<%BANNER%>

Strength, Modulus of Elasticity, Creep and Shrinkage of Concrete Used in Florida

Permanent Link: http://ufdc.ufl.edu/UFE0024506/00001

Material Information

Title: Strength, Modulus of Elasticity, Creep and Shrinkage of Concrete Used in Florida
Physical Description: 1 online resource (176 p.)
Language: english
Creator: Haranki, Boris
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: concrete, creep, elasticity, florida, modulus, shrinkage, strength
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, M.E.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Title: Strength, Modulus of Elasticity, Creep and Shrinkage of Concrete used in Florida. Name: Boris Haranki Phone: (352)870-5495 email: borizh@ufl.edu Department: Civil Engineering Supervisory committee chair: Dr. Mang Tia Degree: Masters of Engineering Graduation date: April, 2009 Shrinkage deformation affects durability, serviceability, long-term reliability, and structural integrity of concrete. Creep of concrete is an important factor in structural design because when a concrete member is put in service, it will experience temporary and/or permanent deformations which might result in structural failure over the years. This research project is focused on the effects of different compositions of concrete mixtures on these deformations, how the individual components affect these deformations, and how these deformations can be predicted to reduce economic impacts and ensure structural integrity of concretes typically used in Florida.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Boris Haranki.
Thesis: Thesis (M.E.)--University of Florida, 2009.
Local: Adviser: Tia, Mang.
Local: Co-adviser: Najafi, Fazil T.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024506:00001

Permanent Link: http://ufdc.ufl.edu/UFE0024506/00001

Material Information

Title: Strength, Modulus of Elasticity, Creep and Shrinkage of Concrete Used in Florida
Physical Description: 1 online resource (176 p.)
Language: english
Creator: Haranki, Boris
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: concrete, creep, elasticity, florida, modulus, shrinkage, strength
Civil and Coastal Engineering -- Dissertations, Academic -- UF
Genre: Civil Engineering thesis, M.E.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Title: Strength, Modulus of Elasticity, Creep and Shrinkage of Concrete used in Florida. Name: Boris Haranki Phone: (352)870-5495 email: borizh@ufl.edu Department: Civil Engineering Supervisory committee chair: Dr. Mang Tia Degree: Masters of Engineering Graduation date: April, 2009 Shrinkage deformation affects durability, serviceability, long-term reliability, and structural integrity of concrete. Creep of concrete is an important factor in structural design because when a concrete member is put in service, it will experience temporary and/or permanent deformations which might result in structural failure over the years. This research project is focused on the effects of different compositions of concrete mixtures on these deformations, how the individual components affect these deformations, and how these deformations can be predicted to reduce economic impacts and ensure structural integrity of concretes typically used in Florida.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Boris Haranki.
Thesis: Thesis (M.E.)--University of Florida, 2009.
Local: Adviser: Tia, Mang.
Local: Co-adviser: Najafi, Fazil T.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024506:00001


This item has the following downloads:


Full Text

PAGE 10

5858

PAGE 13

5d5d 1.5

PAGE 17

1.1 Background and Research Needs 1.2 Hypothesis 1.3 Objectives of Study

PAGE 18

1.4 Scope of Study 1.5 Research Approach

PAGE 19

2.1 Introduction 2.2 Strength of Concrete 2.2.1 Significance of Studying Strength of Concrete M ixing water :

PAGE 20

Age of concrete : Characteristics and proportions of the materials : Mixing time: Physi cal condition and properties of the specimen :

PAGE 21

Degree of consolidation/ Porosity : 5P5P = 5P5P ,0 (1 ) 5P5P 5P5P ,0 How and how well the testing procedure is performed :

PAGE 22

2.2.2 Effect of Coarse Aggregate on Strength of Concrete 2.2.3 Prediction of Strength of Concrete

PAGE 23

5P5P = 1 2 / 5P5P / 5P5P 1 2

PAGE 24

5P5P = 5P5P 5P5P + + 2 5P5P ( 5P5P ) = + 55 ( 5P5P ) 28 ( 5P5P )28

PAGE 25

2.3 Elastic Modulus of Concrete 2.3.1 Definition and Determination of Elastic Modulus of Concrete

PAGE 26

2.3.2 Significance of Studying Elastic Modulus of Concrete

PAGE 27

2.3.3 Effect of Coarse Aggregate on Elastic Modulus of Concrete

PAGE 28

5P5P = 0+0.2 5P5P 5P5P 0 5P5P

PAGE 29

2.3.4 Models for Predicting Elastic Modulus of Concrete

PAGE 30

5P5P = 33 ( 1.5) 5P5P 5P5P 5P5P =57, 000 5P5P 5P5P = 40, 000 5P5P + 1.0 106 5P5P ( )= 5R5R 1 2 8 1 0.50.5 5P5P

PAGE 31

1 5P5P 2.4 Shrinkage Behavior of Concrete 2.4.1 Origin of Shrinkage of Concrete 1 10 6 5V5V5V5V5V5V5V5V 1 10 6

PAGE 32

2.4.2 Significance of Studying Shrinkage of Concrete

PAGE 33

2.4.3 Effect of Raw Materials on Shrinkage of Concrete 2.4.3.1 Effect of aggregate content on shrinkage behavior of concrete = ( 1 )

PAGE 34

log 5P5P = log 1 1 log 5P5P log1 1

PAGE 35

Aggregate/ cement ratio Shrinkage after six months (10 6) for water/ cement ratio of: 0.4 0.5 0.5 0.7 3 800 1200 4 550 850 1050 5 400 600 750 850 6 300 400 550 650 7 200 300 400 500

PAGE 36

2.4.3.2 Effects of coarse aggregate type on concrete shrinkage

PAGE 37

2.4.3.3 Effects of size and shape of coarse aggregate on concrete shrinkage 2.4.3.4 Effect of other factors on shrinkage behaviors of concrete

PAGE 39

5_5_5_5_ 5_5_5_5_5_5_ 1 2 2.4.4 Models to Predict Concrete Shrinkage 2.4.4.1 CEB-FIP Model for shrinkage strain prediction 5P5P5P5P ( 0) = 5P5P ( 0) 5P5P 28( 0) 5P5P5P5P ( 0) 5P5P ( 0) 5P5P 28( 0)

PAGE 40

5P5P 5P5P = 104 5P5P5P5P + 5P5P5P5P 1 3 5P5P5P5P 5P5P5P5P 28( 0) 28( 0) =0 5P5P ( 0) 0 5P5P 0 0 0=( 5P5P5P5P ) ( 0) =1+ 1 0 0. 46 0 1 3 ( 5P5P5P5P ) = 5.3 5P5P5P5P 5P5P5P5P ( 0) = 1 0.1+ 01 0.2 ( 0) = 01 5;5; + 01 0.3 5;5; = 150 1+ 1.2 0 18 0 + 250 1500

PAGE 41

5P5P5P5P = 5P5P5P5P + =2 5P5P 5P5P 0 0 1 2.4.4.2 Prediction model recommended by ACI -209 Report [1992] ( )= + ( ) ( ) ( ) ( )= 35 + ( ) ( )= 780 10 6 2.5 Creep of Concrete 2.5.1 Rheology of Materials and Definition of Creep of Concrete

PAGE 43

2.5.2 Significance of Studying Creep Behavior of Concrete

PAGE 44

2.5.3 Effect of Aggregate on Creep of Hardened Concrete 5Y5Y5Y5Y 5P5P 5P5P = 5Y5Y5Y5Y 1 1 = 3 ( 1 ) 1+ +2 ( 1 2 )

PAGE 45

5P5P = 0+ 5P5P5P5P 5P5P 5P5P5P5P 0 2.5.4 Prediction Models and Their Limitations of Concrete Creep

PAGE 46

2.5.4.1 C.E.B F.I.P Model Code 5P5P5P5P ( 0) = 5P5P ( 0) 5P5P 28( 0)

PAGE 47

5P5P5P5P ( 0) 5P5P ( 0) 5P5P 28( 0) 5P5P 5P5P = 104 5P5P5P5P + 5P5P5P5P 1 3 5P5P5P5P 5P5P5P5P 28( 0) 28( 0) =0 5P5P ( 0) 0 5P5P 0 0 0=( 5P5P5P5P ) ( 0) =1+ 1 0 0. 46 0 1 3 ( 5P5P5P5P ) = 5.3 5P5P5P5P 5P5P5P5P ( 0) = 1 0.1+ 01 0.2

PAGE 48

( 0) = 01 5;5; + 01 0.3 5;5; = 150 1+ 1.2 0 18 0 + 250 1500 5P5P5P5P = 5P5P5P5P + =2 5P5P 5P5P 0 0 1 2.5.4.2 Model of ACI 209 = + = 0. 6010 + 0. 60 2. 35 5P5P 5P5P

PAGE 49

5P5P = 5Y5Y 5Y5Y =1. 25 ( 5Y5Y ) 0. 118 5Y5Y =1. 27 0. 0067 =1. 14 0. 023 =1. 10 0. 017 = 2 3 1+1. 13 5R5R 0. 5 4 =0. 82 +0. 067 =0. 88 +0. 0024 =0. 46 +0. 09

PAGE 50

3.1 Introduction 3.2 Concrete Mixtures Evaluated 3.2.1 Mix Proportion s of Concrete 3.2.2 Mix Ingredients

PAGE 54

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% #4#8 #16#30#50#100#200Cumullative passing Percentage (%)Size of Sieve 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1.5 in 1 in 1/2 in #4#8Cumullative passing Percentage (%)Size of Sieve

PAGE 55

3.3 Fabrication of Concrete Specimens 3.3.1 The Procedure to Mix Concrete 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1.5 in 1 in 1/2 in #4 #8 Cumulitative passing Percentage (%)Size of Sieve

PAGE 56

3.3.2 The Procedure to Fabricate Specimens

PAGE 57

3.3. 3 The Procedure to Test Specimens 3.4 Curing Conditions for Concrete Specimens

PAGE 58

3.5 Tests on Fresh Concrete

PAGE 59

Note: the values in ( ) were those obtained from the replicate mixes from the previous phase of this study. 3.6 Tests on Hardened Concrete

PAGE 60

3.6.1 Compressive Strength Test 5P5P = 2 5P5P

PAGE 61

3.6.2 Splitting Tensile S trength Test (or Brazilian Test)

PAGE 62

= 2 5555

PAGE 63

3.6.3 Elastic Modulus Test 3.6.4 Shrinkage Test

PAGE 65

= 1 9 ( 5V5V 0) 0 9 5V5V =1

PAGE 66

5V5V 0 0 0 3.6. 5 Creep Test

PAGE 67

5P5P = 1 9 ( 5V5V 0) 0 9 5V5V =1 5P5P 5V5V 0 0 0

PAGE 68

4.1 Introduction 4.2 Creep Test Apparatus

PAGE 69

5Z5Z5Z5Z = 50% 10 000 32= 141 300 4.3 Gage -Point Positioning Guide

PAGE 70

4.4 Preparation of Specimens

PAGE 71

4.5 Mechanical Strain Gauge 4. 6 Creep Testing Procedure

PAGE 72

= = 1 9 5V5V 0( 5V5V ) 0( 5V5V ) 9 5V5V =1 5V5V 0( 5V5V ) 0( 5V5V ) 9 5V5V =1 5V5V 0( 5V5V ) 5V5V 0( 5V5V ) 5V5V 5P5P5P5P = 5P5P5P5P

PAGE 73

5P5P = 5P5P 4. 7 Summary on the Creep Testing Procedure

PAGE 74

5.1 Introduction 5.2 Results and Analysis of Compressive Strength Tests

PAGE 75

Note:* number in parenthesis ( ) indicates actual age in days of samples when tested. 5.2.1 Effects of Water to Cement Ratio and Water Content on C ompressive Strength 5.2.2 Effects of Aggregate Types on Compressive Strength

PAGE 76

0 2000 4000 6000 8000 10000 12000 0.000.100.200.300.400.50Compressive Strength at 28 daysWater to Cementitious Materials Ratio 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0.000.100.200.300.400.50Compressive Strength at 28 daysWater to Cementitious Materials Ratio

PAGE 77

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0.000.100.200.300.400.50Compressive Strength at 91 daysWater to Cementitious Materials Ratio 0 2000 4000 6000 8000 10000 12000 230.0240.0250.0260.0270.0280.0290.0Compressive Strength at 28 daysWater content (lbs/yard3)

PAGE 78

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 230.0240.0250.0260.0270.0280.0290.0Compressive Strength at 28 daysWater content (lbs/yard3)

PAGE 80

5.2.3 Effects of Fly Ash and Slag on Compressive Strength of Concrete 037 14285691 Limestone 0 80778572899395361077111267 Granite 0 655275196686795486098697 0 2000 4000 6000 8000 10000 12000Compressive Strength (psi)

PAGE 81

037 14285691 Limestone 0 4077 4658 6028 6506 6838 7607 Granite 0 388549525807646969527201 0 1000 2000 3000 4000 5000 6000 7000 8000Compressive Strength (psi) 037 14285691 Limestone 0 528964707567824184499426 Granite 0 3818 5151 6137 7262 7782 8041 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000Compressive Strength (psi)

PAGE 82

037 14285691 Limestone 0 571269197114723689969271 Granite 0 4244 4810 5605 6219 6991 7405 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000Compressive Strength (psi) 037 14285691 Limestone 0 5554 7235 8248 8832 9139 9456 Granite 0 296146925692700878548105 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000Compressive Strength (psi)

PAGE 83

0 3 7 14 28 56 91 Limestone 0 637576998587911195299661 Granite 0 2654 3571 4770 5628 6984 6555 0 2000 4000 6000 8000 10000 12000Compressive Strength (psi) 037 14285691 Limestone 0 4324 5374 5927 6392 6794 6917 Granite 0 226743035222661267417233 0 1000 2000 3000 4000 5000 6000 7000 8000Compressive Strength (psi)

PAGE 84

037 14285691 Limestone 0 4795 6114 6939 7525 8119 8208 Granite 0 212336683887499462586160 0 1000 2000 3000 4000 5000 6000 7000 8000 9000Compressive Strength (psi) 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0 20406080100% of 91 day Compressive StrengthAge (days) 1F Flyash w/c=0.24 2F Flyash w/c=0.33 3F Flyash w/c=0.41 4F Flyash w/c=0.37 5S Slag w/c=0.33 6S Slag w/c=0.36 7S Slag w/c=0.41 8S Slag w/c=0.44

PAGE 85

5.2.4 Prediction of Compressive Strength Development ( 5P5P ) = + ( 5P5P )28 ( 5P5P )28 ( 5P5P ) = + ( 5P5P ) ( 5P5P )

PAGE 86

5P5P ( ) 5P5P 28 5P5P ( ) 5P5P5P5P Compressive Strengthage Miami Oolite ACI Georgia Granite

PAGE 87

5.3 Analysis of Splitting Tensile Strength Test Results 5.3.1 Effects of Water to Cement Ratio on Splitting Tensile Strength

PAGE 89

5P5P ( ) 5P5P 28 5P5P ( ) 5P5P5P5P

PAGE 90

Note:* number in parenthesis ( ) indicates actual age in days of samples when tested. 5.3.2 Effects of Coarse Aggregate Type on Splitting Tensile Strength

PAGE 91

0 200 400 600 800 1000 0.150.200.250.300.350.400.450.50Splitting Tensile Strength at 28 days (psi)Water to Cementitious Materials Ratio 0 100 200 300 400 500 600 700 800 900 0.200.250.300.350.400.450.50Splitting Tensile Strength at 91days (psi)Water to Cementitious Materials Ratio

PAGE 92

5.3.3 Effects of Fly Ash and Slag on Splitting Tensile Strength of Concrete 0 3 7 14 28 56 91 Limestone 0 408484528542621659 Granite 0 352421488529548595 0 100 200 300 400 500 600 700Splitting Tensile Strength (psi)

PAGE 93

037 14285691 Limestone 0 513539562624674731 Granite 0 382409503561599651 0 100 200 300 400 500 600 700 800Splitting Tensile Strength (psi) 037 14285691 Limestone 0 442 574 634 689 711 738 Granite 0 282420462525591649 0 100 200 300 400 500 600 700 800Splitting Tensile Strength (psi)

PAGE 94

037 14285691 Limestone 0 570602648672690718 Granite 0 273378440514464500 0 100 200 300 400 500 600 700 800Splitting Tensile Strength (psi) 037 14285691 Limestone 0 426 473 518 548 590 596 Granite 0 245362430504554577 0 100 200 300 400 500 600 700Splitting Tensile Strength (psi)

PAGE 95

037 14285691 Limestone 0 372499550633693703 Granite 0 217312401475432432 0 100 200 300 400 500 600 700 800Splitting Tensile Strength (psi)

PAGE 96

5.4 Relationship between Compressive Strength and Splitting Tensile Strength 5P5P5P5P = 5P5P 5P5P5P5P 5P5P 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0 20406080100% of Splitting Tensile Strength at 91 daysAge (days) Mix 1F, Flyash, w/c=0.24 Mix 2F, Flyash, w/c=0.33 Mix 3F, Flyash, w/c=0.41 Mix 4F, Flyash, w/c=0.37 Mix 5S, Slag, w/c=0.33 Mix 6S, Slag, w/c=0.36 Mix 7S, Slag, w/c=0.41 Mix 8S, Slag, w/c=0.44

PAGE 97

5P5P5P5P =6.7 5P5P 5P5P5P5P =0. 273 ( 5P5P )0. 667 5P5P5P5P =1. 15 ( 5P5P )0. 71 5P5P5P5P = 5P5P 5P5P5P5P = ( 5P5P )

PAGE 98

5.5 Analysis of Elastic Modulus Test Results 0 100 200 300 400 500 600 700 800 900 0 20004000600080001000012000Splitting Tensile Strength (psi)Compressive Strength (psi) Measured ACI Carino and Lew

PAGE 99

Note:* number in parenthesis ( ) indicates actual age in days of samples when tested.

PAGE 100

5.6 Relationship between Compressive Strength and Elastic Modulus 5P5P = 5P5P 5P5P 0 3 7 14 28 56 91 Limestone 0 3.433.774.084.314.434.67 Granite 0 3.8 4.22 4.61 4.96 5.06 5.19 0 1 2 3 4 5 6Modulus of Elasticity (x106 psi)

PAGE 101

037 14285691 Limestone 0 4.44.855.055.145.285.7 Granite 0 4.154.625.525.615.935.96 0 1 2 3 4 5 6 7Modulus of Elasticity (x106 psi) 037 14285691 Limestone 0 4.11 4.66 4.88 5.09 5.23 5.23 Granite 0 3.153.824.655.175.375.56 0 1 2 3 4 5 6Modulus of Elasticity (x106 psi)

PAGE 102

037 14285691 Limestone 0 4.274.925.185.455.625.66 Granite 0 2.83.494.154.785.355.65 0 1 2 3 4 5 6Modulus of Elasticity (x106 psi) 037 14285691 Limestone 0 3.9 4.3 4.52 4.6 4.73 4.76 Granite 0 2.693.384.15.255.65.73 0 1 2 3 4 5 6 7Modulus of Elasticity (x106 psi)

PAGE 103

5P5P 5P5P = 57 000 5P5P 5P5P = 5P5P 1.5 5P5P 5P5P 5P5P 5P5P 5P5P = 33 .0 5P5P 1.5 5P5P 037 14285691 Limestone 0 3.964.394.84 5 5.135.16 Granite 0 2.66 0 3.894.154.855.2 0 1 2 3 4 5 6Modulus of Elasticity (x106 psi)

PAGE 104

5P5P 1.5 5P5P 5P5P = 5P5P 1.5 5P5P + 5P5P 5P5P 5P5P

PAGE 105

5P5P = 31 92 1.5 5P5P + 345 328

PAGE 106

5.7 Summary of Findings 5P5P 1.5 5P5P 0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06 7.00E+06 8.00E+06 0 2000400060008000100001200014000Modulus of Elasticity (psi)Compressive Strength (psi) Limestone Lightweigth Granite 0.00E+00 5.00E+04 1.00E+05 1.50E+05 2.00E+05 2.50E+05 0 2000400060008000100001200014000Modulus of Elasticity (psi)w1.5fc 0.5 Measured

PAGE 108

( 5P5P ) = + ( 5P5P )28 ( 5P5P ) = 4. 00 +0. 85 ( 5P5P )28 ( 5P5P ) = 2. 33 +0. 92 ( 5P5P )28 ( 5P5P ) = 3. 36 +0. 88 ( 5P5P )28 ( 5P5P ) = 5. 50 +0. 78 ( 5P5P )28 5P5P5P5P = 5P5P

PAGE 109

5P5P5P5P =6.7 5P5P 5P5P5P5P =7. 02 5P5P 5P5P5P5P = ( 5P5P ) 5P5P5P5P =1. 15 ( 5P5P )0. 71 5P5P5P5P =2. 40 ( 5P5P )0. 62 5P5P = 5P5P 5P5P = 57 000 5P5P 5P5P = 63 351 5P5P 5P5P = 55 824 5P5P 5P5P = 43 777 5P5P

PAGE 110

5P5P = 5P5P 1.5 5P5P + 5P5P = 31 92 1.5 5P5P + 345 328

PAGE 111

6.1 Introduction 6.2 Results and Analysis of Shrinkage Tests

PAGE 113

* Data has been modified 6.2.1 Effects of Curing Conditions on Shrinkage Behavior of Concrete

PAGE 114

0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 1F2F3F4F5S6S7S8SShrinkage Strain at 91 daysMix 7d curing 14d curing

PAGE 115

0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 1GF2GF3GF4GF5GS6GS7GS8GSShrinkage Strain at 91 daysMix 7d curing 14d curing

PAGE 116

6.2.2 Effects of Mineral Additives on Shrinkage Behavior 0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 4.00E 04 9LF 10LS Shrinkage Strain at 91 daysMix 7 d curing 14 d curing

PAGE 117

6.2.3 Effects of Water Content on Shrinkage Behavior

PAGE 118

6.2.4 Effects of Aggregate Types on Shrinkage Beh avior 0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 230240250260270280290Shrinkage Strain at 91 daysWater Content (lb/cy) Limestone Granite

PAGE 119

6.2.5 Relationship between Compressive Strength and Shrinkage Strain

PAGE 120

= 5P5P 5P5P 0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Shrinkage Strain at 91 days Limestone Granite

PAGE 121

6.2.6 Relatio nship between Elastic Modulus and Shrinkage Strain = 5P5P 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0 20004000600080001000012000Shrinkage Strain at 91 daysCompressive Strength at the Age of Initial Shrinkage (psi) Measured Strain

PAGE 122

5P5P 6.3 Evaluation on Shrinkage Prediction Models 6.3.1 ACI -209 model ( )= + ( )

PAGE 123

( ) ( ) ( ) ( ) ( )= 35 + ( ) 0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 4.00E 04 4.50E 04 0.00E+002.00E+064.00E+066.00E+068.00E+06Shrinkage Strain at 91 DaysModulus of Elasticity (psi) measured

PAGE 124

( ) = 5Y5Y 5Y5Y

PAGE 125

6.3.2 CEB-FIP Model 5P5P5P5P ( ) = 5P5P5P5P 0( ) 5P5P5P5P ( ) ( ) = 203 23 + 5P5P5P5P 0 5P5P5P5P 0= 160 + 10 5`5` (9 0.1 5P5P5P5P ) 10 6 =1. 55 1 0 3 40% 99% 0 =1. 55 1 75 1 3 =0. 8961 5P5P5P5P ( 5P5P ) = 160 + 10 5`5` (9 0.1 5P5P5P5P ) 10 6 0. 8961 5P5P5P5P ( 5P5P ) 5`5` 5P5P5P5P 5P5P

PAGE 126

5P5P5P5P ( 5P5P ) = [ 160 + 50 (9 0.1 5P5P5P5P ) ] 10 6 0. 8961 Variables Standard Codes ACI 209R -5 CEB FIP Concrete strength at 28 days Modulus of elasticity at the time of loading X Type of cement Type of curing X Relative humidity Age of concrete at loading Age of concrete at curing Volume surface ratio X Cement content X Slump X Percentage of fine aggregates by weight X

PAGE 127

Percentage of air content by volume X Concrete density X Shape of cross section X X Water content X X Water cement ratio X X Aggregate cement ratio X X Cross sectional area X Parameter of the section in contact with the atmosphere X ( ) 5P5P5P5P 0 ( 5P5P ) 8GS 0.56 0.8959 3.95E 04 2.21E 04 ( ) ( )

PAGE 128

0.00E+00 1.00E 04 2.00E 04 3.00E 04 4.00E 04 5.00E 04 8.13E 181.00E 042.00E 043.00E 044.00E 045.00E 04Shrinkage Strain from ExperimentPredicted Shrinkage Strain ACI 209 Model C.E.B.F.I.P. model

PAGE 129

6.4 Prediction of Ultimate Shrinkage Strain ( )= + ( ) 6.4.1 Least Square Method of Curve-fitting = 1 2+ 2 2+...+ 2= 5V5V 2= [ 5V5V 5V5V ]2= 5Z5Z5Z5Z5Z5Z 5Z5Z 5V5V =1 5V5V =1 5V5V 5V5V 5V5V 6.4.2 Evaluat ion Methods on the Goodness of Fit

PAGE 130

5F5F = 5V5V ( 5V5V 5V5V )2 5V5V =1 5F5F = 5V5V ( 5V5V )2 5V5V =1 5F5F = 5V5V ( 5V5V )2 5V5V =1

PAGE 131

5F5F = 5F5F + 5F5F 2= 5F5F 5F5F =1 5F5F 5F5F 2= 2 ( 5X5X +1) = 5F5F 5Q5Q 5Q5Q 2

PAGE 132

6.4.3 Predicted Results 0.00E+00 5.00E 05 1.00E 04 1.50E 04 2.00E 04 2.50E 04 3.00E 04 3.50E 04 4.00E 04 Mix1Mix2Mix3Mix4Mix5Mix6Mix7Mix8Ultimate Shrinkage Strain Limestone Granite

PAGE 133

6.5 Summary of Findings

PAGE 134

=4. 139 10 4 7. 454 10 5 5P5P 5P5P =5. 616 10 4 1. 916 10 7 5P5P 5P5P 2. 02 10 4 3. 34 10 4 1. 37 10 4 3. 14 10 4 3. 49 10 4 4. 22 10 4

PAGE 135

7.1 Introduction 7.2 Result and Analysis of Creep Tests

PAGE 136

7.2.1 Effect of Curing Conditions on Creep Behavior of Concrete 0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 1F2F3F4F5S6S7S8S9LF10LSCreep Strain at 91 days 7day curing 14day curing 0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 1GF2GF3GF4GF5GS6GS7GS8GSCreep Strain at 91 days 7day curing 14day curing

PAGE 137

7.2.2 Effect of Aggregate Types on Creep Behavior of Concrete 7.2.5 Effect of Water to Cementitious Materials Ratio 0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 12345678 limestone granite

PAGE 138

0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 0.200.250.300.350.400.450.50Creep Strain at 91 daysWater to Cementitious Materials Ratio measured 0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 0.200.250.300.350.400.450.50Creep Strain at 91 daysWater to Cementitious Materials Ratio measured

PAGE 139

7.2.6 Relationship between Compressive Strength and Creep Strain 5P5P 91= 5P5P + 5P5P 91

PAGE 140

0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 0 50001000015000Creep Strain at 91 daysCompressive strength at loading age (psi) limestone granite 0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 0 50001000015000Creep Strain at 91 daysCompressive Strength at loading age (psi) limestone granite

PAGE 141

0.00E+00 2.00E 04 4.00E 04 6.00E 04 8.00E 04 1.00E 03 1.20E 03 1.40E 03 0 50001000015000Creep Strain at 91 daysCompressive Strength at loading age (psi) Measured 0.00E+00 1.00E 04 2.00E 04 3.00E 04 4.00E 04 5.00E 04 6.00E 04 7.00E 04 8.00E 04 2000300040005000600070008000900010000Instantaneous Strain from Creep TestCompressive Strength (psi) measured

PAGE 142

7.3 Creep Coefficient 7.3.2 Effect of Curing Conditions on Creep Coefficient 7.3.3 Effect of Water Content on Creep Coefficient 7.3.4 Effect of Compressive Strength at Loading Age on Creep Coeffici ent

PAGE 143

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 1F 2F 3F 4F 5S 6S 7S 8S 9LF 10LS 1GF 2GF 3GF 4GF 5GS 6GS 7GS 8GS Creep Coefficient at 91 daysMix 7 day curing 14 day curing 0 0.5 1 1.5 2 2.5 100150200250300350400Creep Coefficient at 91 daysWater Content (lbs/yd3) limestone granite lightweigth

PAGE 144

5P5P = 5P5P + 5P5P 7.3.5 Relationship between Elastic Modulus at Loading Age and Creep Coefficient

PAGE 145

5P5P = 5P5P + 5P5P 5P5P 0 0.5 1 1.5 2 2.5 0 20004000600080001000012000Creep Coefficient at 91 daysComrpressive Strength at 28 days (psi) Granite Limestone

PAGE 146

5P5P = 5P5P 5P5P + 5P5P 5P5P 5P5P 7.3.6 Effect of Coarse Aggregate Type on Creep Coefficient 0 0.5 1 1.5 2 2.5 0.00E+002.00E+064.00E+066.00E+068.00E+06Creep Coefficient at 91 daysElastic Modulus at Loading Ages for all curing conditions (psi)

PAGE 147

7.4 Creep Modulus 0 0.5 1 1.5 2 2.5 0.00E+005.00E 041.00E 031.50E 032.00E 032.50E 033.00E 03Creep Coefficient at 91 daysfc/E Limestone Granite 0 0.5 1 1.5 2 2.5 1 2 3 4 5 6 7 8 Creep Coefficient at 91 daysMix limestone granite

PAGE 148

0 0.5 1 1.5 2 2.5 1 2 3 4 5 6 7 8 Creep Coefficient at 91 daysMix Limestone Granite

PAGE 149

= 5P5P 5P5P 0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 3.00E+064.00E+065.00E+066.00E+067.00E+06Modulus of Elasticity (psi)Creep Modulus 7d 14d

PAGE 150

5P5P = 5P5P + 5P5P 0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 0 0.10.20.30.40.50.6Creep ModulusWater to Cement ratio 7d 14d

PAGE 151

7.5 Prediction of Ultimate Creep Strain 5P5P = + 5P5P 5P5P = + 381 .5

PAGE 152

7. 6 Summary of Findings 5P5P = 5P5P + 1. 80 10 4 2. 831

PAGE 153

5P5P = 5P5P + 3. 43 10 7 3. 295 5P5P = 5P5P 5P5P + 1057 3. 038

PAGE 173

Construction and Building Materials ACI Manual of Concrete Practice. ACI 209.1R -05 Nuclear Engineering and Design ACI Materials Journal Construction and Building Materials ASTM Section 4 Computational Materials Science Nuclear Engineering and Design Cement & Concrete Composites Journal of Asian Architecture and Building Engineering ACI M aterials J ournal Reinforced Concrete Mechanics and Design. Cement and Concrete Research Cement and Concrete Research

PAGE 174

Building and Environment Cement & Concrete Composites Concrete Microstructure, Properties, and Materials. T he use of Limestone Aggregate in Concrete. D velopment of Concrete S hrinkage P erformance S pecifications R esearch R esults D igest Creep of concrete: plain, reinforced, and prestressed. Properties of concrete P erformance -R elated S pecifications of Concrete B ridge S uperstructures. ACI Materials Journal Significance of Tests and Properties of Concrete and Concrete Making Materials. Journal of the American Concrete Institute Strength and related properties of concrete a quantitative approach Construction of Crack -Free Concrete Bridge Decks. Properties of fresh concrete ACI M aterials J ournal Construction and Building Materials

PAGE 175

Cement & Concrete Composites Cement & Concrete Composites Fundamental Research on Creep and Shrinkage of Concrete. Cement and Concrete Research ACI S tructural J ournal