<%BANNER%>

Image Based Skeletal Tissue and Electron Dosimetry Models for the ICRP Reference Pediatric Age Series

Permanent Link: http://ufdc.ufl.edu/UFE0024751/00001

Material Information

Title: Image Based Skeletal Tissue and Electron Dosimetry Models for the ICRP Reference Pediatric Age Series
Physical Description: 1 online resource (474 p.)
Language: english
Creator: Pafundi, Deanna
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: bone, computational, ct, dose, dosimetry, electron, marrow, nurbs, pediatric, phantom, radiation, radioimmunotherapy, radiopharmaceutical, skeleton
Nuclear and Radiological Engineering -- Dissertations, Academic -- UF
Genre: Nuclear Engineering Sciences thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Accurate predictions of the radiation dose to bone marrow are important in both medical patients and members of the general public. The highly developing pediatric skeleton is more radiosensitive than an adult skeleton, and the longer life expectancy post-radiation exposure increases the risk of developing a secondary cancer. Therefore, accurate pediatric skeletal models are even more important to analyze the short term effects of bone marrow toxicity, and late effects such as cancer. Current dose estimates are based on the first-generation mathematical ORNL phantoms with homogeneous skeletons. These skeletons assume 80% cortical bone and 20% trabecular bone across total skeletal mineral bone for all ages. Also, skeletal tissue masses are reported for the whole skeleton, and not by individual bone site. Hybrid phantoms are presented in this dissertation as computational models that combine the realism of a scanned individual with ease of anatomical morphing. Whole-body hybrid phantoms of the ICRP reference pediatric age series with a homogeneous skeleton were constructed from both NURBS and polygon-mesh surfaces. In this study, the acquisition of newborn skeletal samples by autopsy and 18-year cadaver specimens, followed by image-based analysis using microCT provided data crucial to the development of a bone site-specific cartilage, cortical bone, miscellaneous skeletal tissues and spongiosa, which was further partitioned into trabecular bone, active marrow, inactive marrow, and shallow marrow. Cortical and trabecular bone percentages were calculated as approximately 40% / 60%, 45% / 55%, 60% / 40%, 70% / 30%, and 80% / 20% for the newborn, 1-year, 5-year, 10-year, and 15-year models, respectively, instead of the constant 80% / 20% in ICRP. The skeletal models for the UF hybrid pediatric skeletal series redefine current tissue assumptions in ICRP, while partitoing by bone site necessary for future dosimetry assessments. The three main assumptions made within current pediatric skeletal dosimetry models are: 1) the electron energy from a cortical bone volume source (cortical bone cross-fire) to any spongiosa tissue target (e.g. red bone marrow) is zero, 2) the spongiosa is infinite in size, such that electron energy escape is unaccounted for, and 3) cellularity changes are not considered directly during transport. Previous studies at the University of Florida have shown that these assumptions for an adult male are inaccurate to varying degrees. The significantly smaller size of the pediatric skeleton is predicted to deviate even further from current dosimetry data. The dosimetry models presented in this study address these limitations to provide a more anatomically accurate dosimetry model for better predictions of bone marrow dose. Using the site-specific skeletal tissue masses derived for each pediatric hybrid reference phantom, the corresponding electron dosimetry computations were performed by either PIRT or SIRT-3DCBIST Monte Carlo electron transport.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Deanna Pafundi.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Bolch, Wesley E.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024751:00001

Permanent Link: http://ufdc.ufl.edu/UFE0024751/00001

Material Information

Title: Image Based Skeletal Tissue and Electron Dosimetry Models for the ICRP Reference Pediatric Age Series
Physical Description: 1 online resource (474 p.)
Language: english
Creator: Pafundi, Deanna
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: bone, computational, ct, dose, dosimetry, electron, marrow, nurbs, pediatric, phantom, radiation, radioimmunotherapy, radiopharmaceutical, skeleton
Nuclear and Radiological Engineering -- Dissertations, Academic -- UF
Genre: Nuclear Engineering Sciences thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Accurate predictions of the radiation dose to bone marrow are important in both medical patients and members of the general public. The highly developing pediatric skeleton is more radiosensitive than an adult skeleton, and the longer life expectancy post-radiation exposure increases the risk of developing a secondary cancer. Therefore, accurate pediatric skeletal models are even more important to analyze the short term effects of bone marrow toxicity, and late effects such as cancer. Current dose estimates are based on the first-generation mathematical ORNL phantoms with homogeneous skeletons. These skeletons assume 80% cortical bone and 20% trabecular bone across total skeletal mineral bone for all ages. Also, skeletal tissue masses are reported for the whole skeleton, and not by individual bone site. Hybrid phantoms are presented in this dissertation as computational models that combine the realism of a scanned individual with ease of anatomical morphing. Whole-body hybrid phantoms of the ICRP reference pediatric age series with a homogeneous skeleton were constructed from both NURBS and polygon-mesh surfaces. In this study, the acquisition of newborn skeletal samples by autopsy and 18-year cadaver specimens, followed by image-based analysis using microCT provided data crucial to the development of a bone site-specific cartilage, cortical bone, miscellaneous skeletal tissues and spongiosa, which was further partitioned into trabecular bone, active marrow, inactive marrow, and shallow marrow. Cortical and trabecular bone percentages were calculated as approximately 40% / 60%, 45% / 55%, 60% / 40%, 70% / 30%, and 80% / 20% for the newborn, 1-year, 5-year, 10-year, and 15-year models, respectively, instead of the constant 80% / 20% in ICRP. The skeletal models for the UF hybrid pediatric skeletal series redefine current tissue assumptions in ICRP, while partitoing by bone site necessary for future dosimetry assessments. The three main assumptions made within current pediatric skeletal dosimetry models are: 1) the electron energy from a cortical bone volume source (cortical bone cross-fire) to any spongiosa tissue target (e.g. red bone marrow) is zero, 2) the spongiosa is infinite in size, such that electron energy escape is unaccounted for, and 3) cellularity changes are not considered directly during transport. Previous studies at the University of Florida have shown that these assumptions for an adult male are inaccurate to varying degrees. The significantly smaller size of the pediatric skeleton is predicted to deviate even further from current dosimetry data. The dosimetry models presented in this study address these limitations to provide a more anatomically accurate dosimetry model for better predictions of bone marrow dose. Using the site-specific skeletal tissue masses derived for each pediatric hybrid reference phantom, the corresponding electron dosimetry computations were performed by either PIRT or SIRT-3DCBIST Monte Carlo electron transport.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Deanna Pafundi.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Bolch, Wesley E.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024751:00001


This item has the following downloads:


Full Text

PAGE 1

1 IMAGE BASED SKELETAL TISSUE AND ELECTRON DOSIMETRY MODELS FOR THE ICRP REFERENCE PEDIATRIC AGE SERIES By DEANNA HASENAUER PAFUNDI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FUL FILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009

PAGE 2

2 2009 Deanna Hasenauer Pafundi

PAGE 3

3 To Brian

PAGE 4

4 ACKNOWLEDGMENTS I would like to take this opportunity to thank several people whose influence made this work possible. I would like to thank Dr. Wesley E. Bolch for his guidance, encouragement, and expertise throughout the past seven years. I am also grateful to my doctoral committee members, Drs. Glen Sjoden, Amir Shahlaee, John Aris, and Lynn Romrell for their willingness to share their time and knowledge with me. I would also like to thank the other members of the faculty and staff in the Department of Nuclear and Radiological Engineering for their time and effor ts on my behalf of my time at UF. I feel a deep debt of gratitude to the members of the Advance Laboratory for Radiation Dosimetry Studies. Some have been my colleagues and friends for seven years, and some only recently. However long the acquaintance, my association with them has been most productive and rewarding. The memories of venting to them about frustrations with programming, technical difficulties with the computers, assumptions in bone modeling, and just life in general will be with me foreve r. The words of wisdom passed on to me will help me in the next stage of my life and career. Finally I would like to thank my family for their continued support throughout the past nine years of my post secondary education. The love and appreci ation I have for them cannot be measured or expressed with words. I would like to thank, Brian, my husband for always reassuring me that everything will be okay, no matter how difficult the situation. His unfailing optimism, generosity, and selflessness has changed my outlook on life and instilled in me a better person. Without his constant love, encouragement and most of all patience, I could not have completed this work.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ........10 LIST OF FIGURES................................................................................................................ .......16 GLOSSARY....................................................................................................................... ...........18 ABSTRACT....................................................................................................................... ............21 CHAPTER 1 INTRODUCTION................................................................................................................. .23 General Features of Bone....................................................................................................... 23 Biological Developmen t of the Skeleton................................................................................24 Target Cells for Skeletal Dosimetry Models..........................................................................25 Importance and Applications of Skeletal Dosimetry..............................................................26 Internal Dosimetry Applications in Radiation Protection...............................................27 Induction of Marrow Toxicity from Ther apeutic Medical Radiation Procedures...........28 Secondary Cancer Risk from Diagno stic Medical Radiation Procedures.......................28 Previous Dosimetry Studies....................................................................................................2 9 Limitations of Current Pe diatric Dosimetry Models..............................................................30 Skeletal Dosimetry Model Improvements..............................................................................32 2 HYBRID NEWBORN COMPUTATIONAL PHANTOM THE SKELETON..................35 Materials and Methods.......................................................................................................... .37 Segmentation of Skeleton and Cartilage / Fibrous Tissue from Newborn Cadaver CT Data........................................................................................................................ 37 Polygon Mesh and NURBS Modeling of the Newborn Phantom Skeleton....................39 Autopsy Harvest and MicroCT Im age Acquisition and Analysis...................................40 Site-Specific Skeletal Tissue Masses Volumes, Densities, and Elemental Compositions...............................................................................................................41 Miscellaneous skeletal tissues..................................................................................41 Marrow masses and volumes...................................................................................43 Trabecular bone and cortical bone masses and volumes..........................................46 S/V ratios for the newborn skeleton.........................................................................48 Homogeneous spongiosa masses, volumes, and densities.......................................49 Homogeneous spongiosa el emental compositions...................................................49 Newborn shallow marrow masses and volumes......................................................50 Homogeneous skeleton masses, volumes, and densities..........................................52 Homogeneous skeleton elemental compositions......................................................53 Results and Discussion......................................................................................................... ..53

PAGE 6

6 Homogeneous Newborn Skeletal Model.........................................................................53 Construction of the Heterogene ous Newborn Skeletal Model........................................55 Miscellaneous skeletal tissue masses and volumes..................................................56 Marrow masses and volumes...................................................................................56 Cartilage masses and volumes..................................................................................58 Trabecular bone and cortical bone masses and volumes..........................................59 Shallow active marrow data.....................................................................................60 S/V ratios for newborn hybrid phantom...................................................................61 Homogeneous spongiosa masses, volumes, densities, and elemental compositions.........................................................................................................62 Homogeneous skeleton masses, volumes, densities, and elemental compositions.........................................................................................................63 Conclusion..................................................................................................................... .........65 3 AN IMAGE-BASED SKELETAL TISSUE DOSIMETRY MODEL FOR THE ICRP REFERENCE NEWBORN....................................................................................................92 Introduction................................................................................................................... ..........92 Materials and Methods.......................................................................................................... .95 Heterogeneous Newborn Skeleton Macrostructure Development..................................95 Segmentation of the Newborn Microstructure................................................................96 PIRT Electron Dosimetry Modeling................................................................................97 Results and Discussion......................................................................................................... 100 Newborn Image Data for the Skeletal Macrostructure and Microstructure..................100 Bone-Site Dependent Specific Absorbed Fr action Data for the UF Hybrid Newborn Phantom.....................................................................................................................102 Specific absorbed fractions for an active marrow target from a source in active marrow................................................................................................................103 Specific absorbed fractions for an active marrow target from all other bone sources................................................................................................................104 Specific absorbed fractions for a shallow marrow target from all bone sources...106 Specific absorbed fractions for a cartilage or fibrous tissue target from all bone sources................................................................................................................108 Skeletal-Averaged Absorbed Fraction Co mparisons for the UF Hybrid Newborn Phantom and the 2003 Newborn Model....................................................................109 Conclusions.................................................................................................................... .......111 4 AN IMAGE-BASED SKELETAL TISSUE AND DOSIMETRY MODEL FOR THE ICRP REFERENCE 15-YEAR MALE AND FEMALE.....................................................124 Introduction................................................................................................................... ........124 Materials and Methods.........................................................................................................1 25 Cadaver Selection and Sample Acquisition..................................................................125 In-vivo cadaver imaging, cadaver harvest, and ex-vivo bone sample imaging.....125 Spongiosa image analysis using microCT.............................................................126 Segmentation of Skeletal Tissues from th e 18-Year Male Cadaver CT and microCT Data........................................................................................................................... .127

PAGE 7

7 Skeletal Tissue Derivations for the UF 15Year Male and Female Hybrid Phantoms.128 Miscellaneous skeletal tissues................................................................................129 Marrow masses and volumes.................................................................................130 Trabecular bone and cortical bone masses and volumes........................................131 S/V ratios for the 15-year male and female skeleton.............................................131 Homogeneous spongiosa masses, volumes, densities, and elemental compositions.......................................................................................................132 Shallow marrow masses and volumes....................................................................133 Homogeneous skeleton masses, volumes, densities, and elemental compositions.......................................................................................................134 Electron Dosimetry Modeling for the 15-Year Female Hybrid Phantom.....................134 Results and Discussion......................................................................................................... 136 Homogeneous 15-Year Male a nd Female Skeletal Models..........................................136 Construction of the Heterogeneous 15-Y ear Male and Female Skeletal Models.........137 Miscellaneous skeletal tissue masses and volumes................................................138 Marrow masses and volumes.................................................................................139 Cartilage masses and volumes................................................................................139 Trabecular bone and cortical bone masses and volumes........................................140 Shallow active marrow data...................................................................................141 S/V ratios for 15-year male and female hybrid phantoms.....................................143 Homogeneous spongiosa masses, volumes, densities, and elemental compositions.......................................................................................................144 Homogeneous skeleton masses, volumes, densities, and elemental compositions.......................................................................................................145 15-Year Female Image Data for the Skelet al Macrostructure and Microstructure.......146 Bone-Site Dependent Specific Absorbed Fr action Data for the UF Hybrid 15-Year Female Phantom.........................................................................................................147 Specific absorbed fractions for an active marrow target from a source in active marrow................................................................................................................148 Specific absorbed fractions for an active marrow target from all other bone sources................................................................................................................151 Specific absorbed fractions for a shallow marrow target from all bone sources...152 Specific absorbed fractions for a car tilage target from all bone sources................153 Skeletal-Averaged Absorbed Fraction Co mparisons for the UF Hybrid 15-Year Female Phantom and the 2003 15-Year Model.........................................................155 Conclusions.................................................................................................................... .......156 5 AN IMAGE-BASED SKELETAL TISSUE MODEL AND ELECTRON DOSIMETRY METHODOLOGY FOR THE ICRP REFE RENCE 1-YEAR, 5-YEAR, AND 10YEAR CHILD..................................................................................................................... .190 Introduction................................................................................................................... ........190 Materials and Methods.........................................................................................................1 91 Heterogeneous 1-Year, 5-Year, and 10-Year Skeletal Macrostructure Development..191 Miscellaneous skeletal tissues................................................................................192 Mineral bone, trabecular bone and cortical bone masses and volumes..................193 Marrow masses and volumes.................................................................................195

PAGE 8

8 S/V ratios for the 1-year, 5year, and 10-year skeletons........................................196 Shallow marrow masses and volumes....................................................................196 Spongiosa and homogeneous bone masses, volumes, densities, and elemental compositions.......................................................................................................197 Electron Skeletal Dosimetry Modeling for the 1-Year, 5-Year, and 10-Year...............197 SIRT electron dosimetry modeling.........................................................................198 CBIST electron dosimetry modeling......................................................................198 3D-CBIST electron dosimetry modeling................................................................200 Mathematical algorithm fo r electron dosimetry absorbed fraction combinations.201 Voxel-based infinite spongiosa transport ( VBIST ).................................................202 Results and Discussion......................................................................................................... 202 Homogeneous 1-Year, 5-Year, a nd 10-Year Skeletal Models......................................202 Construction of the Heterogeneous 1-Year 5-Year, and 10-Year Skeletal Models.....204 Miscellaneous skeletal tissue masses and volumes................................................204 Mineral, trabecular and cort ical bone masses and volumes...................................204 Marrow masses and volumes.................................................................................206 Cartilage masses and volumes................................................................................207 Shallow active marrow data...................................................................................208 Homogeneous spongiosa masses, volumes, densities, and elemental compositions.......................................................................................................209 Homogeneous skeleton masses, volumes, densities, and elemental compositions.......................................................................................................210 Homogeneous 1-Year, 5-Year, a nd 10-Year Skeletal Models......................................211 Proposed scaling of the Universi ty of Leeds pediatric data...................................212 SIRT-3DCBIST algorithm validation results..........................................................212 Conclusions.................................................................................................................... .......214 6 CONCLUSIONS.................................................................................................................. 251 Skeletal Tissue Modeling for the ICRP Pediatric Age Series..............................................252 Newborn........................................................................................................................ 252 15-Year Male and Female Adolescents.........................................................................253 1-Year, 5-Year, and 10-Year Children..........................................................................254 Electron Skeletal Dosimetry Modeling for the ICRP Pediatric Age Series.........................255 PIRT ............................................................................................................................... 255 SIRT-3DCBIST ..............................................................................................................256 Future Work.................................................................................................................... ......256 Completion of the 15-Year Male Adolescen t Electron Skeletal Dosimetry Model......256 Completion of the 1-Year, 5Year, and 10-Year Electron Skeletal Dosimetry Model.257 External Photon Dosimetry Modeling...........................................................................257 Proton and Alpha Particle Dosimetry Modeling...........................................................258 APPENDIX A PAIRED-IMAGE RADIATION TRANSPORT CARTILAGE ( PIRTCartilage ) MODEL (EGSNRC USER CODE)......................................................................................260

PAGE 9

9 B PIRTCartilageLongBone MODEL (EGSNRC USER CODE) ............................................305 C TABLES OF SKELETAL SITESPECIFIC SPECIFIC ABSORBED FRACTIONS FOR THE UF HYBRID NEWBORN REFERENCE PHANTOM .....................................363 D FIGURES OF SKEL ETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR AN ACTIVE MARROW SOURCE SELF IRRADIATION IN THE UF HYBRID NEWBORN REFERENCE PHANTOM .............................................................................394 E FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR ACTIVE MARROW IRRADTION IN THE UF HYBRID NEWBORN REFERENCE PHANTOM ...................................................................................................400 F FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR A SHALLOW MARROW TARGET IN THE UF HYBR ID NEWBORN REFERENCE PHANTOM ...................................................................................................406 G FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR A CARTILAGE TARGET IN THE UF HYBRID NEWBORN REFERENCE PHANTOM ...........................................................................................................................412 H TABLES OF SKELETAL SITESPECIFIC SPECIFIC ABSORBED FRACTIONS FOR THE UF HYBRID 15 YEAR FEMALE REFERENCE PHANTOM ........................418 I FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR AN ACTIVE MARROW SOURCE SELF IRRADIATION IN THE UF HYBRID 15YEAR FEMALE REFERENCE PHANTOM ................................................................443 J FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR ACTIVE MARROW IRRADTION IN THE UF HYBRID 15 YEAR FEMALE REFERENCE PHANTOM ...................................................................................................449 K FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR A SHALLOW MARROW TARGET IN THE UF HYBRID 1 5 YEAR FEMALE REFERENCE PHANTOM ...................................................................................................455 L FIGURES OF SKELETAL SITE SPECIFIC SPECIFIC ABSORBED FRACTIONS FOR A CARTILAGE TARGET IN THE UF HYBRID 15 YEAR FEMALE REFERENCE PHANTOM ...................................................................................................461 M SIRT 3DCBIST MATHEMATICAL ALGORITHM ...........................................................464 LIST OF REFERENCES .............................................................................................................468 BIOGRAPHICAL S KETCH .......................................................................................................474

PAGE 10

10 LIST OF TABLES Table page 21 Bone volumes given in the hybridNURBS/PM models and in the reconstructed hybrid voxel models of the newborn skeleton for (1) the combined tissues of cortical bone and trabecular spongiosa, (2) outer layers of bone associated cartilage, and (3) total volume of all tissues. .................................................................................................73 22 Masses and volumes of site specific miscellaneous skeletal tissue in the newborn phantoms. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone. ...........................................................74 23 Skeletal tissue volume fractions of newborn bone collected at autopsy. ...........................75 24 Hybrid newborn bone tissue volume fractions by bone site. .............................................76 25 Site specific active marrow volumes and masses of skeletal tissues in the newborn hybrid phantom including and then excluding contributions from miscellaneous skeletal tissues. ...................................................................................................................77 26 Comparison of site specific active marrow distribution between the UF newborn hybrid phantoms and reference values given in ICRP Publication 89. .............................78 27 Masses, volumes, and perce nt distribution of cartilage by bone site in the UF newborn phantom. ..............................................................................................................79 28 Newborn trabecular and cortical bone masses and volumes by bone site including and excluding MST ...........................................................................................................80 29 Site specific total mineral bone volumes and mass including and excluding MST with the newborn hybrid phantoms. ...........................................................................................81 210 Percentages of total mineral bone attributed to cortical bone and to trabecular bone by skeletal site in the newborn hybrid phantoms. ..............................................................82 211 Distribution of shallow marrow by skeletal site in the newborn hybrid phantom. ............83 212 Lengths and radii of the medullary cavities within the long bones of the newborn hybrid phantoms. ................................................................................................................84 213 Comparison of trabecular bone surface to volume (S/V) ratios (mm2 mm3 ) by skeletal site and age. ..........................................................................................................85 214 Site specific homogeneous spongiosa mass, volume, and density data, including MST in the newborn hybrid phantoms. .............................................................................86

PAGE 11

11 215 Site specific homogeneous spongiosa elemental composition (% by mass) in the newborn hybrid phantom. ..................................................................................................87 216 Site specific homogenized bone masses, volumes, and densities (excluding cartilage). ...........................................................................................................................88 217 Site specific homogenized bone masses, volumes, and densities (including cartilage). ...89 218 Site specific homogeneous bone elemental composition (excluding cartilage) in the newborn hybrid phantoms (% by mass). ............................................................................90 219 Site specific homogeneous bone elemental composition (including cartilage) in the newborn hybrid phantoms (% by mass). ............................................................................91 31 Macrostructure and microstructure imaging data for the newborn skeleton. ..................120 32 Cortical bone thickness estimates in the newborn skeleton. ............................................121 33 AM TBV, TBS CBV, and CAR source f val ues for the UF hybrid newborn skeleton. ...122 34 Skeletal averaged absorbed fraction data for the U F hybrid newborn skeleton based on PIRT transport. ............................................................................................................123 41 Bone volumes given in the hybridNURBS/PM models and in the reconstructed hybrid voxel models of the 15year female (left) and male (right) skeletons for (1) the combined tissues of cortical bone and trabecular spongiosa, (2) outer layers of bone associated cartilage, and (3) total volume of all tissues. .........................................164 42 Comparison of the 18year segmented and iterated 15 year male and female bone tissue volume fractions by bone site. ...............................................................................165 43 Masses and volumes of site specific miscellaneous skeletal tissue in the 15 year female phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, IM inactive marrow, CB cortical bone, TB trabecular bone. .........166 44 Masses and volumes of site specific miscellaneous skeletal tissue in the 15 year male phantom. MST miscellaneous ske letal tissue, MB mineral bone, AM active marrow, IM inactive marrow, CB cortical bone, TB trabecular bone. ....................167 45 Site specific active marrow volumes and masses of skeletal tissues in the 15year female hybrid phantom including and then excluding contributions from miscellaneous skeletal tissues. .........................................................................................168 46 Site specific active marrow volumes and masses of skeletal tissues in the 15year male hybrid phantom including and then excluding contributions from miscellaneous skeletal tissues. .................................................................................................................169

PAGE 12

12 47 Comparison of site specific active marrow distribution between the UF 15year female (left) and male (right) hybrid phantoms and reference values given in ICRP Publication 89. .................................................................................................................170 48 Masses, volumes, and percent distribution of cartilage by bone site in the UF 15year female (left) and male (right) phantoms. .........................................................................171 49 Site specific trabecular and cortical bone volumes and mass including and excluding MST in the 15year female hybrid phantom. ...................................................................172 410 Site specific trabecular and cortical bone volumes and mass including and excluding MST in the newborn 15year male phantom. ...................................................................173 411 Site specific total mineral bone volumes and mass including and excluding MST in the 15year female (left) and male (right) hybrid phantoms. ...........................................174 412 Percentages of total mineral bone a ttributed to cortical bone and to trabecular bone by skeletal site in the newborn, 15year female and male hybrid phantoms compared to the ICRP adult reference values. ..................................................................................175 413 Distribution of shallow marrow by skeletal site in the 15 year female hybrid phantom. ...........................................................................................................................176 414 Distribution of shallow marrow by skeletal site in the 15 year male hybrid phantom. ...177 415 Lengths and radii of the medullary cavities within the long bones of the 15year female (left) and male (right) hybrid phantoms. ..............................................................178 416 Comparison of trabecular bone surface to volume (S/V) ratios (mm2 mm3 ) by skeletal site and age. ........................................................................................................178 417 Site specific homogeneous spongiosa mass, volume, and density data, including MST in the 15y ear female (left) and male (right) hybrid phantoms. .............................179 418 Site specific homogeneous spongiosa elemental composition (% by mass) in the 15year female hybrid phantom. ...........................................................................................180 419 Site specific homogeneous spongiosa elemental composition (% by mass) in the 15year male hybrid phantom. ..............................................................................................181 420 Site specific homogenized bone masses, volumes, and densities (excluding cartilage). .........................................................................................................................182 421 Site specific homogeneous bone elemental composition (excluding cartilage) in the 15year female hybrid phantom (% by mass). .................................................................183 422 Site specific homogeneous bone elemental composition (excluding cartilage) in the 15year male hybrid phantom (% by mass). ....................................................................184

PAGE 13

13 4-23 Macrostructure for the 15-year female and microstructure imaging data for the 18year male skeleton............................................................................................................1 85 4-24 Cortical bone thickness estimates in the 15-year female skeleton...................................187 4-25 AM TBV TBS and CBV source f-values for the UF hybrid 15-year female skeleton....188 4-26 Skeletal-averaged absorbed fraction data for the UF hybrid 15-year female skeleton based on PIRT transport...................................................................................................189 5-1 Bone volumes given in the hybrid-NU RBS/PM models and in the reconstructed hybrid-voxel models of the 1-year, 5-y ear, and 10-year skeletons for (1) the combined tissues of cortical bone and trab ecular spongiosa, (2) outer layers of boneassociated cartilage, and (3) to tal volume of all tissues...................................................218 5-2 Masses and volumes of site-specific mis cellaneous skeletal tissues in the 1-year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone..........................................................219 5-3 Masses and volumes of site-specific mis cellaneous skeletal tissues in the 5-year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone..........................................................220 5-4 Masses and volumes of site-specific mis cellaneous skeletal tissues in the 10-year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone..........................................................221 5-5 Site-specific total mineral bone vol umes and mass including and excluding MST for the 1-year, 5-year, and 10-year phantoms........................................................................222 5-6 Percentages of total mineral bone attribut ed to cortical bone and to trabecular bone by skeletal site in the newborn, 1-year, 5-year and 10-year, a nd 15-year male and female hybrid phantoms...................................................................................................223 5-7 UF hybrid 1-year phantom trabecular a nd cortical bone masses and volumes by bone site including and excluding MST ....................................................................................224 5-8 UF hybrid 5-year phantom trabecular a nd cortical bone masses and volumes by bone site including and excluding MST ....................................................................................225 5-9 UF hybrid 10-year phantom trabecular and cortical bone masses and volumes by bone site including and excluding MST ...........................................................................226 5-10 Site-specific marrow volumes and masses of skeletal tissues in the 1-year hybrid phantom including and excluding contributions from miscellaneous skeletal tissues....227 5-11 Site-specific marrow volumes and masses of skeletal tissues in the 5-year hybrid phantom including and excluding contributions from miscellaneous skeletal tissues....228

PAGE 14

14 511 Site specific marrow volumes and masses of skeletal tissues in the 5 year hybrid phantom including and excluding c ontributions from miscellaneous skeletal tissues. ...228 512 Site specific marrow volumes and masses of skeletal tissues in the 10 year hybrid phantom including and excluding contributions from miscellaneous skeletal tissues. ...229 513 Comparison of site specific active marrow distribution between the UF 1 year, 5 year, and 10 year hybrid phantoms and reference values given in ICRP Publication 89. .....................................................................................................................................230 514 Hybrid 1 year, 5 year, and 10year bone tissue volume fractions by bone site. ..............231 515 Masses, volumes, a nd percent distribution of cartilage by bone site in the UF 1year, 5year, and 10year phantoms. .........................................................................................232 516 Distribution of shallow marrow by skeletal site in the 1 year hybrid phantom. ..............233 517 Distribution of shallow marrow by skeletal site in the 5 year hybrid phantom. ..............234 518 Distribution of shallow marrow by skele tal site in the 10 year hybrid phantom. ............235 519 Lengths and radii of the medullary cavities within the long bones of the 1year, 5 year, and 10 year hybrid phantoms. .................................................................................236 520 Site specific homogeneous spongiosa mass, volume, and density data, including MST in the 1year, 5 year, and 10year hybrid phantoms. ..............................................236 521 Site specific homogeneous spongiosa elemental composition (% by mass) in the 1year, 5 year, and 10year hybrid phantom. ......................................................................237 522 Site specific homogenized bone masses, volumes, and densities (including cartilage) for the 1 year, 5 year, and 10year hybrid phantoms. ......................................................238 523 Site specific homogenized bone masses, volumes, and densities (excluding cartilage) for the 1 year, 5 year, and 10year hybrid phantoms. ......................................................239 524 Site specific homogeneous bone elemental composition (including cartilage) in the 1year, 5 year, and 10year hybrid phantoms (% by mass). ............................................240 525 Site specific homogeneous bone elemental composition (excluding cartilage) in the 1year, 5 year, and 10year hybrid phantoms (% by mass). ............................................241 526 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. ..........................................................................242 527 66Y iliac crest VBIST absorbed fraction results at 1 00% cellularity and the corresponding coefficients of variation. ..........................................................................243

PAGE 15

15 528 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. ..........................................................................244 529 Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCBIST and PIRT for an AM source and AM target. ............................................................................245 530 Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCBIST and PIRT for an AM source and TBE target. ..........................................................................245 531 Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCB IST and PIRT for an AM source and TBV target. ..........................................................................246 532 66Y Os Coxae SIRT absorbed fraction results and the corresponding coefficients of variation. ..........................................................................................................................246 533 44Y iliac crest CBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation from a marrow source. ......................................247 534 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. ..........................................................................247

PAGE 16

16 LIST OF FIGURES Figure page 21 Transvers e microCT images. The L3 vertebrae (left) and sternum (middle left) excised from 4 day cadaver, and the 4th rib (middle right) and iliac crest (right) excised from a 5 day cadaver. ...........................................................................................67 22 3D r enderings of skeleton models. A) ORNL stylized newborn phantom. B) UF voxel newborn phantom. C) UF hybridNURBS newborn phantom. ...............................68 23 A) Anterior posterior and B) Left lateral views of 3D re ndering of UF hybrid voxel skeleton model voxelized by Voxelizer with meshing tolerance of 10 degree and voxel resolution of 0.063 x 0.063 x 0.063 cm3. ................................................................69 24 A) Segmented transverse slice of 4 day old L3 using 3D DOCTOR. B) 3D rendering of segmented 4 day old L3 using 3D DOCTOR. ..............................................70 25 Spongiosa sections of 3D rendered image threshold marrow and trabecular bone. A) 4Day Old L3 vertabrae. B) 4 Day Old Sternum. C) 5Day Old 4th Rib. D) 5Day Old Iliac Crest. ...................................................................................................................71 26 Transverse microCT slice of occipital bone sample excised from 4 day old cadaver. ......72 31 Comparison between the original rendered polygon mesh and segmented voxelized bone sites. A) P olygon mesh femur. B) Voxelized femur. C) Polygon mesh lumbar vertebrae. D) voxelized lumbar vertebrae. .......................................................................113 32 Newborn specific absorbed fraction data from a CAR, TBV, TBS CBV, and IM source to an AM target in the lumbar spine using the 5day old L3 microstructure at various AM cellularities. ..................................................................................................114 33 Newborn specific absorbed fraction data from a CAR, TBV, TBS CBV, and IM source to a TM50 target in the lumbar spine using the 5day old L3 microstructure at various AM cellularities. ..................................................................................................115 34 Newborn specific absorbed fraction data from a CAR, TBV, TBS CBV, and IM source to a CAR target in the lumbar spine using the 5day old L3 microstructure at various AM cellularities. ..................................................................................................115 35 Newborn specific absorbed fraction data from an AM source to a TM50 target at various cellularities for the A) thoracic vertebrae, B) ulna, C) craniofacial bones, and D) fibula. ..........................................................................................................................116 36 Newborn specific absorbed fraction data from an AM source to a CAR target at various cellularities for the A) thoracic vertebrae, B) ulna, C) craniofacial bones, and D) fibula. ..........................................................................................................................117

PAGE 17

17 37 Comparison between the 2003 and PIRT newborn skeletal averaged absorbed fraction data to an AM target at ICRP reference cellularity for the A) AM source, B) TBV source, C) TBS source, and D) CBV source. ............................................................118 38 Comparison between the 2003 and PIRT newborn skeletal averaged absorbed fraction data to an AM target at ICRP reference cellularity from the mineral bone ( MB ) source at various percentag es of cortical and trabecular bone. ..............................119 41 Comparison between the original rendered polygon mesh and segmented voxelized 15year male (right) and 15 year female (left) (A) polygon mesh os cox ae, (B) voxelized os coxae, (C) polygon mesh femur, and (D) voxelized femur. .......................159 42 15year female specific absorbed fraction data from an AM source to a TM50 target at various cellularities for the (A) thoracic vertebrae, (B) patella, (C) craniofacial bones, and (D) os coxae. ..................................................................................................160 43 15year female specific absorbed fraction data from an AM source to a CAR target at various cellu larities for the A) ribs, B) cervical vertebrae, C) thoracic vertebrae, and D) lumbar vertebrae. ........................................................................................................161 44 Comparison between the 2003 and PIRT 15 year old female skeletal averaged absorbed frac tion data to an AM target at ICRP reference cellularity for the A) AM source, B) TBV source C) TBS source and D) CBV source. ..........................................162 45 Comparison between the 2003 and PIRT 15 year old female s keletal averaged absorbed fraction data to an AM target at ICRP reference cellularity from the mineral bone ( MB ) source at 80% cortical and 20% trabecular bone. ..........................................163 51 Original rendered corti cal bone and spongiosa (medullary marrow) segmented polygon mesh a 1 year (left), 5 year (middle), 10year (right) (A) o s coxae, (B) femur, (C) rib cage, and (D) humerus. .............................................................................248 52 Newborn to 15year age progression of the (A) cortical bone percentages and (B) trabecular bone percentages for selected skeletal sites. ...................................................249 53 SIRT VBIST SIRT CBIST PIRT absorbed fraction comparison of the adult iliac crest at 100% cellularity and an AM source to TBV, TBE (10 micron definition), and AM targets. ..............................................................................................................................250

PAGE 18

18 GLOSSARY MST Miscellaneous skeletal tissues as per ICRP Publication 89, MST includes blood vessels and periosteum, but excludes periarticular tissues and blood TAM and TAM* Trabecular active marrow Hematopoietically active (or red) bone marrow within spongiosa. Surrogate region for hematopoietic stem cells. TIM and TIM* Trabecular inactive marrow H ematopoietically inactive (or yellow) bone marrow within spongiosa. Generally considered as marrow adipocytes. TAM50 and TAM50* Trabecular shallow active marrow Active marrow localized within 50 m of the bone trabeculaae surfaces in spongiosa. Surrogate region for osteoprogenitor cells. TIM50 and TIM50* Trabecular shallow inactive marrow Inactive marrow localized within 50 m of the bone trabeculae surfaces in spongiosa. Generally considered as marrow adipocytes. CAM and CAM* Cortical active marr ow Hematopoietically active (or red) bone marrow within medullary cavities of long bones. CIM and CIM* Cortical inactive marrow Hematopoietically inactive (or yellow) bone marrow within medullary cavities of long bones. CAM50 and CAM50* Cortical sha llow active marrow Active marrow localized within 50 m of the inner cortical surface of the medullary cavities of long bones. CIM50 and CIM50* Cortical shallow inactive marrow Inactive marrow localized within 50 m of the inner cortical surface of th e medullary cavities of long bones. CM and CM* Cortical marrow All bone marrow localized in the medullary cavities of long bones. CM = CAM + CIM CM50 and CM50* Cortical shallow marrow All bone marrow localized within 50 m of the inner cortical surf ace of the medullary cavities of long bones. CM50 = CAM50 + CIM50. TM and TM* Trabecular marrow All bone marrow (active and inactive). TM = TAM + TIM + CAM + CIM. TM50 and TM50* Trabecular shallow marrow All bone marrow (active and inactive) within 50 m of the bone surfaces. TM50 = TAM50 + TIM50 + CAM50 + CIM50.

PAGE 19

19 AM and AM* Active Marrow Hematopoietically active (or red) bone marrow. Surrogate region for hematopoietic stem cells. AM = TAM + CAM IM and IM* Inactive Marrow Hematopoietically inactive (or yellow) bone marrow. Generally considered as marrow adipocytes. IM = TIM + CIM. TB and TB* Trabecular bone Bone trabeculae CB and CB* Cortical bone Cortex of all skeletal sites, and outer boundary of the shafts of the long bones MB a nd MB* Mineral bone Total tissues of both trabecular and cortical bone. HB and HB* Homogeneous bone Homogeneous mixture of mineral bone (cortical and trabecular), marrow (active and inactive), and miscellaneous skeletal tissues. Spongiosa Homogeneous mixture of trabecular bone, total marrow, and miscellaneous skeletal tissues. Homogeneous bone less cortical bone. CBVF Cortical bone volume fraction Fraction of homogeneous bone volume occupied by cortical bone. CBVF + SVF = 1.0 SVF Spongiosa volume fraction Fraction of homogeneous bone volume occupied by spongiosa. MVF Marrow volume fraction Fraction of spongiosa volume occupied by bone marrow (active and inactive). MVF + TBVF = 1.0. TBVF Trabecular bone volume fraction Fraction of spongi osa volume occupied by bone trabeculae. SMVF Shallow marrow volume fraction Fraction of spongiosa volume occupied by bone marrow within 50 m of the bone surfaces. CF Cellularity factor Fraction of marrow space occupied by active (red) bone marrow. CF = 1 (Marrow Fat Fraction) SMVFshaft Shallow marrow volume fraction shaft Fraction of medullary marrow volume located 50 m from inner surface of cortical bone in the long bone shafts TBfraction Trabecular bone fraction Ratio of trabecular bone volume to total mineral bone volume. TBfraction + CBfraction = 1.0

PAGE 20

20 CBfraction Cortical bone fraction Ratio of cortical bone volume to total mineral bone volume

PAGE 21

21 Abstract of Dissertation Presented to the Graduate School of th e University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy IMAGE BASED SKELETAL TISSUE AND ELECTRON DOSIMETRY MODELS FOR THE ICRP REFERENCE PEDIATRIC AGE SERIES By Deanna Hasenauer Pafundi A ugust 2009 Chair: Wesley Bolch Major: Nuclear Engineering Sciences Accurate predictions of the radiation dose to bone marrow are impor tant in both medical patients and members of the general public. The highly developing pediatric skeleton is more radio sensitive than an adult skeleton, and the longer life expectancy post radiation exposure increases the risk of developing a secondary cancer. Therefore, accurate pediatric skeletal models are even more important to analyze the short term effects of bone m arrow toxicity, and late effects such as cancer. Current dose estimates are based on the first generation mathematical ORNL phantoms with homogeneous skeletons. These skeletons assume 80% cortical bone and 20% trabecular bone across total skeletal miner al bone for all ages. Also, skeletal tissue masses are reported for the whole skeleton, and not by individual bone site. Hybrid phantoms are presented in this dissertation as computational models that combine the realism of a scanned individual w ith eas e of anatomical morphing W hole body hybrid phantom s of the ICRP reference pediatric age series with a homogeneous skeleton were constructed from both NURBS and polygonmesh s urfaces. In this study, the acquisition of newborn skeletal samples by autopsy and 18 year cadaver specimens, followed by imagebased analysis using microCT provided data crucial to the development of a bone site specific cartilage, cortical bone, miscellaneous skeletal tissues

PAGE 22

22 and spongiosa, which was further partitioned into trabec ular bone, active marrow, inactive marrow, and shallow marrow. Cortical and trabecular bone percentages were calculated as approximately 40% / 60%, 45% / 55%, 60% / 40%, 70% / 30%, and 80% / 20% for the newborn, 1year, 5 year, 10year, and 15year models respectively, instead of the constant 80% / 20% in ICRP The skeletal models for the UF hybr id pediatric skeletal series redefine current tissue assumptions in ICRP while partitoing by bone site necessary for future dosimetry assessments. The thre e main assumptions made within current pediatric skeletal dosimetry models are: 1) the electron energy from a cortical bone volume source (cortical bone cross fire) to any spongiosa tissue target (e.g. red bone marrow) is zero, 2) the spongiosa is infinite in size, such that electron energy escape is unaccounted for, a nd 3) cellularity changes are not considered directly during transport. Previous studies at the University of Florida have shown that these assumptions for an adult male are inaccurate to var ying degrees. The significantly smaller size of the pediatric skeleton is predicted to deviate even further from current dosimetry data. The dosimetry models presented in this study address these limitations to provide a more anatomically accurate dosimetry model for better predictions of bone marrow dose. Using the site specific skeletal tissue masses derived for each pediatric hybrid reference phantom the corresponding electron dosimetry computations were performed by either PIRT or SIRT 3DCBIST Monte Carlo electron transport

PAGE 23

23 CHAPTER 1 INTRODUCTION General Features of Bone The functions of the skeletal system are to provide structural support for the entire body, store minerals and lipids, produce blood cells, provide protection to surrounding tis sues (i.e. heart, lungs, spinal cord, brain, and reproductive organs), and provide leverage. Two types of bone are found in the skeleton: (1) cortical (or compact) bone found along the shafts of long bones and as an outer cortex to all other skeletal sites, and (2) trabecular ( spongy or cancellous ) bone found within the interior of all skeletal sites with the exception of long bone shafts where medullary marrow resides (Spiers 1987, White 2000, Marieb 2004, White and Folkens 2005). The diaphysis or midportion of a long bone is a tube with a thick wal l forme d of a hard, mineralized matrix (Spiers 1968, White 2000, Marieb 2004, White and Folkens 2005). Mineral bone consists of a cross stranded structure of organic collagen fibrils in a mucopolysaccharide extracellular matrix substance with crystals of calcium hydroxyapatite, Ca10(PO4)6(OH)2, seede d along and between the fibrils (Spiers 1969, White 2000, Marieb 2004, White and Folkens 2005). These fine, rod like crystallites give bone its rigid structure a nd store the bodys calcium. Toward the epiphyses or ends of a long bone the shaft widens and the cortex becomes thinned. The outer surface of the mineral bone is covered by a layer of bone lining cells and extracellular matrix called the periosteum. A fine network of trabeculae are contained with in the epiphysial shaft. The cavity spaces between the interlacing trabeculae contain hematopoietically active marrow, from which various lines of blood cells are produced. The shafts of long bones of very yo ung children contain active (red) marro w until bone growth is complete (Spiers 1968, White and Folkens 2005). The shafts of adult long bones contain inactive (yellow) marrow composed mainly of connective tissues and fat cells with only a small residual number of potentially blood-

PAGE 24

24 forming cells (Spiers 1968, White and Folkens 2005). In adults, the active marrow is found almost entirely within in the bones of the trunk and the proximal ends of the femora and humerii (Spiers 1968, White and Folkens 2005). T he trabecular network consists of interlacing thin lamellae of hard bone, which form a system of irre gular, interconnecting cavities (Spiers 1969, White 2000, Marieb 2004, White and Folkens 2005). Their arrangement is not random, but precisely along lines of biomechanical stress. Variations of marrow cavity size range from less than 50 m, and differ by person, age, and skeletal site. The inner surface, including all the surfaces of the trabeculae is covered by a layer of bone lining cells and extracellular matrix called the endosteum. Biological Development of the Skeleton Limited bone histomorphometry studies have been conducted on the pathologic development of the bone trabeculae. It is important to quantify the age related changes in the skeletal microstructure for accurate dose reconstruction to the active bone marrow. Histomorphometric data on the trabecular bone structure in the iliac crest of 25 males and 33 females between the ages of 1.5 and 22.9 years suggests that the trabecular thickness increases during the first decade of life and then remains unchanged (Glorieux et al. 2000). The increase in trabecular thickness subsequently result s in an overall increase in both cancellous and total mineral bone vol umes (Glorieux et al. 2000). It is shown that this increase in thickness result s in a decrease i n the trabecul ar bone surface to volume ratio (Glorieux et al. 2000). In contrast, the number of trabeculae appears to be constant, or invariant with age (Glorieux et al. 2000). Additional studies on the trabecular architecture of the fourth lumbar (L4) vertebral bodies of 17 females and 29 males between the ages of 15 weeks prenatal to 97 years postnatal also concluded that an increase in trabecular width s is observed until adolescence, and then remains unchanged (Roschger et al. 2001). However, unlike the previous study of Glorieux et

PAGE 25

25 al. (2000) Roschger et al. (2001) found that the trabecular number decr eased from birth to age 97 years (Roschger et al. 2001). The se author s concluded that an increase in the trabecular thickness and a decrease in the trabecular number indicated that a dense network of thin trabeculae coarsens gradually with age to a looser network of thicker trabeculae (Roschger et al. 2001). Other studies by Byer et al. (2000) Kneissel Target Cells for Skeletal Dosimetry Models et al. (1997), and Beddoe et al. (1976) r epo rt a rapid increase in the marrow cavities during infancy with a gradual increase throughout childhood. These authors also noted an increase in trabecular thickness through the first decade of childhood. The hum an skeletal system consists of cortical bone, trabecular bone, bone marrow, periosteum, endosteum, cartilage, and the blood vessels contained within those tissues. Of these tissues, bone marrow and cells the trabecular and cortical bone surfa ces (endosteum) are considered to be radiosensitive due to rapid cellular division, low cellular differentiation, and long dividing future (ideal tissue characteristics for the Law of Bergonie and Tribondeau) (Hall 2000). As such, corresponding tissue weig hting factors have been assigned to those tissues by the International Commission on Radiological Protection (ICRP) (ICRP 1991). Leukemia originates from irradiation of the hematopoietically active bone marrow, while bone cancer originates from irradiatio n of the osteoprogenitor cells lining either the trabecular bone surfaces or the cortical bone surfaces in the shafts of long bones. Bone cancer studies involving 50 et al. layer around the trabecular bone surfaces and along the inner cortical surface in the long bone shafts was considered and thus modeled. Studies show that a pproximately 9% of all radiation induced pediatric bone sarcomas are chondrosarcomas, or cancers of the cartilage (Parker and

PAGE 26

26 Berry 1976; Aprin et al. 1984). Accordingly, in some instances, unossified bone in developing bone and fibrous connective tissue in the cranium were also modeled as a potential radiation target for risk assessment. Dosimetry results in this study are reported for volume averaged targets as a surrogate for the individual cells that they represent (i.e. active bone marrow as a surro gate for the hematopoietic stem cells, endosteum as a surrogate for osteoprogenitor cells, and cartilage as a surrogate for chondrocytes). Importance and Applications of Skeletal Dosimetry As bone seeking radionuclides (e.g. 32P, 89Sr, 90Y, 153Sm, 166Ho, 1 86Re, and 188Re) enter the skeletal system, tissues such as the active bone marrow are thus irradiated. In addition, e xternal photon interactions within the skeleton can create secondary electrons, which can also lead to the irradiation of active bone mar row. A ccurate dosimetry calculations involving the skeleton are important both within the fields of radiation protection and medical physics. For example, reconstruction of past incidents of skeletal irradiation following environmental releases of bone s eeking radionuclides are needed by radiation epidemiology studies. From these studies, a better understanding of the dose dependent risk of leukemia is developed. With these risks quantified, prospective assessments of stochastic leukemia risk can made i n medical patients undergoing medical imaging studies such as fluoroscopy, computed tomography, and nuclear medicine SPECT or PET studies. In the field of radionuclide therapy, the tissue that most frequently limits the amount of administered radiopharmac eutical to the cancer patient is the active bone marrow with the concern being acute marrow toxicity (Sgouros 2005) Proper accounting for the radiation doses to the skeletal tissues thus allows optimization of various forms of radionuclide therapy and co nstructions of dose response models permitting better treatments to future patients.

PAGE 27

27 To calculate radiation dose to critical bone tissues, computational skeletal models have been developed and incorporated within Monte Carlo radiation transport codes. Acc urate dosimetry becomes increasingly important in children, where not only do the radiation exposures allow for an increased probability of expressing radiation induced effects due to their greater life expectancies, but also the greater percentages of act ive marrow that exist in the active marrow containing skeletal sites increase a childs radiosensitivity. Internal Dosimetry Applications in Radiation Protection Following the substantial release of highlevel radioactive waste products into the Techa Riv er from both waste management failures and an explosion in the radioactive waste storage facility, Russian and United States scientists (U.S. Russian Joint Coordinating Committee on Radiation Effects Research, JCCRER) have been actively involved in the dos e reconstruction to the general population, especially children and infants since 1995 (Degteva et al. 2000). Located in the Southern Urals, during the early years of operation of the Mayak Production Association (MPA) for the production of plutonium for nuclear weapons, about 1017 Becquerel s (Bq) of liquid waste includes radioisotopes of strontium, cesium, yttrium, barium, lanthanum, and iodine contaminated the Techa River between 1949 and 1956 (Degteva et al. 2000). About 30,000 people who lived in the villages downstream were exposed primarily by electron and beta particle radiations through water and foodstuff s and by external gamma ray exposure due to proximity to bottom sediments and the shoreli ne (Degteva et al. 2000). While internal photon doses to children are supported by the ORNL series of pediatric anatomic models, the detailed models of alpha and beta particle dose to the skeletal tissues are still relevant only to the adult male.

PAGE 28

28 Induction of Marrow Toxicity from Therapeutic Medical Radiatio n Procedures Bone marrow is the dose limiting organ in radiation procedures such as radioimmunotherapy (RIT), bone pain palliation, and other radiotherapy treatments due to the accumulation of activity within the marrow and the high sensitivity of bone ma rrow at extremely low absorbed doses. RIT procedures are conducted by tagging a tissue specific antibody to a radionuclide such as 90Y and 131Secondary Cancer Ris k from Diagnostic Medical Radiation Procedures I (beta particle emitters). Therefore, the antibody in conjunction with crossfire irradiation from the radionucl ide increases the effectiveness of tumor cell death. RIT treatments are typically performed for cancers located outside the hematopoietic system, such as osteosarcoma, liver cancer, and other tumor growths. Radiotherapy treatments such as bone marrow abl ation destroys malignancies, such as Hodgkins or nonHodgkins lymphoma and leukemia, by using ionizing radiation (external beam or bone seeking radiopharmaceuticals) localized within the hematopoietic system to deliver concentrated radiation doses to the bone marrow. Accurate skeletal dosimetry to the active marrow is therefore, a critical component in determining the marrow dose limit that can be safely administered to effectively treat the disease without inducing marrow toxicity. In 2006, the preliminary estimates of the NCRP Scientific Committee 6 2 medical subgroup show that the per capita dose from medical exposures, excluding dental or radiotherapy, has increased almost 60 0% to about 3.0 mSv, and the collective dose has increased over 700% to about 900,000 personSv (Mettler et al. 2008). It should be noted that these preliminary estimates do not include the effect of cumulative dose contributions from multiple CT exams, w hich could cause an individuals effective dose to exceed the 3.0 mSv increase. CT and nuclear medicine procedures were found to contribute the most toward this increase 15% of the total number of procedures and half the total collective dose for CT, and 4% of all

PAGE 29

29 procedures but 26% of the total collective dose for nuclear medicine (Mettler et al. 2008). Based on this preliminary study, medical radiation exposure is now approximately equal to natural background. Given that approximately 35% of the U.S. population are between the ages of 0 years and 24 years, it was estimated that approximately 7% of the U.S. population receiving CT scans of the abdomen and pelvis were between 0 years and 24 years (Mettler et al. 2008). Similarly, approximately 4% of th e U.S. population receiving nuclear medicine examinations were between 0 years and 24 years (Mettler et al. 2008). Overall, CT procedures have increased approximately 10% per year since 1993, while the U.S. population growth has been approximately 1% per year since 1993 (Mettler et al. 2008). As CT technology advances into larger multi slice scanners and physicians order more procedures, so does an inherent increase in collective dose from medical radiation procedures. Avoiding unnecessary procedures by risk benefit analysis is a sure way to reduce dose. However, in the event a procedure must be performed, techniques such as mA modulation, decreasing scan length, noisereducing reconstruction algorithms, and adequate training by CT technologists can help optimize scanning protocols and reduce dose. It is expected that a child undergoing a medical radiation procedure has a greater life expectancy post radiation exposure than an adult, and therefore, an increase in secondary cancer incidence. Consequently accurate dosimetry modeling must be a priority when assessing the risk of developing a secondary cancer. Previous Dosimetry Studies Frederick Spiers, Joan Whitwell, Philip Darley, and Ala n Beddoe at the University of Leeds, UK, were the firs t group of scientists dedicated toward modeling the complex microstructure of trabecular bone in the attempts accurately assess dose to bone marrow. The majority of the microstructural pediatric skeletal data available are based on the studies performed i n 1976 by Ala n Beddoe, along with his colleagues at the University of Leeds. These

PAGE 30

30 studies led to the development of pathlength, or chordlength distributions through marrow cavities and trabecular bone of the iliac crest, femur head, parietal bone, rib, and 3rd lumbar vertebra of a 1.7 year old, the 4thLimitations of Current Pediatric Dosimetry Models cervical vertebra, humerus, rib, femur head and neck, iliac crest, and femur shaft for a 9 year old, and the parietal bone, femur head and neck, iliac crest, cervical vertebra, and lumbar vertebra of a 44 year old. The chordlength distributions for these ages and skeletal sites are still used in current skeletal dosimetry models of Stabin and Siegel (2003). Unfortunately, chordbased electron dosimetry models do not account for electron escape into cor tical bone and soft tissue, which is a necessary consideration in children due to the decrease in overall macrostructural size of each skeletal site. Primary electron d ose calculations are currently deriv ed utilizing the dosime tric models of Stabin and Siegel (2003). In September of 2005, researchers of Project 1.1 of the US Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) published an extensive review (Shagina et al. 2005) of s keletal dosimetry models that would be applicable to the assessment of red bone marrow doses to the Extended Techa River Cohort (ETRC). This study made the tentative recommendation that the model of Stabin and Siegel (2003) should be applied to the recons truction of 89,90The Shagina et al. ( 2005 ) report explicitly mentions these limitations, as well as the need to explicitly consider marrow cellularity changes with age and skeletal site, and discusses the need Sr doses to the skeletal tissues, but the authors noted that this model was fundamentally lacking in two respects : 1) There is no allowance for betaparticle cross fire from cortical bone to red (active) bone marrow. This can be important for children where RBM extends throughout the shaft of the long bones, and the Sr models predict a large number of decays in cortical bone. 2) The spongiosa is assumed to be of infinite extent which can lead to overestimates of the absorbed fraction (A F) to red bone marrow, especially for the younger ages.

PAGE 31

31 to modify the Stabin and Siegel skeletal model accordingly. C ellularity changes are accounted for by scaling after transport instead of varying cellularity during transport. Scaling the absorbed fraction data by cellularity after transport has been shown to be accurate, but only at high electron energies (Bolch et al. 2002). The current model also uses skeletal masses tha t are tied to stylized phantoms. Also, these masses do not provide realistic guidance for cortical and trabecular bone percentages as a function of age, nor skeletal tissue data (e.g. red bone marrow, trabecular bone, cortical bone, yellow bone marrow, etc.) as a function of skeletal site for regional dose estimates, which creates another significant limitation regarding the models practical uses. The Medical Internal Radiation Dose ( MIRD ) schema for internal radionuclide bone marrow dose calculations (e.g. radiopharmaceutical therapies) is based on specific absorbed fraction data linked to the ORNL stylized phantom skeletal masses. Also s keletal averaged absorbed fraction results are provided instead of s keletal averaged radionuclide S values. Consequently, the 2003 Eckerman model, as implemented in the study by Stabin and Siegel, properly account s for the fractional mass distribution of the source issue, but make no accounting of the fractional mass distribution of the target tissue (Stabin and Siegel 2003). Skeletal photon fluence to dose response functions (DRF) were generated solely based on the Cristy and Eckerman ORNL sty lized 44year adult model (Cristy and Eckerman 1987). These DRF were calculated only for the 44 year lumbar vertebra and cranium. A separate cortical bone boundary was not modeled, and therefore, bone is a homogenous mixture of cortical bone and spongios a. Consequently, photon flux reduction due to cortical shielding, and secondary electron transport through a finite bone medium are not properly modeled.

PAGE 32

32 Unresolved questions regarding assumptions, extensions of the absorbed fractions based on the Leeds chord distributions for the 1.7 year old, 9 year old, and 44 year old to the ICRP reference age series, trabecular bone structure used for infants, cortical bone transport model and geometry measurements, and limited discussion of the results in the curre nt dosimetric model have been documented. Calculated doses to the active marrow components of bone from external photons and internal electrons are currently overestimating the true dose for internal emitters, which could have significant implications on not only the epidemiological aspects of secondary cancer induction, but also the effectiveness of radiation treatments involving marrow toxicity. Skeletal Dosimetry Model Improvements Existing dosimetry models of the skeleton used by the ICRP are base d on limited microstructural information from a single male subject and chord length distributions that do not account for energy loss to cortical bone or particle escape into soft tissue at high electron energies. However, utilizing highresolution segme nted 3D images via microCT of different trabecular regions of the human skeleton, along with 3D segmented ex vivo scans of human skeletal regions, a 3D computational model, namely the Paired Image Radiation Transport (PIRT) model, was developed at the University of Florida, and applied to refine the current ICRP Reference Man model. The report additionally acknowledges work conducted at the University of Florida in the development of image based skeletal dosimetry models which inherently provide for both c ortical to spongiosa radiation cross fire and the finite extent of trabecular spongiosa at all major sites within the skeleton (Jokisch et al. 2001; Patton et al. 2002a; Patton et al. 2002b). Results by Shah et al. (2005) have shown that by not accounting for particle escape, the skeletal averaged and skeletal sitespecific absorbed fraction data are significantly greater at higher electron energies, causing an overestimation in the true dose (Shah et al. 2005b; Shah et

PAGE 33

33 al. 2005c). These results would have an even greater impact on children, where the overall skeletal size is significantly smaller than an adult. Therefore, using either scaled down or interpolated data from an adult reference model would be unsuitable for accurately determining the dose to the active marrow and the corresponding predicted marrow cancer risks in children. Computational phantoms have been used for decades in computing organ doses from occupational, medical, and accidental exposures from internal and external radiation sources. The evolution of computational phantoms began with mathematically based stylized phantoms, which allowed for organ repositioning and shape, but were anatomically unrealistic. Then, with the advent of image based segmentation and more powerful computer processors, voxel based phantoms utilizing 3D voxel matrices provided realistic anatomy, but at the expense of limited organ transformations. Current technology has led to the development of hybrid computational phantoms which combine the flexibility of organ redefinition in stylized phantoms and anatomical realism in voxelbased phantoms. The purpose of this study is to apply the Non uniform rational B spline (NURBS) advanced mathematical modeling tool to replace the simple mathematical equations use d in stylized phantoms, while preserving anatomical detail. ICRP Publications 70 and 89 report limited reference pediatric whole skeleton data based on uncertain assumptions. However in this study, skeletal site specific red bone marrow, yellow bone marro w, trabecular bone, cartilage, and cortical bone masses, volumes, densities, and elemental compositions were mathematically derived from image based CT of homogeneous bone segmentation, microCT data from skeletal specimens acquired from UF Shands Hospital, along with some published data in ICRP, ICRU, and ORNL publications. The methodology was replicated for the entire ICRP age series in an attempt to move away from masses tied to the

PAGE 34

34 stylized phantoms, and present additional skeletal data that is not found in ICRP or other literature resources. The present work was developed to specifically address the limitations of the Stabin and Siegel (2003) model as noted above. These research efforts are intended to provide more anatomically accurate, comprehensi ve, and detailed age and bone site specific pediatric skeletal dosimetry models. This is important in medical patients for both radioiummotherapy (RIT) procedures where bone marrow is the dose limiting tissue, and multiple exposures from external photon sources in diagnostic procedures. Equal importance can also be found in radiation epidemiology studies, such as late effects in the Extended Techa River Cohort, involved with correlating biological effects of bone marrow dose to observed biological effect s (e.g. cancers of both bone and bone marrow). The development of the pediatric skeletal dosimetry phantoms in this study was conducted in parallel with the development of whole body dosimetry phantoms. Once merged, the complete models (whole body + deta iled skeleton) will allow for a comprehensive dosimetry analysis involving multiple applications involving radiation exposures.

PAGE 35

35 CHAPTER 2 HYBRID NEWBORN COMPUTATIONAL PHANTOM THE SKELETON The human skeletal system consists of a variety of different t issues including mineral bone (cortical or trabecular in structure) bone marrow (hematopoietically active or inactive) periosteum, endosteum, cartilage fibrous connective tissue nerves, and blood vessels. Two main radiosensitive cell populations exist within the skeleton: hematopoietic stem cells (targets for radiogenic leukemia) and osteoprogenitor cells (targets for radiogenic bone cancer). At a tissue level, absorbed doses to these two cell populations are inferred via doses assessed to their surro gate tissues: active (or red) bone marrow, and skeletal endosteum, respectively (ICRP 2007) To calculate the radiation absorbed dose to these t arget tissues, anatomical models of the human skeleton are developed and incorporated within Monte Carlobased transport calculation codes. Currently, two classes of anatomic models have been developed for skeletal dosimetry : stylized (or mathematical) a nd voxel ized (or tomographic) models. Stylized models, such as those of the ORNL phantom series (Cristy 1980; Cristy and Eckerman 1987; Han et al. 2006) represent the human skeleton via a series of geometric surface equations. For example, the arm and leg bones a re taken as frusta of elliptical cones, while the pelvis is modeled as the space occupied between two nonconcentric elliptical cylinders. Furthermore, the entire skeleton within stylized models is modeled as a homogeneous mixture of its tissue components for photon transport applications More advanced classes of skeletal models have been developed from medical images of human subjects. This seco nd generation of anatomic model describes the skeleton by use of 3D voxel matrices segmented from computed tom ography (CT) or magnetic resonance (MR) images. Even though some investigators report MR based skeletal models (Jones 1995; Lee and

PAGE 36

36 Lee 2004; Nagaoka et al. 2004) CT images generally provide higher quality representations of skeletal 3D structure (Fill et al. 2004; Lee et al. 2006a; Zankl and Wittmann 2001; Zubal et al. 1994) Each bone site is semi automatically segmented from CT images through inher ent contrast differentiation between pixels of soft tissue and those of m ineral bone. Similar to their stylized counterparts, the majority of voxel based skeletal models are homogeneous in elemental composition and density, and thus various algorithms must be applied to assess absorbed doses to targeted cell populations. A re view of these t echniques is given in Lee et al. (2006b) To date, only three groups have provided voxel based phantoms with a subsegmented skeletal structure. In the adult VIP Man phantom of Xu et al. (2000) image voxels of the skeleton are partitioned into those representing mineral bone and those representing red marrow. No differentiation is made between cortical and trabecular components of mineral bone, and voxels of yellow marrow are not explicitly defined. In other more recent approaches, Zankl et al. (2007) and Kramer et al. (2006) have retagged skeletal voxels of the ICRP Reference Phantoms and the MAX06 / FAX06 phantoms, respectively, into those representi ng cortical bone, trabecular spongiosa, and medullary marrow (shafts of the long bones). The advantage of this approach is that shielding effects of cortical bone are correctly modeled for low energy photons incident upon a given bone site. Furthermore, differentiation of homogeneous bone into cortical bone and spongiosa is a pre requisite to more accurate marrow dosimetry techniques including the use of dose response functions as proposed by Eckerman et al. (2008) or onthe fly transport of secondary electrons in segmented microCT im ages as developed by Kramer et al. (2006a; 2007) Hybrid phantoms are a third generation of computa tional phantom that retain both the scalability of firstgeneration stylized phantoms and the anatomical realism of secondgeneration

PAGE 37

37 voxel phantoms. In their base form, hybrid phantoms define organ boundaries and the outer body contour using combinations of nonuniform rational B spline (NURBS) and polygon mesh (PM) surfaces. At the time of coupling of the phantom to a radiation transport codes, however, these phantoms must be converted to a voxelized format in a method as described by Lee et al. (2007) These two formats of hybrid phantoms are respectively referred to as hybridNURBS/PM and hybri dvoxel computational phantoms. The goals of the present study were to (1) develop a methodology for the subsegmentation of the skeleton within hybrid computational phantoms for dose assessment to active marrow and endos teal tissues, and (2) apply this methodology to the male and female newborn phantoms of Lee et al. (2007) The methodology pres ented here targets total skeletal tissue masses for the reference newborn child as defined in ICRP Publication 89 (ICRP 2002) However, the study further distributes those masses in a bone specific manner based upon ICRP reference data, microCT based images of newborn spongios a from autopsy specimens, and the individual bone volumes defined within the UF newborn hybrid phantom (Lee et al 2007) The tissue masses presented here are thus offered as a revision to those given previously by Cristy (1981) for newborn active marrow, and by Watchman et al. (2007) for all skeletal newborn tissues. A new 50m definition of the skeletal endosteum is further adopted in this study (Bolch et al. 2007) A g lossary of acronyms for both tissue regions of the skeleton and model parameters used in this study is given at the end of this article. M aterials and M ethods Segmentation of S keleton and C artilage / Fibrous Tissue from Newborn Cadaver CT D ata To assess ma sses of cartilage and fibrous connective tissue separate from all other skeletal tissues, the original 485slice newborn cadaver CT image set of Nipper et al. (2002) was resegmented in the creation of the UF newborn hybrid phantom of Lee et al. (2007)

PAGE 38

38 Homogeneous bone (total skeleton exclusive of cartilage and fibrous connective tissue ) is defined in this study as the combined tissues of cortical bone, trabecular bone, misc ellan eous skeletal tissues, and active (red) bone marrow. Inactive (or yellow) bone marrow is absent in the reference newborn skeleton. The o riginal CT data were imported into the software code 3D DOCTORTMFollowing delineation of all regions of homogeneous bone those of cartilage and fibrous tissue were next segmented Two major groupings exist in the newborn: (1) bone associated cartilage or fibrous connective tissue (e.g., cranial plates anterior rib cage inter vertebral discs and unossified regions of bone cortex) and (2) non bone associated cartilage ( e.g., external nose, ears, and rings of the larynx, trachea, and extrapulmonary bronchi). In the study of Lee et al. (2007) only 2% of total volume is as signed to the latter catego ry. Unossified bone develops by intramembranous ossification or endochondral ossification. The former takes place in regions of the skull and clavicles, while the la t ter occurs everywhere else. During intramembranous ossification, fibrous connecti ve tis sue is replaced by mineral bone, while endochondral ossification is the gradual replacement of cartilage with mineral bone In both cases, mineral bone is formed by osteoblasts. High contrast resolution permitted manual segmentation of costal cartilage, cranial cartilage and intervertebral discs A vacancy in the new born cranium the anterior fontanel or soft spot contains fibrous connective tissue and its contours were manually drawn to close that vacancy. As for intervertebral discs, well defined gaps were (Able Software Corp., Lexington, MA) for image s egmentation. T o determine the lower bound of the thresholding window, selected reg ions of cartilage were reviewed such as those of the external nasal passages, ear lobes, and intervertebral discs. Once an optimal threshold window was selected, the entire skeleton was segmented and reviewed for anatomic consistency

PAGE 39

39 located with in the vertebral column showing gray scale values slightly larger than those of soft tissue. This tissue thus defined the intervertebral disc s, and the 1mm slice thickness in the original CT data was sufficient to define their spat ial extent. Costal cartilage extended from the ossified regions of the ribs anteriorly to the sternum and was described by NURBS surfaces. A final region of bone associated cartilage was defined as a thin unossified tissue layer covering all skeletal re gions exclusive of long bone shafts (where ossification is nearly complete at birth). This layer was created using a surface offset feature of 3D D OCTORTM. The layer thickness was adjusted iteratively until the total cartilage volume (both bone associated and nonbone associated components) was matched to the ICRP 89 reference mass of 130 g (assuming a reference mass density of 1.1 g cm3Polygon M esh and NURBS M odeling of the N ewborn P hantom S keleton ). These skeleton boundary contours were then exported as Wavefront Object file s to the software code Rhinoceros (McN eel North America, Seattle, WA), a polygon mesh and NURBS modeling tool Within Rhinoceros, all bone sites were described as polygon mesh surfaces to preserve their complex 3D shape. The one exception was the ribs which were remodeled using NURBS surfaces as some of the ribs were artificially interconnected due to the lower z resolution of the original CT images and the very small inter rib distances present in the newborn skeleton. The c en tral trace of the rib contours and corresponding diameters were carefully extracted from the original polygonmesh rib cage model and pipe shaped NURBS surfaces where then formed given appropriate cross section al dimensions to preserve intra rib spacing. NURBS surfaces for the ribs were generated from the body of the connecting thoracic vertebrae to the rib costal cartilage extending from the sternum. A fter the costal cartilage and ossified regions of the ribs were separated, the volume of the NURBS rib cage model was calculated and m atched to that given in the original polygonmesh model through adjustments in individual rib diameter

PAGE 40

40 Autopsy Harvest and MicroCT Image Acquisition and Analysis To further develop information on the 3D microstructure of new born trabecular spongiosa, various bone specimens were acquired during autopsy harvest from two newborns a 4 day female and a 5 day female both under an approved Institute Review Board protocol at the University of Florida Shands Hospital. The followi ng bone sites were taken from the 4 day newborn: sternum, occipital bone, 2nd right rib, 2nd left rib, L2L5 vertebrae, and T9T12 vertebrae. From the 5 day newborn, the bone specimens acquired included C3C7 vertebrae, T1T5 vertebrae, T10T12 vertebrae, L1L5 vertebrae, the 4th right and left ribs and a portion of the right iliac crest. These specimens were subjected to microCT imaging (Scanco Medical AG, Brttisellen, Switzerland ) at 30 m isotropic resolution. The resulting images were converted to binary format using techniques previously given in Rajon et al. (2006) Representative images are shown in Figure 21 for the L3 vertebrae, sternum 4thTwo sets of volume fractions were extracted from the se microCT images. The first were the cortical bone volume fraction ( CBVF) and the spongiosa volume fraction ( SVF) such that CBVF + SVF = 1, with both in reference to the total volume of noncartilaginous bone (i.e., homogenous bone in the newborn phantom ). The second were the marrow volume fraction ( MVF ) and the trabecular bone volume fraction ( TBVF) such that MVF + TBVF = 1, with both in reference to the total volume of spongiosa (homogeneous bone exclusive of its cortical bone cortex). A fifth volume fraction the shallow marrow volume fraction of SMVF was derived though an image analysis software. The SMVF defines the fraction of spongiosa occupied by marrow space within 50m of the bone trabeculae surfaces. This latter parameter is used to defi ne the surrogate tissue region for the osteoprogenitor cells. While cartilage layers were clearly visible in the microCT images, no attempt was made to define their respective volume rib and iliac crest

PAGE 41

41 fraction, as ICRP 89 reference cartilage masses were already modeled in the newborn hybrid phantom. Site-Specific Skeletal Tissue Masses, Volume s, Densities, and Elemental Compositions Calculations of reference newborn site-s pecific skeletal tissue masses, elemental compositions, and mass densities were performed usi ng data from three sources. The first were reference data given in ICRP Publica tions 70 (ICRP 1995) and 89 (ICRP 2002), ICRU Publication 44 (ICRU 1989), and ICRU Publicat ion 46 (ICRU 1992). The second were microCT images from skeletal autopsy specimens taken from both the 4-day-old an d 5-day-old newborns. The third were homogeneous gender-independen t skeleton volumes defined within the UF newborn hybrid phantoms. In the study by Lee et al. (2007), targeted total skeleton volumes were derived using a homogeneous skeletal tissue density whic h itself was taken as a massweighted averaged of the refere nce densities of its constituent tissues [s ee Table 3 of Lee et al. (2007)]. Upon further reflection, a volume-weigh ting of the constitute tissue densities should have been applied, and this correc tion is made in the present study. Miscellaneous skeletal tissues As defined in ICRP Publication 89, miscellaneous skeletal tissues ( MST ) consist of blood vessels and periosteum, but exclude periarticula r tissue and blood. Limitations on image contrast and spatial resolution do not allow for any visual delineation of miscellaneous skeletal tissues in the newborn CT dataset. Consequent ly, the reference volume of newborn MST (obtained from reference masses given in Tabl e 9.2.15 of ICRP Publication 89) was first distribut ed by bone site based solely on fractional sk eletal volumes within the newborn hybrid phantom: x x HB* MSTMST HB*V V=V V (2-1)

PAGE 42

42 where VMST is the total reference volume of MST (19.3 g / 1.03 g cm3 or 18.74 cm3* HBV), is the volume of noncartilaginous homogeneous bone across the entire skeleton of the newborn phantom (170.74 cm3 x MSTV ), and and x HBV are the corresponding volumes of these tissues in a given bone site x of the phantom. The asterisk in variables HBV and x HBV indicate volumes inclusive HBV of their miscellaneous skeletal tissues, with corresponding variables and x HBV indicating volumes exclusive of MST In cases where bone site x has both a left and right component (e.g., clavicles, femora), volumes refer to the summed total of the right and left skeletal pair. Implicit in Eq. ( 22) is the assumption that miscellaneous skeletal tissues do not reside within skeletal cartilage. MS T masses were calculated using the gender averaged soft tissue density of 1.03 g cm3 given in ICRU Publication 46 (ICRU 1992) Once total MST volumes were assign ed to each phantom skeletal site, they were further partitioned into MST regions assigned to active marrow ( AM*), mineral bone ( MB*), trabecular bone ( TB*), and cortical bone ( CB*), respectively, also according to their relative volumes.1 x xx AM* MST-AMMST x HB*V V=V V (2 2) x xx MB* MST-MBMST x HB*V V=V V xx xx MB*TB* MSTTBMST xx HB*MB*VV V=V VV x x xx CB* MB* MSTCBMST xx HB*MB*V V V=V VV 1 The asterisks for the variables HB AM MB TB and CB denote their inclusion of constituent miscellaneous skeletal tissue volumes. Variables with no asterisk denote their ICRP 89 referen ce values which are exclusive of miscellaneous skeletal tissues.

PAGE 43

43 The derivation of site specific tissue volumes are given below in Section 2.4.2 for active marrow, and i n Section 2.4.3 for mineral, trabecular, and cortical bone. Since ICRP Publication 89 does not differentiate the masses of periosteum and blood vessels in the 19.3 g of total MST we acknowledge that Eq. (2 2) is an approximation, and that in reality, the periosteal tissues would not be assigned to either AM or TB but only to CB (outer regions of the bone site). Marrow masses and volumes Active bone marrow in the newborn may be found in either the marrow cavities of trabecular spongiosa, or in the medullary cavities of the long bones. In this study, we refer to these two marrow regions as TAM (trabecular active marrow) and CAM (cortical active marrow), respectively, as the latter is associated with the large portions of cortical bone in the long bone diaphyses. The skeletal regions containing TAM and CAM also contain miscellaneous tissues as approximated by Eq. (2 2). Accordingly, we define the acronyms TAM* and CAM* when referring to trabecular and cortical active marrow inclusive of their MST Cor respondingly, TAM and CAM refer to these same tissues exclusive As given in ICRP Publication 89, reference skeletal mass es are not differentiated by gender until age 15 years. Consequently, only one skeletal tissue model was developed for application to both the UF male and female newborn hybrid phantoms. In reporting the distribution of active marrow masses, the ICRP partitions both the arms and legs into four regions. For the legs, these are the (1) upper halves of the fe mora, (2) the lower halves of the femora, (3) the tibiae, fibulae, and patellae, and (4) ankle and foot bones. An analogous partitioning is made for the arm bones. In the present study, however, the humeri and femora were partitioned into four separate r egions [proximal end, upper shaft, lower shaft, and distal end] while the lower arm and leg long bones were partitioned into three regions [proximal end, full shaft, and distal end]. The delineation of the proximal or distal ends and shaft were made by ex terior visual inspection, while upper and of their MST (see glossary).

PAGE 44

44 lower partitions of the humeri and femora were based on the ir geometric midpoint. While these subdivisions are not critical to the newborn skeleton (as all marrow is 100% active, and no microstructural data were available for the newborn extremities), these divisions were put into place for subsequent application to the older models of the UF phantom series, where microCT images will potentially be available and cellularity differences along the long bones are indi cated in ICRP Publications 70 and 89. Volumes of TAM and TAM within each bone site x of the newborn phantom were estimated using the following expressions: xxxxx TAM*HB*V=VSVFMVFCF and xxx TAMTAM* MST-TAMV=VV (2 3) where x HBV is the volume of noncartilaginous homogeneous bone at skeletal site x xSVF is the fraction of total homogeneous bone volume assigned to spongiosa, xMVF is the fraction of spongiosa assigned to bone marrow, and the cellularity factor xCF is the fraction of total marrow volume that is hematopoietically active. The quantity x MST-TAMV thus represents the volume of miscellaneous skeletal tissues assigned to trabecular active marrow in bone site x. In this study, values of x HBV are taken directly from the newborn hybrid phantom of our previous study (Lee et al. 2007) Values of SVF are estimated from image segmentation, utilizing 3D DOCTOR of both the newborn CT and microCT images, while values of MVF were computed by in house image proces sing techniques (Rajon et al. 2006) from the newborn microCT data as described in Section 2.3. Image segmentation of the newborn CT scan only provided SVF data for a limited number of skeletal sites due to limited contrast resolution. Bone surrogates wer e, therefore, assigned based on comparable microstructure data reported in Whitwell (1973) along with

PAGE 45

45 embryological information on bone development. The skull develops by both endochondral and intramembranous ossification processes. The parieta l, frontal, upper occipital, lacrimal, nasal, mandible, maxilla, palatine, zygomatic, vomer, temporal (squamous part), spehnoidal concha and medial lamella of the pterygoid process of the tympanic part develop by intramembranous ossification processes (Sam pson et al. 1991) All other bones of the human skeleton develop by endochondral ossification except the clavicles (Netter 1987) Due to this unique microstructural development and lack of appropriate surrogates, the cranium in this study was assigned an initial value of MVF for the thoracic vertebra, yet was subsequently determined through an iterative process to match total skeletal mineral bone mass. The following is a list of overall assumptions and assumed bone surrogates made in this study: 1) Shafts of long bones have a MVF of 1.0 (no trabeculation within the medullary cavities); 2) Rib MVF is assigned to the mandible, wrists/hands, patellae, and ankles/feet; 3) Lumbar vertebrae MVF is assigned to sacrum and proximal / distal ends of long bones; 4) A weighted average (60% iliac crest and 40% lumbar vertebrae) is assigned as the MVF for the os coxae, clavicles and scapulae; 5) Values of SVF obtained from microCT analysis of C5, T5, L3, 4th6) SVF for the ribs is assigned to the cranium and mandible; rib, and sternum of the 5day newborn cadaver are assigned to cervical verte brae, thoracic vertebrae, lumbar vertebrae, ribs, and sternum of the reference newborn, respectively; 7) Values of SVF obtained from CT image segmentation of the os coxae, long bone shafts, distal hume rus, hands, and proximal femur are assigned to these respective bones sites; 8) A weighted average (60% os coxae and 40% lumbar vertebrae) is assigned as the SVF for both the clavicles and scapulae;

PAGE 46

46 9) SVF of the lumbar vertebrae is assigned to the sacrum; 10) SVF of the hands is assigned to the patella and feet; 11) SVF of the distal humerus is assigned to the proximal humerus, proximal and distal radius, and proximal and distal ulna; 12) SVF of the proximal femur is assigned to the distal femur, proximal and distal tibia, and proximal and distal fibula; 13) SVF values for the upper shaft and lower shafts are assumed to be identical to that for whole segmented shaft. Finally, values of cellularity factor CF were taken from ICRP reference values listed in Table 41 of ICRP Publica tion 70 (ICRP 1995) In the case of the newborn, the CF is 1.0 for all bone sites. The bone site specific TAM and TAM masses were calculated using ICRU Report 46 mass densities for active marrow (AM= 1.03 g cm3 ST ) and average soft tissue ( = 1.03 g cm3 xx TAMTAMAMm=V ) (ICRU 1992) : (2 4) xxxx x TAM* TAM MST-AM TAMAM MST-AMSTm=m+m=V Trabecular bone and cort ical bone masses and volumes C ortical bone and trabecular bone are the ossified (noncartilaginous) tissues within the skeleton. The trabecular network consists of interlacing thin lamellae of hard bone, which form a system of irregular, interconnecting cavities within spongiosa regions C ortical bone is formed in the shafts of the long bones as a thick wall, or cortex, comprised of a hard, mineralized matrix. This cortex thins toward the epiphyses, or ends of the long bones. Cortical bone is also pres ent as an outer cortex at other skeletal sites. As shown in Figure 21, a s the skeleton develops with

PAGE 47

47 age, the surrounding cartilage of some bone sites ossify into a thin layer of mineral or cortical bone extending from the inside to the outside of the bo ne core. ICRP Publication 70, Table 10, provides cortical bone and trabecular bone percentages by bone site but only for the adult. Instead of determining newborn cortical and trabecular bone volume s based on these adult partitions of mineral bone value s of cortical bone volume fraction ( CBVF) and trabecular bone volume fraction ( TBVF) were determined via image segmentation of the cadaver CT images and autopsy microCT images, respectively. The following relationships were thus used to determine volumes of trabecular bone, cortical bone, and total mineral bone: xxxxxxx TB*HB* HB*V=VSVFTBVF=VSVF1-MVF ** *1-xxxxx CBHB HBVVCBVFVSVF (2 5) xxxxxxxx MB* HB* HB* TB*CB*V=VSVFTBVF+VCBVF=V+V where xTBVF is the fraction of spongiosa volume assigned to trabecular bone and xCBVF is the fraction of non cartilaginous homogeneous bone assigned to cortical bone. The corresponding volumes exclusive of MST (i.e., ICRP reference values) are determined by difference: xxx TBTB*MST-TBV=V V xxx CBCB*MST-CBV=VV (2 6) xxx MBMB*MST-MBV=VV The TB, TB*, CB, CB*, MB, and MB* masses were subsequently derived using similar expressions: xx TBTBCBm=V xxxx x TB* TB MST-TB TBCB MST-TBSTm=m+m=V

PAGE 48

48 xx CBCBCBm=V (2 7) xxxx x CB* CB MST-CB CBCB MST-CBSTm=m+m=V xxx MBTBCBm=m+m xxx MB*TB*CB*m=m+m where CB is the ICRP 89 density for newborn cortical bone (1.65 g cm3 xx x CB CB* fraction xxxx CBTBCB*TB*VV CB= = V+VV+V ), and it is thus assumed that newborn trabecular bone has an identical ma ss density to newborn cortical bone. With these values computed, the site specific cortical and trabecular bone ratios for the newborn were determined as follows: (2 8) xx x TB TB* fraction xxxx CBTBCB*TB*VV TB= = V+VV+V S/V ratios for the newborn skeleton The cortical bone surface to volume (S/V) ratio is defined as the ratio of the Haversian canal surface area to the volume of ossified cortical bone, and is defined for dry bone (exclusive of periosteum and blood vessels). Howeve r, the trabecular bone S/V ratio is defined as the ratio of trabecular surface area to the volume of trabecular bone, and is also defined for dry bone. Reference values for S/V ratios of cortical bone and trabecular bone are presented in ICRP 70, Tables 1 1 and 12, respectively. ICRP Publication 89 suggests that a nominal reference value of 3 mm2 mm3 be used for cortical bone at skeletal sites not indicated in their Table 11. Similarly, a default value of 18 mm2 mm3 is given for the trabecular bone S/V ratio. In the present study, an EGSnrc subroutine was written to calculate (1) the total number of trabecular bone voxels and

PAGE 49

49 (2) the number of trabecular bone voxel surfaces adjacent to bone marrow voxels present in each thresholded microCT imaged skelet al site. The number of trabecular bone volume voxels was multiplied its unit volume to estimate the cumulative trabecular bone volume, while the number of bone voxel surfaces at the bone marrow interface were multiplied by their unit area to estimate the total trabecular bone surface area. Dividing the trabecular bone surface area by the trabecular bone volume gives the S/V ratios for each imaged skeletal site. Homogeneous spongiosa masses, volumes, and densities In the newborn phantom, the trabecular microstructure cannot be represented explicitly, and thus homogeneous regions of spongiosa are modeled. Volumes, masses, and densities of newborn homogeneous spongiosa are given by the following expressions: xxxxxxx spongiosa*TAM*TB*TAMTBMST-TAMMST-TBV=V+V=V+V+V+V xxx spongiosaTAMTBV=V+V (2 9) xxxxx spongiosa*TAM*TB*MST-TAMMST-TBm=m+m+m+m xxx spongiosaTAMTBm=m+m It should be noted that the shafts of long bones in the newborn are assumed to contain only medullary marrow, and are thus devoid of trabecular bone and not included in the calculation of spongiosa volumes, masses, or densities. Once homogeneous spongiosa volumes were calculated, newborn sitespecific spongiosa densities for each bone site x, were given as: x spongiosa* x spongiosa* x spongiosa*m V (2 10) Homogeneous spongiosa elemental co mpositions The newborn site specific spongiosa elemental compositions in percent by mass, x,k spongiosa*w were calculated as:

PAGE 50

50 kxkx TAM*TAM*TB*TB* x,k spongiosa* x spongiosa*wm+wm w= m (2 11) where k is the eleme nt al index and w is the mass percentage. There are no age dependent reference elemental composition data for trabecular bone, and thus, for these calculations, it was assumed the newborn elemental compositions of trabecular bone were the same as that for cortical bone given in Table 13.4 of ICRP Publication 89. The elemental composition of active marrow was taken to be that given in Table 13.4 in ICRP 89 which is independent of age and sex. The elemental compositions for MST were taken to be that of gender averaged values for ICRU 44 male and female average soft tissues as given in Table A1 of ICRU 46 (ICRU 1992) Newborn shallow marrow masses and volumes As dis cussed in Bolch et al. (2007) the surrogate target regions defining the location of the osteoprogenitor cells are located in (1) a 50 m layer of endosteum surrounding the surfaces of bone trabeculae in regions of spongiosa, and (2) a 50m layer of endosteum adjacent to cortical bone / medullary cavity boundary in the shafts of the long bones. Osteoprogenitor are also located in the fi brous region of the periosteum, close to the cortical bone surface, but are neglected in the model due to the relatively small quantity compared to the endosteum The two endosteal tissue regions are defined as trabecular shallow active marrow ( TAM50) and cortical shallow active marrow ( CAM50) in the newborn child. As before, an asterisk indicates that their tissue volume or mass is inclusive of miscellaneous skeletal tissues ( TAM50* or CAM50To assess volumes and masses of TAM *). Additional terms related to the presence of hematopoietical ly inactive (or yellow) marrow in the shallow marrow of older members of the ICRP pediatric series are defined in the Glossary. 50*, values of shallow marrow volume fraction ( SMVF ) were obtained from Monte Carlo sampling of 3D point locations within thresholded

PAGE 51

51 microCT images of newborn spongiosa. The SMVF is defined as the fraction of spongiosa volume assigned to total bone marrow localized within 50 m of bone trabeculae surfaces and was thus assigned as the fraction of all sampled points that met this criterion. As such, vol umes and masses of TAM50 *50xx xx TAM spongiosa*V=VSMVFCF for bone site x are obtained as: ( 212) **50 50xx xxxx TAMspongiosa* AMTM AMm=VSMVFCF To assess volumes and masses of CAM50 x medullary marrow* x medullary marrow* shaftV 2 r= h *, a similar volume fraction was derived based upon an assumed cylindrical shape of the long bone shafts. Given calculated volumes of medullary marrow and long bone shaft length s, an effective medullary cavity radius in each long bone was estimated as: (2 13) where x medullary marrow*V is the total volume (cm3 x shaftSMVF ) of the medullary marrow in each bone site x and h is the length of each shaft (cm). The fact or of 2 in Eq. 213 accounts for both the left and right bones of a given skeletal site (e.g., left and right radii). Ten height measurements were taken for each long bone shaft using the measurement tool in Rhinoceros, and the linear average used for th e height input to Eq. (2 13) Next the was derived for the shafts of each long bone : 2 x medullary marrow* x shaft x medullary marrow*r 0.005 SMVF=1r (2 14)

PAGE 52

52 where 0.005 is the 50 m shallow marrow thickness expre ssed in centimeters. C ortical shallow active marrow ( CAM50 *50xx x CAMmedullary marrow* shaftV=V SMVF ) volumes and masses were defined as: ( 215) *50 50xx xxxx CAMmedullary marrow* shaft AMCM* AMm=V SMVFCF Homogeneous skeleton masses, volumes, and densities In this study, we have taken the noncartilaginous homogeneous skeleton of the UF newborn hybrid phantoms and subdivided it into explicit regions of trabecular spongiosa, cortical bone, and for the long bones, medullary marrow. However, some radiation transport applications of the newborn phantom will require parti cle transport in the existing homogeneous versions of the skeleton. Depending upon the required resolution of the hybridvoxel phantom, this may either include or exclude the surrounding regions of unossified bone Homogenized skeleton volumes and masses including and excluding bone associated cartilage were thus calculated using the following expressions: xxxxxx HB*spongiosa*CB*TAM*TB*CB*V=V+V=V+V+V x xxxxxxx HB*+Cartilagespongiosa*CB*cartilageTAM*T B*CB*cartilageV=V+V+V=V+V+V+V ( 216) xxxxxx HB*spongiosa*CB*TAM*TB*CB*m=m+m=m+m+m x xxxxxxx HB*+Cartilagespongiosa*CB*cartilageTAM*T B*CB*cartilagem=m+m+m=m+m+m+m As previously discussed, MST are not considered to be included within bone associated cartilage of the newborn skeleton. Once the se homogenized skeletal masses and volumes were calculated, corresponding homogeni zed site specific densities were calculated by either including or excluding bone associated cartilage:

PAGE 53

53 x x HB* HB* x HB*m V (2 17) xx HB*cartilage x HB*+Cartilage x HB*+cartilagem+m V Homogeneous skeleton elemental compositions The homogenized skeleta l elemental compositions were calculated in a manner similar to that for spongiosa: x,k x kx spongiosa*spongiosa*CB*CB* x,k HB* x HB*wm+wm w= m ( 218) x,k x kx k x spongiosa*spongiosa*CB*CB*cartilagecarti lage x,k HB*+Cartilage xx HB*cartilagewm+wm+wm w= m+m R esults and Discussion Homogeneous Newborn S keletal M odel The newborn skeletal model was developed fr om whole cadaver CT image segmentation, polygon mesh or NURBS surface modeling, and hybrid phantom voxelization. Details of the latter are given in Lee et al. (2007) For comparison, Figure 22 shows the 3D renderings of skeletal models from the ORNL stylized newborn phantom, the original UF voxel newborn phantom, and UF hybridNURBS/PM newborn pha ntom. Cranial cartilage and fibrous connective tissue costal cartilage, and inter vertebral discs are indicated in the latter. A corresponding voxel based skeletal model is shown in Figure 2 3 at an isotropic voxel resolution equal to the reference newb orn skin thickness (0.663 x 0.663 x 0.663 mm3The site specific homogeneous bone volumes, inclusive and exclusive of bone associated cartilage, are shown in Table 21 for both the newborn hybridNURBS/PM and hybrid voxel ).

PAGE 54

54 phantoms. As shown, total hybrid NURBS/PM volumes are slightly larger than their corresponding voxelized phantom volumes As stated previously, the se volumes should converge at an infinitely small voxel resolution. T he volume of total segmented skeletal tissue (including bone associated cartilage and fibrous connective tissue ) is 287.12 cm3, while the volume of total homogeneous bone (excluding bone associated cartilage and fibrous connective ) is 170.60 cm3. As indicated by footnote in Table 21, bone associated cartilage and fibrous connective tissue are found in three regions of the newborn skeleton in the cranium, ribs, and spine. For example, fibrous connective tissue that is located between the ossified plates of the newborn cranium occupies 10.18 cm3, while two additional layers of unossified bone (at the superior and inferior boundaries of the cranium) occupy an additional 35.56 cm3. With a cranial homogeneous bone volume of 61.50 cm3, the total bone volume of the cranium is thus 107.24 cm3 (given as 61.50 + 10.18 + 35.68 cm3). Similarly, the cartilage of the newborn rib cage includes both costal cartilage (10.57 cm3) and an unossified bone layer across the entire lengths of the ribs (4.11 cm3Based on a volume weighted average of ICRP reference densities for the constituent skeletal tissues ( 1.03 g cm ). Finally, cartilage of the spine includes both the intervertebral discs and an oute r layer of unossified bone at each vertebra. 3 for active marrow, 1.65 g cm3 for mineral bone and teeth, and 1.03 g cm3 for miscellaneous skele tal tissues ) a value of 1.406 g cm3 is estimated as the skeletal averaged noncartilaginous homogenous bone density for the newborn skeleton.2 2 A mass weighted average skeleton density would be 1.47 g cm-3 which was reported in Lee et al. (2007). T otal noncartilaginous skeletal masses of 239.80 g and 239.20 g were thus realized revised versions of the hy brid NURBS/PM and hybridvoxel newborn phantoms, respectively. These values are thus -

PAGE 55

55 0.08% and 0.33% different from the ICRP reference total skeletal mass of 240.0 g. The total bone associated hybrid NURBS/PM and hybrid voxel cartilage and fibrous connective tissue masses were 128.17 g and 126.53 g, respectively, which are 0.67% and 0.63% different from the reference mass of 127.32 g By including an additional 2.42 g for non bone associated cartilage (external nose, trachea, larynx, extrapulmonary br onchi, and ears) to the total skeleton mass inclusive of bone associated cartilage and fibrous connevtive tissue increases the final newborn skeleton mass to 370.40 g as compared to its ICRP reference total of 370 g a difference of only 0.11 % Construction of the H eterogeneous N ewborn S keletal M odel Once the UF homogeneous newborn skeleton was constructed to match ICRP reference masses to within a 1% tolerance, the constituent skeletal tissues of active marrow, trabecular bone, cortical bone and MST were distributed across individual bone sites of the newborn. T hese distributions were based on the volumetrically segmented newborn CT images for to tal homogeneous bone data and microCT skeletal data to obtain cortical bone, spongiosa and car tilage volume percentages, along with image threshold values to generate marrow and trabecular bone volume fractions (Rajon et al. 2006). Figure 2 4 A displays a single segmented transverse image from the 4 day L3 vertebra, while Figure 2 4 B illustrates this same bone via 3D DOCTOR 3D reconstruction. The yellow, blue, and red segmented boundaries represent cartilage, cortical bone, and spongiosa boundaries respectively in Figure 2 4 A Cartilage (or fibrous connective tissue depending on the bone site) cortical bone, and spongiosa volume fractions were obtained following complete segmentation of each harvested skeletal site. M arrow and trabecular bone volume fractions can be visualized in Figures 25 A to 2 5 D which show 3D rendered and thresholded images of trabecular spon giosa taken from the 4 day L3 vertebra, 4day sternum, 5day 4th rib, and 5day iliac crest, respectively.

PAGE 56

56 Miscellaneous skeletal tissue masses and volumes Table 22 gives mass and volume distributions of miscellaneous skeletal tissues disperse d throughout the newborn skeleton by skeletal site and constituent tissue Again, these masses were calculated based on the assumption that the MST volume for a particular skeletal site is proportional to that bone sites total tissue volume ( exclusive of bone associated cartilage and fibrous connective tissue ). This assumption was applied given the lack of literature data to the contrary T he MST volume s in the cranium are the greatest as that skeletal site is proportionally the largest in the newborn c hild. Marrow masses and volumes Utilizing 3D DOCTOR to segment both the original newborn whole cadaver CT images and the microCT autopsy images of the 4day L3 sternum, and 5day iliac crest and 4th rib, volume fractions of cartilage ( CVF), co rtical bone ( CBVF), and spongiosa ( SVF) were obtained. Marrow and trabecular bone volume fractions were additionally computed using an inhouse thresholding code (Rajon et al. 2006). A summary of these volume fractions are given in Table 23. Marrow vol ume fractions ( MVF ) for the cervical, thoracic and lumbar vertebrae were calculated based on a linear average of MVF values for the individual vertebra in each series. Likewise, a linear average of the MVF values for the 5day 4th rib and the 4 day left a nd right 2nd rib were taken to yield a single MVF value assigned to the newborn ribs. Standard deviations of these MVF linear averages are given in the footnotes of Table 23. Segm entation of spongiosa and cortical bone was performed for the 4 day L3, 5day T5, 5day C5, 4day sternum, 5 day iliac crest, and 5 day 4thGiven the lack of pediatric skeletal data, assumptions were made to extrapolate the computed volume fractions to other skeletal sites where autopsy samples were un available. Base d on the methodology present ed for the 1.7year child in Table 6.10 of Whitwells rib.

PAGE 57

57 dissertation (Whitwell 1973) along with corresponding marrow and bone chordlength distribution data, selected microCT imaged skeletal sites of the newborn were used as surro gates for all NURBS/PM newborn long bones and extremities. These assumptions and surrogates were given earlier in Section 2.4.2. Based on Whitwells dissertation, the parietal bone was used as a surrogate for the cranium, due to the unique chorddistribu tion data for cranial spongiosa as compared to that in other skeletal sites. At the time of autopsy harvest, however, we were permitted to only extract a sample of the occipital bone, and its microCT images are shown in Figure 2 6. In this bone of the ne wborn, no distinct trabecular or cortical microstructure is evident. These are potentially not indicative, however, of the tissue microarchitecture of that in the frontal or parietal bones of the newborn cranium. Thus, cranial values for SVF, CBVF, MVF and T BVF could not be determined via manual segmentation or threshold image processing techniques of the sample shown in Figure 26. Alternatively once marrow trabecular bone and mineral bone volumes were calculated for the newborn, estimates of MVF an d TB VF for the newborn cranium were computed iteratively in order to match ICRP 89 total skeletal mineral bone mass In so doing, the cranium was shown to have sma ll marrow cavities and large trabeculae based on this iteration process, a feature consistent with known cranial microstructure in both children (Whitwell 1973) and adults (Bolch et al. 2007) Final estimated volume fractions are given in Table 24 for all bones of the newborn skeleton. TAM and TAM* volumes were initially calculated for every skeletal site exclusive of the cranium as shown in Table 25. Given the ICRP 89 reference mass of 50.0 g for TAM and a 1.03 g cm3 reference density, an ICRP 89 reference volume of TAM was calculated as 48.544 cm3. The targeted TAM* volume was calculated to be 54.528 cm3 given as the sum of 48.544 cm3 of active marrow and 5.984 cm3 of MST A derived cranial TAM volume of 11.71 cm3 was then

PAGE 58

58 obtained by subtracting the volumetric sum of all other bone site volumes from the 48.544 cm3Cartilage masses and volumes total. The corresponding TAM mass was thus 12.06 g in the newborn cranium. The second and third largest regions of active marrow are shown to be the ribs and os coxae with 8.14 g and 3.15 g, respectively. In the newborn, the total marrow space in each bone site is comprised of only active bone marrow. Active marrow distributions from this study are in fairly good agreement to those given by the non imaged based methods of Watchman et al. (2007). Table 26 lists the percent mass distribution of active marrow, including MST by bone site for the newborn skeleton with comparisons to values given in Table 9.4 of ICRP Publication 89. It should be noted that the original ICRP active marrow distributions were calcula ted based on a body region, size corrected volumet ric scaling of active marrow distributions for the adult (Cristy 1981). The active marrow distributions presented for the hybridNURBS/PM newborn model are not scaled from adult values, but are calculated directly based on volumetric data from newborn ske letal specimens and whole cadaver sitespecific skeletal images Nevertheless, the majority of skeletal sites in this study show absolute differences of less than 1% with values in ICRP Publication 89. The ribs, ankles/feet, and thoracic vertebrae h ave t he highest percent differences, namely 7.08 %, 4.55%, and 3.14%, respectively. The active marrow percentage of the ne wborn radii, ulnae, and patellae exactly match ICRP 89 values Also, ICRP 89 lists the sternum as containing 0% active marrow In the present study, however, microCT image data of the sternum (see Figure 2 1) clearly shows marrow cavities with in the manubrium, gladiolus and xiphoid process of the newborn sternum. A summary of newborn cartilage and fib rous connective tissue volumes are given in Table 27, along with calculated masses based on an ICRU Report 46 reference density of 1.10 g cm3. The 34 skeletal site cartilage and fibrous connective tissue sites listed in the upper portion of

PAGE 59

59 Table 27 co mprise uniform layer s of unossified bone surrounding each skeletal site of the newborn (exclusive of the shafts of long bones). Table 27 next lists three m ajor sites that were m anually segmented from the original whole body CT images (costal, cranium an d intervertebral discs ) Again, it should be noted that fibrous connective tissue was obtained by fusing the plates of the cranial cap, and this tissue is listed separate from the layer s of cartilage and fibrous connective tissue found covering the newbor n cranium (see footnote 1) F inal bone associated cartilage (and fibrous connective tissue) and total cartilage masses (and fibrous connective tissue) were calculated as 128.17 g and 130.59 g, respectively. The calculated total mass is less than 0.5% hig her than its ICRP 89 reference value of 130.00 g. The final column in Table 27 gives the percent mass distribution by bone site. Fibrous connective tissue and c artilage found of the cranium (inter plate and unossified bone layer respectively ) accounts for the largest proportion of body cartilage at 38.53% along with 12.37% and 6.93% found in the ribs (unossified layer plus costal cartilage) and thoracic vertebrae ( unossified layer plus intervertebral disc s ), respectively. The data also show that approximately 98% of total cartilage is compos ed of bone associated cartilage with only 2% present as non bone associated cartilage Trabecular bone and cortical bone masses and volumes Cortical and trabecular bone volumes and masses by skeletal site are list ed in Table 28. N ewborn total trabecular bone mass (exclusive of MST ) was calculated at 100.68 g, approximately 66 g more than reported in I CRP Publication 89 newborn (35 g ). Conversely, our estimate of 69.79 g newborn cortical bone (exclusive of MST ) i s approximately 65 g less than the ICRP 89 reference value of 135 g. The values given in the present study are based upon (1) reference total mineral bone given in ICRP 89 for the reference newborn (170.7 g including teeth), and (2) imaging data on site s pecific distribution of cortical and trabecular bone as seen in whole cadaver CT images and autopsy microCT images of newborn spongiosa. In contrast,

PAGE 60

60 ICRP 89 reference values of 135 g cortical bone and 35 g trabecular bone are based on an assumed 80% / 20% partitioning of total mineral bone, a ratio based upon adult skeletal data only, and applied in an age independent fashion across all ICRP pediatric reference individuals. The site specific distribution of total mineral bone mass is shown in Table 29. Table 2 10 gives the percentage of cortical and trabecular bone for the newborn in this study as compared to adult values from Table 9.3 of ICRP Publication 89. The percentage of mineral bone associated with cortical regions in the newborn ranges from a l ow of 27% in the cranium to a high of 68% in the lower femur. In contrast, the percentage of mineral bone associated with cortical regions in the adult ranges from 25% in the upper spine to 95% in the cranium. While the overall cortical to trabecular bon e mass ratio is 80:20 in the adult, the corresponding distribution in the newborn is shown approximately 40:60. Mineral bone thus displays a more prominent appearance at birth in the form of bone trabeculae. Presumably, this ratio gradually shifts toward an adult 80:20 ratio as the skeleton matures during childhood and early adolescence. Shallow active marrow data Table 211 shows a summary of the shallow marrow data for the newborn skeleton. All volumes and masses in this table include their MST contr ibutions. Column 1 lists the shallow marrow volume fractions ( percentage of spongiosa volume) for each skeletal site. For example, 24.66% of the spongiosa in the cervical vertebrae was computed as shallow marrow. The footnotes at the bottom of Table 211 denote the surrogate skeletal sites used where image data was not available along with SMVF standard deviations for bone sites where linear averages were taken. The average measured shaft lengths are listed in column 1 of Table 212. The femur shaft le ng th appears to be the longest at 4.75 cm, while its radius has the shortest length at 2.22 cm. In column 2 of Table 212, standard deviations were calculated based on the ten length

PAGE 61

61 measur ements for each long bone shaft Coefficient s of variation range between 0.16% and 0.47% between shaft lengths. Column 3 of Table 212 lists the calculated medulla ry marrow radius given by Eq. (213) These values were then used in Eq. (214) to calculate the SMVFshaft S/V ratios for ne wborn hybrid phantom for the long bone shafts, which are given in col umn 2 of Table 211. Column 3 of Table 211 lists the percentage of total marrow space assigned to shallow marrow On average, approximately 57% of the total marrow space in each bone site ( excluding that in long bone shafts ) is shallow marrow (50 m from the trabecular surfaces) while between 4 % and 14% of the total medullary cavity volume is shallow marrow in the newborn. By multiplying the SMVF (column 2) by the spongiosa volume, or medullary marrow volume in the case of long bones, volumes of shallow marrow for each bone site were calculated and are listed in column 4 of Table 211. Corresponding shallow marrow masses are then given in column 5 of Table 2 11. The total mass of shallow marrow throughout the entire skeleton was calculated to be 34.42 g as compared to 11.8 g estimated by Watchman et al. (2007) The last column in Table 211 shows the percent distribution of shallow active marrow by bone site. The least amount of shallow marrow is found in the shafts of the long bones (0.48%) while the greatest is found within the cranium (33.19%) Table 213 shows a comparison of the S/V ratios computed for the hybrid newborn phantom and the S/V ratios determined by Beddoe (1976) for the 1.7 year, 9 year, and 44year (adult). The S/V ratio for all long bone shafts is equal to 0.0 mm2/mm3 because these regions of the long bones do not contain bone trabeculae For ages other than the newborn, the adult skeletal site independent ICRP reference value of 18.0 mm2/mm3 was used where skeletal data was no t available. As shown in the footnotes at the bottom of Table 213, linear averages with

PAGE 62

62 their standard deviations of the hybrid newborn S/V ratios were reported for the ribs and vertebrae. Due to the unique characterization of the cranial trabecular bon e structure, the default 1.7 year old S/V ratio of 3.8 mm2/mm3Homogeneous spongios a masses, volumes, densities, and elemental compositions was chosen as an acceptable value for this model. These values are needed for subsequent dosimetric studies of bone surface seeking radionuclides and radiopharmaceuticals. Table 214 gives a summary of the newborn hybrid spongiosa masses, volumes and densities including MST for each of the 34 skeletal sites analyzed in this study. Table 214 also gives the summed spongiosa mass and volume data for the total skeleton, along with a volumetrically weighted average spongiosa density for the total newborn skeleton. It appears that the majority of the newborn spongiosa resides in the cranium, spine, pelvis and ribs with the greatest amount in the cranium (40.4%). Similarly, the least amount of newborn spongiosa mass are found in the patellae and sternum, which can be attributed to the fact that these bones are predominantly cartilage at this stage of skeletal development, and shafts of long bones, with active marrow and MST being the only contributing mass constituents. The total skeleton spongiosa mass and volume were calculated as 161.78 g and 120.34 cm3, respectively. Compared with the ICRP 89 reference spongiosa mass of 96.10 g (sum of 47.49 g of TAM 13.61 g of MST and 35.0 g of TB ), the calculated newborn spongiosa sum is about 67% higher.3 Similarly, the calculated newborn spongiosa volume is approximately 59% larger than the ICRP 89 reference spongiosa volume of 80.53 cm3 -347.49 g1.03 g cm (sum of TAM volume, -313.61 g1.03 g cm MST volume, and -3 35.0 g1.65 g cm TB volume. These total spongiosa mass and volume differences are directly attributed to differences in the ICRP versus presen t 3 Reference masses for AM and MST exclude contributions in the long bone shafts.

PAGE 63

63 study partitioning of mineral bone into its cortical (80% versus 40%) and trabecular (20% versus 60%) constituents. Table 214 additionally shows some variability between the homogenized spongiosa masses among skeletal sites and these might have implic ations in future newborn phantom dosimetry studies In Table 2 14, we report that t he newborn skeletal averaged spongiosa density is estimated to be 1.34 g cm3. In ICRU Report 46, Table A1, the only reference spongiosa density listed is that for the adult, namely 1.18 g cm3. For the newborn, skeletal site dependent spongiosa densities range from a low of 1.24 g cm3 in the ribs, mandible, feet, hands, and patella to a high of 1.43 g cm3Homogeneous skeleton masses, volumes, densities, and elemental compositions in the cranium (largest proportion of trabecular bone). Tabl e A1 of ICRU Report 46 lists reference elemental compositions of trabecular spongiosa but only for the adult, and only for a fixed mixture of 33% cortical bone, and 67% marrow, which itself is comprised of 50% TIM and 50% TAM (all percentages by mass). A s shown in Table 215, the spongiosa elemental compositions including MST vary significantly between skeletal sites. For example, the mass percentage of hydrogen in a newborn cervical vertebrae spongiosa is 6.61%, whereas 10 .47% is found the shafts of the long bones. Also, the percentages of phosphorus vary between 0.2% (shafts of long bones) and 5.1% (thoracic vertebrae). The total skeleton averaged spongiosa elemental compositions for the newborn are fairly represented by the adult reference spongiosa elemental compositions in ICRU 46, excluding carbon and oxygen (due to the lack of inactive marrow in the newborn). The homogeneous skeleton masses and volumes including MST we re calculated and are listed in Table s 216 and 217. The data of Table 216 excludes cartilage mass and volume contributions to each bone site, while that in Table 217 includes the cartilage components. The inclusion and exclusion of cartilage gives the user of the newborn phantom a more flexible and

PAGE 64

64 comprehensive data for dosimetry calculations Compared with the manually segmented NURBS/polygon mesh newborn hybrid phantom, the derived total homogenous skeletal volume and mass including and excluding cartilage are exact which provides validation of the methods presented in this study. The increased densities of homogeneous bone excluding cartilage compared to that in spongiosa regions is attributed to the contribution of c ortical bone in the former D ensity differences between homogeneous bone including and excluding cartilage are similarly explained The inclusion of cartilage in the density calculations effectively drives the overall density of homogeneous bone downward as the effective density o f the combined tissues is less than that of cortical bone alone. The volumetric weighted skeletal averaged homogeneous bone density was 1.40 g cm3 and 1.28 g cm3 excluding and including cartilage, respectively. The density for newborn total bone (including cartilage) suggested in ORNL TM 8381 is 1.22 g cm3H omog eneous bone elemental compositions excluding and including cartilage were co mputed and are shown in Table 218 and Table 219, respectively. Elemental data vary considerably across the newborn skeleton. During development of the ORNL stylized newborn pha ntom, newborn elemental compositions were given separate from those at other reference age s as the newborn skeleton contains more water, less fat, and less mineral bone compared to those at older ages (Cristy and Ecke rman 1987). Therefore, comparisons wer e made with the which is approximately 6 % less than that calculated here. This relatively small density difference might be influenced most by changes cortical and trabecular bone masses ratios As seen for bone site specific spongiosa densities, homogeneous bone densities vary considerably across the newborn skeleton. C hoosing a density specific to a given skeletal site of interest could provide additional improvements in the accuracy of dose estimates

PAGE 65

65 ORNL newborn total skeleton elemental compositions for both including and excluding cartilage. Given the range of elemental compositions for a given skeletal site, the ORNL data and calculated data appear to be in reasonably good agreement Improved agreement is seen when the unossified bone component is considered in the elemental composition of total homogeneous bone. Conclusion In this study, a comprehensive skeletal tissue model was developed for the ICRP 89 reference newborn. The model includes bone specific masses and volumes of all relevant tissue components including active marrow, endosteal tissues, trabecular bone, cortical bone, miscellaneous skeletal tissues, cartilage and fibrous connective tissue Site specific and skeletal averaged tissue densities and elemental compositions are also derived for the newborn skeleton both inclusive and ex clusive of unossified bone layers covering all bone sites. Model data sources included CT images of whole cadaver newborn skeleton, along with microCT images of newborn bone specimens acquired at autopsy. The site specific distribution of active marrow compare reasonably well with that given for the reference newborn in ICRP Publication 89, with the exception of a few skeletal sites. Ratios of percent active marrow mass in the present model to those given in ICRP Publication 89 range from a low of 0.45 for the feet and ankles to a high of 19 in the sacrum. The largest percentage of active marrow is found in the cranium, where both models s how comparable mass percentages 24% in the present study to 27% in ICRP 89. This agreement is expected in that cranial samples with sufficient spongiosa were unavailable at autopsy, and thus cranial values in the present model were obtained iteratively via matching of total ICRP active marrow mass. While the present model targets total reference mineral bone to within a tolerance of 1%, significant discrepancies are noted in total and sitespecific masses of its trabecular and cortical

PAGE 66

66 components. In I CRP Publication 89, newborn total mineral bone is partitioned as 20% trabecular and 80% cortical values accepted as averaged across the adult skeleton. In the present model, however, analysis of newborn whole cadaver CT images and microCT images reveal a much smaller presence of ossified cortical bone, such that mass percentages of trabecular and cortical bone are more closely 60% and 40%, respectively. These values, however, vary considerably across the newborn skeleton, and thus a single skeletal aver aged value can be misleading when looking at a particular skeletal region. The newborn skeletal tissue model permits a delineation of the homogeneous bones in the UF hybrid newborn phantom into specific regions of cortical bone, spongiosa, and medullary ma rrow. Explicit modeling of bone associated cartilage (and fibrous connective tissue) coupled with more realistic distributions of cortical and trabecular bone, ensure a model unique to the newborn child in studies of radionuclide skeletal deposition and associated marrow and endosteal tissue dosimetry. Finally, we note that the methodology presented here is being applied to the full family of UF pediatric hybrid phantoms based upon information on age dependent trabecular spongiosa microstructure acquired via microCT and optical scanning of pediatric bone specimens.

PAGE 67

67 Figure 2 1. Transverse microCT images. The L3 vertebrae (left) and sternum (middle left) excised from 4 day cadaver, and the 4th rib (middle right) and iliac crest (right) excised from a 5 day cadaver.

PAGE 68

68 Figure 2 2. 3D renderings of skeleton models A) ORNL stylized newborn phantom. B) UF voxel newborn phantom C) UF hybrid NURBS newborn phantom.

PAGE 69

69 Figure 2 3. A) Anterior posterior and B) Left lateral views of 3D rendering of UF hybrid voxel skeleton model voxelized by Voxelizer with meshing tolerance of 10 degree and voxel resolution of 0.063 x 0.063 x 0.063 cm3.

PAGE 70

70 B Figure 2 4. A) Segmented transverse slice of 4 day old L3 using 3D DOCTOR. B) 3D rendering of segmented 4 day old L3 using 3D DOCTOR.

PAGE 71

71 Figure 2 5. Spongiosa sections of 3D rendered image threshold marrow and trabecular bone A) 4Day Old L3 vertabrae. B) 4 Day Old Sternum C) 5 Day Old 4th Rib. D) 5 Day Old Iliac Crest.

PAGE 72

72 Figure 2 6. Transverse microCT slice of occipital bone sample excised from 4 day old cadaver.

PAGE 73

73 Table 2 1. Bone volumes given in the hybridNURBS/PM models and in the reconstructed hybridvoxel models of the newborn skeleton for (1) the combined tissues of cortical bone and trabecular s pongiosa, (2) outer layers of bone associated cartilage/fibrous connective tissue and (3) total volume of all tissues. Cortical BoneTotal Cortical BoneTotal Bone & Associated Bone Bone & Associated Bone Spongiosa Cartilage/Fibrous Tissue Volume Spongiosa Cartilage/Fibrous Tissue Volume Skeletal Site (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) 1Cranium 61.50 35.56 107.24 61.50 35.26 106.97 Mandible 4.88 2.47 7.35 4.87 2.45 7.33 1Cervical Vertebrae 6.87 4.03 11.13 6.85 3.83 10.89 1Thoracic Vertebrae 11.87 7.52 20.10 11.90 7.21 19.79 1Lumbar Vertebrae 6.79 3.98 11.23 6.77 3.88 11.13 Sternum 0.56 1.41 1.97 0.56 1.43 1.99 1,2Ribs 18.32 4.11 33.00 18.12 4.07 32.73 Scapulae 4.47 2.49 6.96 4.46 2.49 6.95 Clavicles 1.68 1.23 2.91 1.69 1.21 2.90 Os coxae 9.54 5.33 14.87 9.54 5.35 14.89 Sacrum 2.72 1.76 4.48 2.73 1.77 4.49 Humeri, Proximal 2.55 1.49 4.04 2.57 1.52 4.09 Humeri, Upper Shaft 1.18 0.00 1.18 1.21 0.00 1.21 Humeri, Lower Shaft 1.18 0.00 1.18 1.16 0.00 1.16 Humeri, Distal 2.00 1.85 3.85 1.97 1.80 3.77 Radii, Proximal 0.44 0.61 1.04 0.43 0.62 1.04 Radii, Shaft 0.72 0.00 0.72 0.72 0.00 0.72 Radii, Distal 0.78 0.79 1.56 0.75 0.83 1.58 Ulnae, Proximal 1.04 0.84 1.88 1.07 0.87 1.94 Ulnae, Shaft 0.91 0.00 0.91 0.90 0.00 0.90 Ulnae, Distal 0.53 0.87 1.40 0.54 0.91 1.45 Wrists and Hands 2.66 4.04 6.70 2.66 3.95 6.61 Femora, Proximal 4.16 2.52 6.69 4.16 2.50 6.66 Femora, Upper Shaft 2.45 0.00 2.45 2.47 0.00 2.47 Femora, Lower Shaft 3.89 0.00 3.89 3.91 0.00 3.91 Femora, Distal 3.44 2.40 5.84 3.45 2.37 5.82 Patellae 0.15 0.13 0.28 0.15 0.14 0.28 Tibiae, Proximal 2.96 1.65 4.61 3.02 1.63 4.65 Tibiae, Shaft 2.78 0.00 2.78 2.76 0.00 2.76 Tibiae, Distal 1.81 1.52 3.34 1.80 1.52 3.32 Fibulae, Proximal 0.39 0.66 1.05 0.38 0.66 1.04 Fibulae, Shaft 0.69 0.00 0.69 0.71 0.00 0.71 Fibulae, Distal 0.61 0.86 1.47 0.61 0.85 1.46 Ankles and Feet 4.11 4.24 8.35 3.77 3.81 7.58 Cranial Fibrous Connective Tissue (Fontanel) N/A 10.18 N/A N/A 10.21 N/A Costal Cartilage N/A 10.57 N/A N/A 10.53 N/A CV Intervertebral Discs N/A 0.23 N/A N/A 0.20 N/A TV Intervertebral Discs N/A 0.70 N/A N/A 0.69 N/A LV Intervertebral Discs N/A 0.46 N/A N/A 0.47 N/A Total Skeleton (cm3) 170.60 116.52 287.12 170.17 115.02 285.19 Mass(g) 239.80 128.17 367.98 239.20 126.53 365.72 Reference Mass (g) 240.00 127.32 367.32 240.00 127.32 367.32 Ratio 1.00 1.01 1.00 1.00 0.99 1.00 Polygon Mesh/NURBS Volumes Voxel Volumes 1Contributions of cranial, costal, and intervertebral disc cartilage/fibrous connective tissue listed separately at bottom of table 2This volume is for the NURBS representation, while all others are for the polygon mesh representation

PAGE 74

74 Table 2 2. Masses and volumes of site specific miscellaneous skeletal tissue in the newborn phantoms. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone. Total MST Total MST MST In MB MST In MB MST In AM MST In AM MST In CB MST In CB MST In TB MST In TB Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 6.75 6.96 5.31 5.47 1.44 1.49 1.42 1.46 3.89 4.01 Mandible 0.54 0.55 0.28 0.28 0.26 0.27 0.11 0.12 0.16 0.17 Cervical 0.76 0.78 0.53 0.55 0.22 0.23 0.25 0.26 0.28 0.29 Thoracic 1.30 1.34 1.00 1.03 0.31 0.32 0.56 0.58 0.43 0.44 Lumbar 0.75 0.77 0.46 0.48 0.28 0.29 0.18 0.19 0.28 0.29 Sternum 0.06 0.06 0.03 0.03 0.03 0.03 0.01 0.01 0.02 0.02 Ribs 2.01 2.07 1.04 1.07 0.97 1.00 0.42 0.43 0.61 0.63 Scapulae 0.49 0.51 0.30 0.31 0.19 0.20 0.16 0.17 0.14 0.14 Clavicles 0.18 0.19 0.11 0.11 0.07 0.08 0.06 0.06 0.05 0.05 Os coxae 1.05 1.08 0.67 0.69 0.38 0.39 0.41 0.42 0.26 0.27 Sacrum 0.30 0.31 0.19 0.19 0.11 0.12 0.07 0.07 0.11 0.12 Humeri, Proximal 0.28 0.29 0.15 0.16 0.13 0.13 0.03 0.03 0.13 0.13 Humeri, Upper Shaft 0.13 0.13 0.10 0.11 0.03 0.03 0.10 0.11 0.00 0.00 Humeri, Lower Shaft 0.13 0.13 0.10 0.11 0.03 0.03 0.10 0.11 0.00 0.00 Humeri, Distal 0.22 0.23 0.12 0.12 0.10 0.10 0.02 0.02 0.10 0.10 Radii, Proximal 0.05 0.05 0.03 0.03 0.02 0.02 0.00 0.00 0.02 0.02 Radii, Shaft 0.08 0.08 0.07 0.07 0.01 0.01 0.07 0.07 0.00 0.00 Radii, Distal 0.09 0.09 0.05 0.05 0.04 0.04 0.01 0.01 0.04 0.04 Ulnae, Proximal 0.11 0.12 0.06 0.06 0.05 0.05 0.01 0.01 0.05 0.05 Ulnae, Shaft 0.10 0.10 0.09 0.09 0.01 0.01 0.09 0.09 0.00 0.00 Ulnae, Distal 0.06 0.06 0.03 0.03 0.03 0.03 0.01 0.01 0.03 0.03 Wrists and Hands 0.29 0.30 0.15 0.15 0.15 0.15 0.06 0.06 0.09 0.09 Femora, Proximal 0.46 0.47 0.25 0.26 0.21 0.21 0.04 0.04 0.21 0.22 Femora, Upper Shaft 0.27 0.28 0.21 0.21 0.06 0.06 0.21 0.21 0.00 0.00 Femora, Lower Shaft 0.43 0.44 0.33 0.34 0.10 0.10 0.33 0.34 0.00 0.00 Femora, Distal 0.38 0.39 0.21 0.21 0.17 0.18 0.03 0.03 0.17 0.18 Patellae 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 Tibiae, Proximal 0.32 0.33 0.18 0.18 0.15 0.15 0.03 0.03 0.15 0.15 Tibiae, Shaft 0.30 0.31 0.25 0.26 0.06 0.06 0.25 0.26 0.00 0.00 Tibiae, Distal 0.20 0.21 0.11 0.11 0.09 0.09 0.02 0.02 0.09 0.09 Fibulae, Proximal 0.04 0.04 0.02 0.02 0.02 0.02 0.00 0.00 0.02 0.02 Fibulae, Shaft 0.08 0.08 0.07 0.07 0.01 0.01 0.07 0.07 0.00 0.00 Fibulae, Distal 0.07 0.07 0.04 0.04 0.03 0.03 0.01 0.01 0.03 0.03 Ankles and Feet 0.45 0.46 0.23 0.23 0.22 0.23 0.09 0.09 0.14 0.15 Total Skeleton 18.74 19.30 12.75 13.13 5.99 6.17 5.22 5.38 7.53 7.75 ICRP 89 Reference 18.74 19.30 Ratio 1.00 1.00

PAGE 75

75 Table 2 3. Skeletal tissue volume fractions of newborn bone collected at autopsy. Cortical Bone Spongiosa Marrow Trabecular Bone Volume Fraction Volume Fraction Volume Fraction Volume Fraction Bone Site ( CBVF) (SVF) (MVF) (TBVF) 4 Day L20.5536 0.4464 4 Day L30.2415 0.7585 0.5452 0.4548 4 Day L40.5069 0.4931 4 Day L50.5832 0.4168 4 Day Right Rib 2 0.6003 0.3997 4 Day Left Rib 2 0.5269 0.4731 4 Day T90.5797 0.4203 4 Day T100.6144 0.3856 4 Day T110.5224 0.4776 4 Day T120.4321 0.5679 4 Day Sternum 0.1873 0.8127 0.6098 0.3902 5 Day Rib 4 0.2098 0.7902 0.7125 0.2875 5 day Iliac Crest 0.3875 0.6125 0.6493 0.3507 5 day C30.4175 0.5825 5 day C4 0.5049 0.4951 5 day C50.3296 0.6704 0.4384 0.5616 5 day C60.4336 0.5664 5 day C70.4133 0.5867 5 day T10.3294 0.6706 5 day T20.2730 0.7270 5 day T30.2617 0.7383 5 day T40.3241 0.6759 5 day T50.4328 0.5672 0.3058 0.6942 5 day T100.4952 0.5048 5 day T110.3842 0.6158 5 day T120.4911 0.5089 5 day L10.5265 0.4735 5 day L20.4310 0.5690 5 day L30.4584 0.5416 5 day L40.4754 0.5246 5 day L50.4013 0.5987 Avg. Cervical 0.3296 0.6704 20.44154 10.5585 Avg. Thoracic 0.4328 0.5672 40.4178 30.5822 Avg. Lumbar 0.2415 0.7585 60.4979 50.5021 Avg. Rib 0.2098 0.7901 80.6132 70.3868 Avg. Sternum90.1873 0.8127 0.6098 0.3902 Avg. Iliac Crest100.3875 0.6125 0.6493 0.3507 1Linear average between 5-day C3, C4, C5, C6, C7 MVF ( 0 0370) 25-day C5 segmented 3Linear average between 5-day T1, T2, T3, T4, T5, T10, T11, T12 and 4 day T 9 T 10, T 11, T 12 MVF ( 0 1217) 45-day T5 segmented 5Linear average between 5-day L1, L2, L3, L4, L5 and 4-day L2, L3, L4, L5 MVF ( 0 0606) 64-day L3 segmented 7Linear average between 5 day 4 th rib and 4 day right / left 2 nd rib MVF ( 0 0935) 85-day 4th rib segmented 94-day sternum 105-day iliac crest

PAGE 76

76 Table 2 4. Hybrid newborn bone tissue volume fractions by bone site. Skeletal Site SVF CBVF MVF BVF Cranium 0.7902 0.2098 0.2707 0.7293 Mandible 0.7902 0.2098 0.6132 0.3868 Cervical Vertebrae 0.6704 0.3296 0.4415 0.5585 Thoracic Vertebrae 0.5672 0.4328 0.4178 0.5822 Lumbar Vertebrae 0.7585 0.2415 0.4979 0.5021 Sternum 0.8127 0.1873 0.6098 0.3902 Ribs 0.7902 0.2098 0.6132 0.3868 Scapula 0.6709 0.3291 0.5888 0.4112 Clavicles 0.6709 0.3291 0.5888 0.4112 Os coxae 0.6125 0.3875 0.5888 0.4112 Sacrum 0.7585 0.2415 0.4979 0.5021 Humerii, Proximal 0.9098 0.0902 0.4979 0.5021 Humerii, Upper Shaft 0.2082 0.7918 1.0000 0.0000 Humerii, Lower Shaft 0.2082 0.7918 1.0000 0.0000 Humerii, Distal 0.9098 0.0902 0.4979 0.5021 Radii, Proximal 0.9098 0.0902 0.4979 0.5021 Radii, Shaft 0.1310 0.8690 1.0000 0.0000 Radii, Distal 0.9098 0.0902 0.4979 0.5021 Ulna, Proximal 0.9098 0.0902 0.4979 0.5021 Ulna, Shaft 0.1186 0.8814 1.0000 0.0000 Ulna, Distal 0.9098 0.0902 0.4979 0.5021 Wrist and Hands 0.8109 0.1891 0.6132 0.3868 Femora, Proximal 0.9101 0.0899 0.4979 0.5021 Femora, Upper Shaft 0.2294 0.7706 1.0000 0.0000 Femora, Lower Shaft 0.2294 0.7706 1.0000 0.0000 Femora, Distal 0.9101 0.0899 0.4979 0.5021 Patella 0.8109 0.1891 0.6132 0.3868 Tibia, Proximal 0.9101 0.0899 0.4979 0.5021 Tibia, Shaft 0.1838 0.8162 1.0000 0.0000 Tibia, Distal 0.9101 0.0899 0.4979 0.5021 Fibula, Proximal 0.9101 0.0899 0.4979 0.5021 Fibula, Shaft 0.1213 0.8787 1.0000 0.0000 Fibula, Distal 0.9101 0.0899 0.4979 0.5021 Ankles and Feet 0.8109 0.1891 0.6132 0.3868 Volume Fraction Homogeneous Bone Volume Fraction Spongiosa

PAGE 77

77 Table 25. Site specific active marrow volumes and masses of skeletal tissues in the newborn hybrid phantom including and then excluding contributions from miscellaneous skeletal tissues. AM AM AM* AM* Skeletal Site (cm3) (g) (cm3) (g) Cranium 11.71 12.06 13.15 13.55 Mandible 2.10 2.17 2.36 2.43 Cervical Vertebrae 1.81 1.87 2.03 2.10 Thoracic Vertebrae 2.50 2.58 2.81 2.90 Lumbar Vertebrae 2.28 2.35 2.56 2.64 Sternum 0.25 0.25 0.28 0.29 Ribs 7.90 8.14 8.88 9.14 Scapulae 1.57 1.62 1.76 1.82 Clavicles 0.59 0.61 0.66 0.68 Os coxae 3.06 3.15 3.44 3.54 Sacrum 0.91 0.94 1.03 1.06 Humeri, Proximal 1.03 1.06 1.15 1.19 Humeri, Upper Shaft 0.22 0.23 0.25 0.25 Humeri, Lower Shaft 0.22 0.22 0.24 0.25 Humeri, Distal 0.81 0.83 0.91 0.93 Radii, Proximal 0.18 0.18 0.20 0.20 Radii, Shaft 0.08 0.09 0.09 0.10 Radii, Distal 0.31 0.32 0.35 0.36 Ulnae, Proximal 0.42 0.43 0.47 0.48 Ulnae, Shaft 0.10 0.10 0.11 0.11 Ulnae, Distal 0.21 0.22 0.24 0.25 Wrists and Hands 1.18 1.21 1.32 1.36 Femora, Proximal 1.68 1.73 1.89 1.94 Femora, Upper Shaft 0.50 0.51 0.56 0.58 Femora, Lower Shaft 0.79 0.82 0.89 0.92 Femora, Distal 1.39 1.43 1.56 1.61 Patellae 0.07 0.07 0.07 0.08 Tibiae, Proximal 1.19 1.23 1.34 1.38 Tibiae, Shaft 0.45 0.47 0.51 0.53 Tibiae, Distal 0.73 0.75 0.82 0.85 Fibulae, Proximal 0.16 0.16 0.18 0.18 Fibulae, Shaft 0.07 0.08 0.08 0.09 Fibulae, Distal 0.24 0.25 0.28 0.28 Ankles and Feet 1.82 1.87 2.04 2.10 Total 48.54 50.00 54.53 56.17 ICRP 89 Reference Values 48.54 50.00 54.53 56.17 Ratio 1.00 1.00 1.00 1.00 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Excluding MST Volumes and Masses Volumes and Masses Including MST

PAGE 78

78 Table 2 6. Comparison of site specific active marrow distribution between the UF newborn hybrid phantoms and reference values given in ICRP Publication 89. NURBS / ICRP 89 Polygon Mesh Table 9.4 Difference Ratio Skeletal Site (%) (%) (%) NURBS / ICRP Cranium 24.12 27.00 -2.88 0.89 Mandible 4.33 2.50 1.83 1.73 Cervical Vertebrae 3.73 3.40 0.33 1.10 Thoracic Vertebrae 5.16 8.30 -3.14 0.62 Lumbar Vertebrae 4.70 2.40 2.30 1.96 Sternum 0.51 0.00 0.51 Ribs 16.28 9.20 7.08 1.77 Scapulae 3.23 2.70 0.53 1.20 Clavicles 1.22 0.80 0.42 1.52 Os coxae 6.31 9.20 -2.89 0.69 Sacrum 1.88 0.10 1.78 18.83 Humeri, Proximal 2.12 Humeri, Upper Shaft 0.45 Humeri, Lower Shaft 0.45 Humeri, Distal 1.66 Radii, Proximal 0.36 Radii, Shaft 0.17 Radii, Distal 0.65 Ulnae, Proximal 0.86 Ulnae, Shaft 0.20 Ulnae, Distal 0.44 Wrists and Hands 2.42 3.60 -1.18 0.67 Femora, Proximal 3.46 Femora, Upper Shaft 1.03 Femora, Lower Shaft 1.64 Femora, Distal 2.86 Patellae 0.13 0.13 0.01 1.07 Tibiae, Proximal 2.46 Tibiae, Shaft 0.94 Tibiae, Distal 1.51 Fibulae, Proximal 0.33 Fibulae, Shaft 0.15 Fibulae, Distal 0.50 Ankles and Feet 3.75 8.30 -4.55 0.45 Total 100.00 100.00 -1.53 -0.46 2.30 0.27 -0.19 0.08 0.09 0.79 0.80 3.70 6.43 1.44 2.30 1.10 1.40 3.70 1.12 0.92 1.08 1.07 1.21 1.22 0.76 0.68

PAGE 79

79 Table 2 7. Masses, volumes, and percent distribution of cartilage /fibrous connective tissue by bone site in the UF newborn phantom. Skeletal Site Cartilage/Fibrous Tissue Cartilage/Fibrous Tissue Distribution Volume Mass (%) (cm3) (g) Cranium 35.56 39.11 29.95 Mandible 2.47 2.72 2.08 Cervical Vertebrae 4.03 4.43 3.39 Thoracic Vertebrae 7.52 8.27 6.34 Lumbar Vertebrae 3.98 4.38 3.35 Sternum 1.41 1.55 1.19 Ribs 4.11 4.52 3.46 Scapulae 2.49 2.74 2.10 Clavicles 1.23 1.35 1.03 Os coxae 5.33 5.86 4.49 Sacrum 1.76 1.94 1.48 Humeri, Proximal 1.49 1.64 1.26 Humeri, Upper Shaft 0.00 0.00 0.00 Humeri, Lower Shaft 0.00 0.00 0.00 Humeri, Distal 1.85 2.03 1.56 Radii, Proximal 0.61 0.67 0.51 Radii, Shaft 0.00 0.00 0.00 Radii, Distal 0.79 0.86 0.66 Ulnae, Proximal 0.84 0.93 0.71 Ulnae, Shaft 0.00 0.00 0.00 Ulnae, Distal 0.87 0.96 0.74 Wrists and Hands 4.04 4.45 3.40 Femora, Proximal 2.52 2.78 2.13 Femora, Upper Shaft 0.00 0.00 0.00 Femora, Lower Shaft 0.00 0.00 0.00 Femora, Distal 2.40 2.64 2.02 Patellae 0.13 0.15 0.11 Tibiae, Proximal 1.65 1.82 1.39 Tibiae, Shaft 0.00 0.00 0.00 Tibiae, Distal 1.52 1.68 1.28 Fibulae, Proximal 0.66 0.72 0.56 Fibulae, Shaft 0.00 0.00 0.00 Fibulae, Distal 0.86 0.95 0.72 Ankles and Feet 4.24 4.66 3.57 1Cranial Fibrous Connective Tissue (Fontanel) 10.18 11.20 8.58 Costal Cartilage 10.57 11.63 8.91 CV Intervertebral Discs 0.23 0.25 0.19 TV Intervertebral Discs 0.70 0.77 0.59 LV Intervertebral Discs 0.46 0.51 0.39 2,3External Nose 0.13 0.14 0.11 2,4Ears 1.18 1.30 1.00 2,5Extrapulmonary Bronchi 0.12 0.13 0.10 2,6Larynx 0.55 0.61 0.47 2,7Trachea 0.21 0.23 0.18 Total Skeleton (Only Bone-Associated Cartilage/Fibrous Tissue) 116.52 128.17 Total Skeleton (All Cartilage/Fibrous Tissue) 118.72 130.59 ICRP 89 Reference 118.18 130.00 Ratio (All Cartilage) 1.00 1.00 1Cranial fibrous connective tisssue includes that present between cranial plates of the newborn skull 2These cartilage regions are termed non-bone associated cartilage, while all other are bone-associated cartilage 750% of NURBS volume contains cartilage 100.00 333.3% of total NURBS volume contains cartilage 4100% of NURBS volume contains cartilage 550% of NURBS volume contains cartilage 650% of NURBS volume contains cartilage

PAGE 80

80 Table 2 8. Newborn trabecular a nd cortical bone masses and volumes by bone site including and excluding MST Trabecular Bone* Trabecular Bone* Cortical Bone* Cortical Bone* Trabecular Bone Trabecular Bone Cortical Bone Cortical Bone Skeletal Site (cm3) (g) (cm3) (g) (cm3) (g) (cm3) (g) Cranium 35.44 56.06 12.90 20.41 31.55 52.05 11.49 18.95 Mandible 1.49 2.36 1.02 1.62 1.33 2.19 0.91 1.50 Cervical Vertebrae 2.57 4.07 2.27 3.58 2.29 3.78 2.02 3.33 Thoracic Vertebrae 3.92 6.20 5.14 8.13 3.49 5.76 4.57 7.55 Lumbar Vertebrae 2.59 4.09 1.64 2.59 2.30 3.80 1.46 2.41 Sternum 0.18 0.28 0.10 0.17 0.16 0.26 0.09 0.15 Ribs 5.60 8.86 3.84 6.08 4.98 8.22 3.42 5.65 Scapulae 1.23 1.95 1.47 2.32 1.10 1.81 1.31 2.16 Clavicles 0.46 0.73 0.55 0.87 0.41 0.68 0.49 0.81 Os coxae 2.40 3.80 3.70 5.85 2.14 3.53 3.29 5.43 Sacrum 1.04 1.64 0.66 1.04 0.92 1.52 0.58 0.96 Humeri, Proximal 1.16 1.84 0.23 0.36 1.04 1.71 0.20 0.34 Humeri, Upper Shaft 0.00 0.00 0.94 1.48 0.00 0.00 0.83 1.38 Humeri, Lower Shaft 0.00 0.00 0.93 1.47 0.00 0.00 0.83 1.37 Humeri, Distal 0.91 1.45 0.18 0.29 0.81 1.34 0.16 0.27 Radii, Proximal 0.20 0.31 0.04 0.06 0.18 0.29 0.03 0.06 Radii, Shaft 0.00 0.00 0.63 0.99 0.00 0.00 0.56 0.92 Radii, Distal 0.35 0.56 0.07 0.11 0.32 0.52 0.06 0.10 Ulnae, Proximal 0.47 0.75 0.09 0.15 0.42 0.70 0.08 0.14 Ulnae, Shaft 0.00 0.00 0.80 1.27 0.00 0.00 0.71 1.18 Ulnae, Distal 0.24 0.38 0.05 0.08 0.21 0.35 0.04 0.07 Wrists and Hands 0.83 1.32 0.50 0.79 0.74 1.22 0.45 0.74 Femora, Proximal 1.90 3.01 0.37 0.59 1.69 2.79 0.33 0.55 Femora, Upper Shaft 0.00 0.00 1.89 2.98 0.00 0.00 1.68 2.77 Femora, Lower Shaft 0.00 0.00 3.00 4.74 0.00 0.00 2.67 4.40 Femora, Distal 1.57 2.49 0.31 0.49 1.40 2.31 0.28 0.45 Patellae 0.05 0.07 0.03 0.04 0.04 0.07 0.02 0.04 Tibiae, Proximal 1.35 2.14 0.27 0.42 1.20 1.98 0.24 0.39 Tibiae, Shaft 0.00 0.00 2.27 3.58 0.00 0.00 2.02 3.33 Tibiae, Distal 0.83 1.31 0.16 0.26 0.74 1.22 0.15 0.24 Fibulae, Proximal 0.18 0.28 0.04 0.06 0.16 0.26 0.03 0.05 Fibulae, Shaft 0.00 0.00 0.61 0.96 0.00 0.00 0.54 0.89 Fibulae, Distal 0.28 0.44 0.05 0.09 0.25 0.41 0.05 0.08 Ankles and Feet 1.29 2.04 0.78 1.23 1.15 1.89 0.69 1.14 Total Skeleton 68.54 108.43 47.52 75.17 61.02 100.68 42.30 69.79 ICRP 89 Reference N/A N/A N/A N/A 21.21 35.00 81.82 135.00 Ratio N/A N/A N/A N/A 2.88 2.88 0.52 0.52 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Volumes and Masses Including MST Volumes and Masses Excluding MST

PAGE 81

81 Table 2 9. Site specific total mineral bone volumes and mass including and excluding MST with the newborn hybrid phantoms. Total Total Total Total Mineral Bone Mineral Bone Mineral Bone*Mineral Bone* Volume Mass Volume Mass Skeletal Site (cm3) (g) (cm3) (g) Cranium 43.03 71.01 48.34 76.48 Mandible 2.24 3.69 2.51 3.98 Cervical 4.31 7.11 4.84 7.66 Thoracic 8.07 13.31 9.06 14.33 Lumbar 3.76 6.21 4.23 6.68 Sternum 0.25 0.41 0.28 0.45 Ribs 8.40 13.87 9.44 14.94 Scapulae 2.40 3.97 2.70 4.27 Clavicles 0.90 1.49 1.02 1.61 Os coxae 5.43 8.96 6.10 9.65 Sacrum 1.51 2.49 1.69 2.68 Humeri, Proximal 1.24 2.05 1.39 2.20 Humeri, Upper Shaft 0.83 1.38 0.94 1.48 Humeri, Lower Shaft 0.83 1.37 0.93 1.47 Humeri, Distal 0.97 1.61 1.10 1.73 Radii, Proximal 0.21 0.35 0.24 0.38 Radii, Shaft 0.56 0.92 0.63 0.99 Radii, Distal 0.38 0.62 0.42 0.67 Ulnae, Proximal 0.51 0.83 0.57 0.90 Ulnae, Shaft 0.71 1.18 0.80 1.27 Ulnae, Distal 0.26 0.42 0.29 0.46 Wrists and Hands 1.19 1.96 1.34 2.11 Femora, Proximal 2.03 3.34 2.28 3.60 Femora, Upper Shaft 1.68 2.77 1.89 2.98 Femora, Lower Shaft 2.67 4.40 3.00 4.74 Femora, Distal 1.67 2.76 1.88 2.98 Patellae 0.07 0.11 0.07 0.12 Tibiae, Proximal 1.44 2.37 1.62 2.56 Tibiae, Shaft 2.02 3.33 2.27 3.58 Tibiae, Distal 0.88 1.46 0.99 1.57 Fibulae, Proximal 0.19 0.32 0.21 0.34 Fibulae, Shaft 0.54 0.89 0.61 0.96 Fibulae, Distal 0.30 0.49 0.33 0.53 Ankles and Feet 1.84 3.03 2.06 3.27 Total Skeleton 103.31 170.47 116.06 183.60 ICRP 89 Reference 103.45 170.70 116.20 183.83 Ratio 1.00 1.00 1.00 1.00 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses

PAGE 82

82 Table 2 10. Percentages of total mineral bone attributed to cortical bone and to trabecular bone by skeletal site in the newborn hybrid phantoms. Skeletal Site Cortical Trabecular Cortical Trabecular Cortical Trabecular Cranium 0.27 0.73 0.95 0.05 0.28 14.66 Mandible 0.41 0.59 0.95 0.05 0.43 11.86 Cervical 0.47 0.53 0.25 0.75 1.87 0.71 Thoracic 0.57 0.43 0.25 0.75 2.27 0.58 Lumbar 0.39 0.61 0.34 0.66 1.14 0.93 Sternum 0.37 0.63 0.94 0.06 0.40 10.48 Ribs 0.41 0.59 0.94 0.06 0.43 9.88 Scapula 0.54 0.46 0.94 0.06 0.58 7.60 Clavicles 0.54 0.46 0.94 0.06 0.58 7.60 Os coxae 0.61 0.39 0.90 0.10 0.67 3.94 Sacrum 0.39 0.61 0.75 0.25 0.52 2.45 Humeri, upper half 0.50 0.50 0.90 0.10 0.56 4.99 Humeri, lower half 0.55 0.45 0.90 0.10 0.61 4.51 Radii 0.57 0.43 0.87 0.13 0.66 3.31 Ulna 0.57 0.43 0.87 0.13 0.65 3.32 Wrist and Hands 0.38 0.62 0.95 0.05 0.40 12.48 Femora, upper half 0.54 0.46 0.77 0.23 0.71 1.99 Femora, lower half 0.68 0.32 0.77 0.23 0.88 1.40 Patella 0.38 0.62 0.77 0.23 0.49 2.71 Tibia 0.55 0.45 0.83 0.17 0.67 2.63 Fibula 0.60 0.40 0.89 0.11 0.68 3.60 Ankles and Feet 0.38 0.62 0.65 0.35 0.58 1.78 Newborn Adult Newborn / Adult Ratios

PAGE 83

83 Table 2 11. Distribution of shallow marrow by skeletal site in the newborn hybrid phantom. Shallow Shallow Marrow* Shallow Marrow* Shallow Marrow* Shallow Marrow* Active Marrow* Bone Site SMVF (% of SV) (% of MV) Volume (cm3) Mass (g) % of total 3Cranium 22.83% 84.33% 11.09 11.42 33.19% 1Mandible 37.21% 60.69% 1.43 1.48 4.29% 2Cervical Vertebrae 24.66% 55.85% 1.14 1.17 3.40% 3Thoracic Vertebrae 22.83% 54.64% 1.54 1.58 4.60% 4Lumbar Vertebrae 27.45% 55.13% 1.41 1.46 4.23% Sternum 35.81% 58.72% 0.16 0.17 0.49% 1Ribs 37.21% 60.69% 5.39 5.55 16.12% 5Scapula 32.81% 55.73% 0.98 1.01 2.94% 5Clavicles 32.81% 55.73% 0.37 0.38 1.11% 5Os coxae 32.81% 55.73% 1.92 1.97 5.74% 4Sacrum 27.45% 55.13% 0.57 0.58 1.69% 4Humerii, Proximal 27.45% 55.13% 0.64 0.66 1.90% 6Humerii, Upper Shaft 6.06% 6.06% 0.01 0.02 0.04% 6Humerii, Lower Shaft 6.05% 6.05% 0.01 0.02 0.04% 4Humerii, Distal 27.45% 55.13% 0.50 0.52 1.50% 4Radii, Proximal 27.45% 55.13% 0.11 0.11 0.33% 6Radii, Shaft 11.79% 11.79% 0.01 0.01 0.03% 4Radii, Distal 27.45% 55.13% 0.19 0.20 0.58% 4Ulna, Proximal 27.45% 55.13% 0.26 0.27 0.78% 6Ulna, Shaft 11.94% 11.94% 0.01 0.01 0.04% 4Ulna, Distal 27.45% 55.13% 0.13 0.14 0.39% 1Wrist and Hands 37.21% 60.69% 0.80 0.83 2.40% 4Femora, Proximal 27.45% 55.13% 1.04 1.07 3.11% 6Femora, Upper Shaft 4.77% 4.77% 0.03 0.03 0.08% 6Femora, Lower Shaft 4.28% 4.28% 0.04 0.04 0.11% 4Femora, Distal 27.45% 55.13% 0.86 0.89 2.57% 1Patella 37.21% 60.69% 0.04 0.05 0.13% 4Tibia, Proximal 27.45% 55.13% 0.74 0.76 2.21% 6Tibia, Shaft 6.50% 6.50% 0.03 0.03 0.10% 4Tibia, Distal 27.45% 55.13% 0.45 0.47 1.36% 4Fibula, Proximal 27.45% 55.13% 0.10 0.10 0.29% 6Fibula, Shaft 14.12% 14.12% 0.01 0.01 0.04% 4Fibula, Distal 27.45% 55.13% 0.15 0.16 0.45% 1Ankles and Feet 37.21% 60.69% 1.24 1.28 3.71% Total Skeleton 33.42 34.42 100.00% 1Average 4-day right/left 2nd Rib and 5-day Ribs were used as a surrogate ( 4.35%) 2Average 5-day C3-C7 ( 1.21%) 3Average 4-day T9-T12 and 5-day T1-T5, T10-T12 ( 2.48%) 4Average 4-day L2-L5 and 5-day L1-L5 ( 2.08%) 560% of the 5-day iliac crest and 40% of average 4-day L2-L5/5-day L1-L5 were used as a surrogate 6SMVF obtained via cylindrical volume ratios discussed in text

PAGE 84

84 Table 2 12. Lengths and radii of the medullary cavities within the long bones of the newborn hybrid phantoms. Measured Height Measured Height Calculated Radius Medullary Cavity Std. Dev. Medullary Cavity Bone site (cm) (cm) (cm) Humerii, Upper Shaft 1.485 0.0069 0.162 Humerii, Lower Shaft 1.471 0.0068 0.163 Radii, Shaft 2.219 0.0071 0.082 Ulna, Shaft 2.606 0.0055 0.081 Femora, Upper Shaft 2.087 0.0034 0.207 Femora, Lower Shaft 2.660 0.0087 0.231 Tibia, Shaft 3.543 0.0071 0.151 Fibula, Shaft 2.868 0.0057 0.068

PAGE 85

85 Table 2 13. Comparison of trabecular bone surface to volume (S/V) ratios (mm2 mm3 Skeletal Site Hybrid Newborn 1.7-year 5-yeara9-year 15-yearaAdult *Cranium 3.8 3.8 5.1 6.4 7.1 7.8 1Mandible 29.7 3.8 5.1 6.4 7.1 7.8 2Cervical Vertebrae 14.3 23.5 24.7 25.8 21.9 18.0 3Thoracic Vertebrae 13.8 23.5 24.7 25.8 21.9 18.0 4Lumbar Vertebrae 17.9 23.5 24.7 25.8 22.8 19.7 Sternum 31.0 23.7 21.8 19.8 19.2 18.5 1Ribs 29.7 23.7 21.8 19.8 19.2 18.5 5Scapulab25.3 26.6 25.4 24.3 21.4 18.5 5Claviclesb25.3 26.6 25.4 24.3 21.4 18.5 5Os coxaeb25.3 29.6 26.2 22.8 20.0 17.2 4Sacrumb17.9 29.6 26.2 22.8 21.3 19.7 4Humerii, Proximal 17.9 Humerii, Upper Shaft 0.0 Humerii, Lower Shaft 0.0 4Humerii, Distal 17.9 4Radii, Proximal 17.9 Radii, Shaft 0.0 4Radii, Distal 17.9 4Ulna, Proximal 17.9 Ulna, Shaft 0.0 4Ulna, Distal 17.9 4Wrist and Hands 17.9 18.0 18.0 18.0 18.0 18.0 4Femora, Proximal 17.9 Femora, Upper Shaft 0.0 Femora, Lower Shaft 0.0 4Femora, Distal 17.9 4Patella 17.9 18.0 18.0 18.0 18.0 18.0 4Tibia, Proximal 17.9 Tibia, Shaft 0.0 4Tibia, Distal 17.9 4Fibula, Proximal 17.9 Fibula, Shaft 0.0 4Fibula, Distal 17.9 4Ankles and Feet 17.9 18.0 18.0 18.0 18.0 18.0 1Average 4-day right/left 2nd Rib and 5-day Ribs were used as a surrogate in hybrid newborn ( 6.8 mm2/mm3) 2Average 5-day C3-C7 in hybrid newborn ( 1 0 mm2/mm3) 3Average 4-day T9-T12 and 5 day T1-T5, T10-T12 in hybrid newborn ( 3 3 mm2/mm3) 4Average 4-day L2-L5 and 5-day L1-L5 in hybrid newborn ( 2 1 mm2/mm3) 560% of the 5-day iliac crest and 40% of average 4-day L2-L5/5-day L1-L5 were used as a surrogate in hybrid newborn *Default to 1.7-year aLinear interpolation of 5 year and 15 year values from Beddoe (1976) bS/V ratios for these bone site were obtained by using 50% of the Iliac Crest value and 50% of the Lumbar verterbrae 18.0 18.0 18.0 18.0 18.0 17.3 18.0 18.0 18.0 18.0 18.0 23.0 20.7 18.4 17.9 17.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 23.0 20.7 18.4 17.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 ) by skeletal site and age.

PAGE 86

86 Table 2 14. Site specific homogeneous spongiosa mass, volume, and density data, including MST in the newborn hybrid phantoms. Homogeneous*Homogeneous* Homogeneous* Skeletal SiteSpongiosa Mass Spongiosa Volume Spongiosa Density (g) (cm3) (g cm-3) Cranium69.61 48.59 1.43 Mandible4.79 3.85 1.24 Cervical Vertebrae6.17 4.61 1.34 Thoracic Vertebrae9.10 6.74 1.35 Lumbar Vertebrae6.73 5.15 1.31 Sternum0.57 0.45 1.25 Ribs18.00 14.47 1.24 Scapulae3.77 3.00 1.26 Clavicles1.42 1.13 1.26 Os coxae7.34 5.84 1.26 Sacrum2.70 2.06 1.31 Humeri, Proximal3.03 2.32 1.31 Humeri, Distal2.38 1.82 1.31 Radii, Proximal0.52 0.40 1.31 Radii, Distal0.92 0.71 1.31 Ulnae, Proximal1.23 0.94 1.31 Ulnae, Distal0.63 0.48 1.31 Wrists and Hands2.68 2.15 1.24 Femora, Proximal4.95 3.79 1.31 Femora, Distal4.09 3.13 1.31 Patellae0.15 0.12 1.24 Tibiae, Proximal3.52 2.69 1.31 Tibiae, Distal2.16 1.65 1.31 Fibulae, Proximal0.47 0.36 1.31 Fibulae, Distal0.72 0.55 1.31 Ankles and Feet4.14 3.33 1.24 Total Skeleton161.78 120.34 Volume Weighted Average Density = 1.34 ICRP 89 Reference89.76 75.64 Ratio0.55 0.63 ICRU 46 Adult Density1.18 Ratio1.14 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses

PAGE 87

87 Table 2 15. Site specific homogeneous spongiosa elemental composition (% by mass) in the newborn hybrid phantom. Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 5.77 20.27 4.22 50.74 12.34 0.03 0.26 6.04 0.28 0.02 0.02 0.02 Mandible 7.59 27.33 3.90 49.23 7.54 0.06 0.23 3.77 0.25 0.02 0.03 0.05 Cervical Vertebrae 6.61 23.54 4.07 50.04 10.11 0.05 0.24 4.99 0.27 0.02 0.03 0.03 Thoracic Vertebrae 6.49 23.06 4.10 50.14 10.44 0.05 0.25 5.14 0.27 0.02 0.03 0.03 Lumbar Vertebrae 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Sternum 7.57 27.25 3.91 49.24 7.59 0.06 0.23 3.80 0.26 0.02 0.03 0.04 Ribs 7.59 27.33 3.90 49.23 7.54 0.06 0.23 3.77 0.25 0.02 0.03 0.05 Scapulae 7.45 26.76 3.93 49.35 7.93 0.06 0.23 3.96 0.26 0.02 0.03 0.04 Clavicles 7.45 26.76 3.93 49.35 7.93 0.06 0.23 3.96 0.26 0.02 0.03 0.04 Os coxae 7.45 26.76 3.93 49.35 7.93 0.06 0.23 3.96 0.26 0.02 0.03 0.04 Sacrum 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Humeri, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Humeri, Upper Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 1Humeri, Lower Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Humeri, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Radii, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Radii, Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Radii, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Ulnae, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Ulnae, Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Ulnae, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Wrists and Hands 7.59 27.33 3.90 49.23 7.54 0.06 0.23 3.77 0.25 0.02 0.03 0.05 Femora, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Femora, Upper Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 1Femora, Lower Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Femora, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Patellae 7.59 27.33 3.90 49.23 7.54 0.06 0.23 3.77 0.25 0.02 0.03 0.05 Tibiae, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Tibiae, Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Tibiae, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Fibulae, Proximal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 1Fibulae, Shaft 10.47 38.42 3.40 46.85 0.00 0.11 0.18 0.21 0.21 0.02 0.03 0.09 Fibulae, Distal 6.92 24.72 4.02 49.78 9.31 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Ankles and Feet 7.59 27.33 3.90 49.23 7.54 0.06 0.23 3.77 0.25 0.02 0.03 0.05 Total Skeleton Spongiosa 6.62 23.57 4.07 50.03 10.09 0.05 0.24 4.98 0.27 0.02 0.03 0.03 1Medullary marrow; contains marrow only Element

PAGE 88

88 Table 2 16. Site specific homogenized bone masses, volumes, and densities (excluding unossified bone ). Homogeneous Bone Homogeneous Bone Homogeneous Bone Skeletal Site Mass (g) Volume (cm3) Density (g cm-3) Cranium 90.02 61.50 1.46 Mandible 6.41 4.88 1.31 Cervical 9.75 6.87 1.42 Thoracic 17.23 11.87 1.45 Lumbar 9.33 6.79 1.37 Sternum 0.73 0.56 1.31 Ribs 24.08 18.32 1.31 Scapulae 6.09 4.47 1.36 Clavicles 2.29 1.68 1.36 Os coxae 13.19 9.54 1.38 Sacrum 3.73 2.72 1.37 Humeri, Proximal 3.39 2.55 1.33 1Humeri, Upper Shaft 1.73 1.18 1.47 1Humeri, Lower Shaft 1.72 1.18 1.47 Humeri, Distal 2.67 2.00 1.33 Radii, Proximal 0.58 0.44 1.33 1Radii, Shaft 1.09 0.72 1.51 Radii, Distal 1.03 0.78 1.33 Ulnae, Proximal 1.38 1.04 1.33 1Ulnae, Shaft 1.38 0.91 1.52 Ulnae, Distal 0.70 0.53 1.33 Wrists and Hands 3.47 2.66 1.31 Femora, Proximal 5.54 4.16 1.33 1Femora, Upper Shaft 3.56 2.45 1.46 1Femora, Lower Shaft 5.66 3.89 1.46 Femora, Distal 4.58 3.44 1.33 Patellae 0.19 0.15 1.31 Tibiae, Proximal 3.94 2.96 1.33 1Tibiae, Shaft 4.11 2.78 1.48 Tibiae, Distal 2.41 1.81 1.33 Fibulae, Proximal 0.52 0.39 1.33 1Fibulae, Shaft 1.05 0.69 1.51 Fibulae, Distal 0.81 0.61 1.33 Ankles and Feet 5.37 4.11 1.31 Total Skeleton 239.77 170.60 Volume Weighted Average Density = 1.40 Newborn Hybrid Phantom 239.80 170.60 Ratio 1.00 1.00 1Contains medullary marrow (no trabecular bone) and cortical bone only

PAGE 89

89 Table 2 17. Site specific homogenized bone masses, volumes, and densities (including unossified bone ). Homogeneous Bone Homogeneous Bone Homogeneous Bone Skeletal Site Mass (g) Volume (cm3) Density (g cm-3) *Cranium 140.34 107.24 1.31 Mandible 9.13 7.35 1.24 *Cervical Vertebrae 14.43 11.13 1.30 *Thoracic Vertebrae 26.28 20.10 1.31 *Lumbar Vertebrae 14.21 11.23 1.27 Sternum 2.28 1.97 1.16 *Ribs 40.23 33.00 1.22 Scapulae 8.83 6.96 1.27 Clavicles 3.64 2.91 1.25 Os coxae 19.05 14.87 1.28 Sacrum 5.67 4.48 1.27 Humeri, Proximal 5.03 4.04 1.25 1Humeri, Upper Shaft 1.73 1.18 1.47 1Humeri, Lower Shaft 1.72 1.18 1.47 Humeri, Distal 4.70 3.85 1.22 Radii, Proximal 1.25 1.04 1.20 1Radii, Shaft 1.09 0.72 1.51 Radii, Distal 1.90 1.56 1.22 Ulnae, Proximal 2.31 1.88 1.23 1Ulnae, Shaft 1.38 0.91 1.52 Ulnae, Distal 1.66 1.40 1.19 Wrists and Hands 7.92 6.70 1.18 Femora, Proximal 8.32 6.69 1.24 1Femora, Upper Shaft 3.56 2.45 1.46 1Femora, Lower Shaft 5.66 3.89 1.46 Femora, Distal 7.22 5.84 1.24 Patellae 0.34 0.28 1.21 Tibiae, Proximal 5.75 4.61 1.25 1Tibiae, Shaft 4.11 2.78 1.48 Tibiae, Distal 4.09 3.34 1.23 Fibulae, Proximal 1.25 1.05 1.19 1Fibulae, Shaft 1.05 0.69 1.51 Fibulae, Distal 1.75 1.47 1.20 Ankles and Feet 10.03 8.35 1.20 *Total Skeleton 367.94 287.12 Volume Weighted Average Density = 1.28 Newborn Hybrid Phantom 367.98 287.12 Ratio 1.00 1.00 *Totals include intervertebral discs, cranial cartilage/fibrous tissue, and costal cartilage (included in rib cartilage totals) 1Contains medullary marrow (no trabecular bone) and cortical bone only

PAGE 90

90 Table 2 18. Site specific homogeneous bone elemental composition (excluding unossified bone ) in the newborn hybrid phantoms (% by mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 5.51 19.27 4.27 50.95 13.01 0.03 0.26 6.36 0.29 0.02 0.02 0.01 Mandible 6.85 24.44 4.03 49.84 9.50 0.05 0.24 4.70 0.27 0.02 0.03 0.03 Cervical Vertebrae 5.88 20.72 4.20 50.64 12.03 0.04 0.26 5.89 0.28 0.02 0.02 0.02 Thoracic Vertebrae 5.61 19.67 4.25 50.86 12.74 0.03 0.26 6.23 0.29 0.02 0.02 0.01 Lumbar Vertebrae 6.28 22.26 4.13 50.31 10.98 0.04 0.25 5.40 0.27 0.02 0.02 0.03 Sternum 6.91 24.67 4.02 49.79 9.34 0.05 0.24 4.63 0.27 0.02 0.03 0.03 Ribs 6.85 24.44 4.03 49.84 9.50 0.05 0.24 4.70 0.27 0.02 0.03 0.03 Scapulae 6.37 22.60 4.12 50.24 10.75 0.04 0.25 5.29 0.27 0.02 0.02 0.03 Clavicles 6.37 22.60 4.12 50.24 10.75 0.04 0.25 5.29 0.27 0.02 0.02 0.03 Os coxae 6.20 21.93 4.15 50.38 11.21 0.04 0.25 5.51 0.28 0.02 0.02 0.02 Sacrum 6.28 22.26 4.13 50.31 10.98 0.04 0.25 5.40 0.27 0.02 0.02 0.03 Humeri, Proximal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Humeri, Upper Shaft 5.48 19.17 4.27 50.97 13.08 0.03 0.26 6.39 0.29 0.02 0.02 0.01 1Humeri, Lower Shaft 5.48 19.17 4.27 50.97 13.08 0.03 0.26 6.39 0.29 0.02 0.02 0.01 Humeri, Distal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Radii, Proximal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Radii, Shaft 5.15 17.89 4.33 51.24 13.95 0.02 0.27 6.80 0.29 0.01 0.02 0.01 Radii, Distal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Ulnae, Proximal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Ulnae, Shaft 5.10 17.69 4.34 51.29 14.09 0.02 0.27 6.87 0.29 0.01 0.02 0.01 Ulnae, Distal 6.67 23.78 4.06 49.99 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Wrists and Hands 6.92 24.71 4.02 49.79 9.32 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Femora, Proximal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Femora, Upper Shaft 5.58 19.54 4.26 50.89 12.83 0.03 0.26 6.27 0.29 0.02 0.02 0.01 1Femora, Lower Shaft 5.58 19.54 4.26 50.89 12.83 0.03 0.26 6.27 0.29 0.02 0.02 0.01 Femora, Distal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Patellae 6.92 24.71 4.02 49.79 9.32 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Tibiae, Proximal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Tibiae, Shaft 5.38 18.76 4.29 51.06 13.36 0.03 0.27 6.52 0.29 0.02 0.02 0.01 Tibiae, Distal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Fibulae, Proximal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 1Fibulae, Shaft 5.11 17.74 4.34 51.28 14.06 0.02 0.27 6.85 0.29 0.01 0.02 0.01 Fibulae, Distal 6.68 23.78 4.06 49.98 9.95 0.05 0.24 4.91 0.27 0.02 0.03 0.03 Ankles and Feet 6.92 24.71 4.02 49.79 9.32 0.05 0.24 4.61 0.27 0.02 0.03 0.03 Total Skeleton 6.00 21.16 4.18 50.54 11.73 0.04 0.25 5.75 0.28 0.02 0.02 0.02 1Contains medullary marrow (no trabecular bone) and cortical bone only Element

PAGE 91

91 Table 2 19. Site specific homogeneous bone elemental composition (including unossified bone ) in the newborn hybrid phantoms (% by mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 6.97 15.91 3.53 59.36 8.35 0.20 0.17 4.87 0.51 0.12 0.01 0.01 Mandible 7.67 20.11 3.49 57.16 6.67 0.18 0.17 3.96 0.45 0.10 0.02 0.02 Cervical Vertebrae 7.09 17.21 3.55 58.34 8.13 0.19 0.17 4.70 0.48 0.11 0.02 0.01 Thoracic Vertebrae 6.98 16.31 3.54 58.97 8.36 0.19 0.17 4.84 0.50 0.11 0.02 0.01 Lumbar Vertebrae 7.42 18.01 3.47 58.59 7.21 0.20 0.16 4.30 0.49 0.11 0.02 0.02 Sternum 8.74 14.63 2.78 66.53 2.99 0.36 0.08 2.98 0.70 0.21 0.01 0.01 Ribs 7.95 18.60 3.30 59.70 5.69 0.23 0.14 3.70 0.52 0.13 0.02 0.02 Scapulae 7.37 18.66 3.52 57.73 7.41 0.18 0.17 4.33 0.47 0.10 0.02 0.02 Clavicles 7.57 17.90 3.41 59.19 6.77 0.21 0.16 4.14 0.51 0.12 0.02 0.02 Os coxae 7.24 18.23 3.55 57.77 7.76 0.18 0.17 4.49 0.47 0.10 0.02 0.02 Sacrum 7.42 18.04 3.47 58.54 7.23 0.20 0.16 4.31 0.49 0.11 0.02 0.02 Humeri, Proximal 7.63 19.25 3.46 57.94 6.71 0.20 0.16 4.03 0.47 0.11 0.02 0.02 1Humeri, Upper Shaft 5.48 19.17 4.27 50.97 13.08 0.03 0.26 6.39 0.29 0.02 0.02 0.01 1Humeri, Lower Shaft 5.48 19.17 4.27 50.97 13.08 0.03 0.26 6.39 0.29 0.02 0.02 0.01 Humeri, Distal 7.94 17.78 3.26 60.54 5.65 0.24 0.14 3.74 0.54 0.14 0.01 0.02 Radii, Proximal 8.24 16.34 3.07 63.06 4.62 0.29 0.11 3.46 0.61 0.17 0.01 0.01 1Radii, Shaft 5.15 17.89 4.33 51.24 13.95 0.02 0.27 6.80 0.29 0.01 0.02 0.01 Radii, Distal 8.01 17.46 3.22 61.10 5.42 0.25 0.13 3.68 0.56 0.15 0.01 0.02 Ulnae, Proximal 7.85 18.20 3.31 59.80 5.95 0.23 0.15 3.82 0.52 0.13 0.02 0.02 1Ulnae, Shaft 5.10 17.69 4.34 51.29 14.09 0.02 0.27 6.87 0.29 0.01 0.02 0.01 Ulnae, Distal 8.36 15.76 2.99 64.08 4.21 0.31 0.10 3.35 0.63 0.18 0.01 0.01 Wrists and Hands 8.42 16.40 3.00 63.61 4.09 0.30 0.10 3.26 0.62 0.18 0.01 0.02 Femora, Proximal 7.65 19.15 3.44 58.13 6.63 0.20 0.16 4.01 0.48 0.11 0.02 0.02 1Femora, Upper Shaft 5.58 19.54 4.26 50.89 12.83 0.03 0.26 6.27 0.29 0.02 0.02 0.01 1Femora, Lower Shaft 5.58 19.54 4.26 50.89 12.83 0.03 0.26 6.27 0.29 0.02 0.02 0.01 Femora, Distal 7.74 18.71 3.38 58.90 6.32 0.21 0.15 3.92 0.50 0.12 0.02 0.02 Patellae 8.07 18.34 3.24 60.37 5.31 0.24 0.14 3.58 0.54 0.14 0.01 0.02 Tibiae, Proximal 7.60 19.40 3.48 57.69 6.81 0.19 0.17 4.06 0.47 0.11 0.02 0.02 1Tibiae, Shaft 5.38 18.76 4.29 51.06 13.36 0.03 0.27 6.52 0.29 0.02 0.02 0.01 Tibiae, Distal 7.87 18.09 3.30 59.99 5.87 0.23 0.14 3.80 0.53 0.13 0.02 0.02 Fibulae, Proximal 8.37 15.72 2.98 64.17 4.17 0.31 0.10 3.34 0.64 0.18 0.01 0.01 1Fibulae, Shaft 5.11 17.74 4.34 51.28 14.06 0.02 0.27 6.85 0.29 0.01 0.02 0.01 Fibulae, Distal 8.25 16.30 3.06 63.15 4.59 0.29 0.11 3.45 0.61 0.17 0.01 0.01 Ankles and Feet 8.16 17.83 3.17 61.23 4.99 0.26 0.13 3.49 0.56 0.15 0.01 0.02 Total Skeleton 7.25 17.24 3.49 58.85 7.64 0.20 0.17 4.52 0.50 0.11 0.02 0.01 1Contains medullary marrow (no trabecular bone) and cortical bone only Element

PAGE 92

92 CHAPTER 3 AN IMAGE BASED SKELETAL TISSU E DOSIMETRY MODEL FOR THE ICRP REFERENCE NEWBORN Introduction Over the past 50 years there have been significant research advancements in both external and internal radiation dosimetry. One of the more challenging areas of research is radiation directed toward radiation dosimetry at interfaces or in transition zones with in the human body. Although transition zones in the body occur at the skin, in the lungs, and in the air sinuses, the effects of interfaces on radiation dose in bone tissue have a greater radiobiological significance (Spiers 1968). Therefore, extensive research efforts in skeletal dosimetry have focused on identifying the radiosensitive cells in the bone tissue, identifying bone seeking radionuclides, accurately modeling the bone microstructure for particle transport, and developing new theoretical and experiment al techniques to accurately calculate dose to the radiosensitive regions of bone tissue. Research dedication and rapid progression in computer technology, along with i mage acquisition have facilitated the improvements in skeletal dosimetry. In the late 1960s, with a 2D optical scanner, researchers at the University of Leeds were the first to address the issue of identifying the radiosensitive regions of bone, characterizing the complex microstructure of bone tissue, and calculating absorbed dose across t he bone interfaces (Spiers 1968; Spiers 1969). Then in the late 1990s, studies at the University of Florida utilized 3D nuclear magnetic resonance (NMR) microscopy coupled with Monte Carlo radiation transport codes to accurately calculate dose to bone and marrow regions. Now, microCT image acquisition is being used to avoid post sample extraction marrow digestion and allow for larger sample sizes for a better representation of the trabecular and marrow space.

PAGE 93

93 Dose estimates for radiopharmaceutical ther apies are calculated based on the MIRD (Medical Internal Radiation Dose) schema (Loevinger et al. 1968; Loevinger et al. 1968; Loevinger et al. 1976; Loevinger et al. 1971; Howell 1994). In 2001, the AAPM published a report, AAPM Report No 71., which intr oduced the various approaches for internal dose estimation in a therapeutic context for both radionuclide therapy and radioimmunotherapy (Macey et al. 2001). The following equation represents the general time independent equation to compute mean absorbed dose, TDr to a target organ: S S T STS r 0 STS rDr=Ar,tdtSrr =ArSrr (3 1), where SAr is the time integrated activity or total number of nuclear transformations, Tr is the target organ, Sr is the source organ, and TSSrr is defined as the radionuclide S value and has units of mean absorbed dose per unit cumulated activity (mGy/MBq). This time independent version of the value is determined based on the following equation: iiTS TS i TEYrr Srr= mr (3 2), where iEis the energy of the radionuclide at the ith iY index of the photon and electron energy spectrum, is the yield associated with that energy, TSrr is the absorbed fraction from an r source organ irradiating an r target organ, and Tmr is the mass of the target organ being irradiated. The quantity iiEY is a function of the radionuclide and is somet imes referred to as i TS Trr mr or the mean energy emitted per nuclear transition. The quantity is also known as

PAGE 94

94 the specific absorbed fraction and is a function of the source and target organs of the phantom being used. Most of the pas t and even current research initiatives have been focused on perfecting the SAr for each patient. Therefore, the research presented here focuses on improving the specific absorbed fraction quantity. Dose calculations are current ly derived utilizing the dosimetric model of Stabin and Siegel (2003). However, it is noted that modifications to the model are needed to include factors not considered in the revised Eckerman model by Stabin and Siegel. One of the main limitations is th e use of chord length distributions that do not account for cortical bone cross fire or particle escape from the trabecular regions into soft tissue at high electron energies. The current model also uses skeletal masses that are tied to stylized phantoms instead of more anatomically accurate tomographic phantoms, which creates another significant limitation regarding the models practical uses. In addition to these main limitations, cellularity changes are accounted for by scaling after transport instead of varying cellularity during transport. Scaling the absorbed fraction data by cellularity after transport has been shown to be accurate, but only at high electron energies (Bolch et al. 2002). Finally, the 2003 Stabin and Siegel properly accounts for t he fractional mass distribution of the source issue, but makes no accounting of the fractional mass distribution of the target tissue. Results by Shah et al. have shown that by not accounting for particle escape in the adult male, the absorbed fractio n data are significantly greater at higher electron energies, causing an overestimation in the true dose (Shah et al. 2005; Shah et al. 2005c). These results would have an even greater impact on children, where the overall skeletal size is significantly s maller than an adult. Despite these recent efforts to improve the adult skeletal model, very little efforts have been afforded to internal dosimetry models for the younger members of the general population

PAGE 95

95 due to the sensitive nature and limitations of collecting pediatric bone samples. The majority of the pediatric microstructure data available are based on studies performed at the University of Leeds in 1976 by Alun H. Beddoe, along with his colleagues, Philip. J. Darley, Joan Whitwell and Frederick W. Spiers. In Beddoes dissertation, results on the pathlength distributions of the iliac crest, femur head, femur neck, and femur shaft, 3rd lumbar vertebra, 4th Materials and Meth ods cervical vertebra, humerus, rib, and parietal bone for a 1.7 year old and a 9 year old are pre sented (Beddoe 1976). Calculated doses to the active marrow components of bone are currently overestimating the true dose, which could have significant implications on not only the epidemiological aspects of marrow toxicity, but also the effectiveness of the radiation treatment. Therefore, the research methodologies presented in this study address the issues of accounting for proper marrow cellularity changes during transport, realistic and detailed anatomic modeling of the skeleton and skeletal site de pendencies. The use of 3D image based models create more anatomically realistic and internally consistent representations of the human skeleton, which provides a more accurate assessment of dose to the critical target regions in the skeleton (e.g. active bone marrow). This chapter focuses on the development and implementation of an electron skeletal dosimetry model for the UF newborn hybrid phantom based on real 3D microCT imaging of newborn bone samples acquired at autopsy. Heterogeneous N ewborn S keleton M acrostructure D evelopment The volume derivation of each newborn bone sample into cortical bone, spongiosa, medullary marrow and cartilage (or fibrous connective tissue) is described in detail in Chapter 2. These volumes were then used to create bone samples with distinct cortical, spongiosa, and cartilage boundaries from the homogeneo us bones developed in Lee et al. (2007). Utilizing the Rhinoceros (McNeel North America, Seattle, WA) software, the homogeneous bone sample

PAGE 96

96 inner boundary mesh was offset incrementally until the desired spongiosa volume for that specific bone site was obtained. It should be noted that tag values were chosen for futur e use in the whole body newborn phantom, but any tag value may be used. The polygon mesh format generated by Rhinocero s currently cannot be used as input into any Monte Carlo code. Therefore, these heterogeneous segmented bone sites were converted to .raw files and input into the inhouse Matlab (The Mathworks, Inc., Natick, MA) code, Voxelize r (Lee et al. 2007), which creates a voxelized version of the bone site at a user defined resolution. All bone sites were voxelized at a resolution between 0.005 cm and 0.02 cm. Figure 3 1 A D shows the newborn femur and lumbar vertebrae in rendered polygon mesh form and in segmented voxelized form. In order to check the voxelization accuracy, the voxel generated co rtical, spongiosa, and unossified bone volumes were verified by an in house Interactive Data Language ( IDLSegmentation of the N ewborn M icrostructure ) (ITT Visualization Solutions, Boulder, CO) version 6.1 project, Voxel_Counter This subroutine was written to count the number of voxels for each tag value. Multiplying the number of voxels b y the resolution will give the volume for that bone tissue region. A tolerance of 5% was chosen as the acceptable difference between then voxelized and polygon mesh tissue volumes, but most tissues were less than 1% different for each bone site. A second check was performed to visually inspect the voxelized version of each bone site. ImageJ (National Institutes of Health Public Domain, Bethesda, MD) was used to scan slice by slice to check for any image artifacts created during the voxelization process. This iterative process was performed until each bone site had a relative difference less than 5% between the voxelized and polygon mesh tissue volumes. T he 3D microstructure of newborn trabecular spongiosa, various bone specimens were acquired during autopsy harvest from two newborns a 4 day female and a 5 day female both

PAGE 97

97 under an approved Institute Review Board protocol at the University of Florida Shands Hospital. The following bone sites were taken fro m the 4 day newborn: sternum, occipital bone, 2nd right rib, 2nd left rib, L2L5 vertebrae, and T9T12 vertebrae. From the 5 day newborn, the bone specimens acquired included C3C7 vertebrae, T1T5 vertebrae, T10T12 vertebrae, L1L5 vertebrae, the 4thPIRT E lectron D osimetry M odeling r ight and left ribs, and a portion of the right iliac crest. These specimens were subjected to microCT imaging (Scanco Medical AG, Brttisellen, Switzerland) at 30 m isotropic resolution. Using an inhouse image processing code, BIDUserInterface, the largest region of interest (ROI) possible within the microCT sample was selected for each bone site. The resulting images were converted to binary format using thresh old techniques previously given in Rajon et al. (2006) Currently the PIRT code is written to accept 60 m microCT images as input. Consequently, the pre m median filtered images were rem m images. These median filtered, re m microCT images were then converted to the binary image necessary for m images. The Paired Image Radiation Transport ( PIRT ) model, which simultaneously uses both the paired images of the skeletal micro structure and macrostructure to account for energy escape from cortical bone and spongiosa, shows that there is a faster decrease in the bone marrow electron absorbed fraction at higher electron energies as compared with estimates fr om infinite spongiosa t ransport (Shah et al. 2005). The PIRT model is a voxel based code coupled with EGSnrc (Electron Gamma Shower) Monte Carlo platform (Kawrakow and Rogers 2003) PIRT uses full electron transport through the actual voxelized 3D macrostructure images of spon giosa, cortical bone, and cartilage to account for particle escape into s oft tissue and cortical bone cross fire into spongiosa combined with the actual voxelized 3D microCT images of the skeletal

PAGE 98

98 spongiosa microstructure. In the EGSnrc implementation, i ndividual electrons are tracked simultaneously within the coordinates of the microCT microimage of trabecular bone volume, trabecular active marrow, trabecular inactive marro w, and shallow active marrow and also the coordinates of the CT macroimage of the spongiosa, cortical bone volume, cartilage (where applicable) and surrounding soft tissues. When the particle is shown to leave the spongiosa of the CT macroimage, tracking within the microCT microimage is halted and the particle is transported within a homogeneous region of cortical bone defined only by the larger voxels of the ex vivo CT macroimage. Particle tracking is terminated if the particle escapes from the cortical bone region. If the particle re enters spongiosa after leaving cortical bone, then particle tracking is resumed in the microCT microimage. An inherent assumption with this model is that the physical section of spongiosa taken from the skeletal specimens is a uniform representation of the trabecular microstructure. Consequently, t he trabecular microstructures of the vertebral processes, for example, are implicitly assumed to be approximated by that imaged within the vertebral body. As discussed in Chapter 2 each bone site has a layer of unossified bone surrounding an ossification cen ter. Previous adult skeletal models did not take into account the energy deposition into these actively developing regions of the skeleton. This is an understandable due to the fact that adults, unlike the newborn, do not have this layer that surrounds an ossification center. The layer of joint cartilage around the adult proximal and distal end of the extremities is not thick enough to warrant any significant energy deposition. Studies have shown that approximately 9% of all radiation induced bone sar comas are chondrosarcomas (Aprin et al. 1982). Frequency and location of chondrosarcomas are reported in the literature and include thoracic region, pelvis, and long bones (Hormozan et al. 1982; Hormozan et al. 1984; Parker et

PAGE 99

99 al. 1976; Bove et al. 2005) Chondrocytes are the targeted radiosensitive cell population in cartilage and fibrous connective tissues As with the active marrow, where it is assumed that the energy deposited over the entire active marrow region is proportional to the dose to the t argeted hematopoietically active stem cell population, it will be assumed that the average energy deposition in unossified bone is proportional to the dose given to the targeted chondrocyte population. Therefore, in all PIRT radiation transport of the new born (possibly other ages as microCT data warrants), the energy deposition to unossified bone will be included as a target For the newborn, unossified bone is also included as a CAR source region given the mixture of mineral bone present in the ossificat ion process. The PIRTCartilage code modified from the original PIRT code to include electron sources and targets for ene rgy deposition in the cartilage/fibrous connective tissue region s is shown in Appendix A. In addition to this modification, the origina l PIRT code was modified to model an entire long bone, instead of just the proximal ends. For the adult, electron cross fire between the proximal end, distal end, and shaft region is assumed negligible. However, the newborn long bones are considerably sm aller, approximately 9 cm in length. The CSDA range of a 10 MeV electron is approximately 9.8 cm in soft tissue. Therefore, the newborn long bones will have substantial electron cross fire between sub regions of shaft and proximal/distal ends. Appendix B shows the user code, PIRTCartilageLongBone The code allows user defined cellularity as input in the upper and lower shaft region. However, if proximal and distal microCT samples are to be run, the user must run the code once with the proximal microstr ucture image, and then run a second time with the distal image, averaging the results by marrow volume fraction, bone volume fraction, trabecular bone surface area, or linearly based on the source.

PAGE 100

100 Input files are necessary in order to run any of the user codes: an energy input file with electron histories per energy, an image processed binary microCT image, a voxelized macroimage, and a PEGS file (Preprocessor for EGSnrc ) containing the material cross section data for the EGSnrc Ten thousand particle his tories are run for low energy electrons (1 keV 100 keV), 750,000 histories for intermediate electron energies (100 keV 1 MeV), and 250,000 histories for high energy electrons (1 MeV 10 MeV). This is to ensure statistical variability for the electron absorbed fractions below 1% at intermediate to high electron energies. Statistical uncertainties at low energies and large distances (e.g. an AM electron source irradiating a CAR target) can be as high as 100%. However, this is due to the extremely low number of electrons that travel from the active marrow, through the entire spongiosa region, through cortical bone, and into cartilage to deposit energy. Electron absorbed fraction data from active marrow ( AM ) total shallow marrow (T M50R esults and Discussion ), and cartilage ( C AR ) tissue targets and AM trabecular bone volume ( TBV) trabecular bone surface ( TBS ) cortical bone volume ( CBV), inactive marrow ( IM ), and CAR (only for newborn) electron sources were computed. The corresponding specific absorbed fractions were then co mputed by dividing the electron absorbed fractions by the respective target tissue mass. Newborn I mage D ata for the S keletal M acrostructure and M icrostructure The voxel resolution and voxel array size for the newborn skeletal macrostructure are shown in the first set of columns in Table 31. Due to computer memory limitations large bone sites such as the cranium and ribs were voxelized at 0.02 cm, while small bone sites such as the patella, sacrum, scapula, and cl avicles were voxelized at 0.005 cm. However, even at the lowest resolution of 0.02 cm, differences less than 1% were achieved between the voxel volumes and polygon mesh volumes for the cartilage, spongiosa, and cortical bone tissues. The last three sets

PAGE 101

101 of columns in Table 31 are for the skeletal microstructure data obtained after filtering and thresholding the selected ROI for each bone sample. The largest ROI was selected for each microimage in order to obtain the best representative sample of spongiosa for transport. Voxel dimensions, marrow volume fractions ( MVF ), and trabecular bone volume fractions ( TBVF) are all shown. Multiple regions were imaged for the lumbar vertebra, thoracic vertebra, cervical vertebra, and ribs. The average MVF and TBVF are indicated in Table 3 1 with the corresponding standard deviation. There are skeletal sites listed in the table which do not have a corresponding microimage. As discussed in Chapter 2, due to the sensitive nature of the newborn autopsies and acquiring additional samples, only select bone specimens from the thoracic cavity were extracted. As indicated in Chapter 2, surrogates for bone sites without microimages were assigned. These surrogates were then used for the microstructure image input into PIRTC artilage and PIRTCartilageLongBone For the cranium, the thoracic vertebrae was chosen as a surrogate for the microsturcture for the cranium, since this microstructure has the smallest MVF compared to the other bone sites. Therefore, a pseudo active marr ow mass using the homogeneous bone volume for the cranium, the SVF for the cranium and the MVF for the thoracic vertebra was calucated and used in determining the SAF values for the active arrow targets. Finally, as indicated in Table 31, both the MVF / TB VF val samples are less than 2%. The greatest difference of approximately 4% is seen in T2 and T3. Therefore, it appears no statistical differen

PAGE 102

102 Bone-Site Dependent Specific Absorbed Frac tion Data for the UF Hybrid Newborn Phantom Tabular data for the newborn specific abso rbed fractions are in Appendix C. The corresponding figures for the tabular data are in Appendices D G. For bone sites with a single microstructure, specific absorbed fractions ar e calculated by dividing the absorbed fraction by the target tissue mass. ;100%) CFTTS TS r rr rr (CF)(m (3-3), where CF is the cellularity factor and all other term s were previously assigned. As previously mentioned, multiple sample sites from the ribs, lumbar vertebra, thoracic vertebra, and cervical vertebra were transported. An average absorb ed fraction was obtained for these bones sites by weighting the AM sources by the MVF the TBV sources by the TBVF the IM sources by MVF and transport cellularity, and the TBS sources by the trabecular bone surface area for each microstructure, i. avg avgmTT T r rAM rAM (3-4) avg avgmTT T r rIM rIM (3-5) avg avgmTT T r rTBS rTBS (3-6) avg avgmTT T r rTBV rTBV (3-7) where:

PAGE 103

103 spongiosaAM iiii ii avg spongiosaAM i i i iV MVFCF MVF MVF V MVFCF TT T (3 8) .1 1 spongiosaIM i iii ii avg spongiosaIM i i i iV MVFCF MVF MVF V MVFCF TT T (3 9) ._ ii i avg i iTBSArea TBSAreaT T (3 10) spongiosaCB iiii ii avg spongiosaCB i i i iV TBVF TBVF TBVF V TBVF TT T (3 11) A linear average was used for the CAR and CBV sources. Subsequent specific absorbed fraction values were calculated utilizing thes e average absorbed fraction quantities. Each of the 20 bone sites is listed as a set of three tables: AM targets, TM50 targets, and CAR targets for all bone tissue sources. Cellularity dependence for the specific absorbed fractions is only found when the electron source is in AM and at low to intermediate electron energies. In the case of cellularity independent specific absorbed fractions for the TBV, TBS CBV, and CAR electron sources, only input microstructures at 100% cellularity were run. However, for the IM source, 50% cellularity was arbitrarily chosen for each case run. The following sections discuss the specific absorbed fraction results for the three targets: AM T M50Specific absorbed fractions for an active marrow targ et from a so urce in active marrow and CAR. Specific absorbed fractions for electron sources in AM irradiating AM targets are shown in Appendix D based on the tabular data in Appendix C. This source target combination exhibits a monotonically decreasing function for both the absorbed fraction and specific absorbed fraction quantities. As the electron energy increases, the electrons will eventually escape out of

PAGE 104

104 spongiosa, only depositing a fraction of the initial energy to marrow. The absorbed fraction approaches unity for a n electron energy 10 keV and below. Therefore, the corresponding specific absorbed fraction at low electron energies is proportional to the inverse target tissue mass. For each bone site, the curves start at the top with 10% cellularity and end with 100% cellularity as the bottom most curve. This is a result of the cellularity factor term in the denominator Eq. 33. If the mass of the target tissue, AM is held constant at 100% cellularity, then a decrease in the fractional cellularity will increase the overall specific absorbed fraction ratio. Once the electron energy has reached approximately 500 keV to 1 MeV, depending on the bone site, each curve collapses and becomes cellularity independent. This convergence is achieved once the electron energy ha s reached the point where a sufficient number of marrow cavities have been crossed and the electron escapes of out spongiosa. For low to intermediate electron energies, it is important to asses the accuracy of a marrow cellularity measurement in a patient given a factor of 10 difference in the specific absorbed fraction quantity in the most extreme case. The largest amount of energy deposition to AM from an AM source occurs in the cranium, and least amount in the patella, directly proportional to the amou nt of active marrow in these bone regions. Specific absorbed fractions for an active marrow target from all other bone sources Similarly to Appendix D, the specific absorbed fraction figures in Appendix E are for AM targets, but from an IM TBS TBV, CB V or CAR source. As previously mentioned, the specific absorbed fractions for these sources are cellularity independent. As such, these sources were run at 100% cellularity, except in the case of the IM source, which was run at an arbitrarily chosen 50% cellularity. Figure 3 2 exemplifies the cellularity independent trend for each source. The TBS TBV, CBV, and CAR sources were each run at 100% and 50% cellularity, while the IM source was run at 90% and 50% cellularity. As shown, each source and cellularity combination

PAGE 105

105 has less than a 0.1% difference between the specific absorbed fraction quantities. This phenomenon is a result of the target mass and absorbed fraction both equally compensating for the change in cellularity for these sources. Conseque ntly, when the absorbed fraction is divided by the mass, the compensation in the numerator and denominator effectively cancels out so the overall fraction remains const ant regardless of cellularity. For a TBS source, 50% of the time electrons are emitted toward the marrow cavity, and 50% of the time electrons are emitted toward the trabecular bone. Therefore, the specific absorbed fraction for a TBS source to AM target is 50% of the inverse target tissue mass at low electron energies, or 50% of the specif ic absorbed fraction value for an AM source to AM target at the ICRP newborn reference cellularity of 100%. Finally, similarly to the AM source and target cellularity independence at high electron energies, the TBS TBV, and IM sources begin to converge a t electron energies between 400 keV and 800 keV. Therefore, source independence occurs at these energies because the electrons have traveled through a large enough number of marrow cavities and space to effectively results in the same energy deposition. Energy deposition from an IM and TBV source continues to increase as electron energy increases until the electron energy reaches the point of electron escape out of spongiosa, as shown in the figures by the moundshaped trend. A similar response is s een in the CBV and CAR sources. Electrons with enough energy will escape the cartilage and cortical bone regions and enter into spongiosa, then exit the spongiosa once the energy corresponding to the spongiosa thickness has been reached. Therefore, the l ower the electron energy corresponding to the maximum energy deposition for a CBV source, the thinner the cortical bone region. At a peak energy deposition of 2.0 MeV, the femur has the thickest cortical bone, probably as a result of the thick cortical sh aft region. Similarly, the thinnest cortical bone can be found in the patella

PAGE 106

106 and hands, at a peak energy of 0.5 MeV. Table 32 lists measured bone site specific cortical bone thicknesses for the UF hybrid newborn phantom. These were measured using the measurement tool in Rhinoceros. For the CBV source, the dosimetry results exactly correlate with measured cortical bone thickness. In addition to cortical thickness, similar trends can be seen in cartilage sources, but coupled with the cortical thickness trends. Therefore thinner cartilage and thicker cortical will correlate to less energy deposition than thicker cartilage and thinner cortical regions, since the CDSA range for electrons in cortical bone is less than cartilage. For an IM source the peak energy deposition occurs at a constant 100 keV. This corresponds to the maximum distance an electron travels to reach the spongiosa boundary. Also, at this energy, the cranium has the lowest specific absorbed fraction, while the patella has the highest, due to the relativ e AM masses in these regions. For a TBV source, the thickness of bone trabeculae, marrow cavity size, and AM mass in combination determine the electron energy where maximum energy deposition occurs. Specific absorbed fractio ns for a shallow marrow t arget fr om all bone sources Current dosimetry results report energy deposition to a 10surrogate for the osteoprogenitor cell target population for the induction of bone cancers. However, studies show this endosteal layer of cells should be extended to at le ast a 50 region (Gossner et al. 2000; Gossner et al. 2003). It should be noted that the periosteum also contains osteoprogenitor cells, but in relatively smaller quantities compared to the endosteum. Therefore, f or the purposes of this study, results for the 50reported as total shallow marrow or TM50 in the trabecular and cortical endosteum. Appendix F illustrates the specific absorbed fractions from a source in IM, AM (at 100% ICRP reference cellularity) TBV, CBV, and TBS to target TM50. As with previous results, these sources are cellularity independent, and therefore run at 100% cellularity, except for the IM source, which

PAGE 107

107 was run with 50% cellularity. Source independence occurs for the IM (at 50% cellular ity), TBS and AM (at 100% ICRP reference cellularity) sources. This occurs as a result of the starting particle located in the target tissue, regardless if the particle was specifically in IM, AM or TBS For a TBV source, the source independence occurs between 200 keV and 700 keV, depending on the bone site. The electron must have enough energy to exit the trabecular bone volume. Consequently, as with previous discussion, the convergence occurs at the electron energy for which the source particle has traversed enough marrow cavities to effectively deposit the same energy whether the particle began in TBV, TBS AM or IM. Again, the energy at which the convergence occurs depends on the overall marrow size in each bone site. Results fro m an AM source in the thoracic vertebrae, ulna, craniofacial bones, and fibula are shown in Figure 35 A D. These specific absorbed fractions results show cellularity independence for this source and target combination. Typically, at low energies, the absorbed fraction for an AM source to A M50 target is proportional to the product of the shallow marrow volume fraction ( SMVF ) and the CF Likewise, an AM source to IM50 target is proportional to the product of the SMVF and (1CF ). When summing the IM50 and AM50 to total a TM50 50AMAM(CF)(SMVF) ~ target, the cellularity factor cancels out, and thus mathematically proves the cellularity independence. 50IMAM(1-CF)(SMVF) ~ (3 12) 50TMAM(CF)(SMVF)+(1-CF)(SMVF)=SMVF ~ Therefore, the specific absorbed fraction is cellularity independent, and is proportional to the ratio of the SMVF and the shallow marrow target mass at low electron energies. 5050 TMTMAM m ~ SMVF (3 13)

PAGE 108

108 For example, t he thoracic vertebra, cranium, and hands have a SMVF of approximately 0.55, 0.84, and 0.61, respectively. After dividing by the shallow marrow mass for each bone site, the values become 0.34, 0.07, and 1.47, respectively. The specific absorbed fraction r esults, as reported in Appendix C for 1 keV are approximately 0.33, 0.05, and 1.41, respectively. The other skeletal sites follow this same pattern of cellularity independence and show a pproximations re lated to Eq. 313. Specific absorbed fractions for a cartilage or fibrous tissue t arget fr om all bone sources As discussed in the methods, a cartilage ( CAR) or fibrous connective tissue layer surrounds the unossified skeletal sites, in addition to the typical non bone associated intervertebral disc and co stal cartilage found in the newborn skeleton. Appendix G illustrates the specific absorbed fraction results by bone site for sources starting in IM, TBS TBV, CBV, or CAR and depositing energy in the CAR target. Self dose from a CAR source at low energies is approximately 1.0 since most electrons at low energies cannot escape from this region. Once the electron energy approximately equals the CDSA range of the cartilage thickness, a decrease in the energy deposition to CAR occurs. Larger cartilage thick nesses require higher electron energies for particle escape. Electron sources in AM (ICRP reference cellularity), TBS IM, and TBV are source independent for the specific absorbed faction quantities. Electrons need enough energy to traverse the entire sp ongiosa and cortical bone regions to deposit any energy in the target cartilage region, regardless of the particle source. For all bone sites, except the long bones, at high electron energies, the CBV source converges with sources in spongiosa, AM IM, TB S, and TBV. As previously discusses, there reaches a point where the electron energy is source is high enough that regardless of the source, the same amount of energy is going to be deposited. However, for the long bones, at approximately 500 keV, the sources in spongiosa deposit more electron energy into a CAR target.

PAGE 109

109 This is due to the fact that the long bones are not completely surrounded by a cartilage layer. The shafts of long bones are completely ossified at birth and do not contai n a cartilage layer. The proximal and distal ends, wh ere spongiosa resides, do have a layer of cartilage for the unossified cortical development. Consequently, more energy deposition occurs from sources in spongiosa in the proximal and distal ends, where the cartilage layer is lo cated on the long bones. Therefore, this non-uniform cartilage layer surroundi ng the bone contributes to the lack of source convergence at high energies, as s een with other bone sites with a uniform cartilage layer. Similarly to the AM sources to TM50 targets, the AM sources to CAR targets are cellularity independent. However, the rationale for this is different than for the TM50 targets. Examples of this cellularity independence are shown in Figur e 3-6 AD for the thorac ic vertebrae, ulna, craniofacial bones, and fibula bone site s. As before, the electrons in AM must have a high enough energy to escape out of spongiosa, pass through cortical bone, an d deposit energy into cartilage. That energy required to traverse the spongiosa and co rtical regions is the same, regardless of the cellularity. Ther efore, regardless of the cellularity inside the spongiosa region, the electron deposits the same energy in the CAR region. Skeletal-Averaged Absorbed Fraction Compar isons for the UF Hybrid Newborn Phantom and the 2003 Newborn Model The current Stabin and Sieg el (2003) model does not contain absorbed fraction data by skeletal site. Instead, skeletal-averaged absorb ed fraction data based on skeletal tissue masses tied to the ORNL stylized phantom are reported. In order to calculate the skeletal-averaged absorbed fraction values, a quantity defined as sif, index s for source and i for skeletal site, is used to determine the fractional amo unt of source tissue. ,, ,() sisi si sisskeleton imm f mm (3-10)

PAGE 110

110 These sif values are listed in Table 3 3, along with the ICRP reference cellularity by bone site for the newborn. Next, these values are used in combination with the skeletal site specific absorbed fraction data for each source and target at the ICRP reference cellularity. ,()(;)skeletonTs siTsi irrfrrCF ( 311) Figures 3 7 A D illustrate the tabular data found in Table 33. For a TBS source to AM target, the skeletal averaged absorbed f raction data start to diverge at approximately 150 keV. The overestimation in electron energy deposition between the 2003 model and the PIRT model is 5% at 150 keV up to 7.8 times at 4 MeV. If the 2003 results based on infinite transport from 4 MeV are u sed for energies up to 10 MeV, then the current 2003 results overestimate up to 20 times compared to the PIRT method for a 10 MeV electron. For a TBV source, the divergence starts to occur at 100 keV. Overestimation between then 2003 model and PIRT can b e as low as 7% at 80 keV up to 9 times at 4 MeV. Extending the 2003 results out to 10 MeV can show overestimations up to 22 times that of the PIRT results. For an AM source, the divergence begins at approximately 30 keV. Between 30 keV and 4 MeV overest imations from 4% to 7 times, respectively, can be seen between the current 2003 model and then PIRT model. As before, extending the 2003 results out to 10 MeV can show up to 17.5 times more energy deposition that in the PIRT model. In the 2003 model, ene rgy deposition from a CBV source to AM target is zero. However, the skeletal averaged PIRT model shows up to 11% energy deposition at 800 keV. Similarly, up to 6% energy deposition at 1.5 MeV can be seen from a CAR source to AM target in the PIRT model c ompared to zero deposition in the 2003 model. Tabular results for TM50 targets are reported, but are not compared with the 2003 model. A fair comparison cannot be made between the two models because a 10model, while a 50PIRT

PAGE 111

111 The current 2003 model uses overall cortical and trabecular bone percentages of 80% / 20%, respectively. However, based on the analysis in Chapter 2, these percentages are 40% / 60%, respectively. Assuming a uniform mineral bone source (cortical bone plus trabecular bone), Figure 38 compares the skeletal averaged absorbed fraction results between the 2003 model using a weighted cortical/tr abecular bone percentage of 40% / 60% and 80% / 20% with the 40% / 60% data from the PIRT model. Using the 80% cortical bone weighting for the 2003 data forces a substantial decrease in the absorbed fraction data due to the relatively high weighting of ze ro energy deposition from a CBV source. In fact, at energies above 10 keV and below 1.5 MeV, the skeletal averaged absorbed fraction results for the 2003 model MB source are underestimating the PIRT model. However, after 1.5 MeV electron escape dominates the 2003 model results and, therefore, overestimates the energy deposition relative to the PIRT model. In comparison, using the appropriate weighting of 40% cortical bone and 60% trabecular bone in the 2003 model for a MB source results in an overestimat ion, for all electron energies, compared to the PIRT model. Therefore, by under weighting the contribution from trabecular bone, assuming 20%, and not considering any contribution of energy deposition from cortical bone, the 2003 model significantly undere stimates the energy deposition to AM C onclusions The results in this chapter show the importance of source target combinations in terms of cellularity independence and source independence as a function of electron energy for specific absorbed fraction data. IM TBV, CBV, TBS and CAR sources to AM targets are all cellularity independent. Depending on the bone site, source independence from IM, TBV, and TBS sources to AM and TM50 targets occurs at high electron energies. Cellularity independence also exists for an AM source to both TM50 and CAR targets. Convergence of the various cellularity curves from AM sources to AM targets, depending on the bone site, occurs between 500 keV and 1 MeV.

PAGE 112

112 Results also show relative thickness of spongiosa, cortical bone, and cartilage based on the energy for peak deposition. Therefore, it is often useful to analyze skeletal sitespecific data variations, especially when exposing a certain region of the body to radiation (e.g. CAP exam). When comparing skele tal averaged absorbed fraction data for an AM IM TBV, or TBS source to any target, the 2003 model overestimates the energy deposition. This is a direct result of the infinite transport methods used in the model. The significantly small macrostructure o f a newborn allows for substantial electron energy escape, at energies between 50 keV to 100 keV. At low electron energies, any divergence between the 2003 and PIRT models is due to microstructural variations, while the impact of electron escape is domina nt at intermediate to high electron energies.

PAGE 113

113 Figur e 3 1. Comparison between the original rendered polygon mesh and segmented voxelized bone sites A) P olygon mesh femur B) V oxelized femur C) P olygon mesh lumbar vertebrae. D) voxelized lumbar vertebrae. A C B D

PAGE 114

114 Figure 3 2. Newborn specific absorbed fractio n data from a CAR, TBV, TBS CBV, and IM source to an AM target in the lumbar spine using the 5day old L3 microstructure at various AM cellularities.

PAGE 115

115 Figure 3 3. Newborn specific absorbed fraction data from a CAR, TBV, TBS CBV, and IM source to a TM5 0 target in the lumbar spine using the 5 day old L3 microstructure at various AM cellularities. Figure 3 4. Newborn specific absorbed fraction data from a CAR, TBV, TBS CBV, and IM source to a CAR target in the lumbar spine using the 5 day old L3 micros tructure at various AM cellularities.

PAGE 116

116 A B C D Figure 3 5. Newborn specific absorbed fraction data from an AM source to a TM50 target at various cellularities for the A) thoracic vertebrae, B) ulna, C) craniofacial bones, and D) fibula.

PAGE 117

117 A B C D Figure 3 6. Newborn specific absorbed fraction data from an AM source to a CAR target at various cellularities for the A) thoracic vertebrae, B) ulna, C) craniofacial bones, and D) fibula.

PAGE 118

118 A B C D Figure 3-7. Comparison between the 2003 and PIRT newborn skeletal-averaged ab sorbed fraction data to an AM target at ICRP reference cellularity for the A) AM source, B) TBV source, C) TBS source, and D) CBV source.

PAGE 119

119 Figure 3-8. Comparison between the 2003 and PIRT newborn skeletal-averaged absorbed fraction data to an AM target at ICRP reference ce llularity from the mineral bone ( MB ) source at various percentages of cortical and trabecular bone.

PAGE 120

120 Table 3 1. Macrostructure and microstructure imaging data for the newborn skeleton. MVF TBVF MVF TBVF Voxel Size Resolution x y z (cm) x y z x y z Cranium 430 x 535 x 482 0.02 Mandible 765 x 420 x 471 0.008 Sternum 251 x 484 x 1029 0.005 40 41 63 80 83 126 0.6098 0.3902 0.6065 0.3935 Ribs (Average) 492 x 386 x 479 0.02 0.6132 (+/0.094) 0.3868 (+/0.094) 0.6059 (+/0.090) 0.3941 (+/0.090) Upper (4 Day Right Rib 2) 6 21 44 12 42 89 0.6003 0.3997 0.5929 0.4071 Upper (4 Day Left Rib 2) 9 23 28 19 47 56 0.5269 0.4731 0.5236 0.4764 Middle (5 Day Rib 4) 25 34 64 51 69 129 0.7125 0.2875 0.7011 0.2989 Scapula 551 x 508 x 697 0.005 Clavicle 721 x 575 x 343 0.005 Vertebrae Cervicle (Average) 446 x 436 x 624 0.008 0.4415 (+/0.037) 0.5585 (+/0.037) 0.4421 (+/0.032) 0.5578 (+/0.032) 5 Day C346 57 78 92 114 157 0.4175 0.5825 0.4229 0.5771 5 Day C430 40 98 61 80 197 0.5049 0.4951 0.4984 0.5016 5 Day C541 62 64 83 124 129 0.4384 0.5616 0.4384 0.5616 5 Day C634 45 86 69 90 172 0.4336 0.5664 0.4331 0.5669 5 Day C730 45 67 60 91 135 0.4133 0.5867 0.4180 0.5820 Thoracic (Average) 350 x 311 x 1213 0.008 0.4178 (+/0.122) 0.5822 (+/0.122) 0.4224 (+/0.118) 0.5776 (+/0.118) 5 Day T124 42 62 48 85 125 0.3294 0.6706 0.3230 0.6770 5 Day T224 43 59 48 86 118 0.2730 0.7270 0.2847 0.7153 5 Day T326 38 63 53 76 126 0.2617 0.7383 0.2734 0.7266 5 Day T423 29 52 46 59 104 0.3241 0.6759 0.3332 0.6668 5 Day T522 28 60 45 57 121 0.3058 0.6942 0.3162 0.6838 5 Day T1049 68 82 98 137 164 0.4952 0.5048 0.4970 0.5030 5 Day T1148 35 113 96 71 227 0.3842 0.6158 0.3936 0.6064 5 Day T1255 48 118 111 97 237 0.4911 0.5089 0.4916 0.5084 4 Day T949 78 81 99 157 163 0.5797 0.4203 0.5794 0.4206 4 Day T1045 43 114 90 86 228 0.6144 0.3856 0.6116 0.3884 4 Day T1160 52 86 121 105 173 0.5224 0.4776 0.5232 0.4768 4 Day T1267 47 90 134 94 180 0.4321 0.5679 0.4419 0.5581 Lumbar Spine (Average) 295 x 322 x 687 0.008 0.4979 (+/0.061) 0.5020 (+/0.061) 0.5027 (+/0.057) 0.4973 (+/0.057) 5 Day L154 60 106 109 120 213 0.5265 0.4735 0.5259 0.4741 5 Day L259 23 92 119 46 184 0.4310 0.5690 0.4380 0.5620 5 Day L359 67 94 118 135 188 0.4584 0.5416 0.4640 0.5360 5 Day L455 48 104 111 97 208 0.4754 0.5246 0.4786 0.5214 5 Day L549 59 102 98 119 205 0.4013 0.5987 0.4154 0.5846 4 Day L269 108 63 138 217 127 0.5536 0.4464 0.5557 0.4443 4 Day L368 108 59 136 217 118 0.5452 0.4548 0.5490 0.4510 4 Day L475 108 65 151 216 131 0.5069 0.4931 0.5131 0.4869 4 Day L578 161 49 156 323 99 0.5832 0.4168 0.5849 0.4151 Pelvis Os Coxae (IC) 1007 x 418 x 652 0.008 20 21 83 40 42 166 0.6493 0.3507 0.6422 0.3578 Sacrum 568 x 569 x 673 0.005 Femur 275 x 252 x 842 0.01 Fibula 112 x 154 x 790 0.008 Tibia 253 x 213 x 1021 0.007 Humerus 493 x 177 x 802 0.008 Radius 150 x 279 x 773 0.007 Ulna 213 x 273 x 757 0.008 Foot 318 x 795 x 368 0.0079 Hand 304 x 447 x 596 0.008 Patella 152 x 97 x 151 0.005 60 Microns 30 Microns 60 Microns Dimensions 30 Microns Microstructure Microstructure Macrostructure Dimensions Microstructure

PAGE 121

121 Table 3 2. Cortical bone thickness estimates in the newborn skeleton. Bone Cortical Bone Thickness ESTIMATES (cm) Cranium 0.02 Mandible 0.03 Cervical Vertebrae 0.045 Thoracic Vertebrae 0.055 Lumbar Vertebrae 0.03 Sternum 0.017 Ribs 0.02 Scapulae 0.045 Clavicles 0.04 Os coxae 0.07 Sacrum 0.03 Humeri, Proximal 0.02 Humeri, Upper Shaft 0.22 Humeri, Lower Shaft 0.22 Humeri, Distal 0.01 Radii, Proximal 0.008 Radii, Shaft 0.15 Radii, Distal 0.005 Ulnae, Proximal 0.01 Ulnae, Shaft 0.14 Ulnae, Distal 0.012 Wrists and Hands 0.015 Femora, Proximal 0.015 Femora, Upper Shaft 0.23 Femora, Lower Shaft 0.23 Femora, Distal 0.015 Patellae 0.015 Tibiae, Proximal 0.02 Tibiae, Shaft 0.19 Tibiae, Distal 0.015 Fibulae, Proximal 0.005 Fibulae, Shaft 0.15 Fibulae, Distal 0.005 Ankles and Feet 0.02

PAGE 122

122 Table 3 3. AM TBV, TBS CBV, and CAR source f values for the UF hybrid newborn skeleton. ICRP Skeletal Site Reference Cellularity fAMfTBVfTBSfCBVfCAR Cranium 100 0.289 0.517 0.165 0.272 0.393 Mandible 100 0.052 0.022 0.054 0.022 0.021 Cervical 100 0.045 0.038 0.045 0.048 0.037 Thoracic 100 0.062 0.057 0.066 0.108 0.071 Lumbar 100 0.056 0.038 0.057 0.035 0.038 Sternum 100 0.006 0.003 0.007 0.002 0.012 Ribs 100 0.195 0.082 0.203 0.081 0.126 Scapula 100 0.019 0.018 0.038 0.031 0.021 Clavicles 100 0.007 0.007 0.014 0.012 0.011 Os coxae 100 0.076 0.035 0.074 0.078 0.046 Sacrum 100 0.023 0.015 0.023 0.014 0.015 Humeri, Proximal 100 0.013 0.017 0.025 0.005 0.013 Humeri, Upper Shaft 100 0.003 0.000 0.000 0.020 0.000 Humeri, Lower Shaft 100 0.003 0.000 0.000 0.020 0.000 Humeri, Distal 100 0.010 0.013 0.020 0.004 0.016 Radii, Proximal 100 0.002 0.003 0.004 0.001 0.005 Radii, Shaft 100 0.001 0.000 0.000 0.013 0.000 Radii, Distal 100 0.004 0.005 0.008 0.001 0.007 Ulnae, Proximal 100 0.005 0.007 0.010 0.002 0.007 Ulnae, Shaft 100 0.001 0.000 0.000 0.017 0.000 Ulnae, Distal 100 0.003 0.004 0.005 0.001 0.007 Wrists and Hands 100 0.014 0.012 0.018 0.011 0.035 Femora, Proximal 100 0.021 0.028 0.042 0.008 0.022 Femora, Upper Shaft 100 0.006 0.000 0.000 0.040 0.000 Femora, Lower Shaft 100 0.010 0.000 0.000 0.063 0.000 Femora, Distal 100 0.017 0.023 0.034 0.007 0.021 Patellae 100 0.001 0.001 0.001 0.001 0.001 Tibiae, Proximal 100 0.015 0.020 0.030 0.006 0.014 Tibiae, Shaft 100 0.006 0.000 0.000 0.048 0.000 Tibiae, Distal 100 0.009 0.012 0.018 0.003 0.013 Fibulae, Proximal 100 0.002 0.003 0.004 0.001 0.006 Fibulae, Shaft 100 0.001 0.000 0.000 0.013 0.000 Fibulae, Distal 100 0.003 0.004 0.006 0.001 0.007 Ankles and Feet 100 0.022 0.019 0.028 0.016 0.036 UF HYBRID NEWBORN

PAGE 123

123 Table 3 4. Skeletal averaged absorbed fraction data fo r the UF hybrid newborn skeleton based on PIRT transport. Energy (MeV) (AMAM)(AMTBS)(AMTBV)(AMCBV)(AMCAR)(TM50TBV)(TM50TBS)(TM50AM)(TM50CBV)(TM50CAR) 0.001 9.97E-01 4.94E-01 1.26E-06 1.14E-07 0.00E+00 8.34E-07 4.83E-01 5.62E-01 5.77E-08 0.00E+00 0.003 9.96E-01 5.17E-01 1.30E-04 3.87E-05 1.63E-07 1.20E-04 5.16E-01 5.61E-01 9.03E-06 1.11E-07 0.005 9.95E-01 5.18E-01 6.53E-04 1.12E-04 3.66E-07 5.94E-04 5.17E-01 5.60E-01 4.16E-05 2.40E-07 0.010 9.90E-01 5.19E-01 3.61E-03 4.24E-04 2.01E-06 3.43E-03 5.17E-01 5.56E-01 2.43E-04 7.37E-07 0.015 9.82E-01 5.19E-01 7.54E-03 8.61E-04 3.54E-06 7.33E-03 5.14E-01 5.49E-01 4.90E-04 1.54E-06 0.020 9.73E-01 5.17E-01 1.26E-02 1.43E-03 5.53E-06 1.22E-02 5.10E-01 5.41E-01 8.10E-04 2.41E-06 0.030 9.48E-01 5.14E-01 2.52E-02 2.86E-03 1.06E-05 2.43E-02 4.98E-01 5.21E-01 1.62E-03 5.20E-06 0.040 9.19E-01 5.10E-01 4.05E-02 4.67E-03 1.66E-05 3.88E-02 4.84E-01 4.96E-01 2.65E-03 8.62E-06 0.050 8.87E-01 5.04E-01 5.79E-02 6.71E-03 2.50E-05 5.48E-02 4.69E-01 4.69E-01 3.77E-03 1.37E-05 0.060 8.53E-01 4.98E-01 7.62E-02 8.99E-03 3.60E-05 7.12E-02 4.51E-01 4.40E-01 5.04E-03 2.05E-05 0.080 7.85E-01 4.83E-01 1.13E-01 1.38E-02 6.23E-05 1.01E-01 3.98E-01 3.89E-01 7.69E-03 3.79E-05 0.10 7.23E-01 4.73E-01 1.48E-01 1.90E-02 1.02E-04 1.22E-01 3.49E-01 3.52E-01 1.05E-02 6.41E-05 0.15 5.96E-01 4.54E-01 2.16E-01 3.28E-02 2.76E-04 1.53E-01 2.88E-01 2.93E-01 1.81E-02 1.79E-04 0.20 5.24E-01 4.39E-01 2.50E-01 4.65E-02 8.30E-04 1.66E-01 2.62E-01 2.64E-01 2.59E-02 4.41E-04 0.30 4.57E-01 4.19E-01 2.70E-01 7.01E-02 4.67E-03 1.69E-01 2.39E-01 2.39E-01 3.92E-02 2.35E-03 0.40 4.16E-01 3.99E-01 2.71E-01 8.65E-02 1.20E-02 1.66E-01 2.23E-01 2.22E-01 4.85E-02 6.07E-03 0.50 3.84E-01 3.78E-01 2.66E-01 9.70E-02 2.14E-02 1.61E-01 2.09E-01 2.08E-01 5.45E-02 1.09E-02 0.60 3.57E-01 3.57E-01 2.58E-01 1.03E-01 3.10E-02 1.55E-01 1.97E-01 1.94E-01 5.82E-02 1.56E-02 0.80 3.10E-01 3.17E-01 2.38E-01 1.08E-01 4.63E-02 1.41E-01 1.74E-01 1.71E-01 6.09E-02 2.28E-02 1.0 2.73E-01 2.81E-01 2.17E-01 1.06E-01 5.50E-02 1.29E-01 1.54E-01 1.52E-01 6.00E-02 2.65E-02 1.5 2.06E-01 2.14E-01 1.73E-01 9.26E-02 5.96E-02 1.02E-01 1.18E-01 1.15E-01 5.23E-02 2.79E-02 2.0 1.64E-01 1.70E-01 1.41E-01 7.80E-02 5.51E-02 8.31E-02 9.37E-02 9.16E-02 4.40E-02 2.54E-02 3.0 1.14E-01 1.17E-01 1.01E-01 5.73E-02 4.34E-02 5.92E-02 6.50E-02 6.37E-02 3.24E-02 1.97E-02 4.0 8.60E-02 8.84E-02 7.69E-02 4.46E-02 3.42E-02 4.52E-02 4.90E-02 4.83E-02 2.52E-02 1.55E-02 5.0 6.90E-02 7.05E-02 6.19E-02 3.63E-02 2.77E-02 3.65E-02 3.92E-02 3.88E-02 2.05E-02 1.27E-02 6.0 5.77E-02 5.88E-02 5.18E-02 3.05E-02 2.32E-02 3.05E-02 3.26E-02 3.24E-02 1.72E-02 1.07E-02 8.0 4.33E-02 4.42E-02 3.91E-02 2.32E-02 1.75E-02 2.30E-02 2.45E-02 2.43E-02 1.31E-02 8.11E-03 10.0 3.48E-02 3.54E-02 3.13E-02 1.87E-02 1.41E-02 1.85E-02 1.96E-02 1.95E-02 1.06E-02 6.55E-03

PAGE 124

124 CHAPTER 4 AN IMAGE BASED SKELETAL TISSU E AND DOSIMETRY MODE L FOR THE ICRP REFERENCE 15 YEAR MALE AND FEMALE I ntroduction The goals of this chapter were to (1) develop and apply a methodology for the subsegmentation of the skeleton into all skeletal tissues by bone site within the hybrid computational 15 year old male and female phantoms analogous to Chapter 2, and (2) implement the dosimetry methods utilized in Chapter 3 for dose assessment to a ctive marrow and endosteal tissues for the 15 year old female phantom of Lee et al. (2008) Det ailed methods on the development of the homogeneous 15year male and female hybrid phantoms are discussed in Lee et al. (2008). The methodology presented here targets total skeletal tissue masses for the reference 15 year old male and female as defined in ICRP Publication 89 (I CRP 2002) However, the study further distributes those masses in a bone specific manner based upon ICRP reference data, ex vivo CT data from an 18 year old male cadaver, microCT based images of the 18 year old male spongiosa from cadaver specimen collection, and the individual bone volumes defined within the UF hybrid 15year male and female phantoms (Lee et al. 2008) The tissue masses presented here are thus offered as a revision to those given previously by Cristy (1981) for the 15year active marrow distribution, and by Watchman et al. (2007) for all skeletal tissues. Electron dosimetry results are based on a large sample selection of 3D image data from an 18 year old cadaver instead of limited 2D chorddistributions from 1.7year and 9 year children. A glossary of acronyms for both tissue regions of the skeleton and model parameters used in this study is included at the beginning of this dissertation.

PAGE 125

125 Materials and Methods Cadaver Selection and Sample Acquisition The 66-year adult cadaver in Shah et al. (2005) was selected ba sed on criteria including BMI 18.5 25 kg m-2(CDC recommended healthy range), and cause of death that would preclude any significant skeletal deterioration. However, obtai ning samples from children and young adults is rare due to limited availability an d the sensitive nature in getting permission to acquire bone samples. After receiving IRB approva l, the Florida State Anatomical Board and the University of Florida Shands Hospital was able to provide us with an 18 year-old male cadaver to be used as a surrogate for the 15 year-old ma le and female skeletal modeling in this study. Unlike the selection criteria for the adult, limited cadaver availability for this age group restricts the criteria. It was estimated that this cadaver was 180 lbs. (8 1.6 kg) in weight and 72 inches (1.83 m) in height, which is approximately a BMI of 24.4 kg m-2. It should be noted that the cause of death was due to complications from gr aft versys host disease (GVHD). It should also be noted that this individual was given total body irradiation (T BI) during the treatment of his leukemia, external beam treatment to the ster num, and a bone marrow transplant. The literature suggests that suppression of bone growth in children, along with bone marrow suppression could occur with TBI (Parker and Berry 1976). However, the skeleton is considered to be mature by 18 years of age. Therefore, it is assume d that significant changes in the trabecular microarchitecture from TBI are negligible for the dosimetry assessment. Bone marrow changes are taken into account during transport. In-vivo cadaver imaging, cadaver harvest, and ex-vivo bone sample imaging The cadaver was scanned, in-vivo, with the Si emens Sensation 16 unit in the Department of Radiology at UF Shands Hospital prior to th e bone harvest. The cadaver was scanned at 1 mm slice thickness and reconstructed using both a bone filter and soft tissue filter. The in-plane

PAGE 126

126 resolution w as selected as to maximize the resolution by minimizing the field of view (FOV) around the cadaver. 120 kVp and 200250 mA were chosen as the scanning protocols in order to maximize tissue contrast. The head and extremities were scanned separately for hi ghest contrast and spatial resolution. The bone tissue specimen collection from the 18 year old male cadaver was performed on December 9, 2005. Representative samples from the entire skeleton were acquired during the bone harvest to further develop i nformation on the relative cortical and spongiosa percentages, as well as 3D microstructure information of 18year trabecular spongiosa for future transport. The following bone sites were acquired from the 18 year old male: cranium, mandible, whole spine sacrum, os coxae, mandible, right scapula, right clavicle, os coxae, sacrum, sternum, rib samples from the 1st, 6th and 12thSpongiosa image analysis using microCT right ribs, right proximal humerus, right proximal radius, right proximal ulna, right distal humerus, right distal radius, right distal ulna, right proximal femur, right proximal tibia, right proximal fibula, right distal femur, right distal tibia, and right distal fibula. These bone samples were then scanned, ex vivo (outside the cadaver), in the same manner as the in vivo imaging Again, maximizing the in plane resolution with the smallest scanning FOV, 1 mm slice thickness axial resolution, and both bone and soft tissue filter reconstruction, in order to obtain the best contrast resolution and spatial resolution necessary for ac curate cortical bone and spongiosa segmentation. As done in Chapters 2 and 3 for the newborn, bone specimens from the 18 year old were subjected to microCT imaging (Scanco Medical AG, Brttisellen, Switzerland ) at 30 m isotropic resolution. Prior to sample shipment, each bone was cut using a bone saw, and cored with a drill press in order to (1) maintain the microCT size restrictions of the bore (4 cm height

PAGE 127

127 and 3.8 cm in-plane) and (2) obtain a large, repr esentative sample of spongiosa. The resulting images were converted to binary format using techniques previously given in Rajon et al. (2006). Cored cranial samples from the parietal bone, oc cipital bone and frontal bone, cored vertebral samples from C3, C6, T1, T3, T6, T9, T12 and L1-L5, manubrium cut from the sternum, cored samples from the proximal humerus and femur, cu t samples from the distal femur and humerus, cut samples from both the proximal and distal fibu la, ulna, radius and tibia, cored sample from the subscapular fossa region of the right scapula, cut sample of th e sternal end to shaft region of the right clavicle, cored sample from the mandibl e body, cut sample of the shaft region in right rib-1, rib-6 and rib-12, cored sample of the right ilium from the os coxae, and cored sample from the medial sacral region were imaged. Segmentation of Skeletal Tissues from the 18-Year Male Cadaver CT and microCT Data As previously mentioned, the 15-year male and female skeleton developed in Lee et al. (2008) contain only homogeneous bone (no delinea tion between cortical bone and spongiosa). Similar to Chapter 2 for the newborn, skeletal tissue volume fractions are needed to partition the 15-year male and female homogeneous skelet ons into detailed skeletal models. The CBVF and SVF were determined from manual image segmentation in 3D-DOCTORTM (Able Software Corp., Lexington, MA) of the 18-y ear male ex-vivo scans. The MVF and TBVF with both in reference to the total volume of spongiosa (homogeneous bone ex clusive of its cortical bone cortex), were determined based on image segmentation described in Chapter 2. The SMVF was derived though an image analysis software using EGSnrc which is described in detail in Chapter 2. As previously discussed, the SMVF defines the fraction of spongiosa occupied by marrow space within 50m of the bone trabeculae surfaces. Th is latter parameter is used to define the surrogate tissue regi on for the osteoprogenitor cells.

PAGE 128

128 Skeletal Tissue Derivations for the UF 15Year Male and Female Hybrid Phantoms Calculations of reference 15-year male and female site-specific skeletal tissue masses, elemental compositions, and mass densities were pe rformed using data from three sources. The first were reference data give n in ICRP Publications 70 (I CRP 1995) and 89 (ICRP 2002), ICRU Publication 44 (ICRU 1989), and ICRU Publicat ion 46 (ICRU 1992). The second were CT and microCT images from skeletal specimens acquire d from the 18-year male cadaver. The third were homogeneous skeleton volumes defined with in the UF 15-year male and female hybrid phantoms. The following is a list of overall as sumptions and assumed bone surrogates made in this study: 1) Shafts of long bones have a MVF of 1.0 (no trabecular struct ures within the medullary cavities); 2) Rib MVF is assigned to the wrists/ha nds, patellae, and ankles/feet; 3) SVF and CBVF for the patella, wrist/hands, ankles/feet were determined by the in-vivo segmentation of the 18-year male cadaver; 4) Cellularity factors for the upper and lower half of the15year male and female femur and humerus were partitioned in a gradient style into proximal, upper shaft, lower shaft, and distal, such that the linear average between proximal/upper shaft, and lower shaft/distal targeted the ICRP 70 refere nce cellularity for upper half and lower half (e.g. 55% proximal, 35% upper shaft, 20% lower shaft, and 0% distal); 5) Medullary marrow volume fraction values for the upper shaft and lower shaft are assumed to be identical to that for whole segmented shaft from the in-vivo scans; 6) All volume fractions obtained by image segmentation are assumed to contain MST because these tissues can not be reali zed independently in the image.

PAGE 129

129 The following subsections are shortened due to the previous detailed analysis of skelet al tissue derivations in Chapter 2. Also, it should be noted that the tissue derivations below are considered the first iteration. Once this has been completed using the original image based data, a second iteration must be done to match ICRP 89 total mi neral bone 3700 g for the 15year female and 4050 g for the 15year male, excluding MST This mineral bone matching is done by uniformly increasing or decreasing the original image based CBVF from the 18 year male cadaver segmentation. Miscellaneous skel etal tissues A s defined in ICRP Publication 89, miscellaneous skeletal tissues ( MST ) consist of blood vessels and periosteum, but exclude periarticular tissue and blood. Limitations on image contrast and spatial resolution do not allow for any visual del ineation of miscellaneous skeletal tissues in the 18 year old male CT dataset Consequently the reference volume of 15 year male and female MST given in Table 9.2.15 of ICRP Publication 89 (male 150.49 cm3 or 155 g / 1.03 g cm1, female 142.16 cm3 or 145 g / 1.02 g cm1) was first distributed by bone site based solely on fractional homogeneous skeletal volume s (male 4943.17 cm3, female 4543.68 cm3) as shown in Chapter 2, Eq. 21. MST masses were calculated using the gender specific soft tissue de nsity of 1.03 g cm3 for the male and 1.03 g cm3 for the female given in ICRU Publication 46 (ICRU 1992) Once total MST volumes were assigned to each phantom sk eletal site, x, they were further partitioned into MST regions assigned to active marrow ( AM*), inactive marrow ( IM* ), mineral bone ( MB*), trabecular bone ( TB*), and cortical bone ( CB*), respectively, also according to their relative volumes.4 4 The asterisks for the variables denote their inclusion of constituent miscellaneous skeletal tissue volumes. Variables with no asterisk denote their ICRP 89 reference values which are exclusive of miscellaneous skeletal tissues.

PAGE 130

130 xxxxx MSTAMMSTVVSVFMVFCF (4 1) 1 xxxxx MSTIMMSTVVSVFMVFCF x xx MB* MST-MBMST x HB*V V=V V x xx CB MSTCBMSTMB x MBV VV V x xx TB MSTTBMSTMB x MBV VV V The derivation of site specific tissue volume s are given below. Marrow masses and volumes Active bone marrow volumes in the 15year male and female are derived using the same method in Chapter 2, Eq. 23. Inactive bone marrow volumes are obtained by replacing the CF term with (1 CF) in Eq. 23 in Chapter 2. Long bones in the 15year phantoms were partitioned as was done with the newborn phantom. These subdivisions are necessary in the 15year phantoms due to the varying cellularity gradient across the long bone regions. In this study, homogeneous bone volumes are taken directly from the 15year male and female hybrid phantoms of Lee et al. (2008) The b one site specific TAM and TAM* masses were calculated using Eq. 24 in Chapter 2, along with the ICRU Report 46 mass densities for active marrow ( AM = 1.03 g cm3 STMALE ) and gender specific soft tissue ( = 1.03 g cm3 STFEMALE = 1.02 g cm3AM) (ICRU 1992) For mass calculations in inactive marrow, a density, of 0.98 g cm3 and the calculated volume of IM were used in place of the active marrow terms in Eq. 24 in Chapter 2.

PAGE 131

131 Trabecular bone and cortical bone masses and volume s ICRP Publication 70, Table 10, provides cortical bone and trabecular bone percentages by bone sit e but only for the adult. Instead of determining 15 year male and female cortical and trabecular bone volume s based on these adult partitions of mineral bone values of CBVF and TBVF were determined via image segmentation of the 18 year male cadaver CT i mages and autopsy microCT images, respectively. The mass and volumes for both cortical bone and trabecular bone were determined using the identical formulation in Eq. 25 through Eq. 2 8 in Chapter 2. However, the CB is the ICRP 89 density for 15year cortical bone (1.80 g cm3S/V ratios for the 15year male and female skeleton ), and it is assumed that 15 year trabecular bone has an identical mass density to 15 year cortical bone. The cortical bone surface to volume ( S/V ) ratio is defined as the ratio of the Haversian canal surface area to the volume of ossified cortical bone, and is defined for dry bone ( exclusive of periosteum and blood vessels). However, the trabecular bone S/V ratio is defined as the ratio of trabecular sur face area to the volume of trabecular bone and is also defined for dry bone. Reference values for S/V ratios of cortical bone and trabecular bone are presented in ICRP 70, Tables 11 and 12, respect ively. ICRP Publication 89 suggests that a nominal refer ence value of 3 mm2 mm3 be used for cortical bone at skeletal sites not indicated in their Table 11. S imilarly, a default value of 18 mm2 mm3 is given for the trabecular bone S/V ratio. In the present study, an EGSnrc subroutine was written to calculat e (1) the total number of trabecular bone voxels and (2) the number of trabecular bone voxel surfaces adjacent to bone marrow voxels present in each 18year male thresholded microCT imaged skeletal site. The number of trabecular bone volume voxels was mul tiplied its unit volume to estimate the cumulative trabecular bone volume, while the number of bone voxel surfaces at the bone marrow interface were multiplied by their unit

PAGE 132

132 area to estimate the total trabecular bone surface area. Dividing the trabecular bone surface area by the trabecular bone volume gives the S/V ratios for each imaged skeletal site. For bone sites with multiple microstructures, a linear average was assumed for the overall reported value. Homogeneous spongiosa masses volumes, de nsities and elemental compositions Volumes, masses, and densities of the 15year male and female homogeneous spongiosa are calculated with the same methodology as reported in Eq. 29 through 2 11 in Chapter 2, but with an IM terms included in the express ions: xxxxxxxxxx spongiosa*TAM*TIM*TB*TAMTIMTBMST-TAMMSTTIMMST-TBV=V+V+V=V+V+V+V+V+V xxxx spongiosaTAMTIMTBV=V+V+V (4 2) xxxxxxxxxx spongiosa*TAM*TIM*TB*TAMTIMTBMST-TAMMSTTIMMST-TBm=m+m+m=m+m+m+m+m+m xxxx spongiosaTAMTIMTBm=m+m+m It should be noted that the shafts of long bones in the newborn are assumed to contain only medulla ry marrow, and are thus devoid of trabecular bone and not included in the calculation of spongiosa volumes, masses, or densities. Once homogeneous spongiosa volumes were calculated, 15 year male and female site specific spongiosa densities for each bone s ite x, as shown in Chapter 2, Eq. 210. The 15year male and female site specific spongiosa elemental compositions in percent by mass, x,k spongiosa*w were calculated as similarly to Eq. 2 11 in Chapter 2, but with the inclusion of IM: kxkxkx TAM*TAM*TIM*TIM*TB*TB* x,k spongiosa* x spongiosa*wm+wm+wm w= m (4 3), where k is the element al index and w is the mass percentage. There are no age dependent reference elemental composition data for trabecular bone, and thus, for these calculations, it was

PAGE 133

133 assumed the 15ye ar male and female elemental compositions of trabecular bone were the same as that for cortical bone given in Table 13.4 of ICRP Publication 89. The elemental compositions of active and inactive marrow were taken to be that given i n Table 13.4 in ICRP 89, independent of age and sex. The elemental compositions for MST were taken to be that of the male and female, gender specific, values for ICRU 44 male and female average soft tissues as given in Table A1 of ICRU 46 (ICRU 1992) S hallow marrow masses and volumes As discussed in Bolch et al. (2007) and Gossner et al. (2000, 3003) the surrogate target regions defining the location of the ost eoprogenitor cells are (1) a 50 m layer of marrow surrounding the surfaces of bone trabeculae in regions of spongiosa, and (2) a 50m layer of marrow adjacent to cortical bone / medullary cavity boundary in the shafts of the long bones. These two tissue regions are defined as shallow active marrow ( AM50) and shallow in active marrow ( IM50) which include both the shallow marrow from the trabecular regions and the medullary marrow, ,and are reported as a sum of total shallow marrow ( TM50) for the total target region in the 15year male and female. Again, a summary of all terms is given in the Glossary due to the extensive list of tissue definitions. To assess the shallow marrow volumes and masses, values of shallow marrow volume fraction ( SMVF ) were obtained from Monte Carlo sampling of 3D point locations within thres holded microCT images of 18year male spongiosa. The SMVF is defined as the fraction of spongiosa volume assigned to total bone marrow localized within 50 m of bone trabeculae surfaces. As such, volumes and masses of TA M50 *50xx xx TAM spongiosa*V=VSMVFCF for bone site x are obtained as: *50xxxx TIM spongiosa*V=VSMVF1-CF ( 44)

PAGE 134

134 **50 50xxxxxx TAMspongiosa*AMTMAMm=VSMVFCF =VCF **50 50xxxxxx TIMspongiosa*IMTMIMm=VSMVF1-CF =V1-CF To assess volumes and masses of CM50* or the sum of CIM50* and CAM50* the derived methods in Chapter 2, Eq. 2-13 and Eq. 2-14 were used. Cortical shallow marrow volume and active ( CAM50*) and inactive ( CIM50*) marrow masses were defined as: *50xxx CMmedullary marrow*shaftV=VSMVF *50 50xxxxxx CAMmedullary marrow*shaftAMCM*AMm=VSMVFCF =VCF (4-5) *50 50xxxxxx CIMmedullary marrow*shaftIMCM*IMm=VSMVF1-CF =V1-CF Homogeneous skeleton masses, volumes, de nsities, and elemental compositions In this study, as was done in Chapter 2 for the newborn, we have taken the noncartilaginous homogeneous skeleton of the UF h ybrid 15-year male and female phantoms and sub-divided it into explicit regions of trabecular spongiosa, cort ical bone, and for the long bones, medullary marrow. Homogenized skeleton vo lumes, masses, densities, and elemental compositions were computed using the derivations in Eq. 2-16 through Eq. 2-18 from Chapter 2, but with the inclusion of TIM or CIM contributions to the spongiosa and long bones, respectively. Electron Dosimetry Modeling for the 15-Year Female Hybrid Phantom In this study, electron dosimetr y was performed for the 15-year female only. The transport methodology with PIRT PIRTCartilage and PIRTCartilageLongBone and homogeneous bone segmentation are described in Chapter 3, and were applied to the computations involving the 15 year-old female skeletal model. The 18-year male microCT skeletal images were used as a surrogate for the 15-year skeleton, as discu ssed in the aforementi oned sections. Any

PAGE 135

135 microstructure surrogate assignments were also previously identified. Electron energy deposition to cartilage ( CAR) in the spine, ribs, and sternum is still reported as a surrogate target for the chondrocytes due to probabilistic incidence of chondrosarcoma. However, CAR sources are not performed during dosimetry analysis because the ossification process has been completed in the 15 year old skeleton. Dosimetry results for the gender independent, skeletal site dependent ICRP reference cellularities for the 15 year old female were determined based on a linear averaged between the res ults at transported cellularities. There are significant differences in volume for the spongiosa, cortical bone, and medullary marrow between then male and female phantoms, but the same microstructure image sets would be used for the male dosimetry. Future studies are necessary to analyze the impact on marrow dosimetry regarding the overall electron escape fraction due to the larger volumes seen in the 15year male skeletal model compared with the female. Long bones require a separate modeling due to the variation in cellularity for the proximal, upper shaft, lower shaft, and distal regions. The modeling was performed such that the appropriate cellularity could be entered for the upper and lower shafts. For the 100% 10% cellularity cases, the same cellul arity was placed in each region. For example, 50% cellularity was placed in the proximal, upper shaft, lower shaft, and distal regions for a 50% cellularity case run. Given the ICRP reference cellularity of 0% for the tibia, fibula, ulna, and radius, the reference AF and SAF data for an AM source did not need to be computed. Unlike the tibia, fibula, ulna and radius, the humerus and femur vary in ICRP reference cellularity between each of the four long bone regions. Therefore, the upper half and lower h alf of the humerus and femur were run separately with the ICRP reference cellularities in place and appropriate

PAGE 136

136 microstructures. The results were mathematically combined to emulate the results from a full long bone model. Results and Discussion Homogeneous 15-Year Male and Female Skeletal Models The 15 year-old male and female skeletal m odels were developed from whole-cadaver CT image segmentation, polygon mesh or NURBS surface modeling, and hybrid phantom voxelization. Details of th e latter are given in Lee et al. (2008). The voxel resolution chosen for each whole-body phantom was 0.1122 cm x 0.11 22 cm x 0.1122 cm and 0.0997 cm x 0.0997 cm x 0.0997 cm for the male and female, respectivel y, based on reference skin thickness. The site-specific homogeneous bone volumes, inclusive and exclusiv e of bone-associated cartilage, are shown in Table 4-1 for both the 15 -year male and female skeletal models. The polygon mesh total homogeneous skeletal model vol umes were approximately 1% and less than 1% different compared to ICRP reference 15-year male and female, respectively. The volume of total segmented skeletal tissue (incl uding all bone-associated cartilage) is 4806.20 cm3 and 5191.64 cm3 for the 15-year female and male skeletons, respectively. It should be noted that the reported cranium volume does not in clude teeth, and was therefore not included in the dosimetry model. The teeth were thus treated as a se parate tissue structure of the phantom. Based on a volume-weighted average of ICRP reference densities for the constituent skeletal tissues (1.03 g cm-3 for active marrow, 0.98 g cm-3 for inactive marrow, 1.80 g cm-3 for mineral bone, and 1.03 g cm-3 for miscellaneous skeletal tissues), a value of 1.36 g cm-3 is estimated as the skeletal-averaged non-cartila ginous homogenous bone density for the 15-year male and female skeletons. This is less than the 1.41 g cm-3 reported for the newborn in Chapter 2 due to the large amounts of IM present in the 15 year-old skeletons. Utilizing the homogeneous skeletal density, total non-car tilaginous skeletal masses of 6180.02 g and 6743.09

PAGE 137

137 g were realized in the hybrid-NURBS/PM 15-y ear female and male phantoms, respectively. These values are thus -0.7% and -0.3% different fr om the ICRP reference to tal skeletal masses of 6225 g and 6765 g for the 15-year female and male respectively. The total bone-associated cartilage masses for the hybrid-NURBS/PM 15-y ear female and male phantoms were 162.08 g and 152.33 g, respectively, which are -82% and -87% different from the reference masses of 920 g and 1140 g. Total cartilage volumes were not ma tched to ICRP reference value due to limited contrast resolution for the articular cartilage regions of the long bone s and hyaline cartilage regions of the ears, lary nx, trachea, extrapulmonary bronchi, and external nose. Only cartilage in the intervertebral disc, sternum, and ribs were directly segmented. However, an additional 26.75 g in the 15-year female and 30.68 g in the 15-y ear male is included for non-bone associated cartilage (external nose, trachea, larynx, extrapulmonary bronchi, and ears) based on the assumed distributions used in the newbor n. The total 15-year male skeleton, excluding contributions from cartilage is approximately 8% larger, by volume, compared to the 15 year-old female. However, this percentage can vary by as much as 45% less in the 15-year female sternum to as little as 11% less in the 15-year thoracic ve rtebrae. It should be noted th at female cervical vertebrae, lumbar vertebrae, sacrum, lower femur shaft, ribs clavicles, os coxae, and scapula are larger, by volume, compared with the male by as little as 8% or as much as 27%. Construction of the Heterogeneous 15-Ye ar Male and Female Skeletal Models Once the UF homogeneous 15-year male and fe male skeletons were constructed to match ICRP reference masses to within a 1% tolerance, the constituent skeletal tissues of active marrow, inactive marrow, trab ecular bone, cortical bone, and MST were distributed across individual bone sites. Simila r to the newborn in Chapter 2, cortical bone and spongiosa volume fractions were obtained following complete segm entation of each ex-vivo CT scanned skeletal site, but from the 18-year male. Marrow and tr abecular bone volume fractions, from the 18-year

PAGE 138

138 male microCT scanned harvested skeletal specimens, were then obtained through the image segme ntation methods described in Chapter 2, and originated in Rajon et al. (2006). These volumes fractions are reported in Table 4 2. Column 1 and Column 4 are the original segmented values from the 18 year old male of the SVF, CBVF, MVF and TBVF. These va lues were used as the starting point for all subsequent calculations of skeletal tissues by bone site. As discussed in the methods section, the calculations were performed as a first iteration with the original segmented values. It was determined that the ICRP reference total mineral bone would be the targeted value for development of the 15year male and female skeletal. Consequently, the original microCT image analysis of the MVF and TBVF would be the final values used in the skeletal tissue calculat ions of trabecular bone and marrow. Compared with the original segmented 18year male cadaver, the targeted 15 year female required a 2.1% uniform decrease in the CBVF, while the targeted 15 year male require a 2.7% uniform decrease. Therefore, all repor ted skeletal tissue values for both the 15 year old male and female are based on the final iterative values of SVF/ CBVF to match ICRP reference total mineral bone. The 15 year male has between 0.7% and 6% (lumbar vertebrae) larger CBVF (or smaller SVF) co mpared with the iterated 15 year female. Footnotes at the bottom of Table 42 indicate the corresponding standard deviations of the linearly averaged MVF values from multiple microCT images from the same bone site (e.g. lumbar vertebrae). Miscellaneous skeletal tissue masses and volumes Table 43 and Table 44 give mass and volume distributions of miscellaneous skeletal tissues dispersed throughout the 15year female and male skeleton s, respectively, by skeletal site and constituent tiss ue Again, these masses were calculated based on the assumption that the MST volume for a particular skeletal site is proportional to that bone sites total tissue volume ( exclusive of bone associated cartilage). This assumption was applied given the lac k of literature

PAGE 139

139 data to the contrary T he MST volume s in the os coxae and cranium are the greatest as those skeletal sites are proportionally the largest in the 15 year male and female. Marrow masses and volumes AM IM, TMS (total marrow), and A M* IM*, and TMS volumes were cal culated for every skeletal site as shown in Table 45 and Table 4 6 for the 15year female and male, respectively The calculated AM and IM masses were approximately +4% and 5% for the 15year female, and 3% and +1% for the 15 year male compared to the ICRP reference masses for these tissues. Active marrow distributions from this study are in fairly good agreement to those given by the nonimaged based methods of Watchman et al. (2007). The largest difference between t hen results in Watchman et al. (2007) and the current study was in the os coxae with a 73 g difference for the 15 year female, and 46 g in the 15year male ribs. However, these sites have relatively large amounts of active marrow, which reduce any signifi cance between the mass differences. Similarly for the IM, the largest differences were seen in the ankles/feet with 87 g and 62 g in the female and male, respectively. Again, this skeletal site contains the largest amount of IM in the entire skeleton, thus the differences are not significant. Table 47 lists the percent mass distribution of active marrow, including MST by bone site for the 15year female and male skeleton s with comparisons to values given in Table 9.4 of ICRP Publication 89. The majority of skeletal sites in this study show absolute differences of less than 2 % with values in ICRP Publication 89. The 15year female os coxae and 15 year male ribs h ave the highest percent differences, namely 6.02%, 4.07%, respectively. Agai n, fairly good agreement compared with ICRP reference data. Cartilage masses and volumes A summary of 15year female and male cartilage volumes are given in Table 4 8, along with calculated masses based on an ICRU Report 46 reference density of 1.10 g/cm3. Only the

PAGE 140

140 sternum contains a layer of unossified bone This bone is the last skeletal site to fully ossify, typically 18 years of age (White 2000). Table 4 8 next lists three major cartilage sites that were manually segmented from the original CT imag es (costal, cranial, and intervertebral discs). Final bone associated cartilage masses were calculated as 162.08 g (female) and 183.96 g (male) while total cartilage masses were calculated to be 187.83 g (female) and 214.64 g (male). The calculated total cartilage mass is 80% lower than the ICRP 89 reference value of 920 g (female) and 1140 g (male). The final column in Table 48 gives the percent mass distribution of cartilage by bone site. Costal cartilage connecting the ribs to the sternum accounts for the largest proportion of cartilage at 52% in the 15year female and 55% in the male. As stated previously, cartilage mass and volume were not targeted to match ICRP reference due to limited contrast resolution. Trabecular bone and cortical bone masses and volumes Cortical and trabecular bone volumes and masses by skeletal site are listed in Table 49 and 410 for the 15year female and male, respectively Values of the 15 year female and male total trabecular bone mass (exclusive of MST ) were calculated at 784.51 g and 869.43 g approximately 6% and 7%, respectively, more than reported in I CRP Publication 89. For cortical bone, the calculated masses for the female and male are 1619.72 and 1766.99g, a difference of only 2% less than the ICRP reference cortical bone masses for both genders. IC RP 89 reference values of cortical bone and trabecular bone are based on an assumed 80% / 20% partition of total mineral bone. Based on imaging data, this partition is approximately the same for the 15year male and female skeletal models. These results are in contrast to the 40% cortical bone and 60% trabecular found in the newborn analysis in Chapter 2. The site specific distribution of total mineral bone (excluding teeth) mass is shown in Table 411 for both the female and male skeletons, which shows the agreement with the targeted ICRP reference total

PAGE 141

141 skeletal mineral bone of 3700 g in the female and 4050 g in the male (2960 g CB + 740 g TB 15year female; 3240 g CB + 810 g TB 15 year male). Compared to Watc hman et al. (2007), the 15 year old trabecular bone masses presented in this chapter can vary by bone site up to 8 times higher. In contrast, cortical bone masses can vary by bone site up to 3 times higher in the current study. In Watchman et al. (2007), this difference is noticeable in the inability to match total ICRP Publication 89 reference masses of trabecular bone by 15% less and fair agreement in cortical bone by only 4% more. Table 4 12 shows a comparison between the image based newborn in Chapter 2, 15year female and male in this study, and the ICRP Publication 89 adult reference percentages of cortical and trabecular bone. The 15year skeletons appear to be in good agreement between cortical and trabecular percentages compared with ICRP reference values. However, the cortical percentage in the adult reference cranium appears to be overestimated, and the vertebrae almost appear to be in opposite agreement between the cortical and trabecular percentages. The percentage of mineral bone ass ociated with cortical regions in the 15 year female and male range from a low of 50% and 48%, respectively, in the lumbar spine to a high of 92% both male and female wrists/hands. It appears that mineral bone displays a more prominent appearance at birth in the form of bone trabeculae and then shifts to cortical bone as the bone matures T his ratio of CB:TB gradually shifts toward an adult 80:20 ratio as the skeleton matures during childhood and early adolescence. Shallow active marrow data Table 413 and Table 4 14 show a summary of the sha llow marrow data for the 15year female and male skeleton. All volumes and masses in this table include their MST contributions. Column 2 lists the shallow marrow volume fractions ( percentage of spongiosa volume) for each sk eletal site. For example, 14.7 6% of the spongiosa in the 15year male cervical vertebrae was

PAGE 142

142 computed as shallow marrow. The footnotes at the bottom of Table 413 and Table 414 denote the surrogate skeletal sites used where image data was not ava ilable along with SMVF standard deviations for bone sites where linear averages were taken. The average measured shaft lengths are listed in column 2 of Table 415. The femur shaft leng th is the longest at 33.92 cm in the male and 28.75 cm in the female In column 3 of Table 415, standard deviations were calculated based on the ten length measur ements for each long bone shaft Column 4 of Table 415 lists the calculated medulla ry marrow radius given in Chapter 2. These values were then used in Eq. 214 in Chapter 2 to calculate the SMVFshaft for the long bone shafts, which are given in column 2 of Table 413 and Table 414 Column 3 of Table 413 and Table 4 14 list the percentage of total marrow space assigned to shallow marrow On average, approx imately 16 % of the total marrow space in each bone site ( excluding that in long bone shafts ) is shallow marrow (50 m from the trabecular surfaces) compared to the 20% in the newborn, while between 1.5% and 5% of the total medullary cavity volume is shallow marrow compared with 4% and 14 % in the newborn. By multiplying the SMVF (column 2) by the spongiosa volume, or m edullary marrow volume in the case of long bones, volumes of shallow marrow for each bone site were calculated and are listed in column 4 of Table 413 and Table 414. Corresponding shallow marrow masses at 100% cellularity (necessary for specific absorbe d fraction calculations) are then given in column 5 of Table 413 and Table 4 14. The reference shallow inactive and active marrow masses are provided in columns 7 and 8 in both Table 413 and Table 4 14. Shallow active marrow values were determined by m ultiplying the shallow marrow volumes (column 4) by the reference cellularity and reference active marrow density. Likewise, the shallow inactive marrow masses were determined by multiplying the shallow marrow volume (column 4) by 1 CF and the reference i nactive marrow density. In column 9, the

PAGE 143

143 total reference shallow marrow mass based on the sum of columns 7 and 8 are listed. The total reference mass of shallow marrow throughout the entire skeleton was calculated to be 352.42 g for the 15year female an d 395.34 g for the 15year male as compared to 333.7 g for the female and 365.2 g for the male estimated by Watchman et al. (2007) The estimate provided in Watchman et al. (2007) is in fairly good agreement with the image based shallow marrow data provided in this study, with only 6% less for the female and 8% less for the male in the Watchman et al. (2007) study. The last column in Table 413 and Table 414 show the percent distribution of shallow marrow by bone site. The least amount of shallow marrow is found in the shafts of the long bones, while the greatest is found with in the os coxae. This means that the long bone shafts must have fairly large medullary cavities. S/V ratios for 15year male and female hybrid phantom s Table 416 shows a comparison of the S/V ratios computed for the hybrid newborn phantom (column 2), the gender independent hybrid 15 year old (column 3), the ICRP reference 15year (column 4), and ICRP reference adult 44year (column 5) The S/V ratio for all long bone shafts is equal to 0.0 mm2 mm3 because these regions of the long bones do not contain bone trabeculae Column 6 lists the ratios between then S/V values for the UF hybrid 15year skeleton and the ICRP reference 15 year skeletal model. The 15year in this study can have S/V ratios as low as half up to as much as twice the values reported f or the ICRP reference 15 year. The largest difference is seen in the mandible and the largest is seen in the tibia. Compared with the ICRP adult S/V ratios, the image based data from this study of the 15year model are in fairly good agreement. This could be due to the fact that the imaging data was taken from an adult, 18year male cadaver

PAGE 144

144 Homogeneous spongiosa masses, volumes, densities, and elemental compositions Table 417 gives a summary of the 15year female and male hybrid spongiosa masses, volum es and densities including MST for each of the 34 skeletal sites analyzed in this study. Table 417 also gives the summed spongiosa mass and volume data for the total skeleton, along with a volumetrically wei ghted average spongiosa density for both female and male 15 year skeletal models. It appears that the majority of the 15 year female (487.01 g) and male (440.76 g) spong iosa resides in the os coxae, compared with the cranium for the hybrid newborn in Chapter 2. Similarly, the least amount of spongios a mass is found in the distal ulna and proximal radius. The total skeleton spongiosa mass and volume were calculated as 3065.38 g and 2709.78 cm3 for the 15year female, and 3316.72 g and 2925.46 cm3 for the 15year male skeletons, r espectively. Compared with the ICRP 89 reference spongiosa mass es of 3037.84 g for the female (sum of 974.09 g of TAM 1250.98 g of T I M 72.77 g of MST and 740.0 g of TB ) and 3259.93 g for the male (sum of 1048.04 g of TAM 1324.98 g of TI M 76.91 g of MST and 810.0 g of TB ) the calculated 15 year female and male spongiosa sum is less than 1% and 2% higher respectively .5 5 Reference spongiosa masses exclude contributions in the long bone shafts since this is not considered spongiosa. Similar calculations can be performed with the spongiosa volumes and tissue constituent densities to show that the calculated 15year female and male spo ngiosa sum across the skeleton is less than 1% different that the ICRP 89 reference spongiosa volume s This almost perfect agreement is directly related to the matched trabecular bone percentage of 20% in both the image based data used for the 15year hyb rid and the ICRP reference 15 year skeletons. The agreement in the AM and IM marrow masses between the hybrid and reference skeletal models also contributes to the agreement in spongiosa.

PAGE 145

145 In Table 4 17, the 15 year female and male skeletal averaged spongiosa density is estimated to be 1.13 g cm3 and 1.12 g cm3, respectively. The male is slightly lower than the female due to larger amounts of IM in the male. In ICRU Report 46, Table A1, the only reference spongiosa density listed is that for the adult, namely 1.18 g cm3. For both the male and female 15 year old, skeletal site dependent spongiosa densities range from a low of 1.06 g cm3 in the sacrum to a high of 1.25 g cm3Homogeneous skeleton mass es, volumes, densities, and elemental compositions in the cranium (largest proportion of trabecular bone). Despite the de nsity range, the calculated skeletal averaged spongiosa densities are in good agreement, only 4% for the female and 5% for the male lower, compared with the adult reference spongiosa density. Table A1 of ICRU Report 46 lists reference elemental composi tions of trabecular spongiosa but only for the adult, and only for a fixed mixture of 33% cortical bone, and 67% marrow, which itself is comprised of 50 % IM and 50% AM (all percentages by mass). For comparison, the UF hybrid 15year male and female contain a mixture of 55% cortical bone and 45% marrow, comprised of 56% IM and 44% AM As shown in Table 418 (female) and Table 419 (male) the spongiosa elemental compositions including MST vary significantly between skeletal sites for some elements For e xample the mass percentage of carbon in the 15year female cranium spongiosa is about 35%, whereas approximately 63% is found the shafts of the long bones. Similarly, the shafts of the long bones does not contain any trabecular bone, therefore no Ca is p resent, compared to about 9% in the cranium. The total skeleton averaged spongiosa elemental compositions for the 15year male and female are fairly represented by the adult reference spongiosa el emental compositions in ICRU 46. The homogeneous skeleton masses and volumes including MST were calculated and are listed in Table 420 for both the female and male 15 year old adolescent The data of Table 420

PAGE 146

146 excludes cartilage mass and volume contributions to each bone site. Due to the length of this text, the data for homogeneous bone data includi ng cartilage was not pres ented, but can be easily computed. Compared with the manually se gmented NURBS/polygon mesh 15-year male and female phantoms, the derived total homogenous skeletal volume and mass are matched, which provides validation of the methods presented in this study. The increased densities of homogeneous bone excluding cartilage compared to that in spongiosa regions is attributed to the contribution of cortical bone in the former. Density differences between site-speci fic homogeneous bones are simila rly explained. The volumetricweighted skeletal averaged hom ogeneous bone density is 1.35 g cm-3 for both the male and female. As seen for bone site-specific spongios a densities, homogeneous bone densities vary considerably across the newborn skeleton (1.2 g cm-3 to 1.6 g cm-3). Choosing a density specific to a given skeletal site of interest could provi de additional improvements in the accuracy of dose estimates. Homogeneous bone elemental compositions excl uding cartilage for the 15-year female and male were computed, and are shown in Table 421 and Table 4-22, respectively. Elemental data vary considerably across the skeleton. The ICRP reference data and calculated data appear to be in reasonably good agreement, except for the ox ygen content, which is approximately 20% less than reference in absolute difference. Improve d agreement is seen when the cartilage component is considered in the elemental composition of total homogeneous bone. 15-Year Female Image Data for the Skeletal Macrostructure and Microstructure The voxel resolution and voxel array size for th e 15-year female skeletal macrostructure and 18-year male microstructure are shown in th e first set of columns in Table 4-23. Due to computer memory limitations larg e bone sites such as the ribs a nd os coxae were voxelized at 0.06 cm and 0.05 cm, respectively, while a small bone si te such as the clavicle was voxelized at

PAGE 147

147 0.018 cm. However, even at the lowest resolution of 0.06 cm, di fferences less than 1% were achieved between the voxel volumes and polygon mesh volumes for the spongiosa and cortical bone tissues. Figure 4-1 A and Figure 4-1B illu strate the original polygon mesh and voxelized os coxae, respectively for the female (left) a nd male (right), while Figur e 4-1 C and Figure 4-1 D illustrate the original and voxelized femur. The la st three sets of columns in Table 4-23 are for the skeletal microstructure da ta obtained after filtering and th resholding the selected ROI for each bone sample. The largest ROI was selected fo r each microimage in order to obtain the best representative sample of spongiosa for transpor t. Voxel dimensions, marrow volume fractions ( MVF ), and trabecular b one volume fractions ( TBVF ) are all shown. Multiple regions were imaged for the cranium, lumbar vertebra, thoraci c vertebra, cervical vertebra, proximal femur, and ribs. The average MVF and TBVF are indicated in Table 4-23 with the corresponding standard deviation. There are sk eletal sites listed in the tabl e which do not have a corresponding microimage due to the inability to obtain a sample from these skeletal regions during the bone harvest. As indicated in previously, surr ogates for bone sites without microimages were assigned. These surrogates were then used for the microstructure image input into PIRTCartilage and PIRTCartilageLongBone Finally, as indicated in Table 4-23, both the MVF / TBVF values for the 30 m scan and 60 m re-sampled images are shown. Most relative differences between the 30 m and 60 m samples are less than 1%. Therefore, no statistical difference can be seen between the original 30 m and re-sampled 60 m images. Bone-Site Dependent Specific Absorbed Fraction Data for the UF Hybrid 15-Year Female Phantom Tabular data for the 15-year female specific absorbed fractions are in Appendix H. The corresponding figures for the tabular data are in Appendices I L. Specific absorbed fractions are calculated based on Chapter 3, Eq. 3-3. As previously mentioned, multiple sample sites from

PAGE 148

148 the cranium, ribs, lumbar vertebra, thoracic vertebra, femur, humerus, tibia, fibula, ulna, radius and cervical vertebra were transported. Average specific absorbed fraction data was obtained based on the methods in Chapter 3, Eq. 33 though Eq. 311. Likewise, data for the CBV sources were linearly averaged. Each of the 20 bone sites is listed as a set of two or three tables: AM targets, TM50 targets, and CAR tar gets (only for intervertebral discs in the vertebrae, ribs, and sternum) for all bone tissue sources. Cellularity dependence for the specific absorbed fractions is only found when the electron source is in AM and at low to intermediate electron energies. In the case of cellularity independent specific absorbed fractions for the TBV, TBS and CBV electron sources, only input microstructures at 100% cellularity were run. However, for the IM source, 50% cellularity was arbitrarily chosen for each case run, as was done in Chapter 3 for the newborn. The following sections discuss the specific absorbed fraction results for the three targets: AM T M50Specific absorbed fractions for an active ma rrow targ et from a source in active marrow and CAR (intervertebral disc and costal cartilage targets only). Specific absorbed fractions for electron sources in AM irradiating AM targets are shown in Appendix I based on the tabular data in Appendix H. Similar to the newborn in Chapter 3, this source target combination e xhibits a monotonically decreasing function for both the absorbed fraction and specific absorbed fraction quantities. As the electron energy increases, the electrons will eventually escape out of spongiosa, only depositing a fraction of the initial energy to marrow. The absorbed fraction approaches unity for an electron energy 10 keV and below. Therefore, the corresponding specific absorbed fraction at low electron energies is proportional to the inverse target tissue mass. If the mass of the target tis sue, AM is held constant at 100% cellularity, then a decrease in the fractional cellularity will increase the overall specific absorbed fraction ratio. Once the electron energy has reached approximately 150 keV to 1.5 MeV, as

PAGE 149

149 compared to the newborn ener gies of 500 keV to 1 MeV, depending on the bone site, each curve collapses and becomes cellularity independent. This convergence is achieved once the electron energy has reached the point where a sufficient number of marrow cavities have been crossed and the electron range exceeds the dimensions of the spongiosa region. For low to intermediate electron energies, it is important to asses the accuracy of a marrow cellularity measurement in a patient given a factor of 10 difference in the specific absorbed f raction quantity in the most extreme case. The largest amount of energy deposition to AM from an AM source occurs in the os coxae compared to the newborn cranium, and least amount in the mandible as compared to the patella in the newborn, directly proport ional to the amount of active marrow in these bone regions. SAF results at the ICRP reference cellularity are shown in the tables of Appendix H. Again, a linear average of the SAF data at the transported cellularities was performed to compute the SAF res ults at the ICRP reference cellularity. As described in the methods section of this chapter, the long bones were run with the same cellularity across all regions for the incremental cellularity case runs. Both proximal and distal microstructure image da ta is available for these bone sites, but the transport code does not currently accept two microstructures due to memory cons traints. Similarly to other bone sites, two sets of AF data were computed. The first set was based on the proximal microstructure being placed in both proximal and distal spongiosa regions, and the second set was based on the distal microstructure being placed in the proximal and distal spongiosa regions. Similar to the methods in Chapter 3, for the incremental cellularity data, the averaged specific absorbed fractions were computed based on the mass fractional source distributions. However, the fractional source distributions for the proximal microstructure were based on the mass of the proximal and upper shaft source mass compare d to the whole long bone source mass. Similarly,

PAGE 150

150 the fractional source distribution of the distal microstructure was based on the mass of the distal and lower shaft source mass compared to the entire mass of the source in the long bone. Consequently, the averaged absorbed fraction data has a higher weighting toward the higher fractional source mass. A separate case run was performed for the ICRP reference long bones due to cellularity variations across the proximal, shaft, and distal regions. However, for the tibi a, fibula, ulna and radius, the reference AM mass is 0.0 g. Therefore, the ICRP reference SAF for an AM target from an AM source is 0.0. The humerus and femur have different cellularity values for each region (55% proximal, 35% upper shaft, 20% lower shaft, and 0% distal). Therefore, the upper half (proximal and upper shaft) and lower half (lower haft and distal) were ru n separately for the two cases Averaged results were again based on the fractional source contributions, but of the refere nce masses for the ICRP cellularity. Unfortunately, by running upper and lower half of the femur and humerus separately, cross fire between then shaft regions is not neglected. A simple analysis was performed running the upper (with proximal microstructure) and lower (with distal microstructure) half of the humerus for a 100% cellularity case for an AM TBV, TBS and CBV source to AM target. AF results from these two runs were then mathematically averaged as discussed above. These results were then comp ared with the averaged AF results from a full long bone run at 100% cellularity with the averaged proximal and distal microstructures. Neglecting cross fire for an AM source creates approximately 9.5% difference for a 10 MeV electron. This is the worst c ase scenario, as the lower half of the long bone does not contain as much AM source mass as in the upper half. For a CBV source, neglecting cortical bone cross fire between shaft regions into AM causes up to a 9% difference at low to intermediate electron energies. Again, this is the maximum difference that would be seen, since ICRP reference

PAGE 151

151 cellularity in the shafts is less than 100%. For the TBV and TBS sources, less than 5% difference is seen due to the fact that these sources are exclusively contain ed in the proximal and distal ends. Based on the CSDA range of approximately 10 cm, a 10 MeV electron in soft tissue will not cross the 9.8 cm shaft length unless the particles are starting close to the proximal/distal/shaft interface. Specific absorbed fractions for an active marrow target from all other bone sources Similarly to Appendix I, the specific absorbed fraction figures in Appendix J are for AM targets, but from an IM TBS TBV, or CBV source. As shown in Figure 32 in Chapter 3, the specific absorbed fractions for these sources are cellularity independent. As such, these sources were run at 100% cellularity, except in the case of the IM source, which was run at an arbitrarily chosen 50% cellularity. As previously discussed, for a TBS source, 50% of the time electrons are emitted toward the marrow cavity, and 50% of the time electrons are emitted toward the trabecular bone. Therefore, the specific absorbed fraction for a TBS source to AM target is 50% the product of the inverse tar get tissue mass at 100% cellularity and the CF at low electron energies, or 50% of the specific absorbed fraction value for an AM source to AM target at the ICRP 15 year female site specific reference cellularity. The addition of the CF term in the denomi nator explains the larger difference in the 15 year female SAF data between the ICRP reference AM source and TBS source to AM target compared with the newborn. Finally, similarly to the AM source and target cellularity independence at high electron energi es, the TBS TBV, and IM sources begin to converge at electron energies between 420 keV and 3 MeV. Therefore, source independence occurs at these energies because the electrons have traveled through a large enough number of marrow cavities and space to ef fectively results in the same energy deposition.

PAGE 152

152 Energy deposition from an IM and TBV source continues to increase as electron energy increases until the electron energy reaches the point of electron escape out of spongiosa, as shown in the figures by the moundshaped trend. A similar response is seen in the CBV source. Electrons with enough energy will escape the cortical bone region and deposit energy into spongiosa, then exit the spongiosa once the energy corresponding to the spongiosa thickness has been reached, which causes a decrease in the energy deposition. Therefore, the lower the electron energy corresponding to the maximum energy deposition for a CBV source, the thinner the cortical bone region. At a peak energy deposition of 4.0 MeV, t he femur has the thickest cortical bone, probably as a result of the thick cortical shaft region, compared to 2.0 MeV peak for the newborn femur. Similarly, the thinnest cortical bone can be found in the vertebrae, at a peak energy of 1.5 MeV, compared to the newborn patella at 0.5 MeV. Table 424 lists measured bone sitespecific cortical bone thicknesses for the UF hybrid 15year female phantom. These were estimated using the measurement tool in Rhinoceros. For the CBV source, the dosimetry results e xactly correlate with measured cortical bone thickness. For an IM source the peak energy deposition occurs at a constant 80 keV to100 keV. This corresponds to the maximum distance an electron travels to reach the spongiosa boundary. For a TBV source, the thickness of bone trabeculae, marrow cavity size, and AM mass in combination determine the electron energy where maximum energy deposition occurs. Specific absorbed fractions for a shallow marrow t arget fr om all bone sources As reported for the newborn in Chapter 3, results for the 50reported as total shallow marrow or TM50. Appendix K illustrates the specific absorbed fractions from a source in AM at reference cellularity, IM, TBV, CBV, and TBS to target TM50. As with previous results, these sources are cellularity independent, and therefore run at 100% cellularity, except for the IM source, which was run with 50% cellularity, as shown in Figure 42 A through

PAGE 153

153 Figure 4 2 D. Source independe nce occurs for the IM (at 50% cellularity), and AM (at ICRP reference cellularity) sources, but not for the TBS source as was seen in the newborn. As was shown in Eq. 38 ad Eq. 39 in Chapter 3, the AF and SAF data for an AM source to TM50 target is proportional to the SMVF and ratio of the SMVF and TM50 target mass, respectively. For the newborn, the SMVF was approximately 50% for most bone sites. Therefore, since the AF data for the TBS source to TM50Specific absorbed fractions for a cartila ge t arget fr om all bone sources target is also approximately 50% at low energies, the TBS source also becomes source independent and converges with the AM and IM sources. However, for the 15 year female, the SMVF values are less than 50% (range between 5% 22%), which means the IM and AM sources will have source convergence, but at a value less than the TBS source. For example, the lumbar vertebra, cranium, and sacrum have a SMVF of approximately 0.14, 0.20, and 0.08, respectively. After dividing by the shallow marrow mass for each bone site, the values become 0.005, 0.004, and 0.008, respectively. The specific absorbed fraction results, as reported in Appendix H for 1 keV are approximately 0.005, 0.006, and 0.008, respectively. The other skeletal sites follow this same pattern of cellularity independence For a TBV source, the source independence occurs between 150 keV and 1.5 MeV, depending on the bone site, compared with 200 keV to 700 keV for the newborn in Chapter 3. The electron must have enough energy to exit the trabecular bone volume. Consequently, as with previous discus sion, the convergence occurs at the electron energy for which the source particle has traversed enough marrow cavities to effectively deposit the same energy whether the particle began in TBV, TBS AM or IM. Similar to the newborn, cellularity independence is shown for the AM source in Figure 43 A through Figure 4 3 D. Unlike the newborn, where every bone contains an ossification center surrounded by cartilage, the 15year female is completely ossified except the sternum.

PAGE 154

154 Therefore, only CAR targets in the intervertebral discs, sternum, and costal regions are considered. Appendix L illustrates the specific absorbed fraction results by bone site for sources starting in AM ( at reference cellularity) IM, TBS TBV, or CBV sources depositing energy in the CAR target. Electron sources in AM (ICRP reference cellularity), TBS IM, and TBV are source independent for the specific absorbed faction quantities. Electrons need enough e nergy to traverse the entire spongiosa and cortical bone regions to deposit any energy in the target cartilage region, regardless of the particle source. The CBV source converges with sources in cervical vertebrae and rib spongiosa, AM IM, TBS and TBV. As previously discussed, there reaches a point where the electron energy is source is high enough that regardless of the source, the same amount of energy is going to be deposited. However, for the thoracic vertebrae and lumbar vertebrae the sources in s pongiosa deposit more electron energy into a CAR target. This is due to the fact that these bones are not completely surrounded by a cartilage layer like in the newborn. The vertebrae are completely ossified by 15 years of age and do not contain a unifor m cartilage layer. More energy deposition occurs from sources in spongiosa at higher energies due to cross fire, which is why the energy deposition from spongiosa exceeds the CBV at higher energies. Contributions of cross fire for a CBV source occur at t he intermediate electron energies. Convergence is expected to occur when the electron energy from sources in spongiosa significantly exceed the overall dimensions of the spine to avoid cross fire dependence. The cervical spine converges due to the relati ve size compared with the thoracic and lumbar spine regions. The sternum appears to needs higher electron energy for convergence to occur.

PAGE 155

155 Skeletal-Averaged Absorbed Fraction Compar isons for the UF Hybrid 15-Year Female Phantom and the 2003 15-Year Model The current Stabin and Siegel (2003) model does not contain absorbed fraction data by skeletal site. Instead, skeletal-averaged absorb ed fraction data based on skeletal tissue masses tied to the ORNL stylized phantom are reported. Calculations of the skeletal-averaged absorbed fraction values are based on the formul ations in Chapter 3. Values of sif are listed in Table 4-25, along with the ICRP reference cellu larity by bone site for the 15-year female. Tabular data of the skeletal-averaged absorbed fraction data fo r the 15-year female are listed in Table 4-26. Figures 4-4 AD illustrate the tabular data found in Table 4-26. For a TBS source to AM target, the PIRT skeletal-averaged absorbed fraction data are approximately 2% to 5% less than the 2003 model up to 100 keV. Between 100 keV and 1 MeV, there is approximately 4% to 15% difference between the two models. After 1 MeV, electron escape dominates the physics, and by 10 MeV the infinite 2003 model overe stimates the energy deposition to AM by almost 4.0 times, assuming the infinite results for the 4 MeV can be extended to 10 MeV. Similarly, the 2003 TBV source for the 15 year-old overe stimates between approximately 5% to 20% in the low to intermediate electron energy range due to the microstructural differences. Overestimations in the 2003 model due to the macrostructure occur afte r 500 keV, up to 3.98 times at 10 MeV. For an AM source, the divergence begins at approximately 15 keV to 1 MeV. Underestimations due to using 2D chord distributions from 9-year micr ostructural data for a 15 year-old in the 2003 model can be as high as 12%. At electron energies above 1 MeV, the models diverge due to the PIRT modeling of electron escape from the macrostruc ture compared to the infinite transport modeling in the 2003 model. For comparison, new born divergence due to electron escape begins at 400 keV due to smaller bones. As before, extending the 2003 results out to 10 MeV can show up to 3.5 times more energy deposition that in the PIRT model compared to 17.5 times in the

PAGE 156

156 newborn. In the 2003 model, energy deposition from a CBV source to AM target is zero. However, the skeletal-averaged PIRT model shows up to 6% energy deposition at 2 MeV, compared with 11% at 800 keV for the newborn. Tabular results for TM50 targets are reported, but are not compared with the 2003 model. As with the newborn, a fair comparison cannot be made between the two models because a 10m endosteal layer of active marrow was utilized in the 2003 model, while a 50m shallow marrow target region of the summed active and inactive marrow was used in PIRT The current 2003 model uses overall cortical and trabecular b one percentages of 80%/20%, respectively. These per centages were confirmed in the study for the 15-year male and female. Assuming a uniform mineral bone source (cortical bone plus tr abecular bone), Figure 45 compares the skeletal-averaged absorbed fraction results between the 2003 model and PIRT model using a weighted corti cal/trabecular bone pe rcentage of 80%/20%. The 2003 model underestimates the energy deposit ion from electron sources in MB to targets in AM up to 25% for electron energies up to 4 MeV. Once elec tron escape is accounted for, the 2003 model overestimates the skeletal-averaged absorbed fr action by 1.65 times at 10 MeV. All differences are due to both the exclusion of cortical bon e as a source and differences in the trabecular microstructure used in the 2003 model. Conclusions In this study, comprehensive skeletal tissu e models were developed for the UF hybrid reference 15-year male and female. The model includes bone-specific ma sses and volumes of all relevant tissue components including activ e marrow, inactive marrow endosteal tissues, trabecular bone, cortical bone, miscellaneous skel etal tissues, and cartilage. Site-specific and skeletal-averaged tissue densities and elementa l compositions are also derived. Model data sources included CT images of whole-cadav er 18-year male skeleton, along with the

PAGE 157

157 corresponding microCT images of the 18-year male bone specimens. In this study, the 18-year image sets served as surrogate data for the 15-year male and female skeleton. The site-specific distribution of active and inactive marrow co mpare reasonably well with that given for the reference 15-year male a nd female in ICRP Publication 89. In ICRP Publication 89, 15-year total mineral bone is part itioned as 20% trabecula r and 80% cortical values accepted as averaged across the adult skelet on. In the present model, analysis of 18-year whole-cadaver CT images and microCT images reveal the same percentage. These values, however, vary from 50% cortical and 50% trabec ular to 90% cortical and 10% trabecular across the 15-year male and female skeletons, and thus a single skeletal-a veraged value can be misleading when looking at a particular skeletal region. The 15-year male and female skeletal tissue model permits a sub-segmentation of th e homogeneous bones in the UF hybrid 15-year male and female phantom into specific regions of cortical bone, spongiosa, and medullary marrow. Similarly to the newborn, the results in this chapter show the impor tance of source-target combinations in terms of cellularity indepe ndence and source independence as a function of electron energy for specific absorbed fraction data. IM TBV CBV and TBS sources to AM targets are all cellularity i ndependent. Depending on the bone site, source independence from IM TBV and TBS sources to AM and TM50 targets occurs at high elec tron energies. Cellularity independence also exists for an AM source to TM50 targets. Converg ence of the various cellularity curves from AM sources to AM targets, depending on the bone site, occurs between 150 keV and 1.5 MeV. Results also show relati ve thickness of spongiosa and cortical bone based on the energy for peak deposition. Therefore, it is often useful to analyze skeletal site-

PAGE 158

158 specific data variations, especi ally when exposing a certain re gion of the body to radiation (e.g. CAP exam). When comparing skeletal-averaged absorbed fraction data for an AM IM TBV or TBS source to any target, the differences between then PIRT and 2003 models differ at low to intermediate electron energies due to microstruc tural differences between the 18-year 3D model in this study and the 9-year 2D chords used in the 2003 model, and consistently overestimates at energies greater than 4 MeV due to electron es cape. Microstructural differences between the newborn and the 2003 model are not as significan t because 1.7-year data was used. Electron escape becomes significant after 1 MeV for the 15year female, compared with 400 keV for the newborn due to the size differences. Future stud ies will analyze any significant differences in electron escape between the 15-year male and female skeletal macrostructures.

PAGE 159

159 A C B D Figure 4 1. Comparison between the original rendered polygon mesh and segmented voxelized 15ye ar male (right) and 15 year female (left) (A) polygon mesh os coxae, (B) voxelized os coxae, (C) polygon mesh femur, and (D) voxelized femur.

PAGE 160

160 A B C D Figure 4-2. 15-year female specific absorbed fraction data from an AM source to a TM50 target at various ce llularities for the (A) thoracic vertebrae, (B) patella, (C) cr aniofacial bones, and (D) os coxae.

PAGE 161

161 A B C D Figure 4-3. 15-year female specific absorbed fraction data from an AM source to a CAR target at various cellularities for the A) ribs, B) cervical vertebrae, C) thoracic ve rtebrae, and D) lumbar vertebrae.

PAGE 162

162 A B C D Figure 4-4. Comparison between the 2003 and PIRT 15 year-old female skeletal-avera ged absorbed fraction data to an AM target at ICRP reference cellularity for the A) AM source, B) TBV source, C) TBS source, and D) CBV source.

PAGE 163

163 Figure 4-5. Comparison between the 2003 and PIRT 15 year-old female skeletal-averaged absorbed fraction data to an AM target at ICRP reference cellularity from the mineral bone ( MB ) source at 80% cortical and 20% trabecular bone.

PAGE 164

164 Ta ble 4 1. Bone volumes given in the hybridNURBS/PM models and in the reconstructed hybridvoxel models of the 15year female (left) and male (right) skeleton s for (1) the combined tissues of cortical bone and trabecular spongiosa, (2) outer layers of bone associated cartilage, and (3) total volume of all tissues. Cortical Bone + Cartilage 1Total Cortical Bone + Cartilage1Total Spongiosa Bone-Associated Homogeneous Bone Spongiosa Bone-Associated Homogeneous Bone Skeletal Site (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) Cranium 521.74 0.00 521.74 635.40 0.00 635.40 Mandible 46.74 0.00 46.74 59.01 0.00 59.01 1Cervical 75.77 0.00 79.63 60.47 0.00 63.38 1Thoracic 226.16 0.00 254.69 250.64 0.00 283.41 1Lumbar 237.23 0.00 263.97 216.64 0.00 240.13 1Sternum 31.41 32.17 63.58 45.21 28.49 73.70 1,2Ribs 266.19 0.00 322.24 244.50 0.00 295.32 Scapulae 198.99 0.00 198.99 144.73 0.00 144.73 Clavicles 52.13 0.00 52.13 39.89 0.00 39.89 Os coxae 564.83 0.00 564.83 507.30 0.00 507.30 Sacrum 165.40 0.00 165.40 135.42 0.00 135.42 Humeri, Proximal 124.31 0.00 124.31 156.31 0.00 156.31 Humeri, Upper Shaft 63.58 0.00 63.58 78.56 0.00 78.56 Humeri, Lower Shaft 55.49 0.00 55.49 69.79 0.00 69.79 Humeri, Distal 75.07 0.00 75.07 94.85 0.00 94.85 Radii, Proximal 11.64 0.00 11.64 15.34 0.00 15.34 Radii, Shaft 42.43 0.00 42.43 47.71 0.00 47.71 Radii, Distal 21.25 0.00 21.25 28.03 0.00 28.03 Ulnae, Proximal 39.98 0.00 39.98 51.38 0.00 51.38 Ulnae, Shaft 50.45 0.00 50.45 58.23 0.00 58.23 Ulnae, Distal 7.27 0.00 7.27 9.54 0.00 9.54 Wrists and Hands 102.51 0.00 102.51 124.46 0.00 124.46 Femora, Proximal 177.45 0.00 177.45 231.67 0.00 231.67 Femora, Upper Shaft 126.58 0.00 126.58 172.52 0.00 172.52 Femora, Lower Shaft 143.03 0.00 143.03 131.36 0.00 131.36 Femora, Distal 240.98 0.00 240.98 270.05 0.00 270.05 Patellae 25.32 0.00 25.32 31.29 0.00 31.29 Tibiae, Proximal 190.51 0.00 190.51 219.28 0.00 219.28 Tibiae, Shaft 167.83 0.00 167.83 201.16 0.00 201.16 Tibiae, Distal 69.17 0.00 69.17 80.32 0.00 80.32 Fibulae, Proximal 15.75 0.00 15.75 20.03 0.00 20.03 Fibulae, Shaft 24.78 0.00 24.78 34.18 0.00 34.18 Fibulae, Distal 15.17 0.00 15.17 19.32 0.00 19.32 Ankles and Feet 366.55 0.00 366.55 458.56 0.00 458.56 Cranial Cartilage N/A 0.00 0.00 N/A 0.00 0.00 Costal Cartilage N/A 56.06 56.06 N/A 50.82 50.82 CV Intervertebral Discs N/A 3.86 3.86 N/A 2.91 2.91 TV Intervertebral Discs N/A 28.53 28.53 N/A 32.77 32.77 LV Intervertebral Discs N/A 26.73 26.73 N/A 23.49 23.49 Total Skeleton (cm3) 4543.68 147.34 4806.20 4943.17 138.48 5191.64 Mass(g) 6180.02 162.08 6367.85 6743.09 152.33 6926.10 Reference Mass (g) 6225.00 920.00 7145.00 6765.00 1140.00 7905.00 Ratio 0.99 0.18 0.89 0.99676 0.13362 0.88 1Total bone includes contributions of costal, intervertebral disc cartilage, bone-associated sternal, and all non-bone associated estimates. 2This volume is NURBS, while all others are polygon mesh Polygon Mesh/NURBS Volumes Female Polygon Mesh/NURBS Volumes Male

PAGE 165

165 Table 4 2. Comparison of the 18year segmented and iterated 15 year male and female bone tissue volume fractions by bone site. Skeletal Site SVF Segmented CBVF Segmented SVF Iterated CBVF Iterated SVF Iterated CBVF Iterated MVF BVF 1Cranium 0.5006 0.4994 0.5221 0.4779 0.5279 0.4721 0.6807 0.3193 Mandible 0.4189 0.5811 0.4404 0.5596 0.4462 0.5538 0.7173 0.2827 2Cervical 0.6649 0.3351 0.6864 0.3136 0.6922 0.3078 0.8400 0.1601 3Thoracic 0.7728 0.2272 0.7943 0.2057 0.8001 0.1999 0.8720 0.1280 4Lumbar 0.8823 0.1177 0.9038 0.0962 0.9096 0.0904 0.8940 0.1060 Sternum 0.7023 0.2977 0.7238 0.2762 0.7296 0.2704 0.9066 0.0934 5Ribs 0.5910 0.4090 0.6125 0.3875 0.6183 0.3817 0.8792 0.1208 Right Scapula 0.4985 0.5015 0.5200 0.4800 0.5258 0.4742 0.6935 0.3065 Right Clavicle 0.3742 0.6258 0.3957 0.6043 0.4015 0.5985 0.8243 0.1757 6Os coxae 0.7677 0.2323 0.7892 0.2108 0.7950 0.2050 0.8949 0.1051 Sacrum 0.6890 0.3110 0.7105 0.2895 0.7163 0.2837 0.9437 0.0563 Humerii, Right Proximal 0.8221 0.1779 0.8436 0.1564 0.8494 0.1506 0.8448 0.1552 7Humerii, Upper Shaft 0.1979 0.8021 0.2194 0.7806 0.2252 0.7748 1.0000 0.0000 7Humerii, Lower Shaft 0.1979 0.8021 0.2194 0.7806 0.2252 0.7748 1.0000 0.0000 Humerii, Right Distal 0.5684 0.4316 0.5899 0.4101 0.5957 0.4043 0.7847 0.2153 Radii, Right Proximal 0.6043 0.3957 0.6258 0.3742 0.6316 0.3684 0.7939 0.2061 Radii, Shaft 0.1105 0.8895 0.1320 0.8680 0.1378 0.8622 1.0000 0.0000 Radii, Right Distal 0.7225 0.2775 0.7440 0.2560 0.7498 0.2502 0.8035 0.1965 Ulna, Right Proximal 0.6676 0.3324 0.6891 0.3109 0.6949 0.3051 0.7462 0.2538 Ulna, Shaft 0.1163 0.8837 0.1378 0.8622 0.1436 0.8564 1.0000 0.0000 Ulna, Right Distal 0.6516 0.3484 0.6731 0.3269 0.6789 0.3211 0.8140 0.1860 8Wrist and Hands 0.3940 0.6060 0.4155 0.5845 0.4213 0.5787 0.8792 0.1208 9Femora, Proximal 0.7728 0.2272 0.7943 0.2057 0.8001 0.1999 0.7936 0.2064 7Femora, Upper Shaft 0.2343 0.7657 0.2558 0.7442 0.2616 0.7384 1.0000 0.0000 7Femora, Lower Shaft 0.2343 0.7657 0.2558 0.7442 0.2616 0.7384 1.0000 0.0000 Femora, Distal 0.8345 0.1655 0.8560 0.1440 0.8618 0.1382 0.7221 0.2779 8Patella 0.5951 0.4049 0.6166 0.3834 0.6224 0.3776 0.8792 0.1208 Tibia, Proximal 0.7194 0.2806 0.7409 0.2591 0.7467 0.2533 0.9050 0.0950 Tibia, Shaft 0.2672 0.7328 0.2887 0.7113 0.2945 0.7055 1.0000 0.0000 Tibia, Distal 0.8135 0.1865 0.8350 0.1650 0.8408 0.1592 0.8146 0.1854 Fibula, Proximal 0.6282 0.3718 0.6497 0.3503 0.6555 0.3445 0.8485 0.1515 Fibula, Shaft 0.2115 0.7885 0.2330 0.7670 0.2387 0.7613 1.0000 0.0000 Fibula, Distal 0.6130 0.3870 0.6345 0.3655 0.6403 0.3597 0.7349 0.2651 8Ankles and Feet 0.7114 0.2886 0.7329 0.2671 0.7387 0.2613 0.8792 0.1208 1The MVF is a inear average between occipital, frontal, parietal (+/2.06%) 2The MVF is a linear average between C3 and C6 (+/2.23%) 3The MVF is a linear average between T1, T3, T6, T9, and T12 (+/1.74%) 4The MVF is a linear average between L1,L2, L3, L4, and L5 (+/2.01%) 5The MVF is a linear average between the upper (rib-1), middle (rib-6), and lower right (rib-12) rib (+/3.04%) 6The MVF was calculated from the right ilium 7The SVF for the upper shaft was segmented and assumed to be the same for the lower shaft 8The MVF for the rib was used as a surrogate 9The MVF is a linear average of the right and left head and neck (+/3.46%) 15-Year Male 18-Year Old Male 18-Year Old Male 15-Year Female

PAGE 166

166 Table 4 3. M asses and volumes of site specific miscellaneou s skeletal tissue in the 15 year female phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, IM inactive marrow, CB cortical bone, TB trabecular bone. Total MST Total MST MST In MB MST In MB MST In AM MST In AM MST In IM MST In IM MST In CB MST In CB MST In TB MST In TB Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 16.32 16.65 10.52 10.73 3.19 3.25 2.61 2.66 7.80 7.96 2.72 2.78 Mandible 1.46 1.49 1.00 1.02 0.25 0.26 0.21 0.21 0.82 0.83 0.18 0.19 Cervical 2.37 2.42 1.00 1.02 1.03 1.05 0.34 0.35 0.74 0.76 0.26 0.27 Thoracic 7.08 7.22 2.17 2.22 3.68 3.75 1.23 1.25 1.46 1.48 0.72 0.73 Lumbar 7.42 7.57 1.43 1.45 4.50 4.59 1.50 1.53 0.71 0.73 0.71 0.73 Sternum 0.98 1.00 0.34 0.34 0.48 0.49 0.16 0.16 0.27 0.28 0.07 0.07 Ribs 8.33 8.49 3.84 3.92 3.36 3.43 1.12 1.14 3.23 3.29 0.62 0.63 Scapulae 6.23 6.35 3.98 4.06 1.23 1.26 1.01 1.03 2.99 3.05 0.99 1.01 Clavicles 1.63 1.66 1.10 1.12 0.28 0.29 0.25 0.26 0.99 1.01 0.11 0.12 Os coxae 17.67 18.03 5.19 5.29 7.99 8.15 4.49 4.58 3.72 3.80 1.47 1.50 Sacrum 5.17 5.28 1.71 1.74 2.22 2.26 1.25 1.27 1.50 1.53 0.21 0.21 Humeri, Proximal 3.89 3.97 1.12 1.14 1.52 1.55 1.25 1.27 0.61 0.62 0.51 0.52 Humeri, Upper Shaft 1.99 2.03 1.55 1.58 0.15 0.16 0.28 0.29 1.55 1.58 0.00 0.00 Humeri, Lower Shaft 1.74 1.77 1.36 1.38 0.08 0.08 0.30 0.31 1.36 1.38 0.00 0.00 Humeri, Distal 2.35 2.40 1.26 1.29 0.00 0.00 1.09 1.11 0.96 0.98 0.30 0.30 Radii, Proximal 0.36 0.37 0.18 0.19 0.00 0.00 0.18 0.18 0.14 0.14 0.05 0.05 Radii, Shaft 1.33 1.35 1.15 1.18 0.00 0.00 0.18 0.18 1.15 1.18 0.00 0.00 Radii, Distal 0.66 0.68 0.27 0.27 0.00 0.00 0.40 0.41 0.17 0.17 0.10 0.10 Ulnae, Proximal 1.25 1.28 0.61 0.62 0.00 0.00 0.64 0.66 0.39 0.40 0.22 0.22 Ulnae, Shaft 1.58 1.61 1.36 1.39 0.00 0.00 0.22 0.22 1.36 1.39 0.00 0.00 Ulnae, Distal 0.23 0.23 0.10 0.10 0.00 0.00 0.12 0.13 0.07 0.08 0.03 0.03 Wrists and Hands 3.21 3.27 2.04 2.08 0.00 0.00 1.17 1.20 1.87 1.91 0.16 0.16 Femora, Proximal 5.55 5.66 2.05 2.09 1.92 1.96 1.57 1.61 1.14 1.16 0.91 0.93 Femora, Upper Shaft 3.96 4.04 2.95 3.01 0.35 0.36 0.66 0.67 2.95 3.01 0.00 0.00 Femora, Lower Shaft 4.48 4.56 3.33 3.40 0.23 0.23 0.92 0.93 3.33 3.40 0.00 0.00 Femora, Distal 7.54 7.69 2.88 2.94 0.00 0.00 4.66 4.75 1.09 1.11 1.79 1.83 Patellae 0.79 0.81 0.36 0.37 0.00 0.00 0.43 0.44 0.30 0.31 0.06 0.06 Tibiae, Proximal 5.96 6.08 1.96 2.00 0.00 0.00 4.00 4.08 1.54 1.58 0.42 0.43 Tibiae, Shaft 5.25 5.36 3.73 3.81 0.00 0.00 1.52 1.55 3.73 3.81 0.00 0.00 Tibiae, Distal 2.16 2.21 0.69 0.71 0.00 0.00 1.47 1.50 0.36 0.36 0.34 0.34 Fibulae, Proximal 0.49 0.50 0.22 0.23 0.00 0.00 0.27 0.28 0.17 0.18 0.05 0.05 Fibulae, Shaft 0.78 0.79 0.59 0.61 0.00 0.00 0.18 0.18 0.59 0.61 0.00 0.00 Fibulae, Distal 0.47 0.48 0.25 0.26 0.00 0.00 0.22 0.23 0.17 0.18 0.08 0.08 Ankles and Feet 11.47 11.70 4.08 4.16 0.00 0.00 7.39 7.54 3.06 3.12 1.02 1.04 Total Skeleton 142.16 145.00 66.39 67.72 32.48 33.13 43.29 44.16 52.31 53.36 14.08 14.36 ICRP 89 Reference 142.16 145.00 Ratio 1.00 1.00

PAGE 167

167 Table 4 4. M asses and volumes of site specific miscellaneous skeletal tissue in the 15 year male phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, IM inactive marrow, CB cortical bone, TB trabecular bone. Total MST Total MST MST In MB MST In MB MST In AM MST In AM MST In IM MST In IM MST In CB MST In CB MST In TB MST In TB Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 19.34 19.92 12.39 12.76 3.82 3.94 3.13 3.22 9.13 9.41 3.26 3.36 Mandible 1.80 1.85 1.22 1.26 0.32 0.33 0.26 0.27 0.99 1.02 0.23 0.23 Cervical 1.84 1.90 0.77 0.79 0.80 0.83 0.27 0.28 0.57 0.58 0.20 0.21 Thoracic 7.63 7.86 2.31 2.38 3.99 4.11 1.33 1.37 1.53 1.57 0.78 0.80 Lumbar 6.60 6.79 1.23 1.27 4.02 4.14 1.34 1.38 0.60 0.61 0.64 0.66 Sternum 1.38 1.42 0.47 0.48 0.68 0.70 0.23 0.23 0.37 0.38 0.09 0.10 Ribs 7.44 7.67 3.40 3.50 3.03 3.13 1.01 1.04 2.84 2.93 0.56 0.57 Scapulae 4.41 4.54 2.80 2.88 0.88 0.91 0.72 0.74 2.09 2.15 0.71 0.73 Clavicles 1.21 1.25 0.81 0.84 0.21 0.22 0.19 0.19 0.73 0.75 0.09 0.09 Os coxae 15.44 15.91 4.46 4.59 7.03 7.24 3.96 4.07 3.17 3.26 1.29 1.33 Sacrum 4.12 4.25 1.34 1.38 1.78 1.84 1.00 1.03 1.17 1.20 0.17 0.17 Humeri, Proximal 4.76 4.90 1.34 1.38 1.88 1.93 1.54 1.58 0.72 0.74 0.63 0.65 Humeri, Upper Shaft 2.39 2.46 1.85 1.91 0.19 0.19 0.35 0.36 1.85 1.91 0.00 0.00 Humeri, Lower Shaft 2.12 2.19 1.65 1.70 0.10 0.10 0.38 0.39 1.65 1.70 0.00 0.00 Humeri, Distal 2.89 2.97 1.54 1.58 0.00 0.00 1.35 1.39 1.17 1.20 0.37 0.38 Radii, Proximal 0.47 0.48 0.23 0.24 0.00 0.00 0.23 0.24 0.17 0.18 0.06 0.06 Radii, Shaft 1.45 1.50 1.25 1.29 0.00 0.00 0.20 0.21 1.25 1.29 0.00 0.00 Radii, Distal 0.85 0.88 0.34 0.35 0.00 0.00 0.51 0.53 0.21 0.22 0.13 0.13 Ulnae, Proximal 1.56 1.61 0.75 0.78 0.00 0.00 0.81 0.84 0.48 0.49 0.28 0.28 Ulnae, Shaft 1.77 1.83 1.52 1.56 0.00 0.00 0.25 0.26 1.52 1.56 0.00 0.00 Ulnae, Distal 0.29 0.30 0.13 0.13 0.00 0.00 0.16 0.17 0.09 0.10 0.04 0.04 Wrists and Hands 3.79 3.90 2.39 2.46 0.00 0.00 1.40 1.45 2.19 2.26 0.19 0.20 Femora, Proximal 7.05 7.26 2.57 2.65 2.46 2.54 2.02 2.08 1.41 1.45 1.16 1.20 Femora, Upper Shaft 5.25 5.41 3.88 3.99 0.48 0.50 0.89 0.92 3.88 3.99 0.00 0.00 Femora, Lower Shaft 4.00 4.12 2.95 3.04 0.21 0.22 0.84 0.86 2.95 3.04 0.00 0.00 Femora, Distal 8.22 8.47 3.10 3.20 0.00 0.00 5.12 5.27 1.14 1.17 1.97 2.03 Patellae 0.95 0.98 0.43 0.44 0.00 0.00 0.52 0.54 0.36 0.37 0.07 0.07 Tibiae, Proximal 6.68 6.88 2.16 2.23 0.00 0.00 4.51 4.65 1.69 1.74 0.47 0.49 Tibiae, Shaft 6.12 6.31 4.32 4.45 0.00 0.00 1.80 1.86 4.32 4.45 0.00 0.00 Tibiae, Distal 2.45 2.52 0.77 0.79 0.00 0.00 1.67 1.73 0.39 0.40 0.38 0.39 Fibulae, Proximal 0.61 0.63 0.27 0.28 0.00 0.00 0.34 0.35 0.21 0.22 0.06 0.06 Fibulae, Shaft 1.04 1.07 0.79 0.82 0.00 0.00 0.25 0.26 0.79 0.82 0.00 0.00 Fibulae, Distal 0.59 0.61 0.31 0.32 0.00 0.00 0.28 0.29 0.21 0.22 0.10 0.10 Ankles and Feet 13.96 14.38 4.89 5.04 0.00 0.00 9.07 9.34 3.65 3.76 1.25 1.28 Total Skeleton 150.49 155.00 70.65 72.77 31.90 32.86 47.94 49.37 55.48 57.15 15.17 15.62 ICRP 89 Reference 150.49 155.00 Ratio 1.00 1.00

PAGE 168

168 Table 4 5. Site specific active marrow volumes and masses of skeletal tissues in the 15 year female hybrid phantom including and then excluding contributions from miscellaneous skeletal tissues. TAM TAM TIM TIM TMS TMS TAM* TAM* TIM* TIM* TMS* TMS* Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 98.79 101.75 80.82 79.21 179.61 180.96 101.98 105.00 83.44 81.87 185.41 186.87 Mandible 7.87 8.10 6.44 6.31 14.30 14.41 8.12 8.36 6.64 6.52 14.76 14.88 Cervical 31.74 32.69 10.58 10.37 42.32 43.06 32.76 33.74 10.92 10.72 43.69 44.45 Thoracic 113.82 117.23 37.94 37.18 151.76 154.41 117.49 120.98 39.16 38.43 156.66 159.41 Lumbar 139.26 143.43 46.42 45.49 185.68 188.92 143.75 148.02 47.92 47.02 191.67 195.04 Sternum 14.98 15.42 4.99 4.89 19.97 20.32 15.46 15.92 5.15 5.06 20.61 20.97 Ribs 104.14 107.27 34.71 34.02 138.86 141.29 107.51 110.70 35.84 35.16 143.34 145.86 Scapulae 38.24 39.38 31.28 30.66 69.52 70.04 39.47 40.64 32.29 31.69 71.76 72.33 Clavicles 8.56 8.82 7.91 7.75 16.47 16.57 8.84 9.10 8.16 8.01 17.00 17.11 Os coxae 247.33 254.75 139.12 136.34 386.45 391.09 255.32 262.90 143.62 140.92 398.93 403.82 Sacrum 68.75 70.82 38.67 37.90 107.43 108.72 70.97 73.08 39.92 39.17 110.90 112.26 Humeri, Proximal 47.20 48.61 38.62 37.84 85.82 86.46 48.72 50.17 39.86 39.12 88.59 89.29 Humeri, Upper Shaft 4.73 4.87 8.78 8.61 13.51 13.48 4.88 5.03 9.07 8.90 13.95 13.93 Humeri, Lower Shaft 2.36 2.43 9.43 9.25 11.79 11.68 2.43 2.51 9.74 9.56 12.17 12.06 Humeri, Distal 0.00 0.00 33.67 32.99 33.67 32.99 0.00 0.00 34.75 34.10 34.75 34.10 Radii, Proximal 0.00 0.00 5.60 5.49 5.60 5.49 0.00 0.00 5.79 5.68 5.79 5.68 Radii, Shaft 0.00 0.00 5.43 5.32 5.43 5.32 0.00 0.00 5.60 5.50 5.60 5.50 Radii, Distal 0.00 0.00 12.30 12.06 12.30 12.06 0.00 0.00 12.70 12.46 12.70 12.46 Ulnae, Proximal 0.00 0.00 19.91 19.51 19.91 19.51 0.00 0.00 20.56 20.17 20.56 20.17 Ulnae, Shaft 0.00 0.00 6.73 6.60 6.73 6.60 0.00 0.00 6.95 6.82 6.95 6.82 Ulnae, Distal 0.00 0.00 3.86 3.78 3.86 3.78 0.00 0.00 3.98 3.91 3.98 3.91 Wrists and Hands 0.00 0.00 36.28 35.55 36.28 35.55 0.00 0.00 37.45 36.75 37.45 36.75 Femora, Proximal 59.60 61.39 48.76 47.79 108.36 109.17 61.52 63.35 50.34 49.39 111.86 112.74 Femora, Upper Shaft 10.98 11.31 20.39 19.98 31.37 31.29 11.33 11.67 21.05 20.65 32.38 32.32 Femora, Lower Shaft 7.09 7.30 28.36 27.79 35.45 35.09 7.32 7.54 29.27 28.72 36.59 36.26 Femora, Distal 0.00 0.00 144.30 141.41 144.30 141.41 0.00 0.00 148.96 146.17 148.96 146.17 Patellae 0.00 0.00 13.30 13.03 13.30 13.03 0.00 0.00 13.73 13.47 13.73 13.47 Tibiae, Proximal 0.00 0.00 123.75 121.28 123.75 121.28 0.00 0.00 127.75 125.35 127.75 125.35 Tibiae, Shaft 0.00 0.00 46.93 46.00 46.93 46.00 0.00 0.00 48.45 47.54 48.45 47.54 Tibiae, Distal 0.00 0.00 45.58 44.67 45.58 44.67 0.00 0.00 47.05 46.17 47.05 46.17 Fibulae, Proximal 0.00 0.00 8.41 8.24 8.41 8.24 0.00 0.00 8.68 8.52 8.68 8.52 Fibulae, Shaft 0.00 0.00 5.59 5.48 5.59 5.48 0.00 0.00 5.77 5.66 5.77 5.66 Fibulae, Distal 0.00 0.00 6.85 6.72 6.85 6.72 0.00 0.00 7.07 6.94 7.07 6.94 Ankles and Feet 0.00 0.00 228.81 224.23 228.81 224.23 0.00 0.00 236.20 231.77 236.20 231.77 Total 1005.42 1035.58 1340.55 1313.74 2345.97 2349.32 1037.90 1068.71 1383.84 1357.90 2421.74 2426.60 ICRP 89 Reference Values 970.87 1000.00 1408.16 1380.00 2379.04 2380.00 1003.35 1033.13 1451.45 1424.16 2454.81 2457.28 Ratio 1.04 1.04 0.95 0.95 0.99 0.99 1.03 1.03 0.95 0.95 0.99 0.99 Excluding MST Including MST

PAGE 169

169 Table 4 6. Site specific active marrow volumes and masses of skeletal tissues in the 15 year male hybrid phantom incl uding and then excluding contributions from miscellaneous skeletal tissues. TAM TAM TIM TIM TMS TMS TAM* TAM* TIM* TIM* TMS* TMS* Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 121.75 125.40 99.61 97.62 221.36 223.02 125.57 129.34 102.74 100.84 228.31 230.18 Mandible 10.07 10.37 8.24 8.08 18.31 18.45 10.39 10.70 8.50 8.34 18.89 19.04 Cervical 25.57 26.33 8.52 8.35 34.09 34.68 26.37 27.16 8.79 8.63 35.16 35.79 Thoracic 127.16 130.98 42.39 41.54 169.55 172.52 131.16 135.09 43.72 42.91 174.88 178.00 Lumbar 128.09 131.93 42.70 41.84 170.79 173.78 132.11 136.08 44.04 43.22 176.15 179.30 Sternum 21.75 22.40 7.25 7.10 29.00 29.51 22.43 23.10 7.48 7.34 29.91 30.44 Ribs 96.65 99.55 32.22 31.57 128.87 131.12 99.68 102.67 33.23 32.61 132.91 135.29 Scapulae 28.14 28.99 23.03 22.57 51.17 51.55 29.03 29.90 23.75 23.31 52.78 53.21 Clavicles 6.65 6.85 6.15 6.02 12.80 12.87 6.86 7.07 6.34 6.22 13.20 13.29 Os coxae 223.96 230.68 125.98 123.46 349.94 354.14 230.99 237.92 129.93 127.53 360.93 365.46 Sacrum 56.80 58.50 31.95 31.31 88.75 89.81 58.58 60.34 32.95 32.34 91.53 92.68 Humeri, Proximal 59.81 61.60 48.93 47.95 108.74 109.56 61.68 63.54 50.47 49.54 112.15 113.07 Humeri, Upper Shaft 6.00 6.18 11.15 10.93 17.15 17.11 6.19 6.38 11.50 11.29 17.69 17.67 Humeri, Lower Shaft 3.05 3.14 12.19 11.95 15.24 15.09 3.14 3.24 12.57 12.34 15.72 15.58 Humeri, Distal 0.00 0.00 42.99 42.13 42.99 42.13 0.00 0.00 44.34 43.52 44.34 43.52 Radii, Proximal 0.00 0.00 7.46 7.31 7.46 7.31 0.00 0.00 7.69 7.55 7.69 7.55 Radii, Shaft 0.00 0.00 6.37 6.25 6.37 6.25 0.00 0.00 6.57 6.45 6.57 6.45 Radii, Distal 0.00 0.00 16.37 16.05 16.37 16.05 0.00 0.00 16.89 16.58 16.89 16.58 Ulnae, Proximal 0.00 0.00 25.83 25.31 25.83 25.31 0.00 0.00 26.64 26.15 26.64 26.15 Ulnae, Shaft 0.00 0.00 8.11 7.94 8.11 7.94 0.00 0.00 8.36 8.21 8.36 8.21 Ulnae, Distal 0.00 0.00 5.11 5.01 5.11 5.01 0.00 0.00 5.27 5.18 5.27 5.18 Wrists and Hands 0.00 0.00 44.70 43.81 44.70 43.81 0.00 0.00 46.11 45.25 46.11 45.25 Femora, Proximal 78.44 80.80 64.18 62.90 142.63 143.69 80.91 83.33 66.20 64.97 147.10 148.31 Femora, Upper Shaft 15.32 15.78 28.44 27.87 43.76 43.65 15.80 16.27 29.34 28.79 45.13 45.06 Femora, Lower Shaft 6.66 6.86 26.65 26.12 33.32 32.99 6.87 7.08 27.49 26.98 34.36 34.06 Femora, Distal 0.00 0.00 162.94 159.69 162.94 159.69 0.00 0.00 168.06 164.96 168.06 164.96 Patellae 0.00 0.00 16.60 16.27 16.60 16.27 0.00 0.00 17.12 16.81 17.12 16.81 Tibiae, Proximal 0.00 0.00 143.67 140.80 143.67 140.80 0.00 0.00 148.19 145.45 148.19 145.45 Tibiae, Shaft 0.00 0.00 57.44 56.29 57.44 56.29 0.00 0.00 59.24 58.14 59.24 58.14 Tibiae, Distal 0.00 0.00 53.34 52.27 53.34 52.27 0.00 0.00 55.02 54.00 55.02 54.00 Fibulae, Proximal 0.00 0.00 10.80 10.59 10.80 10.59 0.00 0.00 11.14 10.94 11.14 10.94 Fibulae, Shaft 0.00 0.00 7.91 7.75 7.91 7.75 0.00 0.00 8.16 8.01 8.16 8.01 Fibulae, Distal 0.00 0.00 8.82 8.64 8.82 8.64 0.00 0.00 9.09 8.92 9.09 8.92 Ankles and Feet 0.00 0.00 288.75 282.98 288.75 282.98 0.00 0.00 297.82 292.32 297.82 292.32 Total 1015.88 1046.35 1526.81 1496.27 2542.68 2542.62 1047.78 1079.21 1574.74 1545.64 2622.52 2624.86 ICRP 89 Reference Values 1048.54 1080.00 1510.20 1480.00 2558.75 2560.00 1080.45 1112.86 1558.14 1529.37 2638.59 2642.23 Ratio 0.97 0.97 1.01 1.01 0.99 0.99 0.97 0.97 1.01 1.01 0.99 0.99 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Excluding MST Including MST

PAGE 170

170 Table 4 7. Comparison of site specific active marrow distribution between the UF 15year female (left) and male (right) hybrid phantoms and reference values given in ICRP P ublication 89. NURBS/Polygon Mesh ICRP 89, Table 9.4 Difference Ratio NURBS/Polygon Mesh ICRP 89, Table 9.4 Difference Ratio Skeletal Site (%) (%) (abs. %) NURBS/ICRP (%) (%) (abs. %) NURBS/ICRP Cranium 9.83 9.19 0.63 1.07 11.98 9.19 2.79 1.30 Mandible 0.78 0.90 -0.12 0.87 0.99 0.90 0.09 1.10 Cervical 3.16 3.30 -0.14 0.96 2.52 3.30 -0.78 0.76 Thoracic 11.32 13.69 -2.37 0.83 12.52 13.69 -1.17 0.91 Lumbar 13.85 10.49 3.36 1.32 12.61 10.49 2.12 1.20 Sternum 1.49 2.70 -1.21 0.55 2.14 2.70 -0.56 0.79 Ribs 10.36 13.59 -3.23 0.76 9.51 13.59 -4.07 0.70 Scapulae 3.80 3.30 0.51 1.15 2.77 3.30 -0.53 0.84 Clavicles 0.85 1.00 -0.15 0.85 0.66 1.00 -0.34 0.66 Os coxae 24.60 18.48 6.12 1.33 22.05 18.48 3.56 1.19 Sacrum 6.84 8.39 -1.55 0.81 5.59 8.39 -2.80 0.67 Humeri, Proximal 4.69 5.89 Humeri, Upper Shaft 0.47 0.59 Humeri, Lower Shaft 0.23 0.30 Humeri, Distal 0.00 0.00 Radii, Proximal 0.00 0.00 Radii, Shaft 0.00 0.00 Radii, Distal 0.00 0.00 Ulnae, Proximal 0.00 0.00 Ulnae, Shaft 0.00 0.00 Ulnae, Distal 0.00 0.00 Wrists and Hands 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 Femora, Proximal 5.93 7.72 Femora, Upper Shaft 1.09 1.51 Femora, Lower Shaft 0.71 0.66 Femora, Distal 0.00 0.00 Patellae 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 Tibiae, Proximal 0.00 0.00 Tibiae, Shaft 0.00 0.00 Tibiae, Distal 0.00 0.00 Fibulae, Proximal 0.00 0.00 Fibulae, Shaft 0.00 0.00 Fibulae, Distal 0.00 0.00 Ankles and Feet 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 Total 100.00 100.00 0.00 100.00 100.00 0.00 0.00 3.10 2.07 -0.46 0.00 0.00 -2.17 -1.29 0.00 0.70 0.00 0.00 9.19 1.00 1.00 2.00 0.00 0.00 0.76 0.35 1.00 1.00 Female Male 3.10 0.70 3.38 2.09 -0.40 0.43 1.67 0.34 0.00 0.00 1.00 0.00 0.00 1.00 9.19 1.00 0.04 2.00 -1.34 0.33 0.00 0.00 0.00 1.00 0.00 1.00

PAGE 171

171 Table 4 8. Masses, volumes, and percent distribution of cartilage by bone site in the UF 15year female (left) and male (right) phantoms. Skeletal Site Cartilage Volume (cm3) Cartilage Mass (g) % Distribution Cartilage Volume (cm3) Cartilage Mass (g) % Distribution Cranium 0.00 0.00 0.00 0.00 0.000.00 Mandible 0.00 0.00 0.00 0.00 0.00 0.00 Cervical 0.00 0.00 0.00 0.00 0.00 0.00 Thoracic 0.00 0.00 0.00 0.00 0.00 0.00 Lumbar 0.00 0.00 0.00 0.00 0.00 0.00 Sternum 32.17 35.39 18.84 28.49 31.33 14.60 Ribs 0.00 0.00 0.00 0.00 0.00 0.00 Scapulae 0.00 0.00 0.00 0.00 0.00 0.00 Clavicles 0.00 0.00 0.00 0.00 0.00 0.00 Os coxae 0.00 0.00 0.00 0.00 0.00 0.00 Sacrum 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Upper Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Lower Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Distal 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Distal 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Distal 0.00 0.00 0.00 0.00 0.00 0.00 Wrists and Hands 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Upper Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Lower Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Distal 0.00 0.00 0.00 0.00 0.00 0.00 Patellae 0.00 0.00 0.00 0.00 0.000.00 Tibiae, Proximal 0.00 0.00 0.00 0.00 0.000.00 Tibiae, Shaft 0.00 0.00 0.00 0.00 0.000.00 Tibiae, Distal 0.00 0.00 0.00 0.00 0.000.00 Fibulae, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 Fibulae, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 Fibulae, Distal 0.00 0.00 0.00 0.00 0.00 0.00 Ankles and Feet 0.00 0.00 0.00 0.00 0.00 0.00 Cranial Cartilage 0.00 0.00 0.00 0.00 0.00 0.00 Costal Cartilage 56.06 61.66 32.83 79.58 87.54 40.78 CV Intervertebral Discs 3.86 4.24 2.26 2.91 3.20 1.49 TV Intervertebral Discs 28.53 31.38 16.71 32.77 36.05 16.79 LV Intervertebral Discs 26.73 29.40 15.65 23.49 25.84 12.04 1External Nose 1.47 1.61 0.86 1.922.11 0.99 2Ears 8.36 9.20 4.90 8.369.20 4.29 3Extrapulmonary Bronchi 3.7 4.10 2.18 3.754.13 1.92 3Larynx 7.04 7.74 4.12 10.3411.37 5.30 3Trachea 2.82 3.10 1.65 3.523.87 1.80 Total Skeleton (Only Bone-Associated Cartilage) 147.34 162.08 167.24 183.96 Total Skeleton (All Cartilage)170.76 187.83 195.13 214.64 ICRP 89 Reference 836.36 920.00 1036.36 1140.00 Ratio (All Cartilage) 0.20 0.20 0.19 0.19 2100% of NURBS volume contains cartilage 350% of NURBS volume contains cartilage Female Male 100.00 100.00 133.3333% of total NURBS volume contains cartilage

PAGE 172

172 Table 4 9. Site specific trabecular and cortical bone volumes and mass including and excluding MST in the 15year female hybrid phantom. Trabecular Bone* Trabecular Bone* Cortical Bone* Cortical Bone* Trabecular Bone Trabecular Bone Cortical Bone Cortical Bone Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 86.99 154.45 249.34 442.73 84.26 151.68 241.54 434.77 Mandible 5.82 10.33 26.15 46.44 5.64 10.15 25.34 45.60 Cervical 8.32 14.78 23.76 42.19 8.06 14.51 23.02 41.43 Thoracic 22.99 40.82 46.51 82.59 22.27 40.09 45.06 81.11 Lumbar 22.74 40.37 22.83 40.53 22.02 39.64 22.11 39.80 Sternum 2.12 3.77 8.67 15.40 2.06 3.70 8.40 15.13 Ribs 19.69 34.96 103.15 183.16 19.07 34.33 99.92 179.86 Scapulae 31.72 56.32 95.51 169.59 30.72 55.30 92.52 166.54 Clavicles 3.62 6.44 31.50 55.94 3.51 6.32 30.52 54.93 Os coxae 46.85 83.19 119.05 211.38 45.39 81.70 115.32 207.58 Sacrum 6.62 11.75 47.89 85.03 6.41 11.54 46.39 83.51 Humeri, Proximal 16.27 28.90 19.45 34.53 15.77 28.38 18.84 33.91 Humeri, Upper Shaft 0.00 0.00 49.63 88.12 0.00 0.00 48.08 86.54 Humeri, Lower Shaft 0.00 0.00 43.31 76.90 0.00 0.00 41.96 75.52 Humeri, Distal 9.54 16.93 30.79 54.66 9.24 16.63 29.82 53.68 Radii, Proximal 1.50 2.67 4.36 7.74 1.45 2.62 4.22 7.60 Radii, Shaft 0.00 0.00 36.83 65.39 0.00 0.00 35.67 64.21 Radii, Distal 3.11 5.52 5.44 9.66 3.01 5.42 5.27 9.49 Ulnae, Proximal 6.99 12.41 12.43 22.07 6.77 12.19 12.04 21.67 Ulnae, Shaft 0.00 0.00 43.50 77.23 0.00 0.00 42.14 75.84 Ulnae, Distal 0.91 1.62 2.37 4.22 0.88 1.59 2.30 4.14 Wrists and Hands 5.14 9.13 59.91 106.38 4.98 8.97 58.04 104.46 Femora, Proximal 29.10 51.66 36.49 64.80 28.19 50.74 35.35 63.63 Femora, Upper Shaft 0.00 0.00 94.20 167.26 0.00 0.00 91.25 164.25 Femora, Lower Shaft 0.00 0.00 106.44 189.00 0.00 0.00 103.11 185.60 Femora, Distal 57.33 101.79 34.69 61.60 55.53 99.96 33.60 60.49 Patellae 1.89 3.35 9.71 17.23 1.83 3.29 9.40 16.92 Tibiae, Proximal 13.41 23.81 49.36 87.64 12.99 23.38 47.81 86.06 Tibiae, Shaft 0.00 0.00 119.38 211.96 0.00 0.00 115.64 208.15 Tibiae, Distal 10.71 19.01 11.41 20.26 10.37 18.67 11.06 19.90 Fibulae, Proximal 1.55 2.75 5.52 9.79 1.50 2.70 5.34 9.62 Fibulae, Shaft 0.00 0.00 19.01 33.75 0.00 0.00 18.41 33.14 Fibulae, Distal 2.55 4.53 5.54 9.84 2.47 4.45 5.37 9.67 Ankles and Feet 32.44 57.61 97.91 173.85 31.43 56.57 94.85 170.73 Total Skeleton 449.92 798.87 1672.03 2968.85 435.84 784.51 1619.72 2915.49 ICRP 89 Reference N/A N/A N/A N/A 411.11 740.00 1644.44 2960.00 Ratio N/A N/A N/A N/A 1.06 1.06 0.98 0.98 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Including MST Excluding MST

PAGE 173

173 Table 4 10. Site specific trabecular and cortical bone volumes and mass including and excluding MST in the newborn 15year male phantom. Trabecular Bone* Trabecular Bone* Cortical Bone* Cortical Bone* Trabecular Bone Trabecular Bone Cortical Bone Cortical Bone Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 107.11 190.29 299.98 532.93 103.85 186.93 290.85 523.53 Mandible 7.44 13.22 32.68 58.06 7.22 12.99 31.69 57.04 Cervical 6.70 11.90 18.61 33.06 6.50 11.69 18.04 32.48 Thoracic 25.67 45.60 50.10 89.00 24.88 44.79 48.57 87.43 Lumbar 20.89 37.12 19.59 34.80 20.26 36.47 18.99 34.19 Sternum 3.08 5.47 12.22 21.72 2.99 5.38 11.85 21.33 Ribs 18.26 32.43 93.33 165.81 17.70 31.86 90.49 162.89 Scapulae 23.33 41.44 68.63 121.92 22.61 40.71 66.54 119.77 Clavicles 2.81 5.00 23.87 42.41 2.73 4.91 23.14 41.66 Os coxae 42.39 75.31 103.99 184.74 41.10 73.98 100.82 181.48 Sacrum 5.46 9.70 38.43 68.26 5.29 9.53 37.26 67.06 Humeri, Proximal 20.60 36.60 23.55 41.83 19.98 35.96 22.83 41.09 Humeri, Upper Shaft 0.00 0.00 60.87 108.14 0.00 0.00 59.02 106.23 Humeri, Lower Shaft 0.00 0.00 54.08 96.07 0.00 0.00 52.43 94.37 Humeri, Distal 12.17 21.61 38.35 68.12 11.79 21.23 37.18 66.92 Radii, Proximal 2.00 3.55 5.65 10.04 1.94 3.49 5.48 9.86 Radii, Shaft 0.00 0.00 41.14 73.08 0.00 0.00 39.89 71.79 Radii, Distal 4.13 7.34 7.02 12.46 4.00 7.21 6.80 12.24 Ulnae, Proximal 9.06 16.10 15.68 27.85 8.79 15.81 15.20 27.36 Ulnae, Shaft 0.00 0.00 49.87 88.60 0.00 0.00 48.35 87.04 Ulnae, Distal 1.21 2.14 3.06 5.44 1.17 2.10 2.97 5.35 Wrists and Hands 6.33 11.25 72.02 127.95 6.14 11.05 69.83 125.69 Femora, Proximal 38.26 67.98 46.30 82.26 37.10 66.78 44.89 80.81 Femora, Upper Shaft 0.00 0.00 127.39 226.31 0.00 0.00 123.51 222.32 Femora, Lower Shaft 0.00 0.00 96.99 172.32 0.00 0.00 94.04 169.27 Femora, Distal 64.68 114.90 37.31 66.29 62.71 112.88 36.18 65.12 Patellae 2.35 4.18 11.81 20.99 2.28 4.10 11.45 20.62 Tibiae, Proximal 15.56 27.64 55.54 98.67 15.08 27.15 53.85 96.93 Tibiae, Shaft 0.00 0.00 141.92 252.14 0.00 0.00 137.60 247.69 Tibiae, Distal 12.52 22.24 12.79 22.72 12.14 21.85 12.40 22.32 Fibulae, Proximal 1.99 3.53 6.90 12.26 1.93 3.47 6.69 12.04 Fibulae, Shaft 0.00 0.00 26.02 46.23 0.00 0.00 25.23 45.42 Fibulae, Distal 3.28 5.83 6.95 12.35 3.18 5.72 6.74 12.13 Ankles and Feet 40.91 72.67 119.83 212.89 39.66 71.39 116.18 209.13 Total Skeleton 498.18 885.05 1822.47 3237.72 483.02 869.43 1766.99 3180.57 ICRP 89 Reference N/A N/A N/A N/A 450.00 810.00 1800.00 3240.00 Ratio N/A N/A N/A N/A 1.07 1.07 0.98 0.98 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Including MST Excluding MST

PAGE 174

174 Table 4 11. Site specific total mineral bone volumes and mass includi ng and excluding MST in the 15year female (left) and male (right) hybrid phantoms. Total Mineral Bone Total Mineral Bone Total Mineral Bone* Total Mineral Bone* Total Mineral Bone Total Mineral Bone Total Mineral Bone* Total Mineral Bone* Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 325.80 586.45 336.33 597.18 394.70 710.46 407.09 723.22 Mandible 30.97 55.75 31.97 56.77 38.91 70.03 40.13 71.29 Cervical 31.08 55.94 32.08 56.97 24.54 44.17 25.31 44.96 Thoracic 67.33 121.20 69.51 123.41 73.46 132.22 75.76 134.59 Lumbar 44.14 79.45 45.56 80.90 39.25 70.66 40.49 71.92 Sternum 10.46 18.83 10.80 19.17 14.84 26.71 15.31 27.19 Ribs 119.00 214.20 122.84 218.12 108.19 194.75 111.59 198.24 Scapulae 123.25 221.84 127.23 225.90 89.15 160.48 91.95 163.36 Clavicles 34.03 61.25 35.13 62.37 25.87 46.57 26.69 47.41 Os coxae 160.71 289.28 165.90 294.57 141.92 255.45 146.37 260.04 Sacrum 52.80 95.04 54.51 96.78 42.55 76.59 43.89 77.97 Humeri, Proximal 34.60 62.29 35.72 63.43 42.81 77.05 44.15 78.44 Humeri, Upper Shaft 48.08 86.54 49.63 88.12 59.02 106.23 60.87 108.14 Humeri, Lower Shaft 41.96 75.52 43.31 76.90 52.43 94.37 54.08 96.07 Humeri, Distal 39.06 70.31 40.32 71.59 48.97 88.15 50.51 89.73 Radii, Proximal 5.68 10.22 5.86 10.40 7.42 13.35 7.65 13.59 Radii, Shaft 35.67 64.21 36.83 65.39 39.89 71.79 41.14 73.08 Radii, Distal 8.28 14.90 8.55 15.18 10.81 19.45 11.15 19.80 Ulnae, Proximal 18.81 33.86 19.42 34.48 23.98 43.17 24.74 43.95 Ulnae, Shaft 42.14 75.84 43.50 77.23 48.35 87.04 49.87 88.60 Ulnae, Distal 3.18 5.73 3.28 5.83 4.14 7.45 4.27 7.58 Wrists and Hands 63.02 113.43 65.05 115.51 75.97 136.74 78.35 139.20 Femora, Proximal 63.54 114.37 65.59 116.46 81.99 147.59 84.57 150.24 Femora, Upper Shaft 91.25 164.25 94.20 167.26 123.51 222.32 127.39 226.31 Femora, Lower Shaft 103.11 185.60 106.44 189.00 94.04 169.27 96.99 172.32 Femora, Distal 89.14 160.45 92.02 163.39 98.88 177.99 101.99 181.19 Patellae 11.23 20.21 11.59 20.58 13.73 24.72 14.16 25.16 Tibiae, Proximal 60.80 109.44 62.77 111.45 68.93 124.07 71.09 126.30 Tibiae, Shaft 115.64 208.15 119.38 211.96 137.60 247.69 141.92 252.14 Tibiae, Distal 21.43 38.57 22.12 39.28 24.54 44.17 25.31 44.96 Fibulae, Proximal 6.84 12.32 7.07 12.55 8.62 15.52 8.89 15.79 Fibulae, Shaft 18.41 33.14 19.01 33.75 25.23 45.42 26.02 46.23 Fibulae, Distal 7.84 14.12 8.10 14.37 9.92 17.85 10.23 18.17 Ankles and Feet 126.28 227.30 130.35 231.46 155.84 280.52 160.74 285.56 Total Skeleton 2055.56 3700.00 2121.94 3767.72 2250.00 4050.00 2320.65 4122.77 ICRP 89 Reference 2055.56 3700.00 2121.94 3767.72 2250.00 4050.00 2320.65 4122.77 Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Female Male

PAGE 175

175 Table 4 12. Percentages of total mineral bone attributed to cortical bone and to trabecular bone by skeletal site in the newborn, 15year female and male hybrid phanto ms compared to the ICRP adult reference values. Skeletal Site Cortical Trabecular Cortical Trabecular Cortical Trabecular Cortical Trabecular Cranium 0.27 0.73 0.74 0.26 0.74 0.26 0.95 0.05 Mandible 0.41 0.59 0.82 0.18 0.81 0.19 0.95 0.05 Cervical 0.47 0.53 0.74 0.26 0.74 0.26 0.25 0.75 Thoracic 0.57 0.43 0.67 0.33 0.66 0.34 0.25 0.75 Lumbar 0.39 0.61 0.50 0.50 0.48 0.52 0.34 0.66 Sternum 0.37 0.63 0.80 0.20 0.80 0.20 0.94 0.06 Ribs 0.41 0.59 0.84 0.16 0.84 0.16 0.94 0.06 Scapula 0.54 0.46 0.75 0.25 0.75 0.25 0.94 0.06 Clavicles 0.54 0.46 0.90 0.10 0.89 0.11 0.94 0.06 Os coxae 0.61 0.39 0.72 0.28 0.71 0.29 0.90 0.10 Sacrum 0.39 0.61 0.88 0.12 0.88 0.12 0.75 0.25 Humeri, upper half 0.50 0.50 0.81 0.19 0.80 0.20 0.90 0.10 Humeri, lower half 0.55 0.45 0.89 0.11 0.88 0.12 0.90 0.10 Radii 0.57 0.43 0.91 0.09 0.90 0.10 0.87 0.13 Ulna 0.57 0.43 0.88 0.12 0.87 0.13 0.87 0.13 Wrist and Hands 0.38 0.62 0.92 0.08 0.92 0.08 0.95 0.05 Femora, upper half 0.54 0.46 0.82 0.18 0.82 0.18 0.77 0.23 Femora, lower half 0.68 0.32 0.71 0.29 0.67 0.33 0.77 0.23 Patella 0.38 0.62 0.84 0.16 0.83 0.17 0.77 0.23 Tibia 0.55 0.45 0.88 0.12 0.88 0.12 0.83 0.17 Fibula 0.60 0.40 0.88 0.12 0.88 0.12 0.89 0.11 Ankles and Feet 0.38 0.62 0.75 0.25 0.75 0.25 0.65 0.35 15 Y Female 15 Y Male Adult Newborn

PAGE 176

176 Table 4 13. Distribution of shallow marrow by skeletal site in the 15 year female hybrid phantom. Shallow Shallow Shallow Shallow Marrow* Shallow Marrow* Shallow Marrow* Shallow Marrow* Shallow Marrow Inactive Marrow* Active Marrow* Shallow Marrow* Marrow* Bone Site SMVF (% of SV) (% of MV) Volume (cm3) Mass (g) @100% Cellularity (%) Mass (g) Mass (g) Mass (g) @ Ref. Cell. % of total 1Cranium 13.84% 20.33% 37.70 38.83 55 16.63 21.36 37.98 10.78% Mandible 14.21% 19.81% 2.92 3.01 55 1.29 1.66 2.95 0.84% 2Cervical 14.76% 17.57% 7.68 7.91 75 1.88 5.93 7.81 2.22% 3Thoracic 13.27% 15.22% 23.85 24.56 75 5.84 18.42 24.27 6.89% 4Lumbar 12.20% 13.64% 26.15 26.94 75 6.41 20.20 26.61 7.55% Sternum 12.63% 13.93% 2.87 2.96 75 0.70 2.22 2.92 0.83% 5Ribs 12.01% 13.66% 19.57 20.16 75 4.80 15.12 19.92 5.65% Right Scapula 11.87% 17.11% 12.28 12.65 55 5.42 6.96 12.37 3.51% Right Clavicle 10.43% 12.66% 2.15 2.22 53 0.99 1.17 2.17 0.61% 6Os coxae 12.78% 14.29% 56.99 58.70 64 20.11 37.57 57.67 16.37% Sacrum 7.15% 7.58% 8.40 8.65 64 2.96 5.54 8.50 2.41% Humerii, Right Proximal 13.28% 15.73% 13.93 14.35 55 6.14 7.89 14.04 3.98% 7Humerii, Upper Shaft 2.09% 2.09% 0.29 0.30 35 0.19 0.10 0.29 0.08% 7Humerii, Lower Shaft 2.26% 2.26% 0.27 0.28 20 0.22 0.06 0.27 0.08% Humerii, Right Distal 13.57% 17.30% 6.01 6.19 0 5.89 0.00 5.89 1.67% Radii, Right Proximal 13.54% 17.05% 0.99 1.02 0 0.97 0.00 0.97 0.27% Radii, Shaft 4.39% 4.39% 0.25 0.25 0 0.24 0.00 0.24 0.07% Radii, Right Distal 13.57% 16.89% 2.15 2.21 0 2.10 0.00 2.10 0.60% Ulna, Right Proximal 15.16% 20.32% 4.18 4.30 0 4.09 0.00 4.09 1.16% Ulna, Shaft 3.93% 3.93% 0.27 0.28 0 0.27 0.00 0.27 0.08% Ulna, Right Distal 16.04% 19.71% 0.78 0.81 0 0.77 0.00 0.77 0.22% 8Wrist and Hands 12.01% 13.66% 5.11 5.27 0 5.01 0.00 5.01 1.42% 9Femora, Proximal 15.33% 19.31% 21.60 22.25 55 9.53 12.24 21.76 6.18% 7Femora, Upper Shaft 1.68% 1.68% 0.54 0.56 35 0.35 0.20 0.54 0.15% 7Femora, Lower Shaft 1.55% 1.55% 0.57 0.58 20 0.44 0.12 0.56 0.16% Femora, Distal 15.64% 21.66% 32.26 33.23 0 31.62 0.00 31.62 8.97% 8Patella 12.01% 13.66% 1.87 1.93 0 1.84 0.00 1.84 0.52% Tibia, Proximal 10.73% 11.85% 15.14 15.60 0 14.84 0.00 14.84 4.21% Tibia, Shaft 1.75% 1.75% 0.85 0.87 0 0.83 0.00 0.83 0.24% Tibia, Distal 15.14% 18.59% 8.75 9.01 0 8.57 0.00 8.57 2.43% Fibula, Proximal 13.14% 15.48% 1.34 1.38 0 1.32 0.00 1.32 0.37% Fibula, Shaft 5.02% 5.02% 0.29 0.30 0 0.28 0.00 0.28 0.08% Fibula, Distal 16.32% 22.20% 1.57 1.62 0 1.54 0.00 1.54 0.44% 8Ankles and Feet 12.01% 13.66% 32.25 33.22 0 31.61 0.00 31.61 8.97% Total Skeleton 351.85 362.40 195.67 156.75 352.42 100.00% 1The MVF is a inear average between occipital, frontal, parietal (+/2.06%) 2The MVF is a linear average between C3 and C6 (+/2.23%) 3The MVF is a linear average between T1, T3, T6, T9, and T12 (+/1.74%) 4The MVF is a linear average between L1,L2, L3, L4, and L5 (+/2.01%) 5The MVF is a linear average between the upper (rib-1), middle (rib-6), and lower right (rib-12) rib (+/3.04%) 6The MVF was calculated from the right ilium 7The SVF for the upper shaft was segmented and assumed to be the same for the lower shaft 8The MVF for the rib was used as a surrogate 9The MVF is a linear average of the right and left head and neck (+/3.46%)

PAGE 177

177 Table 4 14. Distribution of shallow marrow by skeletal site in the 15 year male hybrid phantom. Shallow Shallow Shallow Shallow Marrow* Shallow Marrow* Shallow Marrow* Shallow Marrow* Shallow Marrow Inactive Marrow* Active Marrow* Shallow Marrow* Marrow* Bone Site SMVF (% of SV) (% of MV) Volume (cm3) Mass (g) @ 100% Cellularity (%) Mass (g) Mass (g) Mass (g) @ Ref. Cell. % of total 1Cranium 13.84% 20.33% 46.42 47.81 55 21.52 26.30 47.81 12.09% Mandible 14.21% 19.81% 3.74 3.85 55 1.73 2.12 3.85 0.97% 2Cervical 14.76% 17.57% 6.18 6.36 75 1.59 4.77 6.36 1.61% 3Thoracic 13.27% 15.22% 26.62 27.42 75 6.85 20.56 27.42 6.94% 4Lumbar 12.20% 13.64% 24.03 24.75 75 6.19 18.57 24.75 6.26% Sternum 12.63% 13.93% 4.17 4.29 75 1.07 3.22 4.29 1.09% 5Ribs 12.01% 13.66% 18.15 18.69 75 4.67 14.02 18.69 4.73% Right Scapula 11.87% 17.11% 9.03 9.30 55 4.19 5.12 9.30 2.35% Right Clavicle 10.43% 12.66% 1.67 1.72 53 0.81 0.91 1.72 0.44% 6Os coxae 12.78% 14.29% 51.56 53.11 64 19.12 33.99 53.11 13.43% Sacrum 7.15% 7.58% 6.93 7.14 64 2.57 4.57 7.14 1.81% Humerii, Right Proximal 13.28% 15.73% 17.64 18.17 55 8.17 9.99 18.17 4.60% 7Humerii, Upper Shaft 1.89% 1.89% 0.33 0.34 35 0.22 0.12 0.34 0.09% 7Humerii, Lower Shaft 2.07% 2.07% 0.33 0.34 20 0.27 0.07 0.34 0.08% Humerii, Right Distal 13.57% 17.30% 7.67 7.90 0 7.90 0.00 7.90 2.00% Radii, Right Proximal 13.54% 17.05% 1.31 1.35 0 1.35 0.00 1.35 0.34% Radii, Shaft 4.07% 4.07% 0.27 0.28 0 0.28 0.00 0.28 0.07% Radii, Right Distal 13.57% 16.89% 2.85 2.94 0 2.94 0.00 2.94 0.74% Ulna, Right Proximal 15.16% 20.32% 5.41 5.58 0 5.58 0.00 5.58 1.41% Ulna, Shaft 3.61% 3.61% 0.30 0.31 0 0.31 0.00 0.31 0.08% Ulna, Right Distal 16.04% 19.71% 1.04 1.07 0 1.07 0.00 1.07 0.27% 8Wrist and Hands 12.01% 13.66% 6.30 6.48 0 6.48 0.00 6.48 1.64% 9Femora, Proximal 15.33% 19.31% 28.41 29.26 55 13.17 16.09 29.26 7.40% 7Femora, Upper Shaft 1.44% 1.44% 0.65 0.67 35 0.44 0.23 0.67 0.17% 7Femora, Lower Shaft 1.64% 1.64% 0.56 0.58 20 0.47 0.12 0.58 0.15% Femora, Distal 15.64% 21.66% 36.40 37.49 0 37.49 0.00 37.49 9.48% 8Patella 12.01% 13.66% 2.34 2.41 0 2.41 0.00 2.41 0.61% Tibia, Proximal 10.73% 11.85% 17.56 18.09 0 18.09 0.00 18.09 4.58% Tibia, Shaft 1.60% 1.60% 0.95 0.98 0 0.98 0.00 0.98 0.25% Tibia, Distal 15.14% 18.59% 10.23 10.53 0 10.53 0.00 10.53 2.66% Fibula, Proximal 13.14% 15.48% 1.72 1.78 0 1.78 0.00 1.78 0.45% Fibula, Shaft 4.29% 4.29% 0.35 0.36 0 0.36 0.00 0.36 0.09% Fibula, Distal 16.32% 22.20% 2.02 2.08 0 2.08 0.00 2.08 0.53% 8Ankles and Feet 12.01% 13.66% 40.67 41.89 0 41.89 0.00 41.89 10.60% Total Skeleton 383.82 395.34 234.56 160.77 395.34 100.00% 1The MVF is a inear average between occipital, frontal, parietal (+/2.06%) 2The MVF is a linear average between C3 and C6 (+/2.23%) 3The MVF is a linear average between T1, T3, T6, T9, and T12 (+/1.74%) 4The MVF is a linear average between L1,L2, L3, L4, and L5 (+/2.01%) 5The MVF is a linear average between the upper (rib-1), middle (rib-6), and lower right (rib-12) rib (+/3.04%) 6The MVF was calculated from the right ilium 7The SVF for the upper shaft was segmented and assumed to be the same for the lower shaft 8The MVF for the rib was used as a surrogate 9The MVF is a linear average of the right and left head and neck (+/3.46%)

PAGE 178

178 Tabl e 4 15. Lengths and radii of the medullary cavities within the long bones of the 15year female (left) and male (right) hybrid phantoms. Bone site FemaleMale Female MaleFemale Male Humerii, Upper Shaft 9.76 10.18 0.10 0.10 0.48 0.53 Humerii, Lower Shaft 9.99 10.85 0.12 0.03 0.44 0.48 Radii, Shaft 17.53 17.73 0.16 0.13 0.23 0.24 Ulna, Shaft 17.44 17.67 0.03 0.170.25 0.27 Femora, Upper Shaft 14.64 17.04 0.06 0.13 0.59 0.69 Femora, Lower Shaft 14.11 16.88 0.05 0.05 0.64 0.61 Tibia, Shaft 23.74 24.37 0.05 0.11 0.57 0.62 Fibula, Shaft 23.76 24.42 0.05 0.07 0.20 0.23 Measured Height (cm) Medullary Marrow Measured Height Std. Dev. (cm) Calculated Radius (cm) Medullary Marrow Table 4 16. Comparison of trabecular bone surface to volume (S/V) ratios (mm2 mm3 mm2/mm3mm2/mm3mm2/mm3mm2/mm3Ratio Skeletal Site aHybrid Newborn b15-yearcICRP 15-yearcICRP-Adult 15-year hybrid/ 15-year reference Cranium 3.8 12.6 7.1 7.8 1.77 Mandible 29.7 14.0 7.1 7.8 1.98 Cervical 14.3 26.0 21.9 18.0 1.19 Thoracic 13.8 28.1 21.9 18.0 1.28 Lumbar 17.9 31.3 22.8 19.7 1.38 Sternum 31.0 34.2 19.2 18.5 1.79 Ribs 29.7 24.2 19.2 18.5 1.26 Scapulae 25.3 10.1 21.4 18.5 0.47 Clavicles 25.3 15.4 21.4 18.5 0.72 Os coxae 25.3 31.2 20.0 17.2 1.56 Sacrum 17.9 31.6 21.3 19.7 1.49 Humeri, Proximal 17.9 23.8 Humeri, Upper Shaft 0.0 0.0 Humeri, Lower Shaft 0.0 0.0 Humeri, Distal 17.9 20.7 Radii, Proximal 17.9 19.7 Radii, Shaft 0.0 0.0 Radii, Distal 17.9 19.0 Ulnae, Proximal 17.9 16.9 Ulnae, Shaft 0.0 0.0 Ulnae, Distal 17.9 22.3 Wrists and Hands 17.9 24.2 18.0 18.0 1.35 Femora, Proximal 17.9 21.6 Femora, Upper Shaft 0.0 0.0 Femora, Lower Shaft 0.0 0.0 Femora, Distal 17.9 15.9 Patellae 17.9 24.2 18.0 18.0 1.35 Tibiae, Proximal 17.9 29.7 Tibiae, Shaft 0.0 0.0 Tibiae, Distal 17.9 21.3 Fibulae, Proximal 17.9 23.4 Fibulae, Shaft 0.0 0.0 Fibulae, Distal 17.9 16.7 Ankles and Feet 17.9 24.2 18.0 18.0 1.35 aRefer to Chapter 2 for detailed analysis. b18-year male specimens serve as surrogate for 15-year male and female; see text for detailed microstructure data. cvalues from Beddoe (1976). 0.66 0.58 0.61 0.44 0.72 0.73 18.0 18.0 0.94 0.74 17.3 18.0 18.0 17.9 17.3 18.0 18.0 18.0 17.9 18.0 18.0 18.0 18.0 18.0 ) by skeletal site and age.

PAGE 179

179 Ta ble 4 17. Site specific homogeneous spongiosa mass, volume, and density data, including MST in the 15year female (left) and male (right) hybrid phantoms. Skeletal Site Female Male Female Male Female Male Cranium 341.33 420.47 272.40 335.42 1.25 1.25 Mandible 25.21 32.27 20.58 26.33 1.22 1.23 Cervical 59.23 47.69 52.01 41.86 1.14 1.14 Thoracic 200.24 223.60 179.65 200.54 1.11 1.11 Lumbar 235.41 216.42 214.41 197.05 1.10 1.10 Sternum 24.75 35.92 22.74 32.99 1.09 1.09 Ribs 180.82 167.72 163.03 151.17 1.11 1.11 Scapulae 128.65 94.65 103.48 76.10 1.24 1.24 Clavicles 23.55 18.29 20.63 16.01 1.14 1.14 Os coxae 487.01 440.76 445.79 403.32 1.09 1.09 Sacrum 124.00 102.38 117.51 97.00 1.06 1.06 Humeri, Proximal 118.18 149.68 104.86 132.76 1.13 1.13 Humeri, Distal 51.03 65.13 44.29 56.50 1.15 1.15 Radii, Proximal 8.34 11.10 7.29 9.69 1.14 1.15 Radii, Distal 17.98 23.91 15.81 21.02 1.14 1.14 Ulnae, Proximal 32.58 42.25 27.55 35.70 1.18 1.18 Ulnae, Distal 5.52 7.32 4.89 6.48 1.13 1.13 Wrists and Hands 45.88 56.50 42.60 52.44 1.08 1.08 Femora, Proximal 164.41 216.29 140.96 185.37 1.17 1.17 Femora, Distal 247.96 279.86 206.29 232.74 1.20 1.20 Patellae 16.82 20.98 15.61 19.47 1.08 1.08 Tibiae, Proximal 149.16 173.08 141.16 163.74 1.06 1.06 Tibiae, Distal 65.18 76.24 57.76 67.54 1.13 1.13 Fibulae, Proximal 11.27 14.47 10.23 13.13 1.10 1.10 Fibulae, Distal 11.47 14.75 9.63 12.37 1.19 1.19 Ankles and Feet 289.38 364.99 268.64 338.72 1.08 1.08 Total Skeleton 3065.38 3316.72 2709.78 2925.46 Volume Weighted Average Density 1.13 1.12 ICRP 89 Reference 3037.84 3259.93 2717.65 2907.62 Ratio 0.99 0.98 1.00 0.99 ICRU 46 Adult Density 1.18 1.18 Ratio 0.96 0.95 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Homogeneous* Spongiosa Volume (cm3) Homogeneous* Spongiosa Density (g/cm3) Homogeneous* Spongiosa Mass (g)

PAGE 180

180 Table 4 18. Site specific homogeneous spongiosa elemental composition (% by mass) in the 15year female hybrid phantom. Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 7.76 35.20 3.15 39.93 9.11 0.14 0.15 4.31 0.22 0.00 0.01 0.03 Mandible 8.06 36.67 3.06 39.50 8.25 0.14 0.14 3.92 0.22 0.00 0.01 0.03 Cervical 9.04 38.92 3.12 40.88 5.02 0.12 0.16 2.46 0.21 0.00 0.01 0.06 Thoracic 9.35 40.30 3.05 40.61 4.10 0.12 0.16 2.04 0.20 0.00 0.01 0.06 Lumbar 9.57 41.28 3.00 40.41 3.45 0.12 0.16 1.75 0.20 0.00 0.01 0.06 Sternum 9.70 41.86 2.97 40.30 3.07 0.11 0.15 1.57 0.20 0.00 0.01 0.06 Ribs 9.42 40.62 3.03 40.54 3.89 0.12 0.16 1.95 0.20 0.00 0.01 0.06 Scapulae 7.86 35.71 3.12 39.78 8.81 0.14 0.15 4.17 0.22 0.00 0.01 0.03 Clavicles 9.03 41.88 2.72 37.70 5.50 0.13 0.13 2.66 0.19 0.00 0.01 0.04 Os coxae 9.66 43.29 2.77 38.61 3.44 0.12 0.14 1.73 0.19 0.00 0.01 0.05 Sacrum 10.19 45.77 2.63 37.99 1.91 0.11 0.13 1.03 0.18 0.00 0.01 0.06 Humeri, Proximal 9.21 42.39 2.72 37.86 4.92 0.12 0.13 2.40 0.19 0.00 0.01 0.04 1Humeri, Upper Shaft 11.12 55.30 1.70 31.39 0.00 0.10 0.07 0.14 0.14 0.00 0.01 0.03 1Humeri, Lower Shaft 11.27 58.71 1.30 28.31 0.00 0.10 0.04 0.12 0.12 0.00 0.01 0.02 Humeri, Distal 8.97 47.72 1.92 31.18 6.68 0.13 0.07 3.17 0.17 0.00 0.01 0.00 Radii, Proximal 9.06 48.29 1.88 30.92 6.43 0.13 0.06 3.05 0.17 0.00 0.01 0.00 1Radii, Shaft 11.47 63.33 0.76 24.13 0.00 0.10 0.00 0.10 0.10 0.00 0.01 0.00 Radii, Distal 9.16 48.90 1.83 30.64 6.18 0.13 0.06 2.93 0.16 0.00 0.01 0.00 Ulnae, Proximal 8.59 45.40 2.09 32.22 7.67 0.14 0.07 3.62 0.18 0.00 0.01 0.00 1Ulnae, Shaft 11.47 63.33 0.76 24.13 0.00 0.10 0.00 0.10 0.10 0.00 0.01 0.00 Ulnae, Distal 9.26 49.57 1.78 30.34 5.89 0.13 0.06 2.80 0.16 0.00 0.01 0.00 Wrists and Hands 9.97 53.96 1.45 28.36 4.01 0.12 0.04 1.94 0.14 0.00 0.01 0.00 Femora, Proximal 8.73 39.98 2.87 38.55 6.33 0.13 0.14 3.04 0.20 0.00 0.01 0.04 1Femora, Upper Shaft 11.12 55.30 1.70 31.39 0.00 0.10 0.07 0.14 0.14 0.00 0.01 0.03 1Femora, Lower Shaft 11.27 58.71 1.30 28.31 0.00 0.10 0.04 0.12 0.12 0.00 0.01 0.02 Femora, Distal 8.37 44.01 2.20 32.85 8.26 0.14 0.08 3.89 0.18 0.00 0.01 0.00 Patellae 9.97 53.96 1.45 28.36 4.01 0.12 0.04 1.94 0.14 0.00 0.01 0.00 Tibiae, Proximal 10.27 55.82 1.32 27.52 3.21 0.12 0.03 1.58 0.13 0.00 0.01 0.00 1Tibiae, Shaft 11.47 63.33 0.76 24.13 0.00 0.10 0.00 0.10 0.10 0.00 0.01 0.00 Tibiae, Distal 9.27 49.60 1.78 30.32 5.87 0.13 0.06 2.80 0.16 0.00 0.01 0.00 Fibulae, Proximal 9.63 51.84 1.61 29.32 4.92 0.12 0.05 2.36 0.15 0.00 0.01 0.00 1Fibulae, Shaft 11.47 63.33 0.76 24.13 0.00 0.10 0.00 0.10 0.10 0.00 0.01 0.00 Fibulae, Distal 8.49 44.75 2.14 32.52 7.95 0.14 0.08 3.75 0.18 0.00 0.01 0.00 Ankles and Feet 9.97 53.96 1.45 28.36 4.01 0.12 0.04 1.94 0.14 0.00 0.01 0.00 Total Skeleton Spongiosa 9.28 44.31 2.49 36.05 4.99 0.12 0.11 2.42 0.18 0.00 0.01 0.03 1Medullary marrow; contains marrow only Element

PAGE 181

181 Table 4 19. Site specific homogeneous spongiosa elemental composition (% by mass) in the 15year male hybrid phantom. Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 7.75 35.05 3.16 40.06 9.11 0.14 0.15 4.31 0.22 0.01 0.01 0.03 Mandible 8.05 36.53 3.07 39.63 8.25 0.14 0.14 3.92 0.22 0.01 0.01 0.03 Cervical 9.03 38.77 3.13 41.02 5.03 0.12 0.16 2.46 0.21 0.01 0.01 0.06 Thoracic 9.34 40.14 3.06 40.75 4.11 0.12 0.16 2.04 0.20 0.01 0.01 0.06 Lumbar 9.56 41.12 3.01 40.56 3.45 0.12 0.16 1.75 0.20 0.01 0.01 0.06 Sternum 9.69 41.69 2.98 40.45 3.07 0.11 0.15 1.57 0.20 0.01 0.01 0.06 Ribs 9.42 40.46 3.04 40.69 3.89 0.12 0.16 1.95 0.20 0.01 0.01 0.06 Scapulae 7.86 35.56 3.13 39.91 8.82 0.14 0.15 4.18 0.22 0.01 0.01 0.03 Clavicles 9.03 41.72 2.73 37.84 5.50 0.13 0.13 2.66 0.20 0.01 0.01 0.04 Os coxae 9.66 43.13 2.77 38.76 3.44 0.12 0.14 1.73 0.19 0.01 0.01 0.05 Sacrum 10.18 45.60 2.64 38.14 1.91 0.11 0.13 1.04 0.18 0.01 0.01 0.06 Humeri, Proximal 9.21 42.23 2.73 38.00 4.92 0.12 0.13 2.40 0.19 0.01 0.01 0.04 1Humeri, Upper Shaft 11.12 55.13 1.71 31.55 0.00 0.10 0.07 0.14 0.14 0.01 0.01 0.04 1Humeri, Lower Shaft 11.27 58.54 1.31 28.46 0.00 0.10 0.04 0.12 0.13 0.01 0.01 0.02 Humeri, Distal 8.96 47.57 1.93 31.31 6.68 0.13 0.07 3.17 0.17 0.01 0.01 0.00 Radii, Proximal 9.05 48.14 1.89 31.06 6.44 0.13 0.06 3.05 0.17 0.01 0.01 0.00 1Radii, Shaft 11.47 63.16 0.76 24.29 0.00 0.10 0.00 0.10 0.11 0.01 0.01 0.00 Radii, Distal 9.15 48.74 1.84 30.78 6.18 0.13 0.06 2.94 0.17 0.01 0.01 0.00 Ulnae, Proximal 8.59 45.25 2.10 32.36 7.67 0.14 0.07 3.62 0.18 0.01 0.01 0.00 1Ulnae, Shaft 11.47 63.16 0.76 24.29 0.00 0.10 0.00 0.10 0.11 0.01 0.01 0.00 Ulnae, Distal 9.26 49.41 1.79 30.48 5.89 0.13 0.06 2.80 0.16 0.01 0.01 0.00 Wrists and Hands 9.96 53.80 1.46 28.50 4.01 0.12 0.04 1.94 0.14 0.01 0.01 0.00 Femora, Proximal 8.72 39.82 2.87 38.69 6.33 0.13 0.14 3.04 0.20 0.01 0.01 0.04 1Femora, Upper Shaft 11.12 55.13 1.71 31.55 0.00 0.10 0.07 0.14 0.14 0.01 0.01 0.04 1Femora, Lower Shaft 11.27 58.54 1.31 28.46 0.00 0.10 0.04 0.12 0.13 0.01 0.01 0.02 Femora, Distal 8.37 43.87 2.20 32.98 8.27 0.14 0.08 3.89 0.19 0.01 0.01 0.00 Patellae 9.96 53.80 1.46 28.50 4.01 0.12 0.04 1.94 0.14 0.01 0.01 0.00 Tibiae, Proximal 10.26 55.66 1.32 27.67 3.22 0.12 0.03 1.58 0.14 0.01 0.01 0.00 1Tibiae, Shaft 11.47 63.16 0.76 24.29 0.00 0.10 0.00 0.10 0.11 0.01 0.01 0.00 Tibiae, Distal 9.27 49.45 1.79 30.46 5.88 0.13 0.06 2.80 0.16 0.01 0.01 0.00 Fibulae, Proximal 9.62 51.68 1.62 29.46 4.92 0.12 0.05 2.36 0.15 0.01 0.01 0.00 1Fibulae, Shaft 11.47 63.16 0.76 24.29 0.00 0.10 0.00 0.10 0.11 0.01 0.01 0.00 Fibulae, Distal 8.49 44.60 2.15 32.65 7.95 0.14 0.08 3.75 0.18 0.01 0.01 0.00 Ankles and Feet 9.96 53.80 1.46 28.50 4.01 0.12 0.04 1.94 0.14 0.01 0.01 0.00 Total Skeleton Spongiosa 9.27 44.48 2.45 35.80 5.08 0.12 0.11 2.46 0.18 0.01 0.01 0.03 1Medullary marrow; contains marrow only Element

PAGE 182

182 Table 4 20. Site specific homogenized bone masses, volumes, and densities (excluding cartilage). Homogeneous Bone Homogeneous Bone Homogeneous Bone Homogeneous Bone Homogeneous Bone Homogeneous Bone Skeletal Site Mass (g) Volume (cm3) Density (g/cm3) Mass (g) Volume (cm3) Density (g/cm3) Cranium 784.05 521.74 1.50 953.40 635.40 1.50 Mandible 71.65 46.74 1.53 90.33 59.01 1.53 Cervical 101.42 75.77 1.34 80.75 60.47 1.34 Thoracic 282.83 226.16 1.25 312.60 250.64 1.25 Lumbar 275.94 237.23 1.16 251.23 216.64 1.16 Sternum 40.15 31.41 1.28 57.64 45.21 1.27 Ribs 363.98 266.19 1.37 333.53 244.50 1.36 Scapulae 298.24 198.99 1.50 216.57 144.73 1.50 Clavicles 79.49 52.13 1.52 60.70 39.89 1.52 Os coxae 698.39 564.83 1.24 625.50 507.30 1.23 Sacrum 209.04 165.40 1.26 170.65 135.42 1.26 Humeri, Proximal 152.71 124.31 1.23 191.51 156.31 1.23 1Humeri, Upper Shaft 102.05 63.58 1.61 125.81 78.56 1.60 1Humeri, Lower Shaft 88.97 55.49 1.60 111.65 69.79 1.60 Humeri, Distal 105.69 75.07 1.41 133.25 94.85 1.40 Radii, Proximal 16.08 11.64 1.38 21.14 15.34 1.38 1Radii, Shaft 70.88 42.43 1.67 79.54 47.71 1.67 Radii, Distal 27.64 21.25 1.30 36.38 28.03 1.30 Ulnae, Proximal 54.65 39.98 1.37 70.10 51.38 1.36 1Ulnae, Shaft 84.05 50.45 1.67 96.81 58.23 1.66 Ulnae, Distal 9.74 7.27 1.34 12.76 9.54 1.34 Wrists and Hands 152.26 102.51 1.49 184.45 124.46 1.48 Femora, Proximal 229.21 177.45 1.29 298.55 231.67 1.29 1Femora, Upper Shaft 199.58 126.58 1.58 271.38 172.52 1.57 1Femora, Lower Shaft 225.26 143.03 1.57 206.38 131.36 1.57 Femora, Distal 309.55 240.98 1.28 346.15 270.05 1.28 Patellae 34.05 25.32 1.34 41.97 31.29 1.34 Tibiae, Proximal 236.80 190.51 1.24 271.75 219.28 1.24 1Tibiae, Shaft 259.51 167.83 1.55 310.28 201.16 1.54 Tibiae, Distal 85.45 69.17 1.24 98.96 80.32 1.23 Fibulae, Proximal 21.06 15.75 1.34 26.73 20.03 1.33 1Fibulae, Shaft 39.41 24.78 1.59 54.24 34.18 1.59 Fibulae, Distal 21.32 15.17 1.41 27.10 19.32 1.40 Ankles and Feet 463.23 366.55 1.26 577.87 458.56 1.26 Total Skeleton 6194.32 4543.68 6747.63 4943.17 Volume Weighted Average Density 1.35 1.35 Original 15-Year Hybrid Phantom 6180.02 4543.68 6743.09 4943.17 Ratio 1.00 1.00 1.00 1.00 1Contains medullary marrow (no trabecular bone) and cortical bone only 15-Year Female 15-Year Male

PAGE 183

183 Table 4 21. Site specific homogeneous bone elemental composition (excluding cartilage) in the 15 year female hybrid phantom (% by mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 5.59 24.51 3.78 43.00 15.33 0.17 0.18 7.15 0.26 0.00 0.00 0.01 Mandible 5.38 23.46 3.84 43.31 15.95 0.18 0.18 7.43 0.27 0.00 0.00 0.01 Cervical 6.91 29.50 3.60 42.75 11.31 0.16 0.17 5.32 0.24 0.00 0.00 0.03 Thoracic 7.76 33.29 3.41 42.00 8.78 0.14 0.17 4.17 0.23 0.00 0.01 0.04 Lumbar 8.74 37.61 3.19 41.14 5.90 0.13 0.16 2.86 0.21 0.00 0.01 0.05 Sternum 7.48 32.04 3.47 42.24 9.61 0.15 0.17 4.55 0.23 0.00 0.00 0.04 Ribs 6.65 28.37 3.65 42.97 12.06 0.16 0.18 5.66 0.25 0.00 0.00 0.03 Scapulae 5.62 24.66 3.77 42.96 15.25 0.17 0.18 7.11 0.26 0.00 0.00 0.01 Clavicles 5.44 23.86 3.81 43.10 15.80 0.18 0.18 7.36 0.27 0.00 0.00 0.01 Os coxae 7.92 35.11 3.22 40.66 8.49 0.14 0.16 4.03 0.22 0.00 0.01 0.04 Sacrum 7.64 33.77 3.29 40.99 9.32 0.15 0.16 4.41 0.23 0.00 0.01 0.03 Humeri, Proximal 8.02 36.48 3.07 39.56 8.36 0.14 0.15 3.97 0.22 0.00 0.01 0.03 1Humeri, Upper Shaft 4.90 21.60 3.92 43.46 17.38 0.18 0.18 8.08 0.28 0.00 0.00 0.00 1Humeri, Lower Shaft 4.92 22.03 3.86 43.06 17.40 0.18 0.18 8.08 0.27 0.00 0.00 0.00 Humeri, Distal 6.36 31.46 3.13 38.52 13.64 0.17 0.13 6.36 0.24 0.00 0.00 0.00 Radii, Proximal 6.59 32.89 3.03 37.87 13.02 0.16 0.13 6.07 0.23 0.00 0.00 0.00 1Radii, Shaft 4.51 19.93 3.99 43.72 18.57 0.19 0.18 8.62 0.28 0.00 0.00 0.00 Radii, Distal 7.33 37.50 2.68 35.79 11.05 0.15 0.11 5.17 0.21 0.00 0.00 0.00 Ulnae, Proximal 6.71 33.64 2.97 37.53 12.70 0.16 0.12 5.93 0.23 0.00 0.00 0.00 1Ulnae, Shaft 4.53 20.10 3.98 43.65 18.50 0.19 0.18 8.58 0.28 0.00 0.00 0.00 Ulnae, Distal 6.95 35.15 2.86 36.85 12.06 0.16 0.12 5.63 0.22 0.00 0.00 0.00 Wrists and Hands 5.74 27.63 3.42 40.24 15.27 0.17 0.15 7.11 0.25 0.00 0.00 0.00 Femora, Proximal 7.37 33.28 3.26 40.48 10.23 0.15 0.15 4.82 0.23 0.00 0.00 0.03 1Femora, Upper Shaft 5.09 22.60 3.85 43.11 16.87 0.18 0.18 7.84 0.27 0.00 0.00 0.01 1Femora, Lower Shaft 5.10 23.11 3.79 42.62 16.89 0.18 0.17 7.85 0.27 0.00 0.00 0.00 Femora, Distal 7.49 38.50 2.61 35.34 10.63 0.15 0.10 4.97 0.21 0.00 0.00 0.00 Patellae 6.91 34.89 2.88 36.97 12.17 0.16 0.12 5.68 0.22 0.00 0.00 0.00 Tibiae, Proximal 7.92 41.19 2.41 34.13 9.47 0.15 0.09 4.45 0.20 0.00 0.01 0.00 1Tibiae, Shaft 5.31 24.90 3.62 41.48 16.44 0.18 0.16 7.64 0.26 0.00 0.00 0.00 Tibiae, Distal 8.00 41.70 2.37 33.89 9.25 0.15 0.09 4.35 0.19 0.00 0.01 0.00 Fibulae, Proximal 6.97 35.30 2.85 36.78 11.99 0.16 0.12 5.60 0.22 0.00 0.00 0.00 1Fibulae, Shaft 5.01 23.04 3.76 42.32 17.24 0.18 0.17 8.01 0.27 0.00 0.00 0.00 Fibulae, Distal 6.38 31.60 3.12 38.45 13.58 0.17 0.13 6.33 0.23 0.00 0.00 0.00 Ankles and Feet 7.70 39.82 2.51 34.74 10.06 0.15 0.10 4.71 0.20 0.00 0.01 0.00 Total Skeleton 6.71 30.87 3.34 40.52 12.25 0.16 0.15 5.73 0.24 0.00 0.00 0.02 1Contains medullary marrow (no trabecular bone) and cortical bone only Element

PAGE 184

184 Table 4 22. Site specific homogeneous bone elemental composition (excluding cartilage) in the 15 year male h ybrid phantom (% by mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe Cranium 5.61 24.50 3.78 43.08 15.28 0.17 0.18 7.12 0.27 0.00 0.00 0.01 Mandible 5.40 23.44 3.84 43.38 15.89 0.18 0.18 7.40 0.27 0.00 0.00 0.01 Cervical 6.94 29.51 3.60 42.84 11.21 0.15 0.17 5.28 0.25 0.00 0.00 0.03 Thoracic 7.80 33.32 3.40 42.10 8.67 0.14 0.17 4.12 0.23 0.01 0.01 0.04 Lumbar 8.78 37.66 3.18 41.24 5.77 0.13 0.16 2.80 0.21 0.01 0.01 0.05 Sternum 7.52 32.07 3.47 42.34 9.50 0.15 0.17 4.50 0.24 0.00 0.00 0.04 Ribs 6.68 28.38 3.65 43.06 11.97 0.16 0.18 5.62 0.25 0.00 0.00 0.03 Scapulae 5.64 24.64 3.77 43.04 15.19 0.17 0.17 7.08 0.27 0.00 0.00 0.01 Clavicles 5.46 23.87 3.81 43.17 15.73 0.18 0.18 7.33 0.27 0.00 0.00 0.01 Os coxae 7.96 35.16 3.22 40.74 8.37 0.14 0.16 3.98 0.22 0.01 0.01 0.04 Sacrum 7.68 33.83 3.29 41.07 9.20 0.14 0.16 4.36 0.23 0.00 0.00 0.03 Humeri, Proximal 8.05 36.54 3.07 39.63 8.25 0.14 0.14 3.92 0.22 0.01 0.01 0.03 1Humeri, Upper Shaft 4.93 21.64 3.91 43.51 17.31 0.18 0.18 8.04 0.28 0.00 0.00 0.00 1Humeri, Lower Shaft 4.94 22.08 3.86 43.09 17.33 0.18 0.17 8.05 0.28 0.00 0.00 0.00 Humeri, Distal 6.38 31.52 3.13 38.55 13.56 0.17 0.13 6.32 0.24 0.00 0.00 0.00 Radii, Proximal 6.61 32.95 3.02 37.90 12.94 0.16 0.13 6.04 0.23 0.00 0.00 0.00 1Radii, Shaft 4.53 19.98 3.99 43.75 18.50 0.19 0.18 8.59 0.28 0.00 0.00 0.00 Radii, Distal 7.36 37.58 2.67 35.81 10.96 0.15 0.11 5.13 0.21 0.00 0.00 0.00 Ulnae, Proximal 6.73 33.70 2.96 37.56 12.63 0.16 0.12 5.89 0.23 0.00 0.00 0.00 1Ulnae, Shaft 4.56 20.15 3.97 43.67 18.43 0.19 0.18 8.55 0.28 0.00 0.00 0.00 Ulnae, Distal 6.98 35.23 2.85 36.87 11.97 0.16 0.12 5.59 0.22 0.00 0.00 0.00 Wrists and Hands 5.77 27.70 3.41 40.27 15.20 0.17 0.15 7.07 0.25 0.00 0.00 0.00 Femora, Proximal 7.40 33.30 3.26 40.56 10.13 0.15 0.15 4.78 0.23 0.00 0.00 0.03 1Femora, Upper Shaft 5.11 22.64 3.85 43.15 16.79 0.18 0.18 7.81 0.27 0.00 0.00 0.01 1Femora, Lower Shaft 5.13 23.16 3.78 42.66 16.81 0.18 0.17 7.82 0.27 0.00 0.00 0.00 Femora, Distal 7.52 38.56 2.60 35.37 10.54 0.15 0.10 4.94 0.21 0.00 0.00 0.00 Patellae 6.94 34.99 2.87 36.98 12.07 0.16 0.12 5.64 0.22 0.00 0.00 0.00 Tibiae, Proximal 7.96 41.32 2.39 34.13 9.36 0.15 0.09 4.39 0.20 0.01 0.01 0.00 1Tibiae, Shaft 5.33 24.98 3.61 41.50 16.36 0.18 0.16 7.61 0.26 0.00 0.00 0.00 Tibiae, Distal 8.04 41.81 2.36 33.91 9.15 0.14 0.09 4.30 0.19 0.01 0.01 0.00 Fibulae, Proximal 7.01 35.39 2.84 36.80 11.90 0.16 0.12 5.56 0.22 0.00 0.00 0.00 1Fibulae, Shaft 5.03 23.11 3.75 42.34 17.16 0.18 0.17 7.97 0.27 0.00 0.00 0.00 Fibulae, Distal 6.40 31.65 3.12 38.49 13.51 0.17 0.13 6.30 0.24 0.00 0.00 0.00 Ankles and Feet 7.74 39.94 2.50 34.75 9.95 0.15 0.10 4.67 0.20 0.00 0.00 0.00 Total Skeleton 6.70 30.90 3.33 40.44 12.31 0.16 0.15 5.76 0.24 0.00 0.00 0.02 1Contains medullary marrow (no trabecular bone) and cortical bone only Element

PAGE 185

185 Table 4 23. Macrostructure for the 15 year female and microstructure imaging data for the 18 year male skeleton. MVF TBVF MVF TBVF Voxel Size Resolution x y z (cm) x y z x y z Cranium (Average) 408 x 516 x 459 0.035 0.6793 (+/0.022) 0.3207 (+/0.022) 0.6807 (+/0.020) 0.3193 (+/0.020) Occipital 39 407 147 78 815 294 0.6892 0.3108 0.6910 0.3090 Frontal 16 209 349 33 419 699 0.6540 0.3460 0.6570 0.3430 Parietal 19 409 246 39 818 493 0.6948 0.3052 0.6940 0.3060 Mandible 351 x 266 x 243 0.03 0.7184 0.2816 0.7173 0.2827 Sternum 223 x 345 x 807 0.02 97 454 426 195 909 852 0.9073 0.0927 0.9066 0.0934 Ribs (Average) 439 x 295 x 554 0.06 0.8788 (+/0.032) 0.1212 (+/0.032) 0.8792 (+/0.030) 0.1208 (+/0.030) Upper (Right Rib 1) 23 117 299 47 234 599 0.8442 0.1558 0.8462 0.1538 Middle (Right Rib 6) 52 102 526 105 205 1052 0.9057 0.0943 0.9061 0.0939 Lower (Right Rib 12) 38 82 367 77 165 735 0.8866 0.1134 0.8854 0.1146 Scapula (Right) 427 x 301 x 541 0.03 36 128 270 73 257 541 0.6940 0.3060 0.6935 0.3065 Clavicle (Right) 697 x 594 x 134 0.018 126 286 211 253 572 423 0.8221 0.1779 0.8243 0.1757 Vertebrae Cervicle (Average) 366 x 324 x 552 0.02 0.8434 (+/-0.021) 0.1567 (+/0.021) 0.8400 (+/0.022) 0.1601 (+/0.022) 18Y C3150 208 155 301 417 310 0.8283 0.1717 0.8242 0.1758 18Y C6226 244 268 452 489 536 0.8584 0.1416 0.8557 0.1443 Thoracic (Average) 219 x 288 x 926 0.03 0.8747 (+/0.018) 0.1253 (+/0.018) 0.8720 (+/0.018) 0.1280 (+/0.018) 18Y T1248 263 252 496 526 505 0.8523 0.1477 0.8502 0.1498 18Y T3242 261 271 484 523 543 0.8624 0.1376 0.8597 0.1403 18Y T6242 265 391 485 531 783 0.8761 0.1239 0.8735 0.1265 18Y T9314 341 369 629 682 739 0.8860 0.1140 0.8831 0.1169 18Y T12340 357 547 681 715 1094 0.8966 0.1034 0.8936 0.1064 Lumbar Spine (Average) 271 x 323 x 541 0.03 0.8960 (+/0.020) 0.1040 (+/0.022) 0.8940 (+/0.020) 0.1060 (+/0.020) 18Y L1326 338 555 653 677 1111 0.9094 0.0906 0.9064 0.0936 18Y L2292 356 611 585 712 1222 0.9211 0.0789 0.9167 0.0833 18Y L3228 380 533 456 760 1066 0.9029 0.0971 0.9009 0.0991 18Y L4189 393 531 379 787 1062 0.8747 0.1253 0.8743 0.1257 18Y L5316 236 430 632 473 860 0.8720 0.1280 0.8715 0.1285 Pelvis Os Coxae (Right Ilium) 499 x 287 x 399 0.05 44 476 528 89 952 1057 0.8955 0.1045 0.8949 0.1051 Sacrum 333 x 307 x 363 0.03 190 116 314 381 233 629 0.9441 0.0559 0.9437 0.0563 Dimensions 60 Microns 30 Microns Macrostructure Microstructure Microstructure Microstructure 60 Microns 30 Microns

PAGE 186

186 Table 4 23. Continued. MVF TBVF MVF TBVF Threshold Threshold Voxel Size Resolution Actual Used x y z (cm) x y z x y z Femur (Right) 244 x 268 x 1047 0.04 Distal Right 292 362 333 584 724 667 0.7180 0.2820 0.7221 0.2779 154.5 155 Proximal 0.7886 (+/0.047) 0.2114 (+/0.047) 0.7891 (+/0.0470) 0.2109 (+/0.0470) Head Right 248 499 499 497 998 999 0.7553 0.2447 0.7559 0.2441 156.5 157 Neck Right 329 357 420 659 715 841 0.8220 0.1780 0.8223 0.1777 155.5 156 Fibula (Right) 145 x 128 x 1135 0.03 Distal Right 276 180 282 552 361 565 0.7315 0.2685 0.7349 0.2651 156.5 157 Proximal Right 295 178 341 591 356 682 0.8459 0.1541 0.8485 0.1515 153.5 154 Tibia (Right) 275 x 184 x 1156 0.03 Distal Right 416 394 260 833 789 521 0.8131 0.1869 0.8146 0.1854 155.5 156 Proximal Right 355 384 341 710 768 683 0.9060 0.0940 0.9050 0.0950 155.5 156 Humerus (Right) 292 x 154 x 789 0.04 Distal Right 140 540 170 281 1081 340 0.7825 0.2175 0.7847 0.2153 156.5 157 Proximal Right 417 320 425 835 641 851 0.8462 0.1538 0.8448 0.1552 158.5 159 Radius (Right) 172 x 282 x 1176 0.02 Distal Right 230 293 231 461 587 463 0.8030 0.1970 0.8035 0.1965 155.5 156 Proximal Right 105 498 107 544 141 434 0.7979 0.2021 0.7939 0.2061 161.5 162 Ulna (Right) 206 x 178 x 842 0.03 Distal Right 121 339 135 242 679 270 0.8140 0.1860 0.814 0.186 155.5 156 Proximal Right 199 521 212 399 1042 424 0.7434 0.2566 0.7462 0.2538 156.5 157 Foot (Right) 298 x 807 x 284 0.03 Hand (Right) 150 x 358 x 553 0.03 Patella (Right) 445 x 188 x 367 0.01 30 Microns Microstructure Macrostructure Microstructure Microstructure Dimensions 60 Microns 30 Microns 60 Microns

PAGE 187

187 Table 4 24. Cortical bone thickness estimates in the 15year female skeleton. Bone 15Y Female Cortical Bone Thickness ESTIMATES (cm) Cranium 0.13 Mandible 0.16 Cervical Vertebrae 0.08 Thoracic Vertebrae 0.07 Lumbar Vertebrae 0.04 Sternum 0.11 Ribs 0.07 Scapulae 0.17 Clavicles 0.24 Os coxae 0.11 Sacrum 0.13 Humeri, Proximal 0.15 Humeri, Upper Shaft 0.5 Humeri, Lower Shaft 0.45 Humeri, Distal 0.2 Radii, Proximal 0.2 Radii, Shaft 0.4 Radii, Distal 0.1 Ulnae, Proximal 0.15 Ulnae, Shaft 0.4 Ulnae, Distal 0.08 Wrists and Hands 0.15 Femora, Proximal 0.1 Femora, Upper Shaft 0.5 Femora, Lower Shaft 0.6 Femora, Distal 0.2 Patellae 0.13 Tibiae, Proximal 0.15 Tibiae, Shaft 0.5 Tibiae, Distal 0.1 Fibulae, Proximal 0.1 Fibulae, Shaft 0.3 Fibulae, Distal 0.1 Ankles and Feet 0.1

PAGE 188

188 Table 4 25. AM TBV, TBS and CBV source f values for the UF hybrid 15year female skeleton. Skeletal Site Cellularity fTAMfTBVfTBSfCBV Cranium 55 0.108 0.193 0.121 0.149 Mandible 55 0.009 0.013 0.009 0.016 Cervical 75 0.035 0.019 0.024 0.014 Thoracic 75 0.124 0.051 0.071 0.028 Lumbar 75 0.152 0.051 0.078 0.014 Sternum 75 0.016 0.005 0.008 0.005 Ribs 75 0.114 0.044 0.053 0.062 Scapula 55 0.021 0.070 0.035 0.057 Clavicles 53 0.005 0.008 0.006 0.019 Os coxae 64 0.270 0.104 0.161 0.071 Sacrum 64 0.075 0.015 0.023 0.029 Humeri, Proximal 55 0.026 0.036 0.043 0.012 Humeri, Upper Shaft 35 0.003 0.000 0.000 0.030 Humeri, Lower Shaft 20 0.001 0.000 0.000 0.026 Humeri, Distal 0 0.000 0.021 0.022 0.018 Radii, Proximal 0 0.000 0.003 0.003 0.003 Radii, Shaft 0 0.000 0.000 0.000 0.022 Radii, Distal 0 0.000 0.007 0.007 0.003 Ulnae, Proximal 0 0.000 0.016 0.013 0.007 Ulnae, Shaft 0 0.000 0.000 0.000 0.026 Ulnae, Distal 0 0.000 0.002 0.002 0.001 Wrists and Hands 0 0.000 0.011 0.010 0.036 Femora, Proximal 55 0.033 0.065 0.069 0.022 Femora, Upper Shaft 35 0.006 0.000 0.000 0.056 Femora, Lower Shaft 20 0.004 0.000 0.000 0.064 Femora, Distal 0 0.000 0.127 0.100 0.021 Patellae 0 0.000 0.004 0.004 0.006 Tibiae, Proximal 0 0.000 0.030 0.044 0.030 Tibiae, Shaft 0 0.000 0.000 0.000 0.071 Tibiae, Distal 0 0.000 0.024 0.025 0.007 Fibulae, Proximal 0 0.000 0.003 0.004 0.003 Fibulae, Shaft 0 0.000 0.000 0.000 0.011 Fibulae, Distal 0 0.000 0.006 0.000 0.003 Ankles and Feet 0 0.000 0.072 0.064 0.059 UF HYBRID 15Y FEMALE

PAGE 189

189 Table 4-26. Skeletal-avera ged absorbed fraction data for the UF hybrid 15-year female skeleton based on PIRT transport. Energy (MeV) (A M A M) (A M TBS) (A M TBV) (A M CBV) (TM50TBS) (TM50 TBV) (T M 50 A M) (TM50 CBV) 0.0011.00E+002.46E-017.47E-073.14E-0 82.16E-017.47E-071.37E-010.00E+00 0.0039.99E-012.46E-018.27E-058.08E-0 62.33E-018.65E-051.37E-011.36E-06 0.0059.97E-012.47E-013.06E-042.06E-0 52.34E-013.35E-041.37E-013.19E-06 0.0109.89E-012.48E-011.59E-036.70E-0 52.34E-011.67E-031.36E-011.06E-05 0.0159.77E-012.48E-013.72E-031.41E-0 42.33E-013.74E-031.35E-012.23E-05 0.0209.62E-012.48E-016.29E-032.32E-0 42.31E-016.21E-031.33E-013.66E-05 0.0309.24E-012.48E-011.27E-024.77E-0 42.26E-011.24E-021.29E-017.40E-05 0.0408.80E-012.47E-012.05E-027.91E-0 42.19E-011.97E-021.24E-011.22E-04 0.0508.33E-012.47E-012.94E-021.16E-0 32.12E-012.77E-021.19E-011.79E-04 0.0607.86E-012.46E-013.90E-021.56E-0 32.03E-013.60E-021.13E-012.49E-04 0.0807.10E-012.46E-015.93E-022.51E-0 31.74E-015.02E-021.04E-013.93E-04 0.106.68E-012.49E-018.02E-023.61E-0 31.44E-015.81E-029.81E-025.42E-04 0.156.14E-012.70E-011.33E-016.72E-0 31.02E-016.28E-029.40E-029.72E-04 0.205.80E-012.93E-011.78E-019.95E-0 38.23E-025.92E-029.55E-021.42E-03 0.305.41E-013.17E-012.26E-011.66E-0 26.48E-025.18E-029.80E-022.36E-03 0.405.21E-013.21E-012.41E-012.29E-0 25.82E-024.87E-029.75E-023.29E-03 0.505.06E-013.19E-012.45E-012.90E-0 25.47E-024.69E-029.62E-024.20E-03 0.604.93E-013.15E-012.45E-013.48E-0 25.22E-024.55E-029.46E-025.05E-03 0.804.69E-013.05E-012.40E-014.41E-0 24.84E-024.29E-029.11E-026.46E-03 1.04.47E-012.95E-012.32E-015.07E-0 24.54E-024.07E-028.74E-027.48E-03 1.53.99E-012.68E-012.12E-015.79E-0 23.98E-023.60E-027.87E-028.63E-03 2.03.59E-012.44E-011.93E-015.88E-0 23.55E-023.22E-027.13E-028.83E-03 3.02.98E-012.05E-011.61E-015.50E-0 22.91E-022.64E-025.93E-028.28E-03 4.02.53E-011.75E-011.37E-014.96E-0 22.46E-022.23E-025.05E-027.46E-03 5.02.18E-011.52E-011.19E-014.44E-0 22.12E-021.92E-024.37E-026.67E-03 6.01.91E-011.34E-011.05E-013.97E-0 21.86E-021.68E-023.84E-025.97E-03 8.01.52E-011.07E-018.33E-023.24E-0 21.48E-021.34E-023.06E-024.87E-03 10.01.26E-018.81E-026.87E-022.71E-0 21.22E-021.10E-022.52E-024.07E-03

PAGE 190

190 CHAPTER 5 AN IM AGE BASED SKELETAL TISSU E MODEL AND ELECTRON DOSIMETRY METHODOLOGY FOR THE ICRP REFERENCE 1 YEAR, 5 YEAR, AND 10 YEAR CHILD Introduction The goals of this chapter were to (1) develop and apply a methodology for the subsegmentation of the skeleton into all skeletal tissues by bone site within the hybrid computational 1year, 5 year and 10 year old phantoms analogous to Chapter 2 and Chapter 4, and (2) implement the dosimetry methods utilized in Chapter 3 and Chapter 4 for dose assessment to active marrow an d endosteal tissues for the 1year, 5 year, and 10year phantoms of Lee et al. (2008) Detailed methods on the development of the homogeneous 1year, 5 year and 10year whole body hybrid phantoms are discussed in Lee et al. (2008). The methodology presented here targets total skeletal tissue masses for the reference 1 year, 5 year and 10year as de fined in ICRP Publication 89 (ICRP 2002) However, the study further distributes those masses in a bone specific manner based upon ICRP reference data, skeletal data from Watchman et al. (2007), and the individual bone volumes defined within the UF hybrid 1year, 5year and 10year phantoms (Lee et al. 2008) The ideal model to simulate electron transport throughout the pediatric skeletal macrostructure and microstructure simultaneously would be the PIRT model. The homogeneous skeletal models presented in Lee et al. (2008), which were partitioned into spongiosa and cortical bone, were used as the skeletal macrostructure. However, d ue to the inability to obtain any physical pediatric skeletal samples needed for microCT (skeletal microstructure characterization), an alternative Monte Carlo modeling technique was implemented to emulate a true PIRT electron transport simulation. The results from multiple electron transport codes can be used, in mathematical combination, to compute realistic energy deposition in the relevant target tissues. The Single Image Radiation Transport ( SIRT ) Monte

PAGE 191

191 Carlo code was utilized to simu late electron and beta-particle transport throughout the skeletal macrostructure (hybrid phantom data), while th e 3D Chord-Based Infinite Spongiosa Transport ( 3D-CBIST ) model provided electron ab sorbed fraction data for the trabecular microstructure inside an infinite spongiosa region (Leeds 1.7-year, 9-year, and 44year chord length distribution data). This mathem atical algorithm was applied to the adult 66-year male (Shah et al. 2005; Shah et al. 2005a; Shah et al. 2005c) and the results compared with the PIRT results to validate this mathematical combination tec hnique and quantify any differences. Materials and Methods Heterogeneous 1-Year, 5-Year, and 10-Year Skeletal Macrostructure Development Phantoms of this series do not have gende r differences in reference skeletal tissue masses. Therefore, all calculations were pe rformed for gender-independent skeletons. The volume derivation of each 1-year, 5-year, and 10 -year bone site into co rtical bone, spongiosa, and medullary marrow is different than the methods presented in Chapter 2 and Chapter 4 for the newborn and 15-year male and female, resp ectively. These volumes were then used to create bone samples with dis tinct cortical, spongiosa, and cartilage boundaries from the homogeneous bones developed in Lee et al. (2008). Utilizing the Rhinoceros (McNeel North America, Seattle, WA) software, th e homogeneous bone sample inner boundary mesh was offset incrementally until the desired spong iosa volume for that specific bone site was obtained. Tag values of 35, 45, and 55 were labe led for cartilage, cortical bone, and spongiosa, respectively. For the long bones, tag values of 65 and 75 were used for the upper and lower shaft medullary marrow, respectively. For long bones with a single shaf t region, the tag value 65 was used. It should be noted that these tag values were chos en for future use in the whole body 1-year, 5-year, and 10-year phantoms but any tag value may be used.

PAGE 192

192 Miscellaneous skeletal tissues As defined in ICRP Publication 89, miscellaneous skeletal tissues ( MST ) consist of blood vessels and periosteum, but exclude periarticular tissue and blood. Limitations on image contrast and spatial resolution do not allow for any visual delineation of miscellaneous skeletal tissues in the 1 year, 5 year, and 10 year CT dataset. Consequently, the reference volumes of MST (obtained from reference masses given in Table 9.2.15 of ICRP Publication 89), MSTV at bone site, x, and age, y, for the 1, 5, and 10year models were first distributed by bone site based solely on fractional skeletal volumes based on Eq. 21 of Chapter 2. The MSTVis the total reference volume of MST for the 1 year (45.00 g / 1.03 g cm1 or 43.69 cm3), 5 year (55.00 g / 1.03 g cm1 or 53.40 cm3), and 10year (90.00 g / 1.03 g cm1 or 87.38 cm3 HBV ). The is the volume of noncartilaginous homogeneous bone across the entire skeleton of the 1year phantom (563.34 cm3), 5 year phantom (1276.13 cm3), and 10year phantom (2647.10 cm3). As before, an asterisk in the variables indicates volumes inclusive of their miscellaneous skeletal tissue. In cases where bone site x has both a left and right component (e.g., clavicles, femora), volumes refer to the summed total of the right and left skeletal pair. MST mass es were calculated using the gender averaged soft tissue density of 1.03 g cm3 given in ICRU Publication 46 (ICRU 1992) Once total MST volumes were assigned to each phantom by skeletal site, they were further partitioned into MST regions assigned to active marrow ( AM*), mineral bone ( MB*), trabecular bone ( TB*), and cortical bone ( CB* ,, ,, xy xy xy MBNormalized MSTMBNormalizedMST xyxy HBMSTHBV VV VV ), respectively, also according to their relativ e volumes. (5 1) ,, xy xy xy TB MSTTBMSTMBNormalized xy MBNormalizedV VV V (5 2)

PAGE 193

193 ,, xy xy xy CB MSTCBMSTMBNormalized xy MBNormalizedV VV V (5 3) ,,, xy xyxy MSTMarrowMSTMSTMBNormalizedVVV (5 4) ,, xy xy xy AM MSTAMMSTMarrow xy MarrowV VV V (5 5) ,, xy xy xy IM MSTIMMSTMarrow x MarrowV VV V (5 6) All subsequent mass calculations were performed using the gender independent average soft tissue density of 1.03 g cm3Mineral bone, t rabecular bone and cortical bone masses and volumes The derivation of site specific tissue constituent volumes is given below for mineral, trabecular and cortical bone, and active, inactive, and total marrow. As previously discussed, image data about the trabecular microstructure or macrostructural ratios were not available to determine TBVF, MVF CBV, and SVF values. Therefore, the cal culation of trabecular bone and cortical bone volumes could not be computed based on Chapter 2, Eq. 25. The reference mineral bone volumes for each age were targeted in this chapter, as was done in Chapter 2 and Chapter 4. First, the bone site specific ratios of marrow to homogeneous bone, xy marrowf using the tissue data in Watchman et al. (2007) were computed for the 1year, 5 year, and 10year. These ratios were then multiplied by the difference in non cartilaginous homogeneous bone volumes based on Lee et al. (2008) and the derived MST by bone site, x, and age, y, to obtain the marrow volume by age and bone site. ,,, xy xyxyxy xy marrow marrowmarrowHB HB xy HBV VfVV V (5 7) where:

PAGE 194

194 xy xy marrow marrow xy HBV f V (5 8) and the initial volumes are fr om the Watchman et al. (2007) study. For the long bones, Watchman et al. (2007) divides the humerus and femur into upper and lower half, while reporting whole bone for the tibia, fibula, ulna, and radius. Given, the long bone partitioning discussed in Chapter 2, the ratios were divided into proximal, upper shaft, lower shaft, and distal for the humerus and femur, and then proximal, shaft, and distal for the tibia, fibula, ulna, and radius based on the fractional contribution of each region. The mineral bone volume was then computed by subtracting the marrow volume from the original noncartilaginous volumes in Lee et al. (2007). MST tissues were subtracted from the homogeneous bone volumes since we are attempting to target ICRP reference mineral bone mas s and volume (excludes MST ). ,,,, xyxyxy xy MBHBMSTHBmarrowVVVV (5 9) The total sum of mineral bone, y MBV across the entire skeleton was computed and then renormalized based on the ICRP reference mineral bone volume, MBICRPV, of 335.42 cm3 (590 g / 1.66 g cm3) 335.42 cm3, 741.18 cm3 (1260 / 1.70 g cm3), and 1314.28 cm3 (2300 / 1.75 g cm3 ,, xy xy MBICRP MBNormalizedMB y MBV VV V ) for the 1 year, 5 year, and 10year, respectively. (5 10) The mineral bone mas ses were then computed using the ICRP reference cortical bone densities, y CB (1.66 g cm3 for the 1 year, 1.70 g cm3 for the 1year, and 1.75 g cm3 ,, xy xy y MBNormalizedMBNormalizedCBmV for the 1 year). (5 11)

PAGE 195

195 The trabecular and cortical bone masses and volumes for each age are then computed. The ICRP Publicat ion 70, Table 10, provides cortical bone and trabecular bone percentages by bone site but only for the adult. Instead of determining the cor tical and trabecular bone masses based on these adult partitions of mineral bone values of cortical bone and trabecular bone percentages were determined for the 1 year, 5 year, and 10year skeletal models using a linear interpolation between the image based data of the newborn (C hapter 2, Table 2 10) and 15 year female (Chapter 4, Table 4 12). The assumption of a linear model was used given the lack of data in the literature. The use of the 15 year female was arbitrarily chosen as the upper end point instead of the 15year male. The cortical bone and trabecular bone percentages do not change significantly between these genders. These cortical and trabecular bone percentages by age and bone site were then applied to xy MBNormalizedm by simple multiplication. The subs equent volumes were calculated based on the ICRP reference y CB as discussed above. As in Chapter 2 and Chapter 4, it was assumed that the mass density of cortical bone can be applied to trabecular bone. The inclusion of MST in min eral bone, trabecular bone, and cortical bone can be computed by adding the values determined in Eq. 51, Eq. 52, and Eq. 53, respectively. Marrow masses and volumes Total marrow volumes, TMS ( AM + IM), were computed based on differencing the non cartila ginous homogeneous bone volumes and the, xy MBNormalizedV. ,,, xyxyxy MarrowHBMBNormalizedVVV (5 12) The AM and IM volumes were then computed based on the age and bone site specific cellularities. ,,,xyxy xy AMMarrowVVCF (5 13) ,,,1 xyxy xy IMMarrowVVCF (5 14)

PAGE 196

196 Active and inactive marrow masses were computed using the AM= 1.03 g cm3AM and =0.98 g cm3S/V ratios for the 1year, 5 year, and 10year skeleton s respectively. Values of cellularity factor CF were taken from ICRP reference values listed in Table 41 of ICRP Publication 70 (ICRP 1995) These masses could then be added to compute the mass of total marrow. Again, including MST to total marrow, AM and IM is done by simply adding Eq. 54, Eq. 55, and Eq. 56, respectively. The method of long bone partitioning was performed using the same techniques described in Chapter 2. The cortical bone surface to volume ( S/V ) ratio is defined as the ratio of the Haversian c anal surface area to the volume of ossified cortical bone, and is defined for dry bone ( exclusive of periosteum and blood vessels). However, the trabecular bone S/V ratio is defined as the ratio of trabecular surface area to the volume of trabecular bone and is also defined for dry bone. Reference values for S/V ratios of cortical bone and trabecular bone are presented in ICRP 70, Table s 11 and 12, respect ively. ICRP Publication 89 suggests that a nominal reference value of 3 mm2 mm3 be used for cortic al bone at skeletal sites not indicated in their Table 11. S imilarly, a default value of 18 mm2 mm3S hallow marrow masses and volume s is given for the trabecular bone S/V ratio. In past studies with the newborn and 15 year male and female, imaging data allowed the direct calculation of the S/V ratio using EGSnrc. However, without imaging data for the 1year, 5 year, and 10 year skeletons, the S/V ratios are assumed the default values in studies by Beddoe et al. (1976). These values are listed in Chapter 2, Table 213. The calculation of shallow marrow volumes could not be performed using the same methods of Chapter 2 and Chapter 4 due to the lack of image data for the 1year, 5 year and 10year skeletons. Therefore, the methods used in Watchman et al. (2007), reported as Eq. 514

PAGE 197

197 and Eq. 5-15, were used to compute the shallow marrow volumes (including MST ) along with the subsequent shallow active marrow and shallow inactive marrow contributions. 50*x,y x,y *x,yx,y TBV A MAM TBV CBm S m= 50 mCF V (5-14) 50*x,y x,y *x,yx,yx,y TBV TMAMIM TBV CBm S m= 50 mCF 1-CF V (5-15) The volume of shallow marrow can thus be calculated by removing the terms following 50 m in Eq. 5-15. The long bone shafts were approximated as cylinders, and therefore shallow marrow volumes reported based on the me thods in Chapter 2, Eq. 2-13 and Eq. 2-14. Shallow active marrow volumes can calculated either by the product of the shallow marrow volume and the CF or by taking the ratio of 50x,y AMmand A M Shallow inactive marrow masses, 50x,y IMm,can be computed by differencing the shallow marrow mass and shallow active marrow mass. Subsequent shallow inactive marrow volumes can calculated either by the product of the shallow marrow volume and the 1CF or by taking the ratio of 50x,y IMmandIM Shallow marrow masses at 100% cellularity were also computed fo r future use in dosimetry anaylsis. Spongiosa and homogeneous bone masses, volumes, densities, and elemental compositions Spongiosa masses, volumes, densities, and elem ental compositions for the 1-year, 5-year, and 10-year skeletons were com puted as discussed in Chapter 2 and Chapter 4. Likewise, the homogeneous bone calculations including and excl uding cartilage were also performed by the methods described in Chapter 2 and Chapter 4. Electron Skeletal Dosimetry Modeling fo r the 1-Year, 5-Year, and 10-Year The following is a method created for use in electron skeletal dosim etry modeling in the event microCT image data is not available, as in the case of the 1-ye ar, 5-year, and 10-year skeleton. When samples become available in th e future, this interim method will be replaced

PAGE 198

198 with the PIRT methodology described in Chapter 3 and Chapter 4. The mathema tical combination of absorbed fractions results from an infinite spongiosa transport model and a macro model which accounts for particle escape out of cortical bone and particle cross fire into spongiosa is compared with the PIRT results for the UF 66 year male model to validate the method. SIRT electron dosimetry modeling The single image radiation transport ( SIRT ) mo del, a voxel based model, utilizes the segmented images of cortical bone, spongiosa, and cartilage (for some ages and bone sites) from the homogeneous bone structure of the 1year, 5 year, and 10year skeletons (Lee et al. 2008), as was done with the newborn and 15year models in Chapter 2 and Chapter 4. Therefore, unlike the infinite spongiosa transport models, SIRT electron transport simu lations account for electron escape into the cortical bone cartilage and soft tissue. T he entire user written subroutine is then coupled with EGSnrc to transport electrons with varying energies through the spongiosa, cortical bone, cartilage and soft tis sue regions of each skeletal sites macrostructure. This subroutine, in its enti rety, was written by Shah et al. (2005; 2005a; 2005c). Absorbed fraction data for sources in spongiosa to targets in cortical bone and cartilage, sources in cortical bone t o targets in spongiosa and cartilage, and sources in cartilage to targets in spongiosa and cortical bone are reported. The electron absorbed fraction results from the SIRT macroscopic skeleton electron transport code will ultimately be mathematically comb ined with the electron absorbed fraction results from infinite spongiosa transports codes to correctly account for energy escape from the boundaries of the bone. CBIST electron dosimetry modeling Unlike SIRT which utilizes voxelbased electron transport me thodologies in a finite medium, Chordbased Infinite Spongiosa Transport ( CBIST ) relies on measured chord length

PAGE 199

199 distributions to characterize the trabecular microstructure, and transports electrons through an infinite medium of spongiosa until all their e nergy is expended. All current beta particle dosimetry models for trabecular bone are in some way based upon the trabecular and marrow chordlength distributions measured by Spiers and his colleagues. Chord lengths are defined by the intersection of a st raight line or ray with two boundaries. The chord length distributions measured by Spiers and his research group represent the distribution of distances that one would see if crossing trabecular bone or mar row cavities in many directions (Bouchet et al. 1999). In general, three fundamental types of random chord distributions exist: mean free path (used for tissue region traversals), I interior radiator (used for volume source simulations), and S surface radi ator (used for surface sources) (Bouchet et al. 1999). random chords begin at a point in space with a given direction, I random chords begin at a point inside a convex body with a given direction, and S random chords begin at a point on the surface of a convex body with a given direction (Bouchet et al. 1999). O nly the I random and random distributions are currently available from the Leeds subject data. In a CBIST simulation, the trabecular bone and marrow chordlength distributions are randomly sampled based on the skeletal site, the source tissue, and the cumulative distribution function (CDF) of the chord type (first sampled chord type based on source tissue). Each sampled chord represents the potential pathlength of an electron in the current tissue. Range energy data are then used to calculate residual energies and energy losses at tissue interfaces. Range scaling from liquid water using the BraggKleeman rule and elemental composition data from ICRU Publication 46 are used to derive the energy range relationships for active marrow inactive marrow, trabecular bone volume, and trabecular bone endosteum. Cortical bone is used as a tissue substitute for trabecular bone and energy range data is derived in a similar manner as previously discussed. The CBIST transport methodology is de scribed in more det ail

PAGE 200

200 in Shah et al. (2005) and Bouchet et al. (2009). Ultimately, beta particles travel through an infinite region of spongiosa, which contains the microstructure of trabecular active marrow, trabecular inactive marrow, trabecular bone, and trabecular bone endosteum, until the full emission of energy is expended. However, CBIST only considers marrow cellularity at 100% (100% active marrow), and does not take into account varying cellularities during transport. Straight line approximatio ns are used to model electron transport in chord based models, instead of nonlinear paths in voxel based models. 3D CBIST electron dosimetry modeling As previously mentioned, current chordbased models do not take cellularity into account explicitly dur ing transport. At high energies (greater than 1 MeV), it has been shown that scaling the 100% cellularity CBIST electron absorbed fraction results by the age and skeletal site specific cellularity factors is a valid assumption because at high energies, e lectrons uniformly traverse the marrow cavities, and this results in a uniform density distribution of imparted energy to all marr ow tissues (inactive or active) (Bolch et al. 2002). However, at low to intermediate energies (less than 1 MeV), this assumpt ion is inaccurate and cellularity must be taken into account during transport (Bolch et al. 2002). Therefore, from 0.001 MeV to 0.1 MeV (inclusive), cellularity dependent electron transport is followed directly. For energies greater than 1 MeV, absorbed fractions results are scaled by the cellularity. Finally, absorbed fractions at intermediate energies from 0.1 MeV (exclusive) to 1 MeV (exclusive) are determined by four parameter logistic hillslope curve fitting using SigmaPlot version 10.0. 3D CBI ST takes into account cellularity dependence during transport for low to intermediate electron energies (up to and including 100 keV). 3D CBIST is written to compute the electron absorbed fractions in 10% cellularity increments from 10% to 90% Therefore linear interpolation is used to calculate the absorbed fractions at cellularities not at 10% incremental values. The geometric model used to partition sampled marrow cavity chords into

PAGE 201

201 subtrajectories of particles through active (red) marrow and inact ive (yellow) marrow (represented as white spheres) and specifics of the transport modeling of cellularity are discussed in Watchman et al. (2005). Basically, there are two regions: 1) an inner sphere of marrow in which randomly selected marrow chords star t and 2) a buffer region in which marrow chords may terminate, but not begin. The buffer region (scaled to the active marrow range of 10 MeV particles) ensures that the sampled marrow cavity chord will always fully lie within the tissues of the marrow spatial model Watchman et al. (2005) The inactive (yellow) marrow are simulated as a series of randomly placed spherical fat cells or adipocytes, which have diameters randomly sampled from a 5bin histogram (92, 72, 56, 40, and 20 m). Cellularity is va ried from 10% to 100%. As marrow cellularity decreases, the number of randomly places adipocytes within the marrow sphere increases. Adipocyte overlapping is prohibited at cellularities greater than 50% and allowed at cellularities less than 50% since ce ll clustering becomes a prominent issue. Therefore, at 50% marrow cellularity and below, the diameters of the adipocytes are increased in a stepwise fashion until the desires cellularity is achieved. The 3D CBIST Monte Carlo electron transport code, 3DCB IST_ICRP50_Beta_2_28_06.c was written in the C computer language by Watchman (2005) Mathematical algorithm for electron dosimetry absorbed fraction combinations A mathematical combination algorithm of th e electron absorbed fraction results from the SIRT and 3D CBIST Monte Carlo simulations was derived to emulate the electron absorbed fraction results from a true PIRT model electron transport simulation. SIRT provides electron absorbed fraction results from spongiosa cartilage and cortical bone sources to finite spongiosa, cortical bone, cartilage and soft tissue targets. 3D CBIST transports electrons from AM TBS IM, and TBV sources to AM and TM50 targets until the entire energy was expended in

PAGE 202

202 the infinite spongiosa medium. Ultimatel y, by multiplying (or weighting) each of the 3DCBIST absorbed fraction results by the SIRT (spongiosa spongiosa) results, the fraction of energy deposited in the finite spongiosa region th at was deposited in an infinite spongiosa region of AM TBV TM50, or IM is obtained. Therefore, ener gy escape into cortical bone and soft tissue is taken into account. Voxel-based infinite spongiosa transport ( VBIST ) Like the CBIST and 3D-CBIST models, VBIST transports -particles through an infinite region of spongiosa until their full energy is spen t, and also not accounting for particle escape into cortical bone, cartilage and soft tissue. However, instead of using probability chord distributions as in CBIST and 3D-CBIST VBIST uses voxels from actual 3D microstructural images of spongiosa obtained by microCT imaging. For this methodology study, the VBIST absorbed fraction results were only used in mathematical combination with the SIRT absorbed fraction results ( SIRT-VBIST absorbed fraction results) to combine a two pure voxel-based models to emulate the voxel-based results produced in PIRT Since this model was used for validation purposes, 100% marrow cellularity (no adipocytes within the marrow cavity) was considered only. Marrow voxels within the bina ry microCT image are la beled into voxels of active and inactive marrow, a nd the trabecular bone endosteum is defined as a 10m layer at the bone-marrow interface (Shah et al. 2005). Particle histories between 50,000 and 2,000,000 are run until the coefficient of variation for each absorbed fraction is less than 1%. Results and Discussion Homogeneous 1-Year, 5-Year, and 10-Year Skeletal Models The 1-year, 5-year, and 10-year homogeneous skeletal models were developed from whole-cadaver CT image segmentation, pol ygon mesh or NURBS surface modeling, and hybrid phantom voxelization. Details of the latter are given in Lee et al. (2008). The sitespecific homogeneous bone volumes, inclus ive and exclusive of bone-associated

PAGE 203

203 cartilage /fibrous connective tissue are shown in Table 51 for the 1 year, 5 year, and 10year hybrid phantoms. T he volume of total segmented skeletal tissue (including bone associated cartilage /fibrous connective tissue ) is 631.92 cm3, 1365.69 cm3, and 2861.08 cm3, while the volume of total homogeneous bone (excluding bone associated cartilage /fibrous connective tissue ) is 563.34 cm3, 1276.13 cm3, and 2647.10 cm3, for the 1year, 5 year, and 10year, respectively. Therefore, i n these models, the cartilage /fibrous connective tissue contributions from the intervertebral discs, costal cartilage, sternal, cranial (for 1 year only), extrapulmonary bronchi, larynx, trachea, external nose, and ears are approximately 6%, 4%, and 4% for the 1 5, and 10year skeletons, respectively. As indicated by footnote in Table 51, bone asso ciated cartilage /fibrous connective tissue is found in four regions of the 1year skeleton in the cranium (fibrous tissue) ribs, sternum and spine whi le only three regions in the 5and 10 year skeleton in the ribs, sternum, and spine For example, fibrous connective tissue that is located between th e ossified plates of the 1 year cranium occupies 4.57 cm3. Using the 1 year as an example, with a crani al homogeneous bone volume of 240.66 cm3, the total bone volume of the cranium is thus 245.24 cm3 (given as 240.66 + 4.57 cm3). Similarly, the lumbar spine of the 1year includes intervertebral disc cartilage (3.15 cm3) and homogeneous bone volume of 19.75 cm3 (excluding bone associated cartilage), for a total homogeneous bone volume of 22.90 cm3Based on a volume weighted average of ICRP reference densities for the constituent skeletal tissues ( 1.03 g cm 3 for active marrow, 0.98 g cm3 for inactive ma rrow,1.66 g cm3, 1.70 g cm3, 1.75 g cm3 for mineral bone for the 1 5, and 10year, respectively, and 1.03 g cm3 for miscellaneous skeletal tissues ) values of 1.42 g cm3, 1.41 g cm3, 1.37 g cm3 are estimated as the skeletal averaged noncartilaginous homogenous bone density for the 1 year, 5year, and 10year skeletons, respectively. T otal noncartilaginous skeletal masses of 802.42 g, 1798.36, and 3637.53 g were thus realized revised versions of the hybrid 1, 5, and 10year

PAGE 204

204 phantoms, respectively. These values are all less than 1% different from the ICRP reference total skeletal mass of 240.0 g 1815.0g, and 3650 g for the 1year, 5 year and 10year skeletons The total bone associated hybrid cartilage /fibrous connective tissue masses were 41 .89 g, 155.19 g, and 129.26 g, respectively, which are between 85% and 91% different from the ICRP reference mass es. By including an additional mass from nonbone associated cartilage (external nose, trachea, larynx, extrapulmonary bronchi, and ears) to t he total skeletal masses inclusive of bone associated cartilage decreases the difference to between 80% and 85% compared to reference. Construction of the H eterogeneous 1Year, 5 Year, and 10Year Skeletal Model s Once the UF homogeneous 1year, 5 year, an d 10 year skeleton s were constructed to match ICRP reference masses to within a 1% tolerance, the constituent skeletal tissues of active marrow, inactive marrow, trabecular bone, cortical bone and MST were distribute d across individual bone sites. Age pr ogression of skeletal growth is illustrated in Figure 5 1 A through 51 D for the segmented os coxae, femur, ribs cage, and humerus. Miscellaneous skeletal tissue masses and volumes Table 52, Table 53, and Table 54 give mass and volume distributi ons of miscellaneous skeletal tissues dispersed throughout the 1year, 5 year, and 10year skeleton s, respectively, by skeletal site and constituent tissue Again, these masses were calculated based on the assumption that the MST volume for a particular s keletal site is proportional to that bone sites total tissue volume ( exclusive of bone associated cartilage). This assumption was applied given the lack of literature data to the contrary T he MST volume s in the cranium are the greatest as that skeletal site is proportionally the largest in these phantoms. Mineral, trabecular and cortical bone masses and volumes Mineral bone masses and volumes including and excluding MST are listed in Table 55 for the three ages These values are the final, n ormalized mineral bone data to target reference

PAGE 205

205 ICRP mineral bone masses and volumes. The cranium contains the largest proportional of mineral bone compared with 48%, 41%, and 23% in the 1year, 5 year, and 10year skeletons. Table 5 6 lists the linearly interpolated 1, 5, and 10year cortical and trabecular bone percentages in comparison to the newborn and 15 year female data derived from image based sources. Cortical bone and trabecular bone percentages from selected skeletal sites were plotted in Fi gure 5 2 A and Figure 52 B, respectively, to illustrate the differences in growth patterns by bone site. For example, the cranium has the largest slope, followed by the ribs. This means that there is a faster increase in cortical bone to total mineral b one growth in the cranium and ribs than with the thoracic vertebrae, tibia, and os coxae. The cranium is approximately 9% faster in cortical to total mineral bone growth compared to the ribs, while the cranium is 4 times faster in cortical bone percentage compared to the thoracic vertebrae. There is a negative slope shown in Figure 52 B. This correlates to a decline in the trabecular bone percentage as a function of total mineral bone. As previously described, these cortical and trabecular percentag es were used to derive the cortical and trabecular bone masses. Table 5 7, Table 58, and Table 59 list the bone site specific volumes and masses, including and excluding MST for the 1 year, 5 year, and 10year skeletons, respectively. 1 year old total trabecular bone mass (exclusive of MST ) was calculated at 321.8 g, approximately 2.7 times more mass than reported in I CRP Publication 89 1 year old (120 g ). 5 year old total trabecular bone mass (exclusive of MST ) was calculated at 542 g, approximately 2.2 times more mass than reported in I CRP Publication 89 5 year old (250 g). 10 year old total trabecular bone mass (exclusive of MST ) was calculated at 631 g, approximately 1.4 times more mass than reported in I CRP Publication 89 10 year old (460 g ). Conversely, our estimate of 268.2 g 718 g, and 1669 g of 1 year, 5 year, and 10year cortical bone (exclusive of MST ), respectively, is approximately 40%, 30%, and 10% less than the ICRP 89 reference values of 470 g, 1010 g, and 1840 g, respectively. As for all pediatric ages,

PAGE 206

206 the ICRP 89 reference total cortical and trabecular bone masses are assumed the adult 80% cortical bone and 20% trabecular bone values. However, the studies in Chapter 2, Chapter 4, and the current study show that these percentages act ually vary: 40% cortical / 60% trabecular in the newborn, 45% cortical / 55% trabecular in the 1 year old, 57% cortical / 43% trabecular in the 5 year old, 73% cortical / 27% trabecular in the 10 year old, and 80% cortical / 20% trabecular in the 15 year old. At birth, trabecular bone is more prominent compared with total mineral bone in the skeleton. As we age, into adolescence and adulthood, cortical bone becomes the dominant mineral bone tissue constituent. Marrow masses and volumes AM AM* IM, IM*, and TMS TMS volumes were calculated for every skeletal site as shown in Table 510, Table 511, and Table 512 for the 1year, 5 year, and 10year skeletons, respectively Given the ICRP 89 reference mass es, the hybrid phantom total marrow masses for t he skeleton matched within 1%. The largest amount of AM for the 1 year and 5 year skeletons occurs in the cranium due to the biological proportionality of the cranium during childhood. Then during puberty into adolescence, the os coxae contains the most AM as shown in the 10year skeleton. The AM data provided in Watchman et al. (2007) are in fair agreement, and show a similar trend in AM in the cranium and os coxae. Table 513 lists the percent mass distribution of active marrow, including MST by bone site for the 1 year, 5 year, and 10year skeletons with comparison to values given in Table 9.4 of ICRP Publication 89. The majority of skeletal sites in this study show absolute differences of less than 2% with values in ICRP Publication 89. The 1year cranium, ribs, and tibia have the highest percent differences, namely 7.69% 6.18%, and 5.48%, respectively. The 5 year cranium, tibia, and upper femur half h ave the highest percent differences, namely 16.67% 4.65%, and 3.24%, respect ively. The 10year cranium, upper femur half, and lower femur half have the highest percent differences, namely 5.93% 4.46%, and 3.27%, respectively.

PAGE 207

207 Table 5 14 lists the calculated SVF, CBVF MVF and TBVF based on the derived active marrow, inactive marrow, trabecular bone, cortical bone, and MST volumes previously presented. The SVF and CBVF values, by bone site, do not have an overall trend. Some of the bone site values go up and down by age, while others consistently increase or decrease with age However, the MVF values tend to increase ( TBVF decrease) with age, but the rate at which these fractional volumes change depends on the bone site, as was seen in Figure 5 2 A and Figure 52 B with the cortical and trabecular bone percentages. As seen w ith the newborn, the cranium tends to have a smaller MVF (larger TBVF) relative to the other bone sites, due to the unique structure of very small marrow cavities and thick bone trabeculae. Therefore, from birth to adolescence, the over marrow cavity size increases, while the trabecular bone thickness decreases. However, these marrow cavities are filled with more fatty marrow throughout childhood skeletal development. As far as the overall macrostructural development, the changes vary with bone site and age. Cartilage masses and volumes A summary of 1 year, 5 year, and 10 year cartilage volumes are given in Table 515, along with calculated masses based on an ICRU Report 46 reference density of 1.10 g cm3. Of t he 34 skeletal site cartilage sites listed in the upper portion of Table 515 a uniform layer of unossified bone is only around the sternum, unlike the newborn where unossified bone surrounded all bone sites. Table 515 next lists three major sites that were manually segmented from t he original whole body CT images (costal cartilage cranial fibrous connective tissue only in 1 year old, and intervertebral disc cartilage ). Again, it should be noted that the cranial fibrous connective tissue was obtained by fusing the plates of the c ranial cap F inal bone associated cartilage/fibrous tissue and total cartilage /fibrous tissue masses were calculated as 41.89 g and 51.19 g (1year), 55.19 g and 73.71 g (5year), and 129.26 g and 147.79 g (10 year) respectively. The calculated total tissue mass is less than 80% 85% lower than the ICRP

PAGE 208

208 89 reference values Matching the hybrid phantom to ICRP cartilage was not obtained due to limited contrast resolution for segmentation of articular cartilage. The last column for each age in Ta ble 515 gives the percent mass distribution by bone site. Unlike the newborn, which was comprised of approximately 98% bone associated tissue the 1year, 5 year, and 10year skeletons have between 75% to 85% bone associated tissue Shallow active marrow data T able 516, Table 517, and Table 518 show a summary of the sha llow marrow data for the 1 year, 5 year, and 10year skeleton s, respectively. All volumes and masses in this table include their MST contributions. Columns 2 and 3 list the shallow active mar row volumes and masses for each skeletal site. As described in the methods, for the long bone shafts, a cylindrical model was used and the shaft radii and heights are listed in Table 519 for this age series. Shallow inactive marrow masses and volumes ar e listed in the next set of columns. The third set of columns list the reference cellularities, shallow marrow masses and volumes at reference cellularity, shallow marrow masses at 100% cellularity, and the percentage of the shallow marrow in that bone si te compared to the total shallow marrow in the entire skeleton. The cranium and os coxae, for the 1year, 5 year and 10year skeletons, contain the largest contribution to shallow marrow throughout the skeleton. The total mass of shallow marrow throughout the entire skeleton was calculated to be 69.83 g (1 year), 124.87 g (5 year), and 170.76 g (10 year), compared to 43.3 g (1 year), 112.4 g (5 year), and 214.9 g (10 year) estimated by Watchman et al. (2007) The last column in these tables lists the calculated SMVF (%), or percentage of total of the trabecular bone surfaces. For a given bone site, the SMVF decreases with age. This is due to the increase in marrow cavity size throughout childhood skeletal development. The largest SMVF tends to be in the proximal and distal long bones, due to the relatively small marrow volume. Other than the shafts of the long bones, the

PAGE 209

209 cranium tends to have a relatively small SMVF due to the small marrow cavities. The SMVF in the long bone shafts decreases with age, due to the increase in medullary marrow radius size. Homogeneous spongiosa masses, volumes, densities, and elemental compositions Table 520 gives a summary of the1year, 5 year, and 10year hybrid skeletal spongiosa masses, volumes and densities including MST Table 520 also gives the s ummed spongiosa mass and volume data for the total skeleton, along with a volumetrically weighted average spongiosa density for the total 1 5, and 10year skeleton s It appears that the majority of the spongiosa resides in the cranium, spine, pelvis and ribs with the greatest amount in the cranium, approximately 50% (1 year), 40% (5 year), and 20% (10year) Similar ly, the least amount of spongios a mass is found in the sternum clavicles, long bones, and mandible The total skeleton spongiosa mass and volume were calcu lated as 514.60 g and 381.78 cm3 (1 year), 1036.14 g and 804.41 cm3 (5 year), and 1844.25 g and 1561.34 cm3 (10 year), respectively. Compared with the ICRP 89 r eference spongiosa mass of 300.82 g (1 year), 742.43 g (5 year), and 1668.64 g (10 year), the calculated spongiosa sum is about 72% higher (1 year), 40% higher (5 year), and 10% higher (10year) .6In Table 5 20, the skeletal averaged spongiosa density is estimated to be 1.34 g cm This is due to the fact that the ICRP reference trabecular bone mass contribution is only 20% of total mineral bone versus 55%, 43%, and 27%, for the 1year, 5 year, and 10year skeletons, respectively. 3, 1.28 g cm3, and 1.18 g cm3, in the 1year, 5 year, and 10year spongiosa. ICRU Report 46, Ta ble A1, the only reference spongiosa density listed is that for the adult, namely 1.18 g cm3. For the 1 year old, skeletal site dependent spongiosa densities range from a low of 1.14 g cm3 in the thoracic vertebrae, to a high of 1.44 g cm3 6 Reference masses for AM and MST exclude contributions in the long bone shafts. in the crani um (largest proportion of trabecular bone). For the 5 year old, skeletal site dependent spongiosa densities range from a

PAGE 210

210 low of 1.11 g cm3 in the distal ulna, to a high of 1.37 g cm3 in the cranium. For the 10 year old, skeletal site dependent spongios a densities range from a low of 1.03 g cm3 in the patella, to a high of 1.29 g cm3Homogeneous skeleton masses, volumes, densities, and elemental compositions in the cranium. Table A1 of ICRU Report 46 lists reference elemental compositions of trabecular spongiosa but only for the adult, and only for a fixed mixture 67% marro w, which itself is comprised of 50% TIM and 50% TAM (all percentages by mass). For the 1 year, 5 year and 10year hybrid skeletons, the AM percentage of marrow is 92%, 75%, and 60%. As shown in Table 521, the spongiosa elemental compositions including M ST vary significantly between skeletal sites. For example the mass percentage of carbon in the cranium is almost half what it is in the long bone shafts Also, the percentages of phosphorus can be up to 32 times more in the cranium than in the shafts of the long bones. Most of this is due to the lack of trabecular bone contribution in the long bone shafts. The total skeleton averaged spongiosa elemen tal compositions for the 1year, 5 year, and 10year are fairly represented by the adult reference spong iosa elemental compositions in ICRU 46, excluding carbon and oxygen (due to the lower amounts of inactive marrow in the younger ages ). The homogeneous skeleton masses and volum es including MST were calculated and are listed in Table s 522 and 523. The data of Table 522 includes cartilage mass and volume contributions to each bone site, while that in Table 523 ex cludes the cartilage components. The inclusion and exclusion of cartilage /fibrous tissue gives the user of these skeletal phantoms a more flexible and comprehensive data for dosimetry calculations Compared with the manually segmented NURBS/polygon mesh homogeneous skeletal 1year, 5 year, and 10year hybrid phantom, the derived total homogenous skeletal volume and mass including and excluding cartilage are exact which provides validation of the methods presented in this study.

PAGE 211

211 The increased densities of homogeneous bone excluding cartilage compared to that in spongiosa regions is attributed to the contribution of cortical bone in the former. Density differences between homogeneous bone includ ing and excluding cartilage are similarly explained. The inclusion of cartilage in the de nsity calculations effec tively drives the overall density of homogeneous bone downward as the eff ective density of the combined tissues is less than that of cortical bone alone. The volum etric-weighted skeletal averaged homogeneous bone density was 1.42 g cm-3 and 1.40 g cm-3 (1-year), 1.41 g cm-3 and 1.40 g cm-3 (5-year), and 1.37 g cm-3 and 1.36 g cm-3 (10-year), excluding and incl uding cartilage/fibrous tissue, respectively. The density differences decreases between including and excluding cartilage/fibrous tissue from 1 years of age to 10 years due to the gradual decrease compared to other skeletal tissues. Homogeneous bone el emental compositions including and excluding cartilage/fibrous tissue were computed and are shown in Table 5-24 and Table 5-25, respectively. Similarly to the spongiosa elem ental compositions, the greatest difference total skeletal homogeneous bone elemental co mpositions is seen in carbon and oxygen. Homogeneous 1-Year, 5-Year, and 10-Year Skeletal Models Appendix M provides the detailed de rivation of this algorithm for AM sources to AM targets, AM sources to TM50 targets, and IM TBV TBS and CBV sources to both AM and TM50 targets. For example, to obtain the ( AM AM ), the ( IM AM )3D-CBIST, and ( TBV AM )3DCBIST would need to be multiplied by the (spongiosa spongiosa)SIRT. These results give the effective energy deposited into a fi nite region of spongiosa going to IM and TBV These results would then need to be added with th e energy (or absorbed fr action) deposited into CBV (cortical bone volume) and soft tissue to take into account energy escape. Taking this sum and subtracting from 1 will give the amount of energy deposited in an AM target by an AM source, or 1 minus the sum of the total energy deposit ed into all relevant tissue targets excluding AM

PAGE 212

212 Proposed scaling of the University of Leeds pediatric data Using the UF hybrid pediatric mod els as the macrostructure voxel model we can thus provide information on spongiosa self dose and cross dose from cortical and cartilage to spongiosa at each skeletal site. What is further needed, however, is information on the trabecular micr ostructure of the 1year, 5 year, and 10year chi ldren At present, no comprehensive data source of microCT images currently exists for these pediatric subjects f or which the PIRT model can be implemented. Consequently, a first step is to use the limited Unive rsity of Leeds data from a 1.7year and 9 year child to construct interpolated chordlength distributions by subject age. These weights were derived based on similar evaluations proposed by Whitwell SIRT 3DCBIST algorithm validation r esults (1973) and by Bouchet et al. (2000). These interpolated chord length distributions can be used t o construct provisional absorbed fraction data across the pediatric age range under 3D CBIST modeling The proposed scaling method for the 1year, 5 year, and 10year are in Table 5 26, Table 527, and Table 5 28, respectively. Before this SIRT and 3D CBIST mathematical algorithm was implemented, absorbed fractions as a function of electron energy results from PIRT SIRT VBIST (which was computed by the same mathematical algorithm as SIRT 3D CBIST ), and SIRT 3D CB IST for the os coxae at 100% cellularity of the UF 66 year adult male were plotted and compared for a n AM source irradiating the AM TBV and TBE (10 micron endosteal definition) targets. The os coxae skeletal site was chosen for model validation and error quantification because it has a relatively large marrow content. SIRT a macrostructurebased skeletal model, and VBIST a microstructure based model, are both voxel based models so that, when mathematically combined into SIRT VBIST by the same algorithm as SIRT 3DCBIST should result in similar electron absorbed fractions as in the PIRT voxel model. It is expected that SIRT 3DCBIST absorbed fraction results compared with PIRT will show greater variations due to the inherent

PAGE 213

213 differences associated with u sing voxels versus chord distributions This detailed comparison of VBIST and CBIST electron transport results w as recently given by Shah et al. (2005; 2005a; 2005b; 2005c). Tables 5 29, Table 530, and Table 531 show the computed electron absorbed fract ion results and absolute percent differences from an AM source irradiating AM TBV and TBE (10 micron definition) targets for PIRT SIRT VBIST and SIRT CBIST It is best to express errors in absolute terms rather than relative terms due to the small abso lute magnitude of the absorbed fraction data. As shown in these Tables, the absorbed fraction results from SIRT VBIST compared with PIRT are less than 1% in absolute error for all targets and all electron energies. This is expected because SIRT and VBIST are both voxel based models, and when combined, should be equivalent to the voxel based PIRT simulation. The small differences are due to the mathematical combination of the SIRT and VBIST results compared to simulating simultaneous skeletal macrostructu re and microstructure transport as done in PIRT As shown in the tables, there are greater deviations in the SIRT CBIST results compared to the PIRT results. Absolute errors range from 1% to 3% in the intermediate electron energies of 100 keV to 1 MeV to less than 1% for electron energies less than 100 keV or greater than 1 MeV. Figure 53 shows a graphical comparison of the SIRT CBIST SIRT VBIST and PIRT results for the AM TBE (10 micron), and TBV targets being irradiated by an AM source. TBE and TB V targets have greater absolute errors due to the inherent differences in a voxel based model compared to a chordbased model. These differences are examined and quantified in greater detail in Shah et al. (2005; 2005a; 2005b; 2005c). The associated statistical errors reported within each Monte Carlo simulation are reported as a coefficient of variation, or the ratio between the standard deviation and the mean. This ratio shows the statistical variability of the absorbed fractions for each partic le r an at each energy relative to the reported mean absorbed fractions. These absorbed fractions and their

PAGE 214

214 associated coefficients of variation are computed in SIRT CBIST and VBIST and are reported in Table 5 32, Table 5 33, and Table 534. Ten million pa rticles were simulated for each of the Monte Carlo codes to obtain COV less than 1% for each source to target combination. In Table 532, the COV for the cortical bone and soft tissue targets are higher because not as many particles are making it to these regions until the intermediate and high particle energies. After 0.5 MeV for cortical bone and 1.5 MeV for soft tissue the COV falls below 1%. In Table 5 33, the COV for the TBV and TBE are higher than 1%, as expected for low energies for the same reaso n as before. However, the TBE target has a far less COV than the TBV target due to the T BE target region closer to the AM source and counting more particles at lower energies than the TBV target. The endosteal region is modeled as a layer of voxels in the PIRT model compared to probability chord distributions in CBIST At intermediate energies, particles are escaping from the bone trabeculae and entering into the endosteum. At larger entry angles, it is possible that the straight line approximation of the CBIST model would show the entire electron energy deposition in the endosteum, whereas in the VBIST or PIRT model, the energy deposition would occur in both the endosteum and also in bone volume. Therefore, endosteal dose would be higher in the chordba sed model versus the voxel based model. V oxel based models use nonlinear electron paths while chord based models use linear electron paths. This straight line approximation is not valid at low electron energies because inelastic and elastic scatters can not be accurately modeled. Based on the results of this validation study, the SIRT 3D CBIST mathematical algorithm appears to be in reasonable statistical agreement with the PIRT results and can be used as a valid approximation to the PIRT simulation. Con clusions In this study, comprehensive skeletal tissue models were developed for the UF hybrid reference 1 year, 5 year, and 10year models. The models includes bone specific masses and

PAGE 215

215 volumes of all relevant tissue components including active marrow, inac tive marrow, endosteal tissues, trabecular bone, cortical bone, miscellaneous skeletal tissues, and cartilage /fibrous connective tissue Site specific and skeletal averaged tissue densities and elemental compositions are also derived. Unlike the newborn and 15year male and female models which were based on real image source data, the tissue models for he 1 year, 5 year, and 10year were derived based on tissue data provided in the previous studies of Watchman et al. (2007), and data from the newborn and 15year tissue models. The tissue models prese nted in this chapter will be considered interim models pending acquisition and subsequent microCT imaging of real pediatric bone sample s at these targeted reference ages The site specific distribution of total marrow are less than 1% different compared with those values given for the reference 1 year, 5 year, and 10year models in ICRP Publication 89. The total active marrow masses vary between +3% and +19%, while the inactive marrow masses vary between 20 % and 30% compared to the ICRP reference values. These percentages seem unusually high, especially for the IM. This us due to the fact the relative ratios inflate the perce ntages due to small amounts of IM. For example, the IM marrow mass for the 1 yea r phantom is only 6 g lower than the ICRP reference, but has a relative difference of 28%. In terms of masses, the AM masses in the phantoms are 4 g, 27 g, and 112 g higher than in ICRP for the 1year, 5 year, and 10 year, respectively. Likewise, the IM masses for the phantoms are 6 g, 38 g, and 125 g lower than the ICRP values for the 1year, 5 year, and 10year, respectively. In ICRP Publication 89, the adult cortical and trabecular percentages of mineral, 80% / 20%, were carried throughout the entire pediatric age series. The image based data from the newborn in Chapter 2 showed a cortical bone percentage more toward 40% and a trabecular bone percentage toward 60%. Likewise, the 18year image (surrogate for the 15 year male and female) was in agreement with the adult ICRP value of 80% / 20%. Given the lack of data in the literature, linearly interpolation between the newborn and 15year female

PAGE 216

216 were used to derive these percentages on the 1 year, 5 year, and 10year. These values, however, vary from 30% cortical and 70% trabecular to 70% cortical and 30% trabecular in the 1year, 40% cortical and 60% trabecular to 70% cortical and 30% trabecular in the 5year, and 60% cortical and 40% trabecular to 80% cortical and 20% trabecular in the 10year across the skeletal sites, and thus a single skeletal averaged value can be misleading when looking at a particular skeletal region. The 1 year, 5 year, and 10year skeletal tissue models permit a sub segmentation of the homogeneous bones in the UF hybrid phantoms into specific regions of cortical bone, spongiosa, and medullary marrow for future dosimetry computations. In Chapter 3 and Chapter 4, electron transport was performed using the PIRT This method is based on image based CT data for information regardi ng the relative proportions of cortical bone and spongiosa, and image based microCT to give details on the marrow cavity size and trabecular bone thicknesses inside the spongiosa regions. However, for the 1year, 5 year, and 10 year skeletons, image data was not available. Therefore, an algorithm was derived for the mathematical combination of two electron transport codes: SIRT and 3D CBIST The SIRT model provides electron transport data from sources and targets in spongiosa, cortical bone, and cartila ge. This model, therefore, takes into account the both electron escape and cortical bone cross fire into spongiosa that PIRT accounts for. 3D CBIST is an infinite electron transport model that uses the University of Leeds 2D chordlength distributions th rough marrow and bone trabeculae to account for energy deposition in AM and TM50, from AM IM, TBV, and TBS sources. Consequently, energy deposition into the detailed structures of spongiosa is now accounted for. The mathematical combination of the absor bed fraction results from these separate models gives the effective energy deposition in AM and TM50, while accounting for the escape and cross fire processes modeled in PIRT In this chapter, the method was derived and implemented in the UF adult 66year male for validation purposes. The SIRT 3DCBIST methodology provided absorbed fraction results which were in good

PAGE 217

217 agreement with the results obtained from PIRT Most of the small differences are attributed to the methods used in chordbased models versus voxel based models. Future studies will apply this methodology to the 1 year, 5 year, and 10year skeletal models.

PAGE 218

218 Table 5 1. Bone volumes given in the hybridNURBS/PM models and in the reconstructed hybridvoxel models of the 1year, 5 year, and 10 year skeleton s for (1) the combined tissues of cortical bone and trabecular spongiosa, (2) outer layers of bone associated cartilage /fibrous connective tissue and (3) total volume of all tissues. Cortical Bone + Cartilage Total Cortical Bone + Cartilage Total Cortical Bone + Cartilage Total Spongiosa Bone-Associated Homogeneous Bone Spongiosa Bone-Associated Homogeneous Bone Spongiosa Bone-Associated Homogeneous Bone Skeletal Site (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) (cm3) Cranium 240.66 0.00 245.24 465.14 0.00 465.14 521.95 0.00 521.95 Mandible 12.79 0.00 12.79 30.47 0.00 30.47 33.28 0.00 33.28 1Cervical 8.67 0.00 10.06 13.91 0.00 14.97 31.38 0.00 33.91 1Thoracic 28.21 0.00 33.47 73.68 0.00 89.20 204.93 0.00 238.38 1Lumbar 19.75 0.00 22.90 51.05 0.00 65.09 142.65 0.00 172.83 Sternum 1.88 7.58 9.46 7.70 10.78 18.48 19.86 21.05 40.91 1,2Ribs 53.93 0.00 70.06 77.61 0.00 86.39 146.82 0.00 177.12 Scapulae 16.21 0.00 16.21 46.51 0.00 46.51 101.29 0.00 101.29 Clavicles 2.20 0.00 2.20 9.19 0.00 9.19 21.45 0.00 21.45 Os coxae 38.02 0.00 38.02 106.05 0.00 106.05 297.30 0.00 297.30 Sacrum 13.95 0.00 13.95 32.46 0.00 32.46 55.01 0.00 55.01 Humeri, Proximal 9.47 0.00 9.47 22.27 0.00 22.27 64.54 0.00 64.54 Humeri, Upper Shaft 4.71 0.00 4.71 11.20 0.00 11.20 32.00 0.00 32.00 Humeri, Lower Shaft 3.78 0.00 3.78 9.95 0.00 9.95 28.34 0.00 28.34 Humeri, Distal 5.37 0.00 5.37 13.52 0.00 13.52 38.59 0.00 38.59 Radii, Proximal 1.01 0.00 1.01 2.19 0.00 2.19 6.16 0.00 6.16 Radii, Shaft 1.98 0.00 1.98 6.80 0.00 6.80 19.00 0.00 19.00 Radii, Distal 1.46 0.00 1.46 4.00 0.00 4.00 11.34 0.00 11.34 Ulnae, Proximal 2.53 0.00 2.53 7.32 0.00 7.32 20.89 0.00 20.89 Ulnae, Shaft 3.21 0.00 3.21 8.30 0.00 8.30 23.31 0.00 23.31 Ulnae, Distal 0.38 0.00 0.38 1.36 0.00 1.36 3.79 0.00 3.79 Wrists and Hands 13.41 0.00 13.41 17.65 0.00 17.65 49.06 0.00 49.06 Femora, Proximal 10.12 0.00 10.12 30.47 0.00 30.47 97.58 0.00 97.58 Femora, Upper Shaft 5.19 0.00 5.19 22.69 0.00 22.69 72.10 0.00 72.10 Femora, Lower Shaft 7.53 0.00 7.53 17.27 0.00 17.27 55.10 0.00 55.10 Femora, Distal 12.26 0.00 12.26 35.51 0.00 35.51 114.01 0.00 114.01 Patellae 0.51 0.00 0.51 5.16 0.00 5.16 12.96 0.00 12.96 Tibiae, Proximal 9.40 0.00 9.40 28.84 0.00 28.84 92.56 0.00 92.56 Tibiae, Shaft 9.55 0.00 9.55 26.45 0.00 26.45 83.83 0.00 83.83 Tibiae, Distal 3.69 0.00 3.69 10.56 0.00 10.56 33.66 0.00 33.66 Fibulae, Proximal 0.69 0.00 0.69 2.63 0.00 2.63 8.25 0.00 8.25 Fibulae, Shaft 1.07 0.00 1.07 4.50 0.00 4.50 13.64 0.00 13.64 Fibulae, Distal 0.61 0.00 0.61 2.54 0.00 2.54 7.90 0.00 7.90 Ankles and Feet 19.12 0.00 19.12 71.20 0.00 71.20 182.56 0.00 182.56 Cranial Fibrous Connective Tissue N/A 4.57 4.57 N/A 0.00 0.00 N/A 0.00 0.00 Costal Cartilage N/A 16.13 16.13 N/A 8.78 8.78 N/A 30.30 30.30 CV Intervertebral Discs N/A 1.38 1.38 N/A 1.06 1.06 N/A 2.54 2.54 TV Intervertebral Discs N/A 5.26 5.26 N/A 15.52 15.52 N/A 33.45 33.45 LV Intervertebral Discs N/A 3.15 3.15 N/A 14.03 14.03 N/A 30.18 30.18 Total Skeleton (cm3) 563.34 38.08 631.92 1276.13 50.17 1365.69 2647.10 117.51 2861.08 Mass(g) 802.42 41.89 853.61 1798.36 55.19 1872.07 3637.53 129.26 3785.33 Reference Mass (g) 805.00 360.00 1165.00 1815.00 600.00 2415.00 3650.00 820.00 4470.00 Ratio 1.00 0.12 0.73 0.99 0.09 0.78 1.00 0.16 0.85 1Total bone includes contributions of costal, cranial fibrous tissue(1-year only), intervertebral disc cartilage, bone-associated sternal, and all non-bone associated cartilage estimates. 2This volume is NURBS, while all others are polygon mesh 1-YEAR Polygon Mesh/NURBS Volumes 5-YEAR Polygon Mesh/NURBS Volumes 10-YEAR Polygon Mesh/NURBS Volumes

PAGE 219

219 Table 5 2. Masses and volumes of site specific miscellan eous skeletal tissues in the 1 year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 18.66 19.22 14.33 14.76 4.12 4.24 0.22 0.22 4.27 4.40 10.06 10.36 Mandible 0.99 1.02 0.77 0.79 0.21 0.22 0.01 0.01 0.33 0.34 0.44 0.45 Cervical 0.67 0.69 0.32 0.32 0.34 0.35 0.02 0.02 0.15 0.16 0.16 0.17 Thoracic 2.19 2.25 0.94 0.97 1.19 1.22 0.06 0.06 0.54 0.55 0.40 0.41 Lumbar 1.53 1.58 0.84 0.86 0.66 0.68 0.03 0.04 0.33 0.34 0.51 0.52 Sternum 0.15 0.15 0.07 0.08 0.07 0.07 0.00 0.00 0.03 0.03 0.04 0.05 Ribs 4.18 4.31 2.19 2.25 1.89 1.95 0.10 0.10 0.95 0.98 1.23 1.27 Scapulae 1.26 1.30 0.81 0.83 0.43 0.44 0.02 0.02 0.45 0.46 0.36 0.37 Clavicles 0.17 0.18 0.11 0.12 0.05 0.06 0.00 0.00 0.06 0.07 0.05 0.05 Os coxae 2.95 3.04 1.61 1.66 1.27 1.31 0.07 0.07 0.99 1.02 0.62 0.64 Sacrum 1.08 1.11 0.61 0.62 0.45 0.46 0.02 0.02 0.26 0.26 0.35 0.36 Humeri, Proximal 0.73 0.76 0.54 0.56 0.19 0.19 0.01 0.01 0.28 0.29 0.26 0.27 Humeri, Upper Shaft 0.37 0.38 0.31 0.32 0.05 0.05 0.00 0.00 0.31 0.32 0.00 0.00 Humeri, Lower Shaft 0.29 0.30 0.24 0.25 0.05 0.05 0.00 0.00 0.24 0.25 0.00 0.00 Humeri, Distal 0.42 0.43 0.32 0.33 0.09 0.09 0.01 0.01 0.18 0.19 0.14 0.14 Radii, Proximal 0.08 0.08 0.07 0.07 0.01 0.01 0.00 0.00 0.06 0.06 0.01 0.01 Radii, Shaft 0.15 0.16 0.13 0.13 0.02 0.02 0.00 0.00 0.13 0.13 0.00 0.00 Radii, Distal 0.11 0.12 0.10 0.10 0.01 0.01 0.00 0.00 0.07 0.08 0.02 0.02 Ulnae, Proximal 0.20 0.20 0.17 0.18 0.02 0.02 0.00 0.00 0.11 0.11 0.06 0.06 Ulnae, Shaft 0.25 0.26 0.21 0.22 0.03 0.04 0.00 0.00 0.21 0.22 0.00 0.00 Ulnae, Distal 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 Wrists and Hands 1.04 1.07 0.61 0.63 0.21 0.22 0.21 0.22 0.25 0.26 0.36 0.37 Femora, Proximal 0.78 0.81 0.57 0.59 0.21 0.21 0.01 0.01 0.32 0.33 0.25 0.26 Femora, Upper Shaft 0.40 0.41 0.34 0.35 0.06 0.06 0.00 0.00 0.34 0.35 0.00 0.00 Femora, Lower Shaft 0.58 0.60 0.48 0.50 0.09 0.10 0.01 0.01 0.48 0.50 0.00 0.00 Femora, Distal 0.95 0.98 0.71 0.73 0.21 0.22 0.03 0.03 0.48 0.49 0.23 0.23 Patellae 0.04 0.04 0.02 0.02 0.02 0.02 0.00 0.00 0.01 0.01 0.01 0.01 Tibiae, Proximal 0.73 0.75 0.59 0.61 0.13 0.13 0.02 0.02 0.41 0.42 0.18 0.19 Tibiae, Shaft 0.74 0.76 0.60 0.61 0.13 0.13 0.02 0.02 0.60 0.61 0.00 0.00 Tibiae, Distal 0.29 0.29 0.26 0.26 0.03 0.03 0.00 0.00 0.23 0.23 0.03 0.03 Fibulae, Proximal 0.05 0.06 0.05 0.05 0.01 0.01 0.00 0.00 0.04 0.04 0.01 0.01 Fibulae, Shaft 0.08 0.09 0.07 0.07 0.01 0.01 0.00 0.00 0.07 0.07 0.00 0.00 Fibulae, Distal 0.05 0.05 0.04 0.04 0.00 0.00 0.00 0.00 0.03 0.04 0.01 0.01 Ankles and Feet 1.48 1.53 0.84 0.87 0.32 0.33 0.32 0.33 0.34 0.35 0.51 0.52 Total Skeleton 43.69 45.00 29.88 30.78 12.58 12.96 1.23 1.26 13.58 13.99 16.30 16.79 ICRP 89 Reference 43.69 45.00 Ratio 1.00 1.00 1-YEAR MST In IM MST In Mineral Bone MST In AM MST In CBV MST In TBV Total MST

PAGE 220

220 Table 5 3. Masses and volumes of site specific miscellaneous skeletal tissues in th e 5 year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 19.46 20.05 13.52 13.93 4.75 4.89 1.19 1.22 5.73 5.90 7.80 8.03 Mandible 1.27 1.31 0.89 0.91 0.31 0.32 0.08 0.08 0.48 0.50 0.41 0.42 Cervical 0.58 0.60 0.28 0.29 0.26 0.26 0.05 0.05 0.16 0.16 0.12 0.13 Thoracic 3.08 3.18 1.16 1.19 1.64 1.68 0.29 0.30 0.69 0.71 0.47 0.48 Lumbar 2.14 2.20 0.85 0.87 1.09 1.13 0.19 0.20 0.36 0.37 0.49 0.51 Sternum 0.32 0.33 0.10 0.10 0.19 0.20 0.03 0.03 0.05 0.05 0.05 0.05 Ribs 3.25 3.34 1.56 1.61 1.44 1.48 0.25 0.26 0.86 0.88 0.70 0.72 Scapulae 1.95 2.00 1.13 1.16 0.65 0.67 0.16 0.17 0.69 0.71 0.44 0.45 Clavicles 0.38 0.40 0.22 0.23 0.13 0.13 0.03 0.04 0.14 0.15 0.07 0.08 Os coxae 4.44 4.57 1.99 2.05 1.94 1.99 0.51 0.53 1.27 1.31 0.71 0.74 Sacrum 1.36 1.40 0.43 0.44 0.73 0.76 0.20 0.20 0.24 0.24 0.19 0.20 Humeri, Proximal 0.93 0.96 0.62 0.64 0.25 0.25 0.07 0.07 0.37 0.39 0.25 0.25 Humeri, Upper Shaft 0.47 0.48 0.37 0.38 0.08 0.08 0.03 0.03 0.37 0.38 0.00 0.00 Humeri, Lower Shaft 0.42 0.43 0.31 0.32 0.08 0.08 0.03 0.03 0.31 0.32 0.00 0.00 Humeri, Distal 0.57 0.58 0.39 0.41 0.12 0.12 0.05 0.05 0.26 0.27 0.13 0.14 Radii, Proximal 0.09 0.09 0.08 0.08 0.01 0.01 0.01 0.01 0.07 0.07 0.01 0.01 Radii, Shaft 0.28 0.29 0.21 0.22 0.04 0.04 0.03 0.03 0.21 0.22 0.00 0.00 Radii, Distal 0.17 0.17 0.14 0.14 0.02 0.02 0.01 0.01 0.11 0.11 0.03 0.03 Ulnae, Proximal 0.31 0.32 0.24 0.25 0.04 0.04 0.03 0.03 0.18 0.18 0.07 0.07 Ulnae, Shaft 0.35 0.36 0.27 0.28 0.04 0.04 0.03 0.03 0.27 0.28 0.00 0.00 Ulnae, Distal 0.06 0.06 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 Wrists and Hands 0.74 0.76 0.38 0.39 0.07 0.07 0.29 0.29 0.21 0.22 0.17 0.17 Femora, Proximal 1.27 1.31 0.89 0.91 0.31 0.32 0.08 0.08 0.56 0.58 0.32 0.33 Femora, Upper Shaft 0.95 0.98 0.71 0.73 0.18 0.19 0.06 0.06 0.71 0.73 0.00 0.00 Femora, Lower Shaft 0.72 0.74 0.56 0.58 0.12 0.12 0.04 0.04 0.56 0.58 0.00 0.00 Femora, Distal 1.49 1.53 0.98 1.01 0.35 0.36 0.16 0.16 0.66 0.68 0.32 0.33 Patellae 0.22 0.22 0.04 0.04 0.10 0.10 0.07 0.08 0.02 0.02 0.02 0.02 Tibiae, Proximal 1.21 1.24 0.95 0.97 0.15 0.15 0.11 0.12 0.71 0.73 0.23 0.24 Tibiae, Shaft 1.11 1.14 0.88 0.90 0.13 0.13 0.10 0.10 0.88 0.90 0.00 0.00 Tibiae, Distal 0.44 0.46 0.38 0.39 0.04 0.04 0.03 0.03 0.34 0.35 0.03 0.04 Fibulae, Proximal 0.11 0.11 0.08 0.09 0.01 0.02 0.01 0.01 0.07 0.07 0.01 0.01 Fibulae, Shaft 0.19 0.19 0.13 0.13 0.04 0.04 0.03 0.03 0.13 0.13 0.00 0.00 Fibulae, Distal 0.11 0.11 0.08 0.08 0.01 0.01 0.01 0.01 0.07 0.07 0.01 0.01 Ankles and Feet 2.98 3.07 1.50 1.55 0.29 0.30 1.18 1.21 0.75 0.77 0.75 0.78 Total Skeleton 53.40 55.00 32.37 33.34 15.59 16.06 5.44 5.60 18.55 19.11 13.81 14.23 ICRP 89 Reference 53.40 55.00 Ratio 1.00 1.00 5-YEAR Total MST MST In Mineral Bone MST In AM MST In IM MST In CBV MST In TBV

PAGE 221

221 Table 5 4. Masses and volumes of site specific miscellaneous skeletal tissues in the 10 year phantom. MST miscellaneous skeletal tissue, MB mineral bone, AM active marrow, CB cortical bone, TB trabecular bone. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 17.23 17.75 10.51 10.82 4.37 4.50 2.35 2.42 6.13 6.31 4.38 4.51 Mandible 1.10 1.13 0.68 0.70 0.27 0.28 0.15 0.15 0.47 0.48 0.22 0.22 Cervical 1.04 1.07 0.41 0.42 0.50 0.52 0.13 0.13 0.26 0.27 0.14 0.15 Thoracic 6.76 6.97 2.01 2.07 3.80 3.92 0.95 0.98 1.28 1.32 0.73 0.76 Lumbar 4.71 4.85 1.48 1.53 2.58 2.66 0.65 0.66 0.69 0.71 0.80 0.82 Sternum 0.66 0.68 0.15 0.15 0.40 0.42 0.10 0.10 0.10 0.10 0.05 0.05 Ribs 4.85 4.99 1.89 1.95 2.36 2.44 0.59 0.61 1.32 1.35 0.58 0.59 Scapulae 3.34 3.44 1.62 1.67 1.12 1.15 0.60 0.62 1.11 1.14 0.52 0.53 Clavicles 0.71 0.73 0.34 0.36 0.23 0.24 0.13 0.14 0.27 0.28 0.08 0.08 Os coxae 9.81 10.11 3.54 3.65 4.52 4.65 1.76 1.81 2.41 2.48 1.13 1.17 Sacrum 1.82 1.87 0.44 0.45 0.99 1.02 0.39 0.40 0.31 0.32 0.12 0.13 Humeri, Proximal 2.13 2.19 1.26 1.30 0.61 0.63 0.26 0.27 0.89 0.91 0.37 0.38 Humeri, Upper Shaft 1.06 1.09 0.76 0.78 0.15 0.15 0.15 0.15 0.76 0.78 0.00 0.00 Humeri, Lower Shaft 0.94 0.96 0.64 0.66 0.14 0.15 0.15 0.15 0.64 0.66 0.00 0.00 Humeri, Distal 1.27 1.31 0.80 0.82 0.14 0.14 0.34 0.35 0.62 0.64 0.18 0.19 Radii, Proximal 0.20 0.21 0.16 0.17 0.01 0.01 0.03 0.03 0.15 0.15 0.01 0.01 Radii, Shaft 0.63 0.65 0.43 0.44 0.05 0.05 0.15 0.16 0.43 0.44 0.00 0.00 Radii, Distal 0.37 0.39 0.28 0.29 0.02 0.02 0.07 0.07 0.24 0.25 0.04 0.04 Ulnae, Proximal 0.69 0.71 0.50 0.52 0.04 0.04 0.14 0.15 0.41 0.42 0.10 0.10 Ulnae, Shaft 0.77 0.79 0.55 0.57 0.05 0.05 0.17 0.17 0.55 0.57 0.00 0.00 Ulnae, Distal 0.13 0.13 0.10 0.11 0.00 0.01 0.02 0.02 0.10 0.10 0.00 0.00 Wrists and Hands 1.62 1.67 0.82 0.84 0.00 0.00 0.80 0.83 0.61 0.63 0.21 0.22 Femora, Proximal 3.22 3.32 2.00 2.06 0.85 0.88 0.37 0.38 1.46 1.50 0.55 0.56 Femora, Upper Shaft 2.38 2.45 1.62 1.67 0.38 0.39 0.38 0.39 1.62 1.67 0.00 0.00 Femora, Lower Shaft 1.82 1.87 1.31 1.35 0.25 0.26 0.26 0.27 1.31 1.35 0.00 0.00 Femora, Distal 3.76 3.88 2.19 2.26 0.46 0.47 1.12 1.15 1.53 1.58 0.66 0.68 Patellae 0.43 0.44 0.07 0.07 0.08 0.08 0.28 0.28 0.05 0.05 0.02 0.02 Tibiae, Proximal 3.06 3.15 2.09 2.15 0.22 0.23 0.74 0.77 1.74 1.79 0.35 0.36 Tibiae, Shaft 2.77 2.85 1.94 1.99 0.19 0.20 0.64 0.66 1.94 1.99 0.00 0.00 Tibiae, Distal 1.11 1.14 0.88 0.90 0.05 0.06 0.18 0.19 0.82 0.85 0.05 0.05 Fibulae, Proximal 0.27 0.28 0.19 0.20 0.02 0.02 0.06 0.06 0.17 0.18 0.02 0.02 Fibulae, Shaft 0.45 0.46 0.27 0.28 0.04 0.04 0.14 0.14 0.27 0.28 0.00 0.00 Fibulae, Distal 0.26 0.27 0.18 0.19 0.02 0.02 0.06 0.06 0.17 0.17 0.02 0.02 Ankles and Feet 6.03 6.21 2.74 2.83 0.00 0.00 3.28 3.38 1.75 1.81 0.99 1.02 Total Skeleton 87.38 90.00 44.86 46.21 24.94 25.68 17.58 18.11 32.56 33.53 12.31 12.68 ICRP 89 Reference 87.38 90.00 Ratio 1.00 1.00 10-YEAR Total MST MST In Mineral Bone MST In AM MST In IM MST In CBV MST In TBV

PAGE 222

222 Table 5 5. Site specific total mineral bone volumes and mass including and excluding MST for the 1 year, 5 year, and 10year phantoms. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 170.43 282.92 184.76 297.68 300.22 510.38 313.74 524.30 307.76 538.58 318.26 549.40 Mandible 9.17 15.22 9.94 16.01 19.70 33.49 20.59 34.41 20.01 35.02 20.69 35.72 Cervical 3.75 6.22 4.06 6.55 6.96 11.84 7.24 12.12 11.90 20.82 12.31 21.24 Thoracic 11.15 18.50 12.08 19.47 30.70 52.19 31.86 53.38 58.91 103.09 60.92 105.16 Lumbar 9.95 16.52 10.79 17.39 22.19 37.73 23.04 38.60 43.40 75.95 44.88 77.47 Sternum 0.88 1.46 0.95 1.53 2.67 4.54 2.76 4.64 4.39 7.68 4.54 7.83 Ribs 26.03 43.21 28.22 45.47 38.84 66.03 40.40 67.63 55.40 96.96 57.30 98.90 Scapulae 9.62 15.97 10.43 16.81 26.59 45.21 27.72 46.37 47.56 83.23 49.19 84.91 Clavicles 1.34 2.22 1.45 2.34 5.19 8.83 5.41 9.06 10.10 17.68 10.45 18.03 Os coxae 19.21 31.89 20.82 33.55 50.43 85.72 52.41 87.77 103.68 181.44 107.22 185.09 Sacrum 7.22 11.98 7.82 12.60 11.79 20.05 12.22 20.49 12.76 22.32 13.19 22.77 Humeri, Proximal 6.45 10.71 7.00 11.27 13.82 23.49 14.44 24.13 36.84 64.46 38.09 65.76 Humeri, Upper Shaft 3.68 6.12 3.99 6.44 7.69 13.08 8.06 13.46 22.30 39.03 23.06 39.81 Humeri, Lower Shaft 2.86 4.74 3.10 4.99 6.66 11.32 6.97 11.64 18.78 32.87 19.42 33.53 Humeri, Distal 3.78 6.27 4.09 6.59 8.64 14.68 9.03 15.09 23.37 40.89 24.16 41.71 Radii, Proximal 0.83 1.38 0.90 1.46 1.59 2.71 1.67 2.79 4.74 8.29 4.90 8.46 Radii, Shaft 1.54 2.56 1.67 2.70 4.59 7.81 4.81 8.03 12.54 21.95 12.97 22.39 Radii, Distal 1.18 1.95 1.27 2.05 2.83 4.81 2.97 4.95 8.22 14.39 8.50 14.67 Ulnae, Proximal 2.03 3.37 2.20 3.55 5.13 8.72 5.38 8.98 14.73 25.78 15.23 26.30 Ulnae, Shaft 2.51 4.16 2.72 4.38 5.76 9.79 6.03 10.07 16.13 28.22 16.68 28.79 Ulnae, Distal 0.33 0.54 0.35 0.57 1.01 1.72 1.06 1.77 3.03 5.30 3.13 5.41 Wrists and Hands 7.27 12.07 7.88 12.70 9.30 15.80 9.68 16.19 23.98 41.96 24.80 42.81 Femora, Proximal 6.81 11.30 7.38 11.89 19.40 32.98 20.28 33.89 58.70 102.73 60.71 104.79 Femora, Upper Shaft 4.02 6.67 4.36 7.02 15.13 25.72 15.84 26.45 47.50 83.13 49.12 84.80 Femora, Lower Shaft 5.73 9.51 6.21 10.00 11.87 20.18 12.44 20.76 38.35 67.12 39.66 68.46 Femora, Distal 8.39 13.93 9.09 14.65 21.87 37.18 22.85 38.19 64.14 112.25 66.33 114.50 Patellae 0.21 0.35 0.23 0.37 1.24 2.11 1.28 2.15 2.06 3.60 2.13 3.68 Tibiae, Proximal 7.00 11.62 7.59 12.23 19.98 33.96 20.92 34.93 61.22 107.14 63.31 109.29 Tibiae, Shaft 7.09 11.77 7.68 12.38 18.46 31.38 19.34 32.29 56.71 99.24 58.64 101.23 Tibiae, Distal 3.05 5.06 3.31 5.33 7.73 13.15 8.11 13.53 25.67 44.93 26.55 45.83 Fibulae, Proximal 0.56 0.93 0.61 0.98 1.77 3.00 1.85 3.09 5.61 9.82 5.80 10.02 Fibulae, Shaft 0.82 1.36 0.89 1.43 2.74 4.67 2.87 4.80 8.02 14.03 8.29 14.32 Fibulae, Distal 0.50 0.83 0.54 0.87 1.71 2.91 1.79 2.99 5.42 9.48 5.60 9.67 Ankles and Feet 10.04 16.67 10.89 17.54 36.96 62.84 38.47 64.39 80.36 140.63 83.10 143.45 Total Skeleton 355.42 590.00 385.30 620.78 741.18 1260.00 773.54 1293.34 1314.29 2300.00 1359.15 2346.21 ICRP 89 Reference 355.42 590.00 385.30 620.78 741.18 1260.00 773.54 1293.34 1314.29 2300.00 1359.15 2346.21 Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Total Mineral Bone* 10-YEAR Total Mineral Bone Total Mineral Bone* 1-YEAR 5-YEAR Total Mineral Bone Total Mineral Bone* Total Mineral Bone

PAGE 223

223 Table 5 6. Percentages of total mineral bone attributed to cortical bone and to trabecular bone by skeletal site in the newborn, 1year, 5 year and 10year, and 15 year male and female hybrid phantoms. Skeletal Site Cortical Trabecular Cortical Trabecular Cortical Trabecular Cortical Trabecular Cortical Trabecular Cortical Trabecular Cranium 0.27 0.73 0.30 0.70 0.42 0.58 0.58 0.42 0.74 0.26 0.95 0.05 Mandible 0.41 0.59 0.43 0.57 0.54 0.46 0.68 0.32 0.82 0.18 0.95 0.05 Cervical 0.47 0.53 0.49 0.51 0.56 0.44 0.65 0.35 0.74 0.26 0.25 0.75 Thoracic 0.57 0.43 0.57 0.43 0.60 0.40 0.64 0.36 0.67 0.33 0.25 0.75 Lumbar 0.39 0.61 0.39 0.61 0.42 0.58 0.46 0.54 0.50 0.50 0.34 0.66 Sternum 0.37 0.63 0.40 0.60 0.51 0.49 0.66 0.34 0.80 0.20 0.94 0.06 Ribs 0.41 0.59 0.44 0.56 0.55 0.45 0.70 0.30 0.84 0.16 0.94 0.06 Scapula 0.54 0.46 0.56 0.44 0.61 0.39 0.68 0.32 0.75 0.25 0.94 0.06 Clavicles 0.54 0.46 0.57 0.43 0.66 0.34 0.78 0.22 0.90 0.10 0.94 0.06 Os coxae 0.61 0.39 0.61 0.39 0.64 0.36 0.68 0.32 0.72 0.28 0.90 0.10 Sacrum 0.39 0.61 0.42 0.58 0.55 0.45 0.72 0.28 0.88 0.12 0.75 0.25 Humeri, upper half 0.50 0.50 0.52 0.48 0.60 0.40 0.71 0.29 0.81 0.19 0.90 0.10 Humeri, lower half 0.55 0.45 0.57 0.43 0.66 0.34 0.77 0.23 0.89 0.11 0.90 0.10 Radii 0.57 0.43 0.59 0.41 0.68 0.32 0.80 0.20 0.91 0.09 0.87 0.13 Ulna 0.57 0.43 0.59 0.41 0.67 0.33 0.78 0.22 0.88 0.12 0.87 0.13 Wrist and Hands 0.38 0.62 0.41 0.59 0.56 0.44 0.74 0.26 0.92 0.08 0.95 0.05 Femora, upper half 0.54 0.46 0.56 0.44 0.64 0.36 0.73 0.27 0.82 0.18 0.77 0.23 Femora, lower half 0.68 0.32 0.68 0.32 0.68 0.32 0.70 0.30 0.71 0.29 0.77 0.23 Patella 0.38 0.62 0.41 0.59 0.53 0.47 0.68 0.32 0.84 0.16 0.77 0.23 Tibia 0.55 0.45 0.57 0.43 0.66 0.34 0.77 0.23 0.88 0.12 0.83 0.17 Fibula 0.60 0.40 0.62 0.38 0.70 0.30 0.79 0.21 0.88 0.12 0.89 0.11 Ankles and Feet 0.38 0.62 0.40 0.60 0.50 0.50 0.63 0.37 0.75 0.25 0.65 0.35 15 Y Adult Newborn 5 Y 10 Y 1 Y

PAGE 224

224 Table 5 7. UF hybrid 1year phantom trabecular and cortical bone masses and volumes by bone site including and excluding MST Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 129.65 208.89 55.11 88.79 119.60 198.53 50.83 84.38 Mandible 5.62 9.06 4.32 6.95 5.19 8.61 3.98 6.61 Cervical 2.09 3.37 1.97 3.18 1.93 3.20 1.82 3.02 Thoracic 5.15 8.30 6.93 11.16 4.75 7.89 6.39 10.61 Lumbar 6.53 10.53 4.26 6.86 6.03 10.01 3.93 6.52 Sternum 0.57 0.92 0.38 0.61 0.53 0.87 0.35 0.58 Ribs 15.92 25.66 12.30 19.81 14.69 24.38 11.34 18.83 Scapulae 4.62 7.44 5.81 9.37 4.26 7.07 5.36 8.90 Clavicles 0.63 1.01 0.82 1.33 0.58 0.96 0.76 1.26 Os coxae 8.06 12.98 12.76 20.57 7.43 12.34 11.78 19.55 Sacrum 4.53 7.30 3.29 5.30 4.18 6.94 3.03 5.04 Humeri, Proximal 3.35 5.40 3.64 5.87 3.09 5.13 3.36 5.58 Humeri, Upper Shaft 0.00 0.00 3.99 6.44 0.00 0.00 3.68 6.12 Humeri, Lower Shaft 0.00 0.00 3.10 4.99 0.00 0.00 2.86 4.74 Humeri, Distal 1.76 2.83 2.34 3.76 1.62 2.69 2.16 3.58 Radii, Proximal 0.15 0.24 0.75 1.21 0.14 0.23 0.69 1.15 Radii, Shaft 0.00 0.00 1.67 2.70 0.00 0.00 1.54 2.56 Radii, Distal 0.31 0.50 0.97 1.56 0.28 0.47 0.89 1.48 Ulnae, Proximal 0.79 1.27 1.41 2.28 0.73 1.21 1.30 2.16 Ulnae, Shaft 0.00 0.00 2.72 4.38 0.00 0.00 2.51 4.16 Ulnae, Distal 0.02 0.03 0.34 0.54 0.02 0.03 0.31 0.51 Wrists and Hands 4.63 7.46 3.25 5.24 4.27 7.09 3.00 4.98 Femora, Proximal 3.24 5.21 4.14 6.68 2.99 4.96 3.82 6.35 Femora, Upper Shaft 0.00 0.00 4.36 7.02 0.00 0.00 4.02 6.67 Femora, Lower Shaft 0.00 0.00 6.21 10.00 0.00 0.00 5.73 9.51 Femora, Distal 2.93 4.72 6.16 9.93 2.70 4.49 5.68 9.44 Patellae 0.14 0.22 0.09 0.15 0.13 0.21 0.09 0.14 Tibiae, Proximal 2.32 3.74 5.27 8.49 2.14 3.55 4.86 8.07 Tibiae, Shaft 0.00 0.00 7.68 12.38 0.00 0.00 7.09 11.77 Tibiae, Distal 0.40 0.64 2.91 4.69 0.37 0.61 2.68 4.46 Fibulae, Proximal 0.12 0.20 0.49 0.78 0.11 0.19 0.45 0.75 Fibulae, Shaft 0.00 0.00 0.89 1.43 0.00 0.00 0.82 1.36 Fibulae, Distal 0.10 0.15 0.45 0.72 0.09 0.15 0.41 0.68 Ankles and Feet 6.52 10.51 4.36 7.03 6.02 9.99 4.02 6.68 Total Skeleton 210.15 338.58 175.15 282.19 193.85 321.80 161.57 268.20 ICRP 89 Reference N/A N/A N/A N/A 72.29 120.00 283.13 470.00 Ratio N/A N/A N/A N/A 2.68 2.68 0.57 0.57 Trabecular Bone* Trabecular Bone Cortical Bone* 1-YEAR Excluding MST Including MST Cortical Bone

PAGE 225

225 Table 5 8. UF hybrid 5year phantom trabecular and cortical bone masses and volumes by bone site including and excluding MST Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 180.85 302.22 132.90 222.09 173.05 294.19 127.17 216.19 Mandible 9.41 15.73 11.18 18.68 9.01 15.31 10.70 18.18 Cervical 3.21 5.37 4.04 6.76 3.08 5.24 3.88 6.60 Thoracic 12.79 21.43 19.07 31.95 12.32 20.95 18.37 31.24 Lumbar 13.36 22.39 9.68 16.21 12.87 21.88 9.32 15.85 Sternum 1.34 2.25 1.42 2.38 1.30 2.21 1.37 2.33 Ribs 18.17 30.42 22.23 37.21 17.47 29.70 21.37 36.33 Scapulae 10.77 18.02 16.95 28.35 10.33 17.57 16.26 27.64 Clavicles 1.84 3.07 3.58 5.99 1.76 3.00 3.43 5.84 Os coxae 18.83 31.52 33.59 56.25 18.11 30.79 32.31 54.93 Sacrum 5.49 9.21 6.73 11.28 5.30 9.01 6.49 11.04 Humeri, Proximal 5.75 9.61 8.69 14.52 5.50 9.36 8.31 14.13 Humeri, Upper Shaft 0.00 0.00 8.06 13.46 0.00 0.00 7.69 13.08 Humeri, Lower Shaft 0.00 0.00 6.97 11.64 0.00 0.00 6.66 11.32 Humeri, Distal 3.07 5.13 5.96 9.96 2.93 4.99 5.70 9.69 Radii, Proximal 0.19 0.32 1.48 2.47 0.18 0.31 1.41 2.40 Radii, Shaft 0.00 0.00 4.81 8.03 0.00 0.00 4.59 7.81 Radii, Distal 0.61 1.03 2.35 3.92 0.59 1.00 2.24 3.81 Ulnae, Proximal 1.50 2.51 3.88 6.47 1.43 2.44 3.70 6.29 Ulnae, Shaft 0.00 0.00 6.03 10.07 0.00 0.00 5.76 9.79 Ulnae, Distal 0.06 0.09 1.01 1.68 0.05 0.09 0.96 1.63 Wrists and Hands 4.29 7.17 5.39 9.02 4.12 7.00 5.18 8.80 Femora, Proximal 7.40 12.36 12.88 21.53 7.08 12.03 12.32 20.95 Femora, Upper Shaft 0.00 0.00 15.84 26.45 0.00 0.00 15.13 25.72 Femora, Lower Shaft 0.00 0.00 12.44 20.76 0.00 0.00 11.87 20.18 Femora, Distal 7.38 12.34 15.47 25.85 7.07 12.02 14.80 25.16 Patellae 0.60 1.01 0.68 1.14 0.58 0.99 0.66 1.11 Tibiae, Proximal 5.17 8.63 15.75 26.31 4.93 8.39 15.04 25.57 Tibiae, Shaft 0.00 0.00 19.34 32.29 0.00 0.00 18.46 31.38 Tibiae, Distal 0.73 1.22 7.38 12.31 0.70 1.19 7.03 11.96 Fibulae, Proximal 0.28 0.48 1.56 2.61 0.27 0.46 1.49 2.54 Fibulae, Shaft 0.00 0.00 2.87 4.80 0.00 0.00 2.74 4.67 Fibulae, Distal 0.27 0.44 1.53 2.55 0.25 0.43 1.46 2.48 Ankles and Feet 19.26 32.24 19.20 32.14 18.51 31.47 18.45 31.37 Total Skeleton 332.63 556.21 440.91 737.12 318.82 541.99 422.36 718.01 ICRP 89 Reference N/A N/A N/A N/A 147.06 250.00 594.12 1010.00 Ratio N/A N/A 2.17 2.17 0.71 0.71 Trabecular Bone* Cortical Bone* Trabecular Bone Cortical Bone 5-YEAR Including MST Excluding MST

PAGE 226

226 Table 5 9. UF hybrid 10year phantom trabecular and cortical bone masses and volumes by bone site including and excluding MST Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 132.64 228.98 185.62 320.42 128.27 224.47 179.49 314.11 Mandible 6.60 11.39 14.09 24.33 6.38 11.17 13.63 23.85 Cervical 4.31 7.44 8.00 13.80 4.17 7.29 7.73 13.53 Thoracic 22.22 38.36 38.70 66.80 21.49 37.61 37.42 65.48 Lumbar 24.08 41.58 20.79 35.90 23.29 40.76 20.11 35.19 Sternum 1.55 2.67 2.99 5.16 1.49 2.62 2.89 5.06 Ribs 17.45 30.11 39.85 68.79 16.87 29.52 38.53 67.44 Scapulae 15.65 27.02 33.53 57.89 15.13 26.49 32.43 56.75 Clavicles 2.31 3.98 8.14 14.05 2.23 3.90 7.87 13.78 Os coxae 34.27 59.15 72.95 125.93 33.14 57.99 70.55 123.45 Sacrum 3.76 6.49 9.43 16.28 3.63 6.36 9.12 15.96 Humeri, Proximal 11.18 19.31 26.91 46.45 10.82 18.93 26.02 45.54 Humeri, Upper Shaft 0.00 0.00 23.06 39.81 0.00 0.00 22.30 39.03 Humeri, Lower Shaft 0.00 0.00 19.42 33.53 0.00 0.00 18.78 32.87 Humeri, Distal 5.47 9.45 18.69 32.27 5.29 9.26 18.08 31.63 Radii, Proximal 0.35 0.61 4.55 7.85 0.34 0.59 4.40 7.70 Radii, Shaft 0.00 0.00 12.97 22.39 0.00 0.00 12.54 21.95 Radii, Distal 1.12 1.93 7.38 12.74 1.08 1.89 7.14 12.49 Ulnae, Proximal 2.88 4.97 12.35 21.32 2.79 4.87 11.95 20.90 Ulnae, Shaft 0.00 0.00 16.68 28.79 0.00 0.00 16.13 28.22 Ulnae, Distal 0.11 0.19 3.03 5.22 0.10 0.18 2.93 5.12 Wrists and Hands 6.36 10.98 18.44 31.83 6.15 10.76 17.83 31.20 Femora, Proximal 16.61 28.68 44.09 76.11 16.07 28.12 42.63 74.61 Femora, Upper Shaft 0.00 0.00 49.12 84.80 0.00 0.00 47.50 83.13 Femora, Lower Shaft 0.00 0.00 39.66 68.46 0.00 0.00 38.35 67.12 Femora, Distal 19.90 34.35 46.43 80.15 19.24 33.67 44.90 78.58 Patellae 0.66 1.13 1.47 2.54 0.64 1.11 1.42 2.49 Tibiae, Proximal 10.58 18.26 52.73 91.03 10.23 17.90 50.99 89.24 Tibiae, Shaft 0.00 0.00 58.64 101.23 0.00 0.00 56.71 99.24 Tibiae, Distal 1.61 2.78 24.94 43.05 1.56 2.73 24.11 42.20 Fibulae, Proximal 0.63 1.08 5.17 8.93 0.61 1.06 5.00 8.76 Fibulae, Shaft 0.00 0.00 8.29 14.32 0.00 0.00 8.02 14.03 Fibulae, Distal 0.58 1.00 5.02 8.67 0.56 0.98 4.86 8.50 Ankles and Feet 29.99 51.77 53.11 91.68 29.00 50.75 51.36 89.88 Total Skeleton 372.87 643.67 986.28 1702.55 360.56 630.99 953.72 1669.01 ICRP 89 Reference N/A N/A N/A N/A 262.86 460.00 1051.43 1840.00 Ratio N/A N/A N/A N/A 1.37 1.37 0.91 0.91 10-YEAR Including MST Excluding MST Trabecular Bone* Cortical Bone* Trabecular Bone Cortical Bone

PAGE 227

227 Table 5 10. Site specific marrow volumes and masses of skeletal tissues in the 1 year hybrid phantom including and excluding contri butions from miscellaneous skeletal tissues. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 48.99 50.46 2.58 2.53 51.57 52.98 53.11 54.70 2.80 2.74 55.90 57.44 Mandible 2.50 2.57 0.13 0.13 2.63 2.70 2.71 2.79 0.14 0.14 2.85 2.93 Cervical 4.04 4.16 0.21 0.21 4.25 4.37 4.38 4.51 0.23 0.23 4.61 4.74 Thoracic 14.13 14.56 0.74 0.73 14.88 15.28 15.32 15.78 0.81 0.79 16.13 16.57 Lumbar 7.85 8.08 0.41 0.40 8.26 8.49 8.51 8.76 0.45 0.44 8.95 9.20 Sternum 0.82 0.84 0.04 0.04 0.86 0.88 0.88 0.91 0.05 0.05 0.93 0.96 Ribs 22.53 23.21 1.19 1.16 23.72 24.37 24.42 25.16 1.29 1.26 25.71 26.42 Scapulae 5.07 5.22 0.27 0.26 5.33 5.48 5.49 5.66 0.29 0.28 5.78 5.94 Clavicles 0.65 0.67 0.03 0.03 0.69 0.71 0.71 0.73 0.04 0.04 0.75 0.77 Os coxae 15.07 15.53 0.79 0.78 15.87 16.30 16.34 16.83 0.86 0.84 17.20 17.67 Sacrum 5.37 5.53 0.28 0.28 5.65 5.80 5.82 5.99 0.31 0.30 6.12 6.29 Humeri, Proximal 2.21 2.28 0.07 0.07 2.28 2.34 2.40 2.47 0.07 0.07 2.47 2.54 Humeri, Upper Shaft 0.62 0.64 0.05 0.05 0.66 0.68 0.67 0.69 0.05 0.05 0.72 0.74 Humeri, Lower Shaft 0.57 0.59 0.06 0.06 0.63 0.65 0.62 0.64 0.06 0.06 0.68 0.70 Humeri, Distal 1.02 1.05 0.15 0.15 1.18 1.20 1.11 1.14 0.17 0.16 1.27 1.30 Radii, Proximal 0.08 0.09 0.01 0.01 0.09 0.10 0.09 0.09 0.01 0.01 0.10 0.10 Radii, Shaft 0.25 0.26 0.03 0.03 0.29 0.29 0.28 0.28 0.03 0.03 0.31 0.32 Radii, Distal 0.15 0.16 0.02 0.02 0.17 0.18 0.16 0.17 0.02 0.02 0.19 0.19 Ulnae, Proximal 0.27 0.28 0.03 0.03 0.31 0.32 0.30 0.31 0.04 0.04 0.33 0.34 Ulnae, Shaft 0.41 0.42 0.05 0.05 0.46 0.47 0.44 0.46 0.05 0.05 0.50 0.51 Ulnae, Distal 0.02 0.02 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.00 0.02 0.02 Wrists and Hands 2.55 2.63 2.55 2.50 5.10 5.13 2.76 2.85 2.76 2.71 5.53 5.56 Femora, Proximal 2.45 2.52 0.08 0.07 2.53 2.60 2.66 2.74 0.08 0.08 2.74 2.82 Femora, Upper Shaft 0.72 0.74 0.05 0.05 0.77 0.79 0.78 0.80 0.06 0.06 0.84 0.86 Femora, Lower Shaft 1.11 1.15 0.11 0.11 1.22 1.25 1.21 1.24 0.12 0.12 1.33 1.36 Femora, Distal 2.54 2.62 0.38 0.37 2.92 2.99 2.75 2.84 0.41 0.40 3.17 3.24 Patellae 0.23 0.24 0.03 0.03 0.26 0.27 0.25 0.26 0.03 0.03 0.28 0.29 Tibiae, Proximal 1.49 1.53 0.18 0.18 1.67 1.71 1.61 1.66 0.20 0.20 1.81 1.86 Tibiae, Shaft 1.53 1.57 0.19 0.19 1.72 1.76 1.66 1.71 0.20 0.20 1.86 1.91 Tibiae, Distal 0.31 0.32 0.04 0.04 0.35 0.36 0.34 0.35 0.04 0.04 0.38 0.39 Fibulae, Proximal 0.07 0.07 0.01 0.01 0.08 0.08 0.08 0.08 0.01 0.01 0.09 0.09 Fibulae, Shaft 0.14 0.15 0.02 0.02 0.16 0.17 0.16 0.16 0.02 0.02 0.18 0.18 Fibulae, Distal 0.06 0.06 0.01 0.01 0.06 0.07 0.06 0.06 0.01 0.01 0.07 0.07 Ankles and Feet 3.80 3.91 3.80 3.72 7.60 7.64 4.12 4.24 4.12 4.04 8.24 8.28 Total 149.63 154.12 14.60 14.31 164.23 168.42 162.21 167.07 15.83 15.51 178.03 182.58 ICRP 89 Reference Values 145.63 150.00 20.41 20.00 166.04 170.00 158.21 162.96 21.64 21.26 179.85 184.22 Ratio 1.03 1.03 0.72 0.72 0.99 0.99 1.03 1.03 0.73 0.73 0.99 0.99 TMS* Including MST 1-YEAR AM* IM* AM IM TMS Excluding MST

PAGE 228

228 Table 5 11. Site specific marrow volumes and masses of skeletal tissues in the 5 year hybrid phantom including and excluding contributions from miscellaneous skeletal tissues. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 116.36 119.85 29.09 28.51 145.45 148.36 121.11 124.75 30.28 29.67 151.39 154.42 Mandible 7.59 7.82 1.90 1.86 9.49 9.68 7.90 8.14 1.98 1.94 9.88 10.08 Cervical 5.41 5.58 0.96 0.94 6.37 6.51 5.67 5.84 1.00 0.98 6.67 6.82 Thoracic 33.91 34.93 5.98 5.87 39.90 40.80 35.55 36.62 6.27 6.15 41.82 42.76 Lumbar 22.72 23.40 4.01 3.93 26.72 27.33 23.81 24.52 4.20 4.12 28.01 28.64 Sternum 4.00 4.12 0.71 0.69 4.71 4.82 4.20 4.32 0.74 0.73 4.94 5.05 Ribs 30.19 31.10 5.33 5.22 35.52 36.32 31.63 32.58 5.58 5.47 37.21 38.05 Scapulae 14.38 14.81 3.59 3.52 17.97 18.33 15.03 15.48 3.76 3.68 18.79 19.17 Clavicles 2.85 2.94 0.76 0.74 3.61 3.68 2.98 3.07 0.79 0.78 3.77 3.85 Os coxae 40.44 41.65 10.75 10.53 51.18 52.18 42.37 43.64 11.26 11.04 53.63 54.68 Sacrum 15.25 15.71 4.05 3.97 19.31 19.68 15.99 16.47 4.25 4.16 20.24 20.63 Humeri, Proximal 5.94 6.12 1.58 1.55 7.52 7.67 6.19 6.37 1.65 1.61 7.83 7.99 Humeri, Upper Shaft 2.27 2.34 0.76 0.74 3.03 3.09 2.35 2.42 0.78 0.77 3.14 3.19 Humeri, Lower Shaft 2.10 2.16 0.78 0.76 2.87 2.92 2.17 2.24 0.80 0.79 2.97 3.02 Humeri, Distal 2.98 3.07 1.34 1.31 4.31 4.38 3.10 3.19 1.39 1.36 4.49 4.55 Radii, Proximal 0.29 0.29 0.22 0.21 0.50 0.50 0.29 0.30 0.22 0.22 0.51 0.52 Radii, Shaft 1.09 1.13 0.83 0.81 1.92 1.94 1.13 1.17 0.86 0.84 1.99 2.01 Radii, Distal 0.57 0.59 0.43 0.42 1.00 1.01 0.59 0.60 0.44 0.43 1.03 1.04 Ulnae, Proximal 1.07 1.11 0.81 0.79 1.88 1.90 1.11 1.14 0.84 0.82 1.95 1.96 Ulnae, Shaft 1.25 1.29 0.94 0.92 2.19 2.21 1.29 1.33 0.98 0.96 2.27 2.29 Ulnae, Distal 0.17 0.17 0.12 0.12 0.29 0.29 0.17 0.17 0.13 0.13 0.30 0.30 Wrists and Hands 1.52 1.57 6.09 5.97 7.61 7.54 1.59 1.64 6.38 6.25 7.97 7.89 Femora, Proximal 7.74 7.97 2.06 2.02 9.79 9.98 8.04 8.29 2.14 2.10 10.18 10.38 Femora, Upper Shaft 4.96 5.11 1.65 1.62 6.61 6.72 5.14 5.29 1.71 1.68 6.85 6.97 Femora, Lower Shaft 3.42 3.52 1.26 1.24 4.68 4.76 3.53 3.64 1.31 1.28 4.84 4.92 Femora, Distal 8.39 8.64 3.77 3.69 12.16 12.33 8.74 9.00 3.93 3.85 12.66 12.85 Patellae 2.11 2.17 1.59 1.56 3.70 3.73 2.21 2.28 1.67 1.63 3.88 3.91 Tibiae, Proximal 4.36 4.49 3.29 3.23 7.65 7.72 4.51 4.65 3.40 3.34 7.91 7.98 Tibiae, Shaft 3.93 4.04 2.96 2.90 6.89 6.94 4.06 4.18 3.06 3.00 7.11 7.18 Tibiae, Distal 1.36 1.40 1.03 1.01 2.39 2.41 1.40 1.44 1.05 1.03 2.45 2.47 Fibulae, Proximal 0.43 0.45 0.33 0.32 0.76 0.76 0.45 0.46 0.34 0.33 0.78 0.79 Fibulae, Shaft 0.89 0.92 0.67 0.66 1.56 1.58 0.93 0.95 0.70 0.68 1.62 1.64 Fibulae, Distal 0.41 0.42 0.31 0.31 0.72 0.73 0.43 0.44 0.32 0.32 0.75 0.75 Ankles and Feet 6.25 6.44 25.00 24.50 31.25 30.94 6.55 6.74 26.18 25.66 32.73 32.40 Total 356.61 367.31 124.94 122.44 481.55 489.75 372.20 383.37 130.38 127.77 502.58 511.14 ICRP 89 Reference Values 330.10 340.00 163.27 160.00 493.36 500.00 345.69 356.06 168.70 165.60 514.39 521.66 Ratio 1.08 1.08 0.77 0.77 0.98 0.98 1.08 1.08 0.77 0.77 0.98 0.98 TMS* 5-YEAR Excluding MST Including MST AM IM TMS AM* IM*

PAGE 229

229 Table 5 12. Sit e specific marrow volumes and masses of skeletal tissues in the 10year hybrid phantom including and excluding contributions from miscellaneous skeletal tissues. Skeletal Site Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Volume (cm3) Mass (g) Cranium 128.03 131.87 68.94 67.56 196.96 199.43 132.40 136.37 71.29 69.86 203.69 206.23 Mandible 7.91 8.14 4.26 4.17 12.17 12.32 8.18 8.42 4.40 4.32 12.58 12.74 Cervical 14.75 15.20 3.69 3.61 18.44 18.81 15.26 15.71 3.81 3.74 19.07 19.45 Thoracic 111.41 114.75 27.85 27.30 139.26 142.05 115.21 118.67 28.80 28.23 144.01 146.89 Lumbar 75.63 77.90 18.91 18.53 94.54 96.43 78.22 80.56 19.55 19.16 97.77 99.72 Sternum 11.86 12.21 2.96 2.91 14.82 15.12 12.26 12.63 3.07 3.00 15.33 15.63 Ribs 69.26 71.33 17.31 16.97 86.57 88.30 71.62 73.77 17.90 17.55 89.52 91.32 Scapulae 32.75 33.73 17.63 17.28 50.39 51.01 33.87 34.88 18.24 17.87 52.11 52.76 Clavicles 6.71 6.91 3.94 3.86 10.64 10.77 6.93 7.14 4.07 3.99 11.01 11.13 Os coxae 132.34 136.31 51.47 50.44 183.81 186.75 136.86 140.97 53.22 52.16 190.08 193.12 Sacrum 29.11 29.99 11.32 11.10 40.44 41.08 30.11 31.01 11.71 11.47 41.82 42.49 Humeri, Proximal 17.90 18.44 7.67 7.52 25.57 25.95 18.51 19.06 7.93 7.77 26.44 26.84 Humeri, Upper Shaft 4.32 4.45 4.32 4.24 8.65 8.69 4.47 4.61 4.47 4.38 8.94 8.99 Humeri, Lower Shaft 4.23 4.35 4.40 4.31 8.63 8.66 4.37 4.50 4.55 4.46 8.92 8.96 Humeri, Distal 4.04 4.17 9.90 9.70 13.95 13.87 4.18 4.31 10.24 10.04 14.42 14.34 Radii, Proximal 0.28 0.29 0.94 0.92 1.22 1.21 0.29 0.30 0.97 0.95 1.26 1.25 Radii, Shaft 1.34 1.38 4.49 4.40 5.83 5.78 1.39 1.43 4.64 4.55 6.03 5.98 Radii, Distal 0.63 0.65 2.11 2.07 2.74 2.72 0.65 0.67 2.19 2.14 2.84 2.81 Ulnae, Proximal 1.26 1.30 4.21 4.13 5.47 5.42 1.30 1.34 4.35 4.27 5.65 5.61 Ulnae, Shaft 1.47 1.52 4.94 4.84 6.41 6.36 1.53 1.57 5.11 5.00 6.63 6.57 Ulnae, Distal 0.15 0.15 0.49 0.48 0.63 0.63 0.15 0.16 0.50 0.49 0.65 0.65 Wrists and Hands 0.00 0.00 23.46 23.00 23.46 23.00 0.00 0.00 24.27 23.78 24.27 23.78 Femora, Proximal 24.96 25.71 10.70 10.48 35.65 36.19 25.81 26.58 11.06 10.84 36.87 37.42 Femora, Upper Shaft 11.11 11.44 11.11 10.89 22.22 22.33 11.49 11.83 11.49 11.26 22.98 23.09 Femora, Lower Shaft 7.32 7.54 7.62 7.46 14.93 15.00 7.57 7.79 7.88 7.72 15.44 15.51 Femora, Distal 13.37 13.77 32.74 32.08 46.11 45.85 13.83 14.24 33.85 33.18 47.68 47.42 Patellae 2.41 2.48 8.06 7.90 10.47 10.38 2.49 2.57 8.34 8.17 10.83 10.74 Tibiae, Proximal 6.51 6.70 21.78 21.34 28.29 28.05 6.73 6.93 22.52 22.07 29.25 29.00 Tibiae, Shaft 5.60 5.77 18.76 18.38 24.36 24.15 5.79 5.97 19.40 19.01 25.19 24.98 Tibiae, Distal 1.58 1.63 5.29 5.19 6.87 6.81 1.63 1.68 5.47 5.36 7.11 7.05 Fibulae, Proximal 0.54 0.56 1.82 1.79 2.37 2.35 0.56 0.58 1.89 1.85 2.45 2.43 Fibulae, Shaft 1.19 1.22 3.98 3.90 5.17 5.13 1.23 1.27 4.12 4.04 5.35 5.30 Fibulae, Distal 0.51 0.53 1.71 1.68 2.22 2.20 0.53 0.54 1.77 1.73 2.30 2.28 Ankles and Feet 0.00 0.00 96.18 94.25 96.18 94.25 0.00 0.00 99.46 97.47 99.46 97.47 Total 730.48 752.39 514.96 504.66 1245.44 1257.05 755.41 778.07 532.54 521.89 1287.95 1299.96 ICRP 89 Reference Values 611.65 630.00 642.86 630.00 1254.51 1260.00 636.59 655.68 660.44 648.11 1297.02 1303.79 Ratio 1.19 1.19 0.80 0.80 0.99 1.00 1.19 1.19 0.81 0.81 0.99 1.00 IM* TMS* AM IM TMS AM* 10-YEAR Excluding MST Including MST

PAGE 230

230 Table 5 13. Comparison of site specific active marrow distribution between the UF 1 y ear, 5 year, and 10year hybrid phantoms and reference values given in ICRP Publication 89. Skeletal Site 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR Cranium 32.74 32.54 17.53 25.05 15.87 11.60 7.69 16.67 11.60 1.31 2.05 1.51 Mandible 1.67 2.12 1.08 2.40 1.60 1.10 -0.73 0.53 1.10 0.70 1.33 0.98 Cervical 2.70 1.52 2.02 2.79 2.20 2.70 -0.10 -0.67 2.70 0.97 0.69 0.75 Thoracic 9.44 9.55 15.25 8.38 8.88 10.90 1.06 0.67 10.90 1.13 1.08 1.40 Lumbar 5.24 6.40 10.35 4.29 6.79 8.40 0.95 -0.39 8.40 1.22 0.94 1.23 Sternum 0.55 1.13 1.62 0.80 1.70 2.10 -0.25 -0.57 2.10 0.68 0.66 0.77 Ribs 15.06 8.50 9.48 8.88 8.78 10.90 6.18 -0.28 10.90 1.70 0.97 0.87 Scapulae 3.39 4.04 4.48 2.69 2.69 2.90 0.69 1.34 2.90 1.26 1.50 1.55 Clavicles 0.44 0.80 0.92 0.80 0.90 0.90 -0.36 -0.10 0.90 0.55 0.89 1.02 Os coxae 10.07 11.38 18.12 11.08 13.07 15.60 -1.00 -1.69 15.60 0.91 0.87 1.16 Sacrum 3.59 4.29 3.99 2.40 5.49 6.70 1.19 -1.19 6.70 1.50 0.78 0.59 Humeri, Proximal 1.48 1.66 2.45 Humeri, Upper Shaft 0.41 0.63 0.59 Humeri, Lower Shaft 0.38 0.58 0.58 Humeri, Distal 0.68 0.83 0.55 Radii, Proximal 0.06 0.08 0.04 Radii, Shaft 0.17 0.30 0.18 Radii, Distal 0.10 0.16 0.09 Ulnae, Proximal 0.18 0.30 0.17 Ulnae, Shaft 0.27 0.35 0.20 Ulnae, Distal 0.01 0.05 0.02 Wrists and Hands 1.70 0.43 0.00 1.90 0.90 0.00 -0.20 -0.47 0.00 1.00 1.00 1.00 Femora, Proximal 1.64 2.16 3.42 Femora, Upper Shaft 0.48 1.38 1.52 Femora, Lower Shaft 0.74 0.95 1.00 Femora, Distal 1.70 2.35 1.83 Patellae 0.16 0.59 0.33 0.17 0.57 0.28 -0.02 0.02 0.28 1.00 1.00 1.00 Tibiae, Proximal 0.99 1.21 0.89 Tibiae, Shaft 1.02 1.09 0.77 Tibiae, Distal 0.21 0.38 0.22 Fibulae, Proximal 0.05 0.12 0.07 Fibulae, Shaft 0.10 0.25 0.16 Fibulae, Distal 0.04 0.11 0.07 Ankles and Feet 2.54 1.76 0.00 4.69 2.50 0.00 -2.15 -0.74 0.00 1.00 1.00 1.00 Total 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00 1.00 1.00 1.00 1.00 0.52 0.53 0.52 0.46 1.00 1.00 1.00 1.00 0.96 1.22 0.64 0.71 -1.98 -1.45 -5.48 -0.62 -0.51 -1.23 -0.72 -0.98 1.05 1.45 4.09 3.89 7.70 0.81 2.40 2.30 1.00 ICRP 89, Table 9.4 (%) NURBS/Polygon Mesh (%) Difference (abs %) Ratio (NURBS/ICRP) 0.65 -0.59 0.65 1.08 0.63 7.33 4.57 -4.65 4.57 1.00 6.10 -2.99 6.10 6.29 1.00 6.79 9.40 -3.24 9.40 0.52 0.62 -0.44 0.62 1.13 0.46 0.86 0.48 -0.32 0.48 1.00 2.50 0.79 2.20 1.60 -0.78 1.60 2.40 2.50 -0.10

PAGE 231

231 Table 5 14. Hybrid 1year, 5 year, and 10 year bone tissue volume fractions by bone site Skeletal Site SVF CBVF MVF BVF SVF CBVF MVF BVF SVF CBVF MVF BVF Cranium 0.7710 0.2290 0.3013 0.6987 0.7143 0.2857 0.4557 0.5443 0.6444 0.3556 0.6056 0.3944 Mandible 0.6625 0.3375 0.3364 0.6636 0.6331 0.3669 0.5121 0.4879 0.5764 0.4236 0.6559 0.3441 Cervical 0.7723 0.2277 0.6882 0.3118 0.7099 0.2901 0.6754 0.3246 0.7452 0.2548 0.8157 0.1843 Thoracic 0.7544 0.2456 0.7578 0.2422 0.7412 0.2588 0.7658 0.2342 0.8112 0.1888 0.8663 0.1337 Lumbar 0.7844 0.2156 0.5781 0.4219 0.8104 0.1896 0.6770 0.3230 0.8542 0.1458 0.8024 0.1976 Sternum 0.7980 0.2020 0.6199 0.3801 0.8156 0.1844 0.7860 0.2140 0.8494 0.1506 0.9084 0.0916 Ribs 0.7720 0.2280 0.6175 0.3825 0.7136 0.2864 0.6719 0.3281 0.7286 0.2714 0.8369 0.1631 Scapula 0.6414 0.3586 0.5561 0.4439 0.6356 0.3644 0.6356 0.3644 0.6689 0.3311 0.7690 0.2310 Clavicles 0.6250 0.3750 0.5425 0.4575 0.6106 0.3894 0.6727 0.3273 0.6206 0.3794 0.8267 0.1733 Os coxae 0.6643 0.3357 0.6810 0.3190 0.6833 0.3167 0.7402 0.2598 0.7546 0.2454 0.8473 0.1527 Sacrum 0.7641 0.2359 0.5746 0.4254 0.7927 0.2073 0.7865 0.2135 0.8285 0.1715 0.9175 0.0825 Humerii, Proximal 0.6151 0.3849 0.4241 0.5759 0.6100 0.3900 0.5766 0.4234 0.5830 0.4170 0.7028 0.2972 Humerii, Upper Shaft 0.1525 0.8475 1.0000 0.0000 0.2801 0.7199 1.0000 0.0000 0.2794 0.7206 1.0000 0.0000 Humerii, Lower Shaft 0.1806 0.8194 1.0000 0.0000 0.2991 0.7009 1.0000 0.0000 0.3147 0.6853 1.0000 0.0000 Humerii, Distal 0.5646 0.4354 0.4206 0.5794 0.5588 0.4412 0.5939 0.4061 0.5156 0.4844 0.7249 0.2751 Radii, Proximal 0.2509 0.7491 0.4042 0.5958 0.3218 0.6782 0.7305 0.2695 0.2620 0.7380 0.7829 0.2171 Radii, Shaft 0.1563 0.8437 1.0000 0.0000 0.2928 0.7072 1.0000 0.0000 0.3173 0.6827 1.0000 0.0000 Radii, Distal 0.3378 0.6622 0.3757 0.6243 0.4115 0.5885 0.6263 0.3737 0.3490 0.6510 0.7172 0.2828 Ulna, Proximal 0.4426 0.5574 0.2973 0.7027 0.4707 0.5293 0.5645 0.4355 0.4086 0.5914 0.6625 0.3375 Ulna, Shaft 0.1548 0.8452 1.0000 0.0000 0.2735 0.7265 1.0000 0.0000 0.2845 0.7155 1.0000 0.0000 Ulna, Distal 0.1080 0.8920 0.5358 0.4642 0.2590 0.7410 0.8436 0.1564 0.2012 0.7988 0.8590 0.1410 Wrist and Hands 0.7577 0.2423 0.5441 0.4559 0.6945 0.3055 0.6504 0.3496 0.6242 0.3758 0.7923 0.2077 Femora, Proximal 0.5904 0.4096 0.4584 0.5416 0.5771 0.4229 0.5792 0.4208 0.5481 0.4519 0.6894 0.3106 Femora, Upper Shaft 0.1608 0.8392 1.0000 0.0000 0.3019 0.6981 1.0000 0.0000 0.3187 0.6813 1.0000 0.0000 Femora, Lower Shaft 0.1760 0.8240 1.0000 0.0000 0.2801 0.7199 1.0000 0.0000 0.2803 0.7197 1.0000 0.0000 Femora, Distal 0.4974 0.5026 0.5192 0.4808 0.5645 0.4355 0.6316 0.3684 0.5927 0.4073 0.7056 0.2944 Patella 0.8177 0.1823 0.6747 0.3253 0.8686 0.1314 0.8652 0.1348 0.8863 0.1137 0.9428 0.0572 Tibia, Proximal 0.4394 0.5606 0.4388 0.5612 0.4537 0.5463 0.6050 0.3950 0.4303 0.5697 0.7344 0.2656 Tibia, Shaft 0.1951 0.8049 1.0000 0.0000 0.2690 0.7310 1.0000 0.0000 0.3005 0.6995 1.0000 0.0000 Tibia, Distal 0.2104 0.7896 0.4894 0.5106 0.3016 0.6984 0.7697 0.2303 0.2591 0.7409 0.8150 0.1850 Fibula, Proximal 0.2993 0.7007 0.4126 0.5874 0.4060 0.5940 0.7335 0.2665 0.3730 0.6270 0.7959 0.2041 Fibula, Shaft 0.1655 0.8345 1.0000 0.0000 0.3614 0.6386 1.0000 0.0000 0.3920 0.6080 1.0000 0.0000 Fibula, Distal 0.2704 0.7296 0.4219 0.5781 0.3994 0.6006 0.7375 0.2625 0.3642 0.6358 0.7981 0.2019 Ankles and Feet 0.7719 0.2281 0.5581 0.4419 0.7303 0.2697 0.6295 0.3705 0.7091 0.2909 0.7683 0.2317 1-YEAR 5-YEAR 10-YEAR

PAGE 232

232 Table 5 15. Masses, volumes, and percent distribution of cartilage / fibrous tissue by bone site in the UF 1year, 5 year, and 10year phantoms. Cartilage Cartilage Cartilage Cartilage Cartilage Cartilage Cartilage Cartilage Cartilage Skeletal Site Volume (cm3) Mass (g) % Distribution Volume (cm3) Mass (g) % Distribution Volume (cm3) Mass (g) % Distribution Cranium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mandible 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cervical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Thoracic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Lumbar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sternum 7.58 8.34 16.29 10.78 11.85 16.08 21.05 23.15 15.67 Ribs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Scapulae 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Clavicles 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Os coxae 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sacrum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Upper Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Lower Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Humeri, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Radii, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ulnae, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Wrists and Hands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Upper Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Lower Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Femora, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Patellae 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tibiae, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tibiae, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tibiae, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fibulae, Proximal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fibulae, Shaft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fibulae, Distal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ankles and Feet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cranial Fibrous Connective Tissue (Fontanel) 4.57 5.03 9.83 0.00 0.00 0.00 0.00 0.00 0.00 Costal Cartilage 16.13 17.75 34.67 8.78 9.66 13.11 30.30 33.32 22.55 CV Intervertebral Discs 1.38 1.52 2.97 1.06 1.16 1.58 2.54 2.79 1.89 TV Intervertebral Discs 5.26 5.78 11.30 15.52 17.07 23.16 33.45 36.80 24.90 LV Intervertebral Discs 3.15 3.47 6.77 14.03 15.44 20.94 30.18 33.20 22.46 1,2External Nose 0.89 0.98 1.92 2.32 2.55 3.46 2.32 2.55 1.72 1,3Ears 3.95 4.35 8.49 5.07 5.58 7.57 5.07 5.58 3.78 1,4Extrapulmonary Bronchi 1.02 1.12 2.19 1.70 1.87 2.54 1.70 1.87 1.27 1,5Larynx 1.88 2.07 4.04 5.63 6.19 8.40 5.63 6.20 4.19 1,6Trachea 0.71 0.78 1.52 2.12 2.33 3.16 2.12 2.33 1.58 Total Skeleton (Only Bone-Associated Cartilage) 38.08 41.89 50.17 55.19 117.51 129.26 Total Skeleton (All Cartilage) 46.53 51.19 67.01 73.71 134.36 147.79 ICRP 89 Reference 327.27 360.00 545.45 600.00 745.45 820.00 Ratio (All Cartilage) 0.14 0.14 0.12 0.12 0.18 0.18 1-YEAR 5-YEAR 10-YEAR 100.00 100.00 1These cartilage are termed non-bone associated cartilage; others are bone-associated cartilage 650% of NURBS volume contains cartilage 100.00 233.3333% of total NURBS volume contains cartilage 3100% of NURBS volume contains cartilage 450% of NURBS volume contains cartilage 550% of NURBS volume contains cartilage

PAGE 233

233 Table 5 16. Distribution of shallow marrow by skeletal site in the 1 year hybrid phantom. SMVF Bone Site Mass (g) Volume (cm3) Mass (g) Volume (cm3) Cellularity (%) Mass (g) Volume (cm3) Mass (g) @100% % of total ref (% MV) Cranium 14.52 14.10 0.727 0.742 95 15.25 14.84 14.10 21.79% 26.55 Mandible 0.63 0.61 0.032 0.032 95 0.66 0.64 0.61 0.94% 22.58 Cervical 1.45 1.40 0.072 0.074 95 1.52 1.48 1.40 2.17% 32.08 Thoracic 3.57 3.47 0.179 0.182 95 3.75 3.65 3.47 5.36% 22.62 Lumbar 4.53 4.39 0.227 0.231 95 4.75 4.63 4.39 6.79% 51.66 Sternum 0.40 0.39 0.020 0.020 95 0.42 0.41 0.39 0.60% 43.76 Ribs 11.12 10.80 0.557 0.568 95 11.68 11.37 10.80 16.69% 44.21 Scapula 3.61 3.51 0.181 0.185 95 3.79 3.69 3.51 5.42% 63.84 Clavicles 0.49 0.48 0.025 0.025 95 0.52 0.50 0.48 0.74% 67.44 Os coxae 7.03 6.83 0.352 0.359 95 7.38 7.18 6.83 10.55% 41.77 Sacrum 3.95 3.84 0.198 0.202 95 4.15 4.04 3.84 5.93% 66.00 Humerii, Proximal 1.82 1.76 0.053 0.055 97 1.87 1.82 1.73 2.67% 73.61 1Humerii, Upper Shaft 0.04 0.04 0.003 0.003 93 0.04 0.04 0.00 0.06% 5.75 1Humerii, Lower Shaft 0.04 0.04 0.004 0.004 91 0.04 0.04 0.00 0.06% 5.80 Humerii, Distal 0.85 0.83 0.121 0.124 87 0.97 0.95 0.00 1.40% 74.68 Radii, Proximal 0.07 0.07 0.009 0.009 89 0.08 0.08 0.08 0.12% 79.92 1Radii, Shaft 0.03 0.03 0.004 0.004 89 0.04 0.04 0.00 0.05% 11.66 Radii, Distal 0.15 0.15 0.018 0.018 89 0.17 0.17 0.00 0.25% 90.10 Ulna, Proximal 0.19 0.19 0.052 0.053 89 0.24 0.24 0.41 0.35% 71.75 1Ulna, Shaft 0.04 0.04 0.006 0.006 89 0.05 0.05 0.00 0.07% 9.83 Ulna, Distal 0.01 0.01 0.001 0.001 89 0.01 0.01 0.00 0.02% 46.97 Wrist and Hands 1.29 1.26 1.231 1.256 50 2.52 2.51 2.39 3.69% 45.43 Femora, Proximal 2.24 2.17 0.066 0.067 97 2.31 2.24 2.13 3.29% 81.86 1Femora, Upper Shaft 0.05 0.05 0.004 0.004 93 0.05 0.05 0.00 0.07% 6.06 1Femora, Lower Shaft 0.06 0.06 0.006 0.006 91 0.07 0.07 0.00 0.10% 4.95 Femora, Distal 1.82 1.77 0.259 0.264 87 2.08 2.03 0.00 2.98% 64.17 Patella 0.07 0.07 0.008 0.008 89 0.08 0.07 0.07 0.11% 26.14 Tibia, Proximal 1.15 1.12 0.136 0.138 89 1.29 1.26 1.19 1.85% 69.34 1Tibia, Shaft 0.10 0.09 0.012 0.012 89 0.11 0.10 0.00 0.15% 5.62 Tibia, Distal 0.20 0.19 0.023 0.024 89 0.22 0.21 0.00 0.32% 56.58 Fibula, Proximal 0.06 0.06 0.007 0.007 89 0.07 0.07 0.06 0.10% 77.17 1Fibula, Shaft 0.03 0.03 0.004 0.004 89 0.03 0.03 0.00 0.05% 17.94 Fibula, Distal 0.05 0.05 0.006 0.006 89 0.05 0.05 0.00 0.08% 74.30 Ankles and Feet 1.82 1.77 1.733 1.768 50 3.55 3.54 3.36 5.19% 42.93 Total Skeleton 63.49 61.64 6.33 6.46 69.83 68.10 61.23 100.00% 1SMVF obtained via cylindrical volume ratios discussed in text Shallow Active Marrow* Shallow Marrow* Shallow Inactive Marrow* 1-YEAR

PAGE 234

234 Table 5 17. Distribution of shallow marrow by skeletal site in the 5 year hybrid phantom. SMVF Bone Site Mass (g) Volume (cm3) Mass (g) Volume (cm3) Cellularity (%) Mass (g) Volume (cm3) Mass (g) @100% % of total ref (% MV) Cranium 22.35 21.70 5.32 5.43 80 27.67 27.13 26.74 22.09% 17.92 Mandible 1.16 1.13 0.28 0.28 80 1.44 1.41 1.39 1.15% 14.29 Cervical 2.04 1.98 0.34 0.35 85 2.38 2.32 2.30 1.89% 34.85 Thoracic 8.12 7.88 1.36 1.39 85 9.48 9.27 9.20 7.55% 22.17 Lumbar 8.48 8.24 1.42 1.45 85 9.91 9.69 9.61 7.89% 34.59 Sternum 0.75 0.73 0.13 0.13 85 0.88 0.86 0.86 0.70% 17.42 Ribs 10.18 9.88 1.71 1.74 85 11.89 11.62 11.51 9.46% 31.24 Scapula 6.64 6.44 1.58 1.61 80 8.22 8.06 7.96 6.56% 42.87 Clavicles 1.12 1.08 0.28 0.29 79 1.40 1.37 1.36 1.12% 36.39 Os coxae 11.80 11.46 2.99 3.05 79 14.79 14.51 14.38 11.81% 27.05 Sacrum 3.44 3.34 0.87 0.89 79 4.32 4.23 4.21 3.45% 20.92 Humerii, Proximal 2.48 2.41 0.63 0.64 79 3.10 3.05 3.00 2.48% 38.87 1Humerii, Upper Shaft 0.09 0.08 0.03 0.03 75 0.11 0.11 0.00 0.09% 3.53 1Humerii, Lower Shaft 0.08 0.08 0.03 0.03 73 0.11 0.11 0.00 0.09% 3.74 Humerii, Distal 1.15 1.12 0.49 0.50 69 1.65 1.62 0.00 1.32% 36.21 Radii, Proximal 0.06 0.06 0.04 0.04 57 0.10 0.10 0.10 0.08% 19.53 1Radii, Shaft 0.07 0.07 0.05 0.05 57 0.12 0.12 0.00 0.09% 5.82 Radii, Distal 0.19 0.19 0.14 0.14 57 0.33 0.33 0.00 0.26% 31.59 Ulna, Proximal 0.47 0.45 0.33 0.34 57 0.80 0.79 0.78 0.65% 40.84 1Ulna, Shaft 0.07 0.07 0.05 0.06 57 0.13 0.12 0.00 0.10% 5.45 Ulna, Distal 0.02 0.02 0.01 0.01 57 0.03 0.03 0.00 0.02% 9.82 Wrist and Hands 0.00 0.00 2.25 2.29 20 2.25 2.29 2.24 1.87% 28.75 Femora, Proximal 3.67 3.56 0.93 0.95 79 4.59 4.50 4.44 3.67% 44.24 1Femora, Upper Shaft 0.17 0.17 0.06 0.06 75 0.23 0.22 0.00 0.18% 3.25 1Femora, Lower Shaft 0.10 0.10 0.04 0.04 73 0.14 0.14 0.00 0.11% 2.80 Femora, Distal 3.20 3.10 1.37 1.39 69 4.56 4.50 0.00 3.66% 35.51 Patella 0.19 0.18 0.13 0.14 57 0.32 0.32 0.32 0.26% 8.25 Tibia, Proximal 1.61 1.56 1.15 1.18 57 2.76 2.74 2.69 2.23% 34.56 1Tibia, Shaft 0.15 0.15 0.11 0.12 57 0.26 0.26 0.00 0.21% 3.61 Tibia, Distal 0.23 0.22 0.16 0.17 57 0.39 0.39 0.00 0.32% 15.84 Fibula, Proximal 0.09 0.09 0.06 0.06 57 0.15 0.15 0.15 0.12% 19.23 1Fibula, Shaft 0.07 0.07 0.05 0.05 57 0.13 0.12 0.00 0.10% 7.49 Fibula, Distal 0.08 0.08 0.06 0.06 57 0.14 0.14 0.00 0.11% 18.84 Ankles and Feet 2.10 2.04 8.00 8.16 20 10.10 10.20 10.09 8.30% 31.16 Total Skeleton 92.41 89.72 32.46 33.12 124.87 122.82 113.32 100.00% 1SMVF obtained via cylindrical volume ratios discussed in text Active Marrow* Inactive Marrow* Marrow* 5-YEAR Shallow Shallow Shallow

PAGE 235

235 Table 5 18. Distribution of shallow marrow by skeletal site in the 10 year hybrid phantom. SMVF Bone Site Mass (g) Volume (cm3) Mass (g) Volume (cm3) Cellularity (%) Mass (g) Volume (cm3) Mass (g) @100% % of total ref (% MV) Cranium 16.24 15.77 8.32 8.49 65 24.56 24.26 24.16 14.34% 11.76 Mandible 0.81 0.78 0.41 0.42 65 1.22 1.21 1.20 0.71% 9.48 Cervical 2.62 2.54 0.62 0.64 80 3.24 3.18 3.16 1.88% 16.33 Thoracic 13.50 13.11 3.21 3.28 80 16.71 16.38 16.32 9.68% 11.15 Lumbar 14.63 14.20 3.48 3.55 80 18.11 17.75 17.68 10.49% 17.80 Sternum 0.72 0.70 0.17 0.17 80 0.89 0.87 0.87 0.52% 5.59 Ribs 8.13 7.90 1.93 1.97 80 10.07 9.87 9.83 5.83% 10.81 Scapula 7.28 7.06 3.73 3.80 65 11.00 10.87 10.82 6.42% 20.60 Clavicles 1.04 1.01 0.58 0.59 63 1.62 1.60 1.60 0.95% 14.39 Os coxae 16.55 16.07 6.13 6.25 72 22.68 22.32 22.23 13.20% 11.56 Sacrum 1.82 1.76 0.67 0.69 72 2.49 2.45 2.44 1.45% 5.76 Humerii, Proximal 4.15 4.03 1.69 1.73 70 5.84 5.75 5.73 3.40% 21.43 1Humerii, Upper Shaft 0.11 0.11 0.11 0.11 50 0.22 0.21 0.00 0.13% 2.38 1Humerii, Lower Shaft 0.11 0.11 0.12 0.12 49 0.23 0.22 0.00 0.13% 2.47 Humerii, Distal 0.84 0.82 1.96 2.00 29 2.80 2.81 0.00 1.66% 19.62 Radii, Proximal 0.04 0.04 0.14 0.14 23 0.18 0.18 0.18 0.11% 14.39 1Radii, Shaft 0.05 0.05 0.18 0.19 23 0.24 0.23 0.00 0.14% 3.87 Radii, Distal 0.14 0.13 0.43 0.44 23 0.57 0.58 0.00 0.34% 20.45 Ulna, Proximal 0.35 0.34 1.12 1.14 23 1.47 1.48 1.48 0.88% 26.43 1Ulna, Shaft 0.06 0.06 0.19 0.20 23 0.25 0.24 0.00 0.14% 3.70 Ulna, Distal 0.01 0.01 0.04 0.04 23 0.05 0.06 0.00 0.03% 8.51 Wrist and Hands 0.00 0.00 3.21 3.27 0 3.21 3.27 3.26 1.93% 13.76 Femora, Proximal 6.30 6.11 2.57 2.62 70 8.87 8.73 8.70 5.16% 23.34 1Femora, Upper Shaft 0.22 0.22 0.22 0.23 50 0.45 0.44 0.00 0.26% 1.89 1Femora, Lower Shaft 0.14 0.14 0.15 0.15 49 0.28 0.28 0.00 0.16% 1.78 Femora, Distal 3.12 3.03 7.28 7.43 29 10.40 10.46 0.00 6.18% 22.06 Patella 0.08 0.08 0.25 0.26 23 0.34 0.34 0.34 0.20% 3.15 Tibia, Proximal 1.29 1.25 4.10 4.19 23 5.39 5.44 5.42 3.22% 18.75 1Tibia, Shaft 0.13 0.13 0.44 0.45 23 0.57 0.55 0.00 0.33% 2.22 Tibia, Distal 0.20 0.19 0.63 0.64 23 0.82 0.83 0.00 0.49% 11.77 Fibula, Proximal 0.08 0.07 0.24 0.25 23 0.32 0.32 0.32 0.19% 13.30 1Fibula, Shaft 0.06 0.06 0.20 0.21 23 0.26 0.25 0.00 0.15% 4.79 Fibula, Distal 0.07 0.07 0.23 0.23 23 0.30 0.30 0.00 0.18% 13.12 Ankles and Feet 0.00 0.00 15.12 15.42 0 15.12 15.42 15.36 9.12% 15.82 Total Skeleton 100.89 97.95 69.87 71.30 170.76 169.17 151.09 100.00% 1SMVF obtained via cylindrical volume ratios discussed in text Shallow Active Marrow* Shallow Marrow* Shallow Inactive Marrow* 10-YEAR

PAGE 236

236 Table 5 19. Lengths and radii of the medullary cavities within the long bones of the 1year, 5 year, and 10year hybrid phantoms. Bone Site 1-YEAR 5-YEAR10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR Humerii, Upper Shaft 4.51 6.33 8.25 0.04 0.03 0.05 0.16 0.28 0.42 Humerii, Lower Shaft 4.55 6.76 8.87 0.03 0.04 0.03 0.15 0.26 0.40 Radii, Shaft 7.13 11.06 14.41 0.05 0.07 0.11 0.08 0.17 0.26 Ulna, Shaft 8.06 11.04 14.43 0.06 0.02 0.10 0.10 0.18 0.27 Femora, Upper Shaft 5.03 11.71 13.28 0.04 0.05 0.08 0.16 0.31 0.52 Femora, Lower Shaft 5.29 6.13 7.96 0.01 0.04 0.03 0.20 0.35 0.56 Tibia, Shaft 9.63 15.05 19.66 0.02 0.06 0.07 0.18 0.27 0.45 Fibula, Shaft 9.96 15.06 19.68 0.02 0.02 0.07 0.05 0.13 0.21 Measured Height (cm) Standard Deviation (cm) Calculated Radius Medullary Marrow Medullary Marrow Medullary Marrow Table 5 20. Site specific homogeneous spongiosa mass, volume, and density data, including MST in the 1year, 5year, and 10year hybrid phantoms. Skeletal Site 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR Cranium 266.33 456.64 435.21 185.55 332.24 336.33 1.44 1.37 1.29 Mandible 11.99 25.80 24.13 8.47 19.29 19.18 1.41 1.34 1.26 Cervical 8.10 12.19 26.89 6.70 9.88 23.38 1.21 1.23 1.15 Thoracic 24.87 64.19 185.26 21.28 54.61 166.24 1.17 1.18 1.11 Lumbar 19.73 51.03 141.30 15.49 41.38 121.85 1.27 1.23 1.16 Sternum 1.88 7.30 18.30 1.50 6.28 16.87 1.25 1.16 1.08 Ribs 52.07 68.47 121.43 41.63 55.38 106.97 1.25 1.24 1.14 Scapulae 13.38 37.19 79.77 10.40 29.56 67.76 1.29 1.26 1.18 Clavicles 1.78 6.92 15.12 1.37 5.61 13.31 1.29 1.23 1.14 Os coxae 30.66 86.21 252.28 25.26 72.46 224.35 1.21 1.19 1.12 Sacrum 13.59 29.84 48.97 10.66 25.73 45.58 1.28 1.16 1.07 Humeri, Proximal 7.94 17.60 46.15 5.82 13.59 37.63 1.36 1.30 1.23 Humeri, Distal 4.13 9.68 23.79 3.03 7.55 19.90 1.36 1.28 1.20 Radii, Proximal 0.35 0.83 1.86 0.25 0.70 1.62 1.37 1.19 1.15 Radii, Distal 0.69 2.06 4.75 0.49 1.64 3.96 1.39 1.26 1.20 Ulnae, Proximal 1.61 4.47 10.58 1.12 3.45 8.53 1.44 1.30 1.24 Ulnae, Distal 0.05 0.39 0.83 0.04 0.35 0.76 1.30 1.11 1.10 Wrists and Hands 13.02 15.06 34.76 10.16 12.26 30.63 1.28 1.23 1.13 Femora, Proximal 8.03 22.74 66.10 5.98 17.58 53.49 1.34 1.29 1.24 Femora, Distal 7.96 25.19 81.77 6.10 20.05 67.58 1.31 1.26 1.21 Patellae 0.51 4.92 11.87 0.42 4.48 11.48 1.22 1.10 1.03 Tibiae, Proximal 5.59 16.61 47.26 4.13 13.08 39.83 1.35 1.27 1.19 Tibiae, Distal 1.03 3.70 9.83 0.78 3.19 8.72 1.32 1.16 1.13 Fibulae, Proximal 0.28 1.27 3.51 0.21 1.07 3.08 1.37 1.18 1.14 Fibulae, Distal 0.23 1.20 3.28 0.17 1.01 2.88 1.36 1.18 1.14 Ankles and Feet 18.79 64.64 149.24 14.76 51.99 129.45 1.27 1.24 1.15 Total Skeleton 514.60 1036.14 1844.25 381.78 804.41 1561.34 Volume Weighted Average Density 1.34 1.28 1.18 ICRP 89 Reference 300.82 742.43 1668.64 251.86 637.05 1469.49 Ratio 0.58 0.72 0.90 0.66 0.79 0.94 ICRU 46 Adult Density 1.18 1.18 1.18 Ratio 1.14 1.08 1.00 *Denotes inclusion of associated miscellaneous skeletal tissue volumes and masses Homogeneous* Spongiosa Volume (cm3) Homogeneous* Spongiosa Density (g/cm3) Homogeneous* Spongiosa Mass (g)

PAGE 237

237 Table 5 21. Site specific homogeneous spongiosa elemental composition (% by mass) in the 1year, 5 year, and 10ye ar hybrid phantom. Skeletal Site H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe Cranium 5.72 21.18 4.19 49.22 12.67 0.03 0.26 6.39 0.28 0.01 0.02 0.02 6.37 25.63 3.94 45.37 12.24 0.10 0.18 5.87 0.26 0.01 0.01 0.03 7.24 31.16 3.50 42.26 10.31 0.10 0.16 4.98 0.24 0.01 0.01 0.03 Mandible 5.90 21.88 4.16 49.07 12.21 0.03 0.26 6.17 0.28 0.01 0.02 0.02 6.71 27.13 3.86 45.03 11.27 0.10 0.18 5.42 0.26 0.01 0.01 0.03 7.61 32.89 3.40 41.82 9.25 0.10 0.16 4.49 0.23 0.01 0.01 0.03 Cervical 7.98 30.18 3.76 47.27 6.71 0.07 0.22 3.48 0.24 0.01 0.02 0.05 7.77 31.27 3.67 44.56 8.17 0.10 0.18 3.98 0.24 0.01 0.01 0.05 8.84 36.80 3.31 42.36 5.42 0.10 0.17 2.71 0.22 0.01 0.01 0.06 Thoracic 8.48 32.16 3.67 46.84 5.39 0.08 0.21 2.84 0.24 0.01 0.02 0.06 8.46 34.17 3.51 44.01 6.20 0.10 0.17 3.07 0.23 0.01 0.01 0.05 9.30 38.81 3.21 42.00 4.06 0.10 0.16 2.08 0.21 0.01 0.01 0.06 Lumbar 7.26 27.29 3.90 47.90 8.62 0.06 0.23 4.41 0.25 0.01 0.02 0.04 7.78 31.31 3.66 44.55 8.15 0.10 0.18 3.97 0.24 0.01 0.01 0.05 8.72 36.30 3.33 42.45 5.77 0.10 0.17 2.87 0.22 0.01 0.01 0.06 Sternum 7.52 28.35 3.85 47.67 7.92 0.06 0.23 4.07 0.25 0.01 0.02 0.04 8.62 34.87 3.48 43.87 5.74 0.10 0.17 2.85 0.22 0.01 0.01 0.06 9.71 40.57 3.11 41.69 2.86 0.10 0.16 1.52 0.20 0.01 0.01 0.07 Ribs 7.51 28.29 3.85 47.68 7.96 0.06 0.23 4.09 0.25 0.01 0.02 0.04 7.75 31.16 3.67 44.58 8.24 0.10 0.18 4.01 0.24 0.01 0.01 0.05 9.03 37.63 3.27 42.21 4.86 0.10 0.17 2.45 0.21 0.01 0.01 0.06 Scapulae 7.12 26.75 3.93 48.02 8.98 0.05 0.24 4.59 0.26 0.01 0.02 0.04 7.51 30.64 3.66 44.28 8.97 0.10 0.17 4.35 0.24 0.01 0.01 0.04 8.52 37.17 3.15 40.74 6.64 0.10 0.15 3.27 0.21 0.01 0.01 0.04 Clavicles 7.04 26.42 3.94 48.09 9.20 0.05 0.24 4.70 0.26 0.01 0.02 0.04 7.78 31.91 3.59 43.93 8.22 0.10 0.17 4.00 0.24 0.01 0.01 0.04 9.04 39.90 2.97 39.84 5.16 0.10 0.14 2.58 0.20 0.01 0.01 0.05 Os coxae 7.93 29.98 3.77 47.32 6.84 0.07 0.22 3.54 0.24 0.01 0.02 0.05 8.29 34.12 3.46 43.45 6.78 0.10 0.17 3.33 0.23 0.01 0.01 0.05 9.17 39.34 3.09 40.95 4.60 0.10 0.15 2.32 0.21 0.01 0.01 0.05 Sacrum 7.23 27.20 3.91 47.92 8.68 0.06 0.23 4.44 0.26 0.01 0.02 0.04 8.66 35.74 3.37 43.08 5.74 0.10 0.17 2.85 0.22 0.01 0.01 0.05 9.86 42.45 2.92 40.26 2.60 0.10 0.15 1.39 0.19 0.01 0.01 0.06 Humeri, Proximal 6.35 23.59 4.09 48.79 10.99 0.04 0.25 5.57 0.27 0.01 0.02 0.03 7.12 29.04 3.75 44.54 10.10 0.10 0.18 4.87 0.25 0.01 0.01 0.03 7.95 33.98 3.37 41.96 8.20 0.10 0.16 4.00 0.23 0.01 0.01 0.04 1Humeri, Upper Shaft 10.54 40.71 3.23 44.71 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.09 10.72 45.85 2.77 39.95 0.00 0.10 0.15 0.18 0.18 0.01 0.01 0.07 10.96 51.32 2.13 35.01 0.00 0.10 0.10 0.16 0.16 0.01 0.01 0.05 1Humeri, Lower Shaft 10.56 41.11 3.19 44.35 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.74 46.22 2.72 39.63 0.00 0.10 0.14 0.18 0.18 0.01 0.01 0.07 10.97 51.54 2.10 34.81 0.00 0.10 0.10 0.16 0.16 0.01 0.01 0.05 Humeri, Distal 6.36 24.13 4.02 48.23 11.06 0.04 0.25 5.60 0.27 0.01 0.02 0.03 7.28 30.55 3.60 43.50 9.79 0.10 0.17 4.72 0.24 0.01 0.01 0.03 8.33 40.12 2.69 36.85 7.78 0.10 0.11 3.78 0.20 0.01 0.01 0.02 Radii, Proximal 6.26 23.63 4.05 48.44 11.29 0.04 0.25 5.71 0.27 0.01 0.02 0.02 8.35 37.10 3.12 40.50 6.99 0.10 0.14 3.42 0.21 0.01 0.01 0.04 8.88 43.90 2.38 34.92 6.38 0.10 0.09 3.12 0.19 0.01 0.01 0.02 1Radii, Shaft 10.57 41.52 3.14 43.98 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.89 49.70 2.31 36.48 0.00 0.10 0.11 0.16 0.16 0.01 0.01 0.06 11.22 57.38 1.42 29.53 0.00 0.10 0.05 0.13 0.13 0.01 0.01 0.02 Radii, Distal 6.11 23.00 4.08 48.60 11.68 0.04 0.25 5.91 0.27 0.01 0.02 0.02 7.56 33.02 3.38 41.91 9.17 0.10 0.15 4.43 0.23 0.01 0.01 0.03 8.30 40.54 2.62 36.27 7.97 0.10 0.11 3.87 0.20 0.01 0.01 0.01 Ulnae, Proximal 5.71 21.35 4.17 49.01 12.73 0.03 0.26 6.42 0.28 0.01 0.02 0.02 7.13 30.83 3.52 42.65 10.35 0.10 0.16 4.98 0.24 0.01 0.01 0.02 7.84 37.92 2.81 37.31 9.21 0.10 0.12 4.45 0.21 0.01 0.01 0.01 1Ulnae, Shaft 10.57 41.52 3.14 43.98 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.89 49.78 2.31 36.41 0.00 0.10 0.11 0.16 0.16 0.01 0.01 0.06 11.22 57.38 1.42 29.53 0.00 0.10 0.05 0.13 0.13 0.01 0.01 0.02 Ulnae, Distal 7.02 26.76 3.89 47.66 9.32 0.05 0.23 4.75 0.26 0.01 0.02 0.03 9.32 42.11 2.81 38.77 4.33 0.10 0.13 2.18 0.19 0.01 0.01 0.04 9.63 48.18 2.07 33.21 4.35 0.10 0.08 2.17 0.17 0.01 0.01 0.02 Wrists and Hands 7.19 30.30 3.48 44.53 9.25 0.05 0.20 4.71 0.24 0.01 0.02 0.02 7.87 37.74 2.84 38.03 8.82 0.10 0.11 4.25 0.21 0.01 0.01 0.01 9.11 47.93 1.93 31.49 6.19 0.10 0.06 3.01 0.17 0.01 0.01 0.00 Femora, Proximal 6.54 24.33 4.05 48.64 10.49 0.04 0.25 5.33 0.27 0.01 0.02 0.03 7.14 29.13 3.74 44.51 10.05 0.10 0.18 4.85 0.25 0.01 0.01 0.04 7.84 33.50 3.40 42.07 8.50 0.10 0.16 4.14 0.23 0.01 0.01 0.04 1Femora, Upper Shaft 10.54 40.71 3.23 44.71 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.09 10.72 45.78 2.77 40.03 0.00 0.10 0.15 0.18 0.18 0.01 0.01 0.07 10.96 51.32 2.13 35.01 0.00 0.10 0.10 0.16 0.16 0.01 0.01 0.05 1Femora, Lower Shaft 10.56 41.11 3.19 44.35 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.74 46.29 2.72 39.56 0.00 0.10 0.14 0.18 0.18 0.01 0.01 0.07 10.97 51.54 2.10 34.81 0.00 0.10 0.10 0.16 0.16 0.01 0.01 0.05 Femora, Distal 6.92 26.50 3.89 47.62 9.58 0.05 0.23 4.88 0.26 0.01 0.02 0.03 7.54 31.75 3.53 43.19 9.06 0.10 0.16 4.39 0.24 0.01 0.01 0.03 8.17 39.20 2.75 37.20 8.23 0.10 0.12 3.99 0.20 0.01 0.01 0.02 Patellae 7.91 30.48 3.70 46.73 6.97 0.07 0.22 3.60 0.24 0.01 0.02 0.05 9.49 42.46 2.77 39.01 3.83 0.10 0.13 1.95 0.19 0.01 0.01 0.04 10.54 53.42 1.70 31.11 1.87 0.10 0.06 1.01 0.15 0.01 0.01 0.02 Tibiae, Proximal 6.45 24.42 4.01 48.24 10.79 0.04 0.25 5.47 0.27 0.01 0.02 0.03 7.40 32.21 3.43 42.20 9.59 0.10 0.16 4.63 0.23 0.01 0.01 0.03 8.45 41.39 2.56 35.93 7.57 0.10 0.10 3.68 0.20 0.01 0.01 0.01 1Tibiae, Shaft 10.57 41.52 3.14 43.98 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.89 49.81 2.31 36.38 0.00 0.10 0.11 0.16 0.16 0.01 0.01 0.06 11.22 57.38 1.42 29.53 0.00 0.10 0.05 0.13 0.13 0.01 0.01 0.02 Tibiae, Distal 6.74 25.61 3.95 47.95 10.04 0.05 0.24 5.10 0.26 0.01 0.02 0.03 8.67 38.75 3.02 39.94 6.11 0.10 0.14 3.00 0.21 0.01 0.01 0.04 9.19 45.66 2.25 34.22 5.55 0.10 0.09 2.73 0.18 0.01 0.01 0.02 Fibulae, Proximal 6.31 23.82 4.04 48.39 11.17 0.04 0.25 5.65 0.27 0.01 0.02 0.03 8.37 37.07 3.12 40.61 6.93 0.10 0.14 3.39 0.21 0.01 0.01 0.04 9.00 44.61 2.33 34.64 6.05 0.10 0.09 2.96 0.18 0.01 0.01 0.02 1Fibulae, Shaft 10.57 41.52 3.14 43.98 0.00 0.11 0.17 0.20 0.20 0.02 0.02 0.08 10.89 49.58 2.32 36.60 0.00 0.10 0.11 0.16 0.16 0.01 0.01 0.06 11.22 57.38 1.42 29.53 0.00 0.10 0.05 0.13 0.13 0.01 0.01 0.02 Fibulae, Distal 6.36 24.03 4.03 48.34 11.03 0.04 0.25 5.59 0.27 0.01 0.02 0.03 8.40 37.24 3.11 40.55 6.84 0.10 0.14 3.35 0.21 0.01 0.01 0.04 9.03 44.73 2.32 34.59 5.99 0.10 0.09 2.94 0.18 0.01 0.01 0.02 Ankles and Feet 7.28 30.76 3.45 44.34 9.03 0.05 0.20 4.60 0.24 0.01 0.02 0.02 7.71 36.80 2.91 38.44 9.24 0.10 0.12 4.45 0.21 0.01 0.01 0.01 8.88 46.48 2.04 32.15 6.79 0.10 0.07 3.30 0.17 0.01 0.01 0.00 Total Skeleton Spongiosa 6.56 24.74 4.01 48.25 10.50 0.04 0.24 5.33 0.26 0.01 0.02 0.03 7.30 30.24 3.65 43.93 9.65 0.10 0.17 4.66 0.24 0.01 0.01 0.03 8.61 38.35 3.02 39.83 6.49 0.10 0.14 3.20 0.21 0.01 0.01 0.04 5-YEAR 10-YEAR 1-YEAR

PAGE 238

238 Table 5 22. Site specific homogenized bone masses, volumes, and densities (including cartilage /fibrous tissue ) for the 1 year, 5 year, and 10year hybrid phantoms. Skeletal Site 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR *Cranium 360.15 678.72 755.63 245.24 465.14 521.95 1.47 1.46 1.45 Mandible 18.94 44.48 48.46 12.79 30.47 33.28 1.48 1.46 1.46 *Cervical 12.80 20.11 43.48 10.06 14.97 33.91 1.27 1.34 1.28 *Thoracic 41.82 113.21 288.85 33.47 89.20 238.38 1.25 1.27 1.21 *Lumbar 30.05 82.68 210.40 22.90 65.09 172.83 1.31 1.27 1.22 Sternum 10.83 21.54 46.62 9.46 18.48 40.91 1.14 1.17 1.14 *Ribs 89.63 115.34 223.54 70.06 86.39 177.12 1.28 1.34 1.26 Scapulae 22.75 65.54 137.66 16.21 46.51 101.29 1.40 1.41 1.36 Clavicles 3.11 12.90 29.17 2.20 9.19 21.45 1.41 1.40 1.36 Os coxae 51.22 142.45 378.21 38.02 106.05 297.30 1.35 1.34 1.27 Sacrum 18.89 41.12 65.26 13.95 32.46 55.01 1.35 1.27 1.19 Humeri, Proximal 13.81 32.12 92.60 9.47 22.27 64.54 1.46 1.44 1.43 1Humeri, Upper Shaft 7.17 16.65 48.80 4.71 11.20 32.00 1.52 1.49 1.52 1Humeri, Lower Shaft 5.69 14.67 42.49 3.78 9.95 28.34 1.51 1.47 1.50 Humeri, Distal 7.90 19.64 56.06 5.37 13.52 38.59 1.47 1.45 1.45 Radii, Proximal 1.56 3.31 9.71 1.01 2.19 6.16 1.55 1.51 1.58 1Radii, Shaft 3.02 10.04 28.37 1.98 6.80 19.00 1.52 1.48 1.49 Radii, Distal 2.24 5.99 17.49 1.46 4.00 11.34 1.54 1.50 1.54 Ulnae, Proximal 3.89 10.94 31.90 2.53 7.32 20.89 1.53 1.49 1.53 1Ulnae, Shaft 4.89 12.36 35.36 3.21 8.30 23.31 1.52 1.49 1.52 Ulnae, Distal 0.59 2.07 6.06 0.38 1.36 3.79 1.58 1.52 1.60 Wrists and Hands 18.26 24.09 66.59 13.41 17.65 49.06 1.36 1.36 1.36 Femora, Proximal 14.71 44.27 142.22 10.12 30.47 97.58 1.45 1.45 1.46 1Femora, Upper Shaft 7.88 33.42 107.89 5.19 22.69 72.10 1.52 1.47 1.50 1Femora, Lower Shaft 11.36 25.68 83.98 7.53 17.27 55.10 1.51 1.49 1.52 Femora, Distal 17.89 51.04 161.92 12.26 35.51 114.01 1.46 1.44 1.42 Patellae 0.66 6.06 14.41 0.51 5.16 12.96 1.29 1.17 1.11 Tibiae, Proximal 14.08 42.91 138.29 9.40 28.84 92.56 1.50 1.49 1.49 1Tibiae, Shaft 14.29 39.46 126.21 9.55 26.45 83.83 1.50 1.49 1.51 Tibiae, Distal 5.72 16.01 52.88 3.69 10.56 33.66 1.55 1.52 1.57 Fibulae, Proximal 1.07 3.88 12.45 0.69 2.63 8.25 1.54 1.47 1.51 1Fibulae, Shaft 1.61 6.43 19.62 1.07 4.50 13.64 1.51 1.43 1.44 Fibulae, Distal 0.94 3.75 11.95 0.61 2.54 7.90 1.54 1.47 1.51 Ankles and Feet 25.82 96.79 240.92 19.12 71.20 182.56 1.35 1.36 1.32 *Total Skeleton 845.25 1859.67 3775.44 601.42 1326.30 2764.61 Volume Weighted Average Density 1.40 1.40 1.36 Newborn Hybrid Phantom 844.31 1853.54 3766.80 601.42 1326.30 2764.61 Ratio 1.00 1.00 1.00 1.00 1.00 1.00 *Totals include masses, volumes, and densities from the intervertebral discs, cranial fibrous tissue, and costal cartilage (included in rib cartilage totals) 1Contains medullary marrow (no trabecular bone) and cortical bone only Volume (cm3) Density (g/cm3) Homogeneous Bone* Homogeneous Bone* Homogeneous Bone* Mass (g)

PAGE 239

239 Table 5 23. Site specific homogenized bone masses, volumes, and dens ities (excluding cartilage /fibrous tissue ) for the 1 year, 5 year, and 10year hybrid phantoms. Skeletal Site 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR 1-YEAR 5-YEAR 10-YEAR *Cranium 355.11 678.72 755.63 240.66 465.14 521.95 1.48 1.46 1.45 Mandible 18.94 44.48 48.46 12.79 30.47 33.28 1.48 1.46 1.46 *Cervical 11.28 18.95 40.70 8.67 13.91 31.38 1.30 1.36 1.30 *Thoracic 36.04 96.14 252.06 28.21 73.68 204.93 1.28 1.30 1.23 *Lumbar 26.59 67.24 177.20 19.75 51.05 142.65 1.35 1.32 1.24 Sternum 2.49 9.68 23.47 1.88 7.70 19.86 1.32 1.26 1.18 *Ribs 71.89 105.68 190.22 53.93 77.61 146.82 1.33 1.36 1.30 Scapulae 22.75 65.54 137.66 16.21 46.51 101.29 1.40 1.41 1.36 Clavicles 3.11 12.90 29.17 2.20 9.19 21.45 1.41 1.40 1.36 Os coxae 51.22 142.45 378.21 38.02 106.05 297.30 1.35 1.34 1.27 Sacrum 18.89 41.12 65.26 13.95 32.46 55.01 1.35 1.27 1.19 Humeri, Proximal 13.81 32.12 92.60 9.47 22.27 64.54 1.46 1.44 1.43 1Humeri, Upper Shaft 7.17 16.65 48.80 4.71 11.20 32.00 1.52 1.49 1.52 1Humeri, Lower Shaft 5.69 14.67 42.49 3.78 9.95 28.34 1.51 1.47 1.50 Humeri, Distal 7.90 19.64 56.06 5.37 13.52 38.59 1.47 1.45 1.45 Radii, Proximal 1.56 3.31 9.71 1.01 2.19 6.16 1.55 1.51 1.58 1Radii, Shaft 3.02 10.04 28.37 1.98 6.80 19.00 1.52 1.48 1.49 Radii, Distal 2.24 5.99 17.49 1.46 4.00 11.34 1.54 1.50 1.54 Ulnae, Proximal 3.89 10.94 31.90 2.53 7.32 20.89 1.53 1.49 1.53 1Ulnae, Shaft 4.89 12.36 35.36 3.21 8.30 23.31 1.52 1.49 1.52 Ulnae, Distal 0.59 2.07 6.06 0.38 1.36 3.79 1.58 1.52 1.60 Wrists and Hands 18.26 24.09 66.59 13.41 17.65 49.06 1.36 1.36 1.36 Femora, Proximal 14.71 44.27 142.22 10.12 30.47 97.58 1.45 1.45 1.46 1Femora, Upper Shaft 7.88 33.42 107.89 5.19 22.69 72.10 1.52 1.47 1.50 1Femora, Lower Shaft 11.36 25.68 83.98 7.53 17.27 55.10 1.51 1.49 1.52 Femora, Distal 17.89 51.04 161.92 12.26 35.51 114.01 1.46 1.44 1.42 Patellae 0.66 6.06 14.41 0.51 5.16 12.96 1.29 1.17 1.11 Tibiae, Proximal 14.08 42.91 138.29 9.40 28.84 92.56 1.50 1.49 1.49 1Tibiae, Shaft 14.29 39.46 126.21 9.55 26.45 83.83 1.50 1.49 1.51 Tibiae, Distal 5.72 16.01 52.88 3.69 10.56 33.66 1.55 1.52 1.57 Fibulae, Proximal 1.07 3.88 12.45 0.69 2.63 8.25 1.54 1.47 1.51 1Fibulae, Shaft 1.61 6.43 19.62 1.07 4.50 13.64 1.51 1.43 1.44 Fibulae, Distal 0.94 3.75 11.95 0.61 2.54 7.90 1.54 1.47 1.51 Ankles and Feet 25.82 96.79 240.92 19.12 71.20 182.56 1.35 1.36 1.32 *Total Skeleton 803.36 1804.48 3646.17 563.34 1276.13 2647.10 Volume Weighted Average Density 1.42 1.41 1.37 Newborn Hybrid Phantom 802.42 1798.36 3637.53 563.34 1276.13 2647.10 1.42 1.41 1.37 Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1Contains medullary marrow (no trabecular bone) and cortical bone only Mass (g) Volume (cm3) Density (g/cm3) Homogeneous Bone* Homogeneous Bone* Homogeneous Bone*

PAGE 240

240 Table 5 24. Site specific homogeneous bone elemental composition (including cartilage /fibrous tissue ) in the 1year, 5 year, and 10year hybrid phantoms (% b y mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe Cranium 5.45 19.72 4.23 49.86 13.35 0.03 0.26 6.75 0.29 0.01 0.02 0.01 5.65 22.47 4.11 46.08 14.29 0.10 0.19 6.82 0.27 0.01 0.01 0.02 5.88 24.72 3.87 43.88 14.25 0.10 0.18 6.82 0.26 0.00 0.01 0.02 Mandible 5.35 19.69 4.27 49.55 13.66 0.03 0.27 6.87 0.29 0.01 0.02 0.01 5.64 22.44 4.12 46.08 14.30 0.10 0.19 6.82 0.27 0.01 0.01 0.02 5.81 24.39 3.89 43.97 14.45 0.10 0.18 6.91 0.27 0.00 0.01 0.02 Cervical 7.28 24.22 3.75 51.27 8.26 0.10 0.21 4.47 0.34 0.05 0.02 0.03 6.66 24.89 3.85 47.26 11.18 0.13 0.17 5.49 0.30 0.02 0.01 0.03 7.36 28.46 3.58 45.60 9.58 0.13 0.17 4.78 0.29 0.02 0.01 0.03 Thoracic 7.55 24.75 3.67 51.59 7.52 0.12 0.20 4.15 0.34 0.05 0.02 0.03 7.41 25.37 3.59 49.56 8.76 0.16 0.15 4.56 0.35 0.05 0.01 0.03 8.12 29.84 3.35 47.08 7.14 0.15 0.15 3.77 0.32 0.04 0.01 0.04 Lumbar 6.88 22.69 3.83 51.52 9.35 0.10 0.22 5.00 0.34 0.05 0.02 0.03 7.41 24.30 3.55 50.69 8.67 0.18 0.15 4.59 0.37 0.06 0.01 0.03 8.06 28.66 3.33 48.11 7.22 0.17 0.15 3.87 0.34 0.05 0.01 0.04 Sternum 8.95 13.44 2.61 68.41 2.29 0.40 0.06 2.86 0.75 0.23 0.00 0.01 8.66 19.04 2.88 61.06 4.00 0.32 0.08 3.15 0.60 0.17 0.00 0.02 9.02 22.61 2.80 58.42 3.29 0.30 0.09 2.72 0.56 0.15 0.00 0.03 Ribs 7.23 21.91 3.66 53.57 8.20 0.14 0.20 4.60 0.39 0.07 0.01 0.03 6.74 24.48 3.81 48.01 10.88 0.14 0.17 5.40 0.31 0.03 0.01 0.03 7.57 26.83 3.45 48.21 8.67 0.16 0.15 4.53 0.34 0.05 0.01 0.03 Scapulae 6.00 22.29 4.14 48.98 11.94 0.04 0.26 6.03 0.27 0.01 0.02 0.02 6.06 24.29 4.01 45.67 13.11 0.10 0.18 6.27 0.27 0.01 0.01 0.02 6.63 28.25 3.67 42.99 12.09 0.10 0.17 5.81 0.25 0.01 0.01 0.02 Clavicles 5.91 21.93 4.16 49.06 12.17 0.03 0.26 6.15 0.28 0.01 0.02 0.02 6.10 24.51 4.00 45.58 13.00 0.10 0.18 6.22 0.27 0.01 0.01 0.02 6.62 28.37 3.65 42.85 12.12 0.10 0.17 5.83 0.25 0.01 0.01 0.02 Os coxae 6.51 24.33 4.04 48.54 10.58 0.04 0.25 5.37 0.27 0.01 0.02 0.03 6.65 26.95 3.86 45.03 11.43 0.10 0.18 5.49 0.26 0.01 0.01 0.03 7.46 31.56 3.52 42.66 9.59 0.10 0.17 4.65 0.24 0.01 0.01 0.04 Sacrum 6.44 24.04 4.06 48.60 10.78 0.04 0.25 5.47 0.27 0.01 0.02 0.03 7.42 30.32 3.68 44.27 9.26 0.10 0.17 4.48 0.24 0.01 0.01 0.04 8.40 35.85 3.28 41.72 6.84 0.10 0.16 3.37 0.22 0.01 0.01 0.05 Humeri, Proximal 5.52 20.33 4.24 49.46 13.19 0.03 0.27 6.64 0.28 0.01 0.02 0.02 5.79 23.12 4.07 45.90 13.90 0.10 0.18 6.63 0.27 0.01 0.01 0.02 5.98 24.94 3.88 44.03 13.92 0.10 0.18 6.67 0.26 0.00 0.01 0.02 1Humeri, Upper Shaft 5.03 18.47 4.32 49.78 14.50 0.02 0.27 7.28 0.29 0.01 0.02 0.01 5.43 21.68 4.14 46.11 14.93 0.10 0.19 7.11 0.28 0.01 0.01 0.01 5.30 22.48 3.97 44.05 16.00 0.10 0.18 7.63 0.27 0.00 0.01 0.01 1Humeri, Lower Shaft 5.16 19.02 4.29 49.63 14.17 0.02 0.27 7.12 0.29 0.01 0.02 0.01 5.53 22.19 4.11 45.93 14.67 0.10 0.18 6.99 0.27 0.01 0.01 0.01 5.49 23.47 3.90 43.72 15.47 0.10 0.18 7.39 0.27 0.00 0.01 0.01 Humeri, Distal 5.43 20.21 4.22 49.25 13.49 0.03 0.26 6.79 0.28 0.01 0.02 0.01 5.70 23.14 4.04 45.55 14.20 0.10 0.18 6.77 0.27 0.01 0.01 0.02 5.85 26.22 3.66 42.17 14.59 0.10 0.16 6.97 0.26 0.00 0.01 0.01 Radii, Proximal 4.82 17.63 4.36 49.94 15.08 0.02 0.28 7.56 0.29 0.01 0.02 0.01 5.23 21.29 4.13 45.80 15.56 0.10 0.18 7.40 0.28 0.01 0.01 0.01 4.95 21.31 4.00 43.96 17.07 0.10 0.18 8.13 0.28 0.00 0.01 0.00 1Radii, Shaft 5.05 18.61 4.31 49.69 14.45 0.02 0.27 7.26 0.29 0.01 0.02 0.01 5.51 22.70 4.04 45.34 14.78 0.10 0.18 7.04 0.27 0.01 0.01 0.01 5.54 24.69 3.76 42.61 15.47 0.10 0.16 7.38 0.26 0.00 0.01 0.00 Radii, Distal 4.92 18.08 4.33 49.83 14.79 0.02 0.27 7.43 0.29 0.01 0.02 0.01 5.34 21.83 4.09 45.62 15.26 0.10 0.18 7.26 0.28 0.01 0.01 0.01 5.18 22.63 3.90 43.43 16.45 0.10 0.17 7.84 0.27 0.00 0.01 0.00 Ulnae, Proximal 4.94 18.17 4.33 49.80 14.74 0.02 0.27 7.40 0.29 0.01 0.02 0.01 5.38 22.03 4.08 45.56 15.15 0.10 0.18 7.21 0.28 0.01 0.01 0.01 5.29 23.25 3.86 43.18 16.16 0.10 0.17 7.70 0.27 0.00 0.01 0.00 1Ulnae, Shaft 5.05 18.59 4.31 49.70 14.47 0.02 0.27 7.27 0.29 0.01 0.02 0.01 5.42 22.22 4.07 45.50 15.05 0.10 0.18 7.17 0.27 0.01 0.01 0.01 5.36 23.67 3.83 43.02 15.96 0.10 0.17 7.61 0.27 0.00 0.01 0.00 Ulnae, Distal 4.63 16.88 4.40 50.13 15.55 0.01 0.28 7.80 0.30 0.01 0.02 0.00 5.15 20.89 4.15 45.93 15.78 0.10 0.18 7.51 0.28 0.01 0.01 0.01 4.80 20.41 4.06 44.32 17.50 0.10 0.18 8.33 0.28 0.00 0.01 0.00 Wrists and Hands 6.39 26.17 3.76 46.20 11.23 0.04 0.23 5.68 0.26 0.01 0.02 0.01 6.48 29.58 3.45 41.57 12.46 0.10 0.14 5.95 0.24 0.01 0.01 0.01 6.68 32.65 3.10 38.47 12.60 0.10 0.13 6.03 0.23 0.01 0.01 0.00 Femora, Proximal 5.57 20.51 4.23 49.42 13.06 0.03 0.26 6.58 0.28 0.01 0.02 0.02 5.70 22.72 4.10 45.99 14.15 0.10 0.18 6.75 0.27 0.01 0.01 0.02 5.80 24.12 3.92 44.22 14.45 0.10 0.18 6.91 0.27 0.00 0.01 0.02 1Femora, Upper Shaft 5.07 18.61 4.31 49.75 14.40 0.02 0.27 7.23 0.29 0.01 0.02 0.01 5.54 22.17 4.12 45.99 14.62 0.10 0.18 6.97 0.28 0.01 0.01 0.02 5.51 23.53 3.90 43.72 15.41 0.10 0.18 7.36 0.27 0.00 0.01 0.01 1Femora, Lower Shaft 5.14 18.93 4.29 49.65 14.22 0.02 0.27 7.15 0.29 0.01 0.02 0.01 5.43 21.76 4.13 46.03 14.93 0.10 0.18 7.11 0.28 0.01 0.01 0.01 5.31 22.54 3.96 44.01 15.98 0.10 0.18 7.63 0.27 0.00 0.01 0.01 Femora, Distal 5.52 20.63 4.20 49.14 13.23 0.03 0.26 6.66 0.28 0.01 0.02 0.01 5.83 23.75 4.01 45.39 13.84 0.10 0.18 6.61 0.27 0.01 0.01 0.02 6.12 27.70 3.56 41.60 13.86 0.10 0.16 6.63 0.25 0.00 0.01 0.01 Patellae 7.11 27.16 3.87 47.56 9.06 0.05 0.23 4.63 0.26 0.01 0.02 0.04 8.49 37.49 3.09 40.58 6.61 0.10 0.14 3.24 0.21 0.01 0.01 0.04 9.39 46.82 2.17 33.76 5.00 0.10 0.08 2.47 0.17 0.01 0.01 0.02 Tibiae, Proximal 5.22 19.29 4.27 49.52 14.03 0.02 0.27 7.05 0.29 0.01 0.02 0.01 5.42 22.25 4.07 45.49 15.03 0.10 0.18 7.16 0.27 0.01 0.01 0.01 5.53 24.66 3.76 42.62 15.49 0.10 0.16 7.39 0.26 0.00 0.01 0.00 1Tibiae, Shaft 5.23 19.33 4.27 49.51 14.00 0.02 0.27 7.04 0.29 0.01 0.02 0.01 5.40 22.11 4.08 45.53 15.11 0.10 0.18 7.19 0.28 0.01 0.01 0.01 5.45 24.16 3.79 42.82 15.73 0.10 0.17 7.50 0.27 0.00 0.01 0.00 Tibiae, Distal 4.82 17.66 4.36 49.93 15.06 0.02 0.28 7.56 0.29 0.01 0.02 0.01 5.22 21.22 4.13 45.82 15.60 0.10 0.18 7.42 0.28 0.01 0.01 0.01 4.98 21.49 3.99 43.89 16.99 0.10 0.18 8.09 0.28 0.00 0.01 0.00 Fibulae, Proximal 4.91 18.02 4.34 49.84 14.83 0.02 0.28 7.44 0.29 0.01 0.02 0.01 5.54 22.85 4.03 45.30 14.70 0.10 0.18 7.00 0.27 0.01 0.01 0.01 5.43 24.05 3.80 42.86 15.78 0.10 0.17 7.52 0.27 0.00 0.01 0.00 1Fibulae, Shaft 5.09 18.78 4.30 49.65 14.35 0.02 0.27 7.21 0.29 0.01 0.02 0.01 5.88 24.52 3.92 44.76 13.78 0.10 0.17 6.57 0.27 0.01 0.01 0.01 5.97 27.16 3.58 41.62 14.31 0.10 0.16 6.84 0.25 0.00 0.01 0.01 Fibulae, Distal 4.87 17.85 4.35 49.88 14.93 0.02 0.28 7.50 0.29 0.01 0.02 0.01 5.53 22.77 4.03 45.32 14.75 0.10 0.18 7.02 0.27 0.01 0.01 0.01 5.40 23.86 3.82 42.94 15.87 0.10 0.17 7.57 0.27 0.00 0.01 0.00 Ankles and Feet 6.50 26.72 3.72 45.98 10.97 0.04 0.22 5.55 0.26 0.01 0.02 0.02 6.53 29.88 3.43 41.44 12.33 0.10 0.14 5.89 0.24 0.01 0.01 0.01 7.03 34.87 2.93 37.46 11.67 0.10 0.12 5.59 0.22 0.01 0.01 0.00 Total Skeleton 5.99 21.06 4.06 50.25 11.87 0.06 0.25 6.10 0.31 0.03 0.02 0.02 6.13 23.97 3.93 46.26 12.87 0.11 0.18 6.22 0.28 0.01 0.01 0.02 6.57 27.28 3.61 43.83 12.18 0.12 0.16 5.92 0.27 0.01 0.01 0.02 1Contains medullary marrow (no trabecular bone) and cortical bone only 1-YEAR 5-YEAR 10-YEAR

PAGE 241

241 Table 5 25. Site specific homogeneous bone elemental composition (excluding cartilage /fibrous tissue ) in the 1year, 5 year, and 10year hybrid phantoms (% by mass). Skeletal Site H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe H C N O Ca Na Mg P S Cl K Fe Cranium 5.39 19.86 4.26 49.51 13.54 0.03 0.27 6.82 0.28 0.01 0.02 0.01 5.65 22.47 4.11 46.08 14.29 0.10 0.19 6.82 0.27 0.01 0.01 0.02 5.88 24.72 3.87 43.88 14.25 0.10 0.18 6.82 0.26 0.00 0.01 0.02 Mandible 5.35 19.69 4.27 49.55 13.66 0.03 0.27 6.87 0.29 0.01 0.02 0.01 5.64 22.44 4.12 46.08 14.30 0.10 0.19 6.82 0.27 0.01 0.01 0.02 5.81 24.39 3.89 43.97 14.45 0.10 0.18 6.91 0.27 0.00 0.01 0.02 Cervical 6.97 26.15 3.96 48.15 9.37 0.05 0.24 4.78 0.26 0.01 0.02 0.04 6.48 25.81 3.95 45.60 11.87 0.10 0.18 5.70 0.26 0.01 0.01 0.03 7.20 29.74 3.67 43.63 10.23 0.10 0.18 4.95 0.24 0.01 0.01 0.04 Thoracic 7.22 27.13 3.91 47.93 8.73 0.05 0.23 4.47 0.26 0.01 0.02 0.04 7.02 28.12 3.83 45.15 10.31 0.10 0.18 4.97 0.25 0.01 0.01 0.04 7.90 32.75 3.52 43.09 8.18 0.10 0.17 4.00 0.23 0.01 0.01 0.05 Lumbar 6.52 24.36 4.04 48.54 10.57 0.04 0.25 5.36 0.27 0.01 0.02 0.03 6.90 27.61 3.86 45.25 10.66 0.10 0.18 5.13 0.25 0.01 0.01 0.03 7.77 32.18 3.55 43.19 8.57 0.10 0.17 4.18 0.24 0.01 0.01 0.04 Sternum 6.75 25.29 4.00 48.33 9.95 0.05 0.24 5.06 0.26 0.01 0.02 0.03 7.52 30.22 3.72 44.74 8.90 0.10 0.18 4.32 0.24 0.01 0.01 0.04 8.46 35.16 3.39 42.66 6.54 0.10 0.17 3.23 0.22 0.01 0.01 0.05 Ribs 6.65 24.88 4.02 48.42 10.22 0.05 0.24 5.19 0.26 0.01 0.02 0.03 6.48 25.81 3.95 45.60 11.87 0.10 0.18 5.70 0.26 0.01 0.01 0.03 7.22 29.79 3.67 43.62 10.19 0.10 0.18 4.93 0.24 0.01 0.01 0.04 Scapulae 6.00 22.29 4.14 48.98 11.94 0.04 0.26 6.03 0.27 0.01 0.02 0.02 6.06 24.29 4.01 45.67 13.11 0.10 0.18 6.27 0.27 0.01 0.01 0.02 6.63 28.25 3.67 42.99 12.09 0.10 0.17 5.81 0.25 0.01 0.01 0.02 Clavicles 5.91 21.93 4.16 49.06 12.17 0.03 0.26 6.15 0.28 0.01 0.02 0.02 6.10 24.51 4.00 45.58 13.00 0.10 0.18 6.22 0.27 0.01 0.01 0.02 6.62 28.37 3.65 42.85 12.12 0.10 0.17 5.83 0.25 0.01 0.01 0.02 Os coxae 6.51 24.33 4.04 48.54 10.58 0.04 0.25 5.37 0.27 0.01 0.02 0.03 6.65 26.95 3.86 45.03 11.43 0.10 0.18 5.49 0.26 0.01 0.01 0.03 7.46 31.56 3.52 42.66 9.59 0.10 0.17 4.65 0.24 0.01 0.01 0.04 Sacrum 6.44 24.04 4.06 48.60 10.78 0.04 0.25 5.47 0.27 0.01 0.02 0.03 7.42 30.32 3.68 44.27 9.26 0.10 0.17 4.48 0.24 0.01 0.01 0.04 8.40 35.85 3.28 41.72 6.84 0.10 0.16 3.37 0.22 0.01 0.01 0.05 Humeri, Proximal 5.52 20.33 4.24 49.46 13.19 0.03 0.27 6.64 0.28 0.01 0.02 0.02 5.79 23.12 4.07 45.90 13.90 0.10 0.18 6.63 0.27 0.01 0.01 0.02 5.98 24.94 3.88 44.03 13.92 0.10 0.18 6.67 0.26 0.00 0.01 0.02 1Humeri, Upper Shaft 5.03 18.47 4.32 49.78 14.50 0.02 0.27 7.28 0.29 0.01 0.02 0.01 5.43 21.68 4.14 46.11 14.93 0.10 0.19 7.11 0.28 0.01 0.01 0.01 5.30 22.48 3.97 44.05 16.00 0.10 0.18 7.63 0.27 0.00 0.01 0.01 1Humeri, Lower Shaft 5.16 19.02 4.29 49.63 14.17 0.02 0.27 7.12 0.29 0.01 0.02 0.01 5.53 22.19 4.11 45.93 14.67 0.10 0.18 6.99 0.27 0.01 0.01 0.01 5.49 23.47 3.90 43.72 15.47 0.10 0.18 7.39 0.27 0.00 0.01 0.01 Humeri, Distal 5.43 20.21 4.22 49.25 13.49 0.03 0.26 6.79 0.28 0.01 0.02 0.01 5.70 23.14 4.04 45.55 14.20 0.10 0.18 6.77 0.27 0.01 0.01 0.02 5.85 26.22 3.66 42.17 14.59 0.10 0.16 6.97 0.26 0.00 0.01 0.01 Radii, Proximal 4.82 17.63 4.36 49.94 15.08 0.02 0.28 7.56 0.29 0.01 0.02 0.01 5.23 21.29 4.13 45.80 15.56 0.10 0.18 7.40 0.28 0.01 0.01 0.01 4.95 21.31 4.00 43.96 17.07 0.10 0.18 8.13 0.28 0.00 0.01 0.00 1Radii, Shaft 5.05 18.61 4.31 49.69 14.45 0.02 0.27 7.26 0.29 0.01 0.02 0.01 5.51 22.70 4.04 45.34 14.78 0.10 0.18 7.04 0.27 0.01 0.01 0.01 5.54 24.69 3.76 42.61 15.47 0.10 0.16 7.38 0.26 0.00 0.01 0.00 Radii, Distal 4.92 18.08 4.33 49.83 14.79 0.02 0.27 7.43 0.29 0.01 0.02 0.01 5.34 21.83 4.09 45.62 15.26 0.10 0.18 7.26 0.28 0.01 0.01 0.01 5.18 22.63 3.90 43.43 16.45 0.10 0.17 7.84 0.27 0.00 0.01 0.00 Ulnae, Proximal 4.94 18.17 4.33 49.80 14.74 0.02 0.27 7.40 0.29 0.01 0.02 0.01 5.38 22.03 4.08 45.56 15.15 0.10 0.18 7.21 0.28 0.01 0.01 0.01 5.29 23.25 3.86 43.18 16.16 0.10 0.17 7.70 0.27 0.00 0.01 0.00 1Ulnae, Shaft 5.05 18.59 4.31 49.70 14.47 0.02 0.27 7.27 0.29 0.01 0.02 0.01 5.42 22.22 4.07 45.50 15.05 0.10 0.18 7.17 0.27 0.01 0.01 0.01 5.36 23.67 3.83 43.02 15.96 0.10 0.17 7.61 0.27 0.00 0.01 0.00 Ulnae, Distal 4.63 16.88 4.40 50.13 15.55 0.01 0.28 7.80 0.30 0.01 0.02 0.00 5.15 20.89 4.15 45.93 15.78 0.10 0.18 7.51 0.28 0.01 0.01 0.01 4.80 20.41 4.06 44.32 17.50 0.10 0.18 8.33 0.28 0.00 0.01 0.00 Wrists and Hands 6.39 26.17 3.76 46.20 11.23 0.04 0.23 5.68 0.26 0.01 0.02 0.01 6.48 29.58 3.45 41.57 12.46 0.10 0.14 5.95 0.24 0.01 0.01 0.01 6.68 32.65 3.10 38.47 12.60 0.10 0.13 6.03 0.23 0.01 0.01 0.00 Femora, Proximal 5.57 20.51 4.23 49.42 13.06 0.03 0.26 6.58 0.28 0.01 0.02 0.02 5.70 22.72 4.10 45.99 14.15 0.10 0.18 6.75 0.27 0.01 0.01 0.02 5.80 24.12 3.92 44.22 14.45 0.10 0.18 6.91 0.27 0.00 0.01 0.02 1Femora, Upper Shaft 5.07 18.61 4.31 49.75 14.40 0.02 0.27 7.23 0.29 0.01 0.02 0.01 5.54 22.17 4.12 45.99 14.62 0.10 0.18 6.97 0.28 0.01 0.01 0.02 5.51 23.53 3.90 43.72 15.41 0.10 0.18 7.36 0.27 0.00 0.01 0.01 1Femora, Lower Shaft 5.14 18.93 4.29 49.65 14.22 0.02 0.27 7.15 0.29 0.01 0.02 0.01 5.43 21.76 4.13 46.03 14.93 0.10 0.18 7.11 0.28 0.01 0.01 0.01 5.31 22.54 3.96 44.01 15.98 0.10 0.18 7.63 0.27 0.00 0.01 0.01 Femora, Distal 5.52 20.63 4.20 49.14 13.23 0.03 0.26 6.66 0.28 0.01 0.02 0.01 5.83 23.75 4.01 45.39 13.84 0.10 0.18 6.61 0.27 0.01 0.01 0.02 6.12 27.70 3.56 41.60 13.86 0.10 0.16 6.63 0.25 0.00 0.01 0.01 Patellae 7.11 27.16 3.87 47.56 9.06 0.05 0.23 4.63 0.26 0.01 0.02 0.04 8.49 37.49 3.09 40.58 6.61 0.10 0.14 3.24 0.21 0.01 0.01 0.04 9.39 46.82 2.17 33.76 5.00 0.10 0.08 2.47 0.17 0.01 0.01 0.02 Tibiae, Proximal 5.22 19.29 4.27 49.52 14.03 0.02 0.27 7.05 0.29 0.01 0.02 0.01 5.42 22.25 4.07 45.49 15.03 0.10 0.18 7.16 0.27 0.01 0.01 0.01 5.53 24.66 3.76 42.62 15.49 0.10 0.16 7.39 0.26 0.00 0.01 0.00 1Tibiae, Shaft 5.23 19.33 4.27 49.51 14.00 0.02 0.27 7.04 0.29 0.01 0.02 0.01 5.40 22.11 4.08 45.53 15.11 0.10 0.18 7.19 0.28 0.01 0.01 0.01 5.45 24.16 3.79 42.82 15.73 0.10 0.17 7.50 0.27 0.00 0.01 0.00 Tibiae, Distal 4.82 17.66 4.36 49.93 15.06 0.02 0.28 7.56 0.29 0.01 0.02 0.01 5.22 21.22 4.13 45.82 15.60 0.10 0.18 7.42 0.28 0.01 0.01 0.01 4.98 21.49 3.99 43.89 16.99 0.10 0.18 8.09 0.28 0.00 0.01 0.00 Fibulae, Proximal 4.91 18.02 4.34 49.84 14.83 0.02 0.28 7.44 0.29 0.01 0.02 0.01 5.54 22.85 4.03 45.30 14.70 0.10 0.18 7.00 0.27 0.01 0.01 0.01 5.43 24.05 3.80 42.86 15.78 0.10 0.17 7.52 0.27 0.00 0.01 0.00 1Fibulae, Shaft 5.09 18.78 4.30 49.65 14.35 0.02 0.27 7.21 0.29 0.01 0.02 0.01 5.88 24.52 3.92 44.76 13.78 0.10 0.17 6.57 0.27 0.01 0.01 0.01 5.97 27.16 3.58 41.62 14.31 0.10 0.16 6.84 0.25 0.00 0.01 0.01 Fibulae, Distal 4.87 17.85 4.35 49.88 14.93 0.02 0.28 7.50 0.29 0.01 0.02 0.01 5.53 22.77 4.03 45.32 14.75 0.10 0.18 7.02 0.27 0.01 0.01 0.01 5.40 23.86 3.82 42.94 15.87 0.10 0.17 7.57 0.27 0.00 0.01 0.00 Ankles and Feet 6.50 26.72 3.72 45.98 10.97 0.04 0.22 5.55 0.26 0.01 0.02 0.02 6.53 29.88 3.43 41.44 12.33 0.10 0.14 5.89 0.24 0.01 0.01 0.01 7.03 34.87 2.93 37.46 11.67 0.10 0.12 5.59 0.22 0.01 0.01 0.00 Total Skeleton 5.80 21.64 4.16 48.99 12.49 0.03 0.26 6.30 0.28 0.01 0.02 0.02 6.02 24.40 3.98 45.40 13.27 0.10 0.18 6.34 0.27 0.01 0.01 0.02 6.47 27.90 3.66 42.75 12.62 0.10 0.17 6.06 0.25 0.00 0.01 0.02 1Contains medullary marrow (no trabecular bone) and cortical bone only 1-YEAR 5-YEAR 10-YEAR

PAGE 242

242 Table 5 26. 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. 1-Year Skeletal Site LV FH FN IC PB R Cranium 1.00 Mandible 1.00 Cervical 1.00 Thoracic 1.00 Lumbar 1.00 Sternum 1.00 Ribs 1.00 Scapula 0.40 0.60 Clavicles 0.40 0.60 Os coxae 0.40 0.60 Sacrum 0.40 0.60 Humeri, upper half (FHN) 1.00 Humeri, lower half (FHN) 1.00 Radii 1.00 Ulna 1.00 Hands 1.00 Femora, upper half (FHN) 1.00 Femora, lower half (FHN) 1.00 Patella 1.00 Tibia 1.00 Fibula 1.00 Ankles and Feet 1.00 1.7 Y Leeds

PAGE 243

243 Table 5 27. 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. 5-Year Skeletal Site C4FHN FS IC PB R LV FH FN IC PB R Cranium 0.50 0.50 Mandible 0.50 0.50 Cervical 0.50 0.50 Thoracic 0.50 0.50 Lumbar 0.50 0.50 Sternum 0.50 0.50 Ribs 0.50 0.50 Scapula 0.30 0.20 0.30 0.20 Clavicles 0.30 0.20 0.30 0.20 Os coxae 0.30 0.20 0.30 0.20 Sacrum 0.30 0.20 0.30 0.20 Humeri, upper half (FHN) 0.50 0.50 Humeri, lower half (FHN) 0.25 0.25 0.25 0.25 Radii 0.25 0.25 0.25 0.25 Ulna 0.25 0.25 0.25 0.25 Hands 0.25 0.25 0.25 0.25 Femora, upper half (FHN) 0.50 0.50 Femora, lower half (FHN) 0.25 0.25 0.25 0.25 Patella 0.25 0.25 0.25 0.25 Tibia 0.25 0.25 0.25 0.25 Fibula 0.25 0.25 0.25 0.25 Ankles and Feet 0.25 0.25 0.25 0.25 9 Y Leeds 1.7 Y Leeds

PAGE 244

244 Table 5 28. 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. 10-Year Skeletal Site LV FH FN IC PB R Cranium 1.00 Mandible 1.00 Cervical 1.00 Thoracic 1.00 Lumbar 1.00 Sternum 1.00 Ribs 1.00 Scapula 0.40 0.60 Clavicles 0.40 0.60 Os coxae 0.40 0.60 Sacrum 0.40 0.60 Humeri, upper half (FHN) 1.00 Humeri, lower half (FHN) 0.50 0.50 Radii 0.50 0.50 Ulna 0.50 0.50 Hands 0.50 0.50 Femora, upper half (FHN) 0.50 0.50 Femora, lower half (FHN) 1.00 Patella 0.50 0.50 Tibia 0.50 0.50 Fibula 0.50 0.50 Ankles and Feet 0.50 0.50 9 Y Leeds

PAGE 245

245 Table 5 29. Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCBIST and PIRT for an AM source and AM target. SIRT-VBIST SIRT-CBIST PIRT SIRT-VBIST and PIRT SIRT-CBIST and PIRT Eo (MeV) (AM AM) (AM AM) (AM AM)Absolute Errors (%) Absolute Errors (%) 0.01 0.9986010 0.9971047 0.998607 0.0006 0.1503 0.015 0.9971430 0.9942633 0.997238 0.0095 0.2975 0.02 0.9951350 0.9914533 0.995356 0.0221 0.3903 0.03 0.9907530 0.9851657 0.990607 0.0146 0.5442 0.04 0.9851120 0.9783205 0.985301 0.0189 0.6981 0.05 0.9782430 0.9705638 0.977550 0.0693 0.6987 0.1 0.9372210 0.9192433 0.937262 0.0041 1.8019 0.2 0.8470080 0.8093167 0.844800 0.2208 3.5483 0.5 0.7431390 0.7216874 0.738601 0.4538 1.6913 1 0.6856390 0.6697894 0.682537 0.3102 1.2747 1.5 0.6398690 0.6265675 0.639579 0.0290 1.3011 2 0.5977800 0.5870822 0.594152 0.3628 0.7070 4 0.4553300 0.4468776 0.450306 0.5024 0.3429 Table 5 30. Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCBIST and PIRT for an AM source and TBE target. SIRT-VBIST SIRT-CBIST PIRT SIRT-VBIST and PIRT SIRT-CBIST and PIRT Eo (MeV) (TBE AM) (TBE AM) (TBE AM)Absolute Errors (%) Absolute Errors (%) 0.01 0.0012850 0.0027628 0.001240 0.0045 0.1522 0.015 0.0025070 0.0052640 0.002578 0.0071 0.2686 0.02 0.0042170 0.0076904 0.003902 0.0315 0.3788 0.03 0.0077560 0.0123703 0.007756 0.0000 0.4614 0.04 0.0105360 0.0146221 0.010320 0.0216 0.4302 0.05 0.0121440 0.0166846 0.012364 0.0220 0.4320 0.1 0.0162700 0.0250053 0.016541 0.0271 0.8464 0.2 0.0207950 0.0350631 0.020906 0.0111 1.4157 0.5 0.0246070 0.0410553 0.024782 0.0175 1.6274 1 0.0243170 0.0395982 0.024186 0.0131 1.5412 1.5 0.0231180 0.0374239 0.023081 0.0037 1.4343 2 0.0221470 0.0348955 0.021871 0.0276 1.3025 4 0.0178890 0.0270265 0.016828 0.1061 1.0199

PAGE 246

246 Table 5 31. Electron absorbed fraction comparison between SIRT VBIST SIRT 3DCBIST and PIRT for an AM source a nd TBV target. SIRT-VBIST SIRT-CBIST PIRT SIRT-VBIST and PIRT SIRT-CBIST and PIRT Eo (MeV) (TBV AM) (TBV AM) (TBV AM)Absolute Errors (%) Absolute Errors (%) 0.01 0.0000000 0.0000490 0.000043 0.0043 0.0006 0.015 0.0000007 0.0002739 0.000162 0.0161 0.0112 0.02 0.0000976 0.0005128 0.000239 0.0142 0.0273 0.03 0.0000999 0.0018409 0.000877 0.0777 0.0964 0.04 0.0003872 0.0059705 0.003435 0.3048 0.2535 0.05 0.0006007 0.0112279 0.007925 0.7324 0.3303 0.1 0.0206318 0.0503149 0.041397 2.0765 0.8918 0.2 0.0660506 0.1397367 0.117730 5.1679 2.2007 0.5 0.1044737 0.1880306 0.184044 7.9571 0.3986 1 0.1360377 0.1876358 0.185266 4.9229 0.2369 1.5 0.1438877 0.1796677 0.180672 3.6785 0.1005 2 0.1468866 0.1695913 0.171543 2.4656 0.1951 4 0.1270029 0.1350753 0.134752 0.7749 0.0323 Table 5 32. 66Y Os Coxae SIRT absorbed fraction results and the corresponding coefficients of variation. Eo (MeV) (Spongiosa )Error (CBV )Error (Soft Tissue )Error 0.010 0.9999185 0.00% 0.0000815 41.35% 0.0000000 NaN% 0.015 0.9998032 0.01% 0.0001968 27.01% 0.0000000 NaN% 0.020 0.9996565 0.01% 0.0003398 17.62% 0.0000037 -196.00% 0.030 0.9993769 0.01% 0.0006091 16.55% 0.0000140 -106.65% 0.040 0.9989151 0.01% 0.0010492 11.32% 0.0000357 58.72% 0.050 0.9984783 0.01% 0.0014703 9.12% 0.0000514 47.83% 0.100 0.9945614 0.03% 0.0051763 5.28% 0.0002623 19.67% 0.200 0.9841164 0.04% 0.0151274 2.80% 0.0007562 11.88% 0.500 0.9507734 0.09% 0.0467907 1.84% 0.0024360 6.42% 1.000 0.8970234 0.13% 0.0917367 1.22% 0.0112399 2.48% 1.500 0.8436608 0.16% 0.1201888 0.92% 0.0361504 1.61% 2.000 0.7915691 0.16% 0.1354973 0.63% 0.0729336 1.09% 4.000 0.6089794 0.27% 0.1434658 0.58% 0.2475549 0.52%

PAGE 247

247 Table 5 33. 44Y iliac crest CBIST absorbed fraction results at 100% cellularity and the corresponding coefficient s of variation from a marrow source. 0.01 MeV Marrow: 0.997187 +/0 % Bone: 0.00005 +/10.53 % endosteum: 0.002764 +/1.59 % 0.015 MeV Marrow: 0.99446 +/0.01 % Bone: 0.000275 +/4.65 % endosteum: 0.005266 +/1.22 % 0.02 MeV Marrow: 0.991794 +/0.01 % Bone: 0.000513 +/3.75 % endosteum: 0.007693 +/0.99 % 0.03 MeV Marrow: 0.98578 +/0.01 % Bone: 0.001842 +/1.74 % endosteum: 0.012378 +/0.77 % 0.04 MeV Marrow: 0.979384 +/0.01 % Bone: 0.005978 +/0.98 % endosteum: 0.014639 +/0.66 % 0.05 MeV Marrow: 0.972044 +/0.02 % Bone: 0.011246 +/0.75 % endosteum: 0.016711 +/0.57 % 0.1 MeV Marrow: 0.924269 +/0.02 % Bone: 0.050589 +/0.34 % endosteum: 0.025141 +/0.39 % 0.2 MeV Marrow: 0.822379 +/0.04 % Bone: 0.141992 +/0.18 % endosteum: 0.035629 +/0.25 % 0.5 MeV Marrow: 0.759053 +/0.03 % Bone: 0.197766 +/0.09 % endosteum: 0.043181 +/0.13 % 1 MeV Marrow: 0.74668 +/0.02 % Bone: 0.209176 +/0.06 % endosteum: 0.044144 +/0.08 % 1.5 MeV Marrow: 0.742678 +/0.02 % Bone: 0.212963 +/0.05 % endosteum: 0.04436 +/0.07 % 2 MeV Marrow: 0.741669 +/0.14 % Bone: 0.214247 +/0.44 % endosteum: 0.044084 +/0.6 % 4 MeV Marrow: 0.733814 +/0.12 % Bone: 0.221806 +/0.38 % endosteum: 0.04438 +/0.47 % Table 5 34. 66Y iliac crest VBIST absorbed fraction results at 100% cellularity and the corresponding coefficients of variation. Eo (MeV) (AM AM)COV % (TBE AM)COV % (TBV AM)COV % 0.01 0.999449940 0.00 0.000550060 28.94 0.0000000 1.66 0.015 0.998054375 0.01 0.001944925 12.51 0.0000007 1.37 0.02 0.997207773 0.01 0.002694575 2.88 0.0000977 1.05 0.03 0.994421262 0.01 0.005478750 0.98 0.0001000 0.61 0.04 0.990955080 0.02 0.008657255 0.83 0.0003877 0.49 0.05 0.986845634 0.02 0.012552721 0.56 0.0006016 0.34 0.1 0.962128436 0.04 0.017126978 0.41 0.0207446 0.21 0.2 0.911673189 0.08 0.021210119 0.24 0.0671167 0.16 0.5 0.863853201 0.08 0.026263949 0.09 0.1098828 0.09 1 0.822000000 0.12 0.026345437 0.02 0.1516546 0.04 1.5 0.802000000 0.13 0.027448355 0.02 0.1705516 0.03 2 0.787000000 0.16 0.027436101 0.01 0.1855639 0.01 4 0.764000000 0.22 0.027449556 0.01 0.2085504 0.01

PAGE 248

248 A B C D Figure 5 1. Original rendered cortical bone and spongiosa (medullary marrow) segm ented polygon mesh a 1year (left), 5 year (middle), 10year (right) (A) o s coxae, (B) femur, (C) rib cage, and (D) humerus.

PAGE 249

249 Figure 5 2. Newborn to 15year age progression of the (A) cortical bone percentages and (B) trabecular bone percentages for sele cted skeletal sites.

PAGE 250

250 Figure 5 3. SIRT VBIST SIRT CBIST PIRT absorbed fraction comparison of the adult iliac crest at 100% cellularity and an AM source to TBV, TBE (10 micron definition), and AM targets.

PAGE 251

251 CHAPTER 6 CONCLUSIONS Current skeletal tissues models in ICRP 70 and ICRP 80 contain reference tissue constituent data for the whole skeleton, but not for individual bone sites. These models are also based on the ORNL stylized (Cristy and Eckerman 1987) mathematical phantom constructed from 3D g eometries of spheres, cones, and ellipsoids. The first improvement of reference skeletal dosimetry is based on an accurate assignment of the sitespecific tissue masses as a function of age, and the overall size and shape of the bone site being modeled. This is done by collecting real, high resolution 3D image skeletal data from CT, to analyze the bone geometry as a heterogeneous mixture of cortical bone and spongiosa, and microCT, to assess the detailed structures of trabecular bone and marrow inside the spongiosa. The second improvement requires a realistic transport model that incorporates the microstructural components of spongiosa, while maintaining the finite dimensions of each bone. Current pediatric skeletal models (Stabin and Siegel 2003) do not account for the heterogeneity of bone as a function of cortical and spongiosa separately, or the bone boundary, and are based on 2D chorddistributions from limited skeletal specimens from a 1.7 year and 9year old. For children, the electron escape fraction has shown to be significant, especially for the newborn. These limitations are addressed in this dissertation by the creation of detailed, heterogeneous skeletal tissue models by age and bone site, from a comprehensive set of real 3D images of bone s amples. The PIRT electron transport model takes into account the macroimage and microimage simultaneously for each bone site, to ensure accurate electron escape from the spongiosa, cortical bone cross fire into AM regions, and physics modeling of the trabecular and marrow structures within spongiosa within a 3D image.

PAGE 252

252 Skeletal Tissue Modeling for the ICRP Pediatric Age Series Newborn In Chapter 2, the newborn skeletal tissue model was developed based on volumes from the homogeneous skeletal in the UF hybrid newborn modeling techniques in Lee et al. (2007), skeletal tissue specimens acquired at autopsy from a 4 day and 5 day old newborn, and ICRP 70 and ICRP 89 reference skeletal data. The homogeneous skeleton in Lee et al. (2007) was partitioned into the individual skeletal tissue constituents: active marrow, shallow marrow, cortical bone, trabecular bone, and miscellaneous skeletal tissues. The derivation of these skeletal tissues targeted the total skeletal tissue ICRP newborn reference masses. Cu rrent ICRP data does not provide bone site specific tissue masses, which stresses the importance of the model developed in this study. Current ICRP reference cortical and trabecular bone are derived used the adult 80% cortical and 20% trabecular bone proportions to mineral bone. However, based on the image data from the newborn autopsy specimens, this average is realistically 40% cortical bone and 60% trabecular bone. It was shown that these differences are driven by the biological development of the ne wborn skeleton. Small centers of ossification in a surrounding medium of cartilage and fibrous connective tissues are present at birth in various stages, depending on the bone site. These ossification centers contain a thin layer of cortical bone or oste oid tissue surrounding the developing spongiosa. Throughout childhood, the surrounding cartilage or fibrous connective tissue is replaced with cortical bone during the endochondral ossification (for cartilage) or intr a membranous ossification (fibrous connective tissue) process es Typically, endochondral and intramembranous ossification continues throughout childhood development. Therefore, at birth, trabecular bone is more substantial to the mineral bone contribution than cortical bone. Given the source differences between the ICRP newborn data and the image based data used in this study, the AM distributions were in almost perfect

PAGE 253

253 agreement. Shallow marrow volume fractions were approximately 50%, which indicates the relatively small marrow cavity sizes present in the newborn skeleton. With the partitioning of the constituent skeletal tissues across the skeleton, the homogeneous skeleton developed in Lee et al. (2007), was subsegmented in spongiosa, cortical bone, and cartilage for future dosimetry modeling. 15Year M ale and Female Adolescents In Chapter 4, the 15year male and female skeletal tissue models were developed based on volumes from the homogeneous skeletal in the UF hybrid 15year male and female modeling techniques in Lee et al. (2 008), skeletal tissue specimens acquired at autopsy from an 18year male cadaver, and ICRP 70 and ICRP 89 reference skeletal data. The homogeneous skeleton in Lee et al. (2008) was partitioned into the individual skeletal tissue constituents: active marro w, inactive marrow, shallow marrow, cortical bone, trabecular bone, and miscellaneous skeletal tissues. The derivation of these skeletal tissues targeted the total ICRP mineral bone reference masses for the 15 year male and female separately. As before, the ICRP data does not provide bone site specific tissue masses, which lends to the importance of the models developed in this study. The same methods used in Chapter 2 for the newborn were used in the development of the tissue constituents for the 15yea r male and female as a first iteration. Then, the segmented CBVF and SVF from the 18year male cadaver were uniformly adjusted to target total mineral bone mass and create a truly reference 15 year male and female tissue model. Current ICRP referenc e cortical and trabecular bone are derived used the adult 80% cortical and 20% trabecular bone proportions to mineral bone. Based on the image data from the 18year specimens, this average is approximately 80% cortical bone and 20% trabecular bone. There fore, from birth, throughout childhood, and into adolescence the contribution of cortical bone to total mineral bone increases, while the contributions of trabecular bone

PAGE 254

254 decrease. Shallow marrow volume fractions were approximately 2% to 16%, compared to the 50% seen in the newborn. These findings are consistent with the literature data indicating increased growth of marrow cavity size as we age (Kneissel et al. 1997; Byers et al. 2000; Glorieux et al. 2000; Roschger et al. 2001). Overall, the 18year im age data used to construct the new reference 15 year male and female skeletal models are in good agreement with the ICRP reference data. With the partitioning of the constituent skeletal tissues across the skeleton, the homogeneous skeleton developed in L ee et al. (2008), was subsegmented in spongiosa and cortical bone for future dosimetry modeling. 1Year, 5 Year, and 10Year Children In Chapter 5, the 1year, 5 year, and 10year skeletal tissue models were developed based on a combination of data from the newborn in Chapter 2, the 15year old male and female in Chapter 4, and the percent marrow contribution to the skeleton from Watchman et al. (2007). Similarly to the partitioning performed on the homogeneous newborn and 15year male and female skeleto ns, the homogeneous 1year, 5 year, and 10 year skeletons in Lee et al. (2008) were also partitioned into the individual skeletal tissue constituents. As was done for the 15year old phantoms, the derivation of these skeletal tissues was contingent upon m atching the total ICRP mineral bone reference masses for these ages. This method is described in detail in Chapter 5. Cortical and trabecular bone percentages were then linearly interpolated between then newborn and 15year female to determine what these values would be in the 1year, 5 year, and 10 year skeletons. Due to its simplicity, this assumption was chosen over the more complicated assumptions of a power function or exponential. Cortical and trabecular bone percentages were calculated at 45% / 5 5% for the 1 year, 60% / 40 % for the 5 year, and 70% / 30% for the 10year skeletons. Shallow marrow volume fractions were approximately 20% to 50% for the 1year, 15% to 30% for the 5year, and 10% to 20% for the 10 year skeletal models. Again, these f indings are consistent with the literature data indicating increased

PAGE 255

255 growth of marrow cavity size as we age (Kneissel et al. 1997; Byers et al. 2000; Glorieux et al. 2000; Roschger et al. 2001). With the partitioning of the constituent skeletal tissues ac ross the skeleton, the homogeneous skeleton developed in Lee et al. (2008), was subsegmented in spongiosa, cortical bone, and cartilage /fibrous connective tissue (1 year only) for future dosimetry modeling. Electron Skeletal Dosimetry Modeling for the IC RP Pediatric Age Series PIRT Newborn and 15year female dosimetry modeling using PIRT are discussed in Chapter 3 and Chapter 4, respectively. For radiation protection purposes, bone site specific trabecular and cotical absorption rates for radionuclides were neglected since skeletal averaged results are most useful. For nuclear medicine studies, uptake rates can be modeled from the imaging modalities, and therefore negelected in the dosimetry modeling. PIRT combines the detailed microstructure of trabec ular bone and marrow for each skeletal sample with the physical bone dimensions of spongiosa, cortical bone and cartilage /fibrous connective tissue Regarding specific absorbed fractions, cellularity dependence and source dependence change with electron e nergy and target. Cellularity dependence is important for low to intermediate electrons in an AM source to AM target. For sources in anything other than AM cellularity independence exists for all electron energies. For AM targets, sources in TBV, IM, a nd TBS converge at intermediate to high electron energies, depending on the bone site. Complete source independence at all electron energies is shown for CAR targets. A 50 region was modeled as a surrogate for the osteoprogenitor cell population. However, the relatively small population os osteoprogenitor cells in the periosteum were neglected. For TM50 targets from an AM source, complete cellularity inde pendence exists across all electron energies. Electron escape from spongiosa into cortical bone or cross fire from cortical bone into spongiosa can be used to assess cortical bone and spongiosa thickness by bone site.

PAGE 256

256 Extending the current 2003 newbor n electron skeletal-averaged dosimetry AF data of an AM source and target to 10 MeV can show up to 17.5 times more energy deposition from the infinite 2003 model by not taking in to account electron escape. For a TBV source to an AM target this overestimation can be as high as 22 times at 10 MeV. For the 15-year female overestimations in absorbed fraction values fr om the current 2003 model at 10 MeV are seen 3.6 times from an AM source and target combination, and overestimations of 3.98 times for a TBV source to AM target. SIRT-3DCBIST Image data was unavailable for the 1-year, 5year, and 10-year skeletons. Therefore, an alternative dosimetry method was derived, and im plemented within the 66-year male skeleton for validation. The derived mathematical algorithm combines the results of SIRT which takes in account cortical and cartilage cross-fire into spongiosa, and electron escape from spongiosa, with the results from 3D-CBIST which takes into account en ergy deposition within the spongiosa tissue constituents of marrow and trabecular bone. This method, SIRT-3DCBIST proved to be in agreement with the results obtained from implementing the PIRT methodology in the 66-year male. Deviations between the mode ls are attributed to th e inherent differences between a hybrid voxel and chord-based model ( SIRT-3DCBIST ) and a complete voxel-based model ( PIRT ). These differences are most apparent in the intermediate electron energy range. Future Work Completion of the 15-Year Male Adoles cent Electron Skeletal Dosimetry Model The electron dosimetry results presented in Chapter 4 were for the 15-year female only. Future work will be dedicated to running PIRT for the 15-year male, with the same 18-year male microstructure data sets. Therefore, the main differences will be seen in the fractional electron escape due to physical differences in bone size. Als o, the specific absorbed fraction data could be influenced by the changes in targ et mass between the male and female. Analysis

PAGE 257

257 will be performed to assess any statistical differences between the male and female results of the 15year adolescent. Completion of the 1 Year, 5Year, and 10Year Electron Skeletal Dosimetry Model In Chapter 5, the skeletal tissue models were created for the 1 year, 5 year, and 10year phantoms. The methods of an electron dosimetry model combining the absorbed fraction data of SIRT and 3D CBIST to effectively produce results comparable to PIRT were derived and implemented in the adult 66 year male. Comparisons between the SIRT 3 DCBIST and PIRT model showed acceptable agreement. This methodology will then be applied to the 1year, 5 year, and 10 year skeletal models derived in Chapter 5. If bone specimen data become available for these ages, the appropriate microCT analysis and PIRT simulations will be performed and will subsequently replace the data computed by the SIRT 3DCBIST methodology. External Photon Dosimetry Modeling A unique extension of skeletal absorbed fractions is the development of fluence to dose response func tions for use in external photon dosimetry. Response functions relate the absorbed dose in a skeletal target region, D ( T ), to the photon fluence in a skeletal source E ), and are primarily implemented using fluence estimates provided by a Monte Carlo transport code. During irradiation, photon interactions act as an electron source with energy distributions governe d by the type of interaction and the incident energy of the photon. Once an electron is liberated with a known kinetic energy, an absorbed fraction can be used to determine the dose to both the region of interaction and the surrounding regions. Response functions are ideal for calculating the dose to complex geometries where a KERMA tally may not be sufficient In these cases, response functions increase both the efficiency and accuracy of the calculation due to the fact that detailed electron transport is already included within the absorbed fractions.

PAGE 258

258 Fluence to dose response functions (DRFs) were originally developed by Cristy and Eckerman (1987). These response functions are based on (1) data from an adult 44year male for only the lumbar vertebra a nd cranium, and (2) electron transport through infinite homogeneous bone. Using this information as inputs into an inhouse Matlab code, fluence to dose response functions can calculated for a three tissue target region of AM CAR and TM50Proton and Alpha Particle Dosimetry Modeling from five source regions, AM IM, TBV, CBV and CAR (for newborn only) Mo deling these response functions based on the electron absorbed fractions reported in Chapter 3 and Chapter 4 is not completely true to the physics. The PIRT and SIRT 3DCBIST electron dosimetry models take into account the electrons escaping the bone, but not entering bone from photon interactions on surrounding soft tissue. Therefore, research is being conducted to analyze the validity of a KERMA approximation in spongiosa for surrogate dose to red bone marrow at high electron energies, an enhancement factor in dose to the red bone marrow at intermediate electron energies, and a self dose of unity approximation at low energies based on the current absorbed fraction data reported in the text. Therefore, an updated and comprehensive list of photon fluence to dose response functions will be generated to account for age, bone s ite, the heterogeneity of bone and flux depression, electron escape, and enhancement of dose from incoming secondary electrons generated in soft tissue. These results could potentially have a significant impact involving applications in diagnostic imaging and nuclear medicine procedures. Similar to electron dosimetry, alpha and proton skeletal dosimetry are based on the ORNL stylized phantom skeletal mass data and the Leeds 2D chord distributions. The dosimetry of these highLET particles will be based on chord length distributions, but from the microCT bone specimen samples, by age and bone site. The microstructure and cellularity dependence for these short ranged particles will be significantly high er than their longer -

PAGE 259

259 ranged electron counterpart. The proton absorbed fraction data will be important for the development of improved neutron dose response functions, similar to the photon dose response functions derived from the mass and electron absorbe d fraction data in the skeletal phantoms. These results will be important for applications in proton therapy where the high energy protons are prompting the release of high energy recoil neutrons for possible secondary cancer induction. Radiation risks f rom alpha particle exposure either by accidental ingestion or radiopharmaceutical treatment is another area where better dosimetry modeling with accurate microstructural information and mass data are necessary for improved dosimetry. Proton and alpha part icle dosimetry also play an important role in space dosimetry. However, this is an application for use in the adult skeletal hybrid models rather than the pediatric series presented in this work.

PAGE 260

260 APPENDIX A PAIRED IMAGE RADIATION TRANSPORT CARTIL AGE ( PIRTCARTILAGE) MODEL (EGSNRC USER CODE) This appendix contains the MORTRAN user code of the EGSnrc radiation code that has been modified from the original PIRT model user code (Shah et al. 2005) to transport electrons within a pair of 3D images that define a single skeletal site. It uses input image data from (1) a pre processed binary microimage of skeletal spongiosa (microCT) from a bone site and (2) a voxelized version of the segmented skeletal macroimage of spongiosa, cortical bone, and cartilage (if applicable). The following code was modified from the original PIRT model to include cartilage as a source and target and utilize the microCT image as input instead of the former NMR images which has revered marrow and bone signals. !INDENT M 4; "INDENT EACH MORTRAN NESTING LEVEL BY 4" !INDENT F 2; "INDENT EACH FORTRAN NESTING LEVEL BY 2" "This line is 80 characters long, use it to set up the screen width" "23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789" "******************************************************************************" Amish P. Shah *************************** PIRTCartilage.mortran *************************** REVISED June 6, 2007 by DH Pafundi REVISED NRM to microCT (Marrow=0, Bone=255) REVISED June 15, 2007 by DH Pafundi REVISED to add Cartilage source/target This program calculates the absorbed fraction of energy within the bone trabeculae, the marrow space components (inactive/active marrow), the bone endosteum, and the surrounding cortical bone of a given bone site. The geometry is defined by two images. An microimage is used to simulate an infinite field of trabecular bone. A CT image (lower resolution) is place over the trabecular bone region to define the limits of the trabecular bone region via a cortical bone shell with surrounding soft tissue. Particles that goes outside the cortical shell are discarded. The source is defined in any one of the regions that a target exists: bone volume, active marrow, inactive marrow, cortical bone, and bone endosteum. " Several things must be defined for each run: both images' configurations, the source, the output file, the location of the input file, etc.. " The PEGS file is: microimage (so no one forgets!) the type of particle: 1 for electrons, 0 for photons the initial energy of the particles the number of histo ries per configuration. The results are in the file Output.dat. "******************************************************************************" ----------------------------------------" Step 1: To override the EGSnrc macros ----------------------------------------" 1) so that all real variables are in double precision

PAGE 261

261 REPLACE {$REAL} WITH {DOUBLE PRECISION} 2) the size of the arrays used by EGSnrc. REPLACE {$MXMED} WITH {4} "4 medium in the problem (default 10)" REPLACE {$MXREG} WITH {7} "7 geometric regions (default 2000)" REPLACE {$MXSTACK} WITH {100} "less than 100 particles on stack at once" REPLACE {$MXMDSH} WITH {100} "max. nb of shells per medium for "incoherent scattering" REPLACE {IFIX} WITH {INT} REPLACE {0.,} WITH {0.0D0,} 3) for compatibility with the old EGS4. REPLACE {$CALLHOWNEAR(#);} WITH {CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);} -------------------------------------------" Step 1.a. To define user constant values -------------------------------------------" REPLACE {$REG_TRAB} WITH {1} region within the bone trabeculae REPLACE {$REG_MARR} WITH {2} region within the marrow cavities REPLACE {$REG_CORT} WITH {3} region within the cortical bone REPLACE {$REG_OUTSIDE} WITH {4} region outside the study REPLACE {$REG_LOST} WITH {5} region for lost particles REPLACE {$REG_FAT} WITH {6} region within the FAT REPLACE {$REG_CART} WITH {7} region within the CARTILAGE REPLACE {$MED_BONE} WITH {255} to represent bone in MICRO image REPLACE {$MED_MARR} WITH {0} to represent marrow MICRO image REPLACE {$MED_FAT} WITH {122} to represent FAT in MICRO image REPLACE {$MED_SPONG} WITH {55} to represent spongiosa in CT image" REPLACE {$MED_CORT} WITH {45} to represent cort. bone in CT image" REPLACE {$MED_TISS} WITH {0} to represent softtissue in CT image" REPLACE {$MED_CART} WITH {35} to represent cartilage in CT image" REPLACE {$IMAGE_FILE_MICRO} WITH {23} file to read the image REPLACE {$IMAGE_FILE_CT} WITH {23} file to read the image REPLACE {$INPUT_FILE} WITH {25} file to get the parameters REPLACE {$OUTPUT_FILE} WITH {26} file to record the results REPLACE {$OUTPUT_FILE2} WITH {27} columnar format for output" REPLACE {$N_RUN} WITH {100} number of run for each configuration" REPLACE {$INFINITY} WITH {1.0D99} to simulate infinity long distance REPLACE {$PI} WITH {3.1415926535897932D+00} need Pi in Source this is to solve the boundary crossing problem. The particle is transported a little farther than the exact boundary REPLACE {$BOUNDARY_THICKNESS} WITH {1.0D09} that's 0.1 Angstrom for the geometrical model "************************Change These Parameters*******************************" 1) the MICRO image REPLACE {$MICRO_FILENAME} WITH {'/home/dhasenauer/egsnrc/PIRTCartilage1/4DayL2_MedianFilterSeg_60microns'} REPLACE {$MICRO_VOXEL_SIZE_X} WITH {0.00600D+00} "microimage voxel res (cm) REPLACE {$MICRO_VOXEL_SIZE_Y} WITH {0.00600D+00} in cm REPLACE {$MICRO_VOXEL_SIZE_Z} WITH {0.00600D+00} in cm REPLACE {$MICRO_IMAGE_NX} WITH {69} # of voxels along (O,x)" REPLACE {$MICRO_IMAGE_NY} WITH {108} # of voxels along (O,y)" R EPLACE {$MICRO_IMAGE_NZ} WITH {63} # of voxels along (O,z)" 2) the CT image "macroimage voxel res (cm) REPLACE {$MACRO_FILENAME} WITH {'/home/dhasenauer/egsnrc/PIRTCartilage1/NEWBORN_LUMB(0.005_472x514x1099).bin'} REPLACE {$CT_VOXEL_SIZE_X} WITH {0.00500000D+00} "macroimage voxel" REPLACE {$CT_VOXEL_SIZE_Y} WITH {0.00500000D+00} in cm REPLACE {$CT_VOXEL_SIZE_Z} WITH {0.00500000D+00} in cm REPLACE {$CT_IMAGE_NX} WITH {472} # of voxels along (O,x)" REPLACE {$CT_IMAGE_NY} WITH {514} # of voxels along (O,y)" REPLACE {$CT_IMAGE_NZ} WITH {1099} # of voxels along (O,z)" REPLACE {$INPUT_FILENAME} WITH {'/home/dhasenauer/egsnrc/PIRTCartilage1/Input.dat'}

PAGE 262

262 REPLACE {$OUTPUT_FILENAME} WITH {'/home/dhasenauer/egsnrc/PIRTCartilage1/TBV100_4DL2.dat'} REPLACE {$COL_OUTPUT_FILENAME} WITH {'/home/dhasenauer/egsnrc/PIRTCartilage1/1TBV100_4DL2.dat'} "Choose your source below as follows: 1 => S=TBV bone volue source" 2 => S=TAM active marrow source" 3 => S=TIM inactive marrow source" 4 => S=TBS trabec bone surface source" 5 => S=CBV cortical bone volume source" 6 => S=CAR cartilage volume source" REPLACE {$SOURCE} WITH {1} REPLACE {$SIDE_SPLIT} WITH {0.500} "0.000 for marrowsided, 1.000 for bone" "0.500 for 50/50 split" "or could try to base it on volume fraction" "set it equal to BVF (1MVF)" "**************************Change the Above Parameters************************" -------------------------------------------------" Step 1.b. To define the user common variables -------------------------------------------------" a) for scoring the results REPLACE {COMIN/SCOR/;} WITH {COMMON/SCOR/ CumulEnergyTrabeculae, CumulEnergyMarrow, CumulEnergyCortical, CumulEnergyOutside, CumulEnergyLost, CumulEnergyCart, CumulEnergyFat, CumulEnergyEndo, CumulEnergyEndob, CumulEnergyEndof; $REAL CumulEnergyTrabeculae; $REAL CumulEnergyMarrow; $REAL CumulEnergyCortical; $REAL CumulEnergyOutside; $REAL CumulEnergyLost; $REAL CumulEnergyCart; $REAL CumulEnergyFat; $REAL CumulEnergyEndo; $REAL CumulEnergyEndob; $REAL CumulEnergyEndof;} b) for the geometry REPLACE {COMIN/GEOM/;} WITH {COMMON/GEOM/MICROBoneImage2, CTBoneImage, Isurf,Jsurf,Ksurf,surfside,NumSurfaces; CHARACTER MICROBoneImage2($MICRO_IMAGE_NX,$MICRO_IMAGE_NY,$MICRO_IMAGE_NZ); BYTE CTBoneImage($CT_IMAGE_NZ $CT_IMAGE_NY $CT_IMAGE_NX); INTEGER*2 Isurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX), Jsurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX), Ksurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX); INTEGER*1 surfside($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX); INTEGER NumSurfaces,Sbone,Smarrow;} --------------------------------------------------------" Step 1.c. To define the variables of the main program --------------------------------------------------------" $IMPLICITNONE; to make sure that all variables are declared 1) all the common that you need in the main programm COMIN/BOUNDS,MEDIA,MISC,USEFUL,RANDOM,GEOM,SCOR/; The above expands into COMMON statements BOUNDS contains ECUT and PCUT MEDIA contains NMED and the array concerning media MISC contains the medium per region and Rayleigh parameters USEFUL contains electron rest mass RANDOM contains the RANMAR parameters GEOM passes info to HOWFAR and HOWNEAR routines SCOR passes info to AUSGAB routine 2) local variables of the main program $REAL XIN, YIN, ZIN; particle location (to give to SHOWER) $REAL UIN, VIN, WIN; particle direction (to give to SHOWER) $REAL EIN; particle energy (to give to SHOWER) $REAL WTIN; particle weight (to give to SHOWER) $INTEGER IQIN; particle type (to give to SHOWER) $INTEGER IRIN; particle region (to give to SHOWER) $INTEGER PartNo; particle # to loop for each particle $INTEGER RunNo; run number to loop for each run

PAGE 263

263 $INTEGER ConfigNo; configuration number to loop for each one LOGICAL NoMoreConfig; to test the end of the input file $INTEGER ParticleType; particle type got from the input file $REAL KineticEnergy; kinetic energy got from the input file $INTEGER NumberOfHistories; number of histories got from the input file $INTEGER ParticlePerRun; number of particles per run for statistical results: mean, standard deviation, standard deviation of the mean, 95% confidence interval, and 95% confidence error $ REAL AFTrabeculae; $REAL MeanAFTrabeculae; $REAL StdDevAFTrabeculae; $REAL StdDevOfMeanAFTrabeculae; $REAL ConfIntOfMeanAFTrabeculae; $REAL ConfErrOfMeanAFTrabeculae; $REAL AFMarrow; $REAL MeanAFMarrow; $REAL StdDevAFMarrow; $REAL StdDevOfMeanAFMarrow; $REAL ConfIntOfMeanAFMarrow; $REAL ConfErrOfMeanAFMarrow; $REAL AFFat; $REAL MeanAFFat; $REAL StdDevAFFat; $REAL StdDevOfMeanAFFat; $REAL ConfIntOfMeanAFFat; $REAL ConfErrOfMeanAFFat; $REAL AFEndo; $REAL MeanAFEndo; $REAL StdDevAFEndo; $REAL StdDevOfMeanAFEndo; $REAL ConfIntOfMeanAFEndo; $REAL ConfErrOfMeanAFEndo; $REAL AFEndob; $REAL MeanAFEndob; $REAL StdDevAFEndob; $REAL StdDevOfMeanAFEndob; $REAL ConfIntOfMeanAFEndob; $REAL ConfErrOfMeanAFEndob; $REAL AFEndof; $REAL MeanAFEndof; $REAL StdDevAFEndof; $ REAL StdDevOfMeanAFEndof; $REAL ConfIntOfMeanAFEndof; $REAL ConfErrOfMeanAFEndof; $REAL AFCortical; $REAL MeanAFCortical; $REAL StdDevAFCortical; $REAL StdDevOfMeanAFCortical; $REAL ConfIntOfMeanAFCortical; $REAL ConfErrOfMeanAFCortical; $REAL AFOutside; $REAL MeanAFOutside; $REAL StdDevAFOutside; $REAL StdDevOfMeanAFOutside; $REAL ConfIntOfMeanAFOutside; $REAL ConfErrOfMeanAFOutside; $REAL AFLost; $REAL MeanAFLost; $REAL StdDevAFLost; $REAL StdDevOfMeanAFLost; $REAL ConfIntOfMeanAFLost; $REAL ConfErrOfMeanAFLost; $REAL AFCart; $REAL MeanAFCart; $REAL StdDevAFCart;

PAGE 264

264 $REAL StdDevOfMeanAFCart; $REAL ConfIntOfMeanAFCart; $REAL ConfErrOfMeanAFCart; $INTEGER NumByte, NumX, NumY, NumZ, NumVoxel; $INTEGER VoxelInTissue, VoxelInCortical, VoxelInCartilage, VoxelInSpongiosa; $INTEGER VoxelValue; CHARACTER tmp; 3) system functions invoked in the main program $REAL DSQRT; INTRINSIC DSQRT; ----------------------------------------" Step 2. To initialize the EGSnrc data ----------------------------------------" 1) to place medium names in an array. $S is a MORTRAN macro to expand strings CHARACTER*4 MEDARR(24,$MXMED); $INTEGER I, J; DATA MEDARR /$S'Bone',20*' ',$S'Marrow',18*' ',$S'Fat',21*' ', $S'Cart',20*' '/; NMED = $MXMED; "Set number of media." DO J = 1,$MXMED [ DO I=1,24 [ MEDIA(I,J) = MEDARR(I,J); ] this is to avoid a DATA STATEMENT for a variable in COMMON" NMED and DUNIT default to 1, i.e. one medium and we work in cm ] 2) to initialize the medium in each region MED($REG_TRAB) = 1; "cortical bone in the bone trabeculae" MED($REG_MARR) = 2; "bone marrow in the marrow cavities" MED($REG_FAT) = 3; "fat marrow in the marrow cavities" MED($REG_CORT) = 1; "cortical bone in the cortical shell" MED($REG_CART) = 4; "cartilage outside cortical bone boundary" MED($REG_OUTSIDE) = 0; "vacuum outside the study region MED($REG_LOST) = 0; "vacuum if particles are lost (does not matter)" 3) to initialize the cutoff energy for both electrons and photons in each region ECUT($REG_TRAB) = 0.005 + PRM; 5 keV + rest mass for electrons PCUT($REG_TRAB) = 0.001; 1 keV for photons ECUT($REG_MARR) = 0.005 + PRM; PCUT($REG_MARR) = 0.001; ECUT($REG_FAT) = 0.005 + PRM; PCUT($REG_FAT) = 0.001; ECUT($REG_CORT) = 0.005 + PRM; PCUT($REG_CORT) = 0.001; ECUT($REG_OUTSIDE) = 0.005 + PRM; PCUT($REG_OUTSIDE) = 0.001; ECUT($REG_LOST) = 0.005 + PRM; PCUT($REG_LOST) = 0.001; ECUT($REG_CART) = 0.005 + PRM; PCUT($REG_CART) = 0.001; 4) to ask EGSnrc to treat the Rayleigh scattering in each region IRAYLR($REG_TRAB) = 1; IRAYLR($REG_MARR) = 1; IRAYLR($REG_FAT) = 1; IRAYLR($REG_CORT) = 1; IRAYLR($REG_OUTSIDE) = 1; IRAYLR($REG_LOST) = 1; IRAYLR($REG_CART) = 1; 5) to initialize the random number generator IXX = 1; JXX = 0; seed # to initialize the random number series $RNGINITIALIZATION; ---------------------------------------------------------------" Step 3. To pick up the cross sections precalculated by pegs4 ---------------------------------------------------------------" CALL HATCH; data file must be assigned to unit 12 PRINT *, 'End of HATCH'; ------------------------------------------" Step 3.a. To initialize the output file ------------------------------------------" ;

PAGE 265

265 "*******Make Sure to Change the Path of the OUTPUT File in new directory******" OPEN ( UNIT=$OUTPUT_FILE, FILE=$OUTPUT_FILENAME, S TATUS='unknown' ); OPEN ( UNIT=$OUTPUT_FILE2, FILE=$COL_OUTPUT_FILENAME, STATUS='unknown'); "********Make Sure to Change the Path of the OUTPUT File in new directory******" WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation '; W RITE($OUTPUT_FILE2, '(A)') '; WRITE($OUTPUT_FILE2, '(A)') '; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation '; "*************** Remove Comments from the Source that you Choose***************" IF ($SOURCE=1) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from bone trabeculae volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from bone trabeculae volume.'; ] IF ($SOURCE=2) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from active bone marrow.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from active bone marrow.'; ] IF ($SOURCE=3) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from inactive bone marrow.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from inactive bone marrow.'; ] IF ($SOURCE=4) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from bone surface source.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from bone surface source.'; ] IF ($SOURCE=5) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from cortical bone volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from cortical bone volume.'; ] IF ($SOURCE=6) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from cartilage volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from cartilage volume.'; ] ---------------------------------------------" Step 3.b. To open and read the image files ---------------------------------------------" "********************Change the Input MicroIMAGE File Path*********************" OPEN(25, FILE=$MICRO_FILENAME, ACCESS='DIRECT',ERR=95,FORM='FORMATTED',RECL=1); GOTO 101; 95 PRINT *, 'error opening'; 101 PRINT *, 'ok opening MICRO/MicroCT image file'; "********************Change the Input MicroIMAGE File Path*********************" NumByte = 1; DO NumX=1, $MICRO_IMAGE_NX [ DO NumY=1, $MICRO_IMAGE_NY [ DO NumZ=1, $MICRO_IMAGE_NZ [ READ(25, '(A1)', REC=NumByte) tmp; MICROBoneImage2(NumX,NumY,NumZ)=tmp; NumByte = NumByte + 1; ]

PAGE 266

266 ] ] CLOSE (25); PRINT *, 'ok reading MICRO image file'; "********************Change the Input MAcroIMAGE File Path*********************" OPEN($IMAGE_FILE_CT, FILE=$MACRO_FILENAME, ACCESS='DIRECT', FORM='UNFORMATTED', RECL=$CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX); PRINT *, 'ok opening CT image file'; READ($IMAGE_FILE_CT, REC=1) CTBoneImage; CLOSE ( $IMAGE_FILE_CT ); VoxelInTissue = 0; VoxelInCortical = 0; VoxelInCartilage = 0; VoxelInSpongiosa = 0; DO NumVoxel=1, $CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX [ VoxelValue = CTBoneImage(NumVoxel); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_SPONG) [ VoxelInSpongiosa = VoxelInSpongiosa + 1; ] IF (VoxelValue = $MED_CORT) [ VoxelInCortical = VoxelInCortical + 1; ] IF (VoxelValue = $MED_TISS) [ VoxelInTissue = VoxelInTissue + 1; ] IF (VoxelValue = $MED_CART) [ VoxelInCartilage = VoxelInCartilage + 1; ] ] WRITE($OUTPUT_FILE2, '(I13,A,I13,A,I13,A,I13)') VoxelInSpongiosa, ', VoxelInCortical, ', VoxelInTissue, ', VoxelInCartilage; "********************Change the Input MAcroIMAGE File Path*********************" "**********************Only if running the SURFACE source**********************" IF($SOURCE=4) [ CALL SurfaceFinder; Sbone=0;Smarrow=0; ] "******************************************************************************" "*********Make Sure to Change the Path of the Input File in new directory******" -----------------------------------------------------" Step 3.c. For each configuration in the input file -----------------------------------------------------" One execution is performed for each line of the input file OPEN ( UNIT=$INPUT_FILE, FILE=$INPUT_FILENAME, STATUS='old' ); READ ( $INPUT_FILE, ); to skip the first line "*********Make Sure to Change the Path of the Input File in new directory******" NoMoreConfig = .FALSE.; ConfigNo = 0; LOOP [" until no more line in the file -------------------------------------------------" Step 3.d. To read a new line in the input file -------------------------------------------------"

PAGE 267

267 READ ( $INPUT_FILE, *, END = :EndInput: ) ParticleType, KineticEnergy, NumberOfHistories; GO TO :NextInput:; :EndInput: NoMoreConfig = .TRUE.; :NextInput: CONTINUE; -----------------------------------------------------------------------" Step 3.e. If a new line exists, initialize the data for this config. -----------------------------------------------------------------------" IF (~NoMoreConfig) [ 1) to display the new configuration ConfigNo = ConfigNo + 1; PRINT *, 'Configuration No:', ConfigNo; 2) how many particles per run? ParticlePerRun = NumberOfHistories / $N_RUN; 3) to output the parameters of the configuration WRITE($OUTPUT_FILE, '(A)') '; WRITE($OUTPUT_FILE, '(A,I3)') 'Configuration No:', ConfigNo; WRITE($OUTPUT_FILE, '(A)') 'The calculation is performed for:'; WRITE($OUTPUT_FILE, '(A,I5,A)') ', $N_RUN, runs'; IF (ParticleType = 0) [ WRITE($OUTPUT_FILE, '(A,I6,A)') ', ParticlePerRun, photons per run'; ] ELSE [ WRITE($OUTPUT_FILE, '(A,I6,A)') ', ParticlePerRun, electrons per run'; ] WRITE($OUTPUT_FILE, '(A,I8,A)') Total: ', ParticlePerRun*$N_RUN, histories.'; WRITE($OUTPUT_FILE, '(A,F7.3,A)') Initial kinetic energy: ', KineticEnergy, MeV.'; 4) to initialize the statistical data MeanAFTrabeculae = 0.0; MeanAFMarrow = 0.0; MeanAFFat = 0.0; MeanAFEndo = 0.0; MeanAFEndob = 0.0; MeanAFEndof = 0.0; MeanAFCortical = 0.0; MeanAFOutside = 0.0; MeanAFLost = 0.0; MeanAFCart = 0.0; StdDevAFTrabeculae = 0.0; StdDevAFMarrow = 0.0; StdDevAFFat = 0.0; StdDevAFEndo = 0.0; StdDevAFEndob = 0.0; StdDevAFEndof = 0.0; StdDevAFCortical = 0.0; StdDevAFOutside = 0.0; StdDevAFLost = 0.0; StdDevAFCart = 0.0; -------------------------" Step 3.f. For each run -------------------------" DO RunNo=1,$N_RUN [ "WRITE($OUTPUT_FILE2,'(I5)') RunNo;" PRINT *, Run no:', RunNo; ------------------------------------------------------------" Step 4. To initialize the geometry for HOWFAR and HOWNEAR ------------------------------------------------------------" done when reading the input file ---------------------------------------------------------" Step 5. To initialize the scoring variables for AUSGAB ---------------------------------------------------------" CumulEnergyTrabeculae = 0.0; CumulEnergyMarrow = 0.0; CumulEnergyFat = 0.0; CumulEnergyEndo = 0.0; CumulEnergyEndob = 0.0; CumulEnergyEndof = 0.0; CumulEnergyCortical = 0.0; CumulEnergyOutside = 0.0; CumulEnergyLost = 0.0;

PAGE 268

268 CumulEnergyCart = 0.0; ------------------------------" Step 5.a. For each particle ------------------------------" DO PartNo=1, ParticlePerRun [ "WRITE($OUTPUT_FILE2,'(I5)') PartNo;" to have a display of the progression of the code IF (MOD(PartNo,100) = 0) [ "PRINT *, Particle: ', PartNo;" ] --------------------------------------------" Step 6. To define the particle parameters --------------------------------------------" IF (ParticleType = 0) [ EIN = KineticEnergy; initial kinetic energy" ] ELSE [ EIN = KineticEnergy + PRM; initial kinetic + rest mass energy" ] IQIN=ParticleType; WTIN=1.0; weight = 1 since no variance reduction used" to get the initial location and direction of the particle. "************Selecting the Source that you Chose*******************" IF ($SOURCE=1) [ CALL SourceBoneVolume(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=2) [ CALL SourceActiveMarrow(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=3) [ CALL SourceFatMarrow(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=4) [ CALL SourceBoneSurface(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=5) [ CALL SourceCorticalBone(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=6) [ CALL SourceCartilage(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] ------------------------------------" Step 7. To transport the particle ------------------------------------" CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN); ] -------------------------------------------------------------" Step 7.a. To calculate and display the result for this run -------------------------------------------------------------" AFTrabeculae = CumulEnergyTrabeculae / (ParticlePerRun KineticEnergy); AFMarrow = CumulEnergyMarrow / (ParticlePerRun KineticEnergy); AFFat = CumulEnergyFat / (ParticlePerRun KineticEnergy); AFEndo = CumulEnergyEndo / (ParticlePerRun KineticEnergy); AFEndob = CumulEnergyEndob / (ParticlePerRun KineticEnergy); AFEndof = CumulEnergyEndof / (ParticlePerRun KineticEnergy); AFCortical = CumulEnergyCortical / (ParticlePerRun KineticEnergy); AFOutside = CumulEnergyOutside / (ParticlePerRun KineticEnergy); AFLost = CumulEnergyLost / (ParticlePerRun KineticEnergy); AFCart = CumulEnergyCart / (ParticlePerRun KineticEnergy); ---------------------------------------------" Step 7.b. To cumulate the statistical data ---------------------------------------------" MeanAFTrabeculae = MeanAFTrabeculae + AFTrabeculae; MeanAFMarrow = MeanAFMarrow + AFMarrow; MeanAFFat = MeanAFFat + AFFat; MeanAFEndo = MeanAFEndo + AFEndo; MeanAFEndob = MeanAFEndob + AFEndob;

PAGE 269

269 MeanAFEndof = MeanAFEndof + AFEndof; MeanAFCortical = MeanAFCortical + AFCortical; MeanAFOutside = MeanAFOutside + AFOutside; MeanAFLost = MeanAFLost + AFLost; MeanAFCart = MeanAFCart + AFCart; StdDevAFTrabeculae = StdDevAFTrabeculae + AFTrabeculae*AFTrabeculae; StdDevAFMarrow = StdDevAFMarrow + AFMarrow*AFMarrow; StdDevAFFat = StdDevAFFat + AFFat*AFFat; StdDevAFEndo = StdDevAFEndo + AFEndo*AFEndo; StdDevAFEndob = StdDevAFEndob + AFEndob*AFEndob; StdDevAFEndof = StdDevAFEndof + AFEndof*AFEndof; StdDevAFCortical = StdDevAFCortical + AFCortical*AFCortical; StdDevAFOutside = StdDevAFOutside + AFOutside*AFOutside; StdDevAFLost = StdDevAFLost + AFLost*AFLost; StdDevAFCart = StdDevAFCart + AFCart*AFCart; ] End of this run ----------------------------------------------" Step 7.c. To calculate the statistical data ----------------------------------------------" a) the mean MeanAFTrabeculae = MeanAFTrabeculae / $N_RUN; MeanAFMarrow = MeanAFMarrow / $N_RUN; MeanAFFat = MeanAFFat / $N_RUN; MeanAFEndo = MeanAFEndo / $N_RUN; MeanAFEndob = MeanAFEndob / $N_RUN; MeanAFEndof = MeanAFEndof / $N_RUN; MeanAFCortical = MeanAFCortical / $N_RUN; MeanAFOutside = MeanAFOutside / $N_RUN; MeanAFLost = MeanAFLost / $N_RUN; MeanAFCart = MeanAFCart / $N_RUN; b) the standard deviation of the sample StdDevAFTrabeculae = StdDevAFTrabeculae $N_RUN*MeanAFTrabeculae*MeanAFTrabeculae; StdDevAFMarrow = StdDevAFMarrow $N_RUN*MeanAFMarrow*MeanAFMarrow; StdDevAFFat = StdDevAFFat $N_RUN*MeanAFFat*MeanAFFat; StdDevAFEndo = StdDevAFEndo $N_RUN*MeanAFEndo*MeanAFEndo; StdDevAFEndob = StdDevAFEndob $N_RUN*MeanAFEndob*MeanAFEndob; StdDevAFEndof = StdDevAFEndof $N_RUN*MeanAFEndof*MeanAFEndof; StdDevAFCortical = StdDevAFCortical $N_RUN*MeanAFCortical*MeanAFCortical; StdDevAFOutside = StdDevAFOutside $N_RUN*MeanAFOutside*MeanAFOutside; StdDevAFLost = StdDevAFLost $N_RUN*MeanAFLost*MeanAFLost; StdDevAFCart = StdDevAFCart $N_RUN*MeanAFCart*MeanAFCart; StdDevAFTrabeculae = StdDevAFTrabeculae / ($N_RUN 1); StdDevAFMarrow = StdDevAFMarrow / ($N_RUN 1); StdDevAFFat = StdDevAFFat / ($N_RUN 1); StdDevAFEndo = StdDevAFEndo / ($N_RUN 1); StdDevAFEndob = StdDevAFEndob / ($N_RUN 1); StdDevAFEndof = StdDevAFEndof / ($N_RUN 1); StdDevAFCortical = StdDevAFCortical / ($N_RUN 1); StdDevAFOutside = StdDevAFOutside / ($N_RUN 1); StdDevAFLost = StdDevAFLost / ($N_RUN 1); StdDevAFCart = StdDevAFCart / ($N_RUN 1); StdDevAFTrabeculae = DSQRT(StdDevAFTrabeculae); StdDevAFMarrow = DSQRT(StdDevAFMarrow); StdDevAFFat = DSQRT(StdDevAFFat); StdDevAFEndo = DSQRT(StdDevAFEndo); StdDevAFEndob = DSQRT(StdDevAFEndob); StdDevAFEndof = DSQRT(StdDevAFEndof); StdDevAFCortical = DSQRT(StdDevAFCortical); StdDevAFOutside = DSQRT(StdDevAFOutside); StdDevAFLost = DSQRT(StdDevAFLost); StdDevAFCart = DSQRT(StdDevAFCart); c) the standard deviation of the mean */ StdDevOfMeanAFTrabeculae = StdDevAFTrabeculae / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFMarrow = StdDevAFMarrow / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFFat = StdDevAFFat / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndo = StdDevAFEndo / DSQRT(DBLE($N_RUN));

PAGE 270

270 StdDevOfMeanAFEndob = StdDevAFEndob / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndof = StdDevAFEndof / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFCortical = StdDevAFCortical / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFOutside = StdDevAFOutside / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFLost = StdDevAFLost / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFCart = STdDevAFCart / DSQRT(DBLE($N_RUN)); d) the 95% confidence interval of the mean */ ConfIntOfMeanAFTrabeculae = 1.96*StdDevOfMeanAFTrabeculae; ConfIntOfMeanAFMarrow = 1.96*StdDevOfMeanAFMarrow; ConfIntOfMeanAFFat = 1.96*StdDevOfMeanAFFat; ConfIntOfMeanAFEndo = 1.96*StdDevOfMeanAFEndo; ConfIntOfMeanAFEndob = 1.96*StdDevOfMeanAFEndob; ConfIntOfMeanAFEndof = 1.96*StdDevOfMeanAFEndof; ConfIntOfMeanAFCortical = 1.96*StdDevOfMeanAFCortical; ConfIntOfMeanAFOutside = 1.96*StdDevOfMeanAFOutside; ConfIntOfMeanAFLost = 1.96*StdDevOfMeanAFLost; ConfIntOfMeanAFCart = 1.96*StdDevOfMeanAFCart; e) the 95% confidence error of the mean */ ConfErrOfMeanAFTrabeculae = 100.0 ConfIntOfMeanAFTrabeculae / MeanAFTrabeculae; ConfErrOfMeanAFMarrow = 100.0 ConfIntOfMeanAFMarrow / MeanAFMarrow; ConfErrOfMeanAFFat = 100.0 ConfIntOfMeanAFFat / MeanAFFat; ConfErrOfMeanAFEndo = 100.0 ConfIntOfMeanAFEndo / MeanAFEndo; ConfErrOfMeanAFEndob = 100.0 ConfIntOfMeanAFEndob / MeanAFEndob; ConfErrOfMeanAFEndof = 100.0 ConfIntOfMeanAFEndof / MeanAFEndof; ConfErrOfMeanAFCortical = 100.0 ConfIntOfMeanAFCortical / MeanAFCortical; ConfErrOfMeanAFOutside = 100.0 ConfIntOfMeanAFOutside / MeanAFOutside; ConfErrOfMeanAFLost = 100.0 ConfIntOfMeanAFLost / MeanAFLost; ConfErrOfMeanAFCart = 100.0 ConfIntOfMeanAFCart / MeanAFCart; ------------------------------------------------------" Step 8. To print out the results to the output file ------------------------------------------------------" WRITE($OUTPUT_FILE, '(A,A)') Absorbed fractions with 95%', confidence intervals:'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in Trabeculae: ', MeanAFTrabeculae, +/', ConfIntOfMeanAFTrabeculae,' (', ConfErrOfMeanAFTrabeculae, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TIMtotal: ', MeanAFFat, +/', ConfIntOfMeanAFFat,' (', ConfErrOfMeanAFFat, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TAMs60: ', MeanAFEndo, +/', ConfIntOfMeanAFEndo,' (', ConfErrOfMeanAFEndo, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TAMs50: ', MeanAFEndob, +/', ConfIntOfMeanAFEndob,' (', ConfErrOfMeanAFEndob, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TIM50: ', MeanAFEndof, +/', ConfIntOfMeanAFEndof,' (', ConfErrOfMeanAFEndof, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TAMtotal: ', MeanAFMarrow, +/', ConfIntOfMeanAFMarrow,' (', ConfErrOfMeanAFMarrow, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in CorticalBone: ', MeanAFCortical, +/', ConfIntOfMeanAFCortical,' (', ConfErrOfMeanAFCortical, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in cartilage: ', MeanAFCart, +/= ', ConfIntOfMeanAFCart,' (',ConfErrOfMeanAFCart, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in outside: ', MeanAFOutside, +/', ConfIntOfMeanAFOutside,' (', ConfErrOfMeanAFOutside, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF lost: ', MeanAFLost, +/', ConfIntOfMeanAFLost,' (', ConfErrOfMeanAFLost, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14)') Total AF: ', MeanAFTrabeculae + MeanAFMarrow + MeanAFCortical+ MeanAFFat + MeanAFOutside + MeanAFLost + MeanAFCart;

PAGE 271

271 WRITE($OUTPUT_FILE2,'(A,F16.14,A,F16.14,A,F16.14, A,F16.14,A,F16.14,A,F16.14, A,F16.14,A,F16.14)') AF_TAM: ', MeanAFMarrow, AFTA50: ', MeanAFEndob, AF_TBV: ', MeanAFTrabeculae, AF_TIM: ', MeanAFFat, AFTI50: ', MeanAFEndof, AF_CBV: ', MeanAFCortical, AF_ESC: ', MeanAFOutside, AF_CAR: ', MeanAFCart; ] ] End of this configuration UNTIL (NoMoreConfig); --------------------------------------------" Step 8.a. Don't forget to close the files --------------------------------------------" CLOSE($INPUT_FILE); CLOSE($OUTPUT_FILE); CLOSE($OUTPUT_FILE2); END; End of main program "******************************************************************************" SourceBoneVolume "******************************************************************************" The SourceBoneVolume subroutine returns a particle starting within the bone regions of the image. The source is isotropic and uniform within the BONE ." The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceBoneVolume(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideBoneVolume; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideBoneVolume(XSrc, YSrc, ZSrc)) [ InsideSource = .TRUE.; ]

PAGE 272

272 ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_TRAB; END; End of subroutine SourceBoneVolume "******************************************************************************" SourceActiveMarrow "******************************************************************************" The SourceActiveMarrow subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Active Marrow. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceActiveMarrow(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideActiveMarrow; LOGICAL InsideShallowTAM50; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3;

PAGE 273

273 IF ( (InsideActiveMarrow(XSrc, YSrc, ZSrc))) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_MARR; END; End of subroutine SourceActiveMarrow "******************************************************************************" SourceFatMarrow "******************************************************************************" The SourceFatMarrow subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Fat Marrow or InActive Marrow. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceFatMarrow(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideFatMarrow; LOGICAL InsideShallowTAM50; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3;

PAGE 274

274 XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( (InsideFatMarrow(XSrc, YSrc, ZSrc))) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_FAT; END; End of subroutine SourceFatMarrow "******************************************************************************" SurfaceFinder "******************************************************************************" "The SurfaceFinder subroutine is utilized only for the TBS source. "This subroutine goes through all voxels in the microimage storing those that "contain surfaces in arrays Isurf(N), Jsurf(N), Ksurf(N) where N is an index. "It stores the direction of the surface (1,10,100,..) in the surfside(N) array" "These surfaces are then sampled from during the SourceBoneSurface subroutine. Note that if a bone voxel contains M number of surfaces, it is stored in the arrays M times (once with each surface so as to not bias the surface sampling. IF WE EVER USE NONCUBICAL MICROIMAGE VOXELS THIS ROUTINE WILL NEED MODIFICATION "******************************************************************************" SUBROUTINE SurfaceFinder; $IMPLICITNONE; "COMMON variables" COMIN/GEOM/; "Local variables" $INTEGER M,N,NumSurfVox,Surfaces,I,J,K; CHARACTER VoxelValue,EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; "system functions in subroutine" "user functions in subroutine" LOGICAL InsideBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideBoneVolume; NumSurfVox = 0; NumSurfaces=0; DO I=1, $MICRO_IMAGE_NX [ DO J=1, $MICRO_IMAGE_NY [ DO K=1, $MICRO_IMAGE_NZ [ VoxelValue=MICROBoneImage2(I,J,K); "PRINT *,I,J,K,ICHAR(VoxelValue);" "IF ((VoxelValue=CHAR($MED_MARR)) .OR." "(VoxelValue=CHAR($MED_FAT))) [" "Have a marrow/fat voxel, now check for surfaces" IF (VoxelValue=CHAR($MED_BONE)) [ "Have a bone voxel, now check for surfaces" IF (I .EQ. ($MICRO_IMAGE_NX)) [

PAGE 275

275 EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] ; Surfaces=0; IF ((EDGEIPOS = CHAR($MED_MARR)) .OR. (EDGEIPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEIPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=1; Surfaces=Surfaces+1; ] IF ((EDGEINEG = CHAR($MED_MARR)) .OR. (EDGEINEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEINEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=2; Surfaces=Surfaces+1; ] IF ((EDGEJPOS = CHAR($MED_MARR)) .OR. (EDGEJPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEJPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=3; Surfaces=Surfaces+1; ] IF ((EDGEJNEG = CHAR($MED_MARR)) .OR. (EDGEJNEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEJNEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=4; Surfaces=Surfaces+1; ] IF ((EDGEKPOS = CHAR($MED_MARR)) .OR.

PAGE 276

276 (EDGEKPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEKPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=5; Surfaces=Surfaces+1; ] IF ((EDGEKNEG = CHAR($MED_MARR)) .OR. (EDGEKNEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEKNEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=6; Surfaces=Surfaces+1; ] NumSurfaces=NumSurfaces+Surfaces; IF(Surfaces>0) [NumSurfVox=NumSurfVox+1;] ] ] ] ] PRINT *,'Number of Surface Voxels =',NumSurfVox; PRINT *,'Out of ',$MICRO_IMAGE_NX*$MICRO_IMAGE_NY*$MICRO_IMAGE_NZ; PRINT *,'Number of Surfaces = ',NumSurfaces; END; "End of Subroutine SurfaceFinder" "******************************************************************************" SourceBoneSurface "******************************************************************************" The SourceBoneSurface subroutine returns particles starting near the bone surfaces of the image. The source is isotropic and positioned $BOUNDARY_THICKNESS on either side of the surface, depending on value of the" user defined $SIDESPLIT value. Samples from the surfaces stored in arrays by SurfaceFinder subroutine. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceBoneSurface(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; $INTEGER I, I2, J, J2, K, K2; $REAL P1, P2, P3, P4, P5, P6, PDIST; $INTEGER MOD; CHARACTER VoxelValue2; the voxel itself CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3, Random4, Random5, Random6, Random7; $REAL Random8, Random9, Random10; $REAL Theta, Phi,MaxX,MaxY,MaxZ,xmax,xmin,ymax,ymin,zmax,zmin; LOGICAL InsideSourceMarr; LOGICAL InsideSourceFat; LOGICAL InsideSourceBone; $INTEGER SVoxelNum,MaxNX,MaxNY,MaxNZ,Xcopy,Ycopy,Zcopy; $INTEGER Icheck,Jcheck,Kcheck; $INTEGER num,index,N,SideDir; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN, push;

PAGE 277

277 INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideBoneVolume; $REAL ClosestBoundary; InsideSourceMarr=.FALSE.; InsideSourceFat=.FALSE.; InsideSourceBone=.FALSE.; "Algorithm is now to randomly select one of the surface voxels by randomly" "selecting over the range of 0 to NumSurfaces1. This voxel then has "multiple possible positions within the macroimage. This position is also" "randomly selected and the starting position of the source is determined." -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ "Until it fits" "PRINT *, 'Trying';" $RANDOMSET Random1; SVoxelNum=(NumSurfaces1)*Random1; I=Isurf(SVoxelNum); J=Jsurf(SVoxelNum); K=Ksurf(SVoxelNum); SideDir=surfside(SVoxelNum); VoxelValue2 = MICROBoneImage2(I,J,K); "IF (VoxelValue2~=CHAR($MED_MARR) .AND. VoxelValue2~=CHAR($MED_FAT)) [" IF (VoxelValue2~=CHAR($MED_BONE)) [ PRINT *,'ERROR: You loser, your new SurfaceFinder is flawed!'; PRINT *,'i.e. Your surface voxel is the wrong medium!!'; ] "Now find the possible positions of the voxel within macroimage" "Below gives the maximum possible values for x,y,z within Macro" MaxX=$CT_VOXEL_SIZE_X*$CT_IMAGE_NX; MaxY=$CT_VOXEL_SIZE_Y*$CT_IMAGE_NY; MaxZ=$CT_VOXEL_SIZE_Z*$CT_IMAGE_NZ; "Next find the maximum number of copies of microimage in each direction" MaxNX=MaxX/($MICRO_VOXEL_SIZE_X*$MICRO_IMAGE_NX)+1; MaxNY=MaxY/($MICRO_VOXEL_SIZE_Y*$MICRO_IMAGE_NY)+1; MaxNZ=MaxZ/($MICRO_VOXEL_SIZE_Z*$MICRO_IMAGE_NZ)+1; "Now select random copy number and check to see if it fits within macro" "This is where I thought I could start the loop originally." $RANDOMSET Random2; $RANDOMSET Random3; $RANDOMSET Random4; "This must be MaxNX+1 if I want integers from 0 to MaxNX" "since the rounding to an integer only goes down." Xcopy=(MaxNX+1)*Random2; Ycopy=(MaxNY+1)*Random3; Zcopy=(MaxNZ+1)*Random4; "So the origin of these images is defined as 1,1,1 (voxel coordinates)" "and .006,.006,.006 (x,y,z coordinates)...that crazy Dr.Shah" "apparently he has a thing against coordinate systems starting at 0" xmin=(Xcopy*$MICRO_IMAGE_NX+I)*$MICRO_VOXEL_SIZE_X; xmax=xmin+$MICRO_VOXEL_SIZE_X; ymin=(Ycopy*$MICRO_IMAGE_NY+J)*$MICRO_VOXEL_SIZE_Y; ymax=ymin+$MICRO_VOXEL_SIZE_Y; zmin=(Zcopy*$MICRO_IMAGE_NZ+K)*$MICRO_VOXEL_SIZE_Z; zmax=zmin+$MICRO_VOXEL_SIZE_Z; "OR IF THE COORDINATE SYSTEM IS 1,1,1(voxel) and 0.000,0.000,0.000 (x,y,z)"

PAGE 278

278 "xmin=(Xcopy*$MICRO_IMAGE_NX+I1)*$MICRO_VOXEL_SIZE_X;" "xmax=xmin+$MICRO_VOXEL_SIZE_X;" "ymin=(Ycopy*$MICRO_IMAGE_NY+J1)*$MICRO_VOXEL_SIZE_Y;" "ymax=ymin+$MICRO_VOXEL_SIZE_Y;" "zmin=(Zcopy*$MICRO_IMAGE_NZ+K1)*$MICRO_VOXEL_SIZE_Z;" "zmax=zmin+$MICRO_VOXEL_SIZE_Z;" "Determine whether the source will be bone sided (50%) or marrow sided (50%)." $RANDOMSET Random7; "0.500 will be half bone/half marrow" "To make completely bone sided change 0.500 to 0.00." "To make completely marrow sided change 0.500 to 1.0." "Could choose bone volume fraction as the breaking point?" IF (Random7.LT.$SIDE_SPLIT) [ push=0.000000; ] ELSE [ push=1.000000; ] $RANDOMSET Random5; $RANDOMSET Random6; "Determine surface and starting positions" IF (SideDir=1) [ "Surface is IPOS" XSrc=xmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=2) [ "Surface is INEG" XSrc=xmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=3) [ "Surface is JPOS" YSrc=ymax$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=4) [ "Surface is JNEG" YSrc=ymin+$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=5) [ "Surface is KPOS" ZSrc=zmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; XSrc=(xmaxxmin)*Random6+xmin; ] ELSE IF (SideDir=6) [ "Surface is KNEG" ZSrc=zmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; XSrc=(xmaxxmin)*Random6+xmin; ] Icheck = (XSrc / $MICRO_VOXEL_SIZE_X); Icheck = MOD(Icheck, $MICRO_IMAGE_NX); IF (Icheck=0) [Icheck=$MICRO_IMAGE_NX;] Jcheck = (YSrc / $MICRO_VOXEL_SIZE_Y); Jcheck = MOD(Jcheck, $MICRO_IMAGE_NY); IF (Jcheck=0) [Jcheck=$MICRO_IMAGE_NY;] Kcheck = (ZSrc / $MICRO_VOXEL_SIZE_Z); Kcheck = MOD(Kcheck, $MICRO_IMAGE_NZ); IF (Kcheck=0) [Kcheck=$MICRO_IMAGE_NZ;] IF(push<0.1) [ IF(Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K) [ PRINT *, 'Surface Check Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(push>0.5) [ IF(SideDir=1) [ IF (Icheck~=I+1 .AND. Jcheck~=J .AND. Kcheck~=K) [

PAGE 279

279 PRINT *, 'IPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=2) [ IF (Icheck~=I1 .AND. Jcheck~=J .AND. Kcheck~=K) [ PRINT *, 'INEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=3) [ IF (Icheck~=I .AND. Jcheck~=J+1 .AND. Kcheck~=K) [ PRINT *, 'JPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=4) [ IF (Icheck~=I .AND. Jcheck~=J1 .AND. Kcheck~=K) [ PRINT *, 'JNEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=5) [ IF (Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K+1) [ PRINT *, 'KPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=6) [ IF (Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K1) [ PRINT *, 'KNEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] ] IF(ClosestBoundary(XSrc,YSrc,ZSrc)>(2*$BOUNDARY_THICKNESS)) [ PRINT *, 'Error, source not on surface.'; PRINT *, ClosestBoundary(XSrc,YSrc,ZSrc); ] "Also, this is the first check to make sure it's within macro." IF ( (InsideBoneVolume(XSrc, YSrc, ZSrc))) [ IF (Random7>$SIDE_SPLIT) [ PRINT *, 'Error...not Marrow'; PRINT *, XSrc,YSrc,ZSrc,Random7,push; PRINT *,SideDir; PRINT *,Icheck,Jcheck,Kcheck; PRINT *, I,J,K; ] "ELSE [PRINT *,'okay...Bone',ClosestBoundary(XSrc,YSrc,ZSrc);]" Sbone=Sbone+1; "PRINT *, 'BONE:',Sbone;" InsideSourceBone = .TRUE.; ] ELSE [ InsideSourceBone = .FALSE.; ] IF ( (InsideActiveMarrow(XSrc, YSrc, ZSrc))) [ IF (Random7<$SIDE_SPLIT) [ P RINT *, 'Error...not Bone'; PRINT *, XSrc,YSrc,ZSrc,Random7,push; PRINT *,SideDir; PRINT *,Icheck,Jcheck,Kcheck; PRINT *, I,J,K; ] "ELSE [PRINT *,'okay..Marrow',ClosestBoundary(XSrc,YSrc,ZSrc);]" Smarrow=Smarrow+1; "PRINT *, 'MARROW:',Smarrow;" InsideSourceMarr = .TRUE.;InsideSourceFat=.FALSE.; ] ELSE [InsideSourceMarr=.FALSE.;] IF ((InsideFatMarrow(XSrc, YSrc, ZSrc))) [ IF (Random7<$SIDE_SPLIT) [ PRINT *, 'Error...not Bone';] "ELSE [PRINT *,'okay..Marrow';]" InsideSourceMarr = .FALSE.; InsideSourceFat = .TRUE.; ] ELSE [InsideSourceFat=.FALSE.;] "PRINT *, InsideSourceBone, InsideSourceFat, InsideSourceMarr;" ] UNTIL ((InsideSourceBone) .OR. (InsideSourceFat) .OR. (InsideSourceMarr)); "End of LOOP" ----------------------------" 2) to return the direction

PAGE 280

280 ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random8; $RANDOMSET Random9; Theta = DACOS(1 2.0*Random8); Phi = 2.0 $PI Random9; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" IF (InsideSourceMarr) [ RegSrc = $REG_MARR; "PRINT *, 'MARR';" ] IF (InsideSourceFat) [ RegSrc = $REG_FAT; "PRINT *, 'FAT';" ] IF (InsideSourceBone) [ RegSrc = $REG_TRAB; "PRINT *, 'TRAB';" ] END; End of subroutine SourceBoneSurface "******************************************************************************" SourceCorticalBone "******************************************************************************" The SourceCorticalBone subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Cortical Bone of the CT Image. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceCorticalBone(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideCorticalBone; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3;

PAGE 281

281 XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideCorticalBone(XSrc, YSrc, ZSrc) ) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_CORT; END; End of subroutine SourceCorticalBone "******************************************************************************" SourceCartilage "******************************************************************************" The SourceCartilage subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Cartilage of the CT Image. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceCartilage(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideCART; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a cartilage voxel. LOOP [ until the position is inside cartilage $RANDOMSET Random1; $RANDOMSET Random2;

PAGE 282

282 $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideCART(XSrc, YSrc, ZSrc) ) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_CART; END; End of subroutine SourceCartilage "******************************************************************************" HOWFAR "******************************************************************************" The HOWFAR subroutine measures the distance between the location of the particle (X0, Y0, Z0) and the next boundary crossed by the particle when traveling to the direction (Up, Vp, Wp). The returned values are: IDISC is set to 1 if we need to discard the particle USTEP is shortened if the boundary is reached by the particle IRNEW is set with the region number that lies beyond the boundary "******************************************************************************" SUBROUTINE HOWFAR; $IMPLICITNONE; to make sure that all variables are declared COMMON variables COMIN/STACK,EPCONT/; The above expands into COMMON statements STACK contains IR(NP), X,Y,Z(NP), and U,V,W(NP) EPCONT contains USTEP: the distance EGSnrc is to transport the part. local variables $REAL X0, Y0, Z0; the position of the particle $REAL Up, Vp, Wp; the direction of the particle $INTEGER IReg; the region number" $REAL Distance; the distance to the boundary $REAL XNew, YNew, ZNew; location of particle after current step user functions invoked in the subroutine LOGICAL InsideBoneVolume; LOGICAL InsideShallowTAM60; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideCorticalBone; LOGICAL InsideCART; $REAL BoundaryDistance; --------------------------------" 1) To get the data from EGSnrc --------------------------------" X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); Up = U(NP); Vp = V(NP); Wp = W(NP); IReg = IR(NP); -----------------------------------------" 2) To check the data returned by EGSnrc

PAGE 283

283 -----------------------------------------" if a mismatch is detected, the particle is discarded (IDISC=1) IR(NP) is set to the region $REG_LOST so that AUSGAB can detect the problem (IRNEW is not used by EGS since it does not transport the particle before it calls AUSGAB) a) to check the region numbers IF ( (IReg ~= $REG_TRAB) & (IReg ~= $REG_MARR) & (IReg ~= $REG_FAT) & (IReg ~= $REG_CORT) & (IReg ~= $REG_CART) & (IReg ~= $REG_OUTSIDE)) [ PRINT *, 'Error in HOWFAR: wrong region number: ', IReg; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] b) to check if the region number matches the location IF (IReg = $REG_TRAB) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'WE ARE IN BONE VOLUME.', USTEP;" IF (~InsideBoneVolume(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in bone.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_MARR) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'WE ARE IN ACTIVE MARROW.', USTEP;" IF (~InsideActiveMarrow(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in marrow.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_FAT) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'WE ARE IN FAT MARROW.', USTEP;" IF (~InsideFatMarrow(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in fat.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_CORT) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'WE ARE IN CORTICAT BONE.', USTEP;" IF (~InsideCorticalBone(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in cortical.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_CART) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'WE ARE IN CARTILAGE.', USTEP;" IF (~InsideCART(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in cartilage.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSE [ IF (InsideBoneVolume(X0, Y0, Z0) | InsideFatMarrow(X0, Y0, Z0) | InsideActiveMarrow(X0, Y0, Z0) | InsideCorticalBone(X0, Y0, Z0) | InsideCART(X0, Y0, Z0) ) [ PRINT *, 'Error in HOWFAR: particle is not outside.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ----------------------------------------------------------------" 3) To discard the particle if it goes outside the study region ----------------------------------------------------------------" IF (IReg = $REG_OUTSIDE) [

PAGE 284

284 IDISC = 1; ] ELSE [ ----------------------------------------------" 4) To calculate the distance to the boundary ----------------------------------------------" Distance = BoundaryDistance(X0, Y0, Z0, Up, Vp, Wp); ----------------------------------------------------------------------" 5) To make sure the particle jumps on the other side of the boundary ----------------------------------------------------------------------" Distance = Distance + $BOUNDARY_THICKNESS; ---------------------------------------------------" 6) To check if the distance is shorter than USTEP ---------------------------------------------------" IF ( Distance < USTEP ) [ USTEP = Distance; ] ------------------------------------------------" 7) To calculate the region beyond the boundary ------------------------------------------------" a) to calculate the new position XNew = X0 + USTEP*Up; YNew = Y0 + USTEP*Vp; ZNew = Z0 + USTEP*Wp; b) to calculate the new region IF ((InsideBoneVolume(XNew, YNew, ZNew))) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'GOING TO BONE VOLUME.', USTEP;" IRNEW = $REG_TRAB; ] ELSEIF ((InsideActiveMarrow(XNew, YNew, ZNew))) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'GOING TO ACTIVE MARROW.', USTEP;" IRNEW = $REG_MARR; ] ELSEIF ((InsideFatMarrow(XNew, YNew, ZNew))) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'GOING TO FAT MARROW.', USTEP;" IRNEW = $REG_FAT; ] ELSEIF ((InsideCorticalBone(XNew, YNew, ZNew))) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'GOING TO CORTICAL BONE.', USTEP;" IRNEW = $REG_CORT; ] ELSEIF ((InsideCART(XNew, YNew, ZNew))) [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'GOING TO CARTILAGE.', USTEP;" IRNEW = $REG_CART; ] ELSE [ "WRITE($OUTPUT_FILE2, '(A,F16.14)') 'OUTSIDE.', USTEP;" IRNEW = $REG_OUTSIDE; ] ] END; End of subroutine HOWFAR "******************************************************************************" HOWNEAR "******************************************************************************" The HOWNEAR subroutine measures the shortest distance between the location of the particle (X0, Y0, Z0) and the boundary of the actual region IReg. The returned values are: TPerp is the shortest distance from the particle location to the boundary of the region IReg "******************************************************************************" SUBROUTINE HOWNEAR(TPerp, X0, Y0, Z0, IReg); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL TPerp; the shortest distance to return $REAL X0, Y0, Z0; the current location of the particle $INTEGER IReg; the current region of the particle user functions invoked in the subroutine $REAL ClosestBoundary; -----------------------------------------------------"

PAGE 285

285 1) To check if the particle has become out of study -----------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ TPerp = 0.0; so that HOWFAR is called and discard the particle ] ELSE [ ---------------------------------------" 2) To calculate the shortest distance ---------------------------------------" TPerp = ClosestBoundary(X0, Y0, Z0); --------------------------------------------------------------------" 3) To make sure the particle will not be too close to the boundary --------------------------------------------------------------------" TPerp = TPerp $BOUNDARY_THICKNESS; IF (TPerp < 0.0) [ TPerp = 0.0; ] ] END; End of subroutine HOWNEAR "******************************************************************************" AUSGAB "******************************************************************************" The AUSGAB subroutine cumulates the energy deposited within the regions. The energy is stored in the 'CumulEnergy' variables. " Input: IARG : A flag (see EGSnrc documentation) which is set to 3 if the particle is discarded by the HOWFAR subroutine, in our situation, that means that the particle is going outside the study region or that it has been lost. "******************************************************************************" SUBROUTINE AUSGAB(IARG); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $INTEGER IARG; $REAL X0, Y0, Z0; COMMON variables COMIN/STACK,EPCONT,SCOR/; The above expands into COMMON statements STACK contains IR(NP) EPCONT contains EDEP: the energy deposited now SCOR contains the variables to cumulate the energy deposited local variables $INTEGER IReg; to store the region number" LOGICAL InsideShallowTAM60; LOGICAL InsideShallowTAM50; LOGICAL InsideShallowTIM50; --------------------------------" 1) To get the data from EGSnrc --------------------------------" IReg = IR(NP); X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); ---------------------------------------------------------" 2) To test if the particle has been discarded by HOWFAR ---------------------------------------------------------" IF (IARG = 3) [ test why it has been discarded IF (IReg = $REG_OUTSIDE) [ CumulEnergyOutside = CumulEnergyOutside + EDEP; ] ELSEIF (IReg = $REG_LOST) [ CumulEnergyLost = CumulEnergyLost + EDEP; ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after discard.'; RETURN; ] ]

PAGE 286

286 ELSE [ -----------------------------------------------" 3) To cumulate the energy in the right region -----------------------------------------------" IF (IReg = $REG_TRAB) [ CumulEnergyTrabeculae = CumulEnergyTrabeculae + EDEP; "PRINT *, 'CumulEnergyTBV = ', CumulEnergyTrabeculae;" "PRINT *, 'TBVEDEP = ', EDEP;" ] ELSEIF (IReg = $REG_MARR) [ CumulEnergyMarrow = CumulEnergyMarrow + EDEP; "PRINT *, 'CumulEnergyTAM = ', CumulEnergyMarrow;" "PRINT *, 'TAMEDEP = ', EDEP;" IF (InsideShallowTAM60(X0, Y0, Z0)) [ CumulEnergyEndo = CumulEnergyEndo + EDEP; ] IF (InsideShallowTAM50(X0, Y0, Z0)) [ CumulEnergyEndob = CumulEnergyEndob + EDEP; ] ] ELSEIF (IReg = $REG_FAT) [ CumulEnergyFat = CumulEnergyFat + EDEP; IF (InsideShallowTIM50(X0, Y0, Z0)) [ CumulEnergyEndof = CumulEnergyEndof + EDEP; ] ] ELSEIF (IReg = $REG_CORT) [ CumulEnergyCortical = CumulEnergyCortical + EDEP; "PRINT *, 'CumulEnergyCortical = ', CumulEnergyCortical;" "PRINT *, 'CorticalEDEP = ', EDEP;" ] ELSEIF (IReg = $REG_CART) [ CumulEnergyCart = CumulEnergyCart + EDEP; "PRINT *, 'CumulEnergyCAR = ', CumulEnergyCart;" "PRINT *, 'CAREDEP = ', EDEP;" ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after transport.'; RETURN; ] ] END; End of subroutine AUSGAB "******************************************************************************" Function InsideBoneVolume "******************************************************************************" Test if a given position (X, Y, Z) is inside the trabeculae voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideBoneVolume(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD;

PAGE 287

287 INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X,Y,Z) ) [ InsideBoneVolume = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideBoneVolume = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(255)) [ InsideBoneVolume = .TRUE.; ] ELSE [ InsideBoneVolume = .FALSE.; ] ] ] END; End of function InsideBoneVolume "******************************************************************************" Function InsideActiveMarrow "******************************************************************************" Test if a given position (X, Y, Z) is inside the active marrow voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region.

PAGE 288

288 "******************************************************************************" LOGICAL FUNCTION InsideActiveMarrow(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image CHARACTER VoxelValue2; the voxel itself $INTEGER VoxelValue; the voxel itself system functions invoked in the main program $INTEGER MOD; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CART; LOGICAL InsideShallowTAM60; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z) ) [ InsideActiveMarrow = .FALSE.; ] ELSE [ -------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideActiveMarrow = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(0)) [ InsideActiveMarrow = .TRUE.; ] ELSE [ InsideActiveMarrow = .FALSE.; ]

PAGE 289

289 ] ] END; End of function InsideActiveMarrow "******************************************************************************" Function InsideShallowTAM60 "******************************************************************************" Test if a given position (X, Y, Z) is inside the shallow marrow voxel of the" marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTAM60(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z) ) [ InsideShallowTAM60 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideShallowTAM60 = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X);

PAGE 290

290 I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ( (VoxelValue2 = CHAR($MED_MARR)) )[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(0); EDGEINEG = CHAR(0); EDGEJPOS = CHAR(0); EDGEJNEG = CHAR(0); EDGEKPOS = CHAR(0); EDGEKNEG = CHAR(0); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] "Not sure why APS had this here..I commented out" "I2 = (X / $MICRO_VOXEL_SIZE_X);" "J2 = (Y / $MICRO_VOXEL_SIZE_Y);" "K2 = (Z / $MICRO_VOXEL_SIZE_Z);" "XMin = (I2) $MICRO_VOXEL_SIZE_X;" "XMax = XMin + $MICRO_VOXEL_SIZE_X;"

PAGE 291

291 "YMin = (J2) $MICRO_VOXEL_SIZE_Y;" "YMax = YMin + $MICRO_VOXEL_SIZE_Y;" "ZMin = (K2) $MICRO_VOXEL_SIZE_Z;" "ZMax = ZMin + $MICRO_VOXEL_SIZE_Z;" InsideShallowTAM60 = .FALSE.; IF(EDGEIPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEINEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEJPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEJNEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEKPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEKNEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] ] ELSE [ InsideShallowTAM60 = .FALSE.; ] ] ] END; End of function InsideShallowTAM60 "******************************************************************************" Function InsideShallowTAM50 "******************************************************************************" Test if a given position (X, Y, Z) is inside the 50 micron shallow marrow of the marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTAM50(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI

PAGE 292

292 --------------------------------------------" IF (~InsideCT_CART(X, Y, Z) ) [ InsideShallowTAM50 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideShallowTAM50 =.FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_MARR)))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(0); EDGEINEG = CHAR(0); E DGEJPOS = CHAR(0); EDGEJNEG = CHAR(0); EDGEKPOS = CHAR(0); EDGEKNEG = CHAR(0); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ;

PAGE 293

293 ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] I2 = (X / $MICRO_VOXEL_SIZE_X); J2 = (Y / $MICRO_VOXEL_SIZE_Y); K2 = (Z / $MICRO_VOXEL_SIZE_Z); XMin = (I2) $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = (J2) $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = (K2) $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. CHAR(255)) [ P1= XMax X; ] IF(EDGEINEG .EQ. CHAR(255)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. CHAR(255)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. CHAR(255)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. CHAR(255)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. CHAR(255)) [ P6 = Z ZMin; ] PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ]

PAGE 294

294 IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ PRINT *, ERROR IN PDIST'; PRINT *, PDIST ', PDIST; ] InsideShallowTAM50 = .FALSE.; IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowTAM50 = .TRUE.; ] ] ELSE [ InsideShallowTAM50 = .FALSE.; ] ] ] END; End of function InsideShallowTAM50 "******************************************************************************" Function InsideShallowTIM50 "******************************************************************************" Test if a given position (X, Y, Z) is inside the shallow marrow voxel of the inactive marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTIM50(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z)) [ InsideShallowTIM50 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y);

PAGE 295

295 K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideShallowTIM50 = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_FAT)))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(122); EDGEINEG = CHAR(122); EDGEJPOS = CHAR(122); EDGEJNEG = CHAR(122); EDGEKPOS = CHAR(122); EDGEKNEG = CHAR(122); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ;

PAGE 296

296 ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] I2 = (X / $MICRO_VOXEL_SIZE_X); J2 = (Y / $MICRO_VOXEL_SIZE_Y); K2 = (Z / $MICRO_VOXEL_SIZE_Z); XMin = (I2) $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = (J2) $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = (K2) $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. CHAR(255)) [ P1= XMax X; ] IF(EDGEINEG .EQ. CHAR(255)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. CHAR(255)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. CHAR(255)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. CHAR(255)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. CHAR(255)) [ P6 = Z ZMin; ] PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ "PRINT *, ERROR IN PDIST'; "PRINT *, PDIST ', PDIST; ] InsideShallowTIM50 = .FALSE.; IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowTIM50 = .TRUE.;

PAGE 297

297 ] ] ELSE [ InsideShallowTIM50 = .FALSE.; ] ] ] END; End of function InsideShallowTIM50 "******************************************************************************" Function InsideFatMarrow "******************************************************************************" Test if a given position (X, Y, Z) is inside the Fat voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideFatMarrow(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideShallowTAM50; LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z)) [ InsideFatMarrow = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue=$MED_CORT .OR. VoxelValue=$MED_CART .OR. VoxelValue=$MED_TISS ) [ InsideFatMarrow = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image

PAGE 298

298 -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_FAT))) [ InsideFatMarrow = .TRUE.; ] ELSE [ InsideFatMarrow = .FALSE.; ] ] ] END; End of function InsideFatMarrow "******************************************************************************" Function InsideCorticalBone "******************************************************************************" Test if a given position (X, Y, Z) is inside the cortical region of the image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideCorticalBone(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" "WRITE($OUTPUT_FILE2, '(A)') 'InsideCorticalBone.';" IF (~InsideCT_CART(X, Y, Z)) [ "WRITE($OUTPUT_FILE2, '(A)') NOT IN CART.';" InsideCorticalBone = .FALSE.; ] ELSE [ "WRITE($OUTPUT_FILE2, '(A)') IN CART.';" --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z);

PAGE 299

299 VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ "WRITE($OUTPUT_FILE2, '(A)') IN CORTICAL.';" InsideCorticalBone = .TRUE.; ] ELSE [ "WRITE($OUTPUT_FILE2, '(A)') NOT IN CORTICAL.';" InsideCorticalBone = .FALSE.; ] ] END; End of function InsideCorticalBone "******************************************************************************" Function InsideCART "******************************************************************************" Test if a given position (X, Y, Z) is inside the cartilage region of the image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideCART(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z)) [ InsideCART = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CART) [ InsideCART = .TRUE.;

PAGE 300

300 ] ELSE [ InsideCART = .FALSE.; ] ] END; End of function InsideCART "******************************************************************************" Function InsideCT_CART "******************************************************************************" Test if a given position (X, Y, Z) is inside the limits of the CT image The outer limit of the CT image is 512 x 512 Also, test if the given position is in the ROI within the CT image ROI defined by everything within outside edge of Cartilage (not soft tissue)" Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the CT image. .FALSE. if the position is not inside the CT image. "******************************************************************************" LOGICAL FUNCTION InsideCT_CART(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself -------------------------------------" 1) to check if outside the CT image -------------------------------------" IF ( (X < 0.0) | (X >= $CT_IMAGE_NX $CT_VOXEL_SIZE_X) | (Y < 0.0) | (Y >= $CT_IMAGE_NY $CT_VOXEL_SIZE_Y) | (Z < 0.0) | (Z >= $CT_IMAGE_NZ $CT_VOXEL_SIZE_Z) ) [ InsideCT_CART = .FALSE.; "WRITE($OUTPUT_FILE2, '(A)') FALSE1';" ] ELSE [ -----------------------------------------------------" 2) to check if in the tissue region of the CT image -----------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_TISS) [ "WRITE($OUTPUT_FILE2, '(A)') FALSE2';" InsideCT_CART = .FALSE.; ] ELSE [ "WRITE($OUTPUT_FILE2, '(A)') TRUE';" InsideCT_CART = .TRUE.; ] ] END; End of function InsideCT_CART "******************************************************************************" Function BoundaryDistance "******************************************************************************"

PAGE 301

301 Returns the distance from the position (X, Y, Z) to the nearest boundary of the voxel when following the direction (U, V, W) The two images are tested and the closest voxel limit is returned. " Input: X, Y, Z: the position to be tested. U, V, W: the direction to follow. " Return: the distance to the boundary. "******************************************************************************" $REAL FUNCTION BoundaryDistance(X, Y, Z, U, V, W); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; $REAL U, V, W; local variables $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; to store the position of the voxel $REAL XMin, YMin, ZMin; for the boundary of the voxel $REAL XMax, YMax, ZMax; for the boundary of the voxel -------------------------------------------------------------------" 1) to calculate the boundary of the current voxel in the CT image -------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; ---------------------------------------------------------" 2) to measure the distance to the boundary of the voxel ---------------------------------------------------------" ShortestDistance = $INFINITY; a) along the X axis IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] b) along the Y axis IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] c) along the Z axis IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ]

PAGE 302

302 ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] --------------------------------------------------------------------" 3) to calculate the boundary of the current voxel in MICRO image --------------------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); J = (Y / $MICRO_VOXEL_SIZE_Y); K = (Z / $MICRO_VOXEL_SIZE_Z); XMin = I $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = J $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = K $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; ---------------------------------------------------------" 4) to measure the distance to the boundary of the voxel ---------------------------------------------------------" a) along the X axis IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] b) along the Y axis IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] c) along the Z axis IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ---------------------------" 5) to return the distance ---------------------------" BoundaryDistance = ShortestDistance; END; End of function BoundaryDistance "******************************************************************************" Function ClosestBoundary "******************************************************************************" Returns the shortest distance from the position (X, Y, Z) to the nearest boundary of the voxel. The two images are tested and the closest voxel limit is returned.

PAGE 303

303 Input: X, Y, Z: the position to be tested. " Return: the shortest distance to the boundary. "******************************************************************************" $REAL FUNCTION ClosestBoundary(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables local variables $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; to store the position of the voxel $REAL XMin, YMin, ZMin; for the boundary of the voxel $REAL XMax, YMax, ZMax; for the boundary of the voxel -------------------------------------------------------------------" 1) to calculate the boundary of the current voxel in the CT image -------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; ---------------------------------------------------------" 2) to measure the distance to the boundary of the voxel ---------------------------------------------------------" ShortestDistance = $INFINITY; Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ------------------------------------------------------------------------" 3) to calculate the boundary of the current voxel in the microCT image ------------------------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); J = (Y / $MICRO_VOXEL_SIZE_Y); K = (Z / $MICRO_VOXEL_SIZE_Z); XMin = I $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = J $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = K $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; ---------------------------------------------------------" 4) to measure the distance to the boundary of the voxel

PAGE 304

304 ---------------------------------------------------------" Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ---------------------------" 5) to return the distance ---------------------------" ClosestBoundary = ShortestDistance; END; End of function ClosestBoundary

PAGE 305

305 APPENDIX B PIRTCARTILAGELONGBON E MODEL (EGSNRC U SER CODE) This appendix contains the MORTRAN user code of the EGSnrc radiation code that has been modified from the original PIRT model user code (Shah et al. 2005) to transport electrons within a pair of 3D images that define a single skeletal site. It uses input image data from (1) a pre processed binary microimage of skeletal spongiosa (microCT) from a long bone sample and (2) a voxelized version of the segmented long bone macroimage proximal spongiosa, distal spongiosa, medullary marrow shaft, cortic al bone, and cartilage (if applicable). The following code was modified from the original PIRT model to include the input of an entire long bone as the macroimage instead of just the proximal end as was done in the previous version. Changes in cellularit y for the upper and lower shaft region can also be modeled. !INDENT M 4; "INDENT EACH MORTRAN NESTING LEVEL BY 4" !INDENT F 2; "INDENT EACH FORTRAN NESTING LEVEL BY 2" "This line is 80 characters long, use it to set up the screen width" "23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789" "******************************************************************************" Amish P. Shah *********************************** PairedCartilageLongBone.mortran *********************************** REVISED June 6, 2007 by DH Pafundi REVISED NRM to microCT (Marrow=0, Bone=255) REVISED June 15, 2007 by DH Pafundi REVISED to add Cartilage target REVISED December 7, 2008 by DH Pafundi REVISED for Whole Long Bone Model This program calculates the absorbed fraction of energy within the bone trabeculae, the marrow space components (inactive/active marrow), the bone endosteum, and the surrounding cortical bone of a given bone site. The geometry is defined by two images. An microimage is used to simulate an infinite field of trabecular bone. A CT image (lower resolution) is place over the trabecular bone region to define the limits of the trabecular bone region via a cortical bone shell with surrounding soft tissue. Particles that goes outside the cortical shell are discarded. The source is defined in any one of the regions that a target exists: bone volume, active marrow, inactive marrow, cortical bone, and bone endosteum. " Several things must be defined for each run: both images' configurations, the source, the output file, the location of the input file, etc.. " The PEGS file is: microimage (so no one forgets!) the type of particle: 1 for electrons, 0 for photons the initial energy of the particles the number of hio stries per configuration. The results are in the file Output.dat.

PAGE 306

306 "******************************************************************************" ----------------------------------------" Step 1: To override the EGSnrc macros ----------------------------------------" 1) so that all real variables are in double precision REPLACE {$REAL} WITH {DOUBLE PRECISION} 2) the size of the arrays used by EGSnrc. REPLACE {$MXMED} WITH {4} "4 medium in the problem (default 10)" REPLACE {$MXREG} WITH {7} "7 geometric regions (default 2000)" REPLACE {$MXSTACK} WITH {100} "less than 100 particles on stack at once" REPLACE {$MXMDSH} WITH {100} "max. nb of shells per medium for "incoherent scattering" REPLACE {IFIX} WITH {INT} REPLACE {0.,} WITH {0.0D0,} 3) for compatibility with the old EGS4. REPLACE {$CALLHOWNEAR(#);} WITH {CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);} -------------------------------------------" Step 1.a. To define user constant values -------------------------------------------" REPLACE {$REG_TRAB} WITH {1} region within the bone trabeculae" REPLACE {$REG_MARR} WITH {2} region within the marrow cavities" REPLACE {$REG_CORT} WITH {3} region within the cortical bone" REPLACE {$REG_OUTSIDE} WITH {4} region outside the study" REPLACE {$REG_LOST} WITH {5} region for lost particles" REPLACE {$REG_FAT} WITH {6} region within the FAT" REPLACE {$REG_CART} WITH {7} region within the CARTILAGE" REPLACE {$MED_BONE} WITH {255} to represent bone in MICRO image" REPLACE {$MED_MARR} WITH {0} to represent marrow MICRO image" REPLACE {$MED_FAT} WITH {122} to represent FAT in MICRO image" REPLACE {$MED_SPONG} WITH {55} to represent spongiosa in CT image" REPLACE {$MED_CORT} WITH {45} to represent cort. bone in CT image" REPLACE {$MED_TISS} WITH {0} to represent softtissue in CT image" REPLACE {$MED_CART} WITH {35} to represent cartilage in CT image" REPLACE {$MED_USMED} WITH {65} "upper medullary marrow shaft in CT image" REPLACE {$MED_LSMED} WITH {75} "lower medullary marrow shaft in CT image" REPLACE {$MED_ACTIVE_MED} WITH {1} to represent active medullary marrow in shaft" REPLACE {$MED_INACTIVE_MED} WITH {2} to represent inactiv medullary marrow in shaft" REPLACE {$IMAGE_FILE_MICRO} WITH {23} file to read the image REPLACE {$IMAGE_FILE_CT} WITH {23} file to read the image REPLACE {$INPUT_FILE} WITH {25} file to get the parameters REPLACE {$OUTPUT_FILE} WITH {26} file to record the results REPLACE {$OUTPUT_FILE2} WITH {27} columnar format for output" REPLACE {$N_RUN} WITH {100} number of run for each configuration" REPLACE {$INFINITY} WITH {1.0D99} to simulate infinity long distance REPLACE {$PI} WITH {3.1415926535897932D+00} need Pi in Source this is to solve the boundary crossing problem. The particle is transported a little farther than the exact boundary REPLACE {$BOUNDARY_THICKNESS} WITH {1.0D09} that's 0.1 Angstrom for the geometrical model "************************Change These Parameters*******************************" 1) the MICRO image REPLACE {$MICRO_FILENAME} WITH {'/home/dpafundi/egsnrc/PIRTCartilageLongBone1/18Y_RDFem_60MicROIMedFilSeg'} REPLACE {$MICRO_VOXEL_SIZE_X} WITH {0.00600D+00} "microimage voxel res (cm) REPLACE {$MICRO_VOXEL_SIZE_Y} WITH {0.00600D+00} in cm REPLACE {$MICRO_VOXEL_SIZE_Z} WITH {0.00600D+00} in cm REPLACE {$MICRO_IMAGE_NX} WITH {292} # of voxels along (O,x)" REPLACE {$MICRO_IMAGE_NY} WITH {362} # of voxels along (O,y)" REPLACE {$MICRO_IMAGE_NZ} WITH {333} # of voxels along (O,z)" 2) the CT image "macroimage voxel res (cm) REPLACE {$MACRO_FILENAME} WITH

PAGE 307

307 {'/home/dpafundi/egsnrc/PIRTCartilageLongBone1/15F_FEM(0.04_244x268x1047).bin'} REPLACE {$CT_VOXEL_SIZE_X} WITH {0.0400000D+00} "macroimage voxel" REPLACE {$CT_VOXEL_SIZE_Y} WITH {0.0400000D+00} in cm REPLACE {$CT_VOXEL_SIZE_Z} WITH {0.0400000D+00} in cm REPLACE {$CT_IMAGE_NX} WITH {244} # of voxels along (O,x)" REPLACE {$CT_IMAGE_NY} WITH {268} # of voxels along (O,y)" REPLACE {$CT_IMAGE_NZ} WITH {1047} # of voxels along (O,z)" REPLACE {$INPUT_FILENAME} WITH {'/home/dpafundi/egsnrc/PIRTCartilageLongBone1/Input.dat'} REPLACE {$OUTPUT_FILENAME} WITH {'/home/dpafundi/egsnrc/PIRTCartilageLongBone1/TAM100_15YF_RDistalFemur.dat'} REPLACE {$COL_OUTPUT_FILENAME} WITH {'/home/dpafundi/egsnrc/PIRTCartilageLongBone1/1TAM100_15YF_RDistalFemur.dat'} REPLACE {$US_CELLULARITY} WITH {1.0} Cellularity for upper shaft." REPLACE {$LS_CELLULARITY} WITH {1.0} Cellularity for lower shaft." "Choose your source below as follows: 1 => S=TBV bone volume source" 2 => S=TAM active marrow source" 3 => S=TIM inactive marrow source" 4 => S=TBS trabec bone surface source" 5 => S=CBV cortical bone volume source" 6 => S=CAR cartilage volume source" 7 => S=CBS cortical bone surface source in shaft" REPLACE {$SOURCE} WITH {2} REPLACE {$SIDE_SPLIT} WITH {0.500} "0.000 for marrowsided, 1.000 for bone" "0.500 for 50/50 split" "or could try to base it on volume fraction" "set it equal to BVF (1MVF)" "0.000 for TBS source for Long Bone" "**************************Change the Above Parameters************************" -------------------------------------------------" Step 1.b. To define the user common variables -------------------------------------------------" a) for scoring the results R EPLACE {COMIN/SCOR/;} WITH {COMMON/SCOR/ CumulEnergyTrabeculae,CumulEnergyMarrow,CumulEnergyCortical, CumulEnergyOutside,CumulEnergyLost,CumulEnergyCart, CumulEnergyFat,CumulEnergyEndo,CumulEnergyEndob, CumulEnergyEndof,CumulEnergyShaftActiveEndo, CumulEnergyShaftInactiveEndo; $REAL CumulEnergyTrabeculae; $REAL CumulEnergyMarrow; $REAL CumulEnergyCortical; $REAL CumulEnergyOutside; $REAL CumulEnergyLost; $REAL CumulEnergyCart; $REAL CumulEnergyFat; $REAL CumulEnergyEndo; $REAL CumulEnergyEndob; $REAL CumulEnergyEndof; $REAL CumulEnergyShaftActiveEndo; $REAL CumulEnergyShaftInactiveEndo;} b) for the geometry REPLACE {COMIN/GEOM/;} WITH {COMMON/GEOM/MICROBoneImage2, CTBoneImage, Isurf,Jsurf,Ksurf,IS2,JS2,KS2,surfside,surfside2,NumSurfaces, NumSurfaces2; CHARACTER MICROBoneImage2($MICRO_IMAGE_NX,$MICRO_IMAGE_NY,$MICRO_IMAGE_NZ); BYTE CTBoneImage($CT_IMAGE_NZ $CT_IMAGE_NY $CT_IMAGE_NX); INTEGER*2 Isurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX), Jsurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX), Ksurf($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX), IS2($CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX), JS2($CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX), KS2($CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX); INTEGER*1 surfside($MICRO_IMAGE_NZ*$MICRO_IMAGE_NY*$MICRO_IMAGE_NX); INTEGER*1 surfside2($CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX);

PAGE 308

308 INTEGER NumSurfaces2,Sbone2,Smarrow2; INTEGER NumSurfaces,Sbone,Smarrow;} --------------------------------------------------------" Step 1.c. To define the variables of the main program --------------------------------------------------------" $IMPLICITNONE; to make sure that all variables are declared 1) all the common that you need in the main programm COMIN/BOUNDS,MEDIA,MISC,USEFUL,RANDOM,GEOM,SCOR/; The above expands into COMMON statements BOUNDS contains ECUT and PCUT MEDIA contains NMED and the array concerning media MISC contains the medium per region and Rayleigh parameters USEFUL contains electron rest mass RANDOM contains the RANMAR parameters GEOM passes info to HOWFAR and HOWNEAR routines SCOR passes info to AUSGAB routine 2) local variables of the main program $REAL XIN, YIN, ZIN; particle location (to give to SHOWER) $REAL UIN, VIN, WIN; particle direction (to give to SHOWER) $REAL EIN; particle energy (to give to SHOWER) $REAL WTIN; particle weight (to give to SHOWER) $INTEGER IQIN; particle type (to give to SHOWER) $INTEGER IRIN; particle region (to give to SHOWER) $INTEGER PartNo; particle # to loop for each particle $INTEGER RunNo; run number to loop for each run $INTEGER ConfigNo; configuration number to loop for each one LOGICAL NoMoreConfig; to test the end of the input file $INTEGER ParticleType; particle type got from the input file $REAL KineticEnergy; kinetic energy got from the input file $INTEGER NumberOfHistories; number of histories got from the input file $INTEGER ParticlePerRun; number of particles per run for statistical results: mean, standard deviation, standard deviation of the mean, 95% confidence interval, and 95% confidence error $REAL AFTrabeculae; $REAL MeanAFTrabeculae; $REAL StdDevAFTrabeculae; $REAL StdDevOfMeanAFTrabeculae; $REAL ConfIntOfMeanAFTrabeculae; $REAL ConfErrOfMeanAFTrabeculae; $REAL AFMarrow; $REAL MeanAFMarrow; $REAL StdDevAFMarrow; $REAL StdDevOfMeanAFMarrow; $REAL ConfIntOfMeanAFMarrow; $REAL ConfErrOfMeanAFMarrow; $REAL AFFat; $REAL MeanAFFat; $REAL StdDevAFFat; $REAL StdDevOfMeanAFFat; $REAL ConfIntOfMeanAFFat; $REAL ConfErrOfMeanAFFat; $REAL AFEndo; $REAL MeanAFEndo; $REAL StdDevAFEndo; $REAL StdDevOfMeanAFEndo; $REAL ConfIntOfMeanAFEndo; $REAL ConfErrOfMeanAFEndo; $REAL AFEndob; $REAL MeanAFEndob; $REAL StdDevAFEndob; $REAL StdDevOfMeanAFEndob; $REAL ConfIntOfMeanAFEndob; $REAL ConfErrOfMeanAFEndob; $REAL AFEndof; $REAL MeanAFEndof; $REAL StdDevAFEndof; $REAL StdDevOfMeanAFEndof; $REAL ConfIntOfMeanAFEndof; $REAL ConfErrOfMeanAFEndof;

PAGE 309

309 $REAL AFCortical; $REAL MeanAFCortical; $REAL StdDevAFCortical; $REAL StdDevOfMeanAFCortical; $REAL ConfIntOfMeanAFCortical; $REAL ConfErrOfMeanAFCortical; $REAL AFOutside; $REAL MeanAFOutside; $REAL StdDevAFOutside; $REAL StdDevOfMeanAFOutside; $REAL ConfIntOfMeanAFOutside; $REAL ConfErrOfMeanAFOutside; $REAL AFLost; $REAL MeanAFLost; $REAL StdDevAFLost; $REAL StdDevOfMeanAFLost; $REAL ConfIntOfMeanAFLost; $REAL ConfErrOfMeanAFLost; $REAL AFCart; $REAL MeanAFCart; $REAL StdDevAFCart; $REAL StdDevOfMeanAFCart; $REAL ConfIntOfMeanAFCart; $REAL ConfErrOfMeanAFCart; $REAL AFShaftActiveEndo; $REAL MeanAFShaftActiveEndo; $REAL StdDevAFShaftActiveEndo; $REAL StdDevOfMeanAFShaftActiveEndo; $REAL ConfIntOfMeanAFShaftActiveEndo; $REAL ConfErrOfMeanAFShaftActiveEndo; $REAL AFShaftInactiveEndo; $REAL MeanAFShaftInactiveEndo; $REAL StdDevAFShaftInactiveEndo; $REAL StdDevOfMeanAFShaftInactiveEndo; $REAL ConfIntOfMeanAFShaftInactiveEndo; $REAL ConfErrOfMeanAFShaftInactiveEndo; $INTEGER NumByte, NumX, NumY, NumZ; CHARACTER tmp; $REAL Random1; 3) system functions invoked in the main program $REAL DSQRT; INTRINSIC DSQRT; ----------------------------------------" Step 2. To initialize the EGSnrc data ----------------------------------------" 1) to place medium names in an array. $S is a MORTRAN macro to expand strings CHARACTER*4 MEDARR(24,$MXMED); $INTEGER I, J; DATA MEDARR /$S'Bone',20*' ',$S'Marrow',18*' ',$S'Fat',21*' ', $S'Cart',20*' '/; NMED = $MXMED; "Set number of media." DO J = 1,$MXMED [ DO I=1,24 [ MEDIA(I,J) = MEDARR(I,J); ] this is to avoid a DATA STATEMENT for a variable in COMMON" NMED and DUNIT default to 1, i.e. one medium and we work in cm ] 2) to initialize the medium in each region MED($REG_TRAB) = 1; "cortical bone in the bone trabeculae" MED($REG_MARR) = 2; "bone marrow in the marrow cavities" MED($REG_FAT) = 3; "fat marrow in the marrow cavities" MED($REG_CORT) = 1; "cortical bone in the cortical shell" MED($REG_OUTSIDE) = 0; "vacuum outside the study region MED($REG_LOST) = 0; "vacuum if particles are lost (does not matter)"

PAGE 310

310 MED($REG_CART) = 4; "cartilage outside cortical bone boundary" 3) to initialize the cutoff energy for both electrons and photons in each region ECUT($REG_TRAB) = 0.005 + PRM; 5 keV + rest mass for electrons PCUT($REG_TRAB) = 0.001; 1 keV for photons ECUT($REG_MARR) = 0.005 + PRM; PCUT($REG_MARR) = 0.001; ECUT($REG_FAT) = 0.005 + PRM; PCUT($REG_FAT) = 0.001; ECUT($REG_CORT) = 0.005 + PRM; PCUT($REG_CORT) = 0.001; ECUT($REG_OUTSIDE) = 0.005 + PRM; PCUT($REG_OUTSIDE) = 0.001; ECUT($REG_LOST) = 0.005 + PRM; PCUT($REG_LOST) = 0.001; ECUT($REG_CART) = 0.005 + PRM; PCUT($REG_CART) = 0.001; 4) to ask EGSnrc to treat the Rayleigh scattering in each region IRAYLR($REG_TRAB) = 1; IRAYLR($REG_MARR) = 1; IRAYLR($REG_FAT) = 1; IRAYLR($REG_CORT) = 1; IRAYLR($REG_OUTSIDE) = 1; IRAYLR($REG_LOST) = 1; IRAYLR($REG_CART) = 1; 5) to initialize the random number generator IXX = 1; JXX = 0; seed # to initialize the random number series $RNGINITIALIZATION; ---------------------------------------------------------------" Step 3. To pick up the cross sections precalculated by pegs4 ---------------------------------------------------------------" CALL HATCH; data file must be assigned to unit 12 PRINT *, 'End of HATCH'; ------------------------------------------" Step 3.a. To initialize the output file ------------------------------------------" ; "*******Make Sure to Change the Path of the OUTPUT File in new directory******" OPEN ( UNIT=$OUTPUT_FILE, FILE=$OUTPUT_FILENAME, STATUS='unknown' ); OPEN ( UNIT=$OUTPUT_FILE2, FILE=$COL_OUTPUT_FILENAME, STATUS='unknown'); "********Make Sure to Change the Path of the OUTPUT File in new directory******" WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation '; WRITE($OUTPUT_FILE2, '(A)') '; WRITE($OUTPUT_FILE2, '(A)') '; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation '; "*************** Remove Comments from the Source that you Choose***************" IF ($SOURCE=1) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from bone trabeculae volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from bone trabeculae volume.'; ] IF ($SOURCE=2) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from active bone marrow.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from active bone marrow.'; ] IF ($SOURCE=3) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from inactive bone marrow.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from inactive bone marrow.'; ] IF ($SOURCE=4) [

PAGE 311

311 WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from bone surface source.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from bone surface source.'; ] IF ($SOURCE=5) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from cortical bone volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from cortical bone volume.'; ] IF ($SOURCE=6) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from cartilage volume.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from cartilage volume.'; ] IF ($SOURCE=7) [ WRITE($OUTPUT_FILE, '(A,A)') 'Absorbed fractions for irradiation from cortical bone surface.'; WRITE($OUTPUT_FILE2, '(A,A)') 'Absorbed fractions for irradiation from cortical bone surface.'; ] ---------------------------------------------" Step 3.b. To open and read the image files ---------------------------------------------" "********************Change the Input MicroIMAGE File Path*********************" OPEN(25, FILE=$MICRO_FILENAME, ACCESS='DIRECT',ERR=95,FORM='FORMATTED',RECL=1); GOTO 101; 95 PRINT *, 'error opening'; 101 PRINT *, 'ok opening MICRO/MicroCT image file'; "********************Change the Input MicroIMAGE File Path*********************" NumByte = 1; DO NumX=1, $MICRO_IMAGE_NX [ DO NumY=1, $MICRO_IMAGE_NY [ DO NumZ=1, $MICRO_IMAGE_NZ [ READ(25, '(A1)', REC=NumByte) tmp; MICROBoneImage2(NumX,NumY,NumZ)=tmp; NumByte = NumByte + 1; ] ] ] CLOSE (25); PRINT *, 'ok reading MICRO image file'; "********************Change the Input MAcroIMAGE File Path*********************" OPEN($IMAGE_FILE_CT, FILE=$MACRO_FILENAME, ACCESS='DIRECT', FORM='UNFORMATTED', RECL=$CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX); PRINT *, 'ok opening CT image file'; READ($IMAGE_FILE_CT, REC=1) CTBoneImage; DO I=1, ($CT_IMAGE_NZ*$CT_IMAGE_NY*$CT_IMAGE_NX) [ IF CTBoneImage(I) = $MED_USMED [ $RANDOMSET Random1; IF Random1 < $US_CELLULARITY [ CTBoneImage(I) = $MED_ACTIVE_MED; ] ELSE [ CTBoneImage(I) = $MED_INACTIVE_MED; ] ] IF CTBoneImage(I) = $MED_LSMED [ $RANDOMSET Random1; IF Random1 < $LS_CELLULARITY [ CTBoneImage(I) = $MED_ACTIVE_MED; ]

PAGE 312

312 ELSE [ CTBoneImage(I) = $MED_INACTIVE_MED; ] ] ] CLOSE ( $IMAGE_FILE_CT ); "********************Change the Input MAcroIMAGE File Path*********************" "**********************Only if running the SURFACE source**********************" IF($SOURCE=4) [ CALL SurfaceFinder; Sbone=0;Smarrow=0; ] IF($SOURCE=7) [ CALL CorticalSurfaceFinder; Sbone2=0;Smarrow2=0; ] "******************************************************************************" "*********Make Sure to Change the Path of the Input File in new directory******" -----------------------------------------------------" Step 3.c. For each configuration in the input file -----------------------------------------------------" One execution is performed for each line of the input file OPEN ( UNIT=$INPUT_FILE, FILE=$INPUT_FILENAME, STATUS='old' ); READ ( $INPUT_FILE, ); to skip the first line "*********Make Sure to Change the Path of the Input File in new directory******" N oMoreConfig = .FALSE.; ConfigNo = 0; LOOP [" until no more line in the file -------------------------------------------------" Step 3.d. To read a new line in the input file -------------------------------------------------" READ ( $INPUT_FILE, *, END = :EndInput: ) ParticleType, KineticEnergy, NumberOfHistories; GO TO :NextInput:; :EndInput: NoMoreConfig = .TRUE.; :NextInput: CONTINUE; -----------------------------------------------------------------------" Step 3.e. If a new line exists, initialize the data for this config. -----------------------------------------------------------------------" IF (~NoMoreConfig) [ 1) to display the new configuration ConfigNo = ConfigNo + 1; PRINT *, 'Configuration No:', ConfigNo; 2) how many particles per run? ParticlePerRun = NumberOfHistories / $N_RUN; 3) to output the parameters of the configuration WRITE($OUTPUT_FILE, '(A)') '; WRITE($OUTPUT_FILE, '(A,I3)') 'Configuration No:', ConfigNo; WRITE($OUTPUT_FILE, '(A)') 'The calculation is performed for:'; WRITE($OUTPUT_FILE, '(A,I5,A)') ', $N_RUN, runs'; IF (ParticleType = 0) [ WRITE($OUTPUT_FILE, '(A,I6,A)') ', ParticlePerRun, photons per run'; ] ELSE [ WRITE($OUTPUT_FILE, '(A,I6,A)') ', ParticlePerRun, electrons per run'; ] WRITE($OUTPUT_FILE, '(A,I8,A)') Total: ', ParticlePerRun*$N_RUN, histories.'; WRITE($OUTPUT_FILE, '(A,F7.3,A)') Initial kinetic energy: ',

PAGE 313

313 KineticEnergy, MeV.'; 4) to initialize the statistical data MeanAFTrabeculae = 0.0; MeanAFMarrow = 0.0; MeanAFFat = 0.0; MeanAFEndo = 0.0; MeanAFEndob = 0.0; MeanAFEndof = 0.0; MeanAFCortical = 0.0; MeanAFOutside = 0.0; MeanAFLost = 0.0; MeanAFCart = 0.0; MeanAFShaftActiveEndo = 0.0; MeanAFShaftInactiveEndo = 0.0; StdDevAFTrabeculae = 0.0; StdDevAFMarrow = 0.0; StdDevAFFat = 0.0; StdDevAFEndo = 0.0; StdDevAFEndob = 0.0; StdDevAFEndof = 0.0; StdDevAFCortical = 0.0; StdDevAFOutside = 0.0; StdDevAFLost = 0.0; StdDevAFCart = 0.0; StdDevAFShaftActiveEndo = 0.0; StdDevAFShaftInactiveEndo = 0.0; -------------------------" Step 3.f. For each run -------------------------" DO RunNo=1,$N_RUN [ PRINT *, Run no:', RunNo; ------------------------------------------------------------" Step 4. To initialize the geometry for HOWFAR and HOWNEAR ------------------------------------------------------------" done when reading the input file ---------------------------------------------------------" Step 5. To initialize the scoring variables for AUSGAB ---------------------------------------------------------" CumulEnergyTrabeculae = 0.0; CumulEnergyMarrow = 0.0; CumulEnergyFat = 0.0; CumulEnergyEndo = 0.0; CumulEnergyEndob = 0.0; CumulEnergyEndof = 0.0; CumulEnergyCortical = 0.0; CumulEnergyOutside = 0.0; CumulEnergyLost = 0.0; CumulEnergyCart = 0.0; CumulEnergyShaftActiveEndo = 0.0; CumulEnergyShaftInactiveEndo = 0.0; ------------------------------" Step 5.a. For each particle ------------------------------" DO PartNo=1, ParticlePerRun [ to have a display of the progression of the code IF (MOD(PartNo,100) = 0) [ "PRINT *, Particle: ', PartNo;" ] --------------------------------------------" Step 6. To define the particle parameters --------------------------------------------" IF (ParticleType = 0) [ EIN = KineticEnergy; initial kinetic energy" ] ELSE [ EIN = KineticEnergy + PRM; initial kinetic + rest mass energy" ] IQIN=ParticleType; WTIN=1.0; weight = 1 since no variance reduction used" to get the initial location and direction of the particle.

PAGE 314

314 "************Selecting the Source that you Chose*******************" IF ($SOURCE=1) [ CALL SourceBoneVolume(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=2) [ CALL SourceActiveMarrow(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=3) [ CALL SourceFatMarrow(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=4) [ CALL SourceBoneSurface(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=5) [ CALL SourceCorticalBone(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=6) [ CALL SourceCartilage(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] IF ($SOURCE=7) [ "PRINT *, 'NEW PARTICLE';" CALL SourceCorticalBoneSurface(XIN,YIN,ZIN,UIN,VIN,WIN,IRIN); ] ------------------------------------" Step 7. To transport the particle ------------------------------------" CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN); ] -------------------------------------------------------------" Step 7.a. To calculate and display the result for this run -------------------------------------------------------------" AFTrabeculae = CumulEnergyTrabeculae / (ParticlePerRun KineticEnergy); AFMarrow = CumulEnergyMarrow / (ParticlePerRun KineticEnergy); AFFat = CumulEnergyFat / (ParticlePerRun KineticEnergy); AFEndo = CumulEnergyEndo / (ParticlePerRun KineticEnergy); AFEndob = CumulEnergyEndob / (ParticlePerRun KineticEnergy); AFEndof = CumulEnergyEndof / (ParticlePerRun KineticEnergy); AFCortical = CumulEnergyCortical / (ParticlePerRun KineticEnergy); AFOutside = CumulEnergyOutside / (ParticlePerRun KineticEnergy); AFLost = CumulEnergyLost / (ParticlePerRun KineticEnergy); AFCart = CumulEnergyCart / (ParticlePerRun KineticEnergy); AFShaftActiveEndo = CumulEnergyShaftActiveEndo / (ParticlePerRun KineticEnergy); AFShaftInactiveEndo = CumulEnergyShaftInactiveEndo / (ParticlePerRun KineticEnergy); ---------------------------------------------" Step 7.b. To cumulate the statistical data ---------------------------------------------" MeanAFTrabeculae = MeanAFTrabeculae + AFTrabeculae; MeanAFMarrow = MeanAFMarrow + AFMarrow; MeanAFFat = MeanAFFat + AFFat; MeanAFEndo = MeanAFEndo + AFEndo; MeanAFEndob = MeanAFEndob + AFEndob; MeanAFEndof = MeanAFEndof + AFEndof; MeanAFCortical = MeanAFCortical + AFCortical; MeanAFOutside = MeanAFOutside + AFOutside; MeanAFLost = MeanAFLost + AFLost; MeanAFCart = MeanAFCart + AFCart; MeanAFShaftActiveEndo = MeanAFShaftActiveEndo + AFShaftActiveEndo; MeanAFShaftInactiveEndo = MeanAFShaftInactiveEndo + AFShaftInactiveEndo; StdDevAFTrabeculae = StdDevAFTrabeculae + AFTrabeculae*AFTrabeculae; StdDevAFMarrow = StdDevAFMarrow + AFMarrow*AFMarrow; StdDevAFFat = StdDevAFFat + AFFat*AFFat; StdDevAFEndo = StdDevAFEndo + AFEndo*AFEndo;

PAGE 315

315 StdDevAFEndob = StdDevAFEndob + AFEndob*AFEndob; StdDevAFEndof = StdDevAFEndof + AFEndof*AFEndof; StdDevAFCortical = StdDevAFCortical + AFCortical*AFCortical; StdDevAFOutside = StdDevAFOutside + AFOutside*AFOutside; StdDevAFLost = StdDevAFLost + AFLost*AFLost; StdDevAFCart = StdDevAFCart + AFCart*AFCart; StdDevAFShaftActiveEndo = StdDevAFShaftActiveEndo + AFShaftActiveEndo* AFShaftActiveEndo; StdDevAFShaftInactiveEndo = StdDevAFShaftInactiveEndo + AFShaftInactiveEndo*AFShaftInactiveEndo; ] End of this run ----------------------------------------------" Step 7.c. To calculate the statistical data ----------------------------------------------" a) the mean MeanAFTrabeculae = MeanAFTrabeculae / $N_RUN; MeanAFMarrow = MeanAFMarrow / $N_RUN; MeanAFFat = MeanAFFat / $N_RUN; MeanAFEndo = MeanAFEndo / $N_RUN; MeanAFEndob = MeanAFEndob / $N_RUN; MeanAFEndof = MeanAFEndof / $N_RUN; MeanAFCortical = MeanAFCortical / $N_RUN; MeanAFOutside = MeanAFOutside / $N_RUN; MeanAFLost = MeanAFLost / $N_RUN; MeanAFCart = MeanAFCart / $N_RUN; MeanAFShaftActiveEndo = MeanAFShaftActiveEndo / $N_RUN; MeanAFShaftInactiveEndo = MeanAFShaftInactiveEndo / $N_RUN; b) the standard deviation of the sample StdDevAFTrabeculae = StdDevAFTrabeculae $N_RUN*MeanAFTrabeculae*MeanAFTrabeculae; StdDevAFMarrow = StdDevAFMarrow $N_RUN*MeanAFMarrow*MeanAFMarrow; StdDevAFFat = StdDevAFFat $N_RUN*MeanAFFat*MeanAFFat; StdDevAFEndo = StdDevAFEndo $N_RUN*MeanAFEndo*MeanAFEndo; StdDevAFEndob = StdDevAFEndob $N_RUN*MeanAFEndob*MeanAFEndob; StdDevAFEndof = StdDevAFEndof $N_RUN*MeanAFEndof*MeanAFEndof; StdDevAFCortical = StdDevAFCortical $N_RUN*MeanAFCortical*MeanAFCortical; StdDevAFOutside = StdDevAFOutside $N_RUN*MeanAFOutside*MeanAFOutside; StdDevAFLost = StdDevAFLost $N_RUN*MeanAFLost*MeanAFLost; StdDevAFCart = StdDevAFCart $N_RUN*MeanAFCart*MeanAFCart; StdDevAFShaftActiveEndo = StdDevAFShaftActiveEndo $N_RUN*MeanAFShaftActiveEndo*MeanAFShaftActiveEndo; StdDevAFShaftInactiveEndo = StdDevAFShaftInactiveEndo $N_RUN*MeanAFShaftInactiveEndo*MeanAFShaftInactiveEndo; StdDevAFTrabeculae = StdDevAFTrabeculae / ($N_RUN 1); StdDevAFMarrow = StdDevAFMarrow / ($N_RUN 1); StdDevAFFat = StdDevAFFat / ($N_RUN 1); StdDevAFEndo = StdDevAFEndo / ($N_RUN 1); StdDevAFEndob = StdDevAFEndob / ($N_RUN 1); StdDevAFEndof = StdDevAFEndof / ($N_RUN 1); StdDevAFCortical = StdDevAFCortical / ($N_RUN 1); StdDevAFOutside = StdDevAFOutside / ($N_RUN 1); StdDevAFLost = StdDevAFLost / ($N_RUN 1); StdDevAFCart = StdDevAFCart / ($N_RUN 1); StdDevAFShaftActiveEndo = StdDevAFShaftActiveEndo / ($N_RUN 1); StdDevAFShaftInactiveEndo = StdDevAFShaftInactiveEndo / ($N_RUN 1); StdDevAFTrabeculae = DSQRT(StdDevAFTrabeculae); StdDevAFMarrow = DSQRT(StdDevAFMarrow); StdDevAFFat = DSQRT(StdDevAFFat); StdDevAFEndo = DSQRT(StdDevAFEndo); StdDevAFEndob = DSQRT(StdDevAFEndob); StdDevAFEndof = DSQRT(StdDevAFEndof); StdDevAFCortical = DSQRT(StdDevAFCortical); StdDevAFOutside = DSQRT(StdDevAFOutside); StdDevAFLost = DSQRT(StdDevAFLost); StdDevAFCart = DSQRT(StdDevAFCart);

PAGE 316

316 StdDevAFShaftActiveEndo = DSQRT(StdDevAFShaftActiveEndo); StdDevAFShaftInactiveEndo = DSQRT(StdDevAFShaftInactiveEndo); c) the standard deviation of the mean */ StdDevOfMeanAFTrabeculae = StdDevAFTrabeculae / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFMarrow = StdDevAFMarrow / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFFat = StdDevAFFat / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndo = StdDevAFEndo / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndob = StdDevAFEndob / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFEndof = StdDevAFEndof / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFCortical = StdDevAFCortical / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFOutside = StdDevAFOutside / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFLost = StdDevAFLost / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFCart = StdDevAFCart / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFShaftActiveEndo = StdDevAFShaftActiveEndo / DSQRT(DBLE($N_RUN)); StdDevOfMeanAFShaftInactiveEndo = StdDevAFShaftInactiveEndo / DSQRT(DBLE($N_RUN)); d) the 95% confidence interval of the mean */ ConfIntOfMeanAFTrabeculae = 1.96*StdDevOfMeanAFTrabeculae; ConfIntOfMeanAFMarrow = 1.96*StdDevOfMeanAFMarrow; ConfIntOfMeanAFFat = 1.96*StdDevOfMeanAFFat; ConfIntOfMeanAFEndo = 1.96*StdDevOfMeanAFEndo; ConfIntOfMeanAFEndob = 1.96*StdDevOfMeanAFEndob; ConfIntOfMeanAFEndof = 1.96*StdDevOfMeanAFEndof; ConfIntOfMeanAFCortical = 1.96*StdDevOfMeanAFCortical; ConfIntOfMeanAFOutside = 1.96*StdDevOfMeanAFOutside; ConfIntOfMeanAFLost = 1.96*StdDevOfMeanAFLost; ConfIntOfMeanAFCart = 1.96*StdDevOfMeanAFCart; ConfIntOfMeanAFShaftActiveEndo = 1.96*StdDevOfMeanAFShaftActiveEndo; ConfIntOfMeanAFShaftInactiveEndo = 1.96*StdDevOfMeanAFShaftInactiveEndo; e) the 95% confidence error of the mean */ ConfErrOfMeanAFTrabeculae = 100.0 ConfIntOfMeanAFTrabeculae / MeanAFTrabeculae; ConfErrOfMeanAFMarrow = 100.0 ConfIntOfMeanAFMarrow / MeanAFMarrow; ConfErrOfMeanAFFat = 100.0 ConfIntOfMeanAFFat / MeanAFFat; ConfErrOfMeanAFEndo = 100.0 ConfIntOfMeanAFEndo / MeanAFEndo; ConfErrOfMeanAFEndob = 100.0 ConfIntOfMeanAFEndob / MeanAFEndob; ConfErrOfMeanAFEndof = 100.0 ConfIntOfMeanAFEndof / MeanAFEndof; ConfErrOfMeanAFCortical = 100.0 ConfIntOfMeanAFCortical / MeanAFCortical; ConfErrOfMeanAFOutside = 100.0 ConfIntOfMeanAFOutside / MeanAFOutside; ConfErrOfMeanAFLost = 100.0 ConfIntOfMeanAFLost / MeanAFLost; ConfErrOfMeanAFCart = 100.0 ConfIntOfMeanAFCart / MeanAFCart; ConfErrOfMeanAFShaftActiveEndo = 100.0 ConfIntOfMeanAFShaftActiveEndo / MeanAFShaftActiveEndo; ConfErrOfMeanAFShaftInactiveEndo = 100.0 ConfIntOfMeanAFShaftInactiveEndo / MeanAFShaftInactiveEndo; ------------------------------------------------------" Step 8. To print out the results to the output file ------------------------------------------------------" WRITE($OUTPUT_FILE, '(A,A)') Absorbed fractions with 95%', confidence intervals:'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in Trabeculae: ', MeanAFTrabeculae, +/', ConfIntOfMeanAFTrabeculae,' (', ConfErrOfMeanAFTrabeculae, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TIMtotal: ', MeanAFFat, +/', ConfIntOfMeanAFFat,' (', ConfErrOfMeanAFFat, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TAMs60: ', MeanAFEndo, +/', ConfIntOfMeanAFEndo,' (', ConfErrOfMeanAFEndo, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)')

PAGE 317

317 AF in TAMs50: ', MeanAFEndob, +/', ConfIntOfMeanAFEndob,' (', ConfErrOfMeanAFEndob, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TIM50: ', MeanAFEndof, +/', ConfIntOfMeanAFEndof,' (', ConfErrOfMeanAFEndof, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in TAMtotal: ', MeanAFMarrow, +/', ConfIntOfMeanAFMarrow,' (', ConfErrOfMeanAFMarrow, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in corticalshell: ', MeanAFCortical, +/', ConfIntOfMeanAFCortical,' (', ConfErrOfMeanAFCortical, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in cartilage: ', MeanAFCart, +/', ConfIntOfMeanAFCart,' (',ConfErrOfMeanAFCart, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF in outside: ', MeanAFOutside, +/', ConfIntOfMeanAFOutside,' (', ConfErrOfMeanAFOutside, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF lost: ', MeanAFLost, +/', ConfIntOfMeanAFLost,' (', ConfErrOfMeanAFLost, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF ShaftActiveShallow50: ', MeanAFShaftActiveEndo, +/', ConfIntOfMeanAFShaftActiveEndo,' (', ConfErrOfMeanAFShaftActiveEndo, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14,A,F16.14,A,F6.2,A)') AF ShaftInactiveShallow50: ', MeanAFShaftInactiveEndo, +/', ConfIntOfMeanAFShaftInactiveEndo,' (', ConfErrOfMeanAFShaftInactiveEndo, '%)'; WRITE($OUTPUT_FILE,'(A,F16.14)') Total AF: ', MeanAFTrabeculae + MeanAFMarrow + MeanAFCortical+ MeanAFFat + MeanAFOutside + MeanAFLost + MeanAFCart; WRITE($OUTPUT_FILE2,'(A,F16.14,A,F16.14,A,F16.14, A,F16.14,A,F16.14,A,F16.14, A,F16.14,A,F16.14,A,F16.14, A,F16.14)') AF_TAM: ', MeanAFMarrow, AFTA50: ', MeanAFEndob, AF_TBV: ', MeanAFTrabeculae, AF_TIM: ', MeanAFFat, AF_TI50: ', MeanAFEndof, AF_CBV: ', MeanAFCortical, AF_ESC: ', MeanAFOutside, AF_CAR: ', MeanAFCart, AF_ActShaftEndo: ', MeanAFShaftActiveEndo, AF_InactShaftEndo: ', MeanAFShaftInactiveEndo; ] ] End of this configuration UNTIL (NoMoreConfig); --------------------------------------------" Step 8.a. Don't forget to close the files --------------------------------------------" CLOSE($INPUT_FILE); CLOSE($OUTPUT_FILE); CLOSE($OUTPUT_FILE2); END; End of main program "******************************************************************************" SourceBoneVolume "******************************************************************************" The SourceBoneVolume subroutine returns a particle starting within the bone regions of the image. The source is isotropic and uniform within the BONE ." The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceBoneVolume(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc);

PAGE 318

318 $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideBoneVolume; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideBoneVolume(XSrc, YSrc, ZSrc)) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_TRAB; END; End of subroutine SourceBoneVolume "******************************************************************************" SourceActiveMarrow "******************************************************************************" The SourceActiveMarrow subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Active Marrow. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi)

PAGE 319

319 "******************************************************************************" SUBROUTINE SourceActiveMarrow(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideActiveMarrow; LOGICAL InsideShallowTAM50; LOGICAL InsideShallowActiveMarrowShaft; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( (InsideActiveMarrow(XSrc, YSrc, ZSrc))) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_MARR; END; End of subroutine SourceActiveMarrow "******************************************************************************" SourceFatMarrow "******************************************************************************" The SourceFatMarrow subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Fat Marrow or InActive Marrow. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval.

PAGE 320

320 Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceFatMarrow(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideFatMarrow; LOGICAL InsideShallowTAM50; LOGICAL InsideShallowActiveMarrowShaft; LOGICAL InsideShallowTIM50; LOGICAL InsideShallowInactiveMarrowShaft; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( (InsideFatMarrow(XSrc, YSrc, ZSrc))) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_FAT; END; End of subroutine SourceFatMarrow "******************************************************************************" SurfaceFinder "******************************************************************************" "The SurfaceFinder subroutine is utilized only for the TBS source. "This subroutine goes through all voxels in the microimage storing those that

PAGE 321

321 "contain surfaces in arrays Isurf(N), Jsurf(N), Ksurf(N) where N is an index. "It stores the direction of the surface (1,10,100,..) in the surfside(N) array" "These surfaces are then sampled from during the SourceBoneSurface subroutine. Note that if a bone voxel contains M number of surfaces, it is stored in the arrays M times (once with each surface so as to not bias the surface sampling. IF WE EVER USE NONCUBICAL MICROIMAGE VOXELS THIS ROUTINE WILL NEED MODIFICATION "******************************************************************************" SUBROUTINE SurfaceFinder; $IMPLICITNONE; "COMMON variables" COMIN/GEOM/; "Local variables" $INTEGER M,N,NumSurfVox,Surfaces,I,J,K; CHARACTER VoxelValue,EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; "system functions in subroutine" "user functions in subroutine" LOGICAL InsideBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideBoneVolume; NumSurfVox = 0; NumSurfaces=0; DO I=1, $MICRO_IMAGE_NX [ DO J=1, $MICRO_IMAGE_NY [ DO K=1, $MICRO_IMAGE_NZ [ VoxelValue=MICROBoneImage2(I,J,K); "PRINT *,I,J,K,ICHAR(VoxelValue);" "IF ((VoxelValue=CHAR($MED_MARR)) .OR." "(VoxelValue=CHAR($MED_FAT))) [" "Have a marrow/fat voxel, now check for surfaces" IF (VoxelValue=CHAR($MED_BONE)) [ "Have a bone voxel, now check for surfaces" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] ;

PAGE 322

322 Surfaces=0; IF ((EDGEIPOS = CHAR($MED_MARR)) .OR. (EDGEIPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEIPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=1; Surfaces=Surfaces+1; ] IF ((EDGEINEG = CHAR($MED_MARR)) .OR. (EDGEINEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEINEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=2; Surfaces=Surfaces+1; ] IF ((EDGEJPOS = CHAR($MED_MARR)) .OR. (EDGEJPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEJPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=3; Surfaces=Surfaces+1; ] IF ((EDGEJNEG = CHAR($MED_MARR)) .OR. (EDGEJNEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEJNEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=4; Surfaces=Surfaces+1; ] IF ((EDGEKPOS = CHAR($MED_MARR)) .OR. (EDGEKPOS = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEKPOS) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=5; Surfaces=Surfaces+1; ] IF ((EDGEKNEG = CHAR($MED_MARR)) .OR. (EDGEKNEG = CHAR($MED_FAT))) [ "IF (ICHAR(EDGEKNEG) = ($MED_BONE)) [" Isurf(NumSurfaces+Surfaces)=I; Jsurf(NumSurfaces+Surfaces)=J; Ksurf(NumSurfaces+Surfaces)=K; surfside(NumSurfaces+Surfaces)=6; Surfaces=Surfaces+1; ] NumSurfaces=NumSurfaces+Surfaces; IF(Surfaces>0) [NumSurfVox=NumSurfVox+1;] ] ] ] ] PRINT *,'Number of Surface Voxels =',NumSurfVox; PRINT *,'Out of ',$MICRO_IMAGE_NX*$MICRO_IMAGE_NY*$MICRO_IMAGE_NZ; PRINT *,'Number of Surfaces = ',NumSurfaces; END; "End of Subroutine SurfaceFinder" "******************************************************************************" SourceBoneSurface "******************************************************************************" The SourceBoneSurface subroutine returns particles starting near the bone surfaces of the image. The source is isotropic and positioned $BOUNDARY_THICKNESS on either side of the surface, depending on value of the"

PAGE 323

323 user defined $SIDESPLIT value. Samples from the surfaces stored in arrays by SurfaceFinder subroutine. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceBoneSurface(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; $INTEGER I, I2, J, J2, K, K2; $REAL P1, P2, P3, P4, P5, P6, PDIST; $INTEGER MOD; CHARACTER VoxelValue2; the voxel itself CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3, Random4, Random5, Random6, Random7; $REAL Random8, Random9, Random10; $REAL Theta, Phi,MaxX,MaxY,MaxZ,xmax,xmin,ymax,ymin,zmax,zmin; LOGICAL InsideSourceMarr; LOGICAL InsideSourceFat; LOGICAL InsideSourceBone; LOGICAL InsideSourceCorticalBone; $INTEGER SVoxelNum,MaxNX,MaxNY,MaxNZ,Xcopy,Ycopy,Zcopy; $INTEGER Icheck,Jcheck,Kcheck; $INTEGER num,index,N,SideDir; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN, push; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideBoneVolume; $REAL ClosestBoundary; InsideSourceMarr=.FALSE.; InsideSourceFat=.FALSE.; InsideSourceBone=.FALSE.; "Algorithm is now to randomly select one of the surface voxels by randomly" "selecting over the range of 0 to NumSurfaces1. This voxel then has "multiple possible positions within the macroimage. This position is also" "randomly selected and the starting position of the source is determined." -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ "Until it fits" "PRINT *, 'Trying';" $RANDOMSET Random1; SVoxelNum=(NumSurfaces1)*Random1; I=Isurf(SVoxelNum); J=Jsurf(SVoxelNum); K=Ksurf(SVoxelNum); SideDir=surfside(SVoxelNum); VoxelValue2 = MICROBoneImage2(I,J,K); "IF (VoxelValue2~=CHAR($MED_MARR) .AND. VoxelValue2~=CHAR($MED_FAT)) [" IF (VoxelValue2~=CHAR($MED_BONE)) [

PAGE 324

324 PRINT *,'ERROR: You loser, your new SurfaceFinder is flawed!'; PRINT *,'i.e. Your surface voxel is the wrong medium!!'; ] "Now find the possible positions of the voxel within macroimage" "Below gives the maximum possible values for x,y,z within Macro" MaxX=$CT_VOXEL_SIZE_X*$CT_IMAGE_NX; MaxY=$CT_VOXEL_SIZE_Y*$CT_IMAGE_NY; MaxZ=$CT_VOXEL_SIZE_Z*$CT_IMAGE_NZ; "Next find the maximum number of copies of microimage in each direction" MaxNX=MaxX/($MICRO_VOXEL_SIZE_X*$MICRO_IMAGE_NX)+1; MaxNY=MaxY/($MICRO_VOXEL_SIZE_Y*$MICRO_IMAGE_NY)+1; MaxNZ=MaxZ/($MICRO_VOXEL_SIZE_Z*$MICRO_IMAGE_NZ)+1; "Now select random copy number and check to see if it fits within macro" "This is where I thought I could start the loop originally." $RANDOMSET Random2; $RANDOMSET Random3; $RANDOMSET Random4; "This must be MaxNX+1 if I want integers from 0 to MaxNX" "since the rounding to an integer only goes down." Xcopy=(MaxNX+1)*Random2; Ycopy=(MaxNY+1)*Random3; Zcopy=(MaxNZ+1)*Random4; "So the origin of these images is defined as 1,1,1 (voxel coordinates)" "and .006,.006,.006 (x,y,z coordinates)...that crazy Dr.Shah" "apparently he has a thing against coordinate systems starting at 0" xmin=(Xcopy*$MICRO_IMAGE_NX+I)*$MICRO_VOXEL_SIZE_X; xmax=xmin+$MICRO_VOXEL_SIZE_X; ymin=(Ycopy*$MICRO_IMAGE_NY+J)*$MICRO_VOXEL_SIZE_Y; ymax=ymin+$MICRO_VOXEL_SIZE_Y; zmin=(Zcopy*$MICRO_IMAGE_NZ+K)*$MICRO_VOXEL_SIZE_Z; zmax=zmin+$MICRO_VOXEL_SIZE_Z; "OR IF THE COORDINATE SYSTEM IS 1,1,1(voxel) and 0.000,0.000,0.000 (x,y,z)" "xmin=(Xcopy*$MICRO_IMAGE_NX+I1)*$MICRO_VOXEL_SIZE_X;" "xmax=xmin+$MICRO_VOXEL_SIZE_X;" "ymin=(Ycopy*$MICRO_IMAGE_NY+J1)*$MICRO_VOXEL_SIZE_Y;" "ymax=ymin+$MICRO_VOXEL_SIZE_Y;" "zmin=(Zcopy*$MICRO_IMAGE_NZ+K1)*$MICRO_VOXEL_SIZE_Z;" "zmax=zmin+$MICRO_VOXEL_SIZE_Z;" "Determine whether the source will be bone sided (50%) or marrow sided (50%)." $RANDOMSET Random7; "0.500 will be half bone/half marrow" "To make completely bone sided change 0.500 to 0.00." "To make completely marrow sided change 0.500 to 1.0." "Could choose bone volume fraction as the breaking point?" IF (Random7.LT.$SIDE_SPLIT) [ push=0.000000; ] ELSE [ push=1.000000; ] $RANDOMSET Random5; $RANDOMSET Random6; "Determine surface and starting positions" IF (SideDir=1) [ "Surface is IPOS" XSrc=xmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=2) [ "Surface is INEG" XSrc=xmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin;

PAGE 325

325 ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=3) [ "Surface is JPOS" YSrc=ymax$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=4) [ "Surface is JNEG" YSrc=ymin+$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmax zmin)*Random6+zmin; ] ELSE IF (SideDir=5) [ "Surface is KPOS" ZSrc=zmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; XSrc=(xmaxxmin)*Random6+xmin; ] ELSE IF (SideDir=6) [ "Surface is KNEG" ZSrc=zmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; XSrc=(xmaxxmin)*Random6+xmin; ] Icheck = (XSrc / $MICRO_VOXEL_SIZE_X); Icheck = MOD(Icheck, $MICRO_IMAGE_NX); IF (Icheck=0) [Icheck=$MICRO_IMAGE_NX;] Jcheck = (YSrc / $MICRO_VOXEL_SIZE_Y); Jcheck = MOD(Jcheck, $MICRO_IMAGE_NY); IF (Jcheck=0) [Jcheck=$MICRO_IMAGE_NY;] Kcheck = (ZSrc / $MICRO_VOXEL_SIZE_Z); Kcheck = MOD(Kcheck, $MICRO_IMAGE_NZ); IF (Kcheck=0) [Kcheck=$MICRO_IMAGE_NZ;] IF(push<0.1) [ IF(Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K) [ PRINT *, 'Surface Check Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(push>0.5) [ IF(SideDir=1) [ IF (Icheck~=I+1 .AND. Jcheck~=J .AND. Kcheck~=K) [ PRINT *, 'IPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=2) [ IF (Icheck~=I1 .AND. Jcheck~=J .AND. Kcheck~=K) [ PRINT *, 'INEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=3) [ IF (Icheck~=I .AND. Jcheck~=J+1 .AND. Kcheck~=K) [ PRINT *, 'JPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=4) [ IF (Icheck~=I .AND. Jcheck~=J1 .AND. Kcheck~=K) [ PRINT *, 'JNEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=5) [ IF (Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K+1) [ PRINT *, 'KPOS Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] IF(SideDir=6) [ IF (Icheck~=I .AND. Jcheck~=J .AND. Kcheck~=K1) [ PRINT *, 'KNEG Source Error',I,J,K,Icheck,Jcheck,Kcheck;] ] ] IF(ClosestBoundary(XSrc,YSrc,ZSrc)>(2*$BOUNDARY_THICKNESS)) [ PRINT *, 'Error, source not on surface.'; PRINT *, ClosestBoundary(XSrc,YSrc,ZSrc); ] "Also, this is the first check to make sure it's within macro." IF ( (InsideBoneVolume(XSrc, YSrc, ZSrc))) [ IF (Random7>$SIDE_SPLIT) [ PRINT *, 'Error...not Marrow'; PRINT *, XSrc,YSrc,ZSrc,Random7,push;

PAGE 326

326 PRINT *,SideDir; PRINT *,Icheck,Jcheck,Kcheck; PRINT *, I,J,K; ] "ELSE [PRINT *,'okay...Bone',ClosestBoundary(XSrc,YSrc,ZSrc);]" Sbone=Sbone+1; "PRINT *, 'BONE:',;" InsideSourceBone = .TRUE.; ] ELSE [ InsideSourceBone = .FALSE.; ] IF ( (InsideActiveMarrow(XSrc, YSrc, ZSrc))) [ IF (Random7<$SIDE_SPLIT) [ PRINT *, 'Error...not Bone'; PRINT *, XSrc,YSrc,ZSrc,Random7,push; PRINT *,SideDir; PRINT *,Icheck,Jcheck,Kcheck; PRINT *, I,J,K; ] "ELSE [PRINT *,'okay..Marrow',ClosestBoundary(XSrc,YSrc,ZSrc);]" Smarrow=Smarrow+1; "PRINT *, 'MARROW:',Smarrow;" InsideSourceMarr = .TRUE.;InsideSourceFat=.FALSE.; ] ELSE [InsideSourceMarr=.FALSE.;] IF ((InsideFatMarrow(XSrc, YSrc, ZSrc))) [ IF (Random7<$SIDE_SPLIT) [ PRINT *, 'Error...not Bone';] "ELSE [PRINT *,'okay..Marrow';]" InsideSourceMarr = .FALSE.; InsideSourceFat = .TRUE.; ] ELSE [InsideSourceFat=.FALSE.;] "PRINT *, InsideSourceBone, InsideSourceFat, InsideSourceMarr;" ] UNTIL ((InsideSourceBone) .OR. (InsideSourceFat) .OR. (InsideSourceMarr)); "End of LOOP" ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random8; $RANDOMSET Random9; Theta = DACOS(1 2.0*Random8); Phi = 2.0 $PI Random9; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" IF (InsideSourceMarr) [ RegSrc = $REG_MARR; "PRINT *, 'MARR';" ] IF (InsideSourceFat) [ RegSrc = $REG_FAT; "PRINT *, 'FAT';" ] IF (InsideSourceBone) [ RegSrc = $REG_TRAB; "PRINT *, 'TRAB';" ] END; End of subroutine SourceBoneSurface "******************************************************************************" CorticalSurfaceFinder "******************************************************************************" "The SurfaceFinder subroutine is utilized only for the CBS source. "This subroutine goes through all voxels in the macroimage storing those that

PAGE 327

327 "contain surfaces in arrays Isurf(N), Jsurf(N), Ksurf(N) where N is an index. "It stores the direction of the surface (1,10,100,..) in the surfside(N) array" "These surfaces are then sampled from during the SourceBoneSurface subroutine. "Note that if a cortical bone voxel contains M number of surfaces, it is stored" "in the arrays M times (once with each surface so as to not bias the surface sampling. IF WE EVER USE NONCUBICAL MICROIMAGE VOXELS THIS ROUTINE WILL NEED MODIFICATION "******************************************************************************" SUBROUTINE CorticalSurfaceFinder; $IMPLICITNONE; "COMMON variables" COMIN/GEOM/; "Local variables" $REAL X, Y, Z; $INTEGER M,N,NumSurfVox,Surfaces,I,J,K; $INTEGER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $INTEGER VoxelValue1, VoxelNo1; "system functions in subroutine" "user functions in subroutine" L OGICAL InsideCorticalBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideCorticalBone; LOGICAL InsideCart; LOGICAL InsideBoneVolume; NumSurfVox = 0; NumSurfaces2 = 0; --------------------------------------------------" 1) to calculate the voxel number in the CT image --------------------------------------------------" DO I=1, $CT_IMAGE_NX [ DO J=1, $CT_IMAGE_NY [ DO K=1, $CT_IMAGE_NZ [ VoxelNo1 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; VoxelValue1=CTBoneImage(VoxelNo1); IF (VoxelValue1 < 0) [ VoxelValue1 = 256 + VoxelValue1; ] IF (VoxelValue1=($MED_CORT)) [ "IF (I = 122 .AND. J = 96 .AND. K = 251) [" "PRINT *,'122, 96, 251 is in Cort';" "]" PRINT *,'HI'; IF (I .GE. ($CT_IMAGE_NX)) [ EDGEIPOS = VoxelValue1; ] ELSE [ VoxelNo1 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I+1)+1; EDGEIPOS = CTBoneImage(VoxelNo1); ] IF (I .LE. (1)) [ EDGEINEG = VoxelValue1; ] ELSE [ VoxelNo1 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I1)+1; EDGEINEG = CTBoneImage(VoxelNo1) ; ] IF (J .GE. ($CT_IMAGE_NY)) [ EDGEJPOS = VoxelValue1; ] ELSE [ VoxelNo1 = (K*$CT_IMAGE_NY+(J+1))*$CT_IMAGE_NX+I+1; EDGEJPOS = CTBoneImage(VoxelNo1); ] IF (J .LE. (1)) [ EDGEJNEG = VoxelValue1; ] ELSE [ VoxelNo1 = (K*$CT_IMAGE_NY+(J1))*$CT_IMAGE_NX+I+1;

PAGE 328

328 EDGEJNEG = CTBoneImage(VoxelNo1); ] IF (K .GE. ($CT_IMAGE_NZ)) [ EDGEKPOS = VoxelValue1; ] ELSE [ VoxelNo1 = ((K+1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKPOS = CTBoneImage(VoxelNo1); ] IF (K .LE. (1)) [ EDGEKNEG = VoxelValue1; ] ELSE [ VoxelNo1 = ((K1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKNEG = CTBoneImage(VoxelNo1); ] ; Surfaces=0; IF (EDGEIPOS ~= ($MED_CORT)) [ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=1; Surfaces=Surfaces+1; ] IF (EDGEINEG ~= ($MED_CORT)) [ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=2; Surfaces=Surfaces+1; ] IF (EDGEJPOS ~= ($MED_CORT)) [ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=3; Surfaces=Surfaces+1; ] IF (EDGEJNEG ~= ($MED_CORT))[ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=4; Surfaces=Surfaces+1; ] IF (EDGEKPOS ~= ($MED_CORT))[ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=5; Surfaces=Surfaces+1; ] IF (EDGEKNEG ~= ($MED_CORT))[ IS2(NumSurfaces2+Surfaces)=I; JS2(NumSurfaces2+Surfaces)=J; KS2(NumSurfaces2+Surfaces)=K; surfside2(NumSurfaces2+Surfaces)=6; Surfaces=Surfaces+1; ] NumSurfaces2=NumSurfaces2+Surfaces; IF(Surfaces>0) [NumSurfVox=NumSurfVox+1;] ] ] ] ] PRINT *,'Number of Surface Voxels =',NumSurfVox; PRINT *,'Out of ',$CT_IMAGE_NX*$CT_IMAGE_NY*$CT_IMAGE_NZ; PRINT *,'Number of Surfaces = ',NumSurfaces2; END; "End of Subroutine CorticalSurfaceFinder" "******************************************************************************" SourceCorticalBoneSurface

PAGE 329

329 "******************************************************************************" The SourceCorticalBoneSurface subroutine returns particles starting near the" cortical bone surfaces of the long bone shaft image. The source is isotropic and positioned $BOUNDARY_THICKNESS on either side of the surface, depending on value of the user defined $SIDESPLIT value. Samples from the surfaces stored in arrays by SurfaceFinder subroutine. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceCorticalBoneSurface(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; $INTEGER I, I2, J, J2, K, K2; $REAL P1, P2, P3, P4, P5, P6, PDIST; $INTEGER MOD; $INTEGER VoxelValue1, VoxelNo1; the voxel itself $INTEGER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3, Random4, Random5, Random6, Random7; $REAL Random8, Random9, Random10; $REAL Theta, Phi,MaxX,MaxY,MaxZ,xmax,xmin,ymax,ymin,zmax,zmin; LOGICAL InsideSourceMarr; LOGICAL InsideSourceFat; LOGICAL InsideSourceCorticalBone; LOGICAL InsideSourceBoneVolume; LOGICAL InsideSourceCartilage $INTEGER SVoxelNum,MaxNX,MaxNY,MaxNZ,Xcopy,Ycopy,Zcopy; $INTEGER Icheck,Jcheck,Kcheck; $INTEGER num,index,N,SideDir; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN, push; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideCorticalBoneSurface; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideCorticalBone; LOGICAL InsideCART; LOGICAL InsideBoneVolume; $REAL ClosestBoundary; InsideSourceMarr=.FALSE.; InsideSourceFat=.FALSE.; InsideSourceCorticalBone=.FALSE.; "Algorithm is now to randomly select one of the surface voxels by randomly" "selecting over the range of 0 to NumSurfaces1. This voxel then has "multiple possible positions within the macroimage. This position is also" "randomly selected and the starting position of the source is determined." -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a cortical bone voxel. $RANDOMSET Random1; SVoxelNum=(NumSurfaces21)*Random1; "PRINT *, 'SourceCorticalBoneSurface: SVoxelNum: ', SVoxelNum;"

PAGE 330

330 I=IS2(SVoxelNum); J=JS2(SVoxelNum); K=KS2(SVoxelNum); SideDir=surfside2(SVoxelNum); VoxelNo1 = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelValue1 = CTBoneImage(VoxelNo1); "PRINT *, 'I, J, K: ', I, J, K, => ', VoxelNo1, => ', VoxelValue1;" IF (VoxelValue1~=($MED_CORT)) [ PRINT *,'ERROR: You loser, your new SurfaceFinder is flawed!'; PRINT *,'i.e. Your surface voxel is the wrong medium!!'; ] xmin=(I)*$CT_VOXEL_SIZE_X; xmax=xmin+$CT_VOXEL_SIZE_X; ymin=(J)*$CT_VOXEL_SIZE_Y; ymax=ymin+$CT_VOXEL_SIZE_Y; zmin=(K)*$CT_VOXEL_SIZE_Z; zmax=zmin+$CT_VOXEL_SIZE_Z; "Determine whether the source will be bone sided (50%) or marrow sided (50%)." $RANDOMSET Random7; "0.500 will be half bone/half marrow" "To make completely bone sided change 0.500 to 0.00." "To make completely marrow sided change 0.500 to 1.0." "Could choose bone volume fraction as the breaking point?" IF (Random7.LT.$SIDE_SPLIT) [ push=0.000000; ] ELSE [ push=1.000000; ] push = 0.000; $RANDOMSET Random5; $RANDOMSET Random6; "Determine surface and starting positions" IF (SideDir=1) [ "Surface is IPOS" XSrc=xmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=2) [ "Surface is INEG" XSrc=xmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=3) [ "Surface is JPOS" YSrc=ymax$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=4) [ "Surface is JNEG" YSrc=ymin+$BOUNDARY_THICKNESS*(12*push); XSrc=(xmaxxmin)*Random5+xmin; ZSrc=(zmaxzmin)*Random6+zmin; ] ELSE IF (SideDir=5) [ "Surface is KPOS" ZSrc=zmax$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; XSrc=(xmaxxmin)*Random6+xmin; ] ELSE IF (SideDir=6) [ "Surface is KNEG" ZSrc=zmin+$BOUNDARY_THICKNESS*(12*push); YSrc=(ymaxymin)*Random5+ymin; X Src=(xmaxxmin)*Random6+xmin; ] IF(InsideCorticalBone(XSrc, YSrc, ZSrc))[

PAGE 331

331 RegSrc = $REG_CORT; Sbone2= Sbone2+1; ] ELSE IF(InsideActiveMarrow(XSrc, YSrc, ZSrc))[ RegSrc = $REG_MARR; Smarrow2 = Smarrow2+1; ] ELSE IF(InsideFatMarrow(XSrc, YSrc, ZSrc))[ RegSrc = $REG_FAT; ] ELSE IF(InsideCART(XSrc, YSrc, ZSrc))[ RegSrc = $REG_CART; ] ELSE IF(InsideBoneVolume(XSrc, YSrc, ZSrc))[ RegSrc = $REG_TRAB; ] ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random8; $RANDOMSET Random9; Theta = DACOS(1 2.0*Random8); Phi = 2.0 $PI Random9; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); END; End of subroutine SourceCorticalBoneSurface "******************************************************************************" SourceCorticalBone "******************************************************************************" The SourceCorticalBone subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Cortical Bone of the CT Image. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceCorticalBone(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideCorticalBone; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a bone voxel. LOOP [ until the position is inside bone

PAGE 332

332 $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideCorticalBone(XSrc, YSrc, ZSrc) ) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_CORT; END; End of subroutine SourceCorticalBone "******************************************************************************" SourceCartilage "******************************************************************************" The SourceCartilage subroutine returns particles starting within the marrow regions of the microCT image. The source is isotropic and uniform within the Cartilage of the CT Image. The direction is equiprobable, that means that: Phi is equiprobable within the [0, 2Pi] interval, Theta is not equiprobable within [0, Pi], but cos(Theta) is equiprobable within the [1, 1] interval. Hence, the Phi and Theta values are (if Rn1 and Rn2 are two random numbers) Phi = 2*Pi*Rn1 Theta = arcos(1 2*Pi) "******************************************************************************" SUBROUTINE SourceCartilage(XSrc,YSrc,ZSrc,USrc,VSrc,WSrc,RegSrc); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL XSrc; $REAL YSrc; $REAL ZSrc; $REAL USrc; $REAL VSrc; $REAL WSrc; $INTEGER RegSrc; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $REAL Random1, Random2, Random3; $REAL Theta, Phi; LOGICAL InsideSource; system functions invoked in subroutine $REAL DACOS, DCOS, DSIN; INTRINSIC DACOS, DCOS, DSIN; user functions invoked in the subroutine LOGICAL InsideCART; -------------------------------------" 1) to return the starting position -------------------------------------" The three coordinates are first chosen within the image Then a test checks if it is located within a cartilage voxel.

PAGE 333

333 LOOP [ until the position is inside cartilage $RANDOMSET Random1; $RANDOMSET Random2; $RANDOMSET Random3; XSrc = $CT_VOXEL_SIZE_X $CT_IMAGE_NX Random1; YSrc = $CT_VOXEL_SIZE_Y $CT_IMAGE_NY Random2; ZSrc = $CT_VOXEL_SIZE_Z $CT_IMAGE_NZ Random3; IF ( InsideCART(XSrc, YSrc, ZSrc) ) [ InsideSource = .TRUE.; ] ELSE [ InsideSource = .FALSE.; ] ] UNTIL ( InsideSource ); ----------------------------" 2) to return the direction ----------------------------" To choose a random direction. In the spherical coordinate frame: Phi is equiprobable within the [0, 2Pi] interval cos(Theta) is equiprobable within the [1, +1] interval $RANDOMSET Random1; $RANDOMSET Random2; Theta = DACOS(1 2.0*Random1); Phi = 2.0 $PI Random2; USrc = DSIN(Theta) DCOS(Phi); VSrc = DSIN(Theta) DSIN(Phi); WSrc = DCOS(Theta); --------------------------------" 3) to return the region number --------------------------------" RegSrc = $REG_CART; END; End of subroutine SourceCartilage "******************************************************************************" HOWFAR "******************************************************************************" The HOWFAR subroutine measures the distance between the location of the particle (X0, Y0, Z0) and the next boundary crossed by the particle when traveling to the direction (Up, Vp, Wp). The returned values are: IDISC is set to 1 if we need to discard the particle USTEP is shortened if the boundary is reached by the particle IRNEW is set with the region number that lies beyond the boundary "******************************************************************************" SUBROUTINE HOWFAR; $IMPLICITNONE; to make sure that all variables are declared COMMON variables C OMIN/GEOM,STACK,EPCONT/; The above expands into COMMON statements STACK contains IR(NP), X,Y,Z(NP), and U,V,W(NP) EPCONT contains USTEP: the distance EGSnrc is to transport the part. local variables $INTEGER I, J, K; $INTEGER VoxelNo, VoxelValue; $REAL X0, Y0, Z0; the position of the particle $REAL Up, Vp, Wp; the direction of the particle $INTEGER IReg; the region number" $REAL Distance; the distance to the boundary $REAL XNew, YNew, ZNew; location of particle after current step user functions invoked in the subroutine LOGICAL InsideBoneVolume; LOGICAL InsideShallowTAM60; LOGICAL InsideActiveMarrow; LOGICAL InsideFatMarrow; LOGICAL InsideCorticalBone; LOGICAL InsideCART; $REAL BoundaryDistance; "PRINT *, 'HOWFAR';" --------------------------------"

PAGE 334

334 1) To get the data from EGSnrc --------------------------------" X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); Up = U(NP); Vp = V(NP); Wp = W(NP); IReg = IR(NP); -----------------------------------------" 2) To check the data returned by EGSnrc -----------------------------------------" if a mismatch is detected, the particle is discarded (IDISC=1) IR(NP) is set to the region $REG_LOST so that AUSGAB can detect the problem (IRNEW is not used by EGS since it does not transport the particle before it calls AUSGAB) a) to check the region numbers IF ( (IReg ~= $REG_TRAB) & (IReg ~= $REG_MARR) & (IReg ~= $REG_FAT) & (IReg ~= $REG_CORT) & (IReg ~= $REG_CART) & (IReg ~= $REG_OUTSIDE)) [ PRINT *, 'Error in HOWFAR: wrong region number: ', IReg; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] b) to check if the region number matches the location IF (IReg = $REG_TRAB) [ IF (~InsideBoneVolume(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in bone.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_MARR) [ IF (~InsideActiveMarrow(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in marrow.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_FAT) [ IF (~InsideFatMarrow(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in fat.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSEIF (IReg = $REG_CORT) [ I = (X0 / $CT_VOXEL_SIZE_X); J = (Y0 / $CT_VOXEL_SIZE_Y); K = (Z0 / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; VoxelValue = CTBoneImage(VoxelNo); "PRINT *, X0, Y0, Z0, => ', 'I, J, K: ', I, J, K, => '," VoxelNo, => ', VoxelValue;" IF (~InsideCorticalBone(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in cortical.'; IDISC = 1; IR(NP) = $REG_LOST; "STOP;" RETURN; ] ] ELSEIF (IReg = $REG_CART) [ IF (~InsideCART(X0, Y0, Z0)) [ PRINT *, 'Error in HOWFAR: particle is not in cartilage.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ELSE [ IF (InsideBoneVolume(X0, Y0, Z0) | InsideFatMarrow(X0, Y0, Z0) | InsideActiveMarrow(X0, Y0, Z0) | InsideCorticalBone(X0, Y0, Z0)| InsideCART(X0, Y0, Z0) ) [

PAGE 335

335 PRINT *, 'Error in HOWFAR: particle is not outside.'; IDISC = 1; IR(NP) = $REG_LOST; RETURN; ] ] ----------------------------------------------------------------" 3) To discard the particle if it goes outside the study region ----------------------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ IDISC = 1; ] ELSE [ ----------------------------------------------" 4) To calculate the distance to the boundary ----------------------------------------------" Distance = BoundaryDistance(X0, Y0, Z0, Up, Vp, Wp); ----------------------------------------------------------------------" 5) To make sure the particle jumps on the other side of the boundary ----------------------------------------------------------------------" Distance = Distance + $BOUNDARY_THICKNESS; ---------------------------------------------------" 6) To check if the distance is shorter than USTEP ---------------------------------------------------" IF ( Distance < USTEP ) [ USTEP = Distance; ] ------------------------------------------------" 7) To calculate the region beyond the boundary ------------------------------------------------" a) to calculate the new position XNew = X0 + USTEP*Up; YNew = Y0 + USTEP*Vp; ZNew = Z0 + USTEP*Wp; b) to calculate the new region IF (InsideBoneVolume(XNew, YNew, ZNew)) [ IRNEW = $REG_TRAB; ] ELSEIF ((InsideActiveMarrow(XNew, YNew, ZNew))) [ IRNEW = $REG_MARR; ] ELSEIF (InsideCorticalBone(XNew, YNew, ZNew)) [ IRNEW = $REG_CORT; ] ELSEIF ((InsideFatMarrow(XNew, YNew, ZNew))) [ IRNEW = $REG_FAT; ] ELSEIF ((InsideCART(XNew, YNew, ZNew))) [ IRNEW = $REG_CART; ] ELSE [ IRNEW = $REG_OUTSIDE; ] "PRINT *, 'New pos: ', XNew, YNew, ZNew, => New reg: ', IRNEW;" ] END; End of subroutine HOWFAR "******************************************************************************" HOWNEAR "******************************************************************************" The HOWNEAR subroutine measures the shortest distance between the location of the particle (X0, Y0, Z0) and the boundary of the actual region IReg. The returned values are: TPerp is the shortest distance from the particle location to the boundary of the region IReg "******************************************************************************" SUBROUTINE HOWNEAR(TPerp, X0, Y0, Z0, IReg); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL TPerp; the shortest distance to return $REAL X0, Y0, Z0; the current location of the particle

PAGE 336

336 $INTEGER IReg; the current region of the particle user functions invoked in the subroutine $REAL ClosestBoundary; "PRINT *, 'HOWNEAR';" -----------------------------------------------------" 1) To check if the particle has become out of study -----------------------------------------------------" IF (IReg = $REG_OUTSIDE) [ TPerp = 0.0; so that HOWFAR is called and discard the particle ] ELSE [ ---------------------------------------" 2) To calculate the shortest distance ---------------------------------------" TPerp = ClosestBoundary(X0, Y0, Z0); --------------------------------------------------------------------" 3) To make sure the particle will not be too close to the boundary --------------------------------------------------------------------" TPerp = TPerp $BOUNDARY_THICKNESS; IF (TPerp < 0.0) [ TPerp = 0.0;" ] ] END; End of subroutine HOWNEAR "******************************************************************************" AUSGAB "******************************************************************************" The AUSGAB subroutine cumulates the energy deposited within the regions. The energy is stored in the 'CumulEnergy' variables. " Input: IARG : A flag (see EGSnrc documentation) which is set to 3 if the particle is discarded by the HOWFAR subroutine, in our situation, that means that the particle is going outside the study region or that it has been lost. "******************************************************************************" SUBROUTINE AUSGAB(IARG); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $INTEGER IARG; $REAL X0, Y0, Z0; COMMON variables COMIN/STACK,EPCONT,SCOR/; The above expands into COMMON statements STACK contains IR(NP) EPCONT contains EDEP: the energy deposited now SCOR contains the variables to cumulate the energy deposited local variables $INTEGER IReg; to store the region number" LOGICAL InsideShallowTAM60; LOGICAL InsideShallowTAM50; LOGICAL InsideShallowTIM50; LOGICAL InsideShallowActiveMarrowShaft; LOGICAL InsideShallowInactiveMarrowShaft; --------------------------------" 1) To get the data from EGSnrc --------------------------------" IReg = IR(NP); X0 = X(NP); Y0 = Y(NP); Z0 = Z(NP); ---------------------------------------------------------" 2) To test if the particle has been discarded by HOWFAR ---------------------------------------------------------" IF (IARG = 3) [ test why it has been discarded IF (IReg = $REG_OUTSIDE) [ CumulEnergyOutside = CumulEnergyOutside + EDEP; ]

PAGE 337

337 ELSEIF (IReg = $REG_LOST) [ CumulEnergyLost = CumulEnergyLost + EDEP; ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after discard.'; RETURN; ] ] ELSE [ -----------------------------------------------" 3) To cumulate the energy in the right region -----------------------------------------------" IF (IReg = $REG_TRAB) [ CumulEnergyTrabeculae = CumulEnergyTrabeculae + EDEP; ] ELSEIF (IReg = $REG_MARR) [ CumulEnergyMarrow = CumulEnergyMarrow + EDEP; IF (InsideShallowTAM60(X0, Y0, Z0)) [ CumulEnergyEndo = CumulEnergyEndo + EDEP; ] IF (InsideShallowTAM50(X0, Y0, Z0)) [ CumulEnergyEndob = CumulEnergyEndob + EDEP; ] IF (InsideShallowActiveMarrowShaft(X0, Y0, Z0)) [ CumulEnergyShaftActiveEndo = CumulEnergyShaftActiveEndo + EDEP; ] ] ELSEIF (IReg = $REG_CORT) [ CumulEnergyCortical = CumulEnergyCortical + EDEP; ] ELSEIF (IReg = $REG_CART) [ CumulEnergyCart = CumulEnergyCart + EDEP; ] ELSEIF (IReg = $REG_FAT) [ CumulEnergyFat = CumulEnergyFat + EDEP; IF (InsideShallowTIM50(X0, Y0, Z0)) [ CumulEnergyEndof = CumulEnergyEndof + EDEP; ] IF (InsideShallowInactiveMarrowShaft(X0, Y0, Z0)) [ CumulEnergyShaftInactiveEndo = CumulEnergyShaftInactiveEndo + EDEP; ] ] ELSE [ PRINT *, 'Error in AUSGAB: wrong region number after transport.'; RETURN; ] ] END; End of subroutine AUSGAB "******************************************************************************" Function InsideBoneVolume "******************************************************************************" Test if a given position (X, Y, Z) is inside the trabeculae voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideBoneVolume(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements

PAGE 338

338 GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideBoneVolume = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideBoneVolume = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(255)) [ InsideBoneVolume = .TRUE.; ] ELSE [ InsideBoneVolume = .FALSE.; ] ] ] END; End of function InsideBoneVolume "******************************************************************************" Function InsideActiveMarrow "******************************************************************************" Test if a given position (X, Y, Z) is inside the active marrow voxels of the duplicated microCT image and in the spongiosa region of the CT image.

PAGE 339

339 Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideActiveMarrow(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image CHARACTER VoxelValue2; the voxel itself $INTEGER VoxelValue; the voxel itself $REAL Random1; system functions invoked in the main program $INTEGER MOD; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; LOGICAL InsideShallowTAM60; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideActiveMarrow = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideActiveMarrow = .FALSE.; ] ELSEIF (VoxelValue = $MED_ACTIVE_MED ) [ InsideActiveMarrow = .TRUE.; ] ELSEIF (VoxelValue = $MED_INACTIVE_MED) [ InsideActiveMArrow = .FALSE.; ] ELSE [ Here we are in trabecular bone -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE"

PAGE 340

340 J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF (VoxelValue2 = CHAR(0)) [ InsideActiveMarrow = .TRUE.; ] ELSE [ InsideActiveMarrow = .FALSE.; ] ] ] END; End of function InsideActiveMarrow "******************************************************************************" Function InsideShallowTAM60 "******************************************************************************" Test if a given position (X, Y, Z) is inside the shallow marrow voxel of the" marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTAM60(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideShallowTAM60 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X);

PAGE 341

341 J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideShallowTAM60 = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ( (VoxelValue2 = CHAR($MED_MARR)) )[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(0); EDGEINEG = CHAR(0); EDGEJPOS = CHAR(0); EDGEJNEG = CHAR(0); EDGEKPOS = CHAR(0); EDGEKNEG = CHAR(0); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ]

PAGE 342

342 IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] "Not sure why APS had this here..I commented out" "I2 = (X / $MICRO_VOXEL_SIZE_X);" "J2 = (Y / $MICRO_VOXEL_SIZE_Y);" "K2 = (Z / $MICRO_VOXEL_SIZE_Z);" "XMin = (I2) $MICRO_VOXEL_SIZE_X;" "XMax = XMin + $MICRO_VOXEL_SIZE_X;" "YMin = (J2) $MICRO_VOXEL_SIZE_Y;" "YMax = YMin + $MICRO_VOXEL_SIZE_Y;" "ZMin = (K2) $MICRO_VOXEL_SIZE_Z;" "ZMax = ZMin + $MICRO_VOXEL_SIZE_Z;" InsideShallowTAM60 = .FALSE.; IF(EDGEIPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEINEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEJPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEJNEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEKPOS .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] IF(EDGEKNEG .EQ. CHAR(255)) [ InsideShallowTAM60 = .TRUE.; ] ] ELSE [ InsideShallowTAM60 = .FALSE.; ] ] ] END; End of function InsideShallowTAM60 "******************************************************************************" Function InsideShallowTAM50 "******************************************************************************" Test if a given position (X, Y, Z) is inside the 50 micron shallow marrow of the marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTAM50(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image

PAGE 343

343 local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideShallowTAM50 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideShallowTAM50 =.FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" VoxelNo = (K*$MICRO_IMAGE_NY + J)*$MICRO_IMAGE_NX + I + 1; --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_MARR)))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(0); EDGEINEG = CHAR(0); EDGEJPOS = CHAR(0); EDGEJNEG = CHAR(0);

PAGE 344

344 EDGEKPOS = CHAR(0); EDGEKNEG = CHAR(0); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ; ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] I2 = (X / $MICRO_VOXEL_SIZE_X); J2 = (Y / $MICRO_VOXEL_SIZE_Y); K2 = (Z / $MICRO_VOXEL_SIZE_Z); XMin = (I2) $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = (J2) $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = (K2) $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. CHAR(255)) [ P1= XMax X; ] IF(EDGEINEG .EQ. CHAR(255)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. CHAR(255)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. CHAR(255)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. CHAR(255)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. CHAR(255)) [ P6 = Z ZMin; ]

PAGE 345

345 PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ PRINT *, ERROR IN PDIST'; PRINT *, PDIST ', PDIST; ] InsideShallowTAM50 = .FALSE.; IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowTAM50 = .TRUE.; ] ] ELSE [ InsideShallowTAM50 = .FALSE.; ] ] ] END; End of function InsideShallowTAM50 "******************************************************************************" Function InsideShallowActiveMarrowShaft "******************************************************************************" Test if a given position (X, Y, Z) is inside the 50 micron shallow marrow of the marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowActiveMarrowShaft(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelNo2; "the vioxel number within the CT image" $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; system functions invoked in the main program $INTEGER MOD; $INTEGER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG;

PAGE 346

346 $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideShallowActiveMarrowShaft = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] --------------------------------" 4) to get and test the medium --------------------------------" IF (VoxelValue = ($MED_ACTIVE_MED))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = ($MED_ACTIVE_MED); EDGEINEG = ($MED_ACTIVE_MED); EDGEJPOS = ($MED_ACTIVE_MED); EDGEJNEG = ($MED_ACTIVE_MED); EDGEKPOS = ($MED_ACTIVE_MED); EDGEKNEG = ($MED_ACTIVE_MED); "CHECK FOR CORTICAL BONE VOXEL NEIGHBORS" "DETERMINE WHERE CORTICAL BONE SURFACES ARE(IF THEY ARE)" IF (I .GE. ($CT_IMAGE_NX)) [ EDGEIPOS = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I+1)+1; EDGEIPOS = CTBoneImage(VoxelNo2); ] IF (I .LE. (1)) [ EDGEINEG = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I1)+1; EDGEINEG = CTBoneImage(VoxelNo2) ; ] IF (J .GE. ($CT_IMAGE_NY)) [ EDGEJPOS = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+(J+1))*$CT_IMAGE_NX+I+1; EDGEJPOS = CTBoneImage(VoxelNo2); ] IF (J .LE. (1)) [ EDGEJNEG = VoxelValue;

PAGE 347

347 ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+(J1))*$CT_IMAGE_NX+I+1; EDGEJNEG = CTBoneImage(VoxelNo2); ] IF (K .GE. ($CT_IMAGE_NZ)) [ EDGEKPOS = VoxelValue; ] ELSE [ VoxelNo2 = ((K+1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKPOS = CTBoneImage(VoxelNo2); ] IF (K .LE. (1)) [ EDGEKNEG = VoxelValue; ] ELSE [ VoxelNo2 = ((K1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKNEG = CTBoneImage(VoxelNo2); ] I2 = (X / $CT_VOXEL_SIZE_X); J2 = (Y / $CT_VOXEL_SIZE_Y); K2 = (Z / $CT_VOXEL_SIZE_Z); XMin = (I2) $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = (J2) $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = (K2) $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. ($MED_CORT)) [ P1= XMax X; ] IF(EDGEINEG .EQ. ($MED_CORT)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. ($MED_CORT)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. ($MED_CORT)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. ($MED_CORT)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. ($MED_CORT)) [ P6 = Z ZMin; ] PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ PRINT *, ERROR IN PDIST';

PAGE 348

348 PRINT *, PDIST ', PDIST; ] IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowActiveMarrowShaft = .TRUE.; ] ELSE [ InsideShallowActiveMarrowShaft = .FALSE.; ] ] ELSE [ InsideShallowActiveMarrowShaft = .FALSE.; ] ] END; End of function InsideShallowActiveMarrowShaft InsideShallowActiveMarrowShaft = .FALSE.; IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowActiveMarrowShaft = .TRUE.; ] ] ELSE [ InsideShallowActiveMarrowShaft = .FALSE.; ] ] END; End of function InsideShallowActiveMarrowShaft "******************************************************************************" Function InsideShallowTIM50 "******************************************************************************" Test if a given position (X, Y, Z) is inside the shallow marrow voxel of the inactive marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowTIM50(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $INTEGER MOD; CHARACTER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI

PAGE 349

349 --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideShallowTIM50 = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideShallowTIM50 = .FALSE.; ] ELSE [ -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_FAT)))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = CHAR(122); EDGEINEG = CHAR(122); EDGEJPOS = CHAR(122); EDGEJNEG = CHAR(122); EDGEKPOS = CHAR(122); EDGEKNEG = CHAR(122); "CHECK FOR BONE VOXEL NEIGHBORS" "DETERMINE WHERE BONE SURFACES ARE(IF THEY ARE)" IF (I .EQ. ($MICRO_IMAGE_NX)) [ EDGEIPOS = MICROBoneImage2(1,J,K) ; ] ELSE [ EDGEIPOS = MICROBoneImage2(I+1,J,K); ] IF (I .EQ. (1)) [ EDGEINEG = MICROBoneImage2($MICRO_IMAGE_NX,J,K) ; ] ELSE [ EDGEINEG = MICROBoneImage2(I1,J,K) ; ] IF (J .EQ. ($MICRO_IMAGE_NY)) [ EDGEJPOS = MICROBoneImage2(I,1,K) ;

PAGE 350

350 ] ELSE [ EDGEJPOS = MICROBoneImage2(I,J+1,K) ; ] IF (J .EQ. (1)) [ EDGEJNEG = MICROBoneImage2(I,$MICRO_IMAGE_NY,K) ; ] ELSE [ EDGEJNEG = MICROBoneImage2(I,J1,K) ; ] IF (K .EQ. ($MICRO_IMAGE_NZ)) [ EDGEKPOS = MICROBoneImage2(I,J,1) ; ] ELSE [ EDGEKPOS = MICROBoneImage2(I,J,K+1) ; ] IF (K .EQ. (1)) [ EDGEKNEG = MICROBoneImage2(I,J,$MICRO_IMAGE_NZ) ; ] ELSE [ EDGEKNEG = MICROBoneImage2(I,J,K1) ; ] I2 = (X / $MICRO_VOXEL_SIZE_X); J2 = (Y / $MICRO_VOXEL_SIZE_Y); K2 = (Z / $MICRO_VOXEL_SIZE_Z); XMin = (I2) $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = (J2) $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = (K2) $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. CHAR(255)) [ P1= XMax X; ] IF(EDGEINEG .EQ. CHAR(255)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. CHAR(255)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. CHAR(255)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. CHAR(255)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. CHAR(255)) [ P6 = Z ZMin; ] PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ]

PAGE 351

351 IF (PDIST .LT. 0.0) [ "PRINT *, ERROR IN PDIST'; "PRINT *, PDIST ', PDIST; ] InsideShallowTIM50 = .FALSE.; IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowTIM50 = .TRUE.; ] ] ELSE [ InsideShallowTIM50 = .FALSE.; ] ] ] END; End of function InsideShallowTIM50 "******************************************************************************" Function InsideShallowInactiveMarrowShaft "******************************************************************************" Test if a given position (X, Y, Z) is inside the 50 micron shallow marrow of the marrow cavity voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideShallowInactiveMarrowShaft(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER I2, J2, K2; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelNo2; "the vioxel number within the CT image" $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; system functions invoked in the main program $INTEGER MOD; $INTEGER EDGEIPOS,EDGEINEG,EDGEJPOS,EDGEJNEG,EDGEKPOS,EDGEKNEG; $REAL P1, P2, P3, P4, P5, P6, PDIST; $REAL XMax, XMin, YMax, YMin, ZMax, ZMin; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideShallowInactiveMarrowShaft = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z);

PAGE 352

352 VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] --------------------------------" 4) to get and test the medium --------------------------------" IF (VoxelValue = ($MED_INACTIVE_MED))[ P1 = 1.0; P2 = 1.0; P3 = 1.0; P4 = 1.0; P5 = 1.0; P6 = 1.0; EDGEIPOS = ($MED_INACTIVE_MED); EDGEINEG = ($MED_INACTIVE_MED); EDGEJPOS = ($MED_INACTIVE_MED); EDGEJNEG = ($MED_INACTIVE_MED); EDGEKPOS = ($MED_INACTIVE_MED); EDGEKNEG = ($MED_INACTIVE_MED); "CHECK FOR CORTICAL BONE VOXEL NEIGHBORS" "DETERMINE WHERE CORTICAL BONE SURFACES ARE(IF THEY ARE)" IF (I .GE. ($CT_IMAGE_NX)) [ EDGEIPOS = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I+1)+1; EDGEIPOS = CTBoneImage(VoxelNo2); ] IF (I .LE. (1)) [ EDGEINEG = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+(I1)+1; EDGEINEG = CTBoneImage(VoxelNo2) ; ] IF (J .GE. ($CT_IMAGE_NY)) [ EDGEJPOS = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+(J+1))*$CT_IMAGE_NX+I+1; EDGEJPOS = CTBoneImage(VoxelNo2); ] IF (J .LE. (1)) [ EDGEJNEG = VoxelValue; ] ELSE [ VoxelNo2 = (K*$CT_IMAGE_NY+(J1))*$CT_IMAGE_NX+I+1; EDGEJNEG = CTBoneImage(VoxelNo2); ] IF (K .GE. ($CT_IMAGE_NZ)) [ EDGEKPOS = VoxelValue; ] ELSE [ VoxelNo2 = ((K+1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKPOS = CTBoneImage(VoxelNo2); ] IF (K .LE. (1)) [ EDGEKNEG = VoxelValue; ] ELSE [ VoxelNo2 = ((K1)*$CT_IMAGE_NY+J)*$CT_IMAGE_NX+I+1; EDGEKNEG = CTBoneImage(VoxelNo2); ]

PAGE 353

353 I2 = (X / $CT_VOXEL_SIZE_X); J2 = (Y / $CT_VOXEL_SIZE_Y); K2 = (Z / $CT_VOXEL_SIZE_Z); XMin = (I2) $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = (J2) $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = (K2) $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; IF(EDGEIPOS .EQ. ($MED_CORT)) [ P1= XMax X; ] IF(EDGEINEG .EQ. ($MED_CORT)) [ P2= X XMin; ] IF(EDGEJPOS .EQ. ($MED_CORT)) [ P3= YMax Y; ] IF(EDGEJNEG .EQ. ($MED_CORT)) [ P4= Y YMin; ] IF(EDGEKPOS .EQ. ($MED_CORT)) [ P5= ZMax Z; ] IF(EDGEKNEG .EQ. ($MED_CORT)) [ P6 = Z ZMin; ] PDIST=10.0; IF (P1 .LE. PDIST) [ PDIST = P1; ] IF (P2 .LE. PDIST) [ PDIST = P2; ] IF (P3 .LE. PDIST) [ PDIST = P3; ] IF (P4 .LE. PDIST) [ PDIST = P4; ] IF (P5 .LE. PDIST) [ PDIST = P5; ] IF (P6 .LE. PDIST) [ PDIST = P6; ] IF (PDIST .LT. 0.0) [ PRINT *, ERROR IN PDIST'; PRINT *, PDIST ', PDIST; ] IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowInactiveMarrowShaft = .TRUE.; ] ELSE [ InsideShallowInactiveMarrowShaft = .FALSE.; ] ] ELSE [ InsideShallowInactiveMarrowShaft = .FALSE.; ] ] "END; End of function InsideShallowInactiveMarrowShaft InsideShallowInactiveMarrowShaft = .FALSE.;

PAGE 354

354 IF ((PDIST .LE. 0.00500) .AND. (PDIST .GE. 0.000))[ InsideShallowInactiveMarrowShaft = .TRUE.; ] ] ELSE [ InsideShallowInactiveMarrowShaft = .FALSE.; ] ] END; End of function InsideShallowInactiveMarrowShaft "******************************************************************************" Function InsideFatMarrow "******************************************************************************" Test if a given position (X, Y, Z) is inside the Fat voxels of the duplicated microCT image and in the spongiosa region of the CT image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideFatMarrow(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/RANDOM,GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself system functions invoked in the main program $REAL Random1; $INTEGER MOD; INTRINSIC MOD; user functions invoked in the subroutine LOGICAL InsideShallowTAM50; LOGICAL InsideShallwActiveMarrowShaft; LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CortShell(X, Y, Z)) [ InsideFatMarrow = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideFatMarrow = .FALSE.; ]

PAGE 355

355 ELSEIF (VoxelValue = $MED_INACTIVE_MED) [ InsideFatMarrow = .TRUE.; ] ELSEIF (VoxelValue = $MED_ACTIVE_MED) [ InsideFatMarrow = .FALSE.; ] ELSE [ Here we are in trabecular bone -------------------------------------------------------" 4) to calculate the voxel number in the microCT image -------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); I=MOD(I,$MICRO_IMAGE_NX); IF(I=0)[I=$MICRO_IMAGE_NX;] "FIX TO APS MISTAKE" J = (Y / $MICRO_VOXEL_SIZE_Y); J=MOD(J,$MICRO_IMAGE_NY); IF (J=0) [J=$MICRO_IMAGE_NY;] "FIX TO APS MISTAKE" K = (Z / $MICRO_VOXEL_SIZE_Z); K = MOD(K, $MICRO_IMAGE_NZ); to shift to the copy of the image IF(K=0) [K=$MICRO_IMAGE_NZ;] "FIX TO APS MISTAKE" --------------------------------" 5) to get and test the medium --------------------------------" VoxelValue2 = MICROBoneImage2(I,J,K); IF ((VoxelValue2 = CHAR($MED_FAT))) [ InsideFatMarrow = .TRUE.; ] ELSE [ InsideFatMarrow = .FALSE.; ] ] ] END; End of function InsideFatMarrow "******************************************************************************" Function InsideCorticalBone "******************************************************************************" Test if a given position (X, Y, Z) is inside the cortical region of the image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideCorticalBone(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself user functions invoked in the subroutine LOGICAL InsideCT_CortShell; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------"

PAGE 356

356 IF (~InsideCT_CortShell(X, Y, Z)) [ InsideCorticalBone = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CORT) [ InsideCorticalBone = .TRUE.; ] ELSE [ InsideCorticalBone = .FALSE.; ] ] END; End of function InsideCorticalBone "******************************************************************************" Function InsideCT_CortShell "******************************************************************************" Test if a given position (X, Y, Z) is inside the limits of the CT image The outer limit of the CT image is 512 x 512 Also, test if the given position is in the ROI within the CT image ROI defined by everything within outside edge of CorticalBone (not tissue) " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the CT image. .FALSE. if the position is not inside the CT image. "******************************************************************************" LOGICAL FUNCTION InsideCT_CortShell(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself -------------------------------------" 1) to check if outside the CT image -------------------------------------" IF ( (X < 0.0) | (X >= $CT_IMAGE_NX $CT_VOXEL_SIZE_X) | (Y < 0.0) | (Y >= $CT_IMAGE_NY $CT_VOXEL_SIZE_Y) | (Z < 0.0) | (Z >= $CT_IMAGE_NZ $CT_VOXEL_SIZE_Z) ) [ InsideCT_CortShell = .FALSE.; ] ELSE [ --------------------------------------------------------" 2) to check if in the cartilage region of the CT image --------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1;

PAGE 357

357 VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CART .OR. VoxelValue = $MED_TISS) [ InsideCT_CortShell = .FALSE.; ] ELSE [ InsideCT_CortShell = .TRUE.; ] ] END; End of function InsideCT_CortShell "******************************************************************************" Function InsideCART "******************************************************************************" Test if a given position (X, Y, Z) is inside the cartilage region of the image. " Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the region. .FALSE. if the position is not inside the region. "******************************************************************************" LOGICAL FUNCTION InsideCART(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself CHARACTER VoxelValue2; the voxel itself user functions invoked in the subroutine LOGICAL InsideCT_CART; --------------------------------------------" 1) to check if (X, Y, Z) is inside the ROI --------------------------------------------" IF (~InsideCT_CART(X, Y, Z)) [ InsideCART = .FALSE.; ] ELSE [ --------------------------------------------------" 2) to calculate the voxel number in the CT image --------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; --------------------------------" 3) to get and test the medium --------------------------------" VoxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_CART) [ InsideCART = .TRUE.; ] ELSE [ InsideCART = .FALSE.; ] ] END; End of function InsideCART

PAGE 358

358 "******************************************************************************" Function InsideCT_Cart "******************************************************************************" Test if a given position (X, Y, Z) is inside the limits of the CT image The outer limit of the CT image is 512 x 512 Also, test if the given position is in the ROI within the CT image ROI defined by everything within outside edge of Cartilage (not soft tissue)" Input: X, Y, Z: the position to be tested. " Return: .TRUE. if the position is inside the CT image. .FALSE. if the position is not inside the CT image. "******************************************************************************" LOGICAL FUNCTION InsideCT_CART(X, Y, Z); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables COMIN/GEOM/; The above expands into COMMON statements GEOM contains the image local variables $INTEGER I, J, K; to store the position of the voxel $INTEGER VoxelNo; the voxel number within the image $INTEGER VoxelValue; the voxel itself -------------------------------------" 1) to check if outside the CT image -------------------------------------" IF ( (X < 0.0) | (X >= $CT_IMAGE_NX $CT_VOXEL_SIZE_X) | (Y < 0.0) | (Y >= $CT_IMAGE_NY $CT_VOXEL_SIZE_Y) | (Z < 0.0) | (Z >= $CT_IMAGE_NZ $CT_VOXEL_SIZE_Z) ) [ InsideCT_CART = .FALSE.; ] ELSE [ -----------------------------------------------------" 2) to check if in the tissue region of the CT image -----------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); VoxelNo = (K*$CT_IMAGE_NY + J)*$CT_IMAGE_NX + I + 1; V oxelValue = CTBoneImage(VoxelNo); IF (VoxelValue < 0) [ VoxelValue = 256 + VoxelValue; ] IF (VoxelValue = $MED_TISS) [ InsideCT_CART = .FALSE.; ] ELSE [ InsideCT_CART = .TRUE.; ] ] END; End of function InsideCT_CART "******************************************************************************" Function BoundaryDistance "******************************************************************************" Returns the distance from the position (X, Y, Z) to the nearest boundary of the voxel when following the direction (U, V, W) The two images are tested and the closest voxel limit is returned. " Input: X, Y, Z: the position to be tested. U, V, W: the direction to follow.

PAGE 359

359 Return: the distance to the boundary. "******************************************************************************" $REAL FUNCTION BoundaryDistance(X, Y, Z, U, V, W); $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; $REAL U, V, W; local variables $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; to store the position of the voxel $REAL XMin, YMin, ZMin; for the boundary of the voxel $REAL XMax, YMax, ZMax; for the boundary of the voxel -------------------------------------------------------------------" 1) to calculate the boundary of the current voxel in the CT image -------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; ---------------------------------------------------------" 2) to measure the distance to the boundary of the voxel ---------------------------------------------------------" ShortestDistance = $INFINITY; a) along the X axis IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] b) along the Y axis IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] c) along the Z axis IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] --------------------------------------------------------------------" 3) to calculate the boundary of the current voxel in MICRO image --------------------------------------------------------------------"

PAGE 360

360 I = (X / $MICRO_VOXEL_SIZE_X); J = (Y / $MICRO_VOXEL_SIZE_Y); K = (Z / $MICRO_VOXEL_SIZE_Z); XMin = I $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = J $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = K $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; ---------------------------------------------------------" 4) to measure the distance to the boundary of the voxel ---------------------------------------------------------" a) along the X axis IF ( U > 0.0 ) [ Distance = (XMax X) / U; ] ELSEIF ( U < 0.0 ) [ Distance = (XMin X) / U; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] b) along the Y axis IF ( V > 0.0 ) [ Distance = (YMax Y) / V; ] ELSEIF ( V < 0.0 ) [ Distance = (YMin Y) / V; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] c) along the Z axis IF ( W > 0.0 ) [ Distance = (ZMax Z) / W; ] ELSEIF ( W < 0.0 ) [ Distance = (ZMin Z) / W; ] ELSE [ Distance = $INFINITY; ] IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ---------------------------" 5) to return the distance ---------------------------" BoundaryDistance = ShortestDistance; END; End of function BoundaryDistance "******************************************************************************" Function ClosestBoundary "******************************************************************************" Returns the shortest distance from the position (X, Y, Z) to the nearest boundary of the voxel. The two images are tested and the closest voxel limit is returned. " Input: X, Y, Z: the position to be tested. " Return: the shortest distance to the boundary. "******************************************************************************" $REAL FUNCTION ClosestBoundary(X, Y, Z);

PAGE 361

361 $IMPLICITNONE; to make sure that all variables are declared parameters of the routine $REAL X, Y, Z; COMMON variables local variables $REAL Distance; $REAL ShortestDistance; $INTEGER I, J, K; to store the position of the voxel $REAL XMin, YMin, ZMin; for the boundary of the voxel $REAL XMax, YMax, ZMax; for the boundary of the voxel -------------------------------------------------------------------" 1) to calculate the boundary of the current voxel in the CT image -------------------------------------------------------------------" I = (X / $CT_VOXEL_SIZE_X); J = (Y / $CT_VOXEL_SIZE_Y); K = (Z / $CT_VOXEL_SIZE_Z); XMin = I $CT_VOXEL_SIZE_X; XMax = XMin + $CT_VOXEL_SIZE_X; YMin = J $CT_VOXEL_SIZE_Y; YMax = YMin + $CT_VOXEL_SIZE_Y; ZMin = K $CT_VOXEL_SIZE_Z; ZMax = ZMin + $CT_VOXEL_SIZE_Z; ---------------------------------------------------------" 2) to measure the distance to the boundary of the voxel ---------------------------------------------------------" ShortestDistance = $INFINITY; Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ------------------------------------------------------------------------" 3) to calculate the boundary of the current voxel in the microCT image ------------------------------------------------------------------------" I = (X / $MICRO_VOXEL_SIZE_X); J = (Y / $MICRO_VOXEL_SIZE_Y); K = (Z / $MICRO_VOXEL_SIZE_Z); XMin = I $MICRO_VOXEL_SIZE_X; XMax = XMin + $MICRO_VOXEL_SIZE_X; YMin = J $MICRO_VOXEL_SIZE_Y; YMax = YMin + $MICRO_VOXEL_SIZE_Y; ZMin = K $MICRO_VOXEL_SIZE_Z; ZMax = ZMin + $MICRO_VOXEL_SIZE_Z; ---------------------------------------------------------" 4) to measure the distance to the boundary of the voxel ---------------------------------------------------------" Distance = X XMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = XMax X; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ]

PAGE 362

362 Distance = Y YMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = YMax Y; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = Z ZMin; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] Distance = ZMax Z; IF ( Distance < ShortestDistance ) [ ShortestDistance = Distance; ] ---------------------------" 5) to return the distance ---------------------------" ClosestBoundary = ShortestDistance; END; End of function ClosestBoundary

PAGE 363

363 APPENDIX C TABLES OF SKELETAL S ITE SPECIFIC SPECIFIC AB SORBED FRACTIONS FOR THE UF HYBRID NEWBORN RE FERENCE PHANTOM This appendix contains skeleta l site specific specific absorbed fractions for the University of Florida hybrid newborn reference phantom. The tables are separated by skeletal site. The specific absorbed fraction is given as a function of 28 discrete energies at 10 marrow cellularitie s decreasing from 100% to 10%. The ICRP reference cellularity is indicated for each bone site and the corresponding linearly averaged specific absorbed fraction. Six source regions are presented: active marrow ( AM ), inactive marrow ( IM ), trabecular bone surface ( TBS ), trabecular bone volume ( TBV), cortical bone volume ( CBV), and cartilage/fibrous connective tissue volume ( CAR). Data is given for three target regions: AM shallow marrow ( TM50), and CAR. The TBS TBV, CBV, and CAR sources were run at 100% cellularity only since the specific absorbed fraction values are cellularity independent. The IM source was run at 50% cellularity only, as this source also has cellularity independence. The specific absorbed fraction values were computed using the abso rbed fraction data generated by PIRTCartilage and PIRTCartilageLongBone Some bone sites had multiple microimages that were run for each bone site. The absorbed fraction values were volumetrically weighted by the marrow volume fraction, trabecular bone volume fraction, trabecular bone surface area, or linearly based on the source. This is described in chapter 3. The cervical vertebra was averaged by the 5 day old C3 C7. The thoracic vertebra was averaged by the 4 day old T9 T12, and the 5 day old T1 T5, T10 T12. The lumbar vertebra was averaged by the 4 day old L2 L5, and the 5 day old L1 L5. The ribs were averaged by the 4 day old right and left 2nd ribs, and the 5 day old 4th rib. The sternum microstructure was used solely for the sternum. Surrogates were used for the additional bones sites and are outlined in Chapter 2 and Chapter 3.

PAGE 364

364 Table C 1. Specific absorbed fractions for active marrow targets in the cranium. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 4.78E-02 5.31E-02 5.98E-02 6.83E-02 7.97E-02 9.57E-02 1.20E-01 1.59E-01 2.39E-01 4.78E-01 4.78E-02 1.25E-07 2.37E-02 6.39E-08 1.59E-08 0.00E+00 0.003 4.78E-02 5.31E-02 5.97E-02 6.82E-02 7.96E-02 9.54E-02 1.19E-01 1.59E-01 2.38E-01 4.77E-01 4.78E-02 1.14E-05 2.51E-02 4.49E-06 5.67E-07 3.68E-09 0.005 4.77E-02 5.30E-02 5.96E-02 6.80E-02 7.93E-02 9.51E-02 1.19E-01 1.58E-01 2.37E-01 4.74E-01 4.77E-02 9.02E-05 2.51E-02 2.69E-05 3.86E-06 5.22E-09 0.010 4.75E-02 5.26E-02 5.91E-02 6.74E-02 7.84E-02 9.38E-02 1.17E-01 1.56E-01 2.33E-01 4.65E-01 4.75E-02 6.06E-04 2.51E-02 1.40E-04 2.09E-05 9.40E-09 0.015 4.71E-02 5.21E-02 5.83E-02 6.63E-02 7.70E-02 9.20E-02 1.14E-01 1.52E-01 2.26E-01 4.51E-01 4.71E-02 1.45E-03 2.51E-02 2.83E-04 4.19E-05 1.32E-08 0.020 4.67E-02 5.14E-02 5.74E-02 6.51E-02 7.53E-02 8.96E-02 1.11E-01 1.47E-01 2.18E-01 4.33E-01 4.67E-02 2.38E-03 2.50E-02 4.71E-04 7.02E-05 1.82E-08 0.030 4.55E-02 4.97E-02 5.50E-02 6.18E-02 7.09E-02 8.36E-02 1.03E-01 1.34E-01 1.98E-01 3.88E-01 4.55E-02 4.47E-03 2.47E-02 9.42E-04 1.42E-04 3.22E-08 0.040 4.41E-02 4.77E-02 5.22E-02 5.80E-02 6.57E-02 7.65E-02 9.27E-02 1.20E-01 1.74E-01 3.36E-01 4.41E-02 6.53E-03 2.43E-02 1.51E-03 2.30E-04 4.73E-08 0.050 4.25E-02 4.54E-02 4.91E-02 5.38E-02 6.02E-02 6.90E-02 8.22E-02 1.04E-01 1.48E-01 2.80E-01 4.25E-02 8.71E-03 2.39E-02 2.16E-03 3.35E-04 6.31E-08 0.060 4.08E-02 4.31E-02 4.60E-02 4.97E-02 5.46E-02 6.15E-02 7.18E-02 8.89E-02 1.23E-01 2.26E-01 4.08E-02 1.01E-02 2.34E-02 2.84E-03 4.55E-04 8.56E-08 0.080 3.73E-02 3.86E-02 4.02E-02 4.22E-02 4.50E-02 4.88E-02 5.44E-02 6.38E-02 8.26E-02 1.39E-01 3.73E-02 1.28E-02 2.23E-02 4.22E-03 7.08E-04 1.48E-07 0.10 3.40E-02 3.48E-02 3.58E-02 3.71E-02 3.87E-02 4.09E-02 4.43E-02 5.00E-02 6.12E-02 9.47E-02 3.40E-02 1.30E-02 2.13E-02 5.50E-03 9.96E-04 2.84E-07 0.15 2.72E-02 2.75E-02 2.80E-02 2.86E-02 2.93E-02 3.03E-02 3.19E-02 3.45E-02 3.95E-02 5.45E-02 2.72E-02 1.39E-02 1.93E-02 8.06E-03 1.74E-03 1.45E-06 0.20 2.31E-02 2.33E-02 2.36E-02 2.40E-02 2.44E-02 2.51E-02 2.60E-02 2.76E-02 3.07E-02 3.99E-02 2.31E-02 1.41E-02 1.79E-02 9.48E-03 2.44E-03 1.19E-05 0.30 1.93E-02 1.95E-02 1.96E-02 1.98E-02 2.01E-02 2.04E-02 2.09E-02 2.18E-02 2.34E-02 2.84E-02 1.93E-02 1.43E-02 1.67E-02 1.04E-02 3.62E-03 1.57E-04 0.40 1.72E-02 1.73E-02 1.74E-02 1.75E-02 1.77E-02 1.79E-02 1.83E-02 1.89E-02 1.99E-02 2.32E-02 1.72E-02 1.45E-02 1.58E-02 1.05E-02 4.36E-03 5.31E-04 0.50 1.57E-02 1.57E-02 1.58E-02 1.59E-02 1.60E-02 1.62E-02 1.64E-02 1.69E-02 1.77E-02 2.02E-02 1.57E-02 1.34E-02 1.50E-02 1.04E-02 4.75E-03 1.02E-03 0.60 1.44E-02 1.45E-02 1.45E-02 1.46E-02 1.47E-02 1.49E-02 1.51E-02 1.54E-02 1.61E-02 1.80E-02 1.44E-02 1.22E-02 1.42E-02 1.02E-02 4.95E-03 1.46E-03 0.80 1.25E-02 1.26E-02 1.26E-02 1.27E-02 1.28E-02 1.29E-02 1.30E-02 1.32E-02 1.37E-02 1.51E-02 1.25E-02 1.12E-02 1.28E-02 9.52E-03 4.96E-03 2.01E-03 1.0 1.12E-02 1.12E-02 1.12E-02 1.13E-02 1.14E-02 1.14E-02 1.15E-02 1.17E-02 1.21E-02 1.32E-02 1.12E-02 9.98E-03 1.16E-02 8.83E-03 4.75E-03 2.20E-03 1.5 8.89E-03 8.90E-03 8.92E-03 8.95E-03 8.99E-03 9.05E-03 9.12E-03 9.24E-03 9.47E-03 1.02E-02 8.89E-03 8.38E-03 9.36E-03 7.28E-03 4.07E-03 2.15E-03 2.0 7.34E-03 7.35E-03 7.37E-03 7.39E-03 7.42E-03 7.46E-03 7.52E-03 7.61E-03 7.78E-03 8.28E-03 7.34E-03 7.20E-03 7.77E-03 6.10E-03 3.47E-03 1.93E-03 3.0 5.36E-03 5.36E-03 5.38E-03 5.39E-03 5.41E-03 5.44E-03 5.47E-03 5.52E-03 5.64E-03 5.98E-03 5.36E-03 5.21E-03 5.68E-03 4.51E-03 2.63E-03 1.52E-03 4.0 4.16E-03 4.18E-03 4.18E-03 4.19E-03 4.20E-03 4.22E-03 4.25E-03 4.29E-03 4.37E-03 4.62E-03 4.16E-03 4.02E-03 4.43E-03 3.52E-03 2.10E-03 1.23E-03 5.0 3.39E-03 3.40E-03 3.40E-03 3.41E-03 3.42E-03 3.43E-03 3.45E-03 3.49E-03 3.56E-03 3.76E-03 3.39E-03 3.17E-03 3.60E-03 2.87E-03 1.73E-03 1.03E-03 6.0 2.86E-03 2.86E-03 2.86E-03 2.87E-03 2.88E-03 2.89E-03 2.91E-03 2.94E-03 2.99E-03 3.16E-03 2.86E-03 2.83E-03 3.03E-03 2.43E-03 1.48E-03 8.80E-04 8.0 2.16E-03 2.17E-03 2.17E-03 2.18E-03 2.18E-03 2.19E-03 2.20E-03 2.23E-03 2.27E-03 2.39E-03 2.16E-03 2.14E-03 2.30E-03 1.84E-03 1.13E-03 6.79E-04 10.0 1.74E-03 1.74E-03 1.75E-03 1.75E-03 1.76E-03 1.76E-03 1.77E-03 1.79E-03 1.83E-03 1.93E-03 1.74E-03 1.88E-03 1.86E-03 1.48E-03 9.20E-04 5.54E-04 Table C 2. Specific absorbed fractions for shallow marrow targets in the cranium. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 5.05E-02 5.06E-02 5.06E-02 5.06E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.08E-02 5.09E-02 5.05E-02 5.07E-02 4.26E-02 4.67E-08 1.46E-08 0.00E+00 0.003 5.05E-02 5.05E-02 5.05E-02 5.06E-02 5.06E-02 5.07E-02 5.07E-02 5.07E-02 5.08E-02 5.08E-02 5.05E-02 5.07E-02 4.58E-02 6.87E-06 6.91E-07 5.39E-09 0.005 5.04E-02 5.04E-02 5.04E-02 5.04E-02 5.05E-02 5.06E-02 5.05E-02 5.05E-02 5.06E-02 5.07E-02 5.04E-02 5.06E-02 4.59E-02 4.27E-05 3.53E-06 9.67E-09 0.010 5.00E-02 5.00E-02 5.00E-02 5.00E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.02E-02 5.04E-02 5.00E-02 5.01E-02 4.58E-02 2.56E-04 2.24E-05 2.59E-08 0.015 4.94E-02 4.94E-02 4.94E-02 4.94E-02 4.95E-02 4.95E-02 4.95E-02 4.95E-02 4.96E-02 4.97E-02 4.94E-02 4.95E-02 4.55E-02 5.15E-04 4.50E-05 4.79E-08 0.020 4.86E-02 4.86E-02 4.86E-02 4.87E-02 4.87E-02 4.88E-02 4.87E-02 4.87E-02 4.88E-02 4.89E-02 4.86E-02 4.88E-02 4.51E-02 8.56E-04 7.57E-05 6.88E-08 0.030 4.66E-02 4.66E-02 4.66E-02 4.66E-02 4.67E-02 4.67E-02 4.67E-02 4.68E-02 4.68E-02 4.69E-02 4.66E-02 4.67E-02 4.40E-02 1.70E-03 1.52E-04 1.53E-07 0.040 4.42E-02 4.43E-02 4.43E-02 4.43E-02 4.43E-02 4.44E-02 4.44E-02 4.44E-02 4.44E-02 4.45E-02 4.42E-02 4.44E-02 4.26E-02 2.71E-03 2.45E-04 2.13E-07 0.050 4.16E-02 4.16E-02 4.16E-02 4.16E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.18E-02 4.18E-02 4.16E-02 4.17E-02 4.10E-02 3.83E-03 3.56E-04 3.99E-07 0.060 3.89E-02 3.89E-02 3.89E-02 3.89E-02 3.89E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.89E-02 3.90E-02 3.93E-02 4.98E-03 4.79E-04 5.39E-07 0.080 3.39E-02 3.38E-02 3.38E-02 3.38E-02 3.38E-02 3.39E-02 3.39E-02 3.39E-02 3.39E-02 3.39E-02 3.39E-02 3.39E-02 3.43E-02 7.09E-03 7.39E-04 9.57E-07 0.10 3.01E-02 3.01E-02 3.01E-02 3.00E-02 3.01E-02 3.01E-02 3.01E-02 3.00E-02 3.00E-02 3.00E-02 3.01E-02 3.01E-02 2.96E-02 8.62E-03 1.04E-03 1.44E-06 0.15 2.39E-02 2.39E-02 2.39E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.37E-02 2.37E-02 2.39E-02 2.38E-02 2.31E-02 1.10E-02 1.80E-03 3.88E-06 0.20 2.07E-02 2.07E-02 2.07E-02 2.06E-02 2.06E-02 2.06E-02 2.06E-02 2.06E-02 2.05E-02 2.05E-02 2.07E-02 2.06E-02 2.01E-02 1.21E-02 2.54E-03 1.22E-05 0.30 1.81E-02 1.81E-02 1.81E-02 1.80E-02 1.80E-02 1.80E-02 1.80E-02 1.79E-02 1.79E-02 1.79E-02 1.81E-02 1.80E-02 1.78E-02 1.25E-02 3.78E-03 1.63E-04 0.40 1.66E-02 1.66E-02 1.65E-02 1.65E-02 1.65E-02 1.65E-02 1.64E-02 1.64E-02 1.64E-02 1.63E-02 1.66E-02 1.65E-02 1.65E-02 1.23E-02 4.59E-03 5.55E-04 0.50 1.54E-02 1.54E-02 1.54E-02 1.53E-02 1.53E-02 1.53E-02 1.52E-02 1.52E-02 1.52E-02 1.51E-02 1.54E-02 1.53E-02 1.54E-02 1.20E-02 5.03E-03 1.07E-03 0.60 1.44E-02 1.44E-02 1.43E-02 1.43E-02 1.43E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.41E-02 1.44E-02 1.42E-02 1.45E-02 1.16E-02 5.26E-03 1.54E-03 0.80 1.28E-02 1.28E-02 1.27E-02 1.27E-02 1.27E-02 1.26E-02 1.26E-02 1.26E-02 1.25E-02 1.25E-02 1.28E-02 1.26E-02 1.30E-02 1.07E-02 5.29E-03 2.13E-03 1.0 1.15E-02 1.15E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.13E-02 1.13E-02 1.13E-02 1.12E-02 1.15E-02 1.14E-02 1.18E-02 9.90E-03 5.09E-03 2.35E-03 1.5 9.22E-03 9.18E-03 9.16E-03 9.14E-03 9.12E-03 9.10E-03 9.07E-03 9.04E-03 9.01E-03 8.98E-03 9.22E-03 9.10E-03 9.44E-03 8.12E-03 4.37E-03 2.30E-03 2.0 7.63E-03 7.61E-03 7.59E-03 7.57E-03 7.55E-03 7.53E-03 7.51E-03 7.48E-03 7.46E-03 7.43E-03 7.63E-03 7.53E-03 7.83E-03 6.79E-03 3.72E-03 2.07E-03 3.0 5.59E-03 5.56E-03 5.55E-03 5.53E-03 5.52E-03 5.50E-03 5.48E-03 5.46E-03 5.45E-03 5.43E-03 5.59E-03 5.50E-03 5.72E-03 5.02E-03 2.83E-03 1.64E-03 4.0 4.34E-03 4.33E-03 4.32E-03 4.30E-03 4.29E-03 4.28E-03 4.26E-03 4.25E-03 4.23E-03 4.22E-03 4.34E-03 4.28E-03 4.46E-03 3.92E-03 2.26E-03 1.33E-03 5.0 3.54E-03 3.53E-03 3.51E-03 3.50E-03 3.49E-03 3.48E-03 3.47E-03 3.46E-03 3.45E-03 3.43E-03 3.54E-03 3.48E-03 3.62E-03 3.20E-03 1.86E-03 1.11E-03 6.0 2.98E-03 2.97E-03 2.96E-03 2.95E-03 2.94E-03 2.93E-03 2.92E-03 2.91E-03 2.90E-03 2.89E-03 2.98E-03 2.93E-03 3.05E-03 2.70E-03 1.59E-03 9.47E-04 8.0 2.26E-03 2.25E-03 2.24E-03 2.24E-03 2.23E-03 2.22E-03 2.21E-03 2.21E-03 2.19E-03 2.18E-03 2.26E-03 2.22E-03 2.32E-03 2.05E-03 1.22E-03 7.31E-04 10.0 1.82E-03 1.81E-03 1.81E-03 1.80E-03 1.79E-03 1.79E-03 1.78E-03 1.78E-03 1.77E-03 1.76E-03 1.82E-03 1.79E-03 1.87E-03 1.65E-03 9.90E-04 5.96E-04

PAGE 365

365 Table C 3. Specific absorbed fractions for cartilage /fibrous tissue targets in the cranium. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.99E-02 0.003 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 1.11E-09 2.73E-06 1.99E-02 0.005 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 2.86E-09 6.14E-06 1.99E-02 0.010 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 1.37E-08 2.41E-05 1.99E-02 0.015 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 3.24E-08 4.74E-05 1.98E-02 0.020 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 6.27E-08 7.87E-05 1.98E-02 0.030 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.53E-07 1.61E-04 1.97E-02 0.040 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 3.00E-07 2.70E-04 1.96E-02 0.050 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 4.21E-07 3.91E-04 1.95E-02 0.060 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.68E-07 5.33E-04 1.93E-02 0.080 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 9.41E-07 8.66E-04 1.90E-02 0.10 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.23E-03 1.87E-02 0.15 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 3.88E-06 2.20E-03 1.76E-02 0.20 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 1.27E-05 3.20E-03 1.66E-02 0.30 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 1.71E-04 5.00E-03 1.42E-02 0.40 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.74E-04 5.94E-03 1.19E-02 0.50 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 1.09E-03 5.84E-03 1.01E-02 0.60 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 5.35E-03 8.71E-03 0.80 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 2.05E-03 4.52E-03 6.88E-03 1.0 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 2.23E-03 3.99E-03 5.76E-03 1.5 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 2.15E-03 3.13E-03 4.20E-03 2.0 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 1.94E-03 2.57E-03 3.33E-03 3.0 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.91E-03 2.38E-03 4.0 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.52E-03 1.86E-03 5.0 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.07E-03 1.27E-03 1.53E-03 6.0 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 1.09E-03 1.30E-03 8.0 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 7.17E-04 8.45E-04 1.00E-03 10.0 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 5.86E-04 6.90E-04 8.16E-04 1 TIM Sources are run at 50% Cellularity Table C 4. Specific absorbed fractions for active marrow targets in the mandible. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 4.11E-01 4.56E-01 5.14E-01 5.87E-01 6.85E-01 8.22E-01 1.03E+00 1.37E+00 2.05E+00 4.11E+00 4.11E-01 2.46E-06 2.04E-01 5.48E-07 0.00E+00 0.00E+00 0.003 4.11E-01 4.56E-01 5.13E-01 5.86E-01 6.83E-01 8.20E-01 1.02E+00 1.37E+00 2.05E+00 4.09E+00 4.11E-01 3.22E-04 2.15E-01 7.63E-05 2.78E-05 3.16E-07 0.005 4.10E-01 4.55E-01 5.12E-01 5.85E-01 6.81E-01 8.17E-01 1.02E+00 1.36E+00 2.04E+00 4.07E+00 4.10E-01 1.48E-03 2.16E-01 4.51E-04 6.92E-05 6.83E-07 0.010 4.08E-01 4.53E-01 5.08E-01 5.79E-01 6.74E-01 8.06E-01 1.01E+00 1.34E+00 2.00E+00 3.99E+00 4.08E-01 1.04E-02 2.17E-01 2.73E-03 2.47E-04 2.15E-06 0.015 4.06E-01 4.48E-01 5.02E-01 5.71E-01 6.62E-01 7.91E-01 9.83E-01 1.30E+00 1.95E+00 3.87E+00 4.06E-01 2.11E-02 2.17E-01 5.49E-03 4.83E-04 4.17E-06 0.020 4.02E-01 4.43E-01 4.95E-01 5.60E-01 6.48E-01 7.71E-01 9.55E-01 1.26E+00 1.88E+00 3.72E+00 4.02E-01 3.47E-02 2.17E-01 8.99E-03 8.07E-04 6.76E-06 0.030 3.94E-01 4.30E-01 4.76E-01 5.35E-01 6.12E-01 7.21E-01 8.85E-01 1.16E+00 1.70E+00 3.34E+00 3.94E-01 6.83E-02 2.17E-01 1.81E-02 1.63E-03 1.32E-05 0.040 3.83E-01 4.14E-01 4.53E-01 5.04E-01 5.69E-01 6.62E-01 8.02E-01 1.04E+00 1.50E+00 2.89E+00 3.83E-01 1.07E-01 2.17E-01 2.92E-02 2.68E-03 2.06E-05 0.050 3.71E-01 3.97E-01 4.29E-01 4.70E-01 5.23E-01 5.98E-01 7.14E-01 9.06E-01 1.28E+00 2.42E+00 3.71E-01 1.47E-01 2.17E-01 4.19E-02 3.80E-03 2.83E-05 0.060 3.58E-01 3.78E-01 4.04E-01 4.36E-01 4.78E-01 5.36E-01 6.26E-01 7.76E-01 1.07E+00 1.96E+00 3.58E-01 1.85E-01 2.18E-01 5.51E-02 5.08E-03 3.64E-05 0.080 3.32E-01 3.44E-01 3.58E-01 3.76E-01 3.98E-01 4.29E-01 4.80E-01 5.65E-01 7.26E-01 1.21E+00 3.32E-01 2.39E-01 2.17E-01 8.21E-02 7.75E-03 5.12E-05 0.10 3.08E-01 3.15E-01 3.24E-01 3.35E-01 3.48E-01 3.66E-01 3.97E-01 4.49E-01 5.46E-01 8.35E-01 3.08E-01 2.53E-01 2.19E-01 1.08E-01 1.06E-02 6.90E-05 0.15 2.61E-01 2.65E-01 2.69E-01 2.74E-01 2.78E-01 2.84E-01 3.00E-01 3.26E-01 3.69E-01 4.99E-01 2.61E-01 2.37E-01 2.26E-01 1.54E-01 1.78E-02 1.27E-04 0.20 2.38E-01 2.41E-01 2.43E-01 2.46E-01 2.48E-01 2.49E-01 2.60E-01 2.78E-01 3.04E-01 3.84E-01 2.38E-01 2.23E-01 2.29E-01 1.74E-01 2.61E-02 2.30E-04 0.30 2.19E-01 2.20E-01 2.21E-01 2.24E-01 2.22E-01 2.21E-01 2.28E-01 2.41E-01 2.56E-01 2.99E-01 2.19E-01 2.12E-01 2.26E-01 1.81E-01 4.39E-02 8.84E-04 0.40 2.06E-01 2.07E-01 2.08E-01 2.10E-01 2.08E-01 2.06E-01 2.12E-01 2.22E-01 2.31E-01 2.60E-01 2.06E-01 2.02E-01 2.19E-01 1.80E-01 5.70E-02 4.29E-03 0.50 1.96E-01 1.97E-01 1.98E-01 1.99E-01 1.97E-01 1.94E-01 1.99E-01 2.08E-01 2.15E-01 2.37E-01 1.96E-01 1.93E-01 2.12E-01 1.75E-01 6.44E-02 1.01E-02 0.60 1.87E-01 1.88E-01 1.89E-01 1.90E-01 1.87E-01 1.84E-01 1.89E-01 1.97E-01 2.03E-01 2.20E-01 1.87E-01 1.85E-01 2.04E-01 1.69E-01 6.86E-02 1.59E-02 0.80 1.71E-01 1.72E-01 1.72E-01 1.73E-01 1.71E-01 1.68E-01 1.72E-01 1.78E-01 1.82E-01 1.94E-01 1.71E-01 1.70E-01 1.87E-01 1.57E-01 7.17E-02 2.41E-02 1.0 1.56E-01 1.56E-01 1.57E-01 1.57E-01 1.55E-01 1.52E-01 1.56E-01 1.62E-01 1.65E-01 1.74E-01 1.56E-01 1.55E-01 1.71E-01 1.44E-01 7.13E-02 2.83E-02 1.5 1.24E-01 1.25E-01 1.25E-01 1.25E-01 1.24E-01 1.21E-01 1.24E-01 1.28E-01 1.30E-01 1.36E-01 1.24E-01 1.24E-01 1.36E-01 1.16E-01 6.53E-02 3.04E-02 2.0 1.00E-01 1.00E-01 1.00E-01 1.01E-01 9.92E-02 9.73E-02 9.92E-02 1.02E-01 1.04E-01 1.08E-01 1.00E-01 9.90E-02 1.09E-01 9.37E-02 5.65E-02 2.81E-02 3.0 6.82E-02 6.82E-02 6.82E-02 6.83E-02 6.74E-02 6.62E-02 6.75E-02 6.96E-02 7.05E-02 7.34E-02 6.82E-02 6.76E-02 7.43E-02 6.41E-02 4.13E-02 2.16E-02 4.0 5.08E-02 5.09E-02 5.10E-02 5.11E-02 5.04E-02 4.95E-02 5.04E-02 5.18E-02 5.25E-02 5.47E-02 5.08E-02 5.03E-02 5.53E-02 4.78E-02 3.14E-02 1.66E-02 5.0 4.05E-02 4.05E-02 4.06E-02 4.06E-02 4.01E-02 3.94E-02 4.01E-02 4.13E-02 4.19E-02 4.36E-02 4.05E-02 4.02E-02 4.41E-02 3.81E-02 2.50E-02 1.34E-02 6.0 3.37E-02 3.38E-02 3.38E-02 3.39E-02 3.34E-02 3.27E-02 3.34E-02 3.44E-02 3.49E-02 3.64E-02 3.37E-02 3.34E-02 3.65E-02 3.18E-02 2.09E-02 1.12E-02 8.0 2.53E-02 2.54E-02 2.54E-02 2.55E-02 2.51E-02 2.45E-02 2.50E-02 2.58E-02 2.62E-02 2.73E-02 2.53E-02 2.51E-02 2.74E-02 2.38E-02 1.57E-02 8.45E-03 10.0 2.03E-02 2.03E-02 2.03E-02 2.03E-02 2.01E-02 1.97E-02 2.01E-02 2.06E-02 2.09E-02 2.18E-02 2.03E-02 2.00E-02 2.21E-02 1.91E-02 1.26E-02 6.78E-03

PAGE 366

366 Table C 5. Specific absorbed fractions for shal low marrow targets in the mandible. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.94E-01 3.93E-01 3.92E-01 3.91E-01 3.90E-01 3.90E-01 3.88E-01 3.85E-01 3.88E-01 3.91E-01 3.94E-01 4.00E-01 3.30E-01 9.02E-07 0.00E+00 0.00E+00 0.003 3.94E-01 3.93E-01 3.91E-01 3.90E-01 3.90E-01 3.89E-01 3.87E-01 3.85E-01 3.88E-01 3.91E-01 3.94E-01 4.00E-01 3.53E-01 1.04E-04 2.84E-05 1.06E-06 0.005 3.93E-01 3.92E-01 3.91E-01 3.90E-01 3.89E-01 3.89E-01 3.86E-01 3.84E-01 3.87E-01 3.90E-01 3.93E-01 4.00E-01 3.56E-01 6.75E-04 6.62E-05 1.82E-06 0.010 3.90E-01 3.89E-01 3.88E-01 3.86E-01 3.86E-01 3.86E-01 3.84E-01 3.82E-01 3.84E-01 3.87E-01 3.90E-01 3.96E-01 3.55E-01 4.48E-03 2.37E-04 3.92E-06 0.015 3.87E-01 3.86E-01 3.84E-01 3.83E-01 3.82E-01 3.82E-01 3.80E-01 3.78E-01 3.80E-01 3.83E-01 3.87E-01 3.92E-01 3.53E-01 8.99E-03 4.67E-04 6.51E-06 0.020 3.81E-01 3.80E-01 3.79E-01 3.77E-01 3.77E-01 3.77E-01 3.75E-01 3.72E-01 3.75E-01 3.77E-01 3.81E-01 3.86E-01 3.51E-01 1.47E-02 7.69E-04 8.97E-06 0.030 3.67E-01 3.66E-01 3.65E-01 3.64E-01 3.64E-01 3.64E-01 3.62E-01 3.60E-01 3.62E-01 3.64E-01 3.67E-01 3.72E-01 3.45E-01 2.93E-02 1.57E-03 1.43E-05 0.040 3.52E-01 3.51E-01 3.50E-01 3.49E-01 3.49E-01 3.49E-01 3.47E-01 3.45E-01 3.47E-01 3.49E-01 3.52E-01 3.54E-01 3.37E-01 4.67E-02 2.56E-03 2.19E-05 0.050 3.34E-01 3.33E-01 3.32E-01 3.32E-01 3.32E-01 3.32E-01 3.30E-01 3.29E-01 3.30E-01 3.31E-01 3.34E-01 3.35E-01 3.28E-01 6.61E-02 3.58E-03 3.00E-05 0.060 3.15E-01 3.15E-01 3.14E-01 3.13E-01 3.13E-01 3.13E-01 3.12E-01 3.11E-01 3.12E-01 3.13E-01 3.15E-01 3.15E-01 3.19E-01 8.55E-02 4.77E-03 3.89E-05 0.080 2.82E-01 2.82E-01 2.82E-01 2.82E-01 2.82E-01 2.82E-01 2.81E-01 2.80E-01 2.80E-01 2.81E-01 2.82E-01 2.81E-01 2.84E-01 1.20E-01 7.22E-03 5.71E-05 0.10 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.58E-01 2.58E-01 2.58E-01 2.58E-01 2.59E-01 2.58E-01 2.55E-01 1.44E-01 9.87E-03 8.12E-05 0.15 2.28E-01 2.27E-01 2.27E-01 2.27E-01 2.27E-01 2.27E-01 2.26E-01 2.26E-01 2.26E-01 2.27E-01 2.28E-01 2.26E-01 2.23E-01 1.74E-01 1.66E-02 1.47E-04 0.20 2.14E-01 2.14E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.12E-01 2.12E-01 2.12E-01 2.12E-01 2.14E-01 2.12E-01 2.12E-01 1.84E-01 2.45E-02 2.69E-04 0.30 2.01E-01 2.00E-01 2.00E-01 2.00E-01 2.00E-01 1.99E-01 1.99E-01 1.99E-01 1.98E-01 1.98E-01 2.01E-01 1.99E-01 1.99E-01 1.85E-01 4.17E-02 8.38E-04 0.40 1.91E-01 1.91E-01 1.91E-01 1.90E-01 1.90E-01 1.90E-01 1.90E-01 1.89E-01 1.89E-01 1.89E-01 1.91E-01 1.90E-01 1.90E-01 1.81E-01 5.41E-02 3.87E-03 0.50 1.83E-01 1.82E-01 1.82E-01 1.82E-01 1.82E-01 1.81E-01 1.81E-01 1.81E-01 1.80E-01 1.80E-01 1.83E-01 1.81E-01 1.82E-01 1.75E-01 6.15E-02 9.11E-03 0.60 1.75E-01 1.74E-01 1.74E-01 1.74E-01 1.74E-01 1.74E-01 1.73E-01 1.72E-01 1.72E-01 1.72E-01 1.75E-01 1.73E-01 1.74E-01 1.69E-01 6.56E-02 1.44E-02 0.80 1.60E-01 1.60E-01 1.59E-01 1.59E-01 1.59E-01 1.59E-01 1.58E-01 1.58E-01 1.58E-01 1.57E-01 1.60E-01 1.58E-01 1.59E-01 1.56E-01 6.86E-02 2.19E-02 1.0 1.46E-01 1.46E-01 1.46E-01 1.46E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.44E-01 1.44E-01 1.46E-01 1.45E-01 1.45E-01 1.43E-01 6.83E-02 2.57E-02 1.5 1.17E-01 1.17E-01 1.16E-01 1.16E-01 1.16E-01 1.16E-01 1.15E-01 1.15E-01 1.14E-01 1.14E-01 1.17E-01 1.15E-01 1.15E-01 1.15E-01 6.26E-02 2.77E-02 2.0 9.40E-02 9.39E-02 9.36E-02 9.33E-02 9.31E-02 9.29E-02 9.25E-02 9.20E-02 9.18E-02 9.16E-02 9.40E-02 9.24E-02 9.24E-02 9.30E-02 5.42E-02 2.56E-02 3.0 6.42E-02 6.39E-02 6.37E-02 6.34E-02 6.33E-02 6.32E-02 6.29E-02 6.27E-02 6.24E-02 6.22E-02 6.42E-02 6.30E-02 6.27E-02 6.37E-02 3.97E-02 1.97E-02 4.0 4.78E-02 4.77E-02 4.76E-02 4.74E-02 4.73E-02 4.72E-02 4.70E-02 4.67E-02 4.65E-02 4.63E-02 4.78E-02 4.70E-02 4.67E-02 4.75E-02 3.02E-02 1.52E-02 5.0 3.81E-02 3.80E-02 3.78E-02 3.77E-02 3.76E-02 3.76E-02 3.74E-02 3.72E-02 3.71E-02 3.69E-02 3.81E-02 3.75E-02 3.73E-02 3.79E-02 2.40E-02 1.22E-02 6.0 3.18E-02 3.17E-02 3.16E-02 3.15E-02 3.14E-02 3.13E-02 3.11E-02 3.09E-02 3.08E-02 3.07E-02 3.18E-02 3.12E-02 3.09E-02 3.16E-02 2.01E-02 1.02E-02 8.0 2.38E-02 2.38E-02 2.37E-02 2.36E-02 2.35E-02 2.34E-02 2.33E-02 2.32E-02 2.31E-02 2.30E-02 2.38E-02 2.34E-02 2.32E-02 2.37E-02 1.51E-02 7.71E-03 10.0 1.91E-02 1.90E-02 1.89E-02 1.88E-02 1.88E-02 1.88E-02 1.87E-02 1.86E-02 1.85E-02 1.85E-02 1.91E-02 1.87E-02 1.86E-02 1.89E-02 1.22E-02 6.18E-03 Table C 6. Specific absorbed fractions for cartilage targets in the mandible. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.68E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.50E-05 3.68E-01 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.21E-04 3.67E-01 0.010 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.77E-04 3.65E-01 0.015 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.13E-07 7.64E-04 3.63E-01 0.020 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.30E-03 3.60E-01 0.030 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.56E-07 2.59E-03 3.52E-01 0.040 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 3.57E-07 4.22E-03 3.42E-01 0.050 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 4.71E-07 6.12E-03 3.31E-01 0.060 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 6.14E-07 8.16E-03 3.19E-01 0.080 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 8.60E-07 1.26E-02 2.93E-01 0.10 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.06E-06 1.73E-02 2.70E-01 0.15 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 1.97E-06 3.02E-02 2.35E-01 0.20 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 6.59E-06 4.59E-02 2.13E-01 0.30 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.31E-04 8.02E-02 1.75E-01 0.40 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 5.68E-03 1.02E-01 1.40E-01 0.50 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.35E-02 1.04E-01 1.14E-01 0.60 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 2.10E-02 9.60E-02 9.59E-02 0.80 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 3.11E-02 8.04E-02 7.27E-02 1.0 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 6.89E-02 5.95E-02 1.5 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 3.82E-02 5.25E-02 4.24E-02 2.0 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 3.57E-02 4.37E-02 3.40E-02 3.0 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 2.79E-02 3.28E-02 2.48E-02 4.0 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.18E-02 2.57E-02 1.93E-02 5.0 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 2.10E-02 1.57E-02 6.0 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.50E-02 1.77E-02 1.32E-02 8.0 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.14E-02 1.35E-02 1.00E-02 10.0 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 9.18E-03 1.08E-02 8.04E-03 1 TIM Sources are run at 50% Cellularity

PAGE 367

367 Table C 7. Specific absorbed fractions for active marrow targets in the cervical vertebrae. (AM AM)AM rS) Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 4.77E-01 5.30E-01 5.96E-01 6.82E-01 7.95E-01 9.54E-01 1.19E+00 1.59E+00 2.39E+00 4.77E+00 4.77E-01 4.05E-06 2.37E-01 4.77E-07 0.00E+00 0.00E+00 0.003 4.77E-01 5.30E-01 5.96E-01 6.80E-01 7.94E-01 9.52E-01 1.19E+00 1.59E+00 2.38E+00 4.76E+00 4.77E-01 5.11E-04 2.50E-01 3.97E-05 1.96E-05 0.00E+00 0.005 4.76E-01 5.29E-01 5.94E-01 6.79E-01 7.91E-01 9.49E-01 1.19E+00 1.58E+00 2.37E+00 4.73E+00 4.76E-01 2.26E-03 2.50E-01 2.17E-04 4.23E-05 1.44E-09 0.010 4.74E-01 5.26E-01 5.90E-01 6.72E-01 7.82E-01 9.37E-01 1.17E+00 1.55E+00 2.32E+00 4.64E+00 4.74E-01 1.21E-02 2.51E-01 1.53E-03 1.35E-04 8.48E-09 0.015 4.71E-01 5.21E-01 5.83E-01 6.63E-01 7.69E-01 9.18E-01 1.14E+00 1.51E+00 2.26E+00 4.49E+00 4.71E-01 2.46E-02 2.50E-01 3.14E-03 2.86E-04 2.63E-08 0.020 4.67E-01 5.15E-01 5.74E-01 6.51E-01 7.52E-01 8.95E-01 1.11E+00 1.47E+00 2.18E+00 4.32E+00 4.67E-01 4.03E-02 2.49E-01 5.23E-03 4.70E-04 5.05E-08 0.030 4.57E-01 4.99E-01 5.52E-01 6.20E-01 7.10E-01 8.37E-01 1.03E+00 1.34E+00 1.98E+00 3.87E+00 4.57E-01 7.94E-02 2.47E-01 1.04E-02 9.70E-04 1.43E-07 0.040 4.45E-01 4.81E-01 5.26E-01 5.83E-01 6.60E-01 7.68E-01 9.30E-01 1.20E+00 1.74E+00 3.36E+00 4.45E-01 1.25E-01 2.43E-01 1.67E-02 1.60E-03 2.85E-07 0.050 4.31E-01 4.60E-01 4.97E-01 5.44E-01 6.07E-01 6.95E-01 8.27E-01 1.05E+00 1.49E+00 2.81E+00 4.31E-01 1.71E-01 2.39E-01 2.38E-02 2.21E-03 5.12E-07 0.060 4.16E-01 4.39E-01 4.68E-01 5.05E-01 5.54E-01 6.22E-01 7.25E-01 8.95E-01 1.24E+00 2.27E+00 4.16E-01 2.15E-01 2.35E-01 3.13E-02 2.95E-03 8.21E-07 0.080 3.86E-01 3.99E-01 4.15E-01 4.35E-01 4.62E-01 5.00E-01 5.56E-01 6.50E-01 8.38E-01 1.40E+00 3.86E-01 2.78E-01 2.24E-01 4.68E-02 4.56E-03 1.66E-06 0.10 3.57E-01 3.65E-01 3.75E-01 3.87E-01 4.03E-01 4.26E-01 4.60E-01 5.16E-01 6.28E-01 9.66E-01 3.57E-01 2.94E-01 2.15E-01 6.12E-02 6.21E-03 3.05E-06 0.15 2.96E-01 3.00E-01 3.04E-01 3.10E-01 3.17E-01 3.28E-01 3.43E-01 3.68E-01 4.19E-01 5.71E-01 2.96E-01 2.68E-01 1.97E-01 9.04E-02 1.06E-02 1.06E-05 0.20 2.58E-01 2.60E-01 2.63E-01 2.67E-01 2.72E-01 2.78E-01 2.88E-01 3.03E-01 3.34E-01 4.28E-01 2.58E-01 2.41E-01 1.84E-01 1.07E-01 1.55E-02 2.59E-05 0.30 2.19E-01 2.20E-01 2.22E-01 2.24E-01 2.27E-01 2.30E-01 2.35E-01 2.44E-01 2.61E-01 3.12E-01 2.19E-01 2.10E-01 1.71E-01 1.18E-01 2.66E-02 1.55E-04 0.40 1.94E-01 1.95E-01 1.96E-01 1.98E-01 1.99E-01 2.02E-01 2.05E-01 2.11E-01 2.22E-01 2.56E-01 1.94E-01 1.89E-01 1.60E-01 1.21E-01 3.68E-02 1.61E-03 0.50 1.75E-01 1.76E-01 1.77E-01 1.78E-01 1.79E-01 1.81E-01 1.83E-01 1.87E-01 1.96E-01 2.22E-01 1.75E-01 1.71E-01 1.50E-01 1.20E-01 4.39E-02 5.77E-03 0.60 1.59E-01 1.60E-01 1.61E-01 1.62E-01 1.63E-01 1.64E-01 1.66E-01 1.69E-01 1.76E-01 1.96E-01 1.59E-01 1.56E-01 1.40E-01 1.18E-01 4.81E-02 1.11E-02 0.80 1.36E-01 1.36E-01 1.37E-01 1.37E-01 1.38E-01 1.39E-01 1.40E-01 1.43E-01 1.47E-01 1.62E-01 1.36E-01 1.34E-01 1.24E-01 1.10E-01 5.15E-02 2.03E-02 1.0 1.19E-01 1.19E-01 1.19E-01 1.20E-01 1.20E-01 1.21E-01 1.22E-01 1.24E-01 1.28E-01 1.39E-01 1.19E-01 1.17E-01 1.10E-01 9.99E-02 5.16E-02 2.56E-02 1.5 8.95E-02 8.96E-02 9.00E-02 9.04E-02 9.06E-02 9.09E-02 9.16E-02 9.29E-02 9.53E-02 1.02E-01 8.95E-02 8.82E-02 8.39E-02 7.83E-02 4.65E-02 2.84E-02 2.0 7.11E-02 7.12E-02 7.13E-02 7.16E-02 7.18E-02 7.21E-02 7.26E-02 7.35E-02 7.52E-02 8.03E-02 7.11E-02 7.01E-02 6.68E-02 6.28E-02 3.94E-02 2.58E-02 3.0 4.93E-02 4.93E-02 4.95E-02 4.96E-02 4.98E-02 5.00E-02 5.03E-02 5.09E-02 5.20E-02 5.54E-02 4.93E-02 4.87E-02 4.66E-02 4.39E-02 2.89E-02 1.97E-02 4.0 3.74E-02 3.75E-02 3.75E-02 3.76E-02 3.77E-02 3.79E-02 3.82E-02 3.86E-02 3.95E-02 4.21E-02 3.74E-02 3.69E-02 3.54E-02 3.34E-02 2.23E-02 1.55E-02 5.0 3.01E-02 3.02E-02 3.02E-02 3.03E-02 3.04E-02 3.05E-02 3.07E-02 3.11E-02 3.18E-02 3.38E-02 3.01E-02 2.97E-02 2.84E-02 2.69E-02 1.80E-02 1.26E-02 6.0 2.52E-02 2.52E-02 2.53E-02 2.54E-02 2.55E-02 2.55E-02 2.57E-02 2.60E-02 2.65E-02 2.82E-02 2.52E-02 2.48E-02 2.38E-02 2.25E-02 1.52E-02 1.06E-02 8.0 1.90E-02 1.90E-02 1.91E-02 1.91E-02 1.92E-02 1.92E-02 1.94E-02 1.96E-02 2.00E-02 2.13E-02 1.90E-02 1.87E-02 1.79E-02 1.69E-02 1.15E-02 8.11E-03 10.0 1.52E-02 1.53E-02 1.53E-02 1.53E-02 1.54E-02 1.55E-02 1.55E-02 1.57E-02 1.60E-02 1.71E-02 1.52E-02 1.50E-02 1.44E-02 1.36E-02 9.24E-03 6.52E-03 Table C 8. Specific absorbed fractions for shallow marrow targets in the cervical vertebrae. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 4.51E-01 4.51E-01 4.51E-01 4.51E-01 4.51E-01 4.52E-01 4.53E-01 4.54E-01 4.54E-01 4.55E-01 4.51E-01 4.50E-01 4.15E-01 8.54E-07 0.00E+00 0.00E+00 0.003 4.50E-01 4.50E-01 4.50E-01 4.50E-01 4.50E-01 4.51E-01 4.52E-01 4.53E-01 4.54E-01 4.55E-01 4.50E-01 4.49E-01 4.46E-01 5.51E-05 1.75E-05 0.00E+00 0.005 4.49E-01 4.49E-01 4.49E-01 4.49E-01 4.50E-01 4.51E-01 4.51E-01 4.52E-01 4.53E-01 4.54E-01 4.49E-01 4.49E-01 4.48E-01 2.65E-04 3.72E-05 2.19E-07 0.010 4.46E-01 4.46E-01 4.46E-01 4.46E-01 4.46E-01 4.47E-01 4.48E-01 4.48E-01 4.49E-01 4.50E-01 4.46E-01 4.45E-01 4.47E-01 1.93E-03 1.26E-04 4.82E-07 0.015 4.41E-01 4.40E-01 4.41E-01 4.41E-01 4.41E-01 4.41E-01 4.42E-01 4.43E-01 4.44E-01 4.45E-01 4.41E-01 4.39E-01 4.44E-01 5.19E-03 2.70E-04 9.32E-07 0.020 4.34E-01 4.34E-01 4.34E-01 4.34E-01 4.34E-01 4.34E-01 4.35E-01 4.36E-01 4.37E-01 4.38E-01 4.34E-01 4.33E-01 4.40E-01 9.29E-03 4.39E-04 1.39E-06 0.030 4.17E-01 4.16E-01 4.17E-01 4.17E-01 4.17E-01 4.18E-01 4.19E-01 4.19E-01 4.20E-01 4.21E-01 4.17E-01 4.15E-01 4.30E-01 1.82E-02 9.20E-04 2.49E-06 0.040 3.97E-01 3.96E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.98E-01 3.99E-01 3.99E-01 4.00E-01 3.97E-01 3.94E-01 4.16E-01 2.92E-02 1.48E-03 3.88E-06 0.050 3.74E-01 3.74E-01 3.74E-01 3.74E-01 3.74E-01 3.75E-01 3.75E-01 3.76E-01 3.76E-01 3.77E-01 3.74E-01 3.71E-01 4.01E-01 4.11E-02 2.05E-03 5.22E-06 0.060 3.51E-01 3.51E-01 3.51E-01 3.51E-01 3.51E-01 3.51E-01 3.52E-01 3.52E-01 3.53E-01 3.53E-01 3.51E-01 3.47E-01 3.84E-01 5.32E-02 2.72E-03 6.91E-06 0.080 3.09E-01 3.09E-01 3.09E-01 3.08E-01 3.08E-01 3.08E-01 3.09E-01 3.09E-01 3.09E-01 3.09E-01 3.09E-01 3.06E-01 3.35E-01 7.56E-02 4.16E-03 9.98E-06 0.10 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.78E-01 2.76E-01 2.90E-01 9.10E-02 5.61E-03 1.51E-05 0.15 2.29E-01 2.29E-01 2.29E-01 2.29E-01 2.28E-01 2.28E-01 2.28E-01 2.28E-01 2.28E-01 2.28E-01 2.29E-01 2.27E-01 2.27E-01 1.14E-01 9.53E-03 3.03E-05 0.20 2.04E-01 2.03E-01 2.03E-01 2.03E-01 2.03E-01 2.03E-01 2.02E-01 2.02E-01 2.02E-01 2.02E-01 2.04E-01 2.02E-01 1.98E-01 1.24E-01 1.39E-02 4.65E-05 0.30 1.80E-01 1.80E-01 1.80E-01 1.80E-01 1.79E-01 1.79E-01 1.79E-01 1.79E-01 1.78E-01 1.78E-01 1.80E-01 1.79E-01 1.74E-01 1.28E-01 2.43E-02 1.25E-04 0.40 1.65E-01 1.65E-01 1.64E-01 1.64E-01 1.64E-01 1.63E-01 1.63E-01 1.63E-01 1.63E-01 1.62E-01 1.65E-01 1.63E-01 1.59E-01 1.26E-01 3.39E-02 1.45E-03 0.50 1.52E-01 1.52E-01 1.52E-01 1.51E-01 1.51E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.52E-01 1.50E-01 1.48E-01 1.22E-01 4.06E-02 5.24E-03 0.60 1.41E-01 1.40E-01 1.40E-01 1.40E-01 1.40E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.38E-01 1.41E-01 1.39E-01 1.38E-01 1.18E-01 4.47E-02 1.03E-02 0.80 1.22E-01 1.22E-01 1.22E-01 1.22E-01 1.21E-01 1.21E-01 1.20E-01 1.20E-01 1.20E-01 1.20E-01 1.22E-01 1.21E-01 1.21E-01 1.08E-01 4.83E-02 1.89E-02 1.0 1.08E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.06E-01 1.06E-01 1.06E-01 1.06E-01 1.05E-01 1.08E-01 1.06E-01 1.07E-01 9.80E-02 4.86E-02 2.41E-02 1.5 8.18E-02 8.15E-02 8.14E-02 8.12E-02 8.08E-02 8.05E-02 8.03E-02 8.01E-02 7.99E-02 7.98E-02 8.18E-02 8.05E-02 8.12E-02 7.63E-02 4.40E-02 2.68E-02 2.0 6.51E-02 6.49E-02 6.47E-02 6.45E-02 6.42E-02 6.40E-02 6.38E-02 6.37E-02 6.34E-02 6.32E-02 6.51E-02 6.41E-02 6.46E-02 6.10E-02 3.73E-02 2.44E-02 3.0 4.52E-02 4.51E-02 4.49E-02 4.48E-02 4.46E-02 4.45E-02 4.43E-02 4.42E-02 4.40E-02 4.39E-02 4.52E-02 4.45E-02 4.50E-02 4.26E-02 2.73E-02 1.87E-02 4.0 3.43E-02 3.42E-02 3.41E-02 3.40E-02 3.39E-02 3.38E-02 3.36E-02 3.35E-02 3.34E-02 3.33E-02 3.43E-02 3.37E-02 3.42E-02 3.24E-02 2.10E-02 1.46E-02 5.0 2.77E-02 2.76E-02 2.75E-02 2.74E-02 2.73E-02 2.72E-02 2.71E-02 2.70E-02 2.69E-02 2.68E-02 2.77E-02 2.71E-02 2.75E-02 2.61E-02 1.71E-02 1.19E-02 6.0 2.31E-02 2.31E-02 2.30E-02 2.29E-02 2.28E-02 2.27E-02 2.26E-02 2.25E-02 2.24E-02 2.23E-02 2.31E-02 2.27E-02 2.30E-02 2.18E-02 1.44E-02 1.01E-02 8.0 1.74E-02 1.74E-02 1.73E-02 1.73E-02 1.72E-02 1.71E-02 1.71E-02 1.70E-02 1.69E-02 1.69E-02 1.74E-02 1.71E-02 1.73E-02 1.64E-02 1.09E-02 7.69E-03 10.0 1.40E-02 1.40E-02 1.39E-02 1.39E-02 1.38E-02 1.38E-02 1.37E-02 1.36E-02 1.36E-02 1.35E-02 1.40E-02 1.37E-02 1.39E-02 1.32E-02 8.74E-03 6.17E-03

PAGE 368

368 Table C 9. Specific absorbed fractions for cartilage targets in the cervical vertebrae. (CAR AM)CAR rS) Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+00 0.00E+00 2.14E-01 0.003 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 3.15E-08 2.06E-05 2.14E-01 0.005 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 7.56E-08 4.67E-05 2.14E-01 0.010 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 3.30E-07 1.54E-04 2.13E-01 0.015 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 7.11E-07 3.28E-04 2.13E-01 0.020 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 1.36E-06 5.32E-04 2.13E-01 0.030 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 2.74E-06 1.09E-03 2.12E-01 0.040 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 4.54E-06 1.75E-03 2.11E-01 0.050 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 6.56E-06 2.49E-03 2.09E-01 0.060 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 9.06E-06 3.38E-03 2.08E-01 0.080 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 1.30E-05 5.32E-03 2.04E-01 0.10 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 1.90E-05 7.26E-03 2.00E-01 0.15 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 3.93E-05 1.30E-02 1.90E-01 0.20 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 5.41E-05 1.95E-02 1.78E-01 0.30 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 1.57E-04 3.52E-02 1.50E-01 0.40 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 4.86E-02 1.22E-01 0.50 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.45E-03 5.33E-02 1.01E-01 0.60 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 5.18E-02 8.58E-02 0.80 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 1.86E-02 4.51E-02 6.56E-02 1.0 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 2.29E-02 3.96E-02 5.36E-02 1.5 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 2.51E-02 3.16E-02 3.86E-02 2.0 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.28E-02 2.68E-02 3.13E-02 3.0 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 1.78E-02 2.02E-02 2.27E-02 4.0 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.41E-02 1.59E-02 1.77E-02 5.0 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.17E-02 1.30E-02 1.44E-02 6.0 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 9.88E-03 1.10E-02 1.21E-02 8.0 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 7.55E-03 8.41E-03 9.23E-03 10.0 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.10E-03 6.77E-03 7.42E-03 1 TIM Sources are run at 50% Cellularity Table C 10. Specific absorbed fractions for active marrow targets in the thoracic vertebrae. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.45E-01 3.83E-01 4.31E-01 4.93E-01 5.75E-01 6.90E-01 8.63E-01 1.15E+00 1.73E+00 3.45E+00 3.45E-01 1.65E-06 1.71E-01 1.31E-07 0.00E+00 0.00E+00 0.003 3.45E-01 3.83E-01 4.31E-01 4.92E-01 5.74E-01 6.89E-01 8.60E-01 1.15E+00 1.72E+00 3.44E+00 3.45E-01 3.04E-04 1.81E-01 2.29E-05 9.73E-06 0.00E+00 0.005 3.44E-01 3.82E-01 4.30E-01 4.91E-01 5.72E-01 6.86E-01 8.57E-01 1.14E+00 1.71E+00 3.42E+00 3.44E-01 1.56E-03 1.81E-01 1.64E-04 2.32E-05 0.00E+00 0.010 3.43E-01 3.80E-01 4.26E-01 4.86E-01 5.66E-01 6.77E-01 8.44E-01 1.12E+00 1.68E+00 3.35E+00 3.43E-01 8.68E-03 1.81E-01 1.05E-03 7.52E-05 0.00E+00 0.015 3.41E-01 3.76E-01 4.21E-01 4.79E-01 5.56E-01 6.64E-01 8.26E-01 1.10E+00 1.63E+00 3.25E+00 3.41E-01 1.77E-02 1.81E-01 2.12E-03 1.51E-04 1.42E-07 0.020 3.38E-01 3.72E-01 4.15E-01 4.70E-01 5.44E-01 6.47E-01 8.02E-01 1.06E+00 1.57E+00 3.12E+00 3.38E-01 2.90E-02 1.80E-01 3.50E-03 2.42E-04 1.95E-07 0.030 3.30E-01 3.61E-01 3.99E-01 4.48E-01 5.13E-01 6.05E-01 7.42E-01 9.71E-01 1.43E+00 2.80E+00 3.30E-01 5.72E-02 1.79E-01 6.98E-03 4.86E-04 2.84E-07 0.040 3.21E-01 3.47E-01 3.79E-01 4.21E-01 4.77E-01 5.55E-01 6.72E-01 8.67E-01 1.26E+00 2.42E+00 3.21E-01 8.95E-02 1.76E-01 1.13E-02 7.87E-04 3.66E-07 0.050 3.10E-01 3.32E-01 3.58E-01 3.92E-01 4.38E-01 5.01E-01 5.97E-01 7.56E-01 1.07E+00 2.03E+00 3.10E-01 1.23E-01 1.73E-01 1.60E-02 1.13E-03 4.67E-07 0.060 2.99E-01 3.16E-01 3.37E-01 3.63E-01 3.99E-01 4.48E-01 5.23E-01 6.46E-01 8.94E-01 1.64E+00 2.99E-01 1.55E-01 1.70E-01 2.12E-02 1.52E-03 5.62E-07 0.080 2.77E-01 2.86E-01 2.98E-01 3.12E-01 3.32E-01 3.59E-01 4.00E-01 4.69E-01 6.04E-01 1.01E+00 2.77E-01 1.99E-01 1.63E-01 3.13E-02 2.36E-03 7.50E-07 0.10 2.56E-01 2.62E-01 2.69E-01 2.78E-01 2.89E-01 3.06E-01 3.31E-01 3.72E-01 4.52E-01 6.94E-01 2.56E-01 2.10E-01 1.56E-01 4.08E-02 3.22E-03 1.03E-06 0.15 2.12E-01 2.14E-01 2.18E-01 2.22E-01 2.27E-01 2.35E-01 2.46E-01 2.65E-01 3.01E-01 4.11E-01 2.12E-01 1.92E-01 1.44E-01 5.98E-02 5.53E-03 1.89E-06 0.20 1.84E-01 1.86E-01 1.88E-01 1.91E-01 1.94E-01 1.99E-01 2.06E-01 2.17E-01 2.40E-01 3.07E-01 1.84E-01 1.72E-01 1.37E-01 7.01E-02 8.11E-03 3.50E-06 0.30 1.55E-01 1.56E-01 1.57E-01 1.59E-01 1.61E-01 1.63E-01 1.67E-01 1.73E-01 1.85E-01 2.22E-01 1.55E-01 1.49E-01 1.27E-01 7.66E-02 1.40E-02 1.67E-05 0.40 1.37E-01 1.37E-01 1.38E-01 1.39E-01 1.40E-01 1.42E-01 1.45E-01 1.49E-01 1.57E-01 1.82E-01 1.37E-01 1.33E-01 1.19E-01 7.72E-02 2.01E-02 2.68E-04 0.50 1.23E-01 1.23E-01 1.24E-01 1.24E-01 1.25E-01 1.27E-01 1.29E-01 1.32E-01 1.38E-01 1.56E-01 1.23E-01 1.20E-01 1.11E-01 7.56E-02 2.49E-02 1.78E-03 0.60 1.11E-01 1.12E-01 1.12E-01 1.13E-01 1.13E-01 1.14E-01 1.16E-01 1.18E-01 1.23E-01 1.37E-01 1.11E-01 1.09E-01 1.04E-01 7.29E-02 2.80E-02 4.51E-03 0.80 9.33E-02 9.36E-02 9.39E-02 9.44E-02 9.49E-02 9.55E-02 9.66E-02 9.83E-02 1.02E-01 1.12E-01 9.33E-02 9.15E-02 9.01E-02 6.60E-02 3.04E-02 1.02E-02 1.0 8.00E-02 8.03E-02 8.05E-02 8.08E-02 8.12E-02 8.18E-02 8.26E-02 8.40E-02 8.66E-02 9.43E-02 8.00E-02 7.86E-02 7.86E-02 5.90E-02 3.02E-02 1.39E-02 1.5 5.83E-02 5.84E-02 5.86E-02 5.88E-02 5.90E-02 5.93E-02 5.98E-02 6.07E-02 6.24E-02 6.74E-02 5.83E-02 5.74E-02 5.79E-02 4.45E-02 2.65E-02 1.63E-02 2.0 4.53E-02 4.53E-02 4.54E-02 4.56E-02 4.58E-02 4.60E-02 4.64E-02 4.71E-02 4.83E-02 5.21E-02 4.53E-02 4.45E-02 4.52E-02 3.49E-02 2.24E-02 1.52E-02 3.0 3.11E-02 3.11E-02 3.12E-02 3.13E-02 3.14E-02 3.16E-02 3.18E-02 3.22E-02 3.30E-02 3.55E-02 3.11E-02 3.06E-02 3.11E-02 2.42E-02 1.62E-02 1.14E-02 4.0 2.35E-02 2.35E-02 2.36E-02 2.37E-02 2.38E-02 2.39E-02 2.41E-02 2.43E-02 2.50E-02 2.68E-02 2.35E-02 2.31E-02 2.35E-02 1.83E-02 1.24E-02 8.80E-03 5.0 1.89E-02 1.89E-02 1.89E-02 1.90E-02 1.91E-02 1.92E-02 1.93E-02 1.95E-02 2.00E-02 2.15E-02 1.89E-02 1.86E-02 1.89E-02 1.47E-02 9.99E-03 7.15E-03 6.0 1.58E-02 1.58E-02 1.58E-02 1.59E-02 1.59E-02 1.60E-02 1.61E-02 1.64E-02 1.68E-02 1.80E-02 1.58E-02 1.55E-02 1.58E-02 1.23E-02 8.36E-03 6.00E-03 8.0 1.19E-02 1.19E-02 1.19E-02 1.20E-02 1.20E-02 1.21E-02 1.22E-02 1.23E-02 1.26E-02 1.36E-02 1.19E-02 1.17E-02 1.19E-02 9.28E-03 6.33E-03 4.55E-03 10.0 9.55E-03 9.58E-03 9.59E-03 9.62E-03 9.65E-03 9.70E-03 9.78E-03 9.91E-03 1.02E-02 1.09E-02 9.55E-03 9.41E-03 9.56E-03 7.45E-03 5.11E-03 3.67E-03

PAGE 369

369 Table C 11. Specific absorbed fractions for shallow marrow targets in the thoracic vertebrae. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.32E-01 3.32E-01 3.32E-01 3.32E-01 3.32E-01 3.32E-01 3.32E-01 3.31E-01 3.32E-01 3.32E-01 3.32E-01 3.00E-01 3.07E-01 2.39E-07 0.00E+00 0.00E+00 0.003 3.32E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.32E-01 3.32E-01 3.32E-01 3.30E-01 4.06E-05 1.02E-05 0.00E+00 0.005 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 3.30E-01 3.30E-01 3.31E-01 3.31E-01 3.31E-01 3.31E-01 2.57E-04 2.18E-05 0.00E+00 0.010 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.30E-01 1.41E-03 7.38E-05 0.00E+00 0.015 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.24E-01 3.28E-01 3.87E-03 1.44E-04 6.24E-08 0.020 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.19E-01 3.26E-01 6.36E-03 2.30E-04 8.93E-08 0.030 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.06E-01 3.07E-01 3.18E-01 1.26E-02 4.64E-04 1.47E-07 0.040 2.91E-01 2.90E-01 2.90E-01 2.90E-01 2.91E-01 2.91E-01 2.90E-01 2.90E-01 2.90E-01 2.90E-01 2.91E-01 2.91E-01 3.08E-01 2.02E-02 7.42E-04 2.22E-07 0.050 2.73E-01 2.73E-01 2.73E-01 2.73E-01 2.73E-01 2.74E-01 2.73E-01 2.73E-01 2.73E-01 2.73E-01 2.73E-01 2.73E-01 2.97E-01 2.84E-02 1.07E-03 2.92E-07 0.060 2.56E-01 2.56E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.56E-01 2.55E-01 2.84E-01 3.70E-02 1.44E-03 4.31E-07 0.080 2.23E-01 2.23E-01 2.23E-01 2.22E-01 2.23E-01 2.23E-01 2.22E-01 2.22E-01 2.22E-01 2.22E-01 2.23E-01 2.24E-01 2.48E-01 5.22E-02 2.21E-03 6.48E-07 0.10 1.99E-01 1.99E-01 1.99E-01 1.99E-01 1.99E-01 1.98E-01 1.98E-01 1.98E-01 1.98E-01 1.98E-01 1.99E-01 1.99E-01 2.13E-01 6.32E-02 2.97E-03 1.03E-06 0.15 1.61E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.60E-01 1.59E-01 1.59E-01 1.59E-01 1.61E-01 1.62E-01 1.66E-01 7.96E-02 5.08E-03 2.00E-06 0.20 1.41E-01 1.41E-01 1.41E-01 1.41E-01 1.40E-01 1.40E-01 1.40E-01 1.40E-01 1.39E-01 1.39E-01 1.41E-01 1.41E-01 1.45E-01 8.61E-02 7.41E-03 3.89E-06 0.30 1.23E-01 1.23E-01 1.23E-01 1.22E-01 1.22E-01 1.22E-01 1.22E-01 1.22E-01 1.21E-01 1.21E-01 1.23E-01 1.23E-01 1.26E-01 8.76E-02 1.30E-02 1.74E-05 0.40 1.11E-01 1.11E-01 1.11E-01 1.11E-01 1.11E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.11E-01 1.11E-01 1.14E-01 8.54E-02 1.87E-02 2.48E-04 0.50 1.02E-01 1.02E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.00E-01 1.00E-01 1.00E-01 1.02E-01 1.02E-01 1.05E-01 8.20E-02 2.33E-02 1.65E-03 0.60 9.37E-02 9.35E-02 9.33E-02 9.31E-02 9.28E-02 9.26E-02 9.24E-02 9.22E-02 9.20E-02 9.18E-02 9.37E-02 9.35E-02 9.63E-02 7.79E-02 2.63E-02 4.21E-03 0.80 8.03E-02 8.01E-02 7.99E-02 7.97E-02 7.95E-02 7.93E-02 7.91E-02 7.89E-02 7.87E-02 7.85E-02 8.03E-02 8.06E-02 8.29E-02 6.94E-02 2.88E-02 9.61E-03 1.0 6.96E-02 6.95E-02 6.93E-02 6.91E-02 6.89E-02 6.87E-02 6.85E-02 6.84E-02 6.82E-02 6.80E-02 6.96E-02 6.98E-02 7.20E-02 6.16E-02 2.87E-02 1.31E-02 1.5 5.12E-02 5.10E-02 5.09E-02 5.07E-02 5.06E-02 5.04E-02 5.02E-02 5.01E-02 4.99E-02 4.98E-02 5.12E-02 5.24E-02 5.30E-02 4.62E-02 2.53E-02 1.56E-02 2.0 3.99E-02 3.97E-02 3.96E-02 3.95E-02 3.94E-02 3.92E-02 3.91E-02 3.90E-02 3.89E-02 3.87E-02 3.99E-02 4.04E-02 4.12E-02 3.62E-02 2.14E-02 1.46E-02 3.0 2.74E-02 2.73E-02 2.72E-02 2.71E-02 2.71E-02 2.70E-02 2.69E-02 2.68E-02 2.67E-02 2.66E-02 2.74E-02 2.83E-02 2.84E-02 2.50E-02 1.55E-02 1.10E-02 4.0 2.07E-02 2.07E-02 2.06E-02 2.05E-02 2.05E-02 2.04E-02 2.03E-02 2.02E-02 2.02E-02 2.01E-02 2.07E-02 2.11E-02 2.14E-02 1.90E-02 1.19E-02 8.47E-03 5.0 1.67E-02 1.66E-02 1.66E-02 1.65E-02 1.64E-02 1.64E-02 1.63E-02 1.62E-02 1.62E-02 1.61E-02 1.67E-02 1.68E-02 1.72E-02 1.52E-02 9.61E-03 6.88E-03 6.0 1.40E-02 1.39E-02 1.38E-02 1.38E-02 1.37E-02 1.37E-02 1.36E-02 1.36E-02 1.35E-02 1.35E-02 1.40E-02 1.40E-02 1.44E-02 1.27E-02 8.05E-03 5.78E-03 8.0 1.05E-02 1.05E-02 1.04E-02 1.04E-02 1.04E-02 1.03E-02 1.03E-02 1.02E-02 1.02E-02 1.02E-02 1.05E-02 1.07E-02 1.09E-02 9.62E-03 6.10E-03 4.38E-03 10.0 8.44E-03 8.42E-03 8.38E-03 8.35E-03 8.32E-03 8.29E-03 8.26E-03 8.23E-03 8.20E-03 8.16E-03 8.44E-03 8.51E-03 8.72E-03 7.73E-03 4.92E-03 3.54E-03 Table C 12. Specific absorbed fractions for cartilage targets in the thoracic vertebrae. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-01 0.003 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 1.19E-08 7.51E-06 1.11E-01 0.005 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 3.27E-08 1.93E-05 1.11E-01 0.010 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 1.04E-07 6.37E-05 1.10E-01 0.015 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.98E-07 1.32E-04 1.10E-01 0.020 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 2.18E-04 1.10E-01 0.030 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 5.72E-07 4.43E-04 1.10E-01 0.040 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 9.46E-07 7.28E-04 1.09E-01 0.050 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.25E-06 1.06E-03 1.08E-01 0.060 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.64E-06 1.42E-03 1.08E-01 0.080 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.54E-06 2.23E-03 1.06E-01 0.10 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.25E-06 3.08E-03 1.04E-01 0.15 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 4.71E-06 5.49E-03 9.90E-02 0.20 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 7.47E-06 8.36E-03 9.31E-02 0.30 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.47E-05 1.51E-02 7.95E-02 0.40 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.15E-02 6.59E-02 0.50 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 1.73E-03 2.47E-02 5.54E-02 0.60 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 4.36E-03 2.51E-02 4.76E-02 0.80 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 9.50E-03 2.31E-02 3.72E-02 1.0 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 2.10E-02 3.08E-02 1.5 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.47E-02 1.74E-02 2.24E-02 2.0 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.48E-02 1.81E-02 3.0 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.12E-02 1.32E-02 4.0 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.24E-03 8.82E-03 1.03E-02 5.0 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 6.75E-03 7.21E-03 8.34E-03 6.0 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 5.69E-03 6.08E-03 7.01E-03 8.0 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.33E-03 4.63E-03 5.31E-03 10.0 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.50E-03 3.74E-03 4.27E-03 1 TIM Sources are run at 50% Cellularity

PAGE 370

370 Table C 13. Specific absorbed fractions for active marrow targets in the lum bar vertebrae. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.79E-01 4.21E-01 4.73E-01 5.41E-01 6.31E-01 7.57E-01 9.46E-01 1.26E+00 1.89E+00 3.79E+00 3.79E-01 1.94E-06 1.88E-01 4.30E-07 2.52E-07 0.00E+00 0.003 3.78E-01 4.20E-01 4.73E-01 5.40E-01 6.30E-01 7.55E-01 9.44E-01 1.26E+00 1.89E+00 3.77E+00 3.78E-01 3.15E-04 1.98E-01 5.53E-05 5.86E-06 0.00E+00 0.005 3.78E-01 4.20E-01 4.72E-01 5.39E-01 6.28E-01 7.53E-01 9.41E-01 1.25E+00 1.88E+00 3.75E+00 3.78E-01 1.64E-03 1.99E-01 2.99E-04 2.04E-05 1.80E-08 0.010 3.76E-01 4.17E-01 4.68E-01 5.34E-01 6.21E-01 7.43E-01 9.27E-01 1.23E+00 1.84E+00 3.68E+00 3.76E-01 9.69E-03 1.99E-01 1.52E-03 9.25E-05 4.28E-08 0.015 3.74E-01 4.13E-01 4.63E-01 5.26E-01 6.10E-01 7.29E-01 9.06E-01 1.20E+00 1.79E+00 3.57E+00 3.74E-01 1.97E-02 1.99E-01 3.06E-03 1.99E-04 7.57E-08 0.020 3.71E-01 4.09E-01 4.56E-01 5.16E-01 5.97E-01 7.10E-01 8.80E-01 1.16E+00 1.73E+00 3.42E+00 3.71E-01 3.24E-02 1.98E-01 5.08E-03 3.28E-04 1.00E-07 0.030 3.63E-01 3.97E-01 4.38E-01 4.92E-01 5.64E-01 6.64E-01 8.15E-01 1.07E+00 1.57E+00 3.07E+00 3.63E-01 6.36E-02 1.97E-01 1.01E-02 6.45E-04 1.58E-07 0.040 3.54E-01 3.82E-01 4.18E-01 4.64E-01 5.25E-01 6.10E-01 7.38E-01 9.52E-01 1.38E+00 2.66E+00 3.54E-01 9.97E-02 1.94E-01 1.63E-02 1.03E-03 2.19E-07 0.050 3.43E-01 3.66E-01 3.95E-01 4.33E-01 4.83E-01 5.52E-01 6.57E-01 8.32E-01 1.18E+00 2.23E+00 3.43E-01 1.37E-01 1.91E-01 2.33E-02 1.51E-03 3.12E-07 0.060 3.32E-01 3.50E-01 3.73E-01 4.02E-01 4.41E-01 4.95E-01 5.77E-01 7.13E-01 9.84E-01 1.80E+00 3.32E-01 1.73E-01 1.88E-01 3.08E-02 1.94E-03 3.75E-07 0.080 3.08E-01 3.18E-01 3.31E-01 3.47E-01 3.69E-01 3.99E-01 4.44E-01 5.18E-01 6.67E-01 1.11E+00 3.08E-01 2.23E-01 1.81E-01 4.58E-02 2.95E-03 5.36E-07 0.10 2.86E-01 2.92E-01 3.00E-01 3.10E-01 3.23E-01 3.41E-01 3.68E-01 4.13E-01 5.01E-01 7.67E-01 2.86E-01 2.36E-01 1.75E-01 6.00E-02 3.96E-03 7.10E-07 0.15 2.39E-01 2.42E-01 2.45E-01 2.50E-01 2.56E-01 2.64E-01 2.77E-01 2.97E-01 3.37E-01 4.57E-01 2.39E-01 2.17E-01 1.65E-01 8.92E-02 7.11E-03 1.52E-06 0.20 2.10E-01 2.12E-01 2.14E-01 2.17E-01 2.21E-01 2.26E-01 2.33E-01 2.46E-01 2.71E-01 3.45E-01 2.10E-01 1.97E-01 1.58E-01 1.05E-01 1.06E-02 4.20E-06 0.30 1.82E-01 1.83E-01 1.85E-01 1.86E-01 1.88E-01 1.91E-01 1.96E-01 2.03E-01 2.16E-01 2.56E-01 1.82E-01 1.76E-01 1.50E-01 1.14E-01 1.86E-02 3.00E-05 0.40 1.65E-01 1.66E-01 1.67E-01 1.68E-01 1.69E-01 1.71E-01 1.74E-01 1.79E-01 1.88E-01 2.15E-01 1.65E-01 1.61E-01 1.43E-01 1.15E-01 2.68E-02 3.97E-04 0.50 1.52E-01 1.53E-01 1.53E-01 1.54E-01 1.55E-01 1.57E-01 1.59E-01 1.62E-01 1.69E-01 1.89E-01 1.52E-01 1.49E-01 1.36E-01 1.13E-01 3.32E-02 2.46E-03 0.60 1.41E-01 1.42E-01 1.42E-01 1.43E-01 1.44E-01 1.45E-01 1.47E-01 1.49E-01 1.55E-01 1.71E-01 1.41E-01 1.39E-01 1.29E-01 1.10E-01 3.71E-02 6.04E-03 0.80 1.23E-01 1.24E-01 1.24E-01 1.25E-01 1.25E-01 1.26E-01 1.27E-01 1.29E-01 1.33E-01 1.44E-01 1.23E-01 1.22E-01 1.16E-01 1.02E-01 4.04E-02 1.32E-02 1.0 1.09E-01 1.10E-01 1.10E-01 1.10E-01 1.11E-01 1.11E-01 1.12E-01 1.14E-01 1.17E-01 1.25E-01 1.09E-01 1.08E-01 1.05E-01 9.38E-02 4.04E-02 1.79E-02 1.5 8.37E-02 8.39E-02 8.41E-02 8.43E-02 8.46E-02 8.49E-02 8.56E-02 8.66E-02 8.84E-02 9.39E-02 8.37E-02 8.28E-02 8.13E-02 7.41E-02 3.63E-02 2.18E-02 2.0 6.61E-02 6.63E-02 6.64E-02 6.65E-02 6.67E-02 6.70E-02 6.74E-02 6.81E-02 6.95E-02 7.35E-02 6.61E-02 6.54E-02 6.44E-02 5.92E-02 3.13E-02 2.12E-02 3.0 4.50E-02 4.51E-02 4.52E-02 4.53E-02 4.54E-02 4.56E-02 4.58E-02 4.63E-02 4.72E-02 4.99E-02 4.50E-02 4.45E-02 4.39E-02 4.05E-02 2.28E-02 1.68E-02 4.0 3.41E-02 3.42E-02 3.42E-02 3.42E-02 3.43E-02 3.44E-02 3.47E-02 3.50E-02 3.57E-02 3.77E-02 3.41E-02 3.36E-02 3.32E-02 3.06E-02 1.73E-02 1.28E-02 5.0 2.73E-02 2.73E-02 2.73E-02 2.74E-02 2.75E-02 2.76E-02 2.77E-02 2.80E-02 2.86E-02 3.01E-02 2.73E-02 2.69E-02 2.65E-02 2.45E-02 1.38E-02 1.03E-02 6.0 2.27E-02 2.27E-02 2.28E-02 2.28E-02 2.29E-02 2.30E-02 2.31E-02 2.33E-02 2.37E-02 2.51E-02 2.27E-02 2.24E-02 2.21E-02 2.04E-02 1.16E-02 8.56E-03 8.0 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.72E-02 1.72E-02 1.73E-02 1.75E-02 1.79E-02 1.89E-02 1.71E-02 1.68E-02 1.66E-02 1.53E-02 8.64E-03 6.43E-03 10.0 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.38E-02 1.38E-02 1.39E-02 1.40E-02 1.43E-02 1.51E-02 1.37E-02 1.35E-02 1.33E-02 1.23E-02 6.94E-03 5.16E-03 Table C 14. Specific absorbed fractions for shallow marrow targets in the lumbar vertebrae. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.94E-01 3.95E-01 3.95E-01 3.34E-01 7.79E-07 2.28E-07 0.00E+00 0.003 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.95E-01 3.94E-01 3.93E-01 3.95E-01 3.94E-01 3.59E-01 8.54E-05 4.74E-06 0.00E+00 0.005 3.94E-01 3.94E-01 3.94E-01 3.94E-01 3.94E-01 3.94E-01 3.94E-01 3.94E-01 3.93E-01 3.93E-01 3.94E-01 3.94E-01 3.60E-01 4.48E-04 2.15E-05 2.54E-08 0.010 3.91E-01 3.91E-01 3.91E-01 3.91E-01 3.91E-01 3.91E-01 3.91E-01 3.91E-01 3.90E-01 3.90E-01 3.91E-01 3.90E-01 3.60E-01 2.74E-03 8.51E-05 5.14E-08 0.015 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.86E-01 3.85E-01 3.86E-01 3.86E-01 3.58E-01 5.53E-03 1.90E-04 7.21E-08 0.020 3.80E-01 3.80E-01 3.80E-01 3.80E-01 3.80E-01 3.80E-01 3.81E-01 3.81E-01 3.80E-01 3.79E-01 3.80E-01 3.79E-01 3.55E-01 9.15E-03 3.03E-04 9.58E-08 0.030 3.65E-01 3.65E-01 3.65E-01 3.66E-01 3.66E-01 3.66E-01 3.66E-01 3.65E-01 3.65E-01 3.64E-01 3.65E-01 3.64E-01 3.47E-01 1.81E-02 6.04E-04 1.37E-07 0.040 3.47E-01 3.47E-01 3.47E-01 3.47E-01 3.48E-01 3.48E-01 3.48E-01 3.47E-01 3.47E-01 3.47E-01 3.47E-01 3.46E-01 3.36E-01 2.88E-02 9.63E-04 2.05E-07 0.050 3.28E-01 3.27E-01 3.27E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.28E-01 3.27E-01 3.27E-01 3.28E-01 3.25E-01 3.24E-01 4.07E-02 1.38E-03 2.54E-07 0.060 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.07E-01 3.06E-01 3.07E-01 3.04E-01 3.11E-01 5.30E-02 1.78E-03 3.12E-07 0.080 2.69E-01 2.69E-01 2.69E-01 2.69E-01 2.69E-01 2.68E-01 2.68E-01 2.68E-01 2.68E-01 2.68E-01 2.69E-01 2.66E-01 2.73E-01 7.47E-02 2.67E-03 4.45E-07 0.10 2.41E-01 2.41E-01 2.41E-01 2.41E-01 2.41E-01 2.41E-01 2.41E-01 2.40E-01 2.40E-01 2.40E-01 2.41E-01 2.39E-01 2.37E-01 9.01E-02 3.58E-03 6.29E-07 0.15 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.94E-01 1.94E-01 1.94E-01 1.93E-01 1.93E-01 1.93E-01 1.95E-01 1.93E-01 1.91E-01 1.13E-01 6.36E-03 1.21E-06 0.20 1.72E-01 1.72E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.72E-01 1.70E-01 1.72E-01 1.22E-01 9.57E-03 3.65E-06 0.30 1.54E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.52E-01 1.52E-01 1.52E-01 1.51E-01 1.54E-01 1.52E-01 1.54E-01 1.24E-01 1.69E-02 2.54E-05 0.40 1.43E-01 1.43E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.41E-01 1.41E-01 1.41E-01 1.43E-01 1.42E-01 1.43E-01 1.21E-01 2.44E-02 3.56E-04 0.50 1.35E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.33E-01 1.33E-01 1.33E-01 1.32E-01 1.32E-01 1.35E-01 1.33E-01 1.33E-01 1.17E-01 3.05E-02 2.22E-03 0.60 1.27E-01 1.27E-01 1.26E-01 1.26E-01 1.26E-01 1.26E-01 1.26E-01 1.25E-01 1.25E-01 1.25E-01 1.27E-01 1.26E-01 1.25E-01 1.12E-01 3.43E-02 5.51E-03 0.80 1.14E-01 1.14E-01 1.14E-01 1.13E-01 1.13E-01 1.13E-01 1.13E-01 1.12E-01 1.12E-01 1.12E-01 1.14E-01 1.13E-01 1.11E-01 1.02E-01 3.76E-02 1.22E-02 1.0 1.03E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.01E-01 1.01E-01 1.01E-01 1.00E-01 1.03E-01 1.01E-01 9.97E-02 9.29E-02 3.77E-02 1.66E-02 1.5 8.05E-02 8.02E-02 8.00E-02 7.97E-02 7.96E-02 7.96E-02 7.92E-02 7.89E-02 7.86E-02 7.84E-02 8.05E-02 7.93E-02 7.70E-02 7.28E-02 3.40E-02 2.04E-02 2.0 6.45E-02 6.43E-02 6.41E-02 6.39E-02 6.38E-02 6.37E-02 6.34E-02 6.31E-02 6.28E-02 6.26E-02 6.45E-02 6.34E-02 6.08E-02 5.81E-02 2.95E-02 1.99E-02 3.0 4.45E-02 4.43E-02 4.41E-02 4.40E-02 4.40E-02 4.39E-02 4.37E-02 4.34E-02 4.32E-02 4.31E-02 4.45E-02 4.37E-02 4.14E-02 3.96E-02 2.15E-02 1.58E-02 4.0 3.37E-02 3.36E-02 3.34E-02 3.33E-02 3.33E-02 3.32E-02 3.30E-02 3.28E-02 3.27E-02 3.26E-02 3.37E-02 3.31E-02 3.13E-02 3.00E-02 1.63E-02 1.20E-02 5.0 2.70E-02 2.69E-02 2.68E-02 2.67E-02 2.66E-02 2.66E-02 2.65E-02 2.63E-02 2.62E-02 2.61E-02 2.70E-02 2.65E-02 2.50E-02 2.40E-02 1.30E-02 9.68E-03 6.0 2.25E-02 2.24E-02 2.23E-02 2.22E-02 2.22E-02 2.22E-02 2.20E-02 2.19E-02 2.18E-02 2.18E-02 2.25E-02 2.20E-02 2.09E-02 2.00E-02 1.09E-02 8.05E-03 8.0 1.69E-02 1.68E-02 1.68E-02 1.67E-02 1.67E-02 1.66E-02 1.65E-02 1.65E-02 1.64E-02 1.63E-02 1.69E-02 1.66E-02 1.57E-02 1.50E-02 8.14E-03 6.05E-03 10.0 1.35E-02 1.35E-02 1.34E-02 1.34E-02 1.34E-02 1.33E-02 1.33E-02 1.32E-02 1.31E-02 1.31E-02 1.35E-02 1.33E-02 1.26E-02 1.20E-02 6.54E-03 4.85E-03

PAGE 371

371 Table C 15. Specific absorbed fractions for cartilage targets in the lumbar vertebrae. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.05E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.68E-05 2.05E-01 0.005 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.43E-08 3.71E-05 2.05E-01 0.010 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 9.79E-08 1.21E-04 2.04E-01 0.015 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 1.59E-07 2.54E-04 2.04E-01 0.020 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 2.39E-07 4.31E-04 2.04E-01 0.030 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 4.58E-07 8.48E-04 2.03E-01 0.040 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 7.64E-07 1.37E-03 2.02E-01 0.050 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 1.04E-06 2.00E-03 2.01E-01 0.060 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 1.52E-06 2.64E-03 1.99E-01 0.080 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 2.38E-06 4.03E-03 1.97E-01 0.10 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 5.53E-03 1.93E-01 0.15 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 6.78E-06 1.02E-02 1.84E-01 0.20 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.12E-05 1.58E-02 1.73E-01 0.30 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 3.50E-05 2.88E-02 1.48E-01 0.40 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.74E-04 4.11E-02 1.23E-01 0.50 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 2.90E-03 4.70E-02 1.04E-01 0.60 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 7.03E-03 4.76E-02 8.97E-02 0.80 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 4.35E-02 7.04E-02 1.0 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 1.98E-02 3.93E-02 5.82E-02 1.5 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 3.17E-02 4.19E-02 2.0 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.32E-02 2.64E-02 3.32E-02 3.0 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.87E-02 1.99E-02 2.40E-02 4.0 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.45E-02 1.56E-02 1.88E-02 5.0 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.27E-02 1.52E-02 6.0 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 9.87E-03 1.06E-02 1.27E-02 8.0 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 7.45E-03 8.05E-03 9.61E-03 10.0 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 5.97E-03 6.45E-03 7.72E-03 1 TIM Sources are run at 50% Cellularity Table C 16. Specific absorbed fractions for active marrow targets in the sternum. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.51E+00 3.90E+00 4.39E+00 5.01E+00 5.85E+00 7.02E+00 8.77E+00 1.17E+01 1.75E+01 3.51E+01 3.51E+00 2.80E-05 1.74E+00 7.01E-06 0.00E+00 0.00E+00 0.003 3.51E+00 3.89E+00 4.38E+00 5.00E+00 5.84E+00 7.00E+00 8.75E+00 1.17E+01 1.75E+01 3.50E+01 3.51E+00 3.09E-03 1.84E+00 6.61E-04 5.12E-04 0.00E+00 0.005 3.50E+00 3.89E+00 4.37E+00 4.99E+00 5.82E+00 6.98E+00 8.72E+00 1.16E+01 1.74E+01 3.48E+01 3.50E+00 1.76E-02 1.85E+00 4.01E-03 1.35E-03 0.00E+00 0.010 3.49E+00 3.87E+00 4.34E+00 4.95E+00 5.75E+00 6.89E+00 8.59E+00 1.14E+01 1.71E+01 3.41E+01 3.49E+00 9.15E-02 1.85E+00 2.45E-02 4.11E-03 0.00E+00 0.015 3.47E+00 3.84E+00 4.29E+00 4.88E+00 5.66E+00 6.76E+00 8.40E+00 1.11E+01 1.66E+01 3.31E+01 3.47E+00 1.87E-01 1.85E+00 5.01E-02 8.21E-03 2.07E-07 0.020 3.45E+00 3.80E+00 4.23E+00 4.79E+00 5.54E+00 6.58E+00 8.16E+00 1.08E+01 1.60E+01 3.17E+01 3.45E+00 3.12E-01 1.85E+00 8.22E-02 1.41E-02 3.10E-07 0.030 3.38E+00 3.69E+00 4.08E+00 4.58E+00 5.24E+00 6.17E+00 7.56E+00 9.88E+00 1.45E+01 2.85E+01 3.38E+00 6.10E-01 1.85E+00 1.65E-01 2.82E-02 5.17E-07 0.040 3.31E+00 3.57E+00 3.90E+00 4.32E+00 4.89E+00 5.67E+00 6.86E+00 8.85E+00 1.28E+01 2.46E+01 3.31E+00 9.60E-01 1.85E+00 2.65E-01 4.45E-02 8.25E-07 0.050 3.22E+00 3.44E+00 3.70E+00 4.05E+00 4.51E+00 5.16E+00 6.12E+00 7.73E+00 1.10E+01 2.07E+01 3.22E+00 1.32E+00 1.84E+00 3.78E-01 6.41E-02 1.22E-06 0.060 3.13E+00 3.29E+00 3.51E+00 3.78E+00 4.14E+00 4.64E+00 5.39E+00 6.65E+00 9.17E+00 1.67E+01 3.13E+00 1.66E+00 1.83E+00 4.99E-01 8.37E-02 1.77E-06 0.080 2.94E+00 3.04E+00 3.15E+00 3.30E+00 3.50E+00 3.78E+00 4.19E+00 4.88E+00 6.26E+00 1.04E+01 2.94E+00 2.16E+00 1.81E+00 7.40E-01 1.25E-01 2.81E-06 0.10 2.76E+00 2.82E+00 2.90E+00 2.99E+00 3.11E+00 3.27E+00 3.52E+00 3.93E+00 4.76E+00 7.23E+00 2.76E+00 2.30E+00 1.81E+00 9.61E-01 1.70E-01 5.44E-06 0.15 2.42E+00 2.45E+00 2.48E+00 2.52E+00 2.58E+00 2.66E+00 2.77E+00 2.97E+00 3.33E+00 4.43E+00 2.42E+00 2.21E+00 1.83E+00 1.37E+00 3.01E-01 2.48E-05 0.20 2.23E+00 2.25E+00 2.27E+00 2.30E+00 2.33E+00 2.38E+00 2.45E+00 2.57E+00 2.80E+00 3.48E+00 2.23E+00 2.11E+00 1.83E+00 1.52E+00 4.38E-01 1.49E-03 0.30 2.03E+00 2.04E+00 2.05E+00 2.06E+00 2.08E+00 2.11E+00 2.15E+00 2.21E+00 2.34E+00 2.70E+00 2.03E+00 1.96E+00 1.75E+00 1.57E+00 6.08E-01 1.55E-02 0.40 1.86E+00 1.86E+00 1.87E+00 1.88E+00 1.90E+00 1.92E+00 1.94E+00 1.99E+00 2.07E+00 2.30E+00 1.86E+00 1.82E+00 1.66E+00 1.53E+00 6.78E-01 3.80E-02 0.50 1.70E+00 1.71E+00 1.71E+00 1.72E+00 1.73E+00 1.75E+00 1.77E+00 1.80E+00 1.86E+00 2.05E+00 1.70E+00 1.67E+00 1.56E+00 1.46E+00 7.01E-01 6.33E-02 0.60 1.55E+00 1.56E+00 1.56E+00 1.57E+00 1.58E+00 1.59E+00 1.61E+00 1.63E+00 1.68E+00 1.83E+00 1.55E+00 1.53E+00 1.44E+00 1.37E+00 7.02E-01 8.86E-02 0.80 1.29E+00 1.29E+00 1.30E+00 1.30E+00 1.31E+00 1.31E+00 1.32E+00 1.34E+00 1.38E+00 1.48E+00 1.29E+00 1.27E+00 1.23E+00 1.18E+00 6.64E-01 1.27E-01 1.0 1.07E+00 1.08E+00 1.08E+00 1.08E+00 1.08E+00 1.09E+00 1.10E+00 1.11E+00 1.14E+00 1.21E+00 1.07E+00 1.06E+00 1.03E+00 9.98E-01 6.03E-01 1.51E-01 1.5 7.07E-01 7.08E-01 7.09E-01 7.11E-01 7.13E-01 7.17E-01 7.23E-01 7.33E-01 7.49E-01 7.98E-01 7.07E-01 6.98E-01 6.80E-01 6.61E-01 4.42E-01 1.56E-01 2.0 5.17E-01 5.17E-01 5.18E-01 5.20E-01 5.21E-01 5.23E-01 5.27E-01 5.32E-01 5.45E-01 5.83E-01 5.17E-01 5.08E-01 4.96E-01 4.83E-01 3.30E-01 1.28E-01 3.0 3.37E-01 3.37E-01 3.37E-01 3.38E-01 3.39E-01 3.41E-01 3.44E-01 3.50E-01 3.57E-01 3.81E-01 3.37E-01 3.31E-01 3.24E-01 3.13E-01 2.14E-01 8.69E-02 4.0 2.49E-01 2.51E-01 2.51E-01 2.51E-01 2.52E-01 2.53E-01 2.55E-01 2.58E-01 2.64E-01 2.83E-01 2.49E-01 2.46E-01 2.39E-01 2.34E-01 1.58E-01 6.66E-02 5.0 2.00E-01 2.00E-01 2.00E-01 2.00E-01 2.01E-01 2.02E-01 2.04E-01 2.06E-01 2.11E-01 2.26E-01 2.00E-01 1.96E-01 1.91E-01 1.86E-01 1.26E-01 5.31E-02 6.0 1.66E-01 1.67E-01 1.67E-01 1.67E-01 1.67E-01 1.68E-01 1.70E-01 1.72E-01 1.76E-01 1.89E-01 1.66E-01 1.63E-01 1.59E-01 1.55E-01 1.05E-01 4.48E-02 8.0 1.25E-01 1.25E-01 1.26E-01 1.26E-01 1.27E-01 1.27E-01 1.28E-01 1.29E-01 1.32E-01 1.42E-01 1.25E-01 1.23E-01 1.20E-01 1.16E-01 7.95E-02 3.38E-02 10.0 1.00E-01 1.00E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.02E-01 1.03E-01 1.06E-01 1.14E-01 1.00E-01 9.84E-02 9.57E-02 9.33E-02 6.38E-02 2.71E-02

PAGE 372

372 Table C 17. Specific absorbed fractions for shallow marrow targets in the sternum. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% TM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.90E+00 2.90E+00 2.90E+00 2.90E+00 2.90E+00 2.90E+00 2.89E+00 2.88E+00 2.88E+00 2.87E+00 2.90E+00 2.90E+00 2.91E+00 1.19E-05 0.00E+00 0.00E+00 0.003 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.88E+00 2.88E+00 2.87E+00 2.87E+00 2.89E+00 2.90E+00 3.13E+00 1.52E-03 4.07E-04 0.00E+00 0.005 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.89E+00 2.88E+00 2.87E+00 2.86E+00 2.86E+00 2.89E+00 2.90E+00 3.14E+00 7.11E-03 1.11E-03 0.00E+00 0.010 2.87E+00 2.87E+00 2.87E+00 2.87E+00 2.87E+00 2.86E+00 2.86E+00 2.85E+00 2.84E+00 2.83E+00 2.87E+00 2.88E+00 3.14E+00 4.15E-02 3.42E-03 0.00E+00 0.015 2.84E+00 2.84E+00 2.84E+00 2.84E+00 2.84E+00 2.84E+00 2.83E+00 2.82E+00 2.82E+00 2.81E+00 2.84E+00 2.84E+00 3.12E+00 8.48E-02 6.78E-03 0.00E+00 0.020 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.79E+00 2.79E+00 2.78E+00 2.77E+00 2.80E+00 2.80E+00 3.10E+00 1.38E-01 1.15E-02 0.00E+00 0.030 2.70E+00 2.70E+00 2.70E+00 2.70E+00 2.70E+00 2.70E+00 2.69E+00 2.68E+00 2.68E+00 2.68E+00 2.70E+00 2.70E+00 3.03E+00 2.75E-01 2.29E-02 9.35E-08 0.040 2.59E+00 2.59E+00 2.59E+00 2.59E+00 2.58E+00 2.58E+00 2.57E+00 2.57E+00 2.57E+00 2.56E+00 2.59E+00 2.58E+00 2.96E+00 4.36E-01 3.65E-02 1.88E-07 0.050 2.46E+00 2.46E+00 2.46E+00 2.46E+00 2.45E+00 2.45E+00 2.45E+00 2.45E+00 2.45E+00 2.44E+00 2.46E+00 2.45E+00 2.87E+00 6.12E-01 5.28E-02 3.41E-07 0.060 2.33E+00 2.33E+00 2.33E+00 2.33E+00 2.32E+00 2.32E+00 2.32E+00 2.31E+00 2.31E+00 2.31E+00 2.33E+00 2.32E+00 2.77E+00 7.92E-01 6.81E-02 4.90E-07 0.080 2.09E+00 2.09E+00 2.09E+00 2.09E+00 2.09E+00 2.09E+00 2.09E+00 2.09E+00 2.10E+00 2.10E+00 2.09E+00 2.09E+00 2.47E+00 1.10E+00 1.00E-01 1.15E-06 0.10 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.94E+00 1.93E+00 1.94E+00 1.94E+00 1.95E+00 1.93E+00 2.19E+00 1.29E+00 1.36E-01 2.18E-06 0.15 1.75E+00 1.75E+00 1.75E+00 1.75E+00 1.74E+00 1.74E+00 1.74E+00 1.74E+00 1.74E+00 1.74E+00 1.75E+00 1.74E+00 1.89E+00 1.50E+00 2.42E-01 2.26E-05 0.20 1.66E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.65E+00 1.66E+00 1.64E+00 1.76E+00 1.53E+00 3.54E-01 1.24E-03 0.30 1.54E+00 1.54E+00 1.54E+00 1.54E+00 1.54E+00 1.53E+00 1.53E+00 1.53E+00 1.53E+00 1.53E+00 1.54E+00 1.53E+00 1.61E+00 1.50E+00 4.93E-01 1.25E-02 0.40 1.44E+00 1.44E+00 1.43E+00 1.43E+00 1.43E+00 1.43E+00 1.42E+00 1.42E+00 1.42E+00 1.42E+00 1.44E+00 1.42E+00 1.49E+00 1.42E+00 5.52E-01 3.08E-02 0.50 1.34E+00 1.33E+00 1.33E+00 1.33E+00 1.33E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.34E+00 1.32E+00 1.38E+00 1.32E+00 5.72E-01 5.14E-02 0.60 1.23E+00 1.23E+00 1.23E+00 1.23E+00 1.22E+00 1.22E+00 1.22E+00 1.21E+00 1.21E+00 1.21E+00 1.23E+00 1.22E+00 1.26E+00 1.23E+00 5.74E-01 7.19E-02 0.80 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.03E+00 1.02E+00 1.06E+00 1.04E+00 5.46E-01 1.03E-01 1.0 8.66E-01 8.64E-01 8.62E-01 8.59E-01 8.56E-01 8.53E-01 8.50E-01 8.47E-01 8.46E-01 8.45E-01 8.66E-01 8.53E-01 8.84E-01 8.65E-01 4.98E-01 1.24E-01 1.5 5.71E-01 5.69E-01 5.67E-01 5.65E-01 5.64E-01 5.62E-01 5.61E-01 5.59E-01 5.57E-01 5.54E-01 5.71E-01 5.62E-01 5.84E-01 5.72E-01 3.65E-01 1.29E-01 2.0 4.18E-01 4.15E-01 4.14E-01 4.14E-01 4.12E-01 4.10E-01 4.08E-01 4.07E-01 4.06E-01 4.04E-01 4.18E-01 4.09E-01 4.26E-01 4.19E-01 2.73E-01 1.06E-01 3.0 2.72E-01 2.71E-01 2.70E-01 2.68E-01 2.67E-01 2.67E-01 2.66E-01 2.66E-01 2.65E-01 2.64E-01 2.72E-01 2.67E-01 2.79E-01 2.72E-01 1.76E-01 7.16E-02 4.0 2.01E-01 2.01E-01 2.01E-01 2.00E-01 1.99E-01 1.98E-01 1.97E-01 1.96E-01 1.96E-01 1.95E-01 2.01E-01 1.98E-01 2.06E-01 2.03E-01 1.31E-01 5.51E-02 5.0 1.61E-01 1.60E-01 1.60E-01 1.59E-01 1.58E-01 1.58E-01 1.57E-01 1.56E-01 1.56E-01 1.56E-01 1.61E-01 1.58E-01 1.65E-01 1.61E-01 1.04E-01 4.38E-02 6.0 1.34E-01 1.34E-01 1.33E-01 1.32E-01 1.32E-01 1.32E-01 1.31E-01 1.31E-01 1.30E-01 1.30E-01 1.34E-01 1.31E-01 1.37E-01 1.35E-01 8.70E-02 3.69E-02 8.0 1.01E-01 1.01E-01 1.00E-01 1.00E-01 9.97E-02 9.91E-02 9.87E-02 9.82E-02 9.80E-02 9.77E-02 1.01E-01 9.89E-02 1.03E-01 1.01E-01 6.58E-02 2.80E-02 10.0 8.11E-02 8.04E-02 8.03E-02 8.01E-02 7.97E-02 7.92E-02 7.89E-02 7.86E-02 7.85E-02 7.84E-02 8.11E-02 7.92E-02 8.23E-02 8.09E-02 5.28E-02 2.25E-02 Table C 18. Specific absorbed fractions for cartilage targets in the sternum. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.44E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.30E-04 6.44E-01 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.76E-04 6.44E-01 0.010 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 4.43E-08 9.70E-04 6.43E-01 0.015 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 9.51E-08 2.06E-03 6.43E-01 0.020 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 1.50E-07 3.35E-03 6.43E-01 0.030 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 3.53E-07 6.67E-03 6.41E-01 0.040 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 6.46E-07 1.08E-02 6.40E-01 0.050 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 9.88E-07 1.56E-02 6.38E-01 0.060 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 1.56E-06 2.07E-02 6.36E-01 0.080 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.15E-06 3.12E-02 6.31E-01 0.10 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 6.09E-06 4.29E-02 6.27E-01 0.15 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 3.35E-05 7.63E-02 6.13E-01 0.20 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.17E-03 1.13E-01 5.96E-01 0.30 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.37E-02 1.58E-01 5.61E-01 0.40 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 1.76E-01 5.24E-01 0.50 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 5.70E-02 1.82E-01 4.88E-01 0.60 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 7.83E-02 1.83E-01 4.52E-01 0.80 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.79E-01 3.88E-01 1.0 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.73E-01 3.33E-01 1.5 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.51E-01 2.38E-01 2.0 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.23E-01 1.82E-01 3.0 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 7.81E-02 8.49E-02 1.23E-01 4.0 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 5.92E-02 6.44E-02 9.28E-02 5.0 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 4.80E-02 5.22E-02 7.48E-02 6.0 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.01E-02 4.36E-02 6.27E-02 8.0 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.04E-02 3.32E-02 4.75E-02 10.0 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.47E-02 2.68E-02 3.82E-02 1 TIM Sources are run at 50% Cellularity

PAGE 373

373 Table C 19. Specific absorbed fractions for active ma rrow targets in the ribs. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.09E-01 1.22E-01 1.37E-01 1.56E-01 1.82E-01 2.19E-01 2.73E-01 3.65E-01 5.47E-01 1.09E+00 1.09E-01 2.18E-07 5.42E-02 2.33E-07 0.00E+00 0.00E+00 0.003 1.09E-01 1.21E-01 1.37E-01 1.56E-01 1.82E-01 2.18E-01 2.73E-01 3.64E-01 5.45E-01 1.09E+00 1.09E-01 7.01E-05 5.72E-02 2.50E-05 1.26E-05 9.45E-09 0.005 1.09E-01 1.21E-01 1.36E-01 1.56E-01 1.81E-01 2.18E-01 2.72E-01 3.62E-01 5.43E-01 1.08E+00 1.09E-01 3.97E-04 5.74E-02 1.14E-04 2.94E-05 2.70E-08 0.010 1.09E-01 1.20E-01 1.35E-01 1.54E-01 1.79E-01 2.15E-01 2.68E-01 3.56E-01 5.33E-01 1.06E+00 1.09E-01 2.75E-03 5.76E-02 7.19E-04 9.98E-05 1.37E-07 0.015 1.08E-01 1.19E-01 1.34E-01 1.52E-01 1.76E-01 2.11E-01 2.62E-01 3.47E-01 5.18E-01 1.03E+00 1.08E-01 5.64E-03 5.77E-02 1.46E-03 2.18E-04 3.65E-07 0.020 1.07E-01 1.18E-01 1.32E-01 1.49E-01 1.73E-01 2.05E-01 2.54E-01 3.36E-01 4.99E-01 9.90E-01 1.07E-01 9.22E-03 5.77E-02 2.41E-03 3.52E-04 7.18E-07 0.030 1.05E-01 1.14E-01 1.27E-01 1.42E-01 1.63E-01 1.92E-01 2.35E-01 3.08E-01 4.53E-01 8.88E-01 1.05E-01 1.82E-02 5.77E-02 4.81E-03 7.00E-04 2.13E-06 0.040 1.02E-01 1.10E-01 1.20E-01 1.34E-01 1.51E-01 1.76E-01 2.13E-01 2.75E-01 3.99E-01 7.69E-01 1.02E-01 2.84E-02 5.77E-02 7.76E-03 1.17E-03 4.37E-06 0.050 9.84E-02 1.05E-01 1.14E-01 1.25E-01 1.39E-01 1.59E-01 1.90E-01 2.40E-01 3.41E-01 6.43E-01 9.84E-02 3.91E-02 5.77E-02 1.11E-02 1.70E-03 8.03E-06 0.060 9.50E-02 1.00E-01 1.07E-01 1.16E-01 1.27E-01 1.43E-01 1.66E-01 2.06E-01 2.84E-01 5.20E-01 9.50E-02 4.89E-02 5.76E-02 1.46E-02 2.29E-03 1.43E-05 0.080 8.77E-02 9.08E-02 9.45E-02 9.94E-02 1.06E-01 1.15E-01 1.28E-01 1.50E-01 1.92E-01 3.20E-01 8.77E-02 6.30E-02 5.71E-02 2.17E-02 3.61E-03 2.90E-05 0.10 8.09E-02 8.29E-02 8.51E-02 8.80E-02 9.19E-02 9.74E-02 1.05E-01 1.18E-01 1.44E-01 2.21E-01 8.09E-02 6.64E-02 5.75E-02 2.83E-02 5.02E-03 5.28E-05 0.15 6.80E-02 6.89E-02 6.99E-02 7.12E-02 7.30E-02 7.56E-02 7.91E-02 8.50E-02 9.66E-02 1.31E-01 6.80E-02 6.14E-02 5.89E-02 4.00E-02 8.58E-03 1.56E-04 0.20 6.14E-02 6.19E-02 6.26E-02 6.35E-02 6.46E-02 6.62E-02 6.83E-02 7.20E-02 7.91E-02 1.00E-01 6.14E-02 5.76E-02 5.91E-02 4.46E-02 1.17E-02 3.50E-04 0.30 5.52E-02 5.55E-02 5.59E-02 5.65E-02 5.71E-02 5.80E-02 5.91E-02 6.11E-02 6.49E-02 7.65E-02 5.52E-02 5.32E-02 5.69E-02 4.57E-02 1.63E-02 1.35E-03 0.40 5.07E-02 5.10E-02 5.12E-02 5.16E-02 5.20E-02 5.27E-02 5.35E-02 5.47E-02 5.73E-02 6.50E-02 5.07E-02 4.95E-02 5.38E-02 4.41E-02 1.85E-02 2.38E-03 0.50 4.68E-02 4.70E-02 4.71E-02 4.74E-02 4.77E-02 4.82E-02 4.88E-02 4.98E-02 5.17E-02 5.74E-02 4.68E-02 4.58E-02 5.02E-02 4.16E-02 1.93E-02 3.02E-03 0.60 4.30E-02 4.31E-02 4.33E-02 4.35E-02 4.37E-02 4.41E-02 4.46E-02 4.54E-02 4.69E-02 5.14E-02 4.30E-02 4.22E-02 4.64E-02 3.87E-02 1.96E-02 3.39E-03 0.80 3.59E-02 3.59E-02 3.60E-02 3.62E-02 3.64E-02 3.66E-02 3.70E-02 3.75E-02 3.86E-02 4.18E-02 3.59E-02 3.54E-02 3.88E-02 3.28E-02 1.88E-02 3.71E-03 1.0 2.98E-02 2.98E-02 2.99E-02 3.00E-02 3.01E-02 3.03E-02 3.05E-02 3.09E-02 3.17E-02 3.42E-02 2.98E-02 2.93E-02 3.20E-02 2.74E-02 1.71E-02 3.60E-03 1.5 1.95E-02 1.95E-02 1.95E-02 1.96E-02 1.97E-02 1.98E-02 2.00E-02 2.02E-02 2.08E-02 2.23E-02 1.95E-02 1.91E-02 2.10E-02 1.80E-02 1.22E-02 2.77E-03 2.0 1.41E-02 1.41E-02 1.42E-02 1.42E-02 1.43E-02 1.43E-02 1.44E-02 1.46E-02 1.50E-02 1.62E-02 1.41E-02 1.39E-02 1.51E-02 1.30E-02 8.98E-03 2.09E-03 3.0 9.15E-03 9.18E-03 9.19E-03 9.20E-03 9.24E-03 9.30E-03 9.38E-03 9.51E-03 9.77E-03 1.06E-02 9.15E-03 8.96E-03 9.81E-03 8.43E-03 5.83E-03 1.39E-03 4.0 6.84E-03 6.84E-03 6.86E-03 6.88E-03 6.91E-03 6.95E-03 7.00E-03 7.09E-03 7.29E-03 7.90E-03 6.84E-03 6.71E-03 7.35E-03 6.29E-03 4.38E-03 1.06E-03 5.0 5.47E-03 5.48E-03 5.49E-03 5.51E-03 5.53E-03 5.56E-03 5.61E-03 5.68E-03 5.84E-03 6.29E-03 5.47E-03 5.37E-03 5.87E-03 5.04E-03 3.52E-03 8.49E-04 6.0 4.57E-03 4.57E-03 4.58E-03 4.59E-03 4.61E-03 4.65E-03 4.68E-03 4.75E-03 4.88E-03 5.26E-03 4.57E-03 4.48E-03 4.90E-03 4.20E-03 2.95E-03 7.19E-04 8.0 3.43E-03 3.44E-03 3.45E-03 3.46E-03 3.48E-03 3.50E-03 3.53E-03 3.57E-03 3.67E-03 3.96E-03 3.43E-03 3.37E-03 3.70E-03 3.17E-03 2.22E-03 5.46E-04 10.0 2.76E-03 2.76E-03 2.77E-03 2.78E-03 2.79E-03 2.80E-03 2.82E-03 2.86E-03 2.94E-03 3.18E-03 2.76E-03 2.70E-03 2.96E-03 2.54E-03 1.79E-03 4.42E-04 Table C 20. Specific absorbed fractions for shallow marrow targets in the ribs. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.05E-01 1.05E-01 1.04E-01 1.04E-01 1.04E-01 1.03E-01 1.03E-01 1.02E-01 1.03E-01 1.04E-01 1.05E-01 1.06E-01 8.77E-02 3.83E-07 0.00E+00 0.00E+00 0.003 1.05E-01 1.05E-01 1.04E-01 1.04E-01 1.04E-01 1.03E-01 1.03E-01 1.02E-01 1.03E-01 1.04E-01 1.05E-01 1.06E-01 9.40E-02 4.40E-05 1.18E-05 2.85E-08 0.005 1.05E-01 1.04E-01 1.04E-01 1.04E-01 1.03E-01 1.03E-01 1.03E-01 1.02E-01 1.03E-01 1.04E-01 1.05E-01 1.06E-01 9.44E-02 2.01E-04 2.75E-05 7.06E-08 0.010 1.04E-01 1.04E-01 1.03E-01 1.03E-01 1.03E-01 1.02E-01 1.02E-01 1.01E-01 1.02E-01 1.03E-01 1.04E-01 1.05E-01 9.44E-02 1.18E-03 9.73E-05 2.90E-07 0.015 1.03E-01 1.03E-01 1.02E-01 1.02E-01 1.02E-01 1.01E-01 1.01E-01 1.00E-01 1.01E-01 1.02E-01 1.03E-01 1.04E-01 9.40E-02 2.40E-03 2.10E-04 6.10E-07 0.020 1.01E-01 1.01E-01 1.01E-01 1.00E-01 1.00E-01 1.00E-01 9.95E-02 9.90E-02 9.97E-02 1.00E-01 1.01E-01 1.02E-01 9.33E-02 3.94E-03 3.33E-04 1.09E-06 0.030 9.78E-02 9.75E-02 9.72E-02 9.70E-02 9.67E-02 9.64E-02 9.60E-02 9.56E-02 9.62E-02 9.68E-02 9.78E-02 9.81E-02 9.16E-02 7.78E-03 6.62E-04 2.73E-06 0.040 9.34E-02 9.32E-02 9.29E-02 9.27E-02 9.25E-02 9.23E-02 9.19E-02 9.16E-02 9.21E-02 9.26E-02 9.34E-02 9.35E-02 8.94E-02 1.24E-02 1.12E-03 5.07E-06 0.050 8.86E-02 8.83E-02 8.82E-02 8.80E-02 8.79E-02 8.77E-02 8.75E-02 8.72E-02 8.75E-02 8.79E-02 8.86E-02 8.83E-02 8.70E-02 1.75E-02 1.61E-03 8.39E-06 0.060 8.35E-02 8.35E-02 8.33E-02 8.31E-02 8.30E-02 8.29E-02 8.28E-02 8.27E-02 8.28E-02 8.30E-02 8.35E-02 8.30E-02 8.43E-02 2.27E-02 2.16E-03 1.38E-05 0.080 7.45E-02 7.44E-02 7.43E-02 7.43E-02 7.43E-02 7.43E-02 7.44E-02 7.45E-02 7.43E-02 7.41E-02 7.45E-02 7.40E-02 7.50E-02 3.18E-02 3.38E-03 2.83E-05 0.10 6.83E-02 6.83E-02 6.81E-02 6.80E-02 6.80E-02 6.80E-02 6.82E-02 6.84E-02 6.82E-02 6.79E-02 6.83E-02 6.81E-02 6.70E-02 3.79E-02 4.67E-03 5.02E-05 0.15 5.92E-02 5.92E-02 5.91E-02 5.90E-02 5.90E-02 5.90E-02 5.94E-02 5.97E-02 5.93E-02 5.89E-02 5.92E-02 5.96E-02 5.84E-02 4.53E-02 8.02E-03 1.48E-04 0.20 5.51E-02 5.50E-02 5.50E-02 5.49E-02 5.48E-02 5.48E-02 5.53E-02 5.58E-02 5.52E-02 5.46E-02 5.51E-02 5.60E-02 5.48E-02 4.73E-02 1.11E-02 3.28E-04 0.30 5.07E-02 5.05E-02 5.05E-02 5.04E-02 5.04E-02 5.03E-02 5.09E-02 5.15E-02 5.08E-02 5.00E-02 5.07E-02 5.16E-02 5.04E-02 4.67E-02 1.55E-02 1.28E-03 0.40 4.70E-02 4.70E-02 4.69E-02 4.68E-02 4.67E-02 4.66E-02 4.72E-02 4.78E-02 4.71E-02 4.64E-02 4.70E-02 4.80E-02 4.67E-02 4.45E-02 1.76E-02 2.26E-03 0.50 4.36E-02 4.34E-02 4.34E-02 4.33E-02 4.32E-02 4.31E-02 4.37E-02 4.43E-02 4.35E-02 4.28E-02 4.36E-02 4.44E-02 4.32E-02 4.17E-02 1.85E-02 2.89E-03 0.60 4.01E-02 4.01E-02 4.00E-02 3.98E-02 3.98E-02 3.97E-02 4.02E-02 4.07E-02 4.00E-02 3.93E-02 4.01E-02 4.09E-02 3.98E-02 3.88E-02 1.87E-02 3.24E-03 0.80 3.36E-02 3.35E-02 3.34E-02 3.33E-02 3.32E-02 3.31E-02 3.35E-02 3.39E-02 3.34E-02 3.28E-02 3.36E-02 3.42E-02 3.32E-02 3.28E-02 1.80E-02 3.55E-03 1.0 2.79E-02 2.78E-02 2.77E-02 2.76E-02 2.76E-02 2.75E-02 2.78E-02 2.80E-02 2.76E-02 2.72E-02 2.79E-02 2.82E-02 2.74E-02 2.74E-02 1.64E-02 3.44E-03 1.5 1.83E-02 1.82E-02 1.82E-02 1.81E-02 1.80E-02 1.80E-02 1.82E-02 1.84E-02 1.80E-02 1.77E-02 1.83E-02 1.84E-02 1.79E-02 1.80E-02 1.17E-02 2.66E-03 2.0 1.33E-02 1.32E-02 1.32E-02 1.31E-02 1.31E-02 1.30E-02 1.31E-02 1.32E-02 1.30E-02 1.28E-02 1.33E-02 1.33E-02 1.30E-02 1.30E-02 8.63E-03 2.01E-03 3.0 8.59E-03 8.56E-03 8.52E-03 8.49E-03 8.46E-03 8.43E-03 8.51E-03 8.59E-03 8.46E-03 8.33E-03 8.59E-03 8.62E-03 8.39E-03 8.44E-03 5.61E-03 1.33E-03 4.0 6.41E-03 6.38E-03 6.36E-03 6.33E-03 6.31E-03 6.29E-03 6.35E-03 6.41E-03 6.31E-03 6.21E-03 6.41E-03 6.47E-03 6.29E-03 6.30E-03 4.22E-03 1.02E-03 5.0 5.13E-03 5.12E-03 5.10E-03 5.07E-03 5.05E-03 5.03E-03 5.08E-03 5.13E-03 5.04E-03 4.95E-03 5.13E-03 5.17E-03 5.02E-03 5.05E-03 3.38E-03 8.16E-04 6.0 4.29E-03 4.26E-03 4.25E-03 4.23E-03 4.22E-03 4.20E-03 4.25E-03 4.29E-03 4.21E-03 4.14E-03 4.29E-03 4.32E-03 4.19E-03 4.20E-03 2.84E-03 6.91E-04 8.0 3.23E-03 3.21E-03 3.20E-03 3.19E-03 3.18E-03 3.17E-03 3.20E-03 3.23E-03 3.17E-03 3.11E-03 3.23E-03 3.25E-03 3.16E-03 3.17E-03 2.14E-03 5.24E-04 10.0 2.59E-03 2.57E-03 2.56E-03 2.56E-03 2.55E-03 2.53E-03 2.56E-03 2.58E-03 2.54E-03 2.50E-03 2.59E-03 2.60E-03 2.53E-03 2.54E-03 1.72E-03 4.25E-04

PAGE 374

374 Table C 21. Specific absorbed fractions for cartilage targets in the ribs. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.19E-02 0.003 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.80E-08 1.13E-05 6.19E-02 0.005 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 4.60E-08 3.08E-05 6.19E-02 0.010 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 2.51E-07 1.04E-04 6.18E-02 0.015 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 7.01E-07 2.08E-04 6.17E-02 0.020 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 1.15E-06 3.41E-04 6.15E-02 0.030 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 2.96E-06 6.97E-04 6.12E-02 0.040 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 6.05E-06 1.15E-03 6.07E-02 0.050 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 9.49E-06 1.67E-03 6.02E-02 0.060 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 2.26E-03 5.95E-02 0.080 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 2.81E-05 3.60E-03 5.81E-02 0.10 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 4.99E-05 5.00E-03 5.65E-02 0.15 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 1.47E-04 8.48E-03 5.23E-02 0.20 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 3.33E-04 1.07E-02 4.86E-02 0.30 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.27E-03 1.01E-02 4.34E-02 0.40 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 2.17E-03 7.95E-03 3.96E-02 0.50 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 2.69E-03 6.42E-03 3.64E-02 0.60 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 2.99E-03 5.41E-03 3.35E-02 0.80 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 4.28E-03 2.82E-02 1.0 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.12E-03 3.70E-03 2.37E-02 1.5 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.47E-03 2.83E-03 1.59E-02 2.0 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 1.92E-03 2.22E-03 1.18E-02 3.0 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.53E-03 7.78E-03 4.0 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 9.97E-04 1.17E-03 5.86E-03 5.0 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 8.09E-04 9.50E-04 4.72E-03 6.0 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 6.82E-04 8.01E-04 3.95E-03 8.0 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 5.19E-04 6.11E-04 2.98E-03 10.0 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.18E-04 4.95E-04 2.39E-03 1 TIM Sources are run at 50% Cellularity Table C 22. Specific absorbed fractions for active marrow targe ts in the scapula. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.10E+00 1.22E+00 1.38E+00 1.57E+00 1.83E+00 2.20E+00 2.75E+00 3.67E+00 5.50E+00 1.10E+01 1.10E+00 3.89E-06 5.47E-01 1.01E-06 0.00E+00 0.00E+00 0.003 1.10E+00 1.22E+00 1.37E+00 1.57E+00 1.83E+00 2.20E+00 2.75E+00 3.66E+00 5.49E+00 1.10E+01 1.10E+00 7.17E-04 5.77E-01 1.80E-04 5.31E-05 0.00E+00 0.005 1.10E+00 1.22E+00 1.37E+00 1.57E+00 1.83E+00 2.19E+00 2.74E+00 3.64E+00 5.46E+00 1.09E+01 1.10E+00 4.27E-03 5.79E-01 9.79E-04 1.42E-04 0.00E+00 0.010 1.09E+00 1.21E+00 1.36E+00 1.55E+00 1.81E+00 2.16E+00 2.69E+00 3.58E+00 5.36E+00 1.07E+01 1.09E+00 2.76E-02 5.80E-01 6.45E-03 4.33E-04 0.00E+00 0.015 1.09E+00 1.20E+00 1.34E+00 1.53E+00 1.77E+00 2.12E+00 2.63E+00 3.49E+00 5.21E+00 1.04E+01 1.09E+00 5.66E-02 5.80E-01 1.32E-02 8.56E-04 1.70E-09 0.020 1.08E+00 1.19E+00 1.32E+00 1.50E+00 1.74E+00 2.06E+00 2.56E+00 3.38E+00 5.02E+00 9.96E+00 1.08E+00 9.35E-02 5.79E-01 2.16E-02 1.44E-03 4.32E-09 0.030 1.05E+00 1.15E+00 1.27E+00 1.43E+00 1.64E+00 1.93E+00 2.37E+00 3.10E+00 4.56E+00 8.94E+00 1.05E+00 1.83E-01 5.76E-01 4.33E-02 2.83E-03 1.80E-08 0.040 1.03E+00 1.11E+00 1.21E+00 1.34E+00 1.52E+00 1.77E+00 2.14E+00 2.76E+00 4.01E+00 7.73E+00 1.03E+00 2.87E-01 5.72E-01 6.95E-02 4.49E-03 4.60E-08 0.050 9.92E-01 1.06E+00 1.14E+00 1.25E+00 1.40E+00 1.60E+00 1.91E+00 2.41E+00 3.43E+00 6.47E+00 9.92E-01 3.95E-01 5.68E-01 9.99E-02 6.51E-03 8.93E-08 0.060 9.58E-01 1.01E+00 1.08E+00 1.16E+00 1.27E+00 1.43E+00 1.67E+00 2.07E+00 2.85E+00 5.22E+00 9.58E-01 4.96E-01 5.63E-01 1.32E-01 8.44E-03 1.64E-07 0.080 8.87E-01 9.17E-01 9.54E-01 1.00E+00 1.06E+00 1.15E+00 1.28E+00 1.49E+00 1.92E+00 3.21E+00 8.87E-01 6.40E-01 5.50E-01 1.96E-01 1.24E-02 4.00E-07 0.10 8.21E-01 8.39E-01 8.62E-01 8.91E-01 9.28E-01 9.81E-01 1.06E+00 1.19E+00 1.45E+00 2.21E+00 8.21E-01 6.75E-01 5.42E-01 2.55E-01 1.63E-02 8.73E-07 0.15 6.88E-01 6.98E-01 7.09E-01 7.22E-01 7.39E-01 7.64E-01 7.99E-01 8.58E-01 9.73E-01 1.32E+00 6.88E-01 6.25E-01 5.28E-01 3.67E-01 2.85E-02 2.87E-06 0.20 6.18E-01 6.24E-01 6.31E-01 6.39E-01 6.50E-01 6.66E-01 6.88E-01 7.25E-01 7.96E-01 1.01E+00 6.18E-01 5.80E-01 5.13E-01 4.13E-01 4.26E-02 7.04E-06 0.30 5.53E-01 5.56E-01 5.60E-01 5.66E-01 5.72E-01 5.81E-01 5.92E-01 6.12E-01 6.51E-01 7.67E-01 5.53E-01 5.34E-01 4.91E-01 4.31E-01 7.65E-02 5.00E-05 0.40 5.12E-01 5.14E-01 5.17E-01 5.20E-01 5.24E-01 5.30E-01 5.38E-01 5.51E-01 5.77E-01 6.56E-01 5.12E-01 4.99E-01 4.69E-01 4.25E-01 1.09E-01 3.35E-03 0.50 4.77E-01 4.78E-01 4.81E-01 4.84E-01 4.86E-01 4.90E-01 4.96E-01 5.06E-01 5.26E-01 5.85E-01 4.77E-01 4.68E-01 4.45E-01 4.13E-01 1.32E-01 1.56E-02 0.60 4.45E-01 4.47E-01 4.49E-01 4.52E-01 4.54E-01 4.56E-01 4.61E-01 4.69E-01 4.84E-01 5.30E-01 4.45E-01 4.39E-01 4.21E-01 3.95E-01 1.48E-01 3.25E-02 0.80 3.92E-01 3.92E-01 3.94E-01 3.95E-01 3.97E-01 4.00E-01 4.03E-01 4.09E-01 4.19E-01 4.52E-01 3.92E-01 3.87E-01 3.75E-01 3.57E-01 1.61E-01 6.28E-02 1.0 3.46E-01 3.47E-01 3.48E-01 3.49E-01 3.50E-01 3.52E-01 3.55E-01 3.59E-01 3.67E-01 3.92E-01 3.46E-01 3.43E-01 3.34E-01 3.22E-01 1.60E-01 7.95E-02 1.5 2.61E-01 2.62E-01 2.63E-01 2.64E-01 2.65E-01 2.65E-01 2.67E-01 2.70E-01 2.75E-01 2.91E-01 2.61E-01 2.60E-01 2.55E-01 2.48E-01 1.40E-01 8.70E-02 2.0 2.07E-01 2.07E-01 2.08E-01 2.08E-01 2.09E-01 2.09E-01 2.10E-01 2.12E-01 2.16E-01 2.28E-01 2.07E-01 2.04E-01 2.02E-01 1.97E-01 1.17E-01 7.84E-02 3.0 1.42E-01 1.42E-01 1.42E-01 1.43E-01 1.43E-01 1.44E-01 1.44E-01 1.46E-01 1.48E-01 1.56E-01 1.42E-01 1.41E-01 1.39E-01 1.35E-01 8.40E-02 5.90E-02 4.0 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.08E-01 1.08E-01 1.09E-01 1.10E-01 1.12E-01 1.17E-01 1.07E-01 1.06E-01 1.05E-01 1.02E-01 6.45E-02 4.59E-02 5.0 8.58E-02 8.58E-02 8.59E-02 8.59E-02 8.62E-02 8.66E-02 8.70E-02 8.78E-02 8.93E-02 9.41E-02 8.58E-02 8.46E-02 8.36E-02 8.14E-02 5.22E-02 3.75E-02 6.0 7.16E-02 7.16E-02 7.16E-02 7.17E-02 7.20E-02 7.24E-02 7.27E-02 7.33E-02 7.46E-02 7.84E-02 7.16E-02 7.08E-02 6.99E-02 6.80E-02 4.36E-02 3.17E-02 8.0 5.37E-02 5.38E-02 5.38E-02 5.39E-02 5.41E-02 5.43E-02 5.46E-02 5.50E-02 5.60E-02 5.90E-02 5.37E-02 5.31E-02 5.25E-02 5.13E-02 3.31E-02 2.41E-02 10.0 4.30E-02 4.30E-02 4.31E-02 4.31E-02 4.33E-02 4.36E-02 4.38E-02 4.42E-02 4.49E-02 4.71E-02 4.30E-02 4.25E-02 4.21E-02 4.09E-02 2.67E-02 1.95E-02

PAGE 375

375 Table C 23. Specific absorbed fractions for shallow marrow targets in the scapula. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.14E+00 1.14E+00 1.14E+00 1.14E+00 1.13E+00 1.13E+00 9.62E-01 1.82E-06 0.00E+00 0.00E+00 0.003 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.14E+00 1.14E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.03E+00 3.59E-04 5.27E-05 0.00E+00 0.005 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.04E+00 1.95E-03 1.43E-04 0.00E+00 0.010 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.13E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.04E+00 1.15E-02 4.42E-04 0.00E+00 0.015 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.10E+00 1.03E+00 2.35E-02 8.85E-04 0.00E+00 0.020 1.09E+00 1.09E+00 1.09E+00 1.09E+00 1.09E+00 1.10E+00 1.10E+00 1.10E+00 1.10E+00 1.09E+00 1.09E+00 1.09E+00 1.02E+00 3.85E-02 1.49E-03 7.32E-09 0.030 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.05E+00 1.05E+00 1.00E+00 7.62E-02 2.94E-03 2.32E-08 0.040 1.00E+00 1.01E+00 1.01E+00 1.00E+00 1.01E+00 1.01E+00 1.01E+00 1.01E+00 1.01E+00 1.01E+00 1.00E+00 9.98E-01 9.73E-01 1.21E-01 4.59E-03 5.17E-08 0.050 9.53E-01 9.53E-01 9.52E-01 9.51E-01 9.53E-01 9.55E-01 9.56E-01 9.57E-01 9.56E-01 9.55E-01 9.53E-01 9.44E-01 9.44E-01 1.71E-01 6.55E-03 8.94E-08 0.060 8.98E-01 8.98E-01 8.98E-01 8.98E-01 8.99E-01 9.00E-01 9.01E-01 9.02E-01 9.00E-01 8.99E-01 8.98E-01 8.90E-01 9.11E-01 2.22E-01 8.46E-03 1.55E-07 0.080 8.02E-01 8.01E-01 8.01E-01 8.01E-01 8.02E-01 8.02E-01 8.02E-01 8.02E-01 8.02E-01 8.02E-01 8.02E-01 7.95E-01 8.10E-01 3.11E-01 1.24E-02 3.80E-07 0.10 7.34E-01 7.32E-01 7.32E-01 7.32E-01 7.31E-01 7.31E-01 7.32E-01 7.33E-01 7.32E-01 7.31E-01 7.34E-01 7.28E-01 7.19E-01 3.70E-01 1.61E-02 7.20E-07 0.15 6.30E-01 6.29E-01 6.28E-01 6.27E-01 6.26E-01 6.26E-01 6.26E-01 6.26E-01 6.25E-01 6.24E-01 6.30E-01 6.24E-01 6.17E-01 4.50E-01 2.83E-02 2.83E-06 0.20 5.79E-01 5.79E-01 5.78E-01 5.77E-01 5.77E-01 5.77E-01 5.76E-01 5.76E-01 5.75E-01 5.74E-01 5.79E-01 5.75E-01 5.73E-01 4.77E-01 4.26E-02 7.96E-06 0.30 5.32E-01 5.31E-01 5.31E-01 5.31E-01 5.30E-01 5.29E-01 5.29E-01 5.28E-01 5.28E-01 5.27E-01 5.32E-01 5.29E-01 5.30E-01 4.78E-01 7.69E-02 4.91E-05 0.40 5.00E-01 5.00E-01 4.99E-01 4.98E-01 4.98E-01 4.97E-01 4.96E-01 4.95E-01 4.94E-01 4.93E-01 5.00E-01 4.96E-01 4.99E-01 4.63E-01 1.10E-01 3.34E-03 0.50 4.71E-01 4.70E-01 4.69E-01 4.69E-01 4.68E-01 4.67E-01 4.66E-01 4.65E-01 4.65E-01 4.64E-01 4.71E-01 4.67E-01 4.71E-01 4.44E-01 1.34E-01 1.57E-02 0.60 4.43E-01 4.42E-01 4.42E-01 4.41E-01 4.40E-01 4.39E-01 4.38E-01 4.37E-01 4.37E-01 4.36E-01 4.43E-01 4.39E-01 4.43E-01 4.23E-01 1.50E-01 3.29E-02 0.80 3.93E-01 3.92E-01 3.91E-01 3.90E-01 3.89E-01 3.89E-01 3.87E-01 3.86E-01 3.85E-01 3.85E-01 3.93E-01 3.89E-01 3.94E-01 3.79E-01 1.64E-01 6.39E-02 1.0 3.49E-01 3.48E-01 3.47E-01 3.46E-01 3.46E-01 3.45E-01 3.44E-01 3.43E-01 3.42E-01 3.41E-01 3.49E-01 3.45E-01 3.49E-01 3.39E-01 1.64E-01 8.13E-02 1.5 2.64E-01 2.64E-01 2.64E-01 2.63E-01 2.62E-01 2.61E-01 2.61E-01 2.60E-01 2.59E-01 2.59E-01 2.64E-01 2.62E-01 2.66E-01 2.60E-01 1.44E-01 8.93E-02 2.0 2.09E-01 2.09E-01 2.09E-01 2.08E-01 2.07E-01 2.06E-01 2.05E-01 2.05E-01 2.04E-01 2.04E-01 2.09E-01 2.06E-01 2.10E-01 2.06E-01 1.20E-01 8.06E-02 3.0 1.44E-01 1.44E-01 1.43E-01 1.43E-01 1.42E-01 1.42E-01 1.41E-01 1.41E-01 1.40E-01 1.39E-01 1.44E-01 1.42E-01 1.45E-01 1.42E-01 8.63E-02 6.07E-02 4.0 1.08E-01 1.08E-01 1.08E-01 1.07E-01 1.07E-01 1.06E-01 1.06E-01 1.06E-01 1.05E-01 1.05E-01 1.08E-01 1.07E-01 1.09E-01 1.07E-01 6.63E-02 4.72E-02 5.0 8.71E-02 8.66E-02 8.63E-02 8.59E-02 8.56E-02 8.54E-02 8.50E-02 8.47E-02 8.44E-02 8.42E-02 8.71E-02 8.53E-02 8.72E-02 8.53E-02 5.37E-02 3.86E-02 6.0 7.27E-02 7.22E-02 7.19E-02 7.17E-02 7.15E-02 7.13E-02 7.10E-02 7.07E-02 7.04E-02 7.01E-02 7.27E-02 7.13E-02 7.28E-02 7.13E-02 4.48E-02 3.26E-02 8.0 5.45E-02 5.43E-02 5.41E-02 5.39E-02 5.37E-02 5.35E-02 5.33E-02 5.31E-02 5.29E-02 5.27E-02 5.45E-02 5.35E-02 5.47E-02 5.37E-02 3.41E-02 2.48E-02 10.0 4.36E-02 4.35E-02 4.33E-02 4.31E-02 4.30E-02 4.30E-02 4.28E-02 4.26E-02 4.24E-02 4.21E-02 4.36E-02 4.28E-02 4.38E-02 4.29E-02 2.75E-02 2.01E-02 Table C 24. Specific absorbed fractions for cartilage targets in the scapula. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.30E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.05E-05 7.30E-01 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.70E-04 7.30E-01 0.010 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.06E-04 7.29E-01 0.015 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.08E-03 7.28E-01 0.020 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.54E-07 1.82E-03 7.26E-01 0.030 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 2.47E-07 3.67E-03 7.23E-01 0.040 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 3.51E-07 5.76E-03 7.19E-01 0.050 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 4.66E-07 8.36E-03 7.14E-01 0.060 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 6.12E-07 1.10E-02 7.08E-01 0.080 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 9.55E-07 1.63E-02 6.97E-01 0.10 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 2.24E-02 6.85E-01 0.15 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 3.22E-06 4.02E-02 6.49E-01 0.20 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 7.46E-06 6.24E-02 6.06E-01 0.30 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 5.98E-05 1.14E-01 5.08E-01 0.40 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 3.49E-03 1.60E-01 4.09E-01 0.50 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.75E-01 3.34E-01 0.60 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 1.70E-01 2.81E-01 0.80 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 6.01E-02 1.46E-01 2.13E-01 1.0 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 7.52E-02 1.27E-01 1.73E-01 1.5 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 8.09E-02 1.02E-01 1.26E-01 2.0 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 7.29E-02 8.60E-02 1.02E-01 3.0 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 6.41E-02 7.40E-02 4.0 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 4.45E-02 5.06E-02 5.78E-02 5.0 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 3.68E-02 4.16E-02 4.71E-02 6.0 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.12E-02 3.52E-02 3.99E-02 8.0 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.39E-02 2.70E-02 3.04E-02 10.0 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 1.94E-02 2.19E-02 2.45E-02 1 TIM Sources are run at 50% Cellularity

PAGE 376

376 Table C 25. Specific absorbed fractions for active marrow targets in the clavicle. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.93E+00 3.25E+00 3.66E+00 4.18E+00 4.88E+00 5.85E+00 7.32E+00 9.76E+00 1.46E+01 2.93E+01 2.93E+00 7.26E-06 1.45E+00 1.30E-05 0.00E+00 0.00E+00 0.003 2.92E+00 3.25E+00 3.65E+00 4.17E+00 4.87E+00 5.84E+00 7.30E+00 9.73E+00 1.46E+01 2.92E+01 2.92E+00 1.29E-03 1.54E+00 7.16E-04 1.41E-04 0.00E+00 0.005 2.92E+00 3.24E+00 3.65E+00 4.16E+00 4.86E+00 5.82E+00 7.27E+00 9.69E+00 1.45E+01 2.90E+01 2.92E+00 8.14E-03 1.54E+00 3.52E-03 3.34E-04 0.00E+00 0.010 2.91E+00 3.22E+00 3.62E+00 4.12E+00 4.80E+00 5.74E+00 7.16E+00 9.53E+00 1.43E+01 2.84E+01 2.91E+00 5.41E-02 1.54E+00 1.73E-02 1.26E-03 0.00E+00 0.015 2.89E+00 3.19E+00 3.58E+00 4.07E+00 4.72E+00 5.63E+00 7.00E+00 9.29E+00 1.39E+01 2.76E+01 2.89E+00 1.50E-01 1.54E+00 3.53E-02 2.52E-03 0.00E+00 0.020 2.86E+00 3.16E+00 3.52E+00 3.99E+00 4.61E+00 5.49E+00 6.80E+00 8.99E+00 1.34E+01 2.65E+01 2.86E+00 2.47E-01 1.54E+00 5.80E-02 4.24E-03 8.45E-08 0.030 2.80E+00 3.06E+00 3.38E+00 3.80E+00 4.35E+00 5.13E+00 6.29E+00 8.23E+00 1.21E+01 2.37E+01 2.80E+00 4.86E-01 1.53E+00 1.16E-01 8.37E-03 1.58E-07 0.040 2.72E+00 2.94E+00 3.22E+00 3.57E+00 4.05E+00 4.71E+00 5.70E+00 7.35E+00 1.06E+01 2.05E+01 2.72E+00 7.62E-01 1.52E+00 1.87E-01 1.37E-02 2.28E-07 0.050 2.64E+00 2.82E+00 3.04E+00 3.33E+00 3.72E+00 4.25E+00 5.06E+00 6.41E+00 9.10E+00 1.72E+01 2.64E+00 1.05E+00 1.51E+00 2.68E-01 1.89E-02 3.18E-07 0.060 2.54E+00 2.68E+00 2.86E+00 3.09E+00 3.39E+00 3.81E+00 4.44E+00 5.49E+00 7.58E+00 1.39E+01 2.54E+00 1.32E+00 1.50E+00 3.52E-01 2.50E-02 4.05E-07 0.080 2.36E+00 2.43E+00 2.53E+00 2.66E+00 2.82E+00 3.05E+00 3.40E+00 3.97E+00 5.11E+00 8.54E+00 2.36E+00 1.70E+00 1.46E+00 5.24E-01 3.75E-02 6.58E-07 0.10 2.18E+00 2.23E+00 2.29E+00 2.36E+00 2.46E+00 2.60E+00 2.81E+00 3.15E+00 3.83E+00 5.88E+00 2.18E+00 1.79E+00 1.44E+00 6.84E-01 5.04E-02 1.11E-06 0.15 1.82E+00 1.85E+00 1.87E+00 1.91E+00 1.96E+00 2.02E+00 2.12E+00 2.27E+00 2.58E+00 3.50E+00 1.82E+00 1.65E+00 1.41E+00 9.81E-01 8.95E-02 3.00E-06 0.20 1.63E+00 1.65E+00 1.67E+00 1.69E+00 1.72E+00 1.76E+00 1.82E+00 1.92E+00 2.11E+00 2.67E+00 1.63E+00 1.53E+00 1.36E+00 1.10E+00 1.34E-01 1.16E-05 0.30 1.45E+00 1.46E+00 1.47E+00 1.49E+00 1.51E+00 1.53E+00 1.56E+00 1.61E+00 1.71E+00 2.02E+00 1.45E+00 1.41E+00 1.30E+00 1.14E+00 2.34E-01 1.02E-03 0.40 1.33E+00 1.34E+00 1.35E+00 1.36E+00 1.37E+00 1.39E+00 1.41E+00 1.44E+00 1.51E+00 1.71E+00 1.33E+00 1.30E+00 1.23E+00 1.11E+00 3.19E-01 1.86E-02 0.50 1.23E+00 1.24E+00 1.24E+00 1.25E+00 1.26E+00 1.27E+00 1.29E+00 1.31E+00 1.36E+00 1.52E+00 1.23E+00 1.21E+00 1.15E+00 1.07E+00 3.73E-01 5.81E-02 0.60 1.14E+00 1.15E+00 1.15E+00 1.16E+00 1.16E+00 1.17E+00 1.18E+00 1.20E+00 1.25E+00 1.37E+00 1.14E+00 1.12E+00 1.08E+00 1.01E+00 4.02E-01 1.04E-01 0.80 9.75E-01 9.78E-01 9.81E-01 9.85E-01 9.89E-01 9.95E-01 1.00E+00 1.02E+00 1.05E+00 1.14E+00 9.75E-01 9.61E-01 9.36E-01 8.89E-01 4.21E-01 1.74E-01 1.0 8.32E-01 8.34E-01 8.35E-01 8.37E-01 8.40E-01 8.45E-01 8.53E-01 8.64E-01 8.87E-01 9.55E-01 8.32E-01 8.20E-01 8.06E-01 7.72E-01 4.10E-01 2.08E-01 1.5 5.72E-01 5.72E-01 5.73E-01 5.75E-01 5.77E-01 5.80E-01 5.84E-01 5.91E-01 6.06E-01 6.49E-01 5.72E-01 5.64E-01 5.56E-01 5.35E-01 3.26E-01 2.04E-01 2.0 4.17E-01 4.17E-01 4.18E-01 4.20E-01 4.21E-01 4.23E-01 4.26E-01 4.31E-01 4.42E-01 4.74E-01 4.17E-01 4.11E-01 4.06E-01 3.91E-01 2.49E-01 1.66E-01 3.0 2.67E-01 2.66E-01 2.67E-01 2.68E-01 2.69E-01 2.71E-01 2.73E-01 2.76E-01 2.83E-01 3.04E-01 2.67E-01 2.62E-01 2.59E-01 2.49E-01 1.60E-01 1.09E-01 4.0 1.97E-01 1.97E-01 1.97E-01 1.98E-01 1.99E-01 2.00E-01 2.01E-01 2.04E-01 2.09E-01 2.25E-01 1.97E-01 1.93E-01 1.91E-01 1.84E-01 1.17E-01 8.05E-02 5.0 1.56E-01 1.57E-01 1.57E-01 1.57E-01 1.58E-01 1.59E-01 1.60E-01 1.62E-01 1.66E-01 1.79E-01 1.56E-01 1.54E-01 1.52E-01 1.46E-01 9.33E-02 6.39E-02 6.0 1.30E-01 1.31E-01 1.31E-01 1.31E-01 1.32E-01 1.33E-01 1.33E-01 1.35E-01 1.38E-01 1.49E-01 1.30E-01 1.28E-01 1.26E-01 1.22E-01 7.76E-02 5.34E-02 8.0 9.78E-02 9.77E-02 9.80E-02 9.85E-02 9.88E-02 9.93E-02 1.00E-01 1.01E-01 1.04E-01 1.12E-01 9.78E-02 9.62E-02 9.48E-02 9.12E-02 5.81E-02 4.04E-02 10.0 7.84E-02 7.83E-02 7.85E-02 7.87E-02 7.91E-02 7.96E-02 8.01E-02 8.11E-02 8.33E-02 8.97E-02 7.84E-02 7.70E-02 7.62E-02 7.32E-02 4.68E-02 3.23E-02 Table C 26. Specific absorbed fractions for shallow marrow targets in the clavicle. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.02E+00 3.02E+00 3.02E+00 3.02E+00 3.01E+00 3.01E+00 3.00E+00 2.56E+00 2.33E-05 0.00E+00 0.00E+00 0.003 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.02E+00 3.02E+00 3.02E+00 3.01E+00 3.01E+00 3.01E+00 3.00E+00 2.75E+00 1.46E-03 1.32E-04 0.00E+00 0.005 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.01E+00 3.00E+00 2.99E+00 2.76E+00 6.73E-03 3.28E-04 0.00E+00 0.010 2.98E+00 2.98E+00 2.98E+00 2.98E+00 2.98E+00 2.98E+00 2.99E+00 2.99E+00 2.99E+00 2.98E+00 2.98E+00 2.97E+00 2.75E+00 3.10E-02 1.28E-03 0.00E+00 0.015 2.95E+00 2.94E+00 2.94E+00 2.95E+00 2.95E+00 2.95E+00 2.96E+00 2.96E+00 2.95E+00 2.95E+00 2.95E+00 2.94E+00 2.74E+00 6.29E-02 2.57E-03 0.00E+00 0.020 2.91E+00 2.90E+00 2.90E+00 2.90E+00 2.91E+00 2.91E+00 2.91E+00 2.91E+00 2.91E+00 2.91E+00 2.91E+00 2.89E+00 2.72E+00 1.03E-01 4.40E-03 1.81E-08 0.030 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.80E+00 2.81E+00 2.81E+00 2.81E+00 2.80E+00 2.80E+00 2.80E+00 2.78E+00 2.66E+00 2.05E-01 8.58E-03 3.85E-08 0.040 2.67E+00 2.67E+00 2.67E+00 2.67E+00 2.67E+00 2.68E+00 2.68E+00 2.68E+00 2.68E+00 2.67E+00 2.67E+00 2.65E+00 2.59E+00 3.25E-01 1.38E-02 6.69E-08 0.050 2.53E+00 2.53E+00 2.53E+00 2.53E+00 2.53E+00 2.54E+00 2.54E+00 2.54E+00 2.54E+00 2.53E+00 2.53E+00 2.51E+00 2.51E+00 4.59E-01 1.87E-02 1.28E-07 0.060 2.39E+00 2.39E+00 2.39E+00 2.39E+00 2.39E+00 2.39E+00 2.39E+00 2.40E+00 2.39E+00 2.39E+00 2.39E+00 2.36E+00 2.42E+00 5.93E-01 2.46E-02 1.91E-07 0.080 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.11E+00 2.15E+00 8.29E-01 3.70E-02 3.99E-07 0.10 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.95E+00 1.93E+00 1.91E+00 9.88E-01 4.91E-02 8.01E-07 0.15 1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.66E+00 1.66E+00 1.66E+00 1.66E+00 1.66E+00 1.67E+00 1.66E+00 1.64E+00 1.20E+00 8.80E-02 3.34E-06 0.20 1.54E+00 1.54E+00 1.53E+00 1.53E+00 1.53E+00 1.53E+00 1.52E+00 1.52E+00 1.52E+00 1.52E+00 1.54E+00 1.52E+00 1.52E+00 1.27E+00 1.33E-01 1.58E-05 0.30 1.40E+00 1.40E+00 1.40E+00 1.40E+00 1.40E+00 1.40E+00 1.39E+00 1.39E+00 1.39E+00 1.39E+00 1.40E+00 1.39E+00 1.40E+00 1.26E+00 2.34E-01 9.92E-04 0.40 1.31E+00 1.31E+00 1.31E+00 1.30E+00 1.30E+00 1.30E+00 1.30E+00 1.29E+00 1.29E+00 1.29E+00 1.31E+00 1.30E+00 1.31E+00 1.21E+00 3.21E-01 1.83E-02 0.50 1.22E+00 1.22E+00 1.22E+00 1.21E+00 1.21E+00 1.21E+00 1.21E+00 1.21E+00 1.20E+00 1.20E+00 1.22E+00 1.21E+00 1.22E+00 1.15E+00 3.77E-01 5.79E-02 0.60 1.14E+00 1.14E+00 1.13E+00 1.13E+00 1.13E+00 1.13E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.14E+00 1.13E+00 1.14E+00 1.08E+00 4.08E-01 1.05E-01 0.80 9.79E-01 9.77E-01 9.75E-01 9.73E-01 9.70E-01 9.67E-01 9.66E-01 9.64E-01 9.62E-01 9.60E-01 9.79E-01 9.68E-01 9.86E-01 9.48E-01 4.29E-01 1.76E-01 1.0 8.39E-01 8.38E-01 8.34E-01 8.31E-01 8.29E-01 8.27E-01 8.25E-01 8.24E-01 8.22E-01 8.19E-01 8.39E-01 8.28E-01 8.48E-01 8.18E-01 4.18E-01 2.12E-01 1.5 5.79E-01 5.76E-01 5.74E-01 5.73E-01 5.71E-01 5.70E-01 5.68E-01 5.66E-01 5.64E-01 5.62E-01 5.79E-01 5.70E-01 5.84E-01 5.66E-01 3.34E-01 2.09E-01 2.0 4.22E-01 4.20E-01 4.19E-01 4.18E-01 4.16E-01 4.15E-01 4.14E-01 4.12E-01 4.10E-01 4.09E-01 4.22E-01 4.15E-01 4.26E-01 4.13E-01 2.55E-01 1.70E-01 3.0 2.69E-01 2.68E-01 2.67E-01 2.66E-01 2.65E-01 2.65E-01 2.64E-01 2.63E-01 2.62E-01 2.61E-01 2.69E-01 2.65E-01 2.72E-01 2.63E-01 1.64E-01 1.12E-01 4.0 1.99E-01 1.98E-01 1.97E-01 1.96E-01 1.96E-01 1.95E-01 1.95E-01 1.94E-01 1.93E-01 1.92E-01 1.99E-01 1.95E-01 2.00E-01 1.95E-01 1.20E-01 8.25E-02 5.0 1.58E-01 1.58E-01 1.57E-01 1.56E-01 1.56E-01 1.55E-01 1.55E-01 1.54E-01 1.53E-01 1.53E-01 1.58E-01 1.55E-01 1.59E-01 1.55E-01 9.57E-02 6.56E-02 6.0 1.32E-01 1.31E-01 1.31E-01 1.30E-01 1.30E-01 1.30E-01 1.29E-01 1.28E-01 1.28E-01 1.27E-01 1.32E-01 1.29E-01 1.33E-01 1.29E-01 7.97E-02 5.48E-02 8.0 9.88E-02 9.82E-02 9.80E-02 9.77E-02 9.74E-02 9.70E-02 9.67E-02 9.63E-02 9.60E-02 9.57E-02 9.88E-02 9.71E-02 9.95E-02 9.65E-02 5.96E-02 4.15E-02 10.0 7.92E-02 7.87E-02 7.84E-02 7.81E-02 7.79E-02 7.77E-02 7.74E-02 7.71E-02 7.68E-02 7.65E-02 7.92E-02 7.76E-02 8.00E-02 7.74E-02 4.80E-02 3.32E-02

PAGE 377

377 Table C 27. Specific absorbed fractions for cartilage/fibrous tissue targets in the clavicle. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.96E-06 1.48E+00 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.37E-04 1.48E+00 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.77E-04 1.48E+00 0.010 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.37E-03 1.48E+00 0.015 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 1.80E-07 2.65E-03 1.48E+00 0.020 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 4.34E-03 1.48E+00 0.030 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 3.80E-07 8.73E-03 1.47E+00 0.040 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 5.18E-07 1.45E-02 1.46E+00 0.050 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 7.65E-07 2.03E-02 1.45E+00 0.060 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 9.27E-07 2.70E-02 1.44E+00 0.080 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 1.47E-06 4.07E-02 1.42E+00 0.10 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 2.24E-06 5.56E-02 1.39E+00 0.15 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 5.99E-06 1.01E-01 1.32E+00 0.20 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 2.34E-05 1.57E-01 1.23E+00 0.30 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 2.85E-01 1.03E+00 0.40 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 1.88E-02 3.83E-01 8.30E-01 0.50 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 5.87E-02 4.02E-01 6.77E-01 0.60 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 3.79E-01 5.70E-01 0.80 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 1.66E-01 3.18E-01 4.32E-01 1.0 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 1.95E-01 2.73E-01 3.52E-01 1.5 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 1.89E-01 2.16E-01 2.55E-01 2.0 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.77E-01 2.05E-01 3.0 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.22E-01 1.42E-01 4.0 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 7.87E-02 9.26E-02 1.07E-01 5.0 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 6.31E-02 7.46E-02 8.64E-02 6.0 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 5.29E-02 6.25E-02 7.24E-02 8.0 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.00E-02 4.74E-02 5.47E-02 10.0 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.82E-02 4.40E-02 1 TIM Sources are run at 50% Cellularity Table C 28. Specific absorbed fractions for active marrow targets in the os coxae. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.82E-01 3.14E-01 3.53E-01 4.03E-01 4.70E-01 5.65E-01 7.06E-01 9.41E-01 1.41E+00 2.82E+00 2.82E-01 1.37E-06 1.40E-01 4.30E-07 0.00E+00 0.00E+00 0.003 2.82E-01 3.13E-01 3.52E-01 4.03E-01 4.70E-01 5.63E-01 7.04E-01 9.38E-01 1.41E+00 2.81E+00 2.82E-01 2.80E-04 1.48E-01 5.70E-05 6.88E-06 0.00E+00 0.005 2.82E-01 3.13E-01 3.52E-01 4.02E-01 4.68E-01 5.61E-01 7.01E-01 9.35E-01 1.40E+00 2.80E+00 2.82E-01 1.36E-03 1.48E-01 3.00E-04 1.92E-05 4.32E-08 0.010 2.81E-01 3.11E-01 3.49E-01 3.98E-01 4.63E-01 5.54E-01 6.91E-01 9.19E-01 1.37E+00 2.74E+00 2.81E-01 7.13E-03 1.49E-01 1.68E-03 6.76E-05 8.69E-08 0.015 2.79E-01 3.08E-01 3.45E-01 3.92E-01 4.55E-01 5.43E-01 6.76E-01 8.96E-01 1.34E+00 2.66E+00 2.79E-01 1.45E-02 1.49E-01 3.39E-03 1.31E-04 1.29E-07 0.020 2.76E-01 3.05E-01 3.40E-01 3.85E-01 4.45E-01 5.29E-01 6.56E-01 8.67E-01 1.29E+00 2.55E+00 2.76E-01 2.39E-02 1.48E-01 5.61E-03 2.18E-04 1.73E-07 0.030 2.70E-01 2.95E-01 3.27E-01 3.67E-01 4.20E-01 4.95E-01 6.07E-01 7.94E-01 1.17E+00 2.29E+00 2.70E-01 4.71E-02 1.48E-01 1.12E-02 4.38E-04 2.47E-07 0.040 2.63E-01 2.85E-01 3.11E-01 3.45E-01 3.91E-01 4.55E-01 5.50E-01 7.10E-01 1.03E+00 1.98E+00 2.63E-01 7.36E-02 1.47E-01 1.80E-02 7.15E-04 3.73E-07 0.050 2.55E-01 2.72E-01 2.94E-01 3.22E-01 3.59E-01 4.11E-01 4.89E-01 6.19E-01 8.79E-01 1.66E+00 2.55E-01 1.01E-01 1.46E-01 2.57E-02 1.00E-03 4.95E-07 0.060 2.46E-01 2.60E-01 2.77E-01 2.99E-01 3.28E-01 3.68E-01 4.29E-01 5.31E-01 7.33E-01 1.34E+00 2.46E-01 1.28E-01 1.45E-01 3.39E-02 1.33E-03 6.34E-07 0.080 2.29E-01 2.36E-01 2.46E-01 2.58E-01 2.74E-01 2.96E-01 3.29E-01 3.85E-01 4.96E-01 8.28E-01 2.29E-01 1.65E-01 1.42E-01 5.05E-02 2.01E-03 8.72E-07 0.10 2.12E-01 2.16E-01 2.22E-01 2.30E-01 2.39E-01 2.53E-01 2.73E-01 3.06E-01 3.72E-01 5.69E-01 2.12E-01 1.74E-01 1.40E-01 6.61E-02 2.74E-03 1.23E-06 0.15 1.78E-01 1.81E-01 1.83E-01 1.87E-01 1.92E-01 1.98E-01 2.07E-01 2.21E-01 2.51E-01 3.40E-01 1.78E-01 1.62E-01 1.37E-01 9.50E-02 4.55E-03 1.94E-06 0.20 1.61E-01 1.62E-01 1.64E-01 1.67E-01 1.69E-01 1.73E-01 1.79E-01 1.88E-01 2.06E-01 2.61E-01 1.61E-01 1.51E-01 1.33E-01 1.07E-01 6.67E-03 3.07E-06 0.30 1.46E-01 1.46E-01 1.47E-01 1.49E-01 1.50E-01 1.53E-01 1.56E-01 1.61E-01 1.71E-01 2.01E-01 1.46E-01 1.41E-01 1.29E-01 1.13E-01 1.17E-02 7.01E-06 0.40 1.36E-01 1.37E-01 1.38E-01 1.39E-01 1.40E-01 1.41E-01 1.43E-01 1.46E-01 1.53E-01 1.73E-01 1.36E-01 1.33E-01 1.25E-01 1.13E-01 1.73E-02 2.62E-05 0.50 1.29E-01 1.29E-01 1.30E-01 1.31E-01 1.31E-01 1.32E-01 1.34E-01 1.36E-01 1.41E-01 1.57E-01 1.29E-01 1.26E-01 1.20E-01 1.11E-01 2.28E-02 2.98E-04 0.60 1.22E-01 1.22E-01 1.23E-01 1.23E-01 1.24E-01 1.25E-01 1.26E-01 1.28E-01 1.32E-01 1.44E-01 1.22E-01 1.20E-01 1.15E-01 1.08E-01 2.76E-02 1.55E-03 0.80 1.10E-01 1.10E-01 1.11E-01 1.11E-01 1.12E-01 1.12E-01 1.13E-01 1.15E-01 1.17E-01 1.26E-01 1.10E-01 1.09E-01 1.06E-01 1.01E-01 3.37E-02 6.67E-03 1.0 9.94E-02 9.97E-02 1.00E-01 1.00E-01 1.01E-01 1.01E-01 1.02E-01 1.03E-01 1.05E-01 1.12E-01 9.94E-02 9.86E-02 9.64E-02 9.29E-02 3.66E-02 1.19E-02 1.5 7.85E-02 7.85E-02 7.86E-02 7.87E-02 7.90E-02 7.93E-02 7.98E-02 8.06E-02 8.20E-02 8.60E-02 7.85E-02 7.76E-02 7.68E-02 7.46E-02 3.63E-02 1.85E-02 2.0 6.30E-02 6.31E-02 6.33E-02 6.35E-02 6.36E-02 6.38E-02 6.42E-02 6.48E-02 6.58E-02 6.87E-02 6.30E-02 6.25E-02 6.19E-02 6.03E-02 3.21E-02 1.90E-02 3.0 4.38E-02 4.39E-02 4.40E-02 4.41E-02 4.42E-02 4.44E-02 4.45E-02 4.49E-02 4.56E-02 4.77E-02 4.38E-02 4.35E-02 4.31E-02 4.22E-02 2.39E-02 1.57E-02 4.0 3.32E-02 3.32E-02 3.32E-02 3.33E-02 3.34E-02 3.35E-02 3.36E-02 3.38E-02 3.44E-02 3.59E-02 3.32E-02 3.29E-02 3.26E-02 3.18E-02 1.86E-02 1.24E-02 5.0 2.66E-02 2.67E-02 2.67E-02 2.67E-02 2.67E-02 2.68E-02 2.69E-02 2.72E-02 2.75E-02 2.87E-02 2.66E-02 2.63E-02 2.61E-02 2.55E-02 1.50E-02 1.02E-02 6.0 2.21E-02 2.22E-02 2.22E-02 2.22E-02 2.23E-02 2.23E-02 2.24E-02 2.26E-02 2.30E-02 2.40E-02 2.21E-02 2.19E-02 2.18E-02 2.12E-02 1.26E-02 8.60E-03 8.0 1.65E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.67E-02 1.68E-02 1.69E-02 1.72E-02 1.80E-02 1.65E-02 1.64E-02 1.63E-02 1.59E-02 9.47E-03 6.54E-03 10.0 1.32E-02 1.33E-02 1.33E-02 1.33E-02 1.33E-02 1.34E-02 1.34E-02 1.35E-02 1.37E-02 1.44E-02 1.32E-02 1.31E-02 1.30E-02 1.27E-02 7.61E-03 5.24E-03

PAGE 378

378 Table C 29. Specific absorbed fractions for shallow marrow targets in the os coxae. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.90E-01 2.90E-01 2.90E-01 2.90E-01 2.90E-01 2.89E-01 2.88E-01 2.47E-01 7.72E-07 0.00E+00 0.00E+00 0.003 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.90E-01 2.90E-01 2.90E-01 2.89E-01 2.89E-01 2.89E-01 2.88E-01 2.65E-01 1.03E-04 8.63E-06 0.00E+00 0.005 2.88E-01 2.88E-01 2.88E-01 2.88E-01 2.88E-01 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.89E-01 2.88E-01 2.87E-01 2.66E-01 4.90E-04 1.97E-05 2.64E-08 0.010 2.86E-01 2.86E-01 2.86E-01 2.86E-01 2.86E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.86E-01 2.86E-01 2.85E-01 2.65E-01 3.00E-03 6.95E-05 3.75E-08 0.015 2.83E-01 2.83E-01 2.83E-01 2.83E-01 2.83E-01 2.84E-01 2.84E-01 2.84E-01 2.84E-01 2.83E-01 2.83E-01 2.82E-01 2.64E-01 6.05E-03 1.36E-04 4.25E-08 0.020 2.79E-01 2.79E-01 2.79E-01 2.79E-01 2.79E-01 2.80E-01 2.80E-01 2.80E-01 2.80E-01 2.79E-01 2.79E-01 2.78E-01 2.62E-01 9.96E-03 2.18E-04 5.37E-08 0.030 2.69E-01 2.69E-01 2.69E-01 2.69E-01 2.69E-01 2.69E-01 2.70E-01 2.70E-01 2.69E-01 2.69E-01 2.69E-01 2.67E-01 2.57E-01 1.98E-02 4.48E-04 7.10E-08 0.040 2.57E-01 2.57E-01 2.57E-01 2.57E-01 2.57E-01 2.57E-01 2.57E-01 2.58E-01 2.58E-01 2.57E-01 2.57E-01 2.55E-01 2.50E-01 3.14E-02 7.32E-04 8.09E-08 0.050 2.44E-01 2.43E-01 2.43E-01 2.43E-01 2.44E-01 2.44E-01 2.44E-01 2.44E-01 2.44E-01 2.44E-01 2.44E-01 2.42E-01 2.42E-01 4.41E-02 1.03E-03 9.70E-08 0.060 2.30E-01 2.30E-01 2.30E-01 2.30E-01 2.30E-01 2.30E-01 2.30E-01 2.31E-01 2.30E-01 2.30E-01 2.30E-01 2.27E-01 2.34E-01 5.70E-02 1.36E-03 1.09E-07 0.080 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.05E-01 2.03E-01 2.08E-01 8.00E-02 2.01E-03 1.49E-07 0.10 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.88E-01 1.87E-01 1.88E-01 1.87E-01 1.85E-01 9.56E-02 2.76E-03 2.22E-07 0.15 1.62E-01 1.62E-01 1.62E-01 1.62E-01 1.62E-01 1.62E-01 1.61E-01 1.61E-01 1.61E-01 1.61E-01 1.62E-01 1.61E-01 1.59E-01 1.16E-01 4.50E-03 5.06E-07 0.20 1.50E-01 1.50E-01 1.50E-01 1.50E-01 1.49E-01 1.49E-01 1.49E-01 1.49E-01 1.49E-01 1.49E-01 1.50E-01 1.49E-01 1.48E-01 1.24E-01 6.66E-03 1.16E-06 0.30 1.40E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.40E-01 1.39E-01 1.39E-01 1.25E-01 1.18E-02 5.29E-06 0.40 1.33E-01 1.32E-01 1.32E-01 1.32E-01 1.32E-01 1.32E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.33E-01 1.32E-01 1.32E-01 1.23E-01 1.74E-02 2.66E-05 0.50 1.27E-01 1.26E-01 1.26E-01 1.26E-01 1.26E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.25E-01 1.27E-01 1.25E-01 1.26E-01 1.19E-01 2.31E-02 2.99E-04 0.60 1.21E-01 1.21E-01 1.20E-01 1.20E-01 1.20E-01 1.20E-01 1.19E-01 1.19E-01 1.19E-01 1.19E-01 1.21E-01 1.20E-01 1.21E-01 1.15E-01 2.80E-02 1.57E-03 0.80 1.10E-01 1.10E-01 1.09E-01 1.09E-01 1.09E-01 1.09E-01 1.09E-01 1.08E-01 1.08E-01 1.08E-01 1.10E-01 1.09E-01 1.10E-01 1.06E-01 3.43E-02 6.77E-03 1.0 9.99E-02 9.96E-02 9.94E-02 9.92E-02 9.90E-02 9.89E-02 9.87E-02 9.85E-02 9.82E-02 9.79E-02 9.99E-02 9.88E-02 1.00E-01 9.73E-02 3.73E-02 1.21E-02 1.5 7.92E-02 7.89E-02 7.87E-02 7.84E-02 7.82E-02 7.79E-02 7.78E-02 7.77E-02 7.74E-02 7.71E-02 7.92E-02 7.79E-02 7.95E-02 7.77E-02 3.71E-02 1.88E-02 2.0 6.37E-02 6.35E-02 6.34E-02 6.32E-02 6.30E-02 6.28E-02 6.27E-02 6.26E-02 6.23E-02 6.20E-02 6.37E-02 6.28E-02 6.41E-02 6.27E-02 3.28E-02 1.94E-02 3.0 4.43E-02 4.42E-02 4.41E-02 4.40E-02 4.39E-02 4.37E-02 4.36E-02 4.34E-02 4.33E-02 4.32E-02 4.43E-02 4.37E-02 4.46E-02 4.39E-02 2.45E-02 1.60E-02 4.0 3.36E-02 3.34E-02 3.33E-02 3.32E-02 3.31E-02 3.30E-02 3.29E-02 3.27E-02 3.26E-02 3.25E-02 3.36E-02 3.30E-02 3.37E-02 3.31E-02 1.90E-02 1.27E-02 5.0 2.69E-02 2.68E-02 2.67E-02 2.66E-02 2.65E-02 2.64E-02 2.63E-02 2.63E-02 2.61E-02 2.60E-02 2.69E-02 2.64E-02 2.70E-02 2.65E-02 1.54E-02 1.04E-02 6.0 2.24E-02 2.24E-02 2.22E-02 2.21E-02 2.21E-02 2.20E-02 2.19E-02 2.19E-02 2.18E-02 2.17E-02 2.24E-02 2.19E-02 2.25E-02 2.21E-02 1.29E-02 8.80E-03 8.0 1.67E-02 1.67E-02 1.66E-02 1.66E-02 1.65E-02 1.64E-02 1.64E-02 1.63E-02 1.63E-02 1.62E-02 1.67E-02 1.64E-02 1.68E-02 1.65E-02 9.70E-03 6.70E-03 10.0 1.34E-02 1.34E-02 1.33E-02 1.33E-02 1.32E-02 1.32E-02 1.31E-02 1.30E-02 1.30E-02 1.30E-02 1.34E-02 1.31E-02 1.35E-02 1.32E-02 7.79E-03 5.36E-03 Table C 30. Specific absorbed fractions for cartilage targets in the os coxae. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.71E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.01E-05 1.71E-01 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.48E-05 1.70E-01 0.010 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 2.81E-09 8.48E-05 1.70E-01 0.015 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 6.88E-09 1.71E-04 1.70E-01 0.020 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 1.51E-08 2.68E-04 1.70E-01 0.030 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 4.02E-08 5.46E-04 1.69E-01 0.040 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 7.97E-08 8.86E-04 1.68E-01 0.050 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.26E-07 1.29E-03 1.68E-01 0.060 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.83E-07 1.73E-03 1.66E-01 0.080 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 3.07E-07 2.65E-03 1.64E-01 0.10 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 5.32E-07 3.61E-03 1.62E-01 0.15 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 1.34E-06 6.27E-03 1.55E-01 0.20 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 9.52E-03 1.47E-01 0.30 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.06E-05 1.72E-02 1.29E-01 0.40 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 3.44E-05 2.55E-02 1.10E-01 0.50 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.11E-04 3.27E-02 9.25E-02 0.60 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 1.56E-03 3.63E-02 7.86E-02 0.80 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 6.67E-03 3.58E-02 6.05E-02 1.0 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 1.15E-02 3.20E-02 4.93E-02 1.5 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 1.71E-02 2.54E-02 3.46E-02 2.0 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 1.75E-02 2.19E-02 2.79E-02 3.0 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.46E-02 1.71E-02 2.07E-02 4.0 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.18E-02 1.37E-02 1.63E-02 5.0 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 9.80E-03 1.13E-02 1.34E-02 6.0 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 8.35E-03 9.62E-03 1.13E-02 8.0 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 6.42E-03 7.40E-03 8.67E-03 10.0 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.20E-03 5.99E-03 7.00E-03 1 TIM Sources are run at 50% Cellularity

PAGE 379

379 Table C 31. Specific absorbed fractions for active marrow targets in the sacrum. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 9.45E-01 1.05E+00 1.18E+00 1.35E+00 1.58E+00 1.89E+00 2.36E+00 3.15E+00 4.73E+00 9.45E+00 9.45E-01 5.78E-06 4.69E-01 9.28E-07 0.00E+00 0.00E+00 0.003 9.45E-01 1.05E+00 1.18E+00 1.35E+00 1.57E+00 1.89E+00 2.36E+00 3.14E+00 4.71E+00 9.42E+00 9.45E-01 7.74E-04 4.96E-01 1.40E-04 4.58E-05 0.00E+00 0.005 9.43E-01 1.05E+00 1.18E+00 1.34E+00 1.57E+00 1.88E+00 2.35E+00 3.13E+00 4.69E+00 9.37E+00 9.43E-01 3.94E-03 4.97E-01 5.88E-04 1.14E-04 0.00E+00 0.010 9.39E-01 1.04E+00 1.17E+00 1.33E+00 1.55E+00 1.86E+00 2.31E+00 3.08E+00 4.60E+00 9.18E+00 9.39E-01 2.34E-02 4.98E-01 3.64E-03 4.35E-04 0.00E+00 0.015 9.32E-01 1.03E+00 1.15E+00 1.31E+00 1.52E+00 1.82E+00 2.26E+00 3.00E+00 4.48E+00 8.91E+00 9.32E-01 4.76E-02 4.96E-01 7.42E-03 8.31E-04 0.00E+00 0.020 9.24E-01 1.02E+00 1.14E+00 1.29E+00 1.49E+00 1.77E+00 2.19E+00 2.90E+00 4.31E+00 8.55E+00 9.24E-01 7.80E-02 4.95E-01 1.23E-02 1.40E-03 2.57E-07 0.030 9.02E-01 9.86E-01 1.09E+00 1.22E+00 1.40E+00 1.65E+00 2.03E+00 2.66E+00 3.91E+00 7.67E+00 9.02E-01 1.54E-01 4.89E-01 2.44E-02 2.78E-03 3.27E-07 0.040 8.75E-01 9.46E-01 1.04E+00 1.15E+00 1.30E+00 1.52E+00 1.84E+00 2.37E+00 3.44E+00 6.64E+00 8.75E-01 2.40E-01 4.82E-01 3.93E-02 4.42E-03 3.82E-07 0.050 8.45E-01 9.04E-01 9.76E-01 1.07E+00 1.19E+00 1.37E+00 1.63E+00 2.07E+00 2.94E+00 5.55E+00 8.45E-01 3.30E-01 4.74E-01 5.63E-02 6.39E-03 4.67E-07 0.060 8.13E-01 8.58E-01 9.15E-01 9.88E-01 1.09E+00 1.22E+00 1.43E+00 1.77E+00 2.45E+00 4.48E+00 8.13E-01 4.15E-01 4.65E-01 7.42E-02 8.50E-03 5.43E-07 0.080 7.47E-01 7.73E-01 8.05E-01 8.46E-01 8.99E-01 9.75E-01 1.09E+00 1.27E+00 1.64E+00 2.76E+00 7.47E-01 5.34E-01 4.44E-01 1.10E-01 1.24E-02 6.99E-07 0.10 6.85E-01 7.01E-01 7.20E-01 7.45E-01 7.77E-01 8.23E-01 8.90E-01 1.00E+00 1.22E+00 1.89E+00 6.85E-01 5.59E-01 4.26E-01 1.45E-01 1.68E-02 9.04E-07 0.15 5.52E-01 5.58E-01 5.68E-01 5.79E-01 5.94E-01 6.14E-01 6.45E-01 6.95E-01 7.96E-01 1.10E+00 5.52E-01 4.96E-01 3.89E-01 2.16E-01 2.93E-02 1.93E-06 0.20 4.72E-01 4.78E-01 4.83E-01 4.89E-01 4.99E-01 5.12E-01 5.31E-01 5.62E-01 6.24E-01 8.10E-01 4.72E-01 4.38E-01 3.64E-01 2.54E-01 4.38E-02 8.87E-06 0.30 4.03E-01 4.06E-01 4.09E-01 4.13E-01 4.18E-01 4.25E-01 4.35E-01 4.53E-01 4.86E-01 5.85E-01 4.03E-01 3.86E-01 3.40E-01 2.75E-01 7.32E-02 1.68E-03 0.40 3.65E-01 3.67E-01 3.69E-01 3.72E-01 3.75E-01 3.79E-01 3.86E-01 3.98E-01 4.21E-01 4.87E-01 3.65E-01 3.54E-01 3.23E-01 2.76E-01 9.27E-02 9.99E-03 0.50 3.36E-01 3.38E-01 3.39E-01 3.41E-01 3.44E-01 3.47E-01 3.53E-01 3.62E-01 3.78E-01 4.28E-01 3.36E-01 3.28E-01 3.06E-01 2.71E-01 1.03E-01 2.29E-02 0.60 3.13E-01 3.15E-01 3.16E-01 3.18E-01 3.19E-01 3.22E-01 3.26E-01 3.34E-01 3.47E-01 3.86E-01 3.13E-01 3.06E-01 2.91E-01 2.62E-01 1.07E-01 3.49E-02 0.80 2.77E-01 2.78E-01 2.78E-01 2.80E-01 2.81E-01 2.83E-01 2.86E-01 2.91E-01 3.00E-01 3.28E-01 2.77E-01 2.72E-01 2.63E-01 2.42E-01 1.09E-01 5.03E-02 1.0 2.47E-01 2.48E-01 2.49E-01 2.50E-01 2.51E-01 2.52E-01 2.55E-01 2.59E-01 2.66E-01 2.87E-01 2.47E-01 2.44E-01 2.37E-01 2.22E-01 1.05E-01 5.68E-02 1.5 1.93E-01 1.93E-01 1.94E-01 1.94E-01 1.95E-01 1.96E-01 1.97E-01 2.00E-01 2.04E-01 2.18E-01 1.93E-01 1.90E-01 1.87E-01 1.77E-01 9.02E-02 5.67E-02 2.0 1.54E-01 1.55E-01 1.55E-01 1.55E-01 1.56E-01 1.56E-01 1.57E-01 1.59E-01 1.63E-01 1.73E-01 1.54E-01 1.52E-01 1.50E-01 1.42E-01 7.62E-02 5.04E-02 3.0 1.06E-01 1.06E-01 1.06E-01 1.06E-01 1.06E-01 1.07E-01 1.08E-01 1.09E-01 1.11E-01 1.18E-01 1.06E-01 1.04E-01 1.03E-01 9.79E-02 5.49E-02 3.78E-02 4.0 7.89E-02 7.89E-02 7.90E-02 7.91E-02 7.94E-02 7.98E-02 8.03E-02 8.12E-02 8.29E-02 8.80E-02 7.89E-02 7.79E-02 7.67E-02 7.32E-02 4.15E-02 2.89E-02 5.0 6.27E-02 6.28E-02 6.29E-02 6.31E-02 6.33E-02 6.36E-02 6.39E-02 6.45E-02 6.59E-02 6.99E-02 6.27E-02 6.18E-02 6.10E-02 5.81E-02 3.32E-02 2.31E-02 6.0 5.21E-02 5.22E-02 5.24E-02 5.25E-02 5.26E-02 5.28E-02 5.31E-02 5.37E-02 5.48E-02 5.81E-02 5.21E-02 5.14E-02 5.06E-02 4.83E-02 2.75E-02 1.93E-02 8.0 3.90E-02 3.91E-02 3.92E-02 3.93E-02 3.94E-02 3.96E-02 3.98E-02 4.02E-02 4.11E-02 4.37E-02 3.90E-02 3.85E-02 3.80E-02 3.61E-02 2.06E-02 1.45E-02 10.0 3.13E-02 3.13E-02 3.13E-02 3.14E-02 3.15E-02 3.16E-02 3.18E-02 3.21E-02 3.28E-02 3.49E-02 3.13E-02 3.08E-02 3.04E-02 2.89E-02 1.65E-02 1.16E-02 Table C 32. Specific absorbed fractions for shallow marrow targets in the sacrum. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 9.91E-01 9.91E-01 9.91E-01 9.92E-01 9.91E-01 9.91E-01 9.91E-01 9.91E-01 9.90E-01 9.89E-01 9.91E-01 9.91E-01 8.35E-01 1.68E-06 0.00E+00 0.00E+00 0.003 9.89E-01 9.89E-01 9.90E-01 9.90E-01 9.90E-01 9.90E-01 9.90E-01 9.89E-01 9.89E-01 9.88E-01 9.89E-01 9.88E-01 8.98E-01 8.84E-05 4.77E-05 0.00E+00 0.005 9.87E-01 9.88E-01 9.88E-01 9.88E-01 9.88E-01 9.88E-01 9.88E-01 9.88E-01 9.87E-01 9.85E-01 9.87E-01 9.87E-01 9.01E-01 5.36E-04 1.19E-04 0.00E+00 0.010 9.80E-01 9.80E-01 9.80E-01 9.81E-01 9.80E-01 9.80E-01 9.80E-01 9.81E-01 9.79E-01 9.78E-01 9.80E-01 9.78E-01 8.99E-01 4.58E-03 4.43E-04 0.00E+00 0.015 9.68E-01 9.68E-01 9.68E-01 9.68E-01 9.68E-01 9.69E-01 9.69E-01 9.69E-01 9.67E-01 9.66E-01 9.68E-01 9.67E-01 8.93E-01 1.34E-02 8.68E-04 0.00E+00 0.020 9.53E-01 9.53E-01 9.54E-01 9.54E-01 9.53E-01 9.53E-01 9.53E-01 9.53E-01 9.52E-01 9.51E-01 9.53E-01 9.52E-01 8.86E-01 2.22E-02 1.46E-03 0.00E+00 0.030 9.15E-01 9.16E-01 9.16E-01 9.16E-01 9.16E-01 9.15E-01 9.15E-01 9.15E-01 9.14E-01 9.14E-01 9.15E-01 9.13E-01 8.64E-01 4.37E-02 2.91E-03 2.17E-07 0.040 8.70E-01 8.70E-01 8.71E-01 8.71E-01 8.71E-01 8.71E-01 8.71E-01 8.71E-01 8.70E-01 8.69E-01 8.70E-01 8.65E-01 8.37E-01 6.96E-02 4.66E-03 2.56E-07 0.050 8.20E-01 8.20E-01 8.21E-01 8.21E-01 8.21E-01 8.21E-01 8.21E-01 8.21E-01 8.20E-01 8.19E-01 8.20E-01 8.14E-01 8.07E-01 9.86E-02 6.67E-03 2.99E-07 0.060 7.69E-01 7.68E-01 7.68E-01 7.68E-01 7.68E-01 7.69E-01 7.69E-01 7.69E-01 7.68E-01 7.68E-01 7.69E-01 7.61E-01 7.74E-01 1.28E-01 8.78E-03 3.15E-07 0.080 6.74E-01 6.74E-01 6.74E-01 6.74E-01 6.74E-01 6.73E-01 6.73E-01 6.72E-01 6.72E-01 6.72E-01 6.74E-01 6.68E-01 6.77E-01 1.82E-01 1.28E-02 3.76E-07 0.10 6.03E-01 6.03E-01 6.03E-01 6.03E-01 6.03E-01 6.03E-01 6.02E-01 6.01E-01 6.01E-01 6.01E-01 6.03E-01 5.99E-01 5.89E-01 2.20E-01 1.72E-02 4.43E-07 0.15 4.88E-01 4.88E-01 4.87E-01 4.87E-01 4.86E-01 4.85E-01 4.85E-01 4.84E-01 4.83E-01 4.82E-01 4.88E-01 4.84E-01 4.72E-01 2.80E-01 2.98E-02 8.01E-07 0.20 4.28E-01 4.28E-01 4.28E-01 4.27E-01 4.27E-01 4.26E-01 4.26E-01 4.25E-01 4.24E-01 4.24E-01 4.28E-01 4.25E-01 4.21E-01 3.06E-01 4.47E-02 3.77E-06 0.30 3.82E-01 3.81E-01 3.81E-01 3.81E-01 3.80E-01 3.79E-01 3.79E-01 3.78E-01 3.77E-01 3.77E-01 3.82E-01 3.79E-01 3.79E-01 3.13E-01 7.55E-02 9.43E-04 0.40 3.55E-01 3.54E-01 3.53E-01 3.53E-01 3.52E-01 3.51E-01 3.51E-01 3.50E-01 3.50E-01 3.49E-01 3.55E-01 3.51E-01 3.54E-01 3.07E-01 9.62E-02 5.66E-03 0.50 3.32E-01 3.32E-01 3.31E-01 3.30E-01 3.30E-01 3.29E-01 3.28E-01 3.28E-01 3.27E-01 3.27E-01 3.32E-01 3.29E-01 3.33E-01 2.97E-01 1.07E-01 1.30E-02 0.60 3.13E-01 3.12E-01 3.12E-01 3.11E-01 3.10E-01 3.10E-01 3.09E-01 3.09E-01 3.08E-01 3.07E-01 3.13E-01 3.09E-01 3.14E-01 2.85E-01 1.12E-01 2.00E-02 0.80 2.80E-01 2.79E-01 2.79E-01 2.78E-01 2.77E-01 2.77E-01 2.76E-01 2.75E-01 2.75E-01 2.74E-01 2.80E-01 2.77E-01 2.82E-01 2.61E-01 1.14E-01 2.90E-02 1.0 2.51E-01 2.51E-01 2.50E-01 2.50E-01 2.49E-01 2.48E-01 2.48E-01 2.47E-01 2.47E-01 2.46E-01 2.51E-01 2.49E-01 2.53E-01 2.38E-01 1.10E-01 3.27E-02 1.5 1.97E-01 1.97E-01 1.96E-01 1.96E-01 1.95E-01 1.95E-01 1.94E-01 1.93E-01 1.93E-01 1.92E-01 1.97E-01 1.94E-01 1.98E-01 1.89E-01 9.45E-02 3.27E-02 2.0 1.58E-01 1.58E-01 1.57E-01 1.57E-01 1.56E-01 1.56E-01 1.55E-01 1.55E-01 1.54E-01 1.54E-01 1.58E-01 1.55E-01 1.59E-01 1.52E-01 7.99E-02 2.91E-02 3.0 1.08E-01 1.08E-01 1.08E-01 1.07E-01 1.07E-01 1.06E-01 1.06E-01 1.06E-01 1.05E-01 1.05E-01 1.08E-01 1.06E-01 1.09E-01 1.05E-01 5.75E-02 2.18E-02 4.0 8.09E-02 8.05E-02 8.02E-02 7.99E-02 7.97E-02 7.95E-02 7.92E-02 7.89E-02 7.86E-02 7.83E-02 8.09E-02 7.95E-02 8.14E-02 7.83E-02 4.36E-02 1.67E-02 5.0 6.43E-02 6.41E-02 6.39E-02 6.37E-02 6.35E-02 6.33E-02 6.30E-02 6.27E-02 6.24E-02 6.22E-02 6.43E-02 6.30E-02 6.48E-02 6.22E-02 3.49E-02 1.33E-02 6.0 5.35E-02 5.33E-02 5.32E-02 5.30E-02 5.28E-02 5.25E-02 5.23E-02 5.21E-02 5.19E-02 5.17E-02 5.35E-02 5.24E-02 5.37E-02 5.16E-02 2.89E-02 1.11E-02 8.0 4.00E-02 3.99E-02 3.98E-02 3.96E-02 3.95E-02 3.93E-02 3.92E-02 3.90E-02 3.89E-02 3.87E-02 4.00E-02 3.93E-02 4.03E-02 3.87E-02 2.17E-02 8.36E-03 10.0 3.21E-02 3.19E-02 3.18E-02 3.17E-02 3.16E-02 3.14E-02 3.13E-02 3.12E-02 3.11E-02 3.10E-02 3.21E-02 3.14E-02 3.23E-02 3.09E-02 1.73E-02 6.70E-03

PAGE 380

380 Table C 33. Specific absorbed fractions for cartilage targets in the sacrum. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.16E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.92E-05 5.16E-01 0.005 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.73E-04 5.16E-01 0.010 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.52E-04 5.16E-01 0.015 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 4.23E-08 1.18E-03 5.15E-01 0.020 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 6.91E-08 1.92E-03 5.14E-01 0.030 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 3.84E-03 5.12E-01 0.040 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 2.57E-07 6.14E-03 5.09E-01 0.050 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 3.82E-07 8.70E-03 5.05E-01 0.060 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 5.54E-07 1.16E-02 5.01E-01 0.080 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 9.35E-07 1.77E-02 4.93E-01 0.10 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 1.41E-06 2.43E-02 4.84E-01 0.15 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 3.29E-06 4.38E-02 4.58E-01 0.20 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 6.80E-02 4.27E-01 0.30 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.79E-03 1.20E-01 3.57E-01 0.40 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.09E-02 1.51E-01 2.87E-01 0.50 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 2.45E-02 1.51E-01 2.35E-01 0.60 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 3.65E-02 1.40E-01 1.98E-01 0.80 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 5.13E-02 1.17E-01 1.51E-01 1.0 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 5.71E-02 1.01E-01 1.24E-01 1.5 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 5.62E-02 7.70E-02 8.84E-02 2.0 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 5.01E-02 6.19E-02 6.97E-02 3.0 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 3.83E-02 4.45E-02 4.90E-02 4.0 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 2.98E-02 3.43E-02 3.75E-02 5.0 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.41E-02 2.78E-02 3.03E-02 6.0 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.02E-02 2.33E-02 2.54E-02 8.0 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.52E-02 1.76E-02 1.92E-02 10.0 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.22E-02 1.41E-02 1.54E-02 1 TIM Sources are run at 50% Cellularity Table C 34. Specific absorbed fractions for active ma rrow targets in the humerus. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 7.61E-01 8.45E-01 9.51E-01 1.09E+00 1.27E+00 1.52E+00 1.90E+00 2.54E+00 3.80E+00 7.61E+00 7.61E-01 3.03E-06 3.95E-01 0.00E+00 0.00E+00 0.00E+00 0.003 7.60E-01 8.44E-01 9.49E-01 1.08E+00 1.26E+00 1.52E+00 1.90E+00 2.53E+00 3.79E+00 7.58E+00 7.60E-01 5.22E-04 4.00E-01 3.65E-04 1.49E-05 9.79E-07 0.005 7.58E-01 8.42E-01 9.46E-01 1.08E+00 1.26E+00 1.51E+00 1.89E+00 2.52E+00 3.77E+00 7.54E+00 7.58E-01 3.64E-03 4.01E-01 8.45E-04 4.10E-05 2.28E-06 0.010 7.52E-01 8.34E-01 9.36E-01 1.07E+00 1.24E+00 1.49E+00 1.86E+00 2.47E+00 3.69E+00 7.37E+00 7.52E-01 1.89E-02 4.01E-01 2.90E-03 1.24E-04 6.66E-06 0.015 7.43E-01 8.22E-01 9.21E-01 1.05E+00 1.22E+00 1.45E+00 1.81E+00 2.40E+00 3.58E+00 7.13E+00 7.43E-01 3.85E-02 4.00E-01 5.96E-03 2.80E-04 1.12E-05 0.020 7.32E-01 8.07E-01 9.02E-01 1.02E+00 1.18E+00 1.41E+00 1.75E+00 2.32E+00 3.44E+00 6.83E+00 7.32E-01 6.31E-02 3.98E-01 9.63E-03 4.58E-04 1.80E-05 0.030 7.06E-01 7.72E-01 8.55E-01 9.62E-01 1.10E+00 1.30E+00 1.60E+00 2.10E+00 3.10E+00 6.09E+00 7.06E-01 1.24E-01 3.94E-01 1.93E-02 9.11E-04 3.10E-05 0.040 6.75E-01 7.32E-01 8.02E-01 8.92E-01 1.01E+00 1.18E+00 1.44E+00 1.86E+00 2.70E+00 5.23E+00 6.75E-01 1.95E-01 3.88E-01 3.10E-02 1.49E-03 4.78E-05 0.050 6.44E-01 6.91E-01 7.48E-01 8.22E-01 9.20E-01 1.06E+00 1.26E+00 1.61E+00 2.29E+00 4.35E+00 6.44E-01 2.67E-01 3.81E-01 4.49E-02 2.15E-03 6.75E-05 0.060 6.14E-01 6.50E-01 6.95E-01 7.52E-01 8.29E-01 9.36E-01 1.10E+00 1.37E+00 1.90E+00 3.51E+00 6.14E-01 3.37E-01 3.75E-01 5.94E-02 2.81E-03 9.34E-05 0.080 5.62E-01 5.81E-01 6.07E-01 6.40E-01 6.84E-01 7.45E-01 8.34E-01 9.84E-01 1.28E+00 2.17E+00 5.62E-01 4.36E-01 3.58E-01 8.85E-02 4.40E-03 1.54E-04 0.10 5.17E-01 5.29E-01 5.45E-01 5.65E-01 5.92E-01 6.28E-01 6.82E-01 7.71E-01 9.50E-01 1.49E+00 5.17E-01 4.56E-01 3.43E-01 1.15E-01 5.89E-03 2.32E-04 0.15 4.26E-01 4.30E-01 4.37E-01 4.46E-01 4.59E-01 4.76E-01 5.01E-01 5.43E-01 6.23E-01 8.64E-01 4.26E-01 4.09E-01 3.13E-01 1.75E-01 9.72E-03 5.90E-04 0.20 3.72E-01 3.75E-01 3.79E-01 3.85E-01 3.92E-01 4.03E-01 4.18E-01 4.44E-01 4.94E-01 6.41E-01 3.72E-01 3.64E-01 2.94E-01 2.06E-01 1.35E-02 1.64E-03 0.30 3.25E-01 3.27E-01 3.29E-01 3.32E-01 3.36E-01 3.42E-01 3.50E-01 3.63E-01 3.89E-01 4.67E-01 3.25E-01 3.24E-01 2.79E-01 2.27E-01 2.04E-02 5.57E-03 0.40 2.97E-01 2.99E-01 3.01E-01 3.03E-01 3.06E-01 3.09E-01 3.15E-01 3.25E-01 3.42E-01 3.93E-01 2.97E-01 3.01E-01 2.68E-01 2.33E-01 2.55E-02 1.22E-02 0.50 2.78E-01 2.79E-01 2.80E-01 2.82E-01 2.84E-01 2.87E-01 2.91E-01 2.98E-01 3.11E-01 3.50E-01 2.78E-01 2.83E-01 2.59E-01 2.32E-01 2.98E-02 1.93E-02 0.60 2.62E-01 2.63E-01 2.64E-01 2.66E-01 2.68E-01 2.70E-01 2.74E-01 2.79E-01 2.89E-01 3.20E-01 2.62E-01 2.70E-01 2.49E-01 2.29E-01 3.41E-02 2.70E-02 0.80 2.37E-01 2.38E-01 2.39E-01 2.40E-01 2.41E-01 2.42E-01 2.45E-01 2.48E-01 2.56E-01 2.77E-01 2.37E-01 2.48E-01 2.32E-01 2.19E-01 4.07E-02 3.91E-02 1.0 2.16E-01 2.16E-01 2.17E-01 2.18E-01 2.19E-01 2.20E-01 2.22E-01 2.25E-01 2.31E-01 2.47E-01 2.16E-01 2.30E-01 2.15E-01 2.06E-01 4.60E-02 4.78E-02 1.5 1.75E-01 1.75E-01 1.76E-01 1.76E-01 1.76E-01 1.77E-01 1.79E-01 1.81E-01 1.84E-01 1.95E-01 1.75E-01 1.92E-01 1.78E-01 1.72E-01 4.83E-02 5.76E-02 2.0 1.44E-01 1.43E-01 1.44E-01 1.44E-01 1.44E-01 1.45E-01 1.46E-01 1.47E-01 1.50E-01 1.58E-01 1.44E-01 1.60E-01 1.48E-01 1.44E-01 4.31E-02 5.80E-02 3.0 9.95E-02 9.98E-02 9.97E-02 9.96E-02 1.00E-01 1.00E-01 1.01E-01 1.02E-01 1.03E-01 1.09E-01 9.95E-02 1.11E-01 1.03E-01 1.00E-01 3.27E-02 4.80E-02 4.0 7.33E-02 7.34E-02 7.35E-02 7.37E-02 7.37E-02 7.38E-02 7.44E-02 7.55E-02 7.67E-02 8.04E-02 7.33E-02 8.18E-02 7.56E-02 7.37E-02 2.53E-02 3.70E-02 5.0 5.79E-02 5.79E-02 5.80E-02 5.81E-02 5.82E-02 5.83E-02 5.87E-02 5.94E-02 6.04E-02 6.34E-02 5.79E-02 6.42E-02 5.92E-02 5.79E-02 2.05E-02 2.91E-02 6.0 4.77E-02 4.78E-02 4.78E-02 4.79E-02 4.80E-02 4.82E-02 4.85E-02 4.90E-02 4.99E-02 5.24E-02 4.77E-02 5.31E-02 4.89E-02 4.77E-02 1.73E-02 2.39E-02 8.0 3.57E-02 3.58E-02 3.58E-02 3.58E-02 3.59E-02 3.61E-02 3.63E-02 3.65E-02 3.72E-02 3.92E-02 3.57E-02 3.94E-02 3.65E-02 3.54E-02 1.32E-02 1.76E-02 10.0 2.85E-02 2.86E-02 2.85E-02 2.85E-02 2.87E-02 2.88E-02 2.90E-02 2.92E-02 2.97E-02 3.14E-02 2.85E-02 3.16E-02 2.91E-02 2.84E-02 1.07E-02 1.41E-02

PAGE 381

381 Table C 35. Specific absorbed fractions for shallow marrow targets in the humerus. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 8.64E-01 8.56E-01 8.47E-01 8.38E-01 8.28E-01 8.19E-01 8.09E-01 7.99E-01 7.90E-01 7.80E-01 8.64E-01 9.45E-01 8.36E-01 0.00E+00 0.00E+00 0.00E+00 0.003 8.63E-01 8.55E-01 8.45E-01 8.36E-01 8.26E-01 8.16E-01 8.07E-01 7.99E-01 7.89E-01 7.80E-01 8.63E-01 9.46E-01 8.73E-01 7.96E-04 2.63E-05 3.11E-07 0.005 8.61E-01 8.53E-01 8.44E-01 8.36E-01 8.26E-01 8.17E-01 8.07E-01 7.98E-01 7.88E-01 7.78E-01 8.61E-01 9.44E-01 8.77E-01 1.85E-03 4.84E-05 7.58E-07 0.010 8.55E-01 8.47E-01 8.37E-01 8.28E-01 8.19E-01 8.11E-01 8.02E-01 7.93E-01 7.83E-01 7.73E-01 8.55E-01 9.35E-01 8.74E-01 6.33E-03 1.59E-04 2.99E-06 0.015 8.46E-01 8.37E-01 8.28E-01 8.19E-01 8.10E-01 8.01E-01 7.92E-01 7.84E-01 7.75E-01 7.66E-01 8.46E-01 9.23E-01 8.69E-01 1.30E-02 3.54E-04 6.28E-06 0.020 8.33E-01 8.23E-01 8.16E-01 8.08E-01 7.99E-01 7.89E-01 7.81E-01 7.73E-01 7.67E-01 7.60E-01 8.33E-01 9.10E-01 8.61E-01 2.09E-02 5.54E-04 1.05E-05 0.030 8.03E-01 7.93E-01 7.85E-01 7.76E-01 7.68E-01 7.61E-01 7.55E-01 7.49E-01 7.45E-01 7.42E-01 8.03E-01 8.73E-01 8.40E-01 4.16E-02 1.12E-03 2.35E-05 0.040 7.68E-01 7.56E-01 7.47E-01 7.38E-01 7.32E-01 7.25E-01 7.22E-01 7.19E-01 7.17E-01 7.15E-01 7.68E-01 8.28E-01 8.14E-01 6.63E-02 1.86E-03 3.90E-05 0.050 7.25E-01 7.14E-01 7.06E-01 6.99E-01 6.94E-01 6.89E-01 6.87E-01 6.86E-01 6.87E-01 6.88E-01 7.25E-01 7.80E-01 7.85E-01 9.48E-02 2.61E-03 6.19E-05 0.060 6.82E-01 6.72E-01 6.63E-01 6.55E-01 6.51E-01 6.47E-01 6.48E-01 6.50E-01 6.55E-01 6.61E-01 6.82E-01 7.31E-01 7.53E-01 1.24E-01 3.45E-03 8.80E-05 0.080 6.05E-01 5.94E-01 5.86E-01 5.78E-01 5.77E-01 5.75E-01 5.79E-01 5.83E-01 5.95E-01 6.06E-01 6.05E-01 6.40E-01 6.60E-01 1.76E-01 5.18E-03 1.47E-04 0.10 5.49E-01 5.37E-01 5.30E-01 5.23E-01 5.22E-01 5.21E-01 5.28E-01 5.35E-01 5.49E-01 5.63E-01 5.49E-01 5.76E-01 5.74E-01 2.11E-01 7.08E-03 2.59E-04 0.15 4.55E-01 4.44E-01 4.35E-01 4.27E-01 4.29E-01 4.30E-01 4.39E-01 4.49E-01 4.65E-01 4.82E-01 4.55E-01 4.66E-01 4.59E-01 2.72E-01 1.16E-02 6.99E-04 0.20 4.08E-01 3.97E-01 3.90E-01 3.83E-01 3.85E-01 3.86E-01 3.95E-01 4.03E-01 4.20E-01 4.38E-01 4.08E-01 4.13E-01 4.11E-01 2.99E-01 1.60E-02 1.86E-03 0.30 3.73E-01 3.61E-01 3.55E-01 3.49E-01 3.50E-01 3.51E-01 3.60E-01 3.70E-01 3.86E-01 4.02E-01 3.73E-01 3.75E-01 3.74E-01 3.09E-01 2.46E-02 6.68E-03 0.40 3.51E-01 3.31E-01 3.30E-01 3.29E-01 3.29E-01 3.30E-01 3.39E-01 3.48E-01 3.64E-01 3.79E-01 3.51E-01 3.53E-01 3.53E-01 3.07E-01 3.11E-02 1.48E-02 0.50 3.34E-01 3.23E-01 3.18E-01 3.13E-01 3.13E-01 3.14E-01 3.23E-01 3.31E-01 3.45E-01 3.60E-01 3.34E-01 3.36E-01 3.36E-01 3.03E-01 3.68E-02 2.35E-02 0.60 3.19E-01 3.09E-01 3.04E-01 2.98E-01 3.00E-01 3.01E-01 3.08E-01 3.15E-01 3.29E-01 3.42E-01 3.19E-01 3.23E-01 3.23E-01 2.95E-01 4.21E-02 3.28E-02 0.80 2.92E-01 2.84E-01 2.79E-01 2.75E-01 2.75E-01 2.76E-01 2.82E-01 2.88E-01 2.99E-01 3.11E-01 2.92E-01 3.00E-01 2.98E-01 2.79E-01 5.07E-02 4.79E-02 1.0 2.67E-01 2.60E-01 2.56E-01 2.52E-01 2.53E-01 2.53E-01 2.58E-01 2.64E-01 2.73E-01 2.83E-01 2.67E-01 2.78E-01 2.74E-01 2.61E-01 5.74E-02 5.89E-02 1.5 2.17E-01 2.12E-01 2.09E-01 2.06E-01 2.07E-01 2.07E-01 2.10E-01 2.13E-01 2.19E-01 2.26E-01 2.17E-01 2.31E-01 2.26E-01 2.18E-01 6.03E-02 7.15E-02 2.0 1.78E-01 1.74E-01 1.72E-01 1.70E-01 1.70E-01 1.70E-01 1.72E-01 1.74E-01 1.79E-01 1.83E-01 1.78E-01 1.92E-01 1.87E-01 1.81E-01 5.39E-02 7.21E-02 3.0 1.23E-01 1.21E-01 1.19E-01 1.18E-01 1.18E-01 1.18E-01 1.19E-01 1.20E-01 1.23E-01 1.26E-01 1.23E-01 1.33E-01 1.30E-01 1.26E-01 4.09E-02 5.96E-02 4.0 9.10E-02 8.90E-02 8.80E-02 8.70E-02 8.68E-02 8.65E-02 8.79E-02 8.92E-02 9.13E-02 9.33E-02 9.10E-02 9.75E-02 9.56E-02 9.30E-02 3.16E-02 4.60E-02 5.0 7.18E-02 7.02E-02 6.93E-02 6.85E-02 6.84E-02 6.83E-02 6.93E-02 7.03E-02 7.20E-02 7.37E-02 7.18E-02 7.64E-02 7.49E-02 7.31E-02 2.57E-02 3.62E-02 6.0 5.91E-02 5.80E-02 5.72E-02 5.64E-02 5.64E-02 5.64E-02 5.71E-02 5.79E-02 5.93E-02 6.07E-02 5.91E-02 6.31E-02 6.19E-02 6.01E-02 2.16E-02 2.96E-02 8.0 4.43E-02 4.34E-02 4.28E-02 4.22E-02 4.22E-02 4.22E-02 4.27E-02 4.31E-02 4.42E-02 4.54E-02 4.43E-02 4.68E-02 4.62E-02 4.47E-02 1.65E-02 2.20E-02 10.0 3.54E-02 3.46E-02 3.41E-02 3.36E-02 3.36E-02 3.37E-02 3.41E-02 3.45E-02 3.54E-02 3.63E-02 3.54E-02 3.74E-02 3.69E-02 3.59E-02 1.33E-02 1.76E-02 Table C 36. Specific absorbed fractions for cartilage targets in the humerus. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.44E-01 0.003 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 1.54E-06 2.10E-05 5.44E-01 0.005 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 3.11E-06 5.15E-05 5.44E-01 0.010 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 6.89E-06 1.44E-04 5.44E-01 0.015 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 1.28E-05 3.34E-04 5.44E-01 0.020 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 1.83E-05 5.37E-04 5.43E-01 0.030 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 3.15E-05 1.15E-03 5.42E-01 0.040 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 5.20E-05 1.84E-03 5.40E-01 0.050 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 7.17E-05 2.64E-03 5.38E-01 0.060 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 9.29E-05 3.63E-03 5.35E-01 0.080 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 1.53E-04 5.63E-03 5.30E-01 0.10 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 2.28E-04 7.43E-03 5.24E-01 0.15 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 6.24E-04 1.28E-02 5.09E-01 0.20 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.64E-03 1.84E-02 4.90E-01 0.30 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 5.95E-03 2.74E-02 4.49E-01 0.40 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 1.24E-02 3.22E-02 4.06E-01 0.50 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 3.46E-02 3.64E-01 0.60 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 2.75E-02 3.42E-02 3.25E-01 0.80 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.99E-02 3.15E-02 2.63E-01 1.0 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 4.86E-02 2.80E-02 2.21E-01 1.5 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 5.73E-02 2.17E-02 1.57E-01 2.0 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 5.68E-02 1.87E-02 1.24E-01 3.0 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 4.78E-02 1.55E-02 9.03E-02 4.0 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 3.76E-02 1.32E-02 7.04E-02 5.0 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 1.12E-02 5.67E-02 6.0 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 2.48E-02 9.74E-03 4.70E-02 8.0 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 1.85E-02 7.58E-03 3.52E-02 10.0 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 1.49E-02 6.20E-03 2.82E-02 1 TIM Sources are run at 50% Cellularity

PAGE 382

382 Table C 37. Specific absorbed fractions for active marrow targets in the radius. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.02E+00 3.35E+00 3.77E+00 4.31E+00 5.03E+00 6.03E+00 7.54E+00 1.01E+01 1.51E+01 3.02E+01 3.02E+00 2.41E-05 1.57E+00 3.01E-06 0.00E+00 0.00E+00 0.003 3.01E+00 3.35E+00 3.76E+00 4.30E+00 5.02E+00 6.02E+00 7.52E+00 1.00E+01 1.50E+01 3.01E+01 3.01E+00 2.63E-03 1.59E+00 4.06E-04 8.97E-05 9.66E-06 0.005 3.01E+00 3.34E+00 3.75E+00 4.29E+00 5.00E+00 5.99E+00 7.49E+00 9.98E+00 1.50E+01 2.99E+01 3.01E+00 1.22E-02 1.59E+00 2.18E-03 1.94E-04 2.01E-05 0.010 2.99E+00 3.31E+00 3.71E+00 4.23E+00 4.93E+00 5.90E+00 7.36E+00 9.79E+00 1.47E+01 2.92E+01 2.99E+00 7.45E-02 1.59E+00 1.10E-02 5.54E-04 6.94E-05 0.015 2.95E+00 3.27E+00 3.66E+00 4.16E+00 4.83E+00 5.77E+00 7.18E+00 9.52E+00 1.42E+01 2.83E+01 2.95E+00 1.53E-01 1.59E+00 2.36E-02 1.18E-03 1.31E-04 0.020 2.91E+00 3.21E+00 3.58E+00 4.06E+00 4.70E+00 5.60E+00 6.95E+00 9.19E+00 1.37E+01 2.71E+01 2.91E+00 2.49E-01 1.58E+00 3.96E-02 2.02E-03 2.06E-04 0.030 2.81E+00 3.08E+00 3.41E+00 3.83E+00 4.40E+00 5.19E+00 6.37E+00 8.35E+00 1.23E+01 2.41E+01 2.81E+00 4.92E-01 1.56E+00 7.90E-02 4.01E-03 4.54E-04 0.040 2.71E+00 2.93E+00 3.21E+00 3.57E+00 4.05E+00 4.72E+00 5.72E+00 7.40E+00 1.07E+01 2.07E+01 2.71E+00 7.70E-01 1.54E+00 1.26E-01 6.42E-03 7.05E-04 0.050 2.60E+00 2.78E+00 3.00E+00 3.29E+00 3.68E+00 4.22E+00 5.04E+00 6.41E+00 9.12E+00 1.73E+01 2.60E+00 1.06E+00 1.51E+00 1.82E-01 9.56E-03 1.08E-03 0.060 2.49E+00 2.63E+00 2.80E+00 3.03E+00 3.33E+00 3.76E+00 4.40E+00 5.46E+00 7.57E+00 1.39E+01 2.49E+00 1.33E+00 1.48E+00 2.40E-01 1.24E-02 1.41E-03 0.080 2.28E+00 2.36E+00 2.46E+00 2.59E+00 2.76E+00 2.99E+00 3.34E+00 3.93E+00 5.09E+00 8.56E+00 2.28E+00 1.71E+00 1.42E+00 3.55E-01 1.89E-02 2.28E-03 0.10 2.10E+00 2.15E+00 2.21E+00 2.28E+00 2.38E+00 2.53E+00 2.74E+00 3.10E+00 3.80E+00 5.87E+00 2.10E+00 1.80E+00 1.36E+00 4.68E-01 2.61E-02 3.63E-03 0.15 1.72E+00 1.74E+00 1.77E+00 1.80E+00 1.85E+00 1.91E+00 2.01E+00 2.17E+00 2.48E+00 3.41E+00 1.72E+00 1.60E+00 1.24E+00 6.98E-01 4.22E-02 8.07E-03 0.20 1.49E+00 1.51E+00 1.52E+00 1.55E+00 1.58E+00 1.62E+00 1.68E+00 1.78E+00 1.97E+00 2.53E+00 1.49E+00 1.43E+00 1.17E+00 8.19E-01 5.90E-02 1.54E-02 0.30 1.28E+00 1.29E+00 1.30E+00 1.31E+00 1.33E+00 1.35E+00 1.38E+00 1.44E+00 1.54E+00 1.85E+00 1.28E+00 1.26E+00 1.09E+00 8.92E-01 8.41E-02 3.87E-02 0.40 1.15E+00 1.16E+00 1.16E+00 1.17E+00 1.18E+00 1.20E+00 1.22E+00 1.26E+00 1.33E+00 1.53E+00 1.15E+00 1.16E+00 1.03E+00 8.92E-01 1.05E-01 6.71E-02 0.50 1.05E+00 1.05E+00 1.06E+00 1.07E+00 1.07E+00 1.08E+00 1.10E+00 1.13E+00 1.18E+00 1.33E+00 1.05E+00 1.07E+00 9.71E-01 8.73E-01 1.23E-01 9.72E-02 0.60 9.68E-01 9.68E-01 9.72E-01 9.77E-01 9.83E-01 9.92E-01 1.01E+00 1.03E+00 1.07E+00 1.19E+00 9.68E-01 9.98E-01 9.15E-01 8.42E-01 1.39E-01 1.23E-01 0.80 8.32E-01 8.35E-01 8.37E-01 8.38E-01 8.44E-01 8.53E-01 8.61E-01 8.75E-01 9.04E-01 9.89E-01 8.32E-01 8.81E-01 8.14E-01 7.68E-01 1.53E-01 1.62E-01 1.0 7.25E-01 7.26E-01 7.29E-01 7.32E-01 7.35E-01 7.40E-01 7.47E-01 7.58E-01 7.81E-01 8.47E-01 7.25E-01 7.77E-01 7.20E-01 6.90E-01 1.54E-01 1.85E-01 1.5 5.24E-01 5.23E-01 5.26E-01 5.29E-01 5.31E-01 5.34E-01 5.38E-01 5.45E-01 5.59E-01 6.00E-01 5.24E-01 5.69E-01 5.30E-01 5.12E-01 1.24E-01 1.92E-01 2.0 3.90E-01 3.91E-01 3.91E-01 3.92E-01 3.94E-01 3.97E-01 4.00E-01 4.05E-01 4.15E-01 4.45E-01 3.90E-01 4.24E-01 3.94E-01 3.81E-01 9.54E-02 1.64E-01 3.0 2.50E-01 2.49E-01 2.50E-01 2.50E-01 2.51E-01 2.52E-01 2.54E-01 2.58E-01 2.64E-01 2.85E-01 2.50E-01 2.68E-01 2.49E-01 2.42E-01 6.39E-02 1.10E-01 4.0 1.82E-01 1.82E-01 1.83E-01 1.84E-01 1.84E-01 1.85E-01 1.86E-01 1.89E-01 1.94E-01 2.09E-01 1.82E-01 1.97E-01 1.83E-01 1.77E-01 4.84E-02 7.95E-02 5.0 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.46E-01 1.47E-01 1.48E-01 1.50E-01 1.54E-01 1.67E-01 1.45E-01 1.56E-01 1.45E-01 1.40E-01 3.90E-02 6.22E-02 6.0 1.20E-01 1.20E-01 1.21E-01 1.21E-01 1.22E-01 1.22E-01 1.23E-01 1.25E-01 1.28E-01 1.38E-01 1.20E-01 1.30E-01 1.20E-01 1.15E-01 3.32E-02 5.18E-02 8.0 9.01E-02 9.02E-02 9.05E-02 9.09E-02 9.11E-02 9.13E-02 9.22E-02 9.38E-02 9.63E-02 1.04E-01 9.01E-02 9.71E-02 9.00E-02 8.67E-02 2.52E-02 3.87E-02 10.0 7.20E-02 7.22E-02 7.23E-02 7.25E-02 7.29E-02 7.35E-02 7.41E-02 7.50E-02 7.71E-02 8.33E-02 7.20E-02 7.77E-02 7.23E-02 6.94E-02 2.07E-02 3.11E-02 Table C 38. Specific absorbed fractions for shallow marrow targets in the radius. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.35E+00 3.32E+00 3.29E+00 3.27E+00 3.24E+00 3.21E+00 3.19E+00 3.16E+00 3.14E+00 3.11E+00 3.35E+00 3.52E+00 3.11E+00 6.18E-06 0.00E+00 0.00E+00 0.003 3.34E+00 3.31E+00 3.29E+00 3.26E+00 3.24E+00 3.21E+00 3.19E+00 3.16E+00 3.13E+00 3.10E+00 3.34E+00 3.52E+00 3.24E+00 3.99E-04 1.03E-04 1.19E-05 0.005 3.34E+00 3.31E+00 3.29E+00 3.26E+00 3.23E+00 3.21E+00 3.18E+00 3.15E+00 3.12E+00 3.10E+00 3.34E+00 3.51E+00 3.26E+00 2.33E-03 1.97E-04 2.74E-05 0.010 3.31E+00 3.28E+00 3.26E+00 3.23E+00 3.20E+00 3.18E+00 3.15E+00 3.13E+00 3.11E+00 3.08E+00 3.31E+00 3.48E+00 3.24E+00 1.76E-02 7.23E-04 8.27E-05 0.015 3.27E+00 3.24E+00 3.22E+00 3.19E+00 3.16E+00 3.14E+00 3.12E+00 3.09E+00 3.07E+00 3.05E+00 3.27E+00 3.44E+00 3.23E+00 4.82E-02 1.32E-03 1.55E-04 0.020 3.21E+00 3.19E+00 3.16E+00 3.14E+00 3.11E+00 3.09E+00 3.07E+00 3.06E+00 3.03E+00 3.01E+00 3.21E+00 3.38E+00 3.19E+00 8.07E-02 2.34E-03 2.36E-04 0.030 3.09E+00 3.07E+00 3.05E+00 3.02E+00 3.00E+00 2.97E+00 2.96E+00 2.94E+00 2.93E+00 2.92E+00 3.09E+00 3.24E+00 3.11E+00 1.60E-01 4.61E-03 5.23E-04 0.040 2.94E+00 2.92E+00 2.89E+00 2.86E+00 2.85E+00 2.83E+00 2.82E+00 2.81E+00 2.81E+00 2.81E+00 2.94E+00 3.08E+00 3.02E+00 2.52E-01 7.22E-03 8.37E-04 0.050 2.78E+00 2.75E+00 2.72E+00 2.70E+00 2.69E+00 2.67E+00 2.67E+00 2.66E+00 2.67E+00 2.68E+00 2.78E+00 2.90E+00 2.91E+00 3.60E-01 1.08E-02 1.27E-03 0.060 2.61E+00 2.58E+00 2.55E+00 2.53E+00 2.52E+00 2.51E+00 2.52E+00 2.52E+00 2.54E+00 2.56E+00 2.61E+00 2.71E+00 2.79E+00 4.69E-01 1.39E-02 1.75E-03 0.080 2.30E+00 2.27E+00 2.25E+00 2.23E+00 2.22E+00 2.22E+00 2.23E+00 2.24E+00 2.28E+00 2.31E+00 2.30E+00 2.37E+00 2.44E+00 6.57E-01 2.10E-02 2.80E-03 0.10 2.08E+00 2.04E+00 2.02E+00 2.01E+00 2.00E+00 2.00E+00 2.02E+00 2.03E+00 2.08E+00 2.13E+00 2.08E+00 2.14E+00 2.12E+00 8.00E-01 2.87E-02 4.36E-03 0.15 1.71E+00 1.68E+00 1.66E+00 1.64E+00 1.64E+00 1.64E+00 1.66E+00 1.69E+00 1.74E+00 1.78E+00 1.71E+00 1.73E+00 1.69E+00 1.01E+00 4.59E-02 9.49E-03 0.20 1.52E+00 1.49E+00 1.47E+00 1.45E+00 1.46E+00 1.46E+00 1.48E+00 1.51E+00 1.55E+00 1.59E+00 1.52E+00 1.53E+00 1.52E+00 1.10E+00 6.50E-02 1.78E-02 0.30 1.37E+00 1.34E+00 1.32E+00 1.30E+00 1.30E+00 1.31E+00 1.33E+00 1.35E+00 1.39E+00 1.43E+00 1.37E+00 1.37E+00 1.35E+00 1.13E+00 9.37E-02 4.50E-02 0.40 1.26E+00 1.23E+00 1.22E+00 1.20E+00 1.20E+00 1.21E+00 1.22E+00 1.24E+00 1.27E+00 1.31E+00 1.26E+00 1.27E+00 1.26E+00 1.10E+00 1.16E-01 7.85E-02 0.50 1.17E+00 1.14E+00 1.13E+00 1.12E+00 1.12E+00 1.12E+00 1.13E+00 1.15E+00 1.18E+00 1.21E+00 1.17E+00 1.19E+00 1.18E+00 1.06E+00 1.35E-01 1.13E-01 0.60 1.09E+00 1.06E+00 1.05E+00 1.04E+00 1.04E+00 1.04E+00 1.05E+00 1.07E+00 1.09E+00 1.12E+00 1.09E+00 1.12E+00 1.10E+00 1.01E+00 1.52E-01 1.44E-01 0.80 9.45E-01 9.30E-01 9.20E-01 9.10E-01 9.12E-01 9.13E-01 9.20E-01 9.28E-01 9.44E-01 9.59E-01 9.45E-01 9.93E-01 9.74E-01 9.14E-01 1.68E-01 1.90E-01 1.0 8.29E-01 8.13E-01 8.07E-01 8.01E-01 8.00E-01 8.00E-01 8.06E-01 8.12E-01 8.25E-01 8.37E-01 8.29E-01 8.79E-01 8.58E-01 8.19E-01 1.69E-01 2.15E-01 1.5 6.00E-01 5.91E-01 5.87E-01 5.83E-01 5.82E-01 5.81E-01 5.84E-01 5.86E-01 5.94E-01 6.01E-01 6.00E-01 6.42E-01 6.29E-01 6.06E-01 1.37E-01 2.24E-01 2.0 4.48E-01 4.40E-01 4.36E-01 4.32E-01 4.32E-01 4.32E-01 4.34E-01 4.36E-01 4.41E-01 4.47E-01 4.48E-01 4.79E-01 4.67E-01 4.51E-01 1.06E-01 1.91E-01 3.0 2.85E-01 2.81E-01 2.78E-01 2.75E-01 2.75E-01 2.74E-01 2.75E-01 2.76E-01 2.80E-01 2.84E-01 2.85E-01 3.02E-01 2.97E-01 2.87E-01 7.12E-02 1.29E-01 4.0 2.08E-01 2.05E-01 2.04E-01 2.03E-01 2.02E-01 2.00E-01 2.02E-01 2.03E-01 2.05E-01 2.08E-01 2.08E-01 2.21E-01 2.18E-01 2.10E-01 5.42E-02 9.29E-02 5.0 1.66E-01 1.63E-01 1.62E-01 1.60E-01 1.59E-01 1.59E-01 1.60E-01 1.61E-01 1.63E-01 1.65E-01 1.66E-01 1.75E-01 1.72E-01 1.66E-01 4.35E-02 7.25E-02 6.0 1.37E-01 1.35E-01 1.34E-01 1.33E-01 1.33E-01 1.32E-01 1.33E-01 1.34E-01 1.35E-01 1.37E-01 1.37E-01 1.45E-01 1.43E-01 1.37E-01 3.69E-02 6.06E-02 8.0 1.03E-01 1.02E-01 1.01E-01 1.00E-01 9.94E-02 9.88E-02 9.95E-02 1.00E-01 1.01E-01 1.03E-01 1.03E-01 1.09E-01 1.07E-01 1.03E-01 2.82E-02 4.51E-02 10.0 8.25E-02 8.13E-02 8.06E-02 7.99E-02 7.98E-02 7.97E-02 8.00E-02 8.02E-02 8.12E-02 8.21E-02 8.25E-02 8.70E-02 8.60E-02 8.23E-02 2.31E-02 3.63E-02

PAGE 383

383 Table C 39. Specific absorbed fractions for cartilage targets in the radius. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.30E+00 0.003 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 7.41E-06 4.15E-05 1.30E+00 0.005 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.86E-05 1.23E-04 1.30E+00 0.010 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 4.43E-04 1.30E+00 0.015 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 1.35E-04 7.95E-04 1.30E+00 0.020 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 2.07E-04 1.42E-03 1.30E+00 0.030 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 4.38E-04 2.74E-03 1.30E+00 0.040 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 7.04E-04 4.52E-03 1.29E+00 0.050 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 1.10E-03 6.65E-03 1.29E+00 0.060 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 1.61E-03 8.85E-03 1.28E+00 0.080 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 1.37E-02 1.27E+00 0.10 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 4.19E-03 1.87E-02 1.25E+00 0.15 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 8.76E-03 3.13E-02 1.21E+00 0.20 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 1.68E-02 4.31E-02 1.17E+00 0.30 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 4.12E-02 5.82E-02 1.06E+00 0.40 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 7.24E-02 6.45E-02 9.54E-01 0.50 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 1.02E-01 6.66E-02 8.54E-01 0.60 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 1.31E-01 6.49E-02 7.61E-01 0.80 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 1.72E-01 5.91E-02 6.17E-01 1.0 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 1.94E-01 5.24E-02 5.15E-01 1.5 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 1.97E-01 4.14E-02 3.66E-01 2.0 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 1.71E-01 3.67E-02 2.87E-01 3.0 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 2.72E-02 1.96E-01 4.0 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 8.47E-02 2.15E-02 1.46E-01 5.0 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 6.72E-02 1.79E-02 1.17E-01 6.0 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 5.60E-02 1.56E-02 9.65E-02 8.0 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 4.18E-02 1.21E-02 7.26E-02 10.0 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 3.35E-02 1.00E-02 5.81E-02 1 TIM Sources are run at 50% Cellularity Table C 40. Specific absorbed fractions for active marrow ta rgets in the ulna. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.38E+00 2.64E+00 2.97E+00 3.39E+00 3.96E+00 4.75E+00 5.94E+00 7.92E+00 1.19E+01 2.38E+01 2.38E+00 1.42E-05 1.23E+00 0.00E+00 0.00E+00 0.00E+00 0.003 2.37E+00 2.64E+00 2.97E+00 3.39E+00 3.95E+00 4.74E+00 5.92E+00 7.90E+00 1.18E+01 2.37E+01 2.37E+00 1.88E-03 1.25E+00 1.11E-03 5.08E-05 8.71E-07 0.005 2.37E+00 2.63E+00 2.96E+00 3.38E+00 3.94E+00 4.72E+00 5.90E+00 7.86E+00 1.18E+01 2.36E+01 2.37E+00 1.15E-02 1.25E+00 2.68E-03 1.23E-04 2.37E-06 0.010 2.35E+00 2.61E+00 2.93E+00 3.34E+00 3.89E+00 4.65E+00 5.80E+00 7.72E+00 1.16E+01 2.31E+01 2.35E+00 5.86E-02 1.25E+00 8.87E-03 5.20E-04 1.04E-05 0.015 2.33E+00 2.57E+00 2.88E+00 3.28E+00 3.81E+00 4.55E+00 5.66E+00 7.51E+00 1.12E+01 2.23E+01 2.33E+00 1.19E-01 1.25E+00 1.88E-02 9.75E-04 2.17E-05 0.020 2.30E+00 2.53E+00 2.83E+00 3.21E+00 3.71E+00 4.42E+00 5.48E+00 7.25E+00 1.08E+01 2.14E+01 2.30E+00 1.95E-01 1.24E+00 3.06E-02 1.51E-03 3.68E-05 0.030 2.22E+00 2.43E+00 2.70E+00 3.03E+00 3.48E+00 4.10E+00 5.04E+00 6.61E+00 9.73E+00 1.91E+01 2.22E+00 3.86E-01 1.23E+00 6.10E-02 3.24E-03 7.97E-05 0.040 2.14E+00 2.31E+00 2.54E+00 2.82E+00 3.20E+00 3.73E+00 4.52E+00 5.85E+00 8.51E+00 1.65E+01 2.14E+00 6.08E-01 1.21E+00 9.90E-02 5.33E-03 1.25E-04 0.050 2.05E+00 2.19E+00 2.37E+00 2.61E+00 2.92E+00 3.35E+00 4.00E+00 5.08E+00 7.24E+00 1.37E+01 2.05E+00 8.33E-01 1.19E+00 1.41E-01 7.45E-03 2.06E-04 0.060 1.96E+00 2.07E+00 2.21E+00 2.40E+00 2.64E+00 2.97E+00 3.48E+00 4.32E+00 6.01E+00 1.11E+01 1.96E+00 1.05E+00 1.17E+00 1.85E-01 9.96E-03 2.98E-04 0.080 1.79E+00 1.86E+00 1.93E+00 2.04E+00 2.17E+00 2.36E+00 2.64E+00 3.12E+00 4.05E+00 6.86E+00 1.79E+00 1.35E+00 1.11E+00 2.76E-01 1.57E-02 5.40E-04 0.10 1.65E+00 1.69E+00 1.73E+00 1.80E+00 1.88E+00 1.99E+00 2.16E+00 2.45E+00 3.01E+00 4.69E+00 1.65E+00 1.42E+00 1.07E+00 3.60E-01 2.11E-02 8.08E-04 0.15 1.34E+00 1.36E+00 1.38E+00 1.41E+00 1.45E+00 1.50E+00 1.58E+00 1.70E+00 1.96E+00 2.71E+00 1.34E+00 1.26E+00 9.74E-01 5.41E-01 3.36E-02 1.94E-03 0.20 1.16E+00 1.17E+00 1.18E+00 1.20E+00 1.23E+00 1.26E+00 1.31E+00 1.39E+00 1.54E+00 2.00E+00 1.16E+00 1.12E+00 9.11E-01 6.40E-01 4.73E-02 5.48E-03 0.30 9.97E-01 1.00E+00 1.01E+00 1.02E+00 1.03E+00 1.05E+00 1.08E+00 1.12E+00 1.20E+00 1.45E+00 9.97E-01 9.90E-01 8.52E-01 6.94E-01 6.90E-02 1.87E-02 0.40 8.99E-01 9.04E-01 9.08E-01 9.14E-01 9.23E-01 9.37E-01 9.54E-01 9.83E-01 1.04E+00 1.20E+00 8.99E-01 9.13E-01 8.06E-01 7.02E-01 8.50E-02 3.83E-02 0.50 8.25E-01 8.30E-01 8.34E-01 8.39E-01 8.45E-01 8.54E-01 8.67E-01 8.90E-01 9.30E-01 1.05E+00 8.25E-01 8.50E-01 7.66E-01 6.92E-01 9.79E-02 5.87E-02 0.60 7.68E-01 7.68E-01 7.70E-01 7.74E-01 7.80E-01 7.89E-01 8.00E-01 8.18E-01 8.50E-01 9.47E-01 7.68E-01 7.98E-01 7.29E-01 6.70E-01 1.08E-01 7.93E-02 0.80 6.70E-01 6.74E-01 6.76E-01 6.77E-01 6.81E-01 6.86E-01 6.93E-01 7.06E-01 7.29E-01 7.97E-01 6.70E-01 7.13E-01 6.55E-01 6.18E-01 1.19E-01 1.12E-01 1.0 5.93E-01 5.95E-01 5.96E-01 5.98E-01 6.01E-01 6.06E-01 6.11E-01 6.20E-01 6.38E-01 6.92E-01 5.93E-01 6.36E-01 5.89E-01 5.61E-01 1.21E-01 1.33E-01 1.5 4.43E-01 4.42E-01 4.43E-01 4.45E-01 4.46E-01 4.48E-01 4.52E-01 4.58E-01 4.69E-01 5.04E-01 4.43E-01 4.80E-01 4.46E-01 4.30E-01 1.04E-01 1.48E-01 2.0 3.36E-01 3.37E-01 3.37E-01 3.37E-01 3.39E-01 3.41E-01 3.44E-01 3.48E-01 3.57E-01 3.81E-01 3.36E-01 3.65E-01 3.41E-01 3.29E-01 8.40E-02 1.31E-01 3.0 2.16E-01 2.16E-01 2.17E-01 2.17E-01 2.18E-01 2.19E-01 2.21E-01 2.23E-01 2.29E-01 2.46E-01 2.16E-01 2.34E-01 2.18E-01 2.11E-01 5.75E-02 9.03E-02 4.0 1.57E-01 1.57E-01 1.58E-01 1.58E-01 1.59E-01 1.60E-01 1.61E-01 1.63E-01 1.68E-01 1.80E-01 1.57E-01 1.70E-01 1.59E-01 1.53E-01 4.37E-02 6.56E-02 5.0 1.24E-01 1.25E-01 1.25E-01 1.26E-01 1.26E-01 1.26E-01 1.28E-01 1.29E-01 1.33E-01 1.43E-01 1.24E-01 1.35E-01 1.25E-01 1.21E-01 3.52E-02 5.13E-02 6.0 1.03E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.05E-01 1.06E-01 1.07E-01 1.10E-01 1.18E-01 1.03E-01 1.12E-01 1.04E-01 1.00E-01 2.95E-02 4.26E-02 8.0 7.69E-02 7.74E-02 7.75E-02 7.77E-02 7.80E-02 7.85E-02 7.91E-02 8.01E-02 8.23E-02 8.87E-02 7.69E-02 8.34E-02 7.77E-02 7.49E-02 2.23E-02 3.20E-02 10.0 6.18E-02 6.17E-02 6.19E-02 6.21E-02 6.24E-02 6.27E-02 6.33E-02 6.42E-02 6.59E-02 7.11E-02 6.18E-02 6.67E-02 6.22E-02 5.98E-02 1.78E-02 2.55E-02

PAGE 384

384 Table C 41. Specific absorbed fractions for shallow marrow targets in the ulna. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.62E+00 2.60E+00 2.59E+00 2.57E+00 2.56E+00 2.54E+00 2.52E+00 2.50E+00 2.48E+00 2.46E+00 2.62E+00 2.75E+00 2.41E+00 0.00E+00 0.00E+00 0.00E+00 0.003 2.62E+00 2.60E+00 2.58E+00 2.56E+00 2.54E+00 2.52E+00 2.51E+00 2.50E+00 2.48E+00 2.46E+00 2.62E+00 2.75E+00 2.52E+00 2.25E-03 6.73E-05 1.56E-06 0.005 2.61E+00 2.59E+00 2.58E+00 2.56E+00 2.54E+00 2.52E+00 2.51E+00 2.49E+00 2.47E+00 2.46E+00 2.61E+00 2.74E+00 2.52E+00 5.42E-03 1.47E-04 3.71E-06 0.010 2.59E+00 2.58E+00 2.56E+00 2.54E+00 2.52E+00 2.51E+00 2.49E+00 2.47E+00 2.45E+00 2.44E+00 2.59E+00 2.72E+00 2.52E+00 1.79E-02 5.90E-04 1.10E-05 0.015 2.56E+00 2.54E+00 2.52E+00 2.51E+00 2.49E+00 2.48E+00 2.46E+00 2.45E+00 2.43E+00 2.42E+00 2.56E+00 2.69E+00 2.51E+00 3.78E-02 1.10E-03 2.15E-05 0.020 2.52E+00 2.50E+00 2.49E+00 2.47E+00 2.45E+00 2.44E+00 2.42E+00 2.41E+00 2.40E+00 2.38E+00 2.52E+00 2.64E+00 2.48E+00 6.16E-02 1.66E-03 3.51E-05 0.030 2.42E+00 2.41E+00 2.39E+00 2.38E+00 2.36E+00 2.34E+00 2.33E+00 2.32E+00 2.31E+00 2.30E+00 2.42E+00 2.54E+00 2.43E+00 1.21E-01 3.62E-03 7.67E-05 0.040 2.30E+00 2.28E+00 2.27E+00 2.25E+00 2.24E+00 2.23E+00 2.22E+00 2.21E+00 2.21E+00 2.21E+00 2.30E+00 2.41E+00 2.35E+00 1.95E-01 6.01E-03 1.30E-04 0.050 2.18E+00 2.15E+00 2.14E+00 2.13E+00 2.11E+00 2.10E+00 2.10E+00 2.10E+00 2.10E+00 2.11E+00 2.18E+00 2.27E+00 2.26E+00 2.76E-01 8.35E-03 1.80E-04 0.060 2.04E+00 2.02E+00 2.00E+00 1.99E+00 1.98E+00 1.97E+00 1.97E+00 1.98E+00 1.99E+00 2.00E+00 2.04E+00 2.12E+00 2.17E+00 3.55E-01 1.13E-02 2.83E-04 0.080 1.81E+00 1.77E+00 1.76E+00 1.75E+00 1.75E+00 1.74E+00 1.75E+00 1.76E+00 1.78E+00 1.80E+00 1.81E+00 1.86E+00 1.90E+00 5.07E-01 1.75E-02 5.05E-04 0.10 1.62E+00 1.60E+00 1.58E+00 1.57E+00 1.57E+00 1.56E+00 1.58E+00 1.59E+00 1.62E+00 1.65E+00 1.62E+00 1.66E+00 1.64E+00 6.09E-01 2.31E-02 8.41E-04 0.15 1.33E+00 1.30E+00 1.29E+00 1.27E+00 1.28E+00 1.28E+00 1.29E+00 1.31E+00 1.34E+00 1.37E+00 1.33E+00 1.35E+00 1.31E+00 7.83E-01 3.75E-02 2.23E-03 0.20 1.18E+00 1.16E+00 1.15E+00 1.13E+00 1.13E+00 1.13E+00 1.15E+00 1.17E+00 1.19E+00 1.22E+00 1.18E+00 1.19E+00 1.17E+00 8.55E-01 5.20E-02 6.56E-03 0.30 1.06E+00 1.03E+00 1.02E+00 1.01E+00 1.01E+00 1.01E+00 1.03E+00 1.04E+00 1.07E+00 1.09E+00 1.06E+00 1.07E+00 1.05E+00 8.72E-01 7.63E-02 2.18E-02 0.40 9.78E-01 9.61E-01 9.50E-01 9.39E-01 9.41E-01 9.43E-01 9.53E-01 9.63E-01 9.86E-01 1.01E+00 9.78E-01 9.96E-01 9.79E-01 8.56E-01 9.45E-02 4.42E-02 0.50 9.14E-01 8.98E-01 8.89E-01 8.80E-01 8.81E-01 8.82E-01 8.91E-01 9.00E-01 9.18E-01 9.35E-01 9.14E-01 9.38E-01 9.22E-01 8.31E-01 1.09E-01 6.85E-02 0.60 8.58E-01 8.42E-01 8.34E-01 8.26E-01 8.27E-01 8.28E-01 8.35E-01 8.43E-01 8.58E-01 8.74E-01 8.58E-01 8.86E-01 8.72E-01 7.97E-01 1.20E-01 9.23E-02 0.80 7.57E-01 7.49E-01 7.42E-01 7.34E-01 7.33E-01 7.32E-01 7.37E-01 7.42E-01 7.53E-01 7.65E-01 7.57E-01 7.98E-01 7.79E-01 7.28E-01 1.32E-01 1.30E-01 1.0 6.72E-01 6.64E-01 6.59E-01 6.55E-01 6.54E-01 6.53E-01 6.56E-01 6.60E-01 6.68E-01 6.76E-01 6.72E-01 7.14E-01 6.95E-01 6.58E-01 1.36E-01 1.54E-01 1.5 5.04E-01 4.96E-01 4.93E-01 4.90E-01 4.89E-01 4.88E-01 4.90E-01 4.91E-01 4.97E-01 5.02E-01 5.04E-01 5.38E-01 5.25E-01 5.03E-01 1.17E-01 1.69E-01 2.0 3.83E-01 3.79E-01 3.76E-01 3.73E-01 3.72E-01 3.72E-01 3.73E-01 3.74E-01 3.77E-01 3.80E-01 3.83E-01 4.09E-01 4.01E-01 3.86E-01 9.55E-02 1.51E-01 3.0 2.47E-01 2.43E-01 2.42E-01 2.40E-01 2.39E-01 2.39E-01 2.39E-01 2.39E-01 2.42E-01 2.44E-01 2.47E-01 2.62E-01 2.57E-01 2.48E-01 6.56E-02 1.04E-01 4.0 1.79E-01 1.77E-01 1.75E-01 1.74E-01 1.74E-01 1.74E-01 1.74E-01 1.75E-01 1.77E-01 1.78E-01 1.79E-01 1.90E-01 1.87E-01 1.80E-01 4.98E-02 7.57E-02 5.0 1.42E-01 1.40E-01 1.39E-01 1.38E-01 1.38E-01 1.37E-01 1.38E-01 1.39E-01 1.40E-01 1.41E-01 1.42E-01 1.50E-01 1.48E-01 1.42E-01 4.02E-02 5.93E-02 6.0 1.18E-01 1.16E-01 1.15E-01 1.14E-01 1.14E-01 1.14E-01 1.14E-01 1.15E-01 1.16E-01 1.17E-01 1.18E-01 1.25E-01 1.23E-01 1.18E-01 3.36E-02 4.92E-02 8.0 8.77E-02 8.70E-02 8.63E-02 8.56E-02 8.54E-02 8.53E-02 8.55E-02 8.58E-02 8.66E-02 8.75E-02 8.77E-02 9.31E-02 9.18E-02 8.80E-02 2.54E-02 3.69E-02 10.0 7.05E-02 6.94E-02 6.89E-02 6.83E-02 6.82E-02 6.80E-02 6.83E-02 6.85E-02 6.93E-02 7.00E-02 7.05E-02 7.45E-02 7.35E-02 7.02E-02 2.03E-02 2.94E-02 Table C 42. Specific absorbed fractions for cartilage targets in the ulna. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.06E+00 0.003 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 2.03E-06 4.47E-05 1.06E+00 0.005 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 4.19E-06 1.30E-04 1.06E+00 0.010 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 1.21E-05 3.91E-04 1.06E+00 0.015 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 2.22E-05 8.33E-04 1.06E+00 0.020 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 3.69E-05 1.35E-03 1.06E+00 0.030 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 7.07E-05 2.68E-03 1.05E+00 0.040 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 1.23E-04 4.34E-03 1.05E+00 0.050 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 6.52E-03 1.04E+00 0.060 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 2.52E-04 8.60E-03 1.04E+00 0.080 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 4.77E-04 1.33E-02 1.03E+00 0.10 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 8.05E-04 1.85E-02 1.02E+00 0.15 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 2.27E-03 3.16E-02 9.84E-01 0.20 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 6.02E-03 4.31E-02 9.47E-01 0.30 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 1.99E-02 5.99E-02 8.67E-01 0.40 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 6.76E-02 7.84E-01 0.50 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 6.42E-02 7.00E-02 7.02E-01 0.60 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 8.63E-02 7.02E-02 6.30E-01 0.80 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 1.21E-01 6.31E-02 5.11E-01 1.0 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 1.42E-01 5.69E-02 4.28E-01 1.5 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 1.53E-01 4.44E-02 3.06E-01 2.0 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 1.38E-01 3.75E-02 2.44E-01 3.0 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 9.63E-02 2.79E-02 1.70E-01 4.0 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 7.11E-02 2.21E-02 1.27E-01 5.0 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 5.61E-02 1.85E-02 1.00E-01 6.0 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 4.68E-02 1.55E-02 8.35E-02 8.0 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 3.50E-02 1.20E-02 6.25E-02 10.0 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 2.80E-02 9.81E-03 5.02E-02 1 TIM Sources are run at 50% Cellularity

PAGE 385

385 Table C 43. Specific absorbed fractions for active marrow targets in the wrist/hand. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.47E+00 1.63E+00 1.84E+00 2.10E+00 2.45E+00 2.94E+00 3.68E+00 4.90E+00 7.35E+00 1.47E+01 1.47E+00 1.10E-05 7.28E-01 2.53E-06 1.47E-06 0.00E+00 0.003 1.47E+00 1.63E+00 1.84E+00 2.10E+00 2.45E+00 2.93E+00 3.67E+00 4.89E+00 7.33E+00 1.47E+01 1.47E+00 1.35E-03 7.70E-01 3.70E-04 7.31E-05 0.00E+00 0.005 1.47E+00 1.63E+00 1.83E+00 2.09E+00 2.44E+00 2.92E+00 3.65E+00 4.87E+00 7.30E+00 1.46E+01 1.47E+00 6.08E-03 7.73E-01 1.92E-03 2.96E-04 0.00E+00 0.010 1.46E+00 1.62E+00 1.82E+00 2.07E+00 2.41E+00 2.89E+00 3.60E+00 4.79E+00 7.16E+00 1.43E+01 1.46E+00 3.70E-02 7.75E-01 9.49E-03 1.68E-03 0.00E+00 0.015 1.45E+00 1.60E+00 1.80E+00 2.04E+00 2.37E+00 2.83E+00 3.52E+00 4.67E+00 6.96E+00 1.39E+01 1.45E+00 7.54E-02 7.76E-01 1.96E-02 3.46E-03 4.64E-07 0.020 1.44E+00 1.59E+00 1.77E+00 2.00E+00 2.32E+00 2.76E+00 3.42E+00 4.52E+00 6.71E+00 1.33E+01 1.44E+00 1.24E-01 7.76E-01 3.25E-02 5.61E-03 6.18E-07 0.030 1.41E+00 1.54E+00 1.70E+00 1.91E+00 2.19E+00 2.58E+00 3.16E+00 4.14E+00 6.09E+00 1.19E+01 1.41E+00 2.43E-01 7.78E-01 6.46E-02 1.16E-02 9.30E-07 0.040 1.37E+00 1.48E+00 1.62E+00 1.80E+00 2.03E+00 2.37E+00 2.87E+00 3.70E+00 5.36E+00 1.03E+01 1.37E+00 3.81E-01 7.77E-01 1.04E-01 1.84E-02 1.24E-06 0.050 1.32E+00 1.41E+00 1.53E+00 1.67E+00 1.87E+00 2.14E+00 2.55E+00 3.23E+00 4.58E+00 8.64E+00 1.32E+00 5.24E-01 7.77E-01 1.49E-01 2.67E-02 1.63E-06 0.060 1.28E+00 1.35E+00 1.44E+00 1.55E+00 1.70E+00 1.92E+00 2.24E+00 2.77E+00 3.82E+00 6.97E+00 1.28E+00 6.58E-01 7.76E-01 1.96E-01 3.58E-02 2.08E-06 0.080 1.18E+00 1.22E+00 1.27E+00 1.34E+00 1.42E+00 1.54E+00 1.72E+00 2.01E+00 2.59E+00 4.32E+00 1.18E+00 8.48E-01 7.74E-01 2.92E-01 5.43E-02 4.02E-06 0.10 1.09E+00 1.11E+00 1.15E+00 1.19E+00 1.24E+00 1.31E+00 1.42E+00 1.59E+00 1.94E+00 2.97E+00 1.09E+00 8.93E-01 7.79E-01 3.80E-01 7.41E-02 9.59E-06 0.15 9.17E-01 9.29E-01 9.43E-01 9.61E-01 9.85E-01 1.02E+00 1.07E+00 1.15E+00 1.30E+00 1.77E+00 9.17E-01 8.28E-01 8.04E-01 5.39E-01 1.26E-01 2.12E-04 0.20 8.26E-01 8.34E-01 8.43E-01 8.55E-01 8.71E-01 8.92E-01 9.21E-01 9.68E-01 1.06E+00 1.35E+00 8.26E-01 7.75E-01 8.11E-01 6.01E-01 1.75E-01 2.19E-03 0.30 7.38E-01 7.44E-01 7.49E-01 7.56E-01 7.64E-01 7.76E-01 7.91E-01 8.17E-01 8.69E-01 1.02E+00 7.38E-01 7.13E-01 7.89E-01 6.12E-01 2.32E-01 1.64E-02 0.40 6.76E-01 6.78E-01 6.82E-01 6.86E-01 6.92E-01 7.00E-01 7.10E-01 7.27E-01 7.62E-01 8.67E-01 6.76E-01 6.59E-01 6.59E-01 5.86E-01 2.56E-01 3.95E-02 0.50 6.18E-01 6.21E-01 6.24E-01 6.27E-01 6.31E-01 6.36E-01 6.45E-01 6.59E-01 6.85E-01 7.61E-01 6.18E-01 6.06E-01 6.06E-01 5.50E-01 2.60E-01 6.48E-02 0.60 5.64E-01 5.66E-01 5.68E-01 5.71E-01 5.75E-01 5.80E-01 5.86E-01 5.96E-01 6.16E-01 6.78E-01 5.64E-01 5.55E-01 5.35E-01 5.09E-01 2.58E-01 8.47E-02 0.80 4.66E-01 4.67E-01 4.69E-01 4.70E-01 4.73E-01 4.76E-01 4.80E-01 4.87E-01 5.02E-01 5.46E-01 4.66E-01 4.58E-01 4.48E-01 4.26E-01 2.41E-01 1.06E-01 1.0 3.82E-01 3.83E-01 3.84E-01 3.85E-01 3.87E-01 3.89E-01 3.92E-01 3.98E-01 4.09E-01 4.41E-01 3.82E-01 3.75E-01 3.65E-01 3.50E-01 2.15E-01 1.10E-01 1.5 2.42E-01 2.41E-01 2.42E-01 2.43E-01 2.44E-01 2.45E-01 2.47E-01 2.50E-01 2.58E-01 2.79E-01 2.42E-01 2.37E-01 2.27E-01 2.23E-01 1.47E-01 8.73E-02 2.0 1.71E-01 1.72E-01 1.72E-01 1.73E-01 1.73E-01 1.74E-01 1.76E-01 1.78E-01 1.84E-01 1.99E-01 1.71E-01 1.67E-01 1.57E-01 1.57E-01 1.05E-01 6.31E-02 3.0 1.09E-01 1.09E-01 1.09E-01 1.10E-01 1.10E-01 1.11E-01 1.12E-01 1.14E-01 1.17E-01 1.27E-01 1.09E-01 1.07E-01 1.04E-01 9.97E-02 6.56E-02 3.95E-02 4.0 8.05E-02 8.06E-02 8.09E-02 8.12E-02 8.16E-02 8.21E-02 8.29E-02 8.42E-02 8.67E-02 9.44E-02 8.05E-02 7.89E-02 7.79E-02 7.38E-02 4.81E-02 2.89E-02 5.0 6.41E-02 6.43E-02 6.44E-02 6.45E-02 6.48E-02 6.53E-02 6.59E-02 6.70E-02 6.91E-02 7.54E-02 6.41E-02 6.28E-02 6.18E-02 5.87E-02 3.81E-02 2.29E-02 6.0 5.34E-02 5.35E-02 5.37E-02 5.38E-02 5.41E-02 5.45E-02 5.50E-02 5.58E-02 5.75E-02 6.27E-02 5.34E-02 5.23E-02 5.13E-02 4.88E-02 3.18E-02 1.92E-02 8.0 4.00E-02 4.01E-02 4.02E-02 4.03E-02 4.05E-02 4.09E-02 4.12E-02 4.18E-02 4.31E-02 4.70E-02 4.00E-02 3.92E-02 3.82E-02 3.66E-02 2.38E-02 1.43E-02 10.0 3.20E-02 3.21E-02 3.22E-02 3.23E-02 3.24E-02 3.26E-02 3.30E-02 3.35E-02 3.45E-02 3.76E-02 3.20E-02 3.13E-02 3.03E-02 2.93E-02 1.90E-02 1.15E-02 Table C 44. Specific absorbed fractions for shallow marrow targets in the wrist/hand. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 1.41E+00 1.41E+00 1.40E+00 1.40E+00 1.39E+00 1.39E+00 1.38E+00 1.38E+00 1.39E+00 1.40E+00 1.41E+00 1.43E+00 1.18E+00 4.17E-06 2.42E-06 0.00E+00 0.003 1.41E+00 1.41E+00 1.40E+00 1.40E+00 1.39E+00 1.39E+00 1.38E+00 1.38E+00 1.39E+00 1.40E+00 1.41E+00 1.43E+00 1.27E+00 6.15E-04 9.18E-05 0.00E+00 0.005 1.41E+00 1.40E+00 1.40E+00 1.39E+00 1.39E+00 1.38E+00 1.38E+00 1.38E+00 1.39E+00 1.40E+00 1.41E+00 1.43E+00 1.27E+00 2.81E-03 2.92E-04 0.00E+00 0.010 1.40E+00 1.40E+00 1.39E+00 1.38E+00 1.38E+00 1.38E+00 1.37E+00 1.37E+00 1.38E+00 1.39E+00 1.40E+00 1.42E+00 1.27E+00 1.56E-02 1.61E-03 0.00E+00 0.015 1.38E+00 1.38E+00 1.37E+00 1.37E+00 1.37E+00 1.36E+00 1.36E+00 1.35E+00 1.36E+00 1.37E+00 1.38E+00 1.40E+00 1.26E+00 3.22E-02 3.29E-03 5.26E-07 0.020 1.36E+00 1.36E+00 1.36E+00 1.35E+00 1.35E+00 1.34E+00 1.34E+00 1.33E+00 1.34E+00 1.35E+00 1.36E+00 1.38E+00 1.25E+00 5.30E-02 5.38E-03 7.22E-07 0.030 1.31E+00 1.31E+00 1.31E+00 1.30E+00 1.30E+00 1.30E+00 1.29E+00 1.29E+00 1.29E+00 1.30E+00 1.31E+00 1.33E+00 1.23E+00 1.04E-01 1.09E-02 1.14E-06 0.040 1.26E+00 1.25E+00 1.25E+00 1.24E+00 1.24E+00 1.24E+00 1.24E+00 1.23E+00 1.24E+00 1.24E+00 1.26E+00 1.27E+00 1.20E+00 1.66E-01 1.75E-02 1.62E-06 0.050 1.19E+00 1.19E+00 1.19E+00 1.18E+00 1.18E+00 1.18E+00 1.18E+00 1.17E+00 1.18E+00 1.18E+00 1.19E+00 1.19E+00 1.17E+00 2.34E-01 2.53E-02 2.18E-06 0.060 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.12E+00 1.11E+00 1.11E+00 1.11E+00 1.11E+00 1.12E+00 1.12E+00 1.12E+00 1.14E+00 3.04E-01 3.37E-02 2.67E-06 0.080 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 9.99E-01 9.96E-01 9.92E-01 9.94E-01 9.96E-01 1.00E+00 9.98E-01 1.02E+00 4.27E-01 5.07E-02 4.54E-06 0.10 9.18E-01 9.18E-01 9.17E-01 9.16E-01 9.16E-01 9.16E-01 9.14E-01 9.11E-01 9.13E-01 9.14E-01 9.18E-01 9.12E-01 9.06E-01 5.09E-01 6.89E-02 9.91E-06 0.15 8.00E-01 7.99E-01 7.98E-01 7.97E-01 7.97E-01 7.97E-01 7.94E-01 7.92E-01 7.94E-01 7.95E-01 8.00E-01 7.94E-01 7.95E-01 6.11E-01 1.17E-01 2.02E-04 0.20 7.43E-01 7.42E-01 7.41E-01 7.39E-01 7.39E-01 7.39E-01 7.37E-01 7.34E-01 7.35E-01 7.35E-01 7.43E-01 7.37E-01 7.40E-01 6.37E-01 1.64E-01 2.06E-03 0.30 6.79E-01 6.77E-01 6.76E-01 6.75E-01 6.75E-01 6.74E-01 6.72E-01 6.70E-01 6.70E-01 6.70E-01 6.79E-01 6.73E-01 6.76E-01 6.26E-01 2.21E-01 1.54E-02 0.40 6.26E-01 6.25E-01 6.23E-01 6.22E-01 6.21E-01 6.21E-01 6.19E-01 6.17E-01 6.17E-01 6.17E-01 6.26E-01 6.20E-01 6.25E-01 5.92E-01 2.44E-01 3.74E-02 0.50 5.76E-01 5.75E-01 5.74E-01 5.72E-01 5.71E-01 5.70E-01 5.69E-01 5.68E-01 5.67E-01 5.66E-01 5.76E-01 5.69E-01 5.76E-01 5.52E-01 2.48E-01 6.17E-02 0.60 5.27E-01 5.26E-01 5.25E-01 5.24E-01 5.23E-01 5.22E-01 5.20E-01 5.18E-01 5.18E-01 5.17E-01 5.27E-01 5.21E-01 5.28E-01 5.10E-01 2.47E-01 8.09E-02 0.80 4.36E-01 4.35E-01 4.34E-01 4.33E-01 4.32E-01 4.30E-01 4.29E-01 4.28E-01 4.27E-01 4.27E-01 4.36E-01 4.30E-01 4.38E-01 4.26E-01 2.31E-01 1.02E-01 1.0 3.58E-01 3.57E-01 3.56E-01 3.55E-01 3.54E-01 3.52E-01 3.51E-01 3.50E-01 3.49E-01 3.48E-01 3.58E-01 3.52E-01 3.53E-01 3.51E-01 2.06E-01 1.05E-01 1.5 2.27E-01 2.25E-01 2.25E-01 2.24E-01 2.23E-01 2.22E-01 2.21E-01 2.20E-01 2.20E-01 2.19E-01 2.27E-01 2.22E-01 2.28E-01 2.23E-01 1.41E-01 8.39E-02 2.0 1.60E-01 1.60E-01 1.59E-01 1.59E-01 1.58E-01 1.58E-01 1.57E-01 1.56E-01 1.56E-01 1.55E-01 1.60E-01 1.57E-01 1.60E-01 1.58E-01 1.01E-01 6.07E-02 3.0 1.02E-01 1.02E-01 1.01E-01 1.01E-01 1.01E-01 1.00E-01 9.97E-02 9.94E-02 9.91E-02 9.88E-02 1.02E-01 1.00E-01 1.01E-01 1.00E-01 6.31E-02 3.80E-02 4.0 7.54E-02 7.51E-02 7.49E-02 7.46E-02 7.43E-02 7.41E-02 7.38E-02 7.35E-02 7.32E-02 7.29E-02 7.54E-02 7.40E-02 7.59E-02 7.40E-02 4.62E-02 2.78E-02 5.0 6.01E-02 5.99E-02 5.97E-02 5.94E-02 5.91E-02 5.89E-02 5.87E-02 5.85E-02 5.84E-02 5.82E-02 6.01E-02 5.89E-02 6.08E-02 5.89E-02 3.66E-02 2.20E-02 6.0 5.00E-02 4.99E-02 4.97E-02 4.94E-02 4.93E-02 4.91E-02 4.89E-02 4.88E-02 4.85E-02 4.83E-02 5.00E-02 4.91E-02 5.01E-02 4.90E-02 3.05E-02 1.84E-02 8.0 3.74E-02 3.74E-02 3.72E-02 3.70E-02 3.70E-02 3.69E-02 3.67E-02 3.65E-02 3.63E-02 3.62E-02 3.74E-02 3.68E-02 3.79E-02 3.67E-02 2.29E-02 1.38E-02 10.0 3.00E-02 2.99E-02 2.98E-02 2.96E-02 2.95E-02 2.94E-02 2.93E-02 2.92E-02 2.91E-02 2.90E-02 3.00E-02 2.94E-02 3.02E-02 2.94E-02 1.83E-02 1.11E-02

PAGE 386

386 Table C 45. Specific absorbed fractions for cartilage targets in the wrist/hand. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.50E-01 0.003 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.06E-04 4.50E-01 0.005 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 1.01E-09 2.69E-04 4.50E-01 0.010 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 5.11E-09 9.23E-04 4.49E-01 0.015 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.42E-08 1.90E-03 4.49E-01 0.020 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.40E-08 3.11E-03 4.48E-01 0.030 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 1.25E-07 6.37E-03 4.47E-01 0.040 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 3.13E-07 1.05E-02 4.44E-01 0.050 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 6.33E-07 1.51E-02 4.42E-01 0.060 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 1.18E-06 2.03E-02 4.39E-01 0.080 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.12E-06 3.17E-02 4.33E-01 0.10 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 1.33E-05 4.37E-02 4.26E-01 0.15 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 1.97E-04 7.63E-02 4.07E-01 0.20 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 2.04E-03 1.10E-01 3.86E-01 0.30 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.60E-02 1.57E-01 3.37E-01 0.40 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 3.80E-02 1.81E-01 2.85E-01 0.50 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 6.21E-02 1.81E-01 2.38E-01 0.60 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 8.08E-02 1.67E-01 2.03E-01 0.80 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 9.94E-02 1.38E-01 1.56E-01 1.0 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.19E-01 1.29E-01 1.5 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 7.98E-02 8.80E-02 9.20E-02 2.0 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 5.85E-02 6.62E-02 7.01E-02 3.0 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 3.74E-02 4.30E-02 4.61E-02 4.0 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 2.76E-02 3.20E-02 3.43E-02 5.0 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.20E-02 2.56E-02 2.75E-02 6.0 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 1.83E-02 2.13E-02 2.29E-02 8.0 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.60E-02 1.72E-02 10.0 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.29E-02 1.38E-02 1 TIM Sources are run at 50% Cellularity Table C 46. Specific absorbed fractions for active marrow targets in the femur. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.96E-01 4.40E-01 4.95E-01 5.66E-01 6.61E-01 7.93E-01 9.91E-01 1.32E+00 1.98E+00 3.96E+00 3.96E-01 0.00E+00 2.06E-01 3.96E-07 0.00E+00 0.00E+00 0.003 3.96E-01 4.39E-01 4.94E-01 5.65E-01 6.59E-01 7.90E-01 9.88E-01 1.32E+00 1.97E+00 3.95E+00 3.96E-01 1.13E-03 2.08E-01 2.87E-05 4.69E-06 0.00E+00 0.005 3.95E-01 4.38E-01 4.93E-01 5.63E-01 6.56E-01 7.87E-01 9.83E-01 1.31E+00 1.96E+00 3.93E+00 3.95E-01 2.88E-03 2.09E-01 1.44E-04 1.42E-05 0.00E+00 0.010 3.91E-01 4.33E-01 4.87E-01 5.55E-01 6.46E-01 7.74E-01 9.66E-01 1.29E+00 1.92E+00 3.84E+00 3.91E-01 9.79E-03 2.09E-01 1.04E-03 5.15E-05 2.73E-06 0.015 3.85E-01 4.27E-01 4.78E-01 5.44E-01 6.32E-01 7.55E-01 9.40E-01 1.25E+00 1.87E+00 3.71E+00 3.85E-01 1.99E-02 2.08E-01 2.64E-03 9.22E-05 4.30E-06 0.020 3.79E-01 4.18E-01 4.67E-01 5.30E-01 6.14E-01 7.32E-01 9.09E-01 1.20E+00 1.79E+00 3.56E+00 3.79E-01 3.27E-02 2.08E-01 5.20E-03 1.55E-04 5.91E-06 0.030 3.63E-01 3.97E-01 4.41E-01 4.97E-01 5.71E-01 6.75E-01 8.31E-01 1.09E+00 1.61E+00 3.17E+00 3.63E-01 6.47E-02 2.05E-01 1.04E-02 2.99E-04 8.82E-06 0.040 3.44E-01 3.74E-01 4.11E-01 4.58E-01 5.21E-01 6.09E-01 7.42E-01 9.63E-01 1.40E+00 2.73E+00 3.44E-01 1.01E-01 2.02E-01 1.68E-02 5.00E-04 1.18E-05 0.050 3.25E-01 3.50E-01 3.80E-01 4.19E-01 4.71E-01 5.43E-01 6.52E-01 8.33E-01 1.19E+00 2.27E+00 3.25E-01 1.39E-01 1.99E-01 2.41E-02 7.16E-04 1.49E-05 0.060 3.09E-01 3.28E-01 3.52E-01 3.82E-01 4.23E-01 4.80E-01 5.66E-01 7.09E-01 9.92E-01 1.84E+00 3.09E-01 1.74E-01 1.95E-01 3.16E-02 9.58E-04 1.91E-05 0.080 2.80E-01 2.91E-01 3.05E-01 3.23E-01 3.47E-01 3.80E-01 4.29E-01 5.12E-01 6.75E-01 1.17E+00 2.80E-01 2.25E-01 1.87E-01 4.70E-02 1.47E-03 2.77E-05 0.10 2.57E-01 2.64E-01 2.73E-01 2.84E-01 2.98E-01 3.19E-01 3.50E-01 4.00E-01 5.02E-01 8.05E-01 2.57E-01 2.36E-01 1.79E-01 6.15E-02 2.00E-03 3.98E-05 0.15 2.13E-01 2.16E-01 2.20E-01 2.26E-01 2.32E-01 2.41E-01 2.55E-01 2.77E-01 3.22E-01 4.55E-01 2.13E-01 2.11E-01 1.64E-01 9.30E-02 3.38E-03 8.11E-05 0.20 1.87E-01 1.90E-01 1.92E-01 1.95E-01 2.00E-01 2.05E-01 2.13E-01 2.27E-01 2.54E-01 3.33E-01 1.87E-01 1.88E-01 1.54E-01 1.09E-01 4.80E-03 2.33E-04 0.30 1.66E-01 1.67E-01 1.68E-01 1.70E-01 1.72E-01 1.76E-01 1.80E-01 1.88E-01 2.03E-01 2.45E-01 1.66E-01 1.69E-01 1.47E-01 1.21E-01 7.71E-03 1.40E-03 0.40 1.55E-01 1.55E-01 1.56E-01 1.57E-01 1.59E-01 1.61E-01 1.64E-01 1.69E-01 1.79E-01 2.07E-01 1.55E-01 1.59E-01 1.41E-01 1.24E-01 9.99E-03 3.85E-03 0.50 1.46E-01 1.46E-01 1.47E-01 1.48E-01 1.49E-01 1.51E-01 1.53E-01 1.57E-01 1.64E-01 1.85E-01 1.46E-01 1.50E-01 1.37E-01 1.24E-01 1.21E-02 7.10E-03 0.60 1.39E-01 1.39E-01 1.40E-01 1.41E-01 1.41E-01 1.42E-01 1.44E-01 1.48E-01 1.53E-01 1.70E-01 1.39E-01 1.44E-01 1.33E-01 1.23E-01 1.37E-02 1.06E-02 0.80 1.27E-01 1.28E-01 1.28E-01 1.29E-01 1.29E-01 1.30E-01 1.31E-01 1.33E-01 1.37E-01 1.49E-01 1.27E-01 1.34E-01 1.25E-01 1.19E-01 1.70E-02 1.70E-02 1.0 1.18E-01 1.18E-01 1.19E-01 1.19E-01 1.20E-01 1.20E-01 1.21E-01 1.23E-01 1.26E-01 1.35E-01 1.18E-01 1.25E-01 1.18E-01 1.14E-01 1.94E-02 2.18E-02 1.5 9.86E-02 9.86E-02 9.88E-02 9.90E-02 9.95E-02 1.00E-01 1.01E-01 1.02E-01 1.04E-01 1.10E-01 9.86E-02 1.08E-01 1.01E-01 9.85E-02 2.31E-02 2.78E-02 2.0 8.33E-02 8.36E-02 8.37E-02 8.38E-02 8.41E-02 8.44E-02 8.49E-02 8.56E-02 8.70E-02 9.14E-02 8.33E-02 9.37E-02 8.67E-02 8.48E-02 2.35E-02 2.86E-02 3.0 6.12E-02 6.12E-02 6.13E-02 6.14E-02 6.17E-02 6.21E-02 6.22E-02 6.25E-02 6.34E-02 6.63E-02 6.12E-02 6.98E-02 6.44E-02 6.26E-02 2.02E-02 2.57E-02 4.0 4.63E-02 4.63E-02 4.64E-02 4.66E-02 4.68E-02 4.70E-02 4.72E-02 4.74E-02 4.81E-02 5.03E-02 4.63E-02 5.28E-02 4.88E-02 4.73E-02 1.66E-02 2.15E-02 5.0 3.67E-02 3.66E-02 3.66E-02 3.66E-02 3.68E-02 3.71E-02 3.72E-02 3.74E-02 3.80E-02 3.98E-02 3.67E-02 4.15E-02 3.84E-02 3.72E-02 1.38E-02 1.74E-02 6.0 3.03E-02 3.02E-02 3.03E-02 3.03E-02 3.04E-02 3.05E-02 3.07E-02 3.09E-02 3.14E-02 3.27E-02 3.03E-02 3.41E-02 3.16E-02 3.07E-02 1.16E-02 1.44E-02 8.0 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.26E-02 2.27E-02 2.28E-02 2.29E-02 2.33E-02 2.44E-02 2.25E-02 2.52E-02 2.34E-02 2.27E-02 8.80E-03 1.05E-02 10.0 1.79E-02 1.80E-02 1.80E-02 1.80E-02 1.80E-02 1.81E-02 1.82E-02 1.83E-02 1.86E-02 1.95E-02 1.79E-02 2.00E-02 1.86E-02 1.80E-02 7.05E-03 8.40E-03

PAGE 387

387 Table C 47. Specific absorbed fractions for shallow marrow targets in the femur. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.45E-01 2.41E-01 2.37E-01 2.33E-01 2.33E-01 2.33E-01 2.24E-01 2.16E-01 2.23E-01 2.29E-01 2.45E-01 2.55E-01 2.49E-01 4.96E-07 0.00E+00 0.00E+00 0.003 2.44E-01 2.40E-01 2.37E-01 2.33E-01 2.33E-01 2.33E-01 2.24E-01 2.16E-01 2.22E-01 2.29E-01 2.44E-01 2.55E-01 2.60E-01 2.49E-05 3.09E-06 0.00E+00 0.005 2.44E-01 2.40E-01 2.36E-01 2.32E-01 2.32E-01 2.31E-01 2.23E-01 2.15E-01 2.22E-01 2.28E-01 2.44E-01 2.54E-01 2.61E-01 1.39E-04 8.80E-06 0.00E+00 0.010 2.43E-01 2.38E-01 2.34E-01 2.30E-01 2.30E-01 2.31E-01 2.22E-01 2.14E-01 2.21E-01 2.27E-01 2.43E-01 2.52E-01 2.61E-01 9.16E-04 3.37E-05 0.00E+00 0.015 2.40E-01 2.35E-01 2.32E-01 2.28E-01 2.28E-01 2.27E-01 2.20E-01 2.13E-01 2.19E-01 2.25E-01 2.40E-01 2.49E-01 2.59E-01 3.07E-03 6.45E-05 1.47E-06 0.020 2.37E-01 2.33E-01 2.29E-01 2.25E-01 2.25E-01 2.24E-01 2.17E-01 2.10E-01 2.17E-01 2.23E-01 2.37E-01 2.45E-01 2.57E-01 5.97E-03 1.08E-04 1.75E-06 0.030 2.28E-01 2.24E-01 2.20E-01 2.16E-01 2.16E-01 2.17E-01 2.10E-01 2.04E-01 2.10E-01 2.17E-01 2.28E-01 2.36E-01 2.51E-01 1.28E-02 2.04E-04 2.57E-06 0.040 2.18E-01 2.14E-01 2.10E-01 2.07E-01 2.07E-01 2.08E-01 2.02E-01 1.96E-01 2.03E-01 2.10E-01 2.18E-01 2.24E-01 2.43E-01 2.05E-02 3.67E-04 3.59E-06 0.050 2.08E-01 2.03E-01 1.99E-01 1.95E-01 1.96E-01 1.97E-01 1.92E-01 1.88E-01 1.95E-01 2.01E-01 2.08E-01 2.11E-01 2.35E-01 2.91E-02 4.80E-04 4.90E-06 0.060 1.96E-01 1.91E-01 1.88E-01 1.84E-01 1.85E-01 1.86E-01 1.82E-01 1.79E-01 1.86E-01 1.93E-01 1.96E-01 1.98E-01 2.25E-01 3.77E-02 6.64E-04 6.45E-06 0.080 1.75E-01 1.70E-01 1.66E-01 1.63E-01 1.64E-01 1.66E-01 1.64E-01 1.63E-01 1.70E-01 1.77E-01 1.75E-01 1.75E-01 1.98E-01 5.36E-02 1.05E-03 1.18E-05 0.10 1.59E-01 1.54E-01 1.51E-01 1.48E-01 1.49E-01 1.51E-01 1.51E-01 1.51E-01 1.58E-01 1.65E-01 1.59E-01 1.58E-01 1.71E-01 6.49E-02 1.43E-03 1.94E-05 0.15 1.34E-01 1.28E-01 1.25E-01 1.22E-01 1.24E-01 1.26E-01 1.29E-01 1.31E-01 1.38E-01 1.44E-01 1.34E-01 1.29E-01 1.38E-01 8.36E-02 2.36E-03 6.02E-05 0.20 1.21E-01 1.16E-01 1.13E-01 1.10E-01 1.12E-01 1.14E-01 1.17E-01 1.19E-01 1.25E-01 1.32E-01 1.21E-01 1.16E-01 1.24E-01 9.15E-02 3.33E-03 1.68E-04 0.30 1.12E-01 1.07E-01 1.04E-01 1.01E-01 1.03E-01 1.05E-01 1.08E-01 1.11E-01 1.17E-01 1.22E-01 1.12E-01 1.06E-01 1.13E-01 9.53E-02 5.41E-03 9.72E-04 0.40 1.06E-01 1.01E-01 9.87E-02 9.62E-02 9.78E-02 9.94E-02 1.03E-01 1.06E-01 1.11E-01 1.17E-01 1.06E-01 1.01E-01 1.08E-01 9.51E-02 7.10E-03 2.69E-03 0.50 1.02E-01 9.69E-02 9.45E-02 9.21E-02 9.36E-02 9.52E-02 9.82E-02 1.01E-01 1.07E-01 1.12E-01 1.02E-01 9.68E-02 1.03E-01 9.41E-02 8.64E-03 4.99E-03 0.60 9.79E-02 9.32E-02 9.08E-02 8.85E-02 9.01E-02 9.18E-02 9.46E-02 9.73E-02 1.03E-01 1.08E-01 9.79E-02 9.32E-02 9.94E-02 9.24E-02 9.81E-03 7.44E-03 0.80 9.10E-02 8.68E-02 8.47E-02 8.26E-02 8.41E-02 8.55E-02 8.79E-02 9.03E-02 9.54E-02 1.00E-01 9.10E-02 8.67E-02 9.30E-02 8.82E-02 1.23E-02 1.21E-02 1.0 8.48E-02 8.11E-02 7.92E-02 7.73E-02 7.87E-02 8.01E-02 8.21E-02 8.41E-02 8.88E-02 9.35E-02 8.48E-02 8.13E-02 8.69E-02 8.37E-02 1.41E-02 1.57E-02 1.5 7.11E-02 6.81E-02 6.67E-02 6.53E-02 6.65E-02 6.76E-02 6.89E-02 7.01E-02 7.42E-02 7.82E-02 7.11E-02 6.90E-02 7.39E-02 7.22E-02 1.67E-02 2.01E-02 2.0 6.01E-02 5.80E-02 5.69E-02 5.57E-02 5.66E-02 5.75E-02 5.84E-02 5.92E-02 6.24E-02 6.56E-02 6.01E-02 5.89E-02 6.33E-02 6.21E-02 1.70E-02 2.07E-02 3.0 4.41E-02 4.27E-02 4.19E-02 4.12E-02 4.17E-02 4.22E-02 4.28E-02 4.34E-02 4.56E-02 4.78E-02 4.41E-02 4.33E-02 4.70E-02 4.58E-02 1.46E-02 1.86E-02 4.0 3.34E-02 3.23E-02 3.17E-02 3.12E-02 3.16E-02 3.20E-02 3.25E-02 3.29E-02 3.45E-02 3.61E-02 3.34E-02 3.29E-02 3.56E-02 3.46E-02 1.20E-02 1.56E-02 5.0 2.65E-02 2.56E-02 2.50E-02 2.45E-02 2.49E-02 2.53E-02 2.56E-02 2.59E-02 2.73E-02 2.86E-02 2.65E-02 2.59E-02 2.80E-02 2.73E-02 9.99E-03 1.26E-02 6.0 2.18E-02 2.11E-02 2.07E-02 2.03E-02 2.06E-02 2.08E-02 2.11E-02 2.14E-02 2.24E-02 2.34E-02 2.18E-02 2.12E-02 2.30E-02 2.25E-02 8.38E-03 1.04E-02 8.0 1.62E-02 1.57E-02 1.54E-02 1.51E-02 1.52E-02 1.54E-02 1.57E-02 1.59E-02 1.66E-02 1.74E-02 1.62E-02 1.58E-02 1.71E-02 1.66E-02 6.37E-03 7.62E-03 10.0 1.30E-02 1.25E-02 1.23E-02 1.20E-02 1.21E-02 1.22E-02 1.25E-02 1.27E-02 1.33E-02 1.38E-02 1.30E-02 1.25E-02 1.36E-02 1.32E-02 5.11E-03 6.10E-03 Table C 48. Specific absorbed fractions for cartilage targets in the femur. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.70E-01 0.003 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 2.44E-07 7.18E-06 3.70E-01 0.005 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 4.44E-07 1.92E-05 3.69E-01 0.010 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 9.81E-07 6.06E-05 3.69E-01 0.015 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.28E-04 3.69E-01 0.020 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.48E-06 2.14E-04 3.69E-01 0.030 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 3.79E-06 4.00E-04 3.68E-01 0.040 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 5.55E-06 6.95E-04 3.67E-01 0.050 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 6.79E-06 9.84E-04 3.65E-01 0.060 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 9.46E-06 1.35E-03 3.64E-01 0.080 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 1.43E-05 2.08E-03 3.60E-01 0.10 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.15E-05 2.98E-03 3.57E-01 0.15 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 5.37E-05 4.95E-03 3.47E-01 0.20 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 1.84E-04 7.18E-03 3.36E-01 0.30 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.30E-03 1.16E-02 3.12E-01 0.40 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 3.69E-03 1.40E-02 2.85E-01 0.50 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 6.81E-03 1.53E-02 2.60E-01 0.60 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02 1.58E-02 2.36E-01 0.80 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.66E-02 1.49E-02 1.95E-01 1.0 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 2.12E-02 1.36E-02 1.64E-01 1.5 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 2.68E-02 1.05E-02 1.17E-01 2.0 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 2.82E-02 8.87E-03 9.33E-02 3.0 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 2.62E-02 7.32E-03 6.69E-02 4.0 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 6.63E-03 5.20E-02 5.0 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 1.84E-02 6.12E-03 4.23E-02 6.0 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 1.54E-02 5.53E-03 3.54E-02 8.0 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 4.48E-03 2.64E-02 10.0 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 9.25E-03 3.70E-03 2.11E-02 1 TIM Sources are run at 50% Cellularity

PAGE 388

388 Table C 49. Specific absorbed fractions for active marrow targets in the patella. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.64E+01 2.94E+01 3.30E+01 3.77E+01 4.40E+01 5.28E+01 6.60E+01 8.81E+01 1.32E+02 2.64E+02 2.64E+01 1.58E-04 1.31E+01 3.46E-05 0.00E+00 0.00E+00 0.003 2.64E+01 2.93E+01 3.30E+01 3.77E+01 4.39E+01 5.27E+01 6.59E+01 8.78E+01 1.32E+02 2.63E+02 2.64E+01 2.89E-02 1.39E+01 5.37E-03 3.46E-03 0.00E+00 0.005 2.64E+01 2.93E+01 3.29E+01 3.76E+01 4.38E+01 5.25E+01 6.56E+01 8.74E+01 1.31E+02 2.62E+02 2.64E+01 1.45E-01 1.39E+01 3.51E-02 9.01E-03 0.00E+00 0.010 2.62E+01 2.91E+01 3.27E+01 3.72E+01 4.33E+01 5.19E+01 6.47E+01 8.60E+01 1.29E+02 2.57E+02 2.62E+01 6.64E-01 1.39E+01 1.72E-01 3.01E-02 0.00E+00 0.015 2.61E+01 2.88E+01 3.23E+01 3.67E+01 4.26E+01 5.08E+01 6.32E+01 8.38E+01 1.25E+02 2.49E+02 2.61E+01 1.36E+00 1.39E+01 3.52E-01 6.04E-02 0.00E+00 0.020 2.58E+01 2.85E+01 3.18E+01 3.60E+01 4.17E+01 4.95E+01 6.14E+01 8.11E+01 1.21E+02 2.39E+02 2.58E+01 2.23E+00 1.40E+01 5.81E-01 1.01E-01 0.00E+00 0.030 2.53E+01 2.76E+01 3.05E+01 3.43E+01 3.93E+01 4.63E+01 5.68E+01 7.43E+01 1.09E+02 2.14E+02 2.53E+01 4.39E+00 1.39E+01 1.17E+00 2.03E-01 7.25E-05 0.040 2.46E+01 2.66E+01 2.91E+01 3.23E+01 3.65E+01 4.25E+01 5.15E+01 6.64E+01 9.62E+01 1.86E+02 2.46E+01 6.87E+00 1.39E+01 1.87E+00 3.26E-01 9.45E-05 0.050 2.38E+01 2.54E+01 2.75E+01 3.01E+01 3.36E+01 3.85E+01 4.58E+01 5.79E+01 8.22E+01 1.55E+02 2.38E+01 9.42E+00 1.39E+01 2.67E+00 4.60E-01 1.16E-04 0.060 2.29E+01 2.42E+01 2.58E+01 2.79E+01 3.06E+01 3.45E+01 4.02E+01 4.97E+01 6.86E+01 1.25E+02 2.29E+01 1.18E+01 1.39E+01 3.53E+00 6.07E-01 1.43E-04 0.080 2.12E+01 2.19E+01 2.28E+01 2.40E+01 2.56E+01 2.77E+01 3.09E+01 3.61E+01 4.64E+01 7.74E+01 2.12E+01 1.52E+01 1.38E+01 5.25E+00 9.05E-01 1.92E-04 0.10 1.96E+01 2.01E+01 2.06E+01 2.13E+01 2.23E+01 2.36E+01 2.55E+01 2.86E+01 3.48E+01 5.33E+01 1.96E+01 1.61E+01 1.39E+01 6.85E+00 1.22E+00 2.61E-04 0.15 1.65E+01 1.67E+01 1.70E+01 1.73E+01 1.77E+01 1.83E+01 1.92E+01 2.06E+01 2.34E+01 3.17E+01 1.65E+01 1.49E+01 1.43E+01 9.74E+00 2.13E+00 1.31E-03 0.20 1.49E+01 1.50E+01 1.52E+01 1.54E+01 1.57E+01 1.61E+01 1.66E+01 1.74E+01 1.91E+01 2.43E+01 1.49E+01 1.39E+01 1.43E+01 1.08E+01 3.05E+00 4.39E-02 0.30 1.33E+01 1.34E+01 1.35E+01 1.36E+01 1.38E+01 1.40E+01 1.43E+01 1.48E+01 1.57E+01 1.84E+01 1.33E+01 1.29E+01 1.38E+01 1.11E+01 4.16E+00 4.38E-01 0.40 1.22E+01 1.23E+01 1.23E+01 1.24E+01 1.25E+01 1.27E+01 1.29E+01 1.32E+01 1.38E+01 1.56E+01 1.22E+01 1.19E+01 1.30E+01 1.06E+01 4.56E+00 1.07E+00 0.50 1.12E+01 1.13E+01 1.13E+01 1.14E+01 1.15E+01 1.16E+01 1.17E+01 1.19E+01 1.24E+01 1.38E+01 1.12E+01 1.10E+01 1.21E+01 1.00E+01 4.67E+00 1.63E+00 0.60 1.03E+01 1.03E+01 1.04E+01 1.04E+01 1.05E+01 1.06E+01 1.07E+01 1.08E+01 1.12E+01 1.23E+01 1.03E+01 1.01E+01 1.11E+01 9.31E+00 4.63E+00 1.99E+00 0.80 8.55E+00 8.58E+00 8.60E+00 8.62E+00 8.67E+00 8.74E+00 8.81E+00 8.93E+00 9.20E+00 9.98E+00 8.55E+00 8.43E+00 9.26E+00 7.83E+00 4.35E+00 2.30E+00 1.0 7.00E+00 7.02E+00 7.04E+00 7.06E+00 7.10E+00 7.14E+00 7.20E+00 7.29E+00 7.49E+00 8.08E+00 7.00E+00 6.89E+00 7.55E+00 6.46E+00 3.92E+00 2.30E+00 1.5 4.30E+00 4.31E+00 4.32E+00 4.33E+00 4.35E+00 4.37E+00 4.41E+00 4.47E+00 4.60E+00 4.97E+00 4.30E+00 4.22E+00 4.59E+00 3.97E+00 2.66E+00 1.76E+00 2.0 2.96E+00 2.97E+00 2.97E+00 2.98E+00 2.99E+00 3.01E+00 3.04E+00 3.09E+00 3.18E+00 3.46E+00 2.96E+00 2.89E+00 3.17E+00 2.72E+00 1.82E+00 1.22E+00 3.0 1.87E+00 1.87E+00 1.87E+00 1.88E+00 1.89E+00 1.90E+00 1.92E+00 1.95E+00 2.01E+00 2.20E+00 1.87E+00 1.83E+00 2.00E+00 1.71E+00 1.11E+00 7.38E-01 4.0 1.38E+00 1.39E+00 1.39E+00 1.39E+00 1.40E+00 1.41E+00 1.42E+00 1.45E+00 1.49E+00 1.64E+00 1.38E+00 1.35E+00 1.48E+00 1.27E+00 8.19E-01 5.43E-01 5.0 1.10E+00 1.11E+00 1.11E+00 1.11E+00 1.12E+00 1.12E+00 1.13E+00 1.15E+00 1.19E+00 1.30E+00 1.10E+00 1.08E+00 1.18E+00 1.01E+00 6.47E-01 4.31E-01 6.0 9.18E-01 9.19E-01 9.22E-01 9.25E-01 9.30E-01 9.37E-01 9.46E-01 9.61E-01 9.93E-01 1.09E+00 9.18E-01 8.98E-01 9.79E-01 8.40E-01 5.37E-01 3.59E-01 8.0 6.87E-01 6.89E-01 6.91E-01 6.94E-01 6.98E-01 7.02E-01 7.10E-01 7.22E-01 7.46E-01 8.16E-01 6.87E-01 6.73E-01 7.35E-01 6.30E-01 4.02E-01 2.68E-01 10.0 5.51E-01 5.52E-01 5.54E-01 5.56E-01 5.59E-01 5.63E-01 5.68E-01 5.78E-01 5.96E-01 6.53E-01 5.51E-01 5.39E-01 5.88E-01 5.04E-01 3.21E-01 2.14E-01 Table C 50. Specific absorbed fractions for shallow marrow targets in the patella. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 2.54E+01 2.53E+01 2.52E+01 2.51E+01 2.51E+01 2.50E+01 2.49E+01 2.48E+01 2.50E+01 2.51E+01 2.54E+01 2.58E+01 2.12E+01 5.70E-05 0.00E+00 0.00E+00 0.003 2.53E+01 2.53E+01 2.52E+01 2.51E+01 2.50E+01 2.49E+01 2.48E+01 2.47E+01 2.49E+01 2.51E+01 2.53E+01 2.58E+01 2.28E+01 1.51E-02 3.08E-03 0.00E+00 0.005 2.53E+01 2.52E+01 2.52E+01 2.51E+01 2.50E+01 2.49E+01 2.48E+01 2.47E+01 2.49E+01 2.51E+01 2.53E+01 2.57E+01 2.29E+01 6.37E-02 8.78E-03 0.00E+00 0.010 2.51E+01 2.50E+01 2.49E+01 2.49E+01 2.48E+01 2.47E+01 2.46E+01 2.45E+01 2.47E+01 2.49E+01 2.51E+01 2.55E+01 2.28E+01 2.83E-01 2.86E-02 0.00E+00 0.015 2.49E+01 2.48E+01 2.47E+01 2.46E+01 2.45E+01 2.45E+01 2.44E+01 2.43E+01 2.44E+01 2.46E+01 2.49E+01 2.52E+01 2.27E+01 5.77E-01 5.59E-02 0.00E+00 0.020 2.45E+01 2.44E+01 2.44E+01 2.43E+01 2.42E+01 2.41E+01 2.40E+01 2.40E+01 2.41E+01 2.42E+01 2.45E+01 2.48E+01 2.26E+01 9.48E-01 9.54E-02 0.00E+00 0.030 2.36E+01 2.35E+01 2.35E+01 2.34E+01 2.34E+01 2.33E+01 2.32E+01 2.31E+01 2.32E+01 2.34E+01 2.36E+01 2.39E+01 2.21E+01 1.89E+00 1.90E-01 6.12E-05 0.040 2.26E+01 2.25E+01 2.25E+01 2.24E+01 2.23E+01 2.23E+01 2.22E+01 2.21E+01 2.23E+01 2.24E+01 2.26E+01 2.27E+01 2.16E+01 3.00E+00 3.04E-01 7.87E-05 0.050 2.14E+01 2.13E+01 2.13E+01 2.13E+01 2.12E+01 2.12E+01 2.11E+01 2.11E+01 2.11E+01 2.12E+01 2.14E+01 2.15E+01 2.11E+01 4.22E+00 4.28E-01 9.96E-05 0.060 2.02E+01 2.02E+01 2.01E+01 2.01E+01 2.01E+01 2.00E+01 2.00E+01 1.99E+01 2.00E+01 2.01E+01 2.02E+01 2.02E+01 2.04E+01 5.48E+00 5.61E-01 1.23E-04 0.080 1.80E+01 1.80E+01 1.80E+01 1.80E+01 1.80E+01 1.80E+01 1.79E+01 1.79E+01 1.79E+01 1.79E+01 1.80E+01 1.80E+01 1.82E+01 7.69E+00 8.33E-01 1.72E-04 0.10 1.65E+01 1.65E+01 1.65E+01 1.65E+01 1.65E+01 1.65E+01 1.64E+01 1.64E+01 1.64E+01 1.64E+01 1.65E+01 1.64E+01 1.62E+01 9.18E+00 1.11E+00 2.69E-04 0.15 1.44E+01 1.44E+01 1.44E+01 1.43E+01 1.43E+01 1.43E+01 1.43E+01 1.43E+01 1.43E+01 1.43E+01 1.44E+01 1.43E+01 1.42E+01 1.10E+01 1.95E+00 1.28E-03 0.20 1.34E+01 1.33E+01 1.33E+01 1.33E+01 1.33E+01 1.33E+01 1.33E+01 1.32E+01 1.32E+01 1.32E+01 1.34E+01 1.33E+01 1.33E+01 1.15E+01 2.84E+00 3.92E-02 0.30 1.22E+01 1.22E+01 1.22E+01 1.22E+01 1.22E+01 1.21E+01 1.21E+01 1.21E+01 1.21E+01 1.21E+01 1.22E+01 1.22E+01 1.22E+01 1.13E+01 3.91E+00 4.08E-01 0.40 1.13E+01 1.13E+01 1.13E+01 1.13E+01 1.13E+01 1.12E+01 1.12E+01 1.12E+01 1.12E+01 1.12E+01 1.13E+01 1.12E+01 1.13E+01 1.08E+01 4.32E+00 1.01E+00 0.50 1.05E+01 1.05E+01 1.04E+01 1.04E+01 1.04E+01 1.04E+01 1.03E+01 1.03E+01 1.03E+01 1.03E+01 1.05E+01 1.04E+01 1.04E+01 1.01E+01 4.44E+00 1.54E+00 0.60 9.64E+00 9.61E+00 9.59E+00 9.58E+00 9.55E+00 9.53E+00 9.50E+00 9.47E+00 9.45E+00 9.44E+00 9.64E+00 9.55E+00 9.57E+00 9.34E+00 4.42E+00 1.90E+00 0.80 8.02E+00 8.01E+00 7.98E+00 7.95E+00 7.93E+00 7.91E+00 7.89E+00 7.87E+00 7.85E+00 7.84E+00 8.02E+00 7.91E+00 7.94E+00 7.85E+00 4.17E+00 2.20E+00 1.0 6.58E+00 6.56E+00 6.54E+00 6.52E+00 6.50E+00 6.49E+00 6.46E+00 6.44E+00 6.42E+00 6.40E+00 6.58E+00 6.48E+00 6.47E+00 6.47E+00 3.75E+00 2.21E+00 1.5 4.04E+00 4.03E+00 4.02E+00 4.00E+00 3.98E+00 3.97E+00 3.95E+00 3.94E+00 3.92E+00 3.90E+00 4.04E+00 3.97E+00 3.93E+00 3.98E+00 2.55E+00 1.69E+00 2.0 2.78E+00 2.77E+00 2.76E+00 2.75E+00 2.74E+00 2.73E+00 2.72E+00 2.70E+00 2.70E+00 2.69E+00 2.78E+00 2.72E+00 2.72E+00 2.74E+00 1.75E+00 1.17E+00 3.0 1.75E+00 1.75E+00 1.74E+00 1.73E+00 1.73E+00 1.72E+00 1.71E+00 1.70E+00 1.70E+00 1.70E+00 1.75E+00 1.72E+00 1.72E+00 1.72E+00 1.07E+00 7.10E-01 4.0 1.30E+00 1.29E+00 1.29E+00 1.28E+00 1.28E+00 1.27E+00 1.27E+00 1.26E+00 1.26E+00 1.25E+00 1.30E+00 1.27E+00 1.27E+00 1.27E+00 7.88E-01 5.23E-01 5.0 1.03E+00 1.03E+00 1.03E+00 1.02E+00 1.02E+00 1.01E+00 1.01E+00 1.01E+00 1.00E+00 1.00E+00 1.03E+00 1.01E+00 1.01E+00 1.01E+00 6.21E-01 4.15E-01 6.0 8.62E-01 8.58E-01 8.54E-01 8.51E-01 8.48E-01 8.45E-01 8.42E-01 8.39E-01 8.35E-01 8.32E-01 8.62E-01 8.46E-01 8.44E-01 8.44E-01 5.16E-01 3.45E-01 8.0 6.46E-01 6.43E-01 6.41E-01 6.39E-01 6.36E-01 6.33E-01 6.31E-01 6.29E-01 6.27E-01 6.24E-01 6.46E-01 6.34E-01 6.32E-01 6.33E-01 3.86E-01 2.58E-01 10.0 5.17E-01 5.15E-01 5.13E-01 5.11E-01 5.09E-01 5.07E-01 5.05E-01 5.03E-01 5.01E-01 4.99E-01 5.17E-01 5.07E-01 5.07E-01 5.07E-01 3.08E-01 2.06E-01

PAGE 389

389 Table C 51. Specific absorbed fractions for cartilage targets in the patella. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.37E+01 0.003 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 4.79E-08 3.35E-03 1.37E+01 0.005 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 1.39E-07 8.03E-03 1.37E+01 0.010 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 6.04E-07 2.86E-02 1.37E+01 0.015 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 1.61E-06 5.80E-02 1.37E+01 0.020 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 3.34E-06 9.33E-02 1.36E+01 0.030 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 9.45E-06 1.88E-01 1.36E+01 0.040 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 1.98E-05 3.06E-01 1.35E+01 0.050 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 3.47E-05 4.38E-01 1.34E+01 0.060 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.93E-05 5.82E-01 1.32E+01 0.080 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 1.36E-04 8.79E-01 1.30E+01 0.10 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 2.93E-04 1.20E+00 1.27E+01 0.15 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 1.54E-03 2.19E+00 1.19E+01 0.20 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 4.23E-02 3.26E+00 1.10E+01 0.30 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.32E-01 4.72E+00 8.82E+00 0.40 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 1.05E+00 4.89E+00 6.88E+00 0.50 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 1.56E+00 4.33E+00 5.55E+00 0.60 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 1.88E+00 3.77E+00 4.63E+00 0.80 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.13E+00 2.97E+00 3.50E+00 1.0 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.11E+00 2.50E+00 2.85E+00 1.5 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.61E+00 1.84E+00 2.03E+00 2.0 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.15E+00 1.37E+00 1.53E+00 3.0 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 7.15E-01 8.77E-01 9.92E-01 4.0 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 5.26E-01 6.52E-01 7.38E-01 5.0 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 4.18E-01 5.21E-01 5.89E-01 6.0 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 3.48E-01 4.34E-01 4.92E-01 8.0 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 2.60E-01 3.26E-01 3.69E-01 10.0 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.08E-01 2.62E-01 2.96E-01 1 TIM Sources are run at 50% Cellularity Table C 52. Specific absorbed fractions for active marrow targets in the ti bia. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 7.27E-01 8.07E-01 9.08E-01 1.04E+00 1.21E+00 1.45E+00 1.82E+00 2.42E+00 3.63E+00 7.27E+00 7.27E-01 2.90E-06 3.77E-01 1.45E-06 0.00E+00 0.00E+00 0.003 7.26E-01 8.06E-01 9.06E-01 1.04E+00 1.21E+00 1.45E+00 1.81E+00 2.41E+00 3.62E+00 7.24E+00 7.26E-01 4.77E-04 3.82E-01 7.14E-05 9.83E-06 0.00E+00 0.005 7.24E-01 8.04E-01 9.04E-01 1.03E+00 1.20E+00 1.44E+00 1.80E+00 2.40E+00 3.60E+00 7.20E+00 7.24E-01 2.83E-03 3.83E-01 3.53E-04 3.01E-05 0.00E+00 0.010 7.17E-01 7.96E-01 8.93E-01 1.02E+00 1.19E+00 1.42E+00 1.77E+00 2.35E+00 3.52E+00 7.03E+00 7.17E-01 1.61E-02 3.83E-01 2.04E-03 9.85E-05 0.00E+00 0.015 7.08E-01 7.84E-01 8.78E-01 9.98E-01 1.16E+00 1.38E+00 1.72E+00 2.29E+00 3.42E+00 6.80E+00 7.08E-01 3.28E-02 3.82E-01 5.67E-03 1.99E-04 0.00E+00 0.020 6.97E-01 7.69E-01 8.58E-01 9.74E-01 1.13E+00 1.34E+00 1.66E+00 2.20E+00 3.28E+00 6.50E+00 6.97E-01 5.38E-02 3.81E-01 9.41E-03 3.38E-04 1.09E-06 0.030 6.71E-01 7.33E-01 8.12E-01 9.13E-01 1.05E+00 1.24E+00 1.52E+00 1.99E+00 2.94E+00 5.77E+00 6.71E-01 1.06E-01 3.76E-01 1.87E-02 7.10E-04 1.26E-06 0.040 6.41E-01 6.94E-01 7.60E-01 8.45E-01 9.60E-01 1.12E+00 1.36E+00 1.76E+00 2.56E+00 4.95E+00 6.41E-01 1.66E-01 3.71E-01 3.03E-02 1.17E-03 1.39E-06 0.050 6.11E-01 6.54E-01 7.08E-01 7.78E-01 8.70E-01 9.99E-01 1.19E+00 1.52E+00 2.16E+00 4.10E+00 6.11E-01 2.29E-01 3.65E-01 4.29E-02 1.67E-03 1.76E-06 0.060 5.83E-01 6.16E-01 6.58E-01 7.12E-01 7.85E-01 8.86E-01 1.04E+00 1.29E+00 1.79E+00 3.29E+00 5.83E-01 2.89E-01 3.58E-01 5.66E-02 2.25E-03 2.21E-06 0.080 5.33E-01 5.53E-01 5.76E-01 6.06E-01 6.46E-01 7.03E-01 7.86E-01 9.25E-01 1.20E+00 2.03E+00 5.33E-01 3.74E-01 3.42E-01 8.45E-02 3.48E-03 3.85E-06 0.10 4.90E-01 5.03E-01 5.17E-01 5.36E-01 5.60E-01 5.94E-01 6.44E-01 7.28E-01 8.94E-01 1.39E+00 4.90E-01 3.95E-01 3.28E-01 1.12E-01 4.69E-03 9.77E-06 0.15 4.03E-01 4.09E-01 4.16E-01 4.24E-01 4.35E-01 4.50E-01 4.74E-01 5.14E-01 5.87E-01 8.08E-01 4.03E-01 3.60E-01 3.00E-01 1.67E-01 7.98E-03 8.80E-05 0.20 3.52E-01 3.56E-01 3.60E-01 3.66E-01 3.72E-01 3.82E-01 3.96E-01 4.19E-01 4.65E-01 6.05E-01 3.52E-01 3.27E-01 2.82E-01 1.97E-01 1.17E-02 4.02E-04 0.30 3.08E-01 3.10E-01 3.12E-01 3.15E-01 3.19E-01 3.24E-01 3.32E-01 3.45E-01 3.69E-01 4.41E-01 3.08E-01 2.95E-01 2.70E-01 2.17E-01 1.80E-02 3.20E-03 0.40 2.82E-01 2.84E-01 2.86E-01 2.88E-01 2.90E-01 2.94E-01 2.99E-01 3.09E-01 3.25E-01 3.73E-01 2.82E-01 2.74E-01 2.61E-01 2.22E-01 2.34E-02 8.47E-03 0.50 2.64E-01 2.66E-01 2.67E-01 2.69E-01 2.71E-01 2.73E-01 2.77E-01 2.84E-01 2.96E-01 3.32E-01 2.64E-01 2.59E-01 2.53E-01 2.23E-01 2.72E-02 1.51E-02 0.60 2.50E-01 2.51E-01 2.52E-01 2.54E-01 2.55E-01 2.57E-01 2.60E-01 2.66E-01 2.75E-01 3.04E-01 2.50E-01 2.45E-01 2.46E-01 2.20E-01 3.10E-02 2.21E-02 0.80 2.27E-01 2.28E-01 2.29E-01 2.29E-01 2.31E-01 2.32E-01 2.34E-01 2.38E-01 2.45E-01 2.66E-01 2.27E-01 2.24E-01 2.21E-01 2.12E-01 3.73E-02 3.38E-02 1.0 2.09E-01 2.10E-01 2.10E-01 2.10E-01 2.11E-01 2.12E-01 2.14E-01 2.17E-01 2.22E-01 2.38E-01 2.09E-01 2.06E-01 2.08E-01 2.00E-01 4.12E-02 4.25E-02 1.5 1.72E-01 1.72E-01 1.73E-01 1.73E-01 1.74E-01 1.74E-01 1.76E-01 1.78E-01 1.81E-01 1.92E-01 1.72E-01 1.71E-01 1.72E-01 1.71E-01 4.42E-02 5.19E-02 2.0 1.43E-01 1.44E-01 1.44E-01 1.44E-01 1.45E-01 1.45E-01 1.46E-01 1.48E-01 1.50E-01 1.58E-01 1.43E-01 1.42E-01 1.42E-01 1.44E-01 4.03E-02 5.27E-02 3.0 1.01E-01 1.01E-01 1.01E-01 1.01E-01 1.02E-01 1.02E-01 1.03E-01 1.04E-01 1.05E-01 1.10E-01 1.01E-01 1.00E-01 1.03E-01 1.02E-01 3.13E-02 4.55E-02 4.0 7.45E-02 7.44E-02 7.45E-02 7.46E-02 7.48E-02 7.50E-02 7.54E-02 7.60E-02 7.72E-02 8.08E-02 7.45E-02 7.36E-02 7.40E-02 7.51E-02 2.45E-02 3.58E-02 5.0 5.83E-02 5.85E-02 5.85E-02 5.85E-02 5.87E-02 5.90E-02 5.93E-02 5.98E-02 6.07E-02 6.34E-02 5.83E-02 5.76E-02 5.70E-02 5.86E-02 2.00E-02 2.81E-02 6.0 4.82E-02 4.81E-02 4.83E-02 4.84E-02 4.85E-02 4.85E-02 4.88E-02 4.92E-02 5.01E-02 5.26E-02 4.82E-02 4.76E-02 4.78E-02 4.84E-02 1.67E-02 2.31E-02 8.0 3.59E-02 3.59E-02 3.60E-02 3.61E-02 3.61E-02 3.62E-02 3.64E-02 3.67E-02 3.73E-02 3.94E-02 3.59E-02 3.55E-02 3.57E-02 3.60E-02 1.28E-02 1.71E-02 10.0 2.86E-02 2.86E-02 2.87E-02 2.87E-02 2.88E-02 2.89E-02 2.91E-02 2.93E-02 2.98E-02 3.12E-02 2.86E-02 2.83E-02 2.81E-02 2.88E-02 1.03E-02 1.36E-02

PAGE 390

390 Table C 53. Specific absorbed fractions for shallow marrow targets in the tibia. (TM50TM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 8.31E-01 8.22E-01 8.13E-01 8.04E-01 7.95E-01 7.85E-01 7.76E-01 7.67E-01 7.57E-01 7.47E-01 8.31E-01 8.27E-01 7.96E-01 1.45E-06 0.00E+00 0.00E+00 0.003 8.28E-01 8.19E-01 8.11E-01 8.02E-01 7.93E-01 7.84E-01 7.75E-01 7.66E-01 7.56E-01 7.46E-01 8.28E-01 8.28E-01 8.31E-01 7.14E-05 9.83E-06 0.00E+00 0.005 8.27E-01 8.17E-01 8.08E-01 8.00E-01 7.91E-01 7.81E-01 7.73E-01 7.64E-01 7.54E-01 7.44E-01 8.27E-01 8.24E-01 8.34E-01 3.53E-04 3.01E-05 0.00E+00 0.010 8.21E-01 8.13E-01 8.04E-01 7.96E-01 7.86E-01 7.77E-01 7.68E-01 7.59E-01 7.50E-01 7.41E-01 8.21E-01 8.18E-01 8.32E-01 2.04E-03 9.85E-05 0.00E+00 0.015 8.12E-01 8.03E-01 7.95E-01 7.86E-01 7.77E-01 7.67E-01 7.60E-01 7.52E-01 7.44E-01 7.36E-01 8.12E-01 8.08E-01 8.27E-01 5.67E-03 1.99E-04 0.00E+00 0.020 8.00E-01 7.91E-01 7.83E-01 7.74E-01 7.66E-01 7.57E-01 7.50E-01 7.42E-01 7.35E-01 7.29E-01 8.00E-01 7.94E-01 8.21E-01 9.41E-03 3.38E-04 1.09E-06 0.030 7.72E-01 7.62E-01 7.53E-01 7.45E-01 7.37E-01 7.29E-01 7.24E-01 7.19E-01 7.14E-01 7.10E-01 7.72E-01 7.64E-01 7.99E-01 1.87E-02 7.10E-04 1.26E-06 0.040 7.35E-01 7.25E-01 7.17E-01 7.08E-01 7.03E-01 6.97E-01 6.93E-01 6.90E-01 6.90E-01 6.90E-01 7.35E-01 7.24E-01 7.76E-01 3.03E-02 1.17E-03 1.39E-06 0.050 6.96E-01 6.87E-01 6.78E-01 6.69E-01 6.65E-01 6.60E-01 6.60E-01 6.59E-01 6.61E-01 6.64E-01 6.96E-01 6.83E-01 7.49E-01 4.29E-02 1.67E-03 1.76E-06 0.060 6.57E-01 6.44E-01 6.36E-01 6.28E-01 6.25E-01 6.22E-01 6.24E-01 6.25E-01 6.32E-01 6.38E-01 6.57E-01 6.38E-01 7.18E-01 5.66E-02 2.25E-03 2.21E-06 0.080 5.81E-01 5.69E-01 5.62E-01 5.55E-01 5.53E-01 5.52E-01 5.58E-01 5.63E-01 5.76E-01 5.89E-01 5.81E-01 5.64E-01 6.29E-01 8.45E-02 3.48E-03 3.85E-06 0.10 5.28E-01 5.14E-01 5.08E-01 5.02E-01 5.01E-01 5.01E-01 5.08E-01 5.15E-01 5.31E-01 5.46E-01 5.28E-01 5.07E-01 5.46E-01 1.12E-01 4.69E-03 9.77E-06 0.15 4.38E-01 4.25E-01 4.18E-01 4.11E-01 4.13E-01 4.15E-01 4.23E-01 4.32E-01 4.49E-01 4.65E-01 4.38E-01 4.17E-01 4.39E-01 1.67E-01 7.98E-03 8.80E-05 0.20 3.92E-01 3.82E-01 3.75E-01 3.67E-01 3.69E-01 3.70E-01 3.80E-01 3.89E-01 4.05E-01 4.21E-01 3.92E-01 3.72E-01 3.95E-01 1.97E-01 1.17E-02 4.02E-04 0.30 3.58E-01 3.47E-01 3.41E-01 3.36E-01 3.38E-01 3.40E-01 3.48E-01 3.56E-01 3.72E-01 3.88E-01 3.58E-01 3.40E-01 3.62E-01 2.17E-01 1.80E-02 3.20E-03 0.40 3.38E-01 3.27E-01 3.22E-01 3.17E-01 3.18E-01 3.19E-01 3.27E-01 3.35E-01 3.51E-01 3.66E-01 3.38E-01 3.19E-01 3.44E-01 2.22E-01 2.34E-02 8.47E-03 0.50 3.22E-01 3.13E-01 3.07E-01 3.02E-01 3.03E-01 3.04E-01 3.12E-01 3.19E-01 3.34E-01 3.49E-01 3.22E-01 3.04E-01 3.30E-01 2.23E-01 2.72E-02 1.51E-02 0.60 3.08E-01 2.98E-01 2.93E-01 2.89E-01 2.90E-01 2.91E-01 2.98E-01 3.05E-01 3.18E-01 3.31E-01 3.08E-01 2.91E-01 3.19E-01 2.20E-01 3.10E-02 2.21E-02 0.80 2.83E-01 2.75E-01 2.71E-01 2.66E-01 2.67E-01 2.68E-01 2.74E-01 2.80E-01 2.91E-01 3.02E-01 2.83E-01 2.68E-01 2.98E-01 2.12E-01 3.73E-02 3.38E-02 1.0 2.60E-01 2.54E-01 2.50E-01 2.46E-01 2.47E-01 2.47E-01 2.52E-01 2.57E-01 2.67E-01 2.76E-01 2.60E-01 2.48E-01 2.78E-01 2.00E-01 4.12E-02 4.25E-02 1.5 2.15E-01 2.10E-01 2.07E-01 2.05E-01 2.05E-01 2.06E-01 2.09E-01 2.11E-01 2.17E-01 2.23E-01 2.15E-01 2.06E-01 2.38E-01 1.71E-01 4.42E-02 5.19E-02 2.0 1.79E-01 1.76E-01 1.74E-01 1.72E-01 1.72E-01 1.72E-01 1.74E-01 1.76E-01 1.81E-01 1.85E-01 1.79E-01 1.71E-01 2.04E-01 1.44E-01 4.03E-02 5.27E-02 3.0 1.26E-01 1.24E-01 1.22E-01 1.21E-01 1.21E-01 1.21E-01 1.22E-01 1.24E-01 1.26E-01 1.29E-01 1.26E-01 1.21E-01 1.50E-01 1.02E-01 3.13E-02 4.55E-02 4.0 9.30E-02 9.09E-02 8.99E-02 8.88E-02 8.87E-02 8.86E-02 8.97E-02 9.08E-02 9.27E-02 9.47E-02 9.30E-02 8.88E-02 1.13E-01 7.51E-02 2.45E-02 3.58E-02 5.0 7.29E-02 7.14E-02 7.05E-02 6.96E-02 6.96E-02 6.97E-02 7.06E-02 7.14E-02 7.28E-02 7.43E-02 7.29E-02 6.96E-02 8.86E-02 5.86E-02 2.00E-02 2.81E-02 6.0 6.02E-02 5.88E-02 5.82E-02 5.75E-02 5.74E-02 5.73E-02 5.80E-02 5.87E-02 6.02E-02 6.16E-02 6.02E-02 5.74E-02 7.31E-02 4.84E-02 1.67E-02 2.31E-02 8.0 4.48E-02 4.40E-02 4.35E-02 4.30E-02 4.29E-02 4.28E-02 4.32E-02 4.37E-02 4.48E-02 4.60E-02 4.48E-02 4.28E-02 5.41E-02 3.60E-02 1.28E-02 1.71E-02 10.0 3.58E-02 3.50E-02 3.46E-02 3.42E-02 3.42E-02 3.41E-02 3.45E-02 3.49E-02 3.57E-02 3.65E-02 3.58E-02 3.41E-02 4.31E-02 2.88E-02 1.03E-02 1.36E-02 Table C 54. Specific absorbed fractions for cartilage targets in the tibia. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 1.00E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.71E-07 5.73E-01 3.00E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.45E-05 5.73E-01 5.00E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.77E-05 5.73E-01 1.00E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.48E-04 5.72E-01 1.50E-02 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 7.79E-08 3.11E-04 5.72E-01 2.00E-02 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 1.08E-07 4.89E-04 5.71E-01 3.00E-02 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 1.95E-07 9.82E-04 5.69E-01 4.00E-02 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 3.56E-07 1.62E-03 5.68E-01 5.00E-02 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 7.28E-07 2.38E-03 5.65E-01 6.00E-02 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 1.42E-06 3.05E-03 5.63E-01 8.00E-02 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 3.85E-06 4.80E-03 5.57E-01 1.00E-01 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 1.25E-05 6.79E-03 5.51E-01 1.50E-01 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 8.11E-05 1.17E-02 5.34E-01 2.00E-01 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 4.22E-04 1.73E-02 5.14E-01 3.00E-01 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 3.19E-03 2.69E-02 4.69E-01 4.00E-01 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 8.55E-03 3.27E-02 4.22E-01 5.00E-01 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 1.53E-02 3.53E-02 3.78E-01 6.00E-01 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 2.25E-02 3.54E-02 3.38E-01 8.00E-01 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.44E-02 3.17E-02 2.74E-01 1.00E+00 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 4.29E-02 2.83E-02 2.28E-01 1.50E+00 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 5.07E-02 2.20E-02 1.62E-01 2.00E+00 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 5.15E-02 1.82E-02 1.27E-01 3.00E+00 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 4.47E-02 1.47E-02 9.19E-02 4.00E+00 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 3.58E-02 1.25E-02 7.19E-02 5.00E+00 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 2.87E-02 1.08E-02 5.78E-02 6.00E+00 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 2.38E-02 9.37E-03 4.81E-02 8.00E+00 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 1.77E-02 7.32E-03 3.60E-02 1.00E+01 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 1.42E-02 6.08E-03 2.90E-02 1 TIM Sources are run at 50% Cellularity

PAGE 391

391 Table C 55. Specific absorbed fractions for active marrow targets in the fibula. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 3.62E+00 4.02E+00 4.52E+00 5.16E+00 6.03E+00 7.23E+00 9.04E+00 1.21E+01 1.81E+01 3.62E+01 3.62E+00 1.44E-05 1.88E+00 0.00E+00 0.00E+00 0.00E+00 0.003 3.61E+00 4.01E+00 4.51E+00 5.15E+00 6.01E+00 7.21E+00 9.01E+00 1.20E+01 1.80E+01 3.60E+01 3.61E+00 2.72E-03 1.90E+00 1.68E-03 1.01E-04 0.00E+00 0.005 3.60E+00 4.00E+00 4.50E+00 5.14E+00 5.99E+00 7.18E+00 8.97E+00 1.20E+01 1.79E+01 3.58E+01 3.60E+00 1.62E-02 1.90E+00 4.23E-03 2.07E-04 0.00E+00 0.010 3.58E+00 3.97E+00 4.45E+00 5.08E+00 5.91E+00 7.08E+00 8.83E+00 1.17E+01 1.76E+01 3.51E+01 3.58E+00 8.92E-02 1.91E+00 1.38E-02 7.28E-04 1.08E-05 0.015 3.54E+00 3.92E+00 4.38E+00 4.99E+00 5.79E+00 6.92E+00 8.61E+00 1.14E+01 1.71E+01 3.39E+01 3.54E+00 1.82E-01 1.90E+00 2.86E-02 1.59E-03 1.39E-05 0.020 3.49E+00 3.85E+00 4.30E+00 4.88E+00 5.64E+00 6.72E+00 8.34E+00 1.10E+01 1.64E+01 3.25E+01 3.49E+00 3.00E-01 1.89E+00 4.65E-02 2.62E-03 2.05E-05 0.030 3.38E+00 3.69E+00 4.09E+00 4.60E+00 5.28E+00 6.23E+00 7.66E+00 1.00E+01 1.48E+01 2.90E+01 3.38E+00 5.92E-01 1.87E+00 9.24E-02 5.31E-03 4.03E-05 0.040 3.24E+00 3.51E+00 3.85E+00 4.28E+00 4.86E+00 5.67E+00 6.88E+00 8.90E+00 1.29E+01 2.50E+01 3.24E+00 9.26E-01 1.84E+00 1.49E-01 8.23E-03 7.23E-05 0.050 3.10E+00 3.32E+00 3.59E+00 3.95E+00 4.42E+00 5.08E+00 6.07E+00 7.72E+00 1.10E+01 2.08E+01 3.10E+00 1.27E+00 1.81E+00 2.16E-01 1.19E-02 1.25E-04 0.060 2.96E+00 3.14E+00 3.35E+00 3.62E+00 3.99E+00 4.52E+00 5.29E+00 6.57E+00 9.13E+00 1.68E+01 2.96E+00 1.59E+00 1.78E+00 2.82E-01 1.62E-02 1.89E-04 0.080 2.71E+00 2.81E+00 2.93E+00 3.08E+00 3.29E+00 3.58E+00 4.01E+00 4.73E+00 6.15E+00 1.04E+01 2.71E+00 2.05E+00 1.70E+00 4.20E-01 2.50E-02 4.29E-04 0.10 2.49E+00 2.55E+00 2.63E+00 2.72E+00 2.85E+00 3.02E+00 3.28E+00 3.71E+00 4.57E+00 7.13E+00 2.49E+00 2.15E+00 1.62E+00 5.53E-01 3.39E-02 8.52E-04 0.15 2.03E+00 2.06E+00 2.09E+00 2.14E+00 2.20E+00 2.28E+00 2.40E+00 2.60E+00 2.97E+00 4.10E+00 2.03E+00 1.91E+00 1.47E+00 8.23E-01 5.52E-02 3.65E-03 0.20 1.75E+00 1.77E+00 1.79E+00 1.82E+00 1.86E+00 1.92E+00 1.99E+00 2.11E+00 2.34E+00 3.03E+00 1.75E+00 1.69E+00 1.37E+00 9.67E-01 7.23E-02 1.15E-02 0.30 1.49E+00 1.50E+00 1.51E+00 1.53E+00 1.55E+00 1.58E+00 1.62E+00 1.68E+00 1.81E+00 2.17E+00 1.49E+00 1.49E+00 1.28E+00 1.05E+00 9.93E-02 3.76E-02 0.40 1.34E+00 1.34E+00 1.35E+00 1.36E+00 1.37E+00 1.39E+00 1.42E+00 1.47E+00 1.55E+00 1.79E+00 1.34E+00 1.36E+00 1.20E+00 1.04E+00 1.21E-01 6.99E-02 0.50 1.21E+00 1.22E+00 1.22E+00 1.23E+00 1.24E+00 1.26E+00 1.28E+00 1.31E+00 1.37E+00 1.55E+00 1.21E+00 1.26E+00 1.13E+00 1.01E+00 1.40E-01 9.99E-02 0.60 1.11E+00 1.11E+00 1.12E+00 1.13E+00 1.13E+00 1.14E+00 1.16E+00 1.19E+00 1.24E+00 1.38E+00 1.11E+00 1.17E+00 1.06E+00 9.67E-01 1.56E-01 1.32E-01 0.80 9.45E-01 9.46E-01 9.50E-01 9.55E-01 9.60E-01 9.68E-01 9.79E-01 9.97E-01 1.03E+00 1.13E+00 9.45E-01 1.02E+00 9.29E-01 8.64E-01 1.69E-01 1.82E-01 1.0 8.09E-01 8.11E-01 8.13E-01 8.17E-01 8.21E-01 8.26E-01 8.35E-01 8.49E-01 8.76E-01 9.58E-01 8.09E-01 8.84E-01 8.07E-01 7.61E-01 1.62E-01 2.06E-01 1.5 5.56E-01 5.58E-01 5.58E-01 5.59E-01 5.62E-01 5.67E-01 5.72E-01 5.80E-01 5.96E-01 6.45E-01 5.56E-01 6.11E-01 5.62E-01 5.33E-01 1.21E-01 2.16E-01 2.0 4.03E-01 4.03E-01 4.04E-01 4.05E-01 4.07E-01 4.09E-01 4.13E-01 4.20E-01 4.32E-01 4.68E-01 4.03E-01 4.41E-01 4.07E-01 3.87E-01 9.06E-02 1.79E-01 3.0 2.56E-01 2.56E-01 2.57E-01 2.58E-01 2.59E-01 2.61E-01 2.64E-01 2.68E-01 2.76E-01 3.00E-01 2.56E-01 2.81E-01 2.58E-01 2.44E-01 5.97E-02 1.13E-01 4.0 1.89E-01 1.89E-01 1.90E-01 1.90E-01 1.91E-01 1.93E-01 1.95E-01 1.98E-01 2.04E-01 2.22E-01 1.89E-01 2.05E-01 1.90E-01 1.80E-01 4.39E-02 8.21E-02 5.0 1.50E-01 1.50E-01 1.50E-01 1.51E-01 1.51E-01 1.52E-01 1.54E-01 1.57E-01 1.62E-01 1.77E-01 1.50E-01 1.64E-01 1.51E-01 1.43E-01 3.60E-02 6.43E-02 6.0 1.25E-01 1.25E-01 1.26E-01 1.26E-01 1.26E-01 1.27E-01 1.29E-01 1.31E-01 1.35E-01 1.47E-01 1.25E-01 1.36E-01 1.25E-01 1.19E-01 3.00E-02 5.35E-02 8.0 9.33E-02 9.37E-02 9.41E-02 9.46E-02 9.49E-02 9.54E-02 9.65E-02 9.83E-02 1.01E-01 1.11E-01 9.33E-02 1.02E-01 9.38E-02 8.90E-02 2.33E-02 4.01E-02 10.0 7.51E-02 7.48E-02 7.50E-02 7.53E-02 7.57E-02 7.62E-02 7.71E-02 7.87E-02 8.12E-02 8.86E-02 7.51E-02 8.18E-02 7.49E-02 7.12E-02 1.86E-02 3.22E-02 Table C 56. Specific absorbed fractions for shallow marrow targets in the fibula. (TM50AM) g-1TM50 rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 4.03E+00 4.00E+00 3.97E+00 3.93E+00 3.90E+00 3.86E+00 3.83E+00 3.80E+00 3.76E+00 3.72E+00 4.03E+00 4.23E+00 3.73E+00 0.00E+00 0.00E+00 0.00E+00 0.003 4.03E+00 3.99E+00 3.96E+00 3.93E+00 3.89E+00 3.86E+00 3.83E+00 3.80E+00 3.76E+00 3.72E+00 4.03E+00 4.22E+00 3.88E+00 3.43E-03 1.21E-04 0.00E+00 0.005 4.02E+00 3.99E+00 3.95E+00 3.92E+00 3.88E+00 3.85E+00 3.82E+00 3.79E+00 3.75E+00 3.71E+00 4.02E+00 4.21E+00 3.90E+00 8.68E-03 2.93E-04 0.00E+00 0.010 3.98E+00 3.96E+00 3.92E+00 3.89E+00 3.86E+00 3.82E+00 3.79E+00 3.76E+00 3.72E+00 3.68E+00 3.98E+00 4.17E+00 3.90E+00 2.82E-02 9.71E-04 1.32E-05 0.015 3.93E+00 3.90E+00 3.88E+00 3.85E+00 3.81E+00 3.78E+00 3.74E+00 3.71E+00 3.68E+00 3.66E+00 3.93E+00 4.12E+00 3.87E+00 5.83E-02 1.96E-03 2.29E-05 0.020 3.88E+00 3.84E+00 3.81E+00 3.78E+00 3.75E+00 3.72E+00 3.69E+00 3.67E+00 3.64E+00 3.60E+00 3.88E+00 4.05E+00 3.83E+00 9.47E-02 3.04E-03 3.62E-05 0.030 3.72E+00 3.68E+00 3.65E+00 3.63E+00 3.60E+00 3.57E+00 3.55E+00 3.52E+00 3.50E+00 3.49E+00 3.72E+00 3.89E+00 3.74E+00 1.87E-01 6.25E-03 6.23E-05 0.040 3.55E+00 3.51E+00 3.48E+00 3.45E+00 3.42E+00 3.40E+00 3.38E+00 3.37E+00 3.36E+00 3.35E+00 3.55E+00 3.69E+00 3.62E+00 2.99E-01 9.51E-03 1.02E-04 0.050 3.35E+00 3.30E+00 3.27E+00 3.24E+00 3.22E+00 3.20E+00 3.20E+00 3.20E+00 3.20E+00 3.19E+00 3.35E+00 3.47E+00 3.49E+00 4.27E-01 1.37E-02 1.60E-04 0.060 3.14E+00 3.10E+00 3.07E+00 3.04E+00 3.03E+00 3.01E+00 3.01E+00 3.01E+00 3.02E+00 3.04E+00 3.14E+00 3.25E+00 3.35E+00 5.50E-01 1.89E-02 2.41E-04 0.080 2.76E+00 2.72E+00 2.69E+00 2.66E+00 2.65E+00 2.65E+00 2.66E+00 2.68E+00 2.72E+00 2.75E+00 2.76E+00 2.84E+00 2.93E+00 7.81E-01 2.84E-02 5.18E-04 0.10 2.49E+00 2.45E+00 2.42E+00 2.40E+00 2.39E+00 2.39E+00 2.41E+00 2.43E+00 2.48E+00 2.53E+00 2.49E+00 2.55E+00 2.53E+00 9.47E-01 3.87E-02 1.04E-03 0.15 2.05E+00 1.99E+00 1.97E+00 1.94E+00 1.95E+00 1.95E+00 1.98E+00 2.01E+00 2.06E+00 2.11E+00 2.05E+00 2.06E+00 2.01E+00 1.20E+00 6.14E-02 4.16E-03 0.20 1.81E+00 1.78E+00 1.75E+00 1.73E+00 1.73E+00 1.73E+00 1.75E+00 1.78E+00 1.83E+00 1.88E+00 1.81E+00 1.81E+00 1.79E+00 1.30E+00 8.13E-02 1.35E-02 0.30 1.61E+00 1.57E+00 1.55E+00 1.53E+00 1.53E+00 1.54E+00 1.56E+00 1.58E+00 1.63E+00 1.68E+00 1.61E+00 1.62E+00 1.59E+00 1.32E+00 1.11E-01 4.44E-02 0.40 1.47E+00 1.44E+00 1.43E+00 1.41E+00 1.41E+00 1.41E+00 1.43E+00 1.45E+00 1.49E+00 1.53E+00 1.47E+00 1.50E+00 1.48E+00 1.29E+00 1.34E-01 8.17E-02 0.50 1.36E+00 1.33E+00 1.32E+00 1.30E+00 1.30E+00 1.30E+00 1.32E+00 1.33E+00 1.37E+00 1.40E+00 1.36E+00 1.40E+00 1.38E+00 1.23E+00 1.56E-01 1.17E-01 0.60 1.26E+00 1.23E+00 1.22E+00 1.21E+00 1.21E+00 1.21E+00 1.22E+00 1.23E+00 1.26E+00 1.28E+00 1.26E+00 1.32E+00 1.28E+00 1.16E+00 1.72E-01 1.55E-01 0.80 1.08E+00 1.06E+00 1.05E+00 1.04E+00 1.04E+00 1.04E+00 1.05E+00 1.06E+00 1.07E+00 1.09E+00 1.08E+00 1.15E+00 1.12E+00 1.03E+00 1.86E-01 2.14E-01 1.0 9.27E-01 9.14E-01 9.06E-01 8.99E-01 8.97E-01 8.95E-01 9.01E-01 9.08E-01 9.22E-01 9.36E-01 9.27E-01 1.00E+00 9.66E-01 9.06E-01 1.79E-01 2.42E-01 1.5 6.40E-01 6.31E-01 6.25E-01 6.19E-01 6.19E-01 6.19E-01 6.21E-01 6.23E-01 6.30E-01 6.36E-01 6.40E-01 6.92E-01 6.72E-01 6.35E-01 1.35E-01 2.53E-01 2.0 4.64E-01 4.56E-01 4.52E-01 4.48E-01 4.47E-01 4.46E-01 4.48E-01 4.51E-01 4.55E-01 4.60E-01 4.64E-01 5.00E-01 4.86E-01 4.62E-01 1.02E-01 2.09E-01 3.0 2.94E-01 2.90E-01 2.88E-01 2.85E-01 2.84E-01 2.83E-01 2.85E-01 2.86E-01 2.89E-01 2.93E-01 2.94E-01 3.18E-01 3.09E-01 2.92E-01 6.68E-02 1.33E-01 4.0 2.17E-01 2.14E-01 2.12E-01 2.10E-01 2.09E-01 2.09E-01 2.10E-01 2.11E-01 2.13E-01 2.16E-01 2.17E-01 2.32E-01 2.27E-01 2.15E-01 4.92E-02 9.66E-02 5.0 1.72E-01 1.69E-01 1.68E-01 1.66E-01 1.66E-01 1.66E-01 1.67E-01 1.68E-01 1.70E-01 1.72E-01 1.72E-01 1.85E-01 1.81E-01 1.70E-01 4.03E-02 7.55E-02 6.0 1.43E-01 1.42E-01 1.40E-01 1.38E-01 1.38E-01 1.38E-01 1.39E-01 1.39E-01 1.41E-01 1.42E-01 1.43E-01 1.53E-01 1.50E-01 1.42E-01 3.36E-02 6.29E-02 8.0 1.07E-01 1.06E-01 1.05E-01 1.04E-01 1.04E-01 1.04E-01 1.04E-01 1.05E-01 1.06E-01 1.07E-01 1.07E-01 1.15E-01 1.12E-01 1.06E-01 2.61E-02 4.72E-02 10.0 8.61E-02 8.44E-02 8.37E-02 8.30E-02 8.27E-02 8.24E-02 8.31E-02 8.38E-02 8.47E-02 8.56E-02 8.61E-02 9.22E-02 8.97E-02 8.50E-02 2.09E-02 3.79E-02

PAGE 392

392 Table C 57. Specific absorbed fractions for cartilage targets in the fibula. (CAR AM) g-1CAR rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.20E+00 0.003 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 1.23E-06 5.58E-05 1.20E+00 0.005 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 3.03E-06 1.35E-04 1.20E+00 0.010 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 1.03E-05 4.68E-04 1.20E+00 0.015 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 1.92E-05 8.98E-04 1.20E+00 0.020 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 3.24E-05 1.54E-03 1.19E+00 0.030 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 6.86E-05 3.12E-03 1.19E+00 0.040 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 1.24E-04 5.10E-03 1.19E+00 0.050 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 7.34E-03 1.18E+00 0.060 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 2.67E-04 1.00E-02 1.18E+00 0.080 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 1.54E-02 1.16E+00 0.10 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 9.01E-04 2.14E-02 1.15E+00 0.15 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.98E-03 3.56E-02 1.12E+00 0.20 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 1.19E-02 4.63E-02 1.08E+00 0.30 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 3.90E-02 5.68E-02 9.86E-01 0.40 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 7.20E-02 6.21E-02 8.93E-01 0.50 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01 6.28E-02 8.00E-01 0.60 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 1.35E-01 6.35E-02 7.11E-01 0.80 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 1.84E-01 5.64E-02 5.73E-01 1.0 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 4.96E-02 4.78E-01 1.5 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 2.13E-01 3.93E-02 3.44E-01 2.0 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 1.76E-01 3.31E-02 2.76E-01 3.0 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 1.15E-01 2.38E-02 1.87E-01 4.0 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 8.43E-02 1.80E-02 1.39E-01 5.0 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 6.69E-02 1.49E-02 1.10E-01 6.0 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 5.55E-02 1.28E-02 9.20E-02 8.0 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 4.17E-02 9.92E-03 6.90E-02 10.0 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 3.34E-02 8.20E-03 5.51E-02 1 TIM Sources are run at 50% Cellularity Table C 58. Specific absorbed fractions for active marrow targets in the ankle/foot. (AM AM) g-1AM rS) g-1 Cellularity Source Tissue rS Energy 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 100% IM1TBS TBV CBSHCCAR (MeV) (ICRP 70) or CBV 0.001 9.51E-01 1.06E+00 1.19E+00 1.36E+00 1.58E+00 1.90E+00 2.38E+00 3.17E+00 4.75E+00 9.51E+00 9.51E-01 3.91E-06 4.71E-01 7.94E-07 0.00E+00 0.00E+00 0.003 9.50E-01 1.06E+00 1.19E+00 1.36E+00 1.58E+00 1.90E+00 2.37E+00 3.16E+00 4.74E+00 9.48E+00 9.50E-01 4.79E-04 4.98E-01 5.61E-05 9.23E-05 0.00E+00 0.005 9.49E-01 1.05E+00 1.18E+00 1.35E+00 1.58E+00 1.89E+00 2.36E+00 3.15E+00 4.72E+00 9.43E+00 9.49E-01 3.00E-03 5.00E-01 4.28E-04 2.47E-04 0.00E+00 0.010 9.45E-01 1.05E+00 1.18E+00 1.34E+00 1.56E+00 1.87E+00 2.33E+00 3.10E+00 4.63E+00 9.24E+00 9.45E-01 1.89E-02 5.01E-01 4.30E-03 8.30E-04 0.00E+00 0.015 9.39E-01 1.04E+00 1.16E+00 1.