<%BANNER%>

OH-PLIF Measurements and Accuracy Investigation in High Pressure GH2/GO2 Combustion

Permanent Link: http://ufdc.ufl.edu/UFE0022446/00001

Material Information

Title: OH-PLIF Measurements and Accuracy Investigation in High Pressure GH2/GO2 Combustion
Physical Description: 1 online resource (203 p.)
Language: english
Creator: Vaidyanathan, Aravind
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: combustion, high, hydrogen, measurement, oh, oxygen, plif, pressure, uncertainties
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9 % at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Aravind Vaidyanathan.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Segal, Corin.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022446:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022446/00001

Material Information

Title: OH-PLIF Measurements and Accuracy Investigation in High Pressure GH2/GO2 Combustion
Physical Description: 1 online resource (203 p.)
Language: english
Creator: Vaidyanathan, Aravind
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: combustion, high, hydrogen, measurement, oh, oxygen, plif, pressure, uncertainties
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Aerospace Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9 % at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Aravind Vaidyanathan.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Segal, Corin.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022446:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101202_AAAAAX INGEST_TIME 2010-12-02T10:30:35Z PACKAGE UFE0022446_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 6726 DFID F20101202_AAANJB ORIGIN DEPOSITOR PATH vaidyanathan_a_Page_069thm.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
23839f920eeda551b508c3e23c97fae4
SHA-1
87b1a30a9456fb2fe8513e395a477dd7351b2d67
1051973 F20101202_AAAOMD vaidyanathan_a_Page_174.jp2
b5ad2b93f81920cac69afc3a15d61c7d
7b0c3b6dcd1fa7b63c4cf62be09908287648977c
626026 F20101202_AAAOLO vaidyanathan_a_Page_132.jp2
b2c5a5c68c75bfbcc0329c35191c7011
b6c8ee2dff63bce7c03a4ba2f1dba135d0299604
714110 F20101202_AAANJC vaidyanathan_a_Page_041.jp2
687fbc3b44aa8ed4d1c3a2f54abcad90
1cabe1f95028ed75846e4a92a6369ce55e2010eb
1051969 F20101202_AAAOME vaidyanathan_a_Page_175.jp2
e8a99ec15df76141bf6502b7fcec2574
41b76121de5d6209783343f1c5148ae8de442e99
726877 F20101202_AAAOLP vaidyanathan_a_Page_133.jp2
d46acd51aecf9c1f5db7f57d54f018d5
601de66854f6437bf8d710e8d22b3f6973bf8bc5
1039436 F20101202_AAAOLQ vaidyanathan_a_Page_134.jp2
39d6aea9c85dc67e0b3c3af407ac08e0
99436cf1382ff97777766396faa34813fc075d81
1051972 F20101202_AAANJD vaidyanathan_a_Page_196.jp2
fa697e0ae9773b66b0b1cea0b5199ec2
090cc2b96cf31231b49432979c65c02078c77a43
1051907 F20101202_AAAOMF vaidyanathan_a_Page_178.jp2
40db7e78044ddf3205ed6b22738d0d46
bfad7491c63dd0714793d6304beefe4d781256f8
692910 F20101202_AAAOLR vaidyanathan_a_Page_135.jp2
f38e97ebc8c2fa608007585871b902b0
21ff25a03d3920f944af9e7fd32a9ee5e9a4da07
5125 F20101202_AAANJE vaidyanathan_a_Page_178thm.jpg
6308c9f88cedfee67c8f4c0bfbce08c1
115bfec03de2b03560ac15ac8dae6978fa1e17e4
1051981 F20101202_AAAOMG vaidyanathan_a_Page_179.jp2
3bd16ca96a57503f2e9bcaf41c080b7c
b75a958f7ed62d72a31e9919afd4592878f4bbc9
382070 F20101202_AAAOLS vaidyanathan_a_Page_136.jp2
ea15b12f9e2fe78fdc73917b341938c7
44e95851f3e160ad9cb25c8071c49e4e231db5ef
25271604 F20101202_AAANJF vaidyanathan_a_Page_004.tif
27b84c86fd8892c791d80c16199e14da
e0941876ce49ba29679a22682fb0b47e8a5a4244
1051894 F20101202_AAAOMH vaidyanathan_a_Page_184.jp2
8f4e0f0761a44b031c019dc3fa056e41
81b42b6b32b1d9d986f3c16914490ebe22de78a5
687256 F20101202_AAAOLT vaidyanathan_a_Page_139.jp2
331eded999386a10100cae2ef8f1bd11
0940a67997bea6144a6870f99a775f639b9fd97d
11957 F20101202_AAANJG vaidyanathan_a_Page_014.QC.jpg
3c6f9f50bfb2da6fca9d3500f941d412
1e121b1310a903912157c4a0277a8a24fa6d2c2d
1051971 F20101202_AAAOMI vaidyanathan_a_Page_185.jp2
ac5d2bda937a006ca64b96ea3049bd9d
f830fa49b06c0a46fe43113056eb652ef40d648f
846816 F20101202_AAAOLU vaidyanathan_a_Page_145.jp2
39a502185cbc2b97adc4c81b175557fb
6ea3dedd9596d9f96204d2df799aa41c32c10255
F20101202_AAANJH vaidyanathan_a_Page_132.tif
452453c159988bbac10432bea106526c
0ba4628e73dbea8da1c1e15abbd0609f70b0d622
1051942 F20101202_AAAOMJ vaidyanathan_a_Page_186.jp2
1513b79c563bab79fa9454535f826a5f
498159781ce17276a5e2e6284983f26ee88088e8
879221 F20101202_AAAOLV vaidyanathan_a_Page_150.jp2
a2342b944aa78d4dc7354e0913402361
41a329da82836de967d6ad83db789bb058d80f7d
11865 F20101202_AAANJI vaidyanathan_a_Page_050.QC.jpg
94248cc2ecb805e7e26d537958ad348c
6a9e74621ea07d6476db519db5f013da49a6e279
1051950 F20101202_AAAOMK vaidyanathan_a_Page_187.jp2
06fd311f32a0bd7ab00a8921bd7dc22f
f9d3b8ee33d6cc01d41aa87be51e95b792cd539c
916037 F20101202_AAAOLW vaidyanathan_a_Page_154.jp2
2e341554514ce903f8b5186693e8bfd3
f097e1ded977c93a8adf97f0e8f1a102f0b0badf
F20101202_AAAONA vaidyanathan_a_Page_029.tif
26f83f185849f552258000f881e2699a
d4e7f7d7f0db30fc49adb4e7605b44b889cc6ddc
F20101202_AAANJJ vaidyanathan_a_Page_183.tif
c1a0f5aeffc86a538c3361e7875e751e
099f7bdd6a1a50e2c0c140dfa6fa4bf3f1d5c3aa
1051801 F20101202_AAAOML vaidyanathan_a_Page_188.jp2
47a0d3094cbe0d66261d31752d5efb65
4ef1bf2f7b32b2764a9859089ea6796c42825bd8
643484 F20101202_AAAOLX vaidyanathan_a_Page_155.jp2
43ce5e265c82bf9a349ae0403d3460ea
054d1c4aad2907d5c241e674726bc12a45f0be74
F20101202_AAAONB vaidyanathan_a_Page_030.tif
34cfd697a2747a8420bd13ce6b526180
128a3f964a31206e6c824d061a63615075376210
49077 F20101202_AAANJK vaidyanathan_a_Page_192.jpg
ff9cf9fa09fb864f7fcf3aa9dc81f18f
0a0c3e1b07560c14be4abbbe5f9d744a45f3849b
1043862 F20101202_AAAOMM vaidyanathan_a_Page_190.jp2
7492ad5fa30c8cb101894e50e2b9ad88
6fb47a66ff181d7adc793bb0e7598107e4d41922
41650 F20101202_AAAOLY vaidyanathan_a_Page_160.jp2
1052214782c9d0f449082439d7647602
3d5370f866f317b4f105933150c5d8c11c1d33be
33374 F20101202_AAANKA vaidyanathan_a_Page_058.jpg
f926cccee6a8086dddbfc8b52ab8b61d
01d00fec0a46b96e34530372462533c151d8f469
F20101202_AAAONC vaidyanathan_a_Page_031.tif
ee6a3deb566509ada3185fd9cefc4ce4
b2dd563a4c94061480e8788dd1e4abe7654d1cba
679350 F20101202_AAANJL vaidyanathan_a_Page_059.jp2
3a8854bd208a5c16e20fc57cc869d1e6
8845f09fc069ac6632e2c30e37df657f644b5571
769469 F20101202_AAAOMN vaidyanathan_a_Page_192.jp2
dd2a7fef4c05e3fc5686de3624850cf9
f2b0c4da721724444f97c08613beacd35f967c9d
37592 F20101202_AAAOLZ vaidyanathan_a_Page_164.jp2
a37f8f4386afcf482466d2d905fad0fc
cdb7d52218164abfb892bf351789d56546674df2
F20101202_AAANKB vaidyanathan_a_Page_120.tif
36ce7db909e964aab269f83e2653c4cf
d56d6b13dedf44c5db283df8da2166b9c4cd7e69
F20101202_AAAOND vaidyanathan_a_Page_032.tif
c5fabba4754d5f97464d6a774043d047
4b717009de22fc912c2ef7e0992a4ec93149cb6b
5270 F20101202_AAANJM vaidyanathan_a_Page_185thm.jpg
2b7bf437d6bed0263882a6d41460c7fa
cc3fd9c5cab7321f3de0f249cab77de455330eb1
521900 F20101202_AAAOMO vaidyanathan_a_Page_193.jp2
5c9e2059600f4c633006c2a229e7bb00
7d6e7e616ee823988b1c557e1af55d2e852ef0c1
1051930 F20101202_AAANIY vaidyanathan_a_Page_070.jp2
c180402a678abf8b09d188abc09f1c1b
247679a531b9a503b6bc40f5cf68868aad4d500b
F20101202_AAAONE vaidyanathan_a_Page_035.tif
a80012212a28c3807dac3689069f8535
cf7ffc0c052f7c392667d43b657c68c3f64add6a
58026 F20101202_AAANKC vaidyanathan_a_Page_173.jpg
585da7f7e3234b6e924ac4cee33a69f4
9a6d023c12832560058975ce244409c1d87188f3
F20101202_AAANJN vaidyanathan_a_Page_074.tif
671246c1bc642f621d1295d75b1108ed
a77959fb0b0557e572cb0f59337ac09d5a1c400e
837595 F20101202_AAAOMP vaidyanathan_a_Page_194.jp2
ba4993921ab96912928c86da9310dc0c
8c965fd6d006f3fb38f242fe8c39df2474475d65
3560 F20101202_AAANIZ vaidyanathan_a_Page_045thm.jpg
958a5ab50084cf5f2e2ea99715f9c67b
e89073c9e009545ee49fdf9bb5b356877269af0e
F20101202_AAAONF vaidyanathan_a_Page_039.tif
b5fb78adbba29ff8292910260a926be8
844960094fda3adde0008890a3e496fb7debe998
39628 F20101202_AAANKD vaidyanathan_a_Page_166.jpg
25fcaba50311777093e3ea9f23cf4ee5
96904a9c12d918bfd86cc95c2771decac6820809
1051959 F20101202_AAANJO vaidyanathan_a_Page_182.jp2
c8a0481b257714791e8ced4432775439
1f83c623413d4e43e3b82e6de05d132950279c26
623567 F20101202_AAAOMQ vaidyanathan_a_Page_195.jp2
1f4c4eaa9c8861ffff82ecf44479c767
cb0aaa3644f96e2c4fa337e0ddd365288faeadf3
10483 F20101202_AAANJP vaidyanathan_a_Page_161.QC.jpg
aa5aa858663f3208d94c45f815986a13
c336d166534abce65675781351dd1ca900e961e9
243575 F20101202_AAAOMR vaidyanathan_a_Page_202.jp2
992ca28a07bd979239b01ff7b3307048
d7ba8d0946450db9d9df758ba35136a633966efd
25265604 F20101202_AAAONG vaidyanathan_a_Page_049.tif
caf88d7cf29a8efcf1061054e521d2cb
e5b0030bc644effa8184515c1e4f398fd3882b3a
1053954 F20101202_AAANKE vaidyanathan_a_Page_107.tif
9809401be1a92730282633cef0030428
f92549ab6e72c90580d175ef2bff3346718c5bc2
9363 F20101202_AAANJQ vaidyanathan_a_Page_108.QC.jpg
33f6bd550ce97835884bca7aa7592af7
b19c0fd9d63bccda9c575c121a2a0f3868eb7e68
F20101202_AAAOMS vaidyanathan_a_Page_003.tif
42fe07a831c92d547cb95392876dcfa6
361467af9fb9f7d4dd84206b7ef76d66a8e46608
F20101202_AAAONH vaidyanathan_a_Page_051.tif
1336f9259aa982f6482cd2d612f0c972
245b2ef3e1d1c35c59217c6b4157e9e0b7d9513c
15602 F20101202_AAANKF vaidyanathan_a_Page_139.QC.jpg
855dee1b943d324b3cd82294e4b987c8
1fda9bab0436fbd73636d23ff35a29edc3b3583b
F20101202_AAANJR vaidyanathan_a_Page_116.tif
8b3e5b51eaa0177c19d9cfccbc1178f6
2ef9468c4bd20ced244d6faf98633fedf5553020
F20101202_AAAOMT vaidyanathan_a_Page_008.tif
897a32274fd9c2e8cf9b927c3025cb48
7a02aa17ca5b9c00ff67cca8b5d7c19d0c34b050
F20101202_AAAONI vaidyanathan_a_Page_054.tif
e8b4381074b8db748189cb32d1034bb2
9a8cf150b322349c3a43e3045c83ea4a3facac89
861783 F20101202_AAANKG vaidyanathan_a_Page_036.jp2
f13ff3c0f1a655f92cf03e69342bcb34
95c4208acd11231f7b728a10cef214fda04871c8
4426 F20101202_AAANJS vaidyanathan_a_Page_105thm.jpg
e76c76401bba878b414946eb1e316c72
1d7c60386e086fd87009e4cf8e8efa2b57afed80
F20101202_AAAOMU vaidyanathan_a_Page_011.tif
d5640096957bf943973f9230ac7a0f72
56192f940eeb57dd52097346cfbdb474203a5ff7
F20101202_AAAONJ vaidyanathan_a_Page_055.tif
39c3a638ae9184ea5233662f1a2c64b9
bfc788d0e322503c48dbea2c7d023802281d8f37
F20101202_AAANKH vaidyanathan_a_Page_189.tif
3153ff8a3f02f1452112827788e8d01a
e5e1776a942ac214a0d0202c405d5d598181c8a0
49179 F20101202_AAANJT vaidyanathan_a_Page_165.jp2
4f3265e5b2d982ce57c5760bccc20cda
2a058fcbea8827a2fc61d078fa70da4ce8f1b2a8
F20101202_AAAOMV vaidyanathan_a_Page_013.tif
fcb4046dd9a6b9670e40e4c67343c662
32bbacd907ca6d4decef584c0d250a5fb85ba62a
F20101202_AAAONK vaidyanathan_a_Page_057.tif
a41b217d59fa4861de98e4cfc4b3d251
d5aac75a104c369358d81e45556193a5e5839b71
F20101202_AAANJU vaidyanathan_a_Page_119.jp2
ee4e9db4aac5539f9ead04f6123f3bab
a99d92c63d9dbb83d5afa8dff2a32f1d9cc46e92
F20101202_AAAOMW vaidyanathan_a_Page_021.tif
93b2b07a78c638d5d43b2f774c243c14
1771c80bf91187252fe2f0a202c4a01a5eca7b3f
1051965 F20101202_AAANKI vaidyanathan_a_Page_010.jp2
105a3d7827986070732235e9acb55348
addf31b7d6520acf7f8753fa8c52363faccaaf86
F20101202_AAAOOA vaidyanathan_a_Page_090.tif
63f6f029e10e93ec4495e6c41d28196f
beddb051d1f1c93bb26ddb3e696a62a65a496c75
F20101202_AAAONL vaidyanathan_a_Page_061.tif
9b528c305f6ce32ca1b14f5fe7e3edc2
3bafb60deddbae4184e533ef85c2d46ae4f2c76e
16304 F20101202_AAANJV vaidyanathan_a_Page_081.QC.jpg
1ee58d0c26d3b562473cef72b3ca8651
7f467c071ec9086a16fb81104d248bb24d83d2b9
F20101202_AAAOMX vaidyanathan_a_Page_022.tif
92ff48afbb06dd0e3cd6ecbb94c6d716
1cea49216a706a442f937926d68c6f2cf1757fda
36650 F20101202_AAANKJ vaidyanathan_a_Page_023.jpg
37940512454934b5908937ef2123bcfc
687bf0bdb63569636e30d9c5099ace650a57ce33
F20101202_AAAOOB vaidyanathan_a_Page_095.tif
291034db4fc482526ffda308cce805e3
2cb3afc2b9fa826dee0352ab167c5c258ccdf425
F20101202_AAAONM vaidyanathan_a_Page_062.tif
5dd774b02372e73d42535e5b1e1c3847
e128a52b0f34136e62d858aa1a4b755506295a3e
4780 F20101202_AAANJW vaidyanathan_a_Page_150thm.jpg
0a256ca618340ac1a31905066b1bf6f4
3c5160eec0e13ddb2019a3c3ee99f17fa7ec1a24
F20101202_AAAOMY vaidyanathan_a_Page_025.tif
63986c185ec4887722c4b887a32039c7
96c774d8cce7266167f83f9c083b7f7873c17a58
F20101202_AAANKK vaidyanathan_a_Page_001.tif
964c870490ca52f1522ff57280b975d3
70f9d419a93d12b434719cb99f7f53338096da1e
F20101202_AAAOOC vaidyanathan_a_Page_098.tif
a56a3f2d97c7a7ef4dff5ea213d36545
f646d8cde1ccfd263ff69667d01c6f7349cbcecf
F20101202_AAAONN vaidyanathan_a_Page_063.tif
ce6d47ce029e0e3ea6552d61257c0ce5
f50eafd161c3f3c627a8b1ff1dfb1de9925390a0
12943 F20101202_AAANJX vaidyanathan_a_Page_165.QC.jpg
9e9e02602009384445d16a0672e00d38
01c7b9f44b5be065d1fa21000eceea5778e73ff9
F20101202_AAAOMZ vaidyanathan_a_Page_027.tif
60fb1f111346b37329e75b884a182a94
60d5eda8bf57a9befaccbbf467b63220d5b97b05
1051986 F20101202_AAANLA vaidyanathan_a_Page_018.jp2
6c353d73d02caad2dfc0ce2fc65fd8a2
f245af9f37f5dd75f357c23340204343aaf0febb
F20101202_AAANKL vaidyanathan_a_Page_136.tif
e92d58e582c22eddd9c73370153e52d0
bec8b9d0768a77bbfb1a9d35e3b7f714c8d07a14
F20101202_AAAOOD vaidyanathan_a_Page_099.tif
085e3a6edee8bb1dd8bab72dc639d924
ff4752d496d9539c7ed285abb79c23478499e5db
F20101202_AAAONO vaidyanathan_a_Page_065.tif
c0ce43a20d97481047842e30651cae2d
614c0770b9ce95d523751674c075f7c9e3583b26
21941 F20101202_AAANJY vaidyanathan_a_Page_127.QC.jpg
06fa64d90f188c1eb2c8431af57f7c5a
df63b539fc152c831f75654f9ca94105c48d0a55
22772 F20101202_AAANLB vaidyanathan_a_Page_073.QC.jpg
144b6018152b766d345bcad9e388864a
f8378f12d5bfccc54f433a674a25500a962bd68d
69950 F20101202_AAANKM vaidyanathan_a_Page_124.jpg
8a5f9bf4a74d6ea6d5c6ade08617c37a
b0aafe0f986c577d080e421932229df28bfa3024
F20101202_AAAOOE vaidyanathan_a_Page_100.tif
cda76fc0bee1f50eb826bc62ffcfd8cd
a9f3e886b79965aa96e7209ad9a04a4d2b2ac1b8
F20101202_AAAONP vaidyanathan_a_Page_067.tif
7f406eef0a2e4cbe951fc1882aaffe30
fc09fe65a8c1f9265f60fb2963d96ecb969aac75
3277 F20101202_AAANJZ vaidyanathan_a_Page_052thm.jpg
7a63fed3098d8541d2148940c48741bb
00a95ec7d6b66273378e4e0472f29522a6b3cebc
3150 F20101202_AAANLC vaidyanathan_a_Page_058thm.jpg
5a6912226daad793fedc3798443edaba
c7a571d407ec195514a400e8bf929d6a29f54d30
619631 F20101202_AAANKN vaidyanathan_a_Page_048.jp2
570f3d7fdc5d1ca7109600f76b543dc9
3c1e9f0290b3cec7ec20db012a099f65dbd44fd0
F20101202_AAAOOF vaidyanathan_a_Page_101.tif
56f4c381fe0e2a06a57a4f91e2bc7251
2c2b6e4728020e2bec9805c907c29bf5524b687a
F20101202_AAAONQ vaidyanathan_a_Page_071.tif
610f12e44119f89f91c80ce65c86ef9c
030d093355ab1db5683f32ef25b2c058dd0069e7
824587 F20101202_AAANLD vaidyanathan_a_Page_152.jp2
675b43a2d9a2cfe8f0951747466fb58b
fbc830b26a732947aac25b1e65e440fa3ac2c8e6
F20101202_AAANKO vaidyanathan_a_Page_103.tif
d8d3573e693a4893364923de3f4671f6
a317275c71c06e18349d6f8141deddf86ee5b9f0
F20101202_AAAOOG vaidyanathan_a_Page_104.tif
1c870a11c017500d1a8cf7198220d35a
75d7b2964f62e31e7ddc5d753bb020d5fff6839d
F20101202_AAAONR vaidyanathan_a_Page_073.tif
31b12cb9159b3613945ff402140a4f08
343bd6c952b1690cab2ab515e896bccf710b84db
F20101202_AAANLE vaidyanathan_a_Page_186.tif
451db3f86543ed3891ad19c1566c732c
234cd233d8a304740108af58a073b72e36992d51
F20101202_AAANKP vaidyanathan_a_Page_134.tif
613a645d54b78db5d40d18ff2df3b221
a7229053229ff6552c6390c70d7eb2b117758fdd
F20101202_AAAONS vaidyanathan_a_Page_076.tif
2b97f0dd31050a669965d510fde27b4d
1d0458f117358f195e9f9f6d75ba83461421f99b
60752 F20101202_AAANKQ vaidyanathan_a_Page_153.jpg
da4e9933b1c9d2fdaf3dff6031fad808
0e2216548bc032ecfd64c621826139960ac812fe
F20101202_AAAOOH vaidyanathan_a_Page_106.tif
f604f56a8bab831a1ee895f8afa50d92
825ccc54b753fed05a0acb78f4f746cbecb0cff4
F20101202_AAAONT vaidyanathan_a_Page_080.tif
98986955eb1cb31b1f4b6616a5d009cb
375f0d61cc57ef8f5a76dfbad004ef48179ea1dd
20064 F20101202_AAANLF vaidyanathan_a_Page_096.QC.jpg
0c39c00c7228a7075db293c34444fa23
4e338cdefe8b4c4f899798c389645ffc723a095c
30954 F20101202_AAANKR vaidyanathan_a_Page_060.jpg
e8c5ab53029cf2fd08c3d6803523a859
81459f217e4251e7cf936ba7c2ccdc8ae00a95b0
F20101202_AAAOOI vaidyanathan_a_Page_110.tif
454f7a5cf6a44863e2f31b0b4cb8c152
11cbd5ebeb0c04b66fca40fe3f349f774ec88ce7
F20101202_AAAONU vaidyanathan_a_Page_081.tif
22a0e287feb82ab9a6fe79e3e955e171
f27d94c878250cdd13efd11fcc2ad4f4009f3c0c
48902 F20101202_AAANLG vaidyanathan_a_Page_155.jpg
8587fd3edb8d0894bdd1892d387a2ce2
37decc5ce12ea26fe87982df55b1e84cc93fab2c
F20101202_AAANKS vaidyanathan_a_Page_043.tif
6fd242b77c0788b05bdec68ae226ed1f
614f81a457563ad6c7821bf46d0084560ba73cee
F20101202_AAAOOJ vaidyanathan_a_Page_114.tif
06dc110f78bb5cbedf6a3ef465a19e1c
6419a3d24c19ca04744d4a8092af2740f46fb77c
F20101202_AAAONV vaidyanathan_a_Page_082.tif
fe75bf0634563496df44841e32f9b162
7f07c75527954817be2e8cb31030b26958d5853c
330135 F20101202_AAANLH vaidyanathan_a_Page_020.jp2
0cf99e7b35efb579562e7150d8d01420
f06f6a89690112bafc7df09b45898e1b2e5b3ca5
23352 F20101202_AAANKT vaidyanathan_a_Page_083.QC.jpg
fe2af5608ba58c325bead691bc2725c4
50e12768bbf2aded2f0a5d1684b36aaa5f306fdf
F20101202_AAAOOK vaidyanathan_a_Page_115.tif
7299ff8c0e79e412ce85d81e2f2cd384
0f55467087811374ef280cdad7485386b24339b9
F20101202_AAAONW vaidyanathan_a_Page_085.tif
e2c0dba0d0c87e9db150b5ec4b66902f
60ec52c0f68d8fe3c33c5988a8a078f9893ac54f
F20101202_AAANLI vaidyanathan_a_Page_026.tif
159cae075c63141a78bd63b65fe517c8
692a08fc26acb052e35c88266b29173992bd8b5a
F20101202_AAANKU vaidyanathan_a_Page_040.tif
e52266293275da585c55f879d36b05af
1bf7a1720128c067267d2d42639eff0f4f1dbe61
F20101202_AAAOPA vaidyanathan_a_Page_148.tif
f87ba7284d9b7fa800d9880c3dfe5484
2c37bcfcb556bac6443ae55e6f7b44091b42bfc5
F20101202_AAAOOL vaidyanathan_a_Page_121.tif
c598b1a8775040a147f253b351feddac
792303ed2787501a1cffd0cf04c31b7b5073127c
F20101202_AAAONX vaidyanathan_a_Page_086.tif
eb2d77b5819817fd4549c2103a02e9d5
5cd5b04abc6855e2dda5d35422f773ad5f6a404d
10422 F20101202_AAANLJ vaidyanathan_a_Page_023.QC.jpg
0890772105ed670cb31c3ca946d0520d
9b2b59eafe31ff6168ada985c16343b5d82b2f61
7762 F20101202_AAANKV vaidyanathan_a_Page_197thm.jpg
1d7575af833e7b0684a1a3360d0a0831
7b55ba1f169f165716616ad4a1656b62cd140d8e
F20101202_AAAOPB vaidyanathan_a_Page_151.tif
f6f35745219eb839cdbaf4d3ac351b62
6801ef163efa00d30ef33126ddc24fb4b9930518
F20101202_AAAOOM vaidyanathan_a_Page_126.tif
b94683ac1dfc0fdb1c4f89de07bdec6a
e03d8441fecc2ad2394bc2ac85b1256b75f321a7
F20101202_AAAONY vaidyanathan_a_Page_087.tif
dbb9e452e8b1298316ff7ad160bb518a
b2db93e70854f3debf60ef8fd56a93c3d4ed91e7
7457 F20101202_AAANLK vaidyanathan_a_Page_098thm.jpg
5dc2d6604c22e14001757e8f6742fa8f
7d97d616ec972631f27230dcaac1c000f276dd8b
59253 F20101202_AAANKW vaidyanathan_a_Page_031.jpg
ff772d64200788d1251bc5dd64c564ea
dd79bb8e084c22b5a71b6d4c2ed2fc8bee346874
F20101202_AAAOPC vaidyanathan_a_Page_152.tif
77e9fc2635e3602b77ab63a608b37dfe
907e64cb374304cb4f63ccea040cd0a37b80df91
F20101202_AAAOON vaidyanathan_a_Page_127.tif
c06a0737306ca0686ee093534a950a85
3642212112fd31e05ce108f2971700f1c112cc46
F20101202_AAAONZ vaidyanathan_a_Page_089.tif
5ad45ad0ea8661489160a17e67b7bc93
68480ebf570f1c49772c6b0151c1f23e7fae7f5f
12680 F20101202_AAANMA vaidyanathan_a_Page_021.QC.jpg
bce49a8f5c37b3d22ea5b4f19f32c37f
71b3da3bc311485145754da59e8fda2174c61f98
3819 F20101202_AAANLL vaidyanathan_a_Page_158thm.jpg
036b663649b9d1c8d6dbb7066f080a23
f9d2a72cfaf8d647fff5b716e8dc99f0dbf9bd89
21009 F20101202_AAANKX vaidyanathan_a_Page_087.QC.jpg
f31a794e05925ef5fe56f956e971676e
99541bde832cc7a116ae307e25f30ac037a332c8
F20101202_AAAOPD vaidyanathan_a_Page_158.tif
54ffe007054763d5a516f363f5b5e7f4
6c0fa1cb575e6a9881a5ebd8883ea3e24b4c3f29
F20101202_AAAOOO vaidyanathan_a_Page_128.tif
d161705cdd8897eb1d22b90a70203c7e
4fc675cbca055f1772d5bfb04d0cce658fbdd3e4
F20101202_AAANMB vaidyanathan_a_Page_185.tif
e879401706010987d40f0534ca38889d
f65fcab1723ea8129b2892f7322ec28b25d567c6
15847 F20101202_AAANLM vaidyanathan_a_Page_079.QC.jpg
c0d3e5d1f7c9539190ff04ceb47476dd
e4bca86eaaca891cec5dc03ae5811454ac590f60
1051927 F20101202_AAANKY vaidyanathan_a_Page_082.jp2
00eeb97a1f61b7150a468b325d9d7217
97bf8858cbdac7673cffc9cca0e90c4fd44521a5
F20101202_AAAOPE vaidyanathan_a_Page_160.tif
02a344b6ba6f0f4bbcf62219a2e61b2d
3d97b938ddc1dfc2fa40fa0f0b19807a278b9312
F20101202_AAAOOP vaidyanathan_a_Page_129.tif
46780392a5920ee3b0c6af8fb99fa18b
7b51ca8aba7de19e1f178c3cfd8892dc0bb2ef39
88680 F20101202_AAANMC vaidyanathan_a_Page_065.jpg
02a8e2bcd846aa12f38b4a1602b2f71f
8a3f1954e571009c8ba0b6d32dd99f5763db1aba
711648 F20101202_AAANLN vaidyanathan_a_Page_004.jp2
eca59ab855fc172b505bb90d5dd9a343
b28d29120b0e006920ceeb1b248ca5d96dfff1ff
7180 F20101202_AAANKZ vaidyanathan_a_Page_025thm.jpg
29a9f0884f334a0fa0bb644146b6d6ec
715f747e6bb6a009ba10a6469f2f6ec2f6c52772
F20101202_AAAOPF vaidyanathan_a_Page_163.tif
826c2e683d74d3ac75091a2a4f8c7558
4bb7e3d1e2ac75d9baa63ec2470ee87c610fba65
F20101202_AAAOOQ vaidyanathan_a_Page_131.tif
a325f9a77ed08163273f552939bc19cd
bdee1531db7bfe04969930999bc21f8cae1ae100
16228 F20101202_AAANMD vaidyanathan_a_Page_113.QC.jpg
6058b926dabea81e14279f5c60469dda
9ec32be8ce3635da0f8bd322dd2882052a98e231
1348 F20101202_AAANLO vaidyanathan_a_Page_002thm.jpg
dedfa8a1e9798389085b7c94b8260464
c6a06d664685930209f09387ad01897227bf4d1e
F20101202_AAAOPG vaidyanathan_a_Page_168.tif
fc9109fe78c8f84199d8e107260869aa
5abf1971be277580f7bd2d35e042a8ddf4c1d5e1
F20101202_AAAOOR vaidyanathan_a_Page_133.tif
e9141a6262d8c5131f5fe16e62642085
6809f4e2759f18cbe9868a2ece3be5b160526ab6
F20101202_AAANME vaidyanathan_a_Page_197.tif
cef59726e817fbcbe1bfcfa30bd7a81d
1e85323928e7c7f992ef8abf9721531c27fdab7c
111383 F20101202_AAANLP vaidyanathan_a_Page_199.jpg
c455866d7679720727a881d054293f5d
9d86eb4d2a47a7ff9084352d2620900c0a2c81cc
F20101202_AAAOPH vaidyanathan_a_Page_169.tif
6596374b2bca017e53f62c50673e2b96
5bebec75f427cb186c4f7f4652a44f81a38cf348
F20101202_AAAOOS vaidyanathan_a_Page_138.tif
9519c0fea5258ad5651e30cb6bb9b579
a79f51cfb75254e08eb2115515ab8980fecc0f87
F20101202_AAANMF vaidyanathan_a_Page_159.tif
491722f685203c0d493cc30fd4d1572e
ea2000a3f4904cebf212c8d6b493ceb57fc74adb
16905 F20101202_AAANLQ vaidyanathan_a_Page_112.QC.jpg
8b2108372ca5ce53a1a1dc54a415c000
a0075f64f88e610089b480e7512c1be5c19d1ab1
F20101202_AAAOOT vaidyanathan_a_Page_139.tif
fce0e8a005aef5d1f771f4c52d7d903c
267d7522db35a9507e6f82ae6b039333941c9220
5567 F20101202_AAANLR vaidyanathan_a_Page_127thm.jpg
b99723d84d01bcdb16785af5b41fcfd8
7b962f8d77fd95c7a9f09701da4310e3edea5dcb
F20101202_AAAOPI vaidyanathan_a_Page_175.tif
e21fdb37323bfc434ff2dfa56f9fdac3
e6452bb011aef14d60d3f34f01bab40b9fb37d6b
F20101202_AAAOOU vaidyanathan_a_Page_140.tif
af73d922a75fcce784cbc5e82ab88a3b
ac8978d4dfa9f0b986dee906b75ca2225be7580c
F20101202_AAANMG vaidyanathan_a_Page_007.tif
3c18e99bd5dda342d85b9c7a997ae830
5fffb8cf573609ea1e19b04c102cc5d025fdf0a0
6389 F20101202_AAANLS vaidyanathan_a_Page_034thm.jpg
556cefd138f9d8d61f6f85f513e1945b
69254e3f058194581d3ae3b00e9fd74b3ec05752
F20101202_AAAOPJ vaidyanathan_a_Page_176.tif
5d3623260e9e4c3b9b3018966639bcdf
6a18f63e2922e3d74d6692ff84be10f78edb72ca
F20101202_AAAOOV vaidyanathan_a_Page_143.tif
75abe155b44011a337f7752a7b633968
e240b06f0066e826170b3b4a9f3eb2612b991e2b
1051928 F20101202_AAANMH vaidyanathan_a_Page_172.jp2
be8846ae4ede1d104669402617ed908e
0af8c705ab8a5997c7b2cfa67e5078cda9cb2ec5
10117 F20101202_AAANLT vaidyanathan_a_Page_059.QC.jpg
3444381b604fe795ccaaae43fe239f07
e742b5d92e15219c5d117455ab04c6780db66d90
F20101202_AAAOPK vaidyanathan_a_Page_180.tif
e37f6be761d6243c2dd18af9c3130fde
14dd6bb8a8c69685f7abfacb33dce813f3c0bef1
F20101202_AAAOOW vaidyanathan_a_Page_144.tif
33030d3dcdfa9fd7b0f04d7303a1c21a
5b3d209c0c8c10b0e119669e8514e01ccbb58e8f
3172 F20101202_AAANMI vaidyanathan_a_Page_164thm.jpg
432354fd6e93d31a2b1be0bba4944dca
91e5c1babdfc6c0345f1c5d830e780d54e5d9cb6
22008 F20101202_AAANLU vaidyanathan_a_Page_005.QC.jpg
2cdad3ae3c0af00ada75969a2a9176ee
568f4b8aeb61d817c98e3a5ef55e4d5b9bade390
7414 F20101202_AAAOQA vaidyanathan_a_Page_010thm.jpg
b0fd377dac8e2709450bbf27f3ae9a86
ef69225324e50f2889e133e1dd3488b65c83a743
F20101202_AAAOPL vaidyanathan_a_Page_181.tif
675d3e5978beba16bf200832ec50067e
bef99a1fdeb302e4700131d4f663d82229a71ef4
F20101202_AAAOOX vaidyanathan_a_Page_145.tif
2b920c3aada5f816aaccd8a8a5dca863
389cccae916c3f2dfc7114a3db9b94efce437081
F20101202_AAANMJ vaidyanathan_a_Page_069.tif
04e33d14dab7919ca53be4db39b189d1
3c926f2952d45c9178f7ec925827e28ff9046ba2
F20101202_AAANLV vaidyanathan_a_Page_024.tif
50edb573e2df0985453b4d78f75d06f2
e1ed37947087c55f71499ec3384661006e873d90
3458 F20101202_AAAOQB vaidyanathan_a_Page_015.QC.jpg
3019208b5dbe677227b20e058efc6528
7c9f51cefc0277114f883d4ee0d1f37f8d44304b
F20101202_AAAOPM vaidyanathan_a_Page_182.tif
72b2eaeb6b61b7eb6aeebcfa535e3623
6188db89121f14bd78352b9c9ca6d97bd6a4a549
F20101202_AAAOOY vaidyanathan_a_Page_146.tif
0fb9583535a6a85d4a59ef5db7512d8c
cc3e7593378a228913c0fb75c441b9fdaeed98be
1019423 F20101202_AAANMK vaidyanathan_a_Page_030.jp2
0770831da391059ffe67ca40082d5968
45a286591c57ce14974e81c6f958207005fa81fe
F20101202_AAANLW vaidyanathan_a_Page_172.tif
ffafd2c8c441036673ab82739685817f
1cbfc27c71ca14cafe8b1317ae2b534b3fa552f1
6400 F20101202_AAAOQC vaidyanathan_a_Page_016thm.jpg
6b177eb6b763185dfe3f2016f90e02bb
9809a4f8f29099e54fce8fba76d0bec6c2eed820
F20101202_AAAOPN vaidyanathan_a_Page_188.tif
2ce829e718f8cecb16b8abab02f7ab39
65e32af08efafde6074d3b236420a4106dac23d5
F20101202_AAAOOZ vaidyanathan_a_Page_147.tif
80ad79f5db3a09ce056f8abf3a2579df
023a2c3cc5b2bccfd5a4f7251e95816da46fabe1
28452 F20101202_AAANML vaidyanathan_a_Page_010.QC.jpg
aa996a5932d3266380cf8caeee14892a
b5e3002e1f2e708bb09a84fedac53675fcbb1b7c
F20101202_AAANLX vaidyanathan_a_Page_119.tif
75c33e8b99d59d5829ff5cc87b9a13ae
aee0cc9c907cf743bc27fb46aab9a727074d8f57
29928 F20101202_AAANNA vaidyanathan_a_Page_199.QC.jpg
ffe0133477a91d174c425317ab3e29e2
f5ed7c34b4deb46d649039969ca2249766ea9d46
21037 F20101202_AAAOQD vaidyanathan_a_Page_017.QC.jpg
673d70f8f9df2622d1ab2ca8150f8f30
c7db44a7e9361227598ab9471fa12eaacd4f3560
F20101202_AAAOPO vaidyanathan_a_Page_194.tif
516bbf94fa1819699b4869764825c029
c729c1cd42db71c0fc6128fbe181cc75e2ced9af
7303 F20101202_AAANMM vaidyanathan_a_Page_066thm.jpg
e3eee8c5f8a3428d8470464397c4a02c
bc1d2486d67194aa4f19229b253fe7f45ef97fad
26340 F20101202_AAANLY vaidyanathan_a_Page_066.QC.jpg
8984251951a6ca864afebe9ac8ad8a7a
c5cdc65d9d82f3f946d9497f589a974b978ce705
62483 F20101202_AAANNB vaidyanathan_a_Page_095.jpg
18f80f32c2514b35091ebe8fd0628590
384afa8bc65c36f5369fb0316a8219a91ea06afe
24291 F20101202_AAAOQE vaidyanathan_a_Page_018.QC.jpg
587893e22533cf322a81a1a30f788100
fc53462adad3ecb1262e27346a34c25d3131ec63
F20101202_AAAOPP vaidyanathan_a_Page_196.tif
2949f7e741cbc302f87d377205dd0872
cba0125a537ade258de5590f95105a21a90c31a3
F20101202_AAANMN vaidyanathan_a_Page_048.tif
9303a7b3a5be7b5cc9c88c6fdab36977
6b70c527f2558f11e14ac2f4339a674876b18f09
54196 F20101202_AAANLZ vaidyanathan_a_Page_094.jpg
f3760e359a92e435839f818de67a5ec1
974b9befcc4edafa348cdeb93c32e4847c0fa52a
1035881 F20101202_AAANNC vaidyanathan_a_Page_131.jp2
e6023fda262aaa38eb805727142cbfc8
cdf05bb73c7757a89e52816a7a64a510ee45b4a1
25879 F20101202_AAAOQF vaidyanathan_a_Page_019.QC.jpg
2f9f096751a668bbd95527b31eb20e90
123d97cf86ab25b7d83728442cdaab4242b9a34a
F20101202_AAAOPQ vaidyanathan_a_Page_200.tif
59ca65d9075622c49873d11f8cb24661
0d22239241d17a994428686b674baef8945fc1b7
54851 F20101202_AAANMO vaidyanathan_a_Page_113.jpg
5a2151d002dbfd9a4bda994313d70712
99b29b47fe7e95e23942a5bf2c5b068eef54dfee
6961 F20101202_AAANND vaidyanathan_a_Page_119thm.jpg
a1c27d93a6443feb8cafe0a531629bcf
566a6f2db9bb4205eb437b39692e041992491a24
6976 F20101202_AAAOQG vaidyanathan_a_Page_019thm.jpg
546e5c159153c952506886685a8e0805
7335d0101edcc914a60d37cf50db54a78583f58f
F20101202_AAAOPR vaidyanathan_a_Page_202.tif
941aaa324aeedeaba618848ec1160bc0
fb8e1f7f47cec3e5070a5fbb2d3171d3286910e6
5411 F20101202_AAANMP vaidyanathan_a_Page_184thm.jpg
0b54e0036881d9c14518a31f6fbcde63
952703b6836ed70349aadcce6ceacab39bb2882c
7683 F20101202_AAANNE vaidyanathan_a_Page_009thm.jpg
7ad4725db292d3aeac844b268c471669
8c64c20081442c35f7db3de0c659cb5f3a377d1c
11507 F20101202_AAAOQH vaidyanathan_a_Page_024.QC.jpg
129ed098a7195864fd5210bcac3bbfd8
6979c381725ba2ca5cc5c6460e262163374fb607
F20101202_AAAOPS vaidyanathan_a_Page_203.tif
5c28b4f0269bd4dd5efaedf38344ece4
8fd44fc232610ef337a75dd656a519bd84d213d8
1051985 F20101202_AAANMQ vaidyanathan_a_Page_094.jp2
5d74b0766f96f75bd1437d55a081a285
23768e3d5e07bbfcab7aa13d0ef419768c0f3ddd
F20101202_AAANNF vaidyanathan_a_Page_108.tif
36f2a9faf252d0bac1a25eed899274d7
b6411f3fa1dfbf616c6544c5c92bf6b9090558dc
6958 F20101202_AAAOQI vaidyanathan_a_Page_026thm.jpg
a5b6bc4f9f7e23956240ff498b323f2e
eff62c4c0164e343e009672369e04a9325399dea
4014805 F20101202_AAAOPT vaidyanathan_a.pdf
01988342af5765b9d9cf8d954949e59f
361e576a8cf412582e9ac742632cf2f22652f7ac
29542 F20101202_AAANMR vaidyanathan_a_Page_020.jpg
d8ed6cd897519ecea2d68f5e579834c6
9f6af0f20d932e8430ba8dffba6c91e6d12d8f16
F20101202_AAANNG vaidyanathan_a_Page_084.tif
ad9fc777a827cd28d1b45c676e25a99c
78a2e83ae08aa491af30354a5ba91ceccb17e05c
152573 F20101202_AAAOPU UFE0022446_00001.mets FULL
97ce8a8508ade0cb1092bce0bf632820
286b731ad6d095f832a4c8cda94b316e002b74c3
958168 F20101202_AAANMS vaidyanathan_a_Page_029.jp2
f3d3be8d5813369003efbd028fac495b
72a10a3c56bb5ba5f647489028372f60e0a4458f
18043 F20101202_AAAOQJ vaidyanathan_a_Page_028.QC.jpg
d15af71c402da871b854841a7c5bb951
65f736d836f9aef926414ca06e8191546ad8a353
7814 F20101202_AAAOPV vaidyanathan_a_Page_001.QC.jpg
2fd6b0ec46216159b705d963eef36b08
5cb80fa6d1672cea7862ee34e3f3d388c0f9cdbd
F20101202_AAANMT vaidyanathan_a_Page_124.tif
8085ec7ea66ef659552e5e7324ef320d
bf19f70bd3eb764168850822e2a7b3b69b0a319e
22248 F20101202_AAANNH vaidyanathan_a_Page_202.jpg
d7d05e3c6deb487e3c189f7bd5b11d9e
31abd93f65117a400b6e5f87be09de34611515fe
6229 F20101202_AAAOQK vaidyanathan_a_Page_029thm.jpg
c6787020f4ee811cee8434cfea998394
73f9d4659345641cefadeca7d546c34663d3a4e2
3143 F20101202_AAAOPW vaidyanathan_a_Page_003.QC.jpg
dc49911019a756a0b27da09ff41b8944
c661d2d8254e6529ace5085b2ba703cd2db07f05
26208 F20101202_AAANMU vaidyanathan_a_Page_098.QC.jpg
7ba8a23572a3871ce0f70f8d3015b709
d6e4b254d9fac395d05eebabf8d5f749e3b1f956
59769 F20101202_AAANNI vaidyanathan_a_Page_156.jpg
ca2c76000aec412cc432e0314559b4dc
736f4b1055e1b87c982a3465efd6081c6b3a30ec
9330 F20101202_AAAORA vaidyanathan_a_Page_048.QC.jpg
0b67076062dc543cffeac4bb690a48b5
ea1e48d458f7540987cd8d26ca71729fe9ee0f6b
24674 F20101202_AAAOQL vaidyanathan_a_Page_030.QC.jpg
f087a895ca6018866402673d51e87227
a26934789e09ce57787f6150bbbecacb410055e6
6497 F20101202_AAAOPX vaidyanathan_a_Page_007.QC.jpg
246dcaaa9d93fc851a061ecb70c46cae
de63f141baee4e31ec8766e616b49034fad273b5
F20101202_AAANMV vaidyanathan_a_Page_016.tif
600ca74e8a93e295bb546d232ae0200c
36cb3166fb59530aa9dcfa3bf09780cd774a40fb
47562 F20101202_AAANNJ vaidyanathan_a_Page_080.jpg
cda603dad8f4b597707352c6d4d509f4
252081e92827258023fad5928b47b1bb798c891e
11078 F20101202_AAAORB vaidyanathan_a_Page_049.QC.jpg
5f4b947e34342002f819b15227bbcc06
7de9879d838c59461b251084b80dc8ceaa5b2b34
6663 F20101202_AAAOQM vaidyanathan_a_Page_030thm.jpg
1029f69469fb361f2da4414fc864beb3
a31b7c20426ee028f1b7985e35b0369b24cb4fca
24451 F20101202_AAAOPY vaidyanathan_a_Page_008.QC.jpg
150992397080aa770fb639395e810ac0
b1a05241ec3dc133834f2d92f9be9382f538cd3b
F20101202_AAANMW vaidyanathan_a_Page_083.tif
f9ddfc7b43cc1207d835c94ef872f334
e3329f8a9a7466cbeb23ccaa30bb80d8ee71e243
797239 F20101202_AAANNK vaidyanathan_a_Page_100.jp2
9617973ffa642212ef2f323efd104d6e
ca51b50393a0ae0975c992462fb12a31c62c455b
3447 F20101202_AAAORC vaidyanathan_a_Page_049thm.jpg
c33e658b1f8af8baa341283227daae36
fac9d08cd6645c251ca0bdc91863ffefa489930d
23933 F20101202_AAAOQN vaidyanathan_a_Page_032.QC.jpg
b2a8115b38a11ee2e806fe2f61666830
68c0e1a8a5eacdc0c27c52a24861589ebf020e72
6781 F20101202_AAAOPZ vaidyanathan_a_Page_008thm.jpg
44ac2a274984f566eacc2850bdfe9d95
02612e9133329474c3c868d536fb1788a18a8739
43705 F20101202_AAANMX vaidyanathan_a_Page_171.jpg
2cd5047c6adab3f87aec52af21a47b83
70cd006ed8f5ebb7d85c9922347e71e7a9a079c3
5371 F20101202_AAANOA vaidyanathan_a_Page_006thm.jpg
45f51eaab28ccd5c3dfc467a0b236419
7797c4a6b5ea4f75c75c8cf9810312f14f8e3901
51748 F20101202_AAANNL vaidyanathan_a_Page_135.jpg
f98b9e98f783b0dec879b7437f64a329
04901c2e4224314e01820e3f83a85acc443241b1
3667 F20101202_AAAORD vaidyanathan_a_Page_050thm.jpg
06ed418de75eed289c0339ebd1f5c34d
7e896e43916d2eaf5e3530ef7297ca97a35f59d6
5568 F20101202_AAAOQO vaidyanathan_a_Page_035thm.jpg
a5eb8eff5016fcc8a44c866620b639c6
5df737adbda2b8be458d1760a5facb3e01f5268a
26323 F20101202_AAANMY vaidyanathan_a_Page_121.QC.jpg
1c56747cb97ac344cc65b85a0c558240
352943d54b48e4614958b9329428e4cae4f2e952
41577 F20101202_AAANOB vaidyanathan_a_Page_169.jp2
a42a729ad6f143821463821db71e0178
0d750edf3c0c68c501b0cf7771ba895b7bb53ddf
18135 F20101202_AAANNM vaidyanathan_a_Page_147.QC.jpg
83d100125adc72662d0067a2d62c6478
62c6f0bcb9541da39f673d77d1becf6bde25ab63
9596 F20101202_AAAORE vaidyanathan_a_Page_051.QC.jpg
b29fc6559ce2277c7869a5d5b33bff43
f629f3bfc730bfbfba8124202bad8d425e599e8f
20891 F20101202_AAAOQP vaidyanathan_a_Page_036.QC.jpg
df74f72af3f56b20b817999d2548214b
29ab16b21335909e141264ba200d1224082c51d9
21769 F20101202_AAANMZ vaidyanathan_a_Page_068.QC.jpg
ebfa2b41d7c685627c9b5d9e7a6b2ef9
afc7473a6c10ec900bda7365fa8dab9a48abe8f7
5229 F20101202_AAANOC vaidyanathan_a_Page_144thm.jpg
0d19f6092722eb2247f2c6d5cb23bdfb
3853f3e09885a4be2a6e5b30de6c60e7cb1f71e4
32917 F20101202_AAANNN vaidyanathan_a_Page_092.jpg
0abc33613df1d9f3edd92eb5d73bb71a
4595b47bd3f87372d06c3382aba4a54dcde26ce2
3074 F20101202_AAAORF vaidyanathan_a_Page_051thm.jpg
28bf406ecdaf7a3eaa9118dde7ee4886
a14856efeabf40215e2c7d84b7f1546d35e9c2be
5996 F20101202_AAAOQQ vaidyanathan_a_Page_036thm.jpg
0d7e4d4c253b795bf2e23bbaaf2970bc
6c480937198245e38d815aac16d34d28ce5c6f84
19296 F20101202_AAANOD vaidyanathan_a_Page_137.QC.jpg
c9f5c70cae2665dc5e3e2e080cf5e371
beb3b5d1d1075974d19f7cde569749e2a821f27d
26479 F20101202_AAANNO vaidyanathan_a_Page_125.jpg
e937eb52200211b4faeaec7106465b1d
a7ceb0e995330c85e3708024878a995108486ad1
3770 F20101202_AAAORG vaidyanathan_a_Page_054thm.jpg
f6bf139b9b3790133679e92d0ab285ef
f35b8702569b6cbb92cf54c4e20e50c3eb418861
6475 F20101202_AAAOQR vaidyanathan_a_Page_037thm.jpg
525d8d6a1b6c2f04490a844388c6e7d5
da95bae7fd249a14b9a1a88c47efc64d3658103e
2177 F20101202_AAANOE vaidyanathan_a_Page_007thm.jpg
0b2ae5537bc27784a688f2a6dccf4289
75c9b41a320bce1de0130f66ce1ac080bb9ef433
6930 F20101202_AAANNP vaidyanathan_a_Page_083thm.jpg
f3c53eb5a77f06f5626b582deb817594
cbb2ca75e8ebe0356f109c84f88cf70b48d833c4
3160 F20101202_AAAORH vaidyanathan_a_Page_055thm.jpg
fc5b299e900ea2b9bea622e9b54ee953
4ca865d40c7463ef2d179f2f90ed00ed14171f11
6896 F20101202_AAAOQS vaidyanathan_a_Page_038thm.jpg
1bc42670e608425ae6476fdedf35eb63
3b9aeceb1edf52ab715b13d687031ce4824a001f
48698 F20101202_AAANOF vaidyanathan_a_Page_171.jp2
4a0c87280da129e94f0fc67e3b1a1695
b45786ff06d49e152544cb1d59ff99e8b4477305
63396 F20101202_AAANNQ vaidyanathan_a_Page_149.jpg
30e481b1165f9d77e9b987fedd2e193b
fcaeab390d99f876c9bdd7c86d7af19000e4852d
3527 F20101202_AAAORI vaidyanathan_a_Page_056thm.jpg
3fb46ba7f11bdb162fd23b3aa873a530
1be589baad3985ff441d41c790207035943266e3
5419 F20101202_AAAOQT vaidyanathan_a_Page_039thm.jpg
62c9b523bd274ce92f6edb3e9e0fcc93
0c3e095095c551eb65bd5dc2f1b8af406cdd8865
84449 F20101202_AAANOG vaidyanathan_a_Page_008.jpg
0bb5e5597d74d45357edfa2534059e6a
6d7427f1ab412ea776add64453f6b763ae292815
10231 F20101202_AAANNR vaidyanathan_a_Page_027.QC.jpg
8a32fc30d9455a3fdcf897c0e589d951
aa3dc8226b95defb040a713598ebeff780051d71
11591 F20101202_AAAORJ vaidyanathan_a_Page_057.QC.jpg
0539f875440221d996648633622a3829
0d6fb84cae6e7a9d73f67898cbf57a85e28b689e
11811 F20101202_AAAOQU vaidyanathan_a_Page_040.QC.jpg
ea01bbd92828c406b8eddec881f37aa1
a280832e13e3f9958261f35cd299a4613e1897e9
37025 F20101202_AAANOH vaidyanathan_a_Page_167.jpg
ecf75f7ffeeeb2e7f9e726b849a5a759
5a45004552f6be4e7849f29dd7ab22da27702a95
4216 F20101202_AAANNS vaidyanathan_a_Page_014thm.jpg
45ab85dc52b896c46da6bb31ea28cf73
3c30f717e49d805f92f88057f50839440bf5a6c1
2761 F20101202_AAAOQV vaidyanathan_a_Page_042thm.jpg
7a8002534be3c45f02f3ed2585d90fdb
ebd2cad903a3390252c2e1ecaa87c7a8ffa5a732
3446 F20101202_AAANNT vaidyanathan_a_Page_023thm.jpg
7b377128915909ece3a0bd854026c13a
ba105797ecb5366b0c95f3786e60db6ac3d533d9
3569 F20101202_AAAORK vaidyanathan_a_Page_057thm.jpg
d9051b98b80cba0bb996f898e87cca82
1f9e441b9cecc77ce0567ac67d06e3a178114411
3412 F20101202_AAAOQW vaidyanathan_a_Page_043thm.jpg
e2618af16f69e40529cca97a8c09dbcb
4e74e3388b3653d5b2c4912b9a86e35e164496dc
36719 F20101202_AAANOI vaidyanathan_a_Page_014.jpg
16825397a0c21eb057b723e148d9b93d
df5f7b4760e4944db9e89acef9c4385b33739a95
3255 F20101202_AAANNU vaidyanathan_a_Page_059thm.jpg
12b0b359dce96af4fd58ab63f5f367fc
1533484cef6f00daaa6a868c079e3fea7b83be30
6858 F20101202_AAAOSA vaidyanathan_a_Page_075thm.jpg
55bff3abbfa676bb2831ea6622700dc3
5f560db7024c319e5035507123abf32a913a65c3
9457 F20101202_AAAORL vaidyanathan_a_Page_058.QC.jpg
75e39fef022dc7a6769d1d370054b8d5
f509f72346d2023a4753a11c5fbebc2b1a74f32f
3028 F20101202_AAAOQX vaidyanathan_a_Page_044thm.jpg
6c41683b1b8ac1a5a6982bdbf7a6987a
f12a15791f2b30904347d057ff3d416cb891b797
4942 F20101202_AAANOJ vaidyanathan_a_Page_183thm.jpg
b79a97c54c11d61534bba0809ef4af45
fb2c96eb16390928d6f6f1dbc84e866d69ae8dc5
83235 F20101202_AAANNV vaidyanathan_a_Page_118.jpg
59098d028107f13872aba576b09f68fa
9989ea6730f9053aa9fa0f2f4511ed8d9aa577d0
26325 F20101202_AAAOSB vaidyanathan_a_Page_076.QC.jpg
f5a83338698fda53b449fe2daf295a57
951d211892c010236184acec7e383ae8951e0dac
8733 F20101202_AAAORM vaidyanathan_a_Page_060.QC.jpg
958105e802c26f896094ce33ecaa0855
f4c0e45762d8a9849682caa8c383ebbc7a0f99df
9577 F20101202_AAAOQY vaidyanathan_a_Page_046.QC.jpg
038d535267c7c996912e1b44164e5fb6
8c70a6444db8e5ed110413c872326a7efc91c129
4768 F20101202_AAANOK vaidyanathan_a_Page_112thm.jpg
3e57eb430443e874a4fc8d63db984436
479bfe172f8a8e5c0201fe2817685adebd5a2a8a
1051937 F20101202_AAANNW vaidyanathan_a_Page_005.jp2
517b97dc4be889e9b46b7a253ebeb04d
920200ed40b08af540a54b6d375f59409885dbf5
11143 F20101202_AAAOSC vaidyanathan_a_Page_077.QC.jpg
1863abc3728c3c80305280df712257a0
088bbe53603bed6bfe2b3ecf23a6ecb587117978
10685 F20101202_AAAORN vaidyanathan_a_Page_061.QC.jpg
d71e45e2c4594c276ac60bd8a105222c
5bc2b3205b870b405622442e27751813b65f518a
3159 F20101202_AAAOQZ vaidyanathan_a_Page_046thm.jpg
f3c9c10e05b56acb38c04a400c3a211e
f7eba59f3fa8f4ee31459603346558ddf0d611ce
35930 F20101202_AAANPA vaidyanathan_a_Page_059.jpg
caa1268fa191f7a4f35d217125f858b2
7dde94f7c6f267e5aca8bbcd8681dd2ddba06cc4
2268 F20101202_AAANOL vaidyanathan_a_Page_202thm.jpg
455546433454bf65fcb762bff0bd1b6f
9d5d8890fb0d17daf006bec7337ef9e6491373b5
F20101202_AAANNX vaidyanathan_a_Page_092.tif
7d8a80d0a118844e68c2522efc5aa332
4c2ba617b84db3001bc446827f43f8bc6005fa0d
3337 F20101202_AAAOSD vaidyanathan_a_Page_077thm.jpg
c7901f115ff9242adcced07fe55e8223
63386aa617c796f7aa362a63b5374593fb5fb690
3477 F20101202_AAAORO vaidyanathan_a_Page_061thm.jpg
f2b3bb359593e8e8b16aca378096f73e
9d69ebc40714b93be36822e6b14709d7d8dc7eae
F20101202_AAANPB vaidyanathan_a_Page_008.jp2
01902cff7cfe4c83f127b01e06d2b298
fa8cc9b4bc56933e53015c6902010bd8873e6c4c
4191 F20101202_AAANOM vaidyanathan_a_Page_106thm.jpg
d435c187549b1b93eb46b94b03cce36f
2869358bfe6664be8ce7fbb57df330b85410d862
31243 F20101202_AAANNY vaidyanathan_a_Page_027.jpg
2144981b4dbda77dd87286fc979e834e
4becdc90a511a3d3fd5b52ed9a76bf596dd7be1c
14559 F20101202_AAAOSE vaidyanathan_a_Page_078.QC.jpg
c288a2981ff395845d61abeb40a4bf13
3320c25476b594ad97a968a2c30027d3bf5260b9
F20101202_AAAORP vaidyanathan_a_Page_062thm.jpg
2ce92f5c4bd804d20a18fffc5f35a6aa
a83b660c2553581dd5b48ca2f540762cfab88c14
48176 F20101202_AAANPC vaidyanathan_a_Page_132.jpg
1187dfc9d61ec817c9970657319995d2
c92a608b7d05a2a9bf1391f0c2e2a39b5225a140
5011 F20101202_AAANON vaidyanathan_a_Page_081thm.jpg
9467ca5ede4dda51d7b6de20950720aa
dd482261d7e22b186bed38c27e68e4cb9e00a2b9
4257 F20101202_AAANNZ vaidyanathan_a_Page_191thm.jpg
b30dade0491bdbb43d7896814bc91afc
842497d098ab853fbe1ccace4603fd65eab9583d
4759 F20101202_AAAOSF vaidyanathan_a_Page_078thm.jpg
9bf0b00107c326b3230441a8b7a6a694
355ef0c0b8a5f77e0e3d9be90c995aba66a81af7
2824 F20101202_AAAORQ vaidyanathan_a_Page_063thm.jpg
dac011c84dcd5322c9e1509adf3e9225
b227ecde0f11febd7292a9e49852f0d5c14afaa9
1051916 F20101202_AAANPD vaidyanathan_a_Page_098.jp2
f44bb4238b0f7606face611fc867f238
a0d2cb60208f05b6be412ab26f9c80d2aed42a2e
38284 F20101202_AAANOO vaidyanathan_a_Page_061.jpg
7a244daf46dab552914814a865e75701
5d12a0ad62773b5e26c537c49d0136f8c43ea478
4931 F20101202_AAAOSG vaidyanathan_a_Page_079thm.jpg
1388bdddb9a070102bd8abfadb879888
651d6d6c0a39fdc02877364119a85b483ae94fa9
26274 F20101202_AAAORR vaidyanathan_a_Page_064.QC.jpg
eccc1fff474d96adcabee4a8e002a961
684dc3bb81dd59b288de713d2bc8183c8f4efe8f
67179 F20101202_AAANPE vaidyanathan_a_Page_068.jpg
2e9065eaff5a4847d226de9f128a40d3
86d30c51724e24767fd1022faf149136f3970010
18467 F20101202_AAANOP vaidyanathan_a_Page_039.QC.jpg
80003a262af49179435ee0b4f24ebda5
487f6e4c5730581e0b17f2b0a527acae3330feda
15418 F20101202_AAAOSH vaidyanathan_a_Page_080.QC.jpg
81248865c81d4bb0d8bc507c100b17ec
389f173538ce2f5621578029fbe66891775720e5
7358 F20101202_AAAORS vaidyanathan_a_Page_064thm.jpg
7f5aab5a0e2403ba91828ad87e1671a1
ba0a95e8e64dc214a91430520cc8cddc728d91bf
F20101202_AAANPF vaidyanathan_a_Page_002.tif
a0b1b793e5d32191cb26c7b6226dd6ef
8e51918ae5ccf41287c817561d4ab1b0c9717900
768586 F20101202_AAANOQ vaidyanathan_a_Page_089.jp2
a00c95ae82edd4bf2d30e19794162fef
fa239ae7a85e86fbbcb10a99db501c1f6d1ff4cd
28287 F20101202_AAAOSI vaidyanathan_a_Page_082.QC.jpg
c5b7c13c304266fb6e00bac13d277270
1436057e5018ce073ad2d110e414cdaa95e25c60
28264 F20101202_AAAORT vaidyanathan_a_Page_065.QC.jpg
99e108bec7367dedacd7989d0562937c
fd339cd1f1ddfd00be3b06ce722bd580fc9e9528
747766 F20101202_AAANOR vaidyanathan_a_Page_156.jp2
ed6a15af414a26738d9ea0597297b7b9
13104893f90cf0bda7ca19e11b945860f0113fee
5123 F20101202_AAANPG vaidyanathan_a_Page_173thm.jpg
45f96f1e7797f3a0b7d27679988eb9c0
df55056eb9576644e70a26cce12d53a073747a50
7633 F20101202_AAAOSJ vaidyanathan_a_Page_082thm.jpg
0a233340012aa246d8d6f48adbb00b94
56d8a55650e43a5568a4da4cfc6a917264486b36
7769 F20101202_AAAORU vaidyanathan_a_Page_065thm.jpg
d55bdb568b7b47d3f46556be0166bedf
b42a999929a89fbaddf8704a6e857231df2192f1
23786 F20101202_AAANOS vaidyanathan_a_Page_075.QC.jpg
8434efcc8ad9831fccfffc3dd21ee9d7
fb356a3c4aac8a5d6e2b5c90a6970e5db01a005f
41419 F20101202_AAANPH vaidyanathan_a_Page_057.jpg
15f67098e8d21a92ce978475ef7c3e9e
8d1e3891b496ed1c6ee6d9b455d3b3f9609c6749
23142 F20101202_AAAOSK vaidyanathan_a_Page_085.QC.jpg
74c2b77414a9a6d7d36f661460eb7f1e
fa93ca685201028281498af449a7b44c328cccc4
17713 F20101202_AAAORV vaidyanathan_a_Page_067.QC.jpg
24ceefce500c255586c4c2086c1986af
48aa921c4a02b6f527981adbaa7086dcc6fd672f
F20101202_AAANOT vaidyanathan_a_Page_010.tif
4810845e5995f18553996920d5050fd2
1b05b9ec80e6a11689d6466ad94e011eba315f36
66169 F20101202_AAANPI vaidyanathan_a_Page_084.jpg
09c86cf3c87c792f53458b6099a5a9b9
037a2596d5249522df38ac25f6a56cb2eb797183
6379 F20101202_AAAORW vaidyanathan_a_Page_068thm.jpg
89f5d3303628ce2846b8d3bf01852cdf
70bb49b95c8cc4d1776627b1fde4a6063268537a
F20101202_AAANOU vaidyanathan_a_Page_142.tif
72a17a93cf152352ad98f8d0cc3bc0c6
39400957f5001b2ab90b796990a7c7923f7cf8ca
3936 F20101202_AAAOTA vaidyanathan_a_Page_104thm.jpg
c963dbbfe3e03e380c77536f95bd94f9
bb8d44a0035d671b5645b4a06ac85970c01face8
5243 F20101202_AAAOSL vaidyanathan_a_Page_089thm.jpg
5920c9098a2a4207692690542baabd05
f7cfb8f8e860288163c433fee213f6b5fddd2e91
23235 F20101202_AAAORX vaidyanathan_a_Page_069.QC.jpg
17f32ed79595724dbe9b5c0b22c0ddd9
00660c2bd09bc268432e30eaed7b0c59cb969e1f
22978 F20101202_AAANOV vaidyanathan_a_Page_088.QC.jpg
d235e1534bdcd92e3f58adf52e423b50
6a5857ff007cca757ebc35893c9a4c8e19212d99
60535 F20101202_AAANPJ vaidyanathan_a_Page_035.jpg
2587d9cd0b90300d996561c07745b5f6
1b17430ab29e016f9a12a62b9bee039d57ac715e
15510 F20101202_AAAOTB vaidyanathan_a_Page_105.QC.jpg
297c6c18957597e8010021ab708e1681
c33c78c9abde2740c02bf613a9ebd3ac3edb88f1
4061 F20101202_AAAOSM vaidyanathan_a_Page_090thm.jpg
571ab30b54163ef5e65fd1c054532124
26fb597a614c2765f221298a233cbe23ad9f7b60
7129 F20101202_AAAORY vaidyanathan_a_Page_070thm.jpg
57a0d4f387fa476609fdf44f3c784a3d
c3c05d44b42823e69eedac4d862f5a048f0cb5cf
3469 F20101202_AAANOW vaidyanathan_a_Page_163thm.jpg
7d02adf6524d6e253b7114078a7afd29
9d7583d3d7eadda52493882f018cf6c7d513f21e
6079 F20101202_AAANPK vaidyanathan_a_Page_017thm.jpg
6d7db3ffd744b7ccfe8d21551162662a
654926bb214adf366d069cfa2fea39d47331698c
19807 F20101202_AAAOTC vaidyanathan_a_Page_109.QC.jpg
ea6e097b90850806392cad7d9c0e2154
fb09317b389d407001633a06e8dd9d45c6389a1d
13457 F20101202_AAAOSN vaidyanathan_a_Page_091.QC.jpg
0ec6e33dc2ce448233e9795a3ed1dc46
1e3984f9410752a215b6a1f60bd6fd1b89509714
17178 F20101202_AAAORZ vaidyanathan_a_Page_072.QC.jpg
9427be013b4f13a1273ef5abb1c615f7
8fd69f3e9ffe9be96dd775d304026b5a1a61ef6d
17019 F20101202_AAANOX vaidyanathan_a_Page_181.QC.jpg
2bbf919b1466ff80fa024346b10389e2
3fd89d31c93b39ce31d3d2c151ea5d89158ba572
4289 F20101202_AAANQA vaidyanathan_a_Page_130thm.jpg
8bb4e1b9496d0fad8f12849f92c049ed
5e2bfb89f511e52c2003896892ef0b1cdad70d6e
53919 F20101202_AAANPL vaidyanathan_a_Page_110.jp2
de35dee11889d4a4e43722a0c4dba06a
2dfdfe26b89a3baed84b32b517a155ef02ed4805
13476 F20101202_AAAOTD vaidyanathan_a_Page_110.QC.jpg
61bc1ba70fb16bc95886239fdc9f1a71
fac6f8a634537b3808283bfc97149af4f67348e0
4311 F20101202_AAAOSO vaidyanathan_a_Page_091thm.jpg
1070f8244ecd3b9bdcf6039890bbb37b
945d4c63a09df5928200391ec9c8b04c7401f0ea
68425 F20101202_AAANOY vaidyanathan_a_Page_085.jpg
890f9e19fd3755f2edd8e9753e75fb86
1599fad9ef75b06f049f9d40136c0339061c4b9a
17306 F20101202_AAANQB vaidyanathan_a_Page_035.QC.jpg
85a133a8139a6c75faf5bb14a3c17f0d
0f115e1460aa21617f1178c77b8728d23bfedd9e
5051 F20101202_AAANPM vaidyanathan_a_Page_137thm.jpg
d1874b3ac942c448e35d217668dba565
b71bfa84045318abb121cf52803358f3b38f70ea
9316 F20101202_AAAOTE vaidyanathan_a_Page_111.QC.jpg
7aeda4c2b47fa79b9d451638c843769f
8591d92a987125d1841b75dcb934ede6647f6ef6
10216 F20101202_AAAOSP vaidyanathan_a_Page_092.QC.jpg
6c030f74dd53c50ebeb4c6284d4f9863
190400e95f5f07f938edcd8595cfc0e71cd7dfff
4821 F20101202_AAANOZ vaidyanathan_a_Page_190thm.jpg
3b450292871dddf17295ffe8e1af3217
344e8cdc5559e42af9d5f9a234a3cc5c77dfa5ac
745872 F20101202_AAANQC vaidyanathan_a_Page_035.jp2
0ba0c8d67c1c7dc4898eeff21f856b45
9a09b074a231c78f29e0c7256d313206f2f377a1
F20101202_AAANPN vaidyanathan_a_Page_093.tif
b3eb00079fc77f7f1faba7741b781a87
3a61cafb151762d27b1a6f2669cd552c9442ab8d
4918 F20101202_AAAOTF vaidyanathan_a_Page_113thm.jpg
29eec12976e121de34eeda43911873ac
cc216ee8a8a8ce998d12b4c84337077be2c6229d
15830 F20101202_AAAOSQ vaidyanathan_a_Page_094.QC.jpg
29778069256f30b234eff6cef5c760fa
4f889824c1ac5f8cb338cfdddfe34ab4da269b17
280988 F20101202_AAANQD vaidyanathan_a_Page_125.jp2
886bdb24f729238073ae873734b005d1
afc0562bae6f51eb128ab6507d6e84e7575a1616
1051975 F20101202_AAANPO vaidyanathan_a_Page_200.jp2
2160839d84edcacc944bb096c79dfabf
58bb088edc00360c7d02f4fcb82c2ab9aa5e3f59
15979 F20101202_AAAOTG vaidyanathan_a_Page_114.QC.jpg
e95b5866e022b1f0a000ce737afcc48e
b9445a4ba135410c684ae1b66fb2568c50a74bd6
18930 F20101202_AAAOSR vaidyanathan_a_Page_095.QC.jpg
e1833a330b936ae8ba48dc16c06cfb98
30ce6026fb33c755ba090af3ddf33ac3315c8fc7
7674 F20101202_AAANQE vaidyanathan_a_Page_198thm.jpg
7c7ff6852981c0e68e223f662069a10f
f02ba2d455f1127f73f27c95a9b307c756333cf3
F20101202_AAANPP vaidyanathan_a_Page_167.tif
ea4c07f1a2b05855716826fa8024a4d0
8723fa82ee5349676dfdae98cba0666f645804dc
4739 F20101202_AAAOTH vaidyanathan_a_Page_114thm.jpg
7bba2431af27873b82451907843b4859
bfc0a1f5fa762befdae9617b045b291c24cb74a2
5698 F20101202_AAAOSS vaidyanathan_a_Page_095thm.jpg
e0939df214a2cf9c98c0ccbfbc7c161b
a482306a58a36e27346aa9a930f3830e8f246f94
F20101202_AAANQF vaidyanathan_a_Page_034.tif
aa211fb0561440e1e867d8962cdc2a86
08d00aace1fc5d102b842ee3300a203fbb0a3447
3926 F20101202_AAANPQ vaidyanathan_a_Page_107thm.jpg
871cdb3e89603b235fea947f73a8282e
f622e5344dfcb9b0cb91fa61bf1fa3a8dc3fa171
5548 F20101202_AAAOTI vaidyanathan_a_Page_115thm.jpg
e6a07a352293850ed2947d601d3bea38
19c85d0893776001a07ca9ad1d4460f33a9bad9c
5605 F20101202_AAAOST vaidyanathan_a_Page_096thm.jpg
dca3e979c734a6c295017a5e35d2d4cd
a2ac254adf2d6ae917be566696d92fc3cbc3ecec
F20101202_AAANQG vaidyanathan_a_Page_037.tif
00036e292e8bc56aa55ef9c2b2c061e9
f79c55f838904eae24ef0b8cee72787b88cf60b6
37980 F20101202_AAANPR vaidyanathan_a_Page_022.jpg
7ab4fdb2b4cc76e10f584eae5ccf6153
564424ff1e8a16cfe31fe4bcaab8e155ecf4dcb4
21852 F20101202_AAAOTJ vaidyanathan_a_Page_116.QC.jpg
16d046fd2538e9b67bd1f78a8a4e8a91
41970114b54c0c2f47e82326aa9acf6f9015805f
15083 F20101202_AAAOSU vaidyanathan_a_Page_097.QC.jpg
d1470f1c230b8b1a4fdeb3b97f42c00a
abfa385f2bd6369dbb889b12673322a964ed3468
1049234 F20101202_AAANQH vaidyanathan_a_Page_075.jp2
364027dcd8ad27a58b8498de24f230e3
2044de68ca997ab9af662711eab00a32552bb5a9
6354 F20101202_AAANPS vaidyanathan_a_Page_123thm.jpg
ffd8141bc8df5e31c15dc1d15f9bd9e6
932f1cae315ccf05a4163c774b05fce815c8ed9d
5918 F20101202_AAAOTK vaidyanathan_a_Page_116thm.jpg
ab3e9115dbdc113661b384d44a63d4f9
85aff7195b54bebe49b3a00e7092577af2b5f979
4487 F20101202_AAAOSV vaidyanathan_a_Page_097thm.jpg
d73f5d52e86a4411fee3e84cebcf132a
a79ada9d98b7450988326e7f734ed2a0b728abab
58672 F20101202_AAANQI vaidyanathan_a_Page_175.jpg
5ef575d73755b7611e165a1e785eb46d
b8bc2c346b272f4e2e52cf4161fb98acb6babdfb
34193 F20101202_AAANPT vaidyanathan_a_Page_046.jpg
bfe0728fa1888fa0e308282bb0343b65
f9bd6b20a36dd36030db9c98d5044256e240ef4a
7266 F20101202_AAAOTL vaidyanathan_a_Page_120.QC.jpg
c19b5d9ddcf90f35dda9d67911f58e2f
162387c7485beeab4942c9fc4b04cc92832f4894
15840 F20101202_AAAOSW vaidyanathan_a_Page_099.QC.jpg
66be70918faa039b66f8356892a3d2ae
bfc58ba2c137cae39c49e8e01edc273d68b80442
64661 F20101202_AAANQJ vaidyanathan_a_Page_148.jpg
787d59bc6c3a3a866a48f8b4c99c4780
11907dc063e48034f717f0cc43daf97c76ed8517
23803 F20101202_AAANPU vaidyanathan_a_Page_038.QC.jpg
6ae7142f156173b274e7206fa4afac3f
a346f40cc221b3d17c09f1d8c7d1cf292b6a8361
13993 F20101202_AAAOUA vaidyanathan_a_Page_138.QC.jpg
2b493febd767345cefe8a9a7fe20b473
7c604d81ba20e6ef4caa343d35e5d96e427cc265
13212 F20101202_AAAOSX vaidyanathan_a_Page_102.QC.jpg
676ca2e8cd99e6341691caa6eca58890
60b83a76f84351c6ce0c9381ffa50f9b0cc82139
30248 F20101202_AAANPV vaidyanathan_a_Page_063.jpg
f9681a21694b890f11c8efb786c9c36f
0e5eb6676615df43c9672744895a6d7a6461fc14
3951 F20101202_AAAOUB vaidyanathan_a_Page_138thm.jpg
243473da5333c1d1d7e63dbae0be1919
0e4c47151857ea1989db8c7c7124070017576a41
2369 F20101202_AAAOTM vaidyanathan_a_Page_120thm.jpg
fbe3c9d676d6d35ecad118e428a65c30
46aa0a158b51821589756c4f745e679c5b035d04
3247 F20101202_AAAOSY vaidyanathan_a_Page_103thm.jpg
8898667d1b21aa87cffc647699dbc8de
8c9abc67e63f7b48c1637b343de6a5f762de2b6b
7028 F20101202_AAANQK vaidyanathan_a_Page_118thm.jpg
3a9a9f1f891dd950eecf7cbcff03fc32
ab6935268bdd4f0e45022a91108c52e77114613c
6987 F20101202_AAANPW vaidyanathan_a_Page_018thm.jpg
1864befd74244eda34336c4b2e5fc231
995135ad62d44bb52d6f4679266c22f7d6451a15
4371 F20101202_AAAOUC vaidyanathan_a_Page_139thm.jpg
5453e4e9282bea4fb274314a17dda18a
1e7b41a2c33a0de4675e9ead00c996daa7beab00
7502 F20101202_AAAOTN vaidyanathan_a_Page_121thm.jpg
9e7ddf03858e62a7265f97794447401f
62e701628ad701315a4b438762377a07029c44ab
13118 F20101202_AAAOSZ vaidyanathan_a_Page_104.QC.jpg
986107f279be9cd1f2cf68d42ed825c7
b58079d5d67ed2cde8aed1df9bc1ec2c59efa962
61099 F20101202_AAANRA vaidyanathan_a_Page_145.jpg
189a1a2741d7947c3ed83099217c811c
352cf5224797e3933c1236054eb9fcff6553fd9f
32720 F20101202_AAANQL vaidyanathan_a_Page_103.jpg
b9d7166c3aa306ed86893f4522f89a09
6110b8aff2cda9d208cd662c003e7ca4240810aa
9566 F20101202_AAANPX vaidyanathan_a_Page_044.QC.jpg
4209debbff886b37e0943462dbf88f38
f9f4d1c179613a2e58f76edc1066238bbebf4909
3886 F20101202_AAAOUD vaidyanathan_a_Page_140thm.jpg
a92a0a0a6dbe662eacd129c1eb0632a7
07773ef02c4874238342cb20667619c7e4178bf0
6373 F20101202_AAAOTO vaidyanathan_a_Page_124thm.jpg
1d5f80ea79650051740e065497943d26
e81a7f8eac7776e35634007417809101e97aaaa5
2452 F20101202_AAANRB vaidyanathan_a_Page_001thm.jpg
5c8327182a0671670e0c5e6cbdcb8ca9
7ea5129b18c7df4dc361e6abf3bf41e479178287
F20101202_AAANQM vaidyanathan_a_Page_012.tif
d5c36ac2f080e4fd392031a2e83c2046
4046e069d56bfc4f70ad6b9bced31517c631ebcc
467243 F20101202_AAANPY vaidyanathan_a_Page_012.jp2
8cb4f05503dbc30accdc4b052b9a231d
9e8aea35d69f023e57920208c405e010fdf32dd3
17888 F20101202_AAAOUE vaidyanathan_a_Page_141.QC.jpg
7109a20f4330bd2eaf9259902c9d1f1b
0f0b741b663e6af45b3ef978eadb6034cd9a3108
4445 F20101202_AAAOTP vaidyanathan_a_Page_126thm.jpg
3f33348d47ca44c3de370714a6c644bf
b7c630c5304305e28d51db642ff14809d527fd53
F20101202_AAANRC vaidyanathan_a_Page_121.jp2
994a82a1c5fb8f4ac1a5c9d1134d2beb
ede68fc9e4b0692eacf891536f7392f12bd532cd
12187 F20101202_AAANQN vaidyanathan_a_Page_056.QC.jpg
8097313ca1cd92f30ebb4ae2f91838b6
d5e7b36db90fcef3a0319eb81270697b20888f1d
F20101202_AAANPZ vaidyanathan_a_Page_028.tif
526b8a12532287c8f02026752c79bff6
140bb0dce4601cf4e6e54fac81ed53483b5d08e5
4580 F20101202_AAAOUF vaidyanathan_a_Page_142thm.jpg
3fadc7ce921f3b9a64572cae88c40f8a
7113350cbbae20a6a99b9b2f1e20c45343f553be
17983 F20101202_AAAOTQ vaidyanathan_a_Page_128.QC.jpg
9a0c6632595e7447b015f79b6cf2dbcd
62855032ad373d2677544891a493ef20bef9fcfb
1039661 F20101202_AAANRD vaidyanathan_a_Page_038.jp2
5cfd915abef665f8904215b443ea395e
8897de183e8b66cdb0fbeab2264516733dcb71d8
8617 F20101202_AAANQO vaidyanathan_a_Page_042.QC.jpg
5b2c6304a5326500b9a8e407f452fcc2
a5494b91239e6650d7d6001791ca080938034c30
19563 F20101202_AAAOUG vaidyanathan_a_Page_144.QC.jpg
2150822b538dc6269916c5c03a8178a2
6904fa6ba8aea9ea89809409f248588b8a0c100a
19743 F20101202_AAAOTR vaidyanathan_a_Page_129.QC.jpg
cd5ceda2bfc80031aeeb3109c534964c
9cbe483f6d96e4839210809273d387fa3a056a98
F20101202_AAANRE vaidyanathan_a_Page_105.tif
ecdfd0bf7ff421030c676929423734ef
290493ca272178856d0d7fb3a7a446a856ad1a8e
19075 F20101202_AAANQP vaidyanathan_a_Page_033.QC.jpg
79af7061758b1be7d73a9c56ed17a061
96db825f76c9456858bccb12f95c3a9add266e9a
17183 F20101202_AAAOUH vaidyanathan_a_Page_145.QC.jpg
7678eb8411b844ff68e15e236e9813b0
3db1bc819b835601287f5b84af697030971e94e2
5310 F20101202_AAAOTS vaidyanathan_a_Page_129thm.jpg
fff9ffafb015e07102d766d805d679a4
ea63e68b4c458d4b6e622866d344269dae7f047b
3695 F20101202_AAANRF vaidyanathan_a_Page_160thm.jpg
9c38ce9dac4cb500480e523f3a1c0b46
dde5e9bbcd9d0e458f6417ddab138a861b4c2064
F20101202_AAANQQ vaidyanathan_a_Page_041thm.jpg
e3e571a9413f75b13d7968fc07441c6c
988bcdb759c32649b62e2f89eb29adb304d125e3
4646 F20101202_AAAOUI vaidyanathan_a_Page_145thm.jpg
7e6fff8e34cb677e71cc0cbf22fcff4c
b52574e714bad3ba695d036846225ded20ddd789
F20101202_AAAOTT vaidyanathan_a_Page_131thm.jpg
486315aa663e7cbf039dd038361a443a
e80bfbdeeb7a540c0e6f64575e55680bc41e47ba
101391 F20101202_AAANRG vaidyanathan_a_Page_143.jpg
d43641a6657bf736b1396c6c16805852
15d34b4b379c0ecc7dce4d62373f442b452edd4c
F20101202_AAANQR vaidyanathan_a_Page_198.tif
f31b3056c3eeb381f2d2c14e284f3025
059782ef3eee03a39e88b1aa387a55bd34ac8305
4841 F20101202_AAAOUJ vaidyanathan_a_Page_148thm.jpg
d0ca2c296f997b0acf2e0dea83afabb4
d639c311e825768be02a638f94e995274f0dbf73
13060 F20101202_AAAOTU vaidyanathan_a_Page_132.QC.jpg
c4d3461b40f65241d462938fc5c82068
981dfcd07d4fad1c7fcd91a7d2a60be4dae9f20a
551120 F20101202_AAANRH vaidyanathan_a_Page_158.jp2
477a8eee6967b76bb106fecaf362b01e
1c113ba01d6ec555e8f50458b0cbca0ecda35170
5119 F20101202_AAANQS vaidyanathan_a_Page_179thm.jpg
fb31a23f8dcb8261226b7ba57a6ca453
569023b4de03db54f9b9037d9a1415d02c19df9e
18485 F20101202_AAAOUK vaidyanathan_a_Page_149.QC.jpg
23d6ad19dc40ab77f7cb5934484e8de1
91d93ba0600c53f2c8ed111068e9ddd746e38e5a
3609 F20101202_AAAOTV vaidyanathan_a_Page_132thm.jpg
70b15764b07d77ff70af02694b253e73
a03ba6393650d9048bc47023de2a5ed4f3655c5b
1051940 F20101202_AAANRI vaidyanathan_a_Page_127.jp2
17d6f6ad9bed68c2155a1977ee90f29d
76150afc1c3435d8f6550ad875d88fbf804956c4
9800 F20101202_AAANQT vaidyanathan_a_Page_136.QC.jpg
122c9ca8bb233063e7651bcb126e20d1
00d4d8bfa46ed401e3a27930346eb24d8385fc42
5000 F20101202_AAAOUL vaidyanathan_a_Page_149thm.jpg
e4c4f2fdfe7e9124a50fdcf72ea62f28
ca49945180806d4a79e83bff2772454d949abed1
4725 F20101202_AAAOTW vaidyanathan_a_Page_133thm.jpg
98bdb0e4df7a18f3a144637c5dc35434
2851f7c3f522cd5da67e04aa533bfce942cf6f01
5098 F20101202_AAANRJ vaidyanathan_a_Page_175thm.jpg
e7ec22bc78edc7c97b50dd657d677b74
6982ee2cf18ca5f7afe3f52082456cb64a1465c5
3726 F20101202_AAANQU vaidyanathan_a_Page_162thm.jpg
ce44fa4d1acd95159bad946b6b51e143
e08c53bd77e078911497653be796e62e5c9f158d
3165 F20101202_AAAOVA vaidyanathan_a_Page_167thm.jpg
ecfc3dcab9dbaf0a384b26c47000b0a0
4219c268f93eb9e82be91758c70f0cda404d4568
17825 F20101202_AAAOUM vaidyanathan_a_Page_150.QC.jpg
dd58160c3c908143532278ee61631a56
f3b6f1b9de839213e73e7842ef4509b52e5c1fea
5142 F20101202_AAAOTX vaidyanathan_a_Page_134thm.jpg
a82fe1fce283471fd2d260487ebbd97a
1727897011d0ce8c6c760c0299a16e66c5e7ceb7
690537 F20101202_AAANRK vaidyanathan_a_Page_071.jp2
229e2c5839a041c93cb35de4c4e97f22
5756389f97104c0c1cae38f60ceea6692d0495b9
629860 F20101202_AAANQV vaidyanathan_a_Page_191.jp2
812549c1f7262bdbf203718bd21207cf
ecdd8f1c853774bdd5048d68abaef9d39b83b39f
3438 F20101202_AAAOVB vaidyanathan_a_Page_169thm.jpg
c68e93a0210448e2c3cac49f5db12b96
9905b2dadea4f63d84c2071f40c42d9aa3d071eb
3982 F20101202_AAAOTY vaidyanathan_a_Page_135thm.jpg
480a9c6316f16cd265d469b777062e1d
4e339f5a65eae060fc1af209485fd16500f5e193
7646 F20101202_AAANQW vaidyanathan_a_Page_125.QC.jpg
4fb8a9be297b7b2c57d93616323012c0
4ae6c56fc6515521091732e409eb522ff8e50d2b
10757 F20101202_AAAOVC vaidyanathan_a_Page_170.QC.jpg
7e43ca408fd6a5c318012ace18216659
9e2defe043a0d6d51e01cedb43f04658a5398f00
4886 F20101202_AAAOUN vaidyanathan_a_Page_151thm.jpg
cf020d674a74a34efb68eb2feecb4373
afb9a91a4ba89552caff1a660583c766ed680cf6
3058 F20101202_AAAOTZ vaidyanathan_a_Page_136thm.jpg
61b5b2a63905cb8f7408732a5c883bf8
4be1ce714bfa1a3f9b8f519770c24c956e442f58
364089 F20101202_AAANRL vaidyanathan_a_Page_027.jp2
8668836dd92a8e6a45c5fb7ed3fc7bd6
1c4b17c3769d191a12c768d402f734ac9aebbc76
633000 F20101202_AAANQX vaidyanathan_a_Page_138.jp2
12c754e6086a7a4571a780e9ecf39525
c4da46666386561bd7aa3a2586e3452ca2523b44
4934 F20101202_AAANSA vaidyanathan_a_Page_094thm.jpg
9e0a1539c479ce55af16d27b03f924b1
e1864932a825dddff6afc9edb51fdd32bcedbe2a
5468 F20101202_AAAOVD vaidyanathan_a_Page_172thm.jpg
f8cb2643b83424330119eee57e10122e
614167681e074bb58d6c77f79012a6444dc4da27
16922 F20101202_AAAOUO vaidyanathan_a_Page_153.QC.jpg
7e05d5c4fcf3f6628eb352b1491bd6a9
2a41efcba019dd440f1086010870646fee660389
832279 F20101202_AAANRM vaidyanathan_a_Page_096.jp2
b3c6e20d7fc39f85513c1ae3124259a2
57fe0a2cdfb8fb05025716a8f41c57ae77c8616b
1051958 F20101202_AAANQY vaidyanathan_a_Page_143.jp2
1bc7c6474a5802a583b7296a483fffda
bca6d1f3e36031d503e88b11f258c819b1671427
61531 F20101202_AAANSB vaidyanathan_a_Page_074.jpg
89b8b05e2a9d9a3a0397729e6622db6d
125c75c8571771f96ad7afdf2d580b13322f00a3
17079 F20101202_AAAOVE vaidyanathan_a_Page_173.QC.jpg
4e314e0f5749cedb4e621012661bbf62
c98200520a8d668d84d4e8ae0c6c5349cd6b7622
4832 F20101202_AAAOUP vaidyanathan_a_Page_153thm.jpg
86d9c1ea67355d35b2b989d8ce71f15a
3d86084cb0baf9b703c541143c5edb16c2b7e404
17128 F20101202_AAANRN vaidyanathan_a_Page_142.QC.jpg
eeb58234c9fdd292ae906c9ee590da95
6efef6043478faeea119337b8b63569302ca45e2
960342 F20101202_AAANQZ vaidyanathan_a_Page_124.jp2
f8a04d3dd0235013392961a092cfd3b7
5fc89165ce77e6720fe6f5de3f0a8ce472ef828c
1051945 F20101202_AAANSC vaidyanathan_a_Page_064.jp2
087599cfaedb55a42cac609ba5f8e517
5dc10952aa414e11adac4523307a4606f1ddaca8
5157 F20101202_AAAOVF vaidyanathan_a_Page_174thm.jpg
1cb92b9a56ea4bee8acfc8a9ab6f3d2a
1b9935e22322e6f9c01f3d3b568b3e3d8defcf95
17074 F20101202_AAAOUQ vaidyanathan_a_Page_155.QC.jpg
5352e441a7706918b92acd13de9935a0
f996551ba2e31c55661cf2ecd578ccef00201465
3156 F20101202_AAANRO vaidyanathan_a_Page_002.QC.jpg
15f72d9fb5bd093406e99c607085d220
1911eecbc724eae9c18a0e5f4bf88252b8a40ff5
18242 F20101202_AAANSD vaidyanathan_a_Page_184.QC.jpg
0a089f53ab90714676be267b97008c69
1b01d4ecc87b563d04235f6aecf6e97c154120b0
17310 F20101202_AAAOVG vaidyanathan_a_Page_175.QC.jpg
83c6e258e340e9ac1c1062ddfae44e38
34bfd132289f69dcdee00cb870725a301fffb3e5
16862 F20101202_AAAOUR vaidyanathan_a_Page_157.QC.jpg
fdfc00b2d9d1c08ff7c2121f5a508860
ff1ea06f9c36f1005fa4070ad0893c6353a89376
891592 F20101202_AAANRP vaidyanathan_a_Page_115.jp2
99a755b561f00b816d9a34b5a03b1ae0
7c4b23caa205200d6de346fa3c2d5eed36d69657
5553 F20101202_AAANSE vaidyanathan_a_Page_109thm.jpg
7225deed9d8bd586a59c37f4f6709158
677f1acadbf7c3d238a4a71e3140bed98b7ac31c
18914 F20101202_AAAOVH vaidyanathan_a_Page_176.QC.jpg
cd15c6f7180d40f84f3e083b6b972a51
0bb2674bff0bf4f93e3add6af1d364b0be65adb1
12903 F20101202_AAAOUS vaidyanathan_a_Page_159.QC.jpg
165388d6285efa17077402d10abc217c
52781ea3039aac0135fd2361dfdcbe49d3b67fba
F20101202_AAANRQ vaidyanathan_a_Page_017.tif
c1a11c6d45be5f03e26ddc86256822ea
fd2ed9e7f561e589a41451c3db51df7e8ba272a7
16850 F20101202_AAANSF vaidyanathan_a_Page_071.QC.jpg
ab1b47571f9b92e03b36db7201f6d7e4
8227c72665c29c5b362574e7bed8caf18aa1387a
5735 F20101202_AAAOVI vaidyanathan_a_Page_176thm.jpg
5ac5ec0cce5ede682031c71382afa6ec
9d8e30460d09df15847ee235cfb5ed18f4f8af84
3977 F20101202_AAAOUT vaidyanathan_a_Page_159thm.jpg
65356ae9e79f68ad79919c801635636f
c76075c352bf18501f144c3281e4551694135e4b
41638 F20101202_AAANRR vaidyanathan_a_Page_040.jpg
e6dae1b0a5a198da80abfca959961426
211a75b478b1c1a7ec43b95937e0318403aaeae4
1010363 F20101202_AAANSG vaidyanathan_a_Page_122.jp2
c7ef0059c79d18b2ae5e2f2e973497da
bc33c2c843aa47416f5e97f2fcb0a66ab3605506
17444 F20101202_AAAOVJ vaidyanathan_a_Page_178.QC.jpg
a68aab29bcdacef981525a415d42dc0e
7142850a2757ce5de4d56144865ebc4d0892303e
11887 F20101202_AAAOUU vaidyanathan_a_Page_160.QC.jpg
5e52ad43ab142cfa8c5936e373fbac59
0541fda05bbb44c214ee6ebbf4606ab113be5fe4
901382 F20101202_AAANRS vaidyanathan_a_Page_148.jp2
57d8ea2d2048cca6df862003545fea84
f1feca23b5fcb35c15ae21085027c135fcc51379
709176 F20101202_AAANSH vaidyanathan_a_Page_067.jp2
b8d4cd8bf9228a7cbac355566e8c96ba
b1a0e8996751d914de3d32004a067a7e01872f90
5786 F20101202_AAAOVK vaidyanathan_a_Page_180thm.jpg
6c7c2535f47967b56fe8f6173d215933
0ffd900651b5537e4f76d3cb56270e24be0d42b6
12226 F20101202_AAAOUV vaidyanathan_a_Page_163.QC.jpg
8469431860a92330f225e5dbe42fa394
e6c0b498c19f44f7207b209cda7557ea7001083d
58838 F20101202_AAANRT vaidyanathan_a_Page_187.jpg
fbf0dcbbf0a7006b81579aa46e021525
74952d7a88197fe275265988e0552c30de0267be
92918 F20101202_AAANSI vaidyanathan_a_Page_121.jpg
293438887a9626708fa78649bd10f811
8e08ef18812378e1aee06882e1e87cb0f88cdddf
5021 F20101202_AAAOVL vaidyanathan_a_Page_181thm.jpg
1b5ce27ac55fa9f449db1d7a411ea4e3
4475369190ec6f716c7caa22ca3ca2eb42058c8f
10832 F20101202_AAAOUW vaidyanathan_a_Page_164.QC.jpg
8235911cc1e5c523be3e637a98b0e362
634f37a981f9976e6540d8ac47ed3eaa4e2763aa
1051978 F20101202_AAANRU vaidyanathan_a_Page_180.jp2
57360430ba1fb735b40ee61eeaf980c1
4f268e4501bf7f06aaa87746bef62e77314abdce
679290 F20101202_AAANSJ vaidyanathan_a_Page_081.jp2
b1677f5a89f96a58db04fc0ffcaffbd1
ac37e97adf7bd57f0eb08dc2a56aa46c867cf2ec
7735 F20101202_AAAOWA vaidyanathan_a_Page_199thm.jpg
f3743461971313c7dfd436a5403b12da
12a7739cdb8f38c32fb104aa1caa9e7d1d9883c8
16960 F20101202_AAAOVM vaidyanathan_a_Page_182.QC.jpg
b730f451286ecfec17c0b8e773d9aa55
71805fabaab8a3be850906279fdd5e16b0082654
3660 F20101202_AAAOUX vaidyanathan_a_Page_165thm.jpg
961b99b4dab2f387de027d7ac5fccc1e
bd20ed70c40cc1fce91ec93c972566840c8bf2ca
26359 F20101202_AAANRV vaidyanathan_a_Page_001.jpg
44082964a7a4ba027376d5a65f089cea
ffaf451cc9c91e3b68cf1810e4620d1429f2b164
F20101202_AAANSK vaidyanathan_a_Page_170.tif
abb670991cc5167724344e5bfb6f6f0b
46f8a7de3a947ebd0a9a222b28ffa7bbe6e22c98
29247 F20101202_AAAOWB vaidyanathan_a_Page_201.QC.jpg
49d493fc3d1dea07c1634bd3c7f4d7b0
25a6dadea17bd5aaa3a23ec5bf6c2a70b5f5d7c9
4967 F20101202_AAAOVN vaidyanathan_a_Page_182thm.jpg
64fe405d2e0c87fd5ef66a7df43f7718
889f5f37c074c73750163c46e894ccb44fe20dd0
11940 F20101202_AAAOUY vaidyanathan_a_Page_166.QC.jpg
6473eafeb11815580728acacced8a907
05fb51201266cb4e3da0306896e734f80afe2273
F20101202_AAANRW vaidyanathan_a_Page_020.tif
db894b0210c442ccb59b439342f2ecd8
6b8fc2ddd3a3b53033764b3e8bbee34885151daf
18845 F20101202_AAANSL vaidyanathan_a_Page_151.QC.jpg
678bd25524775c586d438b6834bb9b17
101aeb17333c20bc179149517cf49b6693848b33
7754 F20101202_AAAOWC vaidyanathan_a_Page_201thm.jpg
20dc863f096bc8db12b122b2fe68ceaf
f3693862b374c07f97e188634418f749725a7d2b
10749 F20101202_AAAOUZ vaidyanathan_a_Page_167.QC.jpg
2ebe705eed786b30cfe028705ad762db
212d7e2c624368080471ad007a73d88bcc2dfc6a
F20101202_AAANRX vaidyanathan_a_Page_047.tif
b708c8f4b48d9b424abad89e05691012
15f5991662e42dd6a3d8bdfa42339a3cf65c39e8
408120 F20101202_AAANTA vaidyanathan_a_Page_092.jp2
badc5160ac808f965941bd1d7f84e675
73e82985cfcb56e8d2bed7d2d85b16559937840d
3389 F20101202_AAAOWD vaidyanathan_a_Page_203thm.jpg
ecd322916e7db21e7f5bcc73be51c446
7cba4d24eacf082ca40cc0e44bc782544e45b062
16717 F20101202_AAAOVO vaidyanathan_a_Page_183.QC.jpg
f66ed465ab1fa9f0f587b9ddf13f21fd
8213a602ae7258700892e64147f80dbb6c506317
4920 F20101202_AAANRY vaidyanathan_a_Page_072thm.jpg
20ce78ff48c31c25e03d35b5df8b1365
0cdf7c40eb2b1352691248976291f1678535957f
856477 F20101202_AAANTB vaidyanathan_a_Page_141.jp2
dadacda3eff6d67fa3c187a1f3bde5dc
a94fdb7dd49ea5e25babc54f1fdd8cc0f6497b5e
17423 F20101202_AAANSM vaidyanathan_a_Page_179.QC.jpg
0f273f031d1c073abe83279caeff11e7
c9b78a0704f8d778ecba9383dfa8a057ccf81cc0
17376 F20101202_AAAOVP vaidyanathan_a_Page_186.QC.jpg
b3d7594733b6b02f1d55ed241ae194e4
7f71b6e9f694da337ed943843c4b4793174ba2e4
F20101202_AAANRZ vaidyanathan_a_Page_174.tif
972530628548032035d5c1dee69e78e6
61bc9a149e8877fe31f84fb01fbd7950eebc8fba
18179 F20101202_AAANTC vaidyanathan_a_Page_156.QC.jpg
0675bda9f345796eaee1028b4a40c560
3889a9c4b0f20416adbb25660664868b959a1e41
41266 F20101202_AAANSN vaidyanathan_a_Page_110.jpg
024121fa5a82b6bd67eacda1bb14b81e
f78e285ddaffba4649e17a0acf5a822fdf13fe7f
5094 F20101202_AAAOVQ vaidyanathan_a_Page_186thm.jpg
6d0dade9654fda5f7f4ad8e59473eeef
419431bd11b8db2ddee43477d13a540932d755bc
43834 F20101202_AAANTD vaidyanathan_a_Page_168.jpg
4cb3a6f86bd44d5feb11714fff1344bc
c7e18013cb4760540c1e38d5a418f35c12f25375
880536 F20101202_AAANSO vaidyanathan_a_Page_056.jp2
9e53ad1cb6ef84f0120a7b4d093e9474
7c4f66867d37b4a43d7d014d5e6fddf645da452b
17361 F20101202_AAAOVR vaidyanathan_a_Page_187.QC.jpg
aab045d97a2f7afcc749217699fbd320
75713cd756d67a541e849ac5a74593f6564691d0
6266 F20101202_AAANTE vaidyanathan_a_Page_154thm.jpg
41ab7c40e8cf9ec6fc38aaae57bdd31b
50530f98e0e54eb775e12bef9786f1b7223c7a8f
107792 F20101202_AAANSP vaidyanathan_a_Page_009.jpg
f822b71a62bb02a9be70ca005146a339
71347c5a04a718c96d866b964b1ab1e5f5bcedc1
5085 F20101202_AAAOVS vaidyanathan_a_Page_187thm.jpg
0cf346028a0608e18ddf383ec9223097
6f8427ec8ad4d059f63c852bd7dece6d0d1e8732
1051977 F20101202_AAANTF vaidyanathan_a_Page_019.jp2
26e363088ffa7f27e9fd38d3230fafe6
558b9d7f2a4112f51457da6046ded82dfbdda912
37006 F20101202_AAANSQ vaidyanathan_a_Page_164.jpg
d1b48be969d5873c4cdf07160e37d7b5
fdbdac7644645c6389657f3f57d0d9ea80a86416
17503 F20101202_AAAOVT vaidyanathan_a_Page_188.QC.jpg
0025066be33a3a2415e8bd159c7b6bef
1951641aa23e8b1a45496085a114a4f4051414d0
22550 F20101202_AAANTG vaidyanathan_a_Page_123.QC.jpg
6b17f4a014ee4e2c9ba9da4fa30c9c97
94b4f4ccd193e31c3ec4ed12f396436b85c5cdf2
3146 F20101202_AAANSR vaidyanathan_a_Page_170thm.jpg
f787acd41cf739ecb26e0e5dfef32bfe
2bbd39ceed86e561c86846f6cf36de69b4afbd48
5117 F20101202_AAAOVU vaidyanathan_a_Page_188thm.jpg
f3ba3c7d691b5d832ccaa62256abc14d
2c4a647137536619c9161b766d662f6c4604f03e
30293 F20101202_AAANTH vaidyanathan_a_Page_193.jpg
b8d72e3e6696e71599788c32234ba040
6791c3a86434375af87b05dfc869f964b406fe3e
58456 F20101202_AAANSS vaidyanathan_a_Page_174.jpg
586074b2f7a6156f22ee3355e1c8c840
5c02469e1d61c07c6415e2fe8e675fff32fd5df1
8809 F20101202_AAAOVV vaidyanathan_a_Page_189.QC.jpg
429d881de729fe6ac9bf644c0ae1de42
5c6d5d7d2f0f2f59ffc2f69e4b39f4ed176fd182
F20101202_AAANTI vaidyanathan_a_Page_044.tif
5db5b7f6847c7b32c1be6202bbaa470b
b684fbcde23b4b07e53f3e8b852abc256f1009fd
12399 F20101202_AAANST vaidyanathan_a_Page_045.QC.jpg
f08e960e4e6a4ca52835fabe4a108172
efacc614f70ed6606c715d0daa35a24aa80e43d5
15925 F20101202_AAAOVW vaidyanathan_a_Page_190.QC.jpg
9ae4e8ef79e906f5138b7e77e7734b1f
adb486255461500f964064839255406a0d0235d6
19554 F20101202_AAANTJ vaidyanathan_a_Page_115.QC.jpg
7147c368a1d3f80b24dc74efde936fe3
5362414e66a21154675011614f805d9ec319e587
3644 F20101202_AAANSU vaidyanathan_a_Page_022thm.jpg
8273f4ffeadbd40d7e8385c67f52fef8
7c6c540511da394d5c126b7e1900673569a9214a
15089 F20101202_AAAOVX vaidyanathan_a_Page_192.QC.jpg
72d61494dd367d68411272c957a6307b
babacfe1c06edb81c0ba629ebe932df9c5b6aba8
F20101202_AAANTK vaidyanathan_a_Page_036.tif
1c226edf4dec4bd59aac62cf0ad2c978
307b99d59a92db930fce7a20edd1f091786c2b57
F20101202_AAANSV vaidyanathan_a_Page_201.jp2
f45d173c11b0a7a71a103d9ae4d39e0c
2e9a2f824465149227be5c66f516e700cc5e14a4
3063 F20101202_AAAOVY vaidyanathan_a_Page_193thm.jpg
a1d1176d6db3b83afa39fbec6e5d8143
34e70d9020ea34c3ea592ea4a4566196075ae59a
18340 F20101202_AAANTL vaidyanathan_a_Page_185.QC.jpg
ecad9c56adbff8f42c7551228e451a62
0a978b2f1a1781b3918118abd8ded4ffb0786dea
F20101202_AAANSW vaidyanathan_a_Page_165.tif
35ae1fa144470bcd1567552ff86f14b2
b19b36e1c837517f5037102405aaf3b540c81625
3895 F20101202_AAAOVZ vaidyanathan_a_Page_195thm.jpg
8ab27f58041bed4ec107c6ac2b4cc0be
db2f11e19416fae9656878b81f7a612fc08b759a
F20101202_AAANUA vaidyanathan_a_Page_088.tif
014dec9f6a30565dc369123d084471c3
0b1f09561ecf4ac286543116e1a83f747af453db
784680 F20101202_AAANTM vaidyanathan_a_Page_031.jp2
a5582013bd19b897b81983a057249a8f
e9b82db37d80c2f693a879cf2d2cbb1b87b92f73
2465 F20101202_AAANSX vaidyanathan_a_Page_047thm.jpg
ba6a11c3366623fed16c948c4d00c514
05e0ab9cf393a53f027a797dce7836fc90b063a5
38568 F20101202_AAANUB vaidyanathan_a_Page_043.jpg
02fbd8389ca5fce959d9ce3548f2e7bb
7f47c58d1799c796ab85e6468ca37bd37a0fea56
1051970 F20101202_AAANSY vaidyanathan_a_Page_068.jp2
86255dfc25e9a7edfbd5579b9e4d35a4
5846decf43472755ee685cc950cb28ff7326be4b
4020 F20101202_AAANUC vaidyanathan_a_Page_013thm.jpg
5870161c1666d80ebf9c5e12571a205a
19a7157e0b54a62479078bab2c803d1a130d53ce
F20101202_AAANTN vaidyanathan_a_Page_053.tif
5235cf9da4bd9575316913640e369bf2
ce1b15e48c962c952e2229561dc765b211a5a4e0
10628 F20101202_AAANSZ vaidyanathan_a_Page_043.QC.jpg
118ae3f6d4aa12f0a5b75309b7d02e3f
5f958967ad49287456f00e29d47f345ce32929e7
17634 F20101202_AAANTO vaidyanathan_a_Page_152.QC.jpg
edf0949600f63c106ac9022ca5f07c45
862390142126ded7086478ecd8672c6cc75435e1
17497 F20101202_AAANUD vaidyanathan_a_Page_093.QC.jpg
0062f4d27daec907987a759df6c88007
fad3a714cec18d55ecff4c3e8feb65b63d8361b9
62608 F20101202_AAANTP vaidyanathan_a_Page_096.jpg
84d6566a55d0fe986223240ab6167173
5b7246d0fe82edc05c572012cbe65cc5e40fe4a2
10213 F20101202_AAANUE vaidyanathan_a_Page_003.jpg
c402761fc8b9cc8156ae63bdf76aa306
f20a4833e2f29b848d74eb1b388c9abb6853cfde
1019982 F20101202_AAANTQ vaidyanathan_a_Page_123.jp2
e2653fa10dca5e4e486a8f9637bea23e
48b2f3fda12f76deed4ae2b9e11f84089f495360
9568 F20101202_AAANUF vaidyanathan_a_Page_020.QC.jpg
f18539c311b58c47eebed66bf66aa822
3aaa622ded37ea8fdffa9e4ce2f9210ca1e38f47
F20101202_AAANTR vaidyanathan_a_Page_059.tif
da59c94054dd01309c3f343f923fb16e
2613d6b62fa19eb694c2fd5dabc53d07da76a1cb
12924 F20101202_AAAOAA vaidyanathan_a_Page_168.QC.jpg
dd4814edd5a5c1f4fbb8d18e29c104e3
3e433ec6d630ee998cf2a7c50312975367c144fa
F20101202_AAANUG vaidyanathan_a_Page_171.QC.jpg
cbf02d7b29403da909d6bebd6844aeb7
46a54e5642aeafd95a64c8eb492d77f95f292f95
10562 F20101202_AAANTS vaidyanathan_a_Page_052.QC.jpg
3681bd7c2eaef24ad6c8a64dc3f0a2a1
b4e3365d21e68b5107c0bc6ddc7a9417cdcad9d4
1051968 F20101202_AAAOAB vaidyanathan_a_Page_198.jp2
743c43b69635cc82e387f8ef870b875a
f4309328887f22cd2a081d2465f2f91c2b9a6646
F20101202_AAANUH vaidyanathan_a_Page_015.tif
5076830303a5390c8b8b29facfb8d482
7a596305e42664cfa6576fde34c23b203779e5b0
2417 F20101202_AAANTT vaidyanathan_a_Page_125thm.jpg
649d589f221fca4168dc0173a6b2016e
c4c9b9f5b92f3b2cc3956c5fe7b0a951a7be9882
67807 F20101202_AAAOAC vaidyanathan_a_Page_154.jpg
e5b7f7df3abf15353db6ffc1a8df0999
82f71b989b7effed457b2e94950b4f60d5c07bc2
F20101202_AAANUI vaidyanathan_a_Page_154.tif
8c813013bbf8454ff9d49bd0bb1ff297
b32741144f5c47e26b5ad6352ceb109a68054db5
858194 F20101202_AAANTU vaidyanathan_a_Page_128.jp2
1ca1cb46de6453f7d59c1a49b70a00c4
58654c9cc59549d1f68cc20d35820c22e8f9394f
11182 F20101202_AAAOAD vaidyanathan_a_Page_015.jpg
407ed67f54d4a4cd87b6ad191fa146ff
49f49290b56d3d8a0750ff21115260229abe62b2
19860 F20101202_AAANUJ vaidyanathan_a_Page_122.QC.jpg
1a8640ee5ac98f9b89335e24b048332d
5535700a8facec9ca9387d419c981833f8f3e8fa
F20101202_AAANTV vaidyanathan_a_Page_162.tif
4c657dc6202323d17bcaacc776752e7a
39ce559344c9373081f16a27353d47b172cba215
15989 F20101202_AAAOAE vaidyanathan_a_Page_133.QC.jpg
1493e9e2d7a96041c5eb90cdbaf8172e
1eb98628cb52848fa2e8853547f409756fe00fbf
5116 F20101202_AAANUK vaidyanathan_a_Page_177thm.jpg
a6484a03dc065298223fff93f8eba7ce
a4ed97e3de891bef3df2ede5b63ac1f1cda5f167
F20101202_AAANTW vaidyanathan_a_Page_166.tif
b6aeba1d8e23c7971828e1fe1a27aea0
feb704df3a5f20f59eb3304aebf3a6adb86beacd
F20101202_AAAOAF vaidyanathan_a_Page_079.tif
327f1947a229c76aaf4efe70f8ad83c7
fc27dd446c3d35b9122136ce47b5f949bb2d35ea
82778 F20101202_AAANUL vaidyanathan_a_Page_064.jpg
b0f6a44fa51abe37589e2e6f8791a31c
9fc8d8d874966c7c42aa6affc81ff11b4c1c47f5
11852 F20101202_AAANTX vaidyanathan_a_Page_013.QC.jpg
21751d55b068818ef2581530692f15e7
cc002e0e1136b4e7ebf04b684e204ecbe40ffc6d
13062 F20101202_AAAOAG vaidyanathan_a_Page_090.QC.jpg
99c7ddb0bf9674a695260ece46dd4c8f
61e9894d8aad1af2e2db661d8a9dc8035d209222
4181 F20101202_AAANVA vaidyanathan_a_Page_021thm.jpg
2e570eb1b71d0715ba044b9e9e769b1f
86a6ff9077d27b3c0458f2280d1e346b0d1563c9
945953 F20101202_AAANUM vaidyanathan_a_Page_085.jp2
992221635d75c6a2622095265a464a45
7a09c351a5c63cbd761f2bac2545b2164642b21a
655112 F20101202_AAANTY vaidyanathan_a_Page_097.jp2
1e9edad665058fc8530483c0d069ebf4
3bb095e0c9eb3c9eb29e3c78376baae6c844ad7d
23218 F20101202_AAAOAH vaidyanathan_a_Page_086.QC.jpg
f59b9556226d90849f8603e9e9ec3a46
00c0844da821a8e76b97b058c704d53261ea511e
10804 F20101202_AAANVB vaidyanathan_a_Page_022.QC.jpg
4b299178bf6d67d11c42156db048a5be
b1702655b0945f590b691e1af787049a7f1a82c8
6224 F20101202_AAANUN vaidyanathan_a_Page_086thm.jpg
eff9e75dbbcbafde57a07b5d9421ab3d
31e86c06c2125855fa76cd4717150596191a2819
15923 F20101202_AAANTZ vaidyanathan_a_Page_130.QC.jpg
935fe5a62fab5189953508f400fe8bc7
f9aef0c9b333d32c9d2293b62897954c999a17fb
5508 F20101202_AAAOAI vaidyanathan_a_Page_117thm.jpg
00f485099d86f004bc2cca5cda252c7e
974e295a4a734d7767843155bc4599f733edf51f
4798 F20101202_AAANVC vaidyanathan_a_Page_141thm.jpg
a47e25a61f6d4e96dd8338d26b3e0b1b
276bcc51f69a1b660bcb78e081b84e6b1deb250a
2817 F20101202_AAAOAJ vaidyanathan_a_Page_060thm.jpg
2f9a8230c0d0ec647dc73f805a70d6d2
332bd03d4b752922eef40aca405609908ef61cf7
779785 F20101202_AAANVD vaidyanathan_a_Page_039.jp2
4ce6d189335cc3c927ff2a4e27bb9823
deddae092c62977a4180be58fbe6075f3233e1b1
F20101202_AAANUO vaidyanathan_a_Page_199.tif
09ab6289b9e8d0e66e60ebd2502373f9
7ca809ae1e44c143296e35f7443d5508952d49fa
35154 F20101202_AAAOAK vaidyanathan_a_Page_051.jpg
0c48df811991109af2280012cb01b2c0
95df9d8cd69582faa3762a47040e644c3742f9a4
79881 F20101202_AAANVE vaidyanathan_a_Page_018.jpg
e6192bae3001049e792fda2fb0fb4377
8e8c23b6e8ae48f04337e2f93804cfde75610aa8
3635 F20101202_AAANUP vaidyanathan_a_Page_168thm.jpg
514f6f3ad02d6d4eb153a82de480240d
e59ab04eba361a8f8b2b0a04952a356df780cd39
41068 F20101202_AAAOAL vaidyanathan_a_Page_159.jpg
a4fb4cbb6626c38668aecdf281479c00
50b8ab840a79f72531e461b56902a87adbe09952
19660 F20101202_AAANVF vaidyanathan_a_Page_146.QC.jpg
568faca1f1b317bcabe07adb59b4e22f
ca714c37fa1f48852b236a335584cd7e4f45b6b1
2831 F20101202_AAANUQ vaidyanathan_a_Page_020thm.jpg
56c4cfeadd64fc6515b1ef3cb05c3633
a0d240fc193bfa3e1242a983480765b86a39a86a
F20101202_AAAOAM vaidyanathan_a_Page_009.tif
120ac19e746d12eee4a05a1cdf8202a1
eee2466b0cea378b37ab4c19a9f851505ea11100
3630 F20101202_AAANVG vaidyanathan_a_Page_040thm.jpg
eca1229be56519028cd6011ab9a87307
ea03904825b9806e2017ca2f8cc8c8a95302f44c
F20101202_AAANUR vaidyanathan_a_Page_153.tif
d3cf5822e4b5216c0b73f1c18ede31cb
1b1531f6c14d2b4fe8be4664a4ea8c82ba6c0a10
65736 F20101202_AAAOBA vaidyanathan_a_Page_128.jpg
a419935025c014e922fd717606ace534
9f3554c74c8ada5fe85c811821d47ca36d5372ca
F20101202_AAAOAN vaidyanathan_a_Page_058.tif
f0c71ffdc98b05ed02d5742b0bbb15b2
6535d72aabf58548fc75b7f13037fda9a650cbee
F20101202_AAANVH vaidyanathan_a_Page_097.tif
ba98d0c7a3319a9b9ea2fbfcb2b130d1
609541ef277842167cae348edccc392acdf1220f
5093 F20101202_AAANUS vaidyanathan_a_Page_071thm.jpg
fea3134cb8e7ebf8bdd3436b6052e694
31032f2679feef0d0508eb36e9775deca3ec57db
F20101202_AAAOBB vaidyanathan_a_Page_005.tif
011936ff29e26f3635d698850763ae33
a78254c3d974cae457c3c66167a1f36c85e92ff3
16291 F20101202_AAAOAO vaidyanathan_a_Page_194.QC.jpg
6557e6dc66959f7cf3a637979906b31c
d0fa25fc0615bb7ad3bc69dcc9829f1e5f030f50
539868 F20101202_AAANVI vaidyanathan_a_Page_189.jp2
dab54edbe17d512fb2648a2eb0d737f9
a6244fb0ccfbf94ea1b6b2767ec403b15bb90341
5389 F20101202_AAANUT vaidyanathan_a_Page_093thm.jpg
6f1609a4f980addad3a723dfbfcf633e
28cb9e7d131206a789570355d80be4927b3690f1
4114 F20101202_AAAOBC vaidyanathan_a_Page_102thm.jpg
26fe3b89395fc0094610337f924bd393
2613e5e7b31a65a5d80df2a17e731bdba8ab9d45
1051901 F20101202_AAAOAP vaidyanathan_a_Page_118.jp2
234660eb00be53294054c6795dadb5fd
3157332814eb083acf7a6f6d86b008a9e8a20b47
F20101202_AAANVJ vaidyanathan_a_Page_060.tif
ce88ce658140dea243ad97d811611053
cb1cfcfde2044962a43e6381335a65d4a8de9491
17163 F20101202_AAANUU vaidyanathan_a_Page_174.QC.jpg
2affadb2f22314b1f240759f38d4cfda
04c3a0c8c29e71a950e70da6a7e5f41c99ed78fc
676780 F20101202_AAAOBD vaidyanathan_a_Page_079.jp2
cacdf3ea8e5aea26c792f87e41f8edc4
9bcbd18f3c0c5a912e54ff29418d6295f9ad5cec
23915 F20101202_AAAOAQ vaidyanathan_a_Page_016.QC.jpg
11f1b999c0e1b87219f58d8de65c2c17
e801ac6f1fc93cb3b09f6574f66c2aa54cef1d22
F20101202_AAANVK vaidyanathan_a_Page_137.tif
23b7e67f6d26844be7e9eece614a1755
920a2ceb77727d5af92030c8f857d6bede3914b7
F20101202_AAANUV vaidyanathan_a_Page_176.jp2
9a831b2c0caebc63954c6edd65fd4509
b1a6a636adb04f1077e40c0cb70ed1972c17f2dd
F20101202_AAAOBE vaidyanathan_a_Page_018.tif
6ef11ec0f694322d5ff11d27f151dfca
3ff7ebcdc473ad5bb0350ff23fdca4648993dfda
F20101202_AAAOAR vaidyanathan_a_Page_130.tif
57f7c6cbd4d631e750a028365068e19c
6c63c0b567fe60793766f4c363f9f08418deb131
57146 F20101202_AAANVL vaidyanathan_a_Page_181.jpg
7b526c1ad57ace654abecd72a010fbe1
111aecd790c72ec4fb542aba7992cf6ee3f7faa0
F20101202_AAANUW vaidyanathan_a_Page_113.tif
b47ca38e8cf8932a080b3f136921c213
392d5e9b8f662096f7c4f9771800c615f9935c1f
F20101202_AAAOBF vaidyanathan_a_Page_201.tif
964dffa3513b44369ca956f01df7731d
baa4efa180f5ddd4df9f851a25a755e56bebe47d
79488 F20101202_AAANWA vaidyanathan_a_Page_025.jpg
3b3d07b3dff570c4e8e2596346584791
adc9effaf63d269f0964f475511b7bf746292d30
691331 F20101202_AAAOAS vaidyanathan_a_Page_055.jp2
4395c00b0b3a71a2f12e8195f874cd27
9946dc8e4bd3f2ab8bdff68415c7b56784dd29af
54913 F20101202_AAANVM vaidyanathan_a_Page_091.jp2
169855ef5a0e010d84b81587e526d53e
b9fd5069cf708f6c6c5e03cf196bfc0594fbd972
21992 F20101202_AAANUX vaidyanathan_a_Page_084.QC.jpg
47e2ddc5676aed53f8342e29384888d1
61842868a450b9b9879fff4afe29456313921cba
47577 F20101202_AAAOBG vaidyanathan_a_Page_162.jp2
f5dc0aff7db58377f183517e8f0c3c2a
ee2967316df77bbf9c2b373ca89517eb9bc2ffd7
949659 F20101202_AAANWB vaidyanathan_a_Page_144.jp2
ee646eed0995f096735d33d53ab8e8ef
23df6a1ce4d8b20f8ea4359d64876a7456831e71
38898 F20101202_AAAOAT vaidyanathan_a_Page_163.jpg
17d70d4216f15fb11a34214299fd3ff1
861b055109fc27cf89735ae27e757b4ee2a9d245
5935 F20101202_AAANVN vaidyanathan_a_Page_087thm.jpg
ee69c5198e2e778fd6aadaa0213247a2
2e7a9af56a669a396de8494f1cf5fc15da43fea8
F20101202_AAANUY vaidyanathan_a_Page_046.tif
cca95f0426684b140d9021477608b59a
26b6a2aa98384a8b2ef3cf711f04c13804286c76
758286 F20101202_AAAOBH vaidyanathan_a_Page_126.jp2
fbf66e4a35b9a9174093dce3214752f4
d67daa2e6a2e4ad1ff58f660b877a865bf261c14
F20101202_AAANWC vaidyanathan_a_Page_173.tif
ab1385db2dffd58623620ce29c5980fc
c9c97ff58772b2b4b3101324dda869eb582b42b9
5889 F20101202_AAAOAU vaidyanathan_a_Page_074thm.jpg
2f08bfa97d707c6fd34b96bacc2acd62
ce137324e2db33d787030bf00cfbf8602928c7bf
3360 F20101202_AAANVO vaidyanathan_a_Page_101thm.jpg
ee9aa1d479194f3ee659df934287b2e8
ea654e7189e127a0efa71c8023da82c76fecff03
28108 F20101202_AAANUZ vaidyanathan_a_Page_196.QC.jpg
a21aa39b163e8df8487a064625df18cc
523439f77018ba460a2f0de72543787a88a05a2a
3670 F20101202_AAAOBI vaidyanathan_a_Page_171thm.jpg
95cf421a5eb501355ec0603606e5f905
e58d5b658e2b8db67176049587cb6be15b82b018
F20101202_AAANWD vaidyanathan_a_Page_006.tif
17e35fea205d8d0a6312c48a706da2d3
00502fcb8a3db642e71b5f37f6e637bfa44020f1
4783 F20101202_AAAOAV vaidyanathan_a_Page_152thm.jpg
cb7cd78709d8f935678fb723d0bbef03
c076c0dce946ad4afc8a564f4dd56e159e48e8fa
5446 F20101202_AAAOBJ vaidyanathan_a_Page_100thm.jpg
7430c2222ee86b6b219a20513238285f
eb97ecad8a6e3ef549911d32a9756704c53ca069
53194 F20101202_AAANWE vaidyanathan_a_Page_112.jpg
6bf84dfc09637384c9083c5dd9ba760f
70ad1a2d324a1ab3b7c3d207b2a718720ceceea0
19954 F20101202_AAAOAW vaidyanathan_a_Page_134.QC.jpg
9f75cc038bad7df098710d6c07a375d1
964e25c82eb6aeaaceeaf103d678994dbec7c0cb
837185 F20101202_AAANVP vaidyanathan_a_Page_147.jp2
ce9beaeaf5ccb254c9c9138d634edd9e
01bba5e3842fe1c6019315e63d3cefe6fdfb6a2e
F20101202_AAAOBK vaidyanathan_a_Page_195.tif
7fa273cada6bca5ff0d5af5a130fce9d
9faf34d56eec80ba0fc3cae99aedb3b6bb2e2cc2
F20101202_AAANWF vaidyanathan_a_Page_111.tif
9c1fa425e65ef5c4c27cec4223d98703
e1ff369ef62db1fcb2a61ba163b8f54bfcde6160
5039 F20101202_AAAOAX vaidyanathan_a_Page_155thm.jpg
145e18319be777cbfb556e07b5788e7d
c86f781c0da5e7864c5d9c6fab294bb1e83fd880
64925 F20101202_AAANVQ vaidyanathan_a_Page_150.jpg
2fc7395cad8959cbda1c223cebc48726
3374bf8480ce6d5ef9a95acbd5d219988d8bf919
38257 F20101202_AAAOBL vaidyanathan_a_Page_013.jpg
42866a00b1099299fbff22c973265141
15428ea58879fca5e4035d1b94c687e07eee6b38
17986 F20101202_AAANWG vaidyanathan_a_Page_148.QC.jpg
83877bd7af0f3919c0752f4b7bb31936
467a5facf6f2d984493bacc4d85e1903b9ccf502
46549 F20101202_AAAOAY vaidyanathan_a_Page_045.jpg
e4274f73ad57e54466700451ec886258
5c76a08ef300384279f06cc31876f450559e14ef
2876 F20101202_AAANVR vaidyanathan_a_Page_189thm.jpg
5b2658a7650075697fe9db38494a4538
168e27186ca4487cbb02714a4ba821f7ab70c047
6697 F20101202_AAAOCA vaidyanathan_a_Page_085thm.jpg
85762de028ebb0325ed1d725b034840d
3bf7ab9d429ff01824867a6445a41a4a008ac32f
77288 F20101202_AAAOBM vaidyanathan_a_Page_016.jpg
46ce7ac8a5c33298f6906b3ac48dec4b
c667a08975ff0ebb24d0ef95a047258d248a158c
4769 F20101202_AAANWH vaidyanathan_a_Page_147thm.jpg
de53f3b65ec6e4f3f394f1e07e0a517e
b461a717ec156de599ca2da424a6637d550f015c
13267 F20101202_AAANVS vaidyanathan_a_Page_107.QC.jpg
62117aab090c30580bcb0c0c772959b0
f08a9e7fcb052026e3649ea42028d41bbf8b1ce1
F20101202_AAAOCB vaidyanathan_a_Page_019.tif
a9e6778984f610b8a7bc9a1b36a77947
a7f6f8080f01d88f54c9f48fdc2f9dfb5caf3602
F20101202_AAAOBN vaidyanathan_a_Page_150.tif
f4e3425e772122dc939110ecb45d6483
06b100d4244d8fcaac0ba6fe0ed82ad134f2c625
27852 F20101202_AAANWI vaidyanathan_a_Page_143.QC.jpg
c27d50d120e192558ff26141cd62578c
f3cc7bfe1bf6bf9f1eb4d7c49fd3307d7a7ec172
31586 F20101202_AAAOAZ vaidyanathan_a_Page_111.jp2
bda23662ef196ea75ca4dcc3fb8116df
fa7bb3d1871823d295aacb87b2b1c009ff9c278e
F20101202_AAANVT vaidyanathan_a_Page_141.tif
0981334299aa8833c1982472fa3e7850
dd6d3c4cc21cd8248e25f36ad86ad0a2a6389ef6
F20101202_AAAOCC vaidyanathan_a_Page_199.jp2
9ed4ff690373ce0d3c7486796c96f066
d67df1412bb1257303d6254a7b1dec4c2dccb8e4
11577 F20101202_AAAOBO vaidyanathan_a_Page_158.QC.jpg
7753532d1576eb04ccf2449b3d1b30cc
77105d8a1bfe17d2051c27fb57ae824ab9c55cb6
44803 F20101202_AAANWJ vaidyanathan_a_Page_056.jpg
4718f8c89d22662d9595254c2abe36c9
56d82c3db5cdd67ccf179af317816d4a4d85002c
F20101202_AAANVU vaidyanathan_a_Page_014.tif
5f55fa58214824e72583d9d41cc68c6d
d1656bf2092496fe516e0433541aaf0010dbdce6
11312 F20101202_AAAOCD vaidyanathan_a_Page_012.QC.jpg
a879b38ecb9e5459c45f2848f588fb79
549d446dc28553401c4ad0921903e1e5e7301171
F20101202_AAAOBP vaidyanathan_a_Page_038.tif
1b9d71e2eb41970044b4799fe3a9ed96
a52fdb96c3a1d6170617c128ae2069b5e319f7f3
F20101202_AAANWK vaidyanathan_a_Page_064.tif
cc1552060ba1bece19da79fe17c4987e
8cded777bd354efc3743265dcc125a57c2f7f9b5
F20101202_AAANVV vaidyanathan_a_Page_042.tif
26102cf4ddb427879ce7f5c1382b4357
d0d3795099d39bac725de86ac8f3bb0f3188c803
5179 F20101202_AAAOCE vaidyanathan_a_Page_067thm.jpg
6911aef0948d7d33c9856263e60d8a2b
4646eb8f96215b894d027596066e41574c34dac0
63760 F20101202_AAAOBQ vaidyanathan_a_Page_180.jpg
98f5e5ad7d909518829e27adf85f760a
f76d81b105ecc9d85023f362f58cf4ba63ce179b
62589 F20101202_AAANWL vaidyanathan_a_Page_033.jpg
996b833ea6129558666d627d94319c44
26c754a3de6c5dbfcfb0ba5421f89aec3cba59b9
706339 F20101202_AAANVW vaidyanathan_a_Page_140.jp2
1913148980a42686993ec8a5225660d2
38eff4205fde06bff37bad041aece30e52a92daf
19775 F20101202_AAAOCF vaidyanathan_a_Page_100.QC.jpg
9e05cf1c9bb97182a35c2df0e0b8aa5d
9d8df070b461e6ab711e03a12608a7fa9e528c08
F20101202_AAAOBR vaidyanathan_a_Page_045.tif
87be72a530f9ccc272873d672c90315d
595013b5116986c96b3684ef57f9e9e21fa1de89
F20101202_AAANWM vaidyanathan_a_Page_171.tif
0761975a5fc422cb7fe8ebe8c0690dcb
328aab3a5dda348487b55b18137fd97076809798
F20101202_AAANVX vaidyanathan_a_Page_116.jp2
61fbf2565f56efededb1633ff644bcb0
66d6903277ee3c7c423e74b22406a36d958827f9
5479 F20101202_AAAOCG vaidyanathan_a_Page_156thm.jpg
b4293d8e4a97180df002d036ef1d583c
88eb8acc05b65994f57fcd18be694126d2bd4f5f
5819 F20101202_AAANXA vaidyanathan_a_Page_005thm.jpg
3c2c240a013fa7a99151fd1a1613a336
9486a13fb3c60b51f9c7aca2cf0dde5ec01fc6e9
4855 F20101202_AAAOBS vaidyanathan_a_Page_080thm.jpg
28a4a60e17bf9e448af189cab32ca092
7336b3437061bc47b7d44d882e4e6020b72ee6e3
22090 F20101202_AAANWN vaidyanathan_a_Page_034.QC.jpg
c2c285782fb1c23e6707ea2684186ddf
ad72ed22ee720bbbefb8c52a6f658170724ba897
10918 F20101202_AAANVY vaidyanathan_a_Page_101.QC.jpg
dc7ffe8be478668529fd451951b5d053
54112b0a1078c9a79efaa84461494ba1b065391f
5891 F20101202_AAAOCH vaidyanathan_a_Page_031thm.jpg
7da8e727366dfd0542b07bc3ab34487b
2f7ff13409e0270d4b8b91a941481b23dc569cf1
F20101202_AAANXB vaidyanathan_a_Page_192.tif
4fd660ad8f1aceafeb1e3901df5558b4
7aec121de1e1b686678a0d993b25aa9f93f49aa2
62982 F20101202_AAAOBT vaidyanathan_a_Page_147.jpg
1b5a105a2903a54aa25f71882fed8e8d
33b5e070ec1882d16a8af025155e7a4f69707398
6834 F20101202_AAANWO vaidyanathan_a_Page_032thm.jpg
34375ace2f8e1e15df7a4c47a09c89c2
5bbf3492c97dbb5f9c262cdf03f11025df887f30
86440 F20101202_AAANVZ vaidyanathan_a_Page_109.jp2
c17fc69b27df23482bd21dca9fb0ffb6
44cbd23f161a8924fcdfd6454b2d99a6459f686d
F20101202_AAAOCI vaidyanathan_a_Page_155.tif
5a3ccec933cbaae9dba8298c2af1f7f5
a9afc9c3c1761502e56eda6f7f9982f5ab2215bb
4523 F20101202_AAANXC vaidyanathan_a_Page_194thm.jpg
53c839dee81386f4b3887223cd8a5396
c20eab8bbacd63b415176465948da516e107425e
44849 F20101202_AAAOBU vaidyanathan_a_Page_191.jpg
ca0591c5749daf46aa6df4addb277e07
56c3a3b8ee5fb25ddc5a0e15a8e826d97a3822e8
7505 F20101202_AAANWP vaidyanathan_a_Page_196thm.jpg
e0c2b19cf1f408fe85070ec261913e56
d40314523423924e9d473e4eb9f60036e0059229
F20101202_AAAOCJ vaidyanathan_a_Page_068.tif
ddcdb15d830e8cfced9e0617986eadae
f9f3b49043b42cdec065820d9625da07e1b9b457
F20101202_AAANXD vaidyanathan_a_Page_178.tif
27c8c7857f53bfb7eb9c88e9ce86eb0d
b564b0dd8b6204b4606b570da27b75fb3f24afd4
12149 F20101202_AAAOBV vaidyanathan_a_Page_011.QC.jpg
39836c7dcf6b604f55c602fc2b93b2ce
84a741df65eade221aef5afc74a634a9546280ba
60210 F20101202_AAAOCK vaidyanathan_a_Page_106.jp2
c00ca0265f9f05340c9046ad48b42d69
9685c5e70ba442e8429cf1be6387fa1a117c9342
14307 F20101202_AAANXE vaidyanathan_a_Page_135.QC.jpg
73447887dd8bba695b392d7d158f2490
043e7f327371fec894da0715c6bae1247bae14a2
30369 F20101202_AAAOBW vaidyanathan_a_Page_042.jpg
f4f0921c1dc66265d8fc3e3e54d73b21
8a264e5eef29715638bd7287eb408ea86f93b49f
21417 F20101202_AAANWQ vaidyanathan_a_Page_154.QC.jpg
632e01906e49ba7f528cca4a3f61f98e
e9b7a8e2bf76af0746216a8481863f90178b3734
1051949 F20101202_AAAOCL vaidyanathan_a_Page_113.jp2
c2ec837ad28c1f2eb4c93a99461ef7e4
3c959e9731b8cb67ab83f52f4168e6422997604d
F20101202_AAANXF vaidyanathan_a_Page_066.tif
60fce0fed62e2f2c5eff489b8eee8cd9
71cc71540f76d94807aca68ac0ed0b554674ee54
59353 F20101202_AAAOBX vaidyanathan_a_Page_188.jpg
63ffd236e514414af7c1ad8d68c81de7
67a59a6025630b8da8c14d2f310ca14d8580b92b
14960 F20101202_AAANWR vaidyanathan_a_Page_106.QC.jpg
c2ee4a2dae44fede112148380fe6bfe2
2d9169866d1e4a9a9b363a6672341380ac375aa1
F20101202_AAAODA vaidyanathan_a_Page_078.tif
993c9c000bf766a684c70646032b7a5b
e083fa8f158a80819059b48008ef00dcab72796a
799469 F20101202_AAAOCM vaidyanathan_a_Page_049.jp2
757ec178471c424128586b034f5e003b
1b56943d42ca491fb3f71c853399daa1aebfb1a1
6736 F20101202_AAANXG vaidyanathan_a_Page_143thm.jpg
ef9b5c2ad71ce9fb20dd14d38685f944
1a996a82a740d798abe798e500835c1a580a7387
F20101202_AAAOBY vaidyanathan_a_Page_052.tif
2b200edbebc0f92811de5620bac5d72c
67c08dc1b3bcd5525532f95ee5d496abc1892614
3862 F20101202_AAANWS vaidyanathan_a_Page_110thm.jpg
ea37bb52ce8e288709d6b253ae0a04f9
a3e53028425b4ab71c09a7d708f1d3f57ba53e35
19641 F20101202_AAAODB vaidyanathan_a_Page_117.QC.jpg
7b8ed6acb70d1273d3609e79b83e4c9f
b6afa0e6455bdc8c41cf11c003bcb8309dc8be10
43932 F20101202_AAAOCN vaidyanathan_a_Page_165.jpg
1e1167870c52effdfab9692e99649076
0e090dfd01487a18b6311a78f6c59666d8d0fc11
1051983 F20101202_AAANXH vaidyanathan_a_Page_076.jp2
ce30960c753560180b3fdb54f2e72b8b
5714dd0673d7cf054e84bdec8a1039468338ab9f
69001 F20101202_AAAOBZ vaidyanathan_a_Page_144.jpg
4f41e884092f37fb245c35e3d3e1c284
e630be6b7b1e4821fbe8914d79a0895983004dfc
3041 F20101202_AAANWT vaidyanathan_a_Page_027thm.jpg
7bf2524693253d4a4f9041d2c6320829
b039b4baeda533f34b0fc3147868d19c4ecb527e
71614 F20101202_AAAODC vaidyanathan_a_Page_088.jpg
fa30d09ed5caa268ea618270169505c9
20458bc8f1caacc51e3209beae8ecb9755a074f0
10153 F20101202_AAAOCO vaidyanathan_a_Page_041.QC.jpg
68f0d97aa1cfaa4be8cfcb9b71d94059
6ac73f1efc6bafd214d4df89c3c699beaac2d2b3
F20101202_AAANXI vaidyanathan_a_Page_191.tif
6d8825b3495896c09a036b05134e20df
2f250317adcae88984f405fdc6e47bc8a9ab1537
54667 F20101202_AAANWU vaidyanathan_a_Page_190.jpg
80d0ea94e233b9dd0be6419e20e57886
a4a6f2665da34255dc933a7e2a7f7f30ad84bca9
41368 F20101202_AAAODD vaidyanathan_a_Page_104.jpg
352473108db9037ad3bd141ada177a79
07cfdb7b02bced88761a593f157398d3124982d6
43605 F20101202_AAAOCP vaidyanathan_a_Page_050.jpg
38898edc3191e32203f7169d9a4a90dc
2b75ffd289594a92beec28ea792e20339b352550
29459 F20101202_AAANXJ vaidyanathan_a_Page_009.QC.jpg
4d6a4d6e6be0e49a96f0dd63ca3e19f5
5260905992f7c2e74122acf18c7886d72d039b4f
12384 F20101202_AAANWV vaidyanathan_a_Page_195.QC.jpg
06a642c31b054640719fef9f5179a979
c1b2e2620818824ef32b983cfdd0c7f2e5ca9660
6154 F20101202_AAAODE vaidyanathan_a_Page_084thm.jpg
4ed353532a82958e14e55547beefcddd
bd30975457f07f0643fb6729828b2bfa9ea692d4
9299 F20101202_AAAOCQ vaidyanathan_a_Page_193.QC.jpg
646b635335adffca44c80bb735d2a733
ebaa70a71f04e13d41ddd88143da956a490f8285
52317 F20101202_AAANXK vaidyanathan_a_Page_140.jpg
444c0a0e6f37199070e5a320af9f956c
d94e9cc3349feee7ba6bc9ded263e369dac62033
F20101202_AAANWW vaidyanathan_a_Page_028thm.jpg
10b56eb0b582befc687c26c2e8be24ea
3b202b332fed6b1701c705d724517fea058ea64d
26204 F20101202_AAAODF vaidyanathan_a_Page_119.QC.jpg
dc81b229c0902174b63ad50df82e4314
5c3b035981d6246025976370938c10792bba6a64
F20101202_AAAOCR vaidyanathan_a_Page_179.tif
83cb56bf61800b9b2449547aa9518795
4f9763ca573c2f708ea0ecb62d04753ec4825dd3
12193 F20101202_AAANXL vaidyanathan_a_Page_169.QC.jpg
ef27ea11f4e18006b5063948bbc17328
7d8cf6a1b141381f3479dd76bbdb8524c3082c8e
9856 F20101202_AAANWX vaidyanathan_a_Page_055.QC.jpg
c1225b74c74ce19f2f25469792e493e8
0738d9a5084b8541426d82db8ec903e2867826bb
F20101202_AAAODG vaidyanathan_a_Page_177.tif
c5dcaac0be7ba1822e8abf4656637c21
6471f199b2fe191f59c79e94421988c4a92d7d3e
F20101202_AAANYA vaidyanathan_a_Page_123.tif
3b7272bfdd7ef64e9d938e14fa55c55c
27a6a8f5f148df36c158a24ccd8a1cfa145fd785
39234 F20101202_AAAOCS vaidyanathan_a_Page_158.jpg
bf07c75dd371e7d45eb3975d54100836
48e8c3ded3624adf941aedada6fb989e1ff64528
75518 F20101202_AAANXM vaidyanathan_a_Page_032.jpg
49690472a68695b4adca24914890d8c4
207f7c5bfbbfa4373f11e70cf6393c20fc270958
947547 F20101202_AAANWY vaidyanathan_a_Page_137.jp2
3080a44158c90361b24fcb9956b36b9c
c3092a9740a5ea261d31760a6f37cfadc97ae78e
1051984 F20101202_AAAODH vaidyanathan_a_Page_177.jp2
76f6b7df7ffba3709d7194231ce432de
34761fa0f5426fd115805051eb1809df947e5016
23280 F20101202_AAANYB vaidyanathan_a_Page_037.QC.jpg
29ed58ddbf950ec90b112cd34c7cf727
139ed56e831f849fd530d01d4ba9c4a7d1317bec
22542 F20101202_AAAOCT vaidyanathan_a_Page_124.QC.jpg
0c66d10902c4dd94102b7600001ca960
7449d429c681b78899702e63c11fbae3348fc2cd
F20101202_AAANXN vaidyanathan_a_Page_187.tif
f49dac96ad5248f66eb4fb59fae7f4f8
683d099f8ed69744a03746c21be2006cbbdfa876
F20101202_AAANWZ vaidyanathan_a_Page_023.tif
79dcd5e615ed3790cff7678ce4491016
c73d7521ee555100c84520348224a61d728b2830
7688 F20101202_AAAODI vaidyanathan_a_Page_200thm.jpg
e132cec6e7e7604d335da420971bac02
921c21163adadc583d6d4dbde8bc35feca7b9d43
2901 F20101202_AAANYC vaidyanathan_a_Page_111thm.jpg
318d94ff0ac6cf2a9cf5807a6913bea5
30e281494882af5ca45bf875dcca7c615b5bc500
F20101202_AAAOCU vaidyanathan_a_Page_056.tif
c894ab834009a398cb83cfc4e9109eea
3a698f943515c306f0902742abfacaeab5b6d90d
3680 F20101202_AAANXO vaidyanathan_a_Page_011thm.jpg
ae37b1f40d11f085e7e833a8c6ec5af6
9a72c8f5955e62d38016387fdb25bac156f7305e
954006 F20101202_AAAODJ vaidyanathan_a_Page_151.jp2
3e6cb2079543d780eec1316f1dd0e72e
2559de5dfc2b67033b0deb0e4f8158a14645569b
452145 F20101202_AAANYD vaidyanathan_a_Page_014.jp2
fdecc469ab127481be249f5b465159a7
eab0a9a8e235064c2118402d6c6f664fa359e186
84194 F20101202_AAAOCV vaidyanathan_a_Page_066.jpg
9944fc764b9cf637d75d5235e47a6a2c
2d0de185e6a5d0ebe0e9feba4ed04b4ccaa2f6ca
13755 F20101202_AAANXP vaidyanathan_a_Page_191.QC.jpg
ada308be481b12511fceb1c9c2c4be28
5e8a6e98bb54c97397f6e4d16fd0a3cf43470b59
25412 F20101202_AAAODK vaidyanathan_a_Page_025.QC.jpg
eb735555b6163448cc060e96fe955e0c
de1db88f919745a012d7a86e617db410f4b872e8
715987 F20101202_AAANYE vaidyanathan_a_Page_157.jp2
7d7b59d81efede6aa3df55e8976a280e
b2ebc4e7c6fa92b252965bb9644637c473991396
10288 F20101202_AAAOCW vaidyanathan_a_Page_103.QC.jpg
44185d55e72896879ed67360b217ec52
81e405092f743b9d7c32a793b8626996925a47c3
F20101202_AAANXQ vaidyanathan_a_Page_164.tif
3839b406caa10bfc5c98ced1745527b0
36ad2a4ff34d3bf52033f2cc4937eacbc2518ce2
F20101202_AAAODL vaidyanathan_a_Page_070.tif
f159e6530af8636ca12b5d08692956c3
e533ea8e398633f87616b3e79628fe9881f6ae6f
62526 F20101202_AAANYF vaidyanathan_a_Page_109.jpg
261918deef1f4b9e1341c270836826ae
8d47cac0ff65e0e9acc09b9d77c87a0b057efd80
17137 F20101202_AAAOCX vaidyanathan_a_Page_004.QC.jpg
d194d140f3ca5f47a7ad21f980e962a6
306fb1f87a357787c42be07157c80d3c08ad8259
652331 F20101202_AAAODM vaidyanathan_a_Page_072.jp2
8cee5e72fed4fb1d670e18e8da4d447a
26e2e956589816df53aca49240340dc036cdb19b
14631 F20101202_AAANYG vaidyanathan_a_Page_053.QC.jpg
495e3ce90e59cf7fea1bc89655f38bac
caab9e4b724a0b1f7ec9832a670f2e746e8886ab
808586 F20101202_AAAOCY vaidyanathan_a_Page_149.jp2
bf2163a0f8f0cc4ad7d58253e4775533
af35c49a500235992b95d9bad39dbf00f9aaf03b
12985 F20101202_AAANXR vaidyanathan_a_Page_054.QC.jpg
55dfb5b007d4bb40272849add264082e
bfbaecaf3d7b72ecf6462924ef0ed4d0a800a819
F20101202_AAAOEA vaidyanathan_a_Page_149.tif
102b92335ea5e8bbcbb6294aa04d2070
a87a192b297c3a868f671fa71a9647d3f54b4348
F20101202_AAAODN vaidyanathan_a_Page_112.tif
7a2a2208f0a5ebc2844989165103df52
8828317036d1bad80047cdf531b4debf9ab375c7
25371 F20101202_AAANYH vaidyanathan_a_Page_118.QC.jpg
da60ea589b8989b058d8965fd26fad7e
6ceaa57bcce43ee22a5d80829e6c7fad2d467a59
5022 F20101202_AAAOCZ vaidyanathan_a_Page_146thm.jpg
dddbd4845159045031bc029aa7bc5acd
1ee37b99d8df58af14512b777efb03d3ec1e4f70
F20101202_AAANXS vaidyanathan_a_Page_190.tif
b8b084f821a9f418040b4d1eb5f764c3
93d48bf524f470c061d90d8c645c90a0d3c20bcc
F20101202_AAAOEB vaidyanathan_a_Page_050.tif
6a94b1c0262193fee311d89aabedc9bc
40130413d07a136bcb9db4eeeffb64e2d9e8fed2
7432 F20101202_AAAODO vaidyanathan_a_Page_076thm.jpg
d62a3e17b7ed8766238f9112d8e11c57
1d3e17d01d1bf1d2dbcfb23d575a9c3e564fa768
41124 F20101202_AAANYI vaidyanathan_a_Page_062.jpg
3e7b5b421825dc71ef8f00711fea908f
2ff1c6fc26f268a7406f656ec140322fcc112b74
18364 F20101202_AAANXT vaidyanathan_a_Page_031.QC.jpg
cc42de22947690b710a454b3016b6d1b
8ef1118562955174c658843d62599e2f62d69e5f
F20101202_AAAOEC vaidyanathan_a_Page_109.tif
64bece496cbb032e5b1b5031d786cb88
e1cff092ae5b1bd09c0b8c6ecf08332d92c28bba
19239 F20101202_AAAODP vaidyanathan_a_Page_180.QC.jpg
bb3080df2395f24fa57ad8b716845a32
788e0efc23e849a8ad94a44c73fe8fcc1ed5fce2
61436 F20101202_AAANYJ vaidyanathan_a_Page_152.jpg
ed9149ec601b408f4286d03baf733f66
13bbb8a1e6b93d7be8420d2dc3244cb23a67d9b5
F20101202_AAANXU vaidyanathan_a_Page_033.tif
12eba91bef4b94773c18c8932bb379a2
e0fdeaec84ac05801e1bed2f41fb407c6ef2d78f
982612 F20101202_AAAOED vaidyanathan_a_Page_054.jp2
65b47fd393347312a22895ee9337f521
efa2161c1f4b31e774487a540522114808f39fa4
17316 F20101202_AAAODQ vaidyanathan_a_Page_177.QC.jpg
72342f61fd78917d4a64bb1027ee0490
1c5a6a1be77d9b1b7bf68e8eace993a92ae4cfb0
3167 F20101202_AAANYK vaidyanathan_a_Page_161thm.jpg
cf24bd2668c2613921e92f115c073249
7a130ad9fd8f8291d96b544e420e776beecbe28e
864069 F20101202_AAANXV vaidyanathan_a_Page_050.jp2
4a0f77f5caed78989455f88c55960dc2
67f4163cb9cd55513647c7cc2f99a3d9de3388ff
4303 F20101202_AAAOEE vaidyanathan_a_Page_099thm.jpg
ffe39be46d0f9cc90e914be6b1d72023
f9ad56bcdaf1ca5247152dcf055969199589cec7
1014760 F20101202_AAAODR vaidyanathan_a_Page_129.jp2
a1cac6d7f54d3ffa8bfb59b350a26c22
9e2f99817b6f3e5f1d84e45718ea7237796c8ee0
8685 F20101202_AAANYL vaidyanathan_a_Page_063.QC.jpg
aa80f34fe60499efef1ff666f2c01fe7
c5e19097902b9638e5f746af675a8d073d6f2c46
29878 F20101202_AAANXW vaidyanathan_a_Page_200.QC.jpg
8fc310c07c888250cd7ce38cb4905866
abb12344d6a4910ce22fccdf1b6896f3594ead50
F20101202_AAAOEF vaidyanathan_a_Page_193.tif
f2a014d695b7c41761c502009f4c7e86
f827dccbbef1d9dcebc6f0ffbdcd8b7c91ebfdc7
65381 F20101202_AAAODS vaidyanathan_a_Page_176.jpg
c925b44d79abdd1ca736a46642f30389
c9d7dfa9c5484172404fd36d2c6c76053eb9d1f3
2874 F20101202_AAANYM vaidyanathan_a_Page_048thm.jpg
258964170bda6d7ff1ba502612c8500a
a2612099c1c71904b4ebae01c2a8d8c2052a8a4a
53038 F20101202_AAANXX vaidyanathan_a_Page_114.jpg
453ed61576e8f179689d92e9d79b675d
b6351937bbc9d44f10fed73ea885eb675a17c3c5
37137 F20101202_AAAOEG vaidyanathan_a_Page_161.jp2
bdb026ee68a3050c5012bbd692965d94
4bf73b0b6eaec52dadb82c760e19023552e39bb8
3385 F20101202_AAANZA vaidyanathan_a_Page_166thm.jpg
0811aee08ace5cd2531740c731562d58
d544a1bc74c3c2c76dadd53b0a8dbab5a0ecc729
4862 F20101202_AAAODT vaidyanathan_a_Page_004thm.jpg
1132aee96717e6e1c419b823affc5d89
42a19777c1909690d096bb38a9ab9fff52b81a58
41616 F20101202_AAANYN vaidyanathan_a_Page_163.jp2
43eec72f273cac798c0c300a07621def
c52f6344f1a6ba447b547c1287aa0c73d84ac757
20229 F20101202_AAANXY vaidyanathan_a_Page_131.QC.jpg
4efca69b7869b3c215b9e92b953500f1
1c746858a38325b419eeec53470e060ba47ce36a
29709 F20101202_AAAOEH vaidyanathan_a_Page_108.jpg
5fb48f88e2ad76162592ef44746d4663
29f6ee8821e44d7bdb9cd202819ac6414cf8ed48
76439 F20101202_AAANZB vaidyanathan_a_Page_122.jpg
58fe9ed75977f0df8febc2a600694382
d44051419155357757c077cd9465679f248b9376
258516 F20101202_AAAODU vaidyanathan_a_Page_001.jp2
82be14a2220755d26d12ae17f5813735
093984af57e25eaf5ff5ebbf3fe7265e46e14fdc
994193 F20101202_AAANYO vaidyanathan_a_Page_146.jp2
5bd5968a98882b39af51c65a8cef7177
b383d5556c3e6aa73d5680dd04bb3fae440c6a23
1394 F20101202_AAANXZ vaidyanathan_a_Page_003thm.jpg
39d321539f84ed07822975a899d4a59b
4685c5401723adfdfc297a4982065032e4165683
7110 F20101202_AAAOEI vaidyanathan_a_Page_047.QC.jpg
810b7f40020bfa0e9cc76bfe7be68e8c
b9850fe839e4ea6228b78c928d4183e0d1b22e87
F20101202_AAANZC vaidyanathan_a_Page_091.tif
d2e7e3ca73dd8504dcfa6ae613e54f86
f103aa110a5327f66e59ee9c88eefcf29f9600cc
6342 F20101202_AAAODV vaidyanathan_a_Page_088thm.jpg
ba4c0cf5aad631ef54004a7b92e0f929
20797f19b469a46f56b2621b6183f1b14ed99a91
48903 F20101202_AAANYP vaidyanathan_a_Page_168.jp2
4aecb6455378fba348eab5630917ea9a
edb4382f073f16c4373e562995a6f22e587dfd50
10877 F20101202_AAAOEJ vaidyanathan_a_Page_203.QC.jpg
d8bdffa85a420fa7f47ab49961bb08d8
2e5515826f9e20f6350b7115702d36d97df4e3b9
F20101202_AAANZD vaidyanathan_a_Page_125.tif
cf6ad1cbf5bc4900cbaf421a7cd79276
04d8cb29981e62f5172310ab14f0017b2388eaee
14462 F20101202_AAAODW vaidyanathan_a_Page_140.QC.jpg
4cbe1507ab4a8880240610977cba5e3e
cf94b86474e005a8e4aea22799dfbeb8ef33496d
F20101202_AAANYQ vaidyanathan_a_Page_135.tif
1dd25f8f9fbe63cf491502ee4a4ccbfe
b430c7d485623a5b59ee017ffd629073b46eea9f
3171 F20101202_AAAOEK vaidyanathan_a_Page_092thm.jpg
c59600cbacf6da0b0a09bebd8b232961
9fad09e1fba7ea462bb3d9c68ef187de572a5f79
F20101202_AAANZE vaidyanathan_a_Page_197.jp2
567569f97de03fa5a432b77b9a0233f1
ffae894d8986cee5e93ed671cbdf98d446f7d945
28021 F20101202_AAAODX vaidyanathan_a_Page_197.QC.jpg
e9fbde0007799344f1ab9e9d90d894eb
f967ee1f96cb64ca0eb33b77d3208fec71535d4b
F20101202_AAANYR vaidyanathan_a_Page_157.tif
2c1dcb2fd70e9aadc30426731e697e9e
0fdfd18a5b611b2bafe223c3234ef2ecdd5b41bf
57243 F20101202_AAAOEL vaidyanathan_a_Page_028.jpg
96265b8689ae4990ffe2ebe8e013e38a
1e381064cfc9d0e0f8e09acef4dc4e18b707ded9
6633 F20101202_AAANZF vaidyanathan_a_Page_073thm.jpg
bdd2bdef2a19b62bde0be80c370fd2da
b137badd94c890ebfc4f33a315793be63e2efad5
12844 F20101202_AAAODY vaidyanathan_a_Page_162.QC.jpg
5790280bcc240cbe6e0015be93d44ce2
0842bbf1ef4bbb2f7ad1e55504aef93e6542e215
72693 F20101202_AAAOFA vaidyanathan_a_Page_123.jpg
1a444cd25b0fa3f2f31501af2237bfcd
9124c611b6f73e8f022c8c2a4a96afa5a19d40f2
21895 F20101202_AAAOEM vaidyanathan_a_Page_029.QC.jpg
7009342170122c8002ceffef64a6220f
9e642be3e08a3915fd4495466bfe5823b7cae037
18059 F20101202_AAANZG vaidyanathan_a_Page_089.QC.jpg
0e5b52d6ed4b6c01092676914af4a424
a027f4882a2921ca08e5f09eea311b7cdb87f47a
71881 F20101202_AAANYS vaidyanathan_a_Page_112.jp2
915a44a74191a51561a562d14db9cd34
a0edd3695afeb8e04338bad38564ce274259c6b4
F20101202_AAAOFB vaidyanathan_a_Page_009.jp2
60def9c6872e9703769496871431f58e
855b8b8977c8f9edfaf14e8a39e644daeef04026
71417 F20101202_AAAOEN vaidyanathan_a_Page_137.jpg
5e25d638675f8802fe293f3bd778e1f9
d9cc039fdf481eb314d11b87006bf7019c4fa1ef
1478 F20101202_AAANZH vaidyanathan_a_Page_015thm.jpg
6e4959b7784627b8d22d5e68e73f08fb
c7425cf7b6002e1cbc618618ddb722d9a28b9175
F20101202_AAAODZ vaidyanathan_a_Page_117.tif
42aa6392d71d0e5e76aa18a772a3d58f
26773292837d8b470cffebd9f8df454669010207
1051979 F20101202_AAANYT vaidyanathan_a_Page_183.jp2
81400c92e50fb21e2829aa064759f45a
7a095ae8ccc0c513a9aa1e363df6bc6bca8e9998
65425 F20101202_AAAOFC vaidyanathan_a_Page_141.jpg
15cc4beecd8834a4f6744f31980bcb0a
d2070be6c280e263daf9305d764b5d8ff6888804
57104 F20101202_AAAOEO vaidyanathan_a_Page_089.jpg
b036ef9d486d8c245b72f48d89752b15
e0266b4ce30fb1d4d187a447061925b31dc372f6
655197 F20101202_AAANZI vaidyanathan_a_Page_044.jp2
19a8a3c1de00dbe5cc0b71e73ef7e61b
3dad139ae49ebfba622337ff3e97c4d2e28a650e
F20101202_AAANYU vaidyanathan_a_Page_156.tif
e718da53a6c9d20dba91992e2ed74749
60e5b9b35891e703cf3ef4e7a46cae338f84fc61
F20101202_AAAOFD vaidyanathan_a_Page_102.tif
66ee7e005da80134110c350ca0bf6770
a127555e317e549ab9ddc3de754a21e9e4372111
424962 F20101202_AAAOEP vaidyanathan_a_Page_203.jp2
0ddcc79656f0609f52016be713330039
9363eeb2cbaca83c4631367caab6f301f3bb377d
823280 F20101202_AAANZJ vaidyanathan_a_Page_024.jp2
fbce12a92fe032eb8b831983b9a7b7dd
f8100d0eff56d8d78d586865f96d1140fda76a00
19806 F20101202_AAANYV vaidyanathan_a_Page_006.QC.jpg
49faa99d8b7376df84d27e9f7e8b31b7
6c5ded9d6294d09434b7a037f4f9eb230ccaf094
F20101202_AAAOFE vaidyanathan_a_Page_122.tif
e85c077a4e4651746aacdb9cb544c488
eb35d516dde975f4063a1c2600171e4fe19ef479
4643 F20101202_AAAOEQ vaidyanathan_a_Page_128thm.jpg
1fdfad2b02283d288fca19335dc799d5
dd62a633839e2c0777e8370698a920d63f0fd559
4455 F20101202_AAANZK vaidyanathan_a_Page_192thm.jpg
48d7d82469e472a403139b4ed9e2875e
2298bc37eb7241c0ec3a610bce83ec032c2bee27
4107 F20101202_AAANYW vaidyanathan_a_Page_053thm.jpg
2ce35a20c964b26bd422c7b2e2983fbc
3edc2d90d77098d51cda1007df5174993dd2cb19
26636 F20101202_AAAOFF vaidyanathan_a_Page_026.QC.jpg
e65bbb1557111cdc98433319db33f2d0
a5a95f61aa97d275a6c9bef6b9c201ad7da475ad
11015 F20101202_AAAOER vaidyanathan_a_Page_062.QC.jpg
a0e31bff6a881e312ec3d6b157c93715
04884c74c6aba5847c9116634ad75e2e6fca3a93
F20101202_AAANZL vaidyanathan_a_Page_184.tif
0f3be8d21a8a56c7582e89006abec975
6a19d304e81be7310bcbd96a6186424f7a0119ff
15753 F20101202_AAANYX vaidyanathan_a_Page_126.QC.jpg
204d9aff120dce3f0ade03daad651534
94ee74c64f9039e3c32b408fa48d90d595f4337f
69665 F20101202_AAAOFG vaidyanathan_a_Page_151.jpg
585d7bb49d3d9f53d8b8550173c8bc94
cb34857f0d16227e8c8f48f3ee0b70d66a508f30
823559 F20101202_AAAOES vaidyanathan_a_Page_142.jp2
f51c0f8aa1db93b80b7407e419b7e8fb
dea5e0264ee835d696eb400d21ba908e22016925
5149 F20101202_AAANZM vaidyanathan_a_Page_122thm.jpg
3cce2f5c519926f4fb031be025d57690
bb5615af31f71b4079b6cb631b41edee067e018d
104810 F20101202_AAANYY vaidyanathan_a_Page_198.jpg
c7b9c5213775c2c240f1b8c51adb8667
434a648ca3ab2cd84a7e37ccb90f4452139609c0
10254 F20101202_AAAOFH vaidyanathan_a_Page_002.jpg
c2657a9673bbfbc7f2c0ba2cb5e8de16
55fb763495824bb277b7dbbbf25ef4b6ed85dd51
748173 F20101202_AAAOET vaidyanathan_a_Page_052.jp2
161413e50bbb55977d69d1dfe4ae7e3d
b573a009d20e854d3984eb891346ee2698b0b409
26007 F20101202_AAANZN vaidyanathan_a_Page_070.QC.jpg
f6d9b9331579ba2a917b809fd19b033f
435d76772f5f31ca950ac639ceddd44140093b60
F20101202_AAANYZ vaidyanathan_a_Page_118.tif
6902ceb8caec95cc5a0a69f8384887fd
468aff174eba07391f2f892f1388016d73ec727a
45190 F20101202_AAAOFI vaidyanathan_a_Page_102.jpg
21800110e20e99d81fd72e72d0d37369
510aeb09f8282f7fac7c8cdd8266cb7193cd832d
75536 F20101202_AAAOEU vaidyanathan_a_Page_083.jpg
b234a4fd74e5dcb11283359f64cf7158
624e79b6650dc712846e214cf9e341f7b37826e2
F20101202_AAANZO vaidyanathan_a_Page_072.tif
b2e207d7ce73883da13524be05904170
ed295fcd1892aea52e322dc3c8cc8993b9e854f3
626770 F20101202_AAAOFJ vaidyanathan_a_Page_099.jp2
8ebe1ee2aa5996563bd01148be12f88e
6725071f4bf9cb953b96c57fc600701acece0c4b
82088 F20101202_AAAOEV vaidyanathan_a_Page_119.jpg
93bcabd35c52b477d58609635fd61fad
c6eaf2c22133262cfa749258c4f4b6fa1551ec42
37498 F20101202_AAANZP vaidyanathan_a_Page_167.jp2
2e216570f6827bbf6bda1b459b26a67a
a158b0d324357c9719fb3a8e8f1704cbb22ad1e9
835066 F20101202_AAAOFK vaidyanathan_a_Page_153.jp2
ec43a2e4afd7653b0f8e99fb953636ec
388458305008baa04f73c8de547f04a20d95bb1f
F20101202_AAAOEW vaidyanathan_a_Page_093.jp2
af3ce8db8caed4169e62b05ab288e1eb
ae41bd919d6809cdb50295e70c77556f8d102003
31286 F20101202_AAANZQ vaidyanathan_a_Page_111.jpg
54ea35cb68c362e6dc36b5f9d539cb5c
9d8e7273a187d4811f8dee9d3702ea68cabd6e37
F20101202_AAAOFL vaidyanathan_a_Page_075.tif
9cb10070849f124f94899b72c306a786
3173e5758e2341244266412ba167d8d561e76a69
28156 F20101202_AAAOEX vaidyanathan_a_Page_198.QC.jpg
d7440324f8580495f15d752e94fc8c29
df3896832aaf9bf927172316f3f5e795d7ea4d84
722049 F20101202_AAANZR vaidyanathan_a_Page_022.jp2
f4358476c1eb3ae3cb3dc5223eb3fd47
be4da21c5564686b159c109de19b955370a59405
507054 F20101202_AAAOFM vaidyanathan_a_Page_159.jp2
8fc5bf0ce789bfa46983182aee602f89
4505b34fe60c100b6a9fccb27e854aa77077fb5c
860336 F20101202_AAAOEY vaidyanathan_a_Page_033.jp2
9e92aae07eeccad64ed7d3c18d0c3fa8
e624162618f3f15437beaec5303ca263f399b98d
60049 F20101202_AAANZS vaidyanathan_a_Page_185.jpg
e2558056131e89f62459fa8436bc6508
bf406a9c0f5e413b76fc2c0c2309af8f75467239
904267 F20101202_AAAOFN vaidyanathan_a_Page_086.jp2
00afbfde8a76091bd557dccfc60f1d63
046b2d7161642e2f36bcae43d157721867d76c9d
6908 F20101202_AAAOEZ vaidyanathan_a_Page_202.QC.jpg
d5f654f927f645afc858b669c8fb688f
f6da5f8d1adcbeed12cd569ee358167c819157f8
54394 F20101202_AAAOGB vaidyanathan_a_Page_004.jpg
5d172cff6d47cf552d26d45cf45c641e
1de4a16d61120ac5ec1478f6ec9f2ee8879b52cf
F20101202_AAAOFO vaidyanathan_a_Page_041.tif
701b0cdd2ab1c950b526d4d0a45a2522
9f9c8a7bd20baea30237aefd54a426b2ffa06202
58406 F20101202_AAANZT vaidyanathan_a_Page_093.jpg
c106a5ed6ea4137a6b03b2ef6f61fc44
7718a1e15766c921cc25c2ed0565975798faf265
80324 F20101202_AAAOGC vaidyanathan_a_Page_005.jpg
3b9f31b79ec1a92a269701335ded6a65
f32240c492037e941f50434f481ada408132966f
F20101202_AAAOFP vaidyanathan_a_Page_074.QC.jpg
81355d996869f5df357ea5818c78c5b2
43540305a44f79692b9534b2a14f89ab95c719e3
722580 F20101202_AAANZU vaidyanathan_a_Page_043.jp2
db9ab1d9fd9e96423285f806b9415018
c733eb5226b7d4b4c7b22a46b57a2d8541472c7b
73540 F20101202_AAAOGD vaidyanathan_a_Page_006.jpg
34e68001018fdc3c221e03e5bdbd93b7
36872a7e894996e4131528cfa41547f78afcee51
5893 F20101202_AAAOFQ vaidyanathan_a_Page_033thm.jpg
8da17538159da24d46a9a43bea7c93ef
5802dcd781b4ec86cdc0a4fc6ff02e6339e1bcbf
247221 F20101202_AAANZV vaidyanathan_a_Page_120.jp2
099b5ecdf5a266b76bf4f786e780c60a
0e54ee8b833da1e7fe93457f86db6fa9553875f4
21774 F20101202_AAAOGE vaidyanathan_a_Page_007.jpg
42bc438e64f8a924ea5e89da919aa291
a3804763c000fe9ddf4d0cd7b9412fcb42e83b98
F20101202_AAAOFR vaidyanathan_a_Page_094.tif
59a29c218000f4f1753eb6474e0a6830
2eb0fab01cbc2dbeb08d7ffb2d721ca66b8fb6f2
F20101202_AAANZW vaidyanathan_a_Page_161.tif
baa70ff23244de7b523f8d466638a865
f53752678bb895653b80da808b2980ea4ef65c39
105452 F20101202_AAAOGF vaidyanathan_a_Page_010.jpg
294d2105062e312efa0bb502798e8bf8
b5cf4097dcb6346320f053aee5eeb8037ef1e408
4792 F20101202_AAAOFS vaidyanathan_a_Page_157thm.jpg
045bc898a100488a12660997dc82a940
7af09de085ae7997f6568fb11ebee85cf0b25bc7
3696 F20101202_AAANZX vaidyanathan_a_Page_024thm.jpg
fc4878e3fbc81c5ffff74618ad7a27c1
478e9b3d69d89e26bd8f96ae2ef413185594f7a9
37758 F20101202_AAAOGG vaidyanathan_a_Page_012.jpg
5e6ceb1512cca8a04259af7216505b0d
2c5f708ceebf0e6d37284f29dea199cea33d72d1
4117 F20101202_AAAOFT vaidyanathan_a_Page_012thm.jpg
e2247016cdefeb7f4ff9bf5593cf2413
57a959f571131faf8e5d599b6ea860cbdf1f3407
39916 F20101202_AAANZY vaidyanathan_a_Page_011.jpg
b87acd53019857e3d102101979055597
8ec26e110ef35f0694d1430ade49e9a3839cdb9d
71640 F20101202_AAAOGH vaidyanathan_a_Page_017.jpg
7c88fc9c5c75da9e2fe4a4db7621b654
b0d697205269c1269d3b2d0e0a6ce86da3dc42c1
17597 F20101202_AAAOFU vaidyanathan_a_Page_172.QC.jpg
badb0045c2d286c11db062a2bbb405fb
b30928697e28fe3551677bf2cd7e898d8939326c
40862 F20101202_AAANZZ vaidyanathan_a_Page_049.jpg
37653be04ccfa4b53553f6c5bf5ed4f0
ea84874b47a7f95846b7693243043ebe5f323af6
83106 F20101202_AAAOGI vaidyanathan_a_Page_019.jpg
c9f0fd165934dbd9d6735b75df680162
a41f5adc53fe5f138ca5bfb98a2c45ad7e34d3b9
F20101202_AAAOFV vaidyanathan_a_Page_181.jp2
6c7adc2f160a41d7cdf811dc572aef6f
70222ec4e2545a644e215861a1b7812b3d836f0d
44445 F20101202_AAAOGJ vaidyanathan_a_Page_021.jpg
0851175c01c12e7da10ae6c563f5590f
7316e4af14f646aa3c8afbffc09e026d405d267a
2734 F20101202_AAAOFW vaidyanathan_a_Page_108thm.jpg
ab1e6babc9d3bb2ecb602906ab221130
475c7c3ca6db09d9510f75197eae57838bcb3152
41142 F20101202_AAAOGK vaidyanathan_a_Page_024.jpg
29b2a21507f5278cbe86c1064e67bfbf
383c806c03f3973ea65871b1d816d4899d494deb
F20101202_AAAOFX vaidyanathan_a_Page_077.tif
b462388d6093b28fd580c123d9d712bc
36515d409fc99df91743aebc7480f51f0a91bab5
82917 F20101202_AAAOGL vaidyanathan_a_Page_026.jpg
d05e4b17831d9e79b5c6d06aa32cd12d
bd716284e2d8dfaac201b2562ab3ce629dc0bb81
223923 F20101202_AAAOFY UFE0022446_00001.xml
e8d17989bfc3cbe21ccf319e81232e34
8cff623c0f531d95a3ef1973951fea7b9d1a8d0f
36177 F20101202_AAAOHA vaidyanathan_a_Page_055.jpg
28d9f0d6b6ffd8b37e69bde804e9a238
0433f038051e8b4eee4e564742de957f7826ac79
68828 F20101202_AAAOGM vaidyanathan_a_Page_029.jpg
2f9cab09a86914d742fad4263c36e71f
7f2be956d4cd5c09fad6ec3b5fabc754a6e658dc
52526 F20101202_AAAOHB vaidyanathan_a_Page_067.jpg
12072b12403d64d8608467f4b0fd528a
5ed6b1c20f52cf60fcf845b107d87b3e59ca9de8
74485 F20101202_AAAOGN vaidyanathan_a_Page_030.jpg
5a0d5303e82825fb1766af4ba84f9289
f128000bba3bc4bc31de90ce0c76be35eb9191db
71524 F20101202_AAAOHC vaidyanathan_a_Page_069.jpg
83dbe428df32acf209f00db1dd410d7c
11582cfc61f489ddf98ffb83805305909270899c
70577 F20101202_AAAOGO vaidyanathan_a_Page_034.jpg
294ea60a98652a8a459afc984017fba2
923e9d9314da59d32a52bab7d58549a3ab05f1fc
82834 F20101202_AAAOHD vaidyanathan_a_Page_070.jpg
1f93c5fd68424e70c9e8f252d6e001bb
dae38a4f0d5b2a20e722e2cb9626b207918e9654
64548 F20101202_AAAOGP vaidyanathan_a_Page_036.jpg
cc02e580ba5d0fa0c5e117983b0e7110
60fe45e33bd00e005199fe67ef64ed7554c3da0e
52973 F20101202_AAAOHE vaidyanathan_a_Page_071.jpg
e340aed46bbb9284e9c3bc21f1f545ba
1c5758e41b729e43566bc03624ac642c626ffb58
78421 F20101202_AAAOGQ vaidyanathan_a_Page_037.jpg
3d59ed6a1ac57482ef3cfe3fb18d10a0
cde7099d94fd3c7b0f1f0004b98d0067197d91fc
52992 F20101202_AAAOHF vaidyanathan_a_Page_072.jpg
dfe998ce44e4b57726eb38060f808349
61642cdbc4abda0188156c2b324c00222f803282
75187 F20101202_AAAOGR vaidyanathan_a_Page_038.jpg
449308c681bd6ddb61c1829ec4210a87
ba6cc4819eb7073f440fe6a45f9436f495ed3a65
74195 F20101202_AAAOHG vaidyanathan_a_Page_073.jpg
903087cdb7571d3bbafe912cd67a2011
483ce9c18dd71ae8c5dbd6114daeeb8d23a0f60c
58821 F20101202_AAAOGS vaidyanathan_a_Page_039.jpg
c9a226d7f4bd2b2f9290005fe657b15b
94079d3fb014162604376eb4a2ea0a78a30f5c58
76490 F20101202_AAAOHH vaidyanathan_a_Page_075.jpg
6a471dc01ae3139d3378e0dfe13ee5c3
984753ac91e70cca2e6ddb109042c8494b0cdaa0
36747 F20101202_AAAOGT vaidyanathan_a_Page_041.jpg
7b31acab5ad84304f3413b28c5f03dbc
8c74a867c233dd87cac8d03a46f20338797d02aa
82234 F20101202_AAAOHI vaidyanathan_a_Page_076.jpg
f5b9aa3d141503e94b33ccb512393ec7
8e842c621a038ddeeca1facd8dac6f7d380c186b
34819 F20101202_AAAOGU vaidyanathan_a_Page_044.jpg
c60d2ebf935ffe873e6f613301ca6386
85d50799da1613fe252d473bc7ae6dcd9c3abddb
35610 F20101202_AAAOHJ vaidyanathan_a_Page_077.jpg
310d2b2761a070c7b7ea01fe48efa337
63f5ccaa8353f56a5d8623ea9418f8c3798ce185
24000 F20101202_AAAOGV vaidyanathan_a_Page_047.jpg
433078b0da210267b553afd94fa01252
ad53f00e3e48361459986fc498e89b7e13c9cf33
43257 F20101202_AAAOHK vaidyanathan_a_Page_078.jpg
efea797657bde36a1d38981bda6d47c6
f48951da1de454a0b15486e2ba5d5013099f8e46
32908 F20101202_AAAOGW vaidyanathan_a_Page_048.jpg
f6cd2de1de397adcdb7f017c275d1854
82f931ead81325785b396ce5b099a6c664f6ed81
62288 F20101202_AAAOIA vaidyanathan_a_Page_115.jpg
6a157f276dc592a8c2211c046900ecfb
340d7cfd84984da6bf5250c0d5a9cde4502cbe3b
48524 F20101202_AAAOHL vaidyanathan_a_Page_079.jpg
b7bd756ea7d333ad592032924b6b2454
a6543750b0b76bd1c7d2596ca102cc84c99b6e42
38723 F20101202_AAAOGX vaidyanathan_a_Page_052.jpg
afcc6589501cef8296a0390ee942e32f
efc12f4e80081a185aa9c1b00f0745349c458b0e
49751 F20101202_AAAOHM vaidyanathan_a_Page_081.jpg
3fd46c1ea7b0eb02a9d31399cdf5c0e3
22f7c8451b4fb4b290c3b263a27f5c705cd0b1a6
54996 F20101202_AAAOGY vaidyanathan_a_Page_053.jpg
6f93875801f795ece007583ed3f408d7
9b2c5dde9ad1d96859badcb289fdca4bc26519db
74140 F20101202_AAAOIB vaidyanathan_a_Page_116.jpg
3d1036335d4c5ba47bed401e6bb81136
d202f1b760531a40eb989ec569a93f90fc103fc0
88225 F20101202_AAAOHN vaidyanathan_a_Page_082.jpg
303a7bfebbd2198bf83dbb954683d0e8
ad5978e9177d5311d8a2eed44f599fc779d55d72
48482 F20101202_AAAOGZ vaidyanathan_a_Page_054.jpg
214bc12a8f7fcda20824b07a9fac6b02
a41b6488796f5543f5e63da0494e27d679c15bf1
68496 F20101202_AAAOIC vaidyanathan_a_Page_117.jpg
7ba88d26bfd1d6228a83ff6be6daa90b
e554eb7801a63ba9a5ec0821f83c187bf2dce36e
69802 F20101202_AAAOHO vaidyanathan_a_Page_086.jpg
f58d5f312528f1e913cb205a5d82b349
9e5e567ec3e9baf9d5eb96044e9c2fc1ef0e59e3
23303 F20101202_AAAOID vaidyanathan_a_Page_120.jpg
80d2bd3df5126b3f8306cfd52e5975df
01f377856f614d99677f095359cd809bd555f73a
68134 F20101202_AAAOHP vaidyanathan_a_Page_087.jpg
b98f9ae4773c1eae79fc0a95f0e166be
3dc220dd5d1c8ad7e492246262b49892b04b0291
57093 F20101202_AAAOIE vaidyanathan_a_Page_126.jpg
0bda5b1363e51fce381be232d5387325
d4fc93ac3a18febe08bb2dd45397386d37e4d35c
44498 F20101202_AAAOHQ vaidyanathan_a_Page_090.jpg
d3a0597e53388381dec0d25a84ce58bd
40ea119aeb07219e28de5cdaaeec47f1b7883f5a
82903 F20101202_AAAOIF vaidyanathan_a_Page_127.jpg
b7a5d5639785b464d174a84743894f8a
b8ec172b51cd76437229d2d4190c262b634b2560
47200 F20101202_AAAOHR vaidyanathan_a_Page_091.jpg
9a17d34304d97f839a51b4e32b84bcdf
e992096c1619942da952679bbeaba24d206ba768
74993 F20101202_AAAOIG vaidyanathan_a_Page_129.jpg
60278813c86dc7791efed175ff3af71d
abb3af84c5225cd0a3736beecc0e4c6c9cd15a20
51198 F20101202_AAAOHS vaidyanathan_a_Page_097.jpg
c7582adfe46273cea7ca15d05e5df252
f7d717d1746e4be9be0bfe3dc46703fb8804ac9e
57566 F20101202_AAAOIH vaidyanathan_a_Page_130.jpg
a6c0ee7e6698f9db4acbfd70e4a56b47
55228683d6d160a2990837c15f2c6be38457dc8b
82255 F20101202_AAAOHT vaidyanathan_a_Page_098.jpg
229cb1fae64d879013ce5d2640dbceb7
eaa35ff3e029b65ca12948a6939dba7fc536f67b
74724 F20101202_AAAOII vaidyanathan_a_Page_131.jpg
44cbf707f80e35c57757edec68d6ade3
229515a24e6771824ec64fd0128b629dec145149
49254 F20101202_AAAOHU vaidyanathan_a_Page_099.jpg
1e5cf87d6be2830a4c702155dcfa6eb1
b05b7cf2eef68394e816a5f93fd47ed3c75455b9
56852 F20101202_AAAOIJ vaidyanathan_a_Page_133.jpg
49491fd8a779032dbbb078fc7c14f7db
d0122d64eb69b6efc6d3d8f0087968529854771b
60302 F20101202_AAAOHV vaidyanathan_a_Page_100.jpg
db9e03861bd13d0315993da3771fcc2b
496a6a648ca2c77ff2dc655b6eea03f152d2bdda
76486 F20101202_AAAOIK vaidyanathan_a_Page_134.jpg
93666fbc89ee4fc7ce3c5f522a46819a
f676de33bbf98805b8513c044e34518d39642d1c
35643 F20101202_AAAOHW vaidyanathan_a_Page_101.jpg
fde28e8b4a64e8f1e81377348704069a
e39eb38ebb40b0f427a71fe1f93ae2d249ef892e
33051 F20101202_AAAOIL vaidyanathan_a_Page_136.jpg
8024d3f9000913790aea7bcc30bc681d
2d60261cd88112008fccba35c465f13d370d0567
49358 F20101202_AAAOHX vaidyanathan_a_Page_105.jpg
d908958a967c4661eaf640fb7de524cb
b756cc284e9897577deb6da1c8dc4fadfef5cb91
56770 F20101202_AAAOJA vaidyanathan_a_Page_182.jpg
1127f88b82c1962d8eb63a622510d932
b94b74412d2ec388ce39530e1d45a8cdcebadc90
48345 F20101202_AAAOIM vaidyanathan_a_Page_138.jpg
16909aee3b45e613d47dd11755545d12
53fbadb1c310a35b33bfd3e5dfcd41c1cf97d3ea
47742 F20101202_AAAOHY vaidyanathan_a_Page_106.jpg
165c4f915a97b61506b44c064f7f3796
1e5500cd3a0260a9e2e5ddef13ef04337ac1d80f
55346 F20101202_AAAOJB vaidyanathan_a_Page_183.jpg
28e8c47c159417f83f5180744540caff
ab52dfb9c9251c8ccb776c1e7d2941ae42a2089d
52457 F20101202_AAAOIN vaidyanathan_a_Page_139.jpg
a7c5873760e7b4bf9f44ce46feccab5a
e7ef485ffbe4a45d2e11136c5efb2b077595403a
41701 F20101202_AAAOHZ vaidyanathan_a_Page_107.jpg
16e45c71311496b7bdf7c625111946f0
bf81fbb045976ca814b2c2024a9d67b68f59965b
60599 F20101202_AAAOIO vaidyanathan_a_Page_142.jpg
16b2f929adb38cbe536d0faf9968f716
733d8c3d1719b3847cde7f15231af6f0e77824e4
62210 F20101202_AAAOJC vaidyanathan_a_Page_184.jpg
a607cd414cd369d8a16c2e46aff3918e
18f43b35d42a65a36c554a64949a8df31451ea25
72174 F20101202_AAAOIP vaidyanathan_a_Page_146.jpg
e942ee3a372af71d7ebff4be7cb3a2ec
0a15abf4824c935cddc5cd0aeafc7f7809568d07
58877 F20101202_AAAOJD vaidyanathan_a_Page_186.jpg
fffb113e2ec2844bf8bd8ba394913cdd
542bc13e077af53b49630e79cffbd69725071a0a
49287 F20101202_AAAOIQ vaidyanathan_a_Page_157.jpg
343d74b71fb14b830814fb8381c5cee1
28fb2889285cfc9e0b90225e665b56fc8e2613ae
29574 F20101202_AAAOJE vaidyanathan_a_Page_189.jpg
3d3801cd823695d9c7c4bfb1a8f2c336
e782aeb1162fb99a6fe4d01afd6a434dc122bba1
40672 F20101202_AAAOIR vaidyanathan_a_Page_160.jpg
3ac75b0f87542f266a34b97b5ec992ff
a2bc6175ae574b56593742d8c28d3fe12787b687
53405 F20101202_AAAOJF vaidyanathan_a_Page_194.jpg
a159c4e65066bbbb9297a87778fd1989
a674075dfb1a414ddd43b6f5cec834b2c4046091
37142 F20101202_AAAOIS vaidyanathan_a_Page_161.jpg
a2f98d2903cdc62721af57ca2fdcadbc
cd10d0aa7d5d36f02c2760439d3471c5fe90ea73
41126 F20101202_AAAOJG vaidyanathan_a_Page_195.jpg
b4465d4f50eccef4925ae7602e0787ca
4337f0bd2052210c3db8282fa4d7ef5b99bd7840
44403 F20101202_AAAOIT vaidyanathan_a_Page_162.jpg
310a14351b3b3791f727d8d248f03c9a
1708167fc247cfa6aa7bce92987bd059b0057f44
105875 F20101202_AAAOJH vaidyanathan_a_Page_196.jpg
45f42af5fac6955340d3da12f64d0ba7
beea05ebdbd9f14bfcc8dab70cd0e60af1799725
38923 F20101202_AAAOIU vaidyanathan_a_Page_169.jpg
50b7a6a58ec940b0f90fec6b8a39382a
abb810e988ee8e16bbba08fb04bc64f4c0752bfe
103953 F20101202_AAAOJI vaidyanathan_a_Page_197.jpg
b8fc0a1e8d80bc7f7c090b658b580106
3812e99c22052135f8bfbe7be1b66a2d2b549982
36966 F20101202_AAAOIV vaidyanathan_a_Page_170.jpg
8d87c7701b2d59a8d05fd169b7855079
e1c648575348e7476115e8f656225ebc85f7bce3
109944 F20101202_AAAOJJ vaidyanathan_a_Page_200.jpg
652ff5853c282d20258086d348d5f420
25ac7c34bd51ee34bdbef0feeafbea4a4cce841a
108455 F20101202_AAAOJK vaidyanathan_a_Page_201.jpg
1e8197fd2185d1009902fab36aa148f8
f72232fe5239aa148d5f2a850345a9186d4a7f9e
60788 F20101202_AAAOIW vaidyanathan_a_Page_172.jpg
f929ebc4cb3c5be93da804ff45070206
0e57cb134953e757d0ce447b01a0452ec068ad34
1041951 F20101202_AAAOKA vaidyanathan_a_Page_032.jp2
fcdaa4d0fac683044e7ff8f214f117ad
3a864802756ab4f76a4dc978a423cfade3095765
35466 F20101202_AAAOJL vaidyanathan_a_Page_203.jpg
6f4e2ebf420e1e9a56e9ca8df2a95eea
4eeb294a26f6c119bc81dcf94153c82ae41f2779
58832 F20101202_AAAOIX vaidyanathan_a_Page_177.jpg
8441d92043deb6d90e36e3d333304e60
2e2ab940d8f85e3804d5a8bfb27febd745f6dde7
971427 F20101202_AAAOKB vaidyanathan_a_Page_034.jp2
665aec22feb60a579eb78f857a1b3185
8735d542c27825a2f7186d3655e3fb1ea1f5f0fc
29746 F20101202_AAAOJM vaidyanathan_a_Page_002.jp2
fe4929a5fa75c8f48bc5aceebf11d5b0
b7595f6b7c6a355f2be5e9b4c9f7e745704763fe
58841 F20101202_AAAOIY vaidyanathan_a_Page_178.jpg
6082ac5f17ed4bacfecc3cf59ab3c1ec
de383f4315b5519f183ac5e143cacaa7483fbe10
1051938 F20101202_AAAOKC vaidyanathan_a_Page_037.jp2
5cc24168f2d60851a8bfad9bfd561b87
3ea676f9fec3b918ff474fde5873fd9dcf9abf4c
29023 F20101202_AAAOJN vaidyanathan_a_Page_003.jp2
0fe6f94b8ff7253efcd59d41b720ce6d
1f464cf6a02f1427de91c0ba3395b7edf5ac3a8f
59157 F20101202_AAAOIZ vaidyanathan_a_Page_179.jpg
39e9a3f0f28690990785226f0d5d99b4
36491e6def89b9bacfe91232bd9c0e4d57564ce6
1051931 F20101202_AAAOJO vaidyanathan_a_Page_006.jp2
96d9fd5836dd8e86b2ace6a1d373ea36
f38c8e95b49760a98c2b65bf7d33456725af1fac
795598 F20101202_AAAOKD vaidyanathan_a_Page_040.jp2
595fccb17395590abb1fdb476b899908
68ef131f212d53a5a122e04a625eec7f4117f54c
394491 F20101202_AAAOJP vaidyanathan_a_Page_007.jp2
22ae9f3d0c5098772d270cbb6b447b52
a32f966801735a2bc8bf8269760d18902a1b1f07
558521 F20101202_AAAOKE vaidyanathan_a_Page_042.jp2
c72b256aa8ddb4e0f56567148b4fdb5b
2656e00f1d5a99bd0cab4fef1016e86285c7d8d4
F20101202_AAAOJQ vaidyanathan_a_Page_011.jp2
5a1b5eee55db26dbf937500ff5c3b46f
b6094cbce855c5d78acc4092855db18291086d64
938171 F20101202_AAAOKF vaidyanathan_a_Page_045.jp2
3dfabf08e7c98fd3923b89639cd7bc31
df3be2760aa4539bedf2acd7e271baab1aba1120
460107 F20101202_AAAOJR vaidyanathan_a_Page_013.jp2
9eb0d4f7ac567b2e29d3cd3753fe97a8
5c962793f2f98afcba03da6e1623e2ea0ceeaeb0
645454 F20101202_AAAOKG vaidyanathan_a_Page_046.jp2
eb065d3c6463f54b9301d92b351382c0
a09fee520abe711b2b0c86c8ba5d88f1b7a20293
44532 F20101202_AAAOJS vaidyanathan_a_Page_015.jp2
391ace37e9284a4ebdf245195d7e06c8
8b6c28e066c3db45287f5ce174e5f39b093d5be9
398464 F20101202_AAAOKH vaidyanathan_a_Page_047.jp2
de60182b9302453656a0d3ab89f729c2
b7debe83785e44a85abbe69bb381b5a4d0df23ac
1051926 F20101202_AAAOJT vaidyanathan_a_Page_016.jp2
91263747d33d189b165bcb046d914d6a
e7f04a9304d3a9cce92a547a1381c9ad68fd748a
673853 F20101202_AAAOKI vaidyanathan_a_Page_051.jp2
d12abffc3e447a8550a2ce5ce837ce3d
7fe9ece8cddacae0495189eed37e2af8141cc927
1051967 F20101202_AAAOJU vaidyanathan_a_Page_017.jp2
482e1c86592226f94e7c312ca0862321
4f307355ffed06fd6d5f3df190b77bc4974c76cb
F20101202_AAAOKJ vaidyanathan_a_Page_053.jp2
62f4f9c87d59ff48cafa16fa373dd65b
72fcf391f045471babbd4b8ee820d7dcd3c6126a
885173 F20101202_AAAOJV vaidyanathan_a_Page_021.jp2
4800f4808511b9b91e1c7d8e55d6d462
9439b336f5c996e11768eb04157fc94ff6443a93
814623 F20101202_AAAOKK vaidyanathan_a_Page_057.jp2
ed316fbde881a82f5382991fc5038ddb
d154e680757fe6d5dc1a8151b716adc63f0a3def
704121 F20101202_AAAOJW vaidyanathan_a_Page_023.jp2
27a49e00adbcbb3db051859644ddac20
7adc2d8c381b4fe212474f62fdb270f2418717b9
626593 F20101202_AAAOKL vaidyanathan_a_Page_058.jp2
eeaa9bda3cd0c4a7c2df9902563bc7d5
4b0bc65bd6e3c046186ad9356c08366f9806a03e
F20101202_AAAOJX vaidyanathan_a_Page_025.jp2
7533099082b744334fe143c292d1b75d
3318829918b5930b6e4450425737d7b07e76e2de
94258 F20101202_AAAOLA vaidyanathan_a_Page_087.jp2
e26263a96018d74506de6b48161e4751
a0575f888c79fb3737391d7cefc50f4e1f08ff7b
569965 F20101202_AAAOKM vaidyanathan_a_Page_060.jp2
73aea386e90476c72dfbd95bce382f0b
38b8e2adf9c0b5ec9bfe00116fb08401c0dd96a3
1051955 F20101202_AAAOJY vaidyanathan_a_Page_026.jp2
b9d08c771e2274aa9682ae4d8e30e132
224fc4dba0eab3e79b12d62584728f4f65bd987d
981066 F20101202_AAAOLB vaidyanathan_a_Page_088.jp2
dc52f9f0694da586622417d20312373b
cd1a49cb7ae9f9be99a299214cf3b7562d163bfa
742802 F20101202_AAAOKN vaidyanathan_a_Page_061.jp2
f193bf748562be4bcd15429004113f51
3f394a059219aa8c96590acaf48a185158ce7a19
792261 F20101202_AAAOJZ vaidyanathan_a_Page_028.jp2
4dd01fc825dc5bbbe17dda630025bea3
3f29d0570f4fa87c02968cda89186cc0e8dc0bb5
53204 F20101202_AAAOLC vaidyanathan_a_Page_090.jp2
0ca01c815296bdfbfd70359d0bfa4437
a051a70483655dc4bd2474bbba79329f1d43000a
812860 F20101202_AAAOKO vaidyanathan_a_Page_062.jp2
8d8442c59bf2b6b1840f6e68c7f53c1a
eb2865cb7f14a3eada15305e9de222063479c06d
F20101202_AAAOLD vaidyanathan_a_Page_095.jp2
4ba4888329137184236676dd0b06d381
cddea6e9e0c230791b206fce82d22a3feffb614f
553690 F20101202_AAAOKP vaidyanathan_a_Page_063.jp2
c600723e4b9be93917915c0f0f637ceb
8fde238c97ad3a76b88f9a6d670907833233c891
1051951 F20101202_AAAOKQ vaidyanathan_a_Page_065.jp2
67da159bf882eb164b270eb5a16c9f4e
a031cb7438f282e2cc5277ac18e73f9f3a645f4d
561329 F20101202_AAAOLE vaidyanathan_a_Page_101.jp2
812988eea1b1a5a4f21f874b6ba23eb9
fdcbc7a9b0d1a6e70a3e88aa3a81407386c06a36
1051966 F20101202_AAAOKR vaidyanathan_a_Page_066.jp2
55072059205f0c4eadc16dcbac86f731
c75e4578ced010f6a57df0e250687a2c26c5a26a
746318 F20101202_AAAOLF vaidyanathan_a_Page_102.jp2
4513a7c368e1dce4c967e6d7088f5b3b
b932fd23e7e19ad0687d6555f18206702afc29b0
F20101202_AAAOKS vaidyanathan_a_Page_069.jp2
5a4143276b82984144453fac16139c34
81f723e01493e126a1b46801df1e098710396eb9
35155 F20101202_AAAOLG vaidyanathan_a_Page_103.jp2
fd04990781fcbf3798855a5c84080b0d
67df3eb7be61cf96a5ecdce591d65026084b771a
1051925 F20101202_AAAOKT vaidyanathan_a_Page_073.jp2
411993ba66ad5734593829b612e9d3db
735ec7f1e769c46506205265bff11038d5ddb3d9
51230 F20101202_AAAOLH vaidyanathan_a_Page_104.jp2
e3811e64c0e59a0e74197c2a0e841d4b
14608fca0ef453a2c13c2ed85df3108efba0a909
800419 F20101202_AAAOKU vaidyanathan_a_Page_074.jp2
7889584c2e7668ddaf5bd54d90824e74
3b5cce01bed38eb051976e9c3d493b3b2204d27b
60702 F20101202_AAAOLI vaidyanathan_a_Page_105.jp2
86510cb56191ed250cd042eb81f3f2fb
c220dcd1f25404eef655c42969650424242a778e
415477 F20101202_AAAOKV vaidyanathan_a_Page_077.jp2
91af3891d54dc1723652154d5f25abeb
f95f446c2d7681838ee60b8b36f9a6cbc1d4a19a
53381 F20101202_AAAOLJ vaidyanathan_a_Page_107.jp2
eb1416383c388f12481640c6a9ea0a6b
a623997d416984c7d061a09cbc61178fe98b4b1b
613126 F20101202_AAAOKW vaidyanathan_a_Page_078.jp2
89b46475a581967c869790cb37c3360b
ae9c59b5eec00f8995553b0fdc48709a50d08523
28364 F20101202_AAAOLK vaidyanathan_a_Page_108.jp2
c71431be08068caa3e7feb48407c1f9a
afd5e6a060ea063a0722aa6f23e7d75f4d3fbc7d
663279 F20101202_AAAOKX vaidyanathan_a_Page_080.jp2
a7b913bdd6bf7016834603c8dc6d3835
f548d1d0de954658ad1be6ecedacad5e693742dd
40537 F20101202_AAAOMA vaidyanathan_a_Page_166.jp2
6a1c4a36f250833b45c8b50b6fb91ea9
de6def14f32f806d5915a157724d7f6a56a39031
F20101202_AAAOLL vaidyanathan_a_Page_114.jp2
e6f0e562c66fa6985e5e19cf43254304
0a69154392445e3193bdfffdb606f812248a790c
F20101202_AAAOKY vaidyanathan_a_Page_083.jp2
da5062f181eef57d6a76e8a0310fff3b
597aa913eb237596191ecbe63ed0535fa345a138
37279 F20101202_AAAOMB vaidyanathan_a_Page_170.jp2
5971e2f5098cbb2b6470a5f8badc3ca0
eb78d51728447f5f5ed2ad441ec80f32a156dac9
1000798 F20101202_AAAOLM vaidyanathan_a_Page_117.jp2
c4d7118ba5f388f78b8b0a6646497126
2404627c2e21a23eb21434a64a4c0798bf3530ae
871303 F20101202_AAAOKZ vaidyanathan_a_Page_084.jp2
68b23f0d27e0a58a333e909a97cc7a06
61c21877549420cee75faa6bf7ec1a5eb176accb
F20101202_AAANJA vaidyanathan_a_Page_096.tif
ff712c0504a0eab73c053db1abe6e602
8b0770ec2e3ea14e3310abeea33d364d99e2a434
1051884 F20101202_AAAOMC vaidyanathan_a_Page_173.jp2
9beb9e41da8b2a1e1f8ad9a65634fae4
7b52694a15ea5067d2c461a71e54472f44fb6497
773133 F20101202_AAAOLN vaidyanathan_a_Page_130.jp2
4f81e7e722df7428ba58b161fa3d7c87
2bdec109cde47df64d6a6eca80f815a2d6dc8b19



PAGE 1

1 OH-PLIF MEASUREMENTS AND ACCURACY INVESTIGATION IN HIGH PRESSURE GH2/GO2 COMBUSTION By ARAVIND VAIDYANATHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLOR IDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008

PAGE 2

2 2008 Aravind Vaidyanathan

PAGE 3

3 To my Guru Sainath of Shirdi

PAGE 4

4 ACKNOWLEDGMENTS I express m y sincere gratitude to my advi sor, Dr. Corin Segal, for giving me the opportunity to do research under his valuable gui dance and providing me with moral support and encouragement during the ups and do wns of my graduate studies. I am also grateful to all the members of the PhD advisory committee for their critical evaluation and valuable suggestions on my research work. I am indebted to Dr. J onas Gustavsson for his continued patience and guidance like an elder brother. I thank all my colleagues in the Com bustion and Propulsion La boratory; moreover working with people of diverse cultural background is a memorable experience. I am grateful to all my friends and relatives for their continue d support and encouragement. I also express my sincere gratitude to my Master of Science adviso r Prof. Job Kurian of IIT Madras, India and all my teachers who have helped me push the limits of my thinking and imagination. Finally I am extremely thankful to my parents for their en dless support to me in pursuing higher education. This work has been performed with th e support from NASA Gr ant NCC3-994 with Claudia Meyer as the Program Manager.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES................................................................................................................. ..........7 LIST OF FIGURES.........................................................................................................................8 NOMENCLATURE......................................................................................................................12 ABSTRACT...................................................................................................................................16 CHAP TER 1 INTRODUCTION..................................................................................................................17 Hydroxyl Radical (OH) in Non-prem ixed Flames.................................................................25 Motivation for the Current Work............................................................................................ 28 2 OH PLANAR LASER INDUCED FLUORES CENCE THEORY AND REVIEW ........... 29 Fluorescence Modeling...........................................................................................................29 Fluorescence and Interference Signals............................................................................37 Laser................................................................................................................................38 Absorption and Excitation, Line Shape and Fluorescence Efficiency............................ 38 Experimental Constants................................................................................................... 38 Review of OH PLIF Diagnostic Studies.................................................................................39 Fluorescence Strategy and Interference Signals..............................................................64 Laser................................................................................................................................64 Absorption & Excitation, Line Sh ape and Fluorescence Efficiency ............................... 65 Experimental Constants................................................................................................... 66 3 EXPERIMENTAL FACILITY AND DIAGNOSTICS METHODS .....................................68 Experimental Test Facility and Operating Conditions ...........................................................68 OH-PLIF Diagnostics.............................................................................................................72 Wall Boundary Conditions.....................................................................................................75 4 OH-PLIF IMAGE PROCESSING AND QUANTITATIVE ANALYSIS ............................77 Fluorescence and Interference Signals...................................................................................77 Laser.......................................................................................................................................82 Absorption and Excitation, Line Shap e, and Fluorescence Efficiency .................................. 84 Experimental Constants......................................................................................................... .86

PAGE 6

6 5 RESULTS AND UNCERT AINT Y ANALYSIS...................................................................89 Chamber Pressure Measurements........................................................................................... 89 OH-PLIF Measurements......................................................................................................... 92 Quantification of OH Concentration and Uncertainty at 10, 27, 37 and 53 bar ...................100 6 CONCLUSIONS.................................................................................................................. 121 7 FUTURE WORK.................................................................................................................. 123 APPENDIX A MATLAB SCRIPTS USED FOR DATA PROCESSING................................................. 125 B PROPOSED NEW METHODOLOGY FOR PHOTON CALIBRATION .......................... 154 C OH ABSORPTION PROFILES........................................................................................... 160 OH Absorption Profiles at 10 ba r and 2500 K Te mperature Range........................... 160 OH Absorption Profiles at 27 ba r and 2500 K Te mperature Range........................... 163 OH Absorption Profiles at 37 ba r and 2500 K Te mperature Range........................... 166 OH Absorption Profiles at 53 ba r and 2500 K Te mperature Range........................... 169 D OH NUMBER DENSITY CONTOURS.............................................................................. 172 Thirteen Instantaneous OH Number Density Contours at 10 bar ......................................... 172 Thirteen instantaneous OH Numb er Density Contours at 27 bar ......................................... 176 Thirteen Instantaneous OH Number Density Contours at 37 bar ......................................... 180 Thirteen Instantaneous OH Number Density Contours at 53 bar ......................................... 185 E TEMPERTURE MEASUREMENTS AND BOUNDARY CONDITIONS ........................ 190 LIST OF REFERENCES.............................................................................................................196 BIOGRAPHICAL SKETCH.......................................................................................................203

PAGE 7

7 LIST OF TABLES Table page 1-1 Previous Experimental St udies on Rocket Injectors ..........................................................21 2-1 Review of OH-PLIF Diagnostics....................................................................................... 40 3-1 Experimental Operating Conditions.................................................................................. 72 4-1 Colliding Species Cross Section for Collisional Quenching............................................. 86

PAGE 8

8 LIST OF FIGURES Figure page 1-1 Chamber wall cracks due to local heating. Blanching indicates regions of insufficient wall cooling ........................................................................................................................17 1-2 Comparison of CFD predicted wall heat flux m easurements with experimental results.................................................................................................................................18 2-1 Two-State Quasi-Steady TwoStep Modeling of Fluorescence.........................................29 2-2 Physical significance of the term s in OH num ber density expression............................... 37 2-3 Pressure range in the reviewed studies.............................................................................. 67 3-1 Combustion Chamber Cross Section................................................................................. 68 3-2 Injector Details........................................................................................................... ........69 3-4 Laser spectral profile measured usin g Burleigh Wavem eter before doubling to 283 nm............................................................................................................................. .........73 3-5 OH-PLIF Experimental Set-up.......................................................................................... 74 4-1 Average of 13 instantaneous images obt ained at near steady state for chamber pressure of 10 bar ...............................................................................................................78 4-2 Average of 13 instantaneous images obt ained at near steady state for chamber pressure of 27 bar ...............................................................................................................79 4-3 Average of 13 instantaneous images obt ained at near steady state for chamber pressure of 37 bar ...............................................................................................................80 4-4 Average of 13 instantaneous images obt ained at near steady state for chamber pressure of 53 bar ...............................................................................................................81 4-5 Normalized laser sheet intensity profile variation obtained fro m acetone fluorescence images......................................................................................................................... .......83 4-6 Camera calibration corresponding to th e detection strategy employed in the OHPLIF m easurements and region of interest........................................................................ 87 5-1 Chamber pressure versus time for GH2/GO2 combustion for 10 bar and O/F mass flow of 3.7..........................................................................................................................90 5-2 Chamber pressure versus time for GH2/GO2 combustion for 27 bar and O/F mass flow of 3.7..........................................................................................................................90

PAGE 9

9 5-3 Chamber pressure versus time for GH2/GO2 combustion for 37 bar and O/F mass flow of 3.7..........................................................................................................................91 5-4 Chamber pressure versus time for GH2/GO2 combustion for 53 bar and O/F mass flow of 3.7..........................................................................................................................91 5-5 Instantaneous image-processed OH-PLIF im ages at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar................................................................. 93 5-6 Average of thirteen instantaneous imag e-pro cessed OH-PLIF images at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar.......................................... 94 5-7 Average of thirteen instantaneous imag e-pro cessed OH-PLIF images at near steady state chamber pressure of (a) 35, (b) 36, a nd (c) 37 bar indicating the repeatability and reliability of OH-PLIF measurements for determination of OH concentration.......... 95 5-8 Mean position of reaction zone determined from the average OH-PLIF im ages at (a) 10, (b) 27, (c) 37 and (d) 53 bar......................................................................................... 97 5-9 Temperature and specie mole fraction va riation based on equilibrium calculations with equivalence ratios of 0.5 at (a) 10, (b) 27, (c) 37 and (d) 53 bar......................... 102 5-10 Absorption coefficient (129 1BBf) variation with equivale nce ratio and temperature (2500 K) at (a) 10, (b) 27, (c) 37 and (d) 53 bar showing that the variation with respect to mean is 12.4, 14.6, 14.5 and 15.1% respectively............................................ 104 5-11 Absorption profile of OH at (a) 3017 K and 10 bar, (b) 3085 K and 27 bar, (c) 3103 K and 37 bar, and (d) 3125 K and 53 bar sim ulated using LIFBASE showing a complete overlap with the laser sp ectral profile at all pressures..................................... 106 5-12 Overlap integral laserabsd variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with temperature corresponding to equivalence ratio of 0.5, indi cating that the variation with respect to mean is 1.3, 1, 0.8 and 0.5% respectively and can be assumed negligible..........................................................................................................................109 5-13 Collisional quench rate Q21 variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with temperature and colliding species mole fr action corresponding to equivalence ratio of 0.5 indicating that the variation with respect to mean is 4.1, 3.9, 3.8 and 3.7 % respectively......................................................................................................................112 5-14 Instantaneous OH number density contours at near steady state cham ber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar................................................................................. 113 5-15 Average of thirteen instantaneous OH nu m ber density contours at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar................................................ 114

PAGE 10

10 5-16 OH-PLIF measurement uncertainties at (a) 10, (b) 27, (c) 37 and (d) 53 bar ................. 117 B-1 Calibration set-up for photon calibration......................................................................... 154 B-2 A series of 900 images of 32x32 pixe l size was obtained at each exposure .................... 156 B-3 A series of 900 images of 32x32 pi xel size was obtained each exposure........................ 157 B-4 Counts vs exposure time at 532 nm.................................................................................158 B-5 Photons vs counts at 310 nm............................................................................................ 158 C-1 Absorption profile of OH simulated usi ng LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to tem peratures of 2500 K for gaseous H2-O2 flame at 10 bar................................................................................... 162 C-2 Absorption profile of OH simulated usi ng LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to tem peratures of 2500 K for gaseous H2-O2 flame at 27 bar................................................................................... 165 C-3 Absorption profile of OH simulated using LI FBASE at e quivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3 corresponding to temperatures of 2500 K for gaseous H2-O2 flame at 37 bar......................................................................................... 168 C-4 Absorption profile of OH simulated usi ng LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to tem peratures of 2500 K for gaseous H2-O2 flame at 53 bar................................................................................... 171 D-1 Thirteen instantaneous OH number density contours at near steady state cham ber pressure of 10 bar.............................................................................................................176 D-2 Thirteen instantaneous OH number density contours at near steady state cham ber pressure of 27 bar.............................................................................................................180 D-3 Thirteen instantaneous OH number density contours at near steady state cham ber pressure of 37 bar.............................................................................................................184 D-4 Thirteen instantaneous OH number density contours at near steady state cham ber pressure of 53 bar.............................................................................................................189 E-1 Chamber wall temperatures vs time at inner locations of 37, 47, 58, 70, 89 and 102 mm from the injector face................................................................................................ 190 E-2 Chamber wall temperatures vs time at m iddle locations of 37, 47, 58, 70, 89 and 102 mm from the injector face................................................................................................ 190 E-3 Chamber wall temperatures at inner and m iddle locations along the chamber wall at end of the 8 s....................................................................................................................191

PAGE 11

11 E-4 Exponential function assumed for heat flux evolution with tim e.................................... 191 E-5 Experimental and computational te mperatures at 37 mm axial location.........................192 E-6 Experimental and computational te mperatures at 47 mm axial location.........................192 E-7 Experimental and computational te mperatures at 58 mm axial location.........................193 E-8 Experimental and computational te mperatures at 70 mm axial location.........................193 E-9 Experimental and computational te mperatures at 89 mm axial location.........................194 E-10 Experimental and computational te mperatures at 102 mm axial location.......................194 E-11 Chamber wall heat fluxes calculated based on 3D com putations and linear + unsteady assumption at 37 bar......................................................................................... 195 E-12 Computational and Experimental Temper atures for 37 bar at the end of 8s. .................. 195

PAGE 12

12 NOMENCLATURE A Electronic Excited State Alaser Cross sectional area of th e laser beam or sheet (cm2) Pixel ProjectionA Pixel projection area (cm2) 21A Spontaneous emission rate (s-1) 12B Einstein B coefficient for absorption (cm3J-1s-2) 21B Einstein B coefficient for emission (cm3J-1s-2) 12'B 2 12Bc (cm J-1) c Speed of light (cms-1) C Heat capacity (J kg-1 K-1) E Laser energy per pulse (J) E() v Laser spectral energy per pulse (Jcm) 1g Degeneracy in the ground electronic state 2g Degeneracy in the upper excited electronic state GO2 Gaseous oxygen GH2 Gaseous hydrogen h Plancks constant (Js) I() v Laser spectral fluence (Wcm-2 cm) J Jet momentum flux ratio k Thermal conductivity (W m-1 K-1) Bk Boltzmann constant (J K-1) l Laser sheet thickness (cm)

PAGE 13

13 LOx Liquid Oxygen M Molecular weight (g) n Total population density (cm-3) 1n Population density in the ground state (cm-3) 2n Population density in the excited state (cm-3) on Total number density (cm-3) p N Number of photons OH-PLIF Hydroxyl Planar La ser-Induced Fluorescence O/F Oxidizer / Fuel P Pressure (bar) qA Heat flux per unit area (W m-2) 21Q Collisional quench rate (s-1) ReD Reynolds number based on diameter RET Rotational energy transfer T Temperature (K, oC) Tinner Temperature at 3.2 mm from inner wall (K, oC) Tmiddle Temperature at 9.5 mm from inner wall (K, oC) U velocity (m/s) V Volume probed by the laser (cm3) VET Vibrational energy transfer 12W Stimulated absorption rate (s-1) 21W Stimulated emission rate (s-1)

PAGE 14

14 X Electronic ground state T Temperature difference (K, oC) t Time difference (s) x Distance between temperature measurement locations cv Collisional width (cm-1) D v Doppler width (cm-1) shiftCv Collision induced shift (cm-1) D shiftv Doppler induced shift (cm-1) Wavenumber (cm-1) im Reduced mass of OH and the colliding species is Colliding species cross section 4 Fraction of solid angle l Laser pulse duration (ns) B f Boltzmann factor ()cvf Normalized collisional line shape function (cm) ()Dvf Normalized Doppler line shape function (cm) ()absv Absorption line shape function (cm) ()laserv Laser spectral profile (cm) F 22 22 OH actual OH s toichiometricmm mm, equivalence ratio F Fluorescence yield

PAGE 15

15 Density (kg m-3) ic Colliding species mole fraction

PAGE 16

16 Abstract of Dissertation Pres ented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy OH-PLIF MEASUREMENTS AND ACCURACY INVESTIGATION IN HIGH PRESSURE GH2/GO2 COMBUSTION By Aravind Vaidyanathan August 2008 Chair: Corin Segal Major: Aerospace Engineering In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that ar e under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assump tions that were not sufficiently quantified to provide a clear understanding of th e range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, co axial injector typica l of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainti es associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9 % at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Tec hnology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

PAGE 17

17 CHAPTER 1 INTRODUCTION Over the pas t several decades, considerable effort has been dedicated for the development of rocket engine technology including the space shuttl e main engine (SSME) which operates at pressures of 350 bar and a range of upper stage engines which opera te with pressure ranges from several bars to fewer than 100 bar. Yet, consider able difficulties remain to develop a design tool that will adequately describe the physical proc esses occurring in the rocket engines. These predictive tools require validati on through accurate experiments. An example of a current area of concern is illustrated by the photograph of the SSME injector face shown in Figure1-1 The cracks and blanching in the chamber wall near the outer row of the injectors is due to local uneven h eating and must be correct ed in future design. Figure 1-1. Chamber wall cracks due to local heati ng. Blanching indicates regions of insufficient wall cooling [Courtesy: Mr.Kevin Tucker NASA Marshall Space Flight Center, Huntsville, AL] The consequences can be viewed as increas ed flight risk and maintenance costs and indicates that that there is st ill a need to better understand the combustion chamber dynamics. The most reliable method to accomplish this task is by the experimental study of the full scale

PAGE 18

18 engines; however despite their reliability and robustness these experiments are costly. Hence, Computational Fluid Dynamics (CFD) is cont inuously being developed for future designs. The capabilities and limitations of CFD as a ro cket injector design tool were addressed by Tucker et al. [1]. The major challenges currently faced in CFD are due to lack of adequate date base for the CFD validation. The expected perfor mance of the CFD is such that the physical description of the problem will develop from a sm all scale simulation to near full prototype with continuously increased complexity and confidence [1, 2]. An example of the current status of the pr edictive capability is shown in Figure 1-2. 0 2 4 6 8 10 12 14 16 18 20 050100150200250300X (mm)q" (MW/m^2) Wall Heat Flux Measurements Team 1 Team 2; Calculation 1 Team 2; Calculation 2 Team 3 Team 4 Team 5 Team 6CFD Comparison to Wall H eat Flux Measurements Figure 1-2. Comparison of CFD predicted wall heat flux measur ements with experimental results [Source: 3rd International Workshop on Rocket Combustion and Modeling, Paris, March 2006]. The CFD predicted results of the six different groups are inconsistent with each other and quite inaccurate when compared to experiment. The plots in Figure 1-2 show the comparison of wall heat fluxes results obtained from various CFD groups with the experiments. The CF D predicted results of the six different groups

PAGE 19

19 are inconsistent with each other and quite inaccura te when compared to experiments. This shows that considerable improvements need to be made in the predictive capabilities of the CFD tool. Tucker et al. [1] indicated the necessity to obtain experimental database for a single element gas-gas injector for code validation a nd optimization of the injector performance. According to the authors [1] the single element desi gn, referred to as the baseline design, can be used to model performance and environmental in dicators as function of the geometric variables like orifice sizes, post tip thickness and cup details of the injector. Moreover the simplicity to run a CFD code for a single element injector for code validation and subsequent improvement in the code before validating more complex configur ations were also addressed in detail. In the study conducted by Calhoon et al. [3] a systematic approach to investigate and characterize high performance inject ors are explained in detail. Th e importance of single element injector small scale testing, which gradually pa ved ways to multi element full scale testing of rocket engines was also emphasized. The importance and relevance of gas-gas injector for the development of gas-liquid injector technology was further di scussed by Schley et al. [4] w ho indicated that the accurate prediction of gas-gas system using the CFD codes is necessary before applying the CFD codes to predict gas-liquid system. Clearly, the accurate prediction of the gas-gas system is not a sufficient condition to predict gas-liquid system but is a necessary preliminary step before the inclusion of additional complexities like accurate treatment of atomization and spray combustion. The gas-gas single elemen t dataset consists of inflow measurements of species conc entration, temperat ure and velocity; temperature boundary conditions at inlet and exit of the combustion chamber; wall heat transfer boundary conditions;

PAGE 20

20 A brief review of the existing experiment al data focused on the inflow species measurements for coaxial injector studies is tabu lated in Table 1-1 and covers rocket injector studies in the past 10 years. The reviews clearly indicate th e lack of adequate inflow quantitative species measurement with a thoroug h uncertainty analysis. Furthermore, when evaluated, the uncertainties show n in Table 1-1 indicate that considerable work remains to be done to improve the existing accuracy so that the database may be useful to support code validation.

PAGE 21

21Table 1-1. Previous Experimental Studies on Rocket Injectors Uncertainty Ref. Injector type Chamber Pressure (bar) Parameters Experimental Method Species Quantification Source (% error) Rms error (%) Foust et al. [5] Single element shear (GH2/GO2) 13 Inflow velocity and species concentration (H2O, H2, O2) LDV for velocity and Raman spectroscopy for species Mole fraction of H2O,H2 and O2 (i) Non-linear temperature dependence of Stoke band factor (40) 40 Foust et al. [6] Single element shear, swirl (GH2/GO2) 13 Inflow species concentration (H2O, H2, O2) Raman spectroscopy Mole fraction of H2O,H2 and O2 (i) Laser pulse energy fluctuation(5), (ii) Non-linear temperature dependence of Stoke band factor (45) 45 Brummund et al. [7] Single element shear (LOx/GH2) 20 Inflow species visualization (OH) Planar Laser Induced Predissociation Fluorescence (PLIPF) Signal intensity (qualitative) Mayer et al. [8] Single element shear (LOx/GH2) 15 Jet and flame visualization Shadowgraph, Flame emissions Signal intensity (qualitative) Yeralan et al. [9] Single element swirl (LOx/GH2) 28 Inflow species concentration (H2O, H2, O2) and temperature Raman spectroscopy Mole fraction of H2O, H2 and O2. (i)Calibration measurements (40), (ii)Shot noise 40 Wehrmeyer et al. [10] Single element swirl (LOx/GH2) 60 Inflow species visualization (H2O, H2, O2) Raman spectroscopy Signal intensity (qualitative)

PAGE 22

22Table 1-1. Continued. Uncertainty Ref. Injector type Chamber Pressure (bar) Parameters Experimental Method Species Quantification Source (% error) Rms error (%) Herding et al. [11] Single element shear (LOx/GH2) 1 Inflow species visualization (OH) OH emissions Signal intensity (qualitative) Candel et al. [12] Single element shear (LOx/GH2) 10 Inflow species visualization (OH, O2) Temperature #PLIF for OH and O2. CARS for temperature Signal intensity (qualitative) Ivancic et al. [13] Single element shear (LOx/GH2) 60 Inflow species visualization (OH), Temperature OH emissions CARS for temperature Signal intensity (qualitative) Juniper et al. [14] Single element shear (LOx/GH2) 70 Inflow species visualization (OH) OH emissions Signal intensity (qualitative) Mayer et al. [15] Single element shear (LOx/GH2) 20 Jet and flame visualization Shadowgraph, Flame emissions Signal intensity (qualitative) Yeralan et al. [16] Single element swirl (LOx/GH2) 28 Inflow species concentration (H2O, H2, O2) and temperature Raman spectroscopy Mole fraction of H2O, H2 and O2. (i)Calibration measurements (19), (ii)Shot noise(10) 22

PAGE 23

23Table 1-1. Continued. Uncertainty Ref. Injector type Chamber Pressure (bar) Parameters Experimental Method Species Quantification Source (% error) Rms error (%) Mayer et al. [17] Single element shear (LOx/GH2) 63 Jet and flame visualization Shadowgraph, OH emissions Signal intensity (qualitative) Kalitan et al. [18] Single element swirl (LOx/CH4) 41 Inflow species (OH, CO2) and jet visualization OH visualization by PLIF and emission images, CO2 by emission images and jet visualization by shadowgraph and laser light scattering Signal intensity (qualitative) Singla et al. [19] Single element shear (LOx/CH4) 1 Inflow species visualization (OH, CH) OH and CH emissions Signal intensity (qualitative) Singla et al. [20] Single element shear (LOx/GH2) 63 Inflow species concentration (OH) and visualization (OH) PLIF for OH concentration and OH emissions for flame visualization Signal intensity ( semi quantitative)* (i) Boltzmann fraction variation in 2000 K temperature range (10), (ii) laser beam absorption by OH(10) and (iii)Variation in quench rate due to species and temperature variation 32

PAGE 24

24Table 1-1. Continued. Uncertainty Ref. Injector type Chamber Pressure (bar) Parameters Experimental Method Species Quantification Source (% error) Rms error (%) Singla et al. [21] Single element shear (LOx/CH4) 25 Inflow species visualization (OH) PLIF for OH visualization Signal intensity (qualitative) (i) UV PAH fluorescence and OH fluorescence are of same intensity at 25 bar Smith et al. [22] Single element shear (LOx/GH2) 40 Inflow species (OH) and jet visualization Shadowgraph, OH emissions Signal intensity (qualitative) Vaidyanathan et al. [23] Single element shear (GO 2 /GH 2 ) 10 Inflow species concentration (OH) PLIF for OH concentration Mole fraction of OH (i) Boltzmann fraction variation in 2500 K temperature range (15), (ii) laser beam absorption by OH over a distance of 3 mm(8) 17 #PLIF Planar Laser Induced Fluorescence *Singla et al. [20] provided semi -quantitative OH distribution in signal intensities without converting them to the actual numbe r densities. Additional error sources which typically originate fr om photon calibration, shot noise, spatial variation of camera sensitivity and spatial variation in laser sh eet intensity profiles were not addressed. One of the main objectives of the study carried out by Singla et al. was to provide OH dist ribution for CFD validation.

PAGE 25

25 From the previous experimental studies tabulated in Table 1-1, it can be seen that only one third of them addressed the uncertainties associ ated with the measurements and only a limited number of factors have been included. A comprehensive a nd thorough investigation of the uncertainties associated with th e inflow measurements is clearl y needed. This is the primary motivation of the present work. Before discussing the motivation of the curr ent work, the importance of hydroxyl radical measurement in non premixed flames is reviewed. Hydroxyl Radical (OH) in Non-premixed Flames In the injector vicinity of a non-premixed fl ame the OH radical is present in the reaction zone of the fuel-oxidizer shear layer jets and is, therefore, a go od flame marker [24]. Seitzman et al. [25] characterized OH st ructures in turbulent non-premixed hydrogen flames and found that the OH was confined to the flame as a thin structur e at the base of the flame and was also found in the diffuse regions near the tip of the fl ame where the hot product gases existed. According to Barlow et al. [27] OH concentr ation peaks near the st oichiometric condition in hydrogen flames. In this study [27] the equivale nce ratio in the shear layer of supersonic and subsonic jets varied between 0.8. The authors opi ned that since the stoichiometric contour is often separated from the centre of the shear layer in turbulent diffusion flames, the OH fluorescence can be a good reaction zone marker. In this study [27] th e growth and relative widths of shear layer for both compressible and incompressible flow were determined based on the OH measurements. Clemens and Paul [28] also discussed the use of OH as reaction zone marker. According to the authors [28] the OH can also appear as a pr oduct in lower temperature regions due to its relatively slow three-body recombination reaction, H+OH+M H2O + M, M being the third

PAGE 26

26 body. However, these regions appear as distribu ted and diffused OH zones when compared to the thin laminar like filament structures in the prim ary reaction zone. Thus the appearance of OH in the shear reaction zones represents the flame front and could be used to mark the reaction zones in the GH2/GO2 combustion carried out in th e current study. Similarly Iv ancic et al. [13] in the study of time and length scales in LOx/GH2 rocket combustors found out that the OH emissions present on the symmetry line in the near inject or regions come from the OH radicals produced within the reaction zone. Donbar et al. [30] identified the reaction zone structures in a turbulent non-premixed methane jet flames based on CH-OH PLIF images. A ccording to the authors [30] if the wrinkling in the flame is not severe, the fuel rich boundary of the OH zone can be identified and used as the stoichiometric contour. The stoichiometric co ntour in this study was identified as existing in a thin zone in the gap between CH and OH regi ons. The stoichiometric contours were used to determine the flame surface density and degree of flame wrinkling. The visualization of reaction zone from OH-PL IF images is mentioned in the work done by Pickett et al. [31]. According to these authors in non-premixed flames OH is consumed in the fuel rich region and hence the OH zone is confined to the flame whereas in the case of premixed flames, OH continues to exist in high temperature product regions. Si ngla et al. [21, 22] cites the importance of OH radical in high pressure cryogenic flames as representing the characteristics of combustion reactions, presence in high temperat ure stoichiometric regions and flame-front marker. Experimental investigation of the effects of heat release in a subs onic turbulent planer H2 jet was done by Theron et al. [32]. In this study H2 was injected through th e central rectangular slot whereas air was supplied from the upper an d lower channels above and below the slot

PAGE 27

27 respectively. The OH radical was tracked by fluorescence technique and the mean position of the reaction zone was identified as the position of maximum OH fluorescence signal intensity from the centre line along the test s ection height. The axial evoluti on of the mean position of the reaction zone was represented as the stoichio metric contour of maximum temperature. These studies clearly id entified the usefulness of tracking OH in non-premixed flames as a marker of the flame zone that is close to stoichiometric region; hence the continuous use of OH measurement for combustion applications.

PAGE 28

28Motivation for th e Current Work Based on the existing information the pr esent work is focused on providing OH measurement with a detailed uncertainty analysis. The flow field is generated by a shear coaxial H2/O2 flame. This study was aimed at obtaini ng quantitative OH concentrati on at chamber pressures of 10 bar range and oxygen/fuel (O/F) mass flow ra tio of four using OH-PLIF diagnostic. The uncertainty sources and their respective contri butions to the OH concentration measurements will be addressed and discussed in detail in Chapters 4 and 5. The data obtained here includes OH-PLIF meas urements at pressures of 10, 27, 37 and 53 bar. Temperature measurements for boundary conditions are also included to compliment the information provided to the CFD modelers. The data corresponding to cham ber pressure of 10, 27, 37 and 53 bar were post-processed in this work and the uncertainties associated with the OH measurements were identified and evaluated. Thus, the rest of the document in cludes the following discussions: theory and review of OH pl anar laser induced fluorescence experimental facility and diagnostic methods employed OH-PLIF image processing and quantitative analysis results and uncertainty analysis conclusions future work Equation Section 2

PAGE 29

29 CHAPTER 2 OH PLANAR LASER INDUCED FLUORESCENCE THEORY AND REVIEW A brief discussion of laser induced fluorescen ce (LIF) application to obtain the num ber density of the species being probed, in this case, OH is given below followed by a review of existing studies. Fluorescence Modeling Fluorescence modeling is based on a two level excitation / detection strategy within the linear regime. Detailed explanations are given in Eckberth [33] and others [34]. = 283 nm = 306-320 nm Laser Excitation0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3A A X XFluorescence Emission Ground State Excited State Step 1 Step 2 Vibrational level Rotational level = 283 nm = 306-320 nm Laser Excitation0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3A A X XFluorescence Emission Ground State Excited State Step 1 Step 2 = 283 nm = 306-320 nm Laser Excitation0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3A A X XFluorescence Emission = 283 nm = 306-320 nm Laser Excitation0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3A A X XFluorescence Emission Ground State Excited State Step 1 Step 2 Vibrational level Rotational level Figure 2-1. Two-State Quasi-Steady Two-Step Modeling of Fluorescence The laser induced fluorescence process is illustrate d in Figure 2-1. It consists of a two step process: the first step is the excitation of the mo lecule/radical from th e ground state (X) to the upper excited state (A) by laser absorption; the second step is the spontaneous emissions of photons when the molecule relaxes from the upper excited state to their ground states. Given the certain energy loss associated with the proce ss, emission is at longe r wavelength than the excitation. Emission occurs very close after absorp tion and is of the order of less than 10 ns in the case of OH in an atmospheric flame [38]. The quantification of th e number of photons collected in this process can be used to determine the number density of the molecule/radical in

PAGE 30

30 the region of interest provided all the pro cesses involved in the fluorescence are properly accounted for and modeled. The processes involved in fluorescence can be more specifically termed as stimulated absorption-W12, stimulated emission-W21, spontaneous emission-A21 and collisional quenchingQ21. These four processes of energy transfer take place between the electronic states, in this case, the ground state (X) and the upper ex cited state (A). In the upper excited state the two processes of interest are the rotational energy transfer -RET and the vibrationa l energy transfer -VET. The excitation is provided by a monochromatic source from a pulse laser with short duration of less than 10 ns. This permits fluores cence detection time of less than 500 ns which helps in avoiding the interf erence from other background em issions during diagnostics. The rate of absorption by the molecule/radical is given by 12 12 2B WI() cv (2-1) Here 12W (s-1) is the stimulated absorption rate, 12Bis the Einstein B coefficient for absorption (cm3J-1s-2), cis the speed of light (cms-1), I()vis the laser spectral fluence (Wcm-2 cm) given by laserE() Alv whereE()v is the laser spectral energy per pulse (Jcm), Alaser (cm2) is the cross sectional area of the laser beam or sheet andl (s) is the laser pulse duration. Since the absorption process involves laser/molecule intera ction it is called stimulated absorption rate. The molecule/radical will relax from the uppe r state to the ground state by the following three processes as described below. The first path constitutes of stimulated emi ssion, in which the molecule/radical interacts with the laser and returns to the ground state. The stimulated emission rate, W21 (s-1) is given by

PAGE 31

31 21 21 2B WI() c v (2-2) where 21Bis the Einstein B coefficient for emission (cm3J-1s-2). The absorption and emission rates are related by 112221gW=gW (2-3) Here 1g and 2g are the degeneracies of the ground and the upper electronic st ates respectively. The second path constitutes of the spontaneous emission in wh ich the molecules relax from the upper excited state to the ground state by emitti ng fluorescence. This is the main mechanism for LIF signal production. The spontaneous emission rate is dictated by Einstein coefficient for spontaneous emission 21A (s-1). The spontaneous emission rate and the stimulated absorption rate are related by 3 21 12A 8 B h (2-4) where h (J.s) is the Plan cks constant and is the wave number of the particular individual transition (cm-1). In the third process, the molecules in the upper excited electronic st ate can relax to the ground state by collisions with other molecules called collisional quenching. The quenching rate is modeled as, 1 2 218 QB ii i BikT P kT cs m (2-5) where P is the pressure, B k is the Boltzman constant, T is the temperature,ic represents the colliding species mole fraction, is, the colliding species cross section and im is the reduced mass of excited molecule/radical ,in this cas e, OH and the colliding species. Quenching

PAGE 32

32 represents the rate of non -radiative decay of the excited state mo lecule to the ground state. It can be noticed from Equation 2-5 that quenching linearly increases with pressure and hence at high pressures the fluorescence signal intensity due to spontaneous emission can be significantly reduced due to quenching. This is one of the majo r challenges in applying LIF techniques at high pressures. In RET the molecules in the upper excited rovibrational state can move to neighboring rotational levels in the same excited electronic state due to collisions with other molecules. Similarly in VET the molecules migrate to neighboring vibrational leve ls of the same upper excited state. The collisional quench model in E quation 2-5 needs to be modified to take into account the effect due to RET and VET. The modi fied model for collision al quench rate of OH which also takes into account th e effect of RET and VET is discussed in Chapter 4 in detail. Other mechanisms involved in the energy tr ansfer processes are predissociation and photoionization [33]. Predissociati on is the process in which the excited molecule dissociates prior to the emission of the photon. In photoionization, the excited mo lecule gets ionized prior to the emission of the photon. Based on the two state two step model as show n in Figure 2-1 a mathematical formulation of all the processes involved in fluorescence is made to infer target species number density. The population density in the ground state, n1 (cm-3) and in the excited state n2 (cm-3) constitute the total population density of n = n1 + n2 (cm-3) for the specific robvibr ational transition being excited. The rate of change of molecules in th e upper excited state (A) per unit volume is then given by 2 1122212121WWQA dn nn dt (2-6)

PAGE 33

33 In the current study fluorescence in the linear re gime is considered, thus the fluorescence signal is linearly proportional to the input laser irradiance. In other words, the number of fluorescence signal photons collected is linearly proportional to the number of input laser photons supplied during the durati on of the pulse. In contrast to linear regime, fluorescence signal photons become independent of both laser i rradiance and collisional quenching in the case of saturation regime. The la ser irradiance used in the cu rrent study which is 0.445 x 106 W/cm2 is nearly four-five orders of magnitude less than the laser irra diance employed for saturation LIF studies by Carter et al. [40] Hence for the current study the pumping is weak and the fluorescence can be considered to be in the linear regime. At steady state, 2dn dtis zero and in the linear regime, as 12W is negligible [33], n2 is expressed as 112 2 2121W (QA) n n (2-7) The fluorescence signal or the number of photons, p N can then be expressed as p221NAV 4ln (2-8) where, V (cm3) is the volume probed by the laser and 4 is the fraction of the solid angle detected. Substituting the expression of n2 from Equation 2-7 and rearranging Equation 2-8 21 p112 2121A NWV QA4ln (2-9) For weak pumping, n2<< n1 and total population density n ~ n1. The population density n1 (cm-3) in the ground state rovibrational energy level is related to the total number density of the

PAGE 34

34 molecule/ radical by n1 = no B f Here no is the total number density and B f is the Boltzmann fraction of the specific r ovibrational energy level in the ground state. Thus, p Nin Equation 2-9 can be rewritten as 21 p12 2121A NWV QA4o Blnf (2-10) Substituting the expression of 12Wfrom Equation 2-1 into Equation 2-10 12 21 p 2 2121BA NI ( )V QA4 co Blnfv (2-11) Emitted and absorbed light has a finite bandwid th which is called the line broadening [33, 35]. This means that in reality, the energy of a dipole transition which is well defined by the energy difference between two quantum states is not monochromatic and has a certain spectral width and shape. The line broadening in a typica l combustion environment is due to three main reasons, namely natural broadening, collisional/pressure broadening a nd Doppler broadening. Each is briefly discussed below. Natural broadening is due to the finite lifetime of the molecule/radicals in the excited state. If the molecule were to radiate energy fo r an infinite period, the line shape is a delta function. Since the lifetime is finite it represents a Lorentzian function [35] In general the effect of natural broadening is much smaller compared to collisional and Doppler broadening; hence, it is often neglected [33]. Similarly in the case of collisional broadening, the lifetime of the molecule in radiating the ener gy is reduced if it collides with other molecules. The Doppler broadening occurs due to the Doppler shift caused by the relative motion of the molecule and the laser beam propagation. The collisional broadening represented by a Lorentzian function [35] is

PAGE 35

35 21 ( 2 () 2)c c ocv v vvv f (2-12) where ()cvf is the normalized line shape function, cv is the spectral width associated with collisional broadening, ov is the central frequency of the transition involved. For OH the collisional width could be calcula ted from the empirical model pr ovided by Davidson et al [41] based on spectroscopic measurements carried out in a shock tube at conditions of 60 bar and 1735 K. 0.75 -1300 0.140 cmC oP v PT (2-13) Similarly the Doppler broadening represented by Gaussian profile [35] is 2 0.52ln 2 ( exp4ln 2)o D DDvv vvv f (2-14) where ()Dvf is the normalized line shape function, D v is the spectral width associated with collisional broadening and ov is the central frequency of the transition involved. The Doppler width [35] is 2 -7-1 28ln(2) 7.16 x 10 cmBo DokTv T vv M mc (2-15) where T is the temperature, kB, the Boltzmann factor, m the mass of the molecule/radical and M is the molecular weight of the molecule/r adical which is OH in the current study. The spectral distribution due to the line broa dening is expressed as a normalized line shape function, ()absvand is defined as ()1absvdv The absorbing species line shape function,

PAGE 36

36 ()absvis obtained as the convolution of collisional and Doppler line shap e functions which is generally referred to as th e Voigt profile [33, 35]. Moreover, the central frequency of the absorption profile gets shifted due to the collision with neighboring molecules and/or due to the D oppler effect [20, 37, 41]. The collision induced shift for OH is given [20, 41] by 0.45 0.08 -1 shift300 0.0305 cmC oP v PT (2-16) and the Doppler shift [37] is given by -1 D shiftv cm covv (2-17) Here shift Cv and D shiftv represent the collisional and Doppler shifts respectively, ov is the central frequency of the specific rovibrational transition, v, the velocity of the molecules and c is the speed of light. In the current study, the absorption profile for OH is simulated using the commercially available software LIFBASE [37]. The laser prof ile used in this study is assumed to be well represented by the Gaussian prof ile. The laser line profiles and the absorption line profiles relevant to the current study will be di scussed later in Chapters 3 to 5. Thus, to account for the spectral distribution of the laser profile and the absorption profile of the target species, the fluorescence si gnal in Equation 2-11 is modified as 12 21 p 2 2121BA N I()() V QA4 cabs lo Bvvdvnf (2-18) Substituting for laserlE() I() A v v and E()E()laservv where Eis the laser energy per pulse and ()laservis the laser line shape, into Equation 2-18 and rearranging,

PAGE 37

37 12 21 p 2 2121BA E NV AQ A 4 claserabso Bdvf n (2-19) (I) 1) Fluorescence (i) Detection Electronics (ii) Excitation / Detection Strategy (iii) Detection Environment2) Interference Signals(iv) Laser internal scattering (ii) Background emission (iii) Mie / Rayleigh Scattering (III) 1) Absorption and Excitation(i) Boltzmann factor (Temperature) (ii) Absorption Coefficient (Spectroscopy)2) Line Shape(iii) Overlap integral (line shape & laser center line shift) (iv) Model (Collisional & Doppler width/shift)3) Fluorescence Efficiency(v) Quench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) (vi) Model for quantum yield (II) 1) Laser (i) Shot to shot power fluctuation (ii) Laser sheet / beam profile variation (iii) Laser absorption (OH & other molecules) (IV) 1) Experimental Constants(i) Probe volume (ii) Solid angle detected (iii) Transmission efficiency of filters (iv) Photon detection efficiency of camera p OH 1221 2 2121 N BA E V Ac AQ4o laserabsBf dn W OH-PLIF Measurement (I) 1) Fluorescence (i) Detection Electronics (ii) Excitation / Detection Strategy (iii) Detection Environment2) Interference Signals(iv) Laser internal scattering (ii) Background emission (iii) Mie / Rayleigh Scattering (III) 1) Absorption and Excitation(i) Boltzmann factor (Temperature) (ii) Absorption Coefficient (Spectroscopy)2) Line Shape(iii) Overlap integral (line shape & laser center line shift) (iv) Model (Collisional & Doppler width/shift)3) Fluorescence Efficiency(v) Quench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) (vi) Model for quantum yield (II) 1) Laser (i) Shot to shot power fluctuation (ii) Laser sheet / beam profile variation (iii) Laser absorption (OH & other molecules) (IV) 1) Experimental Constants(i) Probe volume (ii) Solid angle detected (iii) Transmission efficiency of filters (iv) Photon detection efficiency of camera p OH 1221 2 2121 N BA E V Ac AQ4o laserabsBf dn W OH-PLIF Measurement (I) 1) Fluorescence (i) Detection Electronics (ii) Excitation / Detection Strategy (iii) Detection Environment2) Interference Signals(iv) Laser internal scattering (ii) Background emission (iii) Mie / Rayleigh Scattering (III) 1) Absorption and Excitation(i) Boltzmann factor (Temperature) (ii) Absorption Coefficient (Spectroscopy)2) Line Shape(iii) Overlap integral (line shape & laser center line shift) (iv) Model (Collisional & Doppler width/shift)3) Fluorescence Efficiency(v) Quench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) (vi) Model for quantum yield (II) 1) Laser (i) Shot to shot power fluctuation (ii) Laser sheet / beam profile variation (iii) Laser absorption (OH & other molecules) (IV) 1) Experimental Constants(i) Probe volume (ii) Solid angle detected (iii) Transmission efficiency of filters (iv) Photon detection efficiency of camera p OH 1221 2 2121 N BA E V Ac AQ4o laserabsBf dn W (I) 1) Fluorescence (i) Detection Electronics (ii) Excitation / Detection Strategy (iii) Detection Environment2) Interference Signals(iv) Laser internal scattering (ii) Background emission (iii) Mie / Rayleigh Scattering (III) 1) Absorption and Excitation(i) Boltzmann factor (Temperature) (ii) Absorption Coefficient (Spectroscopy)2) Line Shape(iii) Overlap integral (line shape & laser center line shift) (iv) Model (Collisional & Doppler width/shift)3) Fluorescence Efficiency(v) Quench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) (vi) Model for quantum yield (II) 1) Laser (i) Shot to shot power fluctuation (ii) Laser sheet / beam profile variation (iii) Laser absorption (OH & other molecules) (IV) 1) Experimental Constants(i) Probe volume (ii) Solid angle detected (iii) Transmission efficiency of filters (iv) Photon detection efficiency of camera p OH 1221 2 2121 N BA E V Ac AQ4o laserabsBf dn W OH-PLIF Measurement Figure 2-2. Physical signif icance of the terms in OH number density expression Equation 2-19 can be rearranged in terms of OH number density. The physical significance of the terms from the experimental, modeling a nd quantifying point of vi ew are shown in Figure 2-2. The four categories of OH-PLIF measurement mentioned in Figure 2-2 are discussed here. Fluorescence and Interference Signals The excitation and detection strategy of OH c onsists of A-X (0, 0), A-X (1,0), A-X (3,0) transitions of which A-X(1,0) is employed in the current study. The detection electronics employed to collect fluorescence could be an ICCD camera, photodiode or spectrograph. The detection environment of OH is typically a combus tion zone. The interferen ce signals refer to the

PAGE 38

38 potential interferences from other species in th e combustion environment, elastic scattering and the background emissions. Laser The laser pulse energy employed in PLIF m easurements and the shot to shot power fluctuation needs to be monitored. The laser beam/sheet profile is non-uniform in space and needs to be corrected for qua ntitative measurements. The laser is absorbed by OH and other species in the combustion envir onment resulting in attenuation of the beam as it traverses through the flame. All these factors contri bute to the measurement uncertainties. Absorption and Excitation, Line Shape and Fluorescence Efficiency The Boltzmann fraction, B f in the initial state population, no B f varies with temperature and hence a careful selection of rovibrational transitions with minimum temperature dependence is recommended for PLIF diagnostics. The dependence of abs with temperature and pressure is to be accounted for species quantification. The determination of fluorescence yield from Equation 2-5 also requires the knowledge of co lliding species mole fraction in addition to temperature and pressure fields. Experimental Constants The strength of the fluorescence signal det ected depends on the in tersection volume of laser beam/sheet with the flame known as th e probe volume and the fraction of solid angle collected. To avoid the interference signals and elastic scattering, optical filters are employed while collecting fluorescence; however most of the optical filters have transmission efficiency of less than 60 % at 310 nm where the OH fluorescence is detected. In addition to this the photon detection efficiency at 310 nm for an ICCD camera is less than 25 %. All these reduce the strength of the detected fluorescence signal.

PAGE 39

39Review of OH PLIF Diagnostic Studies LIF techniques can be used for temperature, pressure, velocity, density or mole fraction measurements in wide range of environments [33, 35, 38, 42, 43]. Equation 2-19 helps determine the number density directly from the fluores cence signal. Moreover PLIF provides species measurements in various fluids including combustion environments. Hanson [42] provided a detailed review of the applica tion of planar imaging of fluores cence, giving examples of PLIF application to obtain species co ncentration, 2D temperature fields, velocity and pressure imaging. In the following discussions, studies related to OH fluorescence and its planar imaging in combustion zones will be presented. A brief review of the OH-PLIF diagnostics is ta bulated in Table 2-1. The table is set up to identify the four categories as (I) Fluores cence and interference signals, (II) Laser energy fluctuation, spatial profile non-uni formity and attenuation, (III) Ab sorption coefficient variation with temperature, overlap integral modeling and dependence on temperature and pressure, and fluorescence yield modeling and dependence on temp erature and pressure and (IV) Experimental constants corresponding to Figure 22. The last column in the ta ble indicates the main results from each study.

PAGE 40

40Table 2-1. Review of OH-PLIF Diagnostics Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Dieke & Crosswhite [44] OH emissions in atmospheric flame fundamental study which provided ultraviolet bands of OH in 280 355 nm Allen & Hanson [24] Imaging OH in atmospheric heptane-air flame Excitation Q1(6), A-X(1,0) Detection (1,1) at 310 nm camera Interference elastic scattering from droplets 10 mJ per pulse The Q1(6) transition at 283 nm was devoid of temperature dependence across the field of view Interference filter with =15% at 310 nm was used to collect fluorescence. Signal collected at 90o to laser OH fluorescence was used to comprehend the hydrodynamic flame structure and the combustion zones Jeffries et al. [45] OH,NH, CH, CN & NCO fluorescence spectrum in atmospheric CH4/N2O flame Excitation(OH) 312.22 nm, A-X(0,0) Detection(OH) 350 nm, A-X(0,1) Monochromator, photomultiplier 0.2 mJ per pulse Excitation specific to OH produced weak fluorescence emissions from NH and CN due to electronic energy transfer between molecules/ radicals

PAGE 41

41Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Smith & Crosley [46] (i) Quenching rate constants of OH with H2, N2O & ten hydrocarbons at 1200 K (ii) OH is produced by thermal decomposition of H2O2 Excitation(OH) 310.65 nm, A-X(0,0) Detection(OH) 309 nm, A-X(0,1) Monochromator, photomultiplier 2 mJ per pulse (i) Measured time decay of the fluorescence with pressure was used to obtain quenching rate constants. (ii) The measured cross sections had 15% accuracy Attractive forces between the molecules need to be properly taken into account in the case of quenching models for accurate prediction of quenching cross sections. Garland & Crosley [47] Temperature and species dependent quenching cross section of OH was predicted using a model based on attractive forces The predicted quenching cross sections of NH3, H2, NO, O2, H2O, N2O,CH4, CO and CO2 agreed within + 30 % of the experimental values

PAGE 42

42Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Edwards et al. [48] OH-LIF in solid propellant flames at 35 bar Excitation(OH) 306.42 nm, A-X(0,0) Detection(OH) 310 nm, A-X(0,1) Monochromator, Photomultiplier Interference elastic scattering from particulates (i) 6 mJ per pulse (ii) significant laser attenuation (iii) increase in optical thickness with pressure (i)Quenching decreased the LIF signal with increasing pressure. (ii) Saturation LIF to avoid effects of quenching. Fluorescence collected at 90o to laser propagation (i) Lack of availability of high pressure kinetic and spectroscopic data were addressed as the major challenges in LIF at high pressures

PAGE 43

43Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Schefer et al. [26] OH concentration in turbulent CH4-jet flame Excitation P2(7), A-X(1,0) Detection 312 nm vidicon camera (i) Laser attenuation was negligible. (ii) radiative trapping was < 5% + 5 % variation in initial state population in 1000 K temperature range 10 nm bandwidth filter centered at 312 nm (i)OH concentration was obtained from flat flame calibration. (ii) + 10 % error from calibration measurements, 7% due to photon statistics (iii) OH concentration was five times higher than equilibrium values in reaction zones Seitzman et al. [14] OH-PLIF in a turbulent nonpremixed H2/air jet atmospheric flame Excitation Q1(3), A-X(0,0) Detection A-X(0,0),(1,1) CCD camera (i) 50 mJ per pulse (ii) laser absorption is 3 % + 40 % variation in initial state population in 1000 K temperature range Spatial autocorrelation was used to determine flame angle and correlation lengths

PAGE 44

44Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations KohseHoinghaus et al. [49] Line shape, temperature and estimated OH concentration from a CH4/air flat flame at 1 bar Excitation 283nm ,A-X(1,0) Detection A-X(0,0),(1,1) Photomultiplier 1.5 mJ per pulse (i) There was loss of fluorescence signal due to quenching and absorption line shape broadening with increasing pressure and the estimated signal reduction was of the order of 100 in the 10 bar range. Interference filter centered at 315 nm with FWHM of 38 nm (i) The simulated Voigt profile matched well with the measured one (ii) OH concentration from absorption measurements with 30% accuracy agreed well with numerical predictions (ii) Feasibility of applying numerical modeling to obtain effect of quenching and line broadening on fluorescence efficiency was mentioned

PAGE 45

45Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Seitzmann & Hanson [50] Comparison of A-X (1,0), (0,0) and (3,0) schemes for quantitative fluorescence imaging The A-X(1,0) scheme is highlighted here (i) 10 mJ/cm2 (4 mJ for 80x0.5 mm sheet) is considered to ensure fluorescence in linear regime within + 5% down to zero energy (ii) Need to apply corrections for spatial laser profile variation (i) Need to choose rotational transition with low temperature dependence (ii) Overlap integral variation in a nonisobaric flow(1 bar) is 30% for lasers with line width of 0.2.5cm-1 (iii) Overlap integral variation with temperature (1000 2500K) is less then + 5% for line widths less than 0.5 cm-1 (iv) quench rates vary only by <10% in regions of OH concentration (i) Assumption: Fluorescence is emitted equally into 4 Sr (ii) Random noise in the detector(ICCD) is contributed by shot noise, quantum efficiency, electron gain, dark, readout and digitization noise (iii) Pulse to pulse variation in laser bandwidth contributes to error in OH concentration measurement. (i) Actual laser induced excitation and emission can deviate from the two state, two step quasi steady model leading to systematic errors (ii) Nonlinear responses to change in laser energy, population fraction and depletion are well within the range of AX(1,0) excitation scheme.

PAGE 46

46Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Locke et al. [51] Merits and demerits of PLIF applied to reactive flows Obstacles include stray light interferences, quenching contributions and RET Merits include 2D imaging, multi species probing, identifying primary reaction zones, temperature field imaging and semiquantification Carter & Barlow [52] OH & NOPLIF in a turbulent nonpremixed H2/air jet atmospheric flame Excitation(OH) O12(8), A-X(1,0) Detection(OH) A-X(0,0),(1,1) photomultiplier tube photocathode (i) The need for spectroscopic data for quenching correction was mentioned (ii) Colliding species and temperature field data was obtained from equilibrium calculations (i) To obtain OH concentration an initial calibration was carried out in a lean H2/air flame in a Hencken burner

PAGE 47

47Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Paul [53] Temperature dependent collisional model for OH in 250 K range (i) A function for predicting temperature dependent cross section for collisional quenching of OH by various molecules is provided (ii) A model for fluorescence yield in A-X(1,0) excitation scheme by incorporating effect of VET in the excited electronic state(A)

PAGE 48

48Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Allen et al. [54] Imaging OH in 1 bar heptane, methanol and ethanol-air flame Excitation(OH) 283 nm, A-X(1,0) Detection(OH) 316-371 nm ICCD camera Interference 100 ns gate time to avoid background luminosity and chemiluminescent gas emissions. (i)3 mJ per pulse. (ii) laser attenuation was estimated as ~30% due to absorption by hydrocarbons (i) Effect of pressure on fluorescence signal intensity in linear regime was analyzed based on steady state and multi level transient approach A combination of filters transmitted fluorescence from 316 nm (i) As long as fluorescence was in linear regime, quasi steady state model used in deriving fluorescence yield was valid for the experimental conditions investigated.

PAGE 49

49Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Battles and Hanson [55] LIF measurements of OH and NO in 1 bar methane flames: Fluorescence modeling and experimental validation Excitation(OH) P1(8),285.685 nm, A-X(1,0) Detection(OH) A-X(0,0) Photomultiplier tube(PMT) Interference No significant interference near 285 nm (i)100 J per pulse to ensure fluorescence in linear regime (ii) Judicious selection of absorption transition to avoid significant laser attenuation (i) Fluorescence signal was modeled as two state two step steady process in linear regime (ii) Use of laser with large bandwidths to minimize effect of pressure on overlap integral. (iii) Laser with large bandwidths provided more flexibility in tuning the centre line of the absorption profile (i) The single point OH equilibrium concentration from LIF measurements agreed well with the calculated equilibrium values of OH. (ii) This implied that the effect due to overlap integral, absorption line strength variation due to temperature and fluorescence yield were well accounted by the model used to predict them

PAGE 50

50Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Locke et al. [56, 57] OH-PLIF imaging to lean burning JP-5 combustor at 10 bar Excitation(OH) One among R1(1), R1(10), Q1(1) at A-X(1,0) Detection(OH) A-X(0,0) ICCD camera (i) 10 mJ per pulse (ii) laser beam spatial nonuniformity was corrected by fluorescence imaging of R590 dye solution Interference filter centered at 315 nm with FWHM of 10.6 nm The practical importance of applying PLIF to high pressure combustor was highlighted Paul et al. [58] Collisional quenching of OH at high temperature measured in a shock tube in 1900 K temperature range Excitation(OH) Q1(2)/Q1(5), A-X(1,0) Detection(OH) 310 nm,A-X(0,0) Photomultiplier tube(PMT) (i) Rate coefficients from fluorescence life time was converted into quenching cross sections by dividing with average collisional velocity of the species pair (ii) Quenching model formulated by Paul53 could predict the temperature dependent behavior observed from experiments Bandpass filterer, 310+ 5 nm At 2300 K, the ratio of the measured quenching cross section to quenching model [53] predicted values for H2O and O2 are 1.12 and 0.537 respectively

PAGE 51

51Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Nandula et al. [59] (i) Single point LIF measurement in turbulent lean premixed methane flame. (ii)Temperatur e & species (H2,H2O,O2) from Raman/ Rayleigh measurements Excitation(OH) O12(8), A-X(1,0) Detection(OH) 310 nm,A-X(0,0) ,(1,1) Photomultiplier tube(PMT) (i) The species concentration and temperature obtained from STANJAN was used to calibrate the measurement from a H2-air and CH4flame. (ii) The fluorescence signal was corrected for the variation in Boltzmann fraction and collisional quench rate. (i) Uncertainties in measurement were identified as 10.5% due to shot noise and 5% due to wavelength drift. (ii) Location and growth of shear layer were determined from the OH distribution. (iii) The super equilibrium OH concentration were nearly four times higher than the equilibrium counter parts

PAGE 52

52Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Ngyuen et al. [60] OH concentration from LIF measurements in a methaneair Bunsen flame. Rayleigh /Raman measurements Excitation(OH) O12(8), A-X(1,0) Detection(OH) 295 nm, AX(0,0) ,(1,1) Photomultiplier tube(PMT) (i)40 J per pulse to ensure fluorescence in linear regime (ii) O12(8) transition was chosen to avoid significant laser attenuation (i) For electronic quenching corrections, the temperature and colliding species concentration data were obtained from Raman/Rayleigh measurements. (ii) The OH number density was calibrated against the equilibrium OH composition corresponding to the measured Rayleigh temperature in a lean CH4-air flame Combination of color glass filters (WG-295 & Hoya U-340) (i) In the study, it was observed that the temperature and OH concentrations at the inner flame zones could be well predicted using a one dimensional premixed laminar flame model incorporating finite rate chemistry.

PAGE 53

53Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Arnold et al. [61] Quantitative measurements of OH by PLIF from a laminar premixed methane / air flat flame at pressures of 1, 5 and 20 bar Excitation(OH) P1(8), A-X(1,0) Detection(OH) A-X(0,0) ,(1,1) ICCD Interference (i) 120 ns gating to suppress flame emissions. (i)1 mJ per pulse (ii) Background subtraction to avoid light reflections (iii) laser spatial variation was corrected (i) Boltzmann fraction variation was 10 % in the range of 1300 3200K (ii) Absorption line shape was measured by careful scanning of P1(8) line. (iii) Temperature data was obtained from CARS and numerical simulation (i) WG295 filter was used to suppress the elastic scattering (ii) Spatial variation (pixel to pixel) of camera sensitivity was corrected (i) Absolute concentration was obtained from 1D absorption measurements Atkan et al. [62] OH LIF, 2D and spectroscopic measurements at 5 bar in a laminar premixed methane/air flames Excitation(OH) 280nm, A-X(1,0) Detection(OH) 310 nm, A-X(0,0) ,(1,1) CCD camera Interference No interference from other molecule (i) 14 mJ per pulse (ii) Estimated laser absorption was less than 10 % (i) Scanned excitation spectra and simulated excitation spectra matched very well and signified that there are no interferences from other molecules in the A-X(1,0) 280 nm range (O2 interference for A-X(3-0) scheme) Bandpass filter(WG305 and UG11) centered at 310 nm, FWHM-16 nm and peak transmission efficiency of 5.5% (i) The advantages of the A-X(1,0) LIF detection scheme were identified as devoid of fluorescence trapping (AX(0,0))

PAGE 54

54Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Hicks et al. [63] Fluorescence imaging of combustion species in gas turbines up to 20 bar and associated complexities Excitation(OH) 283nm, A-X(1,0) Detection(OH) 310-320 nm, AX(0,0) ,(1,1) ICCD camera Interference Interferences from PAH as they are broadband absorbers and emitters in the emission spectrum of OH, flame emissions laser light scattering & wall luminescence (i) 16 mJ per pulse (ii) laser sheet nonuniformity was corrected by obtaining the quartz reflected images of the laser sheet (iii) Background subtraction of the nonresonant images (i) Pressure induced line broadening and quenching effects which tend to decrease the fluorescence signal. (ii) Selection of line transitions with weak absorption coefficients to avoid considerable laser absorption and attenuation (i) Combination of WG-305 & UG 11 filters (transmission efficiency ~56% in the 310 nm range). (ii) Weak signals require pixel binning in the camera (iii) Determination of camera magnification and its accurate alignment. Complexities in OH imaging (i) Test rig and optical system vibration and displacement (ii) Optical window cleanliness(soot formation on the windows), cooling and structural integrity (iii) laser wavelength drift (iv) Optical thickness of the medium (v) Noisy spikes in the collected signal due to abrupt rise in laser intensity

PAGE 55

55Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Tamura et al. [64] Collisional quenching of OH measured in a premixed laminar methane flames at < 1 bar Excitation(OH) R2(6), A-X(0,0) Detection(OH) A-X(0,0) PMT <0.5 J per pulse (i) Flame temperatures were measured from the excitation scans. (ii) For quenching rate determination, equilibrium compositions of the colliding species concentration were calculated. (iii) Quenching contributions from individual colliding species was calculated based on temperature dependent rate expression (i) The measured quench rate and the calculated quench rate based on temperature and species dependent quench rate model agreed very well. (ii) The excellent agreement between the calculations and the experiments showed that collisional quench rate could be well predicted from knowledge of gas temperature and colliding species concentration

PAGE 56

56Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Candel et al. [12] OH-PLIF to investigate shear coaxial cryogenic jet flames Excitation(OH) Q1(6), 283.92 nm A-X(1,0) Detection(OH) A-X(0,0) ICCD Interference Raman signal at 296 nm from the liquid phase 30 mJ per pulse (i) The Q1(6) transition was selected to minimize the temperature dependence UG-5 and WG-305 fliter (i) LOx jets scattered and dispersed the laser sheet thereby affecting OH fluorescence Meier et al. [65] Species and temperature measurements from piston engine(10 bar) and aero engine test rig(6 bar) Excitation(OH) 282-286 nm A-X(1,0) Detection(OH) 315 nm, A-X(0,0) ICCD camera Interference Interference from fuel fluorescence (i) 5 mJ per pulse. (ii) Laser sheet spatial variation was corrected by normalized acetone fluorescence images on an average basis (iii) laser shot to shot energy fluctuation was monitored using a fast photodiode (i) Transition was selected to minimize the variation of state population in 1000 3000 K temperature range (i) Interference filters centered around 315 nm with FWHM 30 nm (i) Areas of OH concentration were used to identify zones of homogenous combustion and high heat realse.

PAGE 57

57Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Frank et al. [66] OH-PLIF in heptane and Jet-A spray flames at 5, 7 and 11 bar Excitation(OH) 283nm A-X(1,0) Detection(OH) 315 nm, A-X (0,0),(1,1) ICCD camera Interference Scattering from fuel droplets (i)3 mJ per pulse (ii) Laser attenuation across the flame at higher pressures was attributed to increased OH number density and hydrocarbons (i) At high pressures there was considerable decrease in fluorescence signal due to quenching and line broadening. Interference filters (i)The OH distribution was used to analyze the turbulent spray structure Hicks et al. [67] OH-PLIF applied to combustors burning Jet-A fuel at pressures of 9 and 18 bar Excitation(OH) 282nm A-X(1,0) Detection(OH) 316 nm, A-X (0,0),(1,1) ICCD camera Interference Scattering from fuel droplets 25 mJ per pulse Interference filters centered at 316 nm with FWHM 2.6 nm and peak transmission of 16% (i) OH-PLIF images were used to mark flame and recirculation zones. (ii) The use of OH-PLIF images in fuel injector design and kinetic modeling was highlighted.

PAGE 58

58Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Stocker et al. [68] Identification of rotational lines of OH in H2/O2 and methane/air flame Excitation lines at A-X(0, 0), (1,0), (2,0) and (3,0) were recorded using spectrograph 5 mJ per pulse (i) The entire rovibrational transitions in the 240 nm range were excited, detected, identified and tabulated Thiele et al. [69] OH-PLIF in spark ignited combustion of H2/air mixtures Excitation(OH) 283nm A-X(1,0) Detection(OH) 310 nm, ICCD camera 0.2 mJ per pulse (i) The raw gray scale images were filtered using a 2-D Gaussian filter to reduce noise. (ii) The flame front position was identified as the region of steepest gradient in the flame/OH image. (iii) Temporal evolution of the flame kernel was identified from the OH images.

PAGE 59

59Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Schulz et al. [70] Laser absorption by H2O at shock heated temperatures of 900 K in 200 nm range and pressures of 1 bar Detection CCD camera Spectrograph Light from deuterium lamp (i)Laser absorption by H2O at 283 nm was negligible for pressures of 1 bar and 900 K temperature range Santhanam et al. [71] OH-PLIF visualization in actively forced swirlstabilized spray combustor Excitation(OH) 283.4 nm A-X(1,0) Detection(OH) 315 nm, ICCD camera (i)6 mJ per pulse (ii) Neglected the variation of laser sheet intensity (i) For OH calibration, the effect due to variation in quenching cross section across the flame was neglected 10 nm narrow band pass interference filter at 315 nm (i) To calibrate OH, water vapor in atmospheric pressure at high temperatures was used as the calibration source

PAGE 60

60Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Grisch et al. [72] OH-PLIF measurements in H2/air diffusion flame Excitation(OH) Q1(5) A-X(1,0) Detection(OH) A-X (0,0),(1,1) ICCD camera (i)<10 J per pulse (ii) Laser shot to shot power fluctuation was monitored (i) For calculation of collisional quench rate, the colliding species concentration and temperature were obtained from adiabatic equilibrium conditions UG5 and WG 295 filters (i) OH calibration was carried out in a H2/air flame of equivalence ratio 0.9. (ii) Fluorescence intensity of OH along the height was compared with the simulated OH profiles. (iii) The estimated uncertainty in absolute OH concentration was 20%

PAGE 61

61Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Meyer et al. [73] OH-PLIF in swirlstabilized spray flames Excitation(OH) Q1(9) A-X(1,0) Detection(OH) A-X (0,0),(1,1) ICCD camera (i) 24 mJ per pulse (ii) shot to shot power fluctuations was estimated as + 5% (i) Boltzmann fraction variation was + 12.5 % in the range of 1100K (ii) The collisional quenching rate variation with species concentration and temperatures corresponding to equivalence ratios of 0.5 to 3 was estimated to be + 30 % in that range WG 295 and UG 11 (i) Laser energy absorption due to OH and droplet scattering accounted to + 10 % uncertainty. Kalitan et al. [18] OH-PLIF in LOx/methane flames at 41 bar Excitation(OH) Q1(9) A-X(1,0) Detection(OH) A-X (0,0),(1,1) ICCD camera (i) Signal attenuation due to laser absorption by OH. (ii) Light scattering as it traversed through spray UG11 and WG305 filter (i) OH images were used as indicators of combustion zones of high temperatures

PAGE 62

62Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Singla et al. [20] OH-PLIF in LOx/GH2 jet flames up to 63 bar Excitation(OH) Q11(9.5) A-X(1,0) Detection(OH) 306-320 nm, A-X (0,0),(1,1) ICCD camera, Spectrometer Interference Raman scattering from LOx jet (i) 42 mJ per pulse (ii) laser beam absorption by OH was estimated to be 10 % (iii) Laser beam is absorbed and scattered by LOX core in the centre (i) The variation of Boltzmann fraction accounted to 10% in the range of 2000 2500 K and was considered insignificant (ii) The collider species concentration and temperature field for quench rate at 63 bar was calculated based on the collider species mole fraction and temperature field of a counter flow LOx/GH2 flame at 1 bar Bandpass filter (i) A detailed description of fluorescence modeling was provided. (ii)Quenching did not strongly perturb the spatial fluorescence (iii) The collected fluorescence spectra matched well with the simulated spectra from LIFBASE (iv) The mean position of the flame, flame stabilization, corrugation and unsteadiness of the jet were observed from OH images

PAGE 63

63Table 2-1. Continued. Authors Target Species (I) Fluorescence strategy and interference signals (II) Laser energy, spatial profile and attenuation (III) Absorption &excitation line shape and fluorescence efficiency (IV) Experimental constantstransmission & photon detection Observations Singla et al. [21] Feasibility of OH-PLIF in LOx/methane jet flames upto 30 bar Excitation(OH) Q11(9.5) A-X(1,0) Detection(OH) 306-320 nm, A-X (0,0),(1,1) ICCD camera, Spectrometer Interference PAH fluorescence 42 mJ per pulse (i) Filter scheme 1: 56% transmission at 310 nm (ii) Filter scheme 2: 25% at 308 nm with FWHM of 15 nm (i) The limiting factor for OHPLIF in oxygen/methane flame above 25 bar was PAH fluorescence interference when compared to laser absorption in hydrogen/oxygen flames (ii) The LOx/methane flame was less stabilized compared to LOx/H2 flame

PAGE 64

64 Based on these studies certain obser vations are useful as follows Fluorescence Strategy and Interference Signals The choice of excitation at A-X(1,0) and detection at A-X(0,0) (1,1) in the 306 nm range has the advantage that the elastic and laser internal scattering can be effectively blocked. Moreover there are no interferences from molecules like H2O and O2 in the combustion environment. The radiative trappi ng which is predominant in the A-X(0,0) scheme is negligible [62]. To suppress the flame emissions and to coll ect all the fluorescence, gate width of the order of ~150 ns for the detection system, in this ca se ICCD camera can be employed. The background emissions need to be corrected depending on the signal strength. Laser The laser pulse energy / area of 10 mJ/cm2 could ensure fluorescence in the linear regime within + 5% [50]. Hence laser energy typically of 2 mJ with a sh eet cross section of 40 mm x 0.5 mm could be effectively used to ensure fluorescence in the linear regime. The laser attenuation across flame/ combustion environmen t depends on the strength of the absorption transition excited, the number density of the molecule, unwan ted absorption by molecules like hydrocarbons and the path length tr aversed by the laser. The laser absorption and attenuation can vary from less than 5 % to 100 % across the flame depending on the flame conditions. In a GH2/LOx flame the absorption of lase r by other combustion species like H2O was found negligible at 283 nm [20, 70]. The use of a strong transition with a laser of large line widths and low energy to ensure fluorescence in the linear regime can be viewed as a potential method to obtain fluorescence of good signal strength. The use of lasers with relatively larger line widths ca n lead to excitation of rovibrational lines neighboring the strong transitions. Hence the excitation of these lines needs to be taken into account in the fluorescence modeli ng. The laser shot to shot power fluctuation

PAGE 65

65 could be monitored and corrected or the mean va lue of the laser energy can be used provided the uncertainty from energy fluctuation is accounted in quantitative measurements. To correct for the laser sheet profile variation in space, acetone fluorescence images [65] from the same excitation wavelength, 283 nm in this case could be used. Absorption & Excitation, Line Shape and Fluorescence Efficiency In quantitative measurement, one of the majo r uncertainties is due to the initial state population variation with temper ature and is normally 10% in the 1500 K range. This problem could be approached in the following ways The transition could be selected such that the variation of the state population in the temperat ure range of interest is negligible so that it does not contribute to the uncertainty in the m easurements. The second approach is to obtain the temperature field information in the region of interest eith er from calculations based on equilibrium conditions, detailed numerical simulation of the com bustion field /reference flame or by calibration measurements via thermocouple measurements, Raman / Rayleigh measurements in actual combustion environment/ reference flam e. However, each of these approaches has themselves a degree of uncertainty. The third appr oach is to determine the uncertainties in the measurements due to state population variation in the temperature region of interest and account for the uncertainties in the quantitative measurements [73]. The line broadening and shifting at higher pres sures reduce the overlap integral and hence the fluorescence signal. The variation in the overl ap integral needs to be, therefore taken into account in quantitative measurem ents. The reduction in fluorescen ce signal due to decrease in the overlap integral can be overcome by empl oying lasers with larg er line widths [55]. The effect of collisional quenching in reduci ng the fluorescence efficiency can lead to signal reduction of the order of a factor of 100 in the 10 bar range [49] Most of the works which utilize OH-PLIF for applied spectrosc opy uses collisional quench model given by

PAGE 66

66 Equation 2-5 for calculation of collisional quenc h rate. This requires the knowledge of the pressure, temperature, mole fraction and temper ature dependent cross se ction of the colliding species. The expression for temperature dependent cross section from a complex collision model and the measured temperature dependent cross sections of the colliding species such as H2, H2O, and O2 are available in the literatures [53, 58, 64]. The knowledge of temperature and mole fraction of the colliding species can be obtained in the same way as the temperature field data is obtained to account for initial st ate population variati on. The quenching rate variation across the combustion field is not significant [20] and coul d normally account for less than 10% variation [50]. Experimental Constants The fluorescence process is considered such that it is emitted equally in all directions and that the photons are Poisson distributed [35]. There is, thus an uncer tainty in the exact number of photons detected and this uncertain ty is called shot noise. The uncer tainties in detection system also arise due to the quantum efficiency of the photocathode, the thermal current in the CCD chip known as dark current, rea dout noise in the A/D conversion and the digitization noise [35, 50]. The spatial variation of camera sensitivity ac ross the chip also adds to the uncertainties. For weak fluorescence signal detection pi xel binning at the cost of reso lution is also recommended. Thus the challenges involved in applying OH-PL IF at high pressures and temperatures in the linear regime could be recognized as 1) rotational level p opulation dependence on temperature, 2) reduced fluorescence efficiency due to absorption line shape broadening and collisional quenching, 3) laser beam attenua tion, absorption and steer ing, 4) scattering interference from other molecules a nd 5) insufficient spectroscopic data. The thirty nine OH fluorescence studies describe d above were largely done in low pressure as shown in Figure 2-3.

PAGE 67

67 Sample of 39 OH Fluorescence Studies 0 5 10 15 20 25 1-10 bar10-20 bar20-30 bar30-40 bar40-50 bar50-60 bar Number of Studies Pressure Figure 2-3. Pressure range in the reviewed studies Of the studies conducted at 20 bar or higher, only four were directed towards OH-PLIF in cryogenic flames from a coaxial injector. No pr evious work other than the recent study done by Vaidyanathan et al. [23] involved OH-PLIF in gaseous shear injector stud ies at high pressures. Accurate measurement in gaseous environments is an important precursor to cryogenic studies to establish robust computational methods [1, 4]. In the current work, the temperature range will be selected to account for the variations in Boltzmann fraction and the OH concentration will be bracketed within the temperature range. The uncertainty sources and their contribution to the sp ecies concentration measurement is thus the major goal of this work. Furthermore the OH-PLIF measurements obtaine d as a part of this work, will compliment the very few existing data sets at high pressures. Equation Section (Next)

PAGE 68

68 CHAPTER 3 EXPERIMENTAL FACILITY AND DIAGNOS TICS METHODS The experimental test facility, operating condi tions and diagnostic methods are described below. Experimental Test Facility and Operating Conditions The experimental test facility consists of the combustion chamber, the injector and the propellant/purge feed system with valves and re gulators. The schematic of the cross section of the combustion chamber with the injector a ssembly, windows for optical access and exhaust nozzle is shown in Figure 3-1. Injector Assembly Exit Nozzle Quartz Windows (Uncooled) Segmented Chamber Wall Injector Assembly Exit Nozzle Quartz Windows (Uncooled) Segmented Chamber Wall Figure 3-1. Combustion Chamber Cross Section The combustion chamber is made of oxygen free Copper. A detail ed description along with the transient thermal analysis of the chamber could be found in Reference 74 and 76. The combustion chamber geometry cross section has an inner dimension of 25 mm x 25 mm and an outer dimension of 63.5 mm x 63.5 mm. The inner cross section has radius corners of 3 mm. The combustion chamber was equipped with UV grade fused silica windows for optical access. The windows are flush with the inner chamber wall and are not cooled.

PAGE 69

69 The injector assembly houses a single element coaxial shear injector The details of the injector assembly are show n in Figure 3-2 [74, 76]. 0.106 (2.69) D3, in(mm) 0.087 (2.2) D2, in(mm) 0.047 (1.2) D1, in(mm) 0.106 (2.69) D3, in(mm) 0.087 (2.2) D2, in(mm) 0.047 (1.2) D1, in(mm) Oxidizer Tube Fuel Post Spacer Figure 3-2. Injector Details The injector and the fuel a nnulus were made of oxygen free copper and the injector housing was made of stainl ess steel. The oxidizer is injected straight into the chamber through the center tube while the fuel is injected through the annular region surrounding it. The injector is supported by a spacer to ensure that the oxidizer nozzle stays in the centre of the injector/fuel annulus assembly during the operation. The space r also acts as a baffle to provide uniform distribution of fuel flow upstream to the chamber entrance. Other features in the combustion chambe r including the exhaust nozzle assembly, segmented chamber extensions and igniter are desc ribed in detail in Reference 74. The exhaust nozzle is replaced with different areas to ensure the desired chamber pressure. The segmented chamber extensions are used to vary the ch amber lengths and adjust the window locations relative to the injector. The combustion inside the chamber was initiated by spark ignition housed in one of the chamber extensions. The le ads of the igniter were connected to a high voltage transformer capable of providing 10, 000 volts.

PAGE 70

70 The propellant/purge system supplies the fuel and oxidizer for the experiments and nitrogen for purge. Both the prope llants and the nitrogen are pressu re fed from high pressure gas bottles through tubing that incorporate regulators and valves at their respective locations and are described in detail in Reference 74. The contro l of the propellant pre ssure and the mass flow rates for different test conditi ons and the opening and closing of the propellant lines at the beginning and end of the combustion tests are ac hieved using pressure regulators, regulating needle valves, solenoid valves and check valves. The DAQ/control system comprises of the power supply unit, DAQ/control hardware, DAQ/control software and the DAQ sensors. A deta iled description of the DAQ system is given in Reference 74. Several temperatures are measured to provide boundary conditions for each measurement. Thermocouples are placed in chamber, inj ector face, exhaust nozzle and the heat flux thermocouples are housed in chamber walls. The chamber thermocouple is housed in the segmented chamber extension located immediatel y upstream of the exhaust nozzle and protrudes into the chamber and hence into the flame. An Omega K-type thermocouple is used as the chamber thermocouple with an inconel sheath of diameter 1.59 mm with an exposed tip and a response time of 15 ms. The chamber thermocouple is used to monitor the temperature rise during the runs which indicat es the initiation and sustenance of combustion. The injector face thermocouples consist of two thermocouples housed in the injector face of the fuel annulus. An additional thermocouple is located behind the inje ctor housing to detect possible backflow. The location of the injector face thermocouples are at 2.1 mm and 4.2 mm radially outwards from the center of the in jector and a detailed schematic showing the thermocouple locations are given in Reference 74. The temperature measurements from the

PAGE 71

71 injector face thermocouples are used to infer th e temperature of the recirculation region formed at the injector face. The e xhaust nozzle thermocouple measur es outflow boundary conditions. The heat flux thermocouples are embedded in the side chamber walls. At each axial location there are two thermocoupl es. Depth location of the two heat flux thermocouples in side chamber walls at any chamber cross section is sh own in Figure 3-3. Their axial location is given in detail in Reference 74 along with an analysis of wall heat fluxes. 25 63.5 31.75 3.17 9.535 Heatflux thermocouple locations Figure 3-3. Location of Heat Flux Thermocouples, dimensions in mm The calculation of heat fluxes ba sed on the temperature measurements from these two locations will be explained later in the sectio n Wall Boundary Conditions section. The GH2/GO2 experimental conditions investigated in the current study are tabulated and presented in Table 3-1. The nominal pressures we re selected to cover the range from 10 bars. The values indicated in the table are the actual measured values.

PAGE 72

72 Table 3-1. Experimental Operating Conditions P bar O/F Massflow O/F Velocity F Hydrogen massflow g/s Hydrogen velocity m/s Exit nozzle ID mm Chamber Length mm 10 3.77 0.39 2.120.197 130 1.70 169.3 27 3.72 0.39 2.150.395 96.5 1.70 169.3 37 3.79 0.40 2.110.58 103.5 1.70 169.3 53 3.85 0.40 2.080.75 93.4 1.70 169.3 The GH2/GO2 combustion experiments lasted for 9. 75 s following ignition for 10 bar case where as for all the other test cases the combustion run time was limited to 7.75 seconds following ignition. OH-PLIF Diagnostics For the PLIF experiments third harmonic output at 355 nm from a Nd-YAG (Continuum Surelite II) pulsed laser was used to pump the OPO (Continuum Panther). The FWHM spectral width of output beam measured using a Burliegh WA-4500 wavemeter was ~5 cm-1 and the centerline of the laser before doubling corresponded to 563.03 as shown in the Figure 3-4. The measured spectral width was in agreement with the manufacturers spec ification. The output from the OPO was frequency-doubled to obtain a UV beam at 283 nm.

PAGE 73

73 Figure 3-4. Laser spectral profile measured using Burleigh Wavemeter before doubling to 283 nm The UV beam had a measured pulse energy of 0.89 mJ and was used to excite the OH A-X (1,0) rotational transitions. The laser beam at 283 nm was formed into a sheet of 4 cm x 0.05 cm cross section using a series of fused silica lens es. The sheet was made 4 cm in height; however the central portion of 2 cm of the light sheet pa ssed through the chamber to ensure that the wings of the Gaussian beam are not used for PLIF diagnostics. The schematic of the OH-PLIF diagnostic setup is shown in Figure 3-5. Fluorescence images were collected perpendicu lar to the direction of laser beam propagation using an ICCD camera (DiCam-Pro Cooke Corp.) equipped with 105mm/4 telephoto UV lens. The laser and the camera were synchronized using a pulse genera tor (DG 535 Stanford Research Systems) and were operating at 10 Hz. The camera was used in double shutter mode such that it collected fluorescence for 100ns in synchroni zation with the laser in the first image. The second image was collected 500ns after the first image for the same duration of 100ns to capture flame

PAGE 74

74 emissions. The effective resolution of the camera was 66 micrometer/pixel in 4 x 4 binning mode. A combination of 3mm WG 305 Schott and 3 mm UG 11 filte rs were used to collect fluorescence from 306 nm while effectively blocking elastic scattering. The combined transmission efficiency of the filters was about 55% between 306 and 320 nm. Figure 3-5. OH-PLIF Experimental Set-up OH-PLIF images were acquired for the entire run time at the rate of 10 Hz with 100 ns exposure time. Out of the instantaneous OH-PLIF im ages recorded, thirteen of the instantaneous images recorded at the near steady state at the end of the experiments were averaged and represented as averaged OH-PLIF image. Corre spondingly, thirteen background emission images recorded by operating the camera in the double shutter mode were averaged. The instantaneous and averaged background emission images were then subtracted from the instantaneous and averaged OH-PLIF image respectively.

PAGE 75

75Wall Boundary Conditions The wall boundary conditions consist of wall heat fluxes determined from temperature measurements in the combustion chamber. Conley et al. [76] calculated the heat fluxes from the temperature measurements. In this and in the previous study [75, 76] the heat fluxes were calculated by solving the steady state one di mensional heat conduction equation and adding a correction term to compensate the heat absorption by the chamber as shown below ,2,1 A, 2, 2q 2oo ioTT Cx k TT xt r (3-1) where Aq, is the heat flux, x is the distance between the thermocouple pairs, the subscripts i is assigned for thermocouple close to the inner ch amber wall, o represents the one farthest and 1 and 2 represents the initial and final times respectively. The very nature of heat transfer in the co mbustion chamber is three dimensional. Thus calculation of heat fluxes based on 1D assumption can introduce errors. Thus in the current work the heat flux was calculated by numerically solv ing the unsteady 3D heat conduction equation. The method will be discussed in detail in the following section. The chamber extensions shown in Figure 3-3 incorporate thermocouple pairs placed next to each other and separated by 7 mm in the transv erse direction. For each thermocouple pair, the temperatures are measured at 3.2 and 9.5 mm from the inner chamber walls respectively. The temperature at location 3.2 mm from the inner wall is denoted as Tinner and that measured at 9.5 mm is denoted as Tmiddle. A 3D model of the central portion of the ch amber from 37 to 102 mm from the injector face was chosen as the computational domain. Th e central portion of the chamber was selected since the temperature measured outside of this domain did not indicate an axial temperature

PAGE 76

76 gradient. The outer wall was assumed to be insu lated such that the heat released during the experiment was assumed to be accumulated in the chamber. The validity of the insulated wall assumption was checked by imposing forced convection at the outer walls, assuming outer wall temperature to be at 100oC and ambient air temperature set at 27oC. Forced convection was calculated by assuming an air velocity of 10 m/s. These conditions are considerably more dissipative than experienced during the experiments. The heat transfer for the case of a laminar forced convection past a flat pl ate with the prescribed values was calculated. The heat transfer thus determined was 0.1% of heat flux values in the chamber walls due to combustion and thus all the heat released during the transient proc ess was assumed to accumulate in the walls. The computational temperatures which evolve d over the period of 7.75 seconds were matched with the actual temperatures obtained fr om the experimental run at the inner and middle locations which are at 3.2 and 9.5 mm from the inner chamber walls, respectively. The imposed heat flux at the inner chamber wa ll was changed for different sets of computation so that the temperatures Tinner and Tmiddle obtained from the computations, matched the experimental results within 4 to5 oC. The discretized 3D heat conduction equation [77] is 1,,,,,,1,,, ,1,,,,,,1,, 22 ,,1,,,,,,1, ,, ,, 2222 2 = ijltijltijlt ijltijltijlt ijltijltijlt ijt ijtkk TTTTTT xy C k TTTTT z dtdd r ddt (3-2) Here, the density, r, and heat capacity, C, for Copper 110 are 8700 kg/m3 and 385 J/(kg K), respectively The computational dom ain consisted of a 51 x 51 x 51 grid and the time step was 0.0001 seconds. The heat flux obtained through this procedure is used to accompany the in-flow species concentration measurement in the process of code validati on. The Matlab scripts used for data processing are detailed in Appendix A. Equation Section (Next)

PAGE 77

77 CHAPTER 4 OH-PLIF IMAGE PROCESSING AND QUANTITATIVE ANALYSIS The OH-PLIF im age processing, the methodol ogy for determining the OH concentration and the uncertainties in the measurement analyses are discussed below. Fluorescence and Interference Signals The background emission was subtracted fr om the fluorescence + background images. The images for the four different test cases are show n in Figure 4-1 to 4-4. Figure 4-1(a) to 4-4(a) show the raw image which has be en corrected by subtracting the background shown in Figure 41(b) to 4-4(b). The intensity levels of the background subtracted OH-PLIF images are shown in Figure 4-1(c) to 4-4(c).

PAGE 78

78 Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 10 20 30 40 50 (a) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 10 20 30 40 50 (b) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 10 20 30 40 (c) Figure 4-1. Average of 13 instantaneous images obtained at near st eady state for chamber pressure of 10 bar; (a) OH-PLIF + background emission image, (b) background emission image and (c) OH-PLIF image

PAGE 79

79 Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 10 20 30 40 50 60 70 (a) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 10 20 30 40 50 60 70 (b) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 5 10 1 5 20 2 5 30 (c) Figure 4-2. Average of 13 instantaneous images obtained at near st eady state for chamber pressure of 27 bar; (a) OH-PLIF + background emission image, (b) background emission image and (c) OH-PLIF image

PAGE 80

80 Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 20 40 60 80 (a) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 20 40 60 80 (b) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 5 10 1 5 20 2 5 (c) Figure 4-3. Average of 13 instantaneous images obtained at near st eady state for chamber pressure of 37 bar; (a) OH-PLIF + background emission image, (b) background emission image and (c) OH-PLIF image.

PAGE 81

81 Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 20 40 60 80 100 120 140 (a) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 20 40 60 80 100 120 140 (b) Height (mm)Width (mm) O2 H2 H2 0 5 10 15 -2 0 2 5 10 1 5 20 2 5 (c) Figure 4-4. Average of 13 instantaneous images obtained at near st eady state for chamber pressure of 53 bar; (a) OH-PLIF + background emission image, (b) background emission image and (c) OH-PLIF image

PAGE 82

82 From Figure 4-1 to 4-4, it is evident that at higher pressures of 37 and 53 bar, the background emissions are stronger than at 10 bar. This shows that collection of fluorescence with a gate-width narrowed to 100 ns was not sufficient to suppress the flame emissions. The sources of the background emissions are recogni zed as typical flame emissions from OH and water molecules in a H2/O2 flame [8]. The spectra of background emissions from a LOx/GH2 flame in the range of 300 to1100 nm at 60 bar was measured by Mayer et al. [15] and found that the contributions from the OH and O2 flame emissions lied in the 300 to 400 nm range, the predominant spectra being OH A-X (0,0) bran ch at 310 nm. The contributions from H2O could be found spanning the 400 to1000 nm range. It is noteworthy to note th e transmission of UV filters used in this study to block the elastic s cattering and transmitted light in the range of 300 to 400 nm and above 650 nm. The UV filters WG 3 05 & UG 11 served as the best combination considering the low laser energy of 0.89 mJ / pulse and the large lase r line width of 5cm-1 used here, which both tend to decrea se the fluorescence signal strength. Thus considering the emissions from H2/O2 flame and the transmission range of UV filters, the background emissions observed in the current study were identified as due to OH, O2 and H2O. Laser The laser shot to shot power fluctuation was monitored for 29 0 pulses. The average of the 290 laser pulse energies accounted to 0.89 mJ/ pulse with a standard deviation of 0.10 mJ/ pulse. The fluctuation in the laser energy a ccounted for an uncertainty of 11 %. The laser sheet profile variation in space was corrected from calibration using acetone fluorescence. The laser sheet at 283 nm was pa ssed through the chamber filled with acetone vapor and the 2D fluorescence was collected by e ffectively blocking the el astic scattering using the UV filters and ICCD camera. Ninety acet one fluorescence images were averaged and normalized with the maximum intensity/counts along the width to obtain the spatial variation of

PAGE 83

83 the laser sheet in the region of interest. The normalized laser sheet pr ofile variation in a percentage intensity scale is shown in Figure 4-5. The laser sheet had maximum intensity of above 90% at heights of 11 to 15 mm while it gra dually decreased to 25% at heights of 1 and 19 mm on either side. Figure 4-5. Normalized laser sheet intensity profile variation obtained from acetone fluorescence images. The intensity is provided in percenta ge scales. The intensity is above 90 % at heights of 11 to 15 mm and gradually decr eases to 25% at heights of 1 and 19 mm Based on the normalized acetone fluorescence imag es shown in Figure 4-5, the laser sheet intensity variation in space was corrected for all the OH-PLIF images acquired in the current study and the resultant uncertainty ca lculated as the ratio of the st andard deviation to the average values of the 90 normalized fluorescence images was 5.9 %. The absorption of the laser sheet by OH and othe r molecules that interact with the laser beam as it passed through the combustion cham ber need to be further discussed. In GH2/GO2 combustion one of the main combustion products is water vapor. The absorption cross section of H2O between 190 and 320 nm at 900-3000 K temper ature ranges and pressures up to 70 bar increases as a function of temper ature [70]. However the effect of absorption is small enough for wavelengths above 280 nm such that the absorption by H2O can be neglected. The laser beam absorption, as it traversed through the region of interest was insignificant as seen in Figure 4-1 to

PAGE 84

84 4-4. The laser beam absorption by OH will be estimated based on the Beer-Lamberts law, once the OH number density is determined. Absorption and Excitation, Line Shape, and Fluorescence Efficiency The fluorescence signal in Equation 2-19 is rearranged and the number density of OH, OH onis expressed as p OH 12 21 2 2121N B A E V AAQ4 co laserabsBn f d (4-1) The term 12 2B claserabsBf d represents the overlap between the laser spectral profile and the specific rovibrational absorption profile of the molecule under consideration. This is valid when the laser spectral width is small enough that it does not exc ite other rovibrational branches existing nearby. In the experiment car ried out here, the OPO spectral width of 5 cm-1 was large enough to excite a seri es of nine rovibrational lines around 283 nm. In this case, the collected signal, p Nexpressed in Equation 4-1 needs to be modified so that the excitations of all the rovibrational transitions lying within the sp ectral bandwidth of the OPO are properly taken into account. Thus Equation 4-1 is modified to in clude the contributions of a series of rotational lines resulting in p OH 9 12 121 2 2121N B A E V AA Q 4 co laserabsBn f d (4-2) Before the interpretation of the concentrati on from Equation 4-2 the parameters in the expression need to be examined in detail. The nine rotational transitions of OH A-X (1-0) lying

PAGE 85

85 within the spectral width of the laser ha ving a Gaussian profile centered at 35334.2 cm-1 with FWHM 5 cm-1 as shown in Figure 3-5 were identified as 21 2121 212212 2(6)(3)(3)(6)(1)(1)(2)(2)(14) [37] PQRQQRQRR The term 9 12 1 2B cBf denoted as129 1BBf(cmJ-1), where 12' 12 2B B= c is temperature dependent due to B f The line shape abs in laserabsd is both temperature and pressure dependent and the quench rate 21Q determined from Equation 2-5 also requires the knowledge of temperature field and colliding species mole fraction as discussed in Chapter 2. The different approaches to circumvent this problem were identified from the review of OH-PLIF diagnostic studies as calibration measur ements via Rayleigh/Raman measurements of temperature & species and calculations / numerical simulation based on equilibrium conditions. The other approach is to obtain the variation in129 1BBf, laserabsd and 21Q with temperature and colliding species mole fraction corresponding to a broad range of equivalence ratio. The approach used in this st udy is to use the average values of 129 1BBf, laserabsd and 21Q for the calculations, and determining the uncer tainty in the OH concentration due to the variation over a broad range of equivalence ratio. The result ant variation and corresponding uncertainties will be presented and discussed in chapter 5. The term 21 2121A AQ in Equation 4-2 known as the fluorescence yield needs to be further analyzed. The effect of quenching becomes predominant at high pressures when A21<< Q21. In

PAGE 86

86 GO2/GH2 combustion the colliding species are mainly H2O, O2 and H2 molecules. The corresponding colliding cross sections [53] are given in Table 4-1. Table 4-1. Colliding Species Cross Section for Collisional Quenching Species H2O O2 H2 Colliding species cross section (2) 25 7 5 The fluorescence yield based on the Equati on 2-5 is well represented for A-X (0-0) transitions. For transitions also involving A-X (1-1) the expre ssion for the fluorescence yield needs to be modified [20, 53] to 1 21(0,0)21(1,1)0 10 10 2121(0,0)11 1AA 1 QA s ss F sss (4-3) where 21(0,0)A and 21(0,0)A represent the spontaneo us emission rates from A-X(0,0) and A-X(1,1), respectively. 0sand 1s represent the total effective cross sections for quenching from vibration levels 'u= 0 and 'u= 1 respectively. The vibra tional energy transfer from 'u=1 to 0 is represented by 10s. The approximate value [53] for 21(1,1) 21(0,0)A A 0 1s s, 10 1s s are 0.575, 1and 0.58 respectively. Experimental Constants The OH-PLIF diagnostic in this study is asso ciated with 2D imaging of the fluorescence on a CCD chip. Thus the volume V (cm3) in Equation 4-2 corresponding to the collected fluorescence signal intensity in each pixel in th e camera is equal to th e product of the pixel projection area Pixel ProjectionA (cm2) and the laser sheet thickness l (cm). The uncertainty associated with the volume pr obed is due to the accurate determination of the pixel resolution. The pixel resolution was obtained by calibrat ing it against the accurately

PAGE 87

87 known dimensions of a wire with constant diamet er and length. The resultant uncertainty due to the variation in pixel resolution accounted to 2.8 % uncertainty in the probe volume. To obtain absolute OH concentration in number density, the arbitrary selected unit, counts of the camera, are to be converted to photom etric units. This was done by calibration of the camera against a light source of known irradiance The light source used in this study was a thousand watt, quartz halogen, tungsten filament lamp with designation of 7-1121 from Oriel Instruments. The uncertainty in the irradiance levels near th e 310 nm wavelength was 2.3 % as mentioned in the lamp specifications. The cam era calibration correspond ing to the detection strategy employed in the OH-PLIF measurements and region of interest is shown in Figure 4-6. 0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 800 900 CountsNumber of Photons(Np)Np = 1.59 *Counts Data Photons Linear fit Figure 4-6. Camera calibration corresponding to the detection strategy employed in the OH-PLIF measurements and region of interest. Th e uncertainty in the calibration due to non linearity associated with the fit of 1.8 % together with the uncertainty in the lamp irradiance of 2.3 % amounted to a net uncertainty of 2.9 % in photon calibration. The uncertainty in the photon calibration due to the non-linearity associated with the fit is calculated and is 1.8 %. The ne t uncertainty in the photon calibration due to lamp irradiance uncertainty of 2.3 % and uncertainty of 1.8% due to non linearity in calib ration fit accounted to

PAGE 88

88 2.9%. A proposed new methodology to calibrate th e camera as part of the thesis study is explained in Appendix B. The ca libration obtained from the new method is compared with the conventional calibration shown in Figure 4-6. As the photons are Poisson distributed [35], th ere is uncertainty in the exact number of photons detected; this is called s hot noise. The uncertainty cont ribution from shot noise due to the Poisson distributed photon numbe r was calculated as the ratio of the standard deviation to the average photon arrival from the OH-PLIF images at 10, 27, 37 and 53 bar. The uncertainty contribution due to shot noise at 10, 27, 37 and 53 bar accounted to 6.9, 7.05, 6.8 and 6.7% respectively. The camera has spatial variation of pixel inte nsities. The systematic and random spatial variation is eliminated by linear filtering in wh ich the value of an output pixel in the image is computed as a weighted average of neighboring pixels [11, 78]. In the current study, each pixel value was computed as a weighted average of th e neighboring 5 x 5 matrix of pixels with equal weights. The uncertainty due to systematic and random spatial variation of pixel intensities, minimized by linear filtering [11, 78] in which the value of an output pixel in the image is computed as a weighted average of neighbori ng pixels, was calculated as the ratio of the difference in pixel intensities be fore and after filtering to thei r corresponding averaged values. The uncertainty contribution due to pixel smoothening of the OH-PLIF images at 10, 27, 37 and 53 bar accounted to 7, 7, 6.3 and 6 % respectively. The Matlab scripts used for data pr ocessing are detailed in Appendix A.

PAGE 89

89 CHAPTER 5 RESULTS AND UNCERTAINTY ANALYSIS Experim ents at high pressure GH2/GO2 combustion covered Oxygen to Fuel (O/F) mass flow ratio of 3.77 corresponding toF=2.15 and pressures of 10, 27, 37 and 53 bar. The results presented here include (i) Experimental Conditions and Chamber pressure measurements and (ii) Image processed OH-PLIF measurements. The uncer tainty analysis includes determination of uncertainties for the OH-PLIF measurements at 37 bar. Chamber Pressure Measurements In the GH2/GO2 experiments the chamber pressure was increased by increasing the propellant mass flow rates while keeping the O/F mass flow and velocity ratios constant for a constant exhaust nozzle area. The chamber pressu re rise in time for the four experimental conditions of GH2/GO2 combustion is shown in Figure 51 to 5-4. The sequence included nitrogen pressurization followed by fuel injection a nd ignition. It should be noted that ignition is identified in the figures by the high oscillation induced in the sensor recording. The pressure increases in time and for higher pressures, which are of interest here, attain s a near steady state at 7 sec following ignition. To attain steady-stat e at lower pressures l onger experimental time would have been required.

PAGE 90

90 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 time(s)Pressure (bar) Chamber Pressure Nitrogen pre-pressurization Ignition Combustion shut-off OH-PLIF images range Figure 5-1. Chamber pressure versus time for GH2/GO2 combustion for 10 bar and O/F mass flow of 3.7. The experiment cont inued for 10 sec following ignition. 0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 time(s)Pressure (bar) Chamber Pressure Nitrogen pre-pressurization Ignition Combustion shut-off OH-PLIF images range Figure 5-2. Chamber pressure versus time for GH2/GO2 combustion for 27 bar and O/F mass flow of 3.7 The experiment cont inued for 8 s following ignition.

PAGE 91

91 0 2 4 6 8 10 12 14 0 5 10 15 20 25 30 35 40 45 50 time(s)Pressure (bar) Chamber Pressure Nitrogen pre-pressurization Ignition Combustion shut-off OH-PLIF images at near steady state Figure 5-3. Chamber pressure versus time for GH2/GO2 combustion for 37 bar and O/F mass flow of 3.7. The pressure attains a near steady state at the end of 8 s following ignition. 0 2 4 6 8 10 12 14 0 10 20 30 40 50 60 70 time(s)Pressure (bar) Chamber Pressure Nitrogen pre-pressurization Ignition Combustion shut-off OH-PLIF images at near steady state Figure 5-4. Chamber pressure versus time for GH2/GO2 combustion for 53 bar and O/F mass flow of 3.7. The pressure attains a near steady state at the end of 8 s following ignition.

PAGE 92

92OH-PLIF Measurements The OH-PLIF images acquired for the experiments include thirteen instantaneous images. At each pressure the instantaneous images were averaged. The instantaneous images, acquired over a period of 100 ns each are needed for valida tion of LES codes while the average is used for validation of RANS codes. The OH-PLIF imag es shown in Figure 5-5 to 5-6 were image processed to eliminate background emissions; correct for spatial variation in laser intensity; smoothen the images and minimize the spat ial variation of pi xel intensities; Figure 5-5 to 5-6 show an example of an in stantaneous image and average image for each pressure case.

PAGE 93

93 (a) (b) (c) (d) Figure 5-5. Instantaneous image-processed OH-P LIF images at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar

PAGE 94

94 (a) (b) (c) (d) Figure 5-6. Average of thirteen instantaneous image-processed OH-PLIF images at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar.

PAGE 95

95 To ascertain the repeatability of the OHPLIF measurements th e average of imageprocessed OH-PLIF images acquired at 35, 36 and 37 bar pressure cases for similar experimental conditions were compared and are shown in Figur e 5-7 (ac). The average OH-PLIF images in Figure 5-7 (ac) shows that the OH-PLIF measurem ents were repeatable and can be used for determination of OH concentration with confidence. (a) (b) (c) Figure 5-7. Average of thirteen instantaneous image-processed OH-PLIF images at near steady state chamber pressure of (a) 35, (b) 36, a nd (c) 37 bar indicating the repeatability and reliability of OH-PLIF measurements for determination of OH concentration.

PAGE 96

96 The intensity levels of the image processed OH-PLIF images shown in Figure 5-5 to 5-6 are related to the number density of OH by Equation 4-2. Theses image need to be processed as described in Chapter 4 and thus the OH number density is determined. The OH-PLIF images in Figure 5-5 to 5-6 show certain in teresting features that are noteworthy. From the OH-PLIF image at 10 bar, it can be observed that the flame is smooth and le ss corrugated as seen from OH images at higher pressures. For the four experime ntal conditions, O/F veloc ity and density ratios governing the development of shear layer rema in the same. The difference in the four experiments is the turbulence and the heat release. In addition to these there can be also Soret and Dufour cross diffusion effects arising from concentration and temperature gradients. These secondary effects need to be evalua ted in complimentary CFD efforts. As noted, the OH radical in a non premixed flame is considered to be a good marker of the reaction zone. Similar to the st udy described in Reference 32, th e stoichiometric contour was traced from the axial evolution of the locati on of maximum OH intensity in the flame, as indicative of the mean position of the reaction zone [ 32]. Thus from all four average OH PLIF images, shown in Figure 5-6(ad), the mean position of the reaction zone was quantitatively determined and is shown in Figure 5-8(ad).

PAGE 97

97 (a) (b) (c) (d) Figure 5-8. Mean position of reac tion zone determined from the average OH-PLIF images at (a) 10, (b) 27, (c) 37 and (d) 53 bar. The OH-PL IF signal at 27 and 37 bar would indicate a lifted flame, however this is an effect of strong background correction.

PAGE 98

98 The mean position of the reaction zone at 10 bar shows that the flame is anchored at the lip of the oxidizer post and is typical of the coaxia l shear flames [20]. For test cases at higher pressures of 27 and 37 bar the OH-PLIF signal woul d indicate a lifted flame, however this is an effect of strong background correc tion. In all cases the flame is anchored at the lip. The shear layers merge at 16 mm from the injector face at pressures of 27, 37 and 53 bar. The location of the maximum OH concentration is similar for all cases, explaining the similar effect of same density and velocity ratio on shear layer development regardless of the difference in turbulence and heat release rates. To analyze the effect of turbul ence the Reynolds number of GO2 and GH2 were calculated as 1UD and 32UD D where is the density, U, the velocity andthe dynamic viscosity of the gas, and D1, D2 and D3 are the dimensions of injector as shown in Figure 3-2 respectively. The Reynolds number, ReD for GO2 was 38100, 75380, 112767 and 148637 and for GH2, ReD was 5752, 11534, 16936 and 21900 at 10, 27, 37 and 53 bar respectively. The ReD of GH2 and GO2 clearly indicates that flow regime is turbulent. The momentum flux ratio was defined as J = 2 22 2U UGO GH For all the pressure cases the momentum flux ratio that governs the growth of the shear layer remained the same and was 2.7. In the study by Seitzman et al. [25] the OH structures in turbulent non-premixed hydrogen flame were characterized at ReD of 2300, 8600, 25000 and 49500. It was found that, as the flow transits from laminar to turbulent regime, there is significant change in the OH structures from low strain rate, thick filament zones to high strain rate, thin filament, more diffuse regions. Another notable observation was that at highe r Reynolds number the OH structures became increasingly convoluted and si milar behavior was observed in the current study also.

PAGE 99

99 The studies which focused on shear coaxial cr yogenic flames [11, 12, 13, 19, 20, 21] identified the wrinkling, corr ugation and flapping of the flam e to be caused by the combined effects of turbulence and instabiliti es in the flow field. Singla et al. [20, 21] proposed stability criteria based on the ratio of oxidizer lip thickness to the flame thickness and for the flame to be stable the ratio needed to be greater than one. As the flame anchors on the oxidizer lip, the size and dynamics of the recirculation region in the lip wake influences the flame stability. Thus, in the current study the wrinkling and corrugation of the flame, at higher pressures with higher Reynolds number, is at tributed to the increased turbul ence where as the flapping of the flame which is evident from the instantaneous OH distribution in Appendix D is attributed to the instability dictated by two factors: (i) the size of the recirculation zone in the wake of oxidizer lip and, (ii) th e large scale flow fluctuation in the recirculation region formed on the injection face around the jet injectors

PAGE 100

100Quantification of OH Concentration and Uncertainty at 10, 27, 37 and 53 bar To determine the number density from the im age-processed OH-PLIF images in Figure 5-5 to 5-6, the values of 129 1BBf, laserabsd and 21Qin Equation 4-2 are calculated as follows. A broad range of equivalence ratio for GH2/GO2 combustion was considered and covered 0.5 range [73]. The OH ra dical probed in the shear reaction zone of the GH2/GO2 combustion is known to exist mostly around the region of stoichiometry. Hence, the equivalence ratio of 0.5 3 could be considered a very broa d range of conditions in the flam e. Therefore this assumption is quite conservative and is expected to yield a larger uncer tainty than actually encountered in the experiment. However given the lack of data it wa s adopted here to brack et with confidence the possible experimental uncertainty. In a first approximation equilibrium conditions are assumed. The equilibrium conditions for the chemical reactio ns pertaining to the GH2/GO2 experiments carried out at 10, 27, 37, and 53 bar was calculated using STANJAN [79]. The va riation of temperature and mole fraction of species, H2O, H2, and O2 with equivalence ratio of 0.5. 0 is shown in Figure 5-9(ad). It was found that, the temperature varied between 2500 and 3500 K, with the maximum at stoichiometry.

PAGE 101

101 0.5 1 1.5 2 2.5 3 0 0.5 1 Mole fractionEquivalence ratio ( ) 2000 2500 3000 3500 4000 Temperature(oC) Mole fraction H2O 10bar Mole fraction H2 10 bar Mole fraction O2 10 bar Temperature 10 bar (a) 0.5 1 1.5 2 2.5 3 0 0.5 1 Mole fractionEquivalence ratio ( ) 2000 2500 3000 3500 4000 Temperature(oC) Mole fraction H2O 27 bar Mole fraction H2 27 bar Mole fraction O2 27 bar Temperature 27 bar (b)

PAGE 102

102 0.5 1 1.5 2 2.5 3 0 0.5 1 Mole fractionEquivalence ratio ( ) 0.5 1 1.5 2 2.5 3 2000 2500 3000 3500 4000 Temperature(oC) Mole fraction H2O 37 bar Mole fraction H2 37 bar Mole fraction O2 37 bar Temperature 37 bar (c) 0.5 1 1.5 2 2.5 3 0 0.5 1 Mole fractionEquivalence ratio ( ) 0.5 1 1.5 2 2.5 3 2000 2500 3000 3500 4000 Temperature(oC) Mole fraction H2O 53 bar Mole fraction H2 53 bar Mole fraction O2 53 bar Temperature 53 bar (d) Figure 5-9. Temperature and specie mole fractio n variation based on equilibrium calculations with equivalence ratios of 0.5 at (a) 10, (b) 27, (c) 37 and (d) 53 bar. The temperature has a maximum value of 3500 K at stoichiometry and decreases to a minimum of 2500 K at equivalence ratio of 3.

PAGE 103

103 The variation of 129 1BBf(cmJ-1) with temperature which in turn varies with the equivalence ratio is shown in Figure 5-10(ad). 0 1 2 3 4 5 24 25 26 27 28 29 30 31 32 33 34 Equivalence ratio ( )Absorption Coefficient (cmJ-1) Absorption Coefficient 10 bar Mean Absorption Coefficient 10 bar (a) 0 1 2 3 4 5 22 24 26 28 30 32 34 Equivalence ratio ( )Absorption Coefficient (cmJ-1) Absorption Coefficient 27 bar Mean Absorption Coefficient 27 bar (b)

PAGE 104

104 0 1 2 3 4 5 22 24 26 28 30 32 34 Equivalence ratio ( )Absorption Coefficient (cmJ-1) Absorption Coefficient 37 bar Mean Absorption Coefficient 37 bar (c) 0 1 2 3 4 5 22 24 26 28 30 32 34 Equivalence ratio ( )Absorption Coefficient (cmJ-1) Absorption Coefficient 53 bar Mean Absorption Coefficient 53 bar (d) Figure 5-10. Absorption coefficient (129 1BBf) variation with equivale nce ratio and temperature (2500 K) at (a) 10, (b) 27, (c) 37 and (d ) 53 bar showing that the variation with respect to mean is 12.4, 14.6, 14.5 and 15.1% respectively. The mean value of 129 1BBfis used for the calculation. The uncertainty due to the variation with temperature/equivalence ratio with respect to mean at 10, 27, 37 and 53 bar is 12.4, 14.6, 14.5 and 15.1 % respectively.

PAGE 105

105 The absorption profiles of OH at 10, 27, 37 and 53 bar were simulated using LIFBASE [37]. To simulate the absorption profileabs the collisional and Doppler widths were obtained from Equation 2-13 and Equation 2-15 respectively. The absorp tion profiles at 3017 K and 10 bar, 3085 K and 27 bar, 3100 K and 37 bar, and 3125 K and 53 bar for an equivalence ratio of 2 along with the laser spectral prof ile are shown in Figure 5-11(ad). 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3017 and 10 bar (a) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3085 and 27 bar (b)

PAGE 106

106 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3103 and 37 bar (c) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3125 and 53 bar (d) Figure 5-11. Absorption profile of OH at (a) 301 7 K and 10 bar, (b) 3085 K and 27 bar, (c) 3103 K and 37 bar, and (d) 3125 K and 53 bar simulated using LIFBASE showing a complete overlap with the laser spec tral profile at all pressures. The OH absorption profiles at 10, 27, 37 and 53 bar were simulated for a broad temperature range of 2500 K corresponding to the equivalence ratio of 0.5 and are

PAGE 107

107 provided in the Appendix C. The OH absorption pr ofile broadens and the centre line of the OH absorption profile shifts with pressure and temperature. The overlap integral of the absorption prof ile of OH at 10, 27, 37 and 53 bar, and the Gaussian spectral laser profile, laser is calculated by laserabsd As a result of the variation of the absorption profile with temperature, the de termined overlap integral also varies for each pressure case over the broad range of temperature in the flame. To find out the variation the overlap integral is calculated for a te mperature range of 2500 K corresponding to an equivalence ratio of 0.5 at 10, 27, 37 and 53 bar. The results are shown in Figure 5-12(ad). 0 1 2 3 4 5 0.133 0.134 0.135 0.136 0.137 0.138 0.139 0.14 Overlap(cm) Overlap Integral 10 bar Mean Overlap Integral 10 bar (a)

PAGE 108

108 0 1 2 3 4 5 0.128 0.1285 0.129 0.1295 0.13 0.1305 0.131 0.1315 0.132 0.1325 0.133 Overlap(cm) Overlap Integral 27 bar Mean Overlap Integral 27 bar (b) 0 1 2 3 4 5 0.126 0.1265 0.127 0.1275 0.128 0.1285 0.129 0.1295 0.13 Overlap(cm) Overlap Integral 37 bar Mean Overlap Integral 37 bar (c)

PAGE 109

109 0 1 2 3 4 5 0.122 0.1222 0.1224 0.1226 0.1228 0.123 0.1232 0.1234 0.1236 0.1238 0.124 Overlap(cm) Overlap Integral 53 bar Mean Overlap Integral 53 bar (d) Figure 5-12. Overlap integral laserabsd variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with temperature corresponding to e quivalence ratio of 0.5, i ndicating that the variation with respect to mean is 1.3, 1, 0.8 and 0.5% respectively and can be assumed negligible. The uncertainty due to the variation in the overlap integral at 10, 27, 37 and 53 bar is determined as 1.3, 1, 0.8 and 0.5 % respect ively over the broad temperature range of 2500 K and is therefore assumed negligible. The overlap integral could also vary due to the centre line shift of the laser profile. The center line of the laser profile was measured as 283.015 from the Burleigh Wavemeter. The uncertainty in the overl ap integral variation at 10, 27, 37 and 53 bar due to the laser center line shift accounts to 2.8, 1.6, 1 and 0.2 % respectively. The absorption profile broadens and gets shifted as pressure increases. Hence in most of the studies carried out using lasers with small spectral widths of less than 1 cm-1, the centre line wavelength of the laser needs to be shifted in order to overlap with the center line wavelength of the OH absorption profile. The most important ar ea of concern is the pressure broadening. The overlap between the laser spectral profile a nd the pressure broade ned absorption profile

PAGE 110

110 decreases leading to a decrease in the strength of the collected fluorescence signal as the pressure increases. The spectral width of the laser empl oyed in this study was la rger than the spectral width of the broadened absorption profile even at elevated pressures such as 37 and 53 bars. This can be considered as an advantage since it was en sured that the laser profile overlapped with the absorption profile at all pressures thereby en suring fluorescence with good signal strengths. The variation of quench rate,21Q at 10, 27, 37 and 53 bar with temperature and the species mole fraction corresponding to equivalence ratio of 0.5 is shown in Figure 5-13(ad). 0 1 2 3 4 5 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 x 1010 Equivalence ratio ( )Collisi onal Quench Rate(s-1) Collisional Quench rate 10 bar Mean Collisional Quench rate 10 bar (a)

PAGE 111

111 0 1 2 3 4 5 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 x 1010 Equivalence ratio ( )Collisi onal Quench Rate(s-1) Collisional Quench rate 27 bar Mean Collisional Quench rate 27 bar (b) 0 1 2 3 4 5 3.9 3.95 4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 x 1010 Equivalence ratio ( )Collisi onal Quench Rate(s-1) Collisional Quench rate 37 bar Mean Collisional Quench rate 37 bar (c)

PAGE 112

112 0 1 2 3 4 5 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 x 1010 Equivalence ratio ( )Collisional Quench Rate(s-1) Collisional Quench rate 53 bar Mean Collisional Quench rate 53 bar (d) Figure 5-13. Collisional quench rate Q21 variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with temperature and colliding species mole fract ion corresponding to e quivalence ratio of 0.5 indicating that the varia tion with respect to mean is 4.1, 3.9, 3.8 and 3.7 % respectively. The mean value of 21Q is used to calculate Fin Equation 4-3. The uncertainty due to the variation of 21Q at 10, 27, 37 and 53 bar with temperature and colliding species mole fraction corresponding to equivalence ratio of 0.5-3 with respect to mean is 4.1, 3.9, 3.8 and 3.7 %, respectively. All the parameters in Equation 4-2 required for determination of OH number density was calculated and the image-processe d OH-PLIF images in Figure 5-6 and 5-7 were converted into absolute concentration. Figure 5-14(ad) and 515(ad) represents instantaneous and averaged OH concentration at 10, 27, 37 and 53 bar respect ively. Appendix D includes complete set of instantaneous OH number density co ntours for all the pressure cases.

PAGE 113

113 (a) (b) (c) (d) Figure 5-14. Instantaneous OH numb er density contours at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar

PAGE 114

114 (a) (b) (c) (d) Figure 5-15. Average of thirteen instantaneous OH number density contours at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar.

PAGE 115

115 The uncertainty due to laser absorption by OH creating a horizontal incident photon flux gradient, estimated from average OH number density using Beer-Lamberts law [35], 9 12 1 OH 2 oB I exp-h I co laserabsBf dzn for z= 1mm path length of the laser at 10, 27, 37 and 53 bar was 2, 3.3, 3.8 and 4.7 % respectively. In summary, the uncertainties associated w ith OH quantitative measurement based on the conservative assumptions made here were quant ified for 10, 27, 37 and 53 bar cases as shown in Figure 5-16(ad). 1.3% 2.8% 4.1% CameraCamera Calibration 2.9% Shot noise 6.9% Pixel Smoothening 7%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 2% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V AcAQ4o laserabsBf dn W 12.4% Total uncertainties (rms error)= 21.4 % 1.3% 2.8% 4.1% CameraCamera Calibration 2.9% Shot noise 6.9% Pixel Smoothening 7%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 2% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V AcAQ4o laserabsBf dn W 12.4% Total uncertainties (rms error)= 21.4 % (a)

PAGE 116

116 1% 1.6% 3.9% CameraCamera Calibration 2.9% Shot noise 7% Pixel Smoothening 7%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coeffici ent (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 3.3% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V Ac AQ4o laserabsBf dn W 14.6% Total uncertainties (rms error)= 22.8 % 1% 1.6% 3.9% CameraCamera Calibration 2.9% Shot noise 7% Pixel Smoothening 7%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coeffici ent (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 3.3% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V Ac AQ4o laserabsBf dn W 14.6% Total uncertainties (rms error)= 22.8 % (b) 0.8% 1% 3.8% CameraCamera Calibration 2.9% Shot noise 6.8% Pixel Smoothening 6.3%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 3.8% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V AcAQ4o laserabsBf dn W 14.5% Total uncertainties (rms error)= 22.5 % 0.8% 1% 3.8% CameraCamera Calibration 2.9% Shot noise 6.8% Pixel Smoothening 6.3%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 3.8% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121N B A E V AcAQ4o laserabsBf dn W 14.5% Total uncertainties (rms error)= 22.5 % (c)

PAGE 117

117 0.5% 0.2% 3.7% CameraCamera Calibration 2.9% Shot noise 6.7% Pixel Smoothening 6%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 4.7% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121 N B A E V Ac AQ4o laserabsBf dn W 15.1% Total uncertainties (rms error)= 22.9 % 0.5% 0.2% 3.7% CameraCamera Calibration 2.9% Shot noise 6.7% Pixel Smoothening 6%Other SignalsLaser scattering blocked Background emission corrected Fluorescence trapping negligible for A-X(1,0) AbsorptionBoltzmann factor (Temperature) Absorption Coefficient (Spectroscopy)Line ShapeOverlap integral (line shape) Overlap integral (laser center line shift) Model (Collisional & Doppler width/shift)Fluorescence EfficiencyQuench rate (Collider species cross section/ mole fraction,Pressure, Temperature ) Model for quantum yield Laser Shot to shot power fluctuation 11% Laser sheet spatial variation5.9% Laser absorption (OH) 4.7% Laser absorption(H2O) negligible VolumePixel area 2.8% p OH 9 12 12 1 2 2121 N B A E V Ac AQ4o laserabsBf dn W 15.1% Total uncertainties (rms error)= 22.9 % (d) Figure 5-16. OH-PLIF measurement uncertainties at (a) 10, (b) 27, (c) 37 and (d) 53 bar. The rms error include the contribu tions from (i) camera calibra tion (ii) shot noise, (iii) pixel smoothening, (iv) laser power variation, (v) laser spatial variation, (vi) laser absorption by OH, (vii) absorption coefficient, (viii) overlap integral, (ix) quench rate variation and (x) pixel ar ea accuracy and accounted to total rms error of 21.4, 22.8, 22.5 and 22.9 % at 10, 27, 37 and 53 bar respectively. The rms error includes the contributions from: i. Camera calibration ii. Shot noise iii. Pixel smoothening iv. Laser power variation v. Laser spatial variation vi. Laser absorption by OH vii. Absorption coefficient viii. Overlap integral ix. Quench rate variation x. Pixel area accuracy

PAGE 118

118 The uncertainty due to camera calibration of 2.9 %, laser shot to shot power fluctuation of 11%, laser sheet spatial variation of 5.9 % and pixel area of 2.8 % remain the same for all the pressure cases. The uncertainties due to the laser shot-to-shot power fluctuation could be eliminated by monitoring the laser energy varia tion during the experiments. The uncertainty in laser sheet spatial variation in could be eliminated by monitoring the spatial profile during experiments from a separate test cell, uniform ly filled with a fluorescing substance like acetone. The shot noise accounted to 6 % in all the pressure cases. The average number of photons collected in all the pressure cases was in the 200 range. As the pressure increases the decrease in the OH signal strength is expected due to collisional quenching. But in the current study the increase in the pressure was achieved by increasing the propellant mass flow rate resulting in increased OH production at higher pressures. Thus as the pressure increased the strength of the OH signal collected primarily depended on the collisonal quenching and increased OH production. The uncertainty due to pixel smoothening used to minimize the contribution of camera sensor randomness was also 6% for all the pressure cases. The uncertainty due to the laser absorption by OH was estimated to increase from 2 to 4.7 % in the 10 bar range. From the OH-PLIF images in Fig. 5 it could be recognized that the effect of laser absorption is negligible for all the pressure cases and as indicated by the uncertainty estimation too. Of all the uncertainties the variation of the absorption coefficient with temperature was the highest and was 12 to 15 % in the 10 to 53 bar range. The uncertainty due to this can be reduced, provided the 2D temperature field is available through measurements or calculations. For flames with wrinkling, corrugation and large fluctuati ons the use of temperature field data from

PAGE 119

119 numerical simulation or a referenc e flame could lead to additional errors as the instantaneous temperature field of the actual flame and simula ted/reference flame cannot be precisely matched. The uncertainty due to the variation of overlap integral due to line shape broadening decreased from 1.3 to 0.5 at 10 bar pressure range Similarly the uncerta inty in the overlap integral due to the shift in th e center line of th e laser decreased from 2.8 to 0.2 % in the 10 to 53 bar range. The relatively low varia tions in the overlap integral is attributed to the use of large laser line width of 5cm-1 thereby obtaining a complete overl ap between laser spectral and OH absorption profile at all pressures. Moreover the mean value of the overlap integral was reduced by only 10 % from 10 to 53 bar in the curren t study compared to the 30% reduction of overlap integral in other studies [50] due to the use of lasers with small line widths of the order of 0.5cm-1. The uncertainty due to variation in collis ional quenching was nearly 4 % in all the pressure cases and is less signi ficant compared to the absorpti on coefficient variation of 12% with temperature. The uncertainty contributions from spectro scopic constants and uncertainty in the mathematical model describing the fluorescence pro cess, collisional/Doppler widths and shifts, and quench rate are identified as negligible in this study. Thus th e total rms uncertainty in the OH number density measurements for a GH2/GO2 flame determined from a broad range of uncertainty sources accounted to of 21.4, 22.8, 22.5 and 22.9 % at 10, 27, 37 and 53 bar respectively. The improvements identified in the study incl udes elimination of uncertainties from laser shot to shot power fluctuation, laser spatial sheet va riation, and minimizing the uncertainty due to temperature variation from simultaneous temp erature measurements. The incorporation of the improvements suggested in the study could potenti ally reduce the uncertainty from the present

PAGE 120

120 uncertainty of 21 % to nearly 11 % for all the pressure cases thereby improving the quality of the data for CFD code validation. The boundary conditions included temperature m easurements and evaluation of wall heat fluxes. These data are collected simultaneously with the OH concentration and are used in the computational studies that parallel this wor k. These results are included in Appendix E.

PAGE 121

121 CHAPTER 6 CONCLUSIONS The purpose of this work was to provide a data base of in-flow planar sp ecies concentration and to quantify the uncertainty a ssociated with these measuremen ts. The experimental conditions investigated used O/F mass flow ratio fixed at 3.77 and chamber pressures of 10, 27, 37 and 53 bar. Nine rovibrational lines at A-X(1,0) transition of OH exc ited at 283 nm was employed to obtain OH distribution in the shear reaction zone near the coaxial injector. The following are the conclusions: Benchmark inflow OH concentration data wa s generated in the same experimental facility with the same propellant system and instrumentation method for a range of pressures from 10 bar. The instantaneous OH concentration and the averaged concentration in number densities which were inexistent in previous single injector studies over the 10 bar range can be used to validate of LES and RANS CFD codes respectively. This is the first contribution of the current study. The wrinkling, corrugation and flapping of th e flame at higher pressures of 27 bar is due to the combined effects of turbulence due to increased Reynol ds number and jet instability caused by size and dynamics of the recirculation region in the wake of oxidizer post lip. The quality of the benchmark inflow data was improved by a thorough and comprehensive uncertainty analysis and assessmen t, and this is the second contribution of the study. The systematic uncertainties, which remained the same irrespective of the experimental conditions, were evaluated at all pressures; uncertainty due to camera calibration, laser shot to shot power fluctuation, laser sheet spatial variation and pixel area accuracy was 2.9, 11, 5.9 and 2.3 % respectively. The uncertaintie s due to laser shot to shot power fluctuation and laser sheet spatial variation could be potentially minimized in future studies. The uncertainty due to shot noise and pixel smoothening were, each 6% for all the pressures cases. The laser elastic scattering was effectiv ely blocked and contributions from the background flame emissions were eliminated for accurate quantitative measurements. The uncertainty due to absorption of laser across the flame by H2O was negligible and by OH was 2 % in 10 bar range.

PAGE 122

122 The uncertainty in absorption coefficient variation with temper ature was 12 % in 10 50 bar range and was the maximum among all th e uncertainties. The uncertainty could be potentially minimized provided there is ava ilability of temperature field data from experiments/ computations. The uncertainty in overlap integral wi th temperature variation was 1.3.5 % and 2.8 0.2% with laser centerline shift and the mean value of overlap integral was reduced by 10% in the 10 bar range. The use of lasers with larger line widt hs is recommended for OH-PLIF measurements at high pressures for minimizing the uncertainty due to overlap integral. The uncertainty in collisional quench rate variation with temperature and colliding species mole fraction was nearly 4% at all pr essures and is insignificant compared to the 12% variation of absorption co efficient with temperature. The uncertainty in the spectroscopic constant s, mathematical model used to describe fluorescence process, collisional and Doppl er widths, and collisional quenching are negligible. The total rms uncertainty contributions in OH number density analyzed and determined from 18 sources at 10, 27, 37 and 53 ba r was 21.9, 22.8, 22.5 and 22.9 % respectively. The quality of the inflow data was improved from uncertainty assessment of two sources in previous studies to 18 sources; by quantifying 12, elimin ating 2 and identifying as negligible the rest 4.The information is va luable for CFD validation as it brackets the reliability of the experimental data base. To reduce the uncertainty to nearly 11 % from the current 23%, potential areas for future improvements include elimination of the uncertainties due to laser power and spatial variation, and ab sorption coefficient variation with temperature.

PAGE 123

123 CHAPTER 7 FUTURE WORK The future work should be directed to wards im proving the accuracy of the OH concentration in areas highlighted in the cu rrent study. The uncertainty in OH concentration measured today reaches nearly 23% for all the pr essure cases. Some of the major uncertainties that were significant and that can be minimized include: i. 12 % from temperature dependen ce of absorption coefficient ii. 11% from laser shot to shot power fluctuations iii. 6 % from laser sheet spatial variation in intensity The uncertainty in the absorp tion coefficient of 12 % can be minimized, if there is availability of the temperature field data either from simultaneous temperature measurements or from CFD simulations. This remains problematic for a number of reasons. Planar temperature measurements in a high pressure reacting flow has not been atte mpted today, given the difficulty to adapt the point wise absorption technique to the current flow field. CFD simulation either in time averaged or time accurate formulations have uncertainties that far exceed the 12% evaluated in this study. Hence while several CF D-experimental combined studies may improve this item the future work will require considerable effort. An experimental technique that may be attempted is a two-line OH thermometry. The advantage of using simultaneous temperature measurements is that both the OH and temperature field data can be spatially matched. The disadvantages results from the considerable complexity of the experimental setup and additional contributions to overall uncertainty from the temperature measurement errors. Thus the following procedure need to be adopt ed to revise both the experimental and CFD data;

PAGE 124

124 Step 1: the OH number density data simulated from RANS si mulations should be validated against the experimental data and the CFD code should be improved till it predicts the measured OH concentration within the current uncertainty limits. Step 2: the temperature field data from the im proved CFD code can be used to refine the calculation of OH concentration fr om experimental measurements. The procedures in Step 1 and Step 2 should be followed iteratively till the uncertainty contribution due to unknown temperatur e field attains a minimum value. The second major uncertainty source is the la ser shot to shot power fluctuation. To eliminate it, a fixed percentage of the total laser power could be monitored through out the experiments. Additional equipment would require a laser power meter than can be synchronized with OH-PLIF shot to shot images. Similarly the uncertainty from the averaged la ser sheet spatial intens ity could be reduced by monitoring the spatial profile throughout the experiments. This could be done by tracking the spatial intensity profile of the laser from a separate test cell, uniformly filled with a fluorescing substance like acetone and synchronized with the shot to shot OH-PLIF images. Additional experimental challenges include separate optical setup and det ection electronics, and extraction of a part of total laser power at 283 nm for acetone fluorescence. It is estimated that incorporation of the improvements suggested here in future works would minimize the uncertainty in the OH concen tration measurements from 23 % to nearly 11 % and this is the third contribution of the study.

PAGE 125

125 APPENDIX A MATLAB SCRIPTS USED FOR DATA PROCESSING The Matlab scripts used for da ta processing are provided here: i. 3D heat flux processing -37 bar ii. Elimination of background emissions37 bar iii. Laser sheet spatial profile uncertainty iv. Conventional photon calibration v. Poisson photon calibrati on photon count 300 ns vi. Poisson photon calibrati on camera calibration vii. OH number density contours-37 bar viii. Mean reaction zone-37 bar

PAGE 126

1263D heat flux processing clear all; close all; warning off; d=0;c=0;dt=0.0001;k=1;i=0;Ar=0;s=100; t=7.75;h=0.001;e=t/(dt*s); %number of grids g=51;gz=51; %centre point cp=(g-1)/2 +1 ; dx=63.5/(g-1); Ar=(dx)^2; L=1;L1=roundn(9.3/dx,0);L2=roundn(20.3/dx,0);L3=roundn(32.3/dx,0);L4=roundn(51.4/dx,0);L 5=g; %inner wall a=roundn(12.7/dx,0); %a=int32(12.7/dx); hi=roundn(0.8/dx,0); %hi=int32(0.8/dx); %ho=int16(2.4/dx); ho=3*hi; in=roundn(15.8/dx,0);m=roundn(22. 2/dx,0);o=roundn(28.5/dx,0); %in=int16(15.8/dx);m=int16( 22.2/dx);o=int16(28.5/dx); q=0.4*ones(g,g,g); qi=0.4*zeros(g,g,g); Temp=300*ones(g,g,m);Temp1=300*ones(g,g,m );Temp2=300*ones(g,g,m);Temp3=300*ones(g ,g,m);Temp4=300*ones(g,g,m);Temp5=300*ones(g,g,m); T=300*ones(g,g,g); c=388/(8700*385)*(dx*1e-3)^-2; d=dx*1e-3*1*1e6/388; %qi=1.58; LT=300; P1=29; P2=30; %e=0.01/ %m1=1.92; n1=1; %m1(1:g)=(1.19e-6*(0:dx:63.5).^4 0.000167*( 0:dx:63.5).^3 + 0.0063997*(0:dx:63.5).^2 0.034187*(0:dx:63.5) + 1.2128); m1(1:L3)=(0.0022046*(0:dx:(L3-1)*dx).^2 0.021241*(0:dx:(L3-1)*dx) + 1.3714); m1(L3:g)=(0.0022133*((L3-1)*dx:dx:63.5).^2 0.25017*((L3-1)*dx:dx:63.5) + 8.7715); for i=dt:dt:t %qi= m1*i+ n1; for j=cp-a:cp+a qi(j,cp-a,1:g)=m1'*(1-exp(-i/n1));

PAGE 127

127 qi(j,cp+a,1:g)=m1*(1-exp(-i/n1)); qi(cp-a,j,1:g)=m1*(1-exp(-i/n1)); qi(cp+a,j,1:g)=m1*(1-exp(-i/n1)); end %T(2:g-1,2:g-1)=T(2:g-1,2:g-1) + %c*dt*(T(3:g,2:g-1)-2*T(2:g1,2:g-1)+T(1:g-2,2:g-1)+ %T(2:g-1,3:g)-2*T(2:g-1,2:g-1)+T (2:g-1,1:g-2)) ; 2D unsteady T(2:g-1,2:g-1,2:g-1)=T(2:g-1,2:g-1,2:g-1) + c*dt *(T(3:g,2:g-1,2:g-1)-2*T(2:g-1,2:g-1,2:g1)+T(1:g-2,2:g-1,2:g-1)+ T(2: g-1,3:g,2:g-1)-2*T(2:g-1,2:g-1,2: g-1)+T(2:g-1,1:g-2,2:g-1) + T(2:g-1,2:g-1,3:g)-2*T(2:g-1,2:g1,2:g-1)+T(2:g-1,2:g-1,1:g-2)) ; %bottom surface boundary condition T(2:g-1,2:g-1,1)=T(2:g-1,2:g-1,1) + c*dt*(T(3:g,2:g-1,1)-2*T(2:g -1,2:g-1,1)+T(1:g-2,2:g-1,1)+ T(2:g-1,3:g,1)-2*T(2:g-1,2:g-1,1)+T(2:g-1,1:g-2,1)); %Top surface boundary condition T(2:g-1,2:g-1,g)=T(2:g-1,2:g-1,g) + c*dt*(T(3:g,2:g-1,g)-2*T(2:g -1,2:g-1,g)+T(1:g-2,2:g-1,g)+ T(2:g-1,3:g,g)-2*T(2:g-1,2:g-1,g)+T(2:g-1,1:g-2,g)) ; %outer wall bc T(:,1,1:g) = T(:,2,1:g)q(:,1,1:g)*dx*1e-3/388; T(:,g,1:g)= T(:,g-1,1:g)q(:,g,1:g)*dx*1e-3/388; T(1,:,1:g)=T(2,:,1:g)-q (1,:,1:g)*dx*1e-3/388; T(g,:,1:g)=T(g-1,:,1:g)-q (g,:,1:g)*dx*1e-3/388; q(:,1,1:g)=388*(T(:,2,1:g )-T(:,1,1:g))/(dx*1e-3); q(:,g,1:g)=388*(T(:,g-1,1:g)-T(:,g,1:g))/(dx*1e-3); q(1,:,1:g)=388*(T(2,:,1:g)-T (1,:,1:g))/(dx*1e-3); q(g,:,1:g)=388*(T(g-1,:,1:g)-T(g,:,1:g))/(dx*1e-3); %inner wall bc T(cp-a:cp+a,cp-a,1:g)= T(cp-a:cp+a,cp -a-1,1:g)+d*qi(cp-a:cp+a,cp-a,1:g); T(cp-a:cp+a,cp+a,1:g)=T(cp-a:cp+a,cp+ a+1,1:g) +d*qi(cp-a:cp+a,cp+a,1:g); T(cp-a,cp-a:cp+a,1:g)=T(cp-a-1,cp-a:cp +a,1:g)+ d*qi(cp-a,cp-a:cp+a,1:g); T(cp+a,cp-a:cp+a,1:g)=T(cp+a+1,cp-a:cp+a,1:g)+d*qi(cp+a,cp-a:cp+a,1:g); if roundn(i/dt,0)==k*s Temp(:,:,k)=T(:,:,L)-273; Temp1(:,:,k)=T(:,:,L1)-273; Temp2(:,:,k)=T(:,:,L2)-273; Temp3(:,:,k)=T(:,:,L3)-273; Temp4(:,:,k)=T(:,:,L4)-273; Temp5(:,:,k)=T(:,:,L5)-273; k=k+1; end; end; figure(1) plot(squeeze(Temp(cp-hi,cp-in,1:end)),'r'); hold on plot(squeeze(Temp(cp+hi,cp-m,1:end)),'b'); xlabel('time(ms)','FontSize',18);

PAGE 128

128 ylabel('Temperature(^oC)','FontSize',18); grid on; title('Computaional Temperatures Inner & Middle 83 mm','FontSize',15); axis([1 e 20 LT]); set(gca,'Fontsize',15) legend('Inner','Middle',2); %Temp=T-273; figure(2) [c,h]=contourf(Temp(:,:,end)); colorbar; %line([cp-a cp-a cp+a cp+a cp-a],[cp-a cp+a cp+a cp-a cp-a],'color','w','linewidth',2); rectangle('Position',[cp-a,cp-a,2*a,2*a],'Facecolor','w') line([1 cp-in],[cp-hi cp-hi],' color',[1 1 1],'linewidth',2.5); line([1 cp-m],[cp+hi cp+hi],' color',[1 1 1],' linewidth',2.5); %line([1 cp-o],[cp+ho cp+ho],' color',[1 1 1],'linewidth',1.5); title('Computational Temperatures 2D at t=7.75s and x=83 mm','FontSize',18); set(gca,'XTick',[20 40 60 80 100 120 140 160 180 200]) set(gca,'YTick',[20 40 60 80 100 120 140 160 180 200]) set(gca,'XTickLabel',{'0.25';'0.5';'0.75';'1.00 ';'1.25';'1.50';'1.75';' 2.00';'2.25';'2.50'}); set(gca,'YTickLabel',{'0.25';'0.5';'0.75';'1.00 ';'1.25';'1.50';'1.75';' 2.00';'2.25';'2.50'}); xlabel('Length (inch)','FontSize',18); ylabel('Breadth (inch)','FontSize',18); %input file [filename, pathname] = uigetfile(' *.*', 'Select test data file.'); if isequal(filename,0) | isequal(pathname,0) disp('User pressed cancel') %a = 0; else disp(['User selected ', fullfile(pathname, filename)]) data = load([pathname filename]); %a = 1; end %data put into different matrix b=231; c=457; t1=data(:,1); CT=data(:,2); cP=data(:,3); oP=data(:,4); fP=data(:,5); oMFR=data(:,6); fMFR=data(:,7); ofMR=data(:,8); ER=data(:,9); ITL=data(:,10); ITS=data(:,11);

PAGE 129

129 BIT=data(:,12); WT1 = zeros(c-b+1,2); t2=(t1(b:c)-5250)/1000; %Data processing for heat flux %loop Len=[L L1 L2 L3 L4 L5];it=0; axial= [37.7 47 58 70 89.1 102.2];%Tem=[Temp Temp1 Temp2 Temp3 Temp4 Temp5]; qcomp=zeros(1,6);qlinear=zeros( 1,6);Texpi=zeros(1,6);Texpm=zer os(1,6);Tcompi=zeros(1,6);T compm=zeros(1,6); for P1=23:2:33 P2=0; P2=P1+1; it=it+1; WT1 = zeros(c-b+1,2); t2=zeros(c-b+1,1); t2=(t1(b:c)-5250)/1000; WT1(:,1)=data(b:c,P1); WT1(:,2)=data(b:c,P2); T2=zeros(1,2);T1=zeros(1,2); T2=polyfit(t2,WT1(:,2),1);T1=polyfit(t2,WT1(:,1),1); WT(1:e,1:2)=0; t=dt:7.75/e:7.75; t=t'; WT(1:e,1)=polyval(T1,t); WT(1:e,2)=polyval(T2,t); x = [3.175 9.525]; Texp=[WT(e,1) WT(e,2)]; T2a= T(cp+hi,cp-m,Len(it))-273;T 1a=T(cp-hi,cp-in,Len(it))-273; Tcomp=[T1a T2a]; Texpi(it)=Texp(1);Texpm(it)=Texp(2); Tcompi(it)=Tcomp(1);Tcompm(it)=Tcomp(2); figure(it+2) plot(x,Texp,'or',x,Tcomp,'ob'); grid on xlabel('Distance from inne r wall (mm)','FontSize',18); ylabel('Temperature (^oC)','FontSize',18); axis([0 11 0 LT]); text(x(1),Texp(1)+5,num2str(roundn(Texp(1),0)),'FontSize',15,'color','r'); text(x(2),Texp(2)-5,num2str(roundn(Texp(2),0)),'FontSize',15,'color','r'); text(x(1),Tcomp(1)-5,num2str(roundn(Tcomp(1),0)),'FontSize',15,'color','b'); text(x(2),Tcomp(2)+5,num2str(roundn(Tcomp(2),0)),'FontSize',15,'color','b'); text(8,Texp(1)+20,strcat('q=',num2 str(qi(cp-a,cp-a,Len(it))),'MW/m^2'),'FontSize',15,'color','k'); title(strcat('Experimental and Computational Temp erature Comparisons at ',num2str(axial(it)),' mm'),'FontSize',18); set(gca,'Fontsize',15); legend('Experiment','Computation',2); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+2),'.emf'));

PAGE 130

130 saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+2),'.fig')); if it ==1 Te=Temp; end if it==2 Te=Temp1; end; if it ==3 Te=Temp2; end if it==4 Te=Temp3; end; if it ==5 Te=Temp4; end if it==6 Te=Temp5; end; compT(1:e,1:2)=0; compT(:,1)=squeeze(Te(cp-hi,cp-in,1:end)); compT(:,2)=squeeze(Te(cp+hi,cp-m,1:end)); figure(it+8) plot(t,compT(:,1),'r',t,WT(:,1),'--r',t,compT(:,2),'b',t,WT(:,2),'--b'); title(strcat('Linear fit for temperatures at ',num2str( axial(it)),' mm'),'FontSize',18); xlabel('time(s)','FontSize',18); ylabel('Temperature(^oC)','FontSize',18); %axis([2.75 7.75 20 LT]); axis([0 7.75 20 LT]); %axis tight; grid on; set(gca,'Fontsize',15); legend('Computation inner','Experiment inner' ,'Computation Middle','Experiment Middle',2); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+8),'.emf')); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+8),'.fig')); slope88(1,1)= T1(1,1); slope88(1,2)=T2(1,1); slope88*1e3; qcomp(it)=qi(cp-a,cp-a,Len(it)); %Linear Assumption HF881=zeros(length(WT(:,1)),1);HF88uns teady1=zeros(length(WT(:,1)),1); HF881=(388/0.00635)*(WT(:,1 )-WT(:,2))/1000000; HF88unsteady1=HF881 + 1e-6*(8700*385*0.00635*T2(1,1));

PAGE 131

131 figure(it+14) plot(t,[HF881 HF88unst eady1],'Linewidth',1); Title(strcat('Heat Flux Linear Assumption at ',num2str(axial(it)),' mm'),'Fontsize',18); ylabel('Heat Flux (MW/m^2)','Fontsize',18); xlabel('time(ms)','Fontsize',18); set(gca,'Fontsize',15); legend('HF881','HF88unsteady1',2); axis([min(t) max(t) 0 2]); grid on; saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',num2str(it+14),'.emf')); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+14),'.fig')); p1=polyfit(t,HF88unsteady1,1) %disp(num2str(p1(1)),'*t',num2str(p1(2))) HF881(end); qlinear(it)= HF88unsteady1(end); figure(it+20) plot(t,WT(:,1),'--r',t,WT(:,2),'--b'); title(strcat('Linear fit for temperatures at',num2str(axi al(it)),' mm'),'FontSize',18); xlabel('time(s)','FontSize',18); ylabel('Temperature(^oC)','FontSize',18); %axis([2.75 7.75 20 LT]); axis([0 7.75 20 LT]); grid on; set(gca,'Fontsize',15); legend('Experiment inner','Experiment Middle',2); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',num2str(it+20),'.emf')); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',nu m2str(it+20),'.fig')); end; axial1=[0 9.3 20.3 32.3 51.4 64.5]; qcomp2D=[1.35 1.54 1.65 1.85 1.83 1.83]; axial=[37.7 47 58 70 89.1 102.2]; figure(30) plot(axial,qcomp,'-dr',axial,qlinear,'-sb',axial,qcomp2D,'-*g'); grid on; xlabel('Distance from Injector Face (mm)','FontSize',18); ylabel('Heat Flux (MW/m^2)','FontSize',18); set(gca,'FontSize',15); axis([0 130 0 4]); legend('Heat Flux Computational 51x51x51 grid ','Heat Flux Linear','Heat Flux 2D',1); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',num2str(30),'.emf'));

PAGE 132

132 saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\' ,num2str(30),'.fig')); figure(31) plot(axial,Texpi,'-or',axial,Tcompi,'--db'); grid on; xlabel('Distance from Injector Face (mm)','FontSize',18); ylabel('Temperature (^oC)','FontSize',18); set(gca,'FontSize',15); axis([20 150 80 220 ]); legend('T_i_n_n_e_r Exp','T_i_n_n_e_r Comp',1); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',num2str(31),'.emf')); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\' ,num2str(31),'.fig')); figure(32) plot(axial,Texpm,'-or',axial,Tcompm,'--db'); grid on; xlabel('Distance from Injector Face (mm)','FontSize',18); ylabel('Temperature (^oC)','FontSize',18); set(gca,'FontSize',15); axis([20 150 80 220 ]); legend('T_m_i_d_d_l_e Exp',' T_m_i_d_d_l_e Comp',1); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\',num2str(32),'.emf')); saveas(gcf,strcat('E:\aravi nd7\combustiontests\Heatflux Processing\37bar\37bar\' ,num2str(32),'.fig'));

PAGE 133

133Elimination of background emissions clear all close all x= [];y=[];S=[];sum1=0;z=0;sumlaser=0;sumnolas er=0;avglaser=0;avgnolaser=0;lasersubback=0;In j=[];sumInj=0;avgInj=0;z1=0;z2=0;R=[];RB =[];sumR=0;sumRB=0;avgR=0;avgRB=0;RC=0;No =0;a=0;a1=0;a2=0; c=63; b=75; d=b-c+1; for i=c:b x{i}= imread(strcat('E:\aravind7\OHPLIF\Afte rProposal\091807OUF1IP3CA3SAT\091807OUF1IP3C A3SAT06\35barlasertunedon283nm_00' ,num2str(i),'A','.tif')); x{i}=double(x{i}); sumlaser=sumlaser +x{i}; y{i}= imread(strcat('E:\aravind7\OHPLIF\Afte rProposal\091807OUF1IP3CA3SAT\091807OUF1IP3C A3SAT06\35barlasertunedon283nm_00' ,num2str(i),'B','.tif')); y{i}=double(y{i}); sumnolaser=sumnolaser +y{i}; S{i}=x{i}-y{i}; sum1=sum1+S{i}; end %avg image avglaser=sumlaser/d; avgnolaser=sumnolaser/d; z=avglaser-avgnolaser; z(find(z<0))=0; %Reference Picture information gives 1mm = 14.09 pixels %Set Injector location pixel. ILX = 25; ILY = 101; %Create X and Y axis from reference picture information. PS = 1/15.05; XL = 0-ILX; XH = 319-ILX; YL = 0-ILY; YH = 175-ILY; Y=PS*YL:PS:PS*(YH-1); X=PS*XL:PS:PS*(XH-1); cmap=(0:20)'/20*[1 1 1]; k=7;l=95;m=25; X1=X(25:319); Y2=Y(56:148);

PAGE 134

134 figure(1) avglaser=avglaser(56:148,25:319); image(X1,Y2,squeeze(avglaser/k)); set(gca,'Fontsize',18) axis([-1.5 max(X1) -3 3]); cmap1=(0:l)'/l*[1 1 1]; colormap(cmap1); h=colorbar('horiz'); set(h,'Fontsize',18); set(gca,'yaxislocation','right'); %rectangle rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); axis equal axis manual set(gcf,'paperposition',[0.4 4 7 3.5]) ; set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\AfterPr oposal\091807OUF1IP3CA3SAT\AvgOHimages06\Av gOH35bar1','emf'); figure(2) avgnolaser=avgnolaser(56:148,25:319); image(X1,Y2,squeeze(avgnolaser/k)); set(gca,'Fontsize',18) cmap1=(0:l)'/l*[1 1 1]; colormap(cmap1); h=colorbar('horiz'); set(h,'Fontsize',18); set(gca,'yaxislocation','right'); %rectangle rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); axis([-1.5 max(X1) min(Y2) max(Y2)]);

PAGE 135

135 axis equal axis manual set(gcf,'paperposition',[0.4 4 7 3.5]) ; set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\AfterPr oposal\091807OUF1IP3CA3SAT\AvgOHimages06\Av gOH35bar2','emf'); figure(3) z1=z(56:148,25:319); image(X1,Y2,squeeze(z1/k)); set(gca,'Fontsize',18) cmap1=(0:m)'/m*[1 1 1]; colormap(cmap1); h=colorbar('horiz'); set(h,'Fontsize',18); set(gca,'yaxislocation','right'); %rectangle rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); axis([-1.5 max(X1) -3 3]); axis equal axis manual set(gcf,'paperposition',[0.4 4 7 3.5]) ; set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\AfterPr oposal\091807OUF1IP3CA3SAT\AvgOHimages06\Av gOH35bar3','emf');

PAGE 136

136Laser sheet spatial profile uncertainty Ulaserfluc=0; for m=140:232 for n=25:319 laser= [];lasersum=0;laseravg=0;laseravgnorm=0;fluc=0; c1=10;b1=99; d=b1-c1; for o=10:99 laser=0; laser= imread(strcat('E:\aravind7\OHPLIF\AfterProposal\092407laserprofile\l aserprofile1acetone283n m\laserprofile1acetone283nm_00',num2str(o),'.tif')); laser=double(laser); fluc(o)=laser(m,n)/max(max(laser(m,:))); % lasersum=lasersum +laser; end fluc=fluc(10:99); fluc=reshape(fluc,1,prod(size(fluc))); Ulaserfluc(m-139,n-24)=100*std(fluc)/mean(fluc); end; end; mean(mean(Ulaserfluc)) %Uncertainty in laser fluctuation is 5.8664

PAGE 137

137Conventional phtoton calibration close all clear all Count=[0 59.34 107.22 163.21 220.74 280.74 339.87 401.32 521.66 645.76 770.26 896.98 1026.9 1150.6 1279.3 1542.6 1884.6 2210.5 2548.1 2896.1]; Ex = [0 11000 20000 30000 40000 50000 60000 70000 90000 110000 130000 150000 170000 190000 210000 250000 300000 350000 400000 450000]; %2) 310 nm filter with FWHM 10 nm xi=0;yi=0;lamda=0;Trans=0; lamda=[279 288 305 310 315 325 331]; Trans=[0.015 0.15 7.5 15 7.5 0.15 0.015]; lnTrans =log(Trans); xi=279:1:334; yi=exp(interp1(lamda,lnTrans,xi,'spline')); figure(1) plot(lamda,Trans,'*k', xi,yi,'--k'); grid on set(gca, 'Fontsize',18); xlabel('\lambda(nm)'); ylabel('Transmission(%)'); axis([270 340 0 16]); legend('Data Transmission','Linear fit',2); saveas(gcf,'FilterTransmission310nm','emf'); %3) Lamp Irradiance pixelarea = 718.24*1e-12; %in m^2 h=6.626*1e-34; %Js f=9.67*1e14; %frequency(s^-1) Irrad=0; %(mW/m^2 nm) Energy=0;Np=0; Cou=zeros(1,20 );Np1=zeros(1,20);Calib=0; A= 4.45712*1e1; B= -4.63923*1e3; C=9.09372*1e-1; D=4.13307; E= 2.07519*1e5; F=1.47164*1e8; G=3.87410*1e10; H=-3.80406*1e12; Irrad = (xi).^-5 .* exp(A+B*(xi).^-1).*(C +D*(xi.^ -1) + E*(xi.^-2) + F*(xi.^-3) + G*(xi.^-4) + H*(xi.^-5)); %Irrad = (lamda).^-5 .* exp(A+B*(lamda).^-1).*(C +D*(lamda.^-1) + E*(lamda.^-2) + F*(lamda.^-3) + G*(lamda.^-4) + H*(lamda.^-5)); Energy = sum(Irrad*1e-3.*yi*0.01)*Ex*1e-9 pixelarea/0.55 ; Np= Energy/(h*f); Np1=Np; Cou=Count; %Cou(1)=0; %Np1(2:20)=Np(1:19); %Np(1)=0; Cou1=0:20:2900; Calib=interp1(Cou,Np1,Cou1,'spline'); %Calibconst = mean(Np(2:9)./Cou(2:9))

PAGE 138

138 Calibconst = sum((Np(2:9)./Cou(2: 9)).*Cou(2:9))/sum(Cou(2:9)); figure(2) plot(Cou,Np1,'*k',Cou1,Calib,'--k') grid on set(gca, 'Fontsize',18); xlabel('Counts'); ylabel('Number of Photons(N_p)'); legend('Data Photons','Linear fit',2); saveas(gcf,'PhotonCalib ration310nmFull','emf'); figure(3) plot(Cou(1:9),Np1(1:9),'*k') grid on set(gca, 'Fontsize',18); xlabel('Counts'); ylabel('Number of Photons(N_p)'); legend('Data Photons',2); saveas(gcf,'PhotonCalibration310nm','emf'); figure(4) plot(Cou(1:9),Np1(1:9),' *k',Cou(1:9), Calibconst*Cou(1:9),'--k'); grid on set(gca, 'Fontsize',18); xlabel('Counts'); ylabel('Number of Photons(N_p)'); text(100,650,['N_p = ', num2str(Calibconst,3), *Counts '],'FontSize',18) legend('Data Photons','Linear fit',2); saveas(gcf,'PhotonCalib ration310nmEQN','emf'); Stdesti=0; errslope=0; yesti=(Calibconst*Cou(2:9)); Stdesti= (sum((Np(2:9)-yesti ).^2)/(length(yesti)-2))^0.5 errslope = sqrt(sum((Cou(2:9)mean(Cou(2:9))).^2)^-1)*Stdesti % no 95% confidence interval UPhotonCalib = (0.0286/1.59)*100

PAGE 139

139Poisson photon calibration photon count 300ns clear all close all mint=[]; x= [];y=[];z=0;PC=[];sum1=0;sumlasersq=0;sumla ser=0;sumnolaser=0;avglaser=0;avgnolaser=0;la sersubback=0;Inj=[];sumInj=0;a vgInj=0;z1=0;z2=0;R=[];RB=[];sumR=0;sumRB=0;avgR=0;avg RB=0;RC=0;No=0;a=0;a1=0;a2=0; c=100; b=999; d=b-c+1; x=zeros(88,320,b-c+1); for i=c:b %i=77;j=43;k=35; x=[];y=[]; x= double(imread(strcat('E:\aravind7\OHPLIF\A fterProposal\100207PhotonCalibration\300ns\300n s_0',num2str(i),'A','.tif'))); y= double(imread(strcat('E:\aravind7\OHPLIF\Aft erProposal\100207PhotonCalibration\B300\B300 _0',num2str(i),'A','.tif'))); z=x-y; z(find(z<=0))=0; sumlaser=sumlaser +z; sumlasersq=sumlasersq + z.^2; sumnolaser=sumnolaser+y; poiss(i-99)=z(15,15); mint=[mint; mean2(z)]; end; %PC=x-y; %avg image avg=0; V=0;S=0;KI=0; avg=sumlaser/d; V=(sumlasersq-avg.^2*d)/(d-1); S=V./avg; KI=avg./V; %S2=S(42:50,63:216); S2=KI; avg2=avg; %avg2=avg(42:50,63:216); S3=reshape(S2,prod(size(S2)),1); avg3=reshape(avg2,prod(size(S2)),1); figure(1) set(gca,'fontsize',15); hist(S3,0:0.01:0.5) xlabel('Calibration Constant');

PAGE 140

140 ylabel('N'); text(0.35,240,['Mean = num2st r(mean(S3))],'FontSize',12); text(0.35,190,['\sigma = num2str(std(S3))],'FontSize',12); title('Exposure time = 300 ns'); grid on saveas(gcf,'300ns','emf'); %mean(S3) %std(S3) figure(2) hist(avg3) mean(avg3) std(avg3) avgnolaser=sumnolaser/d; avgnolaser=reshape(avgnolas er,prod(size(S2)),1); mean(avgnolaser) std(avgnolaser) goodp=find(abs(poiss-mean(poiss)<(mean(poiss)+std(poiss)))); k=mean(poiss(goodp))/var(poiss(goodp)); poiss1=poiss*k; figure(3) set(gca,'fontsize',15); title('Exposure time = 300 ns'); hist(poiss1,(min(poiss1(goodp)): 1: max(poiss1(goodp)))) text(191,31,['Mean = num2str(mean(poiss1(goodp)))],'FontSize',15); text(191,21,['\sigma^2 = num2str(var(poiss1(goodp)))],'FontSize',15); xlabel('Photons'); ylabel('N'); grid on hold on %figure(4) set(gca,'fontsize',15); %x1=min(poiss1(goodp)):1:max(poiss1(goodp)); %x1=x1+0.05; x1=134:1:233; y2=poisspdf(x1,175); y1=length(poiss1(goodp))*y2; plot(x1,y1,'+-r') xlabel('Photons'); ylabel('N'); grid on legend('Poisson Fit','Data'); %saveas(gcf,'poiss300a','emf'); %axis([600 1400 0 250]) mean(poiss); std(poiss); k

PAGE 141

141Poisson photon calibration camera calibration %clear all close all %Counts Counts=[ 65 380 510 889 963 1124 1460 1568 ]; StdCount=[1.96 13.7421 11.11 21.9157 20.8562 22.43 31 31.52]; Counts1=Counts+StdCount; Counts2=Counts-StdCount; Calconst= [0.222 0.15831 0.12356 0.13173 0.12374 0.11648 0.12342 0.11757]; %Calibration Constant StdCal=[0.022 0.017119 0.013163 0.01182 0.011178 0.010062 0.010153 0.009]; Calconst1=Calconst+StdCal; Calconst2=Calconst-StdCal; %Calconst= [0.222 0.15831 0.12356 0.13173 0.12374 0.11648 0.12342 0.11757]*(0.7/0.55)*(0.5/0.12); Calconstavg= (sum(Counts .*Calconst))/sum(Counts); Photon=Counts.*Calconst; Photon1=Counts.*mean(Calconstavg); %Photon1=Counts.*Calconst1; Photon2=Counts.*Calconst2; Ph=Photon*(.7/.55)*(.5/.12); Ph1=Photon1*(.7/.55)*(.5/.12); Ph2=Photon2*(.7/.55)*(.5/.12); figure(1) set(gca, 'fontsize', 15); plot(Counts, Photon,'o'); xlabel('Counts'); ylabel('Photons') title('Camera Calibration at 532 nm') grid on figure(2) set(gca, 'fontsize', 15); plot(Counts, Photon*(.7/.55)*(.5/.12),'o'); xlabel('Counts'); ylabel('Photons') title('Camera Calibration at 310 nm') grid on figure(3) set(gca, 'fontsize', 15); p = polyfit(Counts,Photon1*(.7/.55)*(.5/.12),1) ; %plot(Counts,Ph,'ob',Counts,Ph1,'o--k',Counts, Ph2,'og', Counts, polyval(p,Counts),'r'); plot(Counts,Ph,'ob',Counts polyval(p,Counts),'r'); xlabel('Counts'); ylabel('Photons') %title('Camera Calibration at 310 nm')

PAGE 142

142 text(300,900,['y = ', num2str(p (1)), *x '],'FontSize',15) legend('Data Photons','Linear fit'); axis([0 2000 0 1800]); grid on %saveas(gcf,'PhotonCalibration310nm','emf'); f=polyval(p,Counts); mean(abs(f-Ph)./Ph) mean(Ph) exposure=[20 60 100 140 180 220 260 300]; p1 = polyfit(exposure, Counts,1) ; figure(4) set(gca, 'fontsize', 15); plot(exposure, Counts,'o',exposure,Counts 1,'ok', exposure,Counts2,'og', exposure, polyval(p1,exposure),'r'); xlabel('exposure(ns)'); ylabel('Counts') %title('Counts vs exposure at 532 nm') %text(51,1400,['y = ', num2str(p1(1)), *x + ', num2str(p1( 2))],'FontSize',15); legend('Mean Count','Mean Count + Std','Mean Count Std', 'Linear fit'); axis([0 350 0 2500]); grid on %saveas(gcf,'CameraCalibration','emf'); %error in estimate yesti=(Calconstavg*Count s*(.7/.55)*(.5/.12)); Stdesti= (sum((Ph-yesti).^2)/(length(Ph)-2))^0.5 %uncertainty in slope errslope=0; % errslope = sqrt(sum((Countsmean(Counts)).^2)^-1)*Stdesti*2.447; errslope = sqrt(sum((Countsmean(Counts)).^2 )^-1)*Stdesti % no 95% confidence interval %uncertainty in intercept errintercept=0; %errintercept = 2.447*Stdesti*sqrt(0.125 + mean (Counts)^2/sum((Countsmean(Counts)).^2)); errintercept = Stdesti*sqrt(0.125 + mean(Count s)^2/sum((Countsmean(Counts)).^2));%no 95% confidence interval %uncertainty in photons errphotons = errslope*Counts+ errintercept;

PAGE 143

143OH number density contours-37 bar clear all close all T=0;phi=0;fb=zeros(lengt h(phi),9);Qo=0;FYield=zeros(1,length(phi)); phi=[0.5 1 1.50 2.0 2.50 3]; RH2=2*phi;%mole of hydrogen RO2=ones(1,length(phi));%mole of Oxygen PH2Omf=[0.56287 0.65876 0.5877 0.4819 0.39584 0.33237 ];% pr oduct mole fraction of H2O computed from Stanjan PH2mf=[0.018347 0.13171 0.32116 0.48396 0.5926 0.66394 ];%pr oduct mole fraction of H2 compued from Stanjan PO2mf=[0.29170 0.03997 0.0024 0.000111 0.49e-5 0.23e-6 ]; %product mole fraction of O2 computed from Stanjan PHmf=[0.0076419 0.043142 0.046 0.024 0.0096 0.33e-2 ];%product mole fraction of H computed from Stanjan POmf=[0.023812 0.020238 0.00331 0.00027 0.18e-4 0.11e-5 ]; %product mole fraction of O computed from Stanjan POHmf=[0.095636 0.10617 0.0385 0.0089 0.00178 0.000345];%pr oduct mole fraction of OH computed from Stanjan T=[3272 3587 3427 3103 2777 2496];%Temperature corresponding to eq uivalnec ratio %fb(1,:)=[0.0438 0.025287 0.025287 0.0438 0.0092877 0.0092877 0.0178930 0.0178930 0.0134081];% Boltzmann factor associ ated with excitation lines fb(1,:)=[0.0316 0.0167 0.0167 0.0316 0.0059896 0.0059896 0.0116 0.0116 0.0163]; fb(2,:)=[0.02838 0.0147 0.0147 0.02838 0.00524 0.00524 0.01023 0.01023 0.0165]; fb(3,:)=[0.0299 0.0157 0.0157 0.0299 0.0056 0.0056 0.0109 0.0109 0.0164]; fb(4,:)=[0.0335 0.0179 0.0179 0.0335 0.0064 0.0064 0.01254 0.01254 0.0161303]; fb(5,:)=[0.0376501 0.02069 0.02069 0.0376501 0.0075032 0.0075032 0.014538 0.014538 0.0153234]; fb(6,:)=[0.04167 0.02355 0.02355 0.04167 0.0086 0.0086 0.0166 0.0166 0.014177]; %fb(8,:)=[0.04539 0.026408 0.026408 0.04539 0.00976 0.00976 0.018776 0.018776 0.0128349]; %fb(9,:)=[0.04865 0.0291 0.0291 0.04865 0.01087 0.01087 0.0208405 0.0208405 0.0114495]; %Absorption coefficient of the individual lines (cmJ^-1) B12=[0.756 7.97 1.815 9.514 7.011 3.506 7.229 2.469 5.273]*1e12/3e10; %Lines [P21(6)_6.5 Q2(3)_2.5 R12(3)_2.5 Q1(6)_6.5 Q2(1)_0.5 R12(1)_0.5 %Q2(2)_1.5 R12(2)_1.5 R2(14)_13.5]; %Lines[35333 35333.2 35334 35334.4 35334.9 35334.21 35338.0 35338.6 %35340.31] % Pressure and collisional cros s section of H2O, H2 and O2; P=36.1; sigmaH2O=22; sigmaH2=5; sigmaO2=10; %quenching Qo= 1.229e5*P*1e5*((PH2Omf*sigmaH2O/2.96) + (PH2mf*sigmaH2/1.337)+(PO2mf* sigmaO2/3.33))./(T.^0.5); %FYield FYield=1.08e6./Qo;

PAGE 144

144 %Absorption for i=1:6 fbB12(i,:)= fb(i,:).*B12; sumfbB12(1,i)=sum(fbB12(i,:)); end; figure(1) set(gca,'Fontsize',15) ; plot(phi,Qo,'--k',phi,mean(Qo)*ones(1,length(phi)),'k') legend('Collisional Quench rate 37 bar','Mean Collisional Quench rate 37 bar'); xlabel('Equivalence ratio (\phi)','fontsize',20); ylabel('Collisional Quench Rate(s^-^1)','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); ax=0; grid on saveas(gcf,'E:\aravind7\OHPLIF\ AfterProposal\36bar\Absolutedensity36bar\QuenchrateVariatio n','emf'); figure(2) set(gca,'Fontsize',15) ; plot(phi,FYield,'--k',phi,mean(F Yield)*ones(1,length(phi)),'k') legend('Fluorescence Yield 37 bar','Mean Fluorescence Yield 37 bar'); xlabel('Equivalence ratio (\phi)','fontsize',20); ylabel('Fluorescence Yield','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); ax=0; grid on saveas(gcf,'E:\aravind7\OHPLIF\ AfterProposal\36bar\Absolutedensity36bar\FluoryieldVariation' ,'emf'); figure(3) set(gca,'Fontsize',15) ; plot(phi,sumfbB12,'--k',phi,mean (sumfbB12)*ones(1,length(phi)),'k') legend('Absorption Coefficient 37 bar','Mean Absorption Coefficient 37 bar'); xlabel('Equivalence ratio (\phi)','fontsize',20); ylabel('Absorption Coefficient (cmJ^-^1)','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); grid on saveas(gcf,'E:\aravind7\OHPLIF\ AfterProposal\36bar\Absolutedensity36bar\AbsorCoeffVariatio n','emf'); j=3 L=0;x1=0;x=0;y=0;y1 =0;yd=0; Ove=0; %k=[2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 2930 3000 3100 3200 3300 3400]; for i=1:6 L= dlmread(strcat('lif',num2str(T(i )),'K',num2str(i+1),'.mod'),','); x=L(:,1);

PAGE 145

145 y1= L(:,2)/max(L(:,2)); %y=0.188*exp(-(x-35333.8).^2/9.016); y=0.188*exp(-(x-35334.2).^2/9.016); y2=y/max(y); figure(i+j) set(gca,'Fontsize',15) ; plot(x,y2,'--k',x,y1,'k'); legend('Laser Profile',strcat('OH Absorption Prof ile at T = ',num2str(T(i)),' and 37 bar')); xlabel('\nu (cm^-^1)','fontsize',20); ylabel('(a.u)','fontsize',20); axis([35328 35342 0 1]); grid on saveas(gcf,strcat('E:\aravind7\OHP LIF\AfterProposal\36bar\Absol utedensity36bar\ProfilePhi',nu m2str(phi(i)),'.emf')); dv=0; dx(1:79)=x(2:80)-x(1:79); %figure(3+i) %plot(dx) mean(dx); %data analysis/overlap ylaser=y/sum(y); yabs=L(:,2)/sum(L(:,2)); yabs1=yabs/mean(dx); Overlap=sum(y.*yabs1*mean(dx)); Ove(i)=Overlap; end figure(i+j+1) set(gca,'Fontsize',15) ; plot(phi,Ove,'--k',phi,mean(Ove)*ones(1,length(phi)),'k'); legend('Overlap Integral 37 bar',' Mean Overlap Integral 37 bar'); xlabel('\phi','fontsize',20); ylabel('Overlap(cm)','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); grid on saveas(gcf,'E:\aravind7\OHPLIF\Af terProposal\36bar\Absolutedensity36bar\OverlapVariation','e mf'); Tempfactor= (sumfbB12.*Ove.*FYield).^-1; figure(i+j+2) set(gca,'Fontsize',15) ; plot(phi,Tempfactor,'--k',phi,mean(Tempfactor)*ones(1,length(phi)),'k'); legend('Temperature Dependent Factors','Mean'); xlabel('Equivalence ratio (\phi)','fontsize',20); ylabel('Tempfactor(cm^2J^-^1)','fontsize',20); ax=axis; axis([0 5 ax(3:4)]);

PAGE 146

146 grid on mfTempfactor=Tempfactor.*T; figure(i+j+3) set(gca,'Fontsize',15) ; plot(phi,mfTempfactor,'--k',phi,mean(mf Tempfactor)*ones(1,length(phi)),'k'); legend('Temperature Dependent Factor mole fraction','Mean'); xlabel('Equivalence ratio (\phi)','fontsize',20); ylabel('Tempfactor(cm^2J^-^1K)','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); grid on NormTempfactor=Tempfactor/mean(Tempfactor); Variation=std(NormTempfactor); Percentagevariation=100*(Vari ation/mean(NormTempfactor)) figure(i+j+4) set(gca,'Fontsize',15) ; plot(phi,NormTempfactor,'--k',phi,mean(Norm Tempfactor)*ones(1,length(phi)),'k'); legend('Normalized Tempfactor','Mean'); xlabel('\phi','fontsize',20); ylabel('NormTempfactor','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); grid on NormmfTempfactor=mfTempf actor/mean(mfTempfactor); Variationmf=std(NormmfTempfactor); Percentagevariationmf=100*(Variat ionmf/mean(NormmfTempfactor)) figure(i+j+5) set(gca,'Fontsize',15) ; plot(phi,NormmfTempfactor,'--k',phi,mean(NormmfTempfactor)*ones(1,length(phi)),'k'); legend('Normalized Tempfactor','Mean'); xlabel('\phi','fontsize',20); ylabel('NormmfTempfactor','fontsize',20); ax=axis; axis([0 5 ax(3:4)]); grid on figure(i+j+6) set(gca,'Fontsize',18) ; [AX,H1,H2] = plotyy(phi,[PH2Omf PH2mf' PO2mf' ],phi,T,'plot'); set(get(AX(1),'Ylabel'),'String','Mole fraction') set(get(AX(2),'Ylabel'),'St ring','Temperature(^oC)') %plotyy(phi,[PH2Omf PH2mf PO2mf],phi,T); xlabel('Equivalence ratio (\phi)','Fontsize',20); set(H1(1),'LineStyle','-','color','b') set(H1(2),'LineStyle','-','color','g') set(H1(3),'LineStyle','-','color','k') %set(H1(4),'LineStyle','-','color','c')

PAGE 147

147 set(H2,'LineStyle','-','color','r') legend(' Mole fraction H_2O 37 bar', Mole fraction H_2 37 bar',' Mole fraction O_2 37 bar','Temperature 37 bar'); grid on Factor=0; Factormf=0; Bk= 1.38065e-23;%Boltzmann constant E=0.89*1e-3% energy of laser J/pulse; A=2.058%cm^2 V=3.46e-5 %cm^3 eta=0.12*11.5; % (Photon detection efficien cy Factor associated with Gain) epsilon=0.55; saf=5.4e-4% Solid angle fraction; MTempfactor=mean(Tempfactor) MTempfactormf=mean (mfTempfactor) Factor= MTempfactor*((E/A)*V*saf)^-1; %botlzmann fraction, overla p integral and quenching %Factor= MTempfactor Factormf= ((P*1e5/Bk)*1e-6)^ -1*MTempfactormf*((E/A)* eta*epsilon*V*saf)^-1; AvgTemp=MTempfactormf/MTempfactor %Image Processing % 1) Laser Sheet Profile Varia tion and Subsequent Correction laser= [];lasersum=0;laseravg=0;laseravgnorm=0; c1=10;b1=99; d=b1-c1; %centre Position ILX1 = 25; ILY1=186; %Create X and Y axis from reference picture information. PS = 1/15.05; XL1 = 0-ILX1; XH1 = 319-ILX1; YL1 = 0-ILY1; YH1 = 256-ILY1; Y1a=PS*YL1:PS:PS*(YH1-1); X1a=PS*XL1:PS:PS*(XH1-1); for o=10:99 laser=0; laser= imread(strcat('E:\aravind7\OHPLIF\AfterProposal\092407laserprofile\l aserprofile1acetone283n m\laserprofile1acetone283nm_00',num2str(o),'.tif')); laser=double(laser); lasersum=lasersum +laser; end laseravg=(lasersum/90)-104; %k=2;d=b1-c1; h = ones(5,5) / 25;

PAGE 148

148 laseravg = imfilter(laseravg,h,'conv'); %h = fspecial('gaussian',[5 5]); %laseravg = imfilter(laseravg,h); %z2=z; figure(i+j+7) laseravg=laseravg(140:232,25:319); laseravgnorm=laseravg/mean(mean(laseravg)); for i=1:93 laseravgnorm(i,1:295)=laseravg(i,1: 295)/max(max(laseravg(i,1:295))); end X11=X1a(25:319); Y21=Y1a(140:232); %image(X11,Y21,squeeze(45*laseravgnorm)); image(X11,Y21,squeeze(100*laseravgnorm)); %[c,h]=contourf(X11,Y21,laseravgnorm, [0.3 0.4 0.5 0.6 0.7 0.8 1 1.1 1.2 1.3 1.4]); % l=1; cmap1=(0:100)'/100*[1 1 1]; colormap(cmap1); %colormap(jet); h=colorbar('horiz'); set(h,'Fontsize',18); %colorbar; %clabel(c,'manual'); hold on; rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); set(gca,'Fontsize',18) ; set(gca,'yaxislocation','right'); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); %axis square axis equal axis manual axis([-1.5 max(X11) -3 3]); grid on set(gcf,'paperposition',[0.4 4 7 3.5]) ; grid on set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\ AfterProposal\36bar\Absolutedensity36bar\LaserSheetVariatio n','tif'); % 2) OH-PLIF image Processing

PAGE 149

149 x= [];y=[];S=[];sum1=0;z=0;sumlaser=0;sumnolas er=0;avglaser=0;avgnolaser=0;lasersubback=0;In j=[];sumInj=0;avgInj=0;z1=0;z2=0;R=[];RB =[];sumR=0;sumRB=0;avgR=0;avgRB=0;RC=0;No =0;a=0;a1=0;a2=0;a3=0;a4=0; c1=63;b1=75; d=b1-c1+1; c2=100;b2=100; %centre Position ILX = 25; ILY=101; %Create X and Y axis from reference picture information. PS = 1/15.05; XL = 0-ILX; XH = 319-ILX; YL = 0-ILY; YH = 175-ILY; Y=PS*YL:PS:PS*(YH-1); X=PS*XL:PS:PS*(XH-1); for i=c1:b1 x=0;y=0;z=0;z2=0;sumR=0;sumRB=0;avgR=0 ;avgRB=0;RC=0;No=0;a=0;a1=0;a2=0;%091807 OUF1IP3CA3SAT07% x= imread(strcat('E:\aravind7\OHPLIF\Afte rProposal\091807OUF1IP3CA3SAT\091807OUF1IP3C A3SAT06\35barlasertunedon283nm_00' ,num2str(i),'A','.tif')); x=double(x); sumlaser=sumlaser +x; y= imread(strcat('E:\aravind7\OHPLIF\Afte rProposal\091807OUF1IP3CA3SAT\091807OUF1IP3C A3SAT06\35barlasertunedon283nm_00' ,num2str(i),'B','.tif')); y=double(y); sumnolaser=sumnolaser +y; %S=x{i}-y{i}; %sum1=sum1+S{i}; z=x-y; z(find(z<0))=0; figure(i) h = ones(5,5) / 25; z2 = imfilter(z,h,'conv'); %h = fspecial('gaussian'); %z2 = imfilter(z,h); z2=z2(56:148,25:319); z2=z2./laseravgnorm; %laser sheet pr ofile variation corrected, spatia l variation in intensifier is also corrected here z3=z2; a3=(1.59*z2)*Factor*1e-15; X1=X(25:319);

PAGE 150

150 Y2=Y(56:148); [c,h]=contour(X1,Y2,a3,[180 240 300 360 430 520 600]); axis([-1.5 max(X1) min(Y2) max(Y2)]); %colormap(gray); colormap(jet); h=colorbar('horiz'); set(h,'Fontsize',18); %colorbar; %clabel(c,'manual'); hold on; rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); set(gca,'Fontsize',18) ; set(gca,'yaxislocation','right'); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); title('Number Density of OH (10^1^5 molecules/cm^3)'); axis equal axis manual %axes('Position',[-1.5,-4,22.5078,8]) %axis tight %colormap gray set(gcf,'paperposition',[0.4 4 7 3.5]) ; grid on set(gcf, 'color', 'white'); %set(gcf,'Position',[200 200 800 300]); %M(i)=getframe(gcf); %saveas(gcf,'MolefractionOH7bar1','tif'); %saveas(gcf,'MolefractionOH7bar1','fig'); %figure(i+1) saveas(gcf,strcat('E:\aravind7\ OHPLIF\AfterProposal\36bar\Abs olutedensity36bar\InstOH35bar' ,num2str(i),'.tif')); end z=0;avglaser=0;avgnolaser=0;a4=0; avglaser=sumlaser/d; avgnolaser=sumnolaser/d; z=avglaser-avgnolaser; %z=sum1/d; z(find(z<0))=0; figure(i+1) h = ones(5,5) / 25;

PAGE 151

151 z2 = imfilter(z,h,'conv'); %h = fspecial('gaussian',[0 0]); %z2 = imfilter(z,h); z2=z2(56:148,25:319); z2=z2./laseravgnorm;%laser sheet profile variation corrected, spatial varia tion in intensifier is also corrected here %z2=z2./laseravgwnorm; %a4=z2*Factormf; a4=(1.59*z2)*Factor*1e-15; %a4=(z2)*Factor*1e-15; X1=X(25:319); Y2=Y(56:148); %Y1=Y(34:143); [c,h]=contour(X1,Y2,a4,[180 240 300 360 430 520 600]); %[c,h]=contour(X1,Y2,a4,[0.0001 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 ]); axis([-1.5 max(X1) min(Y2) max(Y2)]); %colormap(gray); colormap(jet); h=colorbar('horiz'); set(h,'Fontsize',18); %colorbar %clabel(c,'manual'); hold on; rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); set(gca,'Fontsize',18) ; set(gca,'yaxislocation','right'); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); title('Number Density of OH (10^1^5 molecules/cm^3)'); axis equal axis manual set(gcf,'paperposition',[0.4 4 7 3.5]) ; grid on set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\ AfterProposal\36bar\Absolutedensity36bar\AvgOH35bar','tif'); %OH absorption a4re=0; a4re=reshape(a4,1,prod(size(a4))); levels=min(roundn(a4re,0)):1:max(roundn(a4re,0)); N=hist(a4re, levels);

PAGE 152

152 avgdensity = sum(levels(20:length(N)).* N(20:length(N)))/sum(N(20:length(N))) figure(199) plot(levels,N,'o') grid on %(I/Io)=exp(-h*nu* B12*N*dy) OHabsorppercent = exp(-6.636e34*1.06e15*mean(sumfbB12)*mean(O ve)*avgdensity*1e15*0.1) % shotnoise a4r=z3; %a4r=x-y; %a4r=a4r(56:148,25:319); a4r(find(a4r<0))=0; a4r=a4r./laseravgnorm; %a4r=a4r./laseravgwnorm; a4r=(1.59*a4r ); a4r=reshape(a4r,1,prod(size(a4r))); levels1=min(roundn(a4r,0)):1:max(roundn(a4r,0)); N1=hist(a4r, levels1); avgphoton=sum(levels1(50:length(N1)).* N1( 50:length(N1)))/sum(N1(50:length(N1))) figure(200) plot(levels1,N1,'o'); grid on %Uncertanities %shot noise Ushotnoise = (sqrt( avgphoton)/avgphoton)*100 %Photon Calibration UPhotonCalib = 2.9 %(0.0286/1.59) *100=1.8, irradiance= 2.3 %Shot to shot power %fluctuation(E:\ara vind7\OHPLIF\AfterProposal\092407laserprofile\laserenergy) UPowerfluc = (0.10/0.89)*100 %Laser absorption Ulaserabs=(1-OHabsorppercent)*100 %Absorption Coefficient Uabsorp= (std(sumfbB12)/mean(sumfbB12))*100 %Overalp Uoverlap = (std(Ove)/mean(Ove))*100 %Ovelap line shift Uoverlapshift =100*(mean(Ove)-0.1265)/mean(Ove) %Collisonalquench rate UQo= (std(Qo)/mean(Qo))*100 %Pixel Area Upixarea= 2.8 UFilter=6.3 %Laser spatial homogenity all the points = 5.8664 ULaSpatial=5.9

PAGE 153

153 UTotalrms = sqrt(Ushotnoise^2 + UPhotonCalib^2 + UPowerfluc^2 + Ulaserabs^2 + Uabsorp^2 + Uoverlap^2 + Uoverlapshift^2 + UQo^2 +Upixarea^2 +UFilter^ 2 +ULaSpatial^2) Mean position of reaction zone 37 bar for r=1:295 for c=1:47 if a3(c,r)== max(a3(1:47,r)) width(r)= Y2(c); end; end; end; for r=1:295 for c=47:93 if a3(c,r)== max(a3(47:93,r)) width1(r)= Y2(c); end; end; end; r=1:300; figure(12) plot(X1(12:295),width(12:295),'--k ',X1(12:295),width1(12:295),'k'); hold on; rectangle('Position',[-1.5,-0.6,1.5,1.2],'Facecolor',[0.5 0.5 0.5]); rectangle('Position',[-1.5,-1.3435,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); rectangle('Position',[-1.5,1.1,1.5,0.2435],'Facecolor',[0.8 0.8 0.8]); %text text(-1.5,0,'O_2\rightarrow','Horizontal Alignment','right','FontSize',18); text(-1.5,-1.22175,'H_2\rightarrow','Horiz ontalAlignment','right','FontSize',18); text(-1.5,1.22175,'H_2\rightarrow','HorizontalAlignment','right','FontSize',18); set(gca,'Fontsize',18) ; set(gca,'yaxislocation','right'); xlabel('Height (mm)','fontsize',18); ylabel('Width (mm)','fontsize',18); legend('Mean reaction zone lower', 'Mean reaction zone upper'); axis([-1.5 max(X1) min(Y2) max(Y2)]); axis equal axis manual set(gcf,'paperposition',[0.4 4 7 3.5]) ; grid on set(gcf, 'color', 'white'); saveas(gcf,'E:\aravind7\OHPLIF\AfterProposal\091807OUF1IP3CA3SAT \InstOH35barmf06\L OS37bar','tif'); Equation Section 2

PAGE 154

154 APPENDIX B PROPOSED NEW METHODOLOGY FOR PHOTON CAL IBRATION As explained in the OH-PLIF diagnostics in Chapter 4, the photons from fluorescing OH are captured by ICCD camera which has a photon detection efficiency of 12 % at 310 nm. The ICCD camera provides the detected photons in counts which is an arbitrary unit. The arrival of photons on an average is Poi sson distributed when a light source emits photons at a constant rate. In this case a 10 W dc Tungstenhalogen lamp was chosen for calibration. The calibration setup is shown in Figure B-1. A filter with transmission efficiency of 70% at 532 and FWHM of 10+ 2 nm was used to block all other radiations. The camera has photon detection efficiency of 50 % at 532 nm when compared to the photon detection efficiency of 12% at 310 nm. NP10 W dc light source 532 nm filter = 70 % lens Photon detection(532nm) = 50 % NP= Number of photons Photocathode Micro Channel Plate (MCP) Phosphor NC CCD chip CameraNC= Counts NP10 W dc light source 532 nm filter = 70 % lens Photon detection(532nm) = 50 % NP= Number of photons Photocathode Micro Channel Plate (MCP) Phosphor NC CCD chip CameraNC= Counts Figure B-1. Calibration set-up for photon calibration The photocathode detects the photons and emits photoelectrons. The photoelectrons are accelerated and amplified in the micro channel pl ate (MCP), a process referred to as gain. The amplified photoelectrons bombard the phosphor emitting photons. In turn, theses photons are

PAGE 155

155 detected by the CCD chip and are read out in arbitrary units called c ounts. The purpose of the photon/camera calibration is to ob tain the number of photons that originally arrived at the photocathode from the arbitrary unit counts. At 532 nm, the number of photons, p Nis related to the number of counts cN by ptransmission(532)photon detection(532)(MCP,Phosphor, CCD)cN x 0.7 x 0.5 x k N (B-1) where (MCP,Phosphor, CCD)k represent the constant which is unknown. The expression in Equation B-1 can be rearranged in terms of CN as c p transmissionphoton detection(MCP,Phosphor, CCD)N N 0.7 x 0.5 x k (B-2) Also p Ncan be expressed as p 532cNKN (B-3) where 532K is the calibration consta nt at 532 nm given by 532 transmissionphoton detection(MCP,Phosphor, CCD)1 K 0.7 x 0.5 x k Since p 532cNKN, 532 C P 2 P 532 CK x Mean (N) Mean(N) = Variance(N) K x Variance (N) (B-4) For Poisson distribution, the mean and the variance are equal. Since th e photons are Poisson distributed, PPMean(N) = Variance(N). Hence from Equation B-4 the expression for 532Kcan be derived and expressed as C 532 C Mean (N) K Variance (N) (B-5)

PAGE 156

156 Once 532K is known, the calibration constant at 310 nm is calculated as 3105320.7 x 0.5 K = K 0.55 x 0.12 (B-6) A 32x32 pixel area in the camera sensor was selected for the calibration. A set of 900 images were taken at exposure times of 20, 60, 100, 140, 180, 220, 260 and 300 ns. The 10 W dc lamp source emits photons at a constant rate. In order to calibrate th e camera over a range of counts the exposure time of the camera was va ried from 20 ns thereby detecting more photons and hence higher counts. 1 2 3 900 32 32 1 2 3 900 32 32 Figure B-2. A series of 900 images of 32x32 pixel size was obtained at each exposure For a fixed exposure time corresponding to a value of fixed count, Nc the calibration constant 532K was calculated out of the 900 images at each pixel location. One out of the 32x32 pixels (centre one), has been hi ghlighted. The calibration constant is similarly obtained for all other pixel locations and the average of the 532K obtained for a particular exposure time /particular counts from the 32x32 pixel matrix is represented as the corre sponding average value.

PAGE 157

157 Thus the average calibration constant 532K for the series of 20-300 ns exposure time (series of counts) were obtained. The distribution of the number of photons at the central pixel location highlighted in Figure B-2 for 900 images at exposure time of 300 ns is calculated from exposure300 p 532 CN=KNns and is shown in Figure B-3 120 140 160 180 200 220 240 0 5 10 15 20 25 30 35 40 Mean = 175 2 = 175 PhotonsN Poisson Fit Data Figure B-3. A series of 900 images of 32x32 pixel size was obtained each exposure The photons that arrived over a set of 900 acqui sitions are shown in Figure B-3. The mean and the variance of the 900 acquisitions are 175. Th e Poisson fit with a mean and variance of 175 is also shown in the plot. For each exposure time the average of the counts of 900 images and 32 x 32 pixels was calculated and is plotted agains t the corresponding exposure time (ns) as shown in Figure B-4.

PAGE 158

158 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 exposure(ns)CountsCounts vs exposure at 532 nm Mean Count Mean Count + Std Mean Count Std Linear fit Figure B-4. Counts vs e xposure time at 532 nm From the average 532K for the series of counts, the corresponding average 310K was found out. The corresponding number of photons at 310 nm were calcu lated and plotted against the number of counts and is shown in Figure B-5. 0 500 1000 1500 2000 0 200 400 600 800 1000 1200 1400 1600 1800 CountsPhotonsCamera Calibration at 310 nm y = 0.66247 *x Data Photons Linear fit Figure B-5. Photons vs counts at 310 nm

PAGE 159

159 The photon calibration obtained from the proposed new methodology is Np= 0.663*Nc. The uncertainty in the photon calibration which is due to the non-linearity associated with the fit and accounted to 5%. The photon calibration obtained from conventio nal calibration shown in Figure 4-6 was Np = 1.59 Nc and is higher by a factor of 2.4 when co mpared to the calibration obtained from the proposed new methodology. The relatively low value predicted by the new method is attributed to the systematic and random variation of pixel intensities from the camera sensor that could have potentially affected the mean and variance of the Poisson distribution leading to errors. But compared to the conventional method of phot on calibration, the proposed new methodology does not require costlier equipment like a light source of known irradiance.

PAGE 160

160 APPENDIX C OH ABSORPTION PROFILES OH Absorption Profiles at 10 bar and 2500 K Temperature Range 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3148 and 10 bar (a) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3398 and 10 bar (b)

PAGE 161

161 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3277 and 10 bar (c) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3017 and 10 bar (d)

PAGE 162

162 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2738 and 10 bar (e) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2480 and 10 bar (f) Figure C-1. Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to temperatures of 2500 K for gaseous H2-O2 flame at 10 bar.

PAGE 163

163OH Absorption Profiles at 27 bar and 2500 K Temperature Range 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3245 and 27 bar (a) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3544 and 27 bar (b)

PAGE 164

164 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3393 and 27 bar (c) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3085 and 27 bar (d)

PAGE 165

165 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2769 and 27 bar (e) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2492 and 27 bar (f) Figure C-2. Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to temperatures of 2500 K for gaseous H2-O2 flame at 27 bar.

PAGE 166

166OH Absorption Profiles at 37 bar and 2500 K Temperature Range 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3272 and 37 bar (a) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3587 and 37 bar (b)

PAGE 167

167 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3427 and 37 bar (c) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3103 and 37 bar (d)

PAGE 168

168 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2777 and 37 bar (e) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2496 and 37 bar (e) Figure C-3 Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to temperatures of 2500 K for gaseous H2-O2 flame at 37 bar.

PAGE 169

169OH Absorption Profiles at 53 bar and 2500 K Temperature Range 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3308 and 53 bar (a) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3646 and 53 bar (b)

PAGE 170

170 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3470 and 53 bar (c) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =3125 and 53 bar (d)

PAGE 171

171 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2787 and 53 bar (e) 3.5328 3.533 3.5332 3.5334 3.5336 3.5338 3.534 3.5342 x 104 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (cm-1)(a.u) Laser Profile OH Absorption Profile at T =2500 and 53 bar (f) Figure C-4. Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2. 5 and (f) 3 corresponding to temperatures of 2500 K for gaseous H2-O2 flame at 53 bar.

PAGE 172

172 APPENDIX D OH NUMBER DENSITY CONTOURS Thirteen Instantaneous OH Number Density Contours at 10 bar (a) (b) (c)

PAGE 173

173 (d) (e) (f)

PAGE 174

174 (g) (h) (i)

PAGE 175

175 (j) (k) (l)

PAGE 176

176 (m) Figure D-1. Thirteen instantaneous OH number density contours at near steady state chamber pressure of 10 bar; (a)-(m). Thirteen Instantaneous OH Number Density Contours at 27 bar (a) (b)

PAGE 177

177 (c) (d) (e)

PAGE 178

178 (f) (g) (h)

PAGE 179

179 (i) (j) (k)

PAGE 180

180 (l) (m) Figure D-2. Thirteen instantaneous OH number density contours at near steady state chamber pressure of 27 bar; (a)-(m). Thirteen Instantaneous OH number Density Contours at 37 bar (a)

PAGE 181

181 (b) (c) (d)

PAGE 182

182 (e) (f) (g)

PAGE 183

183 (h) (i) (j)

PAGE 184

184 (k) (l) (m) Figure D-3. Thirteen instantaneous OH number density contours at near steady state chamber pressure of 37 bar; (a)-(m).

PAGE 185

185Thirteen Instantaneous OH Number Density Contours at 53 bar (a) (b) (c)

PAGE 186

186 (d) (e) (f)

PAGE 187

187 (g) (h) (i)

PAGE 188

188 (j) (k) (l)

PAGE 189

189 (m) Figure D-4. Thirteen instantaneous OH number density contours at near steady state chamber pressure of 53 bar; (a)-(m).

PAGE 190

190 APPENDIX E TEMPERTURE MEASUREMENTS AND BOUNDAR Y CONDITIONS The wall heat flux boundary conditions for 37 bar were calculated from temperature measurements along the chamber wall. The cham ber wall temperatures at inner and middle locations defined in Figure 3-3 are shown in Figure E-1 and E-2. 0 2 4 6 8 10 12 14 20 40 60 80 100 120 140 160 180 200 220 time(s)Temperature (oC) Tinner 37 Tinner 47 Tinner 58 Tinner 70 Tinner 89 Tinner 102 Figure E-1. Chamber wall temperatures vs time at inner locations of 37, 47, 58, 70, 89 and 102 mm from the injector face 0 2 4 6 8 10 12 14 20 40 60 80 100 120 140 160 180 200 220 time(s)Temperature (oC) Tmiddle 37 Tmiddle 47 Tmiddle 58 Tmiddle 70 Tmiddle 89 Tmiddle 102 Figure E-2. Chamber wall temperatures vs time at middle locations of 37, 47, 58, 70, 89 and 102 mm from the injector face

PAGE 191

191 The axial temperatures recorded at the end of 8 s for both the inner and middle locations along the chamber wall are plotted in Figure E-3 indicating that neglig ible axial gradient exists in the upstream of 37 mm and downstream of 102 mm lo cations, thus justifying the selection of the 37 to 102 mm domain for analysis. 20 40 60 80 100 120 140 80 100 120 140 160 180 200 220 Distance from Injector Face (mm)Temperature (oC) Tinner Exp Tmiddle Exp 3D Heat Flux Calculation Figure E-3. Chamber wall temperatur es at inner and middle locations along the chamber wall at end of the 8 s 0 1 2 3 4 5 6 7 8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time(s)Normalized unit Figure E-4. Exponential function assumed for heat flux evolution with time

PAGE 192

192 The evolution of heat flux with time was assu med to be an exponential function as shown in Figure E-4 to match the experimental temperatur es as well as the slopes of the temperatures rises for the 37 bar case. The heat flux was subjected to iteration until the experimental and computational temperatures matched within 5 oC as shown in Figure E-5 to E10. and indicate the computed and experimental values at each axial location as time dependent functions. 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-5. Experimental and computational temperatures at 37 mm axial location 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-6. Experimental and computational temperatures at 47 mm axial location

PAGE 193

193 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-7. Experimental and computational temperatures at 58 mm axial location 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-8. Experimental and computational temperatures at 70 mm axial location

PAGE 194

194 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-9. Experimental and computational temperatures at 89 mm axial location 0 1 2 3 4 5 6 7 50 100 150 200 250 300 time ( s ) Temperature(oC) Computation inner Experiment inner Computation Middle Experiment Middle Figure E-10. Experimental and computationa l temperatures at 102 mm axial location The heat fluxes thus determined in the ax ial direction are shown in Figure C-11 along with the heat flux calculated from the linear+ unsteady term assumption in Equation 3-1. The recent heat transfer studies conducte d by Marshall et al [75] and Conley et al [76] used the linear + unsteady calculation for determining heat fluxes. It can be seen from Figure E-11 that both calculations based on 3D computat ions and linear assumption show ed the same trend, the heat fluxes determined from the latter being relativ ely low compared to that from the former.

PAGE 195

195 0 20 40 60 80 100 120 0 0.5 1 1.5 2 2.5 3 3.5 4 Distance from Injector Face (mm)Heat Flux (MW/m2) Heatflux Computational 3D Heatflux Linear Figure E-11. Chamber wall heat fluxes calcula ted based on 3D computations and linear + unsteady assumption at 37 bar The heat flux has a peak value at 70 mm indicating the location of shear layer reattachment. The matching of experimental and computational temperatures at the end of 8 s for 37 bar are also shown in Figure E-12. 20 40 60 80 100 120 140 80 100 120 140 160 180 200 220 Distance from Injector Face (mm)Temperature (oC) Tinner Exp Tinner Comp Tmiddle Exp Tmiddle Comp Figure E-12. Computational and Experimental Temperatures for 37 bar at the end of 8s.

PAGE 196

196 LIST OF REFERENCES 1. Tucker, K., West, J., Williams, R., Lin, J., Rocker, M., Canabal, F., Robles, B., and Garcia, R., Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center, Fifth International Symposium on Liquid Space Propulsion Tennessee, October 2003. 2. Thakur, S., and Wright, J., Validation of a pressure-based combustion simulation tool for a single element injector test problem, 3rd International Workshop on Rocket Combustion Modeling Paris, March 2006. 3. Calhoon, D., Ito, J., and Kors, D., Investigation of Gaseous Propellant Combustion and Associated Injector/Chamber Design Guidelines, NASA TM-121234, July 1973 4. Schley, C. A., Hagemann, G., Tucker, K. P ., Venkateswaran, S., and Merkle, C. L, Comparison of Computati onal Codes for Modeling H ydrogen-Oxygen Injectors, AIAA Paper 97-3302 July 1997 5. Foust, M. J., Deshpande, M., Pal, S., Ni, T., Merkle, C. L., and Santoro, R. J., Experimental and Analytical Characters ization of a Sheer Coaxial Combusting GO2/GH2 Flowfield, AIAA Paper 96-0646 Jan. 1996 6. Foust, M. J., Pal, S., and Santoro, R. J., G aseous Propellant Rocket Studies using Raman Spectroscopy, AIAA Paper 96-2766 July 1996. 7. Brummund, U., Cassou, A., and Vogel, A., PLIF Imaging Measurements of a Coaxial Rocket Injector Spray at Elevated Pressure, Proceedings of the Combustion Institute, Vol. 26, 1996, pp. 1687-1695. 8. Mayer, W., and Tamura, H., Propellant In jection in a Liquid Oxygen/Gaseous Hydrogen Rocket Engine, Journal of Propulsion and Power, Vol. 12, No.6, 1996,p. 1137-1147. 9. Yerlan, S., Pal, S., and Santora, R.J., Major Species and Temperature Profiles of LOx/GH2 Combustion, AIAA Paper 97-2974, July 1997. 10. Wehrmeyer, J., A., Cramer, J. M., Eskri dge,R.H., and Dobson, C. C., UV Diagnostics for Rocket Engine Injector Development, AIAA Paper 97-2843 July 1997. 11. Herding, G., Snyder, R., Rolon, C., and Ca ndel, S., Investiga tion of Cryogenic Propellant Flames Using Computerized Tomography of Emission Images, Journal of Propulsion and Power, Vol. 14, No.2, 1998, pp. 146-151. 12. Candel, S., Herding, G., Synder, R. Scouflaire, P., Rolon, C., Vingert, L., Habiballah, M., Grisch, F., Pealat, M., Bouchardy, P., St epowski, D., Cessou, A., and Colin, P., Experimental Investigation of Shear Coaxial Cryogenic Jet Flames, Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 826-834.

PAGE 197

197 13. Ivancic, B., Mayer, W., Krulle, G., and Bruggemann, D., Experimental and Numerical Investigation of Time and Length Scales in LOX/GH2-Rocket Combustors, AIAA 992211, June 1999 14. Juniper, M., Tripathi, A., Scouflaire, P., Rolon, J-C., and Candel, S., Structure of Cryogenic flames at elevated pressures, Proceedings of the Combustion Institute, Vol. 28, 2000, pp. 1103-1109. 15. Mayer, W., Schik., A., and Schaffler, M., Inj ection and Mixing Process in High Pressure Liquid Oxygen/Gaseous Hydrogen Rocket Combustors, Journal of Propulsion and Power Vol. 16, No. 5, 2000, pp. 823-828. 16. Yeralan, S., Pal, S., and Santoro, R.J., Experimental Study of Major Species and Temperature Profiles of Liquid Oxygen/Gaseous Hydrogen Rocket Combustion, Journal of Propulsion and Power Vol. 17, No. 4, 2001, pp. 788-793. 17. Mayer, W.O.H., Ivancic, B., Schik, A., and Hornung, Ulf., Propellant Atomization and Ignition Phenomena in Liquid Oxygen/Ga seous Hydrogen Rocket Combustors, Journal of Propulsion and Power, Vol. 17, No. 4, 2001, pp. 794-799. 18. Kalitan, D.M., Salgues, D., Mouis, A.G., Lee, S.Y., Pal, S., and Santoro, R.J., Experimental Liquid Rocket Swirl Coaxial Injector Study Using N on-Intrusive Optical Techniques, AIAA Paper 2005-4299 June 2005 19. Singla, G., Scouflaire, P., Rolon, C., and Cande l, S., Transcritical Oxygen/Transcritical or Supercritical Methane Combustion, Proceedings of the Combustion Institute, Vol. 30, 2005, pp. 2921-2928. 20. Singla, G., Scouflaire, P.,Rolon, C., and Candel, S., Planar laser-induced fluorescence of OH in high pressure cryogenic LOx/GH2 jet flames, Combustion and Flame Vol.144, 2006, pp. 151-169. 21. Singla, G., Scouflaire, P., Rolon, J. C., Ca ndel, S., and Vingert, L., OH Planar LaserInduced Fluorescence and Emission Imaging in High-Pressure LOx/Methane Flames, Journal of Propulsion and Power Vol. 23, No. 3, 2007, pp. 593-602. 22. Smith, J.J, Schneider, G., Suslov, D., Oschwa ld, M., and Haidn, O., Steady-State High Pressure LOx/H2 Rocket Engine Combustion, Aerospace Science and Technology Vol. 11, 2007, pp.39-47. 23. Vaidyanathan, A., Gustavsson, J., Segal, C., "Heat Fluxes/OH-PLIF Measurements in a GO2/GH2 Single-Element Shear Injector", AIAA 2007-5591 July 2007 24. Allen, M. G., and Hanson, R. K., Digital Im aging of Species Concentration Field in Spray Flames, Proceedings of the Combustion Institute, Vol. 21, 1986, pp. 1755-1762.

PAGE 198

198 25. Seitzman, J. M., Ungut, A., Paul, P. H., and Hanson, R., K., Imaging and Characterization of OH Structures in a Turbulent Non-Premixed Flame, Proceedings of the Combustion Institute, Vol. 23, 1990, pp. 637-644. 26. Schefer, R. W., Namazian, M., and Ke lly, J., CH, OH and CH4 Concentration Measurements in a Lifted Turbulent-Jet Flame, Proceedings of the Combustion Institute, Vol. 23, 1990, pp. 669-676. 27. Barlow, R. S., Fourguette, D. C., Mungal, M. G., and Dibble, R.W., Experiments on Structure of an Annular Comp ressible Reacting Shear Layer, AIAA Journal Vol. 30, No. 9, 1992, pp.2244, 1992. 28. Clemens, N. T., and Paul, P. H., Effect of Heat Release on the Near Field Structure of Hydrogen Jet Diffusion Flames, Combustion and Flame, Vol. 102, 1995 pp. 271-284. 29. Rehm, J. E., and Clemens, N. T., The Larg e-Scale Turbulent Stru cture of Nonpremixed Planar Jet Flames, Combustion and Flame Vol. 116, 1999, pp. 615-626. 30. Donbar, J. M., Driscoll, J. F., and Carter, C. D., Reaction Zone Structures in Turbulent Nonpremixed Jet Flames-from CH-OH PLIF Images, Combustion and Flame Vol. 122, 2000, pp. 1-19. 31. Pickett, L. M., and Ghandhi, J. B., Structure of a reacting hydrocarbon-air planar mixing layer, Combustion and Flame, Vol. 132, 2003, pp. 138-156. 32. Theron, M., and Bellenoue, M., Experimental investigation of the eff ects of heat release on mixing processes and flow structure in a high speed subsonic turbulent H2 jet, Combustion and Flame, Vol. 145, 2006, pp. 688-702. 33. Eckberth, A. C., Laser Diagnostics for Combustion Temperature and Species 2nd ed., Vol. 3, Gordon and Breach Publishers, Amsterdam, 1996 34. Herzberg, G., Molecular Spectra and Molecular Stru cture, I. Spectra of Diatomic Molecules 2nd ed., D.Van Nostrand Company, Canada, 1950 35. Daily J., W., Laser Induced Fluor escence Spectroscopy in Flames, Progress in Energy Combustion and Science Vol. 23, 1997, pp.133-199. 36. Ogilvie, J., F., The Vibrational and Rotational Spect rometry of Diatomic Molecules Academc Press, London, 1998 37. Luque, J., and Crosley, D., LIFBASE : Da tabase and Spectral Simulation Program, Tech. Rep., SRI International Report MP 99-009 Version 2.055,1999. 38. Kohse-Hoinghaus, K., and Jeffries, J.B., Applied Combustion Diagnostics, Taylor and Francis, New York, 2002

PAGE 199

199 39. Lefebvre-Brion, H., and Field, R., W., The Spectra and Dynamics of Diatomic Molecules Elsevier Academic Press, California, 2004. 40. Carter, C., D., King, G.,B., and Laurendeau, N., M., Saturated fluorescence measurements of the hydroxyl radi cal in laminar high-pressure C2H6/O2/N2 flames, Applied Optics Vol. 31, No.10, 1992, pp.1511-1522. 41. D.Davidson, M. Roehrig, E. Peterson, Di Rosa, and R.Hanson, Measurements of the OH A-X (0,0) 306 nm Absorption Bandhead at 60 atm and 1735 K, Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 55, 1996, pp. 755-762. 42. Hanson, R. K., Combustion Diagnostics: Planar Imaging Techniques, Proceedings of the Combustion Institute, Vol. 21, 1986, pp. 1677-1691. 43. Santoro, R. J., Application of Laser-Based Diagnostics to High Pressure Rocket and Gas Turbine Combustor Studies, AIAA Paper 98-2698, June 1998. 44. Dieke, G. H., and Crosswhite, H. M., The Ultraviolet Bands of OH, Fundamental Data, Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 2, 1962, pp. 97-199. 45. Jeffries, J. B., Copeland, R. A., Smith, G. P ., and Crosley, D.R., Multiple Species LaserInduced Fluorescence in Flames, Proceedings of the Combustion Institute, Vol. 21, 1986, pp. 1709-1718. 46. Smith, P. G., and Crosley, D. R., Quenc hing of OH by H2, N2O and hydrocarbons at elevated temperatures, Journal of Chemical Physics, Vol. 85, 1986, pp. 3896-3901. 47. Garland, N. L., and Crosley, D. R., On the Collisional Quenching of Electronically Excited OH, NH and CH in Flames, Proceedings of the Combustion Institute, Vol. 21, 1986, pp. 1693-1702. 48. Edwards, T., Weaver, D. P., and Campbell, D., H., Laser-induced fluorescence in high pressure solid propellant flames, Applied Optics, Vol. 26, No.17, 1987, pp. 3496-3509. 49. Kohse-Hoinghaus, K., Meier, U., and Atta l-Tretout, B., Laser-induced fluorescence study of OH in flat flames of 1-10 bar compared with resonance CARS experiments, Applied Optics Vol. 29, No. 10, 1990, pp. 1560-1569. 50. Seitzman, J., M., and Hanson, R., K., Com parison of Excitation Techniques for Quantitative Fluorescence Imaging of Reacting Flow, AIAA Journal Vol. 31, No.3, 1993, pp. 513-519. 51. Locke, R. J., Hicks, Y. R., and Hanson, R. K., AST Combustion Workshop: Diagnostics Working Group Report, NASA Technical Memorandum 107354, 1994. 52. Carter, C. D., and Barlow, R. S., Simultane ous measurements of NO, OH and the major species in turbulent flames, Optics Letter Vol. 19, No.4, 1994, pp. 229-301.

PAGE 200

200 53. Paul, P. H., A Model for TemperatureDependent Collisional Quenching of OH A2+, Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 51, No. 3, 1994, pp. 511-524. 54. Allen, M. G., Mcmanus, K. R., Sonnenfroh, D. M., and Paul, P. H., Planar laser-induced fluorescence imaging measurements of OH a nd hydrocarbon fuel fragments in high pressure spray-flame combustion, Applied Optics Vol. 34, No. 27, 1995, pp. 6287-6300. 55. Battles, B. E., and Hanson, R. K., Laser-Induc ed Fluorescence Measurements of No and OH Mole Fraction in Fuel-Lean, High-Pressure (1-10 atm) Methane Flames: Fluorescence Modeling and E xperimental Validation, Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 54, No. 3, 1995, pp. 521-537. 56. Locke, R. J., Hicks, Y. R., Anderson, R. C ., Ockunzzi, K. A., and North, G. L., TwoDimensional Imaging of OH in a Lean Burning High Pressure Combustor, NASA Technical Memorandum 106854, also AIAA-95-0173 1995. 57. Locke, R. J., and Ockunzzi, K. A., OH Imaging in a Lean Burning High Pressure Combustor, AIAA Journal Vol. 34, No. 3, 1996, pp. 622-624. 58. Paul, P.H., Durant, Jr. J. L., Gray, J. A., and Furlanetto, M. R., Collisional electronic quenching of OH A2 (v=0) measured at high te mperature in a shock tube, Journal of Chemical Physics, Vol. 102, 1995, pp. 8378-8384. 59. Nandula, S. P., Pitz, R. W., Barlow, R. S., and Fiechtner, G. J., Rayleigh/ Raman/LIF measurements in a turbulent lean premixed combustor, AIAA 96-0937, Jan 1996. 60. Nguyen, Q. V., Dibble, R. W., Ca rter, C. D., Fiechtner, G. J., and Barlow, R. S., RamanLIF Measurements of Temperature, Major Species, OH and NO in Methane-Air Bunsen Flame, Combustion and Flame, Vol.105, 1996, pp.499-510. 61. Arnold, A., Bombach, R., Kappeli, B., and Schl egel, A., Quantitative measurements of OH concentration fields by two dimens ional laser-induced fluorescence, Applied Physics B Vol. 64, 1997, pp. 579-583. 62. Atkan, B., Heinze, J., and Meier, U. E., OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensi onal measurements exciting the A-X(1, 0) transition, Applied Physics B Vol. 64, 1997, pp. 585-591. 63. Hicks, Y. R., Locke, R. J., Anderson, R.C., Zaller, M., and Schock, H. J., Imaging Fluorescent Combustion Species in Gas Turbine Flame Tubes: On Complexities in Real Systems, NASA Technical Memorandum 107491, also AIAA-97-2837, 1997. 64. Tamura M., Berg, P.A., Harrington, J. E., Luque, J., Jeffries, J. B., Smith, G. P. and Crosley, D. R., Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flames, Combustion and Flame, Vol. 114, 1998, pp. 502-514.

PAGE 201

201 65. Meier, U. E., GaBmann, D. W., Heinze, J., Frodermann, M., Magnusson, I., and Josefsson, G., LIF Imaging of Species a nd Temperature in Technical Combustion at Elevated Pressures, 18th International Congress on In strumentation in Aerospace Simulation Facilities Toulouse, France, 1999. 66. Frank, J. H., Miller, M. F., and Allen, M. G ., Imaging of Laser I nduced Fluorescence in a High Pressure Combustor, AIAA-99-0773 Jan.1999 67. Hicks, Y, R., Locke, R. J., and Anderson, R. C., Optical Measurement and Visualization in High-Pressure, High Temperature, Aviation Gas Turbine Combustors, NASA TM2000-210377 2000 68. Stocker, R., Karl, J., and He in, D., OH LIF in Atmospheric Pressure Flames Excited by a Tunable OPO (Type II) Laser System, The 3rd Pacific Symposium on Flow Visualization and Image Processing Hawaii, March 2001. 69. Thiele, M., Warnatz, j. Dreizl er, A., Lindenmaier, L., SchieB l, Maas, U., Grant, A, and Ewart, P. Spark Ignited Hydrogen/Air Mi xtures: Two Dimensional Detailed Modeling and Laser Based Diagnostics, Combustion and Flame Vol. 128, 2002, pp.74-87. 70. Schulz, C., Jeffries, J.B., Davidson, D.F., Koch, J.D., Wolfrum, J., and Hanson, R.K., Impact of UV Absorption by CO2 and H2O on NO LIF in High Pressure Comnustion Application, Proceedings of the Combustion Institute, Vol. 29, 2002, pp. 2735-2742. 71. Santhanam, V., Knopf, F.C., Acharya, S., and Gutmark, E., Fluorescence and Temperature Measurements in an Actively Forced Swirl-Stabilized Spray Combustor, Journal of Propulsion and Power Vol.18, No.4, 2002, pp. 855-865. 72. Grisch, F., Attal-Tretout, B ., Bresson, A., Bouchardy, P., Katta, V.R., and Roquemore, W.M., Investigation of a dynamic diffusion flame of H2 in air with laser diagnostics and numerical modeling, Combustion and Flame Vol. 139, 2004, pp. 28-38. 73. Meyer, T.R., Roy, S., Belovich, V.M., Cor poran, E., and Gord, J. R., Simultaneous planar laser-induced fluorescence, OH planar laser-induced fluoresce nce and droplet Mie scattering in swirl-stabilized spray flames, Applied Optics, Vol. 44, No. 3, 2005, pp. 445-454. 74. Conley, C.A., High Pressure GO2/GH2 Combustion Chamber Dynamics MS Thesis, University of Florida, 2006. 75. Marshall, W. M., Pal, S., Woodward, R. D ., and Santoro, R. J., Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor, AIAA 2005-3572, July 1997. 76. Conley, A., Vaidyanathan, A., and Segal, C., Heat Fluxes Measurements in a GO2/GH2 Single-Element, Shear Injector, Journal of Spacecraft and Rockets, Vol. 44, No. 3, 2007, pp. 633-639.

PAGE 202

202 77. Chapman, A.J., Fundamentals of Heat Transfer Macmillan Publishing Company, New York, 1987. 78. Thakur, A.M., Non-Premixed conditions in the Fl ameholding Recirculation Region Behind a Step in Supersonic Flow Ph.D Dissertation, University of Florida, 2006. 79. Reynolds, W.C., STANJAN: a reaction chem istry computer program Stanford University, 1987.

PAGE 203

203 BIOGRAPHICAL SKETCH Aravind Vaidyanathan hails from Thiruvanant hapuram, the lush green capital city of the southern state Kerala in India. He received his bachelors degree in mechanical engineering from University of Kerala, India in 2003. In 2005, he received his masters degree in aerospace engineering from Indian Institut e of TechnologyMadras, India, sp ecializing in mixing studies in supersonic flow. In the same year, he joined Univ ersity of Florida to pursue a PhD in aerospace engineering, specializing in OH-PLIF measuremen ts in high pressure combustion. His research interests include high speed gas dynamics, high pressure combustion, an d laser-based flow diagnostics.