<%BANNER%>

Size Effects in Phase Separated Manganite Nanostructures

Permanent Link: http://ufdc.ufl.edu/UFE0024399/00001

Material Information

Title: Size Effects in Phase Separated Manganite Nanostructures
Physical Description: 1 online resource (150 p.)
Language: english
Creator: Singh, Guneeta
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: bias, blockade, colossal, coulomb, domain, electroresistance, exchange, film, insulating, intrinsic, laprcamno, magnetiresistance, magnetoresistance, manganite, nano, nanofabrication, nanostructures, perovskite, phase, polarization, separation, simmons, spin, stripe, thin, tunneling, wall
Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Size Effects in Phase Separated Manganite Nanostructures This work describes a detailed nanometer scale experimental study of a phenomenon known as phase separation, in a class of ceramic materials know as the manganites. The manganite (La,Pr,Ca)MnO3 was chosen for the studies due to the micrometer scale phase separation in this particular material. In (La,Pr,Ca)MnO3 phase separation is electronic, magnetic and structural in nature, and occurs within a small window of temperatures. Within this temperature range the sample becomes electronically `texturized' in that the sample is no longer homogeneously insulating or conducting, even though the physical chemistry and properties of the sample remain constant. It contains a mix of both insulating and conducting properties within well defined spatial regions. The regions are on the order of a micrometer. The conducting regions are ferromagnetic and have a psuedo cubic (orthorhombic but very nearly cubic) atomic structure while the insulating regions are anitiferromagnetic with an orthorhombic, distorted structure. To understand the physics of the individual phase separated regions a technique was developed for fabricating narrow (La,Pr,Ca)MnO3 wires (in the shape of bridges) of nanometer width such that during the phase separated temperature range, one or a few phase separated regions form along the length of the wire. This has allowed transport measurements across a discrete number of phase separated regions giving physical insights into the nature of the individual regions and the boundaries between them. In this way, it is possible to identify several distinct physical mechanisms that act simultaneously on the nanometer scale giving rise to the unusual properties observed in bulk or unpatterned thin film samples. Transport measurements across the narrow bridges as a function of temperature and magnetic field revealed evidence of alternating insulating and metallic regions spanning the bridge width, aligned along the length of the bridge. First, evidence of direct electron tunneling between two or more ferromagnetic metallic (FM) regions separated by antiferromagnetic insulating (AFI) regions was observed. Magnetoresistance measurements reveal that often, the ferromagnetic metallic regions have different coercive fields (possibly due to varying sizes) which affect the tunnel probabilities (i.e. the probability decreases when the spins are anti-aligned). This gives rise to large and sharp low field peaks when resistance is measured as a function of magnetic field---the classical signature of tunneling magnetoresistance (TMR). Further, signatures of an exchange bias which gives rise to asymmetric TMR peaks were also identified in the measurements. These two phenomenon can help explain anomalous low field magnetoresistance observed in bulk and unpatterned thin film samples. The data also reveal that at temperatures below the phase separated temperature range, when the unpatterned thin film samples are nearly fully ferromagnetic metallic, the narrow bridges in contrast have a high resistance. The resistance is temperature independent and thus is not a signature of an insulating state within the bridge (since it is possible that lower dimensions could eliminate the insulator to metal transition). Current-voltage measurements point to a direct tunneling phenomenon thus suggesting that the metallic regions are separated by very thin AFI tunnel barriers. Magnetic field measurements reveal that the barriers are metastable with respect to very small fields (on the order of the manganite coercive field). The data in this low temperature range hint at the presence of novel, insulating, stripe domain walls where tunneling occurs across the domain boundary. The results were compared to theoretical calculations of insulating stripe domain walls predicted to form in phase separated materials. In addition to the magnetic field effects, the current-voltage measurements reveal a hysteresis and a breakdown to a low resistance state with a high enough applied current. The breakdown occurs in sharp steps while a much smoother transition to a lower resistance state is observed in bulk. Further, unusual bifurcations show evidence of coulomb blockade across a few metallic islands. Lastly, the effects of film thickness in the nanometer range on phase separation in thin films were investigated. Capacitance measurements were used to probe the properties of (La,Pr,Ca)MnO3 as a function of thickness. An unusual geometry was developed and employed for fabricating a capacitor structure such that the material under study, the (La,Pr,Ca)MnO3, forms one of the electrodes. Next, detailed circuit analysis was used to understand the complex dielectric response in this unconventional geometry as a function of changing frequency and magnetic fields. It was found that the dielectric response deviates from the universal dielectric response expression by an exponent that is different from unity, and the value of which depends on the exact phase composition of the (La,Pr,Ca)MnO3. This method allows for a novel probe of phase boundaries in thin films, where the boundaries may not be straightforward to detect with DC transport measurements. Additionally, it was found that capacitance as a function of time shows a different phase transition temperature than the temperature dependent resistance measurements. The two different transition temperatures begin to converge as the film thickness increases, showing the effect of film thickness on two different transitions: one in the plane of the film and one perpendicular to the plane of the film.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Guneeta Singh.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Hebard, Arthur F.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024399:00001

Permanent Link: http://ufdc.ufl.edu/UFE0024399/00001

Material Information

Title: Size Effects in Phase Separated Manganite Nanostructures
Physical Description: 1 online resource (150 p.)
Language: english
Creator: Singh, Guneeta
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: bias, blockade, colossal, coulomb, domain, electroresistance, exchange, film, insulating, intrinsic, laprcamno, magnetiresistance, magnetoresistance, manganite, nano, nanofabrication, nanostructures, perovskite, phase, polarization, separation, simmons, spin, stripe, thin, tunneling, wall
Physics -- Dissertations, Academic -- UF
Genre: Physics thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Size Effects in Phase Separated Manganite Nanostructures This work describes a detailed nanometer scale experimental study of a phenomenon known as phase separation, in a class of ceramic materials know as the manganites. The manganite (La,Pr,Ca)MnO3 was chosen for the studies due to the micrometer scale phase separation in this particular material. In (La,Pr,Ca)MnO3 phase separation is electronic, magnetic and structural in nature, and occurs within a small window of temperatures. Within this temperature range the sample becomes electronically `texturized' in that the sample is no longer homogeneously insulating or conducting, even though the physical chemistry and properties of the sample remain constant. It contains a mix of both insulating and conducting properties within well defined spatial regions. The regions are on the order of a micrometer. The conducting regions are ferromagnetic and have a psuedo cubic (orthorhombic but very nearly cubic) atomic structure while the insulating regions are anitiferromagnetic with an orthorhombic, distorted structure. To understand the physics of the individual phase separated regions a technique was developed for fabricating narrow (La,Pr,Ca)MnO3 wires (in the shape of bridges) of nanometer width such that during the phase separated temperature range, one or a few phase separated regions form along the length of the wire. This has allowed transport measurements across a discrete number of phase separated regions giving physical insights into the nature of the individual regions and the boundaries between them. In this way, it is possible to identify several distinct physical mechanisms that act simultaneously on the nanometer scale giving rise to the unusual properties observed in bulk or unpatterned thin film samples. Transport measurements across the narrow bridges as a function of temperature and magnetic field revealed evidence of alternating insulating and metallic regions spanning the bridge width, aligned along the length of the bridge. First, evidence of direct electron tunneling between two or more ferromagnetic metallic (FM) regions separated by antiferromagnetic insulating (AFI) regions was observed. Magnetoresistance measurements reveal that often, the ferromagnetic metallic regions have different coercive fields (possibly due to varying sizes) which affect the tunnel probabilities (i.e. the probability decreases when the spins are anti-aligned). This gives rise to large and sharp low field peaks when resistance is measured as a function of magnetic field---the classical signature of tunneling magnetoresistance (TMR). Further, signatures of an exchange bias which gives rise to asymmetric TMR peaks were also identified in the measurements. These two phenomenon can help explain anomalous low field magnetoresistance observed in bulk and unpatterned thin film samples. The data also reveal that at temperatures below the phase separated temperature range, when the unpatterned thin film samples are nearly fully ferromagnetic metallic, the narrow bridges in contrast have a high resistance. The resistance is temperature independent and thus is not a signature of an insulating state within the bridge (since it is possible that lower dimensions could eliminate the insulator to metal transition). Current-voltage measurements point to a direct tunneling phenomenon thus suggesting that the metallic regions are separated by very thin AFI tunnel barriers. Magnetic field measurements reveal that the barriers are metastable with respect to very small fields (on the order of the manganite coercive field). The data in this low temperature range hint at the presence of novel, insulating, stripe domain walls where tunneling occurs across the domain boundary. The results were compared to theoretical calculations of insulating stripe domain walls predicted to form in phase separated materials. In addition to the magnetic field effects, the current-voltage measurements reveal a hysteresis and a breakdown to a low resistance state with a high enough applied current. The breakdown occurs in sharp steps while a much smoother transition to a lower resistance state is observed in bulk. Further, unusual bifurcations show evidence of coulomb blockade across a few metallic islands. Lastly, the effects of film thickness in the nanometer range on phase separation in thin films were investigated. Capacitance measurements were used to probe the properties of (La,Pr,Ca)MnO3 as a function of thickness. An unusual geometry was developed and employed for fabricating a capacitor structure such that the material under study, the (La,Pr,Ca)MnO3, forms one of the electrodes. Next, detailed circuit analysis was used to understand the complex dielectric response in this unconventional geometry as a function of changing frequency and magnetic fields. It was found that the dielectric response deviates from the universal dielectric response expression by an exponent that is different from unity, and the value of which depends on the exact phase composition of the (La,Pr,Ca)MnO3. This method allows for a novel probe of phase boundaries in thin films, where the boundaries may not be straightforward to detect with DC transport measurements. Additionally, it was found that capacitance as a function of time shows a different phase transition temperature than the temperature dependent resistance measurements. The two different transition temperatures begin to converge as the film thickness increases, showing the effect of film thickness on two different transitions: one in the plane of the film and one perpendicular to the plane of the film.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Guneeta Singh.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Hebard, Arthur F.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2011-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0024399:00001


This item has the following downloads:


Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

Thedoctoralprocessforme,asforthosebeforeme,hasbeenalongtermchallengerequiringstrongsupportfrommanypeopleinmylife,bothprofessionallyandpersonally.BelowIwillbeliberalwiththespaceIusetoacknowledgesomeofthemanypeoplewhohaveliftedmeupandhelpedmeclimbthismountain.Firstandforemost,IamgratefultoDr.ArthurF.Hebardforsupportingmethroughouttheyearsandprovidingthehavenofhislaboratoryformetoexperimentinfreely.IhavelearnedatremendousamountintheyearsIhavespentinhislaboratory:IhavegonefromzerotoeverythingInowknowaboutexperimentalphysics.NextIwouldliketothankaclosecollaborator,Dr.AmlanBiswasforteachingmehowtousethepulsedlaserdeposition(PLD)systemandsomuchmoreonthetopicofmanganites(andpolitics)andcomplexoxidesingeneral.IwouldalsoliketothankmycollaboratorsinJapan,Dr.HaroldY.HwangandDr.ChristopherBellforbeingexcellenthostsduringmystayandfortheirinspirationaldiscussionsonthetopicofcomplexoxides.Iwouldliketothankmytheoreticalcollaborators,Dr.DenisI.GolosovinIsraelandDr.SelmanHersheldandhisstudentSaraJoyfortheirpatienceandinsightfultheoreticalperspectives.IwouldalsoliketothankseveralothermembersoftheUFPhysicsandMaterialScienceDepartmentfortakingthetimetohavediscussionswithmefromwhichIhavelearnedalot:ThankyouDr.PeterJ.Hirshfeld,Dr.DimitriiMaslov,Dr.DavidTanner,Dr.PradeepKumar,Dr.JuanNino,Dr.AndrewRinzlerandDr.GeraldBourne.IamalsogratefultoDr.KatiaMatchevaandDr.PetkovaforprovidingthesupportandpracticaladvisethatisanessentialingredientforPhDstudents,butironicallyalmostcompletelynonexistent.Ifeelluckytohavehadit,sothankyou!IthankXuDu,SinanSelcuk,SefTongay,BoLiu,TaraDhakalandPatrickMickelforalltheirsupport,collaborationanddiscussions.IthankotherpresentandpreviousmembersofmylaboratoryandtheUFphysicsdepartmentfortheirinsights,friendshipandsupport:Thanks,NikoletaTheodopolous,SanalBuveav,JayHorton,Sandraand 4

PAGE 5

5

PAGE 6

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 9 LISTOFFIGURES .................................... 10 ABSTRACT ........................................ 13 CHAPTER 1AnIntroductionto(La,Pr,Ca),MnO3andMicro-ScalePhaseSeparation .... 16 1.1AGeneralIntroductiontoManganites .................... 16 1.2TheStructureandBasicPropertiesofManganites .............. 17 1.2.1InherentDistortionsintheManganiteUnitCell ........... 18 1.2.2InducedDistortionsintheManganiteUnitCell ........... 22 1.2.3TheEectsofDopingonElectronicandMagneticProperties .... 25 1.2.4TransportMechanismsatHighandLowTemperaturesinDopedManganites ............................... 27 1.2.5TheGeneralHamiltonianfortheStronglyCorrelatedManganites 29 1.3BasicCharacteristicsof(La,Pr,Ca)Mn)O3 30 1.3.1PropertiesandCharacteristicsof(La,Ca)MnO3 31 1.3.2PropertiesandCharacteristicsof(Pr,Ca)MnO3 32 1.3.3PropertiesandCharacteristicsof(La,Pr,Ca)MnO3 34 1.3.4SubstrateInducedStrainin(La,Pr,Ca)MnO3ThinFIlms ...... 37 1.4NanoscaleConnementof(La,Pr,Ca)MnO3ThinFilms ........... 38 1.5ChapterSummary ............................... 40 2SampleFabricationandMeasurementTechniques ................. 41 2.1(La,Pr,Ca)MnO3ThinFilmDeposition .................... 42 2.2(La,Pr,Ca)MnO3NanobridgeFabrication ................... 44 2.2.1ChallengesinManganiteNanofabrication ............... 45 2.2.2NanopatterningofSubstrates ..................... 46 2.2.3NanobridgeFormationUsingPhotolithographyandWetEtching .. 49 2.2.4BackandTopGatingof(La,Pr,Ca)MnO3bridges .......... 53 2.3(La,Pr,Ca)MnO3|AlOx|MetalCapacitorFabrication ........... 53 2.3.1RFMagnetronSputteringofHighQualityAlOxDielectricThinFilms ................................... 55 2.3.2ThermalEvaporationofMetalThinFilms .............. 57 2.4SummaryofSamples .............................. 58 2.5TransportMeasurements ............................ 59 2.5.1BasicResistanceMeasurementCircuit ................. 60 2.5.2ElectricFieldGating .......................... 62 6

PAGE 7

.............. 63 2.6TemperatureandMagneticFieldDependenceforTransportMeasurements 64 2.7MagnetizationMeasurements ......................... 64 2.8DataAcquisition ................................ 67 2.9ListofCollaboratorsandSummaryofContributions ............ 69 3IntrinsicTunnelingMagnetoresistancein(La,Pr,Ca)MnO3 71 3.1Introduction ................................... 71 3.2Motivation .................................... 71 3.3ReviewofTransportAcrossUnpatternedLPCMOThinFilms ....... 72 3.4SampleFabricationandMeasurementTechniques .............. 74 3.5TemperatureDependentResistivityofLPCMOBridges ........... 76 3.6MagnetoresistanceAcrossthe0.6mWideLPCMOBridge ........ 76 3.6.1MagnetoresistanceforTIMO>T>TIM 76 3.6.2MagnetoresistanceforTIM>T>TG 79 3.6.3MagnetoresistanceforTG>T 80 3.7ChapterSummary ............................... 83 4EvidenceofUnusualInsulatingDomainWallsin(La,Pr,Ca),MnO3 85 4.1Introduction ................................... 85 4.2Motivation .................................... 85 4.2.1TheoreticalWorkonInsulating(Stripe)DomainWallFormation .. 86 4.2.2InsulatingStripeDomainWallFormationin(La,Pr,Ca)MnO3 86 4.3SampleFabricationandMeasurementTechniques .............. 87 4.4TemperatureDependentResistanceofNanobridge .............. 87 4.4.1TemperatureIndependentResistanceBelowTG 89 4.4.2ColossalResistanceDropUponFieldWarming ............ 89 4.5IntrinsicTunnelinginNanobridge ....................... 90 4.5.1DirectTunnelingofElectronsacrossIntrinsicTunnelBarriers .... 90 4.5.2JouleHeatingandNon-linearI-VCurves ............... 90 4.6AnisotropicMagnetoresistance ......................... 93 4.7UnderstandingInsulatingStripeDomainWalls ................ 96 4.7.1Competingphasesandstrainsensitivityin(La,Pr,Ca)MnO3 96 4.7.2StripeDomainWallsandtheChargeDisorderedPhase ....... 97 4.7.3StripeDomainWallsinRelationtotheVariousInsulatingPhases 99 4.8EvidenceofAnomalousDomainWallsinWider,ThinnerBridges ..... 100 4.9ChapterSummary ............................... 101 5ColossalElectroresistanceAcross(La,Pr,Ca)MnO3Nanobridges ......... 103 5.1Introduction ................................... 103 5.2Motivation .................................... 103 5.3FabricationandMeasurementTechniques ................... 104 5.4ColossalElectroresistanceinManganiteThinFilms ............. 104 5.4.1ColossalElectroresistancein(Pr,Ca)MnO3andRelatedCompounds 105 7

PAGE 8

.... 106 5.5ColossalElectroresistanceinPatternedandUnpatterned(La,Pr,Ca)MnO3ThinFilms ................................... 107 5.5.1DiscreteCurrent-VoltageStepsin(La,Pr,Ca)MnO3Bridges ..... 108 5.5.2AnalyzingChangesinBarrierPropertiesUsingSimmons'Model .. 112 5.5.3ComparingChangesinBarrierPropertiesforAppliedElectricvs.MagneticFields ............................. 113 5.5.4ShortcomingsoftheRectangularBarrierSimmons'Model ...... 114 5.6ChapterSummary ............................... 115 6ColossalMagnetocapacitanceandAnisotropicTransportin(La,Pr,Ca)MnO3ThinFilms ...................................... 116 6.1Introduction ................................... 116 6.2Motivation .................................... 117 6.3Methods ..................................... 118 6.4ComparisonofLongitudinalandPerpendicularVoltageDrops ....... 120 6.5Maxwell-WagnerAnalysis ........................... 125 6.6DependenceofAnisotropyonFilmThickness ................ 127 6.7ScaleInvariantDielectricResponse ...................... 130 6.8DeterminingPhaseBoundariesusingCole-ColePlots ............ 132 6.9ChapterSummary ............................... 138 7FinalRemarksandFutureDirection ........................ 139 7.1GeneralSummary ................................ 139 7.2FutureDirection ................................ 141 REFERENCES ....................................... 144 BIOGRAPHICALSKETCH ................................ 149 8

PAGE 9

Table page 2-1SampleSummaryTable ............................... 59 2-2ListofCollaboratorsandSummaryofContributions ............... 70 9

PAGE 10

Figure page 1-1Manganiteunitcellstructure ............................ 18 1-2CrystaleldsplittingintheMnO6octahedron ................... 20 1-3Jahn-TellersplittingintheMnO6octahedron. ................... 21 1-4Charge,OrbitalandSpinOrderinginManganites ................. 24 1-5TheDoubleExchangeMechanisminManganites. ................. 26 1-6The(La,Pr,Ca)MnO3PhaseDiagram. ....................... 35 1-7SubstrateInducedStrainIllustrated. ........................ 38 2-1Pulsedlaserdepositionsystem ............................ 42 2-2Imageoflaserablationplume ............................ 43 2-3NdGaO3substratecoatedwithacarbonnanotubethinlm ........... 47 2-4NdGaO3substratepatterning ............................ 48 2-5DualBeam-FocusedIonBeamStrataDB235apparatus ............ 49 2-6LPCMOdepositedonetchedsubstrate ....................... 50 2-7UVphotolithographyisusedtodeneLPCMObridge .............. 50 2-8Photolithographymaskschematicfornanobridge ................. 50 2-9OpticalimageofLPCMObridgealignedwithlithographymask. ......... 52 2-10PPMStransportmeasurementpuck ......................... 52 2-11Schematicoftopgatestructure ........................... 54 2-12LPCMOcapacitorstructure ............................. 55 2-13SchematicoftheAlOxdepositionsystem,Hamedon ................ 56 2-14Opticalimageofacapacitor ............................. 57 2-15Tungstenthermalevaporationboat ......................... 58 2-16Fourcontactresistancemeasurementdiagram ................... 60 2-17Twoterminalresistancemeasurementdiagram ................... 61 2-18Diagramforelectriceldgatingmeasurement ................... 62 10

PAGE 11

.......................... 63 2-20SchematicofPhysicalPropertiesMeasurementSystem(PPMS) ......... 65 2-21MagnetizationmeasurementofunpatternedLPCMOthinlmonNGO. .... 66 2-22MagnetizationmeasurementofunpatternedLPCMOthinlm. .......... 67 2-23Opticalimageofmultiple1mwideLPCMOstripes ............... 68 2-24Magnetizationdataformultiple1mwideLPCMOstripes ........... 68 3-1R(T)curveforunpatterned(La0:5Pr0:5)0:67Ca0:33MnO3 73 3-2PronouncedstepsinR(T)for2.5mand0.6mwidebridges .......... 75 3-3R(H)forT>TIM 77 3-4UnpatternedthinlmR(H)datainrangeT=120K>TIMO 78 3-5R(H)at57Kinthe0.6mwidebridgeshowstunnelingmagnetoresistance .. 81 3-6R(H)foranunpatternedthinlmat50Kshowslow-eld`notches' ....... 82 3-7Waterfallplotshowsevolutionoftunnelingmagnetoresistance .......... 83 4-1Rvs.Tunpatternedthinlmvs.0.6mwidebridge .............. 88 4-2IVcharacteristicsforthe0.6umwidebridge .................. 91 4-3FittotheSimmons'model .............................. 92 4-4R(T)curvesobtainedatdierentappliedcurrents ................. 93 4-5Zeroeld-cooledandeldcooledRT 94 4-6MagneticelddependentIV 95 4-7MagneticelddependentIVcurvesnormalizedtoVmax. ............ 96 4-8Mechanismsforinsulatingstripedomainwallformation .............. 98 4-9Mechanismsfortunnelingmagnetoresistance(TMR)junctionformation ..... 100 4-10R(T)curvesfora2.5mwidebridge,10nmthicklm .............. 101 5-1R(T)curvesforthe0.6mwidebridgeatseveralappliedcurrents. ....... 108 5-2IVcurvesforthe0.6mwidebridgedepictingcolossalelectroresistance. .. 109 5-3IVcurvesforthe0.34mwidebridgedepictingcolossalelectroresistance. .. 110 5-4Simmons'modeltstoIVcurvesforthe0.34mwidebridge. ........ 111 11

PAGE 12

........ 112 5-6Barrierheightsandwidthsobtainedforthe0.6mwidebridge. ......... 114 6-1Crosssectionalschematicviewofthetrilayercapacitorstructure ......... 119 6-2Circuitdiagramsshowsourcesoflongitudinalandperpendicularvoltagedrops. 122 6-3Impedanceplotscomparinglongitudinalvs.perpendicularvoltagedrops .... 124 6-4IMtransitionsasafunctionofLPCMOthickness. ................. 128 6-5WithincreasingLPCMOthicknesstheanisotropyasmeasuredbyT#"IM=T#"IM;jjT#"IM;?decreasestowardszeroandbulklikebehavior ................ 129 6-6Cole-Coleplotsshowingdatacollapseandpower-lawscalingofthedielectricresponse ........................................ 133 6-7DeterminationoftheboundariesofthePLSCregion ............... 134 6-8PhasediagramofupperandlowercriticalregionofPLSCregion ......... 136 12

PAGE 13

Tounderstandthephysicsoftheindividualphaseseparatedregionsatechniquewasdevelopedforfabricatingnarrow(La,Pr,Ca)MnO3wires(intheshapeofbridges)ofnanometerwidthsuchthatduringthephaseseparatedtemperaturerange,oneorafewphaseseparatedregionsformalongthelengthofthewire.Thishasallowedtransportmeasurementsacrossadiscretenumberofphaseseparatedregionsgivingphysicalinsightsintothenatureoftheindividualregionsandtheboundariesbetweenthem.Inthisway,itispossibletoidentifyseveraldistinctphysicalmechanismsthatactsimultaneouslyonthe 13

PAGE 14

Transportmeasurementsacrossthenarrowbridgesasafunctionoftemperatureandmagneticeldrevealedevidenceofalternatinginsulatingandmetallicregionsspanningthebridgewidth,alignedalongthelengthofthebridge.First,evidenceofdirectelectrontunnelingbetweentwoormoreferromagneticmetallic(FM)regionsseparatedbyantiferromagneticinsulating(AFI)regionswasobserved.Magnetoresistancemeasurementsrevealthatoften,theferromagneticmetallicregionshavedierentcoerciveelds(possiblyduetovaryingsizes)whichaectthetunnelprobabilities(i.e.theprobabilitydecreaseswhenthespinsareanti-aligned).Thisgivesrisetolargeandsharploweldpeakswhenresistanceismeasuredasafunctionofmagneticeld|theclassicalsignatureoftunnelingmagnetoresistance(TMR).Further,signaturesofanexchangebiaswhichgivesrisetoasymmetricTMRpeakswerealsoidentiedinthemeasurements.Thesetwophenomenoncanhelpexplainanomalousloweldmagnetoresistanceobservedinbulkandunpatternedthinlmsamples. Thedataalsorevealthatattemperaturesbelowthephaseseparatedtemperaturerange,whentheunpatternedthinlmsamplesarenearlyfullyferromagneticmetallic,thenarrowbridgesincontrasthaveahighresistance.Theresistanceistemperatureindependentandthusisnotasignatureofaninsulatingstatewithinthebridge(sinceitispossiblethatlowerdimensionscouldeliminatetheinsulatortometaltransition).Current-voltagemeasurementspointtoadirecttunnelingphenomenonthussuggestingthatthemetallicregionsareseparatedbyverythinAFItunnelbarriers.Magneticeldmeasurementsrevealthatthebarriersaremetastablewithrespecttoverysmallelds(ontheorderofthemanganitecoerciveeld).Thedatainthislowtemperaturerangehintatthepresenceofnovel,insulating,stripedomainwallswheretunnelingoccursacrossthedomainboundary.Theresultswerecomparedtotheoreticalcalculationsofinsulatingstripedomainwallspredictedtoforminphaseseparatedmaterials. 14

PAGE 15

Lastly,theeectsoflmthicknessinthenanometerrangeonphaseseparationinthinlmswereinvestigated.Capacitancemeasurementswereusedtoprobethepropertiesof(La,Pr,Ca)MnO3asafunctionofthickness.Anunusualgeometrywasdevelopedandemployedforfabricatingacapacitorstructuresuchthatthematerialunderstudy,the(La,Pr,Ca)MnO3,formsoneoftheelectrodes.Next,detailedcircuitanalysiswasusedtounderstandthecomplexdielectricresponseinthisunconventionalgeometryasafunctionofchangingfrequencyandmagneticelds.Itwasfoundthatthedielectricresponsedeviatesfromtheuniversaldielectricresponseexpressionbyanexponentthatisdierentfromunity,andthevalueofwhichdependsontheexactphasecompositionofthe(La,Pr,Ca)MnO3.Thismethodallowsforanovelprobeofphaseboundariesinthinlms,wheretheboundariesmaynotbestraightforwardtodetectwithDCtransportmeasurements.Additionally,itwasfoundthatcapacitanceasafunctionoftimeshowsadierentphasetransitiontemperaturethanthetemperaturedependentresistancemeasurements.Thetwodierenttransitiontemperaturesbegintoconvergeasthelmthicknessincreases,showingtheeectoflmthicknessontwodierenttransitions:oneintheplaneofthelmandoneperpendiculartotheplaneofthelm. ThesamplefabricationandotherexperimentaldetailsarediscussedinChapter2,whiletheTMRphenomenonisdiscussedinChapter3.ThenovelstripedomainwallswhichallowdirectelectrontunnelingarediscussedinChapter4andtheanomalouscurrent-voltageandotherelectriceldeectsarepresentedinChapter5.AllresultsandconclusionsderivedfromcapacitancemeasurementsarediscussedinChapter6andnallyinChapter7thegeneralconclusionsandfuturedirectionsarepresented. 15

PAGE 16

1 ],colossalmagnetoresistive(CMR)materialsonceagainresurfacedandquicklyestablishedranksintheforefrontofresearchinthelasttwodecades.Initially,theresurrectionwaslargelyfueledbytheracetoenhancemodernmagneticmemorydeviceswhicharebasedonagiantmagnetoresistanceorGMReect.CMRwouldbeanobviousenhancement.However,researchhasnowclearlyrevealedthatthemagneticeldsrequiredfortheCMReect,whichareontheorderof1Tesla(or10kOe),areordersofmagnitudelargerthantheeldsrequiredincurrentdevicesutilizingtheGMRprinciple,whichareontheorderof10to100Oe.Thusinthewakeofanunrealizeddream|thatofloweldCMRdevices|awholenewclassofmaterialswasestablishedandfoundtoexhibitaninterestingrangeofpropertiespreviouslyunknowninothermaterials.Todaytheinterestinmanganitesisprimarilyonafundamentallevelbutisfurtherinspiredbytheexoticpropertiesofawiderclassofcorrelatedelectroncomplexoxidematerialstowhichmanganitesbelong. Thewiderclassofcorrelatedelectroncomplexoxide(CECO)materialsexhibitsomeofthemostunusualelectronicandmagneticpropertiescurrentlyknownincondensedmatterphysics.Theseincludehightemperaturesuperconductivity[ 2 3 ],ferroelectricity[ 4 ],electronicdopingofinterfaces[ 5 ],multiferrocity[ 6 7 ],andseveraltypesofordered[ 8 9 ]anduid[ 10 ]phaseseparation.Becauseoftheelectroncorrelationeect,simplybendingaCECOmaterialcanchangeitselectronicpropertiesfromaninsulatortoametal[ 11 ]anantiferromagnettoaferromagnet[ 11 ]andfromaninsulatortoaferroelectric[ 12 ].Additionally,temperature,pressure,light,electricandmagneticeldscanalsodrasticallyalterthephasesofCECOmaterials[ 13 14 ].Thistunabilityimpliesalargepotentialforpreviouslyunrealizeddeviceapplications. 16

PAGE 17

15 ].Inthislight,themanganitesalongwithmanyotherCOCEmaterialscurrentlyconnedtoacademicinterests,mayonceagainbepoisedtoentertherealmofpracticalelectronicsandbandengineering.Thediscoveryandunderstandingofcomplexoxidematerialsandtheirnovelphasesisongoingandholdsexcitingpromisesforthefutureofelectronics.Thus,themanganitesmaystillholdhiddenpotentialforintegrationintomodernelectronics. 1 8 9 14 16 ]. 17

PAGE 18

9 ].Figure 1-1 showsthebasiccubicstructureofthemanganiteoctahedronwiththeAsiteatomatthefourcornersandtheMnatomatthecenterofsixOatoms.TheMnsiteinthisstructureissaidtooccupytheBsite(ABO3). Figure1-1. BasiccubicstructureofthemanganiteunitcellshowingtheMnatomencagedinanOoctahetron.TheMnO2planesareseparatedbyAOplanes,i.e.theAatomslieinthesameplaneastheapexOatomsofeachoctahedron.TheAatomsareeitherdivalentrareearthortrivalentalkalineearthelements. Theoutermost3dorbitalsontheMnsitearesubjecttoaliftingofthedegeneracyinorderforthesystemtoreducetherepulsiveCoulombinteractionswiththeelectrons 18

PAGE 19

1-2 .ThustheCoulombrepulsionandhencetheenergyislowerfortheo-axis3dorbitals(yellow),specically,thosenotalignedalongx,yorz(i.e.thexy,yzandxzlevels,butnotthex2y2and3z2r2).Thisliftingofthedegeneracyisknowascrystal-eldsplitting[ 14 ]. LoweringofCoulombrepulsiondrivesasecondsplittingofthedegeneracywithinthealreadysplitt2gandeglevels.ThissecondsplittingismainlydrivenbythesinglyoccupiedeglevelinthecaseofMn3+.Inthiscasethesingleegelectroncanoccupyeitherthex2y2orthe3z2r2orbitals,bothofwhicharealignedalongtheO2porbitals.Theenergyofthiselectroncanbeloweredifthelevelthatitoccupiescanbe`distanced'fromtheO2porbitals.Thesystemaccomplishesthisbybecomingslightlyelongated(distorted),whileretainingtheunitcellvolume,aspicturedinFigure 1-3 .Thesingleegelectrontheninhabitsthe3z2r2(orthex2y2)orbitalcausingtheoctahedrontoelongatealongthezdirection(orthex-ydirection).Thislowerstheenergyofthe3z2r2(x2y2)levelwithrespecttothex2y2(3z2r2)level.ThedistortionalongzalsohastheeectofslightlyloweringtheenergyoftheyzandxzlevelswithrespecttothexylevelwhichisnowclosertotheO2porbitalsinthexyplane.ThisisknownastherstorderJahn-Teller(J-T)distortion,orJahn-Tellereect.Alternatively,CoulombrepulsioncanbeavoidedbyahybridizationoftheegelectronwiththeO2porbitalsifthecoret2gspinsarealignedferromagnetically,andthiseectcompeteswiththeJ-Tdistortion[ 8 14 ]. TheJ-Ttheoremdoesnotspecifywhichorbital,3z2r2orx2y2,willbeoccupied,butratheronlystatesthatthesystemwillundergoasymmetrybreakingdistortiontolowerenergyfornon-linearmolecules[ 14 ].Hereitisintuitivetoseethatloweringofthe3z2r2maybeenergeticallymorefavorablesinceitalsofavorsloweringofboththeyzandxzasopposedtojustthexylevel,thusloweringtheoverallsystemenergy.FollowingsimilarCoulombrepulsionarguments,itisstraightforwardtoqualitativelyimaginethesecondorderJahn-Tellerdistortionthatarisesfromanocenterdisplacementofthe 19

PAGE 20

Anillustrateddemonstrationofcrystal-eldsplittingintheMnO6octahedron.Redandyellowdottedlinesinthexyplane(labeled)oftheillustratedMnO6octahedronontheleftarevisualaidsdemonstratingthedirectionsoftheegandt2gorbitalsrespectively.ExamplesofapproximateorbitallobesareshownforMneg(red)x2y2,Mnt2g(yellow)xyandtheO2porbital.TheredegorbitalswhichpointinthedirectionoftheO2porbitalsandtheyellowt2gwhichpointat45toeachaxisareclearlyshownwithrespectthethexyzaxesontherightportionofthegure.ElectronsoccupyingtheegorbitalsinthiscasewillundergoCoulombrepulsionfromtheadjoiningO2porbitals.Thus,withthreevalenceelectrons,asinthecaseofMn4+,theenergyofthesystemisloweriftheelectronsoccupythet2gorbitalsinordertominimizeCoulombrepulsionfromtheO2porbitals.AswillbeshowninFigure 1-3 ,anadditionalvalenceelectron(Mn3+)givesrisetoanadditionalsplittingoftheegorbitalsinordertoonceagainminimizeCoulombrepulsion. 20

PAGE 21

InadditiontothecrystaleldsplittingillustratedanddescribedinFigure 1-2 ,anMn3+ionwiththeegelectronundergoesasecondenergy(Coulombrepulsion)loweringsplitting,theJahn-Tellersplitting,withintheegenergylevelsasshown.Theillustrationontheleftshowsacubic,undistortedandunsplitoctahedronthathasnotundergonesplittingoftheegorbitals.Thesingleegelectronwilloccupyeitherthex2y2orthe3z2r2levelandthesystemwillelongateinthedirectionofthatparticularorbitalinordertolowerCoulombrepulsion,asillustratedontheright. Mnion,furthersplittingthet2genergylevels.ThesecondorderdistortionispresentinferroelectricandmultiferroicCOCEsystems.Ingeneral,inacrystaltheJ-Tdistortioniscollective,withthecrystalelongatingasawholeinonedirectionorwithchainsofJ-Tdistortionsofastaggeredoccupationofthe3z2r2andx2y2orbitals[ 9 ]. Itisimportanttonotethatthet2gspins(3/2)arehighlylocalizedandforallpracticalpurposesareconsideredasclassical,corespinsintimatelytiedtothelatticeandnotaectedbytheegspins.TheJ-Tdistortionsonlyoccurforanoddnumberoccupationoftheegorbitals(oneinthecaseofthemanganites,suchasLaMnO3).The 21

PAGE 22

13 17 ](orchargetransfer[ 18 ])insulatingstateintheMn3+manganitessincetheconventionalbandpicturedictatesthatLaMnO3withit'ssinglyoccupiedegstateshouldbeaconductor.CaMnO3ontheotherhand,anMn4+manganitewithnoegelectrons,isabandinsulatorwithantiferromagneticallyorderedspins[ 9 ]. ThevalencyoftheMnionsinthemanganitecrystal(Mn3+vs.Mn4+)isdictatedbytheA-sitevalence[ 9 14 ].A-siteatomsbondionicallytotheOatomsintheMnO6octahedra,i.e.,theygiveupanelectrontotheOatoms.ThisextraelectronisthensharedbetweentheMn-OsiteswithintheMnO6octahedra,givingrisetotheMn3+vs.Mn4+valencyoftheMnsites.ThevalenceoftheA-sitecanbevariedandevenmixedwithinagivencrystalsuchthatMn3+andMn4+canco-existwithin,givingrisetoelectricalconductivity.TheMottinsulatingstateinthiscaseis`broken'bytheegelectronbeingsharedbetweentheMnionsviaanintermediateOatom.ThustheextraelectroncannowhopbetweenMnsitesoreectively,dierentoctahedra.ThesystemisnolongeruniformlyJ-Tdistorted,butisdisorderedandnowalsocontainscubicMn4+octrahedra.ElectronscannowconductviapolaronichoppingconductionordoubleexchangeferromagnetismatlowertemperaturesasdiscussedinSection 1.2.3 furtherbelow.Asdiscussedinthenextsection,thesize,orionicradiusoftheA-siteioncanalsodrasticallyaecttheelectricalconductivityandmagneticproperties. Anadditionalelectron-latticecouplingthatcanaectthepropertiesofmanganitesisalatticebreathingmodedistortionwhichchangesallsixMnO6bondlengthsbythesameamount.Thishastheeectofloweringtheenergyoftheunoccupiedegorbitalswhileraisingtheenergyoftheoccupiedorbitals. 22

PAGE 23

13 17 ],f, Hereri(i=O;Mn;A)representstheionicradiusofeachelement.Iffiscloseto1,thenthecubicperovskitestructureconsistingpurelyoftheinherentMnO6distortionsisrealized.Asfdecreasessothat0.96
PAGE 24

Anillustrationofthedierentlatticedistortionsinducedwithachangingtolerancefactor.Clockwisefromtopright,theundistortedcubicstructureisshown,followedbyanoveremphasizedcooperativeJahn-Tellerdistortion,arhombohedraldistortionandnallyanorthorohmbicdistortion.ThelattertwoarebothJahn-Tellerdistorted,thoughitmaynotbeapparentfromtheillustration. Thevarioustypesofspinandorbitalorderingsymmetriescanbemodiedbydopingandcationsize[ 1 9 16 ].Thespinorderingwhichhasalowertemperaturethanorbitalordering(andisthusinuencedbyorbitalordering)ismediatedbyasuperexchangemechanismwherehalflledt2gorbitalsinneighboringMnsitesexchangeavirtualelectronwhichmediatesantiferromagneticspinordering(dependingonthelatticedistortion)viatheHund'srulecouplinginneighboringMnsites.Theoccupationof3z2r2vs.x2y2orbitalscangiverisetoantiferromagneticorderingalongthezaxisandpossiblyferromagneticordering(dependingonegelectrondopinglevel)withintheplane. 24

PAGE 25

9 14 ]. ThedoubleexchangemechanismwasrstproposedbyZener[ 21 ]in1951andrevisitedbyAndersonandHasegawa[ 22 ]in1955.Inthisscenario,electrontransferoccurssimultaneouslybetweenanMn3+andanO2andfromtheO2toanMn4+asschematicallyshowninFigure 1-5 .ThechargetransferoftheegelectroniscoupledferromagneticallytothelatticeasaresultoftheHund'srulecouplingwhichisontheorderof2to3eVinmanganites[ 17 23 ]andfarexceedstheintersitehoppingenergy.Inotherwords,becauseoftheHund'srulecouplingandthefactthattheMndorbitalsarelessthanhalflled,anyelectronshoppingintotheemptyegstatemusthavethesamespinasthet2gelectronswhichareeectivelylocalizedduetothecrystaleldsplitting.Thusforpracticalpurposes,thetransferofegelectronsfromoneMnsitetothenextdependsonit'salignmentwiththecoret2gspins.ThiscanbeexpressedintermsoftheAnderson-Hasegawarelationship[ 18 ]: wheretheberryphasecanbeneglectedtogivethesimplerform, 25

PAGE 26

Anillustrationofthedoubleexchangemechanisminmanganites.HeretwoMnatomsareshownconnectedwithanOatom(bottom)andtheMnegorbitalsarehybridizedwiththeO2porbitals.Thedegreeofdeviationfrom180oftheangleintheMn-O-Mnbonddeterminesthedegreeofchargelocalizationvs.hybridizationpresentinthecompound.Theredarrowsrepresentegelectronspins.TheschematicdiagramoftheMnenergylevelswiththecorespinsandtheegspinsinteractingwiththeO2pstatesisalsoshown(top).Note:SchematicreproducedfromapublicdomainimageavailablefreelyonWikipedia,thefreeweb-basedencyclopedia,andisagood[ 14 17 ]schematicdescriptionofthemechanism. 1{2 and 1{3 26

PAGE 27

17 20 ]. Itispossibleincertainmanganitestoichiometriestohaveferromagnetismbutnoconductingstate,orlocalized,ferromagneticallyalignedt2gelectrons(i.e.aferromagneticinsulator),thoughthisisnotcompletelyunderstood.Intheferromagneticmetallicstatehowever,themanganitesareexpectedtobehalfmetallic(fullyspin-polarized)giventhedoubleexchangemechanismandstrongHund'srulecoupling.Recentmeasurementshaveconrmedthisspeculationin(La,Sr)MnO3whichwasfoundtobeover90%spinpolarized[ 24 ].Magnetizationmeasurementsrevealthatsaturationmagnetization(3.8B/Mn)isachievedintheferromagneticmetallicstate[ 25 ]. 1 9 26 ]beforetheonsetofferromagnetismarewelldescribedwithinthesmall(Holstein)polaronhoppingmodel.Thisisparticularlytruenearroomtemperaturefortheparentcompoundsofthemanganitediscussedinthiswork,namelyPr0:7Ca0:3MnO3andLa0:7Ca0:3MnO3.AsmallpolaronistheJ-Tlatticedistortionaccompanyingachargecarrierwithinthecrystal.Thelatticedistortionsurroundingthecarrierisessentiallyaquantumwellwhich`self-traps'thecarrier.Alargepolaronontheotherhand,embodiesaweakcouplingbetweenthesurroundinglatticeandcarrier.Asdiscussedearlier,theoctahedracontainingtheegelectronscanlowertheirenergyviaaJ-Tdistortion.Thus,inamixedvalencesystemwhereboththecubicoctahetraandJ-Tdistortedoctahedraco-exist,thecarrierhopstothenextsiteeachtimethelatticeoftheneighboringsite 27

PAGE 28

Asthetemperatureiscooled,theundopedmanganites(singlyoccupiedA-site)orderintotheexoticstructural,chargeandorbitallyorderedphasesasbrieyintroducedinSection 1.2.2 .Thesamplesthusremaininsulatorsdowntolowtemperatures.Dopedmanganiteswithdopinglevelsbelowthoserequiredforelectricalconductionexhibitsimilarordering,thoughoften,asinthecaseofPr0:7Ca0:3MnO3thereiscoexistenceinthesampleoforderedphasesandparamagneticdisorderedinsulatingphasesandtheconductivityisactivated,beinggovernedbyEquation 1{4 .Theonsetofaninsulatortometaltransitionuponcoolingcanbecontrollednotonlybythedopantconcentration,butalsothedopantionicradius.Itwasfoundthatifthenominaldopantconcentrationandaveragevalencewerekeptconstant,reducingtheA-siteionicradiusalsoreducesthetransitiontemperature,sinceJ-Ttypedistortionsbecomeenergeticallyfavorable[ 13 27 ]. Inthedopedmanganites,atoptimaldopinglevels,themanganitesbecomeferromageticandmetallicuponloweringtemperature.Transportinthistemperaturerangeisgovernedbythedoubleexchangemechanism.However,thediscrepancybetweentheconductivityvaluescalculatedfromdoubleexchangeandthemeasuredvaluessuggeststhatlatticedistortionsplayaroleevenintheferromagneticmetallicstate.Theeectofsuchelectron-phononcouplingwouldbeapronouncedtemperaturedependanceofthemeasuredresistivity,andthoughobservedexperimentally,ithasnotbeenresolvedintheliteraturesatisfactorily[ 13 27 ].InSection 1.3 below,theimportanceoftheseeectsintermsofthe(La,Pr,Ca)MnO6phasediagramwillbeintroduced. 28

PAGE 29

18 ]: Herethersttwotermsdescribetheessentialphysicsofthedouble-exchangemechanism,withthersttermdescribingtheabilityoftheelectrontohopfromsitetositeintheBravaislattice, where+p;isatwocomponentspinorwhichaccountsforcreationandannihilationofelectronsofspininmomentumspace(p).ThesecondtermembodiesspindependentelectronhoppingbetweenadjacentMnsitesandthedoubleexchangemechanism.Inthiscase,theegelectrononsiteiisconstrainedbythestrongHund'scoupling,whichisestimatedtobeabout3eV,tohavespinparalleltothecoret2gspin: HereJHistheferromagnetic(orHund's)couplingconstant.IfJHScislargeenough,thenanelectronhoppingfromsiteitojgoesfromhavingspinparallelto~Sciandto~Scj.HHundscanessentiallybeexpressedintermsofthehoppingamplitudegivenbyEquations 1{2 and 1{3 (seeforexample[ 14 18 ]). ThenexttermofEquation 1{5 describesthecorespininteractions,i.e.theantiferromagneticsuperexchangeinteraction: Thecorespinsinthiscasearerepresentedby~Scjwithiandjrepresentingdierentlatticesites. 29

PAGE 30

1{5 describetheelectron-latticeinteractions,withHBbeingthebreathingmodegivenby: whereQ0isthebreathingmodeamplitude,whiled+iaanddiaarethecreationandanhilationoperatorsforelectronsofspinonorbitalaonsitei,ascombinedinthetwo-componentmomentumspacespinorofEquation 1{6 .Thesecondelectron-latticeinteraction,theJahn-TellerdistortionHJTcanbeexpressedas: whereaandbaretwodierentlatticesites,whilegj~QJTjgivestheamplitudeofthesplittingbetweentwodegenerateeglevelsandthedirectionof~QJTspeciestheparticularlinearcombinationsofegstateswhichvaryinenergyduetothedistortion. Finally,thelastterm,HUdescribestheCoulombrepulsionbetweentheegelectrons: whereUisdenedastheenergydierencebetweenacongurationinwhichsiteihaszerowhilejhas2egelectronsandacongurationinwhicheachsitehasoneegelectron. TheHamiltoniangiveninEquation 1{5 canbesolvednumericallyandanalyticallydependingontheamountofsimplicationandtypesofassumptionsusedforeachofthecomponentsshownabove. 30

PAGE 31

1.2.2 ,aretheMn3+manganiteLaMnO3andtheMn4+manganiteCaMnO3.SincebothCaandLahavesimilarionicradiussize,mixingthetwospecies(orinterchangingsomeoftheLainLaMnO3withCaions)resultsinmobilechargecarriers(holedoping)andmixedvalencyratherthaninduceddistortions.ItshouldbenotedthataslightdistortionwillexistbecauseofthedierentionicsizesofanMn3+vs.Mn4+,andtheveryslightmismatchbetweentheCaandLaradii.Suchdistortionsgiverisetoaverydiverserangeofcharge,orbitalandspinorderingasafunctionofLa:Caratioandtemperature. WhentheLaMnO3parentendcompoundisdopedwithCasubstitutions,thevariousstructural,chargeandorbitalorderedphasesundergoaphasetransitionatcriticaldopantconcentrations.(Quitecuriously,thetransitiontemperaturesforthephasesaremaximizedatdopantconcentrationsthataremultiplesof1/8[ 13 ]).Forinstance,forsmalldopantconcentrations(Ca<5%),LCMOisaparamagneticinsulatorathighertemperaturesandundergoesatransitiontoacantedantiferromagneticstate.ForCasubstitutionsbetween5%and20%,LCMOexhibitsaninsulatingferromagneticstateandachargeorderedstateatlowtemperatures.AtCaconcentrationsof20%to50%,LCMOtransitionstoaferromagneticmetallicstateatlowtemperatures.Higherconcentrationsresultinchargeordered,antiferromagneticandcantedantiferromagneticstatesatlowtemperatures[ 13 ].ThestoichiometryofinterestforthisworkisLa1yCayMnO3withy=0.33(i.e.33%Caconcentration),wherethecompoundisaparamagneticinsulatoratroomtemperatureandundergoesaninsulatortometaltransitiontoaferromagneticmetallicstateatabout240K. LCMOretainsapseudocubic(slightlyorthorhombic,verynearlycubic)orderingbetweentheMnO6octaheraforalldoping(y)andtemperatureranges.Thusthe 31

PAGE 32

13 14 ].Hence,inadditiontoachangeinvalencewithincreasingCasubstituionofPrinPrMnO3,therearestructuraldistortionswithincreasingMn-O-Mnbondanglesandareducedtolerancefactor,f(seeEquation 1{1 ).WithincreasingPrconcentration,thestructurebecomesincreasinglyorthorhombic,resultinginareducedoneelectronbandwidth,i.e.reduceddoubleexchangechargetransfer. Becauseofthehighlevelofstructuraldistortions,PCMOisinsulatingthroughouttheentiredopingrange(ally)andatalltemperatures.However,withchangingy,thereisachangeinphasecharacterizedbydierentorbital,spinandchargeordering.ThedopedchargesinPCMO(i.e.Mn3+siteswithanegelectron)andtheMn4+sitesorderinasublattice(chargeordering)withtheegoccupationbeingstaggeredorarrangedonadierent(sometimesthesame)sublattice(orbitalordering).Thischargeandorbitallyorderedstateismoststablewithareductionofthetolerancefactorandwhenthecarrierconcentrationcoincideswitharationalnumberofperiodicityofthecrystallattice[ 27 ]. TheendcompoundPrMnO3isaparamagneticinsulatoratroomtemperaturewithatransitiontoanantiferromagneticspin-cantedinsulatingstatenear100K.Atanominalconcentrationof15%Ca,thesysteminsteadtransitionstoaferromagneticinsulatingstatenear100Kto150K,dependingontheholeconcentration.Caconcentrationsof30%to40%resultinthreetransitiontemperatures.Firstthereisatransitionfromaparamagneticinsulatingstatetoachargeorderedinsulatingstate,followedbyantiferromagneticorderingandnallyatransitiontoacantedantiferromagneticinsulatoratlowtemperatures.TheincreaseinholedopingviaCaconcentrationenhancesthetendencytowardsferromagnetism,thusresultinginthecantedantiferromagneticinsulatingbehavioratlowtemperaturesfortheseconcentrations.However,thetendency 32

PAGE 33

27 ]. AlthoughPCMOremainsinsulatingatalldopinglevelsandtemperatures,aninsulatortometaltransitioncanbeinducedwithanappliedmagneticeld.Thisisoftenreferredtoa`melting'ofthechargeorderedphase:Theferromagneticalignmentofcore-spinswithanappliedmagneticeldalsoalignstheegspinsviatheHund'srulecoupling,andthusaidscarriermobilityviathedoubleexchangeinteraction(seeEquations 1{2 and 1{3 ).Thermodynamically,theappliedmagneticeldreducesthepotentialbarrierforthesystemtobecomeconductingbyaligningthecorespinsandenablingdoubleexchange.Thus,thehigherthetemperature,thelowertheeldrequiredforthetransitionsincethermalenergycanassistinovercomingthepotentialbarrier(thermallyinducedlatticeuctuations)formeltingthechargeorderedphase.ItshouldbenotedthatunlikethetemperatureinducedinsulatortometaltransitioninLCMO,theeldinducedtransitioninPCMOisarstordertransitionaccompaniedbyachangeinlatticeparametersoriginatingfromtheeldinduceddestructionoftheorbitallyorderedstate[ 8 14 ]. ThestoichiometryofinterestforthisworkisPr1yCayMnO3withy=0.33,wherethecompoundisaparamagneticinsulatoratroomtemperatureandundergoesachargeorderingtransitionnear240Kwiththespinsorderingantiferromagneticallybelow150K.Belowabout80K,theantiferromagneticstatebecomescantedandweaklycoupledsuchthatitisverynearlyferromagnetic.Infact,thecantedstateismetastablesinceapplicationofamagneticeldirreversiblydrivesthesystemintoaferromagneticstate[ 13 14 ]. 33

PAGE 34

1.3.1 and 1.3.2 above.AnapproximatephasediagramadaptedfromtheLCMOandPCMOdiagrams[ 13 27 ]forLPCMOisshowninFigure 1-6 .(La1xPrx)1yCayMnO3withx=0.5andy=0.33exhibitspropertiesinherenttobothLCMOandPCMOwithdecreasingtemperature.ThereisacompetitionbetweentheferromagnetictendenciesofLCMOandthechargeandorbitallyorderedtendencyofPCMOresultinginaninterplayofbothstates[ 14 27 28 ].Forsometemperatures,boththeferromagneticmetallicstateandthechargeorderedinsulatingstateareenergeticallyfavorableandthustheycoexistonthemicrometerscale.Thisphenomenonisknownasphaseseparation.Contrarytointuition,thephaseseparatedregionsdonotappeartobepinnedwithinthelattice,sincetheincommensuratemixturemaybeexpectedtocontainLCMOorPCMOrichsites.Instead,eachcoolingrunexhibitsadierentspatialoccupationofeachphase[ 10 ] OnewaytounderstandthepropertiesofLPCMOisbyconsideringstudiesofchemicalpressureintheparentcompoundLCMO[ 13 ].AsdiscussedinSection 1.3.1 ,sinceLaandCahavesimilarionicradii,theeectsofamixedconcentrationissimplyachangeintheaveragevalenceofthecompound,i.e.amixtureofvacantandoccupiedsingleegorbitalsontheMnsites.TheMn-O-Mnbondangleinthiscompoundremainscloseto180andthecompoundisferromagneticmetallicfortemperaturesbelowabout240Kforthey=0.33dopingconcentration.TheMn-O-Mnbondanglecanbereducedbelowtheoptimalvalueof180byapplyingchemicalpressuretoLCMO.Inthiscase,dopingtheLasitewithPrwillchangetheeectivetolerancefactorofthesystemwithoutchangingtheaveragevalenceoregcarrierconcentration.AstheLCMObecomesincreasinglydistortedwithPrions(increasingxin(La1xPrx)0:67Ca0:33MnO3),theinsulatormetaltransitiontemperaturedecreasesandthetransitionbecomesincreasinglyhystereticandrstorder.Thereisanincreasingtendencytowardschargelocalizationandcharge 34

PAGE 35

Theapproximate(La,Pr,Ca)MnO3phasediagramshowingtheendcompounds(La,Ca)MnO3and(Pr,Ca)MnO3phasediagrams.Theredlinedenotesthex=0.33Cadopingconcentration.Althoughsamplesfory=0.4to0.6werestudied,themainresultsdescribedinthisworkarefory=0.5ashighlightedbythegreybox.IllustrationprovidedcourtesyofAmlanBiswas. 29 ].Thepseudocubicstateishypothesizedtobeparamagnetic,andsometimesreferredtoasthecharge-disorderedinsulatingstate(noclearchargeororbitalorderingsublattice)[ 29 { 31 ].Neutrondiractionmeasurementssuggestthepresenceofchargeorderednano-clustersintheparamagneticbackgroundcoexistingwithlatticepolarons[ 14 ].Itisthechargedisorderedinsulatingstatethatundergoesarstorderinsulatortoferromagneticmetallictransitionatlow 35

PAGE 36

14 ]. ThePrdopedLCMOorLPCMOremainsferromagneticatlowtemperaturesforx<0.7,abovewhich,thecantedantiferromagneticinsulatingstateofPCMOisprevalent.Forx<0.7thelowtemperatureferromagneticstateinLPCMOcanbeunderstoodbynotingthatbelowabout80K,thecantedinsulatingstateinPCMOismetastableandverynearlyferromagnetic.Thus,whenanalyzedfromtheperspectiveofLadopedPCMO,increasingLacontentincreasesthecompetitionbetweenantiferromagnetismandferromagnetismeventuallytippingthescaleinfavorofferromagnetismwhenahighenoughLaconcentrationisintroduced(orintheLCMOpicture,ferromagnetismincreasesforsmallPrconcentrationsinLCMO)[ 8 ].ThisfactdemonstratesthatbothmagneticeldorareductioninchemicalpressurecaninduceferromagnetisminPCMObychangingtheeectivedoubleexchangehoppingintegralandreducingthesuperexchangeantiferromagneticinteractions. Essentially,fortheLPCMOconcentrationdiscussedinthiswork,specically(La0:5Pr0:5)0:67Ca0:33MnO3,inbulkformthecompoundisaparamagneticinsulatoratroomtemperature[ 13 ].Withdecreasingtemperature,around240K,thereisatransitionofportionsofthesampletoachargeorderedstatewhiletheotherportionsremaininsulating,butintheabsenceofachargeororbitallyorderedsublattice.Belowabout100K,thechargedisorderedportionsofthesampletransitiontoaferromagneticmetallicstateandthereiscoexistenceoftheinsulatingandmetallicregionsinthesample.Atlowtemperatures,thesampleisphaseseparatedintochargeorderedregionsandmajorityferromagneticregions.Amagneticeldaslowas2Tcantransformthesampleintoafullymetallicferromagneticstate. 36

PAGE 37

32 ].Acompressiveortensilestraininthiscaseactstoreduceorenlarge,respectively,thelatticeconstantsintheplaneofthelmwhiletheoutofplanelatticeconstantsareincreasedordecreasedrespectively.Figure 1-7 schematicallydepictstheeectsofsubstrateinducedstrain.TheeectonLPCMOthinlmsgrownonorthorhombicNdGaO3substrateswitha(011)orientationisaveryslightcompressivemismatchwithintheplaneofthelmwithanelongationperpendiculartotheplaneofthelm.NdGaO3(011)isessentiallyorthorhombicwithcalculatedin-planelatticeparametersof0.3855nmand0.3860nmatroomtemperature(usingunitcelllatticeconstantsofa=0.5430nm,b=0.5500nm,c=0.7710nm[ 33 ]).ThelatticeconstantforLPCMOonaverage(sinceitismultiplydoped)intheparamagneticpseudocubicstateatroomtemperatureis0.384nm[ 34 ].Thusatroomtemperature,thelatticemismatchbetweenLPCMOandtheNdGaO3substratesiswith0.4%inonedirectionand0.6%intheotherin-planedirection.TheNdGaO3substrateshenceinduceaveryslighttensilestrainontheLPCMOthinlms,slightlyincreasingtheaverageMn-O-Mnbondangleanddecreasingdistortionsthusenhancingtheoneelectronbandwidth(tendencytowardsMn-Oorbitalhybridizationanddoubleexchange). ThelatticeconstantsaredierentforthedierentphasespresentinLPCMO(ferromagneticmetallicvs.chargeorderedinsulating).Thus,asthetemperatureisloweredandtheLPCMOundergoesphasetransitions,thelatticemismatchincreases,aectingthephasechangesforverythin(<100nm)LPCMOlmsstudiedinthiswork,whichareconstrainedtothelatticeparametersofthesubstrate.ThetwomainaectsofNdGaO3(011)substratesontheLPCMOphasetransitionsare:a)ThelackofahystereticfeatureintheR(T)datanearthechargeorderingtransitiontemperature,suggestingthatthechargeorderedphaseissuppressedduetosubstrateinducedtensilestrainwhicheectivelyincreasestheMn-O-Mnbondangleinthiscase.Notethatthechargeordered 37

PAGE 38

Anillustrationdemonstratingsubstrateinducedstrain.Thesubstrateisshowninbluewiththewhitecirclesrepresentingatomicsites.Thestrained,distorteddepositedlmisshowningreywithblackcircles.Inthisparticularillustration,thestrainisrelaxedonthetoplayer.InLPCMO,thestrainisnotfullyrelaxedforthethicknessesconsideredinthiswork. phaseisassociatedwithincreasedlatticedistortions,decreasingMn-O-Mnbondanglesandhencelocalizedcarriers.b)Thesecondeectofthesubstrateinducedstrainappearstobeatlowtemperatures,wheremagnetizationmeasurementsshowthatthecompoundisfullyferromagnetic.Thelattereectisexpectedifthe(former)chargeorderingissuppressedduetosubstrateinducedstrain. 38

PAGE 39

2 .Inthismanner,asdescribedindetailinthefollowingchapters,afewinsulatingandmetallicphasesappearacrossthelengthofthebridgeduringthephaseseparationtemperaturerange. ThereareseveralpotentialwaysinwhichthepropertiesofLPCMOstructuresconnedtothenanometerscalemaybeaected.Forinstance,surfacestatesdierfromthebulkduetothestrongdependenceofcharge,spinandorbitalorderingonthelatticestructure.Danglingandincompletebondsonthesurfacecanresultindrasticallydierentpropertiesonthesurfacesuchasthesuppressionofdoubleexchangeevenifthebulkportionsareferromagneticmetallic[ 24 ].Chargeandorbitalorderingmayalsobesuppressedresultinginadisorderedstate.Innanostructures,thesurfacetovolumeratioisenhancedandthussurfacesplayanimportantroleindeterminingthepropertiesofthesystem.Secondly,longrangeCoulombinteractionsaresuppressedinnanostructures.Inthecaseofbridges,theinteractionsaresuppressedalongoneaxis,possiblymodifyingthephaseseparationtendenciesinthesample.ThepotentialconsequencesofsuppressedlongrangeCoulombinteractionsinreduceddimensionsinmanganitesisaddressedinChapter 4 TheadvantageofstudyingtheeectsofmagneticandelectriceldsontransportinnanoscaledLPCMOstructuresisclearfromtheexperimentsdescribedinChapters 3 4 and 5 .Measurementsonnanostructuresmakeitpossibletoseparatelyidentifyeachofthedierenteectssimultaneouslyatplayinthemanganites,givingtheexoticelectronictransportpropertiesobservedinbulkmaterials.Forinstance,itispossibletoseparateelectrontunnelingeectsacrossdierentinsulatingregionsfrommetallictransportandcomparetheeectsoftheelectronicvs.magneticeldsontheinsulatingregions.Thedatahintatthepresenceofanintrinsicexchangebiasbetweentheinsulatingandmetallicregionswithinthephaseseparatedtemperaturerangeandadditionally,thepossibilityofCoulombblockadedmetallicdropletswithintheinsulatingbackgroundathighertemperatures(seeChapters 3 and 5 ). 39

PAGE 40

Theparentcompoundsofthemanganite(La,Pr,Ca)MnO3discussedinthisworkhavegroundstatesatlowtemperaturesthatareferromagneticmetallicfor(La,Ca)MnO3andacombinationofcharge/orbitalorderedandcantedantiferromagneticinsulatingfor(Pr,Ca)MnO3.Theincommensuratemixture(La,Pr,Ca)MnO3isthusanintermediatecompoundwithmetastablestatesandanintimateinterplaybetweeninsulatingandmetallicbehavior,givingrisetothemicrometerscalephaseseparationobservedatcertaindopinglevels. Inthiswork,astudyofthenanoscaleelectronicpropertiesofphaseseparationarepresented.Thin(La,Pr,Ca)MnO3lmsarepatternedintonarrowbridgestructuressuchthatoneorafewregionsofeachphasearepresentallowingadirectelectronicmeasurementofthepropertiesofeachofthetwophases. 40

PAGE 41

Inordertoprobetheelectronicpropertiesofphaseseparatedmanganitesonthenanometerscale,anovelnanofabricationtechniquewasdeveloped.Thenanofabricationtechnique,asdescribedinthischapter,hasallowedthemeasurementofnotonlythestabilityofphaseseparationonthenanometerlengthscalebutalsotransportacrossindividualphaseseparatedregions.Suchameasurementwaspossiblebyfabricatingthinwires(orbridgestructures)withwidthslessthenthephaseseparationlengthscalesothatafewdiscretephaseseparatedregionsweretrappedalongthelength.Additionally,anoveltechniqueforfabricatingmanganitecapacitorswithauniquegeometrywasemployedtoprobeanisotropictransportthatresultsfromconninglmthicknessestothenanometerlengthscales.Asdiscussedindetailinthesubsequentchaptersofthisthesis,usingtheformerunconventionalfabricationtechniquesseveraleectsuniquetothislenghscalewereobserved,including(1)tunnelingacrossintrinsicinsulatingregionsseparatingadjacentferromagneticmetallicregions,(2)evidenceofanewtypeofhighlyresistivemagneticdomainwall,(3)discretecolossalelectriceldinducedresistancestepsand(4)inherenttransportanisotropieslinkedtoanisotropiesincrystalstructureresultingfromsubstratestrain.Theinvestigationishoweverongoingandmanynewphenomenonbeyondthosedescribedinthisthesisremaintobeuncovered.Thefabricationtechniquespresentedbelowcanalsobeutilizedonotherphaseseparatedorcorrelatedelectronoxidesystemstobetterunderstandphysicsonthenanometerlengthscales. InthisChapter,thetechniquesusedtofabricatethemanganitenanobridgesaswellasthemanganitethinlmcapacitorsarediscussedindetail.Themeasurementset-upforboththeacanddcfourterminalresistivityandthethreeterminalcapacitancewillbediscussedfollowedbyadescriptionoftheQuantumDesignPPMSapparatususedforbothtemperatureandmagneticelddependence.Lastly,magnetizationmeasurements 41

PAGE 42

B A.Showsaschematicofthepulsedlaserdeposition(PLD)systemwhile,B.showsaphotographofthePLDmainchamber(circular,metallic,withmultiple`feedthruarms')withthelaserunit(orange)immediatelybehind. usingtheQuantumDesignMPMSSQUIDapparatuswillbediscussedfollowedbydataacquisitiontechniques. ThePLDprocesscomprisesalaser,atargetmaterialandatargetsubstrateasshowninFigure 2-1 .Thetargetmaterialisgenerallyabulkpelletofthedesiredmaterial,sometimesofthedesiredcompositionandsometimesofaslightlydierentcompositionwhichislatertunedbychangingthechamberpressureand/ortemperatureofthesubstrate.Thesubstrateisathin(inthiscase0.5mmthick)singlecrystalmaterialwhichisnearlylatticematchedtothedesireddepositionmaterialinordertoavoidstrainand 42

PAGE 43

2-2 Figure2-2. Thisphotographdepictsaplume(white)createdbythelaserstrikingthetargetmaterialontheright.Notethatthetipoftheouteredgeoftheplumeverynearlycoincideswiththeheater(red/orange,820C)wherethesubstrateismounted. Thesubstratepositionisoptimizedtocoincidewiththetipoftheplume.Inthisway,eachlaserpulseresultsinmaterialbeingdepositedonthelm|generallylessthanonemonolayerperpulse.Thesubstratetemperatureisoptimizedtoensurecrystallinegrowth.Inotherwords,theatomsmusthaveenoughthermalenergyonceonthesurfacetomovearoundandndthepositionoflowestenergy(potentialwell),thusallowingatomicallyatlayerbylayerdeposition.Theambientpressuredeterminesnotonlytheplumesize,butifthematerialbeingdepositedisanoxide,italsodeterminestheoxygencontent.Hence,inthiscase,theoxygenpressurealsorequiredaconsiderableamountofnetuningbyDr.Dhakal[ 25 ]. TheoptimumparametersforLPCMOgrowthonNGOweredeterminedthroughextensivetrialanderror[ 25 ]:Substratesweremountedontoasubstrateheaterwhich 43

PAGE 44

Standard-2x-raydiractometrywasusedtodeterminethecompositionandcrystalinityofthesamples[ 25 ].Thex-rayresultswereusedincombinationwithtransportandmagnetizationmeasurementstodeterminethequalityoftheLPCMOthinlms[ 25 ] 44

PAGE 45

Electronbeam(E-beam)patterningisabletoovercomethelowerlimitspresentedbytheUVphotolithographytechnique.Asnotedearlierhowever,thechallengeofpatterningwiththe(E-beam)istherelativelylowconductivityofLPCMOatroomtemperature.Depositingametallayeronthemanganitewasnotstraightforwardbecausebothchemicalanddryetchremovaltechniquesresultedinsurfacedamageandthusstructuraldamagetothemanganitesandhencealteredtransportproperties.Forinstance,evenifanetchthatdoesnotaectmanganitesisusedtoremovethemetals,thesurfaceofthemanganiteisdamagedfromoxygenlosstothemetal.Thoughmetalssuchasgoldwhichdonotoxidizeeasilywereutilized,nosuitableselectivegoldetchwasfound:Alletchesusedforthisstudydamagedthemanganitethinlm.AnotherchallengewithE-beampatterningwasthesubsequentetchingoftheexposedregionsusingwetordryetchesandassociatedcomplicationswithwalldamagetotheultranarrowbridge. 45

PAGE 46

IndirectanalogytoanE-beamsystem,theGaionbeamrequiresfocusingandthesamplecanessentiallybe`viewed'bybombardingGaions(aswithelectronsforanelectronmicroscopeorphotonsinanopticalmicroscope).Thus,simplyfocusingtheionbeamorviewingasampleinthiswaycanresultinGaionimplantationinthedesiredsample.TheFIBisgenerallyusedforfabricatingsamplesfortransmissionelectronmicroscopywhicharecoatedwithaprotectivemetalliclayer,thusGaionimplantationisnotamajorissue.Inthethinmanganitelmsusedforthisworkhowever,itwasfoundearlyintheprojectthatGaionimplantationinthemanganitesresultedinalteredtransportpropertiesandnoinsulatortometaltransition. ToavoidGaionimplantationdirectlyintomanganites,wepatternedtheNGOsubstratesusingtheFIB.SinceNGOisinsulatingandthuspronetochargingproblemsfromtheGaionbeam,wedepositeda40nmto80nmthicklmoftransparentconductingnanotubes(CNT)incollaborationwithDr.A.Rinzler[ 35 ].SinceapristineandatomicallysmoothsubstratesurfaceisessentialforachievinghighqualityLPCMOthinlmsforourexperiments,theinertCNTthinlmswerebettersuitedasaconductinglayerforFIBpurposesthanconventionalmetals.BecauseCNT'sareinertwhenincontactwiththesubstrate,thesmoothsurfaceofthesubstrateispreserved.Itwasfoundthat 46

PAGE 47

2.2.1 .Mostofthemetalsreadilyavailableinourlaboratory(i.e.Al,Au,Cu)tendtooxidizetherebydepletingtheoxygeninNGOnearthesurfaceandchangingnotonlythesurfacechemistrybutthecrystalstructure,andresultinginundesirablesurfaceroughness.TheadvantagewithCNTsliesinthefactthattheydonotdepleteNGOsurfaceoxygenandcaneasilyberemovedwithalowpowerO2plasmawhichwasfoundtonotaecttheNGO. Figure2-3. TwotypicalscanningelectronmicrographsofatransparentconductingcarbonnanotubethinlmcoveringtheNdGaO3substrate,priortoFIBmilling. Figure 2-3 showsanSEMimageofatypicalsubstratecoatedwithaCNTlmpriortoFIBmilling.SmallrectangulargroovesorlinesdeningthedesiredbridgewidthasshowninFigure 2-4 weremilledintothecenterofthesubstrateusingtheDualBeam-FocusedIonBeamStrataDB235apparatusavailableattheUniversityofFloridaMajorAnalyticalInstrumentationCenter(MAIC),seeFigure 2-5 .The`dualbeam'featureoftheFIBisadditionallyusefulinavoidingGaioncontaminationsinceitconsistsoftwobeams:theGaionbeamandanE-beam.Bothbeamscanbefocusedatthesamepoint 47

PAGE 48

B C A.SchematicshowingrectangulargroovesintheNGOsubstrateetchedusingtheFIB.Thespacingofthegroovesdenesthewidth,d,ofthebridgetobefabricatedbetweenthem.B.Showsascanningelectronmicrograph(SEM)ofacarbonnanotubecoatedNGOsubstrateimmediatelyafterpatterningoftrenches1mdeep,40nmwidetodenethebridge(asopposedtogrooves,seeendofSection 2.2.3 ).C.AnSEMimageshowingdetailsofthegroovesdepictedinpartB.Thenanotubethinlmisvisible. thusallowingimagestobeobtainedwiththeminimallyinvasiveE-beamwhilemillingwiththeionbeam.Theionbeamfocusingsequencecanbeperformedatthesampleedge,farawayfromthedesiredpatternareaandtheE-beamcansubsequentlybeusedtodeneapatterningarea,avoidingGaioncontamination.Inthisway,theareasthatarenotdirectlybeingmilledwillavoidamajorinuxofGaions.Thelowestavailablebeamcurrentsettingsof1pAor10pAandabeamvoltageof30kVwasusedtominimizeGa`sidewall'contamination(i.e.Gaionswithenoughmomentumandenergyimplanting 48

PAGE 49

Figure2-5. TheDualBeam-FocusedIonBeamStrataDB235apparatusavailableattheUniversityofFloridaMajorAnalyticalInstrumentationCenter(MAIC).Photocourtesy,MAIC. AftersuccessfulFIBmilling,thesamplewasremovedandplacedinanAnatechSCE600Asher.AnO2plasmawasusedatapowerof600Wfor20minstoremovetheCNTthinlmbyoxidizingthecarbonnanotubes,resultinginCO2gas.Next,anLPCMOthinlmwasdepositedonthepatternedsubstrateusingthePLDsystemasdepictedinFigure 2-6 2-7 and 2-9 respectively. 49

PAGE 50

Schematicshowingtheetchedsubstrate(grey)beforeandafterLPCMO(red)deposition.ThesubstrategroovesaredeepenoughtoensureminimalLPCMOdepositiononthesidewalls,andthusminimalelectricalcontactbetweentheLPCMOonthesubstrateandthatdepositedwithinthegrove.Figurenottoscaleforclarity. Figure2-7. SchematicshowingLPCMO(red)depositedonetchedsubstrate(grey)beforeandafterthebridgeisdenedusingUVlithography.Figurenottoscaleforclarity. Figure2-8. Aschematic(nottoscale)depictingthefourcontactpadUVlithographymaskusedtoisolateanddenethebridgepriortowetetching. 50

PAGE 51

2-8 wasdevelopedusingtheAutocadsoftwarepackageinourlaboratoryandprintedbyPhotoSciences,Inc.Asnotedpreviously,thelowerlimitofresolutionwithourUVphotolithographysystemisapproximately1m.Thusamaskwithabridgewidthof3mwasdeveloped.AKarlSussMA-6ContactMaskAlignerwasusedtoalignthesubstratepatternwiththephotolithographymaskinsoftcontactmode.Thisparticularstep,giventhelowresolutionontheMaskAlignermicroscope,sometimesinvolvedseveralhoursoftediousandcarefulalignment.Oncealigned,thesamplewasexposedfor14secandsubsequentlydevelopedusingMicropositMF319developerfor10secandthenrinsedindeionizedwater.Figure 2-9 showsanopticalmicroscopeimageofasuccessfullyalignedanddevelopedbridgestructure.Notethatinthiscase,insteadofgrooves,1mdeep,40nmwidetrenchesweremilledwiththeFIBtodenethebridge,asatimesavingmeasure(narrowtrenchestakelesstimethanwiderectangulargrooves). Thenalfabricationstepinvolvesetchingtheexposed,unmaskedmanganiteusinganin-houserecipeforasolutionpreparedfromatitrationbetweenpotassiumiodideand10%hydrochloricacid.Sincethesolutionisunstableandtheetchratevarieswiththeageofthesolution,priortoetchingagivensamplesmallstripsofmanganitelmsonNGOareusedtodeterminetheexacttimeoftheetch.Etchtimingsrangefrom8sectooveraminute.Thusprecisetimingiscrucialsinceonesecondtoolongcanresultinetchingthroughthenarrowbridgeinthecenter. Oncesuccessfullyetched,thephotoresistmaskisremovedbysonicatingthesamplerstinacetoneforoneminutefollowedbyisopropanolandmethanolalsoforaminuteeachfollowedbynitrogengasblowdrying.AnopticalimageofacompletedmanganitebridgeisshowninFigure 2-9 B. 51

PAGE 52

B A.Opticalimageofa0.6mwideLPCMObridgealignedwithadevelopedphotoresistmask.Notethatinthiscase,insteadofgrooves,1mdeep,40nmwidetrenchesweremilledwiththeFIBtodenethebridge.AschematicofthelithographymaskusedisshowninFigure 2-7 .B.Opticalimageofa0.6mwideLPCMOcompletedbridge(denedwithrectangulargroovesinsteadoflines)afterasuccessfulwetetchandsubsequentremovalofthephotoresistmask. Figure2-10. AQuantumDesignproprietaryPPMStransportmeasurementpuck.TheleftimageshowsthebottomofthepuckandthecontactswhichplugintothePPMShardware.Therightshowsthetopofthepuck:Thegoldsquareinthecenteristhesamplespaceandthesmallcontactsalongtheperimeterareusedforelectricalconnectionwiththesampleusinggoldwires. 52

PAGE 53

2-10 whichconnectsthroughelectricalcontactsandwiringinourPPMSmeasurementsystem(describedinSection 2.5 below)tothemeasurementinstruments. ThedepositionoftheAlOxdielectricthinlmsisdescribedinSection 2.3.1 below.ThemetalelectrodedepositionforboththetopandbottomgatingelectrodesisdescribedinSection 2.3.2 .AphotolithographytechniquesimilartotheproceduredescribedinSection 2.2.3 abovewasusedtodenethebottomgateandthetopgatesuchthatthegatewasalignedwiththebridgewithminimaloverlapwiththemeasurementleadsasshownschematicallyinFigure 2-11 53

PAGE 54

TheschematicaboveshowsthebridgecappedwithalayerofAlOxfollowedbyathinmetallayer(Aushown)suchasAuorAlactingasthegate. placeofNGOwillalterthestrainandthusthepropertiesoftheLPCMOlm,thusNGOismostdesirableinordertostudytheLPCMOinitsleaststrainedform.Toovercomethisdiculty,anovelcapacitancestructurewherethematerialundertest,LPCMO,comprisedoneoftheelectrodesofanelectrode-insulator-electrodecapacitorstructureasshowninFigure 2-12 ,wasdevelopedbyDr.RyanP.Rairigh,apreviousmembersoftheHebardlab.FollowingDr.Rairigh'sgraduation,theremainingsampleswerefabricatedbymyselfonlmsdepositedbyDr.TaraDhakal.Notethatincontrast,aconventionalcapacitorgeometrycomprisesametal{(materialundertest){metalconguration.Throughextensivecircuitmodelingandanalysisoftheunconventionalcapacitorstructure,detailedinChapter 6 ,thepotentialdropparalleltotheplaneofthelmwasisolatedfromthevoltagedropperpendiculartotheplaneofthelm.Inthisway,itwasdeterminedthattheinsulator-to-metalphasetransitionwithintheplaneofthelmoccursatadierenttemperaturethanthephasetransitionperpendiculartotheplaneofthelm.Thephase 54

PAGE 55

Figure2-12. Aschematic(nottoscale)depictingallthelayersofthecapacitorstructurewithLPCMOasoneoftheelectrodesandacircularlydenedAlthinlmasthesecondelectrode. TheLPCMOtrilayercapacitorstructurecomprisedofanAlOxdielectriclayertoppedwithametalelectrode.TheAlOxwasdepositedusingRFmagnetronsputteringandametalevaporationchamberwasusedtodepositanAlelectrodeasdescribedinSections 2.3.1 and 2.3.2 respectivelybelow. 55

PAGE 56

Figure2-13. AschematicoftheAlOxdepositionsystem,Hamedonsystemdescribedinthetextisshownandthepartslabeled. Formetals,adcvoltageisgenerallyutilizedsincetheconductingtargetprovidesashunttogroundfortheaccumulatedchargefromthebombardingions.Insulatingmaterialshoweverdonotprovideaconductingpathtogroundandquicklybecomeionizeddeectingfurtherionbombardmentandthushindersputtering.Inthiscaseanacdrivingvoltage(13.56MHz,radiofrequence{rf)isused.Aschematicofourhome-builtdepositionchambernicknamedHamedonisshowninFigure 2-13 Afterpulsedlaserdeposition(Section 2.1 ),thehighqualityLPCMOlmswithacleansurfacewereloadedinHamedonviaaload-lock.Thesystemwasevacuatedusing 56

PAGE 57

2-14 Figure2-14. Thisopticalimageshowsametalcapacitortopelectrode(circular)withtwogoldwireleadsattachedusingsilverpaint.Numerousreectionsintheimagemaydiverttheeye,althoughthecircularelectrodeisclearlydened. Thermalevaporationisabasicmetaldepositiontechniqueinvolvingtheuseofasmalltungsten(W)heatingelementorlament(seeFigure 2-15 )whichholdsthedesiredmetal,inthiscaseAl.Whenahighcurrentisappliedacrosstheheatingelement,joule 57

PAGE 58

Figure2-15. TungstenthermalevaporationboatusedfordepositingAltopelectrodes.BoatsofothershapesandsizeswereusedforothermetalssuchasAu,Ag,Cu,etc. Forthepurposesofthisexperiment,anAllmof60nmthicknesswasthermallyevaporatedontotheLPCMO{AlOxstructureatarateof0.6nm/secachievedusingcurrentsof30Ato40Aacrossthetungstenboat,withabasepressureontheorderof107Torr.Contactstothemetaltopelectrodesweremadeusing0.00125"guagegoldwire.Microtippedtweezerswereusedtobendthewireintoaloop(10mdiameter)ononeendanddippedinsilverpaintandquicklyremoved.Withamicroscopicdropofsilverpaintsuspendedonthewireloop,thewirewasmanuallyplacedonthetopelectrodesothatthepaintwasconnedtothetopelectrode.Afterthepaintsolventsdried,thegoldwirewasbondedtotheAlwithalayerofsilverparticles.Figure 2-14 showstwowireloopsattachedwithpainttothetopofa1.5mmdiametercapacitortopelectrode. 58

PAGE 59

Thissamplesummarytableonlyliststhesamplesforwhichdataisshowninthesubsequentchapters(labeledinthelastcolumn).Thecolumnlabeled`Type'identieseachsampleaseitheranunpatternedthinlm(lm)orapatternedbridge(bridge).Sincethe100mscaleismuchlargethanthephaseseparationscale,sampleS2aisconsideredathinlm.S2bandS2chavebeenconsecutivelypatternedintoincreasinglynarrowerbridgesfromthesameinitialsample:S2a. SampleTypeIn-planedimensionsFilmthicknessChapters S1bridge3mx10m30nm 3 S2alm100mx3mm30nm 4 S2bbridge2.5mx8.0m30nm 4 S2cbridge0.6mx8.0m30nm 3 4 5 S3bridge2.5mx8.0m10nm 4 S4bridge0.4mx4.5m30nm 5 S5lm5.0cmx5.0cm60nm 6 S6lm5.0cmx5.0cm30nm 6 S7lm5.0cmx5.0cm60nm 6 S8lm5.0cmx5.0cm90nm 6 thedetailedmeasurementswerecarriedoutononlyafewtypicalsamples(asthoselistedhere)duetopracticalissuessuchastimeconstraintsandavailableresources.Aquantitativeaverageofpropertiessuchasthemagnetoresistancecannotbemeasuredforthebridgesamples,sinceeachsamplediersfromtheothersquantitatively,thoughallpossessthesamequalitativetransportfeaturesandproperties.ThisdiscrepancyismostlikelyduetoinhomogeneouschemistryoftheLPCMOthinlmswithinthenarrowbridge. 2.5.1 below.InSection 2.2.4 detailsofthebasicelectriceldgatingsetuparepresentedandSection 2.5.3 providesadescriptionofthethreeterminalcapacitancesetup.AlldctransportmeasurementswerecarriedoutbymyselfwhilethecapacitancemeasurementswerecarriedoutincollaborationwithfellowHebardlabmembers,Dr.Rairigh,SefTongayandPatrickMickel.Whilethemanganitecolossal 59

PAGE 60

Fourcontactresistancemeasurementcircuitdiagramshowingallinstrumentsutilized. Thoughthemeasurementofthemanganitebridgeswasessentiallytwoterminal,tominimizethecontactresistance,thefourterminalmeasurementsetupwasutilized.Thismeasurementcongurationisessentiallytwoterminalbecausethetwoleads(forvoltageandcurrent)ateitherendofthebridgeareshortedviathemacroscopicleads.Sincemostofthesamplesmeasuredhadresistancesontheorderof106to109,inmostcaseswesuppliedcurrentandmeasuredvoltage.Currentintherange106Ato1012AwasappliedusingaKeithley220currentsourceacrossthecurrentleadslabeledinFigure 2-16 60

PAGE 61

2-16 usingaKeithley182orthenewerKeithley2182aNanovoltmeter.Often,thecurrentsupplyandvoltmeterweresubstitutedwiththeKeithley236SourceMeasureUnitwhichcansimultaneouslysupplyandmeasurebothvoltageandcurrent.MeasurementsthatinvolvedsourcingvoltageandmeasuringcurrentwereoftencarriedoutwiththeKeithley236. Figure2-17. Twoterminalsource-voltage,measure-currentcircuitdiagramshowingallinstrumentsutilized.Thesampleresistanceismuchgreaterthanthe10kprotectionresistorshown.TheprotectionresistorservedasacurrentlimiterforthesensitiveSRS70currentpreamplierintheeventofanunexpectedcurrentincreaseacrossthemanganitebridge.Thusthevoltagedropacrosstheprotectionresistorisnegligiblecomparedtothesamplebeingmeasured. ThoughtheKeithley236sucedformostvoltagesourcingmeasurements,somemeasurementsthatrequiredmoreaccuratelowlevelcurrentreadingswhensourcingavoltagewerealsomadeusingtheStanfordResearchSystems(SRS)570CurrentPreamplierwithexcellentnoiselteringcapabilities,andaKeithley182Nanovoltmeter. 61

PAGE 62

2-17 .HeretheSRS570inputisheldatvirtualgroundandthereadingisconvertedtoavoltagewhichcanbereadatthevoltmeteroutputandmanuallyconvertedtoacurrentvalueusingthescalesdenedonthepreamplier. Circuitdiagramforelectriceldgatingmeasurementshowingallinstrumentsutilized. Figure 2-18 showsaschematicofthemeasurementsetupusedtoeldgatethemanganitebridges.Inthiscase,resistanceacrossthebridgewasmeasuredasdescribedinSection 2.5 above.However,aKeithley2400SourceMeasureUnitwasusedtosupplythegatevoltagewithrespecttogroundasindicatedinthegure.Notethattoavoid 62

PAGE 63

2-19 :Theautobalancingbridgecircuitry,theprecisionfrequencygeneratorandthedetector. Figure2-19. ThreeterminalcapacitancebridgeschematicadaptedfromtheAndeenHagerlingAH2700AUsersManual. Theunknowncapacitance,Cx(inthiscase,oursample)isconnectedasshownintheFigure 2-19 andeitheraparallel(shown)orseriescongurationofacapacitanceandresistance(Rx)isassumed.Todeterminethecapacitanceasmallamplitudeacsignalisgeneratedbythegeneratorandthebridgerunsit'sauto-balancingsequenceuntilthevoltageatthedetectorispreciselyzero.ThefactthattheratioofcoilsatTap1andatTap2isknownandthefactthatthevoltageatTap2isthesameasLeg4andthatatTap1isthesameasatLeg3isusedtodeterminetheprecisevaluesoftheunknownresistanceRxandcapacitanceCx. 63

PAGE 64

2-20 .Thecryostatconsistsofa7TsuperconductingmangetimmersedinliquidHe.Aliquidnitrogen(LN2)outerjacketprovidesathermalgradientbetweentheHeandtheambienttemperatureinthelaboratory.AvacuumjacketbetweentheHeandLN2aswellasbetweentheLN2andoutershellofthedewarprovidesaddedinsulation. Thesystemprovidesbuiltinandautomatedtemperaturecontrolswithuserinputthroughasoftwareinterface,QuantumDesign'sMultiview.ThePPMScanalsobecontrolledusingLabviewsoftwareandcaneasilybeinterfacedwithacomputerusingthebuilt-inGPIBconnectorsasdiscussedinSection 2.8 below.Forcooling,Hegasispumpedintothesamplechamberandusedtocoolthesampledownto4.2K,andcoolingdownto1.7Kisachievedbyllingthe`coolingannulus'withliquidHeandevaporating.Afeedbacksystemconsistingofheatersandthermocouplesisusedtopreciselycontrolthetemperatureofthesystembetween1.7Kand350K. SamplesareloadedintothePPMSonasamplepuckprovidedbyQuantumDesignandengineeredforthisparticularsystem,asshowninFigure 2-10 .ElectricalconnectorsonthepuckconnectinternallythroughthePPMSviaco-axialcableandterminateata`break-out'boxwithBNCconnectors,whichenableconnectivitywiththemeasurementinstruments. 2.6 butwithouttheouterLN2jacket.Thesampletobe 64

PAGE 65

SchematicofthePhysicalPropertiesMeasurementSystem(PPMS)dewar.DrawingadaptedfromtheQuantumDesignQD-6000HardwareManual. measuredwasinsertedandadjustedatthecenterofaplastic,transparentdrinkingstrawwhichwasmountedonasampleprobeandinsertedintotheMPMSsamplespace.SincetheSQUIDmagnetometerisadierentialtechnique,therelativelyfaintdiamagneticstrawsignalisnearlyinsignicantsincethedierentialtechniquerendersitabackgroundsignal. ThemagnetizationmeasurementswerecarriedoutinaHepurgedandevacuatedsamplespacebetween300Kand10K.TheMPMSsystemisinterfacedviaGPIB 65

PAGE 66

MagnetizationmeasurementoftheLPCMOlmontheparamagneticNGOsubstrate.Astheoverwhelminglylinearoverallshapeofthecurvedisplays,theparamagneticsubstratesignaldominates. connectiontoacomputerandcontrolledviatheQuantumDesignMultiviewsoftwarepackage.Figures 2-21 and 2-22 showmagnetizationdataforatypical300ALPCMOthinlm.Figure 2-21 showsthemeasuredsignalwiththedominant(linear)paramagneticNGOsubstratesignalandFigure 2-22 showstheLPCMOcomponentofthesignalafterthelinearparamagneticsignal(positiveslope|diamagneticmaterialshaveanegativeM(H)slope)issubtracted. Inadditiontomeasuringmagnetizationofthinlms,magnetizationmeasurementswerealsoperformedon1mwideLPCMOstripespatternedonNGOsubstratesasshowninFigure 2-23 (fabricatedusingthephotolithographytechniquesdescribedin 66

PAGE 67

AlinearttotheparamagneticsignalissubtractedfromthesignaltogivetheLPCMOferromagneticcontributionasshownhereforseveraltemperatures. Section 2.2.3 )whilesimultaneouslypassingcurrentthroughthestructure.Goldelectrodesweredeposited(Section 2.3.2 )onthetwoendsofthestripesasshownonthetoprightcornerofFigure 2-23 andthesamplewasmountedonacustomdesignMPMSsampleholderwithelectricalwiringforsimultaneouslyperformingmagnetizationmeasurementsandelectricaltransportmeasurements.AtypicalmagnetizationcurveafterremovaloftheparamagneticNGObackgroundsignalisshowninFigure 2-24 67

PAGE 68

Opticalimageofmultiple1mwideLPCMOstripes(lightercolor).ThetoprightcornershowstheAuelectrodes,slightlyoutoffocus. Figure2-24. Magnetizationdataformultiple1mwideLPCMOstripes 68

PAGE 69

TheLabviewdataacquisitionprogramswereinsomecasesmodicationsofprogramswrittenbypreviouslabmembersbutinmostcasesbrandnewprogramswrittenbymyself.AlldatawereanalyzedusinganumberofsoftwarepackagesincludingOriginLab,MicrosoftExcelforlesscomplexanalysis,Mathematicaandanumberofsharewareplottingprogramsfreelyavailable. Lastly,itshouldalsobenotedthatChapters 3 4 6 havepartiallybeenreproducedfromworkpublishedinscienticjournalsinaccordancewithcopyrightlaws.Afootnoteinthebeginningofeachchapterprovidestherelevantcitationandinformation.Inthisrespect,inaccordwiththeconventionalstandardsandtrendsofscienticjournalpublications,thesechaptersandalsoChapter 5 whichisbeingadaptedforanupcomingpublication,havebeenpresentedinpluralorcollectiverstpersonratherthantheobjectivestyleofwrittingemployedinChapters 1 2 and 3 69

PAGE 70

Toclarifytheexactroleoftheworkcarriedoutbyallindividualsincludingmyselfmentionedinthischapter,belowisalistoftheworkpresentedinthefollowingchapterswithashortnotelistingthecontributionsofeachindividual. Chapters TaskContributorContribution 2 to 6 LPCMOlmsDr.T.DhakalInitialthinlmdeposition 2 to 6 LPCMOlmsG.SinghBhallaSubsequentthinlmdeposition 2 bridge/lmmagnetizationmeasurementsG.SinghBhallaAllmagnetizationmeasurements 3 4 5 bridgefabricationDr.S.SelcukInitialnanofabricationtraining,specically,E-beam,FIB 3 4 5 bridgefabricationG.SinghBhallamodicationofinitialnanofabricationtechniques,developmentofalltechniquesusedtoday,includingsubstrateetching,CNTconductinglayers 3 4 5 bridgefabricationB.LiuCNTlmcoating 3 4 5 bridgetransportmeasurementsG.SinghBhallaAlltransportmeasurements 6 capacitorfabricationDr.RairighDevelopmentofuniquecapacitancegeometry 6 capacitorfabricationG.SinghBhallaFabricationofsubsequentcapacitors 6 capacitorfabricationS.TongayTrainedbymyselfonAlOxandmetaldeposition 6 capacitancemeasurementsDr.RairighDiscoveryofcolossalmagnetocapacitance(CMC);allworkonscalinglawcollapse 6 capacitancemeasurementsG.SinghBhallaThicknessdependenceofCMCvs.CMRpeaks. 6 capacitancemeasurementsS.TongayTrainedbymyselfonmeasurementsinvolvingthicknessdependenceofCMCvs.CMRpeaks. 6 capacitancemeasurementsP.MickelTrainedbymyselfoncapacitancemeasurements;analysingscalinglawcollapsewithinDebyemodel. 70

PAGE 71

2 ,designedtoexploitthemicrometerscalephaseseparationintocoexistingferromagneticmetallicandanti-ferromagneticinsulating(AFI)regions.Fabricatingbridgeswithwidthssmallerthanthephaseseparationlengthscalehasallowedustoprobethemagneticpropertiesofindividualphaseseparatedregions.First,neartheCurietemperature,amagneticeldinducedmetal-to-insulatortransitionamongadiscretenumberofdomainswithinthenarrowbridgesgivesrisetoabruptandcolossallow-eldmagnetoresistancestepsatwelldenedswitchingelds.Further,inthedynamicphaseseparationtemperaturerange,ourexperimentsrevealthatbecauseofthenarrowwidthofthebridges,alternatinginsulatingandmetallicregionsformalongthebridgelength.Withinthistemperaturerange,weobservetheclassicsignaturesoftunnelingmagnetoresistanceacrossthenaturallyoccurringintrinsicAFItunnelbarriersseparatingadjacentferromagneticregionsspanningthewidthofthebridges.Inotherwords,thebridgeessentiallyresemblesamagnetictunneljunction.Thepresenceofintrinsictunnelbarriersintroducesanalternativeapproachtofabricatingnovelnanoscalemagnetictunneljunctions.Themagneto-transportpropertiesofthebridgesbelowthephaseseparationtemperaturerangewillbediscussedinChapter 4 71

PAGE 72

36 37 ]orbicrystalline[ 38 ]lms,andacrossthinlminsulatorssandwichedbetweenferromagneticmetallic(FMM)electrodesintrilayerormultilayercongurations[ 39 ]. Utilizinganaltogetherdierentapproach,weexploitthemicrometerscaleintrinsicphaseseparationinLPCMO,which,asdescribedinChapter 1 ,resultsfromacompetitionbetweentheferromagneticmetallic(FMM)andinsulatingstateswithcomparablefreeenergies.WhenLPCMOthinlmsarereducedindimensionstonarrowbridgesofwidthsmallerthantheindividualphaseregions,alternatinginsulatingandFMMregionsspanthebridgewidthandthesamplesexhibittheclassicalsignaturesoftunnelingmagnetoresistance(TMR).Further,amagneticeldinducedinsulator-to-metal(IM)transitionamongadiscretenumberofregionsgivesrisetoabruptandcolossalLFMRstepsthatareanisotropicwithrespecttomagneticeldorientation. RecentobservationsofdiscreteresistivitystepsonsuchbridgesofthemixedphasemanganitesPr0:65(Ca0:75Sr0:25)0:35MnO3andLPCMOprovideevidenceofalternatingFMMandinsulatingregionsspanningthefullwidthofthestructure[ 40 { 42 ].However,spin-polarizedtunnelingacrosssuchintrinsicinsulatingregionswasnotconsidered.Belowwedescribetheexplicitroleofspin-polarizedcurrentsonmagnetotransportinsubmicronstructureswhereintrinsicinsulatingtunnelbarriers[ 43 ],resultingfromphaseseparationdominate. 1.3.3 and 1.3.4 ,isparamagneticatroomtemperatureandundergoesastructuraltransitiontoachargeorderedantiferromagneticinsulating(AFI)phasebelowabout240K[ 44 45 ].AtypicalR(T)curveforour(La0:5Pr0:5)0:67Ca0:33MnO3thinlmsgrownonNdGaO3substratesisshowninFigure 3-1 72

PAGE 73

1 butcertainlyraisesquestionsastothenatureofthetransition(rstordervs.secondorder).Furtherexperimentationbeyondthescopeofthepresentworkisneededtoconrmthis. Figure3-1. 2-1 .Herethebluecurvedepictscoolingandtheredcurve,warming. 2 73

PAGE 74

25 ].Duetothedynamicnature(seeSection 1.3.3 )ofthephasecoexistence,belowTIMOtheFMMandinsulatingregionsarenotpinnedbutevolveinshapeandsizewithchangingtemperature,asconrmedbyimaging[ 10 46 ]andtime-dependentrelaxationmeasurementsofresistivity[ 44 ].Next,belowwhatisoftenreferredtoastheblocking[ 44 ]orglasstransition[ 45 ]temperatureTG,(withTIMO>TGaslabeledinFigure 3-2 ),thesampleispredominantlyinasinglephaseferromagneticstate[ 25 ]characterizedbylongrelaxationtimeconstants.Itiswithinthephasecoexistencetemperaturerange,TIMO>T>TG,thatweobservetheanisotropicLFMRandTMReectsacrosssubmicrometerwidebridgesfabricatedfromLPCMOthinlms.AnapproximatephasediagramforLPCMOisshowninFigure 1-6 2 ,tofabricatethebridges,werstdepositedsinglecrystalline,epitaxial,30nmthick(La0:5Pr0:5)0:67Ca0:33MnO3(LPCMO)lmsonheated(820oC)NdGaO3(110)substratesusingpulsedlaserdeposition.Next,usingacombinationofphotolithographyandafocusedionbeam(FIB),bridgesrangingfrom100nmto1minwidthwerefabricated.AnSEMimageofatypicalsampleisshowninFigure2,inset.Pressedindiumdotsandgoldwirewereusedtomakecontacts.Resistance(R)measurementsweremadebysourcing+/-1nADCandmeasuringvoltage.AmagneticeldwasappliedthreeconsecutivetimesateachtemperaturealongthreedirectionsHz,HxandHywithrespecttothecurrentowIxasdepictedinFigure2,andrampedat25Oe/s.Thesampleidentities,aslistedinChapter 2 ,table 2-1 arenotedinthegurecaptions. 74

PAGE 75

Temperature-dependentresistanceofsampleS1(seetable 2-1 ,a2.5mwidebridge(blue)andS2(table 2-1 )a0.6mwidebridge(green)patternedfrom30nmthickLPCMOthinlmsrevealtheevolutionofpronouncedsteplikechangesandtheinsulator-to-metaltransitiontemperature(seetext)asthebridgewidthbecomescomparableto(2.5m),andthensmallerthan(0.6m)themicron-sizeregionsofco-existingAFIandFMMphases.Ascanningelectronmicrographofa0.2mwidebridge(withtheprotectivepolymerandmetallayersstillpresent)takenshortlyaftertheFIBprocessisshownintheinsettogetherwiththeorientationsoftheappliedelds:Hx,HyorHz

PAGE 76

3-2 (bluecurve,comparewithFigure 3-1 ),smallstepsaccompanyingtheIMtransitionbegintoappear,sincethebridgewidthisnowontheorderoftheindividualphaseseparatedregions[ 40 ].Signicantdeviationsintheresistivityareobservedforbridgesofwidthlessthan0.9m,whereinmostcasestheinsulatortometaltransitiontemperature,(TIM=64Kforthe0.6mwidebridge)shiftstoalowervalue.Weattributethistodimensionallylimitedpercolation(Figure 3-2 ,greencurve)fromthreetotwodimensions.Ahighresistance,temperatureindependentstatebeginstoappearbelowTG=48K.HerewediscussdataintherangeTIMO>T>TGfora0.6mwidebridgewithmagnetoresistancepropertiesthataretypicalofbridgeswehavefabricatedbelow0.9minwidth.TheTMRandcolossalLFMReectsoccurwithinthelargescalephaseseparationtemperaturerangeTIMO>T>TGandceasetoexistforTT>TIMwithTIM=64Khowever,weobserve(Figure 3-3 )colossal(hundredfold)eld-inducedresistancechangesatwell-denedanisotropicswitchingelds.Thetemperaturerangefortheselargeresistancechangescoincideswiththerangewherethemaximumcolossalmagnetoresistive(CMR)eectinourunpatternedlmsisobservedasshowninFigure 3-4 .Here,thehighresistancevalues(108)correspondtolimitedconductionthroughinsulatingregionswhichwithincreasingeldareeithercompletelyremovedorabruptlyshrinktoformremnant(lowerresistance)tunnelbarriersseparating 76

PAGE 77

Fortemperatures,T>TIM,repeatedmagneticeldsweepsattheindicatedtemperatures(73K,70,67K,64K)revealreproduciblehysteretictemperature-dependentcolossalresistancejumpsthataremoresensitivetoin-plane(Hx,Hy)ratherthanperpendicular(Hz,arrowswithsolidheads)elds.DataforsampleS1c,table 2-1 ferromagneticregionsspanningthebridgewidth.Theinsulatingregionsmaynotbefullyremovedforthe2Teldsshowninthegure,sincetheunpatternedthin-lmresistivityisnotachievedunlessaeldashighas5Tisapplied.ComparisonofourresultswiththeparentcompoundPr0:67Ca0:33MnO3suggeststhatwithdecreasingtemperature,thereisareductioninthefreeenergyoftheFMMphase,andtheregionsofinsulatingphaseundergoarst-orderphasetransitionresultinginaconcomitantcolossalresistancedrop[ 47 ].Inlikemanneradistributionofsuchrst-orderhysteretictransitionsover 77

PAGE 78

25 ]asshowninFigure 3-4 andincrystalsoftheparentcompoundPr0:67Ca0:33MnO3[ 47 ]. Figure3-4. Unpatternedthinlm(S1a,table 2-1 )R(H)datainrangeTIM>T=120K>TIMO.ThelowtohigheldtransitionsaresmoothwhencomparedtothebridgedatainFigure 3-3 .AdistributionoftherstordertransitionsshowninFigure 3-3 overmanydomainsmayaccountforthis. Ifthecrystallineanisotropyofathinlmisnegligible,thenthedemagnetizationeldsarisingfromshapeanisotropygiverisetoagreatersensitivityofthemagnetizationtoin-planecomparedtoout-of-planeappliedelds.Inourbridges,magnetoresistanceisaectedinthesameway;theeld-inducedchangesinthebridgeoccurmorereadily 78

PAGE 79

3-3 .ThemagneticanisotropyoftheCMReectmanifestsitselfmoredramaticallyinnarrowbridgesthaninthinlms,possiblyduetothelackofnumerousisotropicplanarconductionpathsavailableinlms.Lastly,thesensitivityoftherst-orderphasetransitiontothermaluctuations[ 47 ]islikelytobeenhancednearTIM,thusaccountingfortheunusualasymmetrictransitionsobservedattheboundarytemperature,TIM=64K,belowwhichsingle,irreversiblecolossaltransitionstoapredominantlyFMMstateoccur(T=57K). 10 44 45 ],theAFIphaseismetastablewithrespecttoappliedmagneticeldsastheFMMphasebecomesenergeticallyfavorable,partiallyasaresultofsubstrateinducedstrain[ 32 ](seealsoSection 1.3.4 ).Figure 3-5 illustratesthiseectat57K.InitiallyuponincreasingHy,R(Hy)dropsnearlyfourordersofmagnitudeandexhibitssharpsteps[ 25 47 ],resultingfromanincrementalconversionoftheinsulatingphasestoFMM.TheFMMregionsincreaseinsizeandvolume,separatedbyshrinkingAFIregionsalongthebridgelength.Figure 3-5 (insetfor57K)showsamagniedversionofthelow-resistanceregion.Herewenotethedistinctformationoflow-eldpeaks(3.5%MR)indicatingthatthesmallamountofinsulatingphasepresentbetweenthegrowingferromagneticregionactsasatunnelbarrier.ItisusefultocompareregionsofalternatingAFIandFMMphasealongthelengthofthenarrowbridgestomicroscopicanalogsoftheinsulatingandFMMmultilayers.Justastunneling-magnetoresistance(TMR)isobservedinsuchfabricatedspin-polarizedtunneljunctions[ 39 ],tworesistancestatesareseenforeldsweepsthroughzeroineachdirection:ahighresistancestateforantiparallelspinalignment("#)andalowresistancestateforparallelalignment("").Asnotedinprevioustheoreticalworks[ 48 79

PAGE 80

],TMRacrosscoexistingAFIandFMMregionsinphaseseparatedmanganitesmayhelpexplainsomeoftheobservedtransportpropertiesofbulkcrystals.Forinstance,thesmallloweld'notches'inR(H)forunpatternedthinlmswithinthedynamicphaseseparatedtemperaturerange(seeFigure 3-6 )maybeamanifestationofTMRbetweenferromagneticregionsseparatedbyAFItunnelbarriers. TheevolutionofTMRacrossthephaseseparatedregionsisbetterunderstoodbystudyingR(Hy)isothermsobtainedbelowTIM.ThemainpanelofFigure 3-7 showstheevolutionofthelow-eldTMRdemonstratingspin-dependenttunnelcouplingofadjacentFMMdomainswithloweringtemperature.ForthecoolingrunshownintheinsetofFigure 3-7 ,TMRremainedat10%for48K
PAGE 81

FortemperaturesaboveTBandbelowTIM,metamagnetictransitionsofthe0.6mwidebridge(SampleS2cintabel 2-1 )terminateinapredominantlylow-resistanceferromagneticmetal(FMM)statethatexhibitstunnelingmagnetoresistance(TMR).(a)Metamagnetictransitionat57KofaZFCsampleshowingapronouncedresistancedropatHz=6kOeandsubsequententranceintoalow-resistancephasethatisstablewithrespecttorepeatedeldsweepsbetween20kOe.TheinsetdepictsschematicallythecoalescenceofFMM(white)regionsattheexpenseofinsulating(black)regionswithappliedeldsorloweringtemperatures,witharectangularoverlaydepictingthe0.6mbridge.(b)MagnicationoftheTMRregion. 81

PAGE 82

2-1 )at50Kshowslow-eld`notches'.Thisfeaturemayresultfromadistributionoftunnelingmagnetoresistanceacrosstheinsulatingandmetallicregionswithinthephaseseparatedsample. stateconsistsofthininsulatingAFIregionsthatarestabilizedattheferromagneticdomainboundary,aphenomenonrelatedtothereduceddimensionsofthesample.Uponapplicationofaeld,theinsulatingstripedomainwalls,whichactliketunneljunctionsandcomprisetheremainingAFIphase,areextinguishedasspinsinneighboringdomainsalignresultinginsharpresistancedropsandauniformferromagneticregionspanningtheentirebridge.ThusTMR,whichrequiresstabletunneljunctionbarriers,isneverobservedwithinthistemperatureregion. 82

PAGE 83

Waterfallplotofrepeatedmagneticeldsweeps(sampleS2c,table 2-1 )inthetemperaturerange,TB
PAGE 84

84

PAGE 85

2 ),theintrinsicinsulatingregionsbecomethinenoughtoallowdirectelectrontunnelinginthesub-micrometerwideLPCMObridges.Tunnelingacrosstheseintrinsictunnelbarriers(ITBs)resultsinmetastable,temperature-independent,high-resistanceplateausoveralargerangeoftemperatures.UponapplicationofamagneticeldontheorderoftheLPCMOcoerciveeld,ourdatarevealthatthetunnelbarriersareextinguishedresultinginsharp,colossal,low-eldresistancedrops.Ourmagnetoresistanceresultscomparewelltotheoreticalpredictionsofmagneticdomainwallswhichcoincidewiththeintrinsicinsulating(AFI)phase,resultinginanovelkindofstripedomainwallwhichallowsdirectelectrontunneling. 1 ,inhole-dopedmanganitessuchasLPCMO[ 1 ],thebalancingofelectrostatic[ 51 ]andelastic[ 52 ]energiesinadditiontocompetingmagneticinteractionsmayleadtocoexistingregionsofferromagneticmetallic(FMM)andinsulatingphases[ 10 46 53 ].TheoreticalcalculationsbyD.I.Golosov[ 53 ]showthatuponreducingthedimensionsofsuchasystem,anincreaseintheeasy-axismagneticanisotropyandadecreaseinelectrostaticscreeningcancreateconditionswhichfavorphaseseparationattheferromagneticdomainboundariesresultinginnovelinsulatingstripedomainwallswhichallowdirectelectrontunneling[ 53 { 56 ].ThemanganiteLPCMOprovidesuniqueopportunitiesforexploringtheformationofsuchuniquedomainwallsdue 43 ]. 85

PAGE 86

46 52 ].Weusecurrent-voltage(IV)measurementstoshowinthischapterthatwhenLPCMOthinlmsarereducedindimensions(i.e.nanobridges),theydoindeedexhibittheclassicsignaturesofdi-rectelectrontunnelingacrossITBsseparatingadjacentFMMregions.Further,colossalloweldmagnetoresistance(MR)measurementssuggestthattheITBscoincidewithferromagneticdomainwalls,implyingthattheferromagneticdomainstructureinLPCMOismodied. 53 ].ThisresultsinanabruptchangeinmagnetizationbetweenneighboringFMMdomainsseparatedbyastripedomainwallincontrasttoclassicalferromagnetswherethedirectionofmagnetizationchangesovermlengthscalesnearadomainboundary[ 57 ].AccordingtoGolosov'stheory,in2Danupperlimittothelmthicknessforstripedomainwallformationensues.Although,narrowbridgegeometriessuchasourswerenotconsideredinGolosovscalculations,thecalculationscanbeextentedtoreducingdimensionsfrom2Dto1Dasinourbridgesandthushaveaneectsimilartoreducinga3Dbulksampletoa2Dthinlm.(Asdiscussedbelow,thismayexplainstripedomainwallformationwhenreducingourbridgesfrom2.5mto0.6mforthe30nmthicklms,eventhoughtheFMMstateinthe2.5mbridgesshowsnearlybulk-liketransportproperties.) 46 ](COI)andtheparamagnetic 86

PAGE 87

29 { 31 ].BelowTIM,LPCMOthinlmsgrownonNdGaO3areinapredominantlyferromagneticstate[ 25 ],butremainclosetoanenergeticallyfavorable,phaseseparatedstate.Thusasmallchangeinthedistributionofvariousenergyscalesinthesystem(i.e.electrostatic,magnetic)cantipthescalemakingphaseseparationenergeticallyfavorableagain.ChangingdimensionsasmentionedintheworkbyGolosovisjustonewaytoperturbsuchasystem.Additionally,aslightchangeinthechemistryanddopingofthe(La1yPry)0:67Ca0:33MnO3,(y=0.5)thinlmsusedinthisexperimentcandrasticallyalterthisphasecompetition[ 44 46 ].Finally,fromrecentliteratureweknowthatthenecessityofintrinsicphaseseparationforstripedomainwallformationisapparentwhenconsideringrecentmeasurementsofnotchedbridgesonnon-phaseseparatedLa0:67Sr0:33MnO3whichdidnotshowthepresenceofhighlyresistivedomainwalls[ 58 ]. 3 hasbeenusedforthemeasurementspresentedinthisChapter.Thoughothernarrowbridgesmeasuredhavesimilarproperties,thecriticaltemperaturesvaryfromsampletosample,thusmakingadirectcomparisonofthedatashowninthischaptertothatofotherchaptersnontrivial.Fordetailsonsamplefabricationandmeasurementtechniquesforthissection,pleaserefertoChapter 2 ,specicallySection 2.2 .TheappliedelddirectionsareshowinFigure 3-2 andinFigure 4-1 below.Thesampleidentities,aslistedinChapter 2 ,table 2-1 arenotedinthegurecaptions. 4-1 showsR(T)dataforalmpatternedintoabridgegeometryof2.5mwidth,whichisontheorderofindividualdomainlengthscales[ 10 46 ].Inthiscase,R(T)emulatesunpatternedthin-lmbehavior(grey)withtheexceptionofsmallstep-likefeatures[ 40 ]belowtheinsulator-to-metalpercolationtransitiontemperature,TIM=100K[ 59 ].However,asshowninChapter 3 ,whenthebridgewidthisreducedto0.6m, 87

PAGE 88

2-1 ),the2.5m8mbridge(black)orsampleS2bandthe0.6m8mbridge(green)orsampleS2crespectively.AFCcurveforthe0.6m8mbridge(blue)isalsoshown.Insulator-metaltransitions(TIM)forthetwobridgesareindicatedbytheverticalcolor-codeddashedlines.Lowerinset:schematicofthefour-terminalcongurationalongwiththeappliedelddirections.Upperinset:scanningelectronmicrographofthe0.6mwidebridge. 88

PAGE 89

3 [ 40 41 60 ]. 4-1 ceaseandanearlytemperature-independentresistanceinasupercooledstatedominates.ThoughmagnetizationmeasurementsonunpatternedepitaxialLPCMOthinlmsconrmafullyferromagneticmetallic(3:8B=Mn)statebelow50K[ 25 ],itispossiblethatthenarrowgeometryofthebridgefavorstheformationofaninsulatingstate.However,thetemperaturerangeofapproximately50KoverwhichthishighresistanceplateauoccurscannotbeexplainedbysuchascenariosinceanyhoppingtransportassociatedwiththeinsulatingCOIphaseinLPCMO[ 44 61 ]wouldshowapronouncedresistanceincreasewithdecreasingtemperature.Additionally,theresistance,R5108,ofthezero-eld-cooled(ZFC)temperatureindependentplateauisveordersofmagnitudelargerthanthequantumofresistanceh=2e2=12:9k.Bythescalingtheoryoflocalization[ 62 ]thelargeresistancevalueimpliesthatforalldimensions,theT=0statemustbeaninsulatorwithinniteresistance,contrarytoobservation(downto2K).Wethereforeconcludethattransportacrossthe0.6mwidebridgeistemperature-independentdirecttunnelingthroughITBscomprisingatomicallythininsulatingregions. 4-1 ).SimilarbutrelativelysmallandsmoothdropsinRareobservedinbulkandthin-lmLPCMOsamples,thoughthemechanismisunclear[ 10 ].TounderstandthisdropinresistanceuponFW,werecall 89

PAGE 90

10 44 ].However,belowTB40K,theblocking[ 44 ]orthesupercoolingglasstransition[ 45 60 ]temperature,thephaseseparatedregionsare`frozen'inplace[ 44 45 60 ].Thus,uponwarmingupagainintothedynamicstateaboveTB,thephaseseparatedregionsandthusthemetastableITBsarenolongerfrozeninspace,possiblygivingwaytoeld-enhancedFMMconversionofITBsresultinginacolossalresistancedrop. 4.5.1DirectTunnelingofElectronsacrossIntrinsicTunnelBarriers 4-1 )isduetoITBs,wemeasuredcurrent-voltage(I-V)curvesat5K,10K,and15KasshowninFigure 4-2 .BynumericallydierentiatingtheI-Vcurveat15K,thedierentialconductance(dI/dV-V)curveshowninFigure 4-3 isobtained.AssumingoneITBinthebridge,thesolidredcurvewasttedtothedatausingtheequation,dI/dV=+3V2,giving=9.8(1)109Sand=1.0(1)106S/V2.UsingSimmons'model[ 63 ]andthevaluesforand,wecalculatetheaveragebarrierheight 64 65 ].UnlikeGBshowever,ITBsaremetastableanduponapplicationofaeld,bulkvaluesarerecoveredinthebridge,conrmingtheabsenceofGBsinourstructure.ThissimilarityinresultsmayimplythatathinregionoftheinsulatingphaseformsattheGBwhichallowselectrontunneling. 4-2 couldalsobeduetocurrent-inducedJouleheating,whichforLPCMOcanbeconfusedwithmeltingofthechargeorderedstate[ 66 ].Thusif,at5Kanincreaseinthecurrentowingthroughthesampleraisesthetemperatureofthesampletosay15Kandatthesametimegivesrisetothe 90

PAGE 91

2-1 )atthethreeindicatedtemperaturesallmeasuredduringonecoolingcycle. observednonlinearity,thenthedataat15Kwheretheheatingeectforthesamecurrentwouldpresumablybelessshouldexhibitadierentnonlinearity.Theoverlapping(temperature-independent)IVcurvesshowninFigure 4-2 conrmthatthisisnotthecase. AdditionalevidencesupportingtheabsenceofJouleheatingisshowninFigure 4-4 ,showingplotsofthetemperature-dependentresistancetakenattheindicatedcurrents.InagreementwiththepositivecurvatureoftheIVcurvesofFigure 4-2 ,theresistancedecreaseswithincreasingappliedcurrent.Moreimportantly,TIMincreaseswithincreasingappliedcurrent,incontrasttothebehaviorfoundbySacanelletal.whereadecrease 91

PAGE 92

dI/dV-Vcurveat15Kwithat(redcurve)totheSimmons'modelforarectangularbarrierforsampleS2a(table 2-1 ). inTIMwithincreasingappliedcurrentisattributedtoJouleheating[ 66 ].Theoveralldecreaseinresistancewithincreasingappliedcurrentmayresultfromanelectric-elddriveninsulatortometaltransition[ 67 ]orincreasedferromagnetismresultingfromspinpolarizedtransport[ 68 ]amongotherscenarios[ 25 66 69 ].Thiseectinmanganites,whichwillbediscussedinChapter 5 ,explainsthedierenceintheresistancevaluesinFigure 4-2 mainpanelandtheinset.Forinstance,IVcurvesweremeasuredatxedtemperaturesintherange45Kto5Kusingappliedcurrentsupto1nA,thusdrivingthesampleintothe1nAcurrent-cooledstateshowninFigure 4-4 .Ontheotherhand,asamplecooledto15Katzeroappliedcurrenthasanirreversibleresistancechange(seeforexample,Figure 5-2 )uponmeasuringtheinitialIVcurveasseeninunpatternedthinlmsofLPCMO[ 25 ]anddiscussedinChapter 5 forthebridges.SubsequentIV

PAGE 93

2-1 ).TheresistanceclearlydecreaseswithincreasingappliedcurrentwhileTIMincreaseswithincreasingappliedcurrent.ThisisincontrasttothebehaviorfoundbySacanelletal.whereadecreaseinTIMwithincreasingappliedcurrentisattributedtoJouleheating[ 66 ] measurementsrevealreproducibleandreversiblemeasurementsalongthelowerresistancepath(notshown)[ 25 ]. 4.2.1 ,themagneticeldrequiredforthecollapseoftheITBwillcoupletotheintrinsicmagneticanisotropyofthethinlm.SensitivityofITBstomagneticelddirectionisveried 93

PAGE 94

ZFCandFCresistancetransitionsarelabeledbytheelddirectionsdenedwithrespecttobridge(or,sampleS2a(table 2-1 ))orientationinFig 4-1 .Inset:Rmeasuredat5Kwhenthebridgeiscooledinseparaterunsattheindicatedelds. inFigure 4-5 withasubsetofthemeasuredeld-cooledR(T)tracesforthethreeeldorientations(Hx,HyandHz)illustratedschematicallyinFigure 4-1 .Theinsethighlightsthecoolingelddirectionaldependenceat5K.Here,afteraresistanceof107isreached,coolinginaslightlyhighereldresultsinanabrupthundredfolddropinresistance,suggestingarapidandsuddendisappearanceoftheITB.Clearly,thein-planeeldsHxandHyaremoreeectivethanHzincouplingtothemagnetizationtoreachthelowresistanceFMMstate(R<105).Theseobservationsofanisotropiceld-inducedITBextinctionshowacouplingoftheITBswiththemagneticeasyaxiswhichlieswithinthe 94

PAGE 95

1 ].Themagneticeldvaluesrequiredtoreachthelowresistancestateareontheorderof1kOe,whichthoughmuchgreaterthanthemeasuredcoerciveeldinunpatternedlms,arenotatypicalfornarrowferromagneticwires[ 70 ].TheanisotropicMRassociatedwiththeITBsthussuggeststhattheymayindeedcoincidewiththeFMMdomainboundariesforminginsulatingstripedomainwalls.Thenecessityofintrinsicphaseseparationforstripedomainwallformationisapparentwhenconsideringrecentmeasurementsofnotchedbridgesonnon-phaseseparatedLa0:67Sr0:33MnO3whichdidnotshowthepresenceofhighlyresistiveITBs[ 58 ]. Figure4-6. 2-1 )zero-eld-cooledto15K,measuredattheindicatedvaluesofHz 95

PAGE 96

4-6 forsampleS2a(table 2-1 )normalizedtothevoltage,Vmax,measuredatmaximumappliedcurrent.Thelegendshown(lowerright)inFigure 4-6 applies. walls.ThisnotionisconrmedinFigure 4-6 wherethemagneticelddependenceoftheI-Vcurvesobtainedat15Kisshown.AsHzincreases,thecurvatureoftheI-Vcurveschanges(Figure 4-7 ).Foreldssucientlylargeenoughtodrivethebridgeintoalowresistancestate(9kOeinFigure 4-5 ),theI-Vcurvesbecomelinear(Figure 4-7 )suggestingITBextinction. 4.7.1Competingphasesandstrainsensitivityin(La,Pr,Ca)MnO3 1 ,singlecrystalsofthemanganiteLPCMO,whichareparamagneticinsulatorswithapseudo-cubicstructureatroomtemperature,undergoasuddenmartensitic-typestructuraltransitionwithintheparamagneticinsulating(PMI)backgroundtoanantiferromagneticcharge-orderedinsulating(COI) 96

PAGE 97

29 44 46 ].TheCOIphaseremainsnearlyconstantinvolumefractiondowntolowtemperaturesandanadditionalinsulatingphase,oftenreferredtoasthecharge-disorderedinsulating(CDI)phaseisalsopresentinbulksinglecrystalsbelowTCO[ 29 { 31 ].AsimilarCOI-CDI-FMMphasecompetitionisexpectedinthethinlms,althoughsubstratestrainwhichmodiesthemanganitestructure,canalsomodifythephasefraction.TheCDIregions(whicharestructurallysimilartoandthuspossiblyaremnantofthepseudo-cubicparamagneticphase)become,incontrasttotheCOIphase,predominantlyferromagneticuponloweringtemperature.MagnetizationmeasurementsofLPCMOthinlmsconrmanearlyfullyFMMstateforTlessthantheblockingtemperature,TB[ 25 ].TheremainingCDIphasewhichcoexistswiththeFMMandCOIphasesissometimesattributedtoaccommodationstrain[ 31 ]resultingfromstructuraldierencesbetweentheCOIandFMMphases. Inadditiontoaccommodationstrainresultingfromintrinsicstructuraldistortions,thephasetransitionsintheLPCMOthinlmsdepositedonNGO(110)substratesstudiedherearealsosensitivetostrainresultingfromaslightlatticemismatchwiththesubstrate[ 71 ].Thein-planelatticeconstantsofNGO(110)favorthepseudo-cubicFMMandparamagneticphasesinLPCMO.ThuswesuspectthattheCOIphaseiseitherdestabilizedresultinginareducedvolumefractionandincreasedsensitivitytoappliedelds,or,completelydisfavoredinthe300A-thicklmsonNGOassuggestedbythelackofanyhystereticfeaturesinR(T)typicaloftheCOIphasenearTCO(typically200K)butratherasmoothincreasedowntoTIMasseeninourexperiment(Figure 4-1 ). 72 ].Inourbridgeswesuspectthatitisthestructuralstrainresultingfrommisalignedspinsin 97

PAGE 98

4-1 ),coupledwiththenarrowdimensionsofourstructures,whichmakesinsulatingstripedomainwallformationenergeticallyfavorable[ 53 ].AsignicantfeatureofthebridgetransportpropertiesisthatthetemperaturedependenceofresistancebelowTIMvariesforeachcoolingcycle(e.g.Figure 4-1 andFigure 4-2 showtwodierentzeroeldcoolingcycles).ThisvariationlendsfurthersupporttothenotionthatITBsformduetointrinsicstrainaccommodationratherthanlocaldefects.Hence,wesuspectthatthestrain-inducedCDIphaseplaysavitalroleintheformationofITBs. Figure4-8. PossiblemechanismsfortheformationofinsulatingdomainwallsinLPCMOthin-lmbridges.(a)Inthe2.5mwidebridgetheedgeshavenegligiblecontributiontotheresistivityofthebridgeduetotheformationofawideandcontinuousFMMregionatlowtemperaturesandhencetheresistivityofthewireisthesameastheunpatternedthinlm.(b)and(c)Inthe0.6mwidebridgetheedgesstabilizetheCDIandCOIphasesattheexpenseoftheFMMphase.InsulatingdomainwallsspanningthewidthofthebridgeareformedeitherduetothestrainstabilizedCDIphaseasshownin(b)oracombinationofCDIandCOIphasesasshownin(c). 98

PAGE 99

4-8 .InbothcasesweshowtheCOIphaseformingatthebridgeedgessinceithasbeenshowntheoreticallythatananti-ferromagneticinsulatingphaseisfavoredatthesurfacesofFMMmanganites[ 73 ].Alsoinbothcases,wedepictthestrain-inducedCDIphaseformingattheinterfacebetweentheFMMandCOIphases[ 29 ].IntherstscenariotheITBscomprisingtheCDIphaseresultfromstrainbetweentwoFMMregionswithmisalignedmagnetizations,whileinthesecondscenariotheCOIphasespansthebridgewidthandtheITBscomprisebothCOIandCDIphases.Ourexperimentscannotdistinguishbetweenthesetwoscenarios.ItispossiblethatsimilarmechanismsarepresentingranularLPCMOsampleswhere,reducingthegrainsizealsoleadstometastablestates[ 29 ],asnotedinSection4.5.1. 47 ],itispossiblethatthisadditionalinsulatingphaseisasmallamountofremnantCOIpresentwithinthebridge(panel(a)ofFigure 4-9 ).However,asecondpossibilityremains:asmallamountofCDIphaseundergoesametamagnetictransitiontoanFMMphaseastheeldisturnedonandthenrevertsbacktotheCDIstatewhentheeldisturnedoandthustheTMRisactuallyacrossthisremainingCDIregion(panel(b)ofFigure 4-9 ).ThelatterscenarioprovidesaplausibleexplanationforthelackofTMRbelowTB(Figure 3-7 )becausetheCDIphasedoesnotrecoverbelowTBwhentheeldisturnedoandthusthebridgestaysmetallic.Whenconsideringtheformerscenariohowever,itisalsopossiblethatbelowTBtheCOIphaseisnolongerfavoredduetosubstrateinducedstrain.Hence,applicationofa20kOeeldresultsinametallicstatewithnoremnantCOIphase,resultinginthelackofTMR. 99

PAGE 100

PossiblemechanismsfortheformationofintrinsictunneljunctionsinthetemperaturerangeTB
PAGE 101

2-1 ).Allbridgesfabricatedfrom10nmthicklmsshowedthesameproperties.Metastablestateswithhighsensitivitytoappliedeldscanbeseenatlowtemperatures,reminiscentofthe0.6mwidebridgeona30nmthicklm(seeFigure 4-1 ). 0.6mbridgesfabricatedfrom30nmthicklms.Figure 4-10 showslowtemperature,temperatureindependenthighresistancestatesseeninthe30nmthick,0.6mwidebridge.ThedependenceofITBformationondimensionalityiscurrentlyasubjectofinvestigation. 53 ].MagnetotransportstudiesofLPCMObridgestructures 101

PAGE 102

102

PAGE 103

1 ].Unlikewithamagneticeldhowever,anelectricelddoesnotproducemeasurablechangesinthemetallicphasefraction.Thereisthusspeculationaroundseveraldierentscenariosthatcouldpotentiallyproducecolossalchangesinresistancewithoutchangingthemagneticphasefraction.Scenariosrangefromjouleheating[ 74 ],adielectricbreakdownoftheinsulatingregions[ 75 ],achangeinshapeofthemetallicregions[ 76 ]orachangeinmagnetizationbetweenneighboringdomainsasaresultofdoubleexchange[ 1 ].Asinthepreviouschapters,herewestudytheelectroresistanceeectonthemicroscopiclevelinthephaseseparatedmanganiteLPCMOinanattempttocapturethephysicsandpinpointthescenarioorscenariosresponsiblefortheobservedbehaviorinunpatternedthinlmsandbulksamples. 1 ).AsdiscussedinChapters 3 and 4 ,whentheLPCMOthinlmsarepatternedintonarrownanometerwidebridges,duringthephaseseparationtemperaturerangealternatinginsulatingandmetallicregionscanformacrossthelengthofthebridge.Inbothchaptersweshowedveryclearevidenceofdirectelectrontunnelingbetweentwometallicregionsspanningthebridgewidthseparatedbyintrinsicinsulatingregions.InChapter 4 ,assumingarectangularbarrier,wewereabletoextractabarrierheightand 103

PAGE 104

2 ,Section 2.2 andalsotoChapter 3 .Inthischapterdataispresentedontwobridges:(i)SampleS2c(table 2-1 ),thesame0.6mwide,8.0mlongbridgediscussedinChapters 3 and 4 ,and(ii)SampleS4(table 2-1 ),a0.34mwide,4.0mlongbridgenotpreviouslydiscussed. 1 77 ]. ThesecondtypeofCEReectisanintrinsicelectroresistancethatresultsfromanelectriceldorcurrentapplieddirectlyacrossthemanganitesample.Inthiscase 104

PAGE 105

78 ].Withinacertaintemperaturerange,anappliedelectriceldinducesahystereticrstordertransitiontoalowresistancestate.Itisnotcompletelyclearweatherthecollapseisinducedbyanelectriceldoranelectriccurrentthoughrecentdata[ 79 ]pointtotheformerscenario.LikeLPCMO,PCMOisalsoinsomecontextsconsideredtobephaseseparatedbutrequiresexternalperturbationsinadditiontotemperature(suchaselectricormagneticelds)toundergoaninsulatortometaltransition.PCMOisphaseseparatedintochargeandorbitalorderedP21nmregionsanddisorderedPnmaregions.Inthelattercase,polaronmobilityissignicantlyincreasedsincechargecarriersforma`liquid'orinteractingmobilepolarons.Withoutelectricormagneticeldapplication,transportmeasurementsrevealsmallpolaronhoppingconductioninPCMOdowntolowtemperatures[ 26 79 ].Ifasucientlyhighcurrentisappliedacrossthesample,transportmeasurementsrevealthatchargecarrierstransitiontolargepolaronhopping.Transportmeasurementssuggestacombinationofenhanceddoubleexchangeandanorder-disordertransitionassociatedwiththeCEReect[ 26 ]. ChemicallydopingthePCMOsampleswithLagivesLPCMOasdiscussedinChapter 1 ,andinducesaphasetransitionfromanominallychargeorderedstateatroomtemperaturetoadisorderedferromagneticmetallicstateatlowtemperatures.Thetransitiontemperaturesdependontheexactstoichiometryofthesample.AlthoughtherootcauseoftheCEReecthasnotbeenstudiedinLPCMO,inanalogytotheCEReectinPCMOdescribedabove,onemaysuspectameltingofthechargeorderedstate 105

PAGE 106

5.4.2 asummaryoftheformerscenarioandotherproposedideasontheoriginofCERinphaseseparatedmanganitesispresented.InSection 5.5 ourexplorationsoftheCEReectonthenanoscaleinLPCMOarepresentedandthebarrierparametersextractedfromourdataarecomparedtovaluesobtainedfromtheliterature. 26 79 ],(ii)jouleheating[ 74 ],(iii)lamentaryconductionordielectricbreakdownoftheinsulatingregions[ 75 ],(iv)dielectrophoresismodelorspacialreorientationoftheinsulatingandmetallicphase[ 76 ],or,(v)spindependentdomainreorientation[ 1 ]. InthecaseofLPCMO,anelectriceldinducedcollapseofthechargeorderedphaseinfavorofthedisorderedferrmomagneticmetallicphasewouldimplyanincreaseoftheferromagneticphasefractionwithinthelmorbulksample.Thisinturnwouldimplyahighersaturationmagnetizationofthethinlmwhichiscontrarytoobservation[ 25 75 ].Inthesecondjouleheatingscenario,thetemperatureofsampleincreasesduetolargecurrentdensities,changingtheeectivephasefractions.Inthiscase,theapparenttemperatureofthesampleasreadbyathermostatinthevicinityofthesampleisdierentthantheactualtemperature.Foroursamples,wehaveruledoutjouleheatingasdescribedindetailinSection 4.5.2 .Below,inSection( 5.5 ),ourtunnelingmeasurementsrevealthatthethirdscenarioabove(lamentaryconduction)canberuledoutwhilethedielectrophoresismodelmayindeedhelpexplaintheCEReectobservedinournanobridgesandthusperhapsalsoinphaseseparatedmanganites.Asalsodiscussedbelow,wecannothoweverruleoutthefthandnalscenarioofspindependentdomainreorientationswhichmayresultfromanenhanceddoubleexchangemechanisminducedbyhighercurrentdensities. 106

PAGE 107

25 ].Subsequently,thinlmspreparedidenticaltothisCERstudywerepatternedintonanometerwidebridgespresentedbelow.Itwasfoundthatwithinthephaseseparationtemperaturerangetheapplicationofanelectriceldresultedinanirreversiblechangetoalowerresistancestate.Despitethechangeinresistance,magnetizationmeasurementsdidnotrevealanincreaseintheferromagneticmetallicphasefractionwithinthelms.Thetransitiontoalowerresistancestateissmoothinthinlms,thoughwithawelldenedcriticalvoltage(orcurrent)asshowninFigure 5-1 .Current-voltage(IV)characteristicsforthis10mwideLPCMOlmrevealacleartransitiontoalowerresistancestateuponincreasingcurrent.TherelativeconcentrationsoftheLaandPrwerevariedtochangetherangeofphaseseparationtemperaturesanditwasfoundthatregardlessofthetemperaturewindow,theeectremainedthesameinalllmswithinthephaseseparationrange. Areversible,colossalCEReecthasbeenreportedinLPCMOlmswithFesubstitutionsattheMnsite[ 80 ].ThemechanismsfortheCEReectintheFedopedlmscomparedtoundopedLPCMOmaynotbewhollydierent.InundopedLPCMO,thechargeorderedphaseandtheferromagneticmetallicphaseareverycloseinfreeenergythoughwithloweringtemperature,themetallicphasehasanincreasinglylowerfreeenergy.ThisenergylandscapeiscertainlyalteredinthecaseofFedopedLPCMO.Inthiscasethemetallicphasemaynotbepreferredovertheinsulatingphase,justasinPCMOthinlms[ 26 ]. InthebridgesfabricatedfromLPCMOthinlms,theCEReectisevidentwhenmeasuringR(T)atdierentappliedcurrentsasshowninFigure 5-1 .TheseveralorderofmagnitudechangeinthelowtemperatureresistancewithappliedelectriceldcanwellbedescribedintheintrinsictunnelingframeworkdiscussedinChapter 4 107

PAGE 108

5.3 .ThetwobridgeswillbelabeledS0:6mandS0:34mforthe0:6mx8:0m(sampleS2c)and0:34mx4:0m(sampleS4)bridgesrespectively.NotethatS0:6mistwiceaslongasS0:34mwhichgivesrisetoanincreasedoverall 108

PAGE 109

sampleresistanceandthepossibilityofalargernumberofinsulatingandmetallicregionsspanningthebridgewidth. Figure 5-2 showsIVcharacteristicsat50KforS0:6mafterthesamplewascooledinazeroappliedcurrent(zeroappliedelectriceld).Notethatthiszero-electric-eld-cooling(ZFEC)conditionresultsindierentIVcharacteristicsasthosepresentedinSection 4.5.1 wherethesamplewascooledina1nAcurrentpriortomeasuringtheIVcharacteristics.Thusthesamplewasalreadyinalowresistancestateprior 109

PAGE 110

5-2 .Onceagain,clearstep-liketransitiontoalowresistancestatewithincreasingappliedcurrentsarevisible. themeasurementandthestepliketransitiontoalowresistancestateisnotvisible.InFigure 5-2 thebluecurvewasmeasuredatzeroappliedmagneticeld.Heresharpstep-liketransitionstoalowresistancestateareapparent.TheresistanceofthesamplecanalsobereducedwithanappliedmagneticeldasisapparentfromtheredcurveinFigure 5-2 .Acurrentinducedtransitiontoalowresistancestate,superimposedonthemagneticeldeectcanbeseen.Aeldof2T(inset)clearlyinducesaninsulatortometaltransitionacrosstheentirelengthofthebridge,thusgivingrisetoametallic,linearIVcurve. 110

PAGE 111

5-3 showsIVcurvesforS0:34mafter(ZFEC)to85K.ItisevidentfromcomparingthequalityofdataforS0:34mvs.S0:6mthatthedatafortheformerismoreappropriateforpurposesofanalysisgiventhefargreatersignaltonoiseratio.ThisfactisprobablyrelatedtothefactthatS0:6mistwiceaslonginlengthasS0:34mandthuscontainsperhapsonlyone,butcertainlyfewerinsulatingregionsalongthelengthofthebridge.S0:6mhowevershowsamuchmoredramaticCEReect.Inthisgure,theverticallylowerarrowforincreasingcurrent(increasingvoltage)showstherstlegofthecurveandatransitiontoalowerstateisveryclear.Beyondthersttransition,smallspikestoanevenlowerresistancestate(seetopleftquadrant,Figure 5-4 B)arevisiblethoughthesampledoesnotmakeacompletetransitiontothatlowerstate. B EachbranchofthetheZFECIVcurveforthe0.34mwidebridgeshowninFigure 5-3 wasrstdierentiatedandthederivativewasttothequadraticSimmons'model.A.showsthedI/dVvs.Vplotforthecenter(red)numericallygeneratedtshowninB.B.showsnumericaltsusingtheSimmons'modeltoeachbranchoftheIVcurveobtainedat85Kforzeroappliedmagneticeldandcooledinzeroappliedelectriceld. ToanalyzethedatashowninFigure 5-3 ,eachsegmentoftheIVcurvewasdierentiatednumericallywithrespecttovoltageandttotheSimmons'model(seeSection 4.5.1 fordetails)withthebarrierheightandwidthsetasfreeparameters.ExcellenttstotheSimmons'model(dI=dVV2)wereobtainedforvoltagesbelow 111

PAGE 112

5-4 AshowsadI=dVcurveandquadraticttotheSimmons'modelforthecentralbranchoftheIVcurveshowninFigure 5-3 .Figure 5-4 BshowsthesimulatedIVcurvesforeachbranchoftheoriginal(ZFEC).NotethatthesimulatedIVcurveresultingfromthebottombranchofthebottomleft(third)quadrantdepictsastatethatwelldescribesthebriefdropsinresistance(orspikes)intherstquadrantsincetheyfallapproximatelyontheyellowcurve.ThebarrierheightsandwidthsderivedfromeachtarelabeledinthelegendofFigure 5-4 Bandarediscussedindetailinthenextsection. BarrierheightsandwidthsobtainedusingtheSimmons'modelforthe0.34mwidebridgeasafunctionofthecriticalelectriccurrentduringtheinitialincreaseofappliedcurrent(i.e.,rstquadrant|topright|bottomIVcurvebranch. Figure 5-5 showsaplotofbarrierheightandwidthasafunctionsofthecriticalcurrentrequiredtogotoeachstatealongtherstquarteroftheIVcurve(bottomcurve,rstquadrant)showninFigures 5-3 and 5-4 .Firstwenotethatthebarrierheights,whichareontheorder0.1eVareontheorderofthepolaronichoppingactivationenergyreportedintheparentcompoundPCMO[ 26 79 ]andalsofromourowncomplexanalysisoftheLPCMOdielectricproperties(unpublishedwork).Contrarytoexpectations,thebarrierheightappearstoincreasebyapproximately44%whilethebarrierwidthdecreasesbynearly18%.Intuitivelyandgiventhedecreasingresistance, 112

PAGE 113

WiththettothesimplerectangulartunnelbarrierusingSimmons'modelasarstorderapproximation,thedielectrophoresismodelmaybeinvokedforaconsistentexplanation.Inthiscase,priortoapplicationofanelectriceldorcurrentthenaturallyformedintrinsicinsulatingregionscanbeapproximatedas`imperfect',containingsmalldefectscentersintheformofferromagneticislandsorsmallmagneticpolarons.Uponapplicationofanelectriceldthesmallferromagneticregionsorpolaronicdropletswithintheinsulatingregionsmovetowardthemetallicregionsandcoalesce.Inthisway,thevolumeofneitherphasefractionincreasesbutratheritreordersspatially.Inthisway,theinsulatingregionscontainlessco-tunnelingorpinningcentersandincreaseinqualityandthusbarrierheightwhilethemetallicregionsarenowseparatedbyathinnerbarrierandarethusmorecloselyspaced.Thusqualitatively,thedielectrophoresismodelmayindeedcapturethedynamicsoftheCEReect. 4-6 forsampleS0:6mwerealsottotheSimmons'modelasshowninFigure 5-6 .Giventherelativenoiselevelforthissample,thebarrierheightsextractedfromthetstotheSimmons'modelwereontheorderoftheenergygapofPCMO,thoughratherhigh.Thismaybeduetothepresenceofseveraltunnelbarriersinseries,giventherelativelylongerlengthofthebridge. 113

PAGE 114

BarrierheightsandwidthsobtainedusingtheSimmons'modelforthe0.6mwidebridgeasafunctionoftheappliedmagneticeld. Again,withtheSimmons'modelasarstorderttoourIVcurves,aclearlydierenttrendinthebarrierwidthsandheightswithincreasingmagneticeldsisevidentthanfortheCEReect.Here,withincreasingappliedeld,thereisaclearreductionofthebarrierheights(86%)whilethebarrierwidthremainsrelativelyconstantwithasmallincreaseofapproximately16%.Thisdecreaseinbarrierheightcanbeunderstoodintermsofspincantingoftheantiferromagneticallyorderedinsulatingbarrierspinsinthedirectionoftheappliedmagneticeld.Thespincantingincreaseswithincreasingmagneticeldandthebarrierwidthreducesforthetunnelingelectronswhicharealsoorientedinthedirectionoftheeld.Thebarrierwidthhoweverremainsnearlythesameindicatingasuddencollapseoftheinsulatingbarrieratawelldenedcriticaleldratherthanagradualdecreaseinwidthwithincreasingferromagneticphasefraction. 1 ].Todepictsuchbarrierpropertiesmorerealistically,wearecurrentlyemployingamethodwhichmodelsthetunnelbarrierasadoublebarrier 114

PAGE 115

81 ].Theauthorsofthistechniquewereabletodeduceamildcorrelationintheirbarrierheightsandwidthsbyutilizingthistechnique.Asecondtechniquerequiresobtainingrmsroughnessvaluesoftheinterfaceandincorporatingtheroughnessaschangingbarrierwidthsofrectangularbarriers(approximatedasagaussiandistribution)withintheSimmons'model[ 82 ].Bothmodelsarepresentlybeingtestedfortheireectiveness.Thecurrentanalysisisaworkinprogress. 115

PAGE 116

6-1 and 2-12 ).Undercertainexperimentalconditionsthisunconventionalcongurationallowsforthesimultaneousmeasurementofelectricaltransportbothparallelandperpendiculartothelminterfaces.Althoughthefour-terminalVanderPauwmeasurementoftheLPMCOlmsprovidesunambiguousinformationabouttransportparalleltothelminterfaces,thetwo-terminalcapacitancemeasurementismoreproblematicsinceitincludescontributionsfrombothparallelandperpendiculartransport. Byusingcomplexcircuitanalysis,weshowthatthetwo-terminalperpendicularcontributiontoelectronictransportcandominateovertheparallelcontributionprovidedcertainexperimentalconstraintsaresatised.Whentheseconditionsaresatised,weshowusingthewell-knownMaxwell-Wagnermodelthattheperpendicularcontributionisresolvedintotwoseries-connectedparts:acontributionfromthereferenceAlOxcapacitorandacontributionfromtheintrinsicdielectricresponseoftheLPCMOlm.Wethenshowwithadditionaldataonlmsofdierentthicknesshowthesubstratestrain-inducedanisotropy,measuredbythedierenceintemperaturebetweentheresistancemaximaandcapacitanceminimadecreasesandapproachesbulklikebehaviorasthelmthicknessincreases. 59 ] 116

PAGE 117

83 { 88 ]havethesamebehavioroverawiderangeoftemporalandspatialscales.Atlowfrequency,correspondingtolonglengthscales,thevolumeofthephasediagramcollapsestoapointdeningthezero-eldIMpercolationtransitionintheperpendiculardirection.Thismethodthusalsoallowsforanovelprobeofphaseboundariesinthinlms,wheretheboundariesmaynotbestraightforwardtodetectwithdctransportmeasurements. 1 .Thedctransportmeasurementspresentedintheprecedingchapters(whichareanalogoustothoseperformedonthenarrowbridgespresentedinthiswork)arenotsensitivetoexactphasefractionsandthedielectricpropertiesoftheinsulatingphases.Inaddition,thedctransportmeasurementscannotdistinguishbetweentwodierentinsulatingphaseswhichwouldresultinthesamehoppingtransporttemperaturedependence.Acmeasurementtechniquesontheotherhandcandistinguishbetweendierentdielectricconstantsandphasefractionsusingcomplexanalysis.InthischapterweprobephaseseparationinLPCMOthinlmsbyanalyzingthedielectricresponseofthethinlmsembeddedinanunconventionalgeometryasdescribedinSection 2.3 .ThinlmsofSCEMssuchasLPCMOareoftengrownepitaxiallyonplanarsubstratesandtypicallyhaveanisotropicpropertiesthatareusuallynotcapturedbyedge-mountedfour-terminalelectricalmeasurements,whichareprimarilysensitivetoin-planeconductionpaths.Accordingly,thecorrelatedinteractions 117

PAGE 118

2 .Fortheparticularcapacitorstructurestudiedinthischapter,theLPCMOthinlmwas600AthickwhiletheAlOxdielectricwas100Athick. AsdescribedinSection 2.5.3 ,thecapacitancemeasurements(Figure 6-1 ,red)weremadeusinganAndeen-HagerlingAH2700ACapacitanceBridgeinaguardedthree-terminalmodeatsteppedfrequenciesrangingfrom50-20,000Hz.TwooftheterminalswereconnectedtothesampleleadsshownschematicallyinFigure 6-1 andthethirdtoanelectricallyisolatedcoppercansurroundingthesampleandconnectedtothegroundofthebridgecircuit.Mostofthemeasurementsweremadeusing25mVrmsexcitation,andlinearitywasconrmedatalleldsandtemperatures.ThebridgewassettooutputdataintheparallelmodeinwhichthesampleisassumedtobethecircuitequivalentofacapacitanceCinparallelwitharesistanceR(seeSection 6.4 ). ContactstothesampleweremadetothebaseLPCMOlmusingpressedindiumandtotheAlcounterelectrodeusingnegoldwireheldinplacewithsilverpaint.Silverpaintwasalsooccasionallyusedtomakecontacttothebaseelectrodewithnoconsequencetothecapacitancedataatallmeasurementfrequencies.TheseriescombinationoftheLPCMOparallelresistancewiththeleakageresistanceoftheAlOxdielectricwasfoundtobeimmeasurablylargewithalowerbound>1010determinedbyreplacingthesample 118

PAGE 119

Parallel(resistance)andperpendicular(capacitance)transportmeasurementsaremadeonthesameLPCMOlm.a,CrosssectionalschematicviewofthetrilayercapacitorstructurecomprisingtheLPCMObaseelectrode,theAlOxdielectric,andtheAlcounterelectrode.b,SemilogarithmicplotsofthetemperaturedependentresistancesR#"jj(T)(black)andcapacitancesC#"?(T)(red)fordecreasing(#)andincreasing(")temperaturesatzeroeldobtainedonthesamestructure.ThethingreenlinesaretstotheMaxwell-Wagnermodel(seeSupplementary)whichincorporatesR#"jj(T)asaninputandthereforeproducescapacitanceminimaattemperaturescoincidentwiththeresistancemaxima.At50kOe(blue)thecapacitancehasincreasedfromthezeroeldminimabyafactorof1000.c,SchematicrepresentationoftheLPCMOlmusingdistributedcircuitelements.Straineectsgiverisetoaresistancegradientintheperpendiculardirectionrepresentedschematicallybyanunequalspacingofequipotentialsurfaces(dashedhorizontallines)superimposedonacolorgradient[ 59 ]. 119

PAGE 120

6-1 ). Thefour-terminalresistancemeasurementsofdctransportparalleltothelminterfaces(Figure 6-1 ,black)weremadeusingevenlyspacedVanderPauwcontacts(notshowninFigure 6-1 )directlyconnectedattheLPCMOlmedges.TocheckforanyfrequencydependenceintheparallelresistanceoftheLPCMOandassociatedcontactresistance,weperformedatwo-terminalacmeasurementbyapplyingasinusoidalvoltagetoallpairsoftheLPCMOcontactsandusedalock-inampliertosynchronouslydetecttheoutputofawidebandcurrentamplierthatprovidedareturnpathtogroundforthesamplecurrent.Thetwo-terminalresistancewasquitesimilartothefour-terminalmeasurement.Importantly,nofrequencydependenceintherange50-20,000Hzfortheresistancevaryingfrom1Kto20M(Figure 6-1 )wasdetected,thusassuringthatallthefrequencydependenceseeninthecapacitancemeasurementisduetoperpendicularratherthanparalleltransport.Inaddition,weestablishedinseparateexperimentsonsymmetricAl{AlOx{AlstructuresthatCAlOxhasnegligiblefrequencydispersionoverthesamefrequencyrange. 6-1 canhavebothparallelandperpendicularcontributionsfromcurrentsowingrespectivelyeitheralongtheLPCMOelectrodeortransversetothelmthroughthecapacitor.Sincethesecontributionscannotbedistinguishedinatwo-terminalmeasurement,itisnecessarywhenmeasuringcapacitancetoestablishconditionswheretheperpendicularvoltagedropdominatesovertheparallelvoltagedrop.Therearetwonecessaryrequirementstoassureadominantperpendicularvoltagedrop:(1)thedcleakagecurrentthroughtheAlOxdielectricisnegligibleand(2)themeasurementfrequencyisconstrainedtobewithinwelldenedupperandlowerboundsdeterminedbysampleproperties. 120

PAGE 121

6-1 ).Bylossycapacitancewemeanacapacitorthatdoesnotpassdccurrentbutdoesexperiencelossatacduetodipolereorientation.ThusthecombinationofC(!)shuntedbyR0isaleakycapacitorwhichdoespassdc.TheresistanceRSincludestheparallelresistanceRjjoftheLPCMOandanyresistanceassociatedwiththeLPCMOcontact.ThenegligibleresistanceoftheAlcounterelectrodeanditsassociatedcontactareincludedinRS. OurmeasurementsatdcestablishtheconditionsR0+RS>1010(Section 6.3 )andmaxfRSg=107(Figure 6-1 ),whichtogetherimplythatoverthewholerangeofdcmeasurementsmorethan99.9%ofthevoltageappearsacrossC.Attemperaturesawayfromtheresistancepeakthisgureofmeritimprovesconsiderably. Sincethecapacitancemeasurementsaremadeatnitefrequency,wemustconsiderthemorecomplicatedsituationofadditionalcurrentpathsandchooseconditionstoassurethatmostoftheacpotentialdropisacrossC(!).WedothisbyredrawingthecircuitofFigure 6-2 toincludetheaclossasaresistorR2(!)=1=!C2(!)(Figure 6-2 )whichdivergestoinnityatdc(!=0).TobesensitivetoLPCMOproperties,wedesiremostoftheaccurrenttoowthroughR2(!)andthereforechoosefrequenciestosatisfy therebydeterminingalowerboundon!. TheAHcapacitancebridgereportsthecapacitanceC0(!)andtheconductance1=R(!)oftheparallelequivalentcircuitshowninFigure 6-2 .UsingstraightforwardcircuitanalysiswerelatethemeasuredquantitiesC0(!)andR(!)tothecircuitparametersofFigure 6-2 bytheequations: 121

PAGE 122

Circuitdiagramsfacilitateunderstandingthesourcesoflongitudinalandperpendicularvoltagedrops.a,Circuitequivalentofthetwo-terminalmeasurementconguration(Figure 6-1 )whereRSistheseriesresistanceoftheLPCMOsampleandtheparallelcombinationofacomplex(lossy)capacitorC(!)witharesistorR0representstheimpedanceoftheLPCMOinserieswiththealuminumoxidecapacitor.Inthetwo-terminalconguration,thelongitudinalvoltagedropacrossRscannotbedistinguishedfromtheperpendicularvoltagedropacrosstheparallelcombinationofC(!)andR0.b,DecompositionofC(!)=C1(!)iC2(!)intoaparallelcombinationofC1(!)andR2(!)=1=!C2(!).c,CircuitequivalentforthecapacitanceC0(!)andconductance1=R(!)reportedbythecapacitancebridge.d,Maxwell-WagnercircuitequivalentfortheLPCMOimpedanceinserieswiththeAl/AlOxcapacitor.TheLPCMOmanganitelmimpedanceisrepresentedasalossycapacitorCM(!)shuntedbyaresistorRM.ThereisnoshuntingresistoracrossCAlOxbecausethemeasuredlowerboundonR0is10G,wellabovethehighestimpedanceoftheothercircuitelements. 122

PAGE 123

(R2(!)+RS)+(!R2(!)RSC1)2:(6{3) IfRSissmallenoughtosatisfytherelation thenequations 6{1 and 6{2 reducerespectivelytoC0(!)=C1(!)andR(!)=R2(!).Accordingly,thefulllmentoftheconstraintsimposedbyequations 6{1 and 6{4 assuresusthattheacdissipationisnotduetoleakageresistanceandthatthevoltagedropacrossRScanbeignored.Undertheseconditionsthemeasuredcomplexcapacitancehasreal,C0(!),andimaginary,C00(!)=1=!R(!),partsthatreectrespectivelythepolarizationandthedissipationplottedanddiscussedinSection 6.7 Theconstraintsofequations 6{1 and 6{4 nowbecome 1 wherewehavereplacedC1andC2bythemeasuredquantitiesC0andC00respectively.TheserelationsconvenientlyallowustoexperimentallydeterminetherangeoffrequenciesoverwhichRScanbesafelyignored,thusguaranteeingthattheequipotentialsatacareparalleltothelminterface(Figure 6-1 ).WeshowinFigure 6-3 theH=0temperaturedependenceoftheimpedancecomponents,1=!C0(!),1=!C00(!)measuredat500HzandRjjmeasuredatdc.ThecorrespondingtemperaturedependenceofC0(!)isshowninFigure 6-1 .Clearlytheconstraintsofequations 6{5 and 6{6 aresatised.Itisnotnecessarytoplotthethirdcomponentof 6{6 sinceC00(!)>C0(!)forallofourdataintheregionofcollapse(seeFigure 6-3 ).Wehaveveriedthattheconstraintsholdupto20kHzatallthetemperaturesandeldsusedtoconstructthephasediagraminFigure 6-8 .Forourlowestfrequencyofmeasurement(100Hz)wecalculateC00=0.16pFasalower 123

PAGE 124

Impedanceplotsverifythatthelongitudinalvoltagedropsarenegligiblecomparedtotheperpendicularvoltagedrops:TheH=0temperaturedependenceoftheimpedancecomponents1=!C0(!),1=!C00(!)measuredat500HzandRS=Rjjmeasuredatdc.Thehorizontaldashedlineat1010representsthelowerboundonR0.Comparisonoftherelativemagnitudesoftheseplotsshowsthatatalltemperaturestheconstraintsimposedbyequations 6{5 and 6{6 aresatised. 124

PAGE 125

6{5 cannotbesatised.Forallofourdata,C00(100Hz)ismorethanafactoroftenhigherandequation 6{5 isthussatisedforallofourlowfrequencydata. 6-2 .Theresultingexpression, revealsadielectricresponsedeterminedbytwotimeconstants,RMCAlOxandRMCM.As!increases,thecapacitancecrossesoverfrombeingdominatedbyCAlOxtoacapacitancedominatedbytheseriescombinationofCAlOxandCM.IfCMCAlOx,asitisovermuchofthedatarangeinFigure 6-1 andlikewiseforsimilardatatakeninhighmagneticelds,thenCinthehighfrequencylimitisequaltoCMandisthereforeadirectmeasureoftheLPCMOdielectricresponse.WetesttheselimitsinFigure 6-1 byevaluatingRefCMW(!)gat0.5kHz(greencurve)usingCM=CAlOx=104andRM=Rjj(T)#"(black)asinputs.CMisassumedtoberealforthiscalculation.TheMWmodelthusprovidesagoodqualitativeaccountofthetemperature-dependentcapacitance(Figure 6-1 ,greenline)forCMindependentoffrequencyandequalto104CAlOx.TheMWmodelalsoshowsgoodalignmentintemperaturebetweenthemaximumintheresistanceusedasaninputandthecalculatedcapacitanceminimum.Finally,wenotethatthelargeseries-connectedaluminumoxidecapacitorservesasareferencecapacitor,whichbyitspresencedecloaks 125

PAGE 126

6{6 isviolatedandRSbecomesvisible,introducinglongitudinalvoltagedropsthatcannotbedistinguishedfromtheperpendiculardrops. Inrealitythereisconsiderabledielectricloss,especiallyinthepresenceofmagneticeld,andCMisfrequencydependentandthereforecomplex.IfweforceCMintheMWcalculationtobecomplexwith,forexample,aDebyeresponse,thealignmentbetweentheresistancemaximumandthecapacitanceminimumdoesnotchange.TheCole-Coleplots(Figures 6-6 and 6-7 )aretheadditionalingredientsthatclearlycapturetheinterestingintrinsicdynamicsofscaleinvariantdielectricresponseassociatedwiththeinterplayofcompetingphasesasdiscussedinSection 6.7 Itisworthwhiletofurtherelaborateonintrinsicversusextrinsiceects.TheMWmodelisusuallyusedtoascertainthecontributionsofcontactsandinterfaceswhenthematerialofinterestissandwichedbetweentwoelectrodes[ 6 89 { 92 ].Incapacitorswiththickdielectrics,theinterfaceregionnexttoeitherelectrodecanhavedistinctlydierentpropertiesthantheinteriorbulk.SuchaheterogeneoussystemiswelldescribedintheMWmodelbytwoseries-connectedleakycapacitors.Ifoneoftheleakagecomponents,saytheinterface,ismagneticeldsensitiveandexhibitsmagnetoresistance(MR),thenthemeasuredmagnetocapacitance(MC)canbeaconsequenceoftheextrinsicpropertiesofaninterfacecontactratherthantheintrinsicpropertiesofthebulk.Intheunconventionalcongurationdescribedhere,theinterfacecontactisadispersionlessleak-freeAl{AlOxcapacitorasrepresentedschematicallyinFigure 6-1 ,andtheobservedMCisduetotheintrinsicpropertiesofthemixedphaseLPCMO.AnyinterfaceeectsbetweentheAlOxandtheLPCMOarenegligible,sincethefactorof1000changeincapacitance,whichincludestheregionwherepower-lawscalingcollapseisobserved,necessarilyinvolvestheentiremanganitelm.InadditionallextrinsiccontributionsfromcontactstotheLPCMOatthelmedges(Figure 6-1 )areincludedintheresistanceRS,whichaswehaveshownabove,canbeignoredwhenthefrequencyischosentosatisfytheinequalityofequation 126

PAGE 127

.Experimentally,thisinsensitivitywasfurthercheckedbyusingsilverpaintorpressedindiumforcontactsasdescribedinSection 6.3 Figure 6-4 showsthedependenceofT#"IM;jjandT#"IM;?ondforcoolingandwarmingaslabeledinthelegend.Forparalleltransporttheobservedincreaseoftransitiontemperaturescanbequalitativelyexplainedbytheeectofdimensionalityonpercolation.Sincepercolationin3Doccursatalowermetalfractionthanitdoesin2D,theIMtransitionincreaseswithincreasingdasisindeedobserved.ThisqualitativepictureiscomplicatedhoweverbythepresenceofastrainedlayeratthesubstrateinterfacewhichcontainsahigherfractionofFMMphase.Inthiscaseconductionintheparalleldirectionisfacilitatedbythepresenceofthehigherconductivitystrainedlayerwhereasintheperpendiculardirectionthecurrentpathsmustthreadregionscontainingagreaterproportionofinsulatingphase,hencethedierencebetweenT#"IM;jjandT#"IM;?.Thetemperaturedierences,T#"IM=T#"IM;jjT#"IM;?,forcoolingandwarmingareplottedversusdinFigure 6-5 .Wenotethattheanisotropydoesindeeddecreasewithincreasingd.ThusasdincreasestheIMtransitionmovestohighertemperatureandtransportbecomesmoreisotropicastheeectofthestrainedinterfacediminishes. Thelmsdiscussedabovewerepreparedfromthesametargetbutunderdierentconditionsthanthe600A-thicklmdiscussedinthischapter.Thedepositionconditions 127

PAGE 128

WithincreasingLPCMOthicknessdtheanisotropicIMtransitionsmovetohighertemperatures:Thetransitiontemperaturesassociatedwithresistancemaxima(squaresandcircles)andcapacitanceminima(triangles)areidentiedinthelegendandplottedasafunctionofdforcoolingandwarming.Thecapacitancedataforthethreedierentlmsaretakenat100Hzandsatisfytheimpedanceinequalitiesexpressedinequations 6{5 and 6{6 andshowninFigure 6-3 forthe600A-thicksample. (oxygenpressure=420mTorr,substratetemperature=820oC,depositionrate=0.5A/s)weredeterminedbyminimizingthetransitionwidthatanIMtransitiontemperature(T#IM;jj)thatisclosetothemaximumvalue(cooling)observedinbulkcompoundsofthesamecomposition.Thetargetwasthenconditionedwiththesamedepositionparametersformanyruns.Incomparingthetwo600A-thicklms,weseethatthetransitiontemperaturesT#IM;jj=117.7KandT"IM;jj=140.5Koftheoptimized600A-thicklmshowninFig. 6-4 areappreciablyhigherthanthecorrespondingtemperatures,T#IM;jj=95KandT"IM;jj=106K,ofthelmshowninFigure 6-1 .In 128

PAGE 129

WithincreasingLPCMOthicknesstheanisotropyasmeasuredbyT#"IM=T#"IM;jjT#"IM;?decreasestowardszeroandbulklikebehavior:ThedataforbothcoolingandwarmingcyclesateachthicknessareobtainedfromthedatashowninFigure 6-5 bysubtractingthetemperatureofthecapacitanceminimum(perpendiculartransition)fromthetemperatureoftheresistancemaximum.Theerrorbars,whichareontheorderofthesymbolsizeinFigure 6-5 ,aredeterminedbythetemperatureswhichgivea0.1%deviationateachextremum(resistancemaximumorcapacitanceminimum). addition,therespectiveanisotropiesforcooling(T#IM=1.5K)andwarming(T"IM=3.5K)oftheoptimized600A-thicklmaresignicantlysmallerthanthecorrespondinganisotropiesforcooling(T#IM=20K)andwarming(T"IM=15K)ofthesamethicknesslmshowninFigure 6-1 .TheseresultsshowthatourtechniquecanadvantageouslybeusedtocorrelateanisotropiesinLPCMOwithdepositionparameters.Weanticipatethatthiscapabilitywillbeapplicabletootherstrongly-correlatedcomplexoxidesystemsaswell. 129

PAGE 130

6-1 ,iscapturedinthetemperature-dependentcurvesshown.Thetwo-terminalC(T)measurementscorrespondtotherealpartC0(!)ofacomplexlossycapacitance,C(!)=C0(!)iC00(!),measuredatf=!=2=0:5kHz.AstemperatureTdecreasesfrom300K,theprevailinghightemperatureparamagneticinsulator(PI)phasegiveswaynearT=220K[ 87 ]toadominantCOIphase.MinorityphaseFMMdomainsappearandbegintoshortcircuittheresistanceriseasTcontinuestodecrease.AttheresistancepeaksthepercolativeIMtransitionfortransportintheparalleldirectionthroughFMMdomainsoccursattemperaturesT#IM;jj=95KandT"IM;jj=106Kwherethedown(#)/up(")arrowsindicatethecooling/warmingdirectionofthetemperaturesweep.BelowT#IM;jjtheFMMphaserapidlydominateswithdecreasingT,andRjjdecreasesbyfourordersofmagnitude. TheC(T)#"tracesreachplateausathighandlowtemperaturewheretheLPCMOisinitsrespectivePIandFMMstates,bothofwhichhavesucientlylowresistivitytoactasmetallicelectrodesinaMIMstructure.BetweentheCAlOx(T)plateaus,theC(T)#"tracesshowcapacitanceminima20Kbelowthecorrespondingresistancemaxima.AtperpendiculareldsH=50kOethecapacitance(bluecurve)hasincreasedbyafactorof1000abovethezero-eldminimum;colossalmagnetocapacitance(CMC)isclearlypresent.Theremnantcapacitancedipat50kOedisappearsat70kOeandthelineartemperaturedependenceC(T)=CAlOx(T)isidenticaltothatofseparatelymeasuredAl{AlOx{Alcapacitors.DeviationsofC(T)#"belowCAlOx(T)thusreectthecompetitionofFMMandCOIphases,anditisherewheretheCMCeectsoccur. InSection 6.4 weshoweddetailedanalysisofhowmeasurementofC(T)isnotacomplicatedwayofmeasuringR(T):WemodeledaresistanceRSinserieswiththeparallelcombinationofC(!)andadcresistanceR0,andestablishednecessaryand 130

PAGE 131

6-1 .WemodelC(!)usingaMaxwell-Wagner(MW)circuitequivalent[ 93 ]inSection 6.5 .ThequalitativeagreementshowninFigure 6-1 Bbetweenthecapacitancedata(red)andtheMWmodelcalculation(green)conrmstheappropriatenessoftheMWmodelashasalsobeenshowninrelateddielectricstudiesoftransitionmetaloxides[ 91 ],spinels[ 89 90 92 ]andmultiferroics[ 6 ]wherethematerialunderinvestigationistheinsulator(I)ofaMIMstructureratherthanthebaseelectrodeasdiscussedhere. TheMWanalysisusesthemeasuredRjjasaninputandthereforeenforcesanalignmentintemperature(Figure 6-1 B)betweenthemeasuredresistancemaximaandthecalculatedcapacitanceminima.Sincetheequipotentialsofthecapacitancemeasurementareparalleltothelmsurface,themisalignmentofthemeasuredcapacitanceminima(20KinFigure 6-1 B),canbestbeexplainedbyassumingthatRMintheMWcalculationshouldbetheperpendicularresistanceR?(T)ratherthanRjj(T).HencethemeasuredcapacitanceminimaareinalignmentwithputativeresistancemaximacorrespondingtopercolativeIMtransitionsinR?(T).TheIMtransitiontemperaturesintheperpendiculardirection,T#IM;?=77KandT"IM;?=91K,arethereforeequaltothetemperatureswherethecapacitanceminimaoccuratnoticeablylowervaluesthanthecorrespondingtemperatures,T#IM;jj=95KandT"IM;jj=106K,fortheRjj(T)maxima. Straineectsexplainthetwoseparatepercolationtransitions.TheLPCMOlmsweregrownonNdGaO3,whichisknowntostabilizethepseudocubicstructureoftheFMMphaseatlowtemperatures[ 94 95 ].Theeectofthesubstratediminishesawayfromtheinterface[ 94 ]asshownschematicallybytheshadinginFigure 6-1 C,wheretheLPCMOelectrodeisdepictedasaninniteRCnetworkcomprisinglocalresistancesr?andrjjrespectivelyperpendicularandparalleltotheinterface.Thesedistributed 131

PAGE 132

96 ].InthemeasurementofRjjthestrain-stabilizedFMMregion\shortsoutthehigherresistancestateoccurringawayfromtheinterfaceandpercolationoccursatahighertemperatureT#"IM;jjthanT#"IM;?asmeasuredbythecapacitanceminima.ForthickerlmsthetwoIMtransitionsconverge,asexperimentallyconrmedoverthethicknessrange300Ato900A(seeSection 6.6 ),toasinglevaluerepresentingisotropic3DpercolationofbulkLPCMOwiththetemperaturedierenceT#"IM=T#"IM;jjT#"IM;?approachingzero. 93 ].WeshowsuchaplotonlogarithmicaxesinFigure 6-6 atT=65K(warming)forthemagneticeldsindicatedintheinset.Asthefrequencyissweptfromlow(50Hz)tohigh(20kHz)ateacheld,C00(!)passesfromaregionwhereCAlOxdominates,subsequentlyreachesapeakvalueat!RMCM=1(verticalarrow),andthenentersthehighfrequencyregionwheretheintrinsicresponseofthemanganitedominatesandthedatacollapseontothesamecurve.Thelow-to-highfrequencycrossoverfromno-collapseofthedatatocollapseismagniedintheinset. AthighertemperaturesthedatacollapseismorestrikingasshownintheCole-ColeplotofFigure 6-6 B.Independentlyofwhethertheimplicitvariableisfrequencyf=!=2,TorH,thedielectricresponsecollapsesontothesamecurvewhentheremainingtwovariablesarexed(seeinset).As!increases,orequivalently,asTorHdecrease,C00approacheszeroandC0approachesaconstantC1representingthebaredielectricresponse.WendthatwhenC00isplottedagainstC0C1ondoublelogarithmicaxes,allthedatacollapseontoastraightline(inset)describedbytheequation 132

PAGE 133

Cole-Coleplotsrevealdatacollapseandpower-lawscalingofthedielectricresponse.a,ColeColeplotonlogarithmicaxesofdielectricdissipationC00(!)versuspolarizationC0(!)atT=65K(warming)forthemagneticeldsindicatedinthelegend.Ateacheldtheimplicitfrequencyvariablefrangesfrom100Hzto20kHz.Thecrossoverfromnon-overlappingtracesatlowfrequenciestodatacollapseathighfrequenciesismagniedintheinset.b,ColeColeplotforthesweepparametersandrangesindicatedinthelegend.Independentlyofwhethertheimplicitvariableisfrequency(blacksquares),temperature(redcircles)ormagneticeld(bluetriangles)thedatacollapseontothesamecurveregardlessoftheparameterbeingvaried.Thesesamedata,replottedasastraightorangelineintheinsetaftersubtractingasinglettingparameterC1,showpower-lawscalingcollapse(PLSC). 133

PAGE 134

6{8 isageneralizationofJonschersuniversaldielectricresponse,whichrequires=1anddescribeswellthehighfrequencydielectricresponseofmostdielectrics[ 97 ].Asshownbelow,thegeneralizedpower-lawscalingthatwehaveobservedwithrespecttothreeindependentvariables(!;T;H)isassociatedwithapercolationtransitioninwhichFMMandCOIphasesformclustersthatcompeteonself-similarlengthscales. Figure6-7. Cole-Coleplotonlinearaxeswithtemperature(cooling)astheimplicitvariableforf=500Hzandmagneticeldsidentiedinthelegend.Thewell-denedtransitionsonto/(oof)theorangePLSCline(magniedintheinset),whichisthesamelineshownintheinsetofFigure 6-6 ,denerespectivelytheupper/lowereld-dependentcriticaltemperaturesthatboundthePLSCbehaviorinfTHspaceshowninFigure 6-8 Theuniversalpower-lawscalingcollapse(PLSC)ofthedatadescribedbyequation 6{8 appliestoaregionoffTHspacewithboundariesthatcanbeaccuratelydeterminedfromCole-ColeplotswhichuseTastheimplicitvariableovertheentiretemperaturerange.Asanexampleofourprocedure,weshowinFigure 6-7 aCole-Coleplotonlinearaxeswithtemperature(cooling)astheimplicitvariableforf=500Hzandmagneticeldsidentied 134

PAGE 135

6{8 (seealsoFigure 6-6 inset)incommonwiththelowerpartoftheupperbranchtono-collapse(NC)behavior(lowerbranch).Astemperaturedecreasesontheupperbranch,thedatafollowanonpower-lawcollapse(NPLC)whichatwelldenedeld-dependentuppercriticaltemperatures,T#upper(H),mergeontotheorangelinerepresentingPLSCbehavior.AsTcontinuestodecreaseinthePLSCregion,thereisasecondcriticaltemperature,T#lower(H),markingthedemarcationpointsbetweenbranchesbyanalmost180changeinthedirectionofthetrajectoryasindicatedbythe`turnaround'arrowintheinset.Theseeld-dependentcrossoverpointspreciselydenec=T#Cmin(H)whereC0(H)isminimumandwhichbyourMWanalysishasbeenshowntobethesameasT#IM;?(H).Asimilaranalysisholdsforwarmingcurves. Theaccuratedeterminationofeld-dependentcriticaltemperatureboundariesateachfrequencyallowsustodelineatetriangular-shapedareasinTHspacewherePLSCisobeyedasshownforcoolinginFigure 6-8 .Thetwocriticaltemperatureboundaries,T#upper(H)andT#lower(H),aredeterminedbytheNPLC-to-PLSC(closedsymbols)andthePLSC-to-NCtransition(opensymbols).Forcomparisonweshow(crosses)theIMboundaryT#IM;jj(H),determinedfromthepeaksinR#jj(H).TheroughlyparallelosetfromthelowerboundaryT#IM;?(H)ofthePLSCphaseimpliesseparatepercolationtransitionsforR?andRjj.IncreasingthefrequencypushesT#upper(H),tohighertemperaturesandelds,thusincreasingthevolumeoffTHspacewherePLSCoccurs.ForanyTHregionboundedbyanuppercriticalboundarydeterminedatf=f0,PLSCisobeyedwithinthatregionforallff0.Thereforeasf0decreasesandthecorrespondinglengthscalesbeingprobedincrease,thecorrespondingTHregion,wherePLSCisobeyedforallff0,shrinkstoapointdenedbythetemperatureT#IM;?(H)=77KatH=0(markedbyXonFigure 6-8 )whereR?ismaximumandpercolationoccurs.Asimilarphasediagramshifted20Ktohighertemperaturesoccursforwarmingdata.Thenotionofpercolative 135

PAGE 136

PLSCholdsoverawideregionoffTHspaceandatlowfrequencyconvergestoapointdeningtheinsulator-metaltransitionT#IM;?(H=0).Thedeterminationofupper(solidsymbols)andlower(opensymbols)criticaltemperaturelines(cooling,Figure 6-7 )denetriangular-shapedregionsinTHspacewithinwhichPLSCholdsforfrequencieshigherthanthefrequency(labeled)atwhichtheupperboundaryisdetermined.AsfdecreasesthePLSCregionshrinkstoapoint(largeredX)thatmarksT#IM;?(H=0)andanchorsthelowercriticaltemperaturelineT#IM;?(H)wherethecapacitanceisminimum.ThecriticaltemperaturelineT#IM;jj(H)(green)determinedfromthepeaksinR#jj(H)isroughlyparalleltoT#IM;?(H)atatemperatureosetby20K. 136

PAGE 137

83 ]recognizesthatthepercolationtransitionasafunctionoftemperatureisdierentfromtheclassicpercolationproblemwhichdealswithconnectivityoccurringasafunctionofcompositionratherthantemperature.Thiscomplicationisreectedinnoisemeasurementsonthin-lm[ 98 ]andbulkcite24maisermanganiteswhichshownoisepeaksrespectivelyatpercolationtemperaturesdenedrespectivelybythemaximuminRandthemaximumindR=dT.OurresultsdonotdependonanexactidenticationofpercolationtemperaturebutareunambiguousinshowingthatthePLSC-to-NCtransitiontemperature(T#"IM)occursattheresistancepeak,whichforthepurposesofthispaperiscalledthe\percolationtransitiontemperature. Weexpectthatourmeasurementtechnique,whichadvantageouslyincludesinformationaboutdynamics,willndwideapplicationinstudiesofavarietyofanisotropicthin-lmsystemsincludingthosewherethepresenceofcompetingphasesisunderdebate.Candidatesforstudyincludelayeredmanganites[ 99 ],under-dopedhigh-Tcsuperconductors[ 2 ],electron-dopedcuprates[ 100 ]withanisotropicresistivityratios(c=ab)reported[ 101 ]tobeashighasafactoroftenthousand,andc-axisgraphitewhereresistivityratiosaretypicallyafactorofonethousand.Wehavealsodemonstratedthatourtechniquecanbesensitivetostrainatepitaxialinterfacesandthuscapableofdeterminingthroughthicknessdependencestudiesthecriticalthicknessforarelaxedtopinterface.ByincorporatinganLPCMOlmasthe`metal'(M)baseelectrodeofanMIMstructureandusinganultralowleakagedielectric(AlOx)fortheinsulatingspacer,wepreventthemetallicphaseoftheLPCMOfromshortingoutthemeasurementasitwouldifitwerethemiddlelayer(I)ofaconventionaldielectricconguration.Circuitanalysisshows,andexperimentdemonstrates,thatoverawelldenedfrequencyrangethelargeAl/AlOxcapacitoractsasabaselinereferencethat`decloaksormakesvisiblethemuchsmallercapacitanceoftheseries-connectedLPCMOlm. 137

PAGE 138

83 84 ].Afullunderstandingoftheseresultswillbeachallengetothecontrastingtheoriesofphaseseparationandcompetitioninmanganitesbasedonintrinsicdisorder[ 85 ],longrangestraininteractions[ 86 ],blockedmetastablestates[ 87 ]orthermallyequilibratedelectronicallysoftphases[ 88 ]. 138

PAGE 139

Inordertounderstandandstudyphaseseparationonthenanometerscale,inChapter 2 thetechniquesusedforfabricatingnarrowbridges(wires)ofnanometerwidthwhichallowthestudyoftransportacrossafewphaseseparatedregionswaspresented.Additionally,capacitancemeasurementswereperformedonLPCMObyutilizinganovelgeometrythathasallowedustoprobetheanisotropictransportpropertiesthatariseinultrathinlmsofnanometerthickness. Bymeasuringthetransportpropertiesofthenarrowbridgesasafunctionoftemperatureandmagneticeld,inChapter 3 evidenceofalternatinginsulatingandmetallicregionsspanningthebridgewidthalignedalongthelengthofthebridgewaspresented.First,evidenceofdirectelectrontunnelingbetweentwoormoreferromagneticmetallic(FM)regionsseparatedbyantiferromagneticinsulating(AFI)regionswas 139

PAGE 140

InChapter 4 itwasfoundthatattemperaturesbelowthephaseseparatedtemperature,rangewhentheunpatternedthinlmsamplesarenearlyfullyferromagneticmetallic,thenarrowbridgesincontrasthaveahighresistance.Current-voltagemeasurementspointtoadirecttunnelingphenomenonthussuggestingthatthemetallicregionsareseparatedbyverythinAFItunnelbarriers.Magneticeldmeasurementsrevealthatthebarriersaremetastablewithrespecttoverysmallelds(ontheorderofthemanganitecoerciveeld)andhaveananisotropythatisinagreementwiththeeasyaxisdirectioninunpatternedthinlms.Thedatathussuggestthepresenceofnovel,insulating,stripedomainwallswheretunnelingoccursacrossthedomainboundary,astheoreticallypredicted. InChapter 5 wediscusstheelectricalanalogofthecolossalmagnetoresistance(CMR)eect,thecolossalelectroresistance(CER)eectonthenanoscale.Ourcurrent-voltagemeasurementsreveal,asinbulk,ahysteresisandabreakdowntoalowresistancestatewithahighenoughappliedcurrent.Thebreakdownoccursinsharpstepswhileamuchsmoothertransitiontoalowerresistancestateisobservedinbulk.Weusedacombinationofcurrent-voltagemeasurementsandtstotheSimmons'modeltorevealthatwhileCMRresultsfromaphasetransitionoftheinsulatingregionstometallicregions,CERresultsfromaspacialreorganizationofthemetallicandinsulatingphasestominimizeenergyinthepresenceofanelectriceld. Lastly,inChapter 6 theeectsoflmthicknessinthenanometerrangeonphaseseparationin(La,Pr,Ca)MnO3thinlmswasinvestigatedviacapacitancemeasurements.Anunusualgeometryforfabricatingacapacitorstructurewasutilized,suchthatthe 140

PAGE 141

6 ,inthiswayitwasfoundthatthedielectricresponsedeviatesfromthe'universal'expressionbyanexponentthatisdierentfromunity,andthevalueofwhichdependsontheexactphaseofthe(La,Pr,Ca)MnO3.Thismethodallowsforanovelprobeofphaseboundariesinthinlms,wheretheboundariesmaynotbedetectablewithDCtransportmeasurements.Additionally,itwasfoundthatcapacitanceasafunctionoftimeshowsadierentphasetransitiontemperaturethanthetemperaturedependentresistancemeasurements.Thecapacitanceandresistancetransitiontemperaturesbegintoconvergeasthelmthicknessincreasesshowingtheeectoflmthicknessontwodierenttransitions:oneintheplaneofthelmandoneperpendiculartotheplaneofthelm. Someimmediateandongoingexperimentswhichdirectlyfollowfromtheworkpresentedcanbesummedupasfollows.Firstly,theasymmetricpeaksseeninourTMRmeasurementsinSection 3.6.2 implythatanexchangebiasmaybepresentbetweentheferromagneticdomainsandtheantiferromagneticinsulatingregionsthatseparatethem.Workiscurrentlyunderwayinprobingtheexchangebiasbyexploitingthefactthatexchangebiasgivesrisetoauniaxialanisotropy.Thehopeistocapturetheeectsoftheuniaxialmagneticanisotropybymeasuringmagnetoresistanceasafunctionofappliedmagneticeldanglewithrespecttothesamplesurface. 141

PAGE 142

3.6.1 .Preliminarycurrent-voltagemeasurementsinthistemperaturerangerevealsignaturesofcoulombblockadewithintheferromagneticdropletsseparatedbyinsulatingregions.ThisiscurrentlybeingstudiedusingtheelectriceldgatingmeasurementcongurationdescribedinSection 2.2.4 .Bygatingthebridgecontainingthecoulombblockadeddots(i.e.ferromagneticdroplets),wecanmodulatethechargingenergyofthedotsandthusthethresholdvoltagerequiredfortransportofelectronsintoandoutofthedots.Thistypeofchangeinthechargingpropertiesofthedotscanbeevaluatedusingcurrent-voltagecharacteristics.ItmaythusbepossibletocorrelatetheelectriceldeectseeninbulkwithsingleelectroncharginganddischargingofarraysofCoulombblockadedferromagneticdroplets. Lastly,theresultsfromtheunconventionalcapacitancegeometryarebeingutilized(incollaborationwithPatrickMickel)toanalyzethedielectricresponseusingcole-coleplotsandunderstandingtheresultsusingtheDebyerelaxationmodelformultiplephaseswithdierenttimeconstantspresentinourthinlms.ThisprocesshashelpedthusfartoidentifyaphasetransitionfromtheparamagneticinsulatingphasetothechargeorderinsulatingphaseinLPCMO.Thistypeofinsulator-to-insulatorphasetransitionisdiculttoassessusingtransportmeasurements,sincethetransportinbothinsulatorswillbeactiated.Suchanalysiscanbeutilizedinotherphaseseparatedsystemswherephaseseparationisstilladebatablescenario,todetermineifindeedphasefractionswithdierentdipolerelaxationtimeconstantsarepresent. Inadditiontotheworkinprogressmentionedhere,auniquecapacitancegeometryandnanofabricationtechniqueforfabricatingnanoscalebridgesandstructuresinphaseseparated,highlyinsulatingthinlms,anavenuewassetforthforinvestigatingphaseseparationincomplexoxidesystemsinanovelmanner.Inthefuture,suchtechniquesmayallowforprobesintootherphaseseparatedmaterialsorothercomplexoxide 142

PAGE 143

143

PAGE 144

[1] M.Ziese,ReportsonProgressinPhysics65,143(2002). [2] S.Oh,T.A.Crane,D.J.V.Harlingen,andJ.N.Eckstein,Phys.Rev.Lett.96,107003(2006). [3] K.M.Lang,Nature415,412(2002). [4] T.Goto,T.Kimura,G.Lawes,A.Ramirez,andY.Tokura,PhysicalReviewLetters92,257201(2004). [5] A.OhtomoandH.Y.Hwang,Nature427,423(2004). [7] M.Singh,W.Prellier,L.Mechin,andB.Raveau,AppliedPhysicsLetters88,012903(2006). [6] G.Catalan,Appl.Phys.Lett.88,102902(2006). [8] Y.Tokura,ed.,ColossalMagnetoresistiveOxides(GordonandBreachScience,2000). [9] M.B.SalamonandM.Jaime,ReviewsofModernPhysics73,583(2001). [10] L.Zhang,C.Israel,A.Biswas,R.Greene,andA.deLozanne,Science298,805(2002). [11] J.Tosado,J.Lopez,T.Dhakal,andA.Biswas,inAPSMarchMeeting(2007). [12] P.Zubko,G.Catalan,A.Buckley,P.R.L.Welche,andJ.F.Scott,PhysicalReviewLetters99,167601(2007). [13] S.-W.CheongandH.Hwang,Ferromagnetismvs.Charge/OrbitalOrderinginMixed-ValentManganites(GordonandBreachScience,2000),chap.7,pp.237{280. [14] E.Dagotto,NanoscalePhaseSeparationandColossalMagnetoresistance(Springer,2003). [15] T.OkaandN.Nagaosa,PhysicalReviewLetters95,266403(2005). [16] Y.Tokura,ReportsonProgressinPhysics69,797(2006). [17] Y.Tokura,FundamentalFeaturesofColossalMagnetoresistiveManganeseOxides(GordonandBreechSciencePublishers,2000),chap.1,pp.1{52. [18] A.Millis,TheoryofCMRManganites(GordonandBreachScience,2000),chap.2,pp.53{86. [19] J.Mitchell,D.Argyriou,andJ.Jorgensen,StructuralReponsetoOrbital,Spin,andChargeOrderinginColossalMagnetoresistiveMaterials(GordonandBreachScience,2000),chap.6,pp.187{236. 144

PAGE 145

K.Terakura,I.Solovyev,andH.Sawada,Electronic,MagneticandStructuralPropertiesofPerovskiteManganites(GordonandBreachScience,2000),chap.4,pp.119{148. [21] C.Zener,PhysicalReview82,403(1951). [22] P.W.AndersonandH.Hasegawa,PhysicalReview100,675(1955). [23] D.DessauandZ.-X.Shen,DirectElectronicStructureMeasurementsoftheColossalMagnetoresistiveOxides(GordonandBreachScience,2000),chap.5,pp.149{186. [24] J.W.Freeland,K.E.Gray,L.Ozyuzer,P.Berghuis,E.Badica,J.Kavich,H.Zheng,andJ.F.Mitchell,NatureMaterials4,62(2004). [25] T.Dhakal,J.Tosado,andA.Biswas,Phys.Rev.B75,092404(2007). [26] S.Schramm,J.Homann,andC.Jooss,JournalofPhysics:CondensedMatter20,395231(6pp)(2008). [27] Y.TomiokaandY.Tokura,Metal-InsulatorPhenomenaRelevanttoCharge/OrbitalOrderinginPerovskite-TypeManganeseOxides(GordonandBreachScience,2000),chap.8,pp.281{306. [28] Y.Endoh,ReviewofSpinDynamicsandOrbitalOrdering(GordonandBreachScience,2000),chap.3,pp.87{118. [29] V.Podzorov,B.Kim,V.Kiryukhin,andM.Gershenson,Phys.Rev.B64,140406(2001). [30] V.Kiryukhin,B.Kim,V.Podzorov,S.Cheong,andT.K....,Phys.Rev.B63,024420(2000). [31] H.Lee,K.Kim,M.Kim,T.Noh,B.Kim,T.Koo,S.Cheong,Y.Wang,andX.Wei,Phys.Rev.B65,115118(2002). [32] A.Biswas,M.Rajeswari,R.Srivastava,andY.Li,Phys.Rev.B61,9665(2000). [33] [34] D.Gillaspie,J.Ma,H.-Y.Zhai,T.Ward,H.M.Christen,E.Plummer,andJ.Shen,JournalofAppliedPhysics99,08S901(2006). [35] Z.Wu,Z.Chen,X.Du,J.M.Logan,J.Sippel,M.Nikolou,K.Kamaras,J.R.Reynolds,D.B.Tanner,A.F.Hebard,etal.,Science305,1273(2004). [36] H.Hwang,S.Cheong,N.Ong,andB.Batlogg,Phys.Rev.Lett.77,2041(1996). [37] A.Gupta,G.Gong,G.Xiao,P.Duncombe,andP.Lecoeur,Phys.Rev.B54,R15629(1996). [38] N.Mathur,G.Burnell,S.Isaac,T.Jackson,andB.Teo,Nature86,6287(1997). 145

PAGE 146

J.Sun,W.Gallagher,P.Duncombe,andL.Krusin,Appl.Phys.Lett.69,3266(1996). [40] H.Zhai,J.Ma,D.Gillaspie,X.Zhang,andT.Ward,Phys.Rev.Lett.97,167201(2006). [41] Y.Yanagisawa,H.Tanaka,T.Kawai,andL.Pellegrino,Appl.Phys.Lett.89,253121(2006). [42] T.WuandJ.F.Mitchell,Phys.Rev.B74,214423(2006). [43] G.Singh-Bhalla,S.Selcuk,T.Dhakal,A.Biswas,andA.F.Hebard,PhysicalReviewLetters102,077205(2009). [44] L.GhivelderandF.Parisi,Phys.Rev.B71,184425(2005). [45] P.Sharma,S.Kim,T.Koo,S.Guha,andS.Cheong,Phys.Rev.B71,224416(2005). [46] M.Uehara,S.Mori,C.Chen,andS.Cheong,Nature399,560(1999). [47] Y.Tomioka,A.Asamitsu,H.Kuwahara,andY.Moritomo,Phys.Rev.B53,R1689(1996). [48] S.Kumar,C.Mohapatra,andP.Majumdar,Europhys.Lett.71,804(2005). [49] A.Sboychakov,A.Rakhmanov,K.Kugel',andM.Kagan,J.Exp.Theor.Phys.296,258(2002). [50] D.NiebieskikwiatandM.Salamon,Phys.Rev.B72,174422(2005). [51] D.Golosov,Phys.Rev.B71,014428(2005). [52] K.H.Ahn,T.Lookman,andB.A.R.,Nature428,401(2004). [53] D.Golosov,Phys.Rev.B67,064404(2003). [54] M.RzchowskiandR.Joynt,Europhys.Lett.67,287(2004). [55] N.MathurandP.Littlewood,SolidStateCommun.119,271(2001). [56] G.Milward,M.Calderon,andP.Littlewood,Nature433,607(2005). [57] C.H.Marrows,AdvancesinPhysics54,585(2005). [58] T.Arnal,A.V.Khvalkovskii,M.Bibes,B.Mercey,P.Lecoeur,andA.-M.Haghiri-Gosnet,Phys.Rev.B75,220409(2007). [59] R.P.Rairigh,G.Singh-Bhalla,S.Tongay,T.Dhakal,A.Biswas,andA.F.Hebard,NatPhys3,551(2007). 146

PAGE 147

W.Wu,C.Israel,N.Hur,S.Park,S.-W.Cheong,andA.D.Lozanne,Nat.Mater.5,881(2006). [61] Y.Xu,D.Ephron,andM.Beasley,Phys.Rev.B52,2843(1995). [62] E.Abrahams,P.Anderson,andD.Licciardello,Phys.Rev.Lett.42,673(1979). [63] J.G.Simmons,J.Appl.Phys.34,1793(1963). [64] W.Westerburg,F.Martin,S.Friedrich,andM.Maier,J.Appl.Phys.86,2173(1999). [65] C.Hofener,J.B.Philipp,J.Klein,L.Al,A.Marx,B.Buchner,andR.Gross,Europhys.Lett.50,681(2000). [66] J.Sacanell,A.Leyva,andP.Levy,J.Appl.Phys.98,113708(2005). [67] A.Asamitsu,Y.Tomioka,H.Kuwahara,andY.TOKURA,Nature388,50(1997). [68] Y.Zhao,Y.Wang,G.Zhang,B.Zhang,andX.Zhang,Appl.Phys.Lett.86,122502(2005). [69] G.Garbarino,C.Acha,P.Levy,T.Y.Koo,andS.-W.Cheong,Phys.Rev.B74,100401(2006). [70] C.Y.Yu,Y.L.Yu,H.Y.Sun,T.Xu,X.H.Li,W.Li,Z.S.Gao,andX.Y.Zhang,Mater.Lett.61,1859(2007). [71] D.Gillaspie,J.Ma,H.Zhai,T.Ward,andH.Christen,J.Appl.Phys.99,088901(2006). [72] N.Mathur,P.Littlewood,N.Todd,S.Isaac,B.Teo,D.Kang,E.Tarte,Z.Barber,J.Evetts,andM.Blamire,J.Appl.Phys.86,6287(1999). [73] M.Calderon,L.Brey,andF.Guinea,Phys.Rev.B60,6698(1999). [74] J.Sacanell,A.G.Leyva,andP.Levy,JournalofAppliedPhysics98,113708(2005). [75] G.Garbarino,C.Acha,P.Levy,T.Y.Koo,andS.-W.Cheong,PhysicalReviewB(CondensedMatterandMaterialsPhysics)74,100401(2006). [76] S.Dong,H.Zhu,andJ.-M.Liu,PhysicalReviewB(CondensedMatterandMaterialsPhysics)76,132409(2007). [77] Y.B.Nian,J.Strozier,N.J.Wu,X.Chen,andA.Ignatiev,PhysicalReviewLetters98,146403(2007). [78] A.Asamitsu,Y.Tomioka,H.Kuwahara,andY.Tokura,Nature388,50(1997). [79] W.Westhauser,S.Schramm,J.Homann,andC.Jooss,TheEuropeanPhysicalJournalB-CondensedMatterandComplexSystems53,323(2006). 147

PAGE 148

H.Sakai,K.Ito,R.Kumai,andY.Tokura,PhysicalReviewB(CondensedMatterandMaterialsPhysics)76,155112(2007). [81] N.Arakawa,Y.Otaka,andK.Shiiki,ThinSolidFilms505,67(2006). [82] C.W.Miller,Z.-P.Li,J.A.kerman,andI.K.Schuller,AppliedPhysicsLetters90,043513(2007). [83] M.Uehara,S.Mori,C.Chen,andS.Cheong,Nature399,560(1999). [84] L.Zhang,C.Israel,A.Biswas,R.Greene,andA.deLozanne,Science298,805(2002). [85] J.Burgy,A.Moreo,andE.Dagotto,Phys.Rev.Lett.92,097202(2004). [86] K.H.Ahn,T.Lookman,andA.R.Bishop,Nature428,401(2004). [87] L.GhivelderandF.Parisi,Phys.Rev.B71,184425(2005). [88] G.Milward,M.Calderon,andP.Littlewood,Nature433,607(2005). [89] S.Weber,Phys.Rev.Lett.96,157202(2006). [90] J.Hemberger,Nature434,364(2005). [91] P.Lunkenheimer,Phys.Rev.B66,052105(2002). [92] P.Lunkenheimer,R.Fichtl,J.Hemberger,V.Tsurkan,andLoidl,Phys.Rev.B72,060103(2005). [93] A.Jonscher,DielectricRelaxationinSolids(ChelseaDielectricsPressLimited,1983). [94] J.Sun,D.Abraham,R.Rao,andC.Eom,Appl.Phys.Lett.74,3017(1999). [95] A.Biswas,PhysicalReviewB63,184424/1(2001). [96] M.Petit,J.Appl.Phys.97,093512(2005). [97] A.Jonscher,Nature267,673(1977). [98] M.SalamonandM.Jaime,ReviewsofModernPhysics73,583(2001). [99] Y.Onose,Y.Taguchi,K.Ishizaka,andY.Tokura,PhysicalReviewB69,024504(2004). [100] H.Kempa,P.Esquinazi,andY.Kopelevich,PhysicalReviewB65,241101(2002). [101] G.Singh-Bhalla,X.Du,andA.Hebard,Appl.Phys.Lett.83,2417(2003). 148

PAGE 149

GuneetawasbornattheDelhiKentArmyHospitalinNewDelhi,IndiaonLohri,aNorthIndianholidaywhichfallsonJanuary13.BeinganocerintheIndianArmy,herfatherwasregularlypostedtodierentbasesthroughoutIndia.AsaresultshegrewuplivinginseveralcitieswithinIndiaincludingthecapitalNewDelhi,andseveralcitiesinareassuchastheHimalayanstateofJammu&Kashmir,inMaharashtraandalsoinherancestralstateofPunjab.Seekingabetterlife,whenshewas10shemovedwithherparentsandyoungersistertotheUnitedStateswheretheylivedrstinNewJersey,followedbrieybyCaliforniaandnallyOrlando,Floridawhereshenishedmiddleschoolandattendedhighschool.Theconstantchangeinscenery,cultureandlanguagewhilegrowingupevokedadeepsenseofcuriosityinGuneetaabouteverythingfromthevisualarts,philosophyandthephysicalworldtohistoryandtheevolutionoflanguages.Guneetahashadaninterestinthenaturalworldforasfarbackasshecanremember.Sherecallswonderingendlesslyabouttheinnerworkingsofatomsafterlearninginrstgradethattheywerethebuildingblocksofallthings.Aroundthesametime,catchingaglimpseofHaley'scometandwatchinganIndiansatelliteshootupintotheskysolidiedherfuturedream.ShediscoveredtheHebardlabwhileturninginalabreporttoherundergraduateAdvancedLabinstructor,Dr.ArthurF.Hebard,attheUniversityofFloridainGainesville.Afteronebriefglimpseofthepeculiarmachineryanditemsinhislab,shewasovercomebycuriosityandhooked.ShethusbeganworkingintheHebardlabasanundergraduatestudentandhereortsresultedintheirrstpublicationtogether.ShecontinuedtoworkforDr.HebardasagraduatestudentandhadtheopportunityofcloselycollaboratingwithDr.AmlanBiswasinworkingonherthesistopicofsizeeectsinmanganites.ShehasalsohadtheopportunityofconductingresearchinJapanincollaborationwithDr.HaroldY.Hwangonatopicofherchoosing,fundedbytheNSFEastAsiaandPacicSummerInstitute(EAPSI)duringthesummerof2008. 149

PAGE 150

150