<%BANNER%>

Kinematic Analysis of a Planar Tensegrity Mechanism with Pre-Stressed Springs

Permanent Link: http://ufdc.ufl.edu/UFE0022239/00001

Material Information

Title: Kinematic Analysis of a Planar Tensegrity Mechanism with Pre-Stressed Springs
Physical Description: 1 online resource (45 p.)
Language: english
Creator: Vikas, Vishesh
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: kinematic, pre, static, tensegrity
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Mechanical Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This thesis presents the equilibrium analysis of a planar tensegrity mechanism. The device consists of a base and top platform that are connected in parallel by one connector leg (whose length can be controlled via a prismatic joint) and two spring elements whose linear spring constants and free lengths are known. The thesis presents three cases: 1) the spring free lengths are both zero, 2) one of the spring free lengths is zero and the other is nonzero, and 3) both free lengths are nonzero. The purpose of the thesis is to show the enormous increase in complexity that results from nonzero free lengths. It is shown that six equilibrium configurations exist for Case 1, twenty equilibrium configurations exist for Case 2, and no more than sixty two configurations exist for Case 3.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Vishesh Vikas.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Crane, Carl D.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022239:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022239/00001

Material Information

Title: Kinematic Analysis of a Planar Tensegrity Mechanism with Pre-Stressed Springs
Physical Description: 1 online resource (45 p.)
Language: english
Creator: Vikas, Vishesh
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: kinematic, pre, static, tensegrity
Mechanical and Aerospace Engineering -- Dissertations, Academic -- UF
Genre: Mechanical Engineering thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: This thesis presents the equilibrium analysis of a planar tensegrity mechanism. The device consists of a base and top platform that are connected in parallel by one connector leg (whose length can be controlled via a prismatic joint) and two spring elements whose linear spring constants and free lengths are known. The thesis presents three cases: 1) the spring free lengths are both zero, 2) one of the spring free lengths is zero and the other is nonzero, and 3) both free lengths are nonzero. The purpose of the thesis is to show the enormous increase in complexity that results from nonzero free lengths. It is shown that six equilibrium configurations exist for Case 1, twenty equilibrium configurations exist for Case 2, and no more than sixty two configurations exist for Case 3.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Vishesh Vikas.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Crane, Carl D.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022239:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101109_AAAACT INGEST_TIME 2010-11-10T00:23:25Z PACKAGE UFE0022239_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 17285 DFID F20101109_AABTPU ORIGIN DEPOSITOR PATH vikas_v_Page_04.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
7a15896d0d87d0866977c3522dbb5e10
SHA-1
0b36c6e0b7c88146707088430a0846ce1775d5e8
1053954 F20101109_AABTKX vikas_v_Page_16.tif
f3179ff6d47932dd38c5da5871b56051
7f0853a04be784d4e18aa34d3ae54e64c5457ee0
3594 F20101109_AABTPV vikas_v_Page_04thm.jpg
e52803e9a3a53059cafb2856f9de6b11
333ad557f11bef106df403e7550db530082ff9a7
43289 F20101109_AABTIA vikas_v_Page_19.jpg
ce36376b30833de9db2b53f7353887bc
6fa2ed94f0e0f7e61397a8aa5b72faf1e29ca2d9
25271604 F20101109_AABTKY vikas_v_Page_17.tif
9b3ab706fa0bb5dbc912bf0711587e91
cbe20e2bfbfe90246944e9e581054dd56e724442
14006 F20101109_AABTPW vikas_v_Page_34.QC.jpg
f9f28649c5cc9fd1254d4c22ce3e222a
a07007d3809f12f3778b84b8a8124e3eaa64e1c8
48339 F20101109_AABTIB vikas_v_Page_21.jpg
c11537717662055185c2fe33da27e969
60c571025f1f7af0c41e2de5bcd7ecb180b0b8cc
F20101109_AABTKZ vikas_v_Page_18.tif
0a89d622ebb18fce3a249d06351b26b6
c2a531b7d8e8f33e16acf2b6a755301f70ad7e46
17510 F20101109_AABTPX vikas_v_Page_42.QC.jpg
1326fea527a96faf29f0604eb18c6ba2
d4242e3ea0ce715bfb9a382e7b4d50f765293c52
45361 F20101109_AABTIC vikas_v_Page_22.jpg
2b89612f395e60046c270863bff29fc7
b57b3418e0719751d9154b53edb228049641fac6
7149 F20101109_AABTNA vikas_v_Page_32.pro
6f6b6cbab2f5e6a4a799dd8e695eb912
79dc097229b827b5780f78ffdb33c1f748d8d51f
27169 F20101109_AABTPY vikas_v_Page_09.QC.jpg
9633cd4253afec9778f663a267033da7
ed13460392cb565325ea3cac6641fc577dc0c3a7
6946 F20101109_AABTNB vikas_v_Page_33.pro
0f3b8107fbb475846587ff59f7bad21f
5ae1c42240b5b98c0d4241d05357ea045c9778d9
13238 F20101109_AABTPZ vikas_v_Page_31.QC.jpg
73a1fd092f1524481caf3d65ef2ee638
cc40d47363707deaf6e9f0afad7230a07ed0328e
68648 F20101109_AABTID vikas_v_Page_24.jpg
2d6a81649abcbd8b45cd7bfa3c3e392e
759c8d855e2129be729a46557f495a9e2644d5f5
20915 F20101109_AABTNC vikas_v_Page_34.pro
c50a0f699761d7faf1c34663d8edeba8
086082508cb9947dbf01a69e727266913d2d0c5c
103271 F20101109_AABTIE vikas_v_Page_25.jpg
80604be99a0ae3cefd9d839ccd9edfb7
d417a6b947ea5fd39c48ae7c7a36aa2437dd58a3
25416 F20101109_AABTND vikas_v_Page_35.pro
a921951c86432d840ba72b813aa2e4cb
655768c05f38760c3177cf64137179277aa68807
31752 F20101109_AABTIF vikas_v_Page_26.jpg
964593dcd053da8d51a66bcee889b77e
f306b9272ae3b226e97edf677dbb4791817eeb17
9935 F20101109_AABTSA vikas_v_Page_45.QC.jpg
909f55eac2ccd9e93940f9ca00c12cbd
c659c1cb760e48e865b6e619dbc095c560b390c5
37735 F20101109_AABTNE vikas_v_Page_36.pro
9ece145fc880f6f50362463fd791d145
7765d259035d65b70383bb213f9a9f88b6d33b10
20380 F20101109_AABTIG vikas_v_Page_27.jpg
ab87e3d5e84a35b39daa68d0c7f01cee
20072557d6644e4a16378d75cc3bb8a44c7d79ea
33499 F20101109_AABTNF vikas_v_Page_37.pro
2f0a0db479563153b50a26abb9efaefa
07e7ff5f40a06b7aa9edf8e6e1f5e3854da913f6
47592 F20101109_AABTIH vikas_v_Page_28.jpg
b042f472ba1aa06f2807eb9015cc986e
90e75ae89b53dba3e52dbae20cb5f8e03ccdbefc
45468 F20101109_AABTNG vikas_v_Page_38.pro
da2af9956c96ba6e7dda349c75f1fe7b
4420c89f3ae8a8a5c7a0765b66074ce68a8c5396
41616 F20101109_AABTII vikas_v_Page_29.jpg
d37103e6cf6d290bc9c1927ab057f531
f8bf5df20f75698d068fd91871b309da9d255c06
33889 F20101109_AABTNH vikas_v_Page_39.pro
ea9c34bce4bdfa30e53247ac9da8e506
a8b2bef0979272f135c6ff8c1382f927679e40be
65536 F20101109_AABTIJ vikas_v_Page_30.jpg
8f77f618e23dccd96435bbc97590c1e3
0dc168f4efa422629b39e6cc2f553f4ba94db3d3
44962 F20101109_AABTIK vikas_v_Page_31.jpg
a43506ffa4dccdda25cba4b81a68342a
60290c3fe170a79f5cd81f0971b872089f0873d2
26742 F20101109_AABTNI vikas_v_Page_40.pro
85430513b939918e757f15e4115b30bf
ba712d0203d5c46293a088e63488addc4c0ade9a
26465 F20101109_AABTIL vikas_v_Page_32.jpg
82a166a9702f6a394df7b17ad55cd5b7
b8487351c53959e2aabcc47a3d95ff6e23af87bd
49908 F20101109_AABTIM vikas_v_Page_34.jpg
419c305cb3eeafafe25c1f930e199528
11ddf6857697d6c821d1cdebb028a3015de7dff5
16718 F20101109_AABTNJ vikas_v_Page_41.pro
326a5d37705e70df5f570cecf26384e8
111c889c56b69061c4eab38807a72a86521939fd
48006 F20101109_AABTIN vikas_v_Page_35.jpg
33e9e9dc19223ce4bb40114661727627
e9e838c169f7f34124d730efa8ef8e07dc38fcd6
57949 F20101109_AABTNK vikas_v_Page_43.pro
40f3485870a2690fbf5accefe31ca169
584265e2e9f9b901d7bc71a033c55241ad0efe3a
59070 F20101109_AABTIO vikas_v_Page_36.jpg
9afa1411930dd74422564c35dcf11545
6ce83422c708969caf55cb914d66ddf237cc61c0
40222 F20101109_AABTNL vikas_v_Page_44.pro
2566e009229144b93eb0b75cac082092
4212d2b63f28e4d1ba21f7b0f6b6cded099c8a69
54152 F20101109_AABTIP vikas_v_Page_37.jpg
9bbc76ab7d446b9714f615496ea71a57
37d6538a10546b95ce6a0b0f289110396553a6fe
17794 F20101109_AABTNM vikas_v_Page_45.pro
6fa06b2e2c701ceeab804512d0f88b0b
eb3be78251d4c3588ad0caac18e69dd6909e8793
71453 F20101109_AABTIQ vikas_v_Page_38.jpg
8be4b6103c71f2570d4395a33fcd1703
5b945605804468fec4032bb7a31fbf0645bb35df
470 F20101109_AABTNN vikas_v_Page_01.txt
b14c371bf3642a5030f8dd4391810257
bf052816acbf94a854365a8d8956c1ad8ce53b70
52119 F20101109_AABTIR vikas_v_Page_39.jpg
d6ca97301e7a43cc6d70972e36b21fa7
aa2525c87041a595e029637e7be547bc03cd4328
84 F20101109_AABTNO vikas_v_Page_02.txt
1e9269bf4a41744308c5f4e56880869d
a45fbffb881501e39ba3af70af6c4ba7c863e795
46109 F20101109_AABTIS vikas_v_Page_40.jpg
bcb60bfb5994f0005e7787ab09c171c1
48603a503a0e890a1fa9e0241a785ed8d7a47b56
152 F20101109_AABTNP vikas_v_Page_03.txt
48ca388c1f3a25ea03b36f1edd944dd6
e8304e4820a2d6ffad544f4a74ed0b7e86fa6d41
31794 F20101109_AABTIT vikas_v_Page_41.jpg
98ffa03d0e2d9bdb802d34a92a56c0ee
65395563b821b78a426cc509c06105f46a51121e
519 F20101109_AABTNQ vikas_v_Page_05.txt
4348ee3022a873959a74d449f2fefadb
50f339bb5bbf35a2c823367f6c217e6b40517aa0
58114 F20101109_AABTIU vikas_v_Page_42.jpg
678af2f9ee6b11d0c3fe7da953226edf
e8becf4d81eac5e8b4606dc43628091f011c6e7f
791 F20101109_AABTNR vikas_v_Page_06.txt
8b82a1b3abe547b136342af2747c5e83
30f3ef3ddde3429ec1810d50fab2e00c1db73617
88407 F20101109_AABTIV vikas_v_Page_43.jpg
3fdaebd118c40fb4914b4e55c30ec238
14883ebbea1cd372ce35ff3a992c7f6cdc1c9941
1218 F20101109_AABTNS vikas_v_Page_07.txt
5f9aac1f03dcabdb1d55b5676d691b4c
31d5e4c41117f21c09414182c75d4e8907216b3f
63842 F20101109_AABTIW vikas_v_Page_44.jpg
3840f44397f42a6369be3847ff243494
589446661eb943ee4db4001410b2e2417f4e3141
1375 F20101109_AABTNT vikas_v_Page_08.txt
c4511ffa40df3312eed41062090b5946
b918f774052d1a4e2125e1d23c89de9d44f6fc3c
5008 F20101109_AABTIX vikas_v_Page_02.jp2
2f31d9d55e89587548a7c04da50cfd58
eeaa50fea733ae97ab3efbed99cf62cbfa1fd4b7
2418 F20101109_AABTNU vikas_v_Page_09.txt
78a187dc71b4577b9151b65e2cdb85a1
a5b7f3981db594b62e7288ea38e898711c2fa632
10254 F20101109_AABTIY vikas_v_Page_03.jp2
177b21f24fc7bb2d7ad73060cf7de89c
15afe53ab2ce9cb9eef4dedbd394357057b00b61
2384 F20101109_AABTNV vikas_v_Page_10.txt
46237a6883e3c8fafebeb63624d246ff
a557cd5e5f558c522e9f12a35d5dbcf6b4d93f47
60544 F20101109_AABTGA vikas_v_Page_35.jp2
5a7732224d9aa7a74a7e8cb0816bbd21
0a92fb7d0d94214428b907484652459f47eb5b85
1011923 F20101109_AABTIZ vikas_v_Page_04.jp2
fbf1790566849300abe09856b9ae915d
837763bfa16bfc11bbfaea5a00df05f3c83dea6f
1159 F20101109_AABTNW vikas_v_Page_11.txt
702431b9b55b6ef286f1ef97844090d1
9b569debdf54f9515ad07e1b17c20406e3f24f41
1230 F20101109_AABTNX vikas_v_Page_12.txt
0d03420836b73bd8e98ae4972dbe4393
68ff1db3114b5333a192ca5eec2bdaf4f324e303
15832 F20101109_AABTGB vikas_v_Page_11.QC.jpg
e86df4c71060899da5293a69b1ae956f
3053b70c5c0be4f2b783e4ebc62b30bc2f7b7f94
F20101109_AABTLA vikas_v_Page_20.tif
039cb64a8e7b31226cd22fd776b5c5e2
a7470e6a0bf83ff7409eb23e2a3482ab7cfc0c95
1515 F20101109_AABTNY vikas_v_Page_13.txt
a68e4bed32681e888f5cf0d5ff4a3f0d
4b933f97da0ba95e3367939fb99d59ddd20ecb83
4009 F20101109_AABTGC vikas_v_Page_37thm.jpg
7cd882d2d49e7a97914587faf27170e3
85b1a0ac41e17cfc884589a1f74c6091fc907013
F20101109_AABTLB vikas_v_Page_21.tif
5d31ce0a1c1fae881b766edd3cd45c59
e626bbeca91f92c4caad5f34aeb7d0c37361fdd6
1477 F20101109_AABTNZ vikas_v_Page_14.txt
ad4ec3fe4bdf774067554f4dae6a0c5b
27744a6f4958655df2bdd910a1b3dfd594ab7ec6
F20101109_AABTGD vikas_v_Page_15.tif
e2a5743a163d90953b7695237f013aef
46b7cabbd3c34b463426a919ff6e5a5a02029604
F20101109_AABTLC vikas_v_Page_22.tif
bfe33406a0a1af83099bdc4b6aa5f0fa
2dd43574980dc57aa13560c692bbd28a2aacc4f9
33300 F20101109_AABTGE vikas_v_Page_45.jpg
b6ecba26334a67e69756b157c2360b39
b47a6a22e772c2b919cf1f0c9ffcd44ba657e1ce
3285 F20101109_AABTQA vikas_v_Page_08thm.jpg
15e72291746552a018cc496ad46a6c61
a851857e6cf5f197471430f33629911feae7f2fe
F20101109_AABTLD vikas_v_Page_23.tif
c9a075345e5bfcc42d5cdd2d019cf3f1
d0f3c1630d79aaf2af41d17abe228fb024ba55b5
2409 F20101109_AABTGF vikas_v_Page_27thm.jpg
7741fd7cab60664a313a16210220fbaa
e46f257f92c925c8aeb6a9bcc1d87e88cf9b3664
10217 F20101109_AABTQB vikas_v_Page_26.QC.jpg
da61a5220438d8af52dcee75c693d60e
fc8e4b12f9d6117b0b67e7f5e51a92e30e1efa63
F20101109_AABTLE vikas_v_Page_24.tif
003742782db1e4b7c9b562969260b84b
44fe2cff0d67dc5c25475d8e62f58fd76bd861db
23677 F20101109_AABTGG vikas_v_Page_01.jp2
96d9aa8e630c36be5c9ba3f94ecdffbd
b0def2fcb38c0720f21009c64066bf99f6076ca2
6277 F20101109_AABTQC vikas_v_Page_05.QC.jpg
12c17e2e2c92e30ef63b21e436a10087
fd3414ec7e53b7ed2fa7153287f9ee2773912826
F20101109_AABTLF vikas_v_Page_25.tif
bfa6722a45f4bbc2c02fc953b43e2c24
b1c2d0317ccb236726c073f9eeb7c52da4684715
15128 F20101109_AABTGH vikas_v_Page_21.QC.jpg
a1b9cc44183463b1a6dd2273b0b3050e
7cce71872c4a1dd08ca399eb35a1c55b82c9ce04
17330 F20101109_AABTQD vikas_v_Page_17.QC.jpg
e0aaa5667bf144ab8a45f222d87804cc
6edbdcaa4a504f6912fe3993cb7108636aa98676
2139 F20101109_AABTGI vikas_v_Page_06thm.jpg
d94c1a622e08b5ee044bf66e14a9f40e
c881af0650d3cbf8318827e1599a16cb996b9580
3828 F20101109_AABTQE vikas_v_Page_42thm.jpg
76bf208f2ea812f00cfeb94b5bd57d2f
1da820502f3255c2298105b6b4cad3d27e9a1d82
F20101109_AABTLG vikas_v_Page_27.tif
e89ee2a909a7879768f343a0ec909ba0
1e6b9dfc1a0f8923e6ecdefc061feeb00eacb93d
27198 F20101109_AABTGJ vikas_v_Page_20.jpg
d02fce47bdf5b0ba7bffd9d99dcbb699
3ff93b12f6cef122025c18876d2f6805ff847dd8
3526 F20101109_AABTQF vikas_v_Page_34thm.jpg
c4888367de3696df3979c9f4d394e661
58386c8df43cefcb56569787918c85cb4bf970f7
F20101109_AABTLH vikas_v_Page_28.tif
4974ef3f458cfab2961136ddf297854a
94ddb35fa8e29962bb02a719d8f901d9cde265c7
15072 F20101109_AABTGK vikas_v_Page_18.QC.jpg
de8c63357465deaf1e8f2ec077f7d81f
e0f278866938c8aa52604f81a6d4d3b6e6d86bf7
F20101109_AABTLI vikas_v_Page_29.tif
960abb918b445bf4d0f785e41afc0b19
a8a24551463e7f865731c39945c42629605915fa
3322 F20101109_AABTGL vikas_v_Page_07thm.jpg
4f43622f97c9ca10672b9a743a90987f
3546a235b7230a45d8b3fc82f233945e349bdd67
5515 F20101109_AABTQG vikas_v_Page_15thm.jpg
824df54c617b4f670c47ea1ac7f9e305
9adf5fe1a179943e53d20cdda0d893be92007a24
F20101109_AABTLJ vikas_v_Page_30.tif
72ebd2ac5cf6fd171a0ae5d4fd5d26bc
6628520fbf3ff7ce6e76459f850faac06aa4cc59
30086 F20101109_AABTGM vikas_v_Page_33.jpg
f45a5b06ddc312e3e0201d2c2d64ac1c
200c33db3500b4a049120b53605ad1e53dd140c6
21032 F20101109_AABTQH vikas_v_Page_30.QC.jpg
b6b641a0f420cae9657f6d2a58fd69fa
0f00c3769d2c1caa5e628488190481d52e1d8352
F20101109_AABTLK vikas_v_Page_31.tif
a19cb51419dc2c99db319f24164f24cf
5ce1e287a16b08da7c9cb9ae5d4cc15ad7e1fd6b
3398 F20101109_AABTGN vikas_v_Page_31thm.jpg
d1910c17ab65f595e416ee45002fcb4c
43722e283f2e1bf72d4c61e0899a6b20f865be8b
3029 F20101109_AABTQI vikas_v_Page_26thm.jpg
3b1fbe36c5cf577454c5ca0208eec2b7
6a767af81ab02326116e10f312095bdca0bcd373
F20101109_AABTLL vikas_v_Page_32.tif
79e469e5e39a194a41f4379e8d8c0b79
4ca15dd6a18494396f3ca79333f2846a9f25f457
55714 F20101109_AABTGO vikas_v_Page_23.jpg
64b6ecce73ef2cd0a35c2b3d7a92fd18
4e0c1a704255d1f9e072454e9762a5fdade06a31
24737 F20101109_AABTQJ vikas_v_Page_43.QC.jpg
b17d88b491f889332f326fd7343382fe
4e3fcb3cca6f3f3248f059e36f349bfddde85dfa
F20101109_AABTLM vikas_v_Page_33.tif
7d7aba8b6502fc1a1dd7fe65d3a61462
ee0bd389c91426b4c5a86842d38465903519f3ec
95885 F20101109_AABTGP vikas_v_Page_10.jpg
af9c5e6202cffbd93bcf5c46ba1c376d
da827dc822e46ce7ec1331a7e542b37d88c10445
1929 F20101109_AABTQK vikas_v_Page_03.QC.jpg
2bf63c6f2f811b9aa96f7057ab7cd0d5
bf223479e5018d8b90e6e31d8bc55c028268060e
F20101109_AABTLN vikas_v_Page_34.tif
eca0da7583cd96c13f5366af4408e334
6adf72ca6b896a28f5f442973792bebef163368b
14060 F20101109_AABTGQ vikas_v_Page_08.QC.jpg
63e32fe2fee4cf035c5599367ab21b89
2e93756922b14ce0521319338a28beb7b1257f72
F20101109_AABTLO vikas_v_Page_35.tif
96f90826a152f64cdd8be9d3032ffb9c
84de562afda604a7bdc7f6d99d88093540e1cceb
3819 F20101109_AABTGR vikas_v_Page_40thm.jpg
6d544b6f1e726addc4069f3ab80e49c3
ff99885b86067fb0b301f1133d8c33c056c90d7b
14405 F20101109_AABTQL vikas_v_Page_22.QC.jpg
81a0e7cc8267fbcf0b87f21d3029a5d5
f2df64f1d9e822e4cf8c764e7c154c441d53dc20
F20101109_AABTLP vikas_v_Page_37.tif
f18f44fff38493cc6119a19801a6c36a
8981ed82165c7f90e13e60498c1eac66d350fe24
3634 F20101109_AABTGS vikas_v_Page_19thm.jpg
34e21caa04d3ae6db136ce299104db54
22a6e429e5609468165524b3dac2a2fcb07e6cf7
639 F20101109_AABTQM vikas_v_Page_03thm.jpg
0ac793addde462ed01e920a20967b616
85e425b2f66ea8fca6bc7d5714393421e145f738
F20101109_AABTLQ vikas_v_Page_38.tif
b0f1339e4ea40178084f7154947a5c83
e4d53328b3ffe089f0942455df871ecff22248f0
1245 F20101109_AABTGT vikas_v_Page_22.txt
0551e78f0a4b137d933802516c344c92
5d4e77b2aae086b3100c4054576b9447269b5e27
17701 F20101109_AABTQN vikas_v_Page_36.QC.jpg
807bb59eb93f5879ed777d0d3547a2a7
807bc98aaf90cb1824eb7eadef81b0065a986cf5
F20101109_AABTLR vikas_v_Page_39.tif
06af923f2bd1ba4be700d3bc005adca1
99957ecc5cd1fdad21ce4257a3b099acc1736056
F20101109_AABTGU vikas_v_Page_36.tif
63fc9ae2d0fcc380758b20ed3c1d0973
a555e4130d70609bec16a5926e73d42a49e5ce25
14628 F20101109_AABTQO vikas_v_Page_07.QC.jpg
96cb09796f5714857ffd4c90b7caee80
1771a5493f178e02d8a5941518a5fedd0a3e34c4
F20101109_AABTLS vikas_v_Page_40.tif
e38c9e2e273386c080558e840157cc0c
efb959145bfbfddfc7601173487c449b5fb7354f
4659 F20101109_AABTGV vikas_v_Page_17thm.jpg
c0c02ce4ac1b028a6fa28cea0d422190
f70e15a2ee493ef3d164a7285b6f14a554a0fd97
22136 F20101109_AABTQP vikas_v_Page_15.QC.jpg
3727901ff28d82eb14712947a095eaff
b5c895377b46de1ef8b87b247695a0b875bf3e84
F20101109_AABTLT vikas_v_Page_41.tif
5aa603090d46f68b0265acc5977f530b
87aaebf74636c1fc625b237ed3fd600fd1cfd1b8
1415 F20101109_AABTGW vikas_v_Page_04.txt
5237667a21a771ceb840ae01bee15b8d
f72d0bcda05505b15e888f4d1c050c8b34af61f5
16715 F20101109_AABTQQ vikas_v_Page_13.QC.jpg
df40edaf8290b158d1cd165112c254df
2f762e2a0423b74c4783d4ab5854f6e58214054a
F20101109_AABTLU vikas_v_Page_42.tif
c2150f30cb541f443905a84c5950c442
cc03638819e89d7b87bd24e1edeedb81bddb7a71
21801 F20101109_AABTGX vikas_v_Page_29.pro
aee16535ed97b1242a1f44a9ca048f4d
b72a48dae01e8857648ad1ca723cdb624d266fd9
13240 F20101109_AABTQR vikas_v_Page_29.QC.jpg
d6fa40da79c50646467e4624bfe1d79e
21d1315b5323d22e305eb13f4b84585766fde2ae
F20101109_AABTLV vikas_v_Page_43.tif
843e05f68d4b39ec5c110bc24e6e5548
042452ff747ef6e37de7300fed336a223e200c60
19534 F20101109_AABTGY vikas_v_Page_38.QC.jpg
cea5b56554bdaa75dc5239285dcda38c
d920418724de675d6676a84f52da626e7680fea9
3305 F20101109_AABTQS vikas_v_Page_16.QC.jpg
a09b59685c4548e09a6720c4b8cf120f
9896b5c91a935c609173d3f9f1428081e4216f11
F20101109_AABTLW vikas_v_Page_44.tif
ebeb1de3e6783f271ce2fcc4ae4b4d68
b404f0207f9ecfb04a6fd056ef9767e679f6aeec
7046 F20101109_AABTGZ vikas_v_Page_03.jpg
d07eaecb03bfa3836633d7a55f60e9ff
84f93acf1589785abffddb622f1cc37df15fa961
10675 F20101109_AABTQT vikas_v_Page_41.QC.jpg
8d9bb465eac4fcb0114ca205e0b02f84
65151747aa0a0668ec00a5bfbb81684755099e48
F20101109_AABTLX vikas_v_Page_45.tif
598b6a3aa973cc0122b70155a4db73fa
b2f551e7e73599a0b793f71cda32398a64e33260
4570 F20101109_AABTQU vikas_v_Page_14thm.jpg
23cca8979ead1a8d979270d268af213e
012b1579b94fd55680b05f4770b90aa3a39d1233
7932 F20101109_AABTLY vikas_v_Page_01.pro
a5391a57e491d6a2a73a3ea053374c9f
84238055243fe71c005a604468f954240e9cd115
1062 F20101109_AABTQV vikas_v_Page_16thm.jpg
ab0ba38592465ff2b9d722bf2a9bb4d8
6a00b0496860bb9dc655d1a0dc517f581d7805df
357654 F20101109_AABTJA vikas_v_Page_05.jp2
799b837eb2c0dc97147d8d4339a15208
a3e66ff794d6e0b9338cbfb1f0d5d2803f8dd1f0
3030 F20101109_AABTLZ vikas_v_Page_03.pro
5a87327fbf9721e9df6baa81cc755ad6
647401c23cbaf4f20f92fb6ddcd0de942f23a2f4
5369 F20101109_AABTQW vikas_v_Page_30thm.jpg
168efa1cf318005824af679037d82628
fc0908f69a3a63b665e73a2c76bbac59105bb69f
566068 F20101109_AABTJB vikas_v_Page_06.jp2
1c3d7951c89cf68159205003a2c811a2
fc3be2ab69fe8ab279edfcd1df4799393c08224a
12667 F20101109_AABTQX vikas_v_Page_35.QC.jpg
4e5d2725c518344e586fb3968ee9da21
663f59c8c44f2d8758ec224f67629a702e0a85e0
65491 F20101109_AABTJC vikas_v_Page_07.jp2
2d981e5cb59ea374c7902f5ca06fab87
fee21de8a6273716bafb52d7a1efdaf48d54cad1
1850 F20101109_AABTOA vikas_v_Page_15.txt
3805e6750406dc93b8386c4bdf73c00e
13929ce20b8c1278a911746b84902f258d54312b
3775 F20101109_AABTQY vikas_v_Page_39thm.jpg
81ccafcd377dc8d3bb1c6076909d9553
058f99b3676e92e6caa6ccfd531a66af887fe678
64620 F20101109_AABTJD vikas_v_Page_08.jp2
e763e24896171a384e01e1eafe0cc32a
408af37afbeaaacd56726aaa40734368c2febed7
293 F20101109_AABTOB vikas_v_Page_16.txt
983af66e19a3d37c95cfdc8aa1cb2a20
94e0238824db75416037fb63f3b7f3d93df81a43
5967 F20101109_AABTQZ vikas_v_Page_10thm.jpg
8d7c4ac99d9bdf63b84d8b8765ec2fed
0a5c425bd7a685b3f5f4c4190b64e5c6c7bbf9c8
1635 F20101109_AABTOC vikas_v_Page_17.txt
122df653a4654d8235639064d32fcba1
df935b5209ec02724746f44fc3af6b8168d8b0c3
1051959 F20101109_AABTJE vikas_v_Page_09.jp2
0ce790d3fb3ec8015150e73e3ab2f57c
1732c8bf85c6e1965a6fd454475de6e97db2bbc4
1319 F20101109_AABTOD vikas_v_Page_18.txt
904d90f41ef19b6408e6e5567f69d309
83c3136bf384859a5a493ae2cc016277e8b01e0c
1051970 F20101109_AABTJF vikas_v_Page_10.jp2
8c2c6f4d23a2a66ead9cc645b4be36a3
b139b8cca2e2538b46846e2c1b699116dc585278
1240 F20101109_AABTOE vikas_v_Page_19.txt
ef5baee07ac716e327fce50f2a8d3c2b
a61619333783d64a716a1a9e749ce121a2862d9f
671629 F20101109_AABTJG vikas_v_Page_12.jp2
3a286a40d45909e467d449b614abe45d
dd93b85aee0f064008e1cf4e7e14941121654a22
328 F20101109_AABTOF vikas_v_Page_20.txt
9893e381d58ec79ef8e291f129b20268
07cf12ade30615c58abecd023400def775605a37
60040 F20101109_AABTJH vikas_v_Page_14.jp2
c6f97057b65e19a7f72fe012812d062c
8d26c1bb8737b26eceab6a0a4e680a9b4e63cbf0
1251 F20101109_AABTOG vikas_v_Page_21.txt
961453384155ebeff501a9a63f986fb8
d70540fb4e57d86dd5c6f58f06dba50c77eefaed
989736 F20101109_AABTJI vikas_v_Page_15.jp2
0e67d71d3eacf623ddfd6694d659f6fb
d956e08dcd421848cbee928f204b7cdd4363420a
1122 F20101109_AABTOH vikas_v_Page_23.txt
5e35ecf50633d4b6dc052729e58cfd78
11bb4768c161074363ba56e303ce77ea32f7d4d5
14717 F20101109_AABTJJ vikas_v_Page_16.jp2
76564c2ea4610e4ff68dd5e374be7f1e
9c46112e9e896212cb67341b775b4e7ef63a7268
1770 F20101109_AABTOI vikas_v_Page_24.txt
8cbae604b3c9e23bdb5ac44f0c264d02
4d4b00544f0061ad4561c83832a053f1a6b97a0e
763520 F20101109_AABTJK vikas_v_Page_17.jp2
5630438e4b92e6085a354fc7a01e3cea
52230b8ca55f57000020a835fb6c9b15fffd753f
612777 F20101109_AABTJL vikas_v_Page_18.jp2
c729b0683245dc21f4da187feec5ad14
54d931b641b91f9c406e5a19ee647c9285de21ce
2644 F20101109_AABTOJ vikas_v_Page_25.txt
634f7880bb78123eafba4645962d9c36
4e4a1f4efb4d5a063ac049b6d5cffd21b450522c
579714 F20101109_AABTJM vikas_v_Page_19.jp2
5b9ed7b5adcba14b1cd10014d229741a
0418a33f903c1aecdbc0a49cce5b54802151c5d4
1143 F20101109_AABTOK vikas_v_Page_26.txt
f7780b56e7ad0d17d5b9cf7b20babc63
f6eabd3b90576f3065d5fc72e70255b39eee6bd5
449823 F20101109_AABTJN vikas_v_Page_20.jp2
a03a6cafadddf0b3269b3d7c16d9b0cf
c0e7fe90087d442384da67cf68ec316e42787c9c
126 F20101109_AABTOL vikas_v_Page_27.txt
5abcf9c6612bca01968342ec2822d99e
d9ebc6d9abcc862acc01f8c55c6e15fcceb3b5c0
680689 F20101109_AABTJO vikas_v_Page_23.jp2
81305daacc211636060bd95585c7c91e
b7a71e1cde3227ee5a4659945adb0b84e6ff6568
1171 F20101109_AABTOM vikas_v_Page_28.txt
7663e489adf76ccdfe421a8a8f67ae5f
65e8ced1ab7d811b31c32a4f94e7370f232c8adc
958698 F20101109_AABTJP vikas_v_Page_24.jp2
d1aeb200a7a9027b16d1eb9223b5cc61
90b32df3353bf3aa89d615e4256790a4da8747f2
979 F20101109_AABTON vikas_v_Page_29.txt
12b5ac4edccccac81adb3ca82fae8e17
c7c02a899f245f4895daef878a04e679a9c58cf2
1051981 F20101109_AABTJQ vikas_v_Page_25.jp2
16d582b6499327f53f75275a77d51fcd
21d6a088ff87f7da2f252e092db9051b03d77491
1740 F20101109_AABTOO vikas_v_Page_30.txt
cfdc7447d0e64a4c1c52a5c69678f16c
42932510fbcab4c47f0203533347013013e2ef1f
523733 F20101109_AABTJR vikas_v_Page_26.jp2
c1c35b86547230778b08dd6e6efa79c1
55db37b6975ebadc3503efa11587d8358282ed79
1131 F20101109_AABTOP vikas_v_Page_31.txt
50f03540e637fa2187b7bb34dd38c017
7c142b7f7204a4b3540d6787d0ba5d252b690a8f
428128 F20101109_AABTJS vikas_v_Page_27.jp2
6b90c94bd904d47f5f367c54e2822da2
ff6d50cd4ca46b9c87fc8c42b3fce084e877b305
401 F20101109_AABTOQ vikas_v_Page_32.txt
1c94dccb1a97a2471d71d6021bcdd598
23f66406d7c6354d16fe6583ef6f7a92d39bf86d
615452 F20101109_AABTJT vikas_v_Page_28.jp2
f2fe6333b65d01257971c17c85282545
69d4f87680f326a914c39a01df08e4a7e4954bfd
1147 F20101109_AABTOR vikas_v_Page_34.txt
ff5c3a602ccd3ae36a2d3a4cb00a5e10
06955d08e3759212c2302df3f7660417e1aed686
55017 F20101109_AABTJU vikas_v_Page_29.jp2
fd14d1283be20c42a3cea84982e481db
f27f6366f7439093b9838296e5bd6cd39d4e0036
1068 F20101109_AABTOS vikas_v_Page_35.txt
deec563cbfb836d448a9c21d3121d2ab
79b8034c42a36a17ad41244de67b7d772b21f4de
892353 F20101109_AABTJV vikas_v_Page_30.jp2
408756e7843931f6efdeacd72183858d
51fe1e2ba059f8fb1d82a4d16c67585137e1db59
1577 F20101109_AABTOT vikas_v_Page_36.txt
3bb67fd6cc28055d1612e50cbf0ba14a
5b2d76d7eadcba3c691e843773f75fbec9be12bf
624571 F20101109_AABTJW vikas_v_Page_31.jp2
c962f1ccedecfe820744a822fd6fe5e0
d2949950976c380791eeb1aeccb1357d997b904a
1471 F20101109_AABTOU vikas_v_Page_37.txt
856ed1a9e0997212dbee5167141f7e2b
2114f6b08cd2de877ea5798af16250f78666fd0d
545704 F20101109_AABTJX vikas_v_Page_32.jp2
e9ba3395a9e7c87a34d52707b870748a
da9b0d2cac0a9905fe095df33d1e7555a2f0195a
2141 F20101109_AABTOV vikas_v_Page_38.txt
950331360400468def0e0772b1902a6a
2390d89395af1b9ee43eb8f618461ece22efaabc
1633 F20101109_AABTHA vikas_v_Page_05thm.jpg
2ad1ec478494d1641aa051e751aa09d7
d9245857c6cfa5ed4adc0a3f183405c64abd7f77
630650 F20101109_AABTJY vikas_v_Page_33.jp2
0c6c03d3754f824676b11898e5499b91
7053f6d3fd67123f95d5f34de777fdf2ab409f57
1416 F20101109_AABTOW vikas_v_Page_39.txt
325384d970ba861372e827c00a5d2454
57b3b84a245cd584aead41019230758d39fd2ace
1636 F20101109_AABTHB vikas_v_Page_44.txt
41124e74fd80a7a1b6dc9f6a3afcc304
ab8af667d18cf1b671a6b65cb02298e77656a584
803948 F20101109_AABTJZ vikas_v_Page_34.jp2
0e5a0f562715667c645fca424f4620e9
031036dd6020cf46d11aaa311803435844aa7cad
1268 F20101109_AABTOX vikas_v_Page_40.txt
4890d4a5d0b3b1b35a93a276ff1881d1
d5be4c4b3aa4f4ac8e8ddc2fac4dcf9bcce9b8b2
1091 F20101109_AABTOY vikas_v_Page_41.txt
20c13eb77f1e5113fa7477f0a289eb51
d9420b67d26bc674697ed07191ee23fc5f1e283a
F20101109_AABTHC vikas_v_Page_19.tif
d6d56992b2a78ee32c731acb065a8bbe
a2fb3e73274b65258bfdb42b00f8db03aca9f710
29709 F20101109_AABTMA vikas_v_Page_04.pro
33ac96a7db0dd73f12a6da6ec7939ed1
9d238b87600931f6453930c596b535e23ef95d99
1503 F20101109_AABTOZ vikas_v_Page_42.txt
f84b195e99f93ec98ccd489db86d76aa
0cff9261f3df5be06af8f1d835ba959ec4a6c163
37437 F20101109_AABTHD vikas_v_Page_42.pro
45728de8bc9984245009db5cf09f4bbd
b3987477ffa8fca9faa15505832d06c2d42f3c01
10998 F20101109_AABTMB vikas_v_Page_05.pro
77c6d0c7367ab4f67cfb8535701db15c
ed72ae11aeef10f6f8ac1504698a64bf43a13655
776 F20101109_AABTHE vikas_v_Page_02.pro
87a866e143256f871fafb9b5dfa81db7
5da37222db32560d7c2b84064ef131129f947934
17770 F20101109_AABTMC vikas_v_Page_06.pro
ddd3e0d40aac1745aca8fc21c685a90c
4c9cca1070ae3a8cd1cb5f623c8d7f8a421e0736
59671 F20101109_AABTHF vikas_v_Page_22.jp2
6efea6a29a27273d7aa7310b39adac1a
5a5a6a3d0a150f2ac7f64882a934bef7d889e426
70176 F20101109_AABTRA UFE0022239_00001.xml FULL
b5e5b338324ac9d09bc0145809076542
3f7dc166ee113b0d65312a5a7425c42c9fc2e186
29368 F20101109_AABTMD vikas_v_Page_07.pro
c85c25d121a6c0a32de9c729c91d438a
38df80fdf824d0f3148132c49d80bd9448102d65
616267 F20101109_AABTHG vikas_v_Page_21.jp2
dd55ccdc0a51ad91d8322fc4d4a2cf4f
b01c2e87b9d99e3d0c60e6b2cd2b50ae526d9804
6399 F20101109_AABTRB vikas_v_Page_01.QC.jpg
882f61a66ede8bc0c867517e60f4762c
a26b835160a4c53e874bc333d0a2674eb29394a4
29329 F20101109_AABTME vikas_v_Page_08.pro
35e986cb6d1a27120fca1ad5e63586d2
714df7490c87236f4cbd58ee3142ca6a306ae2c6
975538 F20101109_AABTHH vikas_v_Page_11.jp2
8129d514985d865ecd6ba53d84bbd75a
d055f82e8a88df5d941f3c610725151692a05fbe
8881 F20101109_AABTRC vikas_v_Page_06.QC.jpg
a8f881b41d69766db04b78192ff8aee1
10e8ce1360cff38a091285d95a1ee83bc1cc6110
59936 F20101109_AABTMF vikas_v_Page_09.pro
1e874a9b938016148e95a3d11dd1bd5a
c6663aa777d318cd7b4e0352f3afc6d7ca903caa
54661 F20101109_AABTHI UFE0022239_00001.mets
675e51a9e64a0ac68f457e1f7c673269
a58d2dd0996ddbcfb4b59ca6c8e3e71d205e4742
5955 F20101109_AABTRD vikas_v_Page_09thm.jpg
93b1ec4b70cceeed054bf957b83af453
35ea0295731faec82ca447d1d08fd6f45b1d98d2
60817 F20101109_AABTMG vikas_v_Page_10.pro
745df535d5ef4d417ed97b816c865937
a24d0ce11aec15a87d7c1defde0b9e6cdbf143a3
28037 F20101109_AABTRE vikas_v_Page_10.QC.jpg
09e6423aa0f5d785131c3f4b9582b404
837670449e14018b59e99dde60efb1f95ae15d1a
4206 F20101109_AABTRF vikas_v_Page_11thm.jpg
b4c07ceb73e12ef1eca2c2bbc976078f
16e1aeffc723c23b1483b649f39cfd020ad18cf2
22316 F20101109_AABTMH vikas_v_Page_11.pro
0b62b89c3f01373a1f39c7eb8a4e4dce
3f1bb051ed662a82edcfb08424ba35af3236decc
21660 F20101109_AABTHL vikas_v_Page_01.jpg
1b0de964e72b6a2887072319ec898948
7faa87c90d07040b0fd9b3a406878d402c5d20e1
3985 F20101109_AABTRG vikas_v_Page_12thm.jpg
cfbab47d33608ce033afa475755d504e
5bcda36754b1599169bce6331d2bc05ba68834cc
25003 F20101109_AABTMI vikas_v_Page_12.pro
9d03068766d09335cda10bfd3f3b2de6
cb0e657dc850f2c654f260687e9f62189d2810cb
3474 F20101109_AABTHM vikas_v_Page_02.jpg
ff9e4b7ff1ef35c8285b92b77f2fe86e
338189a2d271aee81b16153a7411031ad8c3f793
4328 F20101109_AABTRH vikas_v_Page_13thm.jpg
23415d9e37206903fb6d2bdafba701ad
7e3ab50f8685c4ff3878c470e86aafa750eebf72
29189 F20101109_AABTMJ vikas_v_Page_13.pro
3d21aeeecd7cac4132896c8e85b68909
ac52bbb53f9f42d89df489ada8bf90f6094de6c7
56627 F20101109_AABTHN vikas_v_Page_04.jpg
bb4b8e2ed578aac364bc2c06af2f9c5b
cc16250dfeab13945ff5efc3e5d7e103bc6b6b38
15359 F20101109_AABTRI vikas_v_Page_14.QC.jpg
042f0b07835f76ef9c2143712a14b895
c1fad465e73e6d6634e018cca582ae065d2028b3
27294 F20101109_AABTMK vikas_v_Page_14.pro
3fa786a52e021381437f43b09afb71c4
9734a5acca978c011238054388bbe9fa64c8200a
21391 F20101109_AABTHO vikas_v_Page_05.jpg
2e5aa9b7629a907210bc8a563fbbc1d0
026216d17f58aa9e47a1f34bf154334920d8aa91
4148 F20101109_AABTRJ vikas_v_Page_18thm.jpg
0c90e8b20251104d62b7de383446c911
6370260bcf1af37c10f405f913910f228483d03d
43562 F20101109_AABTML vikas_v_Page_15.pro
f2001a062c5a4cab51f02b0b785e8ebd
25443034991b7123df0f3f2db95fbfbe6fcb2fad
29840 F20101109_AABTHP vikas_v_Page_06.jpg
3e4703b2db6ccbeaed7b0ff935f1fee1
324d1c626fddfbf1bd9518aae6004f29bab00a65
14501 F20101109_AABTRK vikas_v_Page_19.QC.jpg
2329af737ed37a63f6995c2534106d93
b8506f1fa9b8bb6fc2aef1cdb4a330c9926b9ff1
6273 F20101109_AABTMM vikas_v_Page_16.pro
85911a1377a00c639f094e459e58c845
1314624023c4fd4c481e4bbf1046a1a99556ed4f
48470 F20101109_AABTHQ vikas_v_Page_07.jpg
bc510f7767cbde7e664573681c9b36ff
901211965525e22000eb28172244bcdbc3a97717
2760 F20101109_AABTRL vikas_v_Page_20thm.jpg
87c5a2cd55b2487db7625801197509f5
737d9997aa2ce23cc99ce2117c62b92bf2905ab7
32828 F20101109_AABTMN vikas_v_Page_17.pro
4a25f8ebf52d021b113cd2a639a82a23
72998faff773ab78c720dc47357588b4d825e1b6
24900 F20101109_AABTMO vikas_v_Page_18.pro
13694f1c5564709f9b5cc326dc12ffc9
5ebd290b1ab67e4ffc0c2436e4e5e02c859ef16f
48496 F20101109_AABTHR vikas_v_Page_08.jpg
e2bfa58a774b19c05b8efbb1f57c74c7
e56ba8aa01fc6f741fe8a374fa6075b8e2d43775
20580 F20101109_AABTRM vikas_v_Page_23.QC.jpg
f8f6978a787ea4632cdd7964b45aa264
fbd593d0cc57b3679c072ae56a7685509305b375
25569 F20101109_AABTMP vikas_v_Page_19.pro
c6ca0b45d0f4f366ae1bf42f23116927
e90cc334f605630648e0f0ddb980a7bd6665ecde
92917 F20101109_AABTHS vikas_v_Page_09.jpg
7fa620b839e8cac862354de0efba6610
c1aaeab0678031a0e3a456247e6860abd56a0cf4
21320 F20101109_AABTRN vikas_v_Page_24.QC.jpg
c960843f30397f1b6e2437fdfed8efa4
5151dca856fba7da2d4338563f028f826dba4266
7943 F20101109_AABTMQ vikas_v_Page_20.pro
eaed975b3f40b23bdc5b968babb719cb
7f4bb9e57552883880a9b94fa7f74e30562de3b4
47888 F20101109_AABTHT vikas_v_Page_12.jpg
500de1e23cfe25564b437c293cb89a7a
4559ea3d1adfc9f6a4192dd0082fac1e8d66e6fe
5762 F20101109_AABTRO vikas_v_Page_24thm.jpg
801c53d18519d20a1351eead2a0937af
1de4f6a04a78daaa26db86686ab39a52de59cc40
25306 F20101109_AABTMR vikas_v_Page_21.pro
e05b1e8efe58ecc496480c237af70f44
95d99e3e6bf7b73bc158899acaac97583fe9a753
52558 F20101109_AABTHU vikas_v_Page_13.jpg
b39862ce4ecab9ca64dc6ebe3ffa52af
a61c9b86bcca347b1b867c070e4fed9bf6158129
27270 F20101109_AABTRP vikas_v_Page_25.QC.jpg
467db3808810eb7035a599420c9205fb
9050bddbe01905857d19431481a53e64f5867bfa
26108 F20101109_AABTMS vikas_v_Page_22.pro
33152d1ab2b158af3e02d0839ed6dbf5
4c5c54344e59fa963e97ed32635553fc4538003d
45598 F20101109_AABTHV vikas_v_Page_14.jpg
6e23de212ca08b1f412aded387a7d964
6b70d82d10725e7a2bec6707f77c4d2edcea5480
6018 F20101109_AABTRQ vikas_v_Page_25thm.jpg
81f5dcbd23187449a37aa2eaff21e77f
cb5546d623d012bb73d56221048cbeba2a5942e8
24049 F20101109_AABTMT vikas_v_Page_23.pro
7721733828802ceb325a37e6ed878448
f3c15e1dcca1773fcbf5206262bebe070a21dd5f
71853 F20101109_AABTHW vikas_v_Page_15.jpg
8c2dd60a71cd30affc1167be17923bbe
c01b0d22b7c48cb08e99a4ef4ba2550bc813b506
16305 F20101109_AABTRR vikas_v_Page_28.QC.jpg
5a88c215437a2a4a9de9eb3c5f147d69
d3e20b238ceb1ba03ecf4bc0bf18f110d7954524
62986 F20101109_AABTMU vikas_v_Page_25.pro
e232c6f7fe2dd62a908fdb8b05fb8825
49cf94c5338dd5c1f9f0d75c6af2c9ed058f8af7
10802 F20101109_AABTHX vikas_v_Page_16.jpg
1985140c832ff2065f1ee52c745e8e43
68ce76d45248cfcca96bbc58bc91d22c36f888a0
3836 F20101109_AABTRS vikas_v_Page_29thm.jpg
e0e259c981440e4ff547f6df40739f37
28446171f425032a384bb1022d2417034e56d02b
21042 F20101109_AABTMV vikas_v_Page_26.pro
06c221752c9acd62e08a0849f2eda96c
cffa41aa4217cac0fdc8da051b766af4bf78c7f0
57134 F20101109_AABTHY vikas_v_Page_17.jpg
a2796ff7beb68dbae23de0f3daac3e07
b094e0d7bc5064a0875fd1d7e24a4974d86bae94
8461 F20101109_AABTRT vikas_v_Page_32.QC.jpg
697ebf6f86732d39733e7197ac8f30bb
98fd3892bc44355ad882142a31edd479df4c99e6
1614 F20101109_AABTMW vikas_v_Page_27.pro
7f8680f3595b8cda8598dddebd09b49a
5525bd0eb357ef42f8b40dbb5d4f79803f28ecd9
48456 F20101109_AABTHZ vikas_v_Page_18.jpg
c7ca78e38d9ff7d907db18e3dc5cd536
687131baf3037f4ebca9b547acd68425df591789
2705 F20101109_AABTRU vikas_v_Page_32thm.jpg
9d0992e84cba25f794990857061dbdfa
23a282647eb76b26aff4944ed175eedaa22f9100
25477 F20101109_AABTMX vikas_v_Page_28.pro
3980d09dfa48741ffee15aa075742386
3af365255d2a59bdceeb140adb8af71e1c75fb04
9915 F20101109_AABTRV vikas_v_Page_33.QC.jpg
8797210eeae89ba6171a1ff805e651f0
b933a85145cf803eb748f199d24ca975ffd9e8e0
80277 F20101109_AABTKA vikas_v_Page_36.jp2
e4d4a8bb65fd160d77dc850e0a73db69
75466c8aa9387a6ba5d41eff47d269b9f4df2d4e
37369 F20101109_AABTMY vikas_v_Page_30.pro
ccdbef702d29c7cb2c9c9fe2db619635
bfff5d230addf1377d280092522b331b0c11b893
16556 F20101109_AABTRW vikas_v_Page_37.QC.jpg
0f36fa7451b16fd6a933a282452c52fb
75fdb06e85f2391b143028357138c5275d119536
784401 F20101109_AABTKB vikas_v_Page_37.jp2
8d3d2b18e0c1bda0fbb5de74f955e4dd
1c0d915845bbee5744521e63bbe2afb9ccb652ed
26885 F20101109_AABTMZ vikas_v_Page_31.pro
0fd28f8cd3afe5f759e8b7c896fcf626
5217644881c97101d27feb444cbe5984189489c4
4766 F20101109_AABTRX vikas_v_Page_38thm.jpg
30edd553689caad5330bdb747bd4091b
6ed064276e9f78d928bf5ee4aef26ab5cf67105c
92640 F20101109_AABTKC vikas_v_Page_38.jp2
b332acaafee6fed510be158e7f5273cb
f3aba02ddc70adbf5d9ae8f6e4b656be72edecb9
15908 F20101109_AABTRY vikas_v_Page_39.QC.jpg
08738431066335e72eec9164d496b48f
eea2903996715824fada77263d6ca01b001f98ff
70204 F20101109_AABTKD vikas_v_Page_39.jp2
87eebb0bee13cd65d252969334d81d24
4020d8f0b60097c9af709eedc0627254be701e3a
2315 F20101109_AABTPA vikas_v_Page_43.txt
45312c7eb21110b73b54a8a085d80567
5a318be547c1d1ac9d65da6b47059ff91cc52a6f
17975 F20101109_AABTRZ vikas_v_Page_44.QC.jpg
2daa9ad08e97c158dcadd4e048303d4d
6bbad3f85a7d3a39fcd58cd700e42b611d298868
620439 F20101109_AABTKE vikas_v_Page_40.jp2
c28882fcd6483c60ccc33bb95e271cce
1ff959498ecfa05b820b2cfa9cc1698565dbb520
742 F20101109_AABTPB vikas_v_Page_45.txt
52e4c0c992eb4a5301b46414eb468827
8e9ecc60946e4ee0431e433ec14065c1859b9db9
1445 F20101109_AABTPC vikas_v_Page_01thm.jpg
90a7edd0bc2d5d7bf173b8af2becbe6f
99196b9197e1839eb7dfa0fe554fb27635263b26
383025 F20101109_AABTKF vikas_v_Page_41.jp2
fc4cfb8d43ec33ccaf3f778f4db109da
9fa30034ee67e8a9745da0112cb6f3e98de0bee5
423263 F20101109_AABTPD vikas_v.pdf
0882e382aa54ae6a3e586e072ce73ba7
f2b5c5e7f72b8e08fad76954845af67ae2eae978
78793 F20101109_AABTKG vikas_v_Page_42.jp2
768f2e45ef51554042d4e02e9560f38c
d0b9a09f1bb4a18df14e31fe0dd5c5caae703930
5685 F20101109_AABTPE vikas_v_Page_43thm.jpg
51723345460896663669645ec2d3f9aa
e23010d4567795d3583e2b6f71bc8e3bf8789ce9
123695 F20101109_AABTKH vikas_v_Page_43.jp2
56829e9e7eec1a729eab1aa7594c71bb
c63396da900623345bf4cb656526fdba86be34ae
4368 F20101109_AABTPF vikas_v_Page_44thm.jpg
813448ed1b7362babf7efff6597957e5
1fe5c92d5f5f7bd8df4868a6834e7e9d0960febc
90041 F20101109_AABTKI vikas_v_Page_44.jp2
007e7d0a15a4683c8131de827a42759d
5021a40337d0605bd4d57a22b906ff68d53bf478
3930 F20101109_AABTPG vikas_v_Page_36thm.jpg
b8fdea9679e4a4903ff417ab2c6fca54
72138dac7ad97eaaa2d6be31334c1d8c340b0114
42182 F20101109_AABTKJ vikas_v_Page_45.jp2
9859cb6445ffea19bc39d74d45ec3e93
062039772ddae47aa1c9375a5682b07a54f057b0
4006 F20101109_AABTPH vikas_v_Page_21thm.jpg
af64fa3918c136d8335b84c4897d21ab
30e50b9d1e25b242d118e602a3aeaf2c3171413a
F20101109_AABTKK vikas_v_Page_01.tif
4db929299c083ef1ffdce2090b8d51a5
5d12ed74d3c113d23426a77eca48e642e46ff0cb
2686 F20101109_AABTPI vikas_v_Page_35thm.jpg
6b6fc2618482eee61f84914dcd4ea80f
5813a8cd02d19820a0390956e18a77446a8ca96a
F20101109_AABTKL vikas_v_Page_02.tif
df706446193a18c2a574cd2f4e0b9250
6dd002e6402e73aaee0a31b2f19af3f877f47236
4220 F20101109_AABTPJ vikas_v_Page_28thm.jpg
b550a781ea6e6db09156f909da063a4c
a58262c1921e265faeec964e79d4124385ce06c2
F20101109_AABTKM vikas_v_Page_03.tif
8290030bec50f81a110ea22ebe719596
dc740e80d1f2f123f779968c71ae801d9a910797
7338 F20101109_AABTPK vikas_v_Page_27.QC.jpg
4088d2f4e6b18d6794a4a7e566271309
0616256354c3c1cca667a8c6ca226380057e3370
F20101109_AABTKN vikas_v_Page_04.tif
04125a164cfdde9f08fc43470c6a1db4
bb6c65e369ea51e7794eb01d02383951cafa9580
5243 F20101109_AABTPL vikas_v_Page_23thm.jpg
2326b4c80cb3fdff6d67fbc52b01e2c9
915a6007afc13643f69d1ed7673117322681dcb6
F20101109_AABTKO vikas_v_Page_06.tif
1529e56801b39b6c56ce67f16ef852db
338811dc00db7679c8ac0ca80b5e3539aaa458dd
2218 F20101109_AABTPM vikas_v_Page_45thm.jpg
6f6b419c82a4a0e2ae95e97a35ca166c
defad9b261350714feef452392d944f39c7a5b9c
F20101109_AABTKP vikas_v_Page_07.tif
e80e09d624259662fef9a0d09a59b47e
d977161d77aab5462073802adfdda8ae9c022d72
651177 F20101109_AABTFT vikas_v_Page_13.jp2
d295f9b2b4d4adf2cf2fd930fca468a7
558a089a8ec5ebe2edecfefd32c9202876d5a82e
14671 F20101109_AABTPN vikas_v_Page_40.QC.jpg
d50605022b184f3bb628e74761edb845
ae1b4ed269b52f42b9b4ab7f4b093ca46254a340
F20101109_AABTKQ vikas_v_Page_08.tif
4420aa499ea33ff2961997b17a137ac5
43a98d0e8b906a50224d45dbe0901d0e5bb3873b
9083 F20101109_AABTFU vikas_v_Page_20.QC.jpg
bc135eef29b694cade3369af2ba855d4
7b441713514f78935f9da30dfaaf3cb87043fb9e
2767 F20101109_AABTPO vikas_v_Page_33thm.jpg
7cf463bb2822f68ad7d467251381b129
46f4f7879ad9fe722f7a7c4b7b842c6cd8c8a303
F20101109_AABTKR vikas_v_Page_09.tif
2dbed8515f8bd6a31a75757489a6504e
807450726efea6eb58124703c4a19e25c549f002
299 F20101109_AABTFV vikas_v_Page_33.txt
7f120081b59eeb7461eca304f1f1a75a
1afc9367e42c95e95583b5473cb9e190e3055473
1162 F20101109_AABTPP vikas_v_Page_02.QC.jpg
f33fe8455f07d670c464c9c089a22094
3bd4ca17f08f455709e000a5a8a771e292fc9876
F20101109_AABTKS vikas_v_Page_10.tif
46b1cacb4986d394002bf54efa01d1d5
d5621aa8e560294ddfecef3de035092ccb9bbb5e
52134 F20101109_AABTFW vikas_v_Page_11.jpg
1190647e245cbc013a2430b1791e33f6
ecdbd3612a9cdf5462662b1df5d65f16c5526b61
426 F20101109_AABTPQ vikas_v_Page_02thm.jpg
df1c5f92d4b8433a446259b54c1079a6
4d43be816a346e04104c17ca00ed39662ae07786
F20101109_AABTKT vikas_v_Page_11.tif
7cd5ed241ee9225567659aafe8f48904
257b0d67940924de2d042349e0aae43902564761
F20101109_AABTFX vikas_v_Page_26.tif
8121264a20c789db44de27698bda0706
295165c5737eee4375e000fda4d24f143bfe6362
3113 F20101109_AABTPR vikas_v_Page_41thm.jpg
f531f2a8ce048410f7aed01604528ec9
bd886766bb6468617974cb69190295977fda02d7
F20101109_AABTKU vikas_v_Page_12.tif
949e2c76fc0f166ed8132c9ae5f64838
e22e64b574c29972df0d7d342ae2f62f1eda0863
F20101109_AABTFY vikas_v_Page_05.tif
c539a211df62db323495861630173876
43f6706d49014af7176ac1579644dc24d03ef4d3
15330 F20101109_AABTPS vikas_v_Page_12.QC.jpg
7cda281d50464f887df7ac4c446ac60e
1ca90faa24bef5c42f6a1b8b4a9441189eb4abba
F20101109_AABTKV vikas_v_Page_13.tif
1332c15fb51f8de87e5ca31b6c4c3583
aa3f185d77bc056b464649d5767d3b4f9036a469
40461 F20101109_AABTFZ vikas_v_Page_24.pro
70437c8bf10ba457b13346db14b76f9e
1b72478a82c0b037e6662dce2426fb899c25f7cf
3783 F20101109_AABTPT vikas_v_Page_22thm.jpg
812e8c52285342fd99c86f9132de7172
0df2c3088cf8b1abc484431323d49d57f5c73ae8
F20101109_AABTKW vikas_v_Page_14.tif
6223dde4331243c3924446be8f44a82d
5105c92e0e971c43a5960c1d4a98e47b63a352b9







K(INEMATIC ANALYSIS OF A PLANAR TENSEGRITY MECHANISM WITH
PRE-STRESSED SPRINGS


















By
VISHESH VIK(AS


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008

































S2008 Vishesh Vikas























Vakratunda 1!!., !. I.,!..,\-.,
Koti soorya samaprabhaa
Nirvigfhnam kurume deva
Sarva karyeshu sarvadaa.











TABLE OF CONTENTS

page

LIST OF TABLES ......... ... . 5

LIST OF FIGURES ......... .. . 6

ACK(NOWLEDGMENTS .......... . .. .. 7

ABSTRACT ............ .......... .. 8

CHAPTER

1 INTRODUCTION ......... ... .. 9

2 PROBLEM STATEMENT AND APPROACH .... .. 12

3 BOTH FREE LENGTHS ARE ZERO . ..... 17

3.1 Equilibrium Analysis ......... . 17
3.2 Numerical Example ......... .. 19

4 ONE FREE LENGTH IS ZERO ............ ...... 21

4.1 Equilibrium Analysis ......... . 21
4.2 Numerical Example ......... .. 24

5 BOTH FREE LENGTHS ARE NON-ZERO ..... .... 28

5.1 Equilibrium Analysis ......... . 28
5.2 Numerical Example ......... .. 31

6 CONCLUSION ......... . . 36

APPENDIX

A SHORT INTRODUCTION TO THEORY OF SCREWS ... .. .. 37

B SYLVESTER MATRIX ......_._. ... .. 40

REFERENCES ......._._.. ........_._.. 44

BIOGRAPHICAL SK(ETCH ....._._. .. .. 45










LIST OF TABLES

Table page

3-1 Six solutions for Case 1 ......... . 20

4-1 List of operations to obtain Sylvester Matrix for case 2 .. .. .. 23

4-2 Twenty solutions for Case 2 ......... .. 25

5-1 List of operations to obtain Sylvester Matrix for Case 3 ... .. .. 34

5-2 Twenty-four solutions for Case 3 ......... .. 35










LIST OF FIGURES

Figure page

1-1 Biological model of the knee ......... .. 11

1-2 Tensegrity based model of cross-section of knee .. .. .. 11

2-1 Tensegrity mechanism .. ... ... .. 12

:3-1 Four real solutions for Case 1 .. ... ... 20

4-1 Bifurcation diagram for solution of .ri and varying parameter Lol .. .. .. 26

4-2 Eight real solutions for Case 2 .. ... .. 27

5-1 Twenty-four real solutions for Case :3 (cases 1 to 12) ... .. .. .. :32

5-2 Twenty-four real solutions for Case :3 (cases 1:3 to 24) .. .. 3:3










ACKENOWLED GMENTS

I would like to express profound gratitude to my advisor, Prof. Carl Crane, for his

invaluable support, encouragement, supervision and useful so__~-r;-- me.. throughout this

research work. His moral support and continuous guidance enabled me to complete my

work successfully.

I would like to thank Prof. .John Schueller and Prof. Warren Dixon for serving on

my committee. I am also grateful to Prof. .Jay Gopalakrishnan and Dr. .Jahan B ,v ,f

for listening to my queries and answering my questions regarding the research work. I

would like to acknowledge the support of the Department of Energy under grant number

DE-FGO4-86NE37967.

I am especially indebted to my parents, Dr. Om Vikas and Mrs. Pramod K~umari

Sharma, for their love and support ever since my childhood. I also wish to thank my

brother, Pranay, for his constant support and encouragement. I thank my fellow students

at the Center for Intelligent Machines and Robotics. From them, I learned a great deal

and found great friendships. I would also like to thank Nicole, Piyush, Rakesh, Rashi and

Sreenivas for their friendships.









Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

K(INEMATIC ANALYSIS OF A PLANAR TENSEGRITY MECHANISM WITH
PRE-STRESSED SPRINGS

By

Vishesh Vikas

August 2008

C'I .Ir~: Carl Crane
Major: Mechanical Engineering

This thesis presents the equilibrium analysis of a planar tensegrity mechanism. The

device consists of a base and top platform that are connected in parallel by one connector

leg (whose length can he controlled via a prismatic joint) and two spring elements whose

linear spring constants and free lengths are known. The thesis presents three cases: 1) the

spring free lengths are both zero, 2) one of the spring free lengths is zero and the other is

nonzero, and 3) hoth free lengths are nonzero. The purpose of the thesis is to show the

enormous increase in complexity that results front nonzero free lengths. It is shown that

six equilibrium configurations exist for Case 1, twenty equilibrium configurations exist for

Case 2, and no more than sixty two configurations exist for Case 3.









CHAPTER 1
INTRODUCTION

The human musculoskeletal system is often described as combinations of levers and

pulleys. However, at a number of places (particularly the spine) this lever-pulley-fulcrum

model of the musculoskeletal system calculates such extreme amount of forces that will

tear muscles off the bones and shear hones into pieces. This, however, does not happen

in real life and can he explained by the concept of 'tensegrity'. Tensegrity (abbreviation

of 'tensional integrity [1], [2]), is synergy between tension and compression. Tensegrity

structures consist of elements that can resist compression (e.g., struts, hones) and elements

that can resist tension (e.g., ties, muscles). The entire configuration stands by itself

and maintains its form (equilibrium) solely because of the internal arrangement of the

struts and ties ([3],[4]). No pair of struts touch and the end of each strut is connected to

three non-coplanar ties ([5]). 1\ore formal definition of tensegrity is given by Roth and

Whiteley([6]), introducing a third element, the bar, which can withstand both compression

and tension. Tensegrity structures can he broadly classified into two categories, prestressed

and geodesic, where continuous transmission of tensional forces is necessary for shape

stability or single entity of these structures([7]). 'Prestressed tensegrity structures', hold

their joints in position as the result of a pre-existing tensile stress within the structural

network. 'Geodesic tensegrity structures', triangulate their structure members and

orient them along geodesics (minimal paths) to geometrically constrain movement. Our

bodies provide a familiar example of a prestressed tensegrity structure: our hones act

like struts to resist the pull of tensile muscles, tendons and ligaments, and the shape

stability (stiffness) of our bodies varies depending on the tone (pre-stress) in our muscles.

Examples of geodesic tensegrity structures include Fullers geodesic domes, carbon-based

buckminsterfullerenes (buckyballs), and tetrahedral space frames, which are of great

interest in astronautics because they maintain their stability in the absence of gravity

and, hence, without continuous compression. Idea of combining several basic tensegrity









structures to form a more complex structure has been analyzed([8], [9]) and different

methods to do so have also been studied([10]).

There has been a rapid development in static and dynamic analysis of tensegrity

structures in last few decades ([11]). This is due to its benefits over traditional approaches

in several fields such as architecture ([12]), civil engineering, art, geometry and even hi-

ology. Benefits of tensegrity structures are examined by Skelton et al.([13]). Tensegrity

structures display energy efficiency as its elements store energy in form of compression

or tension; as a result of the energy stored in the structure, the overall energy required

to activate these structures will be small([l14). Since compressive members in tensegrity

structures are dl;id..ini large displacements are allowed and it is possible to create deploy-

able structures that can he stored in small volumes. Deploi- .1.1.' antennas and masts are

notable space applications ([15],[16]). K~enner established the relation between the rotation

of the top and bottom ties. Tobie ([3]), presented procedures for the generation of tensile

structures by physical and graphical means. Yin ([5]) obtained K~enner's ([17]) results

using energy considerations and found the equilibrium position for unloaded tensegrity

prisms. Stern ([18]) developed generic design equations to find the lengths of the struts

and elastic ties needed to create a desired geometry for a symmetric case. Knight ([19])

addressed the problem of stability of tensegrity structures for the design of deploi- .1.1.*

antennae. On macro level, tensegrity structures are used to model human musculoskele-

tal system, deploi-,1.1-- antennae, architecture structures, etc.; on cellular level, Donald

Ingher ([7]) proposes Cellular Tensegrity Theory in which the whole cell is modelled as

a prestressed tensegrity structure, although geodesic structures are also found in the cell

at smaller size scales. Stephen Levin ([14]) proposed a truss-tensegrity model of the spine

mechanics. Benefits of tensegrity structures make them interesting for designing mobile

robots. Aldrich ([20]) has built and controlled robots based on tensegrity structures and

Paul et al. ([21]) have built triangular prism hased mobile tensegrity robot.s











Most of the papers in the field of tensegrity assume zero free length of springs. In

real life systems, esp. biological systems, such assumption does not hold true. Following

research shows that this assumption is not trivial, complexities to find solutions increase

tremendously and the number of static equilibrium configurations also increase. Cross-

section modeling of the human knee joint (Figure 1-1, 1-2) is the biological motivation of

the mechanism in the following research. In the following research, a planar pre-stressed

tensegrity structure is examined. The structure consists of three struts connected by two

ties.



,flilsil111 1 mil.I








..I. II .r na .

Il l



Figure 1-1. Biological model of the knee



















Lipansesst tendon modeled
an inertensible ~ee


Figure 1-2. Tensegrity based model of cross-section of knee










CHAPTER 2
PROBLEM STATEMENT AND APPROACH

The mechanism analyzed here is shown in Figure 2-1. The top platform (indicated by

points 4, 5, and 6) is connected to the base platform (indicated by points 1, 2, and 3) by

two spring elements whose free lengths are Lol and LO2 and by a variable length connector

whose length is referred to as L3. Although this does not match the exact definition of

tensegrity, the device is prestressed in the same manner as a tensegrity mechanism. The

exact problem statement is as follows:

Given:

L12 distance between points 1 and 2

p~z, P3y COordinates of point 3 in coordinate system 1

L45 distance between points 4 and 5

p6z, P6y COordinates of point 6 in coordinate system 2

L3 distance between points 1 and 4

kl, Lol spring constant and free length of spring 1

k2, LO2 Spring constant and free length of spring 2

Find:

All static equilibrium configurations








Lox L3 ,








Figure 2-1. Tensegrity mechanism









A solution approach of satisfying force and moment conditions for equilibrium is

considered. It is apparent that since the length L3 is given, the device has two degrees

of freedom. Thus, there are two descriptive parameters that must be selected in order to

define the system. For this an~ lli--- the descriptive parameters are chosen as the angles

71 and y2 Which are respectively the angle between X axis of coordinate system attached

to the base and line defined by points 1 and 4 and angle between X axis of coordinate

system attached to the base and line defined by points 4 and 5 as shown in Figure 2-1.

Other parameters were investigated, but none yielded a less complicated solution than is

presented here.

The co-ordinates of points 1 to 6 are

0 L12 p3,

fPI = 0 fP2 = 0 fP3 = p3w (2-1)

0 0 0

0 L45 p6;,

TP4 = 0 TPs = 0 O 6P = p6y (2-2)

0 0 0

Where the superscripts B, T denote the co-ordinate systems fixed on the reference frames

of the bottom platform and top platforms respectively. It is also known that



BP4 = 3 1 (2-3)



c2 -s2 0
R 8 C (2-4)

0 01









where cs, aS are abbreviations for cos 3, sin 3 (i

calculated as

BPj = BP4 TB TP,


1, 2) respectively. Points 5, 6 may be


.) = 5, 6 .


(2-5)


Calculatingf coordinates of points 5, 6 gives

L3C1 + L45C2

BPs = L3S1 L45S2B

0 B

The Pliicker coordinates of the three lines are


$1 = I Sol i 2 =
Sort


L3C1 + 62C2 P6yS2

L3S1 6m2S + 6yC2






$3 SO3
SO3L


p6





SO2

SO2L


(2-6)


(2-7)


and


BPs- Bp2
Soi =
| Ps BP2
SO2 = IBg-B3

BP4
SO3 =
IBP4|

Forces in the three legs are fl, f2,


BLi
1
BL1
d2
BP4
L3


BP2X BP5
So1L = Bp2 x Sol =

BP3 BP6
SO2L BP3 x SO2 =

SO3L = 0 .


(2-8)

(2-9)

(2-10)


f3 Which may be expressed as


(2-11)

(2-12)

(2-13)

(2-14)


Forces in the springs and connector are wrenches with zero pitch (i.e., pure forces along

the direction of the respective lines). For static equilibrium, the sum of the three wrenches

must be equal to zero.


flix + f2 2 + 3 3 = 0 .


(2-15)


fi = kl(dl Loi)

f2 = k2 2~ LO2)

d~ = | |"Ps -- Bp2 2

d~ = | |"P6 BP3 12









Substitutingf Equations 2-7 to 2-12 into Equation 2-15 gives


ki(1 A )BL1 + k2~( 2 XBL2 3 Bp4

ki(1 Az)(BP2 BP5) + k2~( 2 X)B 3 BP6)


(2-16)

(2-17)


where At = Lol/dl, X2 = LO2 d2. As the problem is planar, vector Equation 2-16 is

equivalent to two scalar equations and vector Equation 2-17 is equivalent to one scalar

equation. Therefore, there are three unknowns (dl, d2, f3) and three equations. One

scalar equation in dr, d2 can be obtained from Equation 2-16 by performing a cross

product operation with BP4 to both sides of the equation to yield


ki(1 Ai)BP4 X BL1 + k2~( 2- XBP4 X BL1 = 0 .


(2-18)


It is desired to solve for y,, y2 from Equations 2-13, 2-14, 2-17 and 2-18. Substituting

Equations 2-1, 2-3 and 2-6 into these equations yields.


ki(1 Az) (c1S2L45 -- S1C2L45 + 1L12)

k2~ 2 X) (C1~as +26 C_ p3y) S1 C296m S~I', -- p3z)

ki(1 A )L12 (S1L3 + 2L45)

k2~ 2 Xa (32 81L3 + 2P6z C_;*, ) -- p3y C1L3 C2P6z S.}' )

d~ + ((2p3y 28296z 2c_; )Si + (2p3, 2c2962 + 2s_; )c1)L3
(pa 2 2 2 ) + (2p62P3y 2p36yf33m 2 + (2p62p3z + 2p6yP3y)C2

d2 L2- L2 + ((L1 2c2L5)C -, 2S1S2L45)L3 + 2c2L45L12 Ls


= (2-19)



= (2-20)



= (2-21)


0 (2-22)


The equations can now be analyzed for three different cases -

1. BOTH FREE LENGTHS ARE ZERO. (i.e., X1 = X2 = 0)

2. ONE FREE LENGTHS IS ZERO, ANOTHER NON-ZERO. (i.e., At = 0, X2 / 0)

3. BOTH FREE LENGTHS ARE NON-ZERO. (i.e., At / 0, X2 / 0)

Equations 2-19 to 2-22 are nonlinear functions of sin yl, cos yl, sin y2 and cOS y2. The

concept of 'tan-half angles', ([22]) converts these four equations into four nonlinear










polynomial equations. It defines


xi = tan i
2


(2-23)


for i = 1, 2


thus ,


1 -X2
ce = -
C"1+ xy


2xe
Si = -
1+ X2'


(2-24)


for i = 1, 2 .


Each of the four cases will be analyzed in the chapters that follow.









CHAPTER 3
BOTH FREE LENGTHS ARE ZERO

3.1 Equilibrium Analysis

Zero free length for both the springs (Lol = LO2 = 0) implies


At = a2 = 0 (3-1)


It is important to observe that Equations 2-19 and 2-20 are decoupled from Equations 2-

22, 2-21 (i.e., terms containing dr, d2 VanIlSh). Substituting Equation 3-1 into Equations

2-19 and 2-20 gives


k_; (cic2 + 182) + (klL45 + k2p62) 82C1 S1C2) + (k2p3z + klL12 81 k2P3yC1 = 0 (3-2)

(kilL3L12 + k~2L3p32 81 + (kilL12L45 + k~2P3yP6y + k~2P32P62 82 k~2L3C1P3y
= 0. (3-3)
+(k293mf6y k293yf6,)C2

Applying 'tan-half angle concept',(Equation 2-24) to Equations 3-2 and 3-3 yields


(Alx~ + A2 2 + A3)X: + (Aqx~ + AgZ2 + A6 X1 + (A7x~ + AgZ2 + A9) = 0 (3-4)

(B1 x + B2 2 3 4, 5 2BX 6 Bg,+B)1 7 8L-x 2 9),+ g = 0 (3-5)


where Ai, Bi(i = 1,2,..., 9) are defined in terms of the given parameters as
Al= k2 3y + 6y) 1= k2 933y6z 32P6y + L3P3y)

A2=-2(k2962 + kilL45) 2=2(kilL12L45 + k~2 93yP6y + 32P62)

A3= k2 33y 6y) 3= k2 932P6y + L I' p3yp62)

A4=2((L45 + L12)kil + (p6z + 32)k~2) 4=2k lL3L12 + 2k~2L3p3z

A = 4 1. F. B = 0

A6=2((L12 L45)kil + (p3z 62)k~2) 6 4

A7=-(p6yp3y)k~2 B7 83

A8=2(klL45 + k2p62) s8 2

A9 9P6y 93y) k2 9 1 -1










Equations :34, :35 can he rewritten as


Prx + P2x 1 ~3

Qlxr + Q2x 1 Q3


(36)

(37)


where


P, = (A4 t+ 2 2~X A3 P2 4AX 5g~ 2 A6 P3 (7X 8 As2 9 ,(8

Q1 = (B1Xr B272 3) 2a 4 5BX 2gX B6) 3 (7X 872, 9 (


We form the Sylvester s 1\atrix(Appendix B) by multiplying Equations :36, :37 with ri

and write


3, 0 xr 0

P2 3 x:r 0
(:310)
Q3 0 :ri 0

&2 Q3 1 0

is zero for common roots of Equations :36, :37 and


Pr P2



&1 2

0 Qi

The determinant of Sylvester matrix

thus


SP, 2~ P3

fZFL 2 P P 0 (:311)
01 &2 Q3 0

0 Qi 02 Q3

Expansion of Equation :311 ( fZFL 72)) yields an eighth degree polynomial in x:1 2*

was found that this eighth degree polynomial could be divided symbolically by the
term (1 +\ ",cr,, ),, without, an rmandr eslting in a,,,l sixth degree, poyoma n ,2 The

coefficients of this polynomial have been obtained symbolically, but are not listed here due

to their length.










Values of xl that correspond to each of the six solutions of x2 can be determined from

observing
X1~~- -112

x o 1 0 P P P3 .(3-12)

X] Qi Q2 3 0

The corresponding value for xl is the 3rd value of the solution vector on the left side of

Equation 3-12. Unique corresponding values for yl and y2 are calculated for each value of

xl and x2 from Equation 2-23


yi = 2 tan- (xi) i = 1, 2 (3-13)


3.2 Numerical Example

The following values were selected for a numerical example

L12 = 10 m

p~z -3 m, p3y =

L45 = 5 m

p6z = -1.1990 m, p6y = -2.2790 m

L3 = 7.56 m

ki = 1.5 N/lm, Lol = 0 m

k2 = 3.7 N/lm, LO2 = 0 m

Coefficients Ai, Bi(i = 1,...9) are evaluated numerically and a sixth degree poly-

nomial in, x2 l~,;, 1S,,,,, obtained, by exadn qain311 and dividing; it, by (1 +2 x ) Si

solutions of yl, y2 arT liSted in Table 3-1. The four real solutions are shown in Figure 3-1.

The two complex solutions are shown to satisfy Equations 3-4 and 3-5.









Table 3-1. Six solutions for Case 1


71 (radians)
1 +0.66861
2 -1116
3 -0.51037
-1.7079i
4 -0.51037
+1.7079i
5 +0.81733
6 a


y2 (radians)
-0.63297
-0.20769
-0.05764
-1.0903i
-0.05764
+1.0903i
+1.88221
+2.54351


i


Figure 3-1. Four real solutions for Case 1









CHAPTER 4
ONE FREE LENGTH IS ZERO

4.1 Equilibrium Analysis

The free length of one spring is zero (Lol = 0) implies


At = Lol/di, X2 = 0 .


(4-1)


It is important to observe that Equations 2-19, 2-20 are coupled only to Equation 2-22

(i.e., the terms containing d2 VanIlSh) and these equations may be written as


((kilL45 + k~2p62) 2C1 S1C2) + X~' C1C2 S1S82

+kiL1281 + k2 93mil P3yC1 1d + kilLoi(L45 81C2 -- C1S2)


0 (4-2)



0 (4-3)


0.(4-4)


CL1281


(L3(ki1L12 + k~2p3z k~2L3P3yC1 81 + k~2 932P6y p3yp62)C2

+(kilL12L45 + k~2 93yf6y + 32P6m 2 1S) kilL12LoiL381 kilL12LoiS2L45
d12 + (2L3L12 2L3C2L45)C1 L 2 +2c2L45L12 2L3S1S2L45 Lsg L


Applying the 'tan-half angle concept' (Equation 2

following equations are obtained


Ald + A2 =

Bld + B2 =

Cld + C2


-24), to Equations 4-5, 4-6 and 4-7, the


(4-5)

(4-6)


where


Dia + D2 2 D3



=F x~ + F2x 2 F3


D4x~ + D5Z2 + D6

SE4x~ + E5Z2 + E6

-F4X 5 2g~ F6


(4-9)

(4-10)









D1 = k2 93y + 6y)X: + 2(k l(L45 + L12) + k~2 96z + 32) 1 k~2 96y + 3y)

D2 = -2(kilL45 + k~2P62)m q~'.i' F + 2(k lL45 + k~2p62

D3 = k~2 93y p6y)(X: 1) 2(k2 9p3z p62) + k l(L12 L45 )1

D4 = -2Lolkl(L45 + L12 X1

Ds = 2k lLoiL45(-1

D6 = 2k lLoi(L45 L12)X 141

El=k2 (3y 96z + L3) P32P6y)X: + 2L3(k L12 + k293m 1l
k2 (3y(L3 p6z P32P6y)
E2 = 2(1 + x )(kilL12L45 + k~2P3yf6y + .I' l's

E3 k2 (3y(L3 p62) + 32P6y)X: + 2L3(klL12 + k~2p32 1
k2 (3y(L3 + 6z) P32P6y)
E4 = -2kilL12LoiL3 1

Es = -2kilL12LoiL45( )

E6 = -2kilL12LoiL3 1 (4-12)

F, = 1 + x~

F2 =

F3 :

F4 = 2(L45 L12)L3(1 x2 )~ L L 2L45L12 +2 L ( 2 2

Fs = -8L3 1L45

F6 = (2L12 2L45)L3(1 x ) (L~ 2L45L12 + Lsg + L~~( 2 ~ 43


It is desired to form a system of equations


SoFLXoFL = 0 (4-14)


where SoFL, XoFL are respectively the square matrix(Sylvester matrix) and vector of

'unknown coefficients. They can be obtained by performing the operations listed in Table









Table 4-1. List of operations to obtain Sylvester Matrix for case 2
Equations # Equations # Unknowns Added Unknowns
{ (4-5), (46) } 3 9(x,2
(4-7) (x x2, 1 d


{(4-5),(4-6)}-d1
{(4-5),(4-6)}-d
(4-7)-dl
{ (4-5),(4-6) }*Z2
(4-7) -x2
{(4-5),(4-6)}-dlZ2
{(4-5),(4-6)}-d 2
(4-7)-dl


S1


4.1 The matrix SoFL and vector XoFL are written as


D3 0 0 Ds

E3 0 0 Es

0 0 FI Fs

D6 0 D1 0

E6 0 E1 0

0 D3D04 0

0 E3 E4 0

F6 F3 0 0

0 0 0 D6

0 0 0 E6

0 0 F2 F6

0 0 D2 0

0 0 E2 0

0 0 Ds 0

0 0 Es 0

00 0 0


D4 D1D2 0

E4 E1E2 0

F4 0 0 F3

0 D4DsD 3

0 E4 EsE3

0 0 0 D6

0 0 0 E6

0 F4 F5 0

DsD02D3 0

Es E2 E3 0

F 0 0 0

0 Ds D6 0

0 Es E6 0

0 00 0

0 00 0

0 Fs F6 0
(4- 5)


0 0 0

0 0 0

0 0 F2

0 0 D2

0 0 E2

0 0 Ds

0 0 Es

0 0 0

D1 0 0

El 0 0

0 FI F3

D4 D1D3

E4 E1 E3

0 D4 D6

0 E4 E6

F4 00


0 0

0 0

0 0

0 0

0 0

D1 D2

El E2

FI F2

0 0

0 0

0 0

0 0

0 0

D2D03

E2 E3

F2 F3


SonL










XoFL = L1[1, x ~ di, dx~ x 2,d, d1, 2 2 .1 2,1 2 2 d1, X2d1, d ]T(4-16)

The determinant of the Sylvester matrix is zero for common roots of Equations 4-5, 4-6,

4-7 and thus

foFL(X1) =| SonL |= 0 (4-17)

This results in a 32 degree polynomial in xl. The solutions for xl can be obtained by

solving this polynomial equation. To calculate corresponding values of x2, dl, let SonL

be the same as SoFL without its first column and last row, SonL be first column of SonL

without its last element and XoFL be same as XoFL without its first row. Thus,



SOFL(16x16) Son(1sxl) Son1xs OFL(16x1)(1x1
x(lxl) x(1xis) XF(si

Thus, the first 15 equations of Equation 4-14 may be written as


SoFLXoFL = -SoFL (4-19)


Each solution for xl is substituted into SoFL, SoFL and XoFL is solved as


XoFL = -SoFt- SoFt (4-20)


Values of dl and x2 Which correspond to a solution of xl are the 6th and 9th elements of

vector XoFt.

4.2 Numerical Example

Values of the given parameters were selected to be the same as in the previous

example (Sec 3.2) with the exception of the free length of spring 1 which is now set to

Lol = 2.3 m. Equations 4-11, 4-12, 4-13 are evaluated and substituted into Equation

4-15. Equation 4-17 is obtained and solved to obtain values of xl. Corresponding values

of x2, d1 arT Obtained from Equation 4-20. Solutions of Equation 4-17 were as follows

*Eight of the solutions of xl were either fi. Thus, Equation 4-17 may be divided
through by (1 + x 4 T"ulting, in a2th degree polynomial.










Table 4-2. Twenty solutions for Case 2


2.5 11l:1.11 0.411872i
2.5 ilI :1.1. 0.411872i
1.833882 0.139340i
1.833882 + 0.139340i
1.674852 + 0.000000i
1.492124 + 0.000000i
0.944817 + 0.000000i


-0.307013 1.456473i
-0.307013 + 1.456473i
-1.464914 0.949033i
-1.464914 + 0.949033i
+72.13693 + 0.000000i
-4.068392 + 0.000000i
+0.519148 + 0.000000i
+0.272806 0.408042i
+0.272806 + 0.408042i
+0.459257 + 0.000000i
+0.835170 + 0.288061i
+0.835170 0.288061i
-0.828087 + 0.306801i
-0.828087 0.306801i
-0.455891 + 0.000000i
+2.406830 + 0.000000i
-0.425974 + 0.000000i
-0.276958 0.470503i
-0.276958 + 0.470503i
+2.885304 + 0.000000i


+26.02618 + 1.476993i.
+26.02618 1.476993i.
-20.35270 1.239320i.
-20.35270 + 1.239320i.
-19.el s : ;+ 0.000000i
+19.64973 + 0.000000i
-7.534905 + 0.000000i
-3.7-111. 2 1.228946i.
-3.7-111. 2 + 1.228946i.
+5.926762 + 0.000000i
-0.516827 + 0.424 190i.:
-0.516827 0.424 190i.:
+0.450188 + 0.304645i.
+0.450188 0.304645i.
-5.417888 + 0.000000i
-16.46027 + 0.000000i
+6.719935 + 0.000000i
+1.780312 0.214965i.
+1.780312 + 0.21 1'll ..
+18.04674 + 0.000000i


-0.928707
-0.928707
-0.766478
-0.172483
-0.172483
+0.169610
+0.169610


- 0.056278i
+ 0.056278i
+ 0.000000i
- 0.153043i
+ 0.153043i
- 0.150949i
+ 0.150949i


+0.711628 + 0.000000i
+0.843106 + 0.000000i
+0.869530 + 0.000000i
+1.002755 0.055558i
+1.002755 + 0.055558i
+1.091412 + 0.000000i


*Four solutions correspond to when points 2, 5 are coincident (i.e., dl = 0). Value of
xl for dr = 0 may be determined from system of equations Equations 4-5, 4-6, 4-5

D4 Ds D6 X 0
E4 Es E6 2 (-
F4 F5 F6i 1 0 O 4
Sdl=


1)


forml(X )


| Sdi=o |


(4-22)

0 (4-23)


S((L2 -2 L +L2 + 2L3L12)X2 + L +L2


Ls, 2L3L12)


Remaining 24th degree polynomial can be divided by [(L2 -2 L L2 + 2L3L12)~
L~ + L 2 Ls, 2L3L12 2 TOSultingr in a 20th degree polynomial.-- TU1

*Remaining 20 solutions satisfy Equations 4-5, 4-6, 4-7. For this particular numerical
example there are 8 real and 12 complex solution sets for xl, x2, 1-

A bifurcation diagram between the solution xl and varying parameter Lol is shown in


Figure 4-1. It is interesting to observe that the four solutions for Lol


LO2 = 0 case


bifurcate as the free length Lol is varied. At Lol


2.3 m, the total number of solutions


















































02 3 4 5 6 7 8 9 10

L,1


Figure 4-1. Bifurcation diagram for solution of .ri and varying parameter Lol


are eight (as numerically calculated), at some value of Lol, the number of solutions

increase to 9 or 10 also. Thus, it is possible to move from one value of .ri to another by

slowly changing the free-length.


Lol1YS Xl


__ir___C__r___~_
_r__r__r___C_

i.-.----------- _______~_________-~~--------------------
~III:I:::::II3I=~~=---;r_:_;:II::rr-
~-~~~~--~~~-~i~------------------~~____:

~~C--_-_--I'Lr:Ir=r:~~=~l~_______1I==


-----~-~---r_~_________

I/ //
_Jk:l~. --

~~r~~r~ /I


__r___rC______________
____C____________1___~__




_rC~_rC
_r___rC__
~~-I-_____~_____~_~~


_~____r--~rr---
-~~~~'-~i-I:~~---L~--c-~_~____
-----r~-~ -~-~c-`--~~------

























li\


Figure 4-2. Eight real solutions for Case 2









CHAPTER 5
BOTH FREE LENGTHS ARE NON-ZERO

5.1 Equilibrium Analysis

Both non-zero free length implies


X1= Lol/di, X2 = LO2 d2 .


(5-1)


It is important to observe that Equations 2-19, 2-20 are coupled to both Equations 2-22,

2-21.

After applying the 'tan-half angle concept'(Equation 2-24), the following equations


are obtained.


(Fix+ 2 2 F3 kd1 (42 r52 2 F6 d2 + ~ 82 2 F9 dld2 = 0


(5-2)


(Gix~ + 4G2 2 G3 d1 + G 2 GgZ2 G6 d2 (G7x2 GgZ2 + G9 did2

(H x 2 \2 + H) (H4x~ H5Z2 H6) = 0


0 (5-3)

(5-4)

(5-5)


(11xc + I2 C2 31 4 526)


where


FI = LOak2 96py 93iy)(1
F2=2LOak2 (16r(x- 1)


F3 = LO2k2 9r3y 96y)(1


- x) 2(pfimi 13r) 1

-2p)6yT1)

- x ) 2(pY3z -6 Y~C11


F4 = -2(L45 + L12)Lo1Jkixt

Fs=2klLoiL45(X-1

F6 = 2(L45 L12)Lo1Jk xi

F- (p6y 93~ 2(x-1 2 [(p3z + 62)k~2 + (L45 + L12)kil] X1


'/' ,A1


Fs = 2(k2962 + kilL45 (


F9 (p3y P6y)k~2(X 1) + 2 [(p3z P62)k~2 + (L12 L45)kil] Xi


(5-6)









GI1 = k2LO2[( 93fy-9y62 L9m1+ 1-x)33

G2' = -2k2LO2[s )()TG 93f+ P3yj~y)
Gr3 = k2LO2[( 93yfm 3fy 2LH3s93m 1 + (1-x)L3P3y]

G4 = -2kilL12LoiL3 1

Gg = -2(x: + 1)kiL45L12Lol

G6 = -2kilL12LoiL3 1

G7 = [2k x L12 + (lJ2p~ 1 \ 131y:1)k2] L~3 3y+ (] 2\3m f_ ly rrk2

GS = %2(x + 1)kilL45L12 + 2(xr + 1)(p3riV62 -t3yf6y)k2
G9s = [2k~~l~l x L12\ + (2p 1 + (31k L3 Z9i3zfay 36)k (5-7)

H1 = (1 + x )

H2 = 0

H3 =( ~

H4 (LI3 +L12 +L45 2(x + 1) 4(L12 + L45)L3

Hs = -8L3X L45

H6 = (L3 + L12- L45 2(x~ + 1) + 4(L12 J-L45)L3 (5-8)

II = (1 + x )


I2 = 01+ ~


Id = [(L3 93r 96m~ 2 (p3y -t 6y 2] + 3y + 62) 1 + 3z +62] L3

Is 4(p)3yfljm P3zP6y L396y)T + 96 jPy 6rZ 1)L3

IB = [(L3 93r 96m2f C13y 96y 2] 2 9y 96y Ir3m -962]L3 (.5-9

It is desired to form a systern of equations


(5-10)


SBFLXBFL = 0









where SBFL, XBFL are TOSpectively the square matrix(Sylvester matrix) and vector of

unknown coefficients. To obtain minimum dimension of SBFL, Equations 5-2, 5-3 are

divided by dld2, 5-4 is divided by d 5-5 is divided by d They are rewritten as


(F~x + F2 2 F3 2ai 4" 52 2g F6 li (7X 8sx 2 F9) = 0 (5-11)


(Gix + G2 2 G3 2i +(Gqx + GgZ2 G6 dli +(G7x + GgZ2 + G9) = 0 (5-12)

(Hl, x + H2 C2 H 13) + (H/ + H5 + H6 i = ~1 0 (5-13)

(Ix +2, I2 2 3 74X 5 2X 6 Idi = 0 (5-14)


where dli = 1/dl, dali ld2. SBFL, XBFL can be obtained by performing the operations

listed in Table 5.1 The determinant of the Sylvester Matrix is zero for common roots of

Equations 5-11, 5-12, 5-13, 5-14 and thus


fBFL(X1) =| SBFL |= 0 (5-15)


This results in a 104 degree polynomial in xl. The solutions for xl can be obtained by

solving this polynomial equation. To calculate corresponding values of xa2 1l 2, let SBFL

be the same as SBFL Without its first column and last row, SBFL be first column of SBFL

without its last element and XBFL be same as XBFL Without its first element(which is 1).


SBL(2x2) SBFL (51x1) SBFL(51x51) XBL1x)(1x1) (-6
x(lxl) x(1xst) XF(11

Thus, the first 51 equations of Equation 5-10 may be written as


SBFLXBFL = -SBFL (5-17)


Each solution for xl is substituted into SBFL, SBFL and XBFL iS SOlVed as


BFL BF-1 BFL(5-18)


dl, d2, 2a are elements of vector XBFL










5.2 Numerical Example

Values of the given parameters were selected to be the same as in the previous

example (Sec 3.2) with the exception of the free lengths of spring 1 and 2 which are

now set to Lol = 5.1 m, LO2 = 6.6309 m. Equations 5-6, 5-7, 5-8, 5-9 are calculated

numerically. Next, the Sylvester Matrix (SBFL) WaS obtained by operations explained in

Section (5.1). Finally, Equation 5-15 is solved for xl. Observations for solutions of xl were

Circular points at infinity 26 of the solutions were equal to fi. It must be the case
that the 104 degree polynomial can be divided by (1 + xf )13. It 1S 1100 Surprising as
H1, H3, 1I, 3~ are equal to (1 + x ).

Complex Solutions 38 of the remaining 78 solutions were complex.

Real, 'extraneous Solutions 16 of the solutions were real but did not satisfy
Equations 5-2, 5-3, 5-4, 5-5.

Real, 'relevant Solutions 24 of the solutions were real and satisfied Equations 5-2,
5-3, 5-4, 5-5. For two of these solutions (Case 3 and Case 6) fl, f2 arT ZeoO.

















j/


(a) Case 1










(d) Case 4


(b) Case 2


(c) Case 3 fl = f~ = ()










(f) Case fi ft = f2 = )


(e) Case 5


(g) Case 7 (h) Case 8 (i) Case 9










(j) Case 1() (k) Case 11 (1) Case 12

Figure 5-1. Twenty-four real solutions for Case 3 (cases 1 to 12)





(a) Case 13


(b) Case 14


(c) Case 15


(d) Case 16


(e) C'ase 17


(f) C'ase 18


(g) Case 19


(h) Case 20


(i) Case 21











(1) Case 24


(j) Case 22


(k) Case 23


Figure 5-2. Twenty-four real solutions for Case 3 (cases 13 to 24)












Table 5-1. List of operations to obtain Sylvester Matrix for Case 3


Equations
{ (5-11), (5-12) }
(5-13)
(5-14)


{(5-11),(5-12)}-du
{(5-11),(5-12)}-di
{(5-11),(5-12)}- di d~i
(5-13)-d~i
(5-14)-dii
{(5-11),(5-12)}-d
(5-13)-dli
{(5-11),(5-12)}-d
(5-14)-dli


(5-13)-d i
(5-14)-di
(5-13)-di d~i
(5-14)-di dai
{(5-11),(5-12)}-x2
(5-13)xZ2
(5-14)-x2
{(5-11),(5-12)}-d~i 2
{(5-11),(5-12)}-dlid2i 2
(5-13)-d~i 2
(5-14)-diix2
{(5-1),(-1)}.1a
(5-13)dlil2
{(5-11),(5-12)} .1 2iX

(5-14)-dlizx2


(5-13)-dlid2i 2
(5-14)-dlid2i 2


# Equations
4




8

12


15

18

26






52


# Unknowns
15




18

24


27

30

39






52


Added Unknowns

(x x2,)
(x x2 ldi
(x x2 2di
(x x2 ld i
(x x2, i dia



(x x2 i 2i~


(x x2 ld i

(x x2, i dia

(x~ x2 did~i


lii

d2i1

ai
dli 2i

di 2


2ii






















Table 5-2. Twenty-four solutions for Case :3


1
-7. 1517:3
+0.27141
+5.10000
t2.751:37
t12.882:3
t5.10000
-8.34619
t10.40:30
+9.741:32
-8.84:36:3
-9.91765
+20.12:31
-20.5096
+20.0955
-20.790:3
+11.2958
+4.80076
+4.89600
-7. 26801
+17.6764
+15.7880
-19.3426
+15.3028
-9.5678:3


+14.4690
+8.44826

t5.59:366
t10.32:32

t0.16126
t1.31517
+1.8:3447
+1.:3626:3
+2.90077
-1.62:330
-1.25716
-1.2:32634
-0.50454
+5.5:3768
+17.7501
-17. 7508
-17.5157
-12.25:30
+14.0808
-11.5960
+14.:338:3
+16.6180


.1 1
+0.06791
+0.24086
+0.37697
t0.46257
t0.48104
t0.49871
t1.08109
t1.17125
+1.24786
+1.24970



+1.91068
t2.01111
t2.1:3470
t2.462:32
-0.64549
-0.65507
-0.92267
-1.02457
-1.34644
-1.39506
-1.42815
-1.46480


+0.47666
-0.41749
-1.16995
-0.50:356
+0.81960
-0.09772
-0.49:30:3
-0.79791
-0.02641
-0.2:30:39
-0.24201
-:31.1760
+0.38270
+0.85549
+2.97004
-0.17160
+0.47906
+0.47724
+0.48824
-2.77:350
+2.15516

-0.58529
+0.25896










CHAPTER 6
CONCLUSION

The purpose of this thesis was to show the significant increase in complexity that re-

sults when springs with nonzero free lengths are incorporated in pre-stressed mechanisms.

It has been shown that six equilibrium configurations exist for the case of a simple planar

niechanisni with two springs where both springs have zero free lengths. Twenty equilib-

riunt configurations were found for the case where one of the springs had a nonzero free

length. For the case where both springs had nonzero free lengths, seventy eight solutions

sets were obtained once the circular points at infinity were disregarded. Sixteen of these

seventy eight, did not satisfy the equation set which means that the presented elimination

technique introduced extraneous roots. The remaining sixty two solutions satisfied the

equations, but two solutions in the numerical example resulted in cases where the lines

along the three legs did not intersect which is puzzling. Additional work needs to be done

before this simple case is fully understood. The approach presented here does however

bound the dimension of the solution. The goal is to extend this work to spatial devices in

order to develop a thorough understanding of the nature of these pre-stressed mechanisms.

The work can also be easily extended to study the human niusculoskeletal system and

microlevel study of cellular hardware using the cellular tensegrity theory.










APPENDIX A
SHORT INTRODUCTION TO THEORY OF SCREWS

Screw theory was developed by Sir Robert Stawell Ball in 1876, for application in

kinematics and statics of mechanisms (rigid body mechanics). It is a way to express

displacements, velocities, forces and torques in three dimensional space, combining both

rotational and translational parts.

The Theory of Screws is founded upon two celebrated theorems [23]. One relates to

the displacement of a rigid body. The other relates to forces which act on a rigid body.

1. REDUCTION OF THE DISPLACEMENT OF A RIGID BODY TO ITS SIMPLEST FORM.
Fundamental theorem discovered by ChI I-1. -; states
Any given displacement of a rigid body can he effected hv a rotation about
an axis combined with a translation parallel to that axis.

2. REDUCTION OF OF A SYSTEM OF FORCES APPLIED TO A RIGID BODY TO ITS
SIMPLEST FORM. Fundamental theorem discovered by Poinsot states
A force, and a couple in a plane perpendicular to the force, constitute an
adequate representation of any system of forces applied to a rigid body.

Picker coordinates were introduced by Julius Plicker in the 19th century as a way to

assign six homogenous coordinates to each line in projective 3-space. In Screw Theory,

they are used to represent the coordinates of screws, twists and wrenches.










Defining some basic terms used in Screw Theory


PITCH OF SCREW. Rectilinear distance through which the nut is translated parallel
to axis of the screw, while the nut is rotated through the angular unit of circular
measure. Pitch is thus a linear magnitude

SCREW. A straight line with which a definite linear magnitude termed the pitch
is associated. In rigid body dynamics, velocities of a rigid body and the forces and
torques acting upon it can he represented hv the concept of a screw.

TwlsT. A screw representing the velocity of a body. A body is said to receive a
twist when it is rotated uniformly about the screw, while it is translated parallel to
the screw, through a distance equal to the product of the pitch and circular measure
of angle of rotation.

WRENCH. A screw representing forces and torques on a body. It denotes a force
and couple in a plane perpendicular to the force. One way to conceptualize this is to
consider someone who is fastening two wooden boards together with a metal screw.
The person turns the screw (applies a torque), which then experiences a net force
along its axis of rotation.

A straight line can he defined by two points. Assuming two points(1, 2) with point

vectors rl, r2 the equation of an arbitrary point lying on the line made by points 1, 2 can

he written as

(r2 rl)
S = (A-1)
|r2 rll
(r rl) x S = 0 (A-2)

Sr xS =r x S (A-3)


Picker coordinates of the line are {S: SOL} and they satisfy the following constraints


|S| = 1, S SOL = 0 (A-4)


It should be noted that dimensions of S and SOL are different. Also, only four algebraic

quantities are required to define a line due to the two constraints


|S| = 1, S SOL = 0 (A-5)









The representation of a screw is


SSOL + hS A6

Five quantities are required to specify a screw, of these 4 are required to specify a line.

The fifth one in the pitch of the screw, b.

A twist is represented as 8 $1. A twist requires six algebraic quantities for its

complete specification, of these five are required for complete specification of a screw. The

sixth quantity, the amplitude of twist (0) expresses the angle of rotation. The distance of

translation is the product of amplitude of twist and pitch of the screw. If pitch is zero,

the twist reduces to pure rotation around the screw $. If pitch is infinite, then finite twist

is not possible except the amplitude he zero, in which case the twist reduces to pure

translation parallel to the screw $.

A wrench is represented as f $1. A wrench requires six algebraic quantities for its

complete specification, of these five are required for complete specification of a screw. The

sixth quantity, the intensity of wrench ( f) expresses the magnitude of force. The moment

of couple is the product of intensity of wrench and pitch of the screw. If pitch is zero, the

wrench reduces to pure force along the screw $. If pitch is infinite the wrench reduces to

couple in a plane perpendicular to the screw $.










APPENDIX B
SYLVESTER MATRIX

In mathematics, a Sylvester matrix (named after English Mathematician James

Joseph Sylvester) is a matrix associated to two polynomials that gives some information

about those polynomials. If two polynomials have a common factor, then the determinant

of the associated Sylvester Matrix is equal to zero.

Given polynomials

p(x) = axnx+ anx- ...ax+a (B-1)


q(x) = bmxm + bm-ixm-l... blx + bo (B-2)


of degrees n and m and roots asi, i = 1, 2, .. n, pi, i = 1, 2, .. m respectively. The

resultant([24]) is defined by



i= 1 j= 1

This is also given by the determinant of the corresponding Sylvester matrix. It can be

observed that for the resultant to be zero, the determinant of the Sylvester matrix should

vanish.

To construct the Sylvester matrix for the system p(x) = 0, q(x) = 0, equations of

the form Zkp(x) = 0 and Zkg(x) = 0 may be added to the system. The enlarged system

will have exactly the same solutions as the original system of two equations. Consider the









system of equations


p(x) = 0

Xp(X) = 0


x(m-l)p(x) = 0, (B-4)

q (x) = 0


x("- )q(x) = 0

The system may be written as a matrix equation

a, a _i .. O 0 x (n+m-1) 0



0 0 -- ai ao x(m-l) 0
(B-5)
bm bm-1 (m- 2) 0



0 0 --- --- bi bo 1 0



The Sylvester matrix(S,,,) associated with polynomials p(x) and q(x) is a square matrix of

dimension (n + m) x (n + m). The determinant of the Sylvester matrix will vanish when

p(x) and q(x) have a common root. The converse is also true. In order for there to be a

common root for Eqns (B-1) and (B-2) it is necessary that


det(S,,,) = 0 (B-6)










The concept of Sylvester Matrix can be extended to more than 2 equations. More

importantly, it can be extended to more than one variable. Given a set of a polynomial

equations in m variables (pl(xl, xm), p,(xl, xm), it is possible to construct

Sylvester Matrix of p dimension by multiplying equations by combinations of xl, -, xm e.g.,

xl1 2 91 1, sm). There is no definite algorithm to construct the Sylvester Matrix, the

process solely depends on the nature of the polynomial equations. The Sylvester Matrix

with the minimum dimension yields a non-zero determinant in the embedded variable.

Let St (xi) is the minimum dimension Sylvester Matrix for the given set of a polynomial

equations, then, for any Sylvester Matrix Sy (xi) with a greater dimension than that of

St (xi), determinant of the Sylvester Matrix vanishes and does not give any information

about the embedded variable. So, the Sylvester Matrix is unique by its dimension. More

precisely, the determinant of the Sylvester Matrix is unique. To construct this minimum

dimension Sylvester Matrix, it may be required to perform tricks on the set of given

equations and in the process, change the nature of the polynomial. As the theory for

Sylvester Matrix for multivariable, multi-polynomial-equation system is not developed,

there may be introduction of 'extraneous solutions', that do not satisfy the set of given

equations .









REFERENCES


[1] Fuller R. S to *i,. 1.. The Geometry of Ti,.: 1.,:I MacMillan Publishing Co., Inc.,
New York, 1975.

[2] Edmondson A. A Fuller Ex~lphonetion: The S to *i,.1..i~ Geometry of R. Buckminster
Fuller. Birkhauser, Boston, 1987.

[:3] Tobie R.S. A report on an inquiry into the existence, formation and representation of
tensile structures. Master of industrial design thesis, Pratt Institute, New York, 1976.

[4] Pugh A. An Introduction to T. 0 i ;; University of California Press, 1976.

[5] Duffy J., Yin J. and Crane C. An analysis for the design of self-deploi- .1.1.' tensegrity
and reinforced tensegrity prisms with elastic ties. International Jourmal of Robotics
and Automation. Special I~ssue on C'omplicence and C'omplicent Alechanism~s, 17, 2002.

[6] Roth B. and Whiteley W. Tensegrity frameworks. In American Mathematical Society,
editor, Transactions of the American M~athematical S .. .:. It; page 419446, 1981.

[7] Ingher D. http://www.childrenshospital.org/research/nhrtnert~tl Havard
Medical School.

[8] Hanaor A. Aspects of design of double 1.,-< c tensegrity domes. Journal of Sp~ace
Structures, 7(2):101-11:3, 1992.

[9] Hanaor A. Geometrically rigid double-] n,-< c tensegrity grids. Journal of Sp~ace
Structures, 9(4):227-2:38, 1994.

[10] Motro R. Tensegrity systems: the state of the art. Journal of Sp~ace Structures, 7(2):
75-83, 1992.

[11] Juan, S.H. and Mirats Tur, J.M. Tensegrity frameworks: Static analysis review.
Alechanista and Iafechine The ..<;; 2007. in press.

[12] Fu F. Structural behavior and design methods of tensegrity domes. Journal of
C'onstructional Steel Research, 61(1):25-35, 2005.

[1:3] Helton J., Adhikari R., Pinaud J., Skelton, R. and C'I I.. W. An introduction to the
mechanics of tensegrity structures. In IEEE, editor, Proceedings of the 40th IEEE
conference on Decision and control, page 42544258, 2001.

[14] S. Levin. The tensegrity-truss as a model for spine mechanics: Biotensegrity. Journal
of Alechanic~s in M~edicine and B..~~I J..;,i 2(:3&4)::375-388.

[15] Furuya H. Concept of deploi- .1.1., tensegrity structures in space applications. Journal
of Sp~ace Structures, 7(2):14:3151, 1992.










[16] Tibert A. Deplo;,rlal.1, T 00 ,li;l // Structures for Space Applications. PhD thesis, Royal
Institute of Technology, 2003. PhD Thesis.

[17] K~enner H. Geodesic Iabth and How to Use It. University of California Press, Berkeley
and Los Angeles, CA, 1976.

[18] Stern I.P. Development of design equations for self-deploi- ll-lM n-strut tensegrity
systems. Alaster's thesis, University of Florida, Gainesville, FL, 1999.

[19] K~night B.F. D. ~1 pl.;;ald.- Antenna Kinemartic~s using T i,.Uti~ Structure Design. PhD
thesis, University of Florida, Gainesville, FL, 2000.

[20] Aldrich J. Control So;.//;, .: for a C'lasms of Light and Agile Robotic T --i,;./ /l~
Structures. PhD thesis, University of California, 2004. PhD Thesis.

[21] Roberts J., Lipson H., Paul C. and F. Cuevas. Gait production in a tensegrity based
robot. In Proceedings of the 2005 International C'onference on Advanced Robotics,
2005.

[22] Crane C. and Duffy J. Kinemartic Aiel;,ims of Robot Iaftnipulators. Cambridge
University Press, March 1998.

[23] Ball R.S. A Treatise on the Theory of Screws. Cambridge University Press, 1998.

[24] Weisstein E. Resultant. From MathWorld-A Wolfram Web Resource.
http: //mathworld.wolfram. com/Resultant .html.

[25] Rao A.V. D;,n. : of Particles and Rigid Bodies: A S;,;l-/. mal.. Approach. Cam-
bridge University Press, 2nd edition, 2006.

[26] Vikas V., B~i-,t J., Crane C. and R. Roberts. K~inematic analysis of a planar
tensegrity mechanism with pre-stressed springs. Advances in Robot Kinemartic~s, 2008.









BIOGRAPHICAL SKETCH

Vishesh Vikas was born on the 31st of May, 1983 in New Delhi, India. He attended

his high school at Delhi Public School RKE Purant, Delhi. He relieved his Bachelor in

Technology in Mechanical Engineering from Indian Institute of Technology, Guwahati in

May of 2005. After that, he worked at MAIA, INRIA Lorraine(LORIA), France. In 2007,

he joined the Center for Intelligent Machines and Robotics(CIMAR) at the University of

Florida, completing his Masters of Science degree in Mechanical Engineering in August of

2008. Upon completion of his MS, Vishesh will pursue PhD in Department of Aerospace

and Mechanical Engineering at University of Florida.





PAGE 1

1

PAGE 2

2

PAGE 4

page LISTOFTABLES ..................................... 5 LISTOFFIGURES .................................... 6 ACKNOWLEDGMENTS ................................. 7 ABSTRACT ........................................ 8 CHAPTER 1INTRODUCTION .................................. 9 2PROBLEMSTATEMENTANDAPPROACH ................... 12 3BOTHFREELENGTHSAREZERO ....................... 17 3.1EquilibriumAnalysis .............................. 17 3.2NumericalExample ............................... 19 4ONEFREELENGTHISZERO .......................... 21 4.1EquilibriumAnalysis .............................. 21 4.2NumericalExample ............................... 24 5BOTHFREELENGTHSARENON-ZERO .................... 28 5.1EquilibriumAnalysis .............................. 28 5.2NumericalExample ............................... 31 6CONCLUSION .................................... 36 APPENDIX ASHORTINTRODUCTIONTOTHEORYOFSCREWS ............. 37 BSYLVESTERMATRIX ............................... 40 REFERENCES ....................................... 44 BIOGRAPHICALSKETCH ................................ 45 4

PAGE 5

Table page 3-1SixsolutionsforCase1 ................................ 20 4-1ListofoperationstoobtainSylvesterMatrixforcase2 .............. 23 4-2TwentysolutionsforCase2 ............................. 25 5-1ListofoperationstoobtainSylvesterMatrixforCase3 .............. 34 5-2Twenty-foursolutionsforCase3 .......................... 35 5

PAGE 6

Figure page 1-1Biologicalmodeloftheknee ............................. 11 1-2Tensegritybasedmodelofcross-sectionofknee .................. 11 2-1Tensegritymechanism ................................ 12 3-1FourrealsolutionsforCase1 ............................ 20 4-1Bifurcationdiagramforsolutionofx1andvaryingparameterL01 26 4-2EightrealsolutionsforCase2 ............................ 27 5-1Twenty-fourrealsolutionsforCase3(cases1to12) ................ 32 5-2Twenty-fourrealsolutionsforCase3(cases13to24) ............... 33 6

PAGE 7

Iwouldliketoexpressprofoundgratitudetomyadvisor,Prof.CarlCrane,forhisinvaluablesupport,encouragement,supervisionandusefulsuggestionsthroughoutthisresearchwork.Hismoralsupportandcontinuousguidanceenabledmetocompletemyworksuccessfully.IwouldliketothankProf.JohnSchuellerandProf.WarrenDixonforservingonmycommittee.IamalsogratefultoProf.JayGopalakrishnanandDr.JahanBayatforlisteningtomyqueriesandansweringmyquestionsregardingtheresearchwork.IwouldliketoacknowledgethesupportoftheDepartmentofEnergyundergrantnumberDE-FG04-86NE37967.Iamespeciallyindebtedtomyparents,Dr.OmVikasandMrs.PramodKumariSharma,fortheirloveandsupporteversincemychildhood.Ialsowishtothankmybrother,Pranav,forhisconstantsupportandencouragement.IthankmyfellowstudentsattheCenterforIntelligentMachinesandRobotics.Fromthem,Ilearnedagreatdealandfoundgreatfriendships.IwouldalsoliketothankNicole,Piyush,Rakesh,RashiandSreenivasfortheirfriendships. 7

PAGE 8

8

PAGE 9

1 ],[ 2 ]),issynergybetweentensionandcompression.Tensegritystructuresconsistofelementsthatcanresistcompression(e.g.,struts,bones)andelementsthatcanresisttension(e.g.,ties,muscles).Theentirecongurationstandsbyitselfandmaintainsitsform(equilibrium)solelybecauseoftheinternalarrangementofthestrutsandties([ 3 ],[ 4 ]).Nopairofstrutstouchandtheendofeachstrutisconnectedtothreenon-coplanarties([ 5 ]).MoreformaldenitionoftensegrityisgivenbyRothandWhiteley([ 6 ]),introducingathirdelement,thebar,whichcanwithstandbothcompressionandtension.Tensegritystructurescanbebroadlyclassiedintotwocategories,prestressedandgeodesic,wherecontinuoustransmissionoftensionalforcesisnecessaryforshapestabilityorsingleentityofthesestructures([ 7 ]).`Prestressedtensegritystructures',holdtheirjointsinpositionastheresultofapre-existingtensilestresswithinthestructuralnetwork.`Geodesictensegritystructures',triangulatetheirstructuremembersandorientthemalonggeodesics(minimalpaths)togeometricallyconstrainmovement.Ourbodiesprovideafamiliarexampleofaprestressedtensegritystructure:ourbonesactlikestrutstoresistthepulloftensilemuscles,tendonsandligaments,andtheshapestability(stiness)ofourbodiesvariesdependingonthetone(pre-stress)inourmuscles.ExamplesofgeodesictensegritystructuresincludeFullersgeodesicdomes,carbon-basedbuckminsterfullerenes(buckyballs),andtetrahedralspaceframes,whichareofgreatinterestinastronauticsbecausetheymaintaintheirstabilityintheabsenceofgravityand,hence,withoutcontinuouscompression.Ideaofcombiningseveralbasictensegrity 9

PAGE 10

8 ],[ 9 ])anddierentmethodstodosohavealsobeenstudied([ 10 ]).Therehasbeenarapiddevelopmentinstaticanddynamicanalysisoftensegritystructuresinlastfewdecades([ 11 ]).Thisisduetoitsbenetsovertraditionalapproachesinseveraleldssuchasarchitecture([ 12 ]),civilengineering,art,geometryandevenbi-ology.BenetsoftensegritystructuresareexaminedbySkeltonetal.([ 13 ]).Tensegritystructuresdisplayenergyeciencyasitselementsstoreenergyinformofcompressionortension;asaresultoftheenergystoredinthestructure,theoverallenergyrequiredtoactivatethesestructureswillbesmall([ 14 ]).Sincecompressivemembersintensegritystructuresaredisjoint,largedisplacementsareallowedanditispossibletocreatedeploy-ablestructuresthatcanbestoredinsmallvolumes.Deployableantennasandmastsarenotablespaceapplications([ 15 ],[ 16 ]).Kennerestablishedtherelationbetweentherotationofthetopandbottomties.Tobie([ 3 ]),presentedproceduresforthegenerationoftensilestructuresbyphysicalandgraphicalmeans.Yin([ 5 ])obtainedKenner's([ 17 ])resultsusingenergyconsiderationsandfoundtheequilibriumpositionforunloadedtensegrityprisms.Stern([ 18 ])developedgenericdesignequationstondthelengthsofthestrutsandelastictiesneededtocreateadesiredgeometryforasymmetriccase.Knight([ 19 ])addressedtheproblemofstabilityoftensegritystructuresforthedesignofdeployableantennae.Onmacrolevel,tensegritystructuresareusedtomodelhumanmusculoskele-talsystem,deployableantennae,architecturestructures,etc.;oncellularlevel,DonaldIngber([ 7 ])proposesCellularTensegrityTheoryinwhichthewholecellismodelledasaprestressedtensegritystructure,althoughgeodesicstructuresarealsofoundinthecellatsmallersizescales.StephenLevin([ 14 ])proposedatruss-tensegritymodelofthespinemechanics.Benetsoftensegritystructuresmaketheminterestingfordesigningmobilerobots.Aldrich([ 20 ])hasbuiltandcontrolledrobotsbasedontensegritystructuresandPauletal.([ 21 ])havebuilttriangularprismbasedmobiletensegrityrobot.s 10

PAGE 11

1-1 1-2 )isthebiologicalmotivationofthemechanisminthefollowingresearch.Inthefollowingresearch,aplanarpre-stressedtensegritystructureisexamined.Thestructureconsistsofthreestrutsconnectedbytwoties. Figure1-1. Biologicalmodeloftheknee Figure1-2. Tensegritybasedmodelofcross-sectionofknee 11

PAGE 12

2-1 .Thetopplatform(indicatedbypoints4,5,and6)isconnectedtothebaseplatform(indicatedbypoints1,2,and3)bytwospringelementswhosefreelengthsareL01andL02andbyavariablelengthconnectorwhoselengthisreferredtoasL3.Althoughthisdoesnotmatchtheexactdenitionoftensegrity,thedeviceisprestressedinthesamemannerasatensegritymechanism.Theexactproblemstatementisasfollows: Given: Find:Allstaticequilibriumcongurations Figure2-1. Tensegritymechanism 12

PAGE 13

2-1 .Otherparameterswereinvestigated,butnoneyieldedalesscomplicatedsolutionthanispresentedhere.Theco-ordinatesofpoints1to6are WherethesuperscriptsB;Tdenotetheco-ordinatesystemsxedonthereferenceframesofthebottomplatformandtopplatformsrespectively.Itisalsoknownthat 13

PAGE 14

$1=264S01S01L375;$2=264S02S02L375;$3=264S03S03L375(2{7)and Forcesinthethreelegsaref1;f2;f3whichmaybeexpressedas (2{11) (2{12) Forcesinthespringsandconnectorarewrencheswithzeropitch(i.e.,pureforcesalongthedirectionoftherespectivelines).Forstaticequilibrium,thesumofthethreewrenchesmustbeequaltozero. 14

PAGE 15

2{7 to 2{12 intoEquation 2{15 gives (2{16) (2{17) where1=L01=d1;2=L02=d2.Astheproblemisplanar,vectorEquation 2{16 isequivalenttotwoscalarequationsandvectorEquation 2{17 isequivalenttoonescalarequation.Therefore,therearethreeunknowns(d1;d2;f3)andthreeequations.Onescalarequationind1;d2canbeobtainedfromEquation 2{16 byperformingacrossproductoperationwithBP4tobothsidesoftheequationtoyield 2{13 2{14 2{17 and 2{18 .SubstitutingEquations 2{1 2{3 and 2{6 intotheseequationsyields. (2{19) (2{20) (2{21) Theequationscannowbeanalyzedforthreedierentcases1. 2. 3. 2{19 to 2{22 arenonlinearfunctionsofsin1;cos1;sin2andcos2.Theconceptof`tan-halfangles',([ 22 ])convertsthesefourequationsintofournonlinear 15

PAGE 16

16

PAGE 17

2{19 and 2{20 aredecoupledfromEquations 2{22 2{21 (i.e.,termscontainingd1;d2vanish).SubstitutingEquation 3{1 intoEquations 2{19 and 2{20 gives (3{2) (k1L3L12+k2L3p3x)s1+(k1L12L45+k2p3yp6y+k2p3xp6x)s2k2L3c1p3y+(k2p3xp6yk2p3yp6x)c2=0: Applying`tan-halfangleconcept',(Equation 2{24 )toEquations 3{2 and 3{3 yields (A1x22+A2x2+A3)x21+(A4x22+A5x2+A6)x1+(A7x22+A8x2+A9)=0 (3{4) (B1x22+B2x2+B3)x21+(B4x22+B5x2+B6)x1+(B7x22+B8x2+B9)=0 (3{5) whereAi;Bi(i=1;2;:::;9)aredenedintermsofthegivenparametersas

PAGE 18

3{4 3{5 canberewrittenas (3{6) (3{7) where (3{8) WeformtheSylvester'sMatrix(Appendix B )bymultiplyingEquations 3{6 3{7 withx1andwrite 3{6 3{7 andthus 3{11 (fZFL(x2))yieldsaneighthdegreepolynomialinx2.Itwasfoundthatthiseighthdegreepolynomialcouldbedividedsymbolicallybytheterm(1+x22)withoutanyremainderresultinginasixthdegreepolynomialinx2.Thecoecientsofthispolynomialhavebeenobtainedsymbolically,butarenotlistedhereduetotheirlength. 18

PAGE 19

3{12 .Uniquecorrespondingvaluesfor1and2arecalculatedforeachvalueofx1andx2fromEquation 2{23 p3x=3m;p3y=7m L45=5m p6x=1:1990m;p6y=2:2790m L3=7:56m k1=1:5N=m;L01=0m k2=3:7N=m;L02=0mCoecientsAi;Bi(i=1;:::9)areevaluatednumericallyandasixthdegreepoly-nomialinx2isobtainedbyexpandingEquation 3{11 anddividingitby(1+x22).Sixsolutionsof1;2arelistedinTable 3-1 .ThefourrealsolutionsareshowninFigure 3-1 .ThetwocomplexsolutionsareshowntosatisfyEquations 3{4 and 3{5 19

PAGE 20

SixsolutionsforCase1 1+0:668610:6329721:161660:2076930:510370:057641:7079i1:0903i40:510370:05764+1:7079i+1:0903i5+0:81733+1:8822161:57259+2:54351 Figure3-1. FourrealsolutionsforCase1 20

PAGE 21

2{19 2{20 arecoupledonlytoEquation 2{22 (i.e.,thetermscontainingd2vanish)andtheseequationsmaybewrittenas ((k1L45+k2p6x)(s2c1s1c2)+k2p6y(c1c2+s1s2)+k1L12s1+k2(p3xs1p3yc1))d1+k1L01(L45(s1c2c1s2)L12s1)=0 (4{2) (L3(k1L12+k2p3xk2L3p3yc1)s1+k2(p3xp6yp3yp6x)c2+(k1L12L45+k2(p3yp6y+p3xp6x))s2)d1k1L12L01L3s1k1L12L01s2L45=0 (4{3) Applyingthe`tan-halfangleconcept'(Equation 2{24 ),toEquations 4{5 4{6 and 4{7 ,thefollowingequationsareobtained (4{5) (4{6) (4{7) where 21

PAGE 22

Itisdesiredtoformasystemofequations 22

PAGE 23

ListofoperationstoobtainSylvesterMatrixforcase2 Equations#Equations#UnknownsAddedUnknowns 4{5 ),( 4{6 )g39(x22;x2;1)( 4{7 )(x22;x2;1)d1(x22;x2;1)d21f( 4{5 ),( 4{6 )gd159f( 4{5 ),( 4{6 )gd21812(x22;x2;1)d31( 4{7 )d1 4{5 ),( 4{6 )gx21616x32( 4{7 )x2x32d1f( 4{5 ),( 4{6 )gd1x2x32d21f( 4{5 ),( 4{6 )gd21x2x32d31( 4{7 )d1 ThematrixSOFLandvectorXOFLarewrittenas 23

PAGE 24

4{5 4{6 4{7 andthus 4{14 maybewrittenas 3.2 )withtheexceptionofthefreelengthofspring1whichisnowsettoL01=2:3m.Equations 4{11 4{12 4{13 areevaluatedandsubstitutedintoEquation 4{15 .Equation 4{17 isobtainedandsolvedtoobtainvaluesofx1.Correspondingvaluesofx2;d1areobtainedfromEquation 4{20 .SolutionsofEquation 4{17 wereasfollows 4{17 maybedividedthroughby(1+x21)4resultingina24thdegreepolynomial. 24

PAGE 25

TwentysolutionsforCase2 4{5 4{6 4{5 {z }Sd1=024x22x2135=2400035(4{21) 4{5 4{6 4{7 .Forthisparticularnumericalexamplethereare8realand12complexsolutionsetsforx1;x2;d1.Abifurcationdiagrambetweenthesolutionx1andvaryingparameterL01isshowninFigure 4-1 .ItisinterestingtoobservethatthefoursolutionsforL01=L02=0casebifurcateasthefreelengthL01isvaried.AtL01=2:3m,thetotalnumberofsolutions 25

PAGE 26

Bifurcationdiagramforsolutionofx1andvaryingparameterL01 26

PAGE 27

EightrealsolutionsforCase2 27

PAGE 28

2{19 2{20 arecoupledtobothEquations 2{22 2{21 .Afterapplyingthe`tan-halfangleconcept'(Equation 2{24 ),thefollowingequationsareobtained. (F1x22+F2x2+F3)d1+(F4x22+F5x2+F6)d2+(F7x22+F8x2+F9)d1d2=0(5{2) (G1x22+G2x2+G3)d1+(G4x22+G5x2+G6)d2+(G7x22+G8x2+G9)d1d2=0(5{3) (H1x22+H2x2+H3)d21+(H4x22+H5x2+H6)=0(5{4) (I1x22+I2x2+I3)d22+(I4x22+I5x2+I6)=0(5{5)where 28

PAGE 29

Itisdesiredtoformasystemofequations 29

PAGE 30

5{2 5{3 aredividedbyd1d2, 5{4 isdividedbyd21, 5{5 isdividedbyd22.Theyarerewrittenas (F1x22+F2x2+F3)d2i+(F4x22+F5x2+F6)d1i+(F7x22+F8x2+F9)=0(5{11) (G1x22+G2x2+G3)d2i+(G4x22+G5x2+G6)d1i+(G7x22+G8x2+G9)=0(5{12) (H1x22+H2x2+H3)+(H4x22+H5x2+H6)d21i=0(5{13) (I1x22+I2x2+I3)+(I4x22+I5x2+I6)d22i=0(5{14)whered1i=1=d1;d2i=1=d2.SBFL;XBFLcanbeobtainedbyperformingtheoperationslistedinTable 5.1 ThedeterminantoftheSylvesterMatrixiszeroforcommonrootsofEquations 5{11 5{12 5{13 5{14 andthus 5{10 maybewrittenas 30

PAGE 31

3.2 )withtheexceptionofthefreelengthsofspring1and2whicharenowsettoL01=5:1m;L02=6:6309m.Equations 5{6 5{7 5{8 5{9 arecalculatednumerically.Next,theSylvesterMatrix(SBFL)wasobtainedbyoperationsexplainedinSection( 5.1 ).Finally,Equation 5{15 issolvedforx1.Observationsforsolutionsofx1were 5{2 5{3 5{4 5{5 5{2 5{3 5{4 5{5 .Fortwoofthesesolutions(Case3andCase6)-f1;f2arezero. 31

PAGE 32

(b)Case2 (c)Case3-f1=f2=0 (d)Case4 (e)Case5 (f)Case6-f1=f2=0 (g)Case7 (h)Case8 (i)Case9 (j)Case10 (k)Case11 (l)Case12Figure5-1. Twenty-fourrealsolutionsforCase3(cases1to12) 32

PAGE 33

(b)Case14 (c)Case15 (d)Case16 (e)Case17 (f)Case18 (g)Case19 (h)Case20 (i)Case21 (j)Case22 (k)Case23 (l)Case24Figure5-2. Twenty-fourrealsolutionsforCase3(cases13to24) 33

PAGE 34

ListofoperationstoobtainSylvesterMatrixforCase3 Equations#Equations#UnknownsAddedUnknowns 5{11 ),( 5{12 )g415(x22;x2;1)( 5{13 )(x22;x2;1)d1i( 5{14 )(x22;x2;1)d2i(x22;x2;1)d21i(x22;x2;1)d22if( 5{11 ),( 5{12 )gd1i818(x22;x2;1)d1id2if( 5{11 ),( 5{12 )gd2if( 5{11 ),( 5{12 )gd1id2i1224(x22;x2;1)d21id2i( 5{13 )d2i(x22;x2;1)d1id22i( 5{14 )d1if( 5{11 ),( 5{12 )gd21i1527(x22;x2;1)d31i( 5{13 )d1if( 5{11 ),( 5{12 )gd22i1830(x22;x2;1)d32i( 5{14 )d1if( 5{11 ),( 5{12 )gd21id2i2639(x22;x2;1)d31id2if( 5{11 ),( 5{12 )gd1id22i(x22;x2;1)d1id32i( 5{13 )d22i(x22;x2;1)d21id22i( 5{14 )d21i( 5{13 )d1id2i( 5{14 )d1id2i 5{11 ),( 5{12 )gx25252x32( 5{13 )x2x32d1i( 5{14 )x2x32d2if( 5{11 ),( 5{12 )gd2ix2x32d21if( 5{11 ),( 5{12 )gd1id2ix2x32d22i( 5{13 )d2ix2x32d1id2i( 5{14 )d1ix2x32d21id2if( 5{11 ),( 5{12 )gd21ix2x32d1id22i( 5{13 )d1ix2x32d31if( 5{11 ),( 5{12 )gd22ix2x32d32i( 5{14 )d1ix2x32d31id2if( 5{11 ),( 5{12 )gd21id2ix2x32d1id32if( 5{11 ),( 5{12 )gd1id22ix2x32d21id22i( 5{13 )d22ix2( 5{14 )d21ix2( 5{13 )d1id2ix2( 5{14 )d1id2ix2

PAGE 35

Twenty-foursolutionsforCase3 35

PAGE 36

36

PAGE 37

23 ].Onerelatestothedisplacementofarigidbody.Theotherrelatestoforceswhichactonarigidbody. 1. Anygivendisplacementofarigidbodycanbeeectedbyarotationaboutanaxiscombinedwithatranslationparalleltothataxis. 2. Aforce,andacoupleinaplaneperpendiculartotheforce,constituteanadequaterepresentationofanysystemofforcesappliedtoarigidbody.PluckercoordinateswereintroducedbyJuliusPluckerinthe19thcenturyasawaytoassignsixhomogenouscoordinatestoeachlineinprojective3-space.InScrewTheory,theyareusedtorepresentthecoordinatesofscrews,twistsandwrenches. 37

PAGE 38

(rr1)S=0 (A{2) PluckercoordinatesofthelinearefS;S0Lgandtheysatisfythefollowingconstraints 38

PAGE 39

$=264SS0L+hS375:(A{6)Fivequantitiesarerequiredtospecifyascrew,ofthese4arerequiredtospecifyaline.Thefthoneinthepitchofthescrew,h.Atwistisrepresentedas$1.Atwistrequiressixalgebraicquantitiesforitscompletespecication,ofthesevearerequiredforcompletespecicationofascrew.Thesixthquantity,theamplitudeoftwist()expressestheangleofrotation.Thedistanceoftranslationistheproductofamplitudeoftwistandpitchofthescrew.Ifpitchiszero,thetwistreducestopurerotationaroundthescrew$.Ifpitchisinnite,thennitetwistisnotpossibleexcepttheamplitudebezero,inwhichcasethetwistreducestopuretranslationparalleltothescrew$.Awrenchisrepresentedasf$1.Awrenchrequiressixalgebraicquantitiesforitscompletespecication,ofthesevearerequiredforcompletespecicationofascrew.Thesixthquantity,theintensityofwrench(f)expressesthemagnitudeofforce.Themomentofcoupleistheproductofintensityofwrenchandpitchofthescrew.Ifpitchiszero,thewrenchreducestopureforcealongthescrew$.Ifpitchisinnitethewrenchreducestocoupleinaplaneperpendiculartothescrew$. 39

PAGE 40

ofdegreesnandmandrootsi;i=1;2;:::n,i;i=1;2;:::mrespectively.Theresultant([ 24 ])isdenedby 40

PAGE 41

Thesystemmaybewrittenasamatrixequation {z }Sp;q2666666666666664x(n+m1)...x(m1)x(m2)...13777777777777775=26666666666666640...00...03777777777777775:(B{5)TheSylvestermatrix(Sp;q)associatedwithpolynomialsp(x)andq(x)isasquarematrixofdimension(n+m)(n+m).ThedeterminantoftheSylvestermatrixwillvanishwhenp(x)andq(x)haveacommonroot.Theconverseisalsotrue.InorderfortheretobeacommonrootforEqns( B{1 )and( B{2 ),itisnecessarythat det(Sp;q)=0:(B{6) 41

PAGE 42

42

PAGE 43

[1] FullerR.Synergetics:TheGeometryofThinking.MacMillanPublishingCo.,Inc.,NewYork,1975. [2] EdmondsonA.AFullerExplanation:TheSynergeticGeometryofR.BuckminsterFuller.Birkhauser,Boston,1987. [3] TobieR.S.Areportonaninquiryintotheexistence,formationandrepresentationoftensilestructures.Masterofindustrialdesignthesis,PrattInstitute,NewYork,1976. [4] PughA.AnIntroductiontoTensegrity.UniversityofCaliforniaPress,1976. [5] DuyJ.,YinJ.andCraneC.Ananalysisforthedesignofself-deployabletensegrityandreinforcedtensegrityprismswithelasticties.InternationalJournalofRoboticsandAutomation,SpecialIssueonComplianceandCompliantMechanisms,17,2002. [6] RothB.andWhiteleyW.Tensegrityframeworks.InAmericanMathematicalSociety,editor,TransactionsoftheAmericanMathematicalSociety,page419446,1981. [7] IngberD.http://www.childrenshospital.org/research/ingber/tensegrity.html.HavardMedicalSchool. [8] HanaorA.Aspectsofdesignofdoublelayertensegritydomes.JournalofSpaceStructures,7(2):101{113,1992. [9] HanaorA.Geometricallyrigiddouble-layertensegritygrids.JournalofSpaceStructures,9(4):227{238,1994. [10] MotroR.Tensegritysystems:thestateoftheart.JournalofSpaceStructures,7(2):75{83,1992. [11] Juan,S.H.andMiratsTur,J.M.Tensegrityframeworks:Staticanalysisreview.MechanismandMachineTheory,2007.inpress. [12] FuF.Structuralbehavioranddesignmethodsoftensegritydomes.JournalofConstructionalSteelResearch,61(1):25{35,2005. [13] HeltonJ.,AdhikariR.,PinaudJ.,Skelton,R.andChanW.Anintroductiontothemechanicsoftensegritystructures.InIEEE,editor,Proceedingsofthe40thIEEEconferenceonDecisionandcontrol,page42544258,2001. [14] S.Levin.Thetensegrity-trussasamodelforspinemechanics:Biotensegrity.JournalofMechanicsinMedicineandBiology,2(3&4):375{388. [15] FuruyaH.Conceptofdeployabletensegritystructuresinspaceapplications.JournalofSpaceStructures,7(2):143{151,1992. 43

PAGE 44

TibertA.DeployableTensegrityStructuresforSpaceApplications.PhDthesis,RoyalInstituteofTechnology,2003.PhDThesis. [17] KennerH.GeodesicMathandHowtoUseIt.UniversityofCaliforniaPress,BerkeleyandLosAngeles,CA,1976. [18] SternI.P.Developmentofdesignequationsforself-deployablen-struttensegritysystems.Master'sthesis,UniversityofFlorida,Gainesville,FL,1999. [19] KnightB.F.DeployableAntennaKinematicsusingTensegrityStructureDesign.PhDthesis,UniversityofFlorida,Gainesville,FL,2000. [20] AldrichJ.ControlSynthesisforaClassofLightandAgileRoboticTensegrityStructures.PhDthesis,UniversityofCalifornia,2004.PhDThesis. [21] RobertsJ.,LipsonH.,PaulC.andF.Cuevas.Gaitproductioninatensegritybasedrobot.InProceedingsofthe2005InternationalConferenceonAdvancedRobotics,2005. [22] CraneC.andDuyJ.KinematicAnalysisofRobotManipulators.CambridgeUniversityPress,March1998. [23] BallR.S.ATreatiseontheTheoryofScrews.CambridgeUniversityPress,1998. [24] WeissteinE.Resultant.FromMathWorld{AWolframWebResource.http://mathworld.wolfram.com/Resultant.html. [25] RaoA.V.DynamicsofParticlesandRigidBodies:ASystematicApproach.Cam-bridgeUniversityPress,2ndedition,2006. [26] VikasV.,BayatJ.,CraneC.andR.Roberts.Kinematicanalysisofaplanartensegritymechanismwithpre-stressedsprings.AdvancesinRobotKinematics,2008. 44

PAGE 45

VisheshVikaswasbornonthe31stofMay,1983inNewDelhi,India.HeattendedhishighschoolatDelhiPublicSchoolRKPuram,Delhi.HerecievedhisBachelorinTechnologyinMechanicalEngineeringfromIndianInstituteofTechnology,GuwahatiinMayof2005.Afterthat,heworkedatMAIA,INRIALorraine(LORIA),France.In2007,hejoinedtheCenterforIntelligentMachinesandRobotics(CIMAR)attheUniversityofFlorida,completinghisMastersofSciencedegreeinMechanicalEngineeringinAugustof2008.UponcompletionofhisMS,VisheshwillpursuePhDinDepartmentofAerospaceandMechanicalEngineeringatUniversityofFlorida. 45