<%BANNER%>

Landscape and Hydrologic Effects on Anuran Species Richness in Big Cypress National Preserve and Everglades National Park

Permanent Link: http://ufdc.ufl.edu/UFE0022109/00001

Material Information

Title: Landscape and Hydrologic Effects on Anuran Species Richness in Big Cypress National Preserve and Everglades National Park
Physical Description: 1 online resource (62 p.)
Language: english
Creator: Casler, Michelle
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: anuran, everglades, habitat, hydrology, modeling, presence, restoration, richness, scale
Interdisciplinary Ecology -- Dissertations, Academic -- UF
Genre: Interdisciplinary Ecology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Many studies on the ecology of anuran species focus on variables measured in the immediate vicinity of observed animals or local scale. Expanding the view from local scale variables to include those on intermediate and landscape scale is important to understand requirements of these species. I examined the occurrence and richness of anuran species in relation to hydroperiod and landscape variables across three spatial scales (200-, 500-, and 1000-m) in Big Cypress National Preserve and Everglades National Park. Species richness and presence was positively associated with edge density and habitat diversity on all scales. Edge density was an important variable in the models sets. Hydroperiod was not as important in most of the models, and was somewhat negatively associated with anuran species richness and presence on all scales. The largest scale, 1000-m was best for describing species richness and presence, aside from narrow-mouthed frogs. Presence of narrow-mouthed frogs was described best by variables at the 500-m scale. This indicates that taking into account multiple scales, especially those at the intermediate and landscape scales is useful when looking at effects of habitat and hydrologic changes on anurans.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Michelle Casler.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Mazzotti, Frank J.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022109:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022109/00001

Material Information

Title: Landscape and Hydrologic Effects on Anuran Species Richness in Big Cypress National Preserve and Everglades National Park
Physical Description: 1 online resource (62 p.)
Language: english
Creator: Casler, Michelle
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: anuran, everglades, habitat, hydrology, modeling, presence, restoration, richness, scale
Interdisciplinary Ecology -- Dissertations, Academic -- UF
Genre: Interdisciplinary Ecology thesis, M.S.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Many studies on the ecology of anuran species focus on variables measured in the immediate vicinity of observed animals or local scale. Expanding the view from local scale variables to include those on intermediate and landscape scale is important to understand requirements of these species. I examined the occurrence and richness of anuran species in relation to hydroperiod and landscape variables across three spatial scales (200-, 500-, and 1000-m) in Big Cypress National Preserve and Everglades National Park. Species richness and presence was positively associated with edge density and habitat diversity on all scales. Edge density was an important variable in the models sets. Hydroperiod was not as important in most of the models, and was somewhat negatively associated with anuran species richness and presence on all scales. The largest scale, 1000-m was best for describing species richness and presence, aside from narrow-mouthed frogs. Presence of narrow-mouthed frogs was described best by variables at the 500-m scale. This indicates that taking into account multiple scales, especially those at the intermediate and landscape scales is useful when looking at effects of habitat and hydrologic changes on anurans.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Michelle Casler.
Thesis: Thesis (M.S.)--University of Florida, 2008.
Local: Adviser: Mazzotti, Frank J.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022109:00001


This item has the following downloads:


Full Text





LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS
NATIONAL PRESERVE AND EVERGLADES NATIONAL PARK




















By

MICHELLE L. CASLER


A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2008


































2008 Michelle L. Casler




































To Tommy









ACKNOWLEDGMENTS

I thank my parents and sisters for all their support and being ok with me moving so far

away to follow frogs. I am appreciative of Charamy, Qing Qing, Alex, and Leah for providing

me with much-needed breaks and the understanding that one day I'll have free time. I'd also like

to thank my committee; Frank Mazzotti, Ken Rice and Leonard Pearlstine; without them I

wouldn't be here and able to make sense of my ideas. I am grateful for all my friends from

"Magrathea" for their unwavering support and just being wonderful. Lastly, I am indebted to

Elise Pearlstine, Franklin Percival, Charles Hall, Myrna Hall, Ikuko Fujisaki and Hardin Waddle

for all their help and advice.










TABLE OF CONTENTS

page

A CK N OW LED GM EN T S......... ..... ............ ................. ................................................ 4

LIST OF TABLES ..................................................... 6

L IST O F F IG U R E S ......... ..... ............. .......................................................... 8

ABSTRACT ........... .................. ............................................... 9

CHAPTER

1 IN T R O D U C T IO N ................................................................................. 10

2 LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG
CYPRESS NATIONAL PRESERVE AND EVERGLADES NATIONAL PARK .............. 13

Intro du action ............................................................................................ 13
M eth o d s ........................................................................................................ 14
S tu d y A re a .................................................................................................. 14
A nuran Sam pling ................................................................................................... 15
H y d ro p e rio d .............................................................................................. 1 5
L landscape V ariables ................................................................................................ 16
Data Analysis........................................................ 18
R e su lts ....................................................................... 1 9
Com munity M models ........................................................ .................. 20
Individual Species M odels ................................................................. ............. 20
D iscu ssio n ........................................................................................... 2 1

3 C O N C L U SIO N ..................................................... 40

APPENDIX

A VEGETATION CLASSIFICATIONS .......................................................... ............42

B ALL M ODELS TESTED ........................................................................44

L IST O F R E F E R E N C E S ............................................................... ................................... 57

BIOGRAPHICAL SKETCH ..........................................................................62









LIST OF TABLES


Table page

2-1 Habitat classifications simplified from the habitat maps provided by the University
of Georgia (W elch et al. 2002)...................................................................... 25

2-2 Additional landscape variables calculated by Fragstats ............................................26

2-3 Delta AIC values of species richness as a function of each diversity index across the
three scales ........................... ... ............... ................................... ............................ 27

2-4 A nurans found in the study....................................................................... 28

2-5 Results of regional species richness model selection............. ...... .................. 29

2-6 Results of Big Cypress National Preserve species richness model selection ............... 30

2-7 Results of Everglades National Park species richness model selection ..................... 32

2-8 Results ofHyla squirella presence model selection in Everglades National Park and
Big Cypress N national Preserve. ......................................................... ......... ..... 33

2-9 Results ofBufo terrestris presence model selection in Everglades National Park and
Big Cypress N national Preserve. ......................................................... ............. 34

2-10 Results of Pseudacris occularis presence model selection in Big Cypress National
Preserve. ............... .................................. ....... ..... ....... ........ 35

2-11 Results of Gastrophryne carolnensis presence model selection in Everglades
National Park and Big Cypress National Preserve.................................................... 36

A-i Description of vegetation classification abbreviations used in chapter 2...................... 42

B-1 All models tested to describe regional species richness...................... ..............44

B-2 All models tested to describe species richness in Big Cypress National Preserve........... 46

B-3 All models tested to describe species richness in Everglades National Park................ 48

B-4 All models tested to describe Hyla squirella presence Big Cypress National Preserve
and Everglades N national Park ...................... .... ............... .................... .............. 49

B-5 All models tested to describe Bufo terrestris presence Big Cypress National Preserve
and Everglades N national Park ...................................................................... 51

B-6 All models tested to describe Psuedacris occularis presence Big Cypress National
Preserve. ............... .................................. ....... ..... ....... ........ 53









B-7 All models tested to describe Gastrophryne carolnensis presence Big Cypress
N national Preserve and Everglades N national Park.................................... .................... 55









LIST OF FIGURES


Figure page

2-1 Landscape hydroperiod calendar representing water station A9 in Big Cypress
National Preserve. The height of the bars represents the water depth, while the color
represents habitat type. For example, one would expect nearby prairie habitats to be
flooded when the color on the calendar was yellow, orange or red. Calendar re-
printed with permission (Source: http://www.fgcu.edu/bcw/BCNP/BCNP.htm. Last
accessed A pril, 2008). ............................................................................ 38

2-2 These figures provide an example of the process I used to estimate hydroperiod for
each site. They are modified from Figure 2.1 to show only the study period from
M arch 2002-February 2003 for a site in BCNP.................................. .................. .... 39









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS
NATIONAL PRESERVE AND EVERGLADES NATIONAL PARK

By

Michelle L. Casler

August 2008

Chair: Frank J. Mazzotti
Major: Interdisciplinary Ecology

Many studies on the ecology of anuran species focus on variables measured in the

immediate vicinity of observed animals or local scale. Expanding the view from local scale

variables to include those on intermediate and landscape scale is important to understand

requirements of these species. I examined the occurrence and richness of anuran species in

relation to hydroperiod and landscape variables across three spatial scales (200-, 500-, and 1000-

m) in Big Cypress National Preserve and Everglades National Park. Species richness and

presence was positively associated with edge density and habitat diversity on all scales. Edge

density was an important variable in the models sets. Hydroperiod was not as important in most

of the models, and was somewhat negatively associated with anuran species richness and

presence on all scales. The largest scale, 1000-m was best for describing species richness and

presence, aside from narrow-mouthed frogs. Presence of narrow-mouthed frogs was described

best by variables at the 500-m scale. This indicates that taking into account multiple scales,

especially those at the intermediate and landscape scales is useful when looking at effects of

habitat and hydrologic changes on anurans.









CHAPTER 1
INTRODUCTION

Amphibians are important to many ecosystems due to their large numbers and biomass.

They are major consumers of invertebrates and are prey for other organisms (Wake 1991; Dodd

et al. 2007). Amphibians are commonly used as indicators of ecosystem degradation (Wake

1991; Waddle 2006) because they respond quickly and measurably to changes in the

environment (eg. pollution, water quality changes). Many species also utilize discrete breeding

sites and foraging habitats, and disperse between sites at larger spatial scales (Hecnar and

M'Closkey 1996).

Mobile amphibians, such as toads, hylids, and ranids, are able to move easily across

patches (Sisch 1990; Tunner 1992). This allows them to easily colonize or re-colonize sites,

preserving their metapopulation, and allowing for long-term persistence in the landscape

(Ficetola and De Bernardi 2004). Amphibian population size is very dynamic, and populations

may become locally extinct one year, and re-colonized in a following year (Gibbs 1998).

In south Florida, exotic species and changes in the landscape, such as agriculture, canals

and roads, are the main concerns for potential amphibian declines (Meshaka et al. 2000; Waddle

2006). The Cuban treefrog's (Osteopilus septentrionalis) introduction and establishment has

coincided with the decline of squirrel treefrog (Hyla squirella) populations (Meshaka et al. 2000;

Johnson 2007) throughout Florida. Pig frogs (Rana grylio), the most abundant large frog in the

Everglades, are commonly exploited for human consumption. Duever (et al. 1986) found that

abundance of pig frogs is sustained, even with large yields reported by froggers. More recently,

harvest was found to have discernable effects on adult survival rate, however juveniles have

higher survival rates likely due to harvesters selecting for larger frogs (Ugarte 2004). In









general, large declines of other amphibian species have not been documented in south Florida

(Meshaka et al. 2000).

All native anurans in south Florida require water for their egg and larval stages (Carr

1940). Tadpole stages can range from 3 to 4 weeks for squirrel treefrogs (Babbit and Tanner

1997) to a year or more for pig frogs (Bartlett and Bartlett 1999). Hydroperiod is the average

annual period of inundation, and its importance to amphibians has been examined in various

studies. It has been found to significantly influence species richness in central Florida and South

Carolina (Snodgrass et al. 2000; Babbit 2005). Typically, higher diversity and abundance of

anurans is found in temporarily flooded wetlands (Pechmann et al. 1989) due to species-specific

adaptations for avoiding desiccation and predators (Hermann et al. 2005). Permanent wetlands

provide a very low chance of desiccation, however, they support a more numerous and diverse

predator base compared to temporarily inundated wetlands (Ryan and Winne 2001).

In addition to hydroperiod, habitat has also been found to influence anuran presence and

abundance. Density of mature forest was found to be positively associated with species richness

in several studies (Hecnar and M'Closkey 1997; Knutson et al. 1999; Guerry and Hunter 2002;

Martin and McComb 2003). Not all species are positively affected by forest area however

(Guerry and Hunter 2002), indicating that open areas, such as prairies and meadows are also

important. Knutson (et al. 1999) found that abundance of anurans increased where habitat

diversity was high, or where forested wetland edges were present. Higher habitat diversity has

the potential to support more species (Kie et al. 2002), as it provides a variety of habitats for

anurans to select. In the Everglades, most species are habitat generalists, and while they may

have preferred habitats, individuals can be found in many different habitats (Bartlett and Bartlett

1999; Meshaka et al. 2000).









Investigation of habitat at multiple scales is becoming more common. Many species are

influenced by variables operating on two or more scales (Knutson et al. 1999; Price et al. 2005;

Stoddard and Hayes 2005), and a multi-scale approach will help obtain a comprehensive view of

species status (Johnson et al. 2002; van Buskirk 2005). The regular movement of adult and

juvenile anurans between aquatic and terrestrial habitats makes them ideal for look at presence

on different scales (Richter-biox et al. 2007).









CHAPTER 2
LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS
NATIONAL PRESERVE AND EVERGLADES NATIONAL PARK

Introduction

Distribution of many anuran species is affected by both local or proximate variables, such

as hydroperiod, stream sediment and wetland type; and landscape variables, such as slope, road

density and percent forest cover (Knutson et al. 1999; Leibold et al. 2004; Stoddard and Hayes

2005). A focus on the immediate area around a survey plot may not provide a comprehensive

understanding of a species' needs. Many anurans require upland and aquatic habitats for

overwintering, foraging and oviposition (Pope et al. 2000; Price et al. 2005; Resetarits 2005).

From a scale perspective foraging habitat is typically selected at a local spatial scale, while mate

selection occurs on a landscape scale (Bissonette 1997).

Defining an individual species perception of scale can be difficult. Each species perceives

scale differently, affecting habitat selection (Resetarits 2005) and movement between habitats

(Kie et al. 200). Factors that influence habitat selection and movement include availability of

forage (Schoener 1981; Ford 1983), reproductive size (Bertrand et al. 1996), body size (McNab

1963; Swihart et al. 1988), sex and age (Cederlund and Sand 1994), hydroperiod (Pechmann et

al. 1989; Snodgrass et al. 2000; Babbit 2005), amongst others (Kie et al. 2002). Species richness

and occurrence may be predicted by looking at landscape scale variables such as the density of

nearby ponds and roads (Semlitsch 2000; Marsh and Trenham 2001; van Buskirk 2005) in

combination with local scale variables like water depth (Vickers et al. 1985; Weyrauch and

Grubb 2004). This indicates that local and landscape variables should be considered jointly, as

they both regulate individual and overall species occurrence (Shurin and Allen 2001).

I examined the influence of local and landscape variables on anuran species richness and

presence of four anuran species in Everglades National Park and Big Cypress National Preserve.









Each park will be looked at separately to determine any differences between the parks based

their individual characteristics. The influence of hydroperiod, the average period of inundation

during the study year, will also be examined in addition to habitat variables because it has been

found to effect species presence in other studies (Pechmann et a. 1989; Babbit 2005) and is an

important aspect of the Everglades.

Methods

Study Area

Everglades National Park (ENP) and Big Cypress National Preserve (BCNP) are located

in south Florida. Situated on the southern tip of Florida, ENP is an approximately 611,000 ha

park. This was the first park to be created to protect the unique diversity of life it supports. On

the northwestern boundary of ENP, BCNP is a 295,000 ha preserve created to protect natural and

recreational values of the watershed. Hunting, fishing and oil production all occur within the

preserve, and it serves as an ecological buffer zone to protect the water supply of the wetlands in

the western portion of ENP by providing fresh water (USACOE 1994). Both parks support

similar natural vegetative communities (Duever 2005). In general, BCNP tends to support more

forested habitat, and ENP supports more herbaceous habitat (Duever 2005).

The South Florida Water Management District (SFWMD) manages inflows of water for

human and wildlife use in ENP and BCNP through a series of canals, levees, and water control

structures. Aside from the water control of SFWMD, the hydrology in BCNP is largely rainfall-

driven (Duever et al. 1986), while hydrology in ENP is driven by rainfall and overland flow,

although the overland flow is not as extensive as it once was due to the establishment of canals

and levees (Lodge 2004).









Anuran Sampling

To look at the effects of landscape characteristics and hydroperiod on anurans I used data

previously collected during BCNP and ENP amphibian inventories (Rice et al. 2004; Rice et al.

2005). These surveys were conducted in ENP from January through December 2001, and BCNP

from March 2002 through February 2003. While these surveys were conducted during two time

periods, they were collected in the same manner, and it is assumed that species richness did not

vary between years.

Two survey types were used to inventory anurans in these studies. Standard visual

encounter surveys (VES, Heyer et al. 1994) were conducted for thirty minutes at each plot. A

vocal survey was also conducted for 10 minutes during the VES. Each species heard during the

vocal survey was recorded regardless of if it was inside or outside of the plot (Rice et al. 2004;

Rice et al. 2005). I combined the results from both surveys over the length of the survey to

determine overall species richness at each plot. A species was considered present if it was

recorded at least once at a plot during the survey period.

Hydroperiod

Presence or absence of water was also recorded during each survey. This provided an

estimate of hydroperiod in months. To obtain an estimate of hydroperiod in days, I compared

water presence at a site to a nearby permanent water station using landscape hydroperiod

calendars (Big Cypress Watersheds Restoration Coordination Team,

http://www.fgcu.edu/bcw/hcu.htm). These hydroperiod calendars visually show water depth and

hydroperiod at the permanent water station and estimate the depth at nearby landscape types in

both BCNP and ENP (Figure 2-1). I assumed hydroperiod at each site was correlated with the

hydroperiod of nearby water stations.









I located the nearest water station for each study plot to estimate hydroperiod. In cases

where plots had two or more water stations within a similar distance, hydroperiod was estimated

using all available water stations and averaged. Water stations that were separated by a canal or

major road were not considered whenever possible due to potential changes in flow of water. For

each hydroperiod calendar I marked presence or absence of water and extrapolated an estimation

of the total days wet over the study year for each site (Figure 2-2).

Four variables representing hydroperiod were considered: total months wet, average

consecutive months wet, total days wet, and average consecutive days wet. Monthly estimates

were converted to days for better comparison with daily estimates. Average consecutive days wet

excluded parts of the year where estimated consecutive days wet was less than 10 days. These

periods of 10 days or less were excluded, as they were too short for anuran breeding and tadpole

development. I selected average consecutive days wet as the hydroperiod variable used in the

model. This was done with tadpoles in mind, as the shortest metamorphose time for any species

in this system is 20 days (Narrow mouthed frog (Gastrophryne carolinensis), Bartlett and

Bartlett 1999).

Landscape Variables

To examine effects of scale on anuran species, I chose three scales: 200-, 500- and 1000-

meters. The largest scale, 1000-m, was based on previous studies of landscape scale and anurans

(Knutson et al. 1999; Vos and Stumpel 1995; Marsh and Trenham 2001; Price et al. 2005). These

studies found that 1000-m was ideal for analyzing anuran species richness and presence, and

habitat. This scale was used as a general landscape scale variable, as it included much of the

general complexity and diversity of the area, as well as including a large amount of a species'

movement area. The smallest scale, 200-m, was used as the local scale variable. The intermediate









scale, 500-m, was included because it has been found to predict richness better than smaller

scales, and as well as larger scales for some species in other studies (Price et al. 2005).

I created buffers for the three scales around each plot using ArcGIS (Environmental

Systems Research Institute Inc., http://www.esri.com). These buffers were used to clip data from

vegetation maps created by Welch et al. (2002). The buffers included 53 habitat classifications

that were simplified to 15 general classifications based on major vegetation type and potential

habitat used by anurans (Table 2-1). Acreages of these habitats were converted to percentages

using Fragstats (University of Massachusetts,

http://www.umass.edu/landeco/research/fragstats/fragstats.html).

Fragstats was also used to calculate six additional landscape variables (Table 2-2). Of these

variables a subset was chosen to use in the models, as several represented a similar idea and were

highly correlated. I chose the subset by comparing each set of similar variables representing the

diversity of vegetation and edge density in R (http://www.r-project.org/).

Four variables representing diversity of vegetation were calculated (Table 2-3). Patch

richness is the simplest form of diversity measurement, counting the total number of patch types.

Patch richness density standardizes patch richness to a per area basis, allowing comparisons

between landscape scales. Shannon's and Simpson's Diversity Indexes were also calculated.

Shannon's Diversity Index is more sensitive to rare patch types compared to Simpson's Diversity

Index (SDI), and both represent the relative proportion of habitat types. I calculated the Akaike's

Information Criterion (AIC, Burnham and Anderson 1998) of species richness as a function of

each diversity variable to determine which one to use. Simpson's Diversity Index was the best

variable (lowest AIC value, Burnham and Anderson 1998) in the majority of model sets

compared to Shannon's Diversity Index (Table 2-3), and will be used in the final model









selection. Patch richness density was also included in the community models as an alternative

method of measuring density. This was chosen over patch richness to facilitate comparison

between scales.

To determine if any edge effects would be present, I calculated two variables. Total edge

density looked at the total edge on a per unit area basis and was the simplest method. Landscape

Shape Index (LSI) is a more complex measure of edge density and is used to interpret patch

aggregation or disaggregation. As a landscape becomes more irregular and/or the length of edge

within the landscape increases, LSI also increases. Landscape Shape Index was a slightly better

representation of edge and will be used in the final model selection (Table 2-3). This variable

will also be referred to as edge density in the remainder of this thesis.

Data Analysis

For the preliminary analysis I used t-tests to compare species richness, habitat diversity,

edge density and hydroperiod between parks. This was used to obtain a basic understanding of

the differences between parks and determine if considering parks separately in the models was

appropriate.

I used R to create generalized linear models to look at the effect of hydroperiod and

landscape variables at the three scales on anuran species richness and individual species

presence. To examine effect of landscape variables and hydroperiod on anuran species richness, I

used a Poisson distribution. Three sets of models were created, one for the overall region, and

one for each park to look at the differences between them. I selected 4 native species using a

priori selection based on number of sites these species were present in and pairwise plots

comparing presence to edge density, habitat diversity and hydroperiod. Several species were

present at most sites such as southern leopard frogs (Rana sphenocephala 55 of 70 plots) and

green tree frogs (Hyla cinerea 69 of 70 plots), and were not ideal for modeling. The four species









that I selected were squirrel treefrog (Hyla squirella), southern toad (Bufo terrestris), narrow

mouthed frog and little grass frog (Psuedacris nigritta). These species were at an average

number of sites, have different life history requirements, and were expected to have different

responses to variables used in the models. A binomial distribution was used to look at the

presence of each species.

Variables used in models for both community and individual species were similar. The

variables that were used at the local, intermediate and landscape scales were edge density, habitat

diversity and individual habitat percent. Hydroperiod was considered a local variable.

The best model per model set was selected as the one with the highest AIC weight. In

cases where there were multiple models with very similar weights, the most parsimonious model,

with the fewest parameters, was selected (Burnham and Anderson 1998).

Results

In total, 14 anuran species, three of which were non-native, were recorded in 70 plots

across the two parks (Table 2-4). The mean number of species recorded across the parks was 6.5.

Of the two parks, BCNP had the highest number of species (n = 13) and the highest mean species

richness (mean = 8.18, range 6-11). Everglades National Park had a similar species composition

compared to BCNP (n = 12), though mean species richness was significantly lower (mean =

5.25, range 2-8, p = 0.00).

At all three scales examined, habitat diversity was significantly higher in BCNP (1000: t =

4.6, df = 58.3, p = 0.000, 500: t= 4.0, df = 66.1, p = 0.000, 200: t = 3.7, df = 67.4, p = 0.000) than

in ENP. Edge density (LSI) was also significantly higher in BCNP (1000: t = 6.9, df = 67.7, p =

0.000, 500: t = 5.7, df = 67.6, p = 0.000, 200: t= 2.4, df = 63.9, p = 0.001) at all scales.

Hydroperiod was similar within both parks (p = 0.8209, BCNP mean = 147.2, ENP mean =

152.9).









Community Models

Three sets of models were created to examine species richness, one for each park and one

that combined both across the region. For each set of models, the AIC weights were less than

0.4, which indicates that there is not a single clear best model of species richness (Tables 2-5, 2-

6, 2-7). Landscape variables at the local scale were not as strong as those at the intermediate or

landscape scale for all three sets of models.

Park was present in all regional models with a weight above zero, with the exception of

one. This confirms the earlier t-test stating that species richness was significantly different

between parks. The best models for estimating species richness across the region were park plus

edge density at the intermediate and landscape scale (Table 2-5). Edge density had a positive

effect on species richness. Hydroperiod, while present in a few models, did not appear to have a

large effect on species richness, and in the few models it was present in, the effect was negative.

Unlike the regional model, the BCNP model found that hydroperiod was the best single

variable describing species richness in BCNP (Table 2-6) with a negative effect. In ENP, edge

density at the intermediate scale was the best model, with edge density at the landscape scale

being a close second (Table 2-7).

Individual Species Models

Hyla squirella was the most common of the four selected anuran species, occurring at 52

sites. For this species, both 1000- and 500-m scale variables were present in the top models

(Table 2-8). The best model was habitat diversity (SDI) plus edge density (LSI) at the 1000-m

scale plus the percent of cypress habitat at the 500-m scale. This model had a weight of 0.45,

indicating that this was a clear best model. Hydroperiod and habitat variables had little to no

affect on the presence ofH. squirella.









Bufo terrestris was present at 28 sites. Landscape variables at the 500-m scale were present

in the top three models. Edge density at the 500-m scale plus percent of cypress prairie at the

100-m scale had the highest weight (Table 2-9).

Psuedacris occularis was only present in BCNP during the survey periods, and models

were adjusted to exclude ENP. This species was present at 19 of the 34 sites in BCNP. The

model with the highest weight was habitat diversity (SDI) plus edge density (LSI) plus the

interaction between these two terms, both at the 500-m scale (Table 2-10).

The last species, Gastrophryne carolnensis, was present at 22 sites. The best models had

the same weight, although somewhat different AIC values. The percent of cypress prairie at the

200-m scale was the best model (Table 2-11). There are 4 models within a delta AIC value of 2

representing all scales, showing that there are multiple factors on different scales affecting G.

carolinensis presence.

Discussion

Results of this study confirm that scale is an important factor to consider. Variables

associated with larger scales (intermediate and landscape), predicted species richness better than

those measured at the local scale. The presence of all but one species examined was also

predicted better at larger scales, while narrow-mouthed frogs were predicted better at the local

scale. This is consistent with previous studies (Dodd and Cade 1998; Price et al. 2005; Van

Buskirk 2005) that found larger scales explained species occurrence the best. Species richness

and individual species presence were driven by different variables across the three scales.

Hydroperiod was not as important as originally expected. Other variables, such as water

depth, condition, and presence of fish predators may have more of an effect on species presence

(Ficetola and De Bernardi 2004; Babbit 2005; Van Buskirk 2005) but not available for this study.

Species richness and each of the individual species were all negatively correlated with









hydroperiod. Permanent wetlands generally support less anurans than those that are temporarily

flooded. This is usually due to fish or invertebrate predators, or competition (Smith 1983;

Wellborn et al. 1996). Fish and invertebrate predators were not accounted for in the surveys, and

the extent to which they affect anuran presence is speculative. These predators can move

between habitats as they become flooded and connected to deeper, more permanently flooded

habitats (Ruetz et al. 2005).

Habitat variables, either through diversity or specific habitat types, were more important

for individual species than for overall species richness. Most anuran species present in these

parks are habitat generalists (Bartlett and Bartlett 1999), and specific habitat types were not

expected to have much effect. The eastern narrow-mouthed frog was the only species where

specific habitat variables were the only variables present in the best models. Squirrel treefrogs

and southern toads both had a specific habitat variable in combination with habitat diversity or

edge density. Habitat diversity, was present in more models than specific habitat types, but was

not as common as edge density.

Edge density, represented by LSI in the models, had a positive effect and was one of the

most common variables present in the models created. Combining edge density with habitat

diversity was found to be important in the models for squirrel treefrog and little grass frog

presence. Little grass frogs and squirrel treefrogs are commonly found along edges (Bartlett and

Bartlett 1999), and the models confirmed this preference. Edges support an increased abundance

of invertebrates (Harper et al. 2005), and provide an increased amount of sunlight exposure and

emergent vegetation. The importance of edge density in the models show that anurans are

potentially taking advantage of food that edge habitat provides.









Edge density is commonly associated with edge created by urban or agricultural methods.

In this case, it refers to the density of edges between habitats, commonly referred to as ecotones.

Knutson (et al. 1999) found that the amount of forested wetland edges present was positively

associated with anurans in Wisconsin and Iowa, however Marsh and Pearman (1997) found that

some species of anurans in Ecuador were negatively associated with edges created by

fragmentation. Due to the low fragmentation within the parks in this study compared to areas just

outside, negative aspects of edge related to fragmentation are not as prevalent (but see Waddle

2006).

Knutson (et al. 1999) found that anurans responded to environmental characteristics at

several different spatial scales. In this study, narrow mouthed and little grass frogs both

responded to variables on two different scales within the same model (Table 2-11). Stoddard and

Hayes (2004) found that the probability of finding Pacific great salamanders and larval tailed

frogs was greater in wider streams (a local scale variable) with lower gradients (a landscape scale

variable). Variables associated with the intermediate and larger scale predicted anuran

occurrence better than those at the local scale, which is similar to the results found by Price (et

al. 2005) in the Great Lakes region.

The future status of anurans in the Everglades may be affected by the changes that the

Comprehensive Everglades Restoration Plan (CERP) will bring. The goals of CERP include

improving the quality, quantity, timing and distribution of flows into ENP. Canals and levees

will be removed to restore some of the natural sheetflow throughout the park (USACOE 1994),

which will increase hydroperiod. This increase may allow more predators to move into more

habitats, directly affecting anurans. The effects of these changes on anuran species richness may

not be immediate, and may have a larger impact on abundance (Meshaka 2000). Future studies









should include the presence and abundance of predators to determine their effect on anuran

species richness and abundance.









Table 2-1. Habitat classifications simplified from the habitat maps provided by the University of
Georgia (Welch et al. 2002).


Code
W
Cm
Pr
SM
Cp
Pi
Cy
Hd
ShS
SwP
M
RD
Ca
E
D


Description
Water
Cattail Marsh
Prairie/Marsh
Salt Marsh
Cypress Prairie
Pineland
Cypress
Hardwood
Shrub/Scrub
Saw Palmetto
Mangrove
Road
Canal
Exotics
Buildings


Classification
W
PC
PG, PGj, PGc, PGct, Pgm, PGs, PGe, PGp, PGx, PEx, PEs, PEb
PHg, PHs
SVC, SVCd, SVCpi
SVPI, SVPIh, SVx, SVPIc, SVPm
FSc, FSd, FSx, FSCpi
FT, FO, FSh, FC, FSb, FSa
SBs, SBb, SBf, SH, SS
SP
FM, FMa, FMr, FMx, Smr, FB, SC
RD
C
EM, EO, ES, E
H


Classifications were based on potential habitat provided for anurans such as through perch
locations, and general habitat type. See Appendix A for classification abbreviations.









Table 2-2. Additional landscape variables calculated by Fragstats
Variable Description
ShDI Shannon's diversity index
SDI Simpson's diversity index
PR Patch richness
PD Patch richness density
ED Edge density
LSI Landscape shape index









Table 2-3. Delta AIC values of species richness as a function of each diversity index across the
three scales.
Diversity index 200-m 500-m 1000-m
SDI 0.00 12.73 5.50
ShDI 1.20 11.67 6.26
PR 6.08 0.00 0.00
PRD 6.08 0.01 0.27
ED 0.02 0.01 0.21
LSI 0.00 0.00 0.00









Table 2-4. Anurans found in the study
Common name Scientific name
Southern cricket frog Acris gryllus
Marine toad Bufo marinus
Oak toad Bufo quercicus
Southern toad Bufo terrestris
Greenhouse frog Eleutherodactylus planirostris
Narrow-mouthed frog Gastrophryne carolinensis
Green treefrog Hyla cinerea
Barking treefrog Hyla gratiosa
Squirrel treefrog Hyla squirella
Cuban treefrog Osteopilus septentrionalis
Southern chorus frog Psuedacris nigrita
Little grass frog Psuedacris ocularis
Pig frog Rana grylio
Southern leopard frog Rana spenocephala









Table 2-5. Results of regional species richness model selection.
Model AIC AAIC Weight
LSI.500+Park 288.40 0.00 0.08
LSI.1000+Park 288.41 0.00 0.08
Park 288.67 0.26 0.07
LSI. 1000+Park+Hd. 1000 289.01 0.61 0.06
LSI.500*Park 289.55 1.15 0.04
LSI.1000*Park 289.69 1.28 0.04
LSI.500+Park+CP.500 289.84 1.44 0.04
LSI.200+Park 289.90 1.49 0.04
LSI. 1000+Park+RD. 1000 289.95 1.55 0.04
LSI. 1000+Park+ShS. 1000 290.15 1.75 0.03
LSI.500+Park+RD.1000 290.24 1.84 0.03
SDI.1000+LSI.1000+Park 290.25 1.85 0.03
HPAv.Est+LSI.500+Park 290.26 1.85 0.03
LSI.500+Park+Pr.500 290.26 1.85 0.03
LSI.1000+Park+CP.500 290.28 1.88 0.03
LSI.500+Park+Hd.500 290.31 1.91 0.03
HPAv.Est+LSI.1000+Park 290.35 1.95 0.03
SDI.500+LSI.500+Park 290.37 1.97 0.03
LSI.500+Park+ShS.500 290.39 1.98 0.03
LSI. 1000+Park+Pr. 1000 290.39 1.99 0.03
LSI.200*Park 290.83 2.43 0.02
LSI.200+Park+Hd.200 291.05 2.64 0.02
LSI.200+Park+CP.200 291.47 3.06 0.02
HPAv.Est+LSI.200+Park 291.48 3.07 0.02
LSI.200+Park+RD.200 291.59 3.18 0.02
LSI.200+Park+ShS.200 291.61 3.20 0.02
SDI.200+LSI.200+Park 291.88 3.47 0.01
LSI.200+Park+Pr.200 291.89 3.48 0.01
LSI.1000 293.84 5.44 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.









Table 2-6. Results of Big Cypress National Preserve species richness model selection.
Model AIC AAIC Weight
HPAv.Est 144.53 0.00 0.07
LSI.1000 145.28 0.76 0.05
LSI.500 145.33 0.80 0.05
SDI.500 145.57 1.04 0.04
SDI.1000 145.65 1.13 0.04
LSI.200 145.66 1.13 0.04
SDI.200 145.66 1.13 0.04
HPAv.Est+Hd.1000 145.99 1.47 0.03
HPAv.Est+Hd.200 145.99 1.47 0.03
HPAv.Est+Hd.500 146.17 1.65 0.03
HPAv.Est+SDI.1000 146.41 1.89 0.03
HPAv.Est+LSI.1000 146.46 1.93 0.03
HPAv.Est+LSI.500 146.47 1.94 0.03
HPAv.Est+PRD.200 146.47 1.95 0.03
HPAv.Est+PRD.1000 146.49 1.96 0.03
HPAv.Est+PRD.500 146.51 1.99 0.03
HPAv.Est+LSI.200 146.51 1.99 0.03
HPAv.Est+SDI.200 146.52 2.00 0.03
HPAv.Est+SDI.500 146.53 2.00 0.03
LSI. 1000+Hd. 1000 146.53 2.01 0.03
SDI.1000+LSI.1000 147.00 2.47 0.02
LSI.500+Hd.500 147.08 2.56 0.02
LSI.200+Hd.200 147.09 2.57 0.02
PRD.1000+LSI.1000 147.12 2.59 0.02
SDI.500+LSI.500 147.31 2.78 0.02
PRD.500+LSI.500 147.32 2.79 0.02
HPAv.Est*LSI.1000 147.36 2.84 0.02
PRD.200+LSI.200 147.58 3.05 0.01
HPAv.Est*PRD.1000 147.60 3.07 0.01
SDI.200+LSI.200 147.66 3.13 0.01
HPAv.Est+LSI. 1000+Hd. 1000 147.84 3.31 0.01
HPAv.Est+LSI.200+Hd.200 147.99 3.47 0.01
HPAv.Est*PRD.200 148.10 3.57 0.01
HPAv.Est+LSI.500+Hd.500 148.13 3.61 0.01
HPAv.Est*SDI.1000 148.14 3.61 0.01
HPAv.Est*PRD.500 148.27 3.74 0.01
HPAv.Est*LSI.500 148.41 3.88 0.01
HPAv.Est*SDI.500 148.45 3.92 0.01
HPAv.Est*LSI.200 148.48 3.95 0.01
HPAv.Est*SDI.200 148.48 3.96 0.01
SDI.1000*LSI.1000 148.53 4.01 0.01
PRD.1000*LSI.1000 149.06 4.54 0.01
SDI.500*LSI.500 149.14 4.61 0.01
PRD.500*LSI.500 149.25 4.72 0.01









Table 2-6 (Continued).
Model AIC AAIC Weight
SDI.200*LSI.200 149.25 4.73 0.01
PRD.200*LSI.200 149.55 5.03 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.










Table 2-7. Results of Everglades National Park species richness model selection.


Model
LSI.500
LSI. 1000
SDI. 1000
HPAv.Est+PRD.500
LSI.200
SDI.500
PRD.500+LSI.500
LSI.500+Pr
PRD.500*LSI.500
HPAv.Est+LSI.500
LSI. 1000+Pr. 1000
HPAv.Est+LSI.1000
SDI.1000+LSI.1000
HPAv.Est+PRD.200
LSI.500+ShS.500
PRD.200+LSI.200
SDI.500+LSI.500
LSI. 1000+ShS.500
PRD.1000+LSI.1000
HPAv.Est+SDI.1000
SDI.200
LSI.200+ShS.200
HPAv.Est*PRD.500
HPAv.Est+LSI.200
HPAv.Est
LSI.200+Pr.200
SDI.200+LSI.200
HPAv.Est+SDI.500
HPAv.Est*PRD.200
HPAv.Est+LSI.500+ShS
HPAv.Est+PRD.1000
HPAv.Est+LSI. 1000+ShS
PRD.1000*LSI.1000
PRD.200*LSI.200
HPAv.Est+LSI.200+ShS
HPAv.Est+SDI.200
HPAv.Est*PRD.1000


AIC
144.23
144.40
144.49
144.86
145.17
145.19
145.22
145.36
145.40
145.60
145.86
145.90
145.95
145.98
146.10
146.17
146.18
146.29
146.31
146.44
146.45
146.48
146.81
146.92
146.96
147.03
147.05
147.12
147.24
147.28
147.37
147.82
148.05
148.13
148.14
148.45
148.81


AAIC
0.00
0.18
0.27
0.63
0.95
0.97
0.99
1.13
1.18
1.37
1.63
1.67
1.72
1.76
1.87
1.95
1.96
2.07
2.08
2.22
2.22
2.25
2.59
2.69
2.73
2.80
2.83
2.89
3.01
3.05
3.15
3.59
3.82
3.90
3.92
4.22
4.58


AIC weight
0.07
0.06
0.06
0.05
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01


Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.









Table 2-8. Results ofHyla squirella presence model selection in Everglades National Park and
Big Cypress National Preserve.
Model AIC AAIC AIC Weight
SDI. 1000+LSI. 1000+Cy.500 56.53 0.00 0.45
SDI.1000+LSI.1000 60.65 4.12 0.06
LSI.1000 60.85 4.32 0.05
SDI.1000*LSI.1000 61.17 4.64 0.04
SDI. 1000+LSI. 1000+HpAv.Est 61.32 4.79 0.04
SDI.500+LSI.1000 61.53 5.00 0.04
LSI.1000+HPAv.Est 61.57 5.04 0.04
LSI.1000*HPAv.Est 61.64 5.11 0.03
SDI.500+LSI. 1000+HpAv.Est 61.65 5.12 0.03
SDI.1000*LSI.500 61.97 5.44 0.03
SDI.1000+LSI.500 62.72 6.19 0.02
SDI. 1000 62.94 6.41 0.02
LSI.500 63.05 6.52 0.02
SDI.500*LSI.1000 63.10 6.57 0.02
SDI. 1000*LSI. 1000*HPAv.Est 63.17 6.64 0.02
LSI.500+HPAv.Est 63.36 6.83 0.01
SDI. 1000*LSI.500*HpAv.Est 63.54 7.01 0.01
LSI.500*HPAv.Est 63.65 7.12 0.01
SDI. 1000+LSI.500+HpAv.Est 63.67 7.14 0.01
SDI.500+LSI.500+HpAv.Est 64.26 7.73 0.01
SDI.1000+HPAv.Est 64.84 8.31 0.01
SDI.500+LSI.500 64.91 8.38 0.01
Cy.500 64.91 8.38 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.









Table 2-9. Results ofBufo terrestris presence model selection in Everglades National Park and
Big Cypress National Preserve.
Model AIC AAIC AIC Weight
LSI.500*CP.1000 90.17 0.00 0.18
LSI.500 90.60 0.43 0.14
Lsi.500+HD1000 91.84 1.67 0.08
Lsi.500+CP.1000 91.89 1.72 0.08
SDI.500+LSI.500 92.50 2.33 0.06
LSI.500+HPAv.Est 92.57 2.40 0.05
LSI.1000 93.37 3.20 0.04
LSI.500*HD.1000 93.84 3.67 0.03
SDI.500*LSI.500 94.21 4.04 0.02
LSI.500*HPAv.Est 94.24 4.07 0.02
SDI.500+LSI.500+HpAv.Est 94.48 4.31 0.02
SDI.500 94.50 4.33 0.02
LSI.200 94.85 4.68 0.02
LSI.1000+SDI.500 94.87 4.70 0.02
LSI.1000+HPAv.Est 95.22 5.05 0.01
SDI.1000+LSI.1000 95.35 5.18 0.01
SDI.200 95.76 5.59 0.01
HD1000 95.88 5.71 0.01
HD200 95.88 5.71 0.01
SDI.1000 96.13 5.96 0.01
SDI.500+HPAv.Est 96.15 5.98 0.01
CP.1000 96.22 6.05 0.01
LSI.200+HPAv.Est 96.38 6.21 0.01
HD.500 96.50 6.33 0.01
LSI.1000*HPAv.Est 96.65 6.48 0.01
Pi.500 96.74 6.57 0.01
SDI.200+LSI.200 96.83 6.66 0.01
SDI.500*LSI.500*HPAv.Est 96.90 6.73 0.01
CP.200 97.01 6.84 0.01
HPAv. Est 97.03 6.86 0.01
HPAv. Est 97.03 6.86 0.01
HPAv. Est 97.03 6.86 0.01
SDI.200+HPAv.Est 97.13 6.96 0.01
CP.500 97.15 6.98 0.01
SDI. 1000+LSI. 1000+HpAv.Est 97.21 7.04 0.01
SDI.1000*LSI.1000 97.26 7.09 0.01
Pi.1000 97.28 7.11 0.01
Pi.200 97.28 7.11 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.









Table 2-10. Results ofPseudacris occularis presence model selection in Big Cypress National
Preserve.
Model AIC AAIC AIC Weight
SDI.500*LSI.500 46.57 0.00 0.09
PI500+LSI.1000 47.00 0.43 0.07
Pi500+LSI.500 47.18 0.61 0.07
LSI. 1000 47.36 0.79 0.06
Pi.500 47.55 0.98 0.06
LSI.500 47.71 1.14 0.05
SDI.500+LSI.500 48.69 2.12 0.03
SDI.1000*LSI.500 48.90 2.33 0.03
LSI.1000+HPAv.Est 48.95 2.38 0.03
SDI.1000+LSI.1000 49.11 2.54 0.03
LSI.500+HPAv.Est 49.18 2.61 0.02
HPAv. Est 49.24 2.67 0.02
SDI.500+LSI.1000 49.25 2.68 0.02
SDI.1000+LSI.500 49.37 2.80 0.02
Pi. 1000 49.49 2.92 0.02
Pi.200 49.49 2.92 0.02
LSI.1000*HPAv.Est 49.65 3.08 0.02
SDI.500*LSI.1000 49.84 3.27 0.02
SDI.500+LSI.500+HpAv.Est 50.07 3.50 0.02
LSI.200 50.10 3.53 0.02
SDI.1000*LSI.1000 50.17 3.60 0.02
SDI.500 50.31 3.74 0.01
HD.500 50.32 3.75 0.01
Cy. 1000 50.33 3.76 0.01
Cy.200 50.33 3.76 0.01
Cy.500 50.40 3.83 0.01
SDI. 1000 50.46 3.89 0.01
SDI.200 50.49 3.92 0.01
HD.1000 50.64 4.07 0.01
HD.200 50.64 4.07 0.01
Pr.1000 50.66 4.09 0.01
Pr.200 50.66 4.09 0.01
Pr.500 50.66 4.09 0.01
LSI.200+HPAv.Est 50.67 4.10 0.01
SDI. 1000+LSI. 1000+HpAv.Est 50.70 4.13 0.01
LSI.500*HPAv.Est 51.05 4.48 0.01
SDI.500+HPAv.Est 51.15 4.58 0.01
SDI.1000+HPAv.Est 51.16 4.59 0.01
SDI.200+HPAv.Est 51.19 4.62 0.01
LSI.200*HPAv.Est 51.58 5.01 0.01
SDI.200+LSI.200 51.88 5.31 0.01
SDI.200+LSI.200+HpAv.Est 51.93 5.36 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.









Table 2-11. Results of Gastrophryne carolinensis presence model selection in Everglades
National Park and Big Cypress National Preserve.
Model AIC AAIC AIC Weight
CP.500 86.40 0.00 0.13
CP.200 87.42 1.02 0.08
CP. 1000 87.63 1.23 0.07
CP.500+LSI.1000 87.91 1.51 0.06
SDI.200*LSI.1000*CP.500 88.54 2.14 0.04
SDI200*LSI1000 88.73 2.33 0.04
CP.1000+LSI.1000 88.73 2.33 0.04
SDI.1000+LSI.1000 89.66 3.26 0.02
SDI.1000*LSI.1000 89.89 3.49 0.02
SDI.200+LSI. 1000+CP.500 89.89 3.49 0.02
Pr. 1000 89.96 3.56 0.02
Pr.200 89.96 3.56 0.02
SDI.200*LSI.200 90.12 3.72 0.02
LSI.500 90.15 3.75 0.02
Pi.500 90.15 3.75 0.02
HD. 1000 90.28 3.89 0.02
HD.200 90.28 3.89 0.02
Pi. 1000 90.38 3.98 0.02
Pi.200 90.38 3.98 0.02
LSI. 1000 90.47 4.07 0.02
SDI. 1000+LSI. 1000+HpAv.Est 90.50 4.10 0.02
SDI.500+LSI.500 90.69 4.29 0.01
HPAv. Est 90.73 4.33 0.01
HPAv. Est 90.73 4.33 0.01
LSI.200 90.73 4.33 0.01
HPAv. Est 90.73 4.33 0.01
Cy.1000 90.77 4.37 0.01
Cy.200 90.77 4.37 0.01
SDI. 1000 90.80 4.40 0.01
HD.500 90.81 4.42 0.01
LSI.500+HPAv.Est 90.88 4.48 0.01
Pr.500 90.98 4.58 0.01
Cy.500 91.11 4.71 0.01
SDI.200 91.14 4.74 0.01
SDI.500 91.15 4.75 0.01
SDI.500+LSI.500+HpAv.Est 91.39 4.99 0.01
SDI.500*LSI.500 91.83 5.43 0.01
LSI.500*HPAv.Est 91.94 5.54 0.01
LSI.200+HPAv.Est 92.01 5.61 0.01
SDI.200+LSI.200 92.09 5.69 0.01
LSI.1000*HPAv.Est 92.37 5.97 0.01
SDI.1000+HPAv.Est 92.52 6.12 0.01
LSI.200*HPAv.Est 92.63 6.23 0.01









Table 2-11 (Continued).
Model AIC AAIC AIC Weight
SDI.500+HPAv.Est 92.67 6.27 0.01
SDI.200+HPAv.Est 92.69 6.29 0.01
Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.












a o a o )
I n I i M < M I _n n < I W 1 0 Z 1 Q


*NI
Noun


. II


1990-






1995 -






2000-






2005-






2010-


UI
m U








U m___


a m I


mm *


Iml l
* I *


II I I 1 I I I I
W o4 ' 0
S 2 < 2 n < Q o Z 0


Landscape
1990 Hydroperiod Calendar
-1990
for
A9 Pinecrest




-1995






-2000
OA9

Explanation
Color coding show s
wetland water stage
relative to major 3.5
-2005 landscape res -3
-U
xeric
m esic -


-2010


l* m- I
m niri iilra m i aI





Mama
I *I. rrnu.l





SI m g* *-



lim m.i. *g i *
I ;:~m. r

~l *l im!3111 rn I* *
~u


Figure 2-1. Landscape hydroperiod calendar representing water station A9 in Big Cypress
National Preserve. The height of the bars represents the water depth, while the color
represents habitat type. For example, one would expect nearby prairie habitats to be
flooded when the color on the calendar was yellow, orange or red. Calendar re-
printed with permission (Source: http://www.fgcu.edu/bcw/BCNP/BCNP.htm. Last
accessed April, 2008).


I-
prairie* 10
tall cy press
swamp forest 0 0
* prairie coding includes dwarf cypress


m


!












+ + .
*!|nn iiii~~


T T


t T t t


* +


I I I I Ie I I I > I I _C 1 .0
5, 5 5 0 W CU
'S) I S, U 0

B


a r L ^ O lIi
I I I i ( I I I LI- I


Figure 2-2. These figures provide an example of the process I used to estimate hydroperiod for
each site. They are modified from Figure 2.1 to show only the study period from
March 2002-February 2003 for a site in BCNP. A) I marked water in each month as
present or absent (red, dashed is absent, black, solid is present) going from the
general site data collected during each survey. B) To estimate hydroperiod I used the
presence/absence of water to mark off periods of time. Solid vertical lines indicate the
period of time where water was consecutively present. Horizontal dashed lines
indicate when water was absent from the site. The estimation, dashed black vertical
line was based on color-coding (representing major landscape types) as well as the
width of the line (representing depth). The number of days between these lines was
counted for the total days wet.









CHAPTER 3
CONCLUSION

The multiple-scale approach I used in this thesis showed that more than just the immediate

area of a site should be considered for predicting anuran presence. Simple local habitat

characteristics are not enough to understand anuran presence due to their tendency to move

between habitats (Gibbs 1998). This type of approach is important for researchers and managers

to help understand a species or community and make better decisions. If only habitat

immediately surrounding an area is observed, prediction of the anuran community in a similar

area may be biased due to characteristics of an adjacent region.

One thing that I did not examine in this thesis was landscape effect on abundance. While

this data does exist, I felt the large annual fluctuations in anuran population size demanded a

multi-year study to adequately test hypotheses concerning scale and abundance. Hydroperiod

may be more suitable for testing hypotheses concerning abundance because it has a direct

influence on breeding anurans and tadpole growth. Presence of anurans is unlikely to change

much, with the exceptions of local short-term extinctions (Gibbs 1998) unless there are more

severe, large-scale disturbances in effect.

The Intermediate Disturbance Hypothesis (IDH) is also a theory to consider. Hydroperiod

can be considered a disturbance in the Everglades due to its fluctuation. In the objectives of this

thesis the IDH would state that the largest number of anuran species would be in the intermediate

range of hydroperiod. Hydroperiod negatively impacted anuran richness, as well as presence of

the four species examined (chapter 2). The IDH would have been an interesting theory to test,

however, there were only 3 sites that were permanently inundated compared to 17 sites with

approximately 240 days wet. These sites can also fluctuate widely, and a multi-year study

looking at a more even range of hydroperiod would be more appropriate. Martin and McComb









(2003) used maturity of forests within the landscape as the basis for looking at IDH in relation to

amphibian species. They did find that at the intermediate level of mature forests and younger

patch types, capture rates of amphibians were highest.

Future studies should include more accurate water readings; water depth and quality would

be two variables to consider. Water quality, depending on location of the site and proximity to

roads or canals, may be heavily affected by outside sources such as agriculture. Water depth

coincides with breeding, and tadpoles. In addition, predators are an important component of the

landscape and their presence should be noted or sampled along with anurans where possible. The

presence of fish drives populations of anurans in other parts of the country (Hecnar and

M'Closkey 1997), and may have similar impacts on anurans in the Everglades.









APPENDIX A
VEGETATION CLASSIFICATIONS

Table A-1. Description of vegetation classification abbreviations used in chapter 2 (see Table 2-


Code
W
Cm
Pr











SM

Cp


Pi




Cy



Hd






ShS


1).
Vegetation classification
W
PC
PG
PGj
PGc
PGm
PGs
PGe
PGp
PGx
PEx
PEs/o
PEb
PHg
PHs
SVC
SVCd
SVCpi
SVPI
SVPIh
SVx
SVPIc
SVPM
FSc
FSd
FSx
FSCpi
FT
FO
FSh
FC
FSb
FSa
SBs
SBb
SBf
SH
SS


Description
Water
Cattail marsh
Graminoid prairie/marsh
Black rush
Sawgrass
Muhly grass
Cordgrass
Spike rush
Common reed
Mixed graminoids
Mixed non graminoid emergents
Other mixed non graminoids
Broadleaf emergent
Salt tolerant graminoids
Salt tolerant succulents
Cypress savanna
Dwarf cypress savanna
Cypress with pine savanna
Pine Savanna
Slash pine with hardwoods
Slash pine mixed with palms
Slash pine with hardwoods
Palm savanna
Cypress strands
Cypress domes/heads
Cypress mixed hardwoods
Cypress-pines
Subtropical hardwood forest
Oak sabel forest
Mixed hardwood swamp forest
Cabbage palm
Bayhead
Mixed hardwoods
Willow
Groundsel bush
Pop ash
Hardwood scrub
Bay-Hardwood scrub









Table A-1 (Continued).
Code Vegetation classification Description
SwP SP Saw palmetto
M FM Mangrove forest
FMa Black mangrove
FMr Red mangrove
FMx Mixed mangrove
Smr Red mangrove scrub
FB Buttonwood forest
SC Buttonwood scrub
RD RD Major road
Ca C Major canal
E EM Cajeput
EO Lather leaf
ES Brazilian pepper
E Exotic
D HI Human influence (buildings, parking lots,
lawns)
More complete descriptions can be found in the Vegetation Classification System for South
Florida National Parks document
(http://fcelter.flu.edu/gis/metadata/everglades vegetation_classification.htm).









APPENDIX B
ALL MODELS TESTED

Table B-1. All models tested to describe regional species richness


Model
LSI.500+Park
LSI.1000+Park
Park
LSI.1000+Park+Hd
LSI.500*Park
LSI.1000*Park
LSI.500+Park+CP
LSI.200+Park
LSI.1000+Park+RD
LSI.1000+Park+ShS
LSI.500+Park+RD
SDI. 1000+LSI. 1000+Park
HPAv.Est+LSI.500+Park
LSI.500+Park+Pr
LSI.1000+Park+CP
LSI.500+Park+Hd
HPAv.Est+LSI. 1000+Park
SDI.500+LSI.500+Park
LSI.500+Park+ShS
LSI. 1000+Park+Pr
LSI.200*Park
LSI.200+Park+Hd
LSI.200+Park+CP
HPAv.Est+LSI.200+Park
LSI.200+Park+RD
LSI.200+Park+ShS
SDI.200+LSI.200+Park
LSI.200+Park+Pr
LSI. 1000
PRD. 1000+LSI. 1000
LSI. 1000*Park*HPAv.Est
LSI. 500*Park*HPAv.Est
PRD.500
PRD. 1000*LSI. 1000
SDI.1000*LSI.1000
SDI. 1000+LSI. 1000
PRD.500+LSI.500
HPAv.Est+LSI. 1000
LSI.500
PRD.500*LSI.500
LSI.1000*Park*Hd


AIC
288.40
288.41
288.67
289.02
289.55
289.69
289.84
289.90
289.95
290.15
290.24
290.25
290.26
290.26
290.28
290.31
290.35
290.37
290.39
290.39
290.83
291.05
291.47
291.48
291.59
291.61
291.88
291.89
293.84
294.64
294.99
295.18
295.26
295.36
295.45
295.45
295.50
295.62
295.68
295.96
296.29


AAIC
0
0.0011
0.2645
0.6126
1.1491
1.2812
1.4379
1.4947
1.5453
1.7499
1.8375
1.8466
1.8503
1.8503
1.879
1.9087
1.9492
1.9681
1.9845
1.9889
2.4261
2.6427
3.0607
3.0716
3.1835
3.2003
3.4712
3.4813
5.4382
6.2309
6.5838
6.772
6.8597
6.9519
7.0492
7.0492
7.0938
7.211
7.2702
7.5502
7.8867


AIC Weight
0.08
0.08
0.07
0.06
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00










Table B-l (Continued).
Model
LSI.500*Park*Hd
LSI.200*Park*HPAv.Est
HPAv.Est*LSI.1000
HPAv.Est+LSI.500
SDI.500+LSI.500
PRD. 1000
LSI.200*Park*Hd
SDI.500*LSI.500
HPAv.Est*LSI.500
SDI. 1000
SDI.500
LSI.200
SDI.200
SDI.200+LSI.200
HPAv.Est+LSI.200
PRD.200+LSI.200
SDI.200*LSI.200
HPAv.Est*LSI.200
PRD.200*LSI.200
PRD.200
HPAv.Est


AIC
296.42
296.92
297.19
297.42
297.63
297.84
297.89
298.31
299.39
299.96
301.03
303.95
304.72
305.60
305.85
305.85
307.37
307.48
307.81
308.27
309.95


AAIC
8.012
8.5121
8.7816
9.012
9.2203
9.4345
9.4841
9.9098
10.9806
11.5528
12.6285
15.5415
16.3103
17.1948
17.4472
17.4497
18.9653
19.0752
19.4021
19.8645
21.5412


AIC Weight
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00










Table B-2. All models tested to describe
Model AIC
HPAv.Est 144.53
LSI.1000 145.28
LSI.500 145.33
SDI.500 145.57
SDI.1000 145.65
LSI.200 145.66
SDI.200 145.66
HPAv.Est+Hd.1000 145.99
HPAv.Est+Hd.200 145.99
HPAv.Est+Hd.500 146.17
HPAv.Est+SDI.1000 146.41
HPAv.Est+LSI.1000 146.46
HPAv.Est+LSI.500 146.47
HPAv.Est+PRD.200 146.47
HPAv.Est+PRD.1000 146.49
HPAv.Est+PRD.500 146.51
HPAv.Est+LSI.200 146.51
HPAv.Est+SDI.200 146.52
HPAv.Est+SDI.500 146.53
LSI.1000+Hd.1000 146.53
SDI.1000+LSI.1000 147.00
LSI.500+Hd.500 147.08
LSI.200+Hd.200 147.09
PRD.1000+LSI.1000 147.12
SDI.500+LSI.500 147.31
PRD.500+LSI.500 147.32
HPAv.Est*LSI.1000 147.36
PRD.200+LSI.200 147.58
HPAv.Est*PRD.1000 147.60
SDI.200+LSI.200 147.66
HPAv.Est+LSI. 1000+Hd. 1000 147.84
HPAv.Est+LSI.200+Hd.200 147.99
HPAv.Est*PRD.200 148.10
HPAv.Est+LSI.500+Hd.500 148.13
HPAv.Est*SDI.1000 148.14
HPAv.Est*PRD.500 148.27
HPAv.Est*LSI.500 148.41
HPAv.Est* SDI.500 148.45
HPAv.Est*LSI.200 148.48
HPAv.Est*SDI.200 148.48
SDI.1000*LSI.1000 148.53
PRD.1000*LSI.1000 149.06
SDI.500*LSI.500 149.14
PRD.500*LSI.500 149.25


species richness in Big Cypress National Preserve
AAIC AIC Weight
0.00 0.07
0.76 0.05
0.80 0.05
1.04 0.04
1.13 0.04
1.13 0.04
1.13 0.04
1.47 0.03
1.47 0.03
1.65 0.03
1.89 0.03
1.93 0.03
1.94 0.03
1.95 0.03
1.96 0.03
1.99 0.03
1.99 0.03
2.00 0.03
2.00 0.03
2.01 0.03
2.47 0.02
2.56 0.02
2.57 0.02
2.59 0.02
2.78 0.02
2.79 0.02
2.84 0.02
3.05 0.01
3.07 0.01
3.13 0.01
3.31 0.01
3.47 0.01
3.57 0.01
3.61 0.01
3.61 0.01
3.74 0.01
3.88 0.01
3.92 0.01
3.95 0.01
3.96 0.01
4.01 0.01
4.54 0.01
4.61 0.01
4.72 0.01









Table B-2 (Continued).
Model AIC AAIC AIC Weight
SDI.200*LSI.200 149.25 4.73 0.01
PRD.200*LSI.200 149.55 5.03 0.01
HPAv.Est*LSI. 1000*Hd. 1000 154.69 10.16 0.00
HPAv.Est*LSI.500*Hd.500 155.31 10.79 0.00
HPAv.Est*LSI.200*Hd.200 155.82 11.29 0.00










Table B-3. All models tested to describe species richness in Everglades National Park


Model
LSI.500
LSI. 1000
SDI. 1000
HPAv.Est+PRD.500
LSI.200
SDI.500
PRD.500+LSI.500
LSI.500+Pr
PRD.500*LSI.500
HPAv.Est+LSI.500
LSI. 1000+Pr. 1000
HPAv.Est+LSI.1000
SDI.1000+LSI.1000
HPAv.Est+PRD.200
LSI.500+ShS.500
PRD.200+LSI.200
SDI.500+LSI.500
LSI. 1000+ShS.500
PRD.1000+LSI.1000
HPAv.Est+SDI.1000
SDI.200
LSI.200+ShS.200
HPAv.Est*PRD.500
HPAv.Est+LSI.200
HPAv.Est
LSI.200+Pr.200
SDI.200+LSI.200
HPAv.Est+SDI.500
HPAv.Est*PRD.200
HPAv.Est+LSI.500+ShS
HPAv.Est+PRD.1000
HPAv.Est+LSI. 1000+ShS
PRD.1000*LSI.1000
PRD.200*LSI.200
HPAv.Est+LSI.200+ShS
HPAv.Est+SDI.200
HPAv.Est*PRD.1000


AIC
144.23
144.40
144.49
144.86
145.17
145.19
145.22
145.36
145.40
145.60
145.86
145.90
145.95
145.98
146.10
146.17
146.18
146.29
146.31
146.44
146.45
146.48
146.81
146.92
146.96
147.03
147.05
147.12
147.24
147.28
147.37
147.82
148.05
148.13
148.14
148.45
148.81


AAIC
0.00
0.18
0.27
0.63
0.95
0.97
0.99
1.13
1.18
1.37
1.63
1.67
1.72
1.76
1.87
1.95
1.96
2.07
2.08
2.22
2.22
2.25
2.59
2.69
2.73
2.80
2.83
2.89
3.01
3.05
3.15
3.59
3.82
3.90
3.92
4.22
4.58


AIC weight
0.07
0.06
0.06
0.05
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01










Table B-4. All models tested to describe Hyla squirella presence Big Cypress National Preserve
and Everglades National Park.


Model
SDI. 1000+LSI. 1000+Cy.500
SDI.1000+LSI.1000
LSI. 1000
SDI. 1000*LSI. 1000
SDI. 1000+LSI. 1000+HpAv.Est
SDI.500+LSI. 1000
LSI.1000+HPAv.Est
LSI.1000*HPAv.Est
SDI. 500+LSI. 1000+HpAv.Est
SDI.1000*LSI.500
SDI. 1000+LSI. 500
SDI. 1000
LSI.500
SDI.500*LSI.1000
SDI. 1000*LSI. 1000*HPAv.Est
LSI.500+HPAv.Est
SDI. 1000*LSI.500*HpAv.Est
LSI.500*HPAv.Est
SDI. 1000+LSI.500+HpAv.Est
SDI. 500+LSI. 500+HpAv.Est
SDI. 1000+HPAv.Est
SDI.500+LSI.500
Cy.500
SDI.500*LSI.500
SDI. 1000+HPAv.Est
SDI. 500*LSI. 1000*HpAv.Est
SDI.500
SDI.200+HPAv.Est
SDI.500*LSI. 500*HPAv.Est
SDI.500+HPAv.Est
SDI.200
SDI.200*LSI.200*HPAv.Est
Cy.1000
Cy.200
SDI.200+LSI.200
SDI.200+HPAv.Est
Prl000
Pr200
SDI.200*LSI.200
SDI.200+L SI.200+HpAv.Est
LSI.200*HPAv.Est
LSI.200
LSI.200+HPAv.Est


AIC
56.53
60.65
60.85
61.17
61.32
61.53
61.57
61.64
61.65
61.97
62.72
62.94
63.05
63.10
63.17
63.36
63.54
63.65
63.67
64.26
64.84
64.91
64.91
65.92
66.04
66.21
68.10
68.48
69.12
69.93
70.41
70.58
70.89
70.89
72.38
72.40
74.05
74.05
74.19
74.35
74.68
75.08
77.08


AAIC
0.00
4.12
4.32
4.64
4.79
5.00
5.04
5.11
5.12
5.44
6.19
6.41
6.52
6.57
6.64
6.83
7.01
7.12
7.14
7.73
8.31
8.38
8.38
9.39
9.51
9.68
11.57
11.95
12.59
13.40
13.88
14.05
14.36
14.36
15.85
15.87
17.52
17.52
17.66
17.82
18.15
18.55
20.55


AIC Weight
0.45
0.06
0.05
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00









Table B-4 (Continued).
Model AIC AAIC AIC Weight
Pr.500 78.02 21.49 0.00
HPAv. Est 83.00 26.47 0.00
HD.1000 83.15 26.62 0.00
HD.200 83.15 26.62 0.00
Pi.1000 83.52 26.99 0.00
Pi.200 83.52 26.99 0.00
HD.500 83.67 27.14 0.00
Pi.500 83.80 27.27 0.00
SDI.500+HPAv.Est 90.51 33.98 0.00









Table B-5. All models tested to describe Bufo terrestris presence Big Cypress National Preserve
and Everglades National Park.
Model AIC AAIC AIC Weight
LSI.500*CP.1000 90.17 0.00 0.18
LSI.500 90.60 0.43 0.14
LSI.500+HD1000 91.84 1.67 0.08
LSI.500+CP.1000 91.89 1.72 0.08
SDI.500+LSI.500 92.50 2.33 0.06
LSI.500+HPAv.Est 92.57 2.40 0.05
LSI.1000 93.37 3.20 0.04
LSI.500*HD.1000 93.84 3.67 0.03
SDI.500*LSI.500 94.21 4.04 0.02
LSI.500*HPAv.Est 94.24 4.07 0.02
SDI.500+LSI.500+HpAv.Est 94.48 4.31 0.02
SDI.500 94.50 4.33 0.02
LSI.200 94.85 4.68 0.02
LSI.1000+SDI.500 94.87 4.70 0.02
LSI.1000+HPAv.Est 95.22 5.05 0.01
SDI.1000+LSI.1000 95.35 5.18 0.01
SDI.200 95.76 5.59 0.01
HD1000 95.88 5.71 0.01
HD200 95.88 5.71 0.01
SDI.1000 96.13 5.96 0.01
SDI.500+HPAv.Est 96.15 5.98 0.01
CP.1000 96.22 6.05 0.01
LSI.200+HPAv.Est 96.38 6.21 0.01
HD500 96.50 6.33 0.01
LSI.1000*HPAv.Est 96.65 6.48 0.01
Pi.500 96.74 6.57 0.01
SDI.200+LSI.200 96.83 6.66 0.01
SDI.500*LSI.500*HPAv.Est 96.90 6.73 0.01
CP.200 97.01 6.84 0.01
HPAv. Est 97.03 6.86 0.01
HPAv. Est 97.03 6.86 0.01
HPAv. Est 97.03 6.86 0.01
SDI.200+HPAv.Est 97.13 6.96 0.01
CP.500 97.15 6.98 0.01
SDI. 1000+LSI. 1000+HpAv.Est 97.21 7.04 0.01
SDI.1000*LSI.1000 97.26 7.09 0.01
Pi.1000 97.28 7.11 0.01
Pi.200 97.28 7.11 0.01
SDI.1000+HPAv.Est 97.47 7.30 0.00
Pr.1000 97.98 7.81 0.00
Pr.200 97.98 7.81 0.00
Cy.500 98.03 7.86 0.00
Cv.1000 98.11 7.94 0.00









Table B-5 (Continued).
Model AIC AAIC AIC Weight
Cy.200 98.11 7.94 0.00
Pr.500 98.11 7.94 0.00
SDI.500+HPAv.Est 98.14 7.97 0.00
LSI.200*HPAv.Est 98.24 8.07 0.00
SDI.200+LSI.200+HpAv.Est 98.36 8.19 0.00
SDI.200*LSI.200 98.48 8.31 0.00
SDI.200+HPAv.Est 99.03 8.86 0.00
SDI.1000+HPAv.Est 99.46 9.29 0.00
SDI.200*LSI.200*HPAv.Est 100.40 10.23 0.00
SDI. 1000*LSI. 1000*HPAv.Est 101.71 11.54 0.00










Table B-6. All models tested to describe Psuedacris occularis presence Big Cypress National
Preserve.


Model
SDI.500*LSI.500
PI500+LSI.1000
Pi500+LSI.500
LSI. 1000
Pi.500
LSI.500
SDI.500+LSI.500
SDI.1000*LSI.500
LSI.1000+HPAv.Est
SDI.1000+LSI.1000
LSI.500+HPAv.Est
HPAv. Est
SDI.500+LSI.1000
SDI.1000+LSI.500
Pi. 1000
Pi.200
LSI.1000*HPAv.Est
SDI.500*LSI.1000
SDI. 500+LSI. 500+HpAv.Est
LSI.200
SDI.1000*LSI.1000
SDI.500
HD.500
Cy.1000
Cy.200
Cy.500
SDI. 1000
SDI.200
HD. 1000
HD.200
Pr. 1000
Pr.200
Pr.500
LSI.200+HPAv.Est
SDI. 1000+LSI. 1000+HpAv.Est
LSI.500*HPAv.Est
SDI.500+HPAv.Est
SDI. 1000+HPAv.Est
SDI.200+HPAv.Est
LSI.200*HPAv.Est
SDI.200+LSI.200
SDI.200+L SI.200+HpAv.Est
SDI.500+HPAv.Est


AIC
46.57
47.00
47.18
47.36
47.55
47.71
48.69
48.90
48.95
49.11
49.18
49.24
49.25
49.37
49.49
49.49
49.65
49.84
50.07
50.10
50.17
50.31
50.32
50.33
50.33
50.40
50.46
50.49
50.64
50.64
50.66
50.66
50.66
50.67
50.70
51.05
51.15
51.16
51.19
51.58
51.88
51.93
52.68


AAIC
0.00
0.43
0.61
0.79
0.98
1.14
2.12
2.33
2.38
2.54
2.61
2.67
2.68
2.80
2.92
2.92
3.08
3.27
3.50
3.53
3.60
3.74
3.75
3.76
3.76
3.83
3.89
3.92
4.07
4.07
4.09
4.09
4.09
4.10
4.13
4.48
4.58
4.59
4.62
5.01
5.31
5.36
6.11


AIC Weight
0.09
0.07
0.07
0.06
0.06
0.05
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00









Table B-6 (Continued).
Model AIC AAIC AIC Weight
SDI.1000+HPAv.Est 53.15 6.58 0.00
SDI.500*LSI.500*HPAv.Est 53.63 7.06 0.00
SDI.200*LSI.200 53.81 7.24 0.00
SDI. 1000*LSI. 1000*HPAv.Est 56.26 9.69 0.00
SDI.200*LSI.200*HPAv.Est 57.84 11.27 0.00









Table B-7. All models tested to describe Gastrophryne carolinensis presence Big Cypress
National Preserve and Everglades National Park.
Model AIC AAIC AIC Weight
CP.500 86.40 0.00 0.13
CP.200 87.42 1.02 0.08
CP.1000 87.63 1.23 0.07
CP.500+LSI.1000 87.91 1.51 0.06
SDI.200*LSI.1000*CP.500 88.54 2.14 0.04
SDI200*LSI1000 88.73 2.33 0.04
CP.1000+LSI.1000 88.73 2.33 0.04
SDI.1000+LSI.1000 89.66 3.26 0.02
SDI.1000*LSI.1000 89.89 3.49 0.02
SDI.200+LSI. 1000+CP.500 89.89 3.49 0.02
Pr.1000 89.96 3.56 0.02
Pr.200 89.96 3.56 0.02
SDI.200*LSI.200 90.12 3.72 0.02
LSI.500 90.15 3.75 0.02
Pi.500 90.15 3.75 0.02
HD.1000 90.28 3.89 0.02
HD.200 90.28 3.89 0.02
Pi.1000 90.38 3.98 0.02
Pi.200 90.38 3.98 0.02
LSI.1000 90.47 4.07 0.02
SDI. 1000+LSI. 1000+HpAv.Est 90.50 4.10 0.02
SDI.500+LSI.500 90.69 4.29 0.01
HPAv. Est 90.73 4.33 0.01
HPAv. Est 90.73 4.33 0.01
LSI.200 90.73 4.33 0.01
HPAv. Est 90.73 4.33 0.01
Cy.1000 90.77 4.37 0.01
Cy.200 90.77 4.37 0.01
SDI.1000 90.80 4.40 0.01
HD.500 90.81 4.42 0.01
LSI.500+HPAv.Est 90.88 4.48 0.01
Pr.500 90.98 4.58 0.01
Cy.500 91.11 4.71 0.01
SDI.200 91.14 4.74 0.01
SDI.500 91.15 4.75 0.01
SDI.500+LSI.500+HpAv.Est 91.39 4.99 0.01
SDI.500*LSI.500 91.83 5.43 0.01
LSI.500*HPAv.Est 91.94 5.54 0.01
LSI.200+HPAv.Est 92.01 5.61 0.01
SDI.200+LSI.200 92.09 5.69 0.01
LSI.1000*HPAv.Est 92.37 5.97 0.01
SDI.1000+HPAv.Est 92.52 6.12 0.01
LSI.200*HPAv.Est 92.63 6.23 0.01









Table B-7 (Continued).
Model AIC AAIC AIC Weight
SDI.500+HPAv.Est 92.67 6.27 0.01
SDI.200+HPAv.Est 92.69 6.29 0.01
SDI.200+LSI.200+HpAv.Est 93.34 6.94 0.00
SDI. 1000+HPAv.Est 94.13 7.73 0.00
SDI.200*LSI.200*HPAv.Est 94.32 7.92 0.00
LSI.1000+HPAv.Est 94.45 8.05 0.00
SDI.500+HPAv.Est 94.67 8.27 0.00
SDI.200+HPAv.Est 94.68 8.28 0.00
SDI. 1000*LSI. 1000*HPAv.Est 95.06 8.66 0.00









LIST OF REFERENCES


BABBIT, K. J. 2005. The relative importance of wetland size and hydroperiod for amphibians in
southern New Hampshire, USA. Wetlands Ecology and Management 13: 269-279.

BABBIT, K. J., AND G. W. TANNER. 1997. Use of temporary wetlands by anurans in a
hydrologically modified landscape. Wetlands 20:313-322.

BARTLETT, R. D., AND P. P. BARTLETT. 1999. A field guide to Florida reptiles and amphibians.
Gulf Publishing Company, Houston, TX.

BERTRAND, M. R., A. J. DENICOLA, S. R. BEISSINGER, ANDR. K. SWIHART. 1996. Effects of
parturition on home ranges and social affiliations of female white-tailed deer. Journal of
Wildlife Management 60:899-909.

BISSONTTE, J. A. 1997. Scale-sensitive ecological properties: historical context, current
meaning. Pp. 3-31. In: BISSONETTE, J. A. (ed.). Wildlife and landscape ecology: effects
of pattern and scale. Springer-Verlag, New York, New York, USA.

BURNHAM, K. P., AND D. R. ANDERSON. 1998. Model selection and inference: a practical
information-theoretic approach. Springer-Verlag, New York, New York, USA.

CARR, A. F. 1940. A contribution to the herpetology of Florida. University of Florida,
Gainesville, FL.

CEDERLUND, G., AND H. SAND. 1994. Home-range size in relation to age and sex in moose.
Journal of Mammalogy 75:1005-1012.

DODD, K.C., W.J. BARICHIVICH, S.A. JOHNSON, AND J.D. STAIGER. 2007. Changes in a
northwestern Florida gulf coast herpetofaunal community over a 28-y period. American
Midland Naturalist. 158:29-48.

DODD, K.C., AND B.S. CADE. 1998. Movement patterns and the conservation of amphibians
breeding in small, temporary wetlands. Conservation Biology 12:331-339.

DUEVER, M.J. 2004. Big Cypress regional ecosystem conceptual ecological model. Wetlands
25:843-853.

DUEVER, M. J., J. E. CARLSON, J. F. MEEDER, L. C. DUEVER, L. H. GUNDERSON, L. A.
RIOPELLE, T. R. ALEXANDER, R. L. MYERS, AND D. P. SPANGLER. 1986. The Big
Cypress National Preserve, 2nd printing, National Audubon Society, New York, NY.

FICETOLA, G.F., AND F DE BERNARDI. 2004. Amphibians in a human-dominated landscape: the
community structure is related to habitat features and isolation. Biological Conservation
119:219-230.









FORD, R. G. 1983. Home range in a patchy environment: optimal foraging predictions.
American Zoologist 23:315-326.

GIBBS, J.P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient.
Landscape Ecology 13:263-268.

GUERRY, A.D., AND M.L. HUNTER JR. 2002. Amphibian distributions in a landscape of forests
and agriculture: an examination of landscape composition and configuration.
Conservation Biology 16:745-754.

HARPER, K.A., E. MACDONALD, P.J. BURTON, J. CHEN, K.D. BROSOFSKE, S.C. SAUNDERS, E.S.
EUSKIRCHEN, D. ROBERTS, M.S. JAITEH, AND P. ESSEEN. 2005. Edge influence on forest
structure and composition in fragmented landscapes. Conservation Biology 19: 768-782.

HECNAR, S .J., AND R. T. M'CLOSKEY. 1996. Regional dynamics and the status of amphibians.
Ecology 77:2091-2097.

HECNAR, S. J., AND R. T. M'CLOSKEY. 1997. The effects of predatory fish on amphibian species
richness and distribution. Biological Conservation 79:123-131.

HERRMANN, H. L., K. J. BABBITT, M. J. BABER, AND R. G. CONGALTON. 2005. Effects of
landscape characteristics on amphibian distribution in a forest-dominated landscape.
Biological Conservation 123:139-139.

HEYER, R. W., M. A. DONNELLY, R. W. MCDIARMID, L. C. HAYEK, AND M.S. FOSTER, editors.
1994. Measuring and monitoring biological diversity: standard methods for amphibians.
Smithsonian Institution Press, Washington, D. C.

JOHNSON, C.M., L.B. JOHNSON, C. RICHARDS, AND C. BEASLEY. 2002. Predicting the occurrence
of amphibians: an assessment of multiple-scale models. In: SCOTT, J.M., P.J. HEGLUND,
M.L. MORRISON, J.B. HAUFLER, M.G. RAPHAEL, W.A. WALL AND R.B. SAMSON eds.
Predicting Species Occurrences, Issues of Accuracy and Scale, pp. 157-170. Island Press,
Covelo, Califfornia

Johnson, S. A. 2007. The Cuban treefrog (Osteopilus septentrionalis) in Florida. University of
Florida EDS. http://edis.ifas.ufl.edu/UW259.

Kie, J. G., R. T. Bowyer, M C. Nicholson, B. B. Boroski, and E. R. Loft. 2002. Landscape
heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology
83:530-544.

KNUTSON, M. G., J. R. SAUER, D. A. OLSEN, M. J. MOSSMAN, L. M. HEMESATH, AND M. J.
LANNOO. 1999. Effects of landscape composition and wetland fragmentation on frog and
toad abundance and species richness in Iowa and Wisconson, USA. Conservation
Biology 13:1437-1446.









LEIBOLD, M. A., M. HOLYOAK, M. MOUQUENT, P. AMARASEKARE, J. M. CHASE, M. F. HOPES,
R. D. HOLT, J. B. SHURIN, R. LAW, D. TILMAN, M. LOREAU, AND A. GONZALEZ. 2004.
The metacommunity concept: a framework for multi-scale community ecology. Ecology
Letters 7:601-613.

LODGE, T. E. 2005. The Everglades handbook: understanding the ecosystem, 2nd ed., CRC,
Boca Raton, FL.

MARSH, D.M., AND P.B. PEARMAN. 1997. Effects of habitat fragmentation on the abundance of
two species of leptodactylid frogs in an Andean montante forest. Conservation Biology
11:1323-1328.

MARSH, D. M., AND P. C. TRENHAM. 2001. Metapopulation dynamics and amphibian
conservation. Conservation Biology 15:40-49.

MARTIN, K.J., AND B.C. McCOMB. 2003. Amphbian habitat associations at patch and landscape
scales in the central Oregon coast range. Journal of Wildlife Management 67:672-683.

MESHAKA, W. E. W. F. LOFTUS, AND T. STEINER. 2000. The herpetofauna of Everglades
National Park. Florida Scientist 63: 84-103.

McNAB, B. K. 1963. Bioenergetics and the determination of home range size. American
Naturalist 97:133-140.

PECHMANN, J. H., D. E. SCOTT, J. W. GIBBONS, AND R. D. SEMLITSCH. 1989. Influence of
wetland hydroperiod on diversity and abundance of metamorphosing juvenile
amphibians. Wetlands Ecology and Management 1:3-11.

POPE, S. E., L. FAHRIG, AND H. G. MERRIAM. 2000. Landscape complementation and
metapopulation effects on leopard frog populations. Ecology 81:2498-2508.

PRICE, S. J., D. R. MARKS, R. W. HOWE, J. M. HANOWSKI, AND G. H. NIEMI. 2004. The
importance of spatial scale for conservation and assessment of anuran populations in
coastal wetlands of the western Great Lakes, USA. Landscape Ecology 20:441-454.

RESETARITS, W. J. JR. 2005. Habitat selection behaviour links local and regional scales in
aquatic systems. Ecology Letters 8:480-486.

RICE, K.G., J.H. WADDLE, M.E. CROCKETT, B.M. JEFFERY, AND H.F. PERCIVAL. 2004.
Herpetofaunal Inventories of the National Parks of South Florida and the Caribbean:
Volume I. Everglades National Park. U.S. Geological Survey, Open-File Report 2004-
2005, Fort Lauderdale, Florida.









RICE, K.G., J.H. WADDLE, B.M. JEFFERY, A.N. RICE, AND H.F. PERCIVAL. 2005. Herpetofaunal
Inventories of the National Parks of South Florida and the Caribbean: Volume III. Big
Cypress National Preserve. U.S. Geological Survey, Open-File Report 2005-1300, Fort
Lauderdale, Florida.

RICHTER-BOIX, G.A. LLORENTE, AND A. MONTORI. 2007. Structure and dynamics of an
amphibian metacommunity in two regions. Journal of Animal Ecology 76:607-618.

RUETZ, C.R. III, J. C. TREXLER, F. JORDAN, W. F. LOFTUS, AND S. A. PERRY. 2005. Population
dynamics of wetland fishes: spatio-temporal patterns synchronized by hydrological
disturbance? Journal of Animal Ecology 74:322-332.

RYAN, T. J., AND C. T. WINNE. 2001. Effects of hydroperiod on metamorphosis inRana
sphenocephala. American Midland Naturalist 145:46-53.

SCHOENER, T. W. 1981. An empirically based estimate of home range. Theoretical Population
Biology. 20:281-325.

SEMLITSCH, R. D. 2000. Principles for management of aquatic breeding amphibians. Journal of
Wildlife Management. 64:615-631.

SEMLITSCH, R.D., AND J. R. BODIE. 2003. Biological criteria for buffer zones around wetlands
and riparian habitats for amphibians and reptiles. Conservation Bilogy 17:1219-1228.

SHURIN, J.B., AND E.G. ALLEN. 2001. Effects of competition, predation, and dispersal on
species richness at local and regional scales. The American Naturalist 158:624:637.

SINSCH, U. 1990. Migration and orientation of anuran amphibians. Ethology Ecology and
Evolution 2:65-79.

SMITH, D.C. 1983. Factors controlling tadpole populations of the chorus frog (Psuedacris
triseriata) on Isle Royale, Michigan. Ecology 64:501-510.

SNODGRASS, J. W., M. J. KOMOROSKI, A. L. BRYAN JR., AND J. BURGER. 2000. Relationships
among isolated wetland size, hydroperiod, and amphibian species richness: implications
for wetland regulations. Conservation Biology 14: 414-419.

STODDARD, M. A., AND J. P. HAYES. 2005. The influence of forest management on headwater
amphibians at multiple spatial scales. Ecological Applications 15:811-823.

SWIHART, R. K., N. A. SLADE, AND B. J. BERGSTROM. 1988. Relating body size to the rate of
home range use in mammals. Ecology 69:393-399.









TUNNER, H.G. 1992. Locomotory behaviour in water frogs from Neusiedlersee (Austria,
Hungary), 15 km migration of Rana lessonae and its hybridogenetic associate Rana
esculenta. In: KORSOS Z., AND I. KIss (eds.). Proceedings 6th Ordinary General Meeting
of the Societas Europaea Herpetologica, pp. 449-452 Budapest, Hungary.

UGARTE, C.A. 2004. Human impacts on pig frog (Rana grylio) populations in south Florida
wetlands: harvest, water management, and mercury contamination. Florida International
Unviersity Dissertation, Miami, FL.

USACOE (U.S. ARMY CORPS OF ENGINEERS). 1994. Central and southern Florida project
(C&SF) comprehensive review study. U.S. Army Corps of Engineers, Jacksonville
District, Jacksonville Florida, USA.

VAN BUSKIRK, J. 2005. Local and landscape influence on amphibian occurrence and
abundance. Ecology 86:1936-1947.

WADDLE, J. H. 2006. Use of amphibians as ecosystem indicator species. University of Florida
Dissertation, Gainesville FL.

WAKE, D. B. 1991. Declining amphibian populations. Science 253:860.

WELCH, R., M. MADDEN, AND R. F. DOREN, 2002. Maps and GIS databases for environmental
studies of the Everglades. In: J. PORTER AND K. PORTER (eds.), The Everglades, Florida
Bay and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, pp. 259-279. CRC
Press, Boca Raton, Florida.

WELLBORN, G. A., D. K. SKELLY, AND E. E. WERNER. 1996. Mechanisms creating community
structure across a freshwater habitat gradient. Annual Review of Ecological Systems
27:337-363.

WEYRAUCH, S. L., AND T. C. GRUBB JR. 2004. Patch and landscape characteristics associated
with the distribution of woodland amphibians in an agricultural fragmented landscape: an
information-theoretic approach. Biological Conservation 115:443-450.









BIOGRAPHICAL SKETCH

Michelle Casler was born in Sharon, Connecticut, in 1980, and lived most of her life in

Amenia, New York. She received her high school diploma from Webutuck Jr. Sr. High School in

1998. Casler attended SUNY College of Environmental Science and Forestry (ESF) in Syracuse,

NY and received a Bachelor of Science degree in environmental studies biological applications

in 2002. She held several internships during her time at ESF, working with vegetation, mapping,

and nutrient cycling. After receiving her degree, she relocated to Florida to work for the

University of Florida, studying wildlife in the Everglades Agricultural Area. She then enrolled in

the School of Natural Resources and Environment at the University of Florida to pursue her

master's degree.





PAGE 1

1 LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS NATONAL PRESERVE AND EVERGLADES NATIONAL PARK By MICHELLE L. CASLER A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFIL LMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008

PAGE 2

2 2008 Michelle L. Casler

PAGE 3

3 To Tommy

PAGE 4

4 ACKNOWLEDGMENTS I thank my parents and sisters for all their support and being ok with me moving so far away to f ollow frogs. I am appreciative of Charamy, Qing Qing, Alex, and Leah for providing me with much needed breaks and the understanding that one day I'll have free time. I'd also like to thank my committee; Frank Mazzotti, Ken Rice and Leonard Pearlstine; wit hout them I wouldn't be here and able to make sense of my ideas. I am grateful for all my friends from "Magrathea" for their unwavering support and just being wonderful. Lastly, I am indebted to Elise Pearlstine, Franklin Percival, Charles Hall, Myrna Hall Ikuko Fujisaki and Hardin Waddle for all their help and advice.

PAGE 5

5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................ ................................ ................................ ........... 4 LIST OF TABLES ................................ ................................ ................................ ...................... 6 LIST OF FIGURES ................................ ................................ ................................ .................... 8 ABSTRACT ................................ ................................ ................................ ............................... 9 CHAPTER 1 INTRODUCTION ................................ ................................ ................................ ............. 10 2 LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS NATONAL PRESERVE AND EVERGLADES NATIONAL PARK .............. 13 Introduction ................................ ................................ ................................ ....................... 13 Methods ................................ ................................ ................................ ............................. 14 Study Area ................................ ................................ ................................ .................. 14 Anuran Sampling ................................ ................................ ................................ ........ 15 Hydroperiod ................................ ................................ ................................ ................ 15 Landscape Variables ................................ ................................ ................................ ... 16 Data Analysis ................................ ................................ ................................ .............. 18 Results ................................ ................................ ................................ ............................... 19 Community Models ................................ ................................ ................................ ..... 20 Individual Species Models ................................ ................................ .......................... 20 Discussion ................................ ................................ ................................ ......................... 21 3 CONCLUSION ................................ ................................ ................................ .................. 40 APPENDIX A VEGETATION CLASSIFICATIONS ................................ ................................ ............... 42 B ALL MODELS TESTED ................................ ................................ ................................ ... 44 LIST OF REFERENCES ................................ ................................ ................................ .......... 57 BIOGRAPHICAL SKETCH ................................ ................................ ................................ ..... 62

PAGE 6

6 LIST OF TABLES Table page 2 1 Habitat classifications simplified from the habitat maps provided by the University of Georgia (Welch et al. 2002). ................................ ................................ ...................... 25 2 2 Additional landscape variables calculated by Fragstats ................................ .................. 26 2 3 Delta AIC values of species richness as a function of each diversity index across the three scales. ................................ ................................ ................................ ................... 27 2 4 Anurans found in the study ................................ ................................ ............................ 28 2 5 Results of regional species richness model selection. ................................ ..................... 29 2 6 Results of Big Cypress National Preserve species richness model selection. .................. 30 2 7 Results of Everglades Nat ional Park species richness model selection. ......................... 32 2 8 Results of Hyla squirella presence model selection in Everglades National Park and Big Cypress National Preserve. ................................ ................................ ..................... 33 2 9 Results of Bufo terrest ris presence model selection in Everglades National Park and Big Cypress National Preserve. ................................ ................................ ..................... 34 2 10 Results of Pseudacris occularis presence model selection in Big Cypress National Preserve. ................................ ................................ ................................ ....................... 35 2 11 Results of Gastrophryne carolinensis presence model selection in Everglades National Park and Big Cypress National Preserve. ................................ ......................... 36 A 1 Description of vegetation classification abbreviations used in chapter 2. ........................ 42 B 1 All models tested to describe regional species richness ................................ .................. 44 B 2 All models tested to describe species richness in Big Cypress National Preserve ........... 46 B 3 All models tested to descr ibe species richness in Everglades National Park ................... 48 B 4 All models tested to describe Hyla squirella presence Big Cypress National Preserve and Everglades National Park. ................................ ................................ ....................... 49 B 5 All models tested t o describe Bufo terrestris presence Big Cypress National Preserve and Everglades National Park. ................................ ................................ ....................... 51 B 6 All models tested to describe Psuedacris occularis presence Big Cypress National Preserve. ................................ ................................ ................................ ....................... 53

PAGE 7

7 B 7 All models tested to describe Gastrophryne carolinensis presence Big Cypress National Preserve and Everglades National Park. ................................ ........................... 55

PAGE 8

8 LIST OF FIGURES Figure page 2 1 Landscape hydroper iod calendar representing water station A9 in Big Cypress National Preserve. The height of the bars represents the water depth, while the color represents habitat type. For example, one would expect nearby prairie habitats to be flooded when the color on t he calendar was yellow, orange or red. Calendar re printed with permission (Source: http://www.fgcu.edu/bcw/BCNP/BCNP.htm Last accessed April, 2008). ................................ ................................ ................................ ... 38 2 2 These figures provide an example of the process I used to estimate hy droperiod for each site. They are modified from Figure 2.1 to show only the study period from March 2002 February 2003 for a site in BCNP. ................................ ............................. 39

PAGE 9

9 Abstract of Dissertation Presented to the Graduate School of the University of Flo rida in Partial Fulfillment of the Requirements for the Degree of Master of Science LANDSCAPE AND HYDROLOGIC EFFECTS ON ANURAN SPECIES IN BIG CYPRESS NATONAL PRESERVE AND EVERGLADES NATIONAL PARK By Michelle L. Casler August 2008 Chair: Fr ank J. Mazzotti Major: Interdisciplinary Ecology Many studies on the ecology of anuran species focus on variables measured in the immediate vicinity of observed animals or local scale. Expanding the view from local scale variables to include those on inte rmediate and landscape scale is important to understand requirements of these species. I examined the occurrence and richness of anuran species in relation to hydroperiod and landscape variables across three spatial scales (200 500 and 1000 m) in Big C ypress National Preserve and Everglades National Park. Species richness and presence was positively associated with edge density and habitat diversity on all scales. Edge density was an important variable in the models sets. Hydroperiod was not as importan t in most of the models, and was somewhat negatively associated with anuran species richness and presence on all scales. The largest scale, 1000 m was best for describing species richness and presence, aside from narrow mouthed frogs. Presence of narrow mo uthed frogs was described best by variables at the 500 m scale. This indicates that taking into account multiple scales, especially those at the intermediate and landscape scales is useful when looking at effects of habitat and hydrologic changes on anuran s.

PAGE 10

10 CHAPTER 1 INTRODUCTION Amphibians are important to many ecosystems due to their large numbers and biomass. They are major consumers of invertebrates and are prey for other organisms (Wake 1991; Dodd et al. 2007). Amphibians are commonly used as indic ators of ecosystem degradation (Wake 1991; Waddle 2006) because they respond quickly and measurably to changes in the environment (eg. pollution, water quality changes). Many species also utilize discrete breeding sites and foraging habitats, and disperse between sites at larger spatial scales (Hecnar and M'Closkey 1996). Mobile amphibians, such as toads, hylids, and ranids, are able to move easily across patches (Sisch 1990; Tunner 1992). This allows them to easily colonize or re colonize sites, preservin g their metapopulation, and allowing for long term persistence in the landscape (Ficetola and De Bernardi 2004). Amphibian population size is very dynamic, and populations may become locally extinct one year, and re colonized in a following year (Gibbs 199 8). In south Florida, exotic species and changes in the landscape, such as agriculture, canals and roads, are the main concerns for potential amphibian declines ( Meshaka et al. 2000; Waddle 2006 ). The Cuban treefrog's ( Osteopilus septentrionalis ) introduc tion and establishment has coincided with the decline of squirrel treefrog ( Hyla squirella ) populations (Meshaka et al. 2000; Johnson 2007) throughout Florida. Pig frogs ( Rana grylio ), the most abundant large frog in the Everglades, are commonly exploited for human consumption. Duever (et al. 1986) found that abundance of pig frogs is sustained, even with large yields reported by froggers. More recently, harvest was found to have discernable effects on adult survival rate, however juveniles have higher surv ival rates likely due to harvesters selecting for larger frogs (Ugarte 2004). In

PAGE 11

11 general, large declines of other amphibian species have not been documented in south Florida (Meshaka et al. 2000). All native anurans in south Florida require water for th eir egg and larval stages (Carr 1940). Tadpole stages can range from 3 to 4 weeks for squirrel treefrogs (Babbit and Tanner 1997) to a year or more for pig frogs (Bartlett and Bartlett 1999). Hydroperiod is the average annual period of inundation, and its importance to amphibians has been examined in various studies. It has been found to significantly influence species richness in central Florida and South Carolina (Snodgrass et al. 2000; Babbit 2005). Typically, higher diversity and abundance of anurans is found in temporarily flooded wetlands (Pechmann et al. 1989) due to species specific adaptations for avoiding desiccation and predators (Hermann et al. 2005). Permanent wetlands provide a very low chance of desiccation, however, they support a more numero us and diverse predator base compared to temporarily inundated wetlands (Ryan and Winne 2001). In addition to hydroperiod, habitat has also been found to influence anuran presence and abundance. Density of mature forest was found to be positively associat ed with species richness in several studies (Hecnar and M'Closkey 1997; Knutson et al. 1999; Guerry and Hunter 2002; Martin and McComb 2003). Not all species are positively affected by forest area however (Guerry and Hunter 2002), indicating that open area s, such as prairies and meadows are also important. Knutson (et al. 1999) found that abundance of anurans increased where habitat diversity was high, or where forested wetland edges were present. Higher habitat diversity has the potential to support more s pecies (Kie et al. 2002), as it provides a variety of habitats for anurans to select. In the Everglades, most species are habitat generalists, and while they may have preferred habitats, individuals can be found in many different habitats (Bartlett and Bar tlett 1999; Meshaka et al. 2000).

PAGE 12

12 Investigation of habitat at multiple scales is becoming more common. Many species are influenced by variables operating on two or more scales (Knutson et al. 1999; Price et al. 2005; Stoddard and Hayes 2005), and a multi scale approach will help obtain a comprehensive view of species status (Johnson et al. 2002; van Buskirk 2005). The regular movement of adult and juvenile anurans between aquatic and terrestrial habitats makes them ideal for look at presence on different s cales (Richter biox et al. 2007).

PAGE 13

13 CHAPTER 2 LANDSCAPE AND HYDROL OGIC EFFECTS ON ANUR AN SPECIES IN BIG CY PRESS NATONAL PRESERVE AND EVERGLADES NATIONAL PARK Introduction Distribution of many anuran species is affected by both local or proximate variabl es, such as hydroperiod, stream sediment and wetland type; and landscape variables, such as slope, road density and percent forest cover (Knutson et al. 1999; Leibold et al. 2004; Stoddard and Hayes 2005). A focus on the immediate area around a survey plot may not provide a comprehensive understanding of a species' needs. Many anurans require upland and aquatic habitats for overwintering, foraging and oviposition (Pope et al. 2000; Price et al. 2005; Resetarits 2005). From a scale perspective foraging habit at is typically selected at a local spatial scale, while mate selection occurs on a landscape scale (Bissonette 1997). Defining an individual species perception of scale can be difficult. Each species perceives scale differently, affecting habitat select ion (Resetarits 2005) and movement between habitats (Kie et al. 200). Factors that influence habitat selection and movement include availability of forage (Schoener 1981; Ford 1983), reproductive size (Bertrand et al. 1996), body size (McNab 1963; Swihart et al. 1988), sex and age (Cederlund and Sand 1994), hydroperiod (Pechmann et al. 1989; Snodgrass et al. 2000; Babbit 2005), amongst others (Kie et al. 2002). Species richness and occurrence may be predicted by looking at landscape scale variables such as the density of nearby ponds and roads (Semlitsch 2000; Marsh and Trenham 2001; van Buskirk 2005) in combination with local scale variables like water depth ( Vickers et al. 1985; Weyrauch and Grubb 2004 ). This indicates that local and landscape variables sh ould be considered jointly, as they both regulate individual and overall species occurrence (Shurin and Allen 2001). I examined the influence of local and landscape variables on anuran species richness and presence of four anuran species in Everglades Nat ional Park and Big Cypress National Preserve.

PAGE 14

14 Each park will be looked at separately to determine any differences between the parks based their individual characteristics. The influence of hydroperiod, the average period of inundation during the study year will also be examined in addition to habitat variables because it has been found to effect species presence in other studies (Pechmann et a. 1989; Babbit 2005) and is an important aspect of the Everglades. Methods Study Area Everglades National Park (E NP) and Big Cypress National Preserve (BCNP) are located in south Florida. Situated on the southern tip of Florida, ENP is an approximately 611,000 ha park. This was the first park to be created to protect the unique diversity of life it supports. On the n orthwestern boundary of ENP, BCNP is a 295,000 ha preserve created to protect natural and recreational values of the watershed. Hunting, fishing and oil production all occur within the preserve, and it serves as an ecological buffer zone to protect the wat er supply of the wetlands in the western portion of ENP by providing fresh water (USACOE 1994). Both parks support similar natural vegetative communities (Duever 2005). In general, BCNP tends to support more forested habitat, and ENP supports more herbaceo us habitat (Duever 2005). The South Florida Water Management District (SFWMD) manages inflows of water for human and wildlife use in ENP and BCNP through a series of canals, levees, and water control structures. Aside from the water control of SFWMD, the hydrology in BCNP is largely rainfall driven (Duever et al. 1986), while hydrology in ENP is driven by rainfall and overland flow, although the overland flow is not as extensive as it once was due to the establishment of canals and levees ( Lodge 2004 ).

PAGE 15

15 An uran Sampling To look at the effects of landscape characteristics and hydroperiod on anurans I used data previously collected during BCNP and ENP amphibian inventories (Rice et al. 2004; Rice et al. 2005). These surveys were conducted in ENP from January t hrough December 2001, and BCNP from March 2002 through February 2003. While these surveys were conducted during two time periods, they were collected in the same manner, and it is assumed that species richness did not vary between years. Two survey types were used to inventory anurans in these studies. Standard visual encounter surveys (VES, Heyer et al. 1994) were conducted for thirty minutes at each plot. A vocal survey was also conducted for 10 minutes during the VES. Each species heard during the vocal survey was recorded regardless of if it was inside or outside of the plot (Rice et al. 2004; Rice et al. 2005). I combined the results from both surveys over the length of the survey to determine overall species richness at each plot. A species was consid ered present if it was recorded at least once at a plot during the survey period. Hydroperiod Presence or absence of water was also recorded during each survey. This provided an estimate of hydroperiod in months. To obtain an estimate of hydroperiod in da ys, I compared water presence at a site to a nearby permanent water station using landscape hydroperiod calendars (Big Cypress Watersheds Restoration Coordination Team, http://www.fgcu.edu/bcw/hcu.htm ). Thes e hydroperiod calendars visually show water depth and hydroperiod at the permanent water station and estimate the depth at nearby landscape types in both BCNP and ENP ( Figure 2 1 ). I assumed hydroperiod at each site was correlated with the hydroperiod of n earby water stations.

PAGE 16

16 I located the nearest water station for each study plot to estimate hydroperiod. In cases where plots had two or more water stations within a similar distance, hydroperiod was estimated using all available water stations and averaged. Water stations that were separated by a canal or major road were not considered whenever possible due to potential changes in flow of water. For each hydroperiod calendar I marked presence or absence of water and extrapolated an estimation of the total da ys wet over the study year for each site ( Figure 2 2 ). Four variables representing hydroperiod were considered: total months wet, average consecutive months wet, total days wet, and average consecutive days wet. Monthly estimates were converted to days for better comparison with daily estimates. Average consecutive days wet excluded parts of the year where estimated consecutive days wet was less than 10 days. These periods of 10 days or less were excluded, as they were too short for anuran breeding and tadp ole development. I selected average consecutive days wet as the hydroperiod variable used in the model. This was done with tadpoles in mind, as the shortest metamorphose time for any species in this system is 20 days (Narrow mouthed frog ( Gastrophryne caro linensis ), Bartlett and Bartlett 1999). Landscape Variables To examine effects of scale on anuran species, I chose three scales: 200 500 and 1000 meters. The largest scale, 1000 m, was based on previous studies of landscape scale and anurans (Knutson et al. 1999; Vos and Stumpel 1995; Marsh and Trenham 2001; Price et al. 2005). These studies found that 1000 m was ideal for analyzing anuran species richness and presence, and habitat. This scale was used as a general landscape scale variable, as it incl uded much of the general complexity and diversity of the area, as well as including a large amount of a species' movement area. The smallest scale, 200 m, was used as the local scale variable. The intermediate

PAGE 17

17 scale, 500 m, was included because it has been found to predict richness better than smaller scales, and as well as larger scales for some species in other studies (Price et al. 2005). I created buffers for the three scales around each plot using ArcGIS (Environmental Systems Research Institute Inc., http://www.esri.com ). These buffers were used to clip data from vegetation maps created by Welch et al. (2002). The buffers included 53 habitat classifications that were simplified to 15 general classifications based o n major vegetation type and potential habitat used by anurans ( Table 2 1 ). Acreages of these habitats were converted to percentages using Fragstats (University of Massachusetts, http://www.umass.edu/landeco/research/fragstats/fragstats.html ). Fragstats was also used to calculate six additional landscape variables (Table 2 2). Of these variables a subset was chosen to use in the models, as several represented a similar idea and were highly correlated. I chose the subset by comparing each set of similar variables representing the diversity of vegetation and edge density in R ( http://www.r project.org/ ). Four variables representing diversi ty of vegetation were calculated (Table 2 3). Patch richness is the simplest form of diversity measurement, counting the total number of patch types. Patch richness density standardizes patch richness to a per area basis, allowing comparisons between lands cape scales. Shannon's and Simpson's Diversity Indexes were also calculated. Shannon's Diversity Index is more sensitive to rare patch types compared to Simpson's Diversity Index (SDI), and both represent the relative proportion of habitat types. I calcula ted the Akaike's Information Criterion (AIC, Burnham and Anderson 1998) of species richness as a function of each diversity variable to determine which one to use. Simpson's Diversity Index was the best variable (lowest AIC value, Burnham and Anderson 1998 ) in the majority of model sets compared to Shannon's Diversity Index (Table 2 3), and will be used in the final model

PAGE 18

18 selection. Patch richness density was also included in the community models as an alternative method of measuring density. This was chose n over patch richness to facilitate comparison between scales. To determine if any edge effects would be present, I calculated two variables. Total edge density looked at the total edge on a per unit area basis and was the simplest method. Landscape Shape Index (LSI) is a more complex measure of edge density and is used to interpret patch aggregation or disaggregation. As a landscape becomes more irregular and/or the length of edge within the landscape increases, LSI also increases. Landscape Shape Index was a slightly better representation of edge and will be used in the final model selection (Table 2 3). This variable will also be referred to as edge density in the remainder of this thesis. Data Analysis For the preliminary analysis I used t tests to co mpare species richness, habitat diversity, edge density and hydroperiod between parks. This was used to obtain a basic understanding of the differences between parks and determine if considering parks separately in the models was appropriate. I used R to c reate generalized linear models to look at the effect of hydroperiod and landscape variables at the three scales on anuran species richness and individual species presence. To examine effect of landscape variables and hydroperiod on anuran species richness I used a Poisson distribution. Three sets of models were created, one for the overall region, and one for each park to look at the differences between them. I selected 4 native species using a priori selection based on number of sites these species were present in and pairwise plots comparing presence to edge density, habitat diversity and hydroperiod. Several species were present at most sites such as southern leopard frogs ( Rana sphenocephala 55 of 70 plots) and green tree frogs ( Hyla cinerea 69 of 70 plots), and were not ideal for modeling. The four species

PAGE 19

19 that I selected were squirrel treefrog ( Hyla squirella ), southern toad ( Bufo terrestris ), narrow mouthed frog and little grass frog ( Psuedacris nigritta ). These species were at an average number of sites, have different life history requirements, and were expected to have different responses to variables used in the models. A binomial distribution was used to look at the presence of each species. Variables used in models for both community and indi vidual species were similar. The variables that were used at the local, intermediate and landscape scales were edge density, habitat diversity and individual habitat percent. Hydroperiod was considered a local variable. The best model per model set was se lected as the one with the highest AIC weight. In cases where there were multiple models with very similar weights, the most parsimonious model, with the fewest parameters, was selected (Burnham and Anderson 1998). Results In total, 14 anuran species, thre e of which were non native, were recorded in 70 plots across the two parks (Table 2 4). The mean number of species recorded across the parks was 6.5. Of the two parks, BCNP had the highest number of species ( n = 13) and the highest mean species richness (m ean = 8.18, range 6 11). Everglades National Park had a similar species composition compared to BCNP ( n = 12), though mean species richness was significantly lower (mean = 5.25, range 2 8, p = 0.00). At all three scales examined, habitat diversity was si gnificantly higher in BCNP (1000: t = 4.6, df = 58.3, p = 0.000, 500: t= 4.0, df = 66.1, p = 0.000, 200: t = 3.7, df = 67.4, p = 0.000) than in ENP. Edge density (LSI) was also significantly higher in BCNP (1000: t = 6.9, df = 67.7, p = 0.000, 500: t = 5.7 df = 67.6, p = 0.000, 200: t= 2.4, df = 63.9, p = 0.001) at all scales. Hydroperiod was similar within both parks (p = 0.8209, BCNP mean = 147.2, ENP mean = 152.9).

PAGE 20

20 Community Models Three sets of models were created to examine species richness, one for eac h park and one that combined both across the region. For each set of models, the AIC weights were less than 0.4, which indicates that there is not a single clear best model of species richness (Tables 2 5, 2 6, 2 7). Landscape variables at the local scale were not as strong as those at the intermediate or landscape scale for all three sets of models. Park was present in all regional models with a weight above zero, with the exception of one. This confirms the earlier t test stating that species richness wa s significantly different between parks. The best models for estimating species richness across the region were park plus edge density at the intermediate and landscape scale (Table 2 5). Edge density had a positive effect on species richness. Hydroperiod, while present in a few models, did not appear to have a large effect on species richness, and in the few models it was present in, the effect was negative. Unlike the regional model, the BCNP model found that hydroperiod was the best single variable desc ribing species richness in BCNP (Table 2 6) with a negative effect. In ENP, edge density at the intermediate scale was the best model, with edge density at the landscape scale being a close second (Table 2 7). Individual Species Models Hyla squirella was t he most common of the four selected anuran species, occurring at 52 sites. For this species, both 1000 and 500 m scale variables were present in the top models (Table 2 8). The best model was habitat diversity (SDI) plus edge density (LSI) at the 1000 m s cale plus the percent of cypress habitat at the 500 m scale. This model had a weight of 0.45, indicating that this was a clear best model. Hydroperiod and habitat variables had little to no affect on the presence of H. squirella

PAGE 21

21 Bufo terrestris was presen t at 28 sites. Landscape variables at the 500 m scale were present in the top three models. Edge density at the 500 m scale plus percent of cypress prairie at the 100 m scale had the highest weight (Table 2 9). Psuedacris occularis was only present in BCN P during the survey periods, and models were adjusted to exclude ENP. This species was present at 19 of the 34 sites in BCNP. The model with the highest weight was habitat diversity (SDI) plus edge density (LSI) plus the interaction between these two terms both at the 500 m scale (Table 2 10). The last species, Gastrophryne carolinensis was present at 22 sites. The best models had the same weight, although somewhat different AIC values. The percent of cypress prairie at the 200 m scale was the best model (Table 2 11). There are 4 models within a delta AIC value of 2 representing all scales, showing that there are multiple factors on different scales affecting G. carolinensis presence. Discussion Results of this study confirm that scale is an important fac tor to consider. Variables associated with larger scales (intermediate and landscape), predicted species richness better than those measured at the local scale. The presence of all but one species examined was also predicted better at larger scales, while narrow mouthed frogs were predicted better at the local scale. This is consistent with previous studies (Dodd and Cade 1998; Price et al. 2005; Van Buskirk 2005 ) that found larger scales explained species occurrence the best. Species richness and individua l species presence were driven by different variables across the three scales. Hydroperiod was not as important as originally expected. Other variables, such as water depth, condition, and presence of fish predators may have more of an effect on species p resence ( Ficetola and De Bernardi 2004; Babbit 2005; Van Buskirk 2005 ) but not available for this study. Species richness and each of the individual species were all negatively correlated with

PAGE 22

22 hydroperiod. Permanent wetlands generally support less anurans than those that are temporarily flooded. This is usually due to fish or invertebrate predators, or competition (Smith 1983; Wellborn et al. 1996). Fish and invertebrate predators were not accounted for in the surveys, and the extent to which they affect an uran presence is speculative. These predators can move between habitats as they become flooded and connected to deeper, more permanently flooded habitats ( Ruetz et al. 2005 ). Habitat variables, either through diversity or specific habitat types, were more important for individual species than for overall species richness. Most anuran species present in these parks are habitat generalists (Bartlett and Bartlett 1999), and specific habitat types were not expected to have much effect. The eastern narrow mouth ed frog was the only species where specific habitat variables were the only variables present in the best models. Squirrel treefrogs and southern toads both had a specific habitat variable in combination with habitat diversity or edge density. Habitat dive rsity, was present in more models than specific habitat types, but was not as common as edge density. Edge density, represented by LSI in the models, had a positive effect and was one of the most common variables present in the models created. Combining e dge density with habitat diversity was found to be important in the models for squirrel treefrog and little grass frog presence. Little grass frogs and squirrel treefrogs are commonly found along edges (Bartlett and Bartlett 1999), and the models confirmed this preference. Edges support an increased abundance of invertebrates (Harper et al. 2005), and provide an increased amount of sunlight exposure and emergent vegetation. The importance of edge density in the models show that anurans are potentially takin g advantage of food that edge habitat provides.

PAGE 23

23 Edge density is commonly associated with edge created by urban or agricultural methods. In this case, it refers to the density of edges between habitats, commonly referred to as ecotones. Knutson (et al. 199 9) found that the amount of forested wetland edges present was positively associated with anurans in Wisconsin and Iowa, however Marsh and Pearman (1997) found that some species of anurans in Ecuador were negatively associated with edges created by fragmen tation. Due to the low fragmentation within the parks in this study compared to areas just outside, negative aspects of edge related to fragmentation are not as prevalent (but see Waddle 2006). Knutson (et al. 1999) found that anurans responded to environ mental characteristics at several different spatial scales. In this study, narrow mouthed and little grass frogs both responded to variables on two different scales within the same model ( Table 2 11). Stoddard and Hayes (2004) found that the probability of finding Pacific great salamanders and larval tailed frogs was greater in wider streams (a local scale variable) with lower gradients (a landscape scale variable). Variables associated with the intermediate and larger scale predicted anuran occurrence bet ter than those at the local scale, which is similar to the results found by Price (et al. 2005) in the Great Lakes region. The future status of anurans in the Everglades may be affected by the changes that the Comprehensive Everglades Restoration Plan (CE RP) will bring. The goals of CERP include improving the quality, quantity, timing and distribution of flows into ENP. Canals and levees will be removed to restore some of the natural sheetflow throughout the park (USACOE 1994), which will increase hydroper iod. This increase may allow more predators to move into more habitats, directly affecting anurans. The effects of these changes on anuran species richness may not be immediate, and may have a larger impact on abundance ( Meshaka 2000). Future studies

PAGE 24

24 shoul d include the presence and abundance of predators to determine their effect on anuran species richness and abundance.

PAGE 25

25 Table 2 1. Habitat classifications simplified from the habitat maps provided by the University of Georgia ( Welch et al. 2002 ). Code Descr iption Classification W Water W Cm Cattail Marsh PC Pr Prairie/Marsh PG, PGj, PGc, PGct, Pgm, PGs, PGe, PGp, PGx, PEx, PEs, PEb SM Salt Marsh PHg, PHs Cp Cypress Prairie SVC, SVCd, SVCpi Pi Pineland SVPI, SVPIh, SVx, SVPIc, SVPm Cy Cypress FSc, FSd, FSx, FSCpi Hd Hardwood FT, FO, FSh, FC, FSb, FSa ShS Shrub/Scrub SBs, SBb, SBf, SH, SS SwP Saw Palmetto SP M Mangrove FM, FMa, FMr, FMx, Smr, FB, SC RD Road RD Ca Canal C E Exotics EM, EO, ES, E D Buildings H Classifications were based on potenti al habitat provided for anurans such as through perch locations, and general habitat type. See Appendix A for classification abbreviations.

PAGE 26

26 Table 2 2. Additional landscape variables calculated by Fragstats Variable Description ShDI Shannon's diversity in dex SDI Simpson's diversity index PR Patch richness PD Patch richness density ED Edge density LSI Landscape shape index

PAGE 27

27 Table 2 3. Delta AIC values of species richness as a function of each diversity index across the three scales. Diversity index 200 m 500 m 1000 m SDI 0.00 12.73 5.50 ShDI 1.20 11.67 6.26 PR 6.08 0.00 0.00 PRD 6.08 0.01 0.27 ED 0.02 0.01 0.21 LSI 0.00 0.00 0.00

PAGE 28

28 Table 2 4. Anurans found in the study Common name Scientific name Southern cricket frog Acris gryll us Marine toad Bufo marinus Oak toad Bufo quercicus Southern toad Bufo terrestris Greenhouse frog Eleutherodactylus planirostris Narrow mouthed frog Gastrophryne carolinensis Green treefrog Hyla cinerea Barking treefrog Hyla gratiosa Squirrel treef rog Hyla squirella Cuban treefrog Osteopilus septentrionalis Southern chorus frog Psuedacris nigrita Little grass frog Psuedacris ocularis Pig frog Rana grylio Southern leopard frog Rana spenocephala

PAGE 29

29 Table 2 5. Results of regional species richness m odel selection. Model AIC !AIC Weight LSI.500+Park 288.40 0.00 0.08 LSI.1000+Park 288.41 0.00 0.08 Park 288.67 0.26 0.07 LSI.1000+Park+Hd.1000 289.01 0.61 0.06 LSI.500*Park 289.55 1.15 0.04 LSI.1000*Park 289.69 1.28 0.04 LSI.500+Park+CP.500 289.84 1.44 0.04 LSI.200+Park 289 .90 1.49 0.04 LSI.1000+Park+RD.1000 289.95 1.55 0.04 LSI.1000+Park+ShS.1000 290.15 1.75 0.03 LSI.500+Park+RD.1000 290.24 1.84 0.03 SDI.1000+LSI.1000+Park 290.25 1.85 0.03 HPAv.Est+LSI.500+Park 290.26 1.85 0.03 LSI.500+Park+Pr.500 290.26 1.85 0.03 LS I.1000+Park+CP.500 290.28 1.88 0.03 LSI.500+Park+Hd.500 290.31 1.91 0.03 HPAv.Est+LSI.1000+Park 290.35 1.95 0.03 SDI.500+LSI.500+Park 290.37 1.97 0.03 LSI.500+Park+ShS.500 290.39 1.98 0.03 LSI.1000+Park+Pr.1000 290.39 1.99 0.03 LSI.200*Park 290.83 2. 43 0.02 LSI.200+Park+Hd.200 291.05 2.64 0.02 LSI.200+Park+CP.200 291.47 3.06 0.02 HPAv.Est+LSI.200+Park 291.48 3.07 0.02 LSI.200+Park+RD.200 291.59 3.18 0.02 LSI.200+Park+ShS.200 291.61 3.20 0.02 SDI.200+LSI.200+Park 291.88 3.47 0.01 LSI.200+Park+Pr .200 291.89 3.48 0.01 LSI.1000 293.84 5.44 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 30

30 Table 2 6. Results of Big Cypress National Preserve species richness model selection. Model AIC !AIC Weight HPAv.Est 144.53 0.00 0.07 LSI.1000 145.28 0.76 0.05 LSI.500 145.33 0.80 0.05 SDI.500 145.57 1.04 0.04 SDI.1000 145.65 1.13 0.04 LSI.200 145.66 1.13 0.04 SDI.200 145.66 1.13 0.04 HPAv.Est+Hd.1000 145.99 1.47 0.03 HPAv.Est+Hd.200 145.99 1.47 0.03 HPAv.Est+Hd.500 146.17 1.65 0.03 HPAv.Est+SDI.1000 146.41 1.89 0.03 HPAv.Est+LSI.1000 146.46 1.93 0.03 HPAv.Est+LSI.500 146.47 1.94 0.03 HPAv.Est+PRD.200 146.47 1.95 0.03 HPAv.Est+PRD.1000 146.49 1.96 0.03 HPAv.Est+PRD.500 146.51 1.99 0.03 HPAv.Est+LSI.200 146.51 1.99 0.03 HPAv.Est+SDI.200 146.52 2.00 0.03 HPAv.Est+SDI.500 146.53 2.00 0.03 LSI.1000+Hd.1000 146.53 2.01 0.03 SDI.1000+LSI.1000 147.00 2.47 0.02 LSI.500+Hd.500 147.08 2.56 0.02 LSI.200+Hd.200 147.09 2.57 0.02 PRD.1000+LSI .1000 147.12 2.59 0.02 SDI.500+LSI.500 147.31 2.78 0.02 PRD.500+LSI.500 147.32 2.79 0.02 HPAv.Est*LSI.1000 147.36 2.84 0.02 PRD.200+LSI.200 147.58 3.05 0.01 HPAv.Est*PRD.1000 147.60 3.07 0.01 SDI.200+LSI.200 147.66 3.13 0.01 HPAv.Est+LSI.1000+Hd.100 0 147.84 3.31 0.01 HPAv.Est+LSI.200+Hd.200 147.99 3.47 0.01 HPAv.Est*PRD.200 148.10 3.57 0.01 HPAv.Est+LSI.500+Hd.500 148.13 3.61 0.01 HPAv.Est*SDI.1000 148.14 3.61 0.01 HPAv.Est*PRD.500 148.27 3.74 0.01 HPAv.Est*LSI.500 148.41 3.88 0.01 HPAv.Est*SD I.500 148.45 3.92 0.01 HPAv.Est*LSI.200 148.48 3.95 0.01 HPAv.Est*SDI.200 148.48 3.96 0.01 SDI.1000*LSI.1000 148.53 4.01 0.01 PRD.1000*LSI.1000 149.06 4.54 0.01 SDI.500*LSI.500 149.14 4.61 0.01 PRD.500*LSI.500 149.25 4.72 0.01

PAGE 31

31 Table 2 6 (Continued). Model AIC !AIC Weight SDI.200*LSI.200 149.25 4.73 0.01 PRD.200*LSI.200 149.55 5.03 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 32

32 Table 2 7. Results of Everglades National Park species richness model selection. Model AIC !AIC AIC weight LSI.500 144.23 0.00 0.07 LSI.1000 144.40 0.18 0.06 SDI.1000 144.49 0.27 0.06 HPAv.Est+PRD.500 144.86 0.63 0.05 LSI.200 145.17 0.95 0.04 SDI.500 145.19 0.97 0.04 PRD.500+LSI.500 145.22 0.99 0.04 LSI.500+Pr 145.36 1.13 0.0 4 PRD.500*LSI.500 145.40 1.18 0.04 HPAv.Est+LSI.500 145.60 1.37 0.03 LSI.1000+Pr.1000 145.86 1.63 0.03 HPAv.Est+LSI.1000 145.90 1.67 0.03 SDI.1000+LSI.1000 145.95 1.72 0.03 HPAv.Est+PRD.200 145.98 1.76 0.03 LSI.500+ShS.500 146.10 1.87 0.03 PRD.200+ LSI.200 146.17 1.95 0.03 SDI.500+LSI.500 146.18 1.96 0.03 LSI.1000+ShS.500 146.29 2.07 0.02 PRD.1000+LSI.1000 146.31 2.08 0.02 HPAv.Est+SDI.1000 146.44 2.22 0.02 SDI.200 146.45 2.22 0.02 LSI.200+ShS.200 146.48 2.25 0.02 HPAv.Est*PRD.500 146.81 2.59 0.02 HPAv.Est+LSI.200 146.92 2.69 0.02 HPAv.Est 146.96 2.73 0.02 LSI.200+Pr.200 147.03 2.80 0.02 SDI.200+LSI.200 147.05 2.83 0.02 HPAv.Est+SDI.500 147.12 2.89 0.02 HPAv.Est*PRD.200 147.24 3.01 0.02 HPAv.Est+LSI.500+ShS 147.28 3.05 0.01 HPAv.Est+PRD .1000 147.37 3.15 0.01 HPAv.Est+LSI.1000+ShS 147.82 3.59 0.01 PRD.1000*LSI.1000 148.05 3.82 0.01 PRD.200*LSI.200 148.13 3.90 0.01 HPAv.Est+LSI.200+ShS 148.14 3.92 0.01 HPAv.Est+SDI.200 148.45 4.22 0.01 HPAv.Est*PRD.1000 148.81 4.58 0.01 Models are s orted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 33

33 Table 2 8. Results of Hyla squirella presence model selection in Everglades National Park and Big Cypress National Preserve. Model AIC !AIC AIC Weight SDI.1000+LSI.1000+Cy. 500 56.53 0.00 0.45 SDI.1000+LSI.1000 60.65 4.12 0.06 LSI.1000 60.85 4.32 0.05 SDI.1000*LSI.1000 61.17 4.64 0.04 SDI.1000+LSI.1000+HpAv.Est 61.32 4.79 0.04 SDI.500+LSI.1000 61.53 5.00 0.04 LSI.1000+HPAv.Est 61.57 5.04 0.04 LSI.1000*HPAv.Est 61.64 5. 11 0.03 SDI.500+LSI.1000+HpAv.Est 61.65 5.12 0.03 SDI.1000*LSI.500 61.97 5.44 0.03 SDI.1000+LSI.500 62.72 6.19 0.02 SDI.1000 62.94 6.41 0.02 LSI.500 63.05 6.52 0.02 SDI.500*LSI.1000 63.10 6.57 0.02 SDI.1000*LSI.1000*HPAv.Est 63.17 6.64 0.02 LSI.500 +HPAv.Est 63.36 6.83 0.01 SDI.1000*LSI.500*HpAv.Est 63.54 7.01 0.01 LSI.500*HPAv.Est 63.65 7.12 0.01 SDI.1000+LSI.500+HpAv.Est 63.67 7.14 0.01 SDI.500+LSI.500+HpAv.Est 64.26 7.73 0.01 SDI.1000+HPAv.Est 64.84 8.31 0.01 SDI.500+LSI.500 64.91 8.38 0.01 Cy.500 64.91 8.38 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 34

34 Table 2 9. Results of Bufo terrestris presence model selection in Everglades National Park and Big Cypress National Preserve. Model AIC !AIC AIC Weight LSI.500*CP.1000 90.17 0.00 0.18 LSI.500 90.60 0.43 0.14 Lsi.500+HD1000 91.84 1.67 0.08 Lsi.500+CP.1000 91.89 1.72 0.08 SDI.500+LSI.500 92.50 2.33 0.06 LSI.500+HPAv.Est 92.57 2.40 0.05 LSI.1000 93.37 3.20 0.04 LSI.500*HD.1000 93.84 3 .67 0.03 SDI.500*LSI.500 94.21 4.04 0.02 LSI.500*HPAv.Est 94.24 4.07 0.02 SDI.500+LSI.500+HpAv.Est 94.48 4.31 0.02 SDI.500 94.50 4.33 0.02 LSI.200 94.85 4.68 0.02 LSI.1000+SDI.500 94.87 4.70 0.02 LSI.1000+HPAv.Est 95.22 5.05 0.01 SDI.1000+LSI.1000 95.35 5.18 0.01 SDI.200 95.76 5.59 0.01 HD1000 95.88 5.71 0.01 HD200 95.88 5.71 0.01 SDI.1000 96.13 5.96 0.01 SDI.500+HPAv.Est 96.15 5.98 0.01 CP.1000 96.22 6.05 0.01 LSI.200+HPAv.Est 96.38 6.21 0.01 HD.500 96.50 6.33 0.01 LSI.1000*HPAv.Est 96.65 6.48 0.01 Pi.500 96.74 6.57 0.01 SDI.200+LSI.200 96.83 6.66 0.01 SDI.500*LSI.500*HPAv.Est 96.90 6.73 0.01 CP.200 97.01 6.84 0.01 HPAv. Est 97.03 6.86 0.01 HPAv. Est 97.03 6.86 0.01 HPAv. Est 97.03 6.86 0.01 SDI.200+HPAv.Est 97.13 6.96 0.01 CP.500 97.15 6.98 0.01 SDI.1000+LSI.1000+HpAv.Est 97.21 7.04 0.01 SDI.1000*LSI.1000 97.26 7.09 0.01 Pi.1000 97.28 7.11 0.01 Pi.200 97.28 7.11 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 35

35 Table 2 10. Resul ts of Pseudacris occularis presence model selection in Big Cypress National Preserve. Model AIC !AIC AIC Weight SDI.500*LSI.500 46.57 0.00 0.09 PI500+LSI.1000 47.00 0.43 0.07 Pi500+LSI.500 47.18 0.61 0.07 LSI.1000 47.36 0.79 0.06 Pi.500 47.55 0.98 0. 06 LSI.500 47.71 1.14 0.05 SDI.500+LSI.500 48.69 2.12 0.03 SDI.1000*LSI.500 48.90 2.33 0.03 LSI.1000+HPAv.Est 48.95 2.38 0.03 SDI.1000+LSI.1000 49.11 2.54 0.03 LSI.500+HPAv.Est 49.18 2.61 0.02 HPAv. Est 49.24 2.67 0.02 SDI.500+LSI.1000 49.25 2.68 0 .02 SDI.1000+LSI.500 49.37 2.80 0.02 Pi.1000 49.49 2.92 0.02 Pi.200 49.49 2.92 0.02 LSI.1000*HPAv.Est 49.65 3.08 0.02 SDI.500*LSI.1000 49.84 3.27 0.02 SDI.500+LSI.500+HpAv.Est 50.07 3.50 0.02 LSI.200 50.10 3.53 0.02 SDI.1000*LSI.1000 50.17 3.60 0.0 2 SDI.500 50.31 3.74 0.01 HD.500 50.32 3.75 0.01 Cy.1000 50.33 3.76 0.01 Cy.200 50.33 3.76 0.01 Cy.500 50.40 3.83 0.01 SDI.1000 50.46 3.89 0.01 SDI.200 50.49 3.92 0.01 HD.1000 50.64 4.07 0.01 HD.200 50.64 4.07 0.01 Pr.1000 50.66 4.09 0.01 Pr.200 50.66 4.09 0.01 Pr.500 50.66 4.09 0.01 LSI.200+HPAv.Est 50.67 4.10 0.01 SDI.1000+LSI.1000+HpAv.Est 50.70 4.13 0.01 LSI.500*HPAv.Est 51.05 4.48 0.01 SDI.500+HPAv.Est 51.15 4.58 0.01 SDI.1000+HPAv.Est 51.16 4.59 0.01 SDI.200+HPAv.Est 51.19 4.62 0.01 LSI.200*HPAv.Est 51.58 5.01 0.01 SDI.200+LSI.200 51.88 5.31 0.01 SDI.200+LSI.200+HpAv.Est 51.93 5.36 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 36

36 Table 2 11. Results of Gastrophryne carolinensis pre sence model selection in Everglades National Park and Big Cypress National Preserve. Model AIC !AIC AIC Weight CP.500 86.40 0.00 0.13 CP.200 87.42 1.02 0.08 CP.1000 87.63 1.23 0.07 CP.500+LSI.1000 87.91 1.51 0.06 SDI.200*LSI.1000*CP.500 88.54 2.14 0.04 SDI200*LSI1000 88.73 2.33 0.04 CP.1000+LSI.1000 88.73 2.33 0.04 SDI.1000+LSI.1000 89.66 3. 26 0.02 SDI.1000*LSI.1000 89.89 3.49 0.02 SDI.200+LSI.1000+CP.500 89.89 3.49 0.02 Pr.1000 89.96 3.56 0.02 Pr.200 89.96 3.56 0.02 SDI.200*LSI.200 90.12 3.72 0.02 LSI.500 90.15 3.75 0.02 Pi.500 90.15 3.75 0.02 HD.1000 90.28 3.89 0.02 HD.200 90.28 3. 89 0.02 Pi.1000 90.38 3.98 0.02 Pi.200 90.38 3.98 0.02 LSI.1000 90.47 4.07 0.02 SDI.1000+LSI.1000+HpAv.Est 90.50 4.10 0.02 SDI.500+LSI.500 90.69 4.29 0.01 HPAv. Est 90.73 4.33 0.01 HPAv. Est 90.73 4.33 0.01 LSI.200 90.73 4.33 0.01 HPAv. Est 90.73 4.33 0.01 Cy.1000 90.77 4.37 0.01 Cy.200 90.77 4.37 0.01 SDI.1000 90.80 4.40 0.01 HD.500 90.81 4.42 0.01 LSI.500+HPAv.Est 90.88 4.48 0.01 Pr.500 90.98 4.58 0.01 Cy.500 91.11 4.71 0.01 SDI.200 91.14 4.74 0.01 SDI.500 91.15 4.75 0.01 SDI.500+LSI.50 0+HpAv.Est 91.39 4.99 0.01 SDI.500*LSI.500 91.83 5.43 0.01 LSI.500*HPAv.Est 91.94 5.54 0.01 LSI.200+HPAv.Est 92.01 5.61 0.01 SDI.200+LSI.200 92.09 5.69 0.01 LSI.1000*HPAv.Est 92.37 5.97 0.01 SDI.1000+HPAv.Est 92.52 6.12 0.01 LSI.200*HPAv.Est 92.63 6 .23 0.01

PAGE 37

37 Table 2 11 (Continued). Model AIC !AIC AIC Weight SDI.500+HPAv.Est 92.67 6.27 0.01 SDI.200+HPAv.Est 92.69 6.29 0.01 Models are sorted by AIC weight and those with a weight of less than 0.01 were not included.

PAGE 38

38 Figure 2 1. Landscape hydrop eriod calendar representing water station A9 in Big Cypress National Preserve. The height of the bars represents the water depth, while the color represents habitat type. For example, one would expect nearby prairie habitats to be flooded when the color on the calendar was yellow, orange or red. Calendar re printed with permission (Source: http://www.fgcu.edu/bcw/BCNP/BCNP.htm Last accessed April, 2008 ).

PAGE 39

39 A B Figure 2 2. These figures provide an example of the process I used to estimate hydroperiod for each site. They are modified from Figure 2.1 to show only the study period from March 2002 February 2003 for a site in BCNP. A) I marked water in each month as present or a bsent (red, dashed is absent, black, solid is present) going from the general site data collected during each survey. B) To estimate hydroperiod I used the presence/absence of water to mark off periods of time. Solid vertical lines indicate the period of t ime where water was consecutively present. Horizontal dashed lines indicate when water was absent from the site. The estimation, dashed black vertical line was based on color coding (representing major landscape types) as well as the width of the line (rep resenting depth). The number of days between these lines was counted for the total days wet.

PAGE 40

40 CHAPTER 3 CONCLUSION The multiple scale approach I used in this thesis showed that more than just the immediate area of a site should be considered for predictin g anuran presence. Simple local habitat characteristics are not enough to understand anuran presence due to their tendency to move between habitats (Gibbs 1998). This type of approach is important for researchers and managers to help understand a species o r community and make better decisions. If only habitat immediately surrounding an area is observed, prediction of the anuran community in a similar area may be biased due to characteristics of an adjacent region. One thing that I did not examine in this th esis was landscape effect on abundance. While this data does exist, I felt the large annual fluctuations in anuran population size demanded a multi year study to adequately test hypotheses concerning scale and abundance. Hydroperiod may be more suitable fo r testing hypotheses concerning abundance because it has a direct influence on breeding anurans and tadpole growth. Presence of anurans is unlikely to change much, with the exceptions of local short term extinctions (Gibbs 1998) unless there are more sever e, large scale disturbances in effect. The Intermediate Disturbance Hypothesis (IDH) is also a theory to consider. Hydroperiod can be considered a disturbance in the Everglades due to its fluctuation. In the objectives of this thesis the IDH would state th at the largest number of anuran species would be in the intermediate range of hydroperiod. Hydroperiod negatively impacted anuran richness, as well as presence of the four species examined (chapter 2). The IDH would have been an interesting theory to test, however, there were only 3 sites that were permanently inundated compared to 17 sites with approximately 240 days wet. These sites can also fluctuate widely, and a multi year study looking at a more even range of hydroperiod would be more appropriate. Mar tin and McComb

PAGE 41

41 (2003) used maturity of forests within the landscape as the basis for looking at IDH in relation to amphibian species. They did find that at the intermediate level of mature forests and younger patch types, capture rates of amphibians were h ighest. Future studies should include more accurate water readings; water depth and quality would be two variables to consider. Water quality, depending on location of the site and proximity to roads or canals, may be heavily affected by outside sources s uch as agriculture. Water depth coincides with breeding, and tadpoles. In addition, predators are an important component of the landscape and their presence should be noted or sampled along with anurans where possible. The presence of fish drives populatio ns of anurans in other parts of the country (Hecnar and M'Closkey 1997), and may have similar impacts on anurans in the Everglades.

PAGE 42

42 APPENDIX A VEGETATION CLASSIFIC ATIONS Table A 1. Description of vegetation classification abbreviations used in chapter 2 (see Table 2 1). Code Vegetation classification Description W W Water Cm PC Cattail marsh Pr PG Graminoid prairie/marsh PGj Black rush PGc Sawgrass PGm Muhly grass PGs Cordgrass PGe Spike rush PGp Common reed PGx Mixed graminoids PEx Mixed non graminoid emergents PEs/o Other mixed non graminoids PEb Broadleaf emergent SM PHg Salt tolerant graminoids PHs Salt tolerant succulents Cp SVC Cypress savanna SVCd Dwarf cypress savanna SVCpi Cypress with pine savanna Pi SVPI Pine S avanna SVPIh Slash pine with hardwoods SVx Slash pine mixed with palms SVPIc Slash pine with hardwoods SVPM Palm savanna Cy FSc Cypress strands FSd Cypress domes/heads FSx Cypress mixed hardwoods FSCpi Cypress pines Hd FT Subtropical hardwo od forest FO Oak sabel forest FSh Mixed hardwood swamp forest FC Cabbage palm FSb Bayhead FSa Mixed hardwoods ShS SBs Willow SBb Groundsel bush SBf Pop ash SH Hardwood scrub SS Bay Hardwood scrub

PAGE 43

43 Table A 1 (Continued). Code Vegetati on classification Description SwP SP Saw palmetto M FM Mangrove forest FMa Black mangrove FMr Red mangrove FMx Mixed mangrove Smr Red mangrove scrub FB Buttonwood forest SC Buttonwood scrub RD RD Major road Ca C Major canal E EM Cajeput EO Lather leaf ES Brazilian pepper E Exotic D HI Human influence (buildings, parking lots, lawns) More complete descriptions can be found in the Vegetation Classification System for South Florida National Parks document ( http://fcelter.fiu.edu/gis/metadata/everglades_vegetation_classification.htm ).

PAGE 44

44 APPENDIX B ALL MODELS TESTED Table B 1. All models tested to describe regional species richness Model AIC !AIC AIC Weight LSI.500+Park 288.40 0 0.08 LSI.1000+Park 288.41 0.0011 0.08 Park 288.67 0.2645 0.07 LSI.1000+Park+Hd 289.02 0.6126 0.06 LSI.500*Park 289.55 1.1491 0.04 LSI.1000*Park 289.69 1.2812 0.04 LSI.500+Park+CP 289.84 1.4379 0.04 LSI.200+Park 289.90 1.4947 0.04 LSI.1000+Park+RD 289.95 1.5453 0.04 LSI.1000+Park+ShS 290.15 1.7499 0.03 LSI.500+Park+RD 290.24 1.8375 0.03 SDI.1000+LSI.1000+Park 290.25 1.8466 0.03 HPAv.Est+LSI.500+Park 290.26 1.8503 0.03 LSI.500+Park+Pr 290.26 1.8503 0.03 LSI .1000+Park+CP 290.28 1.879 0.03 LSI.500+Park+Hd 290.31 1.9087 0.03 HPAv.Est+LSI.1000+Park 290.35 1.9492 0.03 SDI.500+LSI.500+Park 290.37 1.9681 0.03 LSI.500+Park+ShS 290.39 1.9845 0.03 LSI.1000+Park+Pr 290.39 1.9889 0.03 LSI.200*Park 290.83 2.4261 0. 02 LSI.200+Park+Hd 291.05 2.6427 0.02 LSI.200+Park+CP 291.47 3.0607 0.02 HPAv.Est+LSI.200+Park 291.48 3.0716 0.02 LSI.200+Park+RD 291.59 3.1835 0.02 LSI.200+Park+ShS 291.61 3.2003 0.02 SDI.200+LSI.200+Park 291.88 3.4712 0.01 LSI.200+Park+Pr 291.89 3 .4813 0.01 LSI.1000 293.84 5.4382 0.01 PRD.1000+LSI.1000 294.64 6.2309 0.00 LSI.1000*Park*HPAv.Est 294.99 6.5838 0.00 LSI.500*Park*HPAv.Est 295.18 6.772 0.00 PRD.500 295.26 6.8597 0.00 PRD.1000*LSI.1000 295.36 6.9519 0.00 SDI.1000*LSI.1000 295.45 7. 0492 0.00 SDI.1000+LSI.1000 295.45 7.0492 0.00 PRD.500+LSI.500 295.50 7.0938 0.00 HPAv.Est+LSI.1000 295.62 7.211 0.00 LSI.500 295.68 7.2702 0.00 PRD.500*LSI.500 295.96 7.5502 0.00 LSI.1000*Park*Hd 296.29 7.8867 0.00

PAGE 45

45 Table B 1 (Continued). Model AIC !AIC AIC Weight LSI.500*Park*Hd 296.42 8.012 0.00 LSI.200*Park*HPAv.Est 296.92 8.5121 0.00 HPAv.Est*LSI.1000 297.19 8.7816 0.00 HPAv.Est+LSI.500 297.42 9.012 0.00 SDI.500+LSI.500 297.63 9.2203 0.00 PRD.1000 297.84 9.4345 0.00 LSI.200*Park*Hd 297.89 9.4841 0.00 SDI.500*LSI.500 298.31 9.9098 0.00 HPAv.Est*LSI.500 299.39 10.9806 0.00 SDI.1000 299.96 11.5528 0.00 SDI.500 301.03 12.6285 0.00 LSI.200 303.95 15.5415 0.00 SDI.200 304.72 16.3103 0.00 SDI.200+LSI.200 305.60 17.1948 0.00 HPAv.Est+LSI.20 0 305.85 17.4472 0.00 PRD.200+LSI.200 305.85 17.4497 0.00 SDI.200*LSI.200 307.37 18.9653 0.00 HPAv.Est*LSI.200 307.48 19.0752 0.00 PRD.200*LSI.200 307.81 19.4021 0.00 PRD.200 308.27 19.8645 0.00 HPAv.Est 309.95 21.5412 0.00

PAGE 46

46 Table B 2. All models t ested to describe species richness in Big Cypress National Preserve Model AIC !AIC AIC Weight HPAv.Est 144.53 0.00 0.07 LSI.1000 145.28 0.76 0.05 LSI.500 145.33 0.80 0.05 SDI.500 145.57 1.04 0.04 SDI.1000 145.65 1.13 0.04 LSI.200 145.66 1.13 0.04 SD I.200 145.66 1.13 0.04 HPAv.Est+Hd.1000 145.99 1.47 0.03 HPAv.Est+Hd.200 145.99 1.47 0.03 HPAv.Est+Hd.500 146.17 1.65 0.03 HPAv.Est+SDI.1000 146.41 1.89 0.03 HPAv.Est+LSI.1000 146.46 1.93 0.03 HPAv.Est+LSI.500 146.47 1.94 0.03 HPAv.Est+PRD.200 146.4 7 1.95 0.03 HPAv.Est+PRD.1000 146.49 1.96 0.03 HPAv.Est+PRD.500 146.51 1.99 0.03 HPAv.Est+LSI.200 146.51 1.99 0.03 HPAv.Est+SDI.200 146.52 2.00 0.03 HPAv.Est+SDI.500 146.53 2.00 0.03 LSI.1000+Hd.1000 146.53 2.01 0.03 SDI.1000+LSI.1000 147.00 2.47 0. 02 LSI.500+Hd.500 147.08 2.56 0.02 LSI.200+Hd.200 147.09 2.57 0.02 PRD.1000+LSI.1000 147.12 2.59 0.02 SDI.500+LSI.500 147.31 2.78 0.02 PRD.500+LSI.500 147.32 2.79 0.02 HPAv.Est*LSI.1000 147.36 2.84 0.02 PRD.200+LSI.200 147.58 3.05 0.01 HPAv.Est*PRD .1000 147.60 3.07 0.01 SDI.200+LSI.200 147.66 3.13 0.01 HPAv.Est+LSI.1000+Hd.1000 147.84 3.31 0.01 HPAv.Est+LSI.200+Hd.200 147.99 3.47 0.01 HPAv.Est*PRD.200 148.10 3.57 0.01 HPAv.Est+LSI.500+Hd.500 148.13 3.61 0.01 HPAv.Est*SDI.1000 148.14 3.61 0.01 HPAv.Est*PRD.500 148.27 3.74 0.01 HPAv.Est*LSI.500 148.41 3.88 0.01 HPAv.Est*SDI.500 148.45 3.92 0.01 HPAv.Est*LSI.200 148.48 3.95 0.01 HPAv.Est*SDI.200 148.48 3.96 0.01 SDI.1000*LSI.1000 148.53 4.01 0.01 PRD.1000*LSI.1000 149.06 4.54 0.01 SDI.500* LSI.500 149.14 4.61 0.01 PRD.500*LSI.500 149.25 4.72 0.01

PAGE 47

47 Table B 2 (Continued). Model AIC !AIC AIC Weight SDI.200*LSI.200 149.25 4.73 0.01 PRD.200*LSI.200 149.55 5.03 0.01 HPAv.Est*LSI.1000*Hd.1000 154.69 10.16 0.00 HPAv.Est*LSI.500*Hd.500 155.31 10.79 0.00 HPAv.Est*LSI.200*Hd.200 155.82 11.29 0.00

PAGE 48

48 Table B 3. All models tested to des cribe species richness in Everglades National Park Model AIC !AIC AIC weight LSI.500 144.23 0.00 0.07 LSI.1000 144.40 0.18 0.06 SDI.1000 144.49 0.27 0.06 HPAv.Est+PRD.500 144.86 0.63 0.05 LSI.200 145.17 0.95 0.04 SDI.500 145.19 0.97 0.04 PRD.500+LSI .500 145.22 0.99 0.04 LSI.500+Pr 145.36 1.13 0.04 PRD.500*LSI.500 145.40 1.18 0.04 HPAv.Est+LSI.500 145.60 1.37 0.03 LSI.1000+Pr.1000 145.86 1.63 0.03 HPAv.Est+LSI.1000 145.90 1.67 0.03 SDI.1000+LSI.1000 145.95 1.72 0.03 HPAv.Est+PRD.200 145.98 1.76 0.03 LSI.500+ShS.500 146.10 1.87 0.03 PRD.200+LSI.200 146.17 1.95 0.03 SDI.500+LSI.500 146.18 1.96 0.03 LSI.1000+ShS.500 146.29 2.07 0.02 PRD.1000+LSI.1000 146.31 2.08 0.02 HPAv.Est+SDI.1000 146.44 2.22 0.02 SDI.200 146.45 2.22 0.02 LSI.200+ShS.20 0 146.48 2.25 0.02 HPAv.Est*PRD.500 146.81 2.59 0.02 HPAv.Est+LSI.200 146.92 2.69 0.02 HPAv.Est 146.96 2.73 0.02 LSI.200+Pr.200 147.03 2.80 0.02 SDI.200+LSI.200 147.05 2.83 0.02 HPAv.Est+SDI.500 147.12 2.89 0.02 HPAv.Est*PRD.200 147.24 3.01 0.02 HP Av.Est+LSI.500+ShS 147.28 3.05 0.01 HPAv.Est+PRD.1000 147.37 3.15 0.01 HPAv.Est+LSI.1000+ShS 147.82 3.59 0.01 PRD.1000*LSI.1000 148.05 3.82 0.01 PRD.200*LSI.200 148.13 3.90 0.01 HPAv.Est+LSI.200+ShS 148.14 3.92 0.01 HPAv.Est+SDI.200 148.45 4.22 0.01 HPAv.Est*PRD.1000 148.81 4.58 0.01

PAGE 49

49 Table B 4. All models tested to describe Hyla squirella presence Big Cypress National Preserve and Everglades National Park. Model AIC !AIC AIC Weight SDI.1000+LSI.1000+Cy.500 56.53 0.00 0.45 SDI.1000+LSI.1000 60. 65 4.12 0.06 LSI.1000 60.85 4.32 0.05 SDI.1000*LSI.1000 61.17 4.64 0.04 SDI.1000+LSI.1000+HpAv.Est 61.32 4.79 0.04 SDI.500+LSI.1000 61.53 5.00 0.04 LSI.1000+HPAv.Est 61.57 5.04 0.04 LSI.1000*HPAv.Est 61.64 5.11 0.03 SDI.500+LSI.1000+Hp Av.Est 61.65 5.12 0.03 SDI.1000*LSI.500 61.97 5.44 0.03 SDI.1000+LSI.500 62.72 6.19 0.02 SDI.1000 62.94 6.41 0.02 LSI.500 63.05 6.52 0.02 SDI.500*LSI.1000 63.10 6.57 0.02 SDI.1000*LSI.1000*HPAv.Est 63.17 6.64 0.02 LSI.500+HPAv.Est 63.3 6 6.83 0.01 SDI.1000*LSI.500*HpAv.Est 63.54 7.01 0.01 LSI.500*HPAv.Est 63.65 7.12 0.01 SDI.1000+LSI.500+HpAv.Est 63.67 7.14 0.01 SDI.500+LSI.500+HpAv.Est 64.26 7.73 0.01 SDI.1000+HPAv.Est 64.84 8.31 0.01 SDI.500+LSI.500 64.91 8.38 0.01 Cy.500 64.91 8.38 0.01 SDI.500*LSI.500 65.92 9.39 0.00 SDI.1000+HPAv.Est 66.04 9.51 0.00 SDI.500*LSI.1000*HpAv.Est 66.21 9.68 0.00 SDI.500 68.10 11.57 0.00 SDI.200+HPAv.Est 68.48 11.95 0.00 SDI.500*LSI.500*HPAv.Est 69.12 12.59 0.00 SDI.500+ HPAv.Est 69.93 13.40 0.00 SDI.200 70.41 13.88 0.00 SDI.200*LSI.200*HPAv.Est 70.58 14.05 0.00 Cy.1000 70.89 14.36 0.00 Cy.200 70.89 14.36 0.00 SDI.200+LSI.200 72.38 15.85 0.00 SDI.200+HPAv.Est 72.40 15.87 0.00 Pr1000 74.05 17.52 0.00 Pr200 74.05 17. 52 0.00 SDI.200*LSI.200 74.19 17.66 0.00 SDI.200+LSI.200+HpAv.Est 74.35 17.82 0.00 LSI.200*HPAv.Est 74.68 18.15 0.00 LSI.200 75.08 18.55 0.00 LSI.200+HPAv.Est 77.08 20.55 0.00

PAGE 50

50 Table B 4 (Continued). Model AIC !AIC AIC Weight Pr.500 78.02 21.49 0.00 HPAv. Est 83.00 26.47 0.00 HD.1000 83.15 26.62 0.00 HD.200 83.15 26.62 0.00 Pi.1000 83.52 26.99 0.00 Pi.200 83.52 26.99 0.00 HD.500 83.67 27.14 0.00 Pi.500 83.80 27.27 0.00 SDI.500+HPAv.Est 90.51 33.98 0.00

PAGE 51

51 Table B 5. All models tested to describe Bufo terrestris presence Big Cypress National Preserve and Everglades National Park. Model AIC !AIC AIC Weight LSI.500*CP.1000 90.17 0.00 0.18 LSI.500 90.60 0.43 0.14 LSI.500+HD1000 91.84 1.67 0.08 LSI.5 00+CP.1000 91.89 1.72 0.08 SDI.500+LSI.500 92.50 2.33 0.06 LSI.500+HPAv.Est 92.57 2.40 0.05 LSI.1000 93.37 3.20 0.04 LSI.500*HD.1000 93.84 3.67 0.03 SDI.500*LSI.500 94.21 4.04 0.02 LSI.500*HPAv.Est 94.24 4.07 0.02 SDI.500+LSI.500+HpAv. Est 94.48 4.31 0.02 SDI.500 94.50 4.33 0.02 LSI.200 94.85 4.68 0.02 LSI.1000+SDI.500 94.87 4.70 0.02 LSI.1000+HPAv.Est 95.22 5.05 0.01 SDI.1000+LSI.1000 95.35 5.18 0.01 SDI.200 95.76 5.59 0.01 HD1000 95.88 5.71 0.01 HD200 95.88 5. 71 0.01 SDI.1000 96.13 5.96 0.01 SDI.500+HPAv.Est 96.15 5.98 0.01 CP.1000 96.22 6.05 0.01 LSI.200+HPAv.Est 96.38 6.21 0.01 HD500 96.50 6.33 0.01 LSI.1000*HPAv.Est 96.65 6.48 0.01 Pi.500 96.74 6.57 0.01 SDI.200+LSI.200 96.83 6.66 0.0 1 SDI.500*LSI.500*HPAv.Est 96.90 6.73 0.01 CP.200 97.01 6.84 0.01 HPAv. Est 97.03 6.86 0.01 HPAv. Est 97.03 6.86 0.01 HPAv. Est 97.03 6.86 0.01 SDI.200+HPAv.Est 97.13 6.96 0.01 CP.500 97.15 6.98 0.01 SDI.1000+LSI.1000+HpAv.Est 97.21 7.04 0.01 SDI.1000*LSI.1000 97.26 7.09 0.01 Pi.1000 97.28 7.11 0.01 Pi.200 97.28 7.11 0.01 SDI.1000+HPAv.Est 97.47 7.30 0.00 Pr.1000 97.98 7.81 0.00 Pr.200 97.98 7.81 0.00 Cy.500 98.03 7.86 0.00 Cy.1000 98.11 7.94 0.00

PAGE 52

52 Table B 5 ( Continued). Model AIC !AIC AIC Weight Cy.200 98.11 7.94 0.00 Pr.500 98.11 7.94 0.00 SDI.500+HPAv.Est 98.14 7.97 0.00 LSI.200*HPAv.Est 98.24 8.07 0.00 SDI.200+LSI.200+HpAv.Est 98.36 8.19 0.00 SDI.200*LSI.200 98.48 8.31 0.00 SDI.200+HPAv.Est 99.03 8.86 0.00 SDI.1000+HPAv.Est 99.46 9.29 0.00 SDI.200*LSI.200*HPAv.Est 100.40 10.23 0.00 SDI.1000*LSI.1000*HPAv.Est 101.71 11.54 0.00

PAGE 53

53 Table B 6. All models tested to describe Psuedacris occularis presence Big Cypress National Preserve. Model AIC !AIC AIC Weight SDI.500*LSI.500 46.57 0.00 0.09 PI500+LSI.1000 47.00 0.43 0.07 Pi500+LSI.500 47.18 0.61 0.07 LSI.1000 47.36 0.79 0.06 Pi.500 47.55 0.98 0.06 LSI.500 47.71 1.14 0.05 SDI.500+LSI.500 48.69 2.12 0.03 SDI.1000*LSI.500 48.90 2.33 0.03 LSI.1000+HPAv.Est 48.95 2.38 0.03 SDI.1000+LSI.1000 49.11 2.54 0.03 LSI.500+HPAv.Est 49.18 2.61 0.02 HPAv. Est 49.24 2.67 0.02 SDI.500+LSI.1000 49.25 2.68 0.02 SDI.1000+LSI.500 49.37 2.80 0.02 Pi.1000 49.49 2.92 0.02 Pi.200 49.49 2.9 2 0.02 LSI.1000*HPAv.Est 49.65 3.08 0.02 SDI.500*LSI.1000 49.84 3.27 0.02 SDI.500+LSI.500+HpAv.Est 50.07 3.50 0.02 LSI.200 50.10 3.53 0.02 SDI.1000*LSI.1000 50.17 3.60 0.02 SDI.500 50.31 3.74 0.01 HD.500 50.32 3.75 0.01 Cy.1000 50.33 3.76 0.01 Cy.200 50.33 3.76 0.01 Cy.500 50.40 3.83 0.01 SDI.1000 50.46 3.89 0.01 SDI.200 50.49 3.92 0.01 HD.1000 50.64 4.07 0.01 HD.200 50.64 4.07 0.01 Pr.1000 50.66 4.09 0.01 Pr.200 50.66 4.09 0.01 Pr.500 50.66 4.09 0.01 LSI. 200+HPAv.Est 50.67 4.10 0.01 SDI.1000+LSI.1000+HpAv.Est 50.70 4.13 0.01 LSI.500*HPAv.Est 51.05 4.48 0.01 SDI.500+HPAv.Est 51.15 4.58 0.01 SDI.1000+HPAv.Est 51.16 4.59 0.01 SDI.200+HPAv.Est 51.19 4.62 0.01 LSI.200*HPAv.Est 51.58 5.01 0.0 1 SDI.200+LSI.200 51.88 5.31 0.01 SDI.200+LSI.200+HpAv.Est 51.93 5.36 0.01 SDI.500+HPAv.Est 52.68 6.11 0.00

PAGE 54

54 Table B 6 (Continued). Model AIC !AIC AIC Weight SDI.1000+HPAv.Est 53.15 6.58 0.00 SDI.500*LSI.500*HPAv.Est 53.63 7.06 0.00 SDI.200*LSI.200 53.81 7.24 0.00 SDI.1000*LSI.1000*HPAv.Est 56.26 9.69 0.00 SDI.200*LSI.200*HPAv.Est 57.84 11.27 0.00

PAGE 55

55 Table B 7. All models tested to describe Gastrophryne carolinensis presence Big Cypress National Preserve and Everglades National Park. Model AIC !AIC AIC Weight CP.500 86.40 0.00 0.13 CP.200 87.42 1.02 0.08 CP.1000 87.63 1.23 0.07 CP.500+LSI.1000 87.91 1.51 0.06 SDI.200*LSI.1000*CP .500 88.54 2.14 0.04 SDI200*LSI1000 88.73 2.33 0.04 CP.1000+LSI.1000 88.73 2.33 0.04 SDI.1000+LSI.1000 89.66 3.26 0.02 SDI.1000*LSI.1000 89.89 3.49 0.02 SDI.200+LSI.1000+CP.500 89.89 3.49 0.02 Pr.1000 89.96 3.56 0.02 Pr.200 89.96 3.56 0.02 SDI.200* LSI.200 90.12 3.72 0.02 LSI.500 90.15 3.75 0.02 Pi.500 90.15 3.75 0.02 HD.1000 90.28 3.89 0.02 HD.200 90.28 3.89 0.02 Pi.1000 90.38 3.98 0.02 Pi.200 90.38 3.98 0.02 LSI.1000 90.47 4.07 0.02 SDI.1000+LSI.1000+HpAv.Est 90.50 4.10 0.02 SDI.500+LSI.50 0 90.69 4.29 0.01 HPAv. Est 90.73 4.33 0.01 HPAv. Est 90.73 4.33 0.01 LSI.200 90.73 4.33 0.01 HPAv. Est 90.73 4.33 0.01 Cy.1000 90.77 4.37 0.01 Cy.200 90.77 4.37 0.01 SDI.1000 90.80 4.40 0.01 HD.500 90.81 4.42 0.01 LSI.500+HPAv.Est 90.88 4.48 0.01 Pr.500 90.98 4.58 0.01 Cy.500 91.11 4.71 0.01 SDI.200 91.14 4.74 0.01 SDI.500 91.15 4.75 0.01 SDI.500+LSI.500+HpAv.Est 91.39 4.99 0.01 SDI.500*LSI.500 91.83 5.43 0.01 LSI.500*HPAv.Est 91.94 5.54 0.01 LSI.200+HPAv.Est 92.01 5.61 0.01 SDI.200+LSI.2 00 92.09 5.69 0.01 LSI.1000*HPAv.Est 92.37 5.97 0.01 SDI.1000+HPAv.Est 92.52 6.12 0.01 LSI.200*HPAv.Est 92.63 6.23 0.01

PAGE 56

56 Table B 7 (Continued). Model AIC !AIC AIC Weight SDI.500+HPAv.Est 92.67 6.27 0.01 SDI.200+HPAv.Est 92.69 6.29 0.01 SDI.200+LSI.20 0+HpAv.Est 93.34 6.94 0.00 SDI.1000+HPAv.Est 94.13 7.73 0.00 SDI.200*LSI.200*HPAv.Est 94.32 7.92 0.00 LSI.1000+HPAv.Est 94.45 8.05 0.00 SDI.500+HPAv.Est 94.67 8.27 0.00 SDI.200+HPAv.Est 94.68 8.28 0.00 SDI.1000*LSI.1000*HPAv.Est 95.06 8.66 0.00

PAGE 57

57 LI ST OF REFERENCES B ABBIT K. J. 2005. The relative importance of wetland size and hydroperiod for amphibians in southern New Hampshire, USA. Wetlands Ecology and Management 13: 269 279. B ABBIT K. J., AND G. W. T ANNER 1997. Use of temporary wetlands b y anurans in a hydrologically modified landscape. Wetlands 20:313 322. B ARTLETT R. D., AND P. P. B ARTLETT 1999. A field guide to Florida reptiles and amphibians. Gulf Publishing Company, Houston, TX. B ERTRAND M. R., A. J. D E N ICOLA S. R. B EISSINGER AND R. K. S WIHART 1996. Effects of parturition on home ranges and social affiliations of female white tailed deer. Journal of Wildlife Management 60:899 909. B ISSONTTE J. A. 1997. Scale sensitive ecological properties: historical context, current m eaning. Pp. 3 31. In : B ISSONETTE J. A. (ed.). Wildlife and landscape ecology: effects of pattern and scale. Springer Verlag, New York, New York, USA. B URNHAM K. P., AND D. R. A NDERSON 1998. Model selection and inference: a practical information the oretic approach. Springer Verlag, New York, New York, USA. C ARR A. F. 1940. A contribution to the herpetology of Florida. University of Florida, Gainesville, FL. C EDERLUND G., AND H. S AND 1994. Home range size in relation to age and sex in moose. Journal of Mammalogy 75:1005 1012. D ODD K.C., W.J. B ARICHIVICH S.A. J OHNSON AND J.D. S TAIGER 2007. Changes in a northwestern Florida gulf coast herpetofaunal community over a 28 y period. American Midland Naturalist. 158:29 48. D ODD K.C., AND B.S. C ADE 1998. Movement patterns and the conservation of amphibians breeding in small, temporary wetlands. Conservation Biology 12:331 339. D UEVER M.J. 2004. Big Cypress regional ecosystem conceptual ecological model. Wetlands 25:843 853. D UEVER M. J ., J. E. C ARLSON J. F. M EEDER L. C. D UEVER L. H. G UNDERSON L. A. R IOPELLE T. R. A LEXANDER R. L. M YERS AND D. P. S PANGLER 1986. The Big Cypress National Preserve, 2nd printing, National Audubon Society, New York, NY. F ICETOLA G.F., AND F D E B ER NARDI 2004. Amphibians in a human dominated landscape: the community structure is related to habitat features and isolation. Biological Conservation 119:219 230.

PAGE 58

58 F ORD R. G. 1983. Home range in a patchy environment: optimal foraging predictions. Americ an Zoologist 23:315 326. G IBBS J.P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology 13:263 268. G UERRY A.D., AND M.L. H UNTER J R 2002. Amphibian distributions in a landscape of forests and agricult ure: an examination of landscape composition and configuration. Conservation Biology 16:745 754. H ARPER K.A., E. M AC D ONALD P.J. B URTON J. C HEN K.D. B ROSOFSKE S.C. S AUNDERS E.S. E USKIRCHEN D. R OBERTS M.S. J AITEH AND P. E SSEEN 2005. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768 782. H ECNAR S .J., AND R. T. M'C LOSKEY 1996. Regional dynamics and the status of amphibians. Ecology 77:2091 2097. H ECNAR S. J., AND R. T. M'C LOSKEY 1997. Th e effects of predatory fish on amphibian species richness and distribution. Biological Conservation 79:123 131. H ERRMANN H. L., K. J. B ABBITT M. J. B ABER AND R. G. C ONGALTON 2005. Effects of landscape characteristics on amphibian distribution in a forest dominated landscape. Biological Conservation 123:139 139. H EYER R. W., M. A. D ONNELLY R. W. M C D IARMID L. C. H AYEK AND M.S. F OSTER editors. 1994. Measuring and monitoring biological diversity: standard methods for amphibians. Smithsonian I nstitution Press, Washington, D. C. J OHNSON C.M., L.B. J OHNSON C. R ICHARDS AND C. B EASLEY 2002. Predicting the occurrence of amphibians: an assessment of multiple scale models. In : S COTT J.M., P.J. H EGLUND M.L. M ORRISON J.B. H AUFLER M.G. R APHAEL W.A. W ALL AND R.B. S AMSON eds. Predicting Species Occurrences, Issues of Accuracy and Scale, pp. 157 170. Island Press, Covelo, Califfornia Johnson, S. A. 2007. The Cuban treefrog ( Osteopilus septentrionalis ) in Florida. University of Florida EDS. http: //edis.ifas.ufl.edu/UW259 Kie, J. G., R. T. Bowyer, M C. Nicholson, B. B. Boroski, and E. R. Loft. 2002. Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83:530 544. K NUTSON M. G., J. R. S AUER D. A O LSEN M. J. M OSSMAN L. M. H EMESATH AND M. J. L ANNOO 1999. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconson, USA. Conservation Biology 13:1437 1446.

PAGE 59

59 L EIBOLD M. A., M. H OLYOAK M. M OUQUENT P. A MARASEKARE J. M. C HASE M. F. H OOPES R. D. H OLT J. B. S HURIN R. L AW D. TI LMAN M. L OREAU AND A. G ONZALEZ 2004. The metacommunity concept: a framework for multi scale community ecology. Ecology Letters 7:601 613. L ODGE T. E 2005. The Everglades handbook: understanding the ecosystem, 2nd ed., CRC, Boca Raton, FL. M ARSH D.M., AND P.B. P EARMAN 1997. Effects of habitat fragmentation on the abundance of two species of leptodactylid frogs in an Andean montante forest. Con servation Biology 11:1323 1328. M ARSH D. M., AND P. C. T RENHAM 2001. Metapopulation dynamics and amphibian conservation. Conservation Biology 15:40 49. M ARTIN K.J., AND B.C. M C C OMB 2003. Amphbian habitat associations at patch and landscape scales in the central Oregon coast range. Journal of Wildlife Management 67:672 683. M ESHAKA W. E. W. F. L OFTUS AND T. S TEINER 2000. The herpetofauna of Everglades National Park. Florida Scientist 63: 84 103. M C N AB B. K 1963. Bioenergetics and the determ ination of home range size. American Naturalist 97:133 140. P ECHMANN J. H., D. E. S COTT J. W. G IBBONS AND R. D. S EMLITSCH 1989. Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetlands Ecology and M anagement 1:3 11. P OPE S. E., L. F AHRIG AND H. G. M ERRIAM 2000. Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81:2498 2508. P RICE S. J., D. R. M ARKS R. W. H OWE J. M. H ANOWSKI AND G. H. N IEMI 2004. The importance of spatial scale for conservation and assessment of anuran populations in coastal wetlands of the western Great Lakes, USA. Landscape Ecology 20:441 454. R ESETARITS W. J. J R 2005 Habitat selection behaviour links local and regional sca les in aquatic systems. Ecology Letters 8:480 486. R ICE K.G., J.H. W ADDLE M.E. C ROCKETT B.M. J EFFERY AND H.F. P ERCIVAL 2004. Herpetofaunal Inventories of the National Parks of South Florida and the Caribbean: Volume I. Everglades National Park. U.S. Geological Survey, Open File Report 2004 2005, Fort Lauderdale, Florida.

PAGE 60

60 R ICE K.G., J.H. W ADDLE B.M. J EFFERY A.N. R ICE AND H.F. P ERCIVAL 2005. Herpetofaunal Inventories of the National Parks of South Florida and the Caribbean: Volume III. Big Cypr ess National Preserve. U.S. Geological Survey, Open File Report 2005 1300, Fort Lauderdale, Florida. R ICHTER B OIX G.A. L LORENTE AND A. M ONTORI 2007. Structure and dynamics of an amphibian metacommunity in two regions. Journal of Animal Ecology 76:607 6 18. R UETZ C.R. III, J. C. T REXLER F. J ORDAN W. F. L OFTUS AND S. A. P ERRY 2005. Population dynamics of wetland fishes: spatio temporal patterns synchronized by hydrological disturbance? Journal of Animal Ecology 74:322 332. R YAN T. J., AND C. T. W INNE 2001. Effects of hydroperiod on metamorphosis in Rana sphenocephala American Midland Naturalist 145:46 53. S CHOENER T. W. 1981. An empirically based estimate of home range. Theoretical Population Biology. 20:281 325. S EMLITSCH R. D 2000 Principles for management of aquatic breeding amphibians. Journal of Wildlife Management. 64:615 631. S EMLITSCH R.D., AND J. R. B ODIE 2003. Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Cons ervation Bilogy 17:1219 1228. S HURIN J.B., AND E.G. A LLEN 2001. Effects of competition, predation, and dispersal on species richness at local and regional scales. The American Naturalist 158:624:637. S INSCH U. 1990 Migration and orientation of a nuran amphibians. Ethology Ecology and Evolution 2:65 79. S MITH D.C 1983. Factors controlling tadpole populations of the chorus frog ( Psuedacris triseriata ) on Isle Royale, Michigan. Ecology 64:501 510. S NODGRASS J. W., M. J. K OMOROSKI A. L. B RYAN J R ., AND J. B URGER 2000. Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conservation Biology 14: 414 419. S TODDARD M. A., AND J. P. H AYES 2005. The influence of forest ma nagement on headwater amphibians at multiple spatial scales. Ecological Applications 15:811 823. S WIHART R. K., N. A. S LADE AND B. J. B ERGSTROM 1988. Relating body size to the rate of home range use in mammals. Ecology 69:393 399.

PAGE 61

61 T UNNER H.G. 1992. Locomotory behaviour in water frogs from Neusiedlersee (Austria, Hungary), 15 km migration of Rana lessonae and its hybridogenetic associate Rana esculenta. In : K ORSOS Z., AND I. K ISS (eds.). Proceedings 6th Ordinary General Meeting of the Societas Europaea Herpetologica, pp. 449 452 Budapest, Hungary. U GARTE C.A 2004. Human impacts on pig frog ( Rana grylio ) populations in south Florida wetlands: harvest, water management, and mercury contamination. Florida International Unviersity Dissertatio n, Miami, FL. USACOE ( U.S. A RMY C ORPS OF E NGINEERS ). 1994. Central and southern Florida project (C&SF) comprehensive review study. U.S. Army Corps of Engineers, Jacksonville District, Jacksonville Florida, USA. V AN B USKIRK J. 2005. Local and landsca pe influence on amphibian occurrence and abundance. Ecology 86:1936 1947. W ADDLE J. H. 2006. Use of amphibians as ecosystem indicator species. University of Florida Dissertation, Gainesville FL. W AKE D. B. 1991. Declining amphibian populations. Scie nce 253:860. W ELCH R., M. M ADDEN AND R. F. D OREN 2002. Maps and GIS databases for environmental studies of the Everglades. In : J. P ORTER AND K. P ORTER (eds.), The Everglades, Florida Bay and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook, pp. 259 279. CRC Press, Boca Raton, Florida. W ELLBORN G. A., D. K. S KELLY AND E. E. W ERNER 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecological Systems 27:337 363. W EYRAUCH S. L., AND T. C G RUBB J R 2004. Patch and landscape characteristics associated with the distribution of woodland amphibians in an agricultural fragmented landscape: an information theoretic approach. Biological Conservation 115:443 450.

PAGE 62

62 BIOGRAPHICAL SKETCH Michelle Casler was born in Sharon, Connecticut, in 1980, and lived most of her life in Amenia, New York. She received her high school diploma from Webutuck Jr. Sr. High School in 1998. Casler attended SUNY College of Environmental Science and Forestry (ESF) in Syr acuse, NY and received a Bachelor of Science degree in environmental studies biological applications in 2002. She held several internships during her time at ESF, working with vegetation, mapping, and nutrient cycling. After receiving her degree, she reloc ated to Florida to work for the University of Florida, studying wildlife in the Everglades Agricultural Area. She then enrolled in the School of Natural Resources and Environment at the University of Florida to pursue her master's degree.


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101109_AAAABH INGEST_TIME 2010-11-09T16:13:02Z PACKAGE UFE0022109_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 17467 DFID F20101109_AAAYTC ORIGIN DEPOSITOR PATH casler_m_Page_32.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
886b1dbcb2eba47ce1203ad8dacfcd0b
SHA-1
c8f9a478a169368e79626a353e3f797cfab8cecf
1053954 F20101109_AAAYOE casler_m_Page_42.tif
dfff6a3e1d1398674d7e223257127e51
f3428aa4b8990616cb36f74b74791eceb547e43a
37189 F20101109_AAAYJH casler_m_Page_48.pro
aeda1847647e03d60c38c7eabd643a80
6e1f03201e8e6706ad61bac535a0539dddf38ea0
18328 F20101109_AAAYTD casler_m_Page_35.QC.jpg
e212ac199b5236031f3052fa040cbb93
1e58569facb3387b4f2fa8c952a9689880f1a613
25271604 F20101109_AAAYOF casler_m_Page_43.tif
e20f34623608c47ef53f6eedc3e1f942
46649afcba407e94c5422757e86a01b3dfb65e08
F20101109_AAAYJI casler_m_Page_15.tif
7667d8199db2996252d2a0653e258a8a
ade6ce621c4b9d53071a69db834310f53f3d6bc1
19975 F20101109_AAAYTE casler_m_Page_61.QC.jpg
a2f50c1150d3fbcbbff318f0b9c52fe8
5345ef3feb1c2c72f943dc837341097b7f37bf56
F20101109_AAAYOG casler_m_Page_44.tif
36f4b70e71f90f00546ef8fbfe380555
ed4c167bc70aefd2472573b08e737e7c836fc019
76510 F20101109_AAAYJJ casler_m_Page_40.jpg
eba2ad2769e72aba1534710561e2c1ac
609f93bff30bb72b651b9cf43943516a3b23c812
7063 F20101109_AAAYTF casler_m_Page_18thm.jpg
e670f58f0ea1d275bd98c535bd8d9537
7110845b98435e090b7651fa1bc8f8c8c2b8dcda
F20101109_AAAYOH casler_m_Page_45.tif
8a2d318ffbae0ca2253ac2aa3cfb8274
59fd6b55cc4c328f2849b7ad35a1d977c075ca12
4661 F20101109_AAAYJK casler_m_Page_34thm.jpg
db7f91046d9b31dc203512f750159538
660b93fcd5f52f4c7bcbf0baa13b0ebf7739ba33
4366 F20101109_AAAYTG casler_m_Page_24.QC.jpg
c86a13226e867c9a1bc18cecb60f4f41
fdea5b6082234373938a361917dff4771c19b851
F20101109_AAAYOI casler_m_Page_46.tif
924515724df786261524a2aea6d02366
cd01d93ef82a9c5b1dff9ac6a79d959d01f0534b
87770 F20101109_AAAYJL casler_m_Page_36.jp2
4a813f477e8d0cf81d6bfc74b348143c
7e9786c64d482db93e39240f90edf003b7fa939f
19525 F20101109_AAAYTH casler_m_Page_49.QC.jpg
77161884fb732b9ea80612dab15b7134
96776e4503548c481fde7adebb114d14b38cb7b6
F20101109_AAAYOJ casler_m_Page_47.tif
8f669ebd8a3f8d102b2ecc2a3c9ae629
38f2b5420243b4e45f1bf457db8846d98299cf4b
73836 F20101109_AAAYJM UFE0022109_00001.mets FULL
c637ec74775bee8e7142b66e1d6faf2f
b6b42c0b33652b5fa5ea94a7e2d40585887b0092
F20101109_AAAYOK casler_m_Page_48.tif
ef3f9a59cfe9704d4b3fdb190c5fd3cd
db08ea8df26c10e4795fa53e27c6481b5c0685b3
F20101109_AAAYOL casler_m_Page_49.tif
fe9f7fb63534eaead8bb4b07116b1e2c
a88672251a806c0716bf7e88a0319cee0611e41a
17576 F20101109_AAAYTI casler_m_Page_53.QC.jpg
b2d062438eec34e10e801ba147254eb6
f759b78419f07dc211431468e444e929f63a755c
F20101109_AAAYOM casler_m_Page_50.tif
b81985c5d586feeb98d5a55b5c34d918
64a2b48bdd74db92ad18e75bd013c55d152f8cde
9336 F20101109_AAAYJP casler_m_Page_03.jpg
26d0af59a40c84e46d7772a2418c0fc4
e51ae55996994c50e28de031c57e0e47d9ee3756
6701 F20101109_AAAYTJ casler_m_Page_16thm.jpg
7468697ef41c1add8079b5803c79ad57
fda87379547482e026105a23911900cf55350c92
F20101109_AAAYON casler_m_Page_51.tif
391ddd31d76c297a0fce971eeb447e01
9701870f6052780b9a7b3e009e7c82f727a241ad
33063 F20101109_AAAYJQ casler_m_Page_04.jpg
b10c981ce1271cd6c148e855a435c554
0cc67b1c6a535fb1d4c1121028f40de75260f464
17141 F20101109_AAAYTK casler_m_Page_34.QC.jpg
633437d36920e5ee48f8bb01215800b6
2fa04155ee1feabb56d920ad468358d454b7fdbb
F20101109_AAAYOO casler_m_Page_52.tif
496d062c30ee05670a37056106171d35
8505c8b3d27027c39b15284275dafe431279bd7e
86286 F20101109_AAAYJR casler_m_Page_06.jpg
e4f55f4155aa1dfb447def97f703b074
69462619be56fc718b7c5f81b01030a06fbb7981
2940 F20101109_AAAYTL casler_m_Page_03.QC.jpg
c889a7dd0d318978d3faef3f605045a7
ceb9047119e6aff35089a47e3022d307569a067d
F20101109_AAAYOP casler_m_Page_54.tif
ee768927fe2d356a6360a1d0ea1477e7
aa8d2bc71c79dd187b66c9a1e6f8d9dc550ba6ad
14540 F20101109_AAAYJS casler_m_Page_07.jpg
71951dd0da74f01b3cc9a37f6fe122b3
9d8c988f8c59212fc564c1e871e2c79881994337
4559 F20101109_AAAYTM casler_m_Page_39thm.jpg
705969ef70f3d07373a7efa9b51ca9b1
399ff70d8d6316c5cd618de59c96991bacdd5d77
F20101109_AAAYOQ casler_m_Page_56.tif
882ef79272088179ab38c6293c7e06ad
69d01c22e02cadecc93ee2b33a0ff99eeb3fe475
37170 F20101109_AAAYJT casler_m_Page_08.jpg
4755afe5c759ef5c1676e3d9e8a913a6
d6231274dc36a4b1c0bc8b6dba1c354da8183882
6684 F20101109_AAAYTN casler_m_Page_59thm.jpg
87acde3babf43f870af56e9007fa9bac
b5e950d7ff0dfe871a6b40ab4734b7b7f36a845d
20675 F20101109_AAAYEX casler_m_Page_62.pro
69ba83995a2e784b31ec3e72cdfddc4e
120369ecc9d16e5d13169319e63848bf885fd74d
F20101109_AAAYOR casler_m_Page_57.tif
beefc3aad0745322f8affa23984ab047
99e7fa48b90c52a80a72824c6c5fd5f75772e08d
65757 F20101109_AAAYJU casler_m_Page_09.jpg
b7b0dd3dd152d7bc7f02aab1f9a68cc1
7945c1ef3caff44fd8889b850ab56eafb7b53844
11778 F20101109_AAAYTO casler_m_Page_62.QC.jpg
a49d226c1f872bd12b822fd1d97df07d
35e92a77fb85a939116c4b40c6c19b725a33a7ba
46185 F20101109_AAAYEY casler_m_Page_14.pro
9ff2f77eb02227b6d915fafbafbc4265
6526ee32ec31fb02d0968bc7c6b1e84d1fa5843a
F20101109_AAAYOS casler_m_Page_58.tif
ac319bad80fa3bba0a2babdd0eedf1d4
e5eaadb599ecae19e1ba0ab0bc2e3f69ac3074ff
72707 F20101109_AAAYJV casler_m_Page_10.jpg
506a80b85843f38d64a0b718cda12b83
200619bc0f8c4c60f5923948fc88d192eb085eba
4658 F20101109_AAAYTP casler_m_Page_55thm.jpg
375a1aedbad4509cfb05d510ee9baed8
0407d9f331fcaf726791968146a265bfc4df859a
F20101109_AAAYOT casler_m_Page_60.tif
ebcd6f03d57a055ee173e051a0e93977
74353fc6cabfd5fbe51c6c160e3f0e6ad604abd2
76182 F20101109_AAAYJW casler_m_Page_11.jpg
fe13b0f2d954eafbf13e7d813e52ae2b
0fd6502739b0455b107b35d379ec4c2b0a46d6ca
17188 F20101109_AAAYTQ casler_m_Page_55.QC.jpg
5687a5e789eb5a7e492f4c2e601ec897
d020efe371e794be300af4e191c5e6015c600f49
46016 F20101109_AAAYEZ casler_m_Page_61.pro
84d941dd38293bfd2d5c1932aec794cb
8d64a922df10ebb91dbcc58ae2d5aac02dc70f41
F20101109_AAAYOU casler_m_Page_61.tif
8a4b81298250d9f39aa2695c853893cd
33363d286cafa5995fb53ca308028caffc00cb5f
25408 F20101109_AAAYJX casler_m_Page_12.jpg
e28995e93f4af9b99eee23e0a70d5617
c31df2fcd4e6a3655754f663254eb57c57106dcc
2069 F20101109_AAAYTR casler_m_Page_50thm.jpg
ece732a71d33fe6b4c26cea88cc2df04
f77fc5a6ee7d76f00458c427763bfeda59831f93
8883 F20101109_AAAYOV casler_m_Page_01.pro
f4e9e6a5e7df4a52cee96cd274bf0a66
9e8264e0f86be6a945aa33884bf7d7114f6317fc
68023 F20101109_AAAYJY casler_m_Page_14.jpg
d8ad9d1806d576d52884ea3ee6b86c98
2e2c365cee123f94c62467f2b398ee02bdca00ef
10591 F20101109_AAAYTS casler_m_Page_04.QC.jpg
281c1ac0f5447764724c3823ec4385db
cf70a5877ecf721afc3aa9839900711e05cff3b7
937 F20101109_AAAYOW casler_m_Page_02.pro
7c175c6f80557d08bd9914f06d2b3f70
ee3522f7aa2c241b07c349bc49c48f65225ee670
F20101109_AAAYHA casler_m_Page_03.tif
6934783f4b703807838913091f2c3f35
116c5c404181c0b44867deaf2b076e05946f764e
78402 F20101109_AAAYJZ casler_m_Page_15.jpg
fb48614ddaf9b3aa776d5e6a0bd447f0
71d101c471887db3d9cbf8fd065a2910e624fb2b
5894 F20101109_AAAYTT casler_m_Page_09thm.jpg
040015d57b700f28d0f8f3ba9b22f727
68dfcb5e87debe37ca26e657e4222746beac8382
493 F20101109_AAAYOX casler_m_Page_03.pro
ab773faf4ff7acf2250e07428a2f9698
f670c95798a0e90c11803c09c7db069840ae1f0e
859 F20101109_AAAYHB casler_m_Page_62.txt
d7c784ffcaf8bbdeaad3b8d9fbc94694
c6f736693c57e391b1e2d108e168e92fa8d9b54d
95122 F20101109_AAAYTU UFE0022109_00001.xml
102146abf1d855479223ae64f50b5ed7
7bb66eaf64745013faa9813c8655662e49ae766f
18319 F20101109_AAAYOY casler_m_Page_04.pro
27a29ed29c7be58a11d7c2ceedf1abe1
f9a25804554798b55869df58af194fde7dc070f4
F20101109_AAAYHC casler_m_Page_18.tif
f2d64ad513fb2e31d5ad8f9cbeea11a8
4559a687a10591bf341255ce4d7c630e230046d4
1324 F20101109_AAAYTV casler_m_Page_03thm.jpg
961f3c76e076051b1ad6f0cf3fe24450
bf06c6962ab22359fe3da123349039a612c944ce
17850 F20101109_AAAYMA casler_m_Page_26.jp2
bcda66380fa0705b6872f6215d06afe9
63f4440c14cb786f6a1fbfc14bbad00bcdd0fe28
64489 F20101109_AAAYOZ casler_m_Page_05.pro
f350bbe590f7ad88755cdb5afb338318
ddcb8503d268982e43cba3efdac358feffaf40b8
F20101109_AAAYHD casler_m_Page_59.tif
65d9e0fcc822cb0061177c07b7bff412
da1ea5f5bc03e9e872fa5c080b2863c24c9534e1
4131 F20101109_AAAYTW casler_m_Page_05thm.jpg
4771b4cd5ced195ac14b96af19083842
2292bca1c03f39d5e07e6240914835f9076ad621
75676 F20101109_AAAYHE casler_m_Page_23.jpg
70c9e0d69433583eeb21f8491eb1c4cf
1e968bb45918f6214e685e2b642697966dc86ec4
24340 F20101109_AAAYTX casler_m_Page_06.QC.jpg
b68f422ef379f7ba8e609e47716540bb
7135eb212e72d6677a9ed58aec2b5318be360c36
19675 F20101109_AAAYMB casler_m_Page_27.jp2
a26884f609a6dcceb98242e836782035
19bb8c589b99dd79c5af1d70253f87612f0493d7
87365 F20101109_AAAYHF casler_m_Page_58.jpg
fbd34d845926c9e4b1ffc9a5e1071912
767003b4a8370f5c49154f17331c707a89ed9a8b
2046 F20101109_AAAYRA casler_m_Page_19.txt
ac47a4f234cc61b91660e43ec5741393
2bc60ac6095b2466c5390b13e7a93248e7e352ca
6516 F20101109_AAAYTY casler_m_Page_06thm.jpg
b5fffb9dbbe4b60760c03ec5b3d7bdf3
79674d5f4a9926fa752e3b50ca9b311594eaffb0
37571 F20101109_AAAYMC casler_m_Page_28.jp2
42a10af4b605d684d0080e38505ea557
a9e1274a357becc2148a94923bb47b07d5b1b295
25716 F20101109_AAAYHG casler_m_Page_01.jpg
bf157f9e011953c66c2bdeb759259b70
95810c0e72885aaa6092cf681ed802599b815fb9
1960 F20101109_AAAYRB casler_m_Page_20.txt
0862ea204651ca05e79e400a513e8ebf
483be10bdf68174ec33be3f5c6414f45da5accc2
1579 F20101109_AAAYTZ casler_m_Page_07thm.jpg
7a9bd1af585e196dcafc774b5790dfe3
f1f9e5eb4bc68417cedd44b11798f4316130c658
75169 F20101109_AAAYMD casler_m_Page_29.jp2
fa5e99b4f648fd2724a6c9716c674c32
a10249ea727afe813d9eddc7c3740ec34e02252f
81393 F20101109_AAAYHH casler_m_Page_13.jpg
d3071ff16aef6f8c7559f0acd9365705
a1c682dd7ed9a478083c1e7e0bbb44103d197df5
2160 F20101109_AAAYRC casler_m_Page_21.txt
18f6687af2fa8fe1b0567f64c5ab39f8
61c0414d508be711e62a8ac0b9e7e91b557ecd4c
95756 F20101109_AAAYME casler_m_Page_30.jp2
21657e93e7ca9c61fc059559543c86ef
914478a6f46e4d3b40228c2cdae49872a516ba10
50475 F20101109_AAAYHI casler_m_Page_22.pro
05d9e67a174fe6ee14414bfbc699e8a4
56b62eb0f83a509dfb43bcf2c1dcb79db1bc6d5d
1992 F20101109_AAAYRD casler_m_Page_22.txt
ba567f6dfdc0633069446123dc3c18c0
97d67ba9019828b43540c27809434410345df766
85696 F20101109_AAAYMF casler_m_Page_32.jp2
0f823d30c1d6e2d45b18e79303741f5f
557d5de224a4aa87ea85b663364b040864d9808c
F20101109_AAAYHJ casler_m_Page_62.tif
915d87ccae68288ace3d4e2c16348456
e00d072114bff47cabe79e3d6f0f2a667143e9bf
2091 F20101109_AAAYRE casler_m_Page_23.txt
09d8e0bb614df6d8d93540ddcf562c14
4935d4652f6097cc973fbeb534f2214197943cd7
65507 F20101109_AAAYMG casler_m_Page_33.jp2
308e6383aeb9d5cd337e625e4fd6bde8
a1e30432f50d890d0c0db2ffa256e3946eee631a
F20101109_AAAYHK casler_m_Page_40.tif
04ad79f988b9a46bc82e2eb2032948aa
7186f88bee398da05208595672bd502a4581e9d2
142 F20101109_AAAYRF casler_m_Page_24.txt
66c46c597fd2b23760afc8eb784fe4a8
6e33cde68dcfdef130a217dda4aa3243b49cb5f4
85087 F20101109_AAAYMH casler_m_Page_34.jp2
14e7edba9dea4b519bfee602cec00cfc
132fcd6eb13bf3ba80b1f8e2edc1b0afb9532ec5
6733 F20101109_AAAYHL casler_m_Page_37.pro
a47e845aeba7ced1ad7a3cbb1c43df32
09e5d8337b0dddfa73a3e7adf817412728f4a7c1
90331 F20101109_AAAYMI casler_m_Page_35.jp2
34dd87b15092191d5f07bc08f6a94077
c5963c64c0ee34dc51f83158328f71681c686e7e
F20101109_AAAYHM casler_m_Page_13.tif
21caafb7d21c0e872bb7647120e6543c
ed50dcc39cf6939231d512a0b999104e9ee80083
865 F20101109_AAAYRG casler_m_Page_25.txt
b82482ac7d8d52943a692a8b665c2090
e36bfa2133a75a05841b1c1a9d08849633923c37
17152 F20101109_AAAYMJ casler_m_Page_37.jp2
81a539743dd5a89d57f46afaccf07f42
c0477837b5f494bce7197727061d8d2c42011c2d
997057 F20101109_AAAYHN casler_m.pdf
affcc17ca1ca1513fbc0c28451bec109
0b70fe1d6bf3167e935d72d3e8df00b9e3a8ff6d
438 F20101109_AAAYRH casler_m_Page_27.txt
717722e56930c92b82ada8d9846dcd2d
bb7b38bd80a9963e5c659f326be1da8bfdc516c1
1050549 F20101109_AAAYMK casler_m_Page_38.jp2
40a34f4df72834c341b8f2bcd831cc4b
d4a8b390568641fd26731fb21ef1197b9c4a9c5a
6460 F20101109_AAAYHO casler_m_Page_10thm.jpg
8bdda83acae9fa2cafbb6c1609592759
20144655aeea86331ecd47a317387b3d8cfd1f2e
693 F20101109_AAAYRI casler_m_Page_28.txt
88fed817a12e46331fd29b85ebf4dd22
b6ca4ec900a08a4615acde3c72ebbb0299bf630a
839346 F20101109_AAAYML casler_m_Page_39.jp2
b8ef9f6f93ecf85a9588fe061aeacf7b
42820fe82b4cba47dc116aeff2f917428299bfad
17228 F20101109_AAAYHP casler_m_Page_31.jp2
c4398149e1cfd2fbe6b0298c3c365471
a5262de8cec952d1c9d72b59f4347c969dde2bb7
1698 F20101109_AAAYRJ casler_m_Page_29.txt
6fd785244ce160a3353b81b8ded12d91
8896efab5c0f43c16d999a99a8e5a66fc39d940e
53474 F20101109_AAAYMM casler_m_Page_41.jp2
fd25fce22d52d996058d05a74bcecae5
2632573d644d6036d7aacfc71b73ddd9156dae16
95270 F20101109_AAAYHQ casler_m_Page_46.jp2
292e9b71b9d5085e38903ceeaf27e255
701e75a68d7facd0627d05c55681dd80bfdf22c0
2444 F20101109_AAAYRK casler_m_Page_30.txt
f07d16181c80d842f205f2fd46149c0d
f34bb34e8adda71219a0697882185ba786844a0e
69071 F20101109_AAAYMN casler_m_Page_42.jp2
ed9f43280bd3e290389dd6afffaf0f04
4deaa3b4c7339965ce0697ba2f448e669964c7af
310 F20101109_AAAYHR casler_m_Page_26.txt
98872a6e33785ff384f1ab07f0724d03
b19c1aebd7cdf891ee053b78f731bae717ae7ab8
303 F20101109_AAAYRL casler_m_Page_31.txt
e68407830be9691425263dfaeaca49ea
0ef427786aa9ecd1fc3ac2664ff121d3575f0390
450747 F20101109_AAAYMO casler_m_Page_43.jp2
5e5d3f7ef9f8d8538bcebff45e3e3718
4387d65aa2d8f333a1f13b6c64cf45c773348c82
F20101109_AAAYHS casler_m_Page_55.tif
bba44c67e8b2c3ed8bcb56ad814ae76f
e555f4e7234e17d3a488e091e48e97bf2fd39887
1570 F20101109_AAAYRM casler_m_Page_33.txt
1b238c1a48f30d9d450f6adfa69761d5
915989fe0a7c818b64338b7a7bde899b6312bf73
98772 F20101109_AAAYMP casler_m_Page_44.jp2
a3779b22dbdb19adf213df37f6edee3f
78b81e27995fe09b4a8f23c1bfd9474fa729f4db
F20101109_AAAYHT casler_m_Page_11.txt
fd5378737a9954bf28813c88308f0953
6a199d87769733c0eae7830d4954b4e6eb38969b
2550 F20101109_AAAYRN casler_m_Page_35.txt
474762b98efc40b3668b6ebe5a810c57
3e45fbb56b8897a8acf13c47d653e0536fdd87bf
51396 F20101109_AAAYMQ casler_m_Page_45.jp2
77565f79baa845974385829660fb6692
d11b4ba69709a1c65425d7d6ffc5c3182e413f23
28544 F20101109_AAAYHU casler_m_Page_28.jpg
8ee39b1a9cfea49c56046bb01df8b13b
b23cc3faa56654feb60727773292a9fbce44d704
2456 F20101109_AAAYRO casler_m_Page_36.txt
d6d542f8455c6842c8a085a54664abfb
02bd37f537a8785633b7c4307e928da443578ea6
19138 F20101109_AAAYMR casler_m_Page_47.jp2
71219b6807d35fc4970dd69dd8e9c811
97a1ed35ebf64d0305bc7bdd0113b98cb1136405
122106 F20101109_AAAYHV casler_m_Page_60.jp2
06764343c41ef61aca0f30a37cd22552
1ce381641d8c19fccc81d6864f122f6a442b0602
302 F20101109_AAAYRP casler_m_Page_37.txt
0e14b8083c55a53f1066e927f587d010
afd15643b3d29004c2f4c22b21e26d3bf82bbe02
98234 F20101109_AAAYMS casler_m_Page_49.jp2
1e77b1fa3c0d3f49416dec9bbfe845eb
1cac3495ac89535a5392dfbf432ee58ef85dfce3
11085 F20101109_AAAYHW casler_m_Page_24.jp2
d7be3ef757728baf7797d405ff319fb2
89c93e4721999720c19f866eaa08c4a0fb998c1c
1780 F20101109_AAAYRQ casler_m_Page_38.txt
e7a90b4bc636137d5fb32ffffe92f3b7
70772d15a43ae350dbc249c75ac99221e1c42204
87806 F20101109_AAAYMT casler_m_Page_51.jp2
4b43316c57431d8be425788599444531
fbcffd999a4a71193152bc0048c2775c62541178
2270 F20101109_AAAYHX casler_m_Page_01thm.jpg
55bbdbcc7f56ba15916997297229c3cc
d1ab2f23b063109eed6f7439e55350f5ec59416c
2147 F20101109_AAAYRR casler_m_Page_40.txt
1bc0f5e0a2f35b4bdf8adde60df53863
859d30602bc7b02f90afc3fe1a4b75b9dbc19589
27989 F20101109_AAAYMU casler_m_Page_52.jp2
85ea0393b02d4499e4f2c76812ae9c62
9dd59056c21f409745d62602b62abe3ad39df86e
933 F20101109_AAAYRS casler_m_Page_41.txt
8a3e2358d55d69ec6b32317a84fe2347
867637b2f9de6289bfda406aef2a3531df360e82
86553 F20101109_AAAYMV casler_m_Page_53.jp2
3bc8d7b7528436bbaccef4273cd7160c
72c74e359b8a9369872c30f07f3747afd3dc79b5
505 F20101109_AAAYHY casler_m_Page_01.txt
d4abd0c66aa6a479943a0a973d3c9eb0
3a74bdd67f48a1c38a442f84dd2332eccdc4574f
1094 F20101109_AAAYRT casler_m_Page_43.txt
5859c84438b49caf93c279e15991395a
bb5c1f72cc802b0b15e007590291ea3fcb2e647f
19363 F20101109_AAAYMW casler_m_Page_54.jp2
5a571ba3c17ab3aba650aad5840e1944
46499fe0c19b0984c873d06168414227dd751859
F20101109_AAAYFA casler_m_Page_33.tif
fb0439b29ab9246cb8bbe6632e3145c6
e4ea8e5b51b04553b6e1cc4725a00296e66730bf
21917 F20101109_AAAYHZ casler_m_Page_50.jp2
76a541a1e6b163ad01e9426899eebf8c
5a9b726d2153d8afbb081e391540b23da88cd4b0
1845 F20101109_AAAYRU casler_m_Page_44.txt
9abb0e27067626e38770875410370961
a4659f88f6e2d8cf1de3cfce313f856e9a6a4b9e
87310 F20101109_AAAYMX casler_m_Page_55.jp2
a0b369ec8ca0344cc6cd4e6f9061d5ef
581174e8425069f8acdcce14718ffa96d5aa98f7
12523 F20101109_AAAYFB casler_m_Page_52.pro
a0ca049c251f3eca8a05fab1569718ca
6aa57816d7019d4f5bc9025418fe0e924893c1a9
874 F20101109_AAAYRV casler_m_Page_45.txt
f174856a5cb5d032d7d42960cdaf47a1
0900212b52f338cc0c02afe84381f29909fcd662
27278 F20101109_AAAYMY casler_m_Page_56.jp2
0b8bac59d7a3e52b9cbc5d6b81346735
7a59376afcb627f3ff2797cf12371c55aaf2e242
321 F20101109_AAAYFC casler_m_Page_54.txt
f7cebc2dd8d8e14200729d7363c9fb5a
5d9067db226a92f66e020a177a83b39fbe64d307
2323 F20101109_AAAYRW casler_m_Page_46.txt
51724df8967a1681b8fa47c06ad2aa56
76ce89f0302ad13bfffa31165fa59dfff1f2427d
85939 F20101109_AAAYKA casler_m_Page_17.jpg
47c8619c6d017b8cc8e979829f8fea98
8fda543030c9aa8c5f149b22ad60a4cd5c87d57f
121699 F20101109_AAAYMZ casler_m_Page_57.jp2
4ce8616323b724933547d65306861189
56dc4b5d3573df882d46f8426882de13219b3f1a
498 F20101109_AAAYFD casler_m_Page_56.txt
02afff7852c995b66c9c153b147cf11e
99a288216662d8f21ffc807dedea1dfed6560f03
1828 F20101109_AAAYRX casler_m_Page_49.txt
3d382b88c52887fe3505fc8609f1c8f1
2044112f8a084471790eef6bade0651ee3b37a92
75883 F20101109_AAAYKB casler_m_Page_18.jpg
1d664dc07351335f062f770e9b735669
b13f59775ed9d1a4d8855ef251129b927aeb2e05
57820 F20101109_AAAYFE casler_m_Page_48.jpg
8fc8586cc7c97af55bfed18faf848721
6c66015eb38e13aae3aa63858a2b3d1962bb80bb
F20101109_AAAYRY casler_m_Page_50.txt
8188af14ab69b7af92cadb272dbd3f1d
ec837482d7f30bb376cd1515a5ccca61bac81177
72938 F20101109_AAAYKC casler_m_Page_19.jpg
c496f4172a6d72174e4755c0a0dac409
6764d3e51f10dbabd4ec04b9187a98bb66385b49
F20101109_AAAYFF casler_m_Page_11.tif
757c7b4c8b260e4895692654630ccafc
b7e6b41ac60cc95dbe0df99eebd201f3043abe71
73485 F20101109_AAAYPA casler_m_Page_06.pro
94a05137f6042ee509ac63d7bf08e015
0ae2540494024f902474d0783d1c0196e9e14c5d
F20101109_AAAYRZ casler_m_Page_51.txt
82a10b6e544626ee8d868cbc12123ee1
20cd1f66a29a264ab0169ef95e50fce65abe848c
71854 F20101109_AAAYKD casler_m_Page_20.jpg
ac29c90c3fd054c24ecda2096f78fd7c
daf3b8ff2fe665a0668afead116180a0832f43de
119220 F20101109_AAAYFG casler_m_Page_59.jp2
958430ae4892512958cb7fbd951eebab
f7040b883210510a7813c4dee998b9faa72d0fdf
5310 F20101109_AAAYPB casler_m_Page_07.pro
0a00cab8513de7719c9bee8a24805b03
1e3fcb5875ab0d0f2aa7d59d3d183318da914f28
72134 F20101109_AAAYKE casler_m_Page_22.jpg
b8c3b7738fcc161b1c65c0be2a7545d3
d061a7217725d831d7beac0173a78bb603ac5b2d
3266 F20101109_AAAYFH casler_m_Page_04thm.jpg
4cf3643627ef47232540a4c43e03487e
ff91feedfd3704dfab1be7345db710eac8adb43c
22733 F20101109_AAAYPC casler_m_Page_08.pro
82ba5c0951328e456e552a568f737b74
3e3676782e5a1cffda3ffc3df1fea531b5a23b5d
12807 F20101109_AAAYKF casler_m_Page_24.jpg
51e759b202baaa8ff5d09bf3d6b309b9
d33df4d54524f9223b28df36a85ca4e51bdb0b7d
9670 F20101109_AAAYUA casler_m_Page_08.QC.jpg
efa54a8d2c8903debb0921008bde3b62
f2f2e183755faf201943540e44dcaab23c71c405
24368 F20101109_AAAYFI casler_m_Page_19.QC.jpg
d2ada088657993b6bfef6d4b14398c23
94360cab423cc729c2ed844352f79ee95d6e8a93
42707 F20101109_AAAYPD casler_m_Page_09.pro
f5cee8f108b09e6a98761bc83386bcef
ef886e3555ec320a6efdae50f71a9905bbc358a1
39643 F20101109_AAAYKG casler_m_Page_25.jpg
160399b03b3763a46654f47cc415a9a0
770816f77e7655f004035cfd0f6cbe3449f4d3e6
2730 F20101109_AAAYUB casler_m_Page_08thm.jpg
e10af77f0547a81891acd1a4ea130f58
e5228d89af1c8ad1ed107f83050310c999b1226c
31039 F20101109_AAAYFJ casler_m_Page_39.pro
692f5857e807c9d1d2f93821606a3b1d
2608cdc93754982a254675ab65d2dc05e6b9f8d2
18714 F20101109_AAAYKH casler_m_Page_26.jpg
eb84b2a44a50ed9c54da204c28ff5076
2b17b17764b1cee003ce7915e2f5f2fb858ffd6e
20800 F20101109_AAAYUC casler_m_Page_09.QC.jpg
e458706e8784d25a2c44cd2473820520
42030d15e29019fca9a12e0c61e1415541f8018c
F20101109_AAAYFK casler_m_Page_38.tif
5618f3e99dc82fc99724ca98621020b8
d1b89d226eb2a6e4dbd5f1a3feabba7e505403ab
49701 F20101109_AAAYPE casler_m_Page_10.pro
7d2699ea699fbd5dbca01dbf850d901e
0c5d6977fe97b51e6c62e177cddbcb79fb3ebdb3
18644 F20101109_AAAYKI casler_m_Page_27.jpg
40eb303ad40d51cbf397ccb85a216da4
76e52820f335ceaf31a087f551b4eda1709f8db5
6730 F20101109_AAAYUD casler_m_Page_11thm.jpg
3d89e879106f2c2a1f65d1ee11e9df4b
1ab9426f94adec1df10362b903964fdc1357db8e
39039 F20101109_AAAYFL casler_m_Page_45.jpg
add00160e1a157dd3afd648360be6502
55261f4f8ff3539f73f48467790c5a3949b92723
53131 F20101109_AAAYPF casler_m_Page_11.pro
1515f622ad032d338ce0110f0b6e74dd
1d7660e7c993db152ad86a6706fde5b9e4e6c04b
66250 F20101109_AAAYKJ casler_m_Page_30.jpg
bccb9a0ce17b189d3acfbffc7318cdcc
e9916b268624d6408731a15bc31241399bd1dc5d
8499 F20101109_AAAYUE casler_m_Page_12.QC.jpg
ed0daeca72315e5b16bc2b863c3b83ed
2d657354566543dcde2e7f9b2015493aefc6760b
F20101109_AAAYFM casler_m_Page_14.tif
f6a768d7927beab5fefe9b46df61fa32
81c50291b629e97f8c412eb90e82cf46a7646122
13620 F20101109_AAAYPG casler_m_Page_12.pro
ce60ca625101c03261a545c568c053cd
e4e6b93eb14449ea1115cbbb85decec23114bce9
18399 F20101109_AAAYKK casler_m_Page_31.jpg
8c1fb1e2cf2ccbaa6d3ab3d081643555
79c847836c0fe7b1349fab8ca5fd13b4c3f2e50c
2597 F20101109_AAAYUF casler_m_Page_12thm.jpg
8f63be6bc097eae9f579b1577ef6fa42
c918a2ad1c4a5e3fc961d9fb5c604e4ad3567311
80323 F20101109_AAAYFN casler_m_Page_48.jp2
45deb3a00f73b189a45a9ef7ff7749e3
dbbcdf74f195e73fbb22a1d562a10bff958b55fb
54825 F20101109_AAAYPH casler_m_Page_13.pro
c0b86709ead9fc8af49c1cc293bad898
a1a23047cc1fca5c5763c8ef7e6050adf6cd0733
60985 F20101109_AAAYKL casler_m_Page_32.jpg
2a8aa80e64278337b09d72328b772419
8f9dd1e7e262c5df073f18e83b309d7876a1f70d
22398 F20101109_AAAYUG casler_m_Page_14.QC.jpg
277c91adf259262338665ee3bb23978f
9f5463e8d0048b3d6a9a5d317c0d18dda7713347
1270 F20101109_AAAYFO casler_m_Page_42.txt
a1f913773f388ffe97e25d0e550ec684
1318189e931853f40dd4da077749ec456d6f448b
47027 F20101109_AAAYPI casler_m_Page_15.pro
3482c8c0b6e43c7e5c5043d4f3241f49
1efb8b8bcf2f2f8888bba155fd7b58c60d6645cc
57681 F20101109_AAAYKM casler_m_Page_34.jpg
f59de6d281a6dae61f062cf398a7aabb
1845f0f99eaf6cedf23b6a26015d0aa55af96a5a
6265 F20101109_AAAYUH casler_m_Page_14thm.jpg
9a691c9df97a18e3c067fe8de488cecb
0af8f6d6322b3d683758a796bc1b614099772078
74527 F20101109_AAAYFP casler_m_Page_16.jpg
f115a581d9998e05da63ec3c6257b96e
e4810063480bde6486fc0c0c9db895fdddcffc91
52752 F20101109_AAAYPJ casler_m_Page_16.pro
666992cf0d31d82acdf228060d559ebf
57ac34a10772beeae02dc78309aa0f145ceb74d3
59620 F20101109_AAAYKN casler_m_Page_36.jpg
5dd996a6831b032debe8ab8c6b0a9b4e
efc9b8737216326b06e14bf044ee34cb9a2f404c
24799 F20101109_AAAYUI casler_m_Page_18.QC.jpg
440b14bd13b7de7b0b674e66e96bd7c8
0369fca847425b0a0359882aed1cda807b4532d2
F20101109_AAAYFQ casler_m_Page_19.tif
0955261e053143185538ade807027052
126bd74c27e135e59d48e99a370122146760bf87
54603 F20101109_AAAYPK casler_m_Page_17.pro
92b210109cba79eb0c6eff5ba34937c7
b1a6f85dfc3f38f62314f709cdcbdf820d7db199
17469 F20101109_AAAYKO casler_m_Page_37.jpg
bc8281a88b9129dab6e16409665eb7dc
af40d4330c63f579e2e4e9f06d77f7524f54a428
F20101109_AAAYFR casler_m_Page_07.tif
83f62437e51f0c119787f8fbae74f4a4
cef417a85ce4d52cedaeccd600e794ed77530a2e
53125 F20101109_AAAYPL casler_m_Page_18.pro
19ba46788c1a0beba538b9e2580cdb56
f2654d6e096c03ddc000dcec78e6091ecbfc86af
6448 F20101109_AAAYUJ casler_m_Page_19thm.jpg
827acb107e8a171ea8a65864958aa37c
4af19f52315c3441ce0738b9b1679d5c1ab20a59
56162 F20101109_AAAYKP casler_m_Page_38.jpg
560d47beff8c279eea6680e9e171784b
c6a9969a1c3c6e9e242e767469d84fd416355fc1
19017 F20101109_AAAYFS casler_m_Page_54.jpg
77b2259e882f2aec91d1e5b7bb7bf3d3
f23dffe1619e240847dadf084c6786eab9fbff1a
50625 F20101109_AAAYPM casler_m_Page_19.pro
1ed74441560c858ca0b8fb1eaf80e356
32072a2fca2b19a22f01e5cdcbdfecbc4a92a2f4
23413 F20101109_AAAYUK casler_m_Page_20.QC.jpg
889e53e6638daf2e21fc81cd9a1bfba2
bb3535eadbbc6d663b3b2444548ca8e12671fead
54482 F20101109_AAAYKQ casler_m_Page_39.jpg
24b5082e25b6b00b7e0c6cc6face105b
23c3f7058ec97475a236af33a9a0cadfdb739f44
1496 F20101109_AAAYFT casler_m_Page_39.txt
16f310684310b9389d2460812249bbad
a4a8f37424d615a36369c8184c620101ca62f637
49380 F20101109_AAAYPN casler_m_Page_20.pro
07f90bdc4f63654d1a1b39f379985951
bfcfed960c0125f2ec0a29f472f4182c205a7650
25397 F20101109_AAAYUL casler_m_Page_23.QC.jpg
479ed86708342f7cea8add63ebc0a2f5
2db0fd83aa64e75a396e13ae9ccb2d338bde4598
49056 F20101109_AAAYKR casler_m_Page_42.jpg
dff3493d98ba373c6e0e578907d20589
c3fb994f1bac763c4f246030710f9728d38e7f16
1864 F20101109_AAAYFU casler_m_Page_15.txt
571937f7aad9d6046de46e093fb6907c
24172198e8662af2b40ad35935cd3cf600082d1f
53683 F20101109_AAAYPO casler_m_Page_21.pro
896450c240c59f67c4317f383b7177b5
650dac2f09d605c871b728c48ebab82bf1148844
6812 F20101109_AAAYUM casler_m_Page_23thm.jpg
da053418ea77c6d51d16dfc5f5dc529c
3001154f85ba121ea2d2092e217af21fbda3f6dd
33405 F20101109_AAAYKS casler_m_Page_43.jpg
272665e828228be9414ab8678cb43548
45510b9f3e3d79bf39dcff3b033c49d67149712e
7345 F20101109_AAAYFV casler_m_Page_52.QC.jpg
257ce44df79002126325c52005a62208
6feb3d02da1d2f11fd9c3e6473589214a3d95ed5
3472 F20101109_AAAYPP casler_m_Page_24.pro
3a7eec149fdb6339fb862461dcd76418
839fc95e6515a7a0c3c28b3b1ece48fb8ec9903d
1634 F20101109_AAAYUN casler_m_Page_24thm.jpg
b773ab2ae4569bb240eef5417863c45a
00e526d8107de7861d56f97ff7d8d9d7317da839
70642 F20101109_AAAYKT casler_m_Page_44.jpg
3ca1b497de3d8abdfaed37966362d6ee
1b7a2ba714ca11a0084b3b04e761616bb7ca0574
52650 F20101109_AAAYFW casler_m_Page_35.pro
5509c1ac8ae8e19786be2b9980ff3b3e
92b11a20239d42f54c486182d6e80453a92510f8
21377 F20101109_AAAYPQ casler_m_Page_25.pro
285d2c0d119fc7f36c86b72f665f51d3
a926c34c5404182a3b5be7b31a3c0f6769100271
5690 F20101109_AAAYUO casler_m_Page_26.QC.jpg
cd64439fe18fc7e7c22bb83663a62932
86cede0048f6606a56634b4ba5644bec88e98117
7128 F20101109_AAAYFX casler_m_Page_17thm.jpg
706d7530dd95cb9939c0be6107667273
a5ad7a6d58083f89c0d985d6b180fcad6eb8b1bf
7092 F20101109_AAAYPR casler_m_Page_26.pro
2164ed6abe90ba4658a90e00867b9c91
46325b42329071d828ba6f542cf376102479f6fa
65612 F20101109_AAAYKU casler_m_Page_46.jpg
5141fa51fd136d18bb1d7f36615be4f2
468b4261d59b4a6da0fbc707e77ea4d0e32707e1
1880 F20101109_AAAYUP casler_m_Page_26thm.jpg
16fd0e105c2510826b840914934be221
7a4a4591190c1c271b4c94a32d989636fc466e12
3094 F20101109_AAAYFY casler_m_Page_02.QC.jpg
4f824c9b93f950ba82214078fe29d7b8
541f839a9e7998d4590787dcb61f8c3a30d15de9
15995 F20101109_AAAYPS casler_m_Page_28.pro
868b8cd171ac5a5acf7ede967f77f098
961fea79e5e816f32fb4e963b194a7f56efb60a1
19169 F20101109_AAAYKV casler_m_Page_47.jpg
aa3ba170f0a07d876f1859a85bc56bf4
a9f5f406ac632282e6c6c967e34fee1ac2286b32
8244 F20101109_AAAYUQ casler_m_Page_28.QC.jpg
ff1a4202c37535bd25bd8c48f97b51ba
ade7aa5495fd61424ec8855b512ac82386d30f61
60876 F20101109_AAAYFZ casler_m_Page_35.jpg
292d41b8a44800563f30d883220ce43f
7e06e4b7f53cd522536044fa39886e1bd6e5ed2c
37709 F20101109_AAAYPT casler_m_Page_29.pro
7934a9e95c8a52398278eb45c2e6a2f6
b6999a626cd702b025d078f26f7e42bab3fc386b
20831 F20101109_AAAYKW casler_m_Page_50.jpg
d5ae49a62f6e461d242c96a595965f86
55f806901b53f50680cec4f4d65b0d437131d4c6
15103 F20101109_AAAYUR casler_m_Page_29.QC.jpg
8bcbe057da0cb773ef499f5abfaee491
fa090b798676b1cfc93e6c74bd0ddae1a4dc64f3
53040 F20101109_AAAYPU casler_m_Page_30.pro
005129e1c75b50e4841e27896aec6bae
89d0c9a496ca383503d50c1c28af189c7c1d0737
62264 F20101109_AAAYKX casler_m_Page_51.jpg
2095cf2a0bbcfd8cc6179475726e9add
9fe72ad36c1798408e3a12d63c86ef11a1c11059
4309 F20101109_AAAYUS casler_m_Page_29thm.jpg
4e91bfb3264cc9c20c3e738bf191cbac
2418a85a13231931ebb0f4aa3d97f97ae5f708db
6645 F20101109_AAAYPV casler_m_Page_31.pro
a6c0a158bf1ccba2f4f5a0c51ecbc711
ceea8c751e8b45c3f6152fc57c6f9adc0d5ec4fe
24828 F20101109_AAAYKY casler_m_Page_52.jpg
8b94b3cd31a71dcb250f34e46d25d582
1a816ca311d561682f4d52987066536c97350377
18656 F20101109_AAAYUT casler_m_Page_30.QC.jpg
de5e94d2286b59d891a498f6ea84004a
69dadfedb70296188182d740fb96ae0f2a49530b
32374 F20101109_AAAYPW casler_m_Page_38.pro
67f1a531b7fb6cc56bb69de982125197
501dc1b925bf4b8c66918eebbc0dc5033f030d23
F20101109_AAAYIA casler_m_Page_31.tif
b7e70939ea0e60b01170d421ae5c6ad1
894e9f6ed5849da00e131e7d946da142c6ea39e9
60001 F20101109_AAAYKZ casler_m_Page_53.jpg
88ba9ddbbfe8596156b0f5a30a14c77e
df8b254f9ef0e542d66b09e4189e740a79d38a30
5757 F20101109_AAAYUU casler_m_Page_31.QC.jpg
23c0b4418d65ff8274124cbf23ed70cc
1ca64987b20d0ba3fcf9af3a01b42066a4692bfc
52502 F20101109_AAAYPX casler_m_Page_40.pro
5adc468ff5b9091bf9f49fee9891b21f
a66445eeba6155a626c30f5452fea8843388a3fc
24320 F20101109_AAAYIB casler_m_Page_15.QC.jpg
ecf471646a3a4f16aa9b9db033e8f1c5
7e0223acf8e744b11615dda0ed1de158d17365f8
14144 F20101109_AAAYUV casler_m_Page_33.QC.jpg
d93ff0540a1cefdf327b835ed53d6b1b
e8a8be2d457b4722eabee4d9e887470e0fa0061c
130859 F20101109_AAAYNA casler_m_Page_58.jp2
c48331c8464bcd18c2ea1c3ba238ef17
dcdf9beba84d0c4529f50e4313970a2bfd4b39c8
23379 F20101109_AAAYPY casler_m_Page_41.pro
5d9d7fe1eb0e30bc9a40edccaf116a42
38645b7787a94359c1c1b6da6b3e24c4a95c6831
2372 F20101109_AAAYIC casler_m_Page_52thm.jpg
e001ec9d6108f206b026ad35204a3b2c
926ad1ffd14be3b1f7fb24f38a680d819e3b1db2
16812 F20101109_AAAYUW casler_m_Page_38.QC.jpg
42f119e64b1f92f9692bcc1a47936f5b
487d7a689aaa780f34b314e46d35af9158b00117
101717 F20101109_AAAYNB casler_m_Page_61.jp2
fe3720d1e076c23fe2d556c4ff00b9ba
4786b4394e8d15748af69b1e36758dc9f4276bac
28958 F20101109_AAAYPZ casler_m_Page_42.pro
10638133a7b7e2f95d73af185241bbe5
9c3d0adb36b53a32216f399056014991abfc2887
113582 F20101109_AAAYID casler_m_Page_40.jp2
4c2e2b7938b3ac750c677a9269366adb
4a0d65e6df798ecb788cadf040ebce98cdc9e98f
5054 F20101109_AAAYUX casler_m_Page_38thm.jpg
591939df9772fd0e921359bbf654a31f
893372c71f439b2522101fc721f7b1f3020dd6f0
25703 F20101109_AAAYIE casler_m_Page_21.QC.jpg
f4ccfc66625cb5cc78f3ce54543a9c44
362faf7a3cdcccf0a58b3c1bba797eb02f3a8ba5
6632 F20101109_AAAYUY casler_m_Page_40thm.jpg
d15d1e2ac94a393d8ff678554f5ae419
f51aca7eda2546b434c39025f4ed41cc1c352b60
48522 F20101109_AAAYNC casler_m_Page_62.jp2
6e9bf5c7ecc1d1b1741e93c5c782a3a3
12a743e1c8b88d29f9a1d65ad7b5e36552099a0a
24867 F20101109_AAAYIF casler_m_Page_16.QC.jpg
f5fdd9f486acc4f135d9d1c950137bc7
38821e16288df268c11c1419bb387241ba0f3cb3
555 F20101109_AAAYSA casler_m_Page_52.txt
6e24da36b55b12b37cc170c2291c9ab1
c17121d8a319811c544277312fc6fa226938acb5
12728 F20101109_AAAYUZ casler_m_Page_41.QC.jpg
b09543c55c11660d15123c7ed754d5a3
efe48ef0a004c2877aab88f8c2f903f4eaa5ab05
F20101109_AAAYND casler_m_Page_01.tif
90e7c7a76de7c1f0c3fd8c42e114e16e
970c9c078a9d54c732b0d4e3030baf490f3875b5
225410 F20101109_AAAYIG casler_m_Page_07.jp2
26a02b67e80f90a2c12996bb996f5103
a51cea65cb585e53e8dcddde642e7a5a8bca6903
1626 F20101109_AAAYSB casler_m_Page_53.txt
8637309959d0fb36b82f1bc95bc41a39
bf747fe04513a38d6486bddd2834a5b57860622f
F20101109_AAAYNE casler_m_Page_02.tif
a57ab98eb6d2ec6cc241771b03c70b74
a3439571b14e3c2d229e89115a6774cc0bc4ac96
21428 F20101109_AAAYIH casler_m_Page_45.pro
a1f78b70aedc3c2a8d41277c42594baa
31b6accf152cfee68beee51c1cf730a2357c8a11
2236 F20101109_AAAYSC casler_m_Page_55.txt
03f62ce0e063328fd2ded8b07d61bc52
ba3ffffd14b71fe51eca2d191bd9d35963c46a6f
F20101109_AAAYNF casler_m_Page_05.tif
5790336cd65ac7d0f7942228733e0ce2
0cfb9b856707222846807f665970ebd2284c082f
7765 F20101109_AAAYII casler_m_Page_01.QC.jpg
5b7874484f55bfe3815665dee87c7c5e
af7d138237da57596c447ffc06031bd5cec4872a
2370 F20101109_AAAYSD casler_m_Page_57.txt
8816805c406413b5b2ca37de04627122
a616fe1576208191867aae49f1187206a1e127fb
F20101109_AAAYNG casler_m_Page_06.tif
c5d713459151d6efb1cbe4e732f49cae
f41a511064be1f6dc3ce55431a2efd5236d60a48
4920 F20101109_AAAYIJ casler_m_Page_30thm.jpg
171fb3f786ef37851326b434001faac1
e70494bf70234368243aa3ea3bf6292bb03a1bd4
2567 F20101109_AAAYSE casler_m_Page_58.txt
38c25795a46400589ec19c3caf8e1d07
0160632e43f44c27daaf8402f26513352df59e32
F20101109_AAAYNH casler_m_Page_08.tif
9c3ef3d6a5148d71a9716d97e396414f
8c673748059bc10385fe77635661eeb9514933c1
26785 F20101109_AAAYIK casler_m_Page_01.jp2
69199b55a58279b3c6b2345dfc4faf1a
6767f898a29338da7d0e94a10b2cd5f828455a8e
2294 F20101109_AAAYSF casler_m_Page_59.txt
06408d0bd508f23bd79825d6dd33df85
77f5ed95c10492c4f99193090054da11a4b02f01
F20101109_AAAYNI casler_m_Page_09.tif
b8fe969b99c2a44939ee4d17baa4e22c
0b6f79eca4ef69303845b71b041800fddca1342a
53072 F20101109_AAAYIL casler_m_Page_23.pro
0b54d985c05d1652685dcfeeb884d3fe
d39700a877ebb1d3a2686581c72e6ff73fc01877
2358 F20101109_AAAYSG casler_m_Page_60.txt
656d3c069b496dd2984ae2ff2c10f4e7
1fddb72b02144bcb635dfc9d0933fb79b2c4c5d7
F20101109_AAAYNJ casler_m_Page_10.tif
1607e1aa3ef02bfb9df665587a0b567a
29c33a271abce43a669d66ec71ba8e97ae4b6285
6455 F20101109_AAAYIM casler_m_Page_22thm.jpg
9e9b0adbfbdd2c3b51444b21e0031894
b9f1f9af689acea40d57e63ae87702c804d28e53
F20101109_AAAYNK casler_m_Page_12.tif
27692edd381717d53c553a8d930d50ba
2571b24469123a49c94cc7752ea19601320d44d9
1599 F20101109_AAAYIN casler_m_Page_32.txt
e9a029f684a6190fcac0f9f47c155b3d
5e9c86ba20f3c07286cb7acefb73f7e7e464b290
1914 F20101109_AAAYSH casler_m_Page_61.txt
ce9234fbb2eaf1d004b2b56db37c5604
ac133ab4b1fe8c8bd7ed57caf3b9cb3c1ed946c5
F20101109_AAAYNL casler_m_Page_16.tif
326cfa22e980ecbae680f822da298faa
5118480e8acaea730e8aa7f7efbaeb9e01f5a342
24786 F20101109_AAAYIO casler_m_Page_11.QC.jpg
60708a250b7b9772e3e9af4a45b9b5d4
26e823465ecc85e13cf2008a43e49adf5d2b99de
24213 F20101109_AAAYSI casler_m_Page_60.QC.jpg
d407fcf2bdfe3537f75c9769a9ef14b9
ceb3ec5d59e635c3bbbb2a0d53f2ba67c2f16aac
F20101109_AAAYNM casler_m_Page_17.tif
c9377e92d4b1c804f628b87886df0d5d
caa1bb35c650d90af0efbd525bf64169e2c598a3
16626 F20101109_AAAYIP casler_m_Page_05.QC.jpg
90454d731b7eae374cf120c03d375a62
5524aecfe0027523f9b6f88574db96cee214ab32
5048 F20101109_AAAYSJ casler_m_Page_46thm.jpg
e937e7164e873cc1b5cfa73c8b6c3858
a3b52d074ab3d7a24913c37e4363c6665f6a3e52
F20101109_AAAYNN casler_m_Page_20.tif
fa385bd12c26082e16a7ec74161a61d3
463f68c52bf8484d0a3723be3f0b78a8eb9aaf0b
34108 F20101109_AAAYIQ casler_m_Page_33.pro
fa1a6f575da15323f52342c7601d6da0
754cc411a34feb607cda918181335fc49830c86c
11898 F20101109_AAAYSK casler_m_Page_25.QC.jpg
52b4ac19f3820a4c944dc1e3708454cb
6ccd286815a69b46759bfe48d0a23ff23e04b67c
F20101109_AAAYNO casler_m_Page_21.tif
296b3071329b7dc40d99252e84af6991
696288386cb1834e8df5366810e710963bb6d1bf
6700 F20101109_AAAYIR casler_m_Page_21thm.jpg
f138fcd3fb82535996f92bb5d772d026
e7cbe3ab26261c6a46e18262718b1f77133dacd0
5477 F20101109_AAAYSL casler_m_Page_61thm.jpg
7a87f1cd1f1079f32c54510b3a8dfca9
407c1c56fe7b72326082e847db21043c4337f251
F20101109_AAAYNP casler_m_Page_22.tif
26a8f57efbf511f09a2f6e770c39b57e
6e9a518ff5337d1313763185ef241a0908970f0e
68359 F20101109_AAAYIS casler_m_Page_49.jpg
5c5c11912e7e1c62c341c3db3b8fa47d
fb158d15f0fa33a05d7d716e070efd467c53178b
23606 F20101109_AAAYSM casler_m_Page_10.QC.jpg
671066dcf5945afe606266d34a5235cb
af532987fbd5d650439f17c5e26bf981acea9334
8817 F20101109_AAAYIT casler_m_Page_27.pro
043d3cc656dfa1a1e3fa3b1790e61eae
a5c8a24a0bc737efce36de3a62fe6b3eacc785e6
4833 F20101109_AAAYSN casler_m_Page_35thm.jpg
d7718a3357ccaca6470a57e705acc550
4903f2813cb1eff9915d4dbfa727a05339974266
F20101109_AAAYNQ casler_m_Page_24.tif
2831a734e7b751bcc8898bb54b40b2d3
c0860102122be835e84e886e8a6ce9ce9a7e7dd2
6383 F20101109_AAAYIU casler_m_Page_20thm.jpg
545ed96d2a9ad0587e0aff40c73b7c9b
ff2804554c8c50d323e9213c4e76f974d289705d
25365 F20101109_AAAYSO casler_m_Page_58.QC.jpg
b4f29c09216b0e90ffd608825f322125
e09248de9621d3f1e4498a97d682d84dd1500bfa
F20101109_AAAYNR casler_m_Page_25.tif
620f4521a20793eb07af27bab84b0218
de9d5ef8277b62b2777d35e095981db8a51bfa0f
1506 F20101109_AAAYIV casler_m_Page_48.txt
10c55274f07955b7ff5a3669c6ba0aab
0e8e15bd64038fd41e90e6cd2829286724738789
5474 F20101109_AAAYSP casler_m_Page_37.QC.jpg
72bf3b60a567d71408a6afa08ee3be67
12f4798e83475db3d0f42cd3c36d3d24124c258e
F20101109_AAAYNS casler_m_Page_26.tif
cc454a34cd8b761d24a945c0fedb18ca
1cc6f6151b33aba02d177020c7d96df7f32df731
17453 F20101109_AAAYIW casler_m_Page_36.QC.jpg
949be8bc0735c3155b2cfcc1b7a39468
eeb190527524db7abd55677884be11e5e6f007e4
27365 F20101109_AAAYSQ casler_m_Page_17.QC.jpg
61d1fc6c940fbdd68187a52e3ce4baa3
dcbfb077390d575a97b68d3ea24e488c2a5e7dde
F20101109_AAAYNT casler_m_Page_27.tif
da8992a480e5ff9928c8c76fee7cfa2d
27535ff79cba15ec2170eae4b33afcb0b14540b3
2278 F20101109_AAAYIX casler_m_Page_34.txt
7c1d689b8e65ae7e53037c3e52f41b1f
46c9fccd02273406dbe0245b66c6a07d3d4858d8
1945 F20101109_AAAYSR casler_m_Page_37thm.jpg
b2feccdea56d532b32b80e5a28884258
1703dcced3cdb240fd285141b6897fb8a9ddece3
F20101109_AAAYNU casler_m_Page_28.tif
ac1d5a621d194c90f329d559791240b5
109ce662cc67ceea31e33b073eeb57f8b72a1c78
59498 F20101109_AAAYIY casler_m_Page_05.jpg
c7a7888f58c893a3ca8d860ed5467976
73c61822278758221bb0c6c5b155d934432b1d7e
4384 F20101109_AAAYSS casler_m_Page_07.QC.jpg
7ff5b73d7ae2c331d0dc1f5fce105e05
c1278d6fb47e7a5f7315827ec7397d2373f9ad31
F20101109_AAAYNV casler_m_Page_29.tif
5ebc42dca165246b047ca8399f09ba3a
1a7e570a3dfbe5726cc2fc8430cc63a274df27f2
76734 F20101109_AAAYGA casler_m_Page_21.jpg
ef6f5a46eacd1e0795c97bd5f0a698e1
df672962f9059b40c17900389ee1d2d31bb27952
51092 F20101109_AAAYIZ casler_m_Page_36.pro
9aaa78844f6ff510f8416a57685d9693
a860b80501e9b4736085a4d5d05533f08b0fac80
4524 F20101109_AAAYST casler_m_Page_32thm.jpg
11c60b7a7f1c3e269f82d6c0379208d2
abdf3e92d773fae44d3a63f30dcaee300546d613
F20101109_AAAYNW casler_m_Page_30.tif
f6ed21f2bd5bc95650b26934e7c6774d
a4d35f643dc6fd6705985b7d696dd770a10caaeb
53528 F20101109_AAAYGB casler_m_Page_29.jpg
85253f0561837acd6721d2a5caba3676
d2c475a33acb76e6aeec333a0efef703eaa54880
5095 F20101109_AAAYSU casler_m_Page_44thm.jpg
7590c74fd71a112ebe44d11e31fcd5fd
f91047fbb90315d68abd4f8533e0c2919c4cfb0b
F20101109_AAAYNX casler_m_Page_32.tif
085cd81fe00cf25a526d6d820ae192d7
5a5412ecb4871f3d446ed5c6c8d9dbe72649441d
1971 F20101109_AAAYGC casler_m_Page_31thm.jpg
b82027271ea2b7cb29fff0187d794695
d1180d14ea69cf4b2fe1f53bd85eaa271aa331b5
15399 F20101109_AAAYSV casler_m_Page_39.QC.jpg
f6fda51ad004e7c9bd0f167db5b8ac34
580f72f3baebbf784d6414fdd0d083758a3f5f80
F20101109_AAAYNY casler_m_Page_34.tif
2e67ae2255587eef183d36d108053487
48dd5a5c365ccb47b17b2cb13a378b08bc6342ac
6997 F20101109_AAAYSW casler_m_Page_58thm.jpg
a22d06aec34dc6733acf36191a83e65f
633d3a8f38cf31cf8db975495bf622c3636aabe4
59881 F20101109_AAAYLA casler_m_Page_55.jpg
e161dec4a9c1a61cab009b84875a2110
a06a0e7ae2374ff69a0676947f95ead3280332fa
F20101109_AAAYNZ casler_m_Page_35.tif
47bac43a088d0c9af59d92bf6438bd04
8b1d810d7688b22c4c415e57ec3c713a113bc379
2453 F20101109_AAAYGD casler_m_Page_28thm.jpg
3e50b59eb8df091c60611ef7ebeee24f
670678ad17fc179db50879e06e33841359bfea49
10059 F20101109_AAAYSX casler_m_Page_43.QC.jpg
1fc91edd4fab848ef00f1a5c2f512046
218049b0fc46fd4027ad5d96063eede1c586aa1b
24747 F20101109_AAAYLB casler_m_Page_56.jpg
59884cd6e2fb2dccdaa5cca2b1aa302f
7556238d767f2694f0e80a7b646a4478856f8c49
7251 F20101109_AAAYGE casler_m_Page_13thm.jpg
8cc2199109324bf923271354ae331294
8671aafcc8296c6bd5f751ccc0c4656dfe4577ee
20442 F20101109_AAAYQA casler_m_Page_43.pro
5f541739b488f2f389dc5c90d5f82a8c
fe13ed577766a0c92ee6c1fa627815e8d5de6f4b
26816 F20101109_AAAYSY casler_m_Page_13.QC.jpg
0351a1fc98d60b3e2d9ef007083ccf8e
15721bca24edfbdb1952cf2717d835f7711e253e
80474 F20101109_AAAYLC casler_m_Page_57.jpg
74ae697656e8b8ea64577e2e390d97a1
07c0f60668ca25ed82fb688cede0c0de80778da4
39743 F20101109_AAAYGF casler_m_Page_32.pro
9d232958927b4b9595ea70603819c015
0718f3ec82b753c7b4d9e9b6bc93213dfb066f31
45033 F20101109_AAAYQB casler_m_Page_44.pro
d47a7026b0495347d673b66d3de3a2c8
7245294bb2be8315a6bde723ac93b97b7abff604
6088 F20101109_AAAYSZ casler_m_Page_27.QC.jpg
ce340b7380386a14eb8323c9f7094758
58ca4ea65c87930c8837c5e3f65e1dd0a5251b0b
81427 F20101109_AAAYLD casler_m_Page_59.jpg
eb505e6ce3ed9b5e730cbf7cb255f6ca
f062b442d811063127e4ef51e7e69b5d97169fcb
5729 F20101109_AAAYGG casler_m_Page_47.QC.jpg
f349d15a3e008fb3b7a0fbb21882b941
bbe6bf468b31022eb2f5c7892329f47392e04b4c
7587 F20101109_AAAYQC casler_m_Page_47.pro
af824daa736e7f1de0341acae00bf3ec
54771c08cd014d5cade26d826a23e880b60c9a54
68355 F20101109_AAAYLE casler_m_Page_61.jpg
ea0288c268eb0ee743b7939620881a2e
8e0462ba47b7b4b64e2188e461dc47417722ecc6
9912 F20101109_AAAYGH casler_m_Page_02.jpg
22073334f49ea3a0d962edce954dfc1a
bea8240cb2635c7fec0c6a9ba2da09eade25c654
3847 F20101109_AAAYVA casler_m_Page_41thm.jpg
74681344273ad5feb35c822acc6c91ce
fc661216f2117e20ad3d841acab92b54990732df
45482 F20101109_AAAYQD casler_m_Page_49.pro
2b3b3c0f6af0363494fd8f7ca6fa0055
be71e108bb2fccf5c2b5e4aa837dc83610c1807a
36077 F20101109_AAAYLF casler_m_Page_62.jpg
f269c346ec8d875469dcf73d683331b3
63c48b8c1c28dc7426e56db1b1edf3367af5694b
2049 F20101109_AAAYGI casler_m_Page_54thm.jpg
ad9f36580b0bdf4563a08f2c7548009d
8bd48f652ddba0054013c04f2efca1ce2d78a15a
4448 F20101109_AAAYVB casler_m_Page_42thm.jpg
63412d1b58257bec38dfe5d8200e3111
a67f1af329f214fee74965a5da3e5bbabc425f65
10196 F20101109_AAAYQE casler_m_Page_50.pro
2454f9c4ef2230cb634b2cf8c09c0ca7
43e06f739247a1f7db4f7d5ed13f9756af1f0bc9
5429 F20101109_AAAYLG casler_m_Page_02.jp2
a6ba557adf80d8e0725152337ffaccc8
434da812b74e17bd4735107b7291c374156ee0b7
51289 F20101109_AAAYGJ casler_m_Page_46.pro
6261f630ccbf6c86230090d232b90961
e7a977bef8a150597a47ada8660b53a1196f1697
3134 F20101109_AAAYVC casler_m_Page_43thm.jpg
2a0e952ddea8b08193be0db095d5ad2f
22bb9e27b7c258bb5f3d1f50e2ab434a2790963f
4128 F20101109_AAAYLH casler_m_Page_03.jp2
a09f3a745a187f551b54bbc6c4f92eb2
7cd003e7fce6bbbd8aaf0894714f87090b01e00b
218 F20101109_AAAYGK casler_m_Page_07.txt
43af11d82bea81c9f000bbae0e8e4710
131011746a9c0c25578cbe9353875fd14601ce2b
11142 F20101109_AAAYVD casler_m_Page_45.QC.jpg
fd2981049647eb033f63eb10fe24e2f2
bc330af7d9dfe34ab47214d4e444cb7c6f17bedf
48294 F20101109_AAAYQF casler_m_Page_51.pro
9a876ebdd08546c6e682cd46ef3cbda6
b32aea07bcdc710246dd5d1666bc69c7577959d5
42826 F20101109_AAAYLI casler_m_Page_04.jp2
ba150640e836bc140d4c008d73e8f9e8
d5772794097b9356c6f403121a7f3f706f8d6ace
23407 F20101109_AAAYGL casler_m_Page_22.QC.jpg
b598a54c629c849326068e0708361e03
d032bc79059bf66f4bedbcb82bbcc5c5afa3179f
F20101109_AAAYVE casler_m_Page_45thm.jpg
0260ecd4e026295995c393a58bbf2172
9f583bc28068df0acdcc3adf13603be8a91fd056
40338 F20101109_AAAYQG casler_m_Page_53.pro
159ed9e4ad94bf2029b8db74a301fb59
74d7c9f08787978b6c304046dff0faecb2ad696b
1051986 F20101109_AAAYLJ casler_m_Page_05.jp2
8f34188e69cffc87146d214c1c910ba3
996307558a4c6b0f293ae99f45ad83dbf8b409e5
6758 F20101109_AAAYGM casler_m_Page_57thm.jpg
88be898f6741364ec1b4e5c7b0d894e4
349df3e393f7496f62a6ef6d5e24057e72a8ebf2
2009 F20101109_AAAYVF casler_m_Page_47thm.jpg
562e1e929e0a040f3dce0d2f9627ce78
5de8a3f98d76e4d737ca3466170df56e150fb1d5
7549 F20101109_AAAYQH casler_m_Page_54.pro
617b8efe3a4723b71afc25a9371d74ac
b82402b03397cb0d5066bc84cd3133cb43e13a2b
1051970 F20101109_AAAYLK casler_m_Page_06.jp2
c06ab8510b909935fa618459ff0fa808
b86fe74de2bc04f66ca3f5239ff639cc69c35999
F20101109_AAAYGN casler_m_Page_53.tif
942e4041f45f82adb35f8f5eb7836db2
55b0207c673627588921fe1d649a094e44351727
16931 F20101109_AAAYVG casler_m_Page_48.QC.jpg
c345ea8019e1157477241bb015ccfbc5
5b8d9f3129a589eb1f2cfe599cb2c5648b1148f9
47956 F20101109_AAAYQI casler_m_Page_55.pro
b3b1b8bafe3de6da5ab05e377f45285d
3d7b3b23d6617be998a03e213fc96da3a28a9f01
958266 F20101109_AAAYLL casler_m_Page_08.jp2
c0160423e44d6d3aed6ff2eaa59e058c
c6bb329a7298441138159d5f1e7abb031322b068
47994 F20101109_AAAYGO casler_m_Page_33.jpg
57f69eacbb03fdeecaaca329724c2948
4f4b8c760a9b715b1c98bff34fd0840cc4a368a2
4367 F20101109_AAAYVH casler_m_Page_48thm.jpg
f06cd13a6290399118a269c45dc98885
0f3cc516619bf68a07f06124d30e975cb090840e
11668 F20101109_AAAYQJ casler_m_Page_56.pro
ce3922c083c29f462d599b34922b9429
7a329533c0e9863986c5bbca9e1af2da6cd8c4ea
96158 F20101109_AAAYLM casler_m_Page_09.jp2
94c93561aacad1d313d72707c3fa2669
2af2829f50f6aa45895027c1c639eb06001fe8a1
107669 F20101109_AAAYGP casler_m_Page_20.jp2
285fee5a7656ab079bdbdabcd84a867a
801f5596c5d5f9063a0ac46db91ebdc1c09e30c7
5124 F20101109_AAAYVI casler_m_Page_49thm.jpg
bce6a92d0a16094ed99dec024242bf5b
3872455e7872aebdf1d7fe0a59a63c56e72b2ff5
58095 F20101109_AAAYQK casler_m_Page_57.pro
d63fbd667783815f08fd9c3944afb29c
4347c1951316a1d343a7ecaf76502258bbe402e8
110892 F20101109_AAAYLN casler_m_Page_10.jp2
262115ebe07fd64e336bc9329b858028
a504f8a400eb2c12439b7fb5736b59b5a56cc7de
47968 F20101109_AAAYGQ casler_m_Page_34.pro
b1e72131467b2662013a92df3110fccd
b7fa7e04ff6f0588226ffa08e7c58937e6f0746e
6418 F20101109_AAAYVJ casler_m_Page_50.QC.jpg
947d46a38651b838f64460354aee258a
ab9799ce76fc4f5f2e7c336ed61c8f85abaab7af
62294 F20101109_AAAYQL casler_m_Page_58.pro
43da465746fcc8953d5608438cd0980a
c0cd9f747c70d96b1a0172c72dacb299b3050551
115769 F20101109_AAAYLO casler_m_Page_11.jp2
31ded4f64867a3499e8ba39316bc5cbf
bb0a32ec136faa1a029cc30a110ab0e97d5347d6
979 F20101109_AAAYGR casler_m_Page_08.txt
a083c3810613f78cba5d2a70fd7c1162
c60f11c5b3e5abcea147e18e19dfa0e673e2e63c
32683 F20101109_AAAYLP casler_m_Page_12.jp2
3ab1aabdaaf06eb15cf127f41c3e0983
62995876d214bf1824e802a6aaf5b10d1b390e15
F20101109_AAAYGS casler_m_Page_23.tif
e57afe956eea4a917e38eac8a152ce26
6552ee486c9c753007209a4bd79c794a06c683f6
56103 F20101109_AAAYQM casler_m_Page_59.pro
a0b33f8501f0772615525e0233143e84
b759098f7e64bc415813950bb79d790d5fbc2d7e
18082 F20101109_AAAYVK casler_m_Page_51.QC.jpg
1a7a7894b90f0ac780c1e6187be33229
28c5847ebf393f46a9af225cb4da60dd4fd45c5c
122291 F20101109_AAAYLQ casler_m_Page_13.jp2
88730ef6b063105162995cd6249108a3
dbb55622c427719fef28a2ed7c2e83f06f0bb9aa
F20101109_AAAYGT casler_m_Page_04.tif
b6ce0cab44236ed8c943b2b0feefded0
318d758e1a0c0daeb58fae4d7f71b3b6497f49ef
57512 F20101109_AAAYQN casler_m_Page_60.pro
139520a6128026e6da33b7328dd5d8bb
7fb5bd4842809601ee3b92f613fc4db570f5fa85
4826 F20101109_AAAYVL casler_m_Page_51thm.jpg
07fb127e83c949e364da94d508bad1e1
2ae57506f87b0db8a83be9511a884512c6ab3000
101806 F20101109_AAAYLR casler_m_Page_14.jp2
9d092ca6db88cfb7c1932c2bd4c0f949
e2847fae380aa56d7819f844e7565b34f986b859
4652 F20101109_AAAYGU casler_m_Page_36thm.jpg
8cab6349ea6beb5cdbbf729e41223c0f
12bf02dd7de1317eda6b9a073d77c7d304487f14
94 F20101109_AAAYQO casler_m_Page_02.txt
5a1b7745ab5965e9a9d81c7af6e30b7a
b6249c9985d07fbd850e0a5f6d632fae47462e96
4779 F20101109_AAAYVM casler_m_Page_53thm.jpg
dae52831df42402948d8cd5b33240ed5
c14389cfa70ed6ddcb98eb0e909505ab7dc325da
1051953 F20101109_AAAYLS casler_m_Page_15.jp2
2bbde0bd1ec8b37d85cbae5b31deb080
c4ea88d36b81d00a40fe8e88fb0a3b9794dcc2d2
110150 F20101109_AAAYGV casler_m_Page_22.jp2
27694d558ce1a8c4cb55c53e6e25989f
0e9d5790691d62209e1b6cad049640175ee26f00
79 F20101109_AAAYQP casler_m_Page_03.txt
afcf8dad58ad628e51d443eabad56e41
dd8ba5c103de51295b0a1a398cea2f7470a2c5c6
5747 F20101109_AAAYVN casler_m_Page_54.QC.jpg
1f5036485e0176f8ad8a7283a1ded858
24ed98025c20e0cfaef721e3554bc852a9baea86
115303 F20101109_AAAYLT casler_m_Page_16.jp2
62537b163c82459d439da95f06b8ba9b
8932314072dc7ee080db34ff8a052c19b161c7b5
3500 F20101109_AAAYGW casler_m_Page_25thm.jpg
0c5f461cbb0c319c6e2a2b18cc901eaf
4ac2b7e2f5ddbe89d86190af676c3f64a8706214
767 F20101109_AAAYQQ casler_m_Page_04.txt
dc5797a3e4e98580376555177763a3a5
5f64e18cba9107b604b94baeadc33c9786357236
7416 F20101109_AAAYVO casler_m_Page_56.QC.jpg
9e026494f2c4073729eb859e0196b77f
de94fcc25c7141b3aa0607e069cd105a125c1e05
1051972 F20101109_AAAYLU casler_m_Page_17.jp2
b966b8d43555b75cf36e7f68ea001951
7d7e829997f1c5012910be23961f6c43fb906f98
6590 F20101109_AAAYGX casler_m_Page_15thm.jpg
ec2d84831769db0ca9d1ff0963fd410d
19aa0b1cf7a223ee8beca1dfc2b78d0c74823c30
2689 F20101109_AAAYQR casler_m_Page_05.txt
a303db4fe08d076e3ea10bdc91b421b9
fd7c815a202e88e4f8b4c8d7f50b3d90de053a19
2250 F20101109_AAAYVP casler_m_Page_56thm.jpg
0ce7a14e61e02c5309419a3add3f9bd2
94a3bcccb6f1b9868bcc8c511d99eb9206248261
115230 F20101109_AAAYLV casler_m_Page_18.jp2
624a4c8e781ddc090222222cdc57a353
c410951c80aab593b26fc95ce2f700f56b0c1ba0
3838 F20101109_AAAYGY casler_m_Page_33thm.jpg
3e324ee78cf91cd56ebaa7de7783c57f
1075de308798d198f56c82ce10269845e97ad6a3
2961 F20101109_AAAYQS casler_m_Page_06.txt
5451c7f49d6aeda1b0ecb6a06f4a334f
978f47260a8d7d9736c50816dd590043805cb011
24328 F20101109_AAAYVQ casler_m_Page_57.QC.jpg
0facf8b2e3556ca833599a554778998e
5b88c6939e7be5f965d30f7491a95de1d404638a
108562 F20101109_AAAYLW casler_m_Page_19.jp2
3e5eba5ec91e4443ab2376aa18807164
e6db426cde0c2725ede67fde2d7f0d868eab2674
324 F20101109_AAAYGZ casler_m_Page_47.txt
41c6e2432644c1df6a4031affca387ef
8c308b4e50ec896fb34f6b6937d0b80c5ab45654
1874 F20101109_AAAYQT casler_m_Page_09.txt
21c55bff5f2a8d6818c10e9ecea12adc
654fc79df0247a938e6707cc0b4778c1d784b81c
23801 F20101109_AAAYVR casler_m_Page_59.QC.jpg
9d118c7f569c7b948e29a2541312cc18
a69e476cb5014f9b9b14617dfc024fdbb59b8f75
116377 F20101109_AAAYLX casler_m_Page_21.jp2
475d82f712a0b5a1018ea1aab2409600
861d9ee22c7d7365c79a2a9da345b527aa9f3f6c
2038 F20101109_AAAYQU casler_m_Page_10.txt
54365a0301fa90d932c6808a8c436025
942385b3f4a0dbb34e6a6415448e45ed4836161a
6772 F20101109_AAAYVS casler_m_Page_60thm.jpg
84d299428fbcc137dc2031f85e4a81c1
0c844d27a4b6697182884dce374b96b10d62ae9f
115975 F20101109_AAAYLY casler_m_Page_23.jp2
656a1467e0a93b631416fb5aae2bd8a4
6d6283e707e462bdc2192993e4decf08097cbf86
548 F20101109_AAAYQV casler_m_Page_12.txt
5c59f54ac63b4b34f42caf01b709de9e
93d11df5c8a17b65a55f61a9f615eb52741a8a86
3481 F20101109_AAAYVT casler_m_Page_62thm.jpg
816738dc4d931eb65c2dd41fb512bf7b
8c025140823ccf95aa226ba7e5c3ba913b2d6c6e
50006 F20101109_AAAYLZ casler_m_Page_25.jp2
ae19bc8f8a7b01012ec1b5c55527a566
6b2755158f472dd6e40c385b6103f35c2347dd8b
1873 F20101109_AAAYQW casler_m_Page_14.txt
754a64c45953b0f3f57dea21c5df1638
08fe571a3b02d1decd2409839bdf6506e42ec428
2241 F20101109_AAAYJA casler_m_Page_13.txt
d47d1960331bc8a837cc372cff1576b5
1797b42dbdf162dfeee850eb5b62f0bd17acc728
2077 F20101109_AAAYQX casler_m_Page_16.txt
5a01fa76e9266e51dd06e7ef12f16752
a3ac6c4c903c61696dcc6b2dac76917962363b96
2007 F20101109_AAAYJB casler_m_Page_27thm.jpg
03694491001e4105c542977dda6a1e31
58544cb894b215e729c976c7f4472b2d4b96cc3d
F20101109_AAAYOA casler_m_Page_36.tif
83156fbd80b450793c2382350c7229dc
90834d068f6142dd3018888a74513195bd6ffbb3
2151 F20101109_AAAYQY casler_m_Page_17.txt
942a8ae15b3578d1ac94c8fe04c178ff
9f1efff0faf76617319d5601f903df2910e9d33e
38653 F20101109_AAAYJC casler_m_Page_41.jpg
839ba814ce73e6b81b602b97955de8a0
9d4b8423845d64cc821b80df153f75520c011464
F20101109_AAAYOB casler_m_Page_37.tif
3338aba7ebedd3923d4059f825a00fd0
e4ba9e65ac8e8d5dad365bd33d26dae713a79338
2088 F20101109_AAAYQZ casler_m_Page_18.txt
f4b786ee32711cbf1e806fa7ff010f57
f08dc24964354affc94f3647d9f4f09e1dcdb137
14612 F20101109_AAAYJD casler_m_Page_42.QC.jpg
0b1e01c70e59d16f768deab6721d41f7
81291f193de766f9d14692d6d2e78aed2036d892
F20101109_AAAYOC casler_m_Page_39.tif
ea0aed4e73c193d33a586b694cb37f6c
3fbd161d94ddf0fad8de0e0b4d27efc58726466d
24889 F20101109_AAAYJE casler_m_Page_40.QC.jpg
abd474d97f2ee04f136d24bd1b29599a
3cb0fb7b8bafb18f2c8d2c20d6957d3c3850531a
1407 F20101109_AAAYTA casler_m_Page_02thm.jpg
5cc664ae73ad16a59bbce68e5551ca0b
6bed0ec61956eb4dbadeb586c21979fbd6a6a144
82725 F20101109_AAAYJF casler_m_Page_60.jpg
455f35254d227937bade66ee5147d3c3
8e36b8bc980a11cb3efc02712e02478a551609ff
19569 F20101109_AAAYTB casler_m_Page_44.QC.jpg
6b5b2eca66a20643ae6f47f1639226d5
2f51e09b5264a5c8ed4cedf2bc6127135367cce5
F20101109_AAAYOD casler_m_Page_41.tif
d5b79d213d9df36908d8bc5d5980ea4a
14cf7ac4f58b8da2fec6ce49b1f0f4aa6a0f2c51
18730 F20101109_AAAYJG casler_m_Page_46.QC.jpg
24193255e2d72afcad8b0db4b98d5263
8b4822f42026d86b4aeb2cc6fa4470a8a8af0966