<%BANNER%>

Application of Trianionic Pincer Ligands to Reactions Involving Group VI Alkylidynes, Metal-Metal Multiple Bonds, and Gr...

Permanent Link: http://ufdc.ufl.edu/UFE0022726/00001

Material Information

Title: Application of Trianionic Pincer Ligands to Reactions Involving Group VI Alkylidynes, Metal-Metal Multiple Bonds, and Group IV Amides
Physical Description: 1 online resource (144 p.)
Language: english
Creator: Peloquin, Andrew
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In an effort to isolate a pincer-support tungsten alkylidyne, several new tungsten alkylidenes and a ditungsten compound have been isolated, supported by the previously reported OCO pincer ligand 3,3?-di-tert-butyl-2,2?-di-(hydroxy-kappa-O)-1,1?:3?,1?-terphenyl-2?-yl-kappa-C2? (tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2C(CH3)3)(CC(CH3)3) (OAr= 2,6-diisopropylphenoxide) in benzene, the alkylidene complex tBuOCOW(=CHC(CH3)3)(O-2,6-iPr2-C6H3) (3) results and was characterized by a combination of one and two dimensional NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. To aid in the final ? abstraction, W(CH2C(CH3)3)3(CC(CH3)3) was next combined with 1, but the reaction resulted in a complicated mixture of products. From this mixture, two closely related structural isomers of the form {tBuOCO(CH3)3CCH=}W(?-tBuOCHO)W{=CHC(CH3)3tBuOCO} (4 and 5) were isolated. This bridged, dinuclear complex was analyzed by single-crystal X-ray crystallography. Finally, the reaction of (NMe2)3WW(NMe2)3 with two equivalents of 1 results first in tBuOCHO(NMe2)WW(NMe2)tBuOCHO (7) and after prolonged heating, tBuOCHOW(?-NMe2)2(?-O)WtBuOCHO (8). These complexes were analyzed by a combination of NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially represents a rare example of the oxidative addition of water to an early transition metal.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Andrew Peloquin.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022726:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022726/00001

Material Information

Title: Application of Trianionic Pincer Ligands to Reactions Involving Group VI Alkylidynes, Metal-Metal Multiple Bonds, and Group IV Amides
Physical Description: 1 online resource (144 p.)
Language: english
Creator: Peloquin, Andrew
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: Chemistry -- Dissertations, Academic -- UF
Genre: Chemistry thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In an effort to isolate a pincer-support tungsten alkylidyne, several new tungsten alkylidenes and a ditungsten compound have been isolated, supported by the previously reported OCO pincer ligand 3,3?-di-tert-butyl-2,2?-di-(hydroxy-kappa-O)-1,1?:3?,1?-terphenyl-2?-yl-kappa-C2? (tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2C(CH3)3)(CC(CH3)3) (OAr= 2,6-diisopropylphenoxide) in benzene, the alkylidene complex tBuOCOW(=CHC(CH3)3)(O-2,6-iPr2-C6H3) (3) results and was characterized by a combination of one and two dimensional NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. To aid in the final ? abstraction, W(CH2C(CH3)3)3(CC(CH3)3) was next combined with 1, but the reaction resulted in a complicated mixture of products. From this mixture, two closely related structural isomers of the form {tBuOCO(CH3)3CCH=}W(?-tBuOCHO)W{=CHC(CH3)3tBuOCO} (4 and 5) were isolated. This bridged, dinuclear complex was analyzed by single-crystal X-ray crystallography. Finally, the reaction of (NMe2)3WW(NMe2)3 with two equivalents of 1 results first in tBuOCHO(NMe2)WW(NMe2)tBuOCHO (7) and after prolonged heating, tBuOCHOW(?-NMe2)2(?-O)WtBuOCHO (8). These complexes were analyzed by a combination of NMR spectroscopy, single-crystal X-ray crystallography, and combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially represents a rare example of the oxidative addition of water to an early transition metal.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Andrew Peloquin.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Veige, Adam S.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-08-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022726:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101222_AAAABC INGEST_TIME 2010-12-22T13:38:02Z PACKAGE UFE0022726_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 38853 DFID F20101222_AAATPK ORIGIN DEPOSITOR PATH peloquin_a_Page_072.pro GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
56a2d7bdab845efd58810d85ef9d28a0
SHA-1
3883f4f2c3fb769956ff3138fe7409f69d64d6c9
44743 F20101222_AAATOW peloquin_a_Page_056.pro
0c41c75f6a94b59b27af044273453b67
53c5c81673ad3308886b6cdcd09bdaa7bbfb4826
25179 F20101222_AAATPL peloquin_a_Page_073.pro
b2ec575f562c05a00161ed2bf15ff639
7370db91cd5fb1d88580ab9bb1b35b5019361411
45208 F20101222_AAATOX peloquin_a_Page_057.pro
62e69005e63a0d78f26dfd8c0cc7690b
963b851bb2e5e9d2782f52c31e2677c7cddee10f
18289 F20101222_AAATQA peloquin_a_Page_091.pro
d6f8bf1b1ad752db3118ea03d95af3b9
16eefa7e6306a35bf3b3b8a6b7dc95fbdbeabb78
44240 F20101222_AAATPM peloquin_a_Page_074.pro
8a2bdcf5210b6043e86aafaeab0fab99
e2ecd4f358c06745d1bbb939a3ff71193ee089da
14111 F20101222_AAATOY peloquin_a_Page_058.pro
741adb5a3d3bbfcb418a030a0a1757af
4b5f0edf37dacfa657d9971075248ede31cb53cb
44415 F20101222_AAATQB peloquin_a_Page_092.pro
4f1b09fd8f1e2b7cd358d5a1e3c9d0ae
aa61e6fa6926b5d33bcca31a2472746ffe0800a3
22976 F20101222_AAATPN peloquin_a_Page_076.pro
7488484d13be7cd29a29afc0aa90e31d
5a436e089a0eb78214886da6454d2435bbfdd32c
48028 F20101222_AAATOZ peloquin_a_Page_059.pro
cf3a8311c7c777b1ef264cdc6a395b47
791c2036dd89883b824ebbee27575d6c6da6a8a1
49449 F20101222_AAATPO peloquin_a_Page_077.pro
1cfbdd43bd9be8f56e221a747bca9dc4
7b530048716d8c262366b993a386d32c74b0577f
46542 F20101222_AAATQC peloquin_a_Page_093.pro
550abac18a60e5975ecc9bd8b7a6e2d4
f22ab037acd68684b191bbb9c46dce571594163f
47722 F20101222_AAATPP peloquin_a_Page_078.pro
0bc95531b992b0f2a453b7f494c9a7e9
dcf5fdc9c2b6dfa34f938c1e7d2fc2a1857617a3
48925 F20101222_AAATQD peloquin_a_Page_095.pro
36bfcee002e8c00ecc356f03199c0a23
479df7aef27c335fde2aeb659cdf0a38ddcc3a21
50071 F20101222_AAATPQ peloquin_a_Page_080.pro
87ddd2fd7c596626be36256fe6a62e27
7a287c21e38207a101d7ce82bcf9205dfdb5f2cb
45958 F20101222_AAATQE peloquin_a_Page_096.pro
80aa6e236b794975c29a4d4d870249c1
6893660c8ae9b342b69eae6697a18032d386bdf7
52615 F20101222_AAATPR peloquin_a_Page_081.pro
d97bb19b43ef163ef7d7561ef8c4c6d2
3b1e1e9c76630609a8f46d05c378d2010450f42b
28340 F20101222_AAATQF peloquin_a_Page_097.pro
0cccef14db356111d83ca082382c55ff
917dfc7dbb063ddb42fcc39009e4c8d75cc420d2
53285 F20101222_AAATPS peloquin_a_Page_082.pro
3c00d7d4095902c6c362ccce9cdb2f5d
cdefc88e389d08cde63d2fc6dc448a2a5da77d38
50206 F20101222_AAATQG peloquin_a_Page_098.pro
2243f80476ec74bafd17b1318864b5c4
6d1c40e2cd01d9095e3f071fc3cb2c115486fb00
16271 F20101222_AAATPT peloquin_a_Page_083.pro
a8287c250415ebb49b4fc8b9f509262b
d2f55c8fc342585a11251bb7dfaba221735ae01e
53703 F20101222_AAATQH peloquin_a_Page_100.pro
af2adfc39268e28f2fdd4ccb0df2dd3b
c7afe6000cc4abf6122c6c337f8246473f20d717
5228 F20101222_AAATPU peloquin_a_Page_084.pro
3131f07e9574a18d250ff0d31b39260e
8982fb3db715a6d4029fa6415d31674753dd3110
8191 F20101222_AAATQI peloquin_a_Page_102.pro
bbbef795bb2e785ef20670e53ff95ad2
1ced5ddd9115c379c1afb543ad8c02181a961942
39328 F20101222_AAATPV peloquin_a_Page_086.pro
c14ea9e5f78183ad9b60d2145341d192
20691864b8459101d1881aa1fce749a46316aea7
28512 F20101222_AAATQJ peloquin_a_Page_103.pro
64ac23ff2bcf2491f1edf728b3409ea2
b1d1d486b7e9e28f88994cdc96a96347a6aab9f1
56900 F20101222_AAATPW peloquin_a_Page_087.pro
8a8c7cec41eaa60cc1db414fd86d80ef
aee10169edd890d7cd18ca791c61876472cded1f
38705 F20101222_AAATQK peloquin_a_Page_104.pro
1f022d89722fb16fdaa712052ac90223
973e71ab6dcc8d11128b463779a6baf56ac0d5cc
39382 F20101222_AAATPX peloquin_a_Page_088.pro
5f6a0423a79de5d24acdbbf60b3d28f2
5e3933fbe1f9a82b316cb95b8e9cd21b75197352
44570 F20101222_AAATRA peloquin_a_Page_121.pro
6b919960b219d2ff160fe4c127994461
2a3f45a3aaccbdb4950836e4bd77d67b042f136c
56968 F20101222_AAATQL peloquin_a_Page_105.pro
ebfc53eaca4e9c70f1b79b26e5444935
48cab2b51332b9d4854f5b3829a3401833b08aef
23876 F20101222_AAATPY peloquin_a_Page_089.pro
1d8f48e139fc4e42f9d5518b49981e45
6d482a3262e40ced865d4994050b4c2980ce1b62
45993 F20101222_AAATRB peloquin_a_Page_122.pro
8c19d9eda94f38a9c8d0ef54ee669cb7
f270215ead015a99637f0c7e845a197fe254337c
8953 F20101222_AAATQM peloquin_a_Page_106.pro
8616e133943b23aaac5c3fef49a1c87c
f35e38104678a82300ff8a7e25e9cd6207a2eea6
39353 F20101222_AAATPZ peloquin_a_Page_090.pro
9ba7d6f26d86409c654eb9abdf454c51
68d20ea0bab73ea916387cd61d38bc844dfda37b
47532 F20101222_AAATRC peloquin_a_Page_123.pro
004d513dd74d30b0ee2d27d374b66028
d5189feb1bb39149f74fc67f1276d4e91ac50eb5
39146 F20101222_AAATQN peloquin_a_Page_107.pro
13b5d152a33f4725013f98c3135811df
c3160fa9cf207d70780ecf05ba7817c34130e5aa
45986 F20101222_AAATQO peloquin_a_Page_108.pro
f9fdb40d7f2faf2e3c9d77ba901ff004
a0420fc528503f8ff91f87d1e8901fa1bd5c3bfa
42583 F20101222_AAATRD peloquin_a_Page_124.pro
0db3a44c35069793f792b225e4b29881
e64411d486cb37863cd0a9340f3f639146960843
64068 F20101222_AAATQP peloquin_a_Page_109.pro
d8b2b1865863cb9b289b69907d8d0fb8
d6314d585c98c2a5a4c01aa9cbdec5a654f0ec51
50472 F20101222_AAATRE peloquin_a_Page_125.pro
b2640ec5920f9e0b5cf3e1f1f58f1388
53fef57b81ebaafb551edc38a08cb90e6242a248
9367 F20101222_AAATQQ peloquin_a_Page_110.pro
e23e3132c7b6a6892ab066cb5d453424
132a91914aa95b8d3438607bc19a21550ad8b346
49494 F20101222_AAATRF peloquin_a_Page_126.pro
7647d3b440dc0da3ea7eab08cf880846
f5284766334e09703c193ac0e28c252ecaac0e58
51027 F20101222_AAATQR peloquin_a_Page_111.pro
d18afeddd44b05d3e72be797f924f8e2
cdf979203f93cf6a6a34311e6c6ebcb96990d3e6
52350 F20101222_AAATRG peloquin_a_Page_127.pro
81be2508a6356cb644df84ebfb011b4e
dd22843133c985b8f729b10f0cf52e299eaa605f
29236 F20101222_AAATQS peloquin_a_Page_112.pro
8c8bc9d69412fa985f769da1e321205b
8bda7989e974a5a826b38bfe474875df13e0201b
8231 F20101222_AAATRH peloquin_a_Page_128.pro
b1a4e2d676dea045ac2d75295ff728a2
beea78e5b37c4f6294c7264d9ed20e07dc3894ac
1147 F20101222_AAATQT peloquin_a_Page_114.pro
762459fb23e1482e8f097f3a0b66c3cd
fc31aadbc2e94c16f17720699f5a148bb3b6159d
4100 F20101222_AAATRI peloquin_a_Page_129.pro
76834fd9b9ea0aef32efaeb27df7d139
e636d83f9a13343ed0d7142a6c4e6546fb66df32
28876 F20101222_AAATQU peloquin_a_Page_115.pro
a15f65b7e22ee8332e39ae9905f98b1d
b6d8be9a300e2e8bc1ab98ebb87dea97941ab00c
28538 F20101222_AAATRJ peloquin_a_Page_130.pro
6b50d010de75f7b2ac81f4c40d3302c9
d18b06f9b3b8b91000c476948bef85e49d9ab1d1
35168 F20101222_AAATQV peloquin_a_Page_116.pro
97d9cbcb8e0f77700a82e1c00a1e54db
3078bd9287208bed94a7b57ef02142e2cfa00f3f
34668 F20101222_AAATRK peloquin_a_Page_131.pro
061371f1a5fdf7010e27abec57eb92f1
0dee8f3554eb6f01ad54713d543a8207d51af1a9
57397 F20101222_AAATQW peloquin_a_Page_117.pro
e120ccccbb34e3707524da54351a8103
62f0c3f33bed313568a610835678fc25bb303eb0
1345 F20101222_AAATSA peloquin_a_Page_004.txt
748d05cd301cfe17ba5aebf2b1963f35
bb2c9bfe0c1b00e0713a18eee10020b5a31701c4
57388 F20101222_AAATRL peloquin_a_Page_132.pro
ed9ad3c7f412dded866059b5af837d36
827efa7990706c1bff0d9b74c3ef948a151f44e0
36331 F20101222_AAATQX peloquin_a_Page_118.pro
abfbb95a11c26fd78e286856678c17ae
baa455da212caadfd27afcc5a95cc0a71c0c7d2a
2784 F20101222_AAATSB peloquin_a_Page_005.txt
7113008b2af7fcb79af5f644d8c7e75a
a6fa2c2208e7c1f08e853fead61dec403bb051bf
36947 F20101222_AAATRM peloquin_a_Page_133.pro
b1747a87bc07d0d1c416a71ebe737a51
a4b76f99423342395d86bd695a5eab062810e7be
39167 F20101222_AAATQY peloquin_a_Page_119.pro
e754275e588d70c6e172f6e174752b05
f3b104de28a65077afaf7617a39f66371234f94f
1094 F20101222_AAATSC peloquin_a_Page_006.txt
5b4b746138dd54fc68297ee0cb970552
fda39dd96b73ab3af8ae704d8d3a5b683e8ca0de
40339 F20101222_AAATRN peloquin_a_Page_134.pro
91555985d6d1aa0be141dad20f385f3f
6f66c370ca61d5a8b8a8b3d0a9235c8b46274ec8
9395 F20101222_AAATQZ peloquin_a_Page_120.pro
c413a2bf1ba782f6408fb6ee3cf78457
13770e576c8fc4ddcdd35a368d48d9b429f4dd36
2853 F20101222_AAATSD peloquin_a_Page_007.txt
a9af4200f5292abcdfb1352a58138e9a
493675a668511ce75ce00055b760c04f8000d781
44692 F20101222_AAATRO peloquin_a_Page_135.pro
da3cd6610e857424055d10cab0183dee
115323ba9f94875a67dd63958c11a99d57f5faa9
32324 F20101222_AAATRP peloquin_a_Page_136.pro
ea4a5da4feea549dc0f62aec46b7f37d
242fbf2325f75ca147ae4b143e6bdaf02d12ce18
2820 F20101222_AAATSE peloquin_a_Page_009.txt
025a297d8ab116bbb1295253ff0de125
8276584e139985817cb7c994e33e91cc4ac648cb
51616 F20101222_AAATRQ peloquin_a_Page_137.pro
40a500a9890b30ab5d07cc7ac3eb1214
fa3ec1c1c9176c50e23bafd10ebe2bbc95883af6
1981 F20101222_AAATSF peloquin_a_Page_011.txt
b4efbfd5206eecc02131d19c66d6a40e
1a691bef538ee83e37574518c5916b9614988a9b
51806 F20101222_AAATRR peloquin_a_Page_139.pro
cf4c6deda120efa8d709e80ff4c1809b
c2faaecc0b892e7987c044fd70df708d48a1c060
2095 F20101222_AAATSG peloquin_a_Page_013.txt
fb11ac5bd12d343e9f7d83ec8a14ccf9
266755572b6bb056d3ef6f5aa45e0025b94d499c
52304 F20101222_AAATRS peloquin_a_Page_140.pro
cbe27cd2bf4c8ef3751a547c69a20693
2ce5b43b4e24222069d920e080f17c2e69594811
2083 F20101222_AAATSH peloquin_a_Page_014.txt
6576470467798290856f549fd072746d
3250109bf03719c688277c3feed48143e1bd9561
14953 F20101222_AAATRT peloquin_a_Page_141.pro
12c498a62e4fd4c5076a9deb16f5adff
6e8ac3cbe88365f1b7e34be468a7b28b005652fb
2294 F20101222_AAATSI peloquin_a_Page_015.txt
e8f6804304ce5b845ce97faa12bc6317
51732cfa7c684fc99fc498812671392bcb429140
50927 F20101222_AAATRU peloquin_a_Page_142.pro
46dbaf02ad3214920ef558b39e12489b
f41c4082e5c6480bb72f553c2d0116597cc29134
2076 F20101222_AAATSJ peloquin_a_Page_016.txt
e78087421bee7bca5ab64fe7d8a18693
93359e696b6055d85bcd2bbe842a6d34777f785b
28465 F20101222_AAATRV peloquin_a_Page_143.pro
7a363433f644a63ec69a65698743c90b
2baa3203637d319e5c510d3c53f1f601b3df53bf
1547 F20101222_AAATSK peloquin_a_Page_017.txt
562fa3e24de3b25a7933e46e6c17d7cb
2f0842be903b57ffd9bfc3914ffb4da33787f9ed
20601 F20101222_AAATRW peloquin_a_Page_144.pro
29adf384a16f53e6f51e69b47048bb0b
e3b01e435413b68eb07d80a6b4f408bb81031033
2114 F20101222_AAATSL peloquin_a_Page_018.txt
6a70266d7bfb274ae29cfa455f43d896
6de07331cfb9b6cec035e781fed6a3f60818e08f
542 F20101222_AAATRX peloquin_a_Page_001.txt
8deca46bdfb86d3a85976925731f773f
e989addc0014521237a761aeb881c70d55a70aea
247 F20101222_AAATTA peloquin_a_Page_033.txt
1e2a67c98fb9e8f8d09accb01d2a3e04
cf6c6d432e5523a3bcbc4cbdca0aba19228f5e21
1279 F20101222_AAATSM peloquin_a_Page_019.txt
955e67d7d8333a8227fecfb5003e2a51
f4a93cfb8dd45587347ed596864772365f3c28a4
96 F20101222_AAATRY peloquin_a_Page_002.txt
4027da4042a7410a9e9a85a0f710a283
c8968c747777f4e36e3f30659c75f04a86ae7eef
1796 F20101222_AAATTB peloquin_a_Page_034.txt
dedee6e7cb49e038eca5ae68d8185f47
07d0e8102047aac80c8cd04a402943a66777a7da
1500 F20101222_AAATSN peloquin_a_Page_020.txt
d7604c3c8749f2a478ac20eec39b540c
9399d8c14dbae4f9cd774efba0ffbc229204b1d0
259 F20101222_AAATRZ peloquin_a_Page_003.txt
fd01f33643c79fd9984be80b6e2d371b
1a3e394b9ee33f854cdccdb73f44498cf80c85c2
2115 F20101222_AAATTC peloquin_a_Page_035.txt
8041c07ee72bae0e76af76987c7dd7f8
bd7a14a199d12e3e40711d6a2bcdf45932e37539
2077 F20101222_AAATSO peloquin_a_Page_021.txt
c8f641a537920ebbd88e88b777c33517
515e12d7b0c21740b8943aa13828e574512c4e4c
2104 F20101222_AAATTD peloquin_a_Page_036.txt
e7ad43c4ec59928d85ab904731e5aaf7
8fecfe0e6816d2912c6fc613fa67e62ecfb95c2b
2152 F20101222_AAATSP peloquin_a_Page_022.txt
d1a881a32c4a7805a85797ffe26a47e5
81e971a511c66ad852c1a930dcb434ae6583fd24
2157 F20101222_AAATTE peloquin_a_Page_037.txt
b1b21fb840ee97c0357499fe667642d6
24705c41cf20605f405bf9746da2488ab5185168
234 F20101222_AAATSQ peloquin_a_Page_023.txt
94eb09479d196b16b4f23f356442ce04
c9b9ec3765e92c5565a643b66e1faa2ae9396651
1164 F20101222_AAATSR peloquin_a_Page_024.txt
9894a27c431ed01a9fa6588119ec4a1a
5899a1cd40badd6c17ea920d66778d3bfc023be4
101 F20101222_AAATTF peloquin_a_Page_039.txt
21ad54b071f8516765912b4a6e3f4b37
d1440cc9784ab32b88c61ccfbd31a404dfe16053
404 F20101222_AAATTG peloquin_a_Page_040.txt
cde752ca18f6bb4c409d7cae12caeac5
882b0740b522645516862a2ec267189d01e5e431
803 F20101222_AAATSS peloquin_a_Page_025.txt
cec8bb9286b00402eb31acb95a0e25a4
7ab491be3c37f59ad3acbf201cb0db7d117ed97b
551 F20101222_AAATTH peloquin_a_Page_041.txt
b3367d296b3e9b1541260c04657a1e69
4484260c7f99291cd8a69bb279b5d9acc5075219
228 F20101222_AAATST peloquin_a_Page_026.txt
984665df44313bd223358aa427942fa2
4ab6bbec93b0465c4b46154360834df0f2f02ae6
375 F20101222_AAATTI peloquin_a_Page_042.txt
7e86026413d24228d9a3747f287556a5
aa23d0ddaf136d86e2eff6ba13dda0b5e6dbf9ff
1857 F20101222_AAATSU peloquin_a_Page_027.txt
9277f68a4a21d4a075c6dc9faac4ddcc
3a55094f818dba299e69024da59791cd07f625b5
645 F20101222_AAATTJ peloquin_a_Page_043.txt
da7bdb7b164f46d622371db0f4cfd3f1
13f418b857f31bb8ed0f0523717f2256c8dfc75f
1786 F20101222_AAATSV peloquin_a_Page_028.txt
387820f3e0952526b8271e2707011663
5061ef948fcf5feddbee0a6fe2ec44cb3cd1101d
F20101222_AAATTK peloquin_a_Page_044.txt
5f4320738331b931a4d13913b16ad40a
e7f0ca5a73cf7da7cda700cc903e2207b0874062
854 F20101222_AAATSW peloquin_a_Page_029.txt
047ee1910f1b3802f706f00d5084f2c0
2f13de4b81639255c41cf0890c7765ff01e179e8
1128 F20101222_AAATUA peloquin_a_Page_061.txt
50254394967f71b168e405ee2f88cb46
20a992c48eb6a7a263a2900092383d8b04fee215
459 F20101222_AAATTL peloquin_a_Page_045.txt
3acdc2a35a8cc7bfe20be9782818ceac
45d026c740dcec90fe6099e4ee2dae9c282ced02
1770 F20101222_AAATSX peloquin_a_Page_030.txt
2f58585477080c9f1a766db5215a253b
7ad6565bd26f30022fe27437710e6d2fef2268da
2025 F20101222_AAATUB peloquin_a_Page_062.txt
9c8af7bb3f006cecc993484f89074df2
8d1a5883d4310a852fabc8a46a12a9d1d9e4edf2
657 F20101222_AAATTM peloquin_a_Page_046.txt
c652c57fff1a84ab493a33752317c8b1
dd0afcc1301baca1071b9276c8c619b16a83dc5e
2258 F20101222_AAATSY peloquin_a_Page_031.txt
953abd20589fef36c3e957f7eec1f4bd
9d90a4c830137c37fdc939955e409ff1ad5f08c2
2113 F20101222_AAATUC peloquin_a_Page_063.txt
0e6b836a8ae8829e3cb888e2f9e59859
cd056acafa261e0b970ff16e76606cd8ba4edff4
118 F20101222_AAATTN peloquin_a_Page_047.txt
77ceeb0685c62a6f8541f1d318cb3de9
7326362ef088b95df0ec543d57bf609b4621f133
1061 F20101222_AAATSZ peloquin_a_Page_032.txt
d7df116d1c8b3a4a8abbc32932418737
c61592f16c03ea8764519e92f8453e07f5a06a4f
2142 F20101222_AAATUD peloquin_a_Page_064.txt
f50fc9b34209ce52b7d3044c4f3726a8
3367baad23f2eaa3e9be346843e24e9915d4910b
897 F20101222_AAATTO peloquin_a_Page_048.txt
b3a040d6ed4baca7a693466cb44e2ca0
f47dd9479d864ed7dfb93cbc241519b0a16ffc7b
F20101222_AAATUE peloquin_a_Page_065.txt
673b672eb6b4910e1b99629fd5a10b10
086ecf26d1bd7b6d187af44e4c8562993374de55
112 F20101222_AAATTP peloquin_a_Page_049.txt
269dae184fcf83df30c87f30224ea548
7589800a2736cb372ce423a656e255f5997678a3
356 F20101222_AAATUF peloquin_a_Page_066.txt
1e365fa5d16b950b24666e21e7a2f9c2
23da42ce573f87a630abbbb8c531a7e1099af5df
1168 F20101222_AAATTQ peloquin_a_Page_050.txt
0f1a3bc2db92e24651353b7f650a62d2
b3d5f4c2e18be7551d0bfbe1fbd81ac230d221a9
5711 F20101222_AAAUAA peloquin_a_Page_046.QC.jpg
c726365f9034eb3923de21fd85d6f0df
e1baaa9ef4aa6b51dfa09c9ad39c2211d49bb272
1622 F20101222_AAATTR peloquin_a_Page_051.txt
32ff849815fa26ef8c9c2ca2ac8f7aea
2c2142a8baee9b751829c18021057b930d48c2fc
2100 F20101222_AAAUAB peloquin_a_Page_046thm.jpg
634ecc28bca5b8bfb2109b8164b57948
b79482afde7873af2508309acfcd7566572cba9a
1216 F20101222_AAATUG peloquin_a_Page_067.txt
40f512579a40bb58f533935318992604
9665792d2293eb6c8df8fabf2595e3639fd5b8b9
1593 F20101222_AAATTS peloquin_a_Page_053.txt
1463f148b8e365332f60fceaae068335
ee7b494fab810e8e069e322075fb6285576a45b3
2029 F20101222_AAAUAC peloquin_a_Page_047.QC.jpg
2b6aad24d757a3bf31f67fec7cb3e4ff
9f73aa08ea1d76f098b7a36a92f47c0d26457ba0
2034 F20101222_AAATUH peloquin_a_Page_068.txt
fb15d50be55d127a23ba475888741591
67fe6199f4d396e0c655e8f3854d4b22bace08dd
892 F20101222_AAATTT peloquin_a_Page_054.txt
c416621f758c0ac64e2992b8d06675fd
2e39f3962337b8205c342a80db3ac23c6576a59c
753 F20101222_AAAUAD peloquin_a_Page_047thm.jpg
57c5e8c9efe6ff33037a80b384ec17c1
d3e4c712cd13aa23c3377b5f81db1bcb4a2a3795
2787 F20101222_AAATUI peloquin_a_Page_069.txt
ede55db5ac604765863766fb98748989
8b7d30e9908c538735b2e37d60731f70d633b6d7
986 F20101222_AAATTU peloquin_a_Page_055.txt
52f998cf0853cfb00e2ecdb2b44252dc
82c109a6404c4a7422a57815a056d7479c3e9281
22371 F20101222_AAAUAE peloquin_a_Page_049.QC.jpg
6a02a9a620a33b080b8ddd83e834a2b0
5f82568dc8e3075a7fbd5a5558e181945ba60985
1592 F20101222_AAATUJ peloquin_a_Page_070.txt
586868ee3e6cf3bbeb975a8bcbdc8816
a55384f2c109bf23a0bb75702eb1dabf422c39cf
1783 F20101222_AAATTV peloquin_a_Page_056.txt
f1309b33216541160481c67bc7437d95
38328a01372dae9a5aa588ec00e5f8f012272f64
6938 F20101222_AAAUAF peloquin_a_Page_049thm.jpg
81a4685b6c8d9c0ab62f470ccaf45edc
b3d9b5c16e2d7c3554e1f4d106b93b6724492102
979 F20101222_AAATUK peloquin_a_Page_071.txt
90b71727fb5e92091cd00a161531bafb
2d14497a5fdb76db99d7411afde1e6090d5e486a
1807 F20101222_AAATTW peloquin_a_Page_057.txt
659f245b8ce8a810408c887775f67d0e
e28b237b076247a545790a4c02852eda2f91502b
20629 F20101222_AAAUAG peloquin_a_Page_050.QC.jpg
1c325eedb081865c4a4699e32a917e59
b5fd64e2153edb5c513fe65e5b33994416467800
1573 F20101222_AAATUL peloquin_a_Page_072.txt
94bf6c2661078dd7cd0682963bcae120
b318873c381282f250aaebc5ddc546dfdefa396e
572 F20101222_AAATTX peloquin_a_Page_058.txt
6b6345fcb9d5d6f39f335e8773d451ed
f0712261551d02ca6ce8974f5e174e864e3220ae
2751 F20101222_AAATVA peloquin_a_Page_087.txt
01d66aeba2fe405c4145394019713b67
7138d20e0737c38a5719f6f8fe3786c994055f2c
5029 F20101222_AAAUAH peloquin_a_Page_050thm.jpg
9b29b4ebbd672729c54a1668547a5cb8
06b4f94d35c3b06f1d93eb7fc80dd2f1f0b2bd1c
1167 F20101222_AAATUM peloquin_a_Page_073.txt
7edb9b77b57f6fe48d05751e40a81ea7
96e083decab5b7133ef85f05fa4831b20310adc9
1982 F20101222_AAATTY peloquin_a_Page_059.txt
e33bfc8f7f369cef5a82d69e33df66e2
ef79175fdcaefaf811124b6d71437e88fc1f8ab3
1610 F20101222_AAATVB peloquin_a_Page_088.txt
e54378aa0328025404c6314503f42efa
23bf3ccdc38b0cd7a527a3e8ef5d3ec53165e0ac
20137 F20101222_AAAUAI peloquin_a_Page_051.QC.jpg
c142e3b5a85a2463c30a7f0939504601
9976b6d553faeac1b5837990c15dc675077e52a0
1768 F20101222_AAATUN peloquin_a_Page_074.txt
c4262e6e298b99ee13aed1eabc804a22
c54648f7a3b6d9ce5ba9ad9fa725862b6b505ba7
2564 F20101222_AAATTZ peloquin_a_Page_060.txt
fe15a19a2763e5760257931a51a172a7
30ab7503e6504a7af4ff11123bcd058f6b834560
990 F20101222_AAATVC peloquin_a_Page_089.txt
86e18b3aa2cb0901e1ac152089f66645
2806df29cedf895ee413a66416a9a3ad2ef89fc0
5082 F20101222_AAAUAJ peloquin_a_Page_051thm.jpg
c56fea6b21ca8b0eeceaa91ac39ba9cf
751a7e7efa442659117ddf3279358bcfe6a7a5ea
1854 F20101222_AAATUO peloquin_a_Page_075.txt
c16e45166ec731fa2d53fd8b5ed761a9
b55382db799c22c17fe9921abb6b0feba2548589
F20101222_AAATVD peloquin_a_Page_090.txt
bf6debfc30439b2ef2ceffd9328e493a
f160790a9bd317aa4783cf525634775ba4e75a66
6502 F20101222_AAAUAK peloquin_a_Page_052thm.jpg
a11a0f63f4c8a7bfb7224e46bac50354
b8e5edb0b92e3cd4cb387637177f2d5a95f660e6
965 F20101222_AAATUP peloquin_a_Page_076.txt
c7f5a18da1e038da908ce369c6f0435a
5877af3d365863385eb29c77a8610ad13bb4562d
1772 F20101222_AAATVE peloquin_a_Page_092.txt
8651af0dbeae882c2436048f138bd475
5a27042e13ab708bcebef5cba0888dd6c9941a3f
24785 F20101222_AAAUAL peloquin_a_Page_053.QC.jpg
7b386443c27b9bb0c69fe014261d3c84
32f311801136152f9d37ae1e206a3d64f399387c
2123 F20101222_AAATUQ peloquin_a_Page_077.txt
8fc174325d75647d4154a3f0341ed395
ab98126d7c432894a4f47792dc6c919545db5132
1859 F20101222_AAATVF peloquin_a_Page_093.txt
57bc609cce1c2bc3df722982202edc82
ca0a963734ee7470a3d94aff8da109651a42f8a3
4610 F20101222_AAAUBA peloquin_a_Page_061thm.jpg
5a715a32caebcf1e6452ebe14b535518
b40599896542424a894adb0f8628cba9862c0a0e
6171 F20101222_AAAUAM peloquin_a_Page_053thm.jpg
709e793d79cdb4627fa0c6b8872af2ec
482fab72c0811222f6a0012ccfe7bf54bd9e576b
1955 F20101222_AAATUR peloquin_a_Page_078.txt
f490723d9f956b49789f1f42a4d5f506
468d9bbe8aa0b7925979e238728667cb1ae1484c
F20101222_AAATVG peloquin_a_Page_094.txt
935cbcb0fc61ee049d39228acbda1daf
976f8bf15691886797517710426ca0f03a4d7330
34318 F20101222_AAAUBB peloquin_a_Page_062.QC.jpg
aa55e3222156f5cd2d5d45b8ccf7c613
53ebf84ad6addd713ee8d4267e22d1246787eee8
14661 F20101222_AAAUAN peloquin_a_Page_054.QC.jpg
0cba0bb84e629485848dfbea98ca22bc
e263d9034f373246ee377322ef46055eb95c8b23
1203 F20101222_AAATUS peloquin_a_Page_079.txt
e9876638f1a3a40ad2b51abebfa23984
0890960e9d03af0516cd3bbff95cb55f988a249a
7763 F20101222_AAAUBC peloquin_a_Page_062thm.jpg
cadf00c0d56169441fc97f24588e0404
5f223a12b605bf560dbe9c3fe605511b1ec79f85
3935 F20101222_AAAUAO peloquin_a_Page_054thm.jpg
80011d5c0b022f8074416134a25291c8
6d674a511a5580cc44ad8e4651aef9eab460bfe5
1972 F20101222_AAATUT peloquin_a_Page_080.txt
378cc4289e67cb37bb5a22ee3ed6e6c4
c53f3edff7af2d210f297c8a6b6a2928c72d0aed
2053 F20101222_AAATVH peloquin_a_Page_095.txt
958458bb2204dd3ae6c54f5506f34d9d
ef2e3142b92b692c36be984c826f2298110fc596
35053 F20101222_AAAUBD peloquin_a_Page_063.QC.jpg
cc5dce90afa2dcb930285652d31110ba
62eaf562212363fdbcd2fa361533e31c028f46ac
17548 F20101222_AAAUAP peloquin_a_Page_055.QC.jpg
cce01cd884518bf48bd26b6341efa0b8
66ee78ca6b53b6e91b26960a06f517b5c291c76e
F20101222_AAATUU peloquin_a_Page_081.txt
d980931b0375ff2ec3855b9b9a5d902f
61660e4c5f5efc5c7507983119ac34701584f420
1181 F20101222_AAATVI peloquin_a_Page_097.txt
6bfd9b7ecfe4cc8c62cd341ee0f1b7a0
81306ce0de989ade965c49c52437eed06665a713
7682 F20101222_AAAUBE peloquin_a_Page_063thm.jpg
4f8d3a828362b9675a5d68e10ded9303
8da6612cc48e1068d15eab4c42669833733c5f6e
4392 F20101222_AAAUAQ peloquin_a_Page_055thm.jpg
4ed9b63f699d4abbe50cecf47f0ccf2b
5778dd88c51ca4ac52d25b6fd4083bbb1221f0cd
2110 F20101222_AAATUV peloquin_a_Page_082.txt
ea4bd607e99ef0169c35717140fc2fb9
91e82df88ce55ddd860aff11c7481df78d550081
1996 F20101222_AAATVJ peloquin_a_Page_098.txt
8884a60c44ad12b9282388163b6fda6f
35f3daafb4b217fd6ab706ed3ea96a1424170dae
35192 F20101222_AAAUBF peloquin_a_Page_064.QC.jpg
1a0c704cecd63d66576275dc8fd95bcf
5ce1671315d60df90ae731439840777a63aa2a47
F20101222_AAATUW peloquin_a_Page_083.txt
8356547d20cd6d6f87527440395d2b2e
1b484118194512239e6875a9bd33b7ee3c156fdc
2091 F20101222_AAATVK peloquin_a_Page_099.txt
9c1dbc46e26ae4f8459afea3faa628a6
b0c85b386771f1399667dd84fab0561ce89f0962
7805 F20101222_AAAUBG peloquin_a_Page_064thm.jpg
f1c79ec8c97ea88c65bded25f01cf9bb
b2291fc90dcf1c4ece3e7ba48a7c5579100ab0b7
29548 F20101222_AAAUAR peloquin_a_Page_056.QC.jpg
e47b63187ffbe913407ef7716a0be588
e5ff7c85d6ea3f01d066b25ed6c1927491f26ffe
290 F20101222_AAATUX peloquin_a_Page_084.txt
88971d3c9942c8ec58f58bdc3e36f5ac
c91c8db51d5fc30dbbd7832a132874c6b33ba137
2770 F20101222_AAATWA peloquin_a_Page_117.txt
0be352f857fced27ea499c8a8431cde3
57788eabc5516d4140a84765309f157ab9e75457
2121 F20101222_AAATVL peloquin_a_Page_100.txt
85e464fe64a18c155c498b8a58372713
bfd736e104c04859772fc3bc67774a74d18aa9ac
5583 F20101222_AAAUBH peloquin_a_Page_065.QC.jpg
7c32e9cf0093b4553547f9a96b37e057
b9b2d0472512eefb7453bb8a45d8b8bb484a0ef3
6784 F20101222_AAAUAS peloquin_a_Page_056thm.jpg
1c2d61e651e7e03917373e35accb432f
fd739a958b4ebe01029840cce2018a07e0647f28
1217 F20101222_AAATUY peloquin_a_Page_085.txt
367662e6e858188fee03861548c1f994
1f6300180e6a1a54ceb3007db4431b53c8c26486
1494 F20101222_AAATWB peloquin_a_Page_118.txt
7b8cebda884653a28ccb728347ea3b34
ea19d76bdfbf041a170b204cd9565e10a59e0a31
679 F20101222_AAATVM peloquin_a_Page_101.txt
d12238b22db3a05d71d19897245d8b7a
303dbb02a31e3fa383edd7a3c5e176e78b3dc761
1586 F20101222_AAAUBI peloquin_a_Page_065thm.jpg
e2c6c00ff7e58ddf4f7c0e6fac15d373
8db0975c36812e2093d9278bc7a51a3093accbb6
6858 F20101222_AAAUAT peloquin_a_Page_057thm.jpg
8c77c4ebdc5fbbbfcfab422479d75ca3
388bf40b42b78c577f53210f5ef3735c6345c748
1991 F20101222_AAATUZ peloquin_a_Page_086.txt
597f19bf20c216689c2450cfaa015cd1
f6a898dfa06fbd4c918fdab758a7ce67d957b188
1571 F20101222_AAATWC peloquin_a_Page_119.txt
35ace93385687613deae2fe997492f4d
d3a7d7b125c4da17422ac463792df3df331fdba4
569 F20101222_AAATVN peloquin_a_Page_102.txt
03d8fbeeef14e233777e8c69696e0d6b
5f6b25a2b9aa5d8ca8a4685f958bab0fe94f9d4b
20611 F20101222_AAAUBJ peloquin_a_Page_066.QC.jpg
3de77db53ea784ebb3740e7a55a1a89c
d6d9cbe5b3269eabe392a477b7f0651c51122caf
11501 F20101222_AAAUAU peloquin_a_Page_058.QC.jpg
8612d33d1b68c5184c8546fe42859023
feba65bd60601ed0a5333d32029e1081c373b208
441 F20101222_AAATWD peloquin_a_Page_120.txt
9b3306df4069f8ca056e7658c5223bc7
3eaaa60ee02606255b0cc292100d1922be98c877
1160 F20101222_AAATVO peloquin_a_Page_103.txt
0377f01c3959eb93abe0ada9c7daffd0
8bde9997bafebffef0012a66c108adf1f96171f2
6670 F20101222_AAAUBK peloquin_a_Page_066thm.jpg
47255fc4796589de0c10d364bb7d45d3
04d454fcf1133718f8a00cb82b15698e93637d28
2942 F20101222_AAAUAV peloquin_a_Page_058thm.jpg
854f56f7e0fa9f946b9c3c50c494945b
7c0a4590de9edda7d8749db995d9ddb242527ce9
1773 F20101222_AAATWE peloquin_a_Page_121.txt
ea6a03a10be0d36d0c8afa955e237228
dd5088f3ec8cfd400a2f51d97423d178202b8b32
1994 F20101222_AAATVP peloquin_a_Page_104.txt
d1430a946f9530d8fee58873060027d4
6153f970382f81e02feed07e3a3b7a7a759df4dc
21162 F20101222_AAAUBL peloquin_a_Page_067.QC.jpg
b96fb8635ef67f10f3cc54de88fd48fa
ca96e9118369c79bccae4cbcd0bc1e326cc0b332
30514 F20101222_AAAUAW peloquin_a_Page_059.QC.jpg
ef3c786da54261540a0fc86865cb349e
b4f2c2739f032f0be86a3b3c3cf87a213e6b4cae
1837 F20101222_AAATWF peloquin_a_Page_122.txt
7f6cf17cf4c71225d9e65a19b31a3860
cc3780823d5a02887a962741f451c6633139688e
440 F20101222_AAATVQ peloquin_a_Page_106.txt
3137fa5cbf5ed0e2e36e6e6832f40b63
20d629f44df4191e8a4d135da26e844c1eb46796
7264 F20101222_AAAUCA peloquin_a_Page_075thm.jpg
eda7d154553cf6a99084dffdc21d07c7
cc7653390604113a51a85a3777e49fed75efbacd
5512 F20101222_AAAUBM peloquin_a_Page_067thm.jpg
8477bfc87b7bf78b6446f0cb817574a5
88d06a6dfedbd4343e50a98e7ed6ab51eeeb0c18
7353 F20101222_AAAUAX peloquin_a_Page_059thm.jpg
b6cbdd7651cbf0763eaa35bb3cb0fd70
99d71354d68341bda256a7462bc42ee7687f9b24
1956 F20101222_AAATWG peloquin_a_Page_123.txt
4332bb8e46c86f6cf1fd9642b3166a79
322f277e0d1dd26685a1013a2bb06b82203ce53e
1784 F20101222_AAATVR peloquin_a_Page_107.txt
6d636ce4b9c62e68f978da727b087193
c8168ab600b7ba573a99133f4806fd56392ba12f
15723 F20101222_AAAUCB peloquin_a_Page_076.QC.jpg
281ade972567d72bcb4ee08828473e05
31ee2427e62f44b3f7066c3be4dda4a96575dfbf
20274 F20101222_AAAUBN peloquin_a_Page_068.QC.jpg
e827e931787cfff254f02b85af25f924
fb2e02877586a2bb7b44ce5f68b942017c7b53ff
29467 F20101222_AAAUAY peloquin_a_Page_060.QC.jpg
079399b839241f721f4b7490507654bd
0a8969bdeb22cc78854dc13a4e36faba9095bf22
1760 F20101222_AAATWH peloquin_a_Page_124.txt
b0c766b16670fcc3b2c8cd4ec0c907e3
aafc549476ff9bdef78a2cbd2fe5b0651997a894
1827 F20101222_AAATVS peloquin_a_Page_108.txt
0f24bd537b56655729e69ce7e99e70db
876fa42a33004b84fca63596906645f3ca4056aa
3676 F20101222_AAAUCC peloquin_a_Page_076thm.jpg
b1cbba6e6f822b7ecbc497443d6d1cf7
7ff4ff3d6a94114863bf5149ec8c93199a0e3baf
5119 F20101222_AAAUBO peloquin_a_Page_068thm.jpg
347bb9bca8717519afadaebe25f2876d
64758e9b522a3a1db203b6576aa55084fd375cb8
7104 F20101222_AAAUAZ peloquin_a_Page_060thm.jpg
07c982540b3155548c72794973de3228
ae739e157ea8d5cba1fa2dd54fbf2cd70d92387f
445 F20101222_AAATVT peloquin_a_Page_110.txt
667336a0edc110afa1d709c98caa4504
c715c2b5e82303bc45add59201d6ed3e3cbeb1c7
30043 F20101222_AAAUCD peloquin_a_Page_078.QC.jpg
da9929c9299fa3c8293f03edad698ba5
a51d77eac63c36ed7b8137591377a96bcb4a1935
25916 F20101222_AAAUBP peloquin_a_Page_069.QC.jpg
315a47fabab825e4aa06994eeecd5fd5
c6fe00f7dcb0f59b7da30dc0e5b0d006af2780db
1993 F20101222_AAATWI peloquin_a_Page_125.txt
11b5479808ed10465d1d331d8233bfa6
94a9bb447c9974895780d5d0ad2499760c5b6a49
2052 F20101222_AAATVU peloquin_a_Page_111.txt
485b373868c37922c0e2f69744083978
46b4979268099af78f7e64de38a979fb22cfb2f0
7174 F20101222_AAAUCE peloquin_a_Page_078thm.jpg
9de9c01122e16fbbb6fa8412d6a414a9
30d86fb4a1323c8d96c54f6c6e8daf612bfe10b4
24924 F20101222_AAAUBQ peloquin_a_Page_070.QC.jpg
d3809d1cd1d3dc8c78ce55438cf5ed65
4c9e91c66096bdc69bbc400c2c6a118c31bb1e4c
1962 F20101222_AAATWJ peloquin_a_Page_126.txt
e646f0c1ee80231df5547b0bd5a40e0e
e4f9484b723683d0ab3f8100616f9e5a32102343
1182 F20101222_AAATVV peloquin_a_Page_112.txt
bcd86ad74e99c4b56719ea95d7026260
2fe6d7031826a349ddd111afc9d2cf1a08788e04
4887 F20101222_AAAUCF peloquin_a_Page_079thm.jpg
65c33895af4815a0a81a4a30cb0cc705
e284e38e8d1d6e12fa85340550ede7f16cb21890
6128 F20101222_AAAUBR peloquin_a_Page_070thm.jpg
05642e2e9c2a69e251ee59110653d378
045c622f16a97e69e7f03d121b3b605117623cfd
7657 F20101222_AAASTI peloquin_a_Page_080thm.jpg
944b1a4e95fe44761b88d0de071b2fa4
b4d5e5192e615b62e3d9ba2f18ce3167bad32b3d
F20101222_AAATWK peloquin_a_Page_127.txt
db4650f9c41facf50a975017f006482c
7a961cbd934747a335b0449f10fd59574cf894d5
222 F20101222_AAATVW peloquin_a_Page_113.txt
d116ddb4ea1435b44f3bf8f17a35155f
ee861cb549379017e52a1e7eca882b9818ff3298
33650 F20101222_AAAUCG peloquin_a_Page_080.QC.jpg
662b0f88bac7c8bc57bcb4a47be3fec6
56646b0223427748ae77cc91dc374df7dba62f5c
11338912 F20101222_AAATXA peloquin_a.pdf
2a9299e85575ee3873c8e731de6930f2
9192168cc1818572e0c475caf5a7d8f3945c6dd3
25271604 F20101222_AAASTJ peloquin_a_Page_037.tif
047dfd6556ad80d79468991219506c1f
404a79971e63bb309a83172cdc9fe4d414fa79e7
354 F20101222_AAATWL peloquin_a_Page_128.txt
0f2cc75ff7a0e4eee6f4ababe537229c
46c49899a71d741c0959b8a36b9e5032468b2dc8
110 F20101222_AAATVX peloquin_a_Page_114.txt
b9be9259a7b393c64dfda91249cefe62
21f0885ca62b790b9d3d4384902c3b1d3dde4b87
34773 F20101222_AAAUCH peloquin_a_Page_081.QC.jpg
e6bbc3446f02e2d57e138067927feef7
43857582ccc144e8938f5cf4f9807ddfa786e061
15817 F20101222_AAAUBS peloquin_a_Page_071.QC.jpg
35a1ba9bd79df21b7c954aa88964f8fb
e839fa51625f63f312a7765520adb2bbf53bf74f
8823 F20101222_AAATXB peloquin_a_Page_001.QC.jpg
236246d36f0705099d1240b55a4bfc21
c7b39375baf2486162630151501f83fb4d26aac7
83276 F20101222_AAASTK peloquin_a_Page_118.jpg
ff33004e39808ccfc21c86f0e6d3f150
a7bc37c46f74c640a8328afc72276b71a725a072
224 F20101222_AAATWM peloquin_a_Page_129.txt
d7fbc172ae8d3d0aed0065246725ce65
9033d9565ba4084a595b08a05657fdd1f0684ca1
1169 F20101222_AAATVY peloquin_a_Page_115.txt
de9d48f808715635e978539e1afdf17d
c9ecd054a2ff00699e3744ea97fe5425c1ba0f59
7637 F20101222_AAAUCI peloquin_a_Page_081thm.jpg
54a838212585398d7af890ddbccd8cdd
bcf238a0c6c23e220754b2a1ff4dc5cd4171a4ab
26864 F20101222_AAAUBT peloquin_a_Page_072.QC.jpg
fce5772ad3e137d837e573eec90ede88
495f4c5988f1dea9839dc34b8da2a8e17b0e58dc
29537 F20101222_AAASUA peloquin_a_Page_034.QC.jpg
fb6bfb46fc8a82eea7f9081691767cb2
3c513ba9e62172d02d6bc747a0402ac3a24a7ef2
2158 F20101222_AAATXC peloquin_a_Page_001thm.jpg
30f3520215db0a100b8016480f1e441d
a6172b1225adc158e7f7add56185fcd278772cd0
468479 F20101222_AAASTL peloquin_a_Page_025.jp2
683f2b6f49d2616d9ef7ca1b456e4a1d
2e1186559a14bc9cf5d8fccd34e68b57cfbce78e
1163 F20101222_AAATWN peloquin_a_Page_130.txt
e8281cc634a7be2dcbf88ab20852360c
f3bfcc208d1a23ec4c5d9496718219077257ca43
1641 F20101222_AAATVZ peloquin_a_Page_116.txt
329fcd7ec20b1b37a5657b070ee00541
c0c2516c1e8ca39e2043b55a84e00ffa696621a2
35031 F20101222_AAAUCJ peloquin_a_Page_082.QC.jpg
2b0e62d246be49a8f0f3ab6fbdc5f7b4
c31ff8ee2b21c5e577260610d6717c4a0010549a
6381 F20101222_AAAUBU peloquin_a_Page_072thm.jpg
1ce7c4335edc8ac9368f1e946a881840
55f617f2a6a5d5cf7a520771965cb4563179a1d4
31828 F20101222_AAASUB peloquin_a_Page_093.QC.jpg
a0433055f6c9c5c6f53e801a1a7564ae
d02990b7434b1e2d587d9de8a175d4e5039f9690
1186 F20101222_AAATXD peloquin_a_Page_002.QC.jpg
311615abce4d529f15488810cee00125
1854f9f7872444c0a802a2f9e54ac3f62d1e88bf
26326 F20101222_AAASTM peloquin_a_Page_132.QC.jpg
c22b4b9dca366cd37a5085941f0b02e7
805fc0827154b6b9218876725b3003d61147a210
1620 F20101222_AAATWO peloquin_a_Page_131.txt
292af59528719d6662738f5df96d1530
bd4b7bc3043e1a628b99e026ae2c6429efed43d3
7735 F20101222_AAAUCK peloquin_a_Page_082thm.jpg
c37f9f408811ff89d94568284c4e8eda
8f55e45bf44323b94502e835064760e97dc2aeb3
13524 F20101222_AAAUBV peloquin_a_Page_073.QC.jpg
34dafe1201ff82c080fc2a4723a39c43
9bd30e2304ad6b4d35b54cd2252d992b7669c9eb
F20101222_AAASUC peloquin_a_Page_006.tif
b7409ec7850e5cd78639319ff8a68ad5
8aafa82f11c23e0e671a1cbaa6ceeb3e0cb1e967
554 F20101222_AAATXE peloquin_a_Page_002thm.jpg
ca14a746bf04857b7807d2eab1947748
fa9ebc1cffa13108cec21118c4b3df0b1b926e84
2800 F20101222_AAASTN peloquin_a_Page_105.txt
84573aabb279dffcae77eb2c061d5d02
4db01b34fea1df43e8e2ddc41641346a7a5c1d65
2822 F20101222_AAATWP peloquin_a_Page_132.txt
0a40e50743b1f0375e4f4d90b6bc1fa6
fd6856a241b05613743ccc25f838523f250bb2b4
12681 F20101222_AAAUCL peloquin_a_Page_083.QC.jpg
ba303fc6ad2e1e5036a44473d3702cb1
88279c8bde8dc2fcd14cd2c62dff04608a1044bc
3497 F20101222_AAAUBW peloquin_a_Page_073thm.jpg
7dd594be950528623bc968a018841782
67e7df10f831ebe4f8081a8b5ca48a3fccc4f9ae
8465 F20101222_AAASUD peloquin_a_Page_142thm.jpg
cca4f0971222082e6e1b45d247153f0f
41360378ddaf68fd2bb8f9aa965002cfaff4dc92
4359 F20101222_AAATXF peloquin_a_Page_003.QC.jpg
496afd746d1d91e046c8933a0fe2b275
b602ea69aca9b0346131e7303a88f4f55482fe1f
7099 F20101222_AAASTO peloquin_a_Page_110.QC.jpg
aaa5641d6cdde543b3a39a3183cb542e
b14002d35ce30898bf5a35b91c66fdc04329a1f9
1633 F20101222_AAATWQ peloquin_a_Page_134.txt
e7b1c73b24e8f9abe7d55653f0e589b6
25260d66a90f9fd2491cf8415625c2ceeca5945a
31084 F20101222_AAAUDA peloquin_a_Page_092.QC.jpg
608a571877388fee449028db683f5b5d
5e649e95d00b9410c22b015e3f93190f63203298
17727 F20101222_AAAUCM peloquin_a_Page_084.QC.jpg
c6f0860fd899cacb9087886a0c2acfc1
d492f8c4951db92114a9cdd911be8994a0421aae
30584 F20101222_AAAUBX peloquin_a_Page_074.QC.jpg
cb33be13b51bd3c40baa8a2d55bf4f8d
cb0f3410f5e4d1e91df6e29a992d62eacc4caada
102220 F20101222_AAASUE peloquin_a_Page_123.jpg
c7727c9b6d0251e8e0ab25352365217f
a8538ff19cf336d81640c5fdbf3ab8911927780c
1290 F20101222_AAATXG peloquin_a_Page_003thm.jpg
cd8a4d192aec07b5ac0c513a01e25b15
f9ab77462381ac6a752cb3928b7ea707f7aff3df
57546 F20101222_AAASTP peloquin_a_Page_038.jpg
2118cf758722b31b01b062e658ed0c37
9a8b72ba59958b27ed9a621e24d1159b40b9efd9
1782 F20101222_AAATWR peloquin_a_Page_135.txt
f3ac1138a0666a7b06073923eae46976
da4c6e3b34facaee28bd214b1d0695bad2d27c9f
15726 F20101222_AAAUDB peloquin_a_Page_094.QC.jpg
8904ecd1a63fab8e9a36316aa33a5896
126ef3842b471dceab905c8014f431bd28fca6b0
5615 F20101222_AAAUCN peloquin_a_Page_084thm.jpg
c18bf8748e93002fb8fef7c7977f7318
b5dd9a8d5d3289e27f64e01410a27b688482e48c
7243 F20101222_AAAUBY peloquin_a_Page_074thm.jpg
a0d720ad01b31dbe9c048e147f7f66f7
7a5d82227fc276441175c54b3a8c40ca41ce707b
22940 F20101222_AAATXH peloquin_a_Page_004.QC.jpg
81a5399a16c6843ae063da0230e703a5
8081fb15dd1cdc5311370487db909a17af9f1ca6
17235 F20101222_AAASTQ peloquin_a_Page_114.QC.jpg
c38bcb34582005b6428e88f7ba341a36
6cc7158b962bd8dcf41250f50cabebf78ccb6f30
2070 F20101222_AAATWS peloquin_a_Page_137.txt
f393c0fc46a8df9aec0c369d979f5214
0a0142711ef60312fce0cf805e9853fb34d5597c
992971 F20101222_AAASUF peloquin_a_Page_013.jp2
3f26ac8b86d165129206e5df9e2e696a
80a5bdc549cdfe7ceabf59f206c36ee4e18a4df1
30282 F20101222_AAAUDC peloquin_a_Page_095.QC.jpg
14996c6e2843e9c280a44f67dcd90709
66006ebe6f09e8f444918d930bfc3c3dc3bcc665
21131 F20101222_AAAUCO peloquin_a_Page_085.QC.jpg
a4ff00c913f0c51385b54bb72ffa2702
8f5302c3d1b5be8dba3123076d68a336df595460
31577 F20101222_AAAUBZ peloquin_a_Page_075.QC.jpg
9ab531de05f926383720d56c48d1825b
e6cbd0866d1bdd80c56921ce4a5141b980b70074
5643 F20101222_AAATXI peloquin_a_Page_004thm.jpg
bc62747e64ebaf2b20fbb0cdab455ebf
b50823f79ab23bff0abff2ed55bd8b7f6dd2bade
19058 F20101222_AAASTR peloquin_a_Page_079.QC.jpg
887d8d13b075004de4c666a8e8863618
5a42d16b92bd01c69346a33ceabb456c4735d92b
2503 F20101222_AAATWT peloquin_a_Page_138.txt
87ceb0cbea2a2896cafcb94297e2fc24
a2ac66006188f99ae07c557d430fc7d411e21aae
67475 F20101222_AAATAA peloquin_a_Page_051.jpg
5111f55bac4db05691b87198c4e21b8d
75bbb49aee5ae055c62f543247d00845c562140e
F20101222_AAASUG peloquin_a_Page_110.tif
3349b785e53606b1e5d5e61eb31384e9
ab3cc28049ab3368c662fef80de3876741500222
7169 F20101222_AAAUDD peloquin_a_Page_095thm.jpg
d935e610de33fed4ef72ae76f71bfd48
73c76bb04b9df5e82e598898fb17c220b09bda97
5520 F20101222_AAAUCP peloquin_a_Page_085thm.jpg
521636fcac0b62f1917fc3feba341f2b
f88db193a59ef1130468716098a06e2ebf66d72b
749 F20101222_AAASTS peloquin_a_Page_091.txt
6a12ee62e9d172bc346a61a806206ec8
431eb0ebd5d3fed1ea41d0991165776d4fcc7244
2048 F20101222_AAATWU peloquin_a_Page_139.txt
dcc97b6ea35bb304271565e6b1953126
14c0b22121465c804accf3fbc4957dda0c67fdf7
94021 F20101222_AAATAB peloquin_a_Page_052.jpg
587e716f99aa6cdf0c3040ff5684c513
f8255d84176ae0ae30f5ee4ba22532a4e359c697
29578 F20101222_AAAUDE peloquin_a_Page_096.QC.jpg
9ab623129b4a7fff313ab1c4f1ba2e72
f360afa84c818deee80ab9f9b17b6a4611632399
5042 F20101222_AAAUCQ peloquin_a_Page_086thm.jpg
2c9dac9d44035ff479be38dd2ebc4be1
e739180680dafdc6902d900c0d5a6e03457f196d
26696 F20101222_AAATXJ peloquin_a_Page_005.QC.jpg
2bd6ab3675f0d45c8362a227d9c8647f
521f98d811d5eaf276b1a276216b05782ea49af4
6787 F20101222_AAASTT peloquin_a_Page_093thm.jpg
a6dac7ad25cd5147bf1465723049353e
5e1f76406adcdfad413e6d545adad1afa8a46de1
2073 F20101222_AAATWV peloquin_a_Page_140.txt
536cb0dfe68fe4fc20604d3426b71ca7
9a38ae402f43d95f4a2d738e5a8cf6423ba5c58e
88377 F20101222_AAATAC peloquin_a_Page_053.jpg
caf8ab3b4e2f90710d4716a65518eeec
56ddeecc176cfc7935e3265d6ea0b26a161fe781
88686 F20101222_AAASUH peloquin_a_Page_031.jpg
04d8c7f8963c870bbd0aad1bda0167e8
b016f93deebdbf9744daf794c62501775d591d34
6928 F20101222_AAAUDF peloquin_a_Page_096thm.jpg
5e75efd481ecd6c83e0a2fb6273f4fad
f8aa2c109ae565b2f27fe0f9dcac5d011bba0d83
26293 F20101222_AAAUCR peloquin_a_Page_087.QC.jpg
83d20da0d5533afe3b2faa3b7fd3df37
e00da78a023726fc52a8483f323ced6c10c347d6
6573 F20101222_AAATXK peloquin_a_Page_005thm.jpg
efa23844344280e01077f1ec5fe22afa
dbcc1a3e5f2cf5e06e1ec1cd4a903d39a0a04f6f
108298 F20101222_AAASTU peloquin_a_Page_121.jpg
9815e2a18ce932b0f5b57d77249c9c70
e1663a6872487096c33b3c62417072b6421946b6
607 F20101222_AAATWW peloquin_a_Page_141.txt
9bf09e8c52b5c7463f2a9676ee198a4f
97b2a73ecdeb42bd3f108b300c190d6fbe6d9e62
50522 F20101222_AAATAD peloquin_a_Page_054.jpg
af9dcd43b048578a17e6f5a66c083b57
62c444d88298050730823cab1aced2373c2f1966
1051971 F20101222_AAASUI peloquin_a_Page_093.jp2
ae371676501d672f860f34af64759a31
32ec10088763d3a2ce5246d6c9ac720f99989289
19099 F20101222_AAAUDG peloquin_a_Page_097.QC.jpg
37b1b525ee3465a65eea4825847e4fcc
4dba67b39ec55783e0f0058e44a7c4742758d71e
6705 F20101222_AAAUCS peloquin_a_Page_087thm.jpg
c0fa219e4d734cd1a97d4bde68552a53
d1d89fdf7b7cdb6c5a132044031878b41dac5eef
6674 F20101222_AAATYA peloquin_a_Page_014thm.jpg
56bcd96b43700170cb1ce5486f861558
b34d16f573a869eab2abb3df2a585336fe3b0790
11210 F20101222_AAATXL peloquin_a_Page_006.QC.jpg
df95cbf2f92d30918f285f0d449a5676
e2cdfe80327a2483278d10dac3b8a99b8e11bcbc
29581 F20101222_AAASTV peloquin_a_Page_138.QC.jpg
7fc8f706a9c7f8240d2250700e0a7571
bde92addf0a3c19a5d823103df77a97bb465ca46
2060 F20101222_AAATWX peloquin_a_Page_142.txt
6285a27cde49bb05283c6ec462464db0
1fa65f4d3285acc2ac1a48393f3313fdfb99d147
60367 F20101222_AAATAE peloquin_a_Page_055.jpg
688c53955c3c6f60616cbca08eed9480
d9aa79e23eb5e01f7bed7be16b8e9337ded3921d
25708 F20101222_AAASUJ peloquin_a_Page_052.QC.jpg
0b951607d2bdca64ee6217c34d1bbc5a
e6fdc8cd4757716145c31881d624b57166ea2c42
4783 F20101222_AAAUDH peloquin_a_Page_097thm.jpg
bd22ae34f4cc294fe92e66c72cdcd807
bb50512dc8a48f02276d4c39657dbf2a371be955
26488 F20101222_AAATYB peloquin_a_Page_015.QC.jpg
a6d61173750e2e8ec3b73fed319f20c5
b42b4e6f948374d49ab97b10989fc63e6e9f214d
33892 F20101222_AAATXM peloquin_a_Page_007.QC.jpg
388fb25a13b0ea7d1beeedbfd3c52dd4
67b0033cce3cdf778ee07435764e6e7063b9bd99
2806 F20101222_AAASTW peloquin_a_Page_052.txt
b83e315b58a5b6c065362695730b856b
033bc1a62c2d2f3295a06dd9bb3c96c5a0bcc2d9
1145 F20101222_AAATWY peloquin_a_Page_143.txt
c7945efec5199ce549f6246dce233ab7
98feae21f701f33fd438d674fb4e1b29f23a49f0
106843 F20101222_AAATAF peloquin_a_Page_056.jpg
6090091ae9d8999d52631fd0c7f8a229
e5e1b3a33edb341e8cfe4956fa62657c64bf0c6c
1048591 F20101222_AAASUK peloquin_a_Page_092.jp2
c90937704a14c11777f3d1ab8c11c0ac
37c8658c44715317cf04d082ed2c0cc361f13d51
33942 F20101222_AAAUDI peloquin_a_Page_098.QC.jpg
186e760724e2a7806a07d9e5047680f8
28445ad2493ddf6fecc05ce094e8e1805edc93fa
24982 F20101222_AAAUCT peloquin_a_Page_088.QC.jpg
474eb205320f084ce52d20a66b632723
7fde3a1b02fa03256c784152276d2a629320f25e
29177 F20101222_AAATYC peloquin_a_Page_016.QC.jpg
7f6f0ef58930199ebc8c9553e04316a7
0654d133b9b88dbe3ff214106c62313aa7641a02
8361 F20101222_AAATXN peloquin_a_Page_007thm.jpg
1e1547d07c175a4a0e3e2c81690e0942
54ff4c68c0e135ada8dfcaeb71888a4bcc307be7
F20101222_AAASTX peloquin_a_Page_070.tif
bed21d8d3b7645d11479883868ca6966
b21ce3af4a42ca4b8870422fcf2aba2479dd3526
856 F20101222_AAATWZ peloquin_a_Page_144.txt
51c91496cd7347aa3a1ebeef9fde6639
1b0d9ce95417fb12dea77be2362241e2a00d60e1
108529 F20101222_AAATAG peloquin_a_Page_057.jpg
fee3bcea41ecd00b827ec4dec3cd1e84
d86bde68d1c2d5d63cc0f75b73c03495893ffbf1
7354 F20101222_AAASVA peloquin_a_Page_077thm.jpg
1921ea334d6687da341228323ce5f2da
f6c61409e224b263eabf128a5106eda1fc14a6f3
56483 F20101222_AAASUL peloquin_a_Page_138.pro
a61123bb95fa771cfc73f9f432877be5
16c1829fff5f77ec4bf85b170168ce48492c0e05
7647 F20101222_AAAUDJ peloquin_a_Page_098thm.jpg
50d148dc6fbaa72a3b38a9a9d08b5abd
4e65f617c8dd0e74dc85f6fdbcf403964ac8473f
6184 F20101222_AAAUCU peloquin_a_Page_088thm.jpg
e889ff4ca17f78a06d62e39e5d3b92b5
ac0c1b92de528ba8433d956c6e2e7f6071079bff
25917 F20101222_AAATYD peloquin_a_Page_017.QC.jpg
ae5575b3b683237152ed436205c19b9b
a02b063e46c30777490521f3fb967baf0b81bc71
35304 F20101222_AAATXO peloquin_a_Page_008.QC.jpg
9332d7c97ab920f2965bb656d50c2554
fc883b160fd74f539f46ea0fedc87fb55b249e41
28814 F20101222_AAASTY peloquin_a_Page_079.pro
4184172db7ad3ed00bb4c32cef005b34
75ccbe76d910ae044dd246c82dd32cc8b829d93e
38185 F20101222_AAATAH peloquin_a_Page_058.jpg
532a80ce7a18e4603a3b74864a31d3f4
eabd8edd79999ab1f40fe58c8df9ee267bbbbf91
31353 F20101222_AAASVB peloquin_a_Page_137.QC.jpg
1f23b269ba36d0465ce97d4fcbd5f481
2af9c843bf080a3003e464fb940b1c7759697682
7134 F20101222_AAASUM peloquin_a_Page_015thm.jpg
e77c9e00e695ac3a19ee513ae94e09ea
13e66e59090a5914d35f47db83c916c331974bf4
34955 F20101222_AAAUDK peloquin_a_Page_099.QC.jpg
15a6efaa5726996f2854756303aea9e8
ed869deaeeedc0f08095bfd30cfe3d7d6ee72e00
15900 F20101222_AAAUCV peloquin_a_Page_089.QC.jpg
b18996c84592c17156606ae0ed0cd449
3c1750a3831c82b6151a2d84a677b46742032bb5
6734 F20101222_AAATYE peloquin_a_Page_017thm.jpg
2ec6e3ca8c5a722f5086937f1482247d
5303ba80be220f7812cdd3d300f5616621a263ed
8330 F20101222_AAATXP peloquin_a_Page_008thm.jpg
3292a739072265a83b3d62fb8a9df170
bdc673310f88f7802de102867b77a247206f2aa6
46061 F20101222_AAASTZ peloquin_a_Page_026.jpg
9700f7333b671ba775d5adfc16d41db1
58ea663ff0f90114d8fd7bc7910287187c3675a0
103084 F20101222_AAATAI peloquin_a_Page_059.jpg
e0f3f0e3c05afb29176b1cce9715f842
e42e92263b4e1ebb02302cc0151aac6e19a6bd2f
43053 F20101222_AAASVC peloquin_a_Page_034.pro
e755b8572dedd43026a02572eb07aed1
afcb768fd5f4e290816a121c05f50a0231de98b1
F20101222_AAASUN peloquin_a_Page_017.tif
6ce76be8758afef9000b6e03acea40dc
725873cc848558376261d8e580a54498262fcd14
7710 F20101222_AAAUDL peloquin_a_Page_099thm.jpg
8831dad572d403cdeec66e0b7a72aef0
ba9d90595d39308a15f330d812a20039bc022013
4196 F20101222_AAAUCW peloquin_a_Page_089thm.jpg
a824cd3008de5c5bcf42a94f0b0a3941
8e9183a2cdfce34919c5214180491557e8af6e44
31502 F20101222_AAATYF peloquin_a_Page_018.QC.jpg
e6bf730163250f8fc86eee2f121d4c49
cd7947eede836e3601cec210dde4082d6a32c9e9
29711 F20101222_AAATXQ peloquin_a_Page_009.QC.jpg
8d65f54dcdf11155a6932e0452687eac
5c0977f13651a8c2ef31532f68436d4658942f1c
98520 F20101222_AAATAJ peloquin_a_Page_060.jpg
1a969ed50a2caf2e1791c686af871642
aca84bfb4db0b98a5d64f829900301f7dacb65e7
10929 F20101222_AAASVD peloquin_a_Page_048.pro
af2175a8b3c68f73a77a088cde8eb602
0d7bd74e966b2cff24d3d71b4cb0b3bb793a64c7
206 F20101222_AAASUO peloquin_a_Page_012.txt
e65da930bae33b77c36d3bdc0fe7fba1
c57e3f5aee1b55bc16452f1684ebfb0f03503145
30988 F20101222_AAAUEA peloquin_a_Page_109.QC.jpg
8f2c5575e6fe075ef9e0838510eac7ee
b62715b6c59732cfc8374b341fe7a5db99e315f9
35216 F20101222_AAAUDM peloquin_a_Page_100.QC.jpg
6d3149dd6ce77aee1e9ac34fbc87c02e
bdb98e6f73955091a7fc554bb2a2f0da47c5121b
6537 F20101222_AAAUCX peloquin_a_Page_090thm.jpg
002bd3801f719110ea3053f881ee88da
6a7e65296a942882839bc89df52890ff24d4f23b
8032 F20101222_AAATYG peloquin_a_Page_018thm.jpg
e5244fa3bf06e51e80c6fd71dadd8f60
73be00acb3c5e6df97962fa16f3dd5ea51f37951
7309 F20101222_AAATXR peloquin_a_Page_009thm.jpg
e4fe3ab86f6b9d0ea79b87ff972abc92
b0d3d0665369d2b457bb25db3591f55912ba8a98
60654 F20101222_AAATAK peloquin_a_Page_061.jpg
dfe225902bf95f3dabe7e89f6a440b09
0863f558152f2019a3bd414626a3af0ad1a84cd5
22962 F20101222_AAASVE peloquin_a_Page_094.pro
7991eff2299510b6119244d1a0e4341e
54c9d2ea1bd224fe711b8cc4f619e7da40964ed8
7769 F20101222_AAASUP peloquin_a_Page_011thm.jpg
9325c445132f6b0476a4afd67bcd36bc
506212031b62bbb1b330b4cf3cd3ea58bcd9215f
7276 F20101222_AAAUEB peloquin_a_Page_109thm.jpg
1d72d3063eef4d5aa296ce38123f1de3
8e9703d0e0572c743b5ff73c471965e58a24f522
13007 F20101222_AAAUDN peloquin_a_Page_101.QC.jpg
4a422a5ddf9ffbf6f1675708311065e4
66ad5056880bc9e0d15a9c447fcb3a9dbb5d53af
13719 F20101222_AAAUCY peloquin_a_Page_091.QC.jpg
6fb6c699f97c1d7bbd3bb8d4528efbc5
d89494ff64dceedd895f0edf99781820ea9cefc2
29505 F20101222_AAATYH peloquin_a_Page_019.QC.jpg
779ec8a015c723537c7212c6d5fc2ceb
80bfb615cb7c4d4431c4cd115c1fe8f64cd87a3b
20662 F20101222_AAATXS peloquin_a_Page_010.QC.jpg
6bb28c001e8d9313bdddfa9c9e4115b0
f6c285951a2290bb23fef048d55ffdc8f8c6525d
120842 F20101222_AAATAL peloquin_a_Page_062.jpg
abe4d040ac5efa894c816aeade7c63c9
d9f6ecd50581dea928715827d9cdfba738246bc7
126611 F20101222_AAASVF peloquin_a_Page_127.jpg
38e017dbece6838ddc10f529b47083cf
9b1efc66a32e443a412f10ebee0b3cbabbca09e1
2857 F20101222_AAASUQ peloquin_a_Page_008.txt
122c1f81fddb7f5cd7579eb631ea86e4
d1570cca77a71724a06de788105e04f511c94dc9
1932 F20101222_AAAUEC peloquin_a_Page_110thm.jpg
840932585810ee7eddbee9a1704bc538
176b31c058c3616267b1e8a37049eb1235a8a2ae
3122 F20101222_AAAUDO peloquin_a_Page_101thm.jpg
5469989b35287ba670fca0edc8c5c8b3
250b99fd4864880887ff06f39ff1ff7654aa9e19
3596 F20101222_AAAUCZ peloquin_a_Page_091thm.jpg
32da53e6c840954c70a95853161ddc5b
373da3c0f4ad16c81fdba0e73927d7633a7cfcca
7998 F20101222_AAATYI peloquin_a_Page_019thm.jpg
4f6beede6ba1c18787a6b5d08a660774
1b4ca028fb37cca82423ddb76b6d40e59c6e7530
5035 F20101222_AAATXT peloquin_a_Page_010thm.jpg
b08e1eb5ccd4e3349dbf4ef6053f9c66
0606dad18d943792d63438d184f7a7e5dfa438c8
126745 F20101222_AAATBA peloquin_a_Page_081.jpg
ff1b98e59e9ce9ae183f9c6fb7b1aad5
a3d6706f9862bab6ecd7e596f8eaa62da477cfcd
17953 F20101222_AAATAM peloquin_a_Page_065.jpg
6e40112f8c71ed583d6ed10e31060bb9
bb2a7a143ef226b6193b84e5a1e72f882d8f6ea1
16759 F20101222_AAASVG peloquin_a_Page_101.pro
70f09a2dd8695dd18e368c11b6a5d297
391cc004968a8e794b81259664a3241f4f6afe34
F20101222_AAASUR peloquin_a_Page_126.tif
4a8423c71e8692d01b2f39d076cdab90
cc6f95db3f5451002398870d93a6c0c8997f2c07
34464 F20101222_AAAUED peloquin_a_Page_111.QC.jpg
83656797ce87e1f44fc953f957b24e6d
2a2e259db75962c5025e2b669057008a59b63d57
15401 F20101222_AAAUDP peloquin_a_Page_102.QC.jpg
873defcdca4427957f52dd59f327d746
8889fed379d6bf213d00e5b88fb4982b35eb4166
31375 F20101222_AAATYJ peloquin_a_Page_020.QC.jpg
864a9c578705b5b08a743ef4387f6401
274ab548bf9578130972aa55e815ae8e16403c0c
31898 F20101222_AAATXU peloquin_a_Page_011.QC.jpg
a687f7277d4ff720db389c6d9f5cd959
1db674ded2e2453d65829abf8745e076b9cc2019
128557 F20101222_AAATBB peloquin_a_Page_082.jpg
74ca55901049b89fb759c00c22f19f1d
8573b3450b70c421da59815dc7642296befd7c6a
58336 F20101222_AAATAN peloquin_a_Page_066.jpg
bd9d19db72fa328262cb00a338371ead
bf4d6442741f99802d02e16346b1948c71dc2158
5189 F20101222_AAASVH peloquin_a_Page_043.QC.jpg
4c1d9bdfb5d7274802b4473fb05c68b3
c878a123f9d5ac761c0a40add7b9977ce1155da5
29255 F20101222_AAASUS peloquin_a_Page_067.pro
800e4040f19f44f59c5489e422d2d805
f8c2e17d25925109cb343ef8c983535433d38206
7629 F20101222_AAAUEE peloquin_a_Page_111thm.jpg
4663aaabecaee8c191999d6301c49ab1
0b2de8941ff9aa082033dfb1684ed70236785ed2
4991 F20101222_AAAUDQ peloquin_a_Page_103thm.jpg
97a0b57c8838a4f291cb572de254faa1
27524be4b52f2480c936b9db06299aecf112c939
5092 F20101222_AAATXV peloquin_a_Page_012.QC.jpg
cf7071b6f072997f960ba527e567e033
dd0f9c80970993bb0e08387729eede2b5cd2a558
64944 F20101222_AAATAO peloquin_a_Page_067.jpg
f3741170f3050736529d05538a07bf3d
27d87032f405857dcbeacaf05840f53d996b96fe
3067 F20101222_AAASUT peloquin_a_Page_083thm.jpg
1b3965a7b733bd067ea99cc83bec9a1e
cc144291f207b1193c9a8a2c28464c02d3c823a5
43383 F20101222_AAATBC peloquin_a_Page_083.jpg
a345cf102d6d45d6443a3207d54fe727
b60906c4212aec38638c98c812bda093690e4c22
4316 F20101222_AAAUEF peloquin_a_Page_112thm.jpg
fbdbd83afbfb78716cc7cfd076738f94
e0d8b24eba6c992c2dca228cdfc2ce96e40602f3
19297 F20101222_AAAUDR peloquin_a_Page_104.QC.jpg
d62b2342b8e53baa0f32c01c44a86c0d
e7b1a1043a76eecfa87039bf36f8b58ca204838b
8561 F20101222_AAATYK peloquin_a_Page_020thm.jpg
3df86917847d92d3b2b6433cfb392d50
2bf66a0863de438df3d1c06e2048f32fcacc8296
1293 F20101222_AAATXW peloquin_a_Page_012thm.jpg
8a7517bc7408d3f7c41347a1a358095f
1522f524b383d0a46f4c448a2ca26fa7414fc540
68866 F20101222_AAATAP peloquin_a_Page_068.jpg
115f80b60379c76b3599132351ccdd1e
719159567cb8c2c86daeb2e5e45de5a3d7d96363
62175 F20101222_AAASVI peloquin_a_Page_143.jpg
f3bf6126b0521a0ecf930f8cd6fe1c1a
e35c77cb2027bd1b6df24f24bcb9c4ba95d9abbc
911698 F20101222_AAASUU peloquin_a_Page_119.jp2
38890fed83461b28e75073fe03a3ca1d
f1fbc8f31419a4a9e84202308a420914465c1b64
51611 F20101222_AAATBD peloquin_a_Page_084.jpg
a918ef5bbfc342ac03c817118b9f9a4a
d2d0241d3080d4f377ac3f45b5367b49bf965c5f
20131 F20101222_AAAUEG peloquin_a_Page_113.QC.jpg
a557d1f9870b531ccacb700f221186b1
f85cd312bcc3950f83349dde5518e9ab9fa6a4f3
27083 F20101222_AAAUDS peloquin_a_Page_105.QC.jpg
70e4d3b27901b2072deaa71dc3840d57
eb5c06374730159ea7e6ddbde3279a802985270d
29957 F20101222_AAATZA peloquin_a_Page_030.QC.jpg
926482db829aadb965fa5e8f14e92730
726254fb53a9a31b62c9774aaf081f26ef8540ba
32156 F20101222_AAATYL peloquin_a_Page_021.QC.jpg
2d0162c652144c9fb8d8fa3c07545365
4a203acc84db3c69eb74ee50460fd184ca4f0cd0
28292 F20101222_AAATXX peloquin_a_Page_013.QC.jpg
5ee3077ff6432d72b27d1ed683d73a94
a6d9ed3bfbd75e4bf8446f5de45453352c931526
92255 F20101222_AAATAQ peloquin_a_Page_069.jpg
70d9379c925e8a1503a401319ba7e6ab
d63975c186c14694f3dc1f206300ff9699e710f6
665411 F20101222_AAASVJ peloquin_a_Page_130.jp2
3da043555a57b530b622fd1e54dcc1b9
7f8d04f8df2d7e4e3a844978694b415485c41290
89407 F20101222_AAASUV peloquin_a_Page_088.jpg
351b1450d0cd6d5414f1ca5ef36b967c
3b0e88a777bacc02a980f602137fb7da16f6ea37
64919 F20101222_AAATBE peloquin_a_Page_085.jpg
11b330608ca023b1c9c07fef10ceb0d7
79e08563704b6a021c03caf20251b2f2b98ed473
6613 F20101222_AAAUEH peloquin_a_Page_113thm.jpg
7bb4e57d30c5b791813851c4a94c42d5
efef95b659518cc3562adf462cd50a7adc3beb64
6618 F20101222_AAAUDT peloquin_a_Page_105thm.jpg
8bbedc7bbbacd9639b065c0bf4f6b3af
ffa03bb304b4d794aac0237c1fbe2657398ad52b
7361 F20101222_AAATZB peloquin_a_Page_030thm.jpg
8313fbdd0652520458c84e73e8b61781
c97396b7e4de7fd5ebd1f203abf85fb2f413756b
8091 F20101222_AAATYM peloquin_a_Page_021thm.jpg
a52f327c8d7bc3ce0fb5442945568403
575da6b8b8ecbceb956c02e152ffb6c08fff6891
7568 F20101222_AAATXY peloquin_a_Page_013thm.jpg
d57aebdb2eff07fce7c97c7acf535d27
9240836bd51a7ec67d0ccbd4ee591a8a3e0d60aa
87937 F20101222_AAATAR peloquin_a_Page_070.jpg
08673e5ea1a45a51dd8af8cf2cef437a
0de29a177f028bbff3d2631d3f743335af17f8ff
6344 F20101222_AAASVK peloquin_a_Page_119thm.jpg
b73d38bf01e15b155338982cf1095cb5
c8519282a61f75be224623b3fe341438f8510570
90435 F20101222_AAASUW peloquin_a_Page_030.jpg
5a0f862da80cc6860ef693d217811858
6144fd331d2c50a666ef84bd02842274d19cf7af
67752 F20101222_AAATBF peloquin_a_Page_086.jpg
393b8b54276dfacb730bcff4094e0848
f79af79306e0ffb4a2ffdefa034d4d560a63a1ab
5667 F20101222_AAAUEI peloquin_a_Page_114thm.jpg
86c87906ebfb708715f7d25e216c8ec7
f0b75d53a47766f1b559f64778dd1da648c722cf
28590 F20101222_AAATZC peloquin_a_Page_031.QC.jpg
af165d1a67a5efdc15d923c5180e870e
5ebe583f5279a58d1ccd9122dd0271421e45f022
36111 F20101222_AAATYN peloquin_a_Page_022.QC.jpg
e72f4c9d4b8110544f9db483758a521e
245e400b90c7d60756c5167a899bee819e77e112
25564 F20101222_AAATXZ peloquin_a_Page_014.QC.jpg
0e0744146d284cf2bad1b415ab395e53
4e2fcf98ebbd4fff71c6cdf3969c722eca9d834c
109193 F20101222_AAASWA peloquin_a_Page_035.jpg
5741e33332a580767ab90e2eb6221da2
92b8b547fda7e077a22238353aeabd550d6e54e0
43342 F20101222_AAASVL peloquin_a_Page_021.pro
8c5950498fe6fc968f111b3b56df0aa6
c2755a03e34b5d2633bee0ceb8b943ed67afcdb6
4919 F20101222_AAASUX peloquin_a_Page_104thm.jpg
ae8faaae5f8ffaab620e0bc1d1d39f43
84e952f14486d0a4ed7f172e93b98f390a72fbc7
94391 F20101222_AAATBG peloquin_a_Page_087.jpg
841d1e57312e1d556c411e010e7a44f7
96cee031515757850d5c7c7e0a6b12a30bc8a0a5
20732 F20101222_AAAUEJ peloquin_a_Page_115.QC.jpg
636871da9df819be9b1bbed879bc6d7e
adbf1749bb856d80a7b3efa17c2f51a86d6b6d6d
6204 F20101222_AAAUDU peloquin_a_Page_106.QC.jpg
49682e3f500a8457e37f5d9f53edfacd
06e881421f468042b195c9392255ef9b494a4dde
7542 F20101222_AAATZD peloquin_a_Page_031thm.jpg
cbdf9688f64c3c71cb3af6e0979294af
fd46b497a24f178495349326c9a125f8645dd0ce
8836 F20101222_AAATYO peloquin_a_Page_022thm.jpg
559177c4f4f36683f420543a6a07463c
5692674d81e5afb1796e696e94f529e88480f547
F20101222_AAASWB peloquin_a_Page_056.tif
10e38d8234ae809746c418469959ed39
8f52986a76aef28f05117d5b2067e6ba8ebba5e5
55196 F20101222_AAATAS peloquin_a_Page_071.jpg
0b29f6f6182ec434c699921a6481c9c9
8edb8a5d8b59c78bb51c6dc529c5f3ea8da28fed
84082 F20101222_AAASVM peloquin_a_Page_032.jpg
c9619ccb799e5f7ed59390d4bc263b76
89a5040953d44b8dd99107ac60e5cfd028e69740
206985 F20101222_AAASUY peloquin_a_Page_045.jp2
36906e940b406313fc619618406f42fe
80787779e9e3740bdc86749b96c20640f86d0596
55787 F20101222_AAATBH peloquin_a_Page_089.jpg
2c8cdb996954d533326396190cfdcee7
f95597ea79130f8652ad6aa578571990e2f040ee
5081 F20101222_AAAUEK peloquin_a_Page_115thm.jpg
3e2468c940b59da281c7d50c7df69996
8a08c29a0d7d11ec20f88ca9295f4ab04591f2a3
1728 F20101222_AAAUDV peloquin_a_Page_106thm.jpg
c722984df412204484c9d718d4486327
5efebedae01fffff3412215dcabeba40d1d5978a
29598 F20101222_AAATZE peloquin_a_Page_032.QC.jpg
59e945bf9d7befb7994c966b34a17fff
fbcc686ada9a9377f5529bc59041b6846d30cb55
16674 F20101222_AAATYP peloquin_a_Page_023.QC.jpg
2d9a8b2a06cec3604e1818ddb9171ec0
71a74af0e57e551aa161e58b6491873f529e0d39
105256 F20101222_AAASWC peloquin_a_Page_074.jpg
52f6f9dea13f99cc49ae873de02571a6
daa57661e44bc6de323c25a0bd4b1a3fe6eebfc6
47659 F20101222_AAATAT peloquin_a_Page_073.jpg
a7a97fc832879f10dfdfb3f8eb0084c9
db39b20a70b37aa3b88b7196fe8ee919e44457a6
33565 F20101222_AAASVN peloquin_a_Page_139.QC.jpg
468d820f21d233d75ea504e801a3fee1
5acc8da5869e899319b8820ea172c1fab4d705f0
33177 F20101222_AAASUZ peloquin_a_Page_033.jpg
f1d6a8d73928790cf059ca3eb149eb31
b68c6ba89ae293f9ccedbabdc0af73f8e325860e
49063 F20101222_AAATBI peloquin_a_Page_091.jpg
b6f5bedca5b2c1c5f0ecaf80449cd1b3
3823012d2fc2f97b78bddf93cbb50113d8ba9eb4
20062 F20101222_AAAUEL peloquin_a_Page_116.QC.jpg
7c33835624139953bb3a8dca13aff93b
e7a0afaa3a96d52182b84eb3d620390fad152cf9
20843 F20101222_AAAUDW peloquin_a_Page_107.QC.jpg
13e8769ef218d0db167b7c22c5e875f0
d1058598edfe9d566360650ca794c52db0a21936
8397 F20101222_AAATZF peloquin_a_Page_032thm.jpg
f7ab3e8d9c06b3e6e828963e791cc29a
ea8164782a3fb70a60528d93a0d6a4a8e96949f6
30211 F20101222_AAATYQ peloquin_a_Page_024.QC.jpg
79b01f3067b99bb88aecc19e7f3dab1e
209b44f5417e218a0a2c6fa6dc35a92b5620c2a3
3730 F20101222_AAASWD peloquin_a_Page_025thm.jpg
050f7f193fe696bf0c1383f841874461
d2e5439f2da008d90ea74b8ff56ba3464a422d60
112980 F20101222_AAATAU peloquin_a_Page_075.jpg
d4a8c2271a3c26c1f8727d46786aca9f
02d10dc114a4cf78fb280fc1a6cc7d5f34bfe857
90803 F20101222_AAASVO peloquin_a_Page_072.jpg
3cdee788cebee73852b1dfa78b9d8c20
d4e39c41bf164532e4a23ca105cf9a7c2e75fa8e
104018 F20101222_AAATBJ peloquin_a_Page_092.jpg
f74ed4dfec72102222b425924ead3ebc
659df67656f59d6c89c3bb840303436d7fd87360
27889 F20101222_AAAUFA peloquin_a_Page_124.QC.jpg
3364904cbf06cb4e98bb6ea5fcbdf908
637f243bc191bdffc2a336c988bab3282d6e2c26
5101 F20101222_AAAUEM peloquin_a_Page_116thm.jpg
0407acb1aef4106ee91dd181784302a0
1713403ff33fa2aa8603d0dd17304e83711eb027
4966 F20101222_AAAUDX peloquin_a_Page_107thm.jpg
e3e9e238445ab6805f6f8792475adee2
aaed73d717f99dcbfe3eaf8d4d18aa795cd2874a
12826 F20101222_AAATZG peloquin_a_Page_033.QC.jpg
549ab82aef4534c0d442e08512aaff50
4113ed65f84188e120d6ad246ff4de84a75c2f1c
8665 F20101222_AAATYR peloquin_a_Page_024thm.jpg
aa7426dc850223360a47ebbe9d3010a6
a9ef5f1bff0e82df5804df0e25efeab94a10c4b3
4973 F20101222_AAASWE peloquin_a_Page_113.pro
33f735173ba278deaecd1e1fa5e884d0
4a8f2fe389d51f7c4b4031751ecc11aa773ad956
52757 F20101222_AAATAV peloquin_a_Page_076.jpg
c24c39f6958d2afabfd97459f694a855
4321045bdc25d45f29d62a0971ee1750c5200679
5459 F20101222_AAASVP peloquin_a_Page_048thm.jpg
380276b46c5b33b34ebdc42f00440131
afef677e469b950358ad7dac14528198c0a5e8c8
111558 F20101222_AAATBK peloquin_a_Page_093.jpg
e731f94d84a5e50d688020a2e8e1b0c6
13ae5a9c653f9ff2606e4e318c1c6d6ff6903d66
6831 F20101222_AAAUFB peloquin_a_Page_124thm.jpg
33876ebd76e6bbfe8e5754410beb1495
03650659e98561ee539a7db61672d4352af4ae68
25876 F20101222_AAAUEN peloquin_a_Page_117.QC.jpg
812ec88d7ac4e8bcc20b8ce7ae311bdf
be83e578d695540652ed041d7184b7038745eaad
30518 F20101222_AAAUDY peloquin_a_Page_108.QC.jpg
6376a136f13a93489ed1b9c338dd04ac
c3ec91dede844add41d588defa9429cff0015458
7270 F20101222_AAATZH peloquin_a_Page_034thm.jpg
a8aca7428da9b389e7c26226b31ddf75
27a751c5d40c641aa33988a150a36720d4071eba
16840 F20101222_AAATYS peloquin_a_Page_026.QC.jpg
53f781ca17eb4ab6c19c3eeae9486581
1e535d00159463a5a6b6e3d8dcbcdbfdba3221a6
F20101222_AAASWF peloquin_a_Page_114.tif
66cd2b005b58fc291952a86613eb299f
c735fa66016730f498f1f0a8573b9b44188306b8
104170 F20101222_AAATAW peloquin_a_Page_077.jpg
defed5c938e0d368ad763185a76b77b6
ed176d868cf24867e80e852ce5b856fd95f0491f
F20101222_AAASVQ peloquin_a_Page_068.tif
2ab7b4d88da682c616300874ff6d6a2d
1368e405ea4be7904c15b77d56e8ed0408d36dc7
52874 F20101222_AAATBL peloquin_a_Page_094.jpg
f39d7e8a6cce43f838fbd29cd81c3bb2
5c0e5af75f1ebee59c3396baf9a3043ec131c38a
35124 F20101222_AAAUFC peloquin_a_Page_125.QC.jpg
d74bc67b584b227e45f7cd8db1f53500
717b73c5e08759309cfd1bdc13d05ba6af6830f7
6586 F20101222_AAAUEO peloquin_a_Page_117thm.jpg
faa7756a8a802b41b05952e1993a33ef
8e5bf18f916cb284631e1ba48083bca32a8c8c0d
6814 F20101222_AAAUDZ peloquin_a_Page_108thm.jpg
58cf8924c9cbf6d2595821590d81b199
767934e77870b10a43c0754e7f684fc13eec1415
36069 F20101222_AAATZI peloquin_a_Page_035.QC.jpg
035882fd5ba7ba102d976d790c204fcd
ff482e151f9b54e495d78e0d52cd917c999699f4
5177 F20101222_AAATYT peloquin_a_Page_026thm.jpg
ee5cdd114e42b5f67f027a6833bd1043
3126a051913926e59897e1b289fce048c70c3eb6
2849 F20101222_AAASWG peloquin_a_Page_006thm.jpg
0cb3c41f9fb1b48a0286426c71913375
0b565b53f77362a89eefe8388118f62700e3e768
102534 F20101222_AAATAX peloquin_a_Page_078.jpg
d8956f2fcc20acd768a4922eb10c09a0
777797399273528d8f12e3cde8822f281617a4ba
1890 F20101222_AAASVR peloquin_a_Page_096.txt
e3d8c5f31b830651179287968d9de4bd
77c99d15d02958a13c6da6c58205d2894ecee485
104209 F20101222_AAATCA peloquin_a_Page_109.jpg
b27192c5d018992bea05877759194438
94a023b9eab82385744e248c6e9c23fcdfe3bd11
102338 F20101222_AAATBM peloquin_a_Page_095.jpg
6eaba5de278e290719b1e8dce870c9af
94438546a9235d03c29fd814bcdb7fc666baa911
7576 F20101222_AAAUFD peloquin_a_Page_125thm.jpg
89eb173c49be82a5e800c0519798f945
6339e710430eb7802f25ad822acad6e28436eec8
23470 F20101222_AAAUEP peloquin_a_Page_118.QC.jpg
70bd4f3fbd0b2fc3cd330e7717160690
207a7b6f151617a4554bf0775ed94be321754d84
8793 F20101222_AAATZJ peloquin_a_Page_035thm.jpg
728859867a5c670fd955debb883a5c02
140c84f450c6edecdd2588f3f251b19735a01852
25334 F20101222_AAATYU peloquin_a_Page_027.QC.jpg
44e307a17d5beca2dc8279916ebf9306
2d362675490285247703d03f99b49a5caf60646d
F20101222_AAASWH peloquin_a_Page_010.txt
e19933d8f33b88aed0cb5680d835831d
f1c925c35d30fbb4985614c4b9f05e9ec705dd50
63855 F20101222_AAATAY peloquin_a_Page_079.jpg
446567e11820b1ee9f7fa34e526fab7e
688c1c3ecfe06c90b6f6012a6d83345f3082729f
1051964 F20101222_AAASVS peloquin_a_Page_057.jp2
b1aefdad64cdf8a3113dd7183738a411
941f3294b502b408a200ed8cb8cec7acc0cbab66
21844 F20101222_AAATCB peloquin_a_Page_110.jpg
101af73248f0331c6e8dd35e90e4e4bd
5c2e2a46a1a26f6005c7efbe54b3c3af4f7f4d8a
99219 F20101222_AAATBN peloquin_a_Page_096.jpg
59bb66128abbb9e25584745870ca9802
b6440ba66b5b2b207ba7ebf8e5ac608975b5b43f
33395 F20101222_AAAUFE peloquin_a_Page_126.QC.jpg
07d590aaa3294e2bcfe1a3aaa445b577
8714ce7249ebe9dc3a10d2f388f21f0aa9f235ed
5826 F20101222_AAAUEQ peloquin_a_Page_118thm.jpg
fadf5a53764d5f6627540fb9d0496196
fd988c7977b551268b64cdeb672135ebd17ef20a
38998 F20101222_AAATZK peloquin_a_Page_036.QC.jpg
b7f98d5d28e0adcdc68a1a99a155a23d
3554a0b3cfeb693dcfe1d484fa9873d4cb5f02ee
6438 F20101222_AAATYV peloquin_a_Page_027thm.jpg
d2add90df940f283800924d43d64b5db
2ea1ff8f9e944a6569d76af611b420f8defcac70
14452 F20101222_AAASWI peloquin_a_Page_025.QC.jpg
08d07167447deb6dab9e264eb02faf15
1a497a7b329817943000a51668745de2310fa90a
115725 F20101222_AAATAZ peloquin_a_Page_080.jpg
f7e9b7390b1f346c60ce289ed5183db7
508148e8d57068c90548de716d05e2f867c32d7e
4252 F20101222_AAASVT peloquin_a_Page_033thm.jpg
7223e6e8874512d05bbbd45d2ad42369
759d24efdb41b5f4810202945ae879329a9e546c
121626 F20101222_AAATCC peloquin_a_Page_111.jpg
8b3d18bc83cfa631d20833185744d8bc
69a69e0678e116fb2a1f24adb70752cc9f62d60b
63019 F20101222_AAATBO peloquin_a_Page_097.jpg
f6932fc08ee42ff64499932f5bee3f30
61eb475ae13af2c84c638d2c2d5bbbb8a866d527
F20101222_AAAUFF peloquin_a_Page_127thm.jpg
d6431619768f76beb6619c8b3c0e4ae0
5925636e0dc495b46f3d76d906312a4a96beb20b
27018 F20101222_AAAUER peloquin_a_Page_119.QC.jpg
23e6cd81cd2bff436f29f9b8e89c5d40
68351bbf3f41c3465ea1422b1f2a17e3691c5589
28356 F20101222_AAATYW peloquin_a_Page_028.QC.jpg
adc467078e6c8c3be91eb6f907e2b3bd
c01be471828e7887224c9782a32548fe1db4fe64
1051947 F20101222_AAASVU peloquin_a_Page_062.jp2
da111adb8932ef7364c841a3e0cb329a
96f734dd0a7f8595ba895869754b55de3ec0c504
63607 F20101222_AAATCD peloquin_a_Page_112.jpg
2101b652cb6ec245b2ef2b0572583552
7c61bc0ed8bc0191f11b0daa7eb1ef990fe3bc43
116900 F20101222_AAATBP peloquin_a_Page_098.jpg
6a189df5927dd1ae78f0479b5515b74e
da3cc066a836550e08ec254e966bdef32414a06e
6789 F20101222_AAAUFG peloquin_a_Page_128.QC.jpg
67af63248d9916fded2cf24ef77791d9
465b0df64de4c3c5499576a15bf4ddd48c7800b2
6974 F20101222_AAAUES peloquin_a_Page_120.QC.jpg
cf354e948d2a6b9de71285c587b9a5f2
62f4d5669f11453f460243dc35f74f8980c99ae0
9239 F20101222_AAATZL peloquin_a_Page_036thm.jpg
814c4fd104701cd84d2d4ba6098092ed
55b2ccacfeaf5b2e3a7acaa379ca6dda406a458a
7234 F20101222_AAATYX peloquin_a_Page_028thm.jpg
a035461d4a65b947406265b3e47c6276
ac6d95de849745c5192065f21b0525dbc73fd820
7486 F20101222_AAASWJ peloquin_a_Page_126thm.jpg
6214ea45cd515837e43d30d48130f5b9
6311ebfa2f9f4b2e51dddb8d74b1652c0c783576
18491 F20101222_AAASVV peloquin_a_Page_112.QC.jpg
2cedc925721248d689818ae229947d14
aedf29e0c97822b7867ffbb6e0cc29537711f6da
62102 F20101222_AAATCE peloquin_a_Page_113.jpg
95ec4a4be11cabc7ed8c5abf27027280
8baab78020b3aa61d3ba7e3e700a0f2200229ec0
127538 F20101222_AAATBQ peloquin_a_Page_099.jpg
9623ae45cb4717888331db5516cb96c9
94061dec4b01e70fae86570526eb5d6540afe50d
1879 F20101222_AAAUFH peloquin_a_Page_128thm.jpg
98069e12cc072de18f8d98bad06dfb46
99a780661584488339771e3206bd1c5f0bb86d50
2066 F20101222_AAAUET peloquin_a_Page_120thm.jpg
9a45324121eb2877f0bce50f13686cf5
f18e3ddb6d2684b2d6efb7eb7bf3487316b18a53
37083 F20101222_AAATZM peloquin_a_Page_037.QC.jpg
7487a4e611729bfda39bd29881dd4e13
c7a9fd88c404c0f6104a02241e3096b002eb0c0c
23965 F20101222_AAATYY peloquin_a_Page_029.QC.jpg
2760a8fbe660f9a1ca3bd3720e6c8788
5ddf255790107d352b215e4727fb44a9f8d61b22
92489 F20101222_AAASWK peloquin_a_Page_132.jpg
a69404c2d4175219eda136b72e6d8103
f005e35f3d224c0ad22b3c513e016e38b1baab2d
19880 F20101222_AAASVW peloquin_a_Page_086.QC.jpg
9b176a35a0f005fa432f834d95e00d8e
b79b3f377c0b93270928c577214f7ad130926621
48616 F20101222_AAATCF peloquin_a_Page_114.jpg
9521ad3b83f0a4ce96da817e4a919eb7
532e7203d1c54bf26fd061dcc78ccb8aed4e1191
129867 F20101222_AAATBR peloquin_a_Page_100.jpg
ff68900f669775975aedfc9fbfec5ed8
dc5e3702835cec17b7524d49003ba43fc5909dd6
18078 F20101222_AAAUFI peloquin_a_Page_129.QC.jpg
5a3c9ac914593fc05df122d14b5fbd61
82fec92690e3fe0b03a58f8f3ca4c2bfe12468ce
31215 F20101222_AAAUEU peloquin_a_Page_121.QC.jpg
318806f19d6c5c644dcbdcfa0c40d1b1
f21f4ff610000e75ce4751f4fcf9de74be44e68f
8978 F20101222_AAATZN peloquin_a_Page_037thm.jpg
da3dc3a687959cd5ce652319cf789c86
b9728f316dabb96b80c1f0a7184c05eb1d8d9ab7
7410 F20101222_AAATYZ peloquin_a_Page_029thm.jpg
be58d725129026fdbc68b6445d829437
12190b10f33f9348d932eb8cb41500b01a2a16a1
6612 F20101222_AAASWL peloquin_a_Page_069thm.jpg
8208f7d04953f1148fe541a55a5c542c
97c53960a32f8fc0985401ceee0d86098108470b
116186 F20101222_AAASVX peloquin_a_Page_036.jpg
311f317622839f41ec5201bf5fb723ae
4dfe3d20d00f5489ad2469b85d57f67db91ae0b9
63357 F20101222_AAATCG peloquin_a_Page_115.jpg
5b24c7d942802cd7f237657fe93e3cc5
fab6a925aa6647c381c3be77e417f230513321f5
2786 F20101222_AAASXA peloquin_a_Page_109.txt
2473a89dcf45a05ab9385ec917896bec
b06bbba0aa96fab03dd7e167e0fa82367e340326
44689 F20101222_AAATBS peloquin_a_Page_101.jpg
ca52499327c37323f4a6db4d37c2ed07
7c97a62973902691a0fe5af1a67f81a7568bae6f
5664 F20101222_AAAUFJ peloquin_a_Page_129thm.jpg
8f231c8b0f09abdb2342b2171be775c6
9e80cdfa1c3aade620f71a2555a153c5d5af3cc4
4620 F20101222_AAATZO peloquin_a_Page_038thm.jpg
86a5aac2fd065d4e4428ceed5f297eea
95b535cbfd9ad793ecf95f7f13345c0e5feb4ca3
F20101222_AAASWM peloquin_a_Page_122.tif
a32e03a338228fc734945a36e4dd51ec
8f9b68042dc0ff6c338fb6d788ec06fead461b95
29488 F20101222_AAASVY peloquin_a_Page_057.QC.jpg
c4161252a00bebcf59558957a6d74d99
8df7e5562b4e8496031df065ad53b03bafa62944
68291 F20101222_AAATCH peloquin_a_Page_116.jpg
80986b56558eb5aa808c2eeae096d309
96223cbdf4c6c9c5221839b9f7a718cbfdaf2a83
918216 F20101222_AAASXB peloquin_a_Page_019.jp2
d1fff51134a18d13ea352e64791b6431
e9bd4efe438c7764bee0a0edcf3d39cf7b9d649b
20212 F20101222_AAAUFK peloquin_a_Page_130.QC.jpg
483f345ce249c0bddae6add410c526fb
35dc941a4ac5343390034dfe6dcb712f3f941b70
7073 F20101222_AAAUEV peloquin_a_Page_121thm.jpg
90c64dbeb7189881dd2b4e332a6e3165
3f7ea69cf3251adb5d255d0b7bfe970f88a11bb9
2042 F20101222_AAATZP peloquin_a_Page_039.QC.jpg
0f2c9e33f22ade46ec6c7c139869b819
dcde55b1d650700f3213d8d44e56ce0e5fa62dee
29281 F20101222_AAASWN peloquin_a_Page_085.pro
02256e63c09c59218a4b87fb13126f60
aa5701c53af1e6782c86391910abf29cd1f9cccb
30459 F20101222_AAASVZ peloquin_a_Page_077.QC.jpg
6d5a3c2d1abfc69c4d29c80f2f037f59
db21d88744836796857776a7fc50af0191fa9294
92698 F20101222_AAATCI peloquin_a_Page_117.jpg
4d38bfc7936f3dcb0adb6a0f40edf27d
cda6531a92f866f3e7aa08d50340e884011be311
25265604 F20101222_AAASXC peloquin_a_Page_046.tif
c214467c275ba22d6d0e7071828fe685
b08b40384aca1c4f13d91dd9ef605f3354f5bb50
44624 F20101222_AAATBT peloquin_a_Page_102.jpg
7ccade595b5773721a64d8f36baf3176
6c078610995927d8b541ae3ca7cd520e5fe607dd
4959 F20101222_AAAUFL peloquin_a_Page_130thm.jpg
ad7fbb17d052096d08364357a8c58d61
b156314de44b269b96139279f15cbff5576942da
30776 F20101222_AAAUEW peloquin_a_Page_122.QC.jpg
0f80475b470fbad8c5e3bd6272fe0e0c
b5cbfee5efbdf9b3bf3581a6e33aec2a986f356b
641 F20101222_AAATZQ peloquin_a_Page_039thm.jpg
cb87660f60c420efb4381aec198de097
78a6bd5daa72e2a990cc0ecefe91a8a955508674
6608 F20101222_AAASWO peloquin_a_Page_132thm.jpg
c4324d1cce1753ff3bf04d9153021f4d
ce285e5068019f04a5be8ff05ad49aadbb581cbe
93141 F20101222_AAATCJ peloquin_a_Page_119.jpg
6666ba47e967618feeb7283ba31d7861
e871dcd3f4faf9fb76afa1cc80b6970a35150f15
23648 F20101222_AAASXD peloquin_a_Page_071.pro
ad96fbc29f310fb27b516f5c3d64481c
b63d1bf54626e3749ba8a5742cfe67ebfa6de79f
62461 F20101222_AAATBU peloquin_a_Page_103.jpg
bd276cbe6539db7ea0ff62c2f257b17e
0243f9716407b2b91d7e52d2b67b67e7d2d809a3
11932 F20101222_AAAUGA peloquin_a_Page_141.QC.jpg
d1dc58278d8039c1e2f5d661976adc2a
3a4380d23f8af3f17a1601ce6afc3d82fbbd89d6
19937 F20101222_AAAUFM peloquin_a_Page_131.QC.jpg
62f1950e57295038342f2150039ba1d2
1f7b8b6b3e3d4f1d906f655fe6ac6d51a40e69d6
7145 F20101222_AAAUEX peloquin_a_Page_122thm.jpg
e0ff20f6b0080e7c8bcfcab20fcc02f9
b07ed60cc74f8ae37ed1b97a715e704780907913
1953 F20101222_AAATZR peloquin_a_Page_040thm.jpg
9ed5a4e0396a800cc5a7f8e29d6f8a35
6b3212cd8e135f9cdc0cebe61ecf6f2c4fc76f99
34979 F20101222_AAASWP peloquin_a_Page_127.QC.jpg
78465b65162fedc15ad3b519677094de
24de606665db17822a95cbe7bcb2e40d4ac5ff9f
23766 F20101222_AAATCK peloquin_a_Page_120.jpg
f909744cb1bf3639843b89cf824a2ba4
41cc887aebf183632f370f962bd7ce090f0dc334
F20101222_AAASXE peloquin_a_Page_097.tif
0652aee4b603e057865105ceb4886ec2
483e555707fe18a7b9fc4c774a68e7c043ba4318
65870 F20101222_AAATBV peloquin_a_Page_104.jpg
257cef031b2b6133c8e16367b770d154
eee126619d838ab9206af8bc557c5f7ba21a24a0
F20101222_AAAUGB peloquin_a_Page_141thm.jpg
5b49e9b698e1985cbd68b5550ceb47e3
fa537bf11b938dd56b468d7a7998e1ad32854789
5099 F20101222_AAAUFN peloquin_a_Page_131thm.jpg
ecf4ef12ed7e40d56c46a93b69b23e8a
560cc1575bee9eeeaee5b2b624d092354b8bbe70
29783 F20101222_AAAUEY peloquin_a_Page_123.QC.jpg
b8299af6b999edab4923111d1e7bb3b9
bd6d609b552ae06f8ce138a888df18289cf46df4
6810 F20101222_AAATZS peloquin_a_Page_041.QC.jpg
910ccb266adcc910f8ca2bb3b41dff8d
cf2fb09243d669e9d9a26803ff86e6c03f3899e3
26854 F20101222_AAASWQ peloquin_a_Page_090.QC.jpg
9b84e572559cf786da09494abb57357c
cd6d19fae79fdb0da4b37d483cd746e4612f887d
111010 F20101222_AAATCL peloquin_a_Page_122.jpg
6a9277c47491b2c7548924b08757058e
5d62b7028be5ee20009c838807460d44b40c08ce
7765 F20101222_AAASXF peloquin_a_Page_016thm.jpg
af4bc08083a417ce640a29e8bdd529b0
7fdca00635b4bbe544a392a8d6fcc24b555ea1fc
94895 F20101222_AAATBW peloquin_a_Page_105.jpg
2e152bd79cadca474c4f7629950decb8
8a959d41c092f6e337e1f84ecbe84f73164c6f8d
33658 F20101222_AAAUGC peloquin_a_Page_142.QC.jpg
ee3ec0db60c2c56703df39ed3152b001
631e0f2d77b7de531084535f02da874535e92401
24508 F20101222_AAAUFO peloquin_a_Page_133.QC.jpg
1bcbf0b88d2461791f99692d7e34cd84
7ece6a646597d5998aec38c100a221005448839f
7369 F20101222_AAAUEZ peloquin_a_Page_123thm.jpg
cca8f161ee66867bc63e132092f1bf75
ac3b74c6e636b6027430dc56b7d170d9a5e28ddc
2194 F20101222_AAATZT peloquin_a_Page_041thm.jpg
b4fff180aed338f2034edae1b147a588
2d9097d29c74c4b92c374f2a2606f6a63481bb34
1051985 F20101222_AAASWR peloquin_a_Page_005.jp2
e1c0ecbf4f9a53ff695162a10a8e7702
1be481c37a8caf82269a3e09eb825a59615b2814
105221 F20101222_AAATDA peloquin_a_Page_142.jpg
d3335ae116220f7faddc825d4fa0ee55
5c0444a1ded68ad8b8988762f0bb4d395dfbda82
94859 F20101222_AAATCM peloquin_a_Page_124.jpg
ce26acb831fe826422ae5d030ddaf200
45b3c504af5b7d527b766c61d8c165436ce86fef
128276 F20101222_AAASXG peloquin_a_Page_063.jpg
a3dc8892a0472ab65faefd13cf19c522
8b4c134c0b7eefcd6e9649a6a86f327326623b06
19589 F20101222_AAATBX peloquin_a_Page_106.jpg
98e056f8331df1b8f4ca7766d1a08f1e
8fe48da32f08603a79a72f71970b45e8659a38ac
19707 F20101222_AAAUGD peloquin_a_Page_143.QC.jpg
11fda69a0a8d33194ef2f5f1fa3128ee
3cc489a990eac9911d433fcf6a38f976c12fa0d1
5963 F20101222_AAAUFP peloquin_a_Page_133thm.jpg
9e32b00692517bed6128f111209e87d7
638f73490f33c263f4f3bcde6e4f0aa76d1fb623
6039 F20101222_AAATZU peloquin_a_Page_042.QC.jpg
854d7d1499ffe15d6920f54cff8be8d1
79719725fffb911c22a27db261cfd629d48b7ff9
F20101222_AAASWS peloquin_a_Page_142.tif
8da93517e3fcbd1185cb3b21b03b11a6
5e1b5b94165bc689ad705184985ed6677c1a007b
46793 F20101222_AAATDB peloquin_a_Page_144.jpg
de0ff0226a8e9f0d9aa888f74ad53100
fa312bbb6f18ac33362221c4d0eb0218c6f80981
124532 F20101222_AAATCN peloquin_a_Page_125.jpg
2d9f0107fdadacebfa111a6ebfd9b6cd
9191faacb10c51b63aedc848a1dcfb52874152ee
129687 F20101222_AAASXH peloquin_a_Page_064.jpg
8f5d5181408d180e21d94a1656845d02
aa36f3cf7f27958920310b043fa6dce797055db4
68560 F20101222_AAATBY peloquin_a_Page_107.jpg
54e906c275fb3b54f253faece9982e75
7498bfc902ca4b002924eb15ad177c229c974d01
5168 F20101222_AAAUGE peloquin_a_Page_143thm.jpg
5e77ddb2fbc2bc6de828dbd5357d32f5
3ce2b0b0bf17f29717a0cf1dd70f31af518df704
25443 F20101222_AAAUFQ peloquin_a_Page_134.QC.jpg
0b71c26c63d65ae22b381872f36802ad
5bdb3b5f61078783af05042ff6261068d8680c82
F20101222_AAATZV peloquin_a_Page_042thm.jpg
33563a54389c69b9d9f8104352133bd6
deae286e066e0a49f2f273b5a63bbfa74d45b208
7273 F20101222_AAASWT peloquin_a_Page_140thm.jpg
43727ea738e6f91135db7990b9d85463
141fb7258916ca69f4322fd7dd79794dc2b387de
282193 F20101222_AAATDC peloquin_a_Page_001.jp2
d35274aec7b29f09bf279ee67c41aa8f
f691c25a72f997e4c9f941940fb8229883fef7f0
120645 F20101222_AAATCO peloquin_a_Page_126.jpg
b34328d4a238bce09336d4581aa8fd58
8a4343a3c502f287f0cf5b9435684cb90c2e6f2b
44344 F20101222_AAASXI peloquin_a_Page_025.jpg
7684d9ccffcc76554466d58852f10a9a
ecb003f969bc34797781b72af001edbbc8fc1840
110678 F20101222_AAATBZ peloquin_a_Page_108.jpg
65bdaa698cf63f2a359b2437a0a412be
e6d43390f334f9c6b801c244b0c928a4a709e709
15077 F20101222_AAAUGF peloquin_a_Page_144.QC.jpg
f272241433cf3f37922b2131b371d06b
3a38aa0da8066e17cb9b7cb333a2be2b54039b57
6434 F20101222_AAAUFR peloquin_a_Page_134thm.jpg
f5bc8be41fd0d12e02418be6e9388a08
90b671e018cd56d00289e7db2330623caef161d5
6130 F20101222_AAATZW peloquin_a_Page_044.QC.jpg
57fb0b02e2c8b0dfd16456909944e50f
1f1472c7c1395c40a5d208bbadc274fc550074df
1051957 F20101222_AAASWU peloquin_a_Page_075.jp2
317e390b9920e27d0a36275214b44c34
8c020ced7aef6faafcaf459e48833c63828de541
27481 F20101222_AAATDD peloquin_a_Page_002.jp2
bb5fb26544c9e827782d8cc5b0324614
f98475e19410bcde1937d4606c398662abc3b15a
23020 F20101222_AAATCP peloquin_a_Page_128.jpg
3a666d15112105001e2dce91f1d4e8c5
89be34b8fd4e137ca798640bcf1a5797dce43185
48817 F20101222_AAASXJ peloquin_a_Page_048.jpg
67b1c059e0741916d7f336e79b860f2f
6fc409e0b12f050ea9a3949dbf4ba122ac8b2994
167919 F20101222_AAAUGG UFE0022726_00001.mets FULL
542e51a8dd99f742406841074b250176
97f86e4c996ed5928930b46494180a36ed42511e
30375 F20101222_AAAUFS peloquin_a_Page_135.QC.jpg
1310a32067715c2c5dfd21650cc76926
47ac5ea2336e4a09f2376db312c61a252013194a
2197 F20101222_AAATZX peloquin_a_Page_044thm.jpg
bd303aab19e2b63bedacbb0cf421cbaf
f2b12990772c2f73c54294a090323de7b38cecfc
52882 F20101222_AAASWV peloquin_a_Page_099.pro
6f4800c2b9bdce04fbcc3d2e07531c7b
9579841fcccc211723e2b13dab9d6f2145d7ac4b
117490 F20101222_AAATDE peloquin_a_Page_003.jp2
8b8105d8d46b2d7a2974c424322d9063
5543acc612452ea3c1f712d0cdd38619969464a6
53789 F20101222_AAATCQ peloquin_a_Page_129.jpg
c6a7d7750538d296d43c6c295e8ecf44
94abff89d836e161ec3c2f4728d5f7d338ae0973
6843 F20101222_AAAUFT peloquin_a_Page_135thm.jpg
714995e48720d4a2e836c0f4ebfb6f7c
7ae7059e9c482ef150f01980a1b74cb4ef14de70
5136 F20101222_AAATZY peloquin_a_Page_045.QC.jpg
fb38956d9d1728695dc37b581aeae99c
63b83c5ac775412dda2c10d8204c0cd373804b87
6006 F20101222_AAASWW peloquin_a_Page_040.QC.jpg
a8a8a42b8a8ff3369b1d5a30c8c2cd82
633a9a0dca7980b1067f5bb3e73a46638e024c7e
748626 F20101222_AAATDF peloquin_a_Page_004.jp2
111e4a21eed682115ed80741b1870b7f
56e334647f16a341336769890b306e48310bbded
66957 F20101222_AAATCR peloquin_a_Page_131.jpg
7cd82e40b135f170a44b05efce0ea038
a9965a4e675d1502617a1246d42d86c41fd4c5e5
1023 F20101222_AAASXK peloquin_a_Page_038.txt
e776397786e9124bf467b63b6bfab891
bcff02f598e95ef328abec998248e623eb3bea4e
22547 F20101222_AAAUFU peloquin_a_Page_136.QC.jpg
a09332037db6889e2c94e96acb52f028
13d599a51239f6fc1be120460e3c67b10f5ebb85
1687 F20101222_AAATZZ peloquin_a_Page_045thm.jpg
8002a32d6bcf9634f5e1eb7671f19f57
3adf1cb015eb1085d123ab3af3e0893227a615f1
3675 F20101222_AAASWX peloquin_a_Page_094thm.jpg
0131cf2c35c166e4716bb71b9e790291
089279896542316c2269e21d8e2fc4649444ac0f
848261 F20101222_AAATDG peloquin_a_Page_006.jp2
cdc0c81189e196058320eff5ae472011
735e284b9509f1a01539cc3bcf5df09ff56567d9
5139 F20101222_AAASYA peloquin_a_Page_102thm.jpg
08a265eefb590d6dc69e9523ef6fcfaf
47f2faad9eaa3653bc9d75ccd22dfbf0a6b2a76d
85821 F20101222_AAATCS peloquin_a_Page_133.jpg
95e70691fb2f763a8bb57c67db186df5
10b720c8f1bdbf07b28443923d17e4fc48806d75
1051935 F20101222_AAASXL peloquin_a_Page_137.jp2
5ce3f87fe73b47166ca76d3c5646ac2e
9d6a562aec19af12b5a32b0835745a44ce86cee7
5419 F20101222_AAAUFV peloquin_a_Page_136thm.jpg
9476ae4d0b877dcd00de4beeb51a75d8
de7ee39250b97237867bfab7e99dfc8570e1ef60
4188 F20101222_AAASWY peloquin_a_Page_071thm.jpg
80000ab0c72e7ae82745a903fab3eef4
d99774c571e08fc37de1c50e89c7a2e1fc109494
1051979 F20101222_AAATDH peloquin_a_Page_007.jp2
e8f42f33eb8e276ee8282d95e6975932
86fe7037f525b5c3eed4103cd8415fb3adc525ff
5579 F20101222_AAASYB peloquin_a_Page_023thm.jpg
6d3184a7eb4fb653e4214377bd5ce4f8
11b5997746e5b754d475bc480a29bf8832c79c3a
92331 F20101222_AAATCT peloquin_a_Page_134.jpg
680a55f8db2d2bff0c229c0e26bb9600
de8b9056797afc931f41fbe430c30c41b2d0b206
104178 F20101222_AAASXM peloquin_a_Page_005.jpg
172237754e755eb96a117721eacff1cf
328d3c619614dfe638fe5c4c521e97ebba5521d2
103523 F20101222_AAASWZ peloquin_a_Page_135.jpg
54376668812ffb334e1192e7f0c99b62
59efd429cf8beceebfe654803efa4702b6045b34
1051977 F20101222_AAATDI peloquin_a_Page_008.jp2
d82815de415bf874102ad1c018203b53
63cc2307f6e0969b3ccf6340d182b4ad64f3e172
46444 F20101222_AAASYC peloquin_a_Page_075.pro
075f17a25286d8899aed79bb15ea7bec
f1e9426c7c5b17a380457312ee7d179b1266ea05
F20101222_AAASXN peloquin_a_Page_028.tif
13cd9c1e0ccfb3ebf13574878c8aa650
65497ca045fc07cd986b6e84e6df2dde490c6d88
7555 F20101222_AAAUFW peloquin_a_Page_137thm.jpg
075ae6fd03bf58dce9fcb39ff91d51c3
51376b80fb311e9d7018d17102c1caf94b5ea72e
1051980 F20101222_AAATDJ peloquin_a_Page_009.jp2
d9f14e6173d99226bc7e07d0e460a857
be3497e571056e547ee478712cf828a9242317e3
622179 F20101222_AAASYD peloquin_a_Page_129.jp2
daf15028d9b40ccf58e4b15807228f6b
b6e0d66718ab41728921577c387d2f6125bd4568
77340 F20101222_AAATCU peloquin_a_Page_136.jpg
620a9fb7046cced55601a98a374c7d54
bedde0fb50a04ccd87885d121f96b40a697c8bf7
18452 F20101222_AAASXO peloquin_a_Page_061.QC.jpg
594ae14aae8a7c122b2e922b329328e7
38626e6d85ba4f523394a9bf68af096d5c754e9e
7032 F20101222_AAAUFX peloquin_a_Page_138thm.jpg
ba57c1d8378b18daadae79be692d709a
297dfd86be0911bbae569233b3865432d0c41a0a
1051962 F20101222_AAATDK peloquin_a_Page_010.jp2
274e16279419e549e6abf58b214534e2
559c7a8c21c51bcf1cdc82a9f094459c11306c0b
7759 F20101222_AAASYE peloquin_a_Page_100thm.jpg
8580bff38aa59fa509d8ef0afd5646c8
33648f465b273b3f8c66ca23c7fa1a308c2ee4f1
103901 F20101222_AAATCV peloquin_a_Page_137.jpg
2f826d78bab8453f1b6907a22887fac2
4f77b7494da06b8dfa416abfd694d43729238c38
6781 F20101222_AAASXP peloquin_a_Page_092thm.jpg
a50a07c16b666661af3fb898d7e0b0b6
d8aa77c2df91902bc5fe2f97511245d9a6f3c654
7279 F20101222_AAAUFY peloquin_a_Page_139thm.jpg
d65bc21226dd661bc82515dc27a568f1
df90d330555710f3b8367d091d761891054fbd5f
1051974 F20101222_AAATDL peloquin_a_Page_011.jp2
d5210f585667f747939eb70a6f5e8ad0
718fb96f3ae50c3b8e8e9c117ce62eec2f3bc77b
62192 F20101222_AAASYF peloquin_a_Page_130.jpg
aed51ff517261edfef18179531255718
9b50a497ee76e5708eacdaf6eb706f983674297d
97768 F20101222_AAATCW peloquin_a_Page_138.jpg
04b644122601d57fb31e10c46d2f494a
8085add8a74a322fa3934974d44a34847f7d7f94
3922 F20101222_AAASXQ peloquin_a_Page_144thm.jpg
3ef144e6347bf6e815637d4e9296b3d1
579d5c71d873d0edbc0c053a840271ed598e60b4
33970 F20101222_AAAUFZ peloquin_a_Page_140.QC.jpg
7f92e6b8d8a7f5345a68433dbebd3d9b
59775447883954ce72ddc8b039b980ab5dd40d23
118703 F20101222_AAATDM peloquin_a_Page_012.jp2
85e11766fe21554391efac25cc4d84db
c539971e158f1384bf04b0f4d19e216a0c01ec61
1518 F20101222_AAASYG peloquin_a_Page_133.txt
144f1f35ee0d801bf31d89914e48c6e2
031db73ae321e2755509098b5fc7bed36fd3b13a
120762 F20101222_AAATCX peloquin_a_Page_139.jpg
aa3c93c934fd4f59b254313dd938f8a6
560083e67952c850b3e58ced1911816f23a3dfa7
16719 F20101222_AAASXR peloquin_a_Page_048.QC.jpg
a5ae4566b3a8e10929acfa4b3c7ed350
730a6252fb6603a637d72f1a3b25c77389d99512
777056 F20101222_AAATEA peloquin_a_Page_029.jp2
dcb9a4a947d249e441b18c53926ae2b0
82153533ac95fa565dbf1a90c65ab5d5df34e80a
861196 F20101222_AAATDN peloquin_a_Page_014.jp2
cc6534ab11a76d1ad661938734d82425
8c4e75c603484d2743152da01c2806b14c5bee25
19484 F20101222_AAASYH peloquin_a_Page_038.QC.jpg
f15d35b63e93d91466ebbe3a4cb6a8b7
d2018b2b47e972407a20a3c6cc19626380b16a88
125108 F20101222_AAATCY peloquin_a_Page_140.jpg
4941cfe5dd680d824d84deeb9ff87778
93f74631596e0175e0137b1e70f941c141869e8c
17416 F20101222_AAASXS peloquin_a_Page_046.jpg
292fa7bfc59a327f2024336f57c7ea95
14797bb7574bbbb5a1fce54c17b9d3227d3258c4
992659 F20101222_AAATEB peloquin_a_Page_030.jp2
b6724869df689cd33258eb979e6298d1
7e2f86e4ed65246b5370892aba22b10ebcc21d0c
890956 F20101222_AAATDO peloquin_a_Page_015.jp2
802187d3e481895440bea3012e102a77
98edb028de3a6afd4c4cdb99ba9edb078da39b96
92168 F20101222_AAASYI peloquin_a_Page_090.jpg
d610b25f1b3d09c66cfbec9930b71dea
93a3b9e403e84f71b11ba1b74c7a6a29591e9924
40233 F20101222_AAATCZ peloquin_a_Page_141.jpg
01ea30911838cfe12bf360afef6bd18f
0fb8f70c671b9e9a3642d997a9a2a2edf7fe47da
624286 F20101222_AAASXT peloquin_a_Page_112.jp2
2cf751e041bf5e2f66e3b867e4bc9a6c
5c91de9d1fdc26923691a0b60916d180b80d46ad
971717 F20101222_AAATEC peloquin_a_Page_031.jp2
3e3a9ead335cf2cb69f8ca7239b2a3ed
5ae58a18e8c809eaf1b37165b96c66f599c8ecb9
983668 F20101222_AAATDP peloquin_a_Page_016.jp2
d6608fcdc08496f5adadb273da8ab356
e67cb3fd017cf6eafd8ba9a0eb325068ce2902c7
79948 F20101222_AAASYJ peloquin_a_Page_027.jpg
0fad56bf3fc55863aab9d3a2ac38da8c
baae9a07cb9cd2fa1b60427fd2bca9b905330e3a
1309 F20101222_AAASXU peloquin_a_Page_136.txt
de565ad5e1074914c6bd489db9282b6e
7c529bfb5aa2119aa99a4807659a2acf8034caa1
936264 F20101222_AAATED peloquin_a_Page_032.jp2
e17f70f9bd6b8bd35edadac3c82444b0
3b0566ec11571c34479fdafbccbedf4abc9c5c9e
851338 F20101222_AAATDQ peloquin_a_Page_017.jp2
557fba6bc370a1676e4f23e970f1c2e7
0acd1cc8aac21fe346f05827b05e11b192fd21a9
F20101222_AAASYK peloquin_a_Page_020.tif
fe701d86e41e69beffdaa3d39ed8199e
59f7ffa2f75f39c9d59837c44e59a25c4cc18f56
40907 F20101222_AAASXV peloquin_a_Page_039.jp2
18a9db2fad842645a56d91fe5263b3c2
b8b02281675b609d5f1d542427649e1b9291601a
339672 F20101222_AAATEE peloquin_a_Page_033.jp2
30f057e17330331d07a1d27a08604fa7
2ff1f3d4dba506a781d0f097f1aab4fb7eb56c0c
1034060 F20101222_AAATDR peloquin_a_Page_018.jp2
de8ea9eb8ba30929b12d0b017cc4afa9
d4924fd4baa10650514ed5fc9860dc037b870746
26916 F20101222_AAASXW peloquin_a_Page_032.pro
4f6ac8b49658a18100420758d7d64a0e
68c1baac7338b20c2cfeab8d3bec57cd8420e58e
991437 F20101222_AAATEF peloquin_a_Page_034.jp2
c6ebd49df626ea140a119338e848cecc
38eb107a6e6d0cfa07e5906fc60e8ff9b25b2d7b
13540 F20101222_AAASZA peloquin_a_Page_012.jpg
7ab8b11ac3618f4bdb48a2bbbccd33f1
d3750323314417a21d3af5a0f0e120a4a162926e
968778 F20101222_AAATDS peloquin_a_Page_020.jp2
5b263b5122f71135685bed9de10aea85
e412740c3e5e6e8d1d32d805c4bd90bd8b92c076
F20101222_AAASYL peloquin_a_Page_027.tif
e59ae0214d67fe20d2a372c49eb7e87e
464a4a07a02c83b6ece31b3988c81177803dd383
21354 F20101222_AAASXX peloquin_a_Page_054.pro
f90ebc9c7d524eed7c7bb08787086896
8befbbae32bf23c2ae3f1680ece7cb2a47d35251
F20101222_AAATEG peloquin_a_Page_035.jp2
fa68f4b8f4592f9111a70e3bf2fafda8
c98d2995451f12564c950a1c097655c6ebb0de9f
89126 F20101222_AAASZB peloquin_a_Page_013.jpg
7348692684b093885c02a65930e11f72
2bc8283a705dc945d5b7f42ea0eb1317ccd20223
F20101222_AAATDT peloquin_a_Page_021.jp2
6709adc83b2155d48f18ec8adc8f92f6
6e4310b1989efbffcd7cb9d77ebc612f3a9a0e21
20331 F20101222_AAASYM peloquin_a_Page_103.QC.jpg
a2107320d16e047b2835f3000b32aeb1
1458c0dcec8307ff585dd4645e70e08b3b19961a
1695 F20101222_AAASXY peloquin_a_Page_043thm.jpg
3e7b46826bb82190ccae23590d731ed2
75b15eb269de5dba52136e8c9c57f28011cbdf64
1051986 F20101222_AAATEH peloquin_a_Page_036.jp2
8ebbf9368b4c16eb6880ca3878575110
8ef578b20ef43e57afcf47947821a7246008a9cd
1051969 F20101222_AAATDU peloquin_a_Page_022.jp2
a748c889655a492e1d1b79d66133e0e2
a485bc0d0850b6d6d5f94d3dd47dc33ec02c56ce
217704 F20101222_AAASYN UFE0022726_00001.xml
5aa08b87a0b73b106099edc126cf8531
0c8ac44d1931813432f6427a1b10e67da370e5a5
46010 F20101222_AAASXZ peloquin_a_Page_023.jpg
5baed08d7862ba87b001974ea49d3e9d
b93c860e7e992d396aa58eaff382ecd0822ba555
F20101222_AAATEI peloquin_a_Page_037.jp2
62dc9d3394dc1a61cdc6792874edc5c5
09dcf66fba888c85c45fda090ca7e3f82db1238d
75419 F20101222_AAASZC peloquin_a_Page_014.jpg
e85dffa3e1105a6ace411914996506c7
2da1b582832f66c300aad560bd35a0a51cd32b6d
577486 F20101222_AAATEJ peloquin_a_Page_038.jp2
1e95d971fe7c0f6cfee065e1f46e2ae2
4bb3b9d704e70a95663bf4c8b664cb776258064e
78592 F20101222_AAASZD peloquin_a_Page_015.jpg
d1593bf03b4a5ba8d06ccf633ef50431
39798293e240c807af552c090ad62d78093f82f3
734365 F20101222_AAATDV peloquin_a_Page_023.jp2
67b67a89455044d17843797f6c17b6cb
c1ac936336edbd9fff15200eedf49ce3b0bde020
269369 F20101222_AAATEK peloquin_a_Page_040.jp2
e391d136179a5f8ff5dd5558743bfad7
ecb89f46355bb41bce41e1c9ccbae524a3ae0c23
87658 F20101222_AAASZE peloquin_a_Page_016.jpg
8896baf9011f87aff4bdfe0cd24ef835
69c7b9686f8ef29741d0e596b3339247c293b5b7
922928 F20101222_AAATDW peloquin_a_Page_024.jp2
d6021adb0f400c06bf990ebb1aca9742
603de78ca8f347ce1c6483afaa0f522179e43423
29213 F20101222_AAASYQ peloquin_a_Page_001.jpg
530608c8011215f6fd73a0e292b8557b
6f44573219222aefcdd3019e532a5293e21eccb0
315634 F20101222_AAATEL peloquin_a_Page_041.jp2
55f9ea073c692a2ff91f2b2de2fecb0d
f1584f7158492239508a1b4451cd19454c034a3c
78110 F20101222_AAASZF peloquin_a_Page_017.jpg
4abf785df042e5e1425c51fd9bf6c92b
dfa651ca7860f8b13e79550a1e58a9781e231b0b
875710 F20101222_AAATDX peloquin_a_Page_026.jp2
5bc79dde64e169da18d8449ac2e08d5d
d02ea59c371e4fef7375b33353efe56b26e72d8b
4123 F20101222_AAASYR peloquin_a_Page_002.jpg
f43ee1d299bd5a62ed35d2b1c1aa0e8c
45abedde75dfcca3ea0de39947f2b9e84bf29741
351817 F20101222_AAATFA peloquin_a_Page_058.jp2
adf3904a5ef5ad80a34eb024a01f7fc9
8ff28e2246b8039fdd8018bdae3ff5556a9b6447
311247 F20101222_AAATEM peloquin_a_Page_042.jp2
22923cb939998a95cd4378f4da6f64c6
c247e94f48cd9df8c3fa24013015a607df2e43fc
95874 F20101222_AAASZG peloquin_a_Page_018.jpg
0d007f03c966a93c8d369ee2480511ae
e172c927ed37a4be9b72afdd4e9db95ed2ab0ce3
891478 F20101222_AAATDY peloquin_a_Page_027.jp2
468c587956745b7c6541bae121105b1a
f081f782abb3a45fc35904fdbc0e2e8e9ee31ea9
14039 F20101222_AAASYS peloquin_a_Page_003.jpg
9d6c7e1a901e6fcd5fa7ce4f218dc355
3cd618b9e9193d67226891d209af05573404452a
1043406 F20101222_AAATFB peloquin_a_Page_059.jp2
85bcda9d44c472213c23c91ddf315463
8ca5b271ff758c27dab1089ae576e8c5237aaac6
221255 F20101222_AAATEN peloquin_a_Page_043.jp2
bf8dbe6288a99f0238cc985034ce73fb
7c82b90dba0d3dda6b53c55d70edc6681f4f6547
86992 F20101222_AAASZH peloquin_a_Page_019.jpg
87ff01b56d4fe4e70232f3db20247b7f
7caa4088c024255e75e85a5081390489d702d952
937557 F20101222_AAATDZ peloquin_a_Page_028.jp2
899f3015db98510ab92b407b3af8685f
fd7d06097ee9a8d242c601dccfd2bcbec8261c21
70566 F20101222_AAASYT peloquin_a_Page_004.jpg
0b8b3b6f7358112a5713ff9e94f24c77
8270c72445dc7550bb202690de9b5e5ecd9ce91e
968860 F20101222_AAATFC peloquin_a_Page_060.jp2
bca3caff749eba0ce976f739983b1b0b
1c3d81bd3b9ec4e1b2c99b2ee9f61e062111b75d
272249 F20101222_AAATEO peloquin_a_Page_044.jp2
304461d724c35b3371b7a6cdbe6a93d0
23f279e955fabcf8cbf028374a8d709a4903819a
93027 F20101222_AAASZI peloquin_a_Page_020.jpg
b34135dfa34a262e123df6bb8bc0f1a1
332c084484f84974daf80cb5727e995bc27be43e
44568 F20101222_AAASYU peloquin_a_Page_006.jpg
c13b6217afb73f267c19fa2559b5f5f0
9b25d34de188397365ae1c006133ac3745e3d73e
593030 F20101222_AAATFD peloquin_a_Page_061.jp2
658a512ec9052c78a5285429855f17a2
285e39a789b7212d56269eea962170a076cc933b
261334 F20101222_AAATEP peloquin_a_Page_046.jp2
141ec9f160c781c40e01e70c8ae91e94
f1141e94575a1ee4760bc61186a8c291f6b8d501
97561 F20101222_AAASZJ peloquin_a_Page_021.jpg
b57392998a4781e1bc88fe2fe6493958
37dcd116b66aabf38aee513679b674a21cfa099b
124702 F20101222_AAASYV peloquin_a_Page_007.jpg
0a9bf1d4bbe710fe29bf31ed8a8e26be
633be75374e468a0f51b950fd2872785684f32a5
1051975 F20101222_AAATFE peloquin_a_Page_063.jp2
50e3bc3fd5b0d3d9f2b4ae149e10d8f5
5a89f6adff7c6559e304d41cde309e5af77c3ed2
49142 F20101222_AAATEQ peloquin_a_Page_047.jp2
2ee6b3d7e7b3f5847d0a655da915115b
7d3aba6c76c5bd130d55dca701545b4cb041d6a0
110599 F20101222_AAASZK peloquin_a_Page_022.jpg
c4d290998430682e166d482e3755c120
f9298376e18f585631207c8923856e13e071e3f2
127469 F20101222_AAASYW peloquin_a_Page_008.jpg
ebe905a885d65d7a344d0ab23f5f5339
250062693dd4ef8d01aad4c46b0ab3570f1a68a7
1051937 F20101222_AAATFF peloquin_a_Page_064.jp2
02659ecba853ad56afb49674b86641b2
d20afc944c45be84717a260782223efa966472cf
522528 F20101222_AAATER peloquin_a_Page_048.jp2
73e6c09efb9a591a0f413d90b6c94d29
f476dbbd845c114b681016728830a1ad4f5d1686
88889 F20101222_AAASZL peloquin_a_Page_024.jpg
48193d4dfbb7598606003f0406e10f2c
bc0d7ec7f96b012a5e8f74b19d5b9c7012b18d46
104618 F20101222_AAASYX peloquin_a_Page_009.jpg
21cef764c583647eac83ef1c7850fcef
e636875abd22231a0667c71606c5bc35587a8094
145806 F20101222_AAATFG peloquin_a_Page_065.jp2
0afddd8a640ff48ed55527e7149aa038
652909f0e9ba48aba2fd729759bf35f415b7b731
807475 F20101222_AAATES peloquin_a_Page_049.jp2
fabe19f9426deae2557b3cb2f1da9316
3b9f81f93206e162959baffdcf7ed6b72bae7bc9
71935 F20101222_AAASYY peloquin_a_Page_010.jpg
b0e8cabfd7867bdd9c5af7c1c16df01a
ca089bc1b35464607616627cd386b5c85b02a972
661697 F20101222_AAATFH peloquin_a_Page_066.jp2
830a3fe07f36b2d55134c1953c8604f1
b417ad5447bfc1e82f534e8fed3385e38810a417
674765 F20101222_AAATET peloquin_a_Page_050.jp2
bceb49841b01b8b504c14b1adfa559a1
55ffc86be2df6b7ca7b4ac5354bf8fc7458413f0
84182 F20101222_AAASZM peloquin_a_Page_028.jpg
03e56d601770a63c6a105cb2d78646a7
cd8e6fa4f259cb8ad1ff014c3e2c30e20127ce14
102025 F20101222_AAASYZ peloquin_a_Page_011.jpg
593ce2898045eac7a0c7bb4e8e263d08
6c46dbe7487c851a2c6b6b1818aef0323886a7de
691737 F20101222_AAATFI peloquin_a_Page_067.jp2
009636c09689489885a294a5144bffa4
67461fc25d525e5964b5b70c273b3b4da2880dac
682239 F20101222_AAATEU peloquin_a_Page_051.jp2
550bfd99df1de94ba1f19453717e5f12
ab05ab03c838f6140d9fbc73adab005ea9dc8e46
73038 F20101222_AAASZN peloquin_a_Page_029.jpg
db79311233d165398651b050676eedd4
bbf8b7804a660c7ac6ae302f7de39ed0bb22821a
699161 F20101222_AAATFJ peloquin_a_Page_068.jp2
d2adf15a39980e132c41c8ef3d922d67
212f6aec90259ce5af2bacb9ecf4e22d8365e6b3
975650 F20101222_AAATEV peloquin_a_Page_052.jp2
83c243f4437d357366bd31b4a556b02b
75c84a9fb66e8498009ec346a6acb48d8ad18e21
91140 F20101222_AAASZO peloquin_a_Page_034.jpg
b61d87e504274dee1f39e56247370c6e
9bb7b68778822863c4b84f7057843ce2af291ade
980086 F20101222_AAATFK peloquin_a_Page_069.jp2
61b2d78996da2e51e105ffc92da7dd52
b3b064f00bfb268751802079f1ae243f88c9f868
114645 F20101222_AAASZP peloquin_a_Page_037.jpg
ec9ad45aa68549198c216aa10e0ad83c
4d32d4723e9ebf57ec4ad07aa723cf8f82cc1a19
910374 F20101222_AAATFL peloquin_a_Page_070.jp2
e7d8a8d4d9131cd0ae30fb7cd74576f0
5608b43cd26d9d9b6ee78789c727ca218285db47
918842 F20101222_AAATEW peloquin_a_Page_053.jp2
4a3f1dace422c07118f5b4be31365687
d6e0ede8d044c3cf8e3f70c305ea8ef58cd0673d
5642 F20101222_AAASZQ peloquin_a_Page_039.jpg
9bddff678a017c242ecdc660f161a1b5
c6a5712d5d38e4d018ab36a55185451bb4551305
555337 F20101222_AAATFM peloquin_a_Page_071.jp2
6e1482941d4c5ef8bf02211e96dcd892
c8c10d7022876550da633f32eb9c109eba88d158
508349 F20101222_AAATEX peloquin_a_Page_054.jp2
a0b1ee1fe9d9c3d55742cc1c48420e45
683f0e99786237b76977606266b8f675dc706887
19520 F20101222_AAASZR peloquin_a_Page_040.jpg
68d02bbb56fa07c0e149b1de25d67923
d6e6729a2e58f2079247cf0009d5c8d86b40713f
695406 F20101222_AAATGA peloquin_a_Page_086.jp2
830b7b326fa386bb0ab0c257247c4de4
ff9d25c0ba85e7ae937bc467d811272c0c670d2e
906620 F20101222_AAATFN peloquin_a_Page_072.jp2
c637a88fc41fd158a401a5876e04a17d
d2abdaf590acaf3b11632543027b5abe0a89986a
559378 F20101222_AAATEY peloquin_a_Page_055.jp2
a680b2ed167643809c24efc696e5e672
08c9e9563971edfb796839d1ed01f65ceda1f1f3
20493 F20101222_AAASZS peloquin_a_Page_041.jpg
cc2d638d1b2225a1ac410a03beafe09f
fe29e7fa96b2d7bc9e33b3d9aec2ace21a2f0ba6
1022218 F20101222_AAATGB peloquin_a_Page_087.jp2
1eae0138a1da864e1b01ae6aec71900e
55a91beb1f85c636380992a251d41289a4234b6f
438288 F20101222_AAATFO peloquin_a_Page_073.jp2
5cc70c908ee33052ba5a9fd900322955
9e1876f1b6c0b098af572b768a705fa58cc747ab
1051973 F20101222_AAATEZ peloquin_a_Page_056.jp2
5e4f3dc73db1060ae789cad93ba940b5
306a7d7ce7a3836fe4afd40f371443fc0cb79e26
18194 F20101222_AAASZT peloquin_a_Page_042.jpg
67bd433beca4c376db906bd2aed115ca
276c8422a50f1101dcf8604060311e15e27915fa
936618 F20101222_AAATGC peloquin_a_Page_088.jp2
a74ca6d446297098391737b244a70173
ba0c8d90d5eeb4fb3ac249637402ca8a7b4b5aac
1051954 F20101222_AAATFP peloquin_a_Page_074.jp2
c116c6073702ea03c8184b02ed876fbe
8539c3d663926ddeebb4f2ac799a351bb4982b6b
16611 F20101222_AAASZU peloquin_a_Page_043.jpg
1a1814aa1f33d898c801156f7e9348a0
87ce158466f9b3fa6669bd364117b1f6788c5040
568186 F20101222_AAATGD peloquin_a_Page_089.jp2
b28f5576908b402c019629bb5ef6e6ac
f3e64796d66ca0c35c20a5a9d4c24186b7e907fe
491194 F20101222_AAATFQ peloquin_a_Page_076.jp2
868a778e9eadb255ba6b44885f936c3d
a177b8b8509aef4e3d136c4c91455219dd36f6d8
18833 F20101222_AAASZV peloquin_a_Page_044.jpg
4ddf607acd6e86a6bfdbf038b6a5876a
c4fde7a5810b7605f4d454db0f3385e4705a8d79
912564 F20101222_AAATGE peloquin_a_Page_090.jp2
79721d56ecb0ef07e57bf1568489f5a0
34e05049a174f3fc8d7317cea11a44346fad47e2
F20101222_AAATFR peloquin_a_Page_077.jp2
d119e5c3425af2228ebf29bb80a2620c
b7ff233aae5f0a68085cc1e8e1d6af473aa403f6
16239 F20101222_AAASZW peloquin_a_Page_045.jpg
160714516499abb3ffd4d2389e4a797a
9a58ccc05ec74bf261e3f5221d1fe2908aaadcc8
432041 F20101222_AAATGF peloquin_a_Page_091.jp2
6f79104bf4e1e72fa221d493011f60f7
b928f7d00badb50705165b8b45ff667da1233737
1041132 F20101222_AAATFS peloquin_a_Page_078.jp2
5fd03cf839d48cb641fc8ed0bb9e5918
2c99e03cf5f612988637f9536ba9da517708fbee
6052 F20101222_AAASZX peloquin_a_Page_047.jpg
b078666dfee0d46f01371db9a50ad533
0a1b9a580af2a09463fa7d4f0fafef4ec20c3add
493633 F20101222_AAATGG peloquin_a_Page_094.jp2
f0d15741310b1bcf2e9a63b06aa9aec2
64586662560ee6ffe67baee8e023b7485e2d568f
637376 F20101222_AAATFT peloquin_a_Page_079.jp2
02f634eb0926510373718c4b50d74783
bb6f467c297595adb3f927f7969fc125991e1761
65663 F20101222_AAASZY peloquin_a_Page_049.jpg
1b0e574ee839dbd9d3700cc8f9e46b9b
cffe00d1905a5d6733c12a757e8b3f3d56d2a8e8
1049308 F20101222_AAATGH peloquin_a_Page_095.jp2
ebe436e40a1608b9956ff72005c4d554
30785b180279a62506aa08172cf75845e119043b
F20101222_AAATFU peloquin_a_Page_080.jp2
bb7de1d4886e8f5fbf636da8f711db01
cd9e9a7679c28420ac639119f3be66bbf1f1765b
63244 F20101222_AAASZZ peloquin_a_Page_050.jpg
f59c8323ea46c6289e561eb285cb4dc7
7dbd160aad9b701b23508391b3e89a8109c61e5e
999653 F20101222_AAATGI peloquin_a_Page_096.jp2
f17993b6c26316406a973bba1877d664
cf85c49dbcd93c14de3b0ed9631e51ed45edfe7d
1051961 F20101222_AAATFV peloquin_a_Page_081.jp2
3b7a0f21a89b964633bb901404414ad0
4fe83f754645573f02cbfc65deb3a16aa2b7c4f6
620048 F20101222_AAATGJ peloquin_a_Page_097.jp2
0eff35567f3a8ee0082eb67222f61a62
3e8ee9043ba1afeb8c4d8626cff7f0324af5c7f2
F20101222_AAATFW peloquin_a_Page_082.jp2
247591072ad048fa197ce0f72e48c760
e3b121021d7801a898a9ee3e013d443d3376c989
F20101222_AAATGK peloquin_a_Page_098.jp2
b40510abd67107df97dff89ab7d64fd2
fa35f12524a9c3f2915f02d833fb6681c778aab8
1051984 F20101222_AAATGL peloquin_a_Page_099.jp2
0ef94e39d0cac8203536da814d651b60
e2fdcc1e155f38c997df55603bb2fc1ef2d2f498
406490 F20101222_AAATFX peloquin_a_Page_083.jp2
c0cf548d5568fb5901e8d1f38d286e35
6403bc5a7ed38c8ac72f1d442d22dbac5f26a3c6
679008 F20101222_AAATHA peloquin_a_Page_115.jp2
e229c48cfe151044ef512f0114da529d
b8052a738856f4c1e072e28ccd54fbffff37e25e
1051953 F20101222_AAATGM peloquin_a_Page_100.jp2
8d52ec24cb25e53123b946450f4afe37
1916ae4f596e9a46fbe6107d76c1526a019d9bf5
542221 F20101222_AAATFY peloquin_a_Page_084.jp2
614fda974f51f46b2585c37a1366c3fd
0c64257314b9e855097789b2c0398b84faf4cfba
696575 F20101222_AAATHB peloquin_a_Page_116.jp2
ab2b523076ffacccc030009882e57d2d
0950ca26f4c108b9d31470e60efa7006c0c49003
419711 F20101222_AAATGN peloquin_a_Page_101.jp2
127c89fa543213d4a78caf6f7b7dfa4d
370ad6e81d743bfd58092124d83485e160cd6c5d
691496 F20101222_AAATFZ peloquin_a_Page_085.jp2
eede1d03210d796818836dbd51644dd3
25623455e0e011dcfe4f96e2ff79879897eb807e
973033 F20101222_AAATHC peloquin_a_Page_117.jp2
3dd7052384d02c38edcd8340ecd6af4a
45ad1fab837084251612c8cb3d9d9dac7676afa0
462224 F20101222_AAATGO peloquin_a_Page_102.jp2
7d48805fe3d50cec4c84aaec82ff35b7
1e5505af5c09fde25dc3166c1a8c12d45f5f457f
857643 F20101222_AAATHD peloquin_a_Page_118.jp2
4517caca2ae2a4d99d0861f8098874c2
d02641ae3084f65e47a9d21d0dee247ac93c9195
669728 F20101222_AAATGP peloquin_a_Page_103.jp2
d59395ba1c8b6f4743f2f41d18089578
861114905901d9bf6d505452f82adc95980ac06a
198636 F20101222_AAATHE peloquin_a_Page_120.jp2
3b61820594a720d3aa3fb9e319986c0a
51cda68d76b34da0f485c6607e9917cd87493c20
673315 F20101222_AAATGQ peloquin_a_Page_104.jp2
72c7beb8ac686e4cdf537a1049cdd979
02c03982a05cefee4fcf08c3b40232a875e075ba
F20101222_AAATHF peloquin_a_Page_121.jp2
5aaf9260d7efb7ab2ac8651704dcba5c
edf5430262441f78135098a14af862494d42b65b
995904 F20101222_AAATGR peloquin_a_Page_105.jp2
db9d69ddade091e5b154fdb6773ba173
33e02a2d2cf73e03cf57038ba3530b81dba67f45
1051965 F20101222_AAATHG peloquin_a_Page_122.jp2
796b5660332b20446c6da1145ed0ae7e
dfa0cb857df5d3425a03d4d46e309cb5d24e8f51
167610 F20101222_AAATGS peloquin_a_Page_106.jp2
acc912cefea76f529ae73f2fc601dd51
871c58ab4e368c58256ed0e6f50a942fe4774883
1032465 F20101222_AAATHH peloquin_a_Page_123.jp2
a55dd56a1637101eaab2d04fda32c96d
0e458966b1d58f661ab859bfd46c09e37dfd7ade
670132 F20101222_AAATGT peloquin_a_Page_107.jp2
7fe06cd5a167ef1a157ff2b683333dd1
5899e36f19ac3a5aefacd434633b26f1cd6a5901
942031 F20101222_AAATHI peloquin_a_Page_124.jp2
6758d71ddf4841d09c2ceada47a20909
3d12f68ba2df9d6e6e591ab58541e191add4b58a
F20101222_AAATGU peloquin_a_Page_108.jp2
9b815e5e82a69450da472c8e19fb8255
2081f36d38fb90354db7009ed26d701b2f8b8a97
1051983 F20101222_AAATHJ peloquin_a_Page_125.jp2
755543b9b665131f583331bbe7f0806d
259daa50d46a76cb1c4574710edb895651c762c0
1026308 F20101222_AAATGV peloquin_a_Page_109.jp2
daf7285110e10c6061ef38d4e8559e89
56439f8f196fb822fd1cd117a172684770fe5970
F20101222_AAATHK peloquin_a_Page_126.jp2
74a1c9c234b16f77db80f4a14f837de0
a4d516e82b9cd590a4f610ce65206dd19a477989
188928 F20101222_AAATGW peloquin_a_Page_110.jp2
14c00bb53ccdfd0e29d744ef0edec2ab
386bca8bfa9f7c8d2b766072c2f5084de9dfe92b
F20101222_AAATHL peloquin_a_Page_127.jp2
6e1e5b21646f76793ed5a6e058872974
cdfb450e841da6066b95c4cd7001c10d3fac7a52
F20101222_AAATGX peloquin_a_Page_111.jp2
57237371908edd25f1ae1e5df7001ef9
b15a17100b636a494d9ecccc05c15fcd549eeba0
F20101222_AAATIA peloquin_a_Page_001.tif
1f1de66378805dacc73653635061dbf8
ae760b3bdb4570c3a964ff1db25b494269ddfe04
191597 F20101222_AAATHM peloquin_a_Page_128.jp2
64e96e9d9b572abb060c55d85ab3aa06
b40f35f083231b477715c342baf6c1269d3fc0ce
F20101222_AAATIB peloquin_a_Page_002.tif
df087e6253c17eb7c091382c2c351a24
59cf8f6aa8016f4b931f818fda7eb796b79d69a6
679279 F20101222_AAATHN peloquin_a_Page_131.jp2
67922aae4ae17e8e7f32e7f95a385036
cb82d14fcc0293fdddf32cad4b0e42df22e4cb43
676496 F20101222_AAATGY peloquin_a_Page_113.jp2
a109f6fc357c7b9b6ee5448d5060c064
7886adc73271f43e787f2f8a8f7a1f89ec5699f8
F20101222_AAATIC peloquin_a_Page_003.tif
bfdaea2b6e816f79c21c566428845014
a16b3e27b9b6f209b50000bdec27143ed429be03
964626 F20101222_AAATHO peloquin_a_Page_132.jp2
a513b989bc0781b1d29e9a277d3f5464
aaaa72ed9af10ca1221cc983d18cfb850ea7ce2d
598587 F20101222_AAATGZ peloquin_a_Page_114.jp2
ee83abc9ab5b7182c5cb33f8c95005b1
ad451dc683245a7cff64b8de7253a7a665e2ae08
F20101222_AAATID peloquin_a_Page_004.tif
dc69207b224821b06117ab96eafcae8a
4471150735c995693ae26dcae0ea30fd2435cec0
878077 F20101222_AAATHP peloquin_a_Page_133.jp2
f1c16a46ac5c2f4e70314c39ff968efd
3e1f9198959c44dbecd1142c3e8756f43c3fc6af
F20101222_AAATIE peloquin_a_Page_005.tif
376f515107fcbd487428efaed77ef8f9
6e302610876350d6805ecc826cadeb85f607aab1
893736 F20101222_AAATHQ peloquin_a_Page_134.jp2
1b6dfd6057aca913d9ee5e214641c917
d8ec864538016f851ba5dade0f1bb06518067fd8
F20101222_AAATIF peloquin_a_Page_007.tif
184950a517fb4795d0f7d3acc266ff51
55dc97d02295c9cab95f1ef67b54a23c7c7be08d
1034686 F20101222_AAATHR peloquin_a_Page_135.jp2
e0ec461a509d2a4d2098babd6cee0801
f032d64810c18b490599e47e5f413884cfcec36b
F20101222_AAATIG peloquin_a_Page_008.tif
c38180a7d6a361160fccd865c8308274
efd03648b995558e4c9b81e40202f3eb4eae717c
743333 F20101222_AAATHS peloquin_a_Page_136.jp2
666e32560703016b5d3ea711b9c187dd
3c6c0df8c18b32eb21502e61045b0c9d348e9f1c
F20101222_AAATIH peloquin_a_Page_009.tif
9e10d6e9e6db704e6e379055c7b5b830
86f245edaa34d396311b59870697a500b7dea26a
975083 F20101222_AAATHT peloquin_a_Page_138.jp2
64d7da61a0164808cef1e2f56a0f573e
831b8bf55eb9a11f0d265a7b89f486cd0ebc5031
F20101222_AAATII peloquin_a_Page_010.tif
4794a0118e6cc92f87f14ecc88609c16
fecfd2df53ad31fb5354c09108b94e34173e7795
1051966 F20101222_AAATHU peloquin_a_Page_139.jp2
337d8af8b952f013f54b2d0a5d400ea4
3db29eb3e85f5fbe02a6b8286b3607ca06950c6d
F20101222_AAATIJ peloquin_a_Page_011.tif
991ee6ae52249c60da3fc061b448aecc
6812f03db00b007dd3947c116c2c2ee28da8377f
1051882 F20101222_AAATHV peloquin_a_Page_140.jp2
1985b7ab7a399e4cc80cdaf0689a14f4
0f6ee95ecf0275563aed457b0973fad4b0d0fa13
F20101222_AAATIK peloquin_a_Page_012.tif
f667e8c6acddc5b64d18b12b7ad29d51
761dd1b9a56406bdb5c36e54f90e23435b3852c7
364806 F20101222_AAATHW peloquin_a_Page_141.jp2
0d12ed6214a644919aa767fe06908c2d
bec2868517f6f86687911d73651bd6316c401c22
F20101222_AAATIL peloquin_a_Page_013.tif
181e82f0a0e23c1dea9ec2353358ba95
5f1ad52ba16168ded680b49f5af172010177ebe0
1051978 F20101222_AAATHX peloquin_a_Page_142.jp2
2ff7ee1065e66aa25bc99f05206c13ed
62a0f5862e21c06f97459383459013ab4be74099
F20101222_AAATIM peloquin_a_Page_014.tif
2a7ad76f0e271007617e8bd3e40d24c4
25fde21e971efcb3da70a671db92c43d26de516b
632897 F20101222_AAATHY peloquin_a_Page_143.jp2
8d83e20ea480a4ad45dffcad52e4eed1
acbfdc951b94b953ee252c582bdf653ace164e85
F20101222_AAATJA peloquin_a_Page_032.tif
b4fa7d58644cff15f4c3b8278bc2c6d3
38e112d6a156851af86bca5c5761655001275e58
F20101222_AAATIN peloquin_a_Page_015.tif
81674f77d65a6e324abe362104d67ab4
948f65119615ea735e109afa8a88cae3cac22d48
F20101222_AAATJB peloquin_a_Page_033.tif
99cf19d095906ffd5898ce233bfa50fd
ec693d1467a546eeebd06d5bbe724c8d547b925d
F20101222_AAATIO peloquin_a_Page_016.tif
9ecad886c3a3485343d21ef2390882db
acc7c0bc2195f1a2435efca58731ed53b844b2db
486802 F20101222_AAATHZ peloquin_a_Page_144.jp2
ddf6c01d9d7df13ff11dabbb61efe01a
c9b58d343cb4837419ba404fac6358a548d7fcfb
F20101222_AAATJC peloquin_a_Page_034.tif
fbfc4b8f7b81ff2bd80dbeb4abf5bbe4
21f2ed13433a3f37e39d1257be0e0c57708eb114
F20101222_AAATIP peloquin_a_Page_018.tif
8bf66dbd0eb1fea2aae4bbcc5cb86b80
14b47611eb8f8ae937c6edad715fadad3b3befe8
F20101222_AAATJD peloquin_a_Page_035.tif
3912162928d001f8e0b3e1d3f8ae80e2
16b5b99498f093b3c959d243c9e85080ddc4dfa3
F20101222_AAATIQ peloquin_a_Page_019.tif
8938c59570ce06233293ed0e064a94ad
8c2c4d0fac3c9ce11c7ebb158362bce3cbff265b
F20101222_AAATJE peloquin_a_Page_036.tif
9cfb171d4f7045cd249c80e7e037ba6d
f1b86a1c3708f9f6062b4f3fa8ea09bafc2782cf
F20101222_AAATIR peloquin_a_Page_021.tif
ef91902d249e1ebb50e254a048970eb3
35701cd3a684703df47cea75123042275ca62143
F20101222_AAATJF peloquin_a_Page_038.tif
22be969a2c756f52ad83373d68f18367
ec5905af8dd1c619f65da1a0527a040cb51be012
F20101222_AAATIS peloquin_a_Page_022.tif
f76fdc102f34703f1b97f86ff18de069
014ab6342662a4c7e6d6fdcfebaf300037fbde44
F20101222_AAATJG peloquin_a_Page_039.tif
776dd83723cb164aad6c5195136d64ec
19e9a6a13f3998c535d2f41e8a5483ebaf77a150
F20101222_AAATIT peloquin_a_Page_023.tif
7f53bf29367c26f341925254e2e8a93b
510f2f007459fe5215b2b195357c75f37be936ab
F20101222_AAATJH peloquin_a_Page_040.tif
d6828520a1fb8384c10108ac9b13a2da
8060c1f2632dd3d290cd278a03f29f20f80bdfee
F20101222_AAATIU peloquin_a_Page_024.tif
1a642d507440869c9665f0db634f2984
82bb5d82ba22a70bc649186d77f26622bbef227c
F20101222_AAATJI peloquin_a_Page_041.tif
f85785fd0d1e8a35369cc3aebe6236e9
58afdf436a85b428802dadb1b3fabc85b36ca90e
F20101222_AAATIV peloquin_a_Page_025.tif
7407d3a70d392f931f386d88ea99256e
0fbf4fc69350c1b2a249c7a1825f8bd33c321247
F20101222_AAATJJ peloquin_a_Page_042.tif
e7dd60e592f686992e70acebec23996e
f721f6dfb65433ab526048a63acd100af5220f95
F20101222_AAATIW peloquin_a_Page_026.tif
b570527a479115ea2ddf81bb29723fe2
fabbbd4824782fe92f2d37bc75ce665633440fca
F20101222_AAATJK peloquin_a_Page_043.tif
f04d55edbcdc01bc4e7caa978b7dd196
c35635991310dfed9bfdb0b130de01cb79f7c1ea
F20101222_AAATIX peloquin_a_Page_029.tif
0979c9994c20842b104db47fa5f98df8
85c0ce7d518653a6fdccadea5143f24a148fafe2
F20101222_AAATJL peloquin_a_Page_044.tif
e56583ba7dea51dfba3d078846bc59ad
d110f5a729062db6d2a38ac5a06d381193625698
F20101222_AAATKA peloquin_a_Page_061.tif
1986bd70a7b3bc101fc12c6b6de7ba50
c737a373054939dea65a8b9aa937b5a788e30747
F20101222_AAATJM peloquin_a_Page_045.tif
834fc498d95e495c34f257de60bd8d10
03232957eb0162e41d136f31cf431cc64cb8a744
F20101222_AAATIY peloquin_a_Page_030.tif
0fc3f31f84c7f9e871b0bb8a94b58665
c2f32a8ad13ebfa11e57d73d2ea4a761042de817
F20101222_AAATKB peloquin_a_Page_062.tif
16d99c8eeac9c9a483dd26c725d4f0ad
16b5d75a8b5cdc56e26bd801b37989f25f2d1319
F20101222_AAATJN peloquin_a_Page_047.tif
f21b20d4e074057d4100cf1897a68249
9fd660f652136dd628002e9c6a753837a7c06089
F20101222_AAATIZ peloquin_a_Page_031.tif
c7542c1cd0f5165ea3a113962cf3ccc3
7e98102a26f6d8382c07406bbc6c8754bad53af0
F20101222_AAATKC peloquin_a_Page_063.tif
c485355e93e974b35c1ca974a6c96574
fa32ffac7be2a6bd7ed818088ac50e0341231d09
F20101222_AAATJO peloquin_a_Page_048.tif
49dadfd31bc9a6fef70935584c0225e6
df1f56f0e020d0378bde054821f6a46e17baafc6
F20101222_AAATKD peloquin_a_Page_064.tif
7ab534159b1d2b507f8de914918fcc0f
bc70aba783b62fa06560c79b255f419853f5ac42
F20101222_AAATJP peloquin_a_Page_049.tif
a4564f0322a477deb1d2d3877fa66eac
86987ba6a44cc1ac9f8ed201ca2470fa87c9bba6
F20101222_AAATKE peloquin_a_Page_065.tif
ecb7e22127c5bdac43af3657b6cee66c
3036faa16445ae5b535179361edd8ab9fca31fc7
F20101222_AAATJQ peloquin_a_Page_050.tif
2c2f17886d3a8f860da45ca8422f50e6
57a7cdc0695889b8ca1dd4e32de12fe8d8a619cc
F20101222_AAATKF peloquin_a_Page_066.tif
a381d95cdcf7a1a78eb4feb9c7519dff
547a003b3edb2a150846bcc78f5f60835e667a41
F20101222_AAATJR peloquin_a_Page_051.tif
eb42798d63b7471cd7d74f11b9308711
2f780d8c273218dde200509ab0083a4dcdd56c98
F20101222_AAATKG peloquin_a_Page_067.tif
cec2f389266b87c6b52226b5f5f4d9ab
32ddd39a92ea935ade318f5dcea2209c61f4794e
F20101222_AAATJS peloquin_a_Page_052.tif
0327d4b450d3013d4c767a9e7fbd8e73
5c9db69e594f23a61fc6126a1039cfc22060e5fe
F20101222_AAATKH peloquin_a_Page_069.tif
64989460040ddd33d31e67b62a5ec634
72397744e9add5ca56ace26ecc3934b55f876002
F20101222_AAATJT peloquin_a_Page_053.tif
2f67d1254fe49710698c36aa41d77740
8a90d8b7b04e8fcb2e38823e782e290fb702910b
F20101222_AAATKI peloquin_a_Page_071.tif
6235c9221532af01ea93c469c2f298a3
3e1cebc4c5646c4b7963d7be7f9649cd5cba92b9
F20101222_AAATJU peloquin_a_Page_054.tif
12d91cd32129256a3403cd140d26ca9a
d6118fab074160042fa74cd5404b866f6c847c32
F20101222_AAATKJ peloquin_a_Page_072.tif
35b185a8f4b0f8f6b585d2a98e16642f
d64257bf7412685d638bb8348f938803bc0381b0
F20101222_AAATJV peloquin_a_Page_055.tif
783ccd1e10341566240ed951b1c68454
49d8e05ccd7dc4cf245947e756d7098e6a9ef56b
F20101222_AAATKK peloquin_a_Page_073.tif
ab94497ebf7c448731c4e2423c283d9f
ca2db9b303efac676993d5584cb76cd72f915d98
F20101222_AAATJW peloquin_a_Page_057.tif
05445d16714b791966885d986e3de69d
42d6ca4435228b93016ee0b8e896bf125a9acb0d
F20101222_AAATKL peloquin_a_Page_074.tif
894b0477ea167140a9452b1ed8aa4c0e
c2ec8beacf4ffbc71d2ce0b79b2a28b91688675e
F20101222_AAATJX peloquin_a_Page_058.tif
84058be959a7c57e8f82d5e576a8d01a
59ab9fad0ff57aaebeb683d3f8b36909b6020865
F20101222_AAATKM peloquin_a_Page_075.tif
f095f18cfe5b8ee1cd1a5e8956d41878
c09035a4ef474d13ed77dec605e4249889e01e10
F20101222_AAATJY peloquin_a_Page_059.tif
fcb06a4d912ea98e220f681efbf63619
ed0fbaaaec9b99b3ec0a93e38ea9d50fc5fec9d0
F20101222_AAATLA peloquin_a_Page_089.tif
0263ad49d76ba9bd81c9ea3e446694f2
118ca35c0cd64bc4a1df080128c7913a8c03bae3
F20101222_AAATKN peloquin_a_Page_076.tif
014b9cc0c6688e36df1d90dbb26dc6fc
b83505028cc1364c2ac4b604d3ff593761b5dc10
F20101222_AAATJZ peloquin_a_Page_060.tif
96de21e8ec6ff138ebc3f8dc139bac71
64ff79d576c325931abb9011c73eb17a6be616a2
F20101222_AAATLB peloquin_a_Page_090.tif
6f8cd4c0f1d17cd80a2e4fd852d1a7f6
0ce0cde6a71bb5af623582d59fb14030e2443279
F20101222_AAATKO peloquin_a_Page_077.tif
a3e4f2b7e928d9a875d58f09fb390655
7717aafcb3d1c1fa7c5b3c1c508e52cbb8abc648
F20101222_AAATLC peloquin_a_Page_091.tif
e515eb5d6aaf6348bb29f164ca705a9c
be655fe592907dfd312aa7b40adbe98d6af77895
F20101222_AAATKP peloquin_a_Page_078.tif
be7e0a7a0fe878b94df9c7ca867a67a6
7eca2d6dc11c7e71390f666d5c5fad37db5f1ceb
F20101222_AAATLD peloquin_a_Page_092.tif
2c4a5322f970530d905d5a4d6bddb87b
9f61e70962ff88714472c674ec70dca05c8f39e0
F20101222_AAATKQ peloquin_a_Page_079.tif
8a6f24372ffabd72ed5626355aa6a389
8bd12622e74aa4042676b653eb837df596766902
F20101222_AAATLE peloquin_a_Page_093.tif
bab0372868108c7b619e600e116e1a4f
e290c9b817cb945e718252b0992577f5c1d07836
F20101222_AAATKR peloquin_a_Page_080.tif
5f2ec541d56a7a5a793bd3940a644d3c
7f720a879061e03b0f4f3149994c963e3162ef9c
F20101222_AAATLF peloquin_a_Page_094.tif
0a1be59f58ee70ff3f56bd2be9cdb3e5
7495584e0a142270d3162a708c970bc85c5bf060
F20101222_AAATKS peloquin_a_Page_081.tif
15f8496cf945ddad3dc49d6da05a83d7
8fc83457df9a33f18d715dc207ebd2fd7f8328d0
F20101222_AAATLG peloquin_a_Page_095.tif
5b9da613d8c744c96d1dfdc216ddef74
0beb8db4ad8152b9637d3356ca2d75e029e8e4fd
F20101222_AAATKT peloquin_a_Page_082.tif
c89f436c338a4ae1cab90eb48bcea110
75ea7167a27774f2a544ca4ff1cd6b8d234bafab
F20101222_AAATLH peloquin_a_Page_096.tif
f15f8d5164532573fe64556f34872ca1
10e50d447b16908c2341a1f001c2f05721f9c185
F20101222_AAATKU peloquin_a_Page_083.tif
8c2a309ec178d79084ac5cf3717b688b
61814f678a0b3c1e4167cd322f969832eb4b2095
F20101222_AAATLI peloquin_a_Page_098.tif
4ac8dd1c6567ae3a1e3f730e4383d9cf
dd1d4ae6931f93a85b329e4eea8b48b9fb8dc404
F20101222_AAATKV peloquin_a_Page_084.tif
db24c3c636f6c571a53506829d465587
bc2ab3e0fd60d7840bb02ae8f94012d9bca52523
F20101222_AAATLJ peloquin_a_Page_099.tif
a3970efd1df5756b0bad3e346a854214
fcdfff47ff56b420420065dd1add972e80aba021
F20101222_AAATKW peloquin_a_Page_085.tif
80223ddda3a14d176e6816c22c8d3c3c
5d5a6b59326dbdd25dab56c16e75792bfe8cd75b
F20101222_AAATLK peloquin_a_Page_100.tif
5bf5c1b9e2bcce841f8c386873fa99fc
07f96fa003725fb20b20767388b4e4bd60ca7c39
F20101222_AAATKX peloquin_a_Page_086.tif
b48d07682a491b393ea295d18ea095e4
5259ead11d363c9866f4d7ef262261afbff261ae
F20101222_AAATLL peloquin_a_Page_101.tif
345c247e79b1d796b73d18ed960ebf31
6dd47d72cfa33ce4b2b1a8ae74a552db1815bb28
F20101222_AAATKY peloquin_a_Page_087.tif
ff5a0e01c450687322de0c8d66a674fa
57b9128b0b5d1583fda3251b89c40b749961a829
F20101222_AAATMA peloquin_a_Page_118.tif
969dddb56cc043c8dd79bfb37dc6f2b2
e0e0e42435a8cbbae1652c6bf119159ec976463a
F20101222_AAATLM peloquin_a_Page_102.tif
8063b040ff0ae5b5179fdc5012aa9d2e
d8e44c7aed80f47b7bc27885581b9b69719ba406
F20101222_AAATKZ peloquin_a_Page_088.tif
a61f6e897f48d7c4dac0cb7908c5cf4b
8f86c1d398e1e729ac4ef88fa7ae6660f2cebce8
F20101222_AAATMB peloquin_a_Page_119.tif
02c54b2e9879bd007ff42fccd0b67932
1b378cba58f7c8a4f32038ab90378e96b8f4c4b4
F20101222_AAATLN peloquin_a_Page_103.tif
73f99c3931cd84c8f0457665382cfe75
e4a5cfb276c71c5183d2c1f41c9f45178a7552ad
F20101222_AAATMC peloquin_a_Page_120.tif
a2210a6d374e36eb3ac1121458ddd04e
c8ef3f3cab6f80de16127cac04d2c95a19737d3b
F20101222_AAATLO peloquin_a_Page_104.tif
b27991d26d7b114ecb90ee3be2de35d1
e34e7e4321c1f4af01d3cd14c79412971e11030e
F20101222_AAATMD peloquin_a_Page_121.tif
15f099fc4c2318295234d5dd95916898
977ac6261abed907a915645164a2c2d1040c411e
F20101222_AAATLP peloquin_a_Page_105.tif
6176fd0da6db154993e337e1206af765
b7319cdcedb89df7b9b980ad8a3b17bec200e6e3
F20101222_AAATME peloquin_a_Page_123.tif
9099475295085e93e3723df37d29b072
89be3ea47f71c28107dc2c2587b3e2bebd6f6330
F20101222_AAATLQ peloquin_a_Page_106.tif
be9c52735e23c4518ef3db0f70509276
511c4d4665b23309338975322fb631a55b08e901
F20101222_AAATMF peloquin_a_Page_124.tif
a68d22d2f017921d522c2e69cc0bf611
ee9343ceb5f523f5437668e2eea4dd71d4764c14
F20101222_AAATLR peloquin_a_Page_107.tif
913f15b82754703653db3a81b93ba885
955693f2d11f91cbdc2c080e8d109745e1662a9b
F20101222_AAATMG peloquin_a_Page_125.tif
3fb2db39cafb55138bb813b5bbd9d48a
8ab94882aaab85067546e5ed12901ef6b95a88fb
F20101222_AAATLS peloquin_a_Page_108.tif
cc87e73e6c39a0bb7a2090f2f7fb6040
04b447659939c527803c005e69c3449c5bcf7651
F20101222_AAATMH peloquin_a_Page_127.tif
91e6eec348d96ce142c3ed6706e0a1c2
ac541eaf77bf67a1370f3deb1b71f66af23de51b
F20101222_AAATLT peloquin_a_Page_109.tif
70e555291fc5f5867c7ff82cdd37d6f4
7de18c0b223404f6c614762b8845ccae8224e19f
F20101222_AAATMI peloquin_a_Page_128.tif
56f7fe29a60579421d1aca613138a030
4acd84d73516923eca887ec39af3b0c4451b2a07
F20101222_AAATLU peloquin_a_Page_111.tif
cab2c281c222d5839464e65ad4eccf0b
d4b166cb7cba37b2ff5b327882d046cbfecdac13
F20101222_AAATMJ peloquin_a_Page_129.tif
d6b422197594dcc9b22803c21677225e
67d8afbdd8916fe6db45a365aa3d0faf89b35c45
F20101222_AAATLV peloquin_a_Page_112.tif
eeca2632699f2c6c8c09ce8c71c469e3
a72d1cb54c123a6fc4ba9d0d522dde471c5e5e65
F20101222_AAATMK peloquin_a_Page_130.tif
66a2f81211e0e26bee6c5c3608101adb
b0ac56b21fe145725b0638cb14d3cb739ef35d7f
F20101222_AAATLW peloquin_a_Page_113.tif
15431881f34277e1f2321defdf7dce8a
2265748888839c74f690408ba024c8e3c3519f56
F20101222_AAATML peloquin_a_Page_131.tif
793147a86670b53d13d783e9469df64b
d6461971019e038efde587f042ea5c617bc4daaf
F20101222_AAATLX peloquin_a_Page_115.tif
b0a19631f1f4fcd6e3fa43ff294b16d2
677f2c572e586036d616d20e7abc2aea1456cfc6
5192 F20101222_AAATNA peloquin_a_Page_003.pro
2e942b693d6b2de61c15536f4e331336
d5f57bb8efaf5ddca29c58e900f8c1423b7523b9
F20101222_AAATMM peloquin_a_Page_132.tif
06e83560ae5cd4ce33fcb2982135d191
ec4a6278ad3893449a3b556438ae661d9534bcaf
F20101222_AAATLY peloquin_a_Page_116.tif
22554a67385c8b0cef2b0200597e5656
38407214d84a08fd3f40b068711d4861c53bc6c3
32792 F20101222_AAATNB peloquin_a_Page_004.pro
6ea6b2f1be89725d388c8d81b0da391a
1a650f46a7dcd86dc8a076565e6060cae391a6df
F20101222_AAATMN peloquin_a_Page_133.tif
0af2e838240b29c0317ae27909ca6b4f
d5a7d685ab3876dc40c2e895a2a6b7b0c6a0fcb7
F20101222_AAATLZ peloquin_a_Page_117.tif
88b61cbfb9be8fa5785afa27202bc27b
fe7d444006ead262036783d594d4f6a55948d71d
69258 F20101222_AAATNC peloquin_a_Page_005.pro
0e0790a5604b6739214e81c35e40a091
fe2be7ab6b28464bdb393d6a57755699a8bf839c
F20101222_AAATMO peloquin_a_Page_134.tif
0fd2efd7b34741354f02890de87d0b75
7b8b8f4648cb0a70654f1bd7de2cc4b0a47fc6fd
27207 F20101222_AAATND peloquin_a_Page_006.pro
d07dbb817641b52d5204d0598b7d9682
e76aadcbd294171a4bf9d6844e455433f0563709
F20101222_AAATMP peloquin_a_Page_135.tif
6260efad7fd7d9ac96d6f0237204bf3e
ee44e58bdf240d6baf9765c0fa8824cb13f2a415
71040 F20101222_AAATNE peloquin_a_Page_007.pro
61028e3871408fd88e03cc5295147b25
3816613186b648b599e8ea307c16dd597f1a4c49
F20101222_AAATMQ peloquin_a_Page_136.tif
9fa9471491fa8b3e1118468fd57b4d8b
69e7f8d2942d5cea39007175f68e8b004ede5e70
72403 F20101222_AAATNF peloquin_a_Page_008.pro
ca91a487e7cbbe52a22cca97cdb10252
37b6236ff5d3ad2e7f4e9485765c619b1a4f798f
F20101222_AAATMR peloquin_a_Page_137.tif
5960f661a9bb5d0684987180fd90ea3a
2a215c5499aa53f87179820004aa17c94b380939
70843 F20101222_AAATNG peloquin_a_Page_009.pro
e901e7540c6a3f5496d51609a87767fc
bcaf787eb5faf42f7f5f3d14ae86cfdf38a90083
F20101222_AAATMS peloquin_a_Page_138.tif
77ef34c5ae4510bc996901de1f975501
67cc6b66bcf04f38552d5d846c8772ae16d567c4
40102 F20101222_AAATNH peloquin_a_Page_010.pro
9c38cd41b1887c56b31edb6455127ca2
c7b8aade88a232eab1040b1a69c0b31001266156
F20101222_AAATMT peloquin_a_Page_139.tif
9279f3d3b83a7a6fcdee922c4e7bd339
45c1746d38203829d5163d7b117024a068bb23bc
45078 F20101222_AAATNI peloquin_a_Page_011.pro
75457d92af462390a005dde632f8259f
e6fcbfa466cdfcee71d42ad841c4aa85e5c862ab
F20101222_AAATMU peloquin_a_Page_140.tif
34cc33fae4905d599f0c5bebf814392a
31e2fd7998525987ca3c65de3df2b5cb0820a259
5140 F20101222_AAATNJ peloquin_a_Page_012.pro
11895d1240be86b8117702364d50ad97
525960bdd22d1465fe12cff33d28c374972b236a
F20101222_AAATMV peloquin_a_Page_141.tif
3162da29ea2e7322c0eff7b854782e14
ac9f13526652915daeafca21246be044432990c6
44318 F20101222_AAATNK peloquin_a_Page_013.pro
ca3064d4861f8c55d090b1102572bcf7
dcea70e27c3b0d88d1826b2819ffa71a5a3b8a02
F20101222_AAATMW peloquin_a_Page_143.tif
47f3639bbf03130202c61316eb569869
39a9599ef3c5c43f0e43757986f0a3d6da2f5264
40084 F20101222_AAATNL peloquin_a_Page_014.pro
40ae91c0629a5abd5c24c11a30e278cb
3802e6e0eca0f7f9b2d8f62e79e00b7d325f9246
F20101222_AAATMX peloquin_a_Page_144.tif
ddfeedc55ba555291e4221db97272819
decbcbb406abe43e114b9be6e7e40657abd7a1bb
41561 F20101222_AAATNM peloquin_a_Page_015.pro
f766cf60e37ce60eab4b8baa4b4458e5
2c5827a1821a6a025e30c57af31408ea63818be3
9448 F20101222_AAATMY peloquin_a_Page_001.pro
ecae65a6d7ca0c87d8c9c925869366bb
1373d959e25bb224cd06715f497347a046473ca7
44368 F20101222_AAATOA peloquin_a_Page_030.pro
38cf5e586f5fe5927a9c970dace870a3
50d779efa9597027e699539e244243c9bc606488
40920 F20101222_AAATNN peloquin_a_Page_016.pro
e17aebe0241aff6cee1ffade1b955625
3b6a255cf03fb837ac8a1c28b4b195fdfc9d5716
941 F20101222_AAATMZ peloquin_a_Page_002.pro
e4851a1c09c4775424d13e766d70f2e2
c5b84ae3ff527d3d6a3f53702b8c45baf28eaf6b
41232 F20101222_AAATOB peloquin_a_Page_031.pro
4089ef953fa38bf5469f235b66a4c4b0
1e2a96f5514b3ae0eef06dc59e49bfadc06861f1
36012 F20101222_AAATNO peloquin_a_Page_017.pro
0c3beaf8592e565c1242fd08d3226f92
a1b9577c1f14609904aa4baafae87487e9eae28a
6152 F20101222_AAATOC peloquin_a_Page_033.pro
ac6e691f1eb2ff3d50d39a8dbdc0b3b2
10b531c7ed97a11df24d1e62b331b1a443a4a635
44507 F20101222_AAATNP peloquin_a_Page_018.pro
c34795c9e03d3ccfcd7862bfd76cb112
ea1e7a333d2b6261bc25d5783add2aa5d64f16db
50817 F20101222_AAATOD peloquin_a_Page_035.pro
651eef6aedfff4f2256bcb25b6eadbe7
64366a6b0b760155ccdc09ef82c627a431bd2925
32429 F20101222_AAATNQ peloquin_a_Page_019.pro
ce54b178cb2980f4b3fe40b01e9e19bd
2856bbf0fddde6ddcde91d2ad83a70e273e87526
52976 F20101222_AAATOE peloquin_a_Page_036.pro
f9b311a3a282ebef6738c3a91231f330
1cc283e64cc51c83801a1e4b4ff841557b6b2f7a
37466 F20101222_AAATNR peloquin_a_Page_020.pro
5ccf07b7eeded3aea2ad6c6f676fc4c7
f375d78a4316b468b8e6fa32c70b8cb088bdb75b
53149 F20101222_AAATOF peloquin_a_Page_037.pro
02610a0c2a7e8714dd35d94d20f8847c
2eed712fb3a7ae4144d95eff2f21a7e201255a94
54337 F20101222_AAATNS peloquin_a_Page_022.pro
11a124d1d64b94171c8bd8c0872e97b3
0e1fe3db4e1b644154295f89b592bb6fe398ca99
25814 F20101222_AAATOG peloquin_a_Page_038.pro
ead4a3e01bc37fbfc0e4502d34016ffa
292cca38cf194da80c151e0276707a91c53b2043
4121 F20101222_AAATNT peloquin_a_Page_023.pro
d5795f03d4bd6bc6ef58178dd2d3f12c
a1a5be670e113c044c2543741d2ab2d94e4c33ab
1240 F20101222_AAATOH peloquin_a_Page_039.pro
29d0cb7e8bdfed3410a01e0ea81036b3
9350261730903d6bf40a330ef7a6ece01c12cdcd
28299 F20101222_AAATNU peloquin_a_Page_024.pro
95148e0a4970a2a20ed190cba825c802
cddc009dc5e34273260d3b5c25ec09d73f210748
8393 F20101222_AAATOI peloquin_a_Page_040.pro
60770f059f0f0d5629cd11eb455fba43
0f7fc9394d1854aa73d945ffd641a7b12e031627
8016 F20101222_AAATOJ peloquin_a_Page_041.pro
e6ba2608f8c1d33f020c6165f1176c4e
0419237bfe0fce15cf483c5d3626925527ac4f41
19857 F20101222_AAATNV peloquin_a_Page_025.pro
79c509fc7bddc83c5755cf355845f256
02de5a7594f985cdde529ecb0d746d69b5bbd362
6219 F20101222_AAATOK peloquin_a_Page_042.pro
1893149fc467975f3c314eb0bc63162e
5eaa445876c94caeacff535e6802b7472b5ca0cd
4013 F20101222_AAATNW peloquin_a_Page_026.pro
c65b24d81a8bb53093e493a070fd81ed
d7ca20c7ed7a29d3da069dfdccc3d7a713820fe0
59298 F20101222_AAATPA peloquin_a_Page_060.pro
ee3994949afe74978c5ab354f5754945
b06e41038d3e442837035406daec3222e71bbf23
9063 F20101222_AAATOL peloquin_a_Page_043.pro
fa5a4976afde78980589c955428f6bf6
2226edec6bca230e21a23b73bf0cf8632a93a0ad
32282 F20101222_AAATNX peloquin_a_Page_027.pro
c31349a494f4a278a7d8e2f42d01de81
843151d81c1d9cb86059eb5c0899e07d6087491d
9261 F20101222_AAATOM peloquin_a_Page_044.pro
df00fd552b2c7a66e3b75815607cc5b1
58c1ea660ed3ac675245d2568c467126d0a62130
40923 F20101222_AAATNY peloquin_a_Page_028.pro
fc80f9849616eb03d019d64361940884
11096b3feb1432ac52b2c0b004ad96b9897e609f
27005 F20101222_AAATPB peloquin_a_Page_061.pro
751f3045455c99987802855ca2cca364
cecd004ad5a6cc6a64e79f84b0e8806ce779f81a
7281 F20101222_AAATON peloquin_a_Page_045.pro
939b428563aa4b1c8d5b50f696a1abb2
f9a5cd04ee0ff24cc9e8036e087738b97150081e
20136 F20101222_AAATNZ peloquin_a_Page_029.pro
4eedefa909341c823bc2562a3676a522
2c2bbb2243af131a1ad6b291c8604a6b86cb0dc7
51216 F20101222_AAATPC peloquin_a_Page_062.pro
38e7149938d8f919bd1d9789a715086c
b5eed8773444e481bccbc65a91c81024bec9cba3
8975 F20101222_AAATOO peloquin_a_Page_046.pro
b5f79eff84ec3275db47da7c8bb14951
a91d78c2033421d555758b61e002a698043d923c
53350 F20101222_AAATPD peloquin_a_Page_063.pro
9c8bb89bd547457de77ae3118f425171
7a1dbda55833e6576206271db692ee49d5379f86
1422 F20101222_AAATOP peloquin_a_Page_047.pro
dd0460c35ac382fad1e9a7f35b8a25d9
bf2ae1146fbe3a6f9ea109998f2c1360da20d809
54139 F20101222_AAATPE peloquin_a_Page_064.pro
45395958a9ec977374fa55793ba1594c
5c0452bea1eff65d3c09498005d59a146ee09b85
F20101222_AAATOQ peloquin_a_Page_049.pro
25898afa5321b6b1812d312007514fac
f91700bc38182f93d7da59898aae796fbb90fba6
5698 F20101222_AAATPF peloquin_a_Page_065.pro
336773515f7fc274c2c06920f53caed2
0597e4553da9948ad39d3a630a2d94e076652605
28850 F20101222_AAATOR peloquin_a_Page_050.pro
8367c1691059d9052aad30b20795d94a
d5238ac16714bb9ab7f2729f3dca930ed5be6db1
5518 F20101222_AAATPG peloquin_a_Page_066.pro
72761e584b9d4986aa9a14c11cde1a1f
059314dee2ce9d80e563f67bbb97ac74b004c56d
34742 F20101222_AAATOS peloquin_a_Page_051.pro
3525466532d4a1408b9166248798bb90
18643f987969d594e1e3d210fce01e77ccca1425
40373 F20101222_AAATPH peloquin_a_Page_068.pro
c80faeb6d2850ecdfc70080c0c945568
263ad5e8b4653dd3f82e343cbacaf2d840feb1c6
56576 F20101222_AAATOT peloquin_a_Page_052.pro
7c59133cc2729b815631c40a034dbc6b
c81f5eea1e33970c419fd0c4153601f54bea1d30
57127 F20101222_AAATPI peloquin_a_Page_069.pro
3af1d951c701c09b337afd081ea4f85e
127cb1d0206264aa3b2d0abd5598a291911c3c63
38884 F20101222_AAATOU peloquin_a_Page_053.pro
a6dd6f5bbe419d71b02729b12f626745
2d6e8b1142b6db6f6a275f98849d964ab26f7be4
38889 F20101222_AAATPJ peloquin_a_Page_070.pro
c5a3340e86d79bed791569da7d597701
92c1fbb8806267dbddf8acc47292ef6ded079176
24061 F20101222_AAATOV peloquin_a_Page_055.pro
02d4c136b92b3fba1154341a7dc45498
9b06c6b4f55fd08e6bd1379d73920dbcb3b23b83







APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING
GROUP VI ALKYLIDYNES, METAL-METAL MULTIPLE BONDS, AND GROUP IV
AMIDES




















By

ANDREW J. PELOQUIN


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008



































2008 Andrew J. Peloquin


































The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the U.S. Government.









ACKNOWLEDGMENTS

As this project draws to a close, I am extremely grateful to many individuals who made

this achievement possible. I would like to first thank my advisor, Dr Adam Veige. His patience

made this research possible, given the numerous constraints my situation provided. I would also

like to thank all the members of the Veige group for making my transition into his lab fairly

effortless. Recognition must also be given to Khalil Abboud, who provided invaluable data

through X-ray diffraction studies. I also thank the other members of my committee, Dr Stephen

Miller and Dr Michael Scott, for their time in reviewing my research.

Many faculty of the Department of Chemistry at the United States Air Force Academy

also deserve much thanks for molding me into the scientist I am today: most importantly, my

undergraduate advisor, Dr Gary Balaich, whose love for science has continued to motivate me

throughout my educational endeavors. Without the extensive practical laboratory experience he

provided, I would have been unable to complete this thesis in such a short period. Lastly, I would

like to thank Lt Col (Ret) Ronald Furstenau; it was his passion for education which inspired my

love of learning, now and for future quests.









TABLE OF CONTENTS


page

A CK N O W LED G M EN TS ......... ..... ............ ................................................................... 4

L IST O F T A B L E S ............. ..... ............ ........................ .. ...................................... . 7

L IST O F FIG U R ES ......... .... .............. ............................................................ 9

A B S T R A C T ............. ..... ............ ................. .................................................... 1 1

CHAPTER

1 INTRODUCTION ................................................................. ....... ......... 13

2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A
TRIANIONC OCO3- PINCER LIGAND ............................ ................. .............. 18

Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) .......... 18
Synthesis and Characterization of { [tBuOCO](CH3)3CCH=}W(p-tBuOCHO)-
W {=CH C (CH 3)3 [B uO C O ]} (4 and 5) ............................................................................21

3 PROGRESS TOWARD COMPLEXES WITH M-M MULTIPLE BONDS
SUPPORTED BY A TRIANIONIC OCO3- PINCER LIGAND .................. ..............27

4 SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A
NEW ANTHRACENE DIAMIDO LIGAND ....... .............. ............. 31

5 C O N CLU SIO N S ....................................................................................................... 34

6 EX PER IM EN TA L ....................................................................................................35

General Considerations ........................................ ....... ..... ......... 35
Synthesis of [tBuOCO]W(=CHC(CH3)3)(O-2,6-C6H3-'Pr2) (3) ...........................................35
Synthesis of { [tBuOCO](CH3)3CCH= }W(I-tBuOCHO)W {=CHC(CH3)3 [tBuOCO] } (4
a n d 5 ) ........................................................ .................. .......................... .............. 3 6
Synthesis of [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) ........................................36
Synthesis of [tBuOCO]W(t-NMe2)2(-O)W[tBuOCO] (8) ............................37
Synthesis of [AnthH] [Zr(NMe2)3(NHMe2)]2 (10) .............. ...........................................37
Synthesis of [AnthH] [Hf(NMe2)3(NHMe2)]2 (11) ........ .......................... 37

APPENDIX

A 1H AND 13C{1H) NMR SPECTRA............................................... ..............39

B X-RAY STRUCTURAL DATA AND TABLES ........................................................47









X-ray Experimental for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) ..........................50
X-ray Experimental for { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[B u O C O ] } (4) ........... ................... .............. .... .... ....................... ......... 67
X-ray Experimental for { [tBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3-
[tB u O C O ]} (5 ) .............................................................................................. 8 5
X-ray Experimental for [(tBuOCHO)Mg{ O(CH2CH2)20 } ]n (6)....................................... 103
X-ray Experimental for [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8)...................... 115
X-ray Experimental for [AnthH] [Hf(NMe2)3(NHMe2)]2 (11)....................................... 130

L IST O F R E FE R E N C E S ...................... .. .. ......... .. ............................. .............................142

B IO G R A PH IC A L SK E TCH ...................... .. .. ......... .. ............................ ......................... 144









LIST OF TABLES


Table page

B-1 Crystal data, structure solution, and refinement for [tBuOCO]W(=CHC(CH3)3)(O-
2 ,6 -'P r2-C 6H 3) (3 )....................................................... .............. 5 1

B-2 Atomic coordinates and equivalent isotropic displacement parameters for
['BuOCO]W (=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) .............................. ..................... 52

B-3 Bond lengths for ['BuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)..............................55

B-4 Bond angles for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3).............................56

B-5 Anisotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-
C 6H 3) (3) ......................................................................... ......... 59

B-6 Torsion angles for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) ...........................62

B-7 Crystal data, structure solution, and refinement for { [tBuOCO](CH3)3CCH=}W(p-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4) ...................................................68

B-8 Atomic coordinates and equivalent isotropic displacement parameters for
{ [BuOCO](CH3)3CCH=}W(I-tBuOCHO)W{=CHC(CH3)3[tBuOCO] } (4)................... 69

B-9 Bond lengths for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (4) .............. .............. ............................... ..................... .......... 72

B-10 Bond angles for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (4) .............. .............. ............................... ..................... .......... 74

B-11 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -pBuOCHO)
W {=CHC(CH3)3 [BuOCO]} (4)..... ................................................... ............ 77

B-12 Torsion angles for {[tBuOCO](CH3)3CCH=}W(i-tBuOCHO) W-
{=CH C(CH 3)3[tBuO CO ]} (4) .......................... ......... ........................ .............. 80

B-13 Crystal data, structure solution, and refinement for { [BuOCO](CH3)3CCH=}W(i-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5) ...................................................86

B-14 Atomic coordinates and equivalent isotropic displacement parameters for
{ [tBuOCO](CH3)3CCH=}W(I-'BuOCHO)W{=CHC(CH3)3[tBuOCO] } (5)................... 87

B-15 Bond lengths for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[tBuOCO] } (5) ....................................... ....................... ..............90

B-16 Bond angles for { [BuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[tB u O C O ]} (5 ) ....................... ..... .................. ............... ................ 9 2









B-17 Anisotropic displacement parameters for { [tBuOCO](CH3)3CCH=}W(i-
tBuOCHO)W {=CHC(CH3)3[tBuOCO]} (5) ....................... ...... .... .... ....................95

B-18 Torsion angles for {[tBuOCO](CH3)3CCH=}W(i-tBuOCHO) W{=CHC(CH3)3-
[B uO C O ]} (5) .............. .............. ................................ ..................... .......... 98

B-19 Crystal data, structure solution, and refinement for [(tBuOCHO)Mg-
{O (CH 2CH 2)20 }]n (6).................. ........................ ......... ............... 104

B-20 Atomic coordinates and equivalent isotropic displacement parameters for
[('BuOCHO)M g{ O(CH2CH2)20 }]n (6) .................................. ............. ............ 105

B-21 Bond lengths for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6) ........................................... 107

B-22 Bond angles for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6)............................................... 108

B-23 Anisotropic displacement parameters for [(tBuOCHO)Mg-{ O(CH2CH2)20}]n (6) ....... 109

B-24 Torsion angles for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6) .................................... 111

B-25 Crystal data, structure solution, and refinement for [tBuOCHO]W( -NMe2)2( -
O)W [tBuOCHO] (8) .................................... ........................... ........... 116

B-26 Atomic coordinates and equivalent isotropic displacement parameters for
[tBuOCHO]W(i-NMe2)2(i-O)W['BuOCHO] (8)........................................... 117

B-27 Bond lengths for [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8)............................ 119

B-28 Bond angles for [tBuOCHO]W(p-NMe2)2(p-O)W[tBuOCHO] (8)........................... 121

B-29 Anisotropic displacement parameters for [tBuOCHO]W(i-NMe2)2(I-O)-
W ['BuOCHO] (8) ................................................................... ......... 123

B-30 Torsion angles for [tBuOCHO]W(p-NMe2)2(p-O)W[tBuOCHO] (8) ........................... 125

B-31 Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2
(1 1)..... . ....................... ............................................. ........... .... 13 1

B-32 Atomic coordinates and equivalent isotropic displacement parameters for
[AnthH] [Hf(NM e2)3(NHM e2)]2 (11) .................................................................... 132

B-33 Bond lengths for [AnthH][Hf(NMe2)3(NHMe2)]2 (11) .............................................. 134

B-34 Bond angles for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)............................................... 135

B-35 Anisotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)............. 137

B-36 Torsion angles for [AnthH][Hf(NMe2)3(NHMe2)]2 (11).............................................. 139









LIST OF FIGURES


Figure pge

1-1 Examples of high-oxidation state metal-alkylidynes...................................................... 13

1-2 Two examples of a-abstraction to produce tungsten-alkylidynes.............. ................. 14

1-3 Metathesis cleavage of W W to form alkylidyne ............................................. 15

1-4 Reductive recycle strategy for alkylidyne synthesis ............. ........ .............. 15

1-5 Mechanism of nitrile-alkyne cross metathesis (NACM)................................................. 16

1-6 Pincer-type ligand supported alkylidyne ......................................................... ............. 16

1-7 T arget m olecule ...................................... ............................... ................ 17

2-1 Synthesis of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3).................................... 18

2 -2 M olecu lar structu re of 3 ................................................................................................. 19

2-3 Two molecules of asymmetric unit of 3 demonstrating mirror symmetry .......................20

2-4 Synthesis of { [tBuOCO](CH3)3CCH=}W(I-tBuOCHO)W =CHC(CH3)3 [BuOCO]}
(4 an d 5 ) ............... ............. .............. .... ....................... .......... ..... 2 1

2-5 M molecular structure of 4 (left) and 5 (right)....... ....... .................. ............ .. ............ 23

2-6 Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand .......24

2-7 P olym eric structure of 6 ....................................................................... .................... 26

3-1 Synthesis of [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) and [tBuOCHO]W-(jI-
NM e2)2(p-O )W ['BuO CH O ] (8)............................................. ............................. 27

3-2 Newman projection of 7 illustrating inequivalence of tert-butyls and amides ................28

3-3 M molecular structure of 8 .............................................................................. 29

4-1 Synthesis of [AnthH] [M(NMe2)3(NHMe2)]2 (10 and 11)................. ............... .........31

4-2 M molecular structure of 11 ......... ........ ......... ......... ........................ .............. 32

4-3 M molecular structure of 11 viewed along C2 axis ................................ ..................33

A-i 1H NMR spectrum of [BuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6............40

A-2 13C{1H} NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6 ...41









A-3 H NMR spectrum of [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) in C6D6 ...........42

A-4 1H NMR spectrum of [AnthH] [Zr(NMe2)3(NHMe2)]2 (10) in C6D6 ................................ 43

A-5 13C{1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 (10) in C6D6 .......................44

A-6 1H NMR spectrum of [AnthH] [Hf(NMe2)3(NHMe2)]2 (11) in C6D6 ................................ 45

A-7 13C 1H} NMR spectrum of [AnthH] [Hf(NMe2)3(NHMe2)]2 (11) in C6D6 ....................... 46

B-1 Molecular structure of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) .......................48

B -2 P ack ing diagram for 3 ........................................................................ ..................... 4 9

B-3 Molecular structure of { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[B u O C O ]} (4) ........................................................................................... 66

B-4 Molecular structure of { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[B u O C O ] } (5) ........................................................................................... 84

B-5 Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)20}]n (6) .......................................... 102

B-6 Molecular structure of [tBuOCHO]W(i-NMe2)2(Ci-O)W[BuOCHO] (8) ................... 113

B -7 P backing diagram for 8 ......................................................................... 114

B-8 Molecular structure of [AnthH] [Hf(NMe2)3(NHMe2)]2 (11) ......................................... 129









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING
GROUP VI ALKYLIDYNES, METAL-METAL MULTIPLE BONDS, AND GROUP IV
AMIDES

By

Andrew J. Peloquin

August 2008

Chair: Adam S. Veige
Major: Chemistry

In an effort to isolate a pincer-support tungsten alkylidyne, several new tungsten

alkylidenes and a ditungsten compound have been isolated, supported by the previously reported

OCO pincer ligand [3,3"-di-tert-butyl-2,2"-di-(hydroxy-KO)-1,1':3', "-terphenyl-2'-yl-KC2]

(tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2(CH3)3)-

(-C(CH3)3) (OAr= 2,6-diisopropylphenoxide) in benzene, the alkylidene complex [tBuOCO]-

W(=CH(CH3)3)(O-2,6-'Pr2-C6H3) (3) results and was characterized by a combination of one and

two dimensional NMR spectroscopy, single-crystal X-ray crystallography, and combustion

analysis. To aid in the final a abstraction, W(CH2(CH3)3)3(-C(CH3)3) was next combined with

1, but the reaction resulted in a complicated mixture of products. From this mixture, two closely

related structural isomers of the form {[tBuOCO](CH3)3CCH=)W(i-tBuOCHO)-

W{=CHC(CH3)3[tBuOCO]} (4 and 5) were isolated. This bridged, dinuclear complex was

analyzed by single-crystal X-ray crystallography. Finally, the reaction of (NMe2)3W-W(NMe2)3

with two equivalents of 1 results first in [tBuOCHO](NMe2)W-W(NMe2)[tBuOCHO] (7) and

after prolonged heating, [tBuOCHO]W(--NMe2)2(d-O)W[tBuOCHO] (8). These complexes

were analyzed by a combination of NMR spectroscopy, single-crystal X-ray crystallography, and









combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially

represents a rare example of the oxidative addition of water to an early transition metal.









CHAPTER 1
INTRODUCTION

Interest in high oxidation state alkylidene and alkylidyne complexes for application to

alkene and alkyne metathesis has grown steadily since the discovery of metal-carbon multiple

bonds approximately thirty years ago.1,2,3,4 Alkylidyne species have received comparatively less

attention than their alkylidene analogues, despite their application to nitrile-alkyne cross

metathesis (NACM). NACM has the potential to become increasingly important as it represents

a method to prepare novel alkynes from relatively accessible nitriles.5'6

R / SiMe3



C1---Ta
McPi- T' y\tBuO\''\'"""'OtBu ArRNMoRA
Me3P PMe3 Ar "'NRAr
OtBu *
NRAr

Figure 1-1. Examples of high-oxidation state metal-alkylidynes

A metal alkylidyne contains a metal-carbon triple bond. The research described herein

focuses on Schrock-type alkylidynes, which are alkylidyne complexes in which the metal is in its

highest oxidation state. These types of compounds were first prepared from tantalum7, but are

now commonly prepared from tungsten8 and molybdenum9 and, to a lesser extent, chromium10

and rhenium (Figure 1-1).11 In high-oxidation state alkylidynes, the alkylidyne carbon

participates considerably in x-donation to the metal center and is considered a 6-electron donor.

Despite such extensive x-donation, most high-oxidation state alkylidynes are electron deficient.

The complex is stabilized by 7t-donation from the remaining ligands.

Schrock-type alkylidynes are generally formed by one of four methods, the most

common being deprotonation of an a-CH or by a-elimination. Rarely, these complexes can be









formed by metathesis of an alkyne across a metal-metal triple bond, or by a reductive recycle

strategy.

The a-abstraction and a-elimination represent the most commonly encountered methods

for the synthesis of most high-oxidation state alkylidynes. In a-elimination method, the a-C-H

bond oxidatively adds to the metal, forming an alkylidyne from an alkylidene. More common in

recent systems is a-abstraction. In Figure 1-2, the Grignard reagent acts as a base, deprotonating

the a-carbon, forming an alkylidene from an alkyl and an alkylidyne from the alkylidene.12,13

The exact order in which the alkylation and abstraction steps occur in these systems is not

currently known.

tBu

OMe
Cl ,, \OMe
+W + 6 CMgCH2C(CH3)3 Et2O Np." W
ClI OMe Et20 Np Np
C1 16 hrs Np
Cl Np

tBu
Cl
ArO,, I \,,Cl
AO//W, + 4 C1MgCH2C(CH3)3
ArO IC1 Et20
ArO I Cl 16hrs ArOil'-W. tBu
OAr 4 Ar
ArO
OAr- 2,6-diisopropylphenoxy

Figure 1-2. Two examples of a-abstraction to produce tungsten-alkylidynes

The third, and one of the less frequently encountered methods for alkylidyne formation,

is metathesis involving a W-W moiety. 14 The scission of ditungsten hexa-tert-butoxide

((tBuO)3W=W(OtBu)3) (I) by an alkyne yields an alkylidyne of the form (tBuO)3W=CR (II)

(Figure 1-3). The R group is determined by the nature of the alkyne used in the reaction.









The fourth and final way in which high-oxidation state alkylidynes are generated is by a

reductive recycle strategy (Figure 1-4). Furstner reported the reaction ofMo[N(tBu)Ar]3 (III)

with CH2C12, which afforded a mixture of the chloride (IV) and the methylidyne species (V).15

Kraft added magnesium to the system.16 Magnesium present in the reaction mixture reduced the

chloride species back to the starting material which could then re-enter the reaction. The result

was a one-pot synthesis of a molybdenum alkylidyne from a terminal dichloride.

R

tBuO OtBu
\ OtBu R R
,,W=.W 2
tBuO WI
tBuO OtBu tBuO\j OtBu
tBuO
I BO II

Figure 1-3. Metathesis cleavage of W=W to form alkylidyne

R
tBu
tBu C/ l 'Bu tBu
\ 'u .RCHC12 tBu 'Bu u
MouI Mo"" utB + MoUm +* tBu
ArAr THF, rt

Ar Arr TV Ar
T Ar V Ar



Mg

Figure 1-4. Reductive recycle strategy for alkylidyne synthesis

The primary goal of this research is to generate a highly reactive tungsten alkylidyne

catalyst for NACM. NACM involves the conversion of a metal-carbon triple bond (alkylidyne)

to a metal-nitrogen triple bond (nitride), or vice versa (Figure 1-5). A metal-alkylidyne can

undergo a [2+2] cycloaddition with a nitrile to produce an azametallacyclobutadiene

intermediate. This anti-aromatic intermediate can then undergo retro-cycloaddition to yield the









desired alkyne and a metal-nitride. A sacrificial alkyne is then employed to convert the metal-

nitride back to a metal-alkylidyne to continue the catalytic cycle. A major roadblock to the

catalytic version of the reaction is the high-energy azametallacyclobutadiene intermediate, which

effectively makes either the alkylidyne or nitride a thermodynamic sink.

R'C N
LnM -N
LnM 'CR LM=N

R R' R C'
RC=CR'

Figure 1-5. Mechanism of nitrile-alkyne cross metathesis (NACM)

In 2007, the first catalytic example of NACM was reported by Johnson et al.17 A

tungsten-nitride of the form (RO)3W=N was found to reversibly convert to the corresponding

ethylidyne upon treatment with 3-hexyne. In the presence ofp-methoxyaniline, the

corresponding alkyne was formed. Unfortunately, the system was rather sluggish and was

limited in substrate scope.




Pr iPr 'Bu P 'Pr

N- Ti 3 CH3tBu N Ti N Ti -- R
\/ -C2HBu Bu N
Pr TPr Pr 'Bu
'Pr ipr 'Pr

VI VII
Figure 1-6. Pincer-type ligand supported alkylidyne

In 2005, the novel titanium alkylidene-alkyl complex (PNP)Ti=CHBu(CH2tBu) (VI) was

reported by Mindiola et al. (Figure 1-6).18 This complex features a tridentate, pincer-type ligand.

In 2007, the same group found the complex to react with bulky nitriles to provide the first

isolated azametallacyclobutadiene (VII). This complex showed promise for NACM but,









unfortunately, required an external electrophile, namely ClSi(CH3)3 or AlMe3, to liberate the

alkyne.

The following research aims to marry the ideas of Johnson and Mindiola. A high-

oxidation state, group VI alkylidyne will be used, as these have been shown to successfully

complete the NACM cycle. The extreme reactivity of a highly strained, pincer-type geometry

will also be exploited. By using these two approaches in the same system, the resulting

complex should be highly reactive and successfully complete the NACM cycle. The trianionic

pincer ligands designed previously by the Veige group, in particular, the previously reported

OCO pincer ligand [3,3"-di-tert-butyl-2,2"-di-(hydroxy-KO)-1,1':3', "-terphenyl-2'-yl-KC2]

(tBuOCO 1), are ideal for use in an NACM system (Figure 1-7).20

There are three major reasons why these ligands are well-suited for application to a

NACM catalyst. First, the trianionic nature of the pincer ligand allows access to the +6 oxidation

state required for the alkylidyne. Second, the rigid planarity of the ligand backbone imposes

geometry restraints around the metal center which should help increase its reactivity. Finally, the

strong M-C bond present should distort the alkylidyne out of the plane of the ligand, further

increasing the reactivity of the resulting complex.






ure1-. t Bu









Figure 1-7. Target molecule









CHAPTER 2
PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC
OCO3- PINCER LIGAND

Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(0-2,6-iPr2-C6H3) (3)

The tBuOCO ligand precursor (1) was treated with one equivalent of W(OAr)2-

(CH2C(CH3)3)(-CC(CH3)3) (OAr = 2,6-diisopropylphenoxide) (2) in hot (85 C) benzene for

two hours, resulting in formation of a deep red solution of [tBuOCO]W(=CHC(CH3)3)(O-2,6-

'Pr2-C6H3) (3) (Figure 2-1). The molecular structure of 3 was confirmed by a combination of

single-crystal X-ray crystallography and one- and two-dimensional NMR techniques. The

complex features the tridentate, trianionic pincer ligand as part of the distorted square-pyramidal

geometry around the tungsten center.




OH f/ \ 0 CH'Bu
OH + -HOAr \ c_ w
ArOlIW V -C(CH3)4 ___ IOAr
OH/ 0
OAr=2,6-diisopropylphenoxide
2
1 3

Figure 2-1. Synthesis of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)

The coordination sphere is completed by 2,6-diisopropylphenoxide and a neopentylidene

moiety. The 2,6-diisopropylphenol formed during the reaction proved difficult to remove, so all

NMR data is of solutions containing one equivalent of free phenol. The t-butyl groups of the

ligand resonate at 1.44 ppm in the 1H NMR spectrum, their equivalence indicative of overall Cs

symmetry. The 2,6-diisopropylphenoxide is oriented such that the two isopropyl groups are

diastereotopic. The methine protons of the isopropyl groups resonate at 4.09 ppm and 2.39 ppm,

and the methyl protons resonate at 1.42 ppm and 0.69 ppm. A singlet, attributed to the









alkylidene proton, is observed at 5.54 ppm. The identity of this peak was confirmed by HMQC

NMR. The cross-peak correlated with the signal at 5.54 ppm in the 1H NMR also correlated with

the resonance at 272.2 ppm in the 13C 1H} spectrum, associated with the alkylidene carbon.


03





0


Figure 2-2. Molecular structure of 3. Ellipsoids shown at 50% probability level; hydrogen
atoms are omitted for clarity. Only one molecule of the asymmetric unit is shown.

A single crystal was obtained by slow evaporation of a diethyl ether solution and

analyzed to confirm the structure of 3 (Figure 2-2). The molecule possesses Ci symmetry in the

solid state. The t-butyl of the neopentylidene moiety rests above an oxygen atom of the pincer

ligand, with a Ct-butyl-Calkylidene-W-O1 torsion angle of only 3.6(9). The alkylidene moiety

occupies the apical position, with the tBuOCO ligand and the 2,6-diisopropylphenoxide

occupying the basal positions. The positioning of the mirror plane in the Cipso-W-Calkylidene plane

can be seen by comparing the two molecules of the asymmetric unit (Figure 2-3). The two

conformations must interconvert readily in solution, with free rotation around the W-Calkylidene









bond. The 2,6-diisopropylphenoxide is positioned with one isopropyl group above the basal

plane and one below the plane. This supports the nonequivalence of the isopropyl groups in the

H NMR spectrum. The W-Calkylidene distance of 1.917(8) A and the W-Calkylidene-C angle of

139.9(7) are not atypical.21'22'23'24 The ligand backbone is slightly twisted to relieve steric

congestion, with the rings of the ligands arms rotated 22.74(10) with respect to each other,

which is also not unusual for this ligand system.20

















Figure 2-3. Two molecules of asymmetric unit of 3 demonstrating mirror symmetry

There are two possible routes by which 1 could form. In one method, the first step in the

reaction is addition of the -OH group from 1 across the triple bond of the alkylidyne in 2. The

reaction proceeds by alcoholysis of the remaining hydroxyl group of 1 by one 2,6-

diisopropylphenoxide, and C-H activation and alkyl elimination of neopentane to bind the

backbone of the ligand to the tungsten center. This would leave one 2,6-diisopropylphenoxide

bound the tungsten atom as seen in 3. Another possibility is for alcoholysis and C-H activation

to bind all three donor sites of the ligand to the tungsten atom. The alkylidyne is left intact, but

then one equivalent of the 2,6-diisopropylphenol formed adds across the tungsten-carbon triple

bond, leaving the alkylidene and phenoxide as observed.









Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W(pO-BuOCHO)-
W{=CHC(CH3)3[tBuOCO]} (4 and 5)

Addition of 2,6-diisopropylphenol across the alkylidyne bond is a possible route for

formation of 3; thus, W(CH2C(CH3)3)3(-CC(CH3)3) was next chosen as an alkylidyne source.

The neopentane formed during the reaction should be unreactive and so the resulting complex

should retain the alkylidyne moiety. The reaction between tBuOCO and W(CH2C(CH3)3)3-

(-CC(CH3)3) in benzene required prolonged heating (72 hours) at extremely elevated

temperatures (1450C) to obtain appreciable conversion to {[tBuOCO](CH3)3CCH=)W(i-

tBuOCHO)W{=CHC(CH3)3-[BuOCO]} (4 and 5) (Figure 2-4). Single-crystal X-ray

crystallography was used to elucidate the structures of 4 and 5, related structural isomers present

in the product mixture. Both compounds consist of two distorted square-pyramidal tungsten

centers bridged by one tBuOCHO ligand.

'Bu
'Bu


0OH

Benzene
OH Npu"W' Np 1450C,72hrs 0 0
Np 3 C(CH3)4 0 o 0 'Bu 'Bu
Np=CH2C(CH3)3 'Bu

'Bu
Figure 2-4. Synthesis of { [tBuOCO](CH3)3CCH=}W(I-tBuOCHO)W{=CHC(CH3)3tBuOCO]}
(4 and 5)

Owing to the high temperature required for conversion, and since W(CH2C(CH3)3)3-

(=CC(CH3)3) is known to decompose above 140 C, an intractable mixture of products was

obtained, and no single species could be isolated on a significant scale. Despite the complicated

product mixture, the 1H NMR spectrum did indicate the presence of two closely related isomers.

After 16 hours, two sets of four singlets, characteristic of the four inequivalent t-butyl moieties in









each compound, are observed between 0.5 ppm and 2.0 ppm, in a 70:30 ratio (4:5). Compound 4

is slowly converted to 5 over 96 hours until a 90:10 ratio is reached. This corresponds to a value

of AG145=1.8 kcal/mol for the equilibrium. The reaction was stopped after 12 hours to enable

study of the kinetically favored isomer. X-ray analysis of a single-crystal obtained by a slow

evaporation of an Et20 solution of the product mixture revealed the dinuclear structure 4. The

molecular structure of 5 was obtained from X-ray analysis of a single crystal obtained by the

same method after 72 hours of heating (Figure 2-5).

Each compound contains two tungsten-alkylidene moieties bridged by a tBuOCHO

ligand. An additional tridentate tBuOCO ligand completes the distorted square-pyramidal

coordination sphere around each tungsten center. The differences between the two structures are

subtle. In 4, the bridging ligand is rotated such that the oxygen atoms of the bridging ligand are

proximal to the center backbone ring of the ligand. In 5, the arrangement is reversed, with the

oxygen atoms of the bridging ligand distal to the center ring of the ligand (Figure 2-6).

The twist angles of the tridentate tBuOCO ligands differ significantly between 4 and 5.

The rings of the pendant arms are approximately coplanar in 4, while in 5, the pendant arms are

twisted 42.43(13) with respect to one another. This twist relieves steric congestion around the

tungsten center and is likely the cause for the thermodynamic preference of 5 over 4. The W-

Calkylidene bond lengths and the W-Calkylidene-C bond angles in 4 are 1.900(6) A, 1.876(6) A,

143.4(5), and 151.3(7) respectively, and the corresponding values for 5 are 1.887(7) A,

1.885(6) A, 143.5(5), and 145.7(6) respectively. The variation in W-Calkylidene bond lengths and

the W-Calkylidene-C bond angles between the two alkylidene moieties in each compound as well as

the variation in W-Calkylidene bond lengths and the W-Calkylidene-C bond angles between 4 and 5 is

not chemically significant.







































Figure 2-5. Molecular structure of 4 (left) and 5 (right). Ellipsoids are shown at 50% probability level; hydrogen atoms are omitted
for clarity.
































Figure 2-6. Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand

The related reaction involving W(CH2TMS)3(-CTMS) has been attempted. During one

trial with slightly impure W(CH2TMS)3(-CTMS), small, colorless crystals deposited in the

NMR tube after approximately 48 hours of heating. Single-crystal X-ray analysis of one of these

crystals revealed the polymeric structure [(tBuOCHO)Mg{O(CH2CH2)20}]n (6).

The molecular structure of 6 consists of a bidentate tBuOCHO ligand and two molecules

of 1,4-dioxane, creating a highly distorted tetrahedral geometry around a magnesium center

(Figure 2-7). The two oxygen atoms of the tBuOCHO ligand and one 1,4-dioxane oxygen lie

nearly in the same plane, with an average deviation of only 0.2034(5) A from the best-fit plane

defined by those three oxygen atoms and the magnesium atom. The remaining 1,4-dioxane

oxygen is nearly perpendicular to that plane, with an average bond Oin-plane-Mg-Oout-of-pl ane gle

of 93.33(16). The chain extends along the crystallographic a axis.









Magnesium chloride is a byproduct of the synthesis of W(CH2TMS)3(-CTMS) and 1,4-

dioxane is used to aid in its removal. During the reactions in which 6 is formed, liberation of

free SiMe4 is observed in the 1H NMR spectrum. It can be inferred a reaction of excess Grignard

reagent from the synthesis of W(CH2TMS)3(-CTMS) with 1 results in deprotonation of the

phenolic oxygen atoms, followed by the binding of 1,4-dioxane to the magnesium atoms. The

exact mechanism of formation of 6 was not studied further.

Further reactions were attempted with purified W(CH2TMS)3(-CTMS), but the 1H NMR

spectrum indicated complicated product mixtures, similar to the mixture seen during the

formation of 4 and 5. No further study was attempted of this reaction.






































Figure 2-7. Polymeric structure of 6. Ellipsoids are shown at 50% probability level; hydrogen atoms and benzene molecule omitted
for clarity.










CHAPTER 3
PROGRESS TOWARDS COMPLEXES WITH M-M MULTIPLE BONDS SUPPORTED BY
A TRIANIONIC OCO3- PINCER LIGAND

Since direct reaction of 1 with alkylidyne-containing complexes did not provide the

desired result, a new method was sought. Alkylidynes can be formed by metathesis reactions of

W=W containing compounds with alkynes, so an attempt was made to synthesize a compound

containing 1 and such a W=W unit. (NMe2)3W=W(NMe2)3 was chosen, as it is easily prepared

on an appreciable scale.25 Treatment of (NMe2)3W=W(NMe2)3 with two equivalents of 1 in hot

benzene for two hours yields a dark red solution with an H NMR which spectrum indicates

complete conversion to 7 (Figure 3-1). Prolonged heating at 85 C results in the formation of a

green solution and precipitation of 8 as red crystals in nearly quantitative yield. Since 8 had no

appreciable solubility in common NMR solvents, analysis was limited to single-crystal X-ray

crystallography and combustion analysis.



LBu

OH Me,N NMe ,

MN Benzene
OH N8W
.MeN NMe2 85C. 1.5 hrs 0 N



7
1

85'C, 72 hrs


Me2
N







8
Figure 3-1. Synthesis of [BuOCHO](NMe2)W W(NMe2)[BuOCHO] (7) and ['BuOCHO]W-
(L-NMe2)2(G-O)W['BuOCHO] (8)









1H NMR was used to elucidate the structure of 7. The spectrum shows no paramagnetic

peak broadening, indicating the tungsten-tungsten triple bond is intact. Two singlets at 4.09 ppm

and 2.34 ppm were each assigned to two different methyl group environments for the dimethyl

amides. The t-butyl resonance was also split into two peaks at 1.95 ppm and 1.62 ppm. The

inequivalence of these peaks indicates a staggered arrangement of the ligands bound to each

tungsten center with respect to the tungsten-tungsten triple bond (Figure 3-2). The offset of the

ligands creates two different chemical environments for the amide methyl groups as well as the

ligand t-butyl groups.


N / I Bu
-N

tBu Bu


'Bu





Figure 3-2. Newman projection of 7 illustrating inequivalence of tert-butyls and amides

The molecular structure of 8 consists of two tungsten atoms bridged by two

dimethylamides and an oxygen atom (Figure 3-3). The geometry around each tungsten center is

distorted square-pyramidal, with a bidentate tBuOCHO moiety and the bridging amides

occupying the basal positions, and the p-O atom occupying the apical position. The average W-

(p-O) bond distance is 1.944(5) A, similar to other reported bridging oxo compounds.26 The

2.49726(19) A distance between tungsten atoms is indicative of a double bond between the

tungsten centers.27

The two possible sources of the oxygen atom are molecular oxygen and water. Both

sources could oxidize one tungsten-tungsten bond, leaving the double bond observed in 8 and







































Figure 3-3. Molecular structure of 8. Ellipsoids are shown at 50% probability level; benzene
molecules and hydrogen atoms omitted for clarity.

generating a +4 oxidation state in the metals. A bridging water molecule is a possibility and

could not be ruled out by X-ray crystallography.

Examples of oxidation of metal-metal bonds by molecular oxygen appear in the

literature.28 Several experiments were performed to determine the source of the oxygen atom.

To eliminate molecular oxygen as the oxidant, the reaction mixture was degassed by the freeze-

pump-thaw method. After 72 hours, the same green solution and red crystalline precipitate

resulted. The reaction was then performed in benzene from several different sources to eliminate









the possibility of solvent contamination. Each reaction resulted in the same reaction product.

These experiments suggest molecular oxygen is not responsible for the oxidation.

To elucidate the role of water, water and toluene (as a reference) were added to C6D6 and

the solution degassed. Combination of the two starting reagents in wet benzene yielded the same

oxo-bridged complex after ten minutes. If water is not intentionally added, an additional source

of water is that bound to the surface of the glass used for the reaction. The drastic increase in

rate when water was added could be attributed to the relative difficulty of removing surface-

bound water versus the free water present in the reaction. If the oxygen source is water and a

bridging water molecule is not present, hydrogen gas must be a byproduct. There is a small peak

in the H NMR spectrum at 4.31 ppm, which could be attributed to a small amount of dissolved

hydrogen gas. If the reaction vessel is thoroughly washed with D20 and dried prior to the

reaction, the peak at 4.31 ppm is not visible, which supports this hypothesis. The concentration

ofD2 was too low to gain any useful information from 2H NMR spectroscopy. If the NMR tube

is flame-dried under vacuum prior to the reaction, a black precipitate forms within 24 hours.

This suggests the compound may decompose upon extended heating if water is not present for

reaction. Unfortunately, all attempts to deliberately add hydrogen to the system to confirm the

identity of the peak at 4.31 ppm resulted in ligand hydrolysis.

Since all three sources of the oxygen atom have apparently been ruled out, work is

continuing to attempt to determine its source.










CHAPTER 4
SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A NEW
ANTHRACENE DIAMIDO LIGAND

To explore the chemistry of other pincer ligands, a new NCN3- pincer ligand was

employed. Anthracene diamido ligand 9 was previously synthesized by M. K. Veige. Treatment

of AnthH3 (9) with a group IV metal amide of the form M(NMe2)4 (M= Zr (10) and Hf (11)) in

benzene results in the formation of the dinuclear complexes [AnthH][M(NMe2)3(NHMe2)]2 (M =

Zr, 10 and M = Hf, 11) (Figure 4-1). The reaction is complete within ten minutes at room

temperature. The structures of 10 and 11 were confirmed by a combination of 1H and 13C NMR

spectroscopy, single-crystal X-ray crystallography, and combustion analysis.

Me2HN NMe,
M-NMe2
Me2N
HN-N-Ar


HN-At
+ 2 .iN / \ Ar= 3,5-trifluoromethylphenyl
+ 2-1nNMze. n M= Zr (10) and Hf (11)
Benzene
HN--Ar r.t., 30 mins


N -Ar
Me2N, /
M--NMe,

Mc2HN NMe2

Figure 4-1. Synthesis of [AnthH][M(NMe2)3(NHMe2)2 (10 and 11)

In each complex, each amide donor of the AnthH ligand is bound to a metal center,

resulting in a dinuclear complex. The coordination geometry around each metal atom is trigonal

bipyramidal in nature, with one molecule of dimethylamine occupying the site trans to the ligand

amide, while three dimethylamides occupy the three equatorial sites around the metal atom. 1H

NMR spectroscopy of these complexes indicates the dimethylamide and dimethylamine ligands

do not exchange positions. For example, in the 1H NMR spectrum of 11, the methyl protons of









the three dimethylamides appear as a sharp singlet at 2.57 ppm and the methyl protons of the

dimethylamine appear as a doublet at 1.45 ppm.


Figure 4-2. Molecular structure of 11. Ellipsoids are shown at 50% probability level; hydrogen
atoms are omitted for clarity.

A single crystal of 11 was obtained by pentane diffusion into a solution of 11 in diethyl

ether and analyzed by X-ray diffraction studies (Figure 4-2). The structure exhibits trigonal

bipyramidal geometry around each metal atom. The average Hf-N bond length for the

dimethylamides and ligand amides is 2.041(17) A and 2.187(10) A, respectively, with the Hf-

NHMe2 bond length being longer as expected, at 2.440(11) A. The bond angles around the

hafnium atom deviate only slightly from the ideal trigonal bipyramidal values, with the average

N-Hf-N angle for the equatorial dimethylamides being 119.25(7), and the average N-Hf-N angle

between the AnthH ligand amide and the dimethylamine being 178.0(4). The structure of 11









illustrates its C2 symmetry (Figure 4-3). By viewing along the C2 axis, the ligand arms are

clearly shown as lying roughly in the plane of the anthracene backbone.


Figure 4-3. Molecular structure of 11 viewed along C2 axis









CHAPTER 5
CONCLUSIONS

This report has established the synthesis new metal complexes supported by trianionic

pincer ligands. All attempts to form a four-coordinate alkylidyne complex supported by a

'BuOCO ligand by direct reaction with a preformed alkylidyne have not been successful,

resulting in five-coordinate alkylidene complexes (3-5). This suggests that while an alkylidyne

may be formed during the progress of the reaction, it is too unsaturated to be stable. Parallel

research by another group member has revealed the addition of the ligand backbone C-H bond

across the alkylidyne is a possible reaction route. A method to remove this proton from the

ligand prior to the reaction has not been determined and therefore may rule out the direct reaction

with a preformed alkylidyne as a feasible reaction route. While attempting to form a complex

containing a W=W unit, a complex containing a bridging oxo functionality was obtained (8).

The source of this oxygen atom has not been conclusively determined to date, but evidence

currently points to the oxidative addition of water as the likely source. This mechanism would

produce hydrogen gas as a byproduct. Research is ongoing to determine the exact mechanism of

formation of this complex.

When using NCN pincer ligands, a dinuclear complex was obtained (10-11). The fact a

dinuclear complex was obtained is not surprising. Other NCN pincer ligands that have been

studied previously by the Veige group have often resulted in dinuclear or dimeric complexes.29

The differences between an N-H and an O-H bond were a major reason for switching to an

oxygen based pincer ligand.









CHAPTER 6
EXPERIMENTAL

General Considerations

Unless specified otherwise, all manipulations were performed under an inert atmosphere

using standard Schlenk or glovebox techniques. Glassware was oven-dried before use. Pentane,

toluene, diethyl ether (Et20), and tetrahydrofuran (THF) were dried using a Glass Contour

drying column. Benzene-d6 (Cambridge Isotopes) and benzene were dried over sodium-

benzophenone ketyl and distilled or vacuum transferred and stored over 4 A molecular sieves.

NMR spectra were obtained on Varian Mercury Broad Band 300 MHz or Varian Mercury 300

MHz spectrometers. Chemical shifts are reported in 6 (ppm). For 1H and 13C{1H} NMR spectra,

the residual protio solvent peak was referenced as an internal reference. Elemental analyses

were performed by Complete Analysis Laboratory Inc., Parsippany, New Jersey.

Synthesis of [tBuOCO]W(=CHC(CH3)3)(0-2,6-C6H3-iPr2) (3)

In a 50 mL Schlenk tube, W(-CC(CH3)3)(CH2c(CH3)3)(O-2,6-C6H3-'Pr2)2 (2) (91 mg,

0.14 mmol) was added to a solution of 1 (50 mg, 0.14 mmol) in benzene (2 mL). The mixture

was heated at 85 C for two hours. The solvent was removed in vacuo from the resulting dark

red solution to yield 3 as a dark red oil (134 mg, 98 %) containing one equivalent of 2,6-

diisopropylphenol. X-ray quality crystals were obtained from the slow evaporation of an Et20

solution. H NMR (300 MHz, C6D6) 6 (ppm): 7.99 (d, J=7.9 Hz, 2H, Ar-H), 7.80 (dd, 3J=7.9

Hz, 4J=1.5 Hz, 2H, Ar-H), 7.38 (t, J=7.9 Hz, 1H, Ar-H), 7.33 (dd, 3J=7.8 Hz, 4j=1.5 Hz, 2H, Ar-

H), 7.03 (d, J=1.1 Hz, 1H, phenol Ar-li), 7.01 (s, 1H, phenol Ar-li), 6.98 (s, 1H, Ar-li), 6.96

(s,1H, Ar-H), 6.91 (m, 1H, phenol Ar-H), 6.89 (s, 1H, Ar-H), 6.88 (d, J=3.8 Hz, 1H, Ar-H), 6.87

(s, 1H, Ar-H), 5.54 (s, JH-w=8.7 Hz, 1H, W=CIC(CH3)3), 4.09 (sept, J=6.8 Hz, 1H, CH(CH3)2),

2.93 (sept, J=6.9 Hz, 2H, phenol CH(CH3)2)2.39 (sept, J=6.7 Hz, 1H, CH(CH3)2), 1.44 (s, 18H,









Ar-C(CH3)3), 1.42 (d, J=6.9Hz, 6H, CH(CH3)2), 0.84 (s, 9H, W=CHC(CH3)3), 0.69 (d, J=6.7 Hz,

6H, -CH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 272.2 (s, W= HC(CH3)3), 182.7 (s, C

aromatic), 160.3 (s, C aromatic), 158.5 (s, C aromatic), 150.8 (s, phenol C aromatic), 140.9 (s, C

aromatic), 138.2 (s, C aromatic), 137.2 (s, C aromatic), 137.1 (s, C aromatic), 134.2 (s, phenol C

aromatic), 133.0 (s, C aromatic), 130.0 (s, C aromatic), 126.7 (s, C aromatic), 126.4 (s, C

aromatic), 124.4 (s, C aromatic), 124.2 (s, phenol C aromatic), 123.9 (s, C aromatic), 123.6 (s, C

aromatic), 122.3 (s, C aromatic), 121.5 (s, phenol C aromatic), 47.9 (s, W=CHC(CH3)3), 35.6 (s,

Ar-C(CH3)3), 33.3 (s, CH(C03)2), 32.0 (s, W=CHC(CH3)3), 30.9 (s, Ar-C(CH3)3), 27.7 (s, phenol

CH(CH3)2), 27.5 (s, CH(CH3)2), 23.9 (s, CH(CH3)2), 23.6 (s, (H(CH3)2), 23.3 (s, phenol Ar-

CH(CH3)2). Anal. Calcd. for C43H5403W: C, 64.34; H, 6.78. Found: C, 64.42; H, 6.94.

Synthesis of {['BuOCO](CH3)3CCH=}W(t-'BuOCHO)W{=CHC(CH3)3[tBuOCO]} (4 and 5)

In a 50 mL Schlenk tube, W(CH2C(CH3)3)3(-CC(CH3)3) (200 mg, 0.534 mmol) was

added to a solution of 1 (151 mg, 0.356 mmol) in benzene (2 mL). The solution was degassed.

The reaction mixture was heated to 145 C for 72 hours. Removal of solvent yielded a dark red

oil. Crystalline material for X-ray analysis was obtained by slow evaporation of Et20.

Synthesis of [tBuOCHO](NMe2)W=W(NMe2)[tBuOCHO] (7)

In a J. Young NMR tube, (NMe2)3W-W(NMe2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11

mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 1.5 hours.

The dark red solution was allowed to cool to room temperature and the solvent was removed in

vacuo to yield 7 as a dark red solid (64 mg, 97 %). 1H NMR (300 MHz, C6D6) 6 (ppm): 8.81 (s,

1H, Ar-H), 7.69 (s, 1H, Ar-H), 7.38-7.29 (m, 12H, Ar-H), 7.23 (s, 2H, Ar-H), 7.09-7.06 (m, 1H,

Ar-H), 6.94-6.88 (m, 3H, Ar-H), 4.09 (s, 6H, N(CH3)2), 2.34 (s, 6H, N(CH3)2), 1.95 (s, 18H, Ar-

C(CH3)3), 1.62 (s, 18H, Ar-C(CH3)3).









Synthesis of [tBuOCO]W(p-NMe2)2(p-O)W[tBuOCO] (8)

In a J. Young NMR tube, (NMe2)3W-W(NMe2)3 (34 mg, 0.055 mmol) and 1 (40 mg,

0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 72

hours. The dark green solution was decanted from a red, crystalline precipitate. The resulting

solid was dried in vacuoto yield 7 as a green powder (50 mg, 76 %). Solid 5 had no appreciable

solubility in C6D6, CDC13, or THF-ds, making NMR study impossible. Anal. Calcd. for

C56H68N205W2: C, 55.27; H, 5.63; N, 2.30. Found: C, 55.49; H, 5.84; N, 2.44.

Synthesis of [AnthH] [Zr(NMe2)3(NHMe2)12 (10)

Zr(NMe2)4 (40.4 mg, 0.151 mmol) was added to a solution of AnthH3 (9) (50.0 mg,

0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring

was then ceased and the reaction mixture was allowed to stand at room temperature for one hour,

during which time a precipitate formed. The solvent was decanted and the product dried in

vacuo to yield 10 as a pale yellow solid (80.8 mg, 89 %). 1H NMR (300 MHz, C6D6) 6 (ppm):

9.11 (s, 1H, Ar-H), 8.21 (s, 1H, Ar-H), 7.66 (d, J=8.2 Hz, 2 H, Ar-H), 7.53 (d, J=6.9 Hz, 2 H,

Ar-H), 7.30 (s, 4 H, Ar-H), 7.21 (m, 2 H, Ar-H), 7.07 (s, 2 H, Ar-H), 5.46 (s, 4 H, Ar-CH2N),

2.66 (s, 32 H, Zr-N(CH3)2), 1.51 (d, J=6.3 Hz, 12 H, Zr-NH(CH3)2), 0.78 (sept, J=6.4 Hz, 2 H,

Zr-NH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 159.5 (s, C aromatic), 136.6 (s, C

aromatic), 132.8 (s, C aromatic), 132.3 (s, C aromatic), 131.8 (s, C aromatic), 130.6 (s, C

aromatic), 129.4 (s, C aromatic), 127.8 (s, C aromatic), 125.8 (s, C aromatic), 125.7 (s, C

aromatic), 124.1 (s, C aromatic), 116.4 (s, C aromatic), 114.6 (s, C aromatic), 106.7 (s, Ar-CF3),

52.4 (s, Ar-CH2N), 42.2 (s, Zr-N(CH3)2), 39.1 (s, Zr-NH(CH3)2).

Synthesis of [AnthH] [Hf(NMe2)3(NHMe2)12 (11)

Hf(NMe2)4 (53.6 mg, 0.151 mmol) was added to a solution of 9 (50.0 mg, 0.076 mmol)

in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then









stopped and the reaction mixture was allowed to stand at room temperature for one hour, during

which time a precipitate formed. The solvent was decanted and the solid product dried in vacuo

to yield 11 as a pale yellow solid (90.9 mg, 87 %). 1H NMR (300 MHz, C6D6) 6 (ppm): 9.00 (s,

1H, Ar-H), 8.08 (s, 1H, Ar-H), 7.53 (d, J=8.8 Hz, 2H, Ar-H), 7.45 (d, J=6.6 Hz, 2H, Ar-H), 7.26

(s, 4H, Ar-H), 7.08 (m, 2H, Ar-H), 7.04 (s, 1H, Ar-H), 6.96 (s, 1H, Ar-H), 5.42 (s, 4, Ar-CH2N),

2.57 (s, 32 H, Hf-N(CH3)2), 1.45 (d, J=6.3 Hz, 12 H, Hf-NH(CH3)2), 0.79 (sept, J=6.3 Hz, 2 H,

Hf-NH(CH3)2). 13C NMR (75.36 Hz, C6D6) 6 (ppm): 159.5 (s, C aromatic), 136.7 (s, C

aromatic), 133.1 (s, C aromatic), 132.5 (s, C aromatic), 132.1 (s, C aromatic), 130.9 (s, C

aromatic), 129.8 (s, C aromatic), 128.2 (s, C aromatic), 126.0 (s, C aromatic), 124.5 (s, C

aromatic), 116.6 (s, C aromatic), 115.3 (s, C aromatic), 107.8 (s, Ar-CF3), 52.4 (s, Ar-CH2N),

42.3 (s, Hf-N(CH3)2), 39.3 (s, Hf-NH(CH3)2).





























APPENDIX A
H AND 13C{1H} NMR SPECTRA
















































Do- 5c ,
co Io o) 0 I W


8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
Chemical Shift (ppm)


3.5 3.0 2.5 2.0 1.5 1.0 0.5


Figure A-1. 1H NMR spectrum of [BuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6


h.,CD 00
do
-(

CD C




























































c -
0

c0

co
T 7 c


260 240 220


CD











J c


200 180 160 140
Chemical Shift (ppm)


120 100 80


60 40 20


Figure A-2. 13C{1H} NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3) in C6D6


~---- L I~~ ., .,.._I LL.~ --C-~~~C11

















































(D

N
T"


9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)


Figure A-3. 1H NMR spectrum of [tBuOCHO](NMe2)W-W(NMe2)[BuOCHO] (7) in C6D6

























































T o
I r, I





9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)


Figure A-4. H NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 (10) in C6D6













































-Io
I. .i


- l Lrri-7 11. W W --'-- -. --


160 152 144 136 128 120 112 104 96
Chemical Shift (ppm)


88 80 72 64 56 48 40


Figure A-5. 13C{1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 (10) in C6D6


. .. K ,l 6 c
- C CC



.i1J


-I I~LY.-L


111


.. .m .. m .



























































(0
ClN
COl
066
oo v

cc ~ ~ 7C I VIwi z-


cD


9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)


Figure A-6. H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) in C6D6




















































P: c3 C
-1^-




S Co-.

K T Ltt ALA -










160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32
Chemical Shift (ppm)


Figure A-7. 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) in C6D6
































APPENDIX B
X-RAY STRUCTURAL DATA AND TABLES












C29


C12 C3
C C 02 C39 C23
Cli

C C15 01 C38
C101 C4n C26
C13
03
C33

C14 C32
C16 C34
C37
C41
C42 41 C35

C43 C36

Figure B-1. Molecular structure of [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3). Ellipsoids
shown at the 50% probability level; hydrogens are omitted for clarity.








































Figure B-2. Packing diagram for 3









X-ray Experimental for [tBuOCO]W(=CHC(CH3)3)(0-2,6-iPr2-C6H3) (3)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 847 parameters were refined in the final cycle of refinement using 10217

reflections (with I > 2ol) to yield R1 and wR2 of 5.00% and 11.27%, respectively. Refinement

was done using F2









Table B-1. Crystal data, structure solution,
2,6-'Pr2-C6H3) (3)
identification code
empirical formula
formula weight
T(K)
X (A)
crystal system
space group
a (A)
b(A)
c(A)
a (deg)
/f (deg)
y (deg)
S(A)


and refinement for ['BuOCO]W(=CHC(CH3)3)(O-

pelo5
C43H5403W
802.71
173(2)
0.71073
Monoclinic
C(2)/c
39.001(2)
12.5405(8)
31.4372(19)
90
90.2150(10)
90
15375.5(16)


Z 8
Pcalcd (g mm-3) 1.387
crystal size (mm) 0.12 x 0.04 x 0.04
abs coeff(mm-1) 3.041
F(000) 6560
0 range for data collection 1.04 to 28.03
limiting indicies -34 < h < 51, -16 < k < 16, -41 <1 < 39
no. ofreflns called 53157
no. of ind reflns 18457 [R(int) = 0.0842]
completeness to 0 = 28.030 99.1 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 18457 / 0 / 847
R1, wR2 [I > 2a] R1 = 0.0500, wR2 = 0.1127
R1, wR2 (all data) R1 = 0.1139, wR2 = 0.1343
2
GOF on F 1.003
largest diff. peak and hole (e.A-3) 1.022 and -0.886
R1 = (||Fol- |Fcl|) / XFol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[o2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.








Table B-2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x
103) for [tBuOCO]W(=CHC(CH3)3)(0-2,6-'Pr2-C6H3) (3). U(eq) is defined as one
third of the trace of the orthogonalized U'1 tensor.
Atom X Y Z U(eq)
Wl 1336(1) -376(1) 2115(1) 28(1)
W2 1408(1) 4970(1) 4355(1) 27(1)
01 1148(1) -1694(4) 2209(2) 33(1)
02 1501(1) 1010(4) 2202(2) 31(1)
03 885(1) 271(4) 2046(2) 36(1)
04 1533(1) 6435(4) 4253(2) 31(1)
05 1260(1) 3607(4) 4262(2) 32(1)
06 946(1) 5498(4) 4435(2) 35(1)
C1 1680(2) -812(6) 2627(2) 32(2)
C2 1616(2) -1738(6) 2882(3) 32(2)
C3 1772(2) -1818(7) 3286(3) 42(2)
C4 2002(2) -1066(7) 3429(3) 46(2)
C5 2091(2) -228(7) 3167(3) 42(2)
C6 1934(2) -88(6) 2772(2) 33(2)
C7 1392(2) -2663(7) 2767(3) 37(2)
C8 1145(2) -2620(6) 2444(3) 32(2)
C9 909(2) -3407(7) 2349(3) 42(2)
CIO 942(2) -4350(7) 2580(3) 51(3)
C11 1203(3) -4460(7) 2881(3) 57(3)
C12 1411(3) -3644(7) 2979(3) 50(2)
C13 619(2) -3260(7) 2028(3) 49(3)
C14 389(3) -4242(9) 2027(4) 93(5)
C15 751(3) -3111(8) 1580(3) 61(3)
C16 402(2) -2319(9) 2161(3) 70(3)
C17 2047(2) 849(7) 2523(3) 40(2)
C18 1821(2) 1407(6) 2252(3) 34(2)
C19 1917(2) 2381(7) 2048(3) 37(2)
C20 2255(2) 2730(7) 2108(3) 44(2)
C21 2492(2) 2162(8) 2363(3) 50(3)
C22 2389(2) 1266(8) 2564(3) 47(2)
C23 1662(2) 3025(7) 1779(3) 45(2)
C24 1829(3) 4038(7) 1591(3) 66(3)
C25 1524(2) 2372(7) 1393(3) 53(3)
C26 1363(2) 3371(7) 2049(3) 55(3)
C27 1627(2) -648(7) 1638(3) 36(2)
C28 1743(2) -1561(7) 1364(3) 41(2)










Table B-2. Continued

Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


2100(3)
1501(3)
1741(2)
685(2)
573(2)
363(2)
275(2)
374(2)
580(2)
661(2)
347(3)
848(3)
668(2)
442(2)
665(2)
1761(2)
2021(2)
2219(2)
2161(2)
1929(2)
1734(2)
2109(2)
1861(2)
1925(2)
2264(2)
2526(2)
2450(2)
1650(2)
1466(2)
1381(2)
1782(2)
1505(2)
1264(2)
1039(2)
1067(2)
1304(2)
1525(2)
751(2)


-1359(8)
-1601(8)
-2621(7)
1045(6)
1086(6)
1940(7)
2727(7)
2673(6)
1824(7)
207(7)
-452(9)
614(8)
1688(6)
838(7)
2729(7)
4615(6)
5365(6)
5272(7)
4419(7)
3644(7)
3686(6)
6287(6)
6831(6)
7756(6)
8049(7)
7521(7)
6653(7)
8382(7)
7711(7)
8766(7)
9368(7)
2763(6)
2740(6)
1900(6)
1005(7)
981(6)
1826(7)
1977(7)


1212(4)
972(3)
1599(3)
1905(3)
1476(3)
1346(3)
1635(3)
2053(3)
2204(3)
1164(3)
1043(4)
769(3)
2670(3)
2880(3)
2929(3)
3861(2)
3760(2)
3390(3)
3110(3)
3211(3)
3591(3)
4039(2)
4272(2)
4515(2)
4541(3)
4319(3)
4076(3)
4742(3)
5081(3)
4413(3)
4956(3)
3669(2)
4001(3)
4083(3)
3821(3)
3508(3)
3429(3)
4418(3)


80(4)
64(3)
52(3)
33(2)
35(2)
45(2)
45(2)
39(2)
35(2)
41(2)
83(4)
69(3)
34(2)
45(2)
51(3)
30(2)
30(2)
41(2)
45(2)
40(2)
32(2)
29(2)
30(2)
30(2)
40(2)
40(2)
38(2)
38(2)
44(2)
47(2)
57(3)
33(2)
28(2)
35(2)
42(2)
39(2)
40(2)
44(2)










Table B-2. Continued

Atom X Y Z U(eq)


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86


518(2)
519(2)
901(2)
1729(2)
1956(2)
1942(3)
2323(2)
1847(2)
729(2)
607(2)
391(2)
296(3)
402(2)
620(2)
695(2)
653(3)
463(3)
719(2)
920(3)
410(3)


979(8)
2930(7)
2093(7)
4827(6)
4021(6)
4181(8)
4220(8)
2870(6)
6254(6)
7021(7)
7817(8)
7808(9)
7019(8)
6214(7)
6940(8)
7952(9)
6054(10)
5313(8)
5694(9)
4683(9)


4410(4)
4317(3)
4867(3)
4805(2)
5021(3)
5494(3)
4860(4)
4903(3)
4575(3)
4292(3)
4446(3)
4863(4)
5138(3)
4999(3)
3828(3)
3573(3)
3635(3)
5295(3)
5675(3)
5446(4)


70(3)
56(3)
48(2)
33(2)
37(2)
76(4)
66(3)
53(3)
38(2)
40(2)
54(3)
65(3)
54(3)
40(2)
53(3)
77(4)
83(4)
50(2)
80(4)
80(4)









Table B-3. Bond lengths (in A) for [tBuOCO]W(=CHC(CH3)3)(-2,6-'Pr2-C6H3) (3)
Bond Length Bond Length


W1-01
W1-02
W1-C27
W1-03
W1-C1
W2-05
W2-C70
W2-04
W2-06
W2-C44
01-C8
02-C18
03-C32
04-C51
05-C61
06-C75
C1-C6
C1-C2
C2-C3
C2-C7
C3-C4
C4-C5


1.832(5)
1.872(5)
1.917(8)
1.946(5)
2.160(8)
1.827(5)
1.895(8)
1.928(5)
1.938(5)
2.124(8)
1.376(9)
1.356(9)
1.322(9)
1.373(9)
1.363(9)
1.345(9)
1.419(11)
1.434(11)
1.412(10)
1.495(11)
1.375(12)
1.382(12)


C5-C6
C6-C17
C7-C8
C7-C12
C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C16
C13-C15
C13-C14
C17-C18
C17-C22
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C26
C23-C24
C23-C25


1.395(10)
1.480(12)
1.399(10)
1.401(11)
1.381(11)
1.393(12)
1.525(12)
1.395(12)
1.340(12)
1.511(13)
1.515(13)
1.522(13)
1.408(11)
1.438(11)
1.429(11)
1.403(11)
1.533(12)
1.411(12)
1.351(12)
1.509(12)
1.546(12)
1.558(12)









Table B-4. Bond angles (in deg) for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)
Bond Angle Bond Angle


01-W1-02
01-W1-C27
02-W1-C27
01-W1-03
02-W1-03
C27-W1-03
01-W1-C1
02-W1-C1
C27-W1-C1
03-W1-C1
05-W2-C70
05-W2-04
C70-W2-04
05-W2-06
C70-W2-06
04-W2-06
05-W2-C44
C70-W2-C44
04-W2-C44
C8-C7-C12
C8-C7-C2
C12-C7-C2
01-C8-C9
01-C8-C7
C9-C8-C7
C8-C9-C10
C8-C9-C13
C10-C9-C13
C9-C10-C11
C12-C11-C10
C11-C12-C7
C16-C13-C15
C16-C13-C14
C15-C13-C14
C16-C13-C9
C15-C13-C9
C14-C13-C9
C18-C17-C22


162.0(2)
101.7(3)
94.3(3)
91.9(2)
86.5(2)
121.6(3)
84.2(3)
85.2(3)
99.7(3)
138.3(3)
103.7(3)
161.0(2)
92.7(3)
92.7(2)
123.2(3)
86.2(2)
83.8(3)
95.6(3)
85.1(3)
114.4(8)
123.0(7)
122.6(8)
119.7(7)
114.5(7)
125.8(8)
115.8(8)
123.3(8)
120.8(8)
120.1(9)
121.3(9)
122.1(9)
110.7(8)
107.7(9)
107.5(9)
109.1(8)
111.9(8)
109.8(8)
116.8(9)


06-W2-C44
C8-01-W1
C18-02-W1
C32-03-W1
C51-04-W2
C61-05-W2
C75-06-W2
C6-C1-C2
C6-C1-W1
C2-CI-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
02-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23
C18-C19-C23
C19-C20-C21
C22-C21-C20
C21-C22-C17
C26-C23-C19
C26-C23-C24
C19-C23-C24
C26-C23-C25
C19-C23-C25
C24-C23-C25
C28-C27-W1
C29-C28-C27
C29-C28-C31
C27-C28-C31
C29-C28-C30


140.5(2)
148.5(5)
132.3(5)
151.0(5)
125.0(4)
146.9(5)
150.3(5)
117.5(7)
120.6(6)
120.8(5)
119.1(7)
114.4(7)
126.6(7)
121.7(8)
119.5(8)
121.1(8)
120.7(8)
116.1(8)
123.2(7)
120.3(7)
122.2(8)
116.9(8)
121.2(8)
121.9(7)
122.0(8)
119.4(9)
122.5(9)
109.9(8)
107.8(7)
111.8(8)
108.9(8)
112.0(7)
106.2(8)
139.9(7)
109.7(7)
108.1(8)
112.7(8)
108.6(9)










Table B-4. Continued
Bond Angle Bond Angle


C18-C17-C6
C22-C17-C6
02-C18-C17
03-C32-C37
C33-C32-C37
C34-C33-C32
C34-C33-C38
C32-C33-C38
C35-C34-C33
C36-C35-C34
C35-C36-C37
C36-C37-C32
C36-C37-C41
C32-C37-C41
C33-C38-C39
C33-C38-C40
C39-C38-C40
C37-C41-C42
C37-C41-C43
C42-C41-C43
C45-C44-C49
C45-C44-W2
C49-C44-W2
C46-C45-C44
C46-C45-C50
C59-C56-C58
C52-C56-C58
C57-C56-C58
C65-C60-C61
C65-C60-C49
C61-C60-C49
05-C61-C62
05-C61-C60
C62-C61-C60
C61-C62-C63
C61-C62-C66
C63-C62-C66


121.9(8)
121.2(8)
117.5(8)
117.1(7)
121.1(7)
118.8(8)
120.0(8)
121.2(7)
119.8(8)
121.6(8)
121.1(8)
117.5(8)
122.5(8)
119.9(7)
111.9(7)
113.0(8)
111.1(8)
111.4(6)
114.5(7)
110.9(7)
116.8(7)
119.3(5)
123.6(6)
121.8(7)
115.2(7)
105.9(7)
109.0(7)
108.4(7)
115.0(8)
122.0(8)
122.9(7)
118.8(7)
116.1(7)
125.1(7)
116.5(8)
122.6(7)
120.8(8)


C27-C28-C30
C31-C28-C30
03-C32-C33
C44-C45-C50
C47-C46-C45
C48-C47-C46
C47-C48-C49
C48-C49-C44
C48-C49-C60
C44-C49-C60
C51-C50-C55
C51-C50-C45
C55-C50-C45
04-C51-C50
04-C51-C52
C50-C51-C52
C53-C52-C51
C69-C66-C67
C62-C66-C67
C82-C81-C83
C85-C84-C80
C85-C84-C86
C80-C84-C86
C71-C70-W2
C53-C52-C56
C51-C52-C56
C52-C53-C54
C55-C54-C53
C54-C55-C50
C59-C56-C52
C59-C56-C57
C52-C56-C57
C72-C71-C70
C72-C71-C73
C70-C71-C73
C72-C71-C74
C70-C71-C74


107.2(7)
110.6(7)
121.8(7)
123.0(7)
119.7(8)
120.1(8)
121.8(8)
119.1(7)
115.9(7)
124.9(7)
116.9(7)
122.0(7)
121.0(7)
116.6(7)
118.8(7)
124.5(8)
114.7(7)
108.2(8)
111.5(7)
109.3(8)
112.5(8)
109.1(8)
112.3(8)
142.0(6)
121.1(7)
124.2(7)
123.2(8)
119.8(8)
120.6(8)
113.5(7)
107.6(8)
112.2(7)
109.5(7)
109.9(8)
106.8(7)
110.5(8)
110.8(6)









Table B-4. Continued


Bond


C64-C63-C62
C63-C64-C65
C64-C65-C60
C68-C66-C69
C68-C66-C62
C69-C66-C62
C68-C66-C67
C78-C77-C76
C77-C78-C79
C78-C79-C80
C79-C80-C75
C79-C80-C84
C75-C80-C84
C76-C81-C82
C76-C81-C83
C73-C71-C74
06-C75-C76
06-C75-C80
C76-C75-C80
C75-C76-C77
C75-C76-C81
C77-C76-C81


120.2(9)
122.5(8)
120.6(8)
109.9(8)
109.7(8)
111.0(7)
106.4(8)
119.7(9)
121.8(10)
120.4(10)
117.5(8)
120.1(9)
122.3(8)
115.7(9)
107.1(8)
109.2(8)
119.3(8)
118.7(8)
121.9(8)
118.5(9)
119.7(8)
121.8(8)


Angle










Table B-5. Anisotropic displacement parameters (Aix 103) for [tBuOCO]W(=CHC(CH3)3)(O-
2,6-'Pr2-C6H3) (3). The anisotropic displacement factor exponent takes the form:
-272[ h2a*2U11+... + 2 hk a* b* U12 ].
Atom U11 U22 U33 U23 U13 U12


Wl
W2
01
02
03
04
05
06
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28


28(1)
24(1)
31(3)
15(3)
28(3)
31(3)
27(3)
29(3)
27(5)
20(4)
43(6)
47(6)
34(5)
28(5)
28(5)
22(5)
46(6)
49(6)
65(7)
57(7)
41(6)
58(8)
65(8)
28(6)
42(6)
33(5)
35(5)
31(5)
29(5)
19(5)
44(6)
81(8)
65(7)
57(7)
23(5)
40(6)


34(1)
35(1)
35(3)
48(3)
37(3)
33(3)
41(3)
47(3)
40(5)
45(5)
50(6)
66(7)
63(6)
44(5)
49(5)
38(5)
44(5)
48(6)
42(6)
47(6)
44(6)
85(9)
65(7)
108(9)
45(5)
43(5)
50(5)
56(6)
72(7)
76(7)
37(5)
43(6)
41(6)
37(5)
49(5)
41(5)


23(1)
22(1)
33(3)
30(3)
41(3)
30(3)
27(3)
30(3)
28(5)
29(5)
32(5)
26(5)
30(5)
28(4)
32(5)
35(5)
37(5)
57(7)
65(7)
45(6)
60(7)
137(12)
52(7)
74(8)
33(5)
27(5)
25(5)
47(6)
48(6)
46(6)
55(7)
74(8)
53(7)
72(8)
37(5)
42(6)


0(1)
-3(1)
3(3)
4(3)
-2(3)
3(2)
-5(3)
-5(3)
-6(4)
-6(4)
-3(4)
4(5)
-10(4)
-3(4)
7(4)
5(4)
2(4)
7(5)
22(5)
6(5)
6(5)
50(8)
-7(5)
19(7)
-19(4)
-9(4)
-2(4)
-15(5)
-17(5)
-23(5)
0(5)
5(5)
6(5)
-4(5)
1(4)
-11(4)


-2(1)
2(1)
-4(3)
-5(2)
-5(3)
5(3)
3(2)
-4(2)
9(4)
-4(4)
-3(4)
-7(4)
-5(4)
5(3)
4(4)
10(4)
6(4)
5(5)
7(6)
0(5)
-12(5)
-30(8)
-27(6)
-7(6)
11(4)
2(4)
7(4)
18(4)
6(5)
2(4)
18(5)
3(6)
-10(5)
19(6)
-14(4)
5(4)


3(1)
3(1)
6(2)
0(2)
2(2)
2(2)
-5(2)
10(3)
5(4)
3(4)
6(4)
26(5)
17(4)
19(4)
17(4)
4(4)
-1(4)
0(5)
18(5)
5(5)
6(5)
-26(7)
-4(5)
-3(6)
4(4)
10(4)
6(4)
-30(5)
-9(5)
-8(4)
-7(4)
-12(5)
8(5)
6(5)
18(4)
3(4)








Table B-5. Continued
Atom U11 U22 U33 U23 U13 U12
C29 64(8) 70(8) 107(10) -39(7) 44(7) -15(6)
C30 96(9) 63(7) 34(6) -20(5) 5(6) 1(6)
C31 64(7) 46(6) 46(6) -10(5) 9(5) 16(5)
C32 21(5) 34(5) 44(5) 2(4) 11(4) -5(4)
C33 15(4) 47(5) 41(5) -4(4) -8(4) -8(4)
C34 26(5) 63(6) 46(6) 14(5) -4(4) 16(4)
C35 45(6) 37(5) 52(6) 17(5) 10(5) 10(4)
C36 37(6) 35(5) 46(6) 3(4) 6(4) -7(4)
C37 10(4) 54(6) 42(5) 14(4) 0(4) 3(4)
C38 20(4) 63(6) 39(5) 2(4) -15(4) 4(4)
C39 94(10) 69(8) 85(9) -12(7) -6(7) -16(7)
C40 82(8) 75(8) 50(7) -10(6) 24(6) -7(6)
C41 19(4) 42(5) 42(5) -1(4) -10(4) 9(4)
C42 47(6) 45(5) 42(6) -1(4) -1(4) -11(4)
C43 52(7) 51(6) 51(6) -4(5) 8(5) 4(5)
C44 37(5) 32(4) 22(4) 0(4) -3(3) 4(4)
C45 28(5) 41(5) 22(4) 5(4) 3(3) 5(4)
C46 38(5) 56(6) 29(5) 3(4) -1(4) 2(4)
C47 35(5) 77(7) 24(5) -1(5) 3(4) 9(5)
C48 41(6) 40(5) 39(5) -15(4) 7(4) -12(4)
C49 23(5) 47(5) 27(5) -8(4) -2(4) -6(4)
C50 25(5) 38(5) 24(4) 5(4) -5(4) -1(4)
C51 30(5) 31(5) 29(5) 6(4) 5(4) 3(4)
C52 27(5) 36(5) 28(5) 3(4) 0(4) 6(4)
C53 42(6) 41(5) 35(5) 3(4) 5(4) -1(4)
C54 20(5) 58(6) 42(6) 11(5) -9(4) 5(4)
C55 41(6) 43(5) 31(5) 2(4) 10(4) 7(4)
C56 28(5) 46(5) 39(5) -8(4) -11(4) 8(4)
C57 35(6) 60(6) 35(5) -5(4) 0(4) 1(4)
C58 38(6) 45(5) 57(7) -1(5) 3(5) 17(4)
C59 41(6) 58(6) 72(7) -22(5) -2(5) 9(5)
C60 36(5) 41(5) 23(5) -4(4) 3(4) 10(4)
C61 15(4) 34(5) 37(5) -3(4) -14(4) 6(3)
C62 31(5) 44(5) 31(5) 0(4) 5(4) 16(4)
C63 35(5) 56(6) 34(5) -4(4) 4(4) 2(4)
C64 43(6) 26(5) 47(6) -2(4) -9(5) 8(4)
C65 36(5) 48(6) 37(5) -4(4) 6(4) 16(4)









Table B-5. Continued

Atom U11 U22 U33 U23 U13 U12


C66
C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86


30(5)
49(7)
28(6)
43(6)
40(5)
34(5)
130(11)
21(5)
53(6)
28(5)
32(5)
34(6)
56(7)
47(7)
28(5)
31(6)
57(8)
79(9)
45(6)
83(9)
83(9)


44(5)
66(7)
64(7)
59(6)
27(5)
44(5)
58(7)
67(7)
43(5)
32(5)
52(6)
63(7)
68(8)
71(7)
59(6)
77(7)
124(10)
130(11)
69(7)
90(9)
86(8)


58(7)
96(9)
75(8)
43(6)
32(5)
32(5)
39(6)
109(10)
63(7)
53(6)
34(5)
63(7)
72(9)
45(6)
33(5)
49(6)
49(7)
41(7)
36(5)
67(8)
71(8)


-11(5)
-20(6)
-11(6)
-2(5)
1(3)
9(4)
8(5)
19(6)
17(5)
-11(4)
-8(4)
1(5)
-22(6)
-16(5)
-10(4)
-8(5)
25(7)
-21(7)
-4(5)
16(7)
16(7)


10(5)
29(6)
4(5)
16(5)
6(4)
-10(4)
-23(7)
-7(6)
-28(5)
2(4)
1(4)
3(5)
12(6)
15(5)
-2(4)
-11(5)
-3(6)
-9(6)
5(4)
-10(7)
-5(7)


-12(4)
-13(5)
-5(5)
0(5)
7(4)
0(4)
28(7)
4(5)
9(5)
8(4)
4(4)
15(5)
15(6)
10(5)
-5(4)
-3(5)
33(7)
-15(8)
2(5)
-30(7)
-29(7)









Table B-6. Torsion angles (in deg) for [tBuOCO]W(=CHC(CH3)3)(O-2,6-'Pr2-C6H3) (3)
Atoms Angle Atoms Angle


02-W1-01-C8
C27-W1-01-C8
03-W1-01-C8
C1-W1-O1-C8
01-W1-02-C18
C27-W1-02-C18
03-W1-02-C18
C1-W1-02-C18
01-W1-03-C32
02-W1-03-C32
C27-W1-03-C32
C1-W1-03-C32
05-W2-04-C51
C70-W2-04-C51
06-W2-04-C51
C44-W2-04-C51
C70-W2-05-C61
04-W2-05-C61
06-W2-05-C61
C44-W2-05-C61
05-W2-06-C75
C70-W2-06-C75
04-W2-06-C75
C44-W2-06-C75
01-W1-C1-C6
02-W1-C1-C6
C27-W1-C1-C6
03-W1-C1-C6
01-C8-C9-C10
C7-C8-C9-C10
01-C8-C9-C13
C7-C8-C9-C13
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7
C8-C7-C12-C11
C2-C7-C12-C11


-51.0(13)
101.7(10)
-35.5(10)
2.9(10)
100.3(9)
-52.9(7)
-174.4(7)
46.5(7)
-59.3(11)
38.6(11)
-54.3(12)
117.3(11)
-110.9(8)
38.8(6)
161.9(6)
-56.6(6)
-108.4(9)
40.3(13)
126.4(8)
-14.1(8)
162.9(11)
54.5(12)
-36.1(11)
-13.6(11)
-178.3(6)
-12.8(6)
80.8(7)
-92.0(7)
175.1(8)
-4.8(14)
-7.8(13)
172.4(9)
-0.8(14)
-178.0(9)
5.2(16)
-4.2(16)
-1.0(14)
178.1(9)


01-W1-C1-C2
02-W1-C1-C2
C27-W1-C1-C2
03-W1-C1-C2
C6-C1-C2-C3
W1-C1-C2-C3
C6-C1-C2-C7
W1-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
W1-C1-C6-C5
C2-C1-C6-C17
W1-C1-C6-C17
C3-C2-C7-C8
C1-C2-C7-C8
C3-C2-C7-C12
C1-C2-C7-C12
W1-01-C8-C9
W1-01-C8-C7
C12-C7-C8-01
C2-C7-C8-01
C12-C7-C8-C9
C2-C7-C8-C9
C17-C18-C19-C23
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C26
C18-C19-C23-C26
C20-C19-C23-C24


-10.8(6)
154.8(6)
-111.7(6)
75.6(7)
8.1(11)
-159.8(6)
-172.1(7)
20.0(11)
-4.2(12)
176.0(8)
-2.3(13)
4.9(13)
-0.7(12)
178.9(7)
-5.8(11)
162.2(6)
174.7(7)
-17.4(10)
162.0(8)
-17.8(13)
-17.0(12)
163.2(8)
178.8(7)
-1.3(14)
-174.2(7)
6.7(11)
5.7(13)
-173.4(8)
-175.6(8)
-1.1(12)
178.5(8)
-1.5(14)
1.3(14)
1.3(12)
-175.4(8)
-118.8(9)
60.8(10)
0.9(12)










Table B-6. Continued
Atoms Angle Atoms Angle


C8-C9-C13-C16
C10-C9-C13-C16
C8-C9-C13-C15
C10-C9-C13-C15
C8-C9-C13-C14
C10-C9-C13-C14
C5-C6-C17-C18
C1-C6-C17-C18
C5-C6-C17-C22
C1-C6-C17-C22
W1-02-C18-C17
W1-02-C18-C19
C22-C17-C18-02
C6-C17-C18-02
C22-C17-C18-C19
C6-C17-C18-C19
02-C18-C19-C20
C17-C18-C19-C20
02-C18-C19-C23
C34-C35-C36-C37
C35-C36-C37-C32
C35-C36-C37-C41
03-C32-C37-C36
C33-C32-C37-C36
03-C32-C37-C41
C33-C32-C37-C41
C34-C33-C38-C39
C32-C33-C38-C39
C34-C33-C38-C40
C32-C33-C38-C40
C36-C37-C41-C42
C32-C37-C41-C42
C36-C37-C41-C43
C32-C37-C41-C43
05-W2-C44-C45
C70-W2-C44-C45
04-W2-C44-C45
06-W2-C44-C45


-57.4(12)
119.6(10)
65.5(11)
-17.5(10)
-175.2(9)
1.8(14)
-147.1(8)
32.5(12)
29.5(11)
-150.9(8)
-44.0(10)
138.6(6)
178.6(7)
-4.7(11)
-4.1(12)
172.7(7)
-178.8(7)
4.0(12)
1.6(12)
1.8(14)
1.5(12)
-174.6(8)
178.1(7)
-3.5(11)
-5.7(11)
172.7(7)
-67.2(11)
110.0(9)
59.2(10)
-123.6(9)
100.8(9)
-75.2(9)
-26.0(11)
158.0(7)
-173.9(6)
-70.6(6)
21.6(6)
99.4(6)


C18-C19-C23-C24
C20-C19-C23-C25
C18-C19-C23-C25
01-W1-C27-C28
02-W1-C27-C28
03-W1-C27-C28
C1-W1-C27-C28
W1-C27-C28-C29
W1-C27-C28-C31
W1-C27-C28-C30
W1-03-C32-C33
W1-03-C32-C37
03-C32-C33-C34
C37-C32-C33-C34
03-C32-C33-C38
C37-C32-C33-C38
C32-C33-C34-C35
C38-C33-C34-C35
C33-C34-C35-C36
C45-C46-C47-C48
C46-C47-C48-C49
C47-C48-C49-C44
C47-C48-C49-C60
C45-C44-C49-C48
W2-C44-C49-C48
C45-C44-C49-C60
W2-C44-C49-C60
C46-C45-C50-C51
C44-C45-C50-C51
C46-C45-C50-C55
C44-C45-C50-C55
W2-04-C51-C50
W2-04-C51-C52
C55-C50-C51-04
C45-C50-C51-04
C55-C50-C51-C52
C45-C50-C51-C52
04-C51-C52-C53


-179.5(8)
120.0(9)
-60.4(11)
-3.6(9)
168.3(8)
-103.2(8)
82.4(9)
-148.6(8)
-28.2(12)
93.7(10)
81.1(12)
-00.5(12)
-179.3(7)
2.4(12)
3.5(12)
-174.8(7)
0.9(13)
178.2(8)
-3.1(14)
-4.3(12)
1.6(13)
5.2(13)
-177.1(8)
-9.1(11)
165.1(6)
173.5(7)
-12.3(11)
145.9(8)
-35.3(11)
-33.5(10)
145.2(8)
51.1(9)
-130.2(6)
-176.6(6)
3.9(11)
4.7(11)
-174.8(7)
175.5(7)










Table B-6. Continued
Atoms Angle Atoms Angle


05-W2-C44-C49
C70-W2-C44-C49
04-W2-C44-C49
06-W2-C44-C49
C49-C44-C45-C46
W2-C44-C45-C46
C49-C44-C45-C50
W2-C44-C45-C50
C44-C45-C46-C47
C50-C45-C46-C47
C51-C52-C56-C59
C53-C52-C56-C57
C51-C52-C56-C57
C53-C52-C56-C58
C51-C52-C56-C58
C48-C49-C60-C65
C44-C49-C60-C65
C48-C49-C60-C61
C44-C49-C60-C61
W2-05-C61-C62
W2-05-C61-C60
C65-C60-C61-05
C49-C60-C61-05
C65-C60-C61-C62
C49-C60-C61-C62
05-C61-C62-C63
C60-C61-C62-C63
05-C61-C62-C66
C60-C61-C62-C66
C61-C62-C63-C64
C66-C62-C63-C64
C62-C63-C64-C65
C63-C64-C65-C60
C76-C77-C78-C79
C77-C78-C79-C80
C78-C79-C80-C75
C78-C79-C80-C84
06-C75-C80-C79


12.1(6)
115.3(6)
-152.5(6)
-74.7(7)
6.7(11)
-167.8(6)
-172.0(7)
13.6(10)
-0.1(12)
178.6(7)
-176.6(8)
-117.2(8)
61.2(10)
122.8(8)
-58.9(10)
11.5(11)
-171.0(7)
-171.9(7)
5.7(12)
-170.1(6)
11.1(12)
174.5(6)
-2.4(11)
-4.3(11)
178.9(7)
-176.3(7)
2.4(12)
8.8(11)
-172.4(8)
0.1(12)
175.1(8)
-0.5(13)
-1.5(13)
-1.3(16)
2.0(16)
0.9(14)
-176.4(9)
178.8(8)


C50-C51-C52-C53
04-C51-C52-C56
C50-C51-C52-C56
C51-C52-C53-C54
C56-C52-C53-C54
C52-C53-C54-C55
C61-C60-C65-C64
C49-C60-C65-C64
C61-C62-C66-C68
C63-C62-C66-C68
C61-C62-C66-C69
C63-C62-C66-C69
C53-C54-C55-C50
C51-C50--55-C54
C45-C505C55-C54
C53-C52-C56-C59
C61-C62-C66-C67
C63-C62-C66-C67
05-W2-C70-C71
04-W2-C70-C71
06-W2-C70-C71
C44-W2-C70-C71
W2-C70-C71-C72
W2-C70-C71-C73
W2-C70-C71-C74
W2-06-C75-C76
W2-06-C75-C80
06-C75-C76-C77
C80-C75-C76-C77
06-C75-C76-C81
C80-C75-C76-C81
C75-C76-C77-C78
C81-C76-C77-C78
C76-C75-C80-C79
C79-C80-C84-C85
C75-C80-C84-C85
C79-C80-C84-C86
C75-C80-C84-C86


-5.9(12)
-2.9(11)
175.7(7)
4.5(12)
-177.0(8)
-2.2(13)
3.7(11)
-179.4(7)
56.6(10)
-118.0(8)
-65.1(10)
120.3(8)
0.8(12)
-1.9(11)
177.5(7)
5.0(11)
174.2(8)
-0.4(12)
21.1(10)
-49.2(10)
123.7(9)
-63.9(10)
-138.9(9)
102.1(10)
-16.7(13)
95.7(12)
-87.4(13)
-178.2(8)
5.0(13)
5.1(12)
-171.7(8)
-2.1(14)
174.6(9)
-4.4(13)
-63.6(12)
119.2(10)
60.0(11)
-17.2(10)









Table B-6. Continued
Atoms Angle

06-C75-C80-C84 -4.0(12)
C76-C75-C80-C84 172.8(8)
C75-C76-C81-C82 -161.2(8)
C77-C76-C81-C82 22.2(13)
C75-C76-C81-C83 76.6(11)
C77-C76-C81-C83 -00.0(11)

















































Figure B-3. Molecular structure of { [tBuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[tBuOCO]} (4). Ellipsoids are shown at the 50% probability level; hydrogens are
omitted for clarity.





66









X-ray Experimental for {['BuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3-
['BuOCO]} (4)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 9733

reflections (with I > 2ol) to yield R1 and wR2 of 4.58% and 8.68%, respectively. Refinement

was done using F2









Table B-7. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=)W(d-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4)
identification code pelo6t
empirical formula CssH10206W2
formula weight 1623.40
T(K) 173(2)
X (A) 0.71073
crystal system Monoclinic
space group P2(1)/n
a (A) 13.5918(11)
b (A) 35.213(3)
c(A) 17.2146(15)
a (deg) 90
l (deg) 111.897(2)
y (deg) 90
V (A3) 7644.7(11)
Z 4
Pcalcd (g mm-3) 1.411
crystal size (mm) 0.15 x 0.15 x 0.02
abs coeff(mm-) 3.059
F(000) 3304
0 range for data collection 1.16 to 28.06
limiting indicies -17 < h < 17, -32 < k < 46, -19 <1 < 22
no. ofreflns called 53602
no. ofind reflns 18421 [R(int) = 0.08431]
completeness to 0= 28.030 99.3 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 18421 / 0 / 865
R1, wR2 [I > 2a] R1 = 0.0458, wR2 = 0.0868
R1, wR2 (all data) R1 = 0.1048, wR2 = 0.0967
2
GOF on F 0.845
largest diff. peak and hole (e.A-3) 1.519 and -1.124
R1 = (||Fol- |Fcl|) / YFol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[22(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.








Table B-8. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x
10 ) for {[IBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3[BuOCO] } (4).
U(eq) is defined as one third of the trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
Wl 2864(1) 1311(1) 883(1) 32(1)
W2 1720(1) 1073(1) 4751(1) 40(1)
01 3232(3) 809(1) 885(2) 37(1)
02 2535(3) 1791(1) 1227(2) 31(1)
03 1339(3) 1219(1) 382(2) 37(1)
04 3049(3) 847(1) 5077(3) 58(1)
05 2431(3) 1568(1) 5061(2) 41(1)
06 453(3) 1293(1) 4124(2) 48(1)
C1 4315(4) 1350(2) 1970(3) 32(1)
C2 4928(4) 1023(2) 2350(4) 36(1)
C3 5632(5) 1049(2) 3184(4) 45(2)
C4 5760(5) 1374(2) 3649(4) 44(2)
C5 5256(4) 1698(2) 3261(4) 39(2)
C6 4576(4) 1698(2) 2432(4) 33(1)
C7 4878(5) 649(2) 1926(4) 40(2)
C8 3997(5) 540(2) 1230(4) 40(2)
C9 3858(5) 173(2) 858(4) 46(2)
C10 4737(6) -65(2) 1173(5) 56(2)
C11 5636(6) 48(2) 1818(5) 57(2)
C12 5716(5) 392(2) 2206(4) 49(2)
C13 2817(6) 48(2) 189(4) 54(2)
C14 2842(6) -384(2) -35(5) 84(3)
C15 2570(5) 281(2) -623(4) 59(2)
C16 1905(5) 100(2) 502(4) 64(2)
C17 4162(4) 2072(2) 2063(3) 33(1)
C18 3127(4) 2116(2) 1499(3) 32(1)
C19 2666(5) 2472(2) 1221(3) 35(1)
C20 3354(5) 2779(2) 1498(4) 44(2)
C21 4401(5) 2740(2) 2016(4) 47(2)
C22 4795(5) 2393(2) 2303(4) 45(2)
C23 1504(5) 2522(2) 666(4) 42(2)
C24 1193(5) 2943(2) 507(4) 60(2)
C25 1220(5) 2336(2) -175(4) 49(2)
C26 810(5) 2355(2) 1118(4) 51(2)
C27 3403(5) 1530(2) 113(4) 45(2)
C28 4187(6) 1468(2) -315(5) 64(2)










Table B-8. Continued
Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


3578(9)
4747(6)
5011(7)
1448(4)
1250(4)
1946(4)
2806(4)
3005(4)
2323(4)
303(4)
376(4)
-532(5)
-1507(5)
-1576(5)
-692(5)
-481(6)
-94(6)
282(5)
-1558(6)
2564(4)
2627(4)
2826(4)
2949(5)
2902(5)
2712(5)
2913(6)
3810(6)
3138(6)
1865(6)
1151(5)
1828(5)
1611(6)
738(7)
35(6)
184(5)
2788(6)
3404(6)
4365(6)


1491(3)
1097(2)
1791(2)
1578(2)
1295(2)
984(2)
968(2)
1262(2)
1573(2)
1319(2)
1268(2)
1280(2)
1356(2)
1419(2)
1400(2)
1202(2)
801(2)
1474(2)
1245(3)
1913(2)
1899(2)
2232(2)
2564(2)
2579(2)
2258(2)
2219(2)
1964(2)
2618(2)
2091(2)
620(2)
309(2)
67(2)
135(2)
412(2)
655(2)
207(2)
482(2)
413(2)


-1241(6)
-95(5)
-52(8)
2608(3)
2012(3)
2194(4)
2936(4)
3507(3)
3345(4)
1218(3)
424(4)
-326(4)
-252(4)
521(5)
1238(4)
-1181(4)
-1187(4)
-1393(4)
-1892(5)
3903(4)
4738(4)
5233(4)
4858(4)
4071(4)
3573(4)
6153(4)
6656(4)
6540(5)
6220(5)
3851(4)
3893(4)
3165(5)
2462(5)
2442(5)
3125(4)
4627(5)
5203(5)
5890(5)


172(6)
71(2)
153(6)
32(1)
31(1)
35(1)
35(1)
35(1)
36(1)
33(1)
36(1)
45(2)
51(2)
52(2)
43(2)
57(2)
76(2)
61(2)
97(3)
36(1)
34(1)
44(2)
47(2)
55(2)
44(2)
61(2)
66(2)
87(3)
87(3)
47(2)
53(2)
64(2)
68(2)
58(2)
47(2)
55(2)
54(2)
61(2)










Table B-8. Continued
Atom X Y Z U(eq)


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


4669(7)
4087(8)
3156(7)
5017(6)
6039(6)
4384(5)
5308(6)
-669(5)
-510(5)
-1297(5)
-2269(6)
-2463(6)
-1712(6)
-1074(5)
-829(5)
-2057(5)
-169(5)
1367(7)
605(7)
882(10)
522(9)
-520(6)


27(3)
-259(2)
-171(2)
721(2)
565(3)
902(2)
1043(2)
928(2)
1254(2)
1538(2)
1466(2)
1145(3)
870(2)
1891(2)
1788(2)
2161(2)
2123(2)
859(2)
681(2)
285(3)
927(3)
701(3)


5969(5)
5426(7)
4770(6)
6487(5)
7151(5)
6979(4)
6003(5)
3028(4)
3506(4)
3394(4)
2766(4)
2316(5)
2433(4)
3942(4)
4860(4)
3682(5)
3849(5)
5611(5)
5914(5)
6169(6)
6628(7)
5158(6)


77(3)
89(3)
72(2)
69(2)
101(3)
70(2)
83(3)
47(2)
43(2)
52(2)
63(2)
68(2)
63(2)
55(2)
70(2)
75(2)
65(2)
90(3)
79(3)
158(5)
156(5)
108(3)









Table B-9. Bond lengths (in A) for
['BuOCO] (4)


f IBuOCO](CH3)3CCH=}W(i-tBu0CHO) W{ CHC(CH3)3-


Bond Length Bond Length


W1-01
W1-02
W1-C27
W1-03
W1-C1
W2-06
W2-04
W2-C84
W2-05
W2-C58
01-C8
02-C18
03-C39
04-C65
05-C49
06-C75
C1-C2
C1-C6
C2-C3
C2-C7
C3-C4
C4-C5
C5-C6
C6-C17
C7-C12
C7-C8
C34-C35
C35-C36
C36-C37
C37-C48
C38-C43
C38-C39
C39-C40
C40-C41
C40-C44
C41-C42
C42-C43


1.838(4)
1.897(3)
1.900(6)
1.952(4)
2.158(6)
1.830(4)
1.859(4)
1.876(6)
1.969(4)
2.155(6)
1.368(6)
1.378(6)
1.348(6)
1.360(8)
1.358(6)
1.351(7)
1.429(7)
1.430(7)
1.401(8)
1.495(8)
1.368(8)
1.370(8)
1.382(7)
1.481(7)
1.392(8)
1.396(8)
1.375(7)
1.385(7)
1.394(8)
1.492(8)
1.395(7)
1.418(7)
1.416(8)
1.403(8)
1.526(9)
1.386(9)
1.367(8)


C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C16
C13-C15
C13-C14
C17-C22
C17-C18
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C25
C23-C24
C23-C26
C27-C28
C28-C30
C28-C29
C28-C31
C32-C37
C32-C33
C33-C34
C33-C38
C61-C62
C62-C63
C63-C74
C64-C69
C64-C65
C65-C66
C66-C67
C66-C70
C67-C68
C68-C69
C70-C71


1.422(8)
1.394(8)
1.519(9)
1.369(9)
1.365(8)
1.536(8)
1.546(9)
1.573(8)
1.385(7)
1.387(7)
1.403(7)
1.392(7)
1.521(8)
1.376(8)
1.352(8)
1.503(8)
1.539(7)
1.546(8)
1.520(8)
1.489(8)
1.499(11)
1.539(11)
1.377(7)
1.382(7)
1.403(7)
1.490(7)
1.357(10)
1.406(9)
1.469(9)
1.410(9)
1.417(9)
1.418(9)
1.412(10)
1.529(10)
1.399(11)
1.380(11)
1.533(9)










Bond Length Bond Length
C44-C45 1.510(9) C70-C73 1.543(9)
C44-C47 1.526(9) C70-C72 1.552(9)
C44-C46 1.551(9) C74-C75 1.382(8)
C48-C53 1.388(8) C74-C79 1.420(8)
C48-C49 1.409(8) C75-C76 1.421(9)
C49-C50 1.414(8) C76-C77 1.383(8)
C50-C51 1.378(8) C76-C80 1.524(9)
C50-C54 1.544(9) C77-C78 1.339(10)
C51-C52 1.332(8) C78-C79 1.366(9)
C52-C53 1.383(8) C80-C81 1.533(9)
C54-C55 1.503(9) C80-C83 1.533(8)
C54-C56 1.534(9) C80-C82 1.562(8)
C54-C57 1.539(8) C84-C85 1.465(9)
C58-C59 1.415(9) C85-C86 1.468(11)
C58-C63 1.442(9) C85-C87 1.543(11)
C59-C60 1.451(9) C85-C88 1.598(11)
C59-C64 1.483(9) C60-C61 1.363(10)


Table B-9.


Continued









Table B-10. Bond angles (in deg) for { [BuOCO](CH3)3CCH-
W =CHC(CH3)3[tBuOCO1 (4)


}W(i-tBu0CHO)


Bond


01-W1-02
01-W1-C27
02-W1-C27
01-W1-03
02-W1-03
C27-W1-03
01-W1-C1
02-W1-C1
C27-W1-C1
03-W1-C1
06-W2-04
06-W2-C84
04-W2-C84
06-W2-05
04-W2-05
C84-W2-05
06-W2-C58
04-W2-C58
C84-W2-C58
05-W2-C58
C8-01-W1
C18-02-W1
C39-03-W1
C65-04-W2
C49-05-W2
C75-06-W2
C2-C1-C6
C16-C13-C14
C15-C13-C14
C22-C17-C18
C22-C17-C6
C18-C17-C6
02-C18-C17
02-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23


Angle

162.07(16)
102.5(2)
93.1(2)
94.85(15)
87.16(14)
112.4(2)
84.19(19)
85.33(18)
96.5(2)
150.42(17)
162.78(18)
100.0(3)
95.5(3)
92.42(17)
88.53(18)
112.7(3)
83.3(2)
87.1(2)
98.1(3)
149.19(18)
146.1(4)
132.1(3)
147.9(3)
134.4(4)
143.1(4)
147.5(4)
117.0(5)
107.1(6)
108.0(6)
118.2(5)
120.2(5)
121.5(5)
117.1(5)
119.8(5)
123.1(5)
114.8(6)
122.2(5)


Bond


C2-C1-W1
C6-C1-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C7
01-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C9-C13-C16
C9-C13-C15
C16-C13-C15
C9-C13-C14
C32-C33-C38
C34-C33-C38
C35-C34-C33
C34-C35-C36
C35-C36-C37
C32-C37-C36
C32-C37-C48
C36-C37-C48
C43-C38-C39
C43-C38-C33


Angle

122.3(4)
119.5(4)
118.3(5)
116.6(5)
125.1(5)
123.0(6)
118.6(6)
121.6(6)
120.4(5)
116.3(5)
123.3(5)
116.6(6)
121.4(6)
122.0(5)
116.8(5)
118.8(6)
124.3(6)
114.9(6)
122.8(6)
122.3(6)
121.0(6)
122.6(6)
120.1(7)
110.2(5)
111.1(6)
108.9(6)
111.5(6)
120.1(5)
122.0(5)
120.6(5)
120.1(5)
120.4(5)
118.4(5)
119.4(5)
122.0(5)
117.8(5)
120.2(5)










Table B-10. Continued
Bond Angle Bond Angle


C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C19
C25-C23-C24
C19-C23-C24
C25-C23-C26
C19-C23-C26
C24-C23-C26
C28-C27-W1
C30-C28-C29
C30-C28-C27
C29-C28-C27
C30-C28-C31
C29-C28-C31
C27-C28-C31
C37-C32-C33
C32-C33-C34
05-C49-C48
05-C49-C50
C48-C49-C50
C51-C50-C49
C51-C50-C54
C49-C50-C54
C52-C51-C50
C51-C52-C53
C52-C53-C48
C55-C54-C56
C55-C54-C57
C56-C54-C57
C55-C54-C50
C56-C54-C50
C57-C54-C50
C59-C58-C63
C59-C58-W2
C63-C58-W2
C58-C59-C60


123.0(5)
123.0(6)
120.1(6)
120.7(6)
112.9(5)
107.1(5)
112.0(5)
109.5(5)
109.0(5)
106.1(5)
143.4(5)
110.2(7)
112.7(5)
107.4(6)
109.1(7)
109.1(8)
108.4(7)
122.4(5)
117.9(5)
120.0(5)
119.1(6)
120.7(5)
116.8(6)
121.9(6)
121.3(6)
122.8(6)
121.7(6)
118.9(6)
108.0(6)
110.9(7)
106.0(6)
110.1(6)
110.3(6)
111.5(6)
118.4(6)
118.9(5)
121.8(5)
119.4(7)


C39-C38-C33
03-C39-C40
03-C39-C38
C40-C39-C38
C41-C40-C39
C41-C40-C44
C39-C40-C44
C42-C41-C40
C43-C42-C41
C42-C43-C38
C45-C44-C47
C45-C44-C40
C47-C44-C40
C45-C44-C46
C47-C44-C46
C40-C44-C46
C53-C48-C49
C53-C48-C37
C49-C48-C37
C65-C64-C59
04-C65-C64
04-C65-C66
C64-C65-C66
C65-C66-C67
C65-C66-C70
C67-C66-C70
C68-C67-C66
C69-C68-C67
C68-C69-C64
C66-C70-C71
C66-C70-C73
C71-C70-C73
C66-C70-C72
C71-C70-C72
C73-C70-C72
C75-C74-C79
C75-C74-C63
C79-C74-C63


122.0(5)
119.2(5)
119.1(5)
121.6(5)
117.1(6)
120.4(6)
122.5(6)
121.4(6)
120.5(6)
121.4(6)
108.6(6)
108.5(6)
112.4(6)
108.2(6)
106.1(6)
113.0(5)
119.0(5)
117.9(6)
123.0(5)
122.2(6)
116.9(7)
117.2(7)
125.9(7)
113.0(8)
124.2(7)
122.8(8)
123.8(8)
120.2(8)
120.7(8)
112.6(7)
111.0(6)
108.7(6)
111.0(6)
105.8(6)
107.4(7)
116.2(6)
122.4(6)
121.4(6)









Table B-10. Continued


Bond Angle

C58-C59-C64 125.5(6)
C60-C59-C64 115.1(7)
C61-C60-C59 119.6(7)
C62-C61-C60 121.3(7)
C61-C62-C63 122.3(7)
C62-C63-C58 118.3(7)
C62-C63-C74 116.3(6)
C58-C63-C74 125.4(6)
C69-C64-C65 116.4(8)
C69-C64-C59 121.3(7)
C76-C80-C83 110.6(5)
C81-C80-C83 111.1(6)
C76-C80-C82 111.6(6)
C81-C80-C82 105.9(5)
C83-C80-C82 106.4(6)
C85-C84-W2 151.3(7)
C86-C85-C84 112.1(8)
C86-C85-C87 112.5(8)
C84-C85-C87 108.3(7)
C86-C85-C88 110.2(8)
C84-C85-C88 106.3(7)
C87-C85-C88 107.0(8)
C78-C77-C76 122.0(7)
C77-C78-C79 122.5(7)
C78-C79-C74 119.6(7)
C76-C80-C81 111.1(6)
06-C75-C74 116.3(6)
06-C75-C76 119.6(5)
C74-C75-C76 124.0(6)
C77-C76-C75 115.4(6)
C77-C76-C80 123.0(6)
C75-C76-C80 121.6(6)









2
Table B-11. Anisotropic displacement parameters (A x
'BuOCHO) W{=CHC(CH3)3 [BuOCO]} (4).
2r 2 11
exnonent takesthe form -22r[rh a* IT +


103) for [tBuOCO](CH3)3CCH=}W(t-
The anisotropic displacement factor
12
+2hka*b*IU 1


Atom U11 U22 U33 U23 U13 U12


Wl
W2
01
02
03
04
05
06
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28


41(1)
48(1)
48(2)
35(2)
48(2)
67(3)
49(3)
46(3)
36(3)
42(4)
44(4)
44(4)
39(4)
34(3)
50(4)
56(4)
69(5)
78(5)
64(5)
62(5)
85(5)
121(7)
77(5)
76(5)
37(4)
44(4)
51(4)
69(5)
59(5)
44(4)
52(4)
78(5)
61(4)
48(4)
54(4)
78(5)


25(1)
41(1)
29(2)
21(2)
29(2)
43(3)
42(3)
53(3)
30(3)
35(4)
47(4)
51(5)
28(4)
30(3)
35(4)
31(4)
33(4)
33(4)
45(5)
40(4)
27(4)
34(5)
51(5)
48(5)
33(4)
28(3)
23(3)
23(4)
30(4)
40(4)
25(3)
36(4)
35(4)
45(4)
35(4)
62(5)


36(1)
40(1)
38(2)
42(2)
38(2)
61(3)
38(2)
46(3)
43(4)
40(4)
50(4)
35(4)
51(4)
39(4)
48(4)
45(4)
46(4)
69(5)
73(5)
55(4)
61(5)
91(6)
55(5)
69(5)
32(3)
35(3)
36(4)
42(4)
47(4)
51(4)
52(4)
61(5)
47(4)
69(5)
55(4)
74(6)


-1(1)
-5(1)
-1(2)
-4(2)
-8(2)
-4(2)
-9(2)
-18(2)
9(3)
-2(3)
18(3)
-5(3)
3(3)
-6(3)
17(3)
6(3)
3(3)
9(4)
16(4)
7(3)
-4(3)
-24(4)
-4(4)
-3(4)
-2(3)
-3(3)
3(3)
3(3)
-6(3)
-3(3)
5(3)
6(3)
0(3)
12(3)
11(3)
35(4)


21(1)
25(1)
22(2)
19(2)
22(2)
22(3)
21(2)
19(2)
29(3)
24(3)
26(3)
13(3)
19(3)
20(3)
32(3)
34(3)
33(4)
41(4)
39(4)
33(4)
39(4)
34(5)
32(4)
28(4)
18(3)
26(3)
22(3)
24(4)
16(4)
19(3)
23(3)
20(4)
15(3)
31(4)
29(3)
54(5)


0(1)
-14(1)
3(2)
-2(2)
-2(2)
-3(2)
-13(2)
-10(2)
4(3)
-5(3)
6(3)
-5(3)
3(3)
-6(3)
7(3)
7(3)
4(3)
23(4)
18(4)
11(3)
5(4)
-3(4)
7(4)
-16(4)
3(3)
-2(3)
4(3)
2(3)
-12(3)
-10(3)
11(3)
16(4)
3(3)
15(3)
10(3)
40(4)










Table B-11. Continued
Atom U11 U22 U33 U23 U13 U12


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


218(12)
85(6)
112(8)
27(3)
34(3)
47(4)
38(4)
37(3)
35(3)
38(3)
38(3)
50(4)
42(4)
39(4)
53(4)
70(5)
115(7)
92(6)
77(6)
30(3)
32(3)
35(4)
60(4)
62(5)
51(4)
70(5)
85(6)
110(7)
86(6)
73(5)
61(5)
93(6)
97(6)
65(5)
66(5)
73(5)
56(5)
69(5)


258(15)
69(5)
72(7)
36(4)
33(3)
31(4)
29(4)
44(4)
42(4)
24(3)
28(3)
35(4)
48(4)
46(4)
35(4)
44(5)
62(6)
55(5)
148(9)
40(4)
32(4)
52(4)
30(4)
33(4)
38(4)
74(6)
64(5)
90(7)
115(7)
34(4)
47(5)
34(4)
68(6)
55(5)
39(4)
30(4)
57(5)
63(5)


94(8)
85(6)
335(18)
38(4)
35(3)
43(4)
45(4)
29(3)
37(4)
40(3)
46(4)
51(4)
53(4)
71(5)
45(4)
53(5)
66(5)
36(4)
45(5)
36(4)
43(4)
50(4)
49(4)
61(5)
45(4)
49(5)
52(5)
72(6)
84(6)
56(5)
64(5)
88(6)
56(5)
69(5)
47(4)
87(6)
64(5)
72(6)


89(9)
14(4)
36(9)
-5(3)
3(3)
-3(3)
9(3)
-2(3)
-2(3)
-11(3)
-8(3)
-14(3)
-7(3)
-7(3)
-4(3)
-16(3)
-27(4)
-1(3)
-29(5)
-13(3)
-3(3)
-18(3)
-18(3)
0(3)
1(3)
-29(4)
-10(4)
-50(5)
-45(5)
-1(3)
2(4)
-14(4)
-32(4)
-19(4)
-9(3)
8(4)
7(4)
26(4)


122(9)
64(5)
154(10)
17(3)
23(3)
34(3)
22(3)
17(3)
21(3)
21(3)
21(3)
20(3)
7(3)
20(4)
26(3)
18(4)
52(5)
22(4)
-3(4)
11(3)
21(3)
23(3)
19(3)
13(4)
22(3)
34(4)
28(4)
47(5)
61(5)
48(4)
38(4)
61(5)
47(5)
41(4)
32(4)
57(5)
41(4)
49(5)


169(11)
15(4)
-7(6)
-7(3)
-3(3)
-8(3)
0(3)
-17(3)
-6(3)
-3(3)
-1(3)
-7(3)
-4(3)
-7(3)
-4(3)
4(4)
-32(5)
-11(4)
-6(5)
-10(3)
-8(3)
-14(3)
-7(3)
-10(3)
-11(3)
-28(4)
-21(4)
-37(5)
-49(5)
-9(3)
-23(4)
-22(4)
-48(5)
-28(4)
-34(3)
1(4)
-3(4)
13(4)










Table B-11. Continued
Atom U11 U22 U33 U23 U13 U12


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


87(6)
140(9)
91(6)
54(5)
69(6)
68(5)
87(6)
44(4)
46(4)
41(4)
56(5)
39(4)
69(5)
47(4)
77(5)
47(4)
44(4)
119(7)
111(7)
292(16)
204(12)
92(7)


92(7)
52(6)
49(5)
92(7)
143(9)
98(7)
95(7)
56(5)
54(5)
69(5)
92(6)
119(8)
76(6)
69(5)
79(6)
86(6)
71(6)
126(8)
64(6)
83(8)
205(13)
123(9)


79(6)
115(8)
98(7)
61(5)
89(7)
46(5)
76(6)
51(4)
37(4)
51(4)
52(5)
57(5)
50(5)
57(5)
71(6)
107(7)
84(6)
46(5)
84(6)
99(9)
115(9)
127(9)


38(5)
29(6)
16(5)
11(5)
19(6)
11(4)
8(5)
-10(3)
-12(3)
-8(4)
-19(4)
-2(5)
-22(4)
-7(4)
-13(4)
7(5)
-5(4)
-15(5)
-1(5)
25(7)
-48(8)
-23(7)


61(5)
96(8)
62(6)
20(4)
29(5)
23(4)
42(5)
30(3)
26(3)
25(3)
34(4)
29(4)
30(4)
31(4)
48(5)
45(5)
29(4)
55(5)
63(6)
73(10)
125(9)
63(7)


29(6)
18(6)
-2(4)
4(4)
15(6)
-5(4)
-31(5)
-15(3)
-18(3)
-9(4)
-11(4)
-15(5)
-47(5)
-4(4)
1(4)
14(4)
-2(4)
-72(6)
-26(5)
-40(9)
-47(10)
-46(6)









Table B-12. Torsion angles (in deg) for { [BuOCO](CH3)3CCH=
{=CHC(CH3)3[tBuOCO] (4)


}W(i-'BuOCHO) W-


Atoms Angle Atoms Angle


02-W1-01-C8
C27-W1-01-C8
03-W1-01-C8
C1-W1-01-C8
01-W1-02-C18
C27-W1-02-C 18
03-W1-02-C18
C1-W1-02-C18
01-W1-03-C39
02-W1-03-C39
C27-W1-03-C39
C1-W1-03-C39
06-W2-04-C65
C84-W2-04-C65
05-W2-04-C65
C58-W2-04-C65
06-W2-05-C49
04-W2-05-C49
C84-W2-05-C49
C58-W2-05-C49
04-W2-06-C75
C84-W2-06-C75
05-W2-06-C75
C58-W2-06-C75
01-W1-C1-C2
02-W1-C1-C2
C27-W1-C1-C2
C12-C7-C8-C9
C2-C7-C8-C9
01-C8-C9-C10
C7-C8-C9-C10
01-C8-C9-C13
C7-C8-C9-C13
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7


-62.5(9)
87.4(6)
-158.3(6)
-8.0(6)
99.5(6)
-51.2(5)
-163.5(5)
45.2(4)
127.2(7)
-35.0(7)
-127.2(7)
40.4(8)
-97.3(8)
56.7(6)
169.3(6)
-41.2(6)
-53.9(6)
108.9(6)
-155.8(6)
27.1(8)
66.2(10)
-87.4(7)
159.1(7)
9.7(7)
-7.1(4)
158.4(4)
-109.0(4)
7.4(9)
-173.0(5)
171.3(5)
-7.8(9)
-10.5(8)
170.3(6)
2.9(9)
-175.2(6)
2.1(11)
-2.7(10)


03-W1-C1-C2
01-W1-C1-C6
02-W1-C1-C6
C27-W1-C1-C6
03-W1-C1-C6
C6-C1-C2-C3
W1-C1-C2-C3
C6-C1-C2-C7
W1-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
W1-C1-C6-C5
C2-C1-C6-C17
W1-C1-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
W1-01-C8-C7
W1-Ol-C8-C9
C12-C7-C8-01
C2-C7-C8-01
C17-C18-C19-C20
02-C18-C19-C23
C17-C18-C19-C23
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25


82.5(5)
-174.4(4)
-9.0(4)
83.7(4)
-84.8(5)
8.9(7)
-158.8(4)
-171.5(5)
20.9(7)
-0.3(8)
-180.0(5)
-6.4(9)
4.0(9)
4.9(8)
-174.3(5)
-11.2(8)
156.7(4)
167.9(5)
-24.1(7)
-22.9(8)
157.4(5)
157.5(5)
-22.1(8)
8.3(9)
-170.9(4)
-171.7(5)
7.9(8)
5.1(8)
4.0(8)
-174.3(5)
-1.0(8)
178.4(6)
-2.4(10)
1.8(9)
2.2(9)
-175.3(5)
117.5(6)










Table B-12. Continued
Atoms Angle Atoms Angle


C8-C7-C12-C11
C2-C7-C12-C11
C10-C9-C13-C16
C8-C9-C13-C16
C10-C9-C13-C15
C8-C9-C13-C15
C10-C9-C13-C14
C8-C9-C13-C14
C5-C6-C17-C22
C1-C6-C17-C22
C5-C6-C17-C18
C1-C6-C17-C18
W1-02-C18-C17
W1-02-C18-C19
C22-C17-C18-02
C6-C17-C18-02
C22-C17-C18-C19
C6-C17-C18-C19
02-C18-C19-C20
C33-C32-C37-C48
C35-C36-C37-C32
C35-C36-C37-C48
C32-C33-C38-C43
C34-C33-C38-C43
C32-C33-C38-C39
C34-C33-C38-C39
W1-03-C39-C40
W1-03-C39-C38
C43-C38-C39-03
C33-C38-C39-03
C43-C38-C39-C40
C33-C38-C39-C40
03-C39-C40-C41
C38-C39-C40-C41
03-C39-C40-C44
C38-C39-C40-C44
C39-C40-C41-C42
C44-C40-C41-C42


-1.9(9)
178.5(6)
123.4(6)
-54.6(8)
-115.9(7)
66.1(8)
4.7(9)
-173.3(6)
35.2(7)
-144.0(5)
-142.2(5)
38.7(8)
-43.1(7)
138.5(4)
175.8(5)
-6.8(7)
-5.8(8)
171.5(5)
-176.5(5)
171.7(5)
0.4(8)
-174.0(5)
-48.6(7)
129.4(5)
130.5(5)
-51.5(8)
150.8(5)
-27.0(9)
175.0(5)
-4.2(8)
-2.8(8)
178.0(5)
-176.0(5)
1.8(9)
6.0(9)
-176.2(5)
0.4(9)
178.4(6)


C18-C19-C23-C25
C20-C19-C23-C24
C18-C19-C23-C24
C20-C19-C23-C26
C18-C19-C23-C26
01-W1-C27-C28
02-W1-C27-C28
03-W1-C27-C28
C1-W1-C27-C28
W1-C27-C28-C30
W1-C27-C28-C29
W1-C27-C28-C31
C37-C32-C33-C34
C37-C32-C33-C38
C32-C33-C34-C35
C38-C33-C34-C35
C33-C34-C35-C36
C34-C35-C36-C37
C33-C32-C37-C36
C32-C37-C48-C53
C36-C37-C48-C53
C32-C37-C48-C49
C36-C37-C48-C49
W2-05-C49-C48
W2-05-C49-C50
C53-C48-C49-05
C37-C48-C49-05
C53-C48-C49-C50
C37-C48-C49-C50
05-C49-C50-C51
C48-C49-C50-C51
05-C49-C50-C54
C48-C49-C50-C54
C49-C50-C51-C52
C54-C50-C51-C52
C50-C51-C52-C53
C51-C52-C53-C48
C49-C48-C53-C52


-63.1(7)
-3.4(8)
175.9(5)
-120.5(6)
58.8(7)
-19.5(9)
151.6(8)
-120.2(8)
65.9(9)
2.7(12)
124.2(9)
-118.1(9)
3.3(8)
-178.6(5)
-1.2(7)
-179.3(5)
-1.1(8)
1.5(8)
-2.9(8)
-57.8(7)
116.5(6)
120.9(6)
-64.8(8)
-21.6(9)
154.4(5)
176.6(5)
-2.1(8)
0.6(8)
-178.0(5)
-175.7(5)
0.2(8)
4.9(8)
-179.1(6)
-1.0(9)
178.4(6)
0.8(11)
0.1(10)
-0.8(9)










Table B-12. Continued
Atoms Angle Atoms Angle


C40-C41-C42-C43
C41-C42-C43-C38
C39-C38-C43-C42
C33-C38-C43-C42
C41-C40-C44-C45
C39-C40-C44-C45
C41-C40-C44-C47
C39-C40-C44-C47
C41-C40-C44-C46
C39-C40-C44-C46
05-W2-C58-C59
06-W2-C58-C63
04-W2-C58-C63
C84-W2-C58-C63
05-W2-C58-C63
C63-C58-C59-C60
W2-C58-C59-C60
C63-C58-C59-C64
W2-C58-C59-C64
C58-C59-C60-C61
C64-C59-C60-C61
C59-C60-C61-C62
C60-C61-C62-C63
C61-C62-C63-C58
C61-C62-C63-C74
C59-C58-C63-C62
W2-C58-C63-C62
C59-C58-C63-C74
W2-C58-C63-C74
C58-C59-C64-C69
C60-C59-C64-C69
C58-C59-C64-C65
C60-C59-C64-C65
W2-04-C65-C64
W2-04-C65-C66
C69-C64-C65-04
C59-C64-C65-04
C69-C64-C65-C66


-1.5(9)
0.5(9)
1.7(8)
-179.2(5)
-116.3(7)
61.7(8)
3.8(9)
-178.3(6)
123.8(7)
-58.2(8)
91.7(6)
6.3(4)
-159.3(5)
105.5(5)
-77.2(6)
8.6(8)
-160.6(4)
-173.1(5)
17.6(8)
-2.4(9)
179.2(6)
-3.4(10)
2.8(11)
3.7(9)
-177.0(6)
-9.2(8)
159.7(4)
171.5(5)
-19.6(8)
152.9(6)
-28.8(8)
-29.4(9)
148.9(6)
39.8(8)
-141.2(5)
-179.2(5)
3.0(9)
1.9(10)


C37-C48-C53-C52
C51-C50-C54-C55
C49-C50-C54-C55
C51-C50-C54-C56
C49-C50-C54-C56
C51-C50-C54-C57
C49-C50-C54-C57
06-W2-C58-C59
04-W2-C58-C59
C84-W2-C58-C59
04-C65-C66-C67
C64-C65-C66-C67
04-C65-C66-C70
C64-C65-C66-C70
C65-C66-C67-C68
C70-C66-C67-C68
C66-C67-C68-C69
C67-C68-C69-C64
C65-C64-C69-C68
C59-C64-C69-C68
C65-C66-C70-C71
C67-C66-C70-C71
C65-C66-C70-C73
C67-C66-C70-C73
C65-C66-C70-C72
C67-C66-C70-C72
C62-C63-C74-C75
C58-C63-C74-C75
C62-C63-C74-C79
C58-C63-C74-C79
W2-06-C75-C74
W2-06-C75-C76
C79-C74-C75-06
C63-C74-C75-06
C79-C74-C75-C76
C63-C74-C75-C76
06-C75-C76-C77
C74-C75-C76-C77


177.9(5)
-118.7(7)
60.6(8)
0.3(9)
179.6(6)
117.8(7)
-62.9(9)
175.2(5)
9.5(5)
-85.6(5)
-180.0(5)
-1.1(9)
-0.1(9)
178.8(6)
0.3(10)
-179.6(7)
-0.4(12)
1.2(11)
-1.9(10)
175.9(7)
-177.9(6)
2.0(10)
-55.8(9)
124.1(7)
63.6(9)
-116.5(7)
-159.2(6)
20.2(9)
20.9(9)
-159.8(6)
-10.9(10)
167.6(5)
174.1(5)
-5.8(9)
-4.4(9)
175.7(6)
-177.7(5)
0.7(9)










Table B-12. Continued


Atoms


C59-C64-C65-C66
C74-C75-C76-C80
C75-C76-C77-C78
C80-C76-C77-C78
C76-C77-C78-C79
C77-C78-C79-C74
C75-C74-C79-C78
C63-C74-C79-C78
C77-C76-C80-C81
C75-C76-C80-C81
C77-C76-C80-C83
C75-C76-C80-C83
C77-C76-C80-C82
C75-C76-C80-C82
06-W2-C84-C85
04-W2-C84-C85
05-W2-C84-C85
C58-W2-C84-C85
W2-C84-C85-C86
W2-C84-C85-C87
W2-C84-C85-C88
06-C75-C76-C80


-175.9(6)
179.9(6)
2.3(10)
-176.9(7)
-1.4(11)
-2.6(11)
5.2(9)
-174.9(6)
116.0(7)
-63.1(8)
-120.1(7)
60.8(8)
-1.9(9)
179.0(6)
33.2(15)
-139.2(14)
130.1(14)
-51.4(15)
113.0(15)
-122.2(14)
-7.5(17)
1.5(9)


Angle












































Figure B-4. Molecular structure of { [BuOCO](CH3)3CCH=}W(i-tBuOCHO)W{=CHC(CH3)3-
[tBuOCO]} (5). Ellipsoids are shown at the 50% probability level; hydrogens are
omitted for clarity.









X-ray Experimental for {['BuOCO](CH3)3CCH=}W(tH-'BuOCHO)W{=CHC(CH3)3-
['BuOCO]} (5)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981

reflections (with I > 2ol) to yield R1 and wR2 of 4.85% and 9.19%, respectively. Refinement

was done using F2









Table B-13. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=)W(i-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5)
identification code pelo7t
empirical formula CssH10206W2
formula weight 1623.40
T(K) 173(2)
S(A) 0.71073
crystal system Monoclinic
Space group P2(1)/c
a(A) 12.8904(8)
b (A) 20.2444(13)
c(A) 29.2372(18)
a (deg) 90
/ (deg) 100.7990(10)
y (deg) 90
V(A3) 7494.6(8)
Z 4
pcalcd(g mm-3) 1.439
crystal size (mm) 0.16 x 0.04 x 0.04
abs coeff(mm-) 3.121
F(000) 3304
0 range for data collection (deg) 1.23 to 27.50
limiting indices -16 < h < 15, -26 < k < 26, -37 < 1 < 27
no. ofreflns called 50772
no. ofind reflns (Rint) 17182 (0.1065)
completeness to 0= 27.500 99.8 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 17182 / 0 / 865
R1, wR2 [I > 2a] 0.0485, 0.0919
R1, wR2 (all data) 0.1179, 0.1030
GOF on F2 0.849
largest diff. peak and hole (e.A-3) 1.315 and -0.693
R1 = (||Fol |Fcl|) / |Fol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [I[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[c2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.








Table B-14. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
103) for [tBuOCO](CH3)3CCH=}W(i-'BuOCHO)W{=CHC(CH3)3[BuOCO] } (5).
U(eq) is defined as one third of the trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
W1 2846(1) 5902(1) 3082(1) 23(1)
W2 1520(1) 7759(1) 4941(1) 25(1)
01 3158(3) 6825(2) 3077(2) 27(1)
02 2665(3) 5061(2) 3320(2) 24(1)
03 1352(4) 6134(2) 2974(2) 26(1)
04 2271(4) 8291(2) 4554(2) 29(1)
05 462(4) 7588(2) 4407(2) 26(1)
06 2685(4) 7592(2) 5399(2) 30(1)
C1 4361(5) 5841(3) 3525(2) 23(2)
C2 5149(5) 6305(3) 3458(2) 24(2)
C3 6111(6) 6317(3) 3763(2) 28(2)
C4 6329(5) 5883(4) 4128(2) 31(2)
C5 5606(6) 5423(4) 4193(2) 33(2)
C6 4603(6) 5382(3) 3904(2) 26(2)
C7 5002(6) 6810(3) 3089(2) 25(2)
C8 4009(6) 7100(3) 2937(2) 28(2)
C9 3849(6) 7671(4) 2653(2) 31(2)
C10 4751(6) 7872(4) 2484(3) 36(2)
C11 5719(6) 7557(4) 2592(3) 41(2)
C12 5838(6) 7049(3) 2897(2) 34(2)
C13 2798(6) 8024(4) 2512(3) 37(2)
C14 2196(8) 7689(5) 2083(4) 91(4)
C15 2967(7) 8762(4) 2393(3) 68(3)
C16 2128(7) 8053(4) 2892(3) 61(3)
C17 3891(5) 4840(3) 4002(2) 23(2)
C18 2982(5) 4651(3) 3694(2) 23(2)
C19 2358(5) 4096(3) 3748(2) 25(2)
C20 2677(6) 3756(3) 4159(3) 33(2)
C21 3528(6) 3946(3) 4489(3) 35(2)
C22 4134(6) 4472(4) 4416(2) 28(2)
C23 1402(6) 3866(3) 3393(2) 29(2)
C24 1695(8) 3729(5) 2928(3) 69(3)
C25 525(6) 4367(4) 3328(3) 53(2)
C26 934(6) 3233(4) 3548(3) 48(2)
C27 3327(5) 5737(3) 2521(2) 29(2)
C28 3869(6) 5225(4) 2265(3) 32(2)










Table B-14. Continued
Atom X Y Z U(eq)


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


4957(6)
3213(7)
4011(7)
2141(6)
1686(6)
2131(6)
3025(6)
3485(6)
3046(6)
660(5)
492(6)
-518(5)
-1325(6)
-1180(6)
-220(6)
-704(6)
-397(7)
-64(7)
-1867(6)
3520(5)
3095(5)
3488(6)
4339(6)
4783(6)
4379(6)
3044(7)
3169(10)
1884(7)
3606(8)
944(6)
-137(6)
-530(7)
105(8)
1116(7)
1569(6)
-896(6)
-592(6)
-1316(6)


5506(4)
5139(4)
4586(4)
6883(3)
6268(3)
5841(3)
6050(4)
6661(3)
7085(3)
6097(3)
6074(3)
5957(3)
5843(4)
5832(4)
5965(3)
5991(4)
6663(4)
5458(4)
5877(5)
7738(4)
8333(4)
8950(3)
8947(4)
8389(5)
7781(4)
9595(4)
9630(4)
9642(4)
10197(4)
6882(3)
6711(3)
6095(4)
5640(4)
5802(4)
6421(4)
7145(3)
7549(3)
7895(3)


2218(3)
1778(3)
2521(3)
3945(2)
3977(2)
4343(2)
4647(3)
4610(2)
4260(2)
3677(3)
3185(2)
2907(2)
3143(3)
3627(3)
3882(3)
2372(3)
2216(3)
2177(3)
2156(3)
4189(2)
4324(2)
4232(2)
4011(3)
3884(3)
3980(3)
4378(3)
4898(4)
4149(4)
4237(4)
5211(2)
5045(2)
5148(3)
5422(3)
5604(3)
5512(2)
4755(2)
4406(2)
4079(2)


50(2)
53(2)
50(2)
27(2)
25(2)
27(2)
35(2)
30(2)
23(2)
26(2)
23(2)
29(2)
40(2)
38(2)
33(2)
41(2)
56(3)
55(2)
72(3)
25(2)
24(2)
30(2)
43(2)
50(2)
40(2)
45(2)
101(4)
95(4)
79(3)
26(2)
31(2)
39(2)
52(2)
50(2)
34(2)
29(2)
23(2)
29(2)










Table B-14. Continued
Atom X Y Z U(eq)


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


-2365(6)
-2680(7)
-1978(7)
-1033(6)
-354(12)
-449(13)
-1956(8)
2683(6)
3228(6)
4250(6)
4745(7)
4244(7)
3243(7)
4807(6)
5885(7)
4987(7)
4151(7)
705(6)
486(6)
1161(7)
781(7)
-678(6)


7895(4)
7555(4)
7174(4)
8257(4)
7854(7)
8858(6)
8442(6)
6545(3)
7142(3)
7289(4)
6809(4)
6207(5)
6073(4)
7943(4)
7982(4)
8016(4)
8518(4)
8342(3)
8599(3)
8210(4)
9324(4)
8504(4)


4150(3)
4509(3)
4797(3)
3671(3)
3421(4)
3826(4)
3313(3)
5755(2)
5705(2)
5937(3)
6231(3)
6283(3)
6054(3)
5880(3)
6206(3)
5389(3)
6006(3)
5232(2)
5692(2)
6097(3)
5740(3)
5703(3)


46(2)
47(2)
47(2)
37(2)
181(9)
188(9)
91(4)
29(2)
31(2)
38(2)
44(2)
53(3)
46(2)
38(2)
63(3)
48(2)
55(3)
28(2)
32(2)
49(2)
55(3)
51(2)









Table B-15. Bond lengths (in A) for {[tBuOCO](CH3)3CCH
W{=CHC(CH3)3[tBuOCO] (5)


}W(I-tBu0CHO)-


Bond Length Bond Length


W1-02
W1-C27
W1-01
W1-03
W1-C1
W2-06
W2-C84
W2-05
W2-04
W2-C58
01-C8
02-C18
03-C39
04-C49
05-C65
06-C75
C1-C2
C1-C6
C2-C3
C2-C7
C3-C4
C4-C5
C5-C6
C6-C17
C7-C12
C7-C8
C34-C35
C35-C36
C36-C37
C37-C48
C38-C43
C38-C39
C39-C40
C40-C41
C40-C44
C41-C42
C42-C43


1.870(4)
1.887(7)
1.914(4)
1.950(5)
2.135(7)
1.846(5)
1.885(6)
1.903(5)
1.948(4)
2.131(7)
1.360(7)
1.374(7)
1.371(7)
1.363(7)
1.361(8)
1.373(8)
1.424(9)
1.437(9)
1.385(9)
1.473(9)
1.372(9)
1.356(9)
1.408(9)
1.493(9)
1.393(9)
1.402(10)
1.382(10)
1.383(9)
1.375(9)
1.487(9)
1.404(9)
1.414(9)
1.420(9)
1.373(9)
1.539(10)
1.392(10)
1.345(10)


C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C14
C13-C16
C13-C15
C17-C18
C17-C22
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C25
C23-C24
C23-C26
C27-C28
C28-C31
C28-C30
C28-C29
C32-C33
C32-C37
C33-C34
C33-C38
C61-C62
C60-C61
C62-C63
C63-C74
C64-C65
C64-C69
C65-C66
C66-C67
C66-C70
C67-C68
C68-C69


1.414(9)
1.407(9)
1.519(10)
1.384(10)
1.351(9)
1.508(11)
1.531(10)
1.558(10)
1.391(9)
1.403(9)
1.406(9)
1.380(9)
1.526(10)
1.372(10)
1.363(9)
1.504(10)
1.505(10)
1.519(9)
1.522(9)
1.489(9)
1.522(10)
1.544(10)
1.388(9)
1.403(9)
1.411(9)
1.484(10)
1.352(11)
1.383(11)
1.430(10)
1.498(10)
1.417(9)
1.425(10)
1.395(9)
1.405(10)
1.501(10)
1.378(10)
1.356(11)










Table B-15.
Bond


Continued
Length


C44-C45
C44-C46
C44-C47
C48-C53
C48-C49
C49-C50
C50-C51
C50-C54
C51-C52
C52-C53
C54-C55
C54-C57
C54-C56
C58-C63
C58-C59
C59-C60
C59-C64
C70-C72
C70-C73
C70-C71
C74-C79
C74-C75
C75-C76
C76-C77
C76-C80
C77-C78
C78-C79
C80-C82
C80-C83
C80-C81
C84-C85
C85-C87
C85-C88
C85-C86


1.511(10)
1.531(10)
1.531(10)
1.364(9)
1.410(9)
1.392(9)
1.373(10)
1.519(10)
1.350(10)
1.386(10)
1.501(12)
1.514(10)
1.523(12)
1.424(9)
1.429(10)
1.400(9)
1.463(10)
1.458(12)
1.479(11)
1.484(11)
1.401(10)
1.420(10)
1.396(10)
1.373(10)
1.530(11)
1.401(11)
1.365(11)
1.502(10)
1.525(10)
1.532(11)
1.517(9)
1.517(10)
1.520(10)
1.547(10)









Table B-16. Bond angles (in deg) for { [BuOCO](CH3)3CCH=)W(p-'BuOCHO)
W{=CHC(CH3)3 [BuOCO]} (5)
Bond Angle Bond Angle


02-W1-C27
02-W1-01
C27-W1-01
02-W1-03
C27-W1-03
01-W1-03
02-W1-C1
C27-W1-C1
01-W1-C1
03-W1-C1
06-W2-C84
06-W2-05
C84-W2-05
06-W2-04
C84-W2-04
05-W2-04
06-W2-C58
C84-W2-C58
05-W2-C58
04-W2-C58
C8-01-W1
C18-02-W1
C39-03-W1
C49-04-W2
C65-05-W2
C75-06-W2
C9-C13-C16
C14-C13-C15
C9-C13-C15
C16-C13-C15
C18-C17-C22
C18-C17-C6
C22-C17-C6
02-C18-C17
02-C18-C19
C17-C18-C19
C20-C19-C18


104.3(2)
158.92(19)
93.6(2)
95.21(18)
112.2(2)
88.04(18)
83.4(2)
96.0(3)
83.7(2)
151.1(2)
103.6(3)
157.29(18)
96.3(3)
95.6(2)
107.1(2)
88.90(18)
82.6(2)
95.4(3)
84.6(2)
157.2(2)
125.7(4)
143.9(4)
139.8(4)
147.1(4)
125.0(4)
147.2(5)
114.6(6)
108.5(7)
110.9(7)
104.4(7)
115.9(6)
123.5(6)
120.6(6)
116.0(6)
118.7(6)
125.3(6)
114.3(6)


C2-C1-C6
C2-C1-W1
C6-C1-W1
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C5-C4-C3
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C7
01-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C14-C13-C9
C14-C13-C16
C33-C32-C37
C32-C33-C34
C32-C33-C38
C34-C33-C38
C35-C34-C33
C36-C35-C34
C37-C36-C35
C36-C37-C32
C36-C37-C48
C32-C37-C48
C43-C38-C39


118.4(6)
118.3(5)
123.2(5)
120.0(6)
115.8(6)
124.1(6)
121.2(7)
120.2(7)
122.4(7)
117.8(7)
117.2(7)
124.9(6)
117.2(7)
122.2(7)
120.5(6)
118.2(6)
118.3(7)
123.5(6)
113.8(7)
121.4(7)
124.6(7)
123.7(7)
119.2(7)
121.9(8)
107.9(7)
110.4(8)
121.8(7)
118.8(7)
120.7(6)
119.8(6)
118.2(7)
122.8(7)
119.5(7)
118.8(7)
122.4(6)
118.7(6)
116.5(7)










Table B-16. Continued
Bond Angle Bond Angle


C20-C19-C23
C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C24
C25-C23-C26
C24-C23-C26
C25-C23-C19
C24-C23-C19
C26-C23-C19
C28-C27-W1
C31-C28-C27
C31-C28-C30
C27-C28-C30
C31-C28-C29
C27-C28-C29
C30-C28-C29
C53-C48-C37
C49-C48-C37
04-C49-C50
04-C49-C48
C50-C49-C48
C51-C50-C49
C51-C50-C54
C49-C50-C54
C52-C51-C50
C51-C52-C53
C48-C53-C52
C55-C54-C57
C55-C54-C50
C57-C54-C50
C55-C54-C56
C57-C54-C56
C50-C54-C56
C63-C58-C59
C63-C58-W2
C59-C58-W2


120.7(6)
125.1(6)
122.8(7)
121.0(7)
120.5(7)
108.6(7)
106.0(6)
107.2(6)
111.8(6)
111.2(6)
111.8(6)
143.5(5)
111.6(6)
111.4(7)
108.2(6)
109.7(7)
107.6(6)
108.3(6)
120.6(7)
122.0(6)
119.7(6)
117.7(6)
122.6(6)
116.0(7)
120.8(7)
123.2(6)
123.4(7)
119.4(7)
121.1(8)
105.7(8)
110.6(7)
113.0(7)
110.7(8)
108.0(7)
108.7(7)
117.0(7)
125.3(6)
117.5(5)


C43-C38-C33
C39-C38-C33
03-C39-C38
03-C39-C40
C38-C39-C40
C41-C40-C39
C41-C40-C44
C39-C40-C44
C40-C41-C42
C43-C42-C41
C42-C43-C38
C45-C44-C46
C45-C44-C47
C46-C44-C47
C45-C44-C40
C46-C44-C40
C47-C44-C40
C53-C48-C49
C65-C64-C69
C65-C64-C59
C69-C64-C59
05-C65-C66
05-C65-C64
C66-C65-C64
C65-C66-C67
C65-C66-C70
C67-C66-C70
C68-C67-C66
C69-C68-C67
C68-C69-C64
C72-C70-C73
C72-C70-C71
C73-C70-C71
C72-C70-C66
C73-C70-C66
C71-C70-C66
C79-C74-C75
C79-C74-C63


119.6(7)
123.9(6)
118.2(6)
119.3(6)
122.5(6)
116.1(7)
122.1(7)
121.8(6)
123.0(7)
119.5(7)
122.3(7)
109.4(7)
107.7(7)
107.1(7)
110.2(6)
110.8(6)
111.5(6)
117.4(7)
116.4(7)
121.3(7)
122.3(7)
120.7(6)
116.3(6)
123.0(7)
115.9(7)
124.0(7)
120.1(7)
122.7(8)
120.0(8)
121.4(7)
108.0(9)
107.1(11)
105.1(8)
110.4(7)
113.7(7)
112.1(7)
115.9(7)
121.3(7)









Table B-16. Continued


Bond Angle

C60-C59-C58 120.8(7)
C60-C59-C64 115.5(7)
C58-C59-C64 123.7(6)
C61-C60-C59 121.2(8)
C62-C61-C60 119.3(8)
C61-C62-C63 122.4(8)
C58-C63-C62 119.1(8)
C58-C63-C74 124.4(7)
C62-C63-C74 116.5(7)
C78-C79-C74 120.1(8)
C82-C80-C83 110.4(7)
C82-C80-C76 110.4(6)
C83-C80-C76 109.9(6)
C82-C80-C81 107.8(7)
C83-C80-C81 106.8(7)
C76-C80-C81 111.5(7)
C85-C84-W2 145.7(6)
C87-C85-C84 109.1(6)
C87-C85-C88 110.6(7)
C84-C85-C88 108.9(6)
C87-C85-C86 109.1(7)
C84-C85-C86 109.5(6)
C88-C85-C86 109.6(6)
C75-C76-C80 123.4(7)
C76-C77-C78 121.0(8)
C79-C78-C77 122.1(8)
C75-C74-C63 122.8(7)
06-C75-C76 119.6(7)
06-C75-C74 115.4(7)
C76-C75-C74 124.9(7)
C77-C76-C75 116.0(8)
C77-C76-C80 120.6(8)










Table B-17. Anisotropic displacement parameters (A2x 103) for {[BuOCO](CH3)3CCH=}W(p-
tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5). The anisotropic displacement factor
2 11 1i
exponent takes the form: -27r2[ h a*U + ... + 2 h k a* b* U 12].
Atom U11 U22 U33 U23 U13 U12


Wl
W2
01
02
03
04
05
06
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28


23(1)
34(1)
24(3)
31(3)
26(3)
37(3)
35(3)
40(3)
27(4)
24(4)
27(5)
23(4)
36(5)
31(5)
30(5)
36(5)
33(5)
43(5)
33(5)
36(5)
33(5)
67(8)
69(7)
58(7)
25(4)
25(4)
26(4)
34(5)
48(5)
28(4)
34(5)
87(8)
45(6)
52(6)
31(4)
40(5)


23(1)
18(1)
22(3)
22(3)
30(3)
21(3)
21(3)
19(3)
19(4)
24(4)
26(4)
40(5)
40(5)
23(4)
20(4)
17(4)
31(5)
26(5)
47(5)
32(5)
39(5)
93(9)
37(6)
62(6)
19(4)
24(4)
21(4)
25(4)
31(5)
36(5)
25(4)
82(7)
47(6)
36(5)
21(4)
31(5)


23(1)
23(1)
37(3)
18(3)
22(3)
30(3)
23(3)
32(3)
25(4)
24(4)
33(5)
27(5)
22(4)
24(4)
29(5)
33(5)
28(5)
36(5)
44(6)
34(5)
37(5)
91(9)
103(8)
69(7)
26(4)
19(4)
26(4)
41(5)
23(5)
17(4)
27(5)
42(6)
60(7)
53(6)
31(5)
25(5)


2(1)
0(1)
5(2)
2(2)
-1(2)
1(2)
5(2)
-2(2)
-7(3)
-6(3)
-2(4)
3(4)
0(4)
-8(3)
-2(3)
-1(3)
1(4)
1(4)
12(4)
2(4)
6(4)
-20(7)
39(5)
32(5)
-1(3)
1(3)
1(4)
12(4)
12(3)
3(3)
-2(3)
-31(5)
-1(5)
6(4)
5(3)
3(4)


4(1)
7(1)
7(2)
2(2)
5(2)
9(2)
11(2)
5(2)
10(3)
6(3)
8(4)
-4(3)
3(4)
7(4)
11(4)
12(4)
0(4)
1(4)
12(4)
6(4)
0(4)
-41(6)
27(6)
26(5)
4(3)
7(3)
4(3)
12(4)
2(4)
-3(3)
2(4)
23(6)
-9(5)
0(5)
-1(3)
8(4)


-2(1)
1(1)
-1(2)
-1(2)
-6(2)
-4(2)
-1(2)
1(2)
-2(3)
-1(3)
0(3)
-5(4)
7(4)
6(4)
-7(3)
-10(3)
-7(4)
-7(4)
-10(4)
-3(4)
-3(4)
26(7)
14(5)
33(5)
8(3)
5(3)
3(4)
-10(4)
-3(4)
0(4)
-7(4)
-40(6)
-15(5)
-13(4)
-7(3)
-2(4)










Table B-17. Continued
Atom U11 U22 U33 U23 U13 U12


C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66


42(6)
68(7)
66(7)
25(4)
29(4)
38(5)
37(5)
33(5)
26(4)
26(4)
32(4)
22(4)
32(5)
32(5)
37(5)
31(5)
64(7)
51(6)
36(6)
24(4)
18(4)
32(5)
36(5)
26(5)
30(5)
50(6)
179(13)
53(7)
91(9)
44(5)
49(5)
58(6)
73(7)
63(7)
54(6)
37(5)
33(5)
24(4)


53(6)
47(6)
39(5)
26(4)
27(4)
24(4)
42(5)
26(4)
25(4)
14(4)
13(4)
28(4)
45(5)
34(5)
29(5)
53(6)
66(7)
68(7)
127(9)
30(4)
37(5)
26(5)
34(5)
67(7)
46(5)
14(4)
32(6)
33(6)
23(5)
20(4)
29(4)
34(5)
30(5)
44(6)
26(4)
30(5)
20(4)
32(5)


60(6)
45(6)
51(6)
29(5)
21(4)
20(4)
24(5)
29(5)
18(4)
37(5)
24(4)
36(5)
43(6)
55(6)
34(5)
37(5)
33(5)
43(6)
46(6)
18(4)
16(4)
31(5)
60(6)
62(6)
41(5)
74(7)
103(10)
194(13)
123(10)
17(4)
17(4)
28(5)
53(6)
42(6)
27(5)
18(4)
16(4)
28(5)


-5(5)
-14(4)
2(4)
-3(3)
-4(3)
3(3)
3(4)
-11(4)
-9(3)
4(3)
1(3)
2(4)
13(4)
12(4)
2(4)
-1(4)
30(5)
-14(5)
16(6)
-9(3)
1(3)
2(3)
6(4)
5(5)
-10(4)
7(4)
-29(6)
23(7)
15(5)
1(3)
-3(3)
2(4)
5(4)
17(4)
8(4)
-3(3)
-4(3)
-7(3)


22(5)
13(5)
22(5)
0(4)
10(3)
7(4)
0(4)
0(4)
1(3)
6(4)
8(3)
4(3)
5(4)
22(4)
12(4)
1(4)
0(5)
6(5)
-9(4)
-1(3)
-1(3)
3(4)
11(4)
18(4)
1(4)
16(5)
56(9)
12(8)
19(7)
10(4)
13(4)
12(4)
11(5)
4(5)
21(4)
3(3)
5(3)
-6(4)


-1(5)
-5(5)
17(5)
11(3)
1(3)
10(4)
13(4)
2(4)
4(3)
3(3)
1(3)
2(4)
2(4)
5(4)
7(4)
0(4)
4(5)
-3(5)
-1(6)
2(4)
3(3)
-6(4)
-6(4)
-12(5)
4(4)
-7(4)
-15(7)
19(5)
-12(5)
14(4)
-6(4)
-18(4)
-13(5)
-2(5)
3(4)
-8(4)
1(3)
0(4)










Table B-17. Continued
Atom U11 U22 U33 U23 U13 U12


C67
C68
C69
C70
C71
C72
C73
C74
C75
C76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
C87
C88


40(6)
30(5)
53(6)
47(5)
244(18)
350(20)
67(8)
40(5)
48(5)
42(5)
50(6)
56(7)
65(7)
37(5)
57(7)
56(6)
58(6)
37(5)
45(5)
65(6)
80(7)
56(6)


61(6)
67(6)
55(6)
37(5)
223(16)
128(12)
149(11)
27(4)
21(4)
39(5)
51(6)
76(7)
30(5)
42(5)
73(7)
40(5)
43(6)
20(4)
22(4)
56(6)
41(5)
59(6)


31(5)
40(6)
35(5)
25(5)
119(11)
53(8)
54(7)
22(4)
24(4)
30(5)
30(5)
25(5)
42(6)
33(5)
49(6)
48(6)
67(7)
27(5)
28(5)
28(5)
48(6)
42(6)


-2(4)
-1(5)
-4(5)
9(4)
131(11)
47(8)
45(7)
-3(3)
-3(3)
-3(4)
-8(4)
3(5)
4(4)
-5(4)
-11(5)
-5(4)
-31(5)
3(3)
0(4)
-9(4)
-14(4)
0(5)


-9(4)
1(4)
16(5)
3(4)
144(12)
-57(10)
5(6)
12(4)
11(4)
2(4)
2(4)
2(5)
11(5)
-1(4)
-14(5)
10(5)
16(5)
7(4)
10(4)
13(4)
20(5)
22(5)


5(5)
-4(5)
-24(5)
10(4)
199(15)
-179(14)
12(8)
12(4)
12(4)
11(4)
10(5)
36(6)
12(5)
-6(4)
-12(5)
-7(4)
-2(5)
4(3)
6(4)
14(5)
0(5)
11(5)









Table B-18. Torsion angles (in deg) for { [BuOCO](CH3)3CCH=
W =CHC(CH3)3[tBuOCO]C (5)


}W(i-tBuOCHO)


Atoms Angle Atoms Angle


02-W1-01-C8
C27-W1-O1-C8
03-W1-01-C8
C1-W1-O1-C8
C27-W1-02-C18
01-W1-02-C18
03-W1-02-C18
C1-W1-02-C18
02-W1-03-C39
C27-W1-03-C39
01-W1-03-C39
C1-W1-03-C39
06-W2-04-C49
C84-W2-04-C49
05-W2-04-C49
C58-W2-04-C49
06-W2-05-C65
C84-W2-05-C65
04-W2-05-C65
C58-W2-05-C65
C84-W2-06-C75
05-W2-06-C75
04-W2-06-C75
C58-W2-06-C75
02-W1-C1-C2
C27-W1-C1-C2
01-W1-C1-C2
C12-C7-C8-C9
C2-C7-C8-C9
01-C8-C9-C10
C7-C8-C9-C10
01-C8-C9-C13
C7-C8-C9-C13
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7


110.8(6)
-37.7(6)
-149.8(5)
58.0(5)
120.3(7)
-27.1(10)
-125.2(7)
25.7(7)
41.0(6)
148.8(6)
-118.1(6)
-44.8(8)
54.1(8)
160.2(8)
-103.6(8)
-30.2(12)
115.8(6)
-35.2(5)
-142.3(5)
59.7(5)
110.4(8)
-39.8(11)
-140.4(8)
16.7(8)
165.8(5)
62.0(5)
-31.0(5)
-9.0(10)
167.3(6)
-173.1(6)
8.3(10)
3.3(10)
-175.3(7)
-1.8(11)
-178.3(7)
-3.7(12)
3.2(12)


03-W1-C1-C2
02-W1-C1-C6
C27-W1-C1-C6
01-W1-C1-C6
03-W1-C1-C6
C6-C1-C2-C3
W1-C1-C2-C3
C6-C1-C2-C7
W1-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
W1-C1-C6-C5
C2-C1-C6-C17
W1-C1-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
W1-01-C8-C7
W1-01-C8-C9
C12-C7-C8-01
C2-C7-C8-01
C17-C18-C19-C20
02-C18-C19-C23
C17-C18-C19-C23
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25


-105.3(6)
-18.1(5)
-121.9(5)
145.1(5)
70.8(7)
-1.6(9)
174.6(5)
-179.0(6)
-2.7(8)
0.7(10)
178.2(6)
1.3(11)
-2.2(11)
1.2(10)
178.2(6)
0.8(9)
-175.3(5)
-176.0(6)
7.9(9)
31.8(9)
-150.8(7)
-144.3(7)
33.1(10)
-44.8(8)
136.5(5)
172.4(6)
-11.3(10)
4.1(10)
6.8(10)
-175.8(6)
0.4(10)
-179.7(7)
-2.8(12)
1.0(11)
3.1(10)
-175.0(6)
116.2(7)










Table B-18. Continued
Atoms

C8-C7-C12-C11
C2-C7-C12-C11
C10-C9-C13-C14
C8-C9-C13-C14
C10-C9-C13-C16
C8-C9-C13-C16
C10-C9-C13-C15
C8-C9-C13-C15
C5-C6-C17-C18
C1-C6-C17-C18
C5-C6-C17-C22
C1-C6-C17-C22
W1-02-C18-C17
W1-02-C18-C19
C22-C17-C18-02
C6-C17-C18-02
C22-C17-C18-C19
C6-C17-C18-C19
02-C18-C19-C20
C35-C36-C37-C48
C33-C32-C37-C36
C33-C32-C37-C48
C32-C33-C38-C43
C34-C33-C38-C43
C32-C33-C38-C39
C34-C33-C38-C39
W1-03-C39-C38
W1-03-C39-C40
C43-C38-C39-03
C33-C38-C39-03
C43-C38-C39-C40
C33-C38-C39-C40
03-C39-C40-C41
C38-C39-C40-C41
03-C39-C40-C44
C38-C39-C40-C44
C39-C40-C41-C42
C44-C40-C41-C42


Angle

2.9(11)
-173.3(7)
90.4(9)
-85.7(9)
-146.1(7)
37.8(11)
-28.3(10)
155.6(7)
-166.0(6)
10.8(10)
11.9(9)
-171.4(6)
-14.9(10)
162.7(5)
171.7(5)
-10.4(9)
-5.8(10)
172.2(6)
-173.3(6)
-177.7(6)
-0.6(10)
176.9(6)
-116.4(7)
54.4(9)
61.9(9)
-127.4(7)
33.5(9)
-143.2(6)
-173.5(6)
8.2(9)
3.2(9)
-175.2(6)
174.2(6)
-2.4(10)
-8.6(10)
174.8(6)
-0.7(11)
-177.9(7)


Atoms Angle


C18-C19-C23-C25
C20-C19-C23-C24
C18-C19-C23-C24
C20-C19-C23-C26
C18-C19-C23-C26
02-W1-C27-C28
01-W1-C27-C28
03-W1-C27-C28
C1-W1-C27-C28
W1-C27-C28-C31
W1-C27-C28-C30
W1-C27-C28-C29
C37-C32-C33-C34
C37-C32-C33-C38
C32-C33-C34-C35
C38-C33-C34-C35
C33-C34-C35-C36
C34-C35-C36-C37
C35-C36-C37-C32
C36-C37-C48-C53
C32-C37-C48-C53
C36-C37-C48-C49
C32-C37-C48-C49
W2-04-C49-C50
W2-04-C49-C48
C53-C48-C49-04
C37-C48-C49-04
C53-C48-C49-C50
C37-C48-C49-C50
04-C49-C50-C51
C48-C49-C50-C51
04-C49-C50-C54
C48-C49-C50-C54
C49-C50-C51-C52
C54-C50-C51-C52
C50-C51-C52-C53
C49-C48-C53-C52
C37-C48-C53-C52


-63.9(9)
-122.2(8)
57.7(9)
-2.5(9)
177.4(6)
-22.5(9)
146.3(9)
-124.3(8)
62.2(9)
7.3(12)
130.2(8)
-113.0(8)
1.8(10)
172.6(6)
-2.0(10)
-172.9(6)
1.1(10)
0.1(11)
-0.4(10)
77.8(9)
-99.6(8)
-103.6(8)
79.0(8)
-156.0(6)
23.8(11)
-176.8(6)
4.6(9)
3.0(10)
-175.6(7)
178.1(7)
-1.6(11)
0.3(11)
-179.5(7)
0.3(12)
178.2(8)
-0.5(13)
-3.1(11)
175.5(7)










Table B-18. Continued


Atoms


C40-C41-C42-C43
C41-C42-C43-C38
C39-C38-C43-C42
C33-C38-C43-C42
C41-C40-C44-C45
C39-C40-C44-C45
C41-C40-C44-C46
C39-C40-C44-C46
C41-C40-C44-C47
C39-C40-C44-C47
04-W2-C58-C63
06-W2-C58-C59
C84-W2-C58-C59
05-W2-C58-C59
04-W2-C58-C59
C63-C58-C59-C60
W2-C58-C59-C60
C63-C58-C59-C64
W2-C58-C59-C64
C58-C59-C60-C61
C64-C59-C60-C61
C59-C60-C61-C62
C60-C61-C62-C63
C59-C58-C63-C62
W2-C58-C63-C62
C59-C58-C63-C74
W2-C58-C63-C74
C61-C62-C63-C58
C61-C62-C63-C74
C60-C59-C64-C65
C58-C59-C64-C65
C60-C59-C64-C69
C58-C59-C64-C69
W2-05-C65-C66
W2-05-C65-C64
C69-C64-C65-05
C59-C64-C65-05
C69-C64-C65-C66


Angle

2.8(12)
-2.0(12)
-0.9(10)
177.5(7)
119.1(8)
-58.0(9)
-119.7(8)
63.3(9)
-0.5(11)
-177.5(7)
72.4(9)
171.3(5)
68.2(5)
-27.6(5)
-101.8(7)
-4.6(10)
170.1(5)
176.5(6)
-8.8(9)
1.4(11)
-179.6(7)
2.0(12)
-2.1(13)
4.4(10)
-169.8(5)
-173.9(6)
11.9(10)
-1.2(12)
177.2(8)
-141.7(7)
37.2(10)
36.6(10)
-144.4(7)
131.2(5)
-48.4(7)
171.5(6)
-10.0(9)
-8.0(10)


Atoms


C51-C52-C53-C48
C51-C50-C54-C55
C49-C50-C54-C55
C51-C50-C54-C57
C49-C50-C54-C57
C51-C50-C54-C56
C49-C50-C54-C56
06-W2-C58-C63
C84-W2-C58-C63
05-W2-C58-C63
05-C65-C66-C67
C64-C65-C66-C67
05-C65-C66-C70
C64-C65-C66-C70
C65-C66-C67-C68
C70-C66-C67-C68
C66-C67-C68-C69
C67-C68-C69-C64
C65-C64-C69-C68
C59-C64-C69-C68
C65-C66-C70-C72
C67-C66-C70-C72
C65-C66-C70-C73
C67-C66-C70-C73
C65-C66-C70-C71
C67-C66-C70-C71
C58-C63-C74-C79
C62-C63-C74-C79
C58-C63-C74-C75
C62-C63-C74-C75
W2-06-C75-C76
W2-06-C75-C74
C79-C74-C75-06
C63-C74-C75-06
C79-C74-C75-C76
C63-C74-C75-C76
06-C75-C76-C77
C74-C75-C76-C77


Angle

1.9(12)
-116.1(9)
61.7(10)
2.3(11)
-180.0(8)
122.2(9)
-60.0(10)
-14.6(6)
-117.6(6)
146.6(6)
-171.3(6)
8.2(10)
8.5(10)
-172.0(7)
-2.3(11)
177.9(7)
-3.5(13)
3.7(13)
1.8(11)
-176.6(7)
-72.9(11)
106.8(11)
165.5(8)
-14.7(11)
46.4(12)
-133.8(10)
178.7(7)
0.3(10)
-0.3(10)
-178.7(6)
169.2(6)
-10.2(11)
177.9(6)
-3.1(9)
-1.4(10)
177.6(7)
-179.1(6)
0.2(11)










Table B-18. Continued


Atoms


C59-C64-C65-C66
C74-C75-C76-C80
C75-C76-C77-C78
C80-C76-C77-C78
C76-C77-C78-C79
C77-C78-C79-C74
C75-C74-C79-C78
C63-C74-C79-C78
C77-C76-C80-C82
C75-C76-C80-C82
C77-C76-C80-C83
C75-C76-C80-C83
C77-C76-C80-C81
C75-C76-C80-C81
06-W2-C84-C85
05-W2-C84-C85
04-W2-C84-C85
C58-W2-C84-C85
W2-C84-C85-C87
W2-C84-C85-C88
W2-C84-C85-C86
C63-C74-C75-06
06-C75-C76-C80


170.4(6)
-179.1(6)
1.1(11)
-179.5(7)
-1.3(12)
0.0(12)
1.2(11)
-177.8(7)
116.0(8)
-64.7(9)
-121.9(8)
57.4(10)
-3.7(10)
175.6(7)
-20.8(9)
148.1(9)
-121.1(9)
62.9(9)
115.2(9)
-124.0(9)
-4.2(12)
-3.1(9)
1.6(11)


Angle










C30


C28


C1701 CI C16
C 17 C26 Cl j -W

C18 C26 C15
C22
C23
C24

C21 C20

C25


Figure B-5. Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)20}]n (6). Ellipsoids are shown at
50% probability level. Benzene and hydrogens omitted for clarity.









X-ray Experimental for [('BuOCHO)Mg{O(CH2CH2)20}]n (6)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981

reflections (with I > 2ol) to yield R1 and wR2 of 4.85% and 9.19%, respectively. Refinement

was done using F2








Table B-19. Crystal data, structure solution, and refinement for [(tBuOCHO)Mg-
{O(CH2CH2)20}]n (6)
identification code pelol 1
empirical formula C35H4305Mg
formula weight 568.00
T(K) 173(2)
X (A) 0.71073
crystal system Triclinic
Space group P-1
a (A) 9.9603(13)
b (A) 13.3947(16)
c(A) 13.4559(13)
a (deg) 69.908(2)
/ (deg) 70.504(2)
y(deg) 72.835(2)
V(A3) 1555.9(3)
Z 2
Pcalcd(g mm-3) 1.212
crystal size (mm) 0.34 x 0.09 x 0.05
abs coeff (mm-1) 0.097
F(000) 610
0 range for data collection (deg) 1.67 to 27.50
limiting indices -12 < h < 12, -14 < k < 17, -17 <1 < 15
no. ofreflns collcd 10652
no. of ind reflns (Rint) 6970 (0.0470)
completeness to 0= 27.500 97.7 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 6970 / 0 / 370
R1, wR2 [I > 2a] 0.0578, 0.1432
R1, wR2 (all data) 0.1128, 0.1642
GOF on F2 0.933
largest diff peak and hole (e.A-3) 0.628 and -0.620
R1 =- (||Fo|- |Fc||) / |lFol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [I[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[c2(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.








Table B-20. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
103) for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6). U(eq) is defined as one third of the
trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
Mgl 8144(1) 5557(1) 3134(1) 33(1)
01 9182(2) 4320(1) 2634(1) 32(1)
02 8222(2) 7031(1) 2822(1) 30(1)
03 8968(3) 5057(2) 4474(2) 73(1)
04 6137(2) 5303(1) 4111(2) 62(1)
C1 7349(3) 6171(2) 1434(2) 28(1)
C2 6313(3) 7104(2) 1605(2) 31(1)
C3 4855(3) 7085(2) 1785(2) 43(1)
C4 4479(3) 6164(2) 1780(3) 51(1)
C5 5512(3) 5244(2) 1650(2) 44(1)
C6 6978(3) 5226(2) 1470(2) 32(1)
C7 6783(2) 8076(2) 1561(2) 28(1)
C8 7816(2) 7974(2) 2118(2) 25(1)
C9 8382(2) 8903(2) 1940(2) 28(1)
C10 7806(3) 9888(2) 1284(2) 34(1)
C11 6721(3) 9995(2) 804(2) 39(1)
C12 6229(3) 9089(2) 936(2) 34(1)
C13 9551(3) 8832(2) 2485(2) 32(1)
C14 8865(3) 8666(2) 3723(2) 38(1)
C15 10855(3) 7909(2) 2270(2) 38(1)
C16 10160(3) 9876(2) 2051(2) 47(1)
C17 8143(3) 4263(2) 1294(2) 29(1)
C18 9269(3) 3895(2) 1842(2) 28(1)
C19 10454(3) 3054(2) 1553(2) 30(1)
C20 10385(3) 2568(2) 811(2) 34(1)
C21 9244(3) 2881(2) 334(2) 37(1)
C22 8140(3) 3733(2) 566(2) 36(1)
C23 11753(3) 2658(2) 2065(2) 34(1)
C24 12389(3) 3620(2) 1955(2) 44(1)
C25 13006(3) 1878(2) 1514(2) 48(1)
C26 11246(3) 2026(2) 3274(2) 40(1)
C27 10015(5) 4060(2) 4786(3) 73(1)
C28 8620(5) 5695(2) 5234(3) 74(1)
C29 5789(5) 4249(3) 4473(4) 156(3)
C30 4957(4) 6083(2) 4570(3) 107(2)
C31 7419(3) 1690(2) 3952(3) 55(1)









Table B-20. Continued
Atom X Y Z U(eq)
C32 7643(3) 1291(2) 4981(3) 57(1)
C33 6531(3) 958(2) 5875(3) 55(1)
C34 5205(3) 1029(2) 5733(3) 56(1)
C35 4986(3) 1415(3) 4706(3) 61(1)
C36 6099(4) 1756(2) 3804(3) 59(1)









Table B-21. Bond lengths (in A) for [(tBuOCHO)Mg{O(CH2CH2)20}]n (6)
Bond Length Bond Length
Mgl-01 1.8857(17) C11-C12 1.375(3)
Mgl-02 1.8915(17) C13-C15 1.532(3)
Mgl-04 2.044(2) C13-C14 1.539(3)
Mgl-03 2.050(2) C13-C16 1.539(3)
Mgl-C1 2.464(2) C17-C22 1.394(3)
01-C18 1.340(3) C17-C18 1.422(3)
02-C8 1.338(3) C18-C19 1.422(3)
03-C28 1.445(3) C19-C20 1.394(3)
03-C27 1.461(3) C19-C23 1.538(3)
04-C29 1.432(4) C20-C21 1.379(3)
04-C30 1.445(3) C21-C22 1.372(3)
C1-C2 1.399(3) C23-C25 1.530(3)
C1-C6 1.401(3) C23-C24 1.541(3)
C2-C3 1.396(3) C23-C26 1.542(3)
C2-C7 1.485(3) C27-C28#1 1.480(5)
C3-C4 1.393(3) C28-C27#1 1.480(5)
C4-C5 1.375(4) C29-C30#2 1.254(5)
C5-C6 1.392(3) C30-C29#2 1.254(5)
C6-C17 1.487(3) C31-C36 1.368(4)
C7-C12 1.391(3) C31-C32 1.371(4)
C7-C8 1.414(3) C32-C33 1.381(4)
C8-C9 1.430(3) C33-C34 1.368(4)
C9-C10 1.393(3) C34-C35 1.368(4)
C9-C13 1.535(3) C35-C36 1.390(4)
C10-C11 1.384(3)
Symmetry transformations used to generate equivalent atoms:
#1 -x+2,-y+1,-z+1 #2 -x+1,-y+1,-z+1









Table B-22. Bond angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)20}ln (6)


Bond


01-Mgl-02
01-Mgl-04
02-Mgl-04
01-Mgl-03
02-Mgl-03
04-Mgl-03
01-Mgl-Cl
02-Mgl-C1
04-Mgl-C1
03-Mgl-C1
C18-01-Mgl
C8-02-Mgl
C28-03-C27
C28-03-Mgl
C27-03-Mgl
C29-04-C30
C29-04-Mgl
C30-04-Mgl
C2-C1-C6
C2-C1-Mgl
C6-C1-Mgl
C3-C2-C1
C3-C2-C7
C1-C2-C7
C4-C3-C2
C5-C4-C3
C4-C5-C6
C5-C6-C1
C18-C19-C23
C21-C20-C19
C22-C21-C20
C21-C22-C17
C25-C23-C19
C25-C23-C24
C19-C23-C24
C25-C23-C26
C19-C23-C26
C24-C23-C26


Angle

139.75(8)
109.39(8)
109.60(8)
94.36(8)
94.47(8)
91.16(11)
83.87(8)
84.30(7)
93.34(9)
175.49(10)
138.27(15)
137.33(15)
109.7(2)
123.37(19)
126.87(16)
111.9(2)
121.05(18)
126.99(17)
122.9(2)
99.79(15)
100.38(15)
117.5(2)
122.5(2)
120.0(2)
120.1(2)
121.3(2)
120.5(2)
117.7(2)
121.8(2)
123.1(2)
119.1(2)
120.9(2)
113.0(2)
106.3(2)
110.7(2)
106.6(2)
108.8(2)
111.4(2)


Bond


C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
02-C8-C7
02-C8-C9
C7-C8-C9
C10-C9-C8
C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
C11-C12-C7
C15-C13-C9
C15-C13-C14
C9-C13-C14
C15-C13-C16
C9-C13-C16
C14-C13-C16
C22-C17-C18
C22-C17-C6
C18-C17-C6
01-C18-C17
01-C18-C19
C17-C18-C19
C20-C19-C18
C20-C19-C23
03-C27-C28#1
03-C28-C27#1
C30#2-C29-04
C29#2-C30-04
C36-C31-C32
C31-C32-C33
C34-C33-C32
C35-C34-C33
C34-C35-C36
C31-C36-C35


Angle

122.7(2)
119.7(2)
120.2(2)
119.2(2)
120.6(2)
120.4(2)
120.7(2)
118.9(2)
117.9(2)
120.8(2)
121.3(2)
122.7(2)
119.1(2)
121.0(2)
111.49(19)
110.5(2)
108.75(19)
106.3(2)
112.4(2)
107.26(19)
120.0(2)
119.4(2)
120.6(2)
120.0(2)
121.2(2)
118.8(2)
117.8(2)
120.4(2)
111.0(3)
108.2(3)
120.1(4)
117.5(3)
120.3(3)
120.1(3)
119.9(3)
120.1(3)
120.2(3)
119.4(3)








Table B-23. Anisotropic displacement parameters (A x 10 ) for [(tBuOCHO)Mg-
{0(CH2CH2)20}]n (6). The anisotropic displacement factor exponent takes the form:
-272[ h a*2 1 + ... + 2 hk a* b*U ].
Atom U11 U22 U33 U23 U13 U12
Mgl 48(1) 24(1) 25(1) -5(1) -8(1) -6(1)
01 39(1) 28(1) 27(1) -8(1) -10(1) -4(1)
02 38(1) 22(1) 28(1) -3(1) -14(1) -3(1)
03 150(2) 28(1) 48(1) -13(1) -60(1) 12(1)
04 73(1) 25(1) 59(1) -18(1) 30(1) -17(1)
C1 30(1) 30(1) 23(1) -4(1) -8(1) -7(1)
C2 28(1) 32(1) 32(1) -8(1) -11(1) -3(1)
C3 29(2) 40(2) 63(2) -21(1) -14(1) 0(1)
C4 29(2) 50(2) 83(2) -26(2) -17(2) -8(1)
C5 33(2) 39(2) 66(2) -20(1) -12(1) -11(1)
C6 32(1) 33(1) 33(1) -7(1) -11(1) -8(1)
C7 26(1) 25(1) 30(1) -7(1) -5(1) -3(1)
C8 25(1) 24(1) 24(1) -7(1) -5(1) -2(1)
C9 29(1) 26(1) 26(1) -7(1) -5(1) -4(1)
C10 42(2) 23(1) 34(1) -5(1) -9(1) -7(1)
C11 49(2) 23(1) 41(2) -4(1) -22(1) 4(1)
C12 35(1) 32(1) 38(2) -11(1) -18(1) 3(1)
C13 33(1) 29(1) 35(1) -10(1) -8(1) -8(1)
C14 43(2) 39(2) 36(2) -13(1) -13(1) -6(1)
C15 30(1) 44(2) 43(2) -16(1) -12(1) -4(1)
C16 49(2) 47(2) 51(2) -13(1) -13(1) -21(1)
C17 31(1) 25(1) 31(1) -6(1) -7(1) -9(1)
C18 34(1) 24(1) 24(1) -6(1) -3(1) -11(1)
C19 35(1) 24(1) 25(1) -2(1) -4(1) -9(1)
C20 39(2) 25(1) 30(1) -7(1) -1(1) -6(1)
C21 48(2) 32(1) 35(2) -11(1) -11(1) -12(1)
C22 41(2) 33(1) 39(2) -7(1) -17(1) -10(1)
C23 33(1) 31(1) 33(1) -8(1) -7(1) -2(1)
C24 40(2) 46(2) 48(2) -10(1) -13(1) -12(1)
C25 41(2) 51(2) 44(2) -16(1) -12(1) 6(1)
C26 43(2) 34(2) 36(2) -4(1) -14(1) -3(1)
C27 146(4) 22(2) 61(2) -13(1) -60(2) 11(2)
C28 139(4) 41(2) 49(2) -19(2) -47(2) 3(2)
C29 155(4) 34(2) 181(5) -48(3) 123(4) -47(2)
C30 114(3) 30(2) 112(3) -30(2) 71(3) -23(2)
C31 51(2) 35(2) 70(2) -19(2) 1(2) -10(1)









Table B-23. Continued
Atom U11 U22 U33 U23 U13 U12
C32 46(2) 46(2) 79(2) -16(2) -18(2) -9(2)
C33 57(2) 41(2) 64(2) -16(2) -16(2) -3(2)
C34 52(2) 47(2) 67(2) -27(2) 6(2) -15(2)
C35 44(2) 64(2) 81(3) -39(2) -12(2) -6(2)
C36 66(2) 49(2) 65(2) -25(2) -18(2) -3(2)









Table B-24. Torsion angles (in deg) for [(rBuOCHO
)Mg(O(CH2CH2)2011n (6)


Atoms Angle Atoms


02-Mgl-01-C18
04-Mgl-01-C18
03-Mgl-01-C18
C1-Mgl-01-C18
01-Mgl-02-C8
04-Mgl-02-C8
03-Mgl-02-C8
C1-Mgl-02-C8
01-Mgl-03-C28
02-Mgl-03-C28
04-Mgl-03-C28
01-Mgl-03-C27
02-Mgl-03-C27
04-Mgl-03-C27
01-Mgl-04-C29
02-Mgl-04-C29
03-Mgl-04-C29
C1-Mgl-04-C29
01-Mgl-04-C30
02-Mgl-04-C30
03-Mgl-04-C30
C1-Mgl-04-C30
01-Mgl-C1-C2
02-Mgl-Cl-C2
04-Mgl-Cl-C2
01-Mgl-C1-C6
02-Mgl-Cl-C6
04-Mgl-Cl-C6
C8-C9-C10-C11
C13-C9-C10-C11
C9-C10-C11-C12
C10-C11-C12-C7
C8-C7-C12-C11
C2-C7-C12-C11
C10-C9-C13-C15
C8-C9-C13-C15
C10-C9-C13-C14
C8-C9-C13-C14


-83.1(2)
81.9(2)
174.7(2)
-9.5(2)
82.9(2)
-82.2(2)
-175.0(2)
9.4(2)
177.9(3)
37.2(3)
-72.5(3)
0.9(3)
-139.8(3)
110.4(3)
10.4(4)
-179.8(3)
-84.6(3)
95.1(3)
-173.4(3)
-3.6(3)
91.5(3)
-88.8(3)
172.43(16)
-46.12(15)
63.27(16)
46.14(16)
-172.41(16)
-63.02(16)
0.0(4)
-178.0(2)
-3.0(4)
1.4(4)
3.2(4)
-174.8(2)
-129.7(2)
52.4(3)
108.2(2)
-69.8(3)


C6-C1-C2-C3
Mgl-C1-C2-C3
C6-C1-C2-C7
Mgl-C1-C2-C7
C1-C2-C3-C4
C7-C2-C3-C4
C2-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C1
C4-C5-C6-C17
C2-C1-C6-C5
Mgl-Cl-C6-C5
C2-C1-C6-C17
Mgl-Cl-C6-C17
C3-C2-C7-C12
C1-C2-C7-C12
C3-C2-C7-C8
C1-C2-C7-C8
Mgl-02-C8-C7
Mgl-02-C8-C9
C12-C7-C8-02
C2-C7-C8-02
C12-C7-C8-C9
C2-C7-C8-C9
02-C8-C9-C10
C7-C8-C9-C10
02-C8-C9-C13
C7-C8-C9-C13
C18-C19-C20-C21
C23-C19-C20-C21
C19-C20-C21-C22
C20-C21-C22-C17
C18-C17-C22-C21
C6-C17-C22-C21
C20-C19-C23-C25
C18-C19-C23-C25
C20-C19-C23-C24
C18-C19-C23-C24


Angle

-2.0(4)
-111.2(2)
179.6(2)
70.4(2)
-0.7(4)
177.7(3)
3.1(5)
-2.9(5)
0.3(4)
-178.3(3)
2.2(4)
111.1(2)
-179.2(2)
-70.3(2)
-46.9(3)
131.4(2)
135.1(3)
-46.6(3)
17.9(3)
-164.09(16)
171.9(2)
-10.1(3)
-6.1(3)
171.9(2)
-173.5(2)
4.5(3)
4.5(3)
-177.5(2)
1.4(3)
179.4(2)
2.2(4)
-1.6(4)
-2.5(4)
176.1(2)
11.0(3)
-171.1(2)
130.1(2)
-52.1(3)









Table B-24. Continued
Atoms Angle Atoms Angle
C10-C9-C13-C16 -10.4(3) C20-C19-C23-C26 -107.2(2)
C8-C9-C13-C16 171.6(2) C18-C19-C23-C26 70.7(3)
C5-C6-C17-C22 46.5(4) C28-03-C27-C28#1 -60.5(4)
C1-C6-C17-C22 -132.0(2) Mgl-03-C27-C28#1 116.9(3)
C5-C6-C17-C18 -134.8(3) C27-03-C28-C27#1 58.8(4)
C1-C6-C17-C18 46.6(3) Mgl-03-C28-C27#1 -118.7(3)
Mgl-01-C18-C17 -17.3(3) C30-04-C29-C30#2 -36.1(8)
Mgl-01-C18-C19 164.52(17) Mgl-04-C29-C30#2 140.6(5)
C22-C17-C18-01 -172.2(2) C29-04-C30-C29#2 35.1(8)
C6-C17-C18-01 9.2(3) Mgl-04-C30-C29#2 -141.4(5)
C22-C17-C18-C19 6.1(3) C36-C31-C32-C33 -0.4(4)
C6-C17-C18-C19 -172.6(2) C31-C32-C33-C34 -0.1(4)
01-C18-C19-C20 172.8(2) C32-C33-C34-C35 0.9(4)
C17-C18-C19-C20 -5.4(3) C33-C34-C35-C36 -1.2(4)
01-C18-C19-C23 -5.2(3) C32-C31-C36-C35 0.0(4)
C17-C18-C19-C23 176.6(2) C34-C35-C36-C31 0.8(4)
Symmetry transformations used to generate equivalent atoms:


#1 -x+2,-y+l,-z+l #2 -x+l,-y+l,-z+l










Cl1


Figure B-6. Molecular structure of [tBuOCHO]W(W-NMe2)2(C-O)W[tBuOCHO] (8). Ellipsoids
are shown at the 50% probability level. Hydrogens and benzene are omitted for
clarity.







































Figure B-7. Packing diagram for 8









X-ray Experimental for ['BuOCHO]W(p-NMe2)2(P-O)W[tBuOCHO] (8)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using the Patterson Method in SHELXTL6, and

refined using full-matrix least squares. The non-H atoms were treated anisotropically, whereas

the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 865 parameters were refined in the final cycle of refinement using 10618

reflections (with I > 2ol) to yield R1 and wR2 of 2.68% and 7.24%, respectively. Refinement

was done using F2









Table B-25. Crystal data, structure solution, and refinement for [tBuOCHO]W(j-NMe2)2( -
O)W[tBuOCHO] (8)


identification code
empirical formula
formula weight
T(K)
X (A)
crystal system
space group
a (A)
b(A)
c(A)
a (deg)
/f (deg)
y (deg)
S(A3)


pelo9a
C62H74N205W2
1294.93
173(2)
0.71073
Triclinic
P-1
12.6445(7)
12.6890(7)
18.1788(10)
102.7360(10)
96.9490(10)
105.3440(10)
2693.2(3)


Z 2
Pcalcd (g mm-3) 1.597
crystal size (mm) 0.19 x 0.18 x 0.09
abs coeff(mm-1) 4.319
F(000) 1296
0 range for data collection 1.17 to 27.50
limiting indicies -16 < h < 16, -9 < k < 16, -23 < 1 < 23
no. ofreflns called 18368
no. ofind reflns 12501 [R(int) = 0.0372]
completeness to 0= 28.030 97.3 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 12501 / 0 / 640
R1, wR2 [I > 20] R1 = 0.0268, wR2 = 0.0724
R1, wR2 (all data) R1 = 0.0328, wR2 = 0.0766
2
GOF on F 0.684
largest diff. peak and hole (e.A-3) 2.014 and -1.299
R1 = (||Fo| -IFcl|) / |Fol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]/2
w= 1/[22(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.








Table B-26. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
103) for [tBuOCHO]W(W-NMe2)2(T-O)W['BuOCHO] (8). U(eq) is defined as one
third of the trace of the orthogonalized Uij tensor.
Atom X Y Z U(eq)
Wl 2069(1) 4567(1) 3039(1) 17(1)
W2 3372(1) 5187(1) 2182(1) 16(1)
N1 2440(3) 6082(3) 2751(2) 32(1)
N2 1763(3) 4111(3) 1853(2) 32(1)
01 2127(2) 5316(2) 4111(1) 23(1)
02 1292(2) 3017(2) 3049(1) 24(1)
03 4615(2) 6568(2) 2371(1) 22(1)
04 3850(2) 4292(2) 1340(1) 20(1)
05 3604(3) 4555(3) 3049(2) 54(1)
C1 -75(3) 4392(3) 3394(2) 26(1)
C2 27(3) 5539(3) 3603(2) 27(1)
C3 -577(3) 5963(4) 3097(2) 35(1)
C4 -1208(3) 5245(4) 2412(2) 39(1)
C5 -1230(3) 4128(4) 2184(2) 36(1)
C6 -654(3) 3671(3) 2675(2) 29(1)
C7 736(3) 6236(3) 4347(2) 26(1)
C8 1743(3) 6024(3) 4600(2) 22(1)
C9 2347(3) 6534(3) 5355(2) 23(1)
C10 1977(3) 7352(3) 5812(2) 30(1)
C11 1048(4) 7650(3) 5548(2) 34(1)
C12 421(3) 7076(3) 4831(2) 32(1)
C13 3327(3) 6151(3) 5674(2) 26(1)
C14 2918(4) 4891(4) 5622(2) 37(1)
C15 4292(3) 6386(4) 5239(2) 33(1)
C16 3794(4) 6771(4) 6524(2) 45(1)
C17 -652(3) 2481(3) 2495(2) 31(1)
C18 306(3) 2191(3) 2747(2) 27(1)
C19 267(4) 1048(3) 2687(2) 35(1)
C20 -743(4) 226(4) 2293(3) 47(1)
C21 -1651(4) 500(4) 1988(3) 54(1)
C22 -1626(4) 1616(4) 2106(3) 44(1)
C23 1265(4) 735(3) 3047(3) 41(1)
C24 982(6) -559(4) 2939(4) 70(2)
C25 2266(4) 1072(4) 2666(3) 51(1)
C26 1568(5) 1302(4) 3913(3) 54(1)
C27 3676(3) 6153(3) 831(2) 24(1)










Table B-26. Continued
Atom X Y Z U(eq)


C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62


3492(3)
2507(3)
1735(3)
1897(3)
2880(3)
4367(3)
4951(3)
5912(3)
6181(3)
5560(3)
4665(3)
6627(3)
7062(3)
5947(4)
7665(4)
3141(3)
3682(3)
4076(3)
3810(3)
3212(3)
2907(3)
4786(3)
5164(4)
5839(3)
4111(3)
3079(7)
1829(8)
1603(7)
916(5)
5546(11)
4417(12)
3918(10)
-162(17)
812(12)
1025(8)


7179(3)
7360(3)
6522(3)
5479(3)
5275(3)
8023(3)
7658(3)
8422(3)
9552(3)
9934(3)
9167(3)
8028(3)
7099(4)
7580(3)
9002(4)
4195(3)
3776(3)
2831(3)
2274(3)
2627(3)
3601(3)
2447(3)
1452(4)
3435(3)
2060(3)
7221(6)
6733(7)
2773(6)
3985(10)
598(7)
-40(10)
-627(10)
797(10)
682(13)
-92(15)


1155(2)
852(2)
258(2)
-13(2)
284(2)
1782(2)
2340(2)
2871(2)
2850(2)
2339(2)
1804(2)
3435(2)
2994(2)
4006(2)
3902(3)
34(2)
588(2)
348(2)
-432(2)
-974(2)
-736(2)
929(2)
525(2)
1331(2)
1514(2)
3451(5)
2506(6)
1432(4)
1284(3)
4548(7)
4308(6)
4785(8)
9677(6)
9769(8)
10080(8)


25(1)
31(1)
34(1)
31(1)
25(1)
24(1)
20(1)
25(1)
31(1)
32(1)
29(1)
28(1)
34(1)
33(1)
42(1)
24(1)
20(1)
21(1)
26(1)
31(1)
29(1)
24(1)
41(1)
33(1)
29(1)
87(2)
138(5)
91(2)
134(5)
106(4)
122(4)
126(4)
135(4)
131(5)
138(5)









Table B-27. Bond lengths (in A) for [tBuOCHO]W(I-NMe2)2(T-O)W[tBuOCHO] (8)
Bond Length Bond Length


W1-05
Wl-01
W1-02
W1-N1
W1-N2
W1-W2
W2-05
W2-03
W2-04
W2-N1
W2-N2
N1-C54
N1-C53
N2-C56
N2-C55
01-C8
02-C18
03-C34
04-C44
C1-C2
C1-C6
C2-C3
C2-C7
C3-C4
C4-C5
C5-C6
C30-C31
C31-C32
C32-C43
C33-C38
C33-C34
C34-C35
C35-C36
C35-C39
C36-C37
C37-C38
C39-C41
C39-C40


1.942(4)
1.955(2)
1.958(2)
2.053(3)
2.065(3)
2.49726(19)
1.946(3)
1.951(2)
1.954(2)
2.057(3)
2.058(3)
1.377(7)
1.639(8)
1.345(6)
1.649(8)
1.347(4)
1.357(4)
1.351(4)
1.343(4)
1.387(5)
1.403(5)
1.408(5)
1.475(5)
1.376(6)
1.379(6)
1.399(5)
1.385(6)
1.404(5)
1.482(5)
1.390(5)
1.412(5)
1.424(5)
1.395(5)
1.535(5)
1.393(5)
1.380(5)
1.535(5)
1.540(5)


C6-C17
C7-C12
C7-C8
C8-C9
C9-C10
C9-C13
C10-C11
C11-C12
C13-C14
C13-C15
C13-C16
C17-C22
C17-C18
C18-C19
C19-C20
C19-C23
C20-C21
C21-C22
C23-C25
C23-C26
C23-C24
C27-C32
C27-C28
C28-C29
C28-C33
C29-C30
C58-C59
C59-C57#1
C60-C61
C60-C62#2
C61-C62
C62-C60#2
C39-C42
C43-C48
C43-C44
C44-C45
C45-C46
C45-C49


1.473(6)
1.403(5)
1.414(5)
1.407(5)
1.398(5)
1.541(5)
1.390(6)
1.372(6)
1.523(5)
1.531(5)
1.534(5)
1.398(5)
1.411(6)
1.417(5)
1.406(6)
1.535(7)
1.375(8)
1.375(7)
1.524(7)
1.533(7)
1.546(6)
1.386(5)
1.396(5)
1.397(5)
1.484(5)
1.393(5)
1.368(14)
1.303(15)
1.274(17)
1.401(16)
1.305(18)
1.401(16)
1.543(5)
1.391(5)
1.423(5)
1.420(5)
1.392(5)
1.545(5)









Table B-27. Continued
Bond Length Bond Length

C46-C47 1.392(5)
C47-C48 1.386(6)
C49-C52 1.526(5)
C49-C51 1.535(5)
C49-C50 1.535(5)
C55-C56 2.006(14)
C57-C59#1 1.303(15)
C57-C58 1.403(15)
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z #2 -x+1,-y+2,-z+1









Table B-28. Bond angles (in deg) for [tBuOCHO]W(I-NMe2)2(T-O)W[tBuOCHO] (8)
Bond Angle Bond Angle


05-W1-01
05-W1-02
01-W1-02
05-W1-N1
01-W1-N1
02-W1-N1
05-W1-N2
01-W1-N2
02-W1-N2
N1-W1-N2
05-W1-W2
01-W1-W2
02-W1-W2
N1-W1-W2
N2-W1-W2
05-W2-03
05-W2-04
03-W2-04
05-W2-N1
03-W2-N1
04-W2-N1
05-W2-N2
03-W2-N2
04-W2-N2
N1-W2-N2
05-W2-W1
C3-C4-C5
C4-C5-C6
C5-C6-C1
C5-C6-C17
C1-C6-C17
C12-C7-C8
C12-C7-C2
C8-C7-C2
01-C8-C9
01-C8-C7
C9-C8-C7
C10-C9-C8


101.84(13)
103.16(13)
98.21(10)
90.02(14)
91.98(12)
161.22(12)
89.79(14)
163.12(11)
90.89(12)
75.65(14)
50.09(10)
127.71(7)
127.88(7)
52.66(9)
52.60(9)
106.30(13)
105.94(13)
96.54(10)
89.80(14)
90.92(12)
159.79(11)
89.89(14)
159.10(11)
91.43(12)
75.71(14)
49.97(10)
122.0(4)
120.1(4)
117.2(4)
124.3(4)
118.5(3)
118.5(3)
122.0(3)
119.4(3)
119.5(3)
119.5(3)
121.1(3)
117.0(3)


03-W2-W1
04-W2-W1
N1-W2-Wi
N2-W2-W1
C54-N1-C53
C54-N1-W1
C53-N1-W1
C54-N1-W2
C53-N1-W2
W1-N1-W2
C56-N2-C55
C56-N2-W2
C55-N2-W2
C56-N2-W1
C55-N2-W1
W2-N2-W1
C8-01-W1
C18-02-W1
C34-03-W2
C44-04-W2
W1-05-W2
C2-C1-C6
C1-C2-C3
C1-C2-C7
C3-C2-C7
C4-C3-C2
C20-C19-C18
C20-C19-C23
C18-C19-C23
C21-C20-C19
C20-C21-C22
C21-C22-C17
C25-C23-C26
C25-C23-C19
C26-C23-C19
C25-C23-C24
C26-C23-C24
C19-C23-C24


129.66(7)
130.19(7)
52.51(9)
52.85(9)
85.0(6)
135.3(4)
116.6(3)
130.4(4)
119.2(3)
74.83(12)
83.5(6)
132.8(4)
117.1(3)
136.7(4)
116.3(3)
74.55(12)
146.2(2)
140.8(2)
147.0(2)
148.8(2)
79.94(13)
123.0(3)
117.7(4)
118.3(3)
123.9(4)
119.5(4)
116.0(4)
122.3(4)
121.6(4)
122.7(4)
120.3(4)
120.2(5)
110.8(4)
111.2(4)
109.6(4)
106.3(4)
107.5(4)
111.3(4)










Table B-28. Continued
Bond Angle Bond Angle


C10-C9-C13
C8-C9-C13
C11-C10-C9
C12-C11-C10
Cl1-C12-C7
C14-C13-C15
C14-C13-C16
C15-C13-C16
C14-C13-C9
C15-C13-C9
C16-C13-C9
C22-C17-C18
C22-C17-C6
C18-C17-C6
02-C18-C17
02-C18-C19
C17-C18-C19
C36-C35-C39
C34-C35-C39
C37-C36-C35
C38-C37-C36
C37-C38-C33
C41-C39-C35
C41-C39-C40
C35-C39-C40
C41-C39-C42
C35-C39-C42
C40-C39-C42
C48-C43-C44
C48-C43-C32
C44-C43-C32
04-C44-C45
04-C44-C43
C45-C44-C43
C46-C45-C44
C47-C46-C45


121.9(3)
121.0(3)
122.5(4)
119.3(3)
121.0(4)
109.6(3)
107.1(3)
107.4(3)
109.5(3)
111.9(3)
111.2(3)
119.0(4)
120.1(4)
120.9(3)
119.8(3)
118.9(3)
121.4(3)
121.3(3)
122.2(3)
122.7(4)
119.5(3)
120.6(3)
110.6(3)
109.8(3)
110.3(3)
107.8(3)
111.7(3)
106.5(3)
119.1(3)
121.3(3)
119.5(3)
119.6(3)
120.2(3)
120.2(3)
117.4(3)
122.8(3)


C32-C27-C28
C27-C28-C29
C27-C28-C33
C29-C28-C33
C30-C29-C28
C31-C30-C29
C30-C31-C32
C27-C32-C31
C27-C32-C43
C31-C32-C43
C38-C33-C34
C38-C33-C28
C34-C33-C28
03-C34-C33
03-C34-C35
C33-C34-C35
C36-C35-C34
C52-C49-C50
C51-C49-C50
C52-C49-C45
C51-C49-C45
C50-C49-C45
N2-C55-C56
N2-C56-C55
C59#1-C57-C58
C59-C58-C57
C57#1-C59-C58
C61-C60-C62#2
C60-C61-C62
C61-C62-C60#2
C48-C47-C46
C47-C48-C43
C52-C49-C51
C46-C45-C49
C44-C45-C49


Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z #2 -x+l,-y+2,-z+l


122.9(3)
117.8(3)
118.2(3)
124.0(3)
120.0(4)
120.9(3)
120.0(4)
117.9(3)
117.6(3)
124.5(3)
119.3(3)
120.7(3)
119.9(3)
120.3(3)
118.7(3)
120.9(3)
116.5(3)
107.7(3)
107.6(3)
110.5(3)
108.9(3)
111.4(3)
41.8(3)
54.8(5)
119.6(9)
118.3(10)
122.1(11)
119.8(13)
121.4(12)
118.9(12)
118.8(3)
121.3(3)
110.7(3)
121.4(3)
121.2(3)










Table B-29. Anisotropic displacement parameters (A x 10 ) for [tBuOCHO]W(W-NMe2)2( -
O)W[tBuOCHO] (8). The anisotropic displacement factor exponent takes the form:
-27T2[ h a*2 + ... + 2 hk a* b* U 12].
Atom U11 U22 U33 U23 U13 U12


Wl
W2
N1
N2
01
02
03
04
05
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27


18(1)
18(1)
25(2)
30(2)
25(1)
24(1)
21(1)
22(1)
52(2)
23(2)
25(2)
34(2)
28(2)
22(2)
19(2)
31(2)
28(2)
30(2)
38(2)
46(2)
38(2)
31(2)
46(2)
30(2)
51(3)
29(2)
30(2)
42(2)
53(3)
39(3)
27(2)
55(3)
92(5)
55(3)
78(4)
24(2)


17(1)
16(1)
49(2)
50(2)
26(1)
18(1)
20(1)
23(1)
66(2)
31(2)
36(2)
43(2)
61(3)
51(3)
35(2)
27(2)
21(2)
20(2)
25(2)
24(2)
30(2)
30(2)
37(2)
41(2)
63(3)
34(2)
21(2)
24(2)
23(2)
40(3)
48(3)
23(2)
29(3)
41(3)
49(3)
24(2)


15(1)
14(1)
33(2)
28(2)
19(1)
26(1)
25(1)
16(1)
49(2)
27(2)
25(2)
38(2)
36(2)
31(2)
27(2)
24(2)
20(2)
19(2)
24(2)
35(2)
36(2)
15(2)
35(2)
27(2)
18(2)
21(2)
26(2)
34(2)
53(3)
56(3)
37(2)
47(3)
97(5)
65(3)
43(3)
24(2)


3(1)
3(1)
23(2)
19(2)
5(1)
5(1)
8(1)
4(1)
19(2)
10(2)
10(2)
17(2)
21(2)
12(2)
7(2)
8(1)
6(1)
5(1)
2(1)
3(2)
10(2)
2(1)
16(2)
7(2)
-1(2)
1(2)
3(1)
2(2)
-3(2)
-12(2)
-5(2)
10(2)
23(3)
19(2)
18(2)
9(1)


3(1)
3(1)
11(1)
13(1)
6(1)
2(1)
2(1)
5(1)
13(2)
6(1)
8(1)
8(2)
6(2)
1(2)
5(1)
8(1)
10(1)
9(1)
10(2)
20(2)
16(2)
3(1)
5(2)
5(2)
-1(2)
3(1)
8(1)
16(2)
21(2)
7(2)
4(2)
18(2)
29(4)
22(3)
8(3)
5(1)


5(1)
6(1)
17(2)
20(2)
11(1)
1(1)
6(1)
9(1)
21(2)
8(1)
16(2)
22(2)
23(2)
9(2)
3(1)
14(2)
10(1)
5(1)
5(2)
14(2)
18(2)
8(2)
18(2)
9(2)
24(2)
0(2)
0(1)
3(2)
-3(2)
-11(2)
-6(2)
11(2)
23(3)
22(2)
32(3)
8(1)










Table B-29. Continued
Atom U11 U22 U33 U23 U13 U12


C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62


26(2)
35(2)
33(2)
28(2)
28(2)
25(2)
21(2)
26(2)
34(2)
42(2)
36(2)
29(2)
29(2)
43(2)
35(2)
22(2)
20(2)
21(2)
30(2)
36(2)
33(2)
30(2)
55(3)
24(2)
39(2)
110(6)
178(8)
88(5)
31(3)
166(10)
190(12)
111(8)
169(12)
99(9)
59(5)


26(2)
31(2)
40(2)
36(2)
27(2)
22(2)
16(2)
24(2)
23(2)
19(2)
27(2)
27(2)
46(2)
33(2)
41(2)
23(2)
23(2)
23(2)
25(2)
31(2)
30(2)
24(2)
46(3)
41(2)
27(2)
69(4)
154(7)
89(5)
289(13)
53(4)
136(9)
143(10)
115(9)
140(11)
163(12)


24(2)
29(2)
30(2)
26(2)
19(2)
25(2)
23(2)
22(2)
30(2)
32(2)
29(2)
22(2)
32(2)
24(2)
39(2)
23(2)
15(1)
18(2)
21(2)
17(2)
20(2)
19(2)
30(2)
32(2)
25(2)
88(5)
242(11)
69(5)
36(3)
130(9)
95(6)
125(9)
84(7)
110(9)
124(10)


8(1)
8(2)
12(2)
8(2)
7(1)
6(1)
6(1)
5(1)
6(2)
7(2)
10(2)
6(1)
12(2)
11(2)
13(2)
7(1)
2(1)
5(1)
1(1)
0(1)
6(1)
2(1)
8(2)
7(2)
11(2)
20(4)
174(8)
-6(4)
67(5)
35(5)
42(6)
16(8)
-9(6)
-7(8)
-68(8)


3(1)
0(2)
-3(2)
-4(1)
3(1)
5(1)
6(1)
4(1)
2(2)
3(2)
7(2)
-3(1)
5(2)
6(2)
-9(2)
1(1)
4(1)
5(1)
6(1)
1(1)
-3(1)
5(1)
10(2)
2(2)
8(2)
43(5)
186(9)
24(4)
-12(2)
102(8)
50(8)
62(7)
4(8)
55(8)
-9(6)


9(1)
16(2)
16(2)
8(2)
9(1)
8(1)
6(1)
6(1)
2(2)
7(2)
13(2)
5(2)
17(2)
10(2)
0(2)
5(1)
3(1)
4(1)
7(2)
5(2)
6(2)
12(1)
31(2)
12(2)
12(2)
29(4)
151(7)
0(4)
-39(5)
46(5)
123(9)
39(7)
19(9)
-20(8)
19(7)









Table B-30. Torsion angles (in deg) for [tBuOCHO]W(I-NMe2)2(T-O)W[tBuOCHO] (8)
Atoms Angle Atoms Angle


05-W1-01-C10
02-W1-01-C10
N2-W1-01-C10
N1-W1-01-C10
W2-W1-01-C10
05-W1-N1-C51
02-W1-N1-C51
01-W1-N1-C51
N2-W1-N1-C51
W2-W1-N1-C51
05-W1-N1-C49
02-W1-N1-C49
01-W1-N1-C49
N2-W1-N1-C49
W2-W1-N1-C49
05-W1-N1-W2
02-W1-N1-W2
01-W1-N1-W2
N2-W1-N1-W2
C51-N1-W2-05
C49-N1-W2-05
W1-N1-W2-05
C51-N1-W2-04
C49-N1-W2-04
W1-N1-W2-04
C51-N1-W2-03
C49-N1-W2-03
W1-N1-W2-03
01-W1-02-C3
N2-W1-02-C3
N1-W1-02-C3
W2-W1-02-C3
05-W2-N2-C52
04-W2-N2-C52
03-W2-N2-C52
N1-W2-N2-C52
W1-W2-N2-C52
05-W2-N2-C50


-141.9(4)
113.7(4)
-9.2(6)
-52.1(4)
-92.7(4)
-174.0(7)
-40.0(9)
82.8(7)
-83.9(7)
-137.6(7)
76.8(4)
-149.3(5)
-26.4(4)
166.9(4)
113.2(4)
-36.45(13)
97.5(4)
-139.60(10)
53.67(11)
177.5(7)
-76.2(4)
36.45(13)
35.7(8)
142.0(4)
-105.3(3)
-76.7(7)
29.7(4)
142.29(9)
-110.1(4)
54.0(4)
11.9(7)
96.3(4)
-171.9(6)
81.7(6)
-30.3(8)
-82.0(6)
-136.0(6)
76.7(4)


C51-N1-W2-N2
C49-N1-W2-N2
W1-N1-W2-N2
C51-N1-W2-W1
C49-N1-W2-W1
02-W1-W2-05
01-W1-W2-05
N2-W1-W2-05
N1-W1-W2-05
05-W1-W2-04
02-W1-W2-04
01-W1-W2-04
N2-W1-W2-04
N1-W1-W2-04
05-W1-W2-03
02-W1-W2-03
01-W1-W2-03
N2-W1-W2-03
N1-W1-W2-03
05-W1-W2-N2
02-W1-W2-N2
01-W1-W2-N2
N1-W1-W2-N2
05-W1-W2-N1
02-W1-W2-N1
01-W1-W2-N1
N2-W1-W2-N1
05-W1-02-C3
02-W1-N2-W2
01-W1-N2-W2
N1-W1-N2-W2
C9-C2-03-W2
C5-C2-03-W2
05-W2-03-C2
04-W2-03-C2
N2-W2-03-C2
N1-W2-03-C2
W1-W2-03-C2


87.4(7)
-166.3(4)
-53.64(10)
141.0(7)
-112.6(4)
72.22(17)
-73.98(17)
130.15(19)
-129.12(19)
-77.50(17)
-5.28(12)
-151.47(13)
52.65(15)
153.38(15)
75.96(17)
148.18(13)
1.99(12)
-153.88(15)
-53.16(14)
-130.15(19)
-57.93(15)
155.87(15)
100.72(17)
129.12(19)
-158.66(15)
55.15(15)
-100.72(17)
144.5(4)
137.85(10)
-98.5(3)
-53.77(11)
-152.9(3)
28.8(6)
140.1(4)
-110.7(4)
0.3(6)
49.8(4)
89.5(4)










Table B-30. Continued
Atoms Angle Atoms Angle


04-W2-N2-C50
03-W2-N2-C50
N1-W2-N2-C50
W1-W2-N2-C50
05-W2-N2-W1
04-W2-N2-W1
03-W2-N2-W1
N1-W2-N2-W1
05-W1-N2-C52
02-W1-N2-C52
01-W1-N2-C52
N1-W1-N2-C52
W2-W1-N2-C52
05-W1-N2-C50
02-W1-N2-C50
01-W1-N2-C50
N1-W1-N2-C50
W2-W1-N2-C50
05-W1-N2-W2
01-W1-05-W2
N2-W1-05-W2
N1-W1-05-W2
04-C1-C6-C20
C19-C1-C6-C20
04-C1-C6-C18
C19-C1-C6-C18
C60-C61-C62-C60#1
03-C2-C9-C15
C5-C2-C9-C15
03-C2-C9-C30
C5-C2-C9-C30
W1-01-C10-C11
W1-01-C10-C27
01-C10-C11-C40
C27-C10-C11-C40
01-C10-C11-C29
C27-C10-C11-C29
C2-C5-C12-C53


-29.8(4)
-141.7(4)
166.5(4)
112.5(4)
-35.82(13)
-142.25(10)
105.8(3)
54.06(11)
167.1(6)
-90.9(6)
32.8(8)
77.5(6)
131.3(7)
-80.0(4)
22.1(4)
145.7(4)
-169.5(4)
-115.8(4)
35.83(13)
128.79(11)
-37.33(14)
38.04(14)
174.2(3)
-7.0(5)
-9.3(5)
169.5(3)
-1(2)
175.3(3)
-6.4(5)
-5.7(5)
172.7(3)
-23.4(6)
156.0(3)
173.0(3)
-6.4(6)
-11.1(6)
169.6(4)
-1.4(6)


W1-02-C3-C14
W1-02-C3-C16
C6-C1-04-W2
C19-C1-04-W2
05-W2-04-C 1
03-W2-04-C 1
N2-W2-04-C1
N1-W2-04-C1
W1-W2-04-C1
C62#1-C60-C61-C62
03-C2-C5-C12
C9-C2-C5-C12
03-C2-C5-C22
C9-C2-C5-C22
04-W2-05-W1
03-W2-05-W1
N2-W2-05-W1
N1-W2-05-W1
02-W1-05-W2
C14-C3-C16-C21
02-C3-C16-C26
C14-C3-C16-C26
C19-C8-C17-C20
C22-C4-C18-C38
C22-C4-C18-C6
C20-C6-C18-C38
C1-C6-C18-C38
C20-C6-C18-C4
C1-C6-C18-C4
C17-C8-C19-C1
C17-C8-C19-C23
04-C1-C19-C8
C6-C1-C19-C8
04-C1-C19-C23
C6-C1-C19-C23
C8-C17-C20-C6
C1-C6-C20-C17
C18-C6-C20-C17


-161.2(3)
19.6(6)
-28.8(6)
152.4(3)
-139.4(4)
111.9(4)
-49.1(4)
0.4(6)
-88.2(4)
1(2)
-175.5(3)
6.2(5)
7.0(5)
-171.3(3)
128.40(11)
-129.59(11)
37.36(14)
-38.26(14)
-129.62(11)
7.9(5)
10.3(5)
-168.9(3)
-2.6(6)
-7.1(5)
174.8(3)
-40.2(5)
143.3(4)
137.8(4)
-38.7(5)
-0.8(6)
179.1(4)
-175.7(3)
5.5(5)
4.5(5)
-174.3(3)
1.2(6)
3.5(6)
-173.0(4)










Table B-30. Continued
Atoms Angle Atoms Angle


C54-C13-C14-C45
02-C3-C14-C13
C16-C3-C14-C13
02-C3-C14-C45
C16-C3-C14-C45
C2-C9-C15-C53
C30-C9-C15-C53
02-C3-C16-C21
C8-C19-C23-C33
C1-C19-C23-C33
C8-C19-C23-C42
C1-C19-C23-C42
C4-C22-C25-C35
C5-C22-C25-C35
C29-C7-C26-C39
C29-C7-C26-C16
C21-C16-C26-C7
C3-C16-C26-C7
C21-C16-C26-C39
C3-C16-C26-C39
01-C10-C27-C37
C11-C10-C27-C37
01-C10-C27-C47
C11-C10-C27-C47
C26-C7-C29-C32
C26-C7-C29-C11
C40-C11-C29-C7
C10-C11-C29-C7
C40-C11-C29-C32
C10-C11-C29-C32
C15-C9-C30-C24
C2-C9-C30-C24
C15-C9-C30-C31
C2-C9-C30-C31
C15-C9-C30-C43
C2-C9-C30-C43
C7-C29-C32-C34
W2-N1-C51-C49


-175.6(3)
173.7(3)
-7.1(5)
-9.8(5)
169.4(3)
1.9(5)
-177.1(3)
-172.8(3)
-122.2(4)
57.6(5)
-4.1(5)
175.8(4)
-1.9(6)
-179.6(3)
6.2(6)
-174.7(3)
-139.0(4)
37.8(5)
40.1(6)
-143.2(4)
-173.2(4)
6.2(6)
8.0(6)
-172.6(4)
-5.5(6)
176.3(3)
139.5(4)
-36.5(5)
-38.6(6)
145.4(4)
-117.1(4)
63.8(4)
120.7(4)
-58.3(4)
2.2(5)
-176.8(3)
0.1(6)
120.7(6)


C18-C4-C22-C25
C18-C4-C22-C5
C12-C5-C22-C4
C2-C5-C22-C4
C12-C5-C22-C25
C2-C5-C22-C25
C8-C19-C23-C36
C1-C19-C23-C36
C11-C29-C32-C34
C29-C32-C34-C39
C22-C25-C35-C38
C10-C27-C37-C44
C47-C27-C37-C44
C25-C35-C38-C18
C4-C18-C38-C35
C6-C18-C38-C35
C32-C34-C39-C26
C7-C26-C39-C34
C16-C26-C39-C34
C10-C11-C40-C44
C29-C11-C40-C44
C27-C37-C44-C40
C11-C40-C44-C37
C13-C14-C45-C41
C3-C14-C45-C41
C13-C14-C45-C28
C3-C14-C45-C28
C13-C14-C45-C55
C3-C14-C45-C55
C37-C27-C47-C48
C10-C27-C47-C48
W1-N1-C51-C49
C5-C12-C53-C15
C9-C15-C53-C12
C16-C21-C54-C13
C14-C13-C54-C21
C59#2-C57-C58-C59
C57-C58-C59-C57#2


7.3(5)
-174.8(3)
-136.6(4)
40.9(5)
41.1(5)
-141.5(4)
116.3(4)
-63.9(5)
178.2(4)
4.4(6)
-3.5(6)
-0.5(7)
178.3(5)
3.7(6)
1.4(6)
179.4(3)
-3.6(6)
-1.6(6)
179.4(4)
0.8(6)
-175.2(4)
-4.9(8)
4.8(7)
118.5(4)
-57.8(4)
-119.9(4)
63.8(4)
0.4(5)
-175.9(3)
116.1(5)
-65.1(5)
-121.9(6)
-3.1(6)
2.8(6)
-3.4(6)
4.3(6)
-0.5(16)
0.6(17)









Table B-30. Continued
Atoms Angle

C37-C27-C47-C46 -120.8(4)
C10-C27-C47-C46 58.0(5)
C37-C27-C47-C56 -1.7(6)
C10-C27-C47-C56 177.1(4)
W2-N1-C49-C51 -134.9(4)
W1-N1-C49-C51 139.5(4)
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z #2 -x+1,-y+2,-z+1


































Figure B-8. Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 (11). Ellipsoids shown at
50% probability level; hydrogen atoms omitted for clarity.









X-ray Experimental for [AnthH] [Hf(NMe2)3(NHMe2)]2 (11)

Data were collected at 173 K on a Siemens SMART PLATFORM equipped with a CCD

area detector and a graphite monochromator utilizing MoKa radiation (k = 0.71073 A). Cell

parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was

collected using the co-scan method (0.30frame width). The first 50 frames were re-measured at

the end of data collection to monitor instrument and crystal stability (maximum correction on I

was < 1 %). Absorption corrections by integration were applied based on measured indexed

crystal faces.

The structure was solved by the author using Direct Methods in SHELXTL6, and refined

using full-matrix least squares. The non-H atoms were treated anisotropically, whereas the

hydrogen atoms were calculated in ideal positions and were riding on their respective carbon

atoms. A total of 655 parameters were refined in the final cycle of refinement using 5926

reflections (with I > 2ol) to yield R1 and wR2 of 5.11% and 9.26%, respectively. Refinement

was done using F2









Table B-31. Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2
(11)


identification code
empirical formula
formula weight
T(K)
X (A)
crystal system
space group
a (A)
b(A)
c(A)
a (deg)
/f (deg)
y (deg)
S(A3)


pelo3
C48H56Fl2N10Hf2
1623.40
173(2)
0.71073
Monoclinic
P2(1)/n
17.3997(11)
20.3795(12)
15.9524(10)
90
93.8290
90
5644.0(6)


Z 4
Pcalcd (g mm-3) 1.598
crystal size (mm) 0.17 x 0.04 x 0.04
abs coeff(mm-) 3.759
F(000) 2664
0 range for data collection 1.17 to 28.05
limiting indicies -22 < h < 16, -24 < k < 26, -20 < 1 < 21
no. ofreflns called 37974
no. of ind reflns 13605 [R(int) = 0.0990]
completeness to 0= 28.030 99.4 %
absorption corr Integration
2
refinement method Full-matrix least-squares on F
data / restraints / parameters 13605 / 0 / 655
R1, wR2 [I > 2a] R1 = 0.0511, wR2 = 0.0926
R1, wR2 (all data) R1 = 0.1526, wR2 = 0.1142
2
GOF on F 0.875
largest diff. peak and hole (e.A-3) 1.064 and -0.893
R1 = (||Fo| -IFcl|) / |Fol
wR2 = [I[w(Fo2 Fc2)2] / Y[w(Fo2)2]]1/2
S = [[w(Fo2 Fc2)2] / (n-p)]1/2
w= 1/[22(Fo2)+(m*p)2+n*p], p = [max(Fo2,0)+ 2* Fc2]/3, m & n are constants.









Table B-32. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2 x
3
10 ) for [AnthH][Hf(NMe2)3(NHMe2)]2 (11). U(eq) is defined as one third of the
trace of the orthogonalized U1i tensor.
Atom X Y Z U(eq)
Hfl 1317(1) 3962(1) 3298(1) 37(1)
Hf2 6275(1) 3516(1) 1872(1) 42(1)
N1 1480(4) 4589(3) 2214(4) 36(2)
N2 162(4) 3822(3) 3001(5) 50(2)
N3 1641(4) 4658(3) 4174(4) 42(2)
N4 2084(4) 3289(3) 2962(4) 46(2)
N5 1117(4) 3277(4) 4509(5) 51(2)
N6 5265(4) 2927(3) 1471(4) 36(2)
N7 5971(4) 4295(3) 1141(5) 51(2)
N8 7068(4) 2839(3) 1498(5) 52(2)
N9 6056(5) 3572(3) 3117(4) 59(2)
N10 7444(5) 4147(4) 2266(6) 73(3)
Fl 123(4) 6255(4) 4048(4) 141(3)
F2 -735(5) 5974(5) 3294(5) 150(4)
F3 -374(6) 6896(4) 3200(6) 182(5)
F4 1323(4) 7384(3) 985(4) 96(2)
F5 1054(5) 6655(3) 121(4) 136(3)
F6 2132(5) 6698(4) 737(6) 149(4)
F7 6291(5) 1010(5) 3368(4) 168(4)
F8 6216(4) 209(3) 2538(5) 126(3)
F9 6997(3) 971(3) 2390(4) 83(2)
F10 3701(5) 1115(3) -12(5) 143(4)
F11 3218(5) 978(4) 1128(7) 152(4)
F12 3967(5) 244(3) 694(5) 145(4)
C1 3070(5) 3822(3) 449(5) 35(2)
C2 2336(4) 4021(4) 172(5) 32(2)
C3 1778(5) 4282(4) 721(5) 38(2)
C4 1053(5) 4396(4) 402(6) 45(2)
C5 836(5) 4309(4) -467(6) 48(3)
C6 1332(5) 4110(4) -1002(6) 46(2)
C7 2109(5) 3958(4) -707(5) 36(2)
C8 2653(5) 3735(4) -1243(5) 41(2)
C9 3389(5) 3532(4) -953(5) 33(2)
C10 3931(5) 3292(4) -1497(5) 42(2)
C11 4619(5) 3065(4) -1207(5) 45(2)
C12 4822(5) 3060(4) -331(6) 43(2)










Table B-32. Continued
Atom X Y Z U(eq)


C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48


4331(5)
3601(4)
2045(4)
1213(4)
666(5)
412(5)
656(5)
1161(5)
1421(4)
-94(7)
1393(7)
4550(5)
5181(5)
5746(5)
5686(5)
5106(6)
4549(6)
4573(5)
6292(6)
3905(9)
-105(6)
-466(5)
1237(6)
2336(5)
2911(5)
1923(6)
1803(6)
756(6)
5268(7)
6596(7)
6987(5)
7733(5)
5478(6)
6134(6)
7899(6)
7297(6)


3301(4)
3558(4)
4408(4)
5225(4)
5463(4)
6104(4)
6541(4)
6316(4)
5685(4)
6327(6)
6761(5)
3286(4)
2259(4)
1901(4)
1208(4)
869(5)
1221(4)
1899(4)
860(5)
884(6)
3650(5)
3969(5)
4887(4)
5043(4)
3317(4)
2767(4)
3195(5)
2624(4)
3737(5)
3406(5)
2497(5)
2573(4)
4850(4)
4343(4)
4294(5)
4751(5)


230(5)
-85(5)
1633(5)
2140(5)
2681(5)
2659(5)
2079(5)
1521(5)
1534(5)
3290(8)
855(8)
1172(5)
1526(5)
2006(5)
2059(5)
1639(6)
1174(6)
1124(5)
2597(7)
739(10)
2140(7)
3541(7)
4896(6)
4057(6)
3214(6)
2346(7)
5085(6)
4272(7)
3363(6)
3849(6)
685(6)
2030(6)
1400(7)
249(6)
1491(8)
2744(7)


38(2)
32(2)
40(2)
33(2)
41(2)
43(2)
42(2)
36(2)
37(2)
68(3)
65(3)
42(2)
37(2)
40(2)
44(2)
59(3)
56(3)
47(2)
61(3)
101(5)
69(3)
75(3)
63(3)
51(3)
59(3)
70(3)
69(3)
77(4)
70(3)
93(4)
63(3)
64(3)
71(3)
60(3)
83(4)
82(4)











Bond Length Bond Length


Hfl-N4
Hfl-N3
Hfl-N2
Hfl-N1
Hfl-N5
Hf2-N7
Hf2-N9
Hf2-N8
Hf2-N6
Hf2-N10
N1-C16
N1-C15
N2-C33
N2-C34
N3-C36
N3-C35
N4-C38
N4-C37
N5-C39
N5-C40
N6-C25
N6-C24
N7-C46
N7-C45
N8-C43
N8-C44
N9-C42
N9-C41
C11-C12
C12-C13
C13-C14
C13-C24
C16-C21
C16-C17
C17-C18
C18-C19
C18-C22
C19-C20


2.012(7)
2.044(7)
2.053(7)
2.184(7)
2.427(8)
2.020(7)
2.050(7)
2.066(7)
2.189(6)
2.452(8)
1.379(9)
1.444(10)
1.463(11)
1.466(12)
1.463(10)
1.465(11)
1.462(10)
1.470(10)
1.467(11)
1.508(11)
1.373(9)
1.493(9)
1.473(11)
1.495(11)
1.471(11)
1.490(10)
1.488(11)
1.488(12)
1.418(11)
1.369(11)
1.432(10)
1.525(10)
1.412(11)
1.413(11)
1.379(11)
1.371(11)
1.454(13)
1.371(11)


N10-C48
N10-C47
F1-C22
F2-C22
F3-C22
F4-C23
F5-C23
F6-C23
F7-C31
F8-C31
F9-C31
F10-C32
F11-C32
F12-C32
C1-C2
C1-C14
C2-C7
C2-C3
C3-C4
C3-C15
C4-C5
C5-C6
C6-C7
C7-C8
C8-C9
C9-C14
C9-C10
C10-C11
C20-C21
C20-C23
C25-C30
C25-C26
C26-C27
C27-C28
C27-C31
C28-C29
C29-C30
C29-C32


1.480(12)
1.541(14)
1.252(11)
1.327(13)
1.263(11)
1.294(11)
1.295(12)
1.318(11)
1.268(12)
1.335(11)
1.312(11)
1.314(13)
1.396(17)
1.310(13)
1.384(10)
1.406(10)
1.436(10)
1.451(11)
1.349(10)
1.518(10)
1.424(11)
1.319(12)
1.435(11)
1.395(11)
1.394(10)
1.410(10)
1.411(11)
1.338(11)
1.364(10)
1.474(13)
1.406(11)
1.408(10)
1.418(11)
1.363(11)
1.493(12)
1.382(11)
1.385(11)
1.451(14)


Bond lengths (in A


Table B-33.


for [AnthH] [Hf(NMe2)3 (NRMe2)l2 (11)









Table B-34. Bond angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)
Bond Angle Bond Angle


N4-Hfl-N3
N4-Hfl-N2
N3-Hfl-N2
N4-Hfl-N1
N3-Hfl-N1
N2-Hfl-N1
N4-Hfl-N5
N3-Hfl-N5
N2-Hfl-N5
N1-Hfl-N5
N7-Hf2-N9
N7-Hf2-N8
N9-Hf2-N8
N7-Hf2-N6
N9-Hf2-N6
N8-Hf2-N6
N7-Hf2-N10
N9-Hf2-N10
N8-Hf2-N10
N6-Hf2-N10
C16-N1-C15
C16-N1-Hfl
C15-N1-Hfl
C33-N2-C34
C33-N2-Hfl
C34-N2-Hfl
C36-N3-C35
C36-N3-Hfl
C7-C2-C3
C4-C3-C2
C4-C3-C15
C2-C3-C15
C3-C4-C5
C6-C5-C4
C5-C6-C7
C8-C7-C6
C8-C7-C2
C6-C7-C2


119.8(3)
120.1(3)
118.4(3)
93.7(3)
95.2(2)
94.3(3)
87.3(3)
84.4(3)
85.1(3)
179.0(3)
117.2(3)
120.8(3)
119.2(3)
95.0(2)
96.7(3)
95.1(3)
85.2(3)
85.8(3)
82.3(3)
177.0(3)
115.2(7)
123.8(5)
119.2(5)
113.5(8)
119.6(6)
126.3(6)
111.9(7)
118.5(6)
118.1(7)
118.8(8)
123.4(8)
117.8(7)
121.8(9)
121.7(8)
119.8(8)
122.1(8)
118.3(7)
119.5(8)


C35-N3-Hfl
C38-N4-C37
C38-N4-Hfl
C37-N4-Hfl
C39-N5-C40
C39-N5-Hfl
C40-N5-Hfl
C39-N5-H5
C40-N5-H5
Hfl-N5-H5
C25-N6-C24
C25-N6-Hf2
C24-N6-Hf2
C46-N7-C45
C46-N7-Hf2
C45-N7-Hf2
C43-N8-C44
C43-N8-Hf2
C44-N8-Hf2
C42-N9-C41
C42-N9-Hf2
C41-N9-Hf2
C48-N10-C47
C48-N10-Hf2
C47-N10-Hf2
C2-C1-C14
C1-C2-C7
C1-C2-C3
C19-C18-C22
C17-C18-C22
C20-C19-C18
C21-C20-C19
C21-C20-C23
C19-C20-C23
C20-C21-C16
F1-C22-F3
F1-C22-F2
F3-C22-F2


129.2(6)
110.7(7)
125.0(6)
123.7(5)
111.4(7)
114.2(6)
112.8(6)
119(8)
104(8)
94(8)
114.7(6)
127.7(5)
117.4(5)
111.6(7)
123.4(6)
124.7(6)
110.7(7)
123.0(6)
125.9(6)
112.9(8)
126.8(7)
120.1(6)
111.5(9)
113.6(7)
111.0(6)
123.3(8)
118.2(8)
123.7(7)
119.5(8)
119.1(9)
117.5(8)
122.2(8)
119.0(8)
118.7(8)
122.4(8)
107.8(11)
97.5(10)
100.4(10)










Table B-34. Continued
Bond Angle Bond Angle


C9-C8-C7
C8-C9-C14
C8-C9-C10
C14-C9-C10
C11-C10-C9
C10-C11-C12
C13-C12-C11
C12-C13-C14
C12-C13-C24
C14-C13-C24
C1-C14-C9
C1-C14-C13
C9-C14-C13
N1-C15-C3
N1-C16-C21
N1-C16-C17
C21-C16-C17
C18-C17-C16
C19-C18-C17
C28-C29-C32
C30-C29-C32
C29-C30-C25
F7-C31-F9
F7-C31-F8
F9-C31-F8
F7-C31-C27
F9-C31-C27
F8-C31-C27
F12-C32-F10
F12-C32-F11
F10-C32-F11
F12-C32-C29
F10-C32-C29
F11-C32-C29
C27-C28-C29
C28-C29-C30


122.7(8)
119.3(8)
122.4(8)
118.3(8)
121.7(8)
120.1(9)
121.1(8)
118.6(8)
120.7(8)
120.7(7)
118.0(7)
122.0(7)
120.0(8)
118.7(6)
125.6(8)
120.5(8)
113.9(7)
122.5(8)
121.3(8)
120.1(9)
118.0(9)
121.2(8)
105.3(10)
107.6(10)
104.1(9)
113.3(9)
114.1(9)
111.7(9)
109.0(12)
103.7(12)
99.8(11)
115.7(11)
114.8(11)
112.2(13)
118.0(9)
121.8(9)


F1-C22-C18
F3-C22-C18
F2-C22-C18
F4-C23-F5
F4-C23-F6
F5-C23-F6
F4-C23-C20
F5-C23-C20
F6-C23-C20
N6-C24-C13
N6-C25-C30
N6-C25-C26
C30-C25-C26
C25-C26-C27
C28-C27-C26
C28-C27-C31
C26-C27-C31


118.4(9)
117.1(10)
112.5(11)
105.5(9)
102.9(10)
104.1(10)
117.1(9)
114.8(10)
111.1(9)
118.2(7)
124.6(7)
118.4(8)
117.0(8)
119.8(8)
122.0(8)
120.8(9)
117.2(9)









Table B-35. Anisotropic displacement parameters (A x 10 ) for [AnthH][Hf(NMe2)3(NHMe2)]2
(11). The anisotropic displacement factor exponent takes the form: -272[ h a* U1 +
12
...+2hka*b*U ].
Atom U11 U22 U33 U23 U13 U12


Hfl
Hf2
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
Fl
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12


33(1)
45(1)
26(4)
43(5)
39(5)
54(5)
41(5)
29(4)
50(5)
44(5)
96(7)
62(6)
116(6)
90(6)
249(10)
150(7)
239(10)
125(7)
180(8)
90(5)
48(4)
191(8)
100(6)
180(8)
49(6)
27(5)
31(5)
30(5)
31(6)
46(6)
44(5)
61(7)
41(5)
57(6)
64(7)
36(5)


32(1)
39(1)
38(4)
40(4)
33(4)
40(4)
51(5)
43(4)
41(4)
48(5)
45(5)
48(5)
250(10)
263(11)
109(6)
43(4)
109(6)
117(6)
270(11)
62(4)
92(4)
111(5)
122(7)
59(4)
25(4)
29(4)
36(5)
35(5)
44(5)
44(6)
28(4)
33(5)
33(5)
34(5)
40(5)
33(5)


47(1)
41(1)
42(4)
67(6)
52(5)
44(5)
61(6)
35(4)
60(6)
64(6)
37(5)
103(8)
58(5)
104(6)
210(9)
98(5)
58(5)
217(10)
52(5)
221(9)
108(5)
112(6)
224(11)
183(8)
30(5)
38(5)
45(6)
70(7)
67(7)
44(6)
36(5)
26(5)
25(5)
32(5)
30(6)
60(7)


1(1) 1(1) 2(1)
2(1) -5(1) 6(1)
-4(3) 5(3) 9(3)
12(4) -1(4) -1(4)
9(3) -3(4) -3(4)
0(3) -8(4) 11(4)
8(4) 3(4) 6(4)
6(3) 4(3) 9(4)
6(4) -5(4) -4(4)
-1(4) 10(4) 1(4)
-4(4) 4(5) -7(5)
-6(5) -47(6) 4(5)
-20(5) 18(4) 106(6)
-57(7) 59(5) -20(7)
92(6) 182(8) 130(7)
16(3) 40(5) -10(4)
24(4) -4(6) -61(6)
100(6) 111(7) 36(5)
48(6) 1(5) 165(8)
57(5) -28(5) 5(4)
28(4) 3(4) 17(4)
46(5) -96(6) -78(6)
44(7) -61(7) -43(6)
27(5) -96(7) -37(5)
0(4) 0(4) 0(4)
12(4) -12(4) -3(4)
-8(4) -5(4) 9(4)
-2(5) -2(5) 11(4)
-12(5) -17(5) 2(5)
-6(4) -21(5) 2(5)
-1(4) -4(4) 2(5)
-6(4) -15(5) -6(5)
-2(4) 6(4) -6(4)
7(4) -4(5) -1(5)
-6(4) 12(5) -8(5)
8(5) 7(5) 4(4)








Table B-35. Continued
Atom U11 U22 U33 U23 U13 U12
C13 46(6) 24(4) 45(6) 1(4) 14(5) 9(4)
C14 34(5) 26(4) 36(5) 2(4) 2(4) 2(4)
C15 21(5) 46(5) 51(6) -1(4) -6(4) 8(4)
C16 24(5) 36(5) 38(5) -3(4) -4(4) 2(4)
C17 36(5) 44(5) 45(6) 8(4) 5(5) 7(5)
C18 42(6) 47(6) 41(6) 4(5) 8(4) 14(5)
C19 36(5) 42(5) 49(6) 6(5) 3(5) 11(5)
C20 34(5) 37(5) 37(5) 8(4) 5(4) 1(4)
C21 29(5) 45(5) 36(5) -7(4) 3(4) 2(4)
C22 55(8) 81(8) 70(9) 30(7) 15(7) 36(7)
C23 58(8) 65(8) 73(9) 5(7) 23(7) 16(6)
C24 36(5) 49(5) 43(6) 3(4) 12(4) 6(4)
C25 44(6) 43(5) 27(5) 12(4) 13(4) 10(5)
C26 31(5) 43(5) 45(6) 9(4) 8(4) 10(5)
C27 37(6) 57(6) 41(6) 13(5) 11(5) 14(5)
C28 64(7) 48(6) 63(7) 16(5) 2(6) -5(6)
C29 56(7) 51(6) 59(7) 16(5) -14(6) -5(5)
C30 45(6) 44(6) 52(6) 16(5) -6(5) -4(5)
C31 55(8) 62(8) 66(8) 22(6) 7(6) 15(6)
C32 109(12) 61(9) 123(13) 41(8) -62(11) -26(9)
C33 54(7) 69(7) 81(8) -7(6) -16(6) -22(6)
C34 33(6) 85(8) 109(9) 16(7) 26(6) 8(6)
C35 87(8) 56(6) 50(7) -10(5) 29(6) 10(6)
C36 44(6) 47(5) 60(7) 1(5) -12(5) -8(5)
C37 42(6) 72(7) 62(7) -9(5) -7(5) 27(5)
C38 83(8) 46(6) 80(8) -34(6) -8(6) 9(6)
C39 49(7) 87(8) 69(8) 28(6) -6(6) -6(6)
C40 91(9) 27(5) 111(10) 5(6) -6(7) -21(6)
C41 96(9) 61(7) 55(7) -11(5) 32(6) 5(6)
C42 131(11) 99(9) 43(7) 22(6) -40(7) -6(8)
C43 57(7) 73(7) 59(7) -14(6) 21(6) 6(6)
C44 33(6) 61(6) 94(8) 24(6) -16(6) 15(5)
C45 67(8) 44(6) 102(9) 9(6) 6(7) 28(6)
C46 71(7) 66(7) 43(6) 18(5) 4(6) 6(6)
C47 71(8) 83(8) 98(10) 32(7) 23(7) -14(7)
C48 95(9) 43(6) 104(10) -16(6) -18(7) 4(6)









Table B-36. Torsion angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 (11)
Atoms Angle Atoms Angle


N4-Hfl-N1-C16
N3-Hfl-N1-C16
N2-Hfl-N1-C16
N4-Hfl-N1-C15
N3-Hfl-N1-C15
N2-Hfl-N1-C15
N4-Hfl-N2-C33
N3-Hfl-N2-C33
N1-Hfl-N2-C33
N5-Hfl-N2-C33
N4-Hfl-N2-C34
N3-Hfl-N2-C34
N1-Hfl-N2-C34
N5-Hfl-N2-C34
N4-Hfl-N3-C36
N2-Hfl-N3-C36
N1-Hfl-N3-C36
N5-Hfl-N3-C36
N4-Hfl-N3-C35
N2-Hfl-N3-C35
N1-Hfl-N3-C35
N5-Hfl-N3-C35
N3-Hfl-N4-C38
N2-Hfl-N4-C38
N1-Hfl-N4-C38
N5-Hfl-N4-C38
N3-Hfl-N4-C37
N2-Hfl-N4-C37
N6-Hf2-N8-C44
N10-Hf2-N8-C44
N7-Hf2-N9-C42
N8-Hf2-N9-C42
N6-Hf2-N9-C42
N10-Hf2-N9-C42
N7-Hf2-N9-C41
N8-Hf2-N9-C41
N6-Hf2-N9-C41
N10-Hf2-N9-C41


-167.1(6)
-46.7(6)
72.4(6)
-2.8(6)
117.7(5)
-123.3(6)
-49.7(7)
145.4(6)
47.1(6)
-133.7(6)
139.8(7)
-25.1(8)
-123.4(7)
55.8(7)
51.6(6)
-143.5(5)
-45.7(6)
135.2(6)
-134.8(7)
30.1(8)
127.9(7)
-51.2(7)
179.9(7)
15.3(8)
-81.9(7)
98.0(8)
-9.5(8)
-174.2(6)
-127.7(7)
53.7(7)
-133.0(7)
28.2(8)
127.8(7)
-50.6(7)
52.9(7)
-145.9(6)
-46.3(7)
135.3(7)


N1-Hfl-N4-C37
N5-Hfl-N4-C37
N4-Hfl-N5-C39
N3-Hfl-N5-C39
N2-Hfl-N5-C39
N4-Hfl-N5-C40
N3-Hfl-N5-C40
N2-Hfl-N5-C40
N7-Hf2-N6-C25
N9-Hf2-N6-C25
N8-Hf2-N6-C25
N7-Hf2-N6-C24
N9-Hf2-N6-C24
N8-Hf2-N6-C24
N9-Hf2-N7-C46
N8-Hf2-N7-C46
N6-Hf2-N7-C46
N10-Hf2-N7-C46
N9-Hf2-N7-C45
N8-Hf2-N7-C45
N6-Hf2-N7-C45
N10-Hf2-N7-C45
N7-Hf2-N8-C43
N9-Hf2-N8-C43
N6-Hf2-N8-C43
N10-Hf2-N8-C43
N7-Hf2-N8-C44
N9-Hf2-N8-C44
C1-C2-C7-C8
C3-C2-C7-C8
C1-C2-C7-C6
C3-C2-C7-C6
C6-C7-C8-C9
C2-C7-C8-C9
C7-C8-C9-C14
C7-C8-C9-C10
C8-C9-C10-C11
C14-C9-C10-C11


88.7(7)
-91.4(7)
62.7(7)
-57.6(7)
-176.8(7)
-65.8(6)
173.9(7)
54.7(6)
159.5(7)
-82.3(7)
37.9(7)
-26.6(6)
91.5(6)
-148.2(5)
176.2(6)
15.3(8)
-83.6(7)
93.4(7)
-11.5(8)
-172.4(6)
88.6(7)
-94.3(7)
-54.2(7)
145.3(6)
44.7(7)
-133.9(7)
133.4(6)
-27.1(8)
-3.4(11)
177.2(7)
175.0(7)
-4.3(11)
-174.3(7)
4.1(12)
-0.5(12)
178.4(7)
-176.2(7)
2.8(12)










Table B-36. Continued
Atoms Angle Atoms Angle


N7-Hf2-N10-C48
N9-Hf2-N10-C48
N8-Hf2-N10-C48
N7-Hf2-N10-C47
N9-Hf2-N10-C47
N8-Hf2-N10-C47
N6-Hf2-N10-C47
C14-C1-C2-C7
C14-C1-C2-C3
C1-C2-C3-C4
C7-C2-C3-C4
C1-C2-C3-C15
C7-C2-C3-C15
C2-C3-C4-C5
C15-C3-C4-C5
C3-C4-C5-C6
C4-C5-C6-C7
C5-C6-C7-C8
C5-C6-C7-C2
Hfl-N1-C16-C21
C15-N1-C16-C17
Hfl-N1-C16-C17
N1-C16-C17-C18
C21-C16-C17-C18
C16-C17-C18-C19
C16-C17-C18-C22
C17-C18-C19-C20
C22-C18-C19-C20
C18-C19-C20-C21
C18-C19-C20-C23
C19-C20-C21-C16
C23-C20-C21-C16
N1-C16-C21-C20
C17-C16-C21-C20
C19-C18-C22-F1
C17-C18-C22-F1
C19-C18-C22-F3
C17-C18-C22-F3


66.0(7)
-51.7(7)
-172.0(8)
-60.6(6)
-178.3(6)
61.4(6)
34(5)
-0.6(11)
178.7(7)
-173.1(7)
6.1(11)
6.4(12)
-174.3(7)
-4.3(12)
176.2(8)
0.4(13)
1.6(13)
178.9(8)
0.5(12)
167.7(6)
-179.2(7)
-14.3(10)
176.6(7)
-5.2(11)
2.9(13)
-174.1(9)
0.0(13)
177.0(9)
-0.3(13)
176.0(9)
-2.5(13)
-178.7(8)
-176.9(7)
5.0(11)
-122.1(12)
55.0(16)
9.7(17)
-173.2(11)


C9-C10-C11-C12
C10-C11-C12-C13
C11-C12-C13-C14
C11-C12-C13-C24
C2-C1-C14-C9
C2-C1-C14-C13
C8-C9-C14-C1
C10-C9-C14-C1
C8-C9-C14-C13
C10-C9-C14-C13
C12-C13-C14-C1
C24-C13-C14-C1
C12-C13-C14-C9
C24-C13-C14-C9
C16-N1-C15-C3
Hfl-N1-C15-C3
C4-C3-C15-N1
C2-C3-C15-N1
C15-N1-C16-C21
C12-C13-C24-N6
C14-C13-C24-N6
C24-N6-C25-C30
Hf2-N6-C25-C30
C24-N6-C25-C26
Hf2-N6-C25-C26
N6-C25-C26-C27
C30-C25-C26-C27
C25-C26-C27-C28
C25-C26-C27-C31
C26-C27-C28-C29
C31-C27-C28-C29
C27-C28-C29-C30
C27-C28-C29-C32
C28-C29-C30-C25
C32-C29-C30-C25
N6-C25-C30-C29
C26-C25-C30-C29
C28-C27-C31-F7


0.2(12)
-1.8(12)
0.3(12)
179.3(7)
4.1(11)
-174.1(7)
-3.5(11)
177.5(7)
174.8(7)
-4.2(11)
-179.1(7)
1.9(11)
2.7(11)
-176.3(7)
-74.8(9)
119.5(6)
7.2(12)
-172.4(7)
2.8(11)
-7.7(11)
171.3(7)
17.9(11)
-168.1(6)
-163.1(7)
10.9(11)
-178.5(7)
0.6(12)
1.9(14)
-178.4(8)
-2.4(14)
177.9(9)
0.5(15)
-177.9(12)
2.0(15)
-179.6(11)
176.6(9)
-2.4(13)
-116.3(12)










Table B-36. Continued


Atoms


C19-C18-C22-F2
C17-C18-C22-F2
C21-C20-C23-F4
C19-C20-C23-F4
C21-C20-C23-F5
C19-C20-C23-F5
C21-C20-C23-F6
C19-C20-C23-F6
C25-N6-C24-C13
Hf2-N6-C24-C 13
C30-C29-C32-F12
C28-C29-C32-F10
C30-C29-C32-F10
C28-C29-C32-F11
C26-C27-C31-F7
C28-C27-C31-F9
C26-C27-C31-F9
C28-C27-C31-F8
C26-C27-C31-F8
C28-C29-C32-F12


125.2(10)
-57.7(13)
-161.4(9)
22.2(14)
74.1(12)
-102.3(11)
-43.6(14)
140.0(10)
-80.3(9)
105.1(7)
169.8(12)
-140.1(12)
41.5(19)
106.9(12)
64.0(13)
123.2(10)
-56.5(13)
5.4(14)
-174.3(9)
-12(2)


Angle









LIST OF REFERENCES

(1) Schrock, R. R. Chem. Rev. 2002, 102, 145.

(2) Schrock, R. R.; Czekelius, C. Adv. Synth. Catal. 2007, 349, 55.

(3) Schrock, R. R. Ace. Chem. Res. 1986, 19, 342.

(4) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748.

(5) North, M. in Comprehensive Organic Functional Group Transformations II, Katritzky,
A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 3, 621.

(6) Tyrrell, E. In Comprehensive Organic Functional Group Transformations II; Katritzky,
A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 1, 1083.

(7) McLain, S. J.; Wood, C.D.; Messerle, L. W.; Schrock, R. R.; Hollander, F. J.; Youngs,
W. J.; Churchill, M. R. J Am. Chem. Soc. 1978, 100, 5962.

(8) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.
Organometallics. 2006, 25, 427.

(9) Tsai, Y. C.; Diaconescu P. L.; Cummins, C. C. Organometallics 2000, 19, 5260.

(10) Filippou, A. C.; Fischer, E. O. J. Organomet. Chem. 1990, 382, 143.

(11) Schrock, R. R.; Weinstock, I. A.; Horton, A. D.; Liu, A. H.; Schofield, M. H. J. Am.
Chem. Soc. 1988, 110, 2686.

(12) Schrock, R. R.; Sancho, J.; Pederson, S. F. Inorganic S)ule'e,' 1989, 26, 44.

(13) Tonzetich, Z. J.; Lam, Y. C.; Muller, P.; Schrock, R. R. Organometallics 2007, 26, 475.

(14) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74.

(15) Furstner, A.; Mathes, C.; Lehmann, C. W. J Am. Chem. Soc. 1999, 121, 9453.

(16) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 329.

(17) Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc. 2007,
129, 3800.

(18) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.; Mindiola, D. J. J. Am.
Chem. Soc. 2005, 127, 16016.

(19) Bailey, B. C.; Fout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.;
Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc. 2007, 129, 2234.









(20) Sarkar, S.; Carlson, A. R.; Veige, M. K.; Falkowski, J. M.; Abboud, K. A.; Veige, A. S.
J. Am. Chem. Soc. 2008, 130, 1116.

(21) Choi, S.; Lin, Z. Organometallics 1999, 18, 5488.

(22) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.

(23) Schrock, R. R.; DePue, R. T.; Feldman, J.; Schaverian, J. C.; Dewan, J. C.; Liu, A. H. J.
Am. Chem. Soc. 1988, 110, 1423.

(24) Rhers, B.; Lucas, C.; Taoufik, M.; Herdtweck, E.; Dablemont, C.; Basset, J.; Lefebvre, F.
Comptes Rendus Chimie. 2006, 9, 1169.

(25) Chisholm, M. H.; Eichhorn, B. W.; Folting, K.; Huffman, J. C.; Ontiveros, C. D.; Streib,
W. E.; Van Der Sluys, W. G. Inorganic Chemistry 1987, 26, 3182.

(26) Ipaktschi, J.; Rooshenas, P.; Klotzbach, T.; Dulmer, A.; Huseynova, E. Organometallics
2005, 24, 1351.

(27) Chisholm, M. H.; Huang, J.; Huffman, J. C. J. Organomet. Chem. 1997, 528, 221.

(28) Stichbury, J. C; Mays, M. J.; Davies, J. E.; Raithby, P. R.; Shields, G. P. J Chem. Soc.,
Dalton Trans. 1997, 13, 2309.

(29) Koller, J.; Sarkar, S.; Abboud, K. A.; Veige, A. S. Organometallics 2007, 26, 5438.









BIOGRAPHICAL SKETCH

Andrew Peloquin was born in 1985 in Worcester, Massachusetts, but soon moved to

Deltona, Florida. He established himself as a dedicated student starting in his early educational

career. He graduated from the United States Air Force Academy in Colorado Springs in May

2007 with a Bachelor of Science degree in chemistry. He was assigned as a chemist in the Air

Force upon graduation and came directly to the University of Florida in fall 2007 under the Air

Force Institute of Technology's Graduate Scholarship Program. Andrew joined Dr Adam

Veige's group, researching metal complexes supported by trianionic pincer ligands, with a focus

on high oxidation state, group VI alkylidynes. He graduated in August 2008 with a Master of

Science degree in chemistry.





PAGE 1

1 APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING GROUP VI ALKYLIDYNES, METAL METAL MULTIPLE BONDS, AND GROUP IV AMIDES By ANDREW J PELOQUIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008

PAGE 2

2 2008 Andrew J Peloquin

PAGE 3

3 The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

PAGE 4

4 ACKNOWLEDGMENTS As this project draws to a close, I am extremely grateful to many individuals who made this achievement possible. I would like to first thank my advisor, Dr Adam Veige. His patience made this research possible, given the numerous constraints my situation provided. I would also like to thank all the members of the Veige group for mak ing my transition into his lab fairly effortless. Recognition must also be given to Khalil Abboud, who provided inva luable data through X ray diffraction studies. I also thank the other members of my committee, Dr Steph en Miller and Dr Michael Scott for their time in reviewing my research. Many faculty of the Department of Chemistry at the United States Air Force Academy also deserve much thanks for molding m e into the scientist I am today: m ost importantly, my undergraduate advisor, Dr Gary Balaich, whose love for science has continued to motivate me throughout my educational endeavors. Without the extensive practical laboratory experience he provided, I would have been unable to complete this thesis in such a short period. Lastly, I would like to thank Lt Col (Ret) Ronald Furstenau; it was his passion for education which inspired my love o f learning, now and for fut ure quests.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ........................................................................................................... 4 LIST OF TABLES ...................................................................................................................... 7 LIST OF FIGURES .................................................................................................................... 9 ABSTRACT ............................................................................................................................. 11 CHAPTER 1 INTRODUCTION ............................................................................................................. 13 2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC OCO3 PINCER LIGAND ............................................................................ 18 Synthesis and Characterization of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) .......... 18 Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ............................................................................ 21 3 PROGRESS TOWARD COMPLEXES WITH M M MULTIPLE BONDS SUPPORTED BY A TRIANIONIC OCO3 PINCER LIGAND .......................................... 27 4 SYNTHESIS OF DINUCLEAR ZIRCONIUM AND HAFNIUM COMPLEXES OF A NEW ANTHRACENE DIAMIDO LIGAND ..................................................................... 31 5 CONCLUSIONS ................................................................................................................ 34 6 EXPERIMENTAL ............................................................................................................. 35 General Considerations ...................................................................................................... 35 Synthesis of [tBuOCO]W(=CHC(CH3)3)(O 2,6 C6H3-iPr2) (3 ) ........................................... 35 Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ............................................................................................................................. 36 Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) ........................................... 36 Synthesis of [tBuOCO]W( NMe2)2( O)W[tBuOCO] ( 8) ................................................. 37 Synthesis of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) ................................................................ 37 Synthesis of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............................................................... 37 APPENDIX A 1H AND 13C{1H} NMR SPECTRA .................................................................................... 39 B X RAY STRUCTURAL DATA AND TABLES ................................................................ 47

PAGE 6

6 X ray Experimental for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) .......................... 50 X ray Experimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................................................................ 67 X ray Experimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................................................................................................ 85 X ray Experimental for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6 ) ........................................ 103 X ray Experimental for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ........................ 115 X ray Experimental for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ............................................ 130 LIST OF REFERENCES ........................................................................................................ 142 BIOGRAPHICAL SKETCH ................................................................................................... 144

PAGE 7

7 LIST OF TABLES Table page B 1 Crystal data, structure solution, and refinement for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3 ) ........................................................................................................... 51 B 2 Atomic coordinates and equivalent isotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3) ........................................................... 52 B 3 Bond lengths for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) ................................ 55 B 4 Bond angles for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3) ................................. 56 B 5 Anisotropic displacement parameters for [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) (3 ) ....................................................................................................................... 59 B 6 Torsion angles for [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3 ) ............................. 62 B 7 Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................... 68 B 8 Atomic coordinates and equivalent isotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ................... 69 B 9 Bond lengths for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 72 B 10 Bond angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 74 B 11 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) ................................................................................... 77 B 12 Torsion angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W {=CHC(CH3)3[tBuOCO]} ( 4) ........................................................................................ 80 B 13 Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................ ................................... 86 B 14 Atomic coordinates and equivalent isotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................... 87 B 15 Bond lengths for {[tBuOCO](CH3)3CCH=}W( -tBu OCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 90 B 16 Bond angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 92

PAGE 8

8 B 17 Anisotropic displacement parameters for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ................................................................... 95 B 18 Torsion angles for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 98 B 19 Crystal data, structure solution, and refinement for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) .................................................................................................. 104 B 20 Atomic coordinates and equivalent isotropic displacement parameters for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ........................................................................ 105 B 21 Bond lengths for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................. 107 B 22 Bond angles for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................... 108 B 23 Anisotropic displacement parameters for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) ....... 109 B 24 Torsion angles for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ........................................... 111 B 25 Crystal data, structure solution, and refinement for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) .................................................................................................... 116 B 26 Atomic coordinates and equivalent isotropic displacement parameters for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ......................................................... 117 B 27 Bond lengths for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) .............................. 119 B 28 Bond angles for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ............................... 121 B 29 Anisotropic displacement parameters for [tBuOCHO]W( NMe2)2( O) W[tBuOCHO] ( 8) ........................................................................................................ 123 B 30 Torsion angles for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ........................... 125 B 31 Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) .............................................................................................................................. 131 B 32 Ato mic coordinates and equivalent isotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe 2)]2 ( 11) ............................................................................ 132 B 33 Bond lengths for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) .................................................. 134 B 34 Bond angles for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ................................................... 135 B 35 Anisotropic displacement parameters for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............. 137 B 36 Torsion angles fo r [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) ............................................... 139

PAGE 9

9 LIST OF FIGURES Figure page 11 Examples of high oxidation state metal alkylidynes ....................................................... 13 12 abstraction to produce tungsten alkylidynes .................................... 14 13 Metathesis cleavage of W ........................................................... 15 14 Reductive recycle strategy for alkylidyne synthesis ....................................................... 15 15 Mechanism of nitrile alkyne cross metathesis (NACM) ................................................. 16 16 Pincer type ligand supported alkylidyne ........................................................................ 16 17 Target molecule ............................................................................................................. 17 21 Synthesis of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3) ....................................... 18 22 Molecular structure of 3 ................................................................................................. 19 23 Two molecules of asymmetric unit of 3 demonstrating mirror symmetry ....................... 20 24 Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) ........................................................................................................................ 21 25 Molecular structure of 4 (left) and 5 (right) .................................................................... 23 26 Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand ....... 24 27 Polymeric structure of 6 ................................................................................................. 26 31 Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8) ...................................................................................... 27 32 Newman projection of 7 illustrating inequivalence of t ert butyls and amides ................. 28 33 Molecular structure of 8 ................................................................................................. 29 41 Synthesis of [AnthH][M(NMe2)3(NHMe2)]2 ( 10 and 11) ................................................ 31 42 Molecular structure of 11 ............................................................................................... 32 43 Molecular structure of 11 viewed along C2 axis ............................................................. 33 A 1 1H NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) (3) in C6D6 ............ 40 A 2 13C{1 H} NMR spectrum of [tBuOCO]W(=CHC(CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) in C6D6 ... 41

PAGE 10

10 A 3 1H NMR spectrum of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) in C6D6 ........... 42 A 4 1H NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) in C6D6 ................................ 43 A 5 13C{1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10) in C6D6 ....................... 44 A 6 1H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6 ................................ 45 A 7 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6 ....................... 46 B 1 Molecular structure of [tBuOCO]W(=CHC(CH3)3)(O 2,6-iPr2C6H3) ( 3) ....................... 48 B 2 Packing diagram for 3 .................................................................................................... 49 B 3 Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) ............................................................................................................... 66 B 4 Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) ............................................................................................................... 84 B 5 Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) ............................................ 102 B 6 Molecular structure of [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) ..................... 113 B 7 Packing diagram for 8 .................................................................................................. 114 B 8 Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) ......................................... 129

PAGE 11

11 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science APPLICATION OF TRIANIONIC PINCER LIGANDS TO REACTIONS INVOLVING GROUP VI ALKYLIDYNES, METAL METAL MULTIPLE BONDS, AND GROUP IV AMIDES By Andrew J Peloquin August 2008 Chair: Adam S Veige Major: Ch emistry In an effort to isolate a pincer support tungsten alkylidyne, several new tungsten alkylidenes and a ditungsten compound have been isolated, supported by the previously reported OCO pincer ligand [3,3 di tert butyl 2,2 di (hydroxy O) 1,1:3,1 terphenyl 2 yl C2] (tBuOCO 1). When the tBuOCO ligand precursor is treated with W(OAr)2(CH2(CH3)3) ( 3)3) (OAr= 2,6 diisopropylphenoxide) in benzene, the alkylidene complex [tBuOCO] W(=CH(CH3)3)(O 2,6 -iPr2C6H3) (3) results and was characterized by a combination of one and two dimensional NMR spectroscopy, single crystal X ray crystallography, and combustion 2(CH3)3)3( 3)3) was next combined with 1, but the reaction resulted in a complicated mi xture of products. From this mixture, two closely related structural isomers of the form {[tBuOCO](CH3)3CCH=}W( -tBuOCHO ) W {=CHC(CH3)3[tBuOCO]} ( 4 and 5) were isolated. This bridged, dinuclear complex was analyzed by single crystal X ray crystallography. Finally, the reaction of (NMe2)3W 2)3 with two equivalents of 1 results first in [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and after prolonged heating, [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8). These complexes were analyzed by a combination of NMR spectroscopy, singlecrystal X ray crystallography, and

PAGE 12

12 combustion analysis. The exact mechanism of formation for 8 is not yet know, but it potentially represents a rare example of the oxidative ad dition of water to an early transition metal

PAGE 13

13 CHAPTER 1 INTRODUCTION Interest in high oxidation state alkylidene and alkylidyne complexes for application to alkene and alkyne metathesis has grown steadily since the discovery of metal carbon multiple bonds approximately thirty years ago.1,2,3, 4 Alkylidyne species have received comparatively less attention than their alkylidene analogues despite their application to nitrile alkyne cross metathesis (NACM). NACM has t he potential to become increasingly important as it represents a method to prepare novel alkynes from relatively accessible nitriles.5,6 Figure 11. Examples of high oxidation state metal alkylidynes A metal alkylidyne contains a metal carbon triple bond. The research described herein focuses on Schrock type alkylidynes, which are alkylidyne complexes in which the metal is in its highest oxidation state. These types of compounds were first prepared from tantalum7, but are now commonly prepared from tun gsten8 and molybdenum9 and, to a lesser extent, chromium10 and rhenium (Figure 11).11 In highoxidation state alkylidynes, the alkylidyne carbon donation to the metal center and is considered a 6 electron donor. Despite suc donation, most high oxidation state alkylidynes are electron deficient. donation from the remaining ligands. Schrock type alkylidynes are generally formed by one of four methods, the most common being deprotona elimination. Rarely, these complexes can be

PAGE 14

14 formed by metathesis of an alkyne across a metal metal triple bond, or by a reductive recycle strategy. The elimination represent the most commonly encountered method s for the synthesis of most highC H bond oxidatively adds to the metal, forming an alkylidyne from an alkylidene. More common in abstraction. In F igure 12, the Grignard re agent acts as a base, deprotonating carbon, forming an alkylidene from an alkyl and an alkylidyne from the alkylidene.12,13 The exact order in which the alkylation and abstraction steps occur in these systems is not currently known. Figure 12. abstraction to produce tungsten alkylidynes The third, and one of the less frequently encountered methods for alkylidyne formation, is metathesis involving a W 14 The scission of ditungsten hexa tert butoxide ((tBuO)3W tBu)3) (I ) by an alkyne yields an alkylidyne of the form (tBuO)3W II ) (Figure 13). The R group is determined by the nature of the alkyne used in the reaction.

PAGE 15

15 The fourth and final way in which high oxidation state alkylidynes are generated is by a redu ctive recycle strategy (Figure 1 4). Frstner reported the reaction of Mo[N(tBu)Ar]3 ( III) with CH2Cl2, which afforded a mixture of the chloride ( IV ) and the methylidyne species ( V ).1 5 Kraft added magnesium to the system.16 Magnesium present in the reaction mixture reduced the chloride species back to the starting material which could then reenter the reaction. The result was a onepot synthesis of a molybdenum alkylidyne from a terminal dichloride. Figure 13. Metathesis cleavage of W Figure 14. Reductive recycle strategy for alkylidyne synthesis The primary goal of this research is to generate a highly reactive tungsten alkylidyne catalyst for NACM. NACM involves the conversion of a metal carbon triple bond (alkylidyne) to a metal nitrogen triple bond (nitride) or vice versa (Figure 1 5). A metalalkylidyne can undergo a [2+2] cycloaddition with a nitrile to produce an azametallacyclobutadiene inter mediate. This anti aromatic intermediate can then undergo retro cycloaddition to yield the

PAGE 16

16 desire d alkyne and a metal nitride. A sacrificial alkyne is then employed to convert the metal nitride back to a metal alkylidyne to continue the catalytic cycle. A major roadblock to the catalytic version of the reaction is the high energy azametallacyclobutadiene intermediate, which effectively makes either the alkylidyne or nitride a thermodynamic sink. Figure 15. Mechanism of nitrile alkyne cross metathesis (NACM) In 2007, the first catalytic example of NACM was reported by Johnson et al.17 A tungsten nitride of the form (RO)3W ethylidyne upon treatment with 3 hexyne. In the presence of pmethoxyanilin e, the corresponding alkyne was formed. Unfortunately, the system was rather sluggish and was limited in substrate scope. Figure 16. Pincer type ligand supported alkylidyne In 2005, the novel titanium alkylidene alkyl complex (PNP)Ti=CHtBu(CH2 tBu) ( VI ) was reporte d by Mindiola et al. (Figure 16).18 This complex features a tridentate, pincer type ligand. In 2007, the same group found the complex to react with bulky nitriles to provide the first isolated azametallacyclobutadiene ( VII). This complex showed promise for NACM but,

PAGE 17

17 unfortunately, required an external electrophile, namely ClSi(CH3)3 or AlMe3, to liberate the alkyne. The following research aims to marry the ideas of Johnson and Mindiola. A high oxidation state, group VI alkyl idyne will be used, as these have been shown to successfully complete the NACM cycle. The extreme reactivity of a highly strained, pincer type geometry will also be exploited. By using these two approaches in the same system, the resulting complex should be highly reactive and successfully complete the NACM cycle. The trianionic pincer ligands designed previously by the Veige group, in particular, the previously reported OCO pincer ligand [3,3 di tert butyl 2,2 di (hydroxy O) 1,1:3,1 terphenyl 2 yl C2] (tBuOCO 1), are ideal for u se in an NACM system (Figure 1 7).20 There are three major reasons why these ligands are well suited for application to a NACM catalyst. First, the trianionic nature of the pincer ligand allows access to the +6 oxidation state required for the alkylidyne. Second, the rigid planarity of the ligand backbone imposes geometry restraints around the metal center which should help increase its reactivity. Finally, the strong M C bond present should distort the alkylidyne out o f the plane of the ligand, further increasing the reactivity of the resulting complex. Figure 17. Target molecule

PAGE 18

18 CHAPTER 2 PROGRESS TOWARD A TUNGSTEN ALKYLIDYNE SUPPORTED WITH A TRIANIONC OCO3 PINCER LIGAND Synthesis and Characterization of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3) The tBuOCO ligand precursor ( 1) was treated with one equivalent of W(OAr)2(CH2C (CH3)3)( C (CH3)3) (OAr = 2,6 diisopropylphenoxide) ( 2) in hot (85 C) benzene for two hours, resulting in formation of a deep red solution of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) (Figure 2 1). The molecular structure of 3 was confirmed by a combination of single crystal X ray crystallography and one and two dimensional NMR techniques. The complex fe atures the tridentate, trianionic pincer ligand as part of the distorted squarepyramidal geometry around the tungsten center. Figure 21. Synthesis of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3) The coordination sphere is completed by 2,6 diisopropylphenoxide and a neopentylidene moiety. The 2,6 diisopropylphenol formed during the reaction proved difficult to remove, so all NMR data is of solutions containing one equivalent of free phenol. The t butyl groups of the ligand resonate at 1.44 ppm in the 1H NMR spectrum, their equivalence indicative of overall Cs symmetry. The 2,6 diisopropylphenoxide is oriented such that the two isopropyl groups are diastereotopic. The methine protons of the isopr opyl groups resonate at 4.09 ppm and 2.39 ppm, and the methyl protons resonate at 1.42 ppm and 0.69 ppm. A singlet, attributed to the

PAGE 19

19 alkylidene proton, is observed at 5.54 ppm. The identity of this peak was confirmed by HMQC NMR. The crosspeak correlated with the signal at 5.54 ppm in the 1H NMR also correlated with the resonance at 272.2 ppm in the 13C{1H} spectrum, associated with the alkylidene carbon. Figure 22. Molecular structure of 3. Ellipsoids shown at 5 0% probability level; hydrogen atoms are omitted for clarity. Only one molecule of the asymmetric unit is shown. A single crystal was obtained by slow evaporation of a diethyl ether solution and analyzed t o confirm the structure of 3 (Figure 22). The molecule possesses C1 symmetry in the solid state. The t butyl of the neopentylidene moiety rests above an oxygen atom of the pincer ligand, with a Ct butylCalkylideneW O1 torsion angle of only 3.6(9). T he alkylidene moiety occupies the apical position, with the tBuOCO ligand and the 2,6diisopropylphenoxide occupying the basal positions. The positioning of the mirror plane in the CipsoW Calkylidene plane can be seen by comparing the two molecules of th e asymmetric unit (Figure 2 3). The two conformations must interconvert readily in solution, with free rotation around the W Calkylidene W O2 C t butyl C alkylidene O3 O1 C ipso

PAGE 20

20 bond. The 2,6 diisopropylphenoxide is positioned with one isopropyl group above the basal plane and one below the pla ne. This supports the nonequivalence of the isopropyl groups in the 1H NMR spectrum. The W Calkylidene distance of 1.917(8) and t he W CalkylideneC angle of 139.9(7) are not atypical.21,22,23,24 The ligand backbone is slightly twisted to relieve ster ic congestion, with the rings of the ligands arms rotated 22.74(10) with respect to each other, which is also not unusual for this ligand system.20 Figure 23. Two molecules of asymmetric unit of 3 demonstrating mirror symmetry There are two possible routes by which 1 could form. In one method, the first step in the reaction is addition of the OH group from 1 across the triple bond of the alkylidyne in 2. The reaction proceeds by alcoholysis of the remaining hydroxyl group of 1 by one 2,6 diisopropylphenoxide, and C H activation and alkyl elimination of neopentane to bind the backbone of the ligand to the tungsten center. This would leave one 2,6 diisopropylphenoxide bound the tungsten atom as seen in 3. Another possibility i s for alcoholysis and C H activation to bind all three donor sites of the ligand to the tungsten atom. The alkylidyne is left intact, but then one equivalent of the 2,6 diisopropylphenol formed adds across the tungsten carbon triple bond, leaving the alkylidene and phenoxide as observed.

PAGE 21

21 Synthesis and Characterization of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} (4 and 5) Addition of 2,6 diisopropylphenol across the alkylidyne bond is a possible route for formation of 3 ; thus, W(CH2C (CH3)3)3( C C (CH3)3) was next chosen as an alkylidyne source. The neopentane formed during the reaction should be unreactive and so the resulting complex should retain the alkylidyne moiety. The reaction between tBuOCO and W(CH2C (CH3)3)3( C (CH3)3) in benzene requ ired prolonged heating (72 hours) at extremely elevated temperatures (145C) to o btain appreciable conversion to {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) (Figure 2 4). Single crystal X ray crystallography was used to elucidate the structures of 4 and 5, related structural isomers present in the product mixture. Both compounds consist of two distorted square pyramidal tungsten centers bridged by one tBuO CHO ligand. Figure 24. Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4 and 5) Owing to the high temperature required for conversion, and since W(CH2C (CH3)3)3( C (CH3)3) is known to decompose above 140 C, an intractable mixtu re of products was obtained, and no single species could be isolated on a significant scale. Despite the complicated product mixture, the 1H NMR spectrum did indicate the presence of two closely related isomers. After 16 hours, two sets of four singlets, characteristic of the four inequivalent t butyl moieties in

PAGE 22

22 each compound, are observed between 0.5 ppm and 2.0 ppm, in a 70:30 ratio ( 4 : 5). Compound 4 is slowly converted to 5 over 96 hours until a 90:10 ratio is reached. This corresponds to a value of G145=1.8 kcal/mol for the equilibrium. The reaction was stopped after 12 hours to enable study of the kinetically favored isomer. X ray analysis of a single crystal obtained by a slow evaporation of an Et2O solution of th e product mixture revealed the dinuclear structure 4. The molecular structure of 5 was obtained from X ray analysis of a single crystal obtained by the same method after 72 hours of heating (Figure 2 5). Each compound contains two tungsten alkylidene mo ieties bridged by a tBuOCHO ligand. An additional tridentate tBuOCO ligand completes the distorted square pyramidal coordination sphere around each tungsten center. The differences between the two structures are subtle. In 4, the bridging ligand is rota ted such that the oxygen atoms of the bridging ligand are proximal to the center backbone ring of the ligand. In 5, the arrangement is reversed, with the oxygen atoms of the bridging ligand distal to the center ring of the ligand (Figure 26). The twis t angles of the tridentate tBuOCO ligands differ significantly between 4 and 5. The rings of the pendant arms are approximately coplanar in 4, while in 5, the pendant arms are twisted 42.43(13) with respect to one another. This twist relieves steric con gestion around the tungsten center and is likely the cause for the thermodynamic preference of 5 over 4 The W Calkylidene bond lengths and the W CalkylideneC bond angles in 4 are 1.900(6) 1.876(6) 143.4(5), and 151.3(7) respectively, and the cor responding values for 5 are 1.887(7) 1.885(6) 143.5(5), and 145.7(6) respectively. The variation in W Calkylidene bond lengths and the W CalkylideneC bond angles between the two alkylidene moieties in each compound as well as the variation in W Calkylidene bond lengths and the W CalkylideneC bond angles between 4 and 5 is not chemically significant.

PAGE 23

23 Figure 25. Molecular structure of 4 (left) and 5 (right). Ellipsoids are shown at 50% probability level; hydrogen atoms are omitted for clarity. C alkylidene W W C alkylidene C alkylidene W W C alkylidene

PAGE 24

24 Figure 26. Molecular structure of 4 (left) and 5 (right) showing orientation of bridging ligand The related reaction involving W(CH2TMS)3( trial with slightly impure W(CH2TMS)3( NMR tube after approximately 48 h ours of heating. Single crystal X ray analysis of one of these crystals revealed the polymeric structure [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6). The molecular structure of 6 consists of a bidentate tBuOCHO ligand and two molecules of 1,4 dioxane, creating a highly di storted tetrahedral geometry around a m agnesium center (Figure 27). The two oxygen atoms of the tBuOCHO ligand and one 1,4dioxane oxygen lie nearly in the same plane, with an average deviation of only 0.2034(5) from the best fit plane defined by those three oxygen atoms and the magnesium atom. The remaining 1,4dioxane oxygen is nearly perpendicular to that plane, with an average bond Oin -planeMg Oout -of plane angle of 93.33(16). The chain extends along the crystallographic a axis.

PAGE 25

25 Magnesium chlori de is a byproduct of the synthesis of W(CH2TMS)3( dioxane is used to aid in its removal. During the reactions in which 6 is formed, liberation of free SiMe4 is observed in the 1H NMR spectrum. It can be inferred a reaction of excess Grignar d reagent from the synthesis of W(CH2TMS)3( with 1 results in deprotonation of the phenolic oxygen atoms, followed by the binding of 1,4dioxane to the magnesium atoms The exact mechanism of formation of 6 was not studied further. Further reactions were attempted with purified W(CH2TMS)3( 1H NMR spectrum indicated complicated product mixtures, similar to the mixture seen during the formation of 4 and 5. No further study was attempted of this reaction.

PAGE 26

26 Figure 27. Polymeric structure of 6. Ellipsoids are shown at 5 0% probability level; hydrogen atoms and benzene molecule omitted for clarity.

PAGE 27

27 CHAPTER 3 PROGRESS TOWARDS COM PLEXES WITH M M MULTIPLE BONDS SUPPORTED BY A TRIANIONIC OCO3 PINCER LIGAND Since direct reaction of 1 with alkylidyne containing complexes did not provide the desired result, a new method was sought. Alkylidynes can be formed by metathesis reactions of W W containing c ompounds with alkynes, so an attempt was made to synthesize a compound containing 1 and such a W W unit. (NMe2)3W W(NMe2)3 was chosen, as it is easily prepared on an appreciable scale.25 Treatment of (NMe2)3W W(NMe2)3 with two equivalents of 1 in hot benzene for two hours yields a dark red solution with an 1H NMR which spectrum indicates complete conversion to 7 (Figure 31). Prolonged heating at 85 C results in the formation of a green solution and precipitation of 8 as red crystals in near ly quantitative yield. Since 8 had no appreciable solubility in common NMR solvents, analysis was limited to single crystal X ray crystallography and combustion analysis. F igure 31. Synthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) and [tBuOCHO]W ( NMe2)2( O)W[tBuOCHO] ( 8)

PAGE 28

28 1H NMR was used to elucidate the structure of 7. The spectrum shows no paramagnetic peak broadening, indicating the tungsten tungsten triple bond is intact. Two singlets at 4.09 ppm and 2.34 ppm were each assigned to two different methyl group environments for the dimethyl amides. The t butyl resona nce was also split into two peaks at 1.95 ppm and 1.62 ppm. The inequivalence of these peaks indicates a staggered arrangement of the ligands bound to each tungsten center with respect to the tungsten tungsten triple bond (Figure 32). The offset of the ligands creates two different chemical environments for the amide methyl groups as well as the ligand t butyl groups. Figure 32. Newman projection of 7 illustrating inequivalence of t ert butyls and amides The molecular structure of 8 consists of two tungsten atoms bridged by two dimethylamides and an oxygen atom (Figure 33). The geometry around each tungsten center is distorted square pyramidal, with a bidentate tBuOCHO moiety and the bridging amides occupying the basal positions, a nd the O atom occupying the apical position. The average W ( O) bond distance is 1.944(5) similar to other reported bridging oxo compounds.26 The 2.49726(19) distance between tungsten atoms is indicative of a double bond between the tungsten cent ers.27 The two possible sources of the oxygen atom are molecular oxygen and water. Both sources could oxidize one tungsten tungsten bond, leaving the double bond observed in 8 and

PAGE 29

29 Figure 33. Molecular structure of 8. Ellipsoids are shown at 5 0% probability level; benzene molecules and hydrogen atoms omitted for clarity. generating a +4 oxidation state in the metals. A bridging water molecule is a possibility and could not be ruled out by X ray crystallography. Examples of oxidation of metal metal bonds by molecular oxygen appear in the literature.28 Several experiments were performed to determine the source of the oxygen atom. To eliminate molecular oxygen as the oxidant, the reaction m ixture was degassed by the freezepum pthaw method. After 72 hours, the same green solution and red crystalline precipitate resulted. The reaction was then performed in benzene from several different sources to eliminate W1 N1 O5 W2 O3 O4 N2 O2 O1

PAGE 30

30 the possibility of solvent contam ination. Each reaction resulted in the same reaction product. These experiments suggest molecular oxygen is not responsible for the oxidation. To elucidate the role of water, water and toluene (as a reference) were added to C6D6 and the solution degass ed. Combination of the two starting reagents in wet benzene yielded the same oxo bridged complex after ten minutes. If water is not intentionally added, an additional source of water is that bound to the surface of the glass used for the reaction. The d rastic increase in rate when water was added could be attributed to the relative difficulty of removing surfacebound water versus the free water present in the reaction. If the oxygen source is water and a bridging water molecule is not present, hydrogen gas must be a byproduct. There is a small peak in the 1H NMR spectrum at 4.31 ppm, which could be attributed to a small amount of dissolved hydrogen gas. If the reaction vessel is thoroughly washed with D2O and dried prior to the reaction, the p eak at 4 .31 ppm is not visible, which supports this hypothesis. The concentration of D2 was too low to gain any useful information from 2H NMR spectroscopy. If the NMR tube is flame dried under vacuum prior to the reaction, a black precipitate forms within 24 ho urs. This suggests the compound may decompose upon extended heating if water is not present for reaction. Unfortunately, all attempts to deliberately add hydrogen to the system to confirm the identity of the peak at 4.31 ppm resulted in ligand hydrolysis Since all three sources of the oxygen atom have apparently been ruled out, work is continuing to attempt to determine its source.

PAGE 31

31 CHAPTER 4 SYNTHESIS OF DINUCLE AR ZIRCONIUM AND HAF NIUM COMPLEXES OF A NEW ANTHRACENE DIAMIDO LIGAND To explore the chemistry of other pincer ligands, a new NCN3 pincer ligand was employed. Anthracene diamido ligand 9 was previous ly synthesized by M. K. Veige. Treatment of AnthH3 ( 9) with a group IV metal amide of the form M(NMe2)4 (M= Zr ( 10) and Hf ( 11)) in benzene results in the formation of the dinuclear complexes [AnthH] [M(NMe2)3(NHMe2)]2 (M = Zr, 10 and M = Hf, 11) (Figure 4 1). The reaction is complete within ten min utes at room temperature. The structures of 10 and 11 were conf irmed by a combination of 1H and 13C NMR spectroscopy, singlecrystal X ray crystallography, and combustion analysis. Figure 41. Synthesis of [AnthH][M(NMe2)3(NHMe2)]2 ( 10 and 11) In each complex, each amide donor of the AnthH ligand is bound to a meta l center, resulting in a dinuclear complex. The coordination geometry around each metal atom is trigonal bipyramidal in nature, with one molecule of dimethylamine occupying the site trans to the ligand amide, while three dimethylamides occupy the three equatorial sites around the metal atom. 1H NMR spectroscopy of these complexes indicates the dimethylamide and dimethylamine ligands do not exchange positions. For example, in the 1H NMR s pectrum of 11, the methyl protons of

PAGE 32

32 the three dimethylamides appear as a sharp singlet at 2.57 ppm and the methyl protons of the dimethylamine appear as a doublet at 1.45 ppm. Figure 42. Molecular structure of 11. Ellipsoids are shown at 50% probability level; hydrogen atoms are omitted for clarity. A single crystal of 11 was obtained by pentane diffusion into a solution of 11 in diethyl ether and analyzed by X ray diffractio n studies (Figure 42). The structure exhibits trigonal bipyramidal geometry around each metal atom. The average Hf N bond length for the dimethylamides and ligand amides is 2.041(17) and 2.187(10) respectively, with the Hf NHMe2 bond length being l onger as expected, at 2.440(11) The bond angles around the hafnium atom deviate only slightly from the ideal trigonal bipyramidal values, with the average N Hf N angle for the equatorial dimethylamides being 119.25(7), and the average N Hf N angle bet ween the AnthH ligand amide and the dimethylamine being 178.0(4). The structure of 11 Hf1 N3 N2 N5 N4 N1 N6 N9 N8 N10 Hf2 N7

PAGE 33

33 illustrates its C2 symmetry (Figure 4 3). By viewing along the C2 axis, the ligand arms are clearly shown as lying roughly in the plane of the anthracene backbone. Figure 43. Molecular structure of 11 viewed along C2 axis

PAGE 34

34 CHAPTER 5 CONCLUSIONS This report has established the synthesis new metal complexes supported by trianionic pincer ligands. All attempts to form a four coordinate alkylidyne complex supported by a tBuOCO ligand by direct reaction with a preformed alkylidyne have not been successful, resulting in five coordinate alkylidene complexes ( 35) This suggests that while an alkylidyne may be forme d during the progress of the reaction, it is too unsaturated to be stable. Parallel research by another group member has revealed the addition of the ligand backbone C H bond across the alkylidyne is a possible reaction route. A method to remove this proton from the ligand prior to the reaction has not been determined and therefore may rule out the direct reaction with a preformed alkylidyne as a feasible reaction route. While attempting to form a complex containing a W dging oxo functionality was obtained ( 8) The source of this oxygen atom has not been conclusively determined to date, but evidence currently points to the oxidative addition of water as the likely source. This mechanism would produce hydrogen gas as a byproduct. Research is ongoing to determine the exact mechanism of formation of this complex. When using NCN pincer ligands, a dinuclear complex was obtained ( 1011). The fact a dinuclear complex was obtained is not surprising. Other NCN pincer ligands that have been studied previously by the Veige group have often resulted in dinuclear or dimeric complexes.29 The differences between an N H and an O H bond were a major reason for switching to an oxygen based pincer ligand.

PAGE 35

35 CHAPTER 6 EXPERIMENTAL Gener al Considerations Unless specified otherwise, all manipulations were performed under an inert atmosphere using standard Schlenk or glovebox techniques. Glassware was oven dried before use. Pentane, toluene, diethyl ether (Et2O), and tetrahydrofuran (THF ) were dried using a Glass Contour drying column. Benzene d6 (Cambridge Isotopes) and benzene were dried over sodium benzophenone ketyl and distilled or vacuum transferred and stored over 4 molecular sieves. NMR spectra were obtained on Varian Mercury B road Band 300 MHz or Varian Mercury 300 1H and 13C{1H} NMR spectra, the residual protio solvent peak was referenced as an internal reference. Elemental analyses were performed by Complete A nalysis Laboratory Inc., Parsippany, New Jersey. Synthesis of [tBuOCO]W(=CH C (CH3)3)(O 2,6 C6H3-iPr2) (3) In a 50 mL Schlenk tube, W( C C (CH3)3)(CH2 C(CH3)3)(O 2,6 C6H3-iPr2)2 ( 2 ) (91 mg, 0.14 mmol) was added to a solution of 1 (50 mg, 0.14 mmol) in benzene (2 mL). The mixture was heated at 85 C for two hours. The solvent was removed in vacuo from the resulting dark red solution to yield 3 as a dark red oil (134 mg, 98 %) containing one equivalent of 2,6diisopropylphenol. X ray quality crystals were obtained from the slow evaporation of an Et2O solution. 1H NMR (300 MHz, C6D6 7.99 (d, J=7.9 Hz, 2H, Ar -H), 7.80 (dd, 3J=7.9 Hz, 4J=1.5 Hz, 2H, Ar -H), 7.38 (t, J=7.9 Hz, 1H, Ar -H), 7.33 (dd, 3J=7.8 Hz, 4J=1.5 Hz, 2H, A r -H), 7.03 (d, J=1.1 Hz, 1H, phenol Ar -H), 7.01 (s, 1H, phenol Ar -H), 6.98 (s, 1H, Ar -H), 6.96 (s,1H, Ar -H), 6.91 (m, 1H, phenol Ar -H), 6.89 (s, 1H, Ar -H), 6.88 (d, J=3.8 Hz, 1H, Ar -H), 6.87 (s, 1H, Ar -H), 5.54 (s, JH W=8.7 Hz, 1H, W=CHC(CH3)3), 4.09 (sept, J=6.8 Hz, 1H, CH(CH3)2), 2.93 (sept, J=6.9 Hz, 2H, phenol CH(CH3)2) 2.39 (sept, J=6.7 Hz, 1H, CH(CH3)2), 1.44 (s, 18H,

PAGE 36

36 Ar C(CH3)3), 1.42 (d, J=6.9Hz, 6H, CH(CH3)2), 0.84 (s, 9H, W=CHC(CH3)3), 0.69 (d, J=6.7 Hz, 6H, CH(CH3)2). 13C NMR (75.3 6 Hz, C6D6CHC(CH3)3), 182.7 (s, C aromatic), 160.3 (s, C aromatic), 158.5 (s, C aromatic), 150.8 (s, phenol C aromatic), 140.9 (s, C aromatic), 138.2 (s, C aromatic), 137.2 (s, C aromatic), 137.1 (s, C aromatic), 134.2 (s, phenol C a romatic), 133.0 (s, C aromatic), 130.0 (s, C aromatic), 126.7 (s, C aromatic), 126.4 (s, C aromatic), 124.4 (s, C aromatic), 124.2 (s, phenol C aromatic), 123.9 (s, C aromatic), 123.6 (s, C aromatic), 122.3 (s, C aromatic), 121.5 (s, phenol C aromatic), 47 .9 (s, W=CHC(CH3)3), 35.6 (s, Ar -C(CH3)3), 33.3 (s, CH(CH3)2), 32.0 (s, W=CHC(CH3)3), 30.9 (s, Ar C(CH3)3), 27.7 (s, phenol CH(CH3)2), 27.5 (s, CH(CH3)2), 23.9 (s, CH(CH3)2), 23.6 (s, CH(CH3)2), 23.3 (s, phenol Ar CH(CH3)2). Anal. Calcd for C43H54O3W: C, 64.34; H, 6.78. Found: C, 64.42; H, 6.94. Synthesis of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (4 and 5) In a 50 mL Schlenk tube, W(CH2C(CH3)3)3( C (CH3)3) (200 mg, 0.534 mmol) was added to a solution of 1 (151 mg, 0.356 mmol) in benzene (2 mL). The solution was degassed. The reaction mixture was heated to 145 C for 72 hours. Removal of solvent yielded a dark red oil. Crystalline material for X ray analysis was obtained by slow evaporation of Et2O. Sy nthesis of [tBuOCHO](NMe2)W 2)[tBuOCHO] (7) In a J. Young NMR tube, (NMe2)3W 2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 1.5 hours. The dark red solution was allowed to cool to room temperature and the solvent was removed in vacuo to yield 7 as a dark red solid (64 mg, 97 %). 1H NMR (300 MHz, C6D6 8.81 (s, 1H, Ar H ), 7.69 (s, 1H, Ar H ), 7.38 7.29 (m, 12H, Ar H ), 7.23 (s, 2H, Ar H ), 7.097.06 (m, 1H, Ar H ), 6.94 6.88 (m, 3H, Ar H ), 4.09 (s, 6H, N ( C H3)2), 2.34 (s, 6H, N ( C H3)2), 1.95 (s, 18H, Ar C(CH3)3), 1.62 (s, 18H, Ar C(CH3)3).

PAGE 37

37 Synthesis of [tBuOCO]W( NMe2)2( O)W[tBuOCO] (8) In a J. Young NMR tube, (NMe2)3W 2)3 (34 mg, 0.055 mmol) and 1 (40 mg, 0.11 mmol) were combined in benzene (0.5 mL). The solution was warmed to 85 C for 72 hours. The dark green solution was decanted from a red, crystalline precipitate. The resulting solid was dried in vacuo to yield 7 as a green powder (50 mg, 76 %). Solid 5 had no appreciable solubility in C6D6, CDCl3, or THF d8, making NMR study impossible. Anal. Calcd for C56H68N2O5W2: C, 55.27; H, 5.63; N, 2.30. Found: C, 55.49; H, 5.84; N, 2.44. Synthesis of [AnthH][Zr(NMe2)3(NHMe2)]2 (10) Zr(NMe2)4 (40. 4 mg, 0.151 mmol) was added to a solution of AnthH3 ( 9) (50.0 mg, 0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then ceased and the reaction mixture was allowed to stand at room temperature for one hour during which time a precipitate formed. The solvent was decanted and the product dried in vacuo to yield 10 as a pale yellow solid (80.8 mg, 89 %). 1H NMR (300 MHz, C6D6 9.11 (s, 1H, Ar H ), 8.21 (s, 1H, Ar H ), 7.66 (d, J =8.2 Hz, 2 H, Ar H ), 7.53 (d, J =6.9 Hz, 2 H, Ar H ), 7.30 (s, 4 H, Ar H ), 7.21 (m, 2 H, Ar H ), 7.07 (s, 2 H, Ar H ), 5.46 (s, 4 H, Ar C H2N), 2.66 (s, 32 H, Zr N(C H3)2), 1.51 (d, J =6.3 Hz, 12 H, Zr NH(C H3)2), 0.78 (sept, J =6.4 Hz, 2 H, Zr N H (CH3)2). 13C NMR (75.36 Hz, C6D6 (ppm): 159.5 (s, C aromatic), 136.6 (s, C aromatic), 132.8 (s, C aromatic), 132.3 (s, C aromatic), 131.8 (s, C aromatic), 130.6 (s, C aromatic), 129.4 (s, C aromatic), 127.8 (s, C aromatic), 125.8 (s, C aromatic), 125.7 (s, C aromatic), 124.1 (s, C aromat ic), 116.4 (s, C aromatic), 114.6 (s, C aromatic), 106.7 (s, Ar C F3), 52.4 (s, Ar C H2N), 42.2 (s, Zr N( C H3)2), 39.1 (s, Zr NH( C H3)2). Synthesis of [AnthH][Hf(NMe2)3(NHMe2)]2 (11) Hf(NMe2)4 (53.6 mg, 0.151 mmol) was added to a solution of 9 (50.0 mg, 0.076 mmol) in benzene (1 mL), and the resulting mixture was stirred for ten minutes. Stirring was then

PAGE 38

38 stopped and the reaction mixture was allowed to stand at room temperature for one hour, during which time a precipitate formed. The solvent was decanted and the solid product dried in vacuo to yield 11 as a pale yellow solid (90.9 mg, 87 %). 1H NMR (300 MHz, C6D6 9.00 (s, 1H, Ar H ), 8.08 (s, 1H, Ar H ), 7.53 (d, J =8.8 Hz, 2H, Ar H ), 7.45 (d, J =6.6 Hz, 2H, Ar H ), 7.26 (s, 4H, Ar H ), 7.08 (m, 2H, Ar H ), 7.04 (s, 1H, Ar H ), 6.96 (s, 1H, Ar H ), 5.42 (s, 4, Ar C H2N), 2.57 (s, 32 H, Hf N(C H3)2), 1.45 (d, J =6.3 Hz, 12 H, Hf NH(C H3)2), 0.79 (sept, J =6.3 Hz, 2 H, Hf N H (CH3)2). 13C NMR (75.36 Hz, C6D6 159.5 (s, C aromatic), 136.7 (s C aromatic), 133.1 (s, C aromatic), 132.5 (s, C aromatic), 132.1 (s, C aromatic), 130.9 (s, C aromatic), 129.8 (s, C aromatic), 128.2 (s, C aromatic), 126.0 (s, C aromatic), 124.5 (s, C aromatic), 116.6 (s, C aromatic), 115.3 (s, C aromatic), 107.8 (s, A r C F3), 52.4 (s, Ar C H2N), 42.3 (s, Hf N( C H3)2), 39.3 (s, Hf NH( C H3)2).

PAGE 39

39 APPENDIX A 1H AND 13C{1H} NMR SPECTRA

PAGE 40

40 Figure A 1. 1H NMR spectrum of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) in C6D6

PAGE 41

41 Figure A 2. 13C {1H} NMR spectrum of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) in C6D6

PAGE 42

42 Figure A 3. 1H NMR spectrum of [tBuOCHO](NMe2)W 2)[tBuOCHO] ( 7) in C6D6

PAGE 43

43 Figure A 4. 1H NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10 ) in C6D6

PAGE 44

44 Figure A 5. 13C {1H} NMR spectrum of [AnthH][Zr(NMe2)3(NHMe2)]2 ( 10 ) in C6D6

PAGE 45

45 Figure A 6. 1H NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) in C6D6

PAGE 46

46 Figure A 7. 13C{1H} NMR spectrum of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) in C6D6

PAGE 47

47 APPENDIX B X RAY STRUCTURAL DATA AND TABLES

PAGE 48

48 Figure B 1. Molecular structure of [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ). Ellipsoids shown at the 5 0% probability level; hydrogens are omitted for clarity. C1 C6 C5 C4 C3 C1 7 C1 8 C1 9 C 22 C21 C20 O2 W1 O1 C25 C24 C23 C26 C 7 C1 2 C1 1 C1 0 C 9 C 8 C1 5 C1 3 C1 6 C1 4 C27 C 28 C 31 C 30 C 29 O3 C40 C38 C39 C42 C41 C 32 C43 C 36 C 35 C34 C33 C37

PAGE 49

49 Figure B 2. Packing diagram for 3

PAGE 50

50 X ray E xperimental for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method ( 0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 847 parameters were refined in the final cycle of refinement using 10217 1 and wR2 of 5.00% and 11.27%, respectively. Refinement was done using F2.

PAGE 51

51 Table B 1. Crystal data, structure solution, and refinement for [tBuOCO]W(=CH C (CH3)3)(O 2,6-iPr2C6H3) ( 3 ) identification code pelo5 empirical formula C43H54O3W formula weight 802.71 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group C(2)/c a () 39.001(2) b () 12.5405(8) c () 31.4372(19) (deg) 90 (deg) 90.2150(10) (deg) 90 V (3) 15375.5(16) Z 8 calcd (g mm3) 1.387 crystal size (mm) 0.12 x 0.04 x 0.04 abs coeff (mm1) 3.041 F (000) 6560 range for data collection 1.04 to 28.03 limiting indicies 34 h 51, 16 k 16, 41 l 39 no. of reflns collcd 53157 no. of ind reflns 18457 [ R (int) = 0.0842] completeness to = 28.03 99.1 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 18457 / 0 / 847 R 1, wR R1 = 0.0500, wR2 = 0.1127 R 1, wR 2 (all data) R1 = 0.1139, wR2 = 0.1343 GOF on F2 1.003 largest diff. peak and hole (e.3) 1.022 and 0.886 o c o o 2 F c 2 ) 2 ] / o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 52

52 Table B 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ). U (eq) is defined as one third of the trace of the orthogonalized Uij tensor. Atom X Y Z U(eq) W1 1336(1) 376(1) 2115(1) 28(1) W2 1408(1) 4970(1) 4355(1) 27(1) O1 1148(1) 1694(4) 2209(2) 33(1) O2 1501(1) 1010(4) 2202(2) 31(1) O3 885(1) 271(4) 2046(2) 36(1) O4 1533(1) 6435(4) 4253(2) 31(1) O5 1260(1) 3607(4) 4262(2) 32(1) O6 946(1) 5498(4) 4435(2) 35(1) C1 1680(2) 812(6) 2627(2) 32(2) C2 1616(2) 1738(6) 2882(3) 32(2) C3 1772(2) 1818(7) 3286(3) 42(2) C4 2002(2) 1066(7) 3429(3) 46(2) C5 2091(2) 228(7) 3167(3) 42(2) C6 1934(2) 88(6) 2772(2) 33(2) C7 1392(2) 2663(7) 2767(3) 37(2) C8 1145(2) 2620(6) 2444(3) 32(2) C9 909(2) 3407(7) 2349(3) 42(2) C10 942(2) 4350(7) 2580(3) 51(3) C11 1203(3) 4460(7) 2881(3) 57(3) C12 1411(3) 3644(7) 2979(3) 50(2) C13 619(2) 3260(7) 2028(3) 49(3) C14 389(3) 4242(9) 2027(4) 93(5) C15 751(3) 3111(8) 1580(3) 61(3) C16 402(2) 2319(9) 2161(3) 70(3) C17 2047(2) 849(7) 2523(3) 40(2) C18 1821(2) 1407(6) 2252(3) 34(2) C19 1917(2) 2381(7) 2048(3) 37(2) C20 2255(2) 2730(7) 2108(3) 44(2) C21 2492(2) 2162(8) 2363(3) 50(3) C22 2389(2) 1266(8) 2564(3) 47(2) C23 1662(2) 3025(7) 1779(3) 45(2) C24 1829(3) 4038(7) 1591(3) 66(3) C25 1524(2) 2372(7) 1393(3) 53(3) C26 1363(2) 3371(7) 2049(3) 55(3) C27 1627(2) 648(7) 1638(3) 36(2) C28 1743(2) 1561(7) 1364(3) 41(2)

PAGE 53

53 Table B 2. Continued Atom X Y Z U(eq) C29 2100(3) 1359(8) 1212(4) 80(4) C30 1501(3) 1601(8) 972(3) 64(3) C31 1741(2) 2621(7) 1599(3) 52(3) C32 685(2) 1045(6) 1905(3) 33(2) C33 573(2) 1086(6) 1476(3) 35(2) C34 363(2) 1940(7) 1346(3) 45(2) C35 275(2) 2727(7) 1635(3) 45(2) C36 374(2) 2673(6) 2053(3) 39(2) C37 580(2) 1824(7) 2204(3) 35(2) C38 661(2) 207(7) 1164(3) 41(2) C39 347(3) 452(9) 1043(4) 83(4) C40 848(3) 614(8) 769(3) 69(3) C41 668(2) 1688(6) 2670(3) 34(2) C42 442(2) 838(7) 2880(3) 45(2) C43 665(2) 2729(7) 2929(3) 51(3) C44 1761(2) 4615(6) 3861(2) 30(2) C45 2021(2) 5365(6) 3760(2) 30(2) C46 2219(2) 5272(7) 3390(3) 41(2) C47 2161(2) 4419(7) 3110(3) 45(2) C48 1929(2) 3644(7) 3211(3) 40(2) C49 1734(2) 3686(6) 3591(3) 32(2) C50 2109(2) 6287(6) 4039(2) 29(2) C51 1861(2) 6831(6) 4272(2) 30(2) C52 1925(2) 7756(6) 4515(2) 30(2) C53 2264(2) 8049(7) 4541(3) 40(2) C54 2526(2) 7521(7) 4319(3) 40(2) C55 2450(2) 6653(7) 4076(3) 38(2) C56 1650(2) 8382(7) 4742(3) 38(2) C57 1466(2) 7711(7) 5081(3) 44(2) C58 1381(2) 8766(7) 4413(3) 47(2) C59 1782(2) 9368(7) 4956(3) 57(3) C60 1505(2) 2763(6) 3669(2) 33(2) C61 1264(2) 2740(6) 4001(3) 28(2) C62 1039(2) 1900(6) 4083(3) 35(2) C63 1067(2) 1005(7) 3821(3) 42(2) C64 1304(2) 981(6) 3508(3) 39(2) C65 1525(2) 1826(7) 3429(3) 40(2) C66 751(2) 1977(7) 4418(3) 44(2)

PAGE 54

54 Table B 2. Continued Atom X Y Z U(eq) C67 518(2) 979(8) 4410(4) 70(3) C68 519(2) 2930(7) 4317(3) 56(3) C69 901(2) 2093(7) 4867(3) 48(2) C70 1729(2) 4827(6) 4805(2) 33(2) C71 1956(2) 4021(6) 5021(3) 37(2) C72 1942(3) 4181(8) 5494(3) 76(4) C73 2323(2) 4220(8) 4860(4) 66(3) C74 1847(2) 2870(6) 4903(3) 53(3) C75 729(2) 6254(6) 4575(3) 38(2) C76 607(2) 7021(7) 4292(3) 40(2) C77 391(2) 7817(8) 4446(3) 54(3) C78 296(3) 7808(9) 4863(4) 65(3) C79 402(2) 7019(8) 5138(3) 54(3) C80 620(2) 6214(7) 4999(3) 40(2) C81 695(2) 6940(8) 3828(3) 53(3) C82 653(3) 7952(9) 3573(3) 77(4) C83 463(3) 6054(10) 3635(3) 83(4) C84 719(2) 5313(8) 5295(3) 50(2) C85 920(3) 5694(9) 5675(3) 80(4) C86 410(3) 4683(9) 5446(4) 80(4)

PAGE 55

55 Table B 3. Bond lengths (in ) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) (3 ) Bond Length Bond Length W1 O1 1.832(5) C 5C6 1.395(10) W1 O2 1.872(5) C 6C17 1.480(12) W1 C27 1.917(8) C7 C 8 1.399(10) W1 O3 1.946(5) C7 C12 1.401(11) W1 C1 2.160(8) C8 C9 1.381(11) W2 O5 1.827(5) C9 C10 1.393(12) W2 C70 1.895(8) C9 C13 1.525(12) W2 O4 1.928(5) C10 C11 1.395(12) W2 O6 1.938(5) C11 C12 1.340(12) W2 C44 2.124(8) C13 C16 1.511(13) O1 C8 1.376(9) C13 C15 1.515(13) O2 C18 1.356(9) C13 C14 1.522(13) O3 C32 1.322(9) C17 C18 1.408(11) O4 C51 1.373(9) C17 C22 1.438(11) O5 C61 1.363(9) C18 C19 1.429(11) O6 C75 1.345(9) C19 C20 1.403(11) C1 C6 1.419(11) C19 C 23 1.533(12) C1 C2 1.434(11) C20 C21 1.411(12) C2 C3 1.412(10) C21 C 22 1.351(12) C2 C7 1.495(11) C23 C26 1.509(12) C3 C4 1.375(12) C23 C24 1.546(12) C4 C5 1.382(12) C23 C25 1.558(12)

PAGE 56

56 Table B 4. Bond angles (in deg) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) Bond Angle Bond Angle O1 W1 O2 162.0(2) O6 W2 C44 140.5(2) O1 W1 C27 101.7(3) C8 O1 W1 148.5(5) O2 W1 C27 94.3(3) C18 O2 W1 132.3(5) O1 W1 O3 91.9(2) C32 O3 W1 151.0(5) O2 W1 O3 86.5(2) C51 O4 W2 125.0(4) C27 W1 O3 121.6(3) C61 O5 W2 146.9(5) O1 W1 C1 84.2(3) C75 O6 W2 150.3(5) O2 W1 C1 85.2(3) C6 C1 C2 117.5(7) C27 W1 C1 99.7(3) C6 C1 W1 120.6(6) O3 W1 C1 138.3(3) C2 C1 W1 120.8(5) O5 W2 C70 103.7(3) C3 C2 C1 119.1(7) O5 W2 O4 161.0(2) C3 C2 C7 114.4(7) C70 W2 O4 92.7(3) C1 C2 C7 126.6(7) O5 W2 O6 92.7(2) C4 C3 C2 121.7(8) C70 W2 O6 123.2(3) C3 C4 C5 119.5(8) O4 W2 O6 86.2(2) C4 C5 C6 121.1(8) O5 W2 C44 83.8(3) C5 C6 C1 120.7(8) C70 W2 C44 95.6(3) C5 C6 C17 116.1(8) O4 W2 C44 85.1(3) C1 C6 C17 123.2(7) C8 C7 C12 114.4(8) O2 C18 C19 120.3(7) C8 C7 C2 123.0(7) C17 C18 C19 122.2(8) C12 C7 C2 122.6(8) C20 C19 C18 116.9(8) O1 C8 C9 119.7(7) C20 C19 C23 121.2(8) O1 C8 C7 114.5(7) C18 C19 C23 121.9(7) C9 C8 C7 125.8(8) C19 C20 C21 122.0(8) C8 C9 C10 115.8(8) C22 C21 C20 119.4(9) C8 C9 C13 123.3(8) C21 C22 C17 122.5(9) C10 C9 C13 120.8(8) C26 C23 C19 109.9(8) C9 C10 C11 120.1(9) C26 C23 C24 107.8(7) C12 C11 C10 121.3(9) C19 C23 C24 111.8(8) C11 C12 C7 122.1(9) C26 C23 C25 108.9(8) C16 C13 C15 110.7(8) C19 C23 C25 112.0(7) C16 C13 C14 107.7(9) C24 C23 C25 106.2(8) C15 C13 C14 107.5(9) C28 C27 W1 139.9(7) C16 C13 C9 109.1(8) C29 C28 C27 109.7(7) C15 C13 C9 111.9(8) C29 C28 C31 108.1(8) C14 C13 C9 109.8(8) C27 C28 C31 112.7(8) C18 C17 C22 116.8(9) C29 C28 C30 108.6(9)

PAGE 57

57 Table B 4. Continued Bond Angle Bond Angle C18 C17 C6 121.9(8) C27 C28 C30 107.2(7) C22 C17 C6 121.2(8) C31 C28 C30 110.6(7) O2 C18 C17 117.5(8) O3 C32 C33 121.8(7) O3 C32 C37 117.1(7) C44 C45 C50 123.0(7) C33 C32 C37 121.1(7) C47 C46 C45 119.7(8) C34 C33 C32 118.8(8) C48 C47 C46 120.1(8) C34 C33 C38 120.0(8) C47 C48 C49 121.8(8) C32 C33 C38 121.2(7) C48 C49 C44 119.1(7) C35 C34 C33 119.8(8) C48 C49 C60 115.9(7) C36 C35 C34 121.6(8) C44 C49 C60 124.9(7) C35 C36 C37 121.1(8) C51 C50 C55 116.9(7) C36 C37 C32 117.5(8) C51 C50 C45 122.0(7) C36 C37 C41 122.5(8) C55 C50 C45 121.0(7) C32 C37 C41 119.9(7) O4 C51 C50 116.6(7) C33 C38 C39 111.9(7) O4 C51 C52 118.8(7) C33 C38 C40 113.0(8) C50 C51 C52 124.5(8) C39 C38 C40 111.1(8) C53 C52 C51 114.7(7) C37 C41 C42 111.4(6) C69 C66 C67 108.2(8) C37 C41 C43 114.5(7) C62 C66 C67 111.5(7) C42 C41 C43 110.9(7) C82 C81 C83 109.3(8) C45 C44 C49 116.8(7) C85 C84 C80 112.5(8) C45 C44 W2 119.3(5) C85 C84 C86 109.1(8) C49 C44 W2 123.6(6) C80 C84 C86 112.3(8) C46 C45 C44 121.8(7) C71 C70 W2 142.0(6) C46 C45 C50 115.2(7) C53 C52 C56 121.1(7) C59 C56 C58 105.9(7) C51 C52 C56 124.2(7) C52 C56 C58 109.0(7) C52 C53 C54 123.2(8) C57 C56 C58 108.4(7) C55 C54 C53 119.8(8) C65 C60 C61 115.0(8) C54 C55 C50 120.6(8) C65 C60 C49 122.0(8) C59 C56 C52 113.5(7) C61 C60 C49 122.9(7) C59 C56 C57 107.6(8) O5 C61 C62 118.8(7) C52 C56 C57 112.2(7) O5 C61 C60 116.1(7) C72 C71 C70 109.5(7) C62 C61 C60 125.1(7) C72 C71 C73 109.9(8) C61 C62 C63 116.5(8) C70 C71 C73 106.8(7) C61 C62 C66 122.6(7) C72 C71 C74 110.5(8) C63 C62 C66 120.8(8) C70 C71 C74 110.8(6)

PAGE 58

58 Table B 4. Continued Bond Angle C64 C63 C62 120.2(9) C63 C64 C65 122.5(8) C64 C65 C60 120.6(8) C68 C66 C69 109.9(8) C68 C66 C62 109.7(8) C69 C66 C62 111.0(7) C68 C66 C67 106.4(8) C78 C77 C76 119.7(9) C77 C78 C79 121.8(10) C78 C79 C80 120.4(10) C79 C80 C75 117.5(8) C79 C80 C84 120.1(9) C75 C80 C84 122.3(8) C76 C81 C82 115.7(9) C76 C81 C83 107.1(8) C73 C71 C74 109.2(8) O6 C75 C76 119.3(8) O6 C75 C80 118.7(8) C76 C75 C80 121.9(8) C75 C76 C77 118.5(9) C75 C76 C81 119.7(8) C77 C76 C81 121.8(8)

PAGE 59

59 Table B 5. Aniso tropic displacement parameters (2x 103) for [tBuOCO]W(=CH C (CH3)3)(O 2,6-iPr2C6H3) ( 3 ). The anisotropic displacement factor exponent takes the form: 2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 28(1) 34(1) 23(1) 0(1) 2(1) 3(1) W2 24(1) 35(1) 22(1) 3(1) 2(1) 3(1) O1 31(3) 35(3) 33(3) 3(3) 4(3) 6(2) O2 15(3) 48(3) 30(3) 4(3) 5(2) 0(2) O3 28(3) 37(3) 41(3) 2(3) 5(3) 2(2) O4 31(3) 33(3) 30(3) 3(2) 5(3) 2(2) O5 27(3) 41(3) 27(3) 5(3) 3(2) 5(2) O6 29(3) 47(3) 30(3) 5(3) 4(2) 10(3) C1 27(5) 40(5) 28(5) 6(4) 9(4) 5(4) C2 20(4) 45(5) 29(5) 6(4) 4(4) 3(4) C3 43(6) 50(6) 32(5) 3(4) 3(4) 6(4) C4 47(6) 66(7) 26(5) 4(5) 7(4) 26(5) C5 34(5) 63(6) 30(5) 10(4) 5(4) 17(4) C6 28(5) 44(5) 28(4) 3(4) 5(3) 19(4) C7 28(5) 49(5) 32(5) 7(4) 4(4) 17(4) C8 22(5) 38(5) 35(5) 5(4) 10(4) 4(4) C9 46(6) 44(5) 37(5) 2(4) 6(4) 1(4) C10 49(6) 48(6) 57(7) 7(5) 5(5) 0(5) C11 65(7) 42(6) 65(7) 22(5) 7(6) 18(5) C12 57(7) 47(6) 45(6) 6(5) 0(5) 5(5) C13 41(6) 44(6) 60(7) 6(5) 12(5) 6(5) C14 58(8) 85(9) 137(12) 50(8) 30(8) 26(7) C15 65(8) 65(7) 52(7) 7(5) 27(6) 4(5) C16 28(6) 108(9) 74(8) 19(7) 7(6) 3(6) C17 42(6) 45(5) 33(5) 19(4) 11(4) 4(4) C18 33(5) 43(5) 27(5) 9(4) 2(4) 10(4) C19 35(5) 50(5) 25(5) 2(4) 7(4) 6(4) C20 31(5) 56(6) 47(6) 15(5) 18(4) 30(5) C21 29(5) 72(7) 48(6) 17(5) 6(5) 9(5) C22 19(5) 76(7) 46(6) 23(5) 2(4) 8(4) C23 44(6) 37(5) 55(7) 0(5) 18(5) 7(4) C24 81(8) 43(6) 74(8) 5(5) 3(6) 12(5) C25 65(7) 41(6) 53(7) 6(5) 10(5) 8(5) C26 57(7) 37(5) 72(8) 4(5) 19(6) 6(5) C27 23(5) 49(5) 37(5) 1(4) 14(4) 18(4) C28 40(6) 41(5) 42(6) 11(4) 5(4) 3(4)

PAGE 60

60 Table B 5. Continued Atom U11 U22 U33 U23 U13 U12 C29 64(8) 70(8) 107(10) 39(7) 44(7) 15(6) C30 96(9) 63(7) 34(6) 20(5) 5(6) 1(6) C31 64(7) 46(6) 46(6) 10(5) 9(5) 16(5) C32 21(5) 34(5) 44(5) 2(4) 11(4) 5(4) C33 15(4) 47(5) 41(5) 4(4) 8(4) 8(4) C34 26(5) 63(6) 46(6) 14(5) 4(4) 16(4) C35 45(6) 37(5) 52(6) 17(5) 10(5) 10(4) C36 37(6) 35(5) 46(6) 3(4) 6(4) 7(4) C37 10(4) 54(6) 42(5) 14(4) 0(4) 3(4) C38 20(4) 63(6) 39(5) 2(4) 15(4) 4(4) C39 94(10) 69(8) 85(9) 12(7) 6(7) 16(7) C40 82(8) 75(8) 50(7) 10(6) 24(6) 7(6) C41 19(4) 42(5) 42(5) 1(4) 10(4) 9(4) C42 47(6) 45(5) 42(6) 1(4) 1(4) 11(4) C43 52(7) 51(6) 51(6) 4(5) 8(5) 4(5) C44 37(5) 32(4) 22(4) 0(4) 3(3) 4(4) C45 28(5) 41(5) 22(4) 5(4) 3(3) 5(4) C46 38(5) 56(6) 29(5) 3(4) 1(4) 2(4) C47 35(5) 77(7) 24(5) 1(5) 3(4) 9(5) C48 41(6) 40(5) 39(5) 15(4) 7(4) 12(4) C49 23(5) 47(5) 27(5) 8(4) 2(4) 6(4) C50 25(5) 38(5) 24(4) 5(4) 5(4) 1(4) C51 30(5) 31(5) 29(5) 6(4) 5(4) 3(4) C52 27(5) 36(5) 28(5) 3(4) 0(4) 6(4) C53 42(6) 41(5) 35(5) 3(4) 5(4) 1(4) C54 20(5) 58(6) 42(6) 11(5) 9(4) 5(4) C55 41(6) 43(5) 31(5) 2(4) 10(4) 7(4) C56 28(5) 46(5) 39(5) 8(4) 11(4) 8(4) C57 35(6) 60(6) 35(5) 5(4) 0(4) 1(4) C58 38(6) 45(5) 57(7) 1(5) 3(5) 17(4) C59 41(6) 58(6) 72(7) 22(5) 2(5) 9(5) C60 36(5) 41(5) 23(5) 4(4) 3(4) 10(4) C61 15(4) 34(5) 37(5) 3(4) 14(4) 6(3) C62 31(5) 44(5) 31(5) 0(4) 5(4) 16(4) C63 35(5) 56(6) 34(5) 4(4) 4(4) 2(4) C64 43(6) 26(5) 47(6) 2(4) 9(5) 8(4) C65 36(5) 48(6) 37(5) 4(4) 6(4) 16(4)

PAGE 61

61 Table B 5. Continued Atom U11 U22 U33 U23 U13 U12 C66 30(5) 44(5) 58(7) 11(5) 10(5) 12(4) C67 49(7) 66(7) 96(9) 20(6) 29(6) 13(5) C68 28(6) 64(7) 75(8) 11(6) 4(5) 5(5) C69 43(6) 59(6) 43(6) 2(5) 16(5) 0(5) C70 40(5) 27(5) 32(5) 1(3) 6(4) 7(4) C71 34(5) 44(5) 32(5) 9(4) 10(4) 0(4) C72 130(11) 58(7) 39(6) 8(5) 23(7) 28(7) C73 21(5) 67(7) 109(10) 19(6) 7(6) 4(5) C74 53(6) 43(5) 63(7) 17(5) 28(5) 9(5) C75 28(5) 32(5) 53(6) 11(4) 2(4) 8(4) C76 32(5) 52(6) 34(5) 8(4) 1(4) 4(4) C77 34(6) 63(7) 63(7) 1(5) 3(5) 15(5) C78 56(7) 68(8) 72(9) 22(6) 12(6) 15(6) C79 47(7) 71(7) 45(6) 16(5) 15(5) 10(5) C80 28(5) 59(6) 33(5) 10(4) 2(4) 5(4) C81 31(6) 77(7) 49(6) 8(5) 11(5) 3(5) C82 57(8) 124(10) 49(7) 25(7) 3(6) 33(7) C83 79(9) 130(11) 41(7) 21(7) 9(6) 15(8) C84 45(6) 69(7) 36(5) 4(5) 5(4) 2(5) C85 83(9) 90(9) 67(8) 16(7) 10(7) 30(7) C86 83(9) 86(8) 71(8) 16(7) 5(7) 29(7)

PAGE 62

62 Table B 6. Torsion angles (in deg) for [tBuOCO]W(=CH C (CH3)3)(O 2,6 -iPr2C6H3) ( 3 ) Atoms Angle Atoms Angle O2 W1 O1 C8 51.0(13) O1 W1 C1 C2 10.8(6) C27 W1 O1 C8 101.7(10) O2 W1 C1 C2 154.8(6) O3 W1 O1 C8 35.5(10) C27 W1 C1 C2 111.7(6) C1 W1 O1 C8 2.9(10) O3 W1 C1 C2 75.6(7) O1 W1 O2 C18 100.3(9) C6 C1 C2 C3 8.1(11) C27 W1 O2 C18 52.9(7) W1 C1 C2 C3 159.8(6) O3 W1 O2 C18 174.4(7) C6 C1 C2 C7 172.1(7) C1 W1 O2 C18 46.5(7) W1 C1 C2 C7 20.0(11) O1 W1 O3 C32 59.3(11) C1 C2 C3 C4 4.2(12) O2 W1 O3 C32 38.6(11) C7 C2 C3 C4 176.0(8) C27 W1 O3 C32 54.3(12) C2 C3 C4 C5 2.3(13) C1 W1 O3 C32 117.3(11) C3 C4 C5 C6 4.9(13) O5 W2 O4 C51 110.9(8) C4 C5 C6 C1 0.7(12) C70 W2 O4 C51 38.8(6) C4 C5 C6 C17 178.9(7) O6 W2 O4 C51 161.9(6) C2 C1 C6 C5 5.8(11) C44 W2 O4 C51 56.6(6) W1 C1 C6 C5 162.2(6) C70 W2 O5 C61 108.4(9) C2 C1 C6 C17 174.7(7) O4 W2 O5 C61 40.3(13) W1 C1 C6 C17 17.4(10) O6 W2 O5 C61 126.4(8) C3 C2 C7 C8 162.0(8) C44 W2 O5 C61 14.1(8) C1 C2 C7 C8 17.8(13) O5 W2 O6 C75 162.9(11) C3 C2 C7 C12 17.0(12) C70 W2 O6 C75 54.5(12) C1 C2 C7 C12 163.2(8) O4 W2 O6 C75 36.1(11) W1 O1 C8 C9 178.8(7) C44 W2 O6 C75 13.6(11) W1 O1 C8 C7 1.3(14) O1 W1 C1 C6 178.3(6) C12 C7 C8 O1 174.2(7) O2 W1 C1 C6 12.8(6) C2 C7 C8 O1 6.7(11) C27 W1 C1 C6 80.8(7) C12 C7 C8 C9 5.7(13) O3 W1 C1 C6 92.0(7) C2 C7 C8 C9 173.4(8) O1 C8 C9 C10 175.1(8) C17 C18 C19 C23 175.6(8) C7 C8 C9 C10 4.8(14) C18 C19 C20 C21 1.1(12) O1 C8 C9 C13 7.8(13) C23 C19 C20 C21 178.5(8) C7 C8 C9 C13 172.4(9) C19 C20 C21 C22 1.5(14) C8 C9 C10 C11 0.8(14) C20 C21 C22 C17 1.3(14) C13 C9 C10 C11 178.0(9) C18 C17 C22 C21 1.3(12) C9 C10 C11 C12 5.2(16) C6 C17 C22 C21 175.4(8) C10 C11 C12 C7 4.2(16) C20 C19 C23 C26 118.8(9) C8 C7 C12 C11 1.0(14) C18 C19 C23 C26 60.8(10) C2 C7 C12 C11 178.1(9) C20 C19 C23 C24 0.9(12)

PAGE 63

63 Table B 6. Continued Atoms Angle Atoms Angle C8 C9 C13 C16 57.4(12) C18 C19 C23 C24 179.5(8) C10 C9 C13 C16 119.6(10) C20 C19 C23 C25 120.0(9) C8 C9 C13 C15 65.5(11) C18 C19 C23 C25 60.4(11) C10 C9 C13 C15 17.5(10) O1 W1 C27 C28 3.6(9) C8 C9 C13 C14 175.2(9) O2 W1 C27 C28 168.3(8) C10 C9 C13 C14 1.8(14) O3 W1 C27 C28 103.2(8) C5 C6 C17 C18 147.1(8) C1 W1 C27 C28 82.4(9) C1 C6 C17 C18 32.5(12) W1 C27 C28 C29 148.6(8) C5 C6 C17 C22 29.5(11) W1 C27 C28 C31 28.2(12) C1 C6 C17 C22 150.9(8) W1 C27 C28 C30 93.7(10) W1 O2 C18 C17 44.0(10) W1 O3 C32 C33 81.1(12) W1 O2 C18 C19 138.6(6) W1 O3 C32 C37 00.5(12) C22 C17 C18 O2 178.6(7) O3 C32 C33 C34 179.3(7) C6 C17 C18 O2 4.7(11) C37 C32 C33 C34 2.4(12) C22 C17 C18 C19 4.1(12) O3 C32 C33 C38 3.5(12) C6 C17 C18 C19 172.7(7) C37 C32 C33 C38 174.8(7) O2 C18 C19 C20 178.8(7) C32 C33 C34 C35 0.9(13) C17 C18 C19 C20 4.0(12) C38 C33 C34 C35 178.2(8) O2 C18 C19 C23 1.6(12) C33 C34 C35 C36 3.1(14) C34 C35 C36 C37 1.8(14) C45 C46 C47 C48 4.3(12) C35 C36 C37 C32 1.5(12) C46 C47 C48 C49 1.6(13) C35 C36 C37 C41 174.6(8) C47 C48 C49 C44 5.2(13) O3 C32 C37 C36 178.1(7) C47 C48 C49 C60 177.1(8) C33 C32 C37 C36 3.5(11) C45 C44 C49 C48 9.1(11) O3 C32 C37 C41 5.7(11) W2 C44 C49 C48 165.1(6) C33 C32 C37 C41 172.7(7) C45 C44 C49 C60 173.5(7) C34 C33 C38 C39 67.2(11) W2 C44 C49 C60 12.3(11) C32 C33 C38 C39 110.0(9) C46 C45 C50 C51 145.9(8) C34 C33 C38 C40 59.2(10) C44 C45 C50 C51 35.3(11) C32 C33 C38 C40 123.6(9) C46 C45 C50 C55 33.5(10) C36 C37 C41 C42 100.8(9) C44 C45 C50 C55 145.2(8) C32 C37 C41 C42 75.2(9) W2 O4 C51 C50 51.1(9) C36 C37 C41 C43 26.0(11) W2 O4 C51 C52 130.2(6) C32 C37 C41 C43 158.0(7) C55 C50 C51 O4 176.6(6) O5 W2 C44 C45 173.9(6) C45 C50 C51 O4 3.9(11) C70 W2 C44 C45 70.6(6) C55 C50 C51 C52 4.7(11) O4 W2 C44 C45 21.6(6) C45 C50 C51 C52 174.8(7) O6 W2 C44 C45 99.4(6) O4 C51 C52 C53 175.5(7)

PAGE 64

64 Table B 6. Continued Atoms Angle Atoms Angle O5 W2 C44 C49 12.1(6) C50 C51 C52 C53 5.9(12) C70 W2 C44 C49 115.3(6) O4 C51 C52 C56 2.9(11) O4 W2 C44 C49 152.5(6) C50 C51 C52 C56 175.7(7) O6 W2 C44 C49 74.7(7) C51 C52 C53 C54 4.5(12) C49 C44 C45 C46 6.7(11) C56 C52 C53 C54 177.0(8) W2 C44 C45 C46 167.8(6) C52 C53 C54 C55 2.2(13) C49 C44 C45 C50 172.0(7) C61 C60 C65 C64 3.7(11) W2 C44 C45 C50 13.6(10) C49 C60 C65 C64 179.4(7) C44 C45 C46 C47 0.1(12) C61 C62 C66 C68 56.6(10) C50 C45 C46 C47 178.6(7) C63 C62 C66 C68 118.0(8) C51 C52 C56 C59 176.6(8) C61 C62 C66 C69 65.1(10) C53 C52 C56 C57 117.2(8) C63 C62 C66 C69 120.3(8) C51 C52 C56 C57 61.2(10) C53 C54 C55 C50 0.8(12) C53 C52 C56 C58 122.8(8) C51 C50 C55 C54 1.9(11) C51 C52 C56 C58 58.9(10) C45 C50 C55 C54 177.5(7) C48 C49 C60 C65 11.5(11) C53 C52 C56 C59 5.0(11) C44 C49 C60 C65 171.0(7) C61 C62 C66 C67 174.2(8) C48 C49 C60 C61 171.9(7) C63 C62 C66 C67 0.4(12) C44 C49 C60 C61 5.7(12) O5 W2 C70 C71 21.1(10) W2 O5 C61 C62 170.1(6) O4 W2 C70 C71 49.2(10) W2 O5 C61 C60 11.1(12) O6 W2 C70 C71 123.7(9) C65 C60 C61 O5 174.5(6) C44 W2 C70 C71 63.9(10) C49 C60 C61 O5 2.4(11) W2 C70 C71 C72 138.9(9) C65 C60 C61 C62 4.3(11) W2 C70 C71 C73 102.1(10) C49 C60 C61 C62 178.9(7) W2 C70 C71 C74 16.7(13) O5 C61 C62 C63 176.3(7) W2 O6 C75 C76 95.7(12) C60 C61 C62 C63 2.4(12) W2 O6 C75 C80 87.4(13) O5 C61 C62 C66 8.8(11) O6 C75 C76 C77 178.2(8) C60 C61 C62 C66 172.4(8) C80 C75 C76 C77 5.0(13) C61 C62 C63 C64 0.1(12) O6 C75 C76 C81 5.1(12) C66 C62 C63 C64 175.1(8) C80 C75 C76 C81 171.7(8) C62 C63 C64 C65 0.5(13) C75 C76 C77 C78 2.1(14) C63 C64 C65 C60 1.5(13) C81 C76 C77 C78 174.6(9) C76 C77 C78 C79 1.3(16) C76 C75 C80 C79 4.4(13) C77 C78 C79 C80 2.0(16) C79 C80 C84 C85 63.6(12) C78 C79 C80 C75 0.9(14) C75 C80 C84 C85 119.2(10) C78 C79 C80 C84 176.4(9) C79 C80 C84 C86 60.0(11) O6 C75 C80 C79 178.8(8) C75 C80 C84 C86 17.2(10)

PAGE 65

65 Table B 6. Continued Atoms Angle O6 C75 C80 C84 4.0(12) C76 C75 C80 C84 172.8(8) C75 C76 C81 C82 161.2(8) C77 C76 C81 C82 22.2(13) C75 C76 C81 C83 76.6(11) C77 C76 C81 C83 00.0(11)

PAGE 66

66 Figure B 3. Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4). Ellipsoids are shown at the 50% probability level; hydrogens are omitted for clarity. C84 C85 W2 O4 O5 O6 C58 C49 C48 C37 C33 C38 C39 O3 O1 W1 C1 O2 C27 C28

PAGE 67

67 X ray E xperimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO )W{=CHC(CH3)3[tBuOCO]} (4) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The non H atoms were treated anisotropical ly, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle of refinement using 9733 1 and wR2 of 4.58% and 8.68%, respectively. Refinement was done using F2.

PAGE 68

68 Table B 7. Crystal data, structure solution, and refinement for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4) identification code pelo6t empirical formula C88H102O6W2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 13.5918(11) b () 35.213(3) c () 17.2146(15) (deg) 90 (deg) 111.897(2) (deg) 90 V (3) 7644.7(11) Z 4 calcd (g mm3) 1.411 crystal size (mm) 0.15 x 0.15 x 0.02 abs coeff (mm1) 3.059 F (000) 3304 range for data collection 1.16 to 28.06 limiting indicies 17 32 19 no. of reflns collcd 53602 no. of ind reflns 18421 [R(int) = 0.08431] completeness to = 28.03 99.3 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 18421 / 0 / 865 R 1, wR R1 = 0.0458, wR2 = 0.0868 R 1, wR 2 (all data) R1 = 0.1048, wR2 = 0.0967 GOF on F2 0.845 largest diff. peak and hole (e.3) 1.519 and 1.124 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 69

69 Table B 8. Atomic coordinates ( x 104) and equ ivalent isotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 4). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2864(1) 1311(1) 883(1) 32(1) W2 1720(1) 1073(1) 4751(1) 40(1) O1 3232(3) 809(1) 885(2) 37(1) O2 2535(3) 1791(1) 1227(2) 31(1) O3 1339(3) 1219(1) 382(2) 37(1) O4 3049(3) 847(1) 5077(3) 58(1) O5 2431(3) 1568(1) 5061(2) 41(1) O6 453(3) 1293(1) 4124(2) 48(1) C1 4315(4) 1350(2) 1970(3) 32(1) C2 4928(4) 1023(2) 2350(4) 36(1) C3 5632(5) 1049(2) 3184(4) 45(2) C4 5760(5) 1374(2) 3649(4) 44(2) C5 5256(4) 1698(2) 3261(4) 39(2) C6 4576(4) 1698(2) 2432(4) 33(1) C7 4878(5) 649(2) 1926(4) 40(2) C8 3997(5) 540(2) 1230(4) 40(2) C9 3858(5) 173(2) 858(4) 46(2) C10 4737(6) 65(2) 1173(5) 56(2) C11 5636(6) 48(2) 1818(5) 57(2) C12 5716(5) 392(2) 2206(4) 49(2) C13 2817(6) 48(2) 189(4) 54(2) C14 2842(6) 384(2) 35(5) 84(3) C15 2570(5) 281(2) 623(4) 59(2) C16 1905(5) 100(2) 502(4) 64(2) C17 4162(4) 2072(2) 2063(3) 33(1) C18 3127(4) 2116(2) 1499(3) 32(1) C19 2666(5) 2472(2) 1221(3) 35(1) C20 3354(5) 2779(2) 1498(4) 44(2) C21 4401(5) 2740(2) 2016(4) 47(2) C22 4795(5) 2393(2) 2303(4) 45(2) C23 1504(5) 2522(2) 666(4) 42(2) C24 1193(5) 2943(2) 507(4) 60(2) C25 1220(5) 2336(2) 175(4) 49(2) C26 810(5) 2355(2) 1118(4) 51(2) C27 3403(5) 1530(2) 113(4) 45(2) C28 4187(6) 1468(2) 315(5) 64(2)

PAGE 70

70 Table B 8. Continued Atom X Y Z U(eq) C29 3578(9) 1491(3) 1241(6) 172(6) C30 4747(6) 1097(2) 95(5) 71(2) C31 5011(7) 1791(2) 52(8) 153(6) C32 1448(4) 1578(2) 2608(3) 32(1) C33 1250(4) 1295(2) 2012(3) 31(1) C34 1946(4) 984(2) 2194(4) 35(1) C35 2806(4) 968(2) 2936(4) 35(1) C36 3005(4) 1262(2) 3507(3) 35(1) C37 2323(4) 1573(2) 3345(4) 36(1) C38 303(4) 1319(2) 1218(3) 33(1) C39 376(4) 1268(2) 424(4) 36(1) C40 532(5) 1280(2) 326(4) 45(2) C41 1507(5) 1356(2) 252(4) 51(2) C42 1576(5) 1419(2) 521(5) 52(2) C43 692(5) 1400(2) 1238(4) 43(2) C44 481(6) 1202(2) 1181(4) 57(2) C45 94(6) 801(2) 1187(4) 76(2) C46 282(5) 1474(2) 1393(4) 61(2) C47 1558(6) 1245(3) 1892(5) 97(3) C48 2564(4) 1913(2) 3903(4) 36(1) C49 2627(4) 1899(2) 4738(4) 34(1) C50 2826(4) 2232(2) 5233(4) 44(2) C51 2949(5) 2564(2) 4858(4) 47(2) C52 2902(5) 2579(2) 4071(4) 55(2) C53 2712(5) 2258(2) 3573(4) 44(2) C54 2913(6) 2219(2) 6153(4) 61(2) C55 3810(6) 1964(2) 6656(4) 66(2) C56 3138(6) 2618(2) 6540(5) 87(3) C57 1865(6) 2091(2) 6220(5) 87(3) C58 1151(5) 620(2) 3851(4) 47(2) C59 1828(5) 309(2) 3893(4) 53(2) C60 1611(6) 67(2) 3165(5) 64(2) C61 738(7) 135(2) 2462(5) 68(2) C62 35(6) 412(2) 2442(5) 58(2) C63 184(5) 655(2) 3125(4) 47(2) C64 2788(6) 207(2) 4627(5) 55(2) C65 3404(6) 482(2) 5203(5) 54(2) C66 4365(6) 413(2) 5890(5) 61(2)

PAGE 71

71 Table B 8. Continued Atom X Y Z U(eq) C67 4669(7) 27(3) 5969(5) 77(3) C68 4087(8) 259(2) 5426(7) 89(3) C69 3156(7) 171(2) 4770(6) 72(2) C70 5017(6) 721(2) 6487(5) 69(2) C71 6039(6) 565(3) 7151(5) 101(3) C72 4384(5) 902(2) 6979(4) 70(2) C73 5308(6) 1043(2) 6003(5) 83(3) C74 669(5) 928(2) 3028(4) 47(2) C75 510(5) 1254(2) 3506(4) 43(2) C76 1297(5) 1538(2) 3394(4) 52(2) C77 2269(6) 1466(2) 2766(4) 63(2) C78 2463(6) 1145(3) 2316(5) 68(2) C79 1712(6) 870(2) 2433(4) 63(2) C80 1074(5) 1891(2) 3942(4) 55(2) C81 829(5) 1788(2) 4860(4) 70(2) C82 2057(5) 2161(2) 3682(5) 75(2) C83 169(5) 2123(2) 3849(5) 65(2) C84 1367(7) 859(2) 5611(5) 90(3) C85 605(7) 681(2) 5914(5) 79(3) C86 882(10) 285(3) 6169(6) 158(5) C87 522(9) 927(3) 6628(7) 156(5) C88 520(6) 701(3) 5158(6) 108(3)

PAGE 72

72 Table B 9. Bond lengths (in ) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) Bond Length Bond Length W1 O1 1.838(4) C8 C9 1.422(8) W1 O2 1.897(3) C9 C10 1.394(8) W1 C27 1.900(6) C9 C13 1.519(9) W1 O3 1.952(4) C10 C11 1.369(9) W1 C1 2.158(6) C11 C12 1.365(8) W2 O6 1.830(4) C13 C16 1.536(8) W2 O4 1.859(4) C13 C15 1.546(9) W2 C84 1.876(6) C13 C14 1.573(8) W2 O5 1.969(4) C17 C22 1.385(7) W2 C58 2.155(6) C17 C18 1.387(7) O1 C8 1.368(6) C18 C19 1.403(7) O2 C18 1.378(6) C19 C20 1.392(7) O3 C39 1.348(6) C19 C23 1.521(8) O4 C65 1.360(8) C20 C21 1.376(8) O5 C49 1.358(6) C21 C22 1.352(8) O6 C75 1.351(7) C23 C25 1.503(8) C1 C2 1.429(7) C23 C24 1.539(7) C1 C6 1.430(7) C23 C26 1.546(8) C2 C3 1.401(8) C27 C28 1.520(8) C2 C7 1.495(8) C28 C30 1.489(8) C3 C4 1.368(8) C28 C29 1.499(11) C4 C5 1.370(8) C28 C31 1.539(11) C5 C6 1.382(7) C32 C37 1.377(7) C6 C17 1.481(7) C32 C33 1.382(7) C7 C12 1.392(8) C33 C34 1.403(7) C7 C8 1.396(8) C33 C38 1.490(7) C34 C35 1.375(7) C61 C62 1.357(10) C35 C36 1.385(7) C62 C63 1.406(9) C36 C37 1.394(8) C63 C74 1.469(9) C37 C48 1.492(8) C64 C69 1.410(9) C38 C43 1.395(7) C64 C65 1.417(9) C38 C39 1.418(7) C65 C66 1.418(9) C39 C40 1.416(8) C66 C67 1.412(10) C40 C41 1.403(8) C66 C70 1.529(10) C40 C44 1.526(9) C67 C68 1.399(11) C41 C42 1.386(9) C68 C69 1.380(11) C42 C43 1.367(8) C70 C71 1.533(9)

PAGE 73

73 Table B 9. Continued Bond Length Bond Length C44 C45 1.510(9) C70 C73 1.543(9) C44 C47 1.526(9) C70 C72 1.552(9) C44 C46 1.551(9) C74 C75 1.382(8) C48 C53 1.388(8) C74 C79 1.420(8) C48 C49 1.409(8) C75 C76 1.421(9) C49 C50 1.414(8) C76 C77 1.383(8) C50 C51 1.378(8) C76 C80 1.524(9) C50 C54 1.544(9) C77 C78 1.339(10) C51 C52 1.332(8) C78 C79 1.366(9) C52 C53 1.383(8) C80 C81 1.533(9) C54 C55 1.503(9) C80 C83 1.533(8) C54 C56 1.534(9) C80 C82 1.562(8) C54 C57 1.539(8) C84 C85 1.465(9) C58 C59 1.415(9) C85 C86 1.468(11) C58 C63 1.442(9) C85 C87 1.543(11) C59 C60 1.451(9) C85 C88 1.598(11) C59 C64 1.483(9) C60 C61 1.363(10)

PAGE 74

74 Table B 10. Bond angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4) Bond Angle Bond Angle O1 W1 O2 162.07(16) C2 C1 W1 122.3(4) O1 W1 C27 102.5(2) C6 C1 W1 119.5(4) O2 W1 C27 93.1(2) C3 C2 C1 118.3(5) O1 W1 O3 94.85(15) C3 C2 C7 116.6(5) O2 W1 O3 87.16(14) C1 C2 C7 125.1(5) C27 W1 O3 112.4(2) C4 C3 C2 123.0(6) O1 W1 C1 84.19(19) C3 C4 C5 118.6(6) O2 W1 C1 85.33(18) C4 C5 C6 121.6(6) C27 W1 C1 96.5(2) C5 C6 C1 120.4(5) O3 W1 C1 150.42(17) C5 C6 C17 116.3(5) O6 W2 O4 162.78(18) C1 C6 C17 123.3(5) O6 W2 C84 100.0(3) C12 C7 C8 116.6(6) O4 W2 C84 95.5(3) C12 C7 C2 121.4(6) O6 W2 O5 92.42(17) C8 C7 C2 122.0(5) O4 W2 O5 88.53(18) O1 C8 C7 116.8(5) C84 W2 O5 112.7(3) O1 C8 C9 118.8(6) O6 W2 C58 83.3(2) C7 C8 C9 124.3(6) O4 W2 C58 87.1(2) C10 C9 C8 114.9(6) C84 W2 C58 98.1(3) C10 C9 C13 122.8(6) O5 W2 C58 149.19(18) C8 C9 C13 122.3(6) C8 O1 W1 146.1(4) C11 C10 C9 121.0(6) C18 O2 W1 132.1(3) C12 C11 C10 122.6(6) C39 O3 W1 147.9(3) C11 C12 C7 120.1(7) C65 O4 W2 134.4(4) C9 C13 C16 110.2(5) C49 O5 W2 143.1(4) C9 C13 C15 111.1(6) C75 O6 W2 147.5(4) C16 C13 C15 108.9(6) C2 C1 C6 117.0(5) C9 C13 C14 111.5(6) C16 C13 C14 107.1(6) C32 C33 C38 120.1(5) C15 C13 C14 108.0(6) C34 C33 C38 122.0(5) C22 C17 C18 118.2(5) C35 C34 C33 120.6(5) C22 C17 C6 120.2(5) C34 C35 C36 120.1(5) C18 C17 C6 121.5(5) C35 C36 C37 120.4(5) O2 C18 C17 117.1(5) C32 C37 C36 118.4(5) O2 C18 C19 119.8(5) C32 C37 C48 119.4(5) C17 C18 C19 123.1(5) C36 C37 C48 122.0(5) C20 C19 C18 114.8(6) C43 C38 C39 117.8(5) C20 C19 C23 122.2(5) C43 C38 C33 120.2(5)

PAGE 75

75 Table B 10. Continued Bond Angle Bond Angle C18 C19 C23 123.0(5) C39 C38 C33 122.0(5) C21 C20 C19 123.0(6) O3 C39 C40 119.2(5) C22 C21 C20 120.1(6) O3 C39 C38 119.1(5) C21 C22 C17 120.7(6) C40 C39 C38 121.6(5) C25 C23 C19 112.9(5) C41 C40 C39 117.1(6) C25 C23 C24 107.1(5) C41 C40 C44 120.4(6) C19 C23 C24 112.0(5) C39 C40 C44 122.5(6) C25 C23 C26 109.5(5) C42 C41 C40 121.4(6) C19 C23 C26 109.0(5) C43 C42 C41 120.5(6) C24 C23 C26 106.1(5) C42 C43 C38 121.4(6) C28 C27 W1 143.4(5) C45 C44 C47 108.6(6) C30 C28 C29 110.2(7) C45 C44 C40 108.5(6) C30 C28 C27 112.7(5) C47 C44 C40 112.4(6) C29 C28 C27 107.4(6) C45 C44 C46 108.2(6) C30 C28 C31 109.1(7) C47 C44 C46 106.1(6) C29 C28 C31 109.1(8) C40 C44 C46 113.0(5) C27 C28 C31 108.4(7) C53 C48 C49 119.0(5) C37 C32 C33 122.4(5) C53 C48 C37 117.9(6) C32 C33 C34 117.9(5) C49 C48 C37 123.0(5) O5 C49 C48 120.0(5) C65 C64 C59 122.2(6) O5 C49 C50 119.1(6) O4 C65 C64 116.9(7) C48 C49 C50 120.7(5) O4 C65 C66 117.2(7) C51 C50 C49 116.8(6) C64 C65 C66 125.9(7) C51 C50 C54 121.9(6) C65 C66 C67 113.0(8) C49 C50 C54 121.3(6) C65 C66 C70 124.2(7) C52 C51 C50 122.8(6) C67 C66 C70 122.8(8) C51 C52 C53 121.7(6) C68 C67 C66 123.8(8) C52 C53 C48 118.9(6) C69 C68 C67 120.2(8) C55 C54 C56 108.0(6) C68 C69 C64 120.7(8) C55 C54 C57 110.9(7) C66 C70 C71 112.6(7) C56 C54 C57 106.0(6) C66 C70 C73 111.0(6) C55 C54 C50 110.1(6) C71 C70 C73 108.7(6) C56 C54 C50 110.3(6) C66 C70 C72 111.0(6) C57 C54 C50 111.5(6) C71 C70 C72 105.8(6) C59 C58 C63 118.4(6) C73 C70 C72 107.4(7) C59 C58 W2 118.9(5) C75 C74 C79 116.2(6) C63 C58 W2 121.8(5) C75 C74 C63 122.4(6) C58 C59 C60 119.4(7) C79 C74 C63 121.4(6)

PAGE 76

76 Table B 10. Continued Bond Angle C58 C59 C64 125.5(6) C60 C59 C64 115.1(7) C61 C60 C59 119.6(7) C62 C61 C60 121.3(7) C61 C62 C63 122.3(7) C62 C63 C58 118.3(7) C62 C63 C74 116.3(6) C58 C63 C74 125.4(6) C69 C64 C65 116.4(8) C69 C64 C59 121.3(7) C76 C80 C83 110.6(5) C81 C80 C83 111.1(6) C76 C80 C82 111.6(6) C81 C80 C82 105.9(5) C83 C80 C82 106.4(6) C85 C84 W2 151.3(7) C86 C85 C84 112.1(8) C86 C85 C87 112.5(8) C84 C85 C87 108.3(7) C86 C85 C88 110.2(8) C84 C85 C88 106.3(7) C87 C85 C88 107.0(8) C78 C77 C76 122.0(7) C77 C78 C79 122.5(7) C78 C79 C74 119.6(7) C76 C80 C81 111.1(6) O6 C75 C74 116.3(6) O6 C75 C76 119.6(5) C74 C75 C76 124.0(6) C77 C76 C75 115.4(6) C77 C76 C80 123.0(6) C75 C76 C80 121.6(6)

PAGE 77

77 Table B 11. Aniso tropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 4). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ] Atom U11 U22 U33 U23 U13 U12 W1 41(1) 25(1) 36(1) 1(1) 21(1) 0(1) W2 48(1) 41(1) 40(1) 5(1) 25(1) 14(1) O1 48(2) 29(2) 38(2) 1(2) 22(2) 3(2) O2 35(2) 21(2) 42(2) 4(2) 19(2) 2(2) O3 48(2) 29(2) 38(2) 8(2) 22(2) 2(2) O4 67(3) 43(3) 61(3) 4(2) 22(3) 3(2) O5 49(3) 42(3) 38(2) 9(2) 21(2) 13(2) O6 46(3) 53(3) 46(3) 18(2) 19(2) 10(2) C1 36(3) 30(3) 43(4) 9(3) 29(3) 4(3) C2 42(4) 35(4) 40(4) 2(3) 24(3) 5(3) C3 44(4) 47(4) 50(4) 18(3) 26(3) 6(3) C4 44(4) 51(5) 35(4) 5(3) 13(3) 5(3) C5 39(4) 28(4) 51(4) 3(3) 19(3) 3(3) C6 34(3) 30(3) 39(4) 6(3) 20(3) 6(3) C7 50(4) 35(4) 48(4) 17(3) 32(3) 7(3) C8 56(4) 31(4) 45(4) 6(3) 34(3) 7(3) C9 69(5) 33(4) 46(4) 3(3) 33(4) 4(3) C10 78(5) 33(4) 69(5) 9(4) 41(4) 23(4) C11 64(5) 45(5) 73(5) 16(4) 39(4) 18(4) C12 62(5) 40(4) 55(4) 7(3) 33(4) 11(3) C13 85(5) 27(4) 61(5) 4(3) 39(4) 5(4) C14 121(7) 34(5) 91(6) 24(4) 34(5) 3(4) C15 77(5) 51(5) 55(5) 4(4) 32(4) 7(4) C16 76(5) 48(5) 69(5) 3(4) 28(4) 16(4) C17 37(4) 33(4) 32(3) 2(3) 18(3) 3(3) C18 44(4) 28(3) 35(3) 3(3) 26(3) 2(3) C19 51(4) 23(3) 36(4) 3(3) 22(3) 4(3) C20 69(5) 23(4) 42(4) 3(3) 24(4) 2(3) C21 59(5) 30(4) 47(4) 6(3) 16(4) 12(3) C22 44(4) 40(4) 51(4) 3(3) 19(3) 10(3) C23 52(4) 25(3) 52(4) 5(3) 23(3) 11(3) C24 78(5) 36(4) 61(5) 6(3) 20(4) 16(4) C25 61(4) 35(4) 47(4) 0(3) 15(3) 3(3) C26 48(4) 45(4) 69(5) 12(3) 31(4) 15(3) C27 54(4) 35(4) 55(4) 11(3) 29(3) 10(3) C28 78(5) 62(5) 74(6) 35(4) 54(5) 40(4)

PAGE 78

78 Table B 11. Continued Atom U11 U22 U33 U23 U13 U12 C29 218(12) 258(15) 94(8) 89(9) 122(9) 169(11) C30 85(6) 69(5) 85(6) 14(4) 64(5) 15(4) C31 112(8) 72(7) 335(18) 36(9) 154(10) 7(6) C32 27(3) 36(4) 38(4) 5(3) 17(3) 7(3) C33 34(3) 33(3) 35(3) 3(3) 23(3) 3(3) C34 47(4) 31(4) 43(4) 3(3) 34(3) 8(3) C35 38(4) 29(4) 45(4) 9(3) 22(3) 0(3) C36 37(3) 44(4) 29(3) 2(3) 17(3) 17(3) C37 35(3) 42(4) 37(4) 2(3) 21(3) 6(3) C38 38(3) 24(3) 40(3) 11(3) 21(3) 3(3) C39 38(3) 28(3) 46(4) 8(3) 21(3) 1(3) C40 50(4) 35(4) 51(4) 14(3) 20(3) 7(3) C41 42(4) 48(4) 53(4) 7(3) 7(3) 4(3) C42 39(4) 46(4) 71(5) 7(3) 20(4) 7(3) C43 53(4) 35(4) 45(4) 4(3) 26(3) 4(3) C44 70(5) 44(5) 53(5) 16(3) 18(4) 4(4) C45 115(7) 62(6) 66(5) 27(4) 52(5) 32(5) C46 92(6) 55(5) 36(4) 1(3) 22(4) 11(4) C47 77(6) 148(9) 45(5) 29(5) 3(4) 6(5) C48 30(3) 40(4) 36(4) 13(3) 11(3) 10(3) C49 32(3) 32(4) 43(4) 3(3) 21(3) 8(3) C50 35(4) 52(4) 50(4) 18(3) 23(3) 14(3) C51 60(4) 30(4) 49(4) 18(3) 19(3) 7(3) C52 62(5) 33(4) 61(5) 0(3) 13(4) 10(3) C53 51(4) 38(4) 45(4) 1(3) 22(3) 11(3) C54 70(5) 74(6) 49(5) 29(4) 34(4) 28(4) C55 85(6) 64(5) 52(5) 10(4) 28(4) 21(4) C56 110(7) 90(7) 72(6) 50(5) 47(5) 37(5) C57 86(6) 115(7) 84(6) 45(5) 61(5) 49(5) C58 73(5) 34(4) 56(5) 1(3) 48(4) 9(3) C59 61(5) 47(5) 64(5) 2(4) 38(4) 23(4) C60 93(6) 34(4) 88(6) 14(4) 61(5) 22(4) C61 97(6) 68(6) 56(5) 32(4) 47(5) 48(5) C62 65(5) 55(5) 69(5) 19(4) 41(4) 28(4) C63 66(5) 39(4) 47(4) 9(3) 32(4) 34(3) C64 73(5) 30(4) 87(6) 8(4) 57(5) 1(4) C65 56(5) 57(5) 64(5) 7(4) 41(4) 3(4) C66 69(5) 63(5) 72(6) 26(4) 49(5) 13(4)

PAGE 79

79 Table B 11. Continued Atom U11 U22 U33 U23 U13 U12 C67 87(6) 92(7) 79(6) 38(5) 61(5) 29(6) C68 140(9) 52(6) 115(8) 29(6) 96(8) 18(6) C69 91(6) 49(5) 98(7) 16(5) 62(6) 2(4) C70 54(5) 92(7) 61(5) 11(5) 20(4) 4(4) C71 69(6) 143(9) 89(7) 19(6) 29(5) 15(6) C72 68(5) 98(7) 46(5) 11(4) 23(4) 5(4) C73 87(6) 95(7) 76(6) 8(5) 42(5) 31(5) C74 44(4) 56(5) 51(4) 10(3) 30(3) 15(3) C75 46(4) 54(5) 37(4) 12(3) 26(3) 18(3) C76 41(4) 69(5) 51(4) 8(4) 25(3) 9(4) C77 56(5) 92(6) 52(5) 19(4) 34(4) 11(4) C78 39(4) 119(8) 57(5) 2(5) 29(4) 15(5) C79 69(5) 76(6) 50(5) 22(4) 30(4) 47(5) C80 47(4) 69(5) 57(5) 7(4) 31(4) 4(4) C81 77(5) 79(6) 71(6) 13(4) 48(5) 1(4) C82 47(4) 86(6) 107(7) 7(5) 45(5) 14(4) C83 44(4) 71(6) 84(6) 5(4) 29(4) 2(4) C84 119(7) 126(8) 46(5) 15(5) 55(5) 72(6) C85 111(7) 64(6) 84(6) 1(5) 63(6) 26(5) C86 292(16) 83(8) 99(9) 25(7) 73(10) 40(9) C87 204(12) 205(13) 115(9) 48(8) 125(9) 47(10) C88 92(7) 123(9) 127(9) 23(7) 63(7) 46(6)

PAGE 80

80 Table B 12. Torsion angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W {=CHC(CH3)3[tBuOCO]} ( 4) Atoms Angle Atoms Angle O2 W1 O1 C8 62.5(9) O3 W1 C1 C2 82.5(5) C27 W1 O1 C8 87.4(6) O1 W1 C1 C6 174.4(4) O3 W1 O1 C8 158.3(6) O2 W1 C1 C6 9.0(4) C1 W1 O1 C8 8.0(6) C27 W1 C1 C6 83.7(4) O1 W1 O2 C18 99.5(6) O3 W1 C1 C6 84.8(5) C27 W1 O2 C18 51.2(5) C6 C1 C2 C3 8.9(7) O3 W1 O2 C18 163.5(5) W1 C1 C2 C3 158.8(4) C1 W1 O2 C18 45.2(4) C6 C1 C2 C7 171.5(5) O1 W1 O3 C39 127.2(7) W1 C1 C2 C7 20.9(7) O2 W1 O3 C39 35.0(7) C1 C2 C3 C4 0.3(8) C27 W1 O3 C39 127.2(7) C7 C2 C3 C4 180.0(5) C1 W1 O3 C39 40.4(8) C2 C3 C4 C5 6.4(9) O6 W2 O4 C65 97.3(8) C3 C4 C5 C6 4.0(9) C84 W2 O4 C65 56.7(6) C4 C5 C6 C1 4.9(8) O5 W2 O4 C65 169.3(6) C4 C5 C6 C17 174.3(5) C58 W2 O4 C65 41.2(6) C2 C1 C6 C5 11.2(8) O6 W2 O5 C49 53.9(6) W1 C1 C6 C5 156.7(4) O4 W2 O5 C49 108.9(6) C2 C1 C6 C17 167.9(5) C84 W2 O5 C49 155.8(6) W1 C1 C6 C17 24.1(7) C58 W2 O5 C49 27.1(8) C3 C2 C7 C12 22.9(8) O4 W2 O6 C75 66.2(10) C1 C2 C7 C12 157.4(5) C84 W2 O6 C75 87.4(7) C3 C2 C7 C8 157.5(5) O5 W2 O6 C75 159.1(7) C1 C2 C7 C8 22.1(8) C58 W2 O6 C75 9.7(7) W1 O1 C8 C7 8.3(9) O1 W1 C1 C2 7.1(4) W1 O1 C8 C9 170.9(4) O2 W1 C1 C2 158.4(4) C12 C7 C8 O1 171.7(5) C27 W1 C1 C2 109.0(4) C2 C7 C8 O1 7.9(8) C12 C7 C8 C9 7.4(9) C17 C18 C19 C20 5.1(8) C2 C7 C8 C9 173.0(5) O2 C18 C19 C23 4.0(8) O1 C8 C9 C10 171.3(5) C17 C18 C19 C23 174.3(5) C7 C8 C9 C10 7.8(9) C18 C19 C20 C21 1.0(8) O1 C8 C9 C13 10.5(8) C23 C19 C20 C21 178.4(6) C7 C8 C9 C13 170.3(6) C19 C20 C21 C22 2.4(10) C8 C9 C10 C11 2.9(9) C20 C21 C22 C17 1.8(9) C13 C9 C10 C11 175.2(6) C18 C17 C22 C21 2.2(9) C9 C10 C11 C12 2.1(11) C6 C17 C22 C21 175.3(5) C10 C11 C12 C7 2.7(10) C20 C19 C23 C25 117.5(6)

PAGE 81

81 Table B 12. Continued Atoms Angle Atoms Angle C8 C7 C12 C11 1.9(9) C18 C19 C23 C25 63.1(7) C2 C7 C12 C11 178.5(6) C20 C19 C23 C24 3.4(8) C10 C9 C13 C16 123.4(6) C18 C19 C23 C24 175.9(5) C8 C9 C13 C16 54.6(8) C20 C19 C23 C26 120.5(6) C10 C9 C13 C15 115.9(7) C18 C19 C23 C26 58.8(7) C8 C9 C13 C15 66.1(8) O1 W1 C27 C28 19.5(9) C10 C9 C13 C14 4.7(9) O2 W1 C27 C28 151.6(8) C8 C9 C13 C14 173.3(6) O3 W1 C27 C28 120.2(8) C5 C6 C17 C22 35.2(7) C1 W1 C27 C28 65.9(9) C1 C6 C17 C22 144.0(5) W1 C27 C28 C30 2.7(12) C5 C6 C17 C18 142.2(5) W1 C27 C28 C29 124.2(9) C1 C6 C17 C18 38.7(8) W1 C27 C28 C31 118.1(9) W1 O2 C18 C17 43.1(7) C37 C32 C33 C34 3.3(8) W1 O2 C18 C19 138.5(4) C37 C32 C33 C38 178.6(5) C22 C17 C18 O2 175.8(5) C32 C33 C34 C35 1.2(7) C6 C17 C18 O2 6.8(7) C38 C33 C34 C35 179.3(5) C22 C17 C18 C19 5.8(8) C33 C34 C35 C36 1.1(8) C6 C17 C18 C19 171.5(5) C34 C35 C36 C37 1.5(8) O2 C18 C19 C20 176.5(5) C33 C32 C37 C36 2.9(8) C33 C32 C37 C48 171.7(5) C32 C37 C48 C53 57.8(7) C35 C36 C37 C32 0.4(8) C36 C37 C48 C53 116.5(6) C35 C36 C37 C48 174.0(5) C32 C37 C48 C49 120.9(6) C32 C33 C38 C43 48.6(7) C36 C37 C48 C49 64.8(8) C34 C33 C38 C43 129.4(5) W2 O5 C49 C48 21.6(9) C32 C33 C38 C39 130.5(5) W2 O5 C49 C50 154.4(5) C34 C33 C38 C39 51.5(8) C53 C48 C49 O5 176.6(5) W1 O3 C39 C40 150.8(5) C37 C48 C49 O5 2.1(8) W1 O3 C39 C38 27.0(9) C53 C48 C49 C50 0.6(8) C43 C38 C39 O3 175.0(5) C37 C48 C49 C50 178.0(5) C33 C38 C39 O3 4.2(8) O5 C49 C50 C51 175.7(5) C43 C38 C39 C40 2.8(8) C48 C49 C50 C51 0.2(8) C33 C38 C39 C40 178.0(5) O5 C49 C50 C54 4.9(8) O3 C39 C40 C41 176.0(5) C48 C49 C50 C54 179.1(6) C38 C39 C40 C41 1.8(9) C49 C50 C51 C52 1.0(9) O3 C39 C40 C44 6.0(9) C54 C50 C51 C52 178.4(6) C38 C39 C40 C44 176.2(5) C50 C51 C52 C53 0.8(11) C39 C40 C41 C42 0.4(9) C51 C52 C53 C48 0.1(10) C44 C40 C41 C42 178.4(6) C49 C48 C53 C52 0.8(9)

PAGE 82

82 Table B 12. Continued Atoms Angle Atoms Angle C40 C41 C42 C43 1.5(9) C37 C48 C53 C52 177.9(5) C41 C42 C43 C38 0.5(9) C51 C50 C54 C55 118.7(7) C39 C38 C43 C42 1.7(8) C49 C50 C54 C55 60.6(8) C33 C38 C43 C42 179.2(5) C51 C50 C54 C56 0.3(9) C41 C40 C44 C45 116.3(7) C49 C50 C54 C56 179.6(6) C39 C40 C44 C45 61.7(8) C51 C50 C54 C57 117.8(7) C41 C40 C44 C47 3.8(9) C49 C50 C54 C57 62.9(9) C39 C40 C44 C47 178.3(6) O6 W2 C58 C59 175.2(5) C41 C40 C44 C46 123.8(7) O4 W2 C58 C59 9.5(5) C39 C40 C44 C46 58.2(8) C84 W2 C58 C59 85.6(5) O5 W2 C58 C59 91.7(6) O4 C65 C66 C67 180.0(5) O6 W2 C58 C63 6.3(4) C64 C65 C66 C67 1.1(9) O4 W2 C58 C63 159.3(5) O4 C65 C66 C70 0.1(9) C84 W2 C58 C63 105.5(5) C64 C65 C66 C70 178.8(6) O5 W2 C58 C63 77.2(6) C65 C66 C67 C68 0.3(10) C63 C58 C59 C60 8.6(8) C70 C66 C67 C68 179.6(7) W2 C58 C59 C60 160.6(4) C66 C67 C68 C69 0.4(12) C63 C58 C59 C64 173.1(5) C67 C68 C69 C64 1.2(11) W2 C58 C59 C64 17.6(8) C65 C64 C69 C68 1.9(10) C58 C59 C60 C61 2.4(9) C59 C64 C69 C68 175.9(7) C64 C59 C60 C61 179.2(6) C65 C66 C70 C71 177.9(6) C59 C60 C61 C62 3.4(10) C67 C66 C70 C71 2.0(10) C60 C61 C62 C63 2.8(11) C65 C66 C70 C73 55.8(9) C61 C62 C63 C58 3.7(9) C67 C66 C70 C73 124.1(7) C61 C62 C63 C74 177.0(6) C65 C66 C70 C72 63.6(9) C59 C58 C63 C62 9.2(8) C67 C66 C70 C72 116.5(7) W2 C58 C63 C62 159.7(4) C62 C63 C74 C75 159.2(6) C59 C58 C63 C74 171.5(5) C58 C63 C74 C75 20.2(9) W2 C58 C63 C74 19.6(8) C62 C63 C74 C79 20.9(9) C58 C59 C64 C69 152.9(6) C58 C63 C74 C79 159.8(6) C60 C59 C64 C69 28.8(8) W2 O6 C75 C74 10.9(10) C58 C59 C64 C65 29.4(9) W2 O6 C75 C76 167.6(5) C60 C59 C64 C65 148.9(6) C79 C74 C75 O6 174.1(5) W2 O4 C65 C64 39.8(8) C63 C74 C75 O6 5.8(9) W2 O4 C65 C66 141.2(5) C79 C74 C75 C76 4.4(9) C69 C64 C65 O4 179.2(5) C63 C74 C75 C76 175.7(6) C59 C64 C65 O4 3.0(9) O6 C75 C76 C77 177.7(5) C69 C64 C65 C66 1.9(10) C74 C75 C76 C77 0.7(9)

PAGE 83

83 Table B 12. Continued Atoms Angle C59 C64 C65 C66 175.9(6) C74 C75 C76 C80 179.9(6) C75 C76 C77 C78 2.3(10) C80 C76 C77 C78 176.9(7) C76 C77 C78 C79 1.4(11) C77 C78 C79 C74 2.6(11) C75 C74 C79 C78 5.2(9) C63 C74 C79 C78 174.9(6) C77 C76 C80 C81 116.0(7) C75 C76 C80 C81 63.1(8) C77 C76 C80 C83 120.1(7) C75 C76 C80 C83 60.8(8) C77 C76 C80 C82 1.9(9) C75 C76 C80 C82 179.0(6) O6 W2 C84 C85 33.2(15) O4 W2 C84 C85 139.2(14) O5 W2 C84 C85 130.1(14) C58 W2 C84 C85 51.4(15) W2 C84 C85 C86 113.0(15) W2 C84 C85 C87 122.2(14) W2 C84 C85 C88 7.5(17) O6 C75 C76 C80 1.5(9)

PAGE 84

84 Figure B 4. Molecular structure of {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). Ellipsoids are shown at the 50% probability level; hydrogens are omitted for clarity. C28 C27 w1 O2 O1 O3 C39 C38 C 33 C 37 C 48 C 49 O4 O6 W2 O7 C84 C 85

PAGE 85

85 X ray E xperimental for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} (5) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 5 0 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A t otal of 865 parameters were refined in the final cycle of refinement using 8981 1 and wR2 of 4.85% and 9.19%, respectively. Refinement was done using F2.

PAGE 86

86 Table B 13. Crystal data, structure solution, and refinement f or {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5) identification code pelo7t empirical formula C88H102O6W2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic Space group P2(1)/c a () 12.8904(8) b () 20.2444(13) c () 29.2372(18) (deg) 90 (deg) 100.7990(10) (deg) 90 V (3) 7494.6(8) Z 4 calcd(g mm-3) 1.439 crystal size (mm) 0.16 x 0.04 x 0.04 abs coeff (mm1) 3.121 F (000) 3304 range for data collection (deg) 1.23 to 27.50 limiting indices 16 26 37 no. of reflns collcd 50772 no. of ind reflns ( Rint) 17182 (0.1065) completeness to = 27.50 99.8 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 17182 / 0 / 865 R 1, wR 0.0485, 0.0919 R 1, wR 2 (all data) 0.1179, 0.1030 GOF on F2 0.849 largest diff. peak and hole (e.3) 1.315 and 0.693 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 87

87 Table B 14. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). U(eq) is defined as on e third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2846(1) 5902(1) 3082(1) 23(1) W2 1520(1) 7759(1) 4941(1) 25(1) O1 3158(3) 6825(2) 3077(2) 27(1) O2 2665(3) 5061(2) 3320(2) 24(1) O3 1352(4) 6134(2) 2974(2) 26(1) O4 2271(4) 8291(2) 4554(2) 29(1) O5 462(4) 7588(2) 4407(2) 26(1) O6 2685(4) 7592(2) 5399(2) 30(1) C1 4361(5) 5841(3) 3525(2) 23(2) C2 5149(5) 6305(3) 3458(2) 24(2) C3 6111(6) 6317(3) 3763(2) 28(2) C4 6329(5) 5883(4) 4128(2) 31(2) C5 5606(6) 5423(4) 4193(2) 33(2) C6 4603(6) 5382(3) 3904(2) 26(2) C7 5002(6) 6810(3) 3089(2) 25(2) C8 4009(6) 7100(3) 2937(2) 28(2) C9 3849(6) 7671(4) 2653(2) 31(2) C10 4751(6) 7872(4) 2484(3) 36(2) C11 5719(6) 7557(4) 2592(3) 41(2) C12 5838(6) 7049(3) 2897(2) 34(2) C13 2798(6) 8024(4) 2512(3) 37(2) C14 2196(8) 7689(5) 2083(4) 91(4) C15 2967(7) 8762(4) 2393(3) 68(3) C16 2128(7) 8053(4) 2892(3) 61(3) C17 3891(5) 4840(3) 4002(2) 23(2) C18 2982(5) 4651(3) 3694(2) 23(2) C19 2358(5) 4096(3) 3748(2) 25(2) C20 2677(6) 3756(3) 4159(3) 33(2) C21 3528(6) 3946(3) 4489(3) 35(2) C22 4134(6) 4472(4) 4416(2) 28(2) C23 1402(6) 3866(3) 3393(2) 29(2) C24 1695(8) 3729(5) 2928(3) 69(3) C25 525(6) 4367(4) 3328(3) 53(2) C26 934(6) 3233(4) 3548(3) 48(2) C27 3327(5) 5737(3) 2521(2) 29(2) C28 3869(6) 5225(4) 2265(3) 32(2)

PAGE 88

88 Table B 14 Continued Atom X Y Z U(eq) C29 4957(6) 5506(4) 2218(3) 50(2) C30 3213(7) 5139(4) 1778(3) 53(2) C31 4011(7) 4586(4) 2521(3) 50(2) C32 2141(6) 6883(3) 3945(2) 27(2) C33 1686(6) 6268(3) 3977(2) 25(2) C34 2131(6) 5841(3) 4343(2) 27(2) C35 3025(6) 6050(4) 4647(3) 35(2) C36 3485(6) 6661(3) 4610(2) 30(2) C37 3046(6) 7085(3) 4260(2) 23(2) C38 660(5) 6097(3) 3677(3) 26(2) C39 492(6) 6074(3) 3185(2) 23(2) C40 518(5) 5957(3) 2907(2) 29(2) C41 1325(6) 5843(4) 3143(3) 40(2) C42 1180(6) 5832(4) 3627(3) 38(2) C43 220(6) 5965(3) 3882(3) 33(2) C44 704(6) 5991(4) 2372(3) 41(2) C45 397(7) 6663(4) 2216(3) 56(3) C46 64(7) 5458(4) 2177(3) 55(2) C47 1867(6) 5877(5) 2156(3) 72(3) C48 3520(5) 7738(4) 4189(2) 25(2) C49 3095(5) 8333(4) 4324(2) 24(2) C50 3488(6) 8950(3) 4232(2) 30(2) C51 4339(6) 8947(4) 4011(3) 43(2) C52 4783(6) 8389(5) 3884(3) 50(2) C53 4379(6) 7781(4) 3980(3) 40(2) C54 3044(7) 9595(4) 4378(3) 45(2) C55 3169(10) 9630(4) 4898(4) 101(4) C56 1884(7) 9642(4) 4149(4) 95(4) C57 3606(8) 10197(4) 4237(4) 79(3) C58 944(6) 6882(3) 5211(2) 26(2) C59 137(6) 6711(3) 5045(2) 31(2) C60 530(7) 6095(4) 5148(3) 39(2) C61 105(8) 5640(4) 5422(3) 52(2) C62 1116(7) 5802(4) 5604(3) 50(2) C63 1569(6) 6421(4) 5512(2) 34(2) C64 896(6) 7145(3) 4755(2) 29(2) C65 592(6) 7549(3) 4406(2) 23(2) C66 1316(6) 7895(3) 4079(2) 29(2)

PAGE 89

89 Table B 14 Continued Atom X Y Z U(eq) C67 2365(6) 7895(4) 4150(3) 46(2) C68 2680(7) 7555(4) 4509(3) 47(2) C69 1978(7) 7174(4) 4797(3) 47(2) C70 1033(6) 8257(4) 3671(3) 37(2) C71 354(12) 7854(7) 3421(4) 181(9) C72 449(13) 8858(6) 3826(4) 188(9) C73 1956(8) 8442(6) 3313(3) 91(4) C74 2683(6) 6545(3) 5755(2) 29(2) C75 3228(6) 7142(3) 5705(2) 31(2) C76 4250(6) 7289(4) 5937(3) 38(2) C77 4745(7) 6809(4) 6231(3) 44(2) C78 4244(7) 6207(5) 6283(3) 53(3) C79 3243(7) 6073(4) 6054(3) 46(2) C80 4807(6) 7943(4) 5880(3) 38(2) C81 5885(7) 7982(4) 6206(3) 63(3) C82 4987(7) 8016(4) 5389(3) 48(2) C83 4151(7) 8518(4) 6006(3) 55(3) C84 705(6) 8342(3) 5232(2) 28(2) C85 486(6) 8599(3) 5692(2) 32(2) C86 1161(7) 8210(4) 6097(3) 49(2) C87 781(7) 9324(4) 5740(3) 55(3) C88 678(6) 8504(4) 5703(3) 51(2)

PAGE 90

90 Table B 15. Bond lengths (in ) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) Bond Length Bond Length W1 O2 1.870(4) C8 C9 1.414(9) W1 C27 1.887(7) C9 C10 1.407(9) W1 O1 1.914(4) C9 C13 1.519(10) W1 O3 1.950(5) C10 C11 1.384(10) W1 C1 2.135(7) C11 C12 1.351(9) W2 O6 1.846(5) C13 C14 1.508(11) W2 C84 1.885(6) C13 C16 1.531(10) W2 O5 1.903(5) C13 C15 1.558(10) W2 O4 1.948(4) C17 C18 1.391(9) W2 C58 2.131(7) C17 C22 1.403(9) O1 C8 1.360(7) C18 C19 1.406(9) O2 C18 1.374(7) C19 C20 1.380(9) O3 C39 1.371(7) C19 C23 1.526(10) O4 C49 1.363(7) C20 C21 1.372(10) O5 C65 1.361(8) C21 C22 1.363(9) O6 C75 1.373(8) C23 C25 1.504(10) C1 C2 1.424(9) C23 C24 1.505(10) C1 C6 1.437(9) C23 C26 1.519(9) C2 C3 1.385(9) C27 C28 1.522(9) C2 C7 1.473(9) C28 C31 1.489(9) C3 C4 1.372(9) C28 C30 1.522(10) C4 C5 1.356(9) C28 C29 1.544(10) C5 C6 1.408(9) C32 C33 1.388(9) C6 C17 1.493(9) C32 C37 1.403(9) C7 C12 1.393(9) C33 C34 1.411(9) C7 C8 1.402(10) C33 C38 1.484(10) C34 C35 1.382(10) C61 C62 1.352(11) C35 C36 1.383(9) C60 C61 1.383(11) C36 C37 1.375(9) C62 C63 1.430(10) C37 C48 1.487(9) C63 C74 1.498(10) C38 C43 1.404(9) C64 C65 1.417(9) C38 C39 1.414(9) C64 C69 1.425(10) C39 C40 1.420(9) C65 C66 1.395(9) C40 C41 1.373(9) C66 C67 1.405(10) C40 C44 1.539(10) C66 C70 1.501(10) C41 C42 1.392(10) C67 C68 1.378(10) C42 C43 1.345(10) C68 C69 1.356(11)

PAGE 91

91 Table B 15. Continued Bond Length C44 C45 1.511(10) C44 C46 1.531(10) C44 C47 1.531(10) C48 C53 1.364(9) C48 C49 1.410(9) C49 C50 1.392(9) C50 C51 1.373(10) C50 C54 1.519(10) C51 C52 1.350(10) C52 C53 1.386(10) C54 C55 1.501(12) C54 C57 1.514(10) C54 C56 1.523(12) C58 C63 1.424(9) C58 C59 1.429(10) C59 C60 1.400(9) C59 C64 1.463(10) C70 C72 1.458(12) C70 C73 1.479(11) C70 C71 1.484(11) C74 C79 1.401(10) C74 C75 1.420(10) C75 C76 1.396(10) C76 C77 1.373(10) C76 C80 1.530(11) C77 C78 1.401(11) C78 C79 1.365(11) C80 C82 1.502(10) C80 C83 1.525(10) C80 C81 1.532(11) C84 C85 1.517(9) C85 C87 1.517(10) C85 C88 1.520(10) C85 C86 1.547(10)

PAGE 92

92 Table B 16. Bond angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3 [tBuOCO]} ( 5) Bond Angle Bond Angle O2 W1 C27 104.3(2) C2 C1 C6 118.4(6) O2 W1 O1 158.92(19) C2 C1 W1 118.3(5) C27 W1 O1 93.6(2) C6 C1 W1 123.2(5) O2 W1 O3 95.21(18) C3 C2 C1 120.0(6) C27 W1 O3 112.2(2) C3 C2 C7 115.8(6) O1 W1 O3 88.04(18) C1 C2 C7 124.1(6) O2 W1 C1 83.4(2) C4 C3 C2 121.2(7) C27 W1 C1 96.0(3) C5 C4 C3 120.2(7) O1 W1 C1 83.7(2) C4 C5 C6 122.4(7) O3 W1 C1 151.1(2) C5 C6 C1 117.8(7) O6 W2 C84 103.6(3) C5 C6 C17 117.2(7) O6 W2 O5 157.29(18) C1 C6 C17 124.9(6) C84 W2 O5 96.3(3) C12 C7 C8 117.2(7) O6 W2 O4 95.6(2) C12 C7 C2 122.2(7) C84 W2 O4 107.1(2) C8 C7 C2 120.5(6) O5 W2 O4 88.90(18) O1 C8 C7 118.2(6) O6 W2 C58 82.6(2) O1 C8 C9 118.3(7) C84 W2 C58 95.4(3) C7 C8 C9 123.5(6) O5 W2 C58 84.6(2) C10 C9 C8 113.8(7) O4 W2 C58 157.2(2) C10 C9 C13 121.4(7) C8 O1 W1 125.7(4) C8 C9 C13 124.6(7) C18 O2 W1 143.9(4) C11 C10 C9 123.7(7) C39 O3 W1 139.8(4) C12 C11 C10 119.2(7) C49 O4 W2 147.1(4) C11 C12 C7 121.9(8) C65 O5 W2 125.0(4) C14 C13 C9 107.9(7) C75 O6 W2 147.2(5) C14 C13 C16 110.4(8) C9 C13 C16 114.6(6) C33 C32 C37 121.8(7) C14 C13 C15 108.5(7) C32 C33 C34 118.8(7) C9 C13 C15 110.9(7) C32 C33 C38 120.7(6) C16 C13 C15 104.4(7) C34 C33 C38 119.8(6) C18 C17 C22 115.9(6) C35 C34 C33 118.2(7) C18 C17 C6 123.5(6) C36 C35 C34 122.8(7) C22 C17 C6 120.6(6) C37 C36 C35 119.5(7) O2 C18 C17 116.0(6) C36 C37 C32 118.8(7) O2 C18 C19 118.7(6) C36 C37 C48 122.4(6) C17 C18 C19 125.3(6) C32 C37 C48 118.7(6) C20 C19 C18 114.3(6) C43 C38 C39 116.5(7)

PAGE 93

93 Table B 16. Continued Bond Angle Bond Angle C20 C19 C23 120.7(6) C43 C38 C33 119.6(7) C18 C19 C23 125.1(6) C39 C38 C33 123.9(6) C21 C20 C19 122.8(7) O3 C39 C38 118.2(6) C22 C21 C20 121.0(7) O3 C39 C40 119.3(6) C21 C22 C17 120.5(7) C38 C39 C40 122.5(6) C25 C23 C24 108.6(7) C41 C40 C39 116.1(7) C25 C23 C26 106.0(6) C41 C40 C44 122.1(7) C24 C23 C26 107.2(6) C39 C40 C44 121.8(6) C25 C23 C19 111.8(6) C40 C41 C42 123.0(7) C24 C23 C19 111.2(6) C43 C42 C41 119.5(7) C26 C23 C19 111.8(6) C42 C43 C38 122.3(7) C28 C27 W1 143.5(5) C45 C44 C46 109.4(7) C31 C28 C27 111.6(6) C45 C44 C47 107.7(7) C31 C28 C30 111.4(7) C46 C44 C47 107.1(7) C27 C28 C30 108.2(6) C45 C44 C40 110.2(6) C31 C28 C29 109.7(7) C46 C44 C40 110.8(6) C27 C28 C29 107.6(6) C47 C44 C40 111.5(6) C30 C28 C29 108.3(6) C53 C48 C49 117.4(7) C53 C48 C37 120.6(7) C65 C64 C69 116.4(7) C49 C48 C37 122.0(6) C65 C64 C59 121.3(7) O4 C49 C50 119.7(6) C69 C64 C59 122.3(7) O4 C49 C48 117.7(6) O5 C65 C66 120.7(6) C50 C49 C48 122.6(6) O5 C65 C64 116.3(6) C51 C50 C49 116.0(7) C66 C65 C64 123.0(7) C51 C50 C54 120.8(7) C65 C66 C67 115.9(7) C49 C50 C54 123.2(6) C65 C66 C70 124.0(7) C52 C51 C50 123.4(7) C67 C66 C70 120.1(7) C51 C52 C53 119.4(7) C68 C67 C66 122.7(8) C48 C53 C52 121.1(8) C69 C68 C67 120.0(8) C55 C54 C57 105.7(8) C68 C69 C64 121.4(7) C55 C54 C50 110.6(7) C72 C70 C73 108.0(9) C57 C54 C50 113.0(7) C72 C70 C71 107.1(11) C55 C54 C56 110.7(8) C73 C70 C71 105.1(8) C57 C54 C56 108.0(7) C72 C70 C66 110.4(7) C50 C54 C56 108.7(7) C73 C70 C66 113.7(7) C63 C58 C59 117.0(7) C71 C70 C66 112.1(7) C63 C58 W2 125.3(6) C79 C74 C75 115.9(7) C59 C58 W2 117.5(5) C79 C74 C63 121.3(7)

PAGE 94

94 Table B 16. Continued Bond Angle C60 C59 C58 120.8(7) C60 C59 C64 115.5(7) C58 C59 C64 123.7(6) C61 C60 C59 121.2(8) C62 C61 C60 119.3(8) C61 C62 C63 122.4(8) C58 C63 C62 119.1(8) C58 C63 C74 124.4(7) C62 C63 C74 116.5(7) C78 C79 C74 120.1(8) C82 C80 C83 110.4(7) C82 C80 C76 110.4(6) C83 C80 C76 109.9(6) C82 C80 C81 107.8(7) C83 C80 C81 106.8(7) C76 C80 C81 111.5(7) C85 C84 W2 145.7(6) C87 C85 C84 109.1(6) C87 C85 C88 110.6(7) C84 C85 C88 108.9(6) C87 C85 C86 109.1(7) C84 C85 C86 109.5(6) C88 C85 C86 109.6(6) C75 C76 C80 123.4(7) C76 C77 C78 121.0(8) C79 C78 C77 122.1(8) C75 C74 C63 122.8(7) O6 C75 C76 119.6(7) O6 C75 C74 115.4(7) C76 C75 C74 124.9(7) C77 C76 C75 116.0(8) C77 C76 C80 120.6(8)

PAGE 95

95 Table B 17. Anisotropic displacement parameters (2x 103) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO)W{=CHC(CH3)3[tBuOCO]} ( 5). The anisotropic displacement f actor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 23(1) 23(1) 23(1) 2(1) 4(1) 2(1) W2 34(1) 18(1) 23(1) 0(1) 7(1) 1(1) O1 24(3) 22(3) 37(3) 5(2) 7(2) 1(2) O2 31(3) 22(3) 18(3) 2(2) 2(2) 1(2) O3 26(3) 30(3) 22(3) 1(2) 5(2) 6(2) O4 37(3) 21(3) 30(3) 1(2) 9(2) 4(2) O5 35(3) 21(3) 23(3) 5(2) 11(2) 1(2) O6 40(3) 19(3) 32(3) 2(2) 5(2) 1(2) C1 27(4) 19(4) 25(4) 7(3) 10(3) 2(3) C2 24(4) 24(4) 24(4) 6(3) 6(3) 1(3) C3 27(5) 26(4) 33(5) 2(4) 8(4) 0(3) C4 23(4) 40(5) 27(5) 3(4) 4(3) 5(4) C5 36(5) 40(5) 22(4) 0(4) 3(4) 7(4) C6 31(5) 23(4) 24(4) 8(3) 7(4) 6(4) C7 30(5) 20(4) 29(5) 2(3) 11(4) 7(3) C8 36(5) 17(4) 33(5) 1(3) 12(4) 10(3) C9 33(5) 31(5) 28(5) 1(4) 0(4) 7(4) C10 43(5) 26(5) 36(5) 1(4) 1(4) 7(4) C11 33(5) 47(5) 44(6) 12(4) 12(4) 10(4) C12 36(5) 32(5) 34(5) 2(4) 6(4) 3(4) C13 33(5) 39(5) 37(5) 6(4) 0(4) 3(4) C14 67(8) 93(9) 91(9) 20(7) 41(6) 26(7) C15 69(7) 37(6) 103(8) 39(5) 27(6) 14(5) C16 58(7) 62(6) 69(7) 32(5) 26(5) 33(5) C17 25(4) 19(4) 26(4) 1(3) 4(3) 8(3) C18 25(4) 24(4) 19(4) 1(3) 7(3) 5(3) C19 26(4) 21(4) 26(4) 1(4) 4(3) 3(4) C20 34(5) 25(4) 41(5) 12(4) 12(4) 10(4) C21 48(5) 31(5) 23(5) 12(3) 2(4) 3(4) C22 28(4) 36(5) 17(4) 3(3) 3(3) 0(4) C23 34(5) 25(4) 27(5) 2(3) 2(4) 7(4) C24 87(8) 82(7) 42(6) 31(5) 23(6) 40(6) C25 45(6) 47(6) 60(7) 1(5) 9(5) 15(5) C26 52(6) 36(5) 53(6) 6(4) 0(5) 13(4) C27 31(4) 21(4) 31(5) 5(3) 1(3) 7(3) C28 40(5) 31(5) 25(5) 3(4) 8(4) 2(4)

PAGE 96

96 Table B 17. Continued Atom U11 U22 U33 U23 U13 U12 C29 42(6) 53(6) 60(6) 5(5) 22(5) 1(5) C30 68(7) 47(6) 45(6) 14(4) 13(5) 5(5) C31 66(7) 39(5) 51(6) 2(4) 22(5) 17(5) C32 25(4) 26(4) 29(5) 3(3) 0(4) 11(3) C33 29(4) 27(4) 21(4) 4(3) 10(3) 1(3) C34 38(5) 24(4) 20(4) 3(3) 7(4) 10(4) C35 37(5) 42(5) 24(5) 3(4) 0(4) 13(4) C36 33(5) 26(4) 29(5) 11(4) 0(4) 2(4) C37 26(4) 25(4) 18(4) 9(3) 1(3) 4(3) C38 26(4) 14(4) 37(5) 4(3) 6(4) 3(3) C39 32(4) 13(4) 24(4) 1(3) 8(3) 1(3) C40 22(4) 28(4) 36(5) 2(4) 4(3) 2(4) C41 32(5) 45(5) 43(6) 13(4) 5(4) 2(4) C42 32(5) 34(5) 55(6) 12(4) 22(4) 5(4) C43 37(5) 29(5) 34(5) 2(4) 12(4) 7(4) C44 31(5) 53(6) 37(5) 1(4) 1(4) 0(4) C45 64(7) 66(7) 33(5) 30(5) 0(5) 4(5) C46 51(6) 68(7) 43(6) 14(5) 6(5) 3(5) C47 36(6) 127(9) 46(6) 16(6) 9(4) 1(6) C48 24(4) 30(4) 18(4) 9(3) 1(3) 2(4) C49 18(4) 37(5) 16(4) 1(3) 1(3) 3(3) C50 32(5) 26(5) 31(5) 2(3) 3(4) 6(4) C51 36(5) 34(5) 60(6) 6(4) 11(4) 6(4) C52 26(5) 67(7) 62(6) 5(5) 18(4) 12(5) C53 30(5) 46(5) 41(5) 10(4) 1(4) 4(4) C54 50(6) 14(4) 74(7) 7(4) 16(5) 7(4) C55 179(13) 32(6) 103(10) 29(6) 56(9) 15(7) C56 53(7) 33(6) 194(13) 23(7) 12(8) 19(5) C57 91(9) 23(5) 123(10) 15(5) 19(7) 12(5) C58 44(5) 20(4) 17(4) 1(3) 10(4) 14(4) C59 49(5) 29(4) 17(4) 3(3) 13(4) 6(4) C60 58(6) 34(5) 28(5) 2(4) 12(4) 18(4) C61 73(7) 30(5) 53(6) 5(4) 11(5) 13(5) C62 63(7) 44(6) 42(6) 17(4) 4(5) 2(5) C63 54(6) 26(4) 27(5) 8(4) 21(4) 3(4) C64 37(5) 30(5) 18(4) 3(3) 3(3) 8(4) C65 33(5) 20(4) 16(4) 4(3) 5(3) 1(3) C66 24(4) 32(5) 28(5) 7(3) 6(4) 0(4)

PAGE 97

97 Table B 17. Continued Atom U11 U22 U33 U23 U13 U12 C67 40(6) 61(6) 31(5) 2(4) 9(4) 5(5) C68 30(5) 67(6) 40(6) 1(5) 1(4) 4(5) C69 53(6) 55(6) 35(5) 4(5) 16(5) 24(5) C70 47(5) 37(5) 25(5) 9(4) 3(4) 10(4) C71 244(18) 223(16) 119(11) 131(11) 144(12) 199(15) C72 350(20) 128(12) 53(8) 47(8) 57(10) 179(14) C73 67(8) 149(11) 54(7) 45(7) 5(6) 12(8) C74 40(5) 27(4) 22(4) 3(3) 12(4) 12(4) C75 48(5) 21(4) 24(4) 3(3) 11(4) 12(4) C76 42(5) 39(5) 30(5) 3(4) 2(4) 11(4) C77 50(6) 51(6) 30(5) 8(4) 2(4) 10(5) C78 56(7) 76(7) 25(5) 3(5) 2(5) 36(6) C79 65(7) 30(5) 42(6) 4(4) 11(5) 12(5) C80 37(5) 42(5) 33(5) 5(4) 1(4) 6(4) C81 57(7) 73(7) 49(6) 11(5) 14(5) 12(5) C82 56(6) 40(5) 48(6) 5(4) 10(5) 7(4) C83 58(6) 43(6) 67(7) 31(5) 16(5) 2(5) C84 37(5) 20(4) 27(5) 3(3) 7(4) 4(3) C85 45(5) 22(4) 28(5) 0(4) 10(4) 6(4) C86 65(6) 56(6) 28(5) 9(4) 13(4) 14(5) C87 80(7) 41(5) 48(6) 14(4) 20(5) 0(5) C88 56(6) 59(6) 42(6) 0(5) 22(5) 11(5)

PAGE 98

98 Table B 18. Torsion angles (in deg) for {[tBuOCO](CH3)3CCH=}W( -tBuOCHO) W{=CHC(CH3)3[tBuOCO]} ( 5) Atoms Angle Atoms Angle O2 W1 O1 C8 110.8(6) O3 W1 C1 C2 105.3(6) C27 W1 O1 C8 37.7(6) O2 W1 C1 C6 18.1(5) O3 W1 O1 C8 149.8(5) C27 W1 C1 C6 121.9(5) C1 W1 O1 C8 58.0(5) O1 W1 C1 C6 145.1(5) C27 W1 O2 C18 120.3(7) O3 W1 C1 C6 70.8(7) O1 W1 O2 C18 27.1(10) C6 C1 C2 C3 1.6(9) O3 W1 O2 C18 125.2(7) W1 C1 C2 C3 174.6(5) C1 W1 O2 C18 25.7(7) C6 C1 C2 C7 179.0(6) O2 W1 O3 C39 41.0(6) W1 C1 C2 C7 2.7(8) C27 W1 O3 C39 148.8(6) C1 C2 C3 C4 0.7(10) O1 W1 O3 C39 118.1(6) C7 C2 C3 C4 178.2(6) C1 W1 O3 C39 44.8(8) C2 C3 C4 C5 1.3(11) O6 W2 O4 C49 54.1(8) C3 C4 C5 C6 2.2(11) C84 W2 O4 C49 160.2(8) C4 C5 C6 C1 1.2(10) O5 W2 O4 C49 103.6(8) C4 C5 C6 C17 178.2(6) C58 W2 O4 C49 30.2(12) C2 C1 C6 C5 0.8(9) O6 W2 O5 C65 115.8(6) W1 C1 C6 C5 175.3(5) C84 W2 O5 C65 35.2(5) C2 C1 C6 C17 176.0(6) O4 W2 O5 C65 142.3(5) W1 C1 C6 C17 7.9(9) C58 W2 O5 C65 59.7(5) C3 C2 C7 C12 31.8(9) C84 W2 O6 C75 110.4(8) C1 C2 C7 C12 150.8(7) O5 W2 O6 C75 39.8(11) C3 C2 C7 C8 144.3(7) O4 W2 O6 C75 140.4(8) C1 C2 C7 C8 33.1(10) C58 W2 O6 C75 16.7(8) W1 O1 C8 C7 44.8(8) O2 W1 C1 C2 165.8(5) W1 O1 C8 C9 136.5(5) C27 W1 C1 C2 62.0(5) C12 C7 C8 O1 172.4(6) O1 W1 C1 C2 31.0(5) C2 C7 C8 O1 11.3(10) C12 C7 C8 C9 9.0(10) C17 C18 C19 C20 4.1(10) C2 C7 C8 C9 167.3(6) O2 C18 C19 C23 6.8(10) O1 C8 C9 C10 173.1(6) C17 C18 C19 C23 175.8(6) C7 C8 C9 C10 8.3(10) C18 C19 C20 C21 0.4(10) O1 C8 C9 C13 3.3(10) C23 C19 C20 C21 179.7(7) C7 C8 C9 C13 175.3(7) C19 C20 C21 C22 2.8(12) C8 C9 C10 C11 1.8(11) C20 C21 C22 C17 1.0(11) C13 C9 C10 C11 178.3(7) C18 C17 C22 C21 3.1(10) C9 C10 C11 C12 3.7(12) C6 C17 C22 C21 175.0(6) C10 C11 C12 C7 3.2(12) C20 C19 C23 C25 116.2(7)

PAGE 99

99 Table B 18. Continued Atoms Angle Atoms Angle C8 C7 C12 C11 2.9(11) C18 C19 C23 C25 63.9(9) C2 C7 C12 C11 173.3(7) C20 C19 C23 C24 122.2(8) C10 C9 C13 C14 90.4(9) C18 C19 C23 C24 57.7(9) C8 C9 C13 C14 85.7(9) C20 C19 C23 C26 2.5(9) C10 C9 C13 C16 146.1(7) C18 C19 C23 C26 177.4(6) C8 C9 C13 C16 37.8(11) O2 W1 C27 C28 22.5(9) C10 C9 C13 C15 28.3(10) O1 W1 C27 C28 146.3(9) C8 C9 C13 C15 155.6(7) O3 W1 C27 C28 124.3(8) C5 C6 C17 C18 166.0(6) C1 W1 C27 C28 62.2(9) C1 C6 C17 C18 10.8(10) W1 C27 C28 C31 7.3(12) C5 C6 C17 C22 11.9(9) W1 C27 C28 C30 130.2(8) C1 C6 C17 C22 171.4(6) W1 C27 C28 C29 113.0(8) W1 O2 C18 C17 14.9(10) C37 C32 C33 C34 1.8(10) W1 O2 C18 C19 162.7(5) C37 C32 C33 C38 172.6(6) C22 C17 C18 O2 171.7(5) C32 C33 C34 C35 2.0(10) C6 C17 C18 O2 10.4(9) C38 C33 C34 C35 172.9(6) C22 C17 C18 C19 5.8(10) C33 C34 C35 C36 1.1(10) C6 C17 C18 C19 172.2(6) C34 C35 C36 C37 0.1(11) O2 C18 C19 C20 173.3(6) C35 C36 C37 C32 0.4(10) C35 C36 C37 C48 177.7(6) C36 C37 C48 C53 77.8(9) C33 C32 C37 C36 0.6(10) C32 C37 C48 C53 99.6(8) C33 C32 C37 C48 176.9(6) C36 C37 C48 C49 103.6(8) C32 C33 C38 C43 116.4(7) C32 C37 C48 C49 79.0(8) C34 C33 C38 C43 54.4(9) W2 O4 C49 C50 156.0(6) C32 C33 C38 C39 61.9(9) W2 O4 C49 C48 23.8(11) C34 C33 C38 C39 127.4(7) C53 C48 C49 O4 176.8(6) W1 O3 C39 C38 33.5(9) C37 C48 C49 O4 4.6(9) W1 O3 C39 C40 143.2(6) C53 C48 C49 C50 3.0(10) C43 C38 C39 O3 173.5(6) C37 C48 C49 C50 175.6(7) C33 C38 C39 O3 8.2(9) O4 C49 C50 C51 178.1(7) C43 C38 C39 C40 3.2(9) C48 C49 C50 C51 1.6(11) C33 C38 C39 C40 175.2(6) O4 C49 C50 C54 0.3(11) O3 C39 C40 C41 174.2(6) C48 C49 C50 C54 179.5(7) C38 C39 C40 C41 2.4(10) C49 C50 C51 C52 0.3(12) O3 C39 C40 C44 8.6(10) C54 C50 C51 C52 178.2(8) C38 C39 C40 C44 174.8(6) C50 C51 C52 C53 0.5(13) C39 C40 C41 C42 0.7(11) C49 C48 C53 C52 3.1(11) C44 C40 C41 C42 177.9(7) C37 C48 C53 C52 175.5(7)

PAGE 100

100 Table B 18. Continued Atoms Angle Atoms Angle C40 C41 C42 C43 2.8(12) C51 C52 C53 C48 1.9(12) C41 C42 C43 C38 2.0(12) C51 C50 C54 C55 116.1(9) C39 C38 C43 C42 0.9(10) C49 C50 C54 C55 61.7(10) C33 C38 C43 C42 177.5(7) C51 C50 C54 C57 2.3(11) C41 C40 C44 C45 119.1(8) C49 C50 C54 C57 180.0(8) C39 C40 C44 C45 58.0(9) C51 C50 C54 C56 122.2(9) C41 C40 C44 C46 119.7(8) C49 C50 C54 C56 60.0(10) C39 C40 C44 C46 63.3(9) O6 W2 C58 C63 14.6(6) C41 C40 C44 C47 0.5(11) C84 W2 C58 C63 117.6(6) C39 C40 C44 C47 177.5(7) O5 W2 C58 C63 146.6(6) O4 W2 C58 C63 72.4(9) O5 C65 C66 C67 171.3(6) O6 W2 C58 C59 171.3(5) C64 C65 C66 C67 8.2(10) C84 W2 C58 C59 68.2(5) O5 C65 C66 C70 8.5(10) O5 W2 C58 C59 27.6(5) C64 C65 C66 C70 172.0(7) O4 W2 C58 C59 101.8(7) C65 C66 C67 C68 2.3(11) C63 C58 C59 C60 4.6(10) C70 C66 C67 C68 177.9(7) W2 C58 C59 C60 170.1(5) C66 C67 C68 C69 3.5(13) C63 C58 C59 C64 176.5(6) C67 C68 C69 C64 3.7(13) W2 C58 C59 C64 8.8(9) C65 C64 C69 C68 1.8(11) C58 C59 C60 C61 1.4(11) C59 C64 C69 C68 176.6(7) C64 C59 C60 C61 179.6(7) C65 C66 C70 C72 72.9(11) C59 C60 C61 C62 2.0(12) C67 C66 C70 C72 106.8(11) C60 C61 C62 C63 2.1(13) C65 C66 C70 C73 165.5(8) C59 C58 C63 C62 4.4(10) C67 C66 C70 C73 14.7(11) W2 C58 C63 C62 169.8(5) C65 C66 C70 C71 46.4(12) C59 C58 C63 C74 173.9(6) C67 C66 C70 C71 133.8(10) W2 C58 C63 C74 11.9(10) C58 C63 C74 C79 178.7(7) C61 C62 C63 C58 1.2(12) C62 C63 C74 C79 0.3(10) C61 C62 C63 C74 177.2(8) C58 C63 C74 C75 0.3(10) C60 C59 C64 C65 141.7(7) C62 C63 C74 C75 178.7(6) C58 C59 C64 C65 37.2(10) W2 O6 C75 C76 169.2(6) C60 C59 C64 C69 36.6(10) W2 O6 C75 C74 10.2(11) C58 C59 C64 C69 144.4(7) C79 C74 C75 O6 177.9(6) W2 O5 C65 C66 131.2(5) C63 C74 C75 O6 3.1(9) W2 O5 C65 C64 48.4(7) C79 C74 C75 C76 1.4(10) C69 C64 C65 O5 171.5(6) C63 C74 C75 C76 177.6(7) C59 C64 C65 O5 10.0(9) O6 C75 C76 C77 179.1(6) C69 C64 C65 C66 8.0(10) C74 C75 C76 C77 0.2(11)

PAGE 101

101 Table B 18. Continued Atoms Angle C59 C64 C65 C66 170.4(6) C74 C75 C76 C80 179.1(6) C75 C76 C77 C78 1.1(11) C80 C76 C77 C78 179.5(7) C76 C77 C78 C79 1.3(12) C77 C78 C79 C74 0.0(12) C75 C74 C79 C78 1.2(11) C63 C74 C79 C78 177.8(7) C77 C76 C80 C82 116.0(8) C75 C76 C80 C82 64.7(9) C77 C76 C80 C83 121.9(8) C75 C76 C80 C83 57.4(10) C77 C76 C80 C81 3.7(10) C75 C76 C80 C81 175.6(7) O6 W2 C84 C85 20.8(9) O5 W2 C84 C85 148.1(9) O4 W2 C84 C85 121.1(9) C58 W2 C84 C85 62.9(9) W2 C84 C85 C87 115.2(9) W2 C84 C85 C88 124.0(9) W2 C84 C85 C86 4.2(12) C63 C74 C75 O6 3.1(9) O6 C75 C76 C80 1.6(11)

PAGE 102

102 Figure B 5. Asymetric unit of [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6 ). Ellipsoids are shown at 50% probability level. Benzene and hydrogens omitted for clarity. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 O2 Mg1 O4 C30 C31 O3 C27 C28 O1 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26

PAGE 103

103 X ray E xperimental for [(tBuOCHO)Mg{O(CH2CH2)2O}]n (6) Data were collected at 173 K on a Siemens SMART PLATFORM equipped with A CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was col scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal po sitions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle of refinement using 8981 1 and wR2 of 4.85% and 9.19%, respectively. Refinement was done using F2.

PAGE 104

104 T able B 19. Crystal data, structure solution, and refinement for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ) identification code pelo11 empirical formula C35H43O5Mg formula weight 568.00 T (K) 173(2) ) 0.71073 crystal system Triclinic Space group P 1 a () 9.9603(13) b () 13.3947(16) c () 13.4559(13) (deg) 69.908(2) (deg) 70.504(2) (deg) 72.835(2) V (3) 1555.9(3) Z 2 calcd(g mm-3) 1.212 crystal size (mm) 0.34 x 0.09 x 0.05 abs coeff (mm1) 0.097 F (000) 610 range for data collection (deg) 1.67 to 27.50 limiting indices 12 14 17 no. of reflns collcd 10652 no. of ind reflns ( Rint) 6970 (0.0470) completeness to = 27.50 97.7 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 6970 / 0 / 370 R 1, wR 0.0578, 0.1432 R 1, wR 2 (all data) 0.1128, 0.1642 GOF on F2 0.933 largest diff. peak and hole (e.3) 0.628 and 0.620 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 105

105 Table B 20. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Mg1 8144(1) 5557(1) 3134(1) 33(1) O1 9182(2) 4320(1) 2634(1) 32(1) O2 8222(2) 7031(1) 2822(1) 30(1) O3 8968(3) 5057(2) 4474(2) 73(1) O4 6137(2) 5303(1) 4111(2) 62(1) C1 7349(3) 6171(2) 1434(2) 28(1) C2 6313(3) 7104(2) 1605(2) 31(1) C3 4855(3) 7085(2) 1785(2) 43(1) C4 4479(3) 6164(2) 1780(3) 51(1) C5 5512(3) 5244(2) 1650(2) 44(1) C6 6978(3) 5226(2) 1470(2) 32(1) C7 6783(2) 8076(2) 1561(2) 28(1) C8 7816(2) 7974(2) 2118(2) 25(1) C9 8382(2) 8903(2) 1940(2) 28(1) C10 7806(3) 9888(2) 1284(2) 34(1) C11 6721(3) 9995(2) 804(2) 39(1) C12 6229(3) 9089(2) 936(2) 34(1) C13 9551(3) 8832(2) 2485(2) 32(1) C14 8865(3) 8666(2) 3723(2) 38(1) C15 10855(3) 7909(2) 2270(2) 38(1) C16 10160(3) 9876(2) 2051(2) 47(1) C17 8143(3) 4263(2) 1294(2) 29(1) C18 9269(3) 3895(2) 1842(2) 28(1) C19 10454(3) 3054(2) 1553(2) 30(1) C20 10385(3) 2568(2) 811(2) 34(1) C21 9244(3) 2881(2) 334(2) 37(1) C22 8140(3) 3733(2) 566(2) 36(1) C23 11753(3) 2658(2) 2065(2) 34(1) C24 12389(3) 3620(2) 1955(2) 44(1) C25 13006(3) 1878(2) 1514(2) 48(1) C26 11246(3) 2026(2) 3274(2) 40(1) C27 10015(5) 4060(2) 4786(3) 73(1) C28 8620(5) 5695(2) 5234(3) 74(1) C29 5789(5) 4249(3) 4473(4) 156(3) C30 4957(4) 6083(2) 4570(3) 107(2) C31 7419(3) 1690(2) 3952(3) 55(1)

PAGE 106

106 Table B 20. Continued Atom X Y Z U(eq) C32 7643(3) 1291(2) 4981(3) 57(1) C33 6531(3) 958(2) 5875(3) 55(1) C34 5205(3) 1029(2) 5733(3) 56(1) C35 4986(3) 1415(3) 4706(3) 61(1) C36 6099(4) 1756(2) 3804(3) 59(1)

PAGE 107

107 Table B 21. Bond lengths (in ) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Bond Length Bond Length Mg1 O1 1.8857(17) C11 C12 1.375(3) Mg1 O2 1.8915(17) C13 C15 1.532(3) Mg1 O4 2.044(2) C13 C14 1.539(3) Mg1 O3 2.050(2) C13 C16 1.539(3) Mg1 C1 2.464(2) C17 C22 1.394(3) O1 C18 1.340(3) C17 C18 1.422(3) O2 C8 1.338(3) C18 C19 1.422(3) O3 C28 1.445(3) C19 C20 1.394(3) O3 C27 1.461(3) C19 C23 1.538(3) O4 C29 1.432(4) C20 C21 1.379(3) O4 C30 1.445(3) C21 C22 1.372(3) C1 C2 1.399(3) C23 C25 1.530(3) C1 C6 1.401(3) C23 C24 1.541(3) C2 C3 1.396(3) C23 C26 1.542(3) C2 C7 1.485(3) C27 C28#1 1.480(5) C3 C4 1.393(3) C28 C27#1 1.480(5) C4 C5 1.375(4) C29 C30#2 1.254(5) C5 C6 1.392(3) C30 C29#2 1.254(5) C6 C17 1.487(3) C31 C36 1.368(4) C7 C12 1.391(3) C31 C32 1.371(4) C7 C8 1.414(3) C32 C33 1.381(4) C8 C9 1.430(3) C33 C34 1.368(4) C9 C10 1.393(3) C34 C35 1.368(4) C9 C13 1.535(3) C35 C36 1.390(4) C10 C11 1.384(3) Symmetry transformations used to generate equivalent atoms: #1 x+2, y+1, z+1 #2 x+1, y+1, z+1

PAGE 108

108 Table B 22. Bond angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Bond Angle Bond Angle O1 Mg1 O2 139.75(8) C5 C6 C17 122.7(2) O1 Mg1 O4 109.39(8) C1 C6 C17 119.7(2) O2 Mg1 O4 109.60(8) C12 C7 C8 120.2(2) O1 Mg1 O3 94.36(8) C12 C7 C2 119.2(2) O2 Mg1 O3 94.47(8) C8 C7 C2 120.6(2) O4 Mg1 O3 91.16(11) O2 C8 C7 120.4(2) O1 Mg1 C1 83.87(8) O2 C8 C9 120.7(2) O2 Mg1 C1 84.30(7) C7 C8 C9 118.9(2) O4 Mg1 C1 93.34(9) C10 C9 C8 117.9(2) O3 Mg1 C1 175.49(10) C10 C9 C13 120.8(2) C18 O1 Mg1 138.27(15) C8 C9 C13 121.3(2) C8 O2 Mg1 137.33(15) C11 C10 C9 122.7(2) C28 O3 C27 109.7(2) C12 C11 C10 119.1(2) C28 O3 Mg1 123.37(19) C11 C12 C7 121.0(2) C27 O3 Mg1 126.87(16) C15 C13 C9 111.49(19) C29 O4 C30 111.9(2) C15 C13 C14 110.5(2) C29 O4 Mg1 121.05(18) C9 C13 C14 108.75(19) C30 O4 Mg1 126.99(17) C15 C13 C16 106.3(2) C2 C1 C6 122.9(2) C9 C13 C16 112.4(2) C2 C1 Mg1 99.79(15) C14 C13 C16 107.26(19) C6 C1 Mg1 100.38(15) C22 C17 C18 120.0(2) C3 C2 C1 117.5(2) C22 C17 C6 119.4(2) C3 C2 C7 122.5(2) C18 C17 C6 120.6(2) C1 C2 C7 120.0(2) O1 C18 C17 120.0(2) C4 C3 C2 120.1(2) O1 C18 C19 121.2(2) C5 C4 C3 121.3(2) C17 C18 C19 118.8(2) C4 C5 C6 120.5(2) C20 C19 C18 117.8(2) C5 C6 C1 117.7(2) C20 C19 C23 120.4(2) C18 C19 C23 121.8(2) O3 C27 C28#1 111.0(3) C21 C20 C19 123.1(2) O3 C28 C27#1 108.2(3) C22 C21 C20 119.1(2) C30#2C29 O4 120.1(4) C21 C22 C17 120.9(2) C29#2 C30 O4 117.5(3) C25 C23 C19 113.0(2) C36 C31 C32 120.3(3) C25 C23 C24 106.3(2) C31 C32 C33 120.1(3) C19 C23 C24 110.7(2) C34 C33 C32 119.9(3) C25 C23 C26 106.6(2) C35 C34 C33 120.1(3) C19 C23 C26 108.8(2) C34 C35 C36 120.2(3) C24 C23 C26 111.4(2) C31 C36 C35 119.4(3)

PAGE 109

109 Table B 23. Anisotropic displacement parameters (2x 103) for [(tBuOCHO)Mg {O(CH2CH2)2O}]n ( 6 ). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 Mg1 48(1) 24(1) 25(1) 5(1) 8(1) 6(1) O1 39(1) 28(1) 27(1) 8(1) 10(1) 4(1) O2 38(1) 22(1) 28(1) 3(1) 14(1) 3(1) O3 150(2) 28(1) 48(1) 13(1) 60(1) 12(1) O4 73(1) 25(1) 59(1) 18(1) 30(1) 17(1) C1 30(1) 30(1) 23(1) 4(1) 8(1) 7(1) C2 28(1) 32(1) 32(1) 8(1) 11(1) 3(1) C3 29(2) 40(2) 63(2) 21(1) 14(1) 0(1) C4 29(2) 50(2) 83(2) 26(2) 17(2) 8(1) C5 33(2) 39(2) 66(2) 20(1) 12(1) 11(1) C6 32(1) 33(1) 33(1) 7(1) 11(1) 8(1) C7 26(1) 25(1) 30(1) 7(1) 5(1) 3(1) C8 25(1) 24(1) 24(1) 7(1) 5(1) 2(1) C9 29(1) 26(1) 26(1) 7(1) 5(1) 4(1) C10 42(2) 23(1) 34(1) 5(1) 9(1) 7(1) C11 49(2) 23(1) 41(2) 4(1) 22(1) 4(1) C12 35(1) 32(1) 38(2) 11(1) 18(1) 3(1) C13 33(1) 29(1) 35(1) 10(1) 8(1) 8(1) C14 43(2) 39(2) 36(2) 13(1) 13(1) 6(1) C15 30(1) 44(2) 43(2) 16(1) 12(1) 4(1) C16 49(2) 47(2) 51(2) 13(1) 13(1) 21(1) C17 31(1) 25(1) 31(1) 6(1) 7(1) 9(1) C18 34(1) 24(1) 24(1) 6(1) 3(1) 11(1) C19 35(1) 24(1) 25(1) 2(1) 4(1) 9(1) C20 39(2) 25(1) 30(1) 7(1) 1(1) 6(1) C21 48(2) 32(1) 35(2) 11(1) 11(1) 12(1) C22 41(2) 33(1) 39(2) 7(1) 17(1) 10(1) C23 33(1) 31(1) 33(1) 8(1) 7(1) 2(1) C24 40(2) 46(2) 48(2) 10(1) 13(1) 12(1) C25 41(2) 51(2) 44(2) 16(1) 12(1) 6(1) C26 43(2) 34(2) 36(2) 4(1) 14(1) 3(1) C27 146(4) 22(2) 61(2) 13(1) 60(2) 11(2) C28 139(4) 41(2) 49(2) 19(2) 47(2) 3(2) C29 155(4) 34(2) 181(5) 48(3) 123(4) 47(2) C30 114(3) 30(2) 112(3) 30(2) 71(3) 23(2) C31 51(2) 35(2) 70(2) 19(2) 1(2) 10(1)

PAGE 110

110 Table B 23. Continued Atom U11 U22 U33 U23 U13 U12 C32 46(2) 46(2) 79(2) 16(2) 18(2) 9(2) C33 57(2) 41(2) 64(2) 16(2) 16(2) 3(2) C34 52(2) 47(2) 67(2) 27(2) 6(2) 15(2) C35 44(2) 64(2) 81(3) 39(2) 12(2) 6(2) C36 66(2) 49(2) 65(2) 25(2) 18(2) 3(2)

PAGE 111

111 Table B 24. Torsion angles (in deg) for [(tBuOCHO)Mg{O(CH2CH2)2O}]n ( 6) Atoms Angle Atoms Angle O2 Mg1 O1 C18 83.1(2) C6 C1 C2 C3 2.0(4) O4 Mg1 O1 C18 81.9(2) Mg1 C1 C2 C3 111.2(2) O3 Mg1 O1 C18 174.7(2) C6 C1 C2 C7 179.6(2) C1 Mg1 O1 C18 9.5(2) Mg1 C1 C2 C7 70.4(2) O1 Mg1 O2 C8 82.9(2) C1 C2 C3 C4 0.7(4) O4 Mg1 O2 C8 82.2(2) C7 C2 C3 C4 177.7(3) O3 Mg1 O2 C8 175.0(2) C2 C3 C4 C5 3.1(5) C1 Mg1 O2 C8 9.4(2) C3 C4 C5 C6 2.9(5) O1 Mg1 O3 C28 177.9(3) C4 C5 C6 C1 0.3(4) O2 Mg1 O3 C28 37.2(3) C4 C5 C6 C17 178.3(3) O4 Mg1 O3 C28 72.5(3) C2 C1 C6 C5 2.2(4) O1 Mg1 O3 C27 0.9(3) Mg1 C1 C6 C5 111.1(2) O2 Mg1 O3 C27 139.8(3) C2 C1 C6 C17 179.2(2) O4 Mg1 O3 C27 110.4(3) Mg1 C1 C6 C17 70.3(2) O1 Mg1 O4 C29 10.4(4) C3 C2 C7 C12 46.9(3) O2 Mg1 O4 C29 179.8(3) C1 C2 C7 C12 131.4(2) O3 Mg1 O4 C29 84.6(3) C3 C2 C7 C8 135.1(3) C1 Mg1 O4 C29 95.1(3) C1 C2 C7 C8 46.6(3) O1 Mg1 O4 C30 173.4(3) Mg1 O2 C8 C7 17.9(3) O2 Mg1 O4 C30 3.6(3) Mg1 O2 C8 C9 164.09(16) O3 Mg1 O4 C30 91.5(3) C12 C7 C8 O2 171.9(2) C1 Mg1 O4 C30 88.8(3) C2 C7 C8 O2 10.1(3) O1 Mg1 C1 C2 172.43(16) C12 C7 C8 C9 6.1(3) O2 Mg1 C1 C2 46.12(15) C2 C7 C8 C9 171.9(2) O4 Mg1 C1 C2 63.27(16) O2 C8 C9 C10 173.5(2) O1 Mg1 C1 C6 46.14(16) C7 C8 C9 C10 4.5(3) O2 Mg1 C1 C6 172.41(16) O2 C8 C9 C13 4.5(3) O4 Mg1 C1 C6 63.02(16) C7 C8 C9 C13 177.5(2) C8 C9 C10 C11 0.0(4) C18 C19 C20 C21 1.4(3) C13 C9 C10 C11 178.0(2) C23 C19 C20 C21 179.4(2) C9 C10 C11 C12 3.0(4) C19 C20 C21 C22 2.2(4) C10 C11 C12 C7 1.4(4) C20 C21 C22 C17 1.6(4) C8 C7 C12 C11 3.2(4) C18 C17 C22 C21 2.5(4) C2 C7 C12 C11 174.8(2) C6 C17 C22 C21 176.1(2) C10 C9 C13 C15 129.7(2) C20 C19 C23 C25 11.0(3) C8 C9 C13 C15 52.4(3) C18 C19 C23 C25 171.1(2) C10 C9 C13 C14 108.2(2) C20 C19 C23 C24 130.1(2) C8 C9 C13 C14 69.8(3) C18 C19 C23 C24 52.1(3)

PAGE 112

112 Table B 24. Continued Atoms Angle Atoms Angle C10 C9 C13 C16 10.4(3) C20 C19 C23 C26 107.2(2) C8 C9 C13 C16 171.6(2) C18 C19 C23 C26 70.7(3) C5 C6 C17 C22 46.5(4) C28 O3 C27 C28#1 60.5(4) C1 C6 C17 C22 132.0(2) Mg1 O3 C27 C28#1 116.9(3) C5 C6 C17 C18 134.8(3) C27 O3 C28 C27#1 58.8(4) C1 C6 C17 C18 46.6(3) Mg1 O3 C28 C27#1 118.7(3) Mg1 O1 C18 C17 17.3(3) C30 O4 C29 C30#2 36.1(8) Mg1 O1 C18 C19 164.52(17) Mg1 O4 C29 C30#2 140.6(5) C22 C17 C18 O1 172.2(2) C29 O4 C30 C29#2 35.1(8) C6 C17 C18 O1 9.2(3) Mg1 O4 C30 C29#2 141.4(5) C22 C17 C18 C19 6.1(3) C36 C31 C32 C33 0.4(4) C6 C17 C18 C19 172.6(2) C31 C32 C33 C34 0.1(4) O1 C18 C19 C20 172.8(2) C32 C33 C34 C35 0.9(4) C17 C18 C19 C20 5.4(3) C33 C34 C35 C36 1.2(4) O1 C18 C19 C23 5.2(3) C32 C31 C36 C35 0.0(4) C17 C18 C19 C23 176.6(2) C34 C35 C36 C31 0.8(4) Symmetry transformations used to generate equivalent atoms: #1 x+2, y+1, z+1 #2 x+1, y+1, z+1

PAGE 113

113 Figure B 6. Molecular structure of [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). Ellipsoids are s hown at the 5 0% probability level. Hydrogens and benzene are omitted for clarity. C1 C6 C2 C4 C5 C3 O 1 O2 C1 7 C1 8 C26 C23 C25 C24 C20 C 21 C22 C1 9 C7 C8 C1 4 C1 2 C1 1 C1 0 C1 6 C1 3 C1 5 W 1 O5 N 1 C54 C53 C56 N2 C55 C37 O4 O3 C30 C 3 1 C29 C27 C28 C32 C44 C49 C 52 C50 C 5 1 C46 C47 C48 C34 C33 C 4 1 C 42 C40 C38 W2 C36 C39 C43 C45 C9

PAGE 114

114 Figure B 7. Packing diagram for 8

PAGE 115

115 X ray E xperimental for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] (8) Data were collected at 173 K on a Siemen s SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan method (0.3frame width). The first 50 frames were re measured at the end of data collection to mon itor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using the Patterson Method in SHELXTL6, and refi ned using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on their respective carbon atoms. A total of 865 parameters were refined in the final cycle o f refinement using 10618 1 and wR2 of 2.68% and 7.24%, respectively. Refinement was done using F2.

PAGE 116

116 Table B 25. Crystal data, structure solution, and refinement for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) identificati on code pelo9a empirical formula C62H74N2O5W2 formula weight 1294.93 T (K) 173(2) ) 0.71073 crystal system Triclinic space group P 1 a () 12.6445(7) b () 12.6890(7) c () 18.1788(10) (deg) 102.7360(10) (deg) 96.9490(10) (deg) 105.3440(10) V (3) 2693.2(3) Z 2 calcd (g mm3) 1.597 crystal size (mm) 0.19 x 0.18 x 0.09 abs coeff (mm1) 4.319 F (000) 1296 range for data collection 1.17 to 27.50 limiting indicies 16 9 23 no. of reflns collcd 18368 no. of ind reflns 12501 [R(int) = 0.0372] completeness to = 28.03 97.3 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 12501 / 0 / 640 R 1, wR R1 = 0.0268, wR2 = 0.0724 R 1, wR 2 (all data) R1 = 0.0328, wR2 = 0.0766 GOF on F2 0.684 largest diff. peak and hole (e.3) 2.014 and 1.299 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 117

117 Table B 26. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). U (eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) W1 2069(1) 4567(1) 3039(1) 17(1) W2 3372(1) 5187(1) 2182(1) 16(1) N1 2440(3) 6082(3) 2751(2) 32(1) N2 1763(3) 4111(3) 1853(2) 32(1) O1 2127(2) 5316(2) 4111(1) 23(1) O2 1292(2) 3017(2) 3049(1) 24(1) O3 4615(2) 6568(2) 2371(1) 22(1) O4 3850(2) 4292(2) 1340(1) 20(1) O5 3604(3) 4555(3) 3049(2) 54(1) C1 75(3) 4392(3) 3394(2) 26(1) C2 27(3) 5539(3) 3603(2) 27(1) C3 577(3) 5963(4) 3097(2) 35(1) C4 1208(3) 5245(4) 2412(2) 39(1) C5 1230(3) 4128(4) 2184(2) 36(1) C6 654(3) 3671(3) 2675(2) 29(1) C7 736(3) 6236(3) 4347(2) 26(1) C8 1743(3) 6024(3) 4600(2) 22(1) C9 2347(3) 6534(3) 5355(2) 23(1) C10 1977(3) 7352(3) 5812(2) 30(1) C11 1048(4) 7650(3) 5548(2) 34(1) C12 421(3) 7076(3) 4831(2) 32(1) C13 3327(3) 6151(3) 5674(2) 26(1) C14 2918(4) 4891(4) 5622(2) 37(1) C15 4292(3) 6386(4) 5239(2) 33(1) C16 3794(4) 6771(4) 6524(2) 45(1) C17 652(3) 2481(3) 2495(2) 31(1) C18 306(3) 2191(3) 2747(2) 27(1) C19 267(4) 1048(3) 2687(2) 35(1) C20 743(4) 226(4) 2293(3) 47(1) C21 1651(4) 500(4) 1988(3) 54(1) C22 1626(4) 1616(4) 2106(3) 44(1) C23 1265(4) 735(3) 3047(3) 41(1) C24 982(6) 559(4) 2939(4) 70(2) C25 2266(4) 1072(4) 2666(3) 51(1) C26 1568(5) 1302(4) 3913(3) 54(1) C27 3676(3) 6153(3) 831(2) 24(1)

PAGE 118

118 Table B 26. Continued Atom X Y Z U(eq) C28 3492(3) 7179(3) 1155(2) 25(1) C29 2507(3) 7360(3) 852(2) 31(1) C30 1735(3) 6522(3) 258(2) 34(1) C31 1897(3) 5479(3) 13(2) 31(1) C32 2880(3) 5275(3) 284(2) 25(1) C33 4367(3) 8023(3) 1782(2) 24(1) C34 4951(3) 7658(3) 2340(2) 20(1) C35 5912(3) 8422(3) 2871(2) 25(1) C36 6181(3) 9552(3) 2850(2) 31(1) C37 5560(3) 9934(3) 2339(2) 32(1) C38 4665(3) 9167(3) 1804(2) 29(1) C39 6627(3) 8028(3) 3435(2) 28(1) C40 7062(3) 7099(4) 2994(2) 34(1) C41 5947(4) 7580(3) 4006(2) 33(1) C42 7665(4) 9002(4) 3902(3) 42(1) C43 3141(3) 4195(3) 34(2) 24(1) C44 3682(3) 3776(3) 588(2) 20(1) C45 4076(3) 2831(3) 348(2) 21(1) C46 3810(3) 2274(3) 432(2) 26(1) C47 3212(3) 2627(3) 974(2) 31(1) C48 2907(3) 3601(3) 736(2) 29(1) C49 4786(3) 2447(3) 929(2) 24(1) C50 5164(4) 1452(4) 525(2) 41(1) C51 5839(3) 3435(3) 1331(2) 33(1) C52 4111(3) 2060(3) 1514(2) 29(1) C53 3079(7) 7221(6) 3451(5) 87(2) C54 1829(8) 6733(7) 2506(6) 138(5) C55 1603(7) 2773(6) 1432(4) 91(2) C56 916(5) 3985(10) 1284(3) 134(5) C57 5546(11) 598(7) 4548(7) 106(4) C58 4417(12) 40(10) 4308(6) 122(4) C59 3918(10) 627(10) 4785(8) 126(4) C60 162(17) 797(10) 9677(6) 135(4) C61 812(12) 682(13) 9769(8) 131(5) C62 1025(8) 92(15) 10080(8) 138(5)

PAGE 119

119 Table B 27. Bond lengths (in ) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Bond Length Bond Length W1 O5 1.942(4) C6 C17 1.473(6) W1 O1 1.955(2) C7 C12 1.403(5) W1 O2 1.958(2) C7 C8 1.414(5) W1 N1 2.053(3) C8 C9 1.407(5) W1 N2 2.065(3) C9 C10 1.398(5) W1 W2 2.49726(19) C9 C13 1.541(5) W2 O5 1.946(3) C10 C11 1.390(6) W2 O3 1.951(2) C11 C12 1.372(6) W2 O4 1.954(2) C13 C14 1.523(5) W2 N1 2.057(3) C13 C15 1.531(5) W2 N2 2.058(3) C13 C16 1.534(5) N1 C54 1.377(7) C17 C22 1.398(5) N1 C53 1.639(8) C17 C18 1.411(6) N2 C56 1.345(6) C18 C19 1.417(5) N2 C55 1.649(8) C19 C20 1.406(6) O1 C8 1.347(4) C19 C23 1.535(7) O2 C18 1.357(4) C20 C21 1.375(8) O3 C34 1.351(4) C21 C22 1.375(7) O4 C44 1.343(4) C23 C25 1.524(7) C1 C2 1.387(5) C23 C26 1.533(7) C1 C6 1.403(5) C23 C24 1.546(6) C2 C3 1.408(5) C27 C32 1.386(5) C2 C7 1.475(5) C27 C28 1.396(5) C3 C4 1.376(6) C28 C29 1.397(5) C4 C5 1.379(6) C28 C33 1.484(5) C5 C6 1.399(5) C29 C30 1.393(5) C30 C31 1.385(6) C58 C59 1.368(14) C31 C32 1.404(5) C59 C57#1 1.303(15) C32 C43 1.482(5) C60 C61 1.274(17) C33 C38 1.390(5) C60 C62#2 1.401(16) C33 C34 1.412(5) C61 C62 1.305(18) C34 C35 1.424(5) C62 C60#2 1.401(16) C35 C36 1.395(5) C39 C42 1.543(5) C35 C39 1.535(5) C43 C48 1.391(5) C36 C37 1.393(5) C43 C44 1.423(5) C37 C38 1.380(5) C44 C45 1.420(5) C39 C41 1.535(5) C45 C46 1.392(5) C39 C40 1.540(5) C45 C49 1.545(5)

PAGE 120

120 Table B 27 Continued Bond Length Bond Length C46 C47 1.392(5) C47 C48 1.386(6) C49 C52 1.526(5) C49 C51 1.535(5) C49 C50 1.535(5) C55 C56 2.006(14) C57 C59#1 1.303(15) C57 C58 1.403(15) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 121

121 Table B 28. Bond angles (in deg) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Bond Angle Bond Angle O5 W1 O1 101.84(13) O3 W2 W1 129.66(7) O5 W1 O2 103.16(13) O4 W2 W1 130.19(7) O1 W1 O2 98.21(10) N1 W2 W1 52.51(9) O5 W1 N1 90.02(14) N2 W2 W1 52.85(9) O1 W1 N1 91.98(12) C54 N1 C53 85.0(6) O2 W1 N1 161.22(12) C54 N1 W1 135.3(4) O5 W1 N2 89.79(14) C53 N1 W1 116.6(3) O1 W1 N2 163.12(11) C54 N1 W2 130.4(4) O2 W1 N2 90.89(12) C53 N1 W2 119.2(3) N1 W1 N2 75.65(14) W1 N1 W2 74.83(12) O5 W1 W2 50.09(10) C56 N2 C55 83.5(6) O1 W1 W2 127.71(7) C56 N2 W2 132.8(4) O2 W1 W2 127.88(7) C55 N2 W2 117.1(3) N1 W1 W2 52.66(9) C56 N2 W1 136.7(4) N2 W1 W2 52.60(9) C55 N2 W1 116.3(3) O5 W2 O3 106.30(13) W2 N2 W1 74.55(12) O5 W2 O4 105.94(13) C8 O1 W1 146.2(2) O3 W2 O4 96.54(10) C18 O2 W1 140.8(2) O5 W2 N1 89.80(14) C34 O3 W2 147.0(2) O3 W2 N1 90.92(12) C44 O4 W2 148.8(2) O4 W2 N1 159.79(11) W1 O5 W2 79.94(13) O5 W2 N2 89.89(14) C2 C1 C6 123.0(3) O3 W2 N2 159.10(11) C1 C2 C3 117.7(4) O4 W2 N2 91.43(12) C1 C2 C7 118.3(3) N1 W2 N2 75.71(14) C3 C2 C7 123.9(4) O5 W2 W1 49.97(10) C4 C3 C2 119.5(4) C3 C4 C5 122.0(4) C20 C19 C18 116.0(4) C4 C5 C6 120.1(4) C20 C19 C23 122.3(4) C5 C6 C1 117.2(4) C18 C19 C23 121.6(4) C5 C6 C17 124.3(4) C21 C20 C19 122.7(4) C1 C6 C17 118.5(3) C20 C21 C22 120.3(4) C12 C7 C8 118.5(3) C21 C22 C17 120.2(5) C12 C7 C2 122.0(3) C25 C23 C26 110.8(4) C8 C7 C2 119.4(3) C25 C23 C19 111.2(4) O1 C8 C9 119.5(3) C26 C23 C19 109.6(4) O1 C8 C7 119.5(3) C25 C23 C24 106.3(4) C9 C8 C7 121.1(3) C26 C23 C24 107.5(4) C10 C9 C8 117.0(3) C19 C23 C24 111.3(4)

PAGE 122

122 Table B 28. Continued Bond Angle Bond Angle C10 C9 C13 121.9(3) C32 C27 C28 122.9(3) C8 C9 C13 121.0(3) C27 C28 C29 117.8(3) C11 C10 C9 122.5(4) C27 C28 C33 118.2(3) C12 C11 C10 119.3(3) C29 C28 C33 124.0(3) C11 C12 C7 121.0(4) C30 C29 C28 120.0(4) C14 C13 C15 109.6(3) C31 C30 C29 120.9(3) C14 C13 C16 107.1(3) C30 C31 C32 120.0(4) C15 C13 C16 107.4(3) C27 C32 C31 117.9(3) C14 C13 C9 109.5(3) C27 C32 C43 117.6(3) C15 C13 C9 111.9(3) C31 C32 C43 124.5(3) C16 C13 C9 111.2(3) C38 C33 C34 119.3(3) C22 C17 C18 119.0(4) C38 C33 C28 120.7(3) C22 C17 C6 120.1(4) C34 C33 C28 119.9(3) C18 C17 C6 120.9(3) O3 C34 C33 120.3(3) O2 C18 C17 119.8(3) O3 C34 C35 118.7(3) O2 C18 C19 118.9(3) C33 C34 C35 120.9(3) C17 C18 C19 121.4(3) C36 C35 C34 116.5(3) C36 C35 C39 121.3(3) C52 C49 C50 107.7(3) C34 C35 C39 122.2(3) C51 C49 C50 107.6(3) C37 C36 C35 122.7(4) C52 C49 C45 110.5(3) C38 C37 C36 119.5(3) C51 C49 C45 108.9(3) C37 C38 C33 120.6(3) C50 C49 C45 111.4(3) C41 C39 C35 110.6(3) N2 C55 C56 41.8(3) C41 C39 C40 109.8(3) N2 C56 C55 54.8(5) C35 C39 C40 110.3(3) C59#1 C57 C58 119.6(9) C41 C39 C42 107.8(3) C59 C58 C57 118.3(10) C35 C39 C42 111.7(3) C57#1 C59 C58 122.1(11) C40 C39 C42 106.5(3) C61 C60 C62#2 119.8(13) C48 C43 C44 119.1(3) C60 C61 C62 121.4(12) C48 C43 C32 121.3(3) C61 C62 C60#2 118.9(12) C44 C43 C32 119.5(3) C48 C47 C46 118.8(3) O4 C44 C45 119.6(3) C47 C48 C43 121.3(3) O4 C44 C43 120.2(3) C52 C49 C51 110.7(3) C45 C44 C43 120.2(3) C46 C45 C49 121.4(3) C46 C45 C44 117.4(3) C44 C45 C49 121.2(3) C47 C46 C45 122.8(3) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 123

123 Table B 29. Anisotropic displacement parameters (2x 103) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 W1 18(1) 17(1) 15(1) 3(1) 3(1) 5(1) W2 18(1) 16(1) 14(1) 3(1) 3(1) 6(1) N1 25(2) 49(2) 33(2) 23(2) 11(1) 17(2) N2 30(2) 50(2) 28(2) 19(2) 13(1) 20(2) O1 25(1) 26(1) 19(1) 5(1) 6(1) 11(1) O2 24(1) 18(1) 26(1) 5(1) 2(1) 1(1) O3 21(1) 20(1) 25(1) 8(1) 2(1) 6(1) O4 22(1) 23(1) 16(1) 4(1) 5(1) 9(1) O5 52(2) 66(2) 49(2) 19(2) 13(2) 21(2) C1 23(2) 31(2) 27(2) 10(2) 6(1) 8(1) C2 25(2) 36(2) 25(2) 10(2) 8(1) 16(2) C3 34(2) 43(2) 38(2) 17(2) 8(2) 22(2) C4 28(2) 61(3) 36(2) 21(2) 6(2) 23(2) C5 22(2) 51(3) 31(2) 12(2) 1(2) 9(2) C6 19(2) 35(2) 27(2) 7(2) 5(1) 3(1) C7 31(2) 27(2) 24(2) 8(1) 8(1) 14(2) C8 28(2) 21(2) 20(2) 6(1) 10(1) 10(1) C9 30(2) 20(2) 19(2) 5(1) 9(1) 5(1) C10 38(2) 25(2) 24(2) 2(1) 10(2) 5(2) C11 46(2) 24(2) 35(2) 3(2) 20(2) 14(2) C12 38(2) 30(2) 36(2) 10(2) 16(2) 18(2) C13 31(2) 30(2) 15(2) 2(1) 3(1) 8(2) C14 46(2) 37(2) 35(2) 16(2) 5(2) 18(2) C15 30(2) 41(2) 27(2) 7(2) 5(2) 9(2) C16 51(3) 63(3) 18(2) 1(2) 1(2) 24(2) C17 29(2) 34(2) 21(2) 1(2) 3(1) 0(2) C18 30(2) 21(2) 26(2) 3(1) 8(1) 0(1) C19 42(2) 24(2) 34(2) 2(2) 16(2) 3(2) C20 53(3) 23(2) 53(3) 3(2) 21(2) 3(2) C21 39(3) 40(3) 56(3) 12(2) 7(2) 11(2) C22 27(2) 48(3) 37(2) 5(2) 4(2) 6(2) C23 55(3) 23(2) 47(3) 10(2) 18(2) 11(2) C24 92(5) 29(3) 97(5) 23(3) 29(4) 23(3) C25 55(3) 41(3) 65(3) 19(2) 22(3) 22(2) C26 78(4) 49(3) 43(3) 18(2) 8(3) 32(3) C27 24(2) 24(2) 24(2) 9(1) 5(1) 8(1)

PAGE 124

124 Table B 29. Continued Atom U11 U22 U33 U23 U13 U12 C28 26(2) 26(2) 24(2) 8(1) 3(1) 9(1) C29 35(2) 31(2) 29(2) 8(2) 0(2) 16(2) C30 33(2) 40(2) 30(2) 12(2) 3(2) 16(2) C31 28(2) 36(2) 26(2) 8(2) 4(1) 8(2) C32 28(2) 27(2) 19(2) 7(1) 3(1) 9(1) C33 25(2) 22(2) 25(2) 6(1) 5(1) 8(1) C34 21(2) 16(2) 23(2) 6(1) 6(1) 6(1) C35 26(2) 24(2) 22(2) 5(1) 4(1) 6(1) C36 34(2) 23(2) 30(2) 6(2) 2(2) 2(2) C37 42(2) 19(2) 32(2) 7(2) 3(2) 7(2) C38 36(2) 27(2) 29(2) 10(2) 7(2) 13(2) C39 29(2) 27(2) 22(2) 6(1) 3(1) 5(2) C40 29(2) 46(2) 32(2) 12(2) 5(2) 17(2) C41 43(2) 33(2) 24(2) 11(2) 6(2) 10(2) C42 35(2) 41(2) 39(2) 13(2) 9(2) 0(2) C43 22(2) 23(2) 23(2) 7(1) 1(1) 5(1) C44 20(2) 23(2) 15(1) 2(1) 4(1) 3(1) C45 21(2) 23(2) 18(2) 5(1) 5(1) 4(1) C46 30(2) 25(2) 21(2) 1(1) 6(1) 7(2) C47 36(2) 31(2) 17(2) 0(1) 1(1) 5(2) C48 33(2) 30(2) 20(2) 6(1) 3(1) 6(2) C49 30(2) 24(2) 19(2) 2(1) 5(1) 12(1) C50 55(3) 46(3) 30(2) 8(2) 10(2) 31(2) C51 24(2) 41(2) 32(2) 7(2) 2(2) 12(2) C52 39(2) 27(2) 25(2) 11(2) 8(2) 12(2) C53 110(6) 69(4) 88(5) 20(4) 43(5) 29(4) C54 178(8) 154(7) 242(11) 174(8) 186(9) 151(7) C55 88(5) 89(5) 69(5) 6(4) 24(4) 0(4) C56 31(3) 289(13) 36(3) 67(5) 12(2) 39(5) C57 166(10) 53(4) 130(9) 35(5) 102(8) 46(5) C58 190(12) 136(9) 95(6) 42(6) 50(8) 123(9) C59 111(8) 143(10) 125(9) 16(8) 62(7) 39(7) C60 169(12) 115(9) 84(7) 9(6) 4(8) 19(9) C61 99(9) 140(11) 110(9) 7(8) 55(8) 20(8) C62 59(5) 163(12) 124(10) 68(8) 9(6) 19(7)

PAGE 125

125 Table B 30. Torsion angles (in deg) for [tBuOCHO]W( NMe2)2( O)W[tBuOCHO] ( 8) Atoms Angle Atoms Angle O5 W1 O1 C10 141.9(4) C51 N1 W2 N2 87.4(7) O2 W1 O1 C10 113.7(4) C49 N1 W2 N2 166.3(4) N2 W1 O1 C10 9.2(6) W1 N1 W2 N2 53.64(10) N1 W1 O1 C10 52.1(4) C51 N1 W2 W1 141.0(7) W2 W1 O1 C10 92.7(4) C49 N1 W2 W1 112.6(4) O5 W1 N1 C51 174.0(7) O2 W1 W2 O5 72.22(17) O2 W1 N1 C51 40.0(9) O1 W1 W2 O5 73.98(17) O1 W1 N1 C51 82.8(7) N2 W1 W2 O5 130.15(19) N2 W1 N1 C51 83.9(7) N1 W1 W2 O5 129.12(19) W2 W1 N1 C51 137.6(7) O5 W1 W2 O4 77.50(17) O5 W1 N1 C49 76.8(4) O2 W1 W2 O4 5.28(12) O2 W1 N1 C49 149.3(5) O1 W1 W2 O4 151.47(13) O1 W1 N1 C49 26.4(4) N2 W1 W2 O4 52.65(15) N2 W1 N1 C49 166.9(4) N1 W1 W2 O4 153.38(15) W2 W1 N1 C49 113.2(4) O5 W1 W2 O3 75.96(17) O5 W1 N1 W2 36.45(13) O2 W1 W2 O3 148.18(13) O2 W1 N1 W2 97.5(4) O1 W1 W2 O3 1.99(12) O1 W1 N1 W2 139.60(10) N2 W1 W2 O3 153.88(15) N2 W1 N1 W2 53.67(11) N1 W1 W2 O3 53.16(14) C51 N1 W2 O5 177.5(7) O5 W1 W2 N2 130.15(19) C49 N1 W2 O5 76.2(4) O2 W1 W2 N2 57.93(15) W1 N1 W2 O5 36.45(13) O1 W1 W2 N2 155.87(15) C51 N1 W2 O4 35.7(8) N1 W1 W2 N2 100.72(17) C49 N1 W2 O4 142.0(4) O5 W1 W2 N1 129.12(19) W1 N1 W2 O4 105.3(3) O2 W1 W2 N1 158.66(15) C51 N1 W2 O3 76.7(7) O1 W1 W2 N1 55.15(15) C49 N1 W2 O3 29.7(4) N2 W1 W2 N1 100.72(17) W1 N1 W2 O3 142.29(9) O5 W1 O2 C3 144.5(4) O1 W1 O2 C3 110.1(4) O2 W1 N2 W2 137.85(10) N2 W1 O2 C3 54.0(4) O1 W1 N2 W2 98.5(3) N1 W1 O2 C3 11.9(7) N1 W1 N2 W2 53.77(11) W2 W1 O2 C3 96.3(4) C9 C2 O3 W2 152.9(3) O5 W2 N2 C52 171.9(6) C5 C2 O3 W2 28.8(6) O4 W2 N2 C52 81.7(6) O5 W2 O3 C2 140.1(4) O3 W2 N2 C52 30.3(8) O4 W2 O3 C2 110.7(4) N1 W2 N2 C52 82.0(6) N2 W2 O3 C2 0.3(6) W1 W2 N2 C52 136.0(6) N1 W2 O3 C2 49.8(4) O5 W2 N2 C50 76.7(4) W1 W2 O3 C2 89.5(4)

PAGE 126

126 Table B 30. Continued Atoms Angle Atoms Angle O4 W2 N2 C50 29.8(4) W1 O2 C3 C14 161.2(3) O3 W2 N2 C50 141.7(4) W1 O2 C3 C16 19.6(6) N1 W2 N2 C50 166.5(4) C6 C1 O4 W2 28.8(6) W1 W2 N2 C50 112.5(4) C19 C1 O4 W2 152.4(3) O5 W2 N2 W1 35.82(13) O5 W2 O4 C1 139.4(4) O4 W2 N2 W1 142.25(10) O3 W2 O4 C1 111.9(4) O3 W2 N2 W1 105.8(3) N2 W2 O4 C1 49.1(4) N1 W2 N2 W1 54.06(11) N1 W2 O4 C1 0.4(6) O5 W1 N2 C52 167.1(6) W1 W2 O4 C1 88.2(4) O2 W1 N2 C52 90.9(6) C62#1C60 C61 C62 1(2) O1 W1 N2 C52 32.8(8) O3 C2 C5 C12 175.5(3) N1 W1 N2 C52 77.5(6) C9 C2 C5 C12 6.2(5) W2 W1 N2 C52 131.3(7) O3 C2 C5 C22 7.0(5) O5 W1 N2 C50 80.0(4) C9 C2 C5 C22 171.3(3) O2 W1 N2 C50 22.1(4) O4 W2 O5 W1 128.40(11) O1 W1 N2 C50 145.7(4) O3 W2 O5 W1 129.59(11) N1 W1 N2 C50 169.5(4) N2 W2 O5 W1 37.36(14) W2 W1 N2 C50 115.8(4) N1 W2 O5 W1 38.26(14) O5 W1 N2 W2 35.83(13) O2 W1 O5 W2 129.62(11) O1 W1 O5 W2 128.79(11) C14 C3 C16 C21 7.9(5) N2 W1 O5 W2 37.33(14) O2 C3 C16 C26 10.3(5) N1 W1 O5 W2 38.04(14) C14 C3 C16 C26 168.9(3) O4 C1 C6 C20 174.2(3) C19 C8 C17 C20 2.6(6) C19 C1 C6 C20 7.0(5) C22 C4 C18 C38 7.1(5) O4 C1 C6 C18 9.3(5) C22 C4 C18 C6 174.8(3) C19 C1 C6 C18 169.5(3) C20 C6 C18 C38 40.2(5) C60 C61 C62 C60#1 1(2) C1 C6 C18 C38 143.3(4) O3 C2 C9 C15 175.3(3) C20 C6 C18 C4 137.8(4) C5 C2 C9 C15 6.4(5) C1 C6 C18 C4 38.7(5) O3 C2 C9 C30 5.7(5) C17 C8 C19 C1 0.8(6) C5 C2 C9 C30 172.7(3) C17 C8 C19 C23 179.1(4) W1 O1 C10 C11 23.4(6) O4 C1 C19 C8 175.7(3) W1 O1 C10 C27 156.0(3) C6 C1 C19 C8 5.5(5) O1 C10 C11 C40 173.0(3) O4 C1 C19 C23 4.5(5) C27 C10 C11 C40 6.4(6) C6 C1 C19 C23 174.3(3) O1 C10 C11 C29 11.1(6) C8 C17 C20 C6 1.2(6) C27 C10 C11 C29 169.6(4) C1 C6 C20 C17 3.5(6) C2 C5 C12 C53 1.4(6) C18 C6 C20 C17 173.0(4)

PAGE 127

127 Table B 30. Continued Atoms Angle Atoms Angle C54 C13 C14 C45 175.6(3) C18 C4 C22 C25 7.3(5) O2 C3 C14 C13 173.7(3) C18 C4 C22 C5 174.8(3) C16 C3 C14 C13 7.1(5) C12 C5 C22 C4 136.6(4) O2 C3 C14 C45 9.8(5) C2 C5 C22 C4 40.9(5) C16 C3 C14 C45 169.4(3) C12 C5 C22 C25 41.1(5) C2 C9 C15 C53 1.9(5) C2 C5 C22 C25 141.5(4) C30 C9 C15 C53 177.1(3) C8 C19 C23 C36 116.3(4) O2 C3 C16 C21 172.8(3) C1 C19 C23 C36 63.9(5) C8 C19 C23 C33 122.2(4) C11 C29 C32 C34 178.2(4) C1 C19 C23 C33 57.6(5) C29 C32 C34 C39 4.4(6) C8 C19 C23 C42 4.1(5) C22 C25 C35 C38 3.5(6) C1 C19 C23 C42 175.8(4) C10 C27 C37 C44 0.5(7) C4 C22 C25 C35 1.9(6) C47 C27 C37 C44 178.3(5) C5 C22 C25 C35 179.6(3) C25 C35 C38 C18 3.7(6) C29 C7 C26 C39 6.2(6) C4 C18 C38 C35 1.4(6) C29 C7 C26 C16 174.7(3) C6 C18 C38 C35 179.4(3) C21 C16 C26 C7 139.0(4) C32 C34 C39 C26 3.6(6) C3 C16 C26 C7 37.8(5) C7 C26 C39 C34 1.6(6) C21 C16 C26 C39 40.1(6) C16 C26 C39 C34 179.4(4) C3 C16 C26 C39 143.2(4) C10 C11 C40 C44 0.8(6) O1 C10 C27 C37 173.2(4) C29 C11 C40 C44 175.2(4) C11 C10 C27 C37 6.2(6) C27 C37 C44 C40 4.9(8) O1 C10 C27 C47 8.0(6) C11 C40 C44 C37 4.8(7) C11 C10 C27 C47 172.6(4) C13 C14 C45 C41 118.5(4) C26 C7 C29 C32 5.5(6) C3 C14 C45 C41 57.8(4) C26 C7 C29 C11 176.3(3) C13 C14 C45 C28 119.9(4) C40 C11 C29 C7 139.5(4) C3 C14 C45 C28 63.8(4) C10 C11 C29 C7 36.5(5) C13 C14 C45 C55 0.4(5) C40 C11 C29 C32 38.6(6) C3 C14 C45 C55 175.9(3) C10 C11 C29 C32 145.4(4) C37 C27 C47 C48 116.1(5) C15 C9 C30 C24 117.1(4) C10 C27 C47 C48 65.1(5) C2 C9 C30 C24 63.8(4) W1 N1 C51 C49 121.9(6) C15 C9 C30 C31 120.7(4) C5 C12 C53 C15 3.1(6) C2 C9 C30 C31 58.3(4) C9 C15 C53 C12 2.8(6) C15 C9 C30 C43 2.2(5) C16 C21 C54 C13 3.4(6) C2 C9 C30 C43 176.8(3) C14 C13 C54 C21 4.3(6) C7 C29 C32 C34 0.1(6) C59#2C57 C58 C59 0.5(16) W2 N1 C51 C49 120.7(6) C57 C58 C59 C57#2 0.6(17)

PAGE 128

128 Table B 30. Continued Atoms Angle C37 C27 C47 C46 120.8(4) C10 C27 C47 C46 58.0(5) C37 C27 C47 C56 1.7(6) C10 C27 C47 C56 177.1(4) W2 N1 C49 C51 134.9(4) W1 N1 C49 C51 139.5(4) Symmetry transformations used to generate equivalent atoms: #1 x, y, z #2 x+1, y+2, z+1

PAGE 129

129 Figure B 8. Molecular structure of [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ). Ellipsoids shown at 50% probability level; hydrogen atoms omitted for clarity. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 N1 C17 C18 C19 C20 C21 C22 C23 F1 F3 F2 F5 F4 F3 C35 C36 N3 N2 C34 C33 N5 C40 C39 Hf1 C38 C37 N4 N10 C47 C48 C46 C45 N7 Hf2 C41 N9 C42 N8 C44 C43 C26 C25 N6 C24 C30 C29 C28 C27 C31 C32 F11 F12 F10 F8 F7 F9

PAGE 130

130 X ray E xperimental for [AnthH][Hf(NMe2)3(NHMe2)]2 (11) Data were collected at 173 K on a Sieme ns SMART PLATFORM equipped with a CCD area detector and a graphite monochromator utilizing MoK ). Cell parameters were refined using up to 8192 reflections. A full sphere of data (1850 frames) was scan metho d (0.3frame width). The first 50 frames were re measured at the end of data collection to monitor instrument and crystal stability (maximum correction on I was < 1 %). Absorption corrections by integration were applied based on measured indexed crystal faces. The structure was solved by the author using Direct Methods in SHELXTL6, and refined using full matrix least squares. The nonH atoms were treated anisotropically, whereas the hydrogen atoms were calculated in ideal positions and were riding on th eir respective carbon atoms. A total of 655 parameters were refined in the final cycle of refinement using 5926 1 and wR2 of 5.11% and 9.26%, respectively. Refinement was done using F2.

PAGE 131

131 Table B 31. Crystal data, structure solution, and refinement for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) identification code pelo3 empirical formula C48H56F12N10Hf2 formula weight 1623.40 T (K) 173(2) ) 0.71073 crystal system Monoclinic space group P2(1)/n a () 17.3997(11) b () 20.3795(12) c () 15.9524(10) (deg) 90 (deg) 93.8290 (deg) 90 V (3) 5644.0(6) Z 4 calcd (g mm3) 1.598 crystal size (mm) 0.17 x 0.04 x 0.04 abs coeff (mm1) 3.759 F (000) 2664 range for data collection 1.17 to 28.05 limiting indicies 22 24 20 no. of reflns collcd 37974 no. of ind reflns 13605 [R(int) = 0.0990] completeness to = 28.03 99.4 % absorption corr Integration refinement method Full matrix least squares on F2 data / restraints / parameters 13605 / 0 / 655 R 1, wR R1 = 0.0511, wR2 = 0.0926 R 1, wR 2 (all data) R1 = 0.1526, wR2 = 0.1142 GOF on F2 0.875 largest diff. peak and hole (e.3) 1.064 and 0.893 o c o o 2 F c 2 ) 2 o 2 ) 2 ]] 1/2 o 2 F c 2 ) 2 ] / (n p)] 1/2 2 (F o 2 )+(m*p)2+n*p], p = [max(F o 2 ,0)+ 2* F c 2 ]/3, m & n are constants.

PAGE 132

132 Table B 32. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (2x 103) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ). U( eq) is defined as one third of the trace of the orthogonalized U ij tensor. Atom X Y Z U(eq) Hf1 1317(1) 3962(1) 3298(1) 37(1) Hf2 6275(1) 3516(1) 1872(1) 42(1) N1 1480(4) 4589(3) 2214(4) 36(2) N2 162(4) 3822(3) 3001(5) 50(2) N3 1641(4) 4658(3) 4174(4) 42(2) N4 2084(4) 3289(3) 2962(4) 46(2) N5 1117(4) 3277(4) 4509(5) 51(2) N6 5265(4) 2927(3) 1471(4) 36(2) N7 5971(4) 4295(3) 1141(5) 51(2) N8 7068(4) 2839(3) 1498(5) 52(2) N9 6056(5) 3572(3) 3117(4) 59(2) N10 7444(5) 4147(4) 2266(6) 73(3) F1 123(4) 6255(4) 4048(4) 141(3) F2 735(5) 5974(5) 3294(5) 150(4) F3 374(6) 6896(4) 3200(6) 182(5) F4 1323(4) 7384(3) 985(4) 96(2) F5 1054(5) 6655(3) 121(4) 136(3) F6 2132(5) 6698(4) 737(6) 149(4) F7 6291(5) 1010(5) 3368(4) 168(4) F8 6216(4) 209(3) 2538(5) 126(3) F9 6997(3) 971(3) 2390(4) 83(2) F10 3701(5) 1115(3) 12(5) 143(4) F11 3218(5) 978(4) 1128(7) 152(4) F12 3967(5) 244(3) 694(5) 145(4) C1 3070(5) 3822(3) 449(5) 35(2) C2 2336(4) 4021(4) 172(5) 32(2) C3 1778(5) 4282(4) 721(5) 38(2) C4 1053(5) 4396(4) 402(6) 45(2) C5 836(5) 4309(4) 467(6) 48(3) C6 1332(5) 4110(4) 1002(6) 46(2) C7 2109(5) 3958(4) 707(5) 36(2) C8 2653(5) 3735(4) 1243(5) 41(2) C9 3389(5) 3532(4) 953(5) 33(2) C10 3931(5) 3292(4) 1497(5) 42(2) C11 4619(5) 3065(4) 1207(5) 45(2) C12 4822(5) 3060(4) 331(6) 43(2)

PAGE 133

133 Table B 32. Continued Atom X Y Z U(eq) C13 4331(5) 3301(4) 230(5) 38(2) C14 3601(4) 3558(4) 85(5) 32(2) C15 2045(4) 4408(4) 1633(5) 40(2) C16 1213(4) 5225(4) 2140(5) 33(2) C17 666(5) 5463(4) 2681(5) 41(2) C18 412(5) 6104(4) 2659(5) 43(2) C19 656(5) 6541(4) 2079(5) 42(2) C20 1161(5) 6316(4) 1521(5) 36(2) C21 1421(4) 5685(4) 1534(5) 37(2) C22 94(7) 6327(6) 3290(8) 68(3) C23 1393(7) 6761(5) 855(8) 65(3) C24 4550(5) 3286(4) 1172(5) 42(2) C25 5181(5) 2259(4) 1526(5) 37(2) C26 5746(5) 1901(4) 2006(5) 40(2) C27 5686(5) 1208(4) 2059(5) 44(2) C28 5106(6) 869(5) 1639(6) 59(3) C29 4549(6) 1221(4) 1174(6) 56(3) C30 4573(5) 1899(4) 1124(5) 47(2) C31 6292(6) 860(5) 2597(7) 61(3) C32 3905(9) 884(6) 739(10) 101(5) C33 105(6) 3650(5) 2140(7) 69(3) C34 466(5) 3969(5) 3541(7) 75(3) C35 1237(6) 4887(4) 4896(6) 63(3) C36 2336(5) 5043(4) 4057(6) 51(3) C37 2911(5) 3317(4) 3214(6) 59(3) C38 1923(6) 2767(4) 2346(7) 70(3) C39 1803(6) 3195(5) 5085(6) 69(3) C40 756(6) 2624(4) 4272(7) 77(4) C41 5268(7) 3737(5) 3363(6) 70(3) C42 6596(7) 3406(5) 3849(6) 93(4) C43 6987(5) 2497(5) 685(6) 63(3) C44 7733(5) 2573(4) 2030(6) 64(3) C45 5478(6) 4850(4) 1400(7) 71(3) C46 6134(6) 4343(4) 249(6) 60(3) C47 7899(6) 4294(5) 1491(8) 83(4) C48 7297(6) 4751(5) 2744(7) 82(4)

PAGE 134

134 Table B 33. Bond lengths (in ) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) Bond Length Bond Length Hf1 N4 2.012(7) N10 C48 1.480(12) Hf1 N3 2.044(7) N10 C47 1.541(14) Hf1 N2 2.053(7) F1 C22 1.252(11) Hf1 N1 2.184(7) F2 C22 1.327(13) Hf1 N5 2.427(8) F3 C22 1.263(11) Hf2 N7 2.020(7) F4 C23 1.294(11) Hf2 N9 2.050(7) F5 C23 1.295(12) Hf2 N8 2.066(7) F6 C23 1.318(11) Hf2 N6 2.189(6) F7 C31 1.268(12) Hf2 N10 2.452(8) F8 C31 1.335(11) N1 C16 1.379(9) F9 C31 1.312(11) N1 C15 1.444(10) F10 C32 1.314(13) N2 C33 1.463(11) F11 C32 1.396(17) N2 C34 1.466(12) F12 C32 1.310(13) N3 C36 1.463(10) C1 C2 1.384(10) N3 C35 1.465(11) C1 C14 1.406(10) N4 C38 1.462(10) C2 C7 1.436(10) N4 C37 1.470(10) C2 C3 1.451(11) N5 C39 1.467(11) C3 C4 1.349(10) N5 C40 1.508(11) C3 C15 1.518(10) N6 C25 1.373(9) C4 C5 1.424(11) N6 C24 1.493(9) C5 C6 1.319(12) N7 C46 1.473(11) C6 C7 1.435(11) N7 C45 1.495(11) C7 C8 1.395(11) N8 C43 1.471(11) C8 C9 1.394(10) N8 C44 1.490(10) C9 C14 1.410(10) N9 C42 1.488(11) C9 C10 1.411(11) N9 C41 1.488(12) C10 C11 1.338(11) C11 C12 1.418(11) C20 C21 1.364(10) C12 C13 1.369(11) C20 C23 1.474(13) C13 C14 1.432(10) C25 C30 1.406(11) C13 C24 1.525(10) C25 C26 1.408(10) C16 C21 1.412(11) C26 C27 1.418(11) C16 C17 1.413(11) C27 C28 1.363(11) C17 C18 1.379(11) C27 C31 1.493(12) C18 C19 1.371(11) C28 C29 1.382(11) C18 C22 1.454(13) C29 C30 1.385(11) C19 C20 1.371(11) C29 C32 1.451(14)

PAGE 135

135 Table B 34. Bond angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11 ) Bond Angle Bond Angle N4 Hf1 N3 119.8(3) C35 N3 Hf1 129.2(6) N4 Hf1 N2 120.1(3) C38 N4 C37 110.7(7) N3 Hf1 N2 118.4(3) C38 N4 Hf1 125.0(6) N4 Hf1 N1 93.7(3) C37 N4 Hf1 123.7(5) N3 Hf1 N1 95.2(2) C39 N5 C40 111.4(7) N2 Hf1 N1 94.3(3) C39 N5 Hf1 114.2(6) N4 Hf1 N5 87.3(3) C40 N5 Hf1 112.8(6) N3 Hf1 N5 84.4(3) C39 N5 H5 119(8) N2 Hf1 N5 85.1(3) C40 N5 H5 104(8) N1 Hf1 N5 179.0(3) Hf1 N5 H5 94(8) N7 Hf2 N9 117.2(3) C25 N6 C24 114.7(6) N7 Hf2 N8 120.8(3) C25 N6 Hf2 127.7(5) N9 Hf2 N8 119.2(3) C24 N6 Hf2 117.4(5) N7 Hf2 N6 95.0(2) C46 N7 C45 111.6(7) N9 Hf2 N6 96.7(3) C46 N7 Hf2 123.4(6) N8 Hf2 N6 95.1(3) C45 N7 Hf2 124.7(6) N7 Hf2 N10 85.2(3) C43 N8 C44 110.7(7) N9 Hf2 N10 85.8(3) C43 N8 Hf2 123.0(6) N8 Hf2 N10 82.3(3) C44 N8 Hf2 125.9(6) N6 Hf2 N10 177.0(3) C42 N9 C41 112.9(8) C16 N1 C15 115.2(7) C42 N9 Hf2 126.8(7) C16 N1 Hf1 123.8(5) C41 N9 Hf2 120.1(6) C15 N1 Hf1 119.2(5) C48 N10 C47 111.5(9) C33 N2 C34 113.5(8) C48 N10 Hf2 113.6(7) C33 N2 Hf1 119.6(6) C47 N10 Hf2 111.0(6) C34 N2 Hf1 126.3(6) C2 C1 C14 123.3(8) C36 N3 C35 111.9(7) C1 C2 C7 118.2(8) C36 N3 Hf1 118.5(6) C1 C2 C3 123.7(7) C7 C2 C3 118.1(7) C19 C18 C22 119.5(8) C4 C3 C2 118.8(8) C17 C18 C22 119.1(9) C4 C3 C15 123.4(8) C20 C19 C18 117.5(8) C2 C3 C15 117.8(7) C21 C20 C19 122.2(8) C3 C4 C5 121.8(9) C21 C20 C23 119.0(8) C6 C5 C4 121.7(8) C19 C20 C23 118.7(8) C5 C6 C7 119.8(8) C20 C21 C16 122.4(8) C8 C7 C6 122.1(8) F1 C22 F3 107.8(11) C8 C7 C2 118.3(7) F1 C22 F2 97.5(10) C6 C7 C2 119.5(8) F3 C22 F2 100.4(10)

PAGE 136

136 Table B 34. Continued Bond Angle Bond Angle C9 C8 C7 122.7(8) F1 C22 C18 118.4(9) C8 C9 C14 119.3(8) F3 C22 C18 117.1(10) C8 C9 C10 122.4(8) F2 C22 C18 112.5(11) C14 C9 C10 118.3(8) F4 C23 F5 105.5(9) C11 C10 C9 121.7(8) F4 C23 F6 102.9(10) C10 C11 C12 120.1(9) F5 C23 F6 104.1(10) C13 C12 C11 121.1(8) F4 C23 C20 117.1(9) C12 C13 C14 118.6(8) F5 C23 C20 114.8(10) C12 C13 C24 120.7(8) F6 C23 C20 111.1(9) C14 C13 C24 120.7(7) N6 C24 C13 118.2(7) C1 C14 C9 118.0(7) N6 C25 C30 124.6(7) C1 C14 C13 122.0(7) N6 C25 C26 118.4(8) C9 C14 C13 120.0(8) C30 C25 C26 117.0(8) N1 C15 C3 118.7(6) C25 C26 C27 119.8(8) N1 C16 C21 125.6(8) C28 C27 C26 122.0(8) N1 C16 C17 120.5(8) C28 C27 C31 120.8(9) C21 C16 C17 113.9(7) C26 C27 C31 117.2(9) C18 C17 C16 122.5(8) C19 C18 C17 121.3(8) C28 C29 C32 120.1(9) C30 C29 C32 118.0(9) C29 C30 C25 121.2(8) F7 C31 F9 105.3(10) F7 C31 F8 107.6(10) F9 C31 F8 104.1(9) F7 C31 C27 113.3(9) F9 C31 C27 114.1(9) F8 C31 C27 111.7(9) F12 C32 F10 109.0(12) F12 C32 F11 103.7(12) F10 C32 F11 99.8(11) F12 C32 C29 115.7(11) F10 C32 C29 114.8(11) F11 C32 C29 112.2(13) C27 C28 C29 118.0(9) C28 C29 C30 121.8(9)

PAGE 137

137 Table B 35. Anisotropic displacement parameters (2x 103) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11). The anisotropic displacement factor exponent takes the form: 2 [ h2a*2U11 + ... + 2 h k a* b* U12 ]. Atom U11 U22 U33 U23 U13 U12 Hf1 33(1) 32(1) 47(1) 1(1) 1(1) 2(1) Hf2 45(1) 39(1) 41(1) 2(1) 5(1) 6(1) N1 26(4) 38(4) 42(4) 4(3) 5(3) 9(3) N2 43(5) 40(4) 67(6) 12(4) 1(4) 1(4) N3 39(5) 33(4) 52(5) 9(3) 3(4) 3(4) N4 54(5) 40(4) 44(5) 0(3) 8(4) 11(4) N5 41(5) 51(5) 61(6) 8(4) 3(4) 6(4) N6 29(4) 43(4) 35(4) 6(3) 4(3) 9(4) N7 50(5) 41(4) 60(6) 6(4) 5(4) 4(4) N8 44(5) 48(5) 64(6) 1(4) 10(4) 1(4) N9 96(7) 45(5) 37(5) 4(4) 4(5) 7(5) N10 62(6) 48(5) 103(8) 6(5) 47(6) 4(5) F1 116(6) 250(10) 58(5) 20(5) 18(4) 106(6) F2 90(6) 263(11) 104(6) 57(7) 59(5) 20(7) F3 249(10) 109(6) 210(9) 92(6) 182(8) 130(7) F4 150(7) 43(4) 98(5) 16(3) 40(5) 10(4) F5 239(10) 109(6) 58(5) 24(4) 4(6) 61(6) F6 125(7) 117(6) 217(10) 100(6) 111(7) 36(5) F7 180(8) 270(11) 52(5) 48(6) 1(5) 165(8) F8 90(5) 62(4) 221(9) 57(5) 28(5) 5(4) F9 48(4) 92(4) 108(5) 28(4) 3(4) 17(4) F10 191(8) 111(5) 112(6) 46(5) 96(6) 78(6) F11 100(6) 122(7) 224(11) 44(7) 61(7) 43(6) F12 180(8) 59(4) 183(8) 27(5) 96(7) 37(5) C1 49(6) 25(4) 30(5) 0(4) 0(4) 0(4) C2 27(5) 29(4) 38(5) 12(4) 12(4) 3(4) C3 31(5) 36(5) 45(6) 8(4) 5(4) 9(4) C4 30(5) 35(5) 70(7) 2(5) 2(5) 11(4) C5 31(6) 44(5) 67(7) 12(5) 17(5) 2(5) C6 46(6) 44(6) 44(6) 6(4) 21(5) 2(5) C7 44(5) 28(4) 36(5) 1(4) 4(4) 2(5) C8 61(7) 33(5) 26(5) 6(4) 15(5) 6(5) C9 41(5) 33(5) 25(5) 2(4) 6(4) 6(4) C10 57(6) 34(5) 32(5) 7(4) 4(5) 1(5) C11 64(7) 40(5) 30(6) 6(4) 12(5) 8(5) C12 36(5) 33(5) 60(7) 8(5) 7(5) 4(4)

PAGE 138

138 Table B 35. Continued Atom U11 U22 U33 U23 U13 U12 C13 46(6) 24(4) 45(6) 1(4) 14(5) 9(4) C14 34(5) 26(4) 36(5) 2(4) 2(4) 2(4) C15 21(5) 46(5) 51(6) 1(4) 6(4) 8(4) C16 24(5) 36(5) 38(5) 3(4) 4(4) 2(4) C17 36(5) 44(5) 45(6) 8(4) 5(5) 7(5) C18 42(6) 47(6) 41(6) 4(5) 8(4) 14(5) C19 36(5) 42(5) 49(6) 6(5) 3(5) 11(5) C20 34(5) 37(5) 37(5) 8(4) 5(4) 1(4) C21 29(5) 45(5) 36(5) 7(4) 3(4) 2(4) C22 55(8) 81(8) 70(9) 30(7) 15(7) 36(7) C23 58(8) 65(8) 73(9) 5(7) 23(7) 16(6) C24 36(5) 49(5) 43(6) 3(4) 12(4) 6(4) C25 44(6) 43(5) 27(5) 12(4) 13(4) 10(5) C26 31(5) 43(5) 45(6) 9(4) 8(4) 10(5) C27 37(6) 57(6) 41(6) 13(5) 11(5) 14(5) C28 64(7) 48(6) 63(7) 16(5) 2(6) 5(6) C29 56(7) 51(6) 59(7) 16(5) 14(6) 5(5) C30 45(6) 44(6) 52(6) 16(5) 6(5) 4(5) C31 55(8) 62(8) 66(8) 22(6) 7(6) 15(6) C32 109(12) 61(9) 123(13) 41(8) 62(11) 26(9) C33 54(7) 69(7) 81(8) 7(6) 16(6) 22(6) C34 33(6) 85(8) 109(9) 16(7) 26(6) 8(6) C35 87(8) 56(6) 50(7) 10(5) 29(6) 10(6) C36 44(6) 47(5) 60(7) 1(5) 12(5) 8(5) C37 42(6) 72(7) 62(7) 9(5) 7(5) 27(5) C38 83(8) 46(6) 80(8) 34(6) 8(6) 9(6) C39 49(7) 87(8) 69(8) 28(6) 6(6) 6(6) C40 91(9) 27(5) 111(10) 5(6) 6(7) 21(6) C41 96(9) 61(7) 55(7) 11(5) 32(6) 5(6) C42 131(11) 99(9) 43(7) 22(6) 40(7) 6(8) C43 57(7) 73(7) 59(7) 14(6) 21(6) 6(6) C44 33(6) 61(6) 94(8) 24(6) 16(6) 15(5) C45 67(8) 44(6) 102(9) 9(6) 6(7) 28(6) C46 71(7) 66(7) 43(6) 18(5) 4(6) 6(6) C47 71(8) 83(8) 98(10) 32(7) 23(7) 14(7) C48 95(9) 43(6) 104(10) 16(6) 18(7) 4(6)

PAGE 139

139 Table B 36. Torsion angles (in deg) for [AnthH][Hf(NMe2)3(NHMe2)]2 ( 11) Atoms Angle Atoms Angle N4 Hf1 N1 C16 167.1(6) N1 Hf1 N4 C37 88.7(7) N3 Hf1 N1 C16 46.7(6) N5 Hf1 N4 C37 91.4(7) N2 Hf1 N1 C16 72.4(6) N4 Hf1 N5 C39 62.7(7) N4 Hf1 N1 C15 2.8(6) N3 Hf1 N5 C39 57.6(7) N3 Hf1 N1 C15 117.7(5) N2 Hf1 N5 C39 176.8(7) N2 Hf1 N1 C15 123.3(6) N4 Hf1 N5 C40 65.8(6) N4 Hf1 N2 C33 49.7(7) N3 Hf1 N5 C40 173.9(7) N3 Hf1 N2 C33 145.4(6) N2 Hf1 N5 C40 54.7(6) N1 Hf1 N2 C33 47.1(6) N7 Hf2 N6 C25 159.5(7) N5 Hf1 N2 C33 133.7(6) N9 Hf2 N6 C25 82.3(7) N4 Hf1 N2 C34 139.8(7) N8 Hf2 N6 C25 37.9(7) N3 Hf1 N2 C34 25.1(8) N7 Hf2 N6 C24 26.6(6) N1 Hf1 N2 C34 123.4(7) N9 Hf2 N6 C24 91.5(6) N5 Hf1 N2 C34 55.8(7) N8 Hf2 N6 C24 148.2(5) N4 Hf1 N3 C36 51.6(6) N9 Hf2 N7 C46 176.2(6) N2 Hf1 N3 C36 143.5(5) N8 Hf2 N7 C46 15.3(8) N1 Hf1 N3 C36 45.7(6) N6 Hf2 N7 C46 83.6(7) N5 Hf1 N3 C36 135.2(6) N10 Hf2 N7 C46 93.4(7) N4 Hf1 N3 C35 134.8(7) N9 Hf2 N7 C45 11.5(8) N2 Hf1 N3 C35 30.1(8) N8 Hf2 N7 C45 172.4(6) N1 Hf1 N3 C35 127.9(7) N6 Hf2 N7 C45 88.6(7) N5 Hf1 N3 C35 51.2(7) N10 Hf2 N7 C45 94.3(7) N3 Hf1 N4 C38 179.9(7) N7 Hf2 N8 C43 54.2(7) N2 Hf1 N4 C38 15.3(8) N9 Hf2 N8 C43 145.3(6) N1 Hf1 N4 C38 81.9(7) N6 Hf2 N8 C43 44.7(7) N5 Hf1 N4 C38 98.0(8) N10 Hf2 N8 C43 133.9(7) N3 Hf1 N4 C37 9.5(8) N7 Hf2 N8 C44 133.4(6) N2 Hf1 N4 C37 174.2(6) N9 Hf2 N8 C44 27.1(8) N6 Hf2 N8 C44 127.7(7) C1 C2 C7 C8 3.4(11) N10 Hf2 N8 C44 53.7(7) C3 C2 C7 C8 177.2(7) N7 Hf2 N9 C42 133.0(7) C1 C2 C7 C6 175.0(7) N8 Hf2 N9 C42 28.2(8) C3 C2 C7 C6 4.3(11) N6 Hf2 N9 C42 127.8(7) C6 C7 C8 C9 174.3(7) N10 Hf2 N9 C42 50.6(7) C2 C7 C8 C9 4.1(12) N7 Hf2 N9 C41 52.9(7) C7 C8 C9 C14 0.5(12) N8 Hf2 N9 C41 145.9(6) C7 C8 C9 C10 178.4(7) N6 Hf2 N9 C41 46.3(7) C8 C9 C10 C11 176.2(7) N10 Hf2 N9 C41 135.3(7) C14 C9 C10 C11 2.8(12)

PAGE 140

140 Table B 36. Continued Atoms Angle Atoms Angle N7 Hf2 N10 C48 66.0(7) C9 C10 C11 C12 0.2(12) N9 Hf2 N10 C48 51.7(7) C10 C11 C12 C13 1.8(12) N8 Hf2 N10 C48 172.0(8) C11 C12 C13 C14 0.3(12) N7 Hf2 N10 C47 60.6(6) C11 C12 C13 C24 179.3(7) N9 Hf2 N10 C47 178.3(6) C2 C1 C14 C9 4.1(11) N8 Hf2 N10 C47 61.4(6) C2 C1 C14 C13 174.1(7) N6 Hf2 N10 C47 34(5) C8 C9 C14 C1 3.5(11) C14 C1 C2 C7 0.6(11) C10 C9 C14 C1 177.5(7) C14 C1 C2 C3 178.7(7) C8 C9 C14 C13 174.8(7) C1 C2 C3 C4 173.1(7) C10 C9 C14 C13 4.2(11) C7 C2 C3 C4 6.1(11) C12 C13 C14 C1 179.1(7) C1 C2 C3 C15 6.4(12) C24 C13 C14 C1 1.9(11) C7 C2 C3 C15 174.3(7) C12 C13 C14 C9 2.7(11) C2 C3 C4 C5 4.3(12) C24 C13 C14 C9 176.3(7) C15 C3 C4 C5 176.2(8) C16 N1 C15 C3 74.8(9) C3 C4 C5 C6 0.4(13) Hf1 N1 C15 C3 119.5(6) C4 C5 C6 C7 1.6(13) C4 C3 C15 N1 7.2(12) C5 C6 C7 C8 178.9(8) C2 C3 C15 N1 172.4(7) C5 C6 C7 C2 0.5(12) C15 N1 C16 C21 2.8(11) Hf1 N1 C16 C21 167.7(6) C12 C13 C24 N6 7.7(11) C15 N1 C16 C17 179.2(7) C14 C13 C24 N6 171.3(7) Hf1 N1 C16 C17 14.3(10) C24 N6 C25 C30 17.9(11) N1 C16 C17 C18 176.6(7) Hf2 N6 C25 C30 168.1(6) C21 C16 C17 C18 5.2(11) C24 N6 C25 C26 163.1(7) C16 C17 C18 C19 2.9(13) Hf2 N6 C25 C26 10.9(11) C16 C17 C18 C22 174.1(9) N6 C25 C26 C27 178.5(7) C17 C18 C19 C20 0.0(13) C30 C25 C26 C27 0.6(12) C22 C18 C19 C20 177.0(9) C25 C26 C27 C28 1.9(14) C18 C19 C20 C21 0.3(13) C25 C26 C27 C31 178.4(8) C18 C19 C20 C23 176.0(9) C26 C27 C28 C29 2.4(14) C19 C20 C21 C16 2.5(13) C31 C27 C28 C29 177.9(9) C23 C20 C21 C16 178.7(8) C27 C28 C29 C30 0.5(15) N1 C16 C21 C20 176.9(7) C27 C28 C29 C32 177.9(12) C17 C16 C21 C20 5.0(11) C28 C29 C30 C25 2.0(15) C19 C18 C22 F1 122.1(12) C32 C29 C30 C25 179.6(11) C17 C18 C22 F1 55.0(16) N6 C25 C30 C29 176.6(9) C19 C18 C22 F3 9.7(17) C26 C25 C30 C29 2.4(13) C17 C18 C22 F3 173.2(11) C28 C27 C31 F7 116.3(12)

PAGE 141

141 Table B 36. Continued Atoms Angle C19 C18 C22 F2 125.2(10) C17 C18 C22 F2 57.7(13) C21 C20 C23 F4 161.4(9) C19 C20 C23 F4 22.2(14) C21 C20 C23 F5 74.1(12) C19 C20 C23 F5 102.3(11) C21 C20 C23 F6 43.6(14) C19 C20 C23 F6 140.0(10) C25 N6 C24 C13 80.3(9) Hf2 N6 C24 C13 105.1(7) C30 C29 C32 F12 169.8(12) C28 C29 C32 F10 140.1(12) C30 C29 C32 F10 41.5(19) C28 C29 C32 F11 106.9(12) C26 C27 C31 F7 64.0(13) C28 C27 C31 F9 123.2(10) C26 C27 C31 F9 56.5(13) C28 C27 C31 F8 5.4(14) C26 C27 C31 F8 174.3(9) C28 C29 C32 F12 12(2)

PAGE 142

142 LIST OF REFERENCES (1) Schrock, R. R. Chem. Rev. 2002, 102, 145. (2) Schrock, R. R.; Czekelius, C. Adv. Synth. Catal 2007, 349 55. (3) Schrock, R. R. Acc. Chem. Res 1986, 19, 342. (4) Schrock, R. R. Angew. Chem. Int. Ed. 2006, 45, 3748. (5) North, M. in Comprehensive Organic Functional Group Transformations II Katritzky, A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherl ands, 2005; Vol 3, 621. (6) Tyrrell, E. In Comprehensive Organic Functional Group Transformations II ; Katritzky, A. R.; Taylor, R. J. K., Eds. Elservier: Amsterdam, The Netherlands, 2005; Vol 1, 1083. (7) McLain, S. J.; Wood, C.D.; Messerle, L. W.; Sc hrock, R. R.; Hollander, F. J.; Youngs, W. J.; Churchill, M. R. J. Am. Chem. Soc 1978 100, 5962. (8) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z. Organometallics 2006, 25 427. (9) Tsai, Y. C.; Diaconescu P. L.; Cummins, C. C. Organometallics 2000, 19, 5260. (10) Filippou, A. C.; Fischer, E. O. J. Organomet. Chem 1990 382 143. (11) Schrock, R. R.; Weinstock, I. A.; Horton, A. D.; Liu, A. H.; Schofield, M. H. J. Am. Chem. Soc 1988, 110, 2686. ( 12) Schrock, R. R.; Sancho, J.; Pederson, S. F. Inorganic Syntheses 1989, 26 44. (13) Tonzetich, Z. J.; Lam, Y. C.; Mller, P.; Schrock, R. R. Organometallics 2007, 26, 475. (14) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74. (15) Frstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc 1999, 121, 9453. (16) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc 2004 126 329. (17) Geyer, A. M.; Gdula, R. L.; Wiedner, E. S.; Johnson, M. J. A. J. Am. Chem. Soc 2007 129, 3800. (18) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.; Mindiola, D. J. J. Am. Chem. Soc 2005, 127, 16016. (19) Bailey, B. C.; Fout, A. R.; Fan, H.; Tomaszewski, J.; Huffman, J. C.; Gary, J. B.; Johnson, M. J. A.; Mindiola, D. J. J. Am. Chem. Soc 2007 129 2234.

PAGE 143

143 (20) Sarkar, S.; Carlson, A. R.; Veige, M. K.; Falkowski, J. M.; Abboud, K. A.; Veige, A. S. J. Am. Chem. Soc 2008, 130, 1116. (21) Choi, S.; Lin, Z. Organometallics 1999, 18, 5488. (22) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc 1978, 100 6774. (23) Schrock, R. R.; DePue, R. T.; Feldman, J.; Schaverian, J. C.; Dewan, J. C.; Liu, A. H. J. Am. Chem. Soc 1988 110 1423. (24) Rhers, B.; Lucas, C.; Taoufik, M.; Herdtweck, E.; Dabl emont, C.; Basset, J.; Lefebvre, F. Comptes Rendus Chimie 2006, 9, 1169. (25) Chisholm, M. H.; Eichhorn, B. W.; Folting, K.; Huffman, J. C.; Ontiveros, C. D.; Streib, W. E.; Van Der Sluys, W. G. Inorganic Chemistry 1987 26 3182. (26) Ipaktschi, J.; Rooshenas, P.; Klotzbach, T.; Dlmer, A.; Hseynova, E. Organometallics 2005, 24 1351. (27) Chisholm, M. H.; Huang, J.; Huffman, J. C. J. Organomet. Chem 1997, 528, 221. (28) Stichbury, J. C; Mays, M. J.; Davies, J. E.; Raithby, P. R .; Shields, G. P. J. Chem. Soc., Dalton Trans. 1997 13 2309. (29) Koller, J.; Sarkar, S.; Abboud, K. A.; Veige, A. S. Organometallics 2007, 26 5438.

PAGE 144

144 BIOGRAPHICAL SKETCH Andrew Peloquin was born in 1985 in Worceste r, Massachusetts, but soon moved to Deltona, Florida. He established himself as a dedicated student starting in his early educational career. He graduated from the United States Air Force Academy in Colorado Springs in May 2007 with a Bachelor of Science degree in c hemistry. He was assigned as a chemist in the Air Force upon graduation and came directly to the University of Florida in fall 2007 under the Air Force Institute of Technologys Graduate Scholarship Program. Andrew joined Dr Adam Veiges group, researching metal complexes supported by trianionic pincer ligands, with a focus on high oxidation state, group VI alkylidynes. He graduate d in August 2008 with a Master of Science degree in c hemistry.