<%BANNER%>

Fair Packet Scheduling and Bandwidth Management in Wireless Networks

Permanent Link: http://ufdc.ufl.edu/UFE0022841/00001

Material Information

Title: Fair Packet Scheduling and Bandwidth Management in Wireless Networks
Physical Description: 1 online resource (108 p.)
Language: english
Creator: Jian, Ying
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: assurance, csma, differentiation, fairness, mac, rate, service, wireless
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Our study focused on fair packet scheduling and bandwidth management in CSMA/CA based wireless networks. We address the fairness problem for MAC-layer links and study end-to-end service differentiation and rate assurance for multihop flows. Fine-level rate control, particularly meeting rate requirements and differentiating various types of end-to-end traffic, remains an open problem for multihop wireless networks. Traditionally, rate assurance in wired networks is achieved through resource reservation and admission control, which can be efficiently implemented since the bandwidth capacity of each communication link is known and the sender of a link has the information of all flows that compete for the bandwidth of the link. In a wireless network, however, the capacity of each wireless link can change unpredictably over time due to contention from nearby links and dynamic channel conditions. An end-to-end flow consumes available bandwidth not only at links on its route but also at all nearby contending links, which makes resource reservation extremely complicated. We propose a new adaptive rate control function based on two novel techniques, called proportional packet scheduling (PPS) and dynamic weight adaptation with floor and ceiling (DWA). PPS distributes channel bandwidth among MAC (one-hop) flows in proportion to their weights. DWA adapts flows' weight according to their rate requirements and priorities. End-to-end traffic is classified into two categories: best-effort flows and QoS flows with rate requirements. The QoS flows are assigned with different priorities. PPS and DWA together achieve three important objectives without resource reservation and admission control. First, when bandwidth contention arises, the rate requirements of the QoS flows are satisfied in the order of priorities. Second, beyond the rate requirements, the rest bandwidth is allocated to the flows in a differentiated manner, taking both bandwidth demand and priority into consideration. Third, no flow is starved and all bandwidth is effectively utilized. Another important problem is on how to achieve fairness for the MAC-layer links in multiple contending WLANs or multihop networks, where the carrier sensing range and the interference range are much larger than the transmission range. We demonstrate that CSMA/CA networks, including IEEE 802.11 networks, exhibit severe fairness problem in many scenarios. Most existing solutions require nodes to overhear transmissions made by contending nodes and, based on the overheard information, adjust local rates to achieve fairness among all contending links. Their underlying assumption is that transmissions made by contending nodes can be overheard. However, this assumption holds only when the transmission range is equal to the carrier sensing range, which is not true in most real networks. As our study reveals, the overhearing-based solutions, as well as several non-overhearing AIMD solutions, cannot achieve MAC-layer fairness in various settings. We propose a new rate control protocol, called PISD (Proportional Increase Synchronized multiplicative Decrease). Without relying on overhearing, it provides fairness in CSMA/CA networks, particularly IEEE 802.11 networks, by using only local information and performing localized operations. It combines several novel rate control mechanisms, including synchronized multiplicative decrease, proportional increase, and background transmission. PISD works precisely for scenarios where all MAC flows mutually contend but has limitations when applied to networks consisting multiple contention groups. We develop PISD further and propose two new schemes to overcome the limitations. We prove that flows' rates attained under the two new schemes approximate proportional fairness.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Ying Jian.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Chen, Shigang.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022841:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022841/00001

Material Information

Title: Fair Packet Scheduling and Bandwidth Management in Wireless Networks
Physical Description: 1 online resource (108 p.)
Language: english
Creator: Jian, Ying
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: assurance, csma, differentiation, fairness, mac, rate, service, wireless
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Our study focused on fair packet scheduling and bandwidth management in CSMA/CA based wireless networks. We address the fairness problem for MAC-layer links and study end-to-end service differentiation and rate assurance for multihop flows. Fine-level rate control, particularly meeting rate requirements and differentiating various types of end-to-end traffic, remains an open problem for multihop wireless networks. Traditionally, rate assurance in wired networks is achieved through resource reservation and admission control, which can be efficiently implemented since the bandwidth capacity of each communication link is known and the sender of a link has the information of all flows that compete for the bandwidth of the link. In a wireless network, however, the capacity of each wireless link can change unpredictably over time due to contention from nearby links and dynamic channel conditions. An end-to-end flow consumes available bandwidth not only at links on its route but also at all nearby contending links, which makes resource reservation extremely complicated. We propose a new adaptive rate control function based on two novel techniques, called proportional packet scheduling (PPS) and dynamic weight adaptation with floor and ceiling (DWA). PPS distributes channel bandwidth among MAC (one-hop) flows in proportion to their weights. DWA adapts flows' weight according to their rate requirements and priorities. End-to-end traffic is classified into two categories: best-effort flows and QoS flows with rate requirements. The QoS flows are assigned with different priorities. PPS and DWA together achieve three important objectives without resource reservation and admission control. First, when bandwidth contention arises, the rate requirements of the QoS flows are satisfied in the order of priorities. Second, beyond the rate requirements, the rest bandwidth is allocated to the flows in a differentiated manner, taking both bandwidth demand and priority into consideration. Third, no flow is starved and all bandwidth is effectively utilized. Another important problem is on how to achieve fairness for the MAC-layer links in multiple contending WLANs or multihop networks, where the carrier sensing range and the interference range are much larger than the transmission range. We demonstrate that CSMA/CA networks, including IEEE 802.11 networks, exhibit severe fairness problem in many scenarios. Most existing solutions require nodes to overhear transmissions made by contending nodes and, based on the overheard information, adjust local rates to achieve fairness among all contending links. Their underlying assumption is that transmissions made by contending nodes can be overheard. However, this assumption holds only when the transmission range is equal to the carrier sensing range, which is not true in most real networks. As our study reveals, the overhearing-based solutions, as well as several non-overhearing AIMD solutions, cannot achieve MAC-layer fairness in various settings. We propose a new rate control protocol, called PISD (Proportional Increase Synchronized multiplicative Decrease). Without relying on overhearing, it provides fairness in CSMA/CA networks, particularly IEEE 802.11 networks, by using only local information and performing localized operations. It combines several novel rate control mechanisms, including synchronized multiplicative decrease, proportional increase, and background transmission. PISD works precisely for scenarios where all MAC flows mutually contend but has limitations when applied to networks consisting multiple contention groups. We develop PISD further and propose two new schemes to overcome the limitations. We prove that flows' rates attained under the two new schemes approximate proportional fairness.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Ying Jian.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Chen, Shigang.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022841:00001


This item has the following downloads:


Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

Iwouldliketothankmyadvisor,Prof.ShigangChen,forhisconstantguidance,support,andencouragement.Iamprivilegedtohavesuchawonderfuladvisor,whoisatalltimesenthusiastic,optimistic,patient,helpful,andencouraging.Hegavemeextensiveadviceandinsightduringthecourseofmyresearchwork.MyspecialthanksgotoProf.SartajSahni,Prof.RandyChow,Prof.YeXia,Prof.JoseFortes,andProf.TanWong,fortheirinstructivecommentsandsupportduringmywork.IwouldalsoliketothankallmycolleaguesinProf.Chen'sresearchgroup,includingZhanZhang,LiangZhang,MyungKeunYoon,MingZhangandTaoLi,forprovidingahighlevelofresearchsupport.IwanttoexpressmydeepestlovetomydarlingwifeQianqian,myparents,andmybrother.Theirlove,understanding,andencouragementhavealwaysbeenthestrongestsupporttome. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 10 CHAPTER 1INTRODUCTION .................................. 12 1.1ServiceDierentiationandRateAssuranceBasedonWeightedFairPacketScheduling .................................... 12 1.2FairBandwidthAllocationinCSMA/CANetworks ............. 16 2PROPORTIONALPACKETSCHEDULINGAMONGMACFLOWS ..... 21 2.1RelatedWork .................................. 22 2.2ContentionamongMACFlows ........................ 24 2.3ProportionalPacketScheduling ........................ 25 2.4Properties .................................... 28 2.5EnhancingPPSbyRequest-for-RTSPackets ................. 31 2.6StateoftheArtandOurContribution .................... 32 2.7PerformanceEvaluation ............................ 33 2.8Summary .................................... 35 3END-TO-ENDSERVICEDIFFERENTIATIONANDRATEASSURANCE .. 38 3.1RelatedWork .................................. 38 3.2Objectives .................................... 39 3.3Challenge .................................... 42 3.4DesignOverview ................................ 43 3.5DWA:DynamicWeightAdaptationwithFloorandCeiling ......... 45 3.6Properties .................................... 46 3.7AvoidingPacketDrops ............................. 48 3.8FlowDynamicsandChannelDynamics .................... 49 3.9Intra-owContentionandInter-owContention ............... 50 3.10PerformanceEvaluation ............................ 50 3.11Summary .................................... 53 4FAIRBANDWIDTHALLOCATIONINCSMA/CANETWORKS ....... 56 4.1RelatedWork .................................. 57 4.2NetworkModel ................................. 58 4.3FairnessProblemRemainsOpeninCSMA/CANetworks .......... 59 5

PAGE 6

............................ 59 4.3.2LimitationofOverhearing-BasedSolutions .............. 61 4.3.3AIMDDoesNotWorkEither ..................... 62 4.4ProportionalIncreaseSynchronizedmultiplicativeDecrease ......... 64 4.4.1SynchronizedMultiplicativeDecrease ................. 64 4.4.2AISD:AdditiveIncreaseSynchronizedMultiplicativeDecrease ... 65 4.4.3PISD:ProportionalIncreaseSynchronizedMultiplicativeDecrease 68 4.4.4PISDwithBackgroundTransmission ................. 68 4.4.5Discussion ................................ 70 4.5Analysis ..................................... 71 4.5.1WeightedFairnessandConvergenceTime ............... 71 4.5.2ChannelCoverage ............................ 74 4.5.3ConvergenceAccuracy ......................... 74 4.6AdditionalSimulations ............................. 75 4.7LimitationofPISD ............................... 78 4.8ProportionalFairScheduling .......................... 79 4.8.1ReducingChannelJammingStrength ................. 80 4.8.2ProblemofPISD-RS .......................... 82 4.8.3PFS(ProportionalFairScheduling) .................. 83 4.9AnalysisonProportionalFairness ....................... 86 4.10SimulationsonProportionalFairness ..................... 89 4.11Summary .................................... 91 5CONCLUSION .................................... 103 REFERENCES ....................................... 104 BIOGRAPHICALSKETCH ................................ 108 6

PAGE 7

Table page 2-1Flowrates(inpacketspersecond)onthetwo-owtopology ........... 36 4-1Flowratesachievedbydierentprotocols. ..................... 92 4-2Underdierentweightassignments,owratesarealwaysproportionaltoowweights. ........................................ 92 4-3FlowratesachievedbyPISD. ............................ 92 4-4FlowratesachievedbyPISD-RS,comparedwithproportionalfairnessandbaseline802.11DCF. ...................................... 93 4-5FlowratesachievedbyPFS. ............................. 93 7

PAGE 8

Figure page 2-1Fivetypesofcontendingowsoffi;j. ........................ 36 2-2Packetlabelpriority ................................. 36 2-3Request-for-RTShelpspreemption ......................... 36 2-4Two-owtopology .................................. 37 2-5Five-owtopology .................................. 37 2-6ProtocolofAdjConWin ............................... 37 2-7ProportionalPacketScheduling ........................... 37 2-8ProportionalPacketSchedulingsupportsdynamicweight ............. 37 3-1Networktopology ................................... 54 3-2SettingA,IEEE802.11DCF ............................ 54 3-3SettingA,DWA ................................... 54 3-4SettingA,DWA,doublingthenumberofows .................. 54 3-5SettingB,DWA ................................... 54 3-6SettingB,EDCA ................................... 54 3-7SettingC,DWA ................................... 55 3-8SettingD,DWA ................................... 55 4-1Networkoftwoows,(a;b)and(c;d). ....................... 94 4-2Ratesoftwoowswithrespecttothedistancebetweenbandc.Thedistancefromatobandthatfromctodareboth150m. .................. 94 4-3Manycontendingnodescannotbeoverheardbyi. ................. 94 4-4Ingeneral,Huang-Bensaouprotocoldoesnotworkifanyoneofthecontendinglinkscannotbeoverheard. .............................. 95 4-5AdditiveIncreaseMultiplicativeDecrease:multiplicativedecreaseoccursupontransmissionfailure. ................................. 95 4-6AdditiveIncreaseMultiplicativeDecrease:multiplicativedecreaseoccurswhenbueroccupancypassesacertainthreshold. .................... 95 4-7Idlesense:Thesamecontentionwindowsizedoesnotensurefairness. ...... 95 8

PAGE 9

.......... 96 4-9UnsynchronizedmultiplicativedecreaseinCSMA/CAcannotachievefairness. 96 4-10SynchronizedmultiplicativedecreaseequalizestheowratesforthenetworkinFig. 4-1 ........................................ 96 4-11RatesoftwocontendingowsunderAISDwithrespecttotime. ......... 96 4-12Givenwa;b=3andwc;d=1,underPISD,therateofow(a;b)isaboutthreetimesthatofow(c;d). ............................... 97 4-13RatesoftwocontendingowsunderPISDwithrespecttotime.wa;b=3,wc;d=1,andthedistancefrombtocis100m. ....................... 97 4-14Backgroundtransmissionwillutilizesomeunusedchannelbandwidthforpackettransmission. ..................................... 97 4-15Networktopology ................................... 98 4-16(a):FlowratesunderIEEE802.11DCF;(b):FlowratesunderHuang-Bensaouprotocol. ........................................ 98 4-17ProportionalIncreaseSynchronizedMultiplicativeDecreaseachievesfairnessamongallows. .................................... 99 4-18Flowratesareslightlyimprovedwithbackgroundtransmission. ......... 99 4-19Increasingthevalueofreducesbothconvergencetimeandchannelcoverage. 99 4-20Increasingthevalueofreducesbothconvergencetimeandconvergenceaccuracy. 99 4-21Hostsh2andh6arechangedtoservers. ...................... 99 4-22(a)Whentheserverseachhaveweight3andtheclientseachhaveweight1,therateofaserveristhreetimesthatofaclient;(b)Downwardspikesarereducedwhenisdecreased. ................................. 100 4-23FourWLANsnetworktopology ........................... 100 4-24Adhocnetworktopology ............................... 100 4-25Multihopnetworkwithsixows. .......................... 101 4-26Multihopnetworkwithveows. .......................... 101 4-27Multihopwirelessnetworkwith23MACows. .................. 101 4-28Flowratesattainedunderdierentapproaches ................... 102 9

PAGE 10

OurstudyfocusedonfairpacketschedulingandbandwidthmanagementinCSMA/CAbasedwirelessnetworks.WeaddressthefairnessproblemforMAC-layerlinksandstudyend-to-endservicedierentiationandrateassuranceformultihopows. Fine-levelratecontrol,particularlymeetingraterequirementsanddierentiatingvarioustypesofend-to-endtrac,remainsanopenproblemformultihopwirelessnetworks.Traditionally,rateassuranceinwirednetworksisachievedthroughresourcereservationandadmissioncontrol,whichcanbeecientlyimplementedsincethebandwidthcapacityofeachcommunicationlinkisknownandthesenderofalinkhastheinformationofallowsthatcompeteforthebandwidthofthelink.Inawirelessnetwork,however,thecapacityofeachwirelesslinkcanchangeunpredictablyovertimeduetocontentionfromnearbylinksanddynamicchannelconditions.Anend-to-endowconsumesavailablebandwidthnotonlyatlinksonitsroutebutalsoatallnearbycontendinglinks,whichmakesresourcereservationextremelycomplicated. Weproposeanewadaptiveratecontrolfunctionbasedontwonoveltechniques,calledproportionalpacketscheduling(PPS)anddynamicweightadaptationwithoorandceiling(DWA).PPSdistributeschannelbandwidthamongMAC(one-hop)owsinproportiontotheirweights.DWAadaptsows'weightaccordingtotheirraterequirementsandpriorities.End-to-endtracisclassiedintotwocategories:best-eortowsandQoSowswithraterequirements.TheQoSowsareassignedwithdierent 10

PAGE 11

AnotherimportantproblemisonhowtoachievefairnessfortheMAC-layerlinksinmultiplecontendingWLANsormultihopnetworks,wherethecarriersensingrangeandtheinterferencerangearemuchlargerthanthetransmissionrange.WedemonstratethatCSMA/CAnetworks,includingIEEE802.11networks,exhibitseverefairnessprobleminmanyscenarios.Mostexistingsolutionsrequirenodestooverheartransmissionsmadebycontendingnodesand,basedontheoverheardinformation,adjustlocalratestoachievefairnessamongallcontendinglinks.Theirunderlyingassumptionisthattransmissionsmadebycontendingnodescanbeoverheard.However,thisassumptionholdsonlywhenthetransmissionrangeisequaltothecarriersensingrange,whichisnottrueinmostrealnetworks.Asourstudyreveals,theoverhearing-basedsolutions,aswellasseveralnon-overhearingAIMDsolutions,cannotachieveMAC-layerfairnessinvarioussettings. Weproposeanewratecontrolprotocol,calledPISD(ProportionalIncreaseSynchronizedmultiplicativeDecrease).Withoutrelyingonoverhearing,itprovidesfairnessinCSMA/CAnetworks,particularlyIEEE802.11networks,byusingonlylocalinformationandperforminglocalizedoperations.Itcombinesseveralnovelratecontrolmechanisms,includingsynchronizedmultiplicativedecrease,proportionalincrease,andbackgroundtransmission.PISDworkspreciselyforscenarioswhereallMACowsmutuallycontendbuthaslimitationswhenappliedtonetworksconsistingmultiplecontentiongroups.WedevelopPISDfurtherandproposetwonewschemestoovercomethelimitations.Weprovethatows'ratesattainedunderthetwonewschemesapproximateproportionalfairness. 11

PAGE 12

Wirelesstechnologieshavecomealongway,fromtheradiotechnologiesthatallowdatabitstobeexchangedbetweentwophysically-disconnecteddevices,tothemultipleaccesstechnologiesthatallowagroupofdevicestoshareacommonwirelesscommunicationchannel,andtotheroutingtechnologiesthatallowout-of-rangedevicestocommunicateviamultihopwirelesspaths.FollowingtheenormoussuccessofWLAN,multihopwirelessnetworks,includingmeshnetworks,ad-hocnetworks,sensornetworks,areexpectedtoleadinthenextwaveofdeployment.Toimprovetheirapplicabilityinpractice,notonlymustthesenetworksprovidearobustandecientcommunicationservice,butalsotheyshouldprovideexibletoolsfortracengineeringinordertosupportdiverseuserapplications. 12

PAGE 13

Resourcereservationinmultihopwirelessnetworksalsohasproblems.Anend-to-endowconsumesbandwidthnotonlyatlinksonitsroutebutalsoatallnearbycontendinglinks,whichmakesresourcereservationextremelycomplicated.Withspatialchannelreuse,thelocalchannelperceivedbyeachwirelesslinkisdierentbecauseeachlinkhasadierentsetofcontendinglinks.Twocontendinglinkswillconsumebandwidthineachother'sperceivedchannel.Consideranewowwhoseraterequirementisrandroutingpathisa!b!c!d.Inordertosupporttheow,thechannelwherelink(a;b)residesshouldhave3rresidual(unused)bandwidthbecause(a;b),(b;c)and(c;d)mutuallycontendandtheywilleachconsumerbandwidthinthechannelwhencarryingtheow(assumingIEEE802.11DCF).Similarly,thechannelswhereotherlinksoftheroutingpathresidealsoneedmorethanrresidualbandwidthfortheow.Evenlinksoutsideofthepathneedresidualbandwidthtosupporttheow.Consideranearbylink(x;y)thatcontendswith(a;b).Supposeitschannelisalreadysaturatedduetoheavytraconsomeothercontendinglinks.Nowifweaddthenewow,astherateon(a;b)isincreased,therateon(x;y)willbedrivendown,causingtheviolationofthepreviousresourcereservationmadeon(x;y).Determininghowmuchbandwidth(x;y)needsinordertosupportthenewowisnotaneasytask.Itdependsonhowmuchchannelspatialreusecanbedonebetween(a;b)andotherlinkscontendingwith(x;y).Therefore,resourcereservationrequirescoordinationamonglinksontherouteandallotherlinksthatcontendwiththem. 13

PAGE 14

1 { 4 ].Wheneverylinkseesthesamechannelwiththesamesetofcontendinglinks,manyoftheaboveproblemsareeitheravoidedormuchsimplied.Adierentrestrictioncanbeassumingeachnodetransmitsatadierentfrequency[ 5 ].Theseconddirectionistoworkoncoarse-levelservicedierentiationthatdoesnotproviderateassurance[ 6 { 9 ].Forexample,dierentbackopolicies[ 7 ]ordierentcontentionwindowsizes[ 6 ]areassignedtopacketsofdierentclassestoprovidequalitativeschedulingpreferences.IEEE802.11e[ 10 ]belongstothiscategorywhenitisappliedinamultihopwirelessnetwork.Thethirddirectionistodesignheuristicstoaddressthehardproblemsinresourcereservationandadmissioncontrol.Mostworkfocusesonestablishingaheuristicapproachforeachnodetoestimateitschannel'sresidualbandwidth,whichwillbeusedtoguideadmissioncontrol.Thebandwidthestimationismadebasedonchannelidletime[ 6 ; 11 ],averagepackettransmissiondelay[ 12 ; 8 ; 2 ],orchannel-accessprobabilisticmodels[ 13 { 16 ].Asdetailedanalysisin[ 16 ]pointsout,noneofthemconsiderstheimpactofhiddenterminalsinmultihopwirelessnetworks,andeachwillperformpoorlyundercertainscenarios.Moreover,theresidualbandwidthmeasuredmaycontinuouslychangeduetodynamicchannelconditions,andestimatingbandwidthdoesnotsolvethecomplicatedresourcereservationproblemdiscussedpreviously. Insteadoftakingahead-onapproachtoaddressthedicultproblemsofresourcereservationandadmissioncontrol,wewanttotakeastepbackandaskwhetherresourcereservationandadmissioncontrol,legacyfromwirednetworks,aresuitableformultihopwirelessnetworks.Wewanttondanalternativesolutionforwirelessnetworksthatcannotonlysolvetheproblemsbutalsohaveamuchsimplerdesign.Inthisstudy,weproposetoreplaceadmissioncontrolandresourcereservationwithasimpleyeteectiveadaptiveratecontrolfunctionsuitedforhandlingnetwork/tracdynamics.Itautomaticallyadaptsthebandwidthdistributiontosatisfytheraterequirementsofas 14

PAGE 15

Weclassifyend-to-endtracintotwocategories:best-eortowsandQoSowswithminimumraterequirements.TheQoSowsareassignedtoserviceclassesofdierentpriorities.Wehavethefollowingthreeobjectivesforratecontrol.TherateassuranceobjectiverequiresQoSowstobesupportedintheorderofpriorities.Ahigher-priorityowcanpreemptthebandwidthofalower-priorityow.Followingthepriorityorder,thenetworkshouldsupportasmanyQoSowsaspossible.Beyondmeetingtheminimumraterequirements,thebandwidthdierentiationobjectiverequirestheremainingbandwidthtobeallocatedtoend-to-endowsbasedontheirprioritiesaswellasbandwidthdemand.Aowwithahigherminimumraterequirementandahigherpriorityshouldreceivealargeramountofextrabandwidth.Theno-starvation/maximum-utilizationobjectiverequiresthatnoowisstarvedandallnetworkbandwidthisutilizedwhenpossible. Toachievethethreeobjectives,wedesignouradaptiveratecontrolfunctionbasedontwonoveltechniques[ 17 ].First,weenhanceCSMA/CAprotocolsforweightedbandwidthallocationthroughanewtechnique,calledproportionalpacketscheduling(PPS),whichdistributeschannelbandwidthamongMAC(one-hop)owsinproportiontotheirweights.Comparingwiththeexistingschemes,PPSrealizesweightedbandwidthallocationinanegranularityandachievesbetterthroughputduetoreducedradiocollision.ItisalsotherstfullydistributedsolutionthatachievesprovableweightedmaxminfairnessinCSMA/CAnetworksofdynamicchannelconditions,withaboundederrorthatcanbemadearbitrarilysmall. Second,workingontopofPPS,anewtechniquecalleddynamicweightadaptationwithoorandceiling(DWA)isproposed,whichallowseachMACowtoindependently 15

PAGE 16

Whenwirelesshostssharethesamecommunicationchannel,theyshouldbegivenafairchanceofaccessingthewirelessmedium.FairnessisoneofthecoreproblemsthatanyMACprotocolmustaddress.Itpreventsthesituationthatsomehostsobtainmostofthechannel'sbandwidthwhileothersstarve.Amoregeneralproblemisthatofweightedfairness,wherethechannel'sbandwidthobtainedbyahostisproportionaltoitsweight,whichisassignedbytheuserbasedonapplicationrequirements.Forexample,whenawebserverandaclienthostsharethesamelocalchannel(e.g.inaWLAN),theservermaybegivenahigherweightbecauseitmayhavetouploadcontenttomultipleusersontheInternetsimultaneously. RandombackointheIEEE802.11DCFachievesfairnessinaWLANwhereallhostsaredownloadingcontentfromtheInternetviathesameaccesspoint.However,asobservedinourstudy,itcannotachievefairness(letaloneweightedfairness)inmanyotherscenarios.Forexample,whenaserverthatuploadscontenttotheInternetsharestheaccesspointofaWLANwithaclienthostthatdownloads,theclientmayobtainmostofthechannel'sbandwidthwhiletheserverisslowedtocrawl.Whentheaccesspointsat 16

PAGE 17

ThefairnessprobleminIEEE802.11networksismostlyduetothefundamentallimitationofCSMA/CA,whichgivespreferenceinmediaaccesstosomelinksoverothers,dependingontheirspatiallocations.Asthisproblemiswellrecognized,manyfairnesssolutionshavebeenproposedinthepastdecade[ 18 { 25 ].Theyfallintwocategories:overhearing-basedsolutionsandnon-overhearingsolutions. Theoverhearing-basedsolutionsrequireeachnodetomonitortheactivityofallcontendingnodesandcollecttheirlinks'information(suchasrate,schedulingtag,orbuerstatus).Basedonthecollectedinformation,anodedecidesitsownmediacontentionpolicy:i)increase/decreaseminimumcontentionwindowifthelocalrateisabove/belowtheaveragerateofallcontendinglinks[ 18 ; 19 ; 22 ],ii)serializetransmissionsamongcontendinglinksbasedontheirschedulingtags[ 20 ; 21 ],oriii)emulateTDMAbycomputingacontention-freeslottedscheduleamongthelinks[ 23 ].Thekeyquestionishowtocollectinformationforthecontendinglinks,whichmaybemultiplehopsaway.Onenaiveapproachisforeachnodetooodtheinformationdescribingitsadjacentlinkstoallnodeswithinacertainnumberofhops.Thisapproachisnotonlycostlybutalsoawedbecause,asisobservedin[ 23 ; 16 ],hopcountisnotareliablemeanstoidentify 17

PAGE 18

Mostnon-overhearingsolutionsusetheclassicalAIMD(AdditiveIncreaseMultiplicativeDecrease)forratecontrol.Ononehand,anodecannotoverheartheexactinformationintransmissionsmadeoncontendinglinkswhoseradiosignalisstrongenoughtocauseinterferencebuttooweaktodecode.Ontheotherhand,withoutoverhearing,thenodecanstillsensetheaggregateimpactofinterferencefromthoselinksbymonitoringhowbusythechannelis,howfrequentlyitsowntransmissionsfail[ 24 ; 26 ],orhowfastitslocalbuerislledup.Basedonsuchinformation,emulatingthebehaviorofTCPinsomesense,eachnodemaysetathresholdtodecidewhenthechanneliscongestedsuchthatmultiplicativedecreaseshouldbeperformed.Thisdirectionlooksreasonable.However,oursimulationsinns-2showthatAIMDfailstoachievefairness,too,notbecausetherationalebehindAIMDisawed,butbecausetheinteractionbetweenAIMDandCSMA/CAneutralizestheeectivenessofAIMD.AIMDmayalsobeappliedtothecontentionwindowbasedonthenumberofidleslotsbetweentwotransmissions[ 25 ; 27 ](whichcanbemeasuredthroughcarriersenseinsteadofoverhearing).Wewillshowlaterthatthisapproachalsohaslimitations. Weproposeanewratecontrolprotocol,PISD(ProportionalIncreaseSynchronizedmultiplicativeDecrease)[ 28 ],thatprovidesfairnessinCSMA/CAnetworks,particularlyinIEEE802.11networks.WithinthedesignofPISD,wemakethreecontributions.First,ourstudyrevealsthefundamentalreasonsexactlywhytheexistingfairnesssolutions,aswellasAIMD,donotworkunderrealisticcontentionconditions.Particularly,forAIMD, 18

PAGE 19

WealsoenhancePISDfurther.PISDworkspreciselyforscenarioswhereallMACowsmutuallycontend,butwhenitisappliedtoanetworkconsistingofmultiplecontentiongroups,thenetwork'sthroughputcanbedegraded.WedevelopPISDfurtherandproposetwonewschemes,PISD-RSandPFS,toovercomethelimitation.PISD-RSisasimplesolution,whilePFSisabetteryetmoresophisticatedsolution.BothofthemimprovePISDbyrevisingthewaytheyjamthewirelesschannel,wherechanneljammingisthekeytechniquethatPISDexploitstoachievesynchronizedmultiplicativedecrease.ThetwonewproposedschemesareabletoprovidefairnessinCSMA/CAnetworkswithmultiplecontentiongroups.Weconductboththeoreticalanalysisandsimulationstostudytheireectiveness.Byusingconvexoptimizationtheory,weprovethatows'ratesachievedbyPFS(andPISD-RS)approximateproportionalfairness. Therestofthisstudyisorganizedasfollows.Chapter 2 proposesPPS,thetechniqueforweightedbandwidthallocationamongMACowsinmultihopwirelessnetworks.Chapter 3 proposesDWA,whichworksontopofPPSandachievesend-to-endservicedierentiationandowrateassurance.Chapter 4 proposesPISDanditsenhanced 19

PAGE 20

5 concludesourstudy. 20

PAGE 21

Inthischapter,wepresentanewMAC-layerschedulingtechniquecalledproportionalpacketscheduling(PPS)thatachievesweightedbandwidthallocationamongsingle-hopMAC-layerowsinamultihopwirelessnetwork.WedesignthistechniquetoserveasabasisfortheimplementationofDWA,anupperlayerQoSprotocolthatwillbeintroducedinChapter 3 DWAinChapter 3 needstoworkontopofaMAC-layerprotocolthatsupportsweightedbandwidthallocation,andtheowweightsshouldbeabletobedynamicallychanged.Withaddedcomplexity,someMACprotocolsinthecurrentliteraturecanpotentiallybemodiedtoserveforthispurpose.Protocols[ 29 ; 18 ; 19 ; 21 ]proposedtoachievefairnessamongcontendingMACowsmaybeenhancedtosupportweightedbandwidthallocation,butinsuchprotocolsknowledgeonlocalnetworktopologyoranadditionalfairsharecomputationphaseisneeded,whichmayleadtodicultiesonachievingdynamicweightchange.TheoverlayMAC(OML)[ 23 ]andtheRegulatedContentionMAC(RCMAC)[ 4 ]candirectlysupportweightedbandwidthallocation.However,RCMACwasdesignedtoworkundersingle-hopcontentionsandOMLcannotbeeasilymodiedtosupportfastweightadjustment.Inaddition,mostoftheseworksdonotprovideweightedbandwidthallocationinaverynegranularity. PPS,whichisintroducedinthischapter,achievesweightedbandwidthallocationinanegranularityandisparticularlysuitablefordynamicweightadaptation.Allowingchannelcapacitytoevolvespatiallyandtemporally,thisistherstfullydistributedsolutionthatachievesprovableweightedmaxminfairnessinCSMA/CAnetworkswithaboundederrorthatcanbemadearbitrarilysmall.Webelieveitisastrongresult.Themax-minfairnessachievedin[ 30 ]usesamulti-channelcontentionmodelthatisdierentfromtheCSMA/CAmodelinourstudy.Theworkin[ 19 ]requiresthecomputationofallcontentioncliques(whichisdiculttoimplementdistributedlyandmustberedone 21

PAGE 22

Therestofthischapterisorganizedasfollows.Section 2.1 discussestherelatedwork.Section 2.2 studiesthevetypesofcontentionsinthenetwork.Section 2.3 describesPPSindetails.Sections 2.4 analyzesthepropertiesofPPS.Sectoin 2.5 introducesRRTS,whichisanenhancementtoPPS.Section 2.6 pointsoutthestateoftheartandourcontribution.Section 2.7 evaluatestheperformanceofPPSthroughsimulations.Section 2.8 summarizesthechapter. 29 ]studiedtheproblemoffairdistributionofbandwidthandmaximizationofresourceutilization.Theyrstassureeachowinanetworkwithaminimumchannelshare,thenmaximizeaggregatechannelutilizationbyspatialchannelreuse.Thedistributedimplementationofthisalgorithmneedstopologyinformationtobepropagatedalongaconict-freespanningtree.Intheirfollow-upwork[ 31 ; 21 ],SFQ(Start-timeFairQueueing)isappliedtomultihopwirelessnetworksinadistributedway.Intheapproach,servicetags(representingtransmissiondeadlines)arepiggybackedinpackets,andeachnodemaintainsthestatusofallitscontendingows.Locally,theowwiththeminimumservicetagisscheduledrst.Inaddition,spatialchannelreuseisexploitedthroughsimultaneoustransmissions.Thisapproachneedseachnodetomaintainthestatusofallitscontendingows,andthewayitdealswiththehiddenterminalproblemisonlyheuristic,whichcanonlyalleviatesbutnotsolvetheproblem.In[ 18 ; 19 ; 32 ],toachievefairbandwidthdistributionamongcontendingwirelesslinksinamultihop 22

PAGE 23

33 ],Liexploitedasimilarapproachtoensureaconservative,smallfairshareofbandwidthforeachend-to-endow.In[ 34 ],Nandagopaletal.proposedageneralanalyticalfairnessmodelandaMACprotocoltoapproximateproportionalfairness,whichadjuststhecontentionwindowsizebasedontheoccurrenceofretransmissions.In[ 20 ],Vaidyaetal.achievedfairnessinawirelessLANbyadjustingthecontentionwindowusingafairqueueingalgorithm.In[ 30 ],TassiulasandSarkaraddressedthemax-minfairnesswithamulti-channelcontentionmodelthatisdierentfromtheCSMA/CAmodelusedinourstudy. Manyalgorithmsdescribedaboverequireadditionalproceduresthatcalculateandexchangethefairsharesofthewirelesslinks,orrequirethemaintenanceofinformationaboutlocalnetworktopologyandowstatus.Theserequirementsdiminishtheexibilityofthealgorithms.Inaddition,noneoftheexistingalgorithmpromisestoprovidefairnessinaverynegranularity,whichisessentiallycausedbythehiddenterminalproblem.Inthisstudy,basedonathoroughstudyonalldierenttypesofcontentions,wedesignourweightedbandwidthallocationprotocolthatdoesnothavetheabovedefects,anditisabletoprovideafoundationforimplementingservicedierentiationandrateassuranceintheupperlayer.Inourprotocol,aspecialcontrolpacketcalledRRTS(Request-for-RTS)isusedtohelpprovidefairnessinanegranularity.ItshouldbementionedthatwearenottherstonewhointroducetheRRTScontrolpacket.RRTSisinitiallyintroducedin[ 35 ]tosolvecontentionproblemsinmultihopwirelessnetworks.Inthisstudy,weimproveitfurtheranduseittogetherwithpacketlabelingtoachieveweightedfairscheduling. 23

PAGE 24

2-1 .OperationsinPPSaredesigneddierentlyandspecicallyforthem. Thersttypeofcontendingowsincludesthosewhosesendersarealsoi.Anexampleisfi;kinthegure.fi;kcontendswithfi;jbecausenodeicannotsendtwopacketssimultaneously. ThesecondtypeincludesthoseMACowswhosesendersareinthetransmissionrangeofnodei.Theirreceiversmayormaynotbeinthetransmissionrangeofi.Anexampleisfa;binthegure.Itcontendswithfi;jbecauseRTS/DATAsentbyacanreachiandcauseradiocollisionwheniisreceivingCTS/ACKfromj. ThethirdtypeincludesthoseMACowswhosesendersareinthetransmissionrangeofnodej.Theirreceiversmayormaynotbeinthetransmissionrangeofj.Anexampleisfe;minthegure.Itcontendswithfi;jbecauseRTS/DATAsentbyecanreachjandcauseradiocollisionwhenjisreceivingRTS/DATAfromi. ThefourthtypeincludesthoseMACowswhosesendersareoutsidethetransmissionrangesofbothiandj,butreceiversliewithinthetransmissionrangeofi.Anexampleisfd;cinthegure.Itcontendswithfi;jbecauseCTS/ACKpacketsfromccanreachnodeiandcauseradiocollisionwheniisreceivingCTS/ACKfromj.Itiswellknownthatthemostsevereunfairnessoccursunderthisscenario. ThefthtypeincludesthoseMACowswhosesendersareoutsidethetransmissionrangesofbothiandj,butreceiversliewithinthetransmissionrangeofj.Anexampleisfh;ginthegure.Itcontendswithfi;jbecauseCTS/ACKpacketsfromgcanreachnodejandcauseradiocollisionwhenjisreceivingRTS/DATAfromi.Becausethesendersof 24

PAGE 25

Finally,itiseasytoseethatanyownotbelongingtotheabovevetypesdoesnotcontendwithfi;j. ConsideraMACowfi;joverawirelesslink(i;j).Letwi;jbetheweightoftheow.Themeanrateoftheowisdenedasitsratedividedbyitsweight.ThegoalofPPSistoequalizethemeanratesofcontendingows.Thesenderoffi;jmaintainsaseparatepacketqueuefortheow.Italsokeepsacounter,denotedasci;j,providinganindirect,discretemeasurementforthemeanrateoftheow,whichwewilldiscussindetailsshortly. ThebasicideabehindPPSisthat,inordertoequalizethemeanratesofcontendingows,weshouldalwaysgivethehighestpriorityinmediaaccesstotheowwhosecurrentmeanrateisthesmallest.PPStriestomaximizethesmallestowrateinthenetwork,thenmaximizethesecondsmallest,andsoon.Inordertomaximizespatialchannelreuse,PPSneverleaveslocalchannelidlewhenthereisabackloggedMACow.ThedesignofPPSfollowstworulesbelow.AssumeallMACowsunderdiscussionarebacklogged. 1. AMACowshouldoccupythechannelfortransmissionifithasthesmallestmeanrateamongallcontendingowsorifthechannelisidle. 2. AMACowshouldnotcompeteformediaaccessifitsmeanrateisnotthesmallestamongitscontendingowsandthechannelisbusy. First,wedescribehowthesenderofaMACowmaintainsitscounter.Assumetheclocksatallnodesarelooselysynchronized.Timeisdividedintoperiods.Atthe 25

PAGE 26

Next,wedescribehowthesendersofcontendingowscoordinatetheorderoftransmissionsbasedontheircountervalues.ConsideranarbitraryMACowfi;j.Belowwediscusswhatinformationthesenderandthereceiverwillgatherandwhatoperationstheywillperformbasedonthatinformation. Letni;jbethenumberofbitsyettobetransmittedover(i;j)beforeci;jisincreasedbyone.Whenadatapacketissentfromitoj,RTS/CTS/DATA/ACKpiggybackbothci;jandni;j.Foralldierenttypesofcontendingowsoffi;jshowninFig. 2-1 ,neighborsofeitheriorj,suchasa,c,eandg,willlearnci;jandni;jthroughoverhearing.Similarly,iwilllearnthecountervaluesoffa;bandfd;c,andjwilllearnthecountervaluesoffe;mandfg;h,aswellasthenumberofbitsyettobetransmittedbeforeeachcounterisincreasedbyone.Therefore,thesenderiofowfi;jonlyknowstheinformationforsomecontendingows,andthereceiverknowstheinformationfortherestcontendingows. Tohelpunderstandpacketlabels,Fig. 2-2 showstwoexamples.Whenschedulingpackettransmissionsthegoalistogivepacketswithsmallerlabelshigherpriorities,andatthesametime,thechannelshouldbefullyutilized.InFig. 2-2 (a),aissendingapacket 26

PAGE 27

2-2 (b),whereows1-4mutuallycontendwitheachotherandow5contendsonlywithow4.Flow4cannotsenditspacketwithalabelof4,becauseallthelabelsofitscontendersarestill3.However,forow5,thoughitscontender,ow4,hasasmallerlabel,itshouldignorethisandcontinuetosend,otherwise,thechannelwouldbelocallyidleandspatialchannelreuseisnotutilized.TheoperationsofPPSaredescribedasfollows: Wheniisthesenderofmultipleowssuchasfi;jandfi;k,ialwaysschedulestheowwiththeminimumcounter.Withoutlosinggenerality,letthisowbefi;j.Nodeiwillrefrainfromaccessingmediaifitoverhearsthatacontendingowwithasmallerorequalcounteristransmitting.ItwillattempttoaccessmediawithRTSiffi;jhasthesmallestcounteramongthecontendingowsthatitknowsorifitsensesanidlechannelforacertainperiodoftime.AfterRTSissuccessfullydeliveredtothereceiverjthroughaCSMA/CAprotocol,therearetwopossiblecases. 2-1 )withasmallerorequalcounteriscurrentlyinatransmissionburst,jwillrejecti'sRTSwithanewcontrolmessageREJ,carryingthecontendingow'scounterandthenumberofbitstobetransmittedbeforethatcounterwillbeincreasedbyone.NotethatREJshouldbesentafterj'scurrentNAVexpiresinordertoavoidinterferingwithconcurrenttransmissions.BasedontheinformationreceivedinREJ,isetsanappropriatetimerandwillre-attempttransmissionaftertimeout. 27

PAGE 28

TheabovedesignofPPShasthefollowingproperties. Proof:Weexaminethevetypesofcontendingows.Thesendersoffi;k,fa;bandfe;mwillrefrainfromaccessingmediabecausetheyknowthatfi;jhasasmallercounter.Inparticular,alearnstheinformationbyoverhearingRTS/DATAfromi,andelearnstheinformationbyoverhearingCTS/ACKfromj. Next,considerfd;candfh;g.Theirsenders,dandh,mayattempttoaccessmediabecausetheycannotoverhearthecountervalueoffi;jthatispiggybackedintransmissionsmadebyiandj.ByaCSMA/CAprotocol,theywilleventuallysucceedindeliveringRTStotheirreceivers,candg,whoknowthatfi;j'scounterissmaller.ThereceiverswillrejectRTSbyreplyingREJbacktothesenders.Withoutoverhearingatransmissioncarryingasmallercounter,iwillcontinueitstransmissionburstviaCSMA/CA.2

PAGE 29

Nowlet'sexaminetheinterruptedow.Ifitisfa;borfe;m,itssenderwilloverhearthecountervalueoffi;j,piggybackedinthetransmissionsmadebetweeniandj.Oncethesenderndsthatitscounterislarger,itwillnottrytoresumeitstransmissionburst.Next,iftheinterruptedowisfd;corfh;g,itsreceiverwilloverhearthecountervalueoffi;j,butitssenderwillnot.ThesenderwilltrytoresumethetransmissionburstbysendingRTStothereceiver,whichisdorh.UponreceivingRTS,thereceiverwillreplyREJ,stoppingthesenderfromfurthertrying.2 29

PAGE 30

T,wherelisthenumberofbitstransmittedbeforeacounterisincreasedbyoneandTisthePPSperiod.BothlandTaresystemparameters. Moresignicantly,whenweincreasethePPSperiod,theowratesresultedfromPPSindenitelyapproachtowardsweightedmax-minfairness:themeanratemi;jofanyMACowfi;jcannotbeincreasedwithoutdecreasingthemeanratemi0;j0ofanotherMACowfi0;j0,forwhichmi0;j0mi;j. tmri;j(t)<(ci;j(t)+1)l t(2{1) Nowwerstprovethefollowinglemma. t. t.ByProperty3,underPPS,thereisnoextraunusedbandwidthforfi;jtoincreaseitsrate.Inotherwords,increasingmri;j(t)meansthatthemeanrateofantherowmri0;j0(t)hastobedecreased,andbyourassumption,mri0;j0(t)>mri;j(t)+2l t.Then,byinequality 2{1 ,wehaveci0;j0(t)ci;j(t)+2.However,byProperty2,fi;jwillnotletfi0;j0hasacountervaluethatisgreaterthan 30

PAGE 31

t
PAGE 32

2-3 (b)showsadierentscenariowherefh;gtriestopreemptfi;j.Ifgisnotinthetransmissionrangeofi,evenwhenDATAistransmittingfromitoj,nodegisabletoreceiveRTSfromh.However,gcannotreplyACKbecauseitiswaitingonNAV.Tosolvethisproblem,aftertheNAVexpires,gsendsaRRTSpackettosolicitanewRTSfromh. WhileanumberofMACprotocolsintheliterature[ 29 ; 18 ; 19 ; 21 { 23 ]weredesignedtoachievefairnessamongcontendingMACows,tothebestofourknowledge,ourprotocolisthersttoachieveallthreepropertiesdiscussedabove.Incomparison,EMLM-FQ[ 21 ]requireseachnodetokeeptrackofcertainstateinformationofcontendingowsanddoesnotguaranteeatightboundonitsapproximatefairness.Themax-minfairnessachievedin[ 30 ]usesamulti-channelcontentionmodelthatisdierentfromtheCSMA/CAmodelusedinthisstudy.Theworkin[ 19 ]requireseachnodetocomputefairbandwidthsharesforitsownlinksandthenearbycontendinglinks,whichinturnreliesontheknowledgeofneighborhoodtopology.Tocalculatefairshares,anodemustknowthesetofcontendingowsthatarecurrentlybacklogged,fromwhichthelocalcontentioncliquescanbecomputed.Inaddition,itassumesallcliqueshaveequal,xedcapacity. 32

PAGE 33

PPSalsohasotheradvantages:Itismuchsimpler,easytoimplementandanalyze,andreducesradiocollision.Itdoesnotrequiremodifyingthebackoalgorithmoftheexistingchannelaccessprotocols. 36 ],ontopofIEEE802.11DCF.Forcomparison,wealsoimplementedaninuentialpacketschedulingprotocol[ 19 ](referredasAdjConWin)andIEEE802.11eEDCA[ 10 ].AdjConWinachievesfairnessamongMACowsbydynamicallyadjustingtheirminimumcontentionwindows.IEEE802.11eEDCAhasfouraccesscategories:background,besteort,video,andvoice. Ifnotspeciedotherwise,thedefaultsimulationparametersaregivenasfollows:Thetransmissionrateissettobe11MbpsbasedonIEEE802.11b,andeachpacketis1000byteslong.ThePPSperiodis1second.Theparameterlissettobethelengthofvepackets.Besideswhathavebeenstatedabove,otherparameters(suchthatthosefor802.11DCF)usethedefaultvaluessetbyns2accordingtotheprotocolstandards. SinceAdjConWinisdesignedtoachievefairness,inordertomakethesimulationresultscomparable,wesettheweightsofallowsinPPStobeone.WerstperformsimulationsonthesimpletopologyinFig. 2-4 ,whereaisnotinthetransmissionrangeofc,butbis.SupposetwoMACows,fa;bandfc;d,arebothbacklogged.UnderIEEE802.11DCF,itiswellknownthatsevereunfairnesscanhappeninthisscenariobecausefa;bcanhardlyacquirethechannel[ 19 ; 23 ].WerunsimulationsforftysecondsunderDCF,EDCA,AdjConWin,andPPS,respectively.Theows'ratesarestillmeasuredinpacketspersecond.TheresultsareshowninTable 2-1 .Clearly,DCFcausessevereunfairness,withfc;dacquiringmostofthechannelcapacityandfa;breceivinglittle.ForEDCA,weassignfa;btothevideoaccesscategoryandfc;dtothebest-eortcategoryin 33

PAGE 34

TherearesomeimportantdierencesbetweenAdjConWinandPPS,whichareelaboratedinSection 2.6 .Becauseofitsfullylocalizedoperations,PPSisequallyeectiveunderdynamicsettingwherethesetofMACows,aswellastheweightsoftheows,changeovertime.ThisiscriticalforDWA,thetechniqueintroducedinthenextchapterbasedonPPS,becauseaMACowforaserviceclassonawirelesslinkwillbeinactivewhenitsqueueisemptyandbecomeactiveagainwhenitsqueueisbacklogged,whichhappenswhenend-to-endowsjoinordepartfromthenetwork.UnlikePPS,AdjConWinislesseectivewithadynamicsetofMACowsbecauseitrequireseachnodetocentrallycomputethelocalcontentioncliquesandthefairbandwidthsharesforitsownowsaswellasnearbycontendingows,undertheassumptionthateachcliquehasanequal,xedcapacity.Thesendersofcontendingowscanbethreehopsaway.Inadynamicenvironment,theoverheadwillbeveryhighifallnodesconstantlyexchangetheircurrentowinformationinordertoupdatethecorrectvaluesforfairbandwidthshares.Ifsuchupdateisnotdone,thenetworkperformancesuers.Weperformsimulationsontheve-owtopologyinFig. 2-5 ,whereeachdashedellipsecontainsnodescanheareachother'stransmission.Supposeow1'squeueisemptyfromtime10to20,ow2'squeueisemptyfromtime20to30,ow3'squeueisemptyfromtime30to40,ow5'squeueisemptyfromtime40to50,andallqueuesareotherwisebacklogged.Fig. 2-6 and 2-7 showtheowratesunderAdjConWinandPPS,respectively.TheaverageowratesunderPPSaremuchhigherbecauseAdjConWinrequiresclosecoordinationamongcontendingnodesandsuchcoordinationbreaksdownwithadynamicsetofows,whilePPSreliesonfullylocalizedoperations. 34

PAGE 35

2-5 ,whereallowsbeginwithweightoneandow1changesitsweightto2attime15andthento4attime30.TheresultinFig. 2-8 showsthatPPSmaintainsweightedbandwidthallocationunderdynamicweight.AdjConWindoesnotconsiderowweights,letalonedynamicweight(whichrequiresfullylocalizedoperations). 3 ,wewillintroduceanewtechniqueestablishedontopofPPStoprovideservicedierentiationandrateassuranceamongend-to-endowsinmultihopwirelessnetworks. 35

PAGE 36

Flowrates(inpacketspersecond)onthetwo-owtopology Figure2-1. Fivetypesofcontendingowsoffi;j. Figure2-2. Packetlabelpriority Figure2-3. Request-for-RTShelpspreemption 36

PAGE 37

Two-owtopology Figure2-5. Five-owtopology Figure2-6. ProtocolofAdjConWin Figure2-7. ProportionalPacketScheduling Figure2-8. ProportionalPacketSchedulingsupportsdynamicweight 37

PAGE 38

BasedonPPS,theweightedbandwidthallocationtechniqueintroducedintheChapter 2 ,wedesignanoveltechniquecalleddynamicweightadaptionwithoorandceiling(DWA)toprovideservicedierentiationandrateassuranceamongadynamicsetofend-to-endowsinmultihopwirelessnetworks. 7 ]proposedasimpleapproachforservicedierentiation,inwhichdierentclassesofpacketsareassignedwithdierentbackopolicies.Ahnetal.proposedSWAN[ 8 ],whichprovidesservicedierentiationbetweenbest-eortTCPandreal-timeUDP.InSWAN,alocalAIMDratecontrolschemeisutilizedtoshapebest-eorttrac.Forreal-timetrac,probepacketsareusedtoachieveadmissioncontrolandexplicitcongestionnoticationsareexploitedtodynamicallyregulatetracchanges.Intheirotherworks[ 37 ; 6 ],dierentcontentionwindowsizesareappliedtopacketsfromreal-timeandbest-eorttracrespectivelyinordertoachieveservicedierentiation.AvirtualMACalgorithmisintroducedtoestimatethecurrentchannelcondition,andadmissioncontrolismadeaccordingly.However,thesemechanismsarenotdesignedformultihopnetworks.Karenosetal.[ 9 ]designedaratecontrolframeworkinsensornetworks.Noneoftheseworksachievestherateassuranceobjectiveandthebandwidthdierentiationobjectiveasdenedinourstudy. Someresearchhasbeendedicatedtosupportbandwidthguaranteeateitherthelinklayerorthenetworklayer.LinandGerla[ 38 ]proposedareal-timeprotocolcalledMACA/PRtoprovidebandwidthguaranteeoversingle-hoplinks,whichemulatesTDMAinCSMAandrequireseachnodetomaintainareservationtablethatkeepstrackofdynamictimereservationsofreal-timeows.Thisemulationmayleadtoinecienttransmissionschedules.Shahetal.[ 2 ]proposedanadmissioncontrolanddynamic 38

PAGE 39

3 ].Banchsetal.[ 1 ]proposedamechanismthatprovidesrateassurancetowirelessLANsonaperstaionbasis,wheredesiredbandwidthisallocatedbyadaptivelyadjustingcontentionwindowsize.However,thismechanismcannotbeappliedtomultihopwirelessnetworks.SarkarandTassiulas[ 5 ]designedadistributedalgorithmforend-to-endfairnessunderamulti-channelmodelwhereeachnodetransmitsatadierentfrequency.Intheproposedmechanism,sessionratesarecontrolledbyatokenbucketalgorithm,andtokensaregeneratedaccordingtoone-hopneighborsinsuchawaythattheratelimitinbottleneckscanspreadout. ThemajordierencesofourproposedQoSmechanismfromtheabovemechanismsareasfollows.First,ourmechanismworksformultihopend-to-endowsinadhocwirelessnetworks.Second,wecombinetheconceptsofservicedierentiationandrateassurancetogether,whereowsarecategorizedintoarbitrarymultiplepriorities,andowraterequirementsareassuredbasedontheirpriorities.Thirdly,andthemostimportant,weemphasizethefairnessissuewhenimplementingQoSfeatures.Wearguethat,withoutfairnessproblemssolved,servicedierentiationitselfislessmeaningful.Itisnotacceptablethataowinalowerprioritygetsabetterqualityofservicethananotherowinahigherpriorityjustbecausetheirlink-layercontentionsareunfair.ThatiswhywebuildourQoSmechanismbasedonourweightedfairschedulingprotocol. 39

PAGE 40

Thenetworkprovidesanumberofdierentiatedserviceclasses,eachhavingadierentpriority.Best-eortowsareassignedtothebest-eortserviceclassthathasthelowestpriority.QoSowsareassignedtootherclasses.ThepriorityofaQoSowisequaltothepriorityoftheserviceclasstowhichtheowisassigned.WhentheminimumraterequirementofaQoSowissatised,wesaythenetworksupportstheow.Wehavethreeobjectives. 40

PAGE 41

Itshouldbenotedthatthereareotherwaysofdeningtheobjectives.Forexample,insteadofdistributingtheremainingbandwidth(afterrateassurance)amongend-to-endowsbasedonbandwidthdemandanddierentiatingfactor,onemayprefertoopti-mizetheaggregatethroughputofthenetworkundertheconstraintofrateassurance.Optimizingtheaggregatethroughputwillnaturallyprefershortowsoverlongowsanddisregardthepriorities.Proportionalfairness[ 39 ]canbeusedtoaddressthe 41

PAGE 42

40 ; 41 ]doesnotprovideper-owbandwidthassurance,undertheIntServmodel[ 42 ]wecanreserveacertainamountofbandwidthforaowalongitsroutingpathbyusingper-owweightedfairqueueing[ 43 ].Ateachlink(i;j)onthepath,nodeiassignseachpassingowaweightthatisproportionaltotheow'sraterequirement.Theraterequirementsofthepassingowscanbesatisedaslongastheirsumdoesnotexceedthelinkcapacity. Next,wetrytomaptheabovesolutiontoamultihopwirelessnetwork.WebeginbyconsideringonlyoneQoSserviceclass.Whilewestillperformweightedfairqueueingateachlinkandassigneverypassingowaweightthatisproportionaltotheow'sraterequirement,thereisafundamentaldierencebetweenwirelessnetworksandwirednetworks.Awirelesslinkdoesnothaveaxedcapacity.Itsharesacommonchannelwithnearbycontendinglinks.Eventhecapacityofthewirelesschannelmaybedynamicduetointerferenceandmulti-ratelinks.Thekeyforrateassuranceistodistributebandwidthtowirelesslinksinsuchawaythateachlinkreceivesaportionthatisequaltoorabovethetotalraterequirementofallowspassingthelink. Theproblembecomesmuchmorecomplicatediftherearemultipleserviceclassesandthecombinedbandwidthdemandexceedstheavailablebandwidth.Moreover,asend-to-endowscomeandgoandchannelconditionschangeovertime,wemustadaptthebandwidthallocatedtoeachwirelesslink,aswellasthebandwidthallocatedtoeachserviceclassofthelink,inordertocontiguouslysupportrateassuranceandservice 42

PAGE 43

End-to-endservicedierentiationandrateassurancerequireMAC-layersupport.Inparticular,weneedaprotocolthatallocatesbandwidthtoMACowsinproportiontotheirweights.Considertwocontendinglinks,(i;j)and(a;b),eachreceivingafairshareofthechannelcapacityviaaCSMA/CAprotocolsuchasIEEE802.11DCF.Supposetwoend-to-endowsofhighprioritypassthrough(i;j)andoneend-to-endowoflowprioritypassesthrough(a;b).IEEE802.11DCFwilllimittherateofeitherhigh-priorityowtohalfthatofthelow-priorityow. Forthehigh-priorityowstoreceivemorebandwidththanthelow-priorityone,weneedaMACprotocolthatcanexiblyredistributebandwidthamongMACows.Inparticular,weareinterestedinaprotocolthatallocatesbandwidthtoMACowsinproportiontotheirweights.PPSintroducedinChapter 2 servesforthispurposeperfectly.Intheaboveexample,withPPS,ifwewanttherateofahigh-priorityend-to-endowtobetwicethatofalow-priorityow,wesimplyassign4astheweightoftheMACowon(i;j)and1astheweightoftheMACowon(a;b). Therearetwolevelsofbandwidthdistribution.Attherstlevel,weperformweightedbandwidthallocationbyPPSthatisintroducedinChapter 2 todistributethechannelcapacityamongcontendingMACows.Wheneverpossible,eachMACowshouldacquire 43

PAGE 44

43 ]toassureeveryend-to-endow'sraterequirementismet(locallyatthiswirelesslink).Therefore,wewillfocusontherstlevelintherestofthischapter. Whiletheabovetwo-levelbandwidthdistributionarchitecturemayappeartobearoutinedesign,ournoveltyisinsolvingtheproblemofhowtoassignappropriateweightstoMACows(attherstlevel)suchthattheobjectivesinSection 3.2 canbeachievedinadynamic,fully-distributedenvironment,wherebothowsandchannelconditionsmaychangeandthereisnotanentitythathasglobalnetwork/tracinformation. Tosolvethisproblem,weproposeanewtechniquecalleddynamicweightadaptationwithoorandceiling.TheweightofeachMACowadaptsbetweenalowerbound(calledoor)andanupperbound(calledceiling).TheoorisproportionaltotheraterequirementoftheMACow,andtheceilingisproportionaltotheproductoftheraterequirementandthedierentiatingfactor(whichislargerforaMACowofhigherpriority,givingsuchaowahigherceiling).BecausetheraterequirementofaMACowmaychangeasend-to-endowscomeandgo,theoorandtheceilingmaychange,too.EachMACowperiodicallyadaptsitsweightbetweentheoorandtheceilingasfollow:ThesenderoftheMACowmeasuresitsrateovereachweight-adaptationperiod,whichmaybesetthesameasordierentfromthePPSperiod.IfthemeasuredrateisbelowtherequirementoftheMACow,thesenderincreasestheweightoftheowattheendofeachperioduntiltheceilingisreachedortherequirementissatised.Ifthemeasuredrate 44

PAGE 45

T Tocomputeqki;j,weneedtoexaminetwocases.First,ifanend-to-endowcarriedbyfki;jhasabackloggedqueueati,weshouldallocatesucientbandwidthforfki;jtosupporttheminimumraterequirement.Second,iftheend-to-endowdoesnothaveabackloggedqueueandthearrivalratetothequeueissmallerthanitsraterequirement,theowmusthaveanupstreambottleneckandweonlyneedtoallocateenoughbandwidthtocoverthearrivalrate.Theeectiveraterequirementofanend-to-endowisequaltotheminimumraterequirementintherstcaseandthearrivalrateinthesecondcase.Wedeneqki;jasthesummationoftheeectiveraterequirementsofallend-to-endowscarriedbyfki;j. 45

PAGE 46

Weightwki;jisinitializedtobeLki;janditerativelyadjusted.Attheendofeachweight-adaptationperiod,ifrki;j
PAGE 47

First,considertwoend-to-endowscontendforbandwidthatacommonbottleneck.SupposetheypasstwocontendingMACows,fki;jandfk0i0;j0,inthesamebottleneckchannel,andk>k0.IftheratesoftheMACowsarebelowtheminimumrequirements,theywillbothincreaseweightsunlesstheceilingsarereached.Theirceilingsaredierent.Thelargestnormalizedweightforfki;j(whichisdk)islargerthanthelargestnormalizedweightforfk0i0;j0(whichisdk0).Hence,fki;jisabletoincreaseitsweightfurthertoacquiremorebandwidthperunitofraterequirementthanfk0i0;j0.Consequently,iffk0i0;j0issupported,fki;jmustalsobesupported,butiffki;jissupported,fk0i0;j0mayormaynotbesupported(duetotheconstraintoflowerceiling).Therateassuranceobjectiveismet.Now,supposeneitherfki;jnorfk0i0;j0canbesupported.Theirweightswillbothreachtheceilings,andthebandwidthallocationbetweenthemwillbeproportionaltotheproductoftheraterequirementandthedierentiatingfactor.Duetothetwo-levelbandwidthdistributionarchitecture,theratioofbandwidthallocationsamongMACowswillbeinheritedbytheend-to-endowsthattheMACowscarry.Hence,thesecondhalfofthebandwidthdierentiationobjectiveissatised. Next,westudythecasethatthenetworkhasenoughbandwidthtosupporttheminimumraterequirementsofallend-to-endows.ConsidercontendingMACowsatanarbitrarylocationinthenetwork.Werstshowthatallowswillbesupported.Anyowwhoserateislargerthanitsminimumrequirementwilldecreaseitsweight,givingupsomebandwidth.Ifnoowusesmorebandwidththanitsminimumrequirement,certainlyeveryonewillbesupported.Whathappensifaowhasahigherratethantheminimumrequirementevenwhenitsweightisreducedtotheoor?Sincetheow'snormalizedweight,now,isthelowestamongall,otherowsmustbereceivingthesameormorebandwidthforeachunitofraterequirement.Hence,theirraterequirementsmusthavebeensatisedaswell.Now,ifthereisstillextrabandwidth 47

PAGE 48

Finally,becausetheweightofeachMACowhasaceiling(dkqki;j),itcannotindenitelyincreasethefractionofchannelbandwidththatitconsumes.Inotherwords,thebandwidthconsumedbyend-to-endowsinacertainpriorityclassislimitedatanylocationinthenetwork;themaximumfractionofbandwidththeycanconsumeisproportionaltothedierentiatingfactordk,whichiscongurable.Therefore,theno-starvationobjectiveisalsomet.Tomaximallyutilizetheavailablebandwidth,theunderlyingMAC-layerschedulingprotocolthatimplementsweightedbandwidthallocationmustbework-conserving,i.e.,itmustallowMACowstoconsumebandwidthleftunusedbyotherMACows. 44 ],whichallowstheupstreamnodektosendapackettoionlywhenihasenoughfreespaceinthequeuetoholdthepacket.Supposethebuerspaceforthequeueisslottedwitheachslotstoringonepacket.Theresidualbueratnodeichangeswhenireceivesorsendsapacket.Tokeeptheupstreamnodeupdatedwithi'sbuerstate,wheneveritransmitsapacket(RTS/CTS/DATA/ACK),itpiggybacksitscurrentbuerstateintheframeheader,forexample,usingonebittoindicatewhetherthereisatleastonefreebuerslot.Whentheupstreamnodekoverhearsapacketfromi,itcachesthebuerstateofi.Ifi'sbueris 48

PAGE 49

44 ]fordiscussiononvariousissuessuchasfailedoverhearing. First,letanotherhigh-priorityend-to-endowjoininthenetwork.Theowsourcesignalsalongtheroutingpathtoadditsraterequirementtothehigh-priorityMACows.Theceilingsofthehigh-priorityMACowsareincreasedaccordingly.SupposeatonelocationxthechannelcapacityisnotsucienttosupportallQoSows.Withtheirweightsattheoors,theMACowsoftwoprioritiesbothndthattheyarenotgettingenoughbandwidth.Theywillincreasetheirweights.Thelow-priorityowhasalowerceilingandwillstopincreasingrst.Thehigh-priorityowwillbeabletogetmorebandwidthtosatisfytherequirement. Second,letthenewly-joinedend-to-endowdepartfromthenetwork.Atlocationxthebandwidthforthedepartedowwillbeinheritedbytheotherhigh-priorityend-to-endowsharingthesameMACow.Sinceitacquiresmorebandwidththantheraterequirement,thehigh-priorityMACowwillreduceitsweighttotheoor,givingawaybandwidthtothelow-priorityow. Third,supposethechannelcapacityatlocationxisdecreasedduetoenvironmentalnoise,causingtheactualdataratesofbothMACowstodecreasebelowtheraterequirements.Similartotherstscenario,theirweightswilladaptindividuallyandindependently,butbecausethehigh-priorityowhasahigherceiling,itwillreceivemorebandwidthtomeetitsraterequirement. 49

PAGE 50

33 ]inbandwidthdistributionamongend-to-endows.Consideranend-to-endowthatfollowsapathk!i!jwheretheintra-owcontentionbetweensub-owk!iandsub-owi!jmayleadtoonesub-owgrabbingmorebandwidththantheother,whiletheyshouldeachhavethesamebandwidth.Consideranotherend-to-endowthatfollowsthesamepath.Theinter-owcontentionmayassignthesamebandwidthsharetoeachend-to-endow,whiletheyshouldbeassignedsharesbasedontheirraterequirementsandpriorities.Intra-owandinter-owcontentionsareaproblemforrandom-accesswirelessnetworks.However,whenwehaveaMAC-layerschedulingprotocol(PPS,inChapter 2 )thatachievesweightedbandwidthallocationandacongestionavoidancescheme[ 44 ]thatpreventspacketdrops,thesecontentionscanbesolvedbyassigningappropriateweightstoMACows,aswedidinthissection. 36 ],ontopofIEEE802.11DCF. WeshowhowwellDWAcanachieverateassuranceandbandwidthdierentiation.Ifnotspeciedotherwise,thedefaultsimulationparametersaregivenasfollows:Thetransmissionrateissettobe11MbpsbasedonIEEE802.11b,andeachpacketis1000byteslong.ThePPSperiodis2seconds.Theparameterlissettobethelengthofvepackets.Theweight-adaptationperiodis2seconds.TherearetwoQoSserviceclassesforthelowerpriority1andthehigherpriority2.Theirdierentiatingfactorsared1=2andd2=4,respectively.is10%.Besideswhathavebeenstatedabove,otherparameters(suchthatthosefor802.11DCF)usethedefaultvaluessetbyns2accordingtotheprotocolstandards.WealsocompareDWAwithIEEE802.11eEDCA[ 10 ],whichhasfouraccesscategories:background,besteort,video,andvoice. 50

PAGE 51

3-1 withadynamicsetofows,whoseraterequirementsandprioritieschangeovertime.Thenetworkconsistsof30nodesthatarerandomlydeployedinanarea.Thewirelesslinksformedbetweennodesareshowninthegure,wheretheaveragedegreeofanodeis4.4.Thediameterofthenetworkis7hops.Thereare24multihopend-to-endows,whichcannotbeshowninthegure.Thesource/destinationnodesofeachowarerandomlychosen.Weperformsimulationsunderfourdierentsettings.TheresultsareshowninFig. 3-2 3-8 WerstturnoDWA.TheowratesunderIEEE802.11DCFareshowninFig. 3-2 .Flowrateismeasuredinthenumberofpacketssuccessfullytransmittedpersecond(pps).Thecontentionlevelsexperiencedbytherandomly-generatedowsarevastlydierent.Withoutadditionalmechanismstocompensatesuchdierence,theowratesachievedunder802.11arequiteunpredictablewithsomemuchhigherthanothers. WethenturnonDWA.ThesimulationresultisshowninFig. 3-3 .ThenetworkisabletosatisfytheraterequirementsofallQoSows.Flows4,6and16havemuchhigherratesthanothersbecausetheirroutingpathshappentohavelesscontentionwithotherows.TheratesofallQoSowsvaryfromonetoanotheralsobecausetheowsexperiencedierentlevelsofcontentionontheirpaths.Thevariationamongtheratesofbest-eortowsareduetothesamereason. Nextwecreate8newowsineachserviceclass.FornewQoSows,theirraterequirementsarestill10pps.TheresultisshowninFig. 3-4 .Foreasycomparison,wereassignedowidssuchthattheratesofbest-eortowsareshownunderids0-15,theratesofpriority-1owsareshownunder16-31,andtheratesofpriority-2owsareshownunder32-47.Afterdoublingthenumberofows,theraterequirementsofpriority-2ows 51

PAGE 52

Finally,weletthenewowsdepartfromthenetwork,andtheowratesgobacktoFig. 3-3 WhenDWAisturnedon,thesimulationresultisshowninFig. 3-5 .Theraterequirementsofows16-23(priority2)aresatisedornearlysatised.Someofthemreceiveslightlylowerratesduetomoreintensecontentions.Thenetworkcannotsupporttheraterequirementsofows8-15(priority1)evenwhentheirweightsareadaptedtotheceilings.Duetolowerpriority,theirceilingsarelowerthanthoseofows16-23.ButtheyhavehigherrateswithDWAthanwithoutit(Fig. 3-2 ).Thebest-eortowsreceivetheremainingnetworkbandwidth.Bydesign,nobest-eortowisstarved. Forthepurposeofcomparison,weperformthesamesimulationunderIEEE802.11eEDCA,withpriority-2owsassignedtothevideoaccesscategory,priority-1owsassignedtothebest-eortaccesscategory,andprority-0owsassignedtothebackgroundcategory.TheresultsareshowninFig. 3-6 ,whichshowsthatows16-23(priority2)takesnetworkbandwidthaggressively,starvingtheotherows.EDCAgivesxedpreferencetohigher-priorityowsandlacksane-levelratecontrolmechanismthatnotonlyallocatesbandwidthbasedonprioritiesbutalsobalancetheminimumneedsamongallQoSows. ThenexttwosettingsaredesignedtodemonstratethegreatexibilityofDWAincontrollingthebandwidthdistributionamongend-to-endows. 3-7 .Nowtheraterequirementsofows8-15(priority2)aresatised. 52

PAGE 53

3-8 .Theraterequirementsofthenewpriority-2ows,whoseidsare0-7,aresatised. 2 .Thenewtechniqueiseectiveyetsimpletoimplement,whichisimportantforpracticalwirelesssystems.Theperformanceisextensivelyevaluatedbysimulations,demonstratingthenewcapabilitiesthatcanbemadeavailableinfuturewirelessnetworks. 53

PAGE 54

Networktopology Figure3-2. SettingA,IEEE802.11DCF Figure3-3. SettingA,DWA Figure3-4. SettingA,DWA,doublingthenumberofows Figure3-5. SettingB,DWA Figure3-6. SettingB,EDCA 54

PAGE 55

SettingC,DWA Figure3-8. SettingD,DWA 55

PAGE 56

Inthischapter,wedemonstratethatCSMA/CAnetworks,includingIEEE802.11networks,exhibitseverefairnessprobleminmanyscenarios,wheresomehostsobtainmostofthechannel'sbandwidthwhileothersstarve.Mostexistingsolutionsrequirenodestooverheartransmissionsmadebycontendingnodesand,basedontheoverheardinformation,adjustlocalratestoachievefairnessamongallcontendinglinks.Theirunderlyingassumptionisthattransmissionsmadebycontendingnodescanbeoverheard.However,thisassumptionholdsonlywhenthetransmissionrangeisequaltothecarriersensingrange,whichisnottrueinmostrealnetworks.Asourstudyreveals,theoverhearing-basedsolutions,aswellasseveralnon-overhearingAIMDsolutions,cannotachieveMAC-layerfairnessinvarioussettings.Weproposeanewratecontrolprotocol,calledPISD(ProportionalIncreaseSynchronizedmultiplicativeDecrease).Withoutrelyingonoverhearing,itprovidesfairnessinCSMA/CAnetworks,particularlyIEEE802.11networks,byusingonlylocalinformationandperforminglocalizedoperations.Itcombinesseveralnovelratecontrolmechanisms,includingsynchronizedmultiplicativedecrease,proportionalincrease,andbackgroundtransmission. WealsoimprovePISDfurther.PISDworkspreciselyforscenarioswhereallMACowsmutuallycontend,butwhenitisappliedtoanetworkconsistingmultiplecontentiongroups,thenetwork'sthroughputcanbedegraded.WedevelopPISDfurtherandproposetwonewschemes,PISD-RSandPFS,toovercomethelimitation.Weprovethatows'ratesattainedunderthetwonewschemesapproximateproportionalfairness. Therestofthechapterisorganizedasfollows.Section 4.1 discussestherelatedwork.Section 4.2 givesthenetworkmodel.Section 4.3 describesthefairnessproblem.Section 4.4 proposesourPISDsolution.Section 4.5 analyzestheperformanceofPISD.Section 4.6 presentsadditionalsimulationresultsonPISD.Section 4.7 discoversalimitationofPISD.Section 4.8 introducesPISD-RSandPFSassolutionstothe 56

PAGE 57

4.9 provesthatproportionalfairnessisachievedbyPFS(andPISD-RS).Section 4.10 conductssimulationsonPISD-RSandPFS.Section 4.11 summarizesthechapter. 18 ; 19 ],toachievefairbandwidthdistributionamongcontendingwirelesslinksinamultihopwirelessnetwork,everynodeisrequiredtomeasuretheratesofcontendinglinksthroughoverhearingandthenchangeitsownratebyadjustingeithertheminimumcontentionwindoworthecontentionwindowdirectly.In[ 22 ],ChenandZhangalsorelyonoverhearingamongcontendingnodesforappropriatedistributionofchannelcapacityinordertoachieveaggregatefairness. Luoetal.'sapproach[ 29 ]assignseachMACowabasicfairshareofbandwidthandthenmaximizesaggregatechannelutilizationthroughspatialchannelreuse.Thedistributedimplementationrequireseachsendertoknowallcontendingows(throughpiggybackingandoverhearing),andalsorequirestopologyinformationtobepropagatedthroughaconict-freespanningtree.Infollow-upwork[ 21 ]theyproposeMLM-FQ(Maximize-Local-MinimumFairQueueing),whichrequirescontendingnodestotransmitintheorderofpacketservicetags(representingtransmissiondeadlines).Itreliesoneachnodekeepingtrackofservicetagsatothernodesthroughoverhearing.InVaidyaetal.'searlierDFS(DistributedFairSchedulingProtocol)[ 20 ],anodesetsabackotimerbasedonthenishtagofitsnextpackettobetransmitted.DFSdependsonoverhearingtocorrectlyupdatethelocalvirtualclock,basedonwhichthenaltagiscomputed. OML[ 23 ]emulatesTDMAontopofCSMA/CAtoimplementdistributedweightedfairqueueing.Foreachofitspackets,thesendermustinformthecontendingnodesthatitwillparticipateinthetimeslotcompetition.Thisinformationispiggybackedinthepacketheaderandoverheardbyothernodes.(Alternatively,onecanusecontrolmessagestooodthisinformationtocontendingnodesafewhopsaway,which,however,causessignicantoverhead.) 57

PAGE 58

34 ]proposeageneralanalyticalfairnessmodelandaMACprotocoltoapproximateproportionalfairness.Thisworkassumesthatlinksinthesamecontentionregionwillexperiencethesamelossprobability,whichishowevernotalwaystrue.AswedescribeinSection 4.3.1 ,thelossprobabilitiesoftwolinkscanbeverydierent|theactualvaluesdependontherelativespatiallocationsofthelinks.In[ 30 ],TassiulasandSarkaraddressthemax-minfairnessproblemusingamulti-channelMACmodelthatisdierentfromtheCSMA/CAmodelusedinthisstudy.Theirlaterwork[ 45 ]forend-to-endbandwidthguaranteesisalsobasedonthemulti-channelmodel. AIMDhasbeenextensivelystudiedinthepast[ 46 { 48 ; 39 ],mostlyinthecontextofTCP.CrowcroftandOechslin[ 49 ]modifyAIMDtoachieveweightedproportionalfairnessinTCP.Aswedemonstratelater,theAIMDprotocolsdesignedforCSMA/CAnetworksbyCaietal.[ 24 ],byXueetal.[ 26 ]andbyHeusseetal.[ 25 ; 27 ]canonlyprovidefairnessundercertainsituations.AIMDhasalsobeenusedinwirelessnetworksforcongestioncontrol[ 50 ; 51 ]. 58

PAGE 59

AnexampleisshowninFig. 4-1 ,whereeachofthetwo802.11DCFwirelesslinkscarriesaMAC-layerow.ThegureshowsanadhocnetworkortwonearbyWLANswhoseaccesspoints(aandc)eachsupportawirelesshost(bandd).Whenthedistance 59

PAGE 60

35 ],which,however,doesnotconsiderthesituationswherethecarrier-sensingrangeandinterferencerangearegreaterthanthetransmissionrange. Werunsimulationswithns-2v2.32[ 36 ]tostudytheratesofthetwoows.Thesimulationparametersaregivenasfollows:Thetransmissionrangeofthenodesis250m,thecarriersensingrangeis550m,andthelengthsofbothlinksare150m.Thetransmissionrateis11Mbps,andthepacketlengthis1,000bytes.TheparametersfortheIEEE802.11DCFarethedefaultvaluessetbyns-2accordingtotheprotocolstandards. Fig. 4-2 showstheaveragenumbersofpacketspersecondsentoverthetwolinkswithrespecttothedistancebetweennodebandnodec.Whenthedistanceisbelow250m,ow(c;d)obtainsmostofthechannel'sbandwidth.Whenthedistanceisbetween250mand400m,ow(a;b)obtainsmostofthechannel'sbandwidth.Whenthedistanceisbetween400mand550m,ow(c;d)regainstheupperhand.Whenthedistanceisgreater550m,thetwolinksareoutofeachother'scarriersensingrangeandtheywillbothobtainhighbandwidth.TheexplanationonwhysuchunfairnesshappensisgiveninAppendixA. Higher-layerratecontrolsuchasTCPcannotsubstituteforaMAC-layerfairnesssolution.SupposeaTCPconnectionC1traverseslink(a;b)whileanotherconnectionC2passes(c;d).ThesetwoTCPconnectionscompeteforthesameresource|thewirelesschannelsharedby(a;b)and(c;d).Considerthescenariowherethelengthofthewirelesslinksis150mandthedistancebetweenbandcis100m.Thesimulationinns-2showsthatC1isalmoststarvedwhiletherateofC2isaround280packetspersecond.Thereasonisthat(c;d)isfarmorecapableofobtainingthechannelthan(a;b)underCSMA/CA,whichmakespacketsfromC1pronetomoredropsandlargerdelay.For 60

PAGE 61

18 { 23 ],mostrelyingontracinformationthateachnodecollectsbyoverhearingtransmissionsmadebycontendingnodes.ThemostprevalentratecontrolschemeistomodifytherandombackoalgorithmsuchthataMACowthathasasmallerratethanotherswillsetasmallerbackowindowandthusacquiremorebandwidth[ 18 ; 19 ; 22 ].Howdoesaowlearnthatitsrateissmallerthantheratesofitscontendingows?Thecommonapproachrequiresthesenderoftheowtoestimatetheratesofotherowsbyoverhearing.Otherratecontrolschemes,suchasOML[ 23 ],DFS[ 20 ]andEMLM-FQ[ 21 ],alsodependonoverhearing(seeSection 4.1 ). Theproblemisthatoverhearingislimitedwithinthetransmissionrangebutcontentionisdenedbytheinterferencerangeandthecarriersensingrange.Considerawirelesslink(i;j)inFig. 4-3 ,wherethetransmissionrangeofthesenderiisshownbythesolidcircle,thecarriersensingrangeofiisshownbythedottedcircle,andtheinterferencerangeofthereceiverjisshownbythedashedcircle.Whenanynodeinthecarriersensingrangeofimakesatransmission,iwillsenseabusychannelandwithholditsowntransmission.Whenanynodeintheinterferencerangeofthereceiverjmakesatransmission,itwillinterferewiththesignalfromi.Inthe802.11DCF,ifjsensesabusychannelbeforereceivinganRTS,itwillnotreturnCTS.Inthiscase,anynodeinthecarriersensingrangeofjwillinterferewiththecommunicationon(i;j).Clearly,theinterferencerangeisdeterminedbythesignalstrengthatthereceiver,whichisrelatedtothedistancebetweenthesenderiandthereceiverj.Thecarriersensingrangeistypicallysettobenolessthanthemaximuminterferencerange,whichcanbe1.78timesthetransmissionrangeassuggestedin[ 52 ](alsothedefaultvalueusedinns-2). 61

PAGE 62

WeimplementtheHuang-Bensaouprotocol[ 19 ],wherefairnessisachievedbyeachnodeadjustingitscontentionwindowbasedontheoverheardinformationofthecontendingows.ThesimulationresultforthenetworkofFig. 4-1 isshowninFig. 4-4 .TheHuang-Bensaouprotocolachievesalmostperfectfairnesswhenbandcarewithinthetransmissionrangeofeachother(suchthatccanoverhearb'sCTS/ACK).However,whenthedistancebetweenbandcisbeyond250m,theHuang-Bensaouprotocolistotallyineective.Thesameistrueforallotherschemesrelyingonoverhearing. 50 ; 51 ],butthereisverylimitedresearchonapplyingAIMDtoachievefairnessamongMACows.Inthefollowing,wewillshowthatAIMDisill-ttedtothispurpose. ForAIMDtowork,thesenderofaowmustbeabletodetectwhenthechannelissaturated(congested),whichisthetimeformultiplicativedecrease.Thereareanumber 62

PAGE 63

4-1 andassumethatnodeciswithintheinterferencerangeofbbutoutsidethecarriersensingrangeofa.Inthiscase,evenwhenthechannelissaturatedbytransmissionson(c;d),nodeawillsenseanidlechannel. Second,thesendermaytreateveryfailedtransmissionasasignalofchannelsaturationandperformmultiplicativedecrease[ 24 ; 26 ].WesimulatetheAIMDprotocolin[ 24 ](theonein[ 26 ]issimilar)onthenetworkinFig. 4-1 ,andtheresultisshowninFig. 4-5 .TheprotocolworksneinaWLANenvironmentwherethelinksareallfromacommonaccesspointtodierenthosts,whichcorrespondstothedatapointsfordistancebeing150m(suchthataandcoverlaptoserveastheaccesspointwhilebanddarehosts.)However,itperformspoorlyinasymmetricsettingswhenthedistancebetweenbandcisgreaterthanzero. Third,thesendermaymonitoritsbueroccupancy.Eachsendergeneratespacketsfortransmissionatacertainrate,whichiscontrolledbyAIMD.Itsignalscongestedchannelwhenthebuerlengthexceedsathreshold.ThesimulationresultonthenetworkofFig. 4-1 isshowninFig. 4-6 .Again,fairnessisnotachieved. AIMDmayalsobeusedtoindirectlycontroltheowrates.IdleSense[ 25 ; 27 ]replacesDCF'srandombackobyadaptivelysettingthesameoptimalsizeforthecontentionwindowatallhosts.Itwasshownin[ 25 ]that,ifthemeannumberofidleslotsbetweentwotransmissionsinthechanneliscontrolledtoacertaindesirablevalue,e.g.,5.6for802.11b,thecontentionwindowsizewillbenear-optimalfortracthroughputandfairness.ThealgorithmofIdleSenseisforeachhosttomeasurethemeannumber^niofidleslotsbetweentwotransmissionsinthechannelandtograduallyincreaseitscontentionwindowwhen^niisbelowthedesirablevalueormultiplicativelydecreaseitswindowwhen^niisabovethedesirablevalue.IdleSensemakestheassumptionthat,whenAIMD 63

PAGE 64

4-1 ,wherethedistancebetweenbandcis150m.Supposethecontentionwindowsatthesendersaresettothesamesize.Fig. 4-7 showsthattherateofow(c;d)isfargreaterthanthatof(a;b)becausetheformer'sspatiallocationgivesitabetterchancetoobtainthechannelevenwhenitscontentionwindowisthesame. Whenarouterbecomescongested,packetlossisfeltbyallTCPconnectionsthatpasstherouter.Hence,synchronizedmultiplicativedecreasewillbeperformedatthesenders.WeillustratetheratesoftwoTCPconnectionsovertimeinFig. 4-8 .Theratesarenormalizedsuchthatthecongestionhappenswhentheirsumisequalto1.Initially,theratesaredierent.Ateachmultiplicativedecrease,thetworatesarereducedbythesamepercentageandconsequentlythelargerratewillbereducedbyalargeramount,closingthegapbetweenthetwo,whichwilleventuallyconvergetothesamevalue. 64

PAGE 65

4-1 ,thewirelesslinkshavedierentopportunitiestoobtainthewirelessmediumfortransmission,dependingontheirspatiallocations.FromFig. 4-2 ,weknowthat(c;d)ismorecapableofobtainingthemediumthan(a;b)whenthedistancebetweenbandcisshorterthan250m.Attime6inFig. 4-9 ,whenthecombinedrateofow(a;b)andow(c;d)reachesthechannelcapacity,because(c;d)isabletoobtainthebandwidthitneeds,nodecsendsallitspacketsoutbutnodeaobservesbuerbuildupandtransmissionfailure(withamuchlargerlikelihood).Consequently,adetectschannelcongestionandperformsmultiplicativedecrease,whilecdoesnot.Sincetherateof(a;b)experiencesmultiplicativedecreasemorefrequently,itwillbesmallerthantherateof(c;d). Therstproblemishowtodetectchannelcongestion.Foreachow(i;j),thesenderistoresallarrivalpacketsinarepositorybuerabovetheMAClayer.Itlocallymaintainsatime-dependenttargetrateri;j(t)atwhichpacketsfromtherepositorybuerarereleasedtotheMAClayerfortransmissiontothereceiverj.Theowisbackloggedifthepacketarrivalrateisgreaterthanthetargetratesuchthattherepositoryisnotempty.Thetargetrateofabackloggedowisadditivelyincreasedovertime.TheactualrateatwhichtheMAClayersendsoutpacketsiscalledthesendingrate,whichisboundedbythetargetrate. Whenthesumofthetargetratesofallcontendingowsinthechannelissmallerthanthecapacityofthechannel,all(ormost)packetsreleasedbythesenderstotheMAClayercanbetransmitted.ConsequentlythesenderswillnotobservepersistentlygrowingpacketqueuesattheirMAClayer.However,additiveincreasewilleventuallyimprovethetargetratessuchthattheirsumexceedsthechannelcapacity.Whenthishappens, 65

PAGE 66

Thesecondproblemishowthesenderthatdetectschannelcongestioninformsthecontendingnodessuchthattheycanperformsynchronizedmultiplicativedecrease.Onesolutionisforthesenderanditsreceivertojamthechannelwitharadiosignalforanextendedperiodoftime.Beforejamming,thecontendingnodesareabletotransmitatdecentrates(becausethesumofalltargetrateshasjustpassedthechannelcapacityforasmallamountafterthemostrecentadditiveincrease).Duringjamming,theycanhardlysendoutanypackets,whichgivesthemaclearindicationthatsomeoneisjamming,andtheonlyreasonforjammingisthatchannelcongestionhasbeendetected.Astheirqueuelengthsexceedthethreshold,theywilljoinjamming,whichprovidesadditionalassurancethatallcontendingnodesinthechannelwilllearnthatthechanneliscongested.Althoughthejammingapproachworks,itwastesbandwidth.Insteadofusingadedicatedradiosignal,anodecanjamthechannelwithitsownpackets.Duringjamming,toensurethatthenodeisabletooccupythechannel,wereduceitsminimumcongestionwindowtoasmallfractionofthedefaultsize.Besideswindowreduction,thejammingpacketsareexpectedtofollowthesamecollisionavoidance/resolutionprotocol(suchasDCF)asotherpacketsdo.(Thisiswhatwedoinalloursimulations.) TheAISDprotocolissummarizedasfollows.Aftereachunitoftime,thesenderofabackloggedow(i;j)increasesitstargetrateby Atthisrate,thesenderreleasespacketstoaqueue,fromwhichtheMAClayerpicksuppacketsfortransmission.Inonetimeunit,packetsoftotalsizeri;j(t)willbereleased. 66

PAGE 67

Whenthepacketqueueatnodeiforlink(i;j)exceedsathresholdlength,iclaimsthatthechanneliscongestedandjamsthechannelimmediately.Ifthequotaissucientlylarge,itjamsfortherestofthecurrenttimeunit;otherwise,itjamsforonemoretimeunit.Thejammingisperformedbyreleasingallpacketswithinthequotatothequeueandreducingtheminimumcontentionwindowtoasmallvalue.Multiplicativedecreaseisperformedattheendofthetimeunitduringwhichjammingisperformed. Asasafeguard,multiplicativedecreaseshouldnotbeperformedfortwoconsecutivetimeunits.Theprotocoldoesnotrequiretheclocksofthenodestobesynchronized.Ifanodeisthesenderformultipleows,itperformsmediaaccessandrandombackoindependentlyforeachow.Packetsfordierentowsarequeuedseparately.Considerows(a;b)and(a;c).Suppose(a;b)contendswith(i;j)while(a;c)doesnot.When(i;j)istransmitting,nodeaperformsindependentmediaaccessforitstwoows.Forexample,itmaysendanRTStobandthensetthebackotimerfor(a;b)duetoanRTScollisionatb.Whilewaitingonthetimerfor(a;b),itsendsanRTStocandthendeliversapacketon(a;c). WesimulateAISDonthenetworkofFig. 4-1 withthefollowingadditionalparameters:is5kBps,is25%,thetimeunitisonesecond,thequeue-lengththresholdthattriggersjammingis10packets,andtheminimumcontentionwindowforjammingisonetenthofthedefaultsize.Inthesimulation,eachpacketis1kBlong.WendAISDcanrobustlyensuresynchronizedmultiplicativedecrease.Fig. 4-10 showsthat,usingAISD,theratesofthetwoowsareaboutthesameforanydistancebetweenbandc.Fig. 4-11 showsAISD 67

PAGE 68

ThePISDprotocolissimilartoAISDexceptforhowthetargetratesareincreased:Aftereachunitoftime,thesenderofow(i;j)increasesitstargetrateby TherestoftheprotocolisthesameasAISD.WeproveinthenextsectionthatPISDachievesweightedfairness. WeagainsimulatePISDonthenetworkinFig. 4-1 .Weassignwa;b=3andwc;d=1,andtheresultisshowninFig. 4-12 .Weightedfairnessisachieved.Fig. 4-13 showstheratesofthetwoowswithrespecttotimewhenthedistancebetweenbandcis100m.Clearly,ow(a;b)achievesthreetimestherateofow(c;d)becauseitincreasestherateatthreetimesthespeedofthelatter. 4-8 .Similarly,usingPISD,CSMA/CAwillnotfullyutilizethechannelcapacityrightaftermultiplicativedecrease.Itcanbeeasilyshownthat,intheory,theaveragerateofaowissmallerthantheoptimal 68

PAGE 69

Rightbeforeeachmultiplicativedecrease,thesumofthetargetratesatallcontendingnodesexceedsthechannelcapacitybyasmallamount.Afterthetargetratesaremultiplicativelydecreased,theirsumisbelowthechannelcapacitybyafractionofatmost.Foreachow(i;j),thesenderiremembersitstargetraterightbeforethemostrecentmultiplicativedecrease.Thisrateiscalledthebackgroundrate,whichstaysthesameuntilthenextmultiplicativedecrease.Ourbasicideaisthatwewanttoensurethatallsendersareabletotransmitattheirtargetratesand,ifthereisextrachannelbandwidth,weallowthesenderstocompeteforadditionaltransmissionsuptotheirbackgroundrates.Whenanode'ssendingrateisaboveitstargetrate,itstransmissioniscalledabackgroundtransmission.Whenthesendingrateisbelowthetargetrate,itstransmissioniscalledaregulartransmission.Whenaregulartransmissionofonenodecontendswithabackgroundtransmissionofanother,theformershouldbegivenpriority.Toachievesuchdierentiation,weincreasetheminimumcontentionwindowforbackgroundtransmission. ThePISDprotocolwithbackgroundtransmissionisasfollows.Proportionalincreasesynchronizedmultiplicativedecreaseisperformedonthetargetrateasusual.ButasenderireleasespacketstotheMAClayeratthebackgroundrate(theratebeforethelastmultiplicativedecrease).Thenodealsokeepstrackofthenumberntofbytesthatwouldhavebeenreleasedatthetargetrate.Letbethetimethathaselapsedinthecurrent 69

PAGE 70

WesimulatePISDwithbackgroundtransmissiononthenetworkinFig. 4-1 withaminimumcontentionwindowforbackgroundtransmissiontwicethesizeofthedefaultminimumcontentionwindowforregulartransmission.(Notethatthedefaultvalueforregulartransmissionissetbyns-2basedonthestandardof802.11DCF.)Fig. 4-14 showsthattheowspickuptheextrabandwidthleftbyPISDforadditionalpackettransmission.Thisextrabandwidth,representingonlyasmallfractionofchannelcapacity,isnotregulatedbyproportionalincreasemultiplicativedecrease,andconsequentlyitisunevenlydistributedbetweentheowsbasedontheIEEE802.11DCF. 53 ].Onesolutiontothisproblemistochangethedenitionoffairness.Insteadofensuringafairbandwidthshare,weallocateeachowafairshareofchanneloccupationtime.PISDcanbeadaptedtoservethispurpose.Considerthreecontendingwirelesslinkswhosetransmissionratesare11Mbps,5Mbpsand2Mbps,respectively.Ifwelettheweightofthe11Mbpsowbeone,weshallassigntheweightsofothertwoowstobe5 11and2 11,respectively.Whilethetwoowswillsendatlowerrates,theirtransmissionstakeinverselyproportionallylongertime,resultinginthesamechanneloccupationtimeforthethreeows. 70

PAGE 71

46 ].MuchworkaboutAIMDhasbeenperformedinthecontextofTCP[ 47 ; 48 ; 39 ].Inthissection,weanalyzePISDandshowthatitachievesweightedfairnessafterconvergence.Moreimportantly,wederivetheconvergencetime,thechannelcoverage,andtheconvergenceaccuracywithrespecttoand,andrevealtheperformancetradeothatcanbemadebychangingthesetwoparameters. Whenmultiplicativedecreasehappens,evenifthecombinedtargetrateofallowsmaybegreaterthanthechannelcapacity,itwillbegreateronlybyasmallamountduetothenatureofadditiveincrease.Tosimplifytheanalysis,wetreatthemasequal.APISDperiod,denotedasP,isdenedasthetimebetweentwoconsecutivemultiplicative 71

PAGE 72

W First,wedeterminethevalueofri;j(lP).DuringeachPISDperiod,thetargetrateisrstmultiplicativelydecreasedandthenproportionallyincreased.Hence,forl>0,ri;j(lP)=ri;j((l1)P)(1)+wi;jP 72

PAGE 73

WedenetheconvergencetimeasthetimeittakesforAi;j(l)tobe"-closetoitstargetAi;j.The"-closenessisdenedasfollows:jAi;j(l)Ai;jj

PAGE 74

Wlog1"(Cwi;j Astheows'targetratesareproportionallyincreasedinaPISDperiod,itispossiblethat,rightbeforemultiplicativedecrease,thesumofalltargetratesisslightlygreaterthanthechannelcapacity,inwhichcasenotallpacketscanbedelivered.Westudytheimpactofthiscasebelow. 74

PAGE 75

(1 W+ Puttingalloftheaboveanalysistogether,wecanseethatchoosingthevaluesofandisactuallymakingatradeoamongthreesystemproperties:convergencetime,channelcoverage,andconvergenceaccuracy. 4.3.1 andSection 4.4.2 .Theparametersfor802.11DCFusethedefaultvaluessetbyns-2accordingtotheprotocolstandards.Bydefault,=2kBps,and=25%.WewillstudyhowdierentvaluesforandaectPISD'sperformance.Bydefault,backgroundtransmissionisturnedo. ShowninFig. 4-15 ,ourrstsimulationscenarioconsistsoftwoaccesspoints,aandb,locatedattwonearbybuildings.Nodeasendsdatatothreeclienthosts,h1,h2andh3.Nodebalsosendsdatatothreeclienthosts,h4,h5andh6.Theclientsareevenlyspreadaroundtheaccesspoints.Thelengthofeachwirelesslinkis80m,andthedistancebetweenaandbis480m.Fig. 4-16 (a)showstheowratesundertheIEEE802.11DCF.Whentheratecurvesofseveralowsoverlap,wewillexplainwhichowseachcurverepresentsinbothtextandgurecaption.Underthe802.11DCF,theratesofows(a;h1),(a;h2)and(a;h3)arethesame(thelowercurveintheleftplot)becausenodea

PAGE 76

4.3.1 ),nooverhearing-basedsolutionsworkhere.ThesimulationresultfortheHuang-Bensaouprotocol[ 19 ]isshownFig. 4-16 (b),whichiscomparabletowhatthe802.11DCFproduces. PISDisabletoachievefairnessamongallows,asshowninFig. 4-17 .Startingfromdierentinitialrates,allowsconvergetothesamefairrate.Thetotalthroughputis428.1packetspersecond,comparingwith444.6underthe802.11DCFwithorwithouttheHuang-Bensaouprotocol.Next,weturnonbackgroundtransmission,andtheresultisshowninFig. 4-18 .Someowsachievehigheraveragerates,andthetotalthroughputbecomes455.8packetspersecond.Itishigherthanthethroughputunderthe802.11DCFbecauseofreducedradiocollisions,thankstointermittentreleaseofpacketstotheMAClayeratthebackgroundrate.SincetheadditionalrateacquiredthroughbackgroundtransmissionobscurestheratecurveproducedbyPISD,forpresentationclarity,wewillturnitoinothersimulations. WenowstudyhowandaecttheperformanceofPISD.ThesimulationsconrmtheanalyticalresultsinSection 4.5.1 .First,wedoublethevalueofwhilekeepingthesame,andthesimulationresultinFig. 4-19 showsthattheowratesconvergequicker,whencomparingwithFig. 4-17 .Italsoshowsthattheaverageowrateissmaller,indicatingasmallerchannelcoveragebyPISD(aspredictedinSection 4.5.2 ),andthereforemorebandwidthisallocatedforbackgroundtransmission.Second,wedoublethevalueofwhilekeepingthesame,andthesimulationresultinFig. 4-20 showsthattheowratesconvergequicker,whencomparingwithFig. 4-17 .Italsoshowsthatconvergenceaccuracydecreasesduetothesuddendropintheratesofsomeowsrightbeforemultiplicativedecrease,aspredictedinSection 4.5.3 76

PAGE 77

4-21 ,wemodifythetopologybyturningh2andh6intoserversthatuploaddatatoaccesspointsaandb,respectively.Wesettheservers'weightsto3,andthesimulationresultinFig. 4-22 (a)showsthattherateofaserverisabouttwicetherateofaclient.Onemaynoticethespikesintherateadaptationcurvesinthegure.SuchspikesareexpectedaccordingtoouranalysisinSection 4.5.3 .TheyonlyhappeninthelasttimeunitofaPISDperiodwhentheaggregatedtargetrateofallcontendingowsexceedthechannelcapacity.Whennodesthatdetectchannelcongestionjamthechannelwiththeirpackets,thenodethatdetectscongestionlastmaysendatalowrate,causingadownwardspike.SincethespikesmayonlyhappenattheendofaPISDperiod,itsimpactontheaverageowrateislimited,whichisconrmedbytheanalyticalresultinSection 4.5.3 andthesimulationresultintheleftplot,wheretheaverageratesoftheserverowsare124.0and125.1packetspersecondrespectively,andtheaverageratesoftheclientowsare41.8,42.3,42.4and42.7packetspersecondrespectively.Moreover,Section 4.5.3 showsthatdecreasingwillimproveconvergenceaccuracy(i.e.,reducespikes),whichisconrmedbythesimulationresultinFig. 4-22 (b),whereisreducedbytwothirds. Nextweexpandthenetworktohavefouraccesspointsandtenhosts.Theaccesspointsarelocatedatthecornersofa380m380msquare.Thedistancefromthehoststotheiraccesspointsvariesfrom70mto150m.TheirrelativepositionsareshowninFig. 4-23 .TheratesoftheowsunderPISD,PISDwithbackgroundtransmission(PISD-b),DCF,andtheHuang-Bensaouprotocol(H.-B.)areshowninTable 4-1 .PISDisabletoachievefairnesswhiletheDCFandtheHuang-Bensaouprotocolcannotinthisscenario. OursecondsimulationscenarioisanadhocnetworkshowninFig. 4-24 ,wherevisitorstoacommercialconferencedownloadinformationfromexhibitboothstotheirlaptopsviadirectwirelesslinksthatsharethesamechannel.Thesizeoftheareais400mby600m,andthenodesareplottedintheareabasedontheirassignedcoordinates.The 77

PAGE 78

4-2 .EachrowcontainsoneweightassignmentandthecorrespondingowrateachievedbyPISD.TheresultsdemonstratethegreatexibilityandquantitativeprecisionthatPISDisabletobringintoCSMA/CAnetworks. InPISD,toinsuresynchronizedmultiplicativedecrease,aowjamsitsneighboringowswithfulltransmissioncapabilityafteritdetectsasaturatedchannel.Asaresult,theneighboringowsbeingjammedwillagaindetectasaturatedchannelandjamtheirneighbors.Thisprocessindeedleadstoasynchronizedmultiplicativedecreaseinthewholenetwork.Infact,underPISD,thetransmissionratesoftheowsareboundedbythebottleneckofamultihopnetwork,wherewedenethebottleneckofamultihopnetworkasthecontentiongroupwiththelargestnumberofmutuallycontendingows.Wecanobservethisproblemfromanexamplebelow. AsshowninFig. 4-25 ,thenetworkconsistsofsixows.Thesixowsformtwocontentiongroups.IntherstcontentiongroupS1,ow(h1;h2)onlycontendswithow(h3;h4).InthesecondcontentiongroupS2,theveows(h3;h4),(h5;h6),(h7;h8),(h9;h10),(h11;h12),allcontendwitheachother.Weconductsimulationswithns2tostudytheratesoftheowsachievedbyPISD.Thelengthsofthesixlinksare150m,andothersimulationparametersremainthesameasprevioussections. 78

PAGE 79

4-3 showstheaveragenumbersofpacketspersecondsentoverthesixows.WeseethatPISDachievesfairnessamongalltheows.ContentiongroupS2isthebottleneckofthenetwork,inwhichsixowsmutuallycontend.Forthesesixows,theyallattainequalrates,andthesummationoftheirratesis368.9PPS(packetspersecond),whichisclosetothechannelcapacity WehaveseenthattheproblemofPISDisthatthelowratesinthebottleneckofanetworkwillpropagatetootherpartsofthenetwork.Weexpectanewschedulingschemethatsolvesthisproblemandworksproperlyfornetworkswithmultiplecontentiongroups.Inthefollowingsections,weextendPISDintonewschemesthatareabletoapproximateproportionalfairness. 79

PAGE 80

4.9 ,throughtheoreticalanalysisweshowthattheessencebehindPFSisproportionalfairness. 4-25 getlowrateunderPISD.Supposeatacertaintimeunit,contentiongroupS2issaturatedbutcontentiongroupS1isnot.Notlosinggenerality,supposeow(h5;h6)istherstonethatdetectschannelsaturation.BythedesignofPISD,nodeh5willjamthechannelbysendinganumberofpacketswithasmallcontentionwindowsize.Then,ow(h3;h4)willfeelthejammingthroughitsincreasingqueuelength.Notethatthereisnodierencebetweendetectingajamminganddetectingthechanneltobesaturated.Oncethejammingisdetectedbyh3,italsoperformsthesamething|jammingthechannel.Thejammingmadebyh3willeventuallycause(h1;h2)toexecuteamultiplicativedecrease,althoughatthistimeS1isnotreallysaturated. Arstintuitiononsolvingtheaboveproblemistosimplyreducethestrengthofeachjamming.Thisisreasonable,althoughitstillhasproblemsaswewillshowlater.Theideaisthat,whenacontentiongroupSkissaturated,anyow(i;j)inSktriestojamthechannelwithaproperstrengththatisjustenoughtomaketheowsinSkfeelthejamming,butwillnotmakeotherneighborsof(i;j)feelit.Thus,wechangethejammingschemeofPISDtothefollowing: 80

PAGE 81

whereandaresystemparameters,andwi;jistheweightofow(i;j).Thedefaultvalueofanywi;jis1.Itisworthofnotingthat,asasafeguardthatisalsointheoriginalPISD,multiplicativedecreaseshouldnotbeperformedfortwoconsecutivetimeunits. WenametheaboverevisedprotocolasPISD-RS(PISDwithReducedjammingStrength).ItseectivenesscanbeimmediatelyseenfromasimulationagainonthenetworkshowninFig. 4-25 .Inthesimulation,=10kBps(equivalentto10packetspersecond),=0:5,and=0:2.ResultsareshowninTable 4-4 .ComparedwithTable 4-3 ,therateattainedbyow(h1;h2)ismuchincreased,from74PPSto275.5PPS.Thecombinedratesoftheowsineachofthecontentiongroups(S1andS2)arealsoincreased,whichshowsthatthechannelbandwidthisnowbetterutilizedthentheoriginalPISD.Infact,aswewillprovelater,PISD-RSapproximatesproportionalfairness.Asetoftheoreticalvaluesgivenbyproportionalfairnessareshowninthethirdcolumnofthetable,assumingthecapacityofeachcontentiongrouptobe450PPS.Notethatthetheoreticalvaluesarejusttogiveusasenseonproportionalfairness.ForapurelydistributedalgorithmlikePISD-RSinwhichthereismerelynocommunicationorcollaborationsamongthehosts,itisveryhardtostrictlyachievethetheoreticalvalues.AlthoughtheratesattainedbyPISD-RSarelowerthenthetheoreticalvaluesforvariousextentsduetointerferencesinrealprotocolexecution,theystillshowaconsistencytotheproportionalfairness.Asabaseline,intheforthcolumnofthetable,weshowtheratesoftheowsattainedunderordinaryIEEE802.11DCF.Weseethatverysevereunfairnessexists.Infact,(h3;h4)canhardlytransmitanypackets. 81

PAGE 82

Westilluseasimulationtoshowtheproblem.Wetakeawayow(h1;h2)fromthenetworkshowninFig. 4-25 ,andhencealltheremainingowsareinacommoncontentiongroup,throughwhichwecanbetterseetheproblem.ThenewnetworkisshowninFig. 4-26 .Clearly,ifsynchronizedmultiplicativedecreaseisalwaysguaranteed,theveowsshouldgainequalrates.However,thesimulationresultshowsthattheratesoftheows(h3;h4),(h5;h6),(h7;h8),(h9;h10),and(h11;h12)attainedbyPISD-RSare47.3,86.6,84.2,89.3,and90.9packetspersecond,respectively.Theresultindicatesthat(h3;h4)sometimesmakesunsuccessfuljammingsandperformsmultiplicativedecreasesonitsown.Theproblemisresultedfromaninsucientjammingstrength. Canweremedytheproblemsimplybyincreasingthevalueofsothatthejammingstrengthisincreased?Unfortunately,theanswerisno.BecauseunderPISD-RS,duringasynchronizedmultiplicativedecreaseinacontentiongroup,everyowindeedperformsajamming.AssumingthatthecombinedrateoftheowsbeforethemultiplicativedecreaseisapproximatelyequaltothechannelcapacityC,thetotaljammingstrengthisaboutC.Increasingthevalueofdirectlyleadstoalargertotaljammingstrengthandwilllikelypropagatethejammingtoneighboringcontentiongroups,whichisjustthesameproblemthattheoriginalPISDsuersfrom. Ontheotherhand,aswehaveseen,keepingasmallvaluemayresultaninsucientstrengthforasinglejamming.BacktotheexampleofFig. 4-26 ,assumingthatthetargetrateofow(h3;h4)beforeperformingajammingis1 5C,thejammingstrengthis1 25C,if 82

PAGE 83

Thoughtheintuitionisstraightforward,theimplementationisnot.Supposeow(i;j)istherstonethatdetectsasaturatedchannelandwantstoinitiateasynchronizedmultiplicativedecreaseinasaturatedcontentiongroup.(i;j)mustbysomemeansnotifytheotherowsinthecontentiongroup.Forthoseowsbeingnotied,wewantthemtoonlyperformmultiplicativedecreasesbutnotanyadditionaljammings.Tomeetthisrequirement,weintroduceatwo-phasejammingscheme.Intherstphase,therstowthatdetectschannelsaturationandwantstojamthechannelclaimsitselfastheleadertoallitsneighboringows.Inthesecondphase,theleaderjamsthechannel,whileitsneighborstrytodetectthejammingbuttheywillnotjamthechannelagain.Detailedoperationsaredepictedbelow. Intherstphase,ifaow(i;j)detectsthatitsqueuelengthpassesaconstantthreshold1,itstartstoclaimitselfasthejamleaderinthecurrenttimeunit.Toclaimtobetheleader,(i;j)conductsanoisejamming,whichisdierentfromaregularjammingthatwehaveseen.Forregularjammings,nodesjustincreasetheirtargetratesanddecreasethecontentionwindowsize,andallpackettransmissionsstillfollowtheCSMA/CAprotocol.Inanoisejamming,nodeirstsignalsnodejwithanoisejammingbitcarriedinacontrolpacketthatistransmittedwithasmallcontentionwindow.Afterthesignalisreceivedbyj,bothiandjjamsthechannelwithnoiseforacertainperiod 83

PAGE 84

Inthesecondphase,theleaderjamsthechannelwithastrengthofC,bywhichwemeantheleadertemporarilyincreaseitstargetratefromri;j(t)tori;j(t)+C.Still,issetto0.2inoursimulations.Notethat,beingdierentfromPISD-RS,herethejamstrengthistimesthechannelcapacityCinsteadofthetargetrateoftheowitself.Afterjammingthechannel,theleadermakesamultiplicativedecreaseattheendofthetimeunit.FortheMDcandidates,theyusethesamejammingdetectionschemethatisusedinPISD-RS.IfthequeuelengthofaMDcandidatepassesaconstantthreshold2(normally,2issmallerthan1),itmakesamultiplicativedecreaseattheendofthetimeunit.Otherwise,thenodedoesnothing.Forallnodes,theirrolesofbeingleadersorMDcandidatesareclearedatthenexttimeunit. Wenametheaboveredesignedsolutionwithatwo-phasejammingschemePFS(ProportionalFairScheduling).Exceptthejammingscheme,theremainingAIMDrateadaptationpartofPFSisthesameasPISD-RS.WecanunderstandhowPFSworksthroughanexampleagainonthenetworkshowninFig. 4-25 .Supposeatthebeginningoftimeunitt,contentiongroupS2issaturated(thetotalrateoftheveowsinS2isalmostC),whileatthesametimecontentiongroupS1isnotsaturated.Alsosupposeow(h3;h4)rstdetectsthatitsqueuelengthpasses1.Notethat(h3;h4)ismorelikelytodetectchannelsaturationthanotherowsbecauseoftworeasons.First,(h3;h4)istheonlyowinthenetworkthatbelongstobothofthetwocontentiongroups.Second,duetolocationdependantcontentionsandthehiddenterminalproblem,allthefourowstotherightof(h3;h4)havepriorityonaccessingthechannelthan(h3;h4)[ 35 ; 19 ].Bythe 84

PAGE 85

4-5 .Inthesimulation,Tnoise=0.016seconds,=0.2,1=30packets,2=10packets.ComparedwithPISD-RS,therateoftheweakestow:(h3;h4)isincreased.Infact,theows'ratesattainedbyPFSbetterapproximatethetheoreticalvaluesofproportionalfairnessshowninTable 4-4 Next,weshowthattheproblemofPISD-RSisavoidedbyPFS.WerunasimulationonthenetworkofFig. 4-26 underPFS.Theresultedratesoftheows(h3;h4),(h5;h6),(h7;h8),(h9;h10),and(h11;h12)are72.4,74.8,87.5,88.3,and75.0packetspersecond,respectively.UnlikePISD-RS,alltheveowsgainsimilarratesnowunderPFS. WethentesttheweightedfairnessachievedbyPFS.Wechangetheweightofow(h3;h4)to2,andtheweightsofallotherowsstillremainthedefaultvalue:1.Simulationshowsthattheratesofthesixowsare122.8,61.8,61.7,61.4,and73.7packetspersecond.WeseethattheirratesattainedunderPFSareinproportiontotheirweights. WestressthatPFSissuitableformultihopwirelessnetworksormultipleWLANswithmultiplecontentiongroups,andtheratesattainedbyPFSapproximateproportionalfairness.Inthefollowingsections,weprovetheabovefactsthroughboththeoreticalanalysisandadditionalsimulations. 85

PAGE 86

54 ]. Weformulatetheproblemasfollows.AnetworkismodeledasGN=(VN;EN),whereVNrepresentsthesetofallnodesinthenetwork,andENrepresentsthesetofallsingle-hopMACows.ThecontentionrelationsamongtheowscanbesummarizedusingacontentiongraphGC=(VC;EC)basedonthenetworkgraphGN.Hereeveryowen2ENhasacorrespondingvertexvi2VC,hencejENj=jVCj.AnypairofverticesinGChasanedgeconnectingthemifandonlyifthecorrespondingtwoowsinGNcontendwitheachother.Asubgraphiscalledacliqueifeverypairofverticesinthesubgraphhasanedgebetweenthem.Amaximalcliqueisacliquethatisnotcontainedinanyotherclique.Forsimplicity,intherestofthissectionweusethetermcliquetodenotemaximalclique.WeconsiderthecontentiongraphGCandassumethattheresourceisdesignatedtoeveryclique. Wecanuseaconvexoptimizationmodeltodescribethenetwork.Theconstraintsaredeterminedbythenetwork'stopology,whiledierentfairnessobjectivescanbeachievedbydierentutilityfunctions.Accordingtotheoptimizationproblem,wehavearateupdatefunctionusingthegradientdecentmethod.Bycomparingtheupdatefunction 86

PAGE 87

SupposeaconcavefunctionUi(xi)istheutilityfunction,wherexi0denotestherateofaow.Theoptimizationproblemcanbeformalizedasfollows:maxxiXUi(xi) (4{4)subjecttoXi2KjxiC 4{5 )representsthejthclique.Theseconstraintsmeanthat,foreachclique,thesummationrateofalltheowsinthatcliquecannotexceedthecapacityC.Duetothecontinuousandtheconcavepropertiesoftheobjectivefunctionandthecompactnessoftheconstraints,anoptimalsolutionexists.Lettingx(t)tobetheprimalvariableforeachowandp(t)tobethedualvariableforeachclique,wehavetheLagrangiandual:L(x;p)=XUi(xi)+Xjpj(CXi2Kjxi): Sincetheobjectivefunctionisconcaveandtheconstrainsarelinear,strongdualityholds.Accordingtothestrongdualitytheory,wehavethefollowing:x=argmaxx0L(x;p) (4{8) Herexistheoptimalsolutionfortheprimalproblemandpistheoptimalsolutionforthedualproblem.Notethat,herethedualvariablepcanbeinterpretedastheshadowpricesoftheconstraints.Eachpjindicatesthetensionofeachclique.Whentheclique'scapacityhasbeenalmostusedout,thepricepjishigh;ontheopposite,whentheclique's 87

PAGE 88

Heresi(xi)isastepsize.Itcanbeaconstantorafunctionofxi.Usually,thisfunctionisalinearfunctionofxi. IntheAIMDalgorithmusedinPFS(andPISD-RS)wehavexi(t+1)=8><>:xi(t)+wiifPi2Kj
PAGE 89

(4{14) Equations( 4{13 )and( 4{14 )areforthepositiveandnegativepartsrespectively.TosatisfyEquation( 4{14 ),weshouldlet then or Hereisaconstantfactor.Theequalityofthenegativepartsshowsthat,whentheconstraintsforsomecliquesbecometighterandthedualpricesbecomehigher,theowsinthesecliquesperformmultiplicativedecreasesmorefrequently. ByapplyingEquation( 4{16 )intoEquation( 4{13 ),weobtainthat: whereDisaconstant.Sincetheutilityfunctionisalogarithmfunction[ 39 ],proportionalfairnessisachieved. 4.7 and 4.8 ,buttheyareinrathersmallnetworks.Inthissection,weconstructarelativelylargenetworkandperformsimulationsonit.Werevisedns2(v2.32)[ 36 ]toimplementPISD-RS,andPFSontopoftheIEEE802.11bDCF.TheparametersforDCFusethedefaultvaluessetbyns-2accordingtotheprotocolstandards.Thetransmissionrangeis250meters,andthecarrier 89

PAGE 90

ThenetworkthatwebuiltisshowninFig. 4-27 .Thereisanodeateachofthecrossingpointsofa9by9grid.Inthegrid,thedistancebetweenanytwoadjacent(horizontalorvertical)nodesis200meters.Thenetworkconsistsof23MACowsasshowninthegure.Contentionisdeterminedbythecarriersensingrange.Forexamples,owf15contendswithf9,f10,f13,f14,f16,f17,f18,andf19. WerunIEEE802.11DCF,PISD,PISD-RS,andPFSonebyoneonthenetwork,andthesimulationresultsareshowninFig. 4-28 .First,wesee802.11DCFhasseverefairnessproblem.Someowsgainextremelyhighrates,whilesomeowsarestarved.Inthe23ows,f8,f15,f16,f17,f20,andf21,areindeedgettingazero(ornearlyzero)throughput,whichshowsthat802.11DCFistotallyunacceptable.WethenruntheoriginalPISDprotocol,underwhichallowsgotsimilarratesaround60packetspersecond.ThisresultisconsistenttoourstudyontheproblemofPISDinSection 4.7 .BecauseunderPISDmultiplicativedecreasesaresynchronizedthroughoutthewholenetwork,manyowscannotfullyutilizetheirlocalchannelcapacity.TheresultsgivenbyPISD-RSandPFSdonothavethisproblem,wheresomeowsgainmuchhigherratesthanthoseinPISD,resultingamuchbetterchannelcapacityutilization.Basically,bothPISD-RSandPFSworkwellinthisnetworktopology.PFSslightlyoutperformsPISD-RS,sincesomeveryweakows,suchasf8,f11,f15,andf20,gainhigherratesunderPFS.Thereasonisthat,underPISD-RSowswithweakchannelaccessabilityarelikelytofailinchanneljammings. Finally,wewanttotakeabriefdiscussionontheissueoftotalthroughput.Thetotalrateofallthe23owsin802.11DCFishigherthanthoseinPISD-RSandPFS.Therearetworeasons.First,fairnessisindeedacontraryobjectivetototal 90

PAGE 91

91

PAGE 92

Flowratesachievedbydierentprotocols. owf1f2f3f4f5f6f7f8f9f10 PISD42.743.243.743.743.442.843.743.743.743.6PISD-b43.045.648.143.048.846.245.943.446.146.0DCF74.755.199.751.451.415.315.315.340.840.8H.-B.18.617.236.835.535.547.547.547.584.084.0 Table4-2. Underdierentweightassignments,owratesarealwaysproportionaltoowweights. owf1f2f3f4f5f6f7f8 weight11111111rate53.351.953.253.353.153.453.353.0 weight12111121rate43.482.141.643.441.741.782.543.4 weight12112121rate38.975.238.638.977.238.977.3138.7 weight11121211rate43.641.242.986.743.486.643.143.3 weight21311112rate72.435.4105.535.836.236.336.072.3 weight12141411rate28.455.530.9112.830.9112.630.827.8 Table4-3. FlowratesachievedbyPISD. FlowRate (h1;h2)74.0(h3;h4)73.9(h5;h6)73.5(h7;h8)73.6(h9;h10)73.9(h11;h12)74.0 92

PAGE 93

FlowratesachievedbyPISD-RS,comparedwithproportionalfairnessandbaseline802.11DCF. FlowPISD-RSP-Fair802.11 (h1;h2)275.5375.0436.7(h3;h4)32.975.01.2(h5;h6)81.793.75114.5(h7;h8)98.093.75118.1(h9;h10)96.593.75112.3(h11;h12)98.793.75115.8 Table4-5. FlowratesachievedbyPFS. FlowRate (h1;h2)223.5(h3;h4)49.7(h5;h6)90.3(h7;h8)92.0(h9;h10)86.2(h11;h12)92.3 93

PAGE 94

Networkoftwoows,(a;b)and(c;d). Figure4-2. Ratesoftwoowswithrespecttothedistancebetweenbandc.Thedistancefromatobandthatfromctodareboth150m. Figure4-3. Manycontendingnodescannotbeoverheardbyi. 94

PAGE 95

Ingeneral,Huang-Bensaouprotocoldoesnotworkifanyoneofthecontendinglinkscannotbeoverheard. Figure4-5. AdditiveIncreaseMultiplicativeDecrease:multiplicativedecreaseoccursupontransmissionfailure. Figure4-6. AdditiveIncreaseMultiplicativeDecrease:multiplicativedecreaseoccurswhenbueroccupancypassesacertainthreshold. Figure4-7. Idlesense:Thesamecontentionwindowsizedoesnotensurefairness. 95

PAGE 96

SynchronizedmultiplicativedecreaseinTCPachievesfairness. Figure4-9. UnsynchronizedmultiplicativedecreaseinCSMA/CAcannotachievefairness. Figure4-10. SynchronizedmultiplicativedecreaseequalizestheowratesforthenetworkinFig. 4-1 Figure4-11. RatesoftwocontendingowsunderAISDwithrespecttotime. 96

PAGE 97

Givenwa;b=3andwc;d=1,underPISD,therateofow(a;b)isaboutthreetimesthatofow(c;d). Figure4-13. RatesoftwocontendingowsunderPISDwithrespecttotime.wa;b=3,wc;d=1,andthedistancefrombtocis100m. Figure4-14. Backgroundtransmissionwillutilizesomeunusedchannelbandwidthforpackettransmission. 97

PAGE 98

Networktopology (a) (b) Figure4-16. (a):FlowratesunderIEEE802.11DCF.Thelowercurveshowstheratesofows(a;h1),(a;h2)and(a;h3),whicharethesame.Theuppercurveshowstheratesofows(b;h4),(b;h5)and(b;h6),whicharethesame;(b):FlowratesunderHuang-Bensaouprotocol.Similarly,thelowercurveshowstheratesofows(a;h1),(a;h2)and(a;h3).Theuppercurveshowstheratesoftheotherthreeows. 98

PAGE 99

ProportionalIncreaseSynchronizedMultiplicativeDecreaseachievesfairnessamongallows. Figure4-18. Flowratesareslightlyimprovedwithbackgroundtransmission.. Figure4-19. Increasingthevalueofreducesbothconvergencetimeandchannelcoverage.. Figure4-20. Increasingthevalueofreducesbothconvergencetimeandconvergenceaccuracy. Figure4-21. Hostsh2andh6arechangedtoservers. 99

PAGE 100

(b) Figure4-22. (a)Whentheserverseachhaveweight3andtheclientseachhaveweight1,therateofaserveristhreetimesthatofaclient;(b)Downwardspikesarereducedwhenisdecreased. Figure4-23. FourWLANsnetworktopology Figure4-24. Adhocnetworktopology 100

PAGE 101

Multihopnetworkwithsixows. Figure4-26. Multihopnetworkwithveows. Figure4-27. Multihopwirelessnetworkwith23MACows. 101

PAGE 102

Flowratesattainedunderdierentapproaches 102

PAGE 103

Twoimportantproblemsinwirelessnetworksarestudied.Theyareend-to-endservicedierentiationandrateassuranceformultihopows,andfairnessforsingle-hopMAC-layerlinks. Wepresentanewadaptiveratecontrolfunctionbasedontwonovelprotocols,dynamicweightadaptation(DWA)andproportionalpacketscheduling(PPS),whichtogetherenableprioritizedrateassuranceandsophisticatedbandwidthdierentiationamongend-to-endowsinmultihopwirelessnetworks.Thenewadaptivefunctionrepresentsaparadigmchangeinne-levelbandwidthmanagementwithoutresourcereservationandadmissioncontrol.Threeobjectivesareachieved:rateassuranceobjective,bandwidthdierentiationobjective,andno-starvationobjective. WedemonstratethatCSMA/CAnetworks,includingIEEE802.11networks,haveseverefairnessproblemintheirMAClayer.Mostexistingsolutionsrequirenodestooverheartransmissionsmadebytheirneighbors,andtheeectivenessofthesesolutionsmaybeverylimitedwhenthecarriersensingrangeandtheinterferencerangearemuchlargerthanthetransmissionrange.Weproposeanewratecontrolprotocol,PISD,whichisabletoprovidefairnesswithonlylocalizedoperationsandwithoutrelyingonoverhearing.Moreover,asenhancementstoPISD,PISD-RSandPFSareproposedtoachieveproportionalfairnessinnetworksconsistingofmultiplecontentiongroups. 103

PAGE 104

[1] A.BanchsandX.Perez,\ProvidingThroughputGuaranteesinIEEE802.11WirelessLANs,"Proc.IEEEWCNC,2002. [2] S.Shah,K.Chen,andK.Nahrstedt,\DynamicBandwidthManagementinSingle-HopAdHocWirelessNetworks,"Proc.IEEEPERCOM,2003. [3] C.-T.ChouandK.G.Shin,\AnalysisofAdaptiveBandwidthAllocationinWirelessNetworkswithMultilevelDegradableQualityofService,"IEEETransactionsonMobileCompuping,vol.3,no.1,2004. [4] P.Gupta,Y.Sankarasubramaniam,andA.L.Stolyar,\Random-AccessSchedulingwithServiceDierentiationinWirelessNetworks,"Proc.IEEEINFOCOM,2005. [5] S.SarkarandL.Tassiulas,\End-to-endBandwidthGuaranteesThroughFairLocalSpectrumShareinWirelessAd-hocNetworks,"Proc.IEEEConferenceonDecisionandControl,2003. [6] A.Veres,A.Campbell,M.Barry,andL.Sun,\SupportingServiceDierentiationinWirelessPacketNetworksUsingDistributedControl,"IEEEJSAC,Vol.19,No.10,2001. [7] S.KangandM.Mutka,\ProvisioningServiceDierentiationinAdHocNetworksbyTheModicationofBackoAlgorithm,"Proc.IEEEICCCN,2001. [8] G.Ahn,A.Campbell,A.Veres,andL.Sun,\SWAN:ServiceDierentiationinStatelessWirelessAdHocNetworks,"Proc.IEEEINFOCOM,2002. [9] K.Karenos,V.Kalogeraki,andS.V.Krishnamurthy,\ARateControlFrameworkforSupportingMultipleClassesofTracinSensorNetworks,"Proc.IEEEReal-TimeSystemsSymposium,2005. [10] \IEEEStandardforTelecommunicationsandInformationExchangeBetweenSystems-LAN/MANSpecicRequirements-Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)Specications:MediumAccessControl(MAC)QualityofServiceEnhancements.IEEEStd802.11e,"Nov2005. [11] Y.YangandR.Kravets,\Contention-AwareAdmissionControlforAdHocNetworks,"IEEETransactionsonMobileComputing,vol.4,no.4,2005. [12] M.Kazantzidis,M.Gerla,andS.-J.Lee,\PermissibleThroughputNetworkFeedbackforAdaptiveMultimediainAODVMANETs,"Proc.IEEEICC,2001. [13] G.Bianchi,\PerformanceAnalysisoftheIEEE802.11DistributedCoordinationFunction,"IEEEJSAC,vol.18,no.3,2000. 104

PAGE 105

F.Cali,M.Conti,andE.Gregori,\DynamicTuningoftheIEEE802.11ProtocoltoAchieveaTheoreticalThroughputLimit,"IEEE/ACMTransactionsonNetworking,vol.8,no.6,2000. [15] B.LiandR.Battiti,\PerformanceAnalysisofAnEnhancedIEEE802.11DistributedCoordinationFunctionSupportingServiceDierentiation,"Int'lWork-shoponQualityofFutureInternetService,2003. [16] Y.YangandR.Kravets,\ThroughputGuaranteesforMulti-priorityTracinAdHocNetworks,"ElsevierAdHocNetworksJournal,vol.5,no.2,2007. [17] Y.Jian,S.Chen,L.Zhang,andY.Fang,\NewAdaptiveProtocolsforFine-LevelEnd-to-EndRateControlinWirelessNetworks,"Proc.IEEEICNP,2008. [18] B.Bensaou,Y.Wang,andC.Ko,\FairMediumAccessin802.11BasedWirelessAdHocNetworks,"Proc.ACMMOBIHOC,2000. [19] X.HuangandB.Bensaou,\OnMax-MinFairnessandSchedulinginWirelessAdHocNetworks:AnalyticalFrameworkandImplementation,"Proc.ACMMOBIHOC,2001. [20] N.H.Vaidya,P.Bahl,andS.Gupta,\DistributedFairSchedulinginaWirelessLAN,"Proc.ACMMOBICOM,2000. [21] H.Luo,J.Cheng,andS.Lu,\Self-CoordinatingLocalizedFairQueueinginWirelessAdHocNetworks,"IEEETransactionsonMobileCompuping,vol.3,no.1,2004. [22] S.ChenandZ.Zhang,\LocalizedAlgorithmforAggregateFairnessinWirelessSensorNetworks,"Proc.ACMMobicom,2006. [23] A.RaoandI.Stoica,\AnOverlayMacLayerfor802.11Networks,"Proc.ACMMOBISYS,2005. [24] S.Cai,Y.Liu,andW.Gong,\AnalysisofanAIMDbasedCollisionAvoidanceProtocolinWirelessDataNetworks,"Proc.IEEECDC,2003. [25] M.Heusse,F.Rousseau,R.Guillier,andA.Duda,\IdleSense:AnOptimalAccessMethodforHighThroughputandFairnessinRateDiverseWirelessLANs,"Proc.ACMSIGCOMM,2005. [26] Q.Xue,W.Gong,andA.Ganz,\ProportionalServiceDierentiationinWirelessLANsUsingSpacing-basedChannelOccupancyRegulation,"MobileNetworksandApplications,vol.11,no.2,2006. [27] Y.Grunenberger,M.Heusse,F.Rousseau,andA.Duda,\ExperiencewithanImplementationoftheIdleSenseWirelessAccessMethod,"Proc.CoNEXT,2007. [28] Y.JianandS.Chen,\CanCSMA/CAnetworksbemadefair?"Proc.ACMMOBI-COM,2008. 105

PAGE 106

H.Luo,S.Lu,andV.Bhurghawn.,\ANewModelforPacketSchedulinginMultihopWirelessNetworks,"Proc.ACMMOBICOM,2000. [30] L.TassiulasandS.Sarkar,\MaxminFairSchedulinginWirelessNetworks,"Proc.IEEEINFOCOM,2002. [31] H.Luo,P.Medvedev,J.Cheng,andS.Lu.,\ASelf-CoordinatingApproachtoDistributedFairQueueinginAdHocWirelessNetworks,"Proc.IEEEINFOCOM,2001. [32] Y.WangandB.Bensaou,\AchievingFairnessinIEEE802.11DFWMACwithVariablePacketLengths,"Proc.IEEEGLOBECOM,2001. [33] B.Li,\End-to-EndFairBandwidthAllocationinMulti-HopWirelessAdHocNetworks,"Proc.IEEEICDCS,2005. [34] T.Nandagopal,T.Kim,X.Gao,andV.Bharghavan,\AchievingMACLayerFairnessinWirelessPacketNetworks,"Proc.ACMMOBICOM,2000. [35] V.Bharghavan,A.Demers,S.Shenker,andL.Zhang,\MACAW:AMediaAccessProtocolforWirelessLANs,"Proc.ACMSIGCOMM,1994. [36] TheNetworkSimulator-ns-2, http://www.isi.edu/nsnam/ns/ [37] M.Barry,A.Campbell,andA.Veres,\DistributedControlAlgorithmsforServiceDierentiationinWirelessPacketNetworks,"Proc.IEEEINFOCOM,2001. [38] C.R.LinandM.Gerla,\MACA/PR:AnAsynchronousMultimediaMulti-HopWirelessNetwork,"Proc.IEEEINFOCOM,1997. [39] F.Kelly,A.Maulloo,andD.Tan,\RateControlinCommunicationNetworks:ShadowPrices,ProportionalFairnessandStability,"JournaloftheOperationalResearch,vol.49,1998. [40] V.Jacobson,K.Nichols,andK.Paduri,\AnExpeditedForwardingPHB,"IETFNetworkWorkingGroupRFC2598,June1999. [41] J.Heinanen,F.Baker,W.Weiss,andJ.Wroclawski,\AssuredForwardingPHBGroup,"IETFNetworkWorkingGroupRFC2598,June1999. [42] L.Zhang,S.Deering,D.Estrin,S.Shenker,andD.Zappala,\RSVP:ANewResourceReSerVationProtocol,"IEEENetwork,Sep1993. [43] H.Zhang,\ServiceDisciplinesforGuaranteedPerformanceServiceInpacket-SwitchingNetworks,"Proc.IEEE,vol.83,no.10,1995. [44] S.ChenandN.Yang,\CongestionAvoidancebasedonLight-WeightBuerManagementinSensorNetworks,"IEEETransactionsonParallelandDistributedSystems,SpecialIssueonLocalizedCommunicationandTopologyProtocolsforAdHocNetworks,vol.17,no.9,Sep2006. 106

PAGE 107

S.SarkarandL.Tassiulas,\End-to-endBandwidthGuaranteesThroughFairLocalSpectrumShareinWirelessAdhocNetworks,"IEEETransactionsonAutomaticControl,vol.50,no.9,September2005. [46] D.M.ChiuandR.Jain,\AnalysisoftheIncreaseandDecreaseAlgorithmsforCongestionAvoidanceinComputerNetworks,"ComputerNetworksandISDNSystems,vol.17,pp.1{14,1989. [47] Y.R.YangandS.S.Lam,\GeneralAIMDCongestionControl,"Proc.IEEEICNP,2000. [48] S..Jin,L.Guo,I..Matta,andA.Bestavros,\TCP-friendlySIMDCongestionControlandItsConvergenceBehavior,"Proc.IEEEICNP,2001. [49] J.CrowcroftandP.Oechslin,\DierentiatedEnd-to-EndInternetServicesUsingaWeightedProportionalFairSharingTCP,"ACMSIGCOMMComputerCommunica-tionReview,vol.28,no.3,pp.53{69,1998. [50] C.-Y.Wan,S.B.Eisenman,andA.T.Campbell,\CODA:CongestionDetectionandAvoidanceinSensorNetworks,"Proc.ACMSenSys'03,November2003. [51] T.He,J.A.Stankovic,C.Lu,andT.F.Abdelzaher,\SPEED:AStatelessProtocolforReal-TimeCommunicationinSensorNetworks,"Proc.ICDCS,May2003. [52] K.Xu,M.Gerla,andS.Bae,\HoweectiveistheIEEE802.11RTS/CTShandshakeinadhocnetworks?"Proc.IEEEGLOBECOM,2002. [53] M.Heusse,F.Rousseau,G.Berger-Sabbatel,andA.Duda,\PerformanceAnomalyof802.11b,"Proc.IEEEINFOCOM,2003. [54] S.Low,\ADualityModelofTCPandQueueManagementAlgorithms,"IEEE/ACMTransactionsonNetworking,vol.11,no.4,pp.525{536,August2003. 107

PAGE 108

YingJianwasborninBeijing,China,in1979.HereceivedhisB.E.andM.E.degreesincomputerscienceandtechnologyfromTsinghuaUniversity,China,in2001and2004,respectively.In2004,hejoinedtheDepartmentofComputerandInformationScienceandEngineeringattheUniversityofFlorida,topursuehisPh.D.degree.HisadvisorisDr.ShigangChen.Hisresearchfocusedonqualityofserviceinwirelessnetworksandnetworksecurity. 108