<%BANNER%>

High Velocity Outflows in Quasars

Permanent Link: http://ufdc.ufl.edu/UFE0022674/00001

Material Information

Title: High Velocity Outflows in Quasars
Physical Description: 1 online resource (141 p.)
Language: english
Creator: Rodriguez, Paola
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: high, outflows, quasars, variability
Astronomy -- Dissertations, Academic -- UF
Genre: Astronomy thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Outflows are a fundamental part of quasars: they bring first-hand physical information about the quasar environments, they are common (and maybe ubiquitous) and they might be key to connecting the AGN with their host galaxies. Nonetheless, many aspects of these outflows are poorly understood. For example, we still do not understand the acceleration mechanisms that drive the flows off of the accretion disks to speeds reaching 0.1c -- 0.2c. I present new measurements and analyses of one of the most extreme cases: the high velocity outflow (v ~ 51000 km/s) observed in the spectra of PG0935+417 (z sub (em) ~ 1.97). We use a combination of ground-based (Lick observatory and Sloan Digital Sky Survey - SDSS) and space-based (Hubble Space Telescope) spectra to measure the absorption in CIV lambda1549 and, for the first time, OVI lambda1034 and NV lambda1240 in the same outflow. The absence of lower ionization lines indicates that the flow is highly ionized with an ionization parameter of log U ~ -1.1. The resolved OVI indicates that the lines are moderately saturated with the absorber covering just ~80\% of the background emission source. We estimate the total column density to be N sub H > ~ 3.0 x 10^{19} cm^{-2}, which is small enough to be compatible with radiation pressure mechanisms accelerating this outflow. I also contribute to the study of outflows by surveying a realm of parameter space that has been sparsely studied before: mini-broad absorption lines (mini-BALs) and high velocities (v > ~ 10000 km/s). My goals are to 1) quantitatively define the range of outflow lines in quasar spectra, 2) examine their detection frequencies and distributions in velocity, strength and FWHM, 3) look for relationships between the various absorption line types and basic quasar properties, and 4) identify individual outflow lines candidates for follow-up studies. To do so, I compile a comprehensive catalog of CIV absorption lines in the ~2200 brightest SDSS quasars at 1.8 < = z < = 3.5, and select those with FWHM > 700 km s$^{-1}$ to be unlikely due to intervening material. I obtain a fraction of quasars with mini-BALs of 11.4%+-0.9%. Although the mini-BAL phenomenon is strongly related to the more previously studied Broad Absorption Lines (BALs) present in BALQSOs, I still find mini-BALs in 5.1%+-0.7% of non-BALQSOs. I find no correlation between the presence of associated absorbers or radio loudness and the occurance of mini-BALs. By adding results from other outflow studies, I estimate a total percentage of quasars with outflows to be > ~ 41 to 77%. Finally, in order to characterize better the structural and physical properties of these outflows, I carried out a monitoring program over a range of Delta t = 0.9 -- 3.3 years in the quasar rest frame by using facilities at the Kitt Peak National Observatory and MDM Observatory. By comparing our new spectra with archival spectra (SDSS), I find that ~50% of quasars with mini-BAL and BALs at high velocity varied between just two observations. I find that variability sometimes occurs in complex ways; however, all the variable lines vary in intensity and not in velocity. Thus I find no evidence for acceleration/deceleration in the outflow. I also do not find any correlations between the variability and Rest Equivalent Width (REW), Full Width Half Minumum (FWHM) or depth of the absorption feature, except for the fact that none of the narrower systems varied. A significant fraction of the non-variable narrower systems are probably unrelated to quasar outflows.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Paola Rodriguez.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Hamann, Fredrick.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0022674:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022674/00001

Material Information

Title: High Velocity Outflows in Quasars
Physical Description: 1 online resource (141 p.)
Language: english
Creator: Rodriguez, Paola
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2009

Subjects

Subjects / Keywords: high, outflows, quasars, variability
Astronomy -- Dissertations, Academic -- UF
Genre: Astronomy thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Outflows are a fundamental part of quasars: they bring first-hand physical information about the quasar environments, they are common (and maybe ubiquitous) and they might be key to connecting the AGN with their host galaxies. Nonetheless, many aspects of these outflows are poorly understood. For example, we still do not understand the acceleration mechanisms that drive the flows off of the accretion disks to speeds reaching 0.1c -- 0.2c. I present new measurements and analyses of one of the most extreme cases: the high velocity outflow (v ~ 51000 km/s) observed in the spectra of PG0935+417 (z sub (em) ~ 1.97). We use a combination of ground-based (Lick observatory and Sloan Digital Sky Survey - SDSS) and space-based (Hubble Space Telescope) spectra to measure the absorption in CIV lambda1549 and, for the first time, OVI lambda1034 and NV lambda1240 in the same outflow. The absence of lower ionization lines indicates that the flow is highly ionized with an ionization parameter of log U ~ -1.1. The resolved OVI indicates that the lines are moderately saturated with the absorber covering just ~80\% of the background emission source. We estimate the total column density to be N sub H > ~ 3.0 x 10^{19} cm^{-2}, which is small enough to be compatible with radiation pressure mechanisms accelerating this outflow. I also contribute to the study of outflows by surveying a realm of parameter space that has been sparsely studied before: mini-broad absorption lines (mini-BALs) and high velocities (v > ~ 10000 km/s). My goals are to 1) quantitatively define the range of outflow lines in quasar spectra, 2) examine their detection frequencies and distributions in velocity, strength and FWHM, 3) look for relationships between the various absorption line types and basic quasar properties, and 4) identify individual outflow lines candidates for follow-up studies. To do so, I compile a comprehensive catalog of CIV absorption lines in the ~2200 brightest SDSS quasars at 1.8 < = z < = 3.5, and select those with FWHM > 700 km s$^{-1}$ to be unlikely due to intervening material. I obtain a fraction of quasars with mini-BALs of 11.4%+-0.9%. Although the mini-BAL phenomenon is strongly related to the more previously studied Broad Absorption Lines (BALs) present in BALQSOs, I still find mini-BALs in 5.1%+-0.7% of non-BALQSOs. I find no correlation between the presence of associated absorbers or radio loudness and the occurance of mini-BALs. By adding results from other outflow studies, I estimate a total percentage of quasars with outflows to be > ~ 41 to 77%. Finally, in order to characterize better the structural and physical properties of these outflows, I carried out a monitoring program over a range of Delta t = 0.9 -- 3.3 years in the quasar rest frame by using facilities at the Kitt Peak National Observatory and MDM Observatory. By comparing our new spectra with archival spectra (SDSS), I find that ~50% of quasars with mini-BAL and BALs at high velocity varied between just two observations. I find that variability sometimes occurs in complex ways; however, all the variable lines vary in intensity and not in velocity. Thus I find no evidence for acceleration/deceleration in the outflow. I also do not find any correlations between the variability and Rest Equivalent Width (REW), Full Width Half Minumum (FWHM) or depth of the absorption feature, except for the fact that none of the narrower systems varied. A significant fraction of the non-variable narrower systems are probably unrelated to quasar outflows.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Paola Rodriguez.
Thesis: Thesis (Ph.D.)--University of Florida, 2009.
Local: Adviser: Hamann, Fredrick.
Electronic Access: RESTRICTED TO UF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE UNTIL 2010-05-31

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2009
System ID: UFE0022674:00001


This item has the following downloads:


Full Text

PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

Iwastoldlongtimeagothat\esdebuennacidoseragradecido".Comomimadremeeducomuybien,nopuedoevitarintentarincluiratodosaquellosquemehanayudadoyquesonparteimportantedeestatesis.IamhappytosaythatIcouldnothavedonethiswithoutthehelpofmanygreatpeoplethatIhavehadthepleasureandluckofmeetingduringtheselastsixyears.Ihopemymemorydoesnotfailmehere.Tostart,IwouldliketothankRamonGarcaLopez,becausewithouthisencouragementandhelpIwouldhavenotappliedtotheUFAlumniFellowshipandbecometherstSpanishgraduatestudentintheUF-IACexchangeprogram.OnceIarrived,RafaelGuzmanandwholaterbecamemyadviser,FredHamann,wereanincrediblehelptomakethetransitioneasier.Forallherhelp,foralwaysbeingthere,andforbeingasupermomtoalltheinternationalkids,IwouldliketothankDebraAndersonandeverybodyImetattheUFInternationalCenter.Allofyouareamazing!ThoserstmomentsinGainesvillewerenoteasy...andasthesongsays,Iwouldnothavedoneitwithout(morethan)alittlehelpfrommyfriends,andespeciallyIwouldliketothankAna,Eric,Ily,Katherine,Bruno,Pimol,AlisterandBalsaformakingitmuchmorefun.Margaret:thankyousomuchforyourfriendship,forbeingalways\myrock",forallthedrinksandthelaughs.ThosepartieswerealwayscrazyandSundayswouldnothavebeensobrightwithoutbrunch!IwouldliketothankAshleyforbeingherselfallthetime,forthelaughs,thehelpandthejacket!IamgoingtorandomlyaskpeopleinmyfutureocetostartscreamingwhenImissyou,Sun.ThanksgotoherandAudraforallthosenightoutsandtalks.Iwouldliketothankmypartnersincrime,Leah,DanC.andDanB.forbeinganamazinggroup(andagreatreleasewhenIneededtocomplainaboutmyadviser).Iwouldliketothankmyroommate,oneofmybestfriends,andmypartnerinballgamesat2aminthethirdoorcorridor,Curtis,foralwaysbeingthereandforhisneverendingkindness.IwouldliketothankSuvrathandMarenforalltheadviceandJulianforbeingsuchagoodperson(andnotforcingmetotrymarmiteeveragain!).AmihermanitoMiguelsololepuedodecir 4

PAGE 5

5

PAGE 6

6

PAGE 7

7

PAGE 8

8

PAGE 9

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 11 LISTOFFIGURES .................................... 12 ABSTRACT ........................................ 14 CHAPTER 1INTRODUCTION .................................. 16 1.1Quasars ..................................... 16 1.2QuasarOutows ................................ 18 1.3VariabilityofOutows ............................. 22 1.4Goals ....................................... 23 2HIGHVELOCITYOUTFLOWINQUASARPG0935+417 ........... 25 2.1Introduction ................................... 25 2.2Data ....................................... 26 2.3Analysis ..................................... 28 2.3.1LineIdentication ............................ 28 2.3.2ContinuumNormalization ....................... 30 2.3.3LineMeasurementsandPhysicalQuantities ............. 34 2.4Discussion .................................... 39 2.4.1IonizationandTotalColumnDensityoftheOutow ......... 39 2.4.2NatureoftheAbsorber,VariabilityandKinematics ......... 41 2.4.3OriginoftheOutow,TimescalesandCausesforVariability .... 43 2.5Conclusion .................................... 46 3ANINVENTORYOFCIVMINI-BALSANDOUTFLOWLINESINSDSSQUASARS ...................................... 48 3.1Introduction ................................... 48 3.2QuasarSample ................................. 49 3.3IdenticationandMeasurementsofCivAbsorptionLines ......... 50 3.4Mini-BALs .................................... 59 3.5Statistics ..................................... 64 3.5.1StatisticsofMini-BALs ......................... 66 3.5.2RelationbetweenMini-BALsandBALs ................ 71 3.5.3RelationbetweenMini-BALsandAALs ................ 74 3.5.4RelationbetweenCivMini-BALsandMgiiAbsorption ...... 77 3.5.5RelationbetweenCivMini-BALsandRadioProperties ....... 79 9

PAGE 10

.................................... 82 3.7SummaryandConclusions ........................... 91 4VARIABILITYINQUASAROUTFLOWS .................... 93 4.1Introduction ................................... 93 4.2SampleSelectionandObservations ...................... 93 4.3DataReductionandMeasurements ...................... 94 4.4Analysis ..................................... 114 4.4.1CharacterizingtheVariability ..................... 114 4.4.2VariabilityFractionsandTrends .................... 115 4.4.3ComparisonstoPreviousWorkonBALs ............... 123 4.5Discussion .................................... 124 4.5.1SummaryofMainResults ....................... 124 4.5.2PhysicalPropertiesoftheAbsorbersandVariabilityCauses ..... 124 4.5.2.1Changeoftheionizationstate ................ 125 4.5.2.2Motionoftheabsorber .................... 127 5SUMMARYANDCONCLUSIONS ......................... 129 APPENDIX:ADDITIONALOBSERVATIONS ..................... 131 A.1J083104+532500 ................................ 131 A.2J092849+504930 ................................ 131 A.3J093857+412821 ................................ 132 A.4J102907+651024 ................................ 132 A.5J103859+484049 ................................ 132 A.6J144105+045454 ................................ 133 A.7J163651+313147 ................................ 134 REFERENCES ....................................... 135 BIOGRAPHICALSKETCH ................................ 141 10

PAGE 11

Table page 2-1Observationlogs ................................... 27 2-2ResultsoftheprolettingofCiv,Nv,andOvi. ................ 38 2-3Upperlimitsonlinesnotdetected ......................... 39 3-1Listofmini-BALs ................................... 57 3-2ListofBALsfromSDSSthatwerenott ..................... 59 3-3Numberx100ofmini-BALsperquasar. ...................... 69 3-4Fractionsofquasarswithmini-BALs(700
PAGE 12

Figure page 2-1OpticalspectrumobtainedatLickobservatoryin1996 .............. 30 2-2UltravioletspectrumfromtheHSTarchive ..................... 31 2-3HSTnormalizedspectra ............................... 32 2-4NormalizationoftheLick1996spectrum ...................... 33 2-5NormalizationoftheHSTspectrum ......................... 35 2-6LinettingtoCivinthe1996Lickspectrum,OviandNv 36 2-7UpperlimitstoabsorptionlinesforCiii,Niii,andPv 40 2-8VariabilityinthehighvelocityCiv1548,1551featureoveraperiodoftenyears .......................................... 44 3-1DistributionofalltheabsorptionsystemsmeasuredinFWHM-velocityspace .. 53 3-2Examplesofdierenttsandtheircomment-codesinTable 3-1 ......... 55 3-3Examplesofmini-BALsinquasarswithBI=0 ................... 60 3-4Examplesofmini-BALsinquasarswithBI>0kms1 61 3-5DistributionofFWHMvsREW1548ofthepartoftheFWHM{REWspaceoftheCivabsorptionlinesmeasured ......................... 63 3-6DistributioninFWHMoftheCivabsorptionlinesmeasuredwithFWHM700kms1inintervalsof500kms1 64 3-7Numberofmini-BALs(70025000to60000kms1andquasarswithBIsindierentranges ................................... 72 3-11PercentagesofabsorptionlineswithFWHM>3000kms1perquasarper5000kms1bininvelocityspace ............................. 73 3-12Numberofmini-BALsoutowingatv>5000kms1perAALQSOandpernon-AALQSO ..................................... 76 12

PAGE 13

78 3-14FWHM{velocity{(radioproperties)spaceofCivabsorptionlineswith500
PAGE 14

Outowsareafundamentalpartofquasars:theybringrst-handphysicalinformationaboutthequasarenvironments,theyarecommon(andmaybeubiquitous)andtheymightbekeytoconnectingtheAGNwiththeirhostgalaxies. Nonetheless,manyaspectsoftheseoutowsarepoorlyunderstood.Forexample,westilldonotunderstandtheaccelerationmechanismsthatdrivetheowsooftheaccretiondiskstospeedsreaching0.1c{0.2c.Ipresentnewmeasurementsandanalysesofoneofthemostextremecases:thehighvelocityoutow(v51000kms1)observedinthespectraofPG0935+417(zem1.97).Weuseacombinationofground-based(LickobservatoryandSloanDigitalSkySurvey-SDSS)andspace-based(HubbleSpaceTelescope)spectratomeasuretheabsorptioninCiv1549and,forthersttime,Ovi1034andNv1240inthesameoutow.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameteroflogU-1.1.TheresolvedOviindicatesthatthelinesaremoderetelysaturatedwiththeabsorbercoveringjust80%ofthebackgroundemissionsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. Ialsocontributetothestudyofoutowsbysurveyingarealmofparameterspacethathasbeensparselystudiedbefore:mini-broadabsorptionlines(mini-BALs)andhighvelocities(v>10000kms1).Mygoalsareto1)quantitativelydenetherangeof 14

PAGE 15

Finally,inordertocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframebyusingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.Bycomparingournewspectrawitharchivalspectra(SDSS),Indthat50%ofquasarswithmini-BALandBALsathighvelocityvariedbetweenjusttwoobservations.Indthatvariabilitysometimesoccursincomplexways;however,allthevariablelinesvaryinintensityandnotinvelocity.ThusIndnoevidenceforacceleration/decelerationintheoutow.IalsodonotndanycorrelationsbetweenthevariabilityandRestEquivalentWidth(REW),FullWidthHalfMinumum(FWHM)ordepthoftheabsorptionfeature,exceptforthefactthatnoneofthenarrowersystemsvaried.Asignicantfractionofthenon-variablenarrowersystemsareprobablyunrelatedtoquasaroutows. 15

PAGE 16

Hubble 1926 ).BasedonspectroscopicobservationsofmanyspiralnebulaetakenbyVestoSlipher( Slipher 1915 ),whoreportedlargerredshifts(z)thanexpectedformostofthem,Hubbleproposedhisfamouslaw,whichstatesthattheredshiftinthelightcomingfromwhat,nowadays,areagreedtobedistantgalaxiesisproportionaltotheirdistance.Theirrelativelysimilarbrightnesstocloserobjectsisaconsequenceoftheirlargeluminositiesandtheirdistances.Nowadays,someofthemostluminousandmostdistantobjectsintheuniverseareknownas\Quasars". Theterm\Quasar"wasintroducedbyastrophysicistHong-YeeChiuin1964,asashorterversionofthecommonlyusedterm`quasi-stellarradiosources',sincetheywerediscoveredbytheirradiobrightness.ManyofthesesourceswerecompiledinthethirdCambridgeCatalogs3Cand3CR( Edgeetal. 1959 ; Bennett 1962 ),andtheirnaturewasamysteryatthattime.Whilebeingthebrightestradiosourcesinthesky,interferometrystudiesdiscoveredthatthesesources,withcounterpartsofstar-likeappearanceonopticalphotographs,hadverysmallangularsizes(lessthan1arcsec),invokingveryhightemperatures(107K),andthusnon-thermalradiation.Also,theopticalcounterpartswereabnormallyblueintheultravioletandshowedlargevariability(forexample,3C48showedavariationof0.4magover1yearMatthews&Sandage 1963 ).Thespectraofthesesourceswerealsoanomalousrelativetotypicalstars,whosespectraareacombinationofathermal(blackbody)continuumandasuperpositionofmanyabsorptionlines.Instead,quasarspectracontainedanon-thermalcontinuumwith 16

PAGE 17

Schmidt ( 1963 )and Oke ( 1963 ),usingobservationsoftheopticalcounterpartof3C273,whichwereobtainedatthe200-inchHaleTelescopeonMountPalomar( Hazardetal. 1963 ),realizedthatthese"strangeelements"wereactuallyspectrallinesoftheBalmerseriesofhydrogenredshiftedby0.158.Thisredshiftwasamongthelargestmeasuredtodate.Soon,severalgroupsatdierentobservatories(Palomar,KittPeak,Lick,andKeck)discoveredmorecounterpartsoftheseradiosources.Today,weknowthatnotallquasarsarebrightinradiowavelengthsandtheredshiftrangeofquasarshasexpandedtoz6( Fanetal. 2001 ). Quasarsarethebrightestend(atvisiblewavelengths,luminosities1044-1048L)ofamoregeneralclassofobjectscalledActiveGalacticNuclei(AGN),incontrasttonon-activeornormalgalaxies(suchasthetheMilkyWay).Infact,thetermAGNrefersto`theexistenceofenergeticphenomenainthenuclei,orcentralregions,ofgalaxieswhichcannotbeattributedclearlyanddirectlytostar'( Peterson 1997 ).AGNarecompactobjectsthatresideinthecentralregionsofgalaxies.Asitwassoonsuggestedby Zel'Dovich&Novikov ( 1964 ),theonlywaytoreconcilesuchgreatenergyoutputswithsmallangularsizesisbyinvokingtheexistenceofasuper-massiveblackhole(SMBH)locatedinthecenterofthesepowerfulenginesandsurroundedbyanaccretiondiskofmaterialspiralinginwardwhichisfuelingthequasar.Energyisproducedwhenthegravitationalinfallofthismaterialcausesittoheattohightemperaturesinadissipativeaccretiondisk.Thisaccretiondiskisbelievedtogeneratemostofthecontinuumenergy.However,partofthematerialabandonsthediskanditisexpelledoutsideoftheinnerregion,sometimesatveryhighvelocities(upto0.2thespeedoflight).Thismaterialiscommonlyknownas\outows"incontrasttotherelativisticjetsthatareobservedinradioemission. 17

PAGE 18

Crenshawetal. 1999 ; Reichardetal. 2003 ; Hamann&Sabra 2004 ; Trumpetal. 2006 ; Nestoretal. 2008 ; Dunnetal. 2008 ; Ganguly&Brotherton 2008 ).Moreover,theoutowsthemselvesmightbeubiquitousinAGNif,asexpected,theabsorbinggassubtendsonlypartoftheskyasseenfromthecentralcontinuumsource.Therearepossiblephysicalreasonswhyoutowsmight,infact,bealwayspresent.Forexample,thecorrelationbetweentheblackholemasses(MBH)andthemassesofthehostgalaxies(MbulgeGebhardtetal. 2000 ; Merritt&Ferrarese 2001 )impliesaconnectionbetweentheinnerAGNanditssurroundinghostgalaxy.Thisco-evolutionbetweentheSMBHsandtheirhostgalaxiescouldbepartlyexplainedduetothe\cosmologicalfeedback"providedbyoutows.ThisAGN\feedback"couldalsoberesponsibleforotherobservablepropertiesofgalaxyformation( Elvis 2006 ),suchaslimitingtheuppermassofgalaxies( Crotonetal. 2005 )whosegrowthcannotbestuntedbyreducedcoolingandsupernovaefeedback( Thoul&Weinberg 1995 ).TheAGNfeedbackcouldalsoregulatestarformationinthehostgalaxies( Silk&Rees 1998 ; DiMatteoetal. 2005 ),anddistributemetalrichgastotheintergalacticmedium.Also,outowsmightbenecessaryforsuper-massiveblackhole(SMBH)growthbecause,inordertopreservetheconservationofangularmomentum,theaccretionprocessfuelingtheAGNmightrequireacounterpartofexpelledmaterial. Outowsareobservedasabsorptionlinesinquasarspectra,predominantlyduetotheresonancelinesCiv1548,1550,Siiv1394,1403,Nv1239,1243andMgii2796,2803intheUV/opticalwavelengthrange.BroadAbsorptionLines(BALs),whichshowtypicalwidthsofseveralthousandsofkms1,areoneofthemostcommonlystudiedclassesofquasaroutowlines( Weymannetal. 1981 ; Turnshek 1984 ; Weymannetal. 18

PAGE 19

; Reichardetal. 2003 ; Trumpetal. 2006 ).However,noteveryquasarabsorptionlineidentiesejectedmaterial.NarrowAbsorptionLines(NALs;i.e., Foltzetal. 1986 ; Aldcroftetal. 1994 ; Vestergaard 2003 ),withwidthslessthanafewhundredkms1,have,onthecontrary,severalpossibleorigins.Quasarlightcaninterceptintergalacticmaterialnotphysicallyrelatedtothequasars,producingnarrowabsorptionthatisdenoted"intervening".However,someoftheNALsthatliewithin5000kms1oftheemissionredshift(calledAssociatedAbsorptionLines,orAALsWeymannetal. 1979 ; Foltzetal. 1986 ; Andersonetal. 1987 )arelikelytobeinherenttothequasaroritssurroundinghostgalaxy.Thiscanbeinferredfromtheirlargerfrequenciesperunitvelocityasthevelocityosetbetweenthequasarandtheabsorptionsystemdecreases( Weymannetal. 1979 ; Nestoretal. 2008 ).Also,someNALsappearingatredshiftsmuchlowerthanthesystemicemissionredshift(zabszem)havebeenfoundtolieclosetothequasar/hostgalaxyandarethereforeoutowingathighvelocities( Misawaetal. 2007a ).Absorptionlineswithintermediatewidths,called"mini-BALs",havebeenfoundatavarietyofvelocitiesbutonlyinahandfulofquasarstodate(i.e., Turnshek 1988 ; Jannuzietal. 1996 ; Hamannetal. 1997c ; Churchilletal. 1999 ; Yuanetal. 2002 ; Narayananetal. 2004 ; Misawaetal. 2007b ).Mostmini-BALsarebelievedtobeoutowsbecausetheyshowsomeofthetypicaloutowsignatures,suchasvariability( Narayananetal. 2004 ; Misawaetal. 2007b )and\smoot"prolesathighresolution,whichsuggeststhattheyarenotblendsofmanyNALs( Barlow&Sargent 1997 ; Hamannetal. 1997b ).Thestudyofoutowsthusrequiresincludingthethreeabsorptionlinesthatrepresentejectedmaterial:BALs,mini-BALsandoutowingNALs. Whethertheseoutows,whichareobservedasdierenttypesofabsorptionlines,areadierentmanifestationofthesamephysicalprocessoracompletelydierentphenomenonremainsunknown.Asunicationtheoriesdictate,thegeometryandowstructureoftheseoutowsmightbedirectlyrelatedtotheirobservedfrequency.Althoughseveralgeometricalmodelshavebeenproposed(e.g., Elvis 2000 ; Gangulyetal. 2001 ),so 19

PAGE 20

Elvis ( 2000 )model,NALsaretheobservationofthesamestreamsthatproducetheBALsbutviewedatinclinationanglesclosertotheaccretiondiskplane,thusintersectinganarrowerportionoftheoutowingstream.Inthe Gangulyetal. ( 2001 )picture,NALsareclumpsofgasviewedatsmallerinclinationanglesthanBALquasars(nearerthedisk'spolaraxis). Anotheraspectthatremainsunsettlediswhataccelerationmechanism(s)is/aredrivingtheseoutows.Severalmechanismsanddynamicalmodelshavebeenproposedtoexplaintheiroriginandhowtheyareejectedfromtheinnerquasarregion:radiationpressurealone( Aravetal. 1994 ; Murrayetal. 1995 ; Progaetal. 2000 )orcombinedwithmagneticforces( deKool&Begelman 1995 ; Everett 2005 ; Proga&Kallman 2004 ).Summariesofthedynamicalmodelsaregivenby deKool ( 1997 )and Crenshawetal. ( 2003 ).RadiationpressureseemstoplayanimportantroleasitexplainstheobservedrelationbetweentheAGNluminosityandtheterminalvelocityoftheoutow( Laor&Brandt 2002 ).However,outowswithlargemasslossrates,largeionizationparameters,and/orhighvelocitiescanposeproblemsforradiativeacceleration( Hamann&Sabra 2004 ; Crenshaw&Kraemer 2007 ).Inanycase,bettercharacterizationofeveryoutowtypeisneededinordertodevelopacoherentpicture. Broadabsorptionlineshavebeenstudiedinasystematicmanner.Previoussurveysofbroadabsorptioninquasars(e.g., Reichardetal. 2003 ; Trumpetal. 2006 )havefocusedonclassifyingthembasedonintegratedmeasurementsofthetotalbroadabsorptionpresentintheirspectra:i.e.,BalnicityIndex(BIWeymannetal. 1991 )andAbsorptionIndex(AIHalletal. 2002 ; Trumpetal. 2006 ).TheBalnicityIndexisdenedas: 20

PAGE 21

Inthesamefashion, Halletal. ( 2002 )denedAItobealessrestrictivemeasurementofanykindofintrinsicabsorption,notonlyBALs,andattemptedtoexcludeinterveningabsorptionlines. Halletal. ( 2002 )proposedadenition,thatwasreviewedin Trumpetal. ( 2006 ): withthesamedenitionforf(v)butwithaC0that,alsoinitiallysetto0,becomes1incontinuoustroughsthatexceedtheminimumdepth(10%)andtheminimumwidth(1000kms1).NotethatBIandAIaredierentintheirintegralrangesandthatzerovelocityinBIandAIisdenedbyusingtheaveragewavelengthsofthedoubletandthelongestwavelengthlineofthedoublet,respectively.Bothparameters,though,losetheinformationregardingvelocity(v),widthandstrengthoftheabsorber(s)thatcanhelptocharacterizebettertheoutows,suchastheenergycontentnecessarytocomputethefeedbacktheyprovide.Moreover,thesestudieshavebeenconnedtovelocitiesupto25000[/29000]kms1duetothepossiblepresenceofSiivabsorptionintertwinedwithCivabsorptionbeyondtheSiivemissionline.Outowsathighervelocitieshaveonlybeenfoundinafewcases( Jannuzietal. 1996 ; Hamannetal. 1997c ; Misawaetal. 2007b )and,becausetheydonotcontributetowardsthevalueofBIandAI,theycouldnotbeincludedinprevioussystematicaccounts.Asystematicaccountisnecessaryinordertocharacterizetheseextremehighvelocityoutowsfurther. 21

PAGE 22

Bregmanetal. 1990 ; Fan&Lin 2000 )andlong-termchanges(tensofyears)couldbecausedbyseveralcauses,suchas,instabilitiesintheaccretiondisk(e.g., Rees 1984 ; Siemiginowska&Elvis 1997 ).Thesechangesinthephoto-ionizingcontinuummightmodifytheoutowionization,changingtheionicpopulationsoftheabsorber.Weobservethisvariabilityinthequasarabsorptionlinesthatarecausedbyoutowingmaterial.However,variabilitycanalsobeexplainedbymotionoftheabsorber(s).Forexample,iftheabsorbinggaspartiallyuncoverstheline-of-sighttothebackgroundsource,partoftheemissionlightpreviouslyabsorbedisabletopassthrough.Thesepossibilitiescanbetestedbasedonthevariabilitytimescales,sinceionizationchangescannothappenontimescalesshorterthantherecombinationtimesandthemotionoftheabsorbersiscontrolledbytheirvelocities.Moreover,theirvariabilitycanhelptounderstandbettertheirevolution,bothstructuralanddynamical,geometry,locationsofabsorbinggas,basicphysicalconditions,cloudstructure,sizes,possibleinstabilities,etc.,whichcouldbeusedtoultimatelytestandconstrainthedevelopingtheoreticalmodels(i.e., Murrayetal. 1995 ; Progaetal. 2000 ). Broadabsorptionlines(BALs)havebeenthesubjectofseveralcomprehensivestudiesofvariability(i.e., Barlow 1993 andreferencestherein;andmorerecently, Lundgrenetal. 2007 ; Gibsonetal. 2008 ; Capellupo&Hamann 2009 ).TheseworkshavefoundthatBALstendtovaryinacomplexmanneronmulti-yeartimescales,andthechangesarehypothesizedtobeduetothevariablephoto-ionizingcontinuumortomotionoftheabsorbers. 22

PAGE 23

Wiseetal. 2004 ; Narayananetal. 2004 ; Misawaetal. 2005 ).InthecaseofNALs,variabilitynotonlyprovidesabettercharacterizationoftheabsorptionasinthecaseofBALs,butitisoneofthecommonlyusedcriteriatodiscriminatebetweenoutowingandinterveningabsorbers( Barlow&Sargent 1997 ; Hamannetal. 1997c ).Mini-BALs,whichareabsorptionlineswithintermediatewidthsbetweenNALsandBALs,alsoclearlyforminoutowsbasedontheirbroadproles. Misawaetal. ( 2005 )andlater Misawaetal. ( 2007b )carriedouttheanalysisofacomplexmini-BALinthequasarHS1603+3820,whichalsovaried.However,thevariabilityofmini-BALshasonlybeenpreviouslystudiedinahandfulofcases( Narayananetal. 2004 ; Misawaetal. 2005 ). InChapter3,IpresentacomprehensivecatalogofCivabsorptionlinesinthe2200brightestSDSSquasarsat1.8z3.5,andselectthosewithFWHM>700kms1tobeoutowlines(unlikelytoformininterveningmaterial).Thegoalsofcompilingacomprehensivecatalogofabsorptionlinesareto1)quantitativelydenetherangeofoutowlinesinquasarspectra,2)examinetheirdetectionfrequenciesanddistributionsinvelocity,strengthandFWHM,3)lookforrelationshipsbetweenthevariousabsorptionlinetypesandbasicquasarproperties,and4)identifyindividualoutowlinecandidates 23

PAGE 24

Finally,inordertocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframe,usingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.IincludetherstresultsofthismonitoringprograminChapter4. 24

PAGE 25

( 1997a )reportedthepresenceofanintrinsicCiv1548,1551mini-BALsystem(FWHMofthewholeprole1500kms1)atazabs1.50inthespectrumofthenon-BALQSO(zeroBalnicityIndexWeymannetal. 1991 )PG0935+417.Thisbrightquasar(V=16.2)hasanemission-lineredshiftofzem=1.966( Hewitt&Burbidge 1993 );thusthisCivabsorptionfeatureisoutowingatablue-shiftedvelocityof52000kms1(zabs1.50)relativetothequasaremissionlines.Moreover,high-resolutionKeckobservationsofthisquasarconrmedthattheminiBALremained\smooth",anddidnotbreakupinmanynarrowlines,ataresolutionof7kms1( Hamannetal. 1997a ). ThevelocityofthePG0935+417mini-BALwasthesecondhighestowspeedfoundatthatdateinanon-BALQSO. Jannuzietal. ( 1996 )'sdiscoveryofCiv,NvandOvioutowingat56000kms1inanotherluminousquasar,PG2302+029,wasthehighest.Although Jannuzietal. ( 1996 )speculatedthatthebroad-ishabsorptionlinesinPG2302+029,withfullwidthsathalfminimum(FWHMs)between3000and5000kms1,mightbecosmologicallyinterveninginsteadofintrinsictothequasar(forexample,duetowarmintra-clustergas,see Jannuzietal. 1996 ),morerecentobservationshaveshownthatthemini-BALsinthisquasarhavevariablestrengths(overacoupleofyearstimescale,see Jannuzi 2009 ),implyingthattheyforminadenseanddynamicquasaroutow. Variabilityhasalsobeenfoundinthehighvelocitymini-BALinPG0935+417. Narayananetal. ( 2004 )reportedastudyoftheabsorptionfeaturevariabilityoveratimerangeof2yearsinthequasarrest-frame.UsingspectraobtainedattheLickObservatory(seeFigure4in Narayananetal. 2004 ),theyconrmedtheintrinsicnatureofthisoutow,whichseemtovarymostdramaticallyinrest-frametimescalesof1year. 25

PAGE 26

Hamannetal. ( 1997a ),usingHubbleSpaceTelescope(HST)spectraavailableintheirarchives.Weincludeasearchofotherionsinthesameoutowtoplacelimitsonthedegreeofionizationandtotalcolumndensityinthisoutow.Wealsoexpandthevariabilitystudyofthemini-BALinPG0935+417byusingmorerecentarchivalspectrafromtheSloanDigitalSkySurvey(SDSS-2003)andspectraweobtainedattheKittPeakNationalObservatory(KPNO-2007),whichexpandstheoriginalrest-framemeasurementintervalfrom2toalmost5years. TwootherCivnarrowabsorptionsystemsarepresentintheLickspectra:asystemofnarrow\associated"absorptionlines(AALsatv<5000kms1Foltzetal. 1986 )atzabs1.94,andonenon-associatedatzabs1.47.WedeferdiscussionoftheAALsystemtoafuturepaper( Hamann 2009 )thatincludeshigherresolutionspectroscopy. 2-1 summarizesthePG0935+417datausedinthisstudy.Weanalyzedspectrapreviouslyobtainedduringfourobservingruns(from1993to1999)usingtheKASTspectrographatthe3.0mtelescopeattheUniversityofCaliforniaObservatories(UCO)LickObservatory,withthewavelengthcoverageandresolutions(nearthosewavelengthsofinterest)showninTable 2-1 .SeeNarayananetal.(2004)formoreinformationontheseobservationsanddatareductions.WeveriedthewavelengthcalibrationsofthesedatausingspectrawithresolutionR==34000(0.13Aor9kms1)obtainedwithHIRESatthe10.0mtelescopeoftheW.H.KeckobservatoryonJanuary1998( Hamannetal. 2008 ).Comparisontointerveninglines(3964.02A,3997.09Aand4400.50A)intheKeckspectrasuggestedtheshiftoftheLickspectratomatchthesenarrowabsorptionlines.TheKeckspectrawavelengthshadbeenalreadyshiftedtovacuumintheheliocentricframe. TolookforthepresenceofotherlinesatthesameredshiftastheCivmini-BAL,weexaminedarchivalHubbleSpaceTelescopespectraobtainedwiththeFaintObject 26

PAGE 27

Observationlogs ObservatoryDateRange(A)Exposuretime(s)Resolution Lick1993Mar13250-535012008001Lick1996Mar3250-460027001300Lick1997Feb3250-600027001300Lick1999Jan3250-600030001300HST(FOS)1994Oct2270-327020461300HST(FOS)1995Nov2270-327089101300SDSS2003Jan3800-920022502000KPNOJan20073600-620090001300 Spectrograph(FOS)usingtheG270Hgratinganda0.003apertureon1994October7and1995November13.Fourexposuresin1995andonein1994providedtotalexposuretimesof8910and2046s,respectively.ThesespectrahavearesolutionR=1300(230kms1)andwereobtainedfromtheSpaceTelescopeScienceInstitutearchivesalreadyreducedandcalibrated.WeveriedthewavelengthsusingGalacticabsorptionlines(Feii2383andMgii2796,2804),whichweassumedtobeattheirlaboratorywavelengths.WedidnotmakefurthercorrectionsforthemotionofHSTortheEartharoundtheSun,butwenotethattheseadjustmentswouldbesmallcomparedtotheresolutionofthespectraandtheywouldnotaectanyoftheresultsdiscussedinthisstudy.WefoundnodiscernablevariabilityinthelinesofinterestbetweenHSTobservations,andthusweaveragedalloftheHSTspectratogethertoimprovethesignal-to-noiseratio. Finally,weexaminedmorerecentspectratoextendthetimebaselineandmonitorthevariabilityoftheCivmini-BALabsorptionline.ArchivalspectrawereobtainedfromtheSloanDigitalSkySurvey(SDSS)withresolutionR2000(150kms1; Adelman-McCarthyetal. 2008 ).WealsoobtainedmorerecentspectrawiththeGoldCamspectrometeratthe2.1mtelescopeattheKittPeakNationalObservatory(KPNO)withresolutionR1300(150kms1)in2007. 27

PAGE 28

4 TheHSTdatawerenottakensimultaneouslywiththeLickdata(seeTable 2-1 ).TheHSTdatadonotvarysignicantly(beyondthenoise)betweenthe1994and1995observations,thusbothspectrawerecombined.However,theclosestintimeLickspectra(1993and1996)areindeedvariablebetween1993and1996(seex ).Inthischapter,wediscussprimarilymeasurementsoftheCivfeatureintheLick1996spectrumbecauseitistheclosestintimeandbecauseofitsabsorption-lineshapesimilaritieswiththeabsorptioninthe1997and1999spectra. SeeTable 2-1 formoreinformationonthesedataandx forfurtherdiscussiononthevariability. 2.3.1LineIdentication 2-1 showsthe1996opticalspectrumofPG0935+417,wherewehavemarkedseveralabsorptionsystems.TheCivabsorptionfeatureismorecomplexthanwasoriginallyreported.BesidestheCivmini-BALatanobservedwavelengthof3860A(zabs1.50)previouslyreportedin Hamannetal. ( 1997a )and Narayananetal. ( 2004 ),wefoundanotherCivabsorptionsystematanobservedwavelengthof3920A(zabs1.53).WealsofoundtwonarrowCivabsorptionsystemsandalthoughwearenotstudyingthesesystemsinthiswork,welookedforthepresenceofotherlinesatthoseredshiftsthatcouldbeblendedwiththelinesofinterestatzabs1.50(seebelow). 28

PAGE 29

2-2 showsthecombinedHSTspectrumwherewehavemarkedthelocationsoflinestypicallyfoundinBALs( Hamann 1998 ; Aravetal. 2001 ).Thestrongabsorptionfeatureatanobservedwavelengthof2885AisanunrelatedDampedLylineatzabs=1.37.TheLymanlimitat2240A(Figure 2-2 )correspondstothenarrowabsorptionsystematzabs1.47.ThereisnosignicantLymanlimitabsorptionrelatedtothemini-BALoutowsystematzabs1.50. WedetectforthersttimeOvi1032,1038andNv1239,1243mini-BALsintheHSTspectraatsimilarvelocitiesastheCivmini-BALreportedby Hamannetal. ( 1997a ).Wesearchedforotherionsatthesameredshift:Ly1216,Ly1026,Oi989,1302,Ci945,1277,Cii1036,Ciii977,Nii1084,Niii990,Siii1190,1193,1260,Siiii1207,Siiv1394,1403,Siv1063,Pv1118,1128,andSvi933,946.Nootherdetectionsaresurelyconrmed,partlyduetothedicultythattheLyforestimposes,andpartlyduetothecoincidenceinwavelengthwithotherionsoftheothersystemsmentionedabove.WendthatCiiiatzabs1.50islocatedataverysimilarwavelengthcomparedtoNiiiatzabs1.47.Nonetheless,inseveralcases(Ciii,Niii,Pv,SiivLyandLy)weplaceupperlimitsfortheabsorptionmeasurements(seex ). Figure 2-3 showstheCivmini-BAL(Lick1996spectrum-dot-dashedline)over-plottedovertheNvandOviabsorption(HSTspectrum-solidline),onavelocityscalerelativetothequasaremissionredshift.AlthoughthepresenceoftheLyforestcontaminatesboththeOviandNvabsorptionfeatures,therightseparationoftheOvidoubletandthestrongabsorptioninbothionsatthevelocityoftheCivmini-BALsuggeststhecertaintyofthedetection.TheNvdoubletisnotclearlydetected,butthestrengthandoverallappearanceoftheabsorptionatthepredictedlocationsuggeststhatmostofthisfeatureisthemini-BALsystem. 29

PAGE 30

OpticalspectrumobtainedatLickobservatoryin1996.Prominentbroademissionlinesarelabeledacrossthetop.Tickmarksindicatedthelocationoftheeachlineofthedoubletabsorptionlines.TheCivmini-BALslieatanobservedwavelengthof3860A(zabs1.50)and3920A(zabs1.53).WehavemarkedthelocationofSiivandCiiinthesameoutow,althoughwedonotconrmtheirdetection.Besidesthatsystem,wehavelabeledanassociatedsystematzabs=1.94andanothersystematzabs=1.47,whichareusedtostudythecertaintyofdetectionsofotherionsintheabsorptionsystemofinterestthatcouldbeconfusedwithionsinthesesystems. 2-4 weshowthenormalizationoftheLick1996spectrum.First,wetapowerlawtothecontinuum(f/0:8),constrainedinthreenarrowwavelengthbandsfreeofemissionorabsorption(1272-1276A,1434-1443A,and1449-1455A,intherestframeofthequasar).Second,wetsingleGaussianstothe 30

PAGE 31

UltravioletspectrumfromtheHSTarchive(1994and1995spectracombined).Prominentbroademissionlinesarelabeledacrossthetop.Tickmarksindicatethelocationofexpectedlinesinthezabs1.50outow.Thestrongabsorptionfeatureatobservedwavelength2870AisanunrelatedDampedLyatzabs1.37.ThestrongLymanLimit(LL)ataobservedwavelength2250Acorrespondstothealsounrelatedabsorptionsystematzabs1.47 emissionlinesaroundtheCivabsorption(Siii1263A,Oi1305A,Cii1335A,andSiiv+Oiv]1400A).Thelocationofthispseudo-continuumisparticularlyuncertainintheregion1280-1350Aintherestframeduetotheseveralparametersthattakepartinthettingoftheweakeremissionlines(Siii,OiandCii).Weconstrainedourtstotheseemissionlinestoberedshiftedby300kms1withrespecttotheredshiftofthestrongerSiiv+Oiv]feature,forwhichthebestsingle-gaussiantoccursatzem=1.94.Thisredshiftagreeswellwiththevaluezem=1.966reportedbyTytlerandFan(1992),basedonlowerionizationlines(MgiiandLy).WealsoconstrainedtheFullWidth 31

PAGE 32

HSTspectraafternormalization,showingthehigh-velocitymini-BALsforOviandNv(solidlines),withover-plottedCivfromthenormalizedLickspectrum(dotted-dashedlines),showninvelocityscaledrelativetotheemissionredshift.TheHSTspectrumincludesmanylinesunrelatedtothemini-BALs(Lyforest).VerticallinesshowwhereweexpectedtondthelinesintheOviandNvdoublets.InthecaseofNv,althoughstrongabsorptionispresence,thedoubletseemstobeblendedwithLyforestlines. atHalfMaxima(FWHM)ofOiandCiitoberoughly60%oftheSiiv+Oiv]FWHMbasedonspectraofquasarcomposites(CraigWarner,privatecommunication).AnextraGaussianwasusedtottheredwingoftheLy+Nv1240Ablend.ThenalresultisplottedinFigure 2-4 32

PAGE 33

NormalizationoftheLick1996spectrum.Thesolidstraightlineunderthespectrumrepresentsattothecontinuumwithapowerlaw.DashedlinesrepresentourttoGaussiansforthefollowingemissionlines:Ly(rightslope),Siii,Oi,Cii,andSiiv)aroundtheCivmini-BAL,markedwithanhorizontalline.Becausetheabsorptionfeatureatanobserved3920Aisrealabsorptionitwasexcludedintheemissiontting. Figure 2-5 showsourtstothecontinuumandemissionlinesintheHSTspectraaroundtheNv(left)andOvi(right)absorbers.TheLyforestmakesitdiculttodeneacontinuumnormalizationaroundtheOviandNvabsorptionlines.InordertoexcludethenumerousinterveningabsorptionlinesintheLyforest,wetthecontinualocallyaroundtheabsorptionofinterestandconstrainedthetsusingonlyverynarrowrangesinwavelength(indicatedbythesolidlinesabovethespectra).InthecaseofthecontinuumaroundOvi,wettedthelocalcontinuumwithasecondorderpolynomial.Ourapproachisveryconservativeandmightresultinasuppressedcontinuum,whichmightimplythatourmeasurementsoftheOvistrengths(x )areunderestimated. InthecaseofthecontinuumaroundNv(toppanelofFig. 2-5 )becauseofthepresenceofanOvi1032,1038broademissionline,wetastraightlinetothecontinuumandaddedaGaussiantorepresenttheOviinemission.Thelocationand 33

PAGE 34

SimilarlocalcontinuawerenormalizedaroundtheabsorptionofCiii,Niii,Siiv,Pv,Ly,andLy. whereIoistheintensityofthenormalizedcontinuum,Cfistheline-of-sightcoveragefraction(0Cf1),ameasurementofthecoverageoftheemissionsourcebytheabsorber,andvistheopticaldepth( Hamann&Ferland 1999 ).Forsimplicityduetothemediumresolutionofthespectra,wehaveassumedthattheCfhasonlyonevalueoverthewholeprole.WealsohaveassumedthattheopticaldepthsareGaussiansdenedas whereoistheopticaldepthatthecenteroftheline,visthevelocityandbistheDopplerparameter.WhendoubletresonancelinessuchasCiv,NvandOviarenotsaturated,theiroscillatorstrengthsdictatedierentlinestrengthsbecausethetrueopticaldepthratiois2:1forallofthem. Figure 2-6 showsthetsperformedoverCivNv,andOvi.Thicklinesrepresentthenalt,whichisacombinationofthreefeatures(A,B,andC).Wecorrectedfor 34

PAGE 35

NormalizationoftheHSTspectrum(twoepochscombined)aroundtheNv1239,1243absorptionline(1035-1065A,inthequasarrestframe)-top-andaroundtheOvi1032,1038absorptionline(860-890A)-bottom.Solidlinesaboveeachspectrumrepresenttherangechosenforthepolynomialt,whichisrepresentedbydottedlines.ThecontinuumattheleftofNv(top)alsoshowsaOvibroademissionline,representedasasingleGaussianandextactedfromthespectrum. instrumentalbroadeningGaussiandeconvolution.ThishasasmalleectononlythenarrowestsystemA.FeaturesAandBweredetectedintheCivabsorptionandarepresentinOviandNvaswell,whileaCcomponentoftheabsorptionseemstobepresentinOviandNv,butnotinCiv.BecauseCivliesinaregionfreefromcontaminationwithLylines,weused,asarstapproximationforthetsofthefeatures 35

PAGE 36

LinettingtoCivinthe1996Lickspectrum(top),Ovi(middle)andNv(bottom).Thicklinesrepresenttheresultsofthecombinationofthethreecomponentsoftheabsorption(A,B,andC-dottedlines).AcoveragefractionofCf=0.8wasusedforeverycomponentofeveryion.TheCivnarrowabsorptionfeatureatbluerwavelengthsthantheCivLickabsorptionistheunrelatedsystematzabs1.47. 36

PAGE 37

. Figure 2-6 showsthatthetwostrongnarrowcomponentsofOviseemtobepresentina1:1depthratio,characteristicofsaturatedproles,althoughsaturationisnotoccurringatzeroux.Sincetheprolesareresolved(FWHM>150kms1),thisindicatespartialcoverageofthebackgroundemissionsource(i.e.,theemissionsourceisnotcompletelycoveredbytheoutowinourlineofsight, Hamann&Ferland 1999 ).WeobtainavalueofCf'0:8forOvi.SincefeatureAinOviistheonlyfeatureandionwherewecandistinguishbothlinesinthedoublet,weusedthisvalueforalltheotherions,althoughweareawareofotherstudieswhereithasbeenfoundthatCfmayvaryfromiontoion( Hamannetal. 1997c )andthattheCiv,inparticular,couldhaveanyvaluefrom1to0.4sinceitwasnotobservedsimultaneouslywiththeHSTdata.WealsoincludemeasurementsbasedonCf=1inTables 2-2 and 2-3 forcomparison. Table 2-2 includestheresultsforCf(v)=1and0.8.ValuesfortheRestEquivalentWidth(REW)arederivedbyintegratingoverthettedprole,combiningallofthecomponentsthatarepresent(thicksolidlinesinFigure 2-6 ).TheerrorsinREWarederivedbyvaryingthecontinuumtothehighestandlowestpossiblecontinuumbased 37

PAGE 38

2-2 liststhe1errorsbasedonthisscheme.Absorptionredshifts(zabs)andthusvelocitiesarederivedfromthecentroidofthetstotheindividualdoubletcomponents.ValuesofFWHMweremeasuredoverthettotheshorterwavelengthlineineachdoublet.ForthetsofcomponentAweusedierentDopplerparametersbforCivthanforOviandNv,asrequiredbythedata.ForcomponentBweusethevaluesobtainedintheCivtfortheothertwoions,andforcomponentC,apparentlynotpresentinCiv,weusethevalueforOviforNvaswell.Columndensities(Nion)arederivedbyintegratingthettingprolesusingtheloweroscillationstrengthlineineachdoublet;oscillatorstrengthswereobtainedfrom Verneretal. ( 1994 ).BecausetheabsorptioninOviandNvishighlycontaminatedwiththeLyforest,weconsideredthatallthevaluesofNionandofortheseionsshouldbeupperlimits,exceptfortheOviAcomponent,thatseemstobeclearlypresent,anditisindicatedwithasign\>"becauseinthecaseofsaturationanyvalueofgreaterthan2.8wouldbeviable.However,wepointoutthattheseresultsandupperlimitsforOvimightbeunderestimated,becauseofourconservativeapproachtothecontinuumtacrosstheline(cf.Figs 2-2 and 2-5 ).ErrorsincolumndensitieslistedinTable 2-2 werederivedinthesamemannerasfortheREWs. Table2-2. ResultsoftheprolettingofCiv,Nv,andOvi. Cf=0.8ion REW compv (km/s) (km/s)(1015cm2) (km/s)(1015cm2) Civ 11800.547+0:0110:0120.18 11800.719+0:0160:0170.25 B46820 1580a0.090+0:0070:0100.03 1580a0.115+0:0080:0130.04Nv A51320 660b<0.6<0.24 680b<0.8<0.33 B46820 1580a<0.2<0.03 1580a<0.2<0.04 C50860 2500c<1.1<0.11 2540c<1.6<0.16Ovi 720b2.41+0:150:150.7 780b>8.2>2.8 B46820 1600a<2.26<0.16 1600a<0.72<0.08 C50860 2510c<0.630.07 2540c<2.8<0.2 WeperformedexactlythesameprocedurefortheCivabsorptionintheotherLickspectra(1993,1997and1999).Resultsin1997and1999areverysimilarto1996,exceptforthelackofaclearlypresentcomponentB,although,aswementionedbefore,features 38

PAGE 39

. Asnotedabove(seesection 2.3.1 ),wedonotclearlydetectabsorptioninCiii,Niii,Pv,Siiv,LyorLy,attheredshiftoftheCiv,NvandOviabsorbers.AllofthesefeatureslieintheLyforestandineverycasethereissomeabsorptionpresent.Therefore,weoutlinedabsorptionprolesforcomponentAintheblue-shiftedwavelengthsoftheseionstoplaceupperlimitsonthecolumndensitiesandsetlimitsontheabsorberionization.WeusethesamezabsandbparametersasinOvi(forlinesfoundintheHSTspectra)andCiv(forthelinesintheLickspectra)fortheAcomponentandincreasethestrengthoftheline()untilitwasobviouslymuchstrongerthanthedataatthewavelengthsofinterest.Figure 2-7 showsexamplesoftheseupperlimitsandTable 2-3 includestheresults. Table2-3. Upperlimitsonlinesnotdetected Ciii<1.3<0.36Niii<0.4<0.55Pv<0.5<0.09Siiv<1.7<0.17Ly<1.6<0.5Ly<0.8<1.57 2-2 ).ThesmalldeclineofthecontinuumcorrespondstoanopticaldepthLL<0.2. 2.4.1IonizationandTotalColumnDensityoftheOutow 39

PAGE 40

UpperlimitstoabsorptionlinesforCiii(topleft),Niii(topright)andPv(bottom)basedoncomponentAonlyinCivinthe1996Lickspectrum. Hamann&Ferland ( 1999 )presentedresultsoftheoreticalratiosofcolumndensitiesfordierentionscalculatedbyCLOUDYphotoionizationsimulationsinphotoionizedcloudsthatareopticallythinintheLymancontinuum.Weusedtheseresults(asshownintheirFigure10)toestimateUfromthetheoreticalratiosofcolumndensitiesfordierentionsofthesameelement(suchasCiiiandCiv)andfordierentelements(suchasCivandOvi),assumingsolarabundances( Grevesse&Sauval 1998 ). WeestimatedUtobelogU>-1.1forbothcomponentsAorB,fromtheratiobetweenN(Civ)andN(Ovi),usingCf=0.8(whereN(Ovi)isalowerlimit-seesectionx forcommentsoncolumndensities).WealsocalculatedalimitonUfromtheratioofcolumndensitiesofcomponentAinCivandCiii,N(Civ)/N(Ciii)>2,fromwhichweobtainanotherlowerlimitoflogU2:2,whichislessrestrictivethantheprevious 40

PAGE 41

Ifthemetalicity(O/H)issolarandtheionizationmaximizestheamountofOvi,suchthatN(Ovi)/N(O)0.4atlogU=-1.0(seeFigure10from Hamann&Ferland 1999 ),wecanestimateatotalcolumndensity(NH)asfollows: whichyieldsthevalueNH>3.0x1019cm2(usingonlycomponentA).ThisvalueisalowerlimitbothbecauseN(Ovi)isalowerlimit(Table 2-2 )andbecausetheactualratioN(Ovi)/N(O)mightbesmaller.Super-solarmetallicities,asreportedinhighredshiftquasars( Dietrichetal. 2003 ),mightdecreasethisNHlimitbyfactorsofafew. TheupperlimitontheLycolumndensity(seeTable 2-3 )canbeusedtoderivealowerlimitonU:logU>-0.6.TheabsenceofaLymanedgeisconsistentwiththislimit.ThevalueoflogU>-0.6issomewhatlargerthantheOviresultoflogU-1.1.ThishigherionizationinEquation 2{3 wouldalsoleadtoalargerNHlimit,whichcouldbemitigatedsomewhatbyhighermetallicities.However,itappearsoverallthatourestimatesoflogU>-1.1andNH>3.0x1019cm2arermlowerlimitsandareconsistentwiththenon-detectionsofotherlowtomoderateionizationslinessuchasCiiiandSiiv. Narayananetal. 2004 andbelowinthissection)showvariableabsorptionacrossavelocityintervalofatleast45000to54300kms1relativetotheemissionredshiftderivedfromlowionizationlines(zem=1.966).Inthe1996spectrumweidentifydistinctmini-BALsinCivthatwelabeledAandB(Figure 2-6 ).However,thesefeaturesevolveandlosetheiridentitiesaltogetherinsubsequentobservations.Althoughthevelocity 41

PAGE 42

AcomparisonoftheCivandOvilinesin1994/1995(HST){1996(Lick)alsosuggestsfurtherthattheabsorberhasanionizationdependence.Inparticular,theOviabsorptionincludesabroadfeature(componentCwithFWHM2500kms1)thatisnotpresentinCivandthenarrowcomponent(A)isconsiderablynarrowerinOvi(FWHM750kms1)thanitisinCiv(FWHM1200kms1).Thesedierencesmightbeaectedbythelinevariabilitiessincethespectraweretakenatdierentobservationtimes(1.5monthseparationinthequasartimerestframe).However,wenotethattheOviabsorptiondidnotchangesignicantlybetweenthetwoHSTobservationsin1994and1995,andtheCivlinemeasuredfrom1993to1996hadaconsistentlybroadercomponentAandnoverybroadcomponentC. TheCiv(measuredinthe1996spectrum),andmaybetheOviandNvlinesalsohaveabsorptionatlowervelocities(componentBinFigure 2-6 ),bettermatchedbyabsorptionproleswithv47000kms1(zabs1.53).Thelaterevolutionofthisfeature(seeFigure 2-8 )suggeststhatitmightberealabsorption.NoteagainthattheNvabsorptionproleisseverelycontaminatedbyLyforestlines,butitsoverallappearanceisconsistentwiththeOvimini-BALs. OurbestestimatefortheCoverageFractionisCf=0.8.ThisvaluewasderivedfromthemildsaturationofthecomponentAintheOviion,asthedatasuggests.NoneoftheothercomponentsinOviandintheotherionsallowedforadeterminationoftheCfbecausebothcomponentsofthedoubletareblendedtogetherorwithLyforestlines.ThereisstillsomeuncertaintyinthisresultduetopossibleblendingwithLyforestlines.However,thefeaturesweattributetoOvihavethecorrectdoubletseparation,nearlythesameFWHMsandtheyappearatessentiallythesameredshiftascomponentAmeasuredinCiv.TheOviabsorptionoccursatwavelengthsawayfromthebroademissionlinesandthereforetheabsorbermustpartiallycoverthequasarcontinuumsource. 42

PAGE 43

Narayananetal. 2004 ).Morerecentdata(providedbytheSloanDigitalSurveySkySurvey-SDSS-andobservedattheKittPeakNationalObservatory-KPNO)showsthatthevariabilityhascontinued.Figure 2-8 comparestheLickspectrain1996,usedintheanalysisinthiswork,tothenewerSDSSspectrumobtainedin2003andKPNOspectrumobtainedinJan2007.Themostdramaticvariabilityoccursbetween1999and2003.TheSDSS2003spectrumshowsthattheabsorptionproleidentiedasAinthe1996spectruminFigure 2-6 hasalmostcompletelydisappearedandtheabsorptionidentiedasBhasincreasedinstrengthandwidth.Thecomplexityoftheabsorptionprolein2003and2007suggeststhatAandBabsorptionsareintertwinedandthusitdoesnothaveaclearmeaningtousethemtoidentifytheprolesinthespectrabeyond1999.Between2003and2007,theabsorptionremainsquitesimilarinstrength,andwewouldliketonoteonlyachangeinthemaximumdepth,whichshiftsfromv47000kms1inthe2003spectrumtov49000kms1inthe2007one.SimilarshiftsinthecentroidvelocitywerereportedbetweenthepreviousLickobservationsin Narayananetal. ( 2004 ). Hamannetal. 1997c and Hamann&Simon 2009 ).Thevariabilitytimes,inparticular,providedirectconstraintsontheabsorberlocation.Iftheowisphotoionizedandthelinechangesarecausedbychangesintheionizingux,thentherecombinationtimesetsanapproximatelowerlimitontheoutowgasdensity(see Hamannetal. 1995 and Hamannetal. 1997c ).ThesmallestvariabilitytimewemeasureinCiv,1yrinthequasarrestframe,correspondstoaminimumelectrondensitynH>1.1x105cm3.This,inturn,yieldsamaximumdistance 43

PAGE 44

VariabilityinthehighvelocityCiv1548,1551feature(3850-3900Ainobservedwavelengths)overaperiodoftenyears.Emission+continuumaroundhasbeendividedbyalinearttoshowonlyvariationsinabsorption,althoughtheremaybesomeremainingemissionintheregionaroundoftheCivmini-BAL.TheabsorptionfeatureintheSDSSspectrummayseemweakerthantheothertwospectra.However,thecomponentoutowingataslightlylowerv(47000kms1,3920Ainobservedwavelength)seemsstrongerintheSDSSspectrum. betweentheabsorberandthequasaremissionsourcebecausetheionizationparameterscaleslikeU/L nHr2,whereListhequasarluminosity,nHneistheabsorberdensity,andristheradialdistance.WeestimateL67x1046ergs1forPG0935andthusderiver<1.1kpcusinglogU>-1.1andnH>1.1x105cm3inEquation6in Hamann&Simon ( 2009 ).Thisresultclearlyrulesoutabsorptionbyhighvelocitycloudsfarawayfromthequasarorintheouterhostgalaxy. 44

PAGE 45

Hamannetal. 2008 ).Inthatcase,thetransversevelocities(perpendiculartooursightlines)mustbelargeenoughtocrossasignicantportionofthefar-UVemissionsourceinavariabilitytime.Specically,thesmallestobservedvariabilitytime,1yr,andthecontinuumregiondiameter,0.003pcat1550A,requiretransversevelocitiesvtr>2900kms1.ThesevelocitiesaresimilartodiskrotationspeedsbeyondtheradiusoftheCivBELregionRCIV(vtr3000kms1),andthereforethisscenarioisplausible. WecannotestablishwhethertheoutowwaslaunchedinaninnerorouterregioncomparedtotheBroadEmissionLineRegion(BELR).However,duringthese(atleast)4.7years,theoutowhastravelledoveraregionlargerthanthesizeoftheBELR;thuseveniflaunchedinnertoit,theouowshouldbeoutsideofitatthepresenttime.WeestimatetheRCIVtobe5x1017cmfromabolometricluminosityLbol67x1046ergs1)derivedfromtheobserveduxatrestframe1450A(L(1450A)=7x1012ergs1cm2),usingacosmologywithHo=71kms1Mpc,M=0.27,=0.73andastandardbolometriccorrectionfactorofL3.4L(1450A).Becausethevelocityseemstohaveremainedconstant,wecanderiveaowtimetotraveltheRBELRoftfRCIV=v3.5years,shorterthantherestframetimescaleduringwhichthisoutowhasremainedpresent. Theparametersobtainedfortheowareconsistentwithradiativeacceleration.Wecanusetheapproachdescribedin Hamann ( 1998 ),whoderivesthelaunchradiusbyintegratingthemotionequationforaradiativepressuredrivenwindfromaninitial\launch"radiustoinnitywithacertainterminalvelocity.WeobtainalaunchradiusinthiscaseofRlaunch70pcforPG0935+417.Notethattheequationin Hamann ( 1998 )requirestheuseofafractionofthespectralenergydistributionabsorbedorscatteredinthewind.WehaveassumedfL1becauseitisthetypicalvalueforBALows( Hamann 45

PAGE 46

).However,thisparametermaybesmallerforwindswithnarrowerlinessuchasthemini-BALinPG0935+417.Ifinsteadofabsorbing10%oftheradiationtheoutowonlyabsorbs5%,thelaunchradiuswoulddecreaseby50%.Theseresultsareconsistentwithradiationpressurepoweringthisoutow. IsPG0935+417special?Inspiteofitsextremespeed,aslongasfLisnottoosmall,theowcanbelaunchedwithin70pcofthecontinuumsourceandacceleratedbyradiationpressure.However,theactualphysicalprocessesthatcouldproduceaowlikethisarenotunderstood.Observationally,weknowthatowswithspeedsv>50000kms1arerare-muchrarerthanowswithv<25000kms1,forexample(seeChapter 3 ).Asitseems,wedonotneedtoinvokeaverysmallradiustolaunchthisoutow.Then,ifitiseasytolaunchthesehighvelocityoutows,theyshouldbeacommonphenomenoninquasars.However,asreportedinChapter 3 wendoutowsatv>25000kms1in2.5%ofopticallyselectedquasars.TheluminosityinPG0935+417isnotclosetotheEddingtonLuminosity(LEdd).SinceMBH3x1010M,weobtainaL=LEdd0.2.Therefore,morethanaspecialparticularityofthisindividualquasar,weconcludethat,consideringthatthestatisticalsampleinChapter 3 isobservedfromeveryangle,the\angleofsight"ofthesehighvelocityabsorbersmustbenarrowtoonlyappearin2.5%ofthecases. X-rayobservationsareneededtoconstrainbetterthetotalabsorbingcolumnandexaminetherelationshipofthishigh-speedoutowtothestrongerbutgenerallylowervelocityBALs. 46

PAGE 47

Hamannetal. 1997a and Narayananetal. 2004 )and,forthersttimeinthisoutow,inNv1240andOvi1034inthismini-BALsystem.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameterlogU>-1.1.TheresolvedOviindicatesthatthelinesaremoderatelysaturatedwiththeabsorbercoveringjust80%ofthebackgroundcontinuumsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. 47

PAGE 48

Nestoretal. ( 2008 ),wepresentedastatisticalstudyontheCivoutowsobservedasnarrowabsorptionlines(FWHM<600kms1)toexcludethemoreobviousoutowlines.In Nestoretal. ( 2008 )weconcludedthatasignicantnumberofnarrowabsorptionlines(43%6%),inthevelocityrange750kms10.3A,arequasaroutows.InthepresentworkwestudytheCivabsorptionlinesdetectedasbroaderabsorption(FWHM600kms1)withthegoalofidentifyingindividualoutowabsorbersandcharacterizingtheirfrequency.DuetotheSDSSresolution,blendsofinterveningnarrowlines,couldappearasbroaderabsorptionlines.Thus,itisnecessarytosetathresholdtodiscardtheseinterveningabsorptionlines.InSection 3.4 weexplainhowweselectahigh-condencezoneoftheFWHMspacewherewehaveexcludedtheinterveningabsorption. Ouranalysisemphasizesthemini-BALsbecausetheyaretheleaststudiedclasstodate.However,thegoalofthischapteristocharacterizeoutowsinamoregeneralway,asweincludeBALsinthisanalysisaswell.Theinformationregardingv,width,andstrengthallowsustostudywhetherdierentclassesofabsorptionlinesaremoreorlessfrequentatdierentvelocities,andwhetherornottheycoexistinthesamelineofsight.Also,westudythefrequencyofoutowsathighvelocities(v>25000kms1),uptoLy, 48

PAGE 49

Thischapterstartsbyintroducingthesampleweused(x )andhowthecatalogofCivoutowswasdeveloped(x ).Inx weintroduceaworkingdenitionformini-BALsandinx wediscusstheirfrequencyofoccuranceinquasarspectraandtheirrelationtothefrequencyofothertypesofabsorptionfeatures(BALs,AALs,Mgii),andthequasarradioproperties.Finally,wesummarizethemainresultsofthisworkanddiscusssomeimplicationsfortheoverallstudyofquasaroutows(x ). Nestoretal. 2008 )weneededaccuratemeasuresofthequasarredshifts.SDSSquasarredshiftsarecalculatedusingautomatedalgorithms.Todeterminemoreaccuratevelocityzero-pointsbyusingtheMgii2796,2803emissionlines,whichrequiredamaximumSDSSquasarredshiftof2.25,weexaminedthe1000brightestquasarspectra(withthehighestmedianS/Ninther-band,17.9)with1.8zem2.25.Wesupplementedthissamplefortwodierentreasons.First,tostudytheincidenceofabsorptionlinesatrelativelylowquasar-framevelocity(resultsreportedin Nestoretal. 2008 ),weadded500quasarspectrawith1.6zem1.8(r-bandS/N18.7).Second,tostudytheincidenceofabsorptionlinesatveryhighvelocity(v30000kms1andupto60000kms1),wesupplementedthesamplewith700quasarspectrawithzem2.14(r-bandS/N17.1).Precisezero-pointvelocitydeterminationsarenotaconcernwhenstudyingthesehigh-velocityabsorptionlines.Althoughaccuratevelocity 49

PAGE 50

Nestoretal. ( 2008 )whenavailable. Visualinspectionrevealedthatsomeobjectsweremisidentiedstars;thosewererejected,resultingin2200spectrawithzem1.6thatcomprisedournalsample. Wetpseudo-continuausingacubicsplinefunctionfortheunderlyingcontinuumandoneormoreGaussiansforthebroademissionlinestoeachquasarspectrum,andaggedCivabsorptioncandidatesinamanneridenticaltothatdescribedin Nestoretal. ( 2005 ),butusingupdatedversionsofthesoftware,adjustedtosuittheCivdoublet( Nestoretal. 2008 ).Eachcontinuumtanddetectedcandidatewasvisuallyinspected.Inordertoavoid\tting-out"smoothbroadabsorptionandmissingveryshallowabsorption,andtocheckthatthesoftwarewasidentifyinggoodpowerlawcontinua,weinspectedtheregioncoveredfromLy1216Ato1700A.Weveriedtheproductionofagoodlocalcontinuumaroundabsorptionlines,markedwheneveritwasuncertain,andeliminatedredundantandspuriousdetections;thecontinuumttingsometimesproducedprobablefalse-positivebroadabsorptionlines,andwemarkedasquestionablecasesthosewherethepresenceofabsorptionwasambiguous.TheblendedLy+Nv1239,1243emissionlinessometimespresentedproblemsforthecontinuum-ttingsoftware.Toavoidpotentialerrorsweexcludedtheseregions(v>60000kms1)fromtheanalysis.Inthecaseofnarrowabsorptionlineswherebothcomponentsofthedoubletareresolvedanddistinguishable,thesoftwarerequiresthecorrectdoubletseparationofv500kms1.Inthecaseofbroadabsorptionlines(whereindividuallinesofthedoubletarenotdistinguishable),weletthesoftwareselecteveryabsorptiontroughandveriedthattheCividenticationwascorrect,excludinganyambiguouscases.Forexample,thesometimespresentgapbetween 50

PAGE 51

Inoursamplewefound26BALsthatwerestrongenoughtomakecontinuumdeterminationandabsorptionmeasurementtoocomplicated{weaggedthemasBALsbutdidnotdeterminetheircontinuaortanyabsorptionlines. WethenteverydetectedCivabsorptionlinetomeasuretheirwidth(FWHM),radialvelocitycentroid(v)andREW.Gaussianlineprolesweresatisfactoryforourpurposessincetheyproducegoodmeasurementsofthoseparameters.Therefore,wedesignedIDLsoftwarethattaGaussianlineprolepair,usingaLevenberg-Marquardtleast-squarest,totheCivdoubletabsorptionlines.EachCivdoubletlinewasconstrainedtohavethesameFWHMandv,thecorrectCivdoubletseparation(v500kms1),anda1548.2:1550.77intensityratioconstrainedtotherange1:1to2:1withinthenoise.Inmostcases,theGaussianproleresultedinanexcellentt;wenotedcaseswheretheabsorptionproleshapedeviatedfromtheGaussiantsuchthatthemeasurementsofFWHMandREWwerenotcompletelyaccurate. 51

PAGE 52

Thisprocedureresultedinthemeasurementof5321Civabsorptionlines.Figure 3-1 showsthevelocitydistributionofallCivabsorption.Thelowerplotshowsthenumberofquasarscontributingtoeachvelocity,whichstartstodecreasebeyondv16000kms1.Thelargenumberofnarrowabsorptionlinesismostlyduetointerveningsystems,butthefractionofintrinsicNALsissignicant(e.g., Nestoretal. 2008 ).Thedecitofabsorptionatvelocities30000kms1and40000-50000kms1ispartlyduetothefewerspectraavailableatthosevelocityrangesandtheaforementionedpresenceofthe 52

PAGE 53

Figure3-1. Table 3-1 liststhemeasurementresultsforeveryCivabsorptionlinewithFWHM600kms1.Weperformedthisinitialcutowiththegoalofstudyingoutowsystemsandknowingthatnarroweroneshaveanuncertainorigin.Wecarriedoutastatistical 53

PAGE 54

Nestoretal. ( 2008 ).Table 3-1 includesmeasurementsofREW(forCiv1548andCiv1550doubletlines,calledREW1548andREW1550respectively),FWHM,vandzabsaswellasmagnituder,zem,BIandAI,introducedinChapter 1 andexplainedintheparagraphsbelow.Table 3-1 alsoincludesacolumnwithcommentsforcaseswhere1)theCivabsorptionidenticationisquestionable(\q"),2)thecorrectlocationofthecontinuumtmightbequestionablebuttheCivabsorptionisdenitelypresent(\c"),3)theGaussianttingresultsinapoort(\f")andthereforemeasurementsofFWHMandREWareapproximate,and4)deblendingcouldcausedouble-countingofabsorption(\b").Figure 3-2 includesexamplesofabsorptionmarkedwithsomeofthesecomments. WealsolookedforstrongLyabsorptionlinesatthesameredshiftastheCivlines,whichischaracteristicofDampedLyandLymanlimitsystems,atthesameredshiftofeveryCivabsorptionlineanalyzed.Ourpurposeismerelytoexcludethemfromtheanalysisofthischaptersincetheyarenotlikelytobepartofquasaroutows.The11caseswefoundwere,however,includedinTable 3-1 forfuturereference.Theyarelabeledas\d",whenastrongLyabsorptionlinewaspresent,or\d2"whentheLywaspresentbutnotverystrong,orzabs<2:15sowewerenotabletoinspectthecorrespondingLyabsorptionlineregion,butsomeotherlowionizationionsatthesamezabsasCivwerepresent(Mgii2796,2804andAlii1671,someoralloftheironlinesFeii1608,2344,2374,2383,2587,2600andsometimesSiii1527),whichposesomeriskofbeingaDampedLyorLymanlimitsystem.CaseswhereonlyMgiiorAliiiwerepresentbutnootherlowionizationionsweredetected,andthustheCivabsorptionisunlikelytobepartofaDampedLyorLymanlimitsystem,wereincludedintheanalysisandcommentedinTable 3-1 withthedesignations\Mgii"and/or\Aliii". Besidestheindividualabsorptioncharacteristics,Table 3-1 includesalsosomecharacteristicsoftheoverallquasarspectra:zem,BIandAI.ForzemweincludetheSDSSand Nestoretal. ( 2008 )values,whenavailable.WecomputedmeasurementsfortheBI 54

PAGE 55

Examplesofdierenttsandtheircomment-codesinTable 3-1 .`c'isacandidatewheretheContinuumtisdebatablebuttheCivabsorptionisreal.`f'isapoortthatmightresultinbadmeasurementsofFWHMandREW.`b'isanabsorptionlinethathasbeendeblendedandcouldbeconsideredpartofablendwithabsorptionintheproximity. andAIforeachquasar,usingthedenitionsincludedintheintroductionofthischapter.WeallowedforthreeconsecutiveinstancesofnoisespikesbeforeresettingthevalueofCto0.Whenthespectralvelocitycoveragedidnotreach25000(/29000)kms1,thenthevalueofBI(/AI)isalowerlimit,andthevalueofBI(/AI)isfollowedbya\*"inTable 3-1 .NotethatthezerovelocityinBIisdenedusingtheaveragewavelengthsoftheCivdoublet,whileinAIitisdenedusingthelongestwavelengthlineofthedoublet:1550.77A.WedonotincludeaformalerrortoeitherBIorAIbecausetheuncertaintiesaredominatedbythedeterminationofthecontinuum.ThemeasurementsofBIandAIdependtoalargeextentonthecontinuumplacement,andnormaldierencesareexpected 55

PAGE 56

Table 3-2 liststhe26BALsforwhichcontinuawerenotnormalizedandthereforewedidnotperformanyCivabsorptionlinedetectionandtting.TheywereclassiedasBALQSOswithBIlargerthan2000kms1. 56

PAGE 57

(mag)(Mgii)(kms1)(kms1)(kms1)(kms1)(A)(A) J000103.85-104630.3118.372.082.0707692.05208610722.0892.093 J001710.86+135556.5217.901.811.81001.82-11376430.3170.159q J002127.88+010420.2018.641.821.824549841.79417016984.0304.037 J002342.98+010243.0018.441.641.6454*497*1.57806319582.3771.194 J002710.06-094435.3718.262.072.0882216542.03492715274.8774.886 J003503.76+001641.7017.982.67....0272.57804217151.1140.560 J004613.54+010425.7418.032.15....414276371.971825422752.5442.548c,b J004613.54+010425.7418.032.15....414276372.0113739388810.64710.665c,b J004613.54+010425.7418.032.15....414276372.12302730139.9868.902c,f J005408.46-094638.1517.782.132.1297315122.06605926285.3585.367c J005419.99+002728.0118.312.52....1176152.321770619001.0131.017c J005419.99+002728.0118.312.52....1176152.41913228452.4531.235c J005951.67-084423.8818.222.142.15010112.1319548282.9452.884 J011605.97+133402.1718.322.012.0197228331.812073727244.4964.535 J011605.97+133402.1718.322.012.0197228331.99169918595.4415.450c J012231.91+133940.8418.243.06....466753562.891346039887.0567.395b J012231.91+133940.8418.243.06....466753562.921077820713.7583.764b J012231.91+133940.8418.243.06....466753562.9768207742.0951.294c J012231.91+133940.8418.243.06....466753562.9956747972.2462.250c J014809.65-001017.8417.952.162.17001.694808525291.1321.137c J020022.02-084512.1018.751.94....303637071.868693607214.4317.237c J020608.63-080224.4718.841.871.88001.543819444685.7655.945 J020845.54+002236.0717.081.891.90001.682377415500.6100.434 J021119.13-075722.5117.761.881.884013691.80862518762.4301.217c J021740.97-085447.8218.212.57....5031572.542439336012.5546.337c,f J021818.14-092153.4918.221.881.88137529651.771164021412.4851.245b J021818.14-092153.4918.221.881.88137529651.79942014491.5250.764b

PAGE 58

3-1 .Continued (mag)(Mgii)(kms1)(kms1)(kms1)(kms1)(A)(A) J021818.14-092153.4918.221.881.88137529651.84448131236.9667.107f J022036.27-081242.9018.182.00....179025111.891120830367.6887.701 J022844.09+000217.0818.222.72....146320572.60972538528.4114.213c J024221.87+004912.6818.202.062.0631322721.891741123003.4593.473 J024221.87+004912.6818.202.062.0631322722.04150110553.6863.692d2 J024304.69+000005.4918.412.002.0052511931.95485311433.4893.495 J024933.42-083454.4418.602.49....194382.41700716462.4481.227 J031504.51+001237.3818.421.781.77142071.7254648370.6330.634 J031828.91-001523.1518.091.981.99904871.633850722071.1511.008 J031828.91-001523.1518.091.981.99904871.851432623532.8911.453 J032118.21-010539.9218.382.41....166125322.31946069006.9406.952c J032701.44-002207.1518.932.30....2598712.181113529143.9922.008 J033623.77-064947.9917.781.611.610*583*1.59263228012.1462.182 J073300.91+315823.9918.863.02....305864252.7123948813412.6206.356c,b J073300.91+315823.9918.863.02....305864252.78183719381.1941.196c,b J073300.91+315823.9918.863.02....305864252.89984124557.2013.607d J073300.91+315823.9918.863.02....305864252.95537916936.0553.033 J073346.05+421848.3917.821.711.710944*1.7136916184.8644.873c,f J074014.81+331625.8718.211.87....375044441.711705550566.9116.924b J074014.81+331625.8718.211.87....375044441.741412514841.9541.958b J074014.81+331625.8718.211.87....375044441.761096623034.6682.338b Commentcodes:`*'lowerlimitofBIorAIvaluebecausespectralcoverageendsbefore25000or29000kms1,respectively,`q'questionablecase,`c'continuum,`f'themeasurementsofFWHMandREW1548andREW1550mightbeslightlyo,`b'theabsorptionlinecouldbelongtoablendofabsorptionlines,`d'DampedLysystem,`d2'possibleDampedLysystem.

PAGE 59

ListofBALsfromSDSSthatwerenott Quasarrzem(mag) J004527.69+143816.1917.471.99J020006.31-003709.9118.562.14J031856.62-060037.6717.831.93J081213.94+431715.9918.361.74J083817.01+295526.5618.242.04J093552.98+495314.3117.011.93J100711.82+053208.9216.432.14J101740.32+401722.3218.542.17J102850.32+511053.1118.102.42J114340.96+520303.3517.621.82J120653.40+492919.2918.171.84J122410.61+101031.1218.591.91J123659.93+460018.2718.291.67J125941.54+633239.3418.211.98J131927.57+445656.5517.882.98J133428.06-012349.0117.621.88J135246.37+423923.5917.882.04J140421.16+633540.6018.072.22J141354.36+044653.6117.971.89J145432.62-015641.2217.911.71J150332.18+364118.0518.193.26J151636.78+002940.5117.872.25J164152.30+305851.7218.412.00J164508.65+442440.3117.851.87J172341.09+555340.5718.512.11J234711.46-103742.4317.531.80 3-3 showsexamplesofmini-BALswithawiderangeofFWHMsandvelocitiesinnon-BALQSOs(BI=0)andFigure 3-4 displaysexamplesofmini-BALsinBALQSOs.Figure 3-1 illustratedthatthereisacontinuousdistributionofabsorptionlinesinwidthsandvelocitiesinthestudiedsampleofquasars.Thegoalofthisworkisthestudyofabsorbersthatarepartofquasaroutowsand,todoso,itisnecessarytoseparatetheoutowsfrominterveningsystems.AsmentionedinChapter 1 ,NALscanhaveseveralorigins:outowsorinterveningabsorption,andunfortunately,interveningandoutowingNALscanpresentsimilarappearancesandnosubstantialdierencesappearbetweentheirdistributions( Misawaetal. 2007a ),notbeingabletobedistinguishedwithonetimeobservationattheSDSSresolution.Onlyhighresolution( Misawaetal. 2007a ),variability 59

PAGE 60

Examplesofmini-BALs(underlinedbyhorizontallinestoguidetheeye)inquasarswithBI=0.Thespectraareshiftedtotheirrestframewavelengths.Prominentbroademissionlinesarelabeledaccrossthetopintheupperpanels.ValuesofFWHMandv(inkms1)areincludedattheleftbottomcornerofeverypanel.Asseen,mini-BALsshowabroadrangeofvelocitiesandwidths. 60

PAGE 61

Examplesofmini-BALs(underlinedbyhorizontallinestoguidetheeye)inquasarswithBI>0kms1(leftbottomcornerofeachplot).ValuesofFWHMandv(inkms1)refertotheonlymini-BALinthespectrumortotheonewiththehighestv.Notethatthemini-BALscanbefoundbythemselvesorincombinationwithBALs,AALs,orothermini-BALs.SeeFigure 3-3 61

PAGE 62

Narayananetal. 2004 )orstatisticalapproaches( Richardsetal. 1999 ; Richardsetal. 2001 ; Nestoretal. 2008 )canseparatethem.Duetothislimitation,welimitourstudyofoutowstomini-BALsandBALs,notbeingabletoincludeoutowingNALs.However,gasfromclustersofgalaxiescanproducemultipleNALs,which,attheSDSSresolution,couldbeconfusedforamini-BAL.Therefore,weneedaworkingdenitionformini-BALsthatexcludesthisinterveningabsorptionaswell.InthisSectionwesetanarbitrarythresholdasaworkingdenitionformini-BALs,butinx weshowhowdierentvalueswouldnotaectanyoftheimportantconclusionsofthisstudy. WeplaceaconservativelowerlimitofFWHM>700kms1fortheworkingdenitionofmini-BALs.Studiesofrichclustersofgalaxies(e.g., Girardietal. 1998 forgalaxiesatredshiftz<0:5, Venemansetal. 2007 atlargerredshifts),showvelocitydispersionsupto1000-1200kms1forthemostmassiveclusters(e.g.,ComaandComa-likeclusters).However,clusteringofCivinterveningnarrowsystemsoccursuptovelocitiesof600kms1intherestframeoftheabsorption(Figure11in Sargentetal. 1988 ),presentingasharpedgeatthatvelocityandremainingatbeyondthat.Also,thesesystemswouldbeweak,sinceinterveningabsorptionlinesareverynarrow.AlthoughNALstudiessuchas Vestergaard ( 2003 )setrestrictionsonREWtodistinguishinterveningfromintrinsicsystems,wedecidednottoplaceanycutoinREWbecausethatwilleliminatesomepossiblygoodcandidates.Figure 3-5 showsthedistribution,intheFWHM{REWspace,ofsomeoftheCivabsorptionlineswemeasured.AnyREWtypicalcut-osforNALs(REW>0.3,0.5or1A)removeabsorptionlineswithFWHM1000-2000kms1thatareverylikelytobeoutows.Therefore,weexpectthatsomeinterveningsystemsmightbecontaminatingoursamplebut,duetothereasonsmentionedabove,theeectshouldbeminimal. DampedLyandLymanlimitsystemsshow,whenpresent,Civnarrowproles(FWHM<400kms1Prochaska 1999 ; Wolfe&Prochaska 2000 )andthecaseswefoundwithFWHM600kms1thatmightbelongtothesecategories(markedas\d" 62

PAGE 63

3-1 )areverylikelypartofblendsofnarrowlineswherewecouldnotdistinguishindividualcomponents.Notethat,aspreviouslymentioned,wedidnotincludethemintheanalysis. DistributionofFWHMvsREW1548ofthepartoftheFWHM-REWspaceoftheCivabsorptionlinesmeasured.ThereisapartialcorrelationbetweenFWHMandREW,butanylowerlimitplacedonREW,toeliminatepossibleinterveningabsorption,wouldexcludebroadsystemsthatareverylikelytobeejectedmaterialfromthequasar.Therefore,nolowerlimitforREWwasset. Figure 3-6 showsthedistributionofabsorptionlineswithFWHM>700kms1in500kms1intervals.Theverticallinesinthecenterofeverybarrepresentthe1uncertaintyfromPoissonstatisticsforthenumberofabsorptionlinesatthatparticularFWHMrange. WealsochoseanupperlimitforFWHMtoseparateBALsfrommini-BALswhenstudyingtheirfrequency.BALsaremostcommonlyparameterizedbasedontheirBalnicityIndex(BIWeymannetal. 1991 ,whichwasintroducedinthisthesisinChapter 1 ),andnotonFWHM.However,aswedescribedthere,thisdenitioncannotbecomputedbeyondv>25000kms1andthusitcannotquantifysystemsinthatv

PAGE 64

DistributioninFWHMoftheCivabsorptionlinesmeasuredwithFWHM700kms1inintervalsof500kms1.Errorsareshownasverticallinesinthecenterofeverybarandrepresentthe1uncertaintyfromPoissonstatisticsforthenumberofabsorptionlinesateachparticularFWHMrange. regionrelevanttoourstudy.Weselectedanupperlimitof3000kms1fortheFWHMofmini-BALsandanalyzedthembasedonBIinthefollowingSection. Insummary,weuseaworkingdenitionformini-BALsasabsorptionfeatureswitha700
PAGE 65

3-1 Thepercentagesweincludeinthisstudyareobservedrawfractionsofquasarsandnotthetruefractionsofquasars.Oursampleofquasarsisnotcompletebecauseweselectedonlythebrightestones.AmongthebrightestSDSSquasars,thefractionsofquasarswepresentarelikelyclosetotruefractions.SDSSquasarsareselectedusingani-bandmagnitudelimit,whichdoesnotpresentaproblemforquasarswithzem<3.5,whereallthequasarsinoursamplelie.ThefractionsofBALQSOswouldbethemostaectedsincetheabsorptionaltersthedeterminationof\true"magnitudes. Reichardetal. ( 2003 )presentedananalysisofthecorrectionsthatareapplicableinthecaseofobtainingthetruefractionofBALQSOs.Correctionsforcolor-dependentselectioneectsasafunctionofredshiftmodiedtheirfractionofHighIonizationBALQSOs(HiBALQSOs)fromanuncorrected14.0%1.0%toadustreddeningcorrected13.4%1.2%anddustreddeningandextinctioncorrected15.9%1.4%.Notethattheiranalysisonthedustextinctionisanestimation.Allthesecorrectionsarelikelytobesimilarorsmallerforthefractionsofmini-BALs. WeestimatethatthesampleofCivabsorptionhasadetectionthresholdofREW14580.2AforsystemswithFWHM500kms1,REW14580.3AforsystemswithFWHM900kms1andREW14580.4AforsystemswithFWHM1200kms1,althoughdetectionthresholddependsontheS/Nofthespectruminquestion.Mostofthecandidatesclosetothoselimitsaremarkedasquestionable(\q")inTable 3-1 65

PAGE 66

Halletal. ( 2002 )andmostrecently Trumpetal. ( 2006 )havecomputedAI,amoreinclusivedenitionoftheBI(seeChapter 1 ),overSDSSquasarspectra,howeveritisanintegralmeasurementthatcannotcompletelycharacterizetheabsorption. InFigures 3-3 and 3-4 weshowedthatsometimestherearemorethanonemini-BALperquasar.Consequently,wepresenttheresultsof(a)thenumberofmini-BALsperquasar,whichallowscountingseveralmini-BALsinonequasarspectrum(Figures 3-7 and 3-8 )and(b)thefractionofquasarswithatleastonemini-BALatavelocity
PAGE 67

Figure3-7. Numberofmini-BALs(700
PAGE 68

1 )startscountingwhenabsorptiontroughsbecomewiderthan2000kms1). Figure3-8. Numberofmini-BALswith600
PAGE 69

Numberx100ofmini-BALsperquasar. velocityrange(km/s)sampleBI700-3000600-3000900-3000700-2000 -5000-60000A(1983)all15.50.816.40.914.20.810.90.7\A2(1888)<100010.50.711.80.89.50.77.50.6\A2(1783)05.40.56.40.64.80.54.00.5 -5000-25000A(1983)all12.90.813.60.811.80.79.30.7"A2(1888)<10008.20.79.40.77.40.66.20.6"A2(1783)03.40.44.20.52.80.42.90.4 25000-60000A(1983)all2.50.42.50.42.20.31.40.3"A2(1888)<10002.10.32.20.42.00.31.20.3"A2(1783)01.80.31.90.31.80.31.00.2 thenumberofsystemsinthatvinterval.Forexample,Table 3-3 includesthatthereare15.50.8mini-BALsatanyvperhundredsamplequasars. Figure 3-9 showsthefractionofquasarswithatleastonemini-BAL.Itincludesa)thefractionofquasarsthathaveatleastonemini-BALatvelocity\
PAGE 70

Fractionsofquasarswithatleastonemini-BALoutowingatvelocity"
PAGE 71

. 1 ).Ourstudyndsanobservedfractionof10.7%0.7%BALQSOsoutofthequasarsinsampleB,whereas5.7%0.5%haveBI>1000,and4.2%0.4%haveBI>2000.Weestimatethatallofthe26unanalyzedBALQSOshaveBI>2000.PreviousstudiesalsobasedonSDSSsamplesandBImeasurementsndsimilarpercentages. Reichardetal. ( 2003 )foundanobservedfractionof14.0%1.0%BALQSOsoutofasampleof3814quasarswith1.7zem4.2. Trumpetal. ( 2006 ),improvingthecontinuumttingtechniqueandenlargingthesampleto16883quasarswith1.7zem4.38,reportedaBALQSOobservedfractionof10.4%0.2%.Besidesthedierencesinredshiftcoveragewithoursample,bothworksrelyontheuseoftemplatestoplacethecontinuum,whilewetpseudo-continuawithasplinefunctionfortheunderlyingcontinuumandGaussiansforthebroademissionlines.Nonetheless,thevalueobtainedby Trumpetal. ( 2006 )andourscoincidewithintheerror. AsFigures 3-3 3-4 and 3-7 3-9 illustrate,mini-BALsarepresentinbothBALQSOsandnon-BALQSOs.InFigure 3-7 weshowedthenumberofmini-BALsinallquasars,quasarswithBI<1000andquasarswithBI=0.Becausewendmorethanonemini-BALinsomequasarspectrawealsopresentseparatelythefractionofquasarswith,atleast,amini-BALatvelocity
PAGE 72

derivedfromsampleA2,exceptthepercentageofmini-BALsinallquasars(anyBI),thatisderivedfromsampleA.FortheBALs,allofthesepercentagesarederivedfromsampleB2sinceweneedgoodvaluesofBI.Figure 3-10 showsthepercentageofquasarswithamini-BALsplitintwovelocityranges:atspeedsv<25000kms1andv>25000kms1.Noteagainthat,infaircomparison,theBIdenitiononlyintegratesabsorptionwithvelocitiesupto25000kms1andsowehaveseparatedthemini-BALsintothosewithlowerandhighervelocities. Ourworkingdenitionofmini-BALsdoesnotincludeabsorptionlineswithFWHM>3000kms1becauseatv<25000kms1theyhighlycontributetothevalueofBIandareconsideredBALsiftheabsorptiontroughisdeepenough.However,theBIonly 72

PAGE 73

PercentagesofabsorptionlineswithFWHM>3000kms1perquasarper5000kms1bininvelocityspace.SeeFig. 3-7 forinformationonwhatthedierentsymbolsrepresent.Thearrowsindicatethatthesevaluesarelowerlimitssincewearenotincludingthe26BALQSOsthatwedidnotanalyze. coversupto25000kms1andthusabsorptionlineswithFWHM>3000kms1athighervelocitiesbelongtoan`absorptionlimbo':theydonotcounttowardsBIandarenotincludedinthemini-BALworkingdenition.Figure 3-11 showsthedistributionwithvelocityofabsorptionlineswithFWHM>3000kms1perquasar.Thereare0.80.2%absorptionlineswithFWHM>3000kms1pernon-BALQSOoutowingatv>25000kms1.WeusesampleAforthe`all'casesandsampleA2forthecaseswithBI<1000andBI=0;notethatthenumberofabsorptionlinesinallquasarsdonotincludethenon-measuredBALQSOs,whichissymbolizedbythearrowsinthatresult. Mini-BALsarenotjustpartofBALabsorptiontroughs,andtheyrepresentapartoftheFWHM{velocityspaceofquasaroutowsthathasbarelybeenstudiedbefore.Thereare0.1550.008mini-BALsatanyvelocityperquasarand0.0540.005mini-BALsoutowingatanyvelocitypernonBALQSO.Wendthatthedierencebetweenthenumberofmini-BALsperquasarinallquasarsversusinnon-BALQSOsislargerat 73

PAGE 74

1 ).Figures 3-3 and 3-4 showseveralexamplesofquasarspectrawherebothmini-BALsandAALsarepresent. WenowspecifywhatwewouldconsiderAALQSOs.Firstofall,weexcludeBALQSOsfromconsideration.Thenon-BALQSOs(1783quasarswithBI=0)areselectedfromsampleA2becauseanaccuratelimitonBIisnecessary.Associatedabsorptionsystemsareusuallydenedasthosethathavevelocitiesupto5000kms1relativetothesystemicredshift( Foltzetal. 1986 );weusethisvalueasanupperlimitfortheirvelocity.BecausethestatisticalerrorinthedeterminationofthezerovelocityisbasedontheSDSSsystemicredshift,weincludesystemsdownto-1000kms1.Following Vestergaard ( 2003 ), Nestoretal. ( 2008 )and Foxetal. ( 2008 ),weexcludeweakAALs 74

PAGE 75

OfthequasarsinsampleA2thatarenon-BALQSOs(1783),26.2%1.2%areAALQSOssetbytheabovecriteria:non-BALQSOwithatleastoneabsorptionlineat-10005000kms1inAALQSOsandnon-AALQSOsindierentvelocitybins,inthesamefashionasexplainedforFigure 3-7 inx .ItincludestheresultsforbothvelocitycutostoselectAALQSOs:-100040000kms1inAALQSOsispossiblyreal. InTable 3-5 weincludethenumberofAALQSOsandnon-AALQSOsbasedonthetwosetsofconstraintsdescribedaboveandthenumberofthemthatincludesamini-BAL 75

PAGE 76

Numberofmini-BALsoutowingatv>5000kms1perAALQSO(solidblackline/opensquare)andnon-AALQSO(dashedredline/lleddiamond)whereAALQSOsareselectedasnon-BALQSOsthatincludeabsorptionlineswithREW0.3andleftpanel:velocitiesfrom-1000to5000kms1,andrightpanel:velocitiesfrom1800to4400kms1. outowingatv>5000kms1,asshowninFigure 3-12 .Weincludevaluesforseveralvelocityranges.Theerrorsare1Poissonstatistics. Table3-5. NumbersofAALQSOsandnon-AALQSOs(bothBI=0)thatincludeamini-BAL. velocityrange(km/s)sample%ofquasarswithMini-BALs -10005000kms1and21ofthemareinAALQSOs.Thefractionofquasarswithmini-BALsthatarealsoAALQSOs(32%7%)isslightlylargerthanthepercentageofAALQSOsinthetotalsampleofnon-BALQSOs(26.0%1.2%),butthisdierenceisnotsignicantbecauseitlieswithintheerrors. AsFigure 3-12 andTable 3-5 show,althoughthetotalpercentagesofmini-BALsinAALQSOsandinnon-AALQSOsaresimilar(withintheerrors)whencomputedoverthewholevelocityspace,theirvelocitydistributionsdier.Inparticular,thereare 76

PAGE 77

(343quasars,subsetofsampleA2).Also,outofsampleof271quasarsthatpresentedabsorptionwithFWHM>500kms1,wecreatedanothersubsetthatincludesonlyquasarswithmini-BALs(175quasars).WedidnotperformcontinuumttingacrosstheMgiiwavelengths.AssessingthepresenceofMgiiabsorptionatthesamevelocitiesasCivbecameadiculttaskduetothepresenceofFeiilinesintheshortwardoftheMgiiemissionline,whichmakesitdiculttodecidewhetherthereisabsorptionortherearetwoemissionlinessidebyside,producingafalseabsorptioneect.Notethatwearenotincludingeitherthe\d"or\d2"inTable 3-1 sincetheyareDampedLysystemsorlikelytobethem,respectively. Figure 3-13 showssomeexamplesofcaseswherewendMgiiabsorptionatthesamevasCiv.AlloftheMgiisystemswendinthissearchareeither1)BALs,wheretheMgiiwasbroadbutnarrowerandweakerthanCiv,or2)associatedlines,whereinmostcasestheMgiiabsorptionappearedstrong.InthecaseswhereaCivBALisaccompaniedbyMgii,thisabsorberwassometimesoutowingatlowervelocitiesthantheCivabsorber,whichhasbeenpreviouslyreported(i.e., Weymannetal. 1991 ; Voitetal. 1993 ). WedonotndanyMgiiabsorptionaccompanyingCivmini-BALsinthe175quasarspectraanalyzed.SincewehavenotnormalizedthecontinuumaroundtheMgiiemission 77

PAGE 78

ExamplesofMgii(lowerpanels)outowingwithCiv(upperpanels).VerticaldashedlinesaresituatedapproximatelywheretheleftsideoftheMgiidoubletwouldfalltoguidetheeye.Leftpanels:CivBALwithitscorrespondingMgiimini-BAL.BecauseMgiiabsorptioninoutowsseemtobeweakerthantheirrelativeCivones,onlyinstrongbroadBALsweareabletodetectobviousMgiimini-BALsinthesameoutow.Rightpanels:3dierentsystems(fromlefttoright):a)aCivmini-BALwithnocorrespondentMgiib)averylikelyDampedLsystemwithstrongMgIIabsorption(amongotherlowionizationlines)andweakCiv,andc)strongassociatedCivabsorptionwithveryweakMgii. 78

PAGE 79

3-13 ),whichisalsoreportedin Voitetal. ( 1993 ).Thistendencysuggeststhat,ifpresent,theMgiiabsorptionatthesamevasCivmini-BALsmightbeevenweakeranddiculttodetectwithoutapropercontinuumtting. Wendthat9.0%1.5%ofCivAALswithzem<2.25alsopresentMgii(37outof410).Weobtainedapproximatelythesamepercentage(9%2%,15outof160)selectingonlythosequasarswith1800
PAGE 80

Sramek&Weedman 1980 )thatisarelativemeasurementoftheradiouxat5Ghzversustheopticaluxat2500A: logR=logf(5GHz)logf(2500A):(3{1) Theradiouxat5GHzcanbedenedintermsoftheFIRSTpeakuxS(inmJy/beam),thefrequency(1.4GHz),theradiospectralsloperad,whichweassumedtobe0.3foreveryquasarfollowing Sramek&Weedman ( 1980 ),andtheSDSSsystemicredshiftzem.Weusetheformulaintroducedin Sramek&Weedman ( 1980 ): logf(5GHz)=29:0+log(S)+radlog[5=](1+rad)log(1+zem):(3{2) Inordertodenetheopticaluxat2500A,wedonotconsiderappropriatetheuseofthelter-Bmagnitude(centeredat4361A)foroursample,sincethemajorityofthequasarsinoursamplehavearedshiftzem2.ThisredshiftplacestheCivemissionlineat4650A,contaminatingtheB-magnitudevaluewithabsorptionandemission.Insteadwederivedlogf(2500A)fromtheSDSSr-magnitudes(centeredat6122A): logf(2500A)=22:830:4rc;(3{3) wherercistherSDSSmagnitudecorrectedfromGalacticextinction Stockeetal. ( 1992 )dividedradio-loudandradio-quietQSOsatzem2ashavinglogRlargerorsmallerthanunity,respectively,andweusethesamecriteria.Figure 3-14 showsthedistributionofradiosourcesamongtheabsorberswithFWHM>500kms1 2

PAGE 81

FWHM{velocity{(radioproperties)spaceofCivabsorptionlineswith500
PAGE 82

Figure 3-15 showsradio-loudness(logR)versusquasarBalnicityIndexforthequasarsinthesamesampleasthoseinFigure 3-14 .SymbolshavesamemeaningasinFigure 3-14 exceptforthearrowsthatrepresentupperlimitsforsourcesthatFIRSTcoveredbutwerenotdetected(thetopofthearrowisplacedattheupperlimitofthelogRvalue,derivedfromaS=0.9mJy/beam,alittlebitbelowtheFIRSTdetectionlimitof1mJy).InspectionofFigure 3-15 suggestsgapsofradioloudnessforcertainBalnicityIndexes:noneofthequasarswithBIbetween200and1400areradio-loud(0outof58),while12%(6outof50)ofthequasarswith0
PAGE 83

RadioloudnessversusBalnicityIndexofthequasarswithabsorptioninFigure 3-14 .FIRSTdetectionsareshownascircles.Clearcirclesrepresentabsorptioninradio-loudquasarsandlledcirclesinradio-quietquasars.Theradiusofthecirclesisproportionaltop inoutowfeaturesthatareunderrepresentedinpreviouswork,namely,mini-BALsandhighvelocitysystemswithv>25000kms1.Allthisinformationcanbesupplementedbypreviousresultsbasedonintegratedabsorptionmeasurements,suchasBIandAI. Ourquasarsampleselectsthebrightestobjects,andthereforeitisnotcomplete.Wehaveselectedseveralsubsamplestomaximizethestatisticalresultsofthedierentstudieswehavecarriedout(seex ).Theresultswederiveareobservedrawfractionsofquasarsandnotthetruefractionsofquasars,becausewehavenotperformeddustreddeningorextinctioncorrections. Reichardetal. ( 2003 )analyzestheseeectsforasampleofBALQSOs,whichareexpectedtobethemostaectedbyabsorptionextinction. 83

PAGE 84

Wepresent,forthersttime,thenumberofmini-BALsexpectedperquasarspectrum.Wehaveattemptedtoexcludeinterveningabsorptionthat,attheSDSSresolution,couldappearsimilartomini-BALs.Todoso,weintroduceaworkingdenitionthatselectsmini-BALsasabsorptionlineswithFWHMslargerthan700kms1.ByusingaFWHMcutoof700-3000kms1,wendthatthereare15.50.8mini-BALsperhundredquasars.WehavealsoreportedthefrequencyofabsorptionwithotherpossibleFWHMselections,whichresultedinsimilarresults.Wehavepresentedtheirdistributioninvelocity(Fig. 3-7 and 3-8 )inallquasars,non-BALQSOsandquasarswithBI<1000kms1.Becausesomequasarspectraincludemorethanonemini-BAL,andinordertoavoiddouble-counting,wealsohavecomputedthefractionofquasarswithatleastonemini-BALatanyvelocity,ndingthat11.4%0.9%ofquasarshaveatleastonemini-BALatanyvelocity. Themini-BALphenomenonisstronglyrelatedtoBALQSOs.Approximately7%ofthequasarsinsampleA2areBALQSOsthatalsoincludeamini-BALatv<25000kms1.Ourquasarsampleincludes10.7%0.7%BALQSOs,whicharedenedtohaveBI>0.OtherstudiesbasedalsoonSDSSquasarsamplesndsimilarpercentages: Trumpetal. ( 2006 )nds10.4%0.2%BALQSOs,and Reichardetal. ( 2003 )reportsarawfractionof14.0%1.0%.Previousstudiesinothersamplesofopticallyselectedquasarsalsoreportedfractionssimilartothesevalues;i.e., Hewett&Foltz ( 2003 )reportedanon-correctedfractionof15%3%BALQSOsintheLargeBrightQuasarSurvey(LBQS),howeverthisresultisnotdirectlycomparabletoourssincetheytakeintoaccount,notonlyBI,butalsotheprobabilityofaquasarofbeingaBALQSO(P).UsingtheirnumberofBALQSOswithintherange1.5zem3.0andmagnitudeinterval16.50-18.85,theyobtaina 84

PAGE 85

Mini-BALsarealsopartoftworegionsoftheoutowparameterspacethathavebeensparselysurveyedbefore:non-BALQSOsandhighvelocitysystems.Wehavefoundthatmini-BALsarepresent,atanyvelocity,in5.1%0.7%ofnon-BALQSOs.Ifweselectonlythosethatarefoundatv<25000kms1,westillndmini-BALsin3.4%0.4%ofnon-BALQSOs.Atlargervelocities(25000kms13000kms1.Figure 3-11 showsthedistributioninvelocityoftheseabsorptionlines,whichatv>25000kms1arepresentin0.8%0.2%ofnon-BALQSOs.Mini-BALsarethereforemorecommonatveryhighvelocitiesthanwiderabsorptionlines,butbothmini-BALsandbroaderabsorptionseemtoreachthemaximumterminalvelocitiesofthisstudy(0.2c).Excludingthosethatincludealsomini-BALsintheirspectra,thereare0.4%0.2%non-BALQSOswiththesebroadabsorbers,andtogetherwiththefractionofmini-BALs,weobtainafractionof5.5%non-BALQSOswithoutows.ThisfractioncanbeaddedtothefractionofBALQSOsresultingina 85

PAGE 86

ThefrequencyofAALQSOsinoursampleis26.2%1.2%ofthenon-BALQSOs.In Nestoretal. ( 2008 )wereportedtheAALQSOfrequencywhenincludingonlytheabsorptionlineswithFWHM<600kms1(25%).Thesefractionsarecomparabletoresultsofotherquasarstudiesatsimilarredshifts( Vestergaard 2003 -27%5%, Misawaetal. 2007a -23%),andevenwithquasarsatlowerredshifts( Gangulyetal. 2001 ,found25%6%from59quasarsatzem<1),althoughthesecomparisonsbetweendierentsamplesarenon-trivialbecauseoftheheterogenousdenitionsofwhatAALsare.OuranalysisofAALswasderivedfromthesampleofnon-BALQSOs,andisthusindependentofthefrequencyofBALs.Wehavenotfoundasolidrelationshipbetweenthepresenceofmini-BALsineitherAALQSOsorinnon-AALQSOs.Mini-BALsoutowingatv>5000kms1appearin5%ofAALQSOs,whereastheyarepresentin3%ofnon-AALQSOs.However,thedistributioninvelocityofthemini-BALsinAALQSOsseemstobemoreconcentratedthaninnon-AALQSOs,aswedonotndmini-BALswithv>40000kms1inAALQSOs,althoughmini-BALsoccuratthosevelocitiesinnon-AALQSOs.ThefractionofquasarswithAALsthathavenotbeenincludedinthepreviousfractions(i.e.,thosewhichnotincludeamini-BALorBALatanyvelocity)is25%.AlthoughitisknownthatmostAALsarepartofthehostgalaxy-AGNenvironment,itisunclearwhetherAALsareejectedmaterialoralreadypartofthehostgalaxy.In Nestoretal. ( 2008 )wereportedanexcessofnarrowabsorptionlinesblue-shiftedwithrespecttothequasarsystemicvelocity,andthereforelikelytobeintrinsictothequasaroutowphenomenon. Wiseetal. ( 2004 )reportedthat20%ofasampleof19CivAALsareintrinsictothequasarcentralenginebasedontime-variabilitystudiesand Misawaetal. ( 2007a )obtainedalargerfraction(33%)basedonpartialcoverageofasampleof37quasars.AssumingthatalltheAALQSOsinourstudyincludeoutowingAALs,wecanaddittotheoutowstally,obtaining41%quasarswithoutows. 86

PAGE 87

Richardsetal. ( 1999 )and Richardsetal. ( 2001 )foundlargefractions(36%)ofnon-interveningnarrowabsorptionlinesatv5000-55000kms1basedoncorrelationswithquasarintrinsicradiopropertiesoftheirsample.Bystudyinghigh-velocityNALsonaone-on-onebasis, Misawaetal. ( 2007a )reportedthat10-17%ofnon-associatedCivNALsystemswithv5000-70000kms1showpartialcoverage,characteristicofnon-interveningabsorption.Notethatbothpercentagesarenotinconictsincepartialcoverageisasignaturebutnotarequirementofquasaroutowingnature,andthereforetheresultreportedby Misawaetal. ( 2007a )mightbeincludedinthe Richardsetal. ( 1999 )percentage.Asnoticedin Ganguly&Brotherton ( 2008 ),thisisnotthefractionofquasarshostingtheseoutowsbutthefractionofintrinsicsystemsinthesample.Thetotalfractionofquasarswithoutows,obtainedfromaddingthepercentagesabove,is41-77%,whichweexpressasarangebecauseofthepossibilitythatquasarsinthestudyreportedin Richardsetal. ( 1999 )showmorethanoneCivsystemandalsothepossibilityofoverlappingwithsomeofothertheclasseswedescribedabove. Ganguly&Brotherton ( 2008 )presentedareviewofrecentsurveysofquasarabsorptionlines,andreachedafractionof57%-80%quasarswithoutows.TheyusedacorrectedfractionofquasarswithBALs( Hewett&Foltz 2003 )anddidnotconsiderapossibletotaloverlapbetweenAALQSOsandquasarswithmini-BALsorhighvelocityabsorbers. OuranalysisincludesalsothestudyoflowionizationlinesatthesamezabsastheCivabsorption. Weymannetal. ( 1991 )observedthat10%ofCivBALQSOsareaccompaniedby\obviousMgiiand/orAliiiabsorptiontrough",whichweredeterminedbyvisualinspectionofthespectra.UsinganadaptedversionofBIfortheMgiiemissionlineregion, Trumpetal. ( 2006 )reportedthat0.55%0.04%oftheSDSSquasarsat0.5zem2.15showMgiiabsorption.SelectingonlythoseclassiedasCivBALQSOswhereMgiiiswithinthespectralcoverage,theyobtainthat7.4%0.5%ofBALQSOspresentMgiiabsorption.WehavestudiedthepresenceofMgiibyvisualinspection 87

PAGE 88

Voitetal. 1993 ). Wealsostudytheradiopropertiesofallthequasarsinoursample(sampleB),andndthat8.9%0.7%oftheonesdetectedbyFIRSTareradio-loud,asdenedtohavelogR1.Quasarswithmini-BALsandBALsshowaslightlysmallerfractionofradio-loudsources(7.4%1.8%and6.8%1.8%,respectively),whichmaynotbeasignicantdierence.Whereaswedonotndanycorrelationsbetweenquasarradio-loudnessandtheFWHMorvoftheabsorption,orwiththeBIofthequasars,wereportthatthestrongestradio-sourcesinoursample(logR>2)areallquasarswithassociatedabsorptionorlowvabsorption(v<7000kms1).Thisresultagreeswith Richardsetal. ( 2001 ),whereitwasreportedthatthepopulationofquasarswithAALstendtoshowlargervaluesofRV(denedsimilarlytoRalthoughusing20cmmeasurementsinsteadof5GHz). Insummary,withthegoalofcomputingthefractionofquasarswithoutows,wehavereachedatotalfractionof16%quasarswithoutowswithFWHM>700kms1,whichistheresultofaddingthefractionofBALQSOs(10.7%0.7%),non-BALQSOswithmini-BALs(5.10.7%),andnon-BALQSOswithoutmini-BALsandwithabsorption 88

PAGE 89

ThereisanalternativeapproachtothecalculationofthefractionofquasarswithoutowsthatconsistsontheuseoftheAImeasurement,whichwealsocomputedforeveryquasar(seeTable 3-1 ).Thereisoneconsiderationtobecarefulwith:becausethecomputationofAIstartsatv=0,itdoesnotexcludeclustersofAALs,DampedLyandsimilarsystemsinthehostgalaxy,andthusitmayrepresentjustanupperlimitoftheoutowcount. Trumpetal. ( 2006 ),usingthisparameter,foundarawfractionof26%quasarswithAI>0.Wendthat28%ofthequasarsinourstudyhaveAI>0.Mini-BALs,BALsandAALsarepresentin23%ofquasarswithAI=0(1393quasars),resultingin<51{87%oftotalquasarspresentingCivoutows.Therangerepresentswithoutandwithnarrowabsorbersathighvelocities(36%Richardsetal. 1999 ),anditisanupperlimitbecausewearenotawareoftheAIofthequasarsinthesampleof Richardsetal. ( 1999 )and,again,thefractionin Richardsetal. ( 1999 )indicatesthenumberofabsorptionlinesthatmightbeintrinsic,notthefractionofquasarswiththisabsorption.However,thedenitionofAI(seex )doesnotincludemostofthenarrowabsorption,sinceaC0of1000waschosentoavoidproblemswiththecontinuumtting,noiseandvariableresolution.ByusingaC0=500,wendthat54%quasarshaveAI>0,resultinginatotalof<70-100%ofquasarswithoutows.Ifweusethelowerlimitforourmini-BALworkingdenitionandimposeC0tobe700,wendthat42%quasarshaveAI>0,obtainingatotalof<61-97%quasarswithoutows.Wewouldliketonoteagainthatwearepresentingobservedfractionsofquasarswithoutowsandthattruefractionsofquasaroutowsareexpectedtobelarger( Reichardetal. 2003 ; Hewett&Foltz 2003 ).Moreworkneedstobedonetondthesefractions. 89

PAGE 90

Crenshawetal. 2003 ).Assumingthatallquasarsejectoutowsandthattheobserveddierencesintheirspectraareonlyviewpointdependent,asunicationtheoriesstate,thefractionsofquasarswitheachtypeofoutowareproportionaltotheopeninganglesoftheoutowsasseenfromthecentralcontinuumsource.Wehavefoundthat41-77%oftheobservedquasarsinoursampleincludeabsorptionintheirspectrathatisverylikelyduetoquasaroutows.ResolutionoftheSDSSspectradoesnotallowforaccuratemeasurementsofthecoveringfactorinthelineofsightandthereforeitisnotpossibletoderiveaglobalcoveringfactorasdescribedin Crenshawetal. ( 2003 ).However,wecancomparetherelativefractionsofdierentabsorbertypes.NALsseemtorepresentthemorefrequentclassofabsorptionlinesinquasars(36%atv>5000kms1;26%atv<5000kms1).QuasarspresentBALsandmini-BALswithsimilarfrequencies(10%forboth),andthereisanoverlapof7%ofBALQSOsthatalsopresentmini-BALsatv<25000kms1.FurtherstudyneedstobecarriedouttounderstandtherelationshipbetweenNALsandmini-BALs. Analternativeexplanationsuggeststhatoutowsoccurduringaphaseofthequasarlifetime. Vestergaard ( 2003 )mentionsthat`atleastforlow-ionizationBALquasars,thereisevidencethattheBALphenomenonmayalsobeatemporaryphaseintheearlyevolutionofthequasar(orsoonafteritsre-ignition;e.g., Canalizo&Stockton 2001 ; Canalizo&Stockton 2002 )'.Radioactivityhasbeensuggestedtobeassociatedwiththerststagesofthequasarlife(assumingthatmoredustyenvironmentsareyounger; Bakeretal. 2002 ).Basedonradiopropertiesofoursample,thelackofcorrelationsbetweenabsorptionpropertiesandtheradioloudnessofthequasarsdiscouragestheinterpretationthatmoremassiveorhighervelocityoutowsareseenattheonsetoftheradioactivity.AALQSOsarethestrongestradioloudnessinoursample,suggestingalinkbetweentheradioactivityandlargepresenceofabsorbinggas,similartotheproductsofmergers( Bakeretal. 2002 ). 90

PAGE 91

Theoutowphenomenonisnotexclusiveofquasars.Todate,SeyfertgalaxieswerebelievedtobetheAGNclassthatpresentoutowsmorefrequentlyandquasaroutowswerepresentinsmallerpercentages.Previousstudies( Crenshawetal. 1999 ; Dunnetal. 2008 )estimatethat50%ofSeyfertGalaxiesshowoutows(mostlyAALs,maybesomemini-BALs,butalmostnoBALs.Wehavefoundapercentageof41-77%.Aswehaveseen,thecomplexityandvarietyofthemmighthavepreviouslyresultedinanunderestimationsincenarrow,mini-BALsandhighvelocityabsorbershavebeenmissedinprevioussystematicstudies. 91

PAGE 92

Mini-BALsposeauniquechallengeforoutowmodelsbecausetheycanhavelargeoutowvelocities,v,withsmallvelocitydispersions,FWHM.BALsandmini-BALsmightrepresentanevolutionarysequence,asingleoutowstructureviewedatdierentangles,orsomecombinationofthesescenarios.Ineithercase,thedetectionfrequenciesreportedhereprovideimportantconstraintsontherelativelifetimesoropeninganglesofthedierentoutowtypes. 92

PAGE 93

3 .Ourprogramoverallexaminesanearlyunexploredpartoftheoutowparameterspace:highowvelocities(upto0:2c)withlowinternalvelocitydispersionsv.ThislargesampleallowsustoselectspectrathatincludesCivabsorptionlineswithawidevarietyofwidthsandvelocityshiftstosearchfortrendsbetweentheabsorberpropertiesandthevariabilitytimescalesandstrengths.Wepresentthesampleselectionandajournaloftheobservationsinx .Section 4.3 discussesthedatareductionandlinemeasurements.Inx weclassifyanddescribethevariablesystems.Finally,inx wesummarizetheresultsanddiscusswhatmightbeproducingthevariabilitybasedonourndings. 3 thathaveeitheri)aCivmini-BALorii)anarrowerCivsystemthatisresolvedintheSDSSspectra(R2000)andthereforemightalsohaveanoutoworigin.WechoseabsorptionsystemstocoverawiderangeinFWHMandvelocityshift.ThesamespectraoftenincludeadditionalCivNALsthatweusetoextendtherangeofFWHMswestudydowntheSDSSresolutionlimit.WedonotincludeanystrongBALsinthepresentstudy. 93

PAGE 94

Table 4-1 describesthejournaloftheobservationsandalsoincludestheemissionredshifts(zem)whicharetakenfromSDSS.Twentysixquasarswereobservedduringthreeobservingruns:twowiththeGoldCamspectrometeratthe2.1mtelescopeatKittPeakNOAOfacilities(hereafterKPNOobservations)duringtheSpringof2006(April28-May3)andFallof2006(January12-17),andonewiththeBollerandChivensCCDspectrograph(CCDS)attheMDM2.4m(hereafterMDMobservations)intheFallof2005(Dec1-Dec2).FortheKPNOobservationsweuseda200slitwidthandthe#26(new)gratingtoprovideresolutionR1300(230km/s)acrossobservedwavelengthsfromroughly3700Ato6100A,tocoverblue-shiftedCivabsorptionforallthequasarsinoursample.TheMDMobservationsweretakenwitha100slitwidthandaresolutionR1200(250km/s)andseveralwavelengthrangeswereusedduetothenarrowercoveragethattheCCDSspectrographprovides(1600A).WewouldliketonotethattheseresolutionsaresucienttoresolvetheCivdoubletwithvelocityseparation500kms1,providinganacceptablematchtotheblueSDSSspectralresolutionofR2000. Allthequasarsarestrictlynon-BALQSOs(asdenedin Weymannetal. 1991 asthosethathaveBalnicityIndexBI=0),exceptforJ021119-075722(BI=40kms1),J083104+532500(BI=327kms1),J090924+000211(BI=277kms1),J142246+352836(BI=29kms1),J151312+451033(BI=349kms1),andJ231324+003444(BI=2kms1).ThesevaluesofBIweremeasuredfromtheSDSSspectrainChapter 3 .Weincludethese\marginal"BALQSOsinourstudybecausetheyallowustothestudytheconnectionbetweenBALsandnarrowerabsorptionfeatures. 94

PAGE 95

Journalofobservations OBSERVATIONDATE(UT) OBJECTzemSDSSNew J020845+0022361.8854420000925KPNO20070115J021119-0757221.8768920010911KPNO20070117J025928-0019592.0012920000930MDM20051201J083104+5325002.0645320001205KPNO20070116J085417+5327352.4182120001222MDM20051201J090152+3344132.0259520031215MDM20051202J090924+0002111.8649820010120KPNO20070116J092849+5049302.3474320011209KPNO20070117J093857+4128211.9354920030131KPNO20070115J094646+3927192.2072220030311KPNO20070116J102907+6510242.1614920010121KPNO20060504J103112+3807171.8930220031229KPNO20070115J103859+4840492.1625520020321KPNO20070117J132801+5731132.0569520030430KPNO20070117J133141+4101581.9317320040327KPNO20060502J133246+5426082.0248620030326KPNO20060430J141644+4415571.9207520040409KPNO20060501J142246+3528362.1049920040519KPNO20060504J144105+0454542.0640520010421KPNO20060429J151312+4510332.0097420030323KPNO20060502J154601+3820092.1902720040611KPNO20060501J161511+3147282.0945920040521KPNO20060430J162746+4633391.9155020020413KPNO20060429J163651+3131471.8381020030525KPNO20060504J171748+2755321.9290520020606KPNO20060430J231324+0034442.0840620000929MDM20051201 Informationsuchasslitwidths,wavelengthcoveragesandresolutioncanbefoundinthetext.EmissionredshiftsaretakenfromSDSS. inIDL).ForthespectraobtainedatKPNO,weusedHeNeArlampsforthewavelengthcalibrationsandquartzlampsfortheat-elds,bothlocatedinsidethespectrograph.WeusedtheoverscantosubstractthebiasleveloftheCCD.Onedimensionresponsefunctionwassucienttocreateanappropriateat.Thedatawereuxcalibratedusingsame-nightobservationsofKPNOstandardstars.Wedidnotperformabsoluteuxcalibrationsduetotimeandweatherconstraints.TheMDMspectrawerereducedandextractedinasimilarmanner,withtheexceptionoftheuseofacombinationofHgNe,NeArand`raregas'lampsforthewavelengthcalibrations.Also,biasframesshowedsomestructureandthereforebothoverscanandbiasweresubstractedfromeveryframe. SDSSspectrawereshiftedwhenevernecessarybyusingskylines(primarily[Oi]5577.338)inordertohavethebestwavelengthcorrespondencebetweenKPNO,MDM 95

PAGE 96

Figure 4-1 includeseveryobservedquasar.SDSSspectra(black)areplottedovertheKPNO/MDMspectra(red).WetransformedthespectratorestwavelengthsusingtheSDSSzem.Someofthespectraareplottedaftertheyunderwenta3-or5-pixelwideboxcarfunctionsmoothingtoimprovethedisplayandfacilitatecomparisonsbetweenthetwospectra. Allofthespectrawerenormalizedtounityinthecontinuumbyaleast-squareslinearttowavelengthregionswhereabsorptionoremissionwerenotpresent.ThissimplenormalizationwassucienttomatchtheSDSS,MDMandKPNOspectrainthemajorityofcasesandthroughoutmostofthespectralcoverageofinterest.However,bluewardsof4000A(observedwavelength),theSDSSspectrasometimesdeviatefromtheKPNOorMDMdataduetopoorsignal-to-noiseorpossibly,pooruxcalibrations(J020845-002236andJ141644+441557).Wedonotconsiderthosedeviationstobeduetovariability,andnofurthercorrectionswerecarriedoutsincethosedeviationsdonotaecttheabsorptionfeaturesofinteresthere. Following Lundgrenetal. ( 2007 ),Figure 4-1 alsoincludesvaluesfortheupperandlowerrestframevelocityboundariesoftheabsorptionprolesintheSDSSspectrum(vminandvmax-dashedverticallinesineachplot).Thesevelocitiesweredeterminedbyvisualinspectionofeachspectrumanddenedasthelocationwheretheuxdensitiesabandonthelevelofthecontinuum. Table 4-2 liststheresultsofourmeasurementsofv,FWHMandREWontheabsorptionlines.InordertoextractnormalizedmeasurementsofRestEquivalentWidth(REW)andFullWidthHalfMinimum(FWHM),wetalocalpseudo-continuum(continuumandemissionlines)aroundtheabsorptionlinesbyusingrstorsecondorder 96

PAGE 97

WettheabsorptionlineswithoneormoreGaussians,asneeded,toobtainanaccuratemeasureoftheREW.The1errorsintheREWlistedinTable 4-2 aredominatedbythecontinuumplacement.Toestimatetheseerrors,wemanuallyshiftedthecontinuunupanddownandre-measuredtheREWinbothsituations.Thesemanualshiftsarebasedonvisualinspectionandmeasurementsoftheroot-mean-square(rms)noiseinthecontinuumadjacenttotheabsorptionfeatures.Theerrorsareourbestestimatesat1.WethenmeasuredtheFWHMandthecentroidvelocities,v,directlyfromtheobservedproles Table 4-2 liststhemeasurementsofFWHMandvfortheSDSSdataonly,exceptforthecaseswheretheSDSSspectradidnotincludeanyabsorptionbutthenewspectradid,forwhichwelistthenewFWHMandvmeasurement.Table 4-2 alsoliststheREWsforboththeSDSS(REWSDSS)andthenewerKPNOorMDMdata(REWnew).InTable 4-2 wealsoincludeameasurementofthefractionalchangeintheequivalentwidths,REREW=,whereREW=jREWnew-REWSDSSjandistheaveragevaluebetweenthetwoepochs.Asnotedin Lundgrenetal. ( 2007 ),thesefractionalchangescanbe\deceptivelysmall".Forexample,featureswhosestrengthschangeddramatically(byfactorsofseveralormore)muststillhaveRE2.Acombinationofthe 3 ,wherewereportedFWHMsbasedontstotheindividualdoubletmembers. 97

PAGE 98

Intwoinstances,absorption,whichwasnotpresentintheSDSSspectra,hasclearlyappearedinthenewobservation(theabsorptionat1395AinJ102907+651024andtheabsorptionat1445AinJ163651+313147,Figure 4-1 ).WehavenotincludedinourlistofabsorptionfeaturesanyotherdierencesbetweentheSDSSandthenewepochspectrabecauseineverycasethesedierencescouldbeattributedtochangesinemissionlines,variationswithinthenoise,ortheylocationattheedgeofthespectrum,wheretheuxcalibrationismoreuncertain. 98

PAGE 99

SDSSspectra(black)plottedoverKPNOorMDMspectra(red).Thespectrahavebeennormalizedbylinearts.Dashedverticallinesindicatevminandvmaxofthemini-BALsandmarginalNALsintheoriginalspectra(SDSS)thatwespecicallytargetedforthisstudy. 99

PAGE 100

4-1 {continued 100

PAGE 101

4-1 {continued 101

PAGE 102

4-1 {continued 102

PAGE 103

4-1 {continued 103

PAGE 104

4-1 {continued 104

PAGE 105

4-1 {continued 105

PAGE 106

4-1 {continued 106

PAGE 107

4-1 {continued 107

PAGE 108

4-1 {continued 108

PAGE 109

4-1 {continued 109

PAGE 110

4-1 {continued 110

PAGE 111

4-1 {continued 111

PAGE 112

OBJECTtobsvFWHMREWSDSSREWnewREW/variab?complex? (yrs)(kms1)(kms1)(A)(A) J020845+0022363.3452228016400.8+0:30:30.6+0:20:30.3+0:30:3nono J021119-0757222.851826017803.5+0:60:64.5+0:70:70.25+0:150:15nono J025928-0019592.583411208200.9+0:20:121.5+0:30:20.50+0:190:19nono J083104+5323002.962922026405.9+0:60:516.3+1:01:00.94+0:070:07yesyes J085417+5327352.0441648033402.2+0:40:40.76+0:170:181.0+0:20:2yes?no J090152+3344130.9701068011801.37+0:180:200.8+0:20:20.52+0:160:16yes?yes J090924+0002113.2112088019805.3+0:70:33.7+0:40:40.36+0:110:11yesno J092849+5049302.1763954021203.2+0:60:4<0.4>1.6yesno 3080018101.1+0:30:3<0.2>1.4yesno J093857+4128212.0444494059403.9+0:40:63.3+0:40:60.17+0:100:10nono J094646+3927191.7453878025405.1+0:50:41.2+0:30:21.24+0:140:13yesno J102907+6510242.4443884011000.87+0:100:100.78+0:040:040.11+0:080:08nono 31440760<0.20.38+0:040:05>0.6yesno J103112+3807171.6092220010200.96+0:180:193.9+0:40:41.21+0:130:13yesyes? J103859+4840492.2323256017203.6+0:41:40.58+0:150:161.4+0:20:3yesyes 2666018004.8+0:40:42.8+0:40:40.53+0:100:10yesyes J132801+5731131.8074176029205.9+0:70:87.2+0:60:70.20+0:090:09nono J133141+4101581.086358809002.75+0:110:122.61+0:110:120.05+0:040:04nono J133246+5426081.529405209001.96+0:180:181.83+0:140:140.07+0:080:08nono J141644+4415571.0732154021201.74+0:140:20<0.5>1.1yesyes? J142246+3528360.9311812029205.0+0:30:33.1+0:20:30.47+0:060:06yesyes? 141409800.31+0:040:05<0.25>0.2yesno J144105+0454542.4335528038605.2+1:00:61.1+0:30:21.3+0:20:2yesyes 4668018801.4+0:40:31.5+0:40:30.07+0:20:2nono 2078010900.70+0:170:120.47+0:120:090.4+0:20:2nono J151312+4510331.5472516018601.4+0:20:23.8+0:20:20.92+0:070:07yesyes 1970037404.8+0:30:36.2+0:40:40.25+0:060:06yesyes

PAGE 113

4-2 .Continued OBJECTtobsvFWHMREWSDSSREWnewREW/variab?complex? (yrs)(kms1)(kms1)(A)(A) J154601+3820090.862550809600.96+0:130:140.68+0:120:090.34+0:140:14nono J161511+3147280.9273314042605.4+0:60:64.8+0:40:40.12+0:090:09nono 2192010402.0+0:20:22.3+0:30:30.14+0:110:11nono 1778010803.0+0:20:23.2+0:20:30.06+0:060:06nono J162746+4633392.111354205600.71+0:110:090.62+0:090:090.14+0:130:13nono J163651+3131471.601208802020<0.11.0+0:30:2>1.6yesno 53008201.59+0:150:131.38+0:120:100.14+0:080:08nono J171748+2755322.021419809203.2+0:20:23.0+0:20:20.06+0:060:06nono J231324+0034442.482427206400.30+0:050:060.30+0:060:070.00+0:160:16nono 2480030004.8+0:30:35.9+0:30:30.21+0:050:05yesyes 1124011803.51+0:130:144.10+0:130:140.16+0:030:03nono 806013001.43+0:100:101.68+0:110:110.16+0:060:06nono AllFWHMandvmeasurementsarefromtheSDSSdata,unlessabsorptionwasnotpresentintheSDSSspectra.ExplanationsforthelasttwocolumnsarefoundinSection 4.4.1 .Weextrapolateoverthewavelengthrange1352-1357Ainthecalculationforbeingunreliable.

PAGE 114

4.4.1CharacterizingtheVariability 4-2 giveourclassicationsregardingthevariabilityoftheabsorptionsystemsbetweenthetwoobservations(SDSSandKPNO/MDM).Wedetectvariabilitymainlybyvisualinspectionbycomparingspectrafromthetwoepochs,e.g.,Figure 4-1 .Inordertoquantifythisvariabilityandprovideanothertooltodiscriminatevariablefromnon-variableabsorption,wealsorefertothefractionalchangeintheintegratedlinestrengths:REW/,orRE.Inmostcases,strongvariabilitycorrespondstolargechangesinRE(Table 4-2 ).NotethatREaloneisnotareliablemeasureofthevariabilityingeneralbecauseoutowlinescanvaryincomplicatedwaysthatarenotmeasuredbyRE.Forexample,thelinesmightshiftinvelocity,varyoveronlypartoftheprole,orstrengthenandweakensimultaneouslyindierentpartsoftheprole,resultinginRE0.Table 4-2 listsournalassessmentsofthevariabilityineachsystem.Theclassication\yes"meansthissystemwasclearlyvariable;\no"meansitisnotvariablebeyondourmeasurementuncertainties,and\yes?"meansthesystemsappearstobeweaklyvariablebutbetterdataareneededtoconrmthisresult.MostoftheclearlyvariablecaseshaveRE0.5,whiletheclearlynon-variableoneshaveRE0.2.Intheanalysisofthevariabilitybelow,wewillconsideronlytheclearlyvariablesystems(markedwitha\yes"inTable 4-2 ). ThelastcolumninTable 4-2 providesanindicatorofcomplexvariability,whichwedeneassignicantchangesintheabsorptionproleorcentroidvelocity.Simple(non-complex)systemschangedstrengthwithoutmodifyingtheirabsorptionshape.AtypicalcaseofsimplevariabilityistheabsorptionpresentinJ090924+000211(Figure 4-1 ).Althoughthestrengthofthelinehasdecreasedfromoneobservationtotheother,theshapeoftheprolehasbarelychangedandthecentroidvelocityremainsalmostconstant.AnexampleofcomplexvariabilitycanbeseeninJ083104+532500(Figure 4-1 ).Thecomplexevolutionoftheseabsorptionprolesresultsindierentcentroidsandvelocities 114

PAGE 115

4.4.2 ,thevelocitychangesareneverlargerthan500kms1.ThelastcolumninTable 4-2 tabulatesourclassicationofcomplexsystems. Table 4-2 listsallthemini-BALsandmarginalNALsinitiallytargetedforthisstudy,plustwonewmini-BALs(inJ102907+651024andJ163651+313147)thatappearedbetweenthetwoobservations.Inthesespectra,wealsovisuallyinspectednarrowerNALsnotspecicallytargetedandnotincludedinTable 4-2 .TheseNALsaredistributedacrossthefullrangeofvelocityshifts.Noneofthesenarrowfeaturesvaried. Wendthatmini-BALsandnarrowabsorptionlinesvaryatanytoverthetimescaleswestudy.Wearestudyinglong-termvariability(trangesfrom0.8to3.4years).Figure 4-2 displaysthefractionalchangeofREWversustimevariabilityforallofthestudiedcases.Wedonotndanysignicantpatternswithtimewithinthetimescalescoveredandatanygiventitisequallylikelytondvariableaswellasnon-variablesystems.OurstudycomplementsthepreviousworkonBALsbyemphasizingmini-BALsandNALs. Becausethequasarshavebeenobservedatdierenttimeintervals,andbecausedierentquasarsmighthavedierenttimescalestoproduceobservableabsorptionchanges,thesepercentagesarelowerlimits,andmoreabsorptionfeaturesareexpectedtochangeinlongertimes. 115

PAGE 116

FractionalchangeofREWasafunctionoft(inthequasars'restframe)ofthemini-BALsandmarginalNALstargetedinthisstudy(Table 4-2 ). DistributionofabsorptionfeaturesinFWHM(black)andthenumberofthemthatvaried(red/lled)in250kms1bins. 116

PAGE 117

4-3 to 4-5 showthenumberofsystemsthatvariedversustheirFWHM,depthandvoftheabsorption.Figure 4-3 displaysthedistributioninFWHM,astabulatedinTable 4-2 ,ofthenumberofcasesthatvaried(red/lled)versusthetotalnumberofabsorptionfeaturesincludedinourstudyin500kms1bins.Aswementionedearlier,ourgoalistwo-fold;oneobjectiveistoconrm,throughvariability,theintrinsicnatureofthenarrowestsystemsinoursamplewhichmightormightnotbeoutows.AsFigure 4-3 shows,themajorityofsystemswith5001500kms1.TheKolmogorov-Smirnov(KS)testprobabilitythattheFWHMinbothdistributions(allcasesandonlyvariablecases)aredrawnfromthesamepopulationis0.17.However,ifweselectonlythosesystemswithFWHM>1500kms1,theKSprobabilityis0.9993,whichimpliesconsistencybetweenthetwopopulations.ForthesystemswithFWHM<1500kms1,thedierencebetweenthetwopopulations(allcasesandonlyvariablecases)islargerthan3,whichsuggeststhattheyaredrawnfromdierentpopulations.Wehaveconrmedtheoutownatureoftwocaseswith5001000kms1andthosenarrowerabsorptionlines 117

PAGE 118

Distributionofabsorptionfeaturesindepth(black)andthenumberofthemthatvaried(red/lled)in0.05bins. Distributionofabsorptionfeaturesinvelocity(black)andthenumberofthemthatvaried(red/lled)in5000kms1bins. 118

PAGE 119

3 FractionalchangeofREWversusaverageREWofalltheabsorptionlinesinoursample InFigure 4-6 werepresenttheabsolutefractionalchangeofREWversusaveragedREWforcomparisonwith Lundgrenetal. ( 2007 ).Wendthatonlyfeatureswith<4A(approx.900kms1)showabsolutefractionalchangesinREWlargerthan1,valueswhicharewithintheerrors. 3 weusedalowerlimitofFWHM700kms1forthehigheroscillationstrengthindividuallineoftheCivdoubletwhileinthisworkweareusingacharacteristicFWHMforthewholedoubletprole 119

PAGE 120

FractionalchangeofREWversusdepthofalltheabsorptionlinesinoursample Figure 4-7 issimilartoFigure 4-6 ,butweplotdepthinsteadof.AswendinFigure 4-6 ,therearenotabsorptionfeatureswithREW/largerthan1foracertainvalueofdepth(depth>0.5). Thelargevarietyofvelocitiesoftheabsorptionfeaturesinoursampleallowsustosearchfortrendsofthispropertywithvariability.Figure 4-8 displaysthefractionalchangeofREWversusvelocity.Thisgureshowsthatbothvariableandnon-variableabsorptionfeaturesareobservedateveryvelocity.ThereisnotanarrowrangeofvelocitywherethelargestEW/occur. Figures 4-9 and 4-10 displayvelocityandvelocitywidth(denedasvmaxvmin)versusdepthforthecaseswehavefoundtovary.InFigure 4-9 ,thearrowsconnectvwidthanddepthintheSDSSdatatothevaluesofthosequantitiesinthesecondobservation.Figure 4-9 showsthatinthelargemajorityofvariablecases,changesindepthandinvelocitywidthoccurinthesamedirection,i.e.,wheneverthedepthincreases/decreases,thevwidthincreases/decreasesaswell,respectively.AbsorptionfeaturesinquasarsJ103112+380717 120

PAGE 121

FractionalchangeofREWdistributionwithvelocity. Changeinthe(depth)-(velocitywidthatthecontinuumlevel)spaceoftheabsorption. andJ094646+392719inFigure 4-1 areexamplesofthisphenomenon.Inthesecases,as 121

PAGE 122

Changein(depth)-(velocity)spaceoftheabsorption. Wedonotndsignicantchangesinthevelocityoftheabsorptioninanyofthevariablecases.Ineverystudiedcase,variabilityoccursprimarlyinstrength.Therearenocasesshowingcleardisplacementoftheabsorptionfeatureas`awhole',asreportedin Gabeletal. ( 2003 )(shownintheirFigure2),whereafeatureseemstodecelerateby100kms1in1.8years.Figure 4-10 showshowthevisverysteadyinvariablecases.Slightvariationsinvelocityaremostlycausedbythecomplexityofsomeabsorptionproles,whichcomplicatesthedeterminationofthecentroidandthusthecentralvelocity,aswedescribedinx Ifseveralabsorptionfeatureswerepresentinonequasarspectrumandoneofthesefeaturesvaried,thentheotherseitherdidnotvaryortheyvariedinthesamedirection(increase/decreaseiftheoriginalincrease/decrease).Forexample,inthecaseofJ151312+451033(Figure 4-1 ),theabsorptionat1415Aincreasessignicantlywhiletheabsorptioncenteredat1500Adidnotsuersuchadramaticchange. 122

PAGE 123

Hamannetal. 2008 ).However,sometimesnewabsorptionlinesappearinthespectraofquasarswhichwereincludedinthesamplebecauseofotherabsorptionfeatures.ThatisthecaseofabsorptionfeaturesinthespectraofJ102907+651024andJ163651+313147(Figure 4-1 ). Lundgrenetal. ( 2007 ),andpreviously Barlow ( 1993 ),reportedthatthelargestvariabilityoccursintheabsorptionfeatureswithrelativelysmallequivalentwidths.Figure2of Lundgrenetal. ( 2007 )demonstratedthatonlyfeatureswithsmallerthan1000kms1showvaluesoftheEW/largerthan1.Wendsimilarresults,obtainingthatonlyfeatureswith<4A(approx.900kms1)showabsolutefractionalchangesinREWlargerthan1,withintheerrors.NoticethatFigure2in Lundgrenetal. ( 2007 )showsalargerrangeinEWbecausetheirstudyfocusesonBALs. Thelargevarietyofvelocitiesoftheabsorptionfeaturesinoursampleallowustosearchfortrendsofthispropertywithvariability.Figure 4-8 displaysthefractionalchangeofREWversusvelocity.Thisgureshowsthatbothvariableandnon-variableabsorptionfeaturesareobservedateveryvelocity,asweshowedinFigure 4-5 foronlyoutows.ThereisnotanarrowrangeofvelocitywherethelargestEW/occur. Lundgrenetal. ( 2007 )reportthatlargechangesinREWoccuronlyforvelocitiesexceeding12000kms1.However,theydonotcovervelocitiesabove25000kms1andtheyhaveastrongemphasisonBALs.Inoursampleofmini-BALsuptov60000kms1,wendthatthedistributionisveryhomogenousinvelocity,butthelargestfractionalchangesinREWoccuratv>20000kms1. 123

PAGE 124

Barlow 1993 ; Lundgrenetal. 2007 ; Gibsonetal. 2008 ). 124

PAGE 125

Misawaetal. ( 2005 )and Narayananetal. ( 2004 ),describethepossiblecausesofmini-BALvariability. WearenotabletodeterminewhethervariationsinthelevelofthecontinuumionizationarethecauseoftheCivabsorptionvariabilitymainlybecauseofthreeissues.First,wecannotmeasurethecontinuumuxbecausewedonothaveabsoluteuxcalibrationsfortheKPNOandMDMspectra.Moreover,thisinformationwouldstillnotmeasuretheionizinguxintheUV/softX-raycontinuum.Second,weonlyhaveinformationregardingoneionicspecies(Civ)andwecannotdeterminetheionizationoftheoutows.Third,theremightbeadelaybetweenthetimethecontinuumreachestheabsorberandtheabsorbervariations(recombinationtime).WehavecarriedoutsuchastudyforJ093857+412821,whichhasbeendescribedinChapter 2 Barlow ( 1993 ), Lundgrenetal. ( 2007 )and Gibsonetal. ( 2008 )foundnocorrelationsbetweenthecontinuumuxlevelandtheabsorptionchanges. Ifweassumethatthevariabilityiscausedbytheionizationchanges,thenwecanplacelimitsontheminimumelectrondensity(ne)andthemaximumdistancefromthecontinuumsource.Todoso,weneedtoresorttosomeassumptions:thechangesinthecontinuumaresmall,thegasisinionizationequilibrium,CivisthedominantionizationspeciesofC,andthatthetemperatureofthegasisT20000K( Hamannetal. 1997a ; Narayananetal. 2004 ). UsingEq.(1)in Narayananetal. ( 2004 ),ourobservedvariabilitytimesprovideupperlimitsontherecombinationtimes.WehavefoundthattheCivabsorptionvariesinawiderangeofvariabilitytimes.Mostimportantly,wehavenotfoundanobservedtime 125

PAGE 126

4-2 andhavebeendiscussedfurtherinx .Assumingatypicalvariabilitytimescaleof2.0years,wecanderiveaminimumelectrondensityne>5700cm3.Theshortestobservedvariabilitytimescale(0.97yrs)willresultinne>11600cm3. Theseelectrondensitiesallowustoderivethemaximumdistancebetweentheabsorbingcloudsandthecontinuumsourcebyassumingthegasisinphotoionizationequilibriumwithanionizationparameterandcontinuumshape( Narayananetal. ( 2004 )eq.[2]).Forthis,wealsoneedtoassumethattheabsorbingcloudsarenot\shielded"fromthecontinuumemissionsource.Thus,thegasisreceivingthewholeuxofionizingphotonsscaledby1=R2.Byusingatypicalluminosityforthequasarsinoursample(Lbol5x1046ergs1),andanionizingparameterU0.02(optimalforCiv),weobtainamaximumdistancebetweentheabsorbersandthesourceoftheionizationcontinuumof2kpc. Wendthatsometimesinthesamespectrumabsorptionatsomevelocityvariessignicantlywhileabsorptioninthesamespectrumatanothervelocityremainsalmostconstant(descriptioninx ).Ifvariabilityisduetochangesintheionizingcontinuum,bothabsorbersshouldbeaectedbytheionizationchangesinthesamemanner,unlesstheyareeither1)atdierentdistances(e.g.,theinvariableabsorptionisproducedbyanabsorber(s)thatmustbelocatedatadistancer>2kpcfromthecontinuum,whilethevariableisrelatedtoanabsorberwhichmustbecloser),or2)theinvariableabsorptionissaturated.Noneofthemini-BALornarrowlinesinspectraofourquasarsamplegoesblack,whichmeansthatiftheyaresaturated,theabsorbersmustbeonlypartiallycoveringtheemissionsource. Wehavefoundabsorptionthatremainsconstantoverlongtimescales(>3years)inthequasarrestframe.Iftheionizingcontinuumhasvariedduringthistime,andassumingwehavenotrandomlycaughtitatthesamestageatbothobservations,thelackof 126

PAGE 127

ThebackgroundsourcescouldbetheBroadEmissionLineRegion(BELR)and/orthecontinuumsource( Gangulyetal. 1999 ).TypicalsizesfortheBELRofthequasarsinoursamplearederivedfromtheempiricalrelationbetweenthemandthequasarluminosity( Vestergaard 2002 ),obtaining3pc.Thecontinuumsourcesizethatisproducingmostofthecontinuumcanbeestimatedtobe5RS=10GMBH=c2( Misawaetal. 2005 ),whereRSandMBHaretheSchwarzschildradiusandtheblackholemass,respectively.WederiveMBHfromtherelationbetweenFWHMoftheCivemissionlineandtheluminosityat1450A,( Warneretal. 2003 ).TypicalvaluesforMBHinthequasarsofoursampleare109-1010M.Therefore,weobtaintypicalradialsizesofthecontinuumsourcetobe0.0005-0.005pc. Byassumingasimplegeometry,wecanobtainlowerlimitsforthetransversevelocityvtroftheabsorberinthecaseswheretheabsorptionhasappeared/disappeared.Imagineahomogenousbackgroundsourceasasquareofside2r,andanothersquareoutowpassingacrossit.Inordertoshowvariabilityintheabsorption,theabsorbershouldtravelatransversedistanceCf2r,whereCfisthecoveringfactor.Forexample,inthecaseoftheabsorptionatarestwavelengthof1440AinthespectrumofJ141644+441557(Figure 4-1 ),theabsorptionispresentintheSDSSspectrumbutithasdisappearedintheKPNOone.Wehaveanupperlimitforthevariabilitytime,givenbythetimedierencebetweenthetwoobservations:1yr.BecausethedepthofthenormalizedabsorptionindicatesthatCfis0.15(15%oftheemittingsource),thedistancethattheabsorber(assumingsharpedges)needstotravelinordertoabandonthelineofsightis51012

PAGE 128

Misawaetal. ( 2005 ).Therefore,weconcludethattheabsorbercoversprimarilytheUVcontinuumsourceand,maybe,onlyasmallpartoftheBLR( Misawaetal. 2005 ). 128

PAGE 129

Outowsareafundamentalpartofquasars:theybringrst-handphysicalinformationaboutthequasarenvironments,theyarecommon(andmaybeubiquitous)andtheymightbekeytoconnecttheAGNwiththeirhostgalaxies.However,manyaspectsoftheseoutows(e.g.,accelerationmechanisms,geometry,evolution)arepoorlyunderstood. IpresentnewmeasurementsandanalysesoftheseabsorptionlinesinthespectraofthequasarPG0935+417(zem1:966).ThisquasarshowsahighvelocityCivmini-BroadAbsorptionLine(mini-BAL)outowingat51000kms1.Wedetect,usingLickobservatory,HubbleSpaceTelescope,andSloanDigitalSkySurveyspectra,absorptioninCiv1548,1551(alreadyreportedin Hamannetal. 1997a and Narayananetal. 2004 )and,forthersttimeinthisoutow,absorptioninNv1240andOvi1034inthismini-BALsystem.TheabsenceoflowerionizationlinesindicatesthattheowishighlyionizedwithanionizationparameterlogU>-1.1.TheresolvedOviindicatesthatthelinesaremoderatelysaturatedwiththeabsorber,coveringjust80%ofthebackgroundcontinuumsource.WeestimatethetotalcolumndensitytobeNH>3.0x1019cm2,whichissmallenoughtobecompatiblewithradiationpressuremechanismsacceleratingthisoutow. Ialsohavecontributedtothestudyofoutowsbyfocusinginarealmoftheparameterspacethathasbeensparselysurveyedbefore:mini-broadabsorptionlines(mini-BALs)andhighvelocitiesoutows(v>10000kms1).Mygoalsareto1)quantitativelydenetherangeofoutowlinesinquasarspectra,2)examinetheirdetectionfrequenciesanddistributionsinvelocity,strengthandFWHM,3)lookforrelationshipsbetweenthevariousabsorptionlinetypesandbasicquasarproperties,and4)identifyindividualoutowlinecandidatesforfollow-upstudies.Todoso,IcompileacomprehensivecatalogofCivabsorptionlinesinthe2000brightestSDSSquasarsat1.8z3.5,andselectthosewithFWHM>700kms1tobeunlikelyduetointervening 129

PAGE 130

Finally,tocharacterizebetterthestructuralandphysicalpropertiesoftheseoutows,Icarriedoutamonitoringprogramoverarangeoft=0.9-3.3yearsinthequasarrestframe,usingfacilitiesattheKittPeakNationalObservatoryandMDMObservatory.Bycomparingournewspectrawitharchivalspectra(SDSS)Indthat50%ofquasarswithmini-BALandBALsathighvelocityvariedbetweenjusttwoobservations.Indthatvariabilitysometimesoccursincomplexways.Alltheobservedvariationsoccurinintensityandnotinvelocity.ThusIndnoevidenceforacceleration/decelerationintheoutow.IalsodonotndanycorrelationsbetweenthevariabilityandRestEquivalentWidth(REW),FullWidthHalfMinimum(FWHM)ordepthoftheabsorptionfeature,exceptforthefactthatmostofthenarrowestsystemsdidnotvary.Asignicantfractionofthenon-variablenarrowersystemsareprobablyunrelatedtoquasaroutows. 130

PAGE 131

Hamannetal. 1997c ; Hamann&Ferland 1999 ; Hamannetal. 2008 ).PartialcoverageiscommonlyfoundinNALs(i.e., Hamannetal. 1997c ; Gangulyetal. 1999 ; Aravetal. 2001 ; Hamann&Sabra 2004 ),andinBALs( Aravetal. 1999 ). 3 becauseofthepossibilityofbeingattributedtotheseparationbetweentheSiivandtheOivemissionlinesandnotto`real'absorption.However,weincludeitinthisworkbecauseitsvariationbetweenthetwoepochs(Figure 4-1 )seemsnottobeduetochangesintheemissionlines,especiallysincetheCivemissionlineandtherestoftheSiiv+Oivdonotvary. 131

PAGE 132

2 Siivabsorptionlinesarepresentinthesameoutow.Visualinspectionofthatregionsuggeststhatatleasttheabsorberatzabs1.89(Civat1415A)isaccompaniedbySiivabsorptionat1275A.ThestrengthoftheSiivdoublet,whichshouldbeatleast5timesweakerthanCiviftheSi/CabundanceisroughlysolarandtheoptimalionsareSiivandCiv,suggeststhatCivmustbesaturatedbecauseofaneect 132

PAGE 133

Hamannetal. 2008 ). NormalizedSDSSspectra(black)andKPNOspectra(red/grey) Thisquasarisanexampleofwhatwedeneascomplexabsorptionvariability.Theabsorptionispresentinthespectralregion1270-1335A.ThepresenceofSiii1260andOi1302emissionlinesintertwinedwiththeabsorptionforcedustotGaussianstotheseemissionfeaturesbeforemeasuring.WetoneGaussianperemissionlineoftheKPNOspectrum,wheretheOiemissionlineismorenoticeable.WeusedthisttonormalizebothSDSSandKPNOspectra,assumingthattheemissionlinehasnotvariedbetweenbothobservations.Figure A-1 showsbothnormalizedspectra.Assumingthattherearetwodistinctiveabsorptiontroughs(oneat1270-1305Aandotherat1305-1330A),bothabsorptionfeaturesmighthaveredshifteditscentrod(producedbyacceleration).However,furtherstudyisnecessarybecauseofthecomplexityofthevariabilityofthisabsorptionprole. 133

PAGE 134

134

PAGE 135

Adelman-McCarthy,J.K.andAgueros,M.A.andAllam,S.S.andAllendePrieto,C.andAnderson,K.S.J.andAnderson,S.F.andAnnis,J.andBahcall,N.A.andBailer-Jones,C.A.L.andBaldry,I.K.,etal.2008,ApJS,175,297 Aldcroft,T.L.,Bechtold,J.,&Elvis,M.1994,ApJS,93,1 Anderson,S.F.,Weymann,R.J.,Foltz,C.B.,&Chaee,F.H.,Jr.1987,AJ,94,278 Arav,N.,Becker,R.H.,Laurent-Muehleisen,S.A.,Gregg,M.D.,White,R.L.,Brotherton,M.S.,&deKool,M.1999,ApJ,524,566 Arav,N.,deKool,M.,Korista,K.T.,Crenshaw,D.M.,vanBreugel,W.,Brotherton,M.,Green,R.F.,Pettini,M.,Wills,B.,deVries,W.,Becker,B.,Brandt,W.N.,Green,P.,Junkkarinen,V.T.,Koratkar,A.,Laor,A.,Laurent-Muehleisen,S.A.,Mathur,S.,&Murray,N.2001,ApJ,561,118 Arav,N.,Li,Z.-Y.,&Begelman,M.C.1994,ApJ,432,62 Baker,J.C.,Hunstead,R.W.,Athreya,R.M.,Barthel,P.D.,deSilva,E.,Lehnert,M.D.,&Saunders,R.D.E.2002,ApJ,568,592 Barlow,T.A.1993,Ph.D.thesis,AA(CaliforniaUniv.) Barlow,T.A.,&Sargent,W.L.W.1997,AJ,113,136 Becker,R.H.,Gregg,M.D.,Hook,I.M.,McMahon,R.G.,White,R.L.,&Helfand,D.J.1997,ApJ,479,L93 Becker,R.H.,White,R.L.,Gregg,M.D.,Brotherton,M.S.,Laurent-Muehleisen,S.A.,&Arav,N.2000,ApJ,538,72 Becker,R.H.,White,R.L.,&Helfand,D.J.1995,ApJ,450,559 Bennett,A.S.1962,MmRAS,68,163 Bregman,J.N.,Glassgold,A.E.,Huggins,P.J.,Neugebauer,G.,Soifer,B.T.,Matthews,K.,Elias,J.H.,Webb,J.R.,Pollock,J.T.,Leacock,R.J.,Smith,A.G.,Aller,H.D.,Aller,M.F.,Hughes,P.A.,Maccagni,D.,Garilli,B.,Giommi,P.,Miller,J.S.,Stephens,S.,Balonek,T.J.,Dent,W.A.,Kinsel,W.,Wisniewski,W.Z.,Williams,P.M.,Brand,P.W.J.L.,&Ku,W.H.-M.1990,ApJ,352,574 Brotherton,M.S.,Laurent-Muehleisen,S.A.,Becker,R.H.,Gregg,M.D.,Telis,G.,White,R.L.,&Shang,Z.2005,AJ,130,2006 Brotherton,M.S.,vanBreugel,W.,Smith,R.J.,Boyle,B.J.,Shanks,T.,Croom,S.M.,Miller,L.,&Becker,R.H.1998,ApJ,505,L7 Canalizo,G.,&Stockton,A.2001,ApJ,555,719 135

PAGE 136

Capellupo,D.,&Hamann,F.2009,ApJ(inprep.) Churchill,C.W.,Schneider,D.P.,Schmidt,M.,&Gunn,J.E.1999,AJ,117,2573 Crenshaw,D.M.,&Kraemer,S.B.2007,ApJ,659,250 Crenshaw,D.M.,Kraemer,S.B.,Boggess,A.,Maran,S.P.,Mushotzky,R.F.,&Wu,C.-C.1999,ApJ,516,750 Crenshaw,D.M.,Kraemer,S.B.,&George,I.M.2003,ARA&A,41,117 Croton,D.J.,Farrar,G.R.,Norberg,P.,Colless,M.,Peacock,J.A.,Baldry,I.K.,Baugh,C.M.,Bland-Hawthorn,J.,Bridges,T.,Cannon,R.,Cole,S.,Collins,C.,Couch,W.,Dalton,G.,DePropris,R.,Driver,S.P.,Efstathiou,G.,Ellis,R.S.,Frenk,C.S.,Glazebrook,K.,Jackson,C.,Lahav,O.,Lewis,I.,Lumsden,S.,Maddox,S.,Madgwick,D.,Peterson,B.A.,Sutherland,W.,&Taylor,K.2005,MNRAS,356,1155 deKool,M.1993,MNRAS,265,L17 deKool,M.1997,inAstronomicalSocietyofthePacicConferenceSeries,128,MassEjectionfromActiveGalacticNuclei,ed.N.Arav,I.Shlosman,&R.J.Weymann,233 deKool,M.,&Begelman,M.C.1995,ApJ,455,448 DiMatteo,T.,Springel,V.,&Hernquist,L.2005,Nature,433,604 Dietrich,M.,Hamann,F.,Shields,J.C.,Constantin,A.,Heidt,J.,Jager,K.,Vestergaard,M.,&Wagner,S.J.2003,ApJ,589,722 Dunn,J.P.,Crenshaw,D.M.,Kraemer,S.B.,&Trippe,M.L.2008,AJ,136,1201 Edge,D.O.,Shakeshaft,J.R.,McAdam,W.B.,Baldwin,J.E.,&Archer,S.1959,MmRAS,68,37 Elvis,M.2000,ApJ,545,63 Elvis,M.2006,MemoriedellaSocietaAstronomicaItaliana,77,573 Everett,J.E.2005,ApJ,631,689 Fan,J.H.,&Lin,R.G.2000,ApJ,537,101 136

PAGE 137

Foltz,C.B.,Weymann,R.J.,Peterson,B.M.,Sun,L.,Malkan,M.A.,&Chaee,F.H.,Jr.1986,ApJ,307,504 Fox,A.J.,Bergeron,J.,&Petitjean,P.2008,ArXive-prints,806 Gabel,J.R.,Crenshaw,D.M.,Kraemer,S.B.,Brandt,W.N.,George,I.M.,Hamann,F.W.,Kaiser,M.E.,Kaspi,S.,Kriss,G.A.,Mathur,S.,Mushotzky,R.F.,Nandra,K.,Netzer,H.,Peterson,B.M.,Shields,J.C.,Turner,T.J.,&Zheng,W.2003,ApJ,583,178 Ganguly,R.,Bond,N.A.,Charlton,J.C.,Eracleous,M.,Brandt,W.N.,&Churchill,C.W.2001,ApJ,549,133 Ganguly,R.,&Brotherton,M.S.2008,ApJ,672,102 Ganguly,R.,Eracleous,M.,Charlton,J.C.,&Churchill,C.W.1999,AJ,117,2594 Gebhardt,K.,Bender,R.,Bower,G.,Dressler,A.,Faber,S.M.,Filippenko,A.V.,Green,R.,Grillmair,C.,Ho,L.C.,Kormendy,J.,Lauer,T.R.,Magorrian,J.,Pinkney,J.,Richstone,D.,&Tremaine,S.2000,ApJ,539,L13 Gibson,R.R.,Brandt,W.N.,Schneider,D.P.,&Gallagher,S.C.2008,ApJ,675,985 Girardi,M.,Borgani,S.,Giuricin,G.,Mardirossian,F.,&Mezzetti,M.1998,ApJ,506,45 Grevesse,N.,&Sauval,A.J.1998,SpaceScienceReviews,85,161 Hall,P.B.,Anderson,S.F.,Strauss,M.A.,York,D.G.,Richards,G.T.,Fan,X.,Knapp,G.R.,Schneider,D.P.,VandenBerk,D.E.,Geballe,T.R.,Bauer,A.E.,Becker,R.H.,Davis,M.,Rix,H.-W.,Nichol,R.C.,Bahcall,N.A.,Brinkmann,J.,Brunner,R.,Connolly,A.J.,Csabai,I.,Doi,M.,Fukugita,M.,Gunn,J.E.,Haiman,Z.,Harvanek,M.,Heckman,T.M.,Hennessy,G.S.,Inada,N.,Ivezic,Z.,Johnston,D.,Kleinman,S.,Krolik,J.H.,Krzesinski,J.,Kunszt,P.Z.,Lamb,D.Q.,Long,D.C.,Lupton,R.H.,Miknaitis,G.,Munn,J.A.,Narayanan,V.K.,Neilsen,E.,Newman,P.R.,Nitta,A.,Okamura,S.,Pentericci,L.,Pier,J.R.,Schlegel,D.J.,Snedden,S.,Szalay,A.S.,Thakar,A.R.,Tsvetanov,Z.,White,R.L.,&Zheng,W.2002,ApJS,141,267 Hamann,F.1998,ApJ,500,798 Hamann,F.2009,ApJ(inprep.) 137

PAGE 138

Hamann,F.,Barlow,T.A.,Beaver,E.A.,Burbidge,E.M.,Cohen,R.D.,Junkkarinen,V.,&Lyons,R.1995,ApJ,443,606 Hamann,F.,Barlow,T.A.,Cohen,R.D.,Junkkarinen,V.,&Burbidge,E.M.1997b,inAstronomicalSocietyofthePacicConferenceSeries,128,MassEjectionfromActiveGalacticNuclei,ed.N.Arav,I.Shlosman,&R.J.Weymann,187 Hamann,F.,Barlow,T.A.,Junkkarinen,V.,&Burbidge,E.M.1997c,ApJ,478,80 Hamann,F.,&Ferland,G.1999,ARA&A,37,487 Hamann,F.,Kaplan,K.F.,Hidalgo,P.R.,Prochaska,J.X.,&Herbert-Fort,S.2008,MNRAS,391,L39 Hamann,F.,&Sabra,B.2004,inAstronomicalSocietyofthePacicConferenceSeries,311,AGNPhysicswiththeSloanDigitalSkySurvey,ed.G.T.Richards&P.B.Hall,203 Hamann,F.,&Simon,l.2009,ApJ(inprep.) Hazard,C.,Mackey,M.B.,&Shimmins,A.J.1963,Nature,197,1037 Hewett,P.C.,&Foltz,C.B.2003,AJ,125,1784 Hewitt,A.,&Burbidge,G.1993,ApJS,87,451 Hubble,E.P.1926,ApJ,64,321 Jannuzi,B.T.2009,ApJ(inprep.) Jannuzi,B.T.,Hartig,G.F.,Kirhakos,S.,Sargent,W.L.W.,Turnshek,D.A.,Weymann,R.J.,Bahcall,J.N.,Bergeron,J.,Boksenberg,A.,Savage,B.D.,Schneider,D.P.,&Wolfe,A.M.1996,ApJ,470,L11 Laor,A.,&Brandt,W.N.2002,ApJ,569,641 Lundgren,B.F.,Wilhite,B.C.,Brunner,R.J.,Hall,P.B.,Schneider,D.P.,York,D.G.,VandenBerk,D.E.,&Brinkmann,J.2007,ApJ,656,73 Matthews,T.A.,&Sandage,A.R.1963,ApJ,138,30 McGreer,I.D.,Becker,R.H.,Helfand,D.J.,&White,R.L.2006,ApJ,652,157 138

PAGE 139

Merritt,D.,&Ferrarese,L.2001,ApJ,547,140 Misawa,T.,Charlton,J.C.,Eracleous,M.,Ganguly,R.,Tytler,D.,Kirkman,D.,Suzuki,N.,&Lubin,D.2007a,ApJS,171,1 Misawa,T.,Eracleous,M.,Charlton,J.C.,&Kashikawa,N.2007b,ApJ,660,152 Misawa,T.,Eracleous,M.,Charlton,J.C.,&Tajitsu,A.2005,ApJ,629,115 Murray,N.,Chiang,J.,Grossman,S.A.,&Voit,G.M.1995,ApJ,451,498 Narayanan,D.,Hamann,F.,Barlow,T.,Burbidge,E.M.,Cohen,R.D.,Junkkarinen,V.,&Lyons,R.2004,ApJ,601,715 Nestor,D.,Hamann,F.,&Hidalgo,P.R.2008,MNRAS,386,2055 Nestor,D.B.,Turnshek,D.A.,&Rao,S.M.2005,ApJ,628,637 Oke,J.B.1963,Nature,197,1040 Peterson,B.M.1997,AnIntroductiontoActiveGalacticNuclei(Anintroductiontoactivegalacticnuclei,Publisher:Cambridge,NewYorkCambridgeUniversityPress,1997Physicaldescriptionxvi,238p.ISBN0521473489) Prochaska,J.X.1999,ApJ,511,L71 Proga,D.,&Kallman,T.R.2004,ApJ,616,688 Proga,D.,Stone,J.M.,&Kallman,T.R.2000,ApJ,543,686 Rees,M.J.1984,ARA&A,22,471 Reichard,T.A.,Richards,G.T.,Hall,P.B.,Schneider,D.P.,VandenBerk,D.E.,Fan,X.,York,D.G.,Knapp,G.R.,&Brinkmann,J.2003,AJ,126,2594 Richards,G.T.,Laurent-Muehleisen,S.A.,Becker,R.H.,&York,D.G.2001,ApJ,547,635 Richards,G.T.,York,D.G.,Yanny,B.,Kollgaard,R.I.,Laurent-Muehleisen,S.A.,&vandenBerk,D.E.1999,ApJ,513,576 Sargent,W.L.W.,Boksenberg,A.,&Steidel,C.C.1988,ApJS,68,539 Schmidt,M.1963,Nature,197,1040 139

PAGE 140

Silk,J.,&Rees,M.J.1998,A&A,331,L1 Slipher,V.M.1915,PopularAstronomy,23,21 Sramek,R.A.,&Weedman,D.W.1980,ApJ,238,435 Stocke,J.T.,Morris,S.L.,Weymann,R.J.,&Foltz,C.B.1992,ApJ,396,487 Thoul,A.A.,&Weinberg,D.H.1995,ApJ,442,480 Trump,J.R.,Hall,P.B.,Reichard,T.A.,Richards,G.T.,Schneider,D.P.,VandenBerk,D.E.,Knapp,G.R.,Anderson,S.F.,Fan,X.,Brinkman,J.,Kleinman,S.J.,&Nitta,A.2006,ApJS,165,1 Turnshek,D.A.1984,ApJ,280,51 Turnshek,D.A.1988,inProceedingsoftheQSOAbsorptionLineMeeting,ed.J.C.Blades,D.A.Turnshek,&C.A.Norman,17 Venemans,B.P.,Rottgering,H.J.A.,Miley,G.K.,vanBreugel,W.J.M.,deBreuck,C.,Kurk,J.D.,Pentericci,L.,Stanford,S.A.,Overzier,R.A.,Croft,S.,&Ford,H.2007,A&A,461,823 Verner,D.A.,Barthel,P.D.,&Tytler,D.1994,A&AS,108,287 Vestergaard,M.2002,ApJ,571,733 Vestergaard,M.2003,ApJ,599,116 Voit,G.M.,Weymann,R.J.,&Korista,K.T.1993,ApJ,413,95 Warner,C.,Hamann,F.,&Dietrich,M.2003,ApJ,596,72 Weymann,R.J.,Carswell,R.F.,&Smith,M.G.1981,ARA&A,19,41 Weymann,R.J.,Morris,S.L.,Foltz,C.B.,&Hewett,P.C.1991,ApJ,373,23 Weymann,R.J.,Williams,R.E.,Peterson,B.M.,&Turnshek,D.A.1979,ApJ,234,33 Wise,J.H.,Eracleous,M.,Charlton,J.C.,&Ganguly,R.2004,ApJ,613,129 Wolfe,A.M.,&Prochaska,J.X.2000,ApJ,545,591 Yuan,Q.,Green,R.F.,Brotherton,M.,Tripp,T.M.,Kaiser,M.E.,&Kriss,G.A.2002,ApJ,575,687 Zel'Dovich,Y.B.,&Novikov,I.D.1964,SovietPhysicsDoklady,9,246 140

PAGE 141

BorninBogota(Colombia)in1978,PaolaRodrguezHidalgolivedinSpainallherlifeuntilmovingtoFloridain2002.ShereceivedheraPh.D.inastronomyfromtheUniversityofFloridainMay2009. 141