<%BANNER%>

Algorithms for Sensor Coverage and Sensor Localization Problems in Wireless Sensor Networks

University of Florida Institutional Repository
Permanent Link: http://ufdc.ufl.edu/UFE0022099/00001

Material Information

Title: Algorithms for Sensor Coverage and Sensor Localization Problems in Wireless Sensor Networks
Physical Description: 1 online resource (135 p.)
Language: english
Creator: Xu, Xiaochun
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: approximation, computational, sensor, target, wireless
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Recent advances in sensor technology coupled with embedded systems and wireless networking have made it possible to deploy sensors for numerous applications including monitoring microclimates and wildlife habitats, the structural integrity of bridges and buildings, building security, location of valuable assets, traffic, and so on. Among a variety of the essential algorithmic issues that arise in the context of wireless sensor networks, we investigate (1) sensor deployment algorithms for point/region coverage problems, and (2) sensor localization algorithms for the problem of estimating the location of a source in the plane. An integer linear programming (ILP) formulation is developed to find the minimum cost deployment of sensors that provides the desired coverage of a target point set. We also propose a greedy heuristic for this problem. Our formulation permits heterogeneous multimodal sensors and is extended easily to account for nonuniform sensor detection resulting from blockage, noise, fading, and so on. A greedy algorithm for solving the proposed general ILP is developed. Additionally, $\epsilon$-approximation algorithms and a polynomial time approximation scheme are proposed for the case of grid coverage. Experiments demonstrate the superiority of our proposed algorithms over earlier algorithms for point coverage of grids by using heterogeneous sensors. We propose a factor 3 approximation algorithm and a polynomial time approximation scheme for the problem of sensor deployment that provides the desired coverage over the entire region at minimum cost. We further propose an equivalent transformation from region coverage to point coverage, and prove the cost of the optimal point coverage is within a constant factor of that of the optimal region coverage for a network of homogeneous sensors. We also study the performance of deploying sensors in a gridded (equilateral triangle, square, and regular hexagon) layout. We establish several fundamental properties of localization using distance-differences. These properties enable minimalistic realizations of localization systems. We establish conditions for the unique identification of a source in Euclidean plane, and derive minimum number of sensors needed for unique source identification within the Euclidean plane and a polygonal monitoring region. Compared to four possible intersections of two hyperbolas, we show this task leads to at most 2 intersections, which correspond to potential source estimates. We propose a computational geometry method for the source localization problem using measurements of DTOA (Difference of Time-Of-Arrival). Compared to existing solutions to this well-studied problem, our method is (a) computationally more efficient and adaptive in that its precision can be controlled as a function of the number of computational operations, making it suitable to low power devices; and (b) robust with respect to measurement and computational errors, and is not susceptible to numerical instabilities typical of existing linear algebraic or quadratic methods.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Xiaochun Xu.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Sahni, Sartaj.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022099:00001

Permanent Link: http://ufdc.ufl.edu/UFE0022099/00001

Material Information

Title: Algorithms for Sensor Coverage and Sensor Localization Problems in Wireless Sensor Networks
Physical Description: 1 online resource (135 p.)
Language: english
Creator: Xu, Xiaochun
Publisher: University of Florida
Place of Publication: Gainesville, Fla.
Publication Date: 2008

Subjects

Subjects / Keywords: approximation, computational, sensor, target, wireless
Computer and Information Science and Engineering -- Dissertations, Academic -- UF
Genre: Computer Engineering thesis, Ph.D.
bibliography   ( marcgt )
theses   ( marcgt )
government publication (state, provincial, terriorial, dependent)   ( marcgt )
born-digital   ( sobekcm )
Electronic Thesis or Dissertation

Notes

Abstract: Recent advances in sensor technology coupled with embedded systems and wireless networking have made it possible to deploy sensors for numerous applications including monitoring microclimates and wildlife habitats, the structural integrity of bridges and buildings, building security, location of valuable assets, traffic, and so on. Among a variety of the essential algorithmic issues that arise in the context of wireless sensor networks, we investigate (1) sensor deployment algorithms for point/region coverage problems, and (2) sensor localization algorithms for the problem of estimating the location of a source in the plane. An integer linear programming (ILP) formulation is developed to find the minimum cost deployment of sensors that provides the desired coverage of a target point set. We also propose a greedy heuristic for this problem. Our formulation permits heterogeneous multimodal sensors and is extended easily to account for nonuniform sensor detection resulting from blockage, noise, fading, and so on. A greedy algorithm for solving the proposed general ILP is developed. Additionally, $\epsilon$-approximation algorithms and a polynomial time approximation scheme are proposed for the case of grid coverage. Experiments demonstrate the superiority of our proposed algorithms over earlier algorithms for point coverage of grids by using heterogeneous sensors. We propose a factor 3 approximation algorithm and a polynomial time approximation scheme for the problem of sensor deployment that provides the desired coverage over the entire region at minimum cost. We further propose an equivalent transformation from region coverage to point coverage, and prove the cost of the optimal point coverage is within a constant factor of that of the optimal region coverage for a network of homogeneous sensors. We also study the performance of deploying sensors in a gridded (equilateral triangle, square, and regular hexagon) layout. We establish several fundamental properties of localization using distance-differences. These properties enable minimalistic realizations of localization systems. We establish conditions for the unique identification of a source in Euclidean plane, and derive minimum number of sensors needed for unique source identification within the Euclidean plane and a polygonal monitoring region. Compared to four possible intersections of two hyperbolas, we show this task leads to at most 2 intersections, which correspond to potential source estimates. We propose a computational geometry method for the source localization problem using measurements of DTOA (Difference of Time-Of-Arrival). Compared to existing solutions to this well-studied problem, our method is (a) computationally more efficient and adaptive in that its precision can be controlled as a function of the number of computational operations, making it suitable to low power devices; and (b) robust with respect to measurement and computational errors, and is not susceptible to numerical instabilities typical of existing linear algebraic or quadratic methods.
General Note: In the series University of Florida Digital Collections.
General Note: Includes vita.
Bibliography: Includes bibliographical references.
Source of Description: Description based on online resource; title from PDF title page.
Source of Description: This bibliographic record is available under the Creative Commons CC0 public domain dedication. The University of Florida Libraries, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Statement of Responsibility: by Xiaochun Xu.
Thesis: Thesis (Ph.D.)--University of Florida, 2008.
Local: Adviser: Sahni, Sartaj.

Record Information

Source Institution: UFRGP
Rights Management: Applicable rights reserved.
Classification: lcc - LD1780 2008
System ID: UFE0022099:00001


This item has the following downloads:


Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E20101109_AAAAAV INGEST_TIME 2010-11-09T13:32:44Z PACKAGE UFE0022099_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
FILE SIZE 21912 DFID F20101109_AAARLT ORIGIN DEPOSITOR PATH xu_x_Page_104.QC.jpg GLOBAL false PRESERVATION BIT MESSAGE_DIGEST ALGORITHM MD5
0d9d641db03421345e32250a1b5152d5
SHA-1
78fcbd590f82716e4c473a7ef237dca8a96a0a97
67498 F20101109_AAAQIR xu_x_Page_011.jpg
e32f50818cdf87b144e60a763df19307
6b8d1ab2fdf959218c94a0fff08643845d1afa54
13186 F20101109_AAARMI xu_x_Page_113.QC.jpg
3c4182dc380ae799e0905af91ea37ce2
47a316af5b657ca6b21fa975c8e3d99d5b553832
6000 F20101109_AAARLU xu_x_Page_104thm.jpg
922c089d1a2806970388e35233747a65
69b42616a35040277a9d73b536d76e4984ef7eb0
84993 F20101109_AAAQJG xu_x_Page_032.jpg
1a9cbed25b884bfc485c3429ec27642d
28c9f77dbfff70f21ca2332fef254ae742b590ea
91198 F20101109_AAAQIS xu_x_Page_014.jpg
132458ba9907791195e3ab8a74a822e1
88238362b90711c92ba0a449f4e6312b7f775f31
3989 F20101109_AAARMJ xu_x_Page_113thm.jpg
08f8eebfabeec3ffa797a55b7d7d0256
ba6fd70cac33936ab21046e72a7adc5d2220bc2e
19268 F20101109_AAARLV xu_x_Page_105.QC.jpg
dda9edc0c8da69c184803d004254d69c
7da52f1cbbc0472abbe1abd73d3f878646e43689
78756 F20101109_AAAQJH xu_x_Page_033.jpg
31c8016b9d3de2c339096c2089c30b5e
15a259c8fc3012d45641d96633cc8ac33915f801
88087 F20101109_AAAQIT xu_x_Page_015.jpg
1a98bc29b1178aed4e08f13d7b11bf73
2a702fe08d9d72b15b0aca0cdd3c11d4c6de562a
7384 F20101109_AAARMK xu_x_Page_114.QC.jpg
15a11885a8c10a86c88889c4b08cd91c
5e4d7b65358ae41450a2acdfa7f850a32d568953
5322 F20101109_AAARLW xu_x_Page_105thm.jpg
cbd64d1181b0df24d4950891ccb637e6
930af821c4ca3f335a0f89becde02404b709992d
83200 F20101109_AAAQJI xu_x_Page_034.jpg
ed6496a93fab89d8bdf0d0b748a4d34c
2e54c5c3c08125b4b127c0bcef6afc6f58add479
80789 F20101109_AAAQIU xu_x_Page_016.jpg
4d9ff861aa1339ceb19e7fdc15365a6d
6eb21d277ff93fe98875edffa2a333f3ea40113b
24243 F20101109_AAARNA xu_x_Page_123.QC.jpg
de0310c176a0f2faf7c3d7de5a175f38
e1fa4f5f0de43d5f0c2331ba37722a141fe1d858
2689 F20101109_AAARML xu_x_Page_114thm.jpg
a5fb4eabd4b70f735611224a79fad155
af3a018a11314053f9eea5752b1248fa88feaf37
20428 F20101109_AAARLX xu_x_Page_106.QC.jpg
e0e2beac20e832b21666b995a4d40eaa
2f65b472b3b949806845306e643a83bf7a0116f8
58185 F20101109_AAAQJJ xu_x_Page_035.jpg
3b4115142e9c17b3fe62fa4a9a4060f7
eeaa778d62f73ba049e799dda6f52d1cadb0d783
90656 F20101109_AAAQIV xu_x_Page_017.jpg
a6609cfb1a3bfca3c57ab9762e4f5ba9
863cec46243aab714e72ae277bc35e11e639564b
6262 F20101109_AAARNB xu_x_Page_123thm.jpg
08b822a0504365c902d319333fc6f433
e7aa43a2af84d95f818dd0aea108d55546c7ce13
13523 F20101109_AAARMM xu_x_Page_115.QC.jpg
75cbb72763bd4b0771451dcdda9db3ba
f114ebe8af211da08d3b23759384cc3bb9cdade3
23159 F20101109_AAARLY xu_x_Page_107.QC.jpg
fd5190f72f7a31f6dc590e607b758d36
46475d88d5d8ce3ec25aa6dfe864a4d2c138e5d4
62447 F20101109_AAAQJK xu_x_Page_036.jpg
cdc26c8c762c62761493b5b2f360da2d
040200b51ba7986cbff655be3caed590f73f592d
88171 F20101109_AAAQIW xu_x_Page_019.jpg
ab9c09ac98733cffdfd7ddeeae84a961
504c4b7dc69f56c71072f944c49436cd99d3feaa
7120 F20101109_AAARNC xu_x_Page_124thm.jpg
ff726e3e6d9f3d7393a27a3659515d58
455ba0606f84b914528a012acc39aea851c42087
4155 F20101109_AAARMN xu_x_Page_115thm.jpg
c5b0e70be2c6ad2d9cebbc0fa93a1ce0
18595036e78a0b55860c990b23d88399e7cf2d6d
5934 F20101109_AAARLZ xu_x_Page_107thm.jpg
866e7bd0dcb29bffe8acc123e28e9e3f
f33c47b4e29d5379cc609d504c98904aa6e09d69
84776 F20101109_AAAQKA xu_x_Page_056.jpg
1a938140dd3d4216e0829c274dfb6d75
554a64cffd7bc0e438097717f1ee71987362b051
62429 F20101109_AAAQJL xu_x_Page_037.jpg
f1681c3e84b1a8da9827c08682d41ef1
fae0c56180fa314163595966dde30e8c2f240236
90357 F20101109_AAAQIX xu_x_Page_020.jpg
1a180ab0462c4598c07c5314e73a4f09
cf682a7955756ddf3bd38e0fb6299d42a4a7f8d6
6547 F20101109_AAARND xu_x_Page_125thm.jpg
f0758ae36176795768c9a748d0e80417
09c09b9cbe4a1410aacd15303e65eedccdfc72ec
15227 F20101109_AAARMO xu_x_Page_116.QC.jpg
da2e8553902648209400a780c5d5a058
f2985788262de0fa6009dbf818393ca670702299
69977 F20101109_AAAQKB xu_x_Page_057.jpg
2be5b456aadbdb8213ddff7fe4c7d355
1557e439cb724319437a023d622d35517f8af20d
50165 F20101109_AAAQJM xu_x_Page_038.jpg
9faf6ebeb196ccfb6613af92cf3c0eba
b344f098b4174f64cc06d9c94d1536030060fa5e
78215 F20101109_AAAQIY xu_x_Page_023.jpg
09fa9d7c044adb1e06e97996fc945dc5
0489e6d51051ad54d28070818904bf26b33ee7bf
17693 F20101109_AAARNE xu_x_Page_126.QC.jpg
f9a90d930a697469dd53651255f87362
1691e6f7c2707323e2eb65d389ed636b31280113
5102 F20101109_AAARMP xu_x_Page_117thm.jpg
b44b216cc506ca540486b23621816d9a
580bb0b92d4a7b96f4a43ef10427b94404068484
62109 F20101109_AAAQKC xu_x_Page_058.jpg
7303df2006a0951600793d3f67cd4580
be5378a3659c326fb3734e8ee01e6dceb9fd44de
69483 F20101109_AAAQJN xu_x_Page_040.jpg
9c3ce3954bb52d69e3724c264244078f
25bd2b1f852eb3dbb9924f41be9a815283230c5b
90834 F20101109_AAAQIZ xu_x_Page_024.jpg
f256d8513b22798270b568e854d229be
128e77034ead8dd7501eb6a2b79da6e5d43ab4d3
4726 F20101109_AAARNF xu_x_Page_126thm.jpg
8c828c3f26da7fda52caab12b8dac658
4f9581c5c4336aac2adfdefed6cdad49fce794b6
10845 F20101109_AAARMQ xu_x_Page_118.QC.jpg
94ef527abdc682f78e0ddf61725493bb
95395f05fd6fc61296dc3943a425356272f58d01
71502 F20101109_AAAQKD xu_x_Page_059.jpg
16a120f7446a305675417df4ea4a3522
9affac7ea161621101712b5f65d690538e1521ca
85275 F20101109_AAAQJO xu_x_Page_041.jpg
c5854cd7bebffd8ad3417689efcf8a6f
0555a3e6947895d4c173c46e46e2d4325c7fd09b
23229 F20101109_AAARNG xu_x_Page_127.QC.jpg
4fff8923f085930d295adc981f3cfaf8
0b117cd9f6becde15fe3d8ecd2c4eda5e9b6a17b
3321 F20101109_AAARMR xu_x_Page_118thm.jpg
2af6d87ca88a354446337f90729688e2
1122eb17775d8ba2d3f4f56a889552e739da81b6
53923 F20101109_AAAQKE xu_x_Page_060.jpg
46c19f448bfc6370bf9d5ef2fee9b00e
d4cacd34afe6a94ba1040960ca5188427515bbcd
78530 F20101109_AAAQJP xu_x_Page_043.jpg
fd8a04ceec517314530e3270c6868fd2
4e084f760837c622dd29df510c5e148f39545c80
27714 F20101109_AAARNH xu_x_Page_128.QC.jpg
d25a2cc8fde544327530713f15ca6299
b20c73c75b24ebc3c59cdefe59ff773a9bb51506
16885 F20101109_AAARMS xu_x_Page_119.QC.jpg
8189bab02c405ec813408998c6f0cd74
350ece22f85af4963498aa27f676d20f9f9738c5
53192 F20101109_AAAQKF xu_x_Page_064.jpg
fd1cc0e3952aef820aca040d223763e1
c6ec4dbad895d7555414521a8898ecf128fa1756
68976 F20101109_AAAQJQ xu_x_Page_045.jpg
b1b83308efc7555eb966551a09a304d6
28881c9e50779d12d30dac09789a5031aed6e24d
6913 F20101109_AAARNI xu_x_Page_128thm.jpg
57307a6deb52b8bac8c762f262eeee42
bb291964f8e37f40aa9b5b646ccf2d3d06dc41b9
4737 F20101109_AAARMT xu_x_Page_119thm.jpg
1c35ac0c0a069eaf6ed82d84bc25e3db
d429639908c1ab71eb1a2e0124e47fecf4b53040
50217 F20101109_AAAQKG xu_x_Page_065.jpg
ff568c2cbd8170038e4d4bc76ff9f0bc
2c31d428f3bf15df1bd878bc3d9348db45c7243e
83647 F20101109_AAAQJR xu_x_Page_046.jpg
862c6ffa9264d27c4405e1210ebd9527
02c0ec410945b38ca31af8dd0b970d95a3897e15
20653 F20101109_AAARMU xu_x_Page_120.QC.jpg
8a93ec4a9b937e6ef1dffcd4c17fce09
a89c1d98cbba8b822b455c544b4114813d0dce36
83352 F20101109_AAAQJS xu_x_Page_047.jpg
1bfaf8081965edb9934839f1f22359a8
10e4a960e005d69df8311b329c57f402498e56f0
24620 F20101109_AAARNJ xu_x_Page_129.QC.jpg
78124c7aee0a2ae66b8cb45ccdfdfebc
02aade4fc505d02a1f1b404069d94af68b954f3e
5886 F20101109_AAARMV xu_x_Page_120thm.jpg
ab4069b7ad9505877937951df35bda96
8f65a3d84579c5e25758648a88b89fab86a52fc3
63912 F20101109_AAAQKH xu_x_Page_066.jpg
f6b965e2e7a23c22ca310cfb0192e5f9
f58e303e3a54711350984e6bb97cfe4dfa1fe35c
91683 F20101109_AAAQJT xu_x_Page_048.jpg
677735a4a8101d5e2e2cbdfd94bc9f0a
568e61f958166d6b9e151cfa85ce8e08f27f89b6
6452 F20101109_AAARNK xu_x_Page_129thm.jpg
7c72127bec74afc9b8cd7e59dd96a99d
de3f1bc09a8ee2213d9054ff7688ec887c5a3b05
21745 F20101109_AAARMW xu_x_Page_121.QC.jpg
e689f993f28aafe5b802229c790e3045
3542061c300aacaf56af64763787ab9bc91a8c42
58302 F20101109_AAAQKI xu_x_Page_067.jpg
84163278918808b23bf46db9d5e569f3
5ce4662b5dec6f2534095f0bbec9a534eb35d2ff
85105 F20101109_AAAQJU xu_x_Page_049.jpg
5ad6d1976685272362f8e479f6cfa682
3677783a22ba11d275643c2d66f294b20c70fc1d
25185 F20101109_AAARNL xu_x_Page_130.QC.jpg
0ada5f121e453783a0ce34b1ff2f8f9b
905bfd6ebb50b89c7b060f16132ccc3ba3580819
5687 F20101109_AAARMX xu_x_Page_121thm.jpg
632fdce61837a81fc991bfb9b9ca3c50
53b821e2771eec675770ca2d450adc7d6d31fcfa
89137 F20101109_AAAQKJ xu_x_Page_068.jpg
3228f08f6ff60f359e58a088b156c509
071c8e0448708eee0168fd43651a194e700631d9
87397 F20101109_AAAQJV xu_x_Page_051.jpg
9347afdc01faa0302d9ecdc05be1f663
0445deda14c427c3e5f3474bb0ac97a0b0faa775
6525 F20101109_AAARNM xu_x_Page_130thm.jpg
90cfca79116d47d4559a86b112ef8136
5af9a0d453143b5f5d5f800e975b3921258811e6
20827 F20101109_AAARMY xu_x_Page_122.QC.jpg
d2b43537a641836a210620269ce13ad5
8d7d525882a965a8565f8979158dc2b7780afe82
60421 F20101109_AAAQKK xu_x_Page_069.jpg
d06d147298200f94e4bd76bf313c042b
ce20e0f348e1e8093bbd1a09722035f8ca02a345
90742 F20101109_AAAQJW xu_x_Page_052.jpg
9fc2167193a386b5c53fc986bea5c618
de0db4e96213e5998fda6fcfbd8d0ad6929824c2
27581 F20101109_AAARNN xu_x_Page_131.QC.jpg
851d4fed69116c1ea499b10d37114650
f886e34611cba4048d85bd7d2be94d2f36ac7c87
5763 F20101109_AAARMZ xu_x_Page_122thm.jpg
e56925fb356b4ace59e6cdf1dce3dfc8
35e6b7358ba83cec5f3dca0838749d0ed43a04ce
61772 F20101109_AAAQKL xu_x_Page_071.jpg
b86f7b8f962eb2088ce628652381efdd
b9a2987a30df1b2094262e660d2bc7a305e7611e
95029 F20101109_AAAQJX xu_x_Page_053.jpg
b1c0b69266605ecc5579c45f039d8a18
92249e63bd2b5338538b591ac62448a3f77e21bb
85187 F20101109_AAAQLA xu_x_Page_089.jpg
4d704c622e2c2fc0d10e66822cb32e92
314648c47a4bfe28cbdb8c3f09342907df84d862
7089 F20101109_AAARNO xu_x_Page_131thm.jpg
80669fc75455a2c4b0634ad40c194908
2ced7f633f1588e594f8d43f0b6bda9aedc942c4
43112 F20101109_AAAQKM xu_x_Page_072.jpg
cacbbf087029bbdfdbcbaba27cebee59
a0a3ca85a45db9d479b75127ae83430347fb5f75
49507 F20101109_AAAQJY xu_x_Page_054.jpg
6754a0a2d7d0127f35caab909f24445f
2931d8aad2f52549ff53c9fd7b96c9ba067de29a
64468 F20101109_AAAQLB xu_x_Page_090.jpg
f45f95ecc05701eb657d8c01534c0e2c
dd5296e5c59e4808fd13d305e8883e341657eb85
25484 F20101109_AAARNP xu_x_Page_132.QC.jpg
8736ccb151a91b60672f5c856a970155
b6461dfc1c82df3aa7406cf287afe253b9c0ec07
67934 F20101109_AAAQKN xu_x_Page_073.jpg
cbf6dd89945336be15abe981831dff4c
226cdef857c923e0a4d23ef050281d2a60043426
85677 F20101109_AAAQJZ xu_x_Page_055.jpg
da56d1cdd361d76228c4337564c21f49
660e8925a1226ecef2dac2caffac8b25336b70b5
55865 F20101109_AAAQLC xu_x_Page_091.jpg
8d7b08d0c2294719eea503edbcd6ed34
bddc1a7c498d69b5fa89321c09315d5acd073996
6488 F20101109_AAARNQ xu_x_Page_132thm.jpg
e2a52c4f7db8aee70c7764192ae822f7
1013789d21becfe2f213a53381283a671141302a
68923 F20101109_AAAQKO xu_x_Page_074.jpg
756ce1ba43fd38061f7dd6778bed4e0f
4d3c70063bfc2a100af924c167b68aad9e143eba
61622 F20101109_AAAQLD xu_x_Page_092.jpg
bf00f7e5fe395ddc28bbccd30c95f77d
772332fdc65655387f7767da3bd59d44770f2700
27299 F20101109_AAARNR xu_x_Page_133.QC.jpg
b2f5b7b5e1a74f5c1ef8005c21f52286
12c6e50f6c827b0700b783afe479af9ccffe7feb
65760 F20101109_AAAQKP xu_x_Page_075.jpg
934ddae54e3de1f887128b30384a72c8
789fba72dd5b1bf0e0fe1c56c83a79a0c14ce24a
87574 F20101109_AAAQLE xu_x_Page_093.jpg
453b06b53855fd73cac1dbbc3bcf7880
67fa22a5a2d5deb18ae793d2f830920b21253cfe
11802 F20101109_AAARNS xu_x_Page_134.QC.jpg
d1b71d4e11bfcec6d55718b9ca43cf34
acc876159be578b1ced8760bed40348844502f01
45520 F20101109_AAAQKQ xu_x_Page_076.jpg
e736333a475bd15e248a3fd2a0289de7
62a706bfda115b412a8917110d94c72f20e1b316
56032 F20101109_AAAQLF xu_x_Page_095.jpg
1aec2aca1fef10832f59b166854978ed
d166dbf341fef5ea660a68c8c60348e6301c6cd8
8921 F20101109_AAARNT xu_x_Page_135.QC.jpg
906c100c84bfe4025edde05a27edb30e
a1fc389ca2388644da139341f315d7092a1be8c4
68515 F20101109_AAAQKR xu_x_Page_077.jpg
a4f9e6c877c16668135d7171fc1bb0d6
45ae6957f343100cd76a960fc104c2b43d011609
77723 F20101109_AAAQLG xu_x_Page_096.jpg
5c99eb1976633dbd222aab42b16287e7
fa4e5241ac7ffe80013570f8392e0e3e4a5ccae1
2558 F20101109_AAARNU xu_x_Page_135thm.jpg
ddc8eb14463de225db9b20341299af92
dca5df8dea2b4901e71d11c1ce5def3e27bd5b35
89057 F20101109_AAAQKS xu_x_Page_078.jpg
eab717744f927398606b1184d16cfc37
b533a25ea2e3ecbe325af06282812a1c02f4601f
74547 F20101109_AAAQLH xu_x_Page_097.jpg
abb4a359e44f7369874e097eecc93cda
b2032459a8d720a71d8aa7a2e86f8180543e6fc0
72406 F20101109_AAAQKT xu_x_Page_079.jpg
d162db12bc02e51a4776da26c03c8912
bd8c4bb08271ffbb33890cdd07072a4837198555
34251 F20101109_AAAQKU xu_x_Page_080.jpg
01adee70746bf4a37ac195ddda29431a
9d220425d3df2a7fa964e22d224c1ea6da8abd44
82107 F20101109_AAAQLI xu_x_Page_098.jpg
817ad6bc4e4118c89ef384303755d9b5
dff3e0ad6fbdfd2c878f4e75295754b418779a0b
34278 F20101109_AAAQKV xu_x_Page_081.jpg
1f25cd29aa85d0177812cfab8506bc12
b90207dbbcdd4d24569b79480f41a674d9c0c3fa
60151 F20101109_AAAQLJ xu_x_Page_099.jpg
01270c246b35cdf37e06b28c4d4a2365
319396de2f68206a1d5441f1836aa57b03c26218
36960 F20101109_AAAQKW xu_x_Page_082.jpg
0578b45785c127d2dc4646ae27c7f70a
53739a4181bc3f26b50f12c9256181a0b5632b6a
58300 F20101109_AAAQLK xu_x_Page_100.jpg
cbc57b6b8ad91c449e04afbea077c004
d1b7d167fa46f840c7145e48c8340d91821449e6
69603 F20101109_AAAQKX xu_x_Page_084.jpg
0ff87c288a267ab0182dbebbf0b24d7b
23527498c7e605c5885d8470c88b2ee6cc829ed1
65537 F20101109_AAAQMA xu_x_Page_117.jpg
6f599cca2b84c2edac2a36e56482946f
c4a9efca07b3c2b4ebdc3605d139aa9e221c5eef
22032 F20101109_AAAQLL xu_x_Page_101.jpg
acaa90745210931af773b4e9c5aa8b0d
d91ee57b02586dae98a84bbf33a7e0e4651d7608
87609 F20101109_AAAQKY xu_x_Page_087.jpg
35582858f1e51d646d7429f5bc36d5dd
01710a83e3425fd06c0d9d2a32f4069af8bea9a5
41034 F20101109_AAAQMB xu_x_Page_118.jpg
d2a139901dbbfc009cb0a5e033388cce
ed5600f582ab82825fab02bfcbb91c8be3bdb33e
64647 F20101109_AAAQLM xu_x_Page_102.jpg
de1a7e2d4282b9c0c2e861472a23c9ff
9b027abeb08f2595c985b27550e9cec7ff9d8088
58637 F20101109_AAAQKZ xu_x_Page_088.jpg
f3999af260a2c7b81867f332e08010c8
974bd8812093761084667a440a21da21983cb394
56144 F20101109_AAAQMC xu_x_Page_119.jpg
4e11bbe1d1627d59b07420113678df41
c19a0bc3cfd4135377e79e580c2735084bd197ec
78893 F20101109_AAAQLN xu_x_Page_103.jpg
89ef9091f650790ad91fbefa75d11ff3
fb5c55faf1dc5135ee654e947e1d87c0a0a513c4
73378 F20101109_AAAQMD xu_x_Page_120.jpg
f96094d71271a8980edee4ac22407704
dc45360f7eeccd7926be21ba7c5d8abf7c2a7483
72015 F20101109_AAAQLO xu_x_Page_104.jpg
9703328e8ee56c7301993c9039bd2ed4
f6802b2a4699e8a40de8d4a24791328745971afa
78130 F20101109_AAAQME xu_x_Page_121.jpg
1022685d83cd6a1f4c3dc92a90809027
04154fbe0df1b55c4182931499172ac0e0edb49a
61940 F20101109_AAAQLP xu_x_Page_105.jpg
62c3550bf33f5994722cd7ca11c86119
2a983ddca1db8aec64112b6267254a9695e18150
72456 F20101109_AAAQMF xu_x_Page_122.jpg
6c251ca35c66e7b113a4eedd0b68f3e8
c21b76ff609cfe5cac63a46f1794e0a0b48b0b89
65882 F20101109_AAAQLQ xu_x_Page_106.jpg
e3038b2568bc32f7c07e7715236d3733
d25d93f16af015c9bdc5e97f39529fa0c331e69a
80227 F20101109_AAAQMG xu_x_Page_123.jpg
ed16a96bc533496d43cd66b26d22c3f5
672acdb6ae0e1bf593e2d64ef6583e29b19c4d01
81022 F20101109_AAAQLR xu_x_Page_107.jpg
fe934361881e049984d579d68ee2a353
408a225f13340c62461d5dd9a35f4c049e390b88
93315 F20101109_AAAQMH xu_x_Page_124.jpg
ba852ad247fca3c94c29cb46f25c176b
347fab3b0dbdbf295668f44a3a7c2fc2c7a7e05d
46320 F20101109_AAAQLS xu_x_Page_108.jpg
6c2c52e799e8e6dc02544102acdf8e78
23e62bad5f8c283d91e36a1b16bfe7fc6b8327c9
85774 F20101109_AAAQMI xu_x_Page_125.jpg
f3cf000a2b40adf16d5188e083fdd36b
3f6043b4339f501c406bd008d4db254e984a896a
81461 F20101109_AAAQLT xu_x_Page_109.jpg
f1b81ac897541bf56a86e87497d27c34
c025b43a259739614e7a3c0ab53b386197c34bdd
86241 F20101109_AAAQLU xu_x_Page_110.jpg
a4e5c393586412e747ae0362d8d48af7
7ea648535a7347ec42bd5e681bea35895e3f3dbf
54931 F20101109_AAAQMJ xu_x_Page_126.jpg
7d7798003e8c64cffed8a9349a12fa56
aa4cd2607069bb48798e6f74bdc03c5d61f8b7b0
50710 F20101109_AAAQLV xu_x_Page_111.jpg
c4ec2d834367a0599a2a096635d14cfd
526e7ed541e4e12507c9a4163d25236c7e1a5eb1
73487 F20101109_AAAQMK xu_x_Page_127.jpg
aca659c37757dd29d9d16c1ec62f914e
93090d86f72fbe878d03237f60f2a819a9f42ec5
39526 F20101109_AAAQLW xu_x_Page_112.jpg
bf1c0a3f035bb21575e83d663ed6f701
525b46313e7e294fddf33105ca66369ad896db8a
1051976 F20101109_AAAQNA xu_x_Page_009.jp2
895270cda184fea918f94fa12767515a
060cd7e3623498a9a8197c0ab95ddf770a6cd323
88942 F20101109_AAAQML xu_x_Page_128.jpg
e0263c2ef0fd6c141a56feea4430fb6c
63bf202ec8eb13aa28611fe9cfae4c886d41d5bc
43344 F20101109_AAAQLX xu_x_Page_113.jpg
b2e57fcccd4adab3c7be008192373c84
5307f2602721aded5ca21af3c2ae52d385baee60
109470 F20101109_AAAQNB xu_x_Page_011.jp2
e02e843cd650bf9ac2eb6531210f9ebe
4ee9cd39ea33a4027002adc9c0fd80fee7361095
87157 F20101109_AAAQMM xu_x_Page_130.jpg
9107c38e7d540e9e2a067283c6852d32
a9678f3ad815a6b203a434d77d09c12c52f8f2cb
23630 F20101109_AAAQLY xu_x_Page_114.jpg
1c42be990c48ce1cfd8a0da65e82405a
49a795095df30d3261c245db7a539b012521b880
1051960 F20101109_AAAQNC xu_x_Page_013.jp2
9e187a19d05682b4d0593366025e6bb3
0067c251e7922f605a39db5fd5f5bad63b954113
99498 F20101109_AAAQMN xu_x_Page_131.jpg
97f261f11a7166187553c2991f065a99
5d9b7f2c8b12a3dd78afc8dd485c5dda62af1bb4
42556 F20101109_AAAQLZ xu_x_Page_115.jpg
c34b72533773256e66489ba429864068
e03ed35f87238b94028ad3e7067189f0371711cd
F20101109_AAAQND xu_x_Page_014.jp2
717a9183d8a64be2bd17bfa859d87806
8b4b87903c4e02c17b8efbf6ede02ac41b858bf6
86770 F20101109_AAAQMO xu_x_Page_132.jpg
1a167be62b02d73eada229f1366875fc
372f75ca5f578d4877c1e2875326a63cc4a4f0f2
1051974 F20101109_AAAQNE xu_x_Page_015.jp2
5180423b499b46206422a8997563e023
9679262c711fdfd37c71bb58d20c3804267e531e
96866 F20101109_AAAQMP xu_x_Page_133.jpg
fbbaefd685456d8715b35573ef9e9080
131ca17791aca36ce3a9e51fda92283b9bcc5dcd
1051973 F20101109_AAAQNF xu_x_Page_016.jp2
79868145082bf942dddf61d26aa7c13a
6a9f5921c635b29d6f066238f8e370eb0ea2cc4c
40462 F20101109_AAAQMQ xu_x_Page_134.jpg
16eb1e1dbf553b2dc9e735d50bee5d2b
a4ece5587a89f84fc0819fd74aee58f4135e1c5d
1051962 F20101109_AAAQNG xu_x_Page_018.jp2
18d71773566a88f1b1119dbc7ebc3f9b
edeb2594f6569aedb13e4b1fd05bd9f65d82e3a8
27873 F20101109_AAAQMR xu_x_Page_135.jpg
1e4cc7153b110d597a0847dd372c3b3b
a5ea03ea48effdf1f58ea5e08d3d1297c4db1969
1051902 F20101109_AAAQNH xu_x_Page_019.jp2
ce80ed5c4994e9268c977cbc1aadc48b
98984b6533ec2fdb623775ff41585e516e507071
25970 F20101109_AAAQMS xu_x_Page_001.jp2
2bc54231ed64adbc396f00ee65ddd789
88fb22817d0c91b670f4e58a382668942bb66888
4917 F20101109_AAAQMT xu_x_Page_002.jp2
cf0cfa1cf4cac67cfb7e8eacf69c9ade
bb807f56533455d71f2001f3caedecf692819ca1
1051983 F20101109_AAAQNI xu_x_Page_020.jp2
2e9adca985368ff23cbd579683149103
8307b70ffe720ca289202c2f76e6126475a2db79
4446 F20101109_AAAQMU xu_x_Page_003.jp2
1b379a23d435d28214e744af30a3f6e7
42837f6bdcb1a6740ab597f939b7ebad74e64221
1051920 F20101109_AAAQNJ xu_x_Page_021.jp2
62af9cad8634e1ac7549d5e56a9f5f16
6966dc95ad72e7eb5c2e732034fcee1d58da5085
89972 F20101109_AAAQMV xu_x_Page_004.jp2
6774f37a75eb637dc63810617125c868
10248e52d497440a62c86c307c5a69c6ed943652
1051986 F20101109_AAAQMW xu_x_Page_005.jp2
3bca5ed620fbbcbc44c9a713cabd4ea7
eff2b3a16f5e4849ac64438a61b848fa23b8990b
F20101109_AAAQNK xu_x_Page_022.jp2
35090a44206f4e30c0b7b47f82c9ffce
1bf60d6e7e3969d21d727f7bc91a93fc148df5c6
1051985 F20101109_AAAQMX xu_x_Page_006.jp2
2571fbb1a642f6893fe2bfbec7a0b183
079bae3a255917256e5c7cee5c3e9a4697efdf8d
F20101109_AAAQOA xu_x_Page_039.jp2
86236f771b65fb176dc6bbdd86af6353
31c54c901310d6b8aabc85d15023017bacaecb3c
124937 F20101109_AAAQNL xu_x_Page_023.jp2
4c3a66598a2a2f9a2670438c363a5d1c
ad496b9ab7039c4f69eca2a52a5dff61ac122f2b
F20101109_AAAQMY xu_x_Page_007.jp2
2f0b524b1a92ce75a0da3ef63c7a3c78
497cbbf3d8feb09b8c00ceed0032ac6fbdf5f470
108074 F20101109_AAAQOB xu_x_Page_040.jp2
5c68710219e90a270176690f1c997b73
886a4264fb6cfe17d5e72f3761e6dd4920d0e2ad
1051977 F20101109_AAAQNM xu_x_Page_024.jp2
d1248a01e730aa22383964bf1e1fc00a
679a0e3c8ee2e505b60c1ccc8eae932a91945e87
F20101109_AAAQMZ xu_x_Page_008.jp2
e8d58af695d2d769065240c28ff09e94
25e0fe7df828530b31c2f9ee80f652674dce58e7
1051943 F20101109_AAAQOC xu_x_Page_041.jp2
83b386e8b57d3e8bc2a0290b410dea81
73fe5d13c7968f512497377ac3f0732ee4d1ac26
10863 F20101109_AAAQNN xu_x_Page_025.jp2
b6061f1a2ea037b534e9232a98eb0d8e
d9cd598601d652b19723ff8956c8ed1764be0ac4
880583 F20101109_AAAQOD xu_x_Page_042.jp2
0ac4887dc63dcc21bac7bd91178c2b63
eee22aa6e7fc4814a4f4e1cfd26ed1edf7ce21db
123595 F20101109_AAAQNO xu_x_Page_026.jp2
070d5299c7220e35d7dd60d9aba81f3d
220e3219b0e4a062770db7325ae6dcfc40f9a617
1051935 F20101109_AAAQOE xu_x_Page_043.jp2
33e9e665dbdf16167641cb7fa4115216
255fd6f6d047c4287bffcd41be3c4cefe199188e
923099 F20101109_AAAQNP xu_x_Page_027.jp2
bbf965c0db40ea9124f53a86aadaeed1
33475b46d19b8e75836fc9c938e2b19d49d42383
924648 F20101109_AAAQOF xu_x_Page_045.jp2
e9a778ffffad30435dd840e67d1b286c
238bff29e03f0b589d53f0bf531659be1f3af9db
910747 F20101109_AAAQNQ xu_x_Page_028.jp2
f6a42d0cc5fb3cb0bcb279350433103d
2b6370912dec143a437bce6812afc69d991aa785
1051969 F20101109_AAAQOG xu_x_Page_046.jp2
f0ca422666baa63e35a914d2850134a1
ecd191acbc091a8a15395b5886b9aeaf0d91600a
1051982 F20101109_AAAQNR xu_x_Page_029.jp2
1637c98df94dd6114947c89130801736
01814cb1ba4e27e9acb814065b736fc96cefddb2
1051919 F20101109_AAAQOH xu_x_Page_047.jp2
8cccde2ee4a36471537e5bef965bfa38
18d5ba2fe97d26960e2572cae60697af0d84673e
1051932 F20101109_AAAQNS xu_x_Page_030.jp2
66a5d4df9537cf9ecd41a7d197c96051
c509fd2002f44b5be4c010875c1c15901277db64
1051979 F20101109_AAAQOI xu_x_Page_048.jp2
5eeb1c79f4d89932d24d52a8bba11cbc
314341ca5fc6b3ca3836dc345e61afa187655c79
454020 F20101109_AAAQNT xu_x_Page_031.jp2
d906f07b3aa1c09b323296a72afe9f88
d86f7a81a0349da118189f5378abb48a994dbf59
F20101109_AAAQOJ xu_x_Page_049.jp2
1eed89f6fe0e3d0ea1a5e2d4773cad6f
55aa0f869d58d52735b4ca9884a0626399c6a727
1051953 F20101109_AAAQNU xu_x_Page_033.jp2
df82342689d913567ce3755188a51929
b10c0de3da2879c7213ecd61283b12a1572936c6
147909 F20101109_AAAQOK xu_x_Page_051.jp2
22829dbb0c38273224de532dc0724e84
0a06c38b9c70e539f53d5c116ecda33636a517a5
1051981 F20101109_AAAQNV xu_x_Page_034.jp2
8b3b409c7405ceef51f92c1b2b39f0c1
1eaa2da0e0f1fc41af2d09eab249bf670d67ee43
766758 F20101109_AAAQNW xu_x_Page_035.jp2
878c492f7da14cfee6e7238c91dfcfa9
2972d86e41e627967d9c14441b35ff6c6e9b1336
863628 F20101109_AAAQPA xu_x_Page_069.jp2
5ee649b3d25abc2be0d690db919a9489
3ef98e0490e420430bb1de9041a68896a6fc1e77
147866 F20101109_AAAQOL xu_x_Page_052.jp2
08bb1c9c7f2d538d64cefa4b6cbf4461
8fe3f446fb0a1627b327c69d75cbe517e1be1839
756538 F20101109_AAAQNX xu_x_Page_036.jp2
0008b1635af65a4409e530794941fa43
6e7907e4bf789da25e9995b0c46b9688be479065
898647 F20101109_AAAQPB xu_x_Page_070.jp2
ed52346dac02b1ec6feda96fae6e22c4
737243a743cbaa60e99caae4960977924f7ce31e
1051959 F20101109_AAAQOM xu_x_Page_053.jp2
1545d27ee997dcfa866ee66f2188d1f3
e5595f9955d5a3a9df9de5ba326882f772e7e0db
855376 F20101109_AAAQNY xu_x_Page_037.jp2
554f1e41313ad84e94c2b8a625c6263a
740579fc84ca4b8ad1f727f10fac2e947c1496cb
850231 F20101109_AAAQPC xu_x_Page_071.jp2
fb823b789eb6b7ad63a88c1f0478f9be
08a0c7d4a274c33390ca2fc4284ea188b9bf333f
625196 F20101109_AAAQON xu_x_Page_054.jp2
f588182f25f87e0c939e3f6a49fdb972
7a6e07690053c8c17e443571067df40a1e15204c
644962 F20101109_AAAQNZ xu_x_Page_038.jp2
6cb8d7b89b7a206e8f0ab84943ba5324
243dc6f1526d76bd3f638031bf97482c159daa09
515015 F20101109_AAAQPD xu_x_Page_072.jp2
42ab1345e9bce25baa0573d0b9947cc8
83b35726f3811f37448f8046ddb2f7d7ccae13ee
1051887 F20101109_AAAQOO xu_x_Page_055.jp2
1cda2e5e407038f0f400934cfd484bc9
ca864226b0684c784d64b35624c055f3525a380c
917397 F20101109_AAAQPE xu_x_Page_073.jp2
ed75362ac51e305abbc7aab4c41de3ea
ee522e6d94bcce00c389e0188749937624e72b24
1051952 F20101109_AAAQOP xu_x_Page_056.jp2
83149c3d9de0ef9d28f121d9ef5abc0c
b3b1a5e706ab53f7f29b282fd8e229fc2091886b
914127 F20101109_AAAQPF xu_x_Page_074.jp2
55eb29786f6426eccab4447fbc588bd8
1efca4f324c6f73fa7a8ff5cacd8d935b6f50674
960408 F20101109_AAAQOQ xu_x_Page_057.jp2
43bc6576052f4071593e7d1529ceec87
2882132263b648419297a794b78ccdc8eb5459e7
929809 F20101109_AAAQPG xu_x_Page_075.jp2
452d0750d3c63fe74df139600f6030d3
853b95533b55ba349843d19a8017fd254149a272
859061 F20101109_AAAQOR xu_x_Page_058.jp2
eec68efa3cbae566111a784a11da1470
0f7c9f2b205ded3379d29ce243cc765eeb255423
554391 F20101109_AAAQPH xu_x_Page_076.jp2
1531ad7c27c6ebf6ec5342102f2975c6
52ed3d6093d95de2c0a9b354f73a59cf5283596d
1051972 F20101109_AAAQOS xu_x_Page_061.jp2
2f529e9f5836d688d087002155c08040
7c3aba08e3877308128ecd2f386d6cd9982ff5d9
951147 F20101109_AAAQPI xu_x_Page_077.jp2
8ed210967c029a47b3e9d782a9da9f86
b1aa10db70e00e797c1d6e037cb032992fe3049b
1033255 F20101109_AAAQOT xu_x_Page_062.jp2
804f59cb8aac74697cc00b9f69104db9
92bd19b7a69239505c4094d36abaa26182d4b9ec
1042836 F20101109_AAAQPJ xu_x_Page_079.jp2
f578c69c9757b30d32528cfdbcc3d977
fbe838d4473f205a0cd58531c896eabe6f3eb752
472346 F20101109_AAAQOU xu_x_Page_063.jp2
d1e4274908726a028cb0faaf5a523df8
5dcd69081f19b66b4aac91e2e1f2bc106403f327
447017 F20101109_AAAQPK xu_x_Page_082.jp2
2b13ec6dcc09ffe038196de4d5fac6e5
f8ccdf6581b707f6dd7d4324e68df1946e5d5250
78940 F20101109_AAAQOV xu_x_Page_064.jp2
2b9271d16e3052d3993ad5a9111c2220
41d887197a8f69bb356d17b3c0d127d12433d221
1051925 F20101109_AAAQPL xu_x_Page_083.jp2
25ea9507aa96f5bbdb5a7a0f8d6494a5
cf128be077c2e8d7fabfee898fea42f5c22ded97
657926 F20101109_AAAQOW xu_x_Page_065.jp2
fe36d7949c84a7ea662a5009fd143b87
664e72b7df4b0e991940d515cbb32b8494833100
887034 F20101109_AAAQOX xu_x_Page_066.jp2
e97a58e69502ed1b0c5c77d14024177d
0dc31e48568c2a72c2a3aaf74007769abe71f1c2
26553 F20101109_AAAQQA xu_x_Page_101.jp2
14e0f500a548f916f5dade50b6fcc1f4
5bfb5a539c45c265fc304a6b4bf1b8fef3f48e1c
993883 F20101109_AAAQPM xu_x_Page_084.jp2
2f065af316b4505058e7b99107a66509
a4be45868bf341f9dff2ee16e0dd5e4fac0d639c
745097 F20101109_AAAQOY xu_x_Page_067.jp2
6c3770c3e876b9d11987dcebc0adca29
67fbcdb4bef2daf68edb4ee4692cf99497709482
917878 F20101109_AAAQQB xu_x_Page_102.jp2
6f5d44b923d8f02622cfc586d9baf264
78d939b0a6776081329f904e684bb7469498a950
819752 F20101109_AAAQPN xu_x_Page_085.jp2
10b587487ac6f14201e412f06586b31c
ac07eda8acffc436344249b2463d189566fbc638
F20101109_AAAQOZ xu_x_Page_068.jp2
830f478181e1e54db17254fb6fb6617c
3532d0c24e517b9a0ebfdbabea302c43ad3a14c6
F20101109_AAAQQC xu_x_Page_103.jp2
a90d93dab940d8b914db82e47f9b1066
e9edb6253e73ac5467053840f372b1cb5fa9925a
744943 F20101109_AAAQPO xu_x_Page_086.jp2
3e96bac0a4836668835b47ee0193bfae
64ef21d3ec7224833555b3e20ce0422d0e71e222
996896 F20101109_AAAQQD xu_x_Page_104.jp2
ddf57a9f0d05e2ed8e5ccd611507b563
7eb1d914143860e3a3b1ead9d14d84dde48911bf
F20101109_AAAQPP xu_x_Page_087.jp2
4c9dd895ab0ddacb50e235e1f4dd7f6f
5f89de8df75b8bbd319927e1855a49c47c22e9bd
846900 F20101109_AAAQQE xu_x_Page_105.jp2
15a7e5b2aad4a5bf1f2b29c5b43fb547
806a71e4413a933f9eebc748e9e1268aff3e7c2e
1051942 F20101109_AAAQPQ xu_x_Page_089.jp2
735ab17894b8ecb2c5830240d9da8659
beee5b17b1ff49aba937f8ddc7a4371a118a8052
883679 F20101109_AAAQQF xu_x_Page_106.jp2
5b49d1f659a581e8ceb35a33cad81afe
eac3c6067cb79f0858e7e89abb652c7b2b6cdc7b
743924 F20101109_AAAQPR xu_x_Page_091.jp2
bde4a867943b0dda5128f5784084d5b6
85890c03265da508fb316f0b69af75d68cb6d755
1051858 F20101109_AAAQQG xu_x_Page_107.jp2
9c1d73f3771a61adb78ad96710cb1f5f
bd4dc433859b885812514fb54ffb92549df5d108
803705 F20101109_AAAQPS xu_x_Page_092.jp2
d15bdae7e494cf01f1d7aad912df2b5e
e353f002f2bb756b1bf9b4c8e1686d432d31100e
613751 F20101109_AAAQQH xu_x_Page_108.jp2
4bc299ee69a479e650da9f7f4739dd09
87b2ffa801732f424e71f324348eb0e94255a3fb
1051984 F20101109_AAAQPT xu_x_Page_093.jp2
37813b178758d316b5085168eee46396
c8d4ebafa6d2ec25458af9dd78de6321380c0915
F20101109_AAAQQI xu_x_Page_110.jp2
7497d8296eb21b8a6150c5019dfb8caa
1d3bfa2e8859663076368886311d4741ef1b03fb
43229 F20101109_AAAQPU xu_x_Page_094.jp2
3c324c6bb98e160896c5767c1ddc4ff8
a27e6187c3da219aec5a3750970250d8ea2ba42f
673061 F20101109_AAAQQJ xu_x_Page_111.jp2
5d06d9475bc2da73170993bc0f3f9d76
f7838451d51e4160f991c1123d1b4a9d9c11f956
85094 F20101109_AAAQPV xu_x_Page_095.jp2
581ce732a574e1b4cc1dc13dd9ea3b8a
782cb32bc42f5141b9b2cc3e2c976b989dd137ca
546997 F20101109_AAAQQK xu_x_Page_113.jp2
7817918cc5947d5ee8efe6ab4a0e5870
9ab0028a6f1ae578b32b5fe16f590776b190a24d
1051931 F20101109_AAAQPW xu_x_Page_096.jp2
825a1688ff4fc7be3230452c3fa70433
563c498c2de3d541adef179a38ddeab40b61e7ab
33697 F20101109_AAAQQL xu_x_Page_114.jp2
2c165029e7a520a53a4aed0d14bae54d
5f8cc885a9697cd264e5529c4b5050bdb52598ce
F20101109_AAAQPX xu_x_Page_098.jp2
6deb53ccfe8d7dfecd0a7a1f7ce153f1
2498924bd4cfbd3f7205fcb89ff869b2037f8448
140960 F20101109_AAAQRA xu_x_Page_130.jp2
55686d04b63e2bb99528ed1a3f9667e2
7d46c4f29b9a540ce92b2886bbbbf547736bba1d
554003 F20101109_AAAQQM xu_x_Page_115.jp2
31a10413c9f6cd0bb61927a29d3b0012
e646ee74f45429fd5e0ef369aa449d2defa9bbd8
811764 F20101109_AAAQPY xu_x_Page_099.jp2
274e2afb251eed25619a0d672243a870
ccf97fd6cc8777c5b62b2b0353cc110ca635525a
1051946 F20101109_AAAQRB xu_x_Page_131.jp2
5aaa7a5493fcc2baa1c4631bc8519aa6
9528a89a32a8d5ef4237d9be24fcb324a2749491
778187 F20101109_AAAQPZ xu_x_Page_100.jp2
a4119618a3d6034d85e667b7b280dbb0
39e1171d96f478304cd08cef6bbc15d284a5df35
143405 F20101109_AAAQRC xu_x_Page_132.jp2
0e524ea43456aa82bbf3552464da7671
efc86618f9ebb1db517656cbc4917e00e870aa86
622801 F20101109_AAAQQN xu_x_Page_116.jp2
e2dc1e96346968a4c0d27ad3c73ed8e6
bb08a82cc8db5c05191ab00784ef523a9050082f
F20101109_AAAQRD xu_x_Page_133.jp2
13a624992ec401b55032e80fecc6268c
798ad2acc415e6a97d02c2834b9b442642a06418
870027 F20101109_AAAQQO xu_x_Page_117.jp2
1281810d10b6a86546432b32c7b46321
5eebb9130fc20ff85151611f58d776514c6b861d
58476 F20101109_AAAQRE xu_x_Page_134.jp2
ab0335237454971ab0d6851988d67f9d
ba93f0a8f800e5659f1107f01f5b3238f4adbfa0
F20101109_AAAQQP xu_x_Page_118.jp2
c8354551f02968437a9201f4612b2c75
e322027eb4965ea60a091a801a319b5aa9a22211
37471 F20101109_AAAQRF xu_x_Page_135.jp2
b23fedaca776fb5c371bc5a1c63a08f6
58068cf6f81a780ed531cb93549bfd8e7dc513f1
83819 F20101109_AAAQQQ xu_x_Page_119.jp2
94e32df167e038dc9338838400415191
142d9af8dab75d5f57351100c38605d7546c8fda
1053954 F20101109_AAAQRG xu_x_Page_001.tif
d7e84e7e5334db1298b2f95995640bc4
5cc47515f69e630bde223b393502e83a1d1f2dc5
108770 F20101109_AAAQQR xu_x_Page_120.jp2
7389e20469a340359056aec7c8763746
952d529445aecb5ca2e7f91c4f1c6df4cf553bc0
F20101109_AAAQRH xu_x_Page_002.tif
768140ac894e9a309ac44e8c56f86203
dcc2ccf1099e77141d2fbde01dd9f46b5ff3f6bd
F20101109_AAAQQS xu_x_Page_121.jp2
7bf9f1b00c814786529feb2f3d9627da
7813a6171cc98e759fa36851ce49994220ff771a
F20101109_AAAQRI xu_x_Page_003.tif
96b4c505d3fd0917304a0f50eee0feb1
3dd9796cf0e8bb6d0ef19d80c7e43d13c3da7dc7
110493 F20101109_AAAQQT xu_x_Page_122.jp2
653d5bd859b913b70a7ca7bbecfa7493
b6acae120c00d3385c064cd6bae02b4e0f8412ac
F20101109_AAAQRJ xu_x_Page_004.tif
aed96e97ab5f571e1dd4926bf16b1775
5038e00b15a13fe8b4312f715a3e0d6e6fba8d9a
1051956 F20101109_AAAQQU xu_x_Page_123.jp2
e107fa881b2a8ef458ba134a027d4660
927ca699ad18443b67f9d303a2500fa9cd0f6ec4
25271604 F20101109_AAAQRK xu_x_Page_005.tif
09628b90082dafa68b584da8b92fa06e
e209a323787a556893653c2b9448b6ac7cfd6ad7
1051978 F20101109_AAAQQV xu_x_Page_124.jp2
5d1803205eb74c0ebc9acc2563975532
0ba471063ece4ac98d97ab8003fa8296216e215a
F20101109_AAAQRL xu_x_Page_006.tif
64ef07da5569b0725171e6ee6b5b4721
1cef7f4338335909c365cc3535dc70125f24f1a4
1051971 F20101109_AAAQQW xu_x_Page_125.jp2
3b85543ae355b2b605b29d4647f2262d
0a35c3397948b1c4b170c334de834e9b7a286c42
F20101109_AAAQSA xu_x_Page_026.tif
54af43db280b7b104a785d4d53f38ee7
5fdbc8db3345f3796b47b9d127d23363ec10cbca
F20101109_AAAQRM xu_x_Page_007.tif
543e411f2ed5a5a87ed1d73f00124923
d93c315afcf20cf7065669c8700098c0c26bfc16
117374 F20101109_AAAQQX xu_x_Page_127.jp2
8585e85163aefcfa826d77494123b6a5
b0852a33d64fbbe4dc6cefdc85eb5dc6b65293ea
F20101109_AAAQSB xu_x_Page_027.tif
9eeafef35f754b9b05db2638f64320f0
571652bd99d9804dfd3bf894930ab6b79fc0b6a3
F20101109_AAAQRN xu_x_Page_008.tif
4a968eb0dd8f1aa82bffe2c3e2789b46
31279c35718747a4576ce058a2b38de35bdd5ca9
F20101109_AAAQQY xu_x_Page_128.jp2
c5595de739caf6e878c0e62a3c607e76
1b015e603ef0c73a61296df092c858b2ba4a433c
F20101109_AAAQSC xu_x_Page_029.tif
ea3035fea5e159e851cddcedde82261c
c7abc4ee7254c5b9cb5640211d7ffdef1ec1886d
1051937 F20101109_AAAQQZ xu_x_Page_129.jp2
10dda513dbc935830a63a736b5e06e37
87b05bd8ad57b7690baa429abc115b94748be92e
F20101109_AAAQSD xu_x_Page_030.tif
9be7d578d6a73f2d6dd33f064677c159
9b191e946604444f016b8acdd9a9ee57a55d8484
F20101109_AAAQRO xu_x_Page_009.tif
15a68c7b0f5e51d3189c84e5266de5b6
08f4831c6a5c505ddbae26b01590dfe7ef325aba
F20101109_AAAQSE xu_x_Page_031.tif
3c45513d14f61f59d32f69f081330764
5ec71079c080ed3999973d2b55967f07b75349b1
F20101109_AAAQRP xu_x_Page_011.tif
a059f6a6da147e5e2f133c36bd910464
2496c0416f06f5be8546650eaf17a2adf145a3bb
F20101109_AAAQRQ xu_x_Page_012.tif
d2e5635eb6cf65448813407f20ca29ae
df47dcd223f5186de4d71787c4db75696fef3c8b
F20101109_AAAQSF xu_x_Page_032.tif
43e44e4a3f6838279e47706cb470ebf3
89dab8b2e444d33ae2f5795ff6753a5174672f7f
F20101109_AAAQRR xu_x_Page_013.tif
858500809987969c432287cea1ef2987
4802bfb0a08e0c4611574767218a5b6dd9096b38
F20101109_AAAQSG xu_x_Page_033.tif
cb146e78c75c836bc870121401e3657f
465b300ddf78e89f0595f84dfd41e5fac7621e44
F20101109_AAAQRS xu_x_Page_015.tif
d3c9eaad7b942d8d412b3cb5c41940ee
ffdb9f50130409237b4e73b23ae2fc0980186cb1
F20101109_AAAQSH xu_x_Page_034.tif
190f3eb3e7834d8af7b63324f771ea69
df7c79c568023d424fe0919d4d739a9b1805af45
F20101109_AAAQRT xu_x_Page_017.tif
c197c4f9932ed55c1762fd9df20b616b
d8c21a70c33cfe2109e3253d7c253f2f1c81e628
F20101109_AAAQSI xu_x_Page_035.tif
a222c3c888115b89165d64419092d12e
6518373e07f0a84ee34f065406f8846563827682
F20101109_AAAQRU xu_x_Page_018.tif
02ab035decb0a911e8cf25e29c1c12bb
202b10d0a587bd569d8e3a9548c739780268c62d
F20101109_AAAQSJ xu_x_Page_036.tif
81af6335539580bc9173fbcb4bebbdf0
aba18a3b94f11a2d1d2f3778793232b28a768da7
F20101109_AAAQRV xu_x_Page_019.tif
66e4a2b546b8e11bcbfe89920c307937
751bece7db4a2aeb0780b2b1e130035c9849836d
F20101109_AAAQSK xu_x_Page_037.tif
e9dc5f34b7cde600133503c64c10a202
d2e48975725d32f11bd34b4b3e0e25ef78e350d5
F20101109_AAAQRW xu_x_Page_021.tif
5c96721506068bc738078423e024b990
df45acd674c35f5b239f6ca281b508fbaa67adc9
F20101109_AAAQSL xu_x_Page_038.tif
7fc5e14c7c461f49b8966bb7e969a95b
1f0914dab12a1c6b079b95df3e743b7b48d614bf
F20101109_AAAQRX xu_x_Page_022.tif
c975528072d2d1d5c3c6a8200b0a969b
6e22c137e54732d3ff70a41787533c6aac197612
F20101109_AAAQTA xu_x_Page_053.tif
135c758a5dc70dcd3e9c640b779246e6
1b1693ad95b356f8ee32bd1382535915214d6e58
F20101109_AAAQSM xu_x_Page_039.tif
8d4976fed40ba8969b9004b7531ceb4a
eaefdd9f9499c4c018b2ca2ecf510fab3c4b1694
F20101109_AAAQRY xu_x_Page_024.tif
33ec82aeded296f4f1750755c8432338
8769c11c27404cc0b2c7348a43078255eb007803
F20101109_AAAQTB xu_x_Page_054.tif
bc6015ae97d37a15371893b412faea7a
db85e49dbff05433746bf80255165f8b05c3abcf
F20101109_AAAQSN xu_x_Page_040.tif
30662da2ef8d1b67b17a5fd6f2c2de4b
03115f87acbcf07a524124770d3a12e53131268b
F20101109_AAAQRZ xu_x_Page_025.tif
108009fc8f68df7f49c8c04c1c4ce03d
da6f9ed64c62de5f0867b89c2524e1c118445e86
F20101109_AAAQTC xu_x_Page_055.tif
140510ab0564a778e1216cac77a28407
59faa33db787fa086315bc18a2ceaa1b228d1910
F20101109_AAAQSO xu_x_Page_041.tif
7b0d6157d7676590d3eef5955a5757b3
ac749499403cd84241b2661d523bb555edce12b5
F20101109_AAAQTD xu_x_Page_056.tif
0caab87895b09842ffdc9eb20477ce1e
971e1fb6a8cf4982509da51e95ee6c6c17055fa3
F20101109_AAAQTE xu_x_Page_057.tif
2f0bb4696e0006351c196f221c376fbd
54f2a18615e45decc3050e1aebb8e49b61b625b6
F20101109_AAAQSP xu_x_Page_042.tif
caada557a88794e816e21421ec2fcc36
b26ab01a0af03f02b2cefdc9a612b02c81771b30
F20101109_AAAQTF xu_x_Page_059.tif
e9330c6c5c62136697242962cccb92c8
c47442457167cd547d3045577b30735ef102050c
F20101109_AAAQSQ xu_x_Page_043.tif
06c9e1d80121185c916f5007619d34c9
5637884c289ccc5d12d0cce28de99f4d3aa92578
F20101109_AAAQTG xu_x_Page_061.tif
f3e06db181fb5dd91ade469bab7262d8
d9ca163fa4cd95b8711332a9d4dcba2f4d6c3d28
F20101109_AAAQSR xu_x_Page_044.tif
c1dee373d73f7dff8663fd9858d0af23
c6cab472046876c58938743f94126089c10de7da
F20101109_AAAQTH xu_x_Page_063.tif
83a4ee6f59d598bb2a636a93be5681b6
779106f665e610fb1d3fae2c455f6b6c95280459
F20101109_AAAQSS xu_x_Page_045.tif
617d2089ca2e170b24f0f213b46306ef
c170e751b689b1788b39c23cadb3c8ea4de2eadd
F20101109_AAAQTI xu_x_Page_064.tif
630a5b2d0572ec13b2deac98fc93890f
eba58e62021132559aa2eb798ba373659d2c500c
F20101109_AAAQST xu_x_Page_046.tif
2b50eda2e7c2887a099859696e19a996
038a2df4bfecc2d7863f419e162123a81e39e002
F20101109_AAAQTJ xu_x_Page_065.tif
1fffba93dd8311248ef103dd9b30574b
f83010c62860f743d262fececa22a741b58ed818
F20101109_AAAQSU xu_x_Page_047.tif
91c6a0a656ea0500fcab578a3f43475b
23f76bee9c600ab1bec70756129b6baa2b350600
F20101109_AAAQTK xu_x_Page_066.tif
e8691d7c48e45c2586be379c867184ff
276dbab2debc507fa04c4adae3f48d6b8b8492a4
F20101109_AAAQSV xu_x_Page_048.tif
fc2f81ced254222dd8b4efd720520b27
0afc62358beac20fccacf30f1b77127b30de4869
F20101109_AAAQTL xu_x_Page_067.tif
132f28be0bbf4d723ad4ffbbcad2d8d1
ddc4e100e04f3bad8fc089134f6b84f94e1adbbd
F20101109_AAAQSW xu_x_Page_049.tif
f849c9ec058227479d15ba19e8bef315
e023f0194fdcbcca48c4f7539746d051835025ad
F20101109_AAAQUA xu_x_Page_087.tif
b0119f8a341497c4177917128c378402
a0220ccc1b8110e47e797fab3ab4e0c8f55bcff5
F20101109_AAAQTM xu_x_Page_068.tif
33e94f63db92a30706b8e9fbd6857f22
c6f0af8994e989b2cb06e1a02081f5015a8d20fd
F20101109_AAAQSX xu_x_Page_050.tif
4d7f6db439a010951f8a59fca501cba0
f289b92866d915eca39f880eee9cde2b253e313f
F20101109_AAAQUB xu_x_Page_088.tif
48a9981f0ac64d72301a9926aed67276
b604582a782eb2c1861bcc3b734f0da5a6e0c457
F20101109_AAAQTN xu_x_Page_070.tif
4736360adda10d87ae5321fdefd194a2
3459ba2498b460589b6907e2ec757e41a1315194
F20101109_AAAQSY xu_x_Page_051.tif
7cfecb81d8084d071f50de725a6e1cb9
83e9a4a227f872fbffee07508b74db93f2076093
F20101109_AAAQUC xu_x_Page_089.tif
058124b4503eb7ea5bd9bf5a3ff87d4c
ff7108a6cd81dbca582f8b31b6c6f9f9640e9ca0
F20101109_AAAQTO xu_x_Page_071.tif
ac35d96e64e638b7de96f091e871c6b6
ee7b34eb099dfcb12558d76fe0d85c67b81e2c9c
F20101109_AAAQSZ xu_x_Page_052.tif
f8d549d069afccd6e6742bf3f6f25b10
2bc2276e91a6b9ba93e1eaa96cd8c4c80dd79454
F20101109_AAAQUD xu_x_Page_090.tif
27887766292ade4d1c4f492495f92a2e
994344968dd3efc0f841ff5bb1f604847ef8083d
F20101109_AAAQTP xu_x_Page_072.tif
332109215c137f70e0691ee3c50b0cef
64cedda434fe4da785fc08628bcb583d131462ef
F20101109_AAAQUE xu_x_Page_091.tif
ba71bb8ad3ff73b248f37550b0d7df70
9edcafaa21f7ea3eb03a0632a15c41a206605345
F20101109_AAAQUF xu_x_Page_092.tif
4864b372df25b3680902c6d901dc0023
843e83d8655d13ff9237b0ac2b84eed01decbc7c
F20101109_AAAQTQ xu_x_Page_075.tif
110ee723a2aa17b80a7d3ef31fc4c617
9cc21602f746d85180611b2dffe68895182ae6be
F20101109_AAAQUG xu_x_Page_093.tif
5da9b63d91443fa0e7a69818cd02e9ca
85d87894cc1b5e5e700c9b734ebc1ea0d233051e
F20101109_AAAQTR xu_x_Page_076.tif
a42536f07c20f3f7a9ee4f6690d5ae7c
ec053711c26e729cb05d1c4da9049b26539c993c
65628 F20101109_AAARAA xu_x_Page_132.pro
ea9b0f3fdb60f49c67bf546da1735b3f
ac91701cfffa55843ef548a45e6184b300d161dd
F20101109_AAAQUH xu_x_Page_094.tif
0697e4239d3edad88ddcfdaecc85f3cc
66769f4dc9e57f1e7e45bb0d8f301a0ac11eda10
F20101109_AAAQTS xu_x_Page_077.tif
f068f4c1d950c22f495f2d69e8f20bbc
996a00a9e2c180ddd7d81a88093200b76f365a70
62620 F20101109_AAARAB xu_x_Page_133.pro
7f033e67c3769b242e51bb1320829627
b829dac380cd854bcaa942c578e262ae02883df2
F20101109_AAAQUI xu_x_Page_097.tif
740da21909d9ea1cbd813e4e67af07d2
8f21bc4f94904864a18c4632bb6e1d8f77e3649b
F20101109_AAAQTT xu_x_Page_078.tif
28b610eb4a06f31521b8438b627a347b
0c10756a72572daa35cb30a6f7b6eeeb332181dd
25815 F20101109_AAARAC xu_x_Page_134.pro
23b85e135735ab8b43ed142cdae9addd
247d3bc90ff0adf8a05b749683229b8dfa1730f2
F20101109_AAAQUJ xu_x_Page_098.tif
793fa9c1ec7dca3e1a53a56d83254e09
547bada6a96d947104aac0b3ca678f3c50f52e5b
F20101109_AAAQTU xu_x_Page_079.tif
d0c88c42cf4dfafcb8cb67a012bced4c
cddcc87e97e8de28f46a46b7b9398c3bd089b2a7
15651 F20101109_AAARAD xu_x_Page_135.pro
103670cee6327e1a7ea54b1355b201e7
ee077cf2bab7b4c32ab81a93724ee2ea3455825f
F20101109_AAAQUK xu_x_Page_099.tif
fcf33c0c6e9128f0733571aaf8bf88e5
d7574429a30b8bf75158b3abdb7f396361b7735c
8423998 F20101109_AAAQTV xu_x_Page_080.tif
8bd256ec3cddfb9623e29822c38857f5
4e87c17de1a45b09720274cc39ed73c6f92c538f
473 F20101109_AAARAE xu_x_Page_001.txt
f9a136beb13f55f457dfdcd699baa68c
0882e295ce475b2b5423f26505e7da28c8f41597
F20101109_AAAQUL xu_x_Page_101.tif
65b173224a8093574fa7d026b678af46
83ff43c4c1606f225f387fdbe9cbf659bae23b89
F20101109_AAAQTW xu_x_Page_082.tif
f40e14ede8eba29ca96fd27beced8db9
edd08a6211e7c253cef89585e66624b968d9cf82
87 F20101109_AAARAF xu_x_Page_002.txt
aa21a9041f0e17e43e4966a723103c57
6607b609eff9cc2e5c5eb49b9bb2f17e0581413e
F20101109_AAAQUM xu_x_Page_102.tif
64abda427d7add69602a7eb42bad4c6e
621d5b4eccc9c9c9c1fe830419ee9c2d70de8e99
F20101109_AAAQTX xu_x_Page_083.tif
6effae2caa8316e5cbd51a7836fd82f5
451f53ebeed1d1cbbb69a19ce7cd5973e63bc65b
74 F20101109_AAARAG xu_x_Page_003.txt
ad8d05cf01f6f9d5d61a2645c1348954
837404e9048582643df8d4aea59394e3dbea4f1a
F20101109_AAAQVA xu_x_Page_116.tif
ca5e64e01cab126ebd0e5a1cd9cdf812
163850104c41cd9dd4f12b418b45c42fbba70c76
F20101109_AAAQUN xu_x_Page_103.tif
722b6348dd30ba0b127f052df356c107
e92aa7546ffa893c1829a9f41e4e28920f096143
F20101109_AAAQTY xu_x_Page_084.tif
e78596cc7c7b69a8406a7b4242803768
07a355163b5c53e4ddbcd671d2f8e5eaeec2e71d
1693 F20101109_AAARAH xu_x_Page_004.txt
634e3212330949f160089912ef052eed
4c627d08a4b33a664cfdffaf2b611e4adb7cadde
F20101109_AAAQVB xu_x_Page_117.tif
41a0fdbe7d3b76a4edcb9dbfb485910e
c1d7781493223ae6b428f75b292fdb56018ac1aa
F20101109_AAAQUO xu_x_Page_104.tif
62840efe039f55eb1166454db218dec3
8090a0624179ec4f3b8a6c0290838ab3b5b5cbf2
F20101109_AAAQTZ xu_x_Page_085.tif
eb7fa124b3c9a6f9856c80a162433b6f
ef5ed52ff5ba272139325575c4531eb426f8d1b4
2438 F20101109_AAARAI xu_x_Page_005.txt
45ecfb733580a940e1d9977649b4c9da
9f6ee7d4d5ad028e3b87c79a45659fde67d395da
F20101109_AAAQVC xu_x_Page_118.tif
555fc9ca20e794d8f4a67c50f92204bd
9d8c80e067789d0fcf990bc93ef053e888adab6a
F20101109_AAAQUP xu_x_Page_105.tif
431ff8886217d7d59d02511b0545a26d
87dedda44c923c8ca446a680c13e4264d329eb23
1169 F20101109_AAARAJ xu_x_Page_006.txt
4294d045d37752b19a33d995998701af
85462b63d2ee8244a6a8576fbde564dc89a1e3f3
F20101109_AAAQVD xu_x_Page_120.tif
0bb13f07d6dad7418be21c9791543f39
67e96fc3ce340f0e9d65a9a21a37f8eb281cf257
F20101109_AAAQUQ xu_x_Page_106.tif
fd7049ae7fdf56816d6421d0345571ac
4b94edffc1f51de99bf3180e8afdd8b9e01680c2
2067 F20101109_AAARAK xu_x_Page_007.txt
021980c316acd15c6fc29eb55c13f1be
5eb69519772e5969381be9c2c6babd80028b9d7a
F20101109_AAAQVE xu_x_Page_121.tif
944e646a6c2cea3372ac174483217cd3
e725d15755ff693ee581b84e10e4dd981eddd79d
2560 F20101109_AAARAL xu_x_Page_008.txt
44db3c56836f013f73d871bec48c5d70
1da5758e993368ceafaa6ecad2cae264bcd2fa93
F20101109_AAAQVF xu_x_Page_122.tif
7619e03dceb5912202f6c9f1662d3873
5e4e608f714659d17fed81becf73be51b4543d4b
F20101109_AAAQUR xu_x_Page_107.tif
24e08e919205b835da9e888ee0364fb6
4bf6c3e0b4ef62940d3da28369c21b0b916f4706
2366 F20101109_AAARBA xu_x_Page_024.txt
068d1251fcf7183616b054134b17fe14
5e71e8ec226b6004719ff50fcde627ad52e8aa88
2515 F20101109_AAARAM xu_x_Page_009.txt
4800cf7ccc61d0e576e25897a75b9e7c
ddc421d1ddbae6cc7444d0eb0368c1a1b401188b
F20101109_AAAQVG xu_x_Page_124.tif
6ee30556f44540ca405a76df07121ead
4304e935a333b79ca7208bba01e47c5c36cc6dce
F20101109_AAAQUS xu_x_Page_108.tif
b248364d2c5474023fab453795f7386c
e17b938587904056a2695f791b01e2186af9ca1f
146 F20101109_AAARBB xu_x_Page_025.txt
f5803b5d0c3cd29b90614e764932721d
5778489a15e8e79a284c3f55a4b54f91c76afb56
278 F20101109_AAARAN xu_x_Page_010.txt
b6edb624b9ce9f91c1cd3ff76a12f71e
5e19b1d0a719d54a900e60ea46e1105ab90497b3
F20101109_AAAQVH xu_x_Page_125.tif
03c9106d0aac2c50fd668dfb1911617e
e40d7cd5e334a7d4cedf005c7d27f86e88902d20
F20101109_AAAQUT xu_x_Page_109.tif
509098f00f72eb95556771c11161f21a
7826959955b35f303a2d8b04967bdaa898af341f
2398 F20101109_AAARBC xu_x_Page_026.txt
34bf1f69b1d2ab5b162a56836a447d79
515f4dc8edb4b436f04c54f9becd6b4a3e62daed
2168 F20101109_AAARAO xu_x_Page_011.txt
c1d1d5b6c671d43faf0fed196a6323df
15d1254f165905785d7a45b7d46a828d4ae57cac
F20101109_AAAQVI xu_x_Page_126.tif
c7342dc21c5710f71b4f55c6186d2d8f
45766e6a8bb370333a9c339998e1f1b5030f2846
F20101109_AAAQUU xu_x_Page_110.tif
dece7829040b4fc093a698959a19bb68
88b3048f4c78aabd05266f88735c13315e6a37cf
1929 F20101109_AAARBD xu_x_Page_027.txt
581c460e15d68a42cbb44bd3928a7956
ae70e2a7dc757fb388b90698cbbb37c5d4162a51
1600 F20101109_AAARAP xu_x_Page_012.txt
d8258ba27b853b7f96726f9b7014aa45
d506f22e17980cb7d8c5bb1af0b27cf4f22e1fe6
F20101109_AAAQVJ xu_x_Page_127.tif
7bb04fa003a534b6a5a5753568c89183
4ce31617d5750e00ef6ace01ba7aaca40acfa49b
F20101109_AAAQUV xu_x_Page_111.tif
dcbbf553470719325bb79bc02452ebfe
062aa1a9af6f0e4e8a1d1a6c5629b0cff371e85f
1982 F20101109_AAARBE xu_x_Page_028.txt
40e59ae7c29b1e527e57761ef2b33129
d65e24a91f0bdf4b869de667b04e272ea40d1097
2289 F20101109_AAARAQ xu_x_Page_013.txt
cb8bdb975a4066c354827b644d3554dd
00d96b817e870fcd5eff1dfc51f52c1248c53216
F20101109_AAAQVK xu_x_Page_128.tif
d66aa8cb993c861434d3fce845426c82
9e98d1a7586b4d86e3f6953b76d902b02824d996
F20101109_AAAQUW xu_x_Page_112.tif
a758ee37c42fc0645722e6e27c55e148
4eb211264b267afcc0e002deb19532ab286b77f8
2035 F20101109_AAARBF xu_x_Page_029.txt
1ffa405120b5ca6d6d2399ed13afaa34
a054ae13b510dbead2622479bc17bfa79c9bfa5f
2414 F20101109_AAARAR xu_x_Page_014.txt
1f15843b44b494afe7131f423df4a821
629e97004a65ac103a55694d765cd5588449fe4c
F20101109_AAAQVL xu_x_Page_129.tif
dfc0cf36eec5170bc88c679bd5a6326a
4a58986167adc0ce8d4d4d3c2c65b6ad02515816
F20101109_AAAQUX xu_x_Page_113.tif
e5a392c3dae9af041c3a258093c9a93f
a0462d2ada686bef61c47429b05d2743594f2d8a
2297 F20101109_AAARBG xu_x_Page_030.txt
092b4bfe2788ba5a31223706fc11dc3a
5897944821218a76f7d887f98d7ba2e40b1c7a68
6707 F20101109_AAAQWA xu_x_Page_010.pro
a68e7daf357383b3819784fca43f0f20
6e9ec868df3afb5422f4e36ba85febc396f6848c
2311 F20101109_AAARAS xu_x_Page_015.txt
75abab7e89a5a7ab8c4bfc89fa49c1ce
d6d98844c9c9972f57c43c445470dc004c9e744d
F20101109_AAAQVM xu_x_Page_130.tif
c05dcf1cf9dcb95c36d4a309ea5b6dfa
10f695981f626636e6442732c89e8d623068edcf
F20101109_AAAQUY xu_x_Page_114.tif
8102d0d8d361708ecc380f6c6eeba6ba
e636112b1c6c87c55a892d08db5cfb0013ac3544
2239 F20101109_AAARBH xu_x_Page_032.txt
3917e3113f04e01fbd58501b2349290f
10bed872ff0b6f787e71ec12741087dea8b7a7c0
50388 F20101109_AAAQWB xu_x_Page_011.pro
f222fadb6810b8c9476378d878ccb582
ddde3d3ff6b26800decf196829bbf11676d94982
2134 F20101109_AAARAT xu_x_Page_016.txt
095226905599735c1acb13f3666f494f
de6a9b5b4c3bffba9431590a0a3eafac7a525dd8
F20101109_AAAQVN xu_x_Page_132.tif
44b5d15a5bbe6aa3c308a18aa75d3d92
f7ace7b2e40c2a34602cc10762ad97d0bd64fe3e
F20101109_AAAQUZ xu_x_Page_115.tif
19e7dde3140d737c4f7c2a4625ad650a
bbc077ea54df4f1b5c80135f78997e22daa6b6c0
2078 F20101109_AAARBI xu_x_Page_033.txt
074d35b5f99c6424516b213c9ac35c0f
af2809107bbfcb6f8d8355d98a05bccbda5368fc
55609 F20101109_AAAQWC xu_x_Page_013.pro
d4f8571532b8f040437a6c4a142be8fc
320d40f9463ab20c5565805d19685aa06595f76d
2256 F20101109_AAARAU xu_x_Page_018.txt
c543a0386a3ecda2c3a1852230e752c8
d37f734cdf481ba89da07138aa1741f4d5abf0dd
F20101109_AAAQVO xu_x_Page_133.tif
41851dace943ba5241e07b2e9c37cdd6
52b6d1ff614a6993a34e6e75a9d742504c0b84bf
1261 F20101109_AAARBJ xu_x_Page_036.txt
8d977d917f97c3fca8aa6a354ffd39f3
23867b78c632bccb068efb2d0ce64ce38f188f81
61638 F20101109_AAAQWD xu_x_Page_014.pro
b80ec77c38c3dc3997b83e8d6c24ce9a
4059109f32545c57eb54c34efd31eda414c6a2c0
2291 F20101109_AAARAV xu_x_Page_019.txt
11afb2fb39ab7df3105f5ed9bec26923
41dda390f66d532ad478704aee5c9031da8a9dba
F20101109_AAAQVP xu_x_Page_134.tif
5eb03bddde3945f48233f45ec70b4187
e49161674c2804e7265a409d9b2bb13571f944ba
1521 F20101109_AAARBK xu_x_Page_038.txt
b23ebb364c07df4a0568669c428d4756
455d399434547d3d5cd643f29ff65b769f026a13
58337 F20101109_AAAQWE xu_x_Page_015.pro
24ac07bf99166af2f0ecfebd2f09adca
e857a5e78025f8b24001dffe01b00431d4b9e883
2322 F20101109_AAARAW xu_x_Page_020.txt
0fa250d807a8973dae37a1623b4fa096
b45a6e2805904efa8fa537ec0b67e1eefee9a16b
F20101109_AAAQVQ xu_x_Page_135.tif
180f28f5e78101f6848ad78daef6c652
8fbd4de5d1b346a34f24aada0cfd02d2c23c39b8
2032 F20101109_AAARBL xu_x_Page_040.txt
d07d0b5db8c48e19c1398093e7f350fd
dd164f26790c5c972d0d6ae9fae5ccd60d91b0b2
54045 F20101109_AAAQWF xu_x_Page_016.pro
d69e6a22ce9e8d813e7db3fd1d2e32b7
5c93d97924602665e25f033719891dd7493dd604
2000 F20101109_AAARAX xu_x_Page_021.txt
35a99ff9af478ed13a7ab68d89ffb05d
df447dd1a4c3e2df90f180d1914eb28b00cc845e
8446 F20101109_AAAQVR xu_x_Page_001.pro
b0bbe8b0298ccbb75d09a71ccee50dff
f3b0f0d1a0b3b366ded254b7bd9ca8ccf371442f
2200 F20101109_AAARBM xu_x_Page_041.txt
80d92d94cf5960fe50d55e15c879d5ec
1908541e4432fb8f2aca1c82f80b8f32e404113e
59950 F20101109_AAAQWG xu_x_Page_017.pro
71361aac5ffb2ba7ba23a4cd613bd3b8
cb55d750bef410f8dd38ccf05390366f33270f04
2313 F20101109_AAARAY xu_x_Page_022.txt
1641e894dbd53869781c08aff8695a5c
1900cee97e28dbaed7ee0be99ce3df041b37d41b
2253 F20101109_AAARCA xu_x_Page_059.txt
3b7f51a4be9fbbd14ec6b9136c0fc0df
dfbf2de53690e6cc219da73f91d42b08ab2987ac
2212 F20101109_AAARBN xu_x_Page_043.txt
fb68aeb7ae41ff1b35a3132e07799648
ed141882d890be598c3ba27cf5e3ae7fae01fc04
57398 F20101109_AAAQWH xu_x_Page_018.pro
1e8f25741f5c3c9092088d7fb76b0dbc
470cb02350c4120e2289b6e8bc78fa2d5fe170ea
2367 F20101109_AAARAZ xu_x_Page_023.txt
da7456be89dd8b12a54b24e6e52d2260
80494e265956f56917459338dc5af37fe02baed9
752 F20101109_AAAQVS xu_x_Page_002.pro
eb97aa7bf277d946cfed4e70e427324b
f49bc26354cf2e78452d1f3a0a419a13a57bc8ff
1922 F20101109_AAARCB xu_x_Page_060.txt
f698a6fb1bf6a06e7d5b37954ecc458a
84e0cab4ed43c01cac83dd889eca711d68e838be
2207 F20101109_AAARBO xu_x_Page_045.txt
91b5634311c5a99d7ba816b512ddd88c
b7fd4103776a4c8ebf4ca0472befe042897abb64
57714 F20101109_AAAQWI xu_x_Page_019.pro
bfe136870b4b885eeace781ec961ea41
ce7448c27857fc241321e26c2bb84e94822d5ba6
620 F20101109_AAAQVT xu_x_Page_003.pro
2b0c6b6ac267b1fa99eb44855e51e59f
f2e43c47e432e40f2b914b17b71618f867b46333
2162 F20101109_AAARCC xu_x_Page_061.txt
c4783c2c16d95ed5b945f0b013bdd10e
01563fa0ec13f803155e0414a374ca779a528154
2286 F20101109_AAARBP xu_x_Page_046.txt
9a915cfa2ec139aa5384b769536e925a
000007f3a28c25671be49fea76e1eaac3f3e6912
47096 F20101109_AAAQWJ xu_x_Page_021.pro
3ca20b7586a7e56177aca352404c6c9a
50b50433a9dbe462565192812c7321dc0c5bcfa3
41211 F20101109_AAAQVU xu_x_Page_004.pro
4e9a0cb7ffe2d63ad6c9027e346e438b
af76e78cab301bf7bf87d73153043ca48c6998fe
2112 F20101109_AAARCD xu_x_Page_062.txt
f9bc4cb6a636d4cca2b92a517a4bf254
de257ffaa295f69d6f63e174d3321fb77d33b120
2411 F20101109_AAARBQ xu_x_Page_048.txt
14120eb6d3a81c242e7078041c808fa6
776598ca050a7a95dacbf2f045f87eb203afd9f6
58001 F20101109_AAAQWK xu_x_Page_022.pro
550210e4bd5921067b153ae31fff3efc
55e37c1fc09727e73f5e88753e73e67806ea5a76
56353 F20101109_AAAQVV xu_x_Page_005.pro
6ec780a879ae32d4462115c2e7903e21
117fe8ca2c08110c054a736b5a7bc4caf6597266
1843 F20101109_AAARCE xu_x_Page_063.txt
bcf6d7e59755a0e05c3cdc90f83abfe7
b076524b8dee66b2e005dd0d679c296ed173f4c0
2316 F20101109_AAARBR xu_x_Page_049.txt
8d0fe1092bdfb029187d4d1f1ce9ebfb
4fc6b7dd59a9fdc2bc913b43c45930a90ffe94eb
60246 F20101109_AAAQWL xu_x_Page_023.pro
c2f362da01161eb4c3076c2952c2a48c
d16454670fa4fe26cf4d821761246788a61b92e9
27604 F20101109_AAAQVW xu_x_Page_006.pro
ae07ed17f40e7a901c018f4f7173e896
fff1674ac8347fa499624f5ba47636eaf4e22e13
1640 F20101109_AAARCF xu_x_Page_064.txt
3388aefe1369a22a04356ee70e1f38e5
e102b371a9592dad30cf415bf5a778d9415ae459
50452 F20101109_AAAQXA xu_x_Page_043.pro
7ce344d992418ff920d853ac183fb070
ef81b770072b541a18ff471ab43b6b7f02b17080
3361 F20101109_AAARBS xu_x_Page_050.txt
484e15c8449847f8c0a6d92f6d201eab
2cbca44e27c6dc9ff707e79270f04252cf60d607
60470 F20101109_AAAQWM xu_x_Page_024.pro
50eea0eaf5e0a184baeabfafc8b35c56
e1f49e1b808573264601d7ecc86b31e5aae1927f
48923 F20101109_AAAQVX xu_x_Page_007.pro
8887492e22853f0123b466f31f7d98c0
36a205ac2c288653261f73c13ff73f89ca64c9cd
1674 F20101109_AAARCG xu_x_Page_066.txt
653692fa33dc964875dd75c40253765d
e6cb589ee3c165f8c762f9f6c0d6703530d60033
53800 F20101109_AAAQXB xu_x_Page_044.pro
b48df269c68bb08637a08826f509bdc3
c9c858467d733a2a81bea7a3a469c0f2d653aef3
3424 F20101109_AAARBT xu_x_Page_051.txt
9a347283c03f7931118a0f10257ea9fe
864deff184f306f29491490f27d9e3fc4ddbe370
43351 F20101109_AAAQWN xu_x_Page_027.pro
532dcf94bfb4960a468018ce06973444
444c549599d4668f305778ce9f5896e56281c0d8
60926 F20101109_AAAQVY xu_x_Page_008.pro
3ae2bd486d9e3b8b26b2cf4162443556
a83d5b80421e6b41048426b4f212451912fb382a
2337 F20101109_AAARCH xu_x_Page_067.txt
3407a76ec2954907df1aeb50f4604d1e
08d2631b75ac2e703aee67915d169f315de6c9ac
2462 F20101109_AAARBU xu_x_Page_053.txt
e6c3f32c0532cc22a0bc8ed0afc8a58a
6f816501b53ae9f196ae1f68fc10a3d094c801a3
42847 F20101109_AAAQWO xu_x_Page_028.pro
d33083bf1f7cb84eb2442623db963ba9
e96d2cf5a8065722e2b8d0b8056fe74e07886241
63024 F20101109_AAAQVZ xu_x_Page_009.pro
5f7df70806d99ce8b3092d2418e471c6
0570d4518ce3a013a6119870548002c17580136f
2362 F20101109_AAARCI xu_x_Page_068.txt
1f17bdbb772de22b8194bcb6e22f1fed
48a6399433d51d0b5d3cf374db4a2f408893c2dd
43875 F20101109_AAAQXC xu_x_Page_045.pro
299e2205421f3de0a4167bfa80bf332c
ea15c49c5c045445b77538039acb31727b599257
1341 F20101109_AAARBV xu_x_Page_054.txt
23a3a9be37e7cc163aef034c25be4726
beaad94641497084bd493589d70ca085ea23b110
50607 F20101109_AAAQWP xu_x_Page_029.pro
fff7a956521165490db14acb0a5aef92
2d0be1dbfb1b649222038fc804be1d1d73553109
1598 F20101109_AAARCJ xu_x_Page_069.txt
4beeb3a2b69e0c1f4fc0b25ccc0ac776
1b7e0f71d089f76b4631378a72b74f74fd674eb6
56453 F20101109_AAAQXD xu_x_Page_046.pro
4c7b8ad08f5b672a4fa0444196976c45
5403095375c6aefcaf5c7b6f7c9d23077b1ceb33
2245 F20101109_AAARBW xu_x_Page_055.txt
fd0b50dd79d1b3281f287d7971509e18
17f292b8dc71afee264fa7b085f8976799c7b36f
55746 F20101109_AAAQWQ xu_x_Page_030.pro
84713026c37423d4ad5560f83f27c277
e4a27b0fe37b7d0b0ed9ebe3cd20469c8f39a8be
1630 F20101109_AAARCK xu_x_Page_070.txt
0ad9c4ff8ed0cf9e18351c479d42f0b0
020485ebfe003420a25022edce5ddc2272467e75
58278 F20101109_AAAQXE xu_x_Page_047.pro
f6ecaed11025200df1a1f1d980a11abc
a31937d5936943f6c4d215e9ee79aedbb08091cd
2275 F20101109_AAARBX xu_x_Page_056.txt
37cda00391c558da35181637c18ff7f0
0bb4c586985100fb7c5e1a418f8f53961b9da9a3
23603 F20101109_AAAQWR xu_x_Page_031.pro
de63f189b941087f245c2c38e04859a6
d693fe6cd681423152310a5061601df5afd24834
707 F20101109_AAARCL xu_x_Page_072.txt
467270433375d0683b1446495b502efd
65e9ac9a6066bd3d64784c8680551b1b25486537
61076 F20101109_AAAQXF xu_x_Page_048.pro
72bd2689c3a115437cd9b2480a7fbad5
130abcb2e72333fe04753429a06318021f88d5dc
1656 F20101109_AAARBY xu_x_Page_057.txt
41e5b992446d8ce5e8879bf32ecb3a59
71196dd03ac9798747aa0c2e9e0d6a450feb17f0
50933 F20101109_AAAQWS xu_x_Page_033.pro
e807fb0463cd27383faa6feae6752c40
059e7628c9cdf7e5bc39c5f2fd14af466aba53d8
1585 F20101109_AAARDA xu_x_Page_090.txt
e8c9aea173123d45e19f02f88a2a822b
82940123702d58c34afbe69d1d21028ae6508881
1782 F20101109_AAARCM xu_x_Page_073.txt
b9603becd5cd039ca0e3823794359fe3
2569c8a0e125bb32275aa49bd6edc46fa29e2877
58625 F20101109_AAAQXG xu_x_Page_049.pro
755d927fe11d7028144fdf0180002a93
e17b1dac2164552c76d87f1d07d674292de93b52
F20101109_AAARBZ xu_x_Page_058.txt
a196428093f1a357c0d491cafc1aa979
b0a673066d2f86f70f887a02cfca615e9eeebafb
1831 F20101109_AAARDB xu_x_Page_091.txt
7dae4e1c91053914e187327e76ab69a5
6fa93b583605e4f3349009412c6847042f90309c
1737 F20101109_AAARCN xu_x_Page_074.txt
1ae91d7847eedcf6f56ce72973717db3
c720ff8d1b6aa1d5231eb776dbad65c8aba9d91c
81718 F20101109_AAAQXH xu_x_Page_050.pro
23873de69e821841da184d7977e21ad6
270285a0e6bf40bdc7a948f0d46ec44f87e17a6e
42765 F20101109_AAAQWT xu_x_Page_035.pro
19d03647befeb52a785a6a069ccfd019
ac27e572cdc1935d1c6aa96397dc4d222e862339
1317 F20101109_AAARDC xu_x_Page_092.txt
7be8a699f11db4dad279776d0ced6f8e
9beebf138f4a3d3656ffb89e4968c56e13e29109
1509 F20101109_AAARCO xu_x_Page_075.txt
ddf291a96f51959b839241c17841e4ce
5b5e6205679cb2824a733d9ce32889f00ac06176
82480 F20101109_AAAQXI xu_x_Page_051.pro
630c64894dd6eac082270658bc87e9df
96c7fd67a5f5cfbff55d16f02c7cadae12a9cded
27950 F20101109_AAAQWU xu_x_Page_036.pro
4d574d6d17981370dbf08cc680b4f67d
7790949765359ab331206e58139157a95b81a387
2321 F20101109_AAARDD xu_x_Page_093.txt
5dd77cfff10ee0885e715740a879167b
13f379436d313904e11e72013a52aa2f00c0dd99
1109 F20101109_AAARCP xu_x_Page_076.txt
ad76b5cfabc560b1c72b4515385de868
e71efd7dfe4fd2f764421296b54a4c466fa47f4c
78761 F20101109_AAAQXJ xu_x_Page_052.pro
246f85896d890e31011f51bb623bc32a
b704c6a455fd9b58cd9a269cf7f41a1dbfbad363
37392 F20101109_AAAQWV xu_x_Page_037.pro
2ba0303b772891147e5243bf01eb08fc
d2baee0a3e0d566463e1ff069fe82604853e855a
2083 F20101109_AAARDE xu_x_Page_095.txt
95d7285dfc03b532ff8d787466f66f2e
c5c24b357dfe24ccc327b0c08bb5fb0abc3a8d15
F20101109_AAARCQ xu_x_Page_078.txt
ed42ed51a7243068f5a3b0305ef25f41
59d2f6fae6e339deabb01615fee7204c74936efa
62885 F20101109_AAAQXK xu_x_Page_053.pro
245ad441593d1849129de9a2cf8f2154
12946bbc10761e6e294c3a915948af577c4d0aae
27680 F20101109_AAAQWW xu_x_Page_038.pro
f4a46c3e94568e7ab89cc4922af79c93
b34b2635a1926601bf1e970a1eb2b9bbf0f724f8
F20101109_AAARDF xu_x_Page_096.txt
8b26dcf748758592f71526a1bc25438c
426d65446071e96a387b4edaabd16cc4708a9b5e
1921 F20101109_AAARCR xu_x_Page_079.txt
871c240d74ec03c4636b1e10a90d1e1c
92498888bd575024c53106a7cac1c36ae89b21c8
55140 F20101109_AAAQXL xu_x_Page_055.pro
47c7af41018f9d1b3c33bd5aae6a99ff
1e53fa2eaefaba8778f4c818fd4d8a4090975db8
61749 F20101109_AAAQWX xu_x_Page_039.pro
13a7d715f1202d2c2582188ede63664f
0f1cc8a2a2c205c036d59604536388fcb4df4516
2126 F20101109_AAARDG xu_x_Page_098.txt
238bf480b9b19719822dcbec730d9339
8db023121d3e9828ffa9dec975ad4a714f9e726c
17468 F20101109_AAAQYA xu_x_Page_072.pro
267989d78d811424c766ec4c5dc0101f
de86ec7d511585271757835d2024f10909c3cbd8
991 F20101109_AAARCS xu_x_Page_082.txt
8a3140768abb536eb92c91ab081ed6b3
6fbc9470134ce0f8067b38be89be82fcc631be19
57321 F20101109_AAAQXM xu_x_Page_056.pro
5415aeb7723a835e2c15864b30005371
4d6b13d3f65aecc985e5ca4e9ead757933d995ca
56055 F20101109_AAAQWY xu_x_Page_041.pro
1f58d8698dccd4087d19149c3a091322
8590f8005687f690eb4202082faa7eb0bd23c1bf
1579 F20101109_AAARDH xu_x_Page_099.txt
139996f18b3e0293abecca0ddcdd84a4
50a7dbb1236fd2203d33516b095dd4254d5c576a
40659 F20101109_AAAQYB xu_x_Page_073.pro
0eb020ed34a569209a65337909421346
ca5aa6e9240a2b910b9e1045b6bdc828cfcf5aa1
2042 F20101109_AAARCT xu_x_Page_083.txt
ab6c9259bcc304033ec85f9646bab8b3
2802a23a1f5fcfc42fcc6fcc62d8c51b144e5c20
41486 F20101109_AAAQXN xu_x_Page_057.pro
4880364d89abfa9dc1e66867aef3594d
32213e887bb9f45ccf7f67f4fb128e6e615ec792
41535 F20101109_AAAQWZ xu_x_Page_042.pro
525214961175d6695f03cb277122e5a5
e47399c05f933bf08b6b4d3cdc15fb4d5adfdfb9
1490 F20101109_AAARDI xu_x_Page_100.txt
bde8e4db752a9a78efa38097d44f6f4f
fd4532147c6761abc059f0898d2cb298f5e4c8d7
38528 F20101109_AAAQYC xu_x_Page_074.pro
bb7c99923a8fec0d1967039321411140
b7c8984afe7b22972ab6907d4788d8b477401761
1884 F20101109_AAARCU xu_x_Page_084.txt
a525735ee05a429527a8475e601072d5
dcbbd6f54a58ef6418cbfcfe723dd96dd4b755e9
55432 F20101109_AAAQXO xu_x_Page_059.pro
73be179aeec1ca709d34acf6a5f5f289
7c643ab9918e60863c36b34a499a8dead7dc80ed
551 F20101109_AAARDJ xu_x_Page_101.txt
0205a7f3fa6ede0f3a5ca662b0edffe9
545abc21bb5acdcd1f95b999e00471cbfcbaa402
36486 F20101109_AAAQYD xu_x_Page_075.pro
071565085aca04236016ff8509f36b9b
6dcd60f31212f23148fe414450e6bb5ab61e9ce2
1424 F20101109_AAARCV xu_x_Page_085.txt
c836af5f44cff43321ce3eeba63183ff
524da0082e41a3f7c0fcd3400d9c75eca91171c1
54196 F20101109_AAAQXP xu_x_Page_061.pro
1be15755c9d5464ba3323a639495b0a9
7bf7da35e30ea06ae9bf14128ff7b27ab343666f
1718 F20101109_AAARDK xu_x_Page_102.txt
09ce47a28a803e21a520f97d7c0ce684
5a1532f34cb207daa487bd6b8e0284ab8afa5159
21815 F20101109_AAAQYE xu_x_Page_076.pro
6b82858e8bf8cf668395917a7aaa6c9c
51c580d67d0c40ed5e0ac87ad1bd11d07572f1bf
1219 F20101109_AAARCW xu_x_Page_086.txt
f10e00ba2e7e341cf1da57ff683dd12b
60e23b1cf7d0df3e3a97792e2f8d6ec69e35d0af
48183 F20101109_AAAQXQ xu_x_Page_062.pro
8db333ce7b7bd12f91e728b92b14dfce
9e1275dbcd1dc5bdac5e226df8ff29078bee6a39
2102 F20101109_AAARDL xu_x_Page_103.txt
aa3b73c777fed933876c72a318ed2344
79d6c305f3bab4d2a81dd7ef8489de3d532b265c
38198 F20101109_AAAQYF xu_x_Page_077.pro
6e836507cf2c97e982c997db2670bc09
de077c908702d4ebeb8b02d38a95d45cf10a1679
F20101109_AAARCX xu_x_Page_087.txt
596a92cf6dd7bd1731e5cefc5cfab050
847600bc4e4ec31c5c450a3a35385629dfd8b53b
20759 F20101109_AAAQXR xu_x_Page_063.pro
fc0b7d02e38f7e7296e336e214985319
d52ff696e6d4384d3a71c124b378fab17588307d
F20101109_AAARDM xu_x_Page_104.txt
5fc476590acfefea116679bbb0a18134
7363a5d21b9a797a8e33923106d9f55f079b4b17
58154 F20101109_AAAQYG xu_x_Page_078.pro
8b5d9cf345fdbedc3bcf6ca615d53a87
6dad54e1c31a1d4f5c56eec17375a6e38a5d4373
1293 F20101109_AAARCY xu_x_Page_088.txt
e11b3b9403453d7ad115a4431b5e85af
89a8449440d9568ee4d3b04885cd32c43eda44ad
35679 F20101109_AAAQXS xu_x_Page_064.pro
74cc52a04d4b8f9198083a4e19f3789f
a03060417963149953d4818003b3e74c1a032ca2
377 F20101109_AAAREA xu_x_Page_118.txt
dc3dcea6a3235530547fc1d2ee3d6972
c294fdf7ace0e9deb475a5921bbf6962b4147d0f
1362 F20101109_AAARDN xu_x_Page_105.txt
08df0e6fb21bc7cc221ff884cb5c1807
4be6e1cc14eed4ae788a80603e7037f707ec46d9
48103 F20101109_AAAQYH xu_x_Page_079.pro
2572565d891fe8bc5ed73238fadd0c77
7dfd694b31c104a4d059bbfc7fcb02ef2098968f
2218 F20101109_AAARCZ xu_x_Page_089.txt
13494e26ca84486cf176b0c9b656a980
8edcae66b1554f658292134bac23941d37849be1
28073 F20101109_AAAQXT xu_x_Page_065.pro
830a034b8c74b3181bf190f413ed948d
4d654d8d0d88d722039734f9cbd0652eb81ad62a
2960 F20101109_AAAREB xu_x_Page_119.txt
5a7e7c40a82dff9377810998f379b9a7
f4d8b7943bafd92b2c00328f2afb85259193df4e
1520 F20101109_AAARDO xu_x_Page_106.txt
047c1f560dc4d5138dcef70af188952d
822a0224741c1a59f77a1ef9b72eb527c386d1fe
14840 F20101109_AAAQYI xu_x_Page_080.pro
6ea2cd686b50d8495c5a82edb42e418d
9426f149cad896cbba705b1a88941a76eae1a2ca
2604 F20101109_AAAREC xu_x_Page_121.txt
4399a56ed8fffe76b34a9191b9479d9d
cb1bb68cb090d2a81bbe106a9a16fad647ef3fbb
2350 F20101109_AAARDP xu_x_Page_107.txt
5d4f4e4413fb5a1c61bc998a7845e133
837aca010d86fc3f7c11a8d25b0e3c74c53ffa15
14942 F20101109_AAAQYJ xu_x_Page_081.pro
d8fa467fd65d3472011f987c1971190c
87c6aa6db4c123025cf1a4076f3a0b59ecd08474
38636 F20101109_AAAQXU xu_x_Page_066.pro
4296ce14dac4b814a94cd4edcc672fdd
c9e06663d83f3f4c24361ee791a405e9da7ff6e0
3137 F20101109_AAARED xu_x_Page_122.txt
f573c67c7f3d48d85c96a553c451871c
ff5e8fd8254ca447d5f985145e779c877bc65e3f
1827 F20101109_AAARDQ xu_x_Page_108.txt
01837fcfc3a195980a8c172559e553f9
c2688a6e1cfade4381e547a5daf2b98b01268482
16545 F20101109_AAAQYK xu_x_Page_082.pro
fff5697635b51be3c11b1ff9a4031e1b
1519b86cbe1a7fbfbf4cddcddf5032b683612d54
37949 F20101109_AAAQXV xu_x_Page_067.pro
bb19b5e31fc3e3fccc11f2bf060171e3
1bb77f4cad43c548ab34d6913765b13978e61194
2393 F20101109_AAAREE xu_x_Page_123.txt
e9f34444bfcfbe2c955de5531480db52
f24bb116c7ea50a66973c55946870496fa7e60bb
2188 F20101109_AAARDR xu_x_Page_109.txt
f8f89430ee5c888c5a4ec51a5f4bd0f2
5670220ff7fbef0004e7240a06586e73005bc06f
45197 F20101109_AAAQYL xu_x_Page_084.pro
358465f9ff255df7f20c11f18dbf40de
64224b5cdb4f4eebb74a2c23a2ea377d15500dfb
60135 F20101109_AAAQXW xu_x_Page_068.pro
06ec0a2fb46c3b17edab892f5bbcc2fb
f63f33cdd0bb23b2e37f993095e21a9929df3b5e
2465 F20101109_AAAREF xu_x_Page_124.txt
9fd479241c08db43c4a9409ec2b1f9e3
ed0e20d0af8d5c922d71ddab6a13c3522d5a074c
6404 F20101109_AAAQZA xu_x_Page_101.pro
97c6388cba87718c33b117aa0ea0d8f6
33d808009809f0548f8e574f86e3ec9f9ce07185
2283 F20101109_AAARDS xu_x_Page_110.txt
4fe1f9e3a563eafa7e3fd96c77fb0ddd
b2049e581e786e3a807e9f89c0a9fe64be9d6644
35917 F20101109_AAAQYM xu_x_Page_085.pro
1e5c2d6717361a4aa1dd9f5ef4789eab
6a02643df151a089a0c70c5c5464c80814592776
38563 F20101109_AAAQXX xu_x_Page_069.pro
639cc4640ae422e5eca7137cd5f22320
f5dc7eaa07edc253821f086b2c869b1fab45a132
2238 F20101109_AAAREG xu_x_Page_125.txt
e3f9f81acbb820f358566033f7737cb5
0572ab14e4780938ce04a80aa9397f10da47e326
39918 F20101109_AAAQZB xu_x_Page_102.pro
9e0c6c7b4161f97bc5ae8daf41404f2a
996b9a01db254403d1ed074186e54f6b6f296951
1499 F20101109_AAARDT xu_x_Page_111.txt
803ca8d38b49f540bf5b84f1ba0863b6
6fa5ce6bc637801f2087137adcc8efa17438ce50
29349 F20101109_AAAQYN xu_x_Page_086.pro
eb2064f43166b8b514107189623433ab
1a96ff8ed3a594b241ec3cab2cf787e0b33dfe42
39580 F20101109_AAAQXY xu_x_Page_070.pro
4761823eaf8b5e4ff76e8867ba838fd7
dc0b8b12b715e22bdbcc2be93a5131fda484f784
1391 F20101109_AAAREH xu_x_Page_126.txt
2f016c44a1cab1af5fe80d5a60d8542c
b374d9691fa3d8182d30876310445752486f37d5
53120 F20101109_AAAQZC xu_x_Page_103.pro
37eb53cb108d23a0b36dbdf8a582d8f7
5170615fe14ff80f59257fcbe8e9252cb7ca216b
F20101109_AAARDU xu_x_Page_112.txt
cd4b398c85f9a92831b470ff241130d8
e2399b46c20f24550d17c13d8dcb2087918082ac
58388 F20101109_AAAQYO xu_x_Page_087.pro
a675b40830192137cd501c1e6b5cf1f8
845155875ae58918018c599a791e51e524b09699
35854 F20101109_AAAQXZ xu_x_Page_071.pro
ed05c89fba9c9025b70bb4d032cc8b76
e1852814d5f165e7147dcca005b85cd16e1c9b29
2235 F20101109_AAAREI xu_x_Page_127.txt
8d7e8499033706b5760a917ba1677684
b8f0784d82fc426fc062c67b11860975b380b5e9
46536 F20101109_AAAQZD xu_x_Page_104.pro
78987e3ca7be4f087d9977891b08760e
a212e0664c40d7c07c8b57186c1988c5f14a9687
1308 F20101109_AAARDV xu_x_Page_113.txt
abb506c025b548b59b9c989cb65b1ca5
571d04eea61662f1421ac5bf49cb383d1df962c5
32769 F20101109_AAAQYP xu_x_Page_088.pro
24602354a2e526f8d831af02ceeaecc5
099abea273cfb64a54897a512b09c7718c4465bf
2335 F20101109_AAAREJ xu_x_Page_128.txt
29af72c1864c0a1c7a715a0447eb2e8b
4dd56438914cfc6f49288ef0b2de6ffea4275eb1
33749 F20101109_AAAQZE xu_x_Page_105.pro
dc4127461ab0f3658dd0f92a89a8dff6
97fb4fee849f826152d747ea9da8355ed252948f
283 F20101109_AAARDW xu_x_Page_114.txt
36206dadeacf230c51d608715f107ecb
f322ea2cd130496f3e6f4ed556a6a61380c14dab
55532 F20101109_AAAQYQ xu_x_Page_089.pro
38a28df12372d13319f7782fd45a2116
6564d1a17987644070a516c288409d235b07a8bb
2242 F20101109_AAAREK xu_x_Page_129.txt
e880aeb8f86533efe164e11b85ef0f87
1eb909e7733da489be789369e5c6eb380c33dd14
38105 F20101109_AAAQZF xu_x_Page_106.pro
c2c722285fe869a2aee6ce48784d0c05
a033bc955cd03c6f1609ea5ea21555c07bebf73b
1364 F20101109_AAARDX xu_x_Page_115.txt
4f18174a82880c901389aa681677af8a
a0fb9be45ac751f87354cdff044eb92f233f4752
39552 F20101109_AAAQYR xu_x_Page_090.pro
b14b0633a0d41bb8c21978f79dda7b5b
bd93bdac7d6ee4a2e8f969cff18872f7454745fd
198514 F20101109_AAARFA UFE0022099_00001.xml FULL
4c2ae47a55d26cba384377eb9cacd602
955d3b2366de096dfa0b5564318726395ec46f5d
2612 F20101109_AAAREL xu_x_Page_130.txt
d9b627741d237aeba8905aa47eb90b8c
88fbfcd9940a3fc91526875008daf09daf7682db
54051 F20101109_AAAQZG xu_x_Page_107.pro
754150721231d043a8f24cd87a05fce9
9c753537232ba18f94af033392f2eaf484af6ed4
1397 F20101109_AAARDY xu_x_Page_116.txt
fce09d3fdf03d51d52dc3b387e9d988b
a2c9ec38524aaf45363144226f8385fe127c74dc
27178 F20101109_AAAQYS xu_x_Page_091.pro
9d8323391169d6224e809f4baf9dceb0
3e401df649284f13b6ce8a57ec98f0b742c9812b
2586 F20101109_AAAREM xu_x_Page_131.txt
75b776b2ca6ff3c91b61bac3dc2cdc28
ff22a68c5e7eeb209aaf950fb316cb1bd1e8d76b
28196 F20101109_AAAQZH xu_x_Page_108.pro
cbefda5c6f9659bd6222106b8065877e
3a9ff6bd05bf0b6911ceaffe90739c0667f14aab
1574 F20101109_AAARDZ xu_x_Page_117.txt
82b54c99f8fef85336bb9ff3b42e9bd2
b349c738a9949dec2dd8277c5f9b00abd2a236b7
32527 F20101109_AAAQYT xu_x_Page_092.pro
6c1bb154aa817b6fed4d45dc00895740
219ce8a266bfc44ccbdfc158bf090da097bd60fd
7414 F20101109_AAARFB xu_x_Page_001.QC.jpg
1678eee92a8bc7284f9654df2ff07d7e
dd557232bddea1a491c139df120973e3f568968f
2619 F20101109_AAAREN xu_x_Page_132.txt
c7402f24dac9cd1b2c56bb3bb5f399c1
18cc8d9679b65ad54255f18d13ce653856b2ff0c
54520 F20101109_AAAQZI xu_x_Page_109.pro
df14ca952136aa5fe9d9f56e576835bd
356cb7caa1978c010db813e55ee762c5fb6a231c
58885 F20101109_AAAQYU xu_x_Page_093.pro
50ccb6702f58233b35f796040bdd74ba
8d698e9e4b68d2e6e5c23d60cf18f859e6b249da
3151 F20101109_AAARFC xu_x_Page_002.QC.jpg
7ae552ca5943732a8e72e61379a443bd
640774a6927977d0ec3bc36e7593f89e354744ee
1051 F20101109_AAAREO xu_x_Page_134.txt
12d2d49f2de5f4849b6108d1249d5ced
b906353dcaab7f6e78f02101934504f5f9642bd2
57797 F20101109_AAAQZJ xu_x_Page_110.pro
1a71becc47269e17e5aa55993dd2455d
9ee2e76a0b36f2aa6b858032313830b00bc94080
1344 F20101109_AAARFD xu_x_Page_002thm.jpg
d6d21226f32b524bbb29d7c4520333b7
264b52d796eba8fbb321774f8f5bfca806fc42ab
658 F20101109_AAAREP xu_x_Page_135.txt
5c176d369c612d4c0373faa9a5d59a51
fdd0853a8efdbfd2df4ab8fd0d939d4c795e3242
31106 F20101109_AAAQZK xu_x_Page_111.pro
464352556a68bcaf091d26c91a6791ae
5dcbb23ae14e9ed6d6274cc551ddb6ce6fdb08eb
17253 F20101109_AAAQYV xu_x_Page_094.pro
5c0a96594704feee4ff45a292897d5b2
2b1e6539e790b3ec8c402d24bc99cccecde0a587
1301 F20101109_AAARFE xu_x_Page_003thm.jpg
d62771c73ccb0db43a9263ef7a85ab85
bc044ace4e6eaed6e82373f2edb12e877bd69d3c
1276282 F20101109_AAAREQ xu_x.pdf
0ec3c7915ee1f1e8c55db8b0e708a397
35faec3d1977802692a4a2e7fc6ebe598b40e15f
25558 F20101109_AAAQZL xu_x_Page_113.pro
81352029ba397463bafe7a62dd3d168b
e7eee546e288e1c114a0ed648b4ef0b3ca55f848
51460 F20101109_AAAQYW xu_x_Page_096.pro
d2f021d4d2bd77eac15d6732c1517d5e
20a15b1d253e1e4772dad13495233f377c8ed8f8
18959 F20101109_AAARFF xu_x_Page_004.QC.jpg
47a977ed05c3ca75937017c70ab932dd
7d58d6983069b5c2e48ea7e44869cad8dc7d5258
20863 F20101109_AAARER xu_x_Page_070.QC.jpg
2a490ba7ca4ae1a9fd912c90078079e0
ac8a520280ccd0f44c365affbe9ddadc1a9ace75
5827 F20101109_AAAQZM xu_x_Page_114.pro
d97d54d551c894daadff9cbad8f3aaca
727f07d564fa003e8f7cf1bcb1586fcd52720b38
47090 F20101109_AAAQYX xu_x_Page_097.pro
e836c7271adad1038a140e51c02fcff7
078c2c89578d09750a2a7a84faada5750580b424
4974 F20101109_AAARFG xu_x_Page_004thm.jpg
d5a989f73f0cb7987ecf3eac58378a20
f86a72cdaea1f1d8b72c779a83c75a284c92ed95
6050 F20101109_AAARES xu_x_Page_029thm.jpg
7d8e883cdff45b51402f8326039980ba
d893b3d49d16565e73e987ba9d1f12e5bbbd0c53
26053 F20101109_AAAQZN xu_x_Page_115.pro
5b83c324a49e73aec420a4143d9a5b97
a33df7f4516c8d4d505d18c5228198724ee91594
53330 F20101109_AAAQYY xu_x_Page_098.pro
9ddb23c2b4ce35b896bab1057a1390e6
5a6ef2fa9b293174ec821165241585fe410a6cf7
19450 F20101109_AAARFH xu_x_Page_005.QC.jpg
2b751f97daae7bccb1b6264575fbbee4
e176066722889dd55dbf3c03e542c79e53bc213f
29360 F20101109_AAARET xu_x_Page_124.QC.jpg
628282b786a49dd162b65340285d7d61
a390438f7f85d14c517ddd3e833785b18b0c9313
28169 F20101109_AAAQZO xu_x_Page_116.pro
9ebc463104b646a06844ae1b00aa3fde
d79f7aeb281320ef5854da02886e840dabd52ff9
34109 F20101109_AAAQYZ xu_x_Page_099.pro
c1efe3b5817fa4c51ae90831fd2e8e4d
4ed6bf3e990d74f50a43f090f905394e9eeea76e
4957 F20101109_AAARFI xu_x_Page_005thm.jpg
382c41a9620b82aab1240607276efafc
aa8dd21a0dee3e1ee836adf57ccf6485990b9a03
3342 F20101109_AAAREU xu_x_Page_094thm.jpg
f47ed97c4f5cfb6e2ae445de04ecca2c
bc0aefd0b428c6688af81d3229e9a14cafd68d5c
38187 F20101109_AAAQZP xu_x_Page_117.pro
92442cb0597245cde21ee4634d065703
47b274e70e8940a598e40216103bd0b6a2715523
15685 F20101109_AAARFJ xu_x_Page_006.QC.jpg
45826eca772efa0fa122df35f50a8d84
bdf1ac3dbe0cafccc9e1e8c6ce7acd16bfa6670a
3362 F20101109_AAAREV xu_x_Page_134thm.jpg
cf4fe72160d82eeb70fb1875d4521ca5
1ce3efc0df2eb9d51772b36d78b0f2e091c1b9a8
7341 F20101109_AAAQZQ xu_x_Page_118.pro
55d2b90e19450a944ec55d0c2488af7b
4b41b9dcaca58331978894c211b5214dcd887503
4159 F20101109_AAARFK xu_x_Page_006thm.jpg
8178846efe8cd1e1d482df1daef5e219
83d9689df38960c4aefa5f6a7c392f4b90ec54e4
5895 F20101109_AAAREW xu_x_Page_051thm.jpg
c04ccd0d4f97cfbc51bd16d421e7caec
dccfdac44e71f39817fd14cea330ca8ac66c4680
47320 F20101109_AAAQZR xu_x_Page_119.pro
98a7a98593e6b32e66e013a66a84c02e
8a691aa303ea0cc66814ec2fd88d88ca18870094
28718 F20101109_AAARGA xu_x_Page_017.QC.jpg
22b5ecf34eec359c6277a2d3aa8a58bc
53db5be869646a1f26de58bc468795ca06850f99
22940 F20101109_AAARFL xu_x_Page_007.QC.jpg
0343ff1e292be88fe1f8e75231f90712
e1a17c47271c1e99266cf795eaa3df54aa5ac5e7
18439 F20101109_AAAREX xu_x_Page_117.QC.jpg
60feec7084983bedcf581b00659002e9
901bf2a39d9cdbe4826f018d353aa8a2fdb46700
57792 F20101109_AAAQZS xu_x_Page_120.pro
390390e05a73126b788f975157c93ca8
a0f2c5dd30a3a58a9264acbec1ecdf25572371e0
7065 F20101109_AAARGB xu_x_Page_017thm.jpg
866cccbc6f39265eb44bcac147645f21
198e9b0b0f72b0b23dc529864a843b302e0b96d9
5696 F20101109_AAARFM xu_x_Page_007thm.jpg
39562fa3ad810890d281f8383238e4a8
9f3b9abf93298b9e3f7240784ead9b3b6b6e23db
25688 F20101109_AAAREY xu_x_Page_109.QC.jpg
1151f887cfa51be796dd5cd09dbe38ec
289b85a90888033624318b5b1e75f1df3473a14d
54429 F20101109_AAAQZT xu_x_Page_122.pro
8b4211b3aa3caf161ad67e629652b76a
e1369798646c093a1c2b8cd9dee6673936902518
24781 F20101109_AAARFN xu_x_Page_009.QC.jpg
91b00f89097e85c745f57aa25dbc26f8
e74965f2e7d490594e7ec848252b2e457ed211e2
5404 F20101109_AAAREZ xu_x_Page_071thm.jpg
0e49c77b2de9b7ad14dbf60bf014dc68
355fa6931469f092ff3160957630bbd09d129a3f
52059 F20101109_AAAQZU xu_x_Page_123.pro
77ae3f36b4bb7bcdd440fe197f58a64c
5a4f61c8f2813b7b7db3a2e09e283a90634c25a5
26684 F20101109_AAARGC xu_x_Page_018.QC.jpg
7827b49b4eef7ea0eea7c1ab8f5c9eae
93f0afc8897a48e79aa728222701350e86d0602e
6110 F20101109_AAARFO xu_x_Page_009thm.jpg
b2d326ea7dfef080936bfefc507cd3f7
3f2c5e4cc1e6e10cfd08f3bc42a00697650ae8d0
63025 F20101109_AAAQZV xu_x_Page_124.pro
eb7fb5c6a9e13ae3fe565ac901e3d682
4e5c1e3d236820f4f98e5d3e5bb8c100e1d5e1ee
6680 F20101109_AAARGD xu_x_Page_018thm.jpg
6a8ec942753f147dd0a9ffb2ae5475d7
93813f62f86b30df62c3c9b639b12e2fad24df2a
4960 F20101109_AAARFP xu_x_Page_010.QC.jpg
6a4e607d30cb6fff9a91766e93644ea8
638a71414b5d1ba21769872f7aaf8daff8ae6a96
6733 F20101109_AAARGE xu_x_Page_019thm.jpg
06c7d6a09ddd295d7410bd05ca73cd0f
d677d0a77f9a88d6b823644dad59ff1192986391
1700 F20101109_AAARFQ xu_x_Page_010thm.jpg
634b631848f4c39765513c31f3ccf492
98be6d56a2bb5a14790df5c47ea18f66403ecb41
56795 F20101109_AAAQZW xu_x_Page_125.pro
7895c03985ed4b6deff5127c1304c17d
7e6387d00b6f931f5a7cb30309b72593938acb2d
27857 F20101109_AAARGF xu_x_Page_020.QC.jpg
54925708d83e379582bbb03eeacab05e
6944b22545f86df3700c41cd16e7584b16a35e76
5564 F20101109_AAARFR xu_x_Page_011thm.jpg
59215d3fb67deb6213978ca24aa8a47d
3444a23a616aeb1f21976a6c883d657a781bb792
55264 F20101109_AAAQZX xu_x_Page_127.pro
9216a0506cef7432fff9dddad83793c2
5b9242f43059233f059097050aa31566696bcde5
6759 F20101109_AAARGG xu_x_Page_020thm.jpg
5a4372518dbc51be32da47b3b456b6f9
ccc323eda74c04a59c96da9b593e739074e20f76
17842 F20101109_AAARFS xu_x_Page_012.QC.jpg
dfe0f5e0bf112af416081a69df38ef34
6165ec57b8ba2375d426301cff515a07cf840f7c
59456 F20101109_AAAQZY xu_x_Page_128.pro
43e3de4bfa7b68e09e0b0906921a33ae
ff75ebc4061defc4cbb961f9b55b1dd54d8c954c
22843 F20101109_AAARGH xu_x_Page_021.QC.jpg
ba3e36030a86ccf8427fed4621eef427
eee863aa04da28360b229cba3f9c3bbd9e8263ac
26342 F20101109_AAARFT xu_x_Page_013.QC.jpg
b9a9e345506267c8766ac7a29ef65522
9b68d864f284687bf5d21eaf668fddafa8975937
55424 F20101109_AAAQZZ xu_x_Page_129.pro
e4ebd2d8aa7fad5ab4960cca3ce0859b
52da2370a85a0c1ca86f069671a009c97fd643fb
5930 F20101109_AAARGI xu_x_Page_021thm.jpg
3995041760a293f2ef466d1b2beb1eef
c749b42abcb25a3350cfb5c4f988ab662cee0f8b
28608 F20101109_AAARFU xu_x_Page_014.QC.jpg
39a8a983567904e8e320cbed7360075d
1ab382b493c0adf6e1fe845e3122ce1302d59359
1010896 F20101109_AAAQDH xu_x_Page_097.jp2
f483d5032623cbd70f4926c6c3ded1e9
95ce45c9b6cee8521d73969b1a62fa388e89458e
27751 F20101109_AAARGJ xu_x_Page_022.QC.jpg
dd890ac80ce41abd53725a31c62cebc2
0d32ce557bebe082c95f1a59914d88ed2bb00e43
6981 F20101109_AAARFV xu_x_Page_014thm.jpg
1fec5df355d09d7634e7ebe5db42bea9
2f93c08f7cc9a30101749c68c4853651335cada3
21252 F20101109_AAAQDI xu_x_Page_011.QC.jpg
8f91ce423cfcd92b2722069a7dd2286d
174aa8debead88b36c1ac60554dfc7656a1a43d5
6695 F20101109_AAARGK xu_x_Page_022thm.jpg
0f04b2ded6e2b0de5ff48ab21b0e9d8f
82a8a8cf9fc094b55d6f51cca6dec3c99f930dd2
27765 F20101109_AAARFW xu_x_Page_015.QC.jpg
e199b0dca9fb6edabf8f7cb3f35d6217
343a0f3d933b38c745fafbb1aad7731619016169
51632 F20101109_AAAQDJ xu_x_Page_116.jpg
8fdfca98b24ca3ac5f2bb92a252e0469
e1ac9812dfc4f5757cec2b1e2fe9d148ee78ce23
25022 F20101109_AAARGL xu_x_Page_023.QC.jpg
45eac5cb66d3a2b5e0d0293f9192c3a5
56c3d277d6a253ee4dc4c91f0a4c77c6aae7bdee
6894 F20101109_AAARFX xu_x_Page_015thm.jpg
88773f882eea08c61e1fa66cc1c640f0
700df7dc46403bd3dc0745a56e8887b2934f59ad
6705 F20101109_AAARHA xu_x_Page_032thm.jpg
ef79f034802ae692ea6b0f625889c9a2
8789fc87d3a2a97fb05cbc5dc8ff92828535c42d
5483 F20101109_AAAQDK xu_x_Page_027thm.jpg
d2afde8c26f2f92b605257cfcf8565f8
0779910d3b545cb228da832da1a795ed0b8f52b4
6360 F20101109_AAARGM xu_x_Page_023thm.jpg
68b41926daf4e82d5b8ff1b392459850
b9a3ed96c82e96035ef9960c47992e14a8cccf96
26278 F20101109_AAARFY xu_x_Page_016.QC.jpg
453f5bdbf381a3f151584d52807c13aa
d340051356ab886f73c9a9c1eda35e45e2d9e1a0
24814 F20101109_AAARHB xu_x_Page_033.QC.jpg
14509958902bfc958abcea694a37c518
7b8c6bc8bf9b92df203bd5a4d0499c9a60724df9
15245 F20101109_AAAQDL xu_x_Page_065.QC.jpg
1993e3dfd601a4d3542ad40a25d1040e
8913160a28190969ae89066250b6714248f43751
28783 F20101109_AAARGN xu_x_Page_024.QC.jpg
2f758f8681a946fab20551fdec10d094
cdb4e5773e7795836ba7d7dda63a6565aad788ea
6553 F20101109_AAARFZ xu_x_Page_016thm.jpg
f1c77e6c47206aaba3e410278d29f27f
f7ce993fd3a399236387f912dac1809a6df08490
5363 F20101109_AAAQEA xu_x_Page_106thm.jpg
9f514810f954e84ad0799938c63918ae
9ac4c1de2d554765bc22a508c21ef5b9a9131375
6654 F20101109_AAARHC xu_x_Page_033thm.jpg
10ea4bec9b28e085033620821fbd1f9d
2bfc9b59f5a5789063a5f75d5b40d58e771a5d6a
2149 F20101109_AAAQDM xu_x_Page_034.txt
ce6c9e969bd4adf2a40ba1987b0b7d5a
e2880b53b0b0cb67aeee037bc944ac414419b83b
6929 F20101109_AAARGO xu_x_Page_024thm.jpg
b4e20043ad944fd6233ca38d61ffbf9c
31ebd20e040def8d03884fc9c4924463f91b58b0
1584 F20101109_AAARGP xu_x_Page_025thm.jpg
4e9221380307d0a335f9d0839a928eb3
0e6a1e7606a9b0edc11b086eb8e0fe9cf2552ed1
71644 F20101109_AAAQEB xu_x_Page_062.jpg
256d80f163802d456068ccfccc5ee610
e3d36de2dcc3d65e3932daae08b718072739a280
25960 F20101109_AAARHD xu_x_Page_034.QC.jpg
1625ef02ec4e8babdcdfdce574a0910f
3ec96d070a74dd2108a12b7afff11643b21c6a42
17458 F20101109_AAAQDN xu_x_Page_060.QC.jpg
3a3a30d8ff24caa455b6ea906ba5a48f
78d6e0bebefd54547793f8654f06fe1c406a02ed
25110 F20101109_AAARGQ xu_x_Page_026.QC.jpg
adbdbbca4ed6d4ff472afae466f87ef7
828a1d96e1a7e96fbfab542bacbef61c91e4795c
64727 F20101109_AAAQEC xu_x_Page_131.pro
051c0e2d958b02d32f183e2c0d2e82a4
eaa1f90e0d23e92bcc9e5272c8fc690c4ea939fc
6516 F20101109_AAARHE xu_x_Page_034thm.jpg
93720ea9ee03cfc74eafbed2f6519dea
511ad954c33009806b6a88b73061b9c15c16dd04
4934 F20101109_AAAQDO xu_x_Page_067thm.jpg
8c54221d84549e559584325af10593d4
24e953f56eb11411310fc1fed035f0e5fb23e0b3
6223 F20101109_AAARGR xu_x_Page_026thm.jpg
ed8f7afaa6067866d17f58a512b04195
70f700f3e93e61e1bff4695a1dd3e2fb9fb08e82
76759 F20101109_AAAQED xu_x_Page_083.jpg
9f0682dae56cbd158e6e9b3c31681361
12e4dcac9e05f2be58392b10fd62f8231998dbf9
17349 F20101109_AAARHF xu_x_Page_035.QC.jpg
abbadf74ea843c2630e1cefdd6d8d124
51d41629ce8a4953bc05010b3a949f1e1d56d5c5
51333 F20101109_AAAQDP xu_x_Page_040.pro
8ef6cf8f810610aeebf328301b83857e
b3057dd47a4bea22b1d99d62725cb8bf78052ef3
21303 F20101109_AAARGS xu_x_Page_027.QC.jpg
9d9f88de973bbdab565af8e7c3b43d8a
6f15cf3441b965c51cd0508e60f79afa45dfdcda
5702 F20101109_AAAQEE xu_x_Page_066thm.jpg
c4defa77c4359c3160a55862bd2cbdca
1a4bfda6c2fbd40e074fc9c01ccdf75df4e3f264
4978 F20101109_AAARHG xu_x_Page_035thm.jpg
972e3a3af2c8812a2137d23ce18c6a54
2afb7f39a601a6d020597b4aed782b54af511457
63359 F20101109_AAAQDQ xu_x_Page_042.jpg
d991e1273310e63781963479958ab0a6
accdea287e7fbff7ea1add5a3f4c7521b6aa1d8c
20469 F20101109_AAARGT xu_x_Page_028.QC.jpg
8ae7b0b525dd3fec567ca919b85af115
d53fe98ebd05ba9764b0ae99ad646d38decaf229
F20101109_AAAQEF xu_x_Page_014.tif
3565e06103e41cc73a0dc08d54b893e2
12cb6be0d62fce846c58079851deca4472c2b3d4
17559 F20101109_AAARHH xu_x_Page_036.QC.jpg
398e723cc61e12ee0b30dac725db1b3a
01114c03ed4b6e251fe1066ef6c6d66a3d8df82a
56479 F20101109_AAAQDR xu_x_Page_032.pro
55384ab4f0db77288717d54a511a611e
84a3b849ea15a27344390f2ee8418fd1cc5b812d
5621 F20101109_AAARGU xu_x_Page_028thm.jpg
9acd285ede7ae431890824f7bdc11c04
eac89f76a204717a1475a514f73b4b95016944b9
6834 F20101109_AAAQEG xu_x_Page_089thm.jpg
311a7ccaea6571c2ca6410ecdb9e3b90
3c5d5bff90f07fb2c47f1d268f6f0ef164070a71
19394 F20101109_AAARHI xu_x_Page_037.QC.jpg
2f552de03f6fcd8f20c92e415eadd05c
9c4a96d18f25e3b794ba1d3938aebe9c49c26924
87227 F20101109_AAAQDS xu_x_Page_018.jpg
c249bd6f63a55bf04d8775a713f02f91
069964d512b9f4db4c4e4780e2e69777246b26ac
23392 F20101109_AAARGV xu_x_Page_029.QC.jpg
5f84ab9db2271dba4ac95a516600fe7d
e410a66a3721391bf74dd02a1dd318167f7b5594
50025 F20101109_AAAQEH xu_x_Page_121.pro
5764fceb09a31446591eaba455b9624c
4f9d383760b1b552e9d37292ccd36a955040d8ac
5160 F20101109_AAARHJ xu_x_Page_037thm.jpg
f1d7cf4fdfad68c9ac3caa01f3a34315
888e4ef65b1d7c46c6223cd1a693ce2beaf95d92
59327 F20101109_AAAQDT xu_x_Page_026.pro
7a88b8d808f027058b47b30642137f39
0db20bb57dd84fc5a742fe230e113edf2f82ec30
24808 F20101109_AAARGW xu_x_Page_030.QC.jpg
90c7c18a284c0b17f9f597d1a7615615
3fa7925dfbc3ab4708928afaeddb4f67e1c2ae6c
F20101109_AAAQEI xu_x_Page_060.tif
48d8a80c11480ef811630b2c5908e75b
977d655a22208888f742f807fc75be17a57bb74f
15279 F20101109_AAARHK xu_x_Page_038.QC.jpg
afe0cc1c047455daefbf36d01ff63a98
083c3a891e5463f747cf2b698e9711648d89af2c
444523 F20101109_AAAQDU xu_x_Page_081.jp2
085cb4fcc119df7fc8d226a52f05e365
d5d7b903267272299b84c141ad2162791951b811
23152 F20101109_AAARIA xu_x_Page_047.QC.jpg
0f2f956e7750f52d13fb8318278949ae
0cb89fcf7455c218b34b4b992fda500505782261
6399 F20101109_AAARGX xu_x_Page_030thm.jpg
4ed64effd42ad7ec5f53e094410d77b8
fbaa524c6a44dc2d656863e4c00f196513c2d850
F20101109_AAAQEJ xu_x_Page_074.tif
2bd847767e1624b56a03281a70bb60ac
8af92c1c87e7ae9454692c458d2f4b2a1ed1bb1c
4156 F20101109_AAARHL xu_x_Page_038thm.jpg
4248f52a5aafd615ff54ca4aafbcaf40
2be86640002d0e5e365461673438922e9510cc60
4775 F20101109_AAAQDV xu_x_Page_036thm.jpg
de431b45c6b560df6e034ddf02d861e2
55f36b584e43046e3c4f971b3672fb0d8dc4a54c
27786 F20101109_AAARIB xu_x_Page_048.QC.jpg
68a9d62f0dd6ee25a9551af0a5573dc5
a7d6d741cff4688d4e470c72bd40ff263570d92d
144499 F20101109_AAAQEK xu_x_Page_050.jp2
d4c5c5381b6cac3149b61456b8d85755
2aa6aa26e449f3df4b8537cf967122c4aaddea85
28403 F20101109_AAARHM xu_x_Page_039.QC.jpg
f8c693c90bdd985b4240195afdb50236
e22aa58f5bd4ff411c018424daefa52d4afcabef
3413 F20101109_AAAQDW xu_x_Page_120.txt
0e5e8d71e53f7c4d8487b10f11f74d41
59fe0a7c50e762c4823e31886fdbf282ebe638d1
12206 F20101109_AAARGY xu_x_Page_031.QC.jpg
1da67369e456546e27a675cf6a2c6dfc
90a90487c9a6877c29db88d77ea0b4b47de5097c
6785 F20101109_AAARIC xu_x_Page_048thm.jpg
154c41005bd0311e33a1f553936dd0b2
5279f01e8c4eb6a24161900a1efb164aa4aaf1e9
7005 F20101109_AAARHN xu_x_Page_039thm.jpg
1020d8c9a6e6727dc2914403b1b94af1
9c8cab24932be2bb975abbde047a8995d961b1d3
21998 F20101109_AAAQFA xu_x_Page_008.QC.jpg
eea2a34d5bdb281b6b34e97b0170e4aa
21f537c691b60ee696adf1fd693c5820de17194d
F20101109_AAAQEL xu_x_Page_100.tif
cac908f9703b282bb65b472762df9c31
8b4ffbcd24185acb2256677a7cd4e151b8d7aaa0
49160 F20101109_AAAQDX xu_x_Page_083.pro
1a4ea9e033a53ef6b33cb459c1641727
fad5919a222c66f8e7eda4e2b2d1ca09c2680a61
3843 F20101109_AAARGZ xu_x_Page_031thm.jpg
dd2980f02a276933b52658c8c46f34e4
13f63a5738ddf8b8c9521239ab2a18688d1baf4c
26729 F20101109_AAARID xu_x_Page_049.QC.jpg
8f19985aa8e3e47d8ec0cec6474c7515
b9a121040a757e7aecc8986a51674ad8ae6e7eed
22212 F20101109_AAARHO xu_x_Page_040.QC.jpg
5a5cd6844e2f8187e7f581006f517aaf
e4b6e97bda2ae5caf2e4dd86d4415320bf6e0a6f
53326 F20101109_AAAQFB xu_x_Page_034.pro
8049a09b34ccecc9f362b323c8acc1a4
e00e7b4bc9a96d8b1b7ecfce865783eb14db0fe3
74662 F20101109_AAAQEM xu_x_Page_008.jpg
977ba075190cd06cceaced7a894a49f2
291ccf8ed65d5d3b302db2517fd760973f6dcf1a
425051 F20101109_AAAQDY xu_x_Page_080.jp2
c2c78fd1c56c32d470ff1ee00d85fffb
4411aae6b4c9a7fea1e21e2fa54df88ab8d26a33
27315 F20101109_AAARHP xu_x_Page_041.QC.jpg
dccf54045d0aafb5d308329b6e07c3a3
4d0bbe0bb1536cbe2232fdbac8e4a24ca977fba0
1872 F20101109_AAAQEN xu_x_Page_042.txt
34c0526b5be4e3c6d1d56747bc56f529
c4cfdf00eeee90827b3ee7a4ce1134fe963d7bbb
86229 F20101109_AAAQDZ xu_x_Page_013.jpg
e7be2f80d959c1dd385f07bceb324c14
054ef7fcb9e21058d674b5abf3ec90fe18569f9f
6709 F20101109_AAARIE xu_x_Page_049thm.jpg
d885a569256fa08ba9399b1c5105e236
8c2192114e35275698d0a956354370d52349d45b
6827 F20101109_AAARHQ xu_x_Page_041thm.jpg
44e422906667c70f9964c83ed45f14b0
b7fa55363831d33a159e87e7b122b16993c7f6fc
F20101109_AAAQFC xu_x_Page_016.tif
a4ff58b4e5740c443e88811ab40e88bf
0d804072bb73c2e9f7e2d95226fb4d5aece52081
30843 F20101109_AAAQEO xu_x_Page_094.jpg
b2b693ae682db0f40ce39605c3960a61
97b73847bed391bcc9767b46206088a111e3d19b
22666 F20101109_AAARIF xu_x_Page_050.QC.jpg
50c2be6d56a3adae92f1d1fb94ec75ca
e4ee3461e02609a1f4be7fc0f6a5db509338a5a8
19900 F20101109_AAARHR xu_x_Page_042.QC.jpg
04ac382791e5a2488e165ba71e7c0405
63cea533848e219cff5d1285e788c3233175920d
58809 F20101109_AAAQFD xu_x_Page_112.jp2
cd55c44a94ea9360b9218b30a76bfaf8
996d039f6858754ce9dffc944d4e2395823c0e97
5694 F20101109_AAAQEP xu_x_Page_040thm.jpg
6d47027611545cd1f01771a9fcb6c3a4
6fe6b9b82466b607867e6731e52b86ac665884d4
5737 F20101109_AAARIG xu_x_Page_050thm.jpg
eb8c8bf998a21fe305ba6bd5bf8077f2
ef5b8afa82e1b6feccc4f7ae56855b245784ba93
5664 F20101109_AAARHS xu_x_Page_042thm.jpg
9af1d8a7b10b5c384ba777f35876ddbd
86292b8446bceaccc2ff885ae1eee6897aca7306
778611 F20101109_AAAQFE xu_x_Page_126.jp2
4df4e752f9de45a3228b59a40625dfa1
8adc94b0b3c44abf4c062ef4c1bb1cb24df0434f
1262 F20101109_AAAQEQ xu_x_Page_065.txt
30f6c3b7130dc7378d8400f14bc1a43d
b9ca93daab404d80ef548012dc0f2c8ce871c411
22686 F20101109_AAARIH xu_x_Page_051.QC.jpg
de62e2601a4a88edab9523b1ed26687f
e41cd8c05a1b63dfea885c240d3a86ac7a886e12
24397 F20101109_AAARHT xu_x_Page_043.QC.jpg
fced985cfc4ae4fdb97ab9eef93dfacb
871b88035c0920bf45cecf1ea932ec027c341337
1532 F20101109_AAAQFF xu_x_Page_071.txt
b300c9729465a48d6e5d9133051cadc0
02f70a84876436fbf6f87f13678551d0e501a977
55178 F20101109_AAAQER xu_x_Page_086.jpg
58265dae8b3bb51e2fe18ef430275c97
b52d283ba0f70abf55e03902bf157b7f33cf2c2a
26515 F20101109_AAARII xu_x_Page_052.QC.jpg
6fd3ea8a57d3e78cd6f8e96166d04ca8
d84dcdda81c7a1bf8ba96e9967af50706fc4146f
26033 F20101109_AAARHU xu_x_Page_044.QC.jpg
0f52cd5be554c03f0ef27321dafbce1c
7d3e036632ab8c06f1df6d96e8daf5518d4bf9f9
11595 F20101109_AAAQFG xu_x_Page_081.QC.jpg
94703e0690e26b499d7c8cc2b5f9f02e
0ad9f57229c9169168a5b0aa79af10fdc710c3be
86570 F20101109_AAAQES xu_x_Page_050.jpg
bf92f28d4963b428d86377449afa80b2
98659fd74ef4a710c12565fd6bf5fae127a99ee1
6679 F20101109_AAARIJ xu_x_Page_052thm.jpg
11eead190d8a04c866ee6f0ddc5ab875
81f981062ad61b7d4dd9540102c0c19d3d850a39
6485 F20101109_AAARHV xu_x_Page_044thm.jpg
06a0932cecb4e847d23bd5f5366b3508
68392c06ef048be3ce470aa06ac3d3cff783ff04
89595 F20101109_AAAQFH xu_x_Page_022.jpg
b062fd9d82a76ee99b4319a11e1f1fd7
ad5d089a74adbb9ccd46fb73745da449b4e7f88b
4301 F20101109_AAAQET xu_x_Page_111thm.jpg
53e2d16c5ecbd2d6c1d0b80565afba88
0d763241673a9d5cc11e3398cf9b1f52e18c997d
29921 F20101109_AAARIK xu_x_Page_053.QC.jpg
6c8aa077e5b928928ba56ec94c1d2cdb
67d9aa81e1fb842839a7156c27d5d4f772896f71
21087 F20101109_AAARHW xu_x_Page_045.QC.jpg
b8bdd605d272cb6a2b99b865ee8d884a
2510d9e058a1b1cfb2db258daedc6a3d5fb7a937
4452 F20101109_AAAQFI xu_x_Page_116thm.jpg
fe05c2ee35a1f846e137b1a460fa7e25
3995a0f16baf61cf6820d9c760348f782edae15b
5076 F20101109_AAAQEU xu_x_Page_086thm.jpg
40d8e6691f944e19ea34a58c96477e17
7b0448f50bc98f93e46946ef648debdb016d4715
5995 F20101109_AAARJA xu_x_Page_062thm.jpg
f225c0c3318f6640f526d746c172c50e
f0cee2091fb892cab515f3aeb89a8673552347a2
7283 F20101109_AAARIL xu_x_Page_053thm.jpg
8b73df2cbac0556806310de2166581f4
8022c9a3d735be63e7ff67cb390a10758568f998
5812 F20101109_AAARHX xu_x_Page_045thm.jpg
787f9ce98df858151946b4aabf5887b0
859cedfd950351e97c7d3c7ddfd75a0e6780ffa5
3573 F20101109_AAAQFJ xu_x_Page_025.pro
9037854d70276afe0a81ee429494f11a
d607d3de3c99f4af54ba717f729ed4630ea65a2d
59487 F20101109_AAAQEV xu_x_Page_085.jpg
59cf999cc8cc05a2e48b6303b411efc7
08240f2f9d35075287554eb9119ff68f58c4a5f6
12207 F20101109_AAARJB xu_x_Page_063.QC.jpg
eab26cbce9e57d20dbf39b561cb9234e
63f8edaf5e330105654b5e920a6d5ee2bdb30dd7
13149 F20101109_AAARIM xu_x_Page_054.QC.jpg
089e76b47326d856111ba31a99a57eca
31aaa8957873dc5bc0f83df91ec1706f756baaf8
23487 F20101109_AAARHY xu_x_Page_046.QC.jpg
b226f80ac3008c568e7777c1dce72083
82fde2e69b306e6f11ad02c53b9a2695f08e59fd
112721 F20101109_AAAQFK xu_x_Page_059.jp2
d9aa8fbaba9b67c9a6cfed0ea2fdc685
aa555c69a3c69077de8fa36d6d10147ec2e355c3
88836 F20101109_AAAQEW xu_x_Page_129.jpg
8b170e0d69fe3d9af9170eb59afd4250
82ac28fdab4e4f330f2bd95b0ce52e9c8a84d241
3773 F20101109_AAARJC xu_x_Page_063thm.jpg
f70955788ee314256de2a742917cfa7b
5b5f9d6ef87dc5ae5a18807680bb6ff9d1425026
3911 F20101109_AAARIN xu_x_Page_054thm.jpg
2004cc72959f83774c0163d43427ebce
13e99b321f30ab7bf91ba4860f30259ebe30461f
5904 F20101109_AAARHZ xu_x_Page_046thm.jpg
a72b2b2b16344a990c89cdc602834ba8
dbf90c80ba025f6a438828cd36f7accc2ef07c6f
84339 F20101109_AAAQFL xu_x_Page_061.jpg
b5c63a4a240ab40b6e171d03723c551f
6e04d9560676d6e407738993e862b4ecd253c802
F20101109_AAAQEX xu_x_Page_017.jp2
7f0788fdaa46a720b3df693dadafafe1
e40b7dcfb5bfa8d1921d665be5488320909e1797
F20101109_AAAQGA xu_x_Page_073.tif
6ecee12813668d1a42c2cbe450551f5a
c6550047438acd0d7f1ef8bd70816834b8219d00
17249 F20101109_AAARJD xu_x_Page_064.QC.jpg
60cceb335ed1635cecd7ef477f335d96
7732b32cab52c206593e7e016ee6cf60b557ae6d
26631 F20101109_AAARIO xu_x_Page_055.QC.jpg
1e78a71fddbb7c10ed5b0722ecd36e30
1055fba760904402a1a3d87985f43c83f82037b4
59217 F20101109_AAAQFM xu_x_Page_020.pro
6663d12c0bbb5a6d2699756ec875f46e
06bfaa6aa5008f6903f479970d3e6cff11bdbbe7
4565 F20101109_AAAQEY xu_x_Page_012thm.jpg
8b83ea488f9acb8016bd6c1cd3d73baf
be2f48c7d2b033c72b432a7d6ba770f0c2e1856b
F20101109_AAAQGB xu_x_Page_096.tif
5453cf959527ec1e48632525b28443f0
51e9531a8cbfcf9832a545130ad46a0c3710c8e9
4672 F20101109_AAARJE xu_x_Page_064thm.jpg
b070b75821f049e974872126e7cb1550
18f9dd30b7a78387008f11646b916f01fa1bbf9c
6495 F20101109_AAARIP xu_x_Page_055thm.jpg
82f1b49c386838f7ee732eb68de0f1ac
703674a71e81e21c8c9757ccc7b9ae31336404e6
946 F20101109_AAAQFN xu_x_Page_081.txt
a12bee4c63c571be80085792e37c4b82
e4a487453a41c717a35f7badb3fb2f322445b9ed
F20101109_AAAQEZ xu_x_Page_081.tif
1efe011e246e15a981b605853a7f23e9
b5a8c2b2d02f8f01bed75567e1df6c13bb7bef91
1947 F20101109_AAAQGC xu_x_Page_097.txt
f12c2f0eb5fdd5d4fff8be0aa8b89adb
c804e8c3abfa0aa4ef8789bea4f21e1b0bd6720a
26121 F20101109_AAARIQ xu_x_Page_056.QC.jpg
1edae33237fb506d4a356c879a36400a
49954b7bd0fd12a18b77ad92014a0e3a0d3f5acb
83862 F20101109_AAAQFO xu_x_Page_044.jpg
012ca2e256c49807528970f629e4d50d
70d4ecaaef93d38c7d61f2f9d63f8ab13274ac3d
4464 F20101109_AAARJF xu_x_Page_065thm.jpg
3b28bddae86c279c65091ae83b251192
5751c5b60358669350e71bec1341b0a9f1f3d2d2
6681 F20101109_AAARIR xu_x_Page_056thm.jpg
c19970591b9f63ccf488db821de59e59
6acde522af36215a5630276e94249325301dcb1b
22121 F20101109_AAAQFP xu_x_Page_059.QC.jpg
7532eff5bdd0c1ec8ffb7c9305726309
b8bd90c4bb7aa038e0dc55a42e768dd5cc8b13b3
6626 F20101109_AAAQGD xu_x_Page_098thm.jpg
5d11975ee92ccda2f041613a83053913
64a7ddf63e1353389bd07c864c19581d6622c17a
20916 F20101109_AAARJG xu_x_Page_066.QC.jpg
db0f38aeca4343642201f9892e31411c
102006b3466de391dbcf759a21af40b4fc0464cf
22438 F20101109_AAARIS xu_x_Page_057.QC.jpg
302943865a3c33530fa93ca52f4c6da6
864c2e4a1ec0ddebdacd6875cef1c64095baf001
2507 F20101109_AAAQFQ xu_x_Page_133.txt
1813d4a0c657f990fa9c9500184a4135
fa0d3401e54d6d1cd773d3376fab28b2a421c21d
19616 F20101109_AAAQGE xu_x_Page_071.QC.jpg
421e81ca723951aff193bc5797df7092
8c391bb4d8843598b656405c5bcde313769f3001
17023 F20101109_AAARJH xu_x_Page_067.QC.jpg
a2ba77fa08ca4befded23b13e720fd54
717eac66418475d2c704f90ad5850ce2f83a3587
5833 F20101109_AAARIT xu_x_Page_057thm.jpg
ed8e60418cf7147a90bf6a62e4b41839
d625cb28ecfa7c3149fc9db640a68fa8cce9ba01
236090 F20101109_AAAQFR xu_x_Page_010.jp2
079e778b2195852acc762d64b71b5a8a
3a23ebed07fd01eadaba98023292c921fdb0e831
2353 F20101109_AAAQGF xu_x_Page_017.txt
c1fc56f997924fee424f5301a2b0323a
18725d11494a639f2efd9b4016df441a179adfa7
27668 F20101109_AAARJI xu_x_Page_068.QC.jpg
f1730cb5f88f3e84dfa5fe5d54593480
06f08eef4bd78a639395ea036a8c42e6574c4cf1
20105 F20101109_AAARIU xu_x_Page_058.QC.jpg
4d4604f0125205d7987a8ca1370833eb
f9320223ad2069da78455d63cdf08c9ff604ddd2
F20101109_AAAQFS xu_x_Page_095.tif
3dfd334b87b9603b7da525f9e44dbaa3
bb41f2f4536a6a155f960a1b810a4105bc0f4d32
6268 F20101109_AAAQGG xu_x_Page_043thm.jpg
c31a799098c50ce08c8804f58d3683b7
cb14f9598ae0b01c8ff5c4d504036aadcb419765
6888 F20101109_AAARJJ xu_x_Page_068thm.jpg
a5baf45a3a3a9ffd0109ee1331b8e140
55ec9caadfd61cef46a1c705696ecc75f4af8408
F20101109_AAARIV xu_x_Page_058thm.jpg
c90acee49f071c3bfe237f0bdaade11f
2aa741a0c6db0c76b7039d2a8e0b2098a246588c
897 F20101109_AAAQFT xu_x_Page_080.txt
f2fae0f90f73c2aec0e1f6539d83549b
19dd7577b43ae3a3d71b2f110dad9537ef06a186
F20101109_AAAQGH xu_x_Page_020.tif
c3ebb2f1ad7deacf278bb5ab33cc1973
365c69d2e1626ef4d0bd096981f75f90229cffde
18946 F20101109_AAARJK xu_x_Page_069.QC.jpg
9e9275df526aa20901bc346675b66189
961a7138ddf8fcd510d29e789a520a67abd9b140
4687 F20101109_AAARIW xu_x_Page_060thm.jpg
45992d161421cd426a6bfab35a10d0f0
a2e5fdf0d4caee829756370ae9ef834c1f963706
F20101109_AAAQFU xu_x_Page_086.tif
fcc64ee3bb80fd261d76b7089a2d7fa4
209990084e2248e7ee8d62fa88b174b35eb85903
64626 F20101109_AAAQGI xu_x_Page_070.jpg
25a971e7bc9baea8b62d871f23b31489
4f5c4835f8697b058f1cf99f15de8ff285772844
6797 F20101109_AAARKA xu_x_Page_078thm.jpg
c7b2ad15d7039179214eb478c112a428
575512de39ba9375f71850c43392c95758a5d42e
5431 F20101109_AAARJL xu_x_Page_069thm.jpg
8554a1dd6d12f9c314d1ac3a6712c363
3341e9c952d142f9bfc434422132840de3cc1b8e
26052 F20101109_AAARIX xu_x_Page_061.QC.jpg
b9ecc62b5f05b02c16e016e6f81816d2
ea967c9717bc20ecb0c7889d4c79580dff2dce8b
86901 F20101109_AAAQFV xu_x_Page_012.jp2
cb480a6768c883211663eecdbc27ab9e
818d6334c3f62787b420da1f60e0e278dc6a2c1b
1601 F20101109_AAAQGJ xu_x_Page_094.txt
78eec31c14998eb78c78ff3f0ce37b90
e63a4932d04e1629d8e93885490f64cff85bb9d0
22650 F20101109_AAARKB xu_x_Page_079.QC.jpg
0352b61fde4fb44ecceff249f6ca5b59
95de3aa9c1b21f6474f6a340f401eb6a27f201b2
5450 F20101109_AAARJM xu_x_Page_070thm.jpg
e4fd485073df93e6edfed2d3b26f249a
7d1126965525503181131143e5ff1684e6d80b91
6315 F20101109_AAARIY xu_x_Page_061thm.jpg
f289ae680368d59cde3c590e3537af79
72e345bcde8d64d824fdb0c0cf580eabd647d29e
6125 F20101109_AAAQFW xu_x_Page_047thm.jpg
3aee7cf779ec94517835d9c56aaf1162
171a502393cbdeacf7471ac4123690aa54f9cd15
F20101109_AAAQGK xu_x_Page_123.tif
39d38736df730bef496fd538e0f68a93
a7b17dc696873217ccc5a27f1dca121cfc872032
5641 F20101109_AAARKC xu_x_Page_079thm.jpg
a4f7de11edb942d2fa2b92afe6349061
27792612899eae198e1100e21e62a30d43feca7a
13436 F20101109_AAARJN xu_x_Page_072.QC.jpg
a7da081c81e5fe19cf85d3050ff8822b
8836949c12e009d345f6e670c1a04d8a4abe07a2
23415 F20101109_AAARIZ xu_x_Page_062.QC.jpg
e8fb19a12428b9aaa0a041ae08730979
d78e0dae56cb9ca5f05a9fe1b785dd772449b4b1
1619 F20101109_AAAQFX xu_x_Page_031.txt
d3d1df00edb26e58c7bc6a9db81c1e77
a51f39d98fe69a69ef98ecff02fd6daca50c3cba
2349 F20101109_AAAQHA xu_x_Page_047.txt
87794363bf51379084c0e40bf4921baa
ca2e71a42fc7f686909f2a621f74e91c4169cd6c
F20101109_AAAQGL xu_x_Page_010.tif
0229c2f5c6a185255140fa93bc5c5eba
14a2ac53045f481f63a31e4bd8fd2a6c86807c90
11795 F20101109_AAARKD xu_x_Page_080.QC.jpg
2b6503ea542526020dcf0ae95e8c5166
5d31fe9731fd7d1cd04052e3d33d64cb72d67ab1
4205 F20101109_AAARJO xu_x_Page_072thm.jpg
73a3153395c4f0446a6719cb1477f5c6
d004d3ee357fa916d51e1d81292aa27561342cc5
813263 F20101109_AAAQFY xu_x_Page_088.jp2
9f715f490e98d9a245e1fa4b7cf24a10
f01b141ae010a6b199b28d8a9aab911b7b29b3bf
27492 F20101109_AAAQHB xu_x_Page_019.QC.jpg
500704d45aee4ccd3315d9dc812b737d
34bbbe967a51c9c6e52e4640a76371fc25183737
734013 F20101109_AAAQGM xu_x_Page_060.jp2
db5102e2129038e63003874280702a45
ee6544fb32637d641b8f4a09d84176ff7f3b2b5c
3489 F20101109_AAARKE xu_x_Page_080thm.jpg
ca2e90987846fd504fce4444aeb1c2f7
b73b16ca8080a57f7a3abfd06894e45241fa2852
21829 F20101109_AAARJP xu_x_Page_073.QC.jpg
88db66cccf38e068708bd02d71b4024b
1f79bf8e87d5c87d6d5ed797f72179f450dd184f
28745 F20101109_AAAQFZ xu_x_Page_112.pro
d86e49938a27dcba69f7685c00347a11
091da0e4884a4fec815371e5a7a5f576b33f8af2
F20101109_AAAQHC xu_x_Page_028.tif
5be4e7506279894c1911b9971eecd541
87f731bb472939507c2be05cc3d1a372f6d84d1b
3127 F20101109_AAAQGN xu_x_Page_052.txt
f98f3c1161df39f17139e63cc65ae559
401f411c1fcd881d7f2aac7f438bc986a0b2d8ee
F20101109_AAARKF xu_x_Page_081thm.jpg
290b4e9fff0971dbf70eab50b520f445
c13c45b9ac0e033b368b658bef6dc6e5fa26f69d
5905 F20101109_AAARJQ xu_x_Page_073thm.jpg
9a97f55f377d1986ceeb0fecaac33123
ab947950d562f05a92e521890c08b2ad2536edab
72726 F20101109_AAAQHD xu_x_Page_021.jpg
8051ac9be97bb25f00c70087cdbf8346
b726d032405e44af2b28a65a550f544012ff9262
F20101109_AAAQGO xu_x_Page_109.jp2
acf261410c84624c73342831c8063813
11c0de971ca13abf0a47d465d844a557332b29e0
21718 F20101109_AAARJR xu_x_Page_074.QC.jpg
29ba080950bb00d518ddad57dced14fc
273048764286a9b1498bd01c43488594529f9c41
2234 F20101109_AAAQGP xu_x_Page_001thm.jpg
ef3d18cb3d0de89f29e63c663d4b0a8b
39b0250d1a173de72fb373d9c6ddcae0325ae070
12888 F20101109_AAARKG xu_x_Page_082.QC.jpg
af560a09ce2620fabd5c5068536f3f3d
433f53f47963968c67a819aade382d9f968a1545
5896 F20101109_AAARJS xu_x_Page_074thm.jpg
5e1717aeef70e79677f7925a6034a354
fc676a7163b7af3062f187c2cf730dedc5ec8f3f
F20101109_AAAQHE xu_x_Page_032.jp2
03e808ce93ed581c2b42c81a78c12d01
878728d92ab80813c69ca670a7c24ac1d91b3894
2946 F20101109_AAAQGQ xu_x_Page_003.QC.jpg
bda0e6a7a34f84b496a9b699fda1d51d
58eaa28075b766cf05ddb43f8a4765b4506c49f3
3443 F20101109_AAARKH xu_x_Page_082thm.jpg
ffada8f933ebfdbd7ee2b63591c8f387
b36efad032910e598e2120779424800d46c93259
20666 F20101109_AAARJT xu_x_Page_075.QC.jpg
4ec69bf12c17b262686b8dbe138db1a6
8142bcf74618fe5d39d1794643fc1769935f0568
1824 F20101109_AAAQHF xu_x_Page_035.txt
5c946504b45a6b2ff99ec7e72961e2e7
822aa4cf0ce8f0748d4dc080f298845a49305c4a
26789 F20101109_AAAQGR xu_x_Page_125.QC.jpg
dd2f083a7608370ea70b14b1b516cc9c
136d6d11a820b9b3e60843c6288735cfda952777
23623 F20101109_AAARKI xu_x_Page_083.QC.jpg
cbbaf67132782b7292738a7967ec8d66
1806cedba39de292e4527df704aca67f43334c79
5869 F20101109_AAARJU xu_x_Page_075thm.jpg
858e749f6e73fca9306a6c8c3ba8c5a6
14b14bbf0c23dc12341096f89be4fb1f665aba1f
34854 F20101109_AAAQHG xu_x_Page_126.pro
84c4129cb4ea6a5f62bccf6426f53240
3d136d84d55a8c028ee9942619ae40177eb1df1f
7148 F20101109_AAAQGS xu_x_Page_133thm.jpg
9516bf4c969092981fcb8f894e15856c
6098e4e9ef070d3cdb248f107b72aa7cd20a4329
6199 F20101109_AAARKJ xu_x_Page_083thm.jpg
5cad0dbf71d6d189a5538bb2759820af
54e76f103438b2abece377d4bc958894e247fc10
13877 F20101109_AAARJV xu_x_Page_076.QC.jpg
305835d25fe08f4974df459167a1f4a3
dc465ec076a82e9032c78dd476ad7f000c8b7c46
39599 F20101109_AAAQHH xu_x_Page_063.jpg
c30354d237ab79b54feaeaf37fd53aa6
531fe1c4a0c990b828bc476ba72f7027300df94d
82665 F20101109_AAAQGT xu_x_Page_030.jpg
18557a32bac76a25bf16e17ec536d2a5
42bcb102f29343233c83a76260211a48a2fcf2eb
21854 F20101109_AAARKK xu_x_Page_084.QC.jpg
74ad0f246dc1bcbaa977e165f12781e2
7e652de261b9fb116c73d62538dcc703092500c6
4224 F20101109_AAARJW xu_x_Page_076thm.jpg
b5cb7ad6c9addac8559b3ebe71b528f7
de64bd41afbdc8fc9acc08785d94437481a86ee2
5635 F20101109_AAAQHI xu_x_Page_008thm.jpg
0d54db09dd65625e5d047fc6ef0c5858
4701a22463eaf83a65fd72d0cf239d22ebbdf829
31501 F20101109_AAAQGU xu_x_Page_100.pro
95142eabe06f5eb8ae64df216793e136
9fab77aa7d2ec2fc0cc21994ad73699fe2908d9c
6749 F20101109_AAARLA xu_x_Page_093thm.jpg
610b5040f9a382dcab7df8b8ecf65a25
b0f6092731feb8382a375f443b61e8d8f7d0a6b8
5699 F20101109_AAARKL xu_x_Page_084thm.jpg
65a72644d47215a810e23ac184fdeca8
a179c48a37d1576280c19685ca6d486f8bbe4f43
22120 F20101109_AAARJX xu_x_Page_077.QC.jpg
3345322dc61dca315e519286b46bd444
d6ac690dd10ce4ae4ccc30d3d08a25102c64352f
5961 F20101109_AAAQHJ xu_x_Page_127thm.jpg
5a34536ba8324547df693e07acf36e8d
958416a77fa9ece1913d902c33dce2f9292e9df2
54659 F20101109_AAAQGV xu_x_Page_012.jpg
737d1c4aac0911fa00adf5e4b309c53f
c2b82086dc9039b094f8549d8f37ae4d110c483b
10083 F20101109_AAARLB xu_x_Page_094.QC.jpg
5d306c6cacbd52e3eaa230d7937ce059
5a01062cc86817a5bbf11b62c5de229b77b79af9
19228 F20101109_AAARKM xu_x_Page_085.QC.jpg
66114f040abadb39705399cd0b8b97d6
d79182abffdf6e6368c8e6c5efb21b1c5df28303
5751 F20101109_AAARJY xu_x_Page_077thm.jpg
e714135fc7bb22087b32f111c32c161b
b37d3e0207c9c03da0689775ea2e3fcfe506a2fd
33025 F20101109_AAAQHK xu_x_Page_054.pro
4fbe51cf5875f722f7f0398922090cdb
98fcd0707e4eb397636f0d91ddf55703c403b685
F20101109_AAAQGW xu_x_Page_131.tif
685a28290cd1f62508d043b942395fdb
87426a33a882cf4b30367b442a9c87f33d409154
18110 F20101109_AAARLC xu_x_Page_095.QC.jpg
aa5688e19e4ff4a6752145df9218f9a5
3d2f66198263b73a43b309556e1639fa3aa28754
5275 F20101109_AAARKN xu_x_Page_085thm.jpg
239445d669cac596352da47b84ca6c37
5fab14a47969a3e8128c2c4e353788bd987d5108
28114 F20101109_AAARJZ xu_x_Page_078.QC.jpg
67f9ab4c3f2bee687e0e4ef455bc4f3a
02a8b4ff0ce1dcef12f9013213bdce713eb2aaf0
4043 F20101109_AAAQIA xu_x_Page_025.QC.jpg
56d0bf2af83a35817985a198291d2727
381e21edf7e545a2913a085e866f9c7ccf048bf9
5736 F20101109_AAAQHL xu_x_Page_059thm.jpg
48726d6ac1088739b505a0a08197c7eb
df8d72d808f082f6ea302c905e5e1e8bda7db187
F20101109_AAAQGX xu_x_Page_119.tif
5ad2f6d697c6efb36615c96e51e933b9
01cf43c816088d919bf33fc7593721c1524eb713
4780 F20101109_AAARLD xu_x_Page_095thm.jpg
a1af2d243222856f6bd2229f4022a33e
678c92dd7d1f1c6aadbc90737bb70680ae3b16fe
18027 F20101109_AAARKO xu_x_Page_086.QC.jpg
e26eb8036eecb3b5d4f4e106bc323f75
40291ae4ffa120da62f72c29fe883095bac05eb2
F20101109_AAAQIB xu_x_Page_062.tif
78906357e1456e0e496efb50f38c690c
27952142e5a4766394c06514e0be20a0200331bb
2451 F20101109_AAAQHM xu_x_Page_039.txt
4a7bc6bb96d3b3c94a6c21f8c1773bc2
e9ef957f2dda4d0906650fecdbbf38bb484f24b4
6545 F20101109_AAAQGY xu_x_Page_013thm.jpg
393f332b4a8044691bec5bb400ea8758
60bef8b9021cfaf929585df6cba34bf01606d44e
25052 F20101109_AAARLE xu_x_Page_096.QC.jpg
232ac573fe5891e04e1924c7be7705c6
f15f85dd38a8d3136cf2f63b9d4c1de35fe199d8
27770 F20101109_AAARKP xu_x_Page_087.QC.jpg
a663563c353df0cd552856ccaf1146c1
a99d6689ae3043ed980e9dbac3e29c288b53e9fa
1576 F20101109_AAAQIC xu_x_Page_077.txt
df40c53708bd3d31102f619e94264fce
82e400b34f04394fa5e140c47a3694b94fcc3684
F20101109_AAAQHN xu_x_Page_069.tif
86042d29b39b9ab9db61dcb2ed9720dd
dfd951b3bcd9e40c40c5188df0ceacf9d28aafa6
F20101109_AAAQGZ xu_x_Page_044.txt
37fd592ba07e4d58d8cc07fe4c5d3086
23c4f37e4232d8746096401f4229ce6fe159c2fe
6483 F20101109_AAARLF xu_x_Page_096thm.jpg
e1da431c47e21cbb717a0e9b6b7746a5
22f3123f5dbd9b93e1d601d661c314e229554e90
6901 F20101109_AAARKQ xu_x_Page_087thm.jpg
708b2b4c97c886e8982e03f8ce9b6ed0
ec38f3325249ccb3834f978704e6006d690fad92
65044 F20101109_AAAQID xu_x_Page_130.pro
0d8d91c81ef22564c84868b108972dae
45f794c5a9da704762cc9ac22a9b33b8b8f031e4
92277 F20101109_AAAQHO xu_x_Page_039.jpg
bb6496e246f9304bfb3c6ca7accdbcf9
26d0d36b0cae120840b14145e8c63ebcb86d57b4
22760 F20101109_AAARLG xu_x_Page_097.QC.jpg
212b74da36cf65771b5caa4971fd698d
ea3e3fc168cef9ac47da09a34afdd0a4ccfeaeab
18272 F20101109_AAARKR xu_x_Page_088.QC.jpg
3740314c8f40382ebd4e1397c19febfa
31a66956103a55487a1db4a71434fe551c5b2c78
1051968 F20101109_AAAQIE xu_x_Page_044.jp2
70800b7b1f7051c660b902e5c53dad07
fb4cd0f5e6a6b25c08b52be3617e63c47773951a
37236 F20101109_AAAQHP xu_x_Page_058.pro
4156ffa790612749b184f8470c869461
a7b8321496fb5930543a16192b94c10aae414a87
5072 F20101109_AAARKS xu_x_Page_088thm.jpg
bf343386d78cdb713ef77b9eedd92303
bf2dfb3c263815b9c4173e760289c4a6a9e8774a
27294 F20101109_AAAQHQ xu_x_Page_093.QC.jpg
3d0a77f81f1bb64869311b1b90cb2188
18f1e527c163227bd23b02086797feb8976d7993
5779 F20101109_AAARLH xu_x_Page_097thm.jpg
ae9fc29fd05e2936d3548877a299dd44
b61a50cf7be71d00a98bf6ba8f592ebfeec82971
27119 F20101109_AAARKT xu_x_Page_089.QC.jpg
e2df1f20b73c3ae13f353ebb9cf84bca
3fefbc71ad241ed382c50fe896f5f16b875ad08a
153570 F20101109_AAAQIF UFE0022099_00001.mets
28c026547449bb144eaae9b309fc23ce
5fee0c895d4fe004eef05877dcc34e0c61cc2c8d
F20101109_AAAQHR xu_x_Page_058.tif
34606c62f430fcf3b5ca5b91493503ec
5aeca86d73d7a68c7311297b503fc28631466858
25602 F20101109_AAARLI xu_x_Page_098.QC.jpg
21afef422781f27655936877f4d31da8
d2c341d919bf62b89dff7b8d39c21d8354becb22
19906 F20101109_AAARKU xu_x_Page_090.QC.jpg
f8c3bb603431780275b1bbe41986f883
6e582d5ace19e22b7c0c50a7d44392fb3fd7ff56
905421 F20101109_AAAQHS xu_x_Page_090.jp2
096a31a9da8be85101de193ea363379b
b4e65e79e0936fdbe65321e3f2859ac7b3160a7d
18800 F20101109_AAARLJ xu_x_Page_099.QC.jpg
f195b0ec15f68da3230e48b6dd968f44
bde0ed53812375a87aac86425741592be62cc5b4
5452 F20101109_AAARKV xu_x_Page_090thm.jpg
3f5762f4aa4653b8dd0269127452250f
a7c727c81d6b3ee6a5d1cb301e050dc55c3578c9
34517 F20101109_AAAQHT xu_x_Page_060.pro
76b085fa13ffa6515fe8197ae92d1e02
b6e67212a798edfb187fd62e165fc6f3a46ebbb5
5228 F20101109_AAARLK xu_x_Page_099thm.jpg
d93a57f2b3749c20b445312090808dad
e9629ac0acc3b02edeb797cb4af786cf2c0dd2ae
17302 F20101109_AAARKW xu_x_Page_091.QC.jpg
c430d611b112b88f14b685b792f0beb3
3d41e2e7f8fde6c02f9be99c3156ca83833b2b8a
24278 F20101109_AAAQII xu_x_Page_001.jpg
df2ba29227d03b89b72cab725d94e821
cbdfa192891a62a38c01922e1a8a03722e643e8c
26542 F20101109_AAAQHU xu_x_Page_032.QC.jpg
ae80a07590be97fe1d1fec6c310cc4ef
a7bb79ff912137fb2733d4cfa8226f5ca7e275ff
14086 F20101109_AAARMA xu_x_Page_108.QC.jpg
b225842943bee394c87dfd2e0b88b491
be796a9c94a3bcb6670aa7134fe78b5cd36d539c
18256 F20101109_AAARLL xu_x_Page_100.QC.jpg
641d5621f15cab1ea844abf191b6256f
0d3b28e939bc7cdb5f93b0fcf76721b571266489
4975 F20101109_AAARKX xu_x_Page_091thm.jpg
73dfcb7fd27335eb377cfc6595b3cc90
43550319aabbb567065ef4444c68772f3d6d7bb8
9756 F20101109_AAAQIJ xu_x_Page_002.jpg
3f8b16d2581341b47e91b5bb29e8f5de
fcf06f53906b70ed370d0fa76eef3302308ddff1
40099 F20101109_AAAQHV xu_x_Page_012.pro
e0af21134f9f3e157774fe7f9d3e99b4
b5dcdadca600d70d4cff8ad35697e017251bbc40
4126 F20101109_AAARMB xu_x_Page_108thm.jpg
6a63c6220919e503129a55b493070286
b50dea2e443c99c2393ef4e874f837cdbddb0656
5043 F20101109_AAARLM xu_x_Page_100thm.jpg
590bb936952ba0de3c482f1fa35376b9
2f382f3ab799819b4c2d9464f1fe2dee3a7f605f
19503 F20101109_AAARKY xu_x_Page_092.QC.jpg
a74e39c8f95ed5e8961c24255eb151dd
933816c7534a07c359f8e031c4170ad81fe503ff
38298 F20101109_AAAQHW xu_x_Page_095.pro
279b1c630b1706fb9a61d750a849cf9b
71e5dff3d9c4a5608030209d616f54a77d2bcb21
9300 F20101109_AAAQIK xu_x_Page_003.jpg
853c590a9f7414befc5c53c3cfe76533
0f51b6d47e1f767a66197808bf6e68bb69c605d8
6598 F20101109_AAARMC xu_x_Page_109thm.jpg
1cab69c91cd533092239f3d861f48b97
772878610184072a4c9809f4abed4c4507258f69
7157 F20101109_AAARLN xu_x_Page_101.QC.jpg
90e493079d8f99676c978de59beeb521
64a4d03575f41ab536152085f998f99afa376024
5209 F20101109_AAARKZ xu_x_Page_092thm.jpg
43c572d6bd111580a06ca10eecee430a
5d4526cd67e6346506ab8787a56a87655c8d8151
1800 F20101109_AAAQHX xu_x_Page_037.txt
e8a9df28a2cd0f8045fd557c4cb80e70
a7e221b483ccc2bf1518d3118ac4b78265a2062d
12156 F20101109_AAAQJA xu_x_Page_025.jpg
0b8cb78d36cb25d7ef3d155598c1334f
dc1382eba9dea797e821f6eabdbd8e0f1b1003a5
59059 F20101109_AAAQIL xu_x_Page_004.jpg
0628a29f94d49e30d816b40a3152cd59
7b572b8c55c5dad55dc63de805710938c2e37fa2
27489 F20101109_AAARMD xu_x_Page_110.QC.jpg
0bae87be0ffaa3adbd5f997b66b8da86
11d6ebb464a01830053aa2e4e2f73f37bbd803e3
2629 F20101109_AAARLO xu_x_Page_101thm.jpg
c81e48ad3dc3c117d684ae3a79830799
40e96cc7ef3abb93116a21810fd67bc6b1175615
F20101109_AAAQHY xu_x_Page_023.tif
bbe7d884f2f86f33780f1feacc17bf28
bea51b0dec8b9c95b70c243a24f0aae28d48597d
79144 F20101109_AAAQJB xu_x_Page_026.jpg
a2a86c5cdf365e463b843c1297d99154
a18ea041f9fda34b436feeded46733ceac0a73a0
72105 F20101109_AAAQIM xu_x_Page_005.jpg
88dfad667e92b3e4b1a3e5fae513a3c9
6ecf93df1346f8b9fa833d793e0c59857d882f1d
6976 F20101109_AAARME xu_x_Page_110thm.jpg
df1d26431c0f5459bc68186643116a27
debedc9d83a2b275ffbfd5673e66f75994d5e767
21290 F20101109_AAARLP xu_x_Page_102.QC.jpg
ccbd29f245e8846ded00a65bd450fa3b
abf86cd005c365a82468779072b8681608006922
F20101109_AAAQHZ xu_x_Page_078.jp2
80034f1c669f95c975169b2a267a7626
03da28a1389cba4465b5c3bb552b27009179c2e6
66297 F20101109_AAAQJC xu_x_Page_027.jpg
41d1655cc5728c85570b29f664b49f81
baabcc27da51e13296b367874878564a99fd9884
56206 F20101109_AAAQIN xu_x_Page_006.jpg
bad25e5836da3d298773ca648dfa8cd4
32512705e1b03dc26f22a31c8848cd8909e940f7
15961 F20101109_AAARMF xu_x_Page_111.QC.jpg
849af72155cbf64522d5df566a3075ce
231e6636b55de6ce5d67305e0cb01108a4f69e8b
5668 F20101109_AAARLQ xu_x_Page_102thm.jpg
390ab223e63895f63b66ffcdfaa78bde
e89399db8033acbc67da38ee1fbcddf34f9aa4b3
68093 F20101109_AAAQJD xu_x_Page_028.jpg
7101dec274c32a362924e105f2ba565c
9d548f9a385920d2dee9f7c52eafea64bb27fd68
75909 F20101109_AAAQIO xu_x_Page_007.jpg
ce8699573b772bc3a2123a86cf443832
2355c8c380e1dadf1debed19a274eea8bd6a72fd
12870 F20101109_AAARMG xu_x_Page_112.QC.jpg
efa7577e35fba3a3770cd7dcc1953984
3625bc0aa954607fa2da1c79c2cda5d06c8b9cbf
24688 F20101109_AAARLR xu_x_Page_103.QC.jpg
943751014a6c5db964b40b522be9ca61
180a3775709c67418c2cec9e9c75eb800099faaf
76419 F20101109_AAAQJE xu_x_Page_029.jpg
b93711f2f6b28d9aca006b385218adc5
108c70c126f2004a3d3ac0a16b9535ab36980f47
85992 F20101109_AAAQIP xu_x_Page_009.jpg
d5107be4c7f6faff159274c907fb7c56
7e392fe78a281a9c2d050c80a04a1e12e41d019a
3860 F20101109_AAARMH xu_x_Page_112thm.jpg
88b6d2d01bb29f541ba68d4abb2dafd0
df32cc4d58ae57372717722a7bb92eb71169f11b
6105 F20101109_AAARLS xu_x_Page_103thm.jpg
863aeb83f51ba1a0fbdbc73176fc2182
4d463d2895b29476387cf59b413ce0e957af2aec
38688 F20101109_AAAQJF xu_x_Page_031.jpg
967fbda62cc71360a9aaf297e873beaf
cbbab1621c9e31b1c55aabaa5d526d8e8b8eb7a6
15767 F20101109_AAAQIQ xu_x_Page_010.jpg
33b32766897010845290481bd839aee8
6e2550e21e64023f05d75f3efc4a4cb3eb915a65







ALGORITHMS FOR SENSOR COVERAGE AND SENSOR LOCALIZATION
PROBLEMS IN WIRELESS SENSOR NETWORKS



















By

XIAOCHUN XU


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2008


































2008 Xiaochun Xu































To my parents









ACKNOWLEDGMENTS

I would like to acknowledge many people for helping me during my Ph.D study. I

am greatly indebted to my advisor, Dr. Sartaj Sahni, for supervising and guiding my

research work. This dissertation would not have been possible without his help. I am

highly grateful for his insightful thoughts and constructive -tI.i: -I i,.1 throughout my

Ph.D study. He continually encouraged me to develop independent thinking and research

skills.

Special thanks go to Dr. N 'i, -. ira S. V. Rao from Oak Ridge National Laboratory.

His research inspired much of the work in this dissertation. He offered many helpful

~-t;; -1 iii-.. and much advice about my research.

I am very grateful for having an exceptional committee and wish to thank Dr.

Ravindra Al! ti Dr. Shigang C'!, i1 Dr. S I-,i Iy Ranka, and Dr. Ye Xia for their support

and encouragement. I would like to thank Dr. Zhen Song from Siemens Corporate

Research whose insightful thoughts and -,t.;.; -1 i. ',s have been very helpful in our

numerous discussions.

Finally, I am highly grateful to my parents, my sister, and my girl friend who

have been very instrumental in the successful completion of my Ph.D. Their constant

motivation and encouragement is something that I would alv--,v- cherish in the years to

come.

This work was supported in part by the US National Science Foundation under grant

ITR-0326155. This work was also supported by S. i,- -N. t program at Oak Ridge National

Laboratory managed by UT-Battelle, LLC for U.S. Department of Energy under Contract

No. DE-AC05-00OR22725.









TABLE OF CONTENTS


page

ACKNOW LEDGMENTS ................................. 4

LIST OF TABLES ....................... ............. 7

LIST OF FIGURES .................................... 8

ABSTRACT . . . . . . . . . . 11

CHAPTER


1 INTRODUCTION ...................... .......... 13

1.1 Motivation .................................. 13
1.2 Related Work in Sensor Deployment ......... ........ .... 15
1.3 Related Work in Sensor Localization ........ ......... .... 19
1.4 Contribution ............................... 22

2 SENSOR DEPLOYMENT FOR POINT COVERAGE .............. 26

2.1 Integer Linear Programming Formulation ............... 26
2.2 Greedy Algorithm ......... .......... .......... 28
2.3 Grid Coverage .................. . . ...... 29
2.3.1 Problem Definition and Properties .................. .. 29
2.3.2 Asymptotic (1.58+e)-Approximation Algorithm . ... 34
2.3.3 Asymptotic PTAS for 1-Coverage .................. .. 40
2.3.4 Asymptotic PTAS for q-Coverage .................. .. 42
2.4 Experimental Results .................. ........... .. 45
2.4.1 Integer Linear Program . ........... .. 45
2.4.2 Comparison of Approximation Algorithms . . ..... 48
2.4.3 Comparison with Divide-and-Conquer ................ 53

3 SENSOR DEPLOYMENT FOR REGION COVERAGE . . ..... 55

3.1 Exact 3-Approximation Algorithm. ................ ..... 55
3.2 Asymptotic PTAS .................. ............ .. 58
3.3 Region Coverage via Point Coverage ............... .. .61
3.4 Coverage with a Grid of Sensors ......... . .. 66
3.4.1 q = 2 . . . . . .. . . 69
3.4.2 q = 3 ...... ............. .............. .. 71
3.4.3 q = 4 . . . .. . . ... .. .. 72
3.4.4 q = 5 ...... ............. .............. 75
3.5 Experimental Results .................. ........... .. 78









4 PROPERTIES OF DTOA LOCALIZATION ....


Preliminaries and Definitions ........
Properties of Identifying Sensor Sets .
Number of Intersections of L12 and L 13
Indistinguishable Points .. ........
ISSs for Polygonal Regions .. .......


5 COMPUTATIONAL GEOMETRY METHOD FOR TRIANGULATION USING
D T O A . . . . . . . . . ..


5.1 Euclidean and DTOA Spaces . ..
5.2 Geometric DTOA Method . . .
5.3 Correctness and Complexity of the Method
5.4 Monotonicity of Directional Derivative .
5.4.1 Top Left Region ..........
5.4.2 Inside Region . .......
5.4.3 Bottom Right Region . .
5.4.4 Top, Bottom Left, Bottom, and Top
5.5 Simulation Results . ........
5.5.1 F 0 . . . . .
5.5.2 F > 0 . . . ...

6 CONCLUSIONS AND FUTURE WORK ....

REFERENCES .....................

BIOGRAPHICAL SKETCH ..............


102
104
109
111
113
115
116
116
121
123
125


Right Regions










LIST OF TABLES


Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9


3-1 dMax, maximum APN,


100 seconds .

1000 seconds


e

Sensor coverage properties . ..........

Performance comparison of ILP of [6] and ours with T

Performance comparison of ILP of [6] and ours with T

Data for 1-coverage . ..............

Data for 2-coverage . ..............

Data for 3-coverage . ....

Data for 4-coverage . ..............

Data for 5-coverage . ..............

Cost/point using [6] together with our ILP with T
1.58 + c algorithm .........


and .i-.mptotic ratio 1 < q < 5 .. .........


5-1 Data for S1

5-2 Data for S1
F0 ....

5-3 Data for S1
F=10/100

5-4 Data for S1
F=5/100

5-5 Data for S1
F=1/100

5-6 Data for S1

5-7 Data for S1

5-8 Data for S1

5-9 Data for S,

5-10 Data for S1

5-11 Data for S,


(0, 0), S2= (0, 50000), S3

(0,0), S2 (0, 50000), S3


(0, 0), S2 (0, 50000), S3


(0, 0), S2 (0, 50000), S3


(0, 0), S2 (0, 50000), S3
(0,0), S2 (0,50000), S3
(0,0), S2 = (0,50000), S3



(0,0), 2 (0, 50000), S3

(0,0), S2 (0,100000), S3
(0,0), S2= (0,100000), S3
(0,0), S2= (0,5100000), S3

(0o, o), 2 (o, l000O), s3

(0o, o), S2= (o, l000O), S3

(0,0), S2= (0,100000), S3


(0.001, 100000), and F0 .


= (0.0000000000000001,


S(0.0000000000000001,


= (0.0000000000000001,


= (0.0000000000000001,


(5000,100000), and F

(5000, 100000), and F

(5000,100000), and F


100000), and


100000), and


100000), and


100000), and


10/100 .

5/100 .


1/100


(100000,0), and F10/100 .

(100000,0), and F5/100 ..

(100000,0), and F1/100 ..


1000 seconds and our


page

. 31

. 46

. 47

. 50

. 50

. 51

. 51

. 52


. 122

. 122

. 122

. 123


. . ...









LIST OF FIGURES
Figure page

1-1 Location determination approaches. A) AOA. B) TOA. C) DTOA. . 21

2-1 Greedy algorithm to deploy sensors .................. ..... .. 29

2-2 A grid with a sensor of range 4 at its center. A) The sensor monitors all dark
locations. B) Largest covering square. C)Largest covering rectangle. ...... ..30

2-3 Asymptotic (1.58+e)-approximation algorithm for 1-coverage . .... 35

2-4 Two regular tiling strategies. A) '+' patterns. B) diamond patterns ...... ..36

3-1 Algorithm 3-approx ............... ............. .. 56

3-2 Sensor at s E S can cover points in at most 3 hexagons . . ..... 57

3-3 Location of sites that can cover points in H ................ 58

3-4 Algorithm AS .................. .................. .. 59

3-5 G(d) for a rectangular region R. The 16 shaded grid points are within a disk of
radius r centered at the location s. .................. .... 62

3-6 The sensor s is located inside the square formed by four grid points Pi, i 1, 2, 3, 4,
and covers MAX(r) grid points, shown in dark color. ............ ..64

3-7 Gridded layout using a geometry size d. A) Equilateral triangle. B) Square. C)
Regular hexagon. .................. ... ......... 66

3-8 Equilateral triangle, q=2 ............... ...... 69

3-9 Square, q=2 .................. ................... .. 70

3-10 Regular hexagon, q=2 ............... ... ........ 71

3-11 Square, q 3 . . . . .. . . . .. .. 72

3-12 Regular hexagon, q=3 ............... ... ........ 72

3-13 Equilateral triangle, q=4 ............... ... ....... 73

3-14 Square, q= 4 . . . . . . . . ..... 74

3-15 Regular hexagon, q=4 ............... ... ........ 75

3-16 Equilateral triangle, q=5 ............... ... ....... 76

3-17 Square, q 5 .. .. .. .. ... .. .. .. .. .. .. .. .. ... .. .. .. 76

3-18 Regular hexagon, q=5 ............... ... ........ 77









3-19 Total sensor cost required v.s. various 6s, where q=l. ... . 80

3-20 Total sensor cost required v.s. various 6s, where q 2. . . 81

3-21 Total sensor cost required v.s. various 6s, where q=3. ............. .82

4-1 Examples of the locus L12 .................. ........... .. 85

4-2 Three non-collinear sensors S1, S2, and S3 form a triangle and two hyperbolas
L12(612) and L13(613) intersect each other at P1 and P2. . . ..... 86

4-3 A hyperbola L that passes through Si (1 < < 4). .............. 88

4-4 Regions of monitoring area: (a) top left, (b) inside, (c) bottom right, (d) top,
(e) bottom left, (f) bottom, and (g) top right. ................. 90

4-5 A hyperbola L = L' U L with focus S and iiiiii i. wr axis y-axis. . 91

4-6 Case 1: S2S3 lies below L12 .................. .......... .. 92

4-7 Case 2: S2S3 intersects L2 .................. ......... ..94

4-8 Case 3: S2S3 intersects L'2 and ZS3SIS2 > 90. ................ ..94

4-9 Case 4: S2S3 intersects L'2 and ZS3S1S2 < 90. ................ 95

4-10 Collinear sensors .................. ................ .. 97

4-11 Sensors Si, S2, and S3 on the boundary of a convex polygon. . .... 99

4-12 A concave polygon, its bounding convex polygon, and three sensors SI, S2, and
S3 placed on the common boundary of the concave and convex polygons . 100

4-13 S1 lies inside a simple polygon while S2 and S3 are on the boundary. Pi in the
top region is a dual point of P2 which lies in the top left region. . ... 101

5-1 Canonical placement of 3 sensors and partitioning of monitoring region ..... 105

5-2 Canonical placement of 3 sensors and L12(612) . . . ........ 106

5-3 P = (x, y) is located in the top left region. ............. .. 113

5-4 P = (x, y) is located inside the triangle. ................ ..... 114

5-5 P = (x, y) is located in the bottom right region. ................ 114

5-6 P = (x, y) is located in the top region. .................. .... 114

5-7 P = (x, y) is located in the bottom left region. ................. 115

5-8 P = (x, y) is located in the bottom region. ............. .. 116

5-9 P = (x, y) is located in the top right region. .................. 117









5-10 Source S = (x, y) is randomly selected, and the sign of the directional derivative
is computed .................. .................. .. 118

5-11 The degenerate case when L12(612) is a vertical ray ............... .118









Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ALGORITHMS FOR SENSOR COVERAGE AND SENSOR LOCALIZATION
PROBLEMS IN WIRELESS SENSOR NETWORKS

By

Xiaochun Xu

August 2008

('C! r: Sartaj Sahni
Major: Computer Engineering

Recent advances in sensor technology coupled with embedded systems and wireless

networking have made it possible to deploy sensors for numerous applications including

monitoring microclimates and wildlife habitats, the structural integrity of bridges and

buildings, building security, location of valuable assets, traffic, and so on. Among av ii. I

of the essential algorithmic issues that arise in the context of wireless sensor networks, we

investigate (1) sensor deployment algorithms for point/region coverage problems, and (2)

sensor localization algorithms for the problem of estimating the location of a source in the

plane.

An integer linear programming (ILP) formulation is developed to find the minimum

cost deployment of sensors that provides the desired coverage of a target point set. We

also propose a greedy heuristic for this problem. Our formulation permits heterogeneous

multimodal sensors and is extended easily to account for nonuniform sensor detection

resulting from blockage, noise, f ,lii- and so on. A greedy algorithm for solving the

proposed general ILP is developed. Additionally, c-approximation algorithms and a

polynomial time approximation scheme are proposed for the case of grid coverage.

Experiments demonstrate the superiority of our proposed algorithms over earlier

algorithms for point coverage of grids by using heterogeneous sensors.

We propose a factor 3 approximation algorithm and a polynomial time approximation

scheme for the problem of sensor deployment that provides the desired coverage over the









entire region at minimum cost. We further propose an equivalent transformation from

region coverage to point coverage, and prove the cost of the optimal point coverage

is within a constant factor of that of the optimal region coverage for a network of

homogeneous sensors. We also study the performance of deploying sensors in a gridded

(equilateral triangle, square, and regular hexagon) layout.

We establish several fundamental properties of localization using distance-differences.

These properties enable minimalistic realizations of localization systems. We establish

conditions for the unique identification of a source in Euclidean plane, and derive

minimum number of sensors needed for unique source identification within the Euclidean

plane and a polygonal monitoring region. Compared to four possible intersections of

two hyperbolas, we show this task leads to at most 2 intersections, which correspond to

potential source estimates.

We propose a computational geometry method for the source localization problem

using measurements of DTOA (Difference of Time-Of-Arrival). Compared to existing

solutions to this well-studied problem, our method is (a) computationally more efficient

and adaptive in that its precision can be controlled as a function of the number of

computational operations, making it suitable to low power devices; and (b) robust with

respect to measurement and computational errors, and is not susceptible to numerical

instabilities typical of existing linear algebraic or quadratic methods.









CHAPTER 1
INTRODUCTION

1.1 Motivation

In recent years, the advancement in sensor technology, coupled with embedded

systems and wireless networking, has made it possible to deploy wireless sensors for

numerous applications related to national security, battlefield surveillance, home appliance,

health care, inventory tracking, and environmental monitoring [23, 24, 60, 73], to name

just a few. Wireless sensor networks extend people's capability by establishing an instant

and remote interaction with the physical world. A typical wireless sensor network [11,

55, 65] may comprise thousands of spatially distributed yet cooperative sensor nodes

that continuously monitor a set of prespecified physical or environmental conditions in

the domain of interest [48]. Each sensor node has a sensing capability as well as limited

energy supply, compute power, memory, and communication ability. Nowa,-,-,-- a sensor

node (e.g., mote) usually consists of three parts, that is, a wireless communication device,

a small automatic control unit, and a source of energy (e.g., battery). Iyengar and

Brooks [23, 24] and Culler and Hong [10] provide good overviews of the breadth of sensor

network research topics as well as of applications for sensor networks. Sensor network

algorithms are reviewed in [49].

The purpose of wireless sensor networks is to continuously monitor the domain of

interest (i.e., a region or a set of discrete targets), detect the occurring events and collect

relevant data for further processing/responding. If not enough sensors have been deploy, .1

then there is no way that the sensor network can guarantee full coverage over the domain,

which means events occurring at some locations may not be detectable. Therefore, an

appropriate strategy on sensor deployment that guarantees the domain of interest get

covered at a certain quality of service (QoS) level is a fundamental problem for almost

every sensor network application. M. Cardei and J. Wu [5] reviewed the sensor coverage

problems in the context of static wireless sensor networks. In practice, the coverage









concept may be subject to a wide range of interpretations due to a large Iv ii I of sensors

and applications [33].

In some multi-sensor applications, one is often interested in placing sensors at a

subset of preselected sites so as to minimize the sensor cost while providing a specified

degree of coverage of the domain of interest (i.e. a region or a set of targets). We call it

the Min-Cost Sensor Deployment Problem (MCSDP). A possible application considered

here is in the deployment of chemical and radioactive sensors so as to monitor a portion

of the urban area or some high-risk targets that may be approximated as points. The

cost of a sensor may be from hundreds of dollars to tens of thousands of dollars. The

sensors are mounted on trolleys and may, for example, be powered from wall outlets. The

sensors do not communicate with one another. Rather, each sensor communicates with

a base station. We assume that power and sensor communication range are not design

issues. That is, each of the feasible sensor sites has an abundant energy supply and each

sensor has a sufficiently large transmission range to reach the base station from each of the

preselected sites. Note that these assumptions are in stark contrast to the assumption of

low cost and low power that are made in much of the recent research in sensor networks.

Not only are sensor networks required to provide a certain degree of coverage over

the domain of interest, but they also need certain capabilities to report the accurate

location information of the event. This capability of localizing the event is crucial for

many practical applications. For instance, with the location information of enemy tanks in

a battlefield, it will be easy to deploy the troops very effectively and efficiently. Moreover,

location information can even help on building up some critical system functionalities,

i.e., position-based routing [26, 32, 67] and location-based information querying [16].

Although the cutting-edge GPS equipment can provide the desired location with high

accuracy, it is not practical to have all sensor nodes and objects of interest equipped with

still expensive GPS modules. In addition, the accuracy of GPS measurements degrades

in urban environments as well as inside buildings. Localization, specifically, discovering









spatial relationships among objects under constraints, has been a very important and hot

topic in the sensor network research community. Many algorithms and protocols have been

developed over the years [3, 18, 36-38, 50] Sensor localization is reviewed in [59].

The localization technique based on measurements of Difference of Time-Of-Arrival

(DTOA) has been extensively studied for at least three decades [7, 13, 34, 54, 56].

Recently, it has received a renewed attention [44, 50, 51] due to the increasing proliferation

of wireless sensor networks [30, 73] and embedded networked systems [42]. In some

applications, the wireless nodes are often required to repeat the localization computations,

but they are limited in their computational capabilities and available power. Consequently,

it has become important to study the trade-offs between the number and type of

computations and the quality of localization solution to facilitate power savings by

gracefully degrading the solution. In addition, the computational precision of arithmetic

operations may be limited in certain sensor nodes, and its impact on the localization

solution must be well understood. These factors motivate a closer examination of the

computational aspects of DTOA triangulation methods, and such results could be of more

general interest as well.

1.2 Related Work in Sensor Deployment

In some applications it is possible to select the sites where sensors are placed while in

others (e.g., in hostile environments) we may simply scatter (e.g., air drop) a sufficiently

large number of sensors over the monitoring region with the expectation that the sensors

that survive the air drop will be able to adequately monitor the target region. When site

selection is possible, we use deterministic sensor deployment and when site selection isn't

possible, the deployment is nondeterministic. In some applications, it is desirable that the

deploy, .1 collection of sensors be able to communicate with one another, either directly

or indirectly via multihop communication. So, in addition to covering the region or set of

points to be sensed, we often require the deploy, .1 collection of sensors to form a connected









network. Instead, each sensor communicates directly with a base station that is situated

within the communication range of all sensors.

One practical goal of sensor deployment in the design of distributed sensor systems

is to achieve optimal monitoring and surveillance of a target region. The optimality of a

sensor deployment scheme is a trade-off between implementation cost and coverage quality

levels. Wu et al. [64] have presented a probabilistic sensing model that provides different

sensing capabilities in terms of coverage range and detection quality with a different

cost. They have proven this problem to be NP-complete and an approximate solution is

proposed based on a 2D genetic algorithm.

For a given placement of sensors, it is easy to check whether the collection covers the

target region or point set and also whether the collection is connected. For the coverage

property, we need to know the sensing range of individual sensors. (We assume that a

sensor can sense events that occur within a distance r,, where r8 is the sensors sensing

range.) For the connected property, we need to know the communication range, re, of

a sensor. Zhang and Lou [71] have established the following necessary and sufficient

condition for coverage to imply connectivity.

Theorem 1 (Zhang and Lou [71]). When the sensor 1, ,:;.1:/ (i.e., number of sensors

per unit area) is finite, r, > 2r, is a necessary and sufficient condition for coverage to

:I ', co I.' t. .:i

Xing et al. [66] prove a similar result for the case of q-coverage (each point is covered

by at least q sensors) and q-connectivity (the communication graph for the deploy, 1

sensors is q connected).

Theorem 2 (Xing et al. [66]). When r, > 2rs, q-coverage of a convex region implies

q -, ,' :;

Notice that q-coverage with q > 1 affords some degree of fault tolerance. We are

able to monitor all points so long as no more than q-1 sensors fail. Huang and Tseng [22]

develop algorithms to verify whether a sensor deployment provides q-coverage.









Howard et al. [20, 21] consider the case when the sensors are mobile and self-deploy.

A collection of mobile sensors may be placed into an unknown and potentially hazardous

environment. Following this initial placement, the sensors relocate so as to obtain

maximum coverage of the unknown environment. They communicate the information

they gather to a base station outside of the environment being sensed. A distributed

potential-field-based algorithm to self-deploy mobile sensors under the stated assumptions

is developed in [21], and a greedy and incremental self-deployment algorithm is developed

in [20]. A virtual-force algorithm to redeploy sensors so as to maximize coverage

is developed by Zou and Chakrabarty [74]. Poduri and Sukhatme [41] developed a

distributed self-deployment algorithm that is based on artificial potential fields and that

maximizes coverage while ensuring that each sensor has at least k other sensors within its

communication range.

Kar and Banerjee [25] examine the problem of deploying the fewest number of

homogeneous sensors so as to cover the plane with a connected sensor network. They

assume that the sensing range r, equals the communication range r, (i.e., r, = r,). Kar

and Banerjee [25] have shown that their algorithm has a sensor density that is within 2.'..

of the optimal density. This algorithm may be extended to provide connected coverage for

a set of finite regions [25]. Bai et al [1] extend the result in [25] and prove its optimality

when r,/r, < V3. Commuri and Watfa [9] consider the problem of deploying the fewest

number of limited-energy homogeneous sensors to cover a 3D region.

Kar and Banerjee [25] have proposed an algorithm to deploy a connected sensor

network so as to cover a set of points in Euclidean space. This algorithm, which assumes

that r, = r,, uses at most 7.256 times the minimum number of sensors needed to cover

the given point set. Wang and Zhong [62] consider minimum-cost sensor deployment on

a sensing field that is comprised of discrete points. They relax the ILP that we developed

in [49] and solve the corresponding LP. The obtained noninteger solution to the relaxed

LP is then converted to an integer solution that provides the desired degree of coverage by









using a rounding algorithm. Although the algorithm in [62] runs in polynomial time, it is

not an c-approximation algorithm for any constant c. For the test cases reported in [62],

the developed algorithm had an approximation factor of 3.

Grid coverage is another version of the point coverage problem. In the version of

('!i i1:i iIarty et al. [6], we are given a 2D or 3D grid of points that are to be sensed.

Sensor locations are restricted to these grid points and each grid point is to be covered

by at least q, q > 1, sensors (i.e., we seek q-coverage). For sensing, we have t sensor

types available. A sensor of type i costs ci dollars and has a sensing range ri. At most one

sensor may be placed at a grid point. In this version of the point coverage problem, the

sensors do not communicate with one another and are assumed to have a communication

range large enough to reach the base station from any grid position. Thus, network

connectivity is not an issue. The objective is to find a least cost sensor deployment that

provides q-coverage.

('C!i ,11 I arty et al. [6] formulate this q-coverage deployment problem as an integer

linear program (ILP) with O(tn2) variables and O(tn2) equations, where n is the number

of grid points. For a large n, C'!i i1: hilarty et al. [6] propose a divide-and-conquer

"near-optimal" algorithm in which the base case (a small number of points) is solved

optimally using the ILP formulation. Funke et al. [15] develop a greedy constant-factor

approximation algorithm and a PTAS for 1-coverage of a grid. However, they seek to

minimize the number of deploy, 1 sensors rather than the cost of these sensors. When

optimizing the number of deploy, 1 sensors, only sensors with maximum range need

be considered. The complexity of the greedy algorithm of [15], which accounts for

obscuring obstacles, is O(n log n) and its approximation factor is log(47rR2), where R

is the maximum sensor range. The approximation factor of the PTAS in [15], which

assumes there are no obstacles but which obtains 1-coverage for any specified subset

of grid points, is 4(1 + c) and its complexity is O(n). Wu et al. [64] look at the grid









deployment problem for sensors with probabilistic detection capabilities. They show that

the problem is NP-hard and propose a genetic algorithm.

Xu et al. [68] consider the problem of deploying relay nodes in a heterogeneous sensor

network and Mhatre et al. [35] consider minimum-cost heterogeneous networks with

lifetime constraints. Relay nodes are not deploy, .1 in our model as we assume that each

sensor (or sensor assembly) is capable of single-hop communication with the base station.

Also, lifetime is not an issue for us as our sensors are not energy limited.

1.3 Related Work in Sensor Localization

The goal of sensor localization is to estimate the location of the object or event

of interest through the cooperation of a network of sensors. A variety of approaches

have been proposed for tackling this problem with respective to various assumptions

[3, 18, 32, 37, 38, 40, 50, 51].

There are two basic formulations of the localization problem: (1) estimate the

location of the object, such as origin of a plume; and (2) a device, such as a sensor

node, estimates the location itself, that is self-localization or atomic multilateration.

In a model where each sensor and object of interest is equipped with a GPS receiver,

the process of localization is quite straightforward. In a typical model, however, only a

small portion of sensor nodes, namely beacon nodes, are deterministically deploy, .1 with

location information or equipped with GPS receivers. Other sensor nodes can compute

their locations with the help of beacon nodes. Sensor nodes with known locations can

work together through some localization process to locate an object or event of interest.

The process for locating an object/event works in two steps. Its distances to some nearby

sensor nodes with known location are estimated in the first step. In step two, one sensor

node then collects all these distance estimates and computes the actual location. The

approaches employ, -1 in step two depends on the signal features used in step one, and may

be classified into three groups: (1) Angle of Arrival (AOA), (2) Time of Arrival (TOA),

and (3) Difference of Time-Of-Arrival (DTOA).









Provided that every sensor node is equipped with directional antennas, AOA

estimates, i.e., the directions of arrival of the signals, can be easily calculated by

measuring the phase difference between the directional antennas or other techniques [29].

An estimate of the target location [37], as shown in Figure 1-1-(A), is simply the

intersection of two beams originated in the sensors sl and s2, respectively. AOA methods

do not require clock synchronization between sensor nodes. However, to install directional

antennas inside each sensor node is difficult and expensive. The non-line-of-sight (NLOS)

effect is a ii' r source of error in AOA methods. The time of arrival (TOA) method

takes advantage of the estimates of the propagation time between the source and three

respective sensor nodes [40, 63]. Since the propagation time is directly proportional

to the traversed range, the distance from the source to each sensor node is simply the

multiplication of the corresponding TOA estimate and the known velocity (i.e. the speed

of light is 3 x 08 m/s). In a plane, such three distance measurements, each corresponding

to a circle, can determine a unique location. An example of how TOA methods work

is shown in Figure 1-1-(B). The DTOA based localization method uses time difference

measurements rather than absolute time measurements as TOA does. It is actually

a process solving for the mathematical intersection of multiple hyperbolas as shown

in Figure 1-1-(C). The classic localization problem using DTOA measurements has

been solved using two general approaches: (1) linear algebraic solution which typically

involves matrix inversion and solving a quadratic equation [34, 53], and (2) intersection

of hyperbolic curves [13]. The transmit time of a signal from the source is essential for

the TOA method as sensors need this information to compute their distances from the

source. A small drift on the transmit time will directly lead to an error on the location

estimate. However, this knowledge is not required by the DTOA method because it

cancels out when computing the differences between TOAs. As a result, compared to the

TOA method, the DTOA method does not require strict time synchronization between the









source and sensors. However, Both TOA and DTOA methods require time synchronization

between sensors.
sOurce L12



S2 \


S1 S
(A) AOA (B) TOA (C) DTOA



Figure 1-1. Location determination approaches. A) AOA. B) TOA. C) DTOA.


There are also some localization methods, called r inj--free methods, which do not

try to estimate the distance information based on received signal strength or other

features [18, 38, 50]. Savvides et al. [50] propose a distributed localization algorithm

that recursively calculates the locations of sensors with unknown position from sensors

whose positions are already known, using inter-sensor distance estimates. In [18], He

et al. present a range-free localization algorithm called APIT that performs location

estimation. Every three non-collinear beacon nodes form a triangular region. By putting

a small perturbation on the sensor location, one may determine with very good successful

possibility whether the sensor lies inside or outside a triangular region. By repeating this

procedure upon different triangular regions, the area where the sensor can potentially

reside can be quickly narrowed down. DV-HOP [38] lets beacon nodes flood their locations

throughout the entire network and maintains a running hop-count at each node along

the way. Sensor nodes compute their locations based on the received beacon locations,

the hop-count from the corresponding beacon node, and the average-distance per hop.

Although the range-free methods make the design of hardware greatly simplified, the

estimates by these methods may be far from accurate, and thus not suitable for some

applications (i.e., asset tracking) that require high accuracy.









In general, the quality of the location estimate is a complex function of the precision

with which the underlying numerical operations are implemented, and consequently,

there is no apparent and simple way of relating the computations to the "(I 1 111i of the

location estimate. In particular, it is unclear if devoting more computational operations

would increase the accuracy of these methods, or conversely if it is possible to reduce the

computations while slightly compromising the quality of location estimate. In addition,

sensor errors can have drastic effects on localization methods. For example, under simple

random noise conditions, the quadratic equation of [34, 53] may have imaginary roots

in which case these methods do not return an answer, that is they become incomplete.

More generally, numerical instabilities may arise in computations implemented with low

precision arithmetic operations wherein matrix inversions needed for linear algebraic

methods may become ill-conditioned resulting in large estimation errors.

1.4 Contribution

We have developed a general integer linear programming (ILP) formulation for

the minimum cost sensor deployment problem (MCSDP) for point coverage. This

formulation, when specialized to the case of a grid, uses far fewer variables and constraints

than does the formulation of [6]. The impact of this improvement in ILP formulation is a

reduction of up to 7-'- (based on our test data) in the cost of deploy, ,1 sensors. A greedy

algorithm for general sensor deployment also was developed. This greedy algorithm,

like our ILP, may be specialized to the case of a grid. Fast .i-i-ii!il '1 ic approximation

algorithms as well as PTASs for grids were developed. Although the proofs for these

algorithms assumed square grids, the proofs also apply to rectangular grids (note that

the approximation factors are .i-vmptotic and that, when the rectangle dimensions are

large enough, the approximation factor is not affected). Our experiments indicate that

the 1.58 + c-approximation algorithm is the best of our algorithms for q < 4 and that the

greedy algorithm is usually best for q > 4, where q is the desired degree of coverage.









For the MCSDP problem for region coverage, we have proposed a factor 3

approximation algorithm as well as a polynomial time approximation scheme. In addition,

we further propose an approximation algorithm which is practical on large deployment

instances by conducting an equivalent transformation from region coverage to point

coverage. The proof is given to show the cost of the optimal point coverage is within

a constant factor of that of the optimal region coverage for a network of homogeneous

sensors. We also study the performance of deploying sensors in a gridded (equilateral

triangle, square, and regular hexagon) layout. We show that the triangular grid is the

most efficient for q = 1, 3, 5, while the regular hexagon for q = 2 and the square grid for

q 4.

We study the impact of sensor deployment on the uniqueness of source estimate in

Euclidean plane as well as in a simple ]i" iv.-on. A necessary and sufficient condition is

derived for each case. We provide a tight bound on the size of a minimal identifying sensor

set in Euclidean space R2. We reinvestigate the number of intersections of two hyperbolas

having a common focus, and show it to be at most 2. Specifically, at most one intersection

lies in the union of inside region, top left region, top right region, and bottom region,

while at most one intersection lies in the union of top region, bottom left region, and

bottom right region. Each sensor deployment corresponds to an equivalence relation on

R2. For each identifying sensor set, each equivalence class is of unit cardinality. For each

non-identifying sensor set, at least one equivalence class is of greater than unit cardinality.

We have presented a computational geometric method for DTOA localization based

on a binary search on an algebraic curve defined by a distance-difference function. We

exploit the monotonicity of the directional derivative of the other distance-difference

on it to support the binary search. The computational complexity of this method is

O(log(l/7)), where the computed solution is guaranteed to be within a distance of 7

to the actual location of the source. Alternatively, by fixing the number of operations

to k, one can achieve the precision 7 0 (2-k). This method is robust with respect









to distance measurement errors: (1) 7 is of the same order of magnitude as errors in

distance measurements, such guarantees cannot be made in methods that involve division

operations; and (2) it is complete in that it will ah--bi-i return an answer, even under

random measurement errors. This method is a generalization of the DTOA localization

method in [45] proposed as a part of plume identification, where the source is inside the

acute triangle formed by sensors. In our case, the object can be located anywhere in

the monitoring region. In addition, we also provide a detailed analysis of the underlying

computation and the proof of the required monotonicity property of the underlying

directional derivative.

This dissertation is organized as follows. In C'! lpter 2, we develop an integer linear

programming (ILP) formulation as well as a greedy heuristic for minimum cost sensor

deployment. For the special case of minimum cost sensor deployment to cover a grid of

points, we develop a linear time factor 1.58 approximation algorithm as well as polynomial

time approximation schemes. In Chapter 3, we consider the the placement of sensors for

q-coverage of planar regions. We present two approximation methods with multiplicative

factors of 3 and 1+1/1, where 1 is a tunable parameter tht determines the computational

complexity. We develop a transformation from a region coverage problem to an equivalent

point coverage problem so that known point-coverage algorithms may be used to construct

good region coverage deployments. We also study the performance of deploying sensors

in a gridded layout. In Chapter 4, we establish the properties of sensor sets that uniquely

identify all sources in Euclidean plane using DTOA localization and the bound on the

number of intersections of two DTOA hyperbolas. The minimum number of sensor

needed to uniquely identify all sources in a bounded polygon is also derived. In ('! Ilpter

5, we examine the relationship between proximity in Euclidean space and proximity in

DTOA space. Our analysis shows that the proximity in DTAO space does not guarantee

proximity in Euclidean space. We develop a geometric DTOA triangulation method and

prove its correctness. This method guarantees proximity in both Euclidean and DTOA









spaces. Finally, we conclude this dissertation in C'! lpter 6 with some concluding remarks

and directions for future research.









CHAPTER 2
SENSOR DEPLOYMENT FOR POINT COVERAGE

In this chapter, we first develop an integer linear programming (ILP) formulation

for minimum cost sensor deployment problem (MCSDP) for point coverage. A greedy

heuristic is then proposed. Our ILP formulation permits heterogeneous multimodal sensors

and is easily extended to account for nonuniform sensor detection resulting from blockages,

noise, f lli:- and so on. Thereafter, a special case of minimum cost sensor deployment

to cover a grid of points (i.e., grid coverage) is considered. For this, we propose two

.-i-', i!'il ic approximation algorithms. The first ..-i-~!,illi ic approximation algorithm

is of factor 1.58+c. The second algorithm is a polynomial time approximation scheme

(PTAS). The complexities of both approximation algorithms are linear in the number of

grid points. Although the proofs of these algorithms assumed square grids, the proofs also

apply to rectangular grids (note that the approximation factors are ..-i-ii!l, -l ic and that,

when the rectangle dimensions are large enough, the approximation factor is not affected).

We conclude this chapter by providing extensive experimental results for grid deployment.

2.1 Integer Linear Programming Formulation

We are given a set of locations to be monitored as well as a set of locations where

it is feasible to place sensors. For simplicity, we model these two sets as a single set and

model any differences in the two sets by ILP (integer linear program) constraints. We

assume that at each location we wish to monitor a predefined subset of quantities such

as temperature, sound, levels of different gases, radioactivity and so on. Each quantity

to be monitored is referred to as a i,, .../I.:;,/ The subset of modalities being monitored at

different locations may be different. Let cover(j, 1) be the degree of monitoring coverage

required at location 1 for modality j. For monitoring, we have available sensors of different

types. Each sensor is able to monitor one or more modalities. Let locations(i, j, 1) be

the set of locations with the property that if a sensor of type i is placed at the location

then the sensor provides a unit degree of coverage for modality j at location 1. Notice









that with this formulation it is possible that a sensor, which is capable of monitoring

modalities a and b, placed at some location may cover another location for modality a

but not b (this may, for example, happen because the sensor's range for modality a is

different from that for modality b). Let cap., .:! i(i, 1) be the number of sensors of type i

that may feasibly be placed at location I and let cost(i) be the cost of 1 sensor of type i.

The sensor deployment problem is to determine the number, xi,,, of sensors of type i to

place at each location z so as to achieve the desired degree of coverage, not violate the

capacity constraint at each location, and minimize cost. The problem may be formulated

as the following ILP.


minimize Y (cost(i) xi,")
z I

SXi,z > cover(j, ), Vj, I
i zElocation(i,j,l)
0 < xi,z < i.,,.,. .'/ (i, 1), Vi, z

The total number of variables (i.e., the xi,,s) in the above ILP is sn, where s is the

number of sensor types and n is the number of locations. The total number of constraints

is (s + m)n, where m is the number of modalities. Additional constraints


Y xi,z < totalType(i), Vi

and

xi,z < totalLocation(z), Vz

may be added to the above formulation to limit the total number of sensors of each type

that may be deploi-y 1 as well as the total number of sensors deploy, l1 at a particular

location.

The above ILP formulation may be used to model the grid coverage problem studied

in [6]. In this problem, the locations form a Vn x V/ grid; the number m of modalities is

1; cover(, z) = q for each location z; and totalLocation(z) = 1 for each location z. The









formulation becomes


minimize (cost(i) xi,)
i z

S S i, >q, Vl
i zElocation(i,l,l)

x,,, < 1,VZ

0 < xi,z < 1 Vi, z

The grid ILP is a 0-1 ILP with tn variables and (t + 2)n constraints. In contrast, the

0-1 ILP formulation of [6] has O(tn2) variables and O(tn2) constraints.

2.2 Greedy Algorithm

A very simple and intuitive greedy algorithm for sensor deployment selects and

places one sensor in each round. Rounds are repeated until every location has the desired

degree of coverage or it isn't possible to place a sensor so as to reduce the yet-to-be-met

coverage requirement of any location. In the latter case, the greedy algorithm fails to find

a sensor deployment that provides the desired degree of coverage. The sensor selection and

deployment in each round is done by determining a sensor type and location pair (i, z)

such that

1. The selection of a sensor of type i doesn't violate any bound on the total number of

sensors of this type that may be deploy, 1

2. Placement of a sensor of type i at location z doesn't violate the bound on the

number of sensors of type i that may be placed at location z.

3. Let coverl(j, 1) be the remaining coverage degree to be provided for modality j at

location 1. Initially (i.e., when no sensor has been deploi-, 1), cover(j, 1) = cover(j,1)

for all j and 1. cover (j, 1) is reduced by 1 whenever a sensor is deploy, 1 so as cover

1 for modality j. Let coverll(j, 1) = max{0, coverf(j, 1) 1} for all j and I such that

z c locations(i,j, 1). The incremental coverage cost cost(i)/(Zj (cover/(j, 1) -

covert/(j, 1)) is minimized.









Such an (i, z) is called an optimal sensor-location pair. Figure 2-1 gives our greedy

algorithm for minimum-cost sensor deployment.

Set coverf(j,l) = cover(j,1), Vj,l
while (cover/(j, 1) > 0 for at least one pair (j, 1)){
Let (i, z) be an optimal sensor-location pair.
If there is no such (i, z) or if the incremental coverage cost
is infinity, terminate. // deployment unsuccessful
Deploy a sensor of type i at location z.
Update covert.
}
Figure 2-1. Greedy algorithm to deploy sensors


2.3 Grid Coverage

In this section, we develop approximation algorithms for the grid coverage problem

of ('!i i:.1 ilarty et al. [6]. Before presenting our two proposed .. -mptotoic approximation

algorithms, we first give the detailed definition of this problem and some interesting

properties.

2.3.1 Problem Definition and Properties

Assume the locations to be monitored form a V/ x V/ grid, the distance between

grid neighbors is 1, the number of modalities is 1, each grid location can accommodate 1

sensor, the coverage degree required at each location is q, the number of sensor types is

t, the cost of a sensor of type i is cost(i) and its range is range(i), 1 < i < t. A sensor

whose range is range(i) can monitor/cover the grid location at which it is placed as well

as all grid points within a distance of range(i) of this location. So, for example, when the

range is 1 up to 5 points may be monitored (the sensor location plus the at most 4 grid

neighbors of this location) and when the range is 2, at most 13 points may be monitored.

Figure 2-2 (A) shows all locations monitored by a sensor whose range is 4 and that is

placed at the grid center. Dark locations indicate location monitored by the sensor. The

objective is to find a minimum cost sensor deployment that provides the desired degree

of coverage. Such a sensor deployment is called an optimal deil.- '/1, -I,/ Note that some










instances of the defined grid coverage problem may not have a feasible solution. For

example, when t = 1; range(l) = 1; and q = 4. Now, locations at the corners of the

grid do not have sufficient locations within a distance of 1 to achieve the desired degree of

coverage.

0000 0000 000000000 000000000
00 0 00000 000000000 00 000 00
0 000000 0 00 0 0 0O0 000 0 0 00
0 000000 0 00 0 0 0O0 000 0 0 00
000000000 000000000 00000000
000000000 000 000000 00 0 0 00
0 000000 0 00 000 000 000 00 00
000000000 000000000 00000000
0000 0000 000000000 0000000 0
(A) (B) (C)
Figure 2-2. A grid with a sensor of range 4 at its center. A) The sensor monitors all
dark locations. B) Largest covering square. C)Largest covering rectangle.


Note also that if cost(i) < cost(j) and range(i) > range(j) an optimal deployment

will not use any sensors of type j. So, without loss of generality, we may assume that no

two sensor types have the same range and that range(i) < range(j) => cost(i) < cost(j).

Further, we may assume that cost(j) > 0, 1 < j < t.

Let D(i) be the maximum number of grid points covered by a sensor whose range is i.

Let S(i) be the maximum number of these grid points that fall within a vertically aligned

square and let R(i) be the corresponding number for the case of a vertically aligned

rectangle. Figure 2-2 (B) shows the largest square of covered points when the sensor

range is 4 and Figure 2-2 (C) shows the largest rectangle of covered points for this sensor.

Observe that D(4) = 49, S(4) = 25 and R(4) = 35. Table 2-1 gives D(i), S(i) and R(i)

for 1 < i < 12. This figure gives also the ratios s(i) = S(i)/D(i) and r(i) R(i)/D(i),

1
Lemma 1. s(i) > 0.51 for i > 1.

Proof Let the coordinates of the sensor location be (0,0). If the grid location (x, y) is

covered by the sensor, then -i < x < i and -i < y < i. For any x, -i < x < i, exactly

2L[i x2] + 1 grid locations are covered. Hence,









Table 2-1. Sensor coverage properties
i 1 2 3 4 5 6 7 8 9 10 11 12
D(i) 5 13 29 49 81 113 149 197 253 317 377 441
S(i) 1 9 25 25 49 81 81 121 169 225 225 289
R(i) 1 9 25 35 63 81 99 143 169 225 255 289
s(i) .20 .69 .86 .51 .60 .72 .54 .61 .67 .71 .60 .66
r(i) .20 .69 .86 .71 .78 .72 .66 .73 .67 .71 .68 .66



i
D(i) (2L[V x2 + 1) (2-1)
x=-i
i
< t(2Vi2 -x + 1)
x=-i
i
= 2 (V )+x2i+1
x--i

< 2 /t2 x2dx + 2i + 1

S ri2 + 2i + 1 (2-2)


The coordinates of the largest vertically aligned square of covered locations have the

form (x, +x), where x = [i/v]. So,



S(i) = (2L J + 1)2 (2-3)

> (2( 1)+ 1)2

S(vi 1)2

S2i2- 2vi2 + t (2-4)


From Equations 2-2 and 2-4, we get




s(i) S(i)/D(i)

> (2i2 2/2i + l)/(7-i2 + 2i + 1) (2-5)









Table 2-1 gives s(i) for i < 12 as obtained from Equations 2-1 and 2-3. For i > 1, the

shown values are > 0.51. For i > 12, s(i) > 0.51 follows from Equation 2-5 with i = 13

and the fact that the right side of this equation is a nondecreasing function of i. Note that

the right side of Equation 2-5 has the limiting value of 2/7 as i -0 0. .

Lemma 2. Let d be the width' and height of the /',i, -I ;., ,/. ,;ll; ilt.:ii',, 1 square A

of grid points covered by a sensor. Let w and h, ,'. "i. /,h';. l;' be these quantities for the

1,,, -It., i, i.: ,,/; aligned r. I/-.,'l. B of covered points. Either w < h and w = d and

h E d, d + 2} or w > h and w = d + 2 and h = d.

Proof We prove only that w < h = w = d and h E {d, d + 2}. The remainder of the

proof is symmetric. Assume that w < h. First, we show that h < w + 2.

Since d, w and h are all odd, the coordinates of the corners of B, under the

assumption that the sensor is placed at (0,0), are (" -1 h2 ), ("-1, h-i ), (-"-1, h-1),

and (- "- h-l). Since the grid locations at the corners of B are covered by the sensor at

(0,0), ("-)2 + (h1)2 < i2, where i is the range of the sensor. One may verify that when
S> w + 2, (+1)2 + (3)2 < So, the rectangle Q whose corners are at (+1, h-3),

(w+l h- ), (_ w1, h-), and ( h-3), includes only grid locations that are covered
by the sensor at (0, 0). The width and height of Q are w + 2 and h 2, respectively. The

number of grid locations included in Q is (w + 2)(h 2), which is greater than the number,

wh, of locations included in B when h > w + 2. This contradicts the assumption that B is

the largest rectangle of covered locations. Hence, h < w + 2. Consequently, w < h < w + 2.

Now, if w < d, then w < d 2 as both w and d are odd. So, h < d and the number

of locations covered by B is wh < (d 2) d < d2. So, B is not the largest rectangle of

covered locations. This contradicts the assumption on B. Also, if w > d, w > d + 2 as both



1 Dimensions are measured in terms of the number of included grid locations.
2 I.e., Maximum area, which is equivalent to maximizing the number of covered grid
locations.









w and d are odd. Since w < h, the (d + 2) x (d + 2) square of locations centered at (0,0)

includes only covered locations contradicting the assumption that A is the largest square

of covered locations. So, w = d. From this, w < h < w + 2, and the knowledge that h and

w are odd, it follows that h E {d, d + 2}. m

Lemma 3. r(i) > 0.6366 for i > 1.

Proof Assume that the sensor is located as in Lemma 1. Let B be as in Lemma 2 and

assume that w < h. The case w > h is symmetric. From Lemma 2 and the proof of

Lemma 1, it follows that w = d = 2 [i/v2] + 1, where i is the range of the sensor.

Since B includes only covered locations, the y-coordinate of the top right corner of B is

L[i2- Li/v J2]. Hence, h = 2[ i2- [/ 2] + 1. So,

R(i) (2[i/v/2 + 1)(2[ i2 2] + 1) (2 6)

Table 2-1 gives r(i) for i < 12 as obtained from Equations 2-1 and 2-6. For i > 1, the

shown values are > 0.6366. Using a computer program, we verified that r(i) > 0.6366 for

i < 100, 000. For i > 100, 000, we use r(i) > s(i) and the knowledge that the right side of

Equation 2-5 is more than 0.6366 for i > 100,000 to conclude that r(i) > 0.6366. 0

Let opt(n, q) be the cost of an optimal sensor deployment that achieves q-coverage for

a x/n x /n grid. Let cMin = min
Lemma 4. opt(n, q) > n q cMin

Proof Follows from the observation that the per location, per coverage cost of every

deployment must be at least cMin. m

Let tMax = *I ,, l
tMax and tMin, respectively, give the sensor types with maximum and minimum range.

Let qMax be the maximum coverage degree obtainable by any deployment of the given set

of sensor types.

Lemma 5. qMax < (D(range(tMax)) + 4range(tMax) + 3)/4. The upper bound of

(D(range(tMax))+4range(tMax)+3)/4 on qMax is achievable when /n > range(tMax).









Proof Clearly, coverage degree is maximum when a sensor of type tMax is placed

at every grid point. A sensor of type tMax placed at a grid corner is able to cover

at most (D(range(tMax)) + 4range(tMax) + 3)/4 grid points. From symmetry of

coverage, it follows that there are at most (D(range(tMax)) + 4range(tMax) + 3)/4 grid

points in a Vn x Vn grid from where a sensor of type tMax may cover a grid corner.

Hence a coverage degree larger than (D(range(tMax)) + 4range(tMax) + 3)/4 is not

possible. It is easy to see that when Vn > range(tMax), we obtain a coverage of degree

(D(range(tMax)) + 4range(tMax) + 3)/4 by placing a sensor of type tMax at every grid

location. m

2.3.2 Asymptotic (1.58+e)-Approximation Algorithm

An 'i ;,,I/l/. : : 6-approximation algorithm for an optimization problem finds, for every

instance whose size is more than some constant threshold T, feasible solutions whose value

is within a factor 6 of the value of the optimal solution. 6 is called the approximation

factor of the algorithm. Note that for an ordinary 6-approximation algorithm, T = 0.

Also, note that since instances of size < T may, typically, be solved exactly in 0(1) time

(T is a constant), an ..i-mptotic 6-approximation algorithm may be converted into a

6-approximation algorithm of the same complexity by coupling it with a step to solve

(exactly) instances of size < T in O(1) time. An- ,;imj, ../.. PTAS i..J..,,.'i.l time

approximation scheme) is a family of ..- i-,!ll i ic 6-approximation algorithms, the family

contains an algorithm for each 6 > 1, and the complexity of each algorithm in the family is

polynomial in the instance size (in determining complexity, 6 is regarded as a constant).

Figure 2-3 gives our .. -i-~iill1 ic approximation algorithm for 1-coverage. Later, we

extend this algorithm to 2- and 3-coverage.

The following lemma shows that Step 2 of Figure 2-3 is executed only when

range(dMin) = 1.

Lemma 6. If i = 1 in Figure 2-3, then dMin = rMin.












Step 1: [Initialize]
Let dMin = ,,,iin.:,, jt{cost(j)/D(, ,,,,,. (j))}.
Ties are broken by using the sensor with smaller range.
If ,.,,,. (dMin) = 1 go to Step 2.
If ,.,,,. (dMin) = 2 go to Step 3.
Let rMin= .i, .:,, j Ties are broken by using the sensor with smaller range.
Let i = ,,, ,ii (rMin).
Let w 2 [i/ ] + 1.

Let h = 2 i2 [ i/ 22 +1.
If i > 2 go to Step 4.
If i = 2 go to Step 3.

Step 2: [ ,,,,.. (dMin) = 1, tile with '+'s]
Use the method of Cockayne et al. [8] to cover the /n x /n grid with a minimal number of
"+" patterns (Figure 2-4 (A)).
Place a type rMin sensor at the center of each "+".
If a sensor is placed at a non-grid location, move it to a grid location that is part of its "+"
pattern.
Done.

Step 3: [i = 2 tile with diamonds]
Cover the /nx /n grid with a minimal number of diamond patterns (i.e., 3 x 3 squares rotated
by 45 degrees).
Place a type rMin sensor at the center of each diamond (Figure 2-4 (B)).
If a sensor is placed at a non-grid location, move it to a grid location that is part of its dia-
mond pattern.
Done.

Step 4: [i > 2, tile with w x h rectangles]
Tile the grid with [ /n/h] [/n/wl w x h rectangles.
Note that some rectangles may not fully overlap with grid locations.
Place a type rMin sensor at the center of each rectangle.
Move sensors (if any) that are placed at non-grid locations to the nearest grid location in the
rectangle.


Figure 2-3. Asymptotic (1.58+c)-approximation algorithm for 1-coverage

















0
0
0
0

0
0

0
0
O
O


000
0 0

000
000
0 0 0


000



000
*0 0
OO


0
0
0

0 .
0
0
0

0


0
00
00
00
00
00
00
00
S0
00
00
00
00
0
00


(A) (B)

Figure 2-4. Two regular tiling strategies. A) '+' patterns. B) diamond patterns


Proof When i


range(rMin)


1, then w 1= R(range(rMin))


D(range(rMin)) = 5. From the definition of rMin, the assumption that no two sensor

types have the same range, and Lemma 3, we get


cost(rMin)
D(range(rMin))


So, cost(rMin)/D(range(rMin))


1 cost(rMin)
5 R(range(rMin))
1 cost(j)
< -------- 1 5 R(range(j))'
1 cost(j)
< -* ( j < < t, j rMin
5 0.6336D(range(j))'
cost(j)
< D(range) j D(range-j))


cMin. From this, the tie breaker used in


Figure 2-3, and the assumption that no two sensor types have the same range, it follows

that dMin = rMin. m

Theorem 3. The il.- rithm of Figure 2-3 has an ',;,,i,/i.1/:.: approximation factor 1.58 +

for rii C > 0.


1 and









Proof We actually show that when the sensor deployment is done using Step 2, the
.-i, !l 1 -I .1ic approximation factor is 1 + c; the factor is 1.09 + c when Step 3 is used for the

deployment and is 1.58 + c when the deployment is done using Step 4.

Case 1: Sensor deployment is done in Step 2.

For this case, range(dMin) = 1. Cockayne et al. [8] have shown that at most
n+4vn-16 +, patterns are needed to tile a V/ x V/ grid. From this and Lemma 6, it

follows that the cost of the tiling obtained by the algorithm of Figure 2-3 is less than
n+4 cost(dMin). From this, Lemma 4, and the fact that D(1) = 5, it follows that the

approximation ratio is less than

n+4~i cost(dMin) n + 4 /n 4
n cMin n V/

This ratio is < 1 + c for every c > 0 whenever n > 16/C2. Hence, the ..i-mptotic

approximation ratio, for this case, is 1 + e.

Case 2: Sensor deployment is done in Step 3.

Now, either range(dMin) = 2 or i = range(rMin) = 2. When i = range(rMin) = 2,

then D(range(rMin)) = 13 and R(range(rMin)) = 9. Also, note that when Step 3 is

executed, range(dMin) > 1. So,

cost(rMin) 9 cost(rMin)
D(range(rMin)) 13 R(range(rMin))
9 cost(dMin)
13 R(range(dMin))
9 cost(dMin)
13 0.6366D(range(dMin))
< 1.09cMin

Using a method similar to that used in [8], we can show that Step 2 deploys at most

[ + (v/ + 4) sensors of type rMin. From this and Lemma 4, it follows that the









approximation factor is at most


[r+ (V + 4) cost(rMin)
n cMin


n+21n+68 cost(rMin)
D(range(rMin)) *costr
n cMin
21 + 68
< 1.09*(1+ )
12


Since this bound is < 1.09 + c for n > max{52396, 14.24, the ..-mptotic

approximation factor is 1.09 + c. A similar proof shows that the .ii-1',i ll' ic approximation

factor is 1 + c when range(dMin)= 2.

Case 3: Sensor deployment is done in Step 4.

Now, i = range(rMin) > 2. The cost of the tiling obtained by our algorithm is


cost(rMin) [vn I
w h
From Lemma 4, it follows that the approximation ratio is at most


1 1 < ( + 1)( + 1)
n cMin w h n*en cM w h
cost(rMin) n 1 1
( + ^(-+ )+1)
n cMin wh w h
cost(rMin) n 1 1
+ ( n + (- + )+1))
n cmin R(range(rMin)) w h

From Lemma 3, range(dMin) > 1, and the choice of rMin, we get


cost(rMin)
cMin R(range(rMin))


cost(rMin) D(range(dMin))
cost(dMin) R(range(rMin))
cost(rMin) R(range(dMin))
0.6366 cost(dMin) R(range(rMin))
1
0.6366
< 1.58









So, the approximation ratio for our algorithm is less than 1.58 + cost(ri (V W +
-) + 1), which is < 1.58 + for n > max{ 2cost(rMl ), ()2cost( )( + 1))2}
h' '/) -VI I -D L e i C- e v I*Cl w h(T
Hence, the .-i-!,il'I '1ic approximation ratio, for this case, is 1.58 + c. m

For q-coverage, q E {2, 3}, we start with the 1-coverage deployment obtained by

the algorithm of Figure 2-3 and increase the number of sensors at each grid location

that has a sensor from 1 to q. While, we now have q-coverage and a 1.58 + c .,-i-,i!ill ic

approximation factor is guaranteed by Lemma 4 and Theorem 3, the deployment is

infeasible as there are q > 1 sensors deploy, 1 at certain grid locations. To remedy this

infeasibility, we relocate the excess sensors at any location. The sensor deployment of

Figure 2-3 is such that every location L that has a sensor satisfies the following properties

(since we are dealing with .i-i- !II, ill ic properties, we may assume that /n > 2):

1. There is a location either just above or just below L where no sensor is located.

2. There is a location either just to the left or just to the right of L where no sensor is
located.

The relocation of excess sensors is done by moving the first excess sensor at each

location L to the unoccupied location either above or below L; the second excess sensor

(in the case of q = 3) is moved to the unoccupied location that is either to the left or right

of L. While this relocation of sensors fixes the multiple sensors at a location problem, we

may lose q-coverage at some of the boundary locations of the grid. q-coverage is restored

by adding O(Vn) sensors of the same type as used at other locations. Since q E {2, 3} and

every boundary location of the grid has at least 2 neighbors at a distance of 1, it is ah-i--,

possible to restore q-coverage by the deployment of additional sensors on the boundary.

The deployment of these additional boundary sensors doesn't affect the 1.58+e i-mptotic

approximation factor though the value of n at which the bound applies increases slightly.

Note that if we use sensors of type sMin = argmini
tile the grid with squares with side 1/S(range(sMin)), rather than rectangles as is done

in Figure 2-3, the .,-vmptotic approximation factor is 1/0.51 + e < 1.96 + e.









2.3.3 Asymptotic PTAS for 1-Coverage

Before presenting our PTAS for 1-coverage of a grid, we establish two properties

of opt(n, 1). Let optl(n, q) be the cost of an optimal sensor deployment that q-covers a

Vn x V/ grid but in which sensors may be placed at locations outside the grid that is to

be q-covered.

Lemma 7. optf(n, 1) = opt(n, 1).

Proof We prove the lemma by showing how to transform every 1-coverage deployment

that has sensors deploy, -l at locations outside the Vn x Vn grid that is to be covered into

a 1-coverage with no sensors deploy, ,1 outside this grid. The transformation is comprised

of a finite number of iterations. In each iteration, the number of sensors deploy, -l outside

the V/ x V/ grid is decreased by 1, 1-coverage is preserved, and the total cost of the

deploy, ,1 sensors isn't increased. Since the number of such sensors is finite in an optimal

deployment, a finite number of iterations are needed.

Consider a 1-coverage of any instance of the grid coverage problem in which sensors

are permitted to be deploy, ,1 outside the Vn x /n grid. Let St be a sensor deploy, ,1 at a

location Pi outside the /n x /n grid that is to be covered. If there is no such sensor, we

are done with the transformation.

Let P be a grid location in the /n x Vn grid that is closest to S. Clearly,

P is on the boundary of this grid. Suppose there is a sensor S deploy, ,1 at P. If

range(type(S')) > range(type(S)), we remove S from P and move SI from Pi to

P. This preserves 1-coverage, reduces the number of sensors deploy, ,1 outside the

grid by 1, and reduces the total cost of the deploy, ,1 sensors by cost('ifi" (S)). If

range(type(S')) < range('i,," (S)), St covers no location in the n x n grid that is not

covered by S. So, removing St from Pi preserves 1-coverage, reduces the number of sensors

deploy, ,1 outside the grid by 1, and reduces the total cost of the deploy, ,1 sensors by

cost( / (S/)).









If there is no sensor at P, relocating SI from Pi to P preserves 1-coverage as well
as the total cost of the deployment; the number of sensors deploy .1 outside the grid is
reduced by 1. 0
Lemma 8. [V n/ Vd2 opt(d, 1) > opt(n, 1) > Ln/(Vd- + 2R)]2 *opt(d, 1), where Vn and
d are integers, n > d, and R = range(tMax).
Proof The first inequality follows from the observation that a Vn x V/ grid may

be 1-covered by overlaying this grid with [v//V d]2 Vd x Vd grids, using the optimal
1-coverage deployment for each of these Vd x Vd grids, and the strategy in the proof of
Lemma 7 to handle any sensors placed outside the Vn x /n grid.
For the second inequality, we start with a 1-coverage whose cost is opt(n, 1) (all

sensors are deploy. 1 at grid locations) and partition the /n x /n grid into (Vd + 2R) x

(Vd + 2R) subgrids. The number of subgrids is at least L[//(Vd + 2R)J2. Let C be the
minimum cost of the sensors deploy, ,1 in any one of these subgrids. It is easy to see that

the sensors deploy, '1 in each subgrid provide a (not necessarily optimal) 1-coverage of the
Vd x Vd subgrid located at the center of the (Vd + 2R) x (vd + 2R) subgrid. From
Lemma 7, it follows that C > opt(d, 1). Hence, opt(n, 1) > L[n/(vd + 2R)J2 opt(d, 1).


Theorem 4. For every fixed R = range(tMax), there is an ;,,,i/./.:.: PTAS that obtains

1-coverage for a xn x /n grid. The ,.-'impl. ri/ii of this PTAS is linear in the number of

grid points.
Proof For fixed R, a possible .*i-mptotic PTAS proceeds as follows. For any fixed e > 0,

let Vd be the least integer greater than 2R/(v + e 1). Compute the optimal sensor
deployment for a Vd x vrd grid in constant (though, perhaps, impractical), time using the
ILP formulation of Section 2.1 (note that since R and e are constants, the size of the ILP

is constant). Next, tile the Vn x /n grid with v/d x V/d subgrids and use the computed
optimal deployment within each subgrid. Finally, relocate or eliminate sensors that are
deploy, l1 off the /n x /n grid using the strategy used in the proof of Lemma 7.









We show that for Vn > 1 1 c i ), the approximation factor for the
1/+c/ (! i+2R)-1/17d '
preceding algorithm is 1 + c. From the definition of approximation factor, it follows that
the approximation factor is


[vn/vd2 2* opt(d
opt(n, 1)




Since, Vd > 2R/(V/
1/Vd > 0. From this and t


,1) n/ d]2* opt(d, 1)
) < [-/(Vd- 2 opt(d, 1) (from Lemma 8)
Lv/( vd+ 2R)]2 opt(d, 1)
< d+1 2
SV+1- (2
\vd+2R

1), 1/ d< VT+/(V + 2R) and so, V/ +/(/( + 2R)
he stated bound on Vn, we obtain

( V > + V+C
V+ 2R fd


and so,
/+ 1< +( 1)
vd ~vd+ 2R
From this and Equation 2-7, it follows that the approximation factor is 1 + c. Hence the
stated algorithm is a PTAS for 1-coverage of a grid. Its complexity is O(n) as a V/ x V/
grid can be tiled by a Vd x Vd subgrid and the off-grid sensors redeploi-, 1 in this much
time. U
2.3.4 Asymptotic PTAS for q-Coverage

By using a slightly more complex tiling strategy than used in Section 3.2 for
1-coverage, we obtain an .,i-, iiiill ic PTAS for q-coverage, q > 1. Before presenting this
PTAS and its proof of correctness, we establish two lemmas. Let p = D(range(tMax)) *
cost(tMax)/(q cost(tMin)).
Lemma 9. The cost of an optimal sensor 1 /* l..'. ,, ,/. in a /n x /n grid that achieves
q-coverage is no more than p optf(n, q).
Proof Note that if there is a deployment that achieves q-coverage, then q-coverage
is achieved by placing a sensor of type tMax at every grid point. Hence, the cost of


7)









an optimal deployment that achieves q-coverage is at most n cost(tMax). To prove the

lemma, we show that p*optf(n,q) > n*cost(n,q). Let dMin= argmini
Note that cMin = cost(dMin)/D(range(dMin)). From our assumption on sensor types

(i.e., range(i) < range(j) => cost(i) < cost(j)), it follows that sensors of type tMin have

the least cost. Also, from the proof of Lemma 4, it follows that optl(n, q) > n q cMin.

So,


p* opt/(n, q) > D(range(tMa) cost(tMax) (n q cMin)
D(range(tMax))*cost(tMax) ( in
cost(tMin) cMm )
= n cost(tMax) D(range(tMax))cMin
cost (tM in)
> n cost(tMax) D(range(dMin)cMin

n cost(tMax)


Lemma 10. Let R = range(tMax). [(Vn 2R)/d ]2 opt/(d, q) + 4 cost(tMax) R *

(/ R) > opt(n,q) > [ n/(Vd + 2R)J2 optl(d,q), where n and d are integers,

q < qMax, and /n > 2R + 2 Vd.

Proof Since /n > 2R + 2 /, q-coverage is possible (Lemma 5). Let A be the set of all

grid points located on the width R boundary of the grid and let B be the set of remaining

grid points. The size of A is 4R(/n- R) and B is a ( n- 2R) x ( n- 2R) grid. Partition

B into Vd x vd subgrids. This partitioning is done so that when /n- 2R is not a multiple

of Vd, the partitions of size smaller than x x d form a '+' pattern in the center of B.

The number of subgrids is at most [(/ 2R)/d]2.

Consider a sensor deployment of cost optl(d, q) that provides q-coverage for a Vd x /d

subgrid. Note that this deployment may place sensors at grid points outside the subgrid.

Replicate this deployment as needed to q-cover all of the subgrids of B. Since no sensor

has range more than R and subgrids of size less than Vd x Vd are at the grid center,

all deploy, l1 sensors are at grid locations. Note, however, that some locations may have

more than one sensor assigned. Next, place a type tMax sensor at all points in A. Finally,









examine each grid point that has more than one sensor and remove all but the one with
largest range. From Lemma 5, it follows that the remaining sensors provide q-coverage of
all grid points. The cost of this deployment is at most [(V/ 2R)/V]d2 optl(d, q) +
4 cost(tMax) R ( R). Hence, opt(n, q) < [(/ 2R)/ Vd2 optf(d, q) + 4 *
cost(tMax) R (/n R).
Next, start with a q-coverage whose cost is opt(n, q) and partition the V/ x / grid
into (Vd+ 2R) x (Vd+ 2R) subgrids. The number of subgrids is at least [L /( d+2R)]2
Let C be the minimum cost of the sensors deploi-, 1 in any one of these subgrids. It is
easy to see that the sensors deploi-, 1 in each subgrid provide a (not necessarily optimal)
q-coverage of the Vd x Vd subgrid located at the center of the (vd + 2R) x (vd + 2R)
subgrid. So, C > optl(d, q). Hence, opt(n, q) > [L /(vd + 2R) 2 optl(d, q). m
Theorem 5. For ,:1, fixed R = range(tMax), there is an '- ;,,i/,'l. .:' PTAS that obtains
q-coverage for a Vn x Vn grid, where q < qMax. The ,.'iipl. iii; of this PTAS is linear in
the number of grid points.
Proof For fixed R, a possible ..i-mptotic PTAS proceeds as follows. For any fixed C > 0,
let d be the least integer > 2R/( V(1 + e)/(l + c) 1), where 0 < ec < e. Compute
the optimal sensor deployment of cost optl(d, q) for a Vd x Vd grid in constant time using
the ILP formulation of Section 2.1 with locations corresponding to the grid points of a

(vd + 2R) x (vrd + 2R) grid; all points are available for sensor deployment and only
those corresponding to points in the center Vd x Vd subgrid are to be covered. Assume
that Vn > 2R + 2vd and deploy sensors to q-cover the Vn x Vn grid using the strategy
discussed in the first part of Lemma 10. We show that the just stated sensor deployment
algorithm is an ..-i-.. ill ic PTAS for q-coverage.
Let /n- be the minimum integer > 2R + 2Vd such that for any n > ni, we have

((n 2R)/Vd + 1)2 C1 > 4 R (/ R) p/d. The approximation factor for our
q-coverage algorithm is











[(V 2R)/ d]2 optl(d, q) + 4 cost(tMax) R (/ R)
opt(n, q)
< [(Vn- 2R)/ d]2 *opt(d, q) + 4 R (/ R) p optf(d,q)/d
[Lv /(v/d + 2R)J2 opt/(d, q)
[(V 2R)/Vd-2 + 4 R (V ?R) *p/d
Lv /(v + 2R)J2
< ((1 2R)/vd + 1)2 + 4 R (V- R) p/d
S(V/(v + 2R)- 1)2
(1 + 1)((l 2R)/Vd + 1)2, fr n > n (2 8)
< ^for n > al (2-8)
( V/(V2 + 2R) 1)2

From the definition of Vd, it follows that 1 0. From this, it
V 1+(1 ,di+2R Td
follows that whenever V > Vi= (1- 2R + W)/( i* = 1),

1+= 1 1 2R 1+7
( ) >1 +
1 + 1 V+2R d d 1 Vt l+ci

and so
Vr- 2R 1[+7 (V
S2R +1< 1)
d1 + V 1 + 2R )
So, for n > max{ni, n2}, the approximation factor bound of Equation 2-8 is at most
1 + c. Hence the stated algorithm is a PTAS for q-coverage of a grid. Its complexity is
O(n) for the same reasons as the complexity of the PTAS for 1-coverage is O(n).
2.4 Experimental Results
2.4.1 Integer Linear Program
We evaluated the impact of using our ILP formulation of Section 2.1 versus that of [6]
in conjunction with the divide-and-conquer heuristic proposed in [6] for the deployment
of sensors in a grid. Recall that the heuristic of [6] tiles a large grid using an optimal
deployment for the largest square subgrid whose ILP formulation may be solved in a given
amount of time. For this evaluation, we used the ILP solver Ipsolver 5.0 [31] developed by
the Eindhoven University of Technology. This ILP solver was run on a Dell Inspiron PC
with a 1.7 GHz processor and 512 MB memory.









Each test set may be described by a tuple of the form [q, t, ci, rl, C2, r2,..., Ct, rt], where

q is the desired coverage degree, t is the number of sensor types, ci is the cost of a sensor

of type i, and ri is the range of a sensor of type i. Table 2-2 gives the size of the largest

square subgrid whose ILP formulation is solvable in 100 seconds using the formulation

of [6] as well using our formulation of Section 2.1. Also, the total cost of the optimal

deployment divided by the number of points in the subgrid (cost/point) and the reduction

in cost/point achieved using our ILP formulation are given. Table 2-3 gives this data for

the case when Ipsolver is given 1000 seconds to solve the ILP formulation.

Table 2-2. Performance comparison of ILP of [6] and ours with T = 100 seconds
T = 100 seconds


Test case

[1, 2, 3, 3, 1.5, 1]
[2, 2, 3, 3, 1.5, 1]
[3, 2, 3, 3, 1.5, 1]
[4, 2, 3, 3, 1.5, 1]
[5, 2, 3, 3, 1.5, 1]
[1, 2, 7, 4,5, 3]
[2, 2, 7, 4,5, 3]
[3, 2, 7, 4,5, 3]
[4, 2, 7, 4,5, 3]
[5, 2, 7, 4,5, 3]
[1, 2, 6, 4, 5, 3]
[2, 2, 6, 4,5, 3]
[3, 2, 6, 4,5, 3]
[4, 2, 6, 4,5, 3]
[5, 2, 6, 4,5, 3]
[1, 2, 7, 5, 5, 4]
[2, 2, 7, 5,5, 4]
[3, 2, 7, 5,5, 4]
[4, 2, 7, 5,5, 4]
[5,2,7,5,5,4]
[1, 3, 5, 5, 3, 3, 1.5,
[2, 3, 5, 5, 3, 3, 1.5,
[3, 3, 5, 5, 3, 3, 1.5,
[4, 3, 5, 5, 3, 3, 1.5,
[5, 3, 5, 5, 3, 3, 1.5,


size
5*5
4*4
4*4
4*4
3*3
5*5
5*5
4*4
4*4
3*3
5*5
5*5
4*4
4*4
3*3
6*6
5*5
4*4
3*3
3*3
5*5
4*4
4*4
3*3
3*3


[6]
cost/point
0.12
0.375
0.563
0.75
1.67
0.2
0.48
0.938
1.25
2.78
0.2
0.44
0.938
1.25
2.78
0.194
0.4
0.938
2.22
2.78
0.12
0.375
0.563
1.33
1.67


size
25*25
14*14
14*14
14*14
13*13
15*15
14*14
13*13
14*14
13*13
15*15
14*14
14*14
14*14
13*13
18*18
16*16
16*16
16*16
15*15
18*18
17*17
16*16
15*15
15*15


Ours
cost/point
0.12
0.276
0.413
0.551
0.728
0.2
0.429
0.639
0.847
1.07
0.187
0.367
0.551
0.735
0.923
0.130
0.219
0.348
0.478
0.609
0.093
0.175
0.246
0.356
0.444


Reduction( .)

0
26.4
38.5
26.53
56.41
0
10.63
31.88
32.24
61.51
6.5
16.59
41.26
41.2
66.80
32.99
45.25
67.38
78.47
78.09
22.5
53.33
56.31
73.23
73.41









Table 2-3. Performance comparison of ILP of [6] and ours with T = 1000 seconds
T = 1000 seconds


Test case

[1, 2, 3, 3, 1.5, 1]
[2, 2, 3, 3, 1.5, 1]
[3, 2, 3, 3, 1.5, 1]
[4, 2, 3, 3, 1.5, 1]
[5, 2, 3, 3, 1.5, 1]
[1,2,7,4,5,3]
[2,2,7,4,5,3]
[3,2,7,4,5,3]
[4, 2, 7, 4,5, 3]
[5, 2, 7, 4,5, 3]
[1, 2, 6, 4, 5, 3]
[2, 2, 6, 4,5, 3]
[3, 2, 6, 4,5, 3]
[4, 2, 6, 4,5, 3]
[5, 2, 6, 4,5, 3]
[1, 2, 7, 5, 5, 4]
[2, 2, 7, 5,5, 4]
[3, 2, 7, 5,5, 4]
[4, 2, 7, 5,5, 4]
[5, 2, 7, 5,5, 4]
[1, 3, 5, 5, 3, 3, 1.5,
[2, 3, 5, 5, 3, 3, 1.5,
[3, 3, 5, 5, 3, 3, 1.5,
[4, 3, 5, 5, 3, 3, 1.5,
[5,3,5,5,3,3, 1.5,


size
5*5
5*5
4*4
4*4
4*4
6*6
5*5
5*5
4*4
4*4
6*6
5*5
5*5
4*4
4*4
7*7
5*5
5*5
4*4
4*4
6*6
4*4
4*4
4*4
3*3


[6]
cost/point
0.12
0.36
0.563
0.75
1.125
0.333
0.48
0.76
1.25
1.69
0.306
0.44
0.68
1.25
1.63
0.143
0.4
0.6
1.25
1.56
0.139
0.375
0.563
0.75
1.67


size
25*25
14*14
14*14
14*14
14*14
15*15
15*15
14*14
14*14
14*14
15*15
15*15
14*14
14*14
13*13
19*19
18*18
16*16
16*16
16*16
19*19
17*17
17*17
17*17
17*17


Ours
cost/point
0.12
0.276
0.413
0.551
0.689
0.2
0.418
0.638
0.847
1.06
0.187
0.373
0.551
0.735
0.923
0.13
0.256
0.348
0.477
0.605
0.094
0.175
0.260
0.349
0.438


Reduction( .)

0
23.33
26.64
26.53
38.76
39.94
12.92
16.05
32.24
37.28
38.89
15.23
18.97
41.2
43.37
9.09
36
42
61.84
61.22
32.37
53.33
53.82
53.47
73.77


We note that increasing the time available to Ipsolver from 100 seconds to 1000

seconds has little impact on the size of the subgrid whose ILP can be solved. For

the formulation of [6], this 10-fold increase in run time enabled the solution of grids

whose dimension is at most 1 more than what could be solved in 100 seconds. For our

formulation, a 10-fold increase in run time had about the same impact; we were able, in

three of the test cases, to solve for subgrids whose dimension is 2 more. In the remaining

tests cases, the dimension of the solvable subgrid increased by at most 1. On the other

hand, using our ILP formulation versus that of [6] had a dramatic impact on the size of

the solvable subgrid. For example, for our first test case [1,2,3,3,1.5,1] we were able to









solve the ILP of [6] only for a 5 x 5 subgrid, whereas we were able to solve our ILP for

a 25 x 25 subgrid! Although for this particular test case, there was no reduction in the

cost/point in the optimal solution for the larger subgrid, over our set of test cases the

reduction in cost/point in the optimal solution for the largest subgrid solvable using our

ILP formulation versus that of [6] ranged from 0'. to slightly more than 7-'-. The impact

of this reduction on the divide-and-conquer heuristic of [6] is evident-for our test cases

tiling a large grid using the optimal solutions from the larger subgrids solvable using our

ILP formulation reduces the overall cost of the deploy, -l sensors by as much as about 7'-.'

It is interesting to note that the cost/point increased for 3 of our test cases when

the ILP of [6] was given 1000 seconds rather than 100 seconds. In one of these cases, the

increase was as high as 1','.- For our formulation, there was an increase in cost/point for 4

of the 25 test cases; however, in all four cases, the increase was less than The impact

of an increase in cost/point in the optimal deployment for a larger subgrid on the tiling of

a large grid may be reduced by finding the optimal deployment for several small subgrids

and using the subgrid with the smallest cost/point to tile large grids.

2.4.2 Comparison of Approximation Algorithms

We compared the performance of our approximation algorithms against that of the

greedy algorithm. Specifically, we experimented with the following algorithms3

1. The .,i-mptotic (1.58+e)-approximation of Section 2.3.2.

2. The .,i-mptotic (1.96+e)-approximation algorithm described at the end of Section 2.3.2.

3. Iterative versions of both of these algorithms. In the iterative version, Step 4 of the
algorithm was modified to find an optimal deployment for the largest subgrid of size
2w x 2Ah whose ILP could be solved in a specified amount of time T. Here w and h
are as determined in Step 1. Note that the cost/point for this optimal deployment



3 In addition to these algorithms, we experimented with a simulated annealing
algorithm. However, despite the large amount of computing time given to this simulated
annealing algorithm, it was unable to consistently outperform the algorithms listed below









cannot exceed that for the w x h subgrid used in the unmodified approximation
algorithm. This largest subgrid was then used to tile the input grid of points.

4. The greedy algorithm of Section 2.2.

The tiling of a large grid in Step 4 of the first four algorithms stated above was

modified from that stated in the original description of Section 2.3.2. This modification

is for the case when /n is not a multiple of the size of the tiling subgrid. For those

portions of the xn x /n grid that are not covered by whole tiles, the greedy algorithm

of Section 2.2 is used to deploy sensors to achieve the desired coverage in these portions.

This modification is referred to as tiling with greedy filling. We did not experiment with

our PTASs as we do not consider these to be practical from the standpoint of required run

time.

For our experiments, we used 16 test cases, each described by the tuple [t, cl, ri, ..., ct, rt].

For each test case, we sought q-coverage for 1 < q < 5 and the grid size was 300 x 300 (or,

n = 90, 000). The iterative versions of the algorithms were given 3600 seconds to solve the

associated ILP. Although we have not described either a 1.58 + e- or a 1.96 + e-asymptotic

approximation algorithm for the case q e {4, 5}, for our experiments, we proceeded as

for the case q e {2, 3} with the 1-coverage deployment obtained by the algorithm of

Figure 2-3 and increased the number of sensors at each grid location that has a sensor

from 1 to q. Then, we relocated the sensors so as to preserve q-coverage and assure that

no location has more than 1 sensor. Our relocation strategy succeeded in all of our 16

test cases. Tables 2-4-2-8 give the costs of the constructed sensor deployments as well as

the size of the tiling subgrids used. In the case of the 1.58 + e and 1.96 + e algorithms,

the selected sensor type also is given. The percentage reduction in cost obtained by the

1.58 + e-approximate algorithm relative to the cost of the deployment constructed by the

greedy algorithm also is given.

The iterative version of the 1.58 + e-approximation algorithm outperformed the base

1.58 + e algorithm in only 1 of the 80 tests. This occurred in 1 of the tests with q = 4 and














Table 2-4. Data for 1-coverage


Test case

[2, 3, 3, 1.5, 1]
[2, 3, 3, 1, 1]
[2, 3, 3, 1.5, 2]
[2, 7, 4, 5, 3]
[2, 7, 4, 4.5, 3]
[2, 7, 4,4, 3]
[2, 6, 4, 5, 3]
[2,7,5,5,4]
[2, 7, 5,4.5, 4]
[2,7,5,4,4]
[2, 7, 5, 5, 3]
[2,7,5,4,3]
[3, 5, 5,3,3,1.5, 1]
[3, 5, 5, 2.5, 3, 1.5,1]
[3, 5, 5,2.5, 3, 1, 1]
[3,5,5,2,3,1, 1]


q=1, n=90000 and T=3600 seconds
Tiling with greedy filling


(1.96+e)-alg.
10800(1,5*5)
10800(1,5*5)
10800(1,5*5)
18000(2,5*5)
16200(2,5*5)
14400(2,5*5)
18000(2,5*5)
13010(1,7*7)
12942(1,7*7)
12876(1,7*7)
13001(1,7*7)
12985(1,7*7)
9257.5(1,7*7)
9000(2,5*5)
9000(2,5*5)
7200(2,5*5)


Iterative alg.
10800(20*20)
10800(20*20)
10800(10*10)
18000(20*20)
16200(20*20)
14400(20*20)
15975(20*20)
11248(14*14)
10759.5(14*14)
10198(14*14)
11993(14*14)
11512(14*14)
8290(14*14)
9000(10*10)
9000(10*10)
7200(20*20)


(1.58+e)-alg.
10800(1,5*5)
10800(1,5*5)
10800(1,5*5)
18000(2,5*5)
16200(2,5*5)
14400(2,5*5)
15555(1,5*7)
10386(1,7*9)
10296(1,7*9)
10230(1,7*9)
10365(1,7*9)
10401(1,7*9)
7410(1,7*9)
7376(1,7*9)
7321(1,7*9)
7264(1,7*9)


Iterative alg.
10800(20*20)
10800(20*20)
10800(10*10)
18000(20*20)
16200(20*20)
14400(20*20)
15555(10*14)
10446(14*18)
10397(14*18)
10232(14*18)
10515(14*18)
10569(14*18)
7486.5(14*18)
7422.5(14*18)
7378(14*18)
7296(14*18)


Greedy alg.

15259.5
14719
14010
20042
19145
21005
18296
13383
12839
13278
13883
13243
9101
8663
8361.5
7768


Reduction(%)

29.22
26.63
22.91
10.19
15.38
31.44
14.98
22.39
19.81
22.96
25.34
21.46
18.58
14.86
12.44
6.49


Table 2-5. Data for 2-coverage


q=2, n 90000 and T 3600 seconds


Test case

[2, 3, 3, 1.5, 1]
[2, 3, 3,1, 1]
[2, 3, 3,1.5, 2]
[2, 7, 4, 5, 3]
[2, 7, 4,4.5, 3]
[2, 7, 4, 4, 3]
[2, 6, 4, 5, 3]
[2, 7, 5, 5,4]
[2, 7, 5,4.5, 4]
[2, 7, 5,4,4]
[2, 7, 5, 5, 3]
[2, 7, 5,4, 3]
[3, 5, 5,3,3,1.5, 1]
[3, 5, 5, 2.5, 3, 1.5,1]
[3, 5, 5,2.5, 3, 1, 1]
[3,5,5,2,3,1, 1]


(1.96+e)-alg.
21780(1,5*5)
21720(1,5*5)
21691.5(1,5*5)
36205(2,5*5)
32584.5(2,5*5)
28964(2,5*5)
36184(2,5*5)
25728(1,7*7)
25630(1,7*7)
25528(1,7*7)
25852(1,7*7)
25772(1,7*7)
18390(1,7*7)
18101.5(2,5*5)
18120(2,5*5)
14520(2,5*5)


Tiling with
Iterative alg.
25650(10*10)
25200(10*10)
24300(10*10)
39600(10*10)
36900(10*10)
34200(10*10)
37800(10*10)
22202(14*14)
21253.5(14*14)
20204(14*14)
24077(14*14)
23172(14*14)
16677.5(14*14)
20250(10*10)
19800(10*10)
17100(10*10)


greedy filling
(1.58+e)-alg.
21780(1,5*5)
21720(1,5*5)
21691.5(1,5*5)
36205(2,5*5)
32584.5(2,5*5)
28964(2,5*5)
30972(1,5*7)
20431(1,7*9)
20335.5(1,7*9)
20232(1,7*9)
20528(1,7*9)
20619(1,7*9)
14676.5(1,7*9)
14646(1,7*9)
14611.5(1,7*9)
14455(1,7*9)


Iterative alg.
25650(10*10)
25200(10*10)
24300(10*10)
39600(10*10)
36900(10*10)
34200(10*10)
34140(10*14)
22371(14*18)
21792(14*18)
20639(14*18)
22831(14*18)
22430(14*18)
16086(14*18)
15582(14*18)
15517.5(14*18)
17191(7*9)


Greedy alg.
26295
25431
25158
38115
37321.5
36148
33087
23967
23282
22352
24062
23933
16721.5
16645
16350.5
15562


Reduction(%)
17.17
14.59
13.78
5.01
12.69
19.87
6.39
14.75
12.66
9.48
14.69
13.85
12.23
12.01
10.64
7.11














Table 2-6. Data for 3-coverage


q=3, n 90000 and T 3600 seconds


Test case

[2, 3, 3, 1.5, 1]
[2, 3, 3, 1, 1]
[2, 3, 3, 1.5, 2]
[2, 7, 4, 5, 3]
[2, 7, 4, 4.5, 3]
[2, 7, 4, 4, 3]
[2, 6, 4, 5, 3]
[2, 7, 5, 5,4]
[2, 7, 5,4.5, 4]
[2, 7, 5,4,4]
[2, 7, 5, 5, 3]
[2, 7, 5,4, 3]
[3, 5, 5,3,3,1.5, 1]
[3, 5, 5, 2.5, 3, 1.5,1]
[3, 5, 5,2.5, 3, 1, 1]
[3,5,5,2,3,1, 1]


(1.96+e)-alg.
32758.5(1,5*5)
32640(1,5*5)
32583(1,5*5)
54410(2,5*5)
48969(2,5*5)
43528(2,5*5)
54368(2,5*5)
38464(1,7*7)
38343(1,7*7)
38202(1,7*7)
38677(1,7*7)
38645(1,7*7)
27595.5(1,7*7)
27204.5(2,5*5)
27239.5(2,5*5)
21839(2,5*5)


Tiling with
Iterative alg.
40500(10*10)
38700(10*10)
37800(10*10)
59400(10*10)
55350(10*10)
51300(10*10)
56700(10*10)
33260(14*14)
797.5(14*14)
30322(14*14)
35166(14*14)
33435(14*14)
24090.5(14*14)
30600(10*10)
29700(10*10)
26100(10*10)


greedy filling
(1.58+e)-alg.
32758.5(1,5*5)
32640(1,5*5)
32583(1,5*5)
54410(2,5*5)
48969(2,5*5)
43528(2,5*5)
46551(1,5*7)
30683(1,7*9)
30517(1,7*9)
30371(1,7*9)
30739(1,7*9)
30897(1,7*9)
21926.5(1,7*9)
21908.5(1,7*9)
21838(1,7*9)
21656(1,7*9)


Iterative alg.
40500(10*10)
38700(10*10)
37800(10*10)
59400(10*10)
55350(10*10)
51300(10*10)
52033(10*14)
33789(14*18)
32407(14*18)
30581(14*18)
35595(14*18)
34141(14*18)
24668.5(14*18)
23664(14*18)
27333.5(7*9)
271. :i7 'I)


Greedy alg.

36957
36222
36013.5
53099
52285
50337
46012
33271
32771.5
31015
33522
33367
23387
23273.5
22901.5
22313


Reduction(%)

11.36
9.89
9.53
-2.47
6.34
13.53
-1.17
7.78
6.88
2.08
8.30
7.40
6.24
5.87
4.64
2.94


Table 2-7. Data for 4-coverage


q=4, n 90000 and T 3600 seconds


Test case

[2, 3, 3, 1.5, 1]
[2, 3, 3,1, 1]
[2, 3, 3, 1.5, 2]
[2, 7, 4, 5, 3]
[2, 7, 4,4.5, 3]
[2, 7, 4, 4, 3]
[2, 6, 4, 5, 3]
[2, 7, 5, 5,4]
[2, 7, 5,4.5, 4]
[2, 7, 5,4,4]
[2, 7, 5, 5, 3]
[2, 7, 5,4, 3]
[3, 5, 5,3,3,1.5, 1]
[3, 5, 5, 2.5, 3, 1.5, 1]
[3, 5, 5,2.5, 3, 1, 1]
[3,5,5,2,3,1, 1]


(1.96+e)-alg.
43737(1,5*5)
43560(1,5*5)
43474.5(1,5*5)
72615(2,5*5)
65353.5(2,5*5)
58092(2,5*5)
72552(2,5*5)
51337(1,7*7)
51132.5(1,7*7)
50941(1,7*7)
51458(1,7*7)
51511(1,7*7)
36769(1,7*7)
36306(2,5*5)
36359(2,5*5)
29158(2,5*5)


Tiling with
Iterative alg.
54000(10*10)
52200(10*10)
51300(10*10)
79200(10*10)
73800(10*10)
68400(10*10)
75600(10*10)
44324(14*14)
42377(14*14)
40412(14*14)
48028(14*14)
46206(14*14)
33242.5(14*14)
40950(10*10)
39600(10*10)
35100(10*10)


greedy filling
(1.58+e)-alg.
43737(1,5*5)
43560(1,5*5)
43474.5(1,5*5)
72615(2,5*5)
65353.5(2,5*5)
58092(2,5*5)
62158(1,5*7)
41054(1,7*9)
40860.5(1,7*9)
40657(1,7*9)
41036(1,7*9)
41087(1,7*9)
29226.5(1,7*9)
29171.5(1,7*9)
29114(1,7*9)
28857(1,7*9)


Iterative alg.
54000(10*10)
52200(10*10)
51300(10*10)
79200(10*10)
73800(10*10)
68400(10*10)
69916(10*14)
45667(14*18)
52090(7*9)
40265(14*18)
47723(14*18)
46286(14*18)
33010(14*18)
32245.5(14*18)
31177(14*18)
37144(7*9)


Greedy alg.
47373
46522
46477.5
67634
67025.5
64221
58468
42367
41832
39335
42600
42442
29843
29650.5
29248.5
28661


Reduction(%)
7.68
6.37
6.46
-7.36
2.49
9.54
-6.31
3.10
2.32
-3.36
3.67
3.19
2.07
1.62
0.46
-0.68










Table 2-8. Data for 5-coverage


Test case

[2, 3, 3, 1.5, 1]
[2, 3, 3, 1, 1]
[2, 3, 3, 1.5, 2]
[2, 7, 4, 5, 3]
[2, 7, 4, 4.5, 3]
[2, 7, 4, 4, 3]
[2, 6, 4, 5, 3]
[2, 7, 5, 5,4]
[2, 7, 5,4.5, 4]
[2, 7, 5,4,4]
[2, 7, 5, 5, 3]
[2, 7, 5,4, 3]
[3, 5, 5,3,3,1.5, 1]
[3, 5, 5, 2.5, 3, 1.5,1]
[3, 5, 5,2.5, 3, 1, 1]
[3,5,5,2,3,1, 1]


q=5, n=90000 and T=3600 seconds
Tiling with greedy filling


(1.96+e)-alg.
54714(1,5*5)
54480(1,5*5)
54366(1,5*5)
90822(2,5*5)
81742.5(2,5*5)
72660(2,5*5)
90742(2,5*5)
64183(1,7*7)
63884.5(1,7*7)
63648(1,7*7)
64361(1,7*7)
64318(1,7*7)
45910(1,7*7)
45409(2,5*5)
-. 17-(2,5*5)
36476(2,5*5)


Iterative alg.
67500(10*10)
64800(10*10)
63450(10*10)
100800(10*10)
94500(10*10)
88200(10*10)
95400(10*10)
55357(14*14)
53037.5(14*14)
50576(14*14)
60790(14*14)
59025(14*14)
42413(14*14)
51300(10*10)
49950(10*10)
44100(10*10)


(1.58+e)-alg.
54714(1,5*5)
54480(1,5*5)
54366(1,5*5)
90822(2,5*5)
81742.5(2,5*5)
72660(2,5*5)
77668(1,5*7)
51164(1,7*9)
50914.5(1,7*9)
50659(1,7*9)
51446(1,7*9)
51284(1,7*9)
36637(1,7*9)
36482(1,7*9)
36390(1,7*9)
36108(1,7*9)


Iterative alg.
67500(10*10)
64800(10*10)
63450(10*10)
100800(10*10)
94500(10*10)
88200(10*10)
88493(10*14)
56956(14*18)
68565.5(7*9)
64156(7*9)
59701(14*18)
58160(14*18)
41407(14*18)
51576(7*9)
39268.5(14*18)
37340(14*18)


Greedy alg.
57660
56843
56671.5
82374
81442.5
77972
70992
51293
50750.5

51536
51350
36205
35972.5
35525.5
34975


Reduction(%)
5.11
4.16
4.07
-10.26
-0.37
6.81
-9.40
0.25
-0.32
-6.14
0.17
0.13
-1.19
-1.42
-2.43
-3.24


the cost reduction was about 1 .


The iterative version of the 1.96 + e algorithm, however,


outperformed the base version in 31 of the 80 test cases and cost reductions as high as

211'- were observed. In 6 of the 80 tests, the iterative version of the 1.96 + e algorithm

outperformed the base 1.58 + e-algorithm; but, never by more than 1 On the remaining

74 tests, the base 1.58 + e algorithm did as well as or better than the iterative version of

the 1.96 + e algorithm; the cost reductions were as high as 3:l' So, the 1.58 + e algorithm

is generally superior to both the iterative versions from the standpoint of running time

(the time required by each of the base approximation algorithms is less than 1 second per

test case) and of the cost of the deploy, 1 sensors.

Although our greedy algorithm took less than a minute to solve each of our test cases,

it generally produced sensor deployments whose cost exceeded that of the deployment

obtained by our 1.58 + e algorithm. The greedy algorithm produced better solutions on

0, 0, 2, 3, and 9, respectively, of the 16 tests sets for each of q = 1, 2, 3, 4, 5; the 1.58 + e

algorithm did better on the remaining 66 test sets. The cost reduction in the 1.58 + e

solutions relative to the greedy solutions ranged from -1(C t' to 29.2"' We expect that

for larger q values, our greedy algorithm will outperform the remaining 4 algorithms.









2.4.3 Comparison with Divide-and-Conquer

C'!, 11:1 iarty et al. [6] propose tiling an Vn x Vn grid using an optimal solution

for a Vd x V/d subgrid. However, they are not very specific about how to select d. Two

reasonable choices for d are (1) choose the largest d for which the ILP is solvable with the

amount of computational resource we wish to expend and (2) choose d as in (1) but with

the added restriction that Vd be a divisor of Vn. If d is selected as in (1), we need to way

to handle the portions of the Vn x Vn grid that are not covered by whole subgrids.

We compare the performance of the divide-and-conquer method of [6] with that of

our 1.58 + c-approximation algorithm. For this comparison, we use the cost/point of the

optimal solution for the largest ILP solvable using our formulation and the 25 data sets of

Table 2-3. The cost/point for the 1.58 + c-approximation algorithm is obtained by dividing

the total cost of the sensors deploy, 1 on a 300 x 300 grid by the number of points (90,000)

in the grid. This comparison is biased in favor of the divide-and-conquer algorithm as this

comparison assumes that the size of the grid to be covered is a multiple of the size of the

subgrid solved using the ILP. However, for the 1.58 + c-approximation algorithm, we use

the greedy algorithm to cover portions of the 300 x 300 grid not covered by whole subgrids

(i.e., greedy filling). Table 2-9 gives the cost/point for each algorithm and the percent

reduction in cost/point achieved by the 1.58 + c algorithm relative to that achieved by the

divide-and-conquer algorithm of [6] using our ILP formulation; the time allowed to the ILP

solver was 1000 seconds. Both algorithms produced deployments with the same cost/point

on 2 of the 25 data sets. On the remaining 23 data sets, our 1.58 + c-algorithm had a

smaller cost/point. The average reduction in cost/point obtained by our algorithm was

7' the maximum reduction was 12.5'. and the minimum reduction 0' When the time

available to the ILP solver is only 100 seconds, these percentages were 6.9' 23.1.'. and

-3.1..' (on one test set, using our ILP, the divide-and-conquer algorithm of [6] did better

than our 1.58 + c algorithm, on 2 test sets the two algorithms were tied, and our 1.58 + e

algorithm was superior on the remaining 22 data sets). As noted earlier, for the test cases









with q = 5, we expect that our greedy algorithm will provide even a greater cost reduction

than obtained by our 1.58 + c algorithm.

Table 2-9. Cost/point using [6] together with our ILP with T = 1000 seconds and our
1.58 + c algorithm


Test case
[1, 2, 3, 3, 1.5, 1]
[2, 2, 3, 3, 1.5, 1]
[3, 2, 3, 3, 1.5, 1]
[4, 2, 3, 3, 1.5, 1]
[5, 2, 3, 3, 1.5, 1]
[1,2,7,4,5,3]
[2, 2, 7, 4,5, 3]
[3, 2, 7, 4,5, 3]
[4, 2, 7, 4,5, 3]
[5, 2, 7, 4,5, 3]
[1, 2, 6, 4, 5, 3]
[2, 2, 6, 4,5, 3]
[3, 2, 6, 4,5, 3]
[4, 2, 6, 4,5, 3]
[5, 2, 6, 4,5, 3]
[1, 2, 7, 5, 5, 4]
[2, 2, 7, 5,5, 4]
[3, 2, 7, 5,5, 4]
[4, 2, 7, 5,5, 4]
[5, 2, 7, 5,5, 4]
[1, 3, 5, 5, 3, 3, 1.5,
[2, 3, 5, 5, 3, 3, 1.5,
[3, 3, 5, 5, 3, 3, 1.5,
[4, 3, 5, 5, 3, 3, 1.5,
[5, 3, 5, 5, 3, 3, 1.5,


[6] + our ILP
0.12
0.276
0.413
0.551
0.689
0.2
0.418
0.638
0.847
1.06
0.187
0.373
0.551
0.735
0.923
0.13
0.256
0.348
0.477
0.605
0.094
0.175
0.260
0.349
0.438


1.58+c
0.12
0.242
0.364
0.486
0.608
0.2
0.402
0.605
0.807
1.01
0.173
0.344
0.517
0.691
0.863
0.115
0.227
0.341
0.456
0.568
0.0823
0.163
0.244
0.325
0.407


Reduction( )
0
12.31
11.86
11.80
11.76
0
3.83
5.17
4.72
4.72
7.49
7.77
6.17
5.99
6.5
11.54
11.33
2.01
4.4
6.12
12.45
6.86
6.15
6.88
7.08









CHAPTER 3
SENSOR DEPLOYMENT FOR REGION COVERAGE

In this chapter, we consider the MCSDP problem of deploying sensors, at most 1

sensor at each location of S, so as to provide q-coverage, q > 1, for a region R at minimum

cost. Suppose that we have a sufficient supply of sensors of t different types. Let ri > 0

and ci > 0, respectively, be the sensing range and cost of a sensor of type i. Without

loss of generality, we may assume that no two sensor types have the same range or the

same cost and that ri < rj iff ci < cj. Let S be the set of sites where it is feasible to

place a sensor and let R be a region in Euclidean space that is to be monitored. For this

MCSDP for region coverage, we propose three approximation algorithms. The first is

a factor 3 approximation algorithm whose compuational complexity is linear in the area

of the region R. The second is an .,-i-~ ,iil I ic polynomial time approximation scheme

(PTAS). Its complexity is .,-i-,!i,1 ically linear in the multiplication of the area of the

region R and a system parameter 1. The third algorithm tackles the MCSDP problem

from a different perspective. It transforms the region coverage instance into an equivalent

point coverage instance and solves region coverage via point coverage. A special case

where sensors are deploy, ,1 in a gridded fashion is also considered. Finally, experiments are

conducted to evaluate the performance of our algorithms.

3.1 Exact 3-Approximation Algorithm

Let tMax = argmax
positive constant. Our 3-approximation algorithm, 3-approx (Figure 3-1), begins by tiling

R with regular hexagons whose sides have length L; some of the hexagons that overlap the

boundary of R may contain portions of the Euclidean space that are not in R. Next, for

each hexagon, Hi, of the tiling, we find an optimal (i.e., least cost) sensor deployment that

q-covers Hi n R. Finally, the optimal sensor deployments for the hexagons in the tiling

are combined by ensuring that no site in S has two or more sensors. To the algorithm of









Step 1: Tile R with regular hexagons whose side length is L = 2rMax + e.
Step 2: For each hexagon Hi of the tiling find an optimal deployment of sensors to sites
in S so as to q-cover Hi n R.
Step 3: Combine the optimal deployments found in Step 2 for all of the hexagons in the
tiling. In case a site of S has two or more sensors assigned to it, discard all but
the sensor with maximum range.

Figure 3-1. Algorithm 3-approx


Figure 3-1, we may add an optional pruning step in which redundant sensors (i.e., sensors

whose omission doesn't affect the q-coverage property) are eliminated.

It is easy to see that 3-approx constructs a q-cover for R with at most one sensor

per site in S provided such a q-cover exists. In the following, we establish that the cost of

the constructed q-cover is at most 3 times that of an optimal q-cover and we analyze the

complexity of 3-approx.

Lemma 11. A sensor at a site s E S can cover points in at most three of the hexagons of

the tiling of Step 1 of 3-approx.

Proof We consider only the case when s is located within one of the hexagons (-v

H1) of the tiling (see Figure 3-2). The proof for the case when s is in no Hi (this may

happen when S has locations outside of R) is similar. Let d(pi,p2) be the Euclidean

distance between two points pi and p2 and let d(Hi, Hj) be the smallest distance between

two points one of which is in Hi and the other is in Hj. Since, d(pi, s) > L > rMax

for points outside of the 7 hexagons shown in Figure 3-2, the sensor at s cannot cover

points outside of the 7 hexagons. Notice that d(H, Hj) = L for i,j E {2, 4, 6} as well

as for i,j E {3,5,7}. From this observation, L = 2rMax + c > 2rMax, and the

triangle inequality, it follows that for any point pi in Hi and p2 in Hj, i,j e {2, 4, 6}

or i,j e {3, 5, 7}, d(p, s) + d(p2, s) > 2rMax. Hence, either d(p, s) > rMax or

d(p2, s) > rMax or both. So, the sensor at s can cover points in at most one of H2, H4,

and H6 and at most one of H3, H5, and H7. This sensor may cover also points in H1.

Hence, points in at most 3 of the hexagons of the tiling may be covered. m

Theorem 6. 3-approx is a 3-approximation il'.irithm.
























Figure 3-2. Sensor at s E S can cover points in at most 3 hexagons


Proof Consider any instance of the q-cover problem for which there is a feasible solution

(i.e., a selection of sensors, at most one per site in S, that q-covers R). Start with an

optimal solution O for this instance. Let cost(O) be the cost of sensors deploy. 1 in O.

To each hexagon Hi in the tiling of Step 1, assign the subset of sensors of O that cover

points in Hi. Let cost(Hi) be the cost of the sensors assigned to Hi. From Lemma 11, it

follows that the assignment of sensors to hexagons, assigns each sensor of 0 to at most 3

hexagons. Hence, E cost(Hi) < 3cost(O). Since the sensors assigned to Hi q-cover Hi n R,

their cost must be at least that of the deployment computed in Step 2. So, the sensor

deployment following Step 3 has a cost that is at most 3cost(O). m

The complexity of algorithm 3-approx is governed by the time it takes to determine

the optimal q-cover for each of the hexagons in the tiling. When computing the optimal

q-cover for a hexagon H, we need consider only those sites in S that line in the shaded

region shown in Figure 3-3. The area A of this region is area(H) + perimeter(H) *

rMax + wrMax2. = 1.50L2 + 6L rMax + wrMax2. Under the assumption that the

site density (i.e., number of sites in any region of area A) is bounded (this is the case,

for instance, when there is a fixed lower bound on the distance between two sites) by

some fixed constant and the number of sensor types t is similarly bounded, the size of the










state space for each Hi is bounded by a (potentially very large) constant. The optimal

deployment for each Hi may, therefore, be found in constant time by simply searching the

state space of Hi. Under these assumptions, the complexity of 3-approx is linear in the

number of hexagons in the tiling.


rMar

I-- 2rMax+r -P-











Figure 3-3. Location of sites that can cover points in H


3.2 Asymptotic PTAS

We employ the shifting strategy of [2, 19] to arrive at an approximation scheme for

the q-cover problem. Let 1 > 1 be an integer shifting parameter. The cost of the sensor

deployments computed by our approximation scheme will be within a multiplicative factor

of 1 + 1/1 of the cost of an optimal deployment. By making 1 suitably large, we can obtain

deployments as close to optimal as desired. Figure 3-4 gives our approximation scheme

AS.

Unlike algorithm 3-approx, which considers a single tiling of the region R that is to

be q-covered, algorithm AS considers a family, T1, *- T1, of tilings. To obtain a tiling in

this family, we begin by determining the smallest bounding rectangle U of R. Next, this

bounding rectangle is tiled using tiles whose height equals that of U but whose width is

1 L, where L = 2rMax + c and c is a positive constant. The first and last tiles in the

tiling are exceptions. In Ti, the width of the first tile is i L. In case tiling with a tile of









Step 1: Let U be the smallest bounding rectangle for the region R. Let Vi be a tile whose
height equals that of U and whose width is i L, 1 < i< 1. Let Ti be the tiling of
U in which the first tile is Vi. This tile is followed by zero or more tiles of type V1.
An additional tile is used at the right end (if necessary) to cover the remainder of
U. The width of this last tile is < 1 L and is chosen so as to cover the remaining
uncovered width of U.
Step 2: Do Steps 3 and 4 for 1 < i < 1.
Step 3: For each tile T in the tiling Ti, find an optimal deployment of sensors to sites in
S so as to q-cover T n R.
Step 4: Combine the optimal deployments found in Step 3 for the tiles in Ti. In case a
site of S has two or more sensors assigned to it, discard all but the sensor with
maximum range.
Step 5: From the constructed deployments for Ti, .. Tl, select the deployment that has
least cost.

Figure 3-4. Algorithm AS


width i L followed by tiles of width I L doesn't exactly cover U, a last tile whose width

is less than I L is used in Ti.

In Steps 2 through 4, we compute an optimal deployment for each of the tilings Ti

using a strategy similar to that used for the hexagonal tiling used in 3-approx (i.e., find

an optimal deployment to q-cover the sub-region of R included in each tile of Ti and then

combine these optimal deployments to obtain a q-cover for R). Finally, in Step 5, the best

of the q-covers over all I tilings TI, T1 is selected as the deployment to use.

As in the case of algorithm 3-approx, we may add an optional pruning step in which

redundant sensors (i.e., sensors whose omission doesn't affect the q-coverage property) are

eliminated.

It is easy to see that AS finds a q-cover for every instance for which there is a q-cover.

The following theorem establishes that AS is, in fact, an approximation scheme for the

q-cover problem.

Theorem 7. Algorithm AS is an approximation scheme for the q-cover problem. Si'.. :7-

, ./l;., the computed q-cover has a cost that is within a multiplicative factor (1 + 1/1) of the

cost of an optimal q-cover.









Proof Consider any instance of the q-cover problem for which there is a feasible solution.

Let O be an optimal solution for this instance, let cost(O) be the cost of sensors deploi-y l

in 0, and let cost(Ti) be the cost of the sensor deployment computed in Step 4 of AS

for the tiling Ti. Since each tile in Ti, except possibly the first and last, has a width

I L > 2rMax, no sensor can cover points in 3 or more consecutive tiles. Let Oi be the

sensors deploi-, 1 in O that cover points in 2 tiles of Ti. Using a distribution scheme similar

to that used in the proof of Theorem 6, we obtain


cost(Ti) < cost(O) + cost(Oi)


Suppose that a sensor of O that lies in the first tile of Ti covers a point in the second

tile of Ti. Since L > 2rMax, this sensor is part of the second tile of Tj, j < i and does

not cover a point in any tile of Tj that is not part of this second tile. For j > i, this sensor

remains in the first tile for Tj and is unable to cover points that are not in the first tile of

Tj. Hence, this sensor, which is in Oi, is not in any Oj, j / i. By reasoning in a similar

fashion, we may show that all Ois are di-I. ii and so



Scost(Oj) < cost(0)
i= 1
Hence,



mm {cost(Ti)}
1 1 I
< Z cost(Ti)
i=1
1
S(cost(O) + cost(O))
i=1

cost(O) + cost(Oi)
i i
< (1 + )cost(O)
I











Under assumptions similar to those made in the analysis of 3-approx, the complexity

of AS is linear in the product of I and the number of rectangles in a tiling Ti.

3.3 Region Coverage via Point Coverage

Since known algorithms [4, 22, 61, 72] to verify that a sensor deployment actually

provides region coverage with the desired coverage degree are rather cumbersome while

similar algorithms for point coverage are rather straightforward, we are motivated to

transform a region coverage instance into an equivalent point coverage instance. We

assume that there is only 1 sensor type and that at most 1 sensor may be placed at

each location in S. Let r be the sensing range of a sensor. We assume that each sensor

can monitor/cover the entire disk of radius r centered at itself. The objective is to find

the minimum cost (since there is only 1 sensor type, minimizing cost is equivalent to

minimizing the number of sensors) sensor deployment that provides the desired degree, q,

of coverage over the region R. Such a sensor deployment, denoted by OPTR(r), is called

an optimal dce/'1',;;'. i/ and its cost is cost(OPTR(r)).

The transformation from region coverage to point coverage may be accomplished

by superimposing a grid of points over R such that every point of R is within a distance

d of at least one grid point that is inside R. Here, d < v2r is the distance between

.,,li i:ent grid points and is an optimization parameter. Let G(d) denote those grid points

that are in (or on the boundary of) R. Note that some or all locations in S may not be

points of G(d) and may not even be in R. Figure 3-5 shows G(d) for the case when R is a

rectangle. G(d) is composed of the small circles (both shaded and unshaded) in this figure;

the outermost grid points are a distance d/2 from the boundary of R. Let ri r d > 0.

Lemma 12. Let D(r/) be a dce/'/.1';,,, I of sensors whose rir,,.. is ri. If D(r/) q-covers

G(d), then D(r) (note that D(r) is -.'.,,i;/, D(r/) with the sensor r,,.' I,J,,,. l from rI to

r) q-covers the region R.











S0 0 0 0 0 0 0 0 0
0 0 0 0 0 O 0 0 0 0
S0 0 0 0

0 *0 0 0

O O ** O

0 0 0 0 0 0 0 0 0 0

Figure 3-5. G(d) for a rectangular region R. The 16 shaded grid points are within a disk
of radius r centered at the location s.


Proof Consider any point P in the region R. Let Pi c G(d) be the grid point closest

to P. From the definition of G(d), it follows that d(P, PI) < Since D(r/) q-covers

G(d), there are at least q sensors in D(r/) that are within a distance ri of PL. From the

triangular inequality, it follows that these q sensors are within a distance ri + d(P, PI) < r

of P. Hence, D(r) q-covers P.

Corollary 1. Let OPTc(d, r) be an optimal de'l..';,i. i,/ of sensors, whose rr,,j. is r/,

that q-covers G(d). cost(OPTG(d, r/)) > cost(OPTR(r)).

Note that when G(d) cannot be q-covered using sensors whose range is r/, cost(OPTc(d))

oc. Note also that sensors may be deploiv, 1 only to locations in S.

Lemma 13. Consider an infinite grid of points with point separation d. Let MAX(r) and

MIN(r), ,. -/,. ,';. ; I, be the maximum and minimum number of grid points covered by a

sensor whose rI.s,. is r. MAX(r) < 7r()2 + 2L2'] + 1 and MIN(r) > 7r(9)2 2 L2']

Proof Without loss of generality, assume that the sensor is located at (0, 0) and that

Pi, i = 1, 2, 3, 4 are the 4 grid points closest to the sensor (Figure 3-6). We may further

assume that P1i (x d, y d) is closer to the sensor than are Pi, i = 2, 3, 4. Clearly,

0 < x < and 0 < y < Label the row in which P1 lies row 0, the row right above

(below) Pi is row 1 (-1), and so on. Let maxrow be the row number of the highest row

that is partially covered by the sensor and let minrow be corresponding lowest row. Note

that L2J] < maxrow minrow + 1 < [2'J + 1.










Let row(i) be the number of grid points in row i that are covered by the sensor.

Clearly, [2 ()2- (Y + i)2J < row(i) < [2 (f)2- (Y + i)2J + 1.

maxrow
MAX(r) = row(i)
i =mnrow
maxrow
S (L2 ( )2 (1 )2J +1)
i=minrow
maxrow
S(L2 ( )2 )2) + L2] +
i=minrow

< (2 ( )2 (y.ii)2)L2']
i=minrow
maxrow
+ E (2 ( )2 (1 + i)2) + L2] + 1
i 1

< 2 ( ()2 y2dy + 2L2 + 1
r d d
d
< ()2 + 2[2> + 1




maxrow
MIN(r) = row(i)
i=minrow
maxrow
> L2 ( )2 (y l+)2j
i=minrow
maxrow
> (2 ( )2 (y +i)2 1)
i=minrow
maxrow
S (2 ( 2 (y +1 )2) [2 ]
i=minrow
> ( ) 2 -2 [L2]
d dxists, costd



Lemma 14. When D(rl) as in Lemma 12 exists, cost(OPTG(d, r/)) < F cost(OPTp(r)),


where F < MAX(r) MIN(r) + 1.










d0 0 0 0 0 0 0 0 0 0

0 0 0 0 O
0 0 S 0Q 0 0 0 0


0 0O00

0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0

Figure 3-6. The sensor s is located inside the square formed by four grid points Pi,
i = 1, 2, 3, 4, and covers MAX(r) grid points, shown in dark color.


Proof The optimal deployment OPTR(r) q-covers every point in R and hence q-covers

every point in G(d). When the sensing range of the sensors in the deployment OPTR(r)

is reduced to r/, this deployment may no longer q-cover every point in G(d). For each

sensor s in OPTR(r), the difference between the number of grid points covered by s

before and after the sensing range reduction is at most MAX(r) MIN(rl). Note that

even though MAX(r) and MIN(rl) are defined with respect to infinite grids, the bound

MAX(r) MIN(rt) applies to G(d), which is a finite grid. This is so because the stated

bound may overestimate (but not underestimate) the difference. Since the deployment

D(r/) exists, by placing a sensor whose range is rl at at most MAX(r) MIN(rt)

points of S at which there is no sensor, we can cover all points of G(d) covered by s

when its sensing range was r. Repeating this process for each s E OPTR(r), we obtain a

deployment that has at most F size(OPTR(r)) sensors with sensing range rl that q-covers

G(d).

Lemma 15. F < 12.443' 2.399.

Proof












MAX(r) MIN (r)

< () + 2L2]J + 1
d d
d) -


L2)2)+2[2]+t (
d d
< x( )2+2[2 J+l-(x( -
r 1 r



+2(d ) + 2I- v2]

< (8 + ( )2 +41 2+

d 2
< 12.443 3.399
d


d
12

S)2


Hence, F < MAX(r) MIN(rl) + 1 < 12.443' 2.399.

Theorem 8. Let R be a region for which the de~j1. ;;/, -i,/ D(r/) exists. cost(OPTR(r)) <

cost(OPTG(d, r/)) < (12.443 2.399)cost(OPTa(r)).

Proof Follows from Corollary 1 and Lemma 15.

Notice that the use of a finer grid (i.e., smaller d) results in a larger approximation

factor. This would argue in favor of using the maximum possible d; that is d = V2r. For

this value of d, the approximation factor is

(12.443 2.399) 12.443/-- 2.399 6.4

Of course, while the approximation factor is minimized when d = V2r, it is entirely

possible, and intuitively, we expect so, that on some instances, better deployments

are obtained using a smaller d. Our nonintuitive result that the approximation factor

is smaller when d is larger is an artifact of the proof method used to establish the









approximation factor. Further, it may be necessary to use a smaller d to ensure the

existence of the deployment D(r/).

3.4 Coverage with a Grid of Sensors

In this section, we consider q-covering a large rectangular region R by deploying

sensors in a gridded (equilateral triangle, square, and regular hexagon, see Figure 3-7)

layout, exactly one sensor per grid point. We use the symbols T, S, and H, respectively,

to refer to the three grid geometries (equilateral triangle, square, and regular hexagon)

considered by us. We use d to denote the size (i.e., side length) of the geometry being

considered. For the problem considered in the section, there is only 1 sensor type;

the sensor range is r; and we wish to minimize the number of sensors deploy, 1 We

assume that r is much smaller than the height and width of the rectangular region R

that is to be q-covered. So, we neglect boundary effects in our analysis. With these

assumptions, minimizing the number of sensors for each gridded layout is equivalent to

finding dMax(X, q), X E {T, S, H}, the maximum value of d for the geometry X for which

the resulting gridded layout q-covers the plane. We consider the case when 1 < q < 5,

which we believe to be the most practical.

d

AX\ \ \ /




(A) Equilateral tangle (B) Square (C) Regular hexagon



Figure 3-7. Gridded layout using a geometry size d. A) Equilateral triangle. B) Square.
C) Regular hexagon.









Table 3-1. dMax, maximum APN, and .-i-ii.iil. i, ratio 1 < q < 5
q dMax Maximum APN Asymptotic ratio
1 3r 3r .2 2,=1.209
2 9r9
2 r 32r52 t1.814
Equilateral triangle 3 r vr2 2,3 1.21
24 r2 4 1.21
2 2 3 .
r5 r 7r2 745 1.27
1 Vr 2r2 =1.57
2
2 r r2 -1.57
2
r 12
Square 3 -2 4 52 5I 1
4 3v2r 18r2 25- 1.09
5 25 72
5 /r 22 w 1.57
1 r v3r2 473 2.402
4 9
2 r v3r2 2v4 1.209
4 9
Regular hexagon 3 r 3v3r2 ,3 1.41
4 5 75 /2 49" / 1.185
_7 196 V 225
5 v 2 47, 1 .451
4 15


Following [1], we use 7l to denote the maximum area per node (APN) in the gridded

layout1 that results in q-coverage, with geometry X e {T, S, H}. From the well-known

formulas for the area of a geometry and the number of geometries that share a common

vertex in a gridded layout (e.g., each vertex in a hexagonal grid is shared by 3 hexagons),

it follows that



7= 2 dMax(T, q)2

7Yq dMax(S, q)2

7 4 = 3dMax(H, q)2

Since a sensor can cover an area of at most 7rr2, rr2/q is an upper bound on the value

of APN for any q-cover. Hence, the ..- i','.!ll.lic ratio, ratios = rr2/(xq) is a measure




1 APN is the area of the region divided by the number of nodes/vertices in the gridded
layout for that region.









of the efficiency with which geometry X is able to q-cover the plane. This ratio gives an

upper bound on the ratio (number of sensors in the gridded deployment)/(number of

sensors in an optimal deployment). Note that the optimal deployment is not required to

be gridded.

Table 3-1 summarizes the values of dMax, the maximum APN 7~, and the

.-i~,i,!I ,l ic ratio ratioX for the geometries considered in this section. The results for

q = 1 are from Bai et al. [1] and those for 2 < q < 5 are derived later in this section.

Actually, we derive only the value of dMax(X, q), 2 < q < 5 as the values of 7q and

ratioX are simply computed using the equations give earlier and the value of dMax(X, q).

From the ..ii- ,ii1 l i, ratios given in Table 3-1, we see that the triangular grid, is

more efficient than the square and hexagonal grids for 1 coverage. In fact, it achieves

an ..-i-I, l lic ratio of 1.2. This is about 211'. less than that for the square grid and 510'.

less than that for the hexagonal grid. So, for 1-coverage, the triangular grid uses about

211' fewer sensors than does the rectangular grid; the triangular grid uses half the sensors

required by the hexagonal grid. For q = 2, the hexagonal grid is most efficient requiring

about :; fewer sensors than required by the triangular grid (an .,-i-,!l,,l ic ratio of 1.2

for the hexagon versus 1.8 for the triangle) and about 21 fewer sensors than required by

the square grid. For q = 3, the triangular grid is again most efficient (..-i ,1.!.l ic ratio

is 1.2). However, the square and hexagonal grids are quite competitive with ..i -1 11il.l ic

ratios of 1.3 and 1.4, respectively. Not surprisingly, when q = 4, the square grid is most

competitive and comes within 9' of our lower bound on the number of sensors required

for 4-coverage. The triangular and hexagonal grids are within 21 and 19'. respectively,

of this lower bound. When q = 5, the triangular grid is once again most effective and

comes within 27'. of our lower bound. We note that the stated results (though now we use

total sensor cost as our efficiency metric rather than number of sensors) and bounds apply

even when we have a mix of sensor types provided we use only sensors with the least value

of cost/range2.


















Ak "B

Figure 3-8. Equilateral triangle, q 2


It is interesting to note that the upper bound of 7rr2/q used by us in the computation

of the .,-vmptotic ratio is rather loose. For example, for the case of 1-coverage (q = 1)

Kershner [27] has shown that placing sensors at the vertices of an equilateral triangle

whose sides are /3r minimizes the number of sensors required to cover the plane (this

result was rediscovered in [71]). So, for 1-coverage, 3-r2 is a tight upper bound on the

achievable APN. Our formula for .,-i-~! .' ic ratio uses the weaker upper bound of 7rr2/q.

In the remainder of this section, we abbreviate dMax(X, q) by dMax as the values of

X and q are evident from the context. We use dk(P) to denote the smallest distance such

that at least k sensors are within this distance of point P. Recall that in the model being

considered, there is a sensor at each vertex of the geometry being used.

3.4.1 q = 2

Equilateral Triangle.

For points P that are geometry vertices, d2(P) d, the length of a side of a triangle.

For example, for the vertex A of Figure 3-8, there is one sensor at a distance of 0 (i.e.,

the sensor at A) and no additional sensor until a distance of d. At distance d from A,

there are several sensors (those at B and C plus another 4 on the 4 distinct vertices of

the 5 other triangles that share A as a vertex). For every other point P, d2(P) < d (see

Figure 3-8). Hence, dMax = r.

Square.




















A B
Figure 3-9. Square, q 2


Every point P in the plane lies in2 a triangle with side lengths d, d/ /2, and d//2.

Each vertex at the end of the triangle side whose length is d has a sensor; the remaining

triangle vertex is the center of a square of the gridded layout and has no sensor (see

Figure 3-9). The distance between P and these two sensors is < d. So, d2(P) < d. For

points P that are geometry vertices, however, d2(P) = d. For example, for the vertex A of

Figure 3-9, there is one sensor at a distance of 0 (i.e., the sensor at A) and no additional

sensor until a distance of d. At distance d from A, there are several sensors (those at B

and D plus another 2 on the 3 other squares that share A as a vertex). Hence, dMax = r.

Regular Hexagon.

For points P that are geometry vertices as well as for the center of a hexagon,

d2(P) = d, the length of a side of a hexagon. For example, for the vertex A of Figure 3-10,

there is one sensor at a distance of 0 (i.e., the sensor at A) and no additional sensor until

a distance of d. At distance d from A, there are three sensors (those at B and D plus

another one on the two other hexagons that share A as a vertex). Every point in the plane

is in one of the side d equilateral triangles that partition a regular hexagon into triangles

(see Figure 3-10) and every such triangle has sensors on 2 of its 3 vertices (the third vertex



2 Our use of the word "in" includes the boundary of the geometry referred to.









0 D


d

A





Figure 3-10. Regular hexagon, q 2

is the center of a hexagon and has no sensor). So, for every point P that is not the vertex
of a tiling hexagon, d2(P) < d. Hence, dMax = r.
3.4.2 q = 3
Equilateral Triangle.
A proof similar to that used for the q = 2 case establishes d3(P) = d for the vertices
of the triangle and d3(P) < d for all other points P. So, dMax = r.
Square.
Consider the square of Figure 3-11. P is the mid point of a side of the square. The
sensors at E and F are at a distance of d/2 from P. The remaining sensors are at least
d(A, P) = d away. So, d3(P) = 'd. Next, consider points p (other than B, which
is the mid point of the edge AD) in the shaded triangle ABC. d(p, A) < d(C, A) < d,

d(p,D) < d, and d(p, E) < d(B,E) = d. So, d3(p) < d3(P). By symmetry, d3(p) < d3(P)
for all points other than edge mid points. So, dMax = r. Or, dMax = r.
Regular Hexagon.
Consider the regular hexagon of Figure 3-12. P is the mid point of a side of the
hexagon. The sensors at E and G are at a distance of d/2 from P. The remaining sensors
are at least d(A, P) /d2 + ()2 2dd cos(2,) = "d (from the law of cosines) away. So,

d3(P) 7d. Next, consider points p (other than B, which is the mid point of the edge
AE) in the shaded triangle ABC. d(p, A) < d(C, A) = d, d(p, E) < d(C, E) = d, and









Eo d/2


d




A


d/2 F





C


Figure 3-11. Square, q=3


Figure 3-12. Regular hexagon, q-


D G
-3


d(p F) < d(B,F) -= d. So, d3(p) < d3(P). By symmetry, d3(p) < d3(P) for all points
other than edge mid points. So, $dMax = r. Or, dMax = r.
3.4.3 q = 4
Equilateral Triangle.
Figure 3-13 shows 4 of the triangles in a gridded layout. The length of each side of
each triangle is d. Let P be the circumcenter of the equilateral triangles BDF and ACE.
The circumradius d(A, P) = d(C, P) = d(E, P) of the equilateral triangle ACE is d and
that of triangle BDF is The point P has three sensors at a distance These are the








B
d B
C A


D F


E
Figure 3-13. Equilateral triangle, q=4

sensors at B, D, and F. However, the next nearest sensors (those at A, C, and E) are at a
distance of -d. So, d4(P) -2d.
For any p / P inside triangle BDF, d(p, B) < d, d(p, D) < d, and d(p, F) < d.
Further, one of d(p, A), d(p, C), and d(p, E) is less than the circumradius of triangle ACE.
So, d4(p) < d. Combining the bounds for the cases P is the circumcenter of a triangle
and p / P, we see that no matter which point we consider in the plane, there are 4 sensors
within a distance d and this bound is tight. So, dMax = r.
Square.
Figure 3-14 shows 4 squares of the gridded layout. There is a sensor at each corner of
each square (i.e., grid position). The point P is the circumcenter of the isosceles triangle
ACE. Note that d(A, C) =d(E, C) = 5d and d(A, E) = 2d. So, the circumradius of
triangle ACE is d(A, P) d(C, P) d(E, P) = c = 2d. Let disk(P, c) denote a disk
of radius c centered at P. The six sensors A-F are in this disk and every disk centered
at P and having smaller radius than c excludes (at least) the sensors at A, C, and E. So,
d4(P) = c.
Next, consider the triangle FGH, where G is the mid point of the side BF and H is
the mid point of the square BCDF. For every point p / P in this triangle, d(p, F) < d
d(p,B) < d, and d(p, D) < vd < c. Also, since ', .:,.i,, :(FGH) C disk(A,c) U disk(C, c),
either d(p, A) < c or d(p, C) < c. So, there are 4 sensors within a distance c of every point















B P nE P i\


0-
Co H C

D \isk(C,c)

(a) (b)

Figure 3-14. Square, q=4

of triangle FGH. By symmetry, it follows that there are 4 sensors within a distance c of

every point in the d x d square centered at F. This implies there are 4 sensors within

a d x d square centered at each grid point of the layout and hence within a distance c

of every point in the plane. So, the maximum d that results in 4-coverage is such that

r c 2d. So, dMax = 2vr.

Regular Hexagon.

Figure 3-15 shows 3 hexagons of the gridded layout. There is a sensor at each corner

of each hexagon (i.e., grid position). The point P is the circumcenter of the isosceles

triangle ADF. Note that d(A, D) = d(A, F) 7d and d(D, F) = d. So, the

circumradius of triangle ADF is d(A, P) d(D, P) = d(F, P) = c = d. Since

d(E, P) d and d(J, P) d(K, P) d > c, the sensors at E, J, and K are not in

disk(P, c). Only the sensors at A-D, F, and G are in disk(P, c). This together with the

observation that every disk centered at P and having smaller radius than c excludes (at

least) the sensors at A, D, and F. So, d4(P) = c.

Next, consider the triangle BHI, where H is the mid point of the side BG and I is

the mid point of the hexagon BCDEFG. For every point p / P in this triangle, d(p, B) <

d, d(p,G) < d, and d(p, C) < id < c. Also, since tr:,,l.. (BHI) C disk(A, c) U disk(F,c),




















(a) (b)
Figure 3-15. Regular hexagon, q=4


either d(p, A) < c or d(p, F) < c. So, there are 4 sensors within a distance c of every

point of triangle BHI. The hexagon BCDEFG may be partitioned into 12 triangles

(including BHI) that are symmetric to BHI. By symmetry, it follows that there are 4

sensors within a distance c of every point in these 12 triangles. In other words, there are

4 sensors within a distance c of every point in the hexagon BCDEFG and hence within

a distance c of every point in the plane. So, the maximum d that results in 4-coverage is

such that r c d. So, dMax r.

3.4.4 q = 5

Equilateral Triangle.

Figure 3-16 shows 4 of the triangles in a gridded layout. The length of each side of

each triangle is d. Let P be the mid point of the side DF. The sensors at D and F are

d/2 from P while those at B and E are at a distance of $d. The sensors at A are C are

next in proximity to P. From the law of cosines, we obtain d(A, P) = d(C, P) = c

d2+ 2 -2d cos( ) d. So, ds(P) = d.

For any p / P inside triangle FGP, where G is the common circumcenter of the

equilateral triangles ACE and BDF, d(p, B) < d, d(p, D) < d, d(p, E) < 2d < c,

d(p, F) < d < c, and d(p, A) < c. So, the sensors at A, B, D, and F are within c of every
point in triangle FGP. By drawing lines from the vertexes of triangle BDF through the









d B

C G A


D P F


E
Figure 3-16. Equilateral triangle, q=5

A






d /






Figure 3-17. Square, q=5

circumcenter G and up to the opposing edge of the triangle, we partition the triangle into
6 smaller triangles (including triangle FGP) that are symmetric to FGP. From symmetry

it follows that there are 5 sensors within a distance c of every point in triangle BCD and
hence within c of every point in the plane. So, the maximum d that results in 5-coverage is
such that r = c = d. So, dMax r.
Square.
Figure 3-17 shows 4 squares of the gridded layout. The point P is the center of the

square BCDE. The sensors at B, C, D, and E are closest to P; each is a distance
from P. The next closest sensors are at a distance of c = 1-d (e.g., the sensor at A). So,
d(P) = c.


















(a) (b)
Figure 3-18. Regular hexagon, q=5

Next, consider the triangle BFP, where F is the mid point of the side BE. For every

point p / P in this triangle, d(p, B) < d, d(p, C) < $d < c, d(p, D) < /2d < c,

d(p, E) < d, and d(p, A) < c. By symmetry, it follows that there are 5 sensors within
a distance c of every point in the square BCDE and hence within every point in the

plane. So, the maximum d that results in 5-coverage is such that r c -d. So,
dMax = r r.

Regular Hexagon.

Figure 3-18 shows 3 hexagons of the gridded layout. The point P is a vertex of a
hexagon. There are 4 sensors (i.e., those at A, C, G, and P) that are within a distance d
of P. The next nearest sensor is at a distance /3d (e.g., the sensors at D, F, J, and K).

So, d5(P) c= V3d.
Next, consider the triangle HIP, where H is the mid point of the side GP and I

is the mid point of the hexagon CDEFGP. For every point p / P in this triangle,

d(p, P) < d, and d(p, C) < $d, d(p, G) < d, and d(p, F) < c. Also, since tr(.'.,l. (HIP) C
disk(A,c) U disk(E, c), either d(p,A) < c or d(p, E) < c. So, there are 5 sensors within a

distance c of every point of triangle HIP. By symmetry, it follows that there are 5 sensors
within a distance c of every point in the hexagon CDEFGP and hence within a distance

c of every point in the plane. So, the maximum d that results in 5-coverage is such that
r c = vd. So, dMax =
,/3









3.5 Experimental Results

In Section 3.1-3.3, we presented several strategies to q-cover a region when the sensor

locations are limited to a specified set S. We believe that all but the region coverage

via point coverage method of Section 3.3 are too compute intensive to be used on large

deployment instances. This is because each of the other methods requires us to find

optimal deployments for several small hexagons or tiles. While an optimal deployment for

a hexagon or tile may be found in 0(1) time, the required constant time is expected to be

large as the optimal solution is found by searching a potentially large though constant size

space of possible solutions. This search will perform many explicit tests for region rather

than point coverage are time consuming and region coverage tests are compute intensive.

As a result, our experiments focus on the method of Section 3.3 adapted to instances with

multiple sensor types.

We programmed the region coverage via point coverage scheme of Section 3.3 on

a Dell Dimension PC with a 2.13 GHz dual-core processor and 2GB memory. To cover

the resulting grid G(d), we used an ILP (integer linear programming) relaxation method

as well the greedy algorithm of Xu and Sahni [69]. For the ILP relaxation, we started

with the ILP formulated in [69] for point coverage, relaxed it to a linear program, solved

the linear program using lp-solver 5.0 [31], and then converted the solution to the linear

program to a feasible integer solution to the original ILP using the rounding method

proposed by Wang and Zhang [62]. Since both the ILP formulation and greedy method

of [69] are for heterogeneous sensor deployment, we experimented with heterogeneous

instances with up to 4 sensor types.

For test data, we used a 35 x 35 region R. To construct G(d) for any given d, we

tiled R with d x d squares and considered the centers of these tiles. Centers that were

outside R were relocated to their nearest point on the boundary of R. The resulting center

locations define G(d). To construct the set S of permissible sensor locations, we tiled R

with 7r,,,/12 x 7r,,,/12 squares and included the center of each square in S, where r,,,









is the maximum range of a sensor. Next, S was augmented by adding [3area(R)/(7r~ ax)]

randomly chosen points from R. For each value of q, 1 < q < 3 (q is the desired coverage

degree), we experimented with the following 9 test cases. The sensor set T specifies the

sensor types as pairs (r, c), where r is the sensor range and c is the cost of the sensor.

1. IsI = 362 T= {(4,5)}

2. ISI = 242 T {(5,6)}

3. ISI = 242 T = {(3.5,4),(5,6)}

4. ISI = 313 T = {(3,4),(4.5,5.5)}

5. ISI = 242 T = {(3,3.5),(4,4),(5,6)}

6. ISI = 207 T = (3.5,4),(4.5,5),(5.5,6)}

7. ISI = 242 T {(3.5,4),(4.5,5),(5,6)}

8. ISI = 242 T = {(3,3.5),(4,4),(4.5,5),(5,6)}

9. ISI = 207 T = {(3,3),(3.5,4),(4,5),(5.5,6)}

For each test case and each q, we experimented with different d values and for each

combination of test case, d, and q, we generated 10 random instances (these differed only

in the set S of allowable locations). Figures 3-19-3-21 plot the average of the cost of the

deployments obtained for these 10 random instances using the ILP and greedy methods.

The figures show also the lower bound for the cost of an optimal deployment for G(d)

as determined by the solution to the linear programming relaxation for the ILP. Note

that when determining a deployment to q-cover G(d), sensor ranges were reduced from

r as specified in the test case to rl. Our experiments show that the relaxed ILP method

generally produces lower cost deployments than does the greedy method. Further, the cost

of the deployment is not well correlated with d. Often, though, a smaller d resulted in a

smaller deployment cost. The use of a smaller d does, however, increase the time needed to

find a deployment. Each of the instances used by us was solved in a few seconds when d

was large and in a little under 15 minutes when d was small.

































--LPlow er bound
--- LP rounding
-A-- Greedy


200


400 --LPlower bound
---LP rounding
-A-- Greedy


300 ---LPlowerbound
-- LProunding
-A-- Greedy




j;200


300








1o0 -
o00
02 03 04 05 06 07 08


00 LP lower bound
:--LProunding
-- A Greedy


SLP lower bound
--LProunding
-- Greedy






200 ---


Figure 3-19. Total sensor cost required v.s. various 6s, where q=1.
























80


rc~C


01 02 03 04 05 06 07 08


02 03 04 05 06 07 0E


~-p~C~


02 03 04 05 06 07 0


02 03 04 05 06 07 0O



































550 --LPlowerbound

Greedy


450




350


250


600 --LPlower bound
--LP rounding
-a-- Greedy


-*- LP low er bound
--LP rounding
-A- Greedy
450





350





250
02 03 04 05 06 07 08


450 -- LProunding
-a-- Greedy





350


Figure 3-20. Total sensor cost required v.s. various 6s, where q=2.

























81


500


400


--LPlower bound
---LProundng
-A- Greedy


02 03 04 05 06 07 08
5


01 02 03 04 05 06 07 08


02 03 04 05 06 07 08


~_CXI~C~


ozu LPIow er bound]
rouding
47 ] --A reedy
470

420

370


02 03 04 05 06 07 0;












































700 LP lower bound

-A- Greedy



600





500


400


600 --LPlowerbound
-5- LProunding
-A-- Greedy



500





400






02 03 04 05 06 07 08


750 -*-LP lower bound
--LP rounding
-A- Greedy



650


0


550





450 -
02 03 04 05 06 07 08




700 ---LPIowerbound
-- LP rounding
-A- Greedy



600


650 --LPlower bound
-5-LProunding
-A- Greedy


550





450





350
02 03 04 05 06 07 08


Figure 3-21. Total sensor cost required v.s. various 6s, where q=3.


LL 11rb


LP lower bound
950 LProunding
900- --reedy




850
8oo




"'


01 02 03 04 05 06 07 08


m L

G ::


02 03 04 05 06 07 08


400









CHAPTER 4
PROPERTIES OF DTOA LOCALIZATION

Although several methods to localize [7, 13, 17, 34, 45, 46, 53, 70] given a set of

difference of time-of-arrival measurements have been proposed, there appears to be no

studies of fundamental properties of DTOA localization.

In this chapter, we present a number of results that establish fundamental properties

of DTOA localization. We first consider the unique identification of a source and establish

the following:

1. DTOA localization uniquely identifies a source in Euclidean plane R2 iff the sensors
do not lie on a hyperbola1

2. At least four sensors are necessary for unique localization of a source in Euclidean
plane, and it is sufficient to place the four sensors at the corners of a parallelogram to
achieve this.

3. A minimal sensor set to achieve unique source identification (i.e., a sensor set none of
whose proper subsets is also a uniquely identifying sensor set) has between 4 and 6
sensors.

4. Three sensors are sufficient to uniquely identify any source in a monitoring region
bounded by a polygon. These sensors, however, must be placed outside the polygon.

We then consider the computational aspects of DTOA localization that utilizes the

intersection of hyperbolas corresponding to distance-difference measurements. In general,

two hyperbolas may have four intersection points, but we show that two hyperbolas that

correspond to distance-differences to a source that have a common focus may have at

most 2 intersections. We also show that when non-collinear sensors are used, at most 2

points can have the same DTOA values. These results establish that the DTOA problem

is more structured and easier in this sense compared to computing intersection points of

hyperbolas.



1 For convenience, in this dissertation, the term hyperbola is used to refer to one branch
of a hyperbola.









This chapter is organized as follows. In Section 4.1, we present some fundamental

properties and definitions. Properties of sensor sets that uniquely identify all sources

in Euclidean space are developed in Section 4.2. Our detailed analysis of Section 4.3

establishes the bound on the number of intersections of two DTOA hyperbolas. In

Section 4.4 we show that at most 2 points can have the same set of DTOA values. The

minimum number of sensors needed to uniquely identify all sources in a bounding ]p" .Iv.on

is derived in Section 4.5.

4.1 Preliminaries and Definitions

Llet Si = (xi, yi), 1 < i < k, be the locations of k sensors in Euclidean space R2.

These locations are assumed to be distinct. For any point P =(x,y) in R2, the distance,

d(P, Si), between P and Si is /(x x)2 + (y- y)2. A signal originating at P at time 0

arrives at Si at time proportional to d(P, Si). For simplicity, we assume that the arrival

time is d(P, Si). The difference, Aiy, in the time of arrival (DTOA) at Si and Sj is given

by

Ai(P) = d(P, Si) d(P, Sj).

From the triangle inequality, it follows that AI (P)I < d(Si, Sj). Furthermore, the

locus, Lij(6), of points defined by

Lij() = {P|Aij(P) 6}

is a hyperbola2 (see Figure 4-1).

When Aij(P) = Ai(Q) for every i,j e {1,2,..., k}, the points P and Q are

indistinguishable. Actually, since Aij(P) = Aij(P) Ali(P), for all i and j, P and Q

are indistinguishable iff A1j(P) = Aij(Q) for every j E {2,..., k}. So, the set of sensor



2 Strictly -I.'" i1;i- Lij(5) is one branch of a hyperbola and Lyi(-6) is the other branch.
As mentioned earlier, for convenience, in this dissertation, we use the term hyperbola to
refer to one branch of a hyperbola.











L(-2)


Figure 4-1. Examples of the locus L12


locations (also referred to as the sensor set) SS {S1, S2, Sk} can uniquely identify

every source S in Euclidean space R2 iff for every pair P and Q of distinct points in

Euclidean space R2, we have Aij(P) / Aij(Q) for at least one j E {2, 3, .. k}. A sensor

set that can uniquely identify (localize) every possible point in Euclidean space is called an

identif.i:,,.i sensor set, ISS. Two points that are indistinguishable are duals.

The DTOA method localizes the source by determining the common intersections of

the hyperbolas3 L1j(A1j(S)), 2 < j < k. When these hyperbolas have more than one

common intersection, the source is not uniquely localized. Figure 4-2 gives an example of

two hyperbolas L12(512) and L13(513) that intersect at two distinct locations P1 and P2.

So, using L12 and L13 alone, we are unable to uniquely localize the source. We are able

only to assert that the source location is either P1 or P2. To uniquely identify the source

using the DTOA method, the hyperbolas LI, 2 < j < k should have exactly one common

intersection. Alternatively, these hyperbolas should have exactly one common intersection

inside a region in which the source is known to lie.



3 A point in R2 is a common intersection of a set of hyperbolas iff this point is on each
of the hyperbolas































Figure 4-2. Three non-collinear sensors S1, S2, and S3 form a triangle and two hyperbolas
L12( 12) and L13(613) intersect each other at Pi and P2.
4.2 Properties of Identifying Sensor Sets

In this section, we establish, in Theorem 9 a necessary and sufficient condition for a

sensor set SS to be an ISS. Theorem 10 shows that every ISS has at least 4 sensors and

Theorem 12 shows that every ISS with more than 6 sensors has a subset of size at most 6

that is an ISS.

Theorem 9. The sensor set SS = {Si, ,Sk} is an ISS iff no ,',', ,I,. li passes through

all points of SS.

Proof

We first show that if SS is an ISS, then no hyperbola may pass through all points

of SS. By contradiction, suppose there exists a hyperbola, -i L, that passes through all

points of in SS. Let P1 and P2 be the two foci of L. From the definition of a hyperbola,

it follows that d(P1, S) d(P2, Si) = d(P1, Sj) d(P2, Sj), 1 < i < j < k. So, Aij(PI)

d(P1, Si) d(P, Sj) = d(P2, Si) d(P2, Sj) = Ay(P2), 1 < i < j < k. Hence, P1 and P2

are indistinguishable and SS is not an ISS, a contradiction.









Next, we show that if SS is not an ISS, then at least one hyperbola passes through

all points of SS. Let P1 and P2 be two different points that are indistinguishable. So,

Ai(P) P PI, S) d(P1, S) d(P2, S) d(P2, S) AI,(P2), 2 < j < k. Hence,

d(PI, SI) d(P2, SI) d(PI, S) d(P2, Sj), 2 < j < k. Therefore there is a hyperbola with

P1 and P2 as as its foci that passes through all points of SS. m

Theorem 10. If SS is an ISS, then ISSI > 4 and there exist ISSs that have 'i.. r; 4

sensors.

Proof

We first prove that 3 sensors are not sufficient to constitute an ISS and so, \SS| > 4

whenever SS is an ISS. Let SS = {Si, S2, S3}. When S1, 52, and S3 are collinear, the

straight line through these three sensors is a trivial hyperbola through the points of SS.

From Theorem 9, it follows that SS is not an ISS. When S1, 52, and S3 are not collinear,

they define a nontrivial triangle as shown in Figure 4-2. Clearly, there exists a negative

constant, 612, such that the hyperbola L12(612) intersects the line S1S3 at two distinct

points Qi and Q2. Observe that the hyperbola L13(-d(SI, S3)) is actually a ray that

originates at S1 and intersects L12(612) at Q1 only. Let 613 be a negative constant slightly

greater than -d(S1, S3). The hyperbola L13(613) intersects L12(612) at two distinct points

P1 and P2 (see Figure 4-2). So, P1 and P2 are indistinguishable and SS is not an ISS.

Next, we show that whenever SS { S= {S2, S3, S4} are the corners of a parallelogram

with side length > 0, SS is an ISS. We show this by proving that no 4 distinct points of

a hyperbola define the corners of a parallelogram. The result then follows from Theorem 9.

Consider the hyperbola L of Figure 4-3. Let S1, 52, S3, and 54 be 4 points on

this hyperbola. The case shown in Figure 4-3 has S1 and 54 on one part (arm) of the

hyperbola and 52 and S3 on the second part. (There are two other cases for the location

of the 4 points-exactly 3 points on one part of L and 4 points on one part of L.) Let

Q1 and Q2, respectively, be the intersections of the line segments 51S2 and S3S4 with

the x-axis, which is the -, ,,1ii, i r axis of L. If the 4 identified points on L are the












s4 L
S4


Figure 4-3. A hyperbola L that passes through Si (1 < i < 4).
corners of a parallelogram, S1S2 and S3S4 are parallel and of equal length. However,

if these segments are parallel, d(S1, Q1) < d(S4, Q2) and d(S2, Q1) < d(S3, Q2). So,

d(S1, S2) = d(SI, Qi) + d(S2, Q) < d(S4, Q2) + d(S3, Q) d(S3, S4). So, S1S2 and S3S4
cannot be parallel and of equal length. The remaining two cases are similar.

Corollary 2. An infinite number of i,;', ,/..'l.- pass through r,:, 3 non-collinear sensors in

Euclidean space R2.

Corollary 3. Whenever SS contains the corners of a 1,p,'11 l..gram with side length > 0,

SS is an ISS. In particular, whenever 4 sensors of SS are at the 4 corners of a square

with side length > 0, SS is an ISS.

An ISS is a minimal ISS (MISS) iff no proper subset of the ISS is also an ISS.

Theorem 12 establishes an upper bound of 6 on the size of an MISS. To prove this

theorem, we need to use Bezout's bound on the number of intersections of curves in

Euclidean space.

Theorem 11. [Bezout's Theorem [28]]: Let C1 and C2 be curves of degree m and n,

. "i"/.. ,'.; ; in Euclidean space R2. If C1 and C2 have no curves in common, then the

number of intersections of C1 and C2 is at most mn.









Corollary 4. Two Iu;l', ,1.i/..l in Euclidean space R2 have at most 4 intersections.

Lemma 16. At most 1 iuil' ,ti.,ll, In,,; pass through ,:; set of 5 or more distinct points.

Proof Consider any set SS with 5 or more points. If two hyperbolas pass through the

points of SS, then these two hyperbolas intersect at the points of SS and so have more

than 4 intersections. This violates Corollary 4. Hence, at most 1 hyperbola may pass

through the points of SS. m

Theorem 12. Every SS that is an MISS .,-i/:. 4 < ISS <6.

Proof 4 < ISSI follows from Theorem 10 and the fact that a MISS is an ISS. ISSI < 6

may be shown by contradiction. Suppose that ISSI > 6. Let SS be a subset of SS such

that ISS/| = 5. From Lemma 16, SSi has at most 1 hyperbola passing through its 5

points. If no hyperbola passes through these points, then SSi is an ISS (Theorem 9)

and SS cannot be an MISS. So, we may assume that exactly one hyperbola passes

through SSi. Since SS is an ISS, SS contains at least one point Si that does not lie on

this hyperbola. Hence, there is no hyperbola that passes through the 6 points SS/ U{Si}.

From Theorem 9, it follows that SSfU{Si} C SS is an ISS. This contradicts the

assumption that SS is an MISS.


4.3 Number of Intersections of L12 and L13

Although two hyperbolas in Euclidean space may have up to 4 intersections

(Corollary 4), two DTOA hyperbolas L12 and L13 may have no more than 2 intersections

when S1, S2, and S3 are non-collinear. Without loss of generality (w.l.o.g), we choose our

coordinate system as in Figure 4-4. The features of this choice are (a) S1S2 falls on the

y-axis, (b) the midpoint of S1S2 is the origin O of the coordinate system, and (c) S3 lies

on the right side of the y-axis. We see that S1S2, S2S3, and S1S3 partition the Euclidean

space R2 into seven regions (a)-(g). At most one intersection of L12 and L13 lies in the

union of regions (a), (b), (f), and (g) and at most one intersection lies in the union of

regions (c), (d), and (e). To prove these assertions, we need a result from Theorem 13

















top left (+)


top right (+)


bottom (+)


Figure 4-4. Regions of monitoring area: (a) top left, (b) inside, (c) bottom right, (d) top,
(e) bottom left, (f) bottom, and (g) top right.
(Refer to the detailed proof from Section 5.4) that establishes the monotonicity of the

directional derivative of A13(P) along the hyperbola L12(A12(P)) within each of the 7

regions of Figure 4-4. The sign of the directional derivative for each region is also given in

Figure 4-4.

Theorem 13. For i.:', point P in Euclidean space R2, the directional derivative of A13(P)

il..,i"j the li,,, ,ii 'l.. L12(A12(P)) is monotone in each of seven regions -.... 7.1 by three

non-collinear sensors, as shown in Figure 4-4. The directional derivative is positive in

regions (a), (b), (f), and (g), and is negative in regions (c), (d), and (e).

In the following, we use LI and L' to refer to the two symmetric parts (arms) of the

hyperbola L (see Figure 4-5). The two parts LI and L' intersect only at the vertex B. 11

and 12 are the two .i-:ii-!11 1.1. of the hyperbola and lI, and 12T are lines that intersect at

the vertex B and are parallel to these .-i- .1iii !l From our choice of coordinate system,

it follows that the .i-i~!iiil, .1 -; intersect at O.

Lemma 17. 1. L (Ll) strictly lies between 11 (12) and 11(121).

2. The shortest Euclidean distance between a point P on Lr (LP) and the i- ;u,,/i -/.: 11

(12) decreases monoto, .:. ll as P gets farther from the vertex B.











Y
12 / 1































Proof Follows from the definition of a hyperbole, its i/and the lines I and
\\ \\ / /








I I \ \
L/ /, L





/ \/ \ \


















12//
S \/Pr
/ \/ \ \
\ I




\ iI \ \
/ / \ \


/ / \ \
/ / \ \
/ / \ \
i / \ \







Figure 4-5. A hyperbola, L LUL with fothat 12cus an d -3 Pi axis yxis.
increases monoto liI as P gets farther from the vertex B.
Proof Follows from the definition of a hyperbole, its .\i- and the lines and






















In There are 4 possible caseshow that when S1 is closer tofor the sourrelationship between thneS than are SS2S3 and thS3e


hyprestriction on the sore beline is beloser to S(2) than thline remaining two sensors is removed incts
Let (xi, yi), 1 iI m be intersections of L1 and 13 From the definition of a
hyperbole, it follows that A(P) A(P) and A13(P) A13(P) for 1 \ < i m






















hyperbola L12-(1) thle line is below L\^, (2) thle line intersects L1^, (3) thle line intersects





























Figure 4-6. Case 1: S2S3 lies below L12
Lr2 and ZS3SIS2 > 90, and (4) the line intersects Lr2 and ZS3SIS2 < 90. These 4 cases

are shown in Figures 4-6-4-9, respectively. We show below that L12 and L13 have at most 2

intersections in each of these cases.

Case 1: S2S3 lies below L12

When S2S3 lies below L12, L12 must lie wholly within regions (a) top left, (b) inside,

(d) top, and (g) top right, (Figure 4-6). A13, from Theorem 13, monotonically increases in

regions (a), (b), and (g) and monotonically decreases in (d). So, if no component of L12

is in region (d), then A13 monotonically increases along all of L12 and the value of A13

for each point P on L12 is unique. Hence, L12 and L13 have only 1 intersection. If region

(d) contains a portion of L12, then when one moves the point P from left to right along

L12, (d) is the first region to be visited. So, when moving from left to right along L12, A13

monotonically decreases while we are moving along the portion of L12 that is inside region

(d) and then monotonically increases for the remainder of L12. Hence L12 has at most 2

distinct points for any given value of A13. So, L12 and L13 have at most 2 intersections.

Case 2: S2S3 intersects L12









When S2S3 intersects LI2, ZS3S2S1 > 90 (Figure 4-7). So, L12 cannot have a

component in either of the regions (c) (bottom right) and (f) (bottom). Additionally, L12

cannot have a component in region (d) (top). To see this, observe that L 2 is wholly to the

right of the y-axis while region (d) is wholly to the left of this axis. So, no portion of L'2

is in region (d). To see that no portion of L12 is in region (d) either, note that LI2 is below

12/ (Lemma 17). Since, S2S3 intersects LI2 and 12 is strictly below LI2 (Lemma 17), S2S3
intersects the .i,-'iini, 12. Now, since 121 is parallel to 12, S2S3 also intersects 121. which

implies that the slope of S2S3 is less than that of 121. Hence, the slope of S1S3 is less than

that of 121. From this, the fact that LI2 lies below 121, and the fact that the intersection

(vertex B of L12) of LI2 and 12i is below S1, it follows that no portion of L 2 is inside the
top region (d).

Consequently, as one moves from left to right along L12, the region (e) (i.e., bottom

left) is the first region to be visited. A13 monotonically decreases inside this region and

monotonically increases in the remaining regions that L12 is in. Hence L12 has at most 2

distinct points for any given value of A13. So, L12 and L13 have at most 2 intersections.

Case 3: S2S3 intersects L'2 and ZS3SIS2 > 90

In this case, region (e) (bottom left) lies entirely below L12 (Figure 4-8). Hence,

no portion of L12 is in region (e). Since ZS3SIS2 > 90, 0 < 90 (see Figure 4-8).

Hence, d(P, SI) > d(P, S3) for every point P inside region (c) (bottom right). Since,

by assumption, S1 is closer to the source S than is S3, no portion of L13 is in region (c).

Hence, L12 and L13 have no intersection in region (c).

If L12 has an overlap with region (d) (top), then region (d) is the first region

encountered as we move from left to right along L12 and if L12 overlaps with region

(c) (bottom right), region (c) is the last region encountered as we move from left to right

along L12. A13 monotonically decreases in region (d), L12 and L13 do not intersect in

region (c), and A13 monotonically increases in the remaining regions that L12 may overlap.

So, L12 and L13 have at most 2 intersections.















12

\ \\

\ \



\ \
\\\



\\


/ \



/ /
/ /
/ /
/ /
/ /
/ / 2
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /



/
/


/
/ /^
/ /
/ /




/ /
/ /
/ r

/






/
V


Xx\
S\\S +
\\ \ \
+ \\ \\
\ \
\\\ \


\\ \
\ \ \


\\ \\
\\ \


12'
2 2



12 \

\ \




\\






S /
/ /
/ /
/ /
+,/ /s
/ / 2
/ /
/ /
/ /
/ /

/ /
//
/ -
/


.II
/1 I

+/
/ ,,, i.,




/ ,1
/ / /




// /I
// /I
+ /- /,




/ //

/7 /

/ \ /
//


/ /




V \ \
\ \
\ \

\ \
\ \



\ \ \


\ \
\ \ \
\ \ \
\ \^
\ \
\\
\
\\
\
\
\
\
\


Figure 4-8. Case 3: S2S3 intersects L'2 and ZS3S1S2 > 90.


Figure 4-7. Case 2: S2S3 intersects L12










y
12' /


L12 // 12





S /

\/ + \L
/\ \ 1

/ / \/ \ \\
/ / \ \ \
\ \ ~\
+ /,



I i \\ \








Figure 4-9. Case 4: S2S3 intersects L'2 and ZS3S1S2 < 90.

Case 4: S2S3 intersects L'2 and ZS3S1S2 < 90

As in Case 3, no portion of L12 is in region (e) (bottom left). Further, L13 may

overlap with either region (c) (bottom right) or region (d) (top) but not both. To see this,

suppose that L13 overlaps with region (c). For this to happen, L'3 must cross S2S3. Using

an argument similar to that used in Case 2, we may show that the slope of S2S3 is greater

than that of L'3. Furthermore, the remaining portion of L'3 once after crossing S2S3 lies

strictly below S2S3. So, no portion of L'3 is in region (d). Since LIM is to the left of SIS3,

no portion of LIM is in region (d) either. So, L13 may overlap only one of the regions (c)

and (d). Therefore, L12 and L13 cannot have an intersection in both region (c) and region

(d). Finally, if a portion of L12 is in region (d), region (d) is the first region encountered as

we move along L12 from left to right and if a portion of L12 is in region (c), then region (c)

is the last region encountered. A13 monotonically decreases as we move from left to right

along L12 inside regions (c) and (d) and monotonically increases in the remaining regions

that L12 overlaps. So, L12 and L13 have at most 2 intersections.

*









Theorem 15. L12 and L13 have at most 2 intersections.

Proof

Since, A23(P) A13(P) A12(P) for every point P, the hyperbola pairs (L12, L13),

(L12, L23), and (L13, L23) have the same set of intersections. Suppose, w.l.o.g., that the

source is closer to S2 than to S and S3. It follows from Theorem 14 that L21 and L23 have

at most 2 intersections. Hence, L12 and L13 have at most 2 intersections. m

4.4 Indistinguishable Points

When SS is not an ISS, there is at least one pair of distinct points that are

indistinguishable. That is, there are distinct points Pi and P2 for which Ayi(PI) A= A(P2),

1 < i < j < k (or equivalently, Alj(P1) = Alj(P2), 2 < j < k). P1 and P2 are dual

points. When SS is an ISS, no point P has a dual. In this section, we first show that the

indistinguishable relation is an equivalence relation. Then, we show that each point P may

have at most 1 dual point.

Theorem 16. The .':,,1.: ./i:,/,.;'.,,1l: relation is an equivalence relation on R2.

Proof

A relation is an equivalence relation iff it is reflexive, symmetric, and transitive.

Reflexivity is immediate as a point is indistinguishable from itself. Also, if P1 and P2

are indistinguishable then so also are P2 and P1. So, the relation is symmetric. For any

three points Pi, P2, and P3 such that Pi and P2 are indistinguishable and P2 and P3 are

indistinguishable, we have Ayi(Pi) = d(P1, S) d(P1, Sj) = d(P2, S) d(P2, Sj) Aij(P2)

and Aij(P2) d(P2, S) d(P2, Sj) = d(P3, S) d(P3, Sj) = A,(P3), 1 < i < j < k. So,

Ai(Pi) = d(PI, S) d~) d(P, 5() d(P3, S)- d(P3, Sj) = Ai(P3), 1 < i < j < k. Hence, the
',/ ', / 1, .//,,,, .1 .: relation is transitive.



Clearly, the .:,.1.:/I.:,, uishable relation partitions Euclidean space R2 into a collection

of di-i Piiil equivalence classes. If SS is an ISS, then each equivalence class is of unit

cardinality; otherwise, the cardinality of at least one equivalence class is more than 1.













S, Si Si+1 Sk /



*p'

Figure 4-10. Collinear sensors

When k = 2, each equivalence class corresponds to a hyperbola with foci S1 and S2

and vice verse. The cardinality of each equivalence class in this case is infinite. When

k > 2 and the sensors are collinear (Figure 4-10), each point on the line segment SISk,

exclusive of S1 and Sk, defines an equivalence class of unit cardinality because no such

point has a dual. All points on the line 1 that runs through the collinear sensors and that

are to the left (right) of SI(Sk), inclusive, form an equivalence class of infinite cardinality.

For each point P not on the line 1, has a single dual point PI that is the reflection of P

with respect to 1. Point P and its dual Pi define an equivalence class of cardinality 2.

When the sensors are not collinear (this can happen only when k > 2), Theorem 17

establishes that the cardinality of each equivalence class is at most 2.

Theorem 17. When the sensors are not collinear, the i ,,;
1, I;,u, 1 by the indistinguishable relation is at most 2.

Proof

We prove this by contradiction. Let SS be the sensor set. Suppose there is an

equivalence class whose cardinality is more than 2. Let PI, P2, and P3 be any three

points in this equivalence class. Since P1 and P2 are indistinguishable, from the proof of

Theorem 9, it follows that there is a hyperbola L12, whose foci are Pi and P2, that passes

through the points of SS. Similarly, there is a hyperbola L13, whose foci are P1 and P3,

that passes through the points of SS. L12 and L13 intersect at at least the points of SS,

which are more than 2 in number. This contradicts Theorem 15, which states that these

two hyperbola may have at most two intersections.











4.5 ISSs for Polygonal Regions

Although 4 properly positioned sensors are required to uniquely identify a source in

Euclidean space (Theorem 10), in many real-world applications, the monitoring region is

bounded by a polygon and 3 sensors suffice. We assume that the sensors are restricted

to be placed on or inside the bounding p" I.v.-on. As an aside, we note that when the

monitoring region is a simple line segment, w SiSj, then two sensors placed at Si and

Sj, respectively, are sufficient to uniquely identify any source on this segment. To see

this, observe that as we move P from Si to Sj along the line segment SiSj, Ayi(P) varies

monotonically from -d(Si, Sj) to d(Si, Sj). Hence, there is no pair of indistinguishable

points on this segment.

Lemma 18. Every non-degenerate simple ...1';;i/,i, has a MISS whose size is 3.

Proof

Case 1: The simple polygon is convex.

Let S1 and S2 be the end points of an edge of the p" I.v.-on. Let S3 be any other point

on this edge. Note that the 3 chosen points are collinear and the entire convex polygon

lies on one side of the edge that these 3 points lie on. From the discussion preceding

Theorem 17, it follows that the dual of every point of the polygon that is not on this edge

is on the other side of this edge. Points on the edge either have no dual or have dual(s)

outside the polygon. Hence every point in or on the polygon is uniquely identifiable and

{S1,S2, S3} is a size 3 MISS for the p" ..v.-on.

An alternative construction for a size 3 MISS is to consider any 3 non-collinear

points S1, S2, and S3 that are on the boundary of the polygon (Figure 4-11). Now, the

entire convex polygon must be contained in the union of four regions: (a) top left, (b)

inside, (f) bottom, and (g) top right. From Theorem 13, the directional derivative of A13

along L12 increases monotonically in each of these four regions. Further, the intersection

of L12 and the convex p" I.v.-on is a continuous curve C that is limited to these four regions


















top left (+) ... '"
G



S2
bottom (+) D

bottom left (-) F
E

Figure 4-11. Sensors S', S2, and S3 on the boundary of a convex ]" '..i-on.

(see Theorem 14). Since, A13 is monotonically increasing along C, L12 and L13 have at

most one intersection on C. Hence, every point in or on the convex p" .Iv.-on is uniquely

identifiable.

Case 2: The simple polygon is concave.

We start with a a minimum bounding convex p" ..I -on of the concave p" ..I.-on

(Figure 4-12). Let S1, S2, and S3 be any three points on the intersection of the boundary

of these concave and convex polygons. From Case 1, it follows that every point in and on

the boundary of the convex bounding polygon, and so every point in and on the boundary

of the concave polygon, is uniquely identifiable.



In Lemma 18, we prove that by choosing 3 sensor locations on the boundary of a

simple ]" .Iv.-on, an SS of size 3 uniquely identifies any source S on or inside a simple

l" .v.-on. We show in Lemma 19 when a sensor is placed strictly inside a simple polygon, 3

sensors are not sufficient to uniquely identify every point in or on the p" .Iv.-on.

Lemma 19. Let SS be an ISS set for a non-degenerate simple y 'l, ';i', If at least one

location of SS is inside the p"'';,'i/'' ISS| > 4.


















top left (+) ... I k '"
H



S2



bottom left (-) G bottom (+)



Figure 4-12. A concave polygon, its bounding convex 1 .i.-lon, and three sensors S1, S2,
and S3 placed on the common boundary of the concave and convex polygons

Proof

Suppose that SS is an ISS and that ISS| = 3. W.l.o.g, assume S1 lies inside the

simple ]" Ivl..on as shown in Figure 4-13. Note that a portion of the simple polygon must

lie inside the top region. We may choose two negative constants 612 and 613, such that

L12(612) and L13(613) intersect at two distinct points P1 in the top region and P2 in the top

left region. Since both P1 and P2 are inside the simple polygon and P1 is the dual of P2,

SS is not an ISS for the points of the simple polygon.



Theorem 18. 3 sensors can ;";,:'; ;/ ,:il,. ,lfy i,;, source in or on a non-degenerate simple

j' ..'.1;,i- iff the sensors are on the common boundary of the given y .', ..;;,-' and its minimum

bounding convex yI'..;; ,i-,, In case the 3 bo ,,]'..; i sensors are collinear, 2 must be at the

end points of an edge of the 7.. -,,.,.l, convex y','..,;;, and the third at an in-between point.

Proof

Follows from Lemmas 18 and 19.

*







































top left (+) -





S2
bottom (+)


bottom left (-) F

E

Figure 4-13. S1 lies inside a simple i" ..v.-on while S2 and S3 are on the boundary. Pi in
the top region is a dual point of P2 which lies in the top left region.









CHAPTER 5
COMPUTATIONAL GEOMETRY METHOD FOR TRIANGULATION USING DTOA

We begin this chapter by examining the relationship between proximity in Euclidean

space and proximity in DTOA space. Although all previous localization methods have

focused on using proximity in DTOA space [45, 46], our analysis shows that this does

not guarantee proximity in Euclidean space. Next, we describe our geometric DTOA

triangulation method that guarantees proximity in both Euclidean and DTOA spaces.

This is followed by a detailed proof of the correctness of our method. We conclude this

chapter by providing simulation results.

5.1 Euclidean and DTOA Spaces

Recall that we let Si = (xi, yi), 1 < i < k, be the locations of k sensors in Euclidean

space R2. These locations are assumed to be distinct. For any point P = (x, y) E R2, the

distance, d(P, Si), between P and Si is V/(x xi)2 + (y yi)2. A signal that originates at

P at time 0 arrives at Si at time proportional to d(P, Si). For simplicity, we assume that

the arrival time is d(P, Si). The difference, Aiy, in the time of arrival (DTOA) at Si and

Sj is given by

A, (P) = d(P, Si) d(P, Sj).

Let SiSj be the line through the points Si and Sj. As we move P from Si to Sj along

the line SiSj, Aij(P) varies monotonically and linearly from -d(Si, Sj) to d(Si, Sj), and

equals 0 at the bisector point. From this observation and the triangle inequality, it follows

that lay (P) I < d(Si, Sj). Furthermore, the locus, Lij(5), of points defined by


Lj() = {P E R2Aij(P) 6









is a hyperbola1 (see Figure 4-1).

The DTOA space of all (k 1)-tuples [A12(P), A13(P),..., Alk(P)] forms a (k -

1)-dimensional vector space denoted by 6k-1. Each point P = (x, y) E R2 has a unique

dual point Pi = (plf,p2t, ...,pk-1') in 6k-1, where p/ Al(j+i)(P), j = 1, 2,..., (k 1).

However, each point Pi/ (pl,p2t, *...,k-1) in 6k-1 may have zero or more dual points

in R2. In fact, the dual points of Pi are those points in R2 that are common to (i.e., the

common intersections) the k 1 hyperbolas LIjj+(P), 1 < j < k.

In this chapter, we consider the DTOA localization problem of estimating the location

of a source S from the measurements of Aij(S), 2 < j < k, SI = [612, ..., 61k] in 6k-1

When there is the possibility of errors in the measurement of the Alj values, existing

DTOA localization algorithms [14, 39, 57, 58], estimate the source location by minimizing

the sum of least squares error in 6k-1 space. We show, in this section, that an estimate

that is close in 6k-1 space may not be close in Euclidean space R2. However, an estimate

that is close to the source in Euclidean space R2, is necessarily close to the source in 6k-1

space (Lemmas 20 and 21, respectively).

Lemma 20. Two points that are close to one another in 6k-1 space I,,in be ,i.:l/,i.:l;; far

apart in R2.

Proof Consider the three sensors S'(1, 0), S2(1, -1), and S3(-, 0) ((1,0) is the location

in R2 of sensor S'). Let 612 = -d(S1, 52) = -1 and 613 = -2e, where e is a small positive.

The hyperbolic equation for L12(612) is x = and y >= 0. In other words, L12(612)

degenerates from a hyperbola to a ray from S1 vertically up to infinity. The hyperbolic

equation for L13(613) is 2/(e2) y2/(1 e2) = 1 where x > 0. The intersection, P, of

L12(612) and L13(613) is (1, (1 e2)/).



1 Strictly -I'" 1:;ii:- Lij(6) is one branch of a hyperbola and Lyi(-6) is the other branch.
As mentioned earlier, for convenience, in this dissertation, we use the term hyperbola to
refer to one branch of a hyperbola.









Now, suppose we change the value of 513 to -4e. The hyperbolic equation for the

new L13(613) is x2/(4e2) y2/(1 4e2) 1 where x > 0 and the new intersection,

Q, between L12 and L13 is (1,1 4e2)/(2e)). The distance between P and Q in 62

space is 2e. However, the distance, d(P, Q), between P and Q in Euclidean space R2 is

|(1 4e2)/(2e) (1 e2)/el e + 1/(2e). As can be seen, d(P, Q) becomes large as the

distance in 52 space approaches zero. m

Lemma 21. Given two points P(xp,yp) and Q(xq,yq) in Euclidean space R2 and their

respective dual points Pt(x,/, y,/) and Qf(xq,, yq,) in 62 space, then we have d(Pi, Qi) <

2 /2 d(P, Q)
Proof From the definition, we have xP = A12(P) = d(P, S1) d(P, S2) and Xq =
A12(Q) d(Q, SI) d(Q, S2).

IXpl Xql| = I(d(P, Si) d(P, S2)) (d(Q, Si) d(Q, S2))|
I(d(P, Si) d(Q, Si)) (d(P, S2) d(Q, S2))l
< Id(P, Q) (-d(P, Q))I
S2 d(P, Q)

Similarly, we have lYp yql < 2 d(P, Q) as well. So,

d(PI, Ql) = /(x Xq)2 + (ypf- Yq)2 < 22 d(P, Q)



Corollary 5. Given two points P and Q in Euclidean space R2 and their respective dual

points PI and QI in DTOA space 6k, d(Pi, QI) < 2vk d(P, Q).

5.2 Geometric DTOA Method

In the remainder of this chapter, we consider only the case when we have k = 3

sensors, S1, S2, and S3. Without loss of generality (w.l.o.g.), we choose our coordinate

system so that the line S1S2 falls on the y-axis and so that the midpoint of this line is the

origin O as shown in Figure 5-1. The [Dx1, Dx2] x [Dy1, DY2] box shown in Figure 5-1 is

the monitoring region within which the source S is to be localized. The lines S1S2, S2S3,

and S1S3 partition the monitoring region as shown in Figure 5-1. Although this figure has































Figure 5-1. Canonical placement of 3 sensors and partitioning of monitoring region
all sensors within the monitoring region, our development of the geometric localization

method does not require this. In fact, the method works even when some or all of the

sensors are outside the monitoring region.

Figure 5-2 shows our three sensors together with the locus L12(612). This locus

may be partitioned into segments that lie wholly within a region of the partitioning of

Figure 5-1. The segment end points are designated Sj, where j is a lowercase letter.

So, SaSb and SbSc are two of the segments that L12 is partitioned into in Figure 5-2.

Notice that because of our choice of coordinate system, as we move a point P along any

segment of L12(612), the x- and y-coordinates of the point vary monotonically. This is

a consequence of the vertical orientation of L12, which, in turn, is assured by the chosen

coordinate system.

Let (xi, yi) and (xj, yj), xi < xj be the end points of an L12 segment and let P

(x, y) be any point on this segment. From Lemma 22 (Section 5.3), it follows that xi <
x < xj and min{y, yj} < y < max{yj, y}. Also, as we move P along a segment

of L12(612), A13(P) varies monotonically (Section 5.4). In particular, it monotonically




























Figure 5-2. Canonical placement of 3 sensors and L12(612)


decreases with x for the segments in the top, bottom left, and bottom right regions and

monotonically increases for the remaining segments. Based on these key observations,

our overall strategy to estimate the source S is to utilize the monotonicity of A13(P) to

perform a binary search within each segment of L12 to determine a set, U, of points such

that U has at least one point within a specified accuracy 7 of each intersection between

L12(612) and L13(613) that is in the monitoring region. Further, the number of points in

U is at most equal to the number of such intersections. Recall that the number of such

intersections is at most 2 as proved in Theorem 15. It follows that the true source location

is within a distance 7 (in R2) of one of the points in U. The details are presented in

algorithm geometric_DTOA(612, 613).

Algorithm geometricDTOA first determines the segments of L12. The end points

of these segments are just the intersections of the curve L12(612) with each of the three

lines S1S2, S1S3, and S2S3. Although a line and a hyperbola may intersect twice (except

in the degenerate case when the hyperbola is a vertical ray), our choice of coordinate

system ensures that L12 intersects S1S2 exactly once, except when L12 is a ray. We ignore

this case when L12 is a vertical ray for now. So, the number of intersections is at most










il.. ':thm geometric_DTOA((12, 613);
begin
(x12, Y12) -- intersection point of L12 with S1S2;
Ixi <- set of x-coordinates of intersections of L12 with S1S3;
Ix2 s- set of x-coordinates of intersections of L12 with S2S3;
Ix {Dxl, x12, Dx2}U IxU Ix2;
Ix Ix {xlx c Ix && (x < Dxi II x > Dx2)};
Sort sort (Ix);
let I sort {X(1), X(2), ... X |, l }
let {Y(1), y(2), Y* Ysort, } be the corresponding y-coordinates;
U <-- 0;
for i= 1,... Lsor.t 1 do
U -- U U{ locateL13 x(i), y (i) (i+l), Y(i+l));
return U;
end

5 and, in the worst case, we need to consider 6 segments of the hyperbola L12(612). The

computation of (x12, Y12), Ixi and IX2 may be carried out either by binary searches on

the lines S1S2, S1S3, and S2S3 with L12 as objective function (as in [46]) or by a method

similar to that used in il.., .:thm locate_L12(x, YL, YR) 2 Note that intersections outside

the monitoring region may be ignored.

Next, a binary search is performed within each segment, as shown in il.>rithm

locate_L13 (L, YL, XR, YR). If 613 is not in the range [Ami, A,,x], the algorithm concludes,

from the monotonicity property, that there is no point P with A13(P) 613 on the

segment currently being searched. Otherwise, the continuity of the directional derivative of

A13 implies that there is a point P on the segment for which A13(P) 613 and a binary

search, as described in the do-until loop of il, .rithm locate_L13(xLL, L,R, YR), to locate

a point on L12 that is within 7 of P in R2. In each iteration, either the x- or y-range to be



2 Algorithm locate_L12 can be augmented to detect the case when the quadratic
equation in step 2 does not yield a real solution and resort to the binary search of [46].
Such an extension ensures the theoretical completeness of the method albeit at an
additional complexity of O [(log(1/7))2]. However, in all of our simulations of Section 5.5,
the quadratic equation of step 2 yielded a real solution. Hence, we retain the unaugmented
version for simplicity of presentation.









considered is halved by appropriately updating Pi or P2. As proved in Theorem 19, our

algorithm guarantees to return a point that is within a distance 7, in R2 space, of the true

source location.


li.. 'rithm locate_L13 (XL, YL, XR, YR);
begin
Xl XL;
Yi YL;
PI =(XL, YL);
X2 <-- XR;
Y2 --R;
P2 = (XR, YR);
Amin = min{A13(P), A13(P2)};
Amax = max {A13(P), A13(P2)};
if (Amin > 613) or (Aax < 613) then
return(null);
do{
if IX1 x21 > ly Y2 then
x -- (xl + x2)/2;
y -- locate_L12(x, YL, YR);
else
y ~ (y + y2)/2;
x -- locateL2(y, XL, xR);
P (x, y);
if (A13(Pi) 613) (A3(P) 13) > 0 then
P,= -P;
else
P2 P;
} until dist(P, P2) <7
return(P);
end

When L12 is a vertical ray, the source lies on the line S1S2 but outside the segment

S1S2, whose end points are S1 and S2. In this case, we may do a binary search on the



il,.>,rithm locate_L12(x, YL, YR);
begin
substitute x into the hyperbolic equation for L12(612);
solve the quadratic equation for y;
return the solution that is in the range [min{yL, YR}, max{yL, YR}].
end









relevant segment of the y-axis that is contained in the monitoring region and excludes

either the segment from S1 to -oo or the segment from S2 to oo. As shown in Section 5.4,

L13 is monotone on both these vertical segments.

5.3 Correctness and Complexity of the Method

In this section, we establish the correctness of our geometric DTOA method subject

to the monotonicity of L13 on each segment of L12. This monotonicity property is

established in Section 5.4. The following assumes that L12 is not a vertical ray. The

correctness proof for the case when L12 is a vertical ray (note that this case, which is not

included in the statement of algorithm geometricDTOA, is handled by a binary search on

a segment of the y-axis) is similar and simpler.

Lemma 22. As ;,. ;, move i1.. 'u each segment of L12(12), the x-coordinate (y-coordinate)

monoto,:d. ,ll:; increases or decreases.

Proof Follows from the definition of a segment and our choice of coordinate system. *

Lemma 23. For ,:,' point P on a segment SSj of L12(612),

max{d(Si, P), d(Sj, P)} < d(Si, Sj).

Proof Let Si = (xi, y), Sj = (xj,yj), and P = (x,y). W.l.o.g., we may assume that the

segment is oriented so that xi < xj. From Lemma 22, we have xi < x < xj and yi < y < yj

(or y < y < yi). So, max{xi- x|, Ix- Xj} < Ix,- Xjl and max{|ly, y, ly- yj} < lyi yj.
Hence, max{d(S, P),d(Sj, P)} < \/max{|x x1, x Xj\}2 + max{ly yl, y yj\}2 <

d(Si, Sj). m

Lemma 24. Let P = (x, y) be a point on a segment SiSj of L12(612) such that A13(P)

613. The search of this -i* uit, using i,'l',.:thm locate_L13 returns a point P on L12(612)
such that d(P, P) < 7, where 7 is the desired '.. ;,.'. ,;

Proof (XL, YL) and (xR, yR) are the end points of the segment SiSj. Since A13 is

monotone on this segment and P is on the segment, 613 is in the range [Amin,Amax]. So,

the binary search described in the algorithm is performed. The original search rectangle

is determined by point Pi = (XL, yL) and P2 (xR, R). In each iteration, we chop the x-









or y-range, whichever is larger, of the search rectangle into half and choose the half that

contains P as the new search rectangle by updating P1 or P2 accordingly. This basic step

is repeated until the Euclidean distance between P1 and P2 is no more than 7. From this

and Lemmas 22 and 23, it follows that d(P1, P) < 7 and d(P2, P) < 7. The lemma now

follows from the observation that the point P returned by the algorithm is either P1 or P2.


Theorem 19. The set of points U returned by il/.'rithm geometricDTOA contains at

least one point that is within 7 of each intersection between L12(012) and L13(613) that is

in the monitoring region and the number of points in U is at most equal to the number of

such intersections in the monitoring region. Hence, at least one point of U is within 7 of

the true source location provided this location is in the monitoring region.

Proof The theorem follows from Lemma 24 and the observations (a) every segment (or

segment portion) of L12(012) in the monitoring region is searched, (b) every intersection

within the monitoring region is on exactly one of the segments, of L12, and (c) algorithm

locate_L13 returns at most one point per intersection. U

Note that the points in the set U returned by algorithm geometricDTOA are on

the locus L12(612). So, for each point P E U, A12(P) 612. Since each returned point

P E U is within 7, in R2 space, of an intersection of L12(612) and L13(613), it follows

that A13(P) < 2v/27 (Lemma 21). By changing the condition on the binary search loop

of algorithm locate_L13, we can ensure that the returned points are within a specified

tolerance of intersection points in 62 space or within specified tolerances in both R2 and 62

spaces.

The set Isot may be computed in 0(1) time. Let 1 = max{Dx2 Dx1, Dy2 Dy1}.

In computing U, there are altogether up to 6 calls to locate_L13(xL, YL, XR, YR). Since the

number of intersection points is at most 2 as shown in Theorem 15, at most 2 such calls

make O(log(l/7)) calls to locate_L12(x, L, YR), which in turn can be done in 0(1) time.

Thus the complexity of algorithm geometricDTOA is O(log(1/7)), which can be adapted









by suitably specifying 7. If the number of basic computational operations is fixed at c,

then we have 7 < 0(1 2-c). We note that the inclusion of the case when L12 is a vertical

ray does not change the .,-i-1,1i, il ic complexity of our algorithm.

5.4 Monotonicity of Directional Derivative

In this section, we establish the monotonicity of the directional derivative of A13 on

each segment of L12(612) 3 We do this first for the case when L12 is not a vertical ray.

For this case, we consider explicitly each of the seven regions: (a) top left, (b) inside, (c)

bottom right, (d) top, (e) bottom left, (f) bottom, and (g) top right as shown in Figure

5-1. We show that the directional derivative of A13(.) along the curve L12(.) is monotone

in each of these regions: it is positive in regions (a), (b), (f), and (g) and is negative in

regions (c), (d), and (e).

We have for i = 1, 2, 3,

9d(P, S) (x xj) 9d(P, S) (y yi)
dx d(P, S) ya d(P, S)'

Also, the tangent vector to L12(612) at P = (x, y) is given by


Az12 (P)
ay
6a12 (P)
ax




3 This method is more direct than using the directional derivative of A13 on the
gradient of L12(612) as in [46].










So, the directional derivative of A13(P) at P on the locus L12(612) {= 1P 2(P)

612}, for any 612, is given by

-T
dA13(P) dA12(P)
ax 0 y
A13 (P) DAi2(P)
jy ax
T
x-x1 x-x3 Y-y1 Y-Y2
d(P,Si) d(P,S3) d(P,Si) d(P,S2)
Y--1 Y--Y3 x-x x-x2
d(P,Si) d(P,S3) d(P,Si) d(P,S2)

We note that some authors define the directional derivative by doing an inner product

with a unit tangent vector rather than with any tangent vector. If we wish to conform to

this definition, we must divide the directional derivative as given by the above expression

by the quantity ( + (d (P)) Since we are interested only in the sign of the
S a Dx ay t

directional derivative, it doesn't matter which of the two definitions we use. We continue

with the simpler definition that does not require the use of a unit tangent vector.

We use the following three basic identities extensively in our derivations:


sin a sin = 2 sin cos ( --



sin a + sin = 2 sin a + cos -
S2 (2

cos a + cos = 2cos cos
2 2










5.4.1 Top Left Region

In this case, we have 0 < 71 + 72 < 7, 0 < 71 + 73 < 7, and 73 > 72 as shown in Figure

5-3. The directional derivative is given by

-T
X--X21 X3 Y--Yi Y-Y2
d(P,Si) d(P,S3) d(P,S) d(P,S2)
Y-Y1 Y--Y3 x--1 x-x2
d(P,S) ,3) dP,) d(P,S) P,S2)
S (- sin 7i + sin 73)(cos 7i + cos 72)

+(cos 7i + cos 73) (sin 71 sin 72)


- sin(7i + 72) + sin(7i + 73) + sin(73 72)

71 72 +273 71+72 .
2 sin 71-72+273 cos -7172 sin(7i + 72)


2 cos 71 72

sin. 71 -72+273 71+721
2 2 1
4 C(71 7+72 7Y3 2 1 +73
4 cos sm 2- cos
2 2 CO 1+Y2


We have 0 < 71 +72 < 7 which makes the first cos term positive. We have 73 > 72 and

0 < 73 < 7. Thus 0 < -3 2 < 7/2, which makes the second sin term positive. We have

0 < 71 + 73 < 7, which makes the third cos term positive. Hence the directional derivative

is positive.


bottom


Figure 5-3. P = (x, y) is located in the top left region.






























Figure 5-4. P


Figure 5-5. P


bottom


(x, y) is located inside the triangle.


bottom


(x, y) is located in the bottom right region.


bottom


(x, y) is located in the top region.


Figure 5-6. P










5.4.2 Inside Region

In this case, we have 0 < 72 + 73 < 7T, and 73 > 71 as shown in Figure 5-4. The

directional derivative of A(SI, S3) on the locus {(x, y) |A( SI, S2) 12}, for any 612, is

given by

T
X--21 X-3 Y-Y1 Y-Y2
d(P,Si) d(P,S3) d(P,SI) d(P,S2)
Y-Y1_ Y-Y3 x--1 x--2
d(P,S1) d(P,S3) d(P,S1) d(P,S2)
S (sin 71 + sin 73)(cos 71 + cos 72)

+(- cos 7i cos 73)(sin 71 sin 72)

Ssin(in + 72) + sin(3 71) + sin2 + 73)

n. 72 +73 cos 271 + 72 73 os71 +72
= 2 sm cos + cos ^ )
2 2 2
4sin7273 COS7172 C 71 73
2 2 2

We have 0 < 72 + 73 < 7r, which makes the first sin term positive. Since 73 > 71, we have

0 < 71 + 72 < 7r, which makes the second cos term positive. Since 73 > 71 and 0 < 73 < r,

we have -r/2 < 712 < 0, which makes the third cos term positive. Hence the directional

derivative is positive.


bottom


Figure 5-7. P = (x, y) is located in the bottom left region.
























Figure 5-8. P = (x, y) is located in the bottom region.

5.4.3 Bottom Right Region

In this case, we have 0 < 71 + 73 < 7T and 73 > 72 as shown in Figure 5-5. The

directional derivative of A(SI, S3) on the locus {(x, y) lA(SI, S2) =12}, for any 612, is

given by
T
x--x1 2x-3 Y--Y Y--Y2
d(P,S1) d(P,S3) d(P,S) d(P,S2)
Y-Yi_ Y--Y3 x-x x-x-2
d(P,Si) d(P,S3) d(P,Si) d(P,S2)
S(sin 71 sin 73) (cos 71 + COS 72)

+(- ccos cos 73) (sin 71 sin 72)

Sssin(7i + 72) in(1 3)+ sin(72 73)

sin72 73) cos( 27 + 72 73 +co 72 -73
-2 22 2 )1

S4 sin 2-73 COS 1 72 COS 1 73
2 2 2

Since 73 > 72 and 0 < 73 < 7, we have -T/2 < 223 < 0, which makes the sin term

negative. We have 0 < 71 + 72 < 7 and 0 < 71 + 73 < 7r, which makes the last two cos

terms positive. Hence the directional derivative is negative.

5.4.4 Top, Bottom Left, Bottom, and Top Right Regions

In the following, we briefly show the directional derivative is monotone in each of the

remaining four regions:





















bottom


Figure 5-9. P = (x, y) is located in the top right region.

* Top: The case of top is identical to the top left region except that 7r < 71 + 73 < 27
as shown in Figure 5-6, which makes the third cos term negative, and hence the
directional derivative is negative.

* Bottom Left: The case of bottom left is identical to the top left region except that
72 > 73 as shown in Figure 5-7, which makes the sin term negative, and hence the
directional derivative is negative.

* Bottom Region: For bottom region, the derivation is identical to the case of inside
region except that 7 < 72 + 73 < 27 as shown in Figure 5-8, which keeps the first sin
term still positive, and hence the directional derivative is positive.

* Top Right: The case of top right region, as shown in Figure 5-9, is identical to
inside region except that 73 < 71. Thus we have 0 < 713 < /2, which makes the
third cos term still positive, and hence the directional derivative is positive.

Computational results indicating the signs of the directional derivative of randomly

generated sources are shown in Figure 5-10.

When L12 is a vertical ray, we need to consider the portion of the segments (a) from

Si to oo and (b) from S2 to -oo that lie within the monitoring region. We consider only

(a). The proof for (b) is similar. Let P1 and P2 be two points on the segment (a). W.l.o.g.,

assume that Pi is closer to S1 than is P2 (see Figure 5-11). We see that















negative


O S3 negative


positive


E S2




negative

-10 -5 0 5 10


Figure 5-10. Source S = (x, y) is randomly selected, and the sign of the directional
derivative is computed.


Figure 5-11. The degenerate case when L12(612) is a vertical ray










Table 5-1. Data for S1 = (0,0), S2 (0,50000), S3 = (0.001,100000), and F=0
S = (0, 0), S2 = (0, 50000), S3 (0.001, 100000), F 0, and N=12635
space R?2 space
Method #fail ratio space R
Y1 #count ratio 72 #count ratio
100 1328 0.1051 100 722 0.0571
500 4683 0.3706 500 2384 0.1887
1000 7698 0.6093 1000 4004 0.3169
Mellen 161 0.0127
2500 11503 0.9104 2500 7487 0.5926
5000 12420 0.9830 5000 10512 0.8320
10000 12473 0.9872 10000 12249 0.9694
0.00000001 2619 0.2073 0.00000001 246 0.0195
Ours 0 0.0 0.0000001 12011 0.9506 0.0000001 2273 0.1799
0.000001 12635 1.0 0.000001 12635 1.0

Table 5-2. Data for S1 = (0, 0), S2 = (0, 50000), S3 = (0.0000000000000001, 100000), and
F=0
S1 (0,0), S2 (0, 50000), S3 (0.0000000000000001, 100000), F 0, and N 12345
S6 space R2 space
Method #fail ratio space s
71 #count ratio 72 #count ratio
100 60 0.0049 100 3 0.00024301
500 134 0.0109 500 16 0.0013
1000 210 0.0170 1000 30 0.0024
2500 378 0.0306 2500 88 0.0071
Mellen 3426 0.2775
5000 572 0.0463 5000 200 0.0162
10000 935 0.0757 10000 421 0.0341
50000 6652 0.5388 50000 2070 0.1677
100000 8919 0.7225 100000 4037 0.3299
0.00000001 1437 0.1164 0.00000001 225 0.0182
Ours 0 0.0 0.0000001 10546 0.8543 0.0000001 2185 0.1770
0.000001 12345 1.0 0.000001 12345 1.0





A13(P) 13(P2) (d(Pl, S)-d(P1,S3))

-(d(P2, S) d(P2,S3))

(d(Pi, S) d(P2, S1))

-(d(P1,S3) d(P2,S3))

-d(P1, P2) d(P, S3) + d(P2, S3)

< 0 (from the triangle inequality)


Hence, the directional derivative of L13 on segment (a) is monotone.










Table 5-3. Data for S1 = (0,0), S2 (0,50000), S3 = (0.0000000000000001, 100000), and
F=10/100
S1 =(0,0), S2 = (0,50000), S3 = (0.0000000000000001,100000), F 10/100, and N=12598
6 space R2 space
Method #fail ratio space
71 #count ratio 72 #count ratio
10000 907 0.0720 10000 276 0.0219
25000 2455 0.1949 25000 861 0.0683
Mellen 3944 0.3131
50000 8034 0.6377 50000 1922 0.1526
100000 11873 0.9425 100000 3992 0.3169
100 25 0.0020 100 0 0.0
1000 1183 0.0939 1000 258 0.0205
Ours 2149 0.1706 2500 4495 0.3568 2500 1067 0.0847
5000 9273 0.7361 5000 2483 0.1971
10000 12481 0.9907 10000 5097 0.4046


Table 5-4. Data for S = (0,0), S2 (0,50000), 3 S (0.0000000000000001, 100000), and
F 5/100
S1 =(0,0), S2 = (0, 50000), S3 = (0.0000000000000001,100000), F-5/100, and N=12341
6 space R2 space
Method #fail ratio space
71 #count ratio 72 #count ratio
10000 901 0.0730 10000 304 0.0246
25000 2230 0.1807 25000 877 0.0711
Mellen 3708 0.3005
50000 6382 0.5171 50000 1881 0.1524
100000 8721 0.7067 100000 3978 0.3223
100 78 0.0063 100 9 0.00072928
1000 3048 0.2470 1000 672 0.0545
Ours 1484 0.1202 2500 8945 0.7248 2500 2129 0.1725
5000 12236 0.9915 5000 4544 0.3682
10000 12341 1.0 10000 8029 0.6506


Table 5-5. Data for S1 = (0,0), S2 = (0,50000), S3 = (0.0000000000000001, 100000), and
F=1/100
S1 = (0,0), S2 = (0, 50000), S3 = (0.0000000000000001,100000), F 1/100, and N=12599
6 space R' space
Method #fail ratio space s
I7 #count ratio 72 #count ratio
10000 951 0.0755 10000 409 0.0325
25000 2185 0.1734 25000 1063 0.0844
Mellen 3513 0.2788
50000 6829 0.5420 50000 2092 0.1660
100000 9109 0.7230 100000 4140 0.3286
100 840 0.0667 100 156 0.0124
250 3693 0.2931 250 760 0.0603
500 8594 0.6821 500 1911 0.1517
Ours 650 0.0516 1000 12480 0.9906 1000 4164 0.3305
2500 12599 1.0 2500 8846 0.7021
5000 12599 1.0 5000 11691 0.9279
10000 12599 1.0 10000 12577 0.9983










Table 5-6. Data for S1 = (0, 0), S2 = (0,50000), S3 = (5000, 100000), and F-


S(0, 50000), S3


Method #fail ratio
'1
250
500
1000
Mellen 1649 0.1322 00
2500
5000
10000
250
500


Ours 1647


1000
0.1320 2500
5000
10000


:(5000,100000), F-


6 space
#count
52
189
725
3404
7604
10628
78
287
1026
4237
9093
12389


ratio
0.0042
0.0152
0.0581
0.2729
0.6096
0.8521
0.0063
0.0230
0.0823
0.3397
0.7290
0.9933


10/100, and N=12473


72
250
500
1000
2500
5000
10000
250
500
1000
2500
5000
10000


R2 space
#count
19
58
215
932
2258
4804
19
58
215
932
2364
5378


ratio
0.0015
0.0047
0.0172
0.0747
0.1810
0.3852
0.0015
0.0047
0.0172
0.0747
0.1895
0.4312


Table 5-7. Data
S1= (0, 0), S2


for S= (0,0),
S(0, 50000), S3


S2 (0,50000), S3 = (5000,100000), and F-
= (5000, 100000), F-5/100, and N-12591


Method #fail ratio
'1
250
500
1000
Mellen 1007 0.0800 00
2500
5000
10000
250
500
1000
Ours 1007
0.0800 2500
5000
10000


6 space
#count
228
798
2536
8183
11502
11579
258
921

9045
12514
12591


ratio
0.0181
0.0634
0.2014
0.6499
0.9135
0.9196
0.0205
0.0731
0.2292
0.7184
0.9939
1.0


72
250
500
1000
2500
5000
10000
250
500
1000
2500
5000
10000


R2 space
#count
51
238
726
2468
5009
2"'".,
51
238
726
2468
5116
8776


ratio
0.0041
0.0189
0.0577
0.1960
0.3978

0.0041
0.0189
0.0577
0.1960
0.4063
0.6970


5.5 Simulation Results

We compared the performance of our binary search algorithm of Section 5.2 versus

the linear algebra method of [34, 53], which requires a solution to a quadratic equation

as well as the inversion of matrices. Both algorithms were implemented in Matlab on a

Dell Dimension PC with a 2.13 GHz dual-core processor and 2 GB memory. The typical

execution times of both methods are only several milliseconds.


S= (0, 0), S2


-5/100


10/100










Table 5-8. Data for S1 = (0,0), S2 (0,50000), S3 = (5000,100000), and F-


(0,50000), S3


ratio


<71
100
250
500
Mellen 267 0.0211 00
1000
2500
5000
100
250
Ours 267 0.0211 500
1000
2500
5000


Table 5-9.


Data for S1


(5000,100000), F=1/100, and N=12683


SI (0,0), S2

Method #fail


ratio
0.0594
0.2824
0.6670
0.9727
0.9784
0.9784
0.0599
0.2879
0.6837
0 -1-1 1 ;
1.0
1.0


72
100
250
500
1000
2500
5000
100
250
500
1000
2500
5000


R2 space
#count ratio
219 0.0173
965 0.0761
2374 0.1872
5030 0.3966
9636 0.7598
11926 0.9403
219 0.0173
965 0.0761
2374 0.1872
5030 0.3966
9636 0.7598
12008 0.9468


(0,0), S2 (0,100000), 3 (100000,0), and F


S1 (0,0), S2 = (0,100000), S3 = (100000,0), F=10/100, and N=12518


Method #fail ratio
71
500
1000
Mellen 20 0.0016 2500
5000
10000
250
500
1000
Ours 0 0.0
2500
5000


8 space


#count
12
39
182
624
1875
119
193
725
3460
8504


ratio
0.00095862
0.0031
0.0145
0.0498
0.1498
0.0095
0.0154
0.0579
0.2764
0.6793


10000 12511 0.9994


72
500
1000
2500
5000
10000
250
500
1000
2500
5000


R' space
#count
435
1520
6270
10909
12449
119
435
1520
6272
10917


ratio

0.1214
0.5009
0.8715
0.9945
0.0095

0.1214
0.5010
0.8721


10000 12465 0.9958


Table 5-10. Data for S1 = (0,0), S2 -
S'1 (0,0), S2 = (0,100000), S3


S(0,100000), S3
(100000,0), F


6 space
Method #fail ratio space
71 #count
500 44
1000 112
Mellen 4 0.00032
2500 542
5000 1542
250 183
500 680
Ours 0 0.0 1000 2392
1000 2392
2500 8494
5000 12478


ratio
0.0035
0.0090
0.0434
0.1235
0.0147
0.0545
0.1916
0.6804
0.9996


= (100000,0), and F-
5/100, and N-12483


72
500
1000
2500
5000
250
500
1000
2500
5000


=5/100


R2 space
#count ratio
1516 0.1214
4729 0.3788
11042 0.8846
12459 0.9981
415 0.0332
1516 0.1214
4729 0.3788
11043 0.8846
12463 0.9984


6 space
#count
753
3582
8459
12337
12409
12409
760
3652
8672
12611
12683
12683


o10/100


1/100









Table 5-11. Data for S1 = (0,0), S2 (0,100000), S3 = (100000,0), and F=1/100
S = (0,0), S2 (0,100000), S3 = (100000, 0), F=1/100, and N=12398
6 space R2 space
Method #fail ratio 6 spae
71 #count ratio 72 #count ratio
250 149 0.0120 250 6337 0.5111
500 500 0.0403 500 11029 0.8896
Mellen 0 0.0
1000 1382 0.1115 1000 12394 0.9997
2500 1393 0.1124 2500 112:'' 1.0
100 708 0.0571 100 1542 0.1244
250 3432 0.2768 250 6337 0.5111
Ours 0 0.0 500 i :. 0.6804 500 11029 0.8896
1000 12394 0.9997 1000 12394 0.9997
2500 11:2;' 1.0 2500 11:2;' 1.0


Each sensor measurement corresponds to (1 + f)r where r is the actual distance

from sensor to source, and f is uniformly randomly generated in the interval [0, F] for

a fixed multiplicative factor F. While f values are generated independently, sensor

error magnitude is proportional to the distance from the sensor to plume origin. Also,

the sensor errors are correlated due to the spatial relationships between the sensor

locations, a source close to one sensor generates a small error there and larger errors at

other sensors, which are located farther away. From these measurements, we computed

distance-differences and tested DTOA localization methods. In our experiments, We

considered two different scenarios: (1) sensor errors are zero (i.e., F = 0), and (2) sensor

errors are greater than zero (i.e., F > 0). On a related note, the method of [7] accounts for

random errors that are independent Gaussian, and hence is not directly applicable to this

case.

Our simulation was conducted in a network of three sensors on a [0, 100000] x

[0, 100000] grid, where location of sources are randomly generated based on the uniform

distribution.

5.5.1 F 0

We compare the performance of both methods in case that all sensor measurements

are accurate. When three sensors form a "good triangle", the method of [34, 53] may









accurately estimate the source location as shown in [46]. By good triangle, we mean its

smallest (largest) angle is not close to 0 (180) degree. However, when three sensors lie in

an almost collinear manner, the method of [34] may fail to find a solution either because

the quadratic equation has imaginary roots or because the matrices being inverted are

close to singular. Although our method also could potentially fail because the roots of

the quadratic being solved by Algorithm locateL12 are imaginary, this did not happen

in any of our simulations (Tables 5-1 and 5-2). For our experiments, each test case may

be described by a tuple of [S1, S2, S3, F, N], where S1, S2, and S3 are coordinates of

three respective sensors, F is the sensor error, and N is the number of randomly generated

sources. Note that we ahv-,-i keep S1 closest to the source. Table 5-1 gives the number of

sources such that [34] returns imaginary roots as well as our method fails to find a solution

where S1 = (0, 0), S2 = (0, 50000), S3 = (0.001, 100000), and N = 12635. The ratio of the

number of such sources against the total number of sources is given. For each test case,

we consider various 71 and 72, where 71 and 72 are the desired errors acceptable in 6 space

and R2 space, respectively. For each 71(72), Table 5-1 gives the number of sources whose

estimate returned by [34] as well as by our method is within the desired error l1(72) of

the actual source. The ratio of the number of such sources to the total number of sources

also is given. Table 5-2 gives this data for the case where S1 = (0, 0), S2 = (0,50000),

S3 = (0.0000000000000001, 100000), and N = 12345.

We note that using our binary search based method versus that of [34] had a great

impact on the number of sources that could be estimated. For example, for the two test

cases shown in Tables 5-1 and 5-2 the percentage of sources for which the method of [34]

failed to return an estimate (either because the quadratic being solved had imaginary

roots or because of failure to invert matrices) is 1."7'. and 27.7.'. respectively, whereas

our method never failed to estimate the source. Note that almost 2-'. of sources can't be

estimated by the method of [34] in the second test case. Further, the source estimate given

by our method also shows much better accuracy in both 6 space and R2 space than that









of the method of [34]. As shown in Table 5-1, to get the ratio of successful estimates to be

more than I'- in 6 space, the method of [34] needs to set 71 to be almost 5000, whereas

our method alv--, gives the successful estimate when 71 is as small as 0.000001! A similar

phenomenon is observed in R2 space as well. When 72 is set to 10000, the success ratio

of the method of [34] is still slightly less than 97' whereas our method achieves 1011' .

success even if we reduce 72 by as much as about 1010 times! This improvement is even

more impressive for the second test case shown in Table 5-2, where the estimating quality

is improved by more than 1011 times!

Another observation is that an estimate that is accurate in 6 space may not be

accurate in R2 space. For example, in Table 5-1, when 71 and 72 are both 1000, the ratio

of successful estimates in 6 space and R2 space is 60.9 ;' and 31.1.'1., respectively, which

implies that more than 2' i' of the estimates that are close to the source in 6 space are

distant from the source in R2 space.

5.5.2 F > 0

When sensor measurements are inaccurate, our method may fail to estimate the

source because the L12 and L13 curves described by the inaccurate measurements do

not intersect. This cause for failure is in addition to the possibility that the quadratic

being solved by Algorithm locate_L12 has imaginary roots. To overcome this additional

cause, a finalization step is added to the end of the original description of our method of

Section 5.2. When U is empty, in other words, algorithm locateL13 returns null each time

it is invoked, this finalization step chooses as the source estimate the point P of Isort, for

which A13(P) 6131 is minimized. This modification is referred to as binary search with

finalization.

For our experiments, we used 9 test cases, each described by the tuple [S1, S2, S3,

F, N]. We choose F from {10/100, 5/100, 1/100}. For each test case, we used various 7ls

and 72s. Tables 5-3 5-11 give the simulation results. Specifically, the value listed under

#fail for our method gives the number of sources that could not be estimated without









the finalization step. Since, in all of our simulations, the quadratic solved by Algorithm

locate_L12 had real roots, our method with finalization was able to estimate the source

1011' of the time. So, for binary search with finalization, the entries #fail and ratio are

0. Even without finalization, our method outperforms that of [34] in terms of the number

of sources that could be estimated. In all 9 of our test cases, the number of sources that

could not be estimated by our method without finalization is less than or equal to that of

the method of [34]; the reductions were as high as 22'"

As noted earlier (Section 5.2), should the quadratic in Algorithm locateL12 have

imaginary roots for some instance, the algorithm may be augmented to with a binary

search to make it complete at an additional complexity.

For all tested 71s and 72s in each test case, the estimate given by our method

consistently shows as good as or much better accuracy in both 6 space and R2 space

than that of the method of [34]. In particular, when three sensors are almost collinear, the

improvement made by our method is significant. For example, when 72 is 10000 as shown

in Tables 5-3 -5-5, the increment of the ratio of successful estimate by our method versus

the method of [34] is more than 3 -'. (,-'., and ',,'.- respectively.









CHAPTER 6
CONCLUSIONS AND FUTURE WORK

We studied two fundamental problems, sensor coverage and sensor localization,

arising in wireless sensor networks. Sensor coverage is the process that deploys a network

of sensors to provide a certain degree of coverage over the domain of interest (i.e., a

region or a set of discrete targets). Sensor localization is the process that given a set of

measurements (i.e. Difference of Time-Of-Arrival) estimates the accurate location of a

source in the plane.

We developed a general ILP formulation to minimize the cost of deploy, -l sensors

while providing the desired degree of coverage over a set of discrete targets. A greedy

algorithm for solving the general ILP was also developed. For the case of a grid,

linear-time .,i-~,i! I .I i, approximation algorithms and PTASs were developed. Experiments

demonstrate the superiority of our proposed algorithms over earlier algorithms for point

coverage of grids by using heterogeneous sensors. We presented two approximate solutions

to the problem of minimizing the cost of placing heterogeneous sensors at certain locations

to ensure q-coverage of a planar region. A transformation was developed from region

coverage to point coverage. We also studied the performance of deploying homogeneous

sensors in a gridded layout.

We studied the impact of sensor deployment on the uniqueness of source estimate

in Euclidean plane as well as in a simple polygon. A necessary and sufficient condition

was derived for each case. We gave a tight bound on the size of a minimal identifying

sensor set in Euclidean plane. We reinvestigated the number of intersections of two

hyperbolas having a common focus, and showed that number is at most 2. Each sensor

deployment corresponds to an equivalence relation on Euclidean plane. Specifically, for

each non-identifying sensor set, at least one equivalence class is of greater than unit

cardinality. Given measurements of distance-difference, we presented a computational

geometric method for the problem of estimating the source location in the plane.









This method is particularly suited for deployment in sensor nodes that adapt their

computations in response to power budgets.

Naturally, there also exist some unexplored areas. Many of them are clearly

interesting topics for future research work.

For sensor coverage, it would be interesting to incorporate costs associated with

the region such as population within sensor regions in addition to the sensor costs. It

would also be interesting to consider non-circular and probabilistically specified sensor

regions. For grid coverage, the problem whether it is NP-hard is still open. In general,

the linear-time approximation algorithm we developed only works for q-covering a square

grid where q < 3. It would be interesting to come up with a general method that is

able to provide sensor deployments that satisfy the desired degree of coverage up to

the theoretical upperbound(See Lemma 5). Approximation algorithms for different grid

layouts (i.e., regular hexagon, equilaterial triangle) are also worth exploring.

This work is only a step towards utilizing computational geometry methods for

solving sensor localization problems. It would be of future interest to consider extensions

of this method for cases where more than three sensors are deploy, .1 and multiple

measurement sets are provided [47]. It would also be interesting to see if the proposed

method can be extended under random noise models, particularly when sensor errors are

correlated and the noise model is unknown. For the special case when Si, S2 and S3 form

an acute triangle, a training method was proposed in [45] wherein the localization method

can be trained in-situ to account for sensor correlations. The current method can be

similarly employ, .1 but the training procedure is likely to be more involved. It would be of

future interest to explore the tracking ability of this method by repeatedly executing it on

a stream of distance-difference measurements corresponding to a moving object. It would

be interesting to investigate the effects of randomness in distance-differences on both

uniqueness and minimality results presented in this work. Applications of these results to

practical radiation detection systems would be of future interest.









REFERENCES


[1] X. Bai, S. Kumar, D. Xuan, Z. Yun and T. H. Lai, "Deploying Wireless Sensors to
Achieve Both Coverage and Connectivity," Proc. Seventh AC[\f Int'l Symp. Mobile
Ad Hoc Networking and Corji,,l .n:(obiHoc'06), May 2006.

[2] B. S. Baker, "Approximation Algorithms for NP-Complete Problems in Planar
Graphs," Proc. T. ,./ l-fourth Symp. Foundations of Computer Science, 1983 and J.
ACd!, vol. 41, no. 1, pp. 153-180, 1994.

[3] N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less Low Cost Outdoor Localization
for Very Small Devices," IEEE Personal Communications Mag., vol. 7, no. 5, pp.
28-34, October 2000.

[4] B. Carbunar, A. Grama, J. Vitek, and O. Carbunar, "Redundancy and Coverage
Detection in Sensor Networks," ACI[f Trans. on Sensor Networks, vol. 2, no. 1, pp.
94-128, 2006.

[5] M. Cardei and J. Wu, "Coverage in Wireless Sensor Networks," Handbook of Sensor
Networks: Compact Wireless and Wired Sensing S -/l ,- M. Ilyas and I. Magboub,
eds., CRC Press, 2004.

[6] K. Chakrabarty, S. Iyengar, H. Qi and E. Cho, "Grid Coverage for Surveillance and
Target Location in Distributed Sensor Networks," IEEE Trans. Computers, vol. 51,
no. 12, pp. 1448-1453, Dec. 2002.

[7] Y. T. C(! .1i and K. C. Ho, "A Simple and Efficient Estimator for Hyperbolic
Location," IEEE Trans. Image Processing, vol. 42, no. 8, pp. 1905-1915, 1994.

[8] E. J. Cockayne, E. O. Hare, S. T. Hedetniemi, and E. V. Wimer, "Bounds for
the Domination Number of Grid Graphs," Congressus Numerantium, vol. 47, pp.
217-228, 1985.

[9] S. Commuri and M. Watfa, "Coverage Strategies for Wireless Sensor Networks,"
Int'l J. Distributed Sensor Networks, vol. 2, pp. 333-353, 2006.

[10] D. Culler and W. Hong, \\Wn I. -- Sensor Networks," Comm. AC'_, vol. 47, special
issue, p. 6, 2004.

[11] "Dust N. l.- il;:- Available at http://www.dust-inc.com/, 2008.

[12] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Springer-V. i1 .- Nov.
1987.

[13] B. T. Fang, "Simple Solutions for Hyperbolic and Related Position Fixes," IEEE
Trans. Aerospace and Electronic S.. 11. vol. 26, no. 5, pp. 748-753, 1990.









[14] S. Fischer, H. Koo- 'pI ,i l,, E. Larsson, and A. Kangas, "System Performance
Evaluation of Mobile Positioning Methods," Proc. Forty-Ninth IEEE Vehicular
T. ,.. ...i,/; Conf., vol. 3, pp. 1962-1966, May 1999.

[15] S. Funke, A. Kesselman, F. Kuhn, and Z. Lotker, Iilnpi .., i Approximation
Algorithms for Connected Sensor Cover," Wireless Networks, vol. 13, no. 2, pp.
153-164, 2007.

[16] H. Guptas, S. R. Das, and Q. Gu, "Connected Sensor Cover: Self-Organization of
Sensor Networks for Efficient Query Execution," IEEE/AC'_I Trans. Networking,
vol. 14, no. 1, pp. 55-67, 2006.

[17] F. Gustafsson and F. Gunnarson, "Positioning Using Time-Difference of Arrival
Measurements," IEEE Int'l Conf. Acoustics, Speech, and S.:,I.,l Process-
ing(ICASSP'03), 2003.

[18] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, "Range-Free
Localization Schemes in Large Scale Sensor Networks," Proc. Ninth AC I[ Int'l Conf.
Mobile Cor,,il',.:,, and Networking(_[1obiCom'03), 2003.

[19] D. S. Hochbaum and W. Maass, "Approximation Schemes for Covering and Packing
Problems in Image Processing and VLSI," J. ACd!, vol. 32, no. 1, pp. 130-136, 1985.

[20] A. Howard, M. Mataric and G. Sukhatme, "An Incremental Self-Deployment
Algorithm for Mobile Sensor Networks," Autonomous Robots, special issue on
intelligent embedded systems, vol. 13, pp. 113-126, 2002.

[21] A. Howard, M. Mataric and G. Sukhatme, "Mobile Sensor Network Deployment
Using Potential Fields: A Distributed, Scalable Solution to the Area Coverage
Problem," Proc. Sixth Int'l Symp. Distributed Autonomous Robotics S l, 11-
(DARS'02), 2002.

[22] C. Huang and Y. T-, :. "The Coverage Problem in a Wireless Sensor .N I, i.: ,
Proc. Second AC '_ Int'l Conf. Wireless Sensor Networks and Applications (WSNA),
2003

[23] S. Iyengar and R. Brooks, "Computing and Communications in Distributed Sensor
Networks," J. Parallel and Distributed Computing, vol. 64, special issue, p. 7, 2004.

[24] S. Iyengar and R. Brooks, Handbook of Distributed Sensor Networks, C! kp", ,i: &
Hall/CRC, 2005.

[25] K. Kar and S. Banerjee, "Node Placement for Connected Coverage in Sensor
Networks," Proc. First Workshop Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt'03), 2003.

[26] B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks," Proc. Sixth AC I[ Int'l Conf. Mobile Computing and Net-
working(_ OBICOM'O0), pp. 243-254, 2000.









[27] R. Kershner, "The Number of Circles Covering a Set," American J. of Mathematics,
vol. 61, pp. 665-671, 1939.

[28] F. Kirwan, Complex Algebraic Curves. United Kingdom: Cambridge University
Press, 1992.

[29] H. Krim and M. Viberg, "Two Decades of Array Signal Processing Research: the
Parametric Approach," IEEE S.:g,.,rl Processing Mag., vol. 13, no. 4, pp. 67-94, July
1996.

[30] B. Krishnamachari, Ed., Networking Wireless Sensors. Cambridge University Press,
2005.

[31] \!i::;-d Integer Programming (\!IP) sol'., Available at http://tech.groups.
yahoo.com/group/lp_solve/, 2008.

[32] M. Mauve, J. Widmer and H. Hartenstein, "A Survey on Position-Based Routing in
Mobile Ad Hoc Networks," IEEE Network Mag., vol. 15, no. 6, pp. 30-39, Nov. 2001.

[33] M. Meguerdichian, F. Koushanfar, M. Potl:I ii I1: and M. Srivastava, "Coverage
Problems in Wireless Ad-Hoc Sensor Networks," Proc. Twentieth IEEE Conf.
Computer Communications (INFOCOM'01), pp. 1380-1387, April 2001.

[34] G. Mellen, M. Pachter, and J. Raquet, "Closed-Form Solution for Determining
Emitter Location Using Time Difference of Arrival Measurements," IEEE Trans.
Aerospace and Electronic S1,-/. n- vol. 39, no. 3, pp. 1056-1058, 2003.

[35] V. Mhatre, C. P. Rosenberg, R. R. Mazumdar, and N. B. Shroff, "A Minimum Cost
Heterogeneous Sensor Network with a Lifetime Constraint," IEEE Trans. Mobile
Computing, vol. 4, no. 1, pp. 4-15, Jan./Feb. 2005.

[36] R. N .- '1 H. Shrobe, and J. Bachrach, "Organizing a Global Coordinate System
from Local Information on an Ad Hoc Sensor Network," Proc. Second Int'l Work-
shop Information Processing in Sensor Networks (IPSN'03), April 2003.

[37] D. Niculescu and B. Nath, "Ad Hoc Positioning System (APS) Using AoA,"
Proc. T., -. ,i-second IEEE Conf. Computer Communications(INFOCOM'03), San
Francisco, CA, USA, 2003.

[38] D. Niculescu and B. Nath, "DV Based Positioning in Ad Hoc Networks," J.
Telecommunication S,-1. m- vol. 22, no. 1-4, pp. 267-280, Jan. 2003

[39] F. Gunnarsson, F. Gustafsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and
P.-J. Nordlund, "Particle Filters for Positioning, N ivi ii i.., and Trackiin IEEE
Trans. S.:g.il Processing, vol. 50, no. 2, pp. 425-437, Feb. 2002.

[40] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J. Odea, "Relative
Location Estimation in Wireless Sensor Networks," IEEE Trans. S.:g,,il Processing,
Vol 51, No. 8, pp. 2137-2148, Aug. 2003.









[41] S. Poduri and G. Sukhatme, "Constrained Coverage for Mobile Sensor Networks,"
IEEE Int'l Conf. Robotics and Automation (ICRA'04), pp. 165-171, 2004.

[42] G. Pottie and W. Kaiser, Principles of Embedded Networked System Design.
Cambridge University Press, 2005.

[43] F. P. Preparata and I. A. Shamos, Computational Geom( /;, An Introduction. New
York: Springer-V. 11 1985.

[44] N. B. Priyanath, A. C('i iI: ihorty, and H. Balakrishna, "The Cricket
Location-Support System," Proc. Sixth AC I[ Int'l Conf. Mobile Computing and
Networking(_[OBICOM'O0), Aug. 2000.

[45] N. S. V. Rao, "Identification of Simple Product-Form Plumes Using Networks
of Sensors with Random Errors," Proc. Ninth Int'l Conf. Information Fu-
sion(FUSION'06), pp. 1-8, July 2006.

[46] N. S. V. Rao, X. Xu, and S. Sahni, "A Computational Geometry Method for DTOA
Triangulation," Proc. Tenth Int'l Conf. Ir.f.', ,,il.:,n Fusion(FUSION'07), pp. 1-7,
July 2007.

[47] N. S. V. Rao, M. Shankar, J. C. Chin, D. Yau, Y. Yong, J. C. Hou, X. Xu, and S.
Sahni, "Localization Under Random Measurements with Application to Radiation
Sources," Proc. Eleventh Int'l Conf. Information Fusion(FUSION'08), submitted.

[48] K. Romer and F. Mattern "The Design Space of Wireless Sensor Networks," IEEE
Wireless Communications, vol. 11, no. 6, pp. 54-61, Dec. 2004.

[49] S. Sahni and X. Xu, "Algorithms for Wireless Sensor Networks," Int'l J. Distributed
Sensor Networks, Invited Paper, Preview Issue, pp. 35-56, 2004.

[50] A. Savvides, C. Han, and M. Srivastava, "Dynamic Fine-Grained Localization in
Ad-Hoc Networks of Sensors," Proc. Seventh AC([ Int'l Conf. Mobile ConTr,,'l.:.
and Networking(_[OBICOM'01), pp. 166-179, 2001.

[51] A. Savvides, H. Park, and M. Srivastava, "The Bits and Flops of the N-hop
Multilateration Primitive for Node Localization Problems," Proc. First AC('I Int'l
Workshop Wireless Sensor Networks and Application(WSNA'02), Sep. 2002.

[52] A. H. S ,1 A. Tarighat, and N. K!] .i. lIouri, \. v- ork-Based Wireless Location,"
IEEE S.:g,,rl Processing Mag., pp. 24-40, July 2005.

[53] H. C. Schau and A. Z. Robinson, "Passive Source Localization Employing
Intersecting Spherical Surfaces from Time-of-Arrival Differences," IEEE Trans.
on Acoustics, Speech, and S.':g,,l Processing, vol. 35, no. 8, pp. 1223-1225, 1987.

[54] R. Schmidt, "A New Approach to Geometry of Range Difference Location," IEEE
Trans. on Aerospace and Electronic S,.-/. '- vol. 8, no. 6, pp. 821-835, 1972.









[55] "Sentilla", Available at http://www.sentilla.com/, 2008.

[56] J. O. Smith and J. S. Abel, "Closed-Form Least-Squares Source Location Estimation
from Range-Difference Measurements," IEEE Trans. Acoustics, Speech, and S.:j,.,1l
Processing, vol. 35, no. 12, pp. 1661-1669, Dec. 1987.

[57] M.A. Spirito and A.G. Mattioli, "On the Hyperbolic Positioning of GSM Mobile
Stations," Proc. URSI Int'l Symp. S.:,.,I'1 S,.i ;m- and Electronics(ISSSE'98), pp.
173-177, Sep. 1998.

[58] M.A. Spirito, 1i'' I!. i Results on GSM Mobile Station Location", IEE Electronics
Letters, vol. 35, no. 11, PP. 867-869, May 1999.

[59] A. Srinivasan and J. Wu, "A Survey on Secure Localization in Wireless Sensor
Networks," En,.;. /.pedia of Wireless and Mobile Communications, Bu. Furht, ed.,
CRC Press, 2007.

[60] R. Szewezyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,
"Habitat Monitoring with Sensor Networks," Comm. AC'_, vol. 47, no. 6, pp. 34-40,
2004.

[61] X. W,,.: G. Xing, Y. Zl!i i- C. Lu, R. Pless, and C. Gill, Ii:. ~, I.1. Coverage and
Connectivity Configuration in Wireless Sensor Networks," Proc. First Int'l Conf.
Embedded Network Sensor SIl-. ,- pp. 28-39, 2003.

[62] J. Wang and N. Zhong, "Efficient Point Coverage in Wireless Sensor Networks," J.
Combinatorial Optimization, vol. 11, no. 3, pp. 291-304, May 2006.

[63] B. H. Wellenhoff, H. Lichtenegger and J. Collins, "Global Positioning System:
Theory and Practice," Springer V, i1 1. 2004.

[64] Q. Wu, S. S. Iyengar, S. V. N. Rao, X. Du, and V. K. Vaishnavi, "On Efficient
Deployment of Sensors on Planar Grid," Computer Comm., vol. 30, no. 14-15, pp.
2721-2734, 2007.

[65] "C1..-- I.... Available at http://www.xbow.com/, 2008.

[66] G. Xing, X. Wi,.: Y. Z! i i:- C. Lu, R. Pless, and C. Gill, I":. ,i .1. Coverage
and Connectivity Configuration in Wireless Sensor Networks," AC'I[ Trans. Sensor
Networks, vol. 1, no. 1, pp. 36-72, 2005.

[67] Y. Xu, J. Heidemann and D. Estrin, "Geography-Informed Energy Conservation
for Ad Hoc Routing," Proc. Seventh AC'f Int'l Conf. Mobile Corn,,lpl.:, and
Networking(_ OBICOM'01), July 2001.

[68] K. Xu et al, "Relay Node Deployment Strategies in Heterogeneous Wireless Sensor
Networks:Multiple-Hop Communication Case," Proc. Second IEEE Comm. Soc.
Conf. Sensor and Ad Hoc Comm. and Networks(IEEE SECON), pp. 575-585, 2005.









[69] X. Xu and S. Sahni, "Approximation Algorithms for Sensor Deployment," IEEE
Trans. Computers, vol. 56, no. 12, pp. 1681-1695, 2007.

[70] X. Xu, N. S. V. Rao, and S. Sahni, "A Computational Geometric Method for
Triangulation Using Differences of Distances," ACI[ Trans. Sensor Networks, to
appear.

[71] H. Zhang and J. Hou, \ il ,,Iiing Sensing Coverage and Connectivity in Large
Sensor Networks," Technical Report UIUCDCS-R-2003-2351, Univ. of Illinois at
Urbana-C('hl ,p 1, i! 2003.

[72] H. Zhang and J. Hou, \I ,iil iiing, Sensing Coverage and Connectivity in Large
Sensor Networks," Proc. NSF Int'l Workshop Theoretical and Algorithmic Aspects of
Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004.

[73] F. Zhao and L. Guibas, Wireless Sensor Networks. Elsevier, 2004.

[74] Y. Zou and K. C('i ,i:i l arty, "Sensor Deployment and Target Localization in
Distributed Sensor Networks," ACI[ Trans. Embedded Cori,,',I,:,';l S,-1. ',- vol. 3,
no. 1, pp. 61-91, 2004.









BIOGRAPHICAL SKETCH

Xiaochun Xu was born in C('! 1; ,. !nu, a midsize city in the eastern coastal area of

C!ii, i He studied in the field of computer software at the Department of Computer

Science and Technology, N ,'iiii-; University, C'liii from 1995 to 2002, and obtained his

master's degree in computer software. He started his Ph.D. study at the Department of

Computer and Information Science and Engineering at the University of Florida in August

2002. His research areas are approximation algorithms, computational geometry, wireless

sensor networks, and wireless ad hoc networks.





PAGE 1

1

PAGE 2

2

PAGE 3

3

PAGE 4

IwouldliketoacknowledgemanypeopleforhelpingmeduringmyPh.Dstudy.Iamgreatlyindebtedtomyadvisor,Dr.SartajSahni,forsupervisingandguidingmyresearchwork.Thisdissertationwouldnothavebeenpossiblewithouthishelp.IamhighlygratefulforhisinsightfulthoughtsandconstructivesuggestionsthroughoutmyPh.Dstudy.Hecontinuallyencouragedmetodevelopindependentthinkingandresearchskills.SpecialthanksgotoDr.NageswaraS.V.RaofromOakRidgeNationalLaboratory.Hisresearchinspiredmuchoftheworkinthisdissertation.Heoeredmanyhelpfulsuggestionsandmuchadviceaboutmyresearch.IamverygratefulforhavinganexceptionalcommitteeandwishtothankDr.RavindraAhuja,Dr.ShigangChen,Dr.SanjayRanka,andDr.YeXiafortheirsupportandencouragement.IwouldliketothankDr.ZhenSongfromSiemensCorporateResearchwhoseinsightfulthoughtsandsuggestionshavebeenveryhelpfulinournumerousdiscussions.Finally,Iamhighlygratefultomyparents,mysister,andmygirlfriendwhohavebeenveryinstrumentalinthesuccessfulcompletionofmyPh.D.TheirconstantmotivationandencouragementissomethingthatIwouldalwayscherishintheyearstocome.ThisworkwassupportedinpartbytheUSNationalScienceFoundationundergrantITR-0326155.ThisworkwasalsosupportedbySensorNetprogramatOakRidgeNationalLaboratorymanagedbyUT-Battelle,LLCforU.S.DepartmentofEnergyunderContractNo.DE-AC05-00OR22725. 4

PAGE 5

page ACKNOWLEDGMENTS ................................. 4 LISTOFTABLES ..................................... 7 LISTOFFIGURES .................................... 8 ABSTRACT ........................................ 11 CHAPTER 1INTRODUCTION .................................. 13 1.1Motivation .................................... 13 1.2RelatedWorkinSensorDeployment ..................... 15 1.3RelatedWorkinSensorLocalization ..................... 19 1.4Contribution ................................... 22 2SENSORDEPLOYMENTFORPOINTCOVERAGE .............. 26 2.1IntegerLinearProgrammingFormulation ................... 26 2.2GreedyAlgorithm ................................ 28 2.3GridCoverage .................................. 29 2.3.1ProblemDenitionandProperties ................... 29 2.3.2Asymptotic(1.58+)-ApproximationAlgorithm ........... 34 2.3.3AsymptoticPTASfor1-Coverage ................... 40 2.3.4AsymptoticPTASforq-Coverage ................... 42 2.4ExperimentalResults .............................. 45 2.4.1IntegerLinearProgram ......................... 45 2.4.2ComparisonofApproximationAlgorithms .............. 48 2.4.3ComparisonwithDivide-and-Conquer ................. 53 3SENSORDEPLOYMENTFORREGIONCOVERAGE ............. 55 3.1Exact3-ApproximationAlgorithm ....................... 55 3.2AsymptoticPTAS ............................... 58 3.3RegionCoverageviaPointCoverage ..................... 61 3.4CoveragewithaGridofSensors ........................ 66 3.4.1q=2 ................................... 69 3.4.2q=3 ................................... 71 3.4.3q=4 ................................... 72 3.4.4q=5 ................................... 75 3.5ExperimentalResults .............................. 78 5

PAGE 6

.................... 83 4.1PreliminariesandDenitions .......................... 84 4.2PropertiesofIdentifyingSensorSets ..................... 86 4.3NumberofIntersectionsofL12andL13 89 4.4IndistinguishablePoints ............................ 96 4.5ISSsforPolygonalRegions ........................... 98 5COMPUTATIONALGEOMETRYMETHODFORTRIANGULATIONUSINGDTOA ......................................... 102 5.1EuclideanandDTOASpaces ......................... 102 5.2GeometricDTOAMethod ........................... 104 5.3CorrectnessandComplexityoftheMethod .................. 109 5.4MonotonicityofDirectionalDerivative .................... 111 5.4.1TopLeftRegion ............................. 113 5.4.2InsideRegion .............................. 115 5.4.3BottomRightRegion .......................... 116 5.4.4Top,BottomLeft,Bottom,andTopRightRegions ......... 116 5.5SimulationResults ............................... 121 5.5.1F=0 ................................... 123 5.5.2F>0 ................................... 125 6CONCLUSIONSANDFUTUREWORK ...................... 127 REFERENCES ....................................... 129 BIOGRAPHICALSKETCH ................................ 135 6

PAGE 7

Table page 2-1Sensorcoverageproperties .............................. 31 2-2PerformancecomparisonofILPof[ 6 ]andourswithT=100seconds ...... 46 2-3PerformancecomparisonofILPof[ 6 ]andourswithT=1000seconds ..... 47 2-4Datafor1-coverage .................................. 50 2-5Datafor2-coverage .................................. 50 2-6Datafor3-coverage .................................. 51 2-7Datafor4-coverage .................................. 51 2-8Datafor5-coverage .................................. 52 2-9Cost/pointusing[ 6 ]togetherwithourILPwithT=1000secondsandour1:58+algorithm .................................. 54 3-1dMax,maximumAPN,andasymptoticratio1q5 ............. 67 5-1DataforS1=(0;0),S2=(0;50000),S3=(0:001;100000),andF=0 ....... 119 5-2DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=0 .......................................... 119 5-3DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=10/100 ....................................... 120 5-4DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=5/100 ....................................... 120 5-5DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=1/100 ....................................... 120 5-6DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=10/100 .... 121 5-7DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=5/100 .... 121 5-8DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=1/100 .... 122 5-9DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=10/100 ..... 122 5-10DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=5/100 ...... 122 5-11DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=1/100 ...... 123 7

PAGE 8

Figure page 1-1Locationdeterminationapproaches.A)AOA.B)TOA.C)DTOA. ....... 21 2-1Greedyalgorithmtodeploysensors ......................... 29 2-2Agridwithasensorofrange4atitscenter.A)Thesensormonintorsalldarklocations.B)Largestcoveringsquare.C)Largestcoveringrectangle. ....... 30 2-3Asymptotic(1.58+)-approximationalgorithmfor1-coverage ........... 35 2-4Tworegulartilingstrategies.A)`+'patterns.B)diamondpatterns ....... 36 3-1Algorithm3-approx .................................. 56 3-2Sensorats2Scancoverpointsinatmost3hexagons .............. 57 3-3LocationofsitesthatcancoverpointsinH 58 3-4AlgorithmAS ..................................... 59 3-5G(d)forarectangularregionR.The16shadedgridpointsarewithinadiskofradiusrcenteredatthelocations. ......................... 62 3-6ThesensorsislocatedinsidethesquareformedbyfourgridpointsPi,i=1;2;3;4,andcoversMAX(r)gridpoints,shownindarkcolor. .............. 64 3-7Griddedlayoutusingageometrysized.A)Equilateraltriangle.B)Square.C)Regularhexagon. .................................. 66 3-8Equilateraltriangle,q=2 ............................... 69 3-9Square,q=2 ...................................... 70 3-10Regularhexagon,q=2 ................................ 71 3-11Square,q=3 ...................................... 72 3-12Regularhexagon,q=3 ................................ 72 3-13Equilateraltriangle,q=4 ............................... 73 3-14Square,q=4 ...................................... 74 3-15Regularhexagon,q=4 ................................ 75 3-16Equilateraltriangle,q=5 ............................... 76 3-17Square,q=5 ...................................... 76 3-18Regularhexagon,q=5 ................................ 77 8

PAGE 9

.............. 80 3-20Totalsensorcostrequiredv.s.variouss,whereq=2. .............. 81 3-21Totalsensorcostrequiredv.s.variouss,whereq=3. .............. 82 4-1ExamplesofthelocusL12 85 4-2Threenon-collinearsensorsS1,S2,andS3formatriangleandtwohyperbolasL12(12)andL13(13)intersecteachotheratP1andP2. ............. 86 4-3AhyperbolaLthatpassesthroughSi(1i4). ................ 88 4-4Regionsofmonitoringarea:(a)topleft,(b)inside,(c)bottomright,(d)top,(e)bottomleft,(f)bottom,and(g)topright. ................... 90 4-5AhyperbolaL=LlSLrwithfocusSandsemimajoraxisy-axis. ....... 91 4-6Case1: 92 4-7Case2: 94 4-8Case3: .................. 94 4-9Case4: .................. 95 4-10Collinearsensors ................................... 97 4-11SensorsS1,S2,andS3ontheboundaryofaconvexpolygon. ........... 99 4-12Aconcavepolygon,itsboundingconvexpolygon,andthreesensorsS1,S2,andS3placedonthecommonboundaryoftheconcaveandconvexpolygons .... 100 4-13S1liesinsideasimplepolygonwhileS2andS3areontheboundary.P1inthetopregionisadualpointofP2whichliesinthetopleftregion. ......... 101 5-1Canonicalplacementof3sensorsandpartitioningofmonitoringregion ..... 105 5-2Canonicalplacementof3sensorsandL12(12) ................... 106 5-3P=(x;y)islocatedinthetopleftregion. ..................... 113 5-4P=(x;y)islocatedinsidethetriangle. ...................... 114 5-5P=(x;y)islocatedinthebottomrightregion. .................. 114 5-6P=(x;y)islocatedinthetopregion. ....................... 114 5-7P=(x;y)islocatedinthebottomleftregion. ................... 115 5-8P=(x;y)islocatedinthebottomregion. ..................... 116 5-9P=(x;y)islocatedinthetoprightregion. .................... 117 9

PAGE 10

..................................... 118 5-11ThedegeneratecasewhenL12(12)isaverticalray ................ 118 10

PAGE 11

11

PAGE 12

12

PAGE 13

23 24 60 73 ],tonamejustafew.Wirelesssensornetworksextendpeople'scapabilitybyestablishinganinstantandremoteinteractionwiththephysicalworld.Atypicalwirelesssensornetwork[ 11 55 65 ]maycomprisethousandsofspatiallydistributedyetcooperativesensornodesthatcontinuouslymonitorasetofprespeciedphysicalorenvironmentalconditionsinthedomainofinterest[ 48 ].Eachsensornodehasasensingcapabilityaswellaslimitedenergysupply,computepower,memory,andcommunicationability.Nowadays,asensornode(e.g.,mote)usuallyconsistsofthreeparts,thatis,awirelesscommunicationdevice,asmallautomaticcontrolunit,andasourceofenergy(e.g.,battery).IyengarandBrooks[ 23 24 ]andCullerandHong[ 10 ]providegoodoverviewsofthebreadthofsensornetworkresearchtopicsaswellasofapplicationsforsensornetworks.Sensornetworkalgorithmsarereviewedin[ 49 ].Thepurposeofwirelesssensornetworksistocontinuouslymonitorthedomainofinterest(i.e.,aregionorasetofdiscretetargets),detecttheoccuringeventsandcollectrelevantdataforfurtherprocessing/responding.Ifnotenoughsensorshavebeendeployed,thenthereisnowaythatthesensornetworkcanguaranteefullcoverageoverthedomain,whichmeanseventsoccuringatsomelocationsmaynotbedetectable.Therefore,anappropriatestrategyonsensordeploymentthatguaranteesthedomainofinterestgetcoveredatacertainqualityofservice(QoS)levelisafundamentalproblemforalmosteverysensornetworkapplication.M.CardeiandJ.Wu[ 5 ]reviewedthesensorcoverageproblemsinthecontextofstaticwirelesssensornetworks.Inpractice,thecoverage 13

PAGE 14

33 ].Insomemulti-sensorapplications,oneisofteninterestedinplacingsensorsatasubsetofpreselectedsitessoastominimizethesensorcostwhileprovidingaspecieddegreeofcoverageofthedomainofinterest(i.e.aregionorasetoftargets).WecallittheMin-CostSensorDeploymentProblem(MCSDP).Apossibleapplicationconsideredhereisinthedeploymentofchemicalandradioactivesensorssoastomonitoraportionoftheurbanareaorsomehigh-risktargetsthatmaybeapproximatedaspoints.Thecostofasensormaybefromhundredsofdollarstotensofthousandsofdollars.Thesensorsaremountedontrolleysandmay,forexample,bepoweredfromwalloutlets.Thesensorsdonotcommunicatewithoneanother.Rather,eachsensorcommunicateswithabasestation.Weassumethatpowerandsensorcommunicationrangearenotdesignissues.Thatis,eachofthefeasiblesensorsiteshasanabundantenergysupplyandeachsensorhasasucientlylargetransmissionrangetoreachthebasestationfromeachofthepreselectedsites.Notethattheseassumptionsareinstarkcontrasttotheassumptionoflowcostandlowpowerthataremadeinmuchoftherecentresearchinsensornetworks.Notonlyaresensornetworksrequiredtoprovideacertaindegreeofcoverageoverthedomainofinterest,buttheyalsoneedcertaincapabilitiestoreporttheaccuratelocationinformationoftheevent.Thiscapabilityoflocalizingtheeventiscruicialformanypracticalapplications.Forinstance,withthelocationinformationofenemytanksinabattleeld,itwillbeeasytodeploythetroopsveryeectivelyandeciently.Moreover,locationinformationcanevenhelponbuildingupsomecriticalsystemfunctionalities,i.e.,position-basedrouting[ 26 32 67 ]andlocation-basedinformationquerying[ 16 ].Althoughthecutting-edgeGPSequipmentscanprovidethedesiredlocationwithhighaccuracy,itisnotpracticaltohaveallsensornodesandobjectsofinterestequippedwithstillexpensiveGPSmodules.Inaddition,theaccuracyofGPSmeasurementsdegradesinurbanenvironmentsaswellasinsidebuildings.Localization,specically,discovering 14

PAGE 15

3 18 36 { 38 50 ].Sensorlocalizationisreviewedin[ 59 ].ThelocalizationtechniquebasedonmeasurementsofDierenceofTime-Of-Arrival(DTOA)hasbeenextensivelystudiedforatleastthreedecades[ 7 13 34 54 56 ].Recently,ithasreceivedarenewedattention[ 44 50 51 ]duetotheincreasingproliferationofwirelesssensornetworks[ 30 73 ]andembeddednetworkedsystems[ 42 ].Insomeapplications,thewirelessnodesareoftenrequiredtorepeatthelocalizationcomputations,buttheyarelimitedintheircomputationalcapabilitiesandavailablepower.Consequently,ithasbecomeimportanttostudythetrade-osbetweenthenumberandtypeofcomputationsandthequalityoflocalizationsolutiontofacilitatepowersavingsbygracefullydegradingthesolution.Inaddition,thecomputationalprecisionofarithmeticoperationsmaybelimitedincertainsensornodes,anditsimpactonthelocalizationsolutionmustbewellunderstood.ThesefactorsmotivateacloserexaminationofthecomputationalaspectsofDTOAtriangulationmethods,andsuchresultscouldbeofmoregeneralinterestaswell. 15

PAGE 16

64 ]havepresentedaprobabilisticsensingmodelthatprovidesdierentsensingcapabilitiesintermsofcoveragerangeanddetectionqualitywithadierentcost.TheyhaveproventhisproblemtobeNP-completeandanapproximatesolutionisproposedbasedona2Dgeneticalgorithm.Foragivenplacementofsensors,itiseasytocheckwhetherthecollectioncoversthetargetregionorpointsetandalsowhetherthecollectionisconnected.Forthecoverageproperty,weneedtoknowthesensingrangeofindividualsensors.(Weassumethatasensorcansenseeventsthatoccurwithinadistancers,wherersisthesensorssensingrange.)Fortheconnectedproperty,weneedtoknowthecommunicationrange,rc,ofasensor.ZhangandLou[ 71 ]haveestablishedthefollowingnecessaryandsucientconditionforcoveragetoimplyconnectivity. 71 ]). 66 ]proveasimilarresultforthecaseofq-coverage(eachpointiscoveredbyatleastqsensors)andq-connectivity(thecommunicationgraphforthedeployedsensorsisqconnected). 66 ]). 22 ]developalgorithmstoverifywhetherasensordeploymentprovidesq-coverage. 16

PAGE 17

20 21 ]considerthecasewhenthesensorsaremobileandself-deploy.Acollectionofmobilesensorsmaybeplacedintoanunknownandpotentiallyhazardousenvironment.Followingthisinitialplacement,thesensorsrelocatesoastoobtainmaximumcoverageoftheunknownenvironment.Theycommunicatetheinformationtheygathertoabasestationoutsideoftheenvironmentbeingsensed.Adistributedpotential-eld-basedalgorithmtoself-deploymobilesensorsunderthestatedassumptionsisdevelopedin[ 21 ],andagreedyandincrementalself-deploymentalgorithmisdevelopedin[ 20 ].Avirtual-forcealgorithmtoredeploysensorssoastomaximizecoverageisdevelopedbyZouandChakrabarty[ 74 ].PoduriandSukhatme[ 41 ]developedadistributedself-deploymentalgorithmthatisbasedonarticialpotentialeldsandthatmaximizescoveragewhileensuringthateachsensorhasatleastkothersensorswithinitscommunicationrange.KarandBanerjee[ 25 ]examinetheproblemofdeployingthefewestnumberofhomogeneoussensorssoastocovertheplanewithaconnectedsensornetwork.Theyassumethatthesensingrangersequalsthecommunicationrangerc(i.e.,rs=rc).KarandBanerjee[ 25 ]haveshownthattheiralgorithmhasasensordensitythatiswithin2.6%oftheoptimaldensity.Thisalgorithmmaybeextendedtoprovideconnectedcoverageforasetofniteregions[ 25 ].Baietal[ 1 ]extendtheresultin[ 25 ]andproveitsoptimalitywhenrc=rs


PAGE 18

62 ]runsinpolynomialtime,itisnotan-approximationalgorithmforanyconstant.Forthetestcasesreportedin[ 62 ],thedevelopedalgorithmhadanapproximationfactorof3.Gridcoverageisanotherversionofthepointcoverageproblem.IntheversionofChakrabartyetal.[ 6 ],wearegivena2Dor3Dgridofpointsthataretobesensed.Sensorlocationsarerestrictedtothesegridpointsandeachgridpointistobecoveredbyatleastq,q1,sensors(i.e.,weseekq-coverage).Forsensing,wehavetsensortypesavailable.Asensoroftypeicostscidollarsandhasasensingrangeri.Atmostonesensormaybeplacedatagridpoint.Inthisversionofthepointcoverageproblem,thesensorsdonotcommunicatewithoneanotherandareassumedtohaveacommunicationrangelargeenoughtoreachthebasestationfromanygridposition.Thus,networkconnectivityisnotanissue.Theobjectiveistondaleastcostsensordeploymentthatprovidesq-coverage.Chakrabartyetal.[ 6 ]formulatethisq-coveragedeploymentproblemasanintegerlinearprogram(ILP)withO(tn2)variablesandO(tn2)equations,wherenisthenumberofgridpoints.Foralargen,Chakrabartyetal.[ 6 ]proposeadivide-and-conquer\near-optimal"algorithminwhichthebasecase(asmallnumberofpoints)issolvedoptimallyusingtheILPformulation.Funkeetal.[ 15 ]developagreedyconstant-factorapproximationalgorithmandaPTASfor1-coverageofagrid.However,theyseektominimizethenumberofdeployedsensorsratherthanthecostofthesesensors.Whenoptimizingthenumberofdeployedsensors,onlysensorswithmaximumrangeneedbeconsidered.Thecomplexityofthegreedyalgorithmof[ 15 ],whichaccountsforobscuringobstacles,isO(nlogn)anditsapproximationfactorislog(4R2),whereRisthemaximumsensorrange.TheapproximationfactorofthePTASin[ 15 ],whichassumestherearenoobstaclesbutwhichobtains1-coverageforanyspeciedsubsetofgridpoints,is4(1+)anditscomplexityisO(n).Wuetal.[ 64 ]lookatthegrid 18

PAGE 19

68 ]considertheproblemofdeployingrelaynodesinaheterogeneoussensornetworkandMhatreetal.[ 35 ]considerminimum-costheterogeneousnetworkswithlifetimeconstraints.Relaynodesarenotdeployedinourmodelasweassumethateachsensor(orsensorassembly)iscapableofsingle-hopcommunicationwiththebasestation.Also,lifetimeisnotanissueforusasoursensorsarenotenergylimited. 3 18 32 37 38 40 50 51 ].Therearetwobasicformulationsofthelocalizationproblem:(1)estimatethelocationoftheobject,suchasoriginofaplume;and(2)adevice,suchasasensornode,estimatesthelocationitself,thatisself-localizationoratomicmultilateration.InamodelwhereeachsensorandobjectofinterestisequippedwithaGPSreceiver,theprocessoflocalizationisquitestraightforward.Inatypicalmodel,however,onlyasmallportionofsensornodes,namelybeaconnodes,aredeterministicallydeployedwithlocationinformationorequippedwithGPSreceivers.Othersensornodescancomputetheirlocationswiththehelpofbeaconnodes.Sensornodeswithknownlocationscanworktogetherthroughsomelocalizationprocesstolocateanobjectoreventofinterest.Theprocessforlocatinganobject/eventworksintwosteps.Itsdistancestosomenearbysensornodeswithknownlocationareestimatedintherststep.Insteptwo,onesensornodethencollectsallthesedistanceestimatesandcomputestheactuallocation.Theapproachesemployedinsteptwodependsonthesignalfeaturesusedinstepone,andmaybeclassiedintothreegroups:(1)AngleofArrival(AOA),(2)TimeofArrival(TOA),and(3)DierenceofTime-Of-Arrival(DTOA). 19

PAGE 20

29 ].Anestimateofthetargetlocation[ 37 ],asshowninFigure 1-1 -(A),issimplytheintersectionoftwobeamsoriginatedinthesensorss1ands2,respectively.AOAmethodsdonotrequireclocksynchronizationbetweensensornodes.However,toinstalldirectionalantennasinsideeachsensornodeisdicultandexpensive.Thenon-line-of-sight(NLOS)eectisamajorsourceoferrorinAOAmethods.Thetimeofarrival(TOA)methodtakesadvantageoftheestimatesofthepropagationtimebetweenthesourceandthreerespectivesensornodes[ 40 63 ].Sincethepropagationtimeisdirectlyproportionaltothetraversedrange,thedistancefromthesourcetoeachsensornodeissimplythemultiplicationofthecorrespondingTOAestimateandtheknownvelocity(i.e.thespeedoflightis3108m/s).Inaplane,suchthreedistancemeasurements,eachcorrespondingtoacircle,candetermineauniquelocation.AnexampleofhowTOAmethodsworkisshowninFigure 1-1 -(B).TheDTOAbasedlocalizationmethodusestimedierencemeasurementsratherthanabsolutetimemeasurementsasTOAdoes.ItisactuallyaprocesssolvingforthemathematicalintersectionofmultiplehyperbolasasshowninFigure 1-1 -(C).TheclassiclocalizationproblemusingDTOAmeasurementshasbeensolvedusingtwogeneralapproaches:(1)linearalgebraicsolutionwhichtypicallyinvolvesmatrixinversionandsolvingaquadraticequation[ 34 53 ],and(2)intersectionofhyperboliccurves[ 13 ].ThetransmittimeofasignalfromthesourceisessentialfortheTOAmethodassensorsneedthisinformationtocomputetheirdistancesfromthesource.Asmalldriftonthetransmittimewilldirectlyleadtoanerroronthelocationestimate.However,thisknowledgeisnotrequiredbytheDTOAmethodbecauseitcancelsoutwhencomputingthedierencesbetweenTOAs.Asaresult,comparedtotheTOAmethod,theDTOAmethoddoesnotrequirestricttimesynchronizationbetweenthe 20

PAGE 21

Locationdeterminationapproaches.A)AOA.B)TOA.C)DTOA. Therearealsosomelocalizationmethods,calledrange-freemethods,whichdonottrytoestimatethedistanceinformationbasedonreceivedsignalstrengthorotherfeatures[ 18 38 50 ].Savvidesetal.[ 50 ]proposeadistributedlocalizationalgorithmthatrecursivelycalculatesthelocationsofsensorswithunknownpositionfromsensorswhosepositionsarealreadyknown,usinginter-sensordistanceestimates.In[ 18 ],Heetal.presentarange-freelocalizationalgorithmcalledAPITthatperformslocationestimation.Everythreenon-collinearbeaconnodesformatriangularregion.Byputtingasmallperturbationonthesensorlocation,onemaydeterminewithverygoodsuccessfulpossibilitywhetherthesensorliesinsideoroutsideatriangularregion.Byrepeatingthisprocedureupondierenttriangularregions,theareawherethesensorcanpotentiallyresidecanbequicklynarroweddown.DV-HOP[ 38 ]letsbeaconnodesoodtheirlocationsthroughouttheentirenetworkandmaintainsarunninghop-countateachnodealongtheway.Sensornodescomputetheirlocationsbasedonthereceivedbeaconlocations,thehop-countfromthecorrespondingbeaconnode,andtheaverage-distanceperhop.Althoughtherange-freemethodsmakethedesignofhardwaregreatlysimplied,theestimatesbythesemethodsmaybefarfromaccurate,andthusnotsuitableforsomeapplications(i.e.,assettracking)thatrequirehighaccuracy. 21

PAGE 22

34 53 ]mayhaveimaginaryrootsinwhichcasethesemethodsdonotreturnananswer,thatistheybecomeincomplete.Moregenerally,numericalinstabilitiesmayariseincomputationsimplementedwithlowprecisionarithmeticoperationswhereinmatrixinversionsneededforlinearalgebraicmethodsmaybecomeill-conditionedresultinginlargeestimationerrors. 6 ].TheimpactofthisimprovementinILPformulationisareductionofupto78%(basedonourtestdata)inthecostofdeployedsensors.Agreedyalgorithmforgeneralsensordeploymentalsowasdeveloped.Thisgreedyalgorithm,likeourILP,maybespecializedtothecaseofagrid.FastasymptoticapproximationalgorithmsaswellasPTASsforgridsweredeveloped.Althoughtheproofsforthesealgorithmsassumedsquaregrids,theproofsalsoapplytorectangulargrids(notethattheapproximationfactorsareasymptoticandthat,whentherectangledimensionsarelargeenough,theapproximationfactorisnotaected).Ourexperimentsindicatethatthe1:58+-approximationalgorithmisthebestofouralgorithmsforq4andthatthegreedyalgorithmisusuallybestforq>4,whereqisthedesireddegreeofcoverage. 22

PAGE 23

23

PAGE 24

45 ]proposedasapartofplumeidentication,wherethesourceisinsidetheacutetriangleformedbysensors.Inourcase,theobjectcanbelocatedanywhereinthemonitoringregion.Inaddition,wealsoprovideadetailedanalysisoftheunderlyingcomputationandtheproofoftherequiredmonotonicitypropertyoftheunderlyingdirectionalderivative.Thisdissertationisorganizedasfollows.InChapter2,wedevelopanintegerlinearprogramming(ILP)formulationaswellasagreedyheuristicforminimumcostsensordeployment.Forthespecialcaseofminimumcostsensordeploymenttocoveragridofpoints,wedevelopalineartimefactor1.58approximationalgorithmaswellaspolynomialtimeapproximationschemes.InChapter3,weconsiderthetheplacementofsensorsforq-coverageofplanarregions.Wepresenttwoapproximationmethodswithmultiplicativefactorsof3and1+1/l,wherelisatunableparameterthtdeterminesthecomputationalcomplexity.Wedevelopatransformationfromaregioncoverageproblemtoanequivalentpointcoverageproblemsothatknownpoint-coveragealgorithmsmaybeusedtoconstructgoodregioncoveragedeployments.Wealsostudytheperformanceofdeployingsensorsinagriddedlayout.InChapter4,weestablishthepropertiesofsensorsetsthatuniquelyidentifyallsourcesinEuclideanplaneusingDTOAlocalizationandtheboundonthenumberofintersectionsoftwoDTOAhyperbolas.Theminimumnumberofsensorneededtouniquelyidentifyallsourcesinaboundedpolygonisalsoderived.InChapter5,weexaminetherelationshipbetweenproximityinEuclideanspaceandproximityinDTOAspace.OuranalysisshowsthattheproximityinDTAOspacedoesnotguaranteeproximityinEuclideanspace.WedevelopageometricDTOAtriangulationmethodandproveitscorrectness.ThismethodguaranteesproximityinbothEuclideanandDTOA 24

PAGE 25

25

PAGE 26

26

PAGE 27

6 ].Inthisproblem,thelocationsformap 27

PAGE 28

6 ]hasO(tn2)variablesandO(tn2)constraints. 1. Theselectionofasensoroftypeidoesn'tviolateanyboundonthetotalnumberofsensorsofthistypethatmaybedeployed. 2. Placementofasensoroftypeiatlocationzdoesn'tviolatetheboundonthenumberofsensorsoftypeithatmaybeplacedatlocationz. 3. Letcover0(j;l)betheremainingcoveragedegreetobeprovidedformodalityjatlocationl.Initially(i.e.,whennosensorhasbeendeployed),cover0(j;l)=cover(j;l)foralljandl.cover0(j;l)isreducedby1wheneverasensorisdeployedsoascoverlformodalityj.Letcover00(j;l)=maxf0;cover0(j;l)1gforalljandlsuchthatz2locations(i;j;l).Theincrementalcoveragecostcost(i)=(PjPl(cover0(j;l)cover00(j;l))isminimized. 28

PAGE 29

2-1 givesourgreedyalgorithmforminimum-costsensordeployment. Setcover0(j;l)=cover(j;l);8j;lwhile(cover0(j;l)>0foratleastonepair(j;l))fLet(i;z)beanoptimalsensor-locationpair.Ifthereisnosuch(i;z)oriftheincrementalcoveragecostisinnity,terminate.//deploymentunsuccessfulDeployasensoroftypeiatlocationz.Updatecover0.gFigure2-1. Greedyalgorithmtodeploysensors 6 ].Beforepresentingourtwoproposedasymptotoicapproximationalgorithms,werstgivethedetaileddenitionofthisproblemandsomeinterestingproperties. 2-2 (A)showsalllocationsmonitoredbyasensorwhoserangeis4andthatisplacedatthegridcenter.Darklocationsindicatelocationmonitoredbythesensor.Theobjectiveistondaminimumcostsensordeploymentthatprovidesthedesireddegreeofcoverage.Suchasensordeploymentiscalledanoptimaldeployment.Notethatsome 29

PAGE 30

Agridwithasensorofrange4atitscenter.A)Thesensormonintorsalldarklocations.B)Largestcoveringsquare.C)Largestcoveringrectangle. Notealsothatifcost(i)0,1jt.LetD(i)bethemaximumnumberofgridpointscoveredbyasensorwhoserangeisi.LetS(i)bethemaximumnumberofthesegridpointsthatfallwithinaverticallyalignedsquareandletR(i)bethecorrespondingnumberforthecaseofaverticallyalignedrectangle.Figure 2-2 (B)showsthelargestsquareofcoveredpointswhenthesensorrangeis4andFigure 2-2 (C)showsthelargestrectangleofcoveredpointsforthissensor.ObservethatD(4)=49,S(4)=25andR(4)=35.Table 2-1 givesD(i),S(i)andR(i)for1i12.Thisguregivesalsotheratioss(i)=S(i)=D(i)andr(i)=R(i)=D(i),1i12. 30

PAGE 31

Sensorcoverageproperties (2{1) (2{2) Thecoordinatesofthelargestverticallyalignedsquareofcoveredlocationshavetheform(x;x),wherex=bi=p (2{4) FromEquations 2{2 and 2{4 ,weget (2{5) 31

PAGE 32

2-1 givess(i)fori12asobtainedfromEquations 2{1 and 2{3 .Fori>1,theshownvaluesare0:51.Fori>12,s(i)0:51followsfromEquation 2{5 withi=13andthefactthattherightsideofthisequationisanondecreasingfunctionofi.NotethattherightsideofEquation 2{5 hasthelimitingvalueof2=asi!1. 2;h1 2),(w1 2;h1 2),(w1 2;h1 2),and(w1 2;h1 2).SincethegridlocationsatthecornersofBarecoveredbythesensorat(0,0),(w1 2)2+(h1 2)2i2,whereiistherangeofthesensor.Onemayverifythatwhenh>w+2,(w+1 2)2+(h3 2)2i2.So,therectangleQwhosecornersareat(w+1 2;h3 2),(w+1 2;h1 2),(w+1 2;h3 2),and(w+1 2;h3 2),includesonlygridlocationsthatarecoveredbythesensorat(0;0).ThewidthandheightofQarew+2andh2,respectively.ThenumberofgridlocationsincludedinQis(w+2)(h2),whichisgreaterthanthenumber,wh,oflocationsincludedinBwhenh>w+2.ThiscontradictstheassumptionthatBisthelargestrectangleofcoveredlocations.Hence,hw+2.Consequently,whw+2.Now,ifwd,wd+2asboth 32

PAGE 33

1 .LetBbeasinLemma 2 andassumethatwh.Thecasew>hissymmetric.FromLemma 2 andtheproofofLemma 1 ,itfollowsthatw=d=2bi=p 2-1 givesr(i)fori12asobtainedfromEquations 2{1 and 2{6 .Fori>1,theshownvaluesare>0:6366.Usingacomputerprogram,weveriedthatr(i)>0:6366fori100;000.Fori>100;000,weuser(i)s(i)andtheknowledgethattherightsideofEquation 2{5 ismorethan0.6366fori>100;000toconcludethatr(i)>0:6366. Letopt(n;q)bethecostofanoptimalsensordeploymentthatachievesq-coverageforap LettMax=argmax1jtfrange(j)gandtMin=argmin1jtfrange(j)g.NotethattMaxandtMin,respectively,givethesensortypeswithmaximumandminimumrange.LetqMaxbethemaximumcoveragedegreeobtainablebyanydeploymentofthegivensetofsensortypes.

PAGE 34

2-3 givesourasymptoticapproximationalgorithmfor1-coverage.Later,weextendthisalgorithmto2-and3-coverage.ThefollowinglemmashowsthatStep2ofFigure 2-3 isexecutedonlywhenrange(dMin)=1. 2-3 ,thendMin=rMin.

PAGE 35

8 ]tocoverthep 2-4 (A)).PlaceatyperMinsensoratthecenterofeach"+".Ifasensorisplacedatanon-gridlocation,moveittoagridlocationthatispartofits"+"pattern.Done. 2-4 (B)).Ifasensorisplacedatanon-gridlocation,moveittoagridlocationthatispartofitsdia-mondpattern.Done. Asymptotic(1.58+)-approximationalgorithmfor1-coverage

PAGE 36

6 ?ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddttttttttttttttttttttdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddtttttttttttttttttt 6 ?IR(A)(B)Figure2-4. Tworegulartilingstrategies.A)`+'patterns.B)diamondpatterns 3 ,weget 5cost(rMin) 5cost(j) 5cost(j) 0:6336D(range(j));1jt;j6=rMin0.

PAGE 37

8 ]haveshownthatatmostn+4p 5`+'patternsareneededtotileap 6 ,itfollowsthatthecostofthetilingobtainedbythealgorithmofFigure 2-3 islessthann+4p 4 ,andthefactthatD(1)=5,itfollowsthattheapproximationratioislessthann+4p n=1+4 13cost(rMin) 13cost(dMin) 13cost(dMin) 0:6366D(range(dMin))<1:09cMinUsingamethodsimilartothatusedin[ 8 ],wecanshowthatStep2deploysatmostdp 13e(p 4 ,itfollowsthatthe 37

PAGE 38

13e(p wedp heFromLemma 4 ,itfollowsthattheapproximationratioisatmostcost(rMin) wedp he1,andthechoiceofrMin,wegetcost(rMin) 0:6366cost(dMin)R(range(rMin))1 0:6366<1:58 38

PAGE 39

Forq-coverage,q2f2;3g,westartwiththe1-coveragedeploymentobtainedbythealgorithmofFigure 2-3 andincreasethenumberofsensorsateachgridlocationthathasasensorfrom1toq.While,wenowhaveq-coverageanda1:58+asymptoticapproximationfactorisguaranteedbyLemma 4 andTheorem 3 ,thedeploymentisinfeasibleasthereareq>1sensorsdeployedatcertaingridlocations.Toremedythisinfeasibility,werelocatetheexcesssensorsatanylocation.ThesensordeploymentofFigure 2-3 issuchthateverylocationLthathasasensorsatisesthefollowingproperties(sincewearedealingwithasymptoticproperties,wemayassumethatp 2-3 ,theasymptoticapproximationfactoris1=0:51+<1:96+. 39

PAGE 40

40

PAGE 41

7 tohandleanysensorsplacedoutsidethep 7 ,itfollowsthatCopt(d;1).Hence,opt(n;1)bp 2.1 (notethatsinceRandareconstants,thesizeoftheILPisconstant).Next,tilethep 7 41

PAGE 42

8 )

1.BeforepresentingthisPTASanditsproofofcorrectness,weestablishtwolemmas.Letp=D(range(tMax))cost(tMax)=(qcost(tMin)). 42

PAGE 43

4 ,itfollowsthatopt0(n;q)nqcMin.So,popt0(n;q)D(range(tMax))cost(tMax) cost(tMin)ncost(tMax)D(range(dMin))cMin cost(dMin)=ncost(tMax) 5 ).LetAbethesetofallgridpointslocatedonthewidthRboundaryofthegridandletBbethesetofremaininggridpoints.ThesizeofAis4R(p 43

PAGE 44

5 ,itfollowsthattheremainingsensorsprovideq-coverageofallgridpoints.Thecostofthisdeploymentisatmostd(p 2.1 withlocationscorrespondingtothegridpointsofa(p 10 .WeshowthatthejuststatedsensordeploymentalgorithmisanasymptoticPTASforq-coverage.Letp 44

PAGE 45

Fromthedenitionofp 2{8 isatmost1+.HencethestatedalgorithmisaPTASforq-coverageofagrid.ItscomplexityisO(n)forthesamereasonsasthecomplexityofthePTASfor1-coverageisO(n). 2.4.1IntegerLinearProgramWeevaluatedtheimpactofusingourILPformulationofSection 2.1 versusthatof[ 6 ]inconjunctionwiththedivide-and-conquerheuristicproposedin[ 6 ]forthedeploymentofsensorsinagrid.Recallthattheheuristicof[ 6 ]tilesalargegridusinganoptimaldeploymentforthelargestsquaresubgridwhoseILPformulationmaybesolvedinagivenamountoftime.Forthisevaluation,weusedtheILPsolverlpsolver5.0[ 31 ]developedbytheEindhovenUniversityofTechnology.ThisILPsolverwasrunonaDellInspironPCwitha1.7GHzprocessorand512MBmemory. 45

PAGE 46

2-2 givesthesizeofthelargestsquaresubgridwhoseILPformulationissolvablein100secondsusingtheformulationof[ 6 ]aswellusingourformulationofSection 2.1 .Also,thetotalcostoftheoptimaldeploymentdividedbythenumberofpointsinthesubgrid(cost/point)andthereductionincost/pointachievedusingourILPformulationaregiven.Table 2-3 givesthisdataforthecasewhenlpsolverisgiven1000secondstosolvetheILPformulation. Table2-2. PerformancecomparisonofILPof[ 6 ]andourswithT=100seconds T=100seconds Testcase[ 6 ]OursReduction(%) sizecost/pointsizecost/point [1;2;3;3;1:5;1]5*50.1225*250.120[2;2;3;3;1:5;1]4*40.37514*140.27626.4[3;2;3;3;1:5;1]4*40.56314*140.41338.5[4;2;3;3;1:5;1]4*40.7514*140.55126.53[5;2;3;3;1:5;1]3*31.6713*130.72856.41[1;2;7;4;5;3]5*50.215*150.20[2;2;7;4;5;3]5*50.4814*140.42910.63[3;2;7;4;5;3]4*40.93813*130.63931.88[4;2;7;4;5;3]4*41.2514*140.84732.24[5;2;7;4;5;3]3*32.7813*131.0761.51[1;2;6;4;5;3]5*50.215*150.1876.5[2;2;6;4;5;3]5*50.4414*140.36716.59[3;2;6;4;5;3]4*40.93814*140.55141.26[4;2;6;4;5;3]4*41.2514*140.73541.2[5;2;6;4;5;3]3*32.7813*130.92366.80[1;2;7;5;5;4]6*60.19418*180.13032.99[2;2;7;5;5;4]5*50.416*160.21945.25[3;2;7;5;5;4]4*40.93816*160.34867.38[4;2;7;5;5;4]3*32.2216*160.47878.47[5;2;7;5;5;4]3*32.7815*150.60978.09[1;3;5;5;3;3;1:5;1]5*50.1218*180.09322.5[2;3;5;5;3;3;1:5;1]4*40.37517*170.17553.33[3;3;5;5;3;3;1:5;1]4*40.56316*160.24656.31[4;3;5;5;3;3;1:5;1]3*31.3315*150.35673.23[5;3;5;5;3;3;1:5;1]3*31.6715*150.44473.41 46

PAGE 47

PerformancecomparisonofILPof[ 6 ]andourswithT=1000seconds T=1000seconds Testcase[ 6 ]OursReduction(%) sizecost/pointsizecost/point [1;2;3;3;1:5;1]5*50.1225*250.120[2;2;3;3;1:5;1]5*50.3614*140.27623.33[3;2;3;3;1:5;1]4*40.56314*140.41326.64[4;2;3;3;1:5;1]4*40.7514*140.55126.53[5;2;3;3;1:5;1]4*41.12514*140.68938.76[1;2;7;4;5;3]6*60.33315*150.239.94[2;2;7;4;5;3]5*50.4815*150.41812.92[3;2;7;4;5;3]5*50.7614*140.63816.05[4;2;7;4;5;3]4*41.2514*140.84732.24[5;2;7;4;5;3]4*41.6914*141.0637.28[1;2;6;4;5;3]6*60.30615*150.18738.89[2;2;6;4;5;3]5*50.4415*150.37315.23[3;2;6;4;5;3]5*50.6814*140.55118.97[4;2;6;4;5;3]4*41.2514*140.73541.2[5;2;6;4;5;3]4*41.6313*130.92343.37[1;2;7;5;5;4]7*70.14319*190.139.09[2;2;7;5;5;4]5*50.418*180.25636[3;2;7;5;5;4]5*50.616*160.34842[4;2;7;5;5;4]4*41.2516*160.47761.84[5;2;7;5;5;4]4*41.5616*160.60561.22[1;3;5;5;3;3;1:5;1]6*60.13919*190.09432.37[2;3;5;5;3;3;1:5;1]4*40.37517*170.17553.33[3;3;5;5;3;3;1:5;1]4*40.56317*170.26053.82[4;3;5;5;3;3;1:5;1]4*40.7517*170.34953.47[5;3;5;5;3;3;1:5;1]3*31.6717*170.43873.77 Wenotethatincreasingthetimeavailabletolpsolverfrom100secondsto1000secondshaslittleimpactonthesizeofthesubgridwhoseILPcanbesolved.Fortheformulationof[ 6 ],this10-foldincreaseinruntimeenabledthesolutionofgridswhosedimensionisatmost1morethanwhatcouldbesolvedin100seconds.Forourformulation,a10-foldincreaseinruntimehadaboutthesameimpact;wewereable,inthreeofthetestcases,tosolveforsubgridswhosedimensionis2more.Intheremainingtestscases,thedimensionofthesolvablesubgridincreasedbyatmost1.Ontheotherhand,usingourILPformulationversusthatof[ 6 ]hadadramaticimpactonthesizeofthesolvablesubgrid.Forexample,forourrsttestcase[1,2,3,3,1.5,1]wewereableto 47

PAGE 48

6 ]onlyfora55subgrid,whereaswewereabletosolveourILPfora2525subgrid!Althoughforthisparticulartestcase,therewasnoreductioninthecost/pointintheoptimalsolutionforthelargersubgrid,overoursetoftestcasesthereductionincost/pointintheoptimalsolutionforthelargestsubgridsolvableusingourILPformulationversusthatof[ 6 ]rangedfrom0%toslightlymorethan78%.Theimpactofthisreductiononthedivide-and-conquerheuristicof[ 6 ]isevident{forourtestcasestilingalargegridusingtheoptimalsolutionsfromthelargersubgridssolvableusingourILPformulationreducestheoverallcostofthedeployedsensorsbyasmuchasabout78%!Itisinterestingtonotethatthecost/pointincreasedfor3ofourtestcaseswhentheILPof[ 6 ]wasgiven1000secondsratherthan100seconds.Inoneofthesecases,theincreasewasashighas65%.Forourformulation,therewasanincreaseincost/pointfor4ofthe25testcases;however,inallfourcases,theincreasewaslessthan6%.Theimpactofanincreaseincost/pointintheoptimaldeploymentforalargersubgridonthetilingofalargegridmaybereducedbyndingtheoptimaldeploymentforseveralsmallsubgridsandusingthesubgridwiththesmallestcost/pointtotilelargegrids. 2.3.2 .2.Theasymptotic(1.96+)-approximationalgorithmdescribedattheendofSection 2.3.2 .3.Iterativeversionsofbothofthesealgorithms.Intheiterativeversion,Step4ofthealgorithmwasmodiedtondanoptimaldeploymentforthelargestsubgridofsize2iw2ihwhoseILPcouldbesolvedinaspeciedamountoftimeT.HerewandhareasdeterminedinStep1.Notethatthecost/pointforthisoptimaldeployment 48

PAGE 49

2.2 .ThetilingofalargegridinStep4oftherstfouralgorithmsstatedabovewasmodiedfromthatstatedintheoriginaldescriptionofSection 2.3.2 .Thismodicationisforthecasewhenp 2.2 isusedtodeploysensorstoachievethedesiredcoverageintheseportions.Thismodicationisreferredtoastilingwithgreedylling.WedidnotexperimentwithourPTASsaswedonotconsiderthesetobepracticalfromthestandpointofrequiredruntime.Forourexperiments,weused16testcases,eachdescribedbythetuple[t;c1;r1;:::;ct;rt].Foreachtestcase,wesoughtq-coveragefor1q5andthegridsizewas300300(or,n=90;000).Theiterativeversionsofthealgorithmsweregiven3600secondstosolvetheassociatedILP.Althoughwehavenotdescribedeithera1:58+-ora1:96+-asymptoticapproximationalgorithmforthecaseq2f4;5g,forourexperiments,weproceededasforthecaseq2f2;3gwiththe1-coveragedeploymentobtainedbythealgorithmofFigure 2-3 andincreasedthenumberofsensorsateachgridlocationthathasasensorfrom1toq.Then,werelocatedthesensorssoastopreserveq-coverageandassurethatnolocationhasmorethan1sensor.Ourrelocationstrategysucceededinallofour16testcases.Tables 2-4 2-8 givethecostsoftheconstructedsensordeploymentsaswellasthesizeofthetilingsubgridsused.Inthecaseofthe1:58+and1:96+algorithms,theselectedsensortypealsoisgiven.Thepercentagereductionincostobtainedbythe1:58+-approximatealgorithmrelativetothecostofthedeploymentconstructedbythegreedyalgorithmalsoisgiven.Theiterativeversionofthe1:58+-approximationalgorithmoutperformedthebase1:58+algorithminonly1ofthe80tests.Thisoccurredin1ofthetestswithq=4and 49

PAGE 50

Datafor1-coverage TestcaseTilingwithgreedyllingGreedyalg.Reduction(%) (1.96+)-alg.Iterativealg.(1.58+)-alg.Iterativealg. [2;3;3;1:5;1]10800(1,5*5)10800(20*20)10800(1,5*5)10800(20*20)15259.529.22[2;3;3;1;1]10800(1,5*5)10800(20*20)10800(1,5*5)10800(20*20)1471926.63[2;3;3;1:5;2]10800(1,5*5)10800(10*10)10800(1,5*5)10800(10*10)1401022.91[2;7;4;5;3]18000(2,5*5)18000(20*20)18000(2,5*5)18000(20*20)2004210.19[2;7;4;4:5;3]16200(2,5*5)16200(20*20)16200(2,5*5)16200(20*20)1914515.38[2;7;4;4;3]14400(2,5*5)14400(20*20)14400(2,5*5)14400(20*20)2100531.44[2;6;4;5;3]18000(2,5*5)15975(20*20)15555(1,5*7)15555(10*14)1829614.98[2;7;5;5;4]13010(1,7*7)11248(14*14)10386(1,7*9)10446(14*18)1338322.39[2;7;5;4:5;4]12942(1,7*7)10759.5(14*14)10296(1,7*9)10397(14*18)1283919.81[2;7;5;4;4]12876(1,7*7)10198(14*14)10230(1,7*9)10232(14*18)1327822.96[2;7;5;5;3]13001(1,7*7)11993(14*14)10365(1,7*9)10515(14*18)1388325.34[2;7;5;4;3]12985(1,7*7)11512(14*14)10401(1,7*9)10569(14*18)1324321.46[3;5;5;3;3;1:5;1]9257.5(1,7*7)8290(14*14)7410(1,7*9)7486.5(14*18)910118.58[3;5;5;2:5;3;1:5;1]9000(2,5*5)9000(10*10)7376(1,7*9)7422.5(14*18)866314.86[3;5;5;2:5;3;1;1]9000(2,5*5)9000(10*10)7321(1,7*9)7378(14*18)8361.512.44[3;5;5;2;3;1;1]7200(2,5*5)7200(20*20)7264(1,7*9)7296(14*18)77686.49 Datafor2-coverage TestcaseTilingwithgreedyllingGreedyalg.Reduction(%) (1.96+)-alg.Iterativealg.(1.58+)-alg.Iterativealg. [2;3;3;1:5;1]21780(1,5*5)25650(10*10)21780(1,5*5)25650(10*10)2629517.17[2;3;3;1;1]21720(1,5*5)25200(10*10)21720(1,5*5)25200(10*10)2543114.59[2;3;3;1:5;2]21691.5(1,5*5)24300(10*10)21691.5(1,5*5)24300(10*10)2515813.78[2;7;4;5;3]36205(2,5*5)39600(10*10)36205(2,5*5)39600(10*10)381155.01[2;7;4;4:5;3]32584.5(2,5*5)36900(10*10)32584.5(2,5*5)36900(10*10)37321.512.69[2;7;4;4;3]28964(2,5*5)34200(10*10)28964(2,5*5)34200(10*10)3614819.87[2;6;4;5;3]36184(2,5*5)37800(10*10)30972(1,5*7)34140(10*14)330876.39[2;7;5;5;4]25728(1,7*7)22202(14*14)20431(1,7*9)22371(14*18)2396714.75[2;7;5;4:5;4]25630(1,7*7)21253.5(14*14)20335.5(1,7*9)21792(14*18)2328212.66[2;7;5;4;4]25528(1,7*7)20204(14*14)20232(1,7*9)20639(14*18)223529.48[2;7;5;5;3]25852(1,7*7)24077(14*14)20528(1,7*9)22831(14*18)2406214.69[2;7;5;4;3]25772(1,7*7)23172(14*14)20619(1,7*9)22430(14*18)2393313.85[3;5;5;3;3;1:5;1]18390(1,7*7)16677.5(14*14)14676.5(1,7*9)16086(14*18)16721.512.23[3;5;5;2:5;3;1:5;1]18101.5(2,5*5)20250(10*10)14646(1,7*9)15582(14*18)1664512.01[3;5;5;2:5;3;1;1]18120(2,5*5)19800(10*10)14611.5(1,7*9)15517.5(14*18)16350.510.64[3;5;5;2;3;1;1]14520(2,5*5)17100(10*10)14455(1,7*9)17191(7*9)155627.11

PAGE 51

Datafor3-coverage TestcaseTilingwithgreedyllingGreedyalg.Reduction(%) (1.96+)-alg.Iterativealg.(1.58+)-alg.Iterativealg. [2;3;3;1:5;1]32758.5(1,5*5)40500(10*10)32758.5(1,5*5)40500(10*10)3695711.36[2;3;3;1;1]32640(1,5*5)38700(10*10)32640(1,5*5)38700(10*10)362229.89[2;3;3;1:5;2]32583(1,5*5)37800(10*10)32583(1,5*5)37800(10*10)36013.59.53[2;7;4;5;3]54410(2,5*5)59400(10*10)54410(2,5*5)59400(10*10)53099-2.47[2;7;4;4:5;3]48969(2,5*5)55350(10*10)48969(2,5*5)55350(10*10)522856.34[2;7;4;4;3]43528(2,5*5)51300(10*10)43528(2,5*5)51300(10*10)5033713.53[2;6;4;5;3]54368(2,5*5)56700(10*10)46551(1,5*7)52033(10*14)46012-1.17[2;7;5;5;4]38464(1,7*7)33260(14*14)30683(1,7*9)33789(14*18)332717.78[2;7;5;4:5;4]38343(1,7*7)797.5(14*14)30517(1,7*9)32407(14*18)32771.56.88[2;7;5;4;4]38202(1,7*7)30322(14*14)30371(1,7*9)30581(14*18)310152.08[2;7;5;5;3]38677(1,7*7)35166(14*14)30739(1,7*9)35595(14*18)335228.30[2;7;5;4;3]38645(1,7*7)33435(14*14)30897(1,7*9)34141(14*18)333677.40[3;5;5;3;3;1:5;1]27595.5(1,7*7)24090.5(14*14)21926.5(1,7*9)24668.5(14*18)233876.24[3;5;5;2:5;3;1:5;1]27204.5(2,5*5)30600(10*10)21908.5(1,7*9)23664(14*18)23273.55.87[3;5;5;2:5;3;1;1]27239.5(2,5*5)29700(10*10)21838(1,7*9)27333.5(7*9)22901.54.64[3;5;5;2;3;1;1]21839(2,5*5)26100(10*10)21656(1,7*9)27183(7*9)223132.94 Datafor4-coverage TestcaseTilingwithgreedyllingGreedyalg.Reduction(%) (1.96+)-alg.Iterativealg.(1.58+)-alg.Iterativealg. [2;3;3;1:5;1]43737(1,5*5)54000(10*10)43737(1,5*5)54000(10*10)473737.68[2;3;3;1;1]43560(1,5*5)52200(10*10)43560(1,5*5)52200(10*10)465226.37[2;3;3;1:5;2]43474.5(1,5*5)51300(10*10)43474.5(1,5*5)51300(10*10)46477.56.46[2;7;4;5;3]72615(2,5*5)79200(10*10)72615(2,5*5)79200(10*10)67634-7.36[2;7;4;4:5;3]65353.5(2,5*5)73800(10*10)65353.5(2,5*5)73800(10*10)67025.52.49[2;7;4;4;3]58092(2,5*5)68400(10*10)58092(2,5*5)68400(10*10)642219.54[2;6;4;5;3]72552(2,5*5)75600(10*10)62158(1,5*7)69916(10*14)58468-6.31[2;7;5;5;4]51337(1,7*7)44324(14*14)41054(1,7*9)45667(14*18)423673.10[2;7;5;4:5;4]51132.5(1,7*7)42377(14*14)40860.5(1,7*9)52090(7*9)418322.32[2;7;5;4;4]50941(1,7*7)40412(14*14)40657(1,7*9)40265(14*18)39335-3.36[2;7;5;5;3]51458(1,7*7)48028(14*14)41036(1,7*9)47723(14*18)426003.67[2;7;5;4;3]51511(1,7*7)46206(14*14)41087(1,7*9)46286(14*18)424423.19[3;5;5;3;3;1:5;1]36769(1,7*7)33242.5(14*14)29226.5(1,7*9)33010(14*18)298432.07[3;5;5;2:5;3;1:5;1]36306(2,5*5)40950(10*10)29171.5(1,7*9)32245.5(14*18)29650.51.62[3;5;5;2:5;3;1;1]36359(2,5*5)39600(10*10)29114(1,7*9)31177(14*18)29248.50.46[3;5;5;2;3;1;1]29158(2,5*5)35100(10*10)28857(1,7*9)37144(7*9)28661-0.68

PAGE 52

Datafor5-coverage TestcaseTilingwithgreedyllingGreedyalg.Reduction(%) (1.96+)-alg.Iterativealg.(1.58+)-alg.Iterativealg. [2;3;3;1:5;1]54714(1,5*5)67500(10*10)54714(1,5*5)67500(10*10)576605.11[2;3;3;1;1]54480(1,5*5)64800(10*10)54480(1,5*5)64800(10*10)568434.16[2;3;3;1:5;2]54366(1,5*5)63450(10*10)54366(1,5*5)63450(10*10)56671.54.07[2;7;4;5;3]90822(2,5*5)100800(10*10)90822(2,5*5)100800(10*10)82374-10.26[2;7;4;4:5;3]81742.5(2,5*5)94500(10*10)81742.5(2,5*5)94500(10*10)81442.5-0.37[2;7;4;4;3]72660(2,5*5)88200(10*10)72660(2,5*5)88200(10*10)779726.81[2;6;4;5;3]90742(2,5*5)95400(10*10)77668(1,5*7)88493(10*14)70992-9.40[2;7;5;5;4]64183(1,7*7)55357(14*14)51164(1,7*9)56956(14*18)512930.25[2;7;5;4:5;4]63884.5(1,7*7)53037.5(14*14)50914.5(1,7*9)68565.5(7*9)50750.5-0.32[2;7;5;4;4]63648(1,7*7)50576(14*14)50659(1,7*9)64156(7*9)47729-6.14[2;7;5;5;3]64361(1,7*7)60790(14*14)51446(1,7*9)59701(14*18)515360.17[2;7;5;4;3]64318(1,7*7)59025(14*14)51284(1,7*9)58160(14*18)513500.13[3;5;5;3;3;1:5;1]45910(1,7*7)42413(14*14)36637(1,7*9)41407(14*18)36205-1.19[3;5;5;2:5;3;1:5;1]45409(2,5*5)51300(10*10)36482(1,7*9)51576(7*9)35972.5-1.42[3;5;5;2:5;3;1;1]45478(2,5*5)49950(10*10)36390(1,7*9)39268.5(14*18)35525.5-2.43[3;5;5;2;3;1;1]36476(2,5*5)44100(10*10)36108(1,7*9)37340(14*18)34975-3.24 52

PAGE 53

6 ]proposetilinganp 6 ]withthatofour1:58+-approximationalgorithm.Forthiscomparison,weusethecost/pointoftheoptimalsolutionforthelargestILPsolvableusingourformulationandthe25datasetsofTable 2-3 .Thecost/pointforthe1:58+-approximationalgorithmisobtainedbydividingthetotalcostofthesensorsdeployedona300300gridbythenumberofpoints(90,000)inthegrid.Thiscomparisonisbiasedinfavorofthedivide-and-conqueralgorithmasthiscomparisonassumesthatthesizeofthegridtobecoveredisamultipleofthesizeofthesubgridsolvedusingtheILP.However,forthe1:58+-approximationalgorithm,weusethegreedyalgorithmtocoverportionsofthe300300gridnotcoveredbywholesubgrids(i.e.,greedylling).Table 2-9 givesthecost/pointforeachalgorithmandthepercentreductionincost/pointachievedbythe1:58+algorithmrelativetothatachievedbythedivide-and-conqueralgorithmof[ 6 ]usingourILPformulation;thetimeallotedtotheILPsolverwas1000seconds.Bothalgorithmsproduceddeploymentswiththesamecost/pointon2ofthe25datasets.Ontheremaining23datasets,our1:58+-algorithmhadasmallercost/point.Theaveragereductionincost/pointobtainedbyouralgorithmwas7%;themaximumreductionwas12.5%andtheminimumreduction0%.WhenthetimeavailabletotheILPsolverisonly100seconds,thesepercentageswere6.9%,23.6%and3:65%(ononetestset,usingourILP,thedivide-and-conqueralgorithmof[ 6 ]didbetterthanour1:58+algorithm,on2testsetsthetwoalgorithmsweretied,andour1:58+algorithmwassuperiorontheremaining22datasets).Asnotedearlier,forthetestcases 53

PAGE 54

Table2-9. Cost/pointusing[ 6 ]togetherwithourILPwithT=1000secondsandour1:58+algorithm Testcase[ 6 ]+ourILP1.58+Reduction(%) [1;2;3;3;1:5;1]0.120.120[2;2;3;3;1:5;1]0.2760.24212.31[3;2;3;3;1:5;1]0.4130.36411.86[4;2;3;3;1:5;1]0.5510.48611.80[5;2;3;3;1:5;1]0.6890.60811.76[1;2;7;4;5;3]0.20.20[2;2;7;4;5;3]0.4180.4023.83[3;2;7;4;5;3]0.6380.6055.17[4;2;7;4;5;3]0.8470.8074.72[5;2;7;4;5;3]1.061.014.72[1;2;6;4;5;3]0.1870.1737.49[2;2;6;4;5;3]0.3730.3447.77[3;2;6;4;5;3]0.5510.5176.17[4;2;6;4;5;3]0.7350.6915.99[5;2;6;4;5;3]0.9230.8636.5[1;2;7;5;5;4]0.130.11511.54[2;2;7;5;5;4]0.2560.22711.33[3;2;7;5;5;4]0.3480.3412.01[4;2;7;5;5;4]0.4770.4564.4[5;2;7;5;5;4]0.6050.5686.12[1;3;5;5;3;3;1:5;1]0.0940.082312.45[2;3;5;5;3;3;1:5;1]0.1750.1636.86[3;3;5;5;3;3;1:5;1]0.2600.2446.15[4;3;5;5;3;3;1:5;1]0.3490.3256.88[5;3;5;5;3;3;1:5;1]0.4380.4077.08 54

PAGE 55

3-1 ),beginsbytilingRwithregularhexagonswhosesideshavelengthL;someofthehexagonsthatoverlaptheboundaryofRmaycontainportionsoftheEuclideanspacethatarenotinR.Next,foreachhexagon,Hi,ofthetiling,wendanoptimal(i.e.,leastcost)sensordeploymentthatq-coversHi\R.Finally,theoptimalsensordeploymentsforthehexagonsinthetilingarecombinedbyensuringthatnositeinShastwoormoresensors.Tothealgorithmof 55

PAGE 56

Algorithm3-approx Figure 3-1 ,wemayaddanoptionalpruningstepinwhichredundantsensors(i.e.,sensorswhoseomissiondoesn'taecttheq-coverageproperty)areeliminated.Itiseasytoseethat3-approxconstructsaq-coverforRwithatmostonesensorpersiteinSprovidedsuchaq-coverexists.Inthefollowing,weestablishthatthecostoftheconstructedq-coverisatmost3timesthatofanoptimalq-coverandweanalyzethecomplexityof3-approx. 3-2 ).TheproofforthecasewhensisinnoHi(thismayhappenwhenShaslocationsoutsideofR)issimilar.Letd(p1;p2)betheEuclideandistancebetweentwopointsp1andp2andletd(Hi;Hj)bethesmallestdistancebetweentwopointsoneofwhichisinHiandtheotherisinHj.Since,d(p1;s)L>rMaxforpointsoutsideofthe7hexagonsshowninFigure 3-2 ,thesensoratscannotcoverpointsoutsideofthe7hexagons.Noticethatd(Hi;Hj)=Lfori;j2f2;4;6gaswellasfori;j2f3;5;7g.Fromthisobservation,L=2rMax+>2rMax,andthetriangleinequality,itfollowsthatforanypointp1inHiandp2inHj,i;j2f2;4;6gori;j2f3;5;7g,d(p1;s)+d(p2;s)>2rMax.Hence,eitherd(p1;s)>rMaxord(p2;s)>rMaxorboth.So,thesensoratscancoverpointsinatmostoneofH2,H4,andH6andatmostoneofH3,H5,andH7.ThissensormaycoveralsopointsinH1.Hence,pointsinatmost3ofthehexagonsofthetilingmaybecovered.

PAGE 57

Sensorats2Scancoverpointsinatmost3hexagons 11 ,itfollowsthattheassignmentofsensorstohexagons,assignseachsensorofOtoatmost3hexagons.Hence,Pcost(Hi)3cost(O).SincethesensorsassignedtoHiq-coverHi\R,theircostmustbeatleastthatofthedeploymentcomputedinStep2.So,thesensordeploymentfollowingStep3hasacostthatisatmost3cost(O). Thecomplexityofalgorithm3-approxisgovernedbythetimeittakestodeterminetheoptimalq-coverforeachofthehexagonsinthetiling.Whencomputingtheoptimalq-coverforahexagonH,weneedconsideronlythosesitesinSthatlineintheshadedregionshowninFigure 3-3 .TheareaAofthisregionisarea(H)+perimeter(H)rMax+rMax2.=1:5p 57

PAGE 58

LocationofsitesthatcancoverpointsinH 2 19 ]toarriveatanapproximationschemefortheq-coverproblem.Letl1beanintegershiftingparameter.Thecostofthesensordeploymentscomputedbyourapproximationschemewillbewithinamultiplicativefactorof1+1=lofthecostofanoptimaldeployment.Bymakinglsuitablylarge,wecanobtaindeploymentsasclosetooptimalasdesired.Figure 3-4 givesourapproximationschemeAS.Unlikealgorithm3-approx,whichconsidersasingletilingoftheregionRthatistobeq-covered,algorithmASconsidersafamily,T1,,Tl,oftilings.Toobtainatilinginthisfamily,webeginbydeterminingthesmallestboundingrectangleUofR.Next,thisboundingrectangleistiledusingtileswhoseheightequalsthatofUbutwhosewidthislL,whereL=2rMax+andisapositiveconstant.Therstandlasttilesinthetilingareexceptions.InTi,thewidthofthersttileisiL.Incasetilingwithatileof 58

PAGE 59

AlgorithmAS widthiLfollowedbytilesofwidthlLdoesn'texactlycoverU,alasttilewhosewidthislessthanlLisusedinTi.InSteps2through4,wecomputeanoptimaldeploymentforeachofthetilingsTiusingastrategysimilartothatusedforthehexagonaltilingusedin3-approx(i.e.,ndanoptimaldeploymenttoq-coverthesub-regionofRincludedineachtileofTiandthencombinetheseoptimaldeploymentstoobtainaq-coverforR).Finally,inStep5,thebestoftheq-coversoverallltilingsT1,,Tlisselectedasthedeploymenttouse.Asinthecaseofalgorithm3-approx,wemayaddanoptionalpruningstepinwhichredundantsensors(i.e.,sensorswhoseomissiondoesn'taecttheq-coverageproperty)areeliminated.ItiseasytoseethatASndsaq-coverforeveryinstanceforwhichthereisaq-cover.ThefollowingtheoremestablishesthatASis,infact,anapproximationschemefortheq-coverproblem.

PAGE 60

6 ,weobtaincost(Ti)cost(O)+cost(Oi)SupposethatasensorofOthatliesinthersttileofTicoversapointinthesecondtileofTi.SinceL>2rMax,thissensorispartofthesecondtileofTj,ji,thissensorremainsinthersttileforTjandisunabletocoverpointsthatarenotinthersttileofTj.Hence,thissensor,whichisinOi,isnotinanyOj,j6=i.Byreasoninginasimilarfashion,wemayshowthatallOisaredisjointandsolXi=1cost(Oi)cost(O)Hence,min1ilfcost(Ti)g1 60

PAGE 61

4 22 61 72 ]toverifythatasensordeploymentactuallyprovidesregioncoveragewiththedesiredcoveragedegreearerathercumbersomewhilesimilaralgorithmsforpointcoverageareratherstraightforward,wearemotivatedtotransformaregioncoverageinstanceintoanequivalentpointcoverageinstance.Weassumethatthereisonly1sensortypeandthatatmost1sensormaybeplacedateachlocationinS.Letrbethesensingrangeofasensor.Weassumethateachsensorcanmonitor/covertheentirediskofradiusrcenteredatitself.Theobjectiveistondtheminimumcost(sincethereisonly1sensortype,minimizingcostisequivalenttominimizingthenumberofsensors)sensordeploymentthatprovidesthedesireddegree,q,ofcoverageovertheregionR.Suchasensordeployment,denotedbyOPTR(r),iscalledanoptimaldeploymentanditscostiscost(OPTR(r)).ThetransformationfromregioncoveragetopointcoveragemaybeaccomplishedbysuperimposingagridofpointsoverRsuchthateverypointofRiswithinadistanced 3-5 showsG(d)forthecasewhenRisarectangle.G(d)iscomposedofthesmallcircles(bothshadedandunshaded)inthisgure;theoutermostgridpointsareadistanced=2fromtheboundaryofR.Letr0=rd

PAGE 62

d)2+2b2r dc+1andMIN(r)(r d)22r db2r dc.ProofWithoutlossofgenerality,assumethatthesensorislocatedat(0;0)andthatPi,i=1;2;3;4arethe4gridpointsclosesttothesensor(Figure 3-6 ).WemayfurtherassumethatP1=(xd;yd)isclosertothesensorthanarePi,i=2;3;4.Clearly,0x1 2and0y1 2.LabeltherowinwhichP1liesrow0,therowrightabove(below)P1isrow1(1),andsoon.Letmaxrowbetherownumberofthehighestrowthatispartiallycoveredbythesensorandletminrowbecorrespondinglowestrow.Notethatb2r dcmaxrowminrow+1b2r dc+1. 62

PAGE 63

d)2(y1+i)2crow(i)b2p d)2(y1+i)2c+1.MAX(r)=maxrowXi=minrowrow(i)maxrowXi=minrow(b2r d)2(y1+i)2c+1)maxrowXi=minrow(b2r d)2(y1+i)2c)+b2r dc+11Xi=minrow(2r d)2(y1+i)2)+b2r dc+maxrowXi=1(2r d)2(y1+i)2)+b2r dc+12Zr dr dr d)2y2dy+2b2r dc+1(r d)2+2b2r dc+1MIN(r)=maxrowXi=minrowrow(i)maxrowXi=minrowb2r d)2(y1+i)2c>maxrowXi=minrow(2r d)2(y1+i)21)maxrowXi=minrow(2r d)2(y1+i)2)b2r dc(r d)22r db2r dc 12 exists,cost(OPTG(d;r0))Fcost(OPTR(r)),whereFMAX(r)MIN(r0)+1.

PAGE 64

ThesensorsislocatedinsidethesquareformedbyfourgridpointsPi,i=1;2;3;4,andcoversMAX(r)gridpoints,shownindarkcolor. d2:399.Proof

PAGE 65

d)2+2b2r dc+1((rd d)2+2b2r dc+1((r d1 d1 dp d)2+4r d+1(r d1 d1 dp d+12p d3:399Hence,FMAX(r)MIN(r0)+112:443r d2:399. d2:399)cost(OPTR(r)).ProofFollowsfromCorollary 1 andLemma 15 Noticethattheuseofanergrid(i.e.,smallerd)resultsinalargerapproximationfactor.Thiswouldargueinfavorofusingthemaximumpossibled;thatisd=p d2:399)=12:443=p 65

PAGE 66

3-7 )layout,exactlyonesensorpergridpoint.WeusethesymbolsT,S,andH,respectively,torefertothethreegridgeometries(equilateraltriangle,square,andregularhexagon)consideredbyus.Weusedtodenotethesize(i.e.,sidelength)ofthegeometrybeingconsidered.Fortheproblemconsideredinthesection,thereisonly1sensortype;thesensorrangeisr;andwewishtominimizethenumberofsensorsdeployed.WeassumethatrismuchsmallerthantheheightandwidthoftherectangularregionRthatistobeq-covered.So,weneglectboundaryeectsinouranalysis.Withtheseassumptions,minimizingthenumberofsensorsforeachgriddedlayoutisequivalenttondingdMax(X;q),X2fT;S;Hg,themaximumvalueofdforthegeometryXforwhichtheresultinggriddedlayoutq-coverstheplane.Weconsiderthecasewhen1q5,whichwebelievetobethemostpractical. Griddedlayoutusingageometrysized.A)Equilateraltriangle.B)Square.C)Regularhexagon. 66

PAGE 67

Equilateraltriangle1p 2r22 2r2 2r22 2r3 8p 7p Square1p 5r25 5p 25r225 5r2 5r2 Regularhexagon1r3 4p 4p 7p 7r75 196p 4r24 Following[ 1 ],weuseqXtodenotethemaximumareapernode(APN)inthegriddedlayout 2dMax(T;q)2qS=dMax(S;q)2qH=3 4p 67

PAGE 68

3-1 summarizesthevaluesofdMax,themaximumAPNqX,andtheasymptoticratioratioqXforthegeometriesconsideredinthissection.Theresultsforq=1arefromBaietal.[ 1 ]andthosefor2q5arederivedlaterinthissection.Actually,wederiveonlythevalueofdMax(X;q),2q5asthevaluesofqXandratioqXaresimplycomputedusingtheequationsgiveearlierandthevalueofdMax(X;q).FromtheasymptoticratiosgiveninTable 3-1 ,weseethatthetriangulargrid,ismoreecientthanthesquareandhexagonalgridsfor1coverage.Infact,itachievesanasymptoticratioof1.2.Thisisabout20%lessthanthatforthesquaregridand50%lessthanthatforthehexagonalgrid.So,for1-coverage,thetriangulargridusesabout20%fewersensorsthandoestherectangulargrid;thetriangulargriduseshalfthesensorsrequiredbythehexagonalgrid.Forq=2,thehexagonalgridismostecientrequiringabout33%fewersensorsthanrequiredbythetriangulargrid(anasymptoticratioof1.2forthehexagonversus1.8forthetriangle)andabout20%fewersensorsthanrequiredbythesquaregrid.Forq=3,thetriangulargridisagainmostecient(asymptoticratiois1.2).However,thesquareandhexagonalgridsarequitecompetitivewithasymptoticratiosof1.3and1.4,respectively.Notsurprisingly,whenq=4,thesquaregridismostcompetitiveandcomeswithin9%ofourlowerboundonthenumberofsensorsrequiredfor4-coverage.Thetriangularandhexagonalgridsarewithin21%and19%,respectively,ofthislowerbound.Whenq=5,thetriangulargridisonceagainmosteectiveandcomeswithin27%ofourlowerbound.Wenotethatthestatedresults(thoughnowweusetotalsensorcostasoureciencymetricratherthannumberofsensors)andboundsapplyevenwhenwehaveamixofsensortypesprovidedweuseonlysensorswiththeleastvalueofcost=range2. 68

PAGE 69

Equilateraltriangle,q=2 Itisinterestingtonotethattheupperboundofr2=qusedbyusinthecomputationoftheasymptoticratioisratherloose.Forexample,forthecaseof1-coverage(q=1)Kershner[ 27 ]hasshownthatplacingsensorsattheverticesofanequilateraltrianglewhosesidesarep 71 ]).So,for1-coverage,3p 2r2isatightupperboundontheachievableAPN.Ourformulaforasymptoticratiousestheweakerupperboundofr2=q.Intheremainderofthissection,weabbreviatedMax(X;q)bydMaxasthevaluesofXandqareevidentfromthecontext.Weusedk(P)todenotethesmallestdistancesuchthatatleastksensorsarewithinthisdistanceofpointP.Recallthatinthemodelbeingconsidered,thereisasensorateachvertexofthegeometrybeingused. EquilateralTriangle.ForpointsPthataregeometryvertices,d2(P)=d,thelengthofasideofatriangle.Forexample,forthevertexAofFigure 3-8 ,thereisonesensoratadistanceof0(i.e.,thesensoratA)andnoadditionalsensoruntiladistanceofd.AtdistancedfromA,thereareseveralsensors(thoseatBandCplusanother4onthe4distinctverticesofthe5othertrianglesthatshareAasavertex).ForeveryotherpointP,d2(P)
PAGE 70

Square,q=2 EverypointPintheplaneliesin 3-9 ).ThedistancebetweenPandthesetwosensorsisd.So,d2(P)d.ForpointsPthataregeometryvertices,however,d2(P)=d.Forexample,forthevertexAofFigure 3-9 ,thereisonesensoratadistanceof0(i.e.,thesensoratA)andnoadditionalsensoruntiladistanceofd.AtdistancedfromA,thereareseveralsensors(thoseatBandDplusanother2onthe3othersquaresthatshareAasavertex).Hence,dMax=r. 3-10 ,thereisonesensoratadistanceof0(i.e.,thesensoratA)andnoadditionalsensoruntiladistanceofd.AtdistancedfromA,therearethreesensors(thoseatBandDplusanotheroneonthetwootherhexagonsthatshareAasavertex).Everypointintheplaneisinoneofthesidedequilateraltrianglesthatpartitionaregularhexagonintotriangles(seeFigure 3-10 )andeverysuchtrianglehassensorson2ofits3vertices(thethirdvertex 70

PAGE 71

Regularhexagon,q=2 isthecenterofahexagonandhasnosensor).So,foreverypointPthatisnotthevertexofatilinghexagon,d2(P)
PAGE 72

Square,q=3 Regularhexagon,q=3 2d.So,d3(p)
PAGE 73

Equilateraltriangle,q=4 sensorsatB,D,andF.However,thenextnearestsensors(thoseatA,C,andE)areatadistanceof2 2r. 3-14 shows4squaresofthegriddedlayout.Thereisasensorateachcornerofeachsquare(i.e.,gridposition).ThepointPisthecircumcenteroftheisoscelestriangleACE.Notethatd(A;C)=d(E;C)=p 6p 2d
PAGE 74

Square,q=4 oftriangleFGH.Bysymmetry,itfollowsthatthereare4sensorswithinadistancecofeverypointintheddsquarecenteredatF.Thisimpliesthereare4sensorswithinaddsquarecenteredateachgridpointofthelayoutandhencewithinadistancecofeverypointintheplane.So,themaximumdthatresultsin4-coverageissuchthatr=c=5 6p 5p 3-15 shows3hexagonsofthegriddedlayout.Thereisasensorateachcornerofeachhexagon(i.e.,gridposition).ThepointPisthecircumcenteroftheisoscelestriangleADF.Notethatd(A;D)=d(A;F)=p 5d.Sinced(E;P)=8 5dandd(J;P)=d(K;P)=p 5d>c,thesensorsatE,J,andKarenotindisk(P;c).OnlythesensorsatA{D,F,andGareindisk(P;c).ThistogetherwiththeobservationthateverydiskcenteredatPandhavingsmallerradiusthancexcludes(atleast)thesensorsatA,D,andF.So,d4(P)=c.Next,considerthetriangleBHI,whereHisthemidpointofthesideBGandIisthemidpointofthehexagonBCDEFG.Foreverypointp6=Pinthistriangle,d(p;B)d,d(p;G)d,andd(p;C)p 2d
PAGE 75

Regularhexagon,q=4 eitherd(p;A)cord(p;F)c.So,thereare4sensorswithinadistancecofeverypointoftriangleBHI.ThehexagonBCDEFGmaybepartitionedinto12triangles(includingBHI)thataresymmetrictoBHI.Bysymmetry,itfollowsthatthereare4sensorswithinadistancecofeverypointinthese12triangles.Inotherwords,thereare4sensorswithinadistancecofeverypointinthehexagonBCDEFGandhencewithinadistancecofeverypointintheplane.So,themaximumdthatresultsin4-coverageissuchthatr=c=7 5d.So,dMax=5 7r. EquilateralTriangle.Figure 3-16 shows4ofthetrianglesinagriddedlayout.Thelengthofeachsideofeachtriangleisd.LetPbethemidpointofthesideDF.ThesensorsatDandFared=2fromPwhilethoseatBandEareatadistanceofp 2d.ThesensorsatAareCarenextinproximitytoP.Fromthelawofcosines,weobtaind(A;P)=d(C;P)=c=q 2d.So,d5(P)=p 2d.Foranyp6=PinsidetriangleFGP,whereGisthecommoncircumcenteroftheequilateraltrianglesACEandBDF,d(p;B)d,d(p;D)d,d(p;E)2 75

PAGE 76

Equilateraltriangle,q=5 Square,q=5 circumcenterGanduptotheopposingedgeofthetriangle,wepartitionthetriangleinto6smallertriangles(includingtriangleFGP)thataresymmetrictoFGP.Fromsymmetryitfollowsthatthereare5sensorswithinadistancecofeverypointintriangleBCDandhencewithincofeverypointintheplane.So,themaximumdthatresultsin5-coverageissuchthatr=c=p 2d.So,dMax=2 3-17 shows4squaresofthegriddedlayout.ThepointPisthecenterofthesquareBCDE.ThesensorsatB,C,D,andEareclosesttoP;eachisadistanced 2d(e.g.,thesensoratA).So,d5(P)=c. 76

PAGE 77

Regularhexagon,q=5 Next,considerthetriangleBFP,whereFisthemidpointofthesideBE.Foreverypointp6=Pinthistriangle,d(p;B)
PAGE 78

3.1 3.3 ,wepresentedseveralstrategiestoq-coveraregionwhenthesensorlocationsarelimitedtoaspeciedsetS.WebelievethatallbuttheregioncoverageviapointcoveragemethodofSection 3.3 aretoocomputeintensivetobeusedonlargedeploymentinstances.Thisisbecauseeachoftheothermethodsrequiresustondoptimaldeploymentsforseveralsmallhexagonsortiles.WhileanoptimaldeploymentforahexagonortilemaybefoundinO(1)time,therequiredconstanttimeisexpectedtobelargeastheoptimalsolutionisfoundbysearchingapotentiallylargethoughconstantsizespaceofpossiblesolutions.Thissearchwillperformmanyexplicittestsforregionratherthanpointcoveragearetimeconsumingandregioncoveragetestsarecomputeintensive.Asaresult,ourexperimentsfocusonthemethodofSection 3.3 adaptedtoinstanceswithmultiplesensortypes.WeprogrammedtheregioncoverageviapointcoverageschemeofSection 3.3 onaDellDimensionPCwitha2.13GHzdual-coreprocessorand2GBmemory.TocovertheresultinggridG(d),weusedanILP(integerlinearprogramming)relaxationmethodaswellthegreedyalgorithmofXuandSahni[ 69 ].FortheILPrelaxation,westartedwiththeILPformulatedin[ 69 ]forpointcoverage,relaxedittoalinearprogram,solvedthelinearprogramusinglp-solver5.0[ 31 ],andthenconvertedthesolutiontothelinearprogramtoafeasibleintegersolutiontotheoriginalILPusingtheroundingmethodproposedbyWangandZhang[ 62 ].SinceboththeILPformulationandgreedymethodof[ 69 ]areforheterogeneoussensordeployment,weexperimentedwithheterogeneousinstanceswithupto4sensortypes.Fortestdata,weuseda3535regionR.ToconstructG(d)foranygivend,wetiledRwithddsquaresandconsideredthecentersofthesetiles.CentersthatwereoutsideRwererelocatedtotheirnearestpointontheboundaryofR.TheresultingcenterlocationsdeneG(d).ToconstructthesetSofpermissiblesensorlocations,wetiledRwith7rmax=127rmax=12squaresandincludedthecenterofeachsquareinS,wherermax

PAGE 79

1. 3-19 3-21 plottheaverageofthecostofthedeploymentsobtainedforthese10randominstancesusingtheILPandgreedymethods.TheguresshowalsothelowerboundforthecostofanoptimaldeploymentforG(d)asdeterminedbythesolutiontothelinearprogrammingrelaxationfortheILP.Notethatwhendeterminingadeploymenttoq-coverG(d),sensorrangeswerereducedfromrasspeciedinthetestcasetor0.OurexperimentsshowthattherelaxedILPmethodgenerallyproduceslowercostdeploymentsthandoesthegreedymethod.Further,thecostofthedeploymentisnotwellcorrelatedwithd.Often,though,asmallerdresultedinasmallerdeploymentcost.Theuseofasmallerddoes,however,increasethetimeneededtondadeployment.Eachoftheinstancesusedbyuswassolvedinafewsecondswhendwaslargeandinalittleunder15minuteswhendwassmall. 79

PAGE 80

Totalsensorcostrequiredv.s.variouss,whereq=1. 80

PAGE 81

Totalsensorcostrequiredv.s.variouss,whereq=2. 81

PAGE 82

Totalsensorcostrequiredv.s.variouss,whereq=3. 82

PAGE 83

7 13 17 34 45 46 53 70 ]givenasetofdierenceoftime-of-arrivalmeasurementshavebeenproposed,thereappearstobenostudiesoffundamentalpropertiesofDTOAlocalization.Inthischapter,wepresentanumberofresultsthatestablishfundamentalpropertiesofDTOAlocalization.Werstconsidertheuniqueidenticationofasourceandestablishthefollowing:1.DTOAlocalizationuniquelyidentiesasourceinEuclideanplaneR2ithesensorsdonotlieonahyperbola 83

PAGE 84

4.1 ,wepresentsomefundamentalpropertiesanddenitions.PropertiesofsensorsetsthatuniquelyidentifyallsourcesinEuclideanspacearedevelopedinSection 4.2 .OurdetailedanalysisofSection 4.3 establishestheboundonthenumberofintersectionsoftwoDTOAhyperbolas.InSection 4.4 weshowthatatmost2pointscanhavethesamesetofDTOAvalues.TheminimumnumberofsensorsneededtouniquelyidentifyallsourcesinaboundingpolygonisderivedinSection 4.5 4-1 ).Whenij(P)=ij(Q)foreveryi;j2f1;2;:::;kg,thepointsPandQareindistinguishable.Actually,sinceij(P)=1j(P)1i(P),foralliandj,PandQareindistinguishablei1j(P)=1j(Q)foreveryj2f2;:::;kg.So,thesetofsensor 84

PAGE 85

ExamplesofthelocusL12 4-2 givesanexampleoftwohyperbolasL12(12)andL13(13)thatintersectattwodistinctlocationsP1andP2.So,usingL12andL13alone,weareunabletouniquelylocalizethesource.WeareableonlytoassertthatthesourcelocationiseitherP1orP2.TouniquelyidentifythesourceusingtheDTOAmethod,thehyperbolasL1j,2jkshouldhaveexactlyonecommonintersection.Alternatively,thesehyperbolasshouldhaveexactlyonecommonintersectioninsidearegioninwhichthesourceisknowntolie. 85

PAGE 86

Threenon-collinearsensorsS1,S2,andS3formatriangleandtwohyperbolasL12(12)andL13(13)intersecteachotheratP1andP2. 9 anecessaryandsucientconditionforasensorsetSStobeanISS.Theorem 10 showsthateveryISShasatleast4sensorsandTheorem 12 showsthateveryISSwithmorethan6sensorshasasubsetofsizeatmost6thatisanISS. 86

PAGE 87

9 ,itfollowsthatSSisnotanISS.WhenS1,S2,andS3arenotcollinear,theydeneanontrivialtriangleasshowninFigure 4-2 .Clearly,thereexistsanegativeconstant,12,suchthatthehyperbolaL12(12)intersectsthelineS1S3attwodistinctpointsQ1andQ2.ObservethatthehyperbolaL13(d(S1;S3))isactuallyaraythatoriginatesatS1andintersectsL12(12)atQ1only.Let13beanegativeconstantslightlygreaterthand(S1;S3).ThehyperbolaL13(13)intersectsL12(12)attwodistinctpointsP1andP2(seeFigure 4-2 ).So,P1andP2areindistinguishableandSSisnotanISS.Next,weshowthatwheneverSS=fS1;S2;S3;S4garethecornersofaparallelogramwithsidelength>0,SSisanISS.Weshowthisbyprovingthatno4distinctpointsofahyperboladenethecornersofaparallelogram.TheresultthenfollowsfromTheorem 9 .ConsiderthehyperbolaLofFigure 4-3 .LetS1,S2,S3,andS4be4pointsonthishyperbola.ThecaseshowninFigure 4-3 hasS1andS4ononepart(arm)ofthehyperbolaandS2andS3onthesecondpart.(Therearetwoothercasesforthelocationofthe4points{exactly3pointsononepartofLand4pointsononepartofL.)LetQ1andQ2,respectively,betheintersectionsofthelinesegments 87

PAGE 88

AhyperbolaLthatpassesthroughSi(1i4). cornersofaparallelogram, 12 establishesanupperboundof6onthesizeofanMISS.Toprovethistheorem,weneedtouseBezout'sboundonthenumberofintersectionsofcurvesinEuclideanspace. [Bezout'sTheorem[ 28 ]]:LetC1andC2becurvesofdegreemandn,respectively,inEuclideanspaceR2.IfC1andC2havenocurvesincommon,thenthenumberofintersectionsofC1andC2isatmostmn.

PAGE 89

4 .Hence,atmost1hyperbolamaypassthroughthepointsofSS. 10 andthefactthataMISSisanISS.jSSj6maybeshownbycontradiction.SupposethatjSSj>6.LetSS0beasubsetofSSsuchthatjSS0j=5.FromLemma 16 ,SS0hasatmost1hyperbolapassingthroughits5points.Ifnohyperbolapassesthroughthesepoints,thenSS0isanISS(Theorem 9 )andSScannotbeanMISS.So,wemayassumethatexactlyonehyperbolapassesthroughSS0.SinceSSisanISS,SScontainsatleastonepointSithatdoesnotlieonthishyperbola.Hence,thereisnohyperbolathatpassesthroughthe6pointsSS0SfSig.FromTheorem 9 ,itfollowsthatSS0SfSigSSisanISS.ThiscontradictstheassumptionthatSSisanMISS. 4 ),twoDTOAhyperbolasL12andL13mayhavenomorethan2intersectionswhenS1,S2,andS3arenon-collinear.Withoutlossofgenerality(w.l.o.g),wechooseourcoordinatesystemasinFigure 4-4 .Thefeaturesofthischoiceare(a) 13 89

PAGE 90

Regionsofmonitoringarea:(a)topleft,(b)inside,(c)bottomright,(d)top,(e)bottomleft,(f)bottom,and(g)topright. (RefertothedetailedprooffromSection 5.4 )thatestablishesthemonotonicityofthedirectionalderivativeof13(P)alongthehyperbolaL12(12(P))withineachofthe7regionsofFigure 4-4 .ThesignofthedirectionalderivativeforeachregionisalsogiveninFigure 4-4 4-4 .Thedirectionalderivativeispositiveinregions(a),(b),(f),and(g),andisnegativeinregions(c),(d),and(e).Inthefollowing,weuseLlandLrtorefertothetwosymmetricparts(arms)ofthehyperbolaL(seeFigure 4-5 ).ThetwopartsLlandLrintersectonlyatthevertexB.l1andl2arethetwoasymptotesofthehyperbolaandl10andl20arelinesthatintersectatthevertexBandareparalleltotheseasymptotes.Fromourchoiceofcoordinatesystem,itfollowsthattheasymptotesintersectatO. 2. TheshortestEuclideandistancebetweenapointPonLr(Ll)andtheasymptotel1(l2)decreasesmonotonicallyasPgetsfartherfromthevertexB.

PAGE 91

AhyperbolaL=LlSLrwithfocusSandsemimajoraxisy-axis. TheshortestEuclideandistancebetweenapointPonLr(Ll)andthelinel10(l20)increasesmonotonicallyasPgetsfartherfromthevertexB.ProofFollowsfromthedenitionofahyperbola,itsasymptotes,andthelinesl10andl20. InTheorem 14 ,weshowthatwhenS1isclosertothesourceSthanareS2andS3,L12(12(S))andL13(13(S))haveatmost2intersectionsincludingthesourceS.ThisrestrictiononthesourcebeingclosertoS1thantheremainingtwosensorsisremovedinTheorem 15 .WeoftenuseLijasanabbreviationforLij(ij(S)). 91

PAGE 92

Case1: 4-6 4-9 ,respectively.WeshowbelowthatL12andL13haveatmost2intersectionsineachofthesecases.Case1: 4-6 ).13,fromTheorem 13 ,monotonicallyincreasesinregions(a),(b),and(g)andmonotonicallydecreasesin(d).So,ifnocomponentofL12isinregion(d),then13monotonicallyincreasesalongallofL12andthevalueof13foreachpointPonL12isunique.Hence,L12andL13haveonly1intersection.Ifregion(d)containsaportionofL12,thenwhenonemovesthepointPfromlefttorightalongL12,(d)istherstregiontobevisited.So,whenmovingfromlefttorightalongL12,13monotonicallydecreaseswhilewearemovingalongtheportionofL12thatisinsideregion(d)andthenmonotonicallyincreasesfortheremainderofL12.HenceL12hasatmost2distinctpointsforanygivenvalueof13.So,L12andL13haveatmost2intersections.Case2:

PAGE 93

4-7 ).So,L12cannothaveacomponentineitheroftheregions(c)(bottomright)and(f)(bottom).Additionally,L12cannothaveacomponentinregion(d)(top).Toseethis,observethatLr12iswhollytotherightofthey-axiswhileregion(d)iswhollytotheleftofthisaxis.So,noportionofLr12isinregion(d).ToseethatnoportionofLl12isinregion(d)either,notethatLl12isbelowl20(Lemma 17 ).Since, 17 ), 4-8 ).Hence,noportionofL12isinregion(e).Since\S3S1S290,<90(seeFigure 4-8 ).Hence,d(P;S1)>d(P;S3)foreverypointPinsideregion(c)(bottomright).Since,byassumption,S1isclosertothesourceSthanisS3,noportionofL13isinregion(c).Hence,L12andL13havenointersectioninregion(c).IfL12hasanoverlapwithregion(d)(top),thenregion(d)istherstregionencounteredaswemovefromlefttorightalongL12andifL12overlapswithregion(c)(bottomright),region(c)isthelastregionencounteredaswemovefromlefttorightalongL12.13monotonicallydecreasesinregion(d),L12andL13donotintersectinregion(c),and13monotonicallyincreasesintheremainingregionsthatL12mayoverlap.So,L12andL13haveatmost2intersections. 93

PAGE 94

Case2: Case3: 94

PAGE 95

Case4: Case4: 95

PAGE 96

14 thatL21andL23haveatmost2intersections.Hence,L12andL13haveatmost2intersections. Clearly,theindistinguishablerelationpartitionsEuclideanspaceR2intoacollectionofdisjointequivalenceclasses.IfSSisanISS,theneachequivalenceclassisofunitcardinality;otherwise,thecardinalityofatleastoneequivalenceclassismorethan1. 96

PAGE 97

Collinearsensors Whenk=2,eachequivalenceclasscorrespondstoahyperbolawithfociS1andS2andviceverse.Thecardinalityofeachequivalenceclassinthiscaseisinnite.Whenk>2andthesensorsarecollinear(Figure 4-10 ),eachpointonthelinesegment 17 establishesthatthecardinalityofeachequivalenceclassisatmost2. 9 ,itfollowsthatthereisahyperbolaL12,whosefociareP1andP2,thatpassesthroughthepointsofSS.Similarly,thereisahyperbolaL13,whosefociareP1andP3,thatpassesthroughthepointsofSS.L12andL13intersectatatleastthepointsofSS,whicharemorethan2innumber.ThiscontradictsTheorem 15 ,whichstatesthatthesetwohyperbolamayhaveatmosttwointersections. 97

PAGE 98

10 ),inmanyreal-worldapplications,themonitoringregionisboundedbyapolygonand3sensorssuce.Weassumethatthesensorsarerestrictedtobeplacedonorinsidetheboundingpolygon.Asanaside,wenotethatwhenthemonitoringregionisasimplelinesegment,say 17 ,itfollowsthatthedualofeverypointofthepolygonthatisnotonthisedgeisontheothersideofthisedge.Pointsontheedgeeitherhavenodualorhavedual(s)outsidethepolygon.HenceeverypointinoronthepolygonisuniquelyidentiableandfS1;S2;S3gisasize3MISSforthepolygon.Analternativeconstructionforasize3MISSistoconsiderany3non-collinearpointsS1,S2,andS3thatareontheboundaryofthepolygon(Figure 4-11 ).Now,theentireconvexpolygonmustbecontainedintheunionoffourregions:(a)topleft,(b)inside,(f)bottom,and(g)topright.FromTheorem 13 ,thedirectionalderivativeof13alongL12increasesmonotonicallyineachofthesefourregions.Further,theintersectionofL12andtheconvexpolygonisacontinuouscurveCthatislimitedtothesefourregions 98

PAGE 99

SensorsS1,S2,andS3ontheboundaryofaconvexpolygon. (seeTheorem 14 ).Since,13ismonotonicallyincreasingalongC,L12andL13haveatmostoneintersectiononC.Hence,everypointinorontheconvexpolygonisuniquelyidentiable.Case2:Thesimplepolygonisconcave.Westartwithaaminimumboundingconvexpolygonoftheconcavepolygon(Figure 4-12 ).LetS1,S2,andS3beanythreepointsontheintersectionoftheboundaryoftheseconcaveandconvexpolygons.FromCase1,itfollowsthateverypointinandontheboundaryoftheconvexboundingpolygon,andsoeverypointinandontheboundaryoftheconcavepolygon,isuniquelyidentiable. InLemma 18 ,weprovethatbychoosing3sensorlocationsontheboundaryofasimplepolygon,anSSofsize3uniquelyidentiesanysourceSonorinsideasimplepolygon.WeshowinLemma 19 whenasensorisplacedstrictlyinsideasimplepolygon,3sensorsarenotsucienttouniquelyidentifyeverypointinoronthepolygon.

PAGE 100

Aconcavepolygon,itsboundingconvexpolygon,andthreesensorsS1,S2,andS3placedonthecommonboundaryoftheconcaveandconvexpolygons 4-13 .Notethataportionofthesimplepolygonmustlieinsidethetopregion.Wemaychoosetwonegativeconstants12and13,suchthatL12(12)andL13(13)intersectattwodistinctpointsP1inthetopregionandP2inthetopleftregion.SincebothP1andP2areinsidethesimplepolygonandP1isthedualofP2,SSisnotanISSforthepointsofthesimplepolygon. 18 and 19 100

PAGE 101

101

PAGE 102

45 46 ],ouranalysisshowsthatthisdoesnotguaranteeproximityinEuclideanspace.Next,wedescribeourgeometricDTOAtriangulationmethodthatguaranteesproximityinbothEuclideanandDTOAspaces.Thisisfollowedbyadetailedproofofthecorrectnessofourmethod.Weconcludethischapterbyprovidingsimulationresults.

PAGE 103

4-1 ).TheDTOAspaceofall(k1)-tuples[12(P),13(P),...,1k(P)]formsa(k1)-dimensionalvectorspacedenotedbyk1.EachpointP=(x;y)2R2hasauniquedualpointP0=(p10;p20;:::;pk10)ink1,wherepj0=1(j+1)(P),j=1;2;:::;(k1).However,eachpointP0=(p10;p20;:::;pk10)ink1mayhavezeroormoredualpointsinR2.Infact,thedualpointsofP0arethosepointsinR2thatarecommonto(i.e.,thecommonintersections)thek1hyperbolasL1;j+1(P),1j
PAGE 104

5-1 .The[DX1;DX2][DY1;DY2]boxshowninFigure 5-1 isthemonitoringregionwithinwhichthesourceSistobelocalized.Thelines 5-1 .Althoughthisgurehas 104

PAGE 105

Canonicalplacementof3sensorsandpartitioningofmonitoringregion allsensorswithinthemonitoringregion,ourdevelopmentofthegeometriclocalizationmethoddoesnotrequirethis.Infact,themethodworksevenwhensomeorallofthesensorsareoutsidethemonitoringregion.Figure 5-2 showsourthreesensorstogetherwiththelocusL12(12).ThislocusmaybepartitionedintosegmentsthatliewhollywithinaregionofthepartitioningofFigure 5-1 .ThesegmentendpointsaredesignatedSj,wherejisalowercaseletter.So, 5-2 .Noticethatbecauseofourchoiceofcoordinatesystem,aswemoveapointPalonganysegmentofL12(12),thexandycoordinatesofthepointvarymonotonically.ThisisaconsequenceoftheverticalorientationofL12,which,inturn,isassuredbythechosencoordinatesystem.Let(xi;yi)and(xj;yj),xixjbetheendpointsofanL12segmentandletP=(x;y)beanypointonthissegment.FromLemma 22 (Section 5.3 ),itfollowsthatxixxjandminfyi;yjgymaxfyi;yjg.Also,aswemovePalongasegmentofL12(12),13(P)variesmonotonically(Section 5.4 ).Inparticular,itmonotonically 105

PAGE 106

-xyOS1S2S3SaSbSc,,,,,,,,,,,,,,,,HHHHHHHHHHHHHHHHHHHH Canonicalplacementof3sensorsandL12(12) decreaseswithxforthesegmentsinthetop,bottomleft,andbottomrightregionsandmonotonicallyincreasesfortheremainingsegments.Basedonthesekeyobservations,ouroverallstrategytoestimatethesourceSistoutilizethemonotonicityof13(P)toperformabinarysearchwithineachsegmentofL12todetermineaset,U,ofpointssuchthatUhasatleastonepointwithinaspeciedaccuracyofeachintersectionbetweenL12(12)andL13(13)thatisinthemonitoringregion.Further,thenumberofpointsinUisatmostequaltothenumberofsuchintersections.Recallthatthenumberofsuchintersectionsisatmost2asprovedinTheorem 15 .Itfollowsthatthetruesourcelocationiswithinadistance(inR2)ofoneofthepointsinU.Thedetailsarepresentedinalgorithmgeometric DTOA(12;13).Algorithmgeometric DTOArstdeterminesthesegmentsofL12.TheendpointsofthesesegmentsarejusttheintersectionsofthecurveL12(12)witheachofthethreelines 106

PAGE 107

DTOA(12;13);begin(x12;y12)intersectionpointofL12with 46 ])orbyamethodsimilartothatusedinalgorithmlocate 46 ].SuchanextensionensuresthetheoreticalcompletenessofthemethodalbeitatanadditionalcomplexityofO[(log(1=))2].However,inallofoursimulationsofSection 5.5 ,thequadraticequationofstep2yieldedarealsolution.Hence,weretaintheunaugmentedversionforsimplicityofpresentation. 107

PAGE 108

19 ,ouralgorithmguaranteestoreturnapointthatiswithinadistance,inR2space,ofthetruesourcelocation.

PAGE 109

5.4 ,L13ismonotoneonboththeseverticalsegments. 5.4 .ThefollowingassumesthatL12isnotaverticalray.ThecorrectnessproofforthecasewhenL12isaverticalray(notethatthiscase,whichisnotincludedinthestatementofalgorithmgeometric DTOA,ishandledbyabinarysearchonasegmentofthey-axis)issimilarandsimpler. 22 ,wehavexixxjandyiyyj(oryjyyi).So,maxfjxixj;jxxjjgjxixjjandmaxfjyiyj;jyyjjgjyiyjj.Hence,maxfd(Si;P);d(Sj;P)gp 109

PAGE 110

22 and 23 ,itfollowsthatd(P1;P)andd(P2;P).Thelemmanowfollowsfromtheobservationthatthepoint^PreturnedbythealgorithmiseitherP1orP2. DTOAcontainsatleastonepointthatiswithinofeachintersectionbetweenL12(12)andL13(13)thatisinthemonitoringregionandthenumberofpointsinUisatmostequaltothenumberofsuchintersectionsinthemonitoringregion.Hence,atleastonepointofUiswithinofthetruesourcelocationprovidedthislocationisinthemonitoringregion.ProofThetheoremfollowsfromLemma 24 andtheobservations(a)everysegment(orsegmentportion)ofL12(12)inthemonitoringregionissearched,(b)everyintersectionwithinthemonitoringregionisonexactlyoneofthesegments,ofL12,and(c)algorithmlocate NotethatthepointsinthesetUreturnedbyalgorithmgeometric DTOAareonthelocusL12(12).So,foreachpointP2U,12(P)=12.SinceeachreturnedpointP2Uiswithin,inR2space,ofanintersectionofL12(12)andL13(13),itfollowsthat13(P)2p 21 ).Bychangingtheconditiononthebinarysearchloopofalgorithmlocate 15 ,atmost2suchcallsmakeO(log(l=))callstolocate DTOAisO(log(l=)),whichcanbeadapted 110

PAGE 111

5-1 .Weshowthatthedirectionalderivativeof13(:)alongthecurveL12(:)ismonotoneineachoftheseregions:itispositiveinregions(a),(b),(f),and(g)andisnegativeinregions(c),(d),and(e).Wehavefori=1;2;3,@d(P;Si) 46 ]. 111

PAGE 112

@12(P)

PAGE 113

5-3 .Thedirectionalderivativeisgivenby264xx1 113

PAGE 114

114

PAGE 115

5-4 .Thedirectionalderivativeof(S1;S3)onthelocusf(x;y)j(S1;S2)=12g,forany12,isgivenby264xx1 115

PAGE 116

5-5 .Thedirectionalderivativeof(S1;S3)onthelocusf(x;y)j(S1;S2)=12g,forany12,isgivenby264xx1 116

PAGE 117

5-6 ,whichmakesthethirdcostermnegative,andhencethedirectionalderivativeisnegative.BottomLeft:Thecaseofbottomleftisidenticaltothetopleftregionexceptthat2>3asshowninFigure 5-7 ,whichmakesthesintermnegative,andhencethedirectionalderivativeisnegative.BottomRegion:Forbottomregion,thederivationisidenticaltothecaseofinsideregionexceptthat<2+3<2asshowninFigure 5-8 ,whichkeepstherstsintermstillpositive,andhencethedirectionalderivativeispositive.TopRight:Thecaseoftoprightregion,asshowninFigure 5-9 ,isidenticaltoinsideregionexceptthat3<1.Thuswehave0<13 5-10 .WhenL12isaverticalray,weneedtoconsidertheportionofthesegments(a)fromS1to1and(b)fromS2tothatliewithinthemonitoringregion.Weconsideronly(a).Theprooffor(b)issimilar.LetP1andP2betwopointsonthesegment(a).W.l.o.g.,assumethatP1isclosertoS1thanisP2(seeFigure 5-11 ).Weseethat 117

PAGE 118

SourceS=(x;y)israndomlyselected,andthesignofthedirectionalderivativeiscomputed. -xyOS1S2S3P1P2,,,,,,,,,,,,,,,,HHHHHHHHHHHHHHHHHHHHFigure5-11. ThedegeneratecasewhenL12(12)isaverticalray 118

PAGE 119

DataforS1=(0;0),S2=(0;50000),S3=(0:001;100000),andF=0 Method#failratiospaceR2space Mellen1610.012710013280.10511007220.057150046830.370650023840.1887100076980.6093100040040.31692500115030.9104250074870.59265000124200.98305000105120.832010000124730.987210000122490.9694 Ours00.00.0000000126190.20730.000000012460.01950.0000001120110.95060.000000122730.17990.000001126351.00.000001126351.0 DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=0 Method#failratiospaceR2space Mellen34260.2775100600.004910030.000243015001340.0109500160.001310002100.01701000300.002425003780.03062500880.007150005720.046350002000.0162100009350.0757100004210.03415000066520.53885000020700.167710000089190.722510000040370.3299 Ours00.00.0000000114370.11640.000000012250.01820.0000001105460.85430.000000121850.17700.000001123451.00.000001123451.0 119

PAGE 120

DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=10/100 Method#failratiospaceR2space Mellen39440.3131100009070.0720100002760.02192500024550.1949250008610.06835000080340.63775000019220.1526100000118730.942510000039920.3169 Ours21490.1706100250.002010000.0100011830.093910002580.0205250044950.3568250010670.0847500092730.7361500024830.197110000124810.99071000050970.4046 DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=5/100 Method#failratiospaceR2space Mellen37080.3005100009010.0730100003040.02462500022300.1807250008770.07115000063820.51715000018810.152410000087210.706710000039780.3223 Ours14840.1202100780.006310090.00072928100030480.247010006720.0545250089450.7248250021290.17255000122360.9915500045440.368210000123411.01000080290.6506 DataforS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andF=1/100 Method#failratiospaceR2space Mellen35130.2788100009510.0755100004090.03252500021850.17342500010630.08445000068290.54205000020920.166010000091090.723010000041400.3286 Ours6500.05161008400.06671001560.012425036930.29312507600.060350085940.682150019110.15171000124800.9906100041640.33052500125991.0250088460.70215000125991.05000116910.927910000125991.010000125770.9983

PAGE 121

DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=10/100 Method#failratiospaceR2space Mellen16490.1322250520.0042250190.00155001890.0152500580.004710007250.058110002150.0172250034040.272925009320.0747500076040.6096500022580.181010000106280.85211000048040.3852 Ours16470.1320250780.0063250190.00155002870.0230500580.0047100010260.082310002150.0172250042370.339725009320.0747500090930.7290500023640.189510000123890.99331000053780.4312 DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=5/100 Method#failratiospaceR2space Mellen10070.08002502280.0181250510.00415007980.06345002380.0189100025360.201410007260.0577250081830.6499250024680.19605000115020.9135500050090.397810000115790.91961000082950.6588 Ours10070.08002502580.0205250510.00415009210.07315002380.0189100028860.229210007260.0577250090450.7184250024680.19605000125140.9939500051160.406310000125911.01000087760.6970 5.2 versusthelinearalgebramethodof[ 34 53 ],whichrequiresasolutiontoaquadraticequationaswellastheinversionofmatrices.BothalgorithmswereimplementedinMatlabonaDellDimensionPCwitha2.13GHzdual-coreprocessorand2GBmemory.Thetypicalexecutiontimesofbothmethodsareonlyseveralmilliseconds. 121

PAGE 122

DataforS1=(0;0),S2=(0;50000),S3=(5000;100000),andF=1/100 Method#failratiospaceR2space Mellen2670.02111007530.05941002190.017325035820.28242509650.076150084590.667050023740.18721000123370.9727100050300.39662500124090.9784250096360.75985000124090.97845000119260.9403 Ours2670.02111007600.05991002190.017325036520.28792509650.076150086720.683750023740.18721000126110.9943100050300.39662500126831.0250096360.75985000126831.05000120080.9468 Table5-9. DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=10/100 Method#failratiospaceR2space Mellen200.0016500120.000958625004350.03471000390.0031100015200.121425001820.0145250062700.500950006240.04985000109090.87151000018750.149810000124490.9945 Ours00.02501190.00952501190.00955001930.01545004350.034710007250.0579100015200.1214250034600.2764250062720.5010500085040.67935000109170.872110000125110.999410000124650.9958 DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=5/100 Method#failratiospaceR2space Mellen40.00032500440.003550015160.121410001120.0090100047290.378825005420.04342500110420.8846500015420.12355000124590.9981 Ours00.02501830.01472504150.03325006800.054550015160.1214100023920.1916100047290.3788250084940.68042500110430.88465000124780.99965000124630.9984 122

PAGE 123

DataforS1=(0;0),S2=(0;100000),S3=(100000;0),andF=1/100 Method#failratiospaceR2space Mellen00.02501490.012025063370.51115005000.0403500110290.8896100013820.11151000123940.9997250013930.11242500123981.0 Ours00.01007080.057110015420.124425034320.276825063370.511150084360.6804500110290.88961000123940.99971000123940.99972500123981.02500123981.0 Eachsensormeasurementcorrespondsto(1+f)rwhereristheactualdistancefromsensortosource,andfisuniformlyrandomlygeneratedintheinterval[0;F]foraxedmultiplicativefactorF.Whilefvaluesaregeneratedindependently,sensorerrormagnitudeisproportionaltothedistancefromthesensortoplumeorigin.Also,thesensorerrorsarecorrelatedduetothespatialrelationshipsbetweenthesensorlocations.asourceclosetoonesensorgeneratesasmallerrorthereandlargererrorsatothersensors,whicharelocatedfartheraway.Fromthesemeasurements,wecomputeddistance-dierencesandtestedDTOAlocalizationmethods.Inourexperiments,Weconsideredtwodierentscenarios:(1)sensorerrorsarezero(i.e.,F=0),and(2)sensorerrorsaregreaterthanzero(i.e.,F>0).Onarelatednote,themethodof[ 7 ]accountsforrandomerrorsthatareindependentGaussian,andhenceisnotdirectlyapplicabletothiscase.Oursimulationwasconductedinanetworkofthreesensorsona[0;100000][0;100000]grid,wherelocationofsourcesarerandomlygeneratedbasedontheuniformdistribution. 34 53 ]may 123

PAGE 124

46 ].Bygoodtriangle,wemeanitssmallest(largest)angleisnotcloseto0(180)degree.However,whenthreesensorslieinanalmostcollinearmanner,themethodof[ 34 ]mayfailtondasolutioneitherbecausethequadraticequationhasimaginaryrootsorbecausethematricesbeinginvertedareclosetosingular.AlthoughourmethodalsocouldpotentiallyfailbecausetherootsofthequadraticbeingsolvedbyAlgorithmlocate 5-1 and 5-2 ).Forourexperiments,eachtestcasemaybedescribedbyatupleof[S1;S2;S3;F;N],whereS1,S2,andS3arecoordinatesofthreerespectivesensors,Fisthesensorerror,andNisthenumberofrandomlygeneratedsources.NotethatwealwayskeepS1closesttothesource.Table 5-1 givesthenumberofsourcessuchthat[ 34 ]returnsimaginaryrootsaswellasourmethodfailstondasolutionwhereS1=(0;0),S2=(0;50000),S3=(0:001;100000),andN=12635.Theratioofthenumberofsuchsourcesagainstthetotalnumberofsourcesisgiven.Foreachtestcase,weconsidervarious1and2,where1and2arethedesirederrorsacceptableinspaceandR2space,respectively.Foreach1(2),Table 5-1 givesthenumberofsourceswhoseestimatereturnedby[ 34 ]aswellasbyourmethodiswithinthedesirederror1(2)oftheactualsource.Theratioofthenumberofsuchsourcestothetotalnumberofsourcesalsoisgiven.Table 5-2 givesthisdataforthecasewhereS1=(0;0),S2=(0;50000),S3=(0:0000000000000001;100000),andN=12345.Wenotethatusingourbinarysearchbasedmethodversusthatof[ 34 ]hadagreatimpactonthenumberofsourcesthatcouldbeestimated.Forexample,forthetwotestcasesshowninTables 5-1 and 5-2 thepercentageofsourcesforwhichthemethodof[ 34 ]failedtoreturnanestimate(eitherbecausethequadraticbeingsolvedhadimaginaryrootsorbecauseoffailuretoinvertmatrices)is1.27%and27.75%,respectively,whereasourmethodneverfailedtoestimatethesource.Notethatalmost28%ofsourcescan'tbeestimatedbythemethodof[ 34 ]inthesecondtestcase.Further,thesourceestimategivenbyourmethodalsoshowsmuchbetteraccuracyinbothspaceandR2spacethanthat 124

PAGE 125

34 ].AsshowninTable 5-1 ,togettheratioofsuccessfulestimatestobemorethan98%inspace,themethodof[ 34 ]needstoset1tobealmost5000,whereasourmethodalwaysgivesthesuccessfulestimatewhen1isassmallas0.000001!AsimilarphenomenonisobservedinR2spaceaswell.When2issetto10000,thesuccessratioofthemethodof[ 34 ]isstillslightlylessthan97%,whereasourmethodachieves100%successevenifwereduce2byasmuchasabout1010times!ThisimprovementisevenmoreimpressiveforthesecondtestcaseshowninTable 5-2 ,wheretheestimatingqualityisimprovedbymorethan1011times!AnotherobservationisthatanestimatethatisaccurateinspacemaynotbeaccurateinR2space.Forexample,inTable 5-1 ,when1and2areboth1000,theratioofsuccessfulestimatesinspaceandR2spaceis60.93%and31.69%,respectively,whichimpliesthatmorethan29%oftheestimatesthatareclosetothesourceinspacearedistantfromthesourceinR2space. 5.2 .WhenUisempty,inotherwords,algorithmlocate 5-3 5-11 givethesimulationresults.Specically,thevaluelistedunder#failforourmethodgivesthenumberofsourcesthatcouldnotbeestimatedwithout 125

PAGE 126

34 ]intermsofthenumberofsourcesthatcouldbeestimated.Inall9ofourtestcases,thenumberofsourcesthatcouldnotbeestimatedbyourmethodwithoutnalizationislessthanorequaltothatofthemethodof[ 34 ];thereductionswereashighas22%.Asnotedearlier(Section 5.2 ),shouldthequadraticinAlgorithmlocate 34 ].Inparticular,whenthreesensorsarealmostcollinear,theimprovementmadebyourmethodissignicant.Forexample,when2is10000asshowninTables 5-3 5-5 ,theincrementoftheratioofsuccessfulestimatebyourmethodversusthemethodof[ 34 ]ismorethan38%,62%,and96%,respectively. 126

PAGE 127

127

PAGE 128

5 ).Approximationalgorithmsfordierentgridlayouts(i.e.,regularhexagon,equilaterialtriangle)arealsoworthexploring.Thisworkisonlyasteptowardsutilizingcomputationalgeometrymethodsforsolvingsensorlocalizationproblems.Itwouldbeoffutureinteresttoconsiderextensionsofthismethodforcaseswheremorethanthreesensorsaredeployedandmultiplemeasurementsetsareprovided[ 47 ].Itwouldalsobeinterestingtoseeiftheproposedmethodcanbeextendedunderrandomnoisemodels,particularlywhensensorerrorsarecorrelatedandthenoisemodelisunknown.ForthespecialcasewhenS1,S2andS3formanacutetriangle,atrainingmethodwasproposedin[ 45 ]whereinthelocalizationmethodcanbetrainedin-situtoaccountforsensorcorrelations.Thecurrentmethodcanbesimilarlyemployedbutthetrainingprocedureislikelytobemoreinvolved.Itwouldbeoffutureinteresttoexplorethetrackingabilityofthismethodbyrepeatedlyexecutingitonastreamofdistance-dierencemeasurementscorrespondingtoamovingobject.Itwouldbeinterestingtoinvestigatetheeectsofrandomnessindistance-dierencesonbothuniquenessandminimalityresultspresentedinthiswork.Applicationsoftheseresultstopracticalradiationdetectionsystemswouldbeoffutureinterest. 128

PAGE 129

[1] X.Bai,S.Kumar,D.Xuan,Z.YunandT.H.Lai,\DeployingWirelessSensorstoAchieveBothCoverageandConnectivity,"Proc.SeventhACMInt'lSymp.MobileAdHocNetworkingandComputing(MobiHoc'06),May2006. [2] B.S.Baker,\ApproximationAlgorithmsforNP-CompleteProblemsinPlanarGraphs,"Proc.Twenty-fourthSymp.FoundationsofComputerScience,1983andJ.ACM,vol.41,no.1,pp.153-180,1994. [3] N.Bulusu,J.Heidemann,andD.Estrin,\GPS-lessLowCostOutdoorLocalizationforVerySmallDevices,"IEEEPersonalCommunicationsMag.,vol.7,no.5,pp.28-34,October2000. [4] B.Carbunar,A.Grama,J.Vitek,andO.Carbunar,\RedundancyandCoverageDetectioninSensorNetworks,"ACMTrans.onSensorNetworks,vol.2,no.1,pp.94-128,2006. [5] M.CardeiandJ.Wu,\CoverageinWirelessSensorNetworks,"HandbookofSensorNetworks:CompactWirelessandWiredSensingSystems,M.IlyasandI.Magboub,eds.,CRCPress,2004. [6] K.Chakrabarty,S.Iyengar,H.QiandE.Cho,\GridCoverageforSurveillanceandTargetLocationinDistributedSensorNetworks,"IEEETrans.Computers,vol.51,no.12,pp.1448-1453,Dec.2002. [7] Y.T.ChanandK.C.Ho,\ASimpleandEcientEstimatorforHyperbolicLocation,"IEEETrans.ImageProcessing,vol.42,no.8,pp.1905-1915,1994. [8] E.J.Cockayne,E.O.Hare,S.T.Hedetniemi,andE.V.Wimer,\BoundsfortheDominationNumberofGridGraphs,"CongressusNumerantium,vol.47,pp.217-228,1985. [9] S.CommuriandM.Watfa,\CoverageStrategiesforWirelessSensorNetworks,"Int'lJ.DistributedSensorNetworks,vol.2,pp.333-353,2006. [10] D.CullerandW.Hong,\WirelessSensorNetworks,"Comm.ACM,vol.47,specialissue,p.6,2004. [11] "DustNetworks",Availableat [12] H.Edelsbrunner,AlgorithmsinCombinatorialGeometry.Springer-Verlag,Nov.1987. [13] B.T.Fang,\SimpleSolutionsforHyperbolicandRelatedPositionFixes,"IEEETrans.AerospaceandElectronicSystems,vol.26,no.5,pp.748-753,1990. 129

PAGE 130

S.Fischer,H.Koorapaty,E.Larsson,andA.Kangas,\SystemPerformanceEvaluationofMobilePositioningMethods,"Proc.Forty-NinthIEEEVehicularTechnologyConf.,vol.3,pp.1962-1966,May1999. [15] S.Funke,A.Kesselman,F.Kuhn,andZ.Lotker,\ImprovedApproximationAlgorithmsforConnectedSensorCover,"WirelessNetworks,vol.13,no.2,pp.153-164,2007. [16] H.Guptas,S.R.Das,andQ.Gu,\ConnectedSensorCover:Self-OrganizationofSensorNetworksforEcientQueryExecution,"IEEE/ACMTrans.Networking,vol.14,no.1,pp.55-67,2006. [17] F.GustafssonandF.Gunnarson,\PositioningUsingTime-DierenceofArrivalMeasurements,"IEEEInt'lConf.Acoustics,Speech,andSignalProcess-ing(ICASSP'03),2003. [18] T.He,C.Huang,B.M.Blum,J.A.Stankovic,andT.F.Abdelzaher,\Range-FreeLocalizationSchemesinLargeScaleSensorNetworks,"Proc.NinthACMInt'lConf.MobileComputingandNetworking(MobiCom'03),2003. [19] D.S.HochbaumandW.Maass,\ApproximationSchemesforCoveringandPackingProblemsinImageProcessingandVLSI,"J.ACM,vol.32,no.1,pp.130-136,1985. [20] A.Howard,M.MataricandG.Sukhatme,\AnIncrementalSelf-DeploymentAlgorithmforMobileSensorNetworks,"AutonomousRobots,specialissueonintelligentembeddedsystems,vol.13,pp.113-126,2002. [21] A.Howard,M.MataricandG.Sukhatme,\MobileSensorNetworkDeploymentUsingPotentialFields:ADistributed,ScalableSolutiontotheAreaCoverageProblem,"Proc.SixthInt'lSymp.DistributedAutonomousRoboticsSystems(DARS'02),2002. [22] C.HuangandY.Tseng,\TheCoverageProbleminaWirelessSensorNetwork",Proc.SecondACMInt'lConf.WirelessSensorNetworksandApplications(WSNA),2003 [23] S.IyengarandR.Brooks,\ComputingandCommunicationsinDistributedSensorNetworks,"J.ParallelandDistributedComputing,vol.64,specialissue,p.7,2004. [24] S.IyengarandR.Brooks,HandbookofDistributedSensorNetworks,Chapman&Hall/CRC,2005. [25] K.KarandS.Banerjee,\NodePlacementforConnectedCoverageinSensorNetworks,"Proc.FirstWorkshopModelingandOptimizationinMobile,AdHocandWirelessNetworks(WiOpt'03),2003. [26] B.KarpandH.T.Kung,\GPSR:GreedyPerimeterStatelessRoutingforWirelessNetworks,"Proc.SixthACMInt'lConf.MobileComputingandNet-working(MOBICOM'00),pp.243-254,2000. 130

PAGE 131

R.Kershner,\TheNumberofCirclesCoveringaSet,"AmericanJ.ofMathematics,vol.61,pp.665-671,1939. [28] F.Kirwan,ComplexAlgebraicCurves.UnitedKingdom:CambridgeUniversityPress,1992. [29] H.KrimandM.Viberg,\TwoDecadesofArraySignalProcessingResearch:theParametricApproach,"IEEESignalProcessingMag.,vol.13,no.4,pp.67-94,July1996. [30] B.Krishnamachari,Ed.,NetworkingWirelessSensors.CambridgeUniversityPress,2005. [31] "MixedIntegerProgramming(MIP)solver",Availableat solve/ [32] M.Mauve,J.WidmerandH.Hartenstein,\ASurveyonPosition-BasedRoutinginMobileAdHocNetworks,"IEEENetworkMag.,vol.15,no.6,pp.30-39,Nov.2001. [33] M.Meguerdichian,F.Koushanfar,M.Potkonjak,andM.Srivastava,\CoverageProblemsinWirelessAd-HocSensorNetworks,"Proc.TwentiethIEEEConf.ComputerCommunications(INFOCOM'01),pp.1380-1387,April2001. [34] G.Mellen,M.Pachter,andJ.Raquet,\Closed-FormSolutionforDeterminingEmitterLocationUsingTimeDierenceofArrivalMeasurements,"IEEETrans.AerospaceandElectronicSystems,vol.39,no.3,pp.1056-1058,2003. [35] V.Mhatre,C.P.Rosenberg,R.R.Mazumdar,andN.B.Shro,\AMinimumCostHeterogeneousSensorNetworkwithaLifetimeConstraint,"IEEETrans.MobileComputing,vol.4,no.1,pp.4-15,Jan./Feb.2005. [36] R.Nagpal,H.Shrobe,andJ.Bachrach,\OrganizingaGlobalCoordinateSystemfromLocalInformationonanAdHocSensorNetwork,"Proc.SecondInt'lWork-shopInformationProcessinginSensorNetworks(IPSN'03),April2003. [37] D.NiculescuandB.Nath,\AdHocPositioningSystem(APS)UsingAoA,"Proc.Twenty-secondIEEEConf.ComputerCommunications(INFOCOM'03),SanFrancisco,CA,USA,2003. [38] D.NiculescuandB.Nath,\DVBasedPositioninginAdHocNetworks,"J.TelecommunicationSystems,vol.22,no.1-4,pp.267-280,Jan.2003 [39] F.Gunnarsson,F.Gustafsson,N.Bergman,U.Forssell,J.Jansson,R.Karlsson,andP.-J.Nordlund,\ParticleFiltersforPositioning,Navigation,andTracking",IEEETrans.SignalProcessing,vol.50,no.2,pp.425-437,Feb.2002. [40] N.Patwari,A.O.Hero,M.Perkins,N.S.Correal,andR.J.Odea,\RelativeLocationEstimationinWirelessSensorNetworks,"IEEETrans.SignalProcessing,Vol51,No.8,pp.2137-2148,Aug.2003. 131

PAGE 132

S.PoduriandG.Sukhatme,\ConstrainedCoverageforMobileSensorNetworks,"IEEEInt'lConf.RoboticsandAutomation(ICRA'04),pp.165-171,2004. [42] G.PottieandW.Kaiser,PrinciplesofEmbeddedNetworkedSystemDesign.CambridgeUniversityPress,2005. [43] F.P.PreparataandI.A.Shamos,ComputationalGeometry:AnIntroduction.NewYork:Springer-Verlag,1985. [44] N.B.Priyanath,A.Chakraborty,andH.Balakrishna,\TheCricketLocation-SupportSystem,"Proc.SixthACMInt'lConf.MobileComputingandNetworking(MOBICOM'00),Aug.2000. [45] N.S.V.Rao,\IdenticationofSimpleProduct-FormPlumesUsingNetworksofSensorswithRandomErrors,"Proc.NinthInt'lConf.InformationFu-sion(FUSION'06),pp.1-8,July2006. [46] N.S.V.Rao,X.Xu,andS.Sahni,\AComputationalGeometryMethodforDTOATriangulation,"Proc.TenthInt'lConf.InformationFusion(FUSION'07),pp.1-7,July2007. [47] N.S.V.Rao,M.Shankar,J.C.Chin,D.Yau,Y.Yong,J.C.Hou,X.Xu,andS.Sahni,\LocalizationUnderRandomMeasurementswithApplicationtoRadiationSources,"Proc.EleventhInt'lConf.InformationFusion(FUSION'08),submitted. [48] K.RomerandF.Mattern\TheDesignSpaceofWirelessSensorNetworks,"IEEEWirelessCommunications,vol.11,no.6,pp.54-61,Dec.2004. [49] S.SahniandX.Xu,\AlgorithmsforWirelessSensorNetworks,"Int'lJ.DistributedSensorNetworks,InvitedPaper,PreviewIssue,pp.35-56,2004. [50] A.Savvides,C.Han,andM.Srivastava,\DynamicFine-GrainedLocalizationinAd-HocNetworksofSensors,"Proc.SeventhACMInt'lConf.MobileComputingandNetworking(MOBICOM'01),pp.166-179,2001. [51] A.Savvides,H.Park,andM.Srivastava,\TheBitsandFlopsoftheN-hopMultilaterationPrimitiveforNodeLocalizationProblems,"Proc.FirstACMInt'lWorkshopWirelessSensorNetworksandApplication(WSNA'02),Sep.2002. [52] A.H.Sayed,A.Tarighat,andN.Khajehnouri,\Network-BasedWirelessLocation,"IEEESignalProcessingMag.,pp.24-40,July2005. [53] H.C.SchauandA.Z.Robinson,\PassiveSourceLocalizationEmployingIntersectingSphericalSurfacesfromTime-of-ArrivalDierences,"IEEETrans.onAcoustics,Speech,andSignalProcessing,vol.35,no.8,pp.1223-1225,1987. [54] R.Schmidt,\ANewApproachtoGeometryofRangeDierenceLocation,"IEEETrans.onAerospaceandElectronicSystems,vol.8,no.6,pp.821-835,1972. 132

PAGE 133

"Sentilla",Availableat [56] J.O.SmithandJ.S.Abel,\Closed-FormLeast-SquaresSourceLocationEstimationfromRange-DierenceMeasurements,"IEEETrans.Acoustics,Speech,andSignalProcessing,vol.35,no.12,pp.1661-1669,Dec.1987. [57] M.A.SpiritoandA.G.Mattioli,\OntheHyperbolicPositioningofGSMMobileStations,"Proc.URSIInt'lSymp.Signals,SystemsandElectronics(ISSSE'98),pp.173-177,Sep.1998. [58] M.A.Spirito,\FurtherResultsonGSMMobileStationLocation",IEEElectronicsLetters,vol.35,no.11,PP.867-869,May1999. [59] A.SrinivasanandJ.Wu,\ASurveyonSecureLocalizationinWirelessSensorNetworks,"EncyclopediaofWirelessandMobileCommunications,Bu.Furht,ed.,CRCPress,2007. [60] R.Szewezyk,E.Osterweil,J.Polastre,M.Hamilton,A.Mainwaring,andD.Estrin,\HabitatMonitoringwithSensorNetworks,"Comm.ACM,vol.47,no.6,pp.34-40,2004. [61] X.Wang,G.Xing,Y.Zhang,C.Lu,R.Pless,andC.Gill,\IntegratedCoverageandConnectivityCongurationinWirelessSensorNetworks,"Proc.FirstInt'lConf.EmbeddedNetworkSensorSystems,pp.28-39,2003. [62] J.WangandN.Zhong,\EcientPointCoverageinWirelessSensorNetworks,"J.CombinatorialOptimization,vol.11,no.3,pp.291-304,May2006. [63] B.H.Wellenho,H.LichteneggerandJ.Collins,\GlobalPositioningSystem:TheoryandPractice,"SpringerVerlag,2004. [64] Q.Wu,S.S.Iyengar,S.V.N.Rao,X.Du,andV.K.Vaishnavi,\OnEcientDeploymentofSensorsonPlanarGrid,"ComputerComm.,vol.30,no.14-15,pp.2721-2734,2007. [65] "Crossbow",Availableat [66] G.Xing,X.Wang,Y.Zhang,C.Lu,R.Pless,andC.Gill,\IntegratedCoverageandConnectivityCongurationinWirelessSensorNetworks,"ACMTrans.SensorNetworks,vol.1,no.1,pp.36-72,2005. [67] Y.Xu,J.HeidemannandD.Estrin,\Geography-InformedEnergyConservationforAdHocRouting,"Proc.SeventhACMInt'lConf.MobileComputingandNetworking(MOBICOM'01),July2001. [68] K.Xuetal,\RelayNodeDeploymentStrategiesinHeterogeneousWirelessSensorNetworks:Multiple-HopCommunicationCase,"Proc.SecondIEEEComm.Soc.Conf.SensorandAdHocComm.andNetworks(IEEESECON),pp.575-585,2005. 133

PAGE 134

X.XuandS.Sahni,\ApproximationAlgorithmsforSensorDeployment,"IEEETrans.Computers,vol.56,no.12,pp.1681-1695,2007. [70] X.Xu,N.S.V.Rao,andS.Sahni,\AComputationalGeometricMethodforTriangulationUsingDierencesofDistances,"ACMTrans.SensorNetworks,toappear. [71] H.ZhangandJ.Hou,\MaintainingSensingCoverageandConnectivityinLargeSensorNetworks,"TechnicalReportUIUCDCS-R-2003-2351,Univ.ofIllinoisatUrbana-Champaign,2003. [72] H.ZhangandJ.Hou,\MaintainingSensingCoverageandConnectivityinLargeSensorNetworks,"Proc.NSFInt'lWorkshopTheoreticalandAlgorithmicAspectsofSensor,AdHocWireless,andPeer-to-PeerNetworks,2004. [73] F.ZhaoandL.Guibas,WirelessSensorNetworks.Elsevier,2004. [74] Y.ZouandK.Chakrabarty,\SensorDeploymentandTargetLocalizationinDistributedSensorNetworks,"ACMTrans.EmbeddedComputingSystems,vol.3,no.1,pp.61-91,2004. 134

PAGE 135

XiaochunXuwasborninChangzhou,amidsizecityintheeasterncoastalareaofChina.HestudiedintheeldofcomputersoftwareattheDepartmentofComputerScienceandTechnology,NanjingUniversity,China,from1995to2002,andobtainedhismaster'sdegreeincomputersoftware.HestartedhisPh.D.studyattheDepartmentofComputerandInformationScienceandEngineeringattheUniversityofFloridainAugust2002.Hisresearchareasareapproximationalgorithms,computationalgeometry,wirelesssensornetworks,andwirelessadhocnetworks. 135