpg
05b7a6e27cecb0d1334df85eda000eaf
884627de994b1315b2b55815ac7b13ab6158ee5d
5513 F20110216_AABOZE lowry_r_Page_133.pro
e165a35f2be77a4ce6ef41a94e358be1
97cf7f11341c95173f1ec208a0f39453524a59e9
49254 F20110216_AABOYQ lowry_r_Page_108.pro
55385ba5b5f99ce86c9b5c309af7377e
97070c7d02071d8db2fc40a974c09251c22b4d0b
107646 F20110216_AABNWC lowry_r_Page_121.jpg
20400ef0fdf8258d9432372e4336e8a8
a424e3ffd158c09a0511fc6ba09d60ccc444d53e
50610 F20110216_AABOAU lowry_r_Page_064.pro
25c6187f9ba3a9afe1d2e2181bf52e15
ea7df3c987085e1ebaf1867581df94a7b0a4e45c
F20110216_AABNVO lowry_r_Page_064.tif
4ff580dd38e9f5363bf10b5e069e7e4b
e0efdc303d513281ee38e67f3b499196b0a96a36
F20110216_AABNUZ lowry_r_Page_096.tif
4b609dd29d4a3bcd784bd097a02d024b
cc09a3483954fcafb2767c2b5720261be36ad16d
4346 F20110216_AABOBI lowry_r_Page_007.txt
f09c5f69321aadcfaea9c589aab8061a
942b387cf4b08fd3366de8a253addf51e50b992f
105296 F20110216_AABPFA lowry_r_Page_182.jpg
9e61c323b76821ddce2c3bf70e0b1935
1de6f4b01c256fd61fd6ce3a666bedad815a5839
15522 F20110216_AABPEL lowry_r_Page_159.jpg
a44e25c33faeb38b55564d6140c30c96
b1a8398c9d34224a72e7873ec8609e5ee3c69de7
21396 F20110216_AABPDX lowry_r_Page_134.jpg
b7baa5137f5e1b845ae159155d9c6ffb
e1ddf39c300931519f79e2b9d3b6d02b13f52db6
5983 F20110216_AABOZF lowry_r_Page_134.pro
8bd74af3ba5f269d49efd38be502f5bf
59f3b5e0124e88e9fb5f2589d5d3340d673bb154
53435 F20110216_AABOYR lowry_r_Page_111.pro
2dc2baeed169b06ba20786248caf5651
2ae9bc848372dcb1a08bb4de5f7424c30883adbc
1086 F20110216_AABNWD lowry_r_Page_107.txt
de7c48336039bccd32d4dba1d61c6275
d0d284e98394ee67b3896323a313cfe3afe207d5
F20110216_AABOAV lowry_r_Page_140.tif
d8bcda88678beef71b68af40a6f953c1
7c9a90de69b1b7f4625e0aa9b096331d873efff3
20587 F20110216_AABNVP lowry_r_Page_168.QC.jpg
5c22ffedbd008e072cfa8ad3d01abe31
4c82f01f89c8f1d5e12b912e26116f79c66516c5
9159 F20110216_AABOBJ lowry_r_Page_048thm.jpg
db6c12e6c14cf19f56b02ab8ca846d57
d61db52ad86137b92ff94fcc5585e2b8f747693b
108036 F20110216_AABPFB lowry_r_Page_184.jpg
d34fda314db94241265e240aaa3d6cf8
4749196cd43b8ae90f56d2c6e344328056d16d83
19993 F20110216_AABPEM lowry_r_Page_160.jpg
e5b74d31c441708535baa21b3db718f6
14e1e55203fce501e7748bddc03d2111551af766
19002 F20110216_AABPDY lowry_r_Page_136.jpg
6dd4bd44be194eb788fd3e52ef0111cb
46c19d263c41ba1927b4bfdbc8305d27d620fc21
12885 F20110216_AABOZG lowry_r_Page_135.pro
2d2871b095928b5103a122c57a801a49
dece2ca8ce6d35f28af68f0bbeeb70ce6b99fbc6
52248 F20110216_AABOYS lowry_r_Page_115.pro
7b5639598665c211c4bfb6c36cab62f4
696cf607d2ef1effa5919e896aab4fa5c7aeb069
98458 F20110216_AABOAW lowry_r_Page_176.jp2
473019acfeb306cf3f2686cf865cd448
926d62b0ee5c5ee2d18fd0c684c284afd812f4ad
52651 F20110216_AABNVQ lowry_r_Page_121.pro
e223256739b4e15cc54c1dc6dfbd6075
0c5b6558195e637af916772634540d0cc5051c99
9339 F20110216_AABOBK lowry_r_Page_049thm.jpg
1546b86ddaaace5e5bd012154b129eb5
5b8afb51ed5705cccaafb87d49670e1d82b5446b
1879 F20110216_AABNWE lowry_r_Page_035thm.jpg
de3c82d5281717796c083e5f1e629165
2e909ac75f04cb0cb321982b3a13811f7309df62
98973 F20110216_AABPFC lowry_r_Page_186.jpg
871048b4d8dace52c9d8df41a45c3aef
888d9d977b4ffbd0363ca3d96f19b334a2274b1b
21320 F20110216_AABPEN lowry_r_Page_161.jpg
b10c46fa0c06dd3ed4963e9bfe14b49f
aa13ee51393757f1b1724c639d22877fbc5f674d
15704 F20110216_AABPDZ lowry_r_Page_138.jpg
999e3b2b13218f6e2129c9213c84b412
634a650bfc11057ac74974702084bc80e41a5cf8
5964 F20110216_AABOZH lowry_r_Page_136.pro
78fe2c69eb57c645933394333c84f345
539af811e863aedd38da90ff68fa6b1fc9a3b8d2
55835 F20110216_AABOYT lowry_r_Page_116.pro
50477a86f882f5a6c4a0ddd6233851aa
b0f357b645cd793db0729fad6065f30d5e4fe391
32471 F20110216_AABOAX lowry_r_Page_186.QC.jpg
e4b4668c49de221ade64b1762a308686
a669df310203fc8cd9d7f45567cd8b5a0bc2fecc
F20110216_AABNVR lowry_r_Page_003.tif
ee184ab9bf9bb832126fda6dad8d4805
aa02aa34c5d126c2fd28573475d7e7210a259833
F20110216_AABOCA lowry_r_Page_131.tif
fdf577d7c6426efeab044fea3ec5cc02
55a836a3717b78323b2c45bfa150e7c9f7f894d2
F20110216_AABOBL lowry_r_Page_123.tif
14deae7672e5f2fa77cd8c1b90510642
86f61cb78a19a25b3b2c9ef11a3c16ff69ab837e
9097 F20110216_AABNWF lowry_r_Page_030thm.jpg
53fe199d4e9bc193eda29fa344b90eef
6911bf3e30ee57f61a67e0be0015a39b74948ffd
22800 F20110216_AABPEO lowry_r_Page_162.jpg
7a6fd4333a234857eef31dd0228ee2c3
2d7f07ecdb99fea8ac5cf0e470eb69a5f530355b
7366 F20110216_AABOZI lowry_r_Page_138.pro
47259a303a755e03dfe8463c398621e8
cf73e7f91be99978908bd44a7ae494694db9f481
38711 F20110216_AABOYU lowry_r_Page_117.pro
ebc94fd248e6b25ebfddb2302391f6c2
4d9dc7b01c3ad41bd06c03cf17af2fbfa1d32a28
2147 F20110216_AABOAY lowry_r_Page_079.txt
31a66d61a973bea4b70049963fdc34d0
0ebc938e79350321b4a75ee2a72ed4a480680f02
24063 F20110216_AABNVS lowry_r_Page_059.pro
8809e162a4c1b9d8bf58acf519a71d14
7ed63c870de941833871957fa5b70e853a1c75dd
7995 F20110216_AABOBM lowry_r_Page_065thm.jpg
8266395fe09f6d5956c6dcb8a5719357
fd920b20e7ad3a1135149549c5d8826b8c7b0527
14457 F20110216_AABNWG lowry_r_Page_125.jpg
e81356319a9625dd51a97c2e7304380e
198f273244aa6b84ae9e10e1b8f6a489b30b30d9
73715 F20110216_AABPFD lowry_r_Page_187.jpg
c0700850d75db4aa4a0350933252f9ce
787a8feb38831bf15a525c422900c524bbb6287e
23507 F20110216_AABPEP lowry_r_Page_163.jpg
0393b390c12ae0a15a84bc06bb380df2
7c20e1e51d48e79b57b843a0296c71791a485898
11178 F20110216_AABOZJ lowry_r_Page_140.pro
dd0908709fa83da9a26d6c25c5e22008
75c5c5502013cae4f62d15c5dcccc9fb5e9e08d5
8825 F20110216_AABOYV lowry_r_Page_118.pro
a6dc403c5e2f298419ac0797b5eef0c0
db4bc4af9b93057994fb6bc443fd1707ea134cdb
38712 F20110216_AABOAZ lowry_r_Page_076.QC.jpg
b67319911afd2b937f31ddc7da74ece5
c1e7652f510743ae2b16cbd5f51c914dfb36933b
1630 F20110216_AABNVT lowry_r_Page_168.txt
16ff398939020ac0a8bdd4648da6c0ca
def2b311ddebbffac7356ce0c59659081f058adf
94668 F20110216_AABOCB lowry_r_Page_177.jpg
1cdee2d0442218443f2c1e364de8f852
366f17a978d0ddcf2839078bd1a55570f165d6df
F20110216_AABOBN lowry_r_Page_169.tif
a6b74f5ab10d4615cc79335eee11b0e0
ce46d88d8a708293199e81ee6eb3200662f5fddf
1722 F20110216_AABNWH lowry_r_Page_132thm.jpg
4df164a6808ee01a9d9184508a55d02d
40d240433d41e6f95ac504a55fd7ca8aa7854404
29061 F20110216_AABPFE lowry_r_Page_001.jp2
4ee9d60f56bc9d5694983a168b649c24
c14669de019e4763cb88b3ec1fc7e621cbdcf0b8
17555 F20110216_AABPEQ lowry_r_Page_164.jpg
a578556bad31baaca987a8c57c04b5fe
d821cc0a5c2553f48b325593e0714aa7db6f8842
6179 F20110216_AABOZK lowry_r_Page_141.pro
c2e8530635f18c227186bd322d5155be
6dda3fe323d5891bcc1bee73bf2764018dbf5d8c
2080 F20110216_AABOYW lowry_r_Page_123.pro
8202d17d34622d063ef65b7178e3a5b0
eed64e80b2e85f760c1e1236fab0b6570c59c33e
1051978 F20110216_AABNVU lowry_r_Page_006.jp2
548c5fd8d8e75374ed53396db41161b7
5780ae33f702d50f7bb5e491f8e0dde0cb86c3cf
5284 F20110216_AABOCC lowry_r_Page_171thm.jpg
fa0cccf5c64a7b2596c86cbc17069a10
9d31a62576cfcc2ec076a4d6b13943547b3843bf
F20110216_AABOBO lowry_r_Page_028.tif
378ebc6dcde1a79907355ad8236978c5
a2df85e11903b743908bd44c940f0046cbd4b891
550 F20110216_AABNWI lowry_r_Page_152.txt
571cad60f32a616d98d96d6289e6c725
0046e2ca8153fcab226a3505030d050a478354f6
5670 F20110216_AABPFF lowry_r_Page_002.jp2
c5a8a0ef5af491446506bac45f0f1f48
7498eec0ad0fa2fa30a60357b1602523b34deaa8
23344 F20110216_AABPER lowry_r_Page_165.jpg
619bb27e56b5ed77a1a68edd20e29e6e
c217ebf46c955b9f48203f922a4ab14ac034e5cf
8633 F20110216_AABOZL lowry_r_Page_143.pro
f25be9ace3b673d2cacfa53a2063409d
b2cefe12fd74620af43b4bfbf31e19965040884e
17385 F20110216_AABOCD lowry_r_Page_137.jpg
79c68c0dad81998133184b2032f18b64
01fdf617b73011b87f9369ca5a420e946cb5a8b3
105519 F20110216_AABOBP lowry_r_Page_067.jp2
c8b8037be48ed3ce3ecc4c13fe6157d2
e6cef5b99adea5e5f3269a39cf4456f2592afe5a
F20110216_AABNWJ lowry_r_Page_053.tif
8fc9e43d35ee4a2429adc5482c7b1693
5caf5f739298cfd0fd91581cc0227e00024b84f1
1051917 F20110216_AABPFG lowry_r_Page_005.jp2
fcc3189270bd01302e7cca387f201d53
0a5b9891080d8b9392ea603d609364ae4e2cb783
64265 F20110216_AABPES lowry_r_Page_167.jpg
75d1a680b472dfd7407b83feb15ff256
9e8f5f90c26e8ba043b7070650dc248d10ee1448
8367 F20110216_AABOZM lowry_r_Page_145.pro
e00e8360e86caec8828ed78e0b4da75a
a19ffb7dc0dc5787f9d64e543896101ac1560ccb
5942 F20110216_AABOYX lowry_r_Page_125.pro
4889a2271e270ab32514f4432a86d8b8
ceba5fa01c4e1d27554c7bd67e57d008162111f7
115496 F20110216_AABNVV lowry_r_Page_109.jp2
c3a0fd828fb1e467853b1cc871c124e4
d238d0176f8fa33d8383839ca584ca76bea86374
F20110216_AABOCE lowry_r_Page_009.tif
b5d3f7966c23991be2771ae9c8f8360e
a63de3861f1bdf07996c27d97f5f962bb2fb11ae
7890 F20110216_AABOBQ lowry_r_Page_146.QC.jpg
3f28df928d5954c653addd8544762159
e752884ab0e4f702c8c21fbcfd93eab090630b9c
39065 F20110216_AABNWK lowry_r_Page_049.QC.jpg
e779c2f429d4870bef7906f0f1712cbe
ec24264ef0b55d5d64a9b48a24ec9b98bc55e1d5
1051985 F20110216_AABPFH lowry_r_Page_008.jp2
278e599174dd1aa4e1c609a80a81cf4d
16adaa182fce9762650d398729c100a3c7012ea6
67162 F20110216_AABPET lowry_r_Page_168.jpg
d91a9618d92b7412a28b53821fd4c3ba
4973084cd7666303c10a6e9c5a7cd14732de0c63
14796 F20110216_AABOZN lowry_r_Page_146.pro
a6e8221ce39c62ac73d276dc2ef19656
d6400b76b5ed239b87875d2e91591a1c2cece788
6477 F20110216_AABOYY lowry_r_Page_126.pro
ddee68e28dcb949c4450607359893a74
3e3088cc71b6e4185b78747bc2bfe3ebef58d74a
20589 F20110216_AABNVW lowry_r_Page_016.pro
c87aff8c1b94fff0bdc87e9e66c5daf4
d6f241485bb0f58b6508880180118ad8685ca2fd
38001 F20110216_AABOCF lowry_r_Page_096.QC.jpg
581bc5504f56ee2d6fecb43dbd93b4d6
9d78e2541a59a697fb450abc6dcc9d132c33bbfb
2166 F20110216_AABOBR lowry_r_Page_019.txt
becbd95f1137bbb1e6b30effd4a18d0b
3afb7df3c4c429fcb2ef8630168231fcbf4abdb6
21807 F20110216_AABNWL lowry_r_Page_138.jp2
65a04c8a179e2ca59cca20142fe8db72
3ccd8aa61dfdde73f92fa1ed6a0c89fb97347a3a
1051984 F20110216_AABPFI lowry_r_Page_011.jp2
b17f0c2160d6587398f23e740a20f2a8
76ceaf8fda18f9d117a83769a5b9f485763e84f6
66821 F20110216_AABPEU lowry_r_Page_170.jpg
cc9f7f1a22cb0cac995cd5f6676607f5
631e399f1dbe8cc7edf830608ef1ca93a99fd2fb
6074 F20110216_AABOZO lowry_r_Page_148.pro
90b4b4396125dc27558cd450de1b9d45
030cbf8dab78cb8093406257d13784e05fa8d5e7
5133 F20110216_AABOYZ lowry_r_Page_127.pro
889c2ef78dbbc991ec87723e6801884e
65dc26dbc1be18fc2e76c28ec8fd515fe9645e4e
51083 F20110216_AABNVX lowry_r_Page_085.jpg
1660704c6f791c9c3d1df25aedbf7d7b
fbc3184fe8e28ff2bef183f7afd61a416f9e3661
F20110216_AABOCG lowry_r_Page_034.tif
2f8793ac187b693624a81fd05af4e981
9a609cc396030fb626810d7920f9f89d1e08d77e
55352 F20110216_AABNXA lowry_r_Page_093.pro
4e46a6de02c5e3b12bd63e38bc58e636
4234e0a445ef86ca054c1a6c976505bc3028109b
24185 F20110216_AABOBS lowry_r_Page_118.jpg
1455cc0642a3c2df7a8c3b7e728bba64
f13a42e78beb600d6394a051aeb9430c69b5132c
513 F20110216_AABNWM lowry_r_Page_144.txt
2b09921cc1aa026eb463cc91f176e715
da0925e297bd949adccabba641dc550826ff9d70
1051981 F20110216_AABPFJ lowry_r_Page_012.jp2
7961286fe1d31ebbd978cf6c23d80d9c
378bbeb39215e9364826e04805b8e3146ed33a28
65712 F20110216_AABPEV lowry_r_Page_172.jpg
74b37c8dcb23b29994889b46762c965b
22e97192ffa7049576510ade64122bdcadf3b8c5
6843 F20110216_AABOZP lowry_r_Page_150.pro
3bec332eb36facdf79f6c97c731bca39
9852928f2ba8427b5f5d234bb8aae633f2346110
2107 F20110216_AABNVY lowry_r_Page_097.txt
76d13b9b544c2a50ce92fa29fb4508d1
649f855f27995d095745ee5a966df1776e0a788b
1990 F20110216_AABOCH lowry_r_Page_017.txt
2f17809a3a67505dfe4ab6bd88ed16ad
7adedc02aabd3646435cd42a3b4ceb0ca6b42195
55393 F20110216_AABNXB lowry_r_Page_122.pro
e87c165c0b7d5f82edd71ec9eaeb9c9c
18bd9dac8130d135941c4e32b32bf9e78cdeef8a
435238 F20110216_AABOBT lowry_r_Page_057.jp2
7fd1c219f47220e2d7eccd823cbd755a
5d5697d74e0149b1d65c39d0449ad20ce9d928cf
24129 F20110216_AABNWN lowry_r_Page_082.QC.jpg
856044939fb5ad0f9646b5a861f680d6
35c30ce6902102afafd4c59b24105855bc5ce636
1051934 F20110216_AABPFK lowry_r_Page_014.jp2
c401bf53257803125896c8c89c56e02e
66292645a9078166cd61a9c5a71d070e417c7956
65149 F20110216_AABPEW lowry_r_Page_173.jpg
7aa5005b5406b2b12f7696a3ddce8c42
c315423f322cc11dfe7e47efd6641045e623eee1
6231 F20110216_AABOZQ lowry_r_Page_151.pro
405cac5e66b4ebf8c6310dd85dc30950
c2b76597f99faab2a49c8bdd3d79a5f53fe92088
55591 F20110216_AABNVZ lowry_r_Page_048.pro
36b153e3ec31d81ec9245e0a04a55595
fc523634df42d8f103851ac5cf49e325c1324a1d
101143 F20110216_AABOCI lowry_r_Page_108.jpg
7ce5f36ddab5e30058243099c0d6d3c2
78449f0522e401f51cc9ce28a16d200a6601f50b
106816 F20110216_AABNXC lowry_r_Page_109.jpg
8d23683b1f6f7c8c930b5e5eacd2a265
bd41560c9831f2a4344bda7880b973e843184273
67262 F20110216_AABOBU lowry_r_Page_171.jpg
4065d90bf6af6277460ed50546d0ba61
61584ded8a5cb723a2b74cbb2b84e4d184479beb
97332 F20110216_AABNWO lowry_r_Page_110.jpg
9d71a611fe6504cc36572052bca97ab7
912aec0feebc0c5c6f8990fc3c1bf406f92704fc
116485 F20110216_AABPGA lowry_r_Page_037.jp2
d41566883edcb8d2674728f6472088a8
383d68730f4259731fc46bb5f66ecc417952080b
888567 F20110216_AABPFL lowry_r_Page_015.jp2
477fd2d9f597f76a8885de33c10fb28a
9275a8f005adf4021fc9b5d81164bb3db147bac8
98320 F20110216_AABPEX lowry_r_Page_178.jpg
b8cbe0bb3e68ae5d9499db8ec695fac8
3280422433347b11ddf50b02df5d515de1eb3409
F20110216_AABOZR lowry_r_Page_153.pro
7b9979d8ab9b2ee33eee6ce6bccdfb0a
7f57458dcb624cf7ef55604081217b3cb472b187
52157 F20110216_AABOCJ lowry_r_Page_077.pro
ef8598834d188fec1ab7039478ba7864
9e521ebf77cafd313e8efd40b2c849d7d3f284c8
116104 F20110216_AABNXD lowry_r_Page_025.jp2
4f71695266ee3209e58e28c0d2938270
69b09a1f5cff19e208d7fa410d3485139944e005
49075 F20110216_AABOBV lowry_r_Page_114.pro
8ed501412c6f7153ecb343ee50b53d19
03e37dd184d9fcf3b4cacd8127e00113cdbd9b07
F20110216_AABNWP lowry_r_Page_036.tif
ccf02be6e26e2f786ce225706ea266a5
dfc920f845b33f6df462d1e5b4acbcaaf8e00356
108361 F20110216_AABPGB lowry_r_Page_039.jp2
92e041acc7faa9ddbc80bed6e972f963
174b2d3d17356049ea6a6a65f1f494fc4a36ab48
52007 F20110216_AABPFM lowry_r_Page_016.jp2
7df2997bd00170267809ce48a52d4bde
1a27a1848ebd0a1de0eafce94324578c49f209ce
101382 F20110216_AABPEY lowry_r_Page_179.jpg
4bb7f63b3eab2b4845d497c05acf17b8
0805be0f3683db036c02706c06484efd99e7860c
10192 F20110216_AABOZS lowry_r_Page_154.pro
68ff2194d0ff580d40e14bf06dbd471e
e671db4d60fa87a382495c0235544f071e68523c
462 F20110216_AABOCK lowry_r_Page_125.txt
0d61aa3ae917fa097ada5b91c0c49e6d
77d8a5f98439e6533d1c17ba7dceff9eaef9d776
F20110216_AABNXE lowry_r_Page_088.tif
ee100427f2fd0b87871a267dcd3c9940
d174755b3cc9c42822dba11ccdd793adf8f1c5d4
37461 F20110216_AABOBW lowry_r_Page_069.QC.jpg
3eb5f7619246912ea0f379dd255d0288
da2775dfc3f01246a46e1f4403bfbabade5769a7
1206 F20110216_AABNWQ lowry_r_Page_002.QC.jpg
1811c831fddf39cd98492c19cf3a58ae
65164d8610671e3cd3a0f61d66a4ffda352c4c86
100518 F20110216_AABPGC lowry_r_Page_040.jp2
fc10a06851bfa0f77a7626d7176ace1e
8df09265f860e25b32d74e0ab8ff3242b771438f
90279 F20110216_AABPFN lowry_r_Page_018.jp2
1d09eda81f73fa0ba748ca3e8a54e91f
107917ea984fbd9667875dac895a96589144cf29
105074 F20110216_AABPEZ lowry_r_Page_180.jpg
890b19c3db95e65c72bf2a3484785bb6
39d5e39d463c51556ba8d088c2ac6c9107b9ae2f
5959 F20110216_AABOZT lowry_r_Page_155.pro
058b12d97cab588346a21ef403085cc0
907c177b76d3ee85add1a8393abb59b109972559
31702 F20110216_AABODA lowry_r_Page_181.QC.jpg
c1bde19db4a02a26ea5e3940401f8cb0
ad6b985a7c22f4f2573a42762b96a955541cd46d
F20110216_AABOCL lowry_r_Page_089.tif
9eeda8949ba48c45107df1ee37df6d35
65530fbbcc259d135dce930de0b7ed5ab21e0c55
68137 F20110216_AABNXF lowry_r_Page_060.jpg
02691f0f29ace3cce8ee1f8ab1b2c33e
75d92a72790447691499f69cdee36e265383375c
103887 F20110216_AABOBX lowry_r_Page_099.jp2
556bb8209078060cc5677eac4df73f98
a550dba6e791b44efb0e03880c0690fc106c7386
53944 F20110216_AABNWR lowry_r_Page_030.pro
9d5127b33488dcc84bf76e5266b6d8c9
e5892296853aae3e812b08bb19f20aa597ab84e7
115431 F20110216_AABPGD lowry_r_Page_042.jp2
bafb79ab675f9d485691122233ec71bd
6926782f54d0a96bf35e18461383620e024fe161
111897 F20110216_AABPFO lowry_r_Page_019.jp2
4579276dcbd0c2218d64d6f1ff31d496
1243e81894f8298540ed7b59b6d24faab3595d3b
18510 F20110216_AABOZU lowry_r_Page_156.pro
408010fdd903cda7b136bc8a891f3bea
eed343d12fa4a66db0f4e86c6f7a603a0bb128bd
115576 F20110216_AABODB lowry_r_Page_103.jp2
5b917ce47d74a68eb9339d165fea74f9
9f2726c67808a3773780f744c3951efa1fd202d4
F20110216_AABOCM lowry_r_Page_029.tif
43309729baf6be9c7d68188dc89cb8de
ce7c8f2b3fc374c2cdfb4a8889fe96aea250fe79
53061 F20110216_AABNXG lowry_r_Page_051.pro
73dc2786f7b00f97e89aaf79a95fb3fa
4a0d3a3a48b642a68237f5b5121791acf46d14da
6728 F20110216_AABOBY lowry_r_Page_086thm.jpg
1090dd6d0953983c753a430e82ec4a95
81edbcbd4ebaed820256d2803c1fd1cc6091074d
F20110216_AABNWS lowry_r_Page_040.tif
bd5c9770f8cd22cdaa6e43ee3c41bed8
1ca8e9a2a454c4105cd50772562da5227061470b
114468 F20110216_AABPFP lowry_r_Page_020.jp2
748bc13e68bda3ecba335535bc857067
9bfade78654d86e1978725e627ffad1120dc7c33
5941 F20110216_AABOZV lowry_r_Page_157.pro
af476789abc9370aeef1f2fddd7450f4
449da3965f28fbfc2ca70c5852c5650b71fa0567
F20110216_AABOCN lowry_r_Page_137.tif
dc1ece73a32e4cfbd0ce9e75ace40498
970e990c1e0b64f95da3d9f3e875a2ebd78b5ba2
5275 F20110216_AABNXH lowry_r_Page_035.pro
386d26798d8f6259ffb74085b631497b
c1b1ec4302b8e59ea208670aea1cb1c175ba4ed0
F20110216_AABOBZ lowry_r_Page_016.tif
edd633ca9464280b48acd967a48be029
c936f7f67ac3e7be091d65f7653bdd131de17329
18151 F20110216_AABNWT lowry_r_Page_148.jpg
c6136b26bfa29923efd796c17ed3b04f
4bbda32e9eaf3f0077603219ff0cf9f250708404
113853 F20110216_AABPGE lowry_r_Page_043.jp2
ec84a88a2a738ffb93353568841e2b5e
2d67f508ea5e87b255313315363734a59b7ec3f8
116046 F20110216_AABPFQ lowry_r_Page_022.jp2
e2c3df2ccc9b6f939e28d7f1d147bd19
a0e8a08122c7f5ce641a90e3902094798e882aa6
9586 F20110216_AABOZW lowry_r_Page_160.pro
f62fce4583920c36e58129accdf32d00
1e3190b8121eb55d0379f347e40560c4bb36a8e0
4938 F20110216_AABOCO lowry_r_Page_127.QC.jpg
7cebcf3cfb0ed7c2ba73316bc5d8df77
40d1511d2c31341b376e08fbede769eb00b44134
1996 F20110216_AABNXI lowry_r_Page_052.txt
8f1aa91816d32d72db7ab038aa6ea0e9
24e77843057ec3230d0c21acce44c7dfe408c690
5220 F20110216_AABNWU lowry_r_Page_166thm.jpg
4457648cd47cfc2edbf755ad1051b15d
2c82b2fd6cbb74027b76f2505e3824895db7a457
F20110216_AABODC lowry_r_Page_157.tif
9f3f2cab4327c9af8446e482b99ef41e
e63b7af25eb9b82db440a6d82412bf11328444ab
118171 F20110216_AABPGF lowry_r_Page_044.jp2
20cc6b94536725cc50ea72e33d1ce26d
96fb80abdc01c176e3cf7cb3ffe4d95bf7dc86e9
121157 F20110216_AABPFR lowry_r_Page_023.jp2
266e50bc5c93b07dd8264be054364bf3
885f724d545ca5204ed4ccc48cb0ba8cd1d3c78f
19637 F20110216_AABOZX lowry_r_Page_161.pro
ede10d7c35ca8d68302dc2be7b04efbc
177fc37443c25400759ea95c38d27abf465247c1
24279 F20110216_AABOCP lowry_r_Page_142.jp2
70c88a754fcab34379ff53f25d281434
6c23d84a6a475a2ed8af6c7fae500394ed05484c
34236 F20110216_AABNXJ lowry_r_Page_180.QC.jpg
494359f13d27956a84ab3d155ec91c38
ecb1a98640bb2693e6025b13b6e8d07bb2385c20
103981 F20110216_AABNWV lowry_r_Page_114.jp2
b678bfc11574d597885355f47dd317ca
93e292dea7551175f6e68abfc15e8ffbb13a11ed
8078 F20110216_AABODD lowry_r_Page_108thm.jpg
c759863759a7997c1fbb7e870c64d9ce
8cdacc923c93eee037ab11ee5eb20d060105b6de
113717 F20110216_AABPGG lowry_r_Page_046.jp2
f55614325ba5292991be98782ec7f54a
d43e488a8ba9636cf5ca3d93a61a63f1da82db68
121080 F20110216_AABPFS lowry_r_Page_026.jp2
c9f33acb7a2db038c6265b4bf0c373ae
ae2162bc57eba4f3df9f406abaf72bdec0bb0146
F20110216_AABOCQ lowry_r_Page_004.tif
95b520f37dcb762857a3403825d8bab3
fe679c53e9ba4b2b66f764ff63e13bdc5ffe0be4
7478 F20110216_AABNXK lowry_r_Page_059thm.jpg
3f34f258556aa0326f723b97f18ae7c6
a08fe30c31cafb247286ff25ce64a0de47b8b361
30332 F20110216_AABODE lowry_r_Page_152.jp2
cfd0060ebddf4bdc6e7a8c3e63223933
908bcab5985e7f1aec98b0fff57f669afad76f6b
111779 F20110216_AABPGH lowry_r_Page_047.jp2
10f0ce840333f922b16a40cbab668cef
e8a4a9a730d313eb4a708ae89eed2374969f5726
115475 F20110216_AABPFT lowry_r_Page_027.jp2
bfd64512f1bdea0a86dd3216301cb138
bbbe7da3be2996952072c9ba71b0ba256026b87a
9038 F20110216_AABOZY lowry_r_Page_162.pro
0f32ca5347f444bbc91d896927ee7772
6c1525416425ccaaa5266430e8fe20052f4ca147
113409 F20110216_AABOCR lowry_r_Page_043.jpg
b1502c3a06acaa37dc8c732874f17462
8fd5f4ea0a415d1073075a0cd8369ef8d3825806
72866 F20110216_AABNXL lowry_r_Page_055.jpg
1f37e77e5104f1529e6d0676670dcd63
24522d65fd23cfcbdb4e30a914355420cf2dfd54
7369 F20110216_AABNWW lowry_r_Page_005thm.jpg
5a61b1e4ee9141e46b6c285f4cc71e7a
514ad40f79d5fc274c855c032d43eaf3c16d3a24
20326 F20110216_AABODF lowry_r_Page_132.jp2
5da58a6f28ea60d36bf66fc99d16b33a
881c0412f5ca204ae81adc951701ec6ea436ddf9
119454 F20110216_AABPGI lowry_r_Page_048.jp2
0f775b8d714dd12ea01da74b730b36e9
38714d78fdf651e07ed8055d0b2a86e5893208ec
109590 F20110216_AABPFU lowry_r_Page_028.jp2
e2fb689dd37473c82189bf11c656df63
88e1e7ac519ade4301ed8af23394a00064318e0a
8920 F20110216_AABOZZ lowry_r_Page_163.pro
c75a91ad89d21f889f33806732e6b007
bdbbc836b61c870b8388d126b01144ce6ca64785
14584 F20110216_AABNYA lowry_r_Page_139.jpg
5697c9127fc4bd7843c7683bf176ee09
fb33cbb0cfafc96a9557671367cedc6b4459d36b
35544 F20110216_AABOCS lowry_r_Page_167.pro
d41b068231dab091cdf0d37fd419d54c
a85860e62e2ad9e41260f074c12902bea7c0ad9b
469 F20110216_AABNXM lowry_r_Page_130.txt
96bfaf29f9f2cae39759919fbe08b946
1813c9107b19b6335a8386d9d0664f4ec8d56a16
4298 F20110216_AABNWX lowry_r_Page_032thm.jpg
70081bebd3aefaf50415e163155a860c
83bdd80ad3da29d2a49af9c606e079ec60276f6b
F20110216_AABODG lowry_r_Page_012.tif
29bc1503d1af814637cb60768c465613
764f7756dbceebc87498113352adf8e735408191
1051942 F20110216_AABPGJ lowry_r_Page_052.jp2
4ab92429425dc0a08a1065ed9ba62f5d
6150ffc17d8e404420d1bcbd18102b5ca00480be
112117 F20110216_AABPFV lowry_r_Page_029.jp2
c398728088840d75c72157c230c89038
301cd4e7cd82af7acc6f932223ef689f4e46cce9
2190 F20110216_AABNYB lowry_r_Page_116.txt
a6f9e7378d7f9374fd756ad574dbc395
618063c6d8ef372d7611a02ed11d6333f677e627
9062 F20110216_AABOCT lowry_r_Page_074thm.jpg
da9c2abcbf4d100da7c212a726408318
d53e42149efab50e7eb3266323c4cf9d5df5ef10
8657 F20110216_AABNXN lowry_r_Page_180thm.jpg
202ad7703c2d2649e72ff9c55f4210cf
7eb6089cb1ad56c50f0b307d115520481af788ad
562407 F20110216_AABNWY lowry_r_Page_085.jp2
2293c825eb3abeb570a72e0d78805b5f
ea76da3350052a82719d32d5e2bad981dfd5fe29
6070 F20110216_AABODH lowry_r_Page_159.pro
28aa36a8000391fccc973c5bf899a73b
5476ef7aa1bb437eb333abba6ebb2aea4f4700c6
110731 F20110216_AABPGK lowry_r_Page_054.jp2
f46de93a37dfb3909d7d0d68dcdc1ff3
239d358fac3e2fc6345bed229906b812654cce29
116183 F20110216_AABPFW lowry_r_Page_030.jp2
6df3da78fe99765d70ca5d38a1e10853
8f8081718c9be71ba1461d3579f56b9b0c3dea7e
34718 F20110216_AABNYC lowry_r_Page_029.QC.jpg
58ffcc0b4fb7d05f20dc88db451fa1a3
b64396522909e2434f4876ca309106391bb2f93b
F20110216_AABOCU lowry_r_Page_161.tif
dbb39cf454be631095dfdf9cf5ac0d2e
0132387b9fa0866f9467d13d2e4e607071094c75
1051972 F20110216_AABNXO lowry_r_Page_009.jp2
2f4057fbb0e2c5eebfa1fd09adf31faf
a1da84b410cf7973d3c21ba433fb84b6b85c7dd7
102141 F20110216_AABNWZ lowry_r_Page_181.jp2
fcea87ebadbe6fbaca5066c8411063ca
9f97062940c41d79cf55b29a2c251b32fb4389ce
F20110216_AABODI lowry_r_Page_014.tif
18d15eaaa2781580a430f8dd90b090b6
9aa9fe7fea7f6c889d1a93d8519b83c175fec80e
121128 F20110216_AABPHA lowry_r_Page_075.jp2
91f4d62210de204fe283f5140cff858b
52a1d3eb6e14b82c900efe2b7f676da4f696530e
479081 F20110216_AABPGL lowry_r_Page_056.jp2
41fd050792fb679ebcb049121a5abd80
fa7b21e1774a307e61611b473b50cbf681ffabda
112720 F20110216_AABPFX lowry_r_Page_031.jp2
2854105c9624aa7967e0d56384b8a56c
0966ae924d65dace51960a0832bf10902bfb15db
26172 F20110216_AABNYD lowry_r_Page_164.jp2
c0634c533122f84e7bbb880e216e22f0
c5bc1e6ae0c676dd275647f6365e28fa92e8fc0d
F20110216_AABOCV lowry_r_Page_182.txt
fbb9218d52f1ed449a255e7a932ef8eb
dec22fd16a93f4f3c579a5e96f5f12ba25ed635c
F20110216_AABNXP lowry_r_Page_023.tif
47cdac61bf0c7598430b72aef404f0e7
90c56e51c1bab58ca320bf6cffdd5f03f240ab1d
11370 F20110216_AABODJ lowry_r_Page_105.pro
e1685ea67296cf6f8f5f821cf1f34623
59b0fa6726e6e248b0baecaa8eac9ddf05e476c6
114821 F20110216_AABPHB lowry_r_Page_077.jp2
71da68d3f6b8ca3e9a7194bd5bbab405
a9511cab37ebb3ee9f3398d8d29109fe8b9ecf29
531674 F20110216_AABPGM lowry_r_Page_058.jp2
30ba18105342c283efdf2935b94735b8
3b99d44af471a5d2778cf77fa31755dfe615e6bb
347724 F20110216_AABPFY lowry_r_Page_034.jp2
7f0558d97ad266fac414d77cd3eb5e8d
52006a9c89e44e4a757b0df8873f8f298e5880e9
F20110216_AABNYE lowry_r_Page_130.tif
987df0572560bed75c070ef6de4f24dc
89e3aeaa93451ad4be16485237def9ef4af730ca
F20110216_AABOCW lowry_r_Page_011.tif
fed13a6ba3a9819579ecbf5133c10387
e04e118e9a338702a1e44777ebbd5779330afd41
2222 F20110216_AABNXQ lowry_r_Page_021.txt
2b77415a7b45fe8918741e9e31160bce
f9f7ba4f7ca02f4bf79e3dca08a95141987d83ba
17918 F20110216_AABODK lowry_r_Page_106.QC.jpg
c8887d701845d99c375973408e23b55e
5ef3c1253c344a04bbe8a78914311a0f1c259580
111685 F20110216_AABPHC lowry_r_Page_078.jp2
daa060e40b55f8fbf6b4325a6971fb64
c1c538b1b4538cbf9b2b21082c8248da60b79b61
867854 F20110216_AABPGN lowry_r_Page_059.jp2
20b869977e19f35af31204d53283a518
502cf74d4445e547ba4a9b5be4f1efb15383819f
137564 F20110216_AABPFZ lowry_r_Page_035.jp2
8b4864d66c7e50b19c73b878b3166259
4e458dc5fcedd2c6e2f6815e341beb69c54d8b5b
1629 F20110216_AABNYF lowry_r_Page_164thm.jpg
fe9b4c1117af55b29a7cfafc33c7b9ff
c3ab647fac615734d9031b4d3bb87d85b4edcf80
F20110216_AABOCX lowry_r_Page_126.tif
b64080d57ef70041905c4b72f861725e
03a03773b2fdad419387d78dc7df74877d418c66
103460 F20110216_AABNXR lowry_r_Page_185.jp2
04931ff5db293f0daf366b2368b44e35
d3827ad1c02190c23bedbf0c993677f16318f0c5
F20110216_AABOEA lowry_r_Page_078.tif
38fc1a36f61ee1455d0423342a412c99
6519d30d683eb744c840380abc5c956e56b65280
2296 F20110216_AABODL lowry_r_Page_130thm.jpg
14577df966fed7ca3f4a9084aa49d73a
160d886762d32228c46662bda71159924302371d
118276 F20110216_AABPHD lowry_r_Page_079.jp2
1ec1bbbc64ad48c5154bf4d886af95ce
a9391cff2c6491841dc6bc6b0c42feb10ef22650
733587 F20110216_AABPGO lowry_r_Page_060.jp2
5ee8a01fe82a8102586e31de4d7c605c
2c6bc200e02abd259b5b556ab7a131af6835c6c9
38028 F20110216_AABNYG lowry_r_Page_079.QC.jpg
c6d6cb8cb70035b6863f2e66142ce239
38c9d47618608208fbb36e47bbd25cd6f433d5c0
35534 F20110216_AABOCY lowry_r_Page_102.QC.jpg
12b6350aa72a8cff66c745a3e9c6d590
5f600375c25ec1d616a34ced2b408a79bc2e0853
46713 F20110216_AABNXS lowry_r_Page_178.pro
bc11ba48ac39948790911b201788e2ea
5e94d91951036f3038eae17c60bb98e4fdccd642
9502 F20110216_AABOEB lowry_r_Page_093thm.jpg
6a24260ccf06d4e34947ce14fc7a5eb2
4fa26e7b933f848979f7ef281a07b04327b82f55
8545 F20110216_AABODM lowry_r_Page_184thm.jpg
6ce8f2fcbd0f700e3e220d8ea9866691
414cfe250abbb2628886c1803d3804f17cabbe89
120231 F20110216_AABPHE lowry_r_Page_080.jp2
1dd194684d294cef54b4a4b29c470a3d
fe3558a14b4ddc1af8c83ef4d187bab60b5339c7
50391 F20110216_AABPGP lowry_r_Page_062.jp2
9c7a364d4d37a560ef24b70f6570d1d7
2eed749597462624235b29b5587e2bcd2ffa0604
34575 F20110216_AABNYH lowry_r_Page_055.pro
79b8f7ffab0ca839fb2f408c97edf48d
473fcd0df052621df026d0b4de2ddca9484f7a09
137132 F20110216_AABOCZ lowry_r_Page_183.jpg
29b8045f3ea794f940df5fdee4e7c49d
a9c60b9072810701e570d3e3ddf6d7238fcc9b4b
46414 F20110216_AABNXT lowry_r_Page_112.pro
15426fcc328e49fe40278c22cf4a96de
cd85c2370244e5a459a5019a4f22739b3defd02e
F20110216_AABOEC lowry_r_Page_171.tif
ad7c4fde65f6b057a0b9bbefcc5947db
06133795da8acc12982ce1dd9c635ffba114d571
33070 F20110216_AABODN lowry_r_Page_108.QC.jpg
75a40931e2bc05b04febfcf02247272d
d3c6b3d7ba6e0110a28d44d1fb05bf2dbaad4bc5
49726 F20110216_AABPGQ lowry_r_Page_063.jp2
369a58256d43ebc14aeff1c35c672590
bbf0c2b7a4f6461f177dcc896ef900b5a3f687a4
48903 F20110216_AABNYI lowry_r_Page_039.pro
f8d1c047b374adfe172c692c74b3dbf0
80b1af94e485b87b9ebd1e6440391393ee57286c
4988 F20110216_AABNXU lowry_r_Page_104thm.jpg
ff993350682b25321475aa798edf8807
04877b7bd01a2e3104978829609cb07196ca1804
52034 F20110216_AABODO lowry_r_Page_050.pro
7904793589d4f265d2bf3b89d4a42be2
6e2ac846e3019d551452702f861a361ec8e07bba
118250 F20110216_AABPHF lowry_r_Page_081.jp2
e39d476efd7ee8ceac8eda7953832330
462136556627748aaf5044ea411419877c0714a7
109649 F20110216_AABPGR lowry_r_Page_064.jp2
a5906f71abe17b9ccaf1d9f976a2e66e
1a48ca82375bd51169b4cc2297060b549c2ecbfd
13343 F20110216_AABNYJ lowry_r_Page_058.pro
eb87e2f873e8dac534882b74ac63476f
df70b05f4da9af925dab1c8d2792952b14e04663
9324 F20110216_AABNXV lowry_r_Page_101thm.jpg
9dc602bad27f6584c2026ed225e19349
fa40093b0afbd0ea31f2d539e7a06a3dca27aca5
25750 F20110216_AABOED lowry_r_Page_140.jp2
aec518bade1a4b98279951a707414bd4
873736f1a0c843beec30ebaf74529f252a1dc2c6
F20110216_AABODP lowry_r_Page_172.tif
8b2b8faf8cb8e1ef5a2e70f061b7236f
3b72043c8cd9b5017f5ae756da890b59e1d9ac34
517693 F20110216_AABPHG lowry_r_Page_083.jp2
f9ec2a74cf527bfc75272fca6ef59fce
9d6c68a354ab60878c6503ce373152055bd349d8
109518 F20110216_AABPGS lowry_r_Page_065.jp2
42e2d9c03718258c6dd1ef956c203e32
8191c56c50ac0a88b224424340738d9da5ac7ca0
24444 F20110216_AABNYK lowry_r_Page_187.QC.jpg
b09b7884b5c12efea636bce70296933d
ba1999f3fdfee07cce7432aa7caefe8729978750
1032 F20110216_AABNXW lowry_r_Page_165.txt
3cbc9ab9b91d2c83f95a88ead6d634d0
619fabf85abd02e178833c995d8b7ee0f80fea11
F20110216_AABOEE lowry_r_Page_108.tif
eb35c2e08073e8358cc7e9383c064938
846a0d16ec4a87ad790939552f7faba21da0f920
35333 F20110216_AABODQ lowry_r_Page_109.QC.jpg
1f54f196a555bbde0886e0d4719550db
5335ba2501022447f6c32997c09bc829acd8e054
633066 F20110216_AABPHH lowry_r_Page_084.jp2
f0bc2e3af58f7f28779bd564da971232
e51fd9170134cf67cf5de100c4cb6444303c06f8
113490 F20110216_AABPGT lowry_r_Page_066.jp2
9ef31ca6cebaf3146d3d115e6b8c34a5
4a2b7b15c26f19ba42e6c344fa3c90537a6fef70
F20110216_AABNYL lowry_r_Page_159.tif
f3be0027c578e0538bbe8bdf2be00e7c
784223d4bcc1e7c6a436b033fceaf12d8303ef71
20940 F20110216_AABOEF lowry_r_Page_131.jp2
f4e71a199f5bf8111dbda78373a7efae
6cd74c629a51f87e4252ecd961854890ce4b5a23
107796 F20110216_AABODR lowry_r_Page_053.jp2
f6618c847bec51aea9b911d5a81600ab
db5142ad0f9a3a24b3b6e818e10ddd9bcca25ac1
722842 F20110216_AABPHI lowry_r_Page_086.jp2
f8899f403d37fd903ab9f1aea1472f80
73ea15bfaf2dad3296bae4b3279cc1706dd2916c
117885 F20110216_AABPGU lowry_r_Page_068.jp2
be38f87e729cbc6d1dd906c7c26ba28d
14995ac0fa5cd4ed89e5e157684777afed1718ae
98582 F20110216_AABNYM lowry_r_Page_181.jpg
25ce6b5cea026d9e106ecd5a312f3869
3e0087819ec937f5947f7ed38bd9d04433e99dc7
23591 F20110216_AABNXX lowry_r_Page_150.jpg
0df73f990356bac745f3b5c5e09e92ac
22c3183b2c76d1dc70398d266747ef1ad02ce84e
474 F20110216_AABOEG lowry_r_Page_132.txt
2644974f9c90e0ec279899ecfaf626d6
edd460d3f2447a05773b229e4aa83b0077da04e9
8888 F20110216_AABNZA lowry_r_Page_116thm.jpg
4020deb15847c656b00043caae998ccc
731590df6ed38d268b683079b71a810e1bae4e06
15482 F20110216_AABODS lowry_r_Page_141.jpg
a61c4a811ddcb6fa32600f328b4aa34b
129182d6013e6732a08525a89a16715b5b00cf27
1044157 F20110216_AABPHJ lowry_r_Page_087.jp2
42ccbbda9eeb789ea19c864bc5d42c01
c0d909c281ad573747708886ed9d9123a866fd21
121162 F20110216_AABPGV lowry_r_Page_070.jp2
493f2f6591e9d75e27ad9a712c02b4a9
73af9cc78d70808adb2c6816811bc931994f2d3e
1006759 F20110216_AABNYN lowry_r_Page_107.jp2
64adaebf5430f2e22c6e19de66b5c673
059697cf399427322930f9b106191b708ec7419d
9791 F20110216_AABNXY lowry_r_Page_001.pro
daa75197b7b6e81da2dffab15b14610e
00acfdd38d174aff3a790fc1b46758201cb8683c
46774 F20110216_AABOEH lowry_r_Page_113.pro
6dd36eddfa11e5b60e57990c062cf3fa
60f48f198bd2f8e060713d8f081b2dc979f9da05
4639 F20110216_AABNZB lowry_r_Page_147.QC.jpg
8465d3c7a4373987ee6dc64092f011f6
e24395dea2097fba17f9fbe8b6c7943b3d5cf7ce
F20110216_AABODT lowry_r_Page_135.tif
8cf73b941d0d853a5bedec3a5fa3c4ed
9123bbeb361e405348807d3dd08c1e22b99de7e5
48573 F20110216_AABPHK lowry_r_Page_088.jp2
67dd84982869fce7ce4a2ad24c4b18ca
9e89c43b34246aa200cfacbdbfbe0882ccbfdc5b
116778 F20110216_AABPGW lowry_r_Page_071.jp2
f5dbddf11d86f1d6caecea24e0ea7f35
51fff6a5d6844be8c1fb7afb2ea09b15146284fd
54475 F20110216_AABNYO lowry_r_Page_079.pro
83b0342a5b9c4a83186ac3c0849ccba7
97e2b228230bb43d825cc3a2d94d7e6f7e815a21
30188 F20110216_AABNXZ lowry_r_Page_005.QC.jpg
102c666c150148648ef53b08241d791e
4c9ce7bb319035f79c35338e858724976578255d
8811 F20110216_AABOEI lowry_r_Page_037thm.jpg
9ef9cb97703a7c4395f28c44aa1be9ca
a04dd28d32bb85e8ac083f88594eedc8e33b3b22
402945 F20110216_AABNZC lowry_r_Page_032.jp2
d0f9535bc5eee9664faece358512c09c
ddd107c0262e746c27e0cdacc4f5a2e17caa7367
F20110216_AABODU lowry_r_Page_127.tif
d292ac5eeab789dafcb969c0bb7a035a
4c4ccf549782c4d5940679056547d689d07f424c
118920 F20110216_AABPIA lowry_r_Page_116.jp2
badfd887ea36e26e88847a3c324c60bd
c2ee8a5857301fe50c73d09f599ab2c398fe1b9f
82229 F20110216_AABPHL lowry_r_Page_090.jp2
e91a1f432b91115cf014e772cb9b58a7
c0e735cf92bc626e9e7fd0a137d663c9b46094d3
121095 F20110216_AABPGX lowry_r_Page_072.jp2
2e3f3d2a763d924c89f6a5b7da94d2d1
bdd4de708bc49775213e5c6d38a3cb5bde79354c
116204 F20110216_AABNYP lowry_r_Page_041.jpg
a591c02d5b9dfc712077bffb272f97f6
01b5d9d36ee4eb4a3df3fe2c78d7bae3b7b83a36
1903 F20110216_AABOEJ lowry_r_Page_181.txt
680e0a0d4f57cab24951c5166acd7c2a
cc5a7e8ef49a3f059466a558dd7f8dbc9491f8f8
41802 F20110216_AABNZD lowry_r_Page_171.pro
de5158952719ecd1c170bf4982ab937c
f7b308721b6da00a44cc0db0835592f50829ab6e
429 F20110216_AABODV lowry_r_Page_148.txt
f783f2580604fd9ab155f7327a6387e9
9cdcb2493dcca62c6e3f5bfa09bcf39726526d19
870573 F20110216_AABPIB lowry_r_Page_117.jp2
6aa330dbb6a52064e58b86b3c9b7cb0c
e9bf1facec0478f5fa7dddb31282519e8528c28e
112887 F20110216_AABPHM lowry_r_Page_092.jp2
dca80c989320280e52601b629ba80b87
09fae1c352bb536e36859712e580c0fb15d7ce42
119639 F20110216_AABPGY lowry_r_Page_073.jp2
38f0198a9a383e21c0fdb8321733df6d
f1711bb7ea3c080bbb18dbb12edfc2a94bcfa75f
7336 F20110216_AABNYQ lowry_r_Page_139.pro
67b672d293f7cf8082f515b63a09539d
c1230ec3e75ce0dd5a19e2c3b54d9ad50e1ef064
F20110216_AABOEK lowry_r_Page_141.tif
e23879e55bc615635f05637e6bac9377
b508b2128c32456845fe8cbeac13048562a80488
1624 F20110216_AABNZE lowry_r_Page_173.txt
4771eea826abffc67d745ed1e0bca66a
9b39e95cadca5642fc14a9e2d717554cbf2bb08e
5902 F20110216_AABODW lowry_r_Page_055thm.jpg
b9786a14d3b997bf9fd50d493d920b9f
3d097642e90411dec8da733f79e4f912d89050b6
216250 F20110216_AABPIC lowry_r_Page_118.jp2
8e5e367e53e674927b56c86b0f5ae232
3ad1a5b3f140a6a2c32272100f2427ce829dfd7b
118510 F20110216_AABPHN lowry_r_Page_093.jp2
e42512062a4655262a697fb5aaf29045
fdbaec2a2c14e671458b82e4d5f1a0b2c132c320
118480 F20110216_AABPGZ lowry_r_Page_074.jp2
b795e663cc5d3899e16e2bc9fabdec5f
3e3e3428a3f8aa71529917002c667c759644d8ea
587 F20110216_AABNYR lowry_r_Page_154.txt
2b3fa0ed6ae0d706e2413f9ec70596fd
d0797be3265a19b7e1e6f927a45c5e6d9b848272
47760 F20110216_AABOFA lowry_r_Page_088.jpg
4d9888e3186f6593e08b8212eb8beb2a
a22cc1c262458cd2905c79fb3f1618bfe4c6917b
116311 F20110216_AABOEL lowry_r_Page_098.jp2
7766db7e3d80551aa978098829b0ad53
bf957939626cbdd1bb9c41e75816db104f9cc3c6
17325 F20110216_AABNZF lowry_r_Page_142.jpg
2e66b4f6503a23616e33ddaa644d5bb6
c7b7f6af0fb354bf21d2ff5b5946fc189f3f425b
33701 F20110216_AABODX lowry_r_Page_053.QC.jpg
a201912112f0b61203818e555dae447f
88c273efa422c636782a5a8e43a92b5aa749da7a
106128 F20110216_AABPID lowry_r_Page_119.jp2
0e1f5953ef19b52f48631ca7591ad67c
087c055fcab9bc4f852415edbc2fdcf3060ba16b
117126 F20110216_AABPHO lowry_r_Page_095.jp2
4d5984e08922575d390ff3a32742297a
1c52e064c920aa217412d2fa222a40ca513fc0c3
8784 F20110216_AABNYS lowry_r_Page_103thm.jpg
ac5944b0e9f9f11dd46f938bebe86df7
f5fbb8b204ccf62121dbdee88bc4fa3aeae4b039
1273 F20110216_AABOFB lowry_r_Page_003thm.jpg
4de8ec432b75ee66487dcda723c321e9
91ce34738022c62f6dad7f6dd53172edb0cd29a9
121318 F20110216_AABOEM lowry_r_Page_076.jp2
2992af0db3a580ab3ab7fd2dc50c39b2
6cf8cd6057874a68b4f61d9e7784d05a473a638a
51677 F20110216_AABNZG lowry_r_Page_105.jpg
4b5dce9f7275d2b08c11735b7a5248e4
5d4f75e59375f88ba1cfc9337d0f5de75db69e5f
6130 F20110216_AABODY lowry_r_Page_082thm.jpg
f772ddcbfcbeb8eaf1bd8be123d486a2
b0ce81b9f84cdb0d6bd700ed95fcadd11e22573f
108773 F20110216_AABPIE lowry_r_Page_120.jp2
959de99b1c3f42515370e4e0c20a33a9
c7d245d6f2a9ead834be22060487b26669975fdd
113514 F20110216_AABPHP lowry_r_Page_096.jp2
3a5303110a10c2ffde2c6f7c6a2e772c
837ef9754c25c7e1523053c9f546ed4b84218e77
9476 F20110216_AABNYT lowry_r_Page_094thm.jpg
9bc187d105cfa6bc6feb58ea716b8cb1
c32424934287575ab351e165de36593ba51f1e1c
7007 F20110216_AABOFC lowry_r_Page_150.QC.jpg
4d7b55396545e60cb6e3248db1a67c90
2e473f3edc0ee242a027ef0254803f30acba94f4
F20110216_AABOEN lowry_r_Page_115.tif
2d5107fb3097fcff31b90d1b6124199b
ab1835d9e6e16eaa47db7bc8505ce46c7299aefd
52083 F20110216_AABNZH lowry_r_Page_029.pro
dd1b18c7eb12ec9acd6dde2885cfaa49
fee26882202e67ad91846dbedd6542b415ab13b9
F20110216_AABODZ lowry_r_Page_044.tif
64b958d124afd3372883aaa29ce82d08
341c53984f7cb2c20d50abccacd78615cb972a34
116763 F20110216_AABPIF lowry_r_Page_122.jp2
34935bf7604cbe1e0a71003d9b636575
4864ba4af50b098946b26d2f2539b611552a723d
111802 F20110216_AABPHQ lowry_r_Page_097.jp2
ec2c007850a7e8fc51583eeedd8456e6
ed4560ba7b2c6c65bf5f42c1d8570bf71efb8eb8
114154 F20110216_AABNYU lowry_r_Page_048.jpg
e87bfcf5feeeea71d92c85ef643eaa1c
27ac313490b56e22a43e4a7ed9c0f1f11c8ad4ca
1263 F20110216_AABOFD lowry_r_Page_124.pro
145f34c77c6288619701c63c2af18fe9
af4713bbc85edbd365844edee80d8777d7043d2d
F20110216_AABOEO lowry_r_Page_072.tif
ac948227369862bc580beb81ce9d36ab
04154b4a7fec0971ee63f49a6da87c10b344741e
34738 F20110216_AABNZI lowry_r_Page_182.QC.jpg
322717260faabfb9c5d2c6030052be62
ddce7554430daf3fd48adb8aca5023805c0b414f
121061 F20110216_AABPHR lowry_r_Page_101.jp2
d100e2736e9a87f15584eec901cb7ff4
66e7d1cb3c3623cfc5e6101be45b715389b7ee8e
F20110216_AABNYV lowry_r_Page_105.txt
a08aafbcb95e652d4a3d537e92307277
0acb0a04fa8366ac19a54996103d29e11ff1092d
8258 F20110216_AABOEP lowry_r_Page_110thm.jpg
e2b1d8ea4dc4b7da4b719affb28c5890
0b10d0442c87c29ae953ade18eda6ec18fcbb1b4
45371 F20110216_AABNZJ lowry_r_Page_177.pro
b7e06e80ddd2430e9ed48982da222074
c628856b6d553f07bf5c62d6b53e4c25c90baa88
20847 F20110216_AABPIG lowry_r_Page_125.jp2
94d674150560c05a5af0f13192e0a30d
854180581088b4b8f597fd345f0ef1519fd5b8ac
113050 F20110216_AABPHS lowry_r_Page_102.jp2
ab00fe8809d4de281da49d4b3d593368
ef54f9fc3e612646a58da354c042bb4f3911f6c3
586 F20110216_AABNYW lowry_r_Page_164.txt
3943126c8f89b3e0738d2e3a70e9ab67
88634c7905097f335b0ade7a6dc466d972e02151
23044 F20110216_AABOFE lowry_r_Page_139.jp2
e6cbf5c462a5fbeef4df3335f6d7ff19
df7b4c90d499c4a3feae2e315f9ae1c9225f08f8
15663 F20110216_AABOEQ lowry_r_Page_035.jpg
edce2da73672fe9d6dc78acf66793183
6edccd0d6a14bbb30f26c2631bd611887bdd9659
1294 F20110216_AABNZK lowry_r_Page_010.txt
ad8b2573520917b97bc36e4fd74999cf
9a610d8f5fa1cbc95e665386cacf8dfd4754587b
20262 F20110216_AABPIH lowry_r_Page_127.jp2
d7fd02a06a437637eefa1e3f2db3166e
2a36668f68334b2946ea929886a3e645c3ad20b6
474977 F20110216_AABPHT lowry_r_Page_105.jp2
dddcce3d391e43f30deeef58001988da
1b7e462301f318935ea575a241b1d2c056d60099
2320 F20110216_AABNYX lowry_r_Page_152thm.jpg
3e4306a48448c285089b3ea85b1c47d7
164777cbb5a03df2b411ba75fb05c8ebca9b792d
54745 F20110216_AABOFF lowry_r_Page_095.pro
a6d5e390ce7ca43ed8be88b017a1f31b
412abc6e26403236f4464f7f4994c179c3fb397d
117920 F20110216_AABOER lowry_r_Page_095.jpg
07517bb7bc681a3d5912e48041c384ad
b5700fad75a87c5fac06c94ffc87cac187d37eac
F20110216_AABNZL lowry_r_Page_058.tif
b52640a170b86fc34c5c6fc9829ec4bf
9690a349429953cbdbbe42d3bcddc7d654667280
22680 F20110216_AABPII lowry_r_Page_128.jp2
c64b1070551385601db18fb6ebb9113f
a12f86b0a83ac6402a7d6eaeb0c13eb197a2a95c
470150 F20110216_AABPHU lowry_r_Page_106.jp2
4f8d44648aea79f4aed478366aa573e3
994776a16ad6fd00e8e41e4a9c76e004751cdc2e
6749 F20110216_AABOFG lowry_r_Page_018thm.jpg
0ba73bdadf1202aaa3953da2eab3f1c1
d2f3980ef034736be5dbe5e616b49e9ba3d71565
19284 F20110216_AABOES lowry_r_Page_151.jp2
8381cbac3c14c8a05ce9532d19102aaf
475f131a9d75e7937ec58c0a2b3875fc19d257e4
F20110216_AABNZM lowry_r_Page_119.tif
f07d910285184ccc770707e322dcf4b4
8231774d10b1e092f5cec9f251ee92cb84a51f94
24739 F20110216_AABPIJ lowry_r_Page_129.jp2
e2424c4d34ca70cff3d976be6ebf1484
e3ef0c64bffd70e072a773c2d76ce80ab17aad05
108275 F20110216_AABPHV lowry_r_Page_108.jp2
23c8b9dbdf3fd9830772d1906ab9ffc1
54845e649f9d1dba1d19ed2e629e72b51e988ea4
34404 F20110216_AABNYY lowry_r_Page_052.QC.jpg
41e8755f3fad7764fd1076aa61be46ee
cb6eb61562351544c4fe32fc1cbe63294e75cf3d
9252 F20110216_AABOFH lowry_r_Page_070thm.jpg
1ca2a01417ed25df895565876d2606a5
013e296fabc274d4e8f8b9ad417fb8452fb3b55d
51506 F20110216_AABOET lowry_r_Page_056.jpg
5bb6fc1bdcedb210499340b7f1d4d424
696799d0ef21ba8f9a985df553cb9740f8a9c44b
9158 F20110216_AABNZN lowry_r_Page_072thm.jpg
e7f8f33334b351820c8968316ddca099
204488bec2d4fa0d0559332fe9a1f8a8f57e7dfb
24162 F20110216_AABPIK lowry_r_Page_133.jp2
d7fc541479282021cf937e8c3962194d
2cbc1c18c498e9aee26f79aba65b17700bf02898
103218 F20110216_AABPHW lowry_r_Page_110.jp2
0dcf74c073ae2cbc5ab4a8124789b47a
66112a1a6a39279a6cc2d8c8e15221a07f9f58c4
41289 F20110216_AABNYZ lowry_r_Page_183.QC.jpg
f530473eac508046a4f0946f34da0f5c
637c988be43d670c5aa74cb2ac8df30b5f13a428
403 F20110216_AABOFI lowry_r_Page_147.txt
2d95d0a7bf1a49d3fed094c9f25d4eb1
601d7041cdac970a5da761c624657a962df195b3
57583 F20110216_AABOEU lowry_r_Page_004.jp2
b30a6dc9512f44b5e91c2d99a08c674d
7425b853e621d1f0c804ae9ac42677095106812e
36428 F20110216_AABNZO lowry_r_Page_103.QC.jpg
c79899966bba8b1fa440add4c41c9be8
9240eafef5d41935b92bbb788081a45c7f1f9081
25980 F20110216_AABPJA lowry_r_Page_158.jp2
b3ecdd1aec22b37b1a4d5ec10ca139ae
878c46cd42a4abb92d4fa6a02fe7c5309fe2baef
26297 F20110216_AABPIL lowry_r_Page_134.jp2
7ab23c4ab1df7d5163d05d87eedba5f6
178311b5d4fa67952baccbc5e8de3c5ce7e4ac29
117879 F20110216_AABPHX lowry_r_Page_111.jp2
3b88d2df3269e3fe158a4790336f018e
7cb3807a1f26baca83e00d75b96129a3da168322
24884 F20110216_AABOFJ lowry_r_Page_063.pro
85a06c74dee62c3cff67ae19d90bfc6d
87741c5d2047b3f5e96f033ac7834c9dcca0b77a
13809 F20110216_AABOEV lowry_r_Page_131.jpg
bac46d478250d72712682d395bf93c3b
b97295fef79fe03cf3fd2de05bf9315849630ea2
14679 F20110216_AABNZP lowry_r_Page_127.jpg
b441601a62ed2d7babd48484397cc42e
5d2ee58038b7998eb29afe0fef1f53bf77898507
27378 F20110216_AABPJB lowry_r_Page_160.jp2
885a487e854f944a6da77362c5128bda
1b6e5eea3200ea83684d942036841bfa72c29885
25950 F20110216_AABPIM lowry_r_Page_135.jp2
af29bb69db45eaf15edb2e0f4ea4b6d4
1db7d629c67479fdd758526b5a70fedc908c6ea9
98489 F20110216_AABPHY lowry_r_Page_113.jp2
e70844d3ccc145232bf573b23701d0d6
4afa6b823965bb27e995ffcf01a7acf1a30d1786
2121 F20110216_AABOFK lowry_r_Page_041.txt
bf2a5df39028621e8528d7d2c74299e3
0c72fe19004d7c046a00dbbcdafa51e546e808e3
105490 F20110216_AABOEW lowry_r_Page_115.jpg
a4b90d12c7c997d6550d9ca68ac43180
43398203e92e445d047f01e10dacf5b01e7a6c33
F20110216_AABNZQ lowry_r_Page_179.tif
b6c44c7aef6e47f45cd5ac758f8ead83
044b4bcd2733a7375fe84b6ce40750c2c123d1ce
27454 F20110216_AABPJC lowry_r_Page_161.jp2
26f9c6cdf179636f3059492ed8d20027
6c2a4fe03775b32818666f4e1b68581bdba72ad4
24964 F20110216_AABPIN lowry_r_Page_137.jp2
bba484709f3ba994567fb85d06a48150
89b119a1b4341a592cf4f8c38171268a6716a7d9
112507 F20110216_AABPHZ lowry_r_Page_115.jp2
85ab5ad6a595170a2fcf7d646236cde8
1dce7e153c231ab4aa92b313413018789b4ae71c
101244 F20110216_AABOFL lowry_r_Page_112.jp2
cdbeb05a623911c707920288c70282fd
163706146f4dd52534542377a45d092e1642df5d
55634 F20110216_AABOEX lowry_r_Page_076.pro
0bb6e086ad08732c38f3fe36c72df50b
798c8eb181b6c0247e31b453d0351bbd264d4176
29548 F20110216_AABNZR lowry_r_Page_130.jp2
e06186f088dbd53f1d70ca138b6aecb3
b3bc6e45047e5b4a9db68b0f858cee0ad8acef74
3965 F20110216_AABOGA lowry_r_Page_155.QC.jpg
dd0c4eee85d256c20d1567b9285a98cc
96f34af050ea202bb17326e1ea8a13236c52c1d6
30187 F20110216_AABPJD lowry_r_Page_162.jp2
f7bd5759c9a666e5ff76249b6a668a07
ae3c5e67fa1a70c91fec1386314a8175aca78f7b
22402 F20110216_AABPIO lowry_r_Page_141.jp2
75406420995f106f89de87674bfc78ad
3ce59d59607d64d85bc4a00c807f9d880612d8c0
37210 F20110216_AABOFM lowry_r_Page_038.QC.jpg
051adfe1a06516671c580424272fa049
1d3e1b32e2836828a1962ec3e2d637939ffe6b80
2228 F20110216_AABOEY lowry_r_Page_144thm.jpg
5fa451c1d420229a3214e31d65cec6a2
0b7783379980dd6ad6357984139204a6009485da
2958 F20110216_AABNZS lowry_r_Page_011.txt
1ae2c0b426cd83e5198a41fae9874bb7
93e9cdfe1a49d87dec9eeb10914ad72cdbc2d275
F20110216_AABOGB lowry_r_Page_001.tif
1b249f8e81607690ca2aae06bc420701
9757b050e3a3964e595318f8ff4aeec1ec2ea76c
33372 F20110216_AABPJE lowry_r_Page_163.jp2
b28625bace450690b04df555069d1edd
d645d3b6841956ee9763b22d0819554f8e27e1a1
27064 F20110216_AABPIP lowry_r_Page_143.jp2
3545fe5bb8e365aadc2ab1d96e32d0ab
05fc76f3143cf2aeab956cad69f2f775a4a49eb5
36560 F20110216_AABOFN lowry_r_Page_021.QC.jpg
0778d8b4957dab22b9906391bc6b7a2f
0a57b1e317245e35d6e4bc0bcd2dd93a08ceccff
F20110216_AABOEZ lowry_r_Page_033.tif
6718dd179110b79be7f0e64b98ef7c5f
a3c89cb96df6d7c96a3a58e1068f9a1b55a116da
34756 F20110216_AABNZT lowry_r_Page_027.QC.jpg
2a684180901322ba56a71e2864f4b7de
96253399a1bf23103e288fe7bd882dbf0245edd4
3424 F20110216_AABOGC lowry_r_Page_061thm.jpg
60bf45fd77a164278ccc5b6617612ce0
385474a9604b527ac9c1f62b38b81949b314c836
28620 F20110216_AABPJF lowry_r_Page_165.jp2
2b7256ac79894fe42cef5e40eae97655
a31c163cead7095a246ccbb5e30bf4b7753a69df
26707 F20110216_AABPIQ lowry_r_Page_145.jp2
e1614385825f8e97a0c477905604a06d
523edab8cfb10771a4ba7d1f512f5e8310eed22b
54108 F20110216_AABOFO lowry_r_Page_037.pro
d71de7fa3a52187b83bd4d7f9ca9a292
cfae2d210e3ba173f8cc064de2fa8d1ace2b0489
1279 F20110216_AABNZU lowry_r_Page_082.txt
5607d4f67b7e28aaf15f6d700bcbcad7
c78f1ab310ad7f66fa8cbb352ddfeca041c9e2a2
F20110216_AABOGD lowry_r_Page_074.txt
22af9641f908af284ffadad5f1f14ca6
d1a1fdbcdc8a7de15ff28cd8c92e7f5fede9ff1f
67274 F20110216_AABPJG lowry_r_Page_166.jp2
e5ba5abc97010c99423ac00821e10b6e
e624b1efb635a18995497dd6e55484bfa17eb30a
30508 F20110216_AABPIR lowry_r_Page_146.jp2
2b4f4da944127696dec5e99903716a69
d5668e09c3022b49d00e648be52174d8e42835b9
113422 F20110216_AABOFP lowry_r_Page_050.jp2
c7320641b5237e458341a7cce14390ec
4029621014995d165835d914c276f4878629261e
67061 F20110216_AABNZV lowry_r_Page_169.jpg
bec08069a4aac2ff288d772b3e54e04e
f9cb0acbb01d478f457f2364aa9d16b5dc082d02
51575 F20110216_AABOGE lowry_r_Page_065.pro
9aed829eeb281bfc81cb7c378ed8b91a
960b677959fe280005a88efec1e7bb8200220276
20183 F20110216_AABPIS lowry_r_Page_147.jp2
a9b44d7f89e399ab7dbaa67358924141
34f36f8caf2ad55d283c70bd6dd1a58b7542fd3d
F20110216_AABOFQ lowry_r_Page_007.tif
9e38550b42b76f1be948a1cc1c1469ba
481e82785ebfd4e8bb7009f21c5fe4736e97db10
F20110216_AABNZW lowry_r_Page_017.tif
2d97d5a73f04bec22fa724fab3356c14
83ec331c942aa56cf0649d998631c55cd035aeb3
65554 F20110216_AABPJH lowry_r_Page_167.jp2
e2646407964ca9fb50a52cd1cba792cd
f8f43ec064f126aa88d83b0ea184cd6d0c756a85
25737 F20110216_AABPIT lowry_r_Page_148.jp2
3009e93c09d25098006e56a23593c737
432fd643734802a602fa177665abec0d2e619c06
117677 F20110216_AABOFR lowry_r_Page_045.jp2
83b35e5d02346d5ae024d80c9d7503be
0d593399c534bc8f07c1a515b20c079b52704c1a
F20110216_AABNZX lowry_r_Page_080.tif
3a4e5a2da1a23985eb56dd1ee9f00a40
b95bce41a941a007ddbc2d18cf8a6a97bdc55622
1002 F20110216_AABOGF lowry_r_Page_118.txt
72bc786833fd005adcd593d309b6d67d
5472d5dfba6a9d84f01fc9433a4588d7ec701f82
66968 F20110216_AABPJI lowry_r_Page_168.jp2
fcf1924c1092e64a17cc03b640de723c
3422c514bc05177d145a9e32f940a472028dc9ad
22536 F20110216_AABPIU lowry_r_Page_149.jp2
a9aa350fc782317e0d0bb49db018ad47
d70c5c5c67bd4d8255c74f2845e522b754900071
39890 F20110216_AABOFS lowry_r_Page_044.QC.jpg
28314f867c3205fb459480f443d3ba0a
2274c56c6e7b3d9220365bb0d472b82a3a214986
12891 F20110216_AABNZY lowry_r_Page_157.jpg
c797d1948953806f81a5d7002b6863f1
92c056955b835e97a25cf6a13ae2e5893c157f26
F20110216_AABOGG lowry_r_Page_167.tif
c4fb631dffb2b7c75791ff2f3bc48b9a
7551b4a33106c4adc2f1de9e4a90b6d3b2701d45
66567 F20110216_AABPJJ lowry_r_Page_169.jp2
fc15b9a257dc6ab0b328cd2735560bc6
e2ced7af49da5a77347d1728ae3c1b7b1d9603b7
28523 F20110216_AABPIV lowry_r_Page_150.jp2
7eeeb7c5b5f73bb2d20906efc3bb7f9f
bced7508a7941f4e5b8c4d9410609df6e7fc8c8c
7585 F20110216_AABOFT lowry_r_Page_158.QC.jpg
97550b289932241266092abb16abe116
e0b2f03a6c65c0721283f79a947b3e1ed42544b3
F20110216_AABOGH lowry_r_Page_146.tif
4f2f4f2dc737c1bece712f2df7f68eb4
81759a61360ae85d12bab70089547917b9a6303e
66533 F20110216_AABPJK lowry_r_Page_170.jp2
3968865ccbd21af13bd5251a524e4ab4
a45e67aee27471e7efbcc2f3464e44b627c58daf
31806 F20110216_AABPIW lowry_r_Page_154.jp2
99676a6b15262440086ec6ac432d1ee8
3267b3605101ab5f07b2c8786957c1c8aa3fc8c5
117103 F20110216_AABOFU lowry_r_Page_045.jpg
e32e804a800a15eacc52e19015a3e411
a28cc65610bed74f92aceda9aab2a79abb7ae662
50536 F20110216_AABNZZ lowry_r_Page_091.pro
584a54a2b9417de200ef36a60ea23833
ba3af7e1150cbc43c112ac802c658e877e30b87a
F20110216_AABOGI lowry_r_Page_082.tif
e69afe1989e48e4e2aa9d06277f54bba
0fc9f817a3cf1504ce070a67921b4ff122e0ecdd
33638 F20110216_AABPKA lowry_r_Page_185.QC.jpg
beceb8d292549fb9f5b8aa8a98aca054
a5db79ac4de3e3e28e6c33a1c9abd74e7274e4df
67180 F20110216_AABPJL lowry_r_Page_171.jp2
e93ca60a572b030f695a1f85a2e54208
a0ac060cc08527b49977cf7ebb9e53bec5b61b87
18551 F20110216_AABPIX lowry_r_Page_155.jp2
3a37c473b00de6ae6bda14dd5d37c34f
7b382a5239cd7efa1681bdc7ffe8f643493fa926
482 F20110216_AABOFV lowry_r_Page_158.txt
e2db43343b3b5c525bcb7f4c74d43939
58e50001d80b59adb8f4cfc7ae13494e57540a35
26387 F20110216_AABOGJ lowry_r_Page_156.jpg
7604ab4990771a61f6d9a6f380839898
7ccc26b0f1c8c3edce564ce0e603e797c0d4a103
6622 F20110216_AABPKB lowry_r_Page_129.QC.jpg
27d41ede075ba8fd8e10b014ddd0ebc8
b50bd87949678678cbe54ba30f9650599040ebf2
65690 F20110216_AABPJM lowry_r_Page_172.jp2
ca5c8427a14ba1761e6f0c40decc6b5f
72e396c64ba882206cc41eb181c5eaab7fb437a6
31886 F20110216_AABPIY lowry_r_Page_156.jp2
5ccad3eaf2489be2076377fef710e89a
1ff9d669e23d0845aca017ad19649235f115a79f
F20110216_AABOFW lowry_r_Page_095.tif
7ff9050834cdf7c773c63b970898c86c
ea15a530f7161ebd334f303cd3b1cdabc3c34e88
4243 F20110216_AABOGK lowry_r_Page_153.QC.jpg
27cc4f0479f764a5f9f97ae8a302f108
9c449659c75a306de40badf2251d9afd0b3734b4
8268 F20110216_AABPKC lowry_r_Page_112thm.jpg
eea1a425429bf4d996ce5dc97f90a949
6db4cd0b38796026679f130a18bbed2c8981d233
66896 F20110216_AABPJN lowry_r_Page_173.jp2
4424da999cc335a089bfc28a02ce09a8
fb20bc277c9c019ee02d54ef079c615ef664e2c2
18213 F20110216_AABPIZ lowry_r_Page_157.jp2
248d151991091f5c7d4b3d3fe250a364
b8d99f050e90c695842644e9c740dc7b419afa7e
56339 F20110216_AABOFX lowry_r_Page_075.pro
49fd78998797539353df06c0faf3e80f
47b6326e62b822ae84415ab27a31ad290df02618
52477 F20110216_AABOHA lowry_r_Page_102.pro
a388cb4c63902213e3602855f9692762
3d94d5f2f0e721a69879bad9866e381c7e2e2df1
6178 F20110216_AABOGL lowry_r_Page_149.pro
b5d7402549c880cc78cab8b4b024168f
4bce87d774eef89fc9c6e19c8b6a5725ca83ddb6
36851 F20110216_AABPKD lowry_r_Page_022.QC.jpg
ae14c13b607281bc5342b77a9891dbf2
ea5654af5a263b75dfba3291fe2319b4208d465b
67191 F20110216_AABPJO lowry_r_Page_174.jp2
bca39693a575e0b9d3cc41f75f12fe35
624e07ab22faf821a2819d3b253e59d5fdad4d08
1051983 F20110216_AABOFY lowry_r_Page_013.jp2
057872abe032508fd385647662e25114
4724687e51d58d00f8f8d46b636ab8056117f960
110934 F20110216_AABOHB lowry_r_Page_050.jpg
e972920c5e71b36c7f2dd296ee5750ce
533377cca6a98723e0c94b5a4bce61f9ab1f1475
4201 F20110216_AABOGM lowry_r_Page_016thm.jpg
034ce6c8886ba82cb749169ccbbb21c0
2e0488b66816f46a4bbc245b8a69bf1d439054c2
4663 F20110216_AABPKE lowry_r_Page_126.QC.jpg
fd1d8354dfa840fd6233ec05c494def4
4de4aff4c9a0675ac2c70dc840ae8d910164be2b
101520 F20110216_AABPJP lowry_r_Page_178.jp2
28ab08f3d916c16ef7ebfd4824889827
72c7c5cfaf9089fea864528c096bf8f0e99cd054
49258 F20110216_AABOFZ lowry_r_Page_089.jp2
960c537148e88f398c5054a98e18d82f
a01ee89defb3b9b96c57de8ddc0bda0f9d7c1d9b
21706 F20110216_AABOHC lowry_r_Page_086.QC.jpg
6d775c9780e63a707f7620a9700806f2
4d2542e27f73ebb560d56ad452749f592de89431
17403 F20110216_AABOGN lowry_r_Page_085.QC.jpg
3c9c86e4e427be276e85b2b302df3a3c
a9a3d7a40952f1211e0276a7be2a8c2097079141
20551 F20110216_AABPKF lowry_r_Page_169.QC.jpg
6c5feed44e9f293916e8b7909a1672a6
a4bd437209343e28237c8b12487ab7bdcb16d00e
105454 F20110216_AABPJQ lowry_r_Page_179.jp2
3c053ee56540c5e135069944ddf40187
895bd0b66c835acbc4c507d57948bf48ec0ebba5
118333 F20110216_AABOHD lowry_r_Page_071.jpg
ef5cfd9db367328d82147e3cd66ef2e9
d14feb63e13fb5ec1ad6c16fb013e1ba0163cb97
112999 F20110216_AABOGO lowry_r_Page_074.jpg
78b2b15f1f4b13869943b07c2b0b7e90
3f317868a182ddbbeb604ef1ae9472c08321e74c
537 F20110216_AABPKG lowry_r_Page_002thm.jpg
520de5f5db38f4a49daaa35cd10db661
b9ed4080882fa0133bc8d0ed187363076055d840
109988 F20110216_AABPJR lowry_r_Page_182.jp2
3f4b16f1956b9064db7a193304d4ee43
74e93a1111bc9984c79e47b7dec74945324b82cc
1698 F20110216_AABOHE lowry_r_Page_166.txt
a9457d3d9ebaf4760edd649eb3f26b54
9fb3dd82dc6b2786d69901c580aea8766227cf89
9289 F20110216_AABOGP lowry_r_Page_071thm.jpg
c52aacd9e68eeb7d914329419a320293
9ba42b4e5368f409204c4ff2854f273ed81e0e1b
5706 F20110216_AABPKH lowry_r_Page_145.QC.jpg
8d5433fed5e7a93ea235c919d0e1147f
51542fec6183d3b40cdeaaa769b281075973ccc2
135725 F20110216_AABPJS lowry_r_Page_183.jp2
937a741c7e4700898a1c0b3cdd2f6faf
7ea5347d2dca90a9ac723e3f2431acf753593478
37555 F20110216_AABOHF lowry_r_Page_041.QC.jpg
9daa16e95b6092c09351dcc577292a33
6c5a1a07a97884ef67534a22d6ca360d029824b8
57390 F20110216_AABOGQ lowry_r_Page_100.pro
de4ec05d338f18bb24e8192549cabe3d
ffda1fa90cde0ab1ae5e985b93bd856876bfe767
109703 F20110216_AABPJT lowry_r_Page_184.jp2
cee32fdebc8750344c323a886013079d
52878399ff921e96b0ba7d7b0ae63b5f15ec245d
120545 F20110216_AABOGR lowry_r_Page_073.jpg
119231f001efbc7e84f67085614bde4d
bcf7aa377fdd8ed1171dbbb08b5f901d27a86a44
4590 F20110216_AABPKI lowry_r_Page_138.QC.jpg
8adfb2dd159eb129c29eb930e3b493fa
c49ce32ba413100c7f197af9a50a1e32b0484dd8
102735 F20110216_AABPJU lowry_r_Page_186.jp2
b3fa5daff0bf82f59959eee12cdb4c73
f7de5108e87b4673e8b37447732543098f83b34a
270 F20110216_AABOHG lowry_r_Page_003.txt
7adaa19b34bf917fbf3add5e4cd25f5d
34fbad04a466bd861e191bf9785ab0467896dee6
7589 F20110216_AABOGS lowry_r_Page_087thm.jpg
c217c0a10b64bd131f420e9a975edcc0
73bef38a2ab89813f85a50aeb93469d32d0716dc
14806 F20110216_AABPKJ lowry_r_Page_089.QC.jpg
0f7e18871da12009e4e4efad5b8942f3
1dac95746554f68a90fbf5c02e0d120002324b24
76817 F20110216_AABPJV lowry_r_Page_187.jp2
3ed63594c12a4e4de2383b2a1457e672
5ace594b1751958fefa9fe97da2e38f9d5153302
13007 F20110216_AABOHH lowry_r_Page_003.jpg
d8cf9766758bcdea83e47525d0f2c28d
4ea728e679873cd5c065869c17b53cc3767ef269
23511 F20110216_AABOGT lowry_r_Page_107.pro
8896c10f753e29c10658042c9f477eae
eab6d41516e89ca05e23abc422494769dce1c028
35980 F20110216_AABPKK lowry_r_Page_077.QC.jpg
b86daa0d20479173711213cd2a09e84c
6f86fc4c1f47532326703cfc53f8366c69eebe56
6837 F20110216_AABPJW lowry_r_Page_117thm.jpg
2cb0925da6f328baae98eaf7f10e1749
1ed870da817e1f5833b5a06e00242ee90ee331d1
F20110216_AABOHI lowry_r_Page_092.txt
cd18e939418ad944bea0dda14693aa0c
13e5b13258e7fe467bc06f84bdbdac3474cd70c0
38160 F20110216_AABOGU lowry_r_Page_045.QC.jpg
6c0e2b399a33b20cb34e151345d8754a
67b15e0fef665f5dd119e77cdc26d9370b549761
33131 F20110216_AABPLA lowry_r_Page_099.QC.jpg
4ac99f84284b1e44804571b402d14447
a883e08ad7517db45d727181eecea2b190baf9a7
8823 F20110216_AABPKL lowry_r_Page_054thm.jpg
92b19d7d9311a4479180ced3d4f9800d
030c68937859b0f72fe5472c9fe0876dc0eeb34d
8464 F20110216_AABPJX lowry_r_Page_178thm.jpg
cd393cb5e4288626c067de4558852f45
66f3ff8c8beb1b841f2a0072b302b29965ad7743
34082 F20110216_AABOHJ lowry_r_Page_036.QC.jpg
864b4f9280c68ea79ae7378fa4b6b4b0
f294d1594a6dd405d2454156054d0f18d98af1b2
2692 F20110216_AABOGV lowry_r_Page_120.txt
bfdb2c7dd99090c9ae6ffad3ae8b948c
3e216466583ae76cb64d492a5e7d451be2049b1d
1742 F20110216_AABPLB lowry_r_Page_142thm.jpg
163a480a77dbcaa8f983682faf5397a1
957bd541aa7c704fd5cbb1bf71582a52c2faac2c
2015 F20110216_AABPKM lowry_r_Page_163thm.jpg
8d573d3f32081cb97f0e92e7c637edfa
664da0379f6459d8889eab14fc69d31e51852990
2083 F20110216_AABPJY lowry_r_Page_165thm.jpg
dcde37c2305b79d8ee929b7220427afa
ec7eae01c69adc6359e58a2c54f9a7464c45b206
F20110216_AABOHK lowry_r_Page_010.tif
abc09b591086d3dd467fd5e75705434f
43bbaf1e25c6a011c56b830cc129740f18ca0629
8900 F20110216_AABOGW lowry_r_Page_075thm.jpg
19e71de6ce8f5835fcb97bcd2486120e
a9909d7a57e0411d6416170ebf6ddcdf6619af9e
5193 F20110216_AABPLC lowry_r_Page_035.QC.jpg
9a1c06eced0274d0c5070ace4d8262e3
a3a8073f288cb34c52f807e584762a2211a3dd6d
21702 F20110216_AABPKN lowry_r_Page_060.QC.jpg
847fbe9cc7ef7345dbae9da951f6dc56
3330f6339cf8f7b118bc1a768b709f16cb840ecf
5701 F20110216_AABPJZ lowry_r_Page_148.QC.jpg
b70030d98feff717a5e9b6a139f0fa74
d9149d86ef67a23da9d8e4376aec072d56e014b9
8710 F20110216_AABOHL lowry_r_Page_144.pro
362b2f67aa70fd7acbd2b4b09ec98890
b5b8c44715c0772dffc9d071289a4c001bcbaa13
1723 F20110216_AABOGX lowry_r_Page_160thm.jpg
5890d46949e8737be8f0f61473eb0884
9b8ff1d9f6c941d1a02b81bd791cf5f0b1faf582
37079 F20110216_AABOIA lowry_r_Page_043.QC.jpg
680d2a443d6da60901ed0c7b27dde9cb
ba759e8d0a2790b209abc25c6b3d0ecb1dc377c4
9625 F20110216_AABPLD lowry_r_Page_006thm.jpg
aefa0cbd1152456c731f8c2799f49751
a385e79dc0035601679734f70912bd7e8bfbd599
8620 F20110216_AABPKO lowry_r_Page_046thm.jpg
e6c0524625661f8e136457e0da50fdfa
707e61cd42451811b98856da08ff418293dd636f
1403 F20110216_AABOHM lowry_r_Page_157thm.jpg
7d9ed19b1b10c6be7a4dbde27f240a16
5048b7f9db61e59abf5673147b084feb2fcf7e6c
27528 F20110216_AABOGY lowry_r_Page_154.jpg
b0cefe3bf77ed54060056f980fdfb48a
a56e52ef9dadafbf41b505f54e10b9d7e6335dd5
106667 F20110216_AABOIB lowry_r_Page_031.jpg
2b54b353ae3143fc15e1d1a59cdc1d8b
0174c595ddc0efe856be8540513e618df5bf6b21
4871 F20110216_AABPLE lowry_r_Page_141.QC.jpg
72d812a3f1d6faa3660200c1f5e69915
6f577d080b4537fd0781a852713841e2141ccad4
15108 F20110216_AABPKP lowry_r_Page_032.QC.jpg
7d48bd978fd22421db03cd289e5658aa
fd98c762ea17921f4ddd1bbc085d906ad8b4bf7a
118852 F20110216_AABOHN lowry_r_Page_024.jp2
376f426ee62225cf0f8f1529ddfb7b0c
eaec02d3e9a76c7f88db82d9978848863dbb9ed4
104617 F20110216_AABOGZ lowry_r_Page_078.jpg
20978f40993de81d721af9a7378c7af2
84098ad3f9d8dc79d916fe76b0502c21e901c22a
108488 F20110216_AABOIC lowry_r_Page_025.jpg
02db72123895eef512d4d1f6b0d72301
2fedb0426288db1d7d69e5dff3a71e2f80bcaa4a
3791 F20110216_AABPLF lowry_r_Page_089thm.jpg
09e2ed73a786e7aad906b76bb6e7f7d9
caf25df42c1b968db4f7b18d80c856501b02561d
4827 F20110216_AABPKQ lowry_r_Page_131.QC.jpg
bb182f2bde0844c9d8fa0abe18673544
2136099e29a14f1f1ebb5d3637d67b4e2d2ab1f4
9123 F20110216_AABOHO lowry_r_Page_069thm.jpg
0cda8b0eab7d7c7d9ef5bb6a71fb3fb7
8323923bf25872628e03aee9d793dbc05da1a97e
600 F20110216_AABOID lowry_r_Page_140.txt
695f38cdc94c3c72dcb6932bf2bf41af
cd6897a1a90dbbd2e57b5be1ee67e4964e2daf26
36509 F20110216_AABPLG lowry_r_Page_023.QC.jpg
bd713495e1910401eb53517333112416
894f9872840af184a40cd2a39119e8d49c04cd4b
7524 F20110216_AABPKR lowry_r_Page_176thm.jpg
a78e8641d0648569aaef3f23ca3a1cc7
72b4a839f5864cfc29d8f2cc644bde0babb19e3c
7053 F20110216_AABOHP lowry_r_Page_124.jp2
399736c39d9de5a85053dad6bf05af72
f9d989ed47fd69f3bf1dc654e1fb938099570c24
8131 F20110216_AABOIE lowry_r_Page_053thm.jpg
22b76827868ccb440df1cf6f90596c82
f4e7b25a84538f28b2c65347d34951ebf53cbffd
8362 F20110216_AABPLH lowry_r_Page_028thm.jpg
94af656766ee8c88956de1dfe88d987b
3c5f3b69fa7fa703e444d8f368faafa2d93c5e9b
9273 F20110216_AABPKS lowry_r_Page_080thm.jpg
34ea4bf19a8d3cba836a413f3195a179
c5e2d132ca94a62f1f794a10d49471aecaf2c3bc
16737 F20110216_AABOHQ lowry_r_Page_137.pro
c7d7cc7fcbf921ffead9d7dcc074723c
37b8ec74de468d09f83388eea4dad0677e1875e2
116855 F20110216_AABOIF lowry_r_Page_094.jp2
d6d49805e83e11b3cc3b8c585904ad52
33f03ec2fd030ec1d2431248072dd1a2969b16a1
8575 F20110216_AABPLI lowry_r_Page_121thm.jpg
59f5a3e07f330fd43de29b1491c6c545
3bae338ada6d5dd3396e4000e8a70cf7644c4961
7423 F20110216_AABPKT lowry_r_Page_165.QC.jpg
bc4ef6700220df194d0c14f5e2cb42d5
f47bb6dbc5a066698770bac7ecaa147c744c684d
65183 F20110216_AABOHR lowry_r_Page_084.jpg
036c31374eb5c5a2b7712c104340c40f
d0e48af763bad2bbec7e82a6e6cf43191063f0e7
157385 F20110216_AABOIG lowry_r_Page_123.jp2
6d08956e204f39d58c2ef5aeff404bca
16e8b7031708ffb95957514ca93edf1d9f867c95
8471 F20110216_AABPKU lowry_r_Page_024thm.jpg
112966cfa96566a5124b33e4c0e868af
bd2744ba4931992ff4289b14981bdb8b64722cc1
F20110216_AABOHS lowry_r_Page_173.tif
1dcad3632aae70b789ca20c20e370c56
14f4176e1125e0dbb57a69fa970fbdc1f80b4a20
5657 F20110216_AABPLJ lowry_r_Page_083thm.jpg
4317f427c6dbc301f68fd31ee65c3389
eda63f8d3e962061b6cddd3726a919bfe77e864c
2334 F20110216_AABPKV lowry_r_Page_146thm.jpg
849e0ceebd58658fba4b2138414adc20
bbc69d9fd0b6f98888eb1bb14f632e3218fcdfeb
460 F20110216_AABOHT lowry_r_Page_149.txt
9cd0cc9df1b0f486cc80e858df82d08d
babbc7cb84a90075d27159a6a85eefca02bdc889
18789 F20110216_AABOIH lowry_r_Page_135.jpg
f825260a0e12877d5308a779d934d063
558471ae49336715802cb47cddb167e500424d87
8605 F20110216_AABPLK lowry_r_Page_027thm.jpg
6d418c337ac72ddb4e5736fd1338bcfe
c6746b9857bf44ce83b1a7c15243d8482de6e8ca
1636 F20110216_AABPKW lowry_r_Page_159thm.jpg
f3e06b5ba656629c83c2e621fa3047c5
f3cf06776106f4c5d9fcba29afae496c60b88854
2102 F20110216_AABOHU lowry_r_Page_129thm.jpg
f2bbdc83b1969582ece3e446fec11dd3
765c3ec2e694fea8931fb7976c702c804ed17642
47480 F20110216_AABOII lowry_r_Page_016.jpg
9fc547ed9303db8dc06592fada1ca882
541e9da27e20c8a4e63e07f155c2c3d71f4a736c
8899 F20110216_AABPMA lowry_r_Page_038thm.jpg
04c835b0c16e16dc782ef5db7c358baa
5714702304f3fe044c4e52f9b87383cef05c6983
34209 F20110216_AABPLL lowry_r_Page_039.QC.jpg
9c6fac2ae1ba2cb3b4046bdf2476534f
b1eeb2b8fd8434dc7d8dee666b83e1537e36e874
8405 F20110216_AABPKX lowry_r_Page_120thm.jpg
08067eec523acf3f17a39163b227a395
188baa5812826ff62d5824cbd678de420fc6b417
2146 F20110216_AABOHV lowry_r_Page_071.txt
ab82b040cef5ec6eaa5ea180c35d4fba
4570c66489e5120d90bea10a3e24663267e83b41
48409 F20110216_AABOIJ lowry_r_Page_099.pro
6f307c50ab9fabd382bb2e7ea5d46c45
50e7477b0d357331e99b67c5bbd55ba9d190046a
2673 F20110216_AABPMB lowry_r_Page_118thm.jpg
580604133271a2d6aae34c135b8e3a4d
83b0ed0b118ad3a3734cbf6694c7ee9cbca731ff
8331 F20110216_AABPLM lowry_r_Page_099thm.jpg
6663263d05d8818d2f964099cf8cad8f
e7335d2a15f83aea9db45a021755c1108cb078e6
6518 F20110216_AABPKY lowry_r_Page_136.QC.jpg
465e5ed1f217afcac1b71cc8c69c4f9f
4a33346dc7be745015a97dd9dcc5dd1895cfffcc
36984 F20110216_AABOHW lowry_r_Page_026.QC.jpg
1d6050eb5ddd35926608671349531bdd
b3b5a06886e40f03f44c8fb53990122708dc9bff
120550 F20110216_AABOIK lowry_r_Page_100.jp2
7401172420f08b20df3f5d7785ccf9aa
d919e67bd7e48a09ba9b989cc56fdebe5994d41a
9359 F20110216_AABPMC lowry_r_Page_098thm.jpg
ba6d5d87cdd420c6ea931f0db98c266f
1005d624f8f52f7524479bbfdad7c6d72620e0e9
25438 F20110216_AABPLN lowry_r_Page_087.QC.jpg
0e3009102d2572f4e3c2c0b625ba0438
0ec26ca7dad621464baa072e9a6b8aaec39c2059
30226 F20110216_AABPKZ lowry_r_Page_017.QC.jpg
5c43dd0702f1b4a1ea7003e0b808b985
e63598bdeb1dc758503d04de82a1366601c5353c
1383 F20110216_AABOHX lowry_r_Page_059.txt
f46c24ef5bbc952483e54ec363ac7ebc
9486693fdffbac266ca432f636404ebf70247078
47780 F20110216_AABOJA lowry_r_Page_110.pro
3fc6392c8338951de44a9918f4682248
4944a7d34361b025d8afa34da5679e681e9ed122
2773 F20110216_AABOIL lowry_r_Page_183.txt
b67ed30a7e0496d502b12c1be7b3c931
1ce2293f538fc11719b4516ea12fbb6d1d367afc
31449 F20110216_AABPMD lowry_r_Page_112.QC.jpg
70a62724f63f7608a3d4e90cc7dc5be4
0447319990c32e9fcc16d71e722059577ce40c37
4661 F20110216_AABPLO lowry_r_Page_033thm.jpg
5aa27f9aeb82a1caa21f76a3c859e650
5071a7bafce19250c7ff9d89f443e808aadbcc8c
101897 F20110216_AABOHY lowry_r_Page_177.jp2
342dd21dbc066338d8080aa94dd1495c
6f9b52ee142345e4611e6a87eb550d56b3913449
38976 F20110216_AABOJB lowry_r_Page_033.jpg
c453b3371583995ff9f235ac9da215d3
404eb94d51cffc6ec5dbb27e46ea1b61d30d1d50
9516 F20110216_AABOIM lowry_r_Page_014thm.jpg
b936b7a8ddd1400db302377407b105d3
7727e4ab1e605d3e09f3e56c2e8fb0d537e94749
14996 F20110216_AABPME lowry_r_Page_062.QC.jpg
f611a5d0185909e489ef38be30b9ac94
0529c065fc1a54db9dd1ef175947f4817671cf87
41090 F20110216_AABPLP lowry_r_Page_073.QC.jpg
f0877d038c5b6e2c1f9ad422e43700aa
02f4dab79fc919d74446a678a9179e58edfdd37d
2110 F20110216_AABOHZ lowry_r_Page_020.txt
ec85b895a9cdef4d3ba471ececbb17dd
a6a0179c36e1ddb04dfa73f90fc6d890f848c2a5
7439 F20110216_AABOJC lowry_r_Page_130.QC.jpg
53299d34ab4427421a17c1f2923d6e8a
4401cd853b9dc55982f1da29e429111c0dd353b2
F20110216_AABOIN lowry_r_Page_057.tif
330e8211790d88b64bf414bafb21c49e
e802fc71088b78f3d769810f57663e799577a7a5
3372 F20110216_AABPMF lowry_r_Page_003.QC.jpg
86fb048416e0b41d8af1629b10554a9f
ba55c6239ac2d149921e09c9631a1bea52a4c577
8523 F20110216_AABPLQ lowry_r_Page_031thm.jpg
84eb48f1317d822e8228b197f679e9e7
023195a79383ff5e774065d65cb400f85902e9f0
8992 F20110216_AABOJD lowry_r_Page_066thm.jpg
a1b00913149630676b65e57b90e6cb28
3390b1cedc566d92eb37062151897e3854fa3db7
99678 F20110216_AABOIO lowry_r_Page_185.jpg
08e8a7b5dbca5cb083942e66a492614a
1365374b212084cdad7234f2e1a6873491f5f86e
9475 F20110216_AABPMG lowry_r_Page_001.QC.jpg
c051bc296d7b151210d29712954dba8c
5e0ef19ae17e3fd83df8430c9ab8cb8390720e40
8870 F20110216_AABPLR lowry_r_Page_050thm.jpg
007c777d717181b92e4bea0e7eb5df68
3db6ceb97dea61b4e7b6a109c45e220b2c5d5627
13358 F20110216_AABOJE lowry_r_Page_003.jp2
ef7a7b03fa454f0c09e892fcd8316ec6
6275f07f7569f596f3c964fa0f3666033f8223a7
2112 F20110216_AABOIP lowry_r_Page_030.txt
5d869f6f01386641f10b8cdd823fca9e
77f8b2d6f19fef89949d1913556e8b1edb4e92f3
15951 F20110216_AABPMH lowry_r_Page_057.QC.jpg
dc51543141486872f7075695f2040304
e1db028f3c8742a48af680eafabdf741ba16b885
16386 F20110216_AABPLS lowry_r_Page_008.QC.jpg
9f1caf2a8502412b9191c3c3b4b075ba
2002559ea66ee8b6d69a89ea373be8c521f0917d
F20110216_AABOJF lowry_r_Page_067.txt
4d0e2406ba7034be61c98a8550d49a18
501561e8406dfe113755fb55c95eab97878ab490
2172 F20110216_AABOIQ lowry_r_Page_038.txt
eb3dbfd22f81680b15efec09bfb39bea
db27c7234d15fa516df19c5ec715f9997e26af38
9522 F20110216_AABPMI lowry_r_Page_095thm.jpg
6baa337067c087b2abf62854e8a3b3b2
d4d79cb4a14bcede8d09a0a9f27135f90c26cd0c
19088 F20110216_AABPLT lowry_r_Page_083.QC.jpg
b949b57a60628701f65b299efc21e942
9303ae0c54d5e12814569d454ce09674e406eb4d
6520 F20110216_AABOJG lowry_r_Page_142.pro
012ff2c764c4882d21250e187a790da4
7ad83218bc21198cd0f5dfca439b1702cb24e12e
67130 F20110216_AABOIR lowry_r_Page_174.jpg
02dfd6a6f2fff57f80227a3ba397d675
18cae36c745bd06c6d1290b8c4147db70fcabdf2
5257 F20110216_AABPMJ lowry_r_Page_167thm.jpg
6f1176a98019256a91a9a63f9d1504c2
629966a71e829dd1f6e388577633022f3db77d94
35836 F20110216_AABPLU lowry_r_Page_111.QC.jpg
06c3516179daebe749555d8e3a3cba47
e9b8a18e7c1d6a1d16fe6b321c75af525805f3e2
715080 F20110216_AABOJH lowry_r_Page_082.jp2
0c57c3b2abd67a35cf01493b7a214cf3
1adc1cf3616b25418f8f293691b1c9efaf3ee095
5642 F20110216_AABOIS lowry_r_Page_147.pro
db40754de8872b1017f519890298f69b
f5ea7e886a25f434f40b4464fbb7c8bec5f78c67
6266 F20110216_AABPLV lowry_r_Page_090thm.jpg
97b30e6f24864324d659e29c1d2fad28
11cd7b821aeb6385b812c56b908055e17297a54e
122671 F20110216_AABOIT lowry_r_Page_021.jp2
89886bf17602a0df7f3ac91967322e2b
f3424aa55d6f9bf6b74931dae78b3b2252320173
F20110216_AABPMK lowry_r_Page_063.QC.jpg
a10eff99b8b337de22613d7518a99db7
8d15414bcf7231cd88a90f3c0b26c8bc9b2a1b45
7712 F20110216_AABPLW lowry_r_Page_152.QC.jpg
907b04a27d4f47ba67911b1897d96b4f
f7c78c58a0d95f642d03f36fabb5b8957b2a589f
20503 F20110216_AABOJI lowry_r_Page_170.QC.jpg
010d25231a3a2e2ca44f59cdb4e50744
6a8266a1b55d62873006b1b1e9d6063371d9a7c1
F20110216_AABOIU lowry_r_Page_042.tif
759533301b7bd5c67a339f58f566832e
f32b38dd956d7dbc30a21f109b576fa879c6440a
9035 F20110216_AABPNA lowry_r_Page_079thm.jpg
99425cc16cb34a13ada5b78f10dfc7d6
b8a0ba6b930923c6c295b4455ec61395db9b1841
14007 F20110216_AABPML lowry_r_Page_033.QC.jpg
0a7b88effa44f3593f009b70b8fe9952
675c1823c30172442d21f3868fc2ebbd3d9aaab5
8562 F20110216_AABPLX lowry_r_Page_078thm.jpg
3e5db9352e9c1b1b8e7200db5ceed25b
868b51c21020bd863a63d73dcf25c88c73d79184
1894 F20110216_AABOJJ lowry_r_Page_185.txt
b3706df930670b1b9d97b9dd66df7ad3
b73a894cc4ec8ba13cb4f3872ecc71a84e540de5
112647 F20110216_AABOIV lowry_r_Page_121.jp2
4070752924b1901d9de98f8e92300440
a61c10c345b0421f2b398da689dc4db7fa51226d
34551 F20110216_AABPNB lowry_r_Page_178.QC.jpg
84270dc0e1fc7fdbf0e37e40fee3a2cd
ba471b6fc6c407f07a29657b0ff334b6dda3e4e4
8515 F20110216_AABPMM lowry_r_Page_019thm.jpg
7c9f453e8c608f14cadbc40e4aa6fcd9
6b04d326770c7f1011e17fd65bdf3cf7b43b125f
8891 F20110216_AABPLY lowry_r_Page_109thm.jpg
9e2cc3c15a06036ecc8ac2bea42c56c3
dfa252c48928078a86c47dcd1ab1d308b93dfc7c
36287 F20110216_AABOJK lowry_r_Page_051.QC.jpg
da3b021ddf19b7ef0815b5ecc1ef7c08
0d604d4696aec7a27bc426637f53d9dc0ffd6e30
30398 F20110216_AABOIW lowry_r_Page_010.pro
b1fb1c86a011f94e984cb6d8c42b2833
7188e88ec2fe5bd1380f49570ed9f65279a8d2ed
37362 F20110216_AABPNC lowry_r_Page_092.QC.jpg
2ae00cf87fe7f88f64229329585bb7bf
cd5ff2d1de1a9dcee9d54b3a2ef782426317e54a
5398 F20110216_AABPMN lowry_r_Page_174thm.jpg
7878881c8b846300905d4171d05ba1ad
1eaa15e10b716babfb75fe8c43d83fe8427b197a
18609 F20110216_AABPLZ lowry_r_Page_004.QC.jpg
74e959313893014bdc1da83c028a4245
68ebd0e3872603cd58dc39bfada56ebd1017b4df
F20110216_AABOKA lowry_r_Page_113.tif
3f4e812d9da5328affe84a99641181aa
1263d135670995af36de9195c3fc3e1b071699b7
53864 F20110216_AABOJL lowry_r_Page_119.pro
6fe40d3333bbfd546757167ce6899aaa
1972f71132d7775060c69035a43f198a5d801061
109702 F20110216_AABOIX lowry_r_Page_006.pro
2df2d74f49af399c9a57a00d3d5a965b
df68181f72995fdf26e541b8165f0f292c392339
6063 F20110216_AABPND lowry_r_Page_058thm.jpg
cffad09763881205c93a4221db70178c
e40a57c973b74831c5bfd51e8777748c093e7201
32334 F20110216_AABPMO lowry_r_Page_119.QC.jpg
bf953c75d9029669465c3b3e4bd619ed
c790e1b43fcc4508c4c0db9f17f8456da6c23c3d
1496 F20110216_AABOKB lowry_r_Page_139thm.jpg
c09a51eed5766740e8ccfb9476c284bd
8d74c425aae1934e836a78aba9cd961fa1a3851e
F20110216_AABOJM lowry_r_Page_084.tif
8199cee06ef415aa685e3d54745e75ed
aa4397d5e035cbedd8903132de085b81e419b650
1223 F20110216_AABOIY lowry_r_Page_061.txt
b47f4b5535834ba4d8adc530ffc9bd28
1d7f6a10962739942c1a16adb108b0c7ad802852
1693 F20110216_AABPNE lowry_r_Page_149thm.jpg
ba045a2724006e7ee1b3e845bc4a1e00
4d07cbf9858f6a9c239467687bd80f150ffa2998
36857 F20110216_AABPMP lowry_r_Page_074.QC.jpg
580359d216dd32b23d57bb82d7848af4
0e976eeca28f9c7411901116a9d3b345e2c9d513
F20110216_AABOKC lowry_r_Page_079.tif
bc6b1921d11d81a399a3f98da176b15e
3b6cc6a8ad2c839a3684568cfd9e108a90101c5b
38079 F20110216_AABOJN lowry_r_Page_048.QC.jpg
c490f6f54b5d959e4326e03a27469f05
41e923619edc671b8aa1b11cae3fa81226123698
31731 F20110216_AABOIZ lowry_r_Page_144.jp2
e032d4249355590e255b1e8df58348cd
3a9b4a390200960bef8566f2b0308284639fdc6b
29893 F20110216_AABPNF lowry_r_Page_176.QC.jpg
a2a34c33cf30c2e3e0a9b2aa01ecd23e
ccb8a6ffa6b5f3b274c999e133560e1fe17e6af7
19851 F20110216_AABPMQ lowry_r_Page_058.QC.jpg
9d986d24aa415a951c13b1bcb3d1a410
acf05ed7da84d7e31997966a3633be40d3a044ab
454 F20110216_AABOKD lowry_r_Page_134.txt
cd2aca32871e037c6f2ee016651800b4
595c2686226d77f9c18b733c49e32f30129fceb7
9673 F20110216_AABOJO lowry_r_Page_152.pro
15f8a92254e35e99b7dfdd34f06af8e3
aff448e3508a55490fee7c035d0179de4dc92f10
36742 F20110216_AABPNG lowry_r_Page_116.QC.jpg
117e38c3091c4ec162e5a3ab082dcc92
777bf01676a13c665c1248d14cf986a8e94ed12f
1934 F20110216_AABPMR lowry_r_Page_123thm.jpg
0e5185b1c343f416d81c9fd983f77dd8
a37e0342ab4cae98525ed2e8def9134c79bf86f0
F20110216_AABOKE lowry_r_Page_092.tif
188cc1632f2802d0993eab2a3c8388b9
244631bf63a961be65e33098ec8a13580b81879c
96077 F20110216_AABOJP lowry_r_Page_005.pro
546316ac8374ad60553e2dc1e333435a
4bdf0fb8f8468b1c471aa31bee491c3b5dcd3efc
1841 F20110216_AABPNH lowry_r_Page_133thm.jpg
cb458b2235ed0f1dbad29e67d955741c
3034d6546e2dbd472fb0664d6176037bed632e33
34361 F20110216_AABPMS lowry_r_Page_031.QC.jpg
572c352258c891cf61e56d32039af99e
00f80a7e4ba6055a18bd6c1883a9ee1a0908e3b1
F20110216_AABOKF lowry_r_Page_110.tif
7ce463ee2a657e99708123bc05fa5e5b
bed3118752ffb05db7a7049bf1e00f43433a9dee
F20110216_AABOJQ lowry_r_Page_025.tif
72847e3b0ba8a0026d406914c4e536d5
48ce84028552cfdcc84ef4dc486b40d9517f4964
8981 F20110216_AABPNI lowry_r_Page_122thm.jpg
5e9fe86fa91b6074f08f1128fd1d4576
724fce2cdc6b1aa89f4675bf489c7cd0e0deb745
35077 F20110216_AABPMT lowry_r_Page_020.QC.jpg
9e3cb9acabe056996aefb3f7d8856b59
da5f1456ac6f3ed22cf06f66e6bdfab08a3abc6b
F20110216_AABOKG lowry_r_Page_091.tif
c655df9c20bcf339fb00864c4f0fef74
f9117b3141ca7879556476a627a74986c6248608
F20110216_AABOJR lowry_r_Page_182.tif
c8cb0d8143a9aad173b34a88e1dcecb5
251dc3726924e44b63df1abb49f3d3fd25c43595
8858 F20110216_AABPNJ lowry_r_Page_111thm.jpg
c4f4854b3ebf21664e190ec40d174e50
c986d557b00d785bea78ba7503a2e4cd104bf2c5
1562 F20110216_AABPMU lowry_r_Page_147thm.jpg
99a45282633547d5a403d9f3cf3d8041
3464d115db97fb9ccc5e813940decf51215cfa21
7922 F20110216_AABOKH lowry_r_Page_011thm.jpg
618995e4de4ed55baca881f18ed1b073
58904802192be9b343fce0cb2b9361ddb69634a6
5430 F20110216_AABOJS lowry_r_Page_149.QC.jpg
80b48bdf7bdd69d365c602bfa24488c7
474029eb37292ff1c4c14bf4efdf6264e78ca4ae
9093 F20110216_AABPNK lowry_r_Page_041thm.jpg
d6612df618162512e921bae7ee02c48e
0047f816b8dd813da29d1dbe3ceb5f65f0a4bb6f
9423 F20110216_AABPMV lowry_r_Page_068thm.jpg
6f2d3489b8a89f18ebaa2cb6eb6bfd95
6eead35bc1798e40186e2964bd7d657c35a9797c
13077 F20110216_AABOKI lowry_r_Page_015.QC.jpg
e1bd15db7406729d4dfa9788d55b56a4
295044e240e94ab472c6fee406fab888fd9c779d
122303 F20110216_AABOJT lowry_r_Page_049.jp2
f8578fd499a8a643185fce3816f96d55
1e6bea792af82fcd9fc15e1efc744899ae41bc1c
2440 F20110216_AABPMW lowry_r_Page_001thm.jpg
1c8dc6f6825feb63c0c1f2692df563a6
7c3a851a5e4969c01c3d58d35f5a5f4e8bdde4ed
912 F20110216_AABOJU lowry_r_Page_002.pro
630d1139fc66377c94630a691af7743b
d749420cc74d5ce8bd69d984fb577929af72001f
8772 F20110216_AABPOA lowry_r_Page_179thm.jpg
e9d6c3d409a583bb31bb1a4c4a304175
240efc28cff073e057dd94a801cbe64b8b309c27
9401 F20110216_AABPNL lowry_r_Page_096thm.jpg
b8091badfcef98e230cb6e5da3128005
9da0def767e8f5339229f046a8663fd63ddcce66
F20110216_AABPMX lowry_r_Page_102thm.jpg
f25593a74d550aa7dd7d00c472b9909f
5659630aa8234b3de6f220347acccfcfc0fe2b46
528 F20110216_AABOKJ lowry_r_Page_057.txt
73834a795193aeaeda6389345198e284
7877357607bba0a3705ad503fe926f7325e29492
3950 F20110216_AABOJV lowry_r_Page_005.txt
37d9a33de82ffb0c37f12792b723ba70
b429aaac638a8e67490cde0763b193fb8d3b8d96
5919 F20110216_AABPOB lowry_r_Page_142.QC.jpg
de7d4cb07cf7f30dcfad55f13b84e95b
12d7f4dc736e9f2bdb8202840095281a0b942d2c
8637 F20110216_AABPNM lowry_r_Page_051thm.jpg
c7e485072cf0c140b60484236f241d81
c3bf3721f41c7393023c4a635784e6d841fcd37e
8512 F20110216_AABPMY lowry_r_Page_091thm.jpg
548d741d56df438e93608264c59702da
1a2ce968690a04c679fb60d574790f91edccebf1
107610 F20110216_AABOKK lowry_r_Page_027.jpg
f4d9a78922a79336a87f04b760be1aab
a874bce04067268dbb3875f0e27fe402feac264d
617 F20110216_AABOJW lowry_r_Page_106.txt
8cf0375071c914e056bd9d36859583ff
e8d91a3089e91db5f0a39e79465923224992ed70
37663 F20110216_AABPOC lowry_r_Page_050.QC.jpg
13f4aded9f1a52af4963fc29d91a1f17
790c942e24bc6f15159fb6d78e7224caec80f826
8336 F20110216_AABPNN lowry_r_Page_156.QC.jpg
29eb813289e3a6566d71f2e8f9937280
751d220880e8e8426292f4ba3c89fd6690b8a6aa
34410 F20110216_AABPMZ lowry_r_Page_064.QC.jpg
55096b886a4319dfc9e2138f6c26f60b
757a77e1d7bc24efb6168de038299797c1674dbf
99617 F20110216_AABOKL lowry_r_Page_017.jp2
3ac3d8819f172d0e0fdb0bfeac075154
f8c004cd27df04144dddf3ea293e85e0ee8c9071
F20110216_AABOJX lowry_r_Page_030.tif
b5b6b1605e8cc211729b7d8b121592cd
447387875bf7d69e9f686239e0284cfc840b5b3f
4494 F20110216_AABOLA lowry_r_Page_004thm.jpg
710367a32886fc7d0377faac944d7c26
be9fa0a9aaa3971cd0986c3a50af68a95d83a1e5
7833 F20110216_AABPOD lowry_r_Page_144.QC.jpg
2a7146acd37377b55f91cd21ecff478c
9fd998fabbbdd583a9397a8bf632e505a42f7e43
1555 F20110216_AABPNO lowry_r_Page_138thm.jpg
280deeb55b2577554da2e836085de12e
108ab4c9daba27502bcd7523a1ccd8fffb4002c7
67047 F20110216_AABOKM lowry_r_Page_175.jp2
ff8b9b784618bc75ce25fcf946cc0392
e4fbbac362bef7e312228bda8d40c3a3e8dcae1b
159097 F20110216_AABOJY lowry_r_Page_013.jpg
8acd6fe5b16c78c6fb88fd9cd62693f2
7f13afb8048369c282db89a5c0d7f28076ec2a0b
25157 F20110216_AABOLB lowry_r_Page_136.jp2
d670f36f8ceb2659ec50619881fe3379
831b8d7edd723a20eafe59f63376f9222ec24e92
8684 F20110216_AABPOE lowry_r_Page_029thm.jpg
faff732b10cf66fa6b4449dfa848ba93
edc6055444e288a8bc6c9d42b536b56cc0618067
32137 F20110216_AABPNP lowry_r_Page_110.QC.jpg
3e40eae5d8818e41c4e9c59ab7cf66a8
80c4667f940604dc0ccc6a31a04ac65148979d16
15341 F20110216_AABOKN lowry_r_Page_126.jpg
c69f1b37ace11ae5314fcfa5faca504d
162ae31527e467604fe0496b40f90102b905068e
52572 F20110216_AABOJZ lowry_r_Page_184.pro
3423f833736044c9e00821ed4162abe7
f4dec28070a8e452f3e822552496cec340b1216a
1317 F20110216_AABOLC lowry_r_Page_155thm.jpg
e7186b99f51f22d557aad40f56e1aea2
67ea0689198c1de3c114406a0b6a37a8da87688c
39341 F20110216_AABPOF lowry_r_Page_093.QC.jpg
2767b72c6459454858c527c3c7a09d04
e786093fe77a86d95728edd7ba1b51d4bd36023c
34180 F20110216_AABPNQ lowry_r_Page_078.QC.jpg
5e0823f20891f063d01469d11f6a55a4
eed10ef7e6f35ca4f508adcd2880931347c5677f
2156 F20110216_AABOKO lowry_r_Page_098.txt
10eac5eb14d1b0b0cd4c858a912b5213
94eb3ae220c8e478ffef2fcbd8346073b25b7471
45095 F20110216_AABOLD lowry_r_Page_061.jp2
a8506dd945380e42da6d15176ba4d36c
18f7c7c9f864ed3dc7a06dd58403dd5ed62216e7
1994 F20110216_AABPOG lowry_r_Page_140thm.jpg
fd747c18ada7928439a058fc7d1e262d
bb45b4b08610c4eb0b4682a6d0110493fd9af9aa
8458 F20110216_AABPNR lowry_r_Page_114thm.jpg
88489d20228bd3a170b04b61e055f5ef
f4748077a984ae530ce4a5c4fac207ef08f9ebb4
9366 F20110216_AABOKP lowry_r_Page_045thm.jpg
1ff17909e8ec8db50bcd4ffc1f73769c
2425c1a304f2504d753ea8081c325911e0e2166d
47895 F20110216_AABOLE lowry_r_Page_067.pro
4b42f1b8d7353905c2e367382582f7f9
6a0ddeedf8fbaa71728429f02a894e99c02e664a
9175 F20110216_AABPOH lowry_r_Page_100thm.jpg
6ae67e37a0804c454b90bd5a3beae638
e2fe73127cdb6e49927469a05a5621d01111670e
5360 F20110216_AABPNS lowry_r_Page_056thm.jpg
97103e47963d9689fa9253e3ef4670a7
da70b46a4c2d1d123786130fb2c0c43a7d37f633
1966 F20110216_AABOKQ lowry_r_Page_114.txt
fe7838c9035bdbecca39309f3b6db258
d1ca5141b30edc86520f96165a496942d499ccdb
4944 F20110216_AABOLF lowry_r_Page_003.pro
563a341c5d20da6e5017a4e3b4ff4cd3
cc09458159751e24d2ca2a59eb690c26ea376023
9383 F20110216_AABPOI lowry_r_Page_073thm.jpg
f370ee94a498cd32a5e673f1b818eec9
4a95636c43b5b472d00539539608a8eddeb02327
5059 F20110216_AABPNT lowry_r_Page_057thm.jpg
eabf53602b2fabbf4be2744d5233284b
cad34dd4f92b1143d49037c207932cd6e8c55d4e
20845 F20110216_AABOKR lowry_r_Page_126.jp2
db30a5f60bcfd45e93ee2f63170f57fb
6bd1d6b4b9e9f512c52de7a8ac7ee4eb7e8240c7
F20110216_AABOLG lowry_r_Page_055.tif
2d8c01914ddbf156edf38cc7d2b61d08
eb6c7a629a1dcd54a3b2cd2ed2fdd2d154870d63
33641 F20110216_AABPOJ lowry_r_Page_028.QC.jpg
c957a9def569fc4b7e7ba81db02776fd
c629c121f104e4e4cf1e61b7e5213cce7d53494f
36046 F20110216_AABPNU lowry_r_Page_081.QC.jpg
a1a05f1490bf30d68340f2f55209b824
3164b5025ef252099b2704707a7fd56101b90a79
F20110216_AABOKS lowry_r_Page_049.tif
67e9bacc77eab65e1cde79cbe25f0e06
469ddce2da0fc29af4dda4833b3ca36d0d8c33fc
1626 F20110216_AABOLH lowry_r_Page_174.txt
c3e6888eb2bb41a419762d6fd2983cc0
64ea9e147d97ab7d6615ec9ab9a61b02f716fd4a
8734 F20110216_AABPOK lowry_r_Page_025thm.jpg
9c173d9eb84eca089e7ce59479dc8e25
cf9f6a13fcb36f5b1790b58e2bc92024ba903ec9
33655 F20110216_AABPNV lowry_r_Page_054.QC.jpg
4d84ce426993a4f6b9907916021f2295
2940e056562280468b26df551fbd8f63cf9306cc
63 F20110216_AABOKT lowry_r_Page_124.txt
dddf60d768f82bed5db6f3880e031632
c0e440f6d64fe5eb15e02d426533ca8bf2446d0a
2192 F20110216_AABOLI lowry_r_Page_150thm.jpg
eb9aa4bd3a86c6da491b7738514deafe
6d3ec46892d653161a98fcf873aec9d4e8a10148
8415 F20110216_AABPOL lowry_r_Page_047thm.jpg
60125709694b33dff835fbab535c78bf
e7e9a162553af744213a15c4d6de0fdf3da5ae1e
1504 F20110216_AABPNW lowry_r_Page_141thm.jpg
be0ca63901b338d9d38bbbc62b6b0c0d
49b5ce9a6c4e5ba84076198a2e30bc1bf5aafa23
F20110216_AABOKU lowry_r_Page_043.tif
fa0c8f5ba342d6f3eb49ce3fd828a3c1
8f13a1d4a6e21da6e2aefbfbda11e8a141058903
8517 F20110216_AABOLJ lowry_r_Page_039thm.jpg
89313625eead9a60211b63fb8018f9c0
906b8efb19adb4fa865829705510077049d4c046
34996 F20110216_AABPPA lowry_r_Page_091.QC.jpg
20c1175c241d45d4f1a3a594efd9cd95
5c741f732977903df4110bbd8924744ff05c04d6
9480 F20110216_AABPNX lowry_r_Page_007thm.jpg
b446c241015ce2ed8906aa4f06454d36
c3db1fc35ccc8d058cd58e1b7c78abe8480a2cca
7304 F20110216_AABOKV lowry_r_Page_017thm.jpg
1291235a0aa4dfa26bf6590be8d8e89d
0c7b43442ddb88e873ffc1345c51867d20fd2f51
23508 F20110216_AABPPB lowry_r_Page_055.QC.jpg
0f6677b3968f7200fc9d2f3a08713b45
de36a262d66b61e9701791d57be0274d78b7b98c
26194 F20110216_AABPOM lowry_r_Page_090.QC.jpg
4b7304620dd3c6ae7ea355f9e56e8359
ab977f80ee1097068cd18300ea5f6b944b955bce
4221 F20110216_AABPNY lowry_r_Page_008thm.jpg
ecca454389475f07cb1f43e01023af2c
e31b5a057644249bb87144ed2a305005236d67d6
131268 F20110216_AABOKW lowry_r_Page_005.jpg
512ab2d2e833993b23f687b9a4405747
af4f1dcf22d9270909452d09d5c3340cfdef3f74
33157 F20110216_AABOLK lowry_r_Page_040.QC.jpg
08314c474ea10f05680bc11287836eb2
cf87bc68a13997136b7ac317ba3f7e8e55699b4a
6163 F20110216_AABPPC lowry_r_Page_060thm.jpg
ec45ebbc4ed2be52e2e1884cc39413c2
8cacf1a2fefb996b98c01893015470dd41c5568f
1480 F20110216_AABPON lowry_r_Page_125thm.jpg
aab73acbb2c7d96e06658b345bb7ba84
5bf81ee3a044e297cce479063663b699ba371715
32841 F20110216_AABPNZ lowry_r_Page_120.QC.jpg
dbf6aad064ece85508b7508e0ebb194c
4e1f687bf235e5632055f1034ea888a1f4ff3187
F20110216_AABOMA lowry_r_Page_164.tif
e499bf434d08db693b5eaf9ecb603a3b
07cc53ef894de8e8e29e230afedad9cbfaec0c75
110102 F20110216_AABOLL lowry_r_Page_111.jpg
b0768dd0429700006e9f5d59ff882b5c
a29c04f7f9e7962685dd7a38d3f6e84e00a5d033
55399 F20110216_AABOKX lowry_r_Page_073.pro
7d215e971cfe6235a7fed13564a531fa
869631efec2f545592c6c73dd3808ae6247c1deb
8974 F20110216_AABPPD lowry_r_Page_043thm.jpg
bcf1d663bf82c62275993d6c114138ae
91123c0346eaa8812fc8f0ccb2b510b5f408a8db
1976 F20110216_AABPOO lowry_r_Page_162thm.jpg
1abfbc995db20988b05944c1f8da4c9e
12f379f65de8cad490a6107b24f72db525668498
19343 F20110216_AABOMB lowry_r_Page_089.pro
030d9cb46cd32be95954e4e04eb85d15
78e823a2be371fd793ff8f7ab529380639f6ab7e
69510 F20110216_AABOLM lowry_r_Page_183.pro
0f9db065dfe5827bd0bf829a0ccdd972
bcd92aa083449e2c4ed7eaabd24a8558d673a5ec
44424 F20110216_AABOKY lowry_r_Page_013.QC.jpg
fee44683164981d9b953d6e86e289120
1dec27c3adb47b6d0598a346f283b56b9c5ce82c
31601 F20110216_AABPPE lowry_r_Page_177.QC.jpg
3ce98dc31798d671967a25b86867b948
0bd30583dc9808874865229a95604c796617572a
5334 F20110216_AABPOP lowry_r_Page_170thm.jpg
aa00c5ea22d6f255a17302f9bfdf4d30
d656aa9c59bb181617d6c10a1d28522c13cd6c74
F20110216_AABOMC lowry_r_Page_150.tif
3586bc370d581cc4eb21abf59555c104
ab08fef7c542c5c81e4297dfb13b28f088970a43
109096 F20110216_AABOLN lowry_r_Page_180.jp2
62eedf12a0557fa1fb34e3124474e731
1b66830d372ccca538410b9fdd8fe02f5be55e27
108396 F20110216_AABOKZ lowry_r_Page_091.jp2
9e53eafb3bf97c24088e108fbfd61045
0664d799aae494022fa42b774fd8f2cf41f4acc7
35872 F20110216_AABPPF lowry_r_Page_025.QC.jpg
e302dbe7830820b49181c42d58302e2f
cb1f39be3a46c614eaba4ee322371aab6be4965a
8965 F20110216_AABPOQ lowry_r_Page_081thm.jpg
c4c80009692ffcf2dba5a52296ab0e25
cb79e299e19ad8536895ac9d9d21352cdf801484
526 F20110216_AABOMD lowry_r_Page_033.txt
2aca0b80edb8c411b8f558820f1d5f27
7e39f28f3b8aba6dac6b184955ef20d5c89f368c
511 F20110216_AABOLO lowry_r_Page_139.txt
0befeae7ac3afc7b8fdecc62e62d886f
486056d72f06dcd38b9cc70accf1f946aa1ec00f
5862 F20110216_AABPPG lowry_r_Page_187thm.jpg
ec1c0b495a049c1c8d4b4b9159556a69
5fd22f21ee860fdf6263ca7a59a28a7fd7fd3fbf
8961 F20110216_AABPOR lowry_r_Page_021thm.jpg
ee7bc610f3244cadb904dadc21b5dba8
b8f7af710169da198c7cb34a721d290dbb0f2bc2
12302 F20110216_AABOME lowry_r_Page_034.pro
e1c0235763cf9966e8843641e45584b7
241aa993d4e833250abf7048cb32acd3254e95ca
77755 F20110216_AABOLP lowry_r_Page_055.jp2
8a648040f187601a18b0623f9f6e79ec
4b568c28f53900635e9add5c476ac34b16fab314
35522 F20110216_AABPPH lowry_r_Page_012.QC.jpg
5430218aa584d32e848554a54c015b3b
c9e6c77bae93f88c67b46e45ed252c3a7a4db4a0
3760 F20110216_AABPOS lowry_r_Page_063thm.jpg
39bdc5157cf044a397404ddc4695f1e6
4946b2a8920dd2ee029921d31ccbe758b4bbf00c
92409 F20110216_AABOMF lowry_r_Page_176.jpg
9765692f447682e166188d2e9dd95654
46e2dac9c98413d8d12d16c0108f27b98cb1a7f8
52404 F20110216_AABOLQ lowry_r_Page_066.pro
28cd8e2b974dfda24bd1705f2ab089b3
7255a04852d5ae398ecd35f3cb11963fa7d3de30
38838 F20110216_AABPPI lowry_r_Page_097.QC.jpg
c38ade11aa650d2e0c2ddb87571192c8
0eb000fc110e884bc55a900bdd460811755f82e0
4859 F20110216_AABPOT lowry_r_Page_128.QC.jpg
f5f4bae527fa69357f317ef5d52b0a9b
abc71dc4e2480e4602d52f936af297e0243e6f2d
35991 F20110216_AABOMG lowry_r_Page_030.QC.jpg
5c11fc9397c067f48d209d9ca4cca7d0
445bcdd375ed64020a9e01d8cc7bfe30d544e214
112605 F20110216_AABOLR lowry_r_Page_051.jp2
efba5fb7db2721a8eeefbb33656e8b0a
9cd2c78f8290e00419c689a02700b41229ec2351
37438 F20110216_AABPPJ lowry_r_Page_068.QC.jpg
8447d1f1bdfbd77db8bb82d7e40cb535
57750346a624f68d6b1990ba6dfecd45f25b30eb
8210 F20110216_AABPOU lowry_r_Page_036thm.jpg
69bd141e92b65265e38f9bcab480eff5
208d76610f3fdf7f0375ea8633daa02214f1942c
35600 F20110216_AABOMH lowry_r_Page_037.QC.jpg
17b7b2f60256ba8a4533f93bf61a164e
ec1529e784843cfc171f5a44a0f2cd62382ca030
4612 F20110216_AABOLS lowry_r_Page_139.QC.jpg
c36b9bf3a614b5c9c75fe0f8c787ecee
95632125b66ca8dfc46bead108600c17b59fe2d1
5100 F20110216_AABPPK lowry_r_Page_137.QC.jpg
033ada07429ee7ae927e020acc032105
42dfffff0b621ce1630a7b4445bb5c9a18b502d7
7525 F20110216_AABPOV lowry_r_Page_119thm.jpg
edde3615eefb28fcf3382c75dbb010c5
de6abd77ad6ad89fb528e0b2b0050b22dff0c70e
F20110216_AABOMI lowry_r_Page_085.txt
8e5a2bd50af703b368edf97df15fbf5f
e054592d0fdac4b422714207fb596c9a3c32b96b
41741 F20110216_AABOLT lowry_r_Page_006.QC.jpg
482a7f9ba6e53806bfec7bec9531f302
21e5f2f21abeb49facb9257c553d76b543bc1c95
20521 F20110216_AABPPL lowry_r_Page_174.QC.jpg
647b7663474189eec25c8e1e55ea92d1
7a9c927be69bdde6f960901299c785d7d76aefe7
16118 F20110216_AABPOW lowry_r_Page_016.QC.jpg
d8789be83bdc8b47ea101544e75f738f
a97d1cf9bbe5f559b4315c78edc9bb73ea8825a0
112978 F20110216_AABOMJ lowry_r_Page_023.jpg
86085852a954c108d29d46457637cc78
2c014c2c7252cfc164f9086a9b688433cf5fa4c3
178970 F20110216_AABOLU lowry_r_Page_006.jpg
62a77e8fc3085a79a07f3eb8dbe8a62c
c16f9d817991b8246536c6fefdcd274ce85440b2
8452 F20110216_AABPQA lowry_r_Page_052thm.jpg
08665341bed82dfbc50fd269a47755a6
a8ef84e1c9915b0b817fa45aa9fae73e5895ad73
9251 F20110216_AABPPM lowry_r_Page_076thm.jpg
a3fe0061bc5bbe69be6004b913e3399e
8dae0134074de7b95990d461160f7b10c271be50
5363 F20110216_AABPOX lowry_r_Page_168thm.jpg
529c1fbba0f6519153dba84291e705ef
0da6a3e629ffce9829b69ba268b0f86d8b4e31a0
7761 F20110216_AABOMK lowry_r_Page_154.QC.jpg
38ff063b163421467782d9728c7b82aa
40a8fb2293cd9f8bd03660d7c6c2fe20a9cb3a36
F20110216_AABOLV lowry_r_Page_134.tif
970737311d9c809f630b10a19b2eb97c
7b7d8acb204b3fa6cee9f41430941779f903e6a7
4912 F20110216_AABPQB lowry_r_Page_159.QC.jpg
80a0db63aa5c8e58c0d309d5cffccc10
298b5bde8cee90e7d38fdecc44e8daf56ee4e325
28766 F20110216_AABPOY lowry_r_Page_018.QC.jpg
65a05380aa975b17407f0f69ca7afcd8
493209ef1a965d00384b22b2f0e8408f52bb2f62
F20110216_AABOLW lowry_r_Page_067thm.jpg
d012bc55965e33baf4cbad75928bb23b
c6e6839654933e16609f76e9791b90379e79f76e
299848 F20110216_AABPQC UFE0024897_00001.xml FULL
7994b77243782683e3e0f62381980d4e
2189d1ccd62809df1aab36357aa9b8e99c1cce07
1634 F20110216_AABPPN lowry_r_Page_137thm.jpg
a86c477f5fb5463e0d784fe68d7315af
e8287080f9ffd8e450c0f2772cf955904288334b
9341 F20110216_AABPOZ lowry_r_Page_183thm.jpg
b7129c2091f0ea0527817bc4bbc06c28
fc86d5384af9dcf2c6ac91474dc8e8b51075a6f5
66229 F20110216_AABOML lowry_r_Page_166.jpg
e397544864c344c18d8b33f0eeea0243
d2cb37c1d451e5cfb54aa0e135da7ba1197fd7d9
1912 F20110216_AABOLX lowry_r_Page_135thm.jpg
7041419c79a1c021a41d671158921ec9
3327f326942b53d321a18c2db7063a0ef51db4fa
2310 F20110216_AABONA lowry_r_Page_100.txt
85c3ed6b54f5d9dd9cd438f8632d43cb
358f3c0898df8cbc50f3dfc26d9357e8adf433a5
40886 F20110216_AABPQD lowry_r_Page_007.QC.jpg
169a92b5b7a300bb7a20c1dbfc18d278
95e16a42815557221fa1a3b2ac52b938ace18023
8999 F20110216_AABPPO lowry_r_Page_026thm.jpg
f9fbc956b92baf6e1bc103f7fc48d5c6
85c06c9532eec1e104319af88e02224ab585daf1
54090 F20110216_AABOMM lowry_r_Page_109.pro
61291d48c0e6b72aa13b21ddeff4c536
6055c1bf69c0311782d6e9907fe76d6915c082c2
49468 F20110216_AABOLY lowry_r_Page_106.jpg
3119d7ede9106d89eec6c05a6ee5b591
1c55ea3a4db656a1551260f5117e19db0a6d1cdc
4475 F20110216_AABONB lowry_r_Page_125.QC.jpg
8acec9a36290a3a9a0962d9e8302aee9
a4546ffbad6b7cb6afb29db9d41da573db352b29
16536 F20110216_AABPQE lowry_r_Page_010.QC.jpg
b870ae0e1874e61736f9896ac7201ddc
57e429ad7969e3d84474261004c45bec259a4620
9414 F20110216_AABPPP lowry_r_Page_044thm.jpg
6c7a1d751334a339ecb6d15f5b8786e3
247755ff84604e60f0b1e08e97bef3f9fcd9d3cf
86047 F20110216_AABOMN lowry_r_Page_107.jpg
1d7d1a41ac25b95a281f8319fd97634a
da00b85abd7ca173d79d6503552cba412c33fdba
36882 F20110216_AABOLZ lowry_r_Page_122.QC.jpg
80d622cefe71e0e830fe874a22512cb8
133cd2ff3766da805f5b42e58667f5d64fb7bf9a
37073 F20110216_AABONC lowry_r_Page_080.QC.jpg
949734495bc2d6dfd30df05a17da027e
e5996aed8803516a9f2b4508fac96c6669174412
31775 F20110216_AABPQF lowry_r_Page_011.QC.jpg
fb4b3110e679e099c9024d5a6fcef04c
5a3901097741f56b47262aa34136e66c4beeafb3
5502 F20110216_AABPPQ lowry_r_Page_164.QC.jpg
d3bf1842b4b085d6c6a17ac150e2557f
7ce6ad7ed798d427884effaadcea937abd615237
265 F20110216_AABOMO lowry_r_Page_035.txt
3e51e87a43227410a30e6565533959e6
d9d51d5334846ba6c6b7b544964ff3f16df885ab
7924 F20110216_AABOND lowry_r_Page_158.pro
c5e9794cbe5b0fb2e828f961bf229e20
2a6cf7fb16871a2fcb2f98b938ad6758652bdeab
40711 F20110216_AABPQG lowry_r_Page_014.QC.jpg
ca3b3c5399eb761a623b63d4686789e6
150337c7dd9bd0d589d3e1494b59b20f69e7653f
8483 F20110216_AABPPR lowry_r_Page_009thm.jpg
2e445c1fc6671261e9c72b92c3dab3d6
365afe8441dad5062bb0934ec564677b72839a43
3098965 F20110216_AABOMP lowry_r.pdf
a2dcb8421a1cd1b53fabc33bef263ddc
5004e5458799977e079f13239d83a63588c2843c
984537 F20110216_AABONE lowry_r_Page_010.jp2
7c03b5eb3fd700988a73c69edab295bf
fbfb51ffc6c8baf87829f298c615eb08e7787d8e
34344 F20110216_AABPQH lowry_r_Page_019.QC.jpg
3fe3feeedddcf381d3d23152d6a389fb
fd349637a81276578a9e024674736dd4e4a43165
12966 F20110216_AABPPS lowry_r_Page_034.QC.jpg
7bb2858be4cc891361a97182f8cc6050
c577eee6a596880025eb7ac4c1ca19bc5750dfe1
9406 F20110216_AABOMQ lowry_r_Page_092thm.jpg
7439ed8ba7a04e20d40caa5f41792f91
7f4eb7aa5b0621a9829d448c55ee9485e7c1991c
51106 F20110216_AABONF lowry_r_Page_078.pro
9eb9c6253529dd82fb9edb6ef4601319
c962cd7e5526498cbfd9c803c96083970195c89e
35181 F20110216_AABPQI lowry_r_Page_024.QC.jpg
67075195381aa2440e96375bbdfb520c
a2eb92353e51e6498796830b0fa447ed3ba68445
38253 F20110216_AABPPT lowry_r_Page_101.QC.jpg
4649490a5e6e0650da6eef1de82e4fc5
f48c2376e039fcab8a078288d98c6f28af1e219b
1621 F20110216_AABOMR lowry_r_Page_018.txt
317ec9d62750b82cb54670642f2e88b1
fa44d86ff24e236d981e097d5bf87fff88dc007e
583 F20110216_AABONG lowry_r_Page_146.txt
ad4d6c6abc23b4af6d4f67ecb89f4ca0
5c5e52e84b8440332d0b959be25e6a4b60688ff2
38638 F20110216_AABPQJ lowry_r_Page_042.QC.jpg
76b1a3fed9c7bfb88ac763f6a47c2a06
e8a7ed2a16214af054497daab6011185ca3210a1
8242 F20110216_AABPPU lowry_r_Page_064thm.jpg
f70a33637fc8cad927a49600f4af6c39
ca72e3d6e2b25f7c2619823985f7152ddf88991a
1551 F20110216_AABOMS lowry_r_Page_131thm.jpg
38b383ed07cf55c0e6b95659ba3000ca
d840ce740dae1325a835b3f0b80ac9ea3a5ff308
19771 F20110216_AABONH lowry_r_Page_175.QC.jpg
eb7fdb9c873986137628c54f131f0d82
d44e5839546022729a812ce03e69a647c861ab3a
36635 F20110216_AABPQK lowry_r_Page_046.QC.jpg
e2274b365919cba1ba10dbb34f2a5b35
5de58623ebf70bfa6808181c2acd718c370f09c4
36257 F20110216_AABPPV lowry_r_Page_067.QC.jpg
a496c23870740f09cecb4ddbdbf94df8
048ab802426265b852b5808296a254885cf90a1e
F20110216_AABOMT lowry_r_Page_142.tif
1fa1fdacc707c6429a303c44dc232483
56d9d3f965753df9957e22ef32b987b907aa6424
120099 F20110216_AABONI lowry_r_Page_038.jp2
6bcdb5984cd6f349d8701710e0532bb7
66b28bd22eb830cc5ef3f2d26f1a055cb7b4de2d
34470 F20110216_AABPQL lowry_r_Page_047.QC.jpg
d650e871b33db9efaa0360c2b5fa8927
97e76146a1f5be74ef8f982e6767b64e1a61987a
1859 F20110216_AABPPW lowry_r_Page_161thm.jpg
1e0cc86776a3550633bf49c01b8d2e50
12df4412c0ca545835e45eebfa36364b29d2d926
53743 F20110216_AABOMU lowry_r_Page_103.pro
ffe3f42c6b5aeb9de76623c83a3e14f8
4a41e06aeeff5662b0b10320c07b200d52ca4454
114910 F20110216_AABONJ lowry_r_Page_042.jpg
5e22dfc99a7571a31c4e9169467a62db
5c02e16140120f6d7f8dcfee3ac38af09a089446
6241 F20110216_AABPRA lowry_r_Page_135.QC.jpg
f22586f14bc484f08d21374c1cc00ff8
7dcd73626c64cf246ef20bcb17e23652c12315ec
13635 F20110216_AABPQM lowry_r_Page_061.QC.jpg
85942f7b292d543a8d475e4957a8ec0d
1183c19608a39c8905d8dc76f2b834799c19659a
3632 F20110216_AABPPX lowry_r_Page_088thm.jpg
f82fed29e8e7696fc42e2ffa5312ec27
ea581c61535ee4afa9a38dedab6dba8a1b7b6527
109226 F20110216_AABOMV lowry_r_Page_036.jp2
80ce527e4a1dcb66f778cea1e76a7e4d
c79c77b8e688f8e25b36fcff57e17636faba8a7e
39076 F20110216_AABONK lowry_r_Page_095.QC.jpg
89190be71808bfb57287920b95bdf1e2
ad81b3db88c2cb950c32ea953027c130921aed8e
6505 F20110216_AABPRB lowry_r_Page_140.QC.jpg
79166733051d4df016bd8286aeb30114
5c082de7e17ab3af68a105e5292c519dec2dbe9d
31788 F20110216_AABPQN lowry_r_Page_065.QC.jpg
18aa39b01ba58b5b2ccbf3ab7e35fc97
c4fcd2dbcecaaa5e8e50082db66dde1bd89ab203
2284 F20110216_AABPPY lowry_r_Page_134thm.jpg
32aa5efa7c7b876a3c194ab6f894b6d7
05d8d4f5ce8203469cf9b62c1fb16a6543f3de45
F20110216_AABOMW lowry_r_Page_048.tif
a50522d74ea8caf03c0a8ce4f769daa6
9a4eef668334e3f07c64ea1a69ef4570f747daf7
218384 F20110216_AABONL UFE0024897_00001.mets
2b54dd9bb61037be8d9c77b98095f10e
edc0ab0354bbd47691def5c7941e558bc89a40ba
3970 F20110216_AABPRC lowry_r_Page_151.QC.jpg
96689962d7373941ea38f2dccdcfe361
fdfbbc77142e3e09e28d0fac31fbb718e3747d50
1680 F20110216_AABPPZ lowry_r_Page_145thm.jpg
fb8970bda4f67ec36f08c6413cbf89d0
2e4cfd22523aa728648690f761b97ee1e003144b
376115 F20110216_AABOMX lowry_r_Page_033.jp2
747a7695a3016c0548c2b7d00f8c9caf
cbff2c4b1f17f4fa9a2d464abd41757321d43aa2
F20110216_AABOOA lowry_r_Page_026.tif
112ef8a46a3738037659c7718a5db228
db8d4f4cc0c46a089cef719fdf50b228eb54cd75
5815 F20110216_AABPRD lowry_r_Page_160.QC.jpg
2a75475a44f86ddef2716852ad9caffb
0fe0d86c2bc10948e7105a35fd51943869111704
38429 F20110216_AABPQO lowry_r_Page_070.QC.jpg
f9d151e954b0a4aed6e137a573578033
0e2baa624944755b3b102acdcd06fa94d9f125a2
17821 F20110216_AABOMY lowry_r_Page_056.QC.jpg
8d4498b3389f9dca9ca24a1a6e70e48a
e97a1a31ca2c0f53f5bd6db0fa712a1e5683ebda
F20110216_AABOOB lowry_r_Page_027.tif
e38b1c0fcbb0cec9a44781f4ed25898e
add157d102bfb49699e3105e12e08fbdd539798e
6833 F20110216_AABPRE lowry_r_Page_162.QC.jpg
eb8da25779050af7fcadd24bc0d0e0c5
99520bfa404682bcaa98ab12c33c16096e4db350
37728 F20110216_AABPQP lowry_r_Page_071.QC.jpg
898d5984e7e7ac1f4823cda2c8972aff
010ccbe7db37686e44226acfada1c4437793df2a
39045 F20110216_AABOMZ lowry_r_Page_094.QC.jpg
366e6ae0ab51e66e7f0e3f82f9a88ced
9cf92a1062dea6d2864783264188049dda7cdff7
F20110216_AABOOC lowry_r_Page_031.tif
fb0f6116b26f93347e5f8c2a08f166e0
78ae855530f6ffb771e9d6518bd854a8a3c0b820
6806 F20110216_AABPRF lowry_r_Page_163.QC.jpg
eaae2c00cb045b7a82e7e412fe411336
ecc335b25b10d6f1d31d6f26ad3f7a2e0cb0c7ca
21819 F20110216_AABPQQ lowry_r_Page_084.QC.jpg
019c037e993a15566e8c41fe4b708be9
c647f2cbfdc9aa3acaafb847dfb19d32167f3a16
F20110216_AABOOD lowry_r_Page_032.tif
f8811e57317431f6a882832be82a40b0
ed4c4f6211f8c6d41e0c419f3711595d5ea8e65a
F20110216_AABONO lowry_r_Page_002.tif
b1ace8e287a70a4bbe7e7505929ce198
a95930118b3e2d7bde936016753a0e4d0acfd4bc
19914 F20110216_AABPRG lowry_r_Page_166.QC.jpg
fdc7402ac3fe8c543d0ab31fb5082493
0c49590f637e64208043da67472ba4e2acd92c0f
38792 F20110216_AABPQR lowry_r_Page_098.QC.jpg
f2f16c87a0e246e89e45e1f60108b9bd
82c9825507467a4f77c8a1e5a56055a3ee2588e3
F20110216_AABOOE lowry_r_Page_035.tif
99d6562afdae744121fc984178b849b7
997bf4fc1673ed6e1d4c89854424a52054f976d3
F20110216_AABONP lowry_r_Page_005.tif
0456f13faea8f959761395014ecdcfee
4359257ecd604b33ca0588c75da139c46d98b62c
20115 F20110216_AABPRH lowry_r_Page_167.QC.jpg
64a3cbe218eb26efe53c38d69e26e1b5
dcf020ae6c13e0db5ce2ec1658f65239ebe86cfa
17527 F20110216_AABPQS lowry_r_Page_105.QC.jpg
5467a32c77265c65137d53790c3afea6
eaf345ebfceac93d5ca01131d4c8acf44d17054f
F20110216_AABOOF lowry_r_Page_037.tif
fe300485613529fe82f83184f95ed251
8f2660ae94da79584e69615cdba2f0571fece27c
F20110216_AABONQ lowry_r_Page_006.tif
81f524416cc3e9b6a2fe69ae4213ba0a
83bd29662044b96bc432fc331791ccadf15e8c68
20293 F20110216_AABPRI lowry_r_Page_172.QC.jpg
b33d428a96446c2d7817f28f19a488eb
5326340e9c3757fe950aeb9a56092e2d926f824a
27200 F20110216_AABPQT lowry_r_Page_107.QC.jpg
f741dc241a1e339f12c501cc46887023
55ec6f118c1697bfe35887ac5369751c38b02a6b
F20110216_AABOOG lowry_r_Page_038.tif
ff4cd56333ad62ec686c6223de53f085
1fc82572c75de7e47012d269bc982c5c0d7da2f4
F20110216_AABONR lowry_r_Page_008.tif
f840494f5b88a67cc39abccff203087f
1dcbb46727598cd962d6f3fe5b4426b031a93d86
20272 F20110216_AABPRJ lowry_r_Page_173.QC.jpg
8221f55c9c558c59ab2d50363148df37
11106b0d1b2247f6df242861cfa84bc99c8d3b79
34189 F20110216_AABPQU lowry_r_Page_113.QC.jpg
8efd6dceeb8bd583e95ace73b59883e9
8bf575aebe9856b7b3bd6c652fa69d75751b904b
F20110216_AABOOH lowry_r_Page_039.tif
09d4c8add860505595f15f08e6881107
907db17377d4cafc65b906a8af82a61a69a9d4fc
F20110216_AABONS lowry_r_Page_013.tif
4084b507ed463fae4de344e9b176f495
379eb18bfaa8de2314ef04127737ba11f34bcbc6
33581 F20110216_AABPRK lowry_r_Page_179.QC.jpg
2f32a06959556dd71634fc18a295754f
0ef7a5541f30768c6fcbad2e77558dadaecdd9bf
34396 F20110216_AABPQV lowry_r_Page_115.QC.jpg
f83b1f36e73689450b78c24c166250cf
7aaac835c1698dda3d0d8519dbfe08e766e94710
F20110216_AABOOI lowry_r_Page_041.tif
049eaa770dd2573cc087ba5b2faf4741
1bd0282557aa3712d7f361e820f63cf252319e25
F20110216_AABONT lowry_r_Page_015.tif
b0187892f4ac6a9c34a74924c16a8a56
d78170eaec79eb72a3b487e076acfa35d5c41c1e
3797 F20110216_AABPRL lowry_r_Page_010thm.jpg
b9f5150106f765c11f95b381032c3ade
fa985ecce4f190d9ef44a219e4754c2ab54f0264
26611 F20110216_AABPQW lowry_r_Page_117.QC.jpg
6db2330f6cf9429099eace971fef9a56
29a7054f108628459b1a2ee7ab39541e7d73e4c3
F20110216_AABOOJ lowry_r_Page_045.tif
6cd97fcfafa595df21957bd66a8ad06b
d8f9fdba9f091c9a5ee5a11dec95d4647fb03cde
F20110216_AABONU lowry_r_Page_018.tif
273da76df4db33f53e1cb6146b03cb23
2db99e19c44cc26537a35b3e4a55a94491d5a9dc
628 F20110216_AABPSA lowry_r_Page_124thm.jpg
892d5cab4f5ea12386ce2edcda095b2f
b053ab9704d0b0d1f0a32cc5238bb3cd651ab279
8655 F20110216_AABPRM lowry_r_Page_012thm.jpg
a8bdb5ff593ba9e230ebfa9dd7669036
eb0d710be47719943208feadef134ef78cda8ac9
8848 F20110216_AABPQX lowry_r_Page_118.QC.jpg
8b7bdd1823d4d88dbc38487945b340bb
fd18e50f48d96fdf614772cde2371abb713e76ef
F20110216_AABOOK lowry_r_Page_046.tif
9089f4815ca8a2dd3fb835282b4fbd85
e9c5e5a837481163d4433fa32dc2bbecbff5c667
F20110216_AABONV lowry_r_Page_019.tif
fb0e0a2ece89274f5b06cb6d481503dd
5a174f703631fa884878c2a98ea9fe546d2bbc0d
1585 F20110216_AABPSB lowry_r_Page_126thm.jpg
75b1b3e064230b664582a81fdad84478
76a3b0445b6e38d42f253f26c7b573db56e66df2
F20110216_AABPRN lowry_r_Page_013thm.jpg
7868523411a98ca579270d3cfb5e84c4
bb4a0d34c54b5f5078411d577f2ddf5d2603f57b
5888 F20110216_AABPQY lowry_r_Page_123.QC.jpg
6221b3fc2b761a09f130ffd4ed38fd85
7d0d78de17c1dacec594bc19081aa5302cc4e029
F20110216_AABOOL lowry_r_Page_047.tif
cbcdae14dd6f9ff3a152511e1858c023
070a15c1977f41c1ce7b8b6e4d84a0912115d902
F20110216_AABONW lowry_r_Page_020.tif
231726be643382c94c2d78278d6a41c9
6a9821d578e24e1d14aafe4c53d57a3e4cb5b790
1559 F20110216_AABPSC lowry_r_Page_127thm.jpg
9c2de734a4b5933294a84bdbc5939bd8
728dafd662f8255befa8240c7e592a0d5129bc03
3172 F20110216_AABPRO lowry_r_Page_015thm.jpg
9ba6e42a6d6a2562bd63095e2fefa060
c269c6bd8432165ebb668020b71e1ed001eff1de
2211 F20110216_AABPQZ lowry_r_Page_124.QC.jpg
78278447887fb3ee8d723e282009acc6
67f2eb37464813929f5350717906abbde864b102
F20110216_AABOPA lowry_r_Page_071.tif
13fc4b76b9291b59ece08981793dd36b
5918ef0c34cfa070e96c046d04014c942af24652
F20110216_AABOOM lowry_r_Page_050.tif
7a4d68ac6f06b4565175c848640bacc0
e96c70818139061f579b69282b42ea2827845428
F20110216_AABONX lowry_r_Page_021.tif
990d36e91cc7cbaa54e1a9b2dfc2f97e
cfff0ec90cc577180e6548f7234f1acd2624c35c
1613 F20110216_AABPSD lowry_r_Page_143thm.jpg
d8758bc19a77b3361d800a25fe7814cf
5871e472869dcde6214b843e944c841acfc1a181
F20110216_AABOPB lowry_r_Page_073.tif
2d7b11d1fa90b40e038140f5d537b0c3
afc2f5bb0bcd21711a0f9bfdffd2eeef55c227d7
F20110216_AABONY lowry_r_Page_022.tif
f8d1a7f2978530c275aed3d6d32aa8b5
58f738e49d8ba5d5fe9722956b998995243e9a82
1884 F20110216_AABPSE lowry_r_Page_148thm.jpg
f136e900fa0646584c9bd99127231071
faafb8fa6db37c96d75065244083b7fc8e40c3a7
8656 F20110216_AABPRP lowry_r_Page_020thm.jpg
61a2bd6b0302cb1410f61732984abf64
981a3fb2b2395e0e6494652cea769c315f53d774
F20110216_AABOPC lowry_r_Page_074.tif
9ee4e5164a931cd09c484858276a72f8
24af62da0fabc274a8959fa933bae1b0698ffd30
F20110216_AABOON lowry_r_Page_051.tif
f5e71fa052c9fb459a539eea0113f56e
7e22c1f88554eb526bdde8594532905ef9584b3f
F20110216_AABONZ lowry_r_Page_024.tif
a934f5a7c7586e629a52b006f3cf8ab3
4bb6137d005352654fe761a78f070651128fb3ee
1286 F20110216_AABPSF lowry_r_Page_151thm.jpg
cf47d976194ab903999987eac4274e60
a0ed606e6637be44c51a3fcb87b37773b4e6cb76
4542 F20110216_AABPRQ lowry_r_Page_034thm.jpg
259013b59f6f55793d81f977e980117d
aa39dfcf76e798682d880f803efadda828077763
F20110216_AABOPD lowry_r_Page_075.tif
cf8ad92900223cd88b84255bed2bcf0c
b11b8ffe2255a31ce32ce97226bab6497c691ac2
F20110216_AABOOO lowry_r_Page_052.tif
6f3ccbf0a283c85002eea0a2630191db
4bd80dc0b24a9dcaffcd7c2e40562c894d64c8ff
1335 F20110216_AABPSG lowry_r_Page_153thm.jpg
6bf6927097ade7f886d434c896afca20
d0508ba9641f5bed09ee5688c48868f701fac3b8
7969 F20110216_AABPRR lowry_r_Page_040thm.jpg
a45643c68f046af5b635672f0457e82d
8846f9c8c126ae60637c228fad5d7fe3d49e4a57
F20110216_AABOPE lowry_r_Page_076.tif
0a53fe636fa1f02a139d90c8eb8afed6
aa12d782d1faf12a1690d1aeb38c2366c9142d91
F20110216_AABOOP lowry_r_Page_054.tif
45968ffafb71885c3fd91b1e9777e657
9afa194432ca97ed0a02f0e043bfda38fed1c7d6
2382 F20110216_AABPSH lowry_r_Page_154thm.jpg
5feb0956826628cf6b28036b5f3c72d9
0c219aedf03971e73569d2a84f548ff695f9339a
9237 F20110216_AABPRS lowry_r_Page_042thm.jpg
24f82578bb2224d8d6387656e7ce459a
3508c8bd8a6b32fb5805f5df61eb99bdf6f820dd
F20110216_AABOPF lowry_r_Page_081.tif
a3f24bb8d02d0aeead27e4286d3d279f
54259836e310f7973cd0d76876f3bec376d05c9f
F20110216_AABOOQ lowry_r_Page_056.tif
995b3c18e9ee8e6934ca3a5206b35076
467b5f5845cf3d6a5c2c61e46b0a695152506106
2472 F20110216_AABPSI lowry_r_Page_156thm.jpg
ef7f20f0fc5b18eb8c4c280f4e6daf70
7a34cc4540256d8148201e72d3f6578b675b2089
3877 F20110216_AABPRT lowry_r_Page_062thm.jpg
240c4494c4b792e328577ed5e8464593
2d9613e151dc8b01840aa48536c8894be7d8c157
F20110216_AABOPG lowry_r_Page_083.tif
3909a25181fbc8a1ea3c0c72472d501d
b2a245fac722751e2f7afd5cec8ad7a6d68b4f20
F20110216_AABOOR lowry_r_Page_059.tif
9439144cd5feadf475cc2e9d8ec5876e
6a441316b2c0057d58094af99e469b5a5802e533
2306 F20110216_AABPSJ lowry_r_Page_158thm.jpg
467c96028c622d4b38879c0886df3081
856fbc8b2c39ff697d58c6aa5a281453ca806299
9250 F20110216_AABPRU lowry_r_Page_077thm.jpg
d12c58b74c994a98dab908e3993f86cb
dcb5e36132cd52cd878619a579f6dc21e19ff887
F20110216_AABOPH lowry_r_Page_085.tif
5c3c5b7876d0261962e82bd72d509b82
b325be165a7fb6434c3a75dab860574cbce93735
F20110216_AABOOS lowry_r_Page_060.tif
cff9000a1eafb4d7b0b66715d7ecb454
f7f3035da75850dc0461f86b3386f6e56f58cd54
5256 F20110216_AABPSK lowry_r_Page_169thm.jpg
8d5281a525154689961b68909183e288
9d51282518f4dba9784eabe12159872b444cf6fe
5467 F20110216_AABPRV lowry_r_Page_085thm.jpg
257d6833c2c409bb4540b73e3cdc0d1e
fa482193895ebc27d0feba66c2e3d05dc1cfe1a0
F20110216_AABOPI lowry_r_Page_086.tif
a8e93e428cf946a9c14ef430cde118a8
57f670378b0f679bc71e85833652cd18f4d29c5f
F20110216_AABOOT lowry_r_Page_061.tif
a1d90b05dff8798593fb95c731102059
0ad4de0faf5b32808409d353bc95d599ebcc3613
5312 F20110216_AABPSL lowry_r_Page_172thm.jpg
1f90f00757e2cefc838799381e76b92d
a0efb3c95e95b54a3c782e3789b12bda85556d5c
5594 F20110216_AABPRW lowry_r_Page_105thm.jpg
e9c0143be23d285d7bcb3dbc639fe386
44adfa3d9fbff4a2ee0b6fbd58aff51d90cfddca
F20110216_AABOPJ lowry_r_Page_087.tif
85b676a8b2fad0c53ddf3bdeecb33eb2
1efa03b749becca47cbc9695de5809223e459c63
F20110216_AABOOU lowry_r_Page_062.tif
04ea9ed264d0312e54124ba9f0e503c4
00ea84e81564b4ea151f5c33ffdd0d53d94bd40d
5368 F20110216_AABPSM lowry_r_Page_173thm.jpg
5ee487686ed2ccda374ea601c4e45525
6e618c96a4ddc448a83eccd9a8ebc5d993e193f1
5506 F20110216_AABPRX lowry_r_Page_106thm.jpg
05dd56d52f15ce8c56eb2cf16714acc9
653dcc600b9db30c7b1eb6de10ba6377fef12520
F20110216_AABOPK lowry_r_Page_090.tif
456e17ac89161ae3ea4da88381335c7e
55ce3c4711f799698e3fc7ff97894c65e4030852
F20110216_AABOOV lowry_r_Page_063.tif
eecf8dce7e1e178e63969f6720a9a1af
3b5b380086a61452ad26372f6996c1128dd47508
5264 F20110216_AABPSN lowry_r_Page_175thm.jpg
fcef9e9558411a7ebc99e6edde722489
fb6f0ca4a130b483f413e038f26f56f1cf9bd2c1
7530 F20110216_AABPRY lowry_r_Page_107thm.jpg
46706b210fc55e04ccd230ac618b3c3c
874a654999bc92350bd7729b7af6dd1403783771
F20110216_AABOPL lowry_r_Page_093.tif
ad7570c417e21c21595ee84824aaeb4e
7d46358e4a82107081b01f0ef13b703a27c9edc5
F20110216_AABOOW lowry_r_Page_066.tif
d1d8c62f9411aa17cf27e1fc723cb0a0
81f82be08681a549216340b444e0a14761af775b
8424 F20110216_AABPSO lowry_r_Page_186thm.jpg
c407405fc2e10609c167d6db20dbb4f1
a0520a4e64e51d5982bfec56e5ef711767c8f150
8321 F20110216_AABPRZ lowry_r_Page_113thm.jpg
1515687ae03a819a759ad6e501b8d419
b8a42deaf29ff8ac93b60bdeb7a4e8e40c5adb18
F20110216_AABOPM lowry_r_Page_094.tif
57b79cb484df1ed2979c8f8525579364
47456f82a14650b2b7b6dc14a545276914e13487
F20110216_AABOOX lowry_r_Page_067.tif
68305a72cb22b911ea37f228a2e0252b
e000eb6925840aa0d6a070bab06702dec4a37e2a
F20110216_AABOQA lowry_r_Page_116.tif
5d9f7aad8ad5fb7a557693bf58928b56
1cd775458c302423f2e4aabf15943bf1714d0f46
F20110216_AABOPN lowry_r_Page_097.tif
c6e069f6296a38db28f5d74a3e99e7e8
0cc1bc0f75b417daf9765757cd9d13f09deb26c0
F20110216_AABOOY lowry_r_Page_069.tif
85ee3a6a2d3333fbcc791d75be8ff475
e6b1bb0fcb7ac30beccfeeb5b106266943f93e83
F20110216_AABOQB lowry_r_Page_117.tif
dfc3680056e01c9a9816e4a6a9634dec
666bbb10ceeb8714072c0d4eeba28f0c794cdb6a
F20110216_AABOOZ lowry_r_Page_070.tif
0f4cdb8fc9fb60b5fa1cd94fd078bf64
828b01f62768d5c4933d3b6d1e272a5f6eb22721
F20110216_AABOQC lowry_r_Page_118.tif
0c218f09d44d094b76d63706c1eea6cc
043703148f18c543d90d9e9fed2f0b2d3e057207
F20110216_AABOPO lowry_r_Page_099.tif
4b7f454f723e3000e5a34fc1623b5dfc
1049baa6144d07251bd3f55634cdc8da1905ca33
F20110216_AABOQD lowry_r_Page_120.tif
a5609ccbdd2ffb79858a65c0b823a6d3
77f21376f4ebfa081bb1a70879ef2752bf413d3a
F20110216_AABOPP lowry_r_Page_100.tif
cd71a65aef594aa1ad835bafb0efc03c
792e723788719d173ea72d333b2f3fd33b2133ab
F20110216_AABOQE lowry_r_Page_122.tif
5b8f9c6bcf151d3c24e483677935f220
e905fd6c708e2b1659e0112c92fb077acced310f
F20110216_AABOPQ lowry_r_Page_101.tif
9f291cd7a83720b5cca41d1fee21ae76
3b0df79ab69a3330542f6653f873931e7d20eaa2
F20110216_AABOQF lowry_r_Page_124.tif
c41fdcb0145e3cebf70f11aefc6d85e9
89b81f74c8b521d8370a38a6a16d2dfea775f5e7
F20110216_AABOPR lowry_r_Page_102.tif
b5613051b15362f0dee69efc1228f94c
8a901896c58d34495357cd1eb8e5f959ecea9171
F20110216_AABOQG lowry_r_Page_125.tif
7fdd9bced12ebb0b8579cda1f9aea90e
87635f03e13ab948e0486d7b34c256a8bb339ad7
F20110216_AABOPS lowry_r_Page_103.tif
035a1ed84df214ce403a2f88c6b3d9b2
8de3bdc427ac19b85010f9ded63217241f0b2214
F20110216_AABOQH lowry_r_Page_128.tif
f2dbcb43510ca8683a80174bf00e2fee
b11360c679b60a6ccefe74be7146304975e8856f
F20110216_AABOPT lowry_r_Page_104.tif
74c208fd1559618837320358adbcc810
d6bdcf6825dd55d27f5294ee7675541bbdcfc287
F20110216_AABOQI lowry_r_Page_129.tif
cfe8c272d6595c2b796377263bab3a59
1538d47e76120dd1d2e78e37dc568eeee43ccd7f
F20110216_AABOQJ lowry_r_Page_132.tif
184c9e60b62f8f4b12776a73638ed1bd
447f0743f29145058cc61f29ec12eb853745bdfe
F20110216_AABOPU lowry_r_Page_105.tif
c0929d02f85e9f9fa1a0e933b97f070a
98ffc66572e114d6620d8538cbe9e6f6502125a3
F20110216_AABOQK lowry_r_Page_133.tif
b2f28b07386a45a3ad2274aece32aa25
4a5c329c12f514e532a140e990d2306f6947822d
F20110216_AABOPV lowry_r_Page_107.tif
a36c3abbcd2ff0368bfe47e08970a0cd
b6f0553c90f07e5ee97e0998abd7be6b27e39ad1
F20110216_AABOQL lowry_r_Page_136.tif
635a27d992b5fc8f505749ed1f955393
faf38ae8da105108fb3a22e99e05a1a7d6328fe3
F20110216_AABOPW lowry_r_Page_109.tif
9946ccc172b56e568344f2e9126a8965
51609dfbea6eb096f550819c2693c993e8b72198
F20110216_AABORA lowry_r_Page_163.tif
f6b8cdaa6bd3599da18230a1039416bf
913c22e80e599ba6e6cf6b9aa88ae8b0d885b397
F20110216_AABOQM lowry_r_Page_138.tif
6f33692006c09cb585dc6d5c91dc2c10
7cbc9f2dd77f7cc1fc0043a2b4501b841e44a9bd
F20110216_AABOPX lowry_r_Page_111.tif
6ff1610d584a68b17b2c0853561a0a19
9341e70284f022b88d729d91caa5fe2d7c39399c
F20110216_AABORB lowry_r_Page_165.tif
102cdb8eb4673422988b443c8b84e1db
c3bf70f16deb5ae41e1625d08e9ea8c36081de9a
F20110216_AABOQN lowry_r_Page_139.tif
3c9805420f2ecfd31b757ec892d73a5d
10f95646e4192aae311070348fb4de0a01e116bd
F20110216_AABOPY lowry_r_Page_112.tif
fb15dbd9bc5f16820dfe824cbe032c80
00dadd3465bcf08fbbb660156499725665eb8f68
F20110216_AABORC lowry_r_Page_166.tif
15f27c9a91fe9c6a62190e021f6568a0
8bb293336f94f33a73347f0eb1df3cddbe694cc8
F20110216_AABOQO lowry_r_Page_143.tif
57b577bab6b3f88340923e46c2715d12
42c178882e29759eaa0ee8635a4141f66cc78ebe
F20110216_AABOPZ lowry_r_Page_114.tif
1abf3c42d437fb106b6efa618ca2e338
bf7d4822346d26618b14f3ac07ec9549b5d3f150
F20110216_AABORD lowry_r_Page_168.tif
798f9cb0d11637abe9cc0a9b92b3abbd
7d7038eb3613901aa5421823de2810d68e87266a
F20110216_AABORE lowry_r_Page_170.tif
bd9eac905adf1e7969ca7b8e6dee7a55
0c4c10babfe158634c99342d0196aa9d1dc5622a
F20110216_AABOQP lowry_r_Page_144.tif
26a5f50f00b12c7059343064189644d7
754acf806b865d45bc75723c0f08aa19951ef74e
F20110216_AABORF lowry_r_Page_174.tif
2efec1ef7634cea5cb6a4cc607c8f7e6
fd40b65cb872d4fcc9045f8da5869a51371d2cf6
F20110216_AABOQQ lowry_r_Page_145.tif
7b1531558b2c7886dd31eb115e8889ee
6ee190837e2cd9213696c87029ee76f8e1186a52
F20110216_AABORG lowry_r_Page_175.tif
1be32f6b38490e7a611add5f629d2e97
bad1e6d624b51b7d3ea7fa81e00ed2a9f19d752b
F20110216_AABOQR lowry_r_Page_147.tif
9510ba74e1e743c006666b1d97252519
63dcf70574f183c1cf5789ee66b4c06c3e6c2a6d
F20110216_AABORH lowry_r_Page_176.tif
a3daeff13c5fac45c313645ed639a6ab
e2c25825a77fe77d64532a3d8147dceba5f48aca
F20110216_AABOQS lowry_r_Page_148.tif
0d100a8a4ed0fe8b414bcfd9dc296f32
e2265a97013ea7534222b008a1b8401d1bf7fec4
F20110216_AABORI lowry_r_Page_177.tif
a3c8ca7ef52fc0a9627a09569acef010
bdfe848349000842f8c140227215ef5a5452a4a2
F20110216_AABOQT lowry_r_Page_149.tif
7ee0cbc96e4b68e59be283ba719913b8
b2d5bd893f6306f78d4c6ece79710d40bf1fb8f6
F20110216_AABORJ lowry_r_Page_178.tif
e89bb5a6daf2b6ff9aac43fe914d3f00
78b234b4cce5c1f57290059d2cf3be435b85fe1f
F20110216_AABOQU lowry_r_Page_151.tif
1b6acd6691a8f282bb449939dacc61ca
3fc93cd499bdf3625f075b215176c45842f986c5
F20110216_AABORK lowry_r_Page_180.tif
c42ad12106db656eff24e8f142644258
310916cdc9b7611e9f8e16d7fc10c401cb645936
F20110216_AABOQV lowry_r_Page_155.tif
35f2affbd89ba2c2308e0216c0dc03ac
c79b3169e5055e3ca30f4ee7b991b6acdce7ddb3
F20110216_AABORL lowry_r_Page_181.tif
100e1c04bc93afb30d8024d49054a6d8
78db934b4197c7434ea97d16905e1722208016a0
F20110216_AABOQW lowry_r_Page_156.tif
b705d03b2dd9974ab37ca16a53dbe2cd
d52a6b5b5870c4c5719090af3e17009a300d52d9
F20110216_AABORM lowry_r_Page_183.tif
349821c5f9d13073a40243634635fdc3
a5a0ead0b5a2030812a67cbb82f34a6ee2d9c74b
F20110216_AABOQX lowry_r_Page_158.tif
88ecb22ed1d8b076d33a5caab4f60371
64e07e7f125470b05a8374bd97bdff6c8634acc5
834 F20110216_AABOSA lowry_r_Page_015.txt
20da302b2ee3a6d55104ae2fd5835893
2a1dd31e821993d379369a1ecb96b0de35b83b9b
F20110216_AABORN lowry_r_Page_184.tif
0c61929d876a74a67cd069ec8c6fc425
f8f290e1b1bdb0ecc2ad8d642a12ec801186e788
F20110216_AABOQY lowry_r_Page_160.tif
2797ae8a8e57131423937ac6dfc9674d
723841a1c0eac0156b0c49cbb447791159a41ed2
908 F20110216_AABOSB lowry_r_Page_016.txt
d53b3f4a39f1fb1f18bf633e42af551d
b88a1683c45763a16aceeb535ab194be031e3dbe
F20110216_AABORO lowry_r_Page_185.tif
e9604034db2fb79ce7f344a06bd389a5
fa93ec63f87682cee2d4dd6efc685b4afa25798a
F20110216_AABOQZ lowry_r_Page_162.tif
54fc3e9ba6af658822657c553faca6b9
dd3636c804b8c4f340a844e9b66ee13063aa0ee1
2199 F20110216_AABOSC lowry_r_Page_022.txt
2c9b70496dc9d87a6f966f7892773f07
2389987d8794b1b0c5c76a8aaa30057713a4181d
F20110216_AABORP lowry_r_Page_186.tif
95a9ae209978f0b9556a11f79d09ee00
b79fa85e8750c8afe147b1e0cd040be8df8b51ec
2187 F20110216_AABOSD lowry_r_Page_023.txt
352fb8e05bdacc38bcc7af0ef698b848
62e5c16e68fd435b38d7d1106eec7a6ff3b0f599
F20110216_AABOSE lowry_r_Page_024.txt
825fd2a1ac6a9fed6209d62d710695dc
15148a831845d5306c39e8fd45e798c19a0e2fc2
F20110216_AABORQ lowry_r_Page_187.tif
62735b95c52eed8f34eadab4ffe40bbb
67ab2e3ad3d0d941bfdad781792b4770697f43b0
2100 F20110216_AABOSF lowry_r_Page_027.txt
3e81be3d880069ca82f610e1a62c66d1
d69a2a7ef76a4124284f48ad606a4c963ac9f130
540 F20110216_AABORR lowry_r_Page_001.txt
d6b8f88661f6224357c9ebc5d960e27f
49a5787f6f6b077a12806536a6ee2a1c2d787915
F20110216_AABOSG lowry_r_Page_028.txt
120966a8af69612fc5290cfaab12b640
aad1e504a37521888992fec92da9071e6b6fc585
97 F20110216_AABORS lowry_r_Page_002.txt
ea3e09babfb0897680350d210d0770cc
58d4f08723345f99831c90ec23864728b5314506
2055 F20110216_AABOSH lowry_r_Page_029.txt
36e5f118b393787dfc25cd04b1957ec3
815aa8e9b4014b798e1a69ffbe93ba06b9d236ed
1059 F20110216_AABORT lowry_r_Page_004.txt
fd7587fc745167ba1883bb2109267f64
8f59a294cf5642b1e341b8dceed849019d43f735
2109 F20110216_AABOSI lowry_r_Page_031.txt
9e6bb7d3f751aca4c999956603f97e3b
20de67a247781a98c4fc3a9f4c6d91e1ceb2fc84
4651 F20110216_AABORU lowry_r_Page_006.txt
7b15d0230da9c2782c1ef5c107c160e1
8133e68a887baf5e4cb36de3dbfcd844dd967dba
1259 F20110216_AABOSJ lowry_r_Page_032.txt
265e10ae8b565946d61c15723295dd37
31781fcbf561e4484a6cbeeb01836555b94c1069
2024 F20110216_AABORV lowry_r_Page_008.txt
9b4157486f8657ebd56c863ecb21a8a3
2fc24bdc06f34353b7c4d6eda67ee86fa645bd1c
636 F20110216_AABOSK lowry_r_Page_034.txt
ad5d59b5b939482d5b495246c1c12470
58b6709a80d86a2183a40ec2ae78d0bcf0c81ff7
2736 F20110216_AABORW lowry_r_Page_009.txt
eada658469c0e67e8ac4f35eab52ad30
f384124234990c548a3a158aaf5bf47161b6b0a5
2051 F20110216_AABOSL lowry_r_Page_036.txt
af9a8d8954227f6b473adb3ab72bb46a
4aca64d7074833472eb67764bb3b78144c0a3086
3013 F20110216_AABORX lowry_r_Page_012.txt
cf499f29584533c5f4597b126a530732
4910e790a73db4f9e8aa73551fe787dabede42e1
F20110216_AABOTA lowry_r_Page_054.txt
c718110626de1029f5254db505642dfa
8ea20630d3a7a724f27f2461ecd9a1a7ad7bf63a
F20110216_AABOSM lowry_r_Page_037.txt
7454bb98f718310fcab3b4090470005c
3561c1d2813742d3e039e387ebd7a22f880bec9b
2880 F20110216_AABORY lowry_r_Page_013.txt
baa885c2e0c215c5b54fbd2e72a488da
2976be77f2a6047179675ff0261ebd5882d69c44
1424 F20110216_AABOTB lowry_r_Page_055.txt
34aec0bab5096a430be00bb7f30c0877
ffa751772ad54f792f6e2c0c8153aca816de5b47
1962 F20110216_AABOSN lowry_r_Page_039.txt
73393aeee6730725a803a06d96340813
ca43676f3f8ce5c78a3f19aee91821359a6d0a5f
2999 F20110216_AABORZ lowry_r_Page_014.txt
136f1d49e94adfb9c2ce512e5cd8f9b2
4062dd33b2b9efd0f83c7f186af834af1863aaef
1096 F20110216_AABOTC lowry_r_Page_056.txt
719f4c03c9742824801dd7adbb326934
4c73e8114bd795254ef359abae418272cc4b96c0
1823 F20110216_AABOSO lowry_r_Page_040.txt
bdbff7bb42bf962c3dd2665f5a094da4
8d94c48baad17039d106a0c0ba63ff8b8945c8ee
727 F20110216_AABOTD lowry_r_Page_058.txt
e03725251d750d012a478ffa3de76558
7d5ad9676200604cc6670573bc40aa4159d912f5
2111 F20110216_AABOSP lowry_r_Page_042.txt
831ad7eb16e3ee6baedd61ffdd187abe
95b6d50b253b9be20f777f8c3fbf6559db46a24b
1435 F20110216_AABOTE lowry_r_Page_060.txt
3a7b2da6ef3c62eee4c8174aa75cc995
8e2b2a59a03ca45c7c8788b6bce09b861dbee324
2062 F20110216_AABOSQ lowry_r_Page_043.txt
155fc7e75ac6778e27f719a497031257
20dbf8cb0aae2baba8d080693ffa1a317e1fe575







RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS-N-
HETEROCYCLIC CARBENE LIGANDS:
DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION




















By

ROXY JOANNE LOWRY


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2009




































2009 Roxy Joanne Lowry


























To Faye J. Bell my hero, my best friend, and my grandmother; she taught me to love with
unfaltering resolve, live with unimaginable passion, and to follow my dreams
Rest in Peace









ACKNOWLEDGMENTS

I thank my family for their love and support; my mother for her logical and sound advice

and her genetic strength of character; my dad for his compassion and doting; and my brother for

his gentle, unassuming, and humble heart. I thank Jason Swails; his patience, affection, and

computer skills got me through the last several difficult months. I will be forever grateful to

Mrs. Vanessa (Thurston) Keck and Dr. Chad E. Mair for their friendships and particularly their

ever-present shoulders during one of the most difficult years of my life. I thank Soumya Sarkar

for being my sanity in the laboratory. I acknowledge those people who have aided in aspects of

my research; Melanie K. Veige, Dr. Khalil Abboud, and Dr. Ion Ghiviriga. Although they are

too numerous to name personally, I thank all of the wonderful people with whom I have become

friends over the last five years. Finally, I thank my adviser, Dr. Adam S. Veige for his advice

and instruction.









TABLE OF CONTENTS



A C K N O W L E D G M E N T S ............................................................................................... ............... 4

LIST OF TAB LE S .... .. ........... ...... ............................................ ...... 9

LIST OF FIGURES ...................................... ....... ................ 11

L IST O F A B B R E V IA T IO N S .............................................................................. ........................ 16

A B STR A CT ...................... ....................... ......... ................ 17

CHAPTER

1 GENERAL INTRODUCTION .. .......................................................... ............... 19

1.1 Catalysis Background and Im portance ........................................ .......................... 19
1.2 C hiral C ataly sis ................... ............................................................. ...... 22
1.3 N -H eterocyclic C arbenes...................... .. .. ......... .............................. ............................ 27
1.3.1 Early History .... ........................... ............. 27
1.3 .2 C arb en e G eo m etry ............................................................................. ................ 2 7
1.3 .3 E electronic Influ ences ...................................................... ............... ...... ....... 28
1.3.4 N H C Topologies .......... .. .................................... ......... ............. 29
1.3 .5 M -N H C B ending ...................................................... ...................... ............ .. 30
1.4 Contribution of This M anuscript......... ................. ................................... ............... 31

2 FIRST GENERATION DI-NHC CATALYSTS............................................................... 36

2 .1 In tro d u ctio n ........................................................................................................................... 3 6
2.2 Experim mental Section ........................................................................... .. ................ 39
2.2.1 Synthesis of Trans-1,1'-[ 9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyldimethanediyl]bis(Benzylimidazole) bis(Triflouromethansulfonate)
[D EAM -BI](O Tf)2 (2-1) ................................................................................. 39
2.2.2 Synthesis of Trans-1,1'-[9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyldimethandiyl]bis(1-B enzylimidazolidine-2-Ylidene), DEAM-BY (2-
2) ............................. ..... ....... ......... ....... ......... ........... ............... 40
2.2.3 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
11,12-bis(1-Benzylimidazolidine-2-Ylidene) Cyclooctadiene Triflate,
[(DEAM -BY)Rh(COD)]OTf (2-3) ............................................. ... ............... 41
2.2.4 Synthesis of [/2-DEAM-BY][Rh(COD)Cl]2 (2-4) .................................. 42
2.2.5 Synthesis of Iridium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
11,12-bis(1-Benzylimidazolidine-2-Ylidene) Cyclooctadiene Triflate,
[(DEAM-BY)Ir(COD)]OTf (2-5) ........ .......... ..................................43
2.2.6 Synthesis of [2 -DEAM-BY][Ir(COD)C1]2 (2-6) ............................................... 45
2.2.7 Catalytic H ydroform ylation ............... ........................................................... 46
2.2.8 X -ray C rystallography ................................................... ................................... 47









2 .3 R esu lts an d D iscu ssion ........................ ....... ................................................................. 4 7
2.3.1 Preparation and Solution State Analysis of [DEAM-BI](OTf)2 (2-1)........... 47
2.3.2 Preparation and Solution State Analysis of [DEAM-BY] (2-2) ...........................48
2.3.3 Preparation and Solution State Analysis of [(DEAM-BY)Rh(COD)]OTf (2-
3) ................... ............. ......................................... 49
2.3.4 Preparation and Solution State Analysis of [,-DEAM-BY][Rh(COD)Cl]2 (2-
4 ) ................. ........ ............ ..... ................... ................................. ......... 5 0
2.3.5 Preparation and Solution State Analysis of [(DEAM-BY)Ir(COD)]OTf (2-5)
and [/,-D EAM -BY ][Ir(COD )Cl]2 (2-6) .............................................................. 50
2.4 X-ray Structural Analysis and Comparisons................................................................ 51
2.4.1 Comparison of Organic Precursors 2-1 and 2-2. ................................................51
2.4.2 Monometallic [(DEAM-BY)M(COD)]OTf 2-3 and 2-5.................................... 52
2.4.3 Bimetallic Complexes [u-DEAM-BY][M(COD)C1]2 2-4 and 2-6..................... 54
2 .5 Initial C atalytic T estin g .............................................. ................................................... 54
2.6 Conclusions ................................................................ 55

3 SECOND GENERATION DI-NHC CATALYSTS148........................................ ............... 64

3 .1 In tro d u ctio n ........................................................................................................................... 6 4
3 .2 E x perim mental S section ........................................ ...... .......... ................................. 66
3.2.1 GC Analysis of Chiral 9,10-Dihydro-9,10-Ethanoanthracene-l 1,12-Diamine
(3 -1) ...................... .. ... ........... .. .. .......... .. ........... ................ 6 6
3.2.2 Synthesis of Trans-1,1'-(9,10-Dihydro-9,10-Ethanoanthracene- 11,12-
D iyl)di(1H -Im idazole) (3-2) ................................................ .......... .................. 66
3.2.3 Synthesis of Trans-1,1'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyl)di(3-Methyl-1H-Imidazol-3-lum) Diiodide [DEA-MI](I)2 (3-3).............. 67
3.2.4 Synthesis of Trans-1,1-(9,10-Dihydro-9,10-Ethanoanthracene- 11,12-
Diyl)di(3-Methyl-lH-Benzimidazol-3-Ium) Diiodide [DEA-MBI](I)2 (3-
4) ................... ..... ........................ ... ..................................... 68
3.2.5 Synthesis of Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-(1-
Methyl)Bibenzimidazole), DEA-MbBY (3-5).............................................. 68
3.2.6 Synthesis of [a-DEA-MY][Rh(NBD)I]2 (3-6) as a Mixture with 3-9................69
3.2.7 Synthesis of [/-DEA-MBY][Rh(diene)Cl]2 (3-7) as a Mixture with 3-8 ..........70
3.2.8 Synthesis of the Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
9,10-bis(l-Methylbenzimidazolidine-2-Ylidene) Cyclooctadiene Iodide,
[(DEA-MBY)Rh(COD)]I (3-8) ......... .............. ........... ... ......... ...... 71
3.2.9 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
9,10-bis(l-Methylimidazolidine-2-Ylidene Cyclooctadiene Iodide,
[(D EA-M Y )R h(CO D )]I (3-9) ........................................ ....... ........ ....... 72
3 .3 R esu lts an d D iscu ssion ............ ............................ .................................... .......................7 3
3.3.1 Constrained Precursors [DEA-MI](I)2 (3-3) and [DEA-MBI](I)2 (3-4) ..............73
3.3.2 Synthesis and Characterization of DEA-MbBY (3-5)..................................... 75
3.3.3 Synthesis and Characterization of [/-DEA-MY][Rh(NBD)I]2 (3-6) and [pu-
DEA-MBY][Rh(COD)Cl]2 (3-7-COD).............................. ............... ......76
3.3.4 Synthesis and Characterization of [(DEA-MBY)Rh(COD)]I (3-8) and
[(D E A -M Y )R h(C O D )]I (3-9) ......... ................ .................. ................. ..... 77









3.3.5 X -ray A analysis of D EA -M bBY (3-5) ....................................................................78
3.3.6 X-ray Analysis of Bimetallic Complexes [/,-DEA-MY][Rh(NBD)I]2 (3-6)
and [l-DEA-MBY][Rh(COD)Cl]2 (3-7-COD) ............................................. 79
3.3.7 Structural Analysis of Monometallic Complexes [(DEA-MBY)Rh(COD)]I
(3-8) and [(DEA-M Y)Rh(COD)]I (3-9) .............. ................ .............. ........ 80
3.4 Conclusions ................................................................ 82

4 THIRD GENERATION CATALYSTS ............................................................................. 91

4.1 Introduction ........................................ ...................... 91
4 .2 E xperim mental Section ....................................................................... ... ... ............. . 9 1
4.2.1 Synthesis of Trans-1,1'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyl)di(3-Isopropyl-1H-Imidazol-3-Ium) Diiodide [DEA-iPrI](I)2 (4-1).........91
4.2.2 Synthesis of Trans-1,1-(9,10-Dihydro-9,10-Ethanoanthracene-l 1,12-
Diyl)di(3 -Isopropyl-1H-Benzimidazol-3 -lum) Diiodide [DEA-iPrBI](I)2
(4 -2 ) ................. ............................. .............. ... ............. 9 2
4.2.3 Synthesis of N,N'-bis(4-Nitrotolyl)-9,10-Dihydro-9,10-Ethanoanthracene-
1 1,12 -D iam in e (4 -3 ) ................................................................................... ... 9 2
4.2.4 Synthesis of N,N'-bis(4-Aminotolyl)-9,10-Dihydro-9,10-Ethanoanthracene-
11,12-D iam ine (4-4) .................................................................................. ........ 93
4.2.5 Synthesis of Trans-1,1'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-
D iyl)di(1H -Tolylim idazole) (4-5) ................................................ ................. 94
4.2.6 Synthesis of Trans-1,1-(9,10-Dihydro-9,10-Ethanoanthracene-l 1,12-
Diyl)di(3-Methyl-1H-Tolylimidazol-3-Ium) Diiodide [DEA-MTI](I)2 (4-
6 ) ................... .. ..... ... .............. ... ............... ........ .................. . 9 4
4.2.7 Synthesis of Trans-1,1-(9,10-Dihydro-9,10-Ethanoanthracene-l 1,12-
Diyl)di(3-Isopropyl-1H-Tolylimidazol-3-Ium) Diiodide [DEA-iPrTI](I)2
(4 -7) .................. .................................................... ..... ..... ........ ........... .9 5
4.2.8 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
9,10-bis( -Isopropylimidazolidine-2-Yli dene) Cyclooctadiene Iodide,
[(DEA-iPrY)Rh(COD)]I (4-8) ................................... .... .................... 95
4.2.9 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
9,10-bis(1-Isopropylbenzylimidazolidine-2-Ylidene) Cyclooctadiene
Iodide, [(DEA-iPrBY)Rh(COD)]I (4-9)........................................................96
4.2.10 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-
9,10-bis(1-Methyltolylimidazolidine-2-Ylidene) Cyclooctadiene Iodide,
[(DEA-MTY)Rh(COD)]I (4-10) ............... .. ..................98
4.3 R results and D discussion ........................................................................................ 99
4.3.1 Synthesis and Characterization of [DEA-iPrI](I)2 (4-1) and [(DEA-
iP rY )R h(C O D )]I (4 -8)................................................... ................................. 99
4.3.2 Synthesis and Characterization of [DEA-iPrBY](I)2 (4-2), [DEA-MTY](I)2
(4-6), [DEA-iPrTY](I)2 (4-7) and the Corresponding Monometallic
Rhodium Complexes [(DEA-iPrBY)Rh(COD)]I (4-9) and [(DEA-
M TY )Rh(CO D )]I (4-10) ................... ......................................... ............... 100
4.4 Conclusions ........ ....................................... ................ 103









5 ASYMMETRIC CONJUGATE ADDITION .............................................................. 108

5 .1 Introdu action ....................................................... 10 8
5 .2 E x perim mental S section .............................................................. .............. ............... ...... 1 12
5.2.1 General Catalytic Procedure ................................ 112
5.2.2 3-Phenylcyclohexanone (5-1) ............ .................................. 112
5.2.3 3-(2-Methylphenyl)-Cyclohexanone (5-2)........ ...........................................113
5.2.4 3-(1-Naphthalenyl)-Cyclohexanone (5-3)..................... ..................... 113
5.2.5 3-(4-Methoxyphenyl)-Cyclohexanone (5-4)............... .... ............... 113
5.2.6 3-(4-Fluorophenyl)-Cyclohexanone (5-5).......................................................114
5.2.7 3-Phenylcyclopentanone (5-6) ...................................... ......................... ......... 114
5 .3 R esu lts an d D iscu ssion ............................................................. ...................................... 114
5 .4 C o n clu sio n s ............... .......................................................................................................... 1 17

6 CONCLUSIONS AND FUTURE DIRECTION....................................... ............... 121

APPENDIX

A NUCLEAR MAGNETIC RESONANCE ................................ 124

B R E FIN E M EN T D A T A ....................................................................................................... 166

L IST O F R E F E R E N C E S .............................................................................. ............................. 176

B IO G R A PH IC A L SK E T C H ...................................................... ............................................... 187









LIST OF TABLES


Table page

2-1 Selected bond lengths (A) and angles () for complex 2-1................................................60

2-2 Selected bond lengths (A) and angles () for complex 2-2................................................61

2-3 Selected bond length (A) and angles () for complex 2-3............................................. 61

2-4 Selected bond length (A) and angles () for complex 2-4 ............................................. 62

2-5 Selected bond lengths (A) and angles (0) for complex 2-5................................................62

2-6 Selected bond length (A) and angles (0) for complex 2-6 ............................................. 63

2-7 Initial catalytic hydroformylation results utilizing complex 2-3...................................63

3-1 Selected bond length (A) and angles () for complex 3-5 .................................................. 88

3-2 Selected bond length (A) and angles () for complex 3-6 .................................................. 88

3-3 Selected bond lengths (A) and angles () for complex 3-7............................................... 89

3-4 Selected bond lengths (A) and angles () for complex 3-8............................................... 89

3-5 Comparison of measured and calculated bond lengths (A) and angles (0) for 3-8 ..........90

3-6 Comparison of bond lengths (A) and angles (0) for calculated structures 3-8-calc and
3-9-calc. .......... .. ........................ ....... ... .. 90

4-1 Selected bond lengths (A) and angle () for calculated structures 3-8-calc and 4-10-
calc. ................................... ....... ... .. 104

5-1 Optimization of catalytic conjugate addition involving compound 3-8. .......................... 119

5-2 Form ation of 5-1 catalyzed by 3-8, 3-9, and 4-8 ................................................................ 119

5-3 Formation of 5-2 catalyzed by 3-8, 3-9, and 4-8..........................................................120

5-4 Formation of 5-3 catalyzed by 3-8, 3-9, and 4-8..........................................................120

5-5 Formation of 5-4 catalyzed by 3-8, 3-9, and 4-8..........................................................120

5-6 Formation of 5-5 catalyzed by 3-8, 3-9, and 4-8..........................................................120

5-7 Formation of 5-6 catalyzed by 3-8, 3-9, and 4-8..........................................................120










B-l

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10


Crystal

Crystal

Crystal

Crystal

Crystal

Crystal

Crystal

Crystal

Crystal

Crystal


data, structure

data, structure

data, structure

data, structure

data, structure

data, structure

data, structure

data, structure

data, structure

data, structure


solution and refinement for 2-1.

solution and refinement for 2-2.

solution and refinement for 2-3.

solution and refinement for 2-4.

solution and refinement for 2-5.

solution and refinement for 2-6.

solution and refinement for 3-5.

solution and refinement for 3-6.

solution and refinement for 3-7.

solution and refinement for 3-8.


................ ................... ...... 16 6

................ ................... ...... 16 7

................ ................... ...... 16 8

................ ................... ...... 16 9

................ ................... ...... 17 0

.................... .................. ....... 17 1

................ ................... ...... 172

................ ................... ...... 17 3

................ ................... ...... 174

................ ................... ...... 17 5









LIST OF FIGURES


Figure page

1-1 Reaction coordinate diagram for catalyzed and uncatalyzed reactions............................ 32

1-2 Generalized mechanisms for A) uncatalyzed reaction B) catalyzed reaction C) single
reagent activation catalysis D) catalyzed reaction with intermolecular reaction ..............32

1-3 Structures of(R) and (S)-Carvone and (R)- and (S)-Thalidomidec .................................. 33

1-4 Selected privileged ligands ......... ... ............ ................. ......................... ......................... 33

1-5 Wanzlick's and Ofele' sNHC complexes and Lappert's enetetraamine ...........................34

1-6 Relative influence of geometric and electronic effects on the energy gap between o
and p, orbitals ......................... ................. ..................................34

1-7 Resonance structures of NH C. ................................................. ............................... 34

1-8 Com m on N -heterocyclic carbenes ................................................ .......................... 35

2-1 E xam ples of chelating N H C s ....................................... .................................................. 56

2-2 Synthesis of [DEAM -BI](OTf)2 (2-1)............................. .......................... 57

2-3 Synthesis of DEAM-BIY (2-2)...... .................................................... ................ 57

2-4 Synthesis of [(DEAM-BY)Rh(COD)]OTf (2-3).............................................................57

2-5 Synthesis of [/,-DEAM-BY][Rh(COD)Cl]2 (2-4) ................ ................................ 58

2-6 Synthesis of [(DEAM-BY)Ir(COD)]OTf (2-5)................. ......................................58

2-7 Synthesis of [/,-DEAM-BY][Ir(COD)Cl]2 (2-6)............................................................58

2-8 X -ray Crystal Structure of 2-1 and 2-2 ........................................ ......................... 59

2-9 M olecular Structure of 2-3 and 2-5 .......................... ......... .......................... ................. 59

2-10 Average bond angles and length of free NHCs and M-NHCs ..................... ............ 60

2-1 1 M molecular Structure of 2-4 and 2-6 ........................ ........................................................ 60

3-1 First and second generation ligand architectures. ................................................... 82

3-2 Synthesis of [D EA -M I](I)2 (3-3).................................................................................... 83

3-3 Synthesis of [D E A -M B I](I)2 (3-4) ............... ......................... ........................................... 83









3-4 Synthesis of D EA -M BY (3-5).......... ............... ............................. ............... 83

3-5 Synthesis of binuclear compounds [ -DEA-MY][Rh(NBD)I]2 (3-6) and [p-DEA-
MBY][Rh(COD)Cl]2 (3-7) as mixtures with 3-8 and 3-9 ...................................................84

3-6 Synthesis of rhodium monomer complexes [(DEA-MBY)Rh(COD)]I (3-8) and
[(D E A -M Y )R h(C O D )]I (3-9)................................................................................................ 84

3-7 M olecu lar stru ctu re of 3 -5 ..................................................................................................... 85

3-8 M olecular structure of com pound 3-6...................................................... ............... 85

3-9 M olecu lar stru ctu re of 3 -7 ..................................................................................................... 86

3-10 M olecular Structure of 3-8 ...................... .. .. ......... .. ....................................................... 86

3-11 Calculated equilibrium geometries of 3-8-calc and 3-9-calc ...................................... 87

3-12 Overlay of calculated structures 3-8-calc and 3-9-calc ........................................ 87

4-1 G generation s of ligands to date. ......... ............................................................... ............... 104

4-2 Synthesis ofligand [DEA-iPrI](I)2 4-1 and [(DEA-iPrY)Rh(COD)]I 4-8 ....................... 104

4-3 Synthesis ofligand [D EA -iPrB I](I)2 4-2. ........................................................................... 105

4-4 Synthesis ofligand [DEA-MTI](I)2 4-6.............................. ..................... 105

4-5 Synthesis ofligand [DEA-iPrTI](I)2 4-7. ........................ ......... 105

4-6 Synthesis of [(DEA-iPrBY)Rh(COD)]I 4-9. .......................................................... 106

4-7 Synthesis of [(DEA-MTY)Rh(COD)]I 4-10.......................................................... 106

4-8 Calculated structure for [(DEA-MTY)Rh(COD)]I 4-10. ........................................ 106

4-9 Overlay of the calculated structure [(DEA-MBY)Rh(COD)]I 3-8-calc and [(DEA-
M TY )R h(C O D )]I 4-10-calc .................................................. .......................... ...... 107

5-1 Transmetallation of aryl substituents to rhodium catalysts. ......................... .................. 117

5-2 Catalytic cycle for the 1,4-addition of boronic acids to cyclic enones......................... 118

6-1 Proposed ligand structures for enhanced chiral induction........................................ 123

A- 1H NMR spectrum of(+/-) [DEAM-BI][OTf]2 (2-1) in (CD3)2SO............................. 125

A-2 13C NMR spectrum of(+/-) [DEAM-BI][OTf]2 (2-1) in (CD3)2SO............................. 126









A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13


1H NMR spectrum of(+/-) DEAM-BIY (2-2) in C6D6.................. ........................ 127

13C NMR spectrum of(+/-) DEAM-BIY (2-2) in C6D6.............................................. 128

1H NMR spectrum of(+/-) [(DEAM-BIY) Rh (COD)] OTf(2-3) in CDC13.................. 129

13C NMR spectrum of(+/-) [(DEAM-BIY) Rh (COD)] OTf(2-3) in CDC13................. 130

1H NMR spectrum of (+/-) (DEAM-BIY)Rh2(COD)2C12 (2-4) in CDC13...................... 131

13C NMR spectrum of (+/-)(DEAM-BIY)Rh2(COD)2C12 (2-4) in CDC13 .................... 132

1H NMR spectrum of(+/-) [(DEAM-BIY)Ir(COD)]OTf (2-5) in CDC13 ...................... 133

1H NMR spectrum of(+/-) [(DEAM-BIY)Ir(COD)]OTf (2-5) in CD2C12......................134

13C NMR spectrum of(+/-) [(DEAM-BIY)Ir(COD)]OTf (2-5) in CD2C12 ................... 135

1H NMR spectrum of(+/-) (DEAM-BIY)Ir2(COD)2C12 (2-6) in CDC13.........................136

13C NMR spectrum of(+/-) (DEAM-BIY)Ir2(COD)2C12 (2-6) in CDC13 .....................137


A-14 1H NMR spectrum of 1,1-(9,10-dihydro-9,10-ethanoanthracene- 1,12-diyl)di(3-
methyl-1H-benzimidazol-3-ium) diiodide (3-4) in (CD3)2SO. ................................ ... 138

A-15 1HNMR spectrum of(+/-) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-(1-
methyl)bibenzimidazole), [(DEA-MbBY] (3-5) in C6D6 ........................................ 139

A-16 13C{1H} NMR spectrum of(+/-) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-
(1-methyl)bibenzimidazole), [(DEA-MbBY] (3-5) in C6D6 ....................................... 140

A-17 1H NMR spectrum of [u-DEA-MY] [Rh(NBD)I]2 (3-6) as a mixture with 3-9 in
C 6D 6. ................ .......................................................... .................. 14 1

A-18 1H NMR spectrum of [u2-DEA-MBY][Rh(NBD)I]2 (3-7-NBD) as a mixture with 3-
8-N B D in C 6D 6 .................................................................................. 142

A-19 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methylbenzimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-MBY)Rh(COD)]I (3-8) in CDC13. ....................................... ...... ........ 143

A-20 13C{1H} NMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methylbenzimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-MBY)Rh(COD)]I (3-8) in CDC13. ....................................... ...... ........ 144

A-21 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-MY)Rh(COD)]I (3-9) in CD3C. ................................ ................... 145









A-22 13C{1H} NMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-MY)Rh(COD)]I (3-9) in CD3C. ................................ ................... 146

A-23 1HNMR spectrum of(+/-) [DEA-iPrI][I]2 (4-1) in (CD3)2SO ................ .............. 147

A-24 13C NMR spectrum of(+/-) [DEA-iPrI][I]2 (4-1) in (CD3)2SO................ ................. 148

A-25 1HNMR spectrum of(+/-) [DEA-iPrBI][I]2 (4-2) in (CD3)2SO ................................... 149

A-26 13C NMR spectrum of(+/-) [DEA-iPrBI][I]2 (4-2) in (CD3)2SO. .................................. 150

A-27 H NMR of N,N'-bis(4-nitrotolyl)-9,10-dihydro-9,10-ethanoanthracene- 1,12-
diam ine (4-3). .............................................................................. 15 1

A-28 13C NMR of N,N'-bis(4-nitrotolyl)-9,10-dihydro-9,10-ethanoanthracene-1 1,12-
diam ine (4-3). .............................................................................. 152

A-29 H NMR of N,N'-bis(4-aminotolyl)-9,10-dihydro-9,10-ethanoanthracene- 1,12-
diam ine (4-4). .............................................................................. 153

A-30 13C NMR of N,N'-bis(4-aminotolyl)-9,10-dihydro-9,10-ethanoanthracene-l 1,12-
diam ine (4-4). .............................................................................. 154

A-31 H NMR 1,1'-(9,10-dihydro-9,10-ethanoanthracene- 1,12-diyl)di(1H-tolylimidazole)
(4-5) ...................... ........................................... 155

A-32 13C NMR 1,1'-(9,10-dihydro-9,10-ethanoanthracene-l 1,12-diyl)di(1H-
toly lim id azo le) (4 -5 ). ............................................... ..................................................... 15 6

A-33 1HNMR spectrum of(+/-) [DEA-MTI][I]2 (4-6) in (CD3)2SO............... ........... 157

A-34 13C NMR spectrum of(+/-) [DEA-MTI][I]2 (4-6) in (CD3)2SO.................................... 158

A-35 1HNMR spectrum of R,R [DEA-iPrTI][I]2 (4-7) in CDC13 ............. .......... ........ 159

A-36 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-isopropylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-iPrY)Rh(COD)]I (4-8) in CDC13 ............................... ............... 160

A-37 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-isopropylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-iPrY)Rh(COD)]I (4-8) in CDC13................................. ................... 161

A-3 8 H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-isopropylbenzimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-iPrBY)Rh(COD)]I (4-9) in CDC13 ......................................................... 162









A-39 13C NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-isopropylbenzimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-iPrBY)Rh(COD)]I (4-9) in CDC13 ......................................................... 163

A-40 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methyltolylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-M TY)Rh(COD)]I (4-10) in CDC13. .................................... ............... 164

A-41 13C NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-
ethanoanthracene-9,10-bis(1-methyltolylimidazolidine-2-ylidene cyclooctadiene
iodide, [(DEA-M TY)Rh(COD)]I (4-10) in CDC13. .................................... ............... 165












DEA

GDP

NHC

Ditriflate


COD

TMS

Ea

TM

e.e.

B3LYP

LANL2DZ

ECP

RMSD

Acac

Dppb

rls

gDQCOSY

gHMBC

NOESY


LIST OF ABBREVIATIONS

9,10-dihydro-9,10-ethanoanthracene

gross domestic product

N-heterocyclic carbene

(+/-) 9,10-dihydro-9,10-ethanoanthracene- 11,12-diyldimethanediyl
bi s(trifluoromethanesulfonate)

1,5-cyclooctadiene

trimethylsilylamide

energy of activation

transition metal

enantiomeric excess

Becke 3 term with Lee, Yang, Parr exchange hybrid functional

Los Alamos National Laboratory 2 double-C

effective core potential

root mean square deviation

acetylacetonate

(diphenylphosphino)butane

rate limiting step

gradient double-quantum filtered correlation spectroscopy

gradient heteronuclear multiple bond coherence

nuclear Overhauser effect spectroscopy









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS-N-
HETEROCYCLIC CARBENE LIGANDS:
DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION

By

Roxy Joanne Lowry

August 2009

Chair: Adam S. Veige
Major: Chemistry

Eighty-five percent of all industrial chemical processes occur catalytically. The world's

expanding appetite for mass production of exotic chemicals necessitates the design and

application of enhanced catalysts. To optimize catalytic materials, the detailed relationships

between catalyst architecture and reactivity must be determined. Although for many ligand

families these relationships are well understood, novel catalysts require in depth empirical

investigation to determine these connections.

The design of a novel di-N-heterocyclic carbene family ofligands in reported herein.

These C2 symmetric ligands are based on the rigid 9,10-dihydro-9,10-ethanoanthracene

backbone and designed for utilization in chiral catalysis. Thorough investigation into the

relationships between the ligand's structure and the architecture of the resulting rhodium and

iridium catalysts directed the design of three generations of our novel ligand family. The first

generation, trans-1,1'-[ 9,10-dihydro-9,10-ethanoanthracene- 11,12-

diyldimethanediyl]bis(benzylimidazole) bis(triflouromethansulfonate) [DEAM-BI](OTf)2 (2-1),

is too flexible to enforce a rigid chiral pocket about a metal center under catalytic conditions.

The constrained second generation ligands, trans-1,1'-(9,10-dihydro-9,10-ethanoanthracene-









11,12-diyl)di(3-methyl-imidazol-3-ium) diiodide [DEA-MI](I)2 (3-3) and trans-1,1-(9,10-

dihydro-9,10-ethanoanthracene- 11,12-diyl)di(3-methyl-benzimidazol-3-ium) diiodide [DEA-

MBI](I)2 (3-4), produce complexes with rigid chiral pockets. However, the small variation

between the two ligands produces a large alteration in the catalytic activity of the resulting

complexes. In an attempt to further increase the enantiocontrol displayed by these compounds

small alterations were made to produce the third generation of ligands, trans-1,1'-(9,10-dihydro-

9,10-ethanoanthracene-11,12-diyl)di(3-isopropyl-imidazol-3-ium) diiodide [DEA-iPrI](I)2 (4-1),

trans-1,1 -(9,10-dihydro-9,10-ethanoanthracene-l 1,12-diyl)di(3-isopropyl-benzimidazol-3 -ium)

diiodide [DEA-iPrBI](I)2 (4-2), trans-1,1-(9,10-dihydro-9,10-ethanoanthracene-1 1,12-diyl)di(3-

methyl-tolylimidazol-3-ium) diiodide [DEA-MTI](I)2 (4-6), trans-1,1 -(9,10-dihydro-9,10-

ethanoanthracene-11,12-diyl)di(3-isopropyl-tolylimidazol-3-ium) diiodide [DEA-iPrTI](I)2 (4-

7).

Catalytic investigation of the asymmetric 1,4-addition of aryl boronic acids to cyclic

enones is accomplished for the constrained catalysts 3-8 [rhodium(I) trans-9,10-dihydro-9,10-

ethanoanthracene-9,10-bis(1-methylbenzimidazolidine-2-ylidene) cyclooctadiene iodide], 3-9

[rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-methylimidazolidine-2-

ylidene) cyclooctadiene iodide], and 4-8 [rhodium(I) trans-9,10-dihydro-9,10-

ethanoanthracene-9,10-bis(1-isopropylimidazolidine-2-ylidene) cyclooctadiene iodide].









CHAPTER 1
GENERAL INTRODUCTION

"Catalysis is leaving the realm of alchemy and entering the field of science. It is still

pretty much of an art to design and optimize new catalysts and to improve upon existing

catalysts, but it is no longer a black art"1 claimed Edward Hayes of the National Science

Foundation (NSF) in a 1983 Science article. Although the term catalysis had been understood

for over 150 years, the science behind the phenomenon was just beginning to be uncovered in the

late 20th century. Even today, the relationship between catalyst structure and function is complex

and must be determined on a case by case basis. However, understanding these fundamental

relationships is vital to the optimization of these vastly important materials.

1.1 Catalysis Background and Importance

The scientific concept of catalysis began in 1834 when Eilhard Mitscherlich first recorded

his observation that certain substances were required for the initiation of specific reactions.2

Within two years, Jons Jakob Berzelius coined the term catalyst to define a substance that

participates in a chemical reaction without itself being consumed.3 An understanding of the

foundations of catalysis was just beginning and a fundamental comprehension was 150 years in

the future, but the benefits of catalysis had been known for thousands of years. In fact,

fermentation, the catalytic formation of ethanol from sugars by yeast, is a natural process

probably observed by humans before recorded history.

Industrial application of catalysis also predated its discovery. It was not understood at the

time, but the production of sulfuric acid in the mid-18th century involved oxidation of sulfur

dioxide to sulfur trioxide catalyzed by nitric oxide.4 Many catalytic reactions discovered in the

infancy of catalysis are still industrially important today. First investigated in the late 19th

century,5 the Haber-Bosch process is still used to form bulk quantities of ammonia via iron









catalyzed nitrogen fixation. Ammonia manufactured by this process is used in the production of

fertilizers vital to food production around the world.6

As knowledge regarding catalytic structure and function expanded so did the industrial

exploitation of catalysis. In 2003, it was estimated that 85 percent of all chemical processes

relied on catalysis.7 The North American Catalyst Society claims, "Catalysis is the key to both

life and lifestyle. It is an essential technology for chemical and materials manufacturing, for fuel

cells and other energy conversion systems, for combustion devices, and for pollution control

systems which greatly impact everyone on our planet."8 Catalytic processes reportedly

contribute to over one-third of the GDP globally.8

How does this "black art" operate? A catalyst's effect is purely kinetic. By modifying a

reaction's mechanism, a catalyst reduces the energy of activation (Ea) required for conversion

into product. Figure 1-1 displays the effect of a catalyst on an exothermic reaction in relative

energy terms. An uncatalyzed reaction (dotted line) has a large energy barrier to product

formation, but a catalyst drastically lowers the overall Ea, shown here through a multi-step

reaction (solid line). The overall thermodynamics of the reaction is unchanged. A

thermodynamically forbidden reaction cannot be facilitated by a catalyst, but by reducing the

energy barrier of an allowed reaction, a catalyst decreases the time required to reach chemical

equilibrium. Unlike the original mechanism, the new catalytic mechanism is cyclic. The catalyst

enters the mechanism as a "reactant", performs one, or possibly several, chemical

transformations, and is regenerated to start the cycle again.

Specific mechanistic pathways through which catalysts can act and the possible structures

of these species are virtually limitless. Figure 1-2 shows a few general reaction equations.

These equations represent: a) an uncatalyzed reaction, b) the multistep catalytic reaction









correlating to the energy profile in Figure 1-1 c) a mechanism in which one reactant is

catalytically activated without directly affecting the other reactant and d) independent activation

of both reactants by separate catalytic molecules followed by intermolecular reaction. These

generalized mechanisms are necessarily so broad as to be almost useless, and they only serve to

group catalysts into related categories. Specific mechanistic details including primary and

secondary catalyst/substrate and catalyst/reagent interactions are necessary for thorough

understanding and optimization of a catalytic system. The complicated nature and identity of

catalysts necessitates the empirical examination of each new catalytic system to determine

specific structure/function relationships. These studies are important because they set the

groundwork for a semi-rational approach to catalyst design. Although today many

structure/function relationships are well understood, the vast array of catalytically active

substances as well as the continued production of new species requires continued investigations.

Defining a "catalytic material" is complicated by the fact that catalytic activity cannot be

assigned as an intrinsic property because of the selectivity of these substances.9 Enzymes, for

examples, are only catalytic in regards to specific substrates and reaction conditions. Materials

that serve as catalysts are as wide-ranging as the reactions they promote. They can consist of

homogeneous catalysts such as acids, bases, and molecular transition metal complexes or

heterogeneous metal surfaces and supported materials. Industrially viable catalysts are even

comprised of a large variety of diverse compositions and chemical structures, including

elemental substances such as metals and activated carbon; simple compounds like inorganic

salts, sulfides, and oxides; as well as more complex enzymatic substrates and organometallic

complexes.10 According to Berzelius's original definition, a catalytic material is anything that

affects a reaction without itself being consumed; however, current definitions typically expect a









catalyst to increase the rate of a reaction in a cyclic manner thereby requiring far less than

stoichiometric amounts of the material.

The appeal of catalysis does not end with its ability to increase the rate of a reaction. The

non-stoichiometric nature of a catalytic cycle makes it an incredibly efficient and atom-economic

process. Not only can a catalyst reduce a reaction's activation barrier, quite often it can be

designed to do this selectively, facilitating the formation of only the desired product, thereby

reducing the amount of any undesired product to minute quantities. This catalytic selectivity is

of great importance, particularly when applied to the synthesis of chiral organic compounds.

1.2 Chiral Catalysis

The word 'chiral' refers to the asymmetry of an object and is derived from the Greek term

for hand.1 A chiral object cannot be superimposed on its mirror image much like your right

hand cannot be superimposed on your left. In chemistry, a chiral molecule and its mirror image

are termed as enantiomers, or optical isomers.11 First discovered by Jean-Baptiste Biot in

1815,12, 13 a solution containing a (+) enantiomer rotates the angle of plane polarized light

clockwise. The opposite holds true for the (-) enantiomer.11 The term chirality was first defined

by Lord Kelvin14 but Louis Pasteur is credited with much of the work regarding the molecular

origins of the phenomenon.15

The importance of molecular chirality is particularly noticeable in biological systems. The

helical architecture of DNA and RNA is determined by the chiral sugar molecules from which

they are composed. The shape of these oligonucleotides determines their biological reactivity.16

Similarly the absolute configuration of hormones, antibodies, enzymes, and receptors plays a

very important role in biological processes.17 These molecules are not only chiral but exist in

our body as only one of two possible enantiomers. In fact, the human body is said to be

homochiral because proteins are composed exclusively of L-amino acids and the backbones of









DNA and RNA are composed of only the D-enantiomers of sugar molecules.18' 19 These

enantiopure compounds are diastereoselective, reacting with different enantiomers in distinctly

different manners. Enantiomers can smell and taste different and have dissimilar reactivity as

therapeutic agents.20 The enantiomers of carvone have drastically different smells; (S)-carvone

(Figure 1-3) smells of caraway but (R)-carvone has a distinct spearmint odor.20 A tragic but

poignant example of reactivity differences between biologically active enantiomers is that of

Thalidomidec, a drug prescribed to pregnant women in the 1960s and 70s as a sedative. It was

prescribed as a racemic mixture that was later found to cause birth defects. The teratological (or

mutagenic) effect was caused by (S)-Thalidomidec (Figure 1-3); sadly, recent studies suggest

this tragedy could not have been avoided by using enantiopure (R)-Thalidomide .20 The actual

mutagenesis is caused by the (S)-enantiomer, but both enantiomers are unstable and epimerize in

vivo to form a racemic mixture. Although enantiopurity would not have circumvented the

Thalidomidec calamity, many side-effects can be prevented and overall drug activity improved

by utilizing enantiopure drugs.17' 21 Biological diastereoselectivity necessitates access to single

enantiomer compounds in the pharmaceutical industry22 but it is also important in the

agricultural, fragrance, and flavor industries.23 24

The importance of chirality in biological systems has also made the natural world the most

efficient producer of single enantiomers, supplying a limited "chiral pool"23 of enantiopure

compounds.25 The classical laboratory approach to obtain an enantiopure compound is by

resolving a racemic (50/50) mixture via mechanical or chemical separation techniques.26 The

utility of resolution is indisputable; however, these processes cannot yield more than 50% of the

desired product. Application of catalysts capable of selective asymmetric synthesis can produce

industrial quantities of the desired enantiomer using relatively small amounts of expensive









catalyst. Purified enzymes work well toward these ends27 but are limited by their reaction scope,

cost, and availability of the enzymatic catalysts. Increased understanding of the "black art" of

catalysis has enabled scientists to develop synthetically prepared catalytic species capable of

asymmetric induction. Purely organic compounds have recently gained popularity as catalytic

species because of their low-cost and environmentally friendly nature in relation to many metal

containing compounds.28 However, the unique properties of transition metal complexes have

made them ubiquitous in the field of asymmetric synthesis.

Transition metals (TMs) are unique with regard to their energetically accessible valence d-

orbitals. The number and shape of these partially filled orbitals allow for versatile reactivity.

TMs interact with organic molecules in a covalent, ionic, or dative manner (or a combination

thereof). Exploitation of these interactions can be used to modulate the electronic nature and

topological environment of a TM center via coordinated organic ligands. Ligands can also be

used to increase a compound's stability or its solubility in specific solvents. Although TM

complexes have found application in heterogeneous asymmetric catalysis29 homogeneous

systems are more popular due to their ease of use and investigation. The advantages of

homogeneous TM catalysis are as follows:

1. TM complexes are capable of facilitating reactions that do not occur naturally.

2. The electronic character and steric bulk of organometallic complexes are easily altered by
modification of the supporting ligands.

3. The variety of complexes available permits reactions with substrates that are not
compatible with selective systems such as enzymes.

4. TM complexes are applicable in a larger variety of reaction conditions than enzymes that
require very specific and typically aqueous environments.30

5. Reaction conditions including temperature, solvent mixing, and catalyst/ligand
concentration are more efficiently controlled in solution than in heterogeneous
environments.31









In a Science article regarding industrial enantioselective catalysis the authors claim,

"enantioselective catalysis is bringing about a revolution in asymmetric synthesis. Seldom has

there been an area of chemistry where the scientific goals are so challenging, the economic

benefits so obvious, and the ethical reasons for doing the research so compelling."30

The ability of a transition metal catalyst to preferentially produce one of two chiral

products is, like catalysis itself, a kinetic phenomenon. Binding of a prochiral substrate to a

chiral TM compound forms energetically inequivalent diastereomers. The preferential

production of one enantiomer is caused by this energetic imbalance between the two

diastereomeric transition states. Large enantiomeric excesses (e.e.) can be obtained when the

disparity is as small as 3 kcal/mol.9 The absolute configuration of a product molecule is

determined during the first irreversible step in the mechanism that involves a diastereomeric

transition state.

The reactivity of a complex is typically associated with the identity of the metal center and

modulated by electronic donation or withdrawal by the ligand(s), but chiral induction is strongly

linked to the ligand topology particularly in close proximity to the active site of the catalyst. The

configuration of the ligand around the active site is termed the "chiral pocket" and determines

the enantioselectivity of the catalyst. Therefore, the design of a chiral ligand is a crucial step in

the development of a new catalyst. Specific organic molecules have been established as

phenomenal asymmetric induction auxiliaries. The selectivity, activity, and catalyst lifetime of

TMs supported by these molecules are consistently high over a large range of mechanistically

unrelated reactions. Yoon and Jacobsen summarized these ligands in Science32 describing them

as "privileged ligands". (Figure 1-4) The authors do not venture to provide the "best"

architectural features for a chiral ligand but point out that several of these prominent ligands









share common design features including C2 symmetry, multiple and strong metal-ligand bonds,

and rigid structures. C2 symmetry, first introduced to chiral catalysis by Kegan's diop ligand,33'

34 is attractive because it reduces the number of reaction pathways by cutting in half the possible

catalyst/substrate arrangements.35 Rigid and robust ligands are important for creating a durable

complex and retaining the structure of the catalyst's chiral environment. Multiple and strong

bonds between the metal and the ligand further stabilize the complex. Stability of the complex

and the topology surrounding the chiral coordination center plays a central role in determining

the enantiopurity of a product in an asymmetric catalytic reaction.

Two "privileged ligands", BINAP and MeDuPhos, are members of the organophosphorous

family of ligands, commonly termed "phosphines". Introduced to organometallic chemistry by

F.G. Mann,36 phosphines are strong o-donor/weak i7-acceptor ligands that support a large variety

of reactive and selective transition metal catalysts. The overwhelming success of phosphine

based ligands in homogeneous catalysis has led many to consider the entire class as "privileged"

ligands; however, these ligands suffer some disadvantages including air-sensitivity, oxidative

degradation, and toxicity,37 as well as difficulty associated with independent modulation of their

electronic and steric parameters.38 N-heterocyclic carbenes (NHCs) are closely related to

phosphines in regards to their electronic donation to a metal center, but are different in their

steric topology and do not suffer the same disadvantages in catalytic reactions. As part of the

carbene family, they were once considered to be too reactive to be utilized as ancillary ligands.

The following sections of this chapter will outline the characteristics of these carbenes that

permit them to support some of the most stable TM complexes in use today. Subsequent

chapters will describe the utilization of this coordinating moiety in a novel chiral ligand family

and utilization of these ligands in asymmetric rhodium catalysis.









1.3 N-Heterocyclic Carbenes


1.3.1 Early History

The stability ofN-heterocyclic carbenes provides one of the few members of the carbene

family capable of functioning as a spectator ligand. Isolation of such a stable carbene was

unimaginable until the early 1960s when Wanzlick proposed the formation of a

diaminocarbene.39-42 He attempted the synthesis of a stable singlet carbene from 1,3-diphenyl-2-

trichloromethylimidazolidene but was unable to isolate the proposed species, obtaining only its

dimer enetetraamine. He was never able to establish the existence of a stable free carbene prior

to coordination. However, later that decade Wanzlick43 and Ofele44 independently reported the

first metal complexes supported by diaminocarbene ligands (Figure 1-5). Excluding an

extensive investigation into the coordination chemistry of related enetetraamines (Figure 1-5) by

Lappert,45 46 research involving these elegant compounds was nonexistent throughout the 1970s

and 80s. In 1991, a renaissance of chemistry involving NHC compounds was initiated by the

isolation of a stable crystalline NHC by Arduengo.47'48 Investigations of NHC coordination

chemistry, catalytic properties, and particularly the steric and electronic characteristics

responsible for the stability of these "diradicals" were immediately launched and continue to be

the subject of an overwhelming number ofj journal and review articles,38'49-62 and books.37'63

1.3.2 Carbene Geometry

Carbenes are neutral divalent carbons in which four of the six valence electrons are

contained in bonding orbitals. They were first proposed by Hermann and Geuther in 1855 as

reactive diradical (triplet ground state) intermediates.64 It was almost 100 years later that

Lennard-Jones and Pople used computational evidence to suggest the accessibility of two

different ground states;65' 66 the non-bonding electrons could occupy the same orbital with

antiparallel spins (singlet ground state) or two different orbitals with parallel spins (triplet).









Local geometric and electronic factors both play a role in determining the ground state of a

carbene.

The local geometry of a carbene carbon can be either bent or linear. A linear geometry

favors a triplet ground state due to the two energetically degenerate p-orbitals of the sp-

hybridized carbon (Figure 1-6). A bent carbene becomes sp2-hybridized, stabilizing one of the

frontier orbitals, the G-orbital, and leaving the p (or pn) unaffected. The ground state of a bent

species is determined by an energetic competition. Electron-electron repulsion and exchange

correlation energies favor a triplet ground state, and if the energy gap between the frontier

orbitals is sufficiently small, these forces will prevail. Hoffman determined that a minimum

separation between the frontier orbitals of 2 eV was required to form a singlet ground state

carbene.67 The bent geometry of an NHC carbon creates non-degenerate frontier orbitals.

Further stabilization of the carbene, resulting in a singlet ground state, is a result of the electronic

influences of the neighboring nitrogen substituents.

1.3.3 Electronic Influences

The a-nitrogen substituents affect the carbene center through inductive and mesomeric

effects, increasing the energy difference between the frontier orbitals. Inductively, the two a-

nitrogens are electron withdrawing; stabilizing the o-orbital and retaining the electroneutrality of

the carbene center. Although the inductive effect is credited as the major stabilizing force,

mesomeric or resonance effects also play a part. Electron density from the filled p-orbitals of the

two amino substituents is donated into the empty p-orbital of the carbene destabilizing the p,

orbital and further increasing the HOMO-LUMO gap.68 69

Another factor that may influence the stability of an NHC is aromaticity within the

heterocycle.70 The aromatic stabilization of free NHCs is far less pronounced than in benzene or









even their imidazole precursors; however, for some systems it may contribute to their

thermodynamic stability.71 Isolation of free carbenes from saturated backbone imidazolin-2-

ylidenes72 suggests that, although some aromatic stabilization may exist, it is not crucial.

Designation of NHCs as "carbenes" has been questioned due to the resonance structures

shown in Figure 1-7. If structures A and C contribute heavily to the stability of the carbene then

they should rather be considered ylids. However, upon deprotonation a lengthening of the N-

Ccarbene bond (1.313(2)-1.341(4) [salt] to 1.363(1)-1.375(2) [free carbene]) and reduction in the

N-C-N angle (107.6(3)-113.8(2) [salt] to 101.2(2)-102.2(2) [free carbene])51 point toward an

increase in o-bond character supporting the free carbene designation.

1.3.4 NHC Topologies

The NHC family includes a variety of heterocyclic structures. The most common NHC

ligands are five-membered heterocycles capable of forming stable free carbenes; imidazolin-2-

ylidene, benzimidazol-2-ylidene, imidazolidin-2-ylidene, and triazolin-5-ylidene (Figure 1-8).

Stable free carbenes have also been isolated from four,73 six,74' 75 and seven-membered76

heterocycles. Excluding the seven-membered heterocycle, these molecules are planar with

nitrogen substituents that point toward the carbene center. These peripheral nitrogen-substituents

may serve to kinetically stabilize some free carbenes, but free carbenes with less demanding N-

substituents have also been isolated.77

The steric influence of an NHC ligand on a coordinated metal center is quite different than

that imposed by phosphines, which NHCs were once considered to mimic. NHCs have a fanlike

or fencelike topology with the nitrogen substituents pointing toward the metal center.

Phosphines, on the other hand, are conical, and their substituents point away from the

coordinated metal. The availability of Tolman cone-angle parameters78 describing the









relationship between phosphine topology and catalytic reactivity has facilitated semi-rational

design of phosphine based ligands. In an attempt to compare the steric demand of NHCs with

phosphines and to establish a guiding principle for NHC ligand design, Nolan et. al. defined the

steric parameter, percent volume buried (%VBur).79'80 Situating the NHC or phosphine 2 A from

the metal center, the %VBur is determined by the percent of a sphere of radius 3 A consumed by

the ligand in question. The authors concede that this method does not explain all of the steric

demands of an NHC ligand. While it is a good beginning in describing symmetrical

monodentate NHCs, this method does not account for rotation around the M-NHC bond or

define the steric demand of unsymmetrical or chelating NHCs.

1.3.5 M-NHC Bonding

The popularity of NHC ligands is due in part to their compatibility with a large variety of

TM species37 60 as well as main group elements.81 This compatibility sets these heterocycles

apart from the other members of the carbene family of ligands. Schrock carbenes (or

alkylidenes) are nucleophilic, triplet ground state carbenes that form covalent interactions with

high oxidation state TM species.82 Fischer carbenes are electrophilic, singlet carbenes that

require stabilization through 7t-backbonding from an electron-rich metal center. Although NHCs

were once considered Fisher type carbenes,82 their versatility and ability to act as ancillary

ligands established them as an independent classification within the carbene family. NHC-M

bonding is considered electrostatic in nature and consists primarily of strong G-donation from the

carbene to a metal center. NHC-M bonds are best described as single or dative bonds.83 The

carbene center does not require 7t-backbonding from the metal center due to the stabilizing

effects of the carbene's a-nitrogen substituents. The empty p, orbital is available for

backdonation but the relative i7-bonding ability of NHCs is controversial and certainly dependent









on the metal, co-ligands, NHC substituents, and NHC orientation.37' 84-86 Various studies have

suggested backbonding from the metal contributes from 0 to 40% of the overall bonding

interactions.55 8587-91 In high valent, early metal complexes NHCs can accept electronic

donation from neighboring chloride ligands into the empty p, orbital.81 An NHC has also

reportedly contributed to bonding through i7-donation to a metal center to stabilize an

unsaturated 14-electron complex.92' 93

The variation in relative electronic donation between different NHC moieties is much

smaller than between members of the phosphine family. Substituent variation directly affects a

phosphine ligand's steric bulk and electronic character, but variation of peripheral nitrogen

substituents has little effect on the electronic character of the carbene center. To vary the donor

ability, the azole ring must be altered.37 The relative donor ability of different NHCs spans a

much smaller range than phosphine moieties. However, even these small variations can lead to

large alterations in catalytic behavior.62 94

1.4 Contribution of This Manuscript

Within homogeneous asymmetric TM catalysis, a wide variety of catalysts with impressive

reactivities and enantioselectivities have been developed, but there is still a great need for

catalytic investigations toward industrially applicable catalysts, catalytic efficiency, application

range, reliability, accessibility of the catalyst, and functional group tolerance.95 Stable, electron-

rich, and modular spectator ligands that form strong bonds to transition metal complexes, such as

NHC ligands, are ideal for application towards these goals. In an attempt to contribute to the

ever increasing demand for more versatile and active catalysts, our laboratory designed a new

family ofbidentate chiral bis-NHC ligands. This manuscript will describe the synthesis,

characterization, and structural investigation of this family of ligands and their rhodium and










iridium complexes. Chapter 5 will describe the catalytic application of this new ligand family to

the 1,4-addition of aryl boronic acids to cyclic enones.



/ ,\_
/ \







\AGZ

Reaction Coordinate
Figure 1-1. Reaction coordinate diagram for catalyzed (solid) and uncatalyzed (dotted)
reactions.



A X+Y Z

X+Cat.+ Y XCat,+Y( I)
B XCat. -Y XCat.Y (2)
XCat.Y Z + Cat. (3)

X+Cat.+Y XCat.+Y
XCat. Y Z I Cat.

X + 2Cat. + Y XCat. + YCat.
D
XCat. YCat. Z + 2Cat.

Figure 1-2. Generalized mechanisms for A) uncatalyzed reaction B) catalyzed reaction in Figure
1-1 C) single reagent activation catalysis D) catalyzed reaction with intermolecular
reaction.




























IR-Thnihdaltdnid" I hili i.r ni.-


Figure 1-3. Structures of(R) and (S)-Carvone (left) and (R)- and (S)-Thalidomidec (right).


BNAP


t-B u-
Mclkl'[hus Bislxa7nXlinil

Figure 1-4. Selected privileged ligands from T.P. Yoon and E. N. Jacobsen, Science, 2003, 299,
1691. Reprinted with permission from AAAS.


R-Cuone S-Curvyont


TADDOI.cTe












N
PhN N Ph


1h -Ph
N N
k-i


/ CO


\ CO


R R



N N
\ /
R R


Figure 1-5. Wanzlick' s40 (left) and Ofele' s44 (middle) NHC complexes and Lappert' s96
enetetraamine (right).


PW
cffCC'


c"tecr U
i-lcc I T


Figure 1-6. Relative influence of geometric and electronic effects on the energy gap between C
and p, orbitals.


R
I
N>-

~-N


R

/N


R


N+


Figure 1-7. Resonance structures of NHC.


qz--11v















/-, ,
KV^ \^ R


Figure 1-8. Common N-heterocyclic carbenes; imidazolylidene, benzimidazolylidene,
imidazolinylidene, triazolinylidene.


RN NR


/ \
R-N' \ N R
+B^S


Rl--N N ,









CHAPTER 2
FIRST GENERATION DI-NHC CATALYSTS

2.1 Introduction

NHC based ligands are quickly becoming common-place in organometallic and inorganic

chemistry.37,63, 97-99 The large dissociation energies associated with most NHC-M bonds make

these molecules particularly useful as ancillary ligands in catalysis. Increasing evidence suggests

NHC supported TM catalysts can surpass well-established phosphine-based systems in both

activity and scope.5 In contrast to phosphines, NHCs do not favor dissociation from metal

centers100 eliminating the need for excess ligand and promoting their utilization toward

asymmetric catalysis.50' 101

Electron rich metal centers supported by chiral NHC ligands have been applied to

hydrogenation, hydrosilylation, olefin metathesis, and a myriad of other chiral transformations.37'

61,63 Monodentate NHCs are undeniably the largest contributors to these catalytic applications

because of their ease of access and modification. However, the stability and rigidity associated

with chelating ligands has led to the design of multidentate NHC ligands. Chelating NHC

ligands can be split into two major categories; "mixed" NHC ligands and pure NHC-based

chelating ligands. "Mixed" NHCs consist of one (or rarely two) NHC moieties and another,

typically more labile, moiety.102 Chelating ligands based purely on NHCs are usually bidentate

but a few tris-NHC58 ligands have been reported. The increased stability of chelating ligands

along with the overwhelming success of chelating bis-phosphines inspired the investigation of

NHC equivalents.

Chiral bidentate NHC ligands can be separated into four distinct categories (Figure 2-1);63

a) bidentate NHCs in which the chiral center is contained on the peripheral N-substituents, b)

bidentate NHCs containing stereogenic centers within the heterocycle, c) bidentate NHCs that









possess planar chirality, and d) bidentate NHCs that contain an axis of symmetry. Figure 2-1

displays the imidazole precursors of several members of each class.

The bis-azole ligands reported in this manuscript fit within the axially symmetric group.

The ligands reported herein are C2 symmetric chelating bis-NHC ligands. Figure 2-1(d) displays

all of the ligands reported to date with similar architectures excluding those reported in the body

of this manuscript.103 Many of the catalysts supported by chelating bis-NHC ligands display

excellent activity but only a few have achieved a high level of enantioselectivity.

The first C2 symmetric di-NHC ligands were reported within months of each other in 2000.

Trudell et al.104 and Rajanbabu et al.105 independently reported the synthesis of binaphthyl based

bis-NHC complexes. Trudell's racemic version was reported with a series of other asymmetric

bisimidazolium salts used in the palladium-catalyzed coupling of 4-chlorotoluene and

phenylboronic acid. Rajanbabu et al. found that their chiral ligand chelated to a Pd(II) center in

both trans and cis orientations and coordinated to Ni(II) in only the trans orientation. The

palladium complexes were applied to the non-stereoselective Heck coupling of ethyl acrylate and

halobenzenes.

Douthwaite et al.106 were the first to report chiral induction by a C2 symmetric chelating

bis-NHC in 2003. The bis-NHC ligand based on a 1,2-cyclohexyldiamine backbone was tested

towards the Pd(II) asymmetric intramolecular cyclization of N-(2-bromophenyl)-N-methyl-2-(1-

napthyl)propanamide producing only an 18% e.e.. To date, the only high enantioselectivities

produced utilizing bidentate chiral di-NHC ligands have been reported by Min Shi et al.107-115

First reported in 2003,107 Min Shi's binaphthyl amine-based ligand was found to form a mixture

of bridged bimetallic Rh(I) and chelating monometallic Rh(III) complexes. The Rh(III) complex

was applied towards the enantioselective hydrosilylation of methyl ketones, producing yields









ranging from 82 to 96% and e.e.s as high as 98%. A bimetallic Ir(I) complex supported by the

same ligand was reported in 2005 with no mention of the chelating monometallic version or

catalytic application.108 Shortly thereafter, Min Shi reported the neutral chelating monometallic

Pd(II) complex supported by the same BINAM-based bis-benzimidazole.109 Initial catalytic

application towards achiral Suzuki coupling of phenylboronic acids to bromobenzene and Heck

coupling of aryl halides with butyl acrylate resulted in moderate to high yields for the majority of

substrates reported. Analogs of the same bis(NHC)-Pd(II) complex116 have since been reported

to catalyze the oxidative kinetic resolution of alcohols,110 enantioselective allylation of

aldehydes,111, 112 and the conjugate addition of arylboronic acids to cyclic enones113 with high

enantiocontrol. Most recently, Min Shi et al. reported the application of a [Pd(II)(H20)2]2+

complex supported by the same ligand architecture117 to the enantioselective arylation ofN-

tosylarylimines using boronic acids.114 The original Rh(III) complex was also recently reported

to produce enantiopure product when applied to the hydrosilylation of 3-oxo-3-arylpropionic

acid methyl or ethyl esters.115

The relatively small number of successful asymmetric catalytic applications involving C2

symmetric chelating bis-NHCs should not be taken as an indication of a fundamental flaw in the

ligand concept, but rather as a reflection of the small number of available architectures. Taking

this into account and considering the success of the closely related bis-phosphines, our laboratory

designed a novel C2 symmetric di-NHC ligand based on a trans-9,10-dihydro-9,10-

ethanoanthracene (DEA) backbone. This chapter will describe in detail the design and synthesis

of one member of the first generation C2 symmetric di-NHC ligands, DEAM-BY (trans-9,10-

dihydro-9,10-ethanoanthracene-11,12-bis(1-benzyl)imidaz-2-ylidene) along with the synthesis

of mono and bimetallic Rh(I) and Ir(I) complexes. Structural comparison utilizing solution state









analysis and X-ray crystal structures is accomplished to lay groundwork for establishing a

relationship between the structure of these unique ligands and their catalytic activity.

2.2 Experimental Section

2.2.1 Synthesis of Trans-l,l'-[ 9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyldimethanediyl]bis(Benzylimidazole) bis(Triflouromethansulfonate) [DEAM-
BI](OTf)2 (2-1)

1-Benzylimidazole (3.13 g, 19.8 mmol) was added to a 250 mL flask containing trans-

1,1 '-[9,10-dihydro-9,10-ethanoanthracene-l 1,12-

diyldimethanediyl]bis(trifluoromethanesulfonate)"1 (5.00 g, 9.40 mmol) in dry DME (100 mL).

After refluxing under argon for 2 h, the solvent was removed producing a yellow powder. The

powder was suspended in ethyl acetate and sonicated to produce a white powder which was

isolated by filtration as a white microcrystalline solid; yield 7.63 g (96%). 1H NMR (300 MHz,

(CD3)2SO) 6 ppm: 9.27 (m, 2 H, NCHN), 7.83 (m, 2 H, NCHCHN), 7.78 (m, 2 H, NCHCHN),

7.45-7.51 (m, 8H, Ar), 7.34-7.45 (m, 4H, Ar), 7.31 (m, 2 H, Ar), 7.15-7.23 (m, 4H, Ar), 5.37 -

5.57 (m, 4 H, NCH2C), 4.08 (s, 2 H, bridgehead H), 3.92 (dd, JHH=13.9, 4.2 Hz, 2 H,

CH(HCH)N), 3.62 (dd, JHH=13.7, 8.9 Hz, 2 H, CH(HCH)N), 2.04 2.18 (m, 2 H, bridge H).

13C[1H] NMR (75 MHz, (CD3)2SO) 6 ppm: 142.5 (2C, Ar), 139.3 (2C, Ar), 136.7 (2C, NCHN),

134.8 (2C, Ar), 129.1 (4C, Ar), 128.9 (2C, Ar), 128.4 (4C, Ar), 126.5 (2C, Ar), 126.3 (2C, Ar),

125.7 (2C, Ar), 123.9 (2C, Ar), 123.0 (s, 2C, NCHCHN), 122.6 (s, 2C, NCHCHN), 120.6 (q,

J=322 Hz, -CF3), 52.1 (s, 2C, NCH2C), 51.8 (s, 2C, NCH2CH), 44.3 (s, 2C, bridgehead C), 43.1

(s, 2C, bridge C). MS(HR-ESI+): Calc. for [C40H36N4S206F6]: m/z 869.8450 [M+Na] found

m/z 869.1876. Anal. Calc. for C40H36N4S206F6: C, 56.73%; H, 4.29%; N, 6.62%. Found: C,

56.68%; H, 4.35%; N, 6.50%. The molecular structure of 2-1 determined by X-ray









crystallography is displayed in Figure 2-8, crystals were grown by diffusion of pentane into an

ethanol solution containing the salt.

2.2.2 Synthesis of Trans-l,l'-[9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diyldimethandiyl] bis(1-Benzylimidazolidine-2-Ylidene), DEAM-BY (2-2)

At -35 C, KN(TMS)2 (395 mg, 1.98 mmol in 5 mL THF) was added to a cold solution of

[DEAM-BI](OTf)2 (2-1) (800 mg, 0.95 mmol) in THF (10 mL). After 1 h, the solution was

allowed to warm to room temperature while stirring. The solvent was then removed in vacuo

producing an orange-yellow powder. After trituration with diethyl ether (2 x 5 mL) and pentanes

(2 x 5 mL) the solid was taken up in pentanes and filtered. The precipitate was then washed with

diethyl ether and extracted with THF. The THF was removed to produce a peach colored

powder; yield 366 mg (71%). 1H NMR (300 MHz, C6D6) 6 ppm: 7.57 (dd, J=7.4, 1.1 Hz, 2H,

Ar), 7.04 7.27 (m, 16H, Ar), 6.47 6.52 (overlapping d, 4H, NCHCHN and NCHCHN), 5.17 (s,

4H, NCH2C), 4.38 (d, J 1.1 Hz, 2H, bridgehead H), 3.77 (dd, J 13.2, 8.4 Hz, 2H, CH(HCH)N),

3.47 (dd, J=13.3, 5.9 Hz, 2H, CH(HCH)N), 2.28 2.39 (m, 2H, bridge H). 1C NMR (75 MHz,

C6D6) 6 ppm: 216.1 (s, NCcarbene N), 144.6 (s, Ar), 141.5 (s, Ar), 139.6 (s, Ar), 129.1 (s, Ar),

128.3 (s, Ar), 126.9 (s, Ar), 126.7 (s, Ar), 126.4 (s, Ar), 124.0 (s, Ar), 120.7 (s, NCHCHN), 119.1

(s, NCHCHN), 55.4 (overlapping singlets, NCH2C & CHCH2N), 47.1 (overlapping singlets,

bridge & bridgehead C). MS(DIP-CI): Calc. for [C38H34N4]: m/z 546.2929 [M]+, found m/z

546.2783. The molecular structure of 2-2 determined by X-ray crystallography is displayed in

Figure 2-8, crystals were grown by a diffusion of ether into a THF solution containing the

compound.









2.2.3 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-l1,12-bis(1-
Benzylimidazolidine-2-Ylidene) Cyclooctadiene Triflate, [(DEAM-BY)Rh(COD)]OTf
(2-3)

a) To a solution of DEAM-BIY (2-2) (500 mg, 0.92 mmol) in THF (5 mL) was added a

solution of [Rh(COD)Cl]2 (226 mg, 0.458 mmol) in THF (5 mL). The reaction was stirred for

two hours during which time a yellow precipitate formed. The precipitate was filtered and

washed with cold THF (2 x 3 mL) to provide [(DEAM-BI)Rh(COD)](OTf) (2-3) as a bright

yellow solid; yield 417 mg (50%).

b) At -100 C, a solution of KN(TMS)2 (50 mg, 0.25 mmol) in dry THF (3mL) was added to a

solution of [DEAM-BI](OTf)2 (100 mg, 0.118 mmol) in THF (5 mL) and allowed to warm to

room temperature while stirring vigorously. After 45 min, the solution was again cooled to -100

C. After 15min, a cold solution of [Rh(COD)Cl]2 ( 28 mg, 0.057 mmol) in THF (5 mL) was

added to the mixture and allowed to warm to room temperature overnight. The yellow

precipitate was collected by filtration, washed with Et20 (10 mL) and THF (2 mL), and dried

under high vacuum; yield 97 mg (90%). 1HNMR (300 MHz, CDC13) 6 ppm: 7.78 (d, J 1.7 Hz,

1H, 18), 7.34-7.58 (4H, 2,5,8,11), 7.28-7.34 (3H, 35,36,37), 7.1-7.25 (7H, 3,4,9,10,24,25,26),

6.88 (overlapping d and m, for dJ=2.0 Hz, 3H, 29,34,38), 6.58 (m, 2H, 23,27), 6.68 (d, J=1.7

Hz, 1H, 19), 6.56 (d, J=2.0 Hz, 1H, 30), 5.97 (d, J 15.9 Hz, 1H, 32'), 5.36 (d, J 15.6 Hz, 1H,

21'), 5.17 (d, J 16.1 Hz, 1H, 32), 5.09 (d,J= 16.1 Hz, 1H, 21), 4.69 (dd, J 13.3, 3.1 Hz, 1H,

17'), 4.62 (d, J 1.1 Hz, 1H, 14), 4.47 -4.58 (m, 1H, 40), 4.43 (d, J=0.8 Hz, 1H, 13), 4.37 4.45

(m, 1H, 15), 4.27 -4.34 (m, 1H, 44), 4.19 -4.30 (dd, 1H, 17), 4.01 -4.09 (m, 1H, 39), 3.97 (dd,

J 14.0, 7.8 Hz, 1H, 28'), 3.61 (m, 1H, 43), 3.12 (dd, J 14.2, 2.0 Hz, 1H, 28), 1.23-2.39(m, 9H,

16, 41, 42, 45, 46). 13C NMR (75 MHz, CDC13) 6 ppm: 181.7 (d, JRhC =54.1 Hz, 20), 179.4 (d,

JRhC =52.7 Hz, 31), 144.7 (s, 1), 144.3 (s, 12), 139.8 (s, 7), 138.2 (s, 6), 135.9 (s, 33), 135.9 (s,









22), 129.3 (s, 35 & 37), 129.1(s, 24 & 26), 128.3 (s, 36), 128.6 (s, 25), 127.1 (s, 3), 126.9 (s, 10),

126.6 (s, 9, 23 & 27), 126.4 (s, 4), 126.3 (s, 34 & 38), 126.2 (s, 8), 125.7 (s, 5), 125.3 (s, 29),

124.8 (s, 18), 124.1 (s, 2), 123.4 (s, 11), 121.5 (s, 30 & 19), 92.4 (d, JRhC =8.2 Hz, 40), 90.0 (d,

J=7.3 Hz, 39), 89.1 (d, JRhC =9.6 Hz, 44), 84.8 (d, JRhC =8.2 Hz, 43), 57.5 (s, 28), 55.7 (s, 21),

55.4 (s, 17), 54.4 (s, 32), 48.4 (s, 14), 48.2 (s, 16), 47.8 (s, 13), 47.7 (s, 15), 32.3 (s, 45), 31.3 (s,

41), 29.4 (s, 42), 29.1 (s, 46). MS(HR-ESI+):Calc. for [C47H46N4Rh]+: m/z 757.7874 M+, found

m/z 757.2773 Anal. Calc. for C47H46N4SO3F3Rh plus one molecule MeCl: C, 58.12%; H, 4.87%;

N, 5.65%. Found: C, 57.88%; H, 4.834%; N, 5.50%. The molecular structure determined by X-

ray crystallography and numbering associated with NMR assignment is displayed in Figure 2-9,

crystals were grown by diffusion of ether into a mixed solution of methylene chrloride and

benzene containing the compound.

2.2.4 Synthesis of [u2-DEAM-BY] [Rh(COD)Cl]2 (2-4)

A solution of KN(TMS)2 (50 mg, 0.250 mmol) in dry THF (5 mL) was added to a solution

of [DEAM-BI](OTf)2 (2-1) (100 mg, 0.118 mmol) in THF (5 mL) at -100 C. After stirring at

room temperature for 45 min, the solution was cooled to -100 OC and added slowly to a cold

solution of [Rh(COD)Cl]2 (58 mg, 0.117 mmol) in THF (5 mL). The reaction was stirred

overnight forming an orange solution. After the volatiles were removed, the resulting powder

was washed with Et20 and extracted with dry THF. The THF was removed and the product was

washed with a small amount of Et20 and pentane to reveal a yellow powder; yield 116 mg

(94%). 1H NMR (300 MHz, CDC13) 6 ppm: 7.49 (2H, d, J=7.0 Hz, Ar), 7.29 7.39 (4H, m, Ar),

7.18 7.26 (8H, m, Ar), 7.06 7.19 (4H, m, Ar), 6.90 (2H, J=1.9 Hz, NCHCHN), 5.88 (2H, d,

J=13.6 Hz, N(HCH)C), 4.77 4.88 (2H, m, COD-CH), 4.57 (2H, d, J 1.9 Hz, NCHCHN), 4.56

(2H, d, J=13.7 Hz, N(HCH)C), 4.42 4.54 (2H, m, COD-CH), 4.23 (2H, d, J=2.8 Hz,









bridgehead H), 4.10 (2H, overlapping dd, J=12.6 Hz, CH(HCH)N), 3.57 (2H, dd, J 13.3, 2.6

Hz, bridge H), 3.19 -3.30 (2H, m, CH(HCH)N), 2.72 2.84 (2H, m, COD-CH), 2.39 2.50 (2H,

m, COD-CH), 2.16 -2.34 (2H, m, COD-CH2), 1.89 2.05 (2H, m, COD-CH2), 1.56 1.89 (8H,

m, COD-CH2), 1.33 1.56 (4H, m, COD-CH2). 13C NMR (75 MHz, CDC13) 6 ppm: 179.5 (d,

J=51.2 Hz, NCN), 142.4 (s, Ar), 142.30 (s, Ar), 136.1 (s, Ar), 130.0 (s, Ar), 128.7 (s, Ar), 128.1

(s, Ar), 126.0 (s, Ar), 125.7 (s, Ar), 125.3 (s, Ar), 124.3 (s, Ar), 120.7 (s, NCH=CHN), 119.8 (s,

NCH=CHN), 98.7 (d, J=6.6 Hz, COD-CH), 98.0 (d, J=7.2 Hz, COD-CH), 68.5 (d, J=14.3 Hz,

COD-CH), 67.4 (d, J=14.9 Hz, COD-CH), 65.8 (s, residual ether), 56.1 (s, NCH2C), 53.9 (s,

CHCH2N), 48.6 (s, CCHCHCH2), 39.6 (s, CCHC), 33.1 (s, COD-CH2), 31.5 (s, COD-CH2), 29.6

(s, grease), 29.5 (s, COD-CH2), 27.2 (s, COD-CH2), 15.2 (s, residual ether). Anal. Calc. for

C54H58N4Rh2C12 : C, 62.37%; H, 5.62%; N, 5.39%. Found: C, 62.17%; H, 5.57%; N, 5.18%.

MS(HR-ESI+):Calc. for [C47H46N4Rh]+: m/z 757.7874 M+, found m/z 757.2773. The

molecular structure determined by X-ray crystallography is displayed in Figure 2-11, crystals

were grown by diffution of ether into a mixed solution of benzene and THF continuing the

compound.

2.2.5 Synthesis of Iridium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-11,12-bis(1-
Benzylimidazolidine-2-Ylidene) Cyclooctadiene Triflate, [(DEAM-BY)Ir(COD)]OTf (2-
5)

Triflate salt 2-1 (100 mg, 0.118 mmol), KN(TMS)2 (50 mg, 0.25 mmol), and

[Ir(COD)Cl]2 (39 mg, 0.058 mmol) were each weighed into separate scintillation vials and

suspended in dry THF (5mL). At -100 C, the KN(TMS)2 solution was added dropwise to the

salt suspension. The reaction mixture was allowed to warm to room temperature while stirring

forming a brilliant yellow color after 45 min. The mixture was again cooled to -100 OC followed

by drop wise addition of the [Ir(COD)Cl]2 solution. The reaction was stirred overnight at room









temperature. Mononuclear salt 2-5 formed as an orange precipitate, was isolated by filtration

and washed with THF (2 mL) and Et20 (5 mL) to remove excess base. The metal complex was

extracted from any remaining starting materials with CH2C2 and upon solvent removal was

isolated as a brilliant orange powder; yield 57 mg (48%). H NMR (300 MHz, CDC13) 6 ppm:

7.51 (1H, d, J 2.0 Hz, NCHCHN), 7.47 7.55 (1H, m, Ar), 7.29 7.45 (6H, m, Ar), 7.17 7.26

(5H, m, Ar), 7.07 7.17 (2H, m, Ar), 6.84 6.95 (2H, m, Ar), 6.81 (2H, d, J 2.0 Hz, NCHCHN),

6.71 (1H, d, J=2.0 Hz, NCHCHN), 6.58 6.67 (2H, m, Ar), 6.55 (1H, d, J=2.0 Hz, NCHCHN),

5.83 (2H, d, J 15.9 Hz, N(HCH)C), 5.31 (2 H, d, J 15.6 Hz, CH(HCH)N), 5.03 (d, J 15.5 Hz,

N(HCH)C), 4.94 (d, J=15.5 Hz, CH(HCH)N), 4.51 (1 H, d, J=1.9 Hz bridgehead H), 4.43 (1 H,

dd, J=13.3, 3.8 Hz, CH(HCH)N), 4.38 (1 H, d, J 1.8 Hz, bridgehead H), 4.07 4.19 (2 H, m,

overlapping CH(HCH)N and COD-CH), 4.02 (1 H, dd, J=14.4, 8.1 Hz, CH(HCH)N), 3.88 3.97

(1 H, m, COD-CH), 3.68 3.77 (1 H, m, COD-CH), 3.58 3.67 (1 H, m, COD-CH), 3.49 (1 H, q,

J=7.0 Hz, ether), 3.19 (2 H, overlapping m and dd, J 14.5, 1.6 Hz, bridge H and CH(HCH)N),

1.89 2.20 (2 H, m, COD-CH2), 1.73 1.88 (3 H, m, bridge H overlapped by COD-CH2), 1.48 -

1.72 (3 H, m, COD-CH2), 1.29 1.48 (1 H, m, COD-CH2), 1.22 (2 H, t, J=7.0 Hz, ether). 13C

NMR (75 MHz, CD2C12) 6 ppm: 179.4 (NCN), 176.5 (NCN), 145.0 (C, Ar), 144.9 (C, Ar), 139.5

(C, Ar), 139.4 (C, Ar), 136.1 (C, Ar), 135.8 (C, Ar), 129.6 (2C, Ar), 129.6 (2C, Ar), 128.8 (C,

Ar), 128.7 (C, Ar), 127.5 (C, Ar), 127.3 (C, Ar), 127.0 (C, Ar), 126.8 (C, Ar), 126.8 (2C, Ar),

126.8 (2C, Ar), 126.2 (C, Ar), 124.7 (NCHCHN), 124.2 (NCHCHN) 123.7 (NCHCHN), 123.7

(NCHCHN), 121.5 (2C, Ar), 79.4 (COD-CH), 77.9 (COD-CH), 77.0 (COD-CH), 73.1 (COD-

CH), 68.3 (THF), 57.4 (CHCH2N), 55.6 (NCH2C), 55.1 (CHCH2N), 54.4 (NCH2C), 49.0

(CCHC), 48.8 (CHCHCH2), 48.2 (CCHC), 47.9 (CHCHCH2), 32.6 (COD-CH2), 32.1 (COD-

CH2), 30.9 (COD-CH2), 30.8 (COD-CH2), 26.1 (THF). Anal. Calc. for Ir C47N4H4603SF3: C,









56.67%; H, 4.65%; N, 5.62% Found: C,56.37%; H, 4.509%; N, 5.452%. MS(TOF-ESI+):Calc.

for [C46H46N4Ir]+: m/z 847.6958 M found m/z 847.3350. The molecular structure determined

by X-ray crystallography is displayed in Figure 2-9, crystals were grown by diffusion of ether

into a methylene chloride solution contianing the compound and a small amount of benzene.

2.2.6 Synthesis of [u2-DEAM-BY] [Ir(COD)CI]2 (2-6)

Triflate salt 2-1 (100 mg, 0.118 mmol), KN(TMS)2 (50 mg, 0.25 mmol), and

[Ir(COD)Cl]2 (79 mg, 0.117 mmol) were each weighed into separate scintillation vials and

suspended in dry THF (4 mL). At -100 C, the KN(TMS)2 solution was added dropwise to the

salt suspensions; the reaction mixture was stirred vigorously while warming to room

temperature. After 45 min, the mixture was again cooled to -100 OC and added dropwise to the

[Ir(COD)Cl]2 solution. The reaction was allowed to warm to room temperature overnight. The

solvent was removed and the resulting residue was washed with Et20 (10 mL) and extracted with

THF. THF was removed to reveal the dinuclear, [p2-DEAM-BY][Ir(COD)Cl]2 (2-6) as a yellow

solid; yield 71 mg (49%). H NMR (300 MHz, CDC13) 6 ppm: 7.09 7.58 (18H, m, Ar), 6.96

(2H, d, J 2.1 Hz, NCHCHN), 5.87 (2H, d, J 13.5 Hz, N(HCH)C), 4.67 (2H, d, J 1.8 Hz,

NCHCHN), 4.57 (2H, d, J=13.8 Hz, N(HCH)C), 4.49 (2H, m, COD-CH), 4.24 (2H, d, J 2.1 Hz,

bridgehead H), 4.08 4.20 (2H, m, COD-CH), 3.91 4.08 (2H, overlapping dd, CH(HCH)N),

3.61 (2H, dd, J=13.8, 1.0, 0.7 Hz, CH(HCH)N), 3.22 (2H, br. d, J=10.8 Hz, 6), 2.39 2.56 (2H,

m, COD-CH), 2.23 (2H, m, COD-CH), 2.07 2.21 (2H, m, COD-CH2 ), 1.90 (2H, m, COD-

CH2), 1.70 (5H, m, COD-CH2), 1.35 1.51 (2H, m, COD-CH2), 1.06 1.35 (5H, m, COD-CH2).

13C NMR (75 MHz, CDC13) 6 ppm: 177.3 (NCN), 142.1 (C, Ar), 142.0 (C, Ar), 136.0 (C, Ar),

129.9 (C, Ar), 128.7 (C, Ar), 128.6 (C, Ar), 128.2 (benzene), 126.0 (C, Ar), 125.7 (C, Ar), 125.1

(C, Ar), 124.2 (C, Ar), 119.9 (NCHCHN), 119.5 (NCNCHN), 84.9 (COD-CH), 83.7 (COD-CH),









55.6 (COD-CH), 53.5 (COD-CH), 52.2 (CH2), 50.8 (CH2), 48.5 (CHCHCH2), 39.3 (CCHC),

33.9 (COD-CH2), 31.9 (COD-CH2), 30.4 (COD-CH2), 28.0 (grease), 27.7 (COD-CH2). Anal

Calc. for Ir2C54H56N4C12: C, 53.32%; H,4.64%; N,4.61% Found: C, 51.528%; H,4.077%; N,

4.890. MS(TOF-ESI+):Calc. for [C54H58N4lr2C1 ]+: m/z 1183.967 (M-C1) found m/z

1183.3595. The molecular structure determined by X-ray crystallography is displayed in Figure

2-11, crystals were grown by diffusion of pentane into a THF solution contianing the compound

and a small amount of benzene.

2.2.7 Catalytic Hydroformylation

The hydroformylation experiments were carried out in a 100 mL stainless steel Parr reactor

heated in a sand bath. The reactor was charged with 50 mg of the substrate, 0.1 mol% of the bis-

carbene rhodium complex (2-3) and 1.5 mL of solvent. Before starting the catalytic reactions,

the charged reactor was purged three times with 10-20 bar of syngas (CO/H2 = 1/1) and then

pressurized to 100 bar. The reaction mixture was stirred at 800 rpm at 50 OC for the appropriate

reaction time (typically 24h). Once complete, the reactor was cooled to room temperature, the

pressure was reduced to 1.0 bar in a well-ventilated hood, and the reaction mixture was collected

in a vial. The reaction mixtures were analyzed directly without further purification. The %

conversion and regioselectivity were determined by 1H NMR spectroscopy and gas

chromatography. The enantiomeric purity was determined by GC using Supelco' s Beta Dex 225

column. Temperature program: 100 C for 5 min, then 4 C/min to 160 C. Retention times: 4.8

min for vinyl acetate, 11 (S) and 12.8 (R) min for the enantiomers of methyl 2-methyl-3-

oxopropanoate (branched regioisomer), 16 min for methyl 4-oxobutanoate (linear regioisomer), 9

min for styrene, 18 (S) and 18.2 (R) min for the enantiomers of 2-phenylpropanal (branched

regioisomer), and 22 min for 3-phenylpropanal (linear regioisomer).









2.2.8 X-ray Crystallography

Data were collected by Dr. Khalil A. Abboud at 173 K using a Siemens SMART

PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoKa

radiation (X = 0.71073 A). Cell parameters were refined using up to 8192 reflections. A full

sphere of data (1850 frames) was collected using the co-scan method (0.30 frame width). The

first 50 frames were re-measured at the end of data collection to monitor instrument and crystal

stability (maximum correction on I was < 1 %). Absorption corrections by integration were

applied based on measured indexed crystal faces.

The structures were solved by direct methods in SHELXTL6119, and refined using full-

matrix least squares. The non-H atoms were treated anisotropically, whereas the hydrogen atoms

were calculated in ideal positions and were riding on their respective carbon atoms.

Crystallographic data and structure refinement details for all compounds are listed in appendix B.

2.3 Results and Discussion

2.3.1 Preparation and Solution State Analysis of [DEAM-BI](OTf)2 (2-1)

Figure 2-2 illustrates the synthesis of compound 2-1. The ditriflate is synthesized

according to a literature procedure reported by Zsolnai et al.118 A straightforward substitution

reaction is used to replace the trifluoromethane sulfonyl (OTf) with 1-benzylimidazole, a

commercially available substrate. Unlike other derivatives of 2-1, such as the

methylimidazolium salt [DEAM-MBI](OTf)2,120 2-1 does not precipitate from the reaction

medium. After solvent removal, the isolated white solid is used without further purification. If

desired, sonication in ethyl acetate or crystallization via diffusion of pentane into ethanol

solution followed by filtration provides analytically pure compound.

A 1H NMR spectrum of 2-1 reveals a signature downfield imidazolium proton resonance

(NCHN) at 9.27 ppm. Coupling between the imidazolium proton and the imidazole olefinic
47









protons (NCHCHN) should form a doublet of doublets; however, relatively weak coupling

causes the peak to appear as an unresolved multiple. Two additional unresolved multiplets

appear at 7.83 and 7.78 ppm corresponding to the olefinic protons. Upfield, the backbone

bridgehead (CCHCH) and bridge (CHCHCH2) protons appear as a singlet at 4.08 ppm and a

multiple at 2.10 ppm, respectively. The diastereotopic methylene protons on the ligand arms

resonate as a pair of doublet of doublets at 3.92 (J 13.9, 4.2 Hz) and 3.62 (J 13.7, 8.9 Hz). In

the 13C{1H} NMR spectrum the imidazolium carbon (NCHN) resonates at 136.7 ppm. Full

assignment of the 13C{ H} NMR spectrum is in section 2.2.1; however, for comparison with

subsequent compounds, it is worth noting that the most downfield signal appears at 142.5 ppm,

corresponding to an aromatic carbon.

2.3.2 Preparation and Solution State Analysis of [DEAM-BY] (2-2)

Generation of free di-carbene 2-2 was accomplished at -35 OC under an N2 atmosphere

(Figure 2-3). Deprotonation of 2-1 occurs immediately upon addition of the base potassium

bis(trimethylsilyl)amide KN(TMS)2, forming a brilliant yellow solution. 2-2 is isolated from the

yellow solution in 71% yield as an air sensitive pale yellow solid.

The absence of an imidazolium resonance at 9.27 ppm in the 1H NMR spectrum of the

yellow solid confirms complete deprotonation. Increased electron density within the

heterocycles of 2-2 shifts the olefinic resonances upfield, from 7.83 and 7.78 ppm in 2-1, to 6.47

and 6.51 ppm. The 1H NMR spectrum is consistent with the formation of a free di-carbene but

cannot be used as conclusive evidence. Instead of forming the free di-carbene it is possible that

deprotonation of 2-1 could form an enetetramine echoing Wanzlick's findings.42 In fact, related

benzimidazole derivatives prefer formation of enetetraamines, resulting in similar 1H NMR

spectra, provided the N-alkyl group is not too large.103' 120 Conversely, formation of an

enetetraamine from 2-1 is unlikely, as the electronic nature of unsaturated imidazoles increases

48









the barrier to double bond formation.121 A diagnostic carbene-carbon resonance at 216.2 ppm in

the 13C 1H} spectrum verifies the identity of 2-2 as a free dicarbene species. Free N-heterocyclic

carbene-carbons resonate between 205 and 245 ppm,122 whereas enetetraamine carbons are

shifted well upfield to approximately 145 ppm.96

2.3.3 Preparation and Solution State Analysis of [(DEAM-BY)Rh(COD)]OTf (2-3)

A mononuclear, cationic Rh(I) complex, 2-3, is readily formed from the free dicarbene 2-2

(section 2.2.3 a); however, in situ deprotonation of 2-1 followed by reaction with [Rh(COD)Cl]2

is a more convenient and higher yielding route (Figure 2-4). Complex 2-3 forms as a yellow-

orange precipitate and is isolated via filtration.

Chelation of 2-1 to a single rhodium center creates a Ci symmetric compound. The

lowered symmetry causes each proton and carbon to become chemically and magnetically

unique resulting in complex 1H and 13C 1H} NMR spectra. Although the 1H NMR spectrum was

completely assigned using gDQCOSY, gHMBC, and NOESY two-dimensional NMR techniques

individual resonances throughout the ID spectra can be difficult to distinguish. Between 5 and 6

ppm, a sparse region of the spectra, are four distinct doublets attributed to the diastereotopic

methylene protons of the N-benzyl substituent (5.97; d, J 15.9 Hz, 5.36; d, J 15.6 Hz, 5.17; d,

J=16.1 Hz, and 5.09 ppm; d, J=16.1 Hz). The other diastereotopic protons (CHCH2N) appear as

four doublets of doublets at 4.69 (J=13.3, 3.1 Hz), 4.19 4.30 (overlapping dd), 3.97 (J 14.0,

7.8 Hz), and 3.12 (J 14.2, 2.0 Hz) ppm. The bridge protons, that resonate as singlets in

compounds 2-1 and 2-2, now appear as doublets at 4.62 (d, J=1.1 Hz) and 4.43 (d, J=0.8 Hz)

ppm. The most striking feature of the 1HNMR spectrum is the large separation between the two

bridgehead protons, appearing at 4.40 ppm and 1.87 ppm. The rigid arrangement of the complex

forces the Rh center directly above one of the bridgehead protons, deshielding it. Two distinct

doublet resonances associated with the two Rh-CNHC carbons in the 13C{1H} NMR spectrum of

49









2-3 at 181.8 (JRhc 54.1 Hz) and 179.4 (JRh =52.7 Hz) provide further evidence of the chelated

ligand forming a Ci symmetric compound.

2.3.4 Preparation and Solution State Analysis of [u-DEAM-BY] [Rh(COD)Cl]2 (2-4)

The dimeric starting material [Rh(COD)Cl]2 used in the synthesis of 2-3 is also utilized to

create the bimetallic [u-DEAM-BY][Rh(COD)Cl]2 (2-4) (Figure 2-5). Deprotonation of 2-1

followed by dropwise addition of the resulting solution into cold THF containing [Rh(COD)Cl]2

forms 2-4 in 94% yield. Compound 2-4 is significantly more soluble than its monometallic

counterpart 2-3. Pure 2-4 is procured as a yellow-brown powder by removal of all volatiles from

the reaction mixture followed by washing with cold ether and extraction into THF.

The two Rh(I) centers of 2-4 are bridged by the ethanoanthracene ligand through

coordination of one NHC moiety to each metal center. Unlike monometallic chelate 2-3, C2

symmetry is retained in 2-4. The 1H and 13C{1H} NMR spectra of 2-4 clearly reveal higher

symmetry. The benzyl methylene protons, corresponding to four doublet resonances in 2-3,

appear as two doublets at 5.88 (J=13.6 Hz) and 4.56 (J=13.7 Hz) ppm in the 1H NMR spectrum

of 2-4. The olefinic imidazole protons (NCHCHN) appear as two doublets at 6.90 (J 1.9 Hz)

and 4.57 (J=1.9 Hz) ppm and the bridge and bridgehead protons as a doublet at 4.23 (J 2.8 Hz)

and doublet of doublets at 3.57 (J 13.3, 2.6 Hz) ppm respectively. Two equivalent Rh-CNHC

bonds are evident by a single, distinct doublet at 179.5 (d, JRhC =51.2 Hz) ppm in the 13C{1H}

NMR spectrum.

2.3.5 Preparation and Solution State Analysis of [(DEAM-BY)Ir(COD)]OTf (2-5) and Lu-
DEAM-BY] [Ir(COD)Cl]2 (2-6)

Mono- and dinuclear Ir(I) complexes, 2-5 and 2-6, were constructed by the same

synthetic method as the Rh(I) counterparts replacing [Rh(COD)Cl]2 with the Ir(I) equivalent

(Figures 2-6 and 2-7). NMR spectra of mononuclear Ir compound 2-5 are expectedly similar to









the spectra of 2-3 excluding a few key features. Although 2-3 and 2-5 are structurally similar,

altering the metal center results in a slight variation in geometry, thus altering the exact location

of corresponding resonances. The major alteration in NMR spectra is seen in thel3C{1H} NMR.

Instead of the doublets in the 13C 1H} NMR spectrum of 2-3, the iridium bound carbons resonate

as singlets at 179.4 and 176.5 ppm. Unlike 103Rh, the predominant iridium isotopes, 191Ir and

193Ir, have quadrapolar nuclei with spin of 3/2 thereby negating M-C spin-spin coupling in the

spectra of both 2-5 and 2-6.

2.4 X-ray Structural Analysis and Comparisons

To obtain a more complete understanding of molecules 2-1 through 2-6 a structural study

was performed by single-crystal X-ray diffraction. Solid-state investigations of these molecules

allow comparison of structural variations between analogs.

2.4.1 Comparison of Organic Precursors 2-1 and 2-2.

Suitable crystals for X-ray diffraction studies of both 2-1 and 2-2 were obtained by

diffusion crystallization. Compound 2-1 crystallizes by diffusion of pentane into an ethanol

solution containing the salt, and crystals of the free dicarbene are similarly grown by diffusion of

pentane into a saturated benzene solution of 2-2. Figure 2-8 displays the solid-state structure of

the dicationic imidazolium salt 2-1 and the neutral free di-carbene 2-2.

The asymmetric unit of 2-1 contains one ligand molecule and two triflate anions in a

monoclinic space group. Investigation of the packing structure suggests an intermolecular

attraction between the olefin of the cationic imidazole and the electron-rich aryl ring of its

neighboring molecule. The shortest distance between the carbons of the olefin and aryl ring is

3.72 A and the distance between the olefin and the plane of the aromatic ring is 3.42 A. Unlike

2-1, the neutral free di-carbene 2-2 crystallizes in an orthorhombic crystal system with no

discernible intermolecular attractions.









The metric parameters for both molecules correspond to those expected for imidazolium

salts and their corresponding free carbenes.122, 123 Deprotonation increases the electron density at

the carbene center, causing the N-C-N angles to contract from 108.8(2)0 and 107.9(2) in 2-1 to

102.0(3) and 101.8(3) in 2-2. The N-Ccarbene bond lengths in 2-2 (1.370(4) N1-C20, 1.352(5)

N2-C20, 1.378(5) N3-C31, and 1.360(4) N4-C31) are notably longer than the N-(CH) distances

in 2-1 (1.322(3) N1-C20, 1.334(3) N2-C20, 1.328(3) N3-C31, and 1.330(3) N4-C31).

Contracting of the N-C-N angle and lengthening N-Ccarbene bond are both expected due to

increased o-bond character upon formation of the free carbene.124 The increased electron density

does not affect the imidazole backbone. No appreciable bond length alteration of the N-Calkene or

C=C bonds is apparent between compounds 2-1 and 2-2 (Table 2-1 and 2-2).

The only chemical alteration between 2-1 and 2-2 occurs on the heterocycle, but the largest

difference in their solid state structures is the conformation of the ligand arms. The torsion angle

between the pendant arms (ZC28-C15-C16-C17) in 2-2 is 109.0(3) but the same torsion angle

in 2-1 is 119.1(2). The 100 variation displays the flexibility of these ligands and is due in part to

the electrostatic repulsion between the two positively charged heterocycles of 2-1. Formation of

a neutral heterocycle reduces this repulsion in 2-2.

2.4.2 Monometallic [(DEAM-BY)M(COD)]OTf 2-3 and 2-5

X-ray diffraction studies confirm the structure and orientation of the C1 symmetric

chelating complexes 2-3 and 2-5 (Figure 2-9). As expected, the two mononuclear complexes

form similar crystals structures. The crystal lattice of both complexes form monoclinic cells

with P2(1)/n space groups. Each asymmetric unit contains a cationic molecule, its triflate

counter ion, and a solvent molecule.









Both M(I) ions sit in a slightly distorted square-planar coordination sphere. The NHCs

occupy cis coordination sites opposite a chelated 1,5-cyclooctadiene (COD). Examination of the

molecular structure suggests chelation forces the ligand to adopt a strained geometry. The

dihedral angles ZC28-C15-C16-C17 of 95.8(2) for 2-3 and 96.2(8) for 2-5 are significantly

smaller than those for the organic precursor molecules 2-1 and 2-2. Although ligand bite angles

correspond to values expected for square planar complexes (ZC20-Rh-C31 of 89.93(8) and

ZC20-Ir-C31 of 91.2(3)), conformational strain is evident by unsymmetrical NHC-M bonds.

This feature is significant in the solid state structure of Rh(I) compound 2-3. One NHC-M bond

length, C31-Rh, is 2.037(2) A corresponding closely to the average M-NHC bond length found

in the Cambridge Structural Database by Baba et. al.124 The second Rh-NHC bond is longer at

2.068(2) A for C20-Rh, well over the 30 significance factor. Although the trend appears to

continue in 2-5 the difference lies within the error of the data (2.031(9)A for Ir-C20 and

2.059(8)A for Ir-C31).

As previously discussed, binding of NHCs to metal centers is believed to be highly

electrostatic in nature, allowing the NHC to retain much of its free carbene character.

Supporting this assertion, the N-C-N bond lengths and angles of 2-3 and 2-5 correspond closely

to those noted for free carbene 2-2. Figure 2-10 displays average metric parameters for NHC-M

species and their free carbene precursors.124 The ZN-C-N of 2-2 is slightly smaller than in the

metal complexes whereas the ZN-C-N of the imidazolium salt (2-1) is approximately 5 broader

than in 2-3 or 2-5. The N-Ccarbene bond lengths of each chelate complex resemble the slightly

longer bonds of compound 2-2 rather than those of 2-1 (Tables 2-1, 2-2, 2-3, and 2-5).









2.4.3 Bimetallic Complexes Lu-DEAM-BY] [M(COD)CI]2 2-4 and 2-6

Figures 2-5 and 2-7 display the X-ray crystal structures of bimetallic complexes 2-4 and 2-

6. Similar to the monometallic compounds, the bimetallic compounds form crystal lattices with

similar structures. Both molecules crystallize in the P1 space group and form triclinic crystal

systems.

The solution state assignment of C2 symmetry for the dinuclear complexes is retained in

the solid-state structures. The C2 axis bisects the C15-C16 bond, passing through the center of

the DEA backbone. The two neutral M(I) centers are bridged by the chiral ligand, each NHC

acting as a monodentate ligand in a distorted square planar coordination sphere that includes a

chloride and a chelating COD. The NHC moieties are parallel to each other but face opposite

directions, situating the metal centers directly above opposing backbone aryl rings.

The absence of strain from chelation permits M-CNHC bond lengths (2.021(5)A Rhl-C20,

2.024(5)A Rh2-C31, and 2.033(3)A for both Irl-C20 and Ir2-C31) that correspond to reported

literature values.124 The similarities also extend to the N-CNHC distances and N-C-N angles.

(Table 2-4 and 2-6) The large torsion angles of ZC28-C15-C16-C17 of 125.2(5) and 125.5(3)

for 2-4 and 2-6, respectively, again signify the flexibility of the ligand.

2.5 Initial Catalytic Testing

The monometallic Rh complex (-)2-3125 was investigated toward the hydroformylation of

styrene, vinyl acetate, and allyl cyanide (Table 2-7) by Dr. Muhammad T. Jan.126 It was noted

that the catalysis gave relatively high yields but lacked any significant enantiocontrol. In our

laboratory, related catalysts were being investigated toward the hydrogenation oftrans-

methylstilbene and methyl-2-acetamidoacrylate, the hydroformylation of styrene, and the

hydrogen transfer from 2-propanol to methyl ketones.127 These studies yielded two important









observations. The first observation found that a complex closely related to 2-3 showed fluxional

behavior even at room temperature resulting in an ill defined chiral pocket. The second

observation was the formation ofRh or RhH(CO)4 species as the active catalyst. Mercury

poisoning experiments and an induction period in kinetic studies suggested that the ligand was

reductively eliminating from the metal center under the conditions required for catalysis.

2.6 Conclusions

Solid-state analysis of NHC containing compounds 2-1 through 2-6 displays the structural

variation available using this ligand. The bimetallic complexes retain the intended C2 symmetry

but chelation of the ligand induces a C1 symmetric structure. Although the C2 symmetry is a

"privileged" orientation, there is no fundamental reason Ci symmetric compounds cannot be

successful in asymmetric catalysis, and in fact, some Ci symmetric compounds have been quite

successful in chiral induction catalysis.128

However, initial catalytic trials involving (-)2-3 and related catalyst species suggests this

initial ligand architecture does not induce a rigid chiral pocket even at ambient temperature.

Optimization of the initial ligand design should be possible by increasing the rigidity of the

ligand and further defining the chiral pocket.



















I_ -


Hernnrmn


Manldlir


Phll
- Intchentl


-N



Hulim


lerrmnanin

Ph Pli

l ci


N'
ja-


f l.i


Ieyoi


K' AWu

HR R
DI)mthwnite


- Ph,,-,

Ioin l

H e P .


'-Io

I ruwJLI
Rqnbonh1L


J V

R 'r Pr, Cnli Pt l
Duulhraic


Ar 2.4.6-Mc1CHj
2.6 'Pr'4,] I1
-n mon llo










i I


~" \-A

R -'Bu, bL, Cy.
'Pt, (1I hih"
Burgeas


Nl 'R




R = 'Bu. 2.-'Pr3C(,H
RIlTI IO


N19p



2ru


s M rh 2n
osc c yo
i% I
(,. 41t G t
%lnrAhd1


CN



Mlarsnll


R' R:

^R -o, 'I' I I t-





Sailu Vetg



Figure 2-1. Examples of chelating NHCs. 104-113, 115, 120, 127, 129-147


nmtr2e

Umhiree
















F
F 0
F t
S-


2.1 eq I-benzylimidazole
DME, A 2h


Figure 2-2. Synthesis of [DEAM-BI](OTf)2 (2-1)









N 2 O
2 / 2.1 eq KN{TM%1.. Till
-35C-R I, 2 hrs


Figure 2-3. Synthesis of DEAM-BIY (2-2)


72 0Tf


1) 2.1 eq KN(TMS)2,
-100"C, Ti IF
2) 1.2 eq [Rh(COD)CI];,
-100T, Tl]IF


Figure 2-4. Synthesis of [(DEAM-BY)Rh(COD)]OTf (2-3)


-2 0]f


SOTI















1) 2.1 eq KN{TMS2,
-I O0QTHF
2) 1 eq [Rh(CODiIC.-'l
I )00C, TE IF


Rh"eN r

NJ)


Figure 2-5. Synthesis of [u-DEAM-BY][Rh(COD)C1]2 (2-4)


] 2 0-1-f


1) 2.1 eq KN(TMS),,
I00TC T1 IF
2) 1/2 eq [Ir(( .O l))( I]:.
-100I C, THF
2^=Cs


Figure 2-6. Synthesis of [(DEAM-BY)Ir(COD)]OTf (2-5)



2P 2 OTf

.N 1) 2.1 eq KN(TMS)2,
N -100C, Ti IF
S2) I eq [[r' l.PI),i 1],
-00(, T[[ IF


Figure 2-7. Synthesis of [u-DEAM-BY][Ir(COD)C1]2 (2-6)


] 2 c ITf


N Rh'C
N Rh'


SOTf























C20 H20 C17
C21 A
[f C19 C18 ( I.
C27 C2 2



C25


tS, C36



C32A C38
S C30



H31 N3-


Cl
s


CIO C9


Figure 2-8. X-ray Crystal Structure of 2-1 (left) and 2-2 (right) with ellipsoids drawn at 50%
probability and hydrogens removed* for clarity [*Theoretical position ofimidazolium
proton (pink) is included].


C24 C23
22 C


C26 27
C1.

C45



S 41
C42


C '
(-.~i


C26





C 3 C1


C9


C34 C35


C32
C32W--3 C36
C37





N3



-t. C43







Cb" >c9


Figure 2-9. Molecular Structure of 2-3 (left) and 2-5 (right) with ellipsoids drawn at 50%
probability. Triflate counterion and hydrogens (excluding H16 and H15) removed for
clarity.


C17


ct18 ,


N C29 C30


cs C38
--




I17 Q# ^ "-
-- I C15 C31 C32

,. .C35


C27




SC23 C24
C2 .2


~, ~J,

)$8~i~co:
~9-~3 ~a~











o l.17')A
r 22(1) L3/6(2)A .
iC .125(2)p ,102) (1 )CR
-N" 105(2 N L45(2)A
125(1)" \ / 1.45(3)A
12 3(3)
1.40(3)A
I41(4)A

Figure 2-10. Average bond angles and length of free NHCs (top) and M-NHCs(bottom)
reprinted with permission from E.Baba et al. Inorganica Chimica Acta 2005, 358,
2870.


N ('30
/ 8


C40 ( 39







ie,


C26 Cc37
SC33


( C..0 0



-C4


Figure 2-11. Molecular Structure of 2-4 (left) and 2-6 (right) with ellipsoids drawn at 50%
probability and hydrogens removed for clarity.



Table 2-1. Selected bond lengths (A) and angles (0) for complex 2-1


Bond lengths







Angles

Torsion Angles


C18-C19
C29-C30
N3-C31
N3-C29
N3-C28
N4-C31
N4-C30
N1-C20-N2
N3-C31-N4
C28-C15-C16-C17


C48


cs-%


1.343(4)
1.344(3)
1.328(3)
1.374(3)
1.473(3)
1.330(3)
1.369(3)
108.8(2)
107.9(2)
119.1(2)


c
Q
('2,
C21

C4,




('39
Xl^k

O)


F
rbLP~~


Q









Table 2-2. Selected bond lengths (A) and angles (0) for complex 2-2
2-2
Bond lengths C18-C19 1.337(5)
C29-C30 1.346(5)
N1-C18 1.369(5)
N1-C20 1.370(4)
N1-C17 1.458(5)
N2-C20 1.352(5)
N2-C19 1.382(5)
Angles N1-C20-N2 101.8(3)
N3-C31-N4 102.0(3)
Torsion Angle C17-C16-C15-C28 109.0(3)


Table 2-3. Selected bond length (A) and angles (0) for complex 2-3
2-3


Bond lengths


Rh-C20
Rh-C31
N1-C18
N1-C20
N1-C17
N2-C20
N2-C19
C20-Rh-C31
N1-C20-N2
N3-C31-N4
C17-C16-C15-C28
Rhl-C16


Angles


Torsion Angle
Distance


2.068(2)
2.037(2)
1.384(3)
1.367(3)
1.468(3)
1.359(3)
1.387(3)
89.93(8)
103.82(18)
104.13(18)
95.8(2)
3.375(2)










Table 2-4. Selected bond length (A) and angles (0) for complex 2-4
2-4


Bond lengths


Rhl-C20
Rh2-C31
N1-C20
N1-C18
N1-C17
N2-C20
N2-C19
N2-C21
C18-C19
C29-C30
Rh2-C12
Rhl-Cll
N1-C20-N2
N3-C31-N4
C17-C16-C15-C28


Angles


Torsion Angle


2.021(5)
2.024(5)
1.364(6)
1.368(6)
1.463(6)
1.362(6)
1.376(6)
1.460(6)
1.354(7)
1.340(7)
2.3741(15)
2.3622(15)
104.5(4)
103.1(4)
125.2(5)


Table 2-5. Selected bond lengths (A) and angles (0) for complex 2-5
2-5


Bond lengths


Ir-C20
Ir-C31
N1-C18
N1-C20
N1-C17
N2-C20
N2-C19
N2-C21
C20-Ir-C31
N1-C20-N2
N3-C31-N4
C17-C16-C15-C28
Irl-C15


Angles


Torsion Angle
Distance


2.031(9)
2.059(8)
1.382(10)
1.351(10)
1.467(10)
1.361(10)
1.375(11)
1.469(10)
91.2(3)
103.7(7)
104.1(7)
96.2(8)
3.345(8)









Table 2-6. Selected bond length (A) and angles (0) for complex 2-6
2-6


Bond lengths


Irl-C20
Ir2-C31
N1-C20
N1-C18
N1-C17
N2-C20
N2-C19
N2-C21
C18-C19
C29-C30
Irl-Cll
Ir2-C12
N1-C20-N2
N3-C31-N4
C17-C15-C16-C28


Angles


Torsion Angle


2.033(3)
2.033(3)
1.355(4)
1.382(4)
1.475(4)
1.365(4)
1.384(4)
1.457(4)
1.349(5)
1.353(5)
2.3673(9)
2.3530(10)
103.9(3)
104.2(3)
125.5(3)


Table 2-7. Initial catalytic hydroformylation results utilizing complex 2-3
Substrate Catalyst Solvent Conversion % b:l % ee
Styrene 2-3 Chloroform 80 94:6 NA
Styrene 2-3 Toluene 100 93:7 NA
Styrene -2-3 Toluene 100 93:7 0
Vinyl Acetate 2-3 Chloroform 21 96:4 NA
Vinyl Acetate -2-3 Toluene 45 95:5 0
Allyl cyanide 2-3 Toluene 15 10:2
Allyl cyanide -2-3 Toluene 50 10:5









CHAPTER 3
SECOND GENERATION DI-NHC CATALYSTS148

3.1 Introduction

The intricate relationship between ligand structure and catalytic selectivity often requires

optimization of a catalyst via modification of the ligand design. Chapter 2 introduced the first

generation of di-NHC ligands produced in our laboratory. Initial catalytic testing120' 127 indicated

that the first generation chelating bis-NHC complexes possessed an overly flexible chiral pocket

under catalytic conditions. Two modifications could be made to the ligand design to increase the

definition of the chiral pocket; either the nitrogen substituent could be altered to increase the

steric bulk around the metal center, or the ligand backbone could be altered to increase the

overall rigidity. Although both avenues have been investigated, initial efforts were focused on

altering the rigidity of the backbone itself.

Instead of overhauling the entire backbone design, we chose to reduce the ligand flexibility

by eliminating the methylene linker between the ethanoanthracene backbone and the NHC

coordinating moiety, leaving only two linking carbons between the imidazole units. To

investigate the effect of electronic variation two different N-heterocycles were investigated

(Figure 3-1).

During ligand preparation, several reports were published alerting of potential problems

with this new architecture. As was observed with the initial ligand design, chelating bis-NHCs

are capable of two different coordination modes, chelation to a single metal center or

coordination to two independent metal centers producing bridged bimetallic species. Because

NHC ligands do not tend to reversibly dissociate from a metal center, the kinetic product is

formed unless transmetallation reagents are utilized.149 Several studies have attempted to

describe the architectural features that promote chelation over bridging complexes and vice









versa.58, 150-153 The commonly accepted reactivity patterns for chelating bis-NHCs are as

follows:

1. When small alkyl N-substituents are used, the linker length has a strong effect on the
mode of coordination.150

2. Small linkers (1 or 2 units) favor a bridging mode due to negative steric interactions of
the N-substituents with co-ligands. Chelating species can be formed when the co-ligands
on the metal are small or the complex is capable of forming an octahedral geometry.

3. Longer linkers ( >3 units) favor chelation unless the steric bulk of the nitrogen
substituents is sufficiently large (ex. t-butyl).58

4. Systems that do not involve halogenated compounds (from the metal or imidazole salt)
typically favor formation of chelating cationic complexes. Halogen abstraction (by use
of a silver salt) can also promote chelate formation.151

These results suggest that a di-NHC ligand with a linker of 2 units and small N-methyl

substituent should favor a bridged 2:1 complex. Ligand architectures containing short linkers

typically force both bulky azole rings into the crowded x,y-plane of the metal complex. In these

cases, bulky co-ligands (e.g. COD or NBD) promote the formation of bridging complexes to

circumvent overcrowding in the x,y-plane. Longer linkers allow orientation of the bulky azole

plane along the z-axis thereby allowing chelation without steric crowding. As will be discussed

later, the second-generation ligand backbone, although only two carbon units link the azole rings,

fortuitously allows the azole ring to orient along the z-axis.

This chapter will describe the synthesis of monometallic and bimetallic complexes

supported by the constrained second-generation ligands, 1,1'-(9,1 0-dihydro-9,10-

ethanoanthracene- 11,12-diyl)di(3 -methyl-1H-imidazol-3 -ium) diiodide [DEA-MI](I)2 (3-3) and

1,1'-(9,1 0-dihydro-9,1 0-ethanoanthracene-l 1,12-diyl)di(3 -methyl-1H-benzimidazol-3 -ium)

diiodide [DEA-MBI](I)2 (3-4).









3.2 Experimental Section

3.2.1 GC Analysis of Chiral 9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diamine (3-1)

Synthesis ofracemic and enantioenriched diamine 3-1 was achieved via literature

methods.154, 155 Resolved diamine 3-1 was then dissolved in CH2C12 and a few drops of

trifluoroacetic anyhydride were added. The solution was concentrated and dissolved in acetone.

Enantiopurity of(R)-3-1 and (S)-3-1 was measured by gas chromatography. Column: Chirasil

Val; oven temperature: start 1000C for 2 min, increase by 100C/min until 1800C, hold for 20

min. tR: (S,S): 22.4 min; (R,R): 25.1 min. All samples were found to be greater than or equal to

95% enantiomerically pure.

3.2.2 Synthesis of Trans-l,l'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diyl)di(1H-
Imidazole)
(3-2)

Glyoxal (6 mL of 40% aqueous solution, 2 equiv., 51.6 mmol) was added to a methanol

solution (40 mL) containing diamine 3-1 (6.1 g, 25.8 mmol). The solution immediately turned

bright yellow and became warm, forming a light yellow precipitate. The mixture was stirred for

16 h. Additional MeOH (40 mL) was added, followed by solid NH4C1 (5.52 g, 4 equiv., 103.4

mmol) and formaldehyde (7.7 mL of 37% solution in water, 4 equiv., 103.4 mmol). The

resulting mixture turned dark orange and was heated at reflux for 4 h. Phosphoric acid (7.1 mL

of 85% solution in water, 4 equiv., 103.4 mmol) was added slowly and the resulting mixture was

heated at reflux for 16 h. The mixture was cooled to room temperature and volatiles were

removed. Dichloromethane was added and the mixture was basified to pH 14 with 2.5 M NaOH

solution. The organic extract was dried over sodium carbonate, filtered, and concentrated to a

sticky red oil consisting of roughly a 1:1 mixture of the desired diimidazole 3-2 and a partially

reacted monoimidazole/amine compound.103 Diimidazole 3-2 was isolated by flash column

chromatography using 5% MeOH in CHC13 as the eluent. Chromatography produced pure 3-2 as

66









a beige colored solid (1.03 g, 12%). 1H NMR (300 MHz, CDC13) 6 ppm: 7.43 7.50 (m, 2 H,

Ar), 7.22 7.35 (m, 6 H, Ar), 7.08 (t, J 1.1 Hz, 2 H, NCHCHN), 6.92 (t, J 1.1 Hz, 2 H,

NCHCHN), 6.17 (t, J=1.4 Hz, 2 H, NCHN), 4.49 (2 overlapping s, 4 H, bridge and bridgehead

H) 13C NMR (75.3 MHz, CDC13) 6 (ppm): 140.39 (N-CH=N), 138.16 and 136.16 (C=C), 129.79

(C aromatic), 127.67 (C aromatic, overlapping signals), 126.63 (C aromatic), 124.32 (N-

CH=NCH=CH), 117.10 (N-CH=NCH=CH), 64.67 (N-CH-CH-C=), 50.78 (N-CH-CH-C=).

HRMS (CIP-CI) calc'd (found) for C22H19N4 (M+H)+ 339.1610 (339.1649).

3.2.3 Synthesis of Trans-l,l'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diyl)di(3-
Methyl-lH-Imidazol-3-Ium) Diiodide [DEA-MI](I)2 (3-3)

Diimidazole 3-2 (1.0 g, 2.96 mmol) was dissolved in anhydrous MeCN (25 mL) in a glass

ampoule fitted with a sealable Teflon stopcock. Mel (0.74 mL, 4 equiv., 11.8 mmol) was added

and the flask was evacuated then sealed under vacuum. The flask was shielded from light and

was heated in a sand bath at 105 OC for 48 h. The mixture was cooled to room temperature and

the precipitate was filtered and washed with cold MeCN to produce 3-3 as an off-white solid;

yield (1.41 g, 77%). 1HNMR (300 MHz, (CD3)2SO) 6 ppm: 8.93 (br. s, 2 H, NCHN), 7.68 (t,

J=1.7 Hz, 2 H, NCHCHN), 7.62 (d, J=7.1 Hz, 2 H, Ar), 7.33 7.43 (m, 4 H, Ar), 7.23 7.31 (m,

2 H, Ar), 6.60 (t, J 1.5 Hz, 2 H, NCHCHN), 5.48 (br. s, 2 H, bridge H), 5.05 (br. s, 2 H,

bridgehead H), 3.82 (s, 6 H, CH3) 13C NMR (75.3 MHz, (CD3)2SO) 6 (ppm): 139.1 and 137.3

(C=C), 136.7 (N-CH=N), 127.6 (C aromatic), 127.5 (C aromatic), 126.3 (C aromatic), 125.5 (C

aromatic), 123.6 (N-CH=NCH=CH), 119.7 (N-CH=NCH=CH), 63.0 (N-CH-CH-C=), 48.3 (N-

CH-CH-C=), 36.1 (NCH3). HRMS (FIA-ESI) calc'd (found) for C24H24IN4 (M-I) 495.1040

(495.1040).









3.2.4 Synthesis of Trans-l,l-(9,10-Dihydro-9,10-Ethanoanthracene-1l,12-Diyl)di(3-Methyl-
1H-Benzimidazol-3-Ium) Diiodide [DEA-MBI](I)2 (3-4)

Dibenzimidazole103 (970 mg, 2.2 mmol) was dissolved in anhydrous MeCN (10 mL) in a

glass ampoule fitted with a sealable Teflon stopcock. Mel (0.55 mL, 4 equiv, 8.8 mmol) was

added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in

a sand bath at 105 OC for 48 h. The mixture was cooled to room temperature and the solid was

filtered and washed with cold MeCN to afford 3-4 as a light beige powder; yield 1.05 g (66%).

1HNMR (300 MHz, (CD3)2SO) 6 ppm: 8.85 (s, 2 H, NCHN), 7.99 8.07 (m, 2 H, Ar), 7.82 -

7.92 (m, 4 H, Ar), 7.66 7.77 (m, 4 H, Ar), 7.47 (td, J=7.5, 1.13 Hz, 2 H, Ar), 7.27 (td, J=7.4,

0.99 Hz, 2 H, Ar), 7.15 7.22 (m, 2 H, Ar), 5.99 (s, 2 H, bridge H), 5.16 (s, 2 H, bridgehead H),

3.92 -4.01 (m, 6 H, CH3) 13C NMR (75.3 MHz, (CD3)2SO) 6 (ppm): 140.5 (N=CH-N), 138.5

and 137.5 (C=C), 131.3 and 130.6 (N-C=C-N), 127.8 (C aromatic), 127.7 (C aromatic), 126.8 (C

aromatic), 126.8 (C aromatic), 126.6 (C aromatic), 126.2 (C aromatic), 114.2 and 113.7 (N-

CCHCHCHCHC-N), 61.3 (N-CH-CH-C=), 48.0 (N-CH-CH-C=), 33.8 (N-CH3). HRMS (ESI-

FTICR) calc'd (found) for C32H28IN4 (M-I) 595.1353 (595.1272)..

3.2.5 Synthesis of Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-(1-
Methyl)Bibenzimidazole), DEA-MbBY (3-5)

KN(TMS)2 (116 mg 0.58 mmols) in 5 mL of dry THF was added dropwise to a 10 mL

THF solution of 3-4 (200 mg, 0.27 mmol). The reaction was allowed to stir at room temperature

for 3 h and then filtered. Solvent was removed from the filtrate in vacuo to produce a yellow

powder. Excess base was extracted by washing the yellow precipitate with Et20 (10 mL) to

afford 3-5 as a yellow solid; yield 53 mg (40%). 1H NMR (300 MHz, C6D6) 6 ppm: 6.95 (m, 12

H, Ar), 6.77 (dt, J= 7.5, 1.1 Hz, 2 H, Ar), 6.39 (dd, J= 7.5, 1.0 Hz, 2 H, Ar), 4.95 (s, 2 H,

bridgehead CH), 3.40 (s, 2 H, bridgehead CH) 2.63 (s, 6 H, NCH3). 13C NMR (75.3 MHz, C6D6)









6 ppm: 145.5 and 138.28 (NCCHCHCHCHCN), 144.0 and 139.2 (N-C=C-N), 127.4 (C, Ar),

126.9 (C, Ar), 126.4 (C, Ar), 123.9 (C, Ar), 122.8 (C=C), 121.5 (C, Ar), 119.8 (C, Ar), 109.1 and

106.9 (NCCHCHCHCHCN), 65.9 (NCHCHC), 46.6 (NCHCHC), 36.2 (NCH3). MS(DIP-CI):

Calc. for [C32H26N4]: m/z 466.5564 [M+], found m/z 466.2157. The molecular structure of 3-5

as determined by X-ray crystallography is displayed in Figure 3-7, crystals were grown by a

diffusion of ether into a THF solution containing the compound.

3.2.6 Synthesis of Lu-DEA-MY] [Rh(NBD)I]2 (3-6) as a Mixture with 3-9

At -35 C, KN(TMS)2 (46 mg, 0.23 mmol) in 3 mL dry THF was added dropwise to a

suspension of 3-3 (76 mg, 0.12 mmol) in THF (3 mL). The reaction mixture was then stirred for

45 min while warming to room temperature. After cooling the mixture to -35 OC, it was added

dropwise to a cold solution of [Rh(NBD)2]BF4 (100 mg, 0.27 mmol) in THF (3 mL). This

mixture was allowed to stir at room temperature for 2.5 h before the solvent was removed in

vacuo. The resulting residue was triturated with Et20 (2x3 mL) and pentanes (2x3 mL). After

drying overnight, the residue was taken up in pentanes, filtered and then washed with Et20 and

extracted into benzene. The solvent was removed, producing a yellow/orange solid (53 mg). A

1H NMR spectrum of the solid revealed 25 mol% of 3-9 was present as an impurity that could

not be removed. H NMR (300 MHz, C6D6) 6 ppm: 7.85 (d, JHH = 7.1 Hz, 2ArH), 6.86 7.11

(m, 6ArH), 6.41 (s, bridge H), 5.91 (d, JHH = 1.7 Hz, NCHCHN), 5.77 (d, JHH = 1.7 Hz,

NCHCHN), 5.48 (s, 2bridgehead H), 5.19 (br s, 2NBD-CH), 5.05 (br s, 2NBD-CH), 3.38 (br s,

2NBD-CH), 3.28 (s, 6CH3), 3.12 (d, JHH = 2.3 Hz, 2NBD-CHCHCH) 2.89 (br. s., 2NBD-CH)

1.64 (d, JHH = 2.5 Hz, 2NBD-CHCHCH) 0.96 (m, 4NBD-CH2). The molecular structure 3-6 as

determined by X-ray crystallography is displayed in Figure 3-8, crystals were grown by diffusion

of ether into a THF solution containing the compound.









3.2.7 Synthesis of Lu-DEA-MBY] [Rh(diene)Cl]2 (3-7) as a Mixture with 3-8

Dibenzimidazolium salt 3-4 (54 mg, 0.07 mmol), KN(TMS)2 (28 mg, 0.14 mmol), and

[Rh(COD)Cl]2 (44 mg, 0.09 mmol) were weighed into separate 20 mL vials and suspended in 3

mL of dry THF. After the reagents were cooled to -35 OC, the KN(TMS)2 solution was added

dropwise to the salt suspension. The reaction mixture was allowed to warm to room temperature

for 45 min before being cooled again to -350C. The reaction mixture was then added dropwise to

the cold [Rh(COD)Cl]2 suspension, which was then allowed to warm to room temperature for 1 h

while stirring. The solvent was removed in vacuo and the residue was triturated with Et20 (2x3

mL) and pentane (2x3 mL). The residue was taken up in pentanes and filtered, washed with

Et20, and extracted into benzene. A yellow/orange solid was obtained upon solvent removal.

The solid material consists of -33% 3-7-COD and 67% 3-8. The mixture obtained prevented

meaningful assignment of NMR spectral signals. To remedy this problem the analogous 3-7-

NBD was synthesized in hopes of generating a larger percentage of the dinuclear species.

Synthesis of3-7-NBD: Dibenzimidazolium salt 3-4 (53 mg, 0.07 mmol), KN(TMS)2 (28 mg,

0.14 mmol), and [Rh(NBD)2]BF4 (60 mg, 0.16 mmol) were weighed into separate 20 mL vials

and suspended in 3 mL dry THF. The reagents were cooled to -35 C and KN(TMS)2 was added

dropwise to the salt suspension, stirred at room temperature for 45 min, and cooled again to -35

C. The reaction mixture was then added dropwise to the cold [Rh(NBD)2]BF4 suspension and

allowed to warm while stirring at room temperature for 1 h. The solvent was removed in vacuo

and the residue was triturated with Et20 (2x3 mL) and pentane (2x3 mL). The residue was then

taken up in pentanes and filtered, washed with Et20, and extracted with benzene. A

yellow/orange precipitate (41 mg) was produced upon solvent removal which consisted of 48%

3-7-COD and 52% 3-8-NBD. H NMR (300 MHz, C6D6) 6 ppm: 8.09 (d, JHH = 7.4 Hz, 2ArH),









7.80 (2 H, s), 7.04 7.10 (m, 2ArH), 6.63 6.83 (m, 10ArH), 6.49 6.56 (m, 2ArH), 5.98 (s, 2

bridge H), 5.70 (s, bridgehead H), 5.25 (t, JHH = 4.0 Hz, 2NBD-HC=CH), 4.81 (t, JHH = 4.0 Hz,

2NBD-HC=CH), 4.41(m, 2NBD-HC=CH), 3.62 (m, 2NBD-HC=CH), 3.56 (br s, 6 CH3), 3.04

(m, 2NBD-CHCHCH), 1.52 (m, 2NBD-CHCHCH), 0.74 (d, JHH = 8.5 Hz, 2NBD-HCH), 0.60

(d, JHH = 8.2 Hz, NBD-HCH). The molecular structure of 3-7-COD as determined by X-ray

crystallography is displayed in Figure 3-9, crystals were grown by diffusion of pentane into a

methylene chloride solution containing the compound and THF.

3.2.8 Synthesis of the Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-
bis(1-Methylbenzimidazolidine-2-Ylidene) Cyclooctadiene Iodide, [(DEA-
MBY)Rh(COD)]I (3-8)

Dibenzimidazolium salt 3-4 (100 mg, 0.14 mmol) was suspended in 5 mL THF and

stirred overnight. At -35 C, KN(TMS)2 (53 mg, 0.26 mmol) in 3 mL THF was added dropwise

to the salt suspension and allowed to warm to room temperature and stir for 1 h. After cooling

the solution to -35 OC, [Rh(COD)Cl]2 (34 mg, 0.07 mmol) in 3 mL THF was then added

dropwise to the reaction and allowed to stir for 1 h at room temperature. The reaction mixture

was allowed to stir at room temperature overnight and the resulting solid was filtered, washed

with Et20 and extracted with CHC13 to provide [(DEA-MBY)Rh(COD)]I 3-8 as a yellow

powder; yield 59 mg (53%). 1HNMR (500 MHz, CDC13) 6 ppm: 9.26 (d, J 10.0 Hz, 16), 7.81

(d, J= 7.0 Hz, 11), 7.72 (d, J= 7.1 Hz, 8), 7.63 (d, J = 7.3 Hz, 5), 7.50-7.52 (m, 10, 18, 21), 7.44

(m, 9), 7.38 (m, 18 & 19), 7.32 (m, 2, 4, 29), 7.20 (m, 3 & 28), 7.04 (m, 27), 6.95 (d, J=8.2 Hz,

26), 5.19 (s, 14), 5.16 (s, 13), 5.13 (m, 39), 4.55 (m, 38), 4.45 (s, 24 CH3), 4.36 (dd, J= 9.9, J=

0.7 Hz, 15), 4.29 (m, 34), 3.95 (s, 32 CH3), 3.83 (m, 35), 2.72 (m, 33 & 40), 2.30 (m, 33 ), 2.23

(m, 37 CH2), 2.16 (m, 40), 1.74 (m, 36), 1.31 (m, 36). 13C NMR (75.3 MHz, CD3C1) 6 ppm:

193.6 (d, JRhc= 54.1 Hz, 31),191.4 (d, JRhc= 52.4 Hz, 23), 146.6 (s, 6), 144.1 (s, 7), 138.4 (s,









12), 136.6 (s, 30), 136.0 (s, 22), 135.7 (s, 1), 131.6 (s, 25), 128.3 (s, 10), 128.1 (s, 9), 127.7 (s, 4),

127.6 (s, 2), 127.4 (s, 3), 127.0 (s, 11), 124.6 (s, 19), 124.4 (s, 20), 124.1 (s, 8), 123.9 (s, 27),

123.6 (s, 28), 122.2 (s, 5), 111.6 (s, 21), 111.5 (s, 29), 111.4 (s, 26), 110.5 (s, 18), 94.2 (d, JRh =

8.3 Hz, 35), 91.7 (d, JRh = 7.7 Hz, 39), 90.9 (d, JRc = 7.2 Hz, 34), 90.1 (d, JRh = 7.7 Hz, 38),

65.9 (s, 16), 62.3 (s, 15), 49.2 (s, 13), 48.1 (s, 14 ), 39.6 (s, 24), 35.7 (s, 32), 30.9 (s, 37), 30.7 (s,

33), 30.6 (s, 40), 29.8 (s, 36). Numbering correlates to X-ray Crystal structure (Figure 3-10).

Anal. Calc. for C40H38N4IRh plus one molecule CH2C12: C, 55.36%; H, 4.53%; N, 6.30%.

Found: C, 55.06%; H, 4.56%; N, 6.17%. The molecular structure of 3-8 as determined by X-ray

crystallography is displayed in Figure 3-10, crystals were grown by diffusion of ether into a

methylene chloride solution containing the compound. The equilibrium geometry of 3-8 as

calculated by ground-state geometry optimization calculations using the hybrid density

functional B3LYP156 with the LANL2DZ157-160 basis set utilizing effective core potentials (ECP)

for the core rhodium electrons is displayed in Figure 3-11. All calculations reported in this

manuscript were done using the Gaussian161 program.

3.2.9 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-bis(1-
Methylimidazolidine-2-Ylidene Cyclooctadiene Iodide, [(DEA-MY)Rh(COD)]I (3-9)

Diimidazolium salt 3-3 (100 mg, 0.16 mmol) was suspended in 3 mL dry THF and stirred

overnight. At -350C, KN(TMS)2 (61 mg, 0.31 mmol) in 3 mL of dry THF was added dropwise

to the salt suspension and allowed to stir at room temperature for 1.5 h. At -35 C a solution

[Rh(COD)Cl]2 (40 mg, 0.08 mmol) in 3 mL of dry THF was added dropwise to the salt

suspension and allowed to stir for 1.5 h. A precipitate formed that was filtered and washed with

Et20 to afford 3-9 as a yellow powder; yield 99 mg (87%). 1H NMR (300 MHz, CDCl3) 6 ppm:

8.23 (dd, J= 7.5, 1.0 Hz, H16), 7.84 (d, J= 1.7 Hz, NCH=CHN), 7.74 (dd, J= 6.4, 1.8 Hz,

CCHCHCHCHC ), 7.58 (dd, J= 6.4, 2.1 Hz, CCHCHCHCHC), 7.52 (dd, J= 7.1, 1.1 Hz,









CCHCHCHCHC ), 7.46 (dd, J= 6.9, 1.0 Hz, CCHCHCHCHC), 7.11-7.39 (overlapping signals,

5 H, Ar and NCH=CHN), 6.96 (d, J = 2.0 Hz, NCH=CHN), 6.69 (d, J = 1.7 Hz, NCH=CHN),

5.17 (d, J= 1.1 Hz, NCHCHC), 4.87 (overlapping d and m, J= 0.6 Hz, NCHCHC and COD-

CH), 4.15 (m, COD-CH), 4.03 (s, CH3), 3.73 (m, 2COD-CH), 3.64 (s, CH3), 3.62 (dd, J= 1.4

Hz, 15), 2.44- 2.66 (m, 1COD-CH2), 2.18 -2.41 (m, 2COD-CH2), 1.98 -2.17 (m, 1COD-CH2),

1.69 -1.98 (m, 3COD-CH2), 1.47 1.68 (m, 1COD-CH2). 13C NMR (75.3 MHz, CDC13) 6 ppm:

180.1 (1 C, d, JRhC = 54.7 Hz, NCN), 179.3 (1 C, d, Jhc = 52.7 Hz, NCN), 143.7 (C, Ar), 142.6

(C, Ar), 136.9 (C, Ar), 136.1 (C, Ar), 128.6 (C, Ar), 127.8 (C, Ar), 127.7 (C, Ar), 127.4 (C, Ar),

127.2 (C, Ar), 126.9 (C, Ar), 125.1 (C, Ar), 125.0 (NCHCHN), 124.7 (NCHCHN), 123.7

(NCHCHN), 122.4 (C, Ar), 115.9 (NCHCHN), 92.6 (d, Jhc = 8.6 Hz, COD-CH), 88.3 (d, JRhC =

7.4 Hz, COD-CH), 87.9 (d, Jhc = 8.3 Hz, COD-CH), 85.8 (d, JRh = 7.4 Hz, COD-CH), 66.5 (s,

CHCHN), 63.7 (s, CHCHN), 48.5 (s, CCHC), 47.7 (s, CCHC), 40.8 (s, NCH3), 37.5 (s, NCH3),

32.5 (s, COD-CH2), 31.8 (s, COD-CH2), 29.0 (s, COD-CH2), 28.0 (s, COD-CH2). Anal. Calc. for

C32H34N4IRh: C, 54.56%; H, 4.86%; N, 7.95%. Found: C, 54.47%; H, 4.72%; N, 8.25%. The

molecular structure of 3-9 as calculated by ground-state geometry optimization calculations

using the hybrid density functional B3LYP156 with the LANL2DZ157-160 basis set utilizing

effective core potentials (ECP) for the core rhodium electrons is displayed in Figure 3-12.

3.3 Results and Discussion

3.3.1 Constrained Precursors [DEA-MI](I)2 (3-3) and [DEA-MBI](I)2 (3-4)

Synthesis of the constrained 9,10-dihydro-9,10-ethanoanthracene (DEA) ligands requires

assembly of each azole onto the diamine 3-1. Synthesis of 3-1 was achieved using three

different procedures. Initially, 3-1 was synthesized from a di-carboxylic acid via a literature

preparation reported by Trost et al.154 A similar procedure reported by Lennon et al.155 enabled

the formation of 3-1 via a multi-step one-pot synthesis beginning from anthracene. The initial

73









step in this procedure is the formation of a diacid chloride. To avoid formation of a dicarboxilic

acid by hydrolysis, the reaction procedure was slightly modified.162 Both (R,R)- and (S,S)-3-1

are available through resolution of diastereotopic salts formed from (S)- and (R)-mandelic acid,

respectively.155 The enantiopurity of chiral 3-1 was tested by gas chromatography (Section

3.2.1) and found to be no less than 95% enantiopure.

The synthesis of diimidazolium salt [DEA-MI](I)2 (3-3) was accomplished by adaptation

of a known procedure for generating monoimidazoles (Figure 3-2).163, 164 The procedure was

found to form an equimolar mixture of the desired diimidazole 3-2 and an imidazole-amine. The

products are separated and purified by repeated column chromatography. Subsequent formation

of 3-3 required alkylation of 3-2 by heating with methyliodide in dry acetonitrile over two days.

A 1H NMR spectrum of [DEA-MI](I)2 (3-3) revealed a singlet at 3.82 ppm and is assigned

to the methyl protons. The imidazolium proton (NCHN) is located downfield at 8.93 ppm and

the olefinic protons of the heterocycle appear as a multiple at 7.67 ppm and as a doublet of

doublets at 6.60 ppm (J= 1.5 Hz). Noteworthy in the 13C 1H} spectrum of 3-3 is the

imidazolium carbon (NCHN), which appears downfield at 136.8 ppm.

Figure 3-3 illustrates the procedure used to synthesize the related dibenzimidazolium

derivative. The benzimidazole was constructed using a modified procedure for the conversion of

a primary amine into the corresponding benzimidazole.143 Reaction of diamine 3-1 with two

equivalents of 2-fluoronitrobenzene in DMF followed by precipitation via water addition results

in the formation of the brilliant orange dinitroamine. Initially, the dinitroamine was reduced with

H2 (1 atm over Pd/C) to yield the tetraamine after seven days. However, upon further

investigation it was determined that the reaction could be accomplished overnight at 40 bar H2

pressure.165 The reaction endpoint is signaled by dissipation of the brilliant yellow-orange color









of dinitroamine compound. Cyclization to form the neutral dibenzylimidazole was achieved by

reaction oftetraamine with triethylorthoformate. The dibenzimidazolium salt [DEA-MBI](I)2

(3-4) was formed via reaction of the dibenzylimidazole103 with Mel in dry acetonitrile carried out

in a sealed flask over two days. The 1H NMR spectrum of 3-4 revealed two singlets at 3.96 ppm

and 8.85 ppm, which are assigned to the methyl and imidazolium (NCHN) protons, respectively.

Consistent with Karplus theory,166 singlets manifest from adjacent protons on the bridge and

bridgehead carbons (bridge = 5.16 ppm, bridgehead = 5.99 ppm) rather than doublets, due to a

torsion angle of approximately 90.

3.3.2 Synthesis and Characterization of DEA-MbBY (3-5)

The first step in the formation of most NHC complexes is deprotonation of the imidazole

precursor. Deprotonation of 3-4 was accomplished by treatment with 2.1 equiv. of KN(TMS)2 in

THF (Figure 3-4). Upon isolation, the deprotonated product was found to be enetetramine 3-5,

which was isolated in 40 % yield as a canary yellow solid.

Formation of these electron-rich olefins from benzimidazole or saturated imidazole

moieties is relatively common along with their subsequent utilization as precursors to bis-NHC

TM complexes.96' 120, 167 Both steric and electronic factors influence the relative stability of these

dimers.168, 169 As discussed in Chapter 2, unsaturated imidazoles do not tend to dimerize,

although a rare example has been reported.170 The ability of saturated imidazoles and

benzimidazoles to form dimers is correlated with a smaller HOMO-LUMO gap in these species

relative to the unsaturated imidazoles.171' 172 The steric bulk of the exocyclic N-substituents plays

a key role in determining the stability of saturated imidazole and benzimidazole free carbene

species.168 Small substituents result almost exclusively in enetetraamine formations for saturated

imidazoles; however, unbridged benzimidazoles with small nitrogen substituents can display an

observable equilibrium between the enetetraamine and free carbene species. 173 Resonances

75









associated with a free carbene species are not observed in either the 1H or 13C NMR spectra of 3-

5. In the case ofunbridged azoles, entropy considerations are expected to favor the free carbene

by as much as 10 kcal/mol.174 The much smaller loss in entropy associated with intramolecular

dimerization may be the reason an equilibrium between the two species is not observed.

The mechanism by which carbenes dimerize has been investigated using both experimental

and computational methods.174-176 These reports suggest two mechanisms for intermolecular

dimer formation. Direct carbene + carbene dimerization through a non-least motion attack of the

nucleophilic o-orbital on the empty pr-orbital of a neighboring carbene is possible when all

proton sources are rigorously excluded from the system. Proton-catalyzed dimerization is

suggested for reactions in which any proton source is available. Nucleophilic attack of a free

carbene on a neighboring imidazole followed by deprotonation, typically by another carbene, has

been found to be a lower-energy process in many cases. Since the free carbene species is never

isolated for 3-5, the proton-catalyzed mechanism is most likely responsible its formation.

The absence of an imidazolium proton resonance at 8.85 ppm in the 1H NMR spectrum of

3-5 indicated that deprotonation was complete. Conclusive evidence of the enetetramine

formation was provided by 13C 1H} NMR spectroscopy. Free NHC carbons resonate within the

range of 205 to 245 ppm, whereas enetetramine carbons are shifted well upfield.96 The 13C{1H}

NMR spectrum of 3-5 revealed a distinct resonance at 122.8 ppm, and is assigned to the newly

formed double bond (N2-C=C-N2). Further evidence for the formation of an enetetramine was

gathered by single-crystal X-ray diffraction that will be discussed in Section 3.3.5.

3.3.3 Synthesis and Characterization of Lu-DEA-MY][Rh(NBD)I]2 (3-6) and u[-DEA-
MBY][Rh(COD)C1]2 (3-7-COD)

The bimetallic complexes [u-DEA-MY][Rh(NBD)I]2 (3-6) and [/,-DEA-

MY][Rh(COD)Cl]2 (3-7-COD) were synthesized in THF by first treating 3-3 and 3-4 with









KN(TMS)2 to generate the corresponding enetetramine and free di-NHC, respectively, followed

by addition of metal substrate. The complexes were obtained as mixtures with the corresponding

mononuclear species which complicated analysis (Figure 3-5). The molecular structures of 3-6

and 3-7-COD were confirmed by single-crystal X-ray crystallography and are presented in

Figures 3-8 and 3-9.

3.3.4 Synthesis and Characterization of [(DEA-MBY)Rh(COD)]I (3-8) and [(DEA-
MY)Rh(COD)]I (3-9)

Treatment of the dibenzimidazolium salt 3-4, at -35 C, with 2.1 equiv. of KN(TMS)2

followed by 0.5 equiv. of [Rh(COD)Cl]2 in THF, resulted in precipitation of crystalline yellow 3-

8 in 53% yield (Figure 3-6). The absolute assignment of each proton and carbon is accomplished

by gDQCOSY, gHMBC, and NOESY two-dimensional NMR techniques. Similar to compound

2-3, in solution the chelated complex 3-8 displays C1 symmetry. The low symmetry is

demonstrated by nonequivalent methyl resonances observed at 4.46 ppm and 3.95 ppm. A

distinct but unexpected doublet is observed downfield at 9.26 ppm (J= 10 Hz). Using two-

dimensional NMR analysis this proton was assigned to one of the aliphatic protons on the bridge.

It is coupled to the other bridge proton that resonates upfield, at 4.36 ppm (J=10.2 Hz). In the

1H NMR spectrum of monometallic complex 2-3 the aliphatic bridge protons are also separated

(by 3 ppm) but the most downfield proton appears at 4.40 ppm. The unusual position of the

resonance at 9.26 ppm suggested that the bridge proton is in very close proximity to the rhodium

center.

The formation of chelate species 3-8, rather than a bridging 2:1 complex, does not conflict

with the studies presented earlier that suggested a ligand with a two carbon linker should form a

bridging species. As stated previously, deprotonation of 3-4 results in formation of enetetramine

3-5, thereby positioning the two heterocycle moieties in close proximity, akin to a









transmetallation reagent. Lappert commonly utilized these electron rich olefins as NHC

precursors.96 In Lappert's systems, insertion of a metal into the C=C bond required temperatures

well above 100 C. The formation of complex 3-8 at room temperature is due to the strain

induced by the dihydroethanoanthracene backbone. It is also plausible that the conformation of

the backbone promotes chelating species because it allows the azole rings to orient along the z-

axis of the metal.

Synthesis of chelate 3-9 from imidazolium salt 3-3 is accomplished using the same

procedure as described for 3-8. Complex 3-9 is obtained as a yellow powder in 87% yield. The

compound was characterized by 1H and 13C{1H} NMR spectroscopy. Ci-symmetry is again

evidenced clearly by nonequivalent methyl resonances at 4.03 ppm and 3.64 ppm. The

downfield aliphatic proton in the bridge position resonates at 8.23 ppm, which is upfield relative

to compound 3-8. Presumably, the rhodium ion rests farther away from the bridge proton in 3-9

resulting in the upfield shift. This may be due to a more relaxed configuration created by the

smaller imidazole heterocycles.

Presumably, deprotonation of 3-3 forms a free di-NHC intermediate, unrestrained except

by the rigid ethanoanthracene backbone. Although the rigid backbone may play a significant

role in chelate formation, a significant amount of bridging 2:1 compound should be formed.

However, these results should not be interpreted as a contradiction to the investigations reported

in the introduction, but rather as supporting the need for thorough investigation of each new

ligand system instead of attempting to generalize the findings of a specific investigation.

3.3.5 X-ray Analysis of DEA-MbBY (3-5)

The structure ofracemic 3-5 was confirmed by single-crystal X-ray crystallography and is

presented in Figure 3-7. Two independent molecules possessing the same stereochemistry are









found in the asymmetric unit and are related to the opposite enantiomer via an inversion center.

Only one molecule is presented in Figure 3-7, but the metric parameters are similar for all like

species. For example, the C=C double bond for each independent molecule is 1.3426(19) A and

1.3416(19) A, similar to that observed previously for a derivative featuring a two-carbon

expanded ring.120 All four nitrogen atoms are pyramidalized (zC-N-Cavg = 116.07(13)),

indicating significant loss of aromaticity, and representative of an sp3-hybridized nitrogen. In

viewing the molecule from the top (Figure 3-7-B) it is clear the methyl groups are bent out of the

plane created by the four nitrogen atoms. The benzimidazole groups are nearly coplanar,

separated by only 150 resulting in an incredibly small torsion angle ZN1-C16-C15-N3 of 76.6(1).

3.3.6 X-ray Analysis of Bimetallic Complexes Lu-DEA-MY] [Rh(NBD)I]2 (3-6) and u[-DEA-
MBY][Rh(COD)C1]2 (3-7-COD)

Each bimetallic complex features a ligand that bridges two separate distorted square-planar

rhodium centers via a Rh-carbene bond. The coordination spheres are completed by a halide (Cl

,3-7; or I, 3-6) and a chelating diene (NBD, 3-6; and COD, 3-7). As expected, in 3-6 the

average bond distance between the Rh and alkene carbons opposite the Rh-NHC (d(Rh-

CtramNHC) = 2.2125(6) A) are elongated by 0.116(6) A compared to those opposite the I (d(Rh-

CtransI)= 2.097(6) A). The relatively small differences in C-donor strength of

benzimidazolidynes versus imidazolidynes imparts a similar difference (0.109(6) A) in the Rh-

alkene bond in complex 3-7. In fact, the average Rh-NHC bond lengths between 3-6 (d(Rh-

NHCavg = 2.018(4) A) and 3-7 (d(Rh-NHCavg = 2.007(3) A) differ only by 0.011(5) A.

Unfortunately, the variations in trans influences of Cl versus I and NBD versus COD precludes

a meaningful comparison.

Within 3-6 the rhodium iodide bonds are divergent and preserve the ligand C2-symmetry,

whereas in 3-7 the solid-state symmetry is broken by rotation of one Rh-Cl bond inward. The









inward rotation results in a 3.332 A separation between C1 and the centroid of the heterocycle.

Though packing forces cannot be ruled out, a beneficial interaction between the chloride lone

pairs and the 7* orbitals of the heterocycle is plausible. Interestingly, the torsion angle N2-C15-

C16-N4 for 3-6 is 106.0(4), but the addition of steric bulk on the azole backbone reduces the

angle by 80 in 3-7 (N1-C16-C15-N3 = 98.3(2)).

3.3.7 Structural Analysis of Monometallic Complexes [(DEA-MBY)Rh(COD)]I (3-8) and
[(DEA-MY)Rh(COD)]I (3-9)

Confirmation of the identity and orientation of 3-8 is obtained with a single crystal X-ray

diffraction experiment. Figure 3-10 displays the solid-state structure of 3-8, and selected bond

lengths and angles can be found in Table 3-4. The Ci-symmetric complex is comprised of a

slightly distorted square-planar Rh(I) ion chelated by COD and the di-NHC. The asymmetric

coordination is clear from the M-carbene bond lengths of 2.033(4) A and 2.051(5) A for C23-

Rhl and C31-Rh, respectively. The constrained ligand forces a small bite angle between the

NHC groups and the Rh(I) ion (ZC23-Rhl-C31 = 84.14(17)). The most remarkable feature of

the structure is that upon chelation, the benzimidazole rings force the torsion angle between N1 -

C15-C16-N3 to contract to a miniscule 68.8(5)0. In accordance with the 1H NMR resonance at

9.26 ppm for H16, a close Rh-C16 interaction is evident (d(Rhl-C16) = 3.033(4) A), though

crystallographic data does not warrant the assignment of an agostic interaction. Instead, the

rhodium center is fortuitously placed above H16 due to the natural twist of the molecule.

Unfortunately, a single crystal of X-ray quality could not be obtained for 3-9. To compare

the two structures, the aid of Jason Swails was enlisted to perform ground state geometry

optimization calculations using the hybrid density functional B3LYP156 with the LANL2DZ157-
160 basis set utilizing effective core potentials (ECP) for the core rhodium electrons. The crystal

structure of 3-8 was used as a starting point. Geometry optimization of this structure produced

80









an almost identical structure (3-8-calc) to that obtained by X-ray crystallography. The root mean

square deviation (RMSD) for the two structures was 0.168 A, meaning that the average

difference between locations of the same atom is less than 0.2 A. Table 3-6 lists selected bond

lengths and angles for the calculated 3-8-calc and X-ray crystal structure 3-8. The ZC31RhC23

is approximately a degree larger in the gas phase calculation and the torsion angle is extended by

a little more than a degree.

The aryl rings of the benzimidazole, C18 through C21 and C26 through C29 were

subsequently replaced by two imidazole protons to form structure 3-9. The gas phase equilibrium

geometry structure of 3-9 is shown in Figure 3-11. Visual inspection (Figure 3-11) reveals little

alteration relative to the structure calculated for 3-8; however, comparison of selected metric

parameters shows distinct architectural variations (Table 3-7). The two N-C-N angles of 3-9-

calc are two degrees smaller than in 3-8-calc, which is also seen in comparison of the X-ray

structures for the bimetallic species. The reduced steric bulk on the back of the imidazole allows

the chiral pocket to expand significantly. The distance from the Rh ion to the bridge proton H16

is approximately the same in the two calculated structures. However, when the two structures

are overlaid, a distinct increase in the tilt angle of the imidazoles can be seen relative to the tilt

angle for the benzimidazole structure (Figure 3-12). The ethanoanthracene backbones (C1-C14)

are aligned resulting in an RMSD of 0.0485 A between the backbone atoms. The RMSD of the

remaining atoms in common between the two molecules is 0.7870 A. Reducing the bulk on the

back of the azole permits the rhodium center to shift up and away from the aryl backbone. The

aryl ring of the backbone aids in the definition of the chiral pocket; therefore, the shift of the

rhodium center away from the backbone increases the flexibility of the ligand and reduces the

definition of the chiral pocket. Comparison of the distance from the bottom of the









cyclooctadiene ring to the aryl ring below shows a more than 0.5 A increase in the size of the

chiral pocket for 3-9-calc relative to 3-8-calc. The largest difference between the two structures

is the 100 expansion of the torsion angle N1-C15-C16-N3 for 3-9.

3.4 Conclusions

This chapter presented the structural analysis of the mono- and bimetallic Rh(I) complexes

supported by the two second-generation C2-symmetric chelating di-N-heterocyclic carbene

ligands based upon a trans-ethanoanthracene backbone. The direct attachment of the NHC units

to the DEA backbone reduced the size of the chiral pocket and increased the definition. A

mixture of X-ray diffraction data and computational ground state configurations allowed

comparison of the two structures of the monometallic Rh(I) compounds, suggesting that the bulk

of the benzimidazole actually serves to increase the definition of the chiral pocket.




F ^ (A720 f


First Gcncratiun


3N /-N
(\ 1Ny
\N-N


/ 21


Second Generation


Figure 3-1. First and second generation ligand architectures.

82












NH,
11,N -


3-1 -


1. glyoxal, McOH
2. NH4C1, H2CO, A
3. 11,PO,.A
-- : --------p


N N

3-N2
^3- '1-/


N NH2
I NHW


-N / -


;N 21


Mel, CHICN
105 "C, 2d
UP,


Figure 3-2. Synthesis of [DEA-MI](I)2 (3-3)


NH,
HN N2 2


AI




HC(-OE'H),
p-TsOH, 2d


H,, PdC
CIT2C]2'/MeOi
i


F -.1
N

ICO, N DMF
'16h

N-^ p=


4 Mcd, CH4CN
105, C, 2d


\/3-4


Figure 3-3. Synthesis of [DEA-MBI](I)2 (3-4)




\ i=N 21

N N 2. KN(SiMc3)

34 T111



Figure 3-4. Synthesis ofDEA-MBY (3-5)


~~






















1) 2, KN(SiMe))2
2) [KhllliD. I1]
or
0T
Rh(NBD)2BF4
TIIF


(33%)
3-7-NBD
(52%)


-1 21


Figure 3-5. Synthesis of binuclear compounds [pu-DEA-MY][Rh(NBD)I]2 (3-6) and [pu-DEA-
MBY][Rh(COD)C1]2 (3-7) as mixtures with 3-8 and 3-9


2.1 KN(TMS),

1/2 Rhr(COD)CIb
THF





2.1 KN-(TMS)2

1/2 Rh[(CODCI|
TIIF
<\=C^3'.M~


/ \ ] I
aN )





FN hN3
~/ K



3-8 -









3-9
ze ,R _9


Figure 3-6. Synthesis of rhodium monomer complexes [(DEA-MBY)Rh(COD)]I (3-8) and
[(DEA-MY)Rh(COD)]I (3-9).


(25%)
N MR N









(67%)
3-8-NBD
(48%)


1)2.1 TKNIT'-,
2) Rh(NBnD)BF4
THF


Cr
.=<>












7Z


c2"22
".3 ^


C9) CIO
Figure 3-7. Molecular structure of 3-5 from the side (left) and top (right) view. Ellipsoids are
drawn at the 50% probability level.








I C22 NI









CIO C9
Figure 3-8. Molecular structure of compound 3-6. Ellipsoids are drawn at the 50% probability
level.


I




,6


0 16








C32

I,





_10 161 .





tl ^H .4' c.ki: .
IfII* '6 *













Figure 3-10. Molecular Structure of 3-8 from a Side-on (Left) and Top View (right). Ellipsoids
are drawn at the 50% probability level.
Q '4 Z '*^ 7
rrP 9-t_ ,,p ^t "'',



















C36


Figure 3-11. Calculated equilibrium geometries of 3-8-calc and 3-9-calc.


Figure 3-12. Overlay of calculated structures 3-8-calc and 3-9-calc. Comparison of the
calculated structures 3-8-calc (orange) and 3-9-calc (blue) from the side (left) and top
(right). The backbone has been deleted for clarity in the top view.










Table 3-1. Selected bond length (A) and angles (0) for complex 3-5
3-5


Bond lengths










Angles

Torsion Angles


C25-C17
N3-C25
N4-C25
N3-C26
N1-C17
N2-C17
N1-C18
C26-C31
C23-C18
N1-C17-N2
N3-C31-N4
N1-C16-C15-N3


1.3426(19)
1.4484(17)
1.4264(17)
1.4063(17)
1.4211(17)
1.4062(17)
1.3903(17)
1.4004(18)
1.4112(18)
106.56(11)
108.87(11)
76.6(1)


Table 3-2. Selected bond length

Bond lengths











Angles

Torsion Angles


(A) and angles (0) for complex 3-6
3-6


Rhl-C23
Rh2-C 19
N1-C19
N2-C19
N3-C23
N4-C23
C17-C18
C21-C22
Rhl-II
Rh2-I2
N1-C19-N2
N3-C23-N4
N2-C15-C16-N4


2.016(4)
2.020(4)
1.347(5)
1.356(5)
1.350(5)
1.362(5)
1.332(6)
1.332(6)
2.6489(5)
2.6562(5)
104.3(3)
104.3(3)
106.0(4)











Table 3-3. Selected bond lengths (A) and angles (0) for complex 3-7
3-7


Bond lengths











Angles

Torsion Angles


Rhl-C17
Rh2-C25
N1-C17
N2-C17
N3-C25
N4-C25
C18-C23
C26-31
Rhl-Cll
Rh2-C12
N1-C17-N2
N3-C25-N4
N1-C16-C15-N3


2.012(2)
2.002(2)
1.374(3)
1.353(3)
1.365(3)
1.358(3)
1.398(3)
1.400(3)
2.3828(6)
2.3626(7)
106.0(2)
106.2(2)
98.3(2)


Table 3-4. Selected bond lengths


(A) and angles (0) for complex 3-8
3-8


Bond lengths








Angles


Torsion Angles
Distance


Rh-C23
Rh-C31
N1-C23
N2-C23
N3-C31
N4-C31
C25-C30
C17-C22
C23-Rh-C31
N1-C23-N2
N3-C31-N4
N1-C15-C16-N3
Rhl-C16


2.033(4)
2.051(5)
1.365(5)
1.375(5)
1.370(5)
1.347(5)
1.376(6)
1.397(6)
84.14(17)
104.7(4)
105.9(4)
68.8(5)
3.033(4)











Table 3-5. Comparison of measured and calculated bond lengths (A) and angles (0) for 3-8.
3-8 3-8-calc
Distances Rh-C31 2.051(5) Rh-C31 2.052
Rh-C23 2.033(4) Rh-C23 2.068
N2-C24 1.461(5) N2-C24 1.468
N4-C32 1.467(5) N4-C32 1.466
N2-C23 1.375(5) N2-C23 1.384


Angles



Torsion Angle
Distances


N1-C23
N4-C31
N3-C31
C16-H16
H16-Rh
C4-C36
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16


1.365(5)
1.347(5)
1.370(5)
1.001
3.033(4)
3.831
84.14(17)
104.7(4)
105.9(4)
68.8(5)
3.033(4)


N1-C23
N4-C31
N3-C31
C16-H16
H16-Rh
C4-C36
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16


Table 3-6. Comparison of bond lengths (A) and angles ()
3-9-calc.


for calculated structures 3-8-calc and


Calculation
Distances










Angles



Torsion Angle
Distances


3-


Rh-C31
Rh-C23
N2-C24
N4-C32
N2-C23
N1-C23
N4-C31
N3-C31
C16-H16
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16
C36-C4


8-calc
2.052
2.068
1.468
1.466
1.384
1.395
1.372
1.391
1.097
85.3
105.2
106.0
70.36
2.298
4.238


3-


Rh-C31
Rh-C23
N2-C24
N4-C32
N2-C23
N1-C23
N4-C31
N3-C31
C16-H16
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16
C36-C4


9-calc
2.053
2.078
1.472
1.47
1.385
1.396
1.375
1.386
1.095
87.1
103.6
104.2
80.64
2.394
4.946


1.395
1.372
1.391
1.097
2.298
4.238
85.3
105.2
106.0
70.36
2.298









CHAPTER 4
THIRD GENERATION CATALYSTS

4.1 Introduction

Coupling experimental observation with computational analysis has become a vital tool in

the application and optimization of catalytic species. Chapter 3 described the design and

structural analysis of the constrained second-generation ligands. Using gas-phase ground state

optimized geometry calculations it was determined that the steric bulk of the azole backbone

plays a significant role in determining the chiral structure.

To further improve the catalyst design, the ligands reported in chapter 3 were subjected to

architectural modifications (Figure 4-1). Through the slight variation of specific structural

components a more thorough understanding of the relationship between ligand and catalyst

structure is obtained. Independent alteration of the alkyl N-substituents and azole ring size is

accomplished. Formation and structural analysis of C1 symmetric mononuclear rhodium species

from the altered ligands is described.

4.2 Experimental Section

4.2.1 Synthesis of Trans-l,1'-(9,10-Dihydro-9,10-Ethanoanthracene-l1,12-Diyl)di(3-
Isopropyl-1H-Imidazol-3-Ium) Diiodide [DEA-iPrI](I)2 (4-1)

Diimidazole 3-3 (2.34 g, 6.9 mmol) was dissolved in dry MeCN (5 mL) in a sealable

glass flask. 2-iodopropane (2.8 mL, 4 equiv., 27 mmol) was added under argon and the flask

was evacuated then sealed under vacuum. The flask was shielded from light and was heated in a

sand bath at 105 OC for 48 h. The mixture was cooled to room temperature and the precipitate

was filtered and washed with cold MeCN to produce 4-1 as a white solid; yield 1.99 g (43%). 1H

NMR (300 MHz, (CD3)2SO) 6 ppm: 8.82 (s, 2 H, NCHN), 7.86 (t, J=1.8 Hz, 2 H, NCHCHN),

7.64 (d, J=7.1 Hz, 2 H, Ar), 7.19 7.42 (m, 6 H, Ar), 6.78 (t, J 1.8 Hz, 2 H, NCHCHN), 5.61 (s,

2 H, bridgehead H), 5.06 (s, 2 H, bridge H), 4.57 (spt, J=6.5 Hz, 2 H, NCHCH3), 1.40 and 1.39

91









(overlapping d, J=6.8 Hz, 6 H, NCHCH3). 13C NMR (75 MHz, (CD3)2SO) 6 ppm: 139.3 (2 C,

NCHCHN), 138.3 (s, 2 C, NCHCHN), 135.2 (s, 2 C, NCHN), 128.4 (s, 2 C, Ar), 128.3 (s, 2 C,

Ar), 126.9 (s, 2 C, Ar), 126.6 (s, 2 C, Ar), 121.4 (s, 2 C, Ar), 121.1 (s, 3 C, Ar), 63.5 (s, 2 C,

bridge C), 53.3 (s, 2 C, NCHCH3), 49.5 (s, 2 C, bridgehead C), 22.9 (s, 2 C, NCHCH3), 22.7 (s, 2

C, NCHCH3).

4.2.2 Synthesis of Trans-l,l-(9,10-Dihydro-9,10-Ethanoanthracene-1l,12-Diyl)di(3-
Isopropyl-1H-Benzimidazol-3-Ium) Diiodide [DEA-iPrBI](I)2 (4-2)

Dibenzimidazole103 (900 mg, 2 mmol) was dissolved in anhydrous MeCN (10.0 mL) in a

sealable glass bomb flask. 2-iodopropane (0.82 mL, 4 equiv, 8 mmol) was added, and the vessel

was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C

for 48 h. The mixture was cooled to room temperature and the solid was filtered and washed

with cold MeCN to afford 4-2 as a light beige powder; yield 430 mg (28%). 1H NMR (300 MHz,

(CD3)2SO) 6 ppm: 8.50 (d, J 8.2 Hz, 2 H, Ar), 8.43 (s, 2 H, NCHN), 8.16 (d, J 8.0 Hz, 2 H.

Ar), 7.87 7.96 (m, 2 H, Ar), 7.68 7.86 (m, 4 H, Ar), 7.46 (t, J=7.5 Hz, 2 H, Ar), 7.24 (t, J=7.4

Hz, 2 H, Ar), 7.04 (d, J 7.5 Hz, 2 H, Ar), 6.21 (br. s., 2 H, bridge H), 5.13 (br. s., 2 H,

bridgehead H), 5.02 (spt, J=6.6 Hz, 2 H, NCH(CH3)2), 1.44 (d, J=6.6 Hz, 6 H, NCHCH3), 1.37

(d, J=6.6 Hz, 6 H, NCHCH3). 13C NMR (75 MHz, (CD3)2SO) 6 ppm: 138.7 (s, Ar), 138.7 (s,

NCHN), 138.2 (s, Ar), 138.1 (s, Ar), 131.7 (s, Ar), 130.5 (s, Ar), 128.7 (s, Ar), 128.4 (s, Ar),

127.8 (s, Ar), 127.6 (s, Ar), 126.6 (s, Ar), 115.6 (s, Ar), 114.6 (s, Ar), 61.8 (s, bridge C), 51.3 (s,

NCH(CH3)2), 48.7 (s, bridgehead C), 22.5 (s, CH3), 22.0 (s, CH3).

4.2.3 Synthesis of N,N'-bis(4-Nitrotolyl)-9,10-Dihydro-9,10-Ethanoanthracene-11,12-
Diamine (4-3)

To a solution of diamine 3-1 (1.05 g, 4.5 mmol) in anhydrous DMF (10 mL) was added

anhydrous K2CO3 (1.36 g, 2.2 equiv., 10 mmol) and 3-fluoro-4-nitrotoluene (1.45 g, 2.1 equiv., 9









mmol). The resulting bright orange mixture was heated at 65 OC for 18 h. The mixture was

cooled to room temperature and 50 mL of water was added. The resulting bright orange

precipitate was isolated by filtration and washed with water producing 2.09 g of crude product

(92% yield). Dinitro 4-3 was purified by stirring in boiling EtOH (10 mL/g) for 30 min. After

cooling to 0 OC, the orange solid was filtered and finally washed with cold EtOH; yield 1.03g

(45%). 1HNMR (300 MHz, CDC13) 6 ppm: 8.05 (d, J= 8.8 Hz, 2H, Ar), 7.94 (d, J= 8.8 Hz,

2H, NH), 7.42 7.49 (m, 4H, Ar), 7.28 7.34 (m, 4H, Ar), 6.50 (s, 2H, Ar), 6.42 6.49 (m, 2H,

Ar), 4.49 (d, J= 2.9 Hz, 2H, bridge CH), 3.75 3.84 (br m, 2H, bridgehead CH), 2.05 (s, 6CH3).

13C NMR (75 MHz, CDC13) 6 ppm: 147.9 (C, Ar), 143.5 (C, Ar), 139.7 (C, Ar), 138.4 (C, Ar),

127.4 (C, 2Ar), 126.9 (C, 2Ar), 126.1 (C, Ar), 124.7 (C, Ar), 117.7 (C, Ar), 114.4 (C, Ar), 61.3

(bridge CH), 49.4 (bridgehead CH), 21.8 (CH3). HRMS (APCI-TOF) calculated (found) for

C30H26N404 (M+H)+ 507.2021 (507.2062).

4.2.4 Synthesis of N,N'-bis(4-Aminotolyl)-9,10-Dihydro-9,10-Ethanoanthracene-1l,12-
Diamine (4-4)

Pd/C (10 wt%, 50% wet; 310 mg) was added to a solution of dinitro 4-3 (1.027 g, 27.2 mmol)

in CH2C2 (25 mL) and MeOH (10 mL). The resulting mixture was stirred under H2 (40 atm) for

12 hr and then filtered through Celite to remove the Pd/C. The filtrate was concentrated to

afford 4-3 as a brown solid; yield 900 mg (99%). 1HNMR (300 MHz, CDC13) 6 ppm: 7.30 7.42

(m, 4 H, Ar), 7.15 7.26 (m, 4 H, Ar), 6.62 6.75 (m, 4 H, Ar), 6.52 6.62 (m, 2 H, Ar), 4.44 (s,

2 H, bridgehead CH), 3.56 3.90 (br s, 6 H, NH2/NH), 3.53 (s, 2H, bridge CH), 3.46 (s, MeOH),

2.26 (s, 6 H, CH3). 13C NMR (75 MHz, CDC13) 6 ppm: 141.6 (s, Ar), 139.52 (s, Ar), 135.7 (s,

Ar), 126.6 (s, Ar), 126.3 (s, Ar), 126.2 (s, Ar), 124.4 (s, Ar), 120.4 (s, Ar), 117.5 (s, Ar), 116.9

(m, Ar), 116.9 (s, Ar), 113.4 (s, Ar) 62.1 (s, bridge C), 48.7 (s, bridgehead C), 21.0 (s, CH3).

HRMS (APCI-TOF) calculated (found) for C28H27N4 (M+H) 447.2543 (447.2557).

93









4.2.5 Synthesis of Trans-l,1'-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diyl)di(1H-
Tolylimidazole) (4-5)

To a solution of tetraamine 4-4 (900 mg, 2.02 mmol) in anhydrous HC(OEt)3 (30 mL) was

added para-toluenesulfonic acid monohydrate (70 mg, 0.2 equiv., 0.40 mmol). The resulting

mixture was stirred at room temperature for 48 h and then filtered. Hexane was added to the

filtrate, resulting in precipitation of a pale yellow solid. The solid was filtered and washed with

hexanes to produce ditolylimidazole 4-5; yield 830 mg (79%). 1HNMR (300 MHz, CDC13) 6

ppm: 7.59 (dd, J=7.6, 4.40 Hz, 4H, Ar), 7.33 7.42 (m, 2H, Ar), 7.23 7.31 (m, 4H, Ar), 7.18 (s,

2H, Ar), 7.03 (dd, J=8.2, 0.88 Hz, 2H, Ar), 6.53 (s, 2 H, NCN), 5.04 (s, 2 H, bridge H), 4.66 (s, 2

H, bridgehead H), 2.27 (s, 6 H, CH3). 13C NMR (75 MHz, CDC13) 6 ppm: 140.6 (s, Ar), 138.6 (s,

Ar), 133.9 (s, Ar), 128.9 (s, Ar), 128.3 (s, Ar), 128.3 (s, Ar), 127.1 (s, Ar), 126.2 (s, Ar), 124.9 (s,

Ar), 124.7 (s, Ar), 120.0 (s, Ar), 109.4 (s, Ar), 62.2 (s, bridge C), 50.2 50.9 (m, bridgehead C),

21.8 (s, CH3). HRMS (APCI-TOF) calculated (found) for C30H23N4 (M+H)+ 467.2230

(467.2233).

4.2.6 Synthesis of Trans-l,l-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diyl)di(3-Methyl-
1H-Tolylimidazol-3-Ium) Diiodide [DEA-MTI](I)2 (4-6)

Ditolylimidazole 4-5 (530 mg, 1.14 mmol) was dissolved in anhydrous MeCN (5.0 mL) in a

glass ampoule fitted with a sealable Teflon stopcock. Mel (0.290 mL, 4 equiv, 4.54 mmol) was

added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in

a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the solid was

filtered and washed with cold MeCN to afford 4-6 as a light beige powder; yield 500 mg (58%).

H NMR (300 MHz, (CD3)2SO) 6 ppm: 8.80 (s, 2 H, NCHN), 7.86 (t, J=8.8 Hz, 4 H, Ar), 7.42 -

7.55 (m, 4 H, Ar), 7.13 7.34 (m, 6 H, Ar), 5.86 (s, 2 H, bridgehead H), 5.12 (s, 2 H, bridge H),

3.91 (s, 6 H, N-CH3), 2.45 (s, 6 H, Ar-CH3),. 13C NMR (75 MHz, (CD3)2SO) 6 ppm: 141.4 (s,









NCHN), 139.74 (s, Ar), 138.5 (s, Ar), 137.59 (s, Ar), 131.42 (s, Ar), 130.47 (s, Ar), 128.95 (s,

Ar), 128.60 (s, Ar), 128.53 (s, Ar), 127.30 (s, Ar), 127.14 (s, Ar), 114.19 (s, Ar), 113.94 (s, Ar),

62.06 (s, bridge C), 48.96 (s, bridgehead C), 34.19 (s, ArCH3), 21.96 (s, CH3).

4.2.7 Synthesis of Trans-1,1-(9,10-Dihydro-9,10-Ethanoanthracene-11,12-Diyl)di(3-
Isopropyl-1H-Tolylimidazol-3-Ium) Diiodide [DEA-iPrTI](I)2 (4-7)

Ditolylimidazole 4-5 (420 mg, 0.9 mmol) was dissolved in anhydrous MeCN (5.0 mL) in a

sealable glass flask. 2-iodopropane (0.360 mL, 4 equiv, 3.6 mmol) was added, and the vessel

was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C

for 48 h. The mixture was cooled to room temperature and the solvent was removed in vacuo.

The crude solid was purified by flash chromatography using 5% MeOH in CHC13; yield 300 mg

(40%). H NMR (300 MHz, CDC13) 6 ppm: 9.64 (br. s, 2 H, NCHN), 9.16 (br. s., 2 H, Ar), 8.21

(d, J=7.5 Hz, 2 H, Ar), 7.32 7.58 (m, 8 H, Ar), 7.17 (t, J=7.5 Hz, 2 H, Ar), 6.81 (d, J=7.2 Hz, 2

H, Ar), 6.75 (d, J=1.9 Hz, 2 H, bridge H), 4.96 (d, J=2.1 Hz, 2 H, bridgehead H), 4.90

(overlapping spt, J=6.7 Hz, 2 H, NCH(CH3)2), 1.65 (2 overlapping d, J=6.7 Hz, 12 H,

NCH(CH3)2).

4.2.8 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-bis(1-
Isopropylimidazolidine-2-Ylidene) Cyclooctadiene Iodide, [(DEA-iPrY)Rh(COD)]I (4-
8)

Diimidazolium salt 4-1 (500 mg, 0.73 mmol) was suspended in 5 mL dry THF and stirred

overnight. At -1050C, KN(TMS)2 (309 mg, 1.5 mmol) in 3 mL of dry THF was added dropwise

to the salt suspension and allowed to stir at room temperature for 1 h. At -105 C a solution of

[Rh(COD)Cl]2 (182 mg, 0.36 mmol) in 5 mL of dry THF was added dropwise to the salt

suspension and allowed to stir overnight. A precipitate formed that was filtered and washed with

diethyl ether and extracted into CHC13 to afford 4-8 as a bright yellow powder; yield 312 mg

(56%). 1H NMR (300 MHz, CDC13) 6 ppm: 8.30 (dd, J=7.8, 1.32 Hz, 1 H, bridge H), 8.18 (t,









J=1.0 Hz, 1 H, Ar, NCHCHN), 7.82 7.89 (m, 1 H, Ar), 7.54 7.60 (m, 1 H, Ar), 7.50 (ddd,

J=6.5, 4.5, 1.9 Hz, 2 H, Ar), 7.17 7.31 (m, 5 H, NCHCHN overlapping Ar), 6.97 (d, J=2.1 Hz,

1 H, NCHCHN), 6.79 (d, J 2.1 Hz, 1 H, NCHCHN), 5.33 (d, J 1.5 Hz, 1 H, bridgehead H),

5.31 (spt, J=6.8 Hz, 1 H, NCH(CH3)2), 4.86 (d, J 1.2 Hz, 1 H, bridgehead H), 4.70 (br. s., 1 H,

COD-CH), 4.37 (spt, J=6.8 Hz, 1 H, NCH(CH3)2), 4.19 (m, 1 H, COD-CH), 3.69 (d, J=6.8 Hz, 1

H, bridge H), 3.60 (br. s., 2 H, COD-CH), 2.40 2.57 (m, 2 H, COD-CH2), 2.06 2.38 (m, 3 H,

COD-CH2), 1.88 2.06 (m, 2 H, COD-CH2), 1.72 (m, 1 H, COD-CH2), 1.49 (d, J=6.8 Hz, 3H,

NCHCH3), 1.36 (d, J=6.8 Hz, 3 H, NCHCH3), 1.26 (d, J=6.5 Hz, 3 H, NCHCH3), 1.25 (d,

J=6.4, 3 H, NCHCH3). 13C NMR (75 MHz, CDC13) 6 ppm: 178.0 (d, JRhC =53.00 Hz, NCN),

177.8 (d, JRhC =53.00 Hz, NCN), 143.8 (s, CHCCH), 142.8 (s, CHCCH), 136.7 (s, CHCCH),

136.2 (s, CHCCH), 128.6 (s, C Ar), 127.6 (s, CAr), 127.5 (s, C Ar), 127.2 (s, C Ar), 127.0 (s, C

Ar), 125.2 (s, C Ar), 125.2 (s, C Ar) 124.9 (s, C Aromatic), 122.2 (s, NCHCHN), 119.0 (s,

NCHCHN), 118.9 (s, NCHCHN), 116.7 (s, NCHCHN), 92.3 (d, JRhC =9.21 Hz, COD-CH), 88.6

(d, JRhC =8.06 Hz, COD-CH), 87.5 (d, JRhC =8.06 Hz, COD-CH), 85.3 (d, JRhC =7.20 Hz, COD-

CH), 66.3 (s, CHCHN), 63.3 (s, CHCHN), 54.9 (s, NCHCH3), 52.0 (s, NCHCH3), 48.2 (s,

CCHC), 47.7 (s, CCHC), 31.8 (s, COD-CH2), 30.9 (s, COD-CH2), 29.5 (s, COD-CH2), 29.1 (s,

grease), 27.9 (s, COD-CH2), 25.3 (s, CH3CHCH3), 23.9 (s, CH3CHCH3), 23.6 (s, CH3CHCH3),

22.4 (s, CH3CHCH3).

4.2.9 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-bis(1-
Isopropylbenzylimidazolidine-2-Ylidene) Cyclooctadiene Iodide, [(DEA-
iPrBY)Rh(COD)]I (4-9)

Diimidazolium salt 4-2 (100 mg, 0.13 mmol) was suspended in 3 mL dry THF and cooled

to -1000C. KN(TMS)2 (54 mg, 0.27 mmol) in 3 mL of cold dry THF was then added dropwise

to the salt suspension and allowed to warm to room temperature while stirring. The suspension









turns bright yellow upon deprotonation. After 1 h the suspension is then cooled again to -1000C.

A cold solution of [Rh(COD)Cl]2 (32 mg, 0.06 mmol) in 3 mL of dry THF was added dropwise

to the salt suspension and allowed to stir overnight. A yellow precipitate formed that was filtered

and washed with THF and diethyl ether to afford 4-9 as a yellow powder; yield 10 mg (10%). 1H

NMR (300 MHz, CDCl3) 6 ppm: 9.45 (d, J=10.3 Hz, 1 H, bridge H), 7.81 (d, J=7.0 Hz, 1 H,

Ar), 7.75 (d, J 7.0 Hz, 1 H, Ar), 7.54 7.65 (m, 3 H, Ar), 7.13 7.54 (m, 9 H, Ar), 7.01 -7.12

(m, 2 H, Ar), 6.22 (spt, J=6.7 Hz, 1 H, overlapping NCH(CH3)2 with COD-CH), 5.21 (s, 1 H,

bridgehead H), 5.17 (s, 1 H, bridgehead H), 5.02 (spt, J=6.7 Hz, 2 H, overlapping NCH(CH3)2

with COD-CH), 4.55 (m, 1 H, COD-CH), 4.43 (dd, J=10.1, 1.0 Hz, 1 H, bridge H), 4.13 (t,

J=6.7 Hz, 1 H, COD-CH), 3.64 3.78 (m, 1 H, COD-CH), 2.69 2.90 (m, 1 H, COD-CH2), 2.51

- 2.66 (m, 1 H, COD-CH2), 2.26 2.51 (m, 3 H, COD-CH2), 1.92 (d, J 6.7 Hz, 3 H), 1.88 2.04

(overlapping m, 1 H), 1.61 (d, J=7.0 Hz, 3 H, NCH(CH3)2), 1.55-1.65 (overlapping m, 2H,

COD-CH2) 1.58 (d, J=6.7 Hz, 3 H, NCH(CH3)2), 1.52 (d, J=7.0 Hz, 3 H, NCH(CH3)2), 1.22 -

1.37 (m, 1 H, NCH(CH3)2). 13C NMR (75 MHz, CDC13) 6 ppm: 191.7 (d, J=54.5 Hz, NCN),

190.8 (d, J 51.5 Hz, NCN), 146.9 (s, Ar), 144.4 (s, Ar), 138.7 (s, Ar), 137.2 (s, Ar), 135.9 (s,

Ar), 133.6 (s, Ar), 133.19 (s, Ar), 132.9 (s, Ar), 128.3 (s, Ar), 128.1 (s, Ar), 127.8 (s, Ar), 127.6

(s, Ar), 127.4 (s, Ar), 127.1 (s, Ar), 124.2 (s, Ar), 124.1 (s, Ar), 124.0 (s, Ar), 123.7 (s, Ar), 123.1

(s, Ar), 122.1 (s, Ar), 113.2 (s, Ar), 113.0 (s, Ar), 112.1 (s, Ar), 111.2 (s, Ar), 94.2 (d, J 8.6 Hz,

COD-CH), 91.9 (d, J8.1 Hz, COD-CH), 89.9 (d, J=7.2 Hz, COD-CH), 89.5 (d, J 6.6 Hz,

COD-CH), 65.3 (s, CHCHN), 62.3 (s, CHCHN), 57.8 (s, NCHCH3), 53.9 (s, NCHCH3), 49.1 (s,

CCHC), 47.9 (s, CCHC), 32.0 (s, COD-CH2), 31.79(s, COD-CH2), 29.4 (s, COD-CH2), 28.7 (s,

COD-CH2), 22.6 (s, NCHCH3), 22.5 (s, NCHCH3), 21.8 (s, NCHCH3), 21.5 (s, NCHCH3).









4.2.10 Synthesis of Rhodium(I) Trans-9,10-Dihydro-9,10-Ethanoanthracene-9,10-bis(1-
Methyltolylimidazolidine-2-Ylidene) Cyclooctadiene Iodide, [(DEA-MTY)Rh(COD)]I
(4-10)

Diimidazolium salt 4-6 (500 mg, 0.66 mmol) was suspended in 5 ml THF and stirred

overnight. At -350C, KN(TMS)2 (279 mg, 1.4 mmol) in 5 mL THF was added dropwise to the

salt suspension and allowed to warm to room temperature and stir for 1 h. After cooling the

solution to -35 C, [Rh(COD)Cl]2 (164 mg, 0.33 mmol) in 3 mL THF was then added dropwise

to the reaction and allowed to stir for 1 h at room temperature. The reaction mixture was

allowed to stir at room temperature overnight and the resulting solid was filtered, washed with

Et20 and extracted with CHC13 to provide [(DEA-MTY)Rh(COD)]I 4-10 as a dark yellow

powder. (113 mg, 20%) H NMR (300 MHz, CDC13) 6 ppm: 9.06 (d, J=9.9 Hz, 1 H, CHCHN),

7.74 (dd, J=7.0, 1.2 Hz, 1 H, Ar), 7.64 (dd, J=7.0, 1.2 Hz, 1 H, Ar), 7.56 (d, J=7.0 Hz, 1 H, Ar),

7.33 7.47 (m, 3 H, Ar), 7.03 7.32 (m, 7 H, Ar), 6.89 (d, J=8.5 Hz, 1 H, Ar), 6.68 (s, 1 H), 5.1

(s, 1H, CCHC) 5.08 (s, 1 H, CCHC), 4.90 5.04 (m, 1 H, COD-CH), 4.39 4.50 (m, 1H, COD-

CH), 4.29 (s, 3 H, NCH3), 4.22 (dd, J=10., 0.80 Hz, 1 H, CHCHN), 4.10 4.19 (m, 1 H, COD-

CH), 3.76 (s, 3 H, NCH3), 3.73 (m, 1 H, COD-CH), 2.46 (s, 3 H, tolyl-CH3), 2.53 (m, 2 H, COD-

CH2), 2.14 (s, 4 H, COD-CH2), 2.14 (s, 3 H, tolyl-CH3), 1.55 1.72 (m, 1 H, COD-CH2), 1.14 -

1.33 (m, 1 H, COD-CH2). 13C NMR (75 MHz, CDC13) 6 ppm: 192.9 (d, JRhC =52.00 Hz, NCN),

190.8 (d, JRhC =52.00 Hz, NCN), 146.7 (Ar), 144.46 (Ar), 138.8 (Ar), 136.2 (Ar), 135.8 (Ar),

134.9 (Ar), 134.4 (Ar), 134.3 (Ar), 134.1 (Ar), 131.7 (Ar), 128.8 (Ar), 128.1 (Ar), 128.0 (Ar),

127.7 (Ar), 127.4 (Ar), 127.2 (Ar), 125.7 (Ar), 124.5 (Ar), 124.1 (Ar), 122.2 (Ar), 111.8

(NCCH), 111.1 (NCCH), 110.8 (NCCH), 110.7 (NCCH), 94.1 (d, JRhC =8.06 Hz, COD-CH),

91.0 (d, JRhC =8.06 Hz, COD-CH), 90.5 (d, JRhC =6.91 Hz, COD-CH), 89.9 (d, JRhC =7.49 Hz,

COD-CH), 65.8 (s, CHCHN), 62.2 (s, CHCHN), 49.1 (s, CCHC), 48.0 (s, CCHC), 39.3 (s,









NCH3), 35.3 (s, NCH3), 30.9 (s, COD-CH2), 30.7 (s, COD-CH2), 29.8 (s, COD-CH2), 28.2 (s,

COD-CH2), 22.1 (s, tolyl-CH3), 21.5 (s, tolyl-CH3).

4.3 Results and Discussion

4.3.1 Synthesis and Characterization of [DEA-iPrI](I)2 (4-1) and [(DEA-iPrY)Rh(COD)]I
(4-8)

The synthesis of [DEA-iPrI](I)2 (4-1) and [(DEA-iPrY)Rh(COD)]I (4-8) mirror that

reported for the methyl imidazole derivatives 3-3 and 3-9 (Figure 4-2), as does their solution

state analysis. 1H NMR spectra for imidazolium salts 4-1 and 3-3 are nearly identical, a slight

downfield shift of the imidazole protons (from 7.68 and 6.60 ppm for 3-3 to 7.86 and 6.78 ppm

for 4-1) and an upfield shift of the imidazole (NCHN) proton from 8.93 for 3-3 to 8.82 in 4-1

displays the slight variation between the two compounds. Replacement of the methyl

substituents with an isopropyl group introduces a septet at 4.57 ppm (spt, J=6.5 Hz) and

overlapping doublets at 1.40 and 1.39 ppm (d, J=J=6.8 Hz).

Metallation of 4-1 utilizing a single equivalent of rhodium produces the expected

mononuclear C1 symmetric complex 4-8. Increasing the steric bulk of the N-substituents is not

expected to alter the twist of the molecule but could affect the position of the rhodium center

relative to the ligand backbone. Therefore, it is not surprising that the 1H NMR spectra for 4-8

displays a doublet of doublets resonance corresponding to the "H16" bridge proton at 8.30 ppm

(J 7.8, 1.3 Hz) shifted slightly downfield relative to the H16 resonance in 3-9 [8.23 ppm (dd, J

= 7.5, 1.0 Hz)] but with a similar coupling pattern. The C1 symmetry of the molecule is

displayed clearly by the multiple isopropyl resonances, two septets at 5.31 (J 6.8 Hz) and 4.37

ppm (J=6.8 Hz) as well as four sets of doublets at 1.49 (J 6.7 Hz), 1.36 (J 6.7 Hz), 1.26 (J 6.5

Hz), and 1.25 ppm (J=6.4 Hz).









The yields associated with the bulkier compounds (4-1 and 4-8) are noticeably lower than

for their methyl analogs (3-3 and 3-9). The decreased production ofmonomeric complex 4-8

could be the result of the nitrogen substituent's increased steric bulk. As discussed in chapter 3,

chelation to a single metal center is facilitated by the ability of the bulky imidazole plane to

orient along the less crowded z-axis of the complex. This orientation, although favorable for

chelation, places the nitrogen substituents in close proximity to one another. The distance

between the alkyls is irrelevant for small substituents like methyl; however, the significant

increase in steric bulk associated with replacing the methyl of 3-8 or 3-9 with an isopropyl

substituent may increase the barrier to product formation.

4.3.2 Synthesis and Characterization of [DEA-iPrBY](I)2 (4-2), [DEA-MTY](I)2 (4-6),
[DEA-iPrTY](I)2 (4-7) and the Corresponding Monometallic Rhodium Complexes
[(DEA-iPrBY)Rh(COD)]I (4-9) and [(DEA-MTY)Rh(COD)]I (4-10)

Alterations to the N-substituents and azole rings of the original benzimidazole structure (3-

4) were accomplished based on convention and combined computational and experimental

results. Convention, regarding N-heterocyclic carbenes, holds that the steric bulk around the

metal center is modulated almost exclusively by altering the size of the N-substituents.

Experimental and computational data reported in chapter 3 suggests that, for this ligand family,

the size of the imidazole also plays a significant role in defining the chiral pocket. Taking this

into account, three modified ligand structures were prepared. Substitution of the methyl N-

substituent of 3-4 for the bulkier isopropyl substituents results in the formation of ligand 4-2

(Figure 4-3). Addition of steric bulk to the benzimidazole by placing a methyl group in the

meta-position forms 4-6 (Figure 4-4) and ligand 4-7 contains both architectural variations

(Figure 4-5).

The 1H NMR spectrum of salt 4-2 reveals a modification to the typical imidazolium salt

spectra. All of the previously reported salts contain imidazolium protons (NCHN) that resonate

100









well downfield of the aryl region (9.70ppm for 2-1, 8.93ppm for 3-3, 8.85 for 3-4, and 8.30 ppm

for 4-1) whereas the singlet imidazolium resonance of 4-2 appears at 8.43 ppm, upfield of an aryl

resonance (8.50 ppm (d, J 8.2 Hz)). Comparison of all the imidazolium proton resonances

suggests increasing the size of the N-substituent or azole ring shifts the corresponding resonance

upfield. The opposite affect is seen for the bridge proton H16 in the monometallic

benzimidazole structures. Investigation of the resulting monometallic complex 4-9 (Figure 4-6)

again displays the diagnostic downfield resonance at 9.45 ppm (d, J= 7.0) which is shifted

downfield by 0.2 ppm compared to 3-8. This suggests the rhodium center may be forced closer

to the proton by the addition of the isopropyl substituents. Furthermore, the monometallic

complex 4-9 was formed in only 10% yield, supporting the claim that increased bulk on the

nitrogen substituents hinders chelation. Crude spectra of the reaction mixture subsequent to

product isolation displayed peaks corresponding to a C2 symmetric bimetallic complex implying

that the increase in steric bulk may shift the kinetically favored product toward the bimetallic

complex. The bimetallic complex was not pursued further though its isolation is plausible.

Ligand 4-6 was synthesized using a similar protocol as for 3-4 (Figure 4-4). Diamine 3-1

was treated with 2.1 equivalents of 3-fluoro-4-nitrotoluene in DMF over 18 h at 65 C to form

the sticky orange dinitro-diamine compound 4-3. After purification of 4-3, the compound was

hydrogenated overnight using 40 bar H2 pressure and Pd/C to afford the tetraamine 4-4.

Cyclization was achieved by treating 4-4 with triethylorthoformate over a two day period.

Ditolylimidazole 4-5 was then combined with Mel at 105 OC in a seal flask to produce the

methylated ditolylimidazole salt 4-6. A 1H NMR spectrum of 4-6 reveals a broad singlet for the

imidazolium proton at 8.80 ppm which suggests very little alteration in the ligand relative to 3-4

(imidazolium proton appears at 8.85 ppm). In fact, the only substantial variation in the 1H NMR









spectrum of [DEA-MTI](I)2 (4-6) relative to [DEA-MBI](I)2 (3-4) is an additional methyl

resonance at 2.45 ppm, corresponding to the methyl substituents on the aryl ring of the

benzimidazole. Solution state analysis of the corresponding monometallic rhodium compound 4-

10 (Figure 4-7) again nearly matches that shown for 3-8, except for two additional methyl

resonances due to Ci symmetry.

During the preparation ofligand 4-6 and the resulting monometallic complex 4-10, a

ground state geometry optimization calculation was performed by adding the methyl substituent

to the benzimidazole of the crystal structure of 3-8 as a starting point. Figure 4-8 displays the

calculated structure of 4-10. Table 4-1 compares selected metric parameters for complexes 3-8-

calc and 4-10-calc, and Figure 4-9 displays an overlay of the two structures, showing that the

complexes are nearly identical, excluding the addition of the methyl group. The choice to

position the methyl group at the meta-position was influenced by the structure of 3-8. In the

constrained monometallic complex, one of the benzylimidazoles sits directly above the

ethanoanthracene backbone at a distance of approximately 3.5 A. Addition of a substituent at the

ortho-position would likely come in very close proximity to the backbone, thereby hindering the

formation of monometallic complexes and promoting the formation of the less desirable

bimetallic complex.

Ligand 4-7 combines both architectural alterations to include isopropyl N-substituents and

methyl groups on the back of the benzimidazole. Only the chiral version of the salt (R,R)-4-7

was synthesized producing a meager 300 mg. The chiral salt is sparingly soluble in CDCl3.

Therefore, to retain the valuable imidazolium salt, CDC13 was utilized as the NMR solvent to

facilitate reisolation of(R,R)-4-7, which is difficult from (CD3)2SO. This precludes direct

comparison with the other imidazolium salt 1H NMR spectra which were all obtained in









(CD3)2SO. However, the imidazolium salt resonances are clearly present in the 1H NMR

spectrum. The diagnostic broad imidazolium resonance is displayed at 9.64 ppm, and the aryl

protons span a relatively large range from 7.17 to 9.16 ppm. The bridge and bridgehead protons

both resonate as doublets at 6.75 (J 1.9 Hz) and 4.96 ppm (J=2.1 Hz) respectively. The

isopropyl methine septet overlaps slightly with the bridgehead proton at 4.90 ppm (J=6.7 Hz)

and is coupled to the isopropyl groups which appear at 1.6 ppm (J=J 6.7 Hz).

Attempts to form the rhodium monomeric compound were unsuccessful. [Rh(COD)C1]2

was initially utilized as the rhodium source to maintain similar structures throughout the family

of Rh complexes. When initial synthesis of the monomer failed, substitution of the dimeric

rhodium starting material with the monomeric cationic rhodium source, Rh(NBD)2BF4, was

attempted. However, isolation of monomeric compound was unsuccessful and investigation of

the crude reaction mixture by solution state analysis revealed no sign of a monomeric species.

Formation of a monomeric complex from ligand 4-7 should be thermodynamically feasible,

considering the similarity of the equilibrium geometries for 3-8 and 4-10 and the formation of

the isopropyl substituted complex 4-9.

4.4 Conclusions

The four new ligands described in this chapter present alterations to the architectures of 3-3

and 3-4 to increase the definition of the chiral pocket. Ligands 4-1 and 4-2 represent an increase

in the N-substituent' s size. The reduced yields associated with synthesizing the corresponding

monometallic complexes 4-8 and 4-9 are likely the result of negative steric interactions between

the isopropyl N-substituents. Increasing the size of the substituents on the imidazole by placing a

methyl group in the meta-position does not appear to alter the calculated equilibrium geometry of

the resulting metal complex but combining the two alterations precludes the formation of a

monometallic rhodium complex.












Fi e N



Firn GencrnBln


/7121
6-3


Sarnnd GCeratirm


-4-

Tllilid Ucilesrain


Figure 4-1. Generations of ligands to date.


4'Prl,CIIC-,N
105 'C, 2d


7/ 1





- 4-1


v %/-21N





4-1


71


2.1 KN(TMS)2
1/2 RI-[ttIOD KI]2
THF
<_-t-7


Figure 4-2. Synthesis ofligand [DEA-iPrI](I)2 4-1 (top) and [(DEA-iPrY)Rh(COD)]I 4-8
(bottom).


<- p^













7 21


4 'PrI, CHICN
105 `C, 2d
aib


Figure 4-3. Synthesis ofligand [DEA-iPrBI](I)2 4-2.


2liN NH,
NH-
H-^^^


p4QOEid
p-T&O~H, fd


2 F


KCO,, DMF
, I8 h


4 Mel, CII CN
105 "C, 2d
-----------,


H,, PdC
CI(1ClW/MeOHll
IN


/-21

Nr



4-6


Figure 4-4. Synthesis ofligand [DEA-MTI](I)2 4-6.


/7n21


N, /J--N
N
N
N ,


4 'Prl, CHICN
105 ~C, 2d
bI-


Figure 4-5. Synthesis ofligand [DEA-iPrTI](I)2 4-7.











-- 2 I


1 / \ 2,1 K NI M'S,,
1/2 Rh[(COD)CIJ2
THF




Figure 4-6. Synthesis of [(DEA-iPrBY)Rh(COD)]I 4-9.


7-21


S2.1 KN(TMS)h
N a
1/2 Rhr(COD)C]l2
Fig 4 -7if[ A-THF
Figure 4-7. Synthesis of [(DEA-MTY)RhCOD)] 4-10.


Figure 4-7. Synthesis of [(DEA-MTY)Rh(COD)]J 4-10.


N Rh


4-10
S,0 ^-


C24W


*I


Figure 4-8. Calculated structure for [(DEA-MTY)Rh(COD)] 4-10.


71'


1


`i






























Figure 4-9. Overlay of the calculated structure [(DEA-MBY)Rh(COD)]I 3-8-calc and [(DEA-
MTY)Rh(COD)]I 4-10-calc. The side-view (left) displays the similarity of the two
structures as does the top-view (right) with the backbone removed for clarity.



Table 4-1. Selected bond lengths (A) and angle (0) for calculated structures 3-8-calc and 4-10-
calc.


3-8-calc


4-10-calc


Distances











Angles



Torsion Angle
Distances


Rh-C31
Rh-C23
N2-C24
N4-C32
N2-C23
N1-C23
N4-C31
N3-C31
C16-H16
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16
C36-C4


2.052
2.068
1.468
1.466
1.384
1.395
1.372
1.391
1.097
85.3
105.2
106.0
70.36
2.298
4.238


Rh-C31
Rh-C23
N2-C24
N4-C32
N2-C23
N1-C23
N4-C31
N3-C31
C16-H16
C31RhC23
N1C23N2
N3C31N4
N1-C15-C16-N3
Rh-H16
C36-C4


2.054
2.07
1.468
1.466
1.383
1.394
1.371
1.392
1.096
85.3
105.2
105.9
70.34
2.295
4.226









CHAPTER 5
ASYMMETRIC CONJUGATE ADDITION

5.1 Introduction

Solution and solid state structural analysis are important methods in characterizing and

optimizing catalyst architectures. However, in the design and optimization of a catalyst species,

the most valuable information is gained from catalytic application. As discussed in chapter 2,

initial catalytic trials revealed that first generation complexes were susceptible to degradation

under certain catalytic conditions. These results suggest that our catalysts degrade via C-H

reductive elimination involving a Rh-H species. Therefore, a catalytic application that does not

involve Rh-H formation should prohibit degradation and allow the enantioselectivity of the

catalysts to be investigated. To test the capabilities of the constrained Rh(I) mononuclear

complexes, they were applied to the well-established asymmetric conjugate addition ofboronic

acids to cyclic enones.

Asymmetric conjugate addition of organometallic reagents to electron deficient olefins is

an important method for enantioselective carbon-carbon bond formation.177 Although a variety

of transition metals have been applied to conjugate addition,178-181 copper- and rhodium-based

catalysts have been the most thoroughly investigated. The first asymmetric copper-based

addition was reported in 1988 by Lippard.182 Chiral aminotroponeimine ligands were used in the

copper catalyzed reaction between 2-cyclohexen-1-one and alkyllithium reagents producing a

maximum e.e. of 14%. Subsequent to this report many research groups endeavored to improve

the enantioselectivity and catalytic activity of this reaction, typically using dialkylzinc reagents

and cyclic enones.28 A breakthrough in the late 1990s revealed phosphoramidites as highly

enantioselective ligands when applied to the copper catalyzed addition of alkylzinc to 2-









cyclohexen-1 -one.183 Since this report, a variety of different ligand architectures have been

found to be highly enantioselective toward this reaction.28' 184-187

Copper based catalysts are typically utilized at low temperatures (often well below 0C)28

to introduce alkyl groups via an organozinc reagent. Rhodium catalysts, on the other hand, can

be used at ambient to high (above 100 C) temperatures with a wide variety of organometallic

reagents,188-195 to introduce alkenyl or aryl substituents. Aryl stannanes,188-191'112

arylsilicon,192,113 aryltitanium,193 194,114 and alkenylzirconium 95,115 reagents have been used as

transmetallating reagents in 1,4-addition reactions. However, the commercial availability and

stability of boronic acids have made them the most popular choice.196' 197

The first rhodium catalyzed 1,4-conjugate addition of aryl and alkenylboronic acids to

enones was reported by Miyaura in 1997.198 In this communication, the authors focused on

acyclic enones with no reported e.e. measurements. Rh(acac)(CO)2/dppb (dppb =

diphenylphosphino butane) was used as the precatalyst and the reaction proceeded at 50 OC in

aqueous solvents with modest yields. A year later, the same authors reported a chiral

application using the bis-phosphine ligand (S)-BINAP as the chiral auxiliary.199 Although two

acyclic enones were investigated, the focus of the paper was addition to 2-cyclohexen-1-one. To

achieve high yields and chiral induction it was necessary for the authors to increase the reaction

temperature to 1000C.

Mechanistic investigation200 of this system revealed transmetallation of the aryl group from

boronic acid to rhodium as the initial catalytic step. Transmetallation occurs via a four centered

transition states shown in Figure 5-1.201 Addition of base is important when utilizing a rhodium

catalyst containing a halogen ligand. The boronic acid is quaternized by the base increasing the

nucleophilicity of the aryl group and facilitating transmetallation. Non-halogenated catalysts are









typically activated by reaction with protonated solvents, forming a Rh-OH or Rh-OMe complex

depending on the solvent mixture. Under these conditions, base is not strictly required but does

have a strong accelerating effect.201

Kinetic studies by Hayashi et al.202 on the Rh-BINAP system revealed transmetallation as

the rate limiting step (rls). These studies also uncovered the formation of a homochiral dimer

that is inactive towards catalysis, but its position prior to the rls means that the equilibrium

constant between monomer and dimer can influence the overall rate of the reaction. The reaction

was found to be first order overall and half-order in catalyst. Interestingly, Hayashi also

discovered a negative non-linear effect between the enantiopurity of the ligand and the e.e. of the

product.

Subsequent to transmetallation, transient coordination of the enone to the metal center is

followed by insertion of the enone into the rhodium-aryl bond. In asymmetric reactions, the

product's stereochemistry is determined by this diastereomeric transition state.28 When (S)-

BINAP is used as the chiral control the (S)-product is formed suggesting approach of the enone

from its 2si face. Insertion of the enone forms an oxa-7t-allylrhodium species which is then

hydrolyzed yielding the product and the catalytically active L*Rh-OH species.

In the initial mechanistic studies, NMR experiments revealed that all of the individual

steps could be accomplished at 250C.200 However, catalytic reactions starting from

Rh(acac)(binap) required temperatures well above 600. The tightly bound acetylacetonato (acac)

ligand was found responsible for the high temperature requirement. Temperature and time

requirements were drastically reduced when the acac ligand was replaced with a hydroxyl (OH)

group.









Rhodium 1,4-addition ofboronic acids to cyclic enones has become a benchmark reaction

for a variety of ligands to test their capability towards asymmetric induction.23-210 Utilization of

NHC ligands is fairly rare in rhodium catalyzed conjugate additions. Monodentate

paracyclophane-substituted NHCs reported by Andrus et al.211'212 were found to provide high

yields and asymmetric induction utilizing 2 mol% [Rh(acac)(C2H4)2] at 600C in THF/water. The

best e.e. was produced by the paracyclophane with a bulky ortho-methoxyphenyl substituent.

Moderate to high enantioselectivities have also been achieved using a bidentate

diphenylphosphino-NHC rhodium complex synthesized by Helmchen and coworkers.213

Recently, Douthwaite et al. reported the synthesis of a rhodium catalyst supported by a chiral

NHC-phenoxyimine ligand.214 The complex was found to be active towards conjugate addition

but with no enantioselectivity.

NHCs have found more extensive application in copper215-217 based 1,4-addition to enones.

The first asymmetric copper conjugate additions utilizing NHCs were reported by Alexakis215

and Roland216 in 2001. Each reported similar C2 symmetric saturated imidazole ligands in the

addition of diethylzinc to 2-cyclohexen-1 -one mediated by Cu(OTf)2 with a maximum e.e. of

50% reported by Alexakis. Several groups have reported fair e.e.s, ranging from the 27%

initially reported by Roland to 93% reported by Alexakis218 and Mauduit.219 The Hoveyda group

recently reported addition of dialkylzinc reagents to P-substituted cyclic enones catalyzed in situ

using a chiral silver-NHC and Cu(OTf)2.220, 221 The addition produced quaternary stereogenic

centers with yields ranging from 67-98% and e.e.s as high as 97%.

In comparison to the prolific success of rhodium and copper catalyzed conjugate additions,

palladium catalyzed 1,4-additions are uncommon.222226 Recently, Min Shi reported the first

palladium(II) catalyzed 1,4-addition using a chelating bis-NHC ligand.113 The bis-NHC ligand is









based on the privileged binaphthalene backbone introduced in chapter 2. Using 3 mol% catalyst

at room temperature over 36 h, the reaction provided yields as high as 99% and e.e.s ranging

from 32% for the addition of phenylboronic acid to cyclopentenone, to 97% for the addition of 2-

naphthylboronic acid to 2-cyclohexen-1-one.

Taking into account the benchmark success of rhodium catalyzed asymmetric 1,4-addition

of aryl boronic acids and Min Shi's report of successful application of a chelating bis-NHC

complex, this reaction appeared to be an ideal test for our ligand system. The importance of this

application does not reside in its novelty but rather in its utilization as a tool to measure the chiral

induction ability of this novel ligand design.

5.2 Experimental Section

5.2.1 General Catalytic Procedure

Under inert atmosphere, [L*Rh(COD)]X (16[tmol 1.5mol%), aryl boronic acid (1.5 mmol),

and KOH (0.5 mmol) were combined with 2 mL of dry 1,4-dioxane in a sealable flask. Under

positive argon flow, enone (1 mmol) and degassed methanol (0.5 mL) were added to the flask.

The flask was sealed and heated with stirring until the reaction was complete. The substrate was

purified by column chromatography on silica gel with 9:1 hexanes:Et20 as the mobile phase.

The e.e. of the resulting cyclic ketone was determined using HPLC analysis.

5.2.2 3-Phenylcyclohexanone (5-1)

Colorless oil; purified by column chromatography, eluent hexanes/Et20 9:1. Chiral HPLC:

Chiralcel IA column (hexanes/2-propanol, 98:2, 0.4 mL/min); tR: 20.38 min (S)227, 23.28 min

(R). 1HNMR (300 MHz, CDC13) 6 ppm: 7.28 7.38 (m, 2 H), 7.18 7.27 (m, 3 H), 2.94 3.08

(m, 1 H), 2.30 2.65 (m, 4 H), 2.03 2.20 (m, 2 H), 1.72 1.94 (m, 2 H). 13C NMR (75 MHz,









CDC13) 6 ppm: 210.8 (s), 144.2 (s), 128.5 (s), 126.5 (s), 126.4 (s), 48.8 (s), 44.6 (s), 41.1 (s), 32.6

(s), 25.4 (s).

5.2.3 3-(2-Methylphenyl)-Cyclohexanone (5-2)

Colorless oil; purified by column chromatography, eluent hexanes/Et20 9:1. Chiral HPLC:

Chiralpak IA column (hexanes/2-propanol, 98:2, 0.4 mL/min); tR: 16.708 min (R)227, 19.708 min

(S). 1HNMR (300 MHz, CDC13) 6 ppm: 7.21 7.28 (m, 2 H), 7.11 7.20 (m, 2 H), 3.15 3.29

(m, 1 H), 2.39 2.57 (m, 4 H), 2.33 (s, 3 H), 2.18 (s, 1 H), 1.99 (br. s., 1 H), 1.75 1.93 (m, 2 H).

13C NMR (75 MHz, CDC13) 6 ppm: 211.4 (s), 142.5 (s), 135.3 (s, 3 C), 130.9 (s), 126.7 (s), 126.6

(s), 125.2 (s), 48.6 (s), 41.5 (s), 40.5 (s), 32.2 (s), 26.0 (s), 19.5 (s).

5.2.4 3-(1-Naphthalenyl)-Cyclohexanone (5-3)

White solid; purified by column chromatography, eluent hexanes/Et20 9:1. Chiral HPLC

method capable of complete resolution has not been determined to date. 1H NMR (300 MHz,

CDC13) 6 ppm: 8.04 (d, J=8.2 Hz, 1 H), 7.83 7.92 (dd, J=7.8,1.2 Hz, 1 H), 7.76 (d, J 7.9 Hz, 1

H), 7.35 7.58 (m, 4 H), 3.78- 3.93 (m, 1 H), 2.37- 2.83 (m, 4 H), 2.11 2.30 (m, 2 H), 1.81 -

2.08 (m, 2 H). 13C NMR (75 MHz, CDC13) 6 ppm: 211.4 (s), 140.3 (s), 134.2 (s), 131.1 (s),

129.3 (s), 127.5 (s), 126.4 (s), 125.9 (s), 125.7 (s), 122.9 (s), 122.6 (s), 48.8 (s), 41.7 (s), 39.6 (s),

32.5 (s), 25.8 (s).

5.2.5 3-(4-Methoxyphenyl)-Cyclohexanone (5-4)

Colorless oil; purified by column chromatography, eluent hexanes/Et20 9:1. Chiral HPLC

method capable of complete resolution has not been determined to date. 1H NMR (300 MHz,

CDC13) 6 ppm: 7.12 (d, J=8.5 Hz, 2 H), 6.85 (d, J=8.5 Hz, 2 H), 3.77 (s, 3 H), 2.87 3.01 (m, 1

H), 2.28 2.60 (m, 4 H), 1.99 2.17 (m, 2 H), 1.78 (s, 2 H). 13C NMR (75 MHz, CDC13) 6 ppm:









211.3 (s), 158.5 (s), 136.8 (s), 127.7 (s), 114.2 (s), 55.4 (s), 49.4 (s), 44.2 (s), 41.4 (s), 33.2 (s),

25.7 (s).

5.2.6 3-(4-Fluorophenyl)-Cyclohexanone (5-5)

Colorless oil; purified by column chromatography, eluent hexanes/Et20 9:1. Chiral HPLC

column: Chiralpack IA column (hexanes/2-propanol, 98:2, 1.0 mL/min); tR: 14.0 min (+), 15.1

min (-).227 1HNMR (300 MHz, CDC13) 6 ppm: 7.10 7.21 (m, 2 H), 6.93 7.03 (m, 2 H), 2.90 -

3.05 (m, 1 H), 2.27 2.60 (m, 4 H), 1.99 2.18 (m, 2 H), 1.69 1.88 (m, 2 H). 13C NMR (75

MHz, CDCl3) 6 ppm: 210.8 (s), 163.4 (s), 160.1 (s), 140.3 (s), 128.3 (s), 128.1 (s), 115.7 (s),

115.5 (s), 49.3 (s), 44.2 (s), 41.3 (s), 33.1 (s), 25.6 (s).

5.2.7 3-Phenylcyclopentanone (5-6)

Colorless oil; purified by column chromatography eluent hexanes/Et20 9:1. Chiral HPLC

method capable of complete resolution has not been determined to date. 1H NMR (300 MHz,

CDCl3) 6 ppm: 7.30 7.39 (m, 2 H), 7.22 7.29 (m, 3 H), 3.35 3.51 (m, 1 H), 2.61 2.74 (m, 1

H), 2.22 2.54 (m, 4 H), 1.90 2.09 (m, 1 H). 13C NMR (75 MHz, CDC13) 6 ppm: 218.6 (s),

143.3 (s), 128.9 (s), 126.9 (s), 126.9 (s), 46.0 (s), 42.4 (s), 39.1 (s), 31.4 (s).

5.3 Results and Discussion

Catalytic investigation was accomplished using the chiral versions of compounds 2-3, 3-

8, 3-9, and 4-8. These studies quickly revealed that 2-3 was not capable of transferring its

chirality at temperatures required for catalytic turnover. As previously conjectured, the

flexibility of this ligand produces an undefined chiral pocket particularly at high temperatures.

Catalyst 3-8, however, produced much larger enantiomeric excesses than has been previously

reported utilizing closely related ligands in asymmetric catalysis.120 As expected, the more

flexible analog 3-9 produced much lower e.e.s than 3-8. Increasing the steric bulk of the N-









substituents (4-8) does not appear to have a significant effect on the chiral induction ability of the

unsaturated imidazole complex.

A catalytic cycle (Figure 5-2) is proposed based on mechanistic and kinetic studies

accomplished by Hayashi et al.202 and Miyaura.189 The precatalyst I is activated by loss of COD

forming a solvated species II. As reported for the BINAP system by Hayashi, our catalyst

system may be capable of forming a dimeric complex III. From the active catalyst species II

transmetallation of the aryl boronic acid via the transition state IV produces the phenyl

compound V. Subsequent insertion of the olefin is accomplished through a diastereomeric

transition state VI. This transition state is responsible for determining the enantiotopic identity

of the product and forming the oxa-7T-allyl-Rh species VII that is then hydrolyzed to form the

product.

The most enantioselective catalyst, 3-8, was utilized to optimize the conditions for

asymmetric conjugate addition (Table 5-1). Many unrelated catalysts have been reported to

achieve high yields and enantioselectivities at room temperature,28 but our system requires

temperatures well above 70 C. As was discovered with the original Rh(acac)binap system,

dissociation of COD is believed to necessitate these high temperatures as well as the long

reaction times. Attempts to replace the COD ligand by utilization of alternative rhodium

precursors or by ligand substitution were unsuccessful or led to catalyst degradation.

The reaction conditions found to produce the highest yield and enantiomeric excesses

utilized 10/1 dioxane:methanol at 800C with 0.5 equivalents of base and 3 mol% catalyst over 24

hrs for addition of phenyl boronic acid to 2-cyclohexen-1 -one. The addition ofo-tolylboronic

acid to 2-cyclohexen-l-one was found to achieve the same level of enantiopurity utilizing 4/1

dioxane:methanol and 1.5% of(R,R)-3-8. For the addition of phenylboronic acid, the (S,S)









enantiomer of the ligand produces (S)-5-1 and the (R,R) enantiomer forms (R)-5-1, suggesting a

similar pattern of chiral induction to that reported for the privileged (S,S)-BINAP ligand.28

Omission of base or utilization of pyridine led to no product formation and substituting

potassium hydroxide with potassium carbonate led to reduced yields and e.e.. Altering the

solvent mixture to THF/Methanol had little effect but did lead to a small decrease in e.e. and

attempting the reaction in pure methanol drastically increased the yield but produces no e.e.

suggesting catalyst degradation. Typical solvent mixtures for rhodium catalyzed conjugate

addition reactions include water to facilitate hydrolysis and formation of the final product.

However, substitution of methanol with deionized, degassed water reduced e.e. measurements

from 82% to 5% under the same reaction conditions. Loss of enantioselectivity may be due to

water facilitated dissociation of the chiral backbone or formation of dimer III. To completely

remove water from the system, anhydrous methanol was utilized, leading to a slight decrease in

both yield and enantiocontrol suggesting a fine balance between catalyst activation and

degradation by protonated solvents.

Investigation of chiral catalysis utilizing a variety of other boronic acids (Tables 5-2

through 5-7) leads to several conclusions. Comparison of the catalytic runs involving 4-

methoxyboronic acid and 4-fluoroboronic acid suggest transmetallation is facilitated by electron

donating substituents. 4-methoxyboronic acids produced significant yields after only 14 hours,

as the fluoro analog required 24 hrs and produced lower yields for 3-8 and 3-9. Utilization of o-

tolylboronic acid allowed for increased steric bulk about the chiral pocket during the olefin

insertion step. This was expected to increase the enantiomeric excess produced particularly for

the more flexible catalysts 3-9 and 4-8 by affecting the structure of diastereotopic transition state

VI. The close proximity of the methyl group to the metal center could serve to further define the









chiral pocket, affecting the approach and insertion of the olefin. The e.e.s produced by these

reactions are higher than those obtained utilizing phenylboronic acid, but this affect is not

drastic. For 4-8 the increase in e.e. is small but the yield is drastically reduced, inferring that the

isopropyl group may hinder the overlap between hindered aryl substituents and the enone in the

transition state VI. Comparison of reactions forming 3-phenylcyclopentanone (5-6) with those

forming the much bulkier 3-(1-naphthalenyl)-cyclohexanone (5-3) (Tables 5-4 and 5-7) show

that the more flexible catalysts 3-9 and 4-8 produce higher yields when the size of the boronic

acids is increased. However, the more constrained catalyst 3-8 produces small amounts of bulky

5-3 but large amounts of the relatively small 5-6.

5.4 Conclusions

Catalytic trials involving catalyst 2-3, 3-8, 3-9, and 4-8 display the large variation in

catalytic behavior that can emanate from relatively small alterations in ligand structure. The

significant increase in the enantioselectivity of catalyst 3-8 is assigned to an increase in the size

of the imidazole, an area that is not typically associated with catalytic behavior. These findings

further support the assertion that the purely rational design of catalyst should not be attempted

before empirical investigation can be accomplished.

R R

1.Rh H





R= Me or I
Figure 5-1. Transmetallation of aryl substituents to rhodium catalysts.












L'Rhi( UD)

KOII
McOl

O -COD
R -Me
SL*Rh D(OIl)

Ar II

'IV



RR

RR
0 [.*Rh" Rhll, -I


SVII R
r I vI
Ar DR=HorMc





Rh a R


R
VI
Diastercomeric TS

Figure 5-2. Catalytic cycle for the 1,4-addition ofboronic acids to cyclic enones.









Table 5-1. Optimization of catalytic coniugate addition involving compound 3-8.


Product
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1 (leq)
5-1 (2eq)
5-1
5-1
5-1
5-1
5-1
5-1
5-1
5-1


Catalyst
(+/-) 2-5
(+/-) 2-3
(-) 2-3
(+/-) 3-8
(S,S) 3-8
(+/-) 3-8f
(S,S) 3-8
(S,S) 3-8b
(S,S) 3-8c
(S,S) 3-8
(S,S) 3-8
(S,S) 3-8d
(S,S) 3-8
(S,S)3-8
(R,R) 3-8
(R,R) 3-8
(R,R) 3-8
(R,R) 3-8
(S,S) 3-8
(R,R) 3-8
(S,S) 3-8d
(S,S) 3-8d


Solvent
Dioxane/Water
Dioxane/Water
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/ MeOH
Dioxane/ MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
Dioxane/MeOH
THF/MeOH
Dioxane/H20
Dioxane/MeOH (10:1)
Dioxane/MeOH (2:1)
Dioxane/H20 (4:1)
Dioxane/MeOH(4:1)
Dioxane/MeOH (10:1)
Dioxane/anh MeOH (10:1)


aIsolated Yield after column chromatography bPyradine instead of KOH CK2CO3 instead of KOH
d 3 mol% catalyst Isolated after column eR-enantiomer No Base

Table 5-2. Formation of 5-1 catalyzed by 3-8, 3-9, and 4-8.
Product Catalyst Solvent Temp C % e.e. Yielda Hours
5-1 (S,S)3-8 Dioxane/MeOH 75 71 33 24
5-1 (R,R) 3-8 Dioxane/MeOH 80 78b 56 24
5-1 (S,S) 3-9 Dioxane/MeOH 75 6 17 24
5-1 (S,S)3-9 Dioxane/MeOH 82 4 20 23
5-1 (R,R) 3-9 Dioxane/MeOH 82 5b 19 23
5-1 (S,S) 3-9 MeOH 81 0 50 17
5-1 (R,R) 4-8 Dioxane/MeOH 75 5b 13 24
5-1 (R,R) 4-8 Dioxane/MeOH 80 7b 26 24
aIsolated yield after column chromatography bR-enantiomer


Temp C
85
85
82
78
50
80
75
80
80
75
80
80
80
80
80
80
80
80
80
80
80
80


% e.e. Yielda
NA 0
NA 99
0 98
NA 60
NA 0
NA 0
70 25
NA 0
46 30
70 33
69 55
73 72
72 59
57 68
77e 73
5e 82
82e 86
61 70
5 83
78e 56
54 98
43 74


Hours
20
20
18
22
17
17
22
17
17
24
24
24
24
24
24
24
24
24
24
24
24
24









Table 5-3. Formation of 5-2 catalyzed by 3-8, 3-9, and 4-8
Product Catalyst Solvent Temp C % e.e. Yielda Hours
5-2 (S,S) 3-8 Dioxane/MeOHd 80C 65 18 24
5-2 (S,S) 3-8 Dioxane/MeOH 76b 82 40 24
5-2 (S,S) 3-9 Dioxane/MeOH 80C 20 70 24
5-2 (S,S) 3-9 Dioxane/MeOH 76b 10 22 24
5-2 (R,R) 4-8 Dioxane/MeOH 80C 15d 41 24
5-2 (R,R) 4-8 Dioxane/MeOH 76b 8d 25 24
aIsolated yield after column chromatography b 1.5 mol % catalyst c 3 mol % catalyst dR
enantiomer

Table 5-4. Formation of 5-3 catalyzed by 3-8, 3-9, and 4-8
Product Catalyst Solvent Temp C % e.e. Yielda Hours
5-3 (S,S) 3-8 Dioxane/MeOH 80 NAb 45 24
5-3 (S,S) 3-9 Dioxane/MeOH 80 NAb 83 24
5-3 (R,R) 4-8 Dioxane/MeOH 80 NAb 69 24
a Isolated yield subsequent to column b HPLC/GC method was not found to fully resolve the
enantiomers

Table 5-5. Formation of 5-4 catalyzed by 3-8, 3-9, and 4-8.
Boronic Acid Catalyst Solvent Temp C % e.e. Yielda Hours
5-4 (S,S) 3-8 Dioxane/MeOH 80 NAb 57 14
5-4 (S,S) 3-9 Dioxane/MeOH 80 NAb 98 14
5-4 (R,R) 4-8 Dioxane/MeOH 80 NAb 29 14
aIsolated yield subsequent to column b HPLC/GC method was not found to fully resolve the
enantiomers

Table 5-6. Formation of 5-5 catalyzed by 3-8, 3-9, and 4-8.
Product Catalyst Solvent Temp C % e.e. Yielda Hours
5-5 (S,S) 3-8 Dioxane/MeOH 80 47 45 24
5-5 (S,S) 3-9 Dioxane/MeOH 80 11 65 24
5-5 (R,R) 4-8 Dioxane/MeOH 80 0 71 24
aIsolated yield subsequent to column

Table 5-7. Formation of 5-6 catalyzed by 3-8, 3-9, and 4-8.
Product Catalyst Solvent Temp C % e.e. Yielda Hours
5-6 (S,S) 3-8 Dioxane/MeOH 80 NAb 71 15
5-6 (S,S) 3-9 Dioxane/MeOH 80 NAb 50 15
5-6 (R,R) 4-8 Dioxane/MeOH 80 NAb 22 15
aIsolated yield subsequent to column b HPLC/GC method was not found to fully resolve the
enantiomers









CHAPTER SIX
CONCLUSIONS AND FUTURE DIRECTION

Structural investigation of catalysts 2-3, 3-8, 3-9, 4-8, 4-9, 4-10 and the unsuccessful

formation of a mononuclear catalyst from ligand 4-7 has shown that there is a fine balance

between undefined and overly hindered ligand structures. The overly flexible ligand 2-1 was

modified by reducing the length of the ligand arms. The two constrained ligands 3-3 and 3-4,

although very similar in structure, formed monometallic chiral catalysts (3-8 and 3-9) that

induced drastically different catalytic selectivities (Chapter 5). Gas-phase ground state geometry

optimization calculations were used to show that the variation in the chiral pocket between 3-8

and 3-9 was due largely to the difference in choice of azole, although some of the catalytic

variation may be due to electronic differences between the imidazole and benzimidazole.

Increasing the size of the N-substituents (4-1) does little to improve the poor enantioselectivity of

the unsaturated imidazole catalyst 3-9.

The fair enantioselectivity of 3-8 at high temperatures could be improved if catalytic

turnover could be achieved at reduced temperatures. Substitution of the cyclooctadiene co-

ligand is the most straightforward pathway to achieving an optimized catalytic structure.

Although previous attempts have not led to the desired product, further investigation of this

avenue is needed.

According to the calculated structure oftolylimidazole complex 4-10, its configuration is

nearly identical to 3-8. The similar minimum energy structures should present comparable chiral

inductions, although small variations could lead to large alteration in the structure of the

diastereotopic transition state that determines the product's enantiotopic identity. Increasing the

size of the N-substituent of 3-8 resulted in the extremely low yielding formation of monometallic

complex 4-9. In order to isolate amounts of 4-9 required for catalytic investigation it may be









useful to substitute the dimeric [Rh(COD)Cl]2 with the monometallic, cationic Rh(NBD)2BF4

precursor. Formation of a silver salt from ligand 4-2 that could be used for transmetallation

could also increase the yield of monometallic complex 4-9.

Alternative ligand structures (Figure 6-1) could be used to increase the definition of the

chiral pocket. However, caution must be taken to avoid the design of overly hindered ligands

that favor the formation of bimetallic complexes. The addition of a methyl substituent in the

ortho position (6-1) should lead to a very rigid monometallic complex if it can be formed. Ortho

substitution ofa fluoro substituent should induce less steric inhibition to monometallic complex

formation; however, synthetic procedures required to form this ligand are more complex than for

6-1 and the electronic interaction between the fluoro substituent and the aryl backbone may also

preclude monometallic catalyst synthesis. Although the meta methyl substituent did not alter the

structure of the monometallic catalyst (4-6), introduction of a significantly bulky substituent in

this position (6-3 R = t-Bu or biphenyl) should alter the structure.

The unsaturated imidazole complexes 3-9 and 4-1 do not appear to be promising in high

temperature catalysis. However, they should present much higher enantioselectivities if utilized

at room temperature. An alternative structure 6-4 is proposed whereby the bulk of the backbone

is increased. Substitution of glyoxal with an alkyl substituted dione, such as butane-2,3-dione,

would introduce alkyl groups on the back of the imidazole.

The stability of the rhodium and iridium complexes reported herein has allowed the

structural investigation of a series of di-NHC ligands. Although structural knowledge is vastly

important in catalytic investigation, the stability of these complexes is likely the source of the

observed sluggish reactivity. Formation of metal complexes containing labile co-ligands should

allow the formation of electron-rich metal centers capable of a high degree of enantioselectivity.

















Figure 6-1. Proposed ligand structures for enhanced chiral induction.









APPENDIX A
NUCLEAR MAGNETIC RESONANCE














































L _

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0
Chemical Shift (ppm)
Figure A-: 1H NMR spectrum of(+/-) [DEAM-BI][OTf]2 (2-1) in (CD3)2SO.




















































145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35
Chemical Shift (ppm)
Figure A-2: 13C NMR spectrum of(+/-) [DEAM-BI][OTf]2 (2-1) in (CD3)2SO.


126




























































7.5 7.0 6.5 6.0 5.5 5.0 4.5
Chemical Shift (ppm)
Figure A-3: H NMR spectrum of (+/-) DEAM-BIY (2-2) in C6D6.


4.0 3.5 3.0 2.5 2.0 1.5 1.0
























































E .Z"1 ~ I 1 I I
216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48
Chemical Shift (ppm)
Figure A-4: 13C NMR spectrum of(+/-) DEAM-BIY (2-2) in C6D6.



128



























































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
Chemical Shift (ppm)
Figure A-5. H NMR spectrum of(+/-) [(DEAM-BIY) Rh (COD)] OTf(2-3) in CDC13.


30 25 20 1 5 10






































184 176 168 160 152 144 136 128 120 112 104 96 88 80 72
Chemical Shift (ppm)
Figure A-6: C NMR spectrum of(+/-) [(DEAM-BIY) Rh (COD)] OTf(2-3) in CDC13.


64 56 48 40 32 24 16


I 1 ,1


I


pjjjr
1177


' I I I II


i


I





















































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)
Figure A-7: 1H NMR spectrum of (+/-) (DEAM-BIY)Rh2(COD)2C12 (2-4) in CDC13.





















































184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16
Chemical Shift (ppm)
Figure A-8: 13C NMR spectrum of (+/-)(DEAM-BIY)Rh2(COD)2C12 (2-4) in CDC13.



132























































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
Chemical Shift (ppm)
Figure A-9: H NMR spectrum of (+/-) [(DEAM-BIY)Ir(COD)]OTf (2-5) in CDC13.



133


3.5 3.0 2.5 2.0 1.5




















































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5
Chemical Shift (ppm)
Figure A-10: 1H NMR spectrum of(+/-) [(DEAM-BIY)Ir(COD)]OTf(2-5) in CD2C12.



134

















































i II ,,..,- I 1 iiI i.1III


.111 .11 11 1 1 ,1 11 1 11 'k d I 1 II I, b I I 1,


II I j 11 .IA I ]I.1 k l I .


hN IEIII I1I fliinhli' iiiiiM i flU! i I


48 40 32 24


.1 .11


176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56
Chemical Shift (ppm)
Figure A-11: 13C NMR spectrum of(+/-) [(DEAM-BIY)Ir(COD)]OTf (2-5) in CD2C12


\ 1 1l I .I ll






















































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
Chemical Shift (ppm)
Figure A-12: 1H NMR spectrum of(+/-) (DEAM-BIY)Ir2(COD)2C12 (2-6) in CDC13.




136


3.0 2.5 2.0 1.5 1.0












































I., 1 1 .


r.,II..II, 111 .............l.. ...................... ii ...... ........ ir 0 .l. .I l u IIS,... ir..rLahI.pt ... 0L. J s ........ a iuidlh.l a M i .............i ........ qr............... .... Ik.... ...L.


!,.r1n~innn.~,nim ru vwunu rnww mu r I'pr


56 48 40 32 24


176 168 160 152 144 136 128 120 112 104 96 88 80 72
Chemical Shift (ppm)
Figure A-13: 13C NMR spectrum of(+/-) (DEAM-BIY)Ir2(COD)2C12 (2-6) in CDC13.


64


,I1I h ', ,


It I ~


il, l ,I
















































9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5
Chemical Shift (ppm)
Figure A-14: H NMR spectrum of 1,1-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(3-methyl-1H-benzimidazol-3-ium)
diiodide (3-4) in (CD3)2SO.



138

















































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)
Figure A-15: H NMR spectrum of(+/-) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-(1-methyl)bibenzimidazole), [(DEA-
MbBY] (3-5) in C6D6.


139












































I I


150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40
Chemical Shift (ppm)
Figure A-16: 13C 1H} NMR spectrum of (+/-) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-(-methyl)bibenzimidazole),
[(DEA-MbBY] (3-5) in C6D6.


i l I ,


MPPTPPI111171 T7 111 17 OR~ullu


I


1 I I


11' 1 1 I 1 1






















































8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)
Figure A-17: 1H NMR spectrum of [/-DEA-MY][Rh(NBD)I]2 (3-6) as a mixture with 3-9 in C6D6.





















































8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)
Figure A-18: 1H NMR spectrum of [L2-DEA-MBY][Rh(NBD)I]2 (3-7-NBD) as a mixture with 3-8-NBD in C6D6.



142



















































9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0
Chemical Shift (ppm)
Figure A-19: 1HNMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
methylbenzimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-MBY)Rh(COD)]I (3-8) in CDC13.



143


1.5 1.0


















































192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32
Chemical Shift (ppm)
Figure A-20: 13C H} NMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
methylbenzimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-MBY)Rh(COD)]I (3-8) in CDC13.

















































8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5
Chemical Shift (ppm)
Figure A-21: 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-methylimidazolidine-
2-ylidene cyclooctadiene iodide, [(DEA-MY)Rh(COD)]I (3-9) in CD3C1.



145

































i ll I ,Ij


I ii L i


hi I i~I ii. 'iii


176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48
Chemical Shift (ppm)
Figure A-22: 13C 1H} NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
methylimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-MY)Rh(COD)]I (3-9) in CD3C1.


.1 IJ I


ii II1~ Vi


40 32


n Ij A Jim ii ,uII[Ln iuilmmjiJijIJlIIIIi llill, llllll lIII II III II


,1,1, l liJI


r


i,,


























































9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
Chemical Shift (ppm)
Figure A-23: 1H NMR spectrum of(+/-) [DEA-iPrI][I]2 (4-1) in (CD3)2SO.


35 30 25 20 15 10 05



















































136 128 120 112 104 96 88 80 72
Chemical Shift (ppm)
Figure A-24: 13C NMR spectrum of(+/-) [DEA-iPrl][I]2 (4-1) in (CD3)2SO.


64 56 48 40 32 24 16 8


gww




















































8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)
Figure A-25. H NMR spectrum of(+/-) [DEA-iPrBI][I]2 (4-2) in (CD3)2SO.


149





















































145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20
Chemical Shift (ppm)
Figure A-26. 13C NMR spectrum of (+/-) [DEA-iPrBI][I]2 (4-2) in (CD3)2SO.



150


























































8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
Chemical Shift (ppm)
Figure A-27. H NMR of N,N'-bis(4-nitrotolyl)-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (4-3).



151


3.0 2.5 2.0




































I.


152 144 136 128 120 112 104 96 88 80 72 64 56 48 40
Chemical Shift (ppm)
Figure A-28. 13C NMR of N,N'-bis(4-nitrotolyl)-9,10-dihydro-9,10-ethanoanthracene- 1,12-diamine (4-3).


32 24 16 8


I1 11 I I


7 '711 r7r"Ir
I I II
111MI1111777


1 1 I


1


I I


I I
























































.I P 9.


7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0
Chemical Shift (ppm)
Figure A-29. H NMR of N,N'-bis(4-aminotolyl)-9,10-dihydro-9,10-ethanoanthracene- 1,12-diamine (4-4).


2.0 1.5





















































145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20
Chemical Shift (ppm)
Figure A-30. 13C NMR of N,N'-bis(4-aminotolyl)-9,10-dihydro-9,10-ethanoanthracene- 1,12-diamine (4-4).


II


I I I I I I I I I I


I


I I I I






























































7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
Chemical Shift (ppm)
Figure A-31. H NMR 1,1'-(9,10-dihydro-9,10-ethanoanthracene-11,12-diyl)di(1H-tolylimidazole) (4-5).


2.5 2.0







































i!r 1"1 lrr ,,,lI i i,, l ii ij r j I i 1 i 1 I r '1 l i i i [ ', i ,1 j,,' iIi', iI l ', 1" II ii, i r ', ,,i i ii I' ''i rii j ri '' ,' r p "I rll[ i' iirii ,'i I ,' i I l lllFl '! II, 1" r I Il, I llll 'l r,'l I' 'll ll ,ll 'll "1 I r '\


145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20
Chemical Shift (ppm)
Figure A-32. 13C NMR 1,1'-(9,10-dihydro-9,10 -ethanoanthracene- 11,12-diyl)di(1H-tolylimidazole) (4-5).


156


1111 1 1 I 1 11J I I I I


1


I I J, 1, 111 1, 11


I ,1


I I I I r ,




























9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0
Chemical Shift (ppm)
Figure A-33. 1HNMR spectrum of(+/-) [DEA-MTI][I]2 (4-6) in (CD3)2SO


4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0


- :




























144 136 128 120 112 104 96 88 80 72
Chemical Shift (ppm)
Figure A-34. 13C NMR spectrum of (+/-) [DEA-MTI][I]2 (4-6) in (CD3)2SO


64 56 48 4(


32 24 16


II


0


1111111lHi lll I I 11 i 1 111111Ilii lij





















































9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)
Figure A-35: 1H NMR spectrum of R,R [DEA-iPrTI][I]2 (4-7) in CDC13.



159






























~_______ -<-


8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5
Chemical Shift (ppm)
Figure A-36. 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
isopropylimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-iPrY)Rh(COD)]I (4-8) in CDC13.


2.0 1.5 1.0


--UJ L


JAA




































ll, i, hl lll ,


176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48
Chemical Shift (ppm)
Figure A-37. 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
isopropylimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-iPrY)Rh(COD)]I (4-8) in CDC13


161


~IhILII 1.1, k I k..i l~lJIJII ILL


40 32


Ii I, l,, i !, ii,


II II II' ~I I l i 'I I`' I' IIIIj Y I IIIII"I" II IIII II III IIII"II'm 'Y i ''I'IjI! i'~i, ullll u.!.!n llj lj mJI lmlll ,lll YIII I II 'II `'III '" I' iII I n'"I'II'iI'Iu i'L I 'L II my JI 'I j'I I ? 'IIn" I" '' I'.I"'" 'u I' .' I'I `'I I'! h'.I'II'I j'I"' I'nI'''I 'I I'H I ''J'u''Im' I,' ,'1


11.
















































9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)
Figure A-38. 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
isopropylbenzimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-iPrBY)Rh(COD)]I (4-9) in CDC13.


162

















































192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24
Chemical Shift (ppm)
Figure A-39. 13C NMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(l-
isopropylbenzimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-iPrBY)Rh(COD)]I (4-9) in CDC13.


163




















































9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5
Chemical Shift (ppm)
Figure A-40. 1H NMR spectrum of (+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,10-bis(1-
methyltolylimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-MTY)Rh(COD)]I (4-10) in CDC13.



164


2.0 1.5 1.0








































iI~iI~ 1.1 ii


iUKIIU ILIJl'Il I I U I Ii 111 ,I,1II 1 ilUl ihI HI il lII111 II.UIJi HlllllH II I l llll M l I IIU I lU l


II J III IIIi


Jii, I11I I J


ii ii~ .11 I I.


,il ,l l il


Lii


h I, ,,I


UILII JUL' I LI IIUIIIlkAILmI H.YYIIYl llll t IJ OUkJJJAI hi ~iD~ilU~I IUllllln Iu IA liYII" LJIVIIUWIMIII IIIUY ]III1kLWVItL IIYUIIIW I UIiIillhlhulnY1IYYIOI I LL~~I WIIIYIYII ilk L IIUll IIh11J d I.Wbii


192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32
Chemical Shift (ppm)
Figure A-41. 13C NMR spectrum of(+/-) Rhodium(I) trans-9,10-dihydro-9,10-ethanoanthracene-9,1 0-bis(l-
methyltolylimidazolidine-2-ylidene cyclooctadiene iodide, [(DEA-MTY)Rh(COD)]I (4-10) in CDC13.


I Ir 11 i 1 .11111 ( (1111/1









APPENDIX B
REFINEMENT DATA

Table B-1. Crystal data, structure solution and refinement for 2-1.
identification code rxl4
empirical formula C40 H36 F6 N4 06 S2
formula weight 846.85
T(K) 173(2)
S(A) 0.71073
crystal system Monoclinic
space group P2(1)/c
a(A) 12.5937(8)
b (A) 24.6077(16)
c(A) 12.9797(9)
a (deg) 90
l (deg) 97.815(1)
y (deg) 90
V(A3) 3985.1(5)


Z
pcalcd (Mg mm 3)
crystal size (mm3)
abs coeff (mm-1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R1,a wR2b [I > 2]
R1,a wR2b (all data)
GOFc on F2
largest diff. peak and hole


4
1.411
0.29 x 0.26 x 0.22
0.214
1752
1.63 to 24.990
-8 < h < 14, -29 k< 15, -15 <1< 15
12702
6516 (0.0349)
0.93
Integration
Full-matrix least-squares on F2
6516/0/509
0.0467, 0.1194 [5128]
0.0602, 0.1279
1.035
0.411 and -0.361 e.A-3


a R1 = i|Fo IFcI/1Fol. b wR2 = ( (w(Fo2 Fc2)2)/((F2)2))1/2. c GOF = (Y w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-2. Crystal data, structure solution and refinement for 2-2.
identification code rxl2
empirical formula C38 H34 N4
formula weight 546.69
T(K) 173(2)
X (A) 0.71073
crystal system Orthorhombic
space group Pna2(1)
a(A) 10.3902(9)
b(A) 21.6719(19)
c(A) 13.1662(11)
a (deg) 90
l (deg) 90
y (deg) 90
V(A3) 2964.7(4)


Z
pcalcd (Mg mm 3)
crystal size (mm3)
abs coeff (mm1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R,a wR2b [I > 20]
R1,a wR2b (all data)
GOFc on F2
largest diff. peak and hole


4
1.225
0.18 x 0.10 x 0.05
0.072
1160
1.81 to 25.000
-11 15241
5055 (0.0624)
100.00%
Emprirical, Psi scan
Full-matrix least-squares on F2
5055/1/379
0.0570, 0.1523 [4229]
0.0700, 0.1775
1.075
0.161 and -0.268 e."-3


a R1 = i|Fo IFIe|/|Fo b wR2= ( (w(Fo2 F2)2)/ (w(Fo2)2))1/2. c GOF = ( 2 w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-3. Crystal data, structure solution and refinement for 2-3-CH2C12.
identification code rxl
empirical formula C48 H48 C12 F3 N4 03 Rh S
formula weight 991.77
T(K) 173(2)
X(A) 0.71073
crystal system Monoclinic
space group P2(1)/n
a (A) 9.8237(13)
b(A) 18.047(3)
c(A) 24.957(3)
a (deg) 90
/ (deg) 92.909(2)
y (deg) 90
V(A3) 4418.9(10)


Z
pcalcd (Mg mm 3)
crystal size (mm3)
abs coeff (mm-1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R1,a wR2b [I > 20]
R1,a wR2b (all data)
GOFc on F2
largest diff. peak and hole


4
1.491
0.16x 0.16x 0.10
0.615
2040
1.39 to 27.500
-12 29619
10128 (0.0483)
0.997
Integration
Full-matrix least-squares on F2
10128 / 1 / 570
0.0359, 0.0988 [8286]
0.0459, 0.1024
1.077
0.801 and -1.078 e.A-3


a R1 = I||Fo |IFe||/|Fol. b wR2= ((w(Fo2 Fc2)2)/((F2)2))1/2. c GOF = ( w(Fo2
Fc2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-4. Crystal data, structure solution and refinement for 2-4-C6H6.
identification code rxl0
empirical formula C60 H64 C12 N4 Rh2
formula weight 1117.87
T(K) 173(2)
X(A) 0.71073
crystal system Triclinic
space group P1
a(A) 13.839(2)
b (A) 13.995(2)
c(A) 14.479(2)
a (deg) 80.356(3)
l (deg) 70.239(3)
y(deg) 75.220(3)
V(A3) 2541.5(7)
Z 2
pcaled (Mg mm 3) 1.461
crystal size (mm3) 0.13 x 0.05 x 0.02
abs coeff(mm-1) 0.798
F(000) 1152
0 range for data collection 1.50 to 27.500
limiting indices -17 no. ofreflns called 17430
no. ofind reflns (Rint) 11405 (0.0811)
completeness to 0 = 27.490 97.80%
absorption corr Integration
refinement method Full-matrix least-squares on F2
data / restraints / parameters 11405 / 0 / 613
R1,a wR2b [I > 20] 0.0538, 0.1185 [6208]
R1,a wR2b (all data) 0.1125, 0.1376
GOFc on F2 0.881
largest diff peak and hole 0.554 and -0.672 e.A-3

" R1 = i |Fo FcII||/|Fo b R2 = (y(w(Fo2 Fc2)2)/Y((F2)2))1/2. c GOF = (Y w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-5. Crystal data, structure solution and refinement for 2-5-C6H6.
identification code rxl 8
empirical formula C53 H52 F3 Ir N4 03 S
formula weight 1074.25
T(K) 173(2)
X(A) 0.71073
crystal system Monoclinic
space group P2(1)/n
a (A) 10.1135(17)
b (A) 17.996(3)
c(A) 24.932(4)
a (deg) 90
l (deg) 92.221(4)
y (deg) 90
V(A3) 4534.3(13)
Z 4
pcaled (Mg mm 3) 1.574
crystal size (mm3) 0.09 x 0.02 x 0.02
abs coeff(mm-1) 3.053
F(000) 2168
0 range for data collection 1.40 to 27.500
limiting indices -13 no. ofreflns called 29378
no. ofind reflns (Rint) 10343 (0.1461)
completeness to 0= 27.490 99.30%
absorption corr Integration
refinement method Full-matrix least-squares on F2
data / restraints / parameters 10343 / 1 / 571
R1,a wR2b [I > 20] 0.0872, 0.0965 [5988]
R1,a wR2b (all data) 0.1676, 0.1127
GOF on F2 1.034
largest diff peak and hole 1.085 and -1.791 e.A-3

" R1 = i |Fo IFI||/|1Fo b R2 = ( F(w(Fo2 F2)2)/((Fo2)2))1/2. c GOF = (Y w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-6. Crystal data, structure solution and refinement for 2-6C6sH6.
identification code rxl7
empirical formula C60 H64 C12 Ir2 N4
formula weight 1296.45
T(K) 173(2)
S(A) 0.71073
crystal system Triclinic
space group P1
a(A) 13.8318(17)
b (A) 13.9515(17)
c(A) 14.5432(18)
a (deg) 80.640(2)
/ (deg) 70.355(2)
y (deg) 75.494(2)
V(A3) 2549.4(5)
Z 2
pcalcd (Mg mm 3) 1.689
crystal size (mm3) 0.15 x 0.12 x 0.04
abs coeff (mm-1) 5.363
F(000) 1280
0 range for data collection 1.49 to 27.500
limiting indices -17 no. ofreflns called 17315
no. ofind reflns (Rint) 11384 (0.0589)
completeness to 0 = 27.490 97.50%
absorption corr Integration
refinement method Full-matrix least-squares on F2
data / restraints / parameters 11384 / 0 / 613
R1,a wR2b [I > 2c] 0.0293, 0.0760 [9922]
R1,a wR2b (all data) 0.0348, 0.0791
GOFc on F2 1.007
largest diff peak and hole 1.769 and -1.397 e.A-3

" R1 = E||Fo IFc||/|1Fol. b w R = ((w(Fo2 Fc2)2)/(w(Fo2)2))1/2. c GOF = (Y w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-7. Crystal data, structure solution and refinement for 2(3-5).
identification code rx08
empirical formula C64 H52 N8
formula weight 933.14
T(K) 173(2)
S(A) 0.71073
crystal system Monoclinic
space group P21/n
a (A) 10.5224(7)
b(A) 38.633(3)
c(A) 11.9173(7)
a (deg) 90
l (deg) 102.497(1)
y (deg) 90
V(A3) 4729.7(5)


Z
pcalcd (Mg mm 3)
crystal size (mm3)
abs coeff (mm-1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R1,a wR2b [I > 20]
R1,a wR2b (all data)
GOFc on F2
largest diff. peak and hole


4
1.310
0.19 x 0.19x 0.08
0.078
1968
1.83 to 27.500
-13 32190
10772 (0.0356)
99.00%
Integration
Full-matrix least-squares on F2
10772 / 0 / 651
0.0416, 0.0943 [7390]
0.0695, 0.1028
1
0.200 and -0.212 e.A-3


a R1 = I||Fo |IFe|/|Fol. b wR2 = ((w(Fo2 Fc2)2)/((F2)2))12. c GOF = ( w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-8. Crystal data, structure solution and refinement for 3-6-THF.
identification code rx09
empirical formula C42 H46 12 N4 O Rh2
formula weight 1082.45
T(K) 173(2)
S(A) 0.71073
crystal system Monoclinic
space group P2(1)/c
a (A) 12.8891(12)
b(A) 14.6531(14)
c (A) 22.462(2)
a (deg) 90
/ (deg) 104.806(2)
y (deg) 90
V(A3) 4101.5(7)


Z
pcalcd (Mg mm 3)
crystal size (mm3)
abs coeff (mm1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R,a wR2b [I > 20]
R1,a wR2b (all data)
GOFc on F2
largest diff. peak and hole


4
1.753
0.09 x 0.07 x 0.05
2.347
2120
1.63 to 27.500
-15 15923
8001 (0.0353)
85.00%
Integration
Full-matrix least-squares on F2
8001/0/460
0.0380, 0.0684 [5927]
0.0622, 0.0746
0.977
0.581 and -0.477 e.A-3


a R1 = i|Fo IFIe|/|Fo b wR2= ( (w(Fo2 F2)2)/ (w(Fo2)2))1/2. c GOF = ( 2 w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-9. Crystal data, structure solution and refinement for 3-7-2CH2CI2.
identification code rxl3
empirical formula C50 H54 C16 N4 Rh2
formula weight 1129.49
T(K) 173(2)
X(A) 0.71073
crystal system Monoclinic
space group P2(1)/n
a (A) 12.4529(12)
b (A) 22.822(2)
c(A) 17.3074(16)
a (deg) 90
/ (deg) 101.420(2)
y (deg) 90
V(A3) 4821.3(8)


Z
pcaled (Mg mm 3)
crystal size (mm3)
abs coeff(mm-1)
F(000)
0 range for data collection
limiting indices
no. ofreflns called
no. ofind reflns (Rint)
completeness to 0 = 27.490
absorption corr
refinement method
data / restraints / parameters
R1,a wR2b [I > 20]
R,a wR2b (all data)
GOFc on 2
largest diff. peak and hole


4
1.556
0.20 x 0.18 x 0.17
1.057
2296
1.50 to 27.500
-13 32115
11074 (0.0691)
99.90%
Integration
Full-matrix least-squares on F2
11074/0/569
0.0354, 0.0936 [9845]
0.0402, 0.0969
1.025
0.837 and -1.392 e.A-3


a R1 = I||Fo |IFe|/|Fol. b wR2 = ((w(Fo2 Fc2)2)/((F2)2))1/2. c GOF = ( w(Fo2
F2)2/(n ))1/2 where n is the number of data andp is the number of parameters refined.









Table B-10. Crystal data, structure solution and refinement for 3-8-CH2C12.
identification code rx20
empirical formula C41 H40 C12 I N4 Rh
formula weight 889.48
T (K) 173(2)
X(A) 0.71073
crystal system Monoclinic
space group P2(1)/c
a(A) 10.7075(11)
b(A) 30.420(3)
c(A) 12.1504(12)
a(deg) 90
3 (deg) 112.696(2)
7 (deg) 90
V (A3) 3651.2(6)
Z 4
pcalcd (Mg mm 3) 1.618
crystal size (mm3) 0.16 x 0.08 x 0.02
abs coeff(mm-) 1.495
F(000) 1784
o range for data collection 1.34 to 27.50.
limiting indices -9 < h < 13, -36 < k < 39, -15 <1< 15
no. ofreflns called 23756
no. ofind reflns (Rint) 8317 (0.1039)
completeness to 0 = 27.490 99.10%
absorption corr Integration
refinement method Full-matrix least-squares on F2
data / restraints / parameters 8317 / 0 / 442
Rl,a wR2b [I > 2s] 0.0496, 0.0705 [4514]
Rl,a wR2b (all data) 0.1158, 0.0824
GOFc on F2 0.853
largest diff. peak and hole 0.834 and -0.608 e.A-3
"R1 = i||Fo IFoI||/|Fo. b wR2 = (X(w(Fo2 Fc2)2)/((Fo2)2))12. c GOF = (y w(F2 F2)2(n
p))1/2 where n is the number of data andp is the number of parameters refined.









LIST OF REFERENCES

1. T. H. Maugh II, Science, 1983, 219, 474.

2. M. J. Krische, Tetrahedron, 2005, 61, 6169.

3. K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, John Wiley &
Sons, Chichester, 2002.

4. A. P. Kieboom, J. Moulijn, P. W. N. M. V. Leeuwen and R. A. V. Santen, in Catalysis: An
Integrated Approach, eds. R. A. Van Santen, P. W. N. M. Van Leeuwen, J. A. Moulijn and
B. A. Averill, Elsevier Science, Amsterdam, Editon edn., 2000.

5. J. Tyndall, Catalysis Letters, 2000, 67, 5.

6. S. K. Ritter, Chemical & Engineering News, 2008,
http://pubs.acs.org/cen/coverstory/86/8633cover3box2.html, Accessed 6/18/2009.

7. B. Cornils and W. A. Herrmann, Journal of Catalysis, 2003, 216, 23.

8. E. Morales, The North American Catalysis Society, http://www.nacatsoc.org/default.asp,
Accessed 5/1/2009.

9. B. Bosnich, ed., Asymmetric Catalysis, Martinus Nijhoff Publishers, Dordrecht / Boston /
Lancaster, 1986.

10. G. K. Boreskov, Heterogeneous, Nova Publishers, 2003.

11. F. D. Gunstone, Guidebook to stereochemistry, Longman Group Limited, New York,
1975.

12. J. B. Biot, Bull. Soc. Philomath., 1815, Paris, 190.

13. J. B. Biot, Bull. Soc. Philomath., 1816, Paris, 125.

14. P. Cintas, Angew. Chem. Inter. Ed., 2007, 46, 4016.

15. G. B. Kauffman and R. D. Myers, Chem. Educator, 1998,
http://chemeducator.org/bibs/0003006/00030257.htm, Accessed 6/21/2009.

16. R. Corradini, S. Sforza, T. Tedeschi and R. Marchelli, Chirality, 2007, 19, 269.

17. R. Crossley, Tetrahedron, 1992, 48, 8155.

18. J. L. Bada, Nature, 1995, 374, 594.

19. D. L. Nelson and M. M. Cox, Principles ofBiochemistry, 4th edn., W. H. Freeman and
Company, New York, 2005.









20. J. C. Leffingwell, in Leffingwell Reports Chirality & Bioactivity I.: Pharmacology, Editon
edn., 2003, vol. 3.

21. S. C. Stinson, Chem. Eng. News, 2000, 78, 55.

22. E. J. Ariens, Soudigen, W., Timmermans, P. B. M. W. M., ed., Stereochemistry and
BiologicalActivity ofDrugs, Blackwell Scientific Publications, Oxford, 1983.

23. S. C. Stinson, Chem. Eng. News, 2001, 79, 45.

24. S. C. Stinson, Chem. Eng. News, 2001, 79, 45.

25. B. M. Trost, PNAS, 2004, 101, 5348.

26. E. Fogassy, M. N6gradi, D. Kozma, G. Egri, E. Palovics and V. Kiss, Org. Biomol. Chem.,
2006,4,3011.

27. R. N. Patel, Current Organic Chemistry, 2006, 10, 1289.

28. K. Mikami and M. Lautens, eds., New Fronteirs in Asymmetric Catalysis, John Wiley &
Sons, New Jersey, 2007.

29. M. Lemaire, Pure Appl. Chem., 2004, 76, 679.

30. W. A. Nugent, T. V. RajanBabu and M. J. Burk, Science, 1993, 259, 479.

31. G. W. Parshall, Homogeneous Catalysis: the applications and chemistry of catalysis by
soluble transition metal complexes, John Wiley & Sons, New York, 1980.

32. T. P. Yoon, E. N. Jacobsen, Science, 2003, 299, 1691.

33. T. P. Dang and H. B. Kagan, J. Chem. Soc. Chem. Commun., 1971, 481.

34. H. B. Kagan and T. P. Dang, J. Am. Chem. Soc., 1972, 94, 6429.

35. J. K. Whitesell, Chem. Rev., 1989, 89, 1581.

36. F. Jo6, Aqueous Organometallic Catalysis, Kluwer Academic Publishers, Dordrecht /
Boston/ London, 2001.

37. F. Glorius, ed., N-Heterocyclic Carbenes in Transition Metal Catalysis, Springer-Verlag,
Berlin Heidelberg, 2007.

38. R. H. Crabtree, J. Organomet. Chem., 2005, 690, 5451.

39. H. W. Wanzlick, E. Fjedor and K. H. Jerg, Chem. Ber., 1963, 96, 1208.

40. H. W. Wanzlick and E. Schikora, Angew. Chem., 1960, 72, 494.









41. H. W. Wanzlick and H. J. KLEINER, Angew. Chem., 1961, 73, 493.

42. H. W. Wanzlick, Angew. Chem. Int. Ed., 1962, 1, 75-80.

43. H. W. Wanzlick, H. -J. Schonherr, Angew. Chem. Int. Ed. Engl., 1968, 7, 148.

44. K. J. Ofele, Organomet. Chem., 1968, 12, 42.

45. D. J. Cardin, B. Cetinkaya, M. F. Lappert, L. Manojlovic-Muir, Chem. Commun., 1971,
400.

46. M. F. Lappert, J. Organomet. Chem., 2005, 690.

47. A. Arduengo, M. Kline, J. C. Calabrese, F. Davidson, J. Am. Chem. Soc., 1991, 113, 9704.

48. A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1992, 113, 361.

49. D. Enders, O. Niemeier and A. Henseler, Chem. Rev., 2007, 107, 5606.

50. V. Cesar, S. Bellemin-Laponnaz and L. H. Gade, Chem. Soc. Rev., 2004, 33, 619.

51. F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed., 2008, 47, 3122.

52. W. A. Herrmann, Angew. Chem. Int. Ed., 2002, 41, 1290.

53. H. Clavier and S. P. Nolan, Annu. Rep. Prog. Chem., Sect. B, 2007, 103, 193.

54. R. E. Douthwaite, Coord. Chem. Rev., 2007, 251, 702.

55. S. Diez-Gonzalez and S. P. Nolan, Coord. Chem. Rev., 2007, 251, 874.

56. J. M. Praetorius and C. M. Crudden, Dalton Trans., 2008, 4079.

57. J. A. Mata, M. Poyatos and E. Peris, Coord. Chem. Rev., 2007, 251, 841.

58. M. Poyatos, J. A. Mata and E. Peris, Chem. Rev., 2009.

59. 0. Schuster, L. Yang, H. G. Raubenheimer and M. Albrecht, Chem. Rev., 2009, ASAP.

60. P. L. Arnold and I. J. Casely, Chem. Rev., 2009, ASAP.

61. C. Samojlowicz, M. Bieniek and K. Grela, Chem. Rev., 2009, ASAP.

62. P. De Fremont, N. Marion and S. P. Nolan, Coord. Chem. Rev., 2008, 253, 862.

63. S. P. Nolan, ed., N-heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim, Germany,
2006.

64. P. De Fremont, N. Marion and S. P. Nolan, Coord. Chem. Rev., 2009, 253, 862.









65. J. Lennard-Jones and J. A. Pople, Discus. Faraday Soc., 1951, 10, 9.

66. A. D. Walsh, J. Chem. Soc., 1953, 2260.

67. R. Hoffmann, J. Am. Chem. Soc., 1968, 90, 1475.

68. C. Heinemann, T. Miller, y. Apeloig, H. Schwarz, J. Am. Chem. Soc., 1996, 118, 2023.

69. C. Boehme, G. Frenking, J. Am. Chem. Soc., 1996, 118, 2039.

70. J. F. Lehmann, S. G. Urquhart, L. E. Ennis, A. P. Hitchcock, K. Hatano, S. Gupta, M. K.
Denk, Organometallics, 1999, 18, 1862.

71. S. Diez-Gonzalez and S. P. Nolan, Coord. Chem. Rev., 2007, 251, 874.

72. A. J. Arduengo, III, J. R. Goerlich and W. J. Marshall, J. Am. Chem. Soc., 1995, 117,
11027.

73. E. Despagnet-Ayoub and R. H. Grubbs, J. Am. Chem. Soc., 2004, 126, 10198.

74. R. W. Alder, M. E. Blake, C. Bortolotti, S. Bufali, C. P. Butts, E. Linehan, J. M. Oliva, A.
G. Orpen and M. J. Quayle, Chem. Commun., 1999, 241.

75. R. Jazzar, H. Liang, B. Donnadieu and G. Bertrand, J. Organomet. Chem., 2006, 691,
3201.

76. C. C. Scarborough, I. A. Guzei and S. S. Stahl, Dalton Trans., 2009, 2284.

77. A. J. Arduengo, III, H. V. R. Dias, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1992,
114, 5530.

78. C. A. Tolman, Chem. Rev., 1977, 77, 313.

79. A. C. Hillier, W. J. Sommer, B. S. Yong, J. L. Petersen, L. Cavallo and S. P. Nolan,
Organometallics, 2003, 22, 4322.

80. R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoffand S. P. Nolan,
J. Am. Chem. Soc., 2005, 127, 2485.

81. M. Lattman and R. A. Kemp, eds., Modern Aspects ofMain Group Chemistry, American
Chemical Society, Washington DC, 2006.

82. G. Frenking, M. Sola and S. F. Vyboishchikov, J. Organomet. Chem., 2005, 690, 6178.

83. T. Scherg, S. K. Schneider, G. D. Frey, J. Schwarz, E. Herdtweck and W. A. Herrmann,
Synlett, 2007, 18, 2894.

84. A. T. Termaten, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek and K. Lammertsma,
Chem. Eur. J., 2003, 9, 3577.









85. M. T. Lee and C. H. Hu, Organometallics, 2004, 23, 976.

86. X. L. Hu, I. Castro-Rodriguez and K. Meyer, J. Am. Chem. Soc., 2004, 126, 13464.

87. W. A. Herrmann and C. Kocher, Angew. Chem. Int. Ed., 1997, 36, 2163.

88. M. Nichues, G. Erker, G. Kehr, P. Schwab, R. Frohlich, O. Blacque and H. Berke,
Organometallics, 2002, 21, 2905.

89. X. Hu, I. Castro-Rodriguez, K. Olson and K. Meyer, Organometallics, 2004, 23, 755.

90. X. Hu, Y. Tang, P. Gantzel and K. Meyer, Organometallics, 2003, 22, 612.

91. M. Srebro and A. Michalak, Inorg. Chem., 2009, 48, 5361.

92. N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo and S. P. Nolan, J. Am. Chem.
Soc., 2005, 127, 3516.

93. R. Dorta, E. D. Stevens and S. P. Nolan, J. Am. Chem. Soc., 2004, 126, 5054.

94. K. Getty, M. U. Delgado-Jaime and P. Kennepohl, J. Am. Chem. Soc., 2007, 129, 15774.

95. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, eds., Comprehensive Asymmetric Catalysis I,
Springer-Verlag, Berlin Heidelberg, 1999.

96. M. F. Lappert, J. Organomet. Chem., 1988, 358, 185.

97. P. L. Arnold and S. Pearson, Coord. Chem. Rev., 2007, 251, 596.

98. D. Pugh and A. A. Danopoulos, Coord. Chem. Rev., 2007, 251, 610.

99. V. P. W. Bohm, T. Weskamp, C. W. K. Gstottmayr and W. A. Herrmann, Angew. Chem.
Int. Ed., 2000, 39, 1602.

100. J. Huang, H. J. Schanz, E. D. Stevens and S. P. Nolan, Organometallics, 1999, 18, 2370.

101. L. H. Gade and S. Bellemin-Laponnaz, Coord. Chem. Rev., 2007, 251, 718.

102. 0. Kihl, Chem. Soc. Rev., 2007, 36, 392.

103. R. J. Lowry, M. K. Veige, O. Clement, K. A. Abboud, I. Ghiviriga and A. S. Veige,
Organometallics, 2008, 27, 5184.

104. C. M. Zhang and M. L. Trudell, Tetrahedron Lett., 2000, 41, 595.

105. D. S. Clyne, J. Jin, E. Genest, J. C. Gallucci and T. V. RajanBabu, Org. Lett., 2000, 2,
1125.

106. L. G. Bonnet, R. E. Douthwaite and R. Hodgson, Organometallics, 2003, 22, 4384.









107. W. L. Duan, M. Shi and G. B. Rong, Chem. Commun., 2003, 2916.

108. M. Shi and W.-L. Duan, Appl. Organometal. Chem., 2005, 19, 40.

109. Q. Xu, W.-L. Duan, Z.-Y. Lei, Z.-B. Zhu and M. Shi, Tetrahedron, 2005, 61, 11225.

110. T. Chen, J. J. Jiang, Q. Xu and M. Shi, Org. Lett., 2007, 9, 865.

111. T. Zhang, M. Shi and M. Zhao, Tetrahedron, 2008, 64, 2412.

112. W. Wang, T. Zhang and M. Shi, Organometallics, 2009, 28, 2640.

113. T. Zhang and M. Shi, Chem. Eur. J., 2008, 14, 3759.

114. G. Ma, T. Zhang and M. Shi, Org. Lett., 2009, 11, 875.

115. Q. Xu, X. Gu, S. J. Liu, Q. Y. Dou and M. Shi, J. Org. Chem., 2007, 72, 2240.

116. Either the Pd(II) iodide, Pd(II) acetate, or Pd(II)trifluoroacetate

117. Several ligands were reported with similar BINAM-bis(benzimidazole) or H8-BINAM-
bis(benzimidazole) backbones, ligand variation was through alteration of N-substituents.

118. K.-L. Gibis, G. Helmchen, G. Huttner, L. Zsolnai and J. O. C., 181, J. Organomet. Chem.,
1993, 445, 181.

119. SHELXTL6; Bruker-AXS, Madison, WI, (2000).

120. M. S. Jeletic, I. Ghiviriga, K. A. Abboud and A. S. Veige, Organometallics, 2007, 26,
5267.

121. Z. Shi andR. P. Thummel, J. Org. Chem., 1995, 60, 5935.

122. D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem. Rev., 2000, 100, 39.

123. H. M. Tuononene, R. Roesler, J. L. Dutton and R. J. Ragogna, Inorg. Chem., 2007, 46,
10693.

124. E. Baba, T. R. Cundari and I. Firkin, Inorg. Chem. Acta, 2005, 358, 2867.

125. All chiral versions are prepared in the same manner as the racemic excluding resolution
procedures of the reported ligand.

126. R. J. Lowry, M. T. Jan, K. A. Abboud, I. Ghiviriga, and A. S. Veige, Polyhedron in press,
2009..

127. M. S. Jeletic, M. T. Jan, I. Ghiviriga, K. A. Abboud and A. S. Veige, Dalton Trans., 2009,
2764.









128. A. Pfaltz and I. William J. Drury, PNAS, 2004, 101, 5723.

129. S. K. Schneider, J. Schwarz, G. D. Frey, E. Herdtweck and W. A. Herrmann, J
Organomet. Chem., 2007, 692, 4560.

130. H. Clavier, J. C. Guillemin and M. Mauduit, Chirality, 2007, 19, 471.

131. W. A. Herrmann, L. J. Goossen and M. Spiegler, Organometallics, 1998, 17, 2162.

132. L. G. Bonnet, R. E. Douthwaite and B. M. Kariuki, Organometallics, 2003, 22, 4187.

133. E. Bappert and G. Helmchen, Synlett, 2004, 1789.

134. J. J. Van Veldhuizen, J. E. Campbell, R. E. Guidici and A. H. Hoveyda, J. Am. Chem. Soc.,
2005, 127, 6877.

135. C. Bolm, T. Focken and G. Raabe, Tetrahedron: Asymmetry, 2003, 14, 1733.

136. S. Gischig and A. Togni, Organometallics, 2004, 23, 2479.

137. T. Frocken, G. Raabe and C. Bolm, Tetrahedron: Asymmetry, 2004, 15, 1693.

138. T. Frocken, J. Rudolph and C. Bolm, Synthesis, 2005, 3, 429.

139. A. A. D. Tulloch, A. A. Danopoulos, G. J. Tizzard, S. J. Coles, M. B. Hursthouse, R. S.
Hay-Motherwell and W. B. Motherwell, Chem. Commun., 2001, 1270.

140. A. A. Danopoulos, A. A. D. Tulloch, S. Winston, G. Eastham and M. B. Hursthouse, J
Chem. Soc. Dalton Trans., 2003, 1009.

141. M. C. Perry, X. H. Cui and K. Burgess, Tetrahedron: Asymmetry, 2002, 13, 1969.

142. M. Y. Machado and R. Dorta, Sy)Inhei%, 2005, 15, 2473.

143. M. Shi and H. X. Qian, Tetrahedron, 2005, 61, 4949.

144. C. Marshall, M. F. Ward and W. T. A. Harrison, Tetrahedron Lett., 2004, 45, 5703.

145. C. Marshall, M. F. Ward and W. T. A. Harrison, J. Organomet. Chem., 2005, 690, 3970.

146. A. R. Chianese and R. H. Crabtree, Organometallics, 2005, 24, 4432.

147. T. Makino, H. Masu, K. Katagiri, R. Yamasaki, I. Azumaya and S. Saito, Eur. J Inorg.
Chem., 2008, 4861.

148. Adapted with permission from R. J. Lowry, M. K. Veige, O. Clement, K. A. Abboud, I.
Ghiviriga and A. S. Veige, Organometallics, 2008, 27, 5184. Copyright 2008 American
Chemical Society.









149. R. H. Crabtree, J. Organomet. Chem., 2006, 691, 3146.


150. J. A. Mata, A. R. Chianese, J. R. Miecznikowski, M. Poyatos, E. Peris, J. W. Faller and R.
H. Crabtree, Organometallics, 2004, 23, 1253.

151. C. H. Leung, C. D. Incarvito and R. H. Crabtree, Organometallics, 2006, 25, 6099.

152. Y. A. Wanniarachchi, M. A. Khan and L. M. Slaughter, Organometallics, 2004, 23, 5881.

153. S. Burling, L. D. Field, H. Li, B. A. Messerle and R. Turner, Eur. J. Inorg. Chem., 2003,
3179.

154. B. M. Trost, D. L. Van Vranken and C. Bingel, J. Am. Chem. Soc., 1992, 114, 9327.

155. E. Fox, A. Gerlach, I. C. Lennon, G. Meek and C. Praquin, Sylihe/i 2005, 19, 3196.

156. C. L. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785.

157. T. H. Dunning Jr. and P. J. Hay, in Methods ofElectronic Structure Theory, ed. H. F.
Schaefer III, Plenum Press, New York, Editon edn., 1977, vol. 2.

158. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.

159. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 284.

160. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

161. Gaussian 03, Revision E.O1,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr., K. N. Kudin, J. C. Burant, J.
M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J.
B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

162. In order to avoid formation of the diacid, the water used in Lennon et al.'s reaction of the
diacid chloride was replaced with N,N-dimethyl formamide.

163. A. A. Gridnev and I. M. Mihaltseva, Synth. Commun., 1994, 24, 1547.

164. J. P. Liu, J. B. Chen, J. F. Zhao, Y. H. Zhao, L. Li and H. B. Zhang, Synthesis, 2003, 2661.

165. Hydrogenation was accomplished in a steel Parr Instruments autoclave.









166. M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870.

167. F. E. Hahn, T. von Fehren and T. Lugger, Inorg. Chem. Acta, 2005, 358, 4137.

168. A. Poatter, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan and L. Cavallo,
Organometallics, 2008, 27, 2679.

169. M. K. Denk, A. Hezarkhani and F. Zheng, Eur. J Inorg. Chem., 2007, 3527.

170. T. A. Taton and P. Chen, Angew. Chem. Int. Ed., 1996, 35, 1011.

171. C. Heinemann and W. Thiel, Chem. Phys. Lett., 1994, 217, 11.

172. E. A. Carter and W. A. Goddard III, J. Phys. Chem., 1986, 90, 998.

173. Y. Liu, P. E. Lindner and D. M. Lemal, J. Am. Chem. Soc., 1999, 121, 10626.

174. D. C. Graham, K. Cavell and B. F. Yates, J. Phys. Org. Chem., 2005, 18, 298.

175. R. W. Alder and M. E. Blake, J. Phys. Chem. A, 1999, 103, 11200.

176. G. C. Lloyd-Jones, R. W. Alder and G. J. J. Owen-Smith, Chem. Eur. J, 2006, 12, 5361.

177. K. Tomioka, Y. Nagaoka, V. In Comprehensive Asymmetric Catalysis, E. N. and A. P.
Jacobsen, H. Yamamoto (Eds.), Springer: Berlin, 1999, 31.1, in Comprehensive
Asymmetric Catalysis, eds. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin,
Editon edn., 1999, vol. 3, pp. 1105-1120.

178. K. Kobayashi, T. Nishikata, Y. Yamamoto and N. Miyaura, Bull. Chem. Soc. Jpn., 2008,
81, 1019.

179. T. Hayashi and K. Sasaki, Chemistry Lett., 2008, 37, 842.

180. R. Shintani and T. Hayashi, Chemistry Lett., 2008, 37, 724.

181. Y.-J. Xu, L.-Z. Gong, A.-Q. Mi and Y.-Z. Jiang, Synthesis, 2004, 7, 1057.

182. G. M. Villacorta, C. P. Rao and S. J. Lippard, J Am. Chem. Soc., 1988, 110, 3175.

183. B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos and A. H. M. De Vries, Angew. Chem.
Int. Ed., 1997, 36, 2620.

184. S. J. Degrado, H. Mizutani and A. H. Hoveyda, J Am. Chem. Soc., 2001, 123, 755.

185. B. Breit and A. C. Laungani, Tetrahedron Asym., 2003, 14, 3823.

186. M. T. Reetz, A. Gosberg and D. Moulin, Tetrahedron Lett., 2002, 43, 1189.

187. I. J. Krauss and J. L. Leighton, Org. Lett., 2003, 5, 3201.









188. S. Oi, M. Moro, S. Ono and Y. Inoue, Chem. Lett., 1998, 27, 83.

189. T. Hayashi and M. Ishigedani, J. Am. Chem. Soc., 2000, 122, 976.

190. S. Oi, M. Moro, H. Ito, Y. Honma, S. Miyano and Y. Inoue, Tetrahedron, 2002, 58, 91.

191. M. Dziedzic, M. Malecka and B. Furman, Org. Lett., 2005, 7, 1725.

192. S. Oi, Y. Honma and Y. Inoue, Org. Lett., 2002, 4, 667.

193. T. Hayashi, N. Tokunaga, K. Yoshida and J. W. Han, J. Am. Chem. Soc., 2002, 124,
12102.

194. N. Tokunaga, K. Yoshida and T. Hayashi, Proc. Natl. Acad. Sci. USA, 2004, 101, 5445.

195. K. C. Nicolaou, W. Tang, P. Dagneau and R. Faraoni, Angew. Chem. Int. Ed., 2005, 44,
3874.

196. N. Miyaura and Z. Suzuki, Chem. Rev., 1995, 95, 2457.

197. D. G. Hall, ed., Boronic Acids: Preparation and Applications in Organic Synthesis and
Medicine, Wiley-VCH, Weinheim, 2005.

198. M. Sakai, H. Hayashi and N. Miyaura, Organometallics, 1997, 16, 4229.

199. Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai and N. Miyaura, J Am. Chem. Soc.,
1998, 120, 5579.

200. T. Hayashi, M. Takahashi, Y. Takaya and M. Ogasawara, J. Am. Chem. Soc., 2002, 124,
5053.

201. N. Miyaura, Bull. Chem. Soc. Jpn., 2008, 81, 1543.

202. A. Kina, H. Iwamura and T. Hayashi, J. Am. Chem. Soc., 2006, 128, 3904.

203. B. P. Morgan and R. C. Smith, J. Organomet. Chem., 2008, 693, 11.

204. T. Gendrineau, O. Chuzel, H. Eijsberg, J.-P. Genet and S. Darses, Angew. Chem. Int. Ed.,
2008, 47, 7669.

205. W.-C. Yuan, L.-F. Cun, A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong and W.-C. Yuan, Tetrahedron,
2009, 65, 4130.

206. R. Mariz, X. Luan, M. Gatti, A. Linden and R. Dorta, J Am. Chem. Soc., 2008, 130, 2172.

207. R. Shintani, Y. Ichikawa, K. Takatsu, F.-X. Chen and T. Hayashi, J. Org. Chem., 2009, 74,
869.

208. R. Jana and J. A. Tunge, Org. Lett., 2009, 11, 971.









209. R. Mariz, A. Briceno, R. Dorta and R. Dorta, Organometallics, 2008, 27, 6605.

210. S. Helbi, S. Sauer, N. Cramer, S. Laschat, A. Baro and W. Freya, Adv. Synth. Catal., 2007,
349, 2331.

211. Y. Ma, C. Song, C. Ma, Z. Sun, Q. Chai and M. B. Andrus, Angew. Chem. Int. Ed., 2003,
42, 5871.

212. C. Song, C. Ma, Y. Ma, W. Feng, S. Ma, Q. Chai and M. B. Andrus, Tetrahedron Lett.,
2005, 46, 3241.

213. J.-M. Becht, E. Bappert and G. Helmchen, Adv. Synth. Catal., 2005, 347, 1495.

214. G. Dyson, J.-C. Frison, S. Simonovic, A. C. Whitwood and R. E. Douthwaite,
Organometallics, 2008, 27, 281.

215. F. Guillen, C. L. Winn and A. Alexakis, Tetrahedron: Asymmetry, 2001, 12, 2083.

216. J. Pytkowicz, S. Roland and P. Mangeney, Tetrahedron: Asymmetry, 2001, 12, 2087.

217. A. Alexakis, C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland and P. Mangeney, Adv.
Synth. Catal., 2003, 345.

218. C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland, P. Mangeney and A. Alexakis, J.
Organomet. Chem., 2005, 690, 5672.

219. H. Clavier, L. Coutable, L. Toupet, J.-C. Guillemin and M. Mauduit, J. Organomet. Chem.,
2005, 690, 5237.

220. K.-s. Lee, M. K. Brown, A. W. Hird and A. H. Hoveyda, J Am. Chem. Soc., 2006, 128,
7182.

221. M. K. Brown, T. L. May, C. A. Baxter and A. H. Hoveyda, Angew. Chem. Int. Ed., 2007,
46, 1097.

222. F. Gini, B. Hessen and A. J. Minnaard, Org. Lett., 2005, 7, 5309.

223. T. Nishikata, Y. Yamamoto and N. Miyaura, Adv. Synth. Catal., 2007, 349, 1759.

224. T. Nishikata, Y. Yamamoto and N. Miyaura, Tetrahedron Lett., 2007, 48, 4007.

225. C. S. Cho, S. Motofusa, K. Ohe and S. Uemura, J. Org. Chem., 1995, 60, 883.

226. X. Lu and S. Lin, J Org. Chem., 2005, 70, 9651.

227. P. Kasak, V. B. Arion and M. Widhalm, Tetrahedron: Asymmetry, 2006, 17, 3084.









BIOGRAPHICAL SKETCH

Roxy Joanne Lowry was born in the town of Melba, Idaho in the summer of 1982. Her

love of science and teaching manifested early in her education, leading to her unofficial status of

math and science tutor throughout high school. After graduating as valedictorian of Greenleaf

Friends Academy in 2000, she attended George Fox University to further investigate her interest

in chemistry. She enjoyed a variety of research experiences throughout her undergraduate

career; spending two years investigating binary precursors for self-assembled monolayers with Dr.

Carlisle Chambers and a summer researching endocrine disruptors in the environment with Dr.

Eugene Billiot in Corpus Christi, TX. Roxy graduated from GFU magna cum laude with a

Bachelor of Science in chemistry in May 2004. Combining her desire to further her education

and to experience new places she left the Northwest to begin her graduate career at the

University of Florida. There she discovered her interest in organometallic chemistry under the

advisement of Dr. Adam Veige. Subsequent to completing her Ph.D. at University of Florida,

she has accepted a position with Dr. Brookhart and Dr. Meyer at University of North Carolina-

Chapel Hill developing solar cells as part of a Energy Frontier Research Center.





PAGE 1

1 RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS -N HETEROCYCLIC CARBENE LIGANDS: DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION By ROXY JOANNE LOWRY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009

PAGE 2

2 2009 Roxy Joanne Lowry

PAGE 3

3 To Faye J. Bell m y hero, my best friend, and my grandmother ; s he taught me to love with unfaltering resolve, l ive with unimaginable passion, and to follow my dreams Rest in Peace

PAGE 4

4 ACKNOWLEDGMENTS I thank my family for their love and support; m y mother for her logical and sound advice and he r genetic strength of character; m y dad for his compassion and d o ting ; and my brother for his gentle, unassuming, and humble heart. I thank Jason Swails; his patience, affection, and computer skills got me through the last several d ifficult months. I will be forever grateful to Mrs. Vanessa (Thurston) Keck and Dr. Chad E. Mair for their friendship s and particularly their ever -present shoulders during one of the most difficult years of my life. I thank Soumya Sarkar for being my sanity in the laboratory. I acknowledge those people who have aided in aspects of my research; Melanie K. Veige, Dr. Khalil Abboud, and Dr. Ion Ghiviriga Although they are t oo numerous to name personally, I thank all of the wonderful people with whom I have become friends over the last five years. Finally, I thank my advise r, Dr. Adam S. Veige for his advice and instruction

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................................... 4 LIST OF TABLES ................................................................................................................................ 9 LIST OF FIGURES ............................................................................................................................ 11 LIST OF ABBREVIATIONS ............................................................................................................ 16 ABSTRACT ........................................................................................................................................ 17 CHAPTER 1 GENERAL INTRODUCTION .................................................................................................. 19 1.1 Catalysis Background and Importance ................................................................................ 19 1.2 Chiral Catalysis ..................................................................................................................... 22 1.3 N-Heterocyclic Carbenes ...................................................................................................... 27 1.3.1 Early History ............................................................................................................ 27 1.3.2 Ca rbene Geometry ................................................................................................... 27 1.3.3 Electronic Influences ............................................................................................... 28 1.3.4 NHC Topologies ...................................................................................................... 29 1.3.5 M NHC Bonding ..................................................................................................... 30 1.4 Contribution of This Manuscript .......................................................................................... 31 2 FIRST GENERATION DI -NHC CATALYSTS ...................................................................... 36 2.1 Introduction ........................................................................................................................... 36 2.2 Experimental Section ............................................................................................................ 39 2.2.1 Synthesis of Trans 1,1' [ 9,10 Dihydro 9,10 Ethanoanthracene 11,12 Diyldimethanediyl]bis(Benzylimidazole) bis(Triflouromethansulfonate) [DEAM BI](OT f)2 (2 1) ...................................................................................... 3 9 2.2.2 Synthesis of Trans 1,1' [9,10 Dihydro 9,10 Ethanoanthracene 11,12 Diyldimethandiyl]bis(1 Benzylimidazolidine 2 Y lidene), DEAM BY (2 2) ............................................................................................................................ 40 2.2.3 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 11,12 bis(1 Benzylimidazolidine 2 Ylidene) Cyclooctadiene Triflate, [(DEAM BY)Rh(COD)]OTf (2 3) ..................................................................... 41 2.2.4 Synthesis of [ 2 DEAM BY][Rh(COD)Cl]2 (2 4) ............................................... 42 2.2.5 Synthesis of Iridium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 11,12 bis(1 Benzylimidazolidine 2 Ylidene) Cyclooctadiene Triflate, [(DEAM BY)Ir(COD)]OTf (2 5) ....................................................................... 43 2.2.6 Synthesis of [ 2 DEAM BY][Ir(COD)Cl]2 (2 6) ................................................. 45 2.2.7 Catalytic Hydroformylation .................................................................................... 46 2.2.8 X ray Crystallography ............................................................................................. 47

PAGE 6

6 2.3 Results and Discussion ......................................................................................................... 47 2.3.1 Preparation and Solution State Analysis of [DEAM BI](OTf)2 (2 1) .................. 47 2.3.2 Preparation and Solution State Analysis of [DEAM BY] (2 2) ........................... 48 2.3.3 Preparation and Solution State Analysis of [(DEAM BY)Rh(COD)]OTf (2 3) ............................................................................................................................ 49 2.3.4 Preparation and Solution State Analysis of [ DEAM -BY][Rh(COD)Cl]2 (2 4) ............................................................................................................................ 50 2.3.5 Preparation and Solution State Analysis of [(DEAM BY)Ir(COD)]OTf (2 5) and [ DEAM BY][Ir(COD)Cl]2 (2 6) .............................................................. 50 2.4 X ray Structural Analysis and Comparisons ....................................................................... 51 2.4.1 Comparison of Organic Precursors 2 1 and 2 2. ................................................... 51 2.4.2 Monometallic [(DEAM BY)M(COD)]OTf 2 3 and 2 5 ...................................... 52 2.4.3 Bimetallic Complexes [ DEAM BY][M(COD)Cl]2 2 4 and 2 6 ....................... 54 2.5 Initial Catalytic Testing ........................................................................................................ 54 2.6 Conclusions ........................................................................................................................... 55 3 SECOND GENERATION DI NHC CATALYSTS148............................................................. 64 3.1 Introduction ........................................................................................................................... 64 3.2 Experimental Section ............................................................................................................ 66 3.2.1 GC Analysis of Chiral 9,10 Dihydro 9,10-Ethanoanthracene 11,12Diamine (3 1) ....................................................................................................................... 66 3.2.2 Synthesis of Trans 1,1' (9,10-Dihydro9,10Ethanoanthracene 11,12Diyl)di(1H Imidazole) (3 2) ............................................................................... 66 3.2.3 Synthesis of Trans 1,1' (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 -Methyl 1H Imidazol 3 Ium) Diiodide [DEA -MI](I)2 (3 3) .............. 67 3.2.4 Synthesis of Trans 1,1 (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 -Methyl 1H -Benzimidazol 3 Ium) Diiodide [DEA -MBI](I)2 (3 4) ............................................................................................................................ 68 3.2.5 Synthesis of Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 (1 Methyl)Bibenzimidazole), DEA MbBY (3 5) ................................................... 68 3.2.6 Synthesis of [ DEA MY][Rh(NBD)I]2 (3 6) as a Mixture with 3 9 ................. 69 3.2.7 Synthesis of [ DEA MBY][Rh(diene)Cl]2 (3 7) as a Mixture with 3-8 ........... 70 3.2.8 Synthesis of the Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Methylbenzimidazolidine 2 Ylidene) Cyclooctadiene Iodide, [(DEA MBY)Rh(COD)]I (3 8) ................................ .......................................... 71 3.2.9 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Methylimidazolidine 2 Ylidene Cyclooctadiene Iodide, [(DEA MY)Rh(COD)]I (3 9) ............................................................................ 72 3.3 Results and Discussion ......................................................................................................... 73 3.3.1 Constrained Precursors [DEA -MI](I)2 (3 3) and [DEA MBI](I)2 (3 4) ............... 73 3.3.2 Synthesis and Characterization of DEA MbBY (3 5) ........................................... 75 3.3.3 Synthesis and Characterization of [ -DEA-MY][Rh(NBD)I]2 (3 6) and [ DEA -MBY][Rh(COD)Cl]2 (3 7 COD) ............................................................... 76 3.3.4 Synthesis and Characterization of [(DEA -MBY)Rh(COD)]I (3 8) and [(DEA MY)Rh(COD)]I (3 9) .............................................................................. 77

PAGE 7

7 3.3.5 X ray Analysis of DEA MbBY (3 5) ..................................................................... 78 3.3.6 X -ray Analysis of Bimetallic Complexes [ DEA -MY][Rh(NBD)I]2 (3 6) and [ DEA-MBY][Rh(COD)Cl]2 (3 7 COD) .................................................. 79 3.3.7 Structural Analysis of Monometalli c Complexes [(DEA -MBY)Rh(COD)]I (3 8) and [(DEA -MY)Rh(COD)]I (3 9) .............................................................. 80 3.4 Conclusions ........................................................................................................................... 82 4 THIRD GENERATION CATALYSTS .................................................................................... 91 4.1 Introduction ........................................................................................................................... 91 4.2 Experimental Section ............................................................................................................ 91 4.2.1 Synthesis of Trans 1,1' (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 Isopropyl 1 H Imidazol 3 Ium) Diiodide [DEA iPrI](I)2 (4 1) ......... 91 4.2.2 Synthesis of Trans 1,1 (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 Isopropyl 1H Benzimidazol 3 Ium) Diiodide [DEA -iPrBI](I)2 (4 2) ....................................................................................................................... 92 4. 2.3 Synthesis of N,N' -bis(4 Nitrotolyl) 9,10 Dihydro 9,10 Ethanoanthracene 11,12Diamine (4 3) ............................................................................................. 92 4.2.4 Synthesis of N,N' -bis(4 -A minotolyl) 9,10Dihydro9,10 Ethanoanthracene 11,12Diamine (4 4) ............................................................................................. 93 4.2.5 Synthesis of Trans 1,1' (9,10 Dihydro 9,10-Ethanoanthra cene 11,12Diyl)di(1 H Tolylimidazole) (4 5) ....................................................................... 94 4.2.6 Synthesis of Trans 1,1 (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 -Methyl 1 H Tolylimidazol 3 Ium) Diiodide [DEA MTI](I)2 (4 6) ............................................................................................................................ 94 4.2.7 Synthesis of Trans 1,1 (9,10 Dihydro 9,10-Ethanoanthracene 11,12Diyl)di(3 Isopropyl 1H Tolylimidazol 3 -Ium) Diiodide [DEA -iPrTI](I)2 (4 7) ....................................................................................................................... 95 4.2.8 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Isopropylimidazolidine 2 Ylidene) Cyclooctadi ene Iodide, [(DEA iPrY)Rh(COD)]I (4 8) ........................................................................... 95 4.2.9 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Isopropylbenzylimidazolidine 2 Ylidene) Cyclooctadiene Iodide, [(DEA iPrBY)Rh(COD)]I (4 9) ............................................................ 96 4.2.10 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Methyltolylimidazolidine 2 Ylidene) Cyclooctadiene Iodide, [(DEA MTY)Rh(COD)]I (4 10) ........................................................................ 98 4.3 Results and Discussion ......................................................................................................... 99 4.3.1 Synthesis and Characterization of [DEA iPrI](I)2 (4 1) and [(DEA iPrY)Rh(COD)]I (4 8) .......................................................................................... 99 4.3.2 Synthesis and Characterization of [DEA iPrBY](I)2 (4 2), [DEA MTY](I)2 (4 6), [DEA iPrTY](I)2 (4 7) and the Corresponding Monometallic Rhodium Complexes [(DEA iPrBY)Rh(COD)]I (4 9) and [(DEA MTY)Rh(COD)]I (4 10) ................................................................................... 100 4.4 Conclusions ......................................................................................................................... 103

PAGE 8

8 5 ASYMMETRIC CONJUGATE ADDITION ......................................................................... 108 5.1 Introduction ......................................................................................................................... 108 5.2 Experiment al Section .......................................................................................................... 112 5.2.1 General Catalytic Procedure ................................................................................. 112 5.2.2 3Phenylcyclohexanone (51) ............................................................................... 112 5.2.3 3(2 Methylphenyl) Cyclohexanone (52) ........................................................... 113 5.2.4 3(1 Naphthalenyl) -Cyclohexanone (5 3) ............................................................ 113 5.2.5 3(4 Methoxyphenyl) Cyclohexanone (54) ........................................................ 113 5.2.6 3(4 Fluorophenyl) -Cyclohexanone (5 5) ............................................................ 114 5.2.7 3Phenylcyclopentanone (5 6) .............................................................................. 114 5.3 Results and Discussion ....................................................................................................... 114 5.4 Conclusions ......................................................................................................................... 117 6 CONCLUSIONS AND FUTURE DIRECTION .................................................................... 121 APPENDIX A NUCLEAR MAGNETIC RESONANCE ............................................................................... 124 B REFINEMENT DATA ............................................................................................................. 166 LIST OF REFERENCES ................................................................................................................. 176 BIOGRAPHICAL SKETCH ........................................................................................................... 187

PAGE 9

9 LIST OF TABLES Table page 2 1 Selected bond lengths () and angles ( ) for complex 2 -1 .................................................. 60 2 2 Selected bond lengths () and angles ( ) for complex 2 -2 .................................................. 61 2 3 Selected bond length () and angles ( ) for complex 2 -3 ................................................... 61 2 4 Selected bond length () and angles ( ) for complex 2 -4 ................................................... 62 2 5 Selected bond lengths () and angles ( ) for complex 2 -5 .................................................. 62 2 6 Selected bond length () and angles ( ) for complex 2 -6 ................................................... 63 2 7 Initial catalytic hydroformylation results utilizing complex 2 -3 ......................................... 63 3 1 Selected bond length () and angles ( ) for complex 3 -5 ................................................... 88 3 2 Selected bond length () and angles ( ) for complex 3 -6 ................................................... 88 3 3 Selected bond lengths () and angles ( ) for complex 3 -7 .................................................. 89 3 4 Selected bond lengths () and angles ( ) for complex 3 -8 .................................................. 89 3 5 Comparison of measured and calculated bond lengths () and angles ( ) for 3 -8 ........... 90 3 6 Comparison of bond lengths () and angles ( ) for calculated structures 3 -8 -calc and 3 -9 -calc .................................................................................................................................. 90 4 1 Selected bond lengths () and angle ( ) for calculated structures 3 -8 -calc and 4 -10calc ....................................................................................................................................... 104 5 1 Optimization of catalytic conjugate addition involving compound 3 -8 .......................... 119 5 2 Formation of 5 -1 catalyzed by 3 -8 3 -9 and 4 -8 ............................................................... 119 5 3 Formation of 5 -2 catalyzed by 3 -8 3 -9 and 4 -8 ................................................................ 120 5 4 Formation of 5 -3 catalyzed by 3 -8 3 -9 and 4 -8 ................................................................ 120 5 5 Formation of 5 -4 catalyzed by 3 -8 3 -9 and 4 -8 ............................................................... 120 5 6 Formation of 5 -5 catalyzed by 3 -8 3 -9 and 4 -8 ............................................................... 120 5 7 Formation of 5 -6 catalyzed by 3 -8 3 -9 and 4 -8 ............................................................... 120

PAGE 10

10 B1 Crystal data, structure solution and refinement for 2 -1 .................................................... 166 B2 Crystal data, structure solution and refinement for 2 -2 .................................................... 167 B3 Crystal data, structure solution and refinement for 2 -3 .................................................... 168 B4 Crystal data, structure solution and refinement for 2 -4 .................................................... 169 B5 Crystal data, structure solution and refinement for 2 -5 .................................................... 170 B6 Crystal data, structure solution and refinement for 2 -6 .................................................... 171 B7 Crystal data, structure solution and refinement for 3 -5 .................................................... 172 B8 Crystal data, structure solution and refinement for 3 -6 .................................................... 173 B9 Crystal data, structure solution and refinement for 3 -7 .................................................... 174 B10 Crystal data, structure solution and refinement for 3 -8 .................................................... 175

PAGE 11

11 LIST OF FIGURES Figure page 1 1 Reaction coordinate diagram for catalyzed and uncatalyzed reactions. ............................. 32 1 2 Generalized mechanisms for A) uncatalyzed reaction B) catalyzed reaction C) single reagent activation catalysis D) catalyzed reaction with intermolecular reaction. .............. 32 1 3 Structures of (R ) and ( S ) Carvone and ( R ) and ( S ) Thalidomide .................................... 33 1 4 Selected privileged ligands .................................................................................................... 33 1 5 Wanzlicks and feles NHC complexes and Lapperts enetetraamine ............................. 34 1 6 Relative influence of geometric and electronic effects on the energy gap between and p orbitals. ........................................................................................................................ 34 1 7 Resonance structures of NHC. .............................................................................................. 34 1 8 Common N-heterocyclic carbenes ........................................................................................ 35 2 1 Examples of chelating NHCs ................................................................................................ 56 2 2 Synthesis of [DEAM -BI](OTf)2 (2 -1 ) ................................................................................... 57 2 3 Synthesis of DEAM -BIY (2 -2 ) .............................................................................................. 57 2 4 Synthesis of [(DEAM BY)Rh(COD)]OTf (2 -3 ) .................................................................. 57 2 5 Synthesis of [ DEAM BY][Rh(COD)Cl]2 (2 -4 ) ................................................................ 58 2 6 Synthesis of [(DEAM BY)Ir(COD)]OTf (2 -5 ) .................................................................... 58 2 7 Synthesis of [ DEAM BY][Ir(COD)Cl]2 (2 -6 ) .................................................................. 58 2 8 X ray Crystal Structure of 2 -1 and 2 -2 ................................................................................. 59 2 9 Molecular Structure of 2 -3 and 2 -5 ....................................................................................... 59 2 10 Average bond angle s and length of free NHCs and M NHCs ............................................ 60 2 11 Molecular Structure of 2 -4 and 2 -6 ....................................................................................... 60 3 1 First and second generation ligand architectures. ................................................................ 82 3 2 Synthesis of [DEA -MI](I)2 (3 -3 ) ........................................................................................... 83 3 3 Synthesis of [DEA -MBI](I)2 (3 -4 ) ........................................................................................ 83

PAGE 12

12 3 4 Synthesis of DEA MBY (3 -5 ) ............................................................................................... 83 3 5 Synthesis of binuclear compounds [ DEA-MY][Rh(NBD)I]2 (3 -6 ) and [ -DEA MBY][Rh(COD)Cl]2 (3 -7 ) as mixtures with 3 -8 and 3 -9 ................................................... 84 3 6 Synthesis of rhodium monomer complexes [(DEA -MBY)Rh(COD)]I (3 -8 ) and [(DEA MY)Rh(COD)]I (3 -9 ). ............................................................................................... 84 3 7 Molecular structure of 3 -5 ..................................................................................................... 85 3 8 Molecular structure of compound 3 -6 ................................................................................... 85 3 9 Molecular structure of 3 -7 ..................................................................................................... 86 3 10 Molecular Structure of 3 -8 ..................................................................................................... 86 3 11 Calculated equilibrium geometries of 3 -8 -calc and 3 -9 -calc ............................................. 87 3 12 Overlay of calculated structures 3 -8 -calc and 3 -9 -calc ....................................................... 87 4 1 Generations of ligands to date. ............................................................................................ 104 4 2 Synthesis of ligand [DEA -iPrI](I)2 4 -1 and [(DEA -iPrY)Rh(COD)]I 4 -8 ....................... 104 4 3 Synthesis of ligand [D EA -iPrBI](I)2 4 -2 ........................................................................... 105 4 4 Synthesis of ligand [DEA -MTI](I)2 4 -6 ............................................................................. 105 4 5 Synthesis of ligand [DEA -iPrTI](I)2 4 -7 ........................................................................... 105 4 6 Synthesis of [(DEA iPrBY)Rh(COD)]I 4 -9 ...................................................................... 106 4 7 Synthesis of [(DEA -MTY)Rh(COD)]I 4 -10. ..................................................................... 106 4 8 Calculated structure for [(DEA MTY)Rh(COD)]I 4 -10. .................................................. 106 4 9 Overlay of the calculated structure [(DEA -MBY)Rh(COD)]I 3 -8 -calc and [(DEA MTY)Rh(COD)]I 4 -10-calc ................................................................................................ 107 5 1 Transmetallation of aryl substituents to rhodium catalysts. .............................................. 117 5 2 Catalytic cycle for the 1,4 addition of boronic acids to cyclic enones. ............................ 118 6 1 Proposed ligand structures for enhanced chiral induction. ................................................ 123 A 1 1H NMR spectrum of (+/ ) [DEAM BI][OTf]2 (2 -1 ) in (CD3)2SO. ................................ 125 A 2 13C NMR spectrum of (+/ ) [DEAM BI][OTf]2 (2 -1 ) in (CD3)2SO. ............................... 126

PAGE 13

13 A 3 1H NMR spectrum of (+/ ) DEAM BIY (2 -2 ) in C6D6. ................................................... 127 A 4 13C NMR spectrum of (+/ ) DEAM BIY (2 -2 ) in C6D6. .................................................. 128 A 5 1H NMR spectrum of (+/ ) [(DEAM BIY) Rh (COD)] OTf (2 -3 ) in CDCl3. ................. 129 A 6 13C NMR spectrum of (+/ ) [(DEAM BIY) Rh (COD)] OTf (2 -3 ) in CDCl3. ................ 130 A 7 1H NMR spectrum of (+/ ) (DEAM BIY)Rh2(COD)2Cl2 (2 -4 ) in CDCl3....................... 131 A 8 13C NMR spectrum of (+/ )(DEAM BIY)Rh2(COD)2Cl2 (2 -4 ) in CDCl3. ..................... 132 A 9 1H NMR spectrum of (+/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CDCl3. ...................... 133 A 10 1H NMR spectrum of (+/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CD2Cl2...................... 134 A 11 13C NMR spectrum of (+/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CD2Cl2 .................... 135 A 12 1H NMR spectrum of (+/ ) (DEAM BIY)Ir2(COD)2Cl2 (2 -6 ) in CDCl3......................... 136 A 13 13C NMR spectrum of (+/ ) (DEAM BIY)Ir2(COD)2Cl2 (2 -6 ) in CDCl3. ...................... 137 A 14 1H NMR spectrum of 1,1 (9,10 dihydro9,10 -ethanoanthracene 11,12-diyl)di(3 methyl 1H -benzimidazol 3 ium) diiodide ( 3 -4 ) in (CD3)2SO. ......................................... 138 A 15 1H NMR spectrum of (+/ ) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 (1 methyl)bibenzimidazole), [(DEA MbBY] (3 -5 ) in C6D6. ............................................... 139 A 16 13C{1H} NMR spectrum of (+/ ) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 (1 methyl)bibenzimidazole), [(DEA MbBY] (3 -5 ) in C6D6. ......................................... 140 A 17 1H NMR spectrum of [ DEA MY][Rh(NBD)I]2 (3 -6 ) as a mixture with 3 9 in C6D6. ..................................................................................................................................... 141 A 18 1H NMR spectrum of [ 2 DEA MBY][Rh(NBD)I]2 (3 -7 -NBD ) as a mixture with 3 8 -NBD in C6D6. .................................................................................................................... 142 A 19 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MBY)Rh(COD)]I (3 -8 ) in CDCl3. ........................................................... 143 A 20 13C{1H} NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MBY)Rh(COD)]I (3 -8 ) in CDCl3. ........................................................... 144 A 21 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MY)Rh(CO D)]I (3 -9 ) in CD3Cl. .............................................................. 145

PAGE 14

14 A 22 13C{1H} NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MY)Rh(COD)]I (3 -9 ) in CD3Cl. .............................................................. 146 A 23 1H NMR spectrum of (+/ ) [DEA iPrI][I]2 (4 -1 ) in (CD3)2SO. ....................................... 147 A 24 13C NMR spectrum of (+/ ) [DEA iPrI][I]2 (4 -1 ) in (CD3)2SO. ...................................... 148 A 25 1H NMR spectrum of (+/ ) [DEA iPrBI][I]2 (4 -2 ) in (CD3)2SO. .................................... 149 A 26 13C NMR spectrum of (+/ ) [DEA iPrBI][I]2 (4 -2 ) in (CD3)2SO. ................................... 150 A 27 1H NMR of N,N' -bis(4 -nitrotolyl) 9,10 -dihydro 9,10-ethanoanthracene 11,12diamine ( 4 -3 ). ....................................................................................................................... 151 A 28 13C NMR of N,N' bis(4 -nitrotolyl) 9,10-dihydro 9,10-ethanoanthracene 11,12diamine ( 4 -3 ). ....................................................................................................................... 152 A 29 1H NMR of N,N' -bis(4 aminotolyl) 9,10-dihydro 9,10-ethanoanthracene 11,12diamine ( 4 -4 ). ....................................................................................................................... 153 A 30 13C NMR of N,N' bis(4 aminotolyl) 9,10-dihydro 9,10 ethanoanthracene 11,12diamine ( 4 -4 ). ....................................................................................................................... 154 A 31 1H NMR 1,1' -(9,10-dihydro 9,10-ethanoanthracene 11,12 diyl)di(1 H -tolylimidazole) (4 -5 ). ...................................................................................................................................... 155 A 32 13C NMR 1,1' (9,10-dihydro 9,10 ethanoanthracene 11,12-diyl)di(1 H tolylimidazole) ( 4 -5 ). ........................................................................................................... 156 A 33 1H NMR spectrum of (+/ ) [DEA MTI][I]2 (4 -6 ) in (CD3)2SO ....................................... 157 A 34 13C NMR spectrum of (+/ ) [DEA MTI][I]2 (4 -6 ) in (CD3)2SO ...................................... 158 A 35 1H NMR spectrum of R,R [DEA iPrTI][I]2 (4 -7 ) in CDCl3. ............................................ 159 A 36 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrY) Rh(COD)]I (4 -8 ) in CDCl3. ............................................................. 160 A 37 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrY)Rh(COD)]I (4 -8 ) in CDCl3 .............................................................. 161 A 38 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrBY)Rh(COD)]I (4 -9 ) in CDCl3. .......................................................... 162

PAGE 15

15 A 39 13C NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrBY)Rh(COD)]I (4 -9 ) in CDCl3. .......................................................... 163 A 40 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methyltolylimidazol idine 2 ylidene cyclooctadiene iodide, [(DEA MTY)Rh(COD)]I (4 -10) in CDCl3. ......................................................... 164 A 41 13C NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methyltolylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MTY)Rh(COD)]I (4 -10) in CDCl3. ......................................................... 165

PAGE 16

16 LIST OF A BBREVIATIONS DEA 9,10 dihydro 9, 10 ethanoanthracene GDP g ross domestic product NHC N-heterocyclic carbene Ditriflate (+/ ) 9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl bis(trifluoromethanesulfonate) COD 1,5 -cyclooctadiene TMS t rimethylsilylamide Ea energy of a ctivation TM transition metal e.e. enantiomeric excess B3LYP Becke 3 term with Lee, Yang, Parr exchange hybrid functional LANL2DZ Los Alamos National Laboratory 2 double ECP e ffective core potential RMSD root mean square deviation Acac acetylacetonate Dppb (diphenylphosphino)butane rls rate limiting step gDQCOSY gradient double -quantum f iltered correlation spectroscopy gHMBC gradient heteronuclear multiple bond c oherence NOESY n uclear Overhauser effect spectroscopy

PAGE 17

17 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy RHODIUM AND IRIDIUM COMPLEXES SUPPORTED BY CHELATING BIS -N HETEROCYCLI C CARBENE LIGANDS: DESIGN, SYNTHESIS, AND CATALYTIC INVESTIGATION By Roxy Joanne Lowry August 2009 Chair: Adam S. Veige Major: Chemistry Eighty -five percent of all industrial chemical processes occur catalytically The world s expanding appetite for mass production of exotic chemicals necessitates the design and application of enhanced catalysts. To optimize catalytic material s the detailed relationships between cataly s t architecture and reactivity must be determined. Although for many ligand families these relationships are well understood novel catalysts require in depth empirical investigation to determine these connections. The design of a novel di N -heterocyclic carbene family of ligands in reported herein. Thes e C2 symmetric ligands are based on the rigid 9,10 -dihydro 9,10-ethanoanthracene backbone and designed for utilization in chiral catalysis Thorough investigation into the relationships between the ligands structure and the architecture of the resulting rhodium and iridium catalysts directed the design of three generations of our novel ligand family The first generation, t rans1,1' [ 9,10 d ihydro 9,10 ethanoanthracene 11,12 d iyldimethanediyl]bis (benzylimidazole) bis(t rif louromethansulfonate) [DEAM BI](O Tf)2 (2 -1 ), is too flexible to enforce a rigid chiral pocket about a metal center under catalytic conditions. The constrained second generation ligands, trans 1,1' -(9,10-dihydro 9,10-ethanoanthracene -

PAGE 18

18 11,12diyl)di(3 -methyl -imidazol 3 ium) diiodide [DEA -MI ](I)2 (3 -3 ) and trans 1,1 (9,10 dihydro 9,10-ethanoanthracene 11,12 diyl)di(3 -methyl -benzimidazol 3 -ium) diiodide [DEA MBI](I)2 (3 -4 ), produce complexes with rigid chiral pockets. However, the small variation between the two ligands produces a large alteration in the catalytic activity of the resulting complexes. In an attempt to further increase the enantiocontrol displayed by these compounds small alterations were made to produce the third generation of ligands, trans 1,1 (9,10-dihydro 9,10e thanoanthracene11,12d iyl) di (3 -isopropyl -imidazol 3 i um) d iiodide [DEA -iPrI](I)2 (4 -1 ), trans 1,1 (9,10-dihydro 9,10-ethanoanthracene 11,12diyl)di(3 -i so propyl -benzimidazol 3 ium) d iiodide [DEA -iPrBI](I)2 (4 -2 ), trans 1,1 (9,10 dihydro9,10 -e thanoanthracen e 11,12 d iyl) di (3 methyl t olyli midazol 3 -ium) d iiodide [DEA MTI](I)2 (4 -6 ), trans 1,1 (9,10-dihydro 9,10ethanoanthracene 11,12-d iyl)di(3 i sopropyl tolylimidazol 3 ium) d iiodide [DEA -iPrTI](I)2 (4 7 ). Catalytic investigation of the asymmetric 1,4 addition of aryl boronic acids to cyclic enones is accomplished for the constrained catalysts 3 -8 [rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylbenzimidazolidine 2 ylidene) cyclooctadiene iodide], 3 -9 [rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylimidazolidine 2 ylidene) cyclooctadiene iodide], and 4 -8 [rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylimidazolidine 2 ylidene) cyclooctadiene iodide].

PAGE 19

19 CHAPTER 1 GENERAL INTRODUCTION Catalysis is leaving the realm of alchemy and entering the field of science. It is still pretty much of an art to design and optimize new catalysts and to improve upon existing catalysts, b ut it is no longer a black art1 claimed Edward Hayes of the National Science Foundation (NSF) in a 1983 Science article. Although t he term catalysis ha d been understood for over 150 years the science behind the phenomenon was just beginning to be uncovered in the late 20th century Even today, the relationship between catalyst structure and function is complex and must be det ermined on a case by case basis. H owever, understanding these fundamental relationships is vital to the optimization of these vastly important materials. 1.1 Catalysis Background and Importance The scientific concept of catalysis began in 1834 when Eilhard Mitscherlich first recorded his observation that certain substances were required for the initiation of specific reactions.2 Within two years, J ns Jakob Berzelius coined the term catalyst to define a substance that participates in a chemical reaction without itself being consumed.3 A n understanding of the foundations of catalysis was just be g inning and a fundamental comprehension was 150 years in the future but the benefits of catalysis had been known for thousands of years. In fact, fermentation, the catalytic formation of ethanol from sugars by yeast is a natural process probably obser ved by humans before recorded history. Industrial application of catalysis also predated its discovery. It was not understood at the time but the production of sulfuric acid in the mid18th century involved oxidation of sulfur dioxide to sulfur trioxid e catalyzed by nitric oxide.4 Many catalytic reactions discovered in the infancy of catalysis are still industrially important today. First investigated in the late 19th century ,5 the Haber -Bosch process is still used to form bulk quantities of ammonia via iron

PAGE 20

20 catalyze d nitrogen fixation Ammonia manufactured by this process is used i n the production of fertilizers vital to food production around the w orld.6 As knowledge regarding catalytic structure and function exp anded so did the industrial exploitation of catalysis In 2003, it was estimated that 85 percent of all chemical processes relied on catalysis .7 T he North American Catalyst Society claim s Catalysis is the key to both life and lifestyle. It is an essential technology for chemical and materials manufacturing, for fuel cells and other energy conversion systems, for combustion devices, and for pollution control systems which greatly impact everyone on our planet 8 Catalytic processes reportedly contribute to over one -third of the GDP globally.8 How does this black art operate ? A catalyst s effect is purely kinetic B y modifying a reactions mechanism a catalyst reduces the energy of activation (Ea) required for conversion into product Figure 1 1 displays the effect of a catalyst on an exothermic reaction in relative energy terms. An uncatalyzed reaction (do tted line) has a large energy barrier to product formation, but a catalyst drastically lowers the overall Ea, shown here through a multi -step reaction (solid line) The overall thermodynamics of the reaction is unchanged. A thermodynamically forbidden reaction cannot be facilitated by a catalys t, but by reducing the energy barrier of an allowed reaction, a catalyst decreases the time required to reach chemical equilibrium. Unlike the original mechanism, the new catalytic mechanism is cyclic The catalyst enters the mechanism as a reactant, performs one, or poss ibly s everal chemical transformation s and is regenerated to start the cycle again Specific m echanistic pathways through which catalysts can act and the possible structures of these species are virtually limitless. Figure 1 2 shows a few general react ion equations These equations represent: a ) an uncatalyzed reaction, b ) the multistep catalytic reaction

PAGE 21

21 correlating to the energy profile in F ig ure 1 1 c ) a mechanism in which one reactant is catalytically activated without directly affecting the other reactant and d) independent activation of both reactants by separate catalytic molecules followed by intermolecular reaction These generalized mechanisms are necessarily s o broad as to be almost useless, and they only serve to group catalysts into relate d categories. Specific mechanistic details including primary and secondary catalyst/substrate and catalyst/reagent interactions are necessary for thorough understanding and optimization of a catalytic system The complicated nature and identity of cataly sts necessitates the empirical examination of each new catalytic system to determine specific structure/function relationships. These studies are import ant because they set the ground work for a semi rational approach to catalyst design. Although today ma ny structure/ function relationships are well understood, the vast array of catalytically active substances as well as the continued production of new species requires continued investigations Defining a catalytic material is complicated by the fact t hat c atalytic activity cannot be assigned as an intrinsic property because of the selectivity of these substances.9 Enzymes, for examples, are only catalytic in regards to specific substrates and reaction conditions. Materials that serve as catalysts are as wide ranging as the reaction s they promote They can consist of homogeneous catalyst s such as acids, bases, and molecular transition metal complexes or heterogeneous metal surfaces and supported materials. I ndustrial ly viable catalysts are even comprise d of a large variety of diverse compositions and chem ical structures, includin g e lemental substances such as metals and activated c arbon ; simple compounds like inorganic salts, sulf ides, and oxides ; as well as more complex enzymatic substrates and organometallic complexes.10 According to Berzeliuss original definition, a catalytic material is anything that affects a reaction without itself being consumed ; however current definitions typically expect a

PAGE 22

22 catalyst to increase the rate of a reaction in a cyclic manner thereby requiring far less than stoichiometric amounts of the materia l The appeal of catalysis does not end with its ability to increase the rate of a reaction. The non -stoichiometric nature of a catalytic cycle makes it a n incredibly efficient and atom -economic process Not only can a catalyst reduce a reactions activation barrier, quite often it can be designed to do this selectively, facilitating the formation of only the desired product thereby reducing the amount of any undesired product to minute quantities This catalytic selectivity is of great importanc e particularly when applied to the synthesis of chiral organic compounds 1. 2 Chiral Catalysis The word c hiral refers to the asymmetry of an object and is derived from the Greek term for hand.11 A chiral object cannot be superimposed on its mirror image much like your right hand cannot be superimposed on your left. In chemistry, a chiral molecule and its mirror image are termed as enantiomers or optical isomers .11 First discovered by Jean Baptiste Biot in 1815,12, 13 a solution containing a (+) enantiomer rotates the angle of plane polarized light clockwise The opposite holds true for the ( ) enantiomer.11 The term chirality was fi rst defined by Lord Kelvin14 but Louis Pasteur is credited with much of the work regarding the molecular origin s of the phenomenon.15 The importance of molecular chirality is particularly noticeable in b iolo gical systems. The helical architecture of DNA and RNA is determined by the chiral sugar molecules from which they are composed. The shape of these oligonucleotides determines their biological reactivity.16 Similarly the absolute configuration of h ormones, antibodies, enzymes, an d receptors play s a very important role in biological processes .17 These molecules are not only chiral but exist in our body as only one of two possible enantiomer s In fact, the human body is said to be homochiral because proteins are composed exclusively of L amino acids and the backbones of

PAGE 23

23 DNA and RNA are c omposed of only the D -enantiomers of sugar molecules .18, 19 These e nantiopure compounds are di a stereoselective reacting with different enantiomers in distinctly different manners E nantiomers can smell and taste different and have dissimilar react ivity as therapeutic agents .20 The enantiomers of carvone have drastically different smells; (S ) -carvone (Figure 1 3 ) smells of caraway but ( R ) -carvone has a distinct spearmint odor.20 A tragic but poignant example of reactivity differences between biologically active enantiomers is that of Thalidomide, a drug prescribed to pregnant women in the 1960s and 70s as a sedative. It w as prescribed as a racemic mixture that was later found to cause birth defects. The teratological (or mutagenic ) effect was caused by (S ) T halidomide (Figure 1 3 ); s adly, recent studies suggest this tragedy could not have been avoided by using enantiopur e ( R ) Thalidomide.20 The actual mutagenesis is caused by the (S ) -enantiomer, but b oth enantiomer s are unstable and epimerize in vivo to form a racemic mixture. Although enantiopurity would not have c ircumvented the Thalidomide calamity, many side -effects can be prevented and overall dr ug activity improved by utilizing enantiopure drugs.17, 21 Biological di a stereoselectivity necessitates access to single enantiomer compounds in the pharmaceutical industry22 but it is also important in the agricultural, fragrance, and flavor industries .23, 24 The importance of chirality in biological system s has also made the natural world the most efficient producer of single enantiomers supplying a limi ted chiral pool23 of enantiopure compounds.25 The classical laboratory approach to obtain an enantiopure compound is by resolving a racemic (50/50) mixture via mechanical or chemical separation techniques .26 The utility of resolution is indisputable; h owever these process es cannot yield more than 50% of the desired product Application of catalysts capable of selective asymmetric synthesis can produc e industrial quantities of the desired enantiomer using relatively small amounts of expensive

PAGE 24

24 catalyst P urified enzymes work well toward these ends27 but are limited by their reaction scope, cost and availability of the enzymatic catalysts. Increased understanding of the black art of catalysis has enabled scientists to develop synthetically prepared catalytic species capable of asymmetric induction Purely o rganic compounds have recently gained popularity as catalytic species because of their low -cost and environmentally friendly nature in relation to many metal con taining compounds .28 However, the unique properties of t ransition metal complexes have made them ubiquitous in the field of asymmetric synthesis Transition metals (TM s ) ar e unique with regard to their energetically accessible valence d orbitals. The number and shape of these partially filled orbitals allow for versatile reactivity. TMs interact with organic molecules in a covalent ionic or dative manner (or a combinatio n thereof) Exploitation of t hese interactions can be used to modulate the electronic nature and topological environment of a TM center via coordinated organic ligands L igands can also be used to increase a compounds stability or its solubility in specific solvents Although TM complexes have found application in heterogeneous asymmetric catalysis29 homogeneous systems are more popular due to their ease of use and investigation. The advantages of homogeneous TM catalysis a re as follows: 1 TM complexes are capable of facilitating reactions that do not occur naturally 2 The electronic character and steric bulk of organometallic complexes are easily altered by modification of the supporting ligands 3 T he variety of complexes avail able permits reactions with substrates that are not compatible with selective systems such as enzymes 4 TM complexes are applicable in a larger variety of reaction conditions than enzymes that require very specific and typically aqueous environments .30 5 Reaction conditions including temperature, solvent mixing, and catalyst/ligand concentration are more efficientl y controlled in solution than in heterogeneous environments.31

PAGE 25

25 In a Science article regarding industrial enantioselective catalysis the authors claim e nantioselective catalysis is bringing about a revolution in asymmetric synthesis. Seldom has there been an area of chemistry where the scientific goals are so challenging, the e conomic benefits so obvious, and the ethical reasons for doing the research so compelling.30 The ability of a tr ansition metal catalyst to preferentially produce one of two chiral p roduc ts is, like catalysis itself, a kinetic phenomenon. Binding of a prochiral substrate to a chiral TM compound forms energetically inequivalent diastereomers. The preferential production of one enantiomer is caused by this energetic imbalance between the two diastereomeric transition states. Large enantiomeric excesses (e e .) can be obtained when the disparity is as small as 3 kcal/mol.9 The absolute configuration of a product molecule is determined during the first irreversib le step in the mechanism that involves a diastereomeric transition state. The reactivity of a complex is typically associated with the identity of the metal center and m odulated by electronic donation or withdrawal by the ligand(s ), but chiral induction is strongly linked to the ligand topology particularly in close proximity to the active site of the catalyst. The configuration of the ligand around the active site is termed the chiral pocket and determines the enantioselectivity of the catalyst T herefore, the design of a chiral ligand is a crucial step in the development of a new catalyst. Specific organic molecules have been established as phenomenal asymmetric induction auxiliaries The selectivity, activity, and catalyst lifetime of TMs suppo rted by these molecules are consistently high over a large range of mechanistically unrelated rea c tions Yoon and Jacobsen summarized these ligands in Science32 describing them as privileged ligands (Figure 1 4 ) The authors do not venture to provide the best architectural features for a chiral ligand but point out that s everal of these prominent ligands

PAGE 26

26 share common design features including C2 symmetry, multiple and strong metal ligand bonds, and rigid structures C2 symmetry first introduced to chiral catalysis by Kegans diop ligand ,33, 34 is attractive because it reduces the number of reaction pathways by cutting in half the possible catalyst/substrate arrangements.35 Rigid and robust ligand s are important for creating a durable complex and retaining the structure of the catalysts chiral environment Multiple and strong bonds between the metal and the ligand further stabilize the complex S tability of the complex and the topology surrounding the chiral coordination center plays a central role in determining the enantiopurity of a product in an a symmetric catalytic reaction T wo privileged ligands, BINAP and MeDuPhos, are members of the organophosphorous family of ligands commonly termed phosphine s Introduced to organometallic chemistry by F.G. Mann,36 p hosphines are strong -donor/weak acceptor ligands that support a large variety of reactive and selective transition metal catalyst s The overwhelming success of phosphine based ligands in homogeneous catalysis has led many to consider the entire class as privileged ligands ; however, these ligands suffer some disa dvantages including air -sensitivity oxidative degradation, and toxicity 37 a s well as difficulty associated with independent modulation of their electronic and steric parameters.38 Nheterocyclic ca rbenes (NHCs) are closely related to phosphines in regards to their electronic donation to a metal center, but are different in their steric topology and do not suffer the same disadvantages in catalytic reactions As part of the carbene family, they were once considered to be too reactive to be utilized as ancillary ligands. The following sections of this chapter will outline the characterist ics of these carbene s that permit them to support some of the most stable TM complexes in use today. Subsequent chapters will describe the utilization of this coordinating moiety in a novel chiral ligand family and utilization of these ligand s in asymmetric rhodium catalysis.

PAGE 27

27 1.3 N -Heterocyclic Carbene s 1.3 .1 Early History The stability of Nheterocycli c carbenes provides one of the few members of the carbene family capable of functioning as a s pectator ligand Isolation of such a stable carbene was unimaginable until the early 1960s when Wanzlick proposed the formation of a diaminocarbene.39 42 He attempted the synthesis of a stable singlet carbene from 1,3 diphenyl 2 trichloromethylimidazolidene but was unable to isolate the proposed species, obtaining only its dimer enetetraamine. He was never able to establish the existence of a stable free carbene prior to coordinati on However, l ater that decade Wanzlick43 and fele44 independently reported the first metal complexes supported by diaminocarbene ligand s (Figure 1 5) Excluding an extensive investigation into the coordination chemistry of related enetetraamine s (Figure 1 5) by Lappert,45, 46 research involving thes e elegant compounds was nonexistent throughout the 1970s and 80s. In 1991, a renaissance of chemistry involving NHC compounds was initiated by the isolation of a stable crystalline NHC by Arduengo .47, 48 Investigation s of NHC coordination chemistry, catalytic properties, and p articularly the steric and electronic characteristics responsible for the stability of t hese diradical s were immediately launched and continue to be the subject of an overwhelming number of journal and review articles ,38, 4962 and books .37, 63 1.3 .2 Carbene G eometry Carbenes are neutral divalent carbons in which four of the six valence electrons are contained in bonding orbitals They were first proposed by Hermann and Geuther in 1855 as reactive diradical (tripl et ground state) intermediates.64 It was almost 100 years later that Lennard Jones and Pople used computational evidence to suggest the accessibility of two different ground states ;65, 66 the non-bonding electrons could occupy the same orbital with a ntiparallel spins (singlet ground state) or two different orbitals with parallel spin s (triplet)

PAGE 28

28 L ocal geometric and electronic factors both play a role in determining t he g round state of a carbene. The local geometry of a carbene carbon can be either be nt or linear A linear geometry favors a triplet ground state due to the two energetically degenerate p orbitals of the sphybridized carbon (Figure 1 6 ). A bent carbene becomes sp2hybridized, stabilizing one of the frontier orbitals, the -orbital, and leaving the p (or p) unaffected. The ground state of a bent species is determined by an energetic competition E lectron -electron repulsion and exchange correlation energies favor a triplet ground state, and i f the energy gap between the frontier orb itals is sufficiently small, these forces will prevail. Hoffman determined that a minimum separation between the frontier orbitals of 2 eV was required to form a singlet ground state carbene .67 The bent geometry of a n NHC carbon creates non -degenerate frontier orbitals F urther stabilization of the carbene, resulting in a singlet ground state, is a result of the electronic influences of the neighboring nitrogen substituents. 1.3 .3 Electronic Influences The nitrogen substituents affect the carbene center th rough i nductive and mesomeric effects increasing the energy difference between the frontier orbitals. Inductively, the two nit rogens are electr on withdrawing ; stabilizing the -orbital and retain ing the electroneutrality of the carbene center. Although the inductive effect is cre dited as the major stabilizing force m esomeric or resonance effects also play a part. E lectron density from the fill ed p -orbitals of the two amino substituents is donated into the empty p orbital of the carbene destabilizing the p orbital and further increasing the HOMO LUMO gap.68, 69 Another factor that may influence the stability of an NHC is aromaticity within the heterocycle.70 The aromatic stabilizat ion of free NHCs is far less pronounced than in benzene or

PAGE 29

2 9 even their imidazole precursors; however, for some systems it may contribute to their thermodynamic stability.71 Isolation of free carbenes from saturated backbone imidazolin 2 ylidenes72 suggests t hat, although some aromatic stabilization may exist, it is not crucial. Designation of NHCs as carbenes has been questioned due to the resonance structures shown in F igure 1 7 If structures A and C contribute heavily to the stability of the carbene th en they should rather be considered ylids However, u pon deprotonation a lengthening of the N Ccarbene bond (1.313(2) 1.341(4) [salt] to 1.363(1) 1.375(2) [free carbene]) and reduction in the N C -N angle (107.6(3) 113.8(2) [salt] to 101.2(2) 102.2(2) [fre e carbene])51 point toward an increase in -bond character supporting the free carbene designation. 1.3 4 NHC Topologies The NHC family include s a variety of heterocyclic structures. The most common NHC ligands are five -membered heterocycles capable of form ing stable free carbenes; imidazolin 2 ylidene, benzimidazol 2 -ylidene, imidazolidin 2 -ylidene, and triazolin 5 -ylidene ( Figure 1 8 ) Stable free carbenes have also been isolated from four ,73 six ,74, 75 and seven -membered76 heterocycles. Excluding the seven-membered heterocycle these molecules are planar with nitrogen substituents that point toward the carbene center. The se peripheral nitrogen -substituents may serve to kinetically stabiliz e some free carben e s but free carbenes with less demanding Nsubstituents have also been isolated.77 The steric influence of an NHC ligand on a coordinated metal center is quite different than that im posed by phosphine s which NHCs were once considered to mimic NHCs have a fanlike or fencelike topology with the nitrogen substitu ents pointing toward the metal center P hosphines on the other hand, are conical and their substituents point away from the coordinated metal The availability of Tolman cone angle parameters78 describing the

PAGE 30

30 relationship between phosphine topology and catalytic reactivity has facilitated semi rational design of phosphine based ligands In an attempt to compare the steric demand of NHCs with phosphines and to establish a guiding principle for NHC ligand design, Nolan et. al. defined the steric parameter percent volume buried (%VBur).79, 80 Situating the NHC or phosp h ine 2 from the metal center, the %VBu r is determined by the percent of a sphere of radius 3 consumed by the ligand in question. The authors concede that this method does not explain all of the steric demands of an NHC ligand. While i t is a good beginning in describing symmetrical monodentate NHCs this method does not account for rotation around the M NHC bond or define the steric demand of unsymmetrical or chelating NHCs. 1.3.5 M -NHC B onding The popularity of NHC ligands is due in part to their compatibility with a large variety of TM species37, 60 as well as main group elements.81 This compatibility sets these heterocycles apart from the other members of the carbene family of ligands. Schrock carbenes (or alkylidenes) are nuc l e ophilic triplet ground state carbenes that form covalent interactions with high oxidation state TM species.82 Fischer carbenes are electrophilic, singlet carb enes that require stabilization through -backbonding from a n electron rich metal center. Although NHCs were once considered Fi sher type carbenes,82 their versatility and ability to act as ancillary ligands established them as a n independent classification within the carbene family. NHC -M bonding i s considered electrostatic i n nature and consists primarily of strong donation from the carbene to a metal center. NHC -M bonds are best described as s ingle or dative bond s .83 The carbene center does not require -backbonding from the metal center due to the stabilizing effects of the carbenes -nitrogen substituents The empty p orbital is available for backdonation but t he relative -bonding ability of NHC s is controversial and certainly dependent

PAGE 31

31 on the metal, co ligands, NHC substituents, and NHC orientation.37, 8486 Various studies have suggested backbonding from the metal contribute s from 0 to 40% of the overall bonding interactions.55, 85, 8791 In high valent early metal complexes NHCs can accept electronic donation from neighboring chloride ligands into the empty p orbital.81 An N HC has also reportedly contributed to bonding through donation to a metal center to stabilize an un saturated 14 -electron complex.92, 93 T he variation in relative electronic donation between di fferent NHC moieties is much smaller than between members of the phosphine family Substi tuent variation directly affects a phosphine ligand s steric bulk and electronic character but variation of peripheral nitrogen substituents has little effect on the electronic character of the carbene center. To vary the donor ability the azole ring must be altered 37 The relative donor ability of different NHCs spans a much smal ler range than phosphine moieties However even these small variations can le a d to large alterations in catalytic behavior.62, 94 1.4 Contribution of This M anuscript Within homogeneous asymmetric TM catalysis, a wide variety of catalysts with impressive reactivities and enantioselectivities have be en developed, but there is still a great need for catalytic investigations toward industrially applicable catalysts, catalytic efficiency, application range, reliability, accessibility of the catalyst, and functional group tolerance.95 Stable, electron rich, and modular spectator ligands that form strong bond s to transition metal complexes, such as NHC ligands, are ideal for application towards these goals In an attempt to contribute to the ever increasing demand for more versatile and active catalysts, our laboratory designed a new family of bidentate chiral bis NHC ligands. This manuscri pt will describe the synthesis, characterization, and structural investigation of this family of ligand s and their rhodium and

PAGE 32

32 i ridium complexes. C hapter 5 will describe the catalytic application of this new ligand family to the 1,4 addition of aryl boron ic acids to cyclic enones. Figure 1 1. Reaction coordinate diagram for catalyzed (solid) and uncatalyzed (dotted) reactions. Figure 1 2. Generalized mechanisms for A) uncatalyzed reaction B) catalyzed reaction in Figure 1 1 C) single reagent activ ation catalysis D) catalyzed reaction with intermolecular reaction.

PAGE 33

33 Figure 1 3. Structures of ( R ) and ( S ) Carvone (left) and ( R ) and ( S ) Thalidomide (right). Figure 1 4. Selected privileged ligands from T.P. Yoon and E. N. Jacobsen, Science 2003, 299, 1691. Reprinted with permission from AAAS.

PAGE 34

34 Figure 1 5. Wanzlicks40 (left) and feles44 (middle) NHC complexes and Lapperts96 enetetraamine (right). Figure 1 6. Relative influence of geometric an d electronic effects on the energy gap between and p orbitals. Figure 1 7. Resonance structures of NHC.

PAGE 35

35 Figure 1 8. Common Nheterocyclic carbenes; imidazolylidene, benzimidazolylidene, imidazolinylidene, triazolinylidene.

PAGE 36

36 CHAPTER 2 FIRST GENERATION DI -NHC CATALYSTS 2.1 Introduction NHC based ligands are quickly becoming common -place in organometallic and inorganic chemistry.37, 63, 9799 The large dissociation energies associated with most NHC -M bo nds make these molecules particularly useful as ancillary ligands in catalysis Increasing evidence suggests NHC supported TM catalysts can surpass well -established p h osphine -based systems in both activity and scope.55 In contrast to phosphines, NHCs do not favor dissociat ion from metal center s100 eliminating the need for excess ligand and promoting their utilization toward asymmetric catalysis.50, 101 Electron rich metal centers supported by chiral NHC ligands have been applied to hydrogenation, hydrosilylation, olefin metathesis, and a myriad of other chiral transformations.37, 61, 63 Monodentate NHCs are u ndeniably the largest contributors to these catalytic applications because of their ease of access and modification H owever, the stability and rigidity associated with chelating ligands has led to the design of multidentate NHC ligands Chelating NHC ligands can be split into two major categories ; mixed NHC ligands and pure NHC based chelating ligands. Mixed NHCs consist of one (or rarely two) NHC moieties and another, typically more labile, moiety .102 Chelating ligands based purely on NHCs are usually bidentate but a few tris NHC58 ligands have been reported. The increased stability of chelating ligand s along with the overwhelming success of chelating bis phosphines inspired the investigation of NHC equivalents. Ch iral b identate NHC ligand s can be separated into four distinct categories (Figure 2 1) ;63 a ) b identate NHCs in which the chiral center is contained on the peripheral N-substituents, b) b identate NHCs containing stereogenic centers within the heterocycle, c) bidentate NHCs that

PAGE 37

37 possess planar chirality, and d ) bidentate NHCs that contain an axis of symmetry. Figure 2 1 displays the imidazole precursors of several members of each class The bis azole ligands reported in this manuscri pt fit within the axially symmetric group The ligands reported herein are C2 symmet ric chelating bis NHC ligands. F igure 2 1 ( d ) displays all of the ligands repor ted to date with similar architectures excluding those reported in the body of this manuscript.103 Many of the catalysts supported by chelating bis NHC ligands display excellent activity but only a few have achieved a high level of enantioselectivity. The first C2 symmetric di NHC ligands were reported within months of each other in 2000. Trudell et al.104 and Rajanbabu et al.105 independently reported the synthesis of binaphthyl based bis NHC complexes Trudells racemic version was reported with a series of other asymmetric bisimidazolium salts used in the palladium -catalyzed coupling of 4-chlorotoluene and phenylboronic acid. Rajanbabu et al. found that their chiral ligand chelated to a Pd(II) center in both trans and cis orientati ons and coordinated to Ni(II) in only the trans orientation. The palladium complexes were applied to the non -stereoselective Heck coupling of ethyl acrylate and halobenzenes. Douthwaite et al .106 were the first to report chiral induction by a C2 symmetric chelating bis NHC in 2003. The bis NHC ligand based on a 1,2 -cyclohexyldiamine backbone was tested towards the Pd (II) asymmetric intramolecular cycliz ation of N (2 -bromophenyl) N -methyl 2 (1 napthyl)propanamide producing only an 18% e e To date, the only high enantioselectivities produced utilizing bidentate chiral di -NHC ligands have been reported by Min Shi et al .107 115 First reported in 2003,107 Min Shis binaphthyl amine -based ligand was found to form a mixture of bridged bi metallic Rh(I) and chelating monometallic Rh(III) complexes. The Rh(III) complex was applied towards the enantioselective hydrosil ylation of methyl ketones, producing yields

PAGE 38

38 rangin g from 82 to 96% and e.e.s as high as 98%. A bimetallic Ir(I) complex supported by the same ligand was reported in 2005 with no mention of the chelating monometallic version or catalytic application.108 Shortly thereafter, Min Shi reported the neutral chelating monometallic Pd(II) complex supported by the same BINAM -based bis benzimidazole.109 Initial catalytic application towards achiral Suzuki coupling of phenylboronic acids to bromobenzene and Heck coupling of aryl halides with butyl acrylate resulted in moderate to high yields for the majority of substrates reported. Analogs of the same bis(NHC) P d(II) complex116 have since been reported to catalyze the oxidative kinetic resolution of alcohols,110 enantioselective allylation of aldehydes,111, 112 and the conjugate addition of arylboronic acids to cyclic enones113 with high enantiocontrol Most recently, Min Shi et al. reported the application of a [Pd(II)(H2O)2]2+ c omplex supported by the same ligand architecture117 to the enantioselective arylation of N tosylarylimines using boronic acids.114 The original Rh(III) complex was also recently reported to produce enantiopure product whe n applied to the hydrosilylation of 3 -oxo 3 arylpropionic acid methyl or ethyl esters.115 The relatively small number of successful asymmetric catalytic applications involving C2 symmetric chelating bis -NHCs should not be taken as an indication of a fundamental flaw i n the ligand concept, but rather as a reflection of the small number of available architectures. Taking this into account and considering the success of the closely related bis -phosphines our laboratory designed a novel C2 sym metric di NHC ligand based on a trans 9,10 dihydro 9, 10 ethanoanthracene (DEA) backbone. This chapter will describe in detail the design and synthesis of one member of the first generation C2 symmetric di NHC ligands DEAM BY ( trans 9,10 dihydro 9, 10 ethanoanthracene 11,12 bis (1 be nzyl) imidaz 2 ylidene) along with the synthesis of mono and bimetallic Rh(I) and Ir(I) complexes. Structural comparison utilizing solution state

PAGE 39

39 analysis and X ray crystal structures is accomplished to lay groundwork for establishing a relationship betwee n the structure of these unique ligands and their catalytic activity. 2.2 Experimental Section 2.2 .1 Synthesis of T rans1,1' [ 9,10 D ihydro 9,10 Ethanoanthracene 11,12 D iyldimethanediyl]bis (Benzyl imidazole) bis(T rif louromethansulfonate) [DEAM BI](OTf)2 (2 -1 ) 1 B enzylimidazole (3.13 g, 19.8 mmol) was add ed to a 250 mL flask containing trans1,1' [9,10 dihydro 9,10 ethanoanthracene 11,12 diyldimethanediyl ]bis(trifluoromethanesulfonate)118 (5.00 g, 9.40 mmol) in dry DME (100 mL). After refluxing under argon for 2 h, the solvent was removed producing a yellow powder. The powder was suspended in ethyl acetate and sonicated to produce a white powder which was isolated by filtration as a white microcrystalline so lid ; y ield 7.63 g (96%). 1H NMR ( 300 MHz, (CD3)2SO ) ppm : 9.27 ( m 2 H, NC H N ), 7.83 ( m 2 H, NC H CHN ), 7.78 ( m 2 H, NCHCH N ), 7.457.51 (m, 8H, Ar ), 7.34 7.45 (m, 4H, Ar ), 7.31 (m, 2 H, Ar ), 7.15 7.23 (m, 4H, Ar ), 5.37 5.57 (m, 4 H, NC H2C), 4.08 (s, 2 H, bridgehead H ), 3.92 (dd, JHH=13.9, 4.2 Hz, 2 H, CH(HCH )N ), 3.62 (dd, JHH=13.7, 8.9 Hz, 2 H, CH(H CH)N ), 2.04 2.18 (m, 2 H, bridge H ). 13C[1H ] NMR (75 MHz, (CD3)2SO ) ppm : 142.5 (2C, Ar ), 139.3 (2C, Ar ), 136.7 (2C, N CHN), 134. 8 (2C, Ar ), 129. 1 (4C, Ar ), 128. 9 (2C, Ar ), 128. 4 (4C, Ar ), 126. 5 (2C, Ar ), 126. 3 (2C, Ar ), 125. 7 (2C, Ar ), 123. 9 (2C, Ar ), 123. 0 (s, 2C, N CHCHN ), 122.6 (s, 2C, NCH CHN), 120.6 (q, J= 322 Hz, CF3), 52.1 (s, 2C, N CH2C), 51.8 (s, 2C, N CH2CH ), 44.3 (s, 2C, bridgehead C), 43.1 (s, 2C, bridge C). MS(HR ESI+): Calc. for [C40H36N4S2O6F6]: m/z 869.8450 [M+Na]+, found m/z 869.1876. Anal. Calc. for C40H36N4S2O6F6: C, 56.73%; H, 4.29%; N, 6.62%. Found: C, 56.68%; H, 4.35%; N, 6.50%. The m olecular structure of 2 -1 determine d by X ray

PAGE 40

40 c rystallography is displayed in F igure 2 8 crystals were grown by diffusion of pentane into an ethanol solution containing the salt 2. 2.2 Synthesis of Trans 1,1 [9,10 Dihydro 9,10 Ethanoanthracene 11,12 D iyldimethandiyl] bis(1 Benzylim idazolidine 2 Y lidene ), DEAM BY ( 2 -2 ) At 35 oC, KN(TMS)2 (395 mg, 1.98 mmol in 5 mL THF) was added t o a cold solution of [DEAM BI](OTf)2 (2 -1 ) (800 mg, 0.95 mmol) in THF (10 mL). After 1 h, the solution was allowed to warm to room temperature while stir ring. The solvent was then removed in vacuo producing an orange -yellow powder. After trituration with diethyl ether (2 x 5 mL ) and pentanes (2 x 5 mL) t he solid was taken up in pentanes and filtered. The precipitate was then washed with diethyl ether and extracted with THF. The THF was removed to produce a peach colored powder ; y ield 366 mg (71%). 1H NMR ( 300 MHz, C6D6) ppm : 7.57 (dd, J= 7.4, 1.1 Hz, 2 H, Ar ), 7.04 7.27 (m, 16H Ar ), 6.47 6.52 ( overlapping d, 4H, NC H CH N and NC H CH N ), 5.17 (s, 4H, NC H2C), 4.38 (d, J= 1.1 Hz, 2H, bridgehead H ), 3.77 (dd, J= 13.2, 8.4 Hz, 2H, CH(HCH )N ), 3.47 (dd, J= 13.3, 5.9 Hz, 2H, CH(H CH )N ), 2.28 2.39 (m, 2H, bridge H ). 13C NMR (75 MHz, C6D6) ppm : 216.1 (s, N Ccarbene N ), 144.6 (s, Ar ), 141.5 (s, Ar ), 139.6 (s, Ar ), 129.1 (s, Ar ), 128.3 (s, Ar ), 126.9 (s, Ar ), 126.7 (s, Ar ), 126.4 (s, Ar ), 124.0 (s, Ar ), 120.7 (s, NCH CH N ), 119.1 (s, N CH CHN ), 55.4 (overlapping singlets, N CH2C & CH CH2N ), 47.1 (overlapping singlets, bridge & bridgehead C). MS(DIP -CI): Calc. for [C38H34N4]: m/z 546.2929 [M]+, found m/z 546.2783. The m olecular structure of 2 -2 determined by X -ray c rystallog raphy is displayed in Figure 2 8 crystals were grown by a diffusion of ether into a THF solution containing the compound

PAGE 41

41 2.2.3 Synthesis of Rhodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 11,12 bis(1 Benzylimidazolidine 2 Y lidene ) Cyclooctadiene T riflate, [(DEAM BY )Rh( COD)]OTf (2 -3 ) a) To a solution of DEAM BIY (2 -2 ) (500 mg, 0.92 mmol) in THF (5 mL ) was added a solution of [Rh( COD )Cl]2 ( 226 mg 0 .458 mmol ) in THF (5 mL). The reaction was stirred for two hours during which time a yellow precipitate formed The precipitate was filtered and washed with cold THF (2 x 3 mL ) to provide [(DEAM BI)Rh( COD )](OTf) (2 -3 ) as a bright yellow solid; y ield 417 mg ( 50%) b) At 100 C, a solution of KN (TMS)2 (50 mg, 0.25 mmol) in dry THF (3mL) was added to a solution of [DEAM BI](OTf)2 (100 mg, 0. 118 mmol) in THF (5 mL ) and allow ed to warm to room temperature while stirring vigorously. After 45 min, the solution was again cooled to 100 C. After 15min, a cold solution of [Rh( COD )Cl]2 ( 28 mg 0 057 mmol ) in THF (5 mL) was added to the mixture and allowed to warm to room tempera ture overnight. The yellow precipitate was collected by filtration, washed with Et2O (10 mL) and THF (2 mL), and dried under high vacuum ; y ield 97 mg (90% ). 1H NMR ( 300 MHz, CDCl3) ppm : 7.78 (d, J= 1.7 Hz, 1H, 18), 7.34 7.58 (4H, 2,5,8,11), 7.28 7.34 (3H, 35,36,37), 7.1 7.25 (7H, 3,4,9,10,24,25,26), 6.88 (overlapping d and m, for d J= 2.0 Hz, 3H, 29,34,38), 6.58 (m, 2H, 23,27), 6.68 (d, J= 1.7 Hz, 1H, 19), 6.56 (d, J= 2.0 Hz, 1H, 30), 5.97 (d, J= 15.9 Hz, 1H, 32J= 15.6 Hz, 1H, 21 5.17 (d, J= 16.1 Hz, 1H, 32), 5.09 (d, J= 16.1 Hz, 1H, 21), 4.69 (dd, J= 13.3, 3.1 Hz, 1H, 17 J= 1.1 Hz, 1H, 14), 4.47 4.58 (m, 1H, 40), 4.43 (d, J= 0.8 Hz, 1H, 13), 4.37 4.45 (m, 1H, 15), 4.27 4.34 (m, 1H, 44), 4.19 4.30 (dd, 1H, 17), 4.01 4.09 (m, 1H, 39), 3.97 (dd, J= 14.0, 7.8 Hz, 1H, 2843), 3.12 (dd, J= 14.2, 2.0 Hz, 1H, 28 ), 1.23 2.39(m, 9H, 16, 41, 42, 45, 46). 13C NMR (75 MHz, CDCl3) ppm : 181.7 (d, JRhC =54.1 Hz, 20), 179.4 (d, JRhC =52.7 Hz, 31), 144.7 (s, 1 ), 144.3 (s, 12), 139.8 (s, 7 ), 138.2 (s, 6 ), 135.9 (s, 33), 135.9 (s,

PAGE 42

42 22), 129.3 (s, 35 & 37), 129.1(s, 24 & 26), 128.3 (s, 36), 128.6 (s, 25), 127. 1 (s, 3 ), 126.9 (s, 10), 126.6 (s, 9 23 & 27), 126.4 (s, 4 ), 126.3 (s, 34 & 38), 126.2 (s, 8 ), 125.7 (s, 5 ), 125.3 (s, 29), 124.8 (s, 18), 124.1 (s, 2 ), 123.4 (s, 11), 121.5 (s, 30 & 19), 92.4 (d, JRhC =8.2 Hz, 40), 90.0 (d, J= 7.3 Hz, 39), 89 1 (d, JRhC =9.6 Hz, 44), 84.8 (d, JRhC =8.2 Hz, 4 3 ), 57. 5 (s 28), 55. 7 (s 21), 55. 4 (s 17), 54 4 ( s 32), 48.4 (s, 14), 48.2 (s, 16), 47.8 (s, 13), 47.7 (s, 15), 32.3 (s, 45), 31.3 (s, 41), 29.4 (s, 42), 29.1 (s, 46). MS(HR ESI+):Calc. for [C47H46N4Rh]+: m/z 757.7874 M+, found m/z 757.2773 Anal. Calc. for C47H46N4SO3F3Rh plus one molecule MeCl: C, 58. 12%; H, 4.87%; N, 5.65%. Found: C, 57.88%; H, 4.834%; N, 5.50%. The m olecular structure determined by X ray crystallography and numbering associated with NMR assignment is displayed in Figure 2 9 crystals were grown by diffusion of ether into a mixed solution of methylene chrloride and benzene containing the compound 2.2.4 Synthesi s of [2 DEAM BY][Rh(COD)Cl]2 (2 -4 ) A solution of KN(TMS)2 (50 mg 0.250 mmol ) in dry THF (5 mL) was added t o a solution of [DEAM BI](OTf )2 (2 -1 ) (100 mg 0.118 mmol ) in THF (5 mL ) at 100 C. After stirring at room temperature for 45 min, the solution was cooled to 100 C and added slowly to a cold solution of [Rh( COD )Cl]2 (58 mg, 0.117 mmol ) in THF (5 mL). The reaction was stirred overnight forming a n orange solution. After the volatiles were removed, the resulting powder was washed with Et2O and extracted with dry THF. The THF was removed and the product was washed with a small amount of Et2O and pentane to reveal a yellow powder; yield 116 mg (94%). 1H NMR (300 M Hz, CDCl3) ppm : 7.49 (2H, d, J= 7.0 Hz, Ar ), 7.29 7.39 (4H, m, Ar ), 7.18 7.26 (8H, m, Ar ), 7.06 7.19 (4H, m, Ar ), 6.90 (2H, J= 1.9 Hz, NC H CHN), 5.88 (2H, d, J= 13.6 Hz, N( H CH)C), 4.77 4.88 (2H, m, COD -CH), 4.57 (2H, d, J= 1.9 Hz, NCHC H N ), 4.56 (2H, d, J= 13.7 Hz, N(HC H )C), 4.42 4.54 (2H, m, COD CH), 4.23 (2H, d, J= 2.8 Hz,

PAGE 43

43 bridgehead H ), 4.10 (2H, overlapping dd J= 12.6 Hz, CH(HCH )N ), 3.57 (2H, dd, J= 13.3, 2.6 Hz, bridge H ), 3.19 3.30 (2H, m, CH(H CH)N ), 2.72 2.84 (2H, m, COD CH), 2.3 9 2.50 (2H, m, COD CH), 2.16 2.34 (2H, m, COD -CH2), 1.89 2.05 (2H, m, COD CH2), 1.56 1.89 (8H, m, COD CH2), 1.33 1.56 (4H, m, COD -CH2). 13C NMR (75 MHz, CDCl3) ppm : 179.5 (d, J= 51.2 Hz, NC N), 142.4 (s Ar ), 142.30 (s Ar ), 136.1 (s Ar ), 130.0 (s Ar ), 128.7 (s Ar ), 128.1 (s Ar ), 126.0 (s Ar ), 125.7 (s Ar ), 125.3 (s Ar ), 124.3 (s Ar ), 120.7 (s N C H=CHN), 119.8 (s N CH= CHN), 98.7 (d, J= 6.6 Hz COD CH ), 98.0 (d, J= 7.2 Hz COD CH ) 68.5 (d, J= 14.3 Hz COD -CH ), 67.4 (d, J= 14.9 Hz COD -CH ), 65.8 (s residual ether ), 56. 1 (s N CH2C), 53.9 (s CH CH2N), 48.6 (s CCH CHCH2), 39.6 (s C CHC), 33.1 (s COD CH2), 31.5 (s COD -CH2), 29.6 (s grease), 29.5 (s COD -CH2), 27.2 (s COD -CH2), 15.2 (s residual ether ). Anal. Calc. for C54H58N4Rh2Cl2 : C, 62.37%; H, 5.62%; N, 5.39%. Found: C, 62.17%; H, 5.57%; N, 5.18 %. MS(HR ESI+):Calc. for [C47H46N4Rh]+: m/z 757.7874 M+, found m/z 757.2773. The m olecular structure determined by X -ray c rystallography is displayed in Figure 2 11, crystals were grow n by diffution of ether into a mixed solution of benzene and THF contining the compound 2. 2.5 Synthesis of Iridium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 11,12 bis(1 Benzylimidazolidine 2 Y lidene ) Cyclooctadiene T riflate, [(DEAM BY )Ir(COD)] OTf (2 5 ) Triflate salt 2 -1 (100 mg, 0.118 mmol), KN(TMS)2 (50 mg, 0.25 mmol), and [Ir(COD)Cl]2 (39 mg, 0.058 mmol) were each weighed into separate scintillation vials and suspended in dry THF (5mL). At 100 C, the KN(TMS)2 solution was added dropwise to the salt suspension. The reaction mixture was allowed to warm to room temperature while stirring forming a brilliant yellow color after 45 min. The mixture was again cooled to 100 C followed by drop wise addition of the [ Ir (COD)Cl]2 solution. The reaction was stirred overnight at room

PAGE 44

44 temperature. Mononuclear salt 2 -5 formed as an orange precipitate, was isolated by filtration and washed with THF (2 mL) and Et2O (5 mL) to remove excess base. The metal complex was extracted from any remaining start ing materials with CH2Cl2 and upon solvent removal was isolated as a brill iant orange powder; yield 57 mg (48% ) 1H NMR (300 MHz CDCl3) ppm : 7.51 (1H, d, J= 2.0 Hz, NC H CHN ), 7.47 7.55 (1H, m, Ar ), 7.29 7.45 (6H, m, Ar ), 7.17 7.26 (5H, m, Ar ), 7.07 7.17 (2H, m, Ar ), 6.84 6.95 (2H, m, Ar ), 6.81 (2H, d, J= 2.0 Hz NCHCH N ), 6.71 (1H, d, J= 2.0 Hz, NC H CHN ), 6.58 6.67 (2H, m, Ar ), 6.55 (1H, d, J= 2.0 Hz, NCHC H N ), 5.83 (2H, d, J= 15.9 Hz, N( H CH)C), 5.31 (2 H, d, J= 15.6 Hz, CH(HCH )N ), 5.03 (d, J= 15.5 Hz, N(HC H )C), 4.94 (d, J= 15.5 Hz, CH(HCH )N ), 4.51 (1 H, d, J= 1.9 Hz bridgehead H ), 4.43 (1 H, dd, J= 13.3, 3.8 Hz, CH(HC H )N ), 4.38 (1 H, d, J= 1.8 Hz, bridgehead H ), 4.07 4.19 (2 H, m, overlapping CH(HCH )N and COD CH ), 4.02 (1 H dd, J= 14.4, 8.1 Hz, CH(HC H )N ), 3.88 3.97 (1 H, m, COD CH ) 3.68 3.77 (1 H, m, COD -CH ), 3.58 3.67 (1 H, m, COD CH ), 3.49 (1 H, q, J= 7.0 Hz, ether) 3.19 (2 H, overlapping m and dd, J= 14.5, 1.6 Hz, bridge H and CH(H CH)N ), 1.89 2.20 (2 H, m, COD CH2), 1.73 1.88 (3 H, m, bridge H overlapped by COD -CH2), 1.48 1.72 (3 H, m, COD -CH2), 1.29 1.48 (1 H, m, COD -CH2), 1.22 (2 H, t, J= 7.0 Hz, ether). 13C NMR (75 MHz, CD2Cl2) ppm : 179.4 (N CN ), 176.5 ( N CN ), 145.0 (C, Ar ), 144.9 (C, Ar ), 139.5 (C, Ar ), 139.4 (C, Ar ), 136.1 (C, Ar ), 135.8 (C, Ar ), 129.6 ( 2 C, Ar ), 129.6 ( 2 C, Ar ), 128.8 (C, Ar ), 128.7 (C, Ar ), 127.5 (C, Ar ), 127.3 (C, Ar ), 127.0 (C, Ar ), 126.8 (C, Ar ), 126.8 ( 2 C, Ar ), 126.8 ( 2 C, Ar ), 126.2 (C, Ar ), 124.7 (N CHCHN), 124.2 (NCHCHN) 123.7 (N CH CHN), 123.7 (N CHCH N), 121.5 ( 2 C, Ar ), 79.4 (COD CH), 77.9 (COD CH), 77.0 (COD -CH), 73.1 (COD CH), 68.3 (THF), 57.4 (CH CH2N), 55.6 (N CH2C), 55.1 (CH CH2N), 54.4 (N CH2C), 49.0 (CCHC), 48.8 (CH CH CH2), 48.2 (C CHC), 47.9 (CH CH CH2), 32.6 (COD C H2 ), 32.1 (COD CH2), 30.9 (COD -CH2), 30.8 (COD CH2) 26.1 (THF ). Anal. Calc. for Ir C47N4H46O3SF3: C,

PAGE 45

45 56.67%; H 4.65%; N 5.62 % Found: C, 56.37%; H 4.509%; N 5.452%. MS(TOF ESI+):Calc. for [C46H46N4Ir]+: m/z 847.6958 M+, found m/z 847.3350. The m olecular structure determine d by X ray crystallography is displayed in Figure 2 9 crystals were grown by diffusion of ether into a methylene chloride solution contianing the compound and a small amount of benzene 2.2.6 Synthesis of [2 DEAM BY][Ir(COD)Cl]2 (2 -6 ) Triflate salt 2 -1 (100 mg, 0.118 mmol), KN(TMS)2 (50 mg, 0.25 mmol), and [Ir(COD)Cl]2 (79 mg, 0.117 mmol) were each weighed into separate scintillation vials and suspended in dry THF (4 mL). At 100 C, the KN(TMS)2 solution was added dropwise to the salt suspensions; the reaction mixture was stirred vigorously while warming to room temperature. After 45 min, the mixture was again cooled to 100 C and added dropwise to the [Ir(COD)Cl]2 solution. The reaction was a llowed to warm to room temperature overnight. The solvent was removed and the resulting residue was washed with Et2O (10 mL ) and extracted with THF. THF was removed to reveal the dinuclear, [ 2 DEAM BY][Ir(COD)Cl]2 (2 -6 ) as a yellow solid; yield 71 mg (4 9 % ) 1H NMR (300 MHz, CDCl3) ppm : 7.09 7.58 (18H, m, Ar ), 6.96 (2H, d, J= 2.1 Hz, NC H CHN ), 5.87 (2H, d, J= 13.5 Hz, N(HCH )C), 4.67 (2H, d, J= 1.8 Hz, NCHC H N ), 4.57 (2H, d, J= 13.8 Hz, N(HC H )C), 4.49 (2H, m, COD C H ), 4.24 (2H, d, J= 2.1 Hz, bridgehead H ), 4.08 4.20 (2H, m, COD -CH ), 3.91 4.08 (2H, overlapping dd, CH(H CH)N ), 3.61 (2H, dd, J= 13.8, 1.0, 0.7 Hz, CH(HC H )N ), 3.22 (2H, br. d, J= 10.8 Hz, 6 ), 2.39 2.56 (2H, m, COD CH ), 2.23 (2H, m, COD -CH ), 2.07 2.21 (2H, m, COD CH2 ), 1.90 (2H, m, COD CH2), 1.70 (5H, m, COD -CH2), 1.35 1.51 (2H, m, COD CH2), 1.06 1.35 (5H, m, COD -CH2). 13C NMR (75 MHz, CDCl3) ppm : 177.3 (N CN) 142.1 (C Ar ) 142.0 ( C, Ar ), 136.0 (C Ar ), 129.9 ( C, Ar ), 128.7 (C Ar ), 128.6 (C, Ar ), 128.2 (benzene) 126.0 ( C, Ar ) 125.7 (C, Ar ), 125.1 (C, Ar ) 124.2 ( C, Ar ), 119.9 ( N CH CHN) 119.5 ( NCN CHN) 84.9 ( COD -C H) 83.7 ( COD CH),

PAGE 46

46 55.6 (COD C H) 53.5 ( COD -CH) 52.2 ( CH2), 50.8 ( C H2), 48.5 ( CH CHCH2), 39.3 ( CCHC) 33.9 (COD C H2), 31.9 (COD CH2), 30.4 ( COD CH2), 28.0 (grease ), 27. 7 ( COD -CH2). Anal Calc. for Ir2C54H56N4Cl2: C, 53.32%; H 4.64%; N 4.61% Found: C, 51.528 %; H 4.077%; N 4.890. MS(TOF ESI+):Calc. for [C54H58N4Ir2Cl ]+: m/z 1183.967 (M Cl)+, found m/z 1183.3595. The molecular structure determined by X ray crystallography is displayed in Figure 2 11, crystals were grown by diffusion of pentane into a THF solution contianing the compound and a small amount of benzene 2.2.7 Catalytic H ydroformylation The hydroformylation experiments were carried out in a 100 mL stainless steel Parr reactor heated in a sand bath. The reactor was charged with 50 mg of the substrate, 0.1 mol% of the bis carbene rhodium complex ( 2 -3 ) and 1.5 mL of solvent. Before startin g the catalytic reactions, the charged reactor was purged three times with 10 20 bar of syngas (CO/H2 = 1/1) and then pressurized to 100 bar. The reaction mixture was stirred at 800 rpm at 50 C for the appropriate reaction time (typically 24h). Once com plete the reactor was cooled to room temperature, the pressure was reduced to 1.0 bar in a well -ventilated hood and the reaction mixture was collected in a vial. The reaction mixtures were analyzed directly without further purification. The % conversio n and regioselectivity were determined by 1H NMR spectroscopy and gas chromatography. T he enantiomeric purity was determined by GC using Supelcos Beta Dex 225 column. Temperature program: 100 C for 5 min, then 4 C/min to 160 C. Retention times: 4.8 min for vinyl acetate, 11 ( S ) and 12.8 ( R ) min for the enantiomers of methyl 2 -methyl 3 oxopropanoate (branched regioisomer), 16 min for methyl 4 oxobutanoate (linear regioisomer), 9 min for styrene, 18 ( S ) and 18.2 ( R ) min for the enantiomers of 2 phenylp ropanal (branched regioisomer), and 22 min for 3 -phenylpropanal (linear regioisomer).

PAGE 47

47 2.2.8 X -ray Crystallography Data were collected by Dr. Khalil A. Abboud at 173 K using a Siemens SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK radiation ( = 0.71073 ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was collected using the -scan method (0.3 frame width). The first 50 frames were re -measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structures were solved by direct methods in SHELXTL6119, and refined using full matrix least squares. The nonH atoms were treated anisotropical ly, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. Crystallographic data and structure refinement details for all compounds are listed in appendix B. 2.3 Results and Discussion 2.3 .1 Prepar ation and Solution State Analysis of [DEAM -BI](OTf)2 (2 -1 ) Figure 2 2 illustrates the synthesis of compound 2 -1 The ditriflate is synthesized according to a literature procedure reported by Zsolnai et al .1 18 A straightforward substitution reaction is used to replace t he t rifl uo romethane sulfonyl (OTf) with 1 benzylimidazole, a commercially available substrate Unlike other derivatives of 2 -1 such as the methylimidazolium salt [DEAM -MBI](OTf)2,120 2 -1 does not precipitate from the reaction medium A fter solv ent removal, the isolated white solid is used without further purification. If desired, sonication in ethyl acetate or crystallization via diffusion of pentane into ethanol solution followed by filtration provides analytically pure compound. A 1H NMR s pectrum of 2 -1 reveals a signature downfield imidazolium proton resonance (N CH N ) at 9.27 ppm. Coupling between the imidazolium proton and th e imidazole olefinic

PAGE 48

48 protons (N CH CH N) should form a doublet of doublets; however, relatively weak coupling causes the peak to appear as an unresolved multiplet. Two additional unresolved multiplets appear at 7.83 and 7.78 ppm corresponding to the olefinic protons Upfi eld, the backbone br idgehead (C CH CH) and bridge (CH CH CH2) protons appear as a singlet at 4.08 ppm and a multiplet at 2.10 ppm, respectively. The diastereotopic methylene protons on the ligand arms resonate as a pair of doublet of doublets at 3.92 ( J= 13.9, 4.2 Hz ) and 3.62 ( J = 13.7, 8.9 Hz ) In the 13C{1H} NMR spectrum the imidazolium carbon (N CH N) resonates at 136. 7 ppm F ull assignment of the 13C{1H} NMR spectrum is in section 2.2.1; however, for comparison with subsequent compounds it is worth noting that the most downfield signal appears at 142.5 ppm corresponding to an aromatic carbon 2.3 .2 Preparation and Solution State Analysis of [DEAM -BY] ( 2 -2 ) Generation of free di carbene 2 -2 was accomplished at 35 C under an N2 atmosp here (Figure 2 3 ). Deprotonation of 2 -1 occurs immediately upon addition of the base potassium bis(trimethylsilyl)amide KN(TMS)2, forming a brilliant yellow solution. 2 2 is isolated from the yellow solution in 71% yield as a n air sensitive pale yellow solid. The absence of an imidazolium resonance at 9.27 ppm in the 1H NMR spectrum of the yellow solid confirms complete deprotonation. Increased electron density within the heterocycle s of 2 -2 shifts the olefinic resonances upfield, from 7.83 and 7.78 ppm in 2 -1 to 6.47 and 6.51 ppm. The 1H NMR spectrum is consistent with the formation of a free di -carbene but cannot be used as conclusive evidence. Instead of forming the free di -carbene it is possible that deprotonation of 2 -1 could form an enetetramine echoing Wanzlicks findings.42 In fact, r e lated benzimidazole derivatives prefer form ation of enetetraamines resulting in simila r 1H NMR spectra, provided the N-alkyl group is not too large.103, 120 Conversely f ormation of an enetetraamine from 2 -1 is unlikely, as the electronic nature of unsaturated imidazoles increases

PAGE 49

49 the barrier to double bond formation.121 A diagnostic carbene carbon reson ance at 216.2 ppm in the 13C{1H} spectrum verifies the identity of 2 -2 as a free di carbene species. F ree N -heterocyclic carbene carbons resonate between 205 and 245 ppm,122 whereas enetetra a mine carbons are shifted well upfield to approximately 145 ppm.96 2 .3 .3 Preparation and Solution State Analysis of [(DEAM -BY)Rh(COD)]OTf (2 -3 ) A mononuclear, cationic Rh(I) complex, 2 -3 is readily formed from the free di carbene 2 -2 (section 2. 2.3 a ); however, in situ deprotonation of 2 -1 followed by reaction with [Rh(COD)Cl]2 is a more convenient and higher yielding route ( Figure 2 4 ). Complex 2 -3 forms as a yellow orange precipitate and is isolated via filt ration. Chelation of 2 -1 to a single r hodium center creates a C1 symmetric compound. The lowered symmetry causes each proton and carbon to become chemically and magnetically unique resulting in complex 1H and 13C{1H} NMR spectra Although the 1H NMR spectrum was completely assigned using gDQCOSY, gHMBC and NOESY two -dimensional NMR techniques individual resonances throughout the 1D spectra can be difficult to distinguish. Between 5 and 6 ppm a sparse region of the spectra, are four distinct double ts attributed to the diastereotopic methylene protons of the Nbenzyl substituent ( 5.97; d, J= 15.9 Hz, 5.36; d, J= 15.6 Hz, 5.17; d, J= 16.1 Hz, and 5.09 ppm; d, J= 16.1 Hz ). The o ther diastereotopic protons (CH CH2N) appear as four doublet s of doublets at 4.69 ( J= 13.3, 3.1 Hz ), 4.19 4.30 ( overlapping dd) 3.97 ( J= 14.0, 7.8 Hz) and 3.12 ( J= 14.2, 2.0 Hz) ppm. The bridge protons, that resonate as singlets in compounds 2 -1 and 2 -2 now appear as doublets at 4.62 (d, J= 1.1 Hz) and 4.43 (d, J= 0.8 Hz) ppm. Th e most striking feature of the 1H NMR spectrum is the large separation between the two bridgehead protons, appearing at 4.40 ppm and 1.87 ppm. The rigid arrangement of the complex forces the Rh center directly above one of the bridgehead protons deshield ing it Two distinct doublet resonances associated with the two Rh CNHC carbons in the 13C{1H} NMR spectrum of

PAGE 50

50 2 -3 at 181.8 (JRhC = 54.1 Hz) and 179.4 (JRhC = 52.7 Hz ) provide further evidence of the chelated ligand forming a C1 symmetric compound 2.3 .4 Preparation and Solution State Analysis of [-DEAM -BY][Rh(COD)Cl]2 (2 -4 ) The dimeric starting material [Rh(COD)Cl]2 used in the synthesis of 2 -3 is also utilized to create the bimetallic [ DEAM BY][Rh(COD)Cl]2 (2 -4 ) (Figure 2 5 ). D eproton ation of 2 -1 followed by dropwise addition of the resulting solution into cold THF containing [Rh(COD)Cl]2 forms 2 -4 in 94% yield. Compound 2 -4 is significantly more soluble than its monometallic counterpart 2 -3 Pure 2 -4 is procured as a yellow -brown powder by remov al of all volatiles from the reaction mixture followed by washing with cold ether and extraction into THF. The two Rh(I) centers of 2 -4 are bridged by the ethanoanthracene ligand through coordination of one NHC moiety to each metal center. Unlike monome tallic chelate 2 -3 C2 symmetry is retained in 2 -4 The 1H and 13C{1H} NMR spectra of 2 -4 clearly reveal higher symmetry. The benzyl methylene protons, corresponding to four doublet resonances in 2 -3 appear as two doublets at 5.88 (J= 13.6 Hz ) and 4.56 (J= 13.7 Hz ) ppm in the 1H NMR spectrum of 2 -4 T h e olefinic imidazole protons (N CH CH N) appear as two doublets at 6.90 (J= 1.9 Hz ) and 4.57 (J= 1.9 Hz ) ppm and the bridge and bridgehead protons as a doublet at 4.23 ( J= 2.8 Hz) and doublet of doublets at 3.57 ( J= 13.3, 2.6 Hz) ppm respectively. Two equivalent RhCNHC bonds are evident by a single distinct doublet at 179.5 (d, JRhC = 51.2 Hz) ppm in the 13C{1H} NMR spectrum. 2.3 .5 Preparation and Solution State Analysis of [(DEAM -BY)Ir (COD)]OTf (2 -5 ) and [DEAM -BY][Ir (COD)Cl]2 (2 -6 ) M onoand dinuclear Ir(I) complexes, 2 -5 and 2 -6 were constructed by the same synthetic method as the Rh(I) counterparts replacing [Rh(COD)Cl]2 with the Ir(I) equivalent (Figures 2 6 and 2 7 ). NMR spectra of mononuclear Ir compound 2 -5 are expectedly similar to

PAGE 51

51 the spectra of 2 -3 excluding a few key features. Although 2 -3 and 2 -5 are structurally similar, altering the metal center results in a slight variation in geometry, thus altering the exact location of corresponding resonances The major alteration in NMR spectra is seen in the13C{1H} NMR. Instead of the doublets in the 13C{1H} NMR spectrum of 2 -3 the iridium bound carbons resonate as singlets at 179.4 and 176.5 ppm Unlike 103Rh, t he predominant iridium isotopes, 191Ir and 193Ir, have quadrapolar nuclei with spin of 3/2 thereby negating M C sp in -spin coupling in the spectra of both 2 -5 and 2 -6 2.4 X -ray Structural Analysis and Comparisons To obtain a more complete understanding of molecules 2 -1 through 2 -6 a structural study was performed by single crystal X ray diffraction. Solid -state investigations of these molecules allow comparison of structural variations between analogs 2.4 .1 Compari son of Organic Precursors 2 -1 and 2 -2 Suitable crystals for X ray diffraction studies of both 2 -1 and 2 -2 were obtain ed by diffusion crystallization Compound 2 -1 crystallize s by diffusion of pentane into an ethanol solution containing the salt, and cry stals of the free di carbene are similar ly grown by diffusion of pentane into a saturated benzene solution of 2 -2 Figure 2 8 displays the solid -state structure of the dicationic imidazolium salt 2 -1 and the neutral free di -carbene 2 -2 The asymmetric unit of 2 -1 contains one ligand molecule and two triflate anions in a monoclinic space group. Investigation of the packing structure suggests an intermolecular attraction between the olefin of the cationic imidazole and the electron rich ar yl ring of its neighboring molecule The shortest distance between the carbons of the olefin and aryl ring is 3.72 and the distance between the olefin and the plane of the aromatic ring is 3.42 Unlike 2 -1 the neutral free di -carbene 2 -2 crystallize s in an orthorhombic crystal system with no discernible intermolecular attractions.

PAGE 52

52 The metric parameters for both molecules correspond to those expected for imidazolium salts and their corresponding free carbenes.122, 123 Deprotonation increases the electron density at the carbene center, causing the N -C N angles to contract from 108.8(2) and 107.9(2) in 2 -1 to 102.0(3) and 101.8(3) in 2 -2 The N Ccarbene bond lengths in 2 -2 (1.370(4) N1 C20 1.352(5) N2 C20, 1.378(5) N3 C31, and 1.360(4) N4 C31 ) are notably longer than the N (CH) distances in 2 -1 (1.322(3) N1 C20, 1.334(3) N2 -C20, 1.328(3) N3 C31, and 1.330(3) N4 C31) Contracting of the N C N angle and lengthening N -Ccarben e bond are both expected due to increased -bond character upon formation of the free carbene.124 The increased electron density does not affect the imidazole backbone No appreciable bond length alteration of the N Calkene or C=C bonds is apparent between compounds 2 -1 and 2 -2 (Table 2 1 and 2 2) T he only chemical alteration between 2 -1 and 2 -2 occurs on the heterocycle, but the largest difference in their s olid state structure s is the conformation of the ligand arms. The torsion angle between the pendant arms ( C28 C15 -C16 C17 ) in 2 -2 is 109.0(3) but the same torsion angle in 2 -1 is 119.1(2) The 10 variation displays the flexibility of these ligands and is due in part to the electrostatic repulsion between the two positively charged heterocycles of 2 -1 Formation of a neutral heterocycle reduces this repulsion in 2 -2 2.4 .2 Monometallic [(DEAM -BY)M (COD)]OTf 2 -3 and 2 -5 X ray diffraction studies confirm the structure and orientation of the C1 symmetric chelating complexes 2 -3 and 2 -5 (Figure 2 9 ). As expected the two mononuclear complexes form similar crystals structures. The crystal lattice of both complexes form m onoclinic cell s with P2(1)/n space group s. Each asymmetric unit contains a cationic molecule, its triflate counter ion, and a solvent molecule.

PAGE 53

53 Both M(I) ions sit in a slightly distorted square -planar coordination sphere. The NHCs occupy cis coordination sites opposite a chelated 1,5 -cyclooctadiene (COD). E xamination of the molecular structure suggests chelation forces the ligand to adopt a strain ed geometry. The dihedral angles C28 C15 C16 C17 of 95.8(2) for 2 -3 and 96.2(8) for 2 -5 are significantly smaller than those for the organic precursor molecules 2 -1 and 2 -2 Although ligand bite angles correspond to values expected for square planar c omplexes ( C20 Rh C31 of 89.93(8) and C20 Ir -C31 of 91.2(3) ), conformational strain is evident by unsymmetrical NHC M bonds. This feature is significant in the solid state structure of Rh(I) compound 2 -3 One NHC -M bond length, C31 Rh, is 2.037(2) corresponding closely to the average M NHC bond length found in the Cambridge Structural Database by Baba et. al.124 The second Rh -NHC bond is longer at 2.068(2) for C20 continue in 2 -5 the difference lies within the error of the data ( 2.031(9) for Ir C20 and 2.059(8) for Ir C31 ). As previously discussed, b inding of NHCs to metal centers is believed to be highly electrostatic in nature, allowing the NHC to retain much of its free carbene character. Supporting this assertion the N -C N bond lengths and angles of 2 -3 and 2 -5 correspond closely to those noted for free carbene 2 -2 Figure 2 1 0 displays average metric parameters for NHC M species and their free carbene precursors.124 The N -C N of 2 -2 is slightly smaller than in the metal complexes wh ereas the N -C N of the imidazolium salt ( 2 -1 ) is approximately 5 broader than in 2 -3 or 2 -5 The N -Ccarbene bond lengths of each chelate complex resemble the slightly longer bonds of compound 2 -2 rather than those of 2 -1 (Tables 2 1, 2 2, 2 3, and 2 5 ).

PAGE 54

54 2 4 3 Bimetallic Complexes [-DEAM -BY][M(COD)Cl]2 2 -4 and 2-6 Figures 2 5 and 2 7 display the X ray crystal structures of bimetallic complexes 2 -4 and 2 6 Similar to the monometallic compounds, the bimetallic compounds form crystal lattices with sim ilar structures. Both molecules crystallize in the P space group and form triclinic crystal systems. The solution state assignment of C2 symmetry for the dinuclear complexes is retained in the solid -state structures. The C2 axis bisects the C15 C16 bond, passing through the center of the DEA backbone The t wo neutral M(I) centers are bridged by the chiral ligand, each NHC acting as a monodentate ligand in a distorted square planar coordination sphere that includes a chlorid e and a chelating COD. The NHC moieties are parallel to each other but face opposite directions, situating the metal centers directly above opposing backbone aryl rings The absen ce of strain from chelation permits M CNHC bond lengths ( 2.021(5) Rh 1 C20, 2.024(5) Rh 2 C31, and 2.033(3) for both Ir1 C20 and Ir 2 C31 ) that correspond to reported literature values .124 The similarities also extend to the N -CNHC distances and N -C N angles. (Table 2 4 and 26 ) The large torsion angles of C28 C15 C16 C17 of 125.2(5) and 125.5(3) for 2 -4 and 2 -6 respectively, again signify the flexibility of the ligand 2.5 Initial Catalytic Testing The monometallic Rh complex ( )2 -3125 was investigated toward the hydroformylation of styrene, vinyl acetate, and allyl cyanide ( Table 2 7 ) by Dr. Mu hammad T. Jan.126 It was noted that the catalysis gave relatively high yields but lacked any significant enantiocontrol In our laboratory, r elated cat alysts were being investigated toward the hydrogenation of trans methylstilbene and methyl 2 acetamidoacrylate, the h ydroformylation of styrene and the hydrogen transfer from 2 -propanol to methyl ketones.127 These studies yielded t wo important

PAGE 55

55 observations. The first observation found that a complex closely related to 2 -3 showed fluxional behavior even at room temperature resulting in an ill defined chiral pocket. The second ob servation was the formation of Rh or RhH(CO)4 species as the active catalyst. Mercury poisoning experiment s and an induction period in kinetic studies suggested that the ligand was reductively eliminating from the metal center under the conditions required for catalysis. 2.6 Conclusions Solid -state analysis of NHC containing compounds 2 -1 through 2 -6 displays the structural variation available using this ligand. The bimetallic complexes retain the intended C2 symmetry but chelation of the ligand induce s a C1 symmetric structure. Although the C2 sym metry is a privileged orientation, there is no fundamental reason C1 symmetric compounds cannot be successful in asymmetric catalysis, and in fact, some C1 symmetric compounds have been quite successful in chiral induction catalysis.128 However, i nitial catalytic trials involving ( )2 -3 and related catalyst species suggests this initial ligand architecture does not induce a rigid chiral pocket even at ambient temperature Optimization of the initial ligand design should be possible by increasing the rigidity of the ligand and further defining the chiral pocket.

PAGE 56

56 Figure 2 1. Examples of chelating NHCs. 104 113, 115, 120, 127, 129147

PAGE 57

57 Figure 2 2 S ynthesis of [DEAM BI](OTf)2 (2 -1 ) Figure 2 3 Synthesis of DEAM BIY (2 -2 ) Figure 2 4 Synthesis of [(DEA M BY)Rh(COD)]OTf ( 2 -3 )

PAGE 58

58 Figure 2 5 Synthesis of [ DEAM -BY][Rh(COD)Cl]2 (2 -4 ) Figure 2 6 Synthesis of [(DEAM BY)Ir(COD)]OTf (2 -5 ) Figure 2 7 Synthesis of [ DEAM -BY][Ir(COD)Cl]2 (2 -6 )

PAGE 59

59 Figure 2 8. X -ray Crystal Structure of 2 -1 (left) and 2 -2 (right) with ellipsoids drawn at 50% probability and hydrogens removed* for clarity [*Theoretical position of imidazolium proton (pink) is included]. Figure 2 9. Molecular Structure of 2 -3 (left) and 2 -5 (right) with ellipsoids drawn at 50% probability Triflate counterion and hydrogens (excluding H16 and H15) removed for clarity.

PAGE 60

60 Figure 2 10. Average bond angles and length of free NHCs (top) and M NHCs( bottom ) reprinted with permission from E.Baba et al. Inorganica Chimica Acta 2005, 358, 2870. Figure 2 11. Molecular Structure of 2 -4 (left) and 2 -6 (right) with ellipsoids drawn at 50% probability and hydrogens removed for clarity. Table 2 1. Selected bond lengths () and angles ( ) for complex 2 -1 2 1 Bond lengths C18 C19 1.343(4) C29 C30 1.344(3) N3 C31 1.328(3) N3 C29 1.374(3) N3 C28 1.473(3) N4 C31 1.330(3) N4 C30 1.369(3) Angles N1 C20 N2 108.8(2) N3 C31 N4 107.9(2) Torsion Angles C28 C15 -C16 C17 119.1(2)

PAGE 61

61 Table 2 2 Selected bond lengths () and angles ( ) for complex 2 -2 2 2 Bond lengths C18 C19 1.337(5) C29 C30 1.346(5) N1 C18 1.369(5) N1 C20 1.370(4) N1 C17 1.458(5) N2 C20 1.352(5) N2 C19 1.382(5) Angles N1 C20 N2 101.8(3) N3 C31 N4 102.0(3) Torsion Angle C17 C16 C15 C28 109.0(3) Table 2 3 Selected bond length () and angles ( ) for complex 2 -3 2 -3 Bond lengths Rh C20 2.068(2) Rh C31 2.037(2) N1 C18 1.384(3) N1 C20 1.367(3) N1 C17 1.468(3) N2 C20 1.359(3) N2 C19 1.387(3) Angles C20 Rh C31 89.93(8) N1 C20 N2 103.82(18) N3 C31 N4 104.13(18) Torsion Angle C17 C16 C15 C28 95.8(2) Distance Rh1 C16 3.375(2)

PAGE 62

62 Table 2 4 Selected bond length () and angles ( ) for complex 2 -4 2 4 Bond lengths Rh1 C20 2.021(5) Rh2 C31 2.024(5) N1 C20 1.364(6) N1 C18 1.368(6) N1 C17 1.463(6) N2 C20 1.362(6) N2 C19 1.376(6) N2 C21 1.460(6) C18 C19 1.354(7) C29 C30 1.340(7) Rh2 Cl2 2.3741(15) Rh1 Cl1 2.3622(15) Angles N1 C20 N2 104.5(4) N3 C31 N4 103.1(4) Torsion Angle C17 C16 -C15 C28 125.2(5) Table 2 5 Selected bond lengths () and angles ( ) for complex 2 -5 2 5 Bond lengths Ir C20 2.031(9) Ir C31 2.059(8) N1 C18 1.382(10) N1 C20 1.351(10) N1 C17 1.467(10) N2 C20 1.361(10) N2 C19 1.375(11) N2 C21 1.469(10) Angles C20 Ir C31 91.2(3) N1 C20 N2 103.7(7) N3 C31 -N4 104.1(7) Torsion Angle C17 C16 C15 C28 96.2(8) Distance Ir1 C15 3.345(8)

PAGE 63

63 Table 2 6 Selected bond length () and angles ( ) for complex 2 -6 2 6 Bond lengths Ir1 C20 2.033(3) Ir2 C31 2.033(3) N1 C20 1.355(4) N1 C18 1.382(4) N1 C17 1.475(4) N2 C20 1.365(4) N2 C19 1.384(4) N2 C21 1.457(4) C18 C19 1.349(5) C29 C30 1.353(5) Ir1 Cl1 2.3673(9) Ir2 Cl2 2.3530(10) Angles N1 C20 N2 103.9(3) N3 C31 N4 104.2(3) Torsion Angle C17 C15 -C16 C28 125.5(3) T able 2 7 Initial catalytic h ydroformylation results utilizing complex 2 -3 Substrate Catalyst Solvent Conversion % b:l % ee Styrene 2 3 Chloroform 80 94:6 NA Styrene 2 3 Toluene 100 93:7 NA Styrene 2 3 Toluene 100 93:7 0 Vinyl Acetate 2 3 Chloroform 21 96:4 NA Vinyl Acetate 2 3 Toluene 45 95:5 0 Allyl cyanide 2 3 Toluene 15 10:2 Allyl cyanide 2 3 Toluene 50 10:5

PAGE 64

64 CHAPTER 3 SECOND GENERATION DI NHC CATALYSTS148 3.1 Introduction The intricate relationship between ligand structure and catalytic selectivity often requires optimization of a catalyst via modification of the ligand design. Chapter 2 introduced the first generation of di NHC liga nds produced in our laboratory. Initial catalytic testing120, 127 indic ated that the first generation chelating bis NHC complexes possessed a n overly flexible chiral pocket under catalytic conditions Two modifications could be made to the ligand design to increase the definition of the chiral pocket; either the nitrogen substituent could be altered to increase the steric bulk around the metal center or the ligand backbone could be altered to increase the overall rigidity. Although both avenues have been investigated, i nitial effort s were focused on altering the rigidity of the backbone itself. In stead of overhauling the entire backbone design, we cho se to reduce the ligand flexibility by eliminating the methylene linker between the ethanoanthracene backbone and the NHC coordinating moiety, leaving only two linking carb ons between the imidazole units To investigate the effect of electronic variation two different N -heterocycles were investigated (Figure 3 1 ). During ligand preparation, several reports were published a lerting of po tential problem s with this new archit ecture As was observed with the initial ligand design chelating bis NHCs are capable of two different coordination modes, chelation to a single metal center or coordination to two independent metal centers producing bridged bimetallic species. Because NHC ligands do not tend to reversibly dissociate from a metal center, the kinetic product is formed unless transmetallation reagents are utilized.149 Several studies have attempted to describe the architectural features that promote chelation o ver bridging complex e s and vice

PAGE 65

65 versa .58, 150153 The commonly accepted reactivity p atterns for chelating bis -NHC s are as follows: 1 When small alkyl Nsubstituents are used, the linker length has a strong effect on the mode of coordination.150 2 Small linkers (1 or 2 units) favor a bridging mode due to negative steric interactions of the Nsubstituents with co -ligands. Chelating species can be formed when the co -ligands on the metal are small or the complex is capable of forming an octahedral geometry .58 3 Longer linkers ( 3 units) favor chelation unless the steric bulk of the nitrogen substituents is sufficiently large ( ex. t -butyl).58 4 Systems that do not involve halogenated compounds ( from the metal or imidazole salt) typically favor formation of chelating cationic complexes. Halogen abstraction (by use of a silver salt) can also promote chelate formation.151 These results suggest that a di NHC ligand with a linker of 2 units and small Nmethyl substituent should favor a bridged 2:1 complex. Ligand architectures containing short linkers typically force both bulky azole rings into the crowded x y -plane of the metal complex. In these cases, bulky co ligands ( e.g. COD or NBD) promote the formation of bridging complexes to circumvent overcrowding in the x y plane. Longer linkers allow orientation of the bulky azole plane along the z axis thereby allowing chelation without steric crowding As will be discussed later, the second -generation ligand backbone although only two carbon units link the azole rings, fortuitously allows the azole ring to orient along the z axis. Th is chapter will describe the synthesis of monometallic and bimetallic complexes supported by the constrained second-generation ligands 1,1' (9,10-dihydro -9,10ethanoanthracene 11,12-diyl)di(3 -methyl 1H imidazol 3 ium) diiodide [DEA -MI](I)2 (3 -3 ) and 1,1' (9,10-dihydro 9,10-ethanoanthracene 11,12diyl)di(3 methyl 1H -benz imidazol 3 ium) diiodide [DEA -M BI](I)2 (3 -4 ).

PAGE 66

66 3.2 Experimental Section 3.2 .1 GC A nalysis of C hiral 9,1 0 -Dihydro -9,10-Ethanoanthracene -11,12-D i amine (3 -1) Synthesis of racemic and enantioenriched diamine 3 -1 was ac hieved via literature methods.154, 155 Resolved diamine 3 -1 was then dissolved in CH2Cl2 and a few drops of trifluoroacet ic anyhydride were added. The solution was concentrated and dissolved in acetone. Enantiopurity of ( R ) 3 -1 and ( S ) 3 -1 was measured by gas chromatography Column: Chirasil Val; oven temperature: start 100 C for 2 min, increase by 10 C/min until 180 C, hold for 20 min. tR: (S,S ): 22.4 min; ( R,R ) : 25.1 min. All sample s were found to be greater than or equal to 95% enantiomerically pure. 3.2.2 Synthesis of Trans -1,1' -(9,10-Dihydro -9,10-Ethanoanthracene -11,12-Diyl)di(1H I midazole) (3 -2) Glyoxal (6 mL of 40% aqueous solution, 2 equiv., 51.6 mmol) was added t o a methanol solution (40 mL) containing diamine 3 -1 (6.1 g, 25.8 mmol). The solution immediately turned bright yellow and became warm forming a light yellow precipitate. The mixture was stirred for 16 h. Additional MeOH ( 40 mL) was added, followed by solid NH4Cl (5.52 g, 4 equiv., 103.4 mmol) and formaldehyde ( 7.7 mL of 37% solution in water, 4 equiv., 103.4 mmol). The resulting mixture turned dark orange and was heated at reflux for 4 h. Phosphoric acid (7.1 mL of 85% solution in water, 4 equiv., 103.4 m mol ) was added slowly and the resulting mixture was heated at reflux for 16 h. The mixture was cooled to room temperature and volatiles were removed. Dichloromethane was added and the mix ture was basified to pH 14 with 2.5 M NaOH solution. The organic extract was dried over sodium carbonate, filtered, and concentrated to a sticky red oil consisting of roughly a 1:1 mixture of the desired diimidazole 3 -2 and a partially reacted monoimidazo le/amine compound.103 Diimidazole 3 -2 was isolated by flash column chromatography using 5% MeOH in CHCl3 as the eluent. Chromatography produced pure 3 -2 as

PAGE 67

67 a beige colored solid ( 1.03 g, 12%) 1H NMR ( 300 MHz, CDCl3) ppm : 7.43 7.50 (m, 2 H, Ar ), 7.22 7.35 (m, 6 H, Ar ), 7.08 (t, J= 1.1 Hz, 2 H, NC H CHN), 6.92 (t, J= 1.1 Hz, 2 H, NCHC H N), 6.17 (t, J= 1.4 Hz, 2 H, NC H N), 4.49 (2 overlapping s, 4 H, bridge and bridgehead H) 13C NMR (75.3 MHz, CDCl3) (ppm): 140.39 (N C H=N), 138.16 and 136.16 ( C= C), 129.79 (C aro matic), 127.67 ( C aromatic, overlapping signals), 126.63 ( C aromatic), 124.32 (N CH =NC H = CH) 117.10 (N CH =N CH = CH) 64.67 (N -CH CH C=), 50.78 (N CH -CH C=). HRMS (CIP CI) calcd (found) for C22H19N4 (M+H)+ 339.1610 (339.1649). 3.2.3 Synthesis of Trans -1,1' (9,10-Dihydro -9,10-Ethan oanthracene -11,12-Diyl)di(3 Methyl -1H -Imidazol -3 -Ium) D iiodide [DEA -MI](I)2 (3 -3 ) Diimidazole 3 -2 (1.0 g, 2. 96 mmol) was dissolved in anhydrous MeCN ( 2 5 mL) in a glass ampoule fitted with a sealable Teflon stopcock. MeI ( 0 .7 4 mL, 4 equiv., 11.8 mmol) was added and the flask was evacuated then sealed under vacuum. The flask was shielded from light and was heated in a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the precipitate was filt ered and washed with cold MeCN to produce 3 -3 as a n off -white solid; yield (1. 41 g, 77%). 1H NMR (300 MHz, (CD3)2SO ) ppm : 8.93 (br. s, 2 H, NC H N), 7.68 (t, J= 1.7 Hz, 2 H, NC H CHN), 7.62 (d, J= 7.1 Hz, 2 H, Ar ), 7.33 7.43 (m, 4 H, Ar ), 7.23 7.31 (m, 2 H, Ar ), 6.60 (t, J= 1.5 Hz, 2 H, NCHC H N), 5.48 (br. s, 2 H, bridge H), 5.05 (br. s, 2 H, bridgehead H), 3.82 (s, 6 H, C H3) 13C NMR (75.3 MHz, (CD3)2SO ) (ppm): 139.1 and 137.3 (C= C), 136.7 (N CH=N), 127.6 (C aromatic), 127.5 (C aromatic), 126.3 (C aromatic), 125.5 (C aromatic), 123.6 (N CH =NC H = CH ), 119.7 (N CH =N CH = CH ), 63.0 (N CH CH -C=), 48.3 (N CH -CH C=), 36.1 (N CH3). HRMS (FIA -ESI) calcd (found) for C24H24IN4 (M I)+ 495.1040 (495.1040).

PAGE 68

68 3.2.4 Synthesis of Trans -1,1 -(9,10-Dihydro -9,10-Ethanoanthracene -11,12-Diyl)di(3 -Methyl 1H -Benzimidazol -3 -Ium) D iiodide [DEA -MBI](I)2 (3 -4 ) Dibenzimidazole103 (970 mg, 2.2 mmol) was dissolved in anhydrous MeCN ( 10 mL) in a glass ampoule fitted with a sealable Teflon stopcock. MeI ( 0.55 mL, 4 equiv, 8.8 mmol) was added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the solid was filtered and washed with cold MeCN to afford 3 -4 as a light beige powder ; yield 1.05 g (66%). 1H NMR ( 300 MHz, (CD3)2SO ) ppm : 8.85 (s, 2 H NC H N ), 7.99 8.07 (m, 2 H Ar ), 7.82 7.92 (m, 4 H Ar ), 7.66 7.77 (m, 4 H Ar ), 7.47 (td, J= 7.5 1.13 Hz, 2 H Ar ), 7.27 (td, J= 7.4 0.99 Hz, 2 H Ar ), 7.15 7.22 (m, 2 H Ar ), 5.99 (s, 2 H bridge H ), 5.16 (s, 2 H bridgehead H ), 3.92 4.01 (m, 6 H C H3) 13C NMR (75.3 MHz, (CD3)2SO ) (ppm): 140.5 (N= CH N), 138.5 and 137.5 ( C=C ), 131.3 and 130.6 (N C= C-N), 127.8 ( C aromatic), 127.7 ( C aromatic ), 126.8 ( C aro matic), 126.8 ( C aromatic ), 126.6 ( C aromatic), 126.2 ( C aromatic), 114.2 and 113.7 (N CCH CH CH CHC N), 61.3 (N CH CH -C=), 48.0 (N CH -CH C=), 33.8 (N C H3). HRMS (ESI FTICR) calcd (found) for C32H28IN4 (M I)+ 595.1353 (595.1272). 3.2.5 Synthesis of Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 (1 M ethyl) Bibenzimidazole), DEA MbBY (3 -5 ) KN(TMS)2 (116 mg 0.58 mmols) in 5 mL of dry THF was added drop wise to a 10 mL THF solution of 3 -4 (200 mg 0.27 mmol ). The reaction was allowed to stir at room temperature for 3 h and then filtered. Solvent was removed from the filtrate in vacuo to produce a yellow powder. Excess base was extracted by washing the yellow precipitate with Et2O (10 mL) to afford 3 -5 as a yellow solid ; yield 53 mg (40% ). 1H NMR (300 MHz, C6D6) ppm: 6.95 (m, 12 H, Ar ), 6.77 (dt, J = 7.5, 1.1 Hz, 2 H, Ar ), 6.39 (dd, J = 7.5, 1.0 Hz, 2 H, Ar ), 4.95 (s, 2 H, bridgehead C H ), 3.40 (s, 2 H, bridgehead C H ) 2.63 (s, 6 H, NC H3). 13C NMR (75.3 M Hz, C6D6)

PAGE 69

69 ppm: 145.5 and 138.28 (NC CH CHCH CHCN ), 144.0 and 139.2 (N -C= C -N), 127.4 (C, Ar ), 126.9 (C, Ar ), 126.4 (C, Ar ), 123.9 (C, Ar ), 122.8 (C= C), 121.5 (C, Ar ), 119.8 (C, Ar ), 109.1 and 106.9 (NCCH CH CHCHCN), 65.9 (NCH CH C), 46.6 (N C HCH C), 36.2 (N C H3). MS(DIP -CI): Calc. for [C32H26N4]: m/z 466.5564 [M+], found m/z 466.2157. The molecular structure of 3 -5 as determined by X ray crystallography is displayed in Figure 3 7 crystals were grown by a diffusion of ether into a THF solution containing the compound. 3.2.6 Synthesis of [ DEA MY][Rh(NBD)I]2 (3 -6 ) as a M ixture with 3 -9 At 35 C, KN(TMS)2 (46 mg, 0.23 mmol) in 3 mL dry THF was added drop wise to a suspension of 3 -3 (76 mg, 0.12 mmol) in THF (3 mL) The reaction mixture was then stirred for 45 min while warming to room temperature. After cooling the mixture to 35 C, it was added dropwise to a cold solution of [Rh(NBD)2]BF4 (100 mg, 0.27 mmol) in THF (3 mL) This mixture was allowed to stir at room temperature for 2.5 h before the solvent was removed in vacuo The resulting residue was triturated with Et2O (2x3 mL) and pentanes (2x3 mL). After drying o vernight, the residue was taken up in pentanes, filter ed and then washed with Et2O and extracted into benzene. The solvent was removed, producing a yellow/orange solid (53 mg). A 1H NMR spectrum of the solid revealed 25 mol% of 3 -9 was present as an impurity that could not be removed. 1H NMR ( 300 MHz, C6D6) ppm : 7.85 (d, JHH = 7.1 Hz, 2ArH ) 6.86 7.11 (m, 6ArH ), 6.41 (s, 2bridge H ), 5.91 (d, JHH = 1.7 Hz, NC H CHN ) 5.77 (d, JHH = 1.7 Hz, NCHC H N ), 5.48 (s, 2bridgehead H ), 5.19 (br s, 2 NBD -CH ), 5.05 (br s, 2 NBDCH ), 3.38 ( br s, 2 NBD CH ), 3.28 (s, 6C H3), 3.12 (d, JHH = 2.3 Hz, 2 NBD -CHCH CH) 2.89 (br. s., 2 NBD -CH) 1.64 (d, JHH = 2 .5 Hz, 2NBD CHCH CH) 0.96 (m 4 NBD CH2). The molecular structure 3 -6 as determined by X ray crystallography is displayed in Figure 3 8 crystals were grown by diffusion of ether into a THF solution containing the compound

PAGE 70

70 3.2.7 Synthesis of [ DEA MBY][Rh(diene)Cl]2 (3 -7 ) as a M ixture with 3 -8 Dibenzimidazolium salt 3 -4 (54 mg 0.07 mmol), KN(TMS)2 (28 mg 0.14 mmol), and [Rh(COD)Cl]2 (44 mg 0.09 mmol) were weighed into separate 20 mL vials and suspended in 3 mL of dry THF. After the reagents were cooled to 35 C, the KN(TMS)2 solution was added drop wise to the salt suspension. The reaction mixture was allowed to warm to room temperature for 45 min before being co oled again to 35C. The react ion mixture was then added dropwise to the cold [Rh(COD)Cl]2 suspension which was then allowed to warm to room temperature for 1 h while stirring The solvent was removed in vacuo and the residue was triturated with Et2O (2 x3 mL) and pentane (2x3 mL). The residue was taken up in pentanes and filtered, washed with Et2O, and extracted into benzene. A yellow/orange solid was obtained upon solvent removal. The solid material consists of ~33% 3 -7 -COD and 67% 3 -8 The mixture obtained prevented meaningful assignment of NMR spectral signals. To remedy this problem the analogous 3 -7 NBD was synthesized in hopes of generating a larger percentage of the dinuclear species. Synthesis of 3 -7 -NBD : Dibenzimidazolium salt 3 -4 (53 mg 0.07 mmol ), KN(TMS)2 (28 mg 0.14 mmol ), and [Rh(NBD)2]BF4 (60 mg 0.16 mmol ) were weighed into separate 20 mL vials and suspended in 3 mL dry THF. The reagents were cooled to 35 C and KN(TMS)2 was added drop wise to the salt suspension, stirred at room temperature for 45 min, and cooled again to 35 C. The reaction mixture was then added drop wise to the cold [Rh(NBD)2]BF4 suspension and allowed to warm while stir ring at room temperature for 1 h. The solvent was removed in vacuo and the residue was tri turated with Et2O (2x3 mL) and pentane (2x3 mL). The residue was then taken up in pentanes and filtered, washed with Et2O, and extracted with benzene. A yellow/orange precipitate (41 mg) was produced upon solvent removal which consisted of 48% 3 -7 -COD an d 52% 3 -8 -NBD 1H NMR ( 300 MHz, C6D6) ppm: 8.09 ( d, JHH = 7.4 Hz, 2ArH ),

PAGE 71

71 7.80 (2 H, s) 7.04 7.10 ( m, 2 ArH) 6.63 6.83 ( m, 10ArH) 6.49 6.56 ( m, 2 ArH) 5.98 (s, 2 bridge H ), 5.70 (s, bridgehead H ) 5.25 ( t, JHH = 4.0 Hz, 2 NBD -H C=CH), 4.81 (t, JHH = 4.0 Hz, 2 NBD H C=CH), 4.41(m, 2 NBD HC=CH ), 3.62 (m, 2 NBD HC=CH ), 3.56 (br s 6 CH3) 3.04 (m, 2 NBD CHCH CH), 1.52 (m, 2 NBD CHC H CH), 0.74 (d, JHH = 8.5 Hz, 2 NBD -H CH), 0.60 (d, JHH = 8.2 Hz, NBD HC H ) The molecular structure of 3 -7 -COD as determined by X -ray crystallography is displayed in Figure 3 9 crystals were grown by diffusion of pentane into a methylene chloride solution containing the compound and THF 3.2.8 Synthesis of the R hodium (I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Methylbenzimidazolidine 2 Y lidene ) Cyclooctadiene I odide, [(DEA MBY)Rh(COD)]I (3 -8 ) Dibenzimidazolium salt 3 -4 (100 mg 0.14 mmol) was suspended in 5 mL THF and stirred overnight. At 35 C, KN(TMS)2 (53 mg 0.2 6 mmol ) in 3 mL THF was added dropwise to the salt suspension and allowed to warm to room temperature and stir for 1 h. After cooling the solution to 35 C, [Rh(COD)Cl]2 (34 mg 0.07 mmol ) in 3 mL THF was then added dropwise to the reaction and allowed to stir for 1 h at room temperature. The reaction mixture was allowed to stir at room temperature overnight and the resulting solid was filtered, washed wit h Et2O and extracted with CHCl3 to provide [(DEA MBY)Rh(COD)]I 3 8 as a yellow powder ; yield 59 mg (53%). 1H NMR ( 500 MHz, CDCl3) ppm: 9.26 (d, J= 10.0 Hz, 16), 7.81 (d, J = 7.0 Hz, 11), 7.72 (d, J = 7.1 Hz, 8 ), 7.63 (d, J = 7.3 Hz, 5 ), 7.50 7.52 (m, 10, 18, 21), 7.44 (m, 9 ), 7.38 (m, 18 & 19), 7.32 (m, 2, 4, 29), 7. 20 (m, 3 & 28), 7.04 (m, 27), 6.95 (d, J= 8.2 Hz, 26), 5.19 (s, 14), 5.16 (s, 13), 5.13 (m, 39), 4.55 (m, 38), 4.45 (s, 24 CH3), 4.36 (dd, J = 9.9, J = 0.7 Hz, 15), 4.29 (m, 34), 3.95 (s, 32 CH3), 3.83 (m, 35), 2.72 (m, 33 & 40), 2.30 (m, 33), 2. 23 (m, 37 CH 2), 2. 16 (m, 40), 1.74 (m, 36), 1.31 (m, 36). 13C NMR (75.3 MHz, CD3Cl) ppm: 193.6 (d, JRhC = 54.1 Hz, 31),191.4 (d, JRhC = 52.4 Hz, 23), 146.6 ( s, 6 ), 144.1 (s, 7 ), 138.4 ( s,

PAGE 72

72 12), 136.6 ( s, 30), 136.0 ( s, 22), 135.7 ( s, 1 ), 131. 6 (s, 25), 128.3 (s, 10), 128.1 (s, 9 ), 127. 7 ( s, 4 ), 127. 6 (s, 2 ), 127. 4 ( s, 3 ), 127.0 (s, 11), 124.6 (s, 19), 12 4.4 ( s, 20), 12 4.1 ( s, 8 ), 123. 9 (s, 27), 123.6 (s, 28), 122.2 ( s, 5 ), 111.6 (s, 21), 111.5 (s, 29), 111.4 (s, 26), 110.5 (s, 18), 94.2 ( d, JRhC = 8.3 Hz, 35), 91.7 ( d, JRhC = 7.7 Hz, 39), 90.9 ( d, JRhC = 7.2 Hz, 34), 90.1 ( d, JRhC = 7.7 Hz, 38), 65.9 (s, 16), 62. 3 (s, 15), 49.2 (s, 13), 48.1 (s, 14 ), 39.6 (s, 24), 35. 7 (s, 32), 30. 9 (s, 37), 30.7 (s, 33), 30.6 (s, 40), 29.8 (s, 36). Numbering correlates to X ray Crystal structure (Figure 3 10) Anal. Calc. for C40H38N4IRh plus one molecule CH2Cl2: C, 55.36%; H, 4.53%; N, 6.30%. Found: C, 55.06%; H, 4.56%; N, 6.17%. The molecular structure of 3 -8 as determined by X ray crystallography is displayed in Figure 3 10, crystals were gro wn by diffusion of ether into a methylene chloride solution containing the compound The equilibrium geometry of 3 -8 as calculated by ground -state geometry optimization calculations using the hybrid density functional B3LYP156 with the LANL2DZ157160 basis set utilizing effective core potentials (ECP) for the core rhodium elect rons is displayed in Figure 3 11. All calculations reported in this manuscript wer e done using the Gaussian161 p rogram. 3 .2.9 Synthesis of R hodium(I) Trans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Methylimidazolidine 2 Ylidene C yclooctadie ne I odide, [(DEA MY)Rh( COD)]I (3 -9 ) Diimidazolium salt 3 -3 (100 mg 0.16 mmol ) was suspended in 3 mL dry THF and stirred overnight. At 35C, KN(TMS)2 (61 mg 0.31 mmol) in 3 mL of dry THF was added dropwise to the salt suspension and allowed to stir at room temperature for 1.5 h. At -35 C a solution [Rh(COD)Cl]2 (40 mg 0.08 mmol) in 3 mL of dry THF was added dropwise to the salt suspension and allow ed to stir for 1.5 h. A precipitate formed that was filtered and washed with Et2O to afford 3 -9 as a yellow powder ; yield 99 mg (87%). 1H NMR ( 300 MHz, CDCl3) ppm: 8.23 (dd, J = 7.5, 1.0 Hz, H16 ), 7.84 (d, J = 1.7 Hz, NC H =CHN), 7.74 ( dd, J = 6.4 1.8 Hz CCHCH CHCHC ), 7.58 (dd, J = 6.4, 2.1 Hz, CCHCHC H CHC), 7.52 ( dd, J = 7.1 1.1 Hz,

PAGE 73

73 CCHCHCH CHC ), 7.46 (dd, J = 6.9, 1.0 Hz, CCHC H CHCHC), 7.11 7.39 (overlapping signals, 5 H, Ar and NCH=C H N), 6.96 (d, J = 2.0 Hz, NC H =CHN), 6.69 (d, J = 1.7 Hz, NC H =CHN), 5.17 (d, J = 1.1 Hz, NCHC H C), 4.87 (overlapping d and m, J = 0.6 Hz, NCHC H C and COD CH ), 4.15 (m, COD CH ), 4.03 (s, CH3), 3.73 (m, 2 COD CH ), 3.64 (s, CH3), 3.62 (dd, J = 1.4 Hz, 15), 2.44 2.66 (m, 1 COD CH2), 2.18 2.41 (m, 2 COD CH2), 1.98 2.17 (m, 1 CO D -CH2), 1.69 1.98 (m, 3COD -CH2), 1 .47 1.68 (m, 1COD -CH2). 13C NMR (75.3 MHz, CDCl3) ppm: 180.1 (1 C, d, JRhC = 54.7 Hz, N CN), 179.3 (1 C, d, JRhC = 52.7 Hz, N CN), 143.7 (C, Ar ), 142.6 (C, Ar ), 136.9 (C, Ar ), 136.1 (C, Ar ), 128.6 (C, Ar ), 127.8 (C, Ar ), 127.7 (C, Ar ), 127.4 (C, Ar ), 127.2 (C, Ar ), 126.9 (C, Ar ), 125.1 (C, Ar ), 125.0 (N CHCHN), 124.7 (NCH CHN), 123.7 (N CHCHN), 122.4 (C, Ar ), 115.9 (NCH CHN), 92.6 (d, JRhC = 8.6 Hz, COD CH), 88.3 (d, JRhC = 7.4 Hz, COD CH), 87.9 (d, JRhC = 8.3 Hz, COD CH), 85.8 (d, JRhC = 7.4 Hz, COD CH), 66.5 (s, CH CHN), 63.7 (s, CH CHN), 48.5 (s, C CHC), 47.7 (s, C CHC), 40.8 (s, N C H3), 37.5 (s, N CH3), 32.5 (s, COD CH2), 31.8 (s, COD CH2), 29.0 (s, COD CH2), 28.0 (s, COD -CH2). Anal. Calc. for C32H34N4IRh: C, 54.56%; H, 4.86%; N, 7.95%. Found: C, 54.47%; H, 4.72%; N, 8.25%. The molecular structure of 3 -9 as calculated by ground -state geometry optimization calculations using the hybrid density functional B3LYP156 with the LANL2DZ157 160 basis set utilizing effective core potentials (ECP) for the core rhodium electrons is displayed in Figure 3 12. 3.3 Results and Discussion 3.3.1 Constrained P recursors [DEA -MI](I)2 (3 -3 ) and [D EA -MBI](I)2 (3 -4 ) Synthesis of the constrained 9,10 dihydro9,10 -ethanoanthracene (DEA) ligands requires assembly of each azole onto the diamine 3 -1 S ynthesis of 3 -1 was achieved using three different procedures. Initially 3 -1 was synthesized from a di -carboxylic acid via a literature preparation reported by Trost et al.154 A similar procedure reported by Lennon et al.155 enabled the formation of 3 -1 via a multi -step one -pot synthesis beginning from anthracene. The initial

PAGE 74

74 step in this procedure is the formation of a diacid chloride T o avoid formation of a dicarboxilic acid by hydrolysis, the reaction procedure was slightly modified .162 Both ( R,R ) and ( S, S ) 3 -1 are available through resolution of diastereotopic salts formed from (S ) and ( R ) -mandelic acid, respectively.155 The enantiopurity of c hiral 3 -1 was tested by g as c hromatography ( Section 3.2.1 ) and found to be no less than 95% enantio p ure. T he synthesis of diimidazolium salt [DEA MI](I)2 (3 -3 ) was accomplished by adaptation of a known procedure for generating monoimidazoles (Figure 3 2) .163, 164 The procedure was found to form an equimolar mixture of the desired diimidazole 3 -2 and an imidazole amine. The products are separated and purified by repeated column chromatography. Subsequent formation of 3 -3 required alkylation of 3 -2 by heating with methyli odide in dry acetonitrile over two days. A 1H NMR spectrum of [DEA -MI](I)2 (3 -3 ) revealed a singlet at 3.82 ppm and is assigned to the methyl protons. The imidazolium proton (N CH N) is located downfield at 8.93 ppm and the olefinic protons of the heterocycle appear as a multiplet at 7.6 7 ppm and as a doublet of doublets at 6.60 ppm ( J = 1.5 Hz). Noteworthy in the 13C{1H} spectrum of 3 -3 is the imidazolium carbon (N CH N), which appears downfield at 136.8 ppm. Figure 3 3 illustrates the procedure used to synthesize the related dibenzimid azolium derivative The benzimidazole was constructed using a modified procedure for the conversion of a primary amine into the corresponding benzimidazole.143 Reaction of d iamine 3 -1 with two equivalents of 2 -fluoronitrobenzene in DMF followed by precipitation via water addition results in the formation of the brilliant orange dinitroamine Initially the dinitroamine was reduced with H2 (1 atm over Pd/C) to yield the tetraamine af ter seven d ays However, upon further investigation i t was determined that the reaction could be accomplished overnight at 40 bar H2 pressure.165 The reaction endpoint is signa led by dissipation of the brilliant yellow orange color

PAGE 75

75 of dinitroamine compound Cyclization to form the neutral dibenzyl imidazole was achieved by reaction of tetraamine with t riethylorthoformate T he dibenzimidazolium salt [DEA -MBI](I)2 (3 -4 ) was formed via reaction of the dibenzylimidazole103 with MeI in dry acetonitrile carried out in a sealed flask over two days The 1H NMR spectrum of 3 -4 revealed two singlets at 3.96 ppm and 8.85 ppm, which are assigned to the methyl and imida zolium (NC H N) protons, respectively. Consistent with Karplus theory,166 singlets manifest from adjacent p rotons on the bridge and bridgehead carbons (bridge = 5.16 ppm, bridgehead = 5.99 ppm) rather than doublets, due to a torsion angle of approximately 90. 3.3.2 Synthesis and Characterization of DEA -MbBY ( 3 -5 ) The first step in the formation of most NHC complexes is deprotonation of the imidazole precursor. Deprotonation of 3 -4 was accomplished by treatment with 2.1 equiv of KN( TMS )2 in THF ( Figure 3 4 ). U pon isolation, the deprotonated product was found to be enetetramine 3 -5 which was isolated in 40 % yield as a canary yellow solid. F ormation of these electron -rich olefins from benzimidazole or saturated im i dazole moieties is relatively common along with their subsequent utiliz ation as precursor s to bis NHC TM complexes .96, 120, 167 Both steric and electronic factors influence the relative stability of these dimers.168, 169 As discussed in C hapter 2, unsaturated imidazoles do not tend to dimerize although a rare example has been reported.170 The ability of saturated imidazoles and benzimidazoles to form dimers is correlated with a smaller HOMO -LUMO gap in these species relative to the unsaturated imidazoles.171, 172 The steric bulk of the exocyclic N -substituents plays a key role in d etermining the stability of saturated imidazol e and benzimidazole free carbene species.168 Small subst ituents result almost exclusively in enetetraamine formations for saturated imidazoles; however, unbridged benzimidazoles with small nitrogen substituents can display an observable equilibrium between the enetetraami ne and free carbene species.173 Resonances

PAGE 76

76 associated with a free carbene species are not observed i n either the 1H or 13C NMR spectra of 3 5 In the case of unbridged azoles entropy considerations are expected to favor the free carbene by as much as 10 kcal/mol.174 The much sma ller loss in entropy associated with intramolecular dimerization may be the reason an equilibrium between the two species is not observed. The mechanism by which carbenes dimerize has been investigated using both experimental and computational methods .174176 These reports suggest two mechanism s for intermolecular dimer formation. D irect carbene + carbene dimerization through a non least motion attack of the nucleophilic -orbital on the empty p-orbital of a neighboring carbene is possible when all proton sources are rigorous ly excluded from the system Proton -catalyzed dimerization is suggested for reactions in which any proton source is available. Nucleophilic attack of a free carbene on a neighboring imidazole followed by deproton ation typically by another carbene, has been found to be a lower -energy process in many cases. Since the free carbene species is never isolated for 3 -5 the proton -catalyzed mechanism is most likely responsible its formation The absence of an imidazolium proton resonance at 8.85 ppm in the 1H NMR spectrum of 3 -5 indicated that deprotonation was complete Conclusive evidence of the enetetramine formation was provide d by 13C{1H} NMR spectroscopy. Free NHC carbons resonate within the range of 205 to 245 ppm, whereas enetetramine carbons are shifted well upfield.96 The 13C{1H} NMR spectrum of 3 -5 revealed a distinct resonance at 122.8 ppm, and is assigned to the newly formed double bond (N2C=C N2). Further evidence for the formatio n of an enetetramine was gathered by single -crystal X ray diffrac tion that will be discussed in S ection 3.3.5 3.3.3 Synthesis and Characterization of [ -DEA-MY][Rh(NBD)I]2 (3 -6 ) and [ DEA MBY][Rh(COD)Cl]2 (3 -7 -COD) The bimetallic complexes [ DEA -MY][Rh(NBD)I]2 (3 -6 ) and [ DEAM Y][Rh(COD)Cl]2 (3 -7 -COD) were synthesized in THF by first treating 3 3 and 3 -4 with

PAGE 77

77 KN(TMS)2 to generate the corresponding enetetramine and free di NHC, respectively, followed by addition of metal substrate. The complexes were obtained a s mixtures with the corresponding mononuclear species which complicated analysis (Figure 3 5) The molecular structures of 3 -6 and 3 -7 -COD were confirmed by single -crystal X -ray crystallography and are presented in Figure s 3 8 and 39 3.3.4 Synthesis and Characterization of [(DEA -MBY)Rh(COD)]I (3 -8 ) and [(DEA MY)Rh(COD)]I ( 3 -9 ) Treatment of the dibenzimidazolium salt 3 -4 at 35 C, with 2.1 equiv. of KN(TMS)2 followed by 0.5 equiv. of [Rh(COD)Cl]2 in THF, resulted in precipitation of crystalline yellow 3 8 in 53% yield (Figure 3 6). The absolute assignment of each proton and carbon is accomplished by gDQCOSY gHMBC and NOESY two -dimensional NMR techniques. Similar to compound 2 -3 in solution th e chelated complex 3 -8 displays C1 symmetry. The low symmetry is demonstrated by nonequivalent methyl resonances observed at 4.46 ppm and 3.95 ppm. A distinct but unexpected doublet is observed downfield at 9.26 ppm ( J= 10 Hz). Using two dimensional NMR analysis this proton was assign ed to one of the aliphatic proton s on the bridge It is coupled to the other bridge proton that resonates upfield, at 4.36 ppm ( J= 10.2 Hz). In the 1H NMR spectrum of monometallic complex 2 -3 t he aliphatic bridge protons are also separated (by 3 ppm ) but the most downfield proton appears at 4.40 ppm The unusual position of the resonance at 9.26 ppm suggested that the bridge proton is in very close proximity to the rhodium center. The formati on of chelate species 3 -8 rather than a bridging 2:1 complex, does not conflict with the stud ies presented earlier that suggested a ligand with a two carbon linker should form a bridging species As stated previously, deprotonation of 3 -4 results in form ation of enetetramine 3 -5 thereby positioning the two heterocycle moieties in close proximity, akin to a

PAGE 78

78 transmetallation reagent. Lappert commonly utilized these electron rich olefins as NHC precursors.96 In Lapperts systems, i nsertion of a metal into the C=C bond required temperatures well above 100 C. The formation of complex 3 -8 at room temperature is due to the strain induced by the dihydroethanoanthracene backbone. It is also plausible that the conformation of the backbone promotes chelating species because it allows the azole rings to orient al ong the z axis of the metal. Synthesis of chelate 3 -9 from imidazolium salt 3 -3 is accomplished using the same procedure as described for 3 -8 Complex 3 -9 is obtained as a yellow powder in 87% yield. T he compound was characterized by 1H and 13C{1H} NMR spectroscopy. C1-symmetry is again evidenced clearly by nonequivalent methyl resonances at 4.03 ppm and 3.64 ppm. The downfield aliphatic proton in the bridge position resonates at 8.23 ppm, which is upfield relative to compound 3 -8 Presumably the rhodium ion rests farther away from the bridge proton in 3 -9 resulting in the upfield shift. This may be due to a more relaxed configuration created by the smaller imidazole heterocycles. Presumably, deprotonation of 3 -3 forms a free di NHC intermediate, un restrained except by the rigid ethanoanthracene backbone. Although the rigid backbone may play a significant role in chelate formation, a significant amount of bridging 2:1 compound should be formed. However, these results should not be interpreted as a contradiction to the investigations reported in the introduction but rather as supporting the need for thorough investigation of each new ligand system instead of attempting to generalize the findings of a specific investigation. 3. 3 5 X -ray A nalysis of DEA -MbBY ( 3 -5 ) The structure of racemic 3 -5 was confirmed by single -crystal X ray cryst allography and is presented in Figure 3 7 Two independent molecules possessing the same stereochemistry are

PAGE 79

79 found in the asymmetric unit and are related to the opposit e enantiomer via an inversion center. Only one molecule is presented in Figure 3 7, but the metric parameters are similar for all like species. For example, the C=C double bond for each independent molecule is 1.3426(19) and 1.3416(19) similar to th at observed previously for a derivative featuring a two -carbon expanded ring.120 All four nitrogen atoms are pyramidalized (C N Cavg = 116.07(13)), indicating significant loss of aromaticity, and representative of an sp3hybridized nitrogen. In viewing the molecule from the top ( Figure 3 7 -B) it is clear the methyl groups are bent out of the plane created by the four nitrogen atoms. The benzimidazole groups are nearly coplanar, separated by only 15 resulting in an incredibly small torsion angle N1 C16 C15 N3 of 76.6(1) 3. 3.6 X -ray Analysis of Bimetallic C omplexes [ -DEA -MY][Rh(NBD)I]2 (3 -6) and [ -DEA MBY][Rh(COD)Cl]2 (3 -7 -COD) Each bimetallic complex features a ligand that bridges two separate distorted square -planar rhodium centers via a Rh -carbene bond. The coordination spheres are completed by a halid e (Cl, 3 -7 ; or I, 3 -6 ) and a chelating diene (NBD, 3 -6 ; and COD, 3 -7 ). As expected, in 3 -6 the average bond distance between the Rh and alkene carbons opposite the Rh-NHC (d(Rh CtransNHC) = 2.2125(6) ) are elongated by 0.116(6) compared to those opposite the I (d(Rh CtransI) = 2.097(6) ). T he relatively small -donor strength of benzimida zolidynes versus imidazolidynes imparts a similar difference (0.109(6) ) in the Rh alkene bond in complex 3 -7 In fact, the average Rh NHC bond l engths between 3 -6 (d(Rh NHCavg = 2.018(4) ) and 3 -7 (d(Rh NHCavg = 2.007(3) ) differ only by 0.011(5) Unfortunately, the variations in trans influences of Cl versus I and NBD versus COD precludes a meaningful comparison. Within 3 -6 the rhodium iodide bonds are divergent and preserve the ligand C2-symmetry, whereas in 3 -7 the solid -state symmetry is broken by rotation of one RhCl bond inward. The

PAGE 80

80 inward rotation results in a 3.332 separation between Cl1 and the centroid of the he terocycle. Though packing forces cannot be ruled out, a beneficial interaction between the chloride lone Interestingly, the torsion angle N2 C15 C16 N4 for 3 -6 is 106.0(4) but the addition of s teric bulk on the azole backbone reduces the angle by 8 in 3 -7 (N1 -C16 C15 N3 = 98.3(2) ). 3.3.7 Structural Analysis of Monometallic Complexes [(DEA -MBY)Rh(COD)]I ( 3 -8 ) and [(DEA -MY)Rh(COD)]I (3 -9 ) Confirmation of the identity and orientation of 3 -8 is obtained with a single crystal X ray diffraction experiment. Figure 3 10 displays the solid-state structure of 3 -8 and selected bond leng ths and angles can be found in T able 3 4 The C1-symmetric complex is comprised of a slightly distorted square -p lanar Rh(I) ion chelated by COD and the di NHC. The asymmetric coordination is clear from the M carbene bond lengths of 2.033(4) and 2.051(5) for C23Rh1 and C31Rh, respectively. The constrained ligand forces a small bite angle between the NHC group s and the Rh (I) ion ( C23 Rh1 C31 = 84.14(17)). The most remarkable feature of the structure is that upon chelation, the benzimidazole rings force the torsion angle between N1 C15 C16 N3 to contract to a miniscule 68.8(5) In accordance with the 1H NMR resonance at 9.26 ppm for H16, a close Rh-C16 interaction is evident (d(Rh1 C16) = 3.033(4) ), though crystallographic data does not warrant the assignment of an agostic interaction. Instead, the rhodium center is fortuitously placed above H16 due to th e natural twist of the molecule. Unfortunately, a single crystal of X ray quality could not be obtained for 3 -9 To compare the two structures the aid of Jason Swails was enlisted to perform ground state geometry optimization calculations using the hyb rid density functional B3LYP156 with the LANL2DZ157160 basis set utilizing effective core potentials (ECP) for the core rhodium electrons. The crystal structure of 3 -8 was used as a sta rting point. Geometry optimization of this structure produced

PAGE 81

81 an almost identical structure (3 -8 -calc ) to that obtained by X ray c rys tallography. The root mean square deviation ( RMSD ) for the two structures was 0.168 meaning that the average difference between locations of the same atom is less than 0.2 Table 3 6 lists selected bond lengths and angles for the calculated 3 -8 -calc and X ray crystal structure 3 -8 The C31RhC23 is approximately a degree larger in the gas phase calculation and the torsion angle is extended by a little more than a degree. The aryl rings of the benzimidazole, C18 through C21 and C26 through C 29 were subsequently replaced by two imidazole protons to form structure 3 -9 The gas phase equilibrium geometry structure of 3 -9 is shown in Figure 3 11. Visual inspection (Figure 3 11) reveals little alteration relative to the structure calculated for 3 -8 ; howe ver, comparison of selected metric parameters shows di stinct architectural variations (Table 3 7 ). The two N C N angles of 3 -9 calc are two degrees smaller than in 3 -8 -calc which is also seen in comparison of the X ray structures for the bimetallic speci es. The reduced steric bulk on the back of the imidazole allows the chiral pocket to expand significantly. The distance from the Rh ion to the bridge proton H16 is approximately the same i n the two calculated structures. H owever, when the two structures are overlaid, a distinct increase in the tilt angle of the imidazoles can be seen relative to the tilt angle for the benzimidazole structure (Figure 3 12). The ethanoanthracene backbones (C1 C14) are aligned resulting in an RMSD of 0.0485 between the backbone atoms. The RMSD of the remaining atoms in common between the two molecules is 0.7870 Reducing the bulk on the back of the azole permits the rhodium center to shift up and away from the aryl backbone. The aryl ri ng of the backbone aids in the definition of the chiral pocket; therefore, the shift of the rhodium center away from the backbone increases the flexibility of the ligand and reduces the definition of the chiral pocket. Comparison of the distance from the bottom of the

PAGE 82

82 cyclooctadiene ring to the aryl ring below shows a more than 0.5 increase in the size of the chiral pocket for 3 -9 -calc relative to 3 -8 -calc The largest difference between the two structures is the 10 expansion of the torsion angle N1 -C1 5 C16 N3 for 3 -9 3.4 Conclusions This chapter presented the structural analysis of the mono and bimetallic Rh(I) complexes supported by the two secondgeneration C2 symmetric chelating di N heterocyclic carbene ligands based upon a trans ethanoanthracene backbone. The direct attachment of the NHC units to the DEA backbone reduced the size of the chiral pocket and increased the definition. A mixture of X ray diffrac tion data and computational ground state configurations allowed comparison of the two structures of the monometallic Rh(I) compounds, suggesting that the bulk of the benzimidazole actually serves to increase the definition of the chiral pocket. Figure 3 1. First and second generation ligand architectures.

PAGE 83

83 Figure 3 2. Synthesis of [DEA MI](I)2 (3 -3 ) F igure 3 3. Synthesis of [DEA MBI](I)2 (3 -4 ) Figure 3 4 Synthesis of DEA -MBY (3 -5 )

PAGE 84

84 Figure 3 5. Synthesis of binuclear compounds [ DEA-MY][Rh(NBD)I]2 ( 3 -6 ) and [ DEAMBY][Rh(COD)Cl]2 (3 -7 ) as mixtures with 3 -8 and 3 -9 Figure 3 6. Synthesis of r hodium monomer complexes [(DEA -MBY)Rh(COD)]I (3 -8 ) and [(DEA MY)Rh(COD)]I (3 -9 ).

PAGE 85

85 Figure 3 7 Molecular structure of 3 -5 from the sid e (left) and top (right) view. Ellipsoids are drawn at the 50% probability level. Figure 3 8 Molecular structure of compound 3 -6 Ellipsoids are drawn at the 50% probability level.

PAGE 86

86 Figure 3 9 Molecular structure of 3 -7 from side (left) and top (right) view. Ellipsoids are drawn at the 50% level Figure 3 10. Molecular Structure of 3 -8 from a Side on (Left) and Top View (right) Ellipsoids are drawn at the 50% probability level.

PAGE 87

87 Figure 3 11. Calculated equilibrium geometries of 3 -8 -calc and 3 -9 -calc Figure 3 12. Overlay of calculated structures 3 -8 -calc and 3 -9 -calc Comparison of the calculated structures 3 -8 -calc (orange) and 3 -9 -calc (blue) from the side (left) and top (right). The backbone has been deleted for clarity in the top view

PAGE 88

88 Table 3 1 Selected bond length () and angles ( ) for complex 3 -5 3 5 Bond lengths C25 C17 1.3426(19) N3 C25 1.4484(17) N4 C25 1.4264(17) N3 C26 1.4063(17) N1 C17 1.4211(17) N2 C17 1.4062(17) N1 C18 1.3903(17) C26 C31 1.4004(18) C23 C18 1.4112(18) Angles N1 C17 N2 106.56(11) N3 C31 N4 108.87(11) Torsion Angles N1 C16 -C15 N3 76.6(1) Table 3 2 Selected b ond length () and angles ( ) for complex 3 -6 3 6 Bond lengths Rh1 C23 2.016(4) Rh2 C19 2.020(4) N1 C19 1.347(5) N2 C19 1.356(5) N3 C23 1.350(5) N4 C23 1.362(5) C17 C18 1.332(6) C21 C22 1.332(6) Rh1 I1 2.6489(5) Rh2 I2 2.6562(5) Angles N1 C19 N2 104.3(3) N3 C23 N4 104.3(3) Torsion Angles N2 C15 C16 N4 106.0(4)

PAGE 89

89 Table 3 3 Selected bond lengt hs () and angles ( ) for complex 3 -7 3 7 Bond lengths Rh1 C17 2.012(2) Rh2 C25 2.002(2) N1 C17 1.374(3) N2 C17 1.353(3) N3 C25 1.365(3) N4 C25 1.358(3) C18 C23 1.398(3) C26 31 1.400(3) Rh1 Cl1 2.3828(6) Rh2 Cl2 2.3626(7) Angles N1 C17 N2 106.0(2) N3 C25 N4 106.2(2) Torsion Angles N1 C16 C15 N3 98.3(2) Table 3 4 Selected bond lengt hs () and angles ( ) for complex 3 -8 3 -8 Bond lengths Rh C23 2.033(4) Rh C31 2.051(5) N1 C23 1.365(5) N2 C23 1.375(5) N3 C31 1.370(5) N4 C31 1.347(5) C25 C30 1.376(6) C17 C22 1.397(6) Angles C23 Rh C31 84.14(17) N1 C23 N2 104.7(4) N3 C31 N4 105.9(4) Torsion Angles N1 C15 C16 N3 68.8(5) D istance Rh1 C16 3.033(4)

PAGE 90

90 Table 3 5 Comparison of measured and calculated bond lengths () and angles ( ) for 3 -8 3 -8 3 -8 -calc Distances Rh C31 2.051(5) Rh C31 2.052 Rh C23 2.033(4) Rh C23 2.068 N2 C24 1.461(5) N2 C24 1.468 N4 C32 1.467(5) N4 C32 1.466 N2 C23 1.375(5) N2 C23 1.384 N1 C23 1.365(5) N1 C23 1.395 N4 C31 1.347(5) N4 C31 1.372 N3 C31 1.370(5) N3 C31 1.391 C16 H16 1.001 C16 H16 1.097 H16 Rh 3.033(4) H16 Rh 2.298 C4 C36 3.831 C4 C36 4.238 Angles C31RhC23 84.14(17) C31RhC23 85.3 N1C23N2 104.7(4) N1C23N2 105.2 N3C31N4 105.9(4) N3C31N4 106 .0 Torsion Angle N1 C15 -C16 N 3 68.8(5) N1 C15 -C16 N 3 70.36 Distances Rh H16 3.033(4) Rh H16 2.298 Table 3 6 Comparison of bond lengths () and angles ( ) for calculated s tructures 3 -8 -calc and 3 -9 -calc Calculation 3 -8 -calc 3 -9 -calc Distances Rh C31 2.052 Rh C31 2.053 Rh C23 2.068 Rh C23 2.078 N2 C24 1.468 N2 C24 1.472 N4 C32 1.466 N4 C32 1.47 N2 C23 1.384 N2 C23 1.385 N1 C23 1.395 N1 C23 1.396 N4 C31 1.372 N4 C31 1.375 N3 C31 1.391 N3 C31 1.386 C16 H16 1.097 C16 H16 1.095 Angles C31RhC23 85.3 C31RhC23 87.1 N1C23N2 105.2 N1C23N2 103.6 N3C31N4 106 .0 N3C31N4 104.2 Torsion Angle N1 C15 C16 N 3 70.36 N1 C15 C16 N 3 80.64 Distances Rh H16 2.298 Rh H16 2.394 C36 C4 4.238 C36 C4 4.946

PAGE 91

91 CHAPTER 4 THIRD GENERATION CATALYSTS 4.1 Introduction Coupling experimental observation with computational analysis has become a vital tool in the application and optimization of catalytic species. Chapter 3 described the design and structural analysis of the constrained second -generation ligands. Using gas -p ha se ground state optimized geometry calculations it was determined that the steric bulk of the azole backbone plays a significant role in determining the chiral structure To further improve the catalyst design, the ligands reported in chapter 3 were subjected to architectural modifications (Figure 4 1) Through the slight variation of specific structural components a more thorough understanding of the relationship between ligand and catalyst structure is obtained. Independent alteration of the alkyl N -substituents and azole ring size is accomplished. Formation and structural analysis of C1 symmetric mononuclear rhodium species from the altered ligands is described. 4.2 Experimental Section 4.2.1 Synthesis of Trans -1,1 (9,10-Dihydro -9,10-Ethanoanthracene -11,12-D iyl) di (3 I sopropyl -1 H -Imidazol -3 -I um) D iiodide [DEA -iPrI](I)2 (4 -1 ) Diimidazole 3 -3 (2.34 g, 6.9 mmol) was dissolve d in dry MeCN (5 mL) in a sealable glass flask 2 iodopropane ( 2.8 mL, 4 equiv., 27 mmol) was added under argon and the flask was evacuated then sealed under vacuum. The flask was shielded from light and was heated in a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the precipitate was filtered and washed with cold MeCN to produce 4 -1 as a white solid; yield 1.99 g ( 43%). 1H NMR ( 300 MHz, (CD3)2SO ) ppm : 8.82 (s, 2 H, NC H N), 7.86 (t, J= 1.8 Hz, 2 H, NCHC H N), 7.64 (d, J= 7. 1 Hz, 2 H, Ar ), 7.19 7.42 (m, 6 H, Ar ), 6.78 (t, J= 1.8 Hz, 2 H, NC H CHN), 5.61 (s, 2 H, bridgehead H), 5.06 (s, 2 H, bridge H), 4.57 (spt, J= 6.5 Hz, 2 H, NC H CH3), 1.40 and 1.39

PAGE 92

92 (overlapping d, J= 6. 8 Hz, 6 H, NCHC H3). 13C NMR (75 MHz, ( CD3)2SO ) ppm : 139.3 (2 C, N CHCHN), 138.3 (s, 2 C, NCH CHN), 135.2 (s, 2 C, N CHN), 128.4 (s, 2 C, Ar ), 128.3 (s, 2 C, Ar ), 126.9 (s, 2 C, Ar ), 126.6 (s, 2 C, Ar ), 121.4 (s, 2 C, Ar ), 121.1 (s, 3 C, Ar ), 63.5 (s, 2 C, bridge C), 53.3 (s, 2 C, N CHCH3), 49.5 (s, 2 C, bridgehead C ), 22.9 (s, 2 C, NCH CH3), 22.7 (s, 2 C, NCH C H3). 4.2.2 Synthesis of Trans -1,1 -(9,10-Dihydro -9,10-Ethanoanthracene -11,12-Diyl)di(3 I so propyl -1H -Benzimidazol -3 -Ium) D iiodide [DEA -iPrBI](I)2 (4 -2) Dibenzimidazole103 (900 mg, 2 mmol) was dissolved in anhydrous MeC N (10.0 mL) in a sealable glass bomb flask. 2-iodopropane (0.82 mL, 4 equiv, 8 mmol) was added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C for 48 h. The mixture was cooled to room tempe rature and the solid was filtered and washed with cold MeCN to afford 4 -2 as a light beige powder ; yield 430 mg ( 28% ). 1H NMR (300 MHz, (CD3)2SO ) ppm 8.50 (d, J= 8. 2 Hz, 2 H Ar ), 8.43 (s, 2 H NC H N ), 8.16 (d, J= 8.0 Hz, 2 H Ar ), 7.87 7.96 (m, 2 H Ar ), 7.68 7.86 (m, 4 H Ar ), 7.46 (t, J= 7. 5 Hz, 2 H Ar ), 7.24 (t, J= 7. 4 Hz, 2 H Ar ), 7.04 (d, J= 7. 5 Hz, 2 H Ar ), 6.21 (br. s., 2 H bridge H ), 5.13 (br. s., 2 H bridgehead H ), 5.02 (spt, J= 6. 6 Hz, 2 H NC H (CH3)2), 1.44 (d, J= 6. 6 Hz, 6 H NCHC H3), 1.37 (d, J= 6. 6 Hz, 6 H NCHC H3). 13C NMR (75 MHz, (CD3)2SO ) ppm : 138.7 (s, Ar ), 138.7 (s, N CHN), 138.2 (s, Ar ), 138.1 (s, Ar ), 131.7 (s, Ar ), 130.5 (s, Ar ), 128.7 (s Ar ), 128.4 (s, Ar ), 127.8 (s, Ar ), 127.6 (s, Ar ), 126.6 (s, Ar ), 115.6 (s, Ar ), 114.6 (s, Ar ), 61.8 (s, bridge C ), 51.3 (s, N CH(CH3)2), 48.7 (s, bridgehead C ), 22.5 (s, CH3), 22.0 (s, CH3). 4.2.3 Synthesis of N,N' -bis(4 -N itrotolyl) -9,10-Dihydro -9,10-Ethanoanthracene -11,12D iamine ( 4 3 ) To a solution of diamine 3 -1 (1.05 g, 4.5 mmol) in anhydrous DMF (10 mL) was added anhydrous K2CO3 (1.36 g, 2.2 equiv., 10 mmol) and 3-fluoro 4 nitrotoluene (1.45 g 2.1 equiv., 9

PAGE 93

93 mmol). The resulting bright orange mixture was heated at 65 C for 18 h. The mixture was cooled to roo m temperature and 50 mL of water was added. The resulting bright orange precipitate was isolated by filtration and washed with water producing 2.09 g of crude product (92% yield). Dinitro 4 -3 was purified by stirring in boiling EtOH (10 mL/g) for 30 min. After cooling to 0 C the orange solid was filtered and finally washed with cold EtOH ; yield 1.03g (45%). 1H NMR ( 300 MHz, CDCl3) ppm : 8.05 (d, J = 8.8 Hz, 2H, Ar ), 7.94 (d, J = 8.8 Hz, 2 H, N H ), 7.42 7.49 (m, 4H, Ar ), 7.28 7.34 (m, 4 H, Ar ), 6.50 (s, 2 H, Ar ), 6.42 6.49 (m, 2H, Ar ), 4.49 (d, J = 2.9 Hz, 2 H, bridge CH ), 3.7 5 3.84 (br m, 2H, bridge head CH ), 2.05 (s, 6C H3). 13C NMR (75 MHz, CDCl3) ppm : 147.9 (C, Ar ), 143.5 (C, Ar ), 139.7 (C, Ar ), 138.4 (C, Ar ), 127.4 (C, 2Ar), 126.9 (C, 2Ar), 1 26.1 (C, Ar ), 124.7 (C, Ar ), 117.7 (C, Ar ), 114.4 (C, Ar ), 61.3 (bridge CH ), 49.4 (bridge head CH ), 21.8 (CH3). HRMS (APCI TOF) calculated (found) for C30H26N4O4 (M+H)+ 507.2021 (507.2062). 4.2.4 Synthesis of N,N' -bis(4 Aminotolyl) -9,10-Dihydro -9,10-Ethanoanthracene -11,12D iamine ( 4 -4 ) Pd/C (10 wt%, 50% wet; 310 mg ) was added to a solution of dinitro 4 -3 (1.027 g, 27.2 mmol) in CH2Cl2 (25 mL) and MeOH (10 mL). The resulting mixture was stirred under H2 (40 atm) for 12 hr and then filtered through Celite to remove the Pd/C T he filtrate was concentrated to afford 4 -3 as a brown solid ; yield 900 mg (99%). 1H NMR (300 MHz, CDCl3) ppm : 7.30 7.42 (m, 4 H, Ar ), 7.15 7.26 (m, 4 H, Ar ), 6.62 6.75 (m, 4 H, Ar ), 6.52 6.62 (m, 2 H, Ar ), 4.44 (s, 2 H bridgehead C H ), 3.56 3.90 (br s, 6 H N H2/N H ), 3.53 (s, 2H, bridge C H ), 3.46 (s, MeOH), 2.26 (s, 6 H, C H3). 13C NMR (75 MHz, CDCl3) ppm : 141.6 (s, Ar ), 139.52 (s, Ar ), 135.7 (s, Ar ), 126.6 (s, Ar ), 126.3 (s, Ar ), 126.2 (s, Ar ), 124.4 (s, Ar ), 120.4 (s, Ar ), 117.5 (s, Ar ), 116.9 (m, Ar ), 116.9 (s, Ar ), 113.4 (s, Ar ) 62.1 (s, bridge C), 48.7 (s, bridgehead C), 21.0 (s, CH3). HRMS ( APCI TOF ) calculated (found) for C28H27N4 (M+H)+ 447.2543 (447.2557).

PAGE 94

94 4.2.5 Synthesis of Trans -1,1 (9,10-Dihydro -9,10-Ethanoanthracene -11,12-D iyl) di (1 H Tolyl imidazole) ( 4 -5 ) To a solution of tetraamine 4 -4 (900 mg, 2.02 mmol) in anhydrous HC(OEt)3 (30 mL) was added paratoluenesulfonic acid monohydrate (70 mg, 0.2 equiv., 0.40 mmol). The resulting mixture was stirred at room temperature for 48 h and then filtered. Hexane was added to the filtrate, resulting in precipitation of a pale yellow solid. The solid was filter ed and washed with hexanes to produce d i tolylimidazole 4 -5 ; yield 830 mg ( 79% ). 1H NMR (300 MHz, CDCl3) ppm : 7.59 (dd, J= 7. 6 4.40 Hz, 4H, Ar ), 7.33 7.42 (m, 2H, Ar ), 7.23 7.31 (m, 4H, Ar ), 7.18 (s, 2H, Ar ), 7.03 (dd, J= 8. 2 0.88 Hz, 2H, Ar ), 6.53 ( s, 2 H, NCN), 5.04 (s, 2 H, bridge H ), 4.66 (s, 2 H, bridgehead H ), 2.27 (s, 6 H, C H3). 13C NMR (75 MHz, CDCl3) ppm : 140.6 (s, Ar ), 138.6 (s, Ar ), 133.9 (s, Ar ), 128.9 (s, Ar ), 128.3 (s, Ar ), 128.3 (s, Ar ), 127.1 (s, Ar ), 126.2 (s, Ar ), 124.9 (s, Ar ), 124.7 (s, Ar ), 120.0 (s, Ar ), 109.4 (s, Ar ), 62.2 (s, bridge C), 50.2 50.9 (m, bridgehead C), 21.8 (s, CH3). HRMS (APCI TOF) calculated (found) for C30H23N4 (M+H)+ 467.2230 (467.2233). 4.2.6 Synthesis of Trans -1,1 -(9,10-Dihydro -9,10-Ethanoanthracene -11,12-D iyl) di (3 -M ethyl 1 H -Tolyli midazol -3 -Ium) D iiodide [DEA -MTI](I)2 (4 -6 ) Ditolylimidazole 4 -5 (530 mg, 1.14 mmol) was dissolved in anhydrous MeCN (5.0 mL) in a glass ampoule fitted with a seal able Teflon stopcock. MeI (0.290 m L, 4 equiv, 4.54 mmol) was added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the solid was filtered and washed with cold MeCN to afford 4 -6 as a light beige powder ; yield 500 mg (58%). 1H NMR (300 MHz, (CD3)2SO ) ppm : 8.80 (s, 2 H, N CH N), 7.86 (t, J= 8. 8 Hz, 4 H, Ar ), 7.42 7.55 (m, 4 H, Ar ), 7.13 7.34 (m, 6 H, Ar ), 5.86 (s, 2 H, bridgehead H), 5.12 (s, 2 H, bridge H), 3.91 (s, 6 H, N CH3), 2.45 (s, 6 H, Ar -CH3),. 13C NMR (75 MHz, (CD3)2SO ) ppm : 141.4 (s,

PAGE 95

95 N CHN), 139.74 (s, Ar ), 138.5 (s, Ar ), 137.59 (s, Ar ), 131.42 (s, Ar ), 130.47 (s, Ar ), 128.95 (s, Ar ), 128.60 (s, Ar ), 128.53 (s, Ar ), 127.30 (s, Ar ), 127.14 (s, Ar ), 114.19 (s, Ar ), 113.94 (s, Ar ), 62.06 (s, bridge C), 48.96 (s, bridgehead C), 34.19 (s, Ar CH3), 21.96 (s, CH3). 4.2.7 Synthesis of Trans -1,1 -(9,10-Dihydro -9,10-Ethanoanthracene -11,12-D iyl)di(3 I sopropyl -1H -Tolylimidazol -3 -Ium) D iiodide [DEA -iPrTI](I)2 (4 -7) Dito lylimidazole 4 -5 (420 mg, 0.9 mmol) was dissolved in anhydrous MeCN (5.0 mL) in a sealable glass flask 2 iodopropane (0. 360 mL, 4 equiv, 3.6 mmol) was added, and the vessel was evacuated and sealed. The flask was shielded from light and heated in a sand bath at 105 C for 48 h. The mixture was cooled to room temperature and the solvent was removed in vacuo. The crude solid was purified by f lash chromatography using 5% MeOH in CHCl3; yield 3 00 mg (40% ). 1H NMR (300 MHz, CDCl3) ppm : 9.64 (br. s, 2 H, NC H N), 9.16 (br. s., 2 H, Ar ), 8.21 (d, J= 7. 5 Hz, 2 H, Ar ), 7.32 7.58 (m, 8 H, Ar ), 7.17 (t, J= 7. 5 Hz, 2 H, Ar ), 6.81 (d, J= 7. 2 Hz, 2 H, Ar ), 6.75 (d, J= 1. 9 Hz, 2 H, bridge H), 4.96 (d, J= 2. 1 Hz, 2 H, bridgehead H), 4.90 (overlapping spt, J= 6. 7 Hz, 2 H, NC H (CH3)2), 1.65 (2 overlapping d, J= 6. 7 Hz, 12 H, NC H (CH3)2). 4.2.8 Synthesis of R hodium(I) T rans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Isopropylimidazolidine 2 Y lidene ) C yclooctadien e I odide, [ (DEA iPrY )Rh( COD)]I (4 8 ) Diimidazolium salt 4 -1 (500 mg, 0.73 mmol ) was suspended in 5 mL dry THF and stirred overnight. At 105C, KN(TMS)2 (309 mg 1.5 mmol) in 3 mL of dry THF was added dropwise to the salt suspension and allowed to stir at room temperature for 1 h. At 105 C a solution of [Rh(COD)Cl]2 (182 mg 0.36 mmol) in 5 mL of dry THF was added dropwise to the salt suspension and allowed to stir overnight A precipitate formed that was filtered and washed with diethyl ether and extracted into CHCl3 to afford 4 -8 as a bright yellow powder ; yield 312 mg (56% ). 1H NMR (300 MHz, CDCl3) ppm : 8.30 (dd, J= 7. 8 1.32 Hz, 1 H bridge H ), 8.18 (t,

PAGE 96

96 J= 1. 0 Hz, 1 H Ar NC H CHN ), 7.82 7.89 (m, 1 H Ar ), 7.54 7.60 (m, 1 H Ar ), 7.50 (ddd, J= 6. 5 4.5 1.9 Hz, 2 H Ar ), 7.17 7.31 (m, 5 H NCHC H N overlapping Ar ), 6.97 (d, J= 2. 1 Hz, 1 H NCHC H N ), 6.79 (d, J= 2. 1 Hz, 1 H NC H CHN), 5.33 (d, J= 1. 5 Hz, 1 H bridg ehead H ), 5.31 (spt, J= 6. 8 Hz, 1 H, NC H (CH3)2), 4.86 (d, J= 1. 2 Hz, 1 H bridgehead H ), 4.70 (br. s., 1 H COD -CH ), 4.37 (spt, J= 6. 8 Hz, 1 H NC H (CH3)2), 4.19 (m, 1 H COD CH ), 3.69 (d, J= 6. 8 Hz, 1 H, bridge H), 3.60 (br. s., 2 H COD -CH ), 2.40 2.57 (m, 2 H COD CH2), 2.06 2.38 (m, 3 H COD -CH2), 1.88 2.06 (m, 2 H COD CH2), 1.72 ( m 1 H COD CH2), 1.49 (d, J= 6. 8 Hz, 3 H NCHC H3), 1.36 (d, J= 6. 8 Hz, 3 H NCHC H3), 1.26 (d, J= 6. 5 Hz, 3 H NCHC H3), 1.25 ( d J =6. 4 3 H NCHC H3). 13C NMR (75 MHz, CDCl3) ppm : 178.0 (d, JRhC =53.00 Hz, N CN), 177.8 (d, JRhC =53.00 Hz, N CN), 143.8 (s, CH CCH), 142.8 (s, CH CCH), 136.7 (s, CH CCH), 136.2 (s, CH CCH), 128.6 (s, C Ar ), 127.6 (s, C Ar ) 127.5 (s, C Ar ), 127.2 (s, C Ar ), 127.0 (s, C Ar ), 125.2 (s, C Ar ), 125.2 (s, C Ar ) 124.9 (s, C Ar omatic), 122.2 (s, N CHCHN), 119.0 (s, N CHCHN), 118.9 (s, N CHCHN), 116.7 (s, NCHCHN), 92.3 (d, JRhC =9.21 Hz, COD CH), 88.6 (d, JRhC =8.06 Hz, COD -CH), 87.5 (d, JRhC =8.06 Hz, COD CH), 85.3 (d, JRhC =7.20 Hz, COD CH), 66.3 (s, C H CHN), 63.3 (s, CH CHN), 54.9 (s, N CHCH3), 52.0 (s, N CHCH3), 48.2 (s, CCHC), 47.7 (s, C CHC), 31.8 (s, COD -CH2), 30.9 (s, COD -CH2), 29.5 (s, CODCH2), 29.1 (s, grease) 27.9 (s, COD CH2), 25.3 (s, CH3CH CH3), 23.9 (s, CH3CH C H3), 23.6 (s, CH3CH CH3), 22.4 (s, CH3CH CH3). 4.2.9 Synthesis of R hodium(I) T rans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 Isopropylbenzylimidazolidine 2 Y lidene ) C yclooctadien e I odide, [ (DEA iPrBY )Rh(COD)]I (4 -9) Diimidazolium salt 4 -2 (100 mg, 0.13 mmol ) was suspended in 3 mL dry THF and cooled to 100 C. KN(TMS)2 (54 mg, 0.27 mmol) in 3 mL of cold dry THF was then added dropwise to the salt suspension and allowed to warm to room temperature while stir ring The suspension

PAGE 97

97 turns bright yellow upon deprotonation. After 1 h the suspension is then cooled again to 100 C. A cold solution of [Rh(COD)Cl]2 (32 mg, 0.06 mmol) in 3 mL of dry THF was added dropwise to the salt suspension and allowed to stir overnight. A yellow precipitate formed that was filtered and washed with THF and diethyl ether to afford 4 -9 as a yellow powder ; yield 10 mg (10%). 1H NMR (300 MHz, CDCl3) ppm : 9.45 (d, J= 10. 3 Hz, 1 H bridge H ), 7.81 (d, J= 7. 0 Hz, 1 H Ar ), 7.75 (d, J= 7. 0 Hz, 1 H Ar ), 7.54 7.65 (m, 3 H Ar ), 7.13 7.54 (m, 9 H Ar ), 7.01 7.12 (m, 2 H Ar ), 6.22 (spt, J= 6. 7 Hz, 1 H overlapping NC H (CH3)2 with COD -CH ), 5.21 (s, 1 H bridgehead H ), 5.17 (s, 1 H bridgehead H ), 5.02 (spt, J= 6. 7 Hz, 2 H overlapping NC H (CH3)2 with COD CH ), 4.55 ( m, 1 H COD CH ), 4.43 (dd, J= 10. 1 1.0 Hz, 1 H b ridge H ), 4.13 (t, J= 6. 7 Hz, 1 H COD CH ), 3.64 3.78 (m, 1 H COD CH ), 2.69 2.90 (m, 1 H COD CH2), 2.51 2.66 (m, 1 H COD CH2), 2.26 2.51 (m, 3 H COD CH2), 1.92 (d, J= 6. 7 Hz, 3 H), 1.88 2.04 (overlapping m, 1 H), 1.61 (d, J= 7. 0 Hz, 3 H NCH(CH3)2), 1.55 1.65 (overlapping m, 2H, COD -CH2) 1.58 (d, J= 6. 7 Hz, 3 H NCH(C H3)2), 1.52 (d, J= 7. 0 Hz, 3 H NCH(CH3)2), 1.22 1.37 (m, 1 H NCH(CH3)2) 13C NMR (75 MHz, CDCl3) ppm : 191.7 (d, J= 54. 5 Hz, N CN), 190.8 (d, J= 51. 5 Hz, N CN), 146.9 (s, Ar ), 144.4 (s, Ar ), 138.7 (s, Ar ), 137.2 (s, Ar ), 135.9 (s, Ar ), 133.6 (s, Ar ), 133.19 (s, Ar ), 132.9 (s, Ar ), 128.3 (s, Ar ), 128.1 (s, Ar ), 127.8 (s, Ar ), 127.6 (s, Ar ), 127.4 (s, Ar ), 127.1 (s, Ar ), 124.2 (s, Ar ), 124.1 (s, Ar ), 124.0 (s, Ar ), 123.7 (s, Ar ), 123.1 (s, Ar ), 122.1 (s, Ar ), 113.2 (s, Ar ), 113.0 (s, Ar ), 112.1 (s, Ar ), 111.2 (s, Ar ), 94.2 (d, J= 8. 6 Hz, COD -CH), 91.9 (d, J= 8. 1 Hz, COD CH), 89.9 (d, J= 7. 2 Hz, COD -CH), 89.5 (d, J= 6. 6 Hz, COD -CH), 65.3 (s, CH C HN), 62.3 (s, CH CHN), 57.8 (s, N CHCH3), 53.9 (s, N CHCH3), 49.1 (s CCHC ), 47.9 (s C CHC ), 32.0 (s COD -CH2), 31.79(s COD CH2), 29.4 (s COD -CH2), 28.7 (s COD -CH2), 22.6 (s, NCH CH3), 22.5 (s, NCH CH3), 21.8 (s, NCHC H3), 21.5 (s, NCH CH3).

PAGE 98

98 4.2.10 Synthesis of R hodium(I) T rans 9,10 Dihydro 9,10 Ethanoanthracene 9,10 bis(1 M e thyltolylimidazolidine 2 Y lidene ) C yclooctadien e I odide, [ (DEA MTY )Rh( COD)]I (4 -10) Di imidazolium salt 4 -6 (500 mg 0.66 mmol) was suspended in 5 ml THF and stirred overnight. At 35C, KN(TMS)2 (279 mg 1.4 mmol) in 5 mL THF was added dropwise to the salt suspension and allowed to warm to room temperature and stir for 1 h. After cooling the solution to 35 C, [Rh(COD)Cl]2 (164 mg 0.33 mmol ) in 3 mL THF was then added dropwise to the reaction and allow ed to stir for 1 h at room temperature. The reaction mixture was allowed to stir at room temperature overnight and the resulting solid was filtered, washed with Et2O and extracted with CHCl3 to provide [(DEA MTY)Rh(COD)]I 4 -10 as a dark yellow powder (113 mg, 20%) 1H NMR (300 MHz, CDCl3) ppm : 9.06 (d, J= 9.9 Hz, 1 H CHC H N), 7.74 (dd, J= 7. 0 1.2 Hz, 1 H, Ar ), 7.64 (dd, J= 7.0 1.2 Hz, 1 H, Ar ), 7.56 (d, J= 7. 0 Hz, 1 H, Ar ), 7.33 7.47 (m, 3 H Ar ), 7.03 7.32 (m, 7 H Ar ), 6.89 (d, J= 8. 5 Hz, 1 H Ar ), 6.68 (s, 1 H), 5. 1 (s, 1H, CC H C) 5. 0 8 ( s 1 H CC H C), 4.90 5.04 (m, 1 H COD -CH ), 4.39 4.50 (m, 1 H COD CH ), 4.29 (s, 3 H NC H3), 4.22 (dd, J= 10., 0.80 Hz, 1 H CHCH N ), 4.10 4.19 (m, 1 H COD CH ), 3.76 (s, 3 H NC H3), 3.73 ( m 1 H COD CH ), 2.46 (s, 3 H tolyl -CH3), 2.53 ( m, 2 H COD CH2), 2.14 (s, 4 H COD CH2), 2.14 (s, 3 H, tolyl C H3), 1.55 1.72 (m, 1 H COD CH2), 1.14 1.33 (m, 1 H COD -CH2). 13C NMR (75 MHz, CDCl3) ppm : 192.9 (d, JRhC =52.00 Hz, NCN), 190.8 (d, JRhC =52.00 Hz, NCN), 146.7 (Ar), 144.46 (Ar), 138.8 (Ar), 136.2 (Ar), 135.8 (Ar), 134.9 (Ar), 134.4 (Ar), 134.3 (Ar), 134.1 (Ar), 131.7 (Ar), 128.8 (Ar), 128.1 (Ar), 128.0 (Ar), 127.7 (Ar), 127 .4 (Ar), 127.2 (Ar), 125.7 (Ar), 124.5 (Ar), 124.1 (Ar), 122.2 (Ar), 111.8 (N CCH), 111.1 (N CCH), 110.8 (N CCH), 110.7 (N CCH), 94.1 (d, JRhC =8.06 Hz COD CH), 91.0 (d, JRhC =8.06 Hz COD CH), 90.5 (d, JRhC =6.91 Hz, COD CH), 89.9 (d, JRhC =7.49 Hz, COD -CH), 65.8 (s, CH C HN), 62.2 (s, CH CHN), 49.1 (s, C CHC), 48.0 (s, C CHC), 39.3 (s,

PAGE 99

99 N CH3), 35.3 (s, N CH3), 30.9 (s, COD CH2), 30.7 (s, COD CH2), 29.8 (s, COD C H2), 28.2 (s, COD -CH2), 22.1 (s, tolyl C H3), 21.5 (s, tolyl CH3) 4 3 Results and Discussion 4.3.1 Synthesis and Characterization of [DEA -iPrI] (I )2 (4 -1) and [(DEA iPrY)Rh( COD)]I (4 -8 ) The synthesis of [DEA-iPrI] (I)2 (4 -1) and [(DEA iPrY)Rh(COD )]I (4 -8 ) mirror that reported for the methyl imidazole derivatives 3 -3 and 3 -9 (Figure 4 2) as does their solution state analysis 1H NMR spectra for imidazolium salts 4 -1 and 3 -3 are nearly identical, a slight downfield shift of the imidazole protons (from 7.68 and 6.60 ppm for 3 -3 to 7.86 and 6.78 ppm for 4 -1 ) and an upfield shift of the imidazole (NC H N) proton from 8.93 for 3 -3 to 8.82 in 4 -1 di splays the slight variation between the two co mpounds R eplacement of the methyl substituents with an isopropyl group introduces a septet at 4.57 ppm (spt, J= 6. 5 Hz) and overlapping doublets at 1.40 and 1.39 ppm (d, J=J=6. 8 Hz). Metallation of 4 -1 utilizing a single equivalent of rhodium produces the expected mononuclear C1 symmetric complex 4 -8 Increas ing the steric bulk of the N -subs tituents is not expected to alter the twist of the molecule but could affect the position of the rhodium center relative to the ligand backbone. T herefore it is not surprising that the 1H NMR spectra for 4 -8 displays a doublet of doublet s resonance corresponding to the H16 bridge proton at 8.30 ppm (J= 7. 8 1.3 Hz) shifted slightly downfield relative to the H16 resonance in 3 -9 [8.23 ppm (dd, J = 7.5, 1.0 Hz)] but with a similar coupling pattern. The C1 symmetry of the molecule is displayed clearly by the multiple isopropyl resona nces, two septets at 5.31 ( J= 6.8 Hz ) and 4.37 ppm (J= 6.8 Hz ) as well as four sets of doublets at 1.49 ( J= 6.7 Hz), 1. 36 ( J= 6.7 Hz), 1.26 ( J= 6. 5 Hz), and 1.25 ppm ( J =6. 4 Hz)

PAGE 100

100 The yields associated with the bulkier compounds (4 -1 and 4 -8 ) are noticeably lower than for their methyl analogs (3 -3 and 3 -9 ). T he decreased production of monomeric complex 4 -8 could be the result of the nitrogen substituents increased steric bulk As discussed in chapter 3, chelation to a single metal center is facilitated by the ability of the bulky imidazole plane to orient along the less crowded z -axis of the complex. This orientation, although favorable for chelation, places the nitrogen substituent s in close proximity to one another The distance between the alkyls is irrelevant for small substituents like methyl ; however, the significant increase in steric bulk associat ed with replacing the methyl of 3 -8 or 3 -9 with an isopropyl substituent may increase the barrier to product formation 4.3.2 Synthesis and Characterization of [DEA -iPrBY] (I )2 (4 -2), [ DEA MTY](I )2 (4 -6), [DEA -iPrTY ](I )2 (4 -7) and the Corresponding Monome tallic Rhodium Complexes [(DEA iPrBY )Rh( COD)]I (4 -9) and [ (DEA MTY )Rh( COD)]I (4 -10) A lterations to the N -substituents and azole rings of the original benzimidazole structure ( 3 4 ) were accomplished based on convention and combined computational and experimental results. Convention, regarding N -heterocyclic carbenes, holds that the steric bulk around the metal center is modulated almost exclusively by altering the size of the Nsu bstituents. Experimental and computational data reported in chapter 3 suggests that for this ligand family, the size of the imidazole also plays a significant role in defining the chiral pocket. Taking this into account three modified ligand structures were prepared Substitution of the methyl Nsubstituent of 3 -4 for the bulkier isopropyl substituents results in the formation of l igand 4 -2 (Figure 4 3) Addition of steric bulk to the benzimidazole by placing a methyl group in the meta -position forms 4 -6 (Figure 4 4) and ligand 4 -7 contains both architectural variations (Figure 4 5) The 1H NMR spectrum of salt 4 -2 reveals a modification to the typical imidazolium salt spectra. All of the previously reported salts contain imidazolium proton s (NCH N) th at resonate

PAGE 101

101 well downfield of the aryl region (9.7 0 ppm for 2 -1 8.93ppm for 3 -3 8.85 for 3 -4 and 8.30 ppm for 4 -1 ) whereas the singlet imidazolium resonance of 4 -2 appears at 8.43 ppm, upfield of an aryl resonance (8.50 ppm (d, J= 8. 2 Hz) ). Comparison of all the imidazolium proton resonances suggest s increasing the size of the N -substituent or azole ring shifts the corresponding resonance upfield. The opposite affect is seen for the bridge proton H16 in the monometallic benzimidazole struct ure s Investigation of the resulting monometallic complex 4 -9 (Figure 4 6) again displays the diagnostic downfield resonance at 9.45 ppm (d, J= 7. 0 ) which is shifted downfield by 0.2 ppm compared to 3 -8 This suggests the rhodium center may be forced clo ser to the proton by the addition of the isopropyl substituents. Furthermore, the monometallic complex 4 -9 was formed in only 10% yield, supporting the claim that increased bulk on the nitrogen substituents hinders chelation. Crude spectra of the reactio n mixture subsequent to product isolation displayed peaks corresponding to a C2 symmetric bimetallic complex implying that the increase in steric bulk may shift the kinetically favored product toward the bimetallic complex The bimetallic complex was not pursued further though its isolation is plausible L igand 4 -6 w as synthesized using a similar protocol as for 3 -4 (Figure 4 4) Diamine 3 -1 was treated with 2.1 equivalents of 3 -fluoro 4 -nitrotoluene in DMF over 18 h at 65 C to form the sticky orange dinitro -diamine compound 4 -3 After purification of 4 -3 the compound was hydrogenated overnight using 40 bar H2 pressure and Pd/C to afford the tetraamine 4 -4 Cyclization was achieved by treating 4 -4 with triethylorthoformat e over a two day period. Ditolylimidazole 4 -5 was then combined with MeI at 105 C in a seal flask to produce the methylated ditolylimidazole salt 4 -6 A 1H NMR spectrum of 4 -6 reveals a broad singlet for the imidazol ium proton at 8.80 ppm which suggests very little alteration in the ligand relative to 3 -4 (imidazolium proton appears at 8.85 ppm) In fact, the only substantial variation in the 1H NMR

PAGE 102

102 spectrum of [DEA -MTI](I)2 (4 -6 ) relative to [DEA -MBI](I)2 (3 -4) is an addition al methyl resonance at 2.45 ppm corresponding to the methyl substituents on the ary l ring of the benzimidazole Solution state analysis of the corresponding monometallic rhodium compound 4 10 (Figure 4 7) again nearly matches that shown for 3 -8 except for t wo addition al m ethyl resonances due to C1 symmetry. During the preparation of ligand 4 -6 and the resulting monometallic complex 4 -10, a ground state geometry optimization calculation was performed by adding the methyl substituent to the benzimidazole of the crystal structure of 3 -8 as a starting point Figure 4 8 displays the calculated structure of 4 -10. Table 4 1 compares selected metric parameters for complexes 3 -8 calc and 4 -10-calc and Figure 4 9 displays an overlay of the two structures, showing that the complexes are nearly identical excluding the addition of the methyl group. The choice to position the methyl group at the meta -position was influenced by the structure of 3 -8 In the constrained monometallic complex, o ne of the benzylimidazoles sit s directly above the ethanoanthracene backbone at a distance of approximately 3.5 Addition of a substituent at the orthoposition would likely come in very close proximity to the backbone thereby hindering the formation of monometallic complexes and promoting the formation of the les s desirable bimetallic complex Ligand 4 -7 combines both architectural alterations to include isopropyl Nsubstituent s and methyl group s on the back of the benzimidazole Only the chiral version of the salt (R,R) 4 -7 was synthesized producing a meager 300 mg The chiral salt is sparingly soluble in CDCl3. T herefore to retain the valuable imidazolium salt CDCl3 was utilized as the NMR solvent to facilitate reisolation of ( R,R ) 4 -7 which is difficult from (CD3)2SO This precludes direct comparison w ith the other imidazolium salt 1H NMR spectra which were all obtained in

PAGE 103

103 (CD3)2SO. However, the imidazolium salt resonances are clearly present in the 1H NMR spectrum. The diagnostic broad imidazolium resonance is dis played at 9.64 ppm and t he aryl protons span a relatively large range from 7.17 to 9.16 ppm. The bridge and bridgehead protons both resonate as doublets at 6.75 ( J= 1. 9 Hz) and 4.96 ppm ( J= 2. 1 Hz) respectively. The isopropyl methine septet overlaps sligh tly with the bridgehead proton at 4.90 ppm ( J= 6. 7 Hz) and is coupled to the isopropyl groups which appear at 1.6 ppm (J= J= 6. 7 Hz). Attempts to form the rhodium monomeric compound were unsuccessful. [Rh(COD)Cl]2 was initially utilized as the rhodium source to maintain similar structures throughout the family of Rh complexes. W hen initial synthesis of the monomer failed, substitution of the dimeric rhodium starting material with the monomeric cationic rhodium source, Rh(NBD)2BF4, was attempted Howe ver, isolation of monomeric compound was unsucce ssful and investigation of the crude reaction mixture by solution state analysis revealed no sign of a monomeric species. Formation of a monomeric complex from ligand 4 -7 should be thermodynamically feasible c onsidering the similarity of the equilibrium geometries for 3 -8 and 4 -10 and the formation of the isopropyl substituted complex 4 -9 4.4 Conclusions The four new ligand s described in this chapter present alterations to the architectures of 3 -3 and 3 -4 to increase the definition of the chiral pocket Ligands 4 -1 and 4 -2 represent an increase in the Nsubstituents size The reduced yields associated with synthesizing the corresponding monometallic complexes 4 -8 and 4 -9 are likely the result of negative steric interaction s between the isopropyl Nsubstituents. Increasing the size of the substituents on the imidazole by placing a methyl group in the meta -position does not appear to alter the calculated equilibrium geometry of the resulting metal complex but combining the two alterations precludes the formation of a monometallic rhodium complex.

PAGE 104

104 Figure 4 1. Generations of ligands to date. Figure 4 2. Synthesis of ligand [DEA -iPrI](I)2 4 -1 (top) and [(DEA -iPr Y)Rh(COD)]I 4 -8 (bottom).

PAGE 105

105 Figure 4 3. Synthesis of ligand [DEA -iPrBI](I)2 4 -2 Figure 4 4. Synthesis of ligand [DEA -MTI](I)2 4 -6 Figure 4 5. Synthesis of ligand [DEA -iPrTI](I)2 4 -7

PAGE 106

106 Figure 4 6 Synthesis of [(DEA iPr BY)Rh(COD)]I 4 -9 Figure 4 7 Synthesis of [(DEA M T Y)Rh(COD)]I 4 -10. Figure 4 8. Calculated structure for [(DEA -M T Y)Rh(COD)]I 4 -10.

PAGE 107

107 Figure 4 9. Overlay of the calculated structure [(DEA M BY)Rh(COD)]I 3 -8 -calc and [(DEA M T Y)Rh(COD)]I 4 -10-calc The side view (left) displays the similarity of the two structures as does the top -view (right) with the backbone removed for clarity. Table 4 1. Selected bond lengths () and angle ( ) for calculated structures 3 -8 -calc and 4 -10calc 3 -8 -calc 4 -10-calc Distances Rh C31 2.052 Rh C31 2.054 Rh C23 2.068 Rh C23 2.07 N2 C24 1.468 N2 C24 1.468 N4 C32 1.466 N4 C32 1.466 N2 C23 1.384 N2 C23 1.383 N1 C23 1.395 N1 C23 1.394 N4 C31 1.372 N4 C31 1.371 N3 C31 1.391 N3 C31 1.392 C16 H16 1.097 C16 H16 1.096 Angles C31RhC23 85.3 C31RhC23 85.3 N1C23N2 105.2 N1C23N2 105.2 N3C31N4 106.0 N3C31N4 105.9 Torsion Angle N1 C15 C16 N3 70.36 N1 C15 C16 N3 70.34 Distances Rh H16 2.298 Rh H16 2.295 C36 C4 4.238 C36 C4 4.226

PAGE 108

108 CHAPTER 5 ASYMMETRIC CONJUGATE ADDITION 5.1 Introduction Solution and solid state structural analysis are important method s in characterizing and optimizing catalyst architectures. However, in the design and optimization of a catalyst species, the most valuable information is gained from catalytic application. As discussed in chapter 2, initial catalytic trials revealed that first generation complexes were susceptible to degradation under certain catalytic conditions. These results suggest that our catalysts degrade via C -H reductive elimination involving a Rh H species. Therefore, a catalytic application that does not invo lve Rh H formation should prohibit degradation and allow the enantioselectivity of the catalysts to be investigated. To test the capabilities of the constrained Rh(I) mononuclear complexes they were applied to the well -established asymmetric conjugate ad dition of boronic acids to cyclic enones Asymmetric conjugate addition of organometallic reagents to electron deficient olefins is an important method for enantioselective carbon -carbon bond formation.177 Although a variety of transition metals have been applied to conjugate addition,178181 c opper and rhodium based catalysts have been the most thoroughly investigated. The first a symmetric copper based addition was reported in 1988 by Lippard.182 Chiral a minotroponeimine ligands were used in the copper catalyzed reaction between 2 -cyclohexe n 1 one and alkyllithium reagents producing a maximum e.e. of 14%. Subsequent to this report many research groups endeavored to improve the enantioselectivity and catalytic activity of this reaction, typically using dialkyl zinc reagents and cyclic enones.28 A breakthrough in the late 1990s revealed p hosphoramidites as highly enantioselective ligands when applied to the copper catalyzed addition of alkylzinc to 2 -

PAGE 109

109 cyclohexen1 one.183 Since this report, a variety of different ligand architectures have been found to be highly enantioselective toward this reaction .28, 184 187 Copper based catalysts are typically utilized at low temperatures ( often well below 0 C)28 to introduce alkyl group s via an organozinc reagent R hodium catalysts on the other hand, can be used at ambient to high (above 100 C) temperature s with a wide variety of organometallic reagents ,188195 to introduce alkenyl or aryl substituents. A ryl stannanes ,188191, 112 arylsilicon,192 113 aryltitanium,193, 194, 114 and alkenylzirconium195, 115 reagents h ave been used as transmetallating reagents in 1,4addition reactions However, the commercial availability and stability of boronic acids have made them the most popular choice .196, 197 The first rhodium catalyzed 1,4-conjugate addition of aryl and alkenylboronic acids to enones was reported by Miyaura in 1997.198 In this communication, the authors focused on acyclic enones with no reported e.e. measurements. Rh(acac)(CO)2/dppb (dppb = d iphenylphos phino butane ) was used as the precatalyst and the reaction proceeded at 50 C in aqueous solvents with modest yields. A year later, the same authors reported a chiral application using the bis -phosphine ligand ( S ) BINAP as the chiral auxiliary.199 Although two acyclic enones were investigated, the focus of the paper was addition to 2 -cyclohexen1 -one. To achieve high yields and chiral induction it was necessary for the authors to increase the rea ction temperature to 100 C. Mechanistic investigation200 of this system revealed transmetallation of the aryl group from boronic acid to rhodium as the initial catalytic step Transmetallation occurs via a four centered transition states shown in Figure 5 1 .201 Addition of base is important when utilizing a rhodium catalyst containing a halogen ligand T he boronic acid is quaternized by the base increasing the nucleophilicity of the aryl group and facilitating transmetallation. Non -halogenated catalyst s are

PAGE 110

110 typically activated by reaction with protonated solvent s forming a Rh OH or Rh OMe complex depending on the solvent mixture Under these conditions, base is not strictly required but does have a strong accelerating effect.201 Kinetic studies by Hayashi et al.202 on the Rh BINAP sy stem revealed transmetallation a s the rate limiting step (rls) These studies also uncovered the formation of a homochiral dimer that is inactive towards catalysis, but it s position prior to the rl s means that th e equilibrium constant between monomer and dimer can influence the overall rate of the reaction. The reaction was found to be first order overall and half -order in catalyst. Interestingly, Hayashi also discovered a negative nonlinear effect between the enantiop urity of the ligand and the e.e. of the product. Subs equent to transmetallation, transient coordination of the enone to the metal center is followed by insertion of the enone into the rhodium aryl bond In asymmetric reactions, the products stereochemistry is determined by this diastereo meric transition state .28 When ( S ) BINAP is used as the chiral control the ( S )-product is formed suggesting approach of the enone from its 2 si face. Insertion of the enone forms a n oxa allylrhodium species which is then hydrolyzed yielding the product and the catalytically active L*Rh OH species In the initial mechanistic studies, NMR experiments revealed that all of the individual step s could be accomplished at 25 C.200 H owever, catalytic reactions starting from Rh(acac)(binap) required temperatures well above 60 The tightly bound acetylacetonato (acac) ligand was found responsible for the high temperature requirement T emperature and time requirements were drastically reduced w hen the acac ligand was replaced with a hydroxyl (OH) group.

PAGE 111

111 Rhodium 1,4 addition of boronic acids to cyclic enones has become a benchmark reaction for a variety of ligands to test their capability towards asymmetric induction.203210 Utilization of NHC ligands is fairly rare in rhodium catalyzed conjugate additions Monode ntate paracyclophane -substituted NHCs reported by Andrus et al.211, 212 were found to provide high yields and asymmetric induction utilizing 2 mol% [Rh(acac )(C2H4)2] at 60 C in THF/wa ter. The best e.e. was produced by the paracyclophane with a bulky ortho -methoxyphenyl substituent. Moderate to high enantioselectivities have also been achieved using a bidentate diphenylphosphinoNHC rhodium complex synthesized by Helmchen and coworkers.213 Recently, Douthwaite et al. reported the synthesis of a rhodium catalyst supported by a chiral NHC -phenoxyimine ligand.214 The complex was found to be active towards conjugate addition but with no enantioselectivity. NHCs have found more extensive application in copper215217 based 1,4 addition to enones. T he first asymmetric copper conjugate additions utilizing NHCs were reported by Alexakis215 and Roland216 in 2001. Eac h reported similar C2 symmetric saturated imidazole ligands in the addition of diethylzinc to 2 -cyclohexen 1 one mediated by Cu(OTf)2 with a maximum e.e. of 50% reported by Alexakis. S everal groups have reported fair e.e.s ranging from the 27% initially reported by Roland to 93% reported by Alexakis218 and Mauduit .219 The Hoveyda group -substituted cyclic enones catalyzed in situ using a chiral silver NHC and Cu(OTf)2.220, 221 The addition produced quaternary stereogenic centers with yields ranging from 67 98% and e.e. s as high as 97%. In comparison to the prolific success of rhodium and copper catalyzed conjugat e additions, p alladium catalyzed 1,4 additions are uncommon .222226 Recently, Min Shi reported the first palladium(II) cata lyzed 1,4 addition using a chelating bis NHC ligand.113 The bis NHC ligand is

PAGE 112

112 based on the privileged binaphthalene backbone introduced in chapter 2 Using 3 mol% catalyst at room temperature over 36 h, the reaction provided yields as high as 99% and e.e. s ran ging from 32% for the addition of phenylboronic acid to cyclopentenone to 97% for the addition of 2 naphthylboronic acid to 2 cyclohexen1 -one. Taking into account the benchmark success of rhodium catalyzed asymmetric 1,4 addition of aryl boronic acids and Min Shis report of successful application of a chelating bis NHC complex this reaction appeared to be an ideal test fo r our ligand system. The importance of this application does not reside in its novelty but rather in its utilization as a tool to measure the chiral induction ability of this novel ligand design. 5.2 Experimental Section 5 .2.1 General Catalytic Procedure Under inert atmosphere, [L*Rh (COD)]X (16 mol 1.5mol%), a ryl boronic acid (1 .5 mmol ), and KOH (0.5 mmol ) were combined with 2 mL of dry 1,4 -dioxane in a sealable flask Under positive argon flow, enone (1 mmol ) and degassed methanol (0.5 mL) were added to the flask. The flask was sealed and heated with stirrin g until the reaction was complete. The substrate was purified by column chromat ography on silica gel with 9:1 h exanes:Et2O as the mobile phase. The e.e. of the resulting cyclic ketone was determined using HPLC analysis. 5.2.2 3-P henylcyclohexanone (5 -1 ) Colorless oi l; p urified by column chromatography, eluent h exanes / Et2O 9:1. Chiral HPLC: Chiralcel IA column (hexanes/2 propanol, 98:2, 0.4 mL/min); tR: 20.38 min ( S )227, 23.28 min (R ). 1H NMR (300 MHz, CDCl3) ppm : 7.28 7.38 (m, 2 H), 7.18 7.27 (m, 3 H), 2.94 3.08 (m, 1 H), 2.30 2.65 (m, 4 H), 2.03 2.20 (m, 2 H), 1.72 1.94 (m, 2 H). 13C NMR (75 MHz,

PAGE 113

113 CDCl3) ppm : 210.8 (s), 144.2 (s), 128.5 (s), 126.5 (s), 126.4 (s), 48.8 (s), 44.6 (s), 41. 1 (s), 32.6 (s), 25 .4 (s). 5.2.3 3-(2 -Methylphenyl) -C yclohexanone (5 -2 ) Colorless oil; p urified by column chromatography, eluent hexanes/ Et2O 9:1. Chiral HPLC: Chiralpak IA column (hexanes/2 -propanol, 98:2, 0.4 mL/min); tR: 16.708 min ( R )227, 19.708 min (S ). 1H NMR (300 MHz, CDCl3) ppm : 7.21 7.28 (m, 2 H), 7.11 7.20 (m, 2 H), 3.15 3.29 (m, 1 H), 2.39 2.57 (m, 4 H), 2.33 (s, 3 H), 2.18 (s, 1 H), 1.99 (br. s., 1 H), 1.75 1.93 (m, 2 H) 13C NMR (75 MHz, CDCl3) ppm : 211.4 (s), 142.5 (s), 135.3 (s, 3 C), 130.9 (s), 126. 7 (s), 126.6 (s), 125.2 (s), 48.6 (s), 41.5 (s), 40.5 (s), 32.2 (s), 26.0 (s), 19.5 (s). 5.2.4 3 -(1 -Naphthalenyl) -C yclohexanone (5 -3 ) White solid ; purified by column chromatography, eluent hexanes/ Et2O 9:1. Chiral HPLC method capable of complete resolution has not been determined to date. 1H NMR (300 MHz, CDCl3) ppm : 8.04 (d, J= 8. 2 Hz, 1 H), 7.83 7.92 (dd, J= 7.8,1.2 Hz, 1 H), 7.76 (d, J= 7.9 Hz, 1 H), 7.35 7.58 (m, 4 H), 3.78 3.93 (m, 1 H), 2.37 2.8 3 (m, 4 H), 2.11 2.30 (m, 2 H), 1.81 2.08 (m, 2 H). 13C NMR (75 MHz, CDCl3) ppm : 211.4 (s), 140.3 (s), 134.2 (s), 131.1 (s), 129.3 (s), 127.5 (s), 126.4 (s), 125.9 (s), 125.7 (s), 122.9 (s), 122.6 (s ), 48.8 (s), 41.7 (s), 39.6 (s), 32.5 (s ), 25.8 (s ). 5.2.5 3 -(4 -Methoxyphenyl) -C yclohexanone (5 -4 ) Colorless oil; purified by column chromatography, eluent hexanes/ Et2O 9:1. Chiral HPLC method capable of complete resolution has not been determined to date. 1H NMR (300 MHz, CDCl3) ppm : 7.12 (d, J= 8.5 H z, 2 H), 6.85 (d, J= 8.5 Hz, 2 H), 3.77 (s, 3 H), 2.87 3.01 (m, 1 H), 2.28 2.60 (m, 4 H), 1.99 2.17 (m, 2 H), 1.78 (s, 2 H). 13C NMR (75 MHz, CDCl3) ppm :

PAGE 114

114 211.3 (s), 158.5 (s ), 136.8 (s), 127.7 (s), 114.2 (s), 55.4 (s), 49.4 (s), 44.2 (s), 41.4 (s), 33.2 (s), 25.7 (s). 5.2.6 3 -(4 -Fluorophenyl) -C yclohexanone (5 -5 ) Colorless oil; purified by column chromatography, eluent hexanes/Et2O 9:1. Chiral HPLC column: Chiralpack IA column (hexanes/2 -propanol, 98:2, 1.0 mL/min); tR: 14.0 min (+), 15.1 min ( ).227 1H NMR (300 MHz, CDCl3) ppm : 7.10 7.21 (m, 2 H), 6.93 7.03 (m, 2 H), 2.90 3.05 (m, 1 H), 2.27 2.60 (m, 4 H), 1.99 2.18 (m, 2 H), 1.69 1.88 (m, 2 H). 13C NMR (75 MHz, CDCl3) ppm : 210.8 (s), 163.4 (s), 160.1 (s), 140.3 (s), 128.3 (s), 128.1 (s), 115.7 (s), 1 15.5 (s), 49.3 (s), 44.2 (s), 41.3 (s), 33.1 (s), 25.6 (s). 5.2.7 3 -P henylcyclopentanone (5 -6 ) Colorless oil; purified by column chromatography eluent hexanes/Et2O 9:1. Chiral HPLC method capable of complete resolution has not been determined to date. 1H NMR (300 MHz, CDCl3) ppm : 7.30 7.39 (m, 2 H), 7.22 7.29 (m, 3 H), 3.35 3.51 (m, 1 H), 2.61 2.74 (m, 1 H), 2.22 2.54 (m, 4 H), 1.90 2.09 (m, 1 H). 13C NMR (75 MHz, CDCl3) ppm : 218.6 (s), 143.3 (s), 128.9 (s), 126.9 (s), 126.9 (s), 46.0 (s), 42.4 (s), 39. 1 (s), 31.4 (s). 5.3 Results and Discussion Catalytic investigation was accomplished using the chiral versions of compounds 2 -3 3 8 3 -9 and 4 -8 These studies quickly revealed that 2 -3 was not capable of transferring its chirality at temperatures required for catalytic turnover. As previously conjectured, the flexibility of this ligand produces an undefined chiral pocket particularly at high te mperatures. Catalyst 3 -8 however, produced much larger enantiomeric excesses than has been previously reported utilizing closely related ligands in asymmetric catalysis .120 As expected, the more flexible analog 3 -9 produced much lower e.e.s than 3 -8 Increasing the steric bulk of the N-

PAGE 115

115 substituents (4 -8 ) does not appear to have a significant effect on the chiral induction ability of the unsaturated imidazole complex A catalytic cycle (Figure 5 2) is proposed based on mechanistic and kinetic studies accomplished by Hayashi et al.202 and Mi y a ura.189 The precatalyst I is activated by loss of COD forming a solvated species II. As reported for the BINAP system by Hayashi, our catalyst system may be capable of formi ng a dimeric complex III. From the active catalyst species II transmetallation of the aryl boronic acid via the transition state IV produces the phenyl compound V Subsequent insertion of the olefin is accomplished through a diastereo meric transition sta te VI This transition state is responsible for determining the enantiotopic identity of the product and forming the oxa allyl -Rh species VII that is then hydrolyzed to form the product. The most enantioselective catalyst, 3 -8 was utilized to optimiz e the conditions for asymmetric conjugate addition ( Table 5 1 ). M any unrelated catalysts have been reported to achieve high yields and enantioselectivities at room temperature,28 but our system requires temperatures well above 70 C. As was discovered with the original Rh(acac)binap system, dissociation of COD is believed to necessitate these high temperatures as well as the long reaction times. Attempts to replace the COD li gand by utilization of alternative rhodium precursors or by ligand substitution were unsuccessful or led to catalyst degradation. The reaction conditions found to produce the highest yield and enantiomeric excesses utilized 10/1 dioxane:methanol at 80 C with 0.5 equivalents of base and 3 mol% catalyst over 24 hrs for addition of phenyl boronic acid to 2 -cyclohexe n 1 one The addition of o tolylboronic acid to 2 -cyclohexe n 1 -one was found to achieve the same level of enantiopurity utilizing 4/1 dioxane:methanol and 1.5% of ( R,R) 3 -8 For the addition of pheny lboronic acid, the ( S,S )

PAGE 116

116 enantiomer of the ligand produces ( S ) 5 -1 and the ( R,R ) enantiomer forms ( R ) 5 -1 suggesting a similar pattern of chiral induction to that reported for the privileged ( S,S ) BINAP ligand.28 Omission of base or utilization of pyridine led to no product formation and substituting potassium hydroxide with potassium carbonate led to reduced yields and e.e.. Altering the solvent mixt ure to THF/Methanol had little effect but did lead to a small decrease in e.e. and attempting the reaction in pure methanol drastically increased the yield but produces no e.e. suggesting catalyst degradation. Typical solvent mixtures for rhodium catalyz e d conjugate addition reactions include water to facilitate hydrolysis and formation of the final product. However, substitution of methanol with deionize d degassed water reduced e.e. measurements from 82% to 5 % under the same reaction conditions. Loss o f enantioselectivity may be due to water facilitated dissociation of the chiral backbone or formation of dimer III. To completely remove water from the system, anhydrous methanol was utilized, le a d ing to a slight decrease in both yield and enantiocontrol suggesting a fine balance between catalyst activation and degradation by protonated solvents Investigation of chiral catalysis utilizing a variety of other boronic acids (Tables 5 2 through 5 7 ) leads to several conclusions. Comparison of the catalytic runs involving 4 methoxyboronic acid and 4 -fluoroboronic acid suggest transmetallation is facilitated by electron donating substituents 4 -methoxyboronic acids produced significant yields after only 14 hours, as the fluoro analog required 24 hrs and produced lower yields for 3 -8 and 3 -9 Utilization of o tolyl boronic acid allowed for increased steric bulk about the chiral pocket during the olefin insertion step. This was expected to increase th e enantiomeric excess produced particularly for the more flexible catalysts 3 -9 and 4 -8 by affecting the structure of diastereotopic transition state VI The close proximity of the methyl group to the metal center could serve to further define the

PAGE 117

117 chiral pocket, affecting the approach and insertion of the olefin. The e.e. s produced by these reactions are higher than those obtained utilizing phenylboronic acid, but this affect is not drastic. For 4 -8 the increase in e.e. is small but the yield is drastica lly reduced, inferring that the isopropyl group may hinder the overlap be tween hindered aryl substituents and the enone in the transition state VI Comparison of reactions forming 3 phenylcyclopentanone (5 -6 ) with those form ing the much bulkier 3 (1 -naphthalenyl) -cyclohexanone (5 -3 ) (Tables 5 4 and 57 ) show that the more flexible catalysts 3 -9 and 4 -8 produce higher yields when the size of the boronic acids is increased. However, t he more constrained catalyst 3 -8 produces small amounts of bulky 5 -3 but large amount s of the relatively small 5 -6 5.4 Conclusions Catalytic trials involving catalyst 2 -3 3 -8 3 -9 and 4 -8 display the large variation in catalytic behavior that can emanate from relatively small alterations in ligand structure. The significan t increase in the enantio selectivity of catalyst 3 -8 is assigned to an increase in the size of the imidazole, an area that is not typically associated with catalytic behavior. These findings further support the assertion that the purely rational design of catalyst should not be attempted before empirical investigation can be accomplished. Figure 5 1. Transmetallation of aryl substituents to rhodium catalysts.

PAGE 118

118 Figure 5 2. Catalytic cycle for the 1,4 addition of boronic acids to cyclic enones.

PAGE 119

119 Table 5 1 Optimization of catalytic conjugate addition involving compound 3 -8 Product Catalyst Solvent Temp C % e .e. Yield a Hours 5 1 (+/ ) 2 5 Dioxane/Water 85 NA 0 20 5 1 (+/ ) 2 3 Dioxane/Water 85 NA 99 20 5 1 () 2 3 Dioxane/MeOH 82 0 98 18 5 1 (+/ ) 3 8 Dioxane/MeOH 78 NA 60 22 5 1 (S,S ) 3 8 Dioxane/MeOH 50 NA 0 17 5 1 (+/ ) 3 8 f Dioxane/MeOH 80 NA 0 17 5 1 (S,S ) 3 8 Dioxane/MeOH 75 70 25 22 5 1 (S,S ) 3 8 b Dioxane/ MeOH 80 NA 0 17 5 1 (S,S ) 3 8 c Dioxane/ MeOH 80 46 30 17 5 1 ( S,S ) 3 8 Dioxane/MeOH 75 70 33 24 5 1 (S,S ) 3 8 Dioxane/MeOH 80 69 55 24 5 1 (S,S ) 3 8 d Dioxane/MeOH 80 73 72 24 5 1 (1eq ) (S,S ) 3 8 Dioxane/MeOH 80 72 59 24 5 1 (2eq ) ( S,S ) 3 8 Dioxane/MeOH 80 57 68 24 5 1 (R,R ) 3 8 THF/MeOH 80 77 e 73 24 5 1 (R,R ) 3 8 Dioxane/H2O 80 5 e 82 24 5 1 (R,R ) 3 8 Dioxane/MeOH (10:1) 80 82 e 86 24 5 1 ( R,R ) 3 8 Dioxane/MeOH (2:1) 80 61 e 70 24 5 1 (S,S ) 3 8 Dioxane/H2O (4:1) 80 5 83 24 5 1 (R,R ) 3 8 Dioxane/MeOH(4:1) 80 78 e 56 24 5 1 (S,S ) 3 8 d Dioxane/MeOH (10:1) 80 54 98 24 5 1 ( S,S ) 3 8 d Dioxane/anh MeOH (10:1) 80 43 74 24 aIsolated Yield after column chromatography bPyradine instead of KOH cK2CO3 instead of KOH d 3 mol% catalyst I solated after column eR -enantiomer fNo Base Table 5 2. Formation of 5 -1 catalyzed by 3 -8 3 -9 and 4 -8 Product Catalyst Solvent Temp C % e.e. Yield a Hours 5 1 (S,S ) 3 8 Dioxan e /MeOH 75 71 33 24 5 1 ( R,R ) 3 8 Dioxane/MeOH 80 78 b 56 24 5 1 (S,S ) 3 9 Dioxane/MeOH 75 6 17 24 5 1 (S,S ) 3 9 Dioxane/MeOH 82 4 20 23 5 1 (R,R ) 3 9 Dioxane/MeOH 82 5 b 19 23 5 1 ( S,S ) 3 9 MeOH 81 0 50 17 5 1 (R,R ) 4 8 Dioxane/MeOH 75 5 b 13 24 5 1 (R,R ) 4 8 Dioxane/MeOH 80 7 b 26 24 aIsolated yield after column chromatography bR -enantiomer

PAGE 120

120 Table 5 3 Formation of 5 -2 catalyzed by 3 -8 3 -9 and 4 -8 Product Catalyst Solvent Temp C % e.e. Yield a Hours 5 2 ( S,S ) 3 8 Dioxane/MeOH d 80 c 65 18 24 5 2 ( S, S ) 3 8 Dioxane/MeOH 76 b 82 40 24 5 2 ( S,S ) 3 9 Dioxane/MeOH 80 c 20 70 24 5 2 ( S,S ) 3 9 Dioxane/MeOH 76 b 10 22 24 5 2 ( R,R ) 4 8 Dioxane/MeOH 80 c 15 d 41 24 5 2 ( R,R ) 4 8 Dioxane/MeOH 76 b 8 d 25 24 aIsolated yield after column chromatography b 1.5 mol % catalyst c 3 mol % catalyst dR enantiomer Table 5 4 Formation of 5 -3 catalyzed by 3 -8 3 -9 and 4 -8 Product Catalyst Solvent Temp C % e.e. Y ie ld a Hours 5 3 (S,S ) 3 8 Dioxane/MeOH 80 NA b 45 24 5 3 ( S,S ) 3 9 Dioxane/MeOH 80 NA b 83 24 5 3 ( R,R ) 4 8 Dioxane/MeOH 80 NA b 69 24 a Isolated yield subsequent to column b HPLC/GC method was not found to fully resolve the enantiomers Table 5 5 Formation of 5 -4 catalyzed by 3 -8 3 -9 and 4 -8 Boronic Acid Catalyst Solvent Temp C % e.e. Yield a Hours 5 4 ( S,S ) 3 8 Dioxane/MeOH 80 NA b 57 14 5 4 (S,S ) 3 9 Dioxane/MeOH 80 NA b 98 14 5 4 ( R,R ) 4 8 Dioxane/MeOH 80 NA b 29 14 aIsolated yield subsequent to column b HPLC/GC method was not found to fully resolve the enantiomers Table 5 6 Formation of 5 -5 catalyzed by 3 -8 3 -9 and 4 -8 Product Catalyst Solvent Temp C % e.e. Y i e ld a Hours 5 5 ( S,S ) 3 8 Dioxane/MeOH 80 47 45 24 5 5 ( S,S ) 3 9 Dioxane/MeOH 80 11 65 24 5 5 (R,R ) 4 8 Dioxane/MeOH 80 0 71 24 aIsolated yield subsequent to column Table 5 7 Formation of 5 -6 catalyzed by 3 -8 3 -9 and 4 -8 Product Catalyst Solvent Temp C % e.e. Yie ld a Hours 5 6 ( S,S ) 3 8 Dioxane/MeOH 80 NA b 71 15 5 6 ( S,S ) 3 9 Dioxane/MeOH 80 NA b 50 15 5 6 ( R,R ) 4 8 Dioxane/MeOH 80 NA b 22 15 aIsolated yield subsequent to column b HPLC/GC method was not found to fully resolve the enantiomers

PAGE 121

121 CHAPTER SIX CONCLUSIONS AND FUTU RE DIRECTION Structural investigation of catalysts 2 -3 3 -8 3 -9 4 -8 4 -9 4 -10 and the unsuccessful formation of a mononuclear catalyst from ligand 4 -7 has shown that there is a fine balance between u ndefined and overly hindered ligand structures The overly flexible ligand 2 -1 was modified by reducing the length of the ligand arms. The two constrained ligands 3 -3 and 3 -4 although very similar in structure, formed monometallic chiral catalysts ( 3 -8 and 3 -9 ) that induced drastically different cat alytic selectivities (Chapter 5). Gas-phase ground state geometry optimization calculations were used to show that the variation in the chiral pocket between 3 -8 and 3 -9 was due largely to the difference in choice of azole a lthough some of the catalytic variation may be due to electronic differences between the imidazole and benzimidazole Increasing the size of the Nsubstituents ( 4 -1 ) does little to improve the poor enantioselectivity of the unsaturated imidazole catalyst 3 -9 The fair enantioselecti vity of 3 -8 at high temperatures could be improved if catalytic turnover could be achieved at reduced temperatures. Substitution of the cyclooctadiene coligand is the most straightforward pathway to achieving an optimized catalytic structure. Although p revious attempt s have not led to the desired product, further investigation of this avenue is needed. According to the calculated structure of tolylimidazole complex 4 -10, its configuration is nearly identical to 3 -8 The similar minimum energy structures should present comparable chiral inductions, although small variations could lead to large alteration in the structure of the diastereotopic transition state that determines the products enantiotopic identity. Increasing the size of the Nsub stituent of 3 -8 resulted in the extremely low yielding formation of monometallic complex 4 -9 In order to isolate amount s of 4 -9 required for catalytic investigation it may be

PAGE 122

122 useful to substitute the dimeric [Rh(COD)Cl]2 with the monometallic cationic Rh(NBD)2BF4 precursor F ormation of a silver salt from ligand 4 -2 that could be used for transmetallation could also increase the yield of monometallic complex 4 -9 A lternative ligand structures (Figure 6 1) could be used to increase the definition of the chiral pocket. However, caution must be taken to avoid the design of overly hindered ligands that favor the formation of bimetallic complexes. The addition of a methyl substituent in the ortho position ( 6 -1 ) should lead to a very rigid monometallic complex if it can be formed. Ortho substitution of a fluoro substituent should induce less steric inhibition to monometallic complex formation; however, synthetic procedures required to form this ligand are more complex than for 6 -1 and the electronic interaction between the fluoro substituent and the aryl backbone may also preclude monometallic catalyst synthesis. Although the meta methyl substituent did not alter the structure of the monometallic catalyst ( 4 -6 ), introduction of a significantly bulky substituent in this position ( 6 -3 R = t Bu or biphenyl ) should alter the structure. The unsaturated imidazole complexes 3 -9 and 4 -1 do not appear to be promising in high temperature catalysis. However, they should present much higher enantioselectivities if utilized at room temperature. An alternative structure 6 -4 is proposed whereby the bulk of the backbone is increased Substitution of glyoxal with an alkyl substituted dione, such as butane 2,3 -dione, would introduce alkyl groups on the back of the im idazole. The stability of the rhodium and iridium complexes reported herein has allowed the structural investigation of a series of di NHC ligands. Although structural knowledge is vastly important in catalytic investigation, the stability of these comp lexes is likely the source of the observed sluggish reactivity. Formation of metal complexes containing labile co ligands should allow the formation of electron rich metal centers capable of a high degree of enantioselectivity.

PAGE 123

123 Figure 6 1. Proposed lig and structures for enhanced chiral induction.

PAGE 124

124 APPENDIX A NUCLEAR MAGNETIC RESONANCE

PAGE 125

125 Figure A 1 : 1H NMR spectrum of (+/ ) [DEAM BI][OTf]2 (2 -1 ) in (CD3)2SO 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 Chemical Shift (ppm)

PAGE 126

126 Figure A 2 : 13C NMR spectrum of (+/ ) [DEAM BI][OTf]2 (2 -1 ) in (CD3)2SO 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Chemical Shift (ppm)

PAGE 127

127 Figure A 3 : 1H NMR spectrum of (+/ ) DEAM BIY (2 -2 ) in C6D6. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 128

128 216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 Chemical Shift (ppm) Figure A 4 : 13C NMR spectrum of (+/ ) DEAM BIY (2 -2 ) in C6D6.

PAGE 129

129 Figure A 5. 1H NMR spectrum of (+/ ) [(DEAM BIY) Rh (COD)] OTf (2 3 ) in CDCl3. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 130

130 Figure A 6 : 13C NMR spectrum of (+/ ) [(DEAM BIY) Rh (COD)] OTf (2 -3 ) in CDCl3. 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm)

PAGE 131

131 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure A 7 : 1H NMR spectrum of (+/ ) (DEAM BIY)Rh2(COD)2Cl2 (2 -4 ) in CDCl3.

PAGE 132

132 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm) Figure A 8 : 13C NMR spectrum of (+/ )(DEAM BIY)Rh2(COD)2Cl2 (2 -4 ) in CDCl3.

PAGE 133

133 Figure A 9: 1H NMR spectrum of ( +/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CDCl3. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Chemical Shift (ppm)

PAGE 134

134 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Chemical Shift (ppm) Figure A 10: 1H NMR spectrum of (+/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CD2Cl2.

PAGE 135

135 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 Chemical Shift (ppm) Figure A 11: 13C NMR spectrum of (+/ ) [(DEAM BIY)Ir(COD)]OTf (2 -5 ) in CD2Cl2

PAGE 136

136 Figure A 12: 1H NMR spectrum of (+/ ) (DEAM BIY)Ir2(COD)2Cl2 (2 -6 ) in CDCl3. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 137

137 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 Chemical Shift (ppm) Figure A 13: 13C NMR spectrum of (+/ ) (DEAM BIY)Ir2(COD)2Cl2 (2 -6 ) in CDCl3.

PAGE 138

1 38 Figure A 14: 1H NMR spectrum of 1,1 (9,10-dihydro 9,10-ethanoanthracene11,12-diyl)di(3 -methyl 1H -benzimidazol 3 ium) diiodide ( 3 -4 ) in (CD3)2SO 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Chemical Shift (ppm)

PAGE 139

139 Figure A 15: 1H NMR spectrum of (+/ ) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 (1 methyl)bibenzimidazole), [(DEA MbBY] (3 -5 ) in C6D6. 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

PAGE 140

140 Figure A 16: 13C{1H} NMR spectrum of (+/ ) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 (1 methyl)bibenzimidazole), [(DEA MbBY] (3 -5 ) in C6D6. 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Chemical Shift (ppm)

PAGE 141

141 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm) Figure A 17: 1H NMR spectrum of [ DEA MY][Rh(NBD)I]2 (3 -6 ) as a mixture with 3 -9 in C6D6.

PAGE 142

142 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm) Figure A 18: 1H NMR spectrum of [ 2 DEA MBY][Rh(NBD)I]2 (3 -7 -NBD ) as a mixture with 3 -8 -NBD in C6D6.

PAGE 143

143 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure A 1 9 : 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MBY)Rh(COD)]I (3 -8 ) in CDCl3.

PAGE 144

144 Figure A 20: 13C{1H} NMR spectrum of (+/ ) Rho dium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylbenzimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MBY)Rh(COD)]I (3 -8 ) in CDCl3. 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 Chemical Shift (ppm)

PAGE 145

145 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure A 21: 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,1 0 ethanoanthracene 9,10 bis(1 methylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MY)Rh(COD)]I (3 -9 ) in CD3Cl.

PAGE 146

146 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 Chemical Shift (ppm) Figure A 22: 13C{1H} NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MY)Rh(COD)]I (3 -9 ) in CD3Cl

PAGE 147

147 Figure A 23: 1H NMR spectrum of (+/ ) [DEA iPrI][I]2 (4 -1 ) in (CD3)2SO 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

PAGE 148

148 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 Chemical Shift (ppm) Figure A 24: 13C NMR spectrum of (+/ ) [DEA iPrI][I]2 (4 -1 ) in (CD3)2SO

PAGE 149

149 Figure A 25. 1H NMR spectrum of (+/ ) [DEA iPr BI][I]2 (4 -2 ) in (CD3)2SO 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Chemical Shift (ppm)

PAGE 150

150 Figure A 26. 13C NMR spectrum of (+/ ) [DEA iPr BI][I]2 (4 -2 ) in (CD3)2SO 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 Chemical Shift (ppm)

PAGE 151

151 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 Chemical Shift (ppm) Figure A 27. 1H NMR of N,N' -bis(4 -nitrotolyl) 9,10 dihydro9,10 -ethanoanthracene 11,12diamine ( 4 -3 ).

PAGE 152

152 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 Chemical Shift (ppm) Figure A 28. 13C NMR of N,N' -bis(4 -nitrotolyl) 9,10 -dihydro 9,10-ethanoanthracene 11,12diamine ( 4 -3 ).

PAGE 153

153 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Chemical Shift (ppm) Figure A 29. 1H NMR of N,N' -bis(4 aminotolyl) 9,10-dihydro 9,10-ethanoanthracene 11,12-diamine ( 4 -4 ).

PAGE 154

154 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 Chemical Shift (ppm) Figure A 30. 13C NMR of N,N' -bis(4 aminotolyl) 9,10-dihydro 9,10 ethano anthracene 11,12-diamine ( 4 -4 ).

PAGE 155

155 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 Chemical Shift (ppm) Figure A 31. 1H NMR 1,1' (9,10 -dihydro 9,10-ethanoanthracene 11,12-diyl)di(1 H tolylimidazole) ( 4 -5 ).

PAGE 156

156 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 Chemical Shift (ppm) Figure A 32. 13C NMR 1,1' (9,10-dihydro 9,10-ethanoanthracene 11,12diyl)di(1 H tolylimidazole) ( 4 -5 ).

PAGE 157

157 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure A 33. 1H NMR spectrum of (+/ ) [DEA MT I][I]2 (4 -6 ) in (CD3)2SO

PAGE 158

158 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm) Figure A 34. 13C NMR spectrum of (+/ ) [DEA MT I][I]2 (4 -6 ) in (CD3)2SO

PAGE 159

159 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm) Figure A 35: 1H NMR spectrum of R,R [DEA iPr T I][I]2 (4 -7 ) in CDCl3.

PAGE 160

160 Figure A 36. 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropyl imidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPr Y)Rh(COD)]I (4 -8 ) in CDCl3. 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 161

161 Figure A 37. 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropyl imidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPr Y)Rh(COD)]I (4 -8 ) in CDCl3 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm)

PAGE 162

162 Figure A 38. 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylbenz imidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrB Y)Rh(COD)]I (4 -9 ) in CDCl3. 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 163

163 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 Chemical Shift (ppm) Figure A 39. 13C NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 isopropylbenz imidazolidine 2 ylidene cyclooctadiene iodide, [(DEA iPrB Y)Rh(COD)]I (4 -9 ) in CDCl3.

PAGE 164

164 Figure A 40. 1H NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methylt olylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MTY)Rh(COD)]I (4 -10) in CDCl3. 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Chemical Shift (ppm)

PAGE 165

165 Figure A 41. 13C NMR spectrum of (+/ ) Rhodium(I) trans 9,10 dihydro 9,10 ethanoanthracene 9,10 bis(1 methyltolylimidazolidine 2 ylidene cyclooctadiene iodide, [(DEA MTY)Rh(COD)]I (4 -10) in CDCl3. 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm)

PAGE 166

166 APPENDIX B REFINEMENT DATA Table B 1 Crystal data, structure solution and refinement for 2 -1 identification code rx14 empirical formula C40 H36 F6 N4 O6 S2 formula weight 846.85 T (K) 173(2) () 0.71073 crystal system Monoclinic space group P2(1)/c a () 12.5937(8) b () 24.6077(16) c () 12.9797(9) (deg) 90 (deg) 97.815(1) (deg) 90 V ( 3 ) 3985.1(5) Z 4 calcd (Mg mm 3 ) 1.411 crystal size (mm3) 0.29 x 0.26 x 0.22 abs coeff (mm 1 ) 0.214 F (000) 1752 range for data collection 1.63 to 24.99 limiting indices 8 h 14, 29 k 15, 15 l 15 no. of reflns collcd 12702 no. of ind reflns ( Rint) 6516 (0.0349) completeness to = 27.49 0.93 absorption corr Integration refinement method Full -matrix least -squares on F 2 data / restraints / parameters 6516 / 0 / 509 R 1,a wR 2b [I > 2 ] 0.0467, 0.1194 [5128] R 1, a wR 2 b (all data) 0.0602, 0.1279 GOFc on F2 1.035 largest diff. peak and hole 0.411 and 0.361 e. 3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 167

167 Table B 2 Crystal data, structure solution and refinement for 2 -2 identification code rx12 empirical formula C38 H34 N4 formula weight 546.69 T (K) 173(2) ) 0.71073 crystal system Orthorhombic space group Pna2(1) a () 10.3902(9) b () 21.6719(19) c () 13.1662(11) (deg) 90 (deg) 90 (deg) 90 V (3) 2964.7(4) Z 4 calcd (Mg mm3) 1.225 crystal size (mm3) 0.18 x 0.10 x 0.05 abs coeff (mm1) 0.072 F (000) 1160 range for data collection 1.81 to 25.00 limiting indices 11 h 25 k 25, 15 l 14 no. of reflns collcd 15241 no. of ind reflns ( Rint) 5055 ( 0.0624) completeness to = 27.49 100.00% absorption corr Emprirical, Psi scan refinement method Full -matrix least -squares on F2 data / restraints / parameters 5055 / 1 / 379 R 1,a wR 2b [I > 2 ] 0.0570, 0.1523 [4229] R 1,a wR 2b (all data) 0.0700, 0.1775 GOF c on F 2 1.075 largest diff. peak and hole 0.161 and 0.268 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 168

168 Table B 3 Crystal data, structure solution and refinement for 2 -3 CH2Cl2. identification code rx11 empirical formula C48 H48 Cl2 F3 N4 O3 Rh S formula weight 991.77 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 9.8237(13) b () 18.047(3) c () 24.957(3) (deg) 90 (deg) 92.909(2) (deg) 90 V (3) 4418.9(10) Z 4 calcd (Mg mm3) 1.491 crystal size (mm3) 0.16 x 0.16 x 0.10 abs coeff (mm1) 0.615 F (000) 2040 range for data collection 1.39 to 27.50 limiting indices 12 h 12, 22 k 23, 25 l 32 no. of reflns collcd 29619 no. of ind reflns ( Rint) 10128 (0.0483) completeness to = 27.49 0.997 absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 10128 / 1 / 570 R 1,a wR 2b [I > 2 ] 0.0359, 0.0988 [8286] R 1,a wR 2b (all data) 0.0459, 0.1024 GOFc on F2 1.077 largest diff. peak and hole 0.801 and 1.078 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 169

169 Table B 4 Crystal data, structure solution and refinement for 2 -4 C6H6. identification code rx10 empirical formula C60 H64 Cl2 N4 Rh2 formula weight 1117.87 T (K) 173(2) ) 0.71073 crystal system Triclinic space group P a () 13.839(2) b () 13.995(2) c () 14.479(2) (deg) 80.356(3) (deg) 70.239(3) (deg) 75.220(3) V (3) 2541.5(7) Z 2 calcd (Mg mm3) 1.461 crystal size (mm3) 0.13 x 0.05 x 0.02 abs coeff (mm1) 0.798 F (000) 1152 range for data collection 1.50 to 27.50 limiting indices 17 h 17, 18 k 12, 18 l 18 no. of reflns collcd 17430 no. of ind reflns ( Rint) 11405 (0.0811) completeness to = 27.49 97.80% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 11405 / 0 / 613 R 1,a wR 2b [I > 2 ] 0.0538, 0.1185 [6208] R 1,a wR 2b (all data) 0.1125, 0.1376 GOFc on F2 0.881 largest diff. peak and hole 0.554 and 0.672 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 170

170 Table B 5 Crystal data, structure solution and refinement for 2 -5 C6H6. identification code rx18 empirical formula C53 H52 F3 Ir N4 O3 S formula weight 1074.25 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 10.1135(17) b () 17.996(3) c () 24.932(4) (deg) 90 (deg) 92.221(4) (deg) 90 V (3) 4534.3(13) Z 4 calcd (Mg mm3) 1.574 crystal size (mm3) 0.09 x 0.02 x 0.02 abs coeff (mm1) 3.053 F (000) 2168 range for data collection 1.40 to 27.50 limiting indices 13 h 13, 22 k 23, 19 l 32 no. of reflns collcd 29378 no. of ind reflns ( Rint) 10343 (0.1461) completeness to = 27.49 99.30% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 10343 / 1 / 571 R 1,a wR 2b [I > 2 ] 0.0872, 0.0965 [5988] R 1,a wR 2b (all data) 0.1676, 0.1127 GOFc on F2 1.034 largest diff. peak and hole 1.085 and 1.791 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 171

171 Table B 6 Crystal data, structure solution and refinement for 2 -6 C6H6. identification code rx17 empirical formula C60 H64 Cl2 Ir2 N4 formula weight 1296.45 T (K) 173(2) ) 0.71073 crystal system Triclinic space group P a () 13.8318(17) b () 13.9515(17) c () 14.5432(18) (deg) 80.640(2) (deg) 70.355(2) (deg) 75.494(2) V (3) 2549.4(5) Z 2 calcd (Mg mm3) 1.689 crystal size (mm3) 0.15 x 0.12 x 0.04 abs coeff (mm1) 5.363 F (000) 1280 range for data collection 1.49 to 27.50 limiting indices 17 h 17, 18 k 16, 18 l 18 no. of reflns collcd 17315 no. of ind reflns ( Rint) 11384 (0.0589) completeness to = 27.49 97.50% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 11384 / 0 / 613 R 1,a wR 2b [I > 2 ] 0.0293, 0.0760 [9922] R 1,a wR 2b (all data) 0.0348, 0.0791 GOFc on F2 1.007 largest diff. peak and hole 1.769 and 1.397 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 172

172 Table B 7 Crystal data, structure solution and refinement for 2( 3 -5 ). identification code rx08 empirical formula C64 H52 N8 formula weight 933.14 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P21/n a () 10.5224(7) b () 38.633(3) c () 11.9173(7) (deg) 90 (deg) 102.497(1) (deg) 90 V (3) 4729.7(5) Z 4 calcd (Mg mm3) 1.310 crystal size (mm3) 0 .19 x 0.19 x 0.08 abs coeff (mm1) 0.078 F (000) 1968 range for data collection 1.83 to 27.50 limiting indices 13 h 12, 50 k 48, 14 l 15 no. of reflns collcd 32190 no. of ind reflns ( Rint) 10772 (0.0356) completeness to = 27.49 99.00% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 10772 / 0 / 651 R 1,a wR 2b [I > 2 ] 0.0416, 0.0943 [7390] R 1,a wR 2b (all data) 0.0695, 0.1028 GOFc on F2 1 largest diff. peak and hole 0.200 and 0.212 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 173

173 Table B 8 Crystal data, structure solution and refinement for 3 -6 THF identification code rx09 empirical formula C42 H46 I2 N4 O Rh2 formula weight 1082.45 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/c a () 12.8891(12) b () 14.6531(14) c () 22.462(2) (deg) 90 (deg) 104.806(2) (deg) 90 V (3) 4101.5(7) Z 4 calcd (Mg mm3) 1.753 crystal size (mm3) 0.09 x 0.07 x 0.05 abs coeff (mm1) 2.347 F (000) 2120 range for data collection 1.63 to 27.50 limiting indices 15 h 14, 15 k 19, 27 l 20 no. of reflns collcd 15923 no. of ind reflns ( Rint) 8001 ( 0.0353) completeness to = 27.49 85.00% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 8001 / 0 / 460 R 1,a wR 2b [I > 2 ] 0.0380, 0.0684 [5927] R 1,a wR 2b (all data) 0.0622, 0.0746 GOF c on F 2 0.977 largest diff. peak and hole 0.581 and 0.477 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 174

174 Table B 9 Crystal data, structure solution and refinement for 3 -7 CH2Cl2. identification code rx13 empirical formula C50 H54 Cl6 N4 Rh2 formula weight 1129.49 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 12.4529(12) b () 22.822(2) c () 17.3074(16) (deg) 90 (deg) 101.420(2) (deg) 90 V (3) 4821.3(8) Z 4 calcd (Mg mm3) 1.556 crystal size (mm3) 0.20 x 0.18 x 0.17 abs coeff (mm1) 1.057 F (000) 2296 range for data collection 1.50 to 27.50 limiting indices 13 h 16, 27 k 29, 22 l 20 no. of reflns collcd 32115 no. of ind reflns ( Rint) 11074 (0.0691) completeness to = 27.49 99.90% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 11074 / 0 / 569 R 1,a wR 2b [I > 2 ] 0.0354, 0.0936 [9845] R 1,a wR 2b (all data) 0.0402, 0.0969 GOFc on F2 1.025 largest diff. peak and hole 0.837 and 1.392 e.3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w ( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 175

175 Table B 10. Crystal data, structure solution and refinement for 3 -8 CH2Cl2. identification code rx20 empirical formula C 41 H 40 Cl 2 I N 4 Rh formula weight 889.48 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/c a () 10.7075(11) b () 30.420(3) c () 12.1504(12) 90 112.696(2) 90 V ( 3 ) 3651.2(6) Z 4 3 ) 1.618 crystal size (mm 3 ) 0.16 x 0.08 x 0.02 abs coeff (mm 1 ) 1.495 F(000) 1784 1.34 to 27.50. limiting indices 9 h 13, 36 k 39, 15 l 15 no. of reflns collcd 23756 no. of ind reflns (R int ) 8317 ( 0.1039 ) 99.10% absorption corr Integration refinement method Full -matrix least -squares on F2 data / restraints / parameters 8317 / 0 / 442 R1,a wR2b [I > 2s] 0.0496, 0.0705 [4514] R1,a wR2b (all data) 0.1158, 0.0824 GOFc on F2 0.853 largest diff. peak and hole 0.834 and 0.608 e. 3 a R 1 = || Fo | Fc||/ | Fo|. b w R 2 = ( ( w( Fo 2 Fc 2)2)/ ( w ( Fo 2)2))1/2. c GOF = ( w ( Fo 2 Fc 2)2/( n p ))1/2 where n is the number of data and p is the number of parameters refined.

PAGE 176

176 LIST OF REFERENCES 1. T. H. Maugh II, Science, 1983, 219, 474. 2. M. J. Krische, Tetrahedron, 2005, 61, 6169. 3. K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience John Wiley & Sons, Chichester, 2002. 4. A. P. Kieboom, J. Moulijn, P. W. N. M. V. Leeuwen and R. A. V. Santen, in Catalysis: An Integrated Approach, eds. R. A. Van Santen, P. W. N. M. Van Leeuwen, J. A. Moulijn and B. A. Averill, Elsevier Science, Amsterdam, Editon edn., 2000. 5. J. Tyndall, Catalysis Letters 2000, 67, 5. 6. S. K. Ritter, Chemical & Engineering News 2008, http://pubs.acs.org/cen/coverstory/86/8633cover3box2.html Accessed 6/18/2009. 7. B. Cornils and W. A. Herrmann, Journal of Catalysis 2003, 216, 23. 8. E. Morales, The North American Catalysis Society http://www.nacatsoc.org/default.asp, Accessed 5/1/2009. 9. B. Bosnich, ed., Asymmetric Catalysis Martinus Nij hoff Publishers, Dordrecht / Boston / Lancaster, 1986. 10. G. K. Boreskov, Heterogeneous Nova Publishers, 2003. 11. F. D. Gunstone, Guidebook to stereochemistry Longman Group Limited, New York, 1975. 12. J. B. Biot, Bull. Soc. Philomath. 1815, Paris, 190. 13. J. B. Biot, Bull. Soc. Philomath. 1816, Paris, 125. 14. P. Cintas, Angew. Chem. Inter. Ed. 2007, 46, 4016. 15. G. B. Kauffman and R. D. Myers, Chem. Educator 1998, http://chemeducator.org/bibs/0003006/00030257.htm, Accessed 6/21/2009. 16. R. Co rradini, S. Sforza, T. Tedeschi and R. Marchelli, Chirality 2007, 19, 269. 17. R. Crossley, Tetrahedron, 1992, 48, 8155. 18. J. L. Bada, Nature 1995, 374, 594. 19. D. L. Nelson and M. M. Cox, Principles of Biochemistry 4th edn., W. H. Freeman and Compan y, New York, 2005.

PAGE 177

177 20. J. C. Leffingwell, in Leffingwell Reports Chirality & Bioactivity I.: Pharmacology Editon edn., 2003, vol. 3. 21. S. C. Stinson, Chem. Eng. News 2000, 78, 55. 22. E. J. Ariens, Soudigen, W., Timmermans, P. B. M. W. M., ed., Stereochemistry and Biological Activity of Drugs Blackwell Scientific Publications, Oxford, 1983. 23. S. C. Stinson, Chem. Eng. News 2001, 79, 45. 24. S. C. Stinson, Chem. Eng. News 2001, 79, 45. 25. B. M. Trost, PNAS 2004, 101, 5348. 26. E. Fogassy, M Ngrdi, D. Kozma, G. Egri, E. Plovics and V. Kiss, Org. Biomol. Chem. 2006, 4 3011. 27. R. N. Patel, Current Organic Chemistry 2006, 10, 1289. 28. K. Mikami and M. Lautens, eds., New Fronteirs in Asymmetric Catalysis John Wiley & Sons, New Jersey, 2007. 29. M. Lemaire, Pure Appl. Chem. 2004, 76, 679. 30. W. A. Nugent, T. V. RajanBabu and M. J. Burk, Science 1993, 259 479. 31. G. W. Parshall, Homogeneous Catalysis: the applications and chemistry of catalysis by soluble transition metal complexes John Wiley & Sons, New York, 1980. 32. T. P. Yoon, E. N. Jacobsen, Science 2003, 299 1691. 33. T. P. Dang and H. B. Kagan, J. Chem. Soc. Chem. Commun. 1971, 481. 34. H. B. Kagan and T. P. Dang, J. Am. Chem. Soc., 1972, 94, 6429. 35. J. K. Whitesell, Che m. Rev. 1989, 89, 1581. 36. F. Jo, Aqueous Organometallic Catalysis Kluwer Academic Publishers, Dordrecht / Boston / London, 2001. 37. F. Glorius, ed., N-Heterocyclic Carbenes in Transition Metal Catalysis Springer -Verlag, Berlin Heidelberg, 2007. 38. R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451. 39. H. W. Wanzlick, E. Fjedor and K. H. Jerg, Chem. Ber. 1963, 96, 1208. 40. H. W. Wanzlick and E. Schikora, Angew. Chem. 1960, 72, 494.

PAGE 178

178 41. H. W. Wanzlick and H. J. KLEINER, Angew. Chem. 1961, 73, 493. 42. H. W. Wanzlick, Angew. Chem. Int. Ed. 1962, 1 75 80. 43. H. W. Wanzlick, H. J. Schnherr, Angew. Chem. Int. Ed. Engl. 1968, 7 148. 44. K. J. fele, Organomet. Chem. 1968, 12, 42. 45. -M uir, Chem. Commun. 1971, 400. 46. M. F. Lappert, J. Organomet. Chem. 2005, 690. 47. A. Arduengo, M. Kline, J. C. Calabrese, F. Davidson, J. Am. Chem. Soc., 1991, 113, 9704. 48. A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc. 1992, 113, 361. 49. D. Enders, O. Niemeier and A. Henseler, Chem. Rev. 2007, 107, 5606. 50. V. Cesar, S. Bellemin Laponnaz and L. H. Gade, Chem. Soc. Rev. 2004, 33, 619. 51. F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122. 52. W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290. 53. H. Clavier and S. P. Nolan, Annu. Rep. Prog. Chem., Sect. B 2007, 103, 193. 54. R. E. Douthwaite, Coord. Chem. Rev. 2007, 251, 702. 55. S. Diez Gonzlez and S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874. 56. J. M. Pra etorius and C. M. Crudden, Dalton Trans. 2008, 4079. 57. J. A. Mata, M. Poyatos and E. Peris, Coord. Chem. Rev. 2007, 251, 841. 58. M. Poyatos, J. A. Mata and E. Peris, Chem. Rev. 2009. 59. O. Schuster, L. Yang, H. G. Raubenheimer and M. Albrecht, Chem. Rev. 2009, ASAP 60. P. L. Arnold and I. J. Casely, Chem. Rev. 2009, ASAP 61. C. Samojlowicz, M. Bieniek and K. Grela, Chem. Rev. 2009, ASAP 62. P. De Frmont, N. Marion and S. P. Nolan, Coord. Chem. Rev. 2008, 253, 862. 63. S. P. Nolan, ed., N-hete rocyclic Carbenes in Synthesis Wiley -VCH, Weinheim, Germany, 2006. 64. P. De Frmont, N. Marion and S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862.

PAGE 179

179 65. J. Lennard Jones and J. A. Pople, Discus. Faraday Soc. 1951, 10, 9. 66. A. D. Walsh, J. Chem. Soc. 1953, 2260. 67. R. Hoffmann, J. Am. Chem. Soc., 1968, 90, 1475. 68. C. Heinemann, T. Mller, y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 2023. 69. C. Boehme, G. Frenking, J. Am. Chem. Soc. 1996, 118, 2039. 70. J. F. Lehmann, S. G. Urquhart, L. E. Ennis, A. P. Hitchcock, K. Hatano, S. Gupta, M. K. Denk, Organometallics 1999, 18, 1862. 71. S. Dez Gonzlez and S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874. 72. A. J. Arduengo, III, J. R. Goerlich and W. J. Marsha ll, J. Am. Chem. Soc. 1995, 117, 11027. 73. E. Despagnet -Ayoub and R. H. Grubbs, J. Am. Chem. Soc. 2004, 126, 10198. 74. R. W. Alder, M. E. Blake, C. Bortolotti, S. Bufali, C. P. Butts, E. Linehan, J. M. Oliva, A. G. Orpen and M. J. Quayle, Chem. Commun. 1999, 241. 75. R. Jazzar, H. Liang, B. Donnadieu and G. Bertrand, J. Organomet. Chem. 2006, 691, 3201. 76. C. C. Scarborough, I. A. Guzei and S. S. Stahl, Dalton Trans. 2009, 2284. 77. A. J. Arduengo, III, H. V. R. Dias, R. L. Harlow and M. Kline, J. A m. Chem. Soc. 1992, 114, 5530. 78. C. A. Tolman, Chem. Rev. 1977, 77, 313. 79. A. C. Hillier, W. J. Sommer, B. S. Yong, J. L. Petersen, L. Cavallo and S. P. Nolan, Organometallics 2003, 22, 4322. 80. R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L Cavallo, C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 2485. 81. M. Lattman and R. A. Kemp, eds., Modern Aspects of Main Group Chemistry American Chemical Society, Washington DC, 2006. 82. G. Frenking, M. Sol and S. F. Vyboishchikov, J. Organomet. Chem. 2005, 690, 6178. 83. T. Scherg, S. K. Schneider, G. D. Frey, J. Schwarz, E. Herdtweck and W. A. Herrmann, Synlett, 2007, 18, 2894. 84. A. T. Termaten, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek and K. Lammertsma, Chem. Eur. J. 2003, 9 3577.

PAGE 180

180 85. M. T. Lee and C. H. Hu, Organometallics 2004, 23, 976. 86. X. L. Hu, I. Castro Rodriguez and K. Meyer, J. Am. Chem. Soc. 2004, 126, 13464. 87. W. A. Herrmann and C. Kcher, Angew. Chem. Int. Ed. 1997, 36, 2163. 88. M. Nichues, G. Erker, G. K ehr, P. Schwab, R. Frhlich, O. Blacque and H. Berke, Organometallics 2002, 21, 2905. 89. X. Hu, I. Castro Rodriguez, K. Olson and K. Meyer, Organometallics 2004, 23, 755. 90. X. Hu, Y. Tang, P. Gantzel and K. Meyer, Organometallics 2003, 22, 612. 91. M Srebro and A. Michalak, Inorg. Chem. 2009, 48, 5361. 92. N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo and S. P. Nolan, J. Am. Chem. Soc. 2005, 127 3516. 93. R. Dorta, E. D. Stevens and S. P. Nolan, J. Am. Chem. Soc. 2004, 126, 5054. 94. K. Getty, M. U. Delgado Jaime and P. Kennepohl, J. Am. Chem. Soc. 2007, 129, 15774. 95. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, eds., Comprehensive Asymmetric Catalysis I Springer -Verlag, Berlin Heidelberg, 1999. 96. M. F. Lappert, J. Organomet. Chem. 1988, 358, 185. 97. P. L. Arnold and S. Pearson, Coord. Chem. Rev. 2007, 251, 596. 98. D. Pugh and A. A. Danopoulos, Coord. Chem. Rev. 2007, 251, 610. 99. V. P. W. Bhm, T. Weskamp, C. W. K. Gstttmayr and W. A. Herrmann, Angew. Chem. Int. Ed. 2000, 39, 1602. 100. J. Huang, H. J. Schanz, E. D. Stevens and S. P. Nolan, Organometallics 1999, 18, 2370. 101. L. H. Gade and S. Bellemin -Laponnaz, Coord. Chem. Rev. 2007, 251, 718. 102. O. Khl, Chem. Soc. Rev. 2007, 36, 392. 103. R. J. Lowry, M. K Veige, O. Clment, K. A. Abboud, I. Ghiviriga and A. S. Veige, Organometallics 2008, 27, 5184. 104. C. M. Zhang and M. L. Trudell, Tetrahedron Lett. 2000, 41, 595. 105. D. S. Clyne, J. Jin, E. Genest, J. C. Gallucci and T. V. RajanBabu, Org. Lett. 2000, 2 1125. 106. L. G. Bonnet, R. E. Douthwaite and R. Hodgson, Organometallics 2003, 22 4384.

PAGE 181

181 107. W. L. Duan, M. Shi and G. B. Rong, Chem. Commun. 2003, 2916. 108. M. Shi and W. -L. Duan, Appl. Organometal. Chem. 2005, 19, 40. 109. Q. Xu, W. L. Duan, Z. Y. Lei, Z. -B. Zhu and M. Shi, Tetrahedron, 2005, 61 11225. 110. T. Chen, J. J. Jiang, Q. Xu and M. Shi, Org. Lett. 2007, 9 865. 111. T. Zhang, M. Shi and M. Zhao, Tetrahedron, 2008, 64, 2412. 112. W. Wang, T. Zhang and M. Shi, Organometallics 2009, 28, 2640. 113. T. Zhang and M. Shi, Chem. Eur. J., 2008, 14, 3759. 114. G. Ma, T. Zhang and M. Shi, Org. Lett. 2009, 11, 875. 115. Q. Xu, X. Gu, S. J. Liu, Q. Y. Dou and M. Shi, J. Org. Chem. 2007, 72, 2240. 116. Either the Pd(II) iodide, Pd(II) acetate, or Pd(II)trifluoroacetate 117. Several ligands were reported with similar BINAM -bis(benzimidazole) or H8 BINAM bis(benzimidazole) backbones, ligand variation was through alteration of N -substituents. 118. K. -L. Gibis, G. Helmchen, G. Huttner, L. Zsolnai a nd J. O. C. 181, J. Organomet. Chem. 1993, 445 181. 119. SHELXTL6; Bruker -AXS, Madison, WI, (2000). 120. M. S. Jeletic, I. Ghiviriga, K. A. Abboud and A. S. Veige, Organometallics 2007, 26, 5267. 121. Z. Shi and R. P. Thummel, J. Org. Chem. 1995, 60, 5935. 122. D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem. Rev. 2000, 100, 39. 123. H. M. Tuononene, R. Roesler, J. L. Dutton and R. J. Ragogna, Inorg. Chem. 2007, 46, 10693. 124. E. Baba, T. R. Cundari and I. Firkin, Inorg. Chem. Acta, 20 05, 358, 2867. 125. All chiral versions are prepared in the same manner as the racemic excluding resolution procedures of the reported ligand. 126. R. J. Lowry M. T. Jan, K. A. Abboud, I. Ghiviriga, and A. S. Veige, Polyhedron in press, 2009. 127. M. S. Jeletic, M. T. Jan, I. Ghiviriga, K. A. Abboud and A. S. Veige, Dalton Trans. 2009, 2764.

PAGE 182

182 128. A. Pfaltz and I. William J. Drury, PNAS 2004, 101, 5723. 129. S. K. Schneider, J. Schwarz, G. D. Frey, E. Herdtweck and W. A. Herrmann, J. Organomet. Che m. 2007, 692, 4560. 130. H. Clavier, J. C. Guillemin and M. Mauduit, Chirality 2007, 19, 471. 131. W. A. Herrmann, L. J. Goossen and M. Spiegler, Organometallics 1998, 17 2162. 132. L. G. Bonnet, R. E. Douthwaite and B. M. Kariuki, Organometallics 2003, 22, 4187. 133. E. Bappert and G. Helmchen, Synlett, 2004, 1789. 134. J. J. Van Veldhuizen, J. E. Campbell, R. E. Guidici and A. H. Hoveyda, J. Am. Chem. Soc., 2005, 127 6877. 135. C. Bolm, T. Focken and G. Raabe, Tetrahedron: Asymmetry 2003, 14, 1733. 136. S. Gischig and A. Togni, Organometallics 2004, 23, 2479. 137. T. Frocken, G. Raabe and C. Bolm, Tetrahedron: Asymmetry 2004, 15, 1693. 138. T. Frocken, J. Rudolph and C. Bolm, Synthesis 2005, 3 429. 139. A. A. D. Tulloch, A. A. Danopoulos, G. J. Tizzard, S. J. Coles, M. B. Hursthouse, R. S. Hay Motherwell and W. B. Motherwell, Chem. Commun. 2001, 1270. 140. A. A. Danopoulos, A. A. D. Tulloch, S. Winston, G. Eastham and M. B. Hursthouse, J. Chem. Soc. Dalton Trans. 2003, 1009. 141. M. C. Perry, X. H. Cui and K. Burgess, Tetrahedron: Asymmetry 2002, 13, 1969. 142. M. Y. Machado and R. Dorta, Synthesis 2005, 15, 2473. 143. M. Shi and H. X. Qian, Tetrahedron, 2005, 61, 4949. 144. C. Marshall, M. F. Ward and W. T. A. Harrison, Tetrahed ron Lett. 2004, 45, 5703. 145. C. Marshall, M. F. Ward and W. T. A. Harrison, J. Organomet. Chem. 2005, 690, 3970. 146. A. R. Chianese and R. H. Crabtree, Organometallics 2005, 24, 4432. 147. T. Makino, H. Masu, K. Katagiri, R. Yamasaki, I. Azumaya and S. Saito, Eur. J. Inorg. Chem. 2008, 4861. 148. Adapted with permission from R. J. Lowry, M. K. Veige, O. Clment, K. A. Abboud, I. Ghiviriga and A. S. Veige, Organometallics, 2008, 27, 5184. Copyright 2008 American Chemical Society.

PAGE 183

183 149. R. H. Crabtree, J. Organomet. Chem. 2006, 691, 3146. 150. J. A. Mata, A. R. Chianese, J. R. Miecznikowski, M. Poyatos, E. Peris, J. W. Faller and R. H. Crabtree, Organometallics 2004, 23, 1253. 151. C. H. Leung, C. D. Incarvito and R. H. Crabtree, Organometallics 2006, 25, 6099. 152. Y. A. Wanniarachchi, M. A. Khan and L. M. Slaughter, Organometallics 2004, 23, 5881. 153. S. Burling, L. D. Field, H. Li, B. A. Messerle and R. Turner, Eur. J. Inorg. Chem. 2003, 3179. 154. B. M. Trost, D. L. Van Vranken and C. Bingel, J. Am. Chem. Soc. 1992, 114, 9327. 155. E. Fox, A. Gerlach, I. C. Lennon, G. Meek and C. Praquin, Synthesis 2005, 19, 3196. 156. C. L. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 1988, 37, 785. 157. T. H. Dunning Jr. and P. J. Hay, in Methods of Electronic Structure Theory ed. H. F. Schaefer III, Plenum Press, New York, Editon edn., 1977, vol. 2. 158. P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 270. 159. P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 284. 160. P. J. Hay and W. R. Wadt, J. Chem Phys. 1985, 82, 299. 161. Gaussian 03, Revision E.01,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al -Laham, C. Y. Peng, A. Nan ayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. 162. In order to avoid formation of the diacid, the water used in Lennon et al.s reaction of the diacid chloride w as replaced with N,N dimethyl formamide. 163. A. A. Gridnev and I. M. Mihaltseva, Synth. Commun. 1994, 24, 1547. 164. J. P. Liu, J. B. Chen, J. F. Zhao, Y. H. Zhao, L. Li and H. B. Zhang, Synthesis 2003, 2661. 165. Hydrogenation was accomplished in a ste el Parr Instruments autoclave.

PAGE 184

184 166. M. Karplus, J. Am. Chem. Soc., 1963, 85, 2870. 167. F. E. Hahn, T. von Fehren and T. Lugger, Inorg. Chem. Acta, 2005, 358, 4137. 168. A. Poatter, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan and L. Cavallo, Organometallics 2008, 27, 2679. 169. M. K. Denk, A. Hezarkhani and F. Zheng, Eur. J. Inorg. Chem. 2007, 3527. 170. T. A. Taton and P. Chen, Angew. Chem. Int. Ed. 1996, 35, 1011. 171. C. Heinemann and W. Thiel, Chem. Phys. Lett. 1994, 217, 11. 172. E. A. Carter and W. A. Goddard III, J. Phys. Chem. 1986, 90, 998. 173. Y. Liu, P. E. Lindner and D. M. Lemal, J. Am. Chem. Soc. 1999, 121, 10626. 174. D. C. Graham, K. Cavell and B. F. Yates, J. Phys. Org. Chem. 2005, 18, 298. 175. R. W. Alder and M. E. Blake, J. Phys. Chem. A 1999, 103, 11200. 176. G. C. Lloyd Jones, R. W. Alder and G. J. J. Owen -Smith, Chem. Eur. J., 2006, 12, 5361. 177. K. Tomioka, Y. Nagaoka, V. In Comprehensive Asymmetric Catalysis, E. N. and A. P. Jacobsen, H. Yamamoto (Eds.), Springer: Berlin, 1999, 31.1, in Comprehensive Asymmetric Catalysis eds. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Springer, Berlin, Editon edn., 1999, vol. 3, pp. 11051120. 178. K. Kobayashi, T. Nishikata, Y. Yamamoto and N. Miyaura, Bull. Chem. Soc. Jpn. 2008, 81, 1019. 179. T. Hayashi and K. Sasaki, Chemistry Lett. 2008, 37, 842. 180. R. Shintani and T. Hayashi, Chemistry Lett. 2008, 37, 724. 181. Y. J. Xu, L. -Z. Gong, A. -Q. Mi and Y. -Z. Jiang, Synthesis 2004, 7 1057. 182. G. M. Villacorta, C. P. Rao and S. J. Lippard, J. Am. Chem. Soc., 1988, 110, 3175. 183. B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos and A. H. M. De Vries, Angew. Chem. Int. Ed. 1997, 36, 2620. 184. S. J. Degrado, H. Mizutani and A. H. Hoveyda, J. Am. Ch em. Soc. 2001, 123 755. 185. B. Breit and A. C. Laungani, Tetrahedron Asym. 2003, 14, 3823. 186. M. T. Reetz, A. Gosberg and D. Moulin, Tetrahedron Lett. 2002, 43, 1189. 187. I. J. Krauss and J. L. Leighton, Org. Lett. 2003, 5 3201.

PAGE 185

185 188. S. Oi, M. Moro, S. Ono and Y. Inoue, Chem. Lett. 1998, 27, 83. 189. T. Hayashi and M. Ishigedani, J. Am. Chem. Soc., 2000, 122, 976. 190. S. Oi, M. Moro, H. Ito, Y. Honma, S. Miyano and Y. Inoue, Tetrahedron, 2002, 58, 91. 191. M. Dziedzic, M. Malecka and B. Furman, Org. Lett. 2005, 7 1725. 192. S. Oi, Y. Honma and Y. Inoue, Org. Lett. 2002, 4 667. 193. T. Hayashi, N. Tokunaga, K. Yoshida and J. W. Han, J. Am. Chem. Soc. 2002, 124, 12102. 194. N. Tokunaga, K. Yoshida and T. Hayashi, Proc. Natl. Acad. Sci. USA 2004, 101, 5445. 195. K. C. Nicolaou, W. Tang, P. Dagneau and R. Faraoni, Angew. Chem. Int. Ed. 2005, 44, 3874. 196. N. Miyaura and Z. Suzuki, Chem. Rev. 1995, 95, 2457. 197. D. G. Hall, ed., Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine Wiley -VCH, Weinheim, 2005. 198. M. Sakai, H. Hayashi and N. Miyaura, Organometallics 1997, 16, 4229. 199. Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai and N. Miyaura, J. Am. Chem. Soc., 1998, 120 5579. 200. T. Hayashi, M. Taka hashi, Y. Takaya and M. Ogasawara, J. Am. Chem. Soc. 2002, 124, 5053. 201. N. Miyaura, Bull. Chem. Soc. Jpn. 2008, 81, 1543. 202. A. Kina, H. Iwamura and T. Hayashi, J. Am. Chem. Soc. 2006, 128, 3904. 203. B. P. Morgan and R. C. Smith, J. Organomet. Chem. 2008, 693, 11. 204. T. Gendrineau, O. Chuzel, H. Eijsberg, J. P. Genet and S. Darses, Angew. Chem. Int. Ed. 2008, 47, 7669. 205. W. C. Yuan, L.-F. Cun, A. Q. Mi, Y. Z. Jiang, L. Z. Gong and W. C. Yuan, Tetrahedron, 2009, 65, 4130. 206. R. Mariz, X. Luan, M. Gatti, A. Linden and R. Dorta, J. Am. Chem. Soc. 2008, 130, 2172. 207. R. Shintani, Y. Ichikawa, K. Takatsu, F. -X. Chen and T. Hayashi, J. Org. Chem. 2009, 74, 869. 208. R. Jana and J. A. Tunge, Org. Lett. 2009, 11, 971.

PAGE 186

186 209. R. Mariz, A. Bric eno, R. Dorta and R. Dorta, Organometallics 2008, 27, 6605. 210. S. Helbi, S. Sauer, N. Cramer, S. Laschat, A. Baro and W. Freya, Adv. Synth. Catal. 2007, 349, 2331. 211. Y. Ma, C. Song, C. Ma, Z. Sun, Q. Chai and M. B. Andrus, Angew. Chem. Int. Ed. 2003, 42, 5871. 212. C. Song, C. Ma, Y. Ma, W. Feng, S. Ma, Q. Chai and M. B. Andrus, Tetrahedron Lett. 2005, 46, 3241. 213. J. -M. Becht, E. Bappert and G. Helmchen, Adv. Synth. Catal. 2005, 347, 1495. 214. G. Dyson, J. C. Frison, S. Simonovic, A. C. Whitwood and R. E. Douthwaite, Organometallics 2008, 27, 281. 215. F. Guillen, C. L. Winn and A. Alexakis, Tetrahedron: Asymmetry 2001, 12, 2083. 216. J. Pytkowicz, S. Roland and P. Mangeney, Tetrahedron: Asymmetry 2001, 12, 2087. 217. A. Alexakis, C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland and P. Mangeney, Adv. Synth. Catal. 2003, 345. 218. C. L. Winn, F. Guillen, J. Pytkowicz, S. Roland, P. Mangeney and A. Alexakis, J. Organomet. Chem. 2005, 690, 5672. 219. H. Clavier, L. Coutable, L. Toupet, J. C. Guillemin and M. Mauduit, J. Organomet. Chem. 2005, 690 5237. 220. K. -s. Lee, M. K. Brown, A. W. Hird and A. H. Hoveyda, J. Am. Chem. Soc. 2006, 128, 7182. 221. M. K. Brown, T. L. May, C. A. Baxter an d A. H. Hoveyda, Angew. Chem. Int. Ed. 2007, 46, 1097. 222. F. Gini, B. Hessen and A. J. Minnaard, Org. Lett. 2005, 7 5309. 223. T. Nishikata, Y. Yamamoto and N. Miyaura, Adv. Synth. Catal. 2007, 349, 1759. 224. T. Nishikata, Y. Yamamoto and N. Miyaura Tetrahedron Lett. 2007, 48, 4007. 225. C. S. Cho, S. Motofusa, K. Ohe and S. Uemura, J. Org. Chem. 1995, 60, 883. 226. X. Lu and S. Lin, J. Org. Chem. 2005, 70, 9651. 227. P. Kask, V. B. Arion and M. Widhalm, Tetrahedron: Asymmetry 2006, 17, 3084.

PAGE 187

187 BIOGRAPHICAL SKETCH Roxy Joanne Lowry was born in the town of Melba Idaho in the summer of 1982. Her love of science and teaching manifest ed early in her education leading to her unofficial status of math and science tutor throughout high school After graduatin g as v aledictorian of Greenleaf Friends Academy in 2000, she attended George Fox University to further investigate her interest in c hemistry She enjoyed a variety of research experiences throughout her undergraduate career; spending two ye ars investigating binary precursors for self assembled monolayers with Dr. Carlisle Chambers and a summer researching endocrine disruptors in the environment with Dr. Eugene Billiot in Corpus Christi, TX Roxy graduated from GFU magna cum laude with a Bac helor of Science in chemistry in May 2004. Combining her desire to further her education and to experience new places she left the Northwest to begin her graduate career at the University of Florida. There she discovered her interest in organometallic chemistry under the advisement of Dr. Adam Veige. Subsequent to completing her Ph.D. at University of Florida she has accepted a position with Dr. Brookhart and Dr. Meyer at University of North Carolina Chapel Hill developing solar cells as part of a Energ y Frontier Research Center.